forked from mayer79/statistical_computing_material
-
Notifications
You must be signed in to change notification settings - Fork 0
/
biblio.bib
882 lines (785 loc) · 28.8 KB
/
biblio.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
% Encoding: UTF-8
% XAI
@Book{molnar2019,
title = {Interpretable Machine Learning},
author = {Christoph Molnar},
publisher = {\url{https://christophm.github.io/interpretable-ml-book}},
year = {2019},
subtitle = {A Guide for Making Black Box Models Explainable}
}
@Book{biecek2021,
author = {Przemyslaw Biecek and Tomasz Burzykowski},
title = {{Explanatory Model Analysis}},
publisher = {Chapman and Hall/CRC, New York},
year = {2021},
url = {https://pbiecek.github.io/ema/},
doi = {10.1201/9780429027192}
}
@misc{mayer2020,
title={Peeking into the Black Box: An Actuarial Case Study for Interpretable Machine Learning},
author={Michael Mayer and Christian Lorentzen},
year={2020},
doi = {http://dx.doi.org/10.2139/ssrn.3595944}
}
@Misc{mayer2021ml,
title = {Introduction to Machine Learning},
author = {Michael Mayer},
publisher = {\url{https://github.com/mayer79/ml_lecture}},
year = {2021}}
@article{mayer2022,
AUTHOR = {Mayer, Michael and Bourassa, Steven C. and Hoesli, Martin and Scognamiglio, Donato},
TITLE = {Machine Learning Applications to Land and Structure Valuation},
JOURNAL = {Journal of Risk and Financial Management},
VOLUME = {15},
YEAR = {2022},
NUMBER = {5},
ARTICLE-NUMBER = {193},
URL = {https://www.mdpi.com/1911-8074/15/5/193},
DOI = {10.3390/jrfm15050193}
}
@article{fissler2022,
doi = {10.48550/ARXIV.2202.12780},
url = {https://arxiv.org/abs/2202.12780},
author = {Fissler, Tobias and Lorentzen, Christian and Mayer, Michael},
title = {Model Comparison and Calibration Assessment: User Guide for Consistent Scoring Functions in Machine Learning and Actuarial Practice},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
@article{goldstein2015,
author = {Alex Goldstein and Adam Kapelner and Justin Bleich and Emil Pitkin},
title = {Peeking Inside the Black Box: Visualizing Statistical Learning With Plots of Individual Conditional Expectation},
journal = {Journal of Computational and Graphical Statistics},
volume = {24},
number = {1},
pages = {44-65},
year = {2015},
publisher = {Taylor & Francis},
doi = {10.1080/10618600.2014.907095},
}
@article{friedman2008,
author = {Jerome H. Friedman and Bogdan E. Popescu},
title = {Predictive Learning via Rule Ensembles},
journal = {The Annals of Applied Statistics},
doi = {10.1214/07-AOAS148},
url = {http://www.jstor.org/stable/30245114},
number = {3},
pages = {916--954},
publisher = {Institute of Mathematical Statistics},
volume = {2},
year = {2008},
}
@misc{fisher2018,
title={All Models are Wrong, but Many are Useful: Learning a Variable's Importance by Studying an Entire Class of Prediction Models Simultaneously},
author={Aaron Fisher and Cynthia Rudin and Francesca Dominici},
year={2018},
url = {https://arxiv.org/abs/1801.01489},
primaryClass={stat.ME}
}
@misc{apley2016,
title={Visualizing the Effects of Predictor Variables in Black Box Supervised Learning Models},
author={Daniel W. Apley and Jingyu Zhu},
year={2016},
url = {https://arxiv.org/abs/1612.08468},
doi = {10.48550/arXiv.1612.08468}
}
@inproceedings{craven95,
author = {Craven, Mark W. and Shavlik, Jude W.},
title = {Extracting Tree-Structured Representations of Trained Networks},
year = {1995},
publisher = {MIT Press},
address = {Cambridge, MA, USA},
