forked from CalculusWithJulia/CalculusWithJulia.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
stokes_theorem.html
1701 lines (1413 loc) · 981 KB
/
stokes_theorem.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/css/bootstrap.min.css"
rel="stylesheet">
<style>
.julia {display: block; font-family: "Source Code Pro";
color:#0033CC;
}
.hljl {font-family: "Source Code Pro";
color:#0033CC;
}
body { padding-top: 60px; }
h5:before {content:"\2746\ ";}
h6:before {content:"\2742\ ";}
pre {display: block;}
th, td {
padding: 15px;
text-align: left;
border-bottom: 1px solid #ddd;
}
tr:hover {background-color: #f5f5f5;}
.admonition-title:before {content:"\2746\ ";}
.admonition-title { color:#0033CC}
</style>
<!-- .julia:before {content: "julia> "} -->
<style></style>
<script src="https://code.jquery.com/jquery.js"></script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ["\$","\$"], ["\\(","\\)"]]
},
displayAlign: "left",
displayIndent: "5%"
});
</script>
<!-- not TeX-AMS-MML_HTMLorMML-->
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML" async></script>
</script>
<script>
window.PlotlyConfig = {MathJaxConfig: 'local'}
</script>
<script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
<script type="text/javascript">
$( document ).ready(function() {
$("h1").each(function(index) {
var title = $( this ).text()
$("#page_title").html("<strong>" + title + "</strong>");
document.title = title
});
$( "h2" ).each(function( index ) {
var nm = $( this ).text();
var id = $.trim(nm).replace(/ /g,'');
this.id = id
$("#page_dropdown").append("<li><a href='#" + id + "'>" + nm + "</a></li>");
});
$('[data-toggle="popover"]').popover();
});
</script>
</head>
<body data-spy="scroll" >
<nav class="navbar navbar-default navbar-fixed-top">
<div class="container-fluid">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
</div>
<!-- Collect the nav links, forms, and other content for toggling -->
<div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
<ul class="nav navbar-nav">
<li><a href="#" id="page_title"></a></li>
</ul>
<ul class="nav navbar-nav navbar-right">
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Jump to... <span class="caret"></span></a>
<ul class="dropdown-menu" role="menu" id="page_dropdown"></ul>
</li>
</ul>
</div><!-- /.navbar-collapse -->
</div><!-- /.container-fluid -->
</nav>
<header>
</header>
<div class="title">
</div>
<div class="container-fluid">
<div class="span10 offset1">
<h1>Green's Theorem, Stokes' Theorem, and the Divergence Theorem</h1>
<p>The fundamental theorem of calculus is a fan favorite, as it reduces a definite integral, <span class="math">$\int_a^b f(x) dx$</span>, into the evaluation of a <em>related</em> function at two points: <span class="math">$F(b)-F(a)$</span>, where the relation is <span class="math">$F$</span> is an <em>antiderivative</em> of <span class="math">$f$</span>. It is a favorite as it makes life much easier than the alternative of computing a limit of a Riemann sum.</p>
<p>This relationship can be generalized. The key is to realize that the interval <span class="math">$[a,b]$</span> has boundary <span class="math">$\{a, b\}$</span> (a set) and then expressing the theorem as: the integral around some region of <span class="math">$f$</span> is the integral, suitably defined, around the <em>boundary</em> of the region for a function <em>related</em> to <span class="math">$f$</span>.</p>
<p>In an abstract setting, Stokes' theorem says exactly this with the relationship being the <em>exterior</em> derivative. Here we are not as abstract, we discuss below:</p>
<ul>
<li><p>Green's theorem, a <span class="math">$2$</span>-dimensional theorem, where the region is a planar region, <span class="math">$D$</span>, and the boundary a simple curve <span class="math">$C$</span>;</p>
</li>
<li><p>Stokes' theorem in <span class="math">$3$</span> dimensions, where the region is an open surface, <span class="math">$S$</span>, in <span class="math">$R^3$</span> with boundary, <span class="math">$C$</span>;</p>
</li>
<li><p>The Divergence theorem in <span class="math">$3$</span> dimensions, where the region is a volume in three dimensions and the boundary its <span class="math">$2$</span>-dimensional closed surface.</p>
</li>
</ul>
<p>The related functions will involve the divergence and the curl, previously discussed.</p>
<p>Many of the the examples in this section come from either <a href="https://ocw.mit.edu/resources/res-18-001-calculus-online-textbook-spring-2005/">Strang</a> or <a href="https://www.amazon.com/Div-Grad-Curl-All-That/dp/0393925161/">Schey</a>.</p>
<p>Before beginning, we load our usual package.</p>
<pre class='hljl'>
<span class='hljl-k'>using</span><span class='hljl-t'> </span><span class='hljl-n'>CalculusWithJulia</span>
</pre>
<p>To make the abstract concrete, consider the one dimensional case of finding the definite integral <span class="math">$\int_a^b F'(x) dx$</span>. The Riemann sum picture at the <em>microscopic</em> level considers a figure like:</p>
<img src="" />
<p>The total area under the blue curve from <span class="math">$a$</span> to <span class="math">$b$</span>, is found by adding the area of each segment of the figure.</p>
<p>Let's consider now what an integral over the boundary would mean. The region, or interval, <span class="math">$[x_{i-1}, x_i]$</span> has a boundary that clearly consists of the two points <span class="math">$x_{i-1}$</span> and <span class="math">$x_i$</span>. If we <em>orient</em> the boundary, as we need to for higher dimensional boundaries, using the outward facing direction, then the oriented boundary at the right-hand end point, <span class="math">$x_i$</span>, would point towards <span class="math">$+\infty$</span> and the left-hand end point, <span class="math">$x_{i-1}$</span>, would be oriented to point to <span class="math">$-\infty$</span>. An "integral" on the boundary of <span class="math">$F$</span> would naturally be <span class="math">$F(b) \times 1$</span> plus <span class="math">$F(a) \times -1$</span>, or <span class="math">$F(b)-F(a)$</span>.</p>
<p>With this choice of integral over the boundary, we can see much cancellation arises were we to compute this integral for each piece, as we would have with <span class="math">$a=x_0 < x_1 < \cdots x_{n-1} < x_n=b$</span>:</p>
<p class="math">\[
~
(F(x_1) - F(x_0)) + (F(x_2)-F(x_1)) + \cdots + (F(x_n) - F(x_{n-1})) = F(x_n) - F(x_0) = F(b) - F(a).
~
\]</p>
<p>That is, with this definition for a boundary integral, the interior pieces of the microscopic approximation cancel and the total is just the integral over the oriented macroscopic boundary <span class="math">$\{a, b\}$</span>.</p>
<p>But each microscopic piece can be reimagined, as</p>
<p class="math">\[
~
F(x_{i}) - F(x_{i-1}) = \left(\frac{F(x_{i}) - F(x_{i-1})}{\Delta{x}}\right)\Delta{x}
\approx F'(x_i)\Delta{x}.
~
\]</p>
<p>The approximation could be exact were the mean value theorem used to identify a point in the interval, but we don't pursue that, as the key point is the right hand side is a Riemann sum approximation for a <em>different</em> integral, in this case the integral <span class="math">$\int_a^b F'(x) dx$</span>. Passing from the microscopic view to an infinitesimal view, the picture gives two interpretations, leading to the Fundamental Theorem of Calculus:</p>
<p class="math">\[
~
\int_a^b F'(x) dx = F(b) - F(a).
~
\]</p>
<p>The three theorems of this section, Green's theorem, Stokes' theorem, and the divergence theorem, can all be seen in this manner: the sum of microscopic boundary integrals leads to a macroscopic boundary integral of the entire region; whereas, by reinterpretation, the microscopic boundary integrals are viewed as Riemann sums, which in the limit become integrals of a <em>related</em> function over the region.</p>
<h2>Green's theorem</h2>
<p>To continue the above analysis for a higher dimension, we consider the following figure hinting at a decomposition of a macroscopic square into subsequent microscopic sub-squares. The boundary of each square is oriented so that the right hand rule comes out of the picture.</p>
<img src="" />
<p>Consider the boundary integral <span class="math">$\oint_c F\cdot\vec{T} ds$</span> around the smallest (green) squares. We have seen that the <em>curl</em> at a point in a direction is given in terms of the limit. Let the plane be the <span class="math">$x-y$</span> plane, and the <span class="math">$\hat{k}$</span> direction be the one coming out of the figure. In the derivation of the curl, we saw that the line integral for circulation around the square satisfies:</p>
<p class="math">\[
~
\lim \frac{1}{\Delta{x}\Delta{y}} \oint_C F \cdot\hat{T}ds =
\frac{\partial{F_y}}{\partial{x}} - \frac{\partial{F_x}}{\partial{y}}.
~
\]</p>
<p>If the green squares are small enough, then the line integrals satisfy:</p>
<p class="math">\[
~
\oint_C F \cdot\hat{T}ds
\approx
\left(
\frac{\partial{F_y}}{\partial{x}}
-
\frac{\partial{F_x}}{\partial{y}}
\right) \Delta{x}\Delta{y} .
~
\]</p>
<p>We interpret the right hand side as a Riemann sum approximation for the <span class="math">$2$</span> dimensional integral of the function <span class="math">$f(x,y) = \frac{\partial{F_x}}{\partial{y}} - \frac{\partial{F_y}}{\partial{x}}=\text{curl}(F)$</span>, the two-dimensional curl. Were the green squares continued to fill out the large blue square, then the sum of these terms would approximate the integral</p>
<p class="math">\[
~
\iint_S f(x,y) dA = \iint_S
\left(\frac{\partial{F_y}}{\partial{x}} - \frac{\partial{F_x}}{\partial{y}}\right) dA
= \iint_S \text{curl}(F) dA.
