diff --git a/R/intervalPlot.R b/R/intervalPlot.R index f6c3dc0..5157f55 100644 --- a/R/intervalPlot.R +++ b/R/intervalPlot.R @@ -2,7 +2,9 @@ #' #' This function return scatter plot at admin 1 level for any two model results #' -#' @param res model result using surveyPrev +#' @param model list of model results using surveyPrev +#' @param admin level of plot +#' @param group plot by group or not #' @return This function returns the dataset that contain district name and population for given tiff files and polygons of admin level. #' @import ggplot2 #' @author Qianyu Dong @@ -61,44 +63,204 @@ #' } #' #' @export +#' + + +intervalPlot <- function(admin= 0, model=list( list("name 1"= fit1, "name 1"= fit2)), group=F){ + + + + + if(admin==0){ + + dt=data.frame(mean=NA, lower=NA, upper=NA, model=NA,group=NA) + + + + + for (i in 1:length(model)) { + + if(colnames(model[[i]]$agg.natl[1])=="direct.est"){ + colnames(model[[i]]$agg.natl)[colnames(model[[i]]$agg.natl) == 'direct.est'] <- 'mean' + colnames(model[[i]]$agg.natl)[colnames(model[[i]]$agg.natl) == 'direct.lower'] <- 'lower' + colnames(model[[i]]$agg.natl)[colnames(model[[i]]$agg.natl) == 'direct.upper'] <- 'upper' + } + + model[[i]]$agg.natl$model= names(model[i]) + dt[i,]=model[[i]]$agg.natl[,c("mean","lower","upper","model")] + } + + + if(group){ + for (i in 1:length(model)) { + dt[i,]$group= model[[i]]$group + } + } -intervalPlot <- function(res){ + rownames(dt)<-dt$model - # TODO: refer by variable name and make it work with both admin 1 and 2 cases - data<-res[[1]] - linedata<-res[[2]] - line2<-res[[3]]$mean - plot_fun <- function(dat) { - line1 = linedata[unique(dat$admin1.name),"mean"] - g <- ggplot(dat) + if(group){ + ggplot(dt, aes(y = model, x = mean,group = group)) + + geom_point(aes(shape=group)) + + geom_errorbarh(aes(xmin = lower , xmax = upper), alpha = 0.5) - if("type" %in% colnames(dat)){ - g <- g + aes(x = admin2.name, y = mean, color = type) }else{ - g <- g + aes(x = admin2.name, y = mean) + ggplot(dt, aes(y = model, x = mean)) + + geom_point(aes()) + + geom_errorbarh(aes(xmin = lower , xmax = upper), alpha = 0.5) + } - g <- g + - geom_point( position = position_dodge(width = 0.5),size = .8) + - geom_hline( aes(yintercept =line1,linetype = "dashed"),color="#d95f02",linewidth = .8) + - geom_hline( aes(yintercept =line2, linetype = "solid"),color="#d95f02",linewidth = .8) + - geom_errorbar(aes(ymin = lower , ymax = upper), alpha = 0.7,position = position_dodge(width = 0.5), width = 0.2) + - scale_color_brewer(palette = "Set1") + - labs(title = unique(dat$admin1.name)) + - xlab("") + ylab("") + - scale_linetype_manual(values = c("dashed", "solid"), - labels = c("admin1","national")) + - theme_bw() + - theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) + + + + + }else if (admin==1){ + + dt=data.frame(admin1.name=rep(NA,500),mean=rep(NA,500), lower=rep(NA,500), upper=rep(NA,500), model=rep(NA,500),group=rep(NA,500)) + + for (i in 1:length(model)) { + + + + + if( is.null(model[[i]]$agg.admin1)){ + + if(colnames(model[[i]]$res.admin1)[2]=="direct.est"){ + colnames(model[[i]]$res.admin1)[colnames(model[[i]]$res.admin1) == 'direct.est'] <- 'mean' + colnames(model[[i]]$res.admin1)[colnames(model[[i]]$res.admin1) == 'direct.lower'] <- 'lower' + colnames(model[[i]]$res.admin1)[colnames(model[[i]]$res.admin1) == 'direct.upper'] <- 'upper' + } + model[[i]]$res.admin1$model= names(model[i]) + + if( !is.null(model[[i]]$res.admin1$type)){ + model[[i]]$res.admin1=model[[i]]$res.admin1[model[[i]]$res.admin1$type=="full",] + } + + + dd=dim(model[[i]]$res.admin1)[1] + + + dt[(1+ (i-1)*dd):(i*dd),]= model[[i]]$res.admin1[,c("admin1.name","mean","lower","upper","model")] + if(group){ + dt[(1+ (i-1)*dd):(i*dd),]$group= model[[i]]$group + } + }else{ + + if(colnames(model[[i]]$agg.admin1)[2]=="direct.est"){ + colnames(model[[i]]$agg.admin1)[colnames(model[[i]]$agg.admin1) == 'direct.est'] <- 'mean' + colnames(model[[i]]$agg.admin1)[colnames(model[[i]]$agg.admin1) == 'direct.lower'] <- 'lower' + colnames(model[[i]]$agg.admin1)[colnames(model[[i]]$agg.admin1) == 