forked from lanl/qmasm
-
Notifications
You must be signed in to change notification settings - Fork 3
/
qasm.py
executable file
·342 lines (299 loc) · 13.5 KB
/
qasm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
#! /usr/bin/env python
##################################################
# D-Wave quantum machine instruction "assembler" #
# By Scott Pakin <[email protected]> #
##################################################
import qasm
import os
import os.path
import string
import sys
# Parse the command line.
cl_args = qasm.parse_command_line()
# Specify the minimum distinguishable difference between energy readings.
min_energy_delta = 0.005
# Parse the original input file(s) into an internal representation.
qasm.parse_files(cl_args.input)
# Parse the variable pinnings specified on the command line. Append these to
# the program.
if cl_args.pin != None:
qasm.parse_pin(cl_args.pin)
# Walk the statements in the program, processing each in turn.
logical_either = qasm.Problem(cl_args.qubo)
for stmt in qasm.program:
stmt.update_qmi("", logical_either)
# Store all tallies for later reportage.
logical_stats = {
"vars": qasm.next_sym_num + 1,
"strengths": len(logical_either.strengths),
"eqs": len(logical_either.chains),
"pins": len(logical_either.pinned)
}
# Convert from QUBO to Ising in case the solver doesn't support QUBO problems.
if cl_args.qubo:
logical_ising = logical_either.convert_to_ising()
else:
logical_ising = logical_either
# Define a strength for each user-specified chain, and assign strengths
# to those chains.
qasm.chain_strength = logical_ising.assign_chain_strength(cl_args.chain_strength)
# Define a strength for each user-specified pinned variable.
qasm.pin_strength = logical_ising.assign_pin_strength(cl_args.pin_strength, qasm.chain_strength)
# Output the chain and pin strengths.
if cl_args.verbose >= 1:
sys.stderr.write("Computed the following strengths:\n\n")
sys.stderr.write(" chain: %7.4f\n" % qasm.chain_strength)
sys.stderr.write(" pin: %7.4f\n" % qasm.pin_strength)
sys.stderr.write("\n")
# Use a helper bit to help pin values to true or false.
logical_ising.pin_qubits(qasm.pin_strength)
# Convert chains to aliases where possible.
if cl_args.O:
# Say what we're about to do
if cl_args.verbose >= 2:
sys.stderr.write("Replaced chains of equally weighted qubits with aliases:\n\n")
sys.stderr.write(" %6d logical qubits before optimization\n" % (qasm.next_sym_num + 1))
# Replace chains with aliases wherever we can.
logical_ising.convert_chains_to_aliases()
# Summarize what we just did.
if cl_args.verbose >= 2:
sys.stderr.write(" %6d logical qubits after optimization\n\n" % (qasm.next_sym_num + 1))
# This is a good time to update our logical statistics.
logical_stats["vars"] = qasm.next_sym_num + 1
# Complain if we have no weights and no strengths.
if len(logical_ising.weights) == 0 and len(logical_ising.strengths) == 0:
abend("Nothing to do (no weights or strengths specified)")
# Output a normalized input file.
if cl_args.verbose >= 2:
# Weights
sys.stderr.write("Canonicalized the input file:\n\n")
for q in sorted(logical_ising.weights.keys()):
sys.stderr.write(" q%d %.20g\n" % (q + 1, logical_ising.weights[q]))
sys.stderr.write("\n")
# Chains
if len(logical_ising.chains) > 0:
for qs in sorted(logical_ising.chains.keys()):
sys.stderr.write(" q%d = q%d\n" % (qs[0], qs[1]))
sys.stderr.write("\n")
# Strengths (those that are not chains)
for qs in sorted(logical_ising.strengths.keys()):
if not logical_ising.chains.has_key(qs):
sys.stderr.write(" q%d q%d %.20g\n" % (qs[0] + 1, qs[1] + 1, logical_ising.strengths[qs]))
sys.stderr.write("\n")
# Map each canonicalized name to one or more original symbols.
canon2syms = [[] for _ in range(len(qasm.sym2num))]
max_sym_name_len = 8
for s, n in qasm.sym2num.items():
canon2syms[n].append(s)
max_sym_name_len = max(max_sym_name_len, len(repr(canon2syms[n])) - 1)
# Output the mapping we just computed.
sys.stderr.write("Constructed a key to the above:\n\n")
sys.stderr.write(" Canonical %-*s\n" % (max_sym_name_len, "Original"))
sys.stderr.write(" --------- %s\n" % ("-" * max_sym_name_len))
for i in range(len(canon2syms)):
if canon2syms[i] == []:
continue
name_list = string.join(sorted(canon2syms[i]))
sys.stderr.write(" q%-8d %s\n" % (i + 1, name_list))
sys.stderr.write("\n")
