-
Notifications
You must be signed in to change notification settings - Fork 3
/
exp-PiRandom.lisp
56 lines (54 loc) · 3.88 KB
/
exp-PiRandom.lisp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
;; -*- Mode:Lisp; Syntax:ANSI-Common-LISP; Coding:us-ascii-unix; fill-column:158 -*-
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;; @file exp-PiRandom.lisp
;; @author Mitch Richling <https://www.mitchr.me>
;; @brief Approximate pi with random numbrs.@EOL
;; @std Common Lisp
;; @copyright
;; @parblock
;; Copyright (c) 2007,2012,2015, Mitchell Jay Richling <https://www.mitchr.me> All rights reserved.
;;
;; Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
;;
;; 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer.
;;
;; 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation
;; and/or other materials provided with the distribution.
;;
;; 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software
;; without specific prior written permission.
;;
;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
;; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
;; LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
;; OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
;; LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
;; DAMAGE.
;; @endparblock
;; @filedetails
;;
;; The math:
;;
;; The probability that two integers picked at random are coprime, or relatively prime, is $\frac{6}{\pi^2}$. Two integers $a$ and $b$ are
;; coprime iff $\text{GCD}(a,b)=1$, where $\text{GCD}(a,b)$ is the greatest positive integer that divides both $a$ and $b$.
;;
;; The program:
;;
;; Compute random numbers, keep track of the relative frequency of coprime pairs, use that relative frequency to approximate the probability, and
;; use that approximatetion to approximate $\pi$. This program will print out successive approximations for every 1e6 pairs of integers
;; checked..
;;
;; This code requires use-a.lisp that supports double floating point, big integers, and has a good random number generator.
;;
;; Similar C program:
;; https://www.mitchr.me/SS/exampleCode/GMP/randPi.c.html
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(loop ;; Loop forever
with cpc = 0 ;; Number of coprime integers found
for i from 0 ;; Number of coprime integers tested
for cpa = (if (zerop cpc) 0 (sqrt (/ 6d0 (/ cpc i)))) ;; Current approximation for PI
when (= 1 (gcd (random 100000000) (random 100000000))) do (incf cpc) ;; If our two random numbers are coprime, increment CPC
when (zerop (mod i 1000000)) do (format 't "~30f ~30f~%" cpa (- cpa pi))) ;; Print out our approximation every 1e6 pairs tested