forked from CalculusWithJulia/CalculusWithJulia.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpolynomial.html
1954 lines (1576 loc) · 250 KB
/
polynomial.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/css/bootstrap.min.css"
rel="stylesheet">
<style>
.julia {display: block; font-family: "Source Code Pro";
color:#0033CC;
}
.hljl {font-family: "Source Code Pro";
color:#0033CC;
}
body { padding-top: 60px; }
h5:before {content:"\2746\ ";}
h6:before {content:"\2742\ ";}
pre {display: block;}
th, td {
padding: 15px;
text-align: left;
border-bottom: 1px solid #ddd;
}
tr:hover {background-color: #f5f5f5;}
.admonition-title:before {content:"\2746\ ";}
.admonition-title { color:#0033CC}
</style>
<!-- .julia:before {content: "julia> "} -->
<style></style>
<script src="https://code.jquery.com/jquery.js"></script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ["\$","\$"], ["\\(","\\)"]]
},
displayAlign: "left",
displayIndent: "5%"
});
</script>
<!-- not TeX-AMS-MML_HTMLorMML-->
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML" async></script>
</script>
<script>
window.PlotlyConfig = {MathJaxConfig: 'local'}
</script>
<script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
<script type="text/javascript">
$( document ).ready(function() {
$("h1").each(function(index) {
var title = $( this ).text()
$("#page_title").html("<strong>" + title + "</strong>");
document.title = title
});
$( "h2" ).each(function( index ) {
var nm = $( this ).text();
var id = $.trim(nm).replace(/ /g,'');
this.id = id
$("#page_dropdown").append("<li><a href='#" + id + "'>" + nm + "</a></li>");
});
$('[data-toggle="popover"]').popover();
});
</script>
</head>
<body data-spy="scroll" >
<nav class="navbar navbar-default navbar-fixed-top">
<div class="container-fluid">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
</div>
<!-- Collect the nav links, forms, and other content for toggling -->
<div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
<ul class="nav navbar-nav">
<li><a href="#" id="page_title"></a></li>
</ul>
<ul class="nav navbar-nav navbar-right">
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Jump to... <span class="caret"></span></a>
<ul class="dropdown-menu" role="menu" id="page_dropdown"></ul>
</li>
</ul>
</div><!-- /.navbar-collapse -->
</div><!-- /.container-fluid -->
</nav>
<header>
</header>
<div class="title">
</div>
<div class="container-fluid">
<div class="span10 offset1">
<h1>Polynomials</h1>
<p>Polynomials are a particular class of expressions that are simple enough to have many properties that can be analyzed. In particular, the key concepts of calculus: limits, continuity, derivatives, and integrals are all relatively trivial for polynomial functions. However, polynomials are flexible enough that they can be used to approximate a wide variety of functions. Indeed, though we don't pursue this, we mention that <code>Julia</code>'s <code>ApproxFun</code> package exploits this to great advantage.</p>
<p>Here we discuss some vocabulary and basic facts related to polynomials and show how the add-on <code>SymPy</code> package can be used to model polynomial expressions within <code>SymPy</code>.</p>
<p>For our purposes, a <em>monomial</em> is simply a non-negative integer power of <span class="math">$x$</span> (or some other indeterminate symbol) possibly multiplied by a scalar constant. For example, <span class="math">$5x^4$</span> is a monomial, as are constants, such as <span class="math">$-2=-2x^0$</span> and the symbol itself, as <span class="math">$x = x^1$</span>. In general, one may consider restrictions on where the constants can come from, and consider more than one symbol, but we won't pursue this here, restricting ourselves to the case of a single variable and real coefficients.</p>
<p>A <em>polynomial</em> is a sum of monomials. After combining terms with same powers, a non-zero polynomial may be written uniquely as:</p>
<p class="math">\[
a_n x^n + a_{n-1}x^{n-1} + \cdots a_1 x + a_0, \quad a_n \neq 0
\]</p>
<div class="well well-sm">
<figure>
<img src=""/>
<figcaption><div class="markdown"><p>Polynomials of varying even degrees over [-1,1].</p>
