This section covers more advanced heavy-ion features introduced in Rivet version 2.7.0+. It explains how event mixing is implemented in Rivet and how to use it, as well as it presents the idea of reentrant finalize for analyses which require more than one beam and/or energy within the same analysis.
Please follow the basic tutorial of implementing a Rivet analysis here and a section covering basic heavy-ion features here first before going into this section.
Postprocessing is a method that enables to merge results coming from different Rivet runs. This is useful for analyses which require different beams and/or energies to obtain final results, but also is useful when one wants to simply increase the statistics by merging multiple runs for the same beam/energy. Note, that such an analysis must be implemented in a certain way to allow proper running for all modes, so one should take great care when writing it.
In case of running an analysis for different beams/energies, first step is to declare them in the .info file like this:
[...]
Beams: [[p, p], [Pb, Pb]]
# This is _total_ energy of beams, so this becomes 208*2760=574080
Energies: [2760, 574080]
[...]
Then, inside the analysis' init function, one should declare objects for each beam/energy separately, e.g.:
void init() {
// Initialize PbPb objects
book(_histNch, 1, 1, 1);
book(_counterSOW, "counter.pbpb"); // Sum of weights counter for PbPb
book(_counterNcoll, "counter.ncoll"); // Ncoll counter for PbPb
// Initialize pp objects
std::string namePP = _mkAxisCode(1, 1, 1) + "-pp";
book(_histNchPP, namePP, refData(1, 1, 1));
book(_counterSOWPP, "counter.pp"); // Sum of weights counter for pp
// Book ratios, to be used in finalize
book(_histRAA, 16, 1, 1);
[...]
}
Sill in the analyze method, one can check the beam type and assign the value to a variable (bool isHI, in this case) depending on the beam type
const ParticlePair& beam = beams();
if (beam.first.pid() == PID::PROTON && beam.second.pid() == PID::PROTON) isHI = false;
else if (beam.first.pid() == PID::LEAD && beam.second.pid() == PID::LEAD) isHI = true;
else {
MSG_ERROR("Beam error (found)!");
return;
}
In the analyze method, one can then use the information gathered about the beam type to steer the analysis as required
if (isHI) {
const HepMC::HeavyIon* hi = event.genEvent()->heavy_ion();
if (!hi.ok()) {
MSG_WARNING("HEPMC Heavy ion container needed for this analysis, but not "
"found for this event. Skipping.");
vetoEvent;
}
// process PbPb event, fill PbPb histograms
}
else {
// process pp event, fill pp histograms
}
Finally, the regular finalize method is called, but in case we have entries in the histograms for both beam types, we do an additional step of dividing them one by another to create R_AA plot:
void finalize() {
// Regular finalize, scaling, etc.
[...]
// Postprocessing of the histograms in case there are
// entries in histograms for both beam types
if (_histNchPP->numEntries() > 0 && _histNch->numEntries() > 0) {
// Initialize and fill R_AA histograms
divide(_histNch, _histNchPP, _histRAA);
}
}
In order to run an analysis in the postprocessing mode one should run an analysis for every beam/energy combination and then use the rivet-merge script with the output files from the previous runs provided as parameters (check rivet-merge --help):
rivet-merge /path/to/result1.yoda /path/to/result2.yoda ...
This will use the RAW histograms from you output files (check that your .yoda files contain them, they contain results from the analysis before the final scaling in the finalize method), merge them, and call finalize part of the analysis again on the merged histograms. Now, as all the histograms will be available, the finalize method will (in our case) create and fill R_AA histograms and save them to the output .yoda file containing final results.
