-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlecture_randMatAndSparsification.tex
903 lines (838 loc) · 32 KB
/
lecture_randMatAndSparsification.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
% \documentclass[draft,11pt]{article}
\chapter{Random Matrix Concentration and Spectral Graph
Sparsification}
\label{cha:randmat}
%\usepackage{cleveref}
%\allowdisplaybreaks
%%% for this lecture
%\newcommand\symset{S}
%\newcommand\psdset{S_+}
%\newcommand\pdset{S_{++}}
%\newcommand\symsetn{\symset^n}
%\newcommand\psdsetn{\psdset^n}
%\newcommand\pdsetn{\pdset^n}
%%% added by Hongjie
%\newcommand{\Hongjie}[1]{{\color{red} Hongjie: #1}}
%\begin{document}
\sloppy
%\lecture{8 --- Wednesday, April 8th}
%{Spring 2020}{Rasmus Kyng, Scribe: Hongjie Chen}{Random Matrix
%Concentration and Spectral Graph Sparsification}
\section{Matrix Sampling and Approximation}
We want to begin understanding how sums of random matrices behave, in
particular, whether they exhibit a tendency to concentrate in the same
way that sum of scalar random variables do under various conditions.
First, let's recall a scalar Chernoff bound, which shows that a sum of
bounded, non-negative random variables tend to concentrate around
their mean.
\begin{theorem}[A Chernoff Concentration Bound]
Suppose $X_1, \ldots, X_k \in \R$ are independent, non-negative,
random variables with $X_i \leq R$ always.
Let $X = \sum_i X_i$, and $\mu = \E{X}$,
then for $0 < \epsilon \leq 1$
\[
\Pr[ X \geq (1+\epsilon) \mu ] \leq \exp\left(\frac{-\epsilon^2
\mu}{4R}\right)
\text{ and }
\Pr[ X \leq (1-\epsilon) \mu] \leq \exp\left(\frac{-\epsilon^2
\mu}{4R}\right)
.
\]
\end{theorem}
The Chernoff bound should be familiar to most of you, but you may not
have seen the following very similar bound.
The Bernstein bound, which we will state in terms of zero-mean
variables, is much like the Chernoff bound.
It also requires bounded variables.
But, when the variables have small variance, the Bernstein bound is
sometimes stronger.
\begin{theorem}[A Bernstein Concentration Bound]
\label{thm:bernstein}
Suppose $X_1, \ldots, X_k \in \R$ are independent, zero-mean,
random variables with $\abs{X_i} \leq R$ always.
Let $X = \sum_i X_i$, and $\sigma^2 = \Var{X} = \sum_i \E{X_i^2}$,
then for $t > 0$
\[
\Pr[ \abs{X} \geq t] \leq 2\exp\left(\frac{-t^2}{2Rt +
4\sigma^2}\right)
.
\]
\end{theorem}
We will now prove the Bernstein concentration bound for scalar random
variables, as a warm-up to the next section, where we will prove a version
of it for matrix-valued random variables.
To help us prove Bernstein's bound, first let's recall Markov's
inequality.
This is a very weak concentration inequality, but also very versatile,
because it requires few assumptions.
\begin{lemma}[Markov's Inequality]
\label{lem:markov}
Suppose $\XX \in \R$ is a non-negative random variable, with a finite
expectation.
Then for any $t > 0$,
\[
\Pr[ X \geq t] \leq \frac{\E{X}}{t}
.
\]
\end{lemma}
\begin{proof}
\begin{align*}
\E{X}
&=
\Pr[X \geq t]\E{X \mid X \geq t} + \Pr[X < t]\E{X \mid X < t}
\\
&\geq \Pr[X \geq t]\E{X \mid X \geq t}
\\
&\geq Pr[X \geq t] \cdot t
.
\end{align*}
We can rearrange this to get the desired statement.
\end{proof}
Now, we are ready to prove Bernstein's bound.
\begin{proof}[Proof of Theorem~\ref{thm:bernstein}]
We will focus on bounding the probability that $\Pr[ X \geq t] $.
The proof that $\Pr[ -X \geq t] $ is small proceeds in the same way.
First we observe that
\begin{align*}
\Pr[ X \geq t ]
&=
\Pr [ \exp(\theta X) \geq \exp(\theta t) ]
\tag*{for any $\theta >0$,
because $x \mapsto \exp(\theta x)$ is strictly increasing.}
\\
&\leq \exp(-\theta t) \E{\exp(\theta X)}
\tag*{by Lemma~\ref{lem:markov} (Markov's Inequality).}
\end{align*}
Now, let's require that $\theta \leq 1/R$
This will allow us to use the following bound: For all $\abs{z}
\leq 1$,
\begin{equation}
\label{eq:expub}
\exp(z) \leq 1+z+z^2.
\end{equation}
We omit a proof of this, but the plots in Figure~\ref{fig:expub}
suggest that this upper bound holds. The reader should consider how to
prove this.
\begin{figure}[h]
\centering
\includegraphics[width=0.4
\textwidth]{fig/lecture7_exp-bounds}
\caption{Plotting $\exp(z)$ compared to $1+z+z^2$.}
\label{fig:expub}
\end{figure}
With this in mind, we see that
\begin{align*}
\E{\exp(\theta X)}
&= \E{\exp\left(\theta \sum_i X_i\right)}
\\
&=\E{\Pi_{i} \exp(\theta X_i)}
\\
&=\Pi_{i} \E{\exp{(\theta X_i)}}
\tag*{because $\E{YZ} = \E{Y}\E{Z}$ for independent $Y$ and
$Z$.} % See note\footnote{ hello }}%\todo{text}}.
