forked from CalculusWithJulia/CalculusWithJulia.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vectors.html
1635 lines (1222 loc) · 214 KB
/
vectors.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/css/bootstrap.min.css"
rel="stylesheet">
<style>
.julia {display: block; font-family: "Source Code Pro";
color:#0033CC;
}
.hljl {font-family: "Source Code Pro";
color:#0033CC;
}
body { padding-top: 60px; }
h5:before {content:"\2746\ ";}
h6:before {content:"\2742\ ";}
pre {display: block;}
th, td {
padding: 15px;
text-align: left;
border-bottom: 1px solid #ddd;
}
tr:hover {background-color: #f5f5f5;}
.admonition-title:before {content:"\2746\ ";}
.admonition-title { color:#0033CC}
</style>
<!-- .julia:before {content: "julia> "} -->
<style></style>
<script src="https://code.jquery.com/jquery.js"></script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ["\$","\$"], ["\\(","\\)"]]
},
displayAlign: "left",
displayIndent: "5%"
});
</script>
<!-- not TeX-AMS-MML_HTMLorMML-->
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML" async></script>
</script>
<script>
window.PlotlyConfig = {MathJaxConfig: 'local'}
</script>
<script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
<script type="text/javascript">
$( document ).ready(function() {
$("h1").each(function(index) {
var title = $( this ).text()
$("#page_title").html("<strong>" + title + "</strong>");
document.title = title
});
$( "h2" ).each(function( index ) {
var nm = $( this ).text();
var id = $.trim(nm).replace(/ /g,'');
this.id = id
$("#page_dropdown").append("<li><a href='#" + id + "'>" + nm + "</a></li>");
});
$('[data-toggle="popover"]').popover();
});
</script>
</head>
<body data-spy="scroll" >
<nav class="navbar navbar-default navbar-fixed-top">
<div class="container-fluid">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
</div>
<!-- Collect the nav links, forms, and other content for toggling -->
<div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
<ul class="nav navbar-nav">
<li><a href="#" id="page_title"></a></li>
</ul>
<ul class="nav navbar-nav navbar-right">
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Jump to... <span class="caret"></span></a>
<ul class="dropdown-menu" role="menu" id="page_dropdown"></ul>
</li>
</ul>
</div><!-- /.navbar-collapse -->
</div><!-- /.container-fluid -->
</nav>
<header>
</header>
<div class="title">
</div>
<div class="container-fluid">
<div class="span10 offset1">
<h1>Vectors</h1>
<p>One of the first models learned in physics are the equations governing the laws of motion with constant acceleration: <span class="math">$x(t) = x_0 + v_0 t + 1/2 \cdot a t^2$</span>. This is a consequence of Newton's second <a href="http://tinyurl.com/8ylk29t">law</a> of motion applied to the constant acceleration case. A related formula for the velocity is <span class="math">$v(t) = v_0 + at$</span>. The following figure is produced using these formulas applied to both the vertical position and the horizontal position:</p>
<div class="well well-sm">
<figure>
<img src=""/>
<figcaption><div class="markdown"><p>Position, velocity, and acceleration vectors (scaled) for projectile motion. Vectors are drawn with tail on the projectile. The position vector (black) points from the origin to the projectile, the velocity vector (red) is in the direction of the trajectory, and the acceleration vector (green) is a constant pointing downward.</p>
</div></figcaption>
</figure>
</div>
<p>For the motion in the above figure, the object's <span class="math">$x$</span> and <span class="math">$y$</span> values change according to the same rule, but, as the acceleration is different in each direction, we get different formula, namely: <span class="math">$x(t) = x_0 + v_{0x} t$</span> and <span class="math">$y(t) = y_0 + v_{0y}t - 1/2 \cdot gt^2$</span>.</p>
<p>It is common to work with <em>both</em> formulas at once. Mathematically, when graphing, we naturally pair off two values using Cartesian coordinates (e.g., <span class="math">$(x,y)$</span>). Another means of combining related values is to use a <em>vector</em>. The notation for a vector varies, but to distinguish them from a point we will use <span class="math">$\langle x,~ y\rangle$</span>. With this notation, we can use it to represent the position, the velocity, and the acceleration at time <span class="math">$t$</span> through:</p>
<p class="math">\[
~
\begin{align}
\vec{x} &= \langle x_0 + v_{0x}t,~ -(1/2) g t^2 + v_{0y}t + y_0 \rangle,\\
\vec{v} &= \langle v_{0x},~ -gt + v_{0y} \rangle, \text{ and }\\
\vec{a} &= \langle 0,~ -g \rangle.
