forked from adriancable/8086tiny
-
Notifications
You must be signed in to change notification settings - Fork 2
/
8086tiny.c
760 lines (682 loc) · 27.6 KB
/
8086tiny.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
// 8086tiny: a tiny, highly functional, highly portable PC emulator/VM
// Copyright 2013-14, Adrian Cable ([email protected]) - http://www.megalith.co.uk/8086tiny
//
// Revision 1.25
//
// This work is licensed under the MIT License. See included LICENSE.TXT.
#include <time.h>
#include <sys/timeb.h>
#include <memory.h>
#ifndef _WIN32
#include <unistd.h>
#include <fcntl.h>
#endif
#ifndef NO_GRAPHICS
#include "SDL.h"
#endif
// Emulator system constants
#define IO_PORT_COUNT 0x10000
#define RAM_SIZE 0x10FFF0
#define REGS_BASE 0xF0000
#define VIDEO_RAM_SIZE 0x10000
// Graphics/timer/keyboard update delays (explained later)
#ifndef GRAPHICS_UPDATE_DELAY
#define GRAPHICS_UPDATE_DELAY 360000
#endif
#define KEYBOARD_TIMER_UPDATE_DELAY 20000
// 16-bit register decodes
#define REG_AX 0
#define REG_CX 1
#define REG_DX 2
#define REG_BX 3
#define REG_SP 4
#define REG_BP 5
#define REG_SI 6
#define REG_DI 7
#define REG_ES 8
#define REG_CS 9
#define REG_SS 10
#define REG_DS 11
#define REG_ZERO 12
#define REG_SCRATCH 13
// 8-bit register decodes
#define REG_AL 0
#define REG_AH 1
#define REG_CL 2
#define REG_CH 3
#define REG_DL 4
#define REG_DH 5
#define REG_BL 6
#define REG_BH 7
// FLAGS register decodes
#define FLAG_CF 40
#define FLAG_PF 41
#define FLAG_AF 42
#define FLAG_ZF 43
#define FLAG_SF 44
#define FLAG_TF 45
#define FLAG_IF 46
#define FLAG_DF 47
#define FLAG_OF 48
// Lookup tables in the BIOS binary
#define TABLE_XLAT_OPCODE 8
#define TABLE_XLAT_SUBFUNCTION 9
#define TABLE_STD_FLAGS 10
#define TABLE_PARITY_FLAG 11
#define TABLE_BASE_INST_SIZE 12
#define TABLE_I_W_SIZE 13
#define TABLE_I_MOD_SIZE 14
#define TABLE_COND_JUMP_DECODE_A 15
#define TABLE_COND_JUMP_DECODE_B 16
#define TABLE_COND_JUMP_DECODE_C 17
#define TABLE_COND_JUMP_DECODE_D 18
#define TABLE_FLAGS_BITFIELDS 19
// Bitfields for TABLE_STD_FLAGS values
#define FLAGS_UPDATE_SZP 1
#define FLAGS_UPDATE_AO_ARITH 2
#define FLAGS_UPDATE_OC_LOGIC 4
// Helper macros
// Decode mod, r_m and reg fields in instruction
#define DECODE_RM_REG scratch2_uint = 4 * !i_mod, \
op_to_addr = rm_addr = i_mod < 3 ? SEGREG(seg_override_en ? seg_override : bios_table_lookup[scratch2_uint + 3][i_rm], bios_table_lookup[scratch2_uint][i_rm], regs16[bios_table_lookup[scratch2_uint + 1][i_rm]] + bios_table_lookup[scratch2_uint + 2][i_rm] * i_data1+) : GET_REG_ADDR(i_rm), \
op_from_addr = GET_REG_ADDR(i_reg), \
i_d && (scratch_uint = op_from_addr, op_from_addr = rm_addr, op_to_addr = scratch_uint)
// Return memory-mapped register location (offset into mem array) for register #reg_id
#define GET_REG_ADDR(reg_id) (REGS_BASE + (i_w ? 2 * reg_id : 2 * reg_id + reg_id / 4 & 7))
// Returns number of top bit in operand (i.e. 8 for 8-bit operands, 16 for 16-bit operands)
#define TOP_BIT 8*(i_w + 1)
// Opcode execution unit helpers
#define OPCODE ;break; case
#define OPCODE_CHAIN ; case
// [I]MUL/[I]DIV/DAA/DAS/ADC/SBB helpers
#define MUL_MACRO(op_data_type,out_regs) (set_opcode(0x10), \
out_regs[i_w + 1] = (op_result = CAST(op_data_type)mem[rm_addr] * (op_data_type)*out_regs) >> 16, \
regs16[REG_AX] = op_result, \
set_OF(set_CF(op_result - (op_data_type)op_result)))
