-
Notifications
You must be signed in to change notification settings - Fork 28
/
bootest.cpp
917 lines (700 loc) · 21.2 KB
/
bootest.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
#include "BooPHF.h"
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
#include <random>
#include <algorithm>
#include <climits>
#include <iostream>
#include <fstream>
#include <assert.h>
#include <thread>
#include <math.h>
#include <inttypes.h>
//#include <chrono>
uint64_t *data;
using namespace std;
//uncomment to check correctness of the func
//#define CHECK_MPHF
#define MAX_RANDOM 2147483648
#define srandomdev() srand((unsigned) time(NULL))
inline double get_time_usecs() {
struct timeval tv;
gettimeofday(&tv, NULL);
return double(tv.tv_sec) * 1000000 + double(tv.tv_usec);
}
uint64_t random64 (){
uint64_t low, high,res;
low = random();
high = random();
res = (high << 32) + low;
return res;
}
typedef boomphf::SingleHashFunctor<uint64_t> hasher_t;
typedef boomphf::mphf< uint64_t, hasher_t > boophf_t;
// iterator from disk file of uint64_t with buffered read, todo template
class bfile_iterator : public std::iterator<std::forward_iterator_tag, uint64_t>{
public:
bfile_iterator()
: _is(nullptr)
, _pos(0) ,_inbuff (0), _cptread(0)
{
_buffsize = 10000;
_buffer = (uint64_t *) malloc(_buffsize*sizeof(uint64_t));
}
bfile_iterator(const bfile_iterator& cr)
{
_buffsize = cr._buffsize;
_pos = cr._pos;
_is = cr._is;
_buffer = (uint64_t *) malloc(_buffsize*sizeof(uint64_t));
memcpy(_buffer,cr._buffer,_buffsize*sizeof(uint64_t) );
_inbuff = cr._inbuff;
_cptread = cr._cptread;
_elem = cr._elem;
}
bfile_iterator(FILE* is): _is(is) , _pos(0) ,_inbuff (0), _cptread(0)
{
_buffsize = 10000;
_buffer = (uint64_t *) malloc(_buffsize*sizeof(uint64_t));
int reso = fseek(_is,0,SEEK_SET);
advance();
}
~bfile_iterator()
{
if(_buffer!=NULL)
free(_buffer);
}
uint64_t const& operator*() { return _elem; }
bfile_iterator& operator++()
{
advance();
return *this;
}
friend bool operator==(bfile_iterator const& lhs, bfile_iterator const& rhs)
{
if (!lhs._is || !rhs._is) { if (!lhs._is && !rhs._is) { return true; } else { return false; } }
assert(lhs._is == rhs._is);
return rhs._pos == lhs._pos;
}
friend bool operator!=(bfile_iterator const& lhs, bfile_iterator const& rhs) { return !(lhs == rhs); }
private:
void advance()
{
_pos++;
if(_cptread >= _inbuff)
{
int res = fread(_buffer,sizeof(uint64_t),_buffsize,_is);
_inbuff = res; _cptread = 0;
if(res == 0)
{
_is = nullptr;
_pos = 0;
return;
}
}
_elem = _buffer[_cptread];
_cptread ++;
}
uint64_t _elem;
FILE * _is;
unsigned long _pos;
uint64_t * _buffer; // for buffered read
int _inbuff, _cptread;
int _buffsize;
};
class file_binary{
public:
file_binary(const char* filename)
{
_is = fopen(filename, "rb");
if (!_is) {
throw std::invalid_argument("Error opening " + std::string(filename));
}
}
~file_binary()
{
fclose(_is);
}
bfile_iterator begin() const
{
return bfile_iterator(_is);
}
bfile_iterator end() const {return bfile_iterator(); }
size_t size () const { return 0; }//todo ?