\\
&\leq\Pi_{i} \E{1+\theta X_i+(\theta X_i)^2}
\\
&=\Pi_{i} (1+\theta^2\E{ X_i^2})
\tag*{ because $X_i$ are zero-mean.}
\\
&\leq\Pi_{i} \exp( \theta^2\E{ X_i^2} )
\tag*{ because $1+z \leq \exp(z)$ for all $z \in R$.}
\\
&=\exp\left( \sum_i \theta^2\E{ X_i^2} \right) = \exp(\theta^2 \sigma^2)
.
\end{align*}
Thus
$\Pr[ X \geq t ] \leq \exp(-\theta t)\E{\exp(\theta X)} \leq
\exp(-\theta t + \theta^2 \sigma^2)$.
Now, to get the best possible bound, we'd like to minimize
$-\theta t + \theta^2 \sigma^2$ subject to the constraint
$0< \theta \leq 1/R$.
Setting
\[ \frac{\partial}{\partial \theta}\left(
-\theta t + \theta^2
\sigma^2
\right)
= - t + 2 \theta \sigma^2
.
\]
Setting this derivative to zero gives
$\theta = \frac{t}{2\sigma^2}$,
and plugging that in gives
\[
-\theta t + \theta^2\sigma^2
=
-\frac{t^2}{4\sigma^2}
\]
This choice only satisfies our constraints on $\theta$ if
$\frac{t}{2\sigma^2} \leq 1/R$.
Otherwise, we let $\theta = 1/R$ and note that in this case
\[
-\theta t + \theta^2\sigma^2
=
-\frac{t}{R} + \frac{\sigma^2}{R^2}
\leq
-\frac{t}{R} + \frac{t}{2R}
=
-\frac{t}{2R}
\]
where we got the inequality from $t > 2\sigma^2/R$.
Altogether, we can conclude that there always is a choice of
$\theta$ s.t.
\[
-\theta t + \theta^2\sigma^2
\leq
- \min\left( \frac{t}{2R} , \frac{t^2}{4\sigma^2} \right)
\leq
- \frac{t^2}{2Rt + 4\sigma^2}
.
\]
In fact, with the benefit of hindsight, and a little algebra, we
arrive at the same conclusion in another way:
One
can check that the
following choice of $\theta$ is always valid and achives the same
bound:
$\theta = \frac{1}{2
\sigma^2}\left( t - \frac{\sqrt{R} \cdot t^{3/2}}{\sqrt{2\sigma^2 + R
t}} \right)$.
\end{proof}
We use $\norm{\cdot}$ to denote the spectral norm on matrices.
Let's take a look at a version of Bernstein's bound that applies to
sums of random matrices.
\begin{theorem}[A Bernstein Matrix Concentration Bound (Tropp 2011)]
\label{thm:matbernstein}
Suppose $\XX_1, \ldots, \XX_k \in \R^{n \times n}$ are independent,
symmetric matrix-valued
random variables.
Assume each $\XX_i$ is zero-mean, i.e. $\E{\XX_i} = \matzero_{n \times
n}$, and that $\norm{\XX_i} \leq R$ always.
Let $\XX = \sum_i \XX_i$, and $\sigma^2 = \Var{\XX} = \sum_i \E{\XX_i^2}$,
then for $t > 0$
\[
\Pr[ \norm{\XX} \geq t] \leq 2n\exp\left(\frac{-t^2}{2Rt + 4\sigma^2}\right)
.
\]
\end{theorem}
This basically says that probability of $\XX$ being large in spectral
norm behaves like the scalar case, except the bound is larger by a factor
$n$, where the matrices are $n \times n$.
We can get a feeling for why this might be a reasonable bound by
considering the case of random diagonal matrices.
Now $\norm{\XX} = \max_j \abs{\XX (j,j)} = \max_j \abs{\sum_i
\XX_i(j,j)}$.
In this case, we need to bound the largest of the $n$ diagonal
entries: We can do this by a union bound over $n$ instances of the
scalar problem -- and this also turns out to be essentially tight in some cases,
meaning we can't expect a better bound in general.
\section{Matrix Concentration}
In this section we will prove the Bernstein matrix concentration bound
(Tropp 2011) that we saw in the previous section (\Cref{thm:matbernstein}).
\begin{theorem}\label{thm:matbernsteinagain}
Suppose $\XX_1, \ldots, \XX_k \in \R^{n \times n}$ are independent, symmetric matrix-valued random variables.
Assume each $\XX_i$ is zero-mean, i.e. $\E{\XX_i} = \matzero_{n \times
n}$, and that $\norm{\XX_i} \leq R$ always.
Let $\XX = \sum_i \XX_i$, and $\sigma^2 = \|\Var{\XX}\| = \|\sum_i \E{\XX_i^2}\|$, then for $t > 0$
\[
\Pr[ \norm{\XX} \geq t] \leq 2n\exp\left(\frac{-t^2}{2Rt + 4\sigma^2}\right).
\]
\end{theorem}
But let's collect some useful tools for the proof first.
\begin{definition}[trace]
The trace of a square matrix $\AA$ is defined as
\[ \trace{\AA} := \sum_{i} \AA(i,i) \]
\end{definition}
\begin{claim}[cyclic property of trace]
$\trace{\AA\BB} = \trace{\BB\AA}$
\end{claim}
Let $S^n$ denote the set of all $n\times n$ real symmetric matrices,
$S^n_+$ the set of all $n\times n$ positive semidefinite matrices,
and $S^n_{++}$ the set of all $n\times n$ positive definite matrices.