{% callout "Beware" %}
There is no information about beam and energy when running rivet-merge script - this should be taken into account when implementing such an analysis. Also note, that an analysis with reentrant finalize should be validated to allow running in every mode, and so in the .info file it should be marked as: Status: REENTRANT
{% endcallout %}
A full example of an analysis with the reentrant finalize mode enabled is provided below:
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/Beam.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
#include "Rivet/Tools/Cuts.hh"
#include "Rivet/Projections/SingleValueProjection.hh"
#include "Rivet/Tools/AliceCommon.hh"
#include "Rivet/Projections/AliceCommon.hh"
#include "Rivet/Projections/HepMCHeavyIon.hh"
namespace Rivet {
/// @brief ALICE PbPb at 2.76 TeV R_AA analysis.
class ALICE_2012_I1127497 : public Analysis {
public:
/// Constructor
DEFAULT_RIVET_ANALYSIS_CTOR(ALICE_2012_I1127497);
/// @name Analysis methods
//@{
/// Book histograms and initialise projections before the run
void init() {
// Access the HepMC heavy ion info
declare(HepMCHeavyIon(), "HepMC");
// Declare centrality projection
declareCentrality(ALICE::V0MMultiplicity(),
"ALICE_2015_PBPBCentrality", "V0M", "V0M");
// Charged, primary particles with |eta| < 0.5 and pT > 150 MeV
declare(ALICE::PrimaryParticles(Cuts::abseta < 0.5 &&
Cuts::pT > 150*MeV && Cuts::abscharge > 0), "APRIM");
// Loop over all histograms
for (size_t ihist = 0; ihist < NHISTOS; ++ihist) {
// Initialize PbPb objects
book(_histNch[PBPB][ihist], ihist+1, 1, 1);
std::string nameCounterPbPb = "counter.pbpb." + std::to_string(ihist);
book(_counterSOW[PBPB][ihist], nameCounterPbPb); // Sum of weights counter for PbPb
std::string nameCounterNcoll = "counter.ncoll." + std::to_string(ihist);
book(_counterNcoll[ihist], nameCounterNcoll); // Ncoll counter for PbPb
// Initialize pp objects. In principle, only one pp histogram would be
// needed since centrality does not make any difference here. However,
// in some cases in this analysis the binning differ from each other,
// so this is easy-to-implement way to account for that.
std::string namePP = mkAxisCode(ihist+1,1,1) + "-pp";
// The binning is taken from the reference data
book(_histNch[PP][ihist], namePP, refData(ihist+1, 1, 1));
std::string nameCounterpp = "counter.pp." + std::to_string(ihist);
book(_counterSOW[PP][ihist], nameCounterpp); // Sum of weights counter for pp
// Book ratios, to be used in finalize
book(_histRAA[ihist], ihist+16, 1, 1);
}
// Centrality regions keeping boundaries for a certain region.
// Note, that some regions overlap with other regions.
_centrRegions.clear();
_centrRegions = {{0., 5.}, {5., 10.}, {10., 20.},
{20., 30.}, {30., 40.}, {40., 50.},
{50., 60.}, {60., 70.}, {70., 80.},
{0., 10.}, {0., 20.}, {20., 40.},
{40., 60.}, {40., 80.}, {60., 80.}};
// Find out the beam type, also specified from option.
string beamOpt = getOption<string>("beam","NONE");
if (beamOpt != "NONE") {
MSG_WARNING("You are using a specified beam type, instead of using what"
"is provided by the generator. "
"Only do this if you are completely sure what you are doing.");
if (beamOpt=="PP") isHI = false;
else if (beamOpt=="HI") isHI = true;
else {
MSG_ERROR("Beam error (option)!");
return;
}
}
else {
const ParticlePair& beam = beams();
if (beam.first.pid() == PID::PROTON && beam.second.pid() == PID::PROTON) isHI = false;
else if (beam.first.pid() == PID::LEAD && beam.second.pid() == PID::LEAD)
isHI = true;
else {
MSG_ERROR("Beam error (found)!");
return;
}
}
}
/// Perform the per-event analysis
void analyze(const Event& event) {
// Charged, primary particles with at least pT = 150 MeV
// in eta range of |eta| < 0.5
Particles chargedParticles =
apply<ALICE::PrimaryParticles>(event,"APRIM").particlesByPt();
// Check type of event.
