forked from pschwllr/MolecularTransformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
preprocess.py
executable file
·235 lines (190 loc) · 8.19 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Pre-process Data / features files and build vocabulary
"""
import argparse
import glob
import sys
import gc
import os
import codecs
import torch
from onmt.utils.logging import init_logger, logger
import onmt.inputters as inputters
import onmt.opts as opts
def check_existing_pt_files(opt):
""" Checking if there are existing .pt files to avoid tampering """
# We will use glob.glob() to find sharded {train|valid}.[0-9]*.pt
# when training, so check to avoid tampering with existing pt files
# or mixing them up.
for t in ['train', 'valid', 'vocab']:
pattern = opt.save_data + '.' + t + '*.pt'
if glob.glob(pattern):
sys.stderr.write("Please backup existing pt file: %s, "
"to avoid tampering!\n" % pattern)
sys.exit(1)
def parse_args():
""" Parsing arguments """
parser = argparse.ArgumentParser(
description='preprocess.py',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
opts.add_md_help_argument(parser)
opts.preprocess_opts(parser)
opt = parser.parse_args()
torch.manual_seed(opt.seed)
check_existing_pt_files(opt)
return opt
def build_save_in_shards_using_shards_size(src_corpus, tgt_corpus, fields,
corpus_type, opt):
"""
Divide src_corpus and tgt_corpus into smaller multiples
src_copus and tgt corpus files, then build shards, each
shard will have opt.shard_size samples except last shard.
The reason we do this is to avoid taking up too much memory due
to sucking in a huge corpus file.
"""
with codecs.open(src_corpus, "r", encoding="utf-8") as fsrc:
with codecs.open(tgt_corpus, "r", encoding="utf-8") as ftgt:
logger.info("Reading source and target files: %s %s."
% (src_corpus, tgt_corpus))
src_data = fsrc.readlines()
tgt_data = ftgt.readlines()
num_shards = int(len(src_data) / opt.shard_size)
for x in range(num_shards):
logger.info("Splitting shard %d." % x)
f = codecs.open(src_corpus + ".{0}.txt".format(x), "w",
encoding="utf-8")
f.writelines(
src_data[x * opt.shard_size: (x + 1) * opt.shard_size])
f.close()
f = codecs.open(tgt_corpus + ".{0}.txt".format(x), "w",
encoding="utf-8")
f.writelines(
tgt_data[x * opt.shard_size: (x + 1) * opt.shard_size])
f.close()
num_written = num_shards * opt.shard_size
if len(src_data) > num_written:
logger.info("Splitting shard %d." % num_shards)
f = codecs.open(src_corpus + ".{0}.txt".format(num_shards),
'w', encoding="utf-8")
f.writelines(
src_data[num_shards * opt.shard_size:])
f.close()
f = codecs.open(tgt_corpus + ".{0}.txt".format(num_shards),
'w', encoding="utf-8")
f.writelines(
tgt_data[num_shards * opt.shard_size:])
f.close()
src_list = sorted(glob.glob(src_corpus + '.*.txt'))
tgt_list = sorted(glob.glob(tgt_corpus + '.*.txt'))
ret_list = []
for index, src in enumerate(src_list):
logger.info("Building shard %d." % index)
dataset = inputters.build_dataset(
fields, opt.data_type,
src_path=src,
tgt_path=tgt_list[index],
src_dir=opt.src_dir,
src_seq_length=opt.src_seq_length,
tgt_seq_length=opt.tgt_seq_length,
src_seq_length_trunc=opt.src_seq_length_trunc,
tgt_seq_length_trunc=opt.tgt_seq_length_trunc,
dynamic_dict=opt.dynamic_dict,
sample_rate=opt.sample_rate,
window_size=opt.window_size,
window_stride=opt.window_stride,
window=opt.window,
image_channel_size=opt.image_channel_size
)
pt_file = "{:s}.{:s}.{:d}.pt".format(
opt.save_data, corpus_type, index)
# We save fields in vocab.pt seperately, so make it empty.
dataset.fields = []
logger.info(" * saving %sth %s data shard to %s."
% (index, corpus_type, pt_file))
torch.save(dataset, pt_file)
ret_list.append(pt_file)
os.remove(src)
os.remove(tgt_list[index])
del dataset.examples
gc.collect()
del dataset
gc.collect()
return ret_list
def build_save_dataset(corpus_type, fields, opt):
""" Building and saving the dataset """
assert corpus_type in ['train', 'valid']
if corpus_type == 'train':
src_corpus = opt.train_src
tgt_corpus = opt.train_tgt
else:
src_corpus = opt.valid_src
tgt_corpus = opt.valid_tgt
if (opt.shard_size > 0):
return build_save_in_shards_using_shards_size(src_corpus,
tgt_corpus,
fields,
corpus_type,
opt)
# For data_type == 'img' or 'audio', currently we don't do
# preprocess sharding. We only build a monolithic dataset.
# But since the interfaces are uniform, it would be not hard
# to do this should users need this feature.
dataset = inputters.build_dataset(
fields, opt.data_type,
src_path=src_corpus,
tgt_path=tgt_corpus,
src_dir=opt.src_dir,
src_seq_length=opt.src_seq_length,
tgt_seq_length=opt.tgt_seq_length,
src_seq_length_trunc=opt.src_seq_length_trunc,
tgt_seq_length_trunc=opt.tgt_seq_length_trunc,
dynamic_dict=opt.dynamic_dict,
sample_rate=opt.sample_rate,
window_size=opt.window_size,
window_stride=opt.window_stride,
window=opt.window,
image_channel_size=opt.image_channel_size)
# We save fields in vocab.pt seperately, so make it empty.
dataset.fields = []
pt_file = "{:s}.{:s}.pt".format(opt.save_data, corpus_type)
logger.info(" * saving %s dataset to %s." % (corpus_type, pt_file))
torch.save(dataset, pt_file)
return [pt_file]
def build_save_vocab(train_dataset, fields, opt):
""" Building and saving the vocab """
fields = inputters.build_vocab(train_dataset, fields, opt.data_type,
opt.share_vocab,
opt.src_vocab,
opt.src_vocab_size,
opt.src_words_min_frequency,
opt.tgt_vocab,
opt.tgt_vocab_size,
opt.tgt_words_min_frequency)
# Can't save fields, so remove/reconstruct at training time.
vocab_file = opt.save_data + '.vocab.pt'
torch.save(inputters.save_fields_to_vocab(fields), vocab_file)
def main():
opt = parse_args()
if (opt.max_shard_size > 0):
raise AssertionError("-max_shard_size is deprecated, please use \
-shard_size (number of examples) instead.")
init_logger(opt.log_file)
logger.info("Extracting features...")
src_nfeats = inputters.get_num_features(
opt.data_type, opt.train_src, 'src')
tgt_nfeats = inputters.get_num_features(
opt.data_type, opt.train_tgt, 'tgt')
logger.info(" * number of source features: %d." % src_nfeats)
logger.info(" * number of target features: %d." % tgt_nfeats)
logger.info("Building `Fields` object...")
fields = inputters.get_fields(opt.data_type, src_nfeats, tgt_nfeats)
logger.info("Building & saving training data...")
train_dataset_files = build_save_dataset('train', fields, opt)
logger.info("Building & saving validation data...")
build_save_dataset('valid', fields, opt)
logger.info("Building & saving vocabulary...")
build_save_vocab(train_dataset_files, fields, opt)
if __name__ == "__main__":
main()