forked from CalculusWithJulia/CalculusWithJulia.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
variables.html
874 lines (623 loc) · 107 KB
/
variables.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/css/bootstrap.min.css"
rel="stylesheet">
<style>
.julia {display: block; font-family: "Source Code Pro";
color:#0033CC;
}
.hljl {font-family: "Source Code Pro";
color:#0033CC;
}
body { padding-top: 60px; }
h5:before {content:"\2746\ ";}
h6:before {content:"\2742\ ";}
pre {display: block;}
th, td {
padding: 15px;
text-align: left;
border-bottom: 1px solid #ddd;
}
tr:hover {background-color: #f5f5f5;}
.admonition-title:before {content:"\2746\ ";}
.admonition-title { color:#0033CC}
</style>
<!-- .julia:before {content: "julia> "} -->
<style></style>
<script src="https://code.jquery.com/jquery.js"></script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ["\$","\$"], ["\\(","\\)"]]
},
displayAlign: "left",
displayIndent: "5%"
});
</script>
<!-- not TeX-AMS-MML_HTMLorMML-->
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML" async></script>
</script>
<script>
window.PlotlyConfig = {MathJaxConfig: 'local'}
</script>
<script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
<script type="text/javascript">
$( document ).ready(function() {
$("h1").each(function(index) {
var title = $( this ).text()
$("#page_title").html("<strong>" + title + "</strong>");
document.title = title
});
$( "h2" ).each(function( index ) {
var nm = $( this ).text();
var id = $.trim(nm).replace(/ /g,'');
this.id = id
$("#page_dropdown").append("<li><a href='#" + id + "'>" + nm + "</a></li>");
});
$('[data-toggle="popover"]').popover();
});
</script>
</head>
<body data-spy="scroll" >
<nav class="navbar navbar-default navbar-fixed-top">
<div class="container-fluid">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
</div>
<!-- Collect the nav links, forms, and other content for toggling -->
<div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
<ul class="nav navbar-nav">
<li><a href="#" id="page_title"></a></li>
</ul>
<ul class="nav navbar-nav navbar-right">
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Jump to... <span class="caret"></span></a>
<ul class="dropdown-menu" role="menu" id="page_dropdown"></ul>
</li>
</ul>
</div><!-- /.navbar-collapse -->
</div><!-- /.container-fluid -->
</nav>
<header>
</header>
<div class="title">
</div>
<div class="container-fluid">
<div class="span10 offset1">
<h1>Variables</h1>
<h2>Assignment</h2>
<div class="well well-sm">
<figure>
<img src=""/>
<figcaption><div class="markdown"><p>Screenshot of a calculator provided by the Google search engine.</p>
</div></figcaption>
</figure>
</div>
<p>The Google calculator has a button <code>Ans</code> to refer to the answer to the previous evaluation. This is a form of memory. The last answer is stored in a specific place in memory for retrieval when <code>Ans</code> is used. In some calculators, more advanced memory features are possible. For some, it is possible to push values onto a stack of values for them to be referred to at a later time. This proves useful for complicated expressions, say, as the expression can be broken into smaller intermediate steps to be computed. These values can then be appropriately combined. This strategy is a good one, though the memory buttons can make its implementation a bit cumbersome.</p>
<p>With <code>Julia</code>, as with other programming languages, it is very easy to refer to past evaluations. This is done by <em>assignment</em> whereby a computed value stored in memory is associated with a name. The name can be used to look up the value later.</p>
<p>Assignment in <code>Julia</code> is handled by the equals sign and takes the general form <code>variable_name = value</code>. For example, here we assign values to the variables <code>x</code> and <code>y</code></p>
<pre class='hljl'>
<span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>sqrt</span><span class='hljl-p'>(</span><span class='hljl-ni'>2</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>y</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>42</span>
</pre>
<pre class="output">
42
</pre>
<p>In an assignment, the right hand side is returned, so it appears nothing has happened. However, the values are there, as can be checked by typing their name</p>
<pre class='hljl'>
<span class='hljl-n'>x</span>
</pre>
<pre class="output">
1.4142135623730951
</pre>