if ( isHI ) {
const HepMCHeavyIon & hi = apply<HepMCHeavyIon>(event, "HepMC");
if (!hi.ok()) {
MSG_WARNING("HEPMC Heavy ion container needed for this analysis, but not "
"found for this event. Skipping.");
vetoEvent;
}
// Prepare centrality projection and value
const CentralityProjection& centrProj =
apply<CentralityProjection>(event, "V0M");
double centr = centrProj();
// Veto event for too large centralities since those are not used
// in the analysis at all
if ((centr < 0.) || (centr > 80.)) vetoEvent;
// Fill PbPb histograms and add weights based on centrality value
for (size_t ihist = 0; ihist < NHISTOS; ++ihist) {
if (inRange(centr, _centrRegions[ihist].first, _centrRegions[ihist].second)) {
_counterSOW[PBPB][ihist]->fill();
_counterNcoll[ihist]->fill(hi.Ncoll());
for (const Particle& p : chargedParticles) {
double pT = p.pT()/GeV;
if (pT < 50.) {
const double pTAtBinCenter = _histNch[PBPB][ihist]->binAt(pT).xMid();
_histNch[PBPB][ihist]->fill(pT, 1/pTAtBinCenter);
}
}
}
}
}
else {
// Fill all pp histograms and add weights
for (size_t ihist = 0; ihist < NHISTOS; ++ihist) {
_counterSOW[PP][ihist]->fill();
for (const Particle& p : chargedParticles) {
double pT = p.pT()/GeV;
if (pT < 50.) {
const double pTAtBinCenter = _histNch[PP][ihist]->binAt(pT).xMid();
_histNch[PP][ihist]->fill(pT, 1/pTAtBinCenter);
}
}
}
}
}
/// Normalise histograms etc., after the run
void finalize() {
// Right scaling of the histograms with their individual weights.
for (size_t itype = 0; itype < EVENT_TYPES; ++itype ) {
for (size_t ihist = 0; ihist < NHISTOS; ++ihist) {
if (_counterSOW[itype][ihist]->sumW() > 0.) {
scale(_histNch[itype][ihist],
(1. / _counterSOW[itype][ihist]->sumW() / 2. / M_PI));
}
}
}
// Postprocessing of the histograms
for (size_t ihist = 0; ihist < NHISTOS; ++ihist) {
// If there are entires in histograms for both beam types
if (_histNch[PP][ihist]->numEntries() > 0 && _histNch[PBPB][ihist]->numEntries() > 0) {
// Initialize and fill R_AA histograms
divide(_histNch[PBPB][ihist], _histNch[PP][ihist], _histRAA[ihist]);
// Scale by Ncoll. Unfortunately some generators does not provide
// Ncoll value (eg. JEWEL), so the following scaling will be done
// only if there are entries in the counters
double ncoll = _counterNcoll[ihist]->sumW();
double sow = _counterSOW[PBPB][ihist]->sumW();
if (ncoll > 1e-6 && sow > 1e-6)
_histRAA[ihist]->scaleY(1. / (ncoll / sow));
}
}
}
//@}
private:
bool isHI;
static const int NHISTOS = 15;
static const int EVENT_TYPES = 2;
static const int PP = 0;
static const int PBPB = 1;
/// @name Histograms
//@{
Histo1DPtr _histNch[EVENT_TYPES][NHISTOS];
CounterPtr _counterSOW[EVENT_TYPES][NHISTOS];
CounterPtr _counterNcoll[NHISTOS];
Scatter2DPtr _histRAA[NHISTOS];
//@}
std::vector<std::pair<double, double>> _centrRegions;
};
// The hook for the plugin system
DECLARE_RIVET_PLUGIN(ALICE_2012_I1127497);
}
{% callout "WARNING" %} This feature is still under development and its usage might change in the coming versions of Rivet. Description of this procedure was prepared for Rivet version 2.7.2. {% endcallout %}
Event mixing is a procedure that enables to project out an event mixed of several events. In Rivet it is implemented in a form of a projection class called EventMixingProjection. It is based on a mixing observable provided as an input to define what should qualify as a mixable event, where the mixing observable can be defined as number of final state particles, centrality, event plane angle, etc. It contains a buffer that is filled with events over the runtime. This buffer can be used within an analysis to perform required operations. A declaration of an event mixing projection looks like this:
void init () {
[...]
// Charged final state to manage the mixing observable
ChargedFinalState cfsMult(Cuts::abseta < 0.8);
addProjection(cfsMult, "CFSMult");
// Primary particles.