Their relation is clear, $S^n_{++} \subset S^n_+ \subset S^n$.
For any $\AA\in S^n$ with eigenvalues $\lambda_1(\AA)\leq\cdots\leq\lambda_n(\AA)$, by spectral decomposition theorem, $\AA = \VV\LLambda\VV^\trp$ where $\LLambda=\diag_i\{\lambda_i(\AA)\}$ and $\VV^\trp\VV=\VV\VV^\trp=\II$,
we'll use this property without specifying in the sequel.
\begin{claim}\label{clm:tr_eq_sum_eigen}
Given a symmetric and real matrix $\AA$, $\trace{\AA} = \sum_{i}\lambda_i$, where $\{\lambda_i\}$ are eigenvalues of $A$.
\end{claim}
\begin{proof}
\[ \trace{\AA} = \trace{\VV\LLambda\VV^\trp} = \trace{\LLambda\underbrace{\VV^\trp\VV}_{\II}} = \trace{\LLambda} = \sum_i \lambda_i. \]
\end{proof}
\subsection{Matrix Functions}
\begin{definition}[Matrix function]
Given a real-valued function $f:\R\to\R$, we extend it to a matrix function $f:S^n\to S^n$.
For $\AA\in S^n$ with spectral decomposition $\AA=\VV\LLambda\VV^\trp$, let
\[ f(\AA) = \VV \diag_i\left\{f(\lambda_i)\right\} \VV^\trp. \]
\end{definition}
\begin{example}
Recall that every PSD matrix $\AA$ has a square root $\AA^{1/2}$.
If $f(x) = x^{1/2}$ for $x\in\R_+$, then $f(\AA)=\AA^{1/2}$ for $\AA\in S^n_+$.
\end{example}
\begin{example}
If $f(x) = \exp(x)$ for $x\in\R$, then $f(\AA) = \exp(\AA) = \VV\exp(\LLambda)\VV^\trp$ for $\AA\in S^n$.
Note that $\exp(\AA)$ is positive definite for any $\AA\in S^n$.
\end{example}
\subsection{Monotonicity and Operator Monotonicity}
Cosider a function $f:
\calD \to \calC$.
If we have a partial order $\leq_{\calD}$ defined on $\calD$ and a
partial order $\leq_{\calC}$ defined on $\calC$, then we say that
the function is monotone increasing (resp. decreasing) w.r.t. this pair of orderings if for all $d_1, d_2
\in \calD$ s.t. $d_1 \leq_{\calD} d_2$ we have $f(d_1) \leq_{\calC}
f(d_2) $ (resp. decreasing if $f(d_2) \leq_{\calC} f(d_1)$).
Let's introduce some terminonology for important special cases of this idea.
We say that a function $f : \calS \to \R$, where $\calS \subseteq \symsetn$,
is monotone increasing if $\AA \preceq \BB$ implies $f(\AA) \leq f(\BB)$.
Meanwhile, a function $f : \calS \to \calT$ where $\calS, \calT \subseteq \symsetn$
is said to be operator monotone increasing if $\AA \preceq \BB $ implies
$f(\AA) \preceq f(\BB)$.
%
\begin{lemma}
Let $T \subseteq \R$.
If the scalar function $f : T \to \R$ is monotone increasing, the matrix
function $\XX \mapsto \trace{f(\XX)}$ is monotone increasing.
\end{lemma}
\begin{proof}
From previous chapters, we know if $\AA\preceq\BB$ then $\lambda_i(\AA)\leq\lambda_i(\BB)$ for all $i$.
As $x \mapsto f(x)$ is monotone, then $\lambda_i(f(\AA))\leq\lambda_i(f(\BB))$ for all $i$.
By Claim \ref{clm:tr_eq_sum_eigen}, $\trace{f(\AA)}\leq\trace{f(\BB)}$.
\end{proof}
From this, and the fact that $x \mapsto \exp(x)$ is a monotone function on the
reals, we get the following corollary.
\begin{corollary}\label{cor:trexpmono}
If $\AA\preceq\BB$, then $\trace{\exp(\AA)}\leq\trace{\exp(\BB)}$,
i.e. $\XX \mapsto \trace{\exp(\XX)}$ is monotone increasing.
\end{corollary}
\begin{lemma}\label{lem:invmono}
If $\matzero \prec\AA\preceq\BB$, then $\BB^{-1}\preceq \AA^{-1}$, i.e. $\XX
\mapsto \XX^{-1}$ is operator monotone decreasing on $\pdsetn$.
\end{lemma}
You will prove the above lemma in this week's exercises.
\begin{lemma}\label{lem:logmono}
If $0\prec\AA\preceq\BB$, then $\log(\AA)\preceq\log(\BB)$.
\end{lemma}
To prove this lemma, we first recall an integral representation of the
logarithm.
\begin{lemma}
\label{lem:logintegral}
\[
\log a = \int_0^{\infty} \left(\frac{1}{1+t} -\frac{1}{a+t} \right)
\diff t
\]
\end{lemma}
\begin{proof}
\begin{align*}
\int_0^{\infty} \left(\frac{1}{1+t} -\frac{1}{a+t} \right) \diff t
&=
\lim_{T \to \infty}
\int_0^{T} \left(\frac{1}{1+t} -\frac{1}{a+t} \right) \diff t
\\
&=
\lim_{T \to \infty}
\left[ \log(1+t) - \log(a+t) \right]_0^{T}
\\
&=
\log(a)
+
\lim_{T \to \infty}
\log\left( \frac{1+T}{a+T} \right)
\\
&=
\log(a)
\end{align*}
\end{proof}
\begin{proof}[Proof sketch of Lemma~\ref{lem:logmono}]
Because all the matrices involved are diagonalized by the same
orthogonal transformation, we can conclude from
Lemma~\ref{lem:logintegral} that for a matrix $\AA \succ \matzero$,
\[
\log(\AA)
= \int_0^{\infty} \left(\frac{1}{1+t}\II -(t \II + \AA)^{-1} \right) \diff t
\]
This integration can be expressesd as the limit of a sum with positive
coefficients, and from this we
can show that is the integrand (the term inside the integration
symbol) is operator monotone increasing in $\AA$ by
Lemma~\ref{lem:invmono}, the result of the integral, i.e. $\log(\AA)$
must also be operator monotone increasing.
