-
Notifications
You must be signed in to change notification settings - Fork 424
Programmatic API
(This page is work in progress)
Tip
|
For most applications the annotations API is a better fit than the programmatic API: the annotation syntax is more compact, easier to read, and easier to maintain. See this introductory article and for more details, the user manual. |
Picocli 3.0 offers a programmatic API for creating command line applications, in addition to annotations. The programmatic API allows applications to dynamically create command line options on the fly, and also makes it possible to create idiomatic domain-specific languages for processing command line arguments, using picocli, in other JVM languages.
CommandSpec spec = CommandSpec.create();
spec.mixinStandardHelpOptions(true); // usageHelp and versionHelp options
spec.add(OptionSpec.builder("-c", "--count")
.paramLabel("COUNT")
.type(int.class)
.description("number of times to execute").build());
spec.add(PositionalParamSpec.builder()
.paramLabel("FILES")
.type(List.class)
.auxiliaryTypes(File.class) // List<File>
.description("The files to process").build());
CommandLine commandLine = new CommandLine(spec);
commandLine.parseWithSimpleHandlers(new AbstractSimpleParseResultHandler() {
public void handle(ParseResult pr) {
int count = pr.optionValue('c', 1);
List<File> files = pr.positionalValue(0, Collections.<File>emptyList());
for (int i = 0; i < count; i++) {
for (File f : files) {
System.out.printf("%d: %s%n", i, f);
}
}
}
}, args);
The following classes are the main model classes used to configure the parser:
-
CommandSpec
-
OptionSpec
-
PositionalParamSpec
CommandSpec
models a command. It has a name and a version, both of which may be empty. For example:
CommandSpec cmd = CommandSpec.create()
.name("mycommand")
.version("My Command v1.0");
It also has a UsageMessageSpec
to configure aspects of the usage help message.
cmd.usageMessage()
.headerHeading("Header heading%n")
.header("header line 1", "header line 2")
.descriptionHeading("Description heading%n")
.description("description line 1", "description line 2")
.optionListHeading("Options%n")
.parameterListHeading("Positional Parameters%n");
.footerHeading("Footer heading%n")
.footer("footer line 1", "footer line 2");
The ParserSpec
can be used to control the behaviour of the parser to some extent.
=== Parser Options
cmd.parser()
.unmatchedArgumentsAllowed(true)
.overwrittenOptionsAllowed(true);
CommandSpec
has methods to add options (OptionSpec
objects) and positional parameters (PositionalParamSpec
objects). A CommandSpec
can be mixed in with another CommandSpec
, so its options, positional parameters and usage help attributes are merged into the other CommandSpec
.
CommandSpec standardHelpOptions = CommandSpec.create()
.add(OptionSpec.builder("-h", "--help")
.usageHelp(true)
.description("Show this help message and exit.").build())
.add(OptionSpec.builder("-V", "--version")
.versionHelp(true)
.description("Print version information and exit.").build());
CommandSpec cmd = CommandSpec.create()
.name("mycommand")
.addMixin("standardHelpOptions", standardHelpOptions);
Actually, since these options are extremely common, CommandSpec
provides a convenience method to quickly add these standard help options:
CommandSpec spec = CommandSpec.create();
spec.mixinStandardHelpOptions(true); // usageHelp and versionHelp options
Finally, CommandSpec
objects can be subcommands of other CommandSpecs
. There is no limit to the depth of a hierarchy of command and subcommands. CommandSpec
also allows registration of type converters that are used while parsing the command line arguments to convert a command line argument string to the strongly typed value of a OptionSpec
or PositionalParamSpec
CommandSpec helpSubcommand = CommandSpec.forAnnotatedObject(
new picocli.CommandLine.HelpCommand());
CommandSpec cmd = CommandSpec.create()
.name("mycommand")
.addSubcommand("help", helpSubcommand);
OptionSpec
models a command option. An OptionSpec
must have at least one name, which is used during parsing to match command line arguments. Other attributes can be left empty and picocli will give them a reasonable default value. This defaulting is why OptionSpec
objects are created with a builder: this allows you to specify only some attributes and let picocli initialise the other attributes. For example, if only the option’s name is specified, picocli assumes the option takes no parameters (arity = 0), and is of type boolean
. Another example, if arity is larger than 1
, picocli sets the type to List
and the auxiliary type
to String
.
Once an OptionSpec
is constructed, its configuration becomes immutable, but its value
can still be modified. Usually the value is set during command line parsing when a command line argument matches one of the option names.
The value is set via a binding. We’ll come back to bindings later in this document.
