-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathVector.cu
267 lines (236 loc) · 6.46 KB
/
Vector.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/* Vector.cu is part of gpumatting and is
* Copyright 2013 Philip G. Lee <[email protected]>
*
* gpumatting is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* gpumatting is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with gpumatting. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef VECTOR_CU
#define VECTOR_CU
#include <device_functions.h>
void vecDeviceMalloc(float** dx, int length, int leftPadding=0, int rightPadding=0)
{
cudaMalloc((void**)dx, sizeof(float)*(length+leftPadding+rightPadding));
cudaDeviceSynchronize();
cudaMemset((void*)*dx, 0x00, sizeof(float)*(length+leftPadding+rightPadding));
if( leftPadding )
*dx += leftPadding;
}
/*!
* \brief Copy a host vector to a device vector.
* \param leftPadding amount of 0-filled padding on the left of the vector.
* \param rightPadding amount of 0-filled padding ont he right of the vector.
*/
void vecCopyToDevice(float** dx, float const* hx, int length, int leftPadding=0, int rightPadding=0 )
{
vecDeviceMalloc(dx, length, leftPadding, rightPadding);
cudaMemcpy((void*)*dx, (void*)hx, sizeof(float)*length, cudaMemcpyHostToDevice);
}
void vecDeviceFree( float* dx, int leftPadding=0 )
{
cudaFree(dx-leftPadding);
}
__device__ void reduceSequential()
{
extern __shared__ float sdata[];
int ti = threadIdx.x;
int stride;
for( stride = blockDim.x>>1; stride > 0; stride >>= 1 )
{
if( ti < stride )
sdata[ti] += sdata[ti+stride];
__syncthreads();
}
}
template <int blocksize>
__device__ void reduceUnrolled()
{
extern __shared__ float sdata[];
int ti = threadIdx.x;
if( blocksize >= 1024 )
{
if( ti < 512 )
sdata[ti] += sdata[ti+512];
__syncthreads();
}
if( blocksize >= 512 )
{
if( ti < 256 )
sdata[ti] += sdata[ti+256];
__syncthreads();
}
if( blocksize >= 256 )
{
if( ti < 128 )
sdata[ti] += sdata[ti+128];
__syncthreads();
}
if( blocksize >= 128 )
{
if( ti < 64 )
sdata[ti] += sdata[ti+64];
__syncthreads();
}
// Since warp size is 32, these are guaranteed to happen synchronously,
// so no explicity synching is needed.
if( ti < 32 )
{
if( blocksize >= 64 )
sdata[ti] += sdata[ti+32];
if( blocksize >= 32 )
sdata[ti] += sdata[ti+16];
if( blocksize >= 16 )
sdata[ti] += sdata[ti+8];
if( blocksize >= 8 )
sdata[ti] += sdata[ti+4];
if( blocksize >= 4 )
sdata[ti] += sdata[ti+2];
if( blocksize >= 2 )
sdata[ti] += sdata[ti+1];
}
}
/*!
* \brief Add vectors. Can be in-place.
*
* Shared memory: 0
*
* \tparam add If true, add vectors, else subtract.
* \param result output vector \c x + \c y. May be \c x or \c y.
* \param x input vector
* \param y second input vector
* \param len number of elements in \c x, \c y, and \c result.
*/
template<bool add>
__device__ void vecAdd( float* result, float const* x, float const* y, int len )
{
int nthreads = blockDim.x*gridDim.x;
int i = blockDim.x * blockIdx.x + threadIdx.x;
//int ti = threadIdx.x;
while( i < len )
{
if( add )
result[i] = x[i]+y[i];
else
result[i] = x[i]-y[i];
i += nthreads;
}
}
__global__ void vecAdd_k( float* result, float const* x, float const* y, int len )
{
vecAdd<true>( result, x, y, len );
}
__global__ void vecSub_k( float* result, float const* x, float const* y, int len )
{
vecAdd<false>( result, x, y, len );
}
/*!
* \brief Scale vector by a constant. Can be in-place.
*
* Shared memory: 0
*
* \param result output vector. May be \c x.
* \param x input vector
* \param s scaling factor
* \param len number of elements in \c x and \c result.
*/
__device__ void vecScale( float* result, float const* x, float s, int len )
{
int nthreads = blockDim.x*gridDim.x;
int i = blockDim.x * blockIdx.x + threadIdx.x;
//int ti = threadIdx.x;
while( i < len )
{
result[i] = s*x[i];
i += nthreads;
}
}
__global__ void vecScaleConst_k( float* result, float const* x, float s, int len )
{
vecScale( result, x, s, len );
}
__global__ void vecScale_k( float* result, float const* x, float* s, int len )
{
vecScale( result, x, *s, len );
}
/*!
* \brief Stores inner product of \c x and \c y of length \c len in \c result.
*
* Shared memory: blockDim.x*sizeof(float)
*
* \param result scalar inner product
* \param x first vector
* \param y second vector
* \param len length of \c x and \c y
*/
__device__ void innerProd( float* result, float const* x, float const* y, int len )
{
extern __shared__ float sdata[];
int nthreads = blockDim.x*gridDim.x;
int i = blockDim.x * blockIdx.x + threadIdx.x;
int ti = threadIdx.x;
float* mysdata = sdata+ti;
*mysdata = 0.f;
for( ; i < len; i += nthreads )
*mysdata += x[i]*y[i];
// Doesn't work for some reason?
//if( i == 0 )
*result = 0.f;
// Wait for all the shared data to be fully populated.
__syncthreads();
/*
switch( blockDim.x )
{
case 1024:
reduceUnrolled<1024>();
break;
case 512:
reduceUnrolled<512>();
break;
case 256:
reduceUnrolled<256>();
break;
case 128:
reduceUnrolled<128>();
break;
case 64:
reduceUnrolled<64>();
break;
case 32:
reduceUnrolled<32>();
break;
case 16:
reduceUnrolled<16>();
break;
case 8:
reduceUnrolled<8>();
break;
case 4:
reduceUnrolled<4>();
break;
case 2:
reduceUnrolled<2>();
break;
case 1:
reduceUnrolled<1>();
break;
}
*/
reduceSequential();
// Need each block to contribute its final result to the global result.
if( ti == 0 )
atomicAdd( result, sdata[0] );
}
__global__ void innerProd_k( float* result, float const* x, float const* y, int len )
{
innerProd( result, x, y, len );
}
#endif