booktitle = {Proceedings of the 8th International Conference on Neural Information Processing Systems},
pages = {24–30},
numpages = {7},
location = {Denver, Colorado},
series = {NIPS'95}
}
@incollection{shapley1953,
author = {Lloyd S. Shapley},
title = {A Value for n-Person Games},
doi = {10.1515/9781400881970-018},
year = {1953},
month = {dec},
publisher = {Princeton University Press},
pages = {307--318},
editor = {Harold William Kuhn and Albert William Tucker},
booktitle = {Contributions to the Theory of Games ({AM}-28), Volume {II}}
}
@incollection{lundberg2017,
title = {A Unified Approach to Interpreting Model Predictions},
author = {Lundberg, Scott M. and Lee, Su-In},
booktitle = {Advances in Neural Information Processing Systems 30},
editor = {I. Guyon and U. V. Luxburg and S. Bengio and H. Wallach and R. Fergus and S. Vishwanathan and R. Garnett},
pages = {4765--4774},
year = {2017},
publisher = {Curran Associates, Inc.},
url = {https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf}
}
@article{lundberg2020,
title={From local explanations to global understanding with explainable AI for trees},
author={Lundberg, Scott M. and Erion, Gabriel and Chen, Hugh and DeGrave, Alex and Prutkin, Jordan M. and Nair, Bala and Katz, Ronit and Himmelfarb, Jonathan and Bansal, Nisha and Lee, Su-In},
journal={Nature Machine Intelligence},
volume={2},
number={1},
pages={2522-5839},
year={2020},
publisher={Nature Publishing Group}
}
@article{lipovetsky2001,
author = {Lipovetsky, Stan and Conklin, Michael},
title = {Analysis of regression in game theory approach},
journal = {Applied Stochastic Models in Business and Industry},
volume = {17},
number = {4},
pages = {319-330},
keywords = {co-operative games, Shapley Value, multicollinearity, regressors net effects},
doi = {https://doi.org/10.1002/asmb.446},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/asmb.446},
eprint = {https://onlinelibrary.wiley.com/doi/pdf/10.1002/asmb.446},
abstract = {Abstract Working with multiple regression analysis a researcher usually wants to know a comparative importance of predictors in the model. However, the analysis can be made difficult because of multicollinearity among regressors, which produces biased coefficients and negative inputs to multiple determination from presum ably useful regressors. To solve this problem we apply a tool from the co-operative games theory, the Shapley Value imputation. We demonstrate the theoretical and practical advantages of the Shapley Value and show that it provides consistent results in the presence of multicollinearity. Copyright © 2001 John Wiley \& Sons, Ltd.},
year = {2001}
}
@article{strumbelj2010,
title={An Efficient Explanation of Individual Classifications using Game Theory},
author={\v{S}trumbelj, Erik and Kononenko, Igor},
journal={J. Mach. Learn. Res.},
year={2010},
volume={11},
pages={1-18}
}
@article{strumbelj2014,
author = {\v{S}trumbelj, Erik and Kononenko, Igor},
title = {Explaining Prediction Models and Individual Predictions with Feature Contributions},
year = {2014},
issue_date = {December 2014},
publisher = {Springer-Verlag},
address = {Berlin, Heidelberg},
volume = {41},
number = {3},
issn = {0219-1377},
url = {https://doi.org/10.1007/s10115-013-0679-x},
doi = {10.1007/s10115-013-0679-x},