#define DIV_MACRO(out_data_type,in_data_type,out_regs) (scratch_int = CAST(out_data_type)mem[rm_addr]) && !(scratch2_uint = (in_data_type)(scratch_uint = (out_regs[i_w+1] << 16) + regs16[REG_AX]) / scratch_int, scratch2_uint - (out_data_type)scratch2_uint) ? out_regs[i_w+1] = scratch_uint - scratch_int * (*out_regs = scratch2_uint) : pc_interrupt(0)
#define DAA_DAS(op1,op2,mask,min) set_AF((((scratch2_uint = regs8[REG_AL]) & 0x0F) > 9) || regs8[FLAG_AF]) && (op_result = regs8[REG_AL] op1 6, set_CF(regs8[FLAG_CF] || (regs8[REG_AL] op2 scratch2_uint))), \
set_CF((((mask & 1 ? scratch2_uint : regs8[REG_AL]) & mask) > min) || regs8[FLAG_CF]) && (op_result = regs8[REG_AL] op1 0x60)
#define ADC_SBB_MACRO(a) OP(a##= regs8[FLAG_CF] +), \
set_CF(regs8[FLAG_CF] && (op_result == op_dest) || (a op_result < a(int)op_dest)), \
set_AF_OF_arith()
// Execute arithmetic/logic operations in emulator memory/registers
#define R_M_OP(dest,op,src) (i_w ? op_dest = CAST(unsigned short)dest, op_result = CAST(unsigned short)dest op (op_source = CAST(unsigned short)src) \
: (op_dest = dest, op_result = dest op (op_source = CAST(unsigned char)src)))
#define MEM_OP(dest,op,src) R_M_OP(mem[dest],op,mem[src])
#define OP(op) MEM_OP(op_to_addr,op,op_from_addr)
// Increment or decrement a register #reg_id (usually SI or DI), depending on direction flag and operand size (given by i_w)
#define INDEX_INC(reg_id) (regs16[reg_id] -= (2 * regs8[FLAG_DF] - 1)*(i_w + 1))
// Helpers for stack operations
#define R_M_PUSH(a) (i_w = 1, R_M_OP(mem[SEGREG(REG_SS, REG_SP, --)], =, a))
#define R_M_POP(a) (i_w = 1, regs16[REG_SP] += 2, R_M_OP(a, =, mem[SEGREG(REG_SS, REG_SP, -2+)]))
// Convert segment:offset to linear address in emulator memory space
#define SEGREG(reg_seg,reg_ofs,op) 16 * regs16[reg_seg] + (unsigned short)(op regs16[reg_ofs])
// Returns sign bit of an 8-bit or 16-bit operand
#define SIGN_OF(a) (1 & (i_w ? CAST(short)a : a) >> (TOP_BIT - 1))
// Reinterpretation cast
#define CAST(a) *(a*)&
// Keyboard driver for console. This may need changing for UNIX/non-UNIX platforms
#ifdef _WIN32
#define KEYBOARD_DRIVER kbhit() && (mem[0x4A6] = getch(), pc_interrupt(7))
#else
#define KEYBOARD_DRIVER read(0, mem + 0x4A6, 1) && (int8_asap = (mem[0x4A6] == 0x1B), pc_interrupt(7))
#endif
// Keyboard driver for SDL
#ifdef NO_GRAPHICS
#define SDL_KEYBOARD_DRIVER KEYBOARD_DRIVER
#else
#define SDL_KEYBOARD_DRIVER sdl_screen ? SDL_PollEvent(&sdl_event) && (sdl_event.type == SDL_KEYDOWN || sdl_event.type == SDL_KEYUP) && (scratch_uint = sdl_event.key.keysym.unicode, scratch2_uint = sdl_event.key.keysym.mod, CAST(short)mem[0x4A6] = 0x400 + 0x800*!!(scratch2_uint & KMOD_ALT) + 0x1000*!!(scratch2_uint & KMOD_SHIFT) + 0x2000*!!(scratch2_uint & KMOD_CTRL) + 0x4000*(sdl_event.type == SDL_KEYUP) + ((!scratch_uint || scratch_uint > 0x7F) ? sdl_event.key.keysym.sym : scratch_uint), pc_interrupt(7)) : (KEYBOARD_DRIVER)
#endif
// Global variable definitions
unsigned char mem[RAM_SIZE], io_ports[IO_PORT_COUNT], *opcode_stream, *regs8, i_rm, i_w, i_reg, i_mod, i_mod_size, i_d, i_reg4bit, raw_opcode_id, xlat_opcode_id, extra, rep_mode, seg_override_en, rep_override_en, trap_flag, int8_asap, scratch_uchar, io_hi_lo, *vid_mem_base, spkr_en, bios_table_lookup[20][256];
unsigned short *regs16, reg_ip, seg_override, file_index, wave_counter;
unsigned int op_source, op_dest, rm_addr, op_to_addr, op_from_addr, i_data0, i_data1, i_data2, scratch_uint, scratch2_uint, inst_counter, set_flags_type, GRAPHICS_X, GRAPHICS_Y, pixel_colors[16], vmem_ctr;
