forked from CalculusWithJulia/CalculusWithJulia.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
div_grad_curl.html
11970 lines (11681 loc) · 734 KB
/
div_grad_curl.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/css/bootstrap.min.css"
rel="stylesheet">
<style>
.julia {display: block; font-family: "Source Code Pro";
color:#0033CC;
}
.hljl {font-family: "Source Code Pro";
color:#0033CC;
}
body { padding-top: 60px; }
h5:before {content:"\2746\ ";}
h6:before {content:"\2742\ ";}
pre {display: block;}
th, td {
padding: 15px;
text-align: left;
border-bottom: 1px solid #ddd;
}
tr:hover {background-color: #f5f5f5;}
.admonition-title:before {content:"\2746\ ";}
.admonition-title { color:#0033CC}
</style>
<!-- .julia:before {content: "julia> "} -->
<style></style>
<script src="https://code.jquery.com/jquery.js"></script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ["\$","\$"], ["\\(","\\)"]]
},
displayAlign: "left",
displayIndent: "5%"
});
</script>
<!-- not TeX-AMS-MML_HTMLorMML-->
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML" async></script>
</script>
<script>
window.PlotlyConfig = {MathJaxConfig: 'local'}
</script>
<script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
<script type="text/javascript">
$( document ).ready(function() {
$("h1").each(function(index) {
var title = $( this ).text()
$("#page_title").html("<strong>" + title + "</strong>");
document.title = title
});
$( "h2" ).each(function( index ) {
var nm = $( this ).text();
var id = $.trim(nm).replace(/ /g,'');
this.id = id
$("#page_dropdown").append("<li><a href='#" + id + "'>" + nm + "</a></li>");
});
$('[data-toggle="popover"]').popover();
});
</script>
</head>
<body data-spy="scroll" >
<nav class="navbar navbar-default navbar-fixed-top">
<div class="container-fluid">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
</div>
<!-- Collect the nav links, forms, and other content for toggling -->
<div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
<ul class="nav navbar-nav">
<li><a href="#" id="page_title"></a></li>
</ul>
<ul class="nav navbar-nav navbar-right">
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Jump to... <span class="caret"></span></a>
<ul class="dropdown-menu" role="menu" id="page_dropdown"></ul>
</li>
</ul>
</div><!-- /.navbar-collapse -->
</div><!-- /.container-fluid -->
</nav>
<header>
</header>
<div class="title">
</div>
<div class="container-fluid">
<div class="span10 offset1">
<h1>The Gradient, Divergence, and Curl</h1>
<p>The gradient of a scalar function <span class="math">$f:R^n \rightarrow R$</span> is a vector field of partial derivatives. In <span class="math">$R^2$</span>, we have:</p>
<p class="math">\[
~
\nabla{f} = \langle \frac{\partial{f}}{\partial{x}},
\frac{\partial{f}}{\partial{y}} \rangle.
~
\]</p>
<p>It has the interpretation of pointing out the direction of greatest ascent for the surface <span class="math">$z=f(x,y)$</span>.</p>
<p>We move now to two other operations, the divergence and the curl, which combine to give a language to describe vector fields in <span class="math">$R^3$</span>.</p>
<pre class='hljl'>
<span class='hljl-k'>using</span><span class='hljl-t'> </span><span class='hljl-n'>CalculusWithJulia</span>
</pre>
<h2>The divergence</h2>
<p>Let <span class="math">$F:R^3 \rightarrow R^3 = \langle F_x, F_y, F_z\rangle$</span> be a vector field. Consider now a small box-like region, <span class="math">$R$</span>, with surface, <span class="math">$S$</span>, on the cartesian grid, with sides of length <span class="math">$\Delta x$</span>, <span class="math">$\Delta y$</span>, and <span class="math">$\Delta z$</span> with <span class="math">$(x,y,z)$</span> being one corner. The outward pointing unit normals are <span class="math">$\pm \hat{i}, \pm\hat{j},$</span> and <span class="math">$\pm\hat{k}$</span>.</p>
<img src="" />
<p>Consider the sides with outward normal <span class="math">$\hat{i}$</span>. The contribution to the surface integral, <span class="math">$\oint_S (F\cdot\hat{N})dS$</span>, could be <em>approximated</em> by</p>
<p class="math">\[
~
\left(F(x + \Delta x, y, z) \cdot \hat{i}\right) \Delta y \Delta z,
~
\]</p>
<p>whereas, the contribution for the face with outward normal <span class="math">$-\hat{i}$</span> could be approximated by:</p>
<p class="math">\[
~
\left(F(x, y, z) \cdot (-\hat{i}) \right) \Delta y \Delta z.