abstract = {We present a sensitivity analysis-based method for explaining prediction models that can be applied to any type of classification or regression model. Its advantage over existing general methods is that all subsets of input features are perturbed, so interactions and redundancies between features are taken into account. Furthermore, when explaining an additive model, the method is equivalent to commonly used additive model-specific methods. We illustrate the method's usefulness with examples from artificial and real-world data sets and an empirical analysis of running times. Results from a controlled experiment with 122 participants suggest that the method's explanations improved the participants' understanding of the model.},
journal = {Knowl. Inf. Syst.},
month = {dec},
pages = {647–665},
numpages = {19},
keywords = {Visualization, Decision support, Knowledge discovery, Interpretability, Data mining}
}
@inproceedings{ribeiro2016,
author = {Ribeiro, Marco Tulio and Singh, Sameer and Guestrin, Carlos},
title = {“Why Should I Trust You?”: Explaining the Predictions of Any Classifier},
year = {2016},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
doi = {10.1145/2939672.2939778},
booktitle = {Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining},
pages = {1135–1144},
numpages = {10},
series = {KDD ’16}
}
@article{staniak2018,
author = {Mateusz Staniak and Przemys{\l}aw Biecek},
title = {Explanations of Model Predictions with live and breakDown Packages},
year = {2018},
journal = {{The R Journal}},
doi = {10.32614/RJ-2018-072},
pages = {395--409},
volume = {10},
number = {2}
}
@misc{gosiewska2019,
author={Alicja Gosiewska and Przemys{\l}aw Biecek},
title={Do Not Trust Additive Explanations},
year={2019},
eprint={1903.11420},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@article{aas2021,
title = {Explaining individual predictions when features are dependent: More accurate approximations to Shapley values},
journal = {Artificial Intelligence},
volume = {298},
pages = {103502},
year = {2021},
issn = {0004-3702},
doi = {10.1016/j.artint.2021.103502},
url = {https://www.sciencedirect.com/science/article/pii/S0004370221000539},
author = {Kjersti Aas and Martin Jullum and Anders Løland},
keywords = {Feature attribution, Shapley values, Kernel SHAP, Dependence}
}
@InProceedings{covert2021,
title = { Improving KernelSHAP: Practical Shapley Value Estimation Using Linear Regression },
author = {Covert, Ian and Lee, Su-In},
booktitle = {Proceedings of The 24th International Conference on Artificial Intelligence and Statistics},
pages = {3457--3465},
year = {2021},
editor = {Banerjee, Arindam and Fukumizu, Kenji},
volume = {130},
series = {Proceedings of Machine Learning Research},
month = {13--15 Apr},
publisher = {PMLR},
pdf = {http://proceedings.mlr.press/v130/covert21a/covert21a.pdf},
url = {https://proceedings.mlr.press/v130/covert21a.html},
}
@InProceedings{janzing2020,
title = {Feature relevance quantification in explainable AI: A causal problem},
author = {Janzing, Dominik and Minorics, Lenon and Bloebaum, Patrick},
booktitle = {Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics},
pages = {2907--2916},
year = {2020},
editor = {Chiappa, Silvia and Calandra, Roberto},
volume = {108},
series = {Proceedings of Machine Learning Research},
month = {26--28 Aug},
publisher = {PMLR},
pdf = {http://proceedings.mlr.press/v108/janzing20a/janzing20a.pdf},
url = {https://proceedings.mlr.press/v108/janzing20a.html}
}
@misc{sundararajan2019,
doi = {10.48550/ARXIV.1908.08474},
url = {https://arxiv.org/abs/1908.08474},
author = {Sundararajan, Mukund and Najmi, Amir},