int op_result, disk[3], scratch_int;
time_t clock_buf;
struct timeb ms_clock;
#ifndef NO_GRAPHICS
SDL_AudioSpec sdl_audio = {44100, AUDIO_U8, 1, 0, 128};
SDL_Surface *sdl_screen;
SDL_Event sdl_event;
unsigned short vid_addr_lookup[VIDEO_RAM_SIZE], cga_colors[4] = {0 /* Black */, 0x1F1F /* Cyan */, 0xE3E3 /* Magenta */, 0xFFFF /* White */};
#endif
// Helper functions
// Set carry flag
char set_CF(int new_CF)
{
return regs8[FLAG_CF] = !!new_CF;
}
// Set auxiliary flag
char set_AF(int new_AF)
{
return regs8[FLAG_AF] = !!new_AF;
}
// Set overflow flag
char set_OF(int new_OF)
{
return regs8[FLAG_OF] = !!new_OF;
}
// Set auxiliary and overflow flag after arithmetic operations
char set_AF_OF_arith()
{
set_AF((op_source ^= op_dest ^ op_result) & 0x10);
if (op_result == op_dest)
return set_OF(0);
else
return set_OF(1 & (regs8[FLAG_CF] ^ op_source >> (TOP_BIT - 1)));
}
// Assemble and return emulated CPU FLAGS register in scratch_uint
void make_flags()
{
scratch_uint = 0xF002; // 8086 has reserved and unused flags set to 1
for (int i = 9; i--;)
scratch_uint += regs8[FLAG_CF + i] << bios_table_lookup[TABLE_FLAGS_BITFIELDS][i];
}
// Set emulated CPU FLAGS register from regs8[FLAG_xx] values
void set_flags(int new_flags)
{
for (int i = 9; i--;)
regs8[FLAG_CF + i] = !!(1 << bios_table_lookup[TABLE_FLAGS_BITFIELDS][i] & new_flags);
}
// Convert raw opcode to translated opcode index. This condenses a large number of different encodings of similar
// instructions into a much smaller number of distinct functions, which we then execute
void set_opcode(unsigned char opcode)
{
xlat_opcode_id = bios_table_lookup[TABLE_XLAT_OPCODE][raw_opcode_id = opcode];
extra = bios_table_lookup[TABLE_XLAT_SUBFUNCTION][opcode];
i_mod_size = bios_table_lookup[TABLE_I_MOD_SIZE][opcode];
set_flags_type = bios_table_lookup[TABLE_STD_FLAGS][opcode];
}
// Execute INT #interrupt_num on the emulated machine
char pc_interrupt(unsigned char interrupt_num)
{
set_opcode(0xCD); // Decode like INT
make_flags();
R_M_PUSH(scratch_uint);
R_M_PUSH(regs16[REG_CS]);
R_M_PUSH(reg_ip);
MEM_OP(REGS_BASE + 2 * REG_CS, =, 4 * interrupt_num + 2);
R_M_OP(reg_ip, =, mem[4 * interrupt_num]);
return regs8[FLAG_TF] = regs8[FLAG_IF] = 0;
}
// AAA and AAS instructions - which_operation is +1 for AAA, and -1 for AAS
int AAA_AAS(char which_operation)
{
return (regs16[REG_AX] += 262 * which_operation*set_AF(set_CF(((regs8[REG_AL] & 0x0F) > 9) || regs8[FLAG_AF])), regs8[REG_AL] &= 0x0F);
}
#ifndef NO_GRAPHICS
void audio_callback(void *data, unsigned char *stream, int len)
{
for (int i = 0; i < len; i++)
stream[i] = (spkr_en == 3) && CAST(unsigned short)mem[0x4AA] ? -((54 * wave_counter++ / CAST(unsigned short)mem[0x4AA]) & 1) : sdl_audio.silence;
spkr_en = io_ports[0x61] & 3;
}
#endif
// Emulator entry point
int main(int argc, char **argv)
{
#ifndef NO_GRAPHICS
// Initialise SDL
SDL_Init(SDL_INIT_AUDIO);
sdl_audio.callback = audio_callback;
#ifdef _WIN32
sdl_audio.samples = 512;
#endif
SDL_OpenAudio(&sdl_audio, 0);
#endif
// regs16 and reg8 point to F000:0, the start of memory-mapped registers. CS is initialised to F000
regs16 = (unsigned short *)(regs8 = mem + REGS_BASE);
regs16[REG_CS] = 0xF000;
// Trap flag off
regs8[FLAG_TF] = 0;
// Set DL equal to the boot device: 0 for the FD, or 0x80 for the HD. Normally, boot from the FD.
