-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathSimpleVersion_DoublyFlat.m
233 lines (200 loc) · 12.1 KB
/
SimpleVersion_DoublyFlat.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
% =========================================================================
% (c) 2016 Ronald Nissel, [email protected]
% =========================================================================
% This script simulates an FBMC and OFDM transmission over a doubly-flat
% channel, including channel estimation. The pilot symbol aided channel
% estimation in FBMC is based on R. Nissel, M. Rupp, "On Pilot-Symbol Aided
% Channel Estimation in FBMC-OQAM", IEEE ICASSP, 2016.
clear; close all;
addpath('./Theory');
M_SNR_OFDM_dB = [0:5:30]; % Signal-to-Noise Ratio in dB
NrRepetitions = 1000; % Number of Monte Carlo repetition (different channel realizations)
QAM_ModulationOrder = 16; % QAM signal constellation order, 4, 16, 64, 256, 1024,...
%% FBMC Object
FBMC = Modulation.FBMC(...
12,... % Number subcarriers
30,... % Number FBMC symbols
15e3,... % Subcarrier spacing (Hz)
15e3*14*12,... % Sampling rate (Samples/s)
15e3*20,... % Intermediate frequency first subcarrier (Hz)
false,... % Transmit real valued signal
'Hermite-OQAM',... % Prototype filter (Hermite, PHYDYAS, RRC) and OQAM or QAM,
8, ... % Overlapping factor (corresponding to the prototype filter length)
0, ... % Initial phase shift
true ... % Polyphase implementation
);
%% OFDM Object
OFDM = Modulation.OFDM(...
12,... % Number subcarriers
15,... % Number OFDM Symbols
15e3,... % Subcarrier spacing (Hz)
15e3*14*12,... % Sampling rate (Samples/s)
15e3*20,... % Intermediate frequency first subcarrier (Hz)
false,... % Transmit real valued signal
0, ... % Cyclic prefix length (s), LTE: 1/15e3/14
(8-1/2)*1/15e3*1/2 ... % Zero guard length (s)
);
%% PAM and QAM Object
PAM = Modulation.SignalConstellation(sqrt(QAM_ModulationOrder),'PAM');
QAM = Modulation.SignalConstellation(QAM_ModulationOrder,'QAM');
%% Channel Estimation Objects
ChannelEstimation_OFDM = ChannelEstimation.PilotSymbolAidedChannelEstimation(...
'Diamond',... % Pilot pattern
[... % Matrix that represents the pilot pattern parameters
OFDM.Nr.Subcarriers,... % Number of subcarriers
6; ... % Pilot spacing in the frequency domain
OFDM.Nr.MCSymbols,... % Number of FBMC/OFDM Symbols
4 ... % Pilot spacing in the time domain
],...
'linear'... % Interpolation(Extrapolation) method 'linear','spline','FullAverage,'MovingBlockAverage'
);
ChannelEstimation_FBMC = ChannelEstimation.PilotSymbolAidedChannelEstimation(...
'Diamond',... % Pilot pattern
[... % Matrix that represents the pilot pattern parameters
FBMC.Nr.Subcarriers,... % Number of subcarriers
6; ... % Pilot spacing in the frequency domain
FBMC.Nr.MCSymbols,... % Number of FBMC/OFDM Symbols
8 ... % Pilot spacing in the time domain
],...
'linear'... % Interpolation(Extrapolation) method 'linear','spline','FullAverage,'MovingBlockAverage',...
);
%% Imaginary Interference Cancellation Objects
AuxiliaryMethod = ChannelEstimation.ImaginaryInterferenceCancellationAtPilotPosition(...
'Auxiliary', ... % Cancellation method
ChannelEstimation_FBMC.GetAuxiliaryMatrix(1), ... % PilotMatrix
FBMC.GetFBMCMatrix, ... % Imaginary interference matrix
16, ... % Cancel 16 closest interferers
2 ... % Pilot to data power offset
);
CodingMethod = ChannelEstimation.ImaginaryInterferenceCancellationAtPilotPosition(...