</div></figcaption>
</figure>
</div>
<p>The numbers <span class="math">$a_0, a_1, \dots, a_n$</span> are the <strong>coefficients</strong> of the polynomial. With the convention that <span class="math">$x=x^1$</span> and <span class="math">$1 = x^0$</span>, the monomials above have their power match their coefficient's index, e.g., <span class="math">$a_ix^i$</span>. Outside of the coefficient <span class="math">$a_n$</span>, the other coefficients may be negative, positive, <em>or</em> <span class="math">$0$</span>. Except for the zero polynomial, the largest power <span class="math">$n$</span> is called the <a href="https://en.wikipedia.org/wiki/Degree_of_a_polynomial">degree</a>. The degree of the <a href="http://tinyurl.com/he6eg6s">zero</a> polynomial is typically not defined or defined to be <span class="math">$-1$</span>, so as to make certain statements easier to express. The term <span class="math">$a_n$</span> is called the <strong>leading coefficient</strong>. When the leading coefficient is <span class="math">$1$</span>, the polynomial is called a <strong>monic polynomial</strong>. The monomial <span class="math">$a_n x^n$</span> is the <strong>leading term</strong>.</p>
<p>For example, the polynomial <span class="math">$-16x^2 - 32x + 100$</span> has degree <span class="math">$2$</span>, leading coefficient <span class="math">$-16$</span> and leading term <span class="math">$-16x^2$</span>. It is not monic, as the leading coefficient is not 1.</p>
<p>Lower degree polynomials have special names: a degree <span class="math">$0$</span> polynomial (<span class="math">$a_0$</span>) is a non-zero constant, a degree 1 polynomial (<span class="math">$a_0+a_1x$</span>) is called linear, a degree <span class="math">$2$</span> polynomial is quadratic, and a degree <span class="math">$3$</span> polynomial is called cubic.</p>
<h2>Linear polynomials</h2>
<p>A special place is reserved for polynomials with degree 1. These are linear, as their graphs are straight lines. The general form,</p>
<p class="math">\[
a_1 x + a_0, \quad a_1 \neq 0,
\]</p>
<p>is often written as <span class="math">$mx + b$</span>, which is the <strong>slope-intercept</strong> form. The slope of a line determines how steeply it rises. The value of <span class="math">$m$</span> can be found from two points through the well-known formula:</p>
<p class="math">\[
m = \frac{y_1 - y_0}{x_1 - x_0} = \frac{\text{rise}}{\text{run}}
\]</p>
<div class="well well-sm">
<figure>
<img src=""/>
<figcaption><div class="markdown"><p>Graphs of y = mx for different values of m</p>
</div></figcaption>
</figure>
</div>
<p>The intercept, <span class="math">$b$</span>, comes from the fact that when <span class="math">$x=0$</span> the expression is <span class="math">$b$</span>. That is the graph of the function <span class="math">$f(x) = mx + b$</span> will have <span class="math">$(0,b)$</span> as a point on it.</p>
<p>More generally, we have the <strong>point-slope</strong> form of a line, written as a polynomial through</p>
<p class="math">\[
y_0 + m \cdot (x - x_0).
\]</p>
<p>The slope is <span class="math">$m$</span> and the point <span class="math">$(x_0, y_0)$</span>. Again, the line graphing this as a function of <span class="math">$x$</span> would have the point <span class="math">$(x_0,y_0)$</span> on it and have slope <span class="math">$m$</span>. This form is more useful in calculus, as the information we have convenient is more likely to be related to a specific value of <span class="math">$x$</span>, not the special value <span class="math">$x=0$</span>.</p>
<p>Thinking in terms of transformations, this looks like the function <span class="math">$f(x) = x$</span> (whose graph is a line with slope 1) stretched in the <span class="math">$y$</span> direction by a factor of <span class="math">$m$</span> then shifted right by <span class="math">$x_0$</span> units, and then shifted up by <span class="math">$y_0$</span> units. When <span class="math">$m>1$</span>, this means the line grows faster. When <span class="math">$m< 0$</span>, the line <span class="math">$f(x)=x$</span> is flipped through the <span class="math">$x$</span>-axis so would head downwards, not upwards like <span class="math">$f(x) = x$</span>.</p>