~
\]</p>
<p>The functions are being evaluated at a point on the face of the surface. For Riemann integrable functions, any point in a partition may be chosen, so our choice will not restrict the generality.</p>
<p>The total contribution of the two would be:</p>
<p class="math">\[
~
\left(F(x + \Delta x, y, z) \cdot \hat{i}\right) \Delta y \Delta z +
\left(F(x, y, z) \cdot (-\hat{i})\right) \Delta y \Delta z =
\left(F_x(x + \Delta x, y, z) - F_x(x, y, z)\right) \Delta y \Delta z,
~
\]</p>
<p>as <span class="math">$F \cdot \hat{i} = F_x$</span>.</p>
<p><em>Were</em> we to divide by <span class="math">$\Delta V = \Delta x \Delta y \Delta z$</span> <em>and</em> take a limit as the volume shrinks, the limit would be <span class="math">$\partial{F}/\partial{x}$</span>.</p>
<p>If this is repeated for the other two pair of matching faces, we get a definition for the <em>divergence</em>:</p>
<blockquote>
<p>The <em>divergence</em> of a vector field <span class="math">$F:R^3 \rightarrow R^3$</span> is given by <span class="math">$~ \text{divergence}(F) = \lim \frac{1}{\Delta V} \oint_S F\cdot\hat{N} dS = \frac{\partial{F_x}}{\partial{x}} +\frac{\partial{F_y}}{\partial{y}} +\frac{\partial{F_z}}{\partial{z}}. ~$</span></p>
</blockquote>
<p>The limit expression for the divergence will hold for any smooth closed surface, <span class="math">$S$</span>, converging on <span class="math">$(x,y,z)$</span>, not just box-like ones.</p>
<h3>General <span class="math">$n$</span></h3>
<p>The derivation of the divergence is done for <span class="math">$n=3$</span>, but could also have easily been done for two dimensions (<span class="math">$n=2$</span>) or higher dimensions <span class="math">$n>3$</span>. The formula in general would be: for <span class="math">$F(x_1, x_2, \dots, x_n): R^n \rightarrow R^n$</span>:</p>
<p class="math">\[
~
\text{divergence}(F) = \sum_{i=1}^n \frac{\partial{F_i}}{\partial{x_i}}.
~
\]</p>
<hr />
<p>In <code>Julia</code>, the divergence can be implemented different ways depending on how the problem is presented. Here are two functions from the <code>CalculusWithJulia</code> package for when the problem is symbolic or numeric:</p>
<pre class='hljl'>
<span class='hljl-nf'>divergence</span><span class='hljl-p'>(</span><span class='hljl-n'>F</span><span class='hljl-oB'>::</span><span class='hljl-nf'>Vector</span><span class='hljl-p'>{</span><span class='hljl-n'>Sym</span><span class='hljl-p'>},</span><span class='hljl-t'> </span><span class='hljl-n'>vars</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>sum</span><span class='hljl-p'>(</span><span class='hljl-n'>diff</span><span class='hljl-oB'>.</span><span class='hljl-p'>(</span><span class='hljl-n'>F</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>vars</span><span class='hljl-p'>))</span><span class='hljl-t'>
</span><span class='hljl-nf'>divergence</span><span class='hljl-p'>(</span><span class='hljl-n'>F</span><span class='hljl-oB'>::</span><span class='hljl-n'>Function</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>pt</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>sum</span><span class='hljl-p'>(</span><span class='hljl-nf'>diag</span><span class='hljl-p'>(</span><span class='hljl-n'>ForwardDiff</span><span class='hljl-oB'>.</span><span class='hljl-nf'>jacobian</span><span class='hljl-p'>(</span><span class='hljl-n'>F</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>pt</span><span class='hljl-p'>)))</span>
</pre>
<p>The latter being a bit inefficient, as all <span class="math">$n^2$</span> partial derivatives are found, but only the <span class="math">$n$</span> diagonal ones are used.</p>
<h2>The curl</h2>
