-
Notifications
You must be signed in to change notification settings - Fork 1
/
Image.glsl
507 lines (432 loc) · 16.2 KB
/
Image.glsl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
// Robotic Arm. Created by Reinder Nijhoff 2019
// Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
// @reindernijhoff
//
// https://www.shadertoy.com/view/tlSSDV
//
// This shader is a proof of concept to find out if I could
// create a “typical” Shadertoy shader, i.e. a shader that renders
// a non-trivial animated 3D scene, by using a ray tracer instead
// of the commonly used raymarching techniques.
//
// Some first conclusions:
//
// - It is possible to visualize an animated 3D scene in a single
// shader using ray tracing.
// - The compile-time of this shader is quite long.
// - The ray tracer is not super fast, so it was not possible to cast
// enough rays per pixel to support global illumination or soft
// shadows. Here I miss the cheap AO and soft shadow algorithms that
// are available when raymarching an SDF.
// - Modelling a 3D scene for a ray tracer in code is verbose. It was
// not possible to exploit the symmetries in the arm and the domain
// repetition of the sphere-grid that would have simplified the
// description of an SDF.
// - I ran in GPU-dependent unpredictable precision problems. Hopefully,
// most problems are solved now. I’m not sure if they are inherent
// to ray tracing, but I didn’t have these kinds of problems using
// raymarching before.
//
#define AA 1 // Set AA to 1 if you have a slow GPU
#define PATH_LENGTH 3
#define MAX_DIST 60.
#define MIN_DIST .001
#define ZERO (min(iFrame,0))
// Global variables
float time;
vec2[2] activeSpheres;
vec2[3] joints;
float joint0Rot;
float jointYRot;
//
// Hash by Dave_Hoskins: https://www.shadertoy.com/view/4djSRW
//
vec2 hash22(vec2 p) {
vec3 p3 = fract(vec3(p.xyx) * vec3(.1031, .1030, .0973));
p3 += dot(p3, p3.yzx+33.33);
return fract((p3.xx+p3.yz)*p3.zy);
}
//
// Ray-primitive intersection routines: https://www.shadertoy.com/view/tl23Rm
//
float dot2( in vec3 v ) { return dot(v,v); }
// Plane
float iPlane( const in vec3 ro, const in vec3 rd, in vec2 distBound, inout vec3 normal,
const in vec3 planeNormal, const in float planeDist) {
float a = dot(rd, planeNormal);
float d = -(dot(ro, planeNormal)+planeDist)/a;
if (a > 0. || d < distBound.x || d > distBound.y) {
return MAX_DIST;
} else {
normal = planeNormal;
return d;
}
}
// Sphere: https://www.shadertoy.com/view/4d2XWV
float iSphere( const in vec3 ro, const in vec3 rd, const in vec2 distBound, inout vec3 normal,
const float sphereRadius ) {
float b = dot(ro, rd);
float c = dot(ro, ro) - sphereRadius*sphereRadius;
float h = b*b - c;
if (h < 0.) {
return MAX_DIST;
} else {
h = sqrt(h);
float d1 = -b-h;
float d2 = -b+h;
if (d1 >= distBound.x && d1 <= distBound.y) {
normal = normalize(ro + rd*d1);