~
\]</p>
<p>However, the microscopic boundary integrals have cancellations that lead to a macroscopic boundary integral. The sum of <span class="math">$\oint_C F \cdot\hat{T}ds$</span> over the <span class="math">$4$</span> green squares will be equal to <span class="math">$\oint_{C_r} F\cdot\hat{T}ds$</span>, where <span class="math">$C_r$</span> is the red square, as the interior line integral pieces will all cancel off. The sum of <span class="math">$\oint_{C_r} F \cdot\hat{T}ds$</span> over the <span class="math">$4$</span> red squares will equal <span class="math">$\oint_{C_b} F \cdot\hat{T}ds$</span>, where <span class="math">$C_b$</span> is the oriented path around the blue square, as again the interior line pieces will cancel off. Etc.</p>
<p>This all suggests that the flow integral around the surface of the larger region (the blue square) is equivalent to the integral of the curl component over the region. This is <a href="https://en.wikipedia.org/wiki/Green%27s_theorem">Green</a>'s theorem, as stated by Wikipedia:</p>
<blockquote>
<p>Green's theorem: Let <span class="math">$C$</span> be a positively oriented, piecewise smooth, simple closed curve in the plane, and let <span class="math">$D$</span> be the region bounded by <span class="math">$C$</span>. If <span class="math">$F=\langle F_x, F_y\rangle$</span>, is a vector field on an open region containing <span class="math">$D$</span> having continuous partial derivatives then: <span class="math">$~ \oint_C F\cdot\hat{T}ds = \iint_D \left( \frac{\partial{F_y}}{\partial{x}} - \frac{\partial{F_x}}{\partial{y}} \right) dA= \iint_D \text{curl}(F)dA. ~$</span></p>
</blockquote>
<p>The statement of the theorem applies only to regions whose boundaries are simple closed curves. Not all simple regions have such boundaries. An annulus for example. This is a restriction that will be generalized.</p>
<h3>Examples</h3>
<p>Some examples, following Strang, are:</p>
<h4>Computing area</h4>
<p>Let <span class="math">$F(x,y) = \langle -y, x\rangle$</span>. Then <span class="math">$\frac{\partial{F_y}}{\partial{x}} - \frac{\partial{F_x}}{\partial{y}}=2$</span>, so</p>
<p class="math">\[
~
\frac{1}{2}\oint_C F\cdot\hat{T}ds = \frac{1}{2}\oint_C (xdy - ydx) =
\iint_D dA = A(D).
~
\]</p>
<p>This gives a means to compute the area of a region by integrating around its boundary.</p>
<hr />
<p>To compute the area of an ellipse, we have:</p>
<pre class='hljl'>
<span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-oB'>-</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>x</span><span class='hljl-p'>]</span><span class='hljl-t'>
</span><span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>v</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>v</span><span class='hljl-oB'>...</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-nf'>r</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-n'>a</span><span class='hljl-oB'>*</span><span class='hljl-nf'>cos</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>),</span><span class='hljl-n'>b</span><span class='hljl-oB'>*</span><span class='hljl-nf'>sin</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>)]</span><span class='hljl-t'>
</span><span class='hljl-nd'>@vars</span><span class='hljl-t'> </span><span class='hljl-n'>a</span><span class='hljl-t'> </span><span class='hljl-n'>b</span><span class='hljl-t'> </span><span class='hljl-n'>t</span><span class='hljl-t'> </span><span class='hljl-n'>positive</span><span class='hljl-oB'>=</span><span class='hljl-kc'>true</span><span class='hljl-t'>
</span><span class='hljl-p'>(</span><span class='hljl-ni'>1</span><span class='hljl-oB'>//</span><span class='hljl-ni'>2</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-nf'>integrate</span><span class='hljl-p'>(</span><span class='hljl-t'> </span><span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-nf'>r</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>))</span><span class='hljl-t'> </span><span class='hljl-oB'>⋅</span><span class='hljl-t'> </span><span class='hljl-n'>diff</span><span class='hljl-oB'>.</span><span class='hljl-p'>(</span><span class='hljl-nf'>r</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>),</span><span class='hljl-n'>t</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>0</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-n'>PI</span><span class='hljl-p'>))</span>
</pre>
<div class="well well-sm">\begin{equation*}\pi a b\end{equation*}</div>
<p>To compute the area of the triangle with vertices <span class="math">$(0,0)$</span>, <span class="math">$(a,0)$</span> and <span class="math">$(0,b)$</span> we can orient the boundary counter clockwise. Let <span class="math">$A$</span> be the line segment from <span class="math">$(0,b)$</span> to <span class="math">$(0,0)$</span>, <span class="math">$B$</span> be the line segment from <span class="math">$(0,0)$</span> to <span class="math">$(a,0)$</span>, and <span class="math">$C$</span> be the other. Then</p>
<p class="math">\[
~
\begin{align}
\frac{1}{2} \int_A F\cdot\hat{T} ds &=\frac{1}{2} \int_A -ydx = 0\\
\frac{1}{2} \int_B F\cdot\hat{T} ds &=\frac{1}{2} \int_B xdy = 0,
\end{align}
~
\]</p>
<p>as on <span class="math">$A$</span>, <span class="math">$y=0$</span> and <span class="math">$dy=0$</span> and on <span class="math">$B$</span>, <span class="math">$x=0$</span> and <span class="math">$dx=0$</span>.</p>
<p>On <span class="math">$C$</span> we have <span class="math">$\vec{r}(t) = (0, b) + t\cdot(1,-b/a) =\langle t, b-(bt)/a\rangle$</span> from <span class="math">$t=a$</span> to <span class="math">$0$</span></p>
<p class="math">\[
~
\int_C F\cdot \frac{d\vec{r}}{dt} dt =
\int_a^0 \langle -b + (bt)/a), t\rangle\cdot\langle 1, -b/a\rangle dt
= \int_a^0 -b dt = -bt\mid_{a}^0 = ba.
~
\]</p>
<p>Dividing by <span class="math">$1/2$</span> give the familiar answer <span class="math">$A=(1/2) a b$</span>.</p>
<h4>Conservative fields</h4>
<p>A vector field is conservative if path integrals for work are independent of the path. We have seen that a vector field that is the gradient of a scalar field will be conservative and vice versa. This led to the vanishing identify <span class="math">$\nabla\times\nabla(f) = 0$</span> for a scalar field <span class="math">$f$</span>.</p>
<p>Is the converse true? Namely, <em>if</em> for some vector field <span class="math">$F$</span>, <span class="math">$\nabla\times{F}$</span> is identically <span class="math">$0$</span> is the field conservative?</p>
<p>The answer is yes if vector field has continuous partial derivatives and the curl is <span class="math">$0$</span> in a simply connected domain.</p>
<p>For the two dimensional case the curl is a scalar. <em>If</em> <span class="math">$F = \langle F_x, F_y\rangle = \nabla{f}$</span> is conservative, then <span class="math">$\partial{F_y}/\partial{x} - \partial{F_x}/\partial{y} = 0$</span>.</p>
<p>Now assume <span class="math">$\partial{F_y}/\partial{x} - \partial{F_x}/\partial{y} = 0$</span>. Let <span class="math">$P$</span> and <span class="math">$Q$</span> be two points in the plane. Take any path, <span class="math">$C_1$</span> from <span class="math">$P$</span> to <span class="math">$Q$</span> and any return path, <span class="math">$C_2$</span>, from <span class="math">$Q$</span> to <span class="math">$P$</span> that do not cross and such that <span class="math">$C$</span>, the concatenation of the two paths, satisfies Green's theorem. Then, as <span class="math">$F$</span> is continuous on an open interval containing <span class="math">$D$</span>, we have:</p>
<p class="math">\[
~
0 = \iint_D 0 dA =
\iint_D \left(\partial{F_y}/\partial{x} - \partial{F_x}/\partial{y}\right)dA =
\oint_C F \cdot \hat{T} ds =
\int_{C_1} F \cdot \hat{T} ds + \int_{C_2}F \cdot \hat{T} ds.
~
\]</p>
<p>Reversing <span class="math">$C_2$</span> to go from <span class="math">$P$</span> to <span class="math">$Q$</span>, we see the two work integrals are identical, that is the field is conservative.</p>
<p>Summarizing:</p>
<ul>
<li><p>If <span class="math">$F=\nabla{f}$</span> then <span class="math">$F$</span> is conservative.</p>
</li>
<li><p>If <span class="math">$F=\langle F_x, F_y\rangle$</span> has <em>continuous</em> partial derivatives in a simply connected open region with <span class="math">$\partial{F_y}/\partial{x} - \partial{F_x}/\partial{y}=0$</span>, then in that region <span class="math">$F$</span> is conservative and can be represented as the gradient of a scalar function.</p>
</li>
</ul>
<p>For example, let <span class="math">$F(x,y) = \langle \sin(xy), \cos(xy) \rangle$</span>. Is this a conservative vector field?</p>
<p>We can check by taking partial derivatives. Those of interest are:</p>
<p class="math">\[
~
\begin{align}
\frac{\partial{F_y}}{\partial{x}} &= \frac{\partial{(\cos(xy))}}{\partial{x}} =
-\sin(xy) y,\\
\frac{\partial{F_x}}{\partial{y}} &= \frac{\partial{(\sin(xy))}}{\partial{y}} =
\cos(xy)x.
\end{align}
~
\]</p>
<p>It is not the case that <span class="math">$\partial{F_y}/\partial{x} - \partial{F_x}/\partial{y}=0$</span>, so this vector field is <em>not</em> conservative.</p>
<hr />
<p>The conditions of Green's theorem are important, as this next example shows.</p>
<p>Let <span class="math">$D$</span> be the unit disc, <span class="math">$C$</span> the unit circle parameterized counter clockwise.</p>
<p>Let <span class="math">$R(x,y) = \langle -y, x\rangle$</span> be a rotation field and <span class="math">$F(x,y) = R(x,y)/(R(x,y)\cdot R(x,y))$</span>. Then:</p>
<pre class='hljl'>
<span class='hljl-nf'>R</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-oB'>-</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>x</span><span class='hljl-p'>]</span><span class='hljl-t'>
</span><span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>R</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>)</span><span class='hljl-oB'>/</span><span class='hljl-p'>(</span><span class='hljl-nf'>R</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>)</span><span class='hljl-oB'>⋅</span><span class='hljl-nf'>R</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>))</span><span class='hljl-t'>
</span><span class='hljl-nd'>@vars</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-t'> </span><span class='hljl-n'>real</span><span class='hljl-oB'>=</span><span class='hljl-kc'>true</span><span class='hljl-t'>
</span><span class='hljl-n'>Fx</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>Fy</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-nf'>diff</span><span class='hljl-p'>(</span><span class='hljl-n'>Fy</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-nf'>diff</span><span class='hljl-p'>(</span><span class='hljl-n'>Fx</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>|></span><span class='hljl-t'> </span><span class='hljl-n'>simplify</span>
</pre>
<div class="well well-sm">\begin{equation*}0\end{equation*}</div>
<p>Then, <span class="math">$\iint_D \left( \partial{F_y}/{\partial{x}}-\partial{F_xy}/{\partial{y}}\right)dA = 0$</span>. But,</p>
<p class="math">\[
~
F\cdot\hat{T} = \frac{R}{R\cdot{R}} \cdot \frac{R}{R\cdot{R}} = \frac{R\cdot{R}}{(R\cdot{R})^2} = \frac{1}{R\cdot{R}},
~
\]</p>
<p>so <span class="math">$\oint_C F\cdot\hat{T}ds = 2\pi$</span>, <span class="math">$C$</span> being the unit circle so <span class="math">$R\cdot{R}=1$</span>.</p>
<p>That is, for this example, Green's theorem does <strong>not</strong> apply, as the two integrals are not the same. What isn't satisfied in the theorem? <span class="math">$F$</span> is not continuous at the origin and our curve <span class="math">$C$</span> defining <span class="math">$D$</span> encircles the origin. So, <span class="math">$F$</span> does not have continuous partial derivatives, as is required for the theorem.</p>
<h4>More complicated boundary curves</h4>
<p>A simple closed curve is one that does not cross itself. Green's theorem applies to regions bounded by curves which have finitely many crosses provided the orientation used is consistent throughout.</p>
<p>Consider the curve <span class="math">$y = f(x)$</span>, <span class="math">$a \leq x \leq b$</span>, assuming <span class="math">$f$</span> is continuous, <span class="math">$f(a) > 0$</span>, and <span class="math">$f(b) < 0$</span>. We can use Green's theorem to compute the signed "area" under under <span class="math">$f$</span> if we consider the curve in <span class="math">$R^2$</span> from <span class="math">$(b,0)$</span> to <span class="math">$(a,0)$</span> to <span class="math">$(a, f(a))$</span>, to <span class="math">$(b, f(b))$</span> and back to <span class="math">$(b,0)$</span> in that orientation. This will cross at each zero of <span class="math">$f$</span>.</p>
<img src="" />
<p>Let <span class="math">$A$</span> label the red line, <span class="math">$B$</span> the green curve, <span class="math">$C$</span> the blue line, and <span class="math">$D$</span> the black line. Then the area is given from Green's theorem by considering half of the the line integral of <span class="math">$F(x,y) = \langle -y, x\rangle$</span> or <span class="math">$\oint_C (xdy - ydx)$</span>. To that matter we have:</p>
<p class="math">\[
~
\begin{align}
\int_A (xdy - ydx) &= a f(a)\\
\int_C (xdy - ydx) &= b(-f(b))\\
\int_D (xdy - ydx) &= 0\\
\end{align}
~
\]</p>
<p>Finally the integral over <span class="math">$B$</span>, using integration by parts:</p>
<p class="math">\[
~
\begin{align}
\int_B F(\vec{r}(t))\cdot \frac{d\vec{r}(t)}{dt} dt &=
\int_b^a \langle -f(t),t)\rangle\cdot\langle 1, f'(t)\rangle dt\\
&= \int_a^b f(t)dt - \int_a^b tf'(t)dt\\
&= \int_a^b f(t)dt - \left(tf(t)\mid_a^b - \int_a^b f(t) dt\right).
\end{align}
~
\]</p>
<p>Combining, we have after cancellation <span class="math">$\oint (xdy - ydx) = 2\int_a^b f(t) dt$</span>, or after dividing by <span class="math">$2$</span> the signed area under the curve.</p>
<hr />
<p>The region may not be simply connected. A simple case might be the disc: <span class="math">$1 \leq x^2 + y^2 \leq 4$</span>. In this figure we introduce a cut to make a simply connected region.</p>
<img src="" />
<p>The cut leads to a counter-clockwise orientation on the outer ring and a clockwise orientation on the inner ring. If this cut becomes so thin as to vanish, then the line integrals along the lines introducing the cut will cancel off and we have a boundary consisting of two curves with opposite orientations. (If we follow either orientation the closed figure is on the left.)</p>
<p>To see that the area integral of <span class="math">$F(x,y) = (1/2)\langle -y, x\rangle$</span> produces the area for this orientation we have, using <span class="math">$C_1$</span> as the outer ring, and <span class="math">$C_2$</span> as the inner ring:</p>
<p class="math">\[
~
\begin{align}
\oint_{C_1} F \cdot \hat{T} ds &=
\int_0^{2\pi} (1/2)(2)\langle -\sin(t), \cos(t)\rangle \cdot (2)\langle-\sin(t), \cos(t)\rangle dt
= (1/2) (2\pi) 4 = 4\pi\\
\oint_{C_2} F \cdot \hat{T} ds &=
\int_{0}^{2\pi} (1/2) \langle \sin(t), \cos(t)\rangle \cdot \langle-\sin(t), -\cos(t)\rangle dt\\
&= -(1/2)(2\pi) = -\pi.
\end{align}
~
\]</p>
<p>(Using <span class="math">$\vec{r}(t) = 2\langle \cos(t), \sin(t)\rangle$</span> for the outer ring and <span class="math">$\vec{r}(t) = 1\langle \cos(t), -\sin(t)\rangle$</span> for the inner ring.)</p>
<p>Adding the two gives <span class="math">$4\pi - \pi = \pi \cdot(b^2 - a^2)$</span>, with <span class="math">$b=2$</span> and <span class="math">$a=1$</span>.</p>
<h4>Flow not flux</h4>
<p>Green's theorem has a complement in terms of flow across <span class="math">$C$</span>. As <span class="math">$C$</span> is positively oriented (so the bounded interior piece is on the left of <span class="math">$\hat{T}$</span> as the curve is traced), a normal comes by rotating <span class="math">$90^\circ$</span> counterclockwise. That is if <span class="math">$\hat{T} = \langle a, b\rangle$</span>, then <span class="math">$\hat{N} = \langle b, -a\rangle$</span>.</p>
<p>Let <span class="math">$F = \langle F_x, F_y \rangle$</span> and <span class="math">$G = \langle F_y, -F_x \rangle$</span>, then $ G\cdot\hat{T} = -F\cdot\hat{N}<span class="math">$. The curl formula applied to $G$</span> becomes</p>
<p class="math">\[
~
\frac{\partial{G_y}}{\partial{x}} - \frac{\partial{G_x}}{\partial{y}} =
\frac{\partial{-F_x}}{\partial{x}}-\frac{\partial{(F_y)}}{\partial{y}}
=
-\left(\frac{\partial{F_x}}{\partial{x}} + \frac{\partial{F_y}}{\partial{y}}\right)=
-\nabla\cdot{F}.
~
\]</p>
<p>Green's theorem applied to <span class="math">$G$</span> then gives this formula for <span class="math">$F$</span>:</p>
<p class="math">\[
~
\oint_C F\cdot\hat{N} ds =
-\oint_C G\cdot\hat{T} ds =
-\iint_D (-\nabla\cdot{F})dA =
\iint_D \nabla\cdot{F}dA.
~
\]</p>
<p>The right hand side integral is the <span class="math">$2$</span>-dimensional divergence, so this has the interpretation that the flux through <span class="math">$C$</span> (<span class="math">$\oint_C F\cdot\hat{N} ds$</span>) is the integral of the divergence. (The divergence is defined in terms of a limit of this picture, so this theorem extends the microscopic view to a bigger view.)</p>
<p>Rather than leave this as an algebraic consequence, we sketch out how this could be intuitively argued from a microscopic picture, the reason being similar to that for the curl, where we considered the small green boxes. In the generalization to dimension <span class="math">$3$</span> both arguments are needed for our discussion:</p>
<p>Consider now a <span class="math">$2$</span>-dimensional region split into microscopic boxes; we focus now on two adjacent boxes, <span class="math">$A$</span> and <span class="math">$B$</span>:</p>
<img src="" />
<p>The integrand <span class="math">$F\cdot\hat{N}$</span> for <span class="math">$A$</span> will differ from that for <span class="math">$B$</span> by a minus sign, as the field is the same, but the normal carries an opposite sign. Hence the contribution to the line integral around <span class="math">$A$</span> along this part of the box partition will cancel out with that around <span class="math">$B$</span>. The only part of the line integral that will not cancel out for such a partition will be the boundary pieces of the overall shape.</p>
<p>This figure shows in red the parts of the line integrals that will cancel for a more refined grid.</p>
<img src="" />
<p>Again, the microscopic boundary integrals when added will give a macroscopic boundary integral due to cancellations.</p>
<p>But, as seen in the derivation of the divergence, only modified for <span class="math">$2$</span> dimensions, we have <span class="math">$\nabla\cdot{F} = \lim \frac{1}{\Delta S} \oint_C F\cdot\hat{N}$</span>, so for each cell</p>
<p class="math">\[
~
\oint_{C_i} F\cdot\hat{N} \approx \left(\nabla\cdot{F}\right)\Delta{x}\Delta{y},
~
\]</p>
<p>an approximating Riemann sum for <span class="math">$\iint_D \nabla\cdot{F} dA$</span>. This yields:</p>
<p class="math">\[
~
\oint_C (F \cdot\hat{N}) dA =
\sum_i \oint_{C_i} (F \cdot\hat{N}) dA \approx
\sum \left(\nabla\cdot{F}\right)\Delta{x}\Delta{y} \approx
\iint_S \nabla\cdot{F}dA,
~
\]</p>
<p>the approximations becoming equals signs in the limit.</p>
<h5>Example</h5>
<p>Let <span class="math">$F(x,y) = \langle ax , by\rangle$</span>, and <span class="math">$D$</span> be the square with side length <span class="math">$2$</span> centered at the origin. Verify that the flow form of Green's theorem holds.</p>
<p>We have the divergence is simply <span class="math">$a + b$</span> so <span class="math">$\iint_D (a+b)dA = (a+b)A(D) = 4(a+b)$</span>.</p>
<p>The integral of the flow across <span class="math">$C$</span> consists of <span class="math">$4$</span> parts. By symmetry, they all should be similar. We consider the line segment connecting <span class="math">$(1,-1)$</span> to <span class="math">$(1,1)$</span> (which has the proper counterclockwise orientation):</p>
<p class="math">\[
~
\int_C F \cdot \hat{N} ds=
\int_{-1}^1 \langle F_x, F_y\rangle\cdot\langle 0, 1\rangle ds =
\int_{-1}^1 b dy = 2b.
~
\]</p>
<p>Integrating across the top will give <span class="math">$2a$</span>, along the bottom <span class="math">$2a$</span>, and along the left side <span class="math">$2b$</span> totaling <span class="math">$4(a+b)$</span>.</p>
<hr />
<p>Next, let <span class="math">$F(x,y) = \langle -y, x\rangle$</span>. This field rotates, and we see has no divergence, as <span class="math">$\partial{F_x}/\partial{x} = \partial{(-y)}/\partial{x} = 0$</span> and <span class="math">$\partial{F_y}/\partial{y} = \partial{x}/\partial{y} = 0$</span>. As such, the area integral in Green's theorem is <span class="math">$0$</span>. As well, <span class="math">$F$</span> is parallel to <span class="math">$\hat{T}$</span> so <em>orthogonal</em> to <span class="math">$\hat{N}$</span>, hence <span class="math">$\oint F\cdot\hat{N}ds = \oint 0ds = 0$</span>. For any region <span class="math">$S$</span> there is no net flow across the boundary and no source or sink of flow inside.</p>
<h5>Example: stream functions</h5>
<p>Strang compiles the following equivalencies (one implies the others) for when the total flux is <span class="math">$0$</span> for a vector field with continuous partial derivatives:</p>
<ul>
<li><p class="math">\[
\oint F\cdot\hat{N} ds = 0
\]</p>
</li>
<li><p>for all curves connecting <span class="math">$P$</span> to <span class="math">$Q$</span>, <span class="math">$\int_C F\cdot\hat{N}$</span> has the same value</p>
</li>
<li><p>There is a <em>stream</em> function <span class="math">$g(x,y)$</span> for which <span class="math">$F_x = \partial{g}/\partial{y}$</span> and <span class="math">$F_y = -\partial{g}/\partial{x}$</span>. (This says <span class="math">$\nabla{g}$</span> is <em>orthogonal</em> to <span class="math">$F$</span>.)</p>
</li>
<li><p>the components have zero divergence: <span class="math">$\partial{F_x}/\partial{x} + \partial{F_y}/\partial{y} = 0$</span>.</p>
</li>
</ul>
<p>Strang calls these fields <em>source</em> free as the divergence is <span class="math">$0$</span>.</p>
<p>A <a href="https://en.wikipedia.org/wiki/Stream_function">stream</a> function plays the role of a scalar potential, but note the minus sign and order of partial derivatives. These are accounted for by saying <span class="math">$\langle F_x, F_y, 0\rangle = \nabla\times\langle 0, 0, g\rangle$</span>, in Cartesian coordinates. Streamlines are tangent to the flow of the velocity vector of the flow and in two dimensions are perpendicular to field lines formed by the gradient of a scalar function.</p>
<p><a href="https://en.wikipedia.org/wiki/Potential_flow">Potential</a> flow uses a scalar potential function to describe the velocity field through <span class="math">$\vec{v} = \nabla{f}$</span>. As such, potential flow is irrotational due to the curl of a conservative field being the zero vector. Restricting to two dimensions, this says the partials satisfy <span class="math">$\partial{v_y}/\partial{x} - \partial{v_x}/\partial{y} = 0$</span>. For an incompressible flow (like water) the velocity will have <span class="math">$0$</span> divergence too. That is <span class="math">$\nabla\cdot\nabla{f} = 0$</span>–-<span class="math">$f$</span> satisfies Laplace's equation.</p>
<p>By the equivalencies above, an incompressible potential flow means in addition to a potential function, <span class="math">$f$</span>, there is a stream function <span class="math">$g$</span> satisfying <span class="math">$v_x = \partial{g}/\partial{y}$</span> and <span class="math">$v_y=-\partial{g}/\partial{x}$</span>.</p>
<p>The gradient of <span class="math">$f=\langle v_x, v_y\rangle$</span> is orthogonal to the contour lines of <span class="math">$f$</span>. The gradient of <span class="math">$g=\langle -v_y, v_x\rangle$</span> is orthogonal to the gradient of <span class="math">$f$</span>, so are tangents to the contour lines of <span class="math">$f$</span>. Reversing, the gradient of <span class="math">$f$</span> is tangent to the contour lines of <span class="math">$g$</span>. If the flow follows the velocity field, then the contour lines of <span class="math">$g$</span> indicate the flow of the fluid.</p>
<p>As an <a href="https://en.wikipedia.org/wiki/Potential_flow#Examples_of_two-dimensional_flows">example</a> consider the following in polar coordinates:</p>
<p class="math">\[
~
f(r, \theta) = A r^n \cos(n\theta),\quad
g(r, \theta) = A r^n \sin(n\theta).
~
\]</p>
<p>The constant <span class="math">$A$</span> just sets the scale, the parameter <span class="math">$n$</span> has a qualitative effect on the contour lines. Consider <span class="math">$n=2$</span> visualized below:</p>
<pre class='hljl'>
<span class='hljl-n'>n</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-t'>
</span><span class='hljl-nf'>f</span><span class='hljl-p'>(</span><span class='hljl-n'>r</span><span class='hljl-p'>,</span><span class='hljl-n'>theta</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>r</span><span class='hljl-oB'>^</span><span class='hljl-n'>n</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-nf'>cos</span><span class='hljl-p'>(</span><span class='hljl-n'>n</span><span class='hljl-oB'>*</span><span class='hljl-n'>theta</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-nf'>g</span><span class='hljl-p'>(</span><span class='hljl-n'>r</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>theta</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>r</span><span class='hljl-oB'>^</span><span class='hljl-n'>n</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-nf'>sin</span><span class='hljl-p'>(</span><span class='hljl-n'>n</span><span class='hljl-oB'>*</span><span class='hljl-n'>theta</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-nf'>f</span><span class='hljl-p'>(</span><span class='hljl-n'>v</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>f</span><span class='hljl-p'>(</span><span class='hljl-n'>v</span><span class='hljl-oB'>...</span><span class='hljl-p'>);</span><span class='hljl-t'> </span><span class='hljl-nf'>g</span><span class='hljl-p'>(</span><span class='hljl-n'>v</span><span class='hljl-p'>)</span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>g</span><span class='hljl-p'>(</span><span class='hljl-n'>v</span><span class='hljl-oB'>...</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-nf'>Φ</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-nf'>sqrt</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-nf'>atan</span><span class='hljl-p'>(</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>x</span><span class='hljl-p'>)]</span><span class='hljl-t'>
</span><span class='hljl-nf'>Φ</span><span class='hljl-p'>(</span><span class='hljl-n'>v</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>Φ</span><span class='hljl-p'>(</span><span class='hljl-n'>v</span><span class='hljl-oB'>...</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>xs</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>ys</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>range</span><span class='hljl-p'>(</span><span class='hljl-oB'>-</span><span class='hljl-ni'>2</span><span class='hljl-p'>,</span><span class='hljl-ni'>2</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>length</span><span class='hljl-oB'>=</span><span class='hljl-ni'>50</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-nf'>contour</span><span class='hljl-p'>(</span><span class='hljl-n'>xs</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>ys</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>f</span><span class='hljl-oB'>∘</span><span class='hljl-n'>Φ</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>color</span><span class='hljl-oB'>=:</span><span class='hljl-n'>red</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>legend</span><span class='hljl-oB'>=</span><span class='hljl-kc'>false</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>aspect_ratio</span><span class='hljl-oB'>=:</span><span class='hljl-n'>equal</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-nf'>contour!</span><span class='hljl-p'>(</span><span class='hljl-n'>xs</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>ys</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>g</span><span class='hljl-oB'>∘</span><span class='hljl-n'>Φ</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>color</span><span class='hljl-oB'>=:</span><span class='hljl-n'>blue</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>linewidth</span><span class='hljl-oB'>=</span><span class='hljl-ni'>3</span><span class='hljl-p'>)</span>
</pre>
<img src="" />
<p>The fluid would flow along the blue (stream) lines. The red lines have equal potential along the line.</p>
<h2>Stokes' theorem</h2>
<div class="well well-sm">
<figure>
<img src=""/>
<figcaption><div class="markdown"><p>The Jiffy Pop popcorn design has a top surface that is designed to expand to accommodate the popped popcorn. Viewed as a surface, the surface area grows, but the boundary–where the surface meets the pan–stays the same. This is an example that many different surfaces can have the same bounding curve. Stokes' theorem will relate a surface integral over the surface to a line integral about the bounding curve.</p>
</div></figcaption>
</figure>
</div>
<p>Were the figure of Jiffy Pop popcorn animated, the surface of foil would slowly expand due to pressure of popping popcorn until the popcorn was ready. However, the boundary would remain the same. Many different surfaces can have the same boundary. Take for instance the upper half unit sphere in <span class="math">$R^3$</span> it having the curve <span class="math">$x^2 + y^2 = 1$</span> as a boundary curve. This is the same curve as the surface of the cone <span class="math">$z = 1 - (x^2 + y^2)$</span> that lies above the <span class="math">$x-y$</span> plane. This would also be the same curve as the surface formed by a Mickey Mouse glove if the collar were scaled and positioned onto the unit circle.</p>
<p>Imagine if instead of the retro labeling, a rectangular grid were drawn on the surface of the Jiffy Pop popcorn before popping. By Green's theorem, the integral of the curl of a vector field <span class="math">$F$</span> over this surface reduces to just an accompanying line integral over the boundary, <span class="math">$C$</span>, where the orientation of <span class="math">$C$</span> is in the <span class="math">$\hat{k}$</span> direction. The intuitive derivation being that the curl integral over the grid will have cancellations due to adjacent cells having shared paths being traversed in both directions.</p>
<p>Now imagine the popcorn expanding, but rather than worry about burning, focusing instead on what happens to the integral of the curl in the direction of the normal, we have</p>
<p class="math">\[
~
\nabla\times{F} \cdot\hat{N} = \lim \frac{1}{\Delta{S}} \oint_C F\cdot\hat{T} ds
\approx \frac{1}{\Delta{S}} F\cdot\hat{T} \Delta{s}.
~
\]</p>
<p>This gives the series of approximations:</p>
<p class="math">\[
~
\oint_C F\cdot\hat{T} ds =
\sum \oint_{C_i} F\cdot\hat{T} ds \approx
\sum F\cdot\hat{T} \Delta s \approx
\sum \nabla\times{F}\cdot\hat{N} \Delta{S} \approx
\iint_S \nabla\times{F}\cdot\hat{N} dS.
~
\]</p>
<p>In terms of our expanding popcorn, the boundary integral–after accounting for cancellations, as in Green's theorem–can be seen as a microscopic sum of boundary integrals each of which is approximated by a term <span class="math">$\nabla\times{F}\cdot\hat{N} \Delta{S}$</span> which is viewed as a Riemann sum approximation for the the integral of the curl over the surface. The cancellation depends on a proper choice of orientation, but with that we have:</p>
<blockquote>
<p>Stokes' theorem. Let <span class="math">$S$</span> be an orientable smooth surface in <span class="math">$R^3$</span> with boundary <span class="math">$C$</span>, <span class="math">$C$</span> oriented so that the chosen normal for <span class="math">$S$</span> agrees with the right-hand rule for <span class="math">$C$</span>'s orientation. Then <em>if</em> <span class="math">$F$</span> has continuous partial derivatives <span class="math">$~ \oint_C F \cdot\hat{T} ds = \iint_S (\nabla\times{F})\cdot\hat{N} dA. ~$</span></p>
</blockquote>
<p>Green's theorem is an immediate consequence upon viewing the region in <span class="math">$R^2$</span> as a surface in <span class="math">$R^3$</span> with normal <span class="math">$\hat{k}$</span>.</p>
<h3>Examples</h3>
<h5>Example</h5>
<p>Our first example involves just an observation. For any simply connected surface <span class="math">$S$</span> without boundary (such as a sphere) the integral <span class="math">$\oint_S \nabla\times{F}dS=0$</span>, as the line integral around the boundary must be <span class="math">$0$</span>, as there is no boundary.</p>
<h5>Example</h5>
<p>Let <span class="math">$F(x,y,z) = \langle x^2, 0, y^2\rangle$</span> and <span class="math">$C$</span> be the circle <span class="math">$x^2 + z^2 = 1$</span> with <span class="math">$y=0$</span>. Find <span class="math">$\oint_C F\cdot\hat{T}ds$</span>.</p>
<p>We can use Stoke's theorem with the surface being just the disc, so that <span class="math">$\hat{N} = \hat{j}$</span>. This makes the computation easy:</p>
<pre class='hljl'>
<span class='hljl-nd'>@vars</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-t'> </span><span class='hljl-n'>z</span><span class='hljl-t'> </span><span class='hljl-n'>real</span><span class='hljl-oB'>=</span><span class='hljl-kc'>true</span><span class='hljl-t'>
</span><span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>0</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-p'>]</span><span class='hljl-t'>
</span><span class='hljl-n'>CurlF</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>curl</span><span class='hljl-p'>(</span><span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>])</span>
</pre>
<div class="well well-sm">\[ \left[ \begin{array}{r}2 y\\0\\0\end{array} \right] \]</div>
<p>We have <span class="math">$\nabla\times{F}\cdot\hat{N} = 0$</span>, so the answer is <span class="math">$0$</span>.</p>
<p>We could have directly computed this. Let <span class="math">$r(t) = \langle \cos(t), 0, \sin(t)\rangle$</span>. Then we have:</p>
<pre class='hljl'>
<span class='hljl-nd'>@vars</span><span class='hljl-t'> </span><span class='hljl-n'>t</span><span class='hljl-t'> </span><span class='hljl-n'>real</span><span class='hljl-oB'>=</span><span class='hljl-kc'>true</span><span class='hljl-t'>
</span><span class='hljl-nf'>r</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-nf'>cos</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-ni'>0</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-nf'>sin</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>)]</span><span class='hljl-t'>
</span><span class='hljl-n'>rp</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>diff</span><span class='hljl-oB'>.</span><span class='hljl-p'>(</span><span class='hljl-nf'>r</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-n'>t</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>integrand</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-nf'>r</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>)</span><span class='hljl-oB'>...</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>⋅</span><span class='hljl-t'> </span><span class='hljl-n'>rp</span>
</pre>
<div class="well well-sm">\begin{equation*}- \sin{\left (t \right )} \cos^{2}{\left (t \right )}\end{equation*}</div>
<p>The integrand isn't obviously going to yield <span class="math">$0$</span> for the integral, but through symmetry:</p>
<pre class='hljl'>
<span class='hljl-nf'>integrate</span><span class='hljl-p'>(</span><span class='hljl-n'>integrand</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>0</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-n'>PI</span><span class='hljl-p'>))</span>
</pre>
<div class="well well-sm">\begin{equation*}0\end{equation*}</div>
<h5>Example: Ampere's circuital law</h5>
<p>(Schey) Suppose a current <span class="math">$I$</span> flows along a line and <span class="math">$C$</span> is a path encircling the current with orientation such that the right hand rule points in the direction of the current flow.</p>
<p>Ampere's circuital law relates the line integral of the magnetic field to the induced current through:</p>
<p class="math">\[
~
\oint_C B\cdot\hat{T} ds = \mu_0 I.
~
\]</p>
<p>The goal here is to re-express this integral law to produce a law at each point of the field. Let <span class="math">$S$</span> be a surface with boundary <span class="math">$C$</span>, Let <span class="math">$J$</span> be the current density–<span class="math">$J=\rho v$</span>, with <span class="math">$\rho$</span> the density of the current (not time-varying) and <span class="math">$v$</span> the velocity. The current can be re-expressed as <span class="math">$I = \iint_S J\cdot\hat{n}dA$</span>. (If the current flows through a wire and <span class="math">$S$</span> is much bigger than the wire, this is still valid as <span class="math">$\rho=0$</span> outside of the wird.)</p>
<p>We then have:</p>
<p class="math">\[
~
\mu_0 \iint_S J\cdot\hat{N}dA =
\mu_0 I =
\oint_C B\cdot\hat{T} ds =
\iint_S (\nabla\times{B})\cdot\hat{N}dA.
~
\]</p>
<p>As <span class="math">$S$</span> and <span class="math">$C$</span> are arbitrary, this implies the integrands of the surface integrals are equal, or:</p>
<p class="math">\[
~
\nabla\times{B} = \mu_0 J.
~
\]</p>
<h5>Example: Faraday's law</h5>
<p>(Strang) Suppose <span class="math">$C$</span> is a wire and there is a time-varying magnetic field <span class="math">$B(t)$</span>. Then Faraday's law says the <em>flux</em> passing within <span class="math">$C$</span> through a surface <span class="math">$S$</span> with boundary <span class="math">$C$</span> of the magnetic field, <span class="math">$\phi = \iint B\cdot\hat{N}dS$</span>, induces an electric field <span class="math">$E$</span> that does work:</p>
<p class="math">\[
~
\oint_C E\cdot\hat{T}ds = -\frac{\partial{\phi}}{\partial{t}}.
~
\]</p>
<p>Faraday's law is an empirical statement. Stokes' theorem can be used to produce one of Maxwell's equations. For any surface <span class="math">$S$</span>, as above with its boundary being <span class="math">$C$</span>, we have both:</p>
<p class="math">\[
~
-\iint_S \left(\frac{\partial{B}}{\partial{t}}\cdot\hat{N}\right)dS =
-\frac{\partial{\phi}}{\partial{t}} =
\oint_C E\cdot\hat{T}ds =
\iint_S (\nabla\times{E}) dS.
~
\]</p>
<p>This is true for any capping surface for <span class="math">$C$</span>. Shrinking <span class="math">$C$</span> to a point means it will hold for each point in <span class="math">$R^3$</span>. That is:</p>
<p class="math">\[
~
\nabla\times{E} = -\frac{\partial{B}}{\partial{t}}.
~
\]</p>
<h5>Example: Conservative fields</h5>
<p>Green's theorem gave a characterization of <span class="math">$2$</span>-dimensional conservative fields, Stokes' theorem provides a characterization for <span class="math">$3$</span> dimensional conservative fields (with continuous derivatives):</p>
<ul>
<li><p>The work <span class="math">$\oint_C F\cdot\hat{T} ds = 0$</span> for every closed path</p>
</li>
<li><p>The work <span class="math">$\int_P^Q F\cdot\hat{T} ds$</span> is independent of the path between <span class="math">$P$</span> and <span class="math">$Q$</span></p>
</li>
<li><p>for a scalar potential function <span class="math">$\phi$</span>, <span class="math">$F = \nabla{\phi}$</span></p>
</li>
<li><p>The curl satisfies: <span class="math">$\nabla\times{F} = \vec{0}$</span> (and the domain is simply connected).</p>
</li>
</ul>
<p>Stokes's theorem can be used to show the first and fourth are equivalent.</p>
<p>First, <span class="math">$0 = \oint_C F\cdot\hat{T} ds$</span>, then by Stokes' theorem <span class="math">$0 = \int_S \nabla\times{F} dS$</span> for any orientable surface <span class="math">$S$</span> with boundary <span class="math">$C$</span>. For a given point, letting <span class="math">$C$</span> shrink to that point can be used to see that the cross product must be <span class="math">$0$</span> at that point.</p>
<p>Conversely, if the cross product is zero in a simply connected region, then tke any simple closed curve, <span class="math">$C$</span> in the region. If the region is <a href="http://math.mit.edu/~jorloff/suppnotes/suppnotes02/v14.pdf">simply connected</a> then there exists an orientable surface, <span class="math">$S$</span> in the region with boundary <span class="math">$C$</span> for which: <span class="math">$\oint_C F\cdot{N} ds = \iint_S (\nabla\times{F})\cdot\hat{N}dS= \iint_S \vec{0}\cdot\hat{N}dS = 0$</span>.</p>
<p>The construction of a scalar potential function from the field can be done as illustrated in this next example.</p>
<p>Take <span class="math">$F = \langle yz^2, xz^2, 2xyz \rangle$</span>. Verify <span class="math">$F$</span> is conservative and find a scalar potential <span class="math">$\phi$</span>.</p>
<p>To verify that <span class="math">$F$</span> is conservative, we find its curl to see that it is <span class="math">$\vec{0}$</span>:</p>
<pre class='hljl'>
<span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-n'>y</span><span class='hljl-oB'>*</span><span class='hljl-n'>z</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-oB'>*</span><span class='hljl-n'>z</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-oB'>*</span><span class='hljl-n'>x</span><span class='hljl-oB'>*</span><span class='hljl-n'>y</span><span class='hljl-oB'>*</span><span class='hljl-n'>z</span><span class='hljl-p'>]</span><span class='hljl-t'>
</span><span class='hljl-nd'>@vars</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-t'> </span><span class='hljl-n'>z</span><span class='hljl-t'> </span><span class='hljl-n'>real</span><span class='hljl-oB'>=</span><span class='hljl-kc'>true</span><span class='hljl-t'>
</span><span class='hljl-nf'>curl</span><span class='hljl-p'>(</span><span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>])</span>
</pre>
<div class="well well-sm">\[ \left[ \begin{array}{r}0\\0\\0\end{array} \right] \]</div>
<p>We need <span class="math">$\phi$</span> with <span class="math">$\partial{\phi}/\partial{x} = F_x = yz^2$</span>. To that end, we integrate in <span class="math">$x$</span>:</p>
<p class="math">\[
~
\phi(x,y,z) = \int yz^2 dx = xyz^2 + g(y,z),
~
\]</p>
<p>the function <span class="math">$g(y,z)$</span> is a "constant" of integration (it doesn't depend on <span class="math">$x$</span>). That <span class="math">$\partial{\phi}/\partial{x} = F_x$</span> is true is easy to verify. Now, consider the partial in <span class="math">$y$</span>:</p>
<p class="math">\[
~
\frac{\partial{\phi}}{\partial{y}} = xz^2 + \frac{\partial{g}}{\partial{y}} = F_y = xz^2.
~
\]</p>
<p>So we have <span class="math">$\frac{\partial{g}}{\partial{y}}=0$</span> or <span class="math">$g(y,z) = h(z)$</span>, some constant in <span class="math">$y$</span>. Finally, we must have <span class="math">$\partial{\phi}/\partial{z} = F_z$</span>, or</p>
<p class="math">\[
~
\frac{\partial{\phi}}{\partial{z}} = 2xyz + h'(z) = F_z = 2xyz,
~
\]</p>
<p>So <span class="math">$h'(z) = 0$</span>. This value can be any constant, even <span class="math">$0$</span> which we take, so that <span class="math">$g(y,z) = 0$</span> and <span class="math">$\phi(x,y,z) = xyz^2$</span> is a scalar potential for <span class="math">$F$</span>.</p>
<h5>Example</h5>
<p>Let <span class="math">$F(x,y,z) = \nabla(xy^2z^3) = \langle y^2z^3, 2xyz^3, 3xy^2z^2\rangle$</span>. Show that the line integrals around the unit circle in the <span class="math">$x-y$</span> plane and the <span class="math">$y-z$</span> planes are <span class="math">$0$</span>, as <span class="math">$F$</span> is conservative.</p>
<pre class='hljl'>
<span class='hljl-nd'>@vars</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-t'> </span><span class='hljl-n'>z</span><span class='hljl-t'> </span><span class='hljl-n'>t</span><span class='hljl-t'>
</span><span class='hljl-n'>Fxyz</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>∇</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-oB'>*</span><span class='hljl-n'>y</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-oB'>*</span><span class='hljl-n'>z</span><span class='hljl-oB'>^</span><span class='hljl-ni'>3</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-nf'>r</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-nf'>cos</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-nf'>sin</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-ni'>0</span><span class='hljl-p'>]</span><span class='hljl-t'>
</span><span class='hljl-n'>rp</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>diff</span><span class='hljl-oB'>.</span><span class='hljl-p'>(</span><span class='hljl-nf'>r</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-n'>t</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>Ft</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>subs</span><span class='hljl-oB'>.</span><span class='hljl-p'>(</span><span class='hljl-n'>Fxyz</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>.=></span><span class='hljl-t'> </span><span class='hljl-nf'>r</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>)[</span><span class='hljl-ni'>1</span><span class='hljl-p'>],</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-oB'>.=></span><span class='hljl-t'> </span><span class='hljl-nf'>r</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>)[</span><span class='hljl-ni'>2</span><span class='hljl-p'>],</span><span class='hljl-t'> </span><span class='hljl-n'>z</span><span class='hljl-t'> </span><span class='hljl-oB'>.=></span><span class='hljl-t'> </span><span class='hljl-nf'>r</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>)[</span><span class='hljl-ni'>3</span><span class='hljl-p'>])</span><span class='hljl-t'>
</span><span class='hljl-nf'>integrate</span><span class='hljl-p'>(</span><span class='hljl-n'>Ft</span><span class='hljl-t'> </span><span class='hljl-oB'>⋅</span><span class='hljl-t'> </span><span class='hljl-n'>rp</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>0</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-n'>PI</span><span class='hljl-p'>))</span>
</pre>
<div class="well well-sm">\begin{equation*}0\end{equation*}</div>
<p>(This is trivial, as <code>Ft</code> is <span class="math">$0$</span>, as each term as a <span class="math">$z$</span> factor of <span class="math">$0$</span>.)</p>
<p>In the <span class="math">$y-z$</span> plane we have:</p>
<pre class='hljl'>
<span class='hljl-nf'>r</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-ni'>0</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-nf'>cos</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-nf'>sin</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>)]</span><span class='hljl-t'>
</span><span class='hljl-n'>rp</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>diff</span><span class='hljl-oB'>.</span><span class='hljl-p'>(</span><span class='hljl-nf'>r</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-n'>t</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>Ft</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>subs</span><span class='hljl-oB'>.</span><span class='hljl-p'>(</span><span class='hljl-n'>Fxyz</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>.=></span><span class='hljl-t'> </span><span class='hljl-nf'>r</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>)[</span><span class='hljl-ni'>1</span><span class='hljl-p'>],</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-oB'>.=></span><span class='hljl-t'> </span><span class='hljl-nf'>r</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>)[</span><span class='hljl-ni'>2</span><span class='hljl-p'>],</span><span class='hljl-t'> </span><span class='hljl-n'>z</span><span class='hljl-t'> </span><span class='hljl-oB'>.=></span><span class='hljl-t'> </span><span class='hljl-nf'>r</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>)[</span><span class='hljl-ni'>3</span><span class='hljl-p'>])</span><span class='hljl-t'>
</span><span class='hljl-nf'>integrate</span><span class='hljl-p'>(</span><span class='hljl-n'>Ft</span><span class='hljl-t'> </span><span class='hljl-oB'>⋅</span><span class='hljl-t'> </span><span class='hljl-n'>rp</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>0</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-n'>PI</span><span class='hljl-p'>))</span>
</pre>
<div class="well well-sm">\begin{equation*}0\end{equation*}</div>
<p>This is also easy, as <code>Ft</code> has only an <code>x</code> component and <code>rp</code> has only <code>y</code> and <code>z</code> components, so the two are orthogonal.</p>
<h5>Example</h5>
<p>In two dimensions the vector field <span class="math">$F(x,y) = \langle -y, x\rangle/(x^2+y^2) = S(x,y)/\|R\|^2$</span> is irrotational (<span class="math">$0$</span> curl) and has <span class="math">$0$</span> divergence, but is <em>not</em> conservative in <span class="math">$R^2$</span>, as with <span class="math">$C$</span> being the unit disk we have <span class="math">$\oint_C F\cdot\hat{T}ds = \int_0^{2\pi} \langle -\sin(\theta),\cos(\theta)\rangle \cdot \langle-\sin(\theta), \cos(\theta)\rangle/1 d\theta = 2\pi$</span>. This is because <span class="math">$F$</span> is not continuously differentiable at the origin, so the path <span class="math">$C$</span> is not in a simply connected domain where <span class="math">$F$</span> is continuously differentiable. (Were <span class="math">$C$</span> to avoid the origin, the integral would be <span class="math">$0$</span>.)</p>
<p>In three dimensions, removing a single point in a domain does change simple connectedness, but removing an entire line will. So the function <span class="math">$F(x,y,z) =\langle -y,x,0\rangle/(x^2+y^2)\rangle$</span> will have <span class="math">$0$</span> curl, <span class="math">$0$</span> divergence, but won't be conservative in a domain that includes the <span class="math">$z$</span> axis.</p>
<p>However, the function <span class="math">$F(x,y,z) = \langle x, y,z\rangle/\sqrt{x^2+y^2+z^2}$</span> has curl <span class="math">$0$</span>, except at the origin. However, <span class="math">$R^3$</span> less the origin, as a domain, is simply connected, so <span class="math">$F$</span> will be conservative.</p>
<h2>Divergence theorem</h2>
<p>The divergence theorem is a consequence of a simple observation. Consider two adjacent cubic regions that share a common face. The boundary integral, <span class="math">$\oint_S F\cdot\hat{N} dA$</span>, can be computed for each cube. The surface integral requires a choice of normal, and the convention is to use the outward pointing normal. The common face of the two cubes has <em>different</em> outward pointing normals, the difference being a minus sign. As such, the contribution of the surface integral over this face for one cube is <em>cancelled</em> out by the contribution of the surface integral over this face for the adjacent cube. As with Green's theorem, this means for a cubic partition, that only the contribution over the boundary is needed to compute the boundary integral. In formulas, if <span class="math">$V$</span> is a <span class="math">$3$</span> dimensional cubic region with boundary <span class="math">$S$</span> and it is partitioned into smaller cubic subregions, <span class="math">$V_i$</span> with surfaces <span class="math">$S_i$</span>, we have:</p>
<p class="math">\[
~
\oint_S F\cdot{N} dA = \sum \oint_{S_i} F\cdot{N} dA.
~
\]</p>
<p>If the partition provides a microscopic perspective, then the divergence approximation <span class="math">$\nabla\cdot{F} \approx (1/\Delta{V_i}) \oint_{S_i} F\cdot{N} dA$</span> can be used to say:</p>
<p class="math">\[
~
\oint_S F\cdot{N} dA =
\sum \oint_{S_i} F\cdot{N} dA \approx
\sum (\nabla\cdot{F})\Delta{V_i} \approx
\iiint_V \nabla\cdot{F} dV,
~
\]</p>
<p>the last approximation through a Riemann sum approximation. This heuristic leads to:</p>
<blockquote>
<p>The divergence theorem. Suppose <span class="math">$V$</span> is a <span class="math">$3$</span>-dimensional volume which is bounded (compact) and has a boundary, <span class="math">$S$</span>, that is piecewise smooth. If <span class="math">$F$</span> is a continuously differentiable vector field defined on an open set containing <span class="math">$V$</span>, then: <span class="math">$~ \iiint_V (\nabla\cdot{F}) dV = \oint_S (F\cdot\hat{N})dS. ~$</span></p>
</blockquote>
<p>That is, the volume integral of the divergence can be computed from the flux integral over the boundary of <span class="math">$V$</span>.</p>
<h3>Examples</h3>
<h5>Example</h5>
<p>Verify the divergence theorem for the vector field <span class="math">$F(x,y,z) = \langle xy, yz, zx\rangle$</span> for the cubic box centered at the origin with side lengths <span class="math">$2$</span>.</p>
<p>We need to compute two terms and show they are equal. We begin with the volume integral:</p>
<pre class='hljl'>
<span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-n'>x</span><span class='hljl-oB'>*</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-oB'>*</span><span class='hljl-n'>z</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>z</span><span class='hljl-oB'>*</span><span class='hljl-n'>x</span><span class='hljl-p'>]</span><span class='hljl-t'>
</span><span class='hljl-nd'>@vars</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-t'> </span><span class='hljl-n'>z</span><span class='hljl-t'> </span><span class='hljl-n'>real</span><span class='hljl-oB'>=</span><span class='hljl-kc'>true</span><span class='hljl-t'>
</span><span class='hljl-n'>DivF</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>divergence</span><span class='hljl-p'>(</span><span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>])</span><span class='hljl-t'>
</span><span class='hljl-nf'>integrate</span><span class='hljl-p'>(</span><span class='hljl-n'>DivF</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-ni'>1</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-oB'>-</span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-ni'>1</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>z</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-ni'>1</span><span class='hljl-p'>))</span>
</pre>
<div class="well well-sm">\begin{equation*}0\end{equation*}</div>
<p>The total integral is <span class="math">$0$</span> by symmetry, not due to the divergence being <span class="math">$0$</span>, as it is <span class="math">$x+y+z$</span>.</p>
<p>As for the surface integral, we have <span class="math">$6$</span> sides to consider. We take the sides with <span class="math">$\hat{N}$</span> being <span class="math">$\pm\hat{i}$</span>:</p>
<pre class='hljl'>
<span class='hljl-n'>Nhat</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-ni'>0</span><span class='hljl-p'>,</span><span class='hljl-ni'>0</span><span class='hljl-p'>]</span><span class='hljl-t'>
</span><span class='hljl-nf'>integrate</span><span class='hljl-p'>((</span><span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>⋅</span><span class='hljl-t'> </span><span class='hljl-n'>Nhat</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>z</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-ni'>1</span><span class='hljl-p'>))</span><span class='hljl-t'> </span><span class='hljl-cs'># at x=1</span>
</pre>
<div class="well well-sm">\begin{equation*}0\end{equation*}</div>
<p>In fact, all <span class="math">$6$</span> sides will be <span class="math">$0$</span>, as in this case <span class="math">$F \cdot \hat{i} = xy$</span> and at <span class="math">$x=1$</span> the surface integral is just <span class="math">$\int_{-1}^1\int_{-1}^1 y dy dz = 0$</span>, as <span class="math">$y$</span> is an odd function.</p>
<p>As such, the two sides of the Divergence theorem are both <span class="math">$0$</span>, so the theorem is verified.</p>
<h6>Example</h6>
<p>(From Strang) If the temperature inside the sun is <span class="math">$T = \log(1/\rho)$</span> find the <em>heat</em> flow <span class="math">$F=-\nabla{T}$</span>; the source, <span class="math">$\nabla\cdot{F}$</span>; and the flux, <span class="math">$\iint F\cdot\hat{N}dS$</span>. Model the sun as a ball of radius <span class="math">$\rho_0$</span>.</p>
<p>We have the heat flow is simply:</p>
<pre class='hljl'>
<span class='hljl-nd'>@vars</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-t'> </span><span class='hljl-n'>z</span><span class='hljl-t'> </span><span class='hljl-n'>real</span><span class='hljl-oB'>=</span><span class='hljl-kc'>true</span><span class='hljl-t'>
</span><span class='hljl-nf'>R</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>norm</span><span class='hljl-p'>([</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>])</span><span class='hljl-t'>
</span><span class='hljl-nf'>T</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>log</span><span class='hljl-p'>(</span><span class='hljl-ni'>1</span><span class='hljl-oB'>/</span><span class='hljl-nf'>R</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>))</span><span class='hljl-t'>
</span><span class='hljl-n'>HeatFlow</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-n'>diff</span><span class='hljl-oB'>.</span><span class='hljl-p'>(</span><span class='hljl-nf'>T</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>])</span>
</pre>
<div class="well well-sm">\[ \left[ \begin{array}{r}\frac{x}{x^{2} + y^{2} + z^{2}}\\\frac{y}{x^{2} + y^{2} + z^{2}}\\\frac{z}{x^{2} + y^{2} + z^{2}}\end{array} \right] \]</div>
<p>We may recognize this as <span class="math">$\rho/\|\rho\|^2 = \hat{\rho}/\|\rho\|$</span>.</p>
<p>The source is</p>
<pre class='hljl'>
<span class='hljl-n'>DivF</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>divergence</span><span class='hljl-p'>(</span><span class='hljl-n'>HeatFlow</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>])</span><span class='hljl-t'> </span><span class='hljl-oB'>|></span><span class='hljl-t'> </span><span class='hljl-n'>simplify</span>
</pre>
<div class="well well-sm">\begin{equation*}\frac{1}{x^{2} + y^{2} + z^{2}}\end{equation*}</div>
<p>Which would simplify to <span class="math">$1/\rho^2$</span>.</p>
<p>Finally, the surface integral over the surface of the sun is an integral over a sphere of radius <span class="math">$\rho_0$</span>. We could use spherical coordinates to compute this, but note instead that the normal is <span class="math">$\hat{\rho}$</span> so, <span class="math">$F \cdot \hat{N} = 1/\rho = 1/\rho_0$</span> over this surface. So the surface integral is simple the surface area times <span class="math">$1/\rho_0$</span>: <span class="math">$4\pi\rho_0^2/\rho_0 = 4\pi\rho_0$</span>.</p>
<p>Finally, though <span class="math">$F$</span> is not continuous at the origin, the divergence theorem's result holds. Using spherical coordinates we have:</p>
<pre class='hljl'>
<span class='hljl-nd'>@vars</span><span class='hljl-t'> </span><span class='hljl-n'>rho</span><span class='hljl-t'> </span><span class='hljl-n'>rho_0</span><span class='hljl-t'> </span><span class='hljl-n'>phi</span><span class='hljl-t'> </span><span class='hljl-n'>theta</span><span class='hljl-t'> </span><span class='hljl-n'>real</span><span class='hljl-oB'>=</span><span class='hljl-kc'>true</span><span class='hljl-t'>
</span><span class='hljl-n'>Jac</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>rho</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-nf'>sin</span><span class='hljl-p'>(</span><span class='hljl-n'>phi</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-nf'>integrate</span><span class='hljl-p'>(</span><span class='hljl-ni'>1</span><span class='hljl-oB'>/</span><span class='hljl-n'>rho</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-n'>Jac</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>rho</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>0</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>rho_0</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>theta</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>0</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-n'>PI</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>phi</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>0</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>PI</span><span class='hljl-p'>))</span>
</pre>
<div class="well well-sm">\begin{equation*}4 \pi \rho_{0}\end{equation*}</div>
<h5>Example: Continuity equation (Schey)</h5>
<p>Imagine a venue with a strict cap on the number of persons at one time. Two ways to monitor this are: at given times, a count, or census, of all the people in the venue can be made. Or, when possible, a count of people coming in can be compared to a count of people coming out and the difference should yield the number within. Either works well when access is limited and the venue small, but the latter can also work well on a larger scale. For example, for the subway system of New York it would be impractical to attempt to count all the people at a given time using a census, but from turnstile data an accurate count can be had, as turnstiles can be used to track people coming in and going out. But turnstiles can be restricting and cause long(ish) lines. At some stores, new technology is allowing checkout-free shopping. Imagine if each customer had an app on their phone that can be used to track location. As they enter a store, they can be recorded, as they exit they can be recorded and if RFID tags are on each item in the store, their "purchases" can be tallied up and billed through the app. (As an added bonus to paying fewer cashiers, stores can also track on a step-by-step basis how a customer interacts with the store.) In any of these three scenarios, a simple thing applies: the total number of people in a confined region can be counted by counting how many crossed the boundary (and in which direction) and the change in time of the count can be related to the change in time of the people crossing.</p>
<p>For a more real world example, the <a href=" https://www.nytimes.com/interactive/2019/07/03/world/asia/hong-kong-protest-crowd-ai.html">New York Times</a> ran an article about estimating the size of a large protest in Hong Kong:</p>
<blockquote>
<p>Crowd estimates for Hong Kong’s large pro-democracy protests have been a point of contention for years. The organizers and the police often release vastly divergent estimates. This year’s annual pro-democracy protest on Monday, July 1, was no different. Organizers announced 550,000 people attended; the police said 190,000 people were there at the peak.</p>
</blockquote>
<blockquote>
<p>But for the first time in the march’s history, a group of researchers combined artificial intelligence and manual counting techniques to estimate the size of the crowd, concluding that 265,000 people marched.</p>
</blockquote>
<blockquote>
<p>On Monday, the A.I. team attached seven iPads to two major footbridges along the march route. Volunteers doing manual counts were also stationed next to the cameras, to help verify the computer count.</p>
</blockquote>
<p>The article describes some issues in counting such a large group:</p>
<blockquote>
<p>The high density of the crowd and the moving nature of these protests make estimating the turnout very challenging. For more than a decade, groups have stationed teams along the route and manually counted the rate of people passing through to derive the total number of participants.</p>
</blockquote>
<p>As there are no turnstiles to do an accurate count and too many points to come and go, this technique can be too approximate. The article describes how artificial intelligence was used to count the participants. The Times tried their own hand:</p>
<blockquote>
<p>Analyzing a short video clip recorded on Monday, The Times’s model tried to detect people based on color and shape, and then tracked the figures as they moved across the screen. This method helps avoid double counting because the crowd generally flowed in one direction.</p>
</blockquote>
<p>The divergence theorem provides two means to compute a value, the point here is to illustrate that there are (at least) two possible ways to compute crowd size. Which is better depends on the situation.</p>
<hr />
<p>Following Schey, we now consider a continuous analog to the crowd counting problem through a flow with a non-uniform density that may vary in time. Let <span class="math">$\rho(x,y,z;t)$</span> be the time-varying density and <span class="math">$v(x,y,z;t)$</span> be a vector field indicating the direction of flow. Consider some three-dimensional volume, <span class="math">$V$</span>, with boundary <span class="math">$S$</span> (though two-dimensional would also be applicable). Then these integrals have interpretations:</p>
<p class="math">\[
~
\begin{align}
\iiint_V \rho dV &&\quad\text{Amount contained within }V\\
\frac{\partial}{\partial{t}} \iiint_V \rho dV &=
\iiint_V \frac{\partial{\rho}}{\partial{t}} dV &\quad\text{Change in time of amount contained within }V
\end{align}
~
\]</p>
<p>Moving the derivative inside the integral requires an assumption of continuity. Assume the material is <em>conserved</em>, meaning that if the amount in the volume <span class="math">$V$</span> changes it must flow in and out through the boundary. The flow out through <span class="math">$S$</span>, the boundary of <span class="math">$V$</span>, is</p>
<p class="math">\[
~
\oint_S (\rho v)\cdot\hat{N} dS,
~
\]</p>
<p>using the customary outward pointing normal for the orientation of <span class="math">$S$</span>.</p>
<p>So we have:</p>
<p class="math">\[
~
\iiint_V \frac{\partial{\rho}}{\partial{t}} dV =
-\oint_S (\rho v)\cdot\hat{N} dS = - \iiint_V \nabla\cdot\left(\rho v\right)dV.
~
\]</p>
<p>The last equality by the divergence theorem, the minus sign as a positive change in amount within <span class="math">$V$</span> means flow <em>opposite</em> the outward pointing normal for <span class="math">$S$</span>.</p>
<p>The volume <span class="math">$V$</span> was arbitrary. While it isn't the case that two integrals being equal implies the integrands are equal, it is the case that if the two integrals are equal for all volumes and the two integrands are continuous, then they are equal.</p>
<p>That is, under the <em>assumptions</em> that material is conserved and density is continuous a continuity equation can be derived from the divergence theorem:</p>
<p class="math">\[
~
\nabla\cdot(\rho v) = - \frac{\partial{\rho}}{dt}.
~
\]</p>
<h5>Example: The divergence theorem can fail to apply</h5>
<p>The assumption of the divergence theorem that the vector field by <em>continuously</em> differentiable is important, as otherwise it may not hold. With <span class="math">$R(x,y,z) = \langle x,y,z\rangle$</span> take for example <span class="math">$F = (R/\|R\|) / \|R\|^2)$</span>. This has divergence</p>
<pre class='hljl'>
<span class='hljl-nf'>R</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>]</span><span class='hljl-t'>
</span><span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>R</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>/</span><span class='hljl-t'> </span><span class='hljl-nf'>norm</span><span class='hljl-p'>(</span><span class='hljl-nf'>R</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>))</span><span class='hljl-oB'>^</span><span class='hljl-ni'>3</span><span class='hljl-t'>
</span><span class='hljl-nd'>@vars</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-t'> </span><span class='hljl-n'>z</span><span class='hljl-t'> </span><span class='hljl-n'>real</span><span class='hljl-oB'>=</span><span class='hljl-kc'>true</span><span class='hljl-t'>
</span><span class='hljl-nf'>divergence</span><span class='hljl-p'>(</span><span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>])</span><span class='hljl-t'> </span><span class='hljl-oB'>|></span><span class='hljl-t'> </span><span class='hljl-n'>simplify</span>
</pre>
<div class="well well-sm">\begin{equation*}0\end{equation*}</div>
<p>The simplification done by SymPy masks the presence of <span class="math">$R^{-5/2}$</span> when taking the partial derivatives, which means the field is <em>not</em> continuously differentiable at the origin.</p>
<p><em>Were</em> the divergence theorem applicable, then the integral of <span class="math">$F$</span> over the unit sphere would mean:</p>
<p class="math">\[
~
0 = \iiint_V \nabla\cdot{F} dV =
\oint_S F\cdot{N}dS = \oint_S \frac{R}{\|R\|^3} \cdot{R} dS =
\oint_S 1 dS = 4\pi.
~
\]</p>
<p>Clearly, as <span class="math">$0$</span> is not equal to <span class="math">$4\pi$</span>, the divergence theorem can not apply.</p>
<p>However, it <em>does</em> apply to any volume not enclosing the origin. So without any calculation, if <span class="math">$V$</span> were shifted over by <span class="math">$2$</span> units the volume integral over <span class="math">$V$</span> would be <span class="math">$0$</span> and the surface integral over <span class="math">$S$</span> would be also.</p>
<p>As already seen, the inverse square law here arises in the electrostatic force formula, and this same observation was made in the context of Gauss's law.</p>
<h2>Questions</h2>
<h6>Question</h6>
<p>(Schey) What conditions on <span class="math">$F: R^2 \rightarrow R^2$</span> imply <span class="math">$\oint_C F\cdot d\vec{r} = A$</span>? (<span class="math">$A$</span> is the area bounded by the simple, closed curve <span class="math">$C$</span>)</p>
<form name="WeaveQuestion" data-id="b755uVpz" data-controltype="radio">
<div class="form-group ">
<div class="radio">
<label>
<input type="radio" name="radio_b755uVpz" value="1"><div class="markdown"><p>We must have $\text{curl}(F) = x$</p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_b755uVpz" value="2"><div class="markdown"><p>We must have $\text{curl}(F) = 0$</p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_b755uVpz" value="3"><div class="markdown"><p>We must have $\text{curl}(F) = 1$</p>
</div>
</label>
</div>
<div id="b755uVpz_message"></div>
</div>
</form>
<script text="text/javascript">
$("input:radio[name='radio_b755uVpz']").on("change", function() {
correct = this.value == 3;
if(correct) {
$("#b755uVpz_message").html("<div class='alert alert-success'><span class='glyphicon glyphicon-thumbs-up'> Correct</span></div>");
} else {
$("#b755uVpz_message").html("<div class='alert alert-warning'><span class='glyphicon glyphicon-thumbs-down'> Incorrect</span></div>");
}
});
</script>
<h6>Question</h6>
<p>For <span class="math">$C$</span>, a simple, closed curve parameterized by <span class="math">$\vec{r}(t) = \langle x(t), y(t) \rangle$</span>, <span class="math">$a \leq t \leq b$</span>. The area contained can be computed by <span class="math">$\int_a^b x(t) y'(t) dt$</span>. Let <span class="math">$\vec{r}(t) = \sin(t) \cdot \langle \cos(t), \sin(t)\rangle$</span>.</p>
<p>Find the area inside <span class="math">$C$</span></p>
<form name='WeaveQuestion' data-id='61iGXKde' data-controltype='numeric'>
<div class='form-group '>
<div class='controls'>
<div class="input-group">
<input id="61iGXKde" type="number" class="form-control">
</div>
<div id='61iGXKde_message'></div>
</div>
</div>
</form>
<script text='text/javascript'>
$('#61iGXKde').on('change', function() {
correct = Math.abs(this.value - 1.5707963267948966) <= 0.001;
if(correct) {
$('#61iGXKde_message').html('<div class="alert alert-success"><span class="glyphicon glyphicon-thumbs-up"> Correct</span></div>');
} else {
$('#61iGXKde_message').html('<div class="alert alert-danger"><span class="glyphicon glyphicon-thumbs-down"> Incorrect</span></div>');
}
});
</script>
<h6>Question</h6>
<p>Let <span class="math">$\hat{N} = \langle \cos(t), \sin(t) \rangle$</span> and <span class="math">$\hat{T} = \langle -\sin(t), \cos(t)\rangle$</span>. Then polar coordinates can be viewed as the parametric curve <span class="math">$\vec{r}(t) = r(t) \hat{N}$</span>.</p>
<p>Applying Green's theorem to the vector field <span class="math">$F = \langle -y, x\rangle$</span> which along the curve is <span class="math">$r(t) \hat{T}$</span> we know the area formula <span class="math">$(1/2) (\int xdy - \int y dx)$</span>. What is this in polar coordinates (using <span class="math">$\theta=t$</span>?) (Using <span class="math">$(r\hat{N}' = r'\hat{N} + r \hat{N}' = r'\hat{N} +r\hat{T}$</span> is useful.)</p>
<form name="WeaveQuestion" data-id="y94qS83n" data-controltype="radio">
<div class="form-group ">
<div class="radio">
<label>
<input type="radio" name="radio_y94qS83n" value="1"><div class="markdown">$\int rd\theta$
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_y94qS83n" value="2"><div class="markdown">$(1/2) \int r d\theta$
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_y94qS83n" value="3"><div class="markdown">$\int r^2 d\theta$
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_y94qS83n" value="4"><div class="markdown">$(1/2) \int r^2d\theta$
</div>
</label>
</div>
<div id="y94qS83n_message"></div>
</div>
</form>
<script text="text/javascript">
$("input:radio[name='radio_y94qS83n']").on("change", function() {
correct = this.value == 4;
if(correct) {
$("#y94qS83n_message").html("<div class='alert alert-success'><span class='glyphicon glyphicon-thumbs-up'> Correct</span></div>");
} else {
$("#y94qS83n_message").html("<div class='alert alert-warning'><span class='glyphicon glyphicon-thumbs-down'> Incorrect</span></div>");
}
});