Similar to the annotation API, OptionSpec
objects have help
, usageHelp
and versionHelp
attributes. When the parser matches an option that was marked with any of these attributes, it will no longer validate that all required arguments exist. See the section below on the parseWithHandler(s)
and parseWithSimpleHandler(s)
methods that automatically print help when requested.
PositionalParamSpec
objects don’t have names, but have an index range instead. A single PositionalParamSpec
object can capture multiple positional parameters. The default index range is set to 0..*
(all indices). A command may have multiple PositionalParamSpec
objects to capture positional parameters at different index ranges. This can be useful if positional parameters at different index ranges have different data types.
Similar to OptionSpec
objects, Once a PositionalParamSpec
is constructed, its configuration becomes immutable, but its value
can still be modified. Usually the value is set during command line parsing when a non-option command line argument is encountered at a position in its index range.
The value is set via a binding. We’ll look at bindings next.
Bindings decouple the option and positional parameter specification from the place where their value is held.
Option specifications and positional parameter specifications created from annotated objects have a FieldBinding
(and in the near future they can have a MethodBinding
), so when the value is set on an option specification, the field’s value is set (or the setter method is invoked).
Option specifications and positional parameter specifications created programmatically without annotated object by default have an ObjectBinding
that simply stores the value in a field of the ObjectBinding
.
You may create a custom binding that delegates to some other data structure to retrieve and store the value.
Below is the IBinding
interface definition:
public static interface IBinding {
/** Returns the current value of the binding. For multi-value options and positional
* parameters, this method returns an array, collection or map to add values to.
* @throws PicocliException if a problem occurred while obtaining the current value
*/
<T> T get() throws PicocliException;
/** Sets the new value of the binding. For multi-value options and positional
* parameters, this method is used to set a new array instance that is one element
* larger than the previous instance, or to initialize the collection or map when
* the {@link #get() getter} returned {@code null}. For single-value options and
* positional parameters, this method simply sets the value.
*
* @param value the new value of the binding
* @param <T> type of the value
* @return the previous value of the binding (if supported by this binding)
* @throws PicocliException if a problem occurred while setting the new value
*/
<T> T set(T value) throws PicocliException;
}
For the below examples, we use the following parser configuration:
CommandSpec spec = CommandSpec.create();
spec.add(OptionSpec.builder("-V", "--verbose").build());
spec.add(OptionSpec.builder("-f", "--file")
.paramLabel("FILES")
.type(List.class)
.auxiliaryTypes(File.class) // so, this option is of type List<File>
.description("The files to process").build());
CommandLine commandLine = new CommandLine(spec);
The CommandLine::parseArgs
method returns a ParseResult
object that allows client code to query which options and positional parameters were matched for a given command.
String[] args = { "--verbose", "-f", "file1", "--file=file2" };
ParseResult pr = commandLine.parseArgs(args);
List<String> originalArgs = pr.originalArgs(); // lists all command line args
assert Arrays.asList(args).equals(originalArgs);
assert pr.hasOption("--verbose"); // as specified on command line
assert pr.hasOption("-V"); // other aliases work also
assert pr.hasOption('V'); // single-character alias works too
assert pr.hasOption("verbose"); // and, command name without hyphens
The optionValue
method returns the command line value or values, converted to the option’s type. This method requires a default value, which will be returned in case the option was not specified on the command line. In the above example, we defined the --file
option to be of type List<File>
, so we pass in an empty list as the default value:
ParseResult pr = commandLine.parseArgs("-f", "file1", "--file=file2");
List<File> defaultValue = Collections.emptyList();
List<File> expected = Arrays.asList(new File("file1"), new File("file2"));
assert expected.equals(pr.optionValue('f', defaultValue));
assert expected.equals(pr.optionValue("--file", defaultValue));
The rawOptionValue
method returns the String argument specified on the command line. If the command line contains multiple arguments for this option, the first value is returned. Use the rawOptionValues
method to get a list of all values specified on the command line for an option.
assert "file1".equals(pr.rawOptionValue('f')); // single-character alias
assert "file1".equals(pr.rawOptionValue("-f")); // short name
assert "file1".equals(pr.rawOptionValue("--file")); // long name
List<String> expected = Arrays.asList("file1", "file2");
assert expected.equals(pr.rawOptionValues("f")); // short name without hyphens
assert expected.equals(pr.rawOptionValues("file")); // long name without hyphens
Use the hasSubcommand
method to determine whether the command line contained subcommands. The subcommand
method returns a different ParseResult
object that can be used to query which options and positional parameters were matched for the subcommand.
