forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
memonger.py
989 lines (812 loc) · 33.2 KB
/
memonger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
## @package memonger
# Module caffe2.python.memonger
import networkx as nx
import collections
import time
import copy
from caffe2.python import workspace, core
from caffe2.proto import caffe2_pb2
import enum
import logging
from future.utils import viewitems, viewvalues
import caffe2.python._import_c_extension as C
log = logging.getLogger("memonger")
log.setLevel(logging.INFO)
LiveRange = collections.namedtuple('LiveRange', ["defined", "used", "size"])
def share_grad_blobs(
net,
losses,
param_grads,
namescope,
dont_share_blobs=None,
share_activations=False,
blob_shapes=None,
):
'''
Implements similar optimization as Torch's shareGradInput():
for the gradients that are passed between layers, share blobs between
operators when possible. This yields significant memory savings with
deep networks.
Returns an optimized protobuf (assign to net._net)
'''
def is_grad_blob(b):
name = str(b)
# Note: need to look at _{namescope} pattern as it matches
# to handle the auto-split gradients
return name.endswith("_grad") and (name.startswith(namescope) or
name.startswith("_" + namescope)) and name not in param_grads
def is_grad_op(op):
# TODO: something smarter
for b in list(op.input) + list(op.output):
if is_grad_blob(b):
return True
return False
log.warn("NOTE: Executing memonger to optimize gradient memory")
# Collect ops that have something to do with gradients
if namescope != "" and not namescope.endswith("/"):
namescope += "/"
netproto = copy.deepcopy(net.Proto())
activations = []
external_output = set(net.Proto().external_output)
# Hacky way to get activations, think of a better way
for op in net.Proto().op:
for b in op.output:
if b + "_w" in op.input and b not in external_output:
activations.append(b)
# Remove last activations, as they are usually accessed externally
activations = set(activations[:-2])
# Gradient ops
grad_op_indices = []
for idx, op in enumerate(netproto.op):
if (is_grad_op(op)):
grad_op_indices.append(idx)
shared_blobs = set()
for op in net.Proto().op:
for b in list(op.input) + list(op.output):
if is_grad_blob(b) or (share_activations and b in activations):
shared_blobs.add(b)
start_time = time.time()
optim_str = C.memonger_compute_blob_recycling_for_dag(
netproto.SerializeToString(),
[str(s).encode('utf-8') for s in losses],
grad_op_indices,
set(str(s).encode('utf-8') for s in shared_blobs),
namescope.encode('utf-8'),
set() if dont_share_blobs is None else dont_share_blobs,
{} if blob_shapes is None else blob_shapes
)
log.info("Memonger memory optimization took {} secs".format(
time.time() - start_time),
)
optim = caffe2_pb2.NetDef()
optim.ParseFromString(optim_str)
assert verify_graph_equality(net.Proto(), optim), \
"Memonger graph is not equal to original."
assert verify_inplace_blobs(net.Proto(), optim), \
"Inplace assignments differ in memonger net."
return optim
def optimize_inference_for_dag(net, input_blobs, namescope=""):
netproto = copy.deepcopy(net.Proto())
external_input = set(net.Proto().external_input)
external_output = set(net.Proto().external_output)
def is_activation_blob(b):
return b not in external_input and b not in external_output
activation_blobs = set()
seen_as_output = set()
ops = list(net.Proto().op)
op_indices = [index for index, op in enumerate(net.Proto().op)]
# Sanity check: check that all external inputs are properly accounted
# and that no gradient ops are included in 'net'
for op in ops:
for b in op.input:
if is_activation_blob(b):
activation_blobs.add(b)
if b not in seen_as_output:
raise AssertionError("{} not in external input".format(b))
for b in op.output:
if is_activation_blob(b):
activation_blobs.add(b)
seen_as_output = seen_as_output.union(set(op.output))
assert not op.is_gradient_op, \
"You can only pass inference-only nets to optimize_inference_for_dag"
start_time = time.time()
optim_str = C.memonger_compute_blob_recycling_for_dag(
netproto.SerializeToString(),
[str(s).encode('utf-8') for s in input_blobs],
op_indices,
set(str(s).encode('utf-8') for s in activation_blobs),
namescope.encode('utf-8'),
set(),
{}
)
log.info("Memonger memory optimization took {} secs".format(
time.time() - start_time),
)
optim = caffe2_pb2.NetDef()
optim.ParseFromString(optim_str)
assert verify_graph_equality(net.Proto(), optim), \
"Memonger graph is not equal to original."
assert verify_inplace_blobs(net.Proto(), optim), \
"Inplace assignments differ in memonger net."
return optim
def estimate_memory_usage(protos, shapes, types, devicescope):
import numpy as np
'''
Estimate memory usage of a model. This is an estimate because
we assume a single threaded execution and miss some internal
memory usage of operators. Only estimates the memory for a given
device scope.