<h2>Symbolic math in Julia</h2>
<p>The indeterminate value <code>x</code> (or some other symbol) in a polynomial, is like a variable in a function and unlike a variable in <code>Julia</code>. Variables in <code>Julia</code> are identifiers, just a means to look up a specific, already determined, value. Rather, the symbol <code>x</code> is not yet determined, it is essentially a place holder for a future value. Although we have seen that <code>Julia</code> makes it very easy to work with mathematical functions, it is not the case that base <code>Julia</code> makes working with expressions of algebraic symbols easy. This makes sense, <code>Julia</code> is primarily designed for technical computing, where numeric approaches rule the day. However, symbolic math can be used from within <code>Julia</code> with an add-on package.</p>
<p>Symbolic math programs include well-known ones like the commercial programs Mathematica and Maple. Mathematica powers the popular <a href="www.wolframalpha.com">WolframAlpha</a> website, which turns "natural" language into the specifics of a programming language. The open-source Sage project is an alternative to these two commercial giants. It includes a wide-range of open-source math projects available within its umbrella framework. (<code>Julia</code> can even be run from within the free service <a href="https://cloud.sagemath.com/projects">cloud.sagemath.com</a>.) A more focused project for symbolic math, is the <a href="www.sympy.org">SymPy</a> Python library. SymPy is also used within Sage. However, SymPy provides a self-contained library that can be used standalone within a Python session. That is great for <code>Julia</code> users, as the <code>PyCall</code> package glues <code>Julia</code> to Python in a seamless manner. This allows the <code>Julia</code> package <code>SymPy</code> to provide functionality from SymPy within <code>Julia</code>.</p>
<div class="alert alert-info" role="alert">
<div class="markdown"><p><code>SymPy</code> is installed when the accompanying <code>CalculusWithJulia</code> package is installed. It could also be installed directly. The package relies on both Python being installed and SymPy being added to the installed Python. This is done automatically on installation, if needed, when the <code>PyCall</code> package is installed.</p>
</div>
</div>
<p>To use <code>SymPy</code>, we create symbolic objects to be our indeterminate symbols. The <code>symbols</code> function does this and is used like:</p>
<pre class='hljl'>
<span class='hljl-k'>using</span><span class='hljl-t'> </span><span class='hljl-n'>CalculusWithJulia</span><span class='hljl-t'> </span><span class='hljl-cs'># loads the `SymPy` package</span><span class='hljl-t'>
</span><span class='hljl-n'>a</span><span class='hljl-p'>,</span><span class='hljl-n'>b</span><span class='hljl-p'>,</span><span class='hljl-n'>c</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>symbols</span><span class='hljl-p'>(</span><span class='hljl-s'>"a,b,c"</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>symbols</span><span class='hljl-p'>(</span><span class='hljl-s'>"x"</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>real</span><span class='hljl-oB'>=</span><span class='hljl-kc'>true</span><span class='hljl-p'>)</span>
</pre>
<div class="well well-sm">\begin{equation*}x\end{equation*}</div>
<p>The first use, shows that multiple symbols can be defined at once. The second shows the extra keyword argument <code>real=true</code>, which instructs <code>SymPy</code> to assume the <code>x</code> is real, as otherwise it assumes it is possibly complex. There are many other <a href="http://docs.sympy.org/dev/modules/core.html#module-sympy.core.assumptions">assumptions</a> that can be made.</p>
<p>The <em>macro</em> <code>@vars</code> is like the second usage, only it does not need assignment, as the variable are created behind the scenes. This may be the easiest way to create symbolic values:</p>
<pre class='hljl'>