private:
FILE * _is;
};
//simple iterator to generate list of distinct uint64_t keys (not random, just equally distributed in [0;ULLONG_MAX])
class uint64_iterator : public std::iterator<std::forward_iterator_tag, uint64_t>{
public:
uint64_iterator() : _nb_elem(0) , _curr(ULLONG_MAX), _step(0),_nb_iterated(0)
{
}
uint64_iterator(const uint64_iterator& cr)
{
_nb_elem = cr._nb_elem;
_curr = cr._curr;
_step = cr._step;
_stop = cr._stop;
_nb_iterated = cr._nb_iterated;
}
uint64_iterator(uint64_t nb_elem, uint64_t stop ) : _nb_elem(nb_elem) , _curr(0),_nb_iterated(0), _stop(stop)
{
_step = ULLONG_MAX / _nb_elem;
}
~uint64_iterator()
{
}
uint64_t const& operator*() { return _curr; }
uint64_iterator& operator++()
{
_curr = _curr + _step;
_nb_iterated++;
if(_nb_iterated >= _stop) _nb_elem = 0;
return *this;
}
friend bool operator==(uint64_iterator const& lhs, uint64_iterator const& rhs)
{
if (!lhs._nb_elem || !rhs._nb_elem) { if (!lhs._nb_elem && !rhs._nb_elem) { return true; } else { return false; } }
assert(lhs._nb_elem == rhs._nb_elem);
return rhs._curr == lhs._curr;
}
friend bool operator!=(uint64_iterator const& lhs, uint64_iterator const& rhs) { return !(lhs == rhs); }
uint64_t _nb_elem;
uint64_t _curr;
uint64_t _step;
uint64_t _stop;
uint64_t _nb_iterated;
};
//will generate range over [0;ULLONG_MAX]
//elem equally spaced , separated by ULLONG_MAX/nb_elem starting at 0
//will stop after nbiter
class uint64_range{
public:
uint64_range(uint64_t nb_elem, uint64_t nbiter) : _nb_elem(nb_elem), _stop(nbiter)
{
}
~uint64_range()
{
}
uint64_iterator begin() const
{
return uint64_iterator(_nb_elem,_stop);
}
uint64_iterator end() const
{
return uint64_iterator();
}
private:
uint64_t _nb_elem;
uint64_t _stop;
};
//stolen from emphf
struct stats_accumulator {
stats_accumulator()
: m_n(0)
, m_mean(0)
, m_m2(0)
{}
void add(double x)
{
m_n += 1;
auto delta = x - m_mean;
m_mean += delta / m_n;
m_m2 += delta * (x - m_mean);
}
double mean() const
{
return m_mean;
}
double variance() const
{
return m_m2 / (m_n - 1);
}
double relative_stddev() const
{
return std::sqrt(variance()) / mean() * 100;
}
private:
double m_n;
double m_mean;
double m_m2;
};
//PARAMETERS
uint64_t nelem = 1000*1000;
uint nthreads = 1; //warning must be a divisor of nBuckets
double gammaFactor = 1.0;
bool write_each = false;
uint64_t nb_in_bench_file;
uint64_t korenXor(uint64_t x){
x ^= (x << 21);
x ^= (x >> 35);
x ^= (x << 4);
return x;
}
uint nBuckets = 96;
uint nMphfByBucket(96);
vector<FILE*> vFiles(nBuckets);
vector<uint> elinbuckets(nBuckets*nMphfByBucket);
vector<boophf_t> MPHFs(nBuckets*nMphfByBucket);
void multipleMPHF(const vector<vector<uint64_t>>& datas, uint start, uint n,uint bucketNum){
for(uint ii(start);ii<start+n;++ii){
auto data_iterator2 = boomphf::range(static_cast<const uint64_t*>(&datas[ii][0]), static_cast<const uint64_t*>(&datas[ii][0]+datas[ii].size()));
MPHFs[bucketNum*nMphfByBucket+ii]= boomphf::mphf<uint64_t,hasher_t>(datas[ii].size(),data_iterator2,1,gammaFactor,write_each,false);
}
}
void compactBucket(uint start, uint n){
//foreach bucket
for(uint i(start);i<start+n;++i){
auto data_iterator = file_binary(("bucket"+to_string(i)).c_str());
vector<vector<uint64_t>> datas(nMphfByBucket);
for(uint ireserve(0);ireserve<nMphfByBucket;++ireserve){
datas[ireserve].reserve(elinbuckets[i*nMphfByBucket+ireserve]);
}
// we put element in memory
for(auto it(data_iterator.begin());it!=data_iterator.end();++it){