Also, currently it does not handle correctly if blob sizes vary
during execution, as it uses only the final blob size.
Returns (total, highwater, by op type) memory allocation in bytes.
'''
sizeofs = {
caffe2_pb2.TensorProto.DOUBLE: 8,
caffe2_pb2.TensorProto.FLOAT: 4,
caffe2_pb2.TensorProto.FLOAT16: 2,
caffe2_pb2.TensorProto.INT32: 4,
caffe2_pb2.TensorProto.INT8: 1,
caffe2_pb2.TensorProto.UINT8: 1,
caffe2_pb2.TensorProto.UINT16: 2,
caffe2_pb2.TensorProto.INT16: 2,
caffe2_pb2.TensorProto.BOOL: 1,
caffe2_pb2.TensorProto.INT64: 8,
}
def split_net(proto):
ops = [op for op in proto.op if
op.device_option == devicescope or op.type in {"Free", "Alias"}]
del proto.op[:]
proto.op.extend(ops)
return proto
def num_bytes(blob):
if blob not in shapes or blob not in types:
log.warning("Unknown blob encountered: {}".format(blob))
return 0
sizeof = sizeofs[types[blob]]
return sizeof * np.prod(shapes[blob])
protos = [split_net(proto) for proto in protos]
allocs_by_ops = collections.defaultdict(lambda: 0)
# Evaluate
current_allocated = 0
max_allocated = 0
total_allocated = 0
allocated = set()
for proto in protos:
for op in proto.op:
if op.type == "Free" or op.type == "Alias":
for o in op.output:
if o in allocated:
current_allocated -= num_bytes(o)
allocated.remove(o)
else:
for output in op.output:
if output not in allocated:
nbytes = num_bytes(output)
total_allocated += nbytes
current_allocated += nbytes
max_allocated = max(max_allocated, current_allocated)
allocated.add(output)
allocs_by_ops[op.type] += nbytes
return (total_allocated, max_allocated, allocs_by_ops)
def release_blobs_when_used(netproto, dont_free_blobs, selector_fun=None):
'''
Insert Free-ops after a blob has been used the last time, so that its
memory can be reclaimed. Use this only with efficient caching memory
managers (such as CUB, --caffe2_cuda_memory_pool=cub).
Blobs used with Alias op won't be freed.
@dont_free_blobs: is a set of blobs that should not be freed
@selector_fun: optional lambda that return True if blob name
can be released. Use for easy special filtering, like
excluding blobs with "loss" in the name.
Returns a new protobuffer. To use with a model, use:
model.net._net = memonger.release_blobs_when_used(..)
'''
input_blobs = set()
can_release = set()
alias_blobs = set()
netproto = copy.deepcopy(netproto)
for op in netproto.op:
if op.type == 'Alias':
alias_blobs.add(op.input[0])
continue
for inp in op.input:
input_blobs.add(inp)
for outp in op.output:
if outp not in input_blobs:
if selector_fun is None or selector_fun(outp):
can_release.add(outp)
# Remove such blobs that are not input at all and external outputs
can_release = can_release - set(netproto.external_output)
can_release = can_release.intersection(input_blobs)
can_release = can_release - dont_free_blobs
can_release = can_release - alias_blobs
ops = list(netproto.op)
# .. then find last use of each can-release blob, and insert a Free op
for j in reversed(range(0, len(netproto.op))):
op = netproto.op[j]
for inp in op.input:
if inp in can_release:
can_release.remove(inp)
ops.insert(j + 1, core.CreateOperator("Free", [inp], [inp]))
del netproto.op[:]
netproto.op.extend(ops)
return netproto
def _find_source_nodes(g):
''' Return nodes without predecessors '''
ret = []
for cn in g:
cur_pred = list(g.predecessors(cn))
if not cur_pred:
ret.append(cn)
return ret
def _find_target_nodes(g):
''' Return nodes without successors '''
ret = []
for cn in g:
cur_succ = list(g.successors(cn))
if not cur_succ:
ret.append(cn)
return ret
def _add_single_target_ifneeded(g):
targets = _find_target_nodes(g)
assert len(targets) >= 1
if len(targets) == 1:
return g
ret = copy.deepcopy(g)
def _next_available_idx(g):
ret = -1
for cn in g:
if cn > ret:
ret = cn
ret += 1
return ret
target_node_idx = _next_available_idx(g)
ret.add_node(target_node_idx)
for cn in targets:
ret.add_edge(cn, target_node_idx)
return ret
def _get_path(pred_list, dist_list):
''' Get the path from nx.bellman_ford()'s output '''
# distances are negative
assert all(dist_list[x] <= 0 for x in dist_list)
# node with longest distance to source is the target
target = min(dist_list, key=lambda x: dist_list[x])
ret = []
cur = target
while cur is not None:
ret.append(cur)
