-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrun_generator.py
executable file
·180 lines (143 loc) · 8.44 KB
/
run_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, visit
# https://nvlabs.github.io/stylegan2/license.html
import argparse
import numpy as np
import PIL.Image
import dnnlib
import dnnlib.tflib as tflib
import re
import sys
import pretrained_networks
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())
#asd
#----------------------------------------------------------------------------
def generate_images(network_pkl, seeds, truncation_psi):
print('Loading networks from "%s"...' % network_pkl)
_G, _D, Gs = pretrained_networks.load_networks(network_pkl)
noise_vars = [var for name, var in Gs.components.synthesis.vars.items() if name.startswith('noise')]
Gs_kwargs = dnnlib.EasyDict()
Gs_kwargs.output_transform = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
Gs_kwargs.randomize_noise = False
if truncation_psi is not None:
Gs_kwargs.truncation_psi = truncation_psi
for seed_idx, seed in enumerate(seeds):
print('Generating image for seed %d (%d/%d) ...' % (seed, seed_idx, len(seeds)))
rnd = np.random.RandomState(seed)
z = rnd.randn(1, *Gs.input_shape[1:]) # [minibatch, component]
tflib.set_vars({var: rnd.randn(*var.shape.as_list()) for var in noise_vars}) # [height, width]
images = Gs.run(z, None, **Gs_kwargs) # [minibatch, height, width, channel]
nrChannels = images.shape[-1]
#print('images[0].shape', images[0].shape)
#print('images[0,:,:,:].shape', images[0,:,:,:].shape)
if nrChannels == 3:
PIL.Image.fromarray(images[0], 'RGB').save(dnnlib.make_run_dir_path('seed%04d.png' % seed))
else:
PIL.Image.fromarray(images[0,:,:,0], 'L').save(dnnlib.make_run_dir_path('seed%04d.png' % seed))
#----------------------------------------------------------------------------
def style_mixing_example(network_pkl, row_seeds, col_seeds, truncation_psi, col_styles, minibatch_size=4):
print('Loading networks from "%s"...' % network_pkl)
_G, _D, Gs = pretrained_networks.load_networks(network_pkl)
w_avg = Gs.get_var('dlatent_avg') # [component]
Gs_syn_kwargs = dnnlib.EasyDict()
Gs_syn_kwargs.output_transform = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
Gs_syn_kwargs.randomize_noise = False
Gs_syn_kwargs.minibatch_size = minibatch_size
print('Generating W vectors...')
all_seeds = list(set(row_seeds + col_seeds))
all_z = np.stack([np.random.RandomState(seed).randn(*Gs.input_shape[1:]) for seed in all_seeds]) # [minibatch, component]
all_w = Gs.components.mapping.run(all_z, None) # [minibatch, layer, component]
all_w = w_avg + (all_w - w_avg) * truncation_psi # [minibatch, layer, component]
w_dict = {seed: w for seed, w in zip(all_seeds, list(all_w))} # [layer, component]
print('Generating images...')
all_images = Gs.components.synthesis.run(all_w, **Gs_syn_kwargs) # [minibatch, height, width, channel]
image_dict = {(seed, seed): image for seed, image in zip(all_seeds, list(all_images))}
print('Generating style-mixed images...')
for row_seed in row_seeds:
for col_seed in col_seeds:
w = w_dict[row_seed].copy()
w[col_styles] = w_dict[col_seed][col_styles]
image = Gs.components.synthesis.run(w[np.newaxis], **Gs_syn_kwargs)[0]
image_dict[(row_seed, col_seed)] = image
print('Saving images...')
for (row_seed, col_seed), image in image_dict.items():
PIL.Image.fromarray(image, 'RGB').save(dnnlib.make_run_dir_path('%d-%d.png' % (row_seed, col_seed)))
print('Saving image grid...')
