forked from CalculusWithJulia/CalculusWithJulia.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimproper_integrals.html
968 lines (780 loc) · 105 KB
/
improper_integrals.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/css/bootstrap.min.css"
rel="stylesheet">
<style>
.julia {display: block; font-family: "Source Code Pro";
color:#0033CC;
}
.hljl {font-family: "Source Code Pro";
color:#0033CC;
}
body { padding-top: 60px; }
h5:before {content:"\2746\ ";}
h6:before {content:"\2742\ ";}
pre {display: block;}
th, td {
padding: 15px;
text-align: left;
border-bottom: 1px solid #ddd;
}
tr:hover {background-color: #f5f5f5;}
.admonition-title:before {content:"\2746\ ";}
.admonition-title { color:#0033CC}
</style>
<!-- .julia:before {content: "julia> "} -->
<style></style>
<script src="https://code.jquery.com/jquery.js"></script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ["\$","\$"], ["\\(","\\)"]]
},
displayAlign: "left",
displayIndent: "5%"
});
</script>
<!-- not TeX-AMS-MML_HTMLorMML-->
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML" async></script>
</script>
<script>
window.PlotlyConfig = {MathJaxConfig: 'local'}
</script>
<script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
<script type="text/javascript">
$( document ).ready(function() {
$("h1").each(function(index) {
var title = $( this ).text()
$("#page_title").html("<strong>" + title + "</strong>");
document.title = title
});
$( "h2" ).each(function( index ) {
var nm = $( this ).text();
var id = $.trim(nm).replace(/ /g,'');
this.id = id
$("#page_dropdown").append("<li><a href='#" + id + "'>" + nm + "</a></li>");
});
$('[data-toggle="popover"]').popover();
});
</script>
</head>
<body data-spy="scroll" >
<nav class="navbar navbar-default navbar-fixed-top">
<div class="container-fluid">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
</div>
<!-- Collect the nav links, forms, and other content for toggling -->
<div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
<ul class="nav navbar-nav">
<li><a href="#" id="page_title"></a></li>
</ul>
<ul class="nav navbar-nav navbar-right">
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Jump to... <span class="caret"></span></a>
<ul class="dropdown-menu" role="menu" id="page_dropdown"></ul>
</li>
</ul>
</div><!-- /.navbar-collapse -->
</div><!-- /.container-fluid -->
</nav>
<header>
</header>
<div class="title">
</div>
<div class="container-fluid">
<div class="span10 offset1">
<h1>Improper Integrals</h1>
<p>A function <span class="math">$f(x)$</span> is Riemann integrable over an interval <span class="math">$[a,b]$</span> if some limit involving Riemann sums exists. This limit will fail to exist if <span class="math">$f(x) = \infty$</span> in <span class="math">$[a,b]$</span>. As well, the Riemann sum idea is undefined if either <span class="math">$a$</span> or <span class="math">$b$</span> (or both) are infinite, so the limit won't exist in this case.</p>
<p>To define integrals with either functions having singularities or infinite domains, the idea of an improper integral is introduced with definitions to handle the two cases above.</p>
<div class="well well-sm">
<figure>
<img src=""/>
<figcaption><div class="markdown"><p>Area under $1/\sqrt{x}$ over $[a,b]$ increases as $a$ gets closer to $0$. Will it grow unbounded or have a limit?</p>
</div></figcaption>
</figure>
</div>
<h2>Infinite domains</h2>
<p>Let <span class="math">$f(x)$</span> be a reasonable function, so reasonable that for any <span class="math">$a < b$</span> the function is Riemann integrable, meaning <span class="math">$\int_a^b f(x)dx$</span> exists.</p>
<p>What needs to be the case so that we can discuss the limit over the entire real number line?</p>
<p>Clearly something. The function <span class="math">$f(x) = 1$</span> is reasonable by the idea above. Clearly the integral over and <span class="math">$[a,b]$</span> is just <span class="math">$b-a$</span>, but the limit over an unbounded domain would be <span class="math">$\infty$</span>. Even though limits of infinity can be of interest in some cases, not so here. What will ensure that the area is finite over an infinite region?</p>
<p>Or is that even the right question. Now consider <span class="math">$f(x) = \sin(\pi x)$</span>. Over every interval of the type <span class="math">$[-2n, 2n]$</span> the area is <span class="math">$0$</span>, and over any interval, <span class="math">$[a,b]$</span> the area never gets bigger than <span class="math">$2$</span>. But still this function does not have a well defined area on an infinite domain.</p>
<p>The right question involves a limit. Fix a finite <span class="math">$a$</span>. We define the definite integral over <span class="math">$[a,\infty)$</span> to be</p>
<p class="math">\[
~
\int_a^\infty f(x) dx = \lim_{M \rightarrow \infty} \int_a^M f(x) dx,
~
\]</p>
<p>when the limit exists. Similarly, we define the definite integral over <span class="math">$(-\infty, a]$</span> through</p>
<p class="math">\[
~
\int_{-\infty}^a f(x) dx = \lim_{M \rightarrow -\infty} \int_M^a f(x) dx.
~
\]</p>
<p>For the interval <span class="math">$(-\infty, \infty)$</span> we have need <em>both</em> these limits to exist, and then:</p>
<p class="math">\[
~
\int_{-\infty}^\infty f(x) dx = \lim_{M \rightarrow -\infty} \int_M^a f(x) dx + \lim_{M \rightarrow \infty} \int_a^M f(x) dx.
