-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrtk.m
73 lines (65 loc) · 1.99 KB
/
rtk.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
%% run single simulation
n = 1000;
sigma_i = 0.5;
d = 2;
p_l = normrnd(0, sigma_i, 2, n);
p_r = normrnd(0, sigma_i, 2, n) + [d; 0];
v = p_r - p_l;
v = v ./ vecnorm(v);
signs = sign(v(2,:));
theta = acos(v(1,:)) * 180 / pi .* signs;
u_theta = mean(theta)
sigma_theta = std(theta)
%% plot single simulation
figure
subplot(2,1,1)
hold on
th = 0:pi/50:2*pi;
xunit = sigma_i * cos(th);
yunit = sigma_i * sin(th);
scatter(p_l(1,:), p_l(2,:))
scatter(p_r(1,:), p_r(2,:))
plot([0, d], [0, 0], '.-', xunit, yunit, xunit + d, yunit, 'LineWidth', 3')
legend('left samples', 'right samples')
subplot(2,1,2)
hold on
histogram(theta, 50, 'Normalization', 'pdf')
xs = linspace(-120, 120, 100);
plot(xs, normpdf(xs, u_theta, sigma_theta), 'LineWidth', 3')
legend('histogram', 'gaussian fit')
xlabel('$\theta$ (degrees)', 'Interpreter', 'latex')
ylabel('probability density', 'Interpreter', 'latex')
%% run multiple simulations
n = 1000;
sigma_is = [0.005, 0.01, 0.05, 0.1];
ds = 0.5:0.1:1.5;
sigma_thetas = zeros(length(sigma_is), length(ds));
for i = 1:length(sigma_is)
sigma_i = sigma_is(i);
for j = 1:length(ds)
d = ds(j);
[u_theta, sigma_theta] = simulate(sigma_i, d, n);
sigma_thetas(i,j) = sigma_theta;
end
end
%% plot multiple simulations
figure
hold on
for i = 1:length(sigma_is)
plot(ds, sigma_thetas(i,:), 'LineWidth', 3')
end
legend('$\sigma_i = 0.5$cm', '$\sigma_i = 1$cm', '$\sigma_i = 5$cm', '$\sigma_i = 10$cm', 'Interpreter', 'latex')
title('Standard Deviation of Heading Error vs. Baseline Distance and Position Error', 'Interpreter', 'latex')
xlabel('baseline distance $d$ (m)', 'Interpreter', 'latex')
ylabel('$\sigma_\theta$ (degrees)', 'Interpreter', 'latex')
grid on
function [u_theta, sigma_theta] = simulate(sigma_i, d, n)
p_l = normrnd(0, sigma_i, 2, n);
p_r = normrnd(0, sigma_i, 2, n) + [d; 0];
v = p_r - p_l;
v = v ./ vecnorm(v);
signs = sign(v(2,:));
theta = acos(v(1,:)) * 180 / pi .* signs;
u_theta = mean(theta);
sigma_theta = std(theta);
end