forked from jakevdp/jakevdp.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
index6.html
1422 lines (1242 loc) · 67.9 KB
/
index6.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<meta name="author" content="Jake VanderPlas">
<meta name="description" content="">
<meta name="viewport" content="width=device-width">
<title>Home | Pythonic Perambulations</title>
<link rel="shortcut icon" href="/favicon.ico" type="image/x-icon">
<link rel="icon" href="/favicon.ico" type="image/x-icon">
<link rel="alternate" type="application/atom+xml" title="Pythonic Perambulations blog atom feed" href="/feeds/all.atom.xml" />
<link href='https://fonts.googleapis.com/css?family=Source+Sans+Pro:300,400,700' rel='stylesheet' type='text/css'>
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css" integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u" crossorigin="anonymous">
<link rel="stylesheet" type="text/css" href="/theme/css/icons.css"/>
<style>.highlight .hll { background-color: #ffffcc }
.highlight .c { color: #60a0b0; font-style: italic } /* Comment */
.highlight .err { border: 1px solid #FF0000 } /* Error */
.highlight .k { color: #007020; font-weight: bold } /* Keyword */
.highlight .o { color: #666666 } /* Operator */
.highlight .cm { color: #60a0b0; font-style: italic } /* Comment.Multiline */
.highlight .cp { color: #007020 } /* Comment.Preproc */
.highlight .c1 { color: #60a0b0; font-style: italic } /* Comment.Single */
.highlight .cs { color: #60a0b0; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #A00000 } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gr { color: #FF0000 } /* Generic.Error */
.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */
.highlight .gi { color: #00A000 } /* Generic.Inserted */
.highlight .go { color: #808080 } /* Generic.Output */
.highlight .gp { color: #c65d09; font-weight: bold } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */
.highlight .gt { color: #0040D0 } /* Generic.Traceback */
.highlight .kc { color: #007020; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #007020; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #007020; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #007020 } /* Keyword.Pseudo */
.highlight .kr { color: #007020; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #902000 } /* Keyword.Type */
.highlight .m { color: #40a070 } /* Literal.Number */
.highlight .s { color: #4070a0 } /* Literal.String */
.highlight .na { color: #4070a0 } /* Name.Attribute */
.highlight .nb { color: #007020 } /* Name.Builtin */
.highlight .nc { color: #0e84b5; font-weight: bold } /* Name.Class */
.highlight .no { color: #60add5 } /* Name.Constant */
.highlight .nd { color: #555555; font-weight: bold } /* Name.Decorator */
.highlight .ni { color: #d55537; font-weight: bold } /* Name.Entity */
.highlight .ne { color: #007020 } /* Name.Exception */
.highlight .nf { color: #06287e } /* Name.Function */
.highlight .nl { color: #002070; font-weight: bold } /* Name.Label */
.highlight .nn { color: #0e84b5; font-weight: bold } /* Name.Namespace */
.highlight .nt { color: #062873; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #bb60d5 } /* Name.Variable */
.highlight .ow { color: #007020; font-weight: bold } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mf { color: #40a070 } /* Literal.Number.Float */
.highlight .mh { color: #40a070 } /* Literal.Number.Hex */
.highlight .mi { color: #40a070 } /* Literal.Number.Integer */
.highlight .mo { color: #40a070 } /* Literal.Number.Oct */
.highlight .sb { color: #4070a0 } /* Literal.String.Backtick */
.highlight .sc { color: #4070a0 } /* Literal.String.Char */
.highlight .sd { color: #4070a0; font-style: italic } /* Literal.String.Doc */
.highlight .s2 { color: #4070a0 } /* Literal.String.Double */
.highlight .se { color: #4070a0; font-weight: bold } /* Literal.String.Escape */
.highlight .sh { color: #4070a0 } /* Literal.String.Heredoc */
.highlight .si { color: #70a0d0; font-style: italic } /* Literal.String.Interpol */
.highlight .sx { color: #c65d09 } /* Literal.String.Other */
.highlight .sr { color: #235388 } /* Literal.String.Regex */
.highlight .s1 { color: #4070a0 } /* Literal.String.Single */
.highlight .ss { color: #517918 } /* Literal.String.Symbol */
.highlight .bp { color: #007020 } /* Name.Builtin.Pseudo */
.highlight .vc { color: #bb60d5 } /* Name.Variable.Class */
.highlight .vg { color: #bb60d5 } /* Name.Variable.Global */
.highlight .vi { color: #bb60d5 } /* Name.Variable.Instance */
.highlight .il { color: #40a070 } /* Literal.Number.Integer.Long */</style>
<style>body {
margin: 0;
padding: 0;
font: 15px 'Source Sans Pro', sans-serif;
line-height: 1.6em;
color: #222;
text-rendering: optimizeLegibility;
-webkit-font-smoothing: antialiased;
}
a {
color: #007EE5;
text-decoration: none;
}
a:hover {
color: #007EE5;
text-decoration: none;
}
header.main-header {
background: none repeat scroll 0% 0% #205F29;
margin-bottom: 0px;
}
header.main-header a {
color: #fff;
}
header.main-header .container {
max-width: 1000px;
}
header.main-header .container nav a:hover {
background-color: #5C881C;
}
article {
margin: 0;
}
article header.about {
margin-bottom: 0px;
padding-bottom: 0px;
}
article header {
margin-bottom: 20px;
padding-bottom: 20px;
}
article header h1 {
margin-bottom: 2px;
font-weight: 700;
color: #000;
}
article header time {
color: #9E9E9E;
font-size: 0.85em;
float: right;
}
article header time.left {
color: #9E9E9E;
font-size: 0.85em;
float: left;
}
article div.social-links ul {
padding: 0px;
}
article div.social-links li {
display: inline;
font-size: 20px;
}
article div.social-links li a {
color: #000;
padding: 10px;
}
article div.social-links li a:hover {
color: #666;
text-decoration: none;
}
article p {
font-size: 16px;
margin-bottom: 20px;
line-height: 1.6em;
}
article p.note {
background: #f5f5f5;
border: 1px solid #ddd;
padding: 0.533em 0.733em;
}
article p.update {
background-color: #FEEFB3;
border: 1px solid #e6e68a;
padding: 0.533em 0.733em;
}
article p.alert {
background-color: #ffe2e2;
border: 1px solid #ffb2b2;
padding: 0.533em 0.733em;
}
article ul,
article ol {
margin-top: 0px;
margin-bottom: 25px;
}
article li {
font-size: 16px;
line-height: 1.6em;
}
article a:hover {
text-decoration: underline;
}
article blockquote {
border-left: 2px solid #c7c7cc;
color: #666;
margin: 30px 0;
padding: 0 0 0 25px;
}
article img {
max-width: 100%;
}
article code {
color: #333;
background-color: #EEE;
border-radius: 0;
font-size: 13px;
}
article .meta {
font-size: 11px;
}
article .meta a:hover {
text-decoration: none;
}
article .meta div {
margin-bottom: 20px;
display: block;
}
article .meta a.tag {
margin: 0 10px 10px 0;
padding: 1px 12px;
display: inline-block;
font-size: 14px;
color: rgba(0, 0, 0, 0.8);
background: rgba(0, 0, 0, 0.05);
}
article .meta a.tag:hover {
background: rgba(0, 0, 0, 0.15);
}
article .meta a.read_more,
article .meta a.comments_btn {
font-size: 14px;
font-weight: 800;
padding: 10px 20px;
color: #205F29;
background: #FFF;
border: 1px solid #205F29;
}
article .meta a.read_more:hover,
article .meta a.comments_btn:hover {
color: #FFF;
background: #5C881C;
}
.index {
max-width: 700px;
}
.index article header h2 {
font-size: 36px;
margin-bottom: 2px;
font-weight: 700;
}
.index article header h2 a {
color: #000;
}
.index article header h2 a:hover {
color: #007EE5;
text-decoration: none;
}
.index .separator {
padding: 40px 0 0 0;
margin: 0 0 40px 0;
height: 10px;
border-bottom: solid 1px #CCC;
}
.index .pagination {
display: block;
margin-bottom: 100px;
}
.index .pagination .left {
text-align: right;
}
.index .pagination .right {
text-align: left;
}
.index .pagination a {
display: inline-block;
border: 2px solid #5C881C;
margin: 0 5px;
padding: 8px 20px;
font-weight: bold;
color: #5C881C;
}
.index .pagination a:hover {
color: #FFF;
background: #5C881C;
}
.post {
max-width: 700px;
}
.post h2:before {
content: "# ";
font-weight: bold;
color: #DDD;
}
.post h3:before {
content: "## ";
font-weight: bold;
color: #DDD;
}
.post h4:before {
content: "### ";
font-weight: bold;
color: #DDD;
}
.post article .meta {
margin: 50px 0 100px;
}
.list {
max-width: 700px;
}
.list ul.double-list {
margin: 0 auto 60px;
padding: 0;
list-style-type: none;
}
.list ul.double-list li {
padding: 5px 0;
}
.list ul.double-list li h2 {
font-size: 1em;
display: inline;
font-weight: normal;
}
.list ul.double-list li span {
font-family: sans-serif;
text-transform: uppercase;
text-align: right;
float: right;
padding-top: 3px;
font-size: 12px;
color: #999;
}
.full-width-content {
padding-top: 10px;
padding-left: 0px;
padding-right: 0px;
margin-left: -20px;
margin-right: -20px;
}
.col-xs-1,
.col-sm-1,
.col-md-1,
.col-lg-1,
.col-xs-2,
.col-sm-2,
.col-md-2,
.col-lg-2,
.col-xs-3,
.col-sm-3,
.col-md-3,
.col-lg-3,
.col-xs-4,
.col-sm-4,
.col-md-4,
.col-lg-4,
.col-xs-5,
.col-sm-5,
.col-md-5,
.col-lg-5,
.col-xs-6,
.col-sm-6,
.col-md-6,
.col-lg-6,
.col-xs-7,
.col-sm-7,
.col-md-7,
.col-lg-7,
.col-xs-8,
.col-sm-8,
.col-md-8,
.col-lg-8,
.col-xs-9,
.col-sm-9,
.col-md-9,
.col-lg-9,
.col-xs-10,
.col-sm-10,
.col-md-10,
.col-lg-10,
.col-xs-11,
.col-sm-11,
.col-md-11,
.col-lg-11,
.col-xs-12,
.col-sm-12,
.col-md-12,
.col-lg-12 {
padding-right: 0px;
padding-left: 0px;
}</style>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.1.1/jquery.min.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js"></script>
<script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_HTML" type="text/javascript"></script>
<script type="text/javascript">
init_mathjax = function() {
if (window.MathJax) {
// MathJax loaded
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'], ["\\(","\\)"] ],
displayMath: [ ['$$','$$'], ["\\[","\\]"] ]
},
displayAlign: 'left', // Change this to 'center' to center equations.