<p>Just typing a variable name (without a trailing semicolon) causes the assigned value to be displayed.</p>
<p>Variable names can be reused, as here, where we redefine <code>x</code>:</p>
<pre class='hljl'>
<span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span>
</pre>
<pre class="output">
2
</pre>
<p><code>Julia</code> is referred to as a "dynamic language" which means (in most cases) that a variable can be reassigned with a value of a different type, as we did with <code>x</code> where first it was assigned to a floating point value then to an integer value. (Though we meet some cases–-generic functions–- where <code>Julia</code> balks at reassigning a variable if the type if different.)</p>
<p>More importantly than displaying a value, is the use of variables to build up more complicated expressions. For example, to compute</p>
<p class="math">\[
~
\frac{1 + 2 \cdot 3^4}{5 - 6/7}
~
\]</p>
<p>we might break it into the grouped pieces implied by the mathematical notation:</p>
<pre class='hljl'>
<span class='hljl-n'>top</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-oB'>*</span><span class='hljl-ni'>3</span><span class='hljl-oB'>^</span><span class='hljl-ni'>4</span><span class='hljl-t'>
</span><span class='hljl-n'>bottom</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>5</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-ni'>6</span><span class='hljl-oB'>/</span><span class='hljl-ni'>7</span><span class='hljl-t'>
</span><span class='hljl-n'>top</span><span class='hljl-oB'>/</span><span class='hljl-n'>bottom</span>
</pre>
<pre class="output">
39.34482758620689
</pre>
<h3>Examples</h3>
<h5>Example</h5>
<p>Imagine we have the following complicated expression related to the trajectory of a <a href="http://www.researchgate.net/publication/230963032_On_the_trajectories_of_projectiles_depicted_in_early_ballistic_woodcuts">projectile</a> with wind resistance:</p>
<p class="math">\[
~
\left(\frac{g}{k v_0\cos(\theta)} + \tan(\theta) \right) x + \frac{g}{k^2}\ln\left(1 - \frac{k}{v_0\cos(\theta)} x \right)
~
\]</p>
<p>Here <span class="math">$g$</span> is the gravitational constant <span class="math">$9.8$</span> and <span class="math">$v_0$</span>, <span class="math">$\theta$</span> and <span class="math">$k$</span> parameters, which we take to be <span class="math">$200$</span>, <span class="math">$45$</span> degrees, and <span class="math">$1/2$</span> respectively. With these values, the above expression can be computed when <span class="math">$x=100$</span>:</p>
<pre class='hljl'>
<span class='hljl-n'>g</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nfB'>9.8</span><span class='hljl-t'>
</span><span class='hljl-n'>v0</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>200</span><span class='hljl-t'>
</span><span class='hljl-n'>theta</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>45</span><span class='hljl-t'>
</span><span class='hljl-n'>k</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-oB'>/</span><span class='hljl-ni'>2</span><span class='hljl-t'>
</span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>100</span><span class='hljl-t'>
</span><span class='hljl-n'>a</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>v0</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-nf'>cosd</span><span class='hljl-p'>(</span><span class='hljl-n'>theta</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-p'>(</span><span class='hljl-n'>g</span><span class='hljl-oB'>/</span><span class='hljl-p'>(</span><span class='hljl-n'>k</span><span class='hljl-oB'>*</span><span class='hljl-n'>a</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-nf'>tand</span><span class='hljl-p'>(</span><span class='hljl-n'>theta</span><span class='hljl-p'>))</span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>g</span><span class='hljl-oB'>/</span><span class='hljl-n'>k</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-nf'>log</span><span class='hljl-p'>(</span><span class='hljl-ni'>1</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-n'>k</span><span class='hljl-oB'>/</span><span class='hljl-n'>a</span><span class='hljl-oB'>*</span><span class='hljl-n'>x</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
96.75771791632161
</pre>
<p>By defining a new variable <code>a</code> to represent a value that is repeated a few times in the expression, the last command is greatly simplified. Doing so makes it much easier to check for accuracy against the expression to compute.</p>
<h5>Example</h5>