datas[(korenXor(*it)%(nMphfByBucket))].push_back(*it);
}
vector<thread> threads;
for(uint tn(0);tn<1;++tn){
threads.push_back(thread(multipleMPHF,datas,tn*(nMphfByBucket/1),nMphfByBucket/1,i));
}
// threads.push_back(thread(multipleMPHF,datas,(nthreads)*(nMphfByBucket/nthreads),nMphfByBucket-(nthreads)*(nMphfByBucket/nthreads),i));
for(auto &t : threads){t.join();}
}
}
template <typename phf_t,typename Range>
int check_mphf_correctness (phf_t * bphf, Range const& input_range){
uint64_t nb_collision_detected = 0;
uint64_t range_problems = 0;
uint64_t mphf_value;
boomphf::bitVector check_table (nelem);
//auto data_iterator = file_binary("keyfile");
for (auto const& val: input_range)
{
mphf_value = bphf->lookup(val);
//printf("%llu mphf_value %llu\n",val,mphf_value);
if(mphf_value>=nelem)
{
range_problems++; continue;
}
if(check_table[mphf_value]==0)
{
check_table.set(mphf_value);
}
else
{
//printf("collision for val %lli : \n",mphf_value);
printf("collision for %" PRIu64 " mphf_value %" PRIu64 "\n",val,mphf_value);
nb_collision_detected++;
}
}
if(nb_collision_detected == 0 && range_problems ==0)
{
printf(" --- boophf working correctly --- \n");
return 0;
}
else
{
printf("!!! problem, %" PRIu64 " collisions detected; %" PRIu64 " out of range !!!\n",nb_collision_detected,range_problems);
return 1;
}
}
template <typename phf_t,typename Range>
void bench_mphf_lookup (phf_t * bphf, Range const& input_range){
vector<uint64_t> sample;
uint64_t mphf_value;
//copy sample in ram
for (auto const& key: input_range) {
sample.push_back(key);
}
printf("bench lookups sample size %lu \n",sample.size());
//bench procedure taken from emphf
stats_accumulator stats;
double tick = get_time_usecs();
size_t lookups = 0;
static const size_t lookups_per_sample = 1 << 16;
uint64_t dumb=0;
double elapsed;
size_t runs = 10;
for (size_t run = 0; run < runs; ++run) {
for (size_t ii = 0; ii < sample.size(); ++ii) {
mphf_value = bphf->lookup(sample[ii]);
//do some silly work
dumb+= mphf_value;
if (++lookups == lookups_per_sample) {
elapsed = get_time_usecs() - tick;
stats.add(elapsed / (double)lookups);
tick = get_time_usecs();
lookups = 0;
}
}
}
printf("BBhash bench lookups average %.2f ns +- stddev %.2f %% (fingerprint %" PRIu64 ") \n", 1000.0*stats.mean(),stats.relative_stddev(),dumb);
}
//#include "bucketing.h"
int main (int argc, char* argv[]){
//if we want a random seed from timer
// typedef std::chrono::high_resolution_clock myclock;
// myclock::time_point beginning = myclock::now();
bool check_correctness = false;
bool bench_lookup = false;
bool save_mphf = false;
bool load_mphf = false;
bool buckets = false;
bool from_disk = true;
bool bench_lookup_out = false;
bool on_the_fly= false;
write_each = true;
if(argc <4 ){
printf("Usage :\n");
printf("%s <nelem> <nthreads> <gamma> [options]\n",argv[0]);
printf("Options:\n");
printf("\t-check (check correctness of mphf)\n");
printf("\t-bench (bench query time of mphf)\n");
printf("\t-save\n");
printf("\t-load\n");
printf("\t-inram\n");
printf("\t-nodisk (do not write each intermediate level on disk)\n");
printf("\t-buckets\n");
printf("\t-outquery (bench the fp rate of the mphf)\n"); // bench fp rate
printf("\t-onthefly (generates key on the fly without storing them on disk or in ram)\n");
return EXIT_FAILURE;
}
if(argc >=4 ){
nelem = strtoul(argv[1], NULL,0);
nthreads = atoi(argv[2]);
gammaFactor = atoi(argv[3]);
}
for (int ii=4; ii<argc; ii++){