~
\]</p>
<div class="alert alert-info" role="alert">
<div class="markdown"><p>When the integral exists, it is said to <em>converge</em>. If it doesn't exist, it is said to <em>diverge</em>.</p>
</div>
</div>
<h5>Examples</h5>
<ul>
<li><p>The function <span class="math">$f(x) = 1/x^2$</span> is integrable over <span class="math">$[1, \infty)$</span>, as this limit exists:</p>
</li>
</ul>
<p class="math">\[
~
\lim_{M \rightarrow \infty} \int_1^M \frac{1}{x^2}dx = \lim_{M \rightarrow \infty} -\frac{1}{x}\big|_1^M
= \lim_{M \rightarrow \infty} 1 - \frac{1}{M} = 1.
~
\]</p>
<ul>
<li><p>The function <span class="math">$f(x) = 1/x^{1/2}$</span> is not integrable over <span class="math">$[1, \infty)$</span>, as this limit fails to exist:</p>
</li>
</ul>
<p class="math">\[
~
\lim_{M \rightarrow \infty} \int_1^M \frac{1}{x^{1/2}}dx = \lim_{M \rightarrow \infty} \frac{x^{1/2}}{1/2}\big|_1^M
= \lim_{M \rightarrow \infty} 2\sqrt{M} - 2 = \infty.
~
\]</p>
<p>The limit is infinite, so does not exist except in an extended sense.</p>
<ul>
<li><p>The function <span class="math">$x^n e^{-x}$</span> for <span class="math">$n = 1, 2, \dots$</span> is integrable over <span class="math">$[0,\infty)$</span>.</p>
</li>
</ul>
<p>Before showing this, we recall the fundamental theorem of calculus. The limit existing is the same as saying the limit of <span class="math">$F(M) - F(a)$</span> exists for an antiderivative of <span class="math">$f(x)$</span>.</p>
<p>For this particular problem, it can be shown by integration by parts that for positive, integer values of <span class="math">$n$</span> that an antiderivative exists of the form <span class="math">$F(x) = p(x)e^{-x}$</span>, where <span class="math">$p(x)$</span> is a polynomial of degree <span class="math">$n$</span>. But we've seen that for any <span class="math">$n>0$</span>, <span class="math">$\lim_{x \rightarrow \infty} x^n e^{-x} = 0$</span>, so the same is true for any polynomial. So, <span class="math">$\lim_{M \rightarrow \infty} F(M) - F(1) = -F(1)$</span>.</p>
<ul>
<li><p>The function <span class="math">$e^x$</span> is integrable over <span class="math">$(-\infty, a]$</span> but not</p>
</li>
</ul>
<p class="math">\[
[a, \infty)
\]</p>
<p>for any finite <span class="math">$a$</span>. This is because, <span class="math">$F(M) = e^x$</span> and this has a limit as <span class="math">$x$</span> goes to <span class="math">$-\infty$</span>, but not <span class="math">$\infty$</span>.</p>
<ul>
<li><p>Let <span class="math">$f(x) = x e^{-x^2}$</span>. This function has an integral over <span class="math">$[0, \infty)$</span> and more generally <span class="math">$(-\infty, \infty)$</span>. To see, we note that as it is an odd function, the area from <span class="math">$0$</span> to <span class="math">$M$</span> is the opposite sign of that from <span class="math">$-M$</span> to <span class="math">$0$</span>. So <span class="math">$\lim_{M \rightarrow \infty} (F(M) - F(0)) = \lim_{M \rightarrow -\infty} (F(0) - (-F(\lvert M\lvert)))$</span>. We only then need to investigate the one limit. But we can see by substitution with <span class="math">$u=x^2$</span>, that an antiderivative is <span class="math">$F(x) = (-1/2) \cdot e^{-x^2}$</span>. Clearly, <span class="math">$\lim_{M \rightarrow \infty}F(M) = 0$</span>, so the answer is well defined, and the area from <span class="math">$0$</span> to <span class="math">$\infty$</span> is just <span class="math">$e/2$</span>. From <span class="math">$-\infty$</span> to <span class="math">$0$</span> it is <span class="math">$-e/2$</span> and the total area is <span class="math">$0$</span>, as the two sides "cancel" out.</p>
</li>
<li><p>Let <span class="math">$f(x) = \sin(x)$</span>. Even though <span class="math">$\lim_{M \rightarrow \infty} (F(M) - F(-M) ) = 0$</span>, this function is not integrable. The fact is we need <em>both</em> the limit <span class="math">$F(M)$</span> and <span class="math">$F(-M)$</span> to exist as <span class="math">$M$</span> goes to <span class="math">$\infty$</span>. In this case, even though the area cancels if <span class="math">$\infty$</span> is approached at the same rate, this isn't sufficient to guarantee the two limits exists independently.</p>
</li>
</ul>
<ul>
<li><p>Will the function <span class="math">$f(x) = 1/(x\cdot(\log(x))^2)$</span> have an integral over <span class="math">$[e, \infty)$</span>?</p>
</li>
</ul>
<p>We first find an antiderivative using the <span class="math">$u$</span>-substitution <span class="math">$u(x) = \log(x)$</span>:</p>
<p class="math">\[
~
\int_e^M \frac{e}{x \log(x)^{2}} dx
= \int_{\log(e)}^{\log(M)} \frac{1}{u^{2}} du
= \frac{-1}{u} \big|_{1}^{\log(M)}
= \frac{-1}{\log(M)} - \frac{-1}{1}
= 1 - \frac{1}{M}.