"HTML-CSS": {
styles: {'.MathJax_Display': {"margin": 0}}
}
});
MathJax.Hub.Queue(["Typeset",MathJax.Hub]);
}
}
init_mathjax();
</script>
</head>
<body>
<header class="navbar navbar-inverse bs-docs-nav">
<div class="container-fluid">
<div class="navbar-header">
<button type="button" class="navbar-toggle" data-toggle="collapse" data-target="#theNavbar">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="/" title="Home" class="title">Pythonic Perambulations</a>
</div>
<nav class="collapse navbar-collapse bs-navbar-collapse" role="navigation" id="theNavbar">
<ul class="nav navbar-nav navbar-right">
<li><a href="/pages/about.html" title="About">About</a></li>
<li><a href="/archives.html" title="Archive">Archive</a></li>
<li><a class="nodec icon-rss" href="/feeds/all.atom.xml" title="jakevdp.github.io RSS feed" rel="me"></a></li>
</ul>
</nav>
</div>
</header>
<div id="wrap">
<div class="container index">
<article>
<header>
<h2><a href="http://jakevdp.github.io/blog/2012/12/19/sparse-svds-in-python/">Sparse SVDs in Python</a></h2>
<time datetime="" title="2012-12-19T08:21:00-08:00" pubdate>Wed 19 December 2012</time>
</header>
<div class="article_content">
<p>After <a href="http://fseoane.net/blog/2012/singular-value-decomposition-in-scipy/">Fabian's post</a> on the topic, I have recently returned to thinking about the
subject of sparse singular value decompositions (SVDs) in Python.</p>
<p>For those who haven't used it, the SVD is an extremely powerful technique.
It is the core routine of many applications,
from filtering to dimensionality
reduction to graph analysis to supervised classification and much, much more.</p>
<p>I first came across the need for a fast sparse SVD when applying a technique
called Locally Linear Embedding (LLE) to astronomy spectra: it was the first
astronomy paper I published, and you can read it <a href="http://adsabs.harvard.edu/abs/2009AJ....138.1365V">here</a>. In LLE, one visualizes the nonlinear relationship
between high-dimensional observations. The computational cost is extreme: for
<em>N</em> objects, one must compute the null space (intimately related to the SVD)
of a <em>N</em> by <em>N</em> matrix. Using direct methods (e.g. LAPACK), this can scale
as bad as $\mathcal{O}[N^3]$ in both memory and speed!</p>
</div>
<div class="meta">
<div>
<a href="http://jakevdp.github.io/blog/2012/12/19/sparse-svds-in-python/" class="read_more">Read more →</a>
</div>
<div>
<a href="http://jakevdp.github.io/tag/linear-algebra.html" class="tag">linear algebra</a>
<a href="http://jakevdp.github.io/tag/benchmarks.html" class="tag">benchmarks</a>
</div>
</div>
</article>
<div class="separator"></div>
<article>
<header>
<h2><a href="http://jakevdp.github.io/blog/2012/12/06/minesweeper-in-matplotlib/">Minesweeper in Matplotlib</a></h2>
<time datetime="" title="2012-12-06T18:23:00-08:00" pubdate>Thu 06 December 2012</time>
</header>
<div class="article_content">
<p>Lately I've been playing around with interactivity in matplotlib. A couple
weeks ago, I discussed briefly how to use event callbacks to implement
<a href="/blog/2012/11/24/simple-3d-visualization-in-matplotlib/">simple 3D visualization</a>
and later used this as a base for creating a
<a href="/blog/2012/11/26/3d-interactive-rubiks-cube-in-python">working 3D Rubik's cube</a>
entirely in matplotlib.</p>
<p>Today I have a different goal: re-create
<a href="http://en.wikipedia.org/wiki/Minesweeper_%28computer_game%29">minesweeper</a>,
that ubiquitous single-player puzzle game that most of us will admit to
having binged on at least once or twice in their lives. In minesweeper, the
goal is to discover and avoid hidden mines within a gridded minefield, and
the process takes some logic and quick thinking.</p>
<p><img src="/images/minesweeper_2.gif" width="800"></p>
</div>
<div class="meta">
<div>
<a href="http://jakevdp.github.io/blog/2012/12/06/minesweeper-in-matplotlib/" class="read_more">Read more →</a>
</div>
<div>
<a href="http://jakevdp.github.io/tag/matplotlib.html" class="tag">matplotlib</a>
</div>
</div>
</article>
<div class="separator"></div>
<article>
<header>
<h2><a href="http://jakevdp.github.io/blog/2012/12/01/a-primer-on-python-metaclasses/">A Primer on Python Metaclasses</a></h2>
<time datetime="" title="2012-12-01T07:25:00-08:00" pubdate>Sat 01 December 2012</time>
</header>
<div class="article_content">
Most readers are aware that Python is an object-oriented language. By
object-oriented, we mean that Python can define <em>classes</em>, which bundle
<strong>data</strong> and <strong>functionality</strong> into one entity. For example, we may
create a class <code>IntContainer</code> which stores an integer and allows
certain operations to be performed:</p>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">i</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">i</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="n">i</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">add_one</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">i</span> <span class="o">+=</span> <span class="mi">1</span>
</pre>
<span class="n">ic</span><span class="o">.</span><span class="n">add_one</span><span class="p">()</span>
<span class="nb">print</span><span class="p">(</span><span class="n">ic</span><span class="o">.</span><span class="n">i</span><span class="p">)</span>
</pre>
<pre>3
</pre>
<p>This is a bit of a silly example, but shows the fundamental nature of
classes: their ability to bundle data and operations into a single
<em>object</em>, which leads to cleaner, more manageable, and more adaptable code.