\end{align}
~
\]</p>
<p>Don't spend time thinking about the formulas if they are unfamiliar. The point emphasized here is that we have used the notation <span class="math">$\langle x,~ y \rangle$</span> to collect the two values into a single object, which we indicate through a label on the variable name. These are vectors, and we shall see they find use far beyond this application.</p>
<p>Initially, our primary use of vectors will be as containers, but it is worthwhile to spend some time to discuss properties of vectors and their visualization.</p>
<p>A line segment in the plane connects two points <span class="math">$(x_0, y_0)$</span> and <span class="math">$(x_1, y_1)$</span>. The length of a line segment (its magnitude) is given by the distance formula <span class="math">$\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2}$</span>. A line segment can be given a direction by assigning an initial point and a terminal point. A directed line segment has both a direction and a magnitude. A vector is an abstraction where just these two properties – a direction and a magnitude–-are intrinsic. While a directed line segment can be represented by a vector, a single vector describes all such line segments found by translation. That is, how the the vector is located when visualized is for convenience, it is not a characteristic of the vector. In the figure above, all vectors are drawn with their tails at the position of the projectile over time.</p>
<p>We can visualize a (two-dimensional) vector as an arrow in space. This arrow has two components. We represent a vector than mathematically as <span class="math">$\langle x,~ y \rangle$</span>. For example, the vector connecting the point <span class="math">$(x_0, y_0)$</span> to <span class="math">$(x_1, y_1)$</span> is <span class="math">$\langle x_1 - x_0,~ y_1 - y_0 \rangle$</span>.</p>
<p>The magnitude of a vector comes from the distance formula applied to a line segment, and is <span class="math">$\| \vec{v} \| = \sqrt{x^2 + y^2}$</span>.</p>
<div class="well well-sm">
<figure>
<img src=""/>
<figcaption><div class="markdown"><p>A vector and its unit vector. They share the same direction, but the unit vector has a standardized magnitude.</p>
</div></figcaption>
</figure>
</div>
<p>We call the values <span class="math">$x$</span> and <span class="math">$y$</span> of the vector <span class="math">$\vec{v} = \langle x,~ y \rangle$</span> the components of the <span class="math">$v$</span>.</p>
<p>Two operations on vectors are fundamental.</p>
<ul>
<li><p>Vectors can be multiplied by a scalar (a real number): <span class="math">$c\vec{v} = \langle cx,~ cy \rangle$</span>. Geometrically this scales the vector by a factor of <span class="math">$\lvert c \rvert$</span> and switches the direction of the vector by 180 degree when <span class="math">$c < 0$</span>. A <em>unit vector</em> is one with magnitude 1, and, except for the <span class="math">$\vec{0}$</span> vector, can be formed from <span class="math">$\vec{v}$</span> by dividing <span class="math">$\vec{v}$</span> by its magnitude. A vector's two parts are summarized by its direction given by a unit vector gives and its norm given by the magnitude.</p>
</li>
</ul>
<ul>
<li><p>Vectors can be added: <span class="math">$\vec{v} + \vec{w} = \langle v_x + w_x,~ v_y + w_y \rangle$</span>. That is, each corresponding component adds to form a new vector. Similarly for subtraction. The <span class="math">$\vec{0}$</span> vector then would be just <span class="math">$\langle 0,~ 0 \rangle$</span> and would satisfy <span class="math">$\vec{0} + \vec{v} = \vec{v}$</span> for any vector <span class="math">$\vec{v}$</span>. The vector addition <span class="math">$\vec{v} + \vec{w}$</span> is visualized by placing the tail of <span class="math">$\vec{w}$</span> at the tip of <span class="math">$\vec{v}$</span> and then considering the new vector with tail coming from <span class="math">$\vec{v}$</span> and tip coming from the position of the tip of <span class="math">$\vec{w}$</span>. Subtraction is different, place both the tails of <span class="math">$\vec{v}$</span> and <span class="math">$\vec{w}$</span> at the same place and the new vector has tail at the tip of <span class="math">$\vec{v}$</span> and tip at the tip of <span class="math">$\vec{w}$</span>.</p>
</li>
</ul>
<div class="well well-sm">
<figure>
<img src=""/>
<figcaption><div class="markdown"><p>The sum of two vectors can be visualized by placing the tail of one at the tip of the other</p>
</div></figcaption>
</figure>
</div>
<div class="well well-sm">
<figure>
<img src=""/>
<figcaption><div class="markdown"><p>The sum of two vectors can be visualized by placing the tail of one at the tip of the other</p>
</div></figcaption>
</figure>
</div>
<p>The concept of scalar multiplication and addition, allow the decomposition of vectors into standard vectors. The standard unit vectors in two dimensions are <span class="math">$e_x = \langle 1,~ 0 \rangle$</span> and <span class="math">$e_y = \langle 0,~ 1 \rangle$</span>. Any two dimensional vector can be written uniquely as <span class="math">$a e_x + b e_y$</span> for some pair of scalars <span class="math">$a$</span> and <span class="math">$b$</span> (or as, <span class="math">$\langle a, b \rangle$</span>). This is true more generally where the two vectors are not the standard unit vectors–-they can be <em>any</em> two non-parallel vectors.</p>
<div class="well well-sm">
<figure>
<img src=""/>
<figcaption><div class="markdown"><p>The vector $\langle 4,3 \rangle$ is written as $2$/$3$ $\cdot\langle 1,2 \rangle$ $+$ $5$/$3$ $\cdot\langle 2,1 \rangle$. Any vector $\vec{c}$ can be written uniquely as $\alpha\cdot\vec{a} + \beta \cdot \vec{b}$ provided $\vec{a}$ and $\vec{b}$ are not parallel.</p>
</div></figcaption>
</figure>
</div>
<p>The two operations of scalar multiplication and vector addition are defined in a component-by-component basis. We will see that there are many other circumstances where performing the same action on each component in a vector is desirable.</p>
<hr />
<p>When a vector is placed with its tail at the origin, it can be described in terms of the angle it makes with the <span class="math">$x$</span> axis, <span class="math">$\theta$</span>, and its length, <span class="math">$r$</span>. The following formulas apply:</p>
<p class="math">\[
~
r = \sqrt{x^2 + y^2}, \quad \tan(\theta) = y/x.