title = {The many Shapley values for model explanation},
publisher = {arXiv},
year = {2019}
}
@misc{mayer2022b,
doi = {10.48550/ARXIV.2207.14490},
url = {https://arxiv.org/abs/2207.14490},
author = {Mayer, Michael},
keywords = {Machine Learning (stat.ML), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {SHAP for additively modeled features in a boosted trees model},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution Share Alike 4.0 International}
}
@Manual{shapr2021,
title = {shapr: Prediction Explanation with Dependence-Aware Shapley Values},
author = {Nikolai Sellereite and Martin Jullum and Annabelle Redelmeier},
year = {2021},
note = {R package version 0.2.0},
url = {https://CRAN.R-project.org/package=shapr},
}
% data
@article{Noll2018,
author={Alexander Noll and Robert Salzmann and Mario V. W{\"u}thrich},
title={Case Study: French Motor Third-Party Liability Claims},
year={2018},
doi={10.2139/ssrn.3164764},
url = {https://ssrn.com/abstract=3164764},
journal = {{SSRN} Electronic Journal},
}
% ML
@phdthesis{werbos1974,
added-at = {2008-02-26T11:58:58.000+0100},
author = {Werbos, P. J.},
biburl = {https://www.bibsonomy.org/bibtex/2b0644d7aa84be0df0f198d586d341843/schaul},
citeulike-article-id = {2381655},
description = {idsia},
interhash = {4165e2708a0468e89f8305f21ee2c711},
intrahash = {b0644d7aa84be0df0f198d586d341843},
keywords = {juergen},
priority = {2},
school = {Harvard University},
timestamp = {2008-02-26T11:59:46.000+0100},
title = {Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences},
year = 1974
}
@book{hastie01statisticallearning,
author = {Trevor Hastie and Robert Tibshirani and Jerome Friedman},
title = {The Elements of Statistical Learning},
address = {New York, NY, USA},
publisher = {Springer New York Inc.},
series = {Springer Series in Statistics},
year = {2001},
edition = {2},
url = {https://web.stanford.edu/~hastie/ElemStatLearn/},
}
@book{james2021,
title={An Introduction to Statistical Learning: with Applications in R},
author={James, G. and Witten, D. and Hastie, T. and Tibshirani, R.},
isbn={9781071614181},
series={Springer Texts in Statistics},
year={2021},
publisher={Springer US}
}
@article{friedman2001,
author = "Friedman, Jerome H.",
doi = "10.1214/aos/1013203451",
fjournal = "The Annals of Statistics",
journal = "Ann. Stat.",
number = "5",
pages = "1189--1232",
publisher = "The Institute of Mathematical Statistics",
title = "Greedy function approximation: A gradient boosting machine.",
url = "https://doi.org/10.1214/aos/1013203451",
volume = "29",
year = "2001"
}
@article{breiman2001,
author = {Leo Breiman},
title = {Random Forests},
journal = {Machine Learning},
doi = {10.1023/A:1010933404324},
number = {1},
pages = {5-32},
publisher = {Kluwer Academic Publishers},
volume = {45},
year = {2001},
}
@Book{breiman1984,
Title = {Classification and Regression Trees},
Author = {Leo Breiman and Jerome Friedman and Charles J. Stone and R.A. Olshen},
Publisher = {Chapman and Hall/CRC},
Year = {1984}
}
@article{schapire1990,
author = {Schapire, Robert E.},
doi = {10.1023/A:1022648800760},
issn = {0885-6125},
journal = {Machine Learning},
keywords = {Boosting, Learning Machine},
number = 2,
pages = {197--227},
timestamp = {2017-01-09T14:01:11.000+0100},
title = {The strength of weak learnability},
url = {http://www.cs.princeton.edu/~schapire/papers/strengthofweak.pdf},
urldate = {2012-09-24},
volume = 5,
year = 1990
}
@article{wuethrich2020,
title={Bias regularization in neural network models for general insurance pricing},