if(!strcmp("-check",argv[ii])) check_correctness= true;
if(!strcmp("-bench",argv[ii])) bench_lookup= true;
if(!strcmp("-save",argv[ii])) save_mphf= true;
if(!strcmp("-load",argv[ii])) load_mphf= true;
if(!strcmp("-inram",argv[ii])) from_disk= false;
if(!strcmp("-buckets",argv[ii])) buckets= true;
if(!strcmp("-outquery",argv[ii])) bench_lookup_out= true;
if(!strcmp("-onthefly",argv[ii])) on_the_fly= true;
if(!strcmp("-nodisk",argv[ii])) write_each= false;
}
if(gammaFactor == 0) {
fprintf(stderr,"gamma value error\n");
fprintf(stderr,"Usage should be \n");
fprintf(stderr,"%s <nelem> <nthreads> <gamma> [options]\n",argv[0]);
exit(1);
}
// ///testing terator
// printf("testing terator :\n");
// uint64_range terator_in = uint64_range(10,10);
// uint64_range terator = uint64_range(terator_in);
//
//
// for (auto const& val: terator) {
// printf("%llu \n",val);
//
// }
// exit(0);
FILE * key_file = NULL;
FILE * bench_file = NULL;
if(from_disk){
key_file = fopen("keyfile","w+");
}
uint64_t ii, jj;
///// generation of keys
if(!from_disk && !buckets){
uint64_t rab = 100;
static std::mt19937_64 rng;
rng.seed(std::mt19937_64::default_seed); //default seed
//rng.seed(seed2); //random seed from timer
data = (uint64_t * ) calloc(nelem+rab,sizeof(uint64_t));
for (uint64_t i = 1; i < nelem+rab; i++){
data[i] = rng();
}
printf("de-duplicating items \n");
std::sort(data,data+nelem+rab);
for (ii = 1, jj = 0; ii < nelem+rab; ii++) {
if (data[ii] != data[jj])
data[++jj] = data[ii];
}
printf("found %" PRIu64 " duplicated items \n",nelem+rab-(jj + 1) );
}
else{
if(!on_the_fly)
{
//methode simple pas besoin de de-dupliquer, mais pas "random"
uint64_t step = ULLONG_MAX / nelem;
// uint64_t step = 100 / nelem;
uint64_t current = 0;
for (uint64_t i = 0; i < nelem; i++)
{
fwrite(¤t, sizeof(uint64_t), 1, key_file);
//printf("%llu \n",current);
current = current + step;
}
fclose(key_file);
printf("key file generated \n");
if(bench_lookup)
{
bench_file = fopen("benchfile","w+");
//create a test file
//if n < 10 M take all elements, otherwise regular sample to have 10 M elements
uint64_t stepb = nelem / 10000000;
if(stepb==0) stepb=1;
auto data_iterator = file_binary("keyfile");
uint64_t cpt = 0;
nb_in_bench_file=0;
for (auto const& key: data_iterator) {
if( (cpt % stepb) == 0)
{
fwrite(&key, sizeof(uint64_t), 1, bench_file);
nb_in_bench_file++;
}
cpt++;
}
fclose(bench_file);
}
}
}
vector<uint> nb_elem_in_previous_buckets (nBuckets*nMphfByBucket);
if(buckets){
clock_t begin, end;
double t_begin,t_end; struct timeval timet;
gettimeofday(&timet, NULL); t_begin = timet.tv_sec +(timet.tv_usec/1000000.0);
for(uint i(0);i<nBuckets;++i){
vFiles[i]=fopen(("bucket"+to_string(i)).c_str(),"w+");
}
printf("splitting keys ..\n");
double tick_split = get_time_usecs();
int buffsize = 10000;
vector < vector<uint64_t> > buffers (nBuckets);
for(int ii=0; ii<nBuckets;ii++)
buffers[ii].reserve(buffsize);
auto data_iterator = file_binary("keyfile");
for (auto const& key: data_iterator) {
uint64_t hash=(korenXor(key)%(nBuckets*nMphfByBucket)/nMphfByBucket);
if(buffers[hash].size()==buffsize)
{
fwrite(buffers[hash].data(), sizeof(uint64_t), buffers[hash].size(), vFiles[hash]);
buffers[hash].clear();//hope it keeps capacity intact
}
buffers[hash].push_back(key);
++elinbuckets[korenXor(key)%(nBuckets*nMphfByBucket)];
}
//flush buffers
for(int ii=0; ii<nBuckets;ii++)
{
fwrite(buffers[ii].data(), sizeof(uint64_t), buffers[ii].size(), vFiles[ii]);
}
for (int ii=0; ii<vFiles.size(); ii++) {
fclose(vFiles[ii]);
}
nb_elem_in_previous_buckets[0] = 0 ;
for(int ii=1; ii<nBuckets*nMphfByBucket; ii++ ){
nb_elem_in_previous_buckets[ii] = nb_elem_in_previous_buckets[ii-1] + elinbuckets[ii-1];
}
double elapsed_split = get_time_usecs() - tick_split;
printf("time key split %.2f s \n", elapsed_split/1000000.0);
printf("Go compactions !!!\n");
double integ;
assert( modf((double)nBuckets/nthreads ,&integ) == 0 );
vector<thread> threads;
for(uint n(0);n<nthreads;++n){
threads.push_back(thread(compactBucket,n*nBuckets/nthreads,nBuckets/nthreads));
}
for(auto &t : threads){t.join();}
//~ compactBucket(0, nBuckets);
for(uint i(0);i<nBuckets;++i){
remove(("bucket"+to_string(i)).c_str());
}
gettimeofday(&timet, NULL); t_end = timet.tv_sec +(timet.tv_usec/1000000.0);
double elapsed = t_end - t_begin;
printf("BooPHF constructed perfect hash for %" PRIu64 " keys in %.2fs\n", nelem,elapsed);
// cin.get();
if(check_correctness){
uint64_t step2 = ULLONG_MAX / nelem;
uint64_t current2 = 0;
uint64_t range_problems(0);
uint64_t nb_collision_detected(0);
begin = clock();
boomphf::bitVector check_table (nelem);
for (uint64_t i = 0; i < nelem; i++){
uint64_t hash=korenXor(current2)%(nBuckets*nMphfByBucket);
uint64_t mphf_value = MPHFs[hash].lookup(current2)+ nb_elem_in_previous_buckets [hash];
if(mphf_value>=nelem){
range_problems++;
printf("there is %" PRIu64 " problems \n", range_problems);
}
if(check_table[mphf_value]==0)
{
check_table.set(mphf_value);
}
else
{
//printf("collision for val %lli \n",mphf_value);
nb_collision_detected++;
}
current2 += step2;
}
printf("there is %" PRIu64 " problems\n", range_problems);
printf("there is %" PRIu64 " coll\n", nb_collision_detected);
end = clock();
//printf("BooPHF %llu lookups in %.2fs, approx %.2f ns per lookup \n", nelem, (double)(end - begin) / CLOCKS_PER_SEC, ((double)(end - begin) / CLOCKS_PER_SEC)*1000000000/nelem);
}
if(bench_lookup)
{
auto input_range = file_binary("benchfile");
vector<uint64_t> sample;
uint64_t mphf_value;
//copy sample in ram
for (auto const& key: input_range) {
sample.push_back(key);
}
printf("bench lookups sample size %lu \n",sample.size());
//bench procedure taken from emphf
stats_accumulator stats;
double tick = get_time_usecs();
size_t lookups = 0;
static const size_t lookups_per_sample = 1 << 16;
uint64_t dumb=0;
double elapsed;
size_t runs = 10;
for (size_t run = 0; run < runs; ++run) {
for (size_t ii = 0; ii < sample.size(); ++ii) {
uint64_t hash=korenXor(sample[ii])%(nBuckets*nMphfByBucket);
mphf_value = MPHFs[hash].lookup(sample[ii]) + nb_elem_in_previous_buckets [hash];
dumb+= mphf_value;
//do some silly work
if (++lookups == lookups_per_sample) {
elapsed = get_time_usecs() - tick;
stats.add(elapsed / (double)lookups);
tick = get_time_usecs();
lookups = 0;
}
}
}
printf("BBhash buckets bench lookups average %.2f ns +- stddev %.2f %% (fingerprint %" PRIu64 ") \n", 1000.0*stats.mean(),stats.relative_stddev(),dumb);
///
}
return EXIT_SUCCESS;
}
std::string output_filename;
output_filename = "saved_mphf";
boophf_t * bphf = NULL;;
clock_t begin, end;
double t_begin,t_end; struct timeval timet;
if(!load_mphf){
printf("Construct a BooPHF with %" PRIu64 " elements \n",nelem);
///create the boophf
gettimeofday(&timet, NULL); t_begin = timet.tv_sec +(timet.tv_usec/1000000.0);
//MPHF CREATION
if (on_the_fly)
{
auto data_iterator = uint64_range(nelem,nelem) ;