_N, _C, H, W = Gs.output_shape
canvas = PIL.Image.new('RGB', (W * (len(col_seeds) + 1), H * (len(row_seeds) + 1)), 'black')
for row_idx, row_seed in enumerate([None] + row_seeds):
for col_idx, col_seed in enumerate([None] + col_seeds):
if row_seed is None and col_seed is None:
continue
key = (row_seed, col_seed)
if row_seed is None:
key = (col_seed, col_seed)
if col_seed is None:
key = (row_seed, row_seed)
canvas.paste(PIL.Image.fromarray(image_dict[key], 'RGB'), (W * col_idx, H * row_idx))
canvas.save(dnnlib.make_run_dir_path('grid.png'))
#----------------------------------------------------------------------------
def _parse_num_range(s):
'''Accept either a comma separated list of numbers 'a,b,c' or a range 'a-c' and return as a list of ints.'''
range_re = re.compile(r'^(\d+)-(\d+)$')
m = range_re.match(s)
if m:
return list(range(int(m.group(1)), int(m.group(2))+1))
vals = s.split(',')
return [int(x) for x in vals]
#----------------------------------------------------------------------------
_examples = '''examples:
# Generate ffhq uncurated images (matches paper Figure 12)
python %(prog)s generate-images --network=gdrive:networks/stylegan2-ffhq-config-f.pkl --seeds=6600-6625 --truncation-psi=0.5
# Generate ffhq curated images (matches paper Figure 11)
python %(prog)s generate-images --network=gdrive:networks/stylegan2-ffhq-config-f.pkl --seeds=66,230,389,1518 --truncation-psi=1.0
# Generate uncurated car images (matches paper Figure 12)
python %(prog)s generate-images --network=gdrive:networks/stylegan2-car-config-f.pkl --seeds=6000-6025 --truncation-psi=0.5
# Generate style mixing example (matches style mixing video clip)
python %(prog)s style-mixing-example --network=gdrive:networks/stylegan2-ffhq-config-f.pkl --row-seeds=85,100,75,458,1500 --col-seeds=55,821,1789,293 --truncation-psi=1.0
'''
#----------------------------------------------------------------------------
def main():
parser = argparse.ArgumentParser(
description='''StyleGAN2 generator.
Run 'python %(prog)s <subcommand> --help' for subcommand help.''',
epilog=_examples,
formatter_class=argparse.RawDescriptionHelpFormatter
)
subparsers = parser.add_subparsers(help='Sub-commands', dest='command')
parser_generate_images = subparsers.add_parser('generate-images', help='Generate images')
parser_generate_images.add_argument('--network', help='Network pickle filename', dest='network_pkl', required=True)
parser_generate_images.add_argument('--seeds', type=_parse_num_range, help='List of random seeds', required=True)
parser_generate_images.add_argument('--truncation-psi', type=float, help='Truncation psi (default: %(default)s)', default=0.5)
parser_generate_images.add_argument('--result-dir', help='Root directory for run results (default: %(default)s)', default='results', metavar='DIR')
parser_style_mixing_example = subparsers.add_parser('style-mixing-example', help='Generate style mixing video')
parser_style_mixing_example.add_argument('--network', help='Network pickle filename', dest='network_pkl', required=True)
parser_style_mixing_example.add_argument('--row-seeds', type=_parse_num_range, help='Random seeds to use for image rows', required=True)
parser_style_mixing_example.add_argument('--col-seeds', type=_parse_num_range, help='Random seeds to use for image columns', required=True)
parser_style_mixing_example.add_argument('--col-styles', type=_parse_num_range, help='Style layer range (default: %(default)s)', default='0-6')
parser_style_mixing_example.add_argument('--truncation-psi', type=float, help='Truncation psi (default: %(default)s)', default=0.5)
parser_style_mixing_example.add_argument('--result-dir', help='Root directory for run results (default: %(default)s)', default='results', metavar='DIR')
args = parser.parse_args()
kwargs = vars(args)
subcmd = kwargs.pop('command')
if subcmd is None:
print ('Error: missing subcommand. Re-run with --help for usage.')
sys.exit(1)
sc = dnnlib.SubmitConfig()
sc.num_gpus = 1
sc.submit_target = dnnlib.SubmitTarget.LOCAL
sc.local.do_not_copy_source_files = True
sc.run_dir_root = kwargs.pop('result_dir')
sc.run_desc = subcmd
func_name_map = {
'generate-images': 'run_generator.generate_images',
'style-mixing-example': 'run_generator.style_mixing_example'
}
dnnlib.submit_run(sc, func_name_map[subcmd], **kwargs)
#----------------------------------------------------------------------------
if __name__ == "__main__":
main()
#----------------------------------------------------------------------------