'direct.upper'] <- 'upper' + } + model[[i]]$agg.admin1$model= names(model[i]) + + if( !is.null(model[[i]]$agg.admin1$type)){ + model[[i]]$agg.admin1=model[[i]]$agg.admin1[model[[i]]$agg.admin1$type=="full",] + } + + + dd=dim(model[[i]]$agg.admin1)[1] + dt[(1+ (i-1)*dd):(i*dd),]= model[[i]]$agg.admin1[,c("admin1.name","mean","lower","upper","model")] + if(group){ + dt[(1+ (i-1)*dd):(i*dd),]$group= model[[i]]$group + } + } + } + + dt=na.omit(dt) + + + + + if(group){ + ggplot(dt, aes(x = admin1.name, y = mean, group = model, color = model,shape=group)) + + geom_point( position = position_dodge(width = 0.7)) + + scale_shape_manual(values = c(0:5, 15:19)) + + geom_errorbar(aes(ymin = lower, + ymax = upper, group = model), alpha = 0.8, position = position_dodge(width = 0.7))+ + # scale_color_brewer(palette="Set3") + + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + + labs(title = "", x = "Region", y = "value")+ + theme(legend.title = element_text(size=10), # Increase legend title size + legend.text = element_text(size=12), # Increase legend text size + legend.key.size = unit(1.5, 'lines'), # Increase legend key size + axis.text.x = element_text(size=12), # Increase x axis text size + axis.text.y = element_text(size=12)) + + }else{ + ggplot(dt, aes(x = admin1.name, y = mean, group = model, color = model)) + + geom_point( position = position_dodge(width = 0.7)) + + scale_shape_manual(values = c(0:5, 15:19)) + + geom_errorbar(aes(ymin = lower, + ymax = upper, group = model), alpha = 0.8, position = position_dodge(width = 0.7))+ + # scale_color_brewer(palette="Set3") + + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + + labs(title = "", x = "Region", y = "value")+ + theme(legend.title = element_text(size=10), # Increase legend title size + legend.text = element_text(size=12), # Increase legend text size + legend.key.size = unit(1.5, 'lines'), # Increase legend key size + axis.text.x = element_text(size=12), # Increase x axis text size + axis.text.y = element_text(size=12)) + + } + + }else{ + + + + + + + } - plots <- NULL - for (adm1 in unique(data$admin1.name)){ - g <- plot_fun(subset(data, admin1.name == adm1)) - plots[[adm1]] <- g - } - return(plots) + + + + + + + + + + + # + # + # data<-res[[1]] + # linedata<-res[[2]] + # line2<-res[[3]]$mean + # + # plot_fun <- function(dat) { + # line1 = linedata[unique(dat$admin1.name),"mean"] + # g <- ggplot(dat) + # + # if("type" %in% colnames(dat)){ + # g <- g + aes(x = admin2.name, y = mean, color = type) + # }else{ + # g <- g + aes(x = admin2.name, y = mean) + # } + # g <- g + + # geom_point( position = position_dodge(width = 0.5),size = .8) + + # geom_hline( aes(yintercept =line1,linetype = "dashed"),color="#d95f02",linewidth = .8) + + # geom_hline( aes(yintercept =line2, linetype = "solid"),color="#d95f02",linewidth = .8) + + # geom_errorbar(aes(ymin = lower , ymax = upper), alpha = 0.7,position = position_dodge(width = 0.5), width = 0.2) + + # scale_color_brewer(palette = "Set1") + + # labs(title = unique(dat$admin1.name)) + + # xlab("") + ylab("") + + # scale_linetype_manual(values = c("dashed", "solid"), + # labels = c("admin1","national")) + + # theme_bw() + + # theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) + # } + # + # plots <- NULL + # for (adm1 in unique(data$admin1.name)){ + # g <- plot_fun(subset(data, admin1.name == adm1)) + # plots[[adm1]] <- g + # } + # + # return(plots) } diff --git a/man/intervalPlot.Rd b/man/intervalPlot.Rd index b4f169b..389df02 100644 --- a/man/intervalPlot.Rd +++ b/man/intervalPlot.Rd @@ -4,10 +4,18 @@ \alias{intervalPlot} \title{Get scatter plot for any two model results} \usage{ -intervalPlot(res) +intervalPlot( + admin = 0, + model = list(list(`name 1` = fit1, `name 1` = fit2)), + group = F +) } \arguments{ -\item{res}{model result using surveyPrev} +\item{admin}{level of plot} + +\item{model}{list of model results using surveyPrev} + +\item{group}{plot by group or not} } \value{ This function returns the dataset that contain district name and population for given tiff files and polygons of admin level.