<p>Before considering the curl for <span class="math">$n=3$</span>, we derive a related quantity in <span class="math">$n=2$</span>. The "curl" will be a measure of the microscopic circulation of a vector field. To that end we consider a microscopic box-region in <span class="math">$R^2$</span>:</p>
<img src="" />
<p>Let <span class="math">$F=\langle F_x, F_y\rangle$</span>. For small enough values of <span class="math">$\Delta{x}$</span> and <span class="math">$\Delta{y}$</span> the line integral, <span class="math">$\oint_C F\cdot d\vec{r}$</span> can be <em>approximated</em> by <span class="math">$4$</span> terms:</p>
<p class="math">\[
~
\begin{align}
\left(F(x,y) \cdot \hat{i}\right)\Delta{x} &+
\left(F(x+\Delta{x},y) \cdot \hat{j}\right)\Delta{y} +
\left(F(x,y+\Delta{y}) \cdot (-\hat{i})\right)\Delta{x} +
\left(F(x,y) \cdot (-\hat{j})\right)\Delta{x}\\
&=
F_x(x,y) \Delta{x} + F_y(x+\Delta{x},y)\Delta{y} +
F_x(x, y+\Delta{y}) (-\Delta{x}) + F_y(x,y) (-\Delta{y})\\
&=
(F_y(x + \Delta{x}, y) - F_y(x, y))\Delta{y} -
(F_x(x, y+\Delta{y})-F_x(x,y))\Delta{x}.
\end{align}
~
\]</p>
<p>The Riemann approximation allows a choice of evaluation point for Riemann integrable functions, and the choice here lends itself to further analysis. Were the above divided by <span class="math">$\Delta{x}\Delta{y}$</span>, the area of the box, and a limit taken, partial derivatives appear to suggest this formula:</p>
<p class="math">\[
~
\lim \frac{1}{\Delta{x}\Delta{y}} \oint_C F\cdot d\vec{r} =
\frac{\partial{F_y}}{\partial{x}} - \frac{\partial{F_x}}{\partial{y}}.
~
\]</p>
<p>The scalar function on the right hand side is called the (two-dimensional) curl of <span class="math">$F$</span> and the left-hand side lends itself as a measure of the microscopic circulation of the vector field, <span class="math">$F:R^2 \rightarrow R^2$</span>.</p>
<hr />
<p>Consider now a similar scenario for the <span class="math">$n=3$</span> case. Let <span class="math">$F=\langle F_x, F_y,F_z\rangle$</span> be a vector field and <span class="math">$S$</span> a box-like region with side lengths <span class="math">$\Delta x$</span>, <span class="math">$\Delta y$</span>, and <span class="math">$\Delta z$</span>, anchored at <span class="math">$(x,y,z)$</span>.</p>
<img src="" />
<p>The box-like volume in space with the top area, with normal <span class="math">$\hat{k}$</span>, designated as <span class="math">$S_1$</span>. The curve <span class="math">$C_1$</span> traces around <span class="math">$S_1$</span> in a counter clockwise manner, consistent with the right-hand rule pointing in the outward normal direction. The face <span class="math">$S_1$</span> with unit normal <span class="math">$\hat{k}$</span> looks like:</p>
<img src="" />
<p>Now we compute the <em>line integral</em>. Consider the top face, <span class="math">$S_1$</span>, connecting <span class="math">$(x,y,z+\Delta z), (x + \Delta x, y, z + \Delta z), (x + \Delta x, y + \Delta y, z + \Delta z), (x, y + \Delta y, z + \Delta z)$</span>, Using the <em>right hand rule</em>, parameterize the boundary curve, <span class="math">$C_1$</span>, in a counter clockwise direction so the right hand rule yields the outward pointing normal (<span class="math">$\hat{k}$</span>). Then the integral <span class="math">$\oint_{C_1} F\cdot \hat{T} ds$</span> is <em>approximated</em> by the following Riemann sum of <span class="math">$4$</span> terms:</p>
<p class="math">\[
~
F(x,y, z+\Delta{z}) \cdot \hat{i}\Delta{x} +
F(x+\Delta x, y, z+\Delta{z}) \cdot \hat{j} \Delta y +
F(x, y+\Delta y, z+\Delta{z}) \cdot (-\hat{i}) \Delta{x} +
F(x, y, z+\Delta{z}) \cdot (-\hat{j}) \Delta{y}.