\end{proof}
The following is a more general version of Lemma 1.6.
\begin{lemma}
Let $T \subset \R$.
If the scalar function $f : T \to \R$ is monotone, the matrix
function $\XX \mapsto \trace{f(\XX)}$ is monotone.
\end{lemma}
\begin{remark}
It is not always true that when $f: \R \to \R$ is monotone, $f:
\symsetn \to \symsetn$ is operator monotone.
For example, $\XX \mapsto \XX^2$ and $\XX \mapsto \exp(\XX)$ are \emph{not}
operator monotone.
% while ${\XX \to (\XX)^{1/2}}$ is operator monotone
% over $\psdsetn$.
\end{remark}
\subsection{Some Useful Facts}
\begin{lemma}\label{lem:ineq_exp}
$\exp(\AA) \preceq \II + \AA + \AA^2$ for $\|\AA\|\leq1$.
\end{lemma}
\begin{proof}
\begin{align*}
\II+\AA+\AA^2-\exp(\AA)
&= \VV\II\VV^\trp + \VV\LLambda\VV^\trp + \VV\LLambda^2\VV^\trp - \VV\exp(\LLambda)\VV^\trp \\
&= \VV\left(\II+\LLambda+\LLambda^2-\exp(\LLambda)\right)\VV^\trp \\
&= \VV \diag_i\{1+\lambda_i+\lambda_i^2-\exp(\lambda_i)\} \VV^\trp
\end{align*}
Recall $\exp(x)\leq1+x+x^2$ for all $|x|\leq1$.
Since $\|A\|\leq1$ i.e. $|\lambda_i|\leq1$ for all $i$, thus $1+\lambda_i+\lambda_i^2-\exp(\lambda_i)\geq0$ for all $i$,
meaning $\II+\AA+\AA^2-\exp(\AA) \succeq 0$.
\end{proof}
\begin{lemma}\label{lem:ineq_log}
$\log(\II+\AA) \preceq \AA$ for $A\succ-\II$.
\end{lemma}
\begin{proof}
\begin{align*}
\AA-\log(\II+\AA)
&= \VV\LLambda\VV^\trp - \VV\log(\LLambda+\II)\VV^\trp \\
&= \VV\left(\LLambda-\log(\LLambda+\II)\right)\VV^\trp \\
&= \VV \diag_i\{\lambda_i-\log(1+\lambda_i)\} \VV^\trp
\end{align*}
Recall $x\geq\log(1+x)$ for all $x>-1$.
Since $\|A\|\succ-\II$ i.e. $\lambda_i>-1$ for all $i$, thus $\lambda_i-\log(1+\lambda_i)\geq0$ for all $i$,
meaning $\AA-\log(\II+\AA) \succeq 0$.
\end{proof}
\begin{theorem}[Lieb]
\label{thm:Lieb}
Let $f:S^n_{++}\to\mathbb{R}$ be a matrix function given by
\[ f(\AA) = \trace{\exp\left(\HH+\log(\AA)\right)} \]
for some $\HH\in S^n$. Then $-f$ is convex (i.e. $f$ is concave).
\end{theorem}
The Lieb's theorem will be crucial in our proof of Theorem \ref{thm:matbernstein},
but it is also highly non-trivial and we will omit its proof here.
The interested reader can find a proof in Chapter 8 of \cite{tropp15}.
\begin{lemma}[Jensen's inequality]
\label{lem:Jensen}
$\E{f(X)} \geq f(\E{X})$ when $f$ is convex;
$\E{f(X)} \leq f(\E{X})$ when $f$ is concave.
\end{lemma}
\subsection{Proof of Matrix Bernstein Concentration Bound}
Now, we are ready to prove the Bernstein matrix concentration bound.
\begin{proof}[Proof of Theorem \ref{thm:matbernstein}]
For any $\AA\in S^n$, its spectral norm $\|\AA\| = \max\{|\lambda_n(\AA)|,|\lambda_1(\AA)|\} = \max\{\lambda_n(\AA),-\lambda_1(\AA)\}$.
Let $\lambda_1\leq\cdots\leq\lambda_n$ be the eigenvalues of $\XX$. Then,
\[\Pr[\|\XX\|\geq t] = \Pr\left[(\lambda_n \geq t) \bigvee (-\lambda_1 \geq t)\right] \leq \Pr[\lambda_n \geq t]+\Pr[-\lambda_1 \geq t]. \]
Let $\YY:=\sum_i -\XX_i$. It's easy to see that $-\lambda_n\leq\cdots\leq-\lambda_1$ are eigenvalues of $\YY$, implying $\lambda_n(\YY)=-\lambda_1(\XX)$.
Since $\E{-\XX_i} = \E{\XX_i} = 0$ and $\|-\XX_i\|=\|\XX_i\|\leq R$ for all $i$, if we can bound $\Pr[\lambda_n(\XX)\geq t]$, then applying to $\YY$, we can bound $\Pr[\lambda_n(\YY)\geq t]$.