return d1;
} else {
return MAX_DIST;
}
}
}
// Capped Cylinder: https://www.shadertoy.com/view/4lcSRn
float iCylinder( const in vec3 oc, const in vec3 rd, const in vec2 distBound, inout vec3 normal,
const in vec3 ca, const float ra, const bool traceCaps ) {
float caca = dot(ca,ca);
float card = dot(ca,rd);
float caoc = dot(ca,oc);
float a = caca - card*card;
float b = caca*dot( oc, rd) - caoc*card;
float c = caca*dot( oc, oc) - caoc*caoc - ra*ra*caca;
float h = b*b - a*c;
if (h < 0.) return MAX_DIST;
h = sqrt(h);
float d = (-b-h)/a;
float y = caoc + d*card;
if (y >= 0. && y <= caca && d >= distBound.x && d <= distBound.y) {
normal = (oc+d*rd-ca*y/caca)/ra;
return d;
} else if(!traceCaps) {
return MAX_DIST;
} else {
d = ((y < 0. ? 0. : caca) - caoc)/card;
if( abs(b+a*d) < h && d >= distBound.x && d <= distBound.y) {
normal = normalize(ca*sign(y)/caca);
return d;
} else {
return MAX_DIST;
}
}
}
// Capped Cone: https://www.shadertoy.com/view/llcfRf
float iCone( const in vec3 oa, const in vec3 rd, const in vec2 distBound, inout vec3 normal,
const in vec3 pb, const in float ra, const in float rb ) {
vec3 ba = pb;
vec3 ob = oa - pb;
float m0 = dot(ba,ba);
float m1 = dot(oa,ba);
float m2 = dot(ob,ba);
float m3 = dot(rd,ba);
//caps - only top cap needed for scene
if (m2 > 0. && dot2(ob*m3-rd*m2) < (rb*rb*m3*m3) ) {
float d = -m2 / m3;
if (d > distBound.x && d < distBound.y) {
normal = ba*inversesqrt(m0);
return d;
}
}
// body
float m4 = dot(rd,oa);
float m5 = dot(oa,oa);
float rr = ra - rb;
float hy = m0 + rr*rr;
float k2 = m0*m0 - m3*m3*hy;
float k1 = m0*m0*m4 - m1*m3*hy + m0*ra*(rr*m3*1.0 );
float k0 = m0*m0*m5 - m1*m1*hy + m0*ra*(rr*m1*2.0 - m0*ra);
float h = k1*k1 - k2*k0;
if( h < 0. ) return MAX_DIST;
float t = (-k1-sqrt(h))/k2;
float y = m1 + t*m3;
if (y > 0. && y < m0 && t >= distBound.x && t <= distBound.y) {
normal = normalize(m0*(m0*(oa+t*rd)+rr*ba*ra)-ba*hy*y);
return t;
} else {
return MAX_DIST;
}
}
// Box: https://www.shadertoy.com/view/ld23DV
float iBox( const in vec3 ro, const in vec3 rd, const in vec2 distBound, inout vec3 normal,
const in vec3 boxSize ) {
vec3 m = sign(rd)/max(abs(rd), 1e-8);
vec3 n = m*ro;
vec3 k = abs(m)*boxSize;
vec3 t1 = -n - k;
vec3 t2 = -n + k;
float tN = max( max( t1.x, t1.y ), t1.z );
float tF = min( min( t2.x, t2.y ), t2.z );
if (tN > tF || tF <= 0.) {
return MAX_DIST;
} else {
if (tN >= distBound.x && tN <= distBound.y) {
normal = -sign(rd)*step(t1.yzx,t1.xyz)*step(t1.zxy,t1.xyz);
return tN;
} else if (tF >= distBound.x && tF <= distBound.y) {
// normal = sign(rd)*step(t1.yzx,t1.xyz)*step(t1.zxy,t1.xyz);
return tF;
} else {
return MAX_DIST;
}
}
}
//
// Ray tracer helper functions
//
vec3 FresnelSchlick(vec3 SpecularColor, vec3 E, vec3 H) {
return SpecularColor + (1. - SpecularColor) * pow(1.0 - max(0., dot(E, H)), 5.);
}
vec2 randomInUnitDisk(const vec2 seed) {