'Coding', ... % Cancellation method
ChannelEstimation_FBMC.PilotMatrix, ... % PilotMatrix
FBMC.GetFBMCMatrix, ... % Imaginary interference matrix
16, ... % Cancel 16 closest interferers
2 ... % Pilot to data power offset
);
BER_FBMC_Aux = nan(length(M_SNR_OFDM_dB),NrRepetitions);
BER_FBMC_Cod = nan(length(M_SNR_OFDM_dB),NrRepetitions);
BER_FBMC_perfect = nan(length(M_SNR_OFDM_dB),NrRepetitions);
BER_OFDM = nan(length(M_SNR_OFDM_dB),NrRepetitions);
BER_OFDM_perfect = nan(length(M_SNR_OFDM_dB),NrRepetitions);
for i_rep = 1:NrRepetitions
for i_SNR = 1:length(M_SNR_OFDM_dB)
SNR_OFDM_dB = M_SNR_OFDM_dB(i_SNR);
Pn_time = OFDM.PHY.SamplingRate/(OFDM.PHY.SubcarrierSpacing*OFDM.Nr.Subcarriers)*10^(-SNR_OFDM_dB/10);
%% Generate Random BitStream
BinaryDataStream_FBMC_Aux = randi([0 1],AuxiliaryMethod.NrDataSymbols*log2(PAM.ModulationOrder),1);
BinaryDataStream_FBMC_Cod = randi([0 1],CodingMethod.NrDataSymbols*log2(PAM.ModulationOrder),1);
BinaryDataStream_OFDM = randi([0 1],(OFDM.Nr.Subcarriers*OFDM.Nr.MCSymbols-ChannelEstimation_OFDM.NrPilotSymbols)*log2(QAM.ModulationOrder),1);
%% Transmitted Data Symbols
xD_FBMC_Aux = PAM.Bit2Symbol(BinaryDataStream_FBMC_Aux);
xD_FBMC_Cod = PAM.Bit2Symbol(BinaryDataStream_FBMC_Cod);
xD_OFDM = QAM.Bit2Symbol(BinaryDataStream_OFDM);
%% Transmitted Pilot Symbols
xP_FBMC = PAM.SymbolMapping(randi(PAM.ModulationOrder,[ChannelEstimation_FBMC.NrPilotSymbols 1]));
xP_FBMC = xP_FBMC./abs(xP_FBMC);
xP_OFDM = QAM.SymbolMapping(randi(QAM.ModulationOrder,[ChannelEstimation_OFDM.NrPilotSymbols 1]));
xP_OFDM = xP_OFDM./abs(xP_OFDM);
%% Transmitted Symbols
x_FBMC_Aux = reshape(AuxiliaryMethod.PrecodingMatrix*[xP_FBMC;xD_FBMC_Aux],[FBMC.Nr.Subcarriers FBMC.Nr.MCSymbols]);
x_FBMC_Cod = reshape(CodingMethod.PrecodingMatrix*[xP_FBMC;xD_FBMC_Cod],[FBMC.Nr.Subcarriers FBMC.Nr.MCSymbols]);
x_OFDM = nan(OFDM.Nr.Subcarriers,OFDM.Nr.MCSymbols);
x_OFDM(ChannelEstimation_OFDM.PilotMatrix==1) = xP_OFDM;
x_OFDM(ChannelEstimation_OFDM.PilotMatrix==0) = xD_OFDM;
%% Transmitted FBMC Signal (time domain)
s_FBMC_Aux = FBMC.Modulation(x_FBMC_Aux);
s_FBMC_Cod = FBMC.Modulation(x_FBMC_Cod);
s_OFDM = OFDM.Modulation(x_OFDM);
%% Channel (doubly flat fading and AWGN)
h = sqrt(1/2)*(randn+1j*randn);
% h = 1; % Pure AWGN
n_FBMC = sqrt(Pn_time/2)*(randn(size(s_FBMC_Cod))+1j*randn(size(s_FBMC_Cod)));
n_OFDM = sqrt(Pn_time/2)*(randn(size(s_OFDM))+1j*randn(size(s_OFDM)));