~
\]</p>
<p>As <span class="math">$M$</span> goes to <span class="math">$\infty$</span>, this will converge to <span class="math">$1$</span>.</p>
<ul>
<li><p>The sinc function <span class="math">$f(x) = \sin(\pi x)/(\pi x)$</span> does not have a nice antiderivative. Seeing if the limit exists is a bit of a problem. However, this function is important enough that there is a built-in function, <code>Si</code>, that computes <span class="math">$\int_0^x \sin(u)/u\cdot du$</span>. This function can be used through <code>sympy.Si(...)</code>:</p>
</li>
</ul>
<pre class='hljl'>
<span class='hljl-k'>using</span><span class='hljl-t'> </span><span class='hljl-n'>CalculusWithJulia</span><span class='hljl-t'> </span><span class='hljl-cs'># loads `SymPy`, `QuadGK`</span><span class='hljl-t'>
</span><span class='hljl-nd'>@vars</span><span class='hljl-t'> </span><span class='hljl-n'>M</span><span class='hljl-t'>
</span><span class='hljl-nf'>limit</span><span class='hljl-p'>(</span><span class='hljl-n'>sympy</span><span class='hljl-oB'>.</span><span class='hljl-nf'>Si</span><span class='hljl-p'>(</span><span class='hljl-n'>M</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-n'>M</span><span class='hljl-t'> </span><span class='hljl-oB'>=></span><span class='hljl-t'> </span><span class='hljl-n'>oo</span><span class='hljl-p'>)</span>
</pre>
<div class="well well-sm">\begin{equation*}\frac{\pi}{2}\end{equation*}</div>
<h3>Numeric integrals</h3>
<p>The <code>quadgk</code> function (available through <code>QuadGK</code> which is loaded with <code>CalculusWithJulia</code>) is able to accept <code>Inf</code> and <code>-Inf</code> as endpoints of the interval. For example, this will integrate <span class="math">$e^{-x^2/2}$</span> over the real line:</p>
<pre class='hljl'>
<span class='hljl-nf'>f</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>exp</span><span class='hljl-p'>(</span><span class='hljl-oB'>-</span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-oB'>/</span><span class='hljl-ni'>2</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-nf'>quadgk</span><span class='hljl-p'>(</span><span class='hljl-n'>f</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-n'>Inf</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>Inf</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
(2.506628274639168, 3.6084380708526996e-8)
</pre>
<p>(If may not be obvious, but this is <span class="math">$\sqrt{2\pi}$</span>.)</p>
<h2>Singularities</h2>
<p>Suppose <span class="math">$\lim_{x \rightarrow c}f(x) = \infty$</span> or <span class="math">$-\infty$</span>. Then a Riemann sum that contains an interval including <span class="math">$c$</span> will not be finite if the point chosen in the interval is <span class="math">$c$</span>. Though we could choose another point, this is not enough as the definition must hold for any choice of the <span class="math">$c_i$</span>.</p>
<p>However, if <span class="math">$c$</span> is isolated, we can get close to <span class="math">$c$</span> and see how the area changes.</p>
<p>Suppose <span class="math">$a < c$</span>, we define <span class="math">$\int_a^c f(x) dx = \lim_{M \rightarrow c-} \int_a^c f(x) dx$</span>. If this limit exists, the definite integral with <span class="math">$c$</span> is well defined. Similarly, the integral from <span class="math">$c$</span> to <span class="math">$b$</span>, where <span class="math">$b > c$</span>, can be defined by a right limit going to <span class="math">$c$</span>. The integral from <span class="math">$a$</span> to <span class="math">$b$</span> will exist if both the limits are finite.</p>
<h5>Examples</h5>
<ul>
<li><p>Consider the example of the initial illustration, <span class="math">$f(x) = 1/\sqrt{x}$</span> at <span class="math">$0$</span>. Here <span class="math">$f(0)= \infty$</span>, so the usual notion of a limit won't apply to <span class="math">$\int_0^1 f(x) dx$</span>. However,</p>
</li>
</ul>
<p class="math">\[
~
\lim_{M \rightarrow 0+} \int_M^1 \frac{1}{\sqrt{x}} dx
= \lim_{M \rightarrow 0+} \frac{\sqrt{x}}{1/2} \big|_M^1
= \lim_{M \rightarrow 0+} 2(1) - 2\sqrt{M} = 2.
~
\]</p>
<div class="alert alert-info" role="alert">
<div class="markdown"><p>The cases $f(x) = x^{-n}$ for $n > 0$ are tricky. For $n > 1$, the functions can be integrated over $[1,\infty)$, but not $(0,1]$. For $0 < n < 1$, the functions can be integrated over $(0,1]$ but not $[1, \infty)$.</p>
</div>
</div>
<ul>
<li><p>Now consider <span class="math">$f(x) = 1/x$</span>. Is this integral <span class="math">$\int_0^1 1/x \cdot dx$</span> defined? It will be <em>if</em> this limit exists:</p>
</li>
</ul>
<p class="math">\[
~
\lim_{M \rightarrow 0+} \int_M^1 \frac{1}{x} dx
= \lim_{M \rightarrow 0+} \log(x) \big|_M^1
= \lim_{M \rightarrow 0+} \log(1) - \log(M) = \infty.