~
\]</p>
<p>If we are given <span class="math">$r$</span> and <span class="math">$\theta$</span>, then the vector is <span class="math">$v = \langle r \cdot \cos(\theta),~ r \cdot \sin(\theta) \rangle$</span>.</p>
<div class="well well-sm">
<figure>
<img src=""/>
<figcaption><div class="markdown"><p>A vector $\langle x, y \rangle$ can be written as $\langle r\cdot \cos(\theta), r\cdot\sin(\theta) \rangle$ for values $r$ and $\theta$. The value $r$ is a magnitude, the direction parameterized by $\theta$.</p>
</div></figcaption>
</figure>
</div>
<h2>Vectors in Julia</h2>
<p>A vector in <code>Julia</code> can be represented by its individual components, but it is more convenient to combine them into a collection using the <code>[,]</code> notation:</p>
<pre class='hljl'>
<span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-t'>
</span><span class='hljl-n'>v</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-p'>]</span><span class='hljl-t'> </span><span class='hljl-cs'># square brackets, not angles</span>
</pre>
<pre class="output">
2-element Array{Int64,1}:
1
2
</pre>
<p>The basic vector operations are implemented for vector objects. For example, the vector <code>v</code> has scalar multiplication defined for it:</p>
<pre class='hljl'>
<span class='hljl-ni'>10</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-n'>v</span>
</pre>
<pre class="output">
2-element Array{Int64,1}:
10
20
</pre>
<p>The <code>norm</code> function returns the magnitude of the vector (by default):</p>
<pre class='hljl'>
<span class='hljl-k'>import</span><span class='hljl-t'> </span><span class='hljl-n'>LinearAlgebra</span><span class='hljl-oB'>:</span><span class='hljl-t'> </span><span class='hljl-n'>norm</span><span class='hljl-t'>
</span><span class='hljl-nf'>norm</span><span class='hljl-p'>(</span><span class='hljl-n'>v</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
2.23606797749979
</pre>
<p>A unit vector is then found by scaling by the reciprocal of the magnitude:</p>
<pre class='hljl'>
<span class='hljl-n'>v</span><span class='hljl-t'> </span><span class='hljl-oB'>/</span><span class='hljl-t'> </span><span class='hljl-nf'>norm</span><span class='hljl-p'>(</span><span class='hljl-n'>v</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
2-element Array{Float64,1}:
0.4472135954999579
0.8944271909999159
</pre>
<p>In addition, if <code>w</code> is another vector, we can add and subtract:</p>
<pre class='hljl'>
<span class='hljl-n'>w</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-ni'>3</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-p'>]</span><span class='hljl-t'>
</span><span class='hljl-n'>v</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>w</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>v</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-n'>w</span>
</pre>
<pre class="output">
([4, 4], [-5, -2])
</pre>
<p>We see above that scalar multiplication, addition, and subtraction can be done without new notation. This is because the usual operators have methods defined for vectors.</p>
<p>Finally, to find an angle <span class="math">$\theta$</span> from a vector <span class="math">$\langle x,~ y\rangle$</span>, we can employ the <code>atan</code> function using two arguments:</p>
<pre class='hljl'>
<span class='hljl-cs'># v = [x, y]</span><span class='hljl-t'>
</span><span class='hljl-nf'>norm</span><span class='hljl-p'>(</span><span class='hljl-n'>v</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-nf'>atan</span><span class='hljl-p'>(</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
(2.23606797749979, 1.1071487177940904)
</pre>
<h2>Higher dimensional vectors</h2>
<p>Mathematically, vectors can be generalized to more than 2 dimensions. For example, using 3-dimensional vectors are common when modeling events happening in space, and 4-dimensional vectors are common when modeling space and time.</p>
<p>In <code>Julia</code> there are many uses for vectors outside of physics applications. A vector in <code>Julia</code> is just a one-dimensional collection of similarly typed values. Such objects find widespread usage. For example:</p>
<ul>
<li><p>In plotting graphs with <code>Julia</code>, vectors are used to hold the <span class="math">$x$</span> and <span class="math">$y$</span> coordinates of a collection of points to plot and connect with straight lines. There can be hundreds of such points in a plot.</p>
</li>
<li><p>Vectors are a natural container to hold the roots of a polynomial or zeros of a function.</p>
</li>
<li><p>Vectors may be used to record the state of an iterative process.</p>
</li>
<li><p>Vectors are naturally used to represent a data set, such as arise when collecting survey data.</p>
</li>
</ul>
<p>Creating higher-dimensional vectors is similar to creating a two-dimensional vector, we just include more components:</p>
<pre class='hljl'>
<span class='hljl-n'>fibs</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-ni'>2</span><span class='hljl-p'>,</span><span class='hljl-ni'>3</span><span class='hljl-p'>,</span><span class='hljl-ni'>5</span><span class='hljl-p'>,</span><span class='hljl-ni'>8</span><span class='hljl-p'>,</span><span class='hljl-ni'>13</span><span class='hljl-p'>]</span>
</pre>
<pre class="output">
7-element Array{Int64,1}:
1
1
2
3
5
8
13
</pre>
<p>Later we will discuss different ways to modify the values of a vector to create new ones, similar to how scalar multiplication does.</p>
<p>As mentioned, vectors in <code>Julia</code> are comprised of elements of a similar type, but the type is not limited to numeric values. For example, a vector of strings might be useful for text processing, a vector of Boolean values can naturally arise, some applications are even naturally represented in terms of vectors of vectors. Look at the output of these two vectors:</p>