// But, if the HD image file is prefixed with @, then boot from the HD
regs8[REG_DL] = ((argc > 3) && (*argv[3] == '@')) ? argv[3]++, 0x80 : 0;
// Open BIOS (file id disk[2]), floppy disk image (disk[1]), and hard disk image (disk[0]) if specified
for (file_index = 3; file_index;)
disk[--file_index] = *++argv ? open(*argv, 32898) : 0;
// Set CX:AX equal to the hard disk image size, if present
CAST(unsigned)regs16[REG_AX] = *disk ? lseek(*disk, 0, 2) >> 9 : 0;
// Load BIOS image into F000:0100, and set IP to 0100
read(disk[2], regs8 + (reg_ip = 0x100), 0xFF00);
// Load instruction decoding helper table
for (int i = 0; i < 20; i++)
for (int j = 0; j < 256; j++)
bios_table_lookup[i][j] = regs8[regs16[0x81 + i] + j];
// Instruction execution loop. Terminates if CS:IP = 0:0
for (; opcode_stream = mem + 16 * regs16[REG_CS] + reg_ip, opcode_stream != mem;)
{
// Set up variables to prepare for decoding an opcode
set_opcode(*opcode_stream);
// Extract i_w and i_d fields from instruction
i_w = (i_reg4bit = raw_opcode_id & 7) & 1;
i_d = i_reg4bit / 2 & 1;
// Extract instruction data fields
i_data0 = CAST(short)opcode_stream[1];
i_data1 = CAST(short)opcode_stream[2];
i_data2 = CAST(short)opcode_stream[3];
// seg_override_en and rep_override_en contain number of instructions to hold segment override and REP prefix respectively
if (seg_override_en)
seg_override_en--;
if (rep_override_en)
rep_override_en--;
// i_mod_size > 0 indicates that opcode uses i_mod/i_rm/i_reg, so decode them
if (i_mod_size)
{
i_mod = (i_data0 & 0xFF) >> 6;
i_rm = i_data0 & 7;
i_reg = i_data0 / 8 & 7;
if ((!i_mod && i_rm == 6) || (i_mod == 2))
i_data2 = CAST(short)opcode_stream[4];
else if (i_mod != 1)
i_data2 = i_data1;
else // If i_mod is 1, operand is (usually) 8 bits rather than 16 bits
i_data1 = (char)i_data1;
DECODE_RM_REG;
}
// Instruction execution unit
switch (xlat_opcode_id)
{
OPCODE_CHAIN 0: // Conditional jump (JAE, JNAE, etc.)
// i_w is the invert flag, e.g. i_w == 1 means JNAE, whereas i_w == 0 means JAE
scratch_uchar = raw_opcode_id / 2 & 7;
reg_ip += (char)i_data0 * (i_w ^ (regs8[bios_table_lookup[TABLE_COND_JUMP_DECODE_A][scratch_uchar]] || regs8[bios_table_lookup[TABLE_COND_JUMP_DECODE_B][scratch_uchar]] || regs8[bios_table_lookup[TABLE_COND_JUMP_DECODE_C][scratch_uchar]] ^ regs8[bios_table_lookup[TABLE_COND_JUMP_DECODE_D][scratch_uchar]]))
OPCODE 1: // MOV reg, imm
i_w = !!(raw_opcode_id & 8);
R_M_OP(mem[GET_REG_ADDR(i_reg4bit)], =, i_data0)
OPCODE 3: // PUSH regs16
R_M_PUSH(regs16[i_reg4bit])
OPCODE 4: // POP regs16
R_M_POP(regs16[i_reg4bit])
OPCODE 2: // INC|DEC regs16
i_w = 1;
i_d = 0;
i_reg = i_reg4bit;
DECODE_RM_REG;
i_reg = extra
OPCODE_CHAIN 5: // INC|DEC|JMP|CALL|PUSH
if (i_reg < 2) // INC|DEC
MEM_OP(op_from_addr, += 1 - 2 * i_reg +, REGS_BASE + 2 * REG_ZERO),
op_source = 1,
set_AF_OF_arith(),
set_OF(op_dest + 1 - i_reg == 1 << (TOP_BIT - 1)),
(xlat_opcode_id == 5) && (set_opcode(0x10), 0); // Decode like ADC
else if (i_reg != 6) // JMP|CALL
i_reg - 3 || R_M_PUSH(regs16[REG_CS]), // CALL (far)
i_reg & 2 && R_M_PUSH(reg_ip + 2 + i_mod*(i_mod != 3) + 2*(!i_mod && i_rm == 6)), // CALL (near or far)
i_reg & 1 && (regs16[REG_CS] = CAST(short)mem[op_from_addr + 2]), // JMP|CALL (far)
R_M_OP(reg_ip, =, mem[op_from_addr]),
set_opcode(0x9A); // Decode like CALL
else // PUSH
R_M_PUSH(mem[rm_addr])
OPCODE 6: // TEST r/m, imm16 / NOT|NEG|MUL|IMUL|DIV|IDIV reg