# Establish a connection to the D-Wave, and use this to talk to a solver. We
# rely on the qOp infrastructure to set the environment variables properly.
qasm.connect_to_dwave()
# Output most or all solver properties.
if cl_args.verbose >= 1:
# Determine the width of the widest key.
max_key_len = len("Parameter")
ext_solver_properties = {}
try:
L, M, N = qasm.chimera_topology(qasm.solver)
ext_solver_properties["chimera_toplogy_M_N_L"] = [M, N, L]
except KeyError:
pass
ext_solver_properties.update(qasm.solver.properties)
solver_props = ext_solver_properties.keys()
solver_props.sort()
for k in solver_props:
max_key_len = max(max_key_len, len(k))
# Output either "short" values (if verbose = 1) or all values (if
# verbose > 1).
short_value_len = 70 - max_key_len
sys.stderr.write("Encountered the following solver properties:\n\n")
sys.stderr.write(" %-*s Value\n" % (max_key_len, "Parameter"))
sys.stderr.write(" %s -----\n" % ("-" * max_key_len))
for k in solver_props:
val_str = repr(ext_solver_properties[k])
if cl_args.verbose >= 2 or len(val_str) <= short_value_len:
sys.stderr.write(" %-*s %s\n" % (max_key_len, k, val_str))
sys.stderr.write("\n")
# Embed the problem onto the D-Wave.
physical = qasm.embed_problem_on_dwave(logical_ising, cl_args.O, cl_args.verbose)
# Set all chains to the user-specified strength then combine user-specified
# chains with embedder-created chains.
physical = qasm.update_strengths_from_chains(physical)
if cl_args.verbose >= 2:
sys.stderr.write("Introduced the following new chains:\n\n")
if len(physical.chains) == 0:
sys.stderr.write(" [none]\n")
else:
for c in physical.chains:
num1, num2 = c
if num1 > num2:
num1, num2 = num2, num1
sys.stderr.write(" %4d = %4d\n" % (num1, num2))
sys.stderr.write("\n")
# Map each logical qubit to one or more symbols.
num2syms = [[] for _ in range(len(qasm.sym2num))]
max_sym_name_len = 7
for s, n in qasm.sym2num.items():
if cl_args.verbose >= 2 or "$" not in s:
num2syms[n].append(s)
max_sym_name_len = max(max_sym_name_len, len(repr(num2syms[n])) - 1)
# Output the embedding.
if cl_args.verbose >= 1:
sys.stderr.write("Established a mapping from logical to physical qubits:\n\n")
sys.stderr.write(" Logical %-*s Physical\n" % (max_sym_name_len, "Name(s)"))
sys.stderr.write(" ------- %s --------\n" % ("-" * max_sym_name_len))
for i in range(len(physical.embedding)):
if num2syms[i] == []:
continue
name_list = string.join(sorted(num2syms[i]))
phys_list = string.join(["%4d" % e for e in sorted(physical.embedding[i])])
sys.stderr.write(" %7d %-*s %s\n" % (i, max_sym_name_len, name_list, phys_list))
sys.stderr.write("\n")
else:
# Even at zero verbosity, we still note the logical-to-physical mapping.
log2phys_comments = []
for i in range(len(physical.embedding)):
if num2syms[i] == []:
continue
name_list = string.join(num2syms[i])
phys_list = string.join(["%d" % e for e in sorted(physical.embedding[i])])
log2phys_comments.append("# %s --> %s" % (name_list, phys_list))
log2phys_comments.sort()
sys.stderr.write("\n".join(log2phys_comments) + "\n")
# Output some statistics about the embedding.
if cl_args.verbose >= 1:
# Output a table.
phys_wts = [elt for lst in physical.embedding for elt in lst]
sys.stderr.write("Computed the following statistics of the logical-to-physical mapping:\n\n")
sys.stderr.write(" Type Metric Value\n")
sys.stderr.write(" -------- -------------- -----\n")
sys.stderr.write(" Logical Variables %5d\n" % logical_stats["vars"])
sys.stderr.write(" Logical Strengths %5d\n" % logical_stats["strengths"])
sys.stderr.write(" Logical Equivalences %5d\n" % logical_stats["eqs"])
sys.stderr.write(" Logical Pins %5d\n" % logical_stats["pins"])
sys.stderr.write(" Physical Qubits %5d\n" % len(phys_wts))
sys.stderr.write(" Physical Couplers %5d\n" % len(physical.strengths))
sys.stderr.write(" Physical Chains %5d\n" % len(physical.chains))
sys.stderr.write("\n")