Additionally, classes can inherit properties from parents and add or
specialize attributes and methods. This <em>object-oriented</em>
approach to programming can be very intuitive and powerful.</p>
<p>What many do not realize, though, is that quite literally
<a href="http://www.diveintopython.net/getting_to_know_python/everything_is_an_object.html"><em>everything</em></a>
in the Python language is an object.</p>
</div>
<div class="meta">
<div>
<a href="http://jakevdp.github.io/blog/2012/12/01/a-primer-on-python-metaclasses/" class="read_more">Read more →</a>
</div>
<div>
<a href="http://jakevdp.github.io/tag/metaclasses.html" class="tag">metaclasses</a>
<a href="http://jakevdp.github.io/tag/tutorial.html" class="tag">tutorial</a>
</div>
</div>
</article>
<div class="separator"></div>
<article>
<header>
<h2><a href="http://jakevdp.github.io/blog/2012/11/26/3d-interactive-rubiks-cube-in-python/">3D Interactive Rubik's Cube in Python</a></h2>
<time datetime="" title="2012-11-26T22:00:00-08:00" pubdate>Mon 26 November 2012</time>
</header>
<div class="article_content">
<p>Over the weekend, I built a interactive 3D Rubik's cube simulator in python
using only <a href="http://matplotlib.org">matplotlib</a> for all the graphics and
interaction. Check out the demonstration here:</p>
<p><span class="videobox">
<video width="680" height="400" preload="none" controls poster="/downloads/videos/MagicCube_frame.jpg"><source src='/downloads/videos/MagicCube.mp4' type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'></video></span></p>
<p>You can browse the source code at the MagicCube github repository:
<a href="http://github.com/davidwhogg/MagicCube">http://github.com/davidwhogg/MagicCube</a>.</p>
</div>
<div class="meta">
<div>
<a href="http://jakevdp.github.io/blog/2012/11/26/3d-interactive-rubiks-cube-in-python/" class="read_more">Read more →</a>
</div>
<div>
<a href="http://jakevdp.github.io/tag/matplotlib.html" class="tag">matplotlib</a>
</div>
</div>
</article>
<div class="separator"></div>
<article>
<header>
<h2><a href="http://jakevdp.github.io/blog/2012/11/24/simple-3d-visualization-in-matplotlib/">Quaternions and Key Bindings: Simple 3D Visualization in Matplotlib</a></h2>
<time datetime="" title="2012-11-24T11:04:00-08:00" pubdate>Sat 24 November 2012</time>
</header>
<div class="article_content">
<p>Matplotlib is a powerful framework, but its 3D capabilities still have
a lot of room to grow. The <a href="http://matplotlib.org/mpl_toolkits/mplot3d/index.html">mplot3d</a>
toolkit allows for several kinds of 3D plotting, but the ability to create
and rotate solid 3D objects is hindered by the inflexibility of the <code>zorder</code> attribute:
because it is not updated when the view is rotated, things in the "back" will cover
things in the "front", obscuring them and leading to very unnatural-looking results.</p>
<p>I decided to see if I could create a simple script that addresses this. Though it would
be possible to use the built-in <code>mplot3d</code> architecture to take care of rotating and
projecting the points, I decided to do it from scratch for the sake of my own education.</p>
<p>We'll step through it below: by the end of this post we will have created a 3D viewer in
matplotlib which I think is quite nice.</p>
</div>
<div class="meta">
<div>
<a href="http://jakevdp.github.io/blog/2012/11/24/simple-3d-visualization-in-matplotlib/" class="read_more">Read more →</a>
</div>
<div>
<a href="http://jakevdp.github.io/tag/matplotlib.html" class="tag">matplotlib</a>
</div>
</div>
</article>
<div class="separator"></div>
<article>
<header>
<h2><a href="http://jakevdp.github.io/blog/2012/10/14/scipy-sparse-graph-module-word-ladders/">Sparse Graphs in Python: Playing with Word Ladders</a></h2>
<time datetime="" title="2012-10-14T21:23:00-07:00" pubdate>Sun 14 October 2012</time>
</header>
<div class="article_content">
<p>The recent <a href="http://sourceforge.net/projects/scipy/files/">0.11 release</a> of scipy includes several new features,
one of which is the <a href="http://docs.scipy.org/doc/scipy/reference/sparse.csgraph.html">sparse graph submodule</a>
which I contributed, with help from other developers. I'm pretty excited about this: there are some