As
\[ \Pr[-\lambda_1(\XX)\geq t] = \Pr[\lambda_n(\YY)\geq t], \]
it suffices to bound $\Pr[\lambda_n \geq t]$.
For any $\theta>0$, $\lambda_n\geq t \iff \exp(\theta\lambda_n) \geq \exp(\theta t)$ and
$\trace{\exp(\theta\XX)} = \sum_i \exp(\theta\lambda_i)$
by Claim \ref{clm:tr_eq_sum_eigen}, thus $\lambda_n\geq t \Rightarrow \trace{\exp(\theta\XX)}\geq\exp(\theta t)$.
Then, using Markov's inequality,
\begin{align*}
\Pr[\lambda_n\geq t]
&\leq \Pr[\trace{\exp(\theta\XX)}\geq\exp(\theta t)] \\
&\leq \exp(-\theta t) \E{\trace{\exp(\theta\XX)}}
\end{align*}
For two independent random variables $\UU$ and $\VV$, we have
\[ \Ex{\UU,\VV} f(\UU,\VV) = \Ex{\UU}\expct{\VV}{f(\UU,\VV)|\UU} = \Ex{\UU}\expct{\VV}{f(\UU,\VV)} . \]
Define $\XX_{<i} = \sum_{j<i} \XX_j$. Let $0<\theta\leq1/R$,
\begin{align*}
\Ex{}\trace{\exp(\theta\XX)}
&= \Ex{\XX_1,...,\XX_{k-1}} \Ex{\XX_k} \tr\exp\left( \underbrace{\theta\XX_{<k}}_{\HH} + \underbrace{\theta\XX_k}_{=\log\exp(\theta\XX_k)} \right), \quad\{\XX_i\}\text{ are independent} \\
&\leq \Ex{\XX_1,...,\XX_{k-1}} \tr\exp\left( \theta\XX_{<k} +
\log\Ex{}\exp(\theta\XX_k) \right), \quad\text{by \ref{thm:Lieb}
and \ref{lem:Jensen}} \\
&\leq \Ex{\XX_1,...,\XX_{k-1}} \tr\exp\left( \theta\XX_{<k} +
\log\E{\II+\theta\XX_k+\theta^2\XX_k^2} \right), \quad\text{by
\ref{lem:ineq_exp}, \ref{cor:trexpmono}, and \ref{lem:logmono}} \\
&\leq \Ex{\XX_1,...,\XX_{k-1}} \tr\exp\left( \theta\XX_{<k} + \theta^2\Ex{}\XX_k^2 \right), \quad\text{by \ref{lem:ineq_log} and \ref{cor:trexpmono}} \\
&= \Ex{\XX_1,...,\XX_{k-2}} \Ex{\XX_{k-1}} \tr\exp\left( \underbrace{\theta^2\Ex{}\XX_k^2+\theta\XX_{<k-1}}_{\HH} + \theta\XX_{k-1} \right), \\
&\quad\vdots \\
&\leq \tr\exp\left( \theta^2 \sum_i \E{\XX_i^2} \right),\\
&\leq \tr\exp\left( \theta^2 \sigma^2 \II \right), \quad\text{by \ref{cor:trexpmono} and } \sum_i \E{\XX_i^2}\preceq\sigma^2\II \\
&= n\cdot\exp(\theta^2\sigma^2).
\end{align*}
Then, \[ \Pr[\lambda_n\geq t] \leq n\cdot\exp(-\theta t+\theta^2\sigma^2), \]
and
\[ \Pr[\|\XX\|\geq t] \leq 2n\cdot\exp(-\theta t+\theta^2\sigma^2). \]
Similar to the proof of Bernstein concentration bound for one-dimension random variable, minimize the RHS over $0<\theta\leq1/R$ yields
\[ \Pr[\|\XX\|\geq t] \leq 2n\cdot\exp\left(\frac{-t^2}{2Rt + 4\sigma^2}\right). \]
\end{proof}
\section{Spectral Graph Sparsification}
\newcommand\Gtil{\tilde{G}}
\newcommand\Etil{\tilde{E}}
In this section, we will see that for any dense graph, we can find
another sparser graph whose graph Laplacian is approximately the same
as measured by their quadratic forms.
This turns out to be a very useful tool for designing algorithms.
\begin{definition}
\label{def:psdapxeq}
Given $\AA,\BB \in \psdsetn$ and $\epsilon > 0$, we say
\[
\AA \approx_{\epsilon} \BB \text{ if and only if }
\frac{1}{1+\epsilon} \AA \preceq \BB \preceq (1+\epsilon) \AA
.
\]
\end{definition}
Suppose we start with a connected graph $G = (V,E,\ww)$, where as usual we say that $\abs{V}
= n$ and $\abs{E} = m$.
We want to produce another graph $\Gtil = (V,\Etil,\wwtil)$ s.t
$\abs{\Etil} \muchl \abs{E}$ and at the same time $\LL_{G}
\approx_{\epsilon} \LL_{\Gtil}$.
We call $\Gtil$ a \emph{spectral sparsifier} of $G$.
Our construction will also ensure that $\Etil \subseteq E$, although
this is not important in most applications.
Figure~\ref{fig:gvsgtil} shows an example of a graph $G$ and
spectral sparsifier $\Gtil$.
\begin{figure}[h]
\centering
\includegraphics[width=0.6
\textwidth]{fig/lecture8_gtil}
\caption{A graph $G$ and a spectral sparsifier $\Gtil$
,
satisfisying
$\LL_{G} \approx_{\epsilon} \LL_{\Gtil}$ for $\epsilon = 2.42$.