author={M. W{\"u}thrich},
journal={Eur. Actuar. J.},
year={2020},
volume={10},
pages={179--202},
doi = {10.1007/s13385-019-00215-z}
}
% Additive models
@article{nelder1972,
URL = {http://www.jstor.org/stable/2344614},
author = {J. A. Nelder and R. W. M. Wedderburn},
journal = {J. R. Stat. Soc. Series A (General)},
number = {3},
pages = {370--384},
publisher = {[Royal Statistical Society, Wiley]},
title = {Generalized Linear Models},
volume = {135},
year = {1972},
doi = {10.2307/2344614}
}
@article{friedman1981,
URL = {http://www.jstor.org/stable/2287576},
author = {Jerome H. Friedman and Werner Stuetzle},
journal = {Journal of the American Statistical Association},
number = {376},
pages = {817--823},
publisher = {[American Statistical Association, Taylor & Francis, Ltd.]},
title = {Projection Pursuit Regression},
volume = {76},
year = {1981},
doi = {10.2307/2287576}
}
@article{hastie1986,
author = {Trevor Hastie and Robert Tibshirani},
title = {{Generalized Additive Models}},
volume = {1},
journal = {Stat. Sci.},
number = {3},
publisher = {Institute of Mathematical Statistics},
pages = {297--310},
year = {1986},
URL = {https://doi.org/10.1214/ss/1177013604},
doi = {10.1214/ss/1177013604}
}
@book{hastie1990,
author = {Hastie, Trevor and Tibshirani, Robert},
publisher = {Wiley Online Library},
title = {Generalized additive models},
year = 1990
}
@article{buehlmann2007,
author = {Peter Bühlmann and Torsten Hothorn},
title = {{Boosting Algorithms: Regularization, Prediction and Model Fitting}},
volume = {22},
journal = {Stat. Sci.},
number = {4},
publisher = {Institute of Mathematical Statistics},
pages = {477--505},
year = {2007},
URL = {https://doi.org/10.1214/07-STS242},
doi = {10.1214/07-STS242}
}
@misc{hofner2012,
volume = {120},
author = {Benjamin Hofner and Andreas Mayr and Nikolay Robinzonov and Matthias Schmid},
keyword = {boosting, component-wise functional gradient descent, generalized additive models, tutorial},
title = {Model-based Boosting in R: A Hands-on Tutorial Using the R Package mboost},
series = {tech},
year = {2012},
doi = {10.5282/ubm/epub.12754}
}
@inproceedings{lou2012,
author = {Lou, Yin and Caruana, Rich and Gehrke, Johannes},
title = {Intelligible Models for Classification and Regression},
year = {2012},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/2339530.2339556},
booktitle = {Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining},
pages = {150--158},
series = {KDD '12},
doi = {10.1145/2339530.2339556}
}
@inproceedings{lee2015,
title={Delta Boosting Machine and its Application in Actuarial Modeling},
author={Simon C. K. Lee and Sheldon Lin and Katrien Antonio},
year={2015},
publisher={Institute of Actuaries of Australia}
}
@book{wood2017,
title = "Generalized Additive Models: An Introduction with R",
author = "Wood, {Simon N}",
year = "2017",
language = "English",
publisher = "CRC Press",
address = "United States",
edition = "2",
doi = "10.1201/9781315370279"
}
@article{nori2019,
author = {Harsha Nori and
Samuel Jenkins and
Paul Koch and
Rich Caruana},
title = {InterpretML: {A} Unified Framework for Machine Learning Interpretability},
journal = {CoRR},
volume = {abs/1909.09223},
year = {2019},
url = {http://arxiv.org/abs/1909.09223},
archivePrefix = {arXiv},
eprint = {1909.09223},
doi = {10.48550/arXiv.1909.00922}
}
@article{agarwal2020,
author = {Rishabh Agarwal and
Nicholas Frosst and
Xuezhou Zhang and
Rich Caruana and