# Hack to get networkx 2.0 happy: it uses list in pred.
# TODO(tulloch): are there cases with multiple predecessors?
try:
cur = pred_list[cur][0] if pred_list[cur] else None
except TypeError:
cur = pred_list[cur]
return list(reversed(ret))
def _get_longest_paths(g, source_nodes):
''' Get the longest path for nodes in 'source_nodes'
Find with bellman_ford() by setting weight = -1
'''
ng = copy.deepcopy(g)
for u, v in ng.edges():
ng[u][v]["weight"] = -1
ret = {}
for cn in source_nodes:
pred, dist = nx.bellman_ford_predecessor_and_distance(ng, cn, weight="weight")
path = _get_path(pred, dist)
assert path[0] == cn
assert len(path) - 1 == -dist[path[-1]]
ret[cn] = path
return ret
def _build_tree(paths):
''' Build a tree for given paths based on common elements.
Last elements of all paths are the same, which is the root of the tree.
'''
assert all(cp[-1] == paths[0][-1] for cp in paths)
g = nx.DiGraph()
node_set = {y for x in paths for y in x}
g.add_nodes_from(node_set)
for cp in paths:
for ce in zip(cp[0:-1], cp[1:]):
g.add_edge(ce[1], ce[0])
root = paths[0][-1]
_compute_tree_height(g, root)
return (g, root)
def _compute_tree_height(g, root):
''' Compute the heights of the tree for all nodes
Height of leaves are 0
'''
def _get_height(root):
children = list(g.successors(root))
height = 0
if children:
child_heights = [_get_height(x) for x in children]
height = max(child_heights) + 1
g.node[root]["height"] = height
return height
_get_height(root)
def _sort_tree_leaves(g, root):
''' For each node, sort its child nodes based on the height of the nodes.
Return the leaf nodes of the tree after sorting.
'''
def _get_height(root):
return g.node[root]["height"]
def _get_sorted_leaves(root):
children = list(g.successors(root))
if not children:
return [root]
child_heights = [_get_height(x) for x in children]
order = sorted(range(len(children)), key=lambda x: child_heights[x])
ret = []
for co in order:
cr = children[co]
ret += _get_sorted_leaves(cr)
return ret
return _get_sorted_leaves(root)
def topological_sort_traversal_longest_path(g):
''' The graph 'g' may contain several source nodes (nodes without incoming
edge), which could be in any order and still be a valid
topological sorting result. We would like to arrange these source nodes
so that the average live spans of the computed blobs are shorter.
The idea is to sort the source nodes based on the length of their path to
the target node so that the one with longer path is used first.
This is done by:
- Add a single target node if there are multiple target nodes in 'g'.
- Find the longest path between each source and the target node.
- Convert the longest paths to a tree with the target node being the root
and source nodes being the leaves.
- Sort the nodes of the tree based on the height of the tree.