op_to_addr = op_from_addr;
switch (i_reg)
{
OPCODE_CHAIN 0: // TEST
set_opcode(0x20); // Decode like AND
reg_ip += i_w + 1;
R_M_OP(mem[op_to_addr], &, i_data2)
OPCODE 2: // NOT
OP(=~)
OPCODE 3: // NEG
OP(=-);
op_dest = 0;
set_opcode(0x28); // Decode like SUB
set_CF(op_result > op_dest)
OPCODE 4: // MUL
i_w ? MUL_MACRO(unsigned short, regs16) : MUL_MACRO(unsigned char, regs8)
OPCODE 5: // IMUL
i_w ? MUL_MACRO(short, regs16) : MUL_MACRO(char, regs8)
OPCODE 6: // DIV
i_w ? DIV_MACRO(unsigned short, unsigned, regs16) : DIV_MACRO(unsigned char, unsigned short, regs8)
OPCODE 7: // IDIV
i_w ? DIV_MACRO(short, int, regs16) : DIV_MACRO(char, short, regs8);
}
OPCODE 7: // ADD|OR|ADC|SBB|AND|SUB|XOR|CMP AL/AX, immed
rm_addr = REGS_BASE;
i_data2 = i_data0;
i_mod = 3;
i_reg = extra;
reg_ip--;
OPCODE_CHAIN 8: // ADD|OR|ADC|SBB|AND|SUB|XOR|CMP reg, immed
op_to_addr = rm_addr;
regs16[REG_SCRATCH] = (i_d |= !i_w) ? (char)i_data2 : i_data2;
op_from_addr = REGS_BASE + 2 * REG_SCRATCH;
reg_ip += !i_d + 1;
set_opcode(0x08 * (extra = i_reg));
OPCODE_CHAIN 9: // ADD|OR|ADC|SBB|AND|SUB|XOR|CMP|MOV reg, r/m
switch (extra)
{
OPCODE_CHAIN 0: // ADD
OP(+=),
set_CF(op_result < op_dest)
OPCODE 1: // OR
OP(|=)
OPCODE 2: // ADC
ADC_SBB_MACRO(+)
OPCODE 3: // SBB
ADC_SBB_MACRO(-)
OPCODE 4: // AND
OP(&=)
OPCODE 5: // SUB
OP(-=),
set_CF(op_result > op_dest)
OPCODE 6: // XOR
OP(^=)
OPCODE 7: // CMP
OP(-),
set_CF(op_result > op_dest)
OPCODE 8: // MOV
OP(=);
}
OPCODE 10: // MOV sreg, r/m | POP r/m | LEA reg, r/m
if (!i_w) // MOV
i_w = 1,
i_reg += 8,
DECODE_RM_REG,
OP(=);
else if (!i_d) // LEA
seg_override_en = 1,
seg_override = REG_ZERO,
DECODE_RM_REG,
R_M_OP(mem[op_from_addr], =, rm_addr);
else // POP
R_M_POP(mem[rm_addr])
OPCODE 11: // MOV AL/AX, [loc]
i_mod = i_reg = 0;
i_rm = 6;
i_data1 = i_data0;
DECODE_RM_REG;
MEM_OP(op_from_addr, =, op_to_addr)
OPCODE 12: // ROL|ROR|RCL|RCR|SHL|SHR|???|SAR reg/mem, 1/CL/imm (80186)
scratch2_uint = SIGN_OF(mem[rm_addr]),
scratch_uint = extra ? // xxx reg/mem, imm
++reg_ip,
(char)i_data1
: // xxx reg/mem, CL
i_d
? 31 & regs8[REG_CL]
: // xxx reg/mem, 1
1;
if (scratch_uint)
{
if (i_reg < 4) // Rotate operations
scratch_uint %= i_reg / 2 + TOP_BIT,
R_M_OP(scratch2_uint, =, mem[rm_addr]);
if (i_reg & 1) // Rotate/shift right operations
R_M_OP(mem[rm_addr], >>=, scratch_uint);
else // Rotate/shift left operations
R_M_OP(mem[rm_addr], <<=, scratch_uint);
if (i_reg > 3) // Shift operations
set_opcode(0x10); // Decode like ADC
if (i_reg > 4) // SHR or SAR
set_CF(op_dest >> (scratch_uint - 1) & 1);
}
switch (i_reg)
{
OPCODE_CHAIN 0: // ROL
R_M_OP(mem[rm_addr], += , scratch2_uint >> (TOP_BIT - scratch_uint));
set_OF(SIGN_OF(op_result) ^ set_CF(op_result & 1))
OPCODE 1: // ROR
scratch2_uint &= (1 << scratch_uint) - 1,
R_M_OP(mem[rm_addr], += , scratch2_uint << (TOP_BIT - scratch_uint));
set_OF(SIGN_OF(op_result * 2) ^ set_CF(SIGN_OF(op_result)))
OPCODE 2: // RCL
R_M_OP(mem[rm_addr], += (regs8[FLAG_CF] << (scratch_uint - 1)) + , scratch2_uint >> (1 + TOP_BIT - scratch_uint));
set_OF(SIGN_OF(op_result) ^ set_CF(scratch2_uint & 1 << (TOP_BIT - scratch_uint)))
OPCODE 3: // RCR
R_M_OP(mem[rm_addr], += (regs8[FLAG_CF] << (TOP_BIT - scratch_uint)) + , scratch2_uint << (1 + TOP_BIT - scratch_uint));
set_CF(scratch2_uint & 1 << (scratch_uint - 1));
set_OF(SIGN_OF(op_result) ^ SIGN_OF(op_result * 2))
OPCODE 4: // SHL