<span class='hljl-nd'>@vars</span><span class='hljl-t'> </span><span class='hljl-n'>h</span><span class='hljl-t'> </span><span class='hljl-n'>t</span>
</pre>
<pre class="output">
(h, t)
</pre>
<div class="alert alert-info" role="alert">
<div class="markdown"><p>Macros in <code>Julia</code> are just transformations of the syntax into other synax. The <code>@</code> indicates they behave differently than regular function calls. For the <code>@vars</code> macro, the arguments are <strong>not</strong> separated by commas, as a normal function cal would be.</p>
</div>
</div>
<p>The <code>SymPy</code> package does two basic things:</p>
<ul>
<li><p>It imports some of the functionality provided by <code>SymPy</code>, including the ability to create symbolic variables.</p>
</li>
<li><p>It overloads many <code>Julia</code> functions to work seamlessly with symbolic expressions. This makes working with polynomials quite natural.</p>
</li>
</ul>
<p>To illustrate, using the just defined <code>x</code>, here is how we can create the polynomial <span class="math">$-16x^2 + 100$</span>:</p>
<pre class='hljl'>
<span class='hljl-n'>p</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-ni'>16</span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-ni'>100</span>
</pre>
<div class="well well-sm">\begin{equation*}- 16 x^{2} + 100\end{equation*}</div>
<p>That is, the expression is created just as you would create it within a function body. But here the result is still a symbolic object. We have assigned this expression to a variable <code>p</code>, and have not defined it as a function <code>p(x)</code>. Mentally keeping the distinction between expressions and functions is very important.</p>
<p>The <code>typeof</code> function shows that <code>p</code> is of a symbolic type (<code>Sym</code>):</p>
<pre class='hljl'>
<span class='hljl-nf'>typeof</span><span class='hljl-p'>(</span><span class='hljl-n'>p</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
SymPy.Sym
</pre>
<p>We can mix and match symbolic objects. This command creates an arbitrary quadratic polynomial:</p>
<pre class='hljl'>
<span class='hljl-n'>quad</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>a</span><span class='hljl-oB'>*</span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>b</span><span class='hljl-oB'>*</span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>c</span>
</pre>
<div class="well well-sm">\begin{equation*}a x^{2} + b x + c\end{equation*}</div>
<p>Again, this is entered in a manner nearly identical to how we see such expressions typeset (<span class="math">$ax^2 + bx+c$</span>), though we must remember to explicitly place the multiplication operator, as the symbols are not numeric literals.</p>
<p>We can apply many of <code>Julia</code>'s mathematical functions and the result will still be symbolic:</p>
<pre class='hljl'>
<span class='hljl-nf'>sin</span><span class='hljl-p'>(</span><span class='hljl-n'>a</span><span class='hljl-oB'>*</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-n'>b</span><span class='hljl-oB'>*</span><span class='hljl-n'>pi</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>c</span><span class='hljl-p'>)</span>
</pre>
<div class="well well-sm">\begin{equation*}\sin{\left (a \left(- \pi b + x\right) + c \right )}\end{equation*}</div>
<p>Another example, might be the following combination:</p>
<pre class='hljl'>
<span class='hljl-n'>quad</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>quad</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-n'>quad</span><span class='hljl-oB'>^</span><span class='hljl-ni'>3</span>
</pre>
<div class="well well-sm">\begin{equation*}a x^{2} + b x + c - \left(a x^{2} + b x + c\right)^{3} + \left(a x^{2} + b x + c\right)^{2}\end{equation*}</div>
<h2>Substitution: subs, replace</h2>
<p>Algebraically working with symbolic expressions is straightforward. A different symbolic task is substitution. For example, replacing each instance of <code>x</code> in a polynomial, with, say, <code>(x-1)^2</code>. Substitution requires three things to be specified: an expression to work on, a variable to substitute, and a value to substitute in.</p>