Geoffrey E. Hinton},
title = {Neural Additive Models: Interpretable Machine Learning with Neural
Nets},
journal = {CoRR},
volume = {abs/2004.13912},
year = {2020},
url = {https://arxiv.org/abs/2004.13912},
archivePrefix = {arXiv},
eprint = {2004.13912},
doi = {10.48550/arXiv.2004.13912}
}
@book{koenker2005,
author = {Koenker, Roger},
keywords = {Regression Regression:quantile},
publisher = {Cambridge University Press},
series = {Econometric Society Monographs},
title = {Quantile Regression},
year = {2005},
doi = {10.1017/CBO9780511754098}
}
@TechReport{umlauf2012,
author={Nikolaus Umlauf and Daniel Adler and Thomas Kneib and Stefan Lang and Achim Zeileis},
title={{Structured Additive Regression Models: An R Interface to BayesX}},
year=2012,
institution={Faculty of Economics and Statistics, University of Innsbruck},
type={Working Papers},
url={https://ideas.repec.org/p/inn/wpaper/2012-10.html},
number={2012-10}
}
@article{hothorn2010,
author = {Torsten Hothorn and Peter B{{\"u}}hlmann and Thomas Kneib and Matthias Schmid and Benjamin Hofner},
title = {Model-based Boosting 2.0},
journal = {J. Mach. Learn. Res.},
year = {2010},
volume = {11},
number = {71},
pages = {2109--2113},
url = {http://jmlr.org/papers/v11/hothorn10a.html}
}
@misc{ruegamer2021,
title={Semi-Structured Deep Distributional Regression: Combining Structured Additive Models and Deep Learning},
author={David Rügamer and Chris Kolb and Nadja Klein},
year={2021},
eprint={2002.05777},
archivePrefix={arXiv},
doi = {10.48550/arXiv.2002.05777}
}
@book{fahrmeir2013,
author = {Ludwig Fahrmeir and Thomas Kneib and Stefan Lang and Brian Marx},
title = {Regression: Models, Methods and Applications},
address = {Berlin},
publisher = {Springer-Verlag},
year = {2013},
doi = {10.1007/978-3-642-34333-9}
}
% Inference
@article{efron1979,
author = {Bradley Efron},
title = {{Bootstrap Methods: Another Look at the Jackknife}},
volume = {7},
journal = {The Annals of Statistics},
number = {1},
publisher = {Institute of Mathematical Statistics},
pages = {1 -- 26},
year = {1979},
doi = {10.1214/aos/1176344552},
URL = {https://doi.org/10.1214/aos/1176344552}
}
@Book{efron1993,
Title = {An Introduction to the Bootstrap},
Author = {Bradley Efron and Robert J. Tibshirani},
Publisher = {Chapman \& Hall/CRC},
Year = {1993},
Address = {Boca Raton, Florida, USA},
Number = {57},
Series = {Monographs on Statistics and Applied Probability}
}
@book{hahn2014,
author = {Hahn, Gerald J. and Meeker, William Q. and Escobar, Luis A.},
title = {Statistical Intervals: A Guide for Practitioners},
year = {2014},
isbn = {0471687170},
publisher = {Wiley Publishing},
edition = {2nd}
}
@article{hothorn2008,
title={Implementing a Class of Permutation Tests: The coin Package},
volume={28},
url={https://www.jstatsoft.org/index.php/jss/article/view/v028i08},
doi={10.18637/jss.v028.i08},
number={8},
journal={Journal of Statistical Software},
author={Hothorn, Torsten and Hornik, Kurt and van de Wiel, Mark A. and Zeileis, Achim},
year={2008},
pages={1–23}
}
@book{fisher1935,
address = {Edinburgh},
author = {Fisher, R. A.},
publisher = {Oliver and Boyd},
title = {{The Design of Experiments}},
year = 1935
}
% software
@misc{ic2020,
author={Michael Mayer},
title={{Github issue \url{https://github.com/microsoft/LightGBM/issues/2884}}},
url={\url{https://github.com/microsoft/LightGBM/issues/2884}},
note={accessed 2022-03-06},
year={2020}
}
@inproceedings{abadi2016,
title = {TensorFlow: A system for large-scale machine learning},