~
\]</p>
<p>(The points <span class="math">$c_i$</span> are chosen from the endpoints of the line segments.)</p>
<p class="math">\[
~
\oint_{C_1} F\cdot \hat{T} ds \approx
(F_y(x+\Delta x, y, z+\Delta{z}) - F_y(x, y, z+\Delta{z})) \Delta{y} -
(F_x(x,y + \Delta{y}, z+\Delta{z}) - F_x(x, y, z+\Delta{z})) \Delta{x}
~
\]</p>
<p>As before, were this divided by the <em>area</em> of the surface, we have after rearranging and cancellation:</p>
<p class="math">\[
~
\frac{1}{\Delta{S_1}} \oint_{C_1} F \cdot \hat{T} ds \approx
\frac{F_y(x+\Delta x, y, z+\Delta{z}) - F_y(x, y, z+\Delta{z})}{\Delta{x}}
-
\frac{F_x(x, y+\Delta y, z+\Delta{z})-F_x(x, y, z+\Delta{z})}{\Delta{y}}.
~
\]</p>
<p>In the limit, as <span class="math">$\Delta{S} \rightarrow 0$</span>, this will converge to <span class="math">$\partial{F_y}/\partial{x}-\partial{F_x}/\partial{y}$</span>.</p>
<p>Had the bottom of the box been used, a similar result would be found, up to a minus sign.</p>
<p>Unlike the two dimensional case, there are other directions to consider and here the other sides will yield different answers. Consider now the face connecting <span class="math">$(x,y,z), (x+\Delta{x}, y, z), (x+\Delta{x}, y, z + \Delta{z})$</span>, and $ (x,y,z+\Delta{z})$ with outward pointing normal <span class="math">$-\hat{j}$</span>. Let <span class="math">$S_2$</span> denote this face and <span class="math">$C_2$</span> describe its boundary. Orient this curve so that the right hand rule points in the <span class="math">$-\hat{j}$</span> direction (the outward pointing normal). Then, as before, we can approximate:</p>
<p class="math">\[
~
\begin{align}
\oint_{C_2} F \cdot \hat{T} ds
&\approx
F(x,y,z) \cdot \hat{i} \Delta{x} +
F(x+\Delta{x},y,z) \cdot \hat{k} \Delta{z} +
F(x,y,z+\Delta{z}) \cdot (-\hat{i}) \Delta{x} +
F(x, y, z) \cdot (-\hat{k}) \Delta{z}\\
&= (F_z(x+\Delta{x},y,z) - F_z(x, y, z))\Delta{z} -
(F_x(x,y,z+\Delta{z}) - F(x,y,z)) \Delta{x}.
\end{align}
~
\]</p>
<p>Dividing by <span class="math">$\Delta{S}=\Delta{x}\Delta{z}$</span> and taking a limit will give:</p>
<p class="math">\[
~
\lim \frac{1}{\Delta{S}} \oint_{C_2} F \cdot \hat{T} ds =
\frac{\partial{F_z}}{\partial{x}} - \frac{\partial{F_x}}{\partial{z}}.
~
\]</p>
<p>Had, the opposite face with outward normal <span class="math">$\hat{j}$</span> been chosen, the answer would differ by a factor of <span class="math">$-1$</span>.</p>
<p>Similarly, let <span class="math">$S_3$</span> be the face with outward normal <span class="math">$\hat{i}$</span> and curve <span class="math">$C_3$</span> bounding it with parameterization chosen so that the right hand rule points in the direction of <span class="math">$\hat{i}$</span>. This will give</p>
<p class="math">\[
~
\lim \frac{1}{\Delta{S}} \oint_{C_3} F \cdot \hat{T} ds =
\frac{\partial{F_z}}{\partial{y}} - \frac{\partial{F_y}}{\partial{z}}.