# Output some additional chain statistics.
chain_lens = [len(c) for c in physical.embedding]
max_chain_len = 0
if chain_lens != []:
max_chain_len = max(chain_lens)
num_max_chains = len([l for l in chain_lens if l == max_chain_len])
sys.stderr.write(" Maximum chain length = %d (occurrences = %d)\n\n" % (max_chain_len, num_max_chains))
# Manually scale the weights and strengths so Qubist doesn't complain.
physical = qasm.scale_weights_strengths(physical, cl_args.verbose)
# Output a file in any of a variety of formats.
if cl_args.output != "<stdout>" or not cl_args.run:
# As a special case, qbsolv works on the pre-embedded (logical) problem
# because it has the ability to partition and embed problems itself.
if cl_args.format == "qbsolv":
problem = logical_ising
else:
problem = physical
qasm.write_output(problem, cl_args.output, cl_args.format, cl_args.qubo)
# If we weren't told to run anything we can exit now.
if not cl_args.run:
sys.exit(0)
# Submit the problem to the D-Wave.
if cl_args.verbose >= 1:
sys.stderr.write("Submitting the problem to the %s solver.\n\n" % qasm.solver_name)
answer, final_answer = qasm.submit_dwave_problem(physical, cl_args.samples, cl_args.anneal_time)
# Output solver timing information.
if cl_args.verbose >= 1:
try:
timing_info = answer["timing"].items()
sys.stderr.write(" %-30s %-10s\n" % ("Measurement", "Value (us)"))
sys.stderr.write(" %s %s\n" % ("-" * 30, "-" * 10))
for timing_value in timing_info:
sys.stderr.write(" %-30s %10d\n" % timing_value)
sys.stderr.write("\n")
except KeyError:
# Not all solvers provide timing information.
pass
# Define a class to represent a valid solution.
class ValidSolution:
"Represent a valid ground state of a spin system."
def __init__(self, soln, energy):
self.solution = soln
self.energy = energy
self.names = [] # List of names for each named row
self.spins = [] # Spin for each named row
self.id = 0 # Map from spins to an int
for q in range(len(soln)):
if num2syms[q] == []:
continue
self.names.append(string.join(num2syms[q]))
self.spins.append(soln[q])
self.id = self.id*2 + soln[q]
# Determine the set of solutions to output.
energies = answer["energies"]
n_low_energies = len([e for e in energies if abs(e - energies[0]) < min_energy_delta])
if cl_args.verbose >= 2:
n_solns_to_output = len(final_answer)
else:
n_solns_to_output = min(n_low_energies, len(final_answer))
id2solution = {} # Map from an int to a solution
for snum in range(n_solns_to_output):
soln = ValidSolution(final_answer[snum], energies[snum])
if not id2solution.has_key(soln.id):
id2solution[soln.id] = soln
# Output information about the raw solutions.
if cl_args.verbose >= 1:
sys.stderr.write("Number of solutions found:\n\n")
sys.stderr.write(" %6d total\n" % len(energies))
sys.stderr.write(" %6d with no broken chains or broken pins\n" % len(final_answer))
sys.stderr.write(" %6d in the ground state\n" % n_low_energies)
sys.stderr.write(" %6d excluding duplicate variable assignments\n" % len(id2solution))
sys.stderr.write("\n")
# Output energy tallies. We first recompute these because some entries seem to
# be multiply listed.
if cl_args.verbose >= 2:
tallies = answer["num_occurrences"]
new_energy_tallies = {}
for i in range(len(energies)):
e = float(energies[i])
t = int(tallies[i])
try:
new_energy_tallies[e] += t
except KeyError:
new_energy_tallies[e] = t
new_energies = new_energy_tallies.keys()
new_energies.sort()
sys.stderr.write("Energy histogram:\n\n")
sys.stderr.write(" Energy Tally\n")
sys.stderr.write(" ---------- ------\n")
for e in new_energies:
sys.stderr.write(" %10.4f %6d\n" % (e, new_energy_tallies[e]))
sys.stderr.write("\n")
# Output to standard output (regardless of --output) the solutions with no
# broken chains.
bool_str = {-1: "False", +1: "True"}
sorted_solns = [id2solution[s] for s in sorted(id2solution.keys())]
for snum in range(len(sorted_solns)):
print "Solution #%d (energy = %.2f):\n" % (snum + 1, sorted_solns[snum].energy)
print " %-*s Spin Boolean" % (max_sym_name_len, "Name(s)")
print " %s ---- -------" % ("-" * max_sym_name_len)
soln = sorted_solns[snum]
output_lines = []
for q in range(len(soln.spins)):
names = soln.names[q]
spin = soln.spins[q]
output_lines.append(" %-*s %+4d %-7s" % (max_sym_name_len, names, spin, bool_str[spin]))
output_lines.sort()
print "\n".join(output_lines), "\n"
if len(sorted_solns) == 0:
print "No valid solutions found,"
sys.exit(0)