'''
gt = _add_single_target_ifneeded(g)
source_nodes = _find_source_nodes(gt)
lpaths = _get_longest_paths(gt, source_nodes)
tree, root = _build_tree(list(viewvalues(lpaths)))
sorted_sources = _sort_tree_leaves(tree, root)
assert(sorted(sorted_sources) == sorted(source_nodes))
if nx.__version__ < '2.0':
ret = nx.topological_sort(g, sorted_sources)
else:
# Manually making a sorted descendent list
dependency_order = list(sorted_sources)
seen_nodes = set(sorted_sources)
for s in sorted_sources:
desc = nx.descendants(g, s)
for d in desc:
if d not in seen_nodes:
seen_nodes.add(d)
dependency_order.append(d)
sort_key = dict((v, len(dependency_order) - i) for i, v in enumerate(dependency_order))
ret = nx.algorithms.dag.lexicographical_topological_sort(
g, key=lambda x: sort_key[x])
ret = list(ret)
assert(len(ret) == len(g.node))
return ret
def topological_sort_traversal(g):
return list(nx.topological_sort(g))
def compute_ranges(linearized_ops, blob_sizes=None):
if not blob_sizes:
log.warning('Provide blob sizes to get more accurate assignments.')
blobs = collections.defaultdict(
lambda: LiveRange(defined=None, used=None, size=None))
for i, op in enumerate(linearized_ops):
for blob in op.input:
used = blobs[blob].used
if used is None:
used = i
else:
used = max(used, i)
blobs[blob] = blobs[blob]._replace(used=used)
blob_size = blob_sizes[blob] if blob_sizes else None
assert not blob_sizes or blob_size is not None
blobs[blob] = blobs[blob]._replace(size=blob_size)
for blob in op.output:
defined = blobs[blob].defined
if defined is None:
defined = i
else:
defined = min(defined, i)
blobs[blob] = blobs[blob]._replace(defined=defined)
blob_size = blob_sizes[blob] if blob_sizes else None
assert not blob_sizes or blob_size is not None
blobs[blob] = blobs[blob]._replace(size=blob_size)
return blobs
def is_compatible(candidate_range, assignment, static_blobs):
(name, range_) = assignment[-1]
if name in static_blobs:
return False
if candidate_range.defined is None or range_.defined is None \
or range_.used is None:
return False
return candidate_range.defined > range_.used
def compute_blob_assignments(assignments):
blob_assignments = {}
for assignment in assignments:
if len(assignment) == 1:
continue
last_blob, _ = assignment[-1]
for (blob, _) in assignment:
blob_assignments[blob] = last_blob
return blob_assignments
def _get_max_size(assignment):
if not assignment:
return 0
ret = max([x[1].size for x in assignment])
ret = 0 if ret is None else ret
return ret
def get_memory_usage(assignments):
ret = 0
for cur in assignments:
ret += _get_max_size(cur)
return ret
def compute_assignments_greedy(ranges_sorted, init_assignments=None):
assignments = init_assignments or []
visited = {y[0] for x in assignments for y in x}
for (name, range_) in ranges_sorted:
if name in visited:
continue
assigned = False
best_assignment = 0
min_dist = float("inf")
candidate_size = range_.size or 0
for idx, assignment in enumerate(assignments):
if is_compatible(range_, assignment, []):
assigned = True
dist = abs(_get_max_size(assignment) - candidate_size)
if dist < min_dist:
min_dist = dist
best_assignment = idx
if assigned:
assignment = assignments[best_assignment]
assignment.append((name, range_))
else:
assignments.append([(name, range_)])
return assignments
def _get_count(assignments):
''' Return number of blobs in assignments '''
if assignments:
return sum([len(x) for x in assignments])
return 0
def compute_assignments_dp(ranges_sorted, init_assignment, counter=None):
''' Compute assignment for blobs in 'ranges_sorted' on top of 'init_assignment'
using dynamic programming + recursion.
ranges_sorted: blobs sorted by 'used'
init_assignment: assignment to start with, blobs in 'ranges_sorted' should
not be used in 'init_assignment'
Using f(b, k, init) to represent the best assignment for blobs b[0:k]
given initial assignment 'init', we have
f(b, k, init) = f(b, j, init) +
find_best(b[j:k], f(b, j, init))
where j is the index of the last best assignment that is independent of
blob b[k - 1] (b[k - 1] is compatible with all assignments in
f(b, j, init)), and find_best(b1, init1) gives the best assignment
for blobs in 'b1' based on the initial assignment 'init1', and blobs
b1[0:-1] should be incompatible with b1[-1]. f(b, len(b), []) gives
the best assignment for blobs 'b'.
For find_best(b, init), since b[0:-1] are not compatible with b[-1], we
could reduce it to a smaller problem to find best assignment for b[0:-1]
as
find_best(b, init) = min {
f(b[0:-1], len(b) - 1, init - x) + [x, b[-1]] for x in init, or
f(b[0:-1], len(b) - 1, init) + [b[-1]]
}
where min{} gives the assignment with minimum memory usage.