PrimaryParticles pp({Rivet::PID::PIPLUS, Rivet::PID::KPLUS,
Rivet::PID::K0S, Rivet::PID::K0L, Rivet::PID::PROTON,
Rivet::PID::NEUTRON, Rivet::PID::LAMBDA, Rivet::PID::SIGMAMINUS,
Rivet::PID::SIGMAPLUS, Rivet::PID::XIMINUS, Rivet::PID::XI0,
Rivet::PID::OMEGAMINUS},Cuts::abseta < etamax && Cuts::pT > pTmin*GeV);
addProjection(pp,"APRIM");
// The event mixing projection
declare(EventMixingFinalState(&cfsMult, pp, 5, 0, 100, 10),"EVM");
[...]
}
In this case the first parameter of the event mixing projection defines a mixing observable. The second parameter is used to project out an event that is added to the buffer. The other parameters are: number of events to mix, minimal and maximal value of the mixing observable, and number of bins for that observable (so that for each bin there is a separate buffer). One can use it in the analyze method like this:
void analyze(const Event& event) {
[...]
const EventMixingFinalState& evm = applyProjection<EventMixingFinalState>(event, "EVM");
// Test if we have enough mixing events available to continue.
if (!evm.hasMixingEvents()) return;
// Loop over the particles in the mixing buffer
for(const Particle& pMix : evm.particles()){
[...]
}
[...]
}
This enables to check if we already have enough events in our buffer (method hasMixingEvents will return false in case the number of events in the buffer is lower than requested) and gives us access to the mixing buffer within the analysis. Note, that in this case first few events will be skipped as we require our buffers to be filled before going further. Full example can be found here:
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/AliceCommon.hh"
#include "Rivet/Projections/PrimaryParticles.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
#include "Rivet/Projections/EventMixingFinalState.hh"
namespace Rivet {
/// @brief Correlations of identified particles in pp.
/// Also showcasing use of EventMixingFinalState.
class ALICE_2016_I1507157 : public Analysis {
public:
/// Constructor
DEFAULT_RIVET_ANALYSIS_CTOR(ALICE_2016_I1507157);
/// @name Analysis methods
//@{
/// @brief Calculate angular distance between particles.
double phaseDif(double a1, double a2){
double dif = a1 - a2;
while (dif < -M_PI/2)
dif += 2*M_PI;
while (dif > 3*M_PI/2)
dif -= 2*M_PI;
return dif;
}
/// Book histograms and initialise projections before the run
void init() {
double etamax = 0.8;
double pTmin = 0.5; // GeV
// Trigger
declare(ALICE::V0AndTrigger(), "V0-AND");
// Charged tracks used to manage the mixing observable.
ChargedFinalState cfsMult(Cuts::abseta < etamax);
addProjection(cfsMult, "CFSMult");
// Primary particles.
PrimaryParticles pp({Rivet::PID::PIPLUS, Rivet::PID::KPLUS,
Rivet::PID::K0S, Rivet::PID::K0L, Rivet::PID::PROTON,
Rivet::PID::NEUTRON, Rivet::PID::LAMBDA, Rivet::PID::SIGMAMINUS,
Rivet::PID::SIGMAPLUS, Rivet::PID::XIMINUS, Rivet::PID::XI0,
Rivet::PID::OMEGAMINUS},Cuts::abseta < etamax && Cuts::pT > pTmin*GeV);
addProjection(pp,"APRIM");
// The event mixing projection
declare(EventMixingFinalState(&cfsMult, pp, 5, 0, 100, 10),"EVM");
// The particle pairs.
pid = {{211, -211}, {321, -321}, {2212, -2212}, {3122, -3122}, {211, 211},
{321, 321}, {2212, 2212}, {3122, 3122}, {2212, 3122}, {2212, -3122}};
// The associated histograms in the data file.
vector<string> refdata = {"d04-x01-y01","d04-x01-y02","d04-x01-y03",
"d06-x01-y02","d05-x01-y01","d05-x01-y02","d05-x01-y03","d06-x01-y01",
"d01-x01-y02","d02-x01-y02"};
for (int i = 0, N = refdata.size(); i < N; ++i) {
// The ratio plots.