set_OF(SIGN_OF(op_result) ^ set_CF(SIGN_OF(op_dest << (scratch_uint - 1))))
OPCODE 5: // SHR
set_OF(SIGN_OF(op_dest))
OPCODE 7: // SAR
scratch_uint < TOP_BIT || set_CF(scratch2_uint);
set_OF(0);
R_M_OP(mem[rm_addr], +=, scratch2_uint *= ~(((1 << TOP_BIT) - 1) >> scratch_uint));
}
OPCODE 13: // LOOPxx|JCZX
scratch_uint = !!--regs16[REG_CX];
switch(i_reg4bit)
{
OPCODE_CHAIN 0: // LOOPNZ
scratch_uint &= !regs8[FLAG_ZF]
OPCODE 1: // LOOPZ
scratch_uint &= regs8[FLAG_ZF]
OPCODE 3: // JCXXZ
scratch_uint = !++regs16[REG_CX];
}
reg_ip += scratch_uint*(char)i_data0
OPCODE 14: // JMP | CALL short/near
reg_ip += 3 - i_d;
if (!i_w)
{
if (i_d) // JMP far
reg_ip = 0,
regs16[REG_CS] = i_data2;
else // CALL
R_M_PUSH(reg_ip);
}
reg_ip += i_d && i_w ? (char)i_data0 : i_data0
OPCODE 15: // TEST reg, r/m
MEM_OP(op_from_addr, &, op_to_addr)
OPCODE 16: // XCHG AX, regs16
i_w = 1;
op_to_addr = REGS_BASE;
op_from_addr = GET_REG_ADDR(i_reg4bit);
OPCODE_CHAIN 24: // NOP|XCHG reg, r/m
if (op_to_addr != op_from_addr)
OP(^=),
MEM_OP(op_from_addr, ^=, op_to_addr),
OP(^=)
OPCODE 17: // MOVSx (extra=0)|STOSx (extra=1)|LODSx (extra=2)
scratch2_uint = seg_override_en ? seg_override : REG_DS;
for (scratch_uint = rep_override_en ? regs16[REG_CX] : 1; scratch_uint; scratch_uint--)
{
MEM_OP(extra < 2 ? SEGREG(REG_ES, REG_DI,) : REGS_BASE, =, extra & 1 ? REGS_BASE : SEGREG(scratch2_uint, REG_SI,)),
extra & 1 || INDEX_INC(REG_SI),
extra & 2 || INDEX_INC(REG_DI);
}
if (rep_override_en)
regs16[REG_CX] = 0
OPCODE 18: // CMPSx (extra=0)|SCASx (extra=1)
scratch2_uint = seg_override_en ? seg_override : REG_DS;
if ((scratch_uint = rep_override_en ? regs16[REG_CX] : 1))
{
for (; scratch_uint; rep_override_en || scratch_uint--)
{
MEM_OP(extra ? REGS_BASE : SEGREG(scratch2_uint, REG_SI,), -, SEGREG(REG_ES, REG_DI,)),
extra || INDEX_INC(REG_SI),
INDEX_INC(REG_DI), rep_override_en && !(--regs16[REG_CX] && (!op_result == rep_mode)) && (scratch_uint = 0);
}
set_flags_type = FLAGS_UPDATE_SZP | FLAGS_UPDATE_AO_ARITH; // Funge to set SZP/AO flags
set_CF(op_result > op_dest);
}
OPCODE 19: // RET|RETF|IRET
i_d = i_w;
R_M_POP(reg_ip);
if (extra) // IRET|RETF|RETF imm16
R_M_POP(regs16[REG_CS]);
if (extra & 2) // IRET
set_flags(R_M_POP(scratch_uint));
else if (!i_d) // RET|RETF imm16
regs16[REG_SP] += i_data0
OPCODE 20: // MOV r/m, immed
R_M_OP(mem[op_from_addr], =, i_data2)
OPCODE 21: // IN AL/AX, DX/imm8
io_ports[0x20] = 0; // PIC EOI
io_ports[0x42] = --io_ports[0x40]; // PIT channel 0/2 read placeholder
io_ports[0x3DA] ^= 9; // CGA refresh
scratch_uint = extra ? regs16[REG_DX] : (unsigned char)i_data0;
scratch_uint == 0x60 && (io_ports[0x64] = 0); // Scancode read flag
scratch_uint == 0x3D5 && (io_ports[0x3D4] >> 1 == 7) && (io_ports[0x3D5] = ((mem[0x49E]*80 + mem[0x49D] + CAST(short)mem[0x4AD]) & (io_ports[0x3D4] & 1 ? 0xFF : 0xFF00)) >> (io_ports[0x3D4] & 1 ? 0 : 8)); // CRT cursor position
R_M_OP(regs8[REG_AL], =, io_ports[scratch_uint]);
OPCODE 22: // OUT DX/imm8, AL/AX
scratch_uint = extra ? regs16[REG_DX] : (unsigned char)i_data0;
R_M_OP(io_ports[scratch_uint], =, regs8[REG_AL]);
scratch_uint == 0x61 && (io_hi_lo = 0, spkr_en |= regs8[REG_AL] & 3); // Speaker control
(scratch_uint == 0x40 || scratch_uint == 0x42) && (io_ports[0x43] & 6) && (mem[0x469 + scratch_uint - (io_hi_lo ^= 1)] = regs8[REG_AL]); // PIT rate programming
#ifndef NO_GRAPHICS