}
\label{fig:gvsgtil}
\end{figure}
We are going to construct $\Gtil$ by sampling some of the edges of $G$
according to a suitable probability distribution and scaling up their weight
to make up for the fact that we pick fewer of them.
To get a better understanding for the notion of approximation given in
\ref{def:psdapxeq} means, let's observe a simple consequence of it.
Given a vertex subset $T \subseteq V$, we say that $(T, V\setminus T)$
is a \emph{cut} in $G$ and that the value of the cut is
\[
c_G(T) = \sum_{e \in E \intersect (T \times V\setminus T) } \ww(e)
.
\]
Figure~\ref{fig:cutexample} shows the $c_G(T)$ in a graph $G$.
\begin{figure}[h]
\centering
\includegraphics[width=0.4
\textwidth]{fig/lecture8_cutvalue}
\caption{The cut $c_G(T)$ in $G$.}
\label{fig:cutexample}
\end{figure}
\begin{theorem}
If $\LL_{G} \approx_{\epsilon} \LL_{\Gtil}$, then for all $T \subseteq V$,
\[
\frac{1}{1+\epsilon} c_G(T) \leq c_{\Gtil}(T) \leq (1+\epsilon) c_G(T)
.
\]
\end{theorem}
\begin{proof}
Let $\vecone_T \in \R^V$ be the indicator of the set $T$,
i.e. $\vecone_T(u) = 1$ for $u \in V$ and $\vecone_T(u) = 0$
otherwise.
We can see that $\vecone_T^{\trp} \LL_{G} \vecone_T = c_G(T)$, and
hence the theorem follows by comparing the quadratic forms.
\end{proof}
But how well can we spectrally approximate a graph with a sparse graph? The next
theorem gives us a nearly optimal answer to this question.
\begin{theorem}[Spectral Graph Approximation by Sampling,
(Spielman-Srivastava 2008)]
\label{thm:spectralgraphapxbysamp}
Consider a connected graph $G = (V,E,\ww)$, with $n = \abs{V}$.
For any $0 < \epsilon < 1$
and $0 < \delta < 1$, there exist sampling probabilities $p_e$ for
each edge $e \in E$ s.t. if we include each edge $e$ in $\Etil$
independently with probabilty $p_e$ and set its weight $\wwtil(e) =
\frac{1}{p_e} \ww(e)$, then with probability at least $1-\delta$
the graph $\Gtil = (V,\Etil,\wwtil)$ satisfies
\[
\LL_{G} \approx_{\epsilon} \LL_{\Gtil} \text{ and } \abs{\Etil}
\leq O( n \epsilon^{-2} \log(n/\delta) )
.
\]
\end{theorem}
The original proof can be found in \cite{spielman2011graph}.
\begin{remark}
For convenience, we will abbreviate $\LL_{G}$ as $\LL$ and
$\LL_{\Gtil}$ as $\LLtil$ in the rest of this section.
\end{remark}
We are going to analyze a sampling procedure by turning our goal into
a problem of matrix concentration.
Recall that
\begin{fact}
$\AA \preceq \BB$ implies $\CC \AA \CC^\trp \preceq \CC \BB \CC^\trp
$ for any $\CC \in \R^{n\times n}$.
\end{fact}
By letting $\CC = \LL^{\pinv/2}$, we can see that
\begin{equation}
\label{eq:spectralreltoabs}
\LL \approx_{\epsilon} \LLtil \text{ implies } \PPi_{\LL}
\approx_{\epsilon} \LL^{\pinv/2}\LLtil\LL^{\pinv/2}
,
\end{equation}
where $\PPi_{\LL} = \LL^{\pinv/2}\LL\LL^{\pinv/2}$ is the orthogonal
projection to the complement of the kernel of $\LL$.
\begin{definition}
Given a matrix $\AA$, we define $\PPi_{\AA}$ to be the orthogonal
projection to the complement of the kernel of $\AA$,
i.e. $\PPi_{\AA} \vv = \veczero$ for $\vv \in \ker(\AA)$ and
$\PPi_{\AA} \vv = \vv$ for $\vv \in \ker(\AA)^{\perp}$.
Recall that $\ker(\AA)^{\perp} = \im(\AA^{\trp})$.
\end{definition}
\begin{claim}
For a matrix $\AA \in \symsetn$ with spectral decomposition $\AA =
\VV\LLambda\VV^\trp = \sum_{i} \lambda_i \vv_i \vv_i^{\trp}$ s.t. $\VV^\trp \VV = \II$,
we have $\PPi_{\AA} = \sum_{i : \lambda_i \neq 0} \vv_i \vv_i^{\trp}$, and
$\PPi_{\AA} = \AA^{\pinv/2}\AA\AA^{\pinv/2} = \AA\AA^{\pinv} = \AA^{\pinv}\AA $.
\end{claim}
From the definition, we can see that
$\PPi_{\LL}= \II - \frac{1}{n}\vecone\vecone^{\trp}$.
Now that we understand the projection $\PPi_{\LL}$, it is not hard to
show the following claim.
\begin{claim}
\label{clm:spectralreltoabs}
\noindent
\begin{enumerate}
\item
\label{enu:switchapxnormalizer}
$\PPi_{\LL} \approx_{\epsilon} \LL^{\pinv/2}\LLtil\LL^{\pinv/2}$
implies $\LL \approx_{\epsilon} \LLtil$.