vec2 h = hash22(seed) * vec2(1.,6.28318530718);
float phi = h.y;
float r = sqrt(h.x);
return r*vec2(sin(phi),cos(phi));
}
//
// Sphere functions
//
vec2 activeSphereGrid(float t) {
vec2 p = randomInUnitDisk(vec2(floor(t),.5));
return floor(p * 8.5 + 1.75*normalize(p));
}
vec3 sphereCenter(vec2 pos) {
vec3 c = vec3(pos.x, 0., pos.y)+vec3(.25,.25,.25);
c.xz += .5*hash22(pos);
return c;
}
vec3 sphereCol(in float t) {
return normalize(.5 + .5*cos(6.28318530718*(1.61803398875*floor(t)+vec3(0,.1,.2))));
}
//
// Inverse Kinematics
//
// Very hacky, analytical, inverse kinematics. I came up with the algorithm myself;
// Íñigo Quílez can probably implement it without using trigonometry:
// https://iquilezles.org/articles/noacos
//
void initDynamics() {
time = iTime * .25;
activeSpheres[0] = activeSphereGrid(time);
activeSpheres[1] = activeSphereGrid(time+1.);
vec3 ta0 = sphereCenter(activeSpheres[0]);
vec3 ta1 = sphereCenter(activeSpheres[1]);
float taa0 = atan(-ta0.z, ta0.x);
float taa1 = atan(-ta1.z, ta1.x);
if (abs(taa0-taa1) > 3.14159265359) {
taa1 += taa1 < taa0 ? 2. * 3.14159265359 : -2. * 3.14159265359;
}
jointYRot = mix(taa0, taa1, clamp(fract(time)*2.-.5,0.,1.));
float tal = mix(length(ta0), length(ta1), clamp(fract(time)*2.5-1.,0.,1.));
vec2 target = vec2(tal,.5-.5*smoothstep(.35,.4,abs(fract(time)-.5)));
float c0 = length(target);
float b0 = min(11., 4. + 2. * c0 / 11.);
vec2 sd = normalize(target);
float t0 = asin(sd.y)+acos(-(b0*b0-25.-c0*c0)/(10.*c0));
joints[0] = vec2(5. * cos(t0), 5.* sin(t0));
joint0Rot = t0;
sd = normalize(target-joints[0]);
float c1 = min(6., distance(joints[0], target));
const float b1 = 2.;
float t1 = asin(sd.y) * sign(sd.x) + acos(-(b1*b1-16.-c1*c1)/(8.*c1));
t1 += sd.x < 0. ? 3.1415 : 0.;
joints[1] = joints[0] + 4. * vec2(cos(t1),sin(t1));
joints[2] = target;
}
//
// Scene description
//
vec3 opU( const in vec3 d, const in float iResult, const in float mat ) {
return (iResult < d.y) ? vec3(d.x, iResult, mat) : d;
}
vec3 iPlaneInt(vec3 ro, vec3 rd, float d) {
d = -(ro.y - d) / rd.y;
return ro + d * rd;
}
vec3 traceSphereGrid( in vec3 ro, in vec3 rd, in vec2 dist, out vec3 normal, const int maxsteps ) {
float m = 0.;
if (ro.y < .5 || rd.y < 0.) {
vec3 ros = ro.y < .5 ? ro : iPlaneInt(ro, rd, .5);
if (length(ros.xz) < 11.) {
vec3 roe = iPlaneInt(ro, rd,rd.y < 0. ?0.:.5);
vec3 pos = floor(ros);
vec3 rdi = 1./rd;
vec3 rda = abs(rdi);
vec3 rds = sign(rd);
vec3 dis = (pos-ros+ .5 + rds*.5) * rdi;
bool b_hit = false;
// traverse grid in 2D
vec2 mm = vec2(0);
for (int i = ZERO; i<maxsteps; i++) {
float l = length(pos.xz+.5);
if (pos.y > .5 || pos.y < -1.5 || l > 11.) {
break;
}
else if ( l > 2. && pos.y > -.5 && pos.y < 1.5 ) {
float d = iSphere(ro-sphereCenter(pos.xz), rd, dist, normal, .25);
if (d < dist.y) {
m = 2.;
dist.y = d;
break;
}
}