author = {Martin Abadi and Paul Barham and Jianmin Chen and Zhifeng Chen and Andy Davis and Jeffrey Dean and Matthieu Devin and Sanjay Ghemawat and Geoffrey Irving and Michael Isard and Manjunath Kudlur and Josh Levenberg and Rajat Monga and Sherry Moore and Derek G. Murray and Benoit Steiner and Paul Tucker and Vijay Vasudevan and Pete Warden and Martin Wicke and Yuan Yu and Xiaoqiang Zheng},
year = {2016},
URL = {https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf},
booktitle = {12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16)},
pages = {265--283},
doi = {10.48550/arXiv.1605.08695}
}
@Manual{rlang2021,
title = {R: A Language and Environment for Statistical Computing},
author = {{R Core Team}},
organization = {R Foundation for Statistical Computing},
address = {Vienna, Austria},
year = {2021},
url = {https://www.R-project.org/},
}
@Manual{xgboost2021,
title = {xgboost: Extreme Gradient Boosting},
author = {Tianqi Chen and Tong He and Michael Benesty and Vadim Khotilovich and Yuan Tang and Hyunsu Cho and Kailong Chen and Rory Mitchell and Ignacio Cano and Tianyi Zhou and Mu Li and Junyuan Xie and Min Lin and Yifeng Geng and Yutian Li},
year = {2021},
note = {R package version 1.4.1.1},
url = {https://CRAN.R-project.org/package=xgboost},
}
@inproceedings{chen2016,
author = {Chen, Tianqi and Guestrin, Carlos},
title = {XGBoost: A Scalable Tree Boosting System},
year = {2016},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/2939672.2939785},
booktitle = {Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining},
pages = {785--794},
series = {KDD '16},
doi = {10.1145/2939672.2939785}
}
@Manual{lightgbm2021,
title = {lightgbm: Light Gradient Boosting Machine},
author = {Guolin Ke and Damien Soukhavong and James Lamb and Qi Meng and Thomas Finley and Taifeng Wang and Wei Chen and Weidong Ma and Qiwei Ye and Tie-Yan Liu and Nikita Titov},
year = {2021},
note = {R package version 3.2.1.99},
url = {https://github.com/Microsoft/LightGBM},
}
@inproceedings{ke2017,
author = {Ke, Guolin and Meng, Qi and Finley, Thomas and Wang, Taifeng and Chen, Wei and Ma, Weidong and Ye, Qiwei and Liu, Tie-Yan},
booktitle = {Advances in Neural Information Processing Systems},
pages = {3149--3157},
publisher = {Curran Associates, Inc.},
title = {LightGBM: A Highly Efficient Gradient Boosting Decision Tree},
volume = {30},
year = {2017}
}
@inproceedings{prokhorenkova2018,
author = {Prokhorenkova, Liudmila and Gusev, Gleb and Vorobev, Aleksandr and Dorogush, Anna Veronika and Gulin, Andrey},
title = {CatBoost: Unbiased Boosting with Categorical Features},
year = {2018},
publisher = {Curran Associates Inc.},
address = {Red Hook, NY, USA},
booktitle = {Proceedings of the 32nd International Conference on Neural Information Processing Systems},
pages = {6639--6649},
numpages = {11},
series = {NIPS'18}
}
@article{wright2017,
author = {Marvin N. Wright and Andreas Ziegler},
title = {{ranger}: A Fast Implementation of Random Forests for High Dimensional Data in {C++} and {R}},
journal = {Journal of Statistical Software},
year = {2017},
volume = {77},
number = {1},
pages = {1--17},
doi = {10.18637/jss.v077.i01},
}
@Manual{keras2021,
title = {keras: R Interface to 'Keras'},
author = {JJ Allaire and François Chollet},
year = {2021},
note = {R package version 2.4.0},
url = {https://CRAN.R-project.org/package=keras},
}
@book{chollet2018,
author = {Chollet, François},
address = {Shelter Island, New York},