scratch_uint == 0x43 && (io_hi_lo = 0, regs8[REG_AL] >> 6 == 2) && (SDL_PauseAudio((regs8[REG_AL] & 0xF7) != 0xB6), 0); // Speaker enable
#endif
scratch_uint == 0x3D5 && (io_ports[0x3D4] >> 1 == 6) && (mem[0x4AD + !(io_ports[0x3D4] & 1)] = regs8[REG_AL]); // CRT video RAM start offset
scratch_uint == 0x3D5 && (io_ports[0x3D4] >> 1 == 7) && (scratch2_uint = ((mem[0x49E]*80 + mem[0x49D] + CAST(short)mem[0x4AD]) & (io_ports[0x3D4] & 1 ? 0xFF00 : 0xFF)) + (regs8[REG_AL] << (io_ports[0x3D4] & 1 ? 0 : 8)) - CAST(short)mem[0x4AD], mem[0x49D] = scratch2_uint % 80, mem[0x49E] = scratch2_uint / 80); // CRT cursor position
scratch_uint == 0x3B5 && io_ports[0x3B4] == 1 && (GRAPHICS_X = regs8[REG_AL] * 16); // Hercules resolution reprogramming. Defaults are set in the BIOS
scratch_uint == 0x3B5 && io_ports[0x3B4] == 6 && (GRAPHICS_Y = regs8[REG_AL] * 4);
OPCODE 23: // REPxx
rep_override_en = 2;
rep_mode = i_w;
seg_override_en && seg_override_en++
OPCODE 25: // PUSH reg
R_M_PUSH(regs16[extra])
OPCODE 26: // POP reg
R_M_POP(regs16[extra])
OPCODE 27: // xS: segment overrides
seg_override_en = 2;
seg_override = extra;
rep_override_en && rep_override_en++
OPCODE 28: // DAA/DAS
i_w = 0;
extra ? DAA_DAS(-=, >=, 0xFF, 0x99) : DAA_DAS(+=, <, 0xF0, 0x90) // extra = 0 for DAA, 1 for DAS
OPCODE 29: // AAA/AAS
op_result = AAA_AAS(extra - 1)
OPCODE 30: // CBW
regs8[REG_AH] = -SIGN_OF(regs8[REG_AL])
OPCODE 31: // CWD
regs16[REG_DX] = -SIGN_OF(regs16[REG_AX])
OPCODE 32: // CALL FAR imm16:imm16
R_M_PUSH(regs16[REG_CS]);
R_M_PUSH(reg_ip + 5);
regs16[REG_CS] = i_data2;
reg_ip = i_data0
OPCODE 33: // PUSHF
make_flags();
R_M_PUSH(scratch_uint)
OPCODE 34: // POPF
set_flags(R_M_POP(scratch_uint))
OPCODE 35: // SAHF
make_flags();
set_flags((scratch_uint & 0xFF00) + regs8[REG_AH])
OPCODE 36: // LAHF
make_flags(),
regs8[REG_AH] = scratch_uint
OPCODE 37: // LES|LDS reg, r/m
i_w = i_d = 1;
DECODE_RM_REG;
OP(=);
MEM_OP(REGS_BASE + extra, =, rm_addr + 2)
OPCODE 38: // INT 3
++reg_ip;
pc_interrupt(3)
OPCODE 39: // INT imm8
reg_ip += 2;
pc_interrupt(i_data0)
OPCODE 40: // INTO
++reg_ip;
regs8[FLAG_OF] && pc_interrupt(4)
OPCODE 41: // AAM
if (i_data0 &= 0xFF)
regs8[REG_AH] = regs8[REG_AL] / i_data0,
op_result = regs8[REG_AL] %= i_data0;
else // Divide by zero
pc_interrupt(0)
OPCODE 42: // AAD
i_w = 0;
regs16[REG_AX] = op_result = 0xFF & regs8[REG_AL] + i_data0 * regs8[REG_AH]
OPCODE 43: // SALC
regs8[REG_AL] = -regs8[FLAG_CF]
OPCODE 44: // XLAT
regs8[REG_AL] = mem[SEGREG(seg_override_en ? seg_override : REG_DS, REG_BX, regs8[REG_AL] +)]
OPCODE 45: // CMC
regs8[FLAG_CF] ^= 1
OPCODE 46: // CLC|STC|CLI|STI|CLD|STD
regs8[extra / 2] = extra & 1
OPCODE 47: // TEST AL/AX, immed
R_M_OP(regs8[REG_AL], &, i_data0)
OPCODE 48: // Emulator-specific 0F xx opcodes
switch ((char)i_data0)
{
OPCODE_CHAIN 0: // PUTCHAR_AL
write(1, regs8, 1)
OPCODE 1: // GET_RTC
time(&clock_buf);
ftime(&ms_clock);
memcpy(mem + SEGREG(REG_ES, REG_BX,), localtime(&clock_buf), sizeof(struct tm));
CAST(short)mem[SEGREG(REG_ES, REG_BX, 36+)] = ms_clock.millitm;
OPCODE 2: // DISK_READ
OPCODE_CHAIN 3: // DISK_WRITE
regs8[REG_AL] = ~lseek(disk[regs8[REG_DL]], CAST(unsigned)regs16[REG_BP] << 9, 0)
? ((char)i_data0 == 3 ? (int(*)())write : (int(*)())read)(disk[regs8[REG_DL]], mem + SEGREG(REG_ES, REG_BX,), regs16[REG_AX])
: 0;
}
}
// Increment instruction pointer by computed instruction length. Tables in the BIOS binary
// help us here.