vec3 mm = step(dis.xyz, dis.yxy) * step(dis.xyz, dis.zzx);
dis += mm*rda;
pos += mm*rds;
}
}
}
return vec3(dist, m);
}
vec3 rotateY( const in vec3 p, const in float t ) {
float co = cos(t);
float si = sin(t);
vec2 xz = mat2(co,si,-si,co)*p.xz;
return vec3(xz.x, p.y, xz.y);
}
vec3 worldhit( const in vec3 ro, const in vec3 rd, const in vec2 dist, out vec3 normal ) {
vec3 d = vec3(dist, 0.);
d = traceSphereGrid(ro, rd, d.xy, normal, 10);
d = opU(d, iPlane (ro, rd, d.xy, normal, vec3(0,1,0), 0.), 1.);
d = opU(d, iCone (ro-vec3(0,.2,0), rd, d.xy, normal, vec3(0,.2,0), 1.5, 1.4), 4.);
d = opU(d, iCylinder(ro, rd, d.xy, normal, vec3(0,.2,0), 1.5, false), 4.);
float dmax = d.y;
vec3 roa = rotateY(vec3(ro.x, ro.y-1., ro.z), jointYRot);
vec3 rda = rotateY(rd, jointYRot);
vec3 bb = vec3(.5*max(joints[1].x,joints[2].x), joints[0].y*.5, .0);
vec3 bbn;
if (iBox(roa-bb, rda, vec2(0,100), bbn, bb+vec3(.75,.75,.8)) < 100.) {
vec3 dr = vec3(-sin(joint0Rot), cos(joint0Rot), 0);
vec2 j21 = joints[2]-joints[1];
for (int axis=0; axis<=1; axis++) {
float a = axis == 0 ? -1. : 1.;
d = opU(d, iCylinder(roa-vec3(0,0,a*.67), rda, d.xy, normal, vec3(0,0,-a*.2),.55, true), 3.);
d = opU(d, iCylinder(roa-vec3(0,0,a*.58)-.4*dr, rda, d.xy, normal, vec3(joints[0],-a*.24)-.24*dr,.07, false), 4.);
d = opU(d, iCylinder(roa-vec3(0,0,a*.58)+.4*dr, rda, d.xy, normal, vec3(joints[0],-a*.24)+.24*dr,.07, false), 4.);
d = opU(d, iCylinder(roa-vec3(joints[0],a*.45), rda, d.xy, normal, vec3(0,0,-a*.2),.35, true), 3.);
d = opU(d, iCylinder(roa-vec3(joints[1],a*.29), rda, d.xy, normal, vec3(0,0,-a*.08),.25, true), 3.);
d = opU(d, iCylinder(roa-vec3(joints[1],a*.24), rda, d.xy, normal, vec3(j21,a*.08),.03, false), 4.);
}
vec2 j10 = joints[1]-joints[0];
d = opU(d, iCylinder(roa-vec3(0,0,-.72), rda, d.xy, normal, vec3(0,0,1.44),.5, true), 5.);
d = opU(d, iBox (roa+vec3(0,.5,0), rda, d.xy, normal, vec3(.5,.5,.47)), 5.);
d = opU(d, iCone (roa-vec3(joints[0],0), rda, d.xy, normal, vec3(j10,0),.25, .15), 5.);
d = opU(d, iCylinder(roa-vec3(joints[0],-.5), rda, d.xy, normal, vec3(0,0,1.),.3, true), 5.);
d = opU(d, iCylinder(roa-vec3(joints[1],-.35), rda, d.xy, normal, vec3(0,0,.7),.2, true), 5.);
d = opU(d, iCylinder(roa-vec3(joints[2],-.4), rda, d.xy, normal, vec3(0,0,.8),.2, true), 3.);
d = opU(d, iSphere (roa-vec3(joints[2],0), rda, d.xy, normal, .32), 5.);
d = opU(d, iCylinder(roa-vec3(joints[2],0), rda, d.xy, normal, vec3(0,-.5,0),.06, true), 3.);
if (d.y < dmax) {
normal = rotateY(normal, -jointYRot);
}
}
return d;
}
float shadowhit( const vec3 ro, const vec3 rd, const float dist) {
vec3 normal;
float d = traceSphereGrid( ro, rd, vec2(.3, dist), normal, 4).y;
d = min(d, iCylinder(ro, rd, vec2(.3, dist), normal, vec3(0,.2,0), 1.5, false));
return d < dist-0.001 ? 0. : 1.;
}
//
// Simple ray tracer
//
float getSphereLightIntensity(float num) {
return num > .5 ?
clamp(fract(time)*10.-1., 0., 1.) :
max(0., 1.-fract(time)*10.);
}
float getLightIntensity( const vec3 pos, const vec3 normal, const vec3 light, const float intensity) {
vec3 rd = pos - light;
float i = max(0., dot(normal, -normalize(rd)) / dot(rd,rd));
i = i > 0.0001 ? i * intensity * shadowhit(light, normalize(rd), length(rd)) : 0.;
return max(0., i-0.0001);
}
vec3 getLighting( vec3 p, vec3 normal ) {
vec3 l = vec3(0.);
float i = getSphereLightIntensity(0.);
if (i > 0.) {
l += sphereCol(time) * (i * getLightIntensity(p, normal, sphereCenter(activeSpheres[0]), .375));
} else {
i = getSphereLightIntensity(1.);
if (i > 0.) {
l += sphereCol(time+1.) * (i * getLightIntensity(p, normal, sphereCenter(activeSpheres[1]), .25));
}
}
vec3 robot = mix(sphereCol(time), sphereCol(time-1.), getSphereLightIntensity(0.));
vec3 lp = rotateY(vec3(joints[2].x, joints[2].y+1.,0), -jointYRot);
i = getLightIntensity(p, normal, lp, .5);
i += getLightIntensity(p, normal, vec3(0,2,0), .25);
l += i * robot;
return l;
}
vec3 getEmissive( in vec2 pos, in float mat ) {
if (mat > 2.5 ) {
return mix(sphereCol(time), sphereCol(time-1.), getSphereLightIntensity(0.));
} else if (mat > 1.5 ) {
float li0 = getSphereLightIntensity(0.);
float li1 = getSphereLightIntensity(1.);
if (li0 > 0. && pos == activeSpheres[0]) {
return sphereCol(time) * li0 * 1.25;
} else if (li1 > 0. && pos == activeSpheres[1]) {
return sphereCol(time+1.) * li1;
} else {
return vec3(0);
}
} else {
return vec3(0);
}
}
vec3 render( in vec3 ro, in vec3 rd) {
vec3 col = vec3(1);
vec3 emitted = vec3(0);
vec3 normal;
for (int i=ZERO; i<PATH_LENGTH; ++i) {
vec3 res = worldhit( ro, rd, vec2(MIN_DIST, MAX_DIST-1.), normal );
if (res.z > 0.) {
ro += rd * res.y;
if (res.z < 3.5) {
vec3 F = FresnelSchlick(vec3(0.4), normal, -rd);
emitted += (col * (getEmissive(floor(ro.xz), res.z) + .5 * getLighting(ro, normal))) * (1.-F);
col *= .5 * F;
} else {
col *= .15;
}
rd = normalize(reflect(rd,normal));
} else {
return emitted;
}
}
return emitted;
}
mat3 setCamera( in vec3 ro, in vec3 ta, float cr ) {
vec3 cw = normalize(ta-ro);
vec3 cp = vec3(sin(cr), cos(cr),0.0);
vec3 cu = normalize( cross(cw,cp) );
vec3 cv = ( cross(cu,cw) );
return mat3( cu, cv, cw );
}
void mainImage( out vec4 fragColor, in vec2 fragCoord ) {
initDynamics();
vec2 mo = iMouse.xy == vec2(0) ? vec2(.4,-.1) : abs(iMouse.xy)/iResolution.xy - .5;
vec3 ro = vec3(10.5*cos(1.5+6.*mo.x), 6.+10.*mo.y, 8.5*sin(1.5+6.*mo.x));
vec3 ta = vec3(ro.x*ro.y*.02, .8, 0);
mat3 ca = setCamera(ro, ta, 0.);
vec3 col = vec3(0);
#if AA>1
for( int m=ZERO; m<AA; m++ )
for( int n=ZERO; n<AA; n++ ) {
vec2 o = vec2(float(m),float(n)) / float(AA) - 0.5;
vec2 p = (-iResolution.xy + 2.0*(fragCoord+o))/iResolution.y;
#else
vec2 p = (-iResolution.xy + 2.0*fragCoord)/iResolution.y;
#endif
vec3 rd = ca * normalize( vec3(p.xy,1.6) );
col += pow(8. * render(ro, rd), vec3(1./2.2));
#if AA>1
}
col /= float(AA*AA);
#endif
col = clamp(col + ((hash22(fragCoord).x-.5)/64.), vec3(0), vec3(1));
fragColor = vec4(col , 1);
}