<p>SymPy provides its <code>subs</code> function for this. This function is available in <code>Julia</code>, but it is easier to use notation reminiscent of function evaluation.</p>
<p>To illustrate, to do the task above for the polynomial <span class="math">$-16x^2 + 100$</span> we could have:</p>
<pre class='hljl'>
<span class='hljl-n'>p</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-ni'>16</span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-ni'>100</span><span class='hljl-t'>
</span><span class='hljl-nf'>p</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>=></span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-oB'>-</span><span class='hljl-ni'>1</span><span class='hljl-p'>)</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-p'>)</span>
</pre>
<div class="well well-sm">\begin{equation*}- 16 \left(x - 1\right)^{4} + 100\end{equation*}</div>
<p>This "call" notation takes pairs (designated by <code>a=>b</code>) where the left-hand side is the variable to substitute for, and the right-hand side the new value. The value to substitute can depend on the variable, as illustrated; be a different variable; or be a numeric value, such as <span class="math">$2$</span>:</p>
<pre class='hljl'>
<span class='hljl-n'>y</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>p</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-oB'>=></span><span class='hljl-ni'>2</span><span class='hljl-p'>)</span>
</pre>
<div class="well well-sm">\begin{equation*}36\end{equation*}</div>
<p>The result will always be of a symbolic type, even if the answer is just a number:</p>
<pre class='hljl'>
<span class='hljl-nf'>typeof</span><span class='hljl-p'>(</span><span class='hljl-n'>y</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
SymPy.Sym
</pre>
<p>If there is just one free variable in an expression, the pair notation can be dropped:</p>
<pre class='hljl'>
<span class='hljl-nf'>p</span><span class='hljl-p'>(</span><span class='hljl-ni'>4</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-cs'># substitutes x=>4</span>
</pre>
<div class="well well-sm">\begin{equation*}-156\end{equation*}</div>
<h5>Example</h5>
<p>Suppose we have the polynomial <span class="math">$p = ax^2 + bx +c$</span>. What would it look like if we shifted right by <span class="math">$E$</span> units and up by <span class="math">$F$</span> units?</p>
<pre class='hljl'>
<span class='hljl-nd'>@vars</span><span class='hljl-t'> </span><span class='hljl-n'>a</span><span class='hljl-t'> </span><span class='hljl-n'>b</span><span class='hljl-t'> </span><span class='hljl-n'>c</span><span class='hljl-t'> </span><span class='hljl-n'>E</span><span class='hljl-t'> </span><span class='hljl-n'>F</span><span class='hljl-t'>
</span><span class='hljl-n'>p</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>a</span><span class='hljl-oB'>*</span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>b</span><span class='hljl-oB'>*</span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>c</span><span class='hljl-t'>
</span><span class='hljl-nf'>p</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>=></span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-oB'>-</span><span class='hljl-n'>E</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>F</span>
</pre>
<div class="well well-sm">\begin{equation*}F + a \left(- E + x\right)^{2} + b \left(- E + x\right) + c\end{equation*}</div>
<p>And expanded this becomes:</p>
<pre class='hljl'>
<span class='hljl-nf'>expand</span><span class='hljl-p'>(</span><span class='hljl-nf'>p</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>=></span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-oB'>-</span><span class='hljl-n'>E</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>F</span><span class='hljl-p'>)</span>
</pre>
<div class="well well-sm">\begin{equation*}E^{2} a - 2 E a x - E b + F + a x^{2} + b x + c\end{equation*}</div>
<h3>Conversion of symbolic numbers to Julia numbers</h3>
<p>In the above, we substituted <code>2</code> in for <code>x</code> to get <code>y</code>:</p>
<pre class='hljl'>
<span class='hljl-n'>p</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-ni'>16</span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-ni'>100</span><span class='hljl-t'>