classic algorithms implemented, and it will open up whole new realms of computational possibilities in Python.</p>
<p>Before we start, I should say: this post is based on a <a href="http://pyvideo.org/video/1346/lightning-talks-wednesday">lightning talk</a> I gave
at Scipy 2012, and some of the material below comes from a <a href="http://docs.scipy.org/doc/scipy/reference/tutorial/csgraph.html">tutorial</a>
I wrote for the scipy documentation.</p>
</div>
<div class="meta">
<div>
<a href="http://jakevdp.github.io/blog/2012/10/14/scipy-sparse-graph-module-word-ladders/" class="read_more">Read more →</a>
</div>
<div>
<a href="http://jakevdp.github.io/tag/scipy.html" class="tag">scipy</a>
<a href="http://jakevdp.github.io/tag/tutorial.html" class="tag">tutorial</a>
</div>
</div>
</article>
<div class="separator"></div>
<article>
<header>
<h2><a href="http://jakevdp.github.io/blog/2012/10/07/xkcd-style-plots-in-matplotlib/">XKCD-style plots in Matplotlib</a></h2>
<time datetime="" title="2012-10-07T13:30:00-07:00" pubdate>Sun 07 October 2012</time>
</header>
<div class="article_content">
<em>Update: the matplotlib pull request has been merged! See</em>
<a href="http://jakevdp.github.io/blog/2013/07/10/XKCD-plots-in-matplotlib/"><em>This post</em></a>
<em>for a description of the XKCD functionality now built-in to matplotlib!</em></p>
<p>One of the problems I've had with typical matplotlib figures is that everything in them is so precise, so perfect. For an example of what I mean, take a look at this figure:</p>
<span class="n">Image</span><span class="p">(</span><span class="s1">'http://jakevdp.github.com/figures/xkcd_version.png'</span><span class="p">)</span>
</pre>
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FGXXxu/ZTYP0RkvoJKH3IvAivQsiINIEgUAsgPIJ
Cq8IAgroqxRRUJpSpCO9ifQSpEgNvYYSCJDek93z/XEyuwkkIWV3Zjd5fte11yxbZu5ZsnvPc57z
nAMSCCyApUuXUqlSpUiSJKpfvz4dPnzY8Fy1atUoLCwsy/edPXuWiIjS0tLo008/JVtbW5Ik6aVb
mTJlKDEx0fA++fX29vak1Wqpe/fu9ODBAyIiWrFiBbm5udHx48fzfT6ffPIJOTo60u3bt/O9j5zY
vn07VaxY0XB+JUuWpBs3brzyfSdOnCAfHx+Kjo7O8zHv379PDg4O5OTkRFFRUfmRLRCYFBsIBCoz
e/ZsfPrppyhZsiSmTp2K5ORkrFmzBi1atAAAJCYmIiUlJcv3NmnSBMnJydi4cSNmzZoFLy8vTJky
Bfb29ple16hRIzg4OAAAUlNT0b9/f2zcuBG1atVCUFAQjhw5giNHjqBv3764efMmoqOjsWnTJjRt
2hSjR4/G77//jlu3bsHb2ztX57R//34kJibi/v378PT0REJCQo6v9/DwgJ2dXa72/ejRI/Tq1Qup
qamYNWsWrl69it9++w0dO3bE8ePHUbJkScNrY2Nj4ezsbPi3JEl49OgRlixZgjFjxgAAYmJicqXP
19cX77zzDpYvX47z58/j9ddfz5VegcBsqO2ggqLNypUrSZIk8vPzo9DQ0Jeef/78Obm6umb5HBGR
JElERBQeHk6SJNHSpUtfeczAwECSJIm6d+9OKSkpLz0/efJkkiSJ/vrrL7py5QppNBoqX758lq/N
js8++4wkSaKDBw9Sv379SJIk0mg0ZG9vn+UI8fvvv8/1vtu2bUtubm40d+5cw2ObNm0iOzs7atGi
heGxzZs3k1arpdOnT2d6f5MmTahcuXKG8+nbt2+u9cmfzaFDh3KtVyAwF8LABKrx6NEjcnNzI3d3
d3r8+HGWrzlw4ABVq1aN9Hp9ls/LBpaYmEiSJNHYsWMpLCzMcHsxVLZjxw6SJIlatGhBaWlpWe5T
/pGeMWMG1alTh3x8fOjWrVt5Ojd/f/9MP/SnTp2iq1ev0v3790mSJOrRowft2bOH9uzZQydOnMj1
fo8dO0aSJNG2bdteek6+GDh//jwREU2ZMiXL1x46dIgkSaL58+cbHsutvh9++IE0Go0hdCsQqIkw
MIFqTJ8+nSRJom+//Tbb1xw4cCDTqCI2NpbCwsLozp07NGbMGJIkiR48eEDR0dEkSRLZ29uTg4MD
SZJEtra21Llz50zm16FDB9JoNPTPP/9ke0zZwOTb4MGD83xu5cuXz/aHXpIkWrZsWZ73SUTUvn17
GjhwYJbP6fV6qly5Mk2ePJmIiJo2bUqurq4UHx+f6XUpKSnk5eVFNjY2dPfu3TzpS0lJoa1bt+ZL
u0BgasQcmEA1kpOTodFoMHjw4Bxfd+7cOVy+fBlubm5o06YNrl+/bnhOkiT4+Phg5cqVAIC///4b
tWrVwsmTJ1GzZk2ULl36pWNWrVoVjRs3zrXOVatWoWzZspg2bVoezg4oW7Ys6tatm6f35MSDBw+w
f/9+XLlyJcvnJUmCk5MTQkJCEB0djQsXLqBXr14oXrx4ptfZ2tqiTZs2WL9+PaKjo/OkwdbWFt26
dcv3OQgEpkSjtgBB0aVChQrQ6/XYu3dvjq+Li4tDzZo14evri+vXr6Nt27bYvXs3Bg4caHhNWloa
AOA///kPXF1d0b59+5fMSz7mtWvXcO/evVfqGz9+PHbs2AF7e3t88803GDduXK7OKyUlBbGxsdBo
TPv1WrduHd544w34+fll+fyWLVtw5coVjBo1CpGRkUhISIBWq83ytRcvXkSJEiVQuXJlk2oUCJRE
GJhANfr374/y5ctj1KhRePLkSabnTp06halTp0KSJGi1Wnz88cfYvXs3du/ejRUrVqBDhw5o3bo1
iAgAcOPGDQBAREQEEhMT8fjxY8MtJibGsN/x48eDiDBw4EDodLpMx1y6dCk2bdqEevXqAeDRWufO
nbF79244Ozvjhx9+wKZNm155XpcvX0ZkZGSBPpus2LFjB9zd3V96PCkpCd9//z369OmDb7755pXZ
gRcuXMC1a9cwd+5cODo65kkDEeH69esvfXYCgRoIAxOohp2dHdavXw+NRoMGDRpgxowZCAkJwcyZ
M9G8eXNDWnmzZs0we/ZsdOjQAR06dECpUqUAcMhMJiQkBABQpUoVlC1bFmXKlDHc3n//fcPrqlat
il9//RXHjx9H48aNsWjRIly9ehWDBw9GYGAgSpcuje7du2PkyJEoX748AKB58+ZYtGgRAGDjxo2v
PK/jx48D4HCbKfH398fmzZsxbtw4LF68GIsXL8b06dNRqVIlzJw5E7Nnz8bYsWMBwDDy0uv1L+0n
KCgI9erVwzvvvJNnDXPmzEHVqlXh7++PO3fuFOyEBIICIubABKrSsGFDnDp1CtOnT8eXX36JL774