r_FBMC_Aux = h*s_FBMC_Aux + n_FBMC;
r_FBMC_Cod = h*s_FBMC_Cod + n_FBMC;
r_OFDM = h*s_OFDM + n_OFDM;
%% Demodulate OFDM and FBMC signal
y_FBMC_Aux = FBMC.Demodulation(r_FBMC_Aux);
y_FBMC_Cod = FBMC.Demodulation(r_FBMC_Cod);
y_OFDM = OFDM.Demodulation(r_OFDM);
%% LS channel estimates at pilot positions
hP_LS_FBMC_Aux = y_FBMC_Aux(ChannelEstimation_FBMC.PilotMatrix==1)./xP_FBMC/sqrt(AuxiliaryMethod.PilotToDataPowerOffset*AuxiliaryMethod.DataPowerReduction);
hP_LS_FBMC_Cod = y_FBMC_Cod(ChannelEstimation_FBMC.PilotMatrix==1)./xP_FBMC/sqrt(CodingMethod.PilotToDataPowerOffset);
hP_LS_OFDM = y_OFDM(ChannelEstimation_OFDM.PilotMatrix==1)./xP_OFDM;
%% Channel Estimation using Interpolation
h_FBMC_Aux = ChannelEstimation_FBMC.ChannelInterpolation(hP_LS_FBMC_Aux);
h_FBMC_Cod = ChannelEstimation_FBMC.ChannelInterpolation(hP_LS_FBMC_Cod);
h_OFDM = ChannelEstimation_OFDM.ChannelInterpolation(hP_LS_OFDM);
%% Equalized received symbols at data position
y_EQ_FBMC_Aux = real(y_FBMC_Aux(AuxiliaryMethod.PilotMatrix==0)./h_FBMC_Aux(AuxiliaryMethod.PilotMatrix==0)/sqrt(AuxiliaryMethod.DataPowerReduction));
y_EQ_FBMC_Cod = real(CodingMethod.PrecodingMatrix(:,CodingMethod.NrPilotSymbols+1:end)'*(y_FBMC_Cod(:)./h_FBMC_Cod(:)));
y_EQ_FBMC_perfect = real(CodingMethod.PrecodingMatrix(:,CodingMethod.NrPilotSymbols+1:end)'*(y_FBMC_Cod(:)./h));
y_EQ_OFDM = y_OFDM(ChannelEstimation_OFDM.PilotMatrix==0)./h_OFDM(ChannelEstimation_OFDM.PilotMatrix==0);
y_EQ_OFDM_perfect = y_OFDM(ChannelEstimation_OFDM.PilotMatrix==0)./h;
%% Detect BitStream
DetectedBitStream_FBMC_Aux = PAM.Symbol2Bit(real(y_EQ_FBMC_Aux(:)));
DetectedBitStream_FBMC_Cod = PAM.Symbol2Bit(real(y_EQ_FBMC_Cod(:)));
DetectedBitStream_FBMC_perfect = PAM.Symbol2Bit(real(y_EQ_FBMC_perfect(:)));
DetectedBitStream_OFDM = QAM.Symbol2Bit(y_EQ_OFDM(:));
DetectedBitStream_OFDM_perfect = QAM.Symbol2Bit(y_EQ_OFDM_perfect(:));
%% Calculate BER
BER_FBMC_Aux(i_SNR,i_rep) = mean(BinaryDataStream_FBMC_Aux~=DetectedBitStream_FBMC_Aux);
BER_FBMC_Cod(i_SNR,i_rep) = mean(BinaryDataStream_FBMC_Cod~=DetectedBitStream_FBMC_Cod);
BER_FBMC_perfect(i_SNR,i_rep) = mean(BinaryDataStream_FBMC_Cod~=DetectedBitStream_FBMC_perfect);
BER_OFDM(i_SNR,i_rep) = mean(BinaryDataStream_OFDM~=DetectedBitStream_OFDM);
BER_OFDM_perfect(i_SNR,i_rep) = mean(BinaryDataStream_OFDM~=DetectedBitStream_OFDM_perfect);
end
if mod(i_rep,100)==0
disp([int2str(i_rep/NrRepetitions*100) '%']);