<pre class='hljl'>
<span class='hljl-p'>[</span><span class='hljl-s'>"one"</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-s'>"two"</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-s'>"three"</span><span class='hljl-p'>]</span><span class='hljl-t'> </span><span class='hljl-cs'># Array{T, 1} is shorthand for Vector{T}. Here T---the type---is String</span>
</pre>
<pre class="output">
3-element Array{String,1}:
"one"
"two"
"three"
</pre>
<pre class='hljl'>
<span class='hljl-p'>[</span><span class='hljl-kc'>true</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-kc'>false</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-kc'>true</span><span class='hljl-p'>]</span><span class='hljl-t'> </span><span class='hljl-cs'># vector of Bool values</span>
</pre>
<pre class="output">
3-element Array{Bool,1}:
1
0
1
</pre>
<p>Finally, we mention that if <code>Julia</code> has values of different types it will promote them to a common type if possible. Here we combine three types of numbers, and see that each is promoted to <code>Float64</code>:</p>
<pre class='hljl'>
<span class='hljl-p'>[</span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-nfB'>2.0</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>3</span><span class='hljl-oB'>//</span><span class='hljl-ni'>1</span><span class='hljl-p'>]</span>
</pre>
<pre class="output">
3-element Array{Float64,1}:
1.0
2.0
3.0
</pre>
<p>Whereas, in this example where there is no common type to promote the values to, a catch-all type of <code>Any</code> is used to hold the components.</p>
<pre class='hljl'>
<span class='hljl-p'>[</span><span class='hljl-s'>"one"</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-nfB'>3.0</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>4</span><span class='hljl-oB'>//</span><span class='hljl-ni'>1</span><span class='hljl-p'>]</span>
</pre>
<pre class="output">
4-element Array{Any,1}:
"one"
2
3.0
4//1
</pre>
<h2>Indexing</h2>
<p>Getting the components out of a vector can be done in a manner similar to multiple assignment:</p>
<pre class='hljl'>
<span class='hljl-n'>v</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-p'>]</span><span class='hljl-t'>
</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>v</span>
</pre>
<pre class="output">
2-element Array{Int64,1}:
1
2
</pre>
<p>When the same number of variable names are on the left hand side of the assignment as in the container on the right, each is assigned in order.</p>
<p>Though this is convenient for small vectors, it is far from being so if the vector has a large number of components. However, the vector is stored in order with a first, second, third, <span class="math">$\dots$</span> component. <code>Julia</code> allows these values to be referred to by <em>index</em>. This too uses the <code>[]</code> notation, though differently. Here is how we get the second component of <code>v</code>:</p>
<pre class='hljl'>
<span class='hljl-n'>v</span><span class='hljl-p'>[</span><span class='hljl-ni'>2</span><span class='hljl-p'>]</span>
</pre>
<pre class="output">
2
</pre>
<p>The last value of a vector is usually denoted by <span class="math">$v_n$</span>. In <code>Julia</code>, the <code>length</code> function will return <span class="math">$n$</span>, the number of items in the container. So <code>v[length(v)]</code> will refer to the last component. However, the special keyword <code>end</code> will do so as well, when put into the context of indexing. So <code>v[end]</code> is more idiomatic.</p>
<div class="alert alert-info" role="alert">
<div class="markdown"><p>There is <a href="http://julia.readthedocs.org/en/latest/manual/arrays/#indexing">much more</a> to indexing than just indexing by a single integer value. For example, the following can be used for indexing:</p>
<ul>
<li><p>a scalar integer (as seen)</p>
</li>
<li><p>a range</p>
</li>
<li><p>a vector of integers</p>
</li>
<li><p>a boolean vector</p>
</li>
</ul>
<p>Some add-on packages extend this further.</p>
</div>
</div>
<h3>Assignment and indexing</h3>
<p>This notation can also be used for assignment. The following expression replaces the second component with a new value:</p>
<pre class='hljl'>
<span class='hljl-n'>v</span><span class='hljl-p'>[</span><span class='hljl-ni'>2</span><span class='hljl-p'>]</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>10</span>
</pre>
<pre class="output">
10
</pre>
<p>The right hand side is returned, not the value for <code>v</code>. We can check that <code>v</code> is now <span class="math">$\langle 1,~ 10 \rangle$</span> by showing it:</p>
<pre class='hljl'>
<span class='hljl-n'>v</span>
</pre>
<pre class="output">
2-element Array{Int64,1}:
1
10
</pre>
<p>The assignment <code>v[2]</code> is different than the initial assignment <code>v=[1,2]</code> in that, <code>v[2]=10</code> modifies the container that <code>v</code> points to, whereas <code>v=[1,2]</code> replaces the binding for <code>v</code>. The indexed assignment is then more memory efficient when vectors are large. This point is also of interest when passing vectors to functions, as a function may modify components of the vector passed to it, though can't replace the container itself.</p>
<h2>Some functions useful when working with vectors.</h2>
<p>As mentioned, the <code>length</code> function returns the number of components in a vector. It is one of several useful functions for vectors.</p>
<p>The <code>sum</code> and <code>prod</code> function will add and multiply the elements in a vector:</p>
<pre class='hljl'>
<span class='hljl-n'>v</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-ni'>2</span><span class='hljl-p'>,</span><span class='hljl-ni'>3</span><span class='hljl-p'>,</span><span class='hljl-ni'>5</span><span class='hljl-p'>,</span><span class='hljl-ni'>8</span><span class='hljl-p'>]</span><span class='hljl-t'>