Ara2thg5ciQ+++wzHD58ONtQXKNGjVCnTh0AgJ+fHypUqIBWrVoB4B/wLl26wNnZ+aURSWBgIKpW
rYovv/wSQUFBAAAvLy8sWrQIr732GgDgxx9/zPSePn36IDk5GQEBAa88p/DwcAC8Ru1F7t+//8r3
Z8fMmTPh7e2NX3/9FU+fPoWtrS2CgoIwf/589OjRI9Nry5Yti5o1a2Lbtm1ITExEsWLFALABnTp1
CpcuXcryGK/S5+7uDkmSYGdnBycnp3yfi0BgElROIilSJCcnZ5sOLsiaI0eO0Mcff6y2jDwhZzEO
HTr0peeOHTtGTk5OdOfOHbPrWL58OUmSREFBQbRo0SKaNGkS2djY0PLly7N9j5L6BIKCIhGlTyII
zMr9+/fRsGFDhIeHY968eRg5cqTakgRmYubMmZg5cyZ27tyJZs2aqarlrbfewpYtWwBwKHb69Omi
goag0CAMzMzo9XosWLAA48ePR1xcHAAOw5w+fRqVKlVSWZ1AIBBYLyKJw0Q8ffoUqampmR67fPky
WrRogZEjRyIuLg5ubm4AgMjISHTq1AnPnj1TQ6pAIBAUCoSBmYCIiAh8/PHHOHfuHABeBzR16lTU
q1cPx48fR+nSpbFx40aULVsWABAQEIAbN26ge/fuSExMVFO6QCAQWC3CwEzA/v37sWbNGsTGxiIt
LQ1NmjTB5MmTkZKSguHDh+Py5cvo2bOnoaL6okWLUK5cOQQHB6N///5ZpjoLBAKBIGeEgb2ClJSU
TAthdToddDodiOtIAuBFt9WqVUPNmjVhY2ODbt26wc/PDwcOHMDChQsNoUPZwHx9fbFr1y54eHig
VatWJq/YIBAIBEUBkcTxClavXo2tW7fivffeQ9u2bWFjY1w6p9frodFo0Lp1azx//hybNm1C5cqV
kZycDL1eb1h7I+Pr64uHDx/i/v378PX1RWRkZJaVFQQCgUDwasSlfw7o9Xrcvn0ba9euxVtvvYXX
X38ds2fPxvHjxxEdHW0YOV27dg16vd5gRvb29i+ZF2CsHCGX4RHmJRAIBPlHVOLIAY1Gg+HDh+Pu
3bv4448/cOLECZw4cQIAULNmTQQGBuKff/4x1Nzz8PDIcX9y5YL4+HizaxcIBILCjggh5pLIyEic
PXsW27Ztw/79+3H16lUQkaEKepcuXbB9+3bodLpsK4A3bNgQZ86cwcmTJ9GoUSMl5QsEAkGhQ4zA
skGe31qzZg2aN2+OsmXLok2bNmjTpg0ePXqEQ4cOYdOmTXjy5AkaNmyIYcOGAUCOCRnyCCw2NlaR
cxAIBILCjDCwbJCNqH///pg/fz6CgoKg1+uh1WpRpkwZ9OvXz7AYuUqVKob5rYwV0l9E7k/16NEj
85+AQCAQFHKEgeVAWFgYAMDT09PQlwrgnkiSJMHd3T1PiRjyQuaCVCQXCAQCASOyELNAnhY8evQo
ihcvbugLdfbsWaxZs8YwygoJCclTm3lhYAKBQGA6hIFlgWxg+/fvR5UqVVCiRAkAwMKFC7FmzRrD
67Zv346lS5cit3kwsoGFhoaaWLFAIBAUPYSB5cDx48dRq1YtQ5jw1KlTKFmypMGw/vnnH1SuXBnR
0dG52p8YgQkEAoHpEAaWBXICx9WrV2FrawsXFxcAwN27d9G1a1dDCPHff/81tL3PDcLABAKBwHSI
JI5siIiIgK+vL37//Xc4OTkhOjoaKSkpaNeuHQBOs9fpdChevHiuW6t7eXnBxsYGkZGRSEpKgoOD
gzlPQSAQCAo1YgSWDW5ubhgzZgy8vLxw4MAB/PXXX0hJSUFgYCD++usv/P7774iIiECjRo0y1UfM
CY1Gg1KlSgEAHj9+bE75AoFAUOgRI7Bs0Gg0GDlypKEZ5ZUrV7BlyxasXLkS69atA8CjsOTkZADG
1PpXUapUKTx48ABhYWGoUKGCOU9BIBAICjViBJYFcpLGhQsXMGPGDKSlpaFRo0b4+uuvcffuXZw7
dw6ff/453njjDTRo0CBP+/b29gYAPH/+3OS6BQKBoCghRmDZsG7dOowaNQpPnz5Fq1at0LRpU9y+
fRvR0dGoW7cuvvrqK8TExBh6feVm9AXAkPSRmppqNu0CgUBQFBAGlgVnzpxBYGAgunbtioCAACxc
uBAxMTGYMGEC7t69Cy8vL+zevRuVKlXK875tbW0BGJtbCgQCgSB/iBBiBvR6PQBgx44d8Pb2xs8/
/4y33noLmzdvxldffYXmzZvj9u3baN26NYKCggAg14uYZWQDEyMwgUAgKBjCwLJg3759aNiwIezt
7VGnTh1UrFgRvr6++N///gc3Nzf4+flh37592LVrV65DhzKJiYkAIFLoBQKBoIAIA8uAvIC5ePHi
uHLlisFsEhISUL16dYNZyYkYcgWOvIzCIiMjAYhuzAKBQFBQhIFlwYgRI2BrawsvLy8QEVasWIHB
gwcb1nvJC5ebNm0KIPcJHIDRwF7VvVkgEAgEOSOSODIgN7GsUqUK/P39ER0dDVdX15e6J1+9ejVT
lfq8IEZgAoFAYBqEgWVAHkmFhYUhODgYHh4esLW1hZ+fH1q2bIlu3bohICAAly5dQq1atQAAOp3O
0CcsN4gRmEAgEJgGifKaRlcECA8PR1JSEsqVK4cHDx5g9+7dOHDgAE6cOIFHjx4hOTkZn3zyCWbN
mmUYteWG1NRU2NnZQavVIjU1Nc8JIAKBQCAwIgwsAxnLQSUlJUGSJNjb27/0utDQUJQsWTLL53Ii
PDwcJUuWhKenJ549e2YSzQKBQFBUESHEDEiShAMHDuDo0aO4du0aQkNDkZqaiqpVq8Le3h4pKSlw
c3NDjRo1ULZsWbRt2zZP4cO4uDgAgLOzs7lOQSAQCIoMwsDSOXDgACZMmIDr168jKioK5cuXR8WK
FSFJEpYtWwZnZ2fY29sjOjoaNWvWxLBhw9ChQ4c8HSMtLQ2AcTGzQCAQCPKPMLB01q1bh5MnT2LU
qFEYNGgQ/Pz84OLigpEjR+LBgwdYunQp6tati+TkZMTFxeW6B1hG5OobwsAEAoGg4AgDS0euKu/v
75+pwny7du1w5MgRlCpVCq6urgCAEiVK5OsY8ggst/3DBAKBQJA9YiFzOoGBgXj//fcxfvx4fPbZ
Zzh79iwAoEePHrh48aKhAaVer89z/UMZMQITCAQC0yGGAhmYOHEibG1tsWLFCnz//fdo3bo17O3t
4eDggPv37xtS5vV6fb5S4IWBCQQCgekQBpaBMmXKYO7cuRgwYAB+++03rF+/HhEREQCAmTNnQqfT
YcCAAfkOAYoQokAgEJgOEULMgBwabNy4MRYsWIBr165h+/btGDduHJycnPDhhx/Czs4O3377bb72
L0ZgAoFAYDrEUCADclhQDhF6enqiS5cu6NKlCwAgJiYGixcvRv369fO1f5FGLxAIBKZDGFgWyKWh
iAg6nQ4Az4/17NkTH3/8ca5LR72IPAITIUSBQCAoOCKEmE5WmYWSJMHGxgaXLl3Cd999h5s3b0Kr
1ea7hqEIIQoEAoHpKPJDAb1eD8A46pLDh5IkGWojnj59Gt7e3mjWrFmBjiWSOF6BXg8cPgxs3Aic
Pg08fMiPV6gANG4M9O0LNGgAiCLIAoEAYgSG4OBgTJgwAYcOHQLARiaPsOTw4YkTJ6DVag2tUPKL
GIFlAxGwaRNQqxbQujXw00/AiRPA/ft8O3IE+OEHoFEjoGVLNjeBQFDkKfIGdvToUcyZMwcDBw7E
wIEDsWXLFjxMv/KXR0oXL16Eg4MD3NzcCnSslJQUAMLAMhERAfTsybfLlwFfX+C//wX+/hu4cwe4
dQvYtQv4+GPA3Z3N7LXXgGnT2PgEAkGRpcjHsoYOHYozZ85gw4YNWLVqFVatWgVbW1s0adIEo0aN
ws2bN3H58mXEx8cX2MDi4+MBAI6OjqaQbv1cuQJ07w7cvAk4OwPTpwMjRgB2dplfV6kS0KkTMGUK
3+bMASZNYnNbtAgQFwQCQZGkyBuYt7c3Vq9ejYkTJ+LQoUPYu3cvgoODcfToUVy4cAExMTEAgPLl
y8Pd3b1AxxIGloFjx4AuXYCYGKBuXWDzZqB8+Zzf4+oKzJoFtGsHvP02sGwZ8OwZ8OefL5ueQCAo
9BT5ECIAaLVa1K5dG6NGjcLWrVtx6NAh/Pzzz6hXrx4CAgLQvn17/PzzzwCMSR/5QRhYOidPAp07
