-
Notifications
You must be signed in to change notification settings - Fork 3
/
povid_infer.py
executable file
·110 lines (94 loc) · 4.86 KB
/
povid_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import argparse
import torch
import os
import json
from tqdm import tqdm
import shortuuid
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava import conversation as conversation_lib
from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
from llava.model import *
from PIL import Image
import math
import numpy as np
if torch.cuda.is_available():
device = torch.device("cuda")
def split_list(lst, n):
"""Split a list into n (roughly) equal-sized chunks"""
chunk_size = math.ceil(len(lst) / n) # integer division
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
def get_chunk(lst, n, k):
chunks = split_list(lst, n)
return chunks[k]
def eval_model(args):
# Model
disable_torch_init()
model_path = os.path.expanduser(args.model_path)
model_name = get_model_name_from_path(model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
model = model.to(device)
input_dir = args.input_dir
output_file = args.output_file
nu = 0
with torch.no_grad():
with open(output_file, "a+") as f:
for filename in tqdm(os.listdir(input_dir)):
if filename.endswith((".jpg", ".jpeg", ".png")) and nu <= 0:
if filename in open(output_file).read():continue
qs = 'Describe this image.'
cur_prompt = qs
if model.config.mm_use_im_start_end:
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
else:
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
conv = conv_templates[args.conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
image = Image.open(os.path.join(args.input_dir, filename))
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0].to(device)
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
with torch.inference_mode():
output_ids = model.generate(
input_ids=input_ids,
images=image_tensor.unsqueeze(0).half().cuda(),
do_sample=True,
temperature=args.temperature,
top_p= 1,
num_beams= 1,
output_attentions=True,
# no_repeat_ngram_size=3, args.top_p args.num_beams
max_new_tokens=1024,
use_cache=True)
input_token_len = input_ids.shape[1]
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
if n_diff_input_output > 0:
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
outputs = outputs.strip()
result = {"id": filename, "question": cur_prompt, "answer": outputs, "model": "llava_lora_05_05_step_500"}
json.dump(result, f)
f.write('\n')
f.flush()
nu += 1
f.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="[your final stage lora ckpt path]")
parser.add_argument("--model-base", type=str, default="[your first stage ckpt path]")
parser.add_argument("--input_dir", type=str, default="./data/coco")
parser.add_argument("--output_file", type=str, default="[your output path]")
parser.add_argument("--conv-mode", type=str, default="v1")
parser.add_argument("--num-chunks", type=int, default=1)
parser.add_argument("--chunk-idx", type=int, default=0)
parser.add_argument("--temperature", type=float, default=0.2)
parser.add_argument("--top_p", type=float, default=None)
parser.add_argument("--num_beams", type=int, default=1)
args = parser.parse_args()
eval_model(args)