bphf = new boomphf::mphf<uint64_t,hasher_t>(nelem,data_iterator,nthreads,gammaFactor,write_each);
}
else if(from_disk)
{
auto data_iterator = file_binary("keyfile");
bphf = new boomphf::mphf<uint64_t,hasher_t>(nelem,data_iterator,nthreads,gammaFactor,write_each);
}
else
{
auto data_iterator = boomphf::range(static_cast<const uint64_t*>(data), static_cast<const uint64_t*>(data+nelem));
bphf = new boomphf::mphf<uint64_t,hasher_t>(nelem,data_iterator,nthreads,gammaFactor,write_each);
}
gettimeofday(&timet, NULL); t_end = timet.tv_sec +(timet.tv_usec/1000000.0);
double elapsed = t_end - t_begin;
printf("BooPHF constructed perfect hash for %" PRIu64 " keys in %.2fs\n", nelem,elapsed);
printf("boophf bits/elem : %f\n",(float) (bphf->totalBitSize())/nelem);
}
else{
//assumes the mphf was saved before, reload it
bphf = new boomphf::mphf<uint64_t,hasher_t>();
printf("Loading a BooPHF with %" PRIu64 " elements \n",nelem);
gettimeofday(&timet, NULL); t_begin = timet.tv_sec +(timet.tv_usec/1000000.0);
std::ifstream is(output_filename, std::ios::binary);
bphf->load(is);
gettimeofday(&timet, NULL); t_end = timet.tv_sec +(timet.tv_usec/1000000.0);
double elapsed = t_end - t_begin;
printf("BooPHF re-loaded perfect hash for %" PRIu64 " keys in %.2fs\n", nelem,elapsed);
printf("boophf bits/elem : %f\n",(float) (bphf->totalBitSize())/nelem);
}
if(save_mphf)
{
std::ofstream os(output_filename, std::ios::binary);
bphf->save(os);
}
if(check_correctness && on_the_fly )
{
auto data_iterator = uint64_range(nelem,nelem) ;
check_mphf_correctness(bphf ,data_iterator);
}
else if(check_correctness && from_disk )
{
auto data_iterator = file_binary("keyfile");
check_mphf_correctness(bphf ,data_iterator);
}
else if(check_correctness && !from_disk )
{
auto data_iterator = boomphf::range(static_cast<const uint64_t*>(data), static_cast<const uint64_t*>(data+nelem));
check_mphf_correctness(bphf ,data_iterator);
}
if(bench_lookup && on_the_fly)
{
auto data_iterator = uint64_range(nelem,1000000) ;
bench_mphf_lookup(bphf,data_iterator);
}
else if(bench_lookup && from_disk)
{
auto data_iterator = file_binary("benchfile");
bench_mphf_lookup(bphf,data_iterator);
}
else if(bench_lookup && !from_disk)
{
auto data_iterator = boomphf::range(static_cast<const uint64_t*>(data), static_cast<const uint64_t*>(data+nelem));
bench_mphf_lookup(bphf,data_iterator);
}
if(bench_lookup_out)
{
int nrandom = 100000000; //10000000
static std::mt19937_64 rng;
rng.seed(std::mt19937_64::default_seed); //default seed
uint64_t * data_random = (uint64_t * ) calloc(nrandom,sizeof(uint64_t));
for (uint64_t i = 0; i < nrandom; i++){
data_random[i] = rng();
// printf("%llu \n",data_random[i]);
}
uint64_t mphf_value;
uint64_t dumb=0;
uint64_t nb_fp =0;
uint64_t nb_out_of_range =0;
for (size_t ii = 0; ii < nrandom; ++ii) {
mphf_value = bphf->lookup(data_random[ii]);
//printf("m %llu \n",mphf_value);
if(mphf_value != ULLONG_MAX)
{
nb_fp++;
}
if((mphf_value != ULLONG_MAX) && (mphf_value >= nelem))
{
nb_out_of_range++;
}
}
double tick = get_time_usecs();
for (size_t ii = 0; ii < nrandom; ++ii) {
mphf_value = bphf->lookup(data_random[ii]);
//do some silly work
dumb+= mphf_value;
}
double elapsed = get_time_usecs() - tick;
printf("query %i elem out of set FP rate %.2f nb issues %" PRIu64 " lookup %.2f ns \n",nrandom, nb_fp/(float)nrandom,nb_out_of_range
,1000.0*elapsed/(double)nrandom );
}
if(!from_disk){
free(data);
}
delete bphf;
return EXIT_SUCCESS;
}