</span><span class='hljl-n'>y</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>p</span><span class='hljl-p'>(</span><span class='hljl-ni'>2</span><span class='hljl-p'>)</span>
</pre>
<div class="well well-sm">\begin{equation*}36\end{equation*}</div>
<p>The value, <span class="math">$36$</span> is still symbolic, but clearly an integer. If we are just looking at the output, we can easily translate from the symbolic value to an integer, as they print similarly. However the conversion to an integer, or another type of number, does not happen automatically. If a number is needed to pass along to another <code>Julia</code> function, it may need to be converted. In general, conversions between different types are handled through various methods of <code>convert</code>. However, with <code>SymPy</code>, the <code>N</code> function will attempt to do the conversion for you:</p>
<pre class='hljl'>
<span class='hljl-nf'>N</span><span class='hljl-p'>(</span><span class='hljl-n'>y</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
36
</pre>
<p>Conversion by <code>N</code> also works for other types of data, such as <code>Rational</code> and <code>Float64</code>. For getting more digits of accuracy, a precision can be passed to <code>N</code>. The following command will take the symbolic value for <span class="math">$\pi$</span>, <code>PI</code>, and produce about 60 digits worth as a <code>BigFloat</code> value:</p>
<pre class='hljl'>
<span class='hljl-nf'>N</span><span class='hljl-p'>(</span><span class='hljl-n'>PI</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>60</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
3.141592653589793238462643383279502884197169399375105820974939
</pre>
<p>Conversion will fail if the value to be converted contains free symbols, as would be expected.</p>
<h2>Graphical properties of polynomials</h2>
<p>Consider the graph of the polynomial <code>x^5 - x + 1</code>:</p>
<pre class='hljl'>
<span class='hljl-nf'>plot</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>5</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-ni'>3</span><span class='hljl-oB'>/</span><span class='hljl-ni'>2</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>3</span><span class='hljl-oB'>/</span><span class='hljl-ni'>2</span><span class='hljl-p'>)</span>
</pre>
<div id="b6e9fce8-9860-46fa-8cc6-d936a914e350" style="width:576px;height:384px;"></div>
<script>
PLOT = document.getElementById('b6e9fce8-9860-46fa-8cc6-d936a914e350');
Plotly.plot(PLOT, [
{
"xaxis": "x1",
"colorbar": {
"title": ""
},
"yaxis": "y1",
"text": [
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
],
"x": [
-1.492675635735159,
-1.4853512714703179,
-1.4780269072054768,
-1.4707025429406355,
-1.4368403811349162,
-1.402978219329197,
-1.3691160575234778,
-1.3352538957177584,
-1.3013917339120393,
-1.26752957210632,
-1.2336674103006007,
-1.1998052484948816,
-1.1591057528919433,
-1.118406257289005,
-1.0777067616860667,
-1.0370072660831284,
-0.9681854549679156,
-0.8993636438527028,
-0.8246038668767743,
-0.7498440899008457,
-0.6809221881484806,
-0.6120002863961155,
-0.4642171607805305,
-0.29299591698440314,
-0.14083468166693566,
-0.007402990379339967,
0.13807336996595837,
0.28441433625843626,
0.4462129878732128,
0.6001603222345304,
0.680195076384291,
0.7602298305340516,
0.8276020457672935,
0.8949742610005353,
0.9772280994798138,
1.0594819379590923,
1.0981424550658505,
1.136802972172609,
1.1754634892793672,
1.2141240063861254,
1.2450925795938823,
1.276061152801639,
1.3070297260093957,
1.3379982992171526,
1.3689668724249093,
1.399935445632666,
1.430904018840423,
1.4618725920481797,
1.4714044440361347,
1.48093629602409,
1.490468148012045
],
"showlegend": true,
"mode": "lines",
"name": "y1",
"zmin": -0.1,
"legendgroup": "y1",
"zmax": 0.1,
"line": {
"color": "rgba(0, 154, 250, 1.000)",
"shape": "linear",
"dash": "solid",
"width": 1
},
"y": [
-4.917478137585093,
-4.744774657879793,
-4.575587289869974,
-4.409864275509366,
-3.6872645704860063,
-3.0327113229019473,
-2.441506908843751,
-1.909175060193589,
-1.431455522004756,
-1.0042987098771914,
-0.6238603673330263,
-0.2864962231921031,
0.0668474178276166,
0.36856786449211376,
0.6239122049254857,
0.8377592821811506,
1.11745345335035,
1.3109582602012018,
1.4433389580160372,
1.5127859545220121,
1.5345402711152016,
1.5261467622562663,
1.4426592854926048,
1.2908366425556788,
1.140779276778803,
1.007402990357105,
0.8619768122256297,
0.7174467110741493,
0.5714763279345059,
0.47770362210723505,
0.4654069501825582,
0.4937063213486699,
0.5606446584011386,
0.6792119080649601,
0.9139812450055042,
1.275476627673869,
1.4988152355533768,
1.7617643514193149,
2.0686546744197507,
2.4241216490482085,
2.747228722344113,
3.107370735141437,
3.5073798555600524,
3.950229095450853,
4.439035728515148,
4.977064708424099,
5.567732086938113,
6.214608432026246,
6.425597000851501,
6.642374387445889,
6.865053821576705
],
"type": "scatter",
"hoverinfo": "text"
}
]
, {
"showlegend": true,
"xaxis": {
"showticklabels": true,
"gridwidth": 0.5,
"tickvals": [
-1.5,
-1.0,
-0.5,
0.0,
0.5,
1.0,
1.5
],
"visible": true,
"ticks": "inside",
"range": [
-1.5821699492475751,
1.5799624615244612
],
"domain": [
0.06856347817633907,
0.9931649168853893
],
"tickmode": "array",
"linecolor": "rgba(0, 0, 0, 1.000)",
"showgrid": true,
"title": "",
"mirror": false,
"tickangle": 0,
"showline": true,
"gridcolor": "rgba(0, 0, 0, 0.100)",
"titlefont": {
"color": "rgba(0, 0, 0, 1.000)",
"family": "sans-serif",
"size": 15
},
"tickcolor": "rgb(0, 0, 0)",
"ticktext": [
"-1.5",
"-1.0",
"-0.5",
"0.0",
"0.5",
"1.0",
"1.5"
],
"zeroline": false,
"type": "-",
"tickfont": {
"color": "rgba(0, 0, 0, 1.000)",
"family": "sans-serif",
"size": 11
},
"zerolinecolor": "rgba(0, 0, 0, 1.000)",
"anchor": "y1"
},
"paper_bgcolor": "rgba(255, 255, 255, 1.000)",
"annotations": [],
"height": 384,
"margin": {
"l": 0,
"b": 20,
"r": 0,
"t": 20
},
"plot_bgcolor": "rgba(255, 255, 255, 1.000)",
"yaxis": {
"showticklabels": true,
"gridwidth": 0.5,
"tickvals": [
-5.0,
-2.5,
0.0,
2.5,
5.0
],
"visible": true,
"ticks": "inside",
"range": [
-5.270954096359946,
7.218529780351559
],
"domain": [
0.0391878098571012,
0.989747375328084
],
"tickmode": "array",
"linecolor": "rgba(0, 0, 0, 1.000)",
"showgrid": true,
"title": "",
"mirror": false,
"tickangle": 0,
"showline": true,
"gridcolor": "rgba(0, 0, 0, 0.100)",
"titlefont": {
"color": "rgba(0, 0, 0, 1.000)",
"family": "sans-serif",
"size": 15
},
"tickcolor": "rgb(0, 0, 0)",
"ticktext": [
"-5.0",
"-2.5",
"0.0",
"2.5",
"5.0"
],
"zeroline": false,
"type": "-",
"tickfont": {
"color": "rgba(0, 0, 0, 1.000)",
"family": "sans-serif",
"size": 11
},
"zerolinecolor": "rgba(0, 0, 0, 1.000)",
"anchor": "x1"
},
"legend": {
"tracegroupgap": 0,
"bordercolor": "rgba(0, 0, 0, 1.000)",
"bgcolor": "rgba(255, 255, 255, 1.000)",
"font": {
"color": "rgba(0, 0, 0, 1.000)",
"family": "sans-serif",
"size": 11
},
"y": 1.0,
"x": 1.0
},
"width": 576
}
);
</script>
<p>(Plotting symbolic expressions is similar to plotting a function, in that the expression is passed in as the first argument. The expression must have only one free variable, as above, or an error will occur.)</p>
<p>This graph illustrates the key features of polynomial graphs:</p>
<ul>
<li><p>there may be values for <code>x</code> where the graph crosses the <span class="math">$x$</span> axis (real roots of the polynomial);</p>
</li>
<li><p>there may be peaks and valleys (local maxima and local minima)</p>
</li>
<li><p>except for constant polynomials, the ultimate behaviour for large values of <span class="math">$\lvert x\rvert$</span> is either both sides of the graph going to positive infinity, or negative infinity, or as in this graph one to the positive infinity and one to negative infinity. In particular, there is no <em>horizontal asymptote</em>.</p>
</li>
</ul>
<p>To investigate this last point, let's consider the case of the monomial <span class="math">$x^n$</span>. When <span class="math">$n$</span> is even, the following animation shows that larger values of <span class="math">$n$</span> have greater growth once outside of <span class="math">$[-1,1]$</span>:</p>
<div class="well well-sm">
<figure>
<img src=""/>
<figcaption><div class="markdown"><p>Demonstration that $x^{10}$ grows faster than $x^8$, ... and $x^2$ grows faster than $x^0$ (which is constant).</p>
</div></figcaption>
</figure>
</div>
<p>Of course, this is expected, as, for example, <span class="math">$2^2 < 2^4 < 2^6 < \cdots$</span>. The general shape of these terms is similar – <span class="math">$U$</span> shaped, and larger powers dominate the smaller powers as <span class="math">$\lvert x\rvert$</span> gets big.</p>
<p>For odd powers of <span class="math">$n$</span>, the graph of the monomial <span class="math">$x^n$</span> is no longer <span class="math">$U$</span> shaped, but rather constantly increasing. This graph of <span class="math">$x^5$</span> is typical:</p>
<pre class='hljl'>
<span class='hljl-nf'>plot</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>5</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-ni'>2</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-p'>)</span>
</pre>
<div id="b0abbda0-398d-4543-a7e3-74084ee8fcee" style="width:576px;height:384px;"></div>
<script>
PLOT = document.getElementById('b0abbda0-398d-4543-a7e3-74084ee8fcee');
Plotly.plot(PLOT, [
{
"xaxis": "x1",
"colorbar": {
"title": ""
},
"yaxis": "y1",
"text": [
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
],
"x": [
-1.9902341809802118,
-1.9804683619604238,
-1.9707025429406357,
-1.9609367239208475,
-1.9157871748465551,
-1.8706376257722628,
-1.8254880766979704,
-1.780338527623678,
-1.6900394294750933,
-1.5997403313265088,
-1.5454743371892579,
-1.4912083430520067,
-1.4369423489147555,
-1.3826763547775045,
-1.2909139399572207,
-1.1991515251369371,
-0.9997921198677943,
-0.8160003818614874,
-0.6189562143740406,
-0.3906612226458709,
-0.18777957555591424,
-0.009870653839119958,
0.18409782662127785,
0.3792191150112484,
0.5949506504976171,
0.8002137629793739,
0.9069267685123881,
1.0136397740454022,
1.1034693943563914,
1.1932990146673805,
1.3029707993064186,
1.4126425839454564,
1.4641899400878007,
1.5157372962301452,
1.5672846523724897,
1.618832008514834,
1.7014148704021854,
1.7839977322895368,
1.8665805941768883,
1.9491634560642397,
1.9618725920481799,
1.9745817280321198,
1.9872908640160598
],
"showlegend": true,
"mode": "lines",
"name": "y1",
"zmin": -0.1,
"legendgroup": "y1",
"zmax": 0.1,
"line": {
"color": "rgba(0, 154, 250, 1.000)",
"shape": "linear",
"dash": "solid",
"width": 1
},
"y": [
-31.226327011851584,
-30.467691159072068,
-29.723872172038114,
-28.994651942768744,
-25.806927861974604,
-22.905950992776507,
-20.271925586666843,
-17.885988686638772,
-13.787457451650681,
-10.477253938302358,
-8.816759403727866,
-7.373804585284019,
-6.126278296801787,
-5.053621133809156,
-3.584977652906942,
-2.4795354438647617,
-0.9989610313906406,
-0.3617860441119569,
-0.09084470903224613,
-0.009099164670838955,
-0.00023347574258363897,
-9.369784619169601e-11,
0.00021146734232983073,
0.007842438142253676,
0.0745426312226505,
0.3281180206006902,
0.6135657415821136,
1.0700848540243075,
1.6360684159196481,
2.419615790629907,
3.7555488426047985,
5.6255044082640016,
6.729566564584727,
8.000547075547857,
9.456695471719744,
11.117545478044276,
14.257754128616092,
18.070554947078342,
22.65863439404992,
28.13463608498854,
29.063907323312527,
30.01757259207102,
30.996109040571508
],
"type": "scatter",
"hoverinfo": "text"
}
]
, {
"showlegend": true,
"xaxis": {
"showticklabels": true,
"gridwidth": 0.5,
"tickvals": [
-2.0,
-1.0,
0.0,
1.0,
2.0
],
"visible": true,
"ticks": "inside",
"range": [
-2.1095599323300998,
2.106616615365948
],
"domain": [
0.05313137941090697,
0.9931649168853892
],
"tickmode": "array",
"linecolor": "rgba(0, 0, 0, 1.000)",
"showgrid": true,
"title": "",
"mirror": false,
"tickangle": 0,
"showline": true,
"gridcolor": "rgba(0, 0, 0, 0.100)",
"titlefont": {
"color": "rgba(0, 0, 0, 1.000)",
"family": "sans-serif",
"size": 15
},
"tickcolor": "rgb(0, 0, 0)",
"ticktext": [
"-2",
"-1",
"0",
"1",
"2"
],
"zeroline": false,
"type": "-",
"tickfont": {
"color": "rgba(0, 0, 0, 1.000)",
"family": "sans-serif",
"size": 11
},
"zerolinecolor": "rgba(0, 0, 0, 1.000)",
"anchor": "y1"
},
"paper_bgcolor": "rgba(255, 255, 255, 1.000)",
"annotations": [],
"height": 384,
"margin": {
"l": 0,
"b": 20,
"r": 0,
"t": 20
},