</span><span class='hljl-nf'>sum</span><span class='hljl-p'>(</span><span class='hljl-n'>v</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-nf'>prod</span><span class='hljl-p'>(</span><span class='hljl-n'>v</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
(20, 240)
</pre>
<p>The <code>unique</code> function will throw out any duplicates:</p>
<pre class='hljl'>
<span class='hljl-nf'>unique</span><span class='hljl-p'>(</span><span class='hljl-n'>v</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-cs'># drop a `1`</span>
</pre>
<pre class="output">
5-element Array{Int64,1}:
1
2
3
5
8
</pre>
<p>The functions <code>maximum</code> and <code>minimum</code> will return the largest and smallest values of an appropriate vector.</p>
<pre class='hljl'>
<span class='hljl-n'>v</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-ni'>4</span><span class='hljl-p'>,</span><span class='hljl-ni'>2</span><span class='hljl-p'>,</span><span class='hljl-ni'>3</span><span class='hljl-p'>]</span><span class='hljl-t'>
</span><span class='hljl-nf'>maximum</span><span class='hljl-p'>(</span><span class='hljl-n'>v</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
4
</pre>
<p>(These should not be confused with <code>max</code> and <code>min</code> which give the largest or smallest value over all their arguments.)</p>
<p>The <code>extrema</code> function returns both the smallest and largest value of a collection:</p>
<pre class='hljl'>
<span class='hljl-nf'>extrema</span><span class='hljl-p'>(</span><span class='hljl-n'>v</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
(1, 4)
</pre>
<p>The <code>sort</code> function will rearrange the values in <code>v</code>:</p>
<pre class='hljl'>
<span class='hljl-nf'>sort</span><span class='hljl-p'>(</span><span class='hljl-n'>v</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
4-element Array{Int64,1}:
1
2
3
4
</pre>
<p>The keyword argument, <code>rev=false</code> can be given to get values in decreasing order:</p>
<pre class='hljl'>
<span class='hljl-nf'>sort</span><span class='hljl-p'>(</span><span class='hljl-n'>v</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>rev</span><span class='hljl-oB'>=</span><span class='hljl-kc'>false</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
4-element Array{Int64,1}:
1
2
3
4
</pre>
<p>For adding a new element to a vector the <code>push!</code> method can be used, as in</p>
<pre class='hljl'>
<span class='hljl-nf'>push!</span><span class='hljl-p'>(</span><span class='hljl-n'>v</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>5</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
5-element Array{Int64,1}:
1
4
2
3
5
</pre>
<p>To append more than one value, the <code>append!</code> function can be used:</p>
<pre class='hljl'>
<span class='hljl-nf'>append!</span><span class='hljl-p'>(</span><span class='hljl-n'>v</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-ni'>6</span><span class='hljl-p'>,</span><span class='hljl-ni'>8</span><span class='hljl-p'>,</span><span class='hljl-ni'>7</span><span class='hljl-p'>])</span>
</pre>
<pre class="output">
8-element Array{Int64,1}:
1
4
2
3
5
6
8
7
</pre>
<p>These two functions modify or mutate the values stored within the vector <code>v</code> that passed as an argument. In the <code>push!</code> example above, the value <code>5</code> is added to the vector of 4 elements. In <code>Julia</code>, a convention is to name mutating functions with a trailing exclamation mark. (Again, these do not mutate the binding of <code>v</code> to the container, but do mutate the contents of the container.) There are functions with mutating and non-mutating definitions, an example is <code>sort</code> and <code>sort!</code>.</p>
<p>If only a mutating function is available, like <code>push!</code>, and this is not desired a copy of the vector can be made. It is not enough to copy by assignment, as with <code>w = v</code>. As both <code>w</code> and <code>v</code> will be bound to the same memory location. Rather, you call <code>copy</code> to make a new container with copied contents, as in <code>w = copy(v)</code>.</p>
<p>Creating new vectors of a given size is common for programming, though not much use will be made here. There are many different functions to do so: <code>ones</code> to make a vector of ones, <code>zeros</code> to make a vector of zeros, <code>trues</code> and <code>falses</code> to make Boolean vectors of a given size, and <code>similar</code> to make a similar-sized vector (with no particular values assigned).</p>
<h2>Applying functions element by element to values in a vector</h2>
<p>Functions such as <code>sum</code> or <code>length</code> are known as <em>reductions</em> as they reduce the "dimensionality" of the data: a vector is in some sense <span class="math">$1$</span>-dimensional, the sum or length <span class="math">$0$</span>-dimensional. Applying a reduction is straightforward, it is just a regular function call.</p>
<p>Other desired operations with vectors act differently. Rather than reduce a collection of values using some formula, the goal is to apply some formula to <em>each</em> of the values, returning a modified vector. A simple example might be to square each element, or subtract the average value from each element. An example comes from statistics. When computing a variance, we start with data <span class="math">$x_1, x_2, \dots, x_n$</span> and along the way form the values <span class="math">$(x_1-\bar{x})^2, (x_2-\bar{x})^2, \dots, (x_n-\bar{x})^2$</span>.</p>
<p>Such things can be done in <em>many</em> differents ways. Here we describe two, but will primarily utilize the first.</p>