ratio.push_back(bookScatter2D(refdata[i], true));
// Signal and mixed background.
signal.push_back(bookHisto1D("/TMP/" + refdata[i] +
"-s", *ratio[i], refdata[i] + "-s"));
background.push_back(bookHisto1D("/TMP/" + refdata[i] +
"-b", *ratio[i], refdata[i] + "-b"));
// Number of signal and mixed pairs.
nsp.push_back(0.);
nmp.push_back(0.);
}
}
/// Perform the per-event analysis
void analyze(const Event& event) {
const double weight = event.weight();
// Triggering
if (!apply<ALICE::V0AndTrigger>(event, "V0-AND")()) return;
// The projections
const PrimaryParticles& pp =
applyProjection<PrimaryParticles>(event,"APRIM");
const EventMixingFinalState& evm =
applyProjection<EventMixingFinalState>(event, "EVM");
// Test if we have enough mixing events available to continue.
if (!evm.hasMixingEvents()) return;
for(const Particle& p1 : pp.particles()) {
// Start by doing the signal distributions
for(const Particle& p2 : pp.particles()) {
if(isSame(p1,p2))
continue;
double dEta = abs(p1.eta() - p2.eta());
double dPhi = phaseDif(p1.phi(), p2.phi());
if(dEta < 1.3) {
for (int i = 0, N = pid.size(); i < N; ++i) {
int pid1 = pid[i].first;
int pid2 = pid[i].second;
bool samesign = (pid1 * pid2 > 0);
if (samesign && ((pid1 == p1.pid() && pid2 == p2.pid()) ||
(pid1 == -p1.pid() && pid2 == -p2.pid()))) {
signal[i]->fill(dPhi, weight);
nsp[i] += 1.0;
}
if (!samesign && abs(pid1) == abs(pid2) &&
pid1 == p1.pid() && pid2 == p2.pid()) {
signal[i]->fill(dPhi, weight);
nsp[i] += 1.0;
}
if (!samesign && abs(pid1) != abs(pid2) &&
( (pid1 == p1.pid() && pid2 == p2.pid()) ||
(pid2 == p1.pid() && pid1 == p2.pid()) ) ) {
signal[i]->fill(dPhi, weight);
nsp[i] += 1.0;
}
}
}
}
// Then do the background distribution
for(const Particle& pMix : evm.particles()){
double dEta = abs(p1.eta() - pMix.eta());
double dPhi = phaseDif(p1.phi(), pMix.phi());
if(dEta < 1.3) {
for (int i = 0, N = pid.size(); i < N; ++i) {
int pid1 = pid[i].first;
int pid2 = pid[i].second;
bool samesign = (pid1 * pid2 > 0);
if (samesign && ((pid1 == p1.pid() && pid2 == pMix.pid()) ||
(pid1 == -p1.pid() && pid2 == -pMix.pid()))) {
background[i]->fill(dPhi, weight);
nmp[i] += 1.0;
}
if (!samesign && abs(pid1) == abs(pid2) &&
pid1 == p1.pid() && pid2 == pMix.pid()) {
background[i]->fill(dPhi, weight);
nmp[i] += 1.0;
}
if (!samesign && abs(pid1) != abs(pid2) &&
( (pid1 == p1.pid() && pid2 == pMix.pid()) ||
(pid2 == p1.pid() && pid1 == pMix.pid()) ) ) {
background[i]->fill(dPhi, weight);
nmp[i] += 1.0;
}
}
}
}
}
}
/// Normalise histograms etc., after the run
void finalize() {
for (int i = 0, N = pid.size(); i < N; ++i) {
double sc = nmp[i] / nsp[i];
signal[i]->scaleW(sc);
divide(signal[i],background[i],ratio[i]);
}
}
//@}
/// @name Histograms
//@{
vector<pair<int, int> > pid;
vector<Histo1DPtr> signal;
vector<Histo1DPtr> background;
vector<Scatter2DPtr> ratio;
vector<double> nsp;
vector<double> nmp;
//@}
};
// The hook for the plugin system
DECLARE_RIVET_PLUGIN(ALICE_2016_I1507157);
}