reg_ip += (i_mod*(i_mod != 3) + 2*(!i_mod && i_rm == 6))*i_mod_size + bios_table_lookup[TABLE_BASE_INST_SIZE][raw_opcode_id] + bios_table_lookup[TABLE_I_W_SIZE][raw_opcode_id]*(i_w + 1);
// If instruction needs to update SF, ZF and PF, set them as appropriate
if (set_flags_type & FLAGS_UPDATE_SZP)
{
regs8[FLAG_SF] = SIGN_OF(op_result);
regs8[FLAG_ZF] = !op_result;
regs8[FLAG_PF] = bios_table_lookup[TABLE_PARITY_FLAG][(unsigned char)op_result];
// If instruction is an arithmetic or logic operation, also set AF/OF/CF as appropriate.
if (set_flags_type & FLAGS_UPDATE_AO_ARITH)
set_AF_OF_arith();
if (set_flags_type & FLAGS_UPDATE_OC_LOGIC)
set_CF(0), set_OF(0);
}
// Poll timer/keyboard every KEYBOARD_TIMER_UPDATE_DELAY instructions
if (!(++inst_counter % KEYBOARD_TIMER_UPDATE_DELAY))
int8_asap = 1;
#ifndef NO_GRAPHICS
// Update the video graphics display every GRAPHICS_UPDATE_DELAY instructions
if (!(inst_counter % GRAPHICS_UPDATE_DELAY))
{
// Video card in graphics mode?
if (io_ports[0x3B8] & 2)
{
// If we don't already have an SDL window open, set it up and compute color and video memory translation tables
if (!sdl_screen)
{
for (int i = 0; i < 16; i++)
pixel_colors[i] = mem[0x4AC] ? // CGA?
cga_colors[(i & 12) >> 2] + (cga_colors[i & 3] << 16) // CGA -> RGB332
: 0xFF*(((i & 1) << 24) + ((i & 2) << 15) + ((i & 4) << 6) + ((i & 8) >> 3)); // Hercules -> RGB332
for (int i = 0; i < GRAPHICS_X * GRAPHICS_Y / 4; i++)
vid_addr_lookup[i] = i / GRAPHICS_X * (GRAPHICS_X / 8) + (i / 2) % (GRAPHICS_X / 8) + 0x2000*(mem[0x4AC] ? (2 * i / GRAPHICS_X) % 2 : (4 * i / GRAPHICS_X) % 4);
SDL_Init(SDL_INIT_VIDEO);
sdl_screen = SDL_SetVideoMode(GRAPHICS_X, GRAPHICS_Y, 8, 0);
SDL_EnableUNICODE(1);
SDL_EnableKeyRepeat(500, 30);
}
// Refresh SDL display from emulated graphics card video RAM
vid_mem_base = mem + 0xB0000 + 0x8000*(mem[0x4AC] ? 1 : io_ports[0x3B8] >> 7); // B800:0 for CGA/Hercules bank 2, B000:0 for Hercules bank 1
for (int i = 0; i < GRAPHICS_X * GRAPHICS_Y / 4; i++)
((unsigned *)sdl_screen->pixels)[i] = pixel_colors[15 & (vid_mem_base[vid_addr_lookup[i]] >> 4*!(i & 1))];
SDL_Flip(sdl_screen);
}
else if (sdl_screen) // Application has gone back to text mode, so close the SDL window
{
SDL_QuitSubSystem(SDL_INIT_VIDEO);
sdl_screen = 0;
}
SDL_PumpEvents();
}
#endif
// Application has set trap flag, so fire INT 1
if (trap_flag)
pc_interrupt(1);
trap_flag = regs8[FLAG_TF];
// If a timer tick is pending, interrupts are enabled, and no overrides/REP are active,
// then process the tick and check for new keystrokes
if (int8_asap && !seg_override_en && !rep_override_en && regs8[FLAG_IF] && !regs8[FLAG_TF])
pc_interrupt(0xA), int8_asap = 0, SDL_KEYBOARD_DRIVER;
}
#ifndef NO_GRAPHICS
SDL_Quit();
#endif
return 0;
}