~
\]</p>
<p>In short, depending on the face chosen, a different answer is given, but all have the same type.</p>
<blockquote>
<p>Define the <em>curl</em> of a <span class="math">$3$</span>-dimensional vector field <span class="math">$F=\langle F_x,F_y,F_z\rangle$</span> by: <span class="math">$~ \text{curl}(F) = \langle \frac{\partial{F_z}}{\partial{y}} - \frac{\partial{F_y}}{\partial{z}}, \frac{\partial{F_x}}{\partial{z}} - \frac{\partial{F_z}}{\partial{x}}, \frac{\partial{F_y}}{\partial{x}} - \frac{\partial{F_x}}{\partial{y}} \rangle. ~$</span></p>
</blockquote>
<p>If <span class="math">$S$</span> is some surface with closed boundary <span class="math">$C$</span> oriented so that the unit normal, <span class="math">$\hat{N}$</span>, of <span class="math">$S$</span> is given by the right hand rule about <span class="math">$C$</span>, then</p>
<p class="math">\[
~
\hat{N} \cdot \text{curl}(F) = \lim \frac{1}{\Delta{S}} \oint_C F \cdot \hat{T} ds.
~
\]</p>
<p>The curl has a formal representation in terms of a <span class="math">$3\times 3$</span> determinant, similar to that used to compute the cross product, that is useful for computation:</p>
<p class="math">\[
~
\text{curl}(F) = \det\left[
\begin{array}{}
\hat{i} & \hat{j} & \hat{k}\\
\frac{\partial}{\partial{x}} & \frac{\partial}{\partial{y}} & \frac{\partial}{\partial{z}}\\
F_x & F_y & F_z
\end{array}
\right]
~
\]</p>
<hr />
<p>In <code>Julia</code>, the curl can be implemented different ways depending on how the problem is presented. We will use the Jacobian matrix to compute the required partials. If the Jacobian is known, this function from the <code>CalculusWithJulia</code> package will combine the off-diagonal terms appropriately:</p>
<pre class='hljl'>
<span class='hljl-k'>function</span><span class='hljl-t'> </span><span class='hljl-nf'>curl</span><span class='hljl-p'>(</span><span class='hljl-n'>J</span><span class='hljl-oB'>::</span><span class='hljl-n'>Matrix</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>Mx</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>Nx</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>Px</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>My</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>Ny</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>Py</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>Mz</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>Nz</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>Pz</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>J</span><span class='hljl-t'>
</span><span class='hljl-p'>[</span><span class='hljl-n'>Py</span><span class='hljl-oB'>-</span><span class='hljl-n'>Nz</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>Mz</span><span class='hljl-oB'>-</span><span class='hljl-n'>Px</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>Nx</span><span class='hljl-oB'>-</span><span class='hljl-n'>My</span><span class='hljl-p'>]</span><span class='hljl-t'> </span><span class='hljl-cs'># ∇×VF</span><span class='hljl-t'>
</span><span class='hljl-k'>end</span>
</pre>
<p>The computation of the Jacobian differs whether the problem is treated numerically or symbolically. Here are two functions:</p>
<pre class='hljl'>
<span class='hljl-nf'>curl</span><span class='hljl-p'>(</span><span class='hljl-n'>F</span><span class='hljl-oB'>::</span><span class='hljl-nf'>Vector</span><span class='hljl-p'>{</span><span class='hljl-n'>Sym</span><span class='hljl-p'>},</span><span class='hljl-t'> </span><span class='hljl-n'>vars</span><span class='hljl-oB'>=</span><span class='hljl-nf'>free_symbols</span><span class='hljl-p'>(</span><span class='hljl-n'>F</span><span class='hljl-p'>))</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>curl</span><span class='hljl-p'>(</span><span class='hljl-n'>F</span><span class='hljl-oB'>.</span><span class='hljl-nf'>jacobian</span><span class='hljl-p'>(</span><span class='hljl-n'>vars</span><span class='hljl-p'>))</span><span class='hljl-t'>
</span><span class='hljl-nf'>curl</span><span class='hljl-p'>(</span><span class='hljl-n'>F</span><span class='hljl-oB'>::</span><span class='hljl-n'>Function</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>pt</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>curl</span><span class='hljl-p'>(</span><span class='hljl-n'>ForwardDiff</span><span class='hljl-oB'>.</span><span class='hljl-nf'>jacobian</span><span class='hljl-p'>(</span><span class='hljl-n'>F</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>pt</span><span class='hljl-p'>))</span>
</pre>
<h3>The <span class="math">$\nabla$</span> (del) operator</h3>
<p>The divergence, gradient, and curl all involve partial derivatives. There is a notation employed that can express the operations more succinctly. Let the <a href="https://en.wikipedia.org/wiki/Del">Del operator</a> be defined in Cartesian coordinates by the formal expression:</p>
<blockquote>
<p class="math">\[
~
\nabla = \langle
\frac{\partial}{\partial{x}},
\frac{\partial}{\partial{y}},
\frac{\partial}{\partial{z}}
\rangle.