isbn = {1-63835-163-5},
keywords = {R (Computer program language)},
language = {eng},
publisher = {Manning Publications},
title = {Deep learning with {R}},
year = {2018},
}
@Manual{flashlight2021,
title = {flashlight: Shed Light on Black Box Machine Learning Models},
author = {Michael Mayer},
year = {2021},
note = {R package version 0.8.0},
url = {https://github.com/mayer79/flashlight},
}
@Manual{shapviz2022,
title = {shapviz: SHAP Visualizations},
author = {Michael Mayer},
year = {2022},
note = {R package version 0.1.0},
url = {https://CRAN.R-project.org/package=shapviz},
}
@manual{mw2020,
author = {Michael Mayer},
title = {MetricsWeighted: Weighted Metrics, Scoring Functions and Performance Measures for Machine Learning},
year = {2020},
note = {R package version 0.5.0},
url = {https://CRAN.R-project.org/package=MetricsWeighted},
}
@article{biecek2018,
author = {Przemys{\l}aw Biecek},
title = {DALEX: Explainers for Complex Predictive Models in R},
journal = {Journal of Machine Learning Research},
year = {2018},
volume = {19},
pages = {1-5},
number = {84},
url = {http://jmlr.org/papers/v19/18-416.html},
}
@article{molnar2018,
author = {Christoph Molnar and Bernd Bischl and Giuseppe Casalicchio},
title = {iml: An R package for Interpretable Machine Learning},
doi = {10.21105/joss.00786},
url = {http://joss.theoj.org/papers/10.21105/joss.00786},
year = {2018},
publisher = {Journal of Open Source Software},
volume = {3},
number = {26},
pages = {786},
journal = {JOSS},
}
@Manual{mboost2021,
title = {{mboost}: Model-Based Boosting},
author = {Torsten Hothorn and Peter Bühlmann and Thomas Kneib and Matthias Schmid and Benjamin Hofner},
year = {2021},
note = {{R} package version 2.9-5},
url = {https://CRAN.R-project.org/package=mboost},
}
@Manual{quantreg2021,
title = {quantreg: Quantile Regression},
author = {Roger Koenker},
year = {2021},
note = {R package version 5.86},
url = {https://CRAN.R-project.org/package=quantreg},
}
% insurance
@misc{wuethrich2021,
title={Data Analytics for Non-Life Insurance Pricing},
author={Mario V. Wüthrich and Christoph Buser},
year={2021},
doi = {10.2139/ssrn.2870308}
}
@book{ohlsson2015,
title={Non-Life Insurance Pricing with Generalized Linear Models},
author={Ohlsson, E. and Johansson, B.},
isbn={9783642107900},
lccn={2010923536},
series={EAA Series},
year={2015},
publisher={Springer Berlin Heidelberg}
}
@book{wilkinson05,
author = {Wilkinson, Leland},
title = {The Grammar of Graphics (Statistics and Computing)},
year = {2005},
isbn = {0387245448},
publisher = {Springer-Verlag},
address = {Berlin, Heidelberg}
}
@book{wickham2017,
title = {R for Data Science: Import, Tidy, Transform, Visualize, and Model Data},
author = {Hadley Wickham and Garrett Grolemund},
publisher = {O'Reilly Media},
url = {http://r4ds.had.co.nz/},
year = 2017
}
@Book{xie2018,
title = {R Markdown: The Definitive Guide},
author = {Yihui Xie and J.J. Allaire and Garrett Grolemund},
publisher = {Chapman and Hall/CRC},
address = {Boca Raton, Florida},
year = {2018},
note = {ISBN 9781138359338},
url = {https://bookdown.org/yihui/rmarkdown},
}
@book{wickham2015,
title = {Advanced {R}},
author = {Hadley Wickham},
publisher = {CRC Press},
address = {Boca Raton FL},
year = {2015},
url = {https://adv-r.hadley.nz/index.html}
}
@book{wickham2015r,
title={R Packages: Organize, Test, Document, and Share Your Code},
author={Hadley Wickham},
year={2015},
publisher={O'Reilly Media},
url = {https://r-pkgs.org/}
}