end
end
%% Theoretical BEP for perfect channel knowledge
% BEP_4QAM = 1/2-1./(2*sqrt(2*(1+10.^(-M_SNR_OFDM_dB/10))-1));
M_SNR_OFDM_dB_morePoints = min(M_SNR_OFDM_dB):0.5:max(M_SNR_OFDM_dB);
BEP_perfect = BitErrorProbabilityDoublyFlatRayleigh(M_SNR_OFDM_dB_morePoints,QAM.SymbolMapping,QAM.BitMapping);
%% Plot BER and BEP
figure();
semilogy(M_SNR_OFDM_dB,mean(BER_FBMC_Aux,2),'red -o');
hold on;
semilogy(M_SNR_OFDM_dB,mean(BER_FBMC_Cod,2),'blue -o');
semilogy(M_SNR_OFDM_dB,mean(BER_OFDM,2),'black -o');
semilogy(M_SNR_OFDM_dB,mean(BER_FBMC_perfect,2),'blue -x');
semilogy(M_SNR_OFDM_dB,mean(BER_OFDM_perfect,2),'black -x');
semilogy(M_SNR_OFDM_dB_morePoints,BEP_perfect','black');
xlabel('SNR for OFDM (dB)');
ylabel('BER, BEP');
legend('Simulation: FBMC Auxiliary','Simulation: FBMC Coding','Simulation: OFDM', 'Simulation FBMC perfect CSI', 'Simulation OFDM perfect CSI','Theory perfect CSI','Location','SouthWest');
%% Plot Pilot Pattern
figure();
ChannelEstimation_OFDM.PlotPilotPattern;
title('OFDM');
figure();
ChannelEstimation_FBMC.PlotPilotPattern(AuxiliaryMethod.PilotMatrix)
title('FBMC Auxiliary');
figure();
ChannelEstimation_FBMC.PlotPilotPattern(-(CodingMethod.ConsideredInterferenceMatrix<0)+(CodingMethod.ConsideredInterferenceMatrix>0))
title('FBMC Coding');
%% Calculate and Plot Expected Transmit Power Over Time
[Power_FBMC_Aux,t_FBMC] = FBMC.PlotTransmitPower(AuxiliaryMethod.PrecodingMatrix*AuxiliaryMethod.PrecodingMatrix');
[Power_FBMC_Cod,~] = FBMC.PlotTransmitPower(CodingMethod.PrecodingMatrix*CodingMethod.PrecodingMatrix');
[Power_OFDM,t_OFDM] = OFDM.PlotTransmitPower;
figure();
plot(t_FBMC,Power_FBMC_Aux,'red');
hold on;
plot(t_FBMC,Power_FBMC_Cod,'blue');
plot(t_OFDM,Power_OFDM,'black ');
legend({'FBMC Auxiliary','FBMC Coding','OFDM'});
ylabel('Transmit Power');
xlabel('Time(s)');
%% Calculate Power Spectral Density
[PSD_FBMC_Aux,t_FBMC] = FBMC.PlotPowerSpectralDensity(AuxiliaryMethod.PrecodingMatrix*AuxiliaryMethod.PrecodingMatrix');
[PSD_FBMC_Cod,~] = FBMC.PlotPowerSpectralDensity(CodingMethod.PrecodingMatrix*CodingMethod.PrecodingMatrix');
[PSD_OFDM,t_OFDM] = OFDM.PlotPowerSpectralDensity;
figure();
plot(t_FBMC,10*log10(PSD_FBMC_Aux),'red');
hold on;
plot(t_FBMC,10*log10(PSD_FBMC_Cod),'blue');
plot(t_OFDM,10*log10(PSD_OFDM),'black ');
legend({'FBMC Auxiliary','FBMC Coding','OFDM'});
ylabel('Power Spectral Density (dB)');
xlabel('Frequency (Hz)');