~
\]</p>
</blockquote>
<p>This is a <em>vector differential operator</em> that acts on functions and vector fields through the typical notation to yield the three operations:</p>
<p class="math">\[
~
\begin{align}
\nabla{f} &= \langle
\frac{\partial{f}}{\partial{x}},
\frac{\partial{f}}{\partial{y}},
\frac{\partial{f}}{\partial{z}}
\rangle, \quad\text{the gradient;}\\
\nabla\cdot{F} &= \langle
\frac{\partial}{\partial{x}},
\frac{\partial}{\partial{y}},
\frac{\partial}{\partial{z}}
\rangle \cdot F =
\langle
\frac{\partial}{\partial{x}},
\frac{\partial}{\partial{y}},
\frac{\partial}{\partial{z}}
\rangle \cdot
\langle F_x, F_y, F_z \rangle =
\frac{\partial{F_x}}{\partial{x}} +
\frac{\partial{F_y}}{\partial{y}} +
\frac{\partial{F_z}}{\partial{z}},\quad\text{the divergence;}\\
\nabla\times F &= \langle
\frac{\partial}{\partial{x}},
\frac{\partial}{\partial{y}},
\frac{\partial}{\partial{z}}
\rangle \times F =
\det\left[
\begin{array}{}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial{x}}&
\frac{\partial}{\partial{y}}&
\frac{\partial}{\partial{z}}\\
F_x & F_y & F_z
\end{array}
\right],\quad\text{the curl}.
\end{align}
~
\]</p>
<div class="alert alert-info" role="alert">
<div class="markdown"><p>Mathematically operators have not been seen previously, but the concept of an operation on a function that returns another function is a common one when using <code>Julia</code>. We have seen many examples (<code>plot</code>, <code>D</code>, <code>quadgk</code>, etc.). In computer science such functions are called <em>higher order</em> functions, as they accept arguments which are also functions.</p>
</div>
</div>
<hr />
<p>In the <code>CalculusWithJulia</code> package, the constant <code>\nabla[\tab]</code>, producing <span class="math">$\nabla$</span> implements this operator for functions and symbolic expressions.</p>
<pre class='hljl'>
<span class='hljl-nf'>f</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-oB'>*</span><span class='hljl-n'>y</span><span class='hljl-oB'>*</span><span class='hljl-n'>z</span><span class='hljl-t'>
</span><span class='hljl-nf'>f</span><span class='hljl-p'>(</span><span class='hljl-n'>v</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>f</span><span class='hljl-p'>(</span><span class='hljl-n'>v</span><span class='hljl-oB'>...</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>z</span><span class='hljl-p'>]</span><span class='hljl-t'>
</span><span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>v</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>v</span><span class='hljl-oB'>...</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-nd'>@vars</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-t'> </span><span class='hljl-n'>z</span><span class='hljl-t'>
</span><span class='hljl-nf'>∇</span><span class='hljl-p'>(</span><span class='hljl-nf'>f</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>))</span><span class='hljl-t'> </span><span class='hljl-cs'># symbolic operation on the symbolic expression f(x,y,z)</span>
</pre>
<div class="well well-sm">\[ \left[ \begin{array}{r}y z\\x z\\x y\end{array} \right] \]</div>
<p>This usage of <code>∇</code> takes partial derivatives according to the order given by:</p>
<pre class='hljl'>
<span class='hljl-nf'>free_symbols</span><span class='hljl-p'>(</span><span class='hljl-nf'>f</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>))</span>
</pre>
<div class="well well-sm">\[ \left[ \begin{array}{r}x\\y\\z\end{array} \right] \]</div>
<p>which may <strong>not</strong> be as desired. In this case, the variables can be specified using a tuple to pair up the expression with the variables to differentiate against:</p>
<pre class='hljl'>
<span class='hljl-nf'>∇</span><span class='hljl-p'>(</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-nf'>f</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>])</span><span class='hljl-t'> </span><span class='hljl-p'>)</span>
</pre>
<div class="well well-sm">\[ \left[ \begin{array}{r}y z\\x z\\x y\end{array} \right] \]</div>
<p>For numeric expressions, we have:</p>
<pre class='hljl'>
<span class='hljl-nf'>∇</span><span class='hljl-p'>(</span><span class='hljl-n'>f</span><span class='hljl-p'>)(</span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-ni'>2</span><span class='hljl-p'>,</span><span class='hljl-ni'>3</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-cs'># a numeric computation. Also can call with a point [1,2,3]</span>
</pre>
<pre class="output">
3-element Array{Int64,1}:
6
3
2
</pre>
<p>(The extra parentheses are unfortunate. Here <code>∇</code> is called like a function.)</p>
<p>The divergence can be found symbolically:</p>
<pre class='hljl'>
<span class='hljl-n'>∇</span><span class='hljl-t'> </span><span class='hljl-oB'>⋅</span><span class='hljl-t'> </span><span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>)</span>
</pre>
<div class="well well-sm">\begin{equation*}3\end{equation*}</div>
<p>Or numerically:</p>
<pre class='hljl'>
<span class='hljl-p'>(</span><span class='hljl-n'>∇</span><span class='hljl-t'> </span><span class='hljl-oB'>⋅</span><span class='hljl-t'> </span><span class='hljl-n'>F</span><span class='hljl-p'>)(</span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-ni'>2</span><span class='hljl-p'>,</span><span class='hljl-ni'>3</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-cs'># a numeric computation. Also can call (∇ ⋅ F)([1,2,3])</span>
</pre>
<pre class="output">
3.0
</pre>
<p>Similarly, the curl. Symbolically:</p>
<pre class='hljl'>
<span class='hljl-n'>∇</span><span class='hljl-t'> </span><span class='hljl-oB'>×</span><span class='hljl-t'> </span><span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>)</span>
</pre>
<div class="well well-sm">\[ \left[ \begin{array}{r}0\\0\\0\end{array} \right] \]</div>
<p>and numerically:</p>
<pre class='hljl'>
<span class='hljl-p'>(</span><span class='hljl-n'>∇</span><span class='hljl-t'> </span><span class='hljl-oB'>×</span><span class='hljl-t'> </span><span class='hljl-n'>F</span><span class='hljl-p'>)(</span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-ni'>2</span><span class='hljl-p'>,</span><span class='hljl-ni'>3</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-cs'># numeric. Also can call (∇ × F)([1,2,3])</span>
</pre>
<pre class="output">
3-element Array{Float64,1}:
0.0
0.0
0.0
</pre>
<p>There is a subtle difference in usage. Symbolically the evaluation of <code>F(x,y,z)</code> first is desired, numerically the evaluation of <code>∇ ⋅ F</code> or <code>∇ × F</code> first is desired. As <code>⋅</code> and <code>×</code> have lower precedence than function evaluation, parentheses must be used in the numeric case.</p>
<div class="alert alert-info" role="alert">
<div class="markdown"><p>As mentioned, for the symbolic evaluations, a specification of three variables (here <code>x</code>, <code>y</code>, and <code>z</code>) is necessary. This use takes <code>free_symbols</code> to identify three free symbols which may not always be the case. (It wouldn't be for, say, <code>F(x,y,z) = [a*x,b*y,0]</code>, <code>a</code> and <code>b</code> constants.) In those cases, the notation accepts a tuple to specify the function or vector field and the variables, e.g. (<code>∇( (f(x,y,z), [x,y,z]) )</code>, as illustrated; <code>∇ × (F(x,y,z), [x,y,z])</code>; or <code>∇ ⋅ (F(x,y,z), [x,y,z])</code> where this is written using function calls to produce the symbolic expression in the first positional argument, though a direct expression could also be used. In these cases, the named versions <code>gradient</code>, <code>curl</code>, and <code>divergence</code> may be preferred.</p>
</div>
</div>
<h2>Interpretation</h2>
<p>The divergence and curl measure complementary aspects of a vector field. The divergence is defined in terms of flow out of an infinitesimal box, the curl is about rotational flow around an infinitesimal area patch.</p>