s3n17AkcPfpq88pIly7A/v2ApyewYwcQGCjCiQJBEaTIj8Bk9Ho99Ho9bGxsUL16dfj7+6NDhw54
+vQpqlataggf5ncNGABDF+aCjuSsmqtXgY4dgdhYzipcuRLIQ1NQA02aAHv2cFLHihUcZvzqK5PL
FQgElosYgaWj0Wgypbfb2NigcuXKeO211wo89yUjJ4f4+PiYZH9WR0QE0K0bEBXFc1/Ll+fPvGQa
NADWrQM0Gp4b273bdFoFAoHFIwwsB4go361TsuLRo0cAiqiB6fVA//6csFG3LrBqlWmSL7p0AaZO
5fvvvgukf8YCgaDwIwwsB+QFzaZCHoGVKVPGZPu0GmbP5pCfpyewZQtgynnACROA9u05oeP998V8
mEBQRJDIlEMMQbbodDrY29tDp9MhOTkZdkUpa+7sWZ6zSk1l8+re3fTHePgQqF6dE0PWrgX69DH9
MQQCgUUhRmAoWJfl3PLkyRPodDp4e3sXLfNKSuLQYWoq8MEH5jEvAPDxAb77ju+PGgU8f26e4wgE
AotBGBiM5aMKkiL/KuT5ryIXPvzmG848rFoV+P578x5r+HDg9deB8HDgiy/MeyyBQKA6RdrA4uLi
MGfOHPzwww+Ij48vUIr8qyiSGYiXLgEzZ/L9RYuA4sXNezyNBvjlF85sXLQICAkx7/EEAoGqFGkD
c3R0RPHixfH1119j+PDhCA0NBWDMPjRHBmKRGYHp9VwWKi0NCAoC/vMfZY5brRofT68Hxo5V5pgC
gUAVirSBAcCIESPwv//9D0ePHsXEiRPx+PFjQ/ahKTMQw8PDAQClSpUy2T4tml9/BYKDgVKljKMw
pfjqK8DFhdeF7d2r7LEFAoFiFFkDk3t9AUBgYCCWLl2KlStXomHDhli4cCFCQkLw+PFjJCQkmOR4
soGVKFHCJPuzaJ4944ryAPDjj4CJFoLnGm9vYPx4vj9likirFwgKKUXWwCRJMvTnunDhgsFgwsLC
8MEHH6Bjx44YMmQIJk2aZCjoWxCKlIFNmsTVNtq1A3r3VkfDyJHcfuXYMSC915tAIChcFMlaiBER
Edi1axfWrl2LkJAQxMTEoGTJkmjbti26dOmCcuXK4dixY9ixYwdOnDgBHx8fjBkzpkDHjI6OBgCT
laWyWC5c4PChVsttT9TqnuzsDHzyCTB5MvcOa9VKHR0CgcBsFEkDO3HiBKZNmwZJktC2bVvUqFED
LVq0QP369Q2v6d69O4YMGYLk5GQEBAQU+JjJyckAAHt7+wLvy2Ih4saTej2vxapRQ109o0dz6v7+
/cD580CdOurqEQgEJqVIGljLli0RHBwMFxcX6PV6Q4dknU4HbXpxWVtbW9SqVctkxywSBvbnn8DB
g1wuasoUtdXw3NvgwcBPP/GocP58tRUJBAITUiTnwBwdHeHu7g6tVmswLwAG8wJMX8hXnm/LWPG+
UJGSAowbx/enTeP5J0sgKIi3K1ZwCxeBQFBoKJIGlhtMnUYvN7GUm1oWOhYvBu7c4XqEw4errcZI
zZq8Bi0ujmskCgSCQoMwMIWQkzciIyNVVmIGEhKAr7/m+1OnApY2ynzvPd6uW6eqDIFAYFqEgSmE
3IW5UBrY/PlAWBhQrx7Qs6faal6mRw821f37eY2aQCAoFAgDUwjZwKKiolRWYmJiY42VNr7+Wr20
+Zzw9ATatgV0OmDzZrXVCAQCEyEMTCEK7Qhs8WJuXdK0KdC5s9pqskdeUL1li7o6BAKByRAGphCF
0sDS0oC5c/n+559b5uhLpmtX3v79N8/ZCQQCq0cYmEIUyiSOTZuAe/eAKlWAN95QW03OlC4NNGzI
DTb371dbjUAgMAEWli5WeCmUI7BZs3g7ZgyXjrJ0unUDTp8Gtm+3fMMt5EREALt2ccOCe/d4KtXF
BahY0RiNdnVVW6XA0hEGphCFLokjOBg4cYIXLA8erLaa3PHGG1wbcft2LntlySHPQsrFi9yke9Mm
XvueFT/+CNjZ8bTlZ5+JCmCC7BEGphCFbgT2ww+8ff99IH2RtsVTrx5Qpgzw8CFw7hz/W6AIkZE8
TbpoEf9bo+HE0LZtuQepiws3MLhyhacpDx0CVq0CVq/mvqjTpwMeHuqeg8DykMiU9ZIE2fLw4UP4
+vqiZMmSePz4sdpyCsbdu0Dlyhw2vHuXTcFaCAoCFi7kWo2TJqmtpkhw+jSPpu7dA2xt+Zpn3Dig
bNns33PvHkeo58/nXCFPT0547dFDOd0Cy0ckcShEoRqB/fQTV5x/5x3rMi+A58EADiMKzM6iRUDz
5mxIjRpxU4Aff8zZvACgfHlOcD1/njvhPH8OvPUWMHYskF5WVCAQIzClICLY2tpCp9MhKSnJeqvS
x8YCvr5ATAxfWjdooLaivJGQwJfzSUnAo0ecnSgwCzNmGBtzf/ghj6jy82dPxGY2bhyPxtq04cYH
IslDIEZgCiFJElxcXAAAsdZcFf3339m8/vMf6zMvAChenDtFA8DOnepqKcRMmsTmJUncyebnn/Nn
XgDv45NPeF6sVCleBfH66zyVKSjaCANTEGdnZwBWbGA6nXHhcgE7VKuKnEK/bZu6OgopP/7IHXW0
Wu5iM2KEafbbrBlw/Djg78+Nv1u2FCZW1BEGpiBWb2AbNwK3bgEVKgBvvqm2mvwjV+X46y9usyIw
GZs28WgJAJYuBQYMMO3+K1ZkE6tfn/8UW7fmSLCgaCIMTEGs2sD0er6sBoDx461j4XJ2+Pry5Xxi
IrB1q9pqCg3XrgGDBvGc1ddf831z4OkJ7N0L1K0L3LjBc2LWntgryB/CwBTEqg1syxbg0iX+8Zf7
a1kz/fvzdtUqdXUUEhITgbff5gHtO+8YkzfMhYcHrxerXZuNs2tX0XC7KCIMTEHs7OwAAKnWlgdM
ZBx9ff55/mfjLYm33+ZR5J49okeYCZg0iats+Ptz6rwSRU48PdnEqlQB/v0X6NNHpNgXNYSBKYg2
Peym0+lUVpJHduwAzp7llPPAQLXVmIYSJYD27Tkve8MGtdVYNf/+yynyGg2wciWQHmhQBG9vrqno
5QXs3g188AFfbwmKBsLAFESj4Y9br9errCQPEAFTp/L9zz4DHBzU1WNK5DDi6tXq6rBi0tL4mkav
B0aP5sXKSlOlCieUFisGLFkCzJunvAaBOggDUxCrHIH99Rdw6hSPWEyVD20p9OjBhnz4MHD/vtpq
rJIFC3hwXr68McqsBq+9xksUAeDTT/m/VFD4EQamIJYwAiPiYhSRkbys65V88w1vP/2UFwEXJpyd
ge7d+f6aNepqsUJiYoyD89mzAScndfX06cOlptLSeIpTrBEr/AgDU5DExEQAQLFixRQ7JhEPoP77
X84cd3Xl4vEeHtyywt+fu6Fs3gwkJ7/w5iNH+ObuzpMLhZF+/XgrshHzzA8/cP5Ls2aWU2R3xgxO
qw8PB3r1yuJvWlCoEAamIAnpreyLKzCSSUjgousNGgCNG/MXOziYU43t7bl9hV7P62iWL+dCqQ0a
vJDFNX06b0ePVnZmXknkzonnzgGXL6utxmoIDzd21PnuO8tprWZjw4PpcuWAf/7hEZmg8CIMTEHi
4+MBAI5m7J+l0/FEtr8/dw45e5bTjUeP5myt8HCuYxsdzVenZ84AM2cCNWvyYMTWNn1H//7LaV2O
jsCoUWbTqzr29tzrAxDJHHnghx+A+HiuytW8udpqMuPtzYmldnbcOGHtWrUVCcwGCRSjZs2aBIDO
nz9vlv2fOEFUqxYRBw6J6tYlWrmSKDHx1e/V64lSUjI80KsX72TsWLNotSj27eNzrVSJPwhBjjx9
SuToyB/ZqVNqq8men35ijU5ORFevqq1GYA7ECExBzBVCTEriVhPNmvFi0goVgD/+4NHVgAG5y3yX
pAyjrytXuF+FnR3wf/9nUq0WScuWvMbt9m3g5Em11Vg8s2fz6KtLF6BhQ7XVZM+HHwJ9+3J1kN69
OawuKFwIA1MQc4QQb94EmjYFvv+e/z1uHE/l9O/PC0vzxcyZPIgbOtTQLyspyTR6LRKtln/pAJHM
8QoiIozrrL78Ul0tr0KSeB44IICroH34oVjkXNgQBqYgsoGZagT255+ceHHuHFC5MidpfPcdL+jM
N3fv8vBNq+WFy+l88QWwfn2BJVsu8qLmtWs5D1uQJXPnciJQ+/a89srScXbm+bBixYBly7hCvqDw