<h3>Broadcasting a function call</h3>
<p>If we have a vector, <code>xs</code>, and a function, <code>f</code>, to apply to each value, there is a simple means to achieve this task. By adding a "dot" between the function name and the parenthesis that enclose the arguments, instructs <code>Julia</code> to "broadcast" the function call. The details allow for more flexibility, for this purpose, broadcasting will take each value in <code>xs</code> and apply <code>f</code> to it, returning a vector of the same size as <code>xs</code>. When more than one argument is involved, broadcasting will try to fill out different sized objects.</p>
<p>For example, the following will find, using <code>sqrt</code>, the square root each value in a vector:</p>
<pre class='hljl'>
<span class='hljl-n'>xs</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>3</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>4</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>7</span><span class='hljl-p'>]</span><span class='hljl-t'>
</span><span class='hljl-n'>sqrt</span><span class='hljl-oB'>.</span><span class='hljl-p'>(</span><span class='hljl-n'>xs</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
5-element Array{Float64,1}:
1.0
1.0
1.7320508075688772
2.0
2.6457513110645907
</pre>
<p>This would find the sine of each number in <code>xs</code>:</p>
<pre class='hljl'>
<span class='hljl-n'>sin</span><span class='hljl-oB'>.</span><span class='hljl-p'>(</span><span class='hljl-n'>xs</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
5-element Array{Float64,1}:
0.8414709848078965
0.8414709848078965
0.1411200080598672
-0.7568024953079282
0.6569865987187891
</pre>
<p>The <code>^</code> operator is an infix operator. It too can be broadcast by using the form <code>.^</code>, as in:</p>
<pre class='hljl'>
<span class='hljl-n'>xs</span><span class='hljl-t'> </span><span class='hljl-oB'>.^</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span>
</pre>
<pre class="output">
5-element Array{Int64,1}:
1
1
9
16
49
</pre>
<p>Here is an example involving the logarithm of a set of numbers. In astronomy, a logarithm with base <span class="math">$100^{1/5}$</span> is used for star <a href="http://tinyurl.com/ycp7k8ay">brightness</a>. We can use broadcasting to find this value for several values at once through:</p>
<pre class='hljl'>
<span class='hljl-n'>xs</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-ni'>1</span><span class='hljl-oB'>/</span><span class='hljl-ni'>5000</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-oB'>/</span><span class='hljl-ni'>500</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-oB'>/</span><span class='hljl-ni'>50</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-oB'>/</span><span class='hljl-ni'>5</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>5</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>50</span><span class='hljl-p'>]</span><span class='hljl-t'>
</span><span class='hljl-n'>b</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-ni'>100</span><span class='hljl-p'>)</span><span class='hljl-oB'>^</span><span class='hljl-p'>(</span><span class='hljl-ni'>1</span><span class='hljl-oB'>/</span><span class='hljl-ni'>5</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>log</span><span class='hljl-oB'>.</span><span class='hljl-p'>(</span><span class='hljl-n'>b</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>xs</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
6-element Array{Float64,1}:
-9.247425010840049
-6.747425010840047
-4.247425010840047
-1.747425010840047
1.747425010840047
4.247425010840047
</pre>
<p>Broadcasting with multiple arguments allows for mixing of vectors and scalar values, as above, making it convenient when parameters are used.</p>
<p>As a final example, the task from statistics of centering and then squaring can be done with broadcasting. We go a bit further, showing how to compute the (unbiased) <a href="http://tinyurl.com/p6wa4r8">sample variance</a> of a data set. This has the formula <span class="math">$(1/(n-1))\cdot ((x_1-\bar{x})^2 + \cdots + (x_n + \bar{x})^2)$</span>. It can be computed, with broadcasting, through:</p>
<pre class='hljl'>
<span class='hljl-k'>import</span><span class='hljl-t'> </span><span class='hljl-n'>Statistics</span><span class='hljl-oB'>:</span><span class='hljl-t'> </span><span class='hljl-n'>mean</span><span class='hljl-t'>
</span><span class='hljl-n'>xs</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>3</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>5</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>8</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>13</span><span class='hljl-p'>]</span><span class='hljl-t'>
</span><span class='hljl-n'>n</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>length</span><span class='hljl-p'>(</span><span class='hljl-n'>xs</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-p'>(</span><span class='hljl-ni'>1</span><span class='hljl-oB'>/</span><span class='hljl-p'>(</span><span class='hljl-n'>n</span><span class='hljl-oB'>-</span><span class='hljl-ni'>1</span><span class='hljl-p'>))</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-nf'>sum</span><span class='hljl-p'>(</span><span class='hljl-n'>abs2</span><span class='hljl-oB'>.</span><span class='hljl-p'>(</span><span class='hljl-n'>xs</span><span class='hljl-t'> </span><span class='hljl-oB'>.-</span><span class='hljl-t'> </span><span class='hljl-nf'>mean</span><span class='hljl-p'>(</span><span class='hljl-n'>xs</span><span class='hljl-p'>)))</span>
</pre>
<pre class="output">
19.57142857142857
</pre>