<p>A common expression in mathematics is a polynomial expression, for example <span class="math">$-16x^2 + 32x - 12$</span>. Translating this to <code>Julia</code> at <span class="math">$x =3$</span> we might have:</p>
<pre class='hljl'>
<span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>3</span><span class='hljl-t'>
</span><span class='hljl-oB'>-</span><span class='hljl-ni'>16</span><span class='hljl-oB'>*</span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-ni'>32</span><span class='hljl-oB'>*</span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-ni'>12</span>
</pre>
<pre class="output">
-60
</pre>
<p>This looks nearly identical to the mathematical expression, but we inserted <code>*</code> to indicate multiplication between the constant and the variable. In fact, this step is not needed as Julia allows numeric literals to have an implied multiplication:</p>
<pre class='hljl'>
<span class='hljl-oB'>-</span><span class='hljl-ni'>16</span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-ni'>32</span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-ni'>12</span>
</pre>
<pre class="output">
-60
</pre>
<h2>Where math and computer notations diverge</h2>
<p>It is important to recognize that <code>=</code> to <code>Julia</code> is not in analogy to how <span class="math">$=$</span> is used in mathematical notation. The following <code>Julia</code> code is not an equation:</p>
<pre class='hljl'>
<span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span>
</pre>
<pre class="output">
9
</pre>
<p>What happens instead? The right hand side is evaluated (<code>x</code> is squared), the result is stored and bound to the variable <code>x</code> (so that <code>x</code> will end up pointing to the new value <code>4</code> and not the old one <code>2</code>); finally the value computed on the right-hand side is returned and in this case displayed, as there is no trailing semicolon to suppress the output.</p>
<p>This is completely unlike the mathematical equation <span class="math">$x = x^2$</span> which is typically solved for values of <span class="math">$x$</span> that satisfy the equation (<span class="math">$0$</span> and <span class="math">$1$</span>).</p>
<h5>Example</h5>
<p>Having <code>=</code> as assignment is usefully exploited when modeling sequences. For example, an application of Newton's method might end up with this expression:</p>
<p class="math">\[
~
x_{i+1} = x_i - \frac{x_i^2 - 2}{2x_i}
~
\]</p>
<p>As a mathematical expression, for each <span class="math">$i$</span> this defines a new value for <span class="math">$x_{i+1}$</span> in terms of a known value <span class="math">$x_i$</span>. This can be used to recursively generate a sequence, provided some starting point is known, such as <span class="math">$x_0 = 2$</span>.</p>
<p>The above might be written instead with:</p>
<pre class='hljl'>
<span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-t'>
</span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>/</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-ni'>2</span><span class='hljl-n'>x</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
1.5
</pre>
<p>Repeating this last line will generate new values of <code>x</code> based on the previous one–-no need for subscripts. This is exactly what the mathematical notation indicates is to be done.</p>
<h2>Context</h2>
<p>The binding of a value to a variable name happens within some context. For our simple illustrations, we are assigning values, as though they were typed at the command line. This stores the binding in the <code>Main</code> module. <code>Julia</code> looks for variables in this module when it encounters an expression and the value is substituted. Other uses, such as when variables are defined within a function, involve different contexts which may not be visible within the <code>Main</code> module.</p>
<div class="alert alert-info" role="alert">
<div class="markdown"><p>The <code>varinfo</code> function will list the variables currently defined in the main workspace. There is no mechanism to delete a single variable.</p>
</div>
</div>
<div class="alert alert-success" role="alert">