IAxMIYjIZCFEvZ5LEvbqxWtxevbkcGHjxiYQ+t13nAnSvz/3rgCHYH75hYu0/vGHCY5hiTRoAPj5
AU+eAAdPcYCBAAAgAElEQVQOqK3GIomKMraDmzRJXS15oWZN/vsFgI8+4gs+QeFAGJhCpKSkQK/X
w9bWFraGyaa8k5DAizS/+45ThmfP5itMk7RXDwvjS1RJAiZMMDzs6MgdVIh4zdj27SY4lqUhSaJC
/SuYN4+zV1u14obc1sSgQVzyKjmZ58Oio9VWJDAJameRFBUiIiIIALm5ueV7H48fEzVuzJlVrq6c
PGdSxo7lnffsmeXT48fz0w4OnPFY6Lh6lU/Q2ZkoIUFtNRZFbCyRhwd/PPv3q60mfyQkcGau/Ccu
Ek6tHzECU4iCzn9dvsxzDidPcpbh8eNcccBkRERwYTsg22ZO06cDw4dzQkfPnjxgK1QEBHAoMTYW
2LlTbTUWxW+/8Z/Ia6/xCMwaKVaM53FdXHj+WA6HCqwXYWAKUZD5r2PHeLHo3bs8z3XiBFC9uokF
zpvHudEdO/KPeBZIEvDzz8Drr3Mb9969C2G+gxxGFLURDeh0HKoGOMvVUqpu5IcqVdiMAT6X4GB1
9QgKhjAwhcivge3YAbRrxxPoPXpwfkHJkiYWFxtrvBx9RStdW1u+ivXx4VGgXG2q0CBX5di5kw1d
gE2bgDt3ONP1zTfVVlNwevYExozhi68+fUQ/U2tGGJhCyBXo5ZYquWHFCv7BSEriCegNG8xUEP7X
X7k8ffPmQIsWr3x5iRJcPxHgauSnTplBk1qUKwc0acLZMrt3q63GIpBrHn7yCa+uKAx8+y2vn3zw
ABg4kDN7BdaHMDCFyGsrldmzOXNKp+OEwIULzfTjkZRk/IX64otcx4fatOGrWJ2OC9VbU4uzVyKP
wkSnZpw5wyFrd3dgyBC11ZgOW1te8ufpCezZY+waJLAuhIEpRG4NjIijeHIFp1mzOExntnmHpUuB
x4+BevWATp3y9NapUwFfX/6RW7jQTPrUoFcv3m7fDqS3wCmqyAt/Bw3i5RSFibJleV2jJAGTJwN/
/622IkFeEQamEFK6A1EOtWzS0rjp8YwZPNpatoxHOWYjKck4iZWH0ZeMkxMwZw7f/+9/gadPTaxP
LSpW5ESWuDi+PC+iJCYaF64PHaquFnPRsSMwcSJfOPbvL5pgWhvCwBTiVSOw1FT+Ai1ezMV3N2/m
q16zsmgRf2Pr1OGGYPmgZ0+gQwdOMilUCR1vv83bIhxG3LyZF/w2bAjUrq22GvMxeTLQti1fgL3z
DpCSorYiQW4RBqYQORmYXB1AXqOydy/3WTIrCQlGx5kyJd+VfyWJq4IAwPz5QGioifSpjRxG3Lq1
yLb1lb373XfV1WFutFouvlKmDC9ZCQwURX+tBWFgCiEbWMX0+oIyiYmcabh1K0+U79unUJmeX37h
ua8GDYDu3Qu0qzp1uJh7SgowbZqJ9KlNlSpA3bq8xGDvXrXVKE5iojEJM5+Dc6uiRAlg2zbO8l2x
ohD9HRdyhIEphEajQZ06dbBy5UrDY3FxQNeuPM3i7c1rvBTpr/TsGfD113x/yhSTZIhMncpXsr/9
Bly/XuDdWQZyNmKhLsOfNX/9xYP0hg052aEoUL8+m9jAgWxkha7STCFEGJhCFCtWDAcOHICHhwcA
nlvo1IlNq3Rp4OBBHskowoQJvO6rfXvuSmgC/Px4ol+nA776yiS7VB95HmzLliI3MfLnn7zt2VNd
HUrTpg2PwMaONbTCE1gwEuWUFicwGXq93hBGjIhg8zp1iq9u9+1jA1CEf/7hFZw2Nty+OSDAZLsO
DeXIm07HtRtNuGv1qF2bP6edO4HOndVWowipqVztJTKSm3NXraq2IguAiMPJAA/PbGzU1SMAIEZg
iiGb19OnfJV36hRnax8+rKB56XTcEImIF5qZ2GHKlePFrnp9IcpILIKLmg8fZvOqWrUImldcHE9I
T5nCw8+AAF7tbGPDPYtcXXkVtK0tT5w1aQL068ftqbdtK0RrSawDMQJTkLAwrmt4+TLg788jL19f
BQX8+ivw/vt80CtXeCGXibl7lw2ZCLh6lUdkVs3ly0CNGoCHBye9FKCXm7UwciQXbf7vf4tIhYq0
NI6ZrlkD7NrF6yOzwtGR54sTEnKuPeXnx6H5bt248nUR+JtRC2FgChEaymtNbt7k38O//wZKlVJQ
wPPn7JoREcC6dcb5HTMwbBhXcBg6FFiyxGyHUY4aNdjI9uzhRW+FGL2ew9qPHnGUQJGkIrXQ6Th/
fto04MYN4+NNm3Jd0Lp1OYRcurRx5AXw1VlqKo+27tzhW0gIh+dPnmSDk3Fz4wWew4ZxtRtrLuVv
iajYi6zIcPMmUbly3EivXj2ip09VEDFiBAto29bsnfxu3iTSaolsbIhu3zbroZRh0iT+7IYPV1uJ
2Tlxgk+1bNlC3vDx8mWiRo34ZAGiKlWI5swhevCgYPtNTSU6fpxowgSiGjWM+weI6tQhmjuXKCrK
NOcgIGFgZubyZaLSpfnv97XXiCIjVRBx8iSRJLGjXL6syCEHDeJzHjFCkcOZl7Nn+WRKly7kv+pE
n3/OpzpqlNpKzIReT/Tjj0T29kan/v13Np5XEBfHnal1ujwc7/x5oo8/Nrazljt+jx1LFBqa//MQ
EJEwMLNy+jSRtzf/zbZsSRQTo4IInc54pfnZZ4od9upVIo2GyNaW6N49xQ5rHvR6Ih8f/gzPnFFb
jdnQ64n8/Pg0DxxQW40ZSEnhUbRsJMOGEUVH5/rthw4ZfW/GjDweOymJaN06/iGQj29jQzRwIF8g
CfKFMDAzsWsXkaMj/5127EgUH6+SkIULWYSPD18+Kkj//nzoDz9U9LDmQQ7BTp2qthKzcekSn6Kn
Z64GJNZFQgJRhw58gg4ORGvW5Gs3GzZwMAMgWrIkn1pOnSLq25fj7LKZtW9PtG9foR/hmxphYGbg
t9+Mf5sDBxIlJxufe1DQGHteePbMGLrI5xe2IISE8Jfdzo4oLEzxw5uWLVv4c2zcWG0lZmPaND7F
IUPUVmJiEhKI2rXjkytRguiffwq0u59/5l1ptUTbtxdgR3fvEo0ZQ+TkZDSyxo2J/vwzj3HKoosw
MBOi1xt/BACi8eMzX1Ddvn2bateurZygoCAW0qaNald2PXuyhC++UOXwpiMujuNHkkT05InaasxC
vXr8f7Vtm9pKTEhCAo9uZPMy0RzwF1/wLosV48SXAhERQfT118b5BoAoIIBo6dLMV7+ClxAGZiIS
EowhM0kimjcv8/NpaWlUpkwZcnZ2VkbQqVPGxI2QEGWOmQXHjvFn4u7OHmDVdOrEJ/P772orMTl3
7vCpOTkRJSaqrcZEpKURdetmNC8Tfg/0eqKhQ40h16tXTbDT+Hiin34iKl/eaGS+vkSzZike/rcW
hIGZgNBQovr1jT8Amza9/JrY2FgCQI6OjuYXpNNxKALgbCeVee01lvLTT2orKSDz5vGJ9O6tthKT
M3s2n9rbb6utxISMHs0n5eHBE3wmJiWFqEsXPkT58kQPH5pwxytWZE7D9/AgmjxZpTU4loswsALy
9998cQcQVapEdPFi1q+Lj48nAFSsWDHzi1q0iAWVKaNS6mNmNmwwfj5paWqrKQC3b/OJuLgUutDO
66/zqa1apbYSEzF3Lp+QnR3R4cNmO0xcnPFasU4dEy/x0uk4ntusmdHIihfntHyrT+01DcLA8klq
KtHEicaMpLZtOWciOxITEwkA2dvbm1fY8+cc0wCIVq8277FySVoaUcWKLKlAk96WQPXqfCL79qmt
xGQ8eWJMtslDVrnlsnu38Yu5cqXZD/f0KZG/v3G6OSnJDAc5fNg43JNT8N97T7F1nZaKKOabD0JD
uSDv119zZZivvuIqQ56e2b9HSi8hQ+au3PXf/3LZqNatuT+6BaDVcglGgPtoWjVdu/J21y51dZiQ
rVv5V7FtW+4IbtXcvw8MGMAnNHky3zczXl7c/LNUKWD/fmDw4JxLJeaLFi2AHTuAc+e4NJVeD/z+
O1C9OnfEPXy4aLaRVttBrQm9nuiXX3ghvVyYIbcLPlNSUggA2djYmE/ggQMszNbWLDH/ghAezrI0
GiuPfvz9N3/GSmaTmpmOHfmUFi5UW0kBSU42Trh27qx4KvrZs8bfhv79zRxlvnWL6IMPjCurAZ7I