class App {
@Option(names = "-x") String x;
}
class Sub {
@Parameters String[] all;
}
CommandLine cmd = new CommandLine(new App());
cmd.addSubcommand("sub", new Sub());
ParseResult parseResult = cmd.parseArgs("-x", "xval", "sub", "1", "2", "3");
assert parseResult.hasOption("-x");
assert "xval".equals(parseResult.optionValue("-x", "default"));
assert parseResult.hasSubcommand();
ParseResult subResult = parseResult.subcommand();
assert subResult.hasPositional(0);
assert subResult.hasPositional(1);
assert subResult.hasPositional(2);
assert !subResult.hasPositional(3);
assert "1".equals(subResult.rawPositionalValue(0));
assert "2".equals(subResult.rawPositionalValue(1));
assert "3".equals(subResult.rawPositionalValue(2));
The most basic way to parse the command line is to call the CommandLine::parseArgs
method and inspect the resulting ParseResult
object.
For example:
CommandSpec spec = CommandSpec.create();
// add options and positional parameters
CommandLine commandLine = new CommandLine(spec);
try {
ParseResult pr = commandLine.parseArgs(args);
if (CommandLine.printHelpIfRequested(pr)) {
return;
}
int count = pr.optionValue('c', 1);
List<File> files = pr.positionalValue(0, Collections.<File>emptyList());
for (int i = 0; i < count; i++) {
for (File f : files) {
System.out.printf("%d: %s%n", i, f);
}
}
} catch (ParseException invalidInput) {
System.err.println(invalidInput.getMessage());
invalidInput.getCommandLine().usage(System.err);
}
There are a number of parseWithHandler
convenience methods to reduce some boilerplate when processing the ParseResult
programmatically. The convenience methods take care of printing help when requested by the user, and handle invalid input.
Call the parseWithSimpleHandler
method with a AbstractSimpleParseResultHandler
subclass to process the parse result without returning a result value. Note the absence of error handling and checking of whether the user requested help. The handle
method contains only your business logic.
Example:
CommandSpec spec = CommandSpec.create();
// add options and positional parameters
CommandLine commandLine = new CommandLine(spec);
commandLine.parseWithSimpleHandler(new AbstractSimpleParseResultHandler() {
public void handle(ParseResult pr) {
int count = pr.optionValue('c', 1);
List<File> files = pr.positionalValue(0, Collections.<File>emptyList());
for (int i = 0; i < count; i++) {
for (File f : files) {
System.out.printf("%d: %s%n", i, f);
}
}
}
}, args);
A variation of this method, parseWithSimpleHandlers
, additionally takes an IExceptionHandler2<Void>
to customize how invalid input should be handled and optionally set an exit code for when the input was invalid.
Example:
CommandSpec spec = CommandSpec.create();
// add options and positional parameters
CommandLine commandLine = new CommandLine(spec);
commandLine.parseWithSimpleHandlers(new AbstractSimpleParseResultHandler() {
public void handle(ParseResult pr) {...}
}.useOut(System.out).andExit(123),
new DefaultExceptionHandler<Void>().andExit(567),
args);
It is possible for the parse result processing logic to return a result. To accomplish this, call the CommandLine::parseWithHandler
method with a class that extends AbstractParseResultHandler
and a prototype return value. The process
method may return a completely different return value object (as long as it has the correct type) or it can modify the return value object that was passed in to the parseWithHandler
method.
Example:
CommandSpec spec = CommandSpec.create();
// add options and positional parameters
CommandLine commandLine = new CommandLine(spec);
class MyResult {
List<File> files = new ArrayList<File>();
}
class MyHandler extends AbstractParseResultHandler<MyResult> {
public MyResult handle(ParseResult pr, MyResult returnValue) {
int count = pr.optionValue('c', 1);
List<File> files = pr.positionalValue(0, Collections.<File>emptyList());
for (File f : files) {
for (int i = 0; i < count; i++) {
returnValue.files.add(f);
}
}
return returnValue;
}
protected MyHandler self() { return this; }
}
MyResult result = commandLine.parseWithHandler(new MyHandler(), new MyResult(), args);
// do something with result...
This method also has a variation, parseWithHandlers
, which additionally takes an IExceptionHandler2<MyResult>
to customize how invalid input should be handled and optionally set an exit code.
Example:
CommandSpec spec = CommandSpec.create();
// add options and positional parameters
CommandLine commandLine = new CommandLine(spec);
MyResult result = commandLine.parseWithHandler(
new MyHandler().useOut(System.out).andExit(123),
new MyResult(),
new DefaultExceptionHandler<MyResult>().andExit(567),
args);
// do something with result...