<div class="markdown"><p><strong>Shooting oneselves in the foot.</strong> <code>Julia</code> allows us to locally redefine variables that are built in, such as the value for <code>pi</code> or the function object assigned to <code>sin</code>. For example, this is a perfectly valid command <code>sin=3</code>. However, it will overwrite the typical value of <code>sin</code> so that <code>sin(3)</code> will be an error. The binding to <code>sin</code> occurs in the <code>Main</code> module. This shadows that value of <code>sin</code> bound in the <code>Base</code> module. Even if redefined in <code>Main</code>, the value in base can be used by fully qualifying the name, as in <code>Base.sin(pi)</code>. This uses the convention <code>module_name.variable_name</code> to look up a binding in a module.</p>
</div>
</div>
<h2>Variable names</h2>
<p><code>Julia</code> has a very wide set of possible <a href="https://docs.julialang.org/en/stable/manual/variables/#Allowed-Variable-Names-1">names</a> for variables. Variables are case sensitive and their names can include many <a href="http://en.wikipedia.org/wiki/List_of_Unicode_characters">Unicode</a> characters. Names must begin with a letter or an appropriate Unicode value (but not a number). There are some reserved words, such as <code>try</code> or <code>else</code> which can not be assigned to. However, many built-in names can be locally overwritten. Conventionally, variable names are lower case. For compound names, it is not unusual to see them squished together, joined with underscores, or written in camelCase.</p>
<pre class='hljl'>
<span class='hljl-n'>value_1</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-t'>
</span><span class='hljl-n'>a_long_winded_variable_name</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-t'>
</span><span class='hljl-n'>sinOfX</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>sind</span><span class='hljl-p'>(</span><span class='hljl-ni'>45</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>__private</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-cs'># a convention</span>
</pre>
<pre class="output">
2
</pre>
<h3>Unicode names</h3>
<p>Julia allows variable names to use Unicode identifiers. Such names allow <code>julia</code> notation to mirror that of many mathematical texts. For example, in calculus the variable <span class="math">$\epsilon$</span> is often used to represent some small number. We can assign to a symbol that looks like <span class="math">$\epsilon$</span> using <code>Julia</code>'s LaTeX input mode. Typing <code>\epsilon[tab]</code> will replace the text with the symbol within <code>IJulia</code> or the command line.</p>
<pre class='hljl'>
<span class='hljl-n'>ϵ</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nfB'>1e-10</span>
</pre>
<pre class="output">
1.0e-10
</pre>
<p>Entering Unicode names follows the pattern of "slash" + LaTeX name + <code>[tab]</code> key. Some other ones that are useful are <code>\delta[tab]</code>, <code>\alpha[tab]</code>, and <code>\beta[tab]</code>, though there are <a href="https://github.com/JuliaLang/julia/blob/master/stdlib/REPL/src/latex_symbols.jl">hundreds</a> of other values defined.</p>
<p>For example, we could have defined <code>theta</code> (<code>\theta[tab]</code>) and <code>v0</code> (<code>v\_0[tab]</code>) using Unicode to make them match more closely the typeset math:</p>
<pre class='hljl'>
<span class='hljl-n'>θ</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>45</span><span class='hljl-p'>;</span><span class='hljl-t'> </span><span class='hljl-n'>v₀</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>200</span>
</pre>
<div class="alert alert-success" role="alert">
<div class="markdown"><p>There is even support for tab-completion of <a href="https://github.com/JuliaLang/julia/blob/master/stdlib/REPL/src/emoji_symbols.jl">emojis</a> such as <code>\:snowman:[tab]</code> or <code>\:koala:[tab]</code></p>
</div>
</div>
<h5>Example</h5>
<p>As mentioned, as of <code>Julia</code> <code>v"0.7.0"</code>, the value of <span class="math">$e$</span> is bound to the unicode value <code>\euler[tab]</code> and not the letter <code>e</code>, so Unicode entry is required to access this constant This isn't quite true. The <code>MathConstants</code> module defines <code>e</code>, as well as a few other values accessed via unicode. This is loaded with the accompanying <code>CalculusWithJulia</code> package</p>
<pre class='hljl'>
<span class='hljl-k'>using</span><span class='hljl-t'> </span><span class='hljl-n'>CalculusWithJulia</span><span class='hljl-t'> </span><span class='hljl-cs'># reexports Base.MathConstants</span><span class='hljl-t'>
</span><span class='hljl-n'>e</span>
</pre>
<pre class="output">
ℯ = 2.7182818284590...
</pre>
<p>Alternatively, one can define <code>e = exp(1)</code> and use the variable as desired.</p>
<h2>Tuple assignment</h2>
<p>It is a common task to define more than one variable. Multiple definitions can be done in one line, using semicolons to break up the commands, as with:</p>
<pre class='hljl'>
<span class='hljl-n'>a</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-p'>;</span><span class='hljl-t'> </span><span class='hljl-n'>b</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-p'>;</span><span class='hljl-t'> </span><span class='hljl-n'>c</span><span class='hljl-oB'>=</span><span class='hljl-ni'>3</span>
</pre>
<p>For convenience, <code>Julia</code> allows an alternate means to define more than one variable at a time. The syntax is similar:</p>
<pre class='hljl'>
<span class='hljl-n'>a</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>b</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>c</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>3</span>
</pre>
<pre class="output">
(1, 2, 3)
</pre>
<p>This sets <code>a=1</code>, <code>b=2</code>, and <code>c=3</code>, as suggested. This construct relies on <em>tuple destructuring</em>. The expression on the right hand side forms a tuple of values. A tuple is a container for different types of values, and in this case the tuple has 3 values. When the same number of variables match on the left-hand side as those in the container on the right, the names are assigned one by one.</p>
<p>The value on the right hand side is evaluated, then the assignment occurs. The following exploits this to swap the values assigned to <code>a</code> and <code>b</code>:</p>
<pre class='hljl'>
<span class='hljl-n'>a</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>b</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>b</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>a</span>
</pre>
<pre class="output">
(2, 1)
</pre>
<h4>Example, finding the slope</h4>
<p>Find the slope of the line connecting the points <span class="math">$(1,2)$</span> and <span class="math">$(4,6)$</span>. We begin by defining the values and then applying the slope formula:</p>
<pre class='hljl'>
<span class='hljl-n'>x0</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>y0</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-t'>
</span><span class='hljl-n'>x1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>y1</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>4</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>6</span><span class='hljl-t'>
</span><span class='hljl-n'>m</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>y1</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-n'>y0</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>/</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>x1</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-n'>x0</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
1.3333333333333333
</pre>
<p>Of course, this could be computed directly with <code>(6-2) / (4-1)</code>, but by using familiar names for the values we can be certain we apply the formula properly.</p>
<h2>Questions</h2>
<h6>Question</h6>
<p>Let <span class="math">$a=10$</span>, <span class="math">$b=2.3$</span>, and <span class="math">$c=8$</span>. Find the value of <span class="math">$(a-b)/(a-c)$</span>.</p>
<form name='WeaveQuestion' data-id='lFOpykjA' data-controltype='numeric'>
<div class='form-group '>
<div class='controls'>
<div class="input-group">
<input id="lFOpykjA" type="number" class="form-control">
</div>
<div id='lFOpykjA_message'></div>
</div>
</div>
</form>
<script text='text/javascript'>
$('#lFOpykjA').on('change', function() {
correct = Math.abs(this.value - 3.85) <= 0.001;
if(correct) {
$('#lFOpykjA_message').html('<div class="alert alert-success"><span class="glyphicon glyphicon-thumbs-up"> Correct</span></div>');
} else {
$('#lFOpykjA_message').html('<div class="alert alert-danger"><span class="glyphicon glyphicon-thumbs-down"> Incorrect</span></div>');
}
});
</script>
<h6>Question</h6>
<p>Let <code>x = 4</code>. Compute <span class="math">$y=100 - 2x - x^2$</span>. What is the value:</p>
<form name='WeaveQuestion' data-id='T8cBR6g6' data-controltype='numeric'>
<div class='form-group '>
<div class='controls'>
<div class="input-group">
<input id="T8cBR6g6" type="number" class="form-control">
</div>
<div id='T8cBR6g6_message'></div>
</div>
</div>
</form>
<script text='text/javascript'>
$('#T8cBR6g6').on('change', function() {
correct = Math.abs(this.value - -124) <= 0.1;
if(correct) {
$('#T8cBR6g6_message').html('<div class="alert alert-success"><span class="glyphicon glyphicon-thumbs-up"> Correct</span></div>');
} else {
$('#T8cBR6g6_message').html('<div class="alert alert-danger"><span class="glyphicon glyphicon-thumbs-down"> Incorrect</span></div>');
}
});
</script>
<h6>Question</h6>
<p>What is the answer to this computation?</p>
<pre class='hljl'>
<span class='hljl-n'>a</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nfB'>3.2</span><span class='hljl-p'>;</span><span class='hljl-t'> </span><span class='hljl-n'>b</span><span class='hljl-oB'>=</span><span class='hljl-nfB'>2.3</span><span class='hljl-t'>
</span><span class='hljl-n'>a</span><span class='hljl-oB'>^</span><span class='hljl-n'>b</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-n'>b</span><span class='hljl-oB'>^</span><span class='hljl-n'>a</span>
</pre>
<form name='WeaveQuestion' data-id='V0pLiAz6' data-controltype='numeric'>
<div class='form-group '>
<div class='controls'>
<div class="input-group">
<input id="V0pLiAz6" type="number" class="form-control">
</div>
<div id='V0pLiAz6_message'></div>
</div>
</div>
</form>
<script text='text/javascript'>
$('#V0pLiAz6').on('change', function() {
correct = Math.abs(this.value - 0.14354012963861962) <= 0.001;
if(correct) {
$('#V0pLiAz6_message').html('<div class="alert alert-success"><span class="glyphicon glyphicon-thumbs-up"> Correct</span></div>');
} else {
$('#V0pLiAz6_message').html('<div class="alert alert-danger"><span class="glyphicon glyphicon-thumbs-down"> Incorrect</span></div>');
}
});
</script>
<h6>Question</h6>
<p>For longer computations, it can be convenient to do them in parts, as this makes it easier to check for mistakes.</p>
<p>For example, to compute</p>
<p class="math">\[
~
\frac{p - q}{\sqrt{p(1-p)}}
~
\]</p>
<p>for <span class="math">$p=0.25$</span> and <span class="math">$q=0.2$</span> we might do:</p>
<pre class='hljl'>
<span class='hljl-n'>p</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>q</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nfB'>0.25</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-nfB'>0.2</span><span class='hljl-t'>
</span><span class='hljl-n'>top</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>p</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-n'>q</span><span class='hljl-t'>
</span><span class='hljl-n'>bottom</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>sqrt</span><span class='hljl-p'>(</span><span class='hljl-n'>p</span><span class='hljl-oB'>*</span><span class='hljl-p'>(</span><span class='hljl-ni'>1</span><span class='hljl-oB'>-</span><span class='hljl-n'>p</span><span class='hljl-p'>))</span><span class='hljl-t'>
</span><span class='hljl-n'>ans</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>top</span><span class='hljl-oB'>/</span><span class='hljl-n'>bottom</span>
</pre>
<p>What is the result of the above?</p>
<form name='WeaveQuestion' data-id='QA1t9gcu' data-controltype='numeric'>
<div class='form-group '>
<div class='controls'>
<div class="input-group">
<input id="QA1t9gcu" type="number" class="form-control">
</div>
<div id='QA1t9gcu_message'></div>
</div>
</div>
</form>
<script text='text/javascript'>
$('#QA1t9gcu').on('change', function() {
correct = Math.abs(this.value - 0.11547005383792514) <= 0.001;
if(correct) {
$('#QA1t9gcu_message').html('<div class="alert alert-success"><span class="glyphicon glyphicon-thumbs-up"> Correct</span></div>');
} else {
$('#QA1t9gcu_message').html('<div class="alert alert-danger"><span class="glyphicon glyphicon-thumbs-down"> Incorrect</span></div>');
}
});
</script>
<h6>Question</h6>
<p>Using variables to record the top and the bottom of the expression, compute the following for <span class="math">$x=3$</span>:</p>
<p class="math">\[
~
y = \frac{x^2 - 2x - 8}{x^2 - 9x - 20}.
~
\]</p>
<form name='WeaveQuestion' data-id='vrPID9zU' data-controltype='numeric'>
<div class='form-group '>
<div class='controls'>
<div class="input-group">
<input id="vrPID9zU" type="number" class="form-control">
</div>
<div id='vrPID9zU_message'></div>
</div>
</div>
</form>
<script text='text/javascript'>
$('#vrPID9zU').on('change', function() {
correct = Math.abs(this.value - 0.13157894736842105) <= 0.001;
if(correct) {
$('#vrPID9zU_message').html('<div class="alert alert-success"><span class="glyphicon glyphicon-thumbs-up"> Correct</span></div>');
} else {
$('#vrPID9zU_message').html('<div class="alert alert-danger"><span class="glyphicon glyphicon-thumbs-down"> Incorrect</span></div>');
}
});
</script>
<h6>Question</h6>
<p>Which if these is not a valid variable name (identifier) in <code>Julia</code>:</p>
<form name="WeaveQuestion" data-id="yDGQoQOj" data-controltype="radio">
<div class="form-group ">
<div class="radio">
<label>
<input type="radio" name="radio_yDGQoQOj" value="1"><div class="markdown"><p><code>5degreesbelowzero</code></p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_yDGQoQOj" value="2"><div class="markdown"><p><code>fahrenheit451</code></p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_yDGQoQOj" value="3"><div class="markdown"><p><code>aMiXeDcAsEnAmE</code></p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_yDGQoQOj" value="4"><div class="markdown"><p><code>some_really_long_name_that_is_no_fun_to_type</code></p>
</div>
</label>
</div>
<div id="yDGQoQOj_message"></div>
</div>
</form>
<script text="text/javascript">
$("input:radio[name='radio_yDGQoQOj']").on("change", function() {
correct = this.value == 1;
if(correct) {
$("#yDGQoQOj_message").html("<div class='alert alert-success'><span class='glyphicon glyphicon-thumbs-up'> Correct</span></div>");
} else {
$("#yDGQoQOj_message").html("<div class='alert alert-warning'><span class='glyphicon glyphicon-thumbs-down'> Incorrect</span></div>");
}
});
</script>
<h6>Question</h6>
<p>Which of these symbols is one of <code>Julia</code>'s built-in math constants?</p>
<form name="WeaveQuestion" data-id="afw4Nuw4" data-controltype="radio">
<div class="form-group ">
<div class="radio">
<label>
<input type="radio" name="radio_afw4Nuw4" value="1"><div class="markdown"><p><code>E</code></p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_afw4Nuw4" value="2"><div class="markdown"><p><code>pi</code></p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_afw4Nuw4" value="3"><div class="markdown"><p><code>oo</code></p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_afw4Nuw4" value="4"><div class="markdown"><p><code>I</code></p>
</div>
</label>
</div>
<div id="afw4Nuw4_message"></div>
</div>
</form>
<script text="text/javascript">
$("input:radio[name='radio_afw4Nuw4']").on("change", function() {
correct = this.value == 2;
if(correct) {
$("#afw4Nuw4_message").html("<div class='alert alert-success'><span class='glyphicon glyphicon-thumbs-up'> Correct</span></div>");
} else {
$("#afw4Nuw4_message").html("<div class='alert alert-warning'><span class='glyphicon glyphicon-thumbs-down'> Incorrect</span></div>");
}
});
</script>
<h6>Question</h6>
<p>What key sequence will produce this assignment</p>
<pre class='hljl'>
<span class='hljl-n'>δ</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-oB'>/</span><span class='hljl-ni'>10</span>
</pre>
<form name="WeaveQuestion" data-id="Zcgz0Kyd" data-controltype="radio">
<div class="form-group ">
<div class="radio">