\item
\label{enu:normtoapx}
For $\epsilon \leq 1$, we have that
$\norm{\PPi_{\LL} - \LL^{\pinv/2}\LLtil\LL^{\pinv/2}} \leq
\epsilon/2$ implies $\PPi_{\LL} \approx_{\epsilon} \LL^{\pinv/2}\LLtil\LL^{\pinv/2}$.
\end{enumerate}
\end{claim}
Really, the only idea needed here is that when comparing quadratic
forms in matrices with
the same kernel, we necessarily can't have the quadratic forms
disagree on vectors in the kernel.
Simple! But we are going to write it out carefully, since we're still
getting used to these types of calculations.
\begin{proof}[Proof of Claim~\ref{clm:spectralreltoabs}]
To prove Part~\ref{enu:switchapxnormalizer}, we
assume $\PPi_{\LL} \approx_{\epsilon}
\LL^{\pinv/2}\LLtil\LL^{\pinv/2}$.
Recall that $G$ is a connected graph, so $\ker(\LL) =
\Span\setof{\vecone}$, while $\LLtil$ is the Laplacian of a graph
which may or may not be connected, so $\ker(\LLtil) \supseteq
\ker(\LL)$, and equivalently $\im(\LLtil) \subseteq \im(\LL)$.
Now, for any $\vv \in \ker(\LL)$ we have
$\vv^{\trp} \LLtil \vv = 0 = \vv^{\trp} \LL \vv$.
For any $\vv \in \ker(\LL)^{\perp}$ we have
$\vv = \LL^{\pinv/2} \zz$ for some $\zz$, as $\ker(\LL)^{\perp} =
\im(\LL) = \im(\LL^{\pinv/2})$.
Hence
\[
\vv^{\trp} \LLtil \vv =
\zz^{\trp} \LL^{\pinv/2}\LLtil\LL^{\pinv/2} \zz
\geq
\frac{1}{1+\epsilon}
\zz^{\trp} \LL^{\pinv/2}\LL\LL^{\pinv/2} \zz
=
\frac{1}{1+\epsilon}
\vv^{\trp} \LL \vv
\]
and similarly
\[
\vv^{\trp} \LLtil \vv =
\zz^{\trp} \LL^{\pinv/2}\LLtil\LL^{\pinv/2} \zz
\leq
(1+\epsilon)
\zz^{\trp} \LL^{\pinv/2}\LL\LL^{\pinv/2} \zz
=
(1+\epsilon)
\vv^{\trp} \LL \vv
.
\]
Thus we have established $\LL \approx_{\epsilon} \LLtil$.
To prove Part~\ref{enu:normtoapx}, we assume $\norm{\PPi_{\LL} - \LL^{\pinv/2}\LLtil\LL^{\pinv/2}} \leq
\epsilon/2$.
This is equivalent to
\[
- \frac{\epsilon}{2} \II \preceq
\LL^{\pinv/2}\LLtil\LL^{\pinv/2} - \PPi_{\LL} \preceq \frac{\epsilon}{2} \II
\]
But since
\[
\vecone^{\trp} (\LL^{\pinv/2}\LLtil\LL^{\pinv/2} - \PPi_{\LL})
\vecone = 0,
\]
we can in fact sharpen this to
\[
- \frac{\epsilon}{2} \PPi_{\LL}
\preceq
\LL^{\pinv/2}\LLtil\LL^{\pinv/2} - \PPi_{\LL}
\preceq
\frac{\epsilon}{2} \PPi_{\LL}
.
\]
Rearranging, we then conclude
\[
(1-\frac{\epsilon}{2}) \PPi_{\LL}
\preceq
\LL^{\pinv/2}\LLtil\LL^{\pinv/2}
\preceq
(1+\frac{\epsilon}{2}) \PPi_{\LL}
.
\]
Finally, we note that $1/(1+\epsilon) \leq (1-\frac{\epsilon}{2})$ to
reach our conclusion, $\PPi_{\LL} \approx_{\epsilon} \LL^{\pinv/2}\LLtil\LL^{\pinv/2}$.
\end{proof}
We now have most of the tools to prove
Theorem~\ref{thm:spectralgraphapxbysamp}, but to help us, we are going
to establish one small piece of helpful notation:
We define a matrix function $\Phi : \R^{n\times n} \to
\R^{n\times n} $
by
\[
\Phi(\AA) = \LL^{\pinv/2}\AA\LL^{\pinv/2}.
\]
We sometimes call this a ``normalizing map'', because it transforms a matrix to
the space where spectral norm bounds can be translated into relative
error guarantees compare to the $\LL$ quadratic form.
\begin{proof}[Proof of Theorem~\ref{thm:spectralgraphapxbysamp}]
By Claim~\ref{clm:spectralreltoabs}, it suffices to show
\begin{equation}
\label{eq:spectralnormerrbound}
\norm{\PPi_{\LL} - \LL^{\pinv/2}\LLtil\LL^{\pinv/2}} \leq
\epsilon/2.
\end{equation}
We introduce a set of independent random variables, one for each
edge $e$, with a probability $p_e$ associated with the edge which we
will fix later.
We then let
\[
\YY_e =
\begin{cases}
\frac{\ww(e)}{p_e} \bb_e \bb_e^{\trp}
& \text{ with probability } p_e
\\
\matzero
& \text{ otherwise. }
\end{cases}
\]
This way, $\LLtil = \sum_e \YY_e$.
Note that $\E{\YY_e} = p_e \frac{\ww(e)}{p_e} \bb_e \bb_e^{\trp} =
\ww(e) \bb_e \bb_e^{\trp}$, and so
\[
\E{\LLtil} =\sum_e \E{\YY_e} = \LL
.
\]
By linearity of $\Phi$,
\[
\E{\Phi(\LLtil)} = \Phi(\E{\LLtil}) = \PPi_{\LL}.
