forked from cunjian/pytorch_face_landmark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_camera_light_onnx.py
165 lines (149 loc) · 6.02 KB
/
test_camera_light_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
"""
This code uses the onnx model to detect faces from live video or cameras.
Use a much faster face detector: https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB
Date: 3/26/2020 by Cunjian Chen ([email protected])
"""
import time
import cv2
import numpy as np
import onnx
import vision.utils.box_utils_numpy as box_utils
from caffe2.python.onnx import backend
# onnx runtime
import onnxruntime as ort
# import libraries for landmark
from common.utils import BBox,drawLandmark,drawLandmark_multiple
from PIL import Image
import torchvision.transforms as transforms
# setup the parameters
resize = transforms.Resize([56, 56])
to_tensor = transforms.ToTensor()
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
# import the landmark detection models
import onnx
import onnxruntime
onnx_model_landmark = onnx.load("onnx/landmark_detection_56_se_external.onnx")
onnx.checker.check_model(onnx_model_landmark)
ort_session_landmark = onnxruntime.InferenceSession("onnx/landmark_detection_56_se_external.onnx")
def to_numpy(tensor):
return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()
# face detection setting
def predict(width, height, confidences, boxes, prob_threshold, iou_threshold=0.3, top_k=-1):
boxes = boxes[0]
confidences = confidences[0]
picked_box_probs = []
picked_labels = []
for class_index in range(1, confidences.shape[1]):
probs = confidences[:, class_index]
mask = probs > prob_threshold
probs = probs[mask]
if probs.shape[0] == 0:
continue
subset_boxes = boxes[mask, :]
box_probs = np.concatenate([subset_boxes, probs.reshape(-1, 1)], axis=1)
box_probs = box_utils.hard_nms(box_probs,
iou_threshold=iou_threshold,
top_k=top_k,
)
picked_box_probs.append(box_probs)
picked_labels.extend([class_index] * box_probs.shape[0])
if not picked_box_probs:
return np.array([]), np.array([]), np.array([])
picked_box_probs = np.concatenate(picked_box_probs)
picked_box_probs[:, 0] *= width
picked_box_probs[:, 1] *= height
picked_box_probs[:, 2] *= width
picked_box_probs[:, 3] *= height
return picked_box_probs[:, :4].astype(np.int32), np.array(picked_labels), picked_box_probs[:, 4]
label_path = "models/voc-model-labels.txt"
onnx_path = "models/onnx/version-RFB-320.onnx"
class_names = [name.strip() for name in open(label_path).readlines()]
predictor = onnx.load(onnx_path)
onnx.checker.check_model(predictor)
onnx.helper.printable_graph(predictor.graph)
predictor = backend.prepare(predictor, device="CPU") # default CPU
ort_session = ort.InferenceSession(onnx_path)
input_name = ort_session.get_inputs()[0].name
# perform face detection and alignment from camera
cap = cv2.VideoCapture(0) # capture from camera
threshold = 0.7
sum = 0
while True:
ret, orig_image = cap.read()
if orig_image is None:
print("no img")
break
image = cv2.cvtColor(orig_image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (320, 240))
# image = cv2.resize(image, (640, 480))
image_mean = np.array([127, 127, 127])
image = (image - image_mean) / 128
image = np.transpose(image, [2, 0, 1])
image = np.expand_dims(image, axis=0)
image = image.astype(np.float32)
# confidences, boxes = predictor.run(image)
time_time = time.time()
confidences, boxes = ort_session.run(None, {input_name: image})
print("cost time:{}".format(time.time() - time_time))
boxes, labels, probs = predict(orig_image.shape[1], orig_image.shape[0], confidences, boxes, threshold)
for i in range(boxes.shape[0]):
box = boxes[i, :]
label = f"{class_names[labels[i]]}: {probs[i]:.2f}"
#cv2.rectangle(orig_image, (box[0], box[1]), (box[2], box[3]), (255, 255, 0), 4)
# perform landmark detection
out_size = 56
img=orig_image.copy()
height,width,_=img.shape
x1=box[0]
y1=box[1]
x2=box[2]
y2=box[3]
w = x2 - x1 + 1
h = y2 - y1 + 1
size = int(max([w, h])*1.1)
cx = x1 + w//2
cy = y1 + h//2
x1 = cx - size//2
x2 = x1 + size
y1 = cy - size//2
y2 = y1 + size
dx = max(0, -x1)
dy = max(0, -y1)
x1 = max(0, x1)
y1 = max(0, y1)
edx = max(0, x2 - width)
edy = max(0, y2 - height)
x2 = min(width, x2)
y2 = min(height, y2)
new_bbox = list(map(int, [x1, x2, y1, y2]))
new_bbox = BBox(new_bbox)
cropped=img[new_bbox.top:new_bbox.bottom,new_bbox.left:new_bbox.right]
if (dx > 0 or dy > 0 or edx > 0 or edy > 0):
cropped = cv2.copyMakeBorder(cropped, int(dy), int(edy), int(dx), int(edx), cv2.BORDER_CONSTANT, 0)
cropped_face = cv2.resize(cropped, (out_size, out_size))
if cropped_face.shape[0]<=0 or cropped_face.shape[1]<=0:
continue
cropped_face = cv2.cvtColor(cropped_face, cv2.COLOR_BGR2RGB)
cropped_face = Image.fromarray(cropped_face)
test_face = resize(cropped_face)
test_face = to_tensor(test_face)
test_face = normalize(test_face)
test_face.unsqueeze_(0)
start = time.time()
ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(test_face)}
ort_outs = ort_session_landmark.run(None, ort_inputs)
end = time.time()
print('Time: {:.6f}s.'.format(end - start))
landmark = ort_outs[0]
landmark = landmark.reshape(-1,2)
landmark = new_bbox.reprojectLandmark(landmark)
orig_image = drawLandmark_multiple(orig_image, new_bbox, landmark)
sum += boxes.shape[0]
orig_image = cv2.resize(orig_image, (0, 0), fx=0.7, fy=0.7)
cv2.imshow('annotated', orig_image)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
print("sum:{}".format(sum))