-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathuseful.py
95 lines (77 loc) · 3.03 KB
/
useful.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import numpy
import itertools
import matplotlib.pyplot as plt
import itertools
def flatten(inputList):
"""
A function to return a flattened version of the input list. Not sure if it works on things that aren't lists
"""
return list(itertools.chain.from_iterable(inputList))
def b(x=18,y=5):
"""
Set the size of the current matplotlib figure (in "inches").
The default values are reasonable for the ipython notebook.
"""
global plt
f=plt.gcf()
f.set_size_inches([x,y])
def gaussian(x, mu=0, sig=1):
"""Gausian Function"""
return numpy.exp(-numpy.power(x - mu, 2.) / (2. * numpy.power(sig, 2.)))
def createGlitch(frequency=1.0,phase=0.0,sampleRate=1/8.0,duration=1.0):
"""
Creates a series of points for a sine-gaussian.
Leave duration at 1, then frequency is just number of waves and sampleRate is number of samples.
The sigma of the gaussian is set so that the edges correspond to a scaling of 0.1%
The sample points lie in the interval [0,duration)
frequecy -> Hertz
phase -> Radians
sampleRate -> Hertz
duration -> seconds
"""
t=numpy.arange(0,duration,sampleRate) #Creates points in the interval [0,duration).
mu=duration/2.0
sigma=numpy.sqrt((-(duration-mu)**2)/(2*numpy.log(0.001))) #Set the width of the gaussian such that the edges are at height 0.001 (0.1%)
g = gaussian(t,mu=mu,sig=sigma)
sine = numpy.sin(2*numpy.pi*frequency*t+phase)
return g*sine
def plotSegmentInfo(model):
tp=model._getTPRegion().getSelf()._tfdr
si=tp.getSegmentInfo()
print "Total Number Of Segements:"+str(si[0])
print "Total Number of Synapses:"+str(si[1])
fig,axes=plt.subplots(2,2)
plotDistSegSizes(si,axes[0,0])
plotDistNSegsPerCell(si,axes[0,1])
plotDistPermValues(si,axes[1,0])
plotDistAges(si,axes[1,1])
fig.set_size_inches(18,10)
def plotDistSegSizes(segmentInfo,axis):
x=segmentInfo[4].keys()
axis.bar(x,segmentInfo[4].values(),align='center',width=1)
axis.set_xticks(x);
axis.set_xlabel('number of synapses')
axis.set_ylabel('number of segments')
def plotDistNSegsPerCell(segmentInfo,axis):
x=segmentInfo[5].keys()
axis.bar(x,segmentInfo[5].values(),align='center',width=1)
axis.set_xticks(x);
axis.set_xlabel('number of segments')
axis.set_ylabel('number of cells')
def plotDistPermValues(segmentInfo,axis):
x=segmentInfo[6].keys()
axis.bar(x,segmentInfo[6].values(),align='center',width=1)
axis.set_xticks(x);
axis.set_xlabel('permanence*10')
axis.set_ylabel('number of synapses')
def plotDistAges(segmentInfo,axis):
def toInts(string):
return map(int,string.split('-'))
ranges=numpy.array(segmentInfo[7])[:,0]
ranges = numpy.array(map(toInts,ranges))
left=ranges[:,0]
width = map(lambda l: l[1]-l[0]+1,ranges)
height = map(int,numpy.array(segmentInfo[7])[:,1])
axis.bar(left,height,width)
axis.set_xlabel('Segment Ages')
axis.set_ylabel('Number Of Segments');