'''
def _get_compatible_prev(candidate_range, best_assignments, cur_idx):
''' Find closest position k of best_assignments that is independent of
candidate_range that candiate_range is compatible with all assignments
in best_assignments[k].
Return -1 if not found.
'''
def is_compatible_all(candidate_range, assignments):
''' return true if compatible for all assignments in assignments '''
return all([is_compatible(candidate_range[1], x, []) for x in assignments])
ii = cur_idx - 1
while ii >= 0:
cba = best_assignments[ii]
if is_compatible_all(candidate_range, cba):
return ii
ii -= 1
return -1
def _find_best(ranges, init_assignment, prev_best_assignment, counter):
''' Find the best assignment for blobs 'ranges' given an initialized
assignment 'init_assignment'.
Blobs in ranges[0:-1] should be incompatible with blob range[-1].
'prev_best_assignment': best assignment for blobs in ranges[:-1]
By assigning ranges[-1] to each assignment k in 'init_assignment' or
in a new assignment, the problem becomes a smaller problem to find
the best assignment for ranges[0:-1] given the initial assignment
init_assigment[0:k, (k+1):-1].
'''
# Blob to check
find_range = ranges[-1]
# Blobs in ranges[0:-1] are incompatible with ranges[-1] so that we can
# reduce it to a smaller problem.
assert all(not is_compatible(x[1], [find_range], []) for x in ranges[0:-1])
sz = len(init_assignment)
best_candidates = []
# Try to assign 'find_range' to each assignment in init_assignment
for ii in range(sz):
if not is_compatible(find_range[1], init_assignment[ii], []):
continue
cur_best = copy.deepcopy(init_assignment)
cur_best[ii].append(find_range)
if len(ranges) > 1:
cur_best_tmp = [x for i, x in enumerate(cur_best) if i != ii]
# reduce to a smaller dp problem
cur_best_tmp = compute_assignments_dp(
ranges[:-1], cur_best_tmp, counter)
cur_best = cur_best_tmp + [cur_best[ii]]
best_candidates.append(cur_best)
# Try to put 'find_range' in a new assignment
best_candidates.append(prev_best_assignment + [[find_range]])
ret = min(best_candidates, key=lambda x: get_memory_usage(x))
return ret
if not counter:
counter = [0]
counter[0] += 1
if counter and counter[0] % 5000 == 0:
rs = [ranges_sorted[0][1].defined, ranges_sorted[-1][1].used]
log.info('Finding assignments {} ({} -> {})...'.format(
counter[0], rs[0], rs[1]))
init_assignment = init_assignment or []
# best_assignments[k]: best assignments for first k blobs ranges_sorted[0:(k+1)]
best_assignments = []
# Find best assignment for blobs ranges_sorted[0:ii]
for ii, cur_range in enumerate(ranges_sorted):
# closest best_assignment that is independent of ranges_sorted[ii]
prev_idx = _get_compatible_prev(cur_range, best_assignments, ii)
prev_best = copy.deepcopy(init_assignment) if prev_idx < 0 else \
copy.deepcopy(best_assignments[prev_idx])
# Need to find best assignment for blobs in 'ranges_part'
ranges_part = ranges_sorted[(prev_idx + 1):(ii + 1)]
cur_best = _find_best(
ranges_part, prev_best,
best_assignments[-1] if best_assignments else init_assignment,
counter)
assert _get_count(cur_best) == _get_count(prev_best) + len(ranges_part)
best_assignments.append(copy.deepcopy(cur_best))
assert len(best_assignments) == len(ranges_sorted)
best = best_assignments[-1]
return best
def get_updated_ranges(ranges, max_live=None):
''' Set LiveRange.defined = -1 if it is None
Set LiveRange.used = max_live if it is None
Set LiveRanee.size = 1 if it is None
'''
def _get_max_live(ranges):
max_live = max(x[1].used for x in ranges if x[1].used) + 1
return max_live
def _update_range(x, max_live, size):
cx = x
if x[1].defined is None:
cx = (cx[0], cx[1]._replace(defined=-1))
if x[1].used is None:
cx = (cx[0], cx[1]._replace(used=max_live))
if x[1].size is None:
cx = (cx[0], cx[1]._replace(size=size))
return cx
if max_live is None:
max_live = _get_max_live(ranges)
ranges = [_update_range(x, max_live, 1) for x in ranges]
return ranges
def compute_assignments(ranges, static_blobs, algo):
'''
algo: Method used to find assignments (AssignmentAlgorithm.GREEDY or
AssignmentAlgorithm.DYNAMIC_PROGRAMMING).