LGIIA8slt29zeED+W+nZk3+Uc0taWhoBII1GYx6B8fFElSuzuK++Ms8xCki/fizvyy/VVlIAkpI4
dxogevRIbTUF5skTY93KnELgVsH//Z+xPJRKJ3PwoHFZV6dOCmTePn7MX6jSpYnu3zfzwSwPYWCv
ID6ek3/k3ywvL6K1a/O+rEqv1xMAMtug95NPWGCtWhabYHDwoHHkatWVHjp35hNZtkxtJQXmp5/4
VLp2VVtJATl0yDg3VOCFWQXj1Cn+nZDrnyqyiN+qv1D5R8yBZQMRsHo1N/SbMgVITAT69uWuGn36
5L0rgpThDWTqWPWWLcCcOTzZtGQJYGdn2v2biNdf51ZJYWHcTsZq6diRt3v2qKvDBKxaxdv+/dXV
USDi47mTKsBzwE2aqCqnYUPg2DFu8HriBNCgARAcbOaDFtUO0Wo76Itcu3aNBgwYQI9UCs/o9Vw1
qGFDY7iwXj2+wCsoGo2GAFCqKa+Wbt0icnVlod9/b7r9mompU41zBFbL5ct8Et7eVl3yR168XLy4
la+THTXKmMduQdGHsDCiFi2M09ILFohSh6bGYgzswYMHNGLECNJqtQSARo4cqejx09K4WHTt2kbj
KlGCaPFi06xdyhhC1JnqRy8hgahBAxb75ptW8e2Ql1IVK2YRS9Tyh17P8ywA0b//qq0m38yYwafQ
t6/aSgrA2bPGijMWWNU9JYWXbeV37twSiI2NpfsWOr+m+rgzIiICM2fOxLx585CUlASNRoPAwEB8
9tlnihz/6VPuHvzrr9xYFQDKlAE++wwYPhwoXtz4Wr1ej7t37+Lu3bvQaDSwtbWFjY0NbG1tUbx4
cTg7O8PFxQWOjo7QaDJHZ/XpebWSJL30XL7Q6ThF+MwZoEIF4LffrKLba8WKwH/+Axw9yl3cBw9W
W1E+kCTuzLxkCbBvH3faBZCWloakpCTo9XoQkWGb8X5+n0tNTc10S0lJMdxPS0uDVquFnZ0dbG1t
M20dHBxQvHhxFCtWzPA3KoezrT58SAR8/DFvR43iDsoWhq0tR/cbNQI++ID/5o8eBRYu5Ox3a2Dr
1q0YMGAA6tWrh27duqFbt26oX7++aX7HCohEpM7igbi4OMydOxf/+9//EB0dDQDo2bMnJk2aBH9/
/0xf4he/zNn9OyUlBQkJCUhMTERCQgISEhKQnJyMzp07wyZDjDgxkZfx/PEHsH07kJLCj1eowMY1
ZAjg4JBZ77Zt2/Dpp5/iRsbW49kgSRKcnJwMhiab2oEDBwwG7ejoCCcnJzg6Ohpu9vb20Gq1Wd5q
1aoFHx8f40HGjOFvhqsrB9xr1AAA6HQ6pKSkwMHBIdO8myWxcCEQFMTrjtScC0tNTUVUVBQiIyMz
3eTHoqOjERMTg+joaERHR6Nz584YOXIkv/n33/kPpVcvYMMGAMD+/fvRtm1b9U7oFfTt2xerV68G
AFy6BNSqBbi7A48fG6dNhwwZgpiYGIPhZTS/rB6T79vZ2UGSJMMFmnxfvmX1vc3KqOX7kiTBwcHh
pZubmxu0Wi2LXbeO1zp6ewPXrwNubip9srnj7l3+kzl4kP89YADw/fe8fiw/xMXF4dGjRwgLC8Oj
R4/w+PFjREdHIz4+HnFxcYiPj0diYiIAZPq/sLGxgb29PRwcHLLdZry/c+dOrFy5EklJSYZjlyhR
Au3atUOnTp3Qvn17lChRQhVDU8XALl68iNq1ayt2vPXr16N3794A+G9+6FCe9wX4YrpLF7466tSJ
8yAycuHCBcyfPx+XLl2Ck5MTNBrNS1fDqampSExMRExMDGJjYxEXF2dS/b/88guCgoKMD8ydC3zy
CV/e7dnDi5YBJCcno0WLFjh16hQ0Go3BRJ2cnF66n91NNlYnJyfY2dlBq9XCxsbmpZtWq830owTg
pQuOjI/b29ujXLlyAIDISKB0ab5wePCAR7wAcOvWLcTFxeW4vxcvUvK6TUhIQExMDCIjI/P8/9Ss
WTMcO3aM/3H1KlCtGuDjwycB/kEpXbo0AGT6EZfvv7jN7XOSJMHW1tZwk0dY8n0bGxukpaVlGpml
pKQgJSUFSUlJhvP/7bff0KVLFwDAF18A06dzlGHhQj6l4OBgNGvWLE+fiZK0bNkSB+Vf/9RUzrC6
fZvDJyNGAOC/oZ49e4KIoNVqodPpoNPpkJaWluVWp9NlebEs3yRJQrFixV66ZYy4ZLd1dXVFzZo1
UaJECcM56PXAvHnA+PFAUhIvHJ8yBfjoI/46ZyQqKgohISE4c+YMQkNDM5lVWFgYYmNjFfrkX835
8+cV/U2XUSWEmJ1Ty19aGxubl67iXvVv+Uvu6Oj40lXiw4cPDceoVo3Nq1Ejzibs149/g7Kjdu3a
+CWP5SN0Oh3i4uIQGxtrMLXHjx+jR48esLe3x5w5cwxXSBlvycnJhi+V/MUKDAxE9+7djTtfvJjN
C+DYZ7p5AcD//d//4fbt27C3t0dycjJiYmIQExOTJ+3m5Pr16/Dz84O7O18sbNkCbNrEX14A2Llz
J0aPHq2YHo1GAzc3N7i7u2e6yY+5uroabi4uLnB3dzf8qMHfn6/4Hz5kA/P1hZOTk0X9qGSHnGEL
ZA4fenl5YceOHZnM/lX35W1KSkq2kRH5M8uNUcv39Xo9kpOTkZSUZLhNnz7dKHbZMjavgABg2DDD
wyNHjsSFCxdM+nnFy1e7+aR3795YsGABvLy8oNFw1PONN3i7YwcHU+bNA6ZO5Uxn+SLazc0NzZs3
R+3atbFp0ybcvXsX58+fR2RkJADAwcEBpUuXRpkyZVCmTBmUKlUK7u7umaI7xYoVA5D5YjAtLc3w
2eZn++zZMzx8+BA6nQ4Af4/s7e0L9BnlF1VGYEQEnU6H4OBgbNu2Ddu2bcPVq1cNz2u1WkybNg0T
Jkwww7G52kz6YEAxIiMj4eHhAVdXV0RFReVvJ8uWcQyCCJg1i//ysyE1NRVxcXGGmzwyjI2NRWxs
rME0M75GNlX5vjy/It/kK1f59uIFBICXHsv4+JgxY/Dhhx8CAFauBN59F2jVCjhwgDWHh4ejffv2
htdntT87O7tsw1mv2sr3XVxc4ObmBmdn54KFPTp14hHwunXA22/nfz8Kc+IE0LQpX7jdu/dy1MHi
SUnh9RihoezEffsCABISEvDgwQPDaFSn0xkiCFlt5VtWF8PyTa/XIykpCYmJiZluCQkJhu+SfKGY
1X15a29vj5kzZxpGwDLbtgHjxgHXrvG/q1UDPv2Uw4svTmMA/Nsp5wrIYVulOHXqFCZMmIB9+/YB
AEqVKoVJkyZh2LBhsFNr6U5BMkBMyY0bN2jWrFnUunVrsrGxoXXr1qktyaQ8ffqUAJCHh0f+drBq
FddhAohmzjStOBWIijKWlnr8WG01+WTiRP7/mDBBbSV5Qs46/7//U1tJPlmwgE+gRg2ra2+Qlpb2
UhZyair3rixXLnMG9IQJllGr98qVK9SrVy9DFrWrqyvNmDGD4iygwZ/FGFhGIiMjKbHQdNVjwsLC
CACVKFEi729euNBYXXvqVNOLU4muXfmUfvlFbSX5ZM0aPoHu3dVWkmtSU43tf06fVltNPkhM5CaP
ANH69WqrMSnJydwGrG5do5EB3GtwyhSi4GDzFNzQ6/Wk0+leMtbo6GgaP348DRw4kACQg4MDff75
5/T8+XPTi8gnFmlghZHQ0FACQD4+Prl/k15vXKxTyMyLiOi33/i02rVTW0k+uXiRT6ByZbWV5Jq/
/mLJ/v5WsWzwZWbNMi5atuJF5Dmh13P3lMBAY40C+ebqStS6NdGYMTxq27ePu0HnZSG6Xq+ntGxG
rjqdjmLSF2jOnj2bJEmi0aNH0wcffEAPTdax03QIA1OIW7duEQCqUKFC7t6g03E3ZYBHX/Pnm1eg
Cjx/zutPtVorbTSbnMwnIElcNNMKeO89/pOaPFltJfkgJsZYZHDHDrXVKEJiItHmzUQffkhUpUpm
M3vx9vPPL79fp9ORPocrlevXr9OSJUtowIAB5OfnR5Ik0S/pIZFx48aRJEn0VXpxcJNWEDIRqi9k
LiqkpqYCAGxfzJXNirg4znDYvJlrnK1YYZioLkx4ePBasD17OCMxQzKZdWBnx8kEV67wrUEDtRXl
SFISL6QFOPvW6pg9G3j2DGjeHOjcWW01iuDgwAue5UXPDx4A589zW7DLl/nfciJsyZIvvz+rJKVn