<label>
<input type="radio" name="radio_Zcgz0Kyd" value="1"><div class="markdown"><p><code>\delta[tab] = 1/10</code></p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_Zcgz0Kyd" value="2"><div class="markdown"><p><code>delta[tab] = 1/10</code></p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_Zcgz0Kyd" value="3"><div class="markdown"><p><code>$\\delta$ = 1/10</code></p>
</div>
</label>
</div>
<div id="Zcgz0Kyd_message"></div>
</div>
</form>
<script text="text/javascript">
$("input:radio[name='radio_Zcgz0Kyd']").on("change", function() {
correct = this.value == 1;
if(correct) {
$("#Zcgz0Kyd_message").html("<div class='alert alert-success'><span class='glyphicon glyphicon-thumbs-up'> Correct</span></div>");
} else {
$("#Zcgz0Kyd_message").html("<div class='alert alert-warning'><span class='glyphicon glyphicon-thumbs-down'> Incorrect</span></div>");
}
});
</script>
<h6>Question</h6>
<p>Which of these three statements will <strong>not</strong> be a valid way to assign three variables at once:</p>
<form name="WeaveQuestion" data-id="LnOai2AB" data-controltype="radio">
<div class="form-group ">
<div class="radio">
<label>
<input type="radio" name="radio_LnOai2AB" value="1"><div class="markdown"><p><code>a=1, b=2, c=3</code></p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_LnOai2AB" value="2"><div class="markdown"><p><code>a=1; b=2; c=3</code></p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_LnOai2AB" value="3"><div class="markdown"><p><code>a,b,c = 1,2,3</code></p>
</div>
</label>
</div>
<div id="LnOai2AB_message"></div>
</div>
</form>
<script text="text/javascript">
$("input:radio[name='radio_LnOai2AB']").on("change", function() {
correct = this.value == 1;
if(correct) {
$("#LnOai2AB_message").html("<div class='alert alert-success'><span class='glyphicon glyphicon-thumbs-up'> Correct</span></div>");
} else {
$("#LnOai2AB_message").html("<div class='alert alert-warning'><span class='glyphicon glyphicon-thumbs-down'> Incorrect</span></div>");
}
});
</script>
<h6>Question</h6>
<p>The fact that assignment <em>always</em> returns the value of the right hand side <em>and</em> the fact that the <code>=</code> sign associates from right to left means that the following idiom:</p>
<pre class='hljl'>
<span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>z</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>3</span>
</pre>
<p>Will always:</p>
<form name="WeaveQuestion" data-id="cy3NQon7" data-controltype="radio">
<div class="form-group ">
<div class="radio">
<label>
<input type="radio" name="radio_cy3NQon7" value="1"><div class="markdown"><p>Create 3 linked values that will stay synced when any value changes</p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_cy3NQon7" value="2"><div class="markdown"><p>Throw an error</p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_cy3NQon7" value="3"><div class="markdown"><p>Assign all three variables at once to a value of 3</p>
</div>
</label>
</div>
<div id="cy3NQon7_message"></div>
</div>
</form>
<script text="text/javascript">
$("input:radio[name='radio_cy3NQon7']").on("change", function() {
correct = this.value == 3;
if(correct) {
$("#cy3NQon7_message").html("<div class='alert alert-success'><span class='glyphicon glyphicon-thumbs-up'> Correct</span></div>");
} else {
$("#cy3NQon7_message").html("<div class='alert alert-warning'><span class='glyphicon glyphicon-thumbs-down'> Incorrect</span></div>");
}
});
</script>
</div>
</div>
</body>
</html>