<p>This shows many of the manipulations that can be made with vectors. Rather than write <code>.^2</code>, we follow the defintion of <code>var</code> and chose the possibly more performant <code>abs2</code> function which, in general, efficiently finds <span class="math">$|x|^2$</span> for various number types. The <code>.-</code> uses broadcasting to subtract a scalar (<code>mean(xs)</code>) from a vector (<code>xs</code>). Without the <code>.</code>, this would error.</p>
<div class="alert alert-info" role="alert">
<div class="markdown"><p>The <code>map</code> function is very much related to broadcasting and similarly named functions are found in many different programming languages. (The "dot" broadcast is mostly limited to <code>Julia</code> and based on a similar usage of a dot in <code>MATLAB</code>.) For those familiar with other programming languages, using <code>map</code> may seem more natural. Its syntax is <code>map(f, xs)</code>.</p>
</div>
</div>
<h3>Comprehensions</h3>
<p>In mathematics, set notation is often used to describe elements in a set.</p>
<p>For example, the first 5 cubed numbers can be described by:</p>
<p class="math">\[
~
\{x^3: x \text{ in } 1, 2,\dots, 5\}
~
\]</p>
<p>Comprehension notation is similar. The above could be created in <code>Julia</code> with:</p>
<pre class='hljl'>
<span class='hljl-n'>xs</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-ni'>2</span><span class='hljl-p'>,</span><span class='hljl-ni'>3</span><span class='hljl-p'>,</span><span class='hljl-ni'>4</span><span class='hljl-p'>,</span><span class='hljl-ni'>5</span><span class='hljl-p'>]</span><span class='hljl-t'>
</span><span class='hljl-p'>[</span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>3</span><span class='hljl-t'> </span><span class='hljl-k'>for</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-kp'>in</span><span class='hljl-t'> </span><span class='hljl-n'>xs</span><span class='hljl-t'> </span><span class='hljl-p'>]</span>
</pre>
<pre class="output">
5-element Array{Int64,1}:
1
8
27
64
125
</pre>
<p>Something similar can be done more succinctly:</p>
<pre class='hljl'>
<span class='hljl-n'>xs</span><span class='hljl-t'> </span><span class='hljl-oB'>.^</span><span class='hljl-t'> </span><span class='hljl-ni'>3</span>
</pre>
<pre class="output">
5-element Array{Int64,1}:
1
8
27
64
125
</pre>
<p>However, comprehensions have a value when more complicated expressions are desired as they work with an expression of <code>x</code>, and not a pre-defined or user-defined function.</p>
<p>Another typical example of set notation might include a condition, such as, the numbers divisible by <span class="math">$7$</span> between <span class="math">$1$</span> and <span class="math">$100$</span>. Set notation might be:</p>
<p class="math">\[
~
\{x: rem(x, 7) = 0 \text{ for } x \text{ in } 1, 2, \dots, 100\}.
~
\]</p>
<p>This would be read: "the set of <span class="math">$x$</span> such that the remainder on division by <span class="math">$7$</span> is <span class="math">$0$</span> for all x in <span class="math">$1, 2, \dots, 100$</span>."</p>
<p>In <code>Julia</code>, a comprehension can include an <code>if</code> clause to mirror, somewhat, the math notation. For example, the above would become (using <code>1:100</code> as a means to create the numbers <span class="math">$1,2,\dots, 100$</span>, as will be described in a later section):</p>
<pre class='hljl'>
<span class='hljl-p'>[</span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-k'>for</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-kp'>in</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-oB'>:</span><span class='hljl-ni'>100</span><span class='hljl-t'> </span><span class='hljl-k'>if</span><span class='hljl-t'> </span><span class='hljl-nf'>rem</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-ni'>7</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>==</span><span class='hljl-t'> </span><span class='hljl-ni'>0</span><span class='hljl-p'>]</span>
</pre>
<pre class="output">
14-element Array{Int64,1}:
7
14
21
28
35
42
49
56
63
70
77
84
91
98
</pre>
<p>Comprehensions can be a convenient means to describe a collection of numbers, especially when no function is defined, but the simplicity of the broadcast notation (just adding a judicious ".") leads to its more common use in these notes.</p>
<h5>Example: creating a "T" table for creating a graph</h5>
<p>The process of plotting a function is usually first taught by generating a "T" table: values of <span class="math">$x$</span> and corresponding values of <span class="math">$y$</span>. These pairs are then plotted on a Cartesian grid and the points are connected with lines to form the graph. Generating a "T" table in <code>Julia</code> is easy: create the <span class="math">$x$</span> values, then create the <span class="math">$y$</span> values for each <span class="math">$x$</span>.</p>
<p>To be concrete, let's generate <span class="math">$7$</span> points to plot <span class="math">$f(x) = x^2$</span> over <span class="math">$[-1,1]$</span>.</p>
<p>The first task is to create the <code>xs</code>. We will see later, more convenient ways to generate patterned data, but for now, we do this by hand:</p>
<pre class='hljl'>
<span class='hljl-n'>a</span><span class='hljl-p'>,</span><span class='hljl-n'>b</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>n</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>7</span><span class='hljl-t'>
