-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathimageutils.py
83 lines (73 loc) · 2.51 KB
/
imageutils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import numpy as np
from PIL import Image
def img2array(filename):
"""Turns an image into a numpy array. Requires PIL (Python Imaging Library) or Pillow (a PIL fork)."""
img = Image.open(filename)
array = np.array(img, dtype=np.float32)
if array.ndim == 3:
array = array.sum(2)
return array
def compressImage(image, height):
"""
Note: Should probably replace this method with one from photutils or PIL.Image. Will probably be faster/more accurate and can handle
both increasing and decreasing resolution
"""
"""
Compresses the image to a given size. Given that 3D printing cannot handle fine resolution, any
loss of resolution is ultimately unimportant.
"""
h, w = image.shape
width = int(w * height / float(h))
array = np.zeros((height, width))
y_step = h / float(height)
x_step = w / float(width)
for y in range(height):
for x in range(width):
array[y, x] = image[y * y_step, x * x_step]
return array
def crop_image(image, _max=0.0, masks=None, table=None):
locations = np.where(image > _max)
ymin, ymax, xmin, xmax = min(locations[0]), max(locations[0]), min(locations[1]), max(locations[1])
image = image[ymin:ymax + 1, xmin:xmax + 1]
toreturn = image
if masks:
masks = [mask[ymin:ymax + 1, xmin:xmax + 1] for mask in masks]
toreturn = [toreturn, masks]
if table:
print len(table['xcen'])
table = table[table['xcen'] < xmax]
table = table[table['ycen'] < ymax]
table['xcen'] = table['xcen'] - xmin
table['ycen'] = table['ycen'] - ymin
table = table[table['xcen'] > 0]
table = table[table['ycen'] > 0]
print len(table['xcen'])
toreturn.append(table)
return toreturn
def normalize(array, norm, height=255.):
"""
Taken, with some slight modifications, from the module qimage2ndarray. As this module requires
installation of itself, SIP, and PyQt4, it is simpler to copy this
method, which does not require either extension. See http://hmeine.github.io/qimage2ndarray/ for
more information.
The parameter `normalize` can be used to normalize an image's
value range to 0..height:
`normalize` = (nmin, nmax):
scale & clip image values from nmin..nmax to 0..height
`normalize` = nmax:
lets nmin default to zero, i.e. scale & clip the range 0..nmax
to 0..height
`normalize` = True:
scale image values to 0..255 (same as passing (gray.min(),
gray.max()))
"""
if not norm:
return array
if norm is True:
norm = array.min(), array.max()
elif np.isscalar(norm):
norm = (0, norm)
nmin, nmax = norm
array = array - nmin
array = array * height / float(nmax - nmin)
return array