~
\]</p>
<p>As the limit does not exist, the function is not integrable around <span class="math">$0$</span>.</p>
<ul>
<li><p><code>SymPy</code> may give answers which do not coincide with our definitions, as it uses complex numbers as a default assumption. In this case it returns <code>NaN</code> for an integral with no answer:</p>
</li>
</ul>
<pre class='hljl'>
<span class='hljl-nd'>@vars</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'>
</span><span class='hljl-nf'>integrate</span><span class='hljl-p'>(</span><span class='hljl-ni'>1</span><span class='hljl-oB'>/</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-p'>))</span>
</pre>
<div class="well well-sm">\begin{equation*}\mathrm{NaN}\end{equation*}</div>
<ul>
<li><p>Suppose you know <span class="math">$\int_1^\infty x^2 f(x) dx$</span> exists. Does this imply <span class="math">$\int_0^1 f(1/x) dx$</span> exists?</p>
</li>
</ul>
<p>We need to consider the limit of <span class="math">$\int_M^1 f(1/x) dx$</span>. We try the <span class="math">$u$</span>-substitution <span class="math">$u(x) = 1/x$</span>. This gives <span class="math">$du = -(1/x^2)dx = -u^2 dx$</span>. So, the substitution becomes:</p>
<p class="math">\[
~
\int_M^1 f(1/x) dx = \int_{1/M}^{1/1} f(u) (-u^2) du = \int_1^{1/M} u^2 f(u) du.
~
\]</p>
<p>But the limit as <span class="math">$M \rightarrow 0$</span> of <span class="math">$1/M$</span> is the same going to <span class="math">$\infty$</span>, so the right side will converge by the assumption. Thus we get <span class="math">$f(1/x)$</span> is integrable over <span class="math">$(0,1]$</span>.</p>
<h3>Numeric integration</h3>
<p>So far our use of the <code>quadgk</code> function specified the region to integrate via <code>a</code>, <code>b</code>, as in <code>quadgk(f, a, b)</code>. In fact, it can specify values in between for which the function should not be sampled. For example, were we to integrate <span class="math">$1/\sqrt{\lvert x\rvert}$</span> over <span class="math">$[-1,1]$</span>, we would want to avoid <span class="math">$0$</span> as a point to sample. Here is how:</p>
<pre class='hljl'>
<span class='hljl-nf'>f</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-t'> </span><span class='hljl-oB'>/</span><span class='hljl-t'> </span><span class='hljl-nf'>sqrt</span><span class='hljl-p'>(</span><span class='hljl-nf'>abs</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>))</span><span class='hljl-t'>
</span><span class='hljl-nf'>quadgk</span><span class='hljl-p'>(</span><span class='hljl-n'>f</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>0</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
(3.999999962817228, 5.736423067171012e-8)
</pre>
<p>Just trying <code>quadgk(f, -1, 1)</code> leads to a <code>DomainError</code>, as <code>0</code> will be one of the points sampled. The general call is like <code>quadgk(f, a, b, c, d,...)</code> which integrates over <span class="math">$(a,b)$</span> and <span class="math">$(b,c)$</span> and <span class="math">$(c,d)$</span>, <span class="math">$\dots$</span>. The algorithm is not supposed to evaluate the function at the endpoints of the intervals.</p>
<h2>Probability applications</h2>
<p>A probability density is a function <span class="math">$f(x) \geq 0$</span> which is integrable on <span class="math">$(-\infty, \infty)$</span> and for which <span class="math">$\int_{-\infty}^\infty f(x) dx =1$</span>. The cumulative distribution function is defined by <span class="math">$F(x)=\int_{-\infty}^x f(u) du$</span>.</p>
<p>Probability densities are good example of using improper integrals.</p>
<ul>
<li><p>Show that <span class="math">$f(x) = (1/\pi) 1/(1 + x^2)$</span> is a probability density function.</p>
</li>
</ul>
<p>We need to show that the integral exists and is <span class="math">$1$</span>. For this, we use the fact that <span class="math">$(1/\pi) \cdot \tan^{-1}(x)$</span> is an antiderivative. Then we have:</p>
<p class="math">\[
\lim_{M \rightarrow \infty} F(M) = (1/\pi) \cdot \pi/2
\]</p>
<p>and as <span class="math">$\tan^{-1}(x)$</span> is odd, we must have <span class="math">$F(-\infty) = \lim_{M \rightarrow -\infty} f(M) = -(1/\pi) \cdot \pi/2$</span>. All told, <span class="math">$F(\infty) - F(-\infty) = 1/2 - (-1/2) = 1$</span>.</p>
<ul>
<li><p>Show that <span class="math">$f(x) = 1/(b-a)$</span> for <span class="math">$a \leq x \leq b$</span> and <span class="math">$0$</span> otherwise is a probability density.</p>
</li>
</ul>
<p>The integral for <span class="math">$-\infty$</span> to <span class="math">$a$</span> of <span class="math">$f(x)$</span> is just an integral of the constant <span class="math">$0$</span>, so will be <span class="math">$0$</span>. (This is the only constant with finite area over an infinite domain.) Similarly, the integral from <span class="math">$b$</span> to <span class="math">$\infty$</span> will be <span class="math">$0$</span>. This means:</p>
<p class="math">\[
~
\int_{-\infty}^\infty f(x) dx = \int_a^b \frac{1}{b-a} dx = 1.
~
\]</p>
<ul>
<li><p>Show that if <span class="math">$f(x)$</span> is a probability density then so is <span class="math">$f(x-c)$</span> for any <span class="math">$c$</span>.</p>
</li>
</ul>
<p>We have by the <span class="math">$u$</span>-substitution</p>
<p class="math">\[
~
\int_{-\infty}^\infty f(x-c)dx = \int_{u(-\infty)}^{u(\infty)} f(u) du = \int_{-\infty}^\infty f(u) du = 1.
~
\]</p>
<p>The key is that we can use the regular <span class="math">$u$</span>-substitution formula provided <span class="math">$\lim_{M \rightarrow \infty} u(M) = u(\infty)$</span> is defined. (The <em>informal</em> notation <span class="math">$u(\infty)$</span> is defined by that limit.)</p>
<ul>
<li><p>If <span class="math">$f(x)$</span> is a probability density, then so is <span class="math">$(1/h) f((x-c)/h)$</span> for any <span class="math">$c, h > 0$</span>.</p>
</li>
</ul>
<p>Again, by a <span class="math">$u$</span> substitution with, now, <span class="math">$u(x) = (x-c)/h$</span>, we have <span class="math">$du = (1/h) \cdot dx$</span> and the result follows just as before:</p>
<p class="math">\[
~
\int_{-\infty}^\infty \frac{1}{h}f(\frac{x-c}{h})dx = \int_{u(-\infty)}^{u(\infty)} f(u) du = \int_{-\infty}^\infty f(u) du = 1.
~
\]</p>
<ul>
<li><p>If <span class="math">$F(x) = 1 - e^{-x}$</span>, for <span class="math">$x \geq 0$</span>, and <span class="math">$0$</span> otherwise, find <span class="math">$f(x)$</span>.</p>
</li>
</ul>
<p>We want to just say <span class="math">$F'(x)= e^{-x}$</span> so <span class="math">$f(x) = e^{-x}$</span>. But some care is needed. First, that isn't right. The derivative for <span class="math">$x<0$</span> of <span class="math">$F(x)$</span> is <span class="math">$0$</span>, so <span class="math">$f(x) = 0$</span> if <span class="math">$x < 0$</span>. What about for <span class="math">$x>0$</span>? The derivative is <span class="math">$e^{-x}$</span>, but is that the right answer? <span class="math">$F(x) = \int_{-\infty}^x f(u) du$</span>, so we have to at least discuss if the <span class="math">$-\infty$</span> affects things. In this case, and in general the answer is <em>no</em>. For any <span class="math">$x$</span> we can find <span class="math">$M < x$</span> so that we have <span class="math">$F(x) = \int_{-\infty}^M f(u) du + \int_M^x f(u) du$</span>. The first part is a constant, so will have derivative <span class="math">$0$</span>, the second will have derivative <span class="math">$f(x)$</span>, if the derivative exists (and it will exist at <span class="math">$x$</span> if the derivative is continuous in a neighborhood of <span class="math">$x$</span>).</p>
<p>Finally, at <span class="math">$x=0$</span> we have an issue, as <span class="math">$F'(0)$</span> does not exist. The left limit of the secant line approximation is <span class="math">$0$</span>, the right limit of the secant line approximation is <span class="math">$1$</span>. So, we can take <span class="math">$f(x) = e^{-x}$</span> for <span class="math">$x > 0$</span> and <span class="math">$0$</span> otherwise, noting that redefining <span class="math">$f(x)$</span> at a point will not effect the integral as long as the point is finite.</p>
<h2>Questions</h2>
<h6>Question</h6>
<p>Is <span class="math">$f(x) = 1/x^{100}$</span> integrable around <span class="math">$0$</span>?</p>
<form name="WeaveQuestion" data-id="i1UWu44N" data-controltype="radio">
<div class="form-group ">
<div class="radio">
<label>
<input type="radio" name="radio_i1UWu44N" value="1"><div class="markdown"><p>Yes</p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_i1UWu44N" value="2"><div class="markdown"><p>No</p>
</div>
</label>
</div>
<div id="i1UWu44N_message"></div>
</div>
</form>
<script text="text/javascript">
$("input:radio[name='radio_i1UWu44N']").on("change", function() {
correct = this.value == 2;
if(correct) {
$("#i1UWu44N_message").html("<div class='alert alert-success'><span class='glyphicon glyphicon-thumbs-up'> Correct</span></div>");
} else {
$("#i1UWu44N_message").html("<div class='alert alert-warning'><span class='glyphicon glyphicon-thumbs-down'> Incorrect</span></div>");
}
});
</script>
<h6>Question</h6>
<p>Is <span class="math">$f(x) = 1/x^{1/3}$</span> integrable around <span class="math">$0$</span>?</p>
<form name="WeaveQuestion" data-id="4tswXts8" data-controltype="radio">
<div class="form-group ">
<div class="radio">
<label>
<input type="radio" name="radio_4tswXts8" value="1"><div class="markdown"><p>Yes</p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_4tswXts8" value="2"><div class="markdown"><p>No</p>
</div>
</label>
</div>
<div id="4tswXts8_message"></div>
</div>
</form>
<script text="text/javascript">
$("input:radio[name='radio_4tswXts8']").on("change", function() {
correct = this.value == 1;
if(correct) {
$("#4tswXts8_message").html("<div class='alert alert-success'><span class='glyphicon glyphicon-thumbs-up'> Correct</span></div>");
} else {
$("#4tswXts8_message").html("<div class='alert alert-warning'><span class='glyphicon glyphicon-thumbs-down'> Incorrect</span></div>");
}
});
</script>
<h6>Question</h6>
<p>Is <span class="math">$f(x) = x\cdot\log(x)$</span> integrable on <span class="math">$[1,\infty)$</span>?</p>
<form name="WeaveQuestion" data-id="t68Ex94r" data-controltype="radio">
<div class="form-group ">
<div class="radio">
<label>
<input type="radio" name="radio_t68Ex94r" value="1"><div class="markdown"><p>Yes</p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_t68Ex94r" value="2"><div class="markdown"><p>No</p>
</div>
</label>
</div>
<div id="t68Ex94r_message"></div>
</div>
</form>
<script text="text/javascript">
$("input:radio[name='radio_t68Ex94r']").on("change", function() {
correct = this.value == 2;
if(correct) {
$("#t68Ex94r_message").html("<div class='alert alert-success'><span class='glyphicon glyphicon-thumbs-up'> Correct</span></div>");
} else {
$("#t68Ex94r_message").html("<div class='alert alert-warning'><span class='glyphicon glyphicon-thumbs-down'> Incorrect</span></div>");
}
});
</script>
<h6>Question</h6>
<p>Is <span class="math">$f(x) = \log(x)/ x$</span> integrable on <span class="math">$[1,\infty)$</span>?</p>
<form name="WeaveQuestion" data-id="jnlaEyAJ" data-controltype="radio">
<div class="form-group ">
<div class="radio">
<label>
<input type="radio" name="radio_jnlaEyAJ" value="1"><div class="markdown"><p>Yes</p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_jnlaEyAJ" value="2"><div class="markdown"><p>No</p>
</div>
</label>
</div>
<div id="jnlaEyAJ_message"></div>
</div>
</form>
<script text="text/javascript">
$("input:radio[name='radio_jnlaEyAJ']").on("change", function() {
correct = this.value == 2;
if(correct) {
$("#jnlaEyAJ_message").html("<div class='alert alert-success'><span class='glyphicon glyphicon-thumbs-up'> Correct</span></div>");
} else {
$("#jnlaEyAJ_message").html("<div class='alert alert-warning'><span class='glyphicon glyphicon-thumbs-down'> Incorrect</span></div>");
}
});
</script>
<h6>Question</h6>
<p>Is <span class="math">$f(x) = \log(x)$</span> integrable on <span class="math">$[1,\infty)$</span>?</p>
<form name="WeaveQuestion" data-id="Mc05RCqM" data-controltype="radio">
<div class="form-group ">
<div class="radio">
<label>
<input type="radio" name="radio_Mc05RCqM" value="1"><div class="markdown"><p>Yes</p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_Mc05RCqM" value="2"><div class="markdown"><p>No</p>
</div>
</label>
</div>
<div id="Mc05RCqM_message"></div>
</div>
</form>
<script text="text/javascript">
$("input:radio[name='radio_Mc05RCqM']").on("change", function() {
correct = this.value == 2;
if(correct) {
$("#Mc05RCqM_message").html("<div class='alert alert-success'><span class='glyphicon glyphicon-thumbs-up'> Correct</span></div>");
} else {
$("#Mc05RCqM_message").html("<div class='alert alert-warning'><span class='glyphicon glyphicon-thumbs-down'> Incorrect</span></div>");
}
});
</script>
<h6>Question</h6>
<p>Compute the integral <span class="math">$\int_0^\infty 1/(1+x^2) dx$</span>.</p>
<form name='WeaveQuestion' data-id='rl1HLeFy' data-controltype='numeric'>
<div class='form-group '>
<div class='controls'>
<div class="input-group">
<input id="rl1HLeFy" type="number" class="form-control">
</div>
<div id='rl1HLeFy_message'></div>
</div>
</div>
</form>
<script text='text/javascript'>
$('#rl1HLeFy').on('change', function() {
correct = Math.abs(this.value - 1.5707963267948966) <= 0.001;
if(correct) {
$('#rl1HLeFy_message').html('<div class="alert alert-success"><span class="glyphicon glyphicon-thumbs-up"> Correct</span></div>');
} else {
$('#rl1HLeFy_message').html('<div class="alert alert-danger"><span class="glyphicon glyphicon-thumbs-down"> Incorrect</span></div>');
}
});
</script>
<h6>Question</h6>
<p>Compute the the integral <span class="math">$\int_1^\infty \log(x)/x^2 dx$</span>.</p>
<form name='WeaveQuestion' data-id='SsdP5tVR' data-controltype='numeric'>
<div class='form-group '>
<div class='controls'>
<div class="input-group">
<input id="SsdP5tVR" type="number" class="form-control">
</div>
<div id='SsdP5tVR_message'></div>
</div>
</div>
</form>
<script text='text/javascript'>
$('#SsdP5tVR').on('change', function() {
correct = Math.abs(this.value - 0.999999998385741) <= 0.001;
if(correct) {
$('#SsdP5tVR_message').html('<div class="alert alert-success"><span class="glyphicon glyphicon-thumbs-up"> Correct</span></div>');
} else {
$('#SsdP5tVR_message').html('<div class="alert alert-danger"><span class="glyphicon glyphicon-thumbs-down"> Incorrect</span></div>');
}
});
</script>
<h6>Question</h6>
<p>Compute the integral <span class="math">$\int_0^2 (x-1)^{2/3} dx$</span>.</p>
<form name='WeaveQuestion' data-id='p7fV6VeK' data-controltype='numeric'>
<div class='form-group '>
<div class='controls'>
<div class="input-group">
<input id="p7fV6VeK" type="number" class="form-control">
</div>
<div id='p7fV6VeK_message'></div>
</div>
</div>
</form>
<script text='text/javascript'>
$('#p7fV6VeK').on('change', function() {
correct = Math.abs(this.value - 1.2000000004723115) <= 0.001;
if(correct) {
$('#p7fV6VeK_message').html('<div class="alert alert-success"><span class="glyphicon glyphicon-thumbs-up"> Correct</span></div>');
} else {
$('#p7fV6VeK_message').html('<div class="alert alert-danger"><span class="glyphicon glyphicon-thumbs-down"> Incorrect</span></div>');
}
});
</script>
<h6>Question</h6>
<p>From the relationship that if <span class="math">$0 \leq f(x) \leq g(x)$</span> then <span class="math">$\int_a^b f(x) dx \leq \int_a^b g(x) dx$</span> it can be deduced that</p>
<ul>
<li><p>if <span class="math">$\int_a^\infty f(x) dx$</span> diverges, then so does <span class="math">$\int_a^\infty g(x) dx$</span>.</p>
</li>
<li><p>if <span class="math">$\int_a^\infty g(x) dx$</span> converges, then so does <span class="math">$\int_a^\infty f(x) dx$</span>.</p>
</li>
</ul>
<p>Let <span class="math">$f(x) = \lvert \sin(x)/x^2 \rvert$</span>.</p>
<p>What can you say about <span class="math">$\int_1^\infty f(x) dx$</span>, as <span class="math">$f(x) \leq 1/x^2$</span> on <span class="math">$[1, \infty)$</span>?</p>
<form name="WeaveQuestion" data-id="7VIsfWu8" data-controltype="radio">
<div class="form-group ">
<div class="radio">
<label>
<input type="radio" name="radio_7VIsfWu8" value="1"><div class="markdown"><p>It is convergent</p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_7VIsfWu8" value="2"><div class="markdown"><p>It is divergent</p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_7VIsfWu8" value="3"><div class="markdown"><p>Can't say</p>
</div>
</label>
</div>
<div id="7VIsfWu8_message"></div>
</div>
</form>
<script text="text/javascript">
$("input:radio[name='radio_7VIsfWu8']").on("change", function() {
correct = this.value == 1;
if(correct) {
$("#7VIsfWu8_message").html("<div class='alert alert-success'><span class='glyphicon glyphicon-thumbs-up'> Correct</span></div>");
} else {
$("#7VIsfWu8_message").html("<div class='alert alert-warning'><span class='glyphicon glyphicon-thumbs-down'> Incorrect</span></div>");
}
});
</script>
<hr />
<p>Let <span class="math">$f(x) = \lvert \sin(x) \rvert / x$</span>.</p>
<p>What can you say about <span class="math">$\int_1^\infty f(x) dx$</span>, as <span class="math">$f(x) \leq 1/x$</span> on <span class="math">$[1, \infty)$</span>?</p>
<form name="WeaveQuestion" data-id="LUUevswN" data-controltype="radio">
<div class="form-group ">
<div class="radio">
<label>
<input type="radio" name="radio_LUUevswN" value="1"><div class="markdown"><p>It is convergent</p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_LUUevswN" value="2"><div class="markdown"><p>It is divergent</p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_LUUevswN" value="3"><div class="markdown"><p>Can't say</p>
</div>
</label>
</div>
<div id="LUUevswN_message"></div>
</div>
</form>
<script text="text/javascript">
$("input:radio[name='radio_LUUevswN']").on("change", function() {
correct = this.value == 3;
if(correct) {
$("#LUUevswN_message").html("<div class='alert alert-success'><span class='glyphicon glyphicon-thumbs-up'> Correct</span></div>");
} else {
$("#LUUevswN_message").html("<div class='alert alert-warning'><span class='glyphicon glyphicon-thumbs-down'> Incorrect</span></div>");
}
});
</script>
<hr />
<p>Let <span class="math">$f(x) = 1/\sqrt{x^2 - 1}$</span>. What can you say about <span class="math">$\int_1^\infty f(x) dx$</span>, as <span class="math">$f(x) \geq 1/x$</span> on <span class="math">$[1, \infty)$</span>?</p>
<form name="WeaveQuestion" data-id="wGeTsWLt" data-controltype="radio">
<div class="form-group ">
<div class="radio">
<label>
<input type="radio" name="radio_wGeTsWLt" value="1"><div class="markdown"><p>It is convergent</p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_wGeTsWLt" value="2"><div class="markdown"><p>It is divergent</p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_wGeTsWLt" value="3"><div class="markdown"><p>Can't say</p>
</div>
</label>
</div>
<div id="wGeTsWLt_message"></div>
</div>
</form>
<script text="text/javascript">
$("input:radio[name='radio_wGeTsWLt']").on("change", function() {
correct = this.value == 2;
if(correct) {
$("#wGeTsWLt_message").html("<div class='alert alert-success'><span class='glyphicon glyphicon-thumbs-up'> Correct</span></div>");
} else {
$("#wGeTsWLt_message").html("<div class='alert alert-warning'><span class='glyphicon glyphicon-thumbs-down'> Incorrect</span></div>");
}
});
</script>
<hr />
<p>Let <span class="math">$f(x) = 1 + 4x^2$</span>. What can you say about <span class="math">$\int_1^\infty f(x) dx$</span>, as <span class="math">$f(x) \leq 1/x^2$</span> on <span class="math">$[1, \infty)$</span>?</p>
<form name="WeaveQuestion" data-id="8rosJ6Nu" data-controltype="radio">
<div class="form-group ">
<div class="radio">
<label>
<input type="radio" name="radio_8rosJ6Nu" value="1"><div class="markdown"><p>It is convergent</p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_8rosJ6Nu" value="2"><div class="markdown"><p>It is divergent</p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_8rosJ6Nu" value="3"><div class="markdown"><p>Can't say</p>
</div>
</label>
</div>
<div id="8rosJ6Nu_message"></div>
</div>
</form>
<script text="text/javascript">
$("input:radio[name='radio_8rosJ6Nu']").on("change", function() {
correct = this.value == 2;
if(correct) {
$("#8rosJ6Nu_message").html("<div class='alert alert-success'><span class='glyphicon glyphicon-thumbs-up'> Correct</span></div>");
} else {
$("#8rosJ6Nu_message").html("<div class='alert alert-warning'><span class='glyphicon glyphicon-thumbs-down'> Incorrect</span></div>");
}
});
</script>
<hr />
<p>Let <span class="math">$f(x) = \lvert \sin(x)^{10}\rvert/e^x$</span>. What can you say about <span class="math">$\int_1^\infty f(x) dx$</span>, as <span class="math">$f(x) \leq e^{-x}$</span> on <span class="math">$[1, \infty)$</span>?</p>
<form name="WeaveQuestion" data-id="0Q1uHNZM" data-controltype="radio">
<div class="form-group ">
<div class="radio">
<label>
<input type="radio" name="radio_0Q1uHNZM" value="1"><div class="markdown"><p>It is convergent</p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_0Q1uHNZM" value="2"><div class="markdown"><p>It is divergent</p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_0Q1uHNZM" value="3"><div class="markdown"><p>Can't say</p>
</div>
</label>
</div>
<div id="0Q1uHNZM_message"></div>
</div>
</form>
<script text="text/javascript">
$("input:radio[name='radio_0Q1uHNZM']").on("change", function() {
correct = this.value == 1;
if(correct) {
$("#0Q1uHNZM_message").html("<div class='alert alert-success'><span class='glyphicon glyphicon-thumbs-up'> Correct</span></div>");
} else {
$("#0Q1uHNZM_message").html("<div class='alert alert-warning'><span class='glyphicon glyphicon-thumbs-down'> Incorrect</span></div>");
}
});
</script>
<h6>Question</h6>
<p>The difference between "blowing up" at <span class="math">$0$</span> versus being integrable at <span class="math">$\infty$</span> can be seen to be related through the <span class="math">$u$</span>-substitution <span class="math">$u=1/x$</span>. With this <span class="math">$u$</span>-substitution, what becomes of <span class="math">$\int_0^1 x^{-2/3} dx$</span>?</p>
<form name="WeaveQuestion" data-id="fhfJweeI" data-controltype="radio">
<div class="form-group ">
<div class="radio">
<label>
<input type="radio" name="radio_fhfJweeI" value="1"><div class="markdown">$\int_0^\infty 1/u \cdot du$
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_fhfJweeI" value="2"><div class="markdown">$\int_0^1 u^{2/3} \cdot du$
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_fhfJweeI" value="3"><div class="markdown">$\int_1^\infty u^{2/3}/u^2 \cdot du$
</div>
</label>
</div>
<div id="fhfJweeI_message"></div>
</div>
</form>
<script text="text/javascript">
$("input:radio[name='radio_fhfJweeI']").on("change", function() {
correct = this.value == 3;
if(correct) {
$("#fhfJweeI_message").html("<div class='alert alert-success'><span class='glyphicon glyphicon-thumbs-up'> Correct</span></div>");
} else {
$("#fhfJweeI_message").html("<div class='alert alert-warning'><span class='glyphicon glyphicon-thumbs-down'> Incorrect</span></div>");
}
});
</script>
<h6>Question</h6>
<p>The antiderivative of <span class="math">$f(x) = 1/\pi \cdot 1/\sqrt{x(1-x)}$</span> is <span class="math">$F(x)=(2/\pi)\cdot \sin^{-1}(\sqrt{x})$</span>.</p>
<p>Find <span class="math">$\int_0^1 f(x) dx$</span>.</p>
<form name='WeaveQuestion' data-id='A47OQ30r' data-controltype='numeric'>
<div class='form-group '>
<div class='controls'>
<div class="input-group">
<input id="A47OQ30r" type="number" class="form-control">
</div>
<div id='A47OQ30r_message'></div>
</div>
</div>
</form>
<script text='text/javascript'>
$('#A47OQ30r').on('change', function() {
correct = Math.abs(this.value - 0.9999999921866226) <= 0.001;
if(correct) {
$('#A47OQ30r_message').html('<div class="alert alert-success"><span class="glyphicon glyphicon-thumbs-up"> Correct</span></div>');
} else {
$('#A47OQ30r_message').html('<div class="alert alert-danger"><span class="glyphicon glyphicon-thumbs-down"> Incorrect</span></div>');
}
});
</script>
</div>
</div>
</body>
</html>