</span><span class='hljl-n'>d</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>b</span><span class='hljl-oB'>-</span><span class='hljl-n'>a</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>//</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>n</span><span class='hljl-oB'>-</span><span class='hljl-ni'>1</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>xs</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-n'>a</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>a</span><span class='hljl-oB'>+</span><span class='hljl-n'>d</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>a</span><span class='hljl-oB'>+</span><span class='hljl-ni'>2</span><span class='hljl-n'>d</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>a</span><span class='hljl-oB'>+</span><span class='hljl-ni'>3</span><span class='hljl-n'>d</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>a</span><span class='hljl-oB'>+</span><span class='hljl-ni'>4</span><span class='hljl-n'>d</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>a</span><span class='hljl-oB'>+</span><span class='hljl-ni'>5</span><span class='hljl-n'>d</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>a</span><span class='hljl-oB'>+</span><span class='hljl-ni'>6</span><span class='hljl-n'>d</span><span class='hljl-p'>]</span><span class='hljl-t'> </span><span class='hljl-cs'># 7 points</span>
</pre>
<pre class="output">
7-element Array{Rational{Int64},1}:
-1//1
-2//3
-1//3
0//1
1//3
2//3
1//1
</pre>
<p>To get the corresponding <span class="math">$y$</span> values, we can use a compression (or define a function and broadcast):</p>
<pre class='hljl'>
<span class='hljl-n'>ys</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-k'>for</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-kp'>in</span><span class='hljl-t'> </span><span class='hljl-n'>xs</span><span class='hljl-p'>]</span>
</pre>
<pre class="output">
7-element Array{Rational{Int64},1}:
1//1
4//9
1//9
0//1
1//9
4//9
1//1
</pre>
<p>Vectors can be compared together by combining them into a separate container, as follows:</p>
<pre class='hljl'>
<span class='hljl-p'>[</span><span class='hljl-n'>xs</span><span class='hljl-t'> </span><span class='hljl-n'>ys</span><span class='hljl-p'>]</span>
</pre>
<pre class="output">
7×2 Array{Rational{Int64},2}:
-1//1 1//1
-2//3 4//9
-1//3 1//9
0//1 0//1
1//3 1//9
2//3 4//9
1//1 1//1
</pre>
<p>(If there is a space between objects they are horizontally combined. In our construction of vectors using <code>[]</code> we used a comma for vertical combination. More generally we should use a <code>;</code> for vertical concatenation.)</p>
<p>In the sequel, we will typically use broadcasting for this task using two steps: one to define a function the second to broadcast it.</p>
<div class="alert alert-info" role="alert">
<div class="markdown"><p>The style generally employed here is to use plural variable names for a collection of values, such as the vector of $y$ values and singular names when a single value is being referred to, leading to expressions like "<code>x in xs</code>".</p>
</div>
</div>
<h2>Other container types</h2>
<p>Vectors in <code>Julia</code> are a container, one of many different types. Another useful type for programming purposes are <em>tuples</em>. If a vector if formed by placing comma-separated values within a <code>[]</code> pair (e.g., <code>[1,2,3]</code>), a tuple is formed by placing comma-separated values withing a <code>()</code> pair. I tuple of length <span class="math">$1$</span> uses a convention of a trailing comma to distinguish it from a parethesized expression (e.g. <code>(1,)</code> is a tuple, <code>(1)</code> is just the value <code>1</code>).</p>
<p>Tuples are used in programming, as they don't typically require memory to be used so they can be faster. Internal usages are for function arguments and function return types. Unlike vectors, tuples can be heterogeneous collections. (When commas are used to combine more than one output into a cell, a tuple is being used.)</p>
<p>Also unlike vectors, tuples can have names which can be used for referening a value, similar to indexing but possibly more convenient. Named tuples as similar to <em>dictionaries</em> which are used to associate a key (like a name) with a value.</p>
<h2>Questions</h2>
<h6>Question</h6>
<p>Which command will create the vector <span class="math">$\vec{v} = \langle 4,~ 3 \rangle$</span>?</p>
<form name="WeaveQuestion" data-id="4RX18mKK" data-controltype="radio">
<div class="form-group ">
<div class="radio">
<label>
<input type="radio" name="radio_4RX18mKK" value="1"><div class="markdown"><p><code>v = <4,3></code></p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_4RX18mKK" value="2"><div class="markdown"><p><code>v = '4, 3'</code></p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_4RX18mKK" value="3"><div class="markdown"><p><code>v = [4,3]</code></p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_4RX18mKK" value="4"><div class="markdown"><p><code>v = {4, 3}</code></p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_4RX18mKK" value="5"><div class="markdown"><p><code>v = (4,3)</code></p>
</div>
</label>
</div>
<div id="4RX18mKK_message"></div>
</div>
</form>
<script text="text/javascript">
$("input:radio[name='radio_4RX18mKK']").on("change", function() {
correct = this.value == 3;
if(correct) {
$("#4RX18mKK_message").html("<div class='alert alert-success'><span class='glyphicon glyphicon-thumbs-up'> Correct</span></div>");
} else {
$("#4RX18mKK_message").html("<div class='alert alert-warning'><span class='glyphicon glyphicon-thumbs-down'> Incorrect</span></div>");
}
});
</script>
<h6>Question</h6>
<p>Which command will create the vector with components "4,3,2,1"?</p>
<form name="WeaveQuestion" data-id="msPmxX6h" data-controltype="radio">
<div class="form-group ">
<div class="radio">
<label>
<input type="radio" name="radio_msPmxX6h" value="1"><div class="markdown"><p><code>v = <4,3,2,1></code></p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_msPmxX6h" value="2"><div class="markdown"><p><code>v = {4,3,2,1}</code></p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_msPmxX6h" value="3"><div class="markdown"><p><code>v = '4, 3, 2, 1'</code></p>
</div>
</label>