forked from jngiam/sparseFiltering
-
Notifications
You must be signed in to change notification settings - Fork 0
/
runExample.m
58 lines (42 loc) · 1.11 KB
/
runExample.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
%% Startup (addpaths)
startup
%% Clear
clear ; close all ; clc ;
%% Load Data
% You can obtain patches.mat from
% http://cs.stanford.edu/~jngiam/data/patches.mat
fprintf('Loading Data\n');
% Loads a variable data (size 256x50000)
load patches.mat
%% Remove DC
data = bsxfun(@minus, data, mean(data));
%% Train Layer 1
L1_size = 256; % Increase this for more features
L1 = sparseFiltering(L1_size, data);
% Show Layer 1 Bases
displayData(L1);
pause;
%% Feed-forward Layer 1
data1 = feedForwardSF(L1, data);
data1 = bsxfun(@minus, data1, mean(data1));
%% Train Layer 2
L2_size = 256;
L2 = sparseFiltering(L2_size, data1);
%% Visualize Layer 2
figure;
% Number of L2 units to visualize
num_viz = 10;
% Visualize different units
offset = 1;
% Plot the units
for i = 1:num_viz
j = offset+i;
% Find the sign of the unit with the maximum absolute values
[a, b] = max(abs(L2(j, :)));
sgn = sign(L2(j, b));
% Sort and plot units in those direction
[a, b] = sort(sgn*(L2(j, :)), 'descend');
% Plot
subplot(1, num_viz, i, 'align');
displayData(L1(b(1:10), :), [] , 1);
end