AssignmentAlgorithm.DYNAMIC_PROGRAMMING gives optimal solution at the
cost of more computation.
AssignmentAlgorithm.GREEDY may be better in the case 'blob_sizes' is
not provided.
'''
# Sort the ranges based on when they are last used.
# If LiveRange.used is None, then the blob is never used and could
# be consumed externally. Sort these to the end of the list as opposed
# to the beginning so that they can be shared as well.
ranges = sorted(
viewitems(ranges),
key=lambda p: (p[1].used is None, p[1].used),
)
# Update None values
ranges = get_updated_ranges(ranges)
# Sharable blobs
ranges_sharable = [x for x in ranges if x[0] not in static_blobs]
# Static blobs, not sharable
ranges_static = [x for x in ranges if x[0] in static_blobs]
log.info("Total sharable blobs {}".format(len(ranges_sharable)))
best_assignment = []
if algo == AssignmentAlgorithm.DYNAMIC_PROGRAMMING:
best_assignment = compute_assignments_dp(ranges_sharable, [])
elif algo == AssignmentAlgorithm.GREEDY:
best_assignment = compute_assignments_greedy(ranges_sharable, [])
else:
assert "Invalid algo name {}".format(algo)
best_assignment += [[x] for x in ranges_static]
# verify_assignments(best_assignment)
return best_assignment
def verify_assignments(assignments):
for cur in assignments:
for x, y in zip(cur[0:-1], cur[1:]):
assert x[1].used < y[1].defined
def compute_interference_graph(ops):
g = nx.DiGraph()
for i, op in enumerate(ops):
g.add_node(i, op=op)
for i, parent_op in enumerate(ops):
for j, child_op in enumerate(ops):
if i >= j:
continue
if any(output in child_op.input for output in parent_op.output):
deps = set(child_op.input).intersection(parent_op.output)
g.add_edge(i, j, deps=deps)
assert nx.is_directed_acyclic_graph(g), child_op
return g
Optimization = collections.namedtuple(
'Optimization', ['net', 'assignments', 'blob_assignments'])
def apply_assignments(net, blob_assignments):
def canonical_name(blob):
if blob not in blob_assignments:
return blob
return blob_assignments[blob]
for op in net.op:
# Descend into subnets of the recurrent network
if op.type.startswith('RecurrentNetwork'):
apply_recurrent_blob_assignments(op, blob_assignments, canonical_name)
for i, input_ in enumerate(op.input):
op.input[i] = canonical_name(input_)
for i, output in enumerate(op.output):
op.output[i] = canonical_name(output)
def apply_recurrent_blob_assignments(op, blob_assignments, canonical_name):
log.debug("Applying assignments to recurrent op: {}".format(op.type))
step_args = [a for a in op.arg if a.name.endswith("step_net")]
for step_arg in step_args:
apply_assignments(step_arg.n, blob_assignments)
for i, einp in enumerate(step_arg.n.external_input):
if einp in blob_assignments:
step_arg.n.external_input[i] = canonical_name(einp)
# Store renamings
for blob, renamed in viewitems(blob_assignments):
if blob in list(op.input) + list(op.output):
a = caffe2_pb2.Argument()
a.name = blob + ".rename"
a.s = str(renamed).encode("ascii")
op.arg.extend([a])
class AssignmentAlgorithm(enum.Enum):
GREEDY = 0
DYNAMIC_PROGRAMMING = 1
def optimize_inference_fast(net, static_blobs):
optim = caffe2_pb2.NetDef()
optim_str = C.memonger_optimize_inference_net(
net.SerializeToString(),
[str(s).encode('utf-8') for s in static_blobs]
)
optim.ParseFromString(optim_str)
return optim
def optimize_interference(net, static_blobs,
ordering_function=topological_sort_traversal,
blob_sizes=None,
algo=AssignmentAlgorithm.GREEDY):
"""
ordering_function: topological_sort_traversal or
topological_sort_traversal_longest_path.
topological_sort_traversal_longest_path gives better
results but needs a bit more computation.
algo: Method used to find assignments (AssignmentAlgorithm.GREEDY or
AssignmentAlgorithm.DYNAMIC_PROGRAMMING).
