-
Notifications
You must be signed in to change notification settings - Fork 0
/
problem21.py
56 lines (40 loc) · 1.75 KB
/
problem21.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Problem #21 : Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly
# into n). If d(a) = b and d(b) = a, where a != b, then a and b are an amicable pair and each of a
# and b are called amicable numbers.
# For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore
# d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
# Evaluate the sum of all the amicable numbers under 10000.
#Solved 31626
import time
import math
# Find all sum of all proper divisors
def sumOfDiv(num):
sumDiv = 0
for x in xrange(1, int(math.sqrt(num))):
if num % x == 0:
sumDiv += num/x
sumDiv += x
return sumDiv-num
# Find amicable pairs up to variable: num
def propDivList(num):
divList = []
sumDiv = 0
for x in xrange(num):
divList.append([x,sumOfDiv(x)])
for f in range(len(divList)):
for l in range(len(divList)):
if divList[f][0] == divList[l][1] and divList[f][1] == divList[l][0] and divList[f][0] != divList[l][0]:
print(str(divList[f][0]) + ':' + str(divList[l][1]) + ' ') + str(divList[f][0]) + ':' + str(divList[l][0])
sumDiv += divList[f][0] + divList[l][0]
return sumDiv/2
# Start run time clock for function 1
start = time.time()
# Set for loop for multiple interations (10000)
for x in xrange(1):
# Identify a specific prime
a = propDivList(10000)
# a = solution(largeNumber)
# Return run time
elapsed = (time.time() - start)
# print answer
print('The sum of all amicable pairs under 10000 is: %s . Solution found in: %s seconds') % (a, elapsed)