-
Notifications
You must be signed in to change notification settings - Fork 8
/
predict.py
128 lines (117 loc) · 4.64 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os
from typing import List
import torch
from diffusers import (
StableDiffusionPipeline,
StableDiffusionImg2ImgPipeline,
PNDMScheduler,
LMSDiscreteScheduler,
DDIMScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
)
from PIL import Image
from cog import BasePredictor, Input, Path
MODEL_ID = "stabilityai/stable-diffusion-2-1"
MODEL_CACHE = "diffusers-cache"
class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
print("Loading pipeline...")
self.txt2img_pipe = StableDiffusionPipeline.from_pretrained(
MODEL_ID,
cache_dir=MODEL_CACHE,
local_files_only=True,
).to("cuda")
self.img2img_pipe = StableDiffusionImg2ImgPipeline(
vae=self.txt2img_pipe.vae,
text_encoder=self.txt2img_pipe.text_encoder,
tokenizer=self.txt2img_pipe.tokenizer,
unet=self.txt2img_pipe.unet,
scheduler=self.txt2img_pipe.scheduler,
safety_checker=self.txt2img_pipe.safety_checker,
feature_extractor=self.txt2img_pipe.feature_extractor,
).to("cuda")
@torch.inference_mode()
def predict(
self,
prompt: str = Input(
description="Input prompt",
default="A fantasy landscape, trending on artstation",
),
negative_prompt: str = Input(
description="The prompt NOT to guide the image generation. Ignored when not using guidance",
default=None,
),
image: Path = Input(
description="Inital image to generate variations of.",
),
width: int = Input(
description="Width of output image. Maximum size is 1024x768 or 768x1024 because of memory limits",
choices=[128, 256, 384, 448, 512, 576, 640, 704, 768, 832, 896, 960, 1024],
default=512,
),
height: int = Input(
description="Height of output image. Maximum size is 1024x768 or 768x1024 because of memory limits",
choices=[128, 256, 384, 448, 512, 576, 640, 704, 768, 832, 896, 960, 1024],
default=512,
),
prompt_strength: float = Input(
description="Prompt strength when providing the image. 1.0 corresponds to full destruction of information in init image",
default=0.8,
),
num_outputs: int = Input(
description="Number of images to output. Higher number of outputs may OOM.",
ge=1,
le=8,
default=1,
),
num_inference_steps: int = Input(
description="Number of denoising steps", ge=1, le=500, default=25
),
guidance_scale: float = Input(
description="Scale for classifier-free guidance", ge=1, le=20, default=7.5
),
scheduler: str = Input(
default="DPMSolverMultistep",
choices=["DDIM", "K_EULER", "DPMSolverMultistep", "K_EULER_ANCESTRAL", "PNDM", "KLMS"],
description="Choose a scheduler.",
),
seed: int = Input(
description="Random seed. Leave blank to randomize the seed", default=None
),
) -> List[Path]:
"""Run a single prediction on the model"""
if seed is None:
seed = int.from_bytes(os.urandom(2), "big")
print(f"Using seed: {seed}")
pipe = self.img2img_pipe
extra_kwargs = {
"image": Image.open(image).convert("RGB"),
"strength": prompt_strength,
}
pipe.scheduler = make_scheduler(scheduler, pipe.scheduler.config)
generator = torch.Generator("cuda").manual_seed(seed)
output = pipe(
prompt=[prompt] * num_outputs if prompt is not None else None,
guidance_scale=guidance_scale,
generator=generator,
num_inference_steps=num_inference_steps,
**extra_kwargs,
)
output_paths = []
for i, sample in enumerate(output.images):
output_path = f"/tmp/out-{i}.png"
sample.save(output_path)
output_paths.append(Path(output_path))
return output_paths
def make_scheduler(name, config):
return {
"PNDM": PNDMScheduler.from_config(config),
"KLMS": LMSDiscreteScheduler.from_config(config),
"DDIM": DDIMScheduler.from_config(config),
"K_EULER": EulerDiscreteScheduler.from_config(config),
"K_EULER_ANCESTRAL": EulerAncestralDiscreteScheduler.from_config(config),
"DPMSolverMultistep": DPMSolverMultistepScheduler.from_config(config),
}[name]