\]
Let us also define
\[
\XX_e = \Phi(\YY_e) - \E {\Phi(\YY_e)} \text{ and } \XX = \sum_e \XX_e
\]
Note that this ensures $\E {\XX_e} = \matzero$.
We are now going to fix the edge sampling probabilities, in a way that
depends on some overall scaling parameter $\alpha > 0$.
We let
\[
p_e = \min\left( \alpha \norm{\Phi\left(\ww(e)
\bb_e\bb_e^{\trp} \right)}, 1 \right)
\]
then we see from the definition of $\YY_e$ that whenever $p_e < 1$
\[
\norm{\Phi(\YY_e) } \leq \frac{1}{\alpha}
\]
from this, we can conclude, with a bit of work, that for all $e$
\begin{equation}
\label{eq:bernsteinelementnormbound}
\norm{\XX_e} \leq \frac{1}{\alpha}.
\end{equation}
We can also show that
\begin{equation}
\label{eq:bernsteinvarnormbound}
\norm{\sum_e \E{\XX_e^2}} \leq \frac{1}{\alpha}
.
\end{equation}
In the exercises for this chapter, we will ask you to show that
Equations~\eqref{eq:bernsteinelementnormbound} and~\eqref{eq:bernsteinvarnormbound} hold.
This means that we can apply Theorem~\ref{thm:matbernstein} to our
$\XX = \sum_e \XX_e$, with $R = \frac{1}{\alpha}$ and $\sigma^2 =
\frac{1}{\alpha}$, to get
\[
\Pr\left[\norm{\PPi_{\LL} - \LL^{\pinv/2}\LLtil\LL^{\pinv/2}}
\geq \epsilon/2\right]
\leq 2n\exp\left(\frac{-0.25 \epsilon^2}{(\epsilon +
4)/\alpha}\right)
\]
Since $0 < \epsilon < 1$, this means that if
$\alpha = 40 \epsilon^{-2} \log(n/\delta)$,
then
\[
Pr\left[\norm{\PPi_{\LL} - \LL^{\pinv/2}\LLtil\LL^{\pinv/2}}
\geq \epsilon/2\right]
\leq \frac{2n\delta^2}{n^2} \leq \delta/2.
\]
In the last step, we assumed $n \geq 4$.
Lastly, we'd like to know that the graph $\Gtil$ is sparse.
The number of edges in $\Gtil$ is equal to the number of $\YY_e$ that
come out nonzero.
Thus, the expected value of $\abs{\Etil}$ is
\[
\E{\abs{\Etil}}
=
\sum_e p_e \leq \alpha \sum_e \ww(e) \norm{\LL^{\pinv/2}\bb_e\bb_e^{\trp}\LL^{\pinv/2}}
\]
We can bound the sum of the norms with a neat trick relating it to the
trace of $\PPi_{\LL}$.
Note that in general for a vector $\aa \in \R^n$, we have
$\norm{\aa\aa^{\trp}} = \aa^{\trp}\aa = \trace{\aa\aa^{\trp}}$.
And hence
\begin{align*}
\sum_e
\ww(e)
\norm{\LL^{\pinv/2}\bb_e\bb_e^{\trp}\LL^{\pinv/2}}
&=
\sum_e
\ww(e)
\trace{\LL^{\pinv/2}\bb_e\bb_e^{\trp}\LL^{\pinv/2}}
\\
&=
\trace{ \LL^{\pinv/2} \left( \sum_e\ww(e) \bb_e\bb_e^{\trp}
\right)\LL^{\pinv/2}}
\\
&= \trace{ \PPi_{\LL} } = n-1.
\end{align*}
Thus with our choice of $\alpha$,
\[
\E{\abs{\Etil}} \leq 40 \epsilon^{-2} \log(n/\delta) n.
\]
With a scalar Chernoff bound, can show that $\abs{\Etil} \leq O( \epsilon^{-2} \log(n/\delta) n)$
with probability at least $1-\delta/2$.
Thus by a union bound, the this condition and
Equation~\eqref{eq:spectralnormerrbound} are both satisfied with
probability at least $1-\delta$.
\end{proof}
\begin{remark}
Note that
\[
\norm{\Phi\left(\ww(e) \bb_e\bb_e^{\trp} \right)}
=
\ww(e)
\norm{\LL^{\pinv/2}\bb_e\bb_e^{\trp}\LL^{\pinv/2}}
\leq
\ww(e)\norm{ \LL^{\pinv/2}\bb_e}_2^2.
\]
Recall that in Chapter~\ref{cha:pinver}, we saw that the effective resistance between vertex
$v$ and vertex $u$ is given by
$\norm{ \LL^{\pinv/2}(\ee_u - \ee_v)}_2^2$, and for an edge $e$
connecting vertex $u$ and $v$, we have $\bb_{e}= \ee_u - \ee_v$.
That means the norm of the ``baby Laplacian'' $\ww(e) \bb_e\bb_e^{\trp}$ of a single edge with weight
$\ww(e)$ is exactly $\ww(e)$ times the effective resistance between
the two endpoints of the edge.
\end{remark}
We haven't shown how to compute the sampling probabilities
efficiently, so right now, it isn't clear whether we can efficiently
find $\Gtil$.
It turns out that if we have access to a fast algorithm for solving
Laplacian linear equations, then we can find sufficiently good
approximations to the effective resistances quickly, and use these to
compute $\Gtil$.
An algorithm for this is described in \cite{spielman2011graph}.
\FloatBarrier
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "main"
%%% TeX-engine: luatex
%%% End: