-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlecture_maxFlowIPM.tex
887 lines (800 loc) · 27 KB
/
lecture_maxFlowIPM.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
\chapter{Interior Point Methods for Maximum Flow}
%%%% ADD MACROS HERE
% feel free to add more macros here
\newcommand{\sdiv}{\tilde{D}}
\newcommand\cvec[1]{\overrightarrow{\left(#1\right)}}
\section*{Background and Notation}
In this chapter, we'll learn about interior point methods for solving
maximum flow, which is a rich and active area of research \cite{DS08,M13,LS20a,LS20b}.
We're going to frequently need to refer to vectors
arising from elementwise operations combining other vectors.
To that end, given two vector $\aa \in \R^m$, and $\bb \in \R^m$, we
will use $\cvec{\aa(i) \bb(i)}$ to denote the vector $\zz$ with
$\zz(i) = \aa(i) \bb(i)$ and so on.
Throughout this chapter, when we are working in the context of some
given graph $G$ with vertices $V$ and edges $E$, we will let $m =
\abs{E}$ and $n = \abs{V}$.
The plots in this chapter were made using Mathematica, which is
available to ETH students for download through the ETH IT Shop.
\section{An Interior Point Method}
\paragraph{The Maximum Flow problem in undirected graphs.}
\begin{align}
\label{eq:maxflowagain}
\max_{\ff \in \R^E} & \quad F \\
\textrm{s.t. } \BB\ff= F \bb_{st}
\tag*{``The Undirected Maximum Flow Problem''}
\\
\nonumber
-\cc \leq \ff \leq \cc
\end{align}
We use $\val(\ff)$ to denote $F$ when $B\ff = F\bb_{st}$.
As we develop algorithms for this problem, we will assume that we know
the maximum flow value $F^*$.
Let $\ff^*$ denote some maximum flow, i.e. a flow with $-\cc \leq \ff
\leq \cc$ can $\val(\ff^*) = F^*$.
In general, an a lower
bound $F \leq F^*$ will allow us to find a flow with value $F$, and
because of this, we can use a binary search to approximate $F^*$.
\subsection{A Barrier Function and an Algorithm}
\[
V(\ff) = \sum_e -\log(\cc(e)-\ff(e)) -\log(\cc(e)+\ff(e))
\]
We assume the optimal value of Program~\eqref{eq:maxflowagain} is $F^*$.
Then for a given $0 \leq \alpha < 1$ we define a program
\begin{align}
\label{eq:barrierflow}
\min_{\ff \in \R^E} & \quad V(\ff)\\
\textrm{s.t. } \BB\ff= \alpha F^* \bb_{st}
\tag*{``The Barrier Problem''}
\end{align}
This problem makes sense for any $0 \leq \alpha < 1$.
When $\alpha = 0$, we are not routing any flow yet. This will be our
starting point.
For any $0 \leq \alpha < 1$, the scaled-down maximum
flow $\alpha\ff^*$ strictly satisfies the capacities $ -\cc < \alpha\ff^* < \cc$, and
$\BB\alpha\ff^*= \alpha F^* \bb_{st}$.
Hence $\alpha\ff^*$ is a feasible flow for this value of $\alpha$ and
hence $V(\alpha\ff^*) < \infty$ and so the optimal flow for the
Barrier Problem at this $\alpha$ must also have objective value
strictly below $\infty$, and hence in
turn strictly satisfy the capacity constraints.
Thus, if we can find the optimal flow for Program
\eqref{eq:barrierflow} for $\alpha = 1-\epsilon$, we will have a
feasible flow with Program~\eqref{eq:maxflowagain}, the Undirected Maximum Flow Problem, routing
$(1-\epsilon)F^*$.
This is how we will develop an algorithm for computing the maximum flow.
Program~\eqref{eq:barrierflow} has the Lagrangian
\[
\calL(\ff,\xx) = V(\ff) + \xx^{\trp}( \alpha F^* \bb_{st} - \BB\ff )
\]
And we have optimality when
\begin{align}
\label{eq:barrierfeasibility}
\BB\ff= \alpha F^* \bb_{st}
\text{ and }
-\cc \leq \ff \leq \cc
\\
\tag*{``Barrier feasibility''}
\end{align}
and $\grad_{\ff} \calL(\ff,\xx) = \veczero$, i.e.
\begin{align}
\label{eq:barrierlagrangegrad}
\grad V(\ff) = \BB^{\trp} \xx
\\
\tag*{"Barrier Lagrangian gradient optimality"}
\end{align}
Let $\ff^*_{\alpha}$ denote the optimal solution to
Problem~\ref{eq:barrierflow} for a given $0 \leq \alpha < 1$,
and let $\xx^*_{\alpha}$ be optimal dual voltages such that $\grad V(\ff^*_{\alpha}) = \BB^{\trp} \xx^*_{\alpha}$.
It turns out that, if we have a solution $\ff^*_{\alpha}$ to this problem for some
$\alpha < 1$, then we can find a solution $\ff_{\alpha+\alpha'}$ for
some $\alpha' < 1-\alpha$.
And, we can compute $\ff_{\alpha+\alpha'}$ using a small number of Newton
steps, each of which will only require a Laplacian linear equation
solve, and hence is computable in $\Otil(m)$ time.
Concretely, for any $0 \leq \alpha < 1$,
given the optimal flow at this $\alpha$, we will be able to compute
the optimal flow at $\alpha_{\text{new}} = \alpha + (1-\alpha)
\frac{1}{150\sqrt{m}}$.
This means that after $T = 150\sqrt{m}\log(1/\epsilon)$ updates, we have a solution
for $\alpha \geq 1-\epsilon$.
We can state the update problem as
\begin{align}
\label{eq:updateflow}
\min_{\ddelta \in \R^E} & \quad
V(\ddelta+\ff)
\\
\textrm{s.t. } \BB\ddelta = \alpha' F^* \bb_{st}
\tag*{``The Update Problem''}
\end{align}
\subsection{Updates using Divergence}
It turns out that for the purposes of analysis, it will be useful to
ensure that our ``Update Problem'' uses an objective function that is
minimized at $\ddelta = \veczero$.
This leads to a variant of the Update Problem, which we call the
``Divergence Update Problem''.
We obtain our new problem by switching from
$ V(\ddelta+\ff)$ as our objective to $V(\ddelta+\ff)
-
(V(\ff)
+
\ip{\grad V(\ff), \ddelta})$ as our objective, and this is called
the \emph{divergece} of $V$ w.r.t. $\ddelta$ \emph{based} at $\ff$.
\begin{align}
\label{eq:divflow}
\min_{\ddelta \in \R^E} & \quad
V(\ddelta+\ff)
-
(V(\ff)
+
\ip{\grad V(\ff), \ddelta})
\\
\textrm{s.t. } \BB\ddelta = \alpha' F^* \bb_{st}
\tag*{``The Divergence Update Problem''}
\end{align}
Now, for any flow $\ddelta$ such that $\BB\ddelta = \alpha' F^*
\bb_{st}$, using the Lagrangian gradient condition
\eqref{eq:barrierlagrangegrad},
we have
$\ip{\grad V(\ff^*_{\alpha}), \ddelta} = \ip{\xx^*_{\alpha}, \alpha' F^*
\bb_{st}}$.
Hence, for such $\ddelta$, we have
\[
V(\ddelta+\ff^*_{\alpha})
-
\left(
V(\ff^*_{\alpha})
+
\ip{\grad V(\ff^*_{\alpha}), \ddelta}
\right)
=
V(\ddelta+\ff^*_{\alpha})
-
\left(
V(\ff^*_{\alpha})
+
\ip{\xx^*_{\alpha}, \alpha' F^*\bb_{st}}
\right)
\]
We conclude that the objectives of the Update
Problem~\eqref{eq:updateflow} and the Divergence Update
Problem~\eqref{eq:divflow} have the same minimizer, which we denote
$\ddelta^*_{\alpha'}$, although, to be precise, it is also a function of $\alpha$.
% This problem has Lagrangian
% \[
% \calM(\ddelta,\zz) = V(\ff) + \zz^{\trp}((\alpha+\alpha') F
% \bb_{st}- \BB(\ff+\ddelta) )
% \]
% And we have optimality when
% \begin{align}
% \label{eq:divfeasibility}
% \BB(\ff+\ddelta)= (\alpha+\alpha') F^* \bb_{st}
% \\
% \tag*{``Update feasibility''}
% \text{and}
% -\cc \leq \ff + \ddelta\leq \cc
% \end{align}
% % \begin{align}
% % \label{eq:divlagrangegrad}
% % \grad V(\ff+\ddelta) - \grad V(\ff) = \BB^{\trp} \zz
% % \tag*{Divergence Langrange Gradient.}
% % \end{align}
% % $\BB(\ff+\ddelta)= (1-\alpha+\alpha') F^* \bb_{st}$
% % and
% % $ -\cc \leq \ff + \ddelta\leq \cc$,
% and $\grad_{\ddelta} \calM(\ddelta,\zz) = \veczero$, i.e.
% \begin{align}
% \label{eq:divlagrangegrad}
% \grad V(\ff+\ddelta) - \grad V(\ff) = \BB^{\trp} \zz
% \end{align}
% Note that if we simultaneously have \eqref{eq:barrierfeasibility}, the
% ``barrier feasibility'' condition, and \eqref{eq:divfeasibility}, the``update feasibility'' condition,
% satisfied along with Equations~\eqref{eq:barrierlagrangegrad}
% and~\eqref{eq:divlagrangegrad}, then
% $\ff + \ddelta$ satisfies the ``barrier feasibility'' with $\alpha$
% replaced by $\alpha + \alpha'$ and we have
% \[
% \grad V(\ff+\ddelta) = \BB^{\trp} (\xx+\zz).
% \]
Thus $\ff^*_{\alpha}+\ddelta^*_{\alpha'}$ is optimal for the
optimization problem
\begin{equation}
\label{eq:barrierflowupdated}
\begin{aligned}
\min_{\ff \in \R^E} & \quad V(\ff)\\
\textrm{s.t. } \BB\ff= (\alpha+\alpha') F^* \bb_{st}
\end{aligned}
\end{equation}
\begin{lemma}
\label{lem:updateoptimality}
Suppose $\ff^*_{\alpha}$ is the minimizer of Problem~\eqref{eq:barrierflow}
(the Barrier Problem with parameter $\alpha$) and
$\ddelta^*_{\alpha'}$ is the minimizer of Problem~\eqref{eq:divflow} (the
Update Problem with parameters $\ff^*_{\alpha}$ and $\alpha'$),
then $\ff^*_{\alpha} + \ddelta^*_{\alpha'}$ is optimal for Problem~\eqref{eq:barrierflow}
with parameter $\alpha+\alpha'$ (i.e. a new instance of the Barrier
problem).
\end{lemma}
% \begin{remark}
% \[
% \ip{\grad V(\ff), \ddelta}) = \ip{\BB^{\trp}\xx, \ddelta} =
% \ip{\xx, \alpha' F^* \bb_{st}}
% \]
% and why it's still useful, despite
% being a constant.
% \end{remark}
\begin{algorithm}[H]
\SetAlgoLined
$\ff \leftarrow \veczero$\;
$\alpha \leftarrow 0$\;
\While{$\alpha < 1 - \epsilon$}{
$a' \leftarrow \frac{1-\alpha}{20\sqrt{m}}$\;
Compute $\ddelta$, the minimizer of Problem~\eqref{eq:divflow}\;
Let $\ff \leftarrow \ff + \ddelta$ and
$\alpha \leftarrow \alpha + \alpha'$\;
}
\Return{\ff}
\caption{\textsc{Interior Point Method}}
\label{alg:ipm}
\end{algorithm}
\begin{pseudotheorem}
\label{thm:updatealgo}
Let $\ff$ be the minimizer of Problem~\eqref{eq:barrierflow}.
Then, when $a' \leq \frac{1-\alpha}{20\sqrt{m}}$, the minimizer
$\ddelta$ of Problem~\eqref{eq:barrierflowupdated} can be computed
in $\Otil(m)$ time.
\end{pseudotheorem}
The key insight in this type of interior point method is that when the
update $\alpha'$ is small enough,
\begin{theorem}\label{thm:maxflowipm}
Algorithm~\ref{alg:ipm} returns a flow $\ff$ that is feasible for
Problem~\eqref{eq:maxflowagain} in time $\Otil(m^{1.5}\log(1/\epsilon))$.
\end{theorem}
\begin{proof}[Proof Sketch]
First note that for $\alpha = 0$, the minimizer of
Problem~\eqref{eq:barrierflow} is $\ff = \veczero$.
The proof now essentially follows by
Lemma~\eqref{lem:updateoptimality}, and
Pseudotheorem~\ref{thm:updatealgo}.
Note that $1-\alpha$ shrinks by a factor $(1-\frac{1}{20\sqrt{m}})$
in each iteration of the while-loop, and so after
$20\sqrt{m}\log(1/\epsilon)$ iterations, we have $1-\alpha \leq
\epsilon$, at which point the loop terminates.
To turn this into a formal proof, we need to take care of the fact
the proper theorem corresponding to
Pseudotheorem~\ref{thm:updatealgo} only gives a highly accurate
but not exact solution $\delta$ to the ``Update Problem''.
But it's possible to show that this is good enough (even though
both $\ff$ and $\ddelta$ end up not being exactly optimal in each iteration).
\end{proof}
\begin{remark}
For the maximum flow problem, when capacities are integral and
polynomially bounded, if we choose $\epsilon = m^{-c}$ for some
large enough constant $c$, given a feasible flow with $\val(\ff) =
1-\epsilon$, is it possible to compute an exact maximum flow in
nearly linear time.
Thus Theorem~\ref{thm:maxflowipm} can also be used to compute an
exact maximum flow in $\Otil(m)$ time, but we omit the proof.
The idea is to first round to an almost optimal, feasible integral flow (which
requires a non-trivial combinatorial algorithm), and then to recover
the exact flow using Ford-Fulkerson.
See \cite{M13} for details.
\end{remark}
\begin{remark}
It is possible to reduce an instance of directed maximum flow to an
instance of undirected maximum flow in nearly-linear time, in such a
way that if we can \emph{exactly} solve the undirected instance,
then in nearly-linear time we can recover an exact solution to the
directed maximum flow problem.
Thus Theorem~\eqref{thm:maxflowipm} can also be used to solve
directed maximum flow.
We will ask you to develop this reduction in Graded Homework 2.
\end{remark}
\begin{remark}
For sparse graphs with $m = \Otil(n)$ and large capacities, this
running time is the best known, and improving it is major open problem.
\end{remark}
\subsection{Understanding the Divergence Objective}
% \begin{align*}
% D( \ddelta+\ff \mid \ff )
% \end{align*}
% \[
% D(x) = -\log(1-x) - x
% \]
Note that if $V(x) = -\log(1-x)$, then $D(x) = V(x) - (V(0) + V'(0) x)$.
% \begin{figure}[H]
% \centering
% % \includegraphics[width=0.5\linewidth]{fig/logbarrier.png}
% \begin{minipage}{0.4\textwidth}
% \centering
% \includegraphics[width=0.9\textwidth]{fig/logbarrier.png} % first figure itself
% \caption{Plot showing ${V(x) = -\log(1-x)}$ and then linear
% approximation ${V(0) + V'(0) x}$.}
% \end{minipage}\hfill
% \begin{minipage}{0.4\textwidth}
% \centering
% \includegraphics[width=0.9\textwidth]{fig/logdivergence.png}% second figure itself
% \caption{Plot showing ${D(x) = V(x) - (V(0) + V'(0) x)}$.}
% \end{minipage}
% \end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=0.6\textwidth]{fig/logbarrier.png} % first figure itself
\caption{Plot showing ${V(x) = -\log(1-x)}$ and then linear
approximation ${V(0) + V'(0) x}$.}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=0.6\textwidth]{fig/logdivergence.png}% second figure itself
\caption{Plot showing ${D(x) = V(x) - (V(0) + V'(0) x)}$.}
\end{figure}
We let
\[
\cc_+(e) = \cc(e) - \ff(e) \text{ and } \cc_-(e) = \cc(e) + \ff(e)
\]
So then
\begin{align*}
D_V( \ddelta )
&=
V(\ddelta+\ff)
-
(V(\ff)
+
\ip{\grad V(\ff), \ddelta})
\\
&=
\sum_e
-\log
\left(\frac{\cc(e)-(\ddelta(e)+\ff(e))}
{\cc(e)-\ff(e)}
\right)
-
\frac{\ddelta(e)}
{\cc(e)-\ff(e)}
\\
&\quad\quad\,\,\,\,
-\log
\left(
\frac{\cc(e)+(\ddelta(e)+\ff(e))}
{\cc(e)+\ff(e)}
\right)
+
\frac{\ddelta(e)}
{\cc(e)+\ff(e)}
\\
&=
\sum_e
D\left(\frac{\ddelta(e)}
{\cc(e)-\ff(e)}
\right)
+
D\left(-\frac{\ddelta(e)}
{\cc(e)+\ff(e)}
\right)
\\
&=
\sum_e
D\left(\frac{\ddelta(e)}{\cc_+(e)}\right)
+
D\left(-\frac{\ddelta(e)}{\cc_-(e)}\right)
\end{align*}
Note that we can express Problem~\eqref{eq:divflow} as
% \begin{equation}
% \label{eq:divflow2}
% \begin{aligned}
% \min
% _{\ddelta \in \R^E} & \quad
% D_V( \ddelta )
% \\
% \textrm{s.t. } \BB\ddelta = \alpha' F^* \bb_{st}
% \end{aligned}
% \end{equation}
\begin{align}
\label{eq:divflow2}
\min_{\ddelta \in \R^E} & \quad
D_V( \ddelta )
\\
\textrm{s.t. } \BB\ddelta = \alpha' F^* \bb_{st}
\tag*{The Update Problem, restated}
\end{align}
Note that $D_V( \ddelta )$ is strictly convex of over the
feasible set, so the argmin is unique.
\subsection{Quadratically Smoothing Divergence and Local Agreement}
\[
\sdiv_{\epsilon}(x) =
\begin{cases}
-\log(1-x) - x & \text{ if } \abs{x} \leq \epsilon \\
D(\epsilon) + D'(\epsilon) (x - \epsilon)
+\frac{D''(\epsilon)}{2} (x - \epsilon)^2
& \text{ if } x > \epsilon \\
D(-\epsilon) + D'(-\epsilon) (x + \epsilon)
+\frac{D''(-\epsilon)}{2} (x +\epsilon)^2
& \text{ if } x < -\epsilon \\
\end{cases}
\]
For brevity, we define
\[
\sdiv(x) =\sdiv_{0.1}(x)
\]
\begin{lemma}
\label{lem:sdivderivs}
\noindent
\begin{enumerate}
\item $1/2 \leq \sdiv''(\xx) \leq 2$.
\item For $x \geq 0$, we have $x/2 \leq \sdiv'(\xx) \leq 2x$
and $-2x \leq \sdiv'(-\xx) \leq -x/2$.
\item $x^2/4 \leq \sdiv(\xx) \leq x^2$.
\end{enumerate}
\end{lemma}
What's happening here? We glue together $D(x)$ for small $x$ with its
quadratic approximation for $\abs{x} > \epsilon$.
For $x > \epsilon$, we ``glue in'' a Taylor series expansion based at $x =
\epsilon$.
\begin{figure}[H]
\centering
\includegraphics[width=\textwidth]{fig/quad-div-apx.png} % first figure itself
\caption{Plot showing ${D(x) = -\log(1-x)}$ and the quadratic
approximation based at $x = 0.1$.}
\end{figure}
We also define
\begin{align*}
\sdiv_V( \ddelta )
&=
\sum_e
\sdiv\left(\frac{\ddelta(e)}{\cc_+(e)}\right)
+
\sdiv\left(-\frac{\ddelta(e)}{\cc_-(e)}\right)
\end{align*}
We can now introduce the smoothed optimization problem
\begin{align}
\label{eq:sdivflow}
\min_{\ddelta \in \R^E} & \quad
\sdiv_V( \ddelta )
\\
\textrm{s.t. } \BB\ddelta = \alpha' F^* \bb_{st}
\tag*{``The Smoothed Update Problem''}
\end{align}
Note that $\sdiv_V( \ddelta )$ is strictly convex of over the
feasible set, so the argmin is unique.
\begin{pseudoclaim}
We can compute the argmin $\ddelta^*$ of
Problem~\eqref{eq:sdivflow}, the Smoothed Update Problem, using the Newton-Steps for
$K$-stable Hessian convex functions that we saw in the previous chapter, in
$\Otil(m)$ time.
\end{pseudoclaim}
\begin{proof}[Sketch of proof]
Problem~\eqref{eq:sdivflow} fits the class of problems for which we
showed in the previous chapter
that (appropriately scaled) Newton steps converge.
This is true because the Hessian is always a $2$-spectral
approximation of the Hessian at $\sdiv_V( \ddelta^* )$, as can be
shown from Lemma~\ref{lem:sdivderivs}.
Because the Hessian of $\sdiv_V( \ddelta )$ is diagonal, and the
constraints are flow constraints, each
Newton step boils down to solving a Laplacian linear system, which can
be done to high accuracy $\Otil(m)$ time.
\end{proof}
\begin{remark}
There are three things we need to modify to turn the pseudoclaim
into a true claim, addressing the errors arising from both Laplacian
solvers and Newton steps:
\begin{enumerate}
\item We need to rephrase the claim to so that we only claim
$\ddelta^*$ has been computed to high accuracy, rather than exactly.
\item We need to show that we can construct an initial guess to
start off Newton's method $\ddelta_0$ for which the value
$\sdiv_V( \ddelta_0 )$ is not too large. (This is easy).
\item We need show that Newton steps converge despite using a
Laplacian solver that doesn't give exact solutions, only high
accuracy solutions. (Takes a bit of work, but is ultimately not
too difficult).
\end{enumerate}
Importantly, to ensure our overall interior point method still works,
we also need to show that it converges,
even if we're using approximate solutions
everywhere. This also takes some work to show, again is not too difficult.
\end{remark}
\paragraph{Local Agreement Implies Same Optimum.}
\begin{lemma}
\label{lem:argminsfromlocalagreement}
Suppose $S \subseteq \R^n$ is a convex set, and let $f, g: S \to \R$ be convex
functions.
Let $\xx^* = \argmin_{\xx \in S} f(\xx)$.
Suppose $f,g$ agree on a neighborhood of $\xx^*$ in $S$ (i.e. an
open set containing $\xx^*$).
Then $\xx^* = \argmin_{\xx \in S} g(\xx)$.
\end{lemma}
\begin{proof}[Proof Sketch]
We sketch the proof in the case when both $f,g$ are differentiable: Observe
that $\veczero = \grad f(\xx^*) = \grad g(\xx^*)$, and hence $g(\xx)$
is also minimized at $\xx^*$.
\end{proof}
We define
\begin{equation}
\label{eq:symrescap}
\cchat(e) = \min(\cc_+(e) , \cc_-(e) )
\end{equation}
% and for a positive vector $\cc > 0$, we define
% \[
% \norm{\yy}_{\cc,\infty} = \norm{}
% \]
\begin{lemma}
Suppose $\ddelta^*$ is the argmin of
Problem~\eqref{eq:sdivflow}, the Smoothed Update Problem, and
$\norm{\cvec{\ddelta^*(e)/\cchat(e)}}_{\infty} < 0.1$.
Then $\ddelta^*$ is the argmin of Problem~\eqref{eq:divflow2}.
\end{lemma}
\begin{proof}
We observe that if $\norm{\cvec{\ddelta^*(e)/\cchat(e)}}_{\infty}
< 0.1$, then $\sdiv_V( \ddelta^*) = D_V( \ddelta^*)$, and,
for all $\ttau \in \R^m$ with norm
\[
\norm{\cvec{\ttau(e)/\cchat(e)}}_{\infty} < 0.1 -
\norm{\cvec{\ddelta^*(e)/\cchat(e)}}_{\infty}
\]
we have that
$\sdiv_V( \ddelta^*+\ttau) = D_V( \ddelta^*+\ttau
)$.
Thus $\sdiv_V$ and $D_V$ agree on a neighborhood around
$\ddelta^*$ and hence by
Lemma~\ref{lem:argminsfromlocalagreement}, we have that
$\ddelta^*$ is the argmin of Problem~\eqref{eq:divflow2}.
\end{proof}
\subsection{Step size for divergence update}
\begin{definition}[\emph{$s$-$t$ well-conditioned} graph]
An undirected, capacitated multi-graph $G = (V,E,\cc)$ with source $s$
and sink $t$ is
\emph{$s$-$t$ well-conditioned} if,
letting $U$ denote the maximum edge capacity $U =
\norm{\cc}_{\infty}$,
we have at least $\frac{2}{3} m$ multi-edges of capacity $U$ going directly
from $s$ to $t$.
\end{definition}
\begin{remark}
It is straightforward to make a graph $s$-$t$ well-conditioned.
We just add $2m$ new edges of capacity $U$ directly between $s$ and
$t$.
Given an exact maximum flow in the new graph, it is trivial to get
one in the original graph: Just remove the flow on the new edges.
\end{remark}
\begin{definition}
Given a \emph{directed} graph $G = (V,E,\cc)$, the
\emph{symmetrization}
of $G$ is the undirected $\Ghat = (V,\Ehat,\cchat)$ is the undirected graph given by
\[
\setof{a,b} \in \Ehat \text{ if } (a,b) \in E \text{ AND } (b,a) \in E
\]
and
\[
\cchat(\setof{a,b}) = \min(\cc(a,b),\cc(b,a))
.
\]
\end{definition}
Note that when $\Ghat_{\ff}$ is the symmetrization of the residual
graph $G_{\ff}$ (which we defined in Chapter~\ref{cha:maxflow1}), then $\cchat$ matches
exactly the definition of $\cchat$ in Equation~\eqref{eq:symrescap}.
\begin{lemma}
\label{lem:symres}
Let $G$ be an undirected, capacitated multi-graph $G = (V,E,\cc)$
which is $s$-$t$ well-conditioned.
Let $\ff$ be the minimizer of Program~\eqref{eq:barrierflow}.
Let $\Ghat_{\ff}$ be the \emph{symmetrization} of the residual
graph $G_{\ff}$ (in the sense of Lecture~10).
Then there exists a flow $\ddeltahat$ which satisfies $\BB \ddeltahat = \frac{1-\alpha}{5} F^*
\bb_{st} $ and is feasible in
$\Ghat_{\ff}$. Note that we can also state the feasibility in
$\Ghat_{\ff}$ as
\[
\norm{\cvec{\ddeltahat(e)/\cchat(e)}}_{\infty} \leq 1
\]
\end{lemma}
\begin{proof}
We recall since $\ff$ is the minimizer of
Program~\eqref{eq:barrierflow}, there exists dual-optimal voltages
$\xx$ such that
\[
\BB^{\trp} \xx = \grad V(\ff) =
\cvec{\frac{1}
{\cc(e)-\ff(e)}
-
\frac{1}
{\cc(e)+\ff(e)}}
\]
From Lecture~10, we know that there is flow $\ddeltabar$ that is feasible with
respect to the residual graph capacities of the graph $G_{\ff}$ such
that $\BB \ddeltabar = (1-\alpha)F^* \bb_{st}$.
Note when treating $\ddeltabar$ as an undirected
flow, feasibility in the residual graph means that $\ddeltabar(e) < \cc(e)-\ff(e)$
and $-\ddeltabar(e) < \cc(e)+\ff(e)$.
Thus,
\[
(1-\alpha)F^* \bb_{st}^{\trp}
\xx
=
\ddeltabar
\BB^{\trp} \xx
=
\sum_e
\frac{\ddeltabar}
{\cc(e)-\ff(e)}
-
\frac{\ddeltabar}
{\cc(e)+\ff(e)}
\leq
m
\]
Now, because the graph is $s$-$t$ well-conditioned,
there are at $\frac{2}{3} m $ edges directly from $s$ to $t$ with capacity $U$
and each of these $e$
satisfy by the Lagrangian gradient optimality condition~\eqref{eq:barrierlagrangegrad}
\[
\bb_{st}^{\trp}
\xx
=
\frac{1}
{U-\ff(e)}
-
\frac{1}
{U+\ff(e)}
\]
Note that $\frac{2}{3} mU \leq F^* \leq mU$ because the graph is $s$-$t$
well-conditioned.
To complete the analysis, we consider three cases.
\emph{Case 1: $\abs{\ff(e)} \leq \frac{2}{3} U$.}
Then the capacity on each of these edges in the symmetrized residual
graph $\Ghat_{\ff}$ is at least $U/3$.
As there are $\frac{2}{3} m $ of them,
we get that there is a feasible flow in $\Ghat_{\ff}$ of value at least
$\frac{2}{9} mU\geq \frac{1}{10} F^*$.
\emph{Case 2: $\ff(e) < -\frac{2}{3} U$.}
By the gradient condition, we have the same flow on all of the $\frac{2}{3} m$
$s$-$t$ edges, adding up to at least $\frac{2}{3} mU$ going from $t$ to $s$.
This means that we must have at least $\frac{2}{3} mU$ flow going from
$s$ to $t$ via the remaining edges. But, their combined capacity is at
most $\frac{1}{3} mU$, so that cannot happen. Thus we can rule out
this case entirely.
\emph{Case 3: $\ff(e) > \frac{2}{3} U$.}
Then
\[
\frac{m}{(1-\alpha)F^* }
\geq
\bb_{st}^{\trp}
\xx
\geq
\frac{1}
{U-\ff(e)}
-
\frac{1}
{U+\ff(e)}
\geq
\frac{4/5}
{U-\ff(e)}
\]
So
\[
U-\ff(e) \geq \frac{4}{5} \frac{(1-\alpha)F^* }{m}
\geq \frac{1}{2}
(1-\alpha) U
\]
In this case, the capacity on each of the $\frac{2}{3} m$
$s$-$t$ edges with capacity $U$ in $G$ will
have capacity $(1-\alpha) U/2$ in $\Ghat_{\ff}$.
This guarantees that there is feasible flow in $\Ghat_{\ff}$ of value
at least $\frac{1}{3} (1-\alpha) mU \geq \frac{1}{3} (1-\alpha) F^*$.
\end{proof}
\begin{lemma}
Let $0 < \alpha' \leq \frac{1-\alpha}{150\sqrt{m}}$.
Then the minimizer $\ddelta^*$ of Problem~\eqref{eq:sdivflow}
satisfies $\norm{\cvec{\ddelta^*(e)/\cchat(e)}}_{\infty} < 0.1$.
\end{lemma}
\begin{proof}
By Lemma~\ref{lem:symres}, there exists a flow $\ddeltahat$ which satisfies $\BB \ddeltahat = \frac{1-\alpha}{5} F^*
\bb_{st} $ and ${\norm{\cvec{\ddeltahat(e)/\cchat(e)}}_{\infty} \leq
1}$.
Hence for any
$0 < \alpha' \leq \frac{1-\alpha}{150\sqrt{m}}$,
the flow
$\ddeltatil = \alpha' \frac{5}{1-\alpha}\ddeltahat$
satisfies
$\BB \ddeltatil = \alpha' F^*\bb_{st}$
and
$\norm{\cvec{\ddeltatil(e)/\cchat(e)}}_{\infty}
\leq
\frac{1}{30\sqrt{m}} $.
This means that
\begin{align*}
\sdiv_V( \ddeltatil )
&=
\sum_e
\sdiv\left(\frac{\ddeltatil(e)}{\cc_+(e)}\right)
+
\sdiv\left(-\frac{\ddeltatil(e)}{\cc_-(e)}\right)
\\
&\leq
\sum_e
4\left(\frac{\ddeltatil(e)}{\cc_+(e)}\right)^2
+
4\left(-\frac{\ddeltatil(e)}{\cc_-(e)}\right)^2
\\
&
\leq
\sum_e
8\left(\frac{\ddeltatil(e)}{\cchat
(e)}\right)^2
\\
&\leq 8/900 < 1/100
.
\end{align*}
This then means that the minimizer $\ddelta^*$ of
Problem~\eqref{eq:sdivflow} also satisfies
$\sdiv_V( \ddeltatil ) < 1/100$.
\begin{align*}
\norm{\cvec{\ddelta^*/\cchat(e)}}_{\infty}^2
&\leq
\sum_e
\left(\frac{\ddelta^*(e)}{\cc_+(e)}\right)^2
+
\left(-\frac{\ddelta^*(e)}{\cc_-(e)}\right)^2
\\
&\leq
\sum_e
\sdiv\left(\frac{\ddelta^*(e)}{\cc_+(e)}\right)
+
\sdiv\left(-\frac{\ddelta^*(e)}{\cc_-(e)}\right)
\tag*{By Lemma~\ref{lem:sdivderivs}.}
\\
&=
\sdiv_V( \ddeltatil )
<
1/100
.
\end{align*}
Hence $\norm{\cvec{\ddelta^*/\cchat(e)}}_{\infty} < 0.1$.
\end{proof}
% \todo{writing plan}
% \begin{itemize}
% \item well-cond def
% \item symmetrized res graph
% \item state existence of a big, feasible step in sym-res graph (inf norm)
% (asym -> sym)
% \item use of that to say that smoothed divergence opt is within $\infty$
% ball for
% \item prove existence proof of the step
% \end{itemize}
% \begin{definition}
% Given a feasible flow $\ff$ in $G = (V,E,\cc)$
% \end{definition}
% \begin{lemma}
% Suppose the original graph is $G = (V,E,\cc)$ is \emph{$s$-$t$
% well-conditioned},
% and suppose $\ff$ is the
% \end{lemma}
% Suppose the original graph is $G = (V,E,\cc)$ is \emph{preconditioned}
% \subsection{old step size writing}
% We define a strict barrier feasbility condition:
% \begin{align}
% \label{eq:strictbarrierfeasibility}
% \BB\ff= \alpha F^* \bb_{st}
% \text{ and }
% -\cc < \ff < \cc
% \\
% \tag*{"Strict barrier feasibility"}
% \end{align}
% \begin{lemma}
% Suppose $\ff$ is a flow satisfying the strict barrier
% feasibility conditions.
% Note that
% Consider
% There exists a flow $\ddelta_{\infty}$ s.t.
% \end{lemma}
% oops
% \begin{itemize}
% \item the problem is that if we SUBSTANTIALLY use a forward edge
% \item then we still need to make sure it doesn't exceed the backward
% edge capacity :(
% \end{itemize}
% \todo{you can leave comments like this}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "agao21_script"
%%% End: