forked from billpsomas/rscir
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
executable file
·136 lines (115 loc) · 5.52 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import torch
import numpy as np
from PIL import Image
import csv
import open_clip
def load_model(model_name, model_type):
model, _, preprocess_images = open_clip.create_model_and_transforms(model_type)
tokenizer = open_clip.get_tokenizer(model_type)
if model_name == 'remoteclip':
ckpt = torch.load(f"models/RemoteCLIP-{model_type}.pt", map_location="cpu")
elif model_name == 'clip':
ckpt = torch.load(f"models/CLIP-{model_type}.bin", map_location="cpu")
message = model.load_state_dict(ckpt)
print(message)
print(f"{model_name} {model_type} has been loaded!")
model = model.cuda().eval()
return model, preprocess_images, tokenizer
def replace_class_names(additional_classes, classes_change):
named_classes_list = []
for sublist in additional_classes:
named_sublist = [classes_change[item] for item in sublist]
named_classes_list.append(named_sublist)
return named_classes_list
def norm_cdf(matrix, dim=0):
row_means = matrix.mean(dim=dim, keepdim=True)
row_stds = matrix.std(dim=dim, keepdim=True)
matrix = 0.5 * (1 + torch.erf((matrix - row_means) / (row_stds * torch.sqrt(torch.tensor(2.0)))))
return matrix
def norm_gaussian(matrix, dim=0):
row_means = matrix.mean(dim=dim, keepdim=True)
row_stds = matrix.std(dim=dim, keepdim=True)
matrix = (matrix-row_means)/row_stds
return matrix
def calculate_ranks(input_tensor):
num_rows, num_cols = input_tensor.shape
ranked_tensor = torch.zeros_like(input_tensor, dtype=torch.int64).to('cuda')
for i in range(num_rows):
row = input_tensor[i]
sorted_indices = torch.argsort(row, descending=True)
ranked_tensor[i, sorted_indices] = torch.arange(1, num_cols + 1).to('cuda')
return(ranked_tensor)
def preprocess_image(img_path, new_width, new_height, crop=False):
pil_img = Image.open(img_path).convert("RGB")
width, height = pil_img.size
if crop:
left = (width - new_width)/2
top = (height - new_height)/2
right = (width + new_width)/2
bottom = (height + new_height)/2
pil_img = pil_img.crop((left, top, right, bottom))
else:
pil_img = pil_img.resize((new_width, new_height))
img_array = np.array(pil_img)
return img_array
def dict_to_csv(metrics_dict, filename):
# Extract headers for CSV (metric names)
headers = ["Method"] + list(next(iter(metrics_dict.values())).keys())
# Write to CSV
with open(filename, 'w', newline='') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=headers)
writer.writeheader()
for method, metrics in metrics_dict.items():
row = {'Method': method}
row.update(metrics)
writer.writerow(row)
def timer(start, end):
hours, rem = divmod(end - start, 3600)
minutes, seconds = divmod(rem, 60)
print("Elapsed time: {:0>2}:{:0>2}:{:05.2f}".format(int(hours), int(minutes), seconds))
def create_metrics_final(at, methods):
metrics_final = {method: {f"R@{k}": [] for k in at} for method in methods}
for method in metrics_final:
metrics_final[method].update({f"P@{k}": [] for k in at})
metrics_final[method]["AP"] = []
return metrics_final
def create_metrics_per_prompt(prompts, at, methods):
metrics_per_prompt = {prompt: {method: {f"R@{k}": [] for k in at} for method in methods} for i in range(len(prompts)) for prompt in prompts[i]}
for prompt in metrics_per_prompt:
for method in metrics_per_prompt[prompt]:
metrics_per_prompt[prompt][method].update({f"P@{k}": [] for k in at})
metrics_per_prompt[prompt][method]["AP"] = []
return metrics_per_prompt
# Class mapping for merging specific classes
class_mapping = {
'denseresidential': 'residential',
'sparseresidential': 'residential',
'closedroad': 'road',
'intersection': 'road',
'bridge': 'roadpass',
'overpass': 'roadpass',
'ferryterminal': 'pier',
'harbor': 'pier',
'parkingspace': 'parking',
'parkinglot': 'parking'
}
# Function to apply class mapping
def apply_class_mapping(label, class_mapping):
return class_mapping.get(label, label)
# Function to fix specific attribute labels
def fix_query_attributelabels(attribute, query_attributelabels):
if attribute == 'density':
query_attributelabels = [x.replace('densitydenseresidential', 'densityresidential') for x in query_attributelabels]
query_attributelabels = [x.replace('densitysparseresidential', 'densityresidential') for x in query_attributelabels]
elif attribute == 'shape':
query_attributelabels = [x.replace('shapeclosedroad', 'shaperoad') for x in query_attributelabels]
query_attributelabels = [x.replace('shapeintersection', 'shaperoad') for x in query_attributelabels]
elif attribute == 'context':
query_attributelabels = [x.replace('contextbridge', 'contextroadpass') for x in query_attributelabels]
query_attributelabels = [x.replace('contextoverpass', 'contextroadpass') for x in query_attributelabels]
elif attribute == 'existence':
query_attributelabels = [x.replace('existenceferryterminal', 'existencepier') for x in query_attributelabels]
query_attributelabels = [x.replace('existenceharbor', 'existencepier') for x in query_attributelabels]
query_attributelabels = [x.replace('existenceparkingspace', 'existenceparking') for x in query_attributelabels]
query_attributelabels = [x.replace('existenceparkinglot', 'existenceparking') for x in query_attributelabels]
return query_attributelabels