AssignmentAlgorithm.DYNAMIC_PROGRAMMING gives optimal solution at the
cost of more computation.
AssignmentAlgorithm.GREEDY may be better in the case 'blob_sizes' is
not provided.
"""
"""
1) Use a BFS traversal of the execution graph to generate an
ordering of the node executions.
2) Generate use-def ranges for each `blob` in the BFS traversal
order.
3) Assign blobs to `canonical blobs`
4) Rename blobs to canonical blobs
"""
net = copy.deepcopy(net)
g = compute_interference_graph(net.op)
ordering = ordering_function(g)
linearized_ops = [net.op[i] for i in ordering]
# Reorder ops in net based on the computed linearlized order.
# If the graph has multiple topological orderings and if the NetDef's
# ordering differs from the order used to compute ranges, then the
# runtime might end up overwriting blobs before they are used.
del net.op[:]
net.op.extend(linearized_ops)
ranges = compute_ranges(linearized_ops, blob_sizes)
assignments = compute_assignments(ranges, static_blobs, algo)
blob_assignments = compute_blob_assignments(assignments)
apply_assignments(net, blob_assignments)
return Optimization(
net=net,
blob_assignments=blob_assignments,
assignments=assignments)
def verify_inplace_blobs(net_a, net_b):
"""
Verifies that net_a and net_b have the same in-place blob assignments.
Particularly, that memonger did not add an in-place assignment when that
did not exist before.
"""
def get_inplaces(op):
out = list(op.output)
inplaces = []
for j, inp in enumerate(op.input):
if inp in out:
inplaces.append([j, out.index(inp)])
return inplaces
for op_a, op_b in zip(net_a.op, net_b.op):
if op_a.type != op_b.type:
return False
if get_inplaces(op_a) != get_inplaces(op_b):
return False
return True
def verify_graph_equality(net_a, net_b):
"""
Determines if the execution of two graphs are identical.
That is, all inputs blobs are mapped to the same output blobs
for each operator in their respective positions.
This is meant to check the output of memonger with the original graph.
It assumes that the nets have same external input and output.
O(E) runtime + O(1) amortized cost to hash for python dict
"""
def parent_list(ops):
parent_list = [[] for _ in ops]
edge_owner = {}
for i, op in enumerate(ops):
for blob in op.input:
parent_id = edge_owner.get(blob)
if parent_id is not None:
parent_list[i].append(parent_id)
for blob in op.output:
edge_owner[blob] = i
return parent_list
# Operator wise equality checks
if (len(net_a.op) != len(net_b.op)):
return False
for op_a, op_b in zip(net_a.op, net_b.op):
if (op_a.type != op_b.type or
op_a.device_option != op_b.device_option or
op_a.engine != op_b.engine):
return False
# Print debug info
parent_list_a = parent_list(net_a.op)
parent_list_b = parent_list(net_b.op)
if parent_list_a != parent_list_b:
j = 0
for a, b in zip(parent_list_a, parent_list_b):
if a != b:
print("Difference {} vs {} \n {}".format(
j, net_a.op[j], net_b.op[j]))
print("Parents: {} vs {}".format(a, b))
j += 1
# Net wise equality check
return parent_list_a == parent_list_b
Statistics = collections.namedtuple(
'Statistics', ['baseline_nbytes', 'optimized_nbytes'])
def blob_nbytes(blob):
sz = 0
try:
sz = workspace.FetchBlob(blob).nbytes
except Exception:
log.warning('Error when fetching blob {}'.format(blob))
return sz
def compute_statistics(assignments):
blob_bytes = {
blob: blob_nbytes(blob) for assignment in assignments
for (blob, _) in assignment}
baseline_nbytes = sum(viewvalues(blob_bytes))
optimized_nbytes = sum(
max(blob_bytes[blob] for (blob, _) in assignment)
for assignment in assignments)
return Statistics(
baseline_nbytes=baseline_nbytes,
optimized_nbytes=optimized_nbytes)
def collect_blob_sizes(net):
blobs = {}
for op in net.op:
for blob in op.input:
blobs[blob] = blob_nbytes(blob)
for blob in op.output:
blobs[blob] = blob_nbytes(blob)
return blobs