<p>Let <span class="math">$F(x,y,z) = [x, 0, 0]$</span>, a vector field pointing in just the <span class="math">$\hat{i}$</span> direction. The divergence is simply <span class="math">$1$</span>. If <span class="math">$V$</span> is a box, as in the derivation, then the divergence measures the flow into the side with outward normal <span class="math">$-\hat{i}$</span> and through the side with outward normal <span class="math">$\hat{i}$</span> which will clearly be positive as the flow passes through the region <span class="math">$V$</span>, increasing as <span class="math">$x$</span> increases, when <span class="math">$x > 0$</span>.</p>
<p>The radial vector field <span class="math">$F(x,y,z) = \langle x, y, z \rangle$</span> is also an example of a divergent field. The divergence is:</p>
<pre class='hljl'>
<span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>]</span><span class='hljl-t'>
</span><span class='hljl-nd'>@vars</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-t'> </span><span class='hljl-n'>z</span><span class='hljl-t'> </span><span class='hljl-n'>real</span><span class='hljl-oB'>=</span><span class='hljl-kc'>true</span><span class='hljl-t'>
</span><span class='hljl-n'>∇</span><span class='hljl-t'> </span><span class='hljl-oB'>⋅</span><span class='hljl-t'> </span><span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>)</span>
</pre>
<div class="well well-sm">\begin{equation*}3\end{equation*}</div>
<p>There is a constant outward flow, emanating from the origin. Here we picture the field when <span class="math">$z=0$</span>:</p>
<img src="" />
<p>Consider the limit definition of the divergence:</p>
<p class="math">\[
~
\nabla\cdot{F} = \lim \frac{1}{\Delta{V}} \oint_S F\cdot\hat{N} dA.
~
\]</p>
<p>In the vector field above, the shape along the curved edges has constant magnitude field. On the left curved edge, the length is smaller and the field is smaller than on the right. The flux across the left edge will be less than the flux across the right edge, and a net flux will exist. That is, there is divergence.</p>
<p>Now, were the field on the right edge less, it might be that the two balance out and there is no divergence. This occurs with the inverse square laws, such as for gravity and electric field:</p>
<pre class='hljl'>
<span class='hljl-nd'>@vars</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-t'> </span><span class='hljl-n'>z</span><span class='hljl-t'> </span><span class='hljl-n'>real</span><span class='hljl-oB'>=</span><span class='hljl-kc'>true</span><span class='hljl-t'>
</span><span class='hljl-n'>R</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>]</span><span class='hljl-t'>
</span><span class='hljl-n'>Rhat</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>R</span><span class='hljl-oB'>/</span><span class='hljl-nf'>norm</span><span class='hljl-p'>(</span><span class='hljl-n'>R</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>VF</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-ni'>1</span><span class='hljl-oB'>/</span><span class='hljl-nf'>norm</span><span class='hljl-p'>(</span><span class='hljl-n'>R</span><span class='hljl-p'>)</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-n'>Rhat</span><span class='hljl-t'>
</span><span class='hljl-n'>∇</span><span class='hljl-t'> </span><span class='hljl-oB'>⋅</span><span class='hljl-t'> </span><span class='hljl-n'>VF</span><span class='hljl-t'> </span><span class='hljl-oB'>|></span><span class='hljl-t'> </span><span class='hljl-n'>simplify</span>
</pre>
<div class="well well-sm">\begin{equation*}0\end{equation*}</div>
<hr />
<p>The vector field <span class="math">$F(x,y,z) = \langle -y, x, 0 \rangle$</span> is an example of a rotational field. It's curl can be computed symbolically through:</p>
<pre class='hljl'>
<span class='hljl-nf'>curl</span><span class='hljl-p'>([</span><span class='hljl-oB'>-</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-ni'>0</span><span class='hljl-p'>],</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>])</span>
</pre>
<div class="well well-sm">\[ \left[ \begin{array}{r}0\\0\\2\end{array} \right] \]</div>
<p>This vector field rotates as seen in this figure showing slices for different values of <span class="math">$z$</span>:</p>
<img src="" />
<p>The field has a clear rotation about the <span class="math">$z$</span> axis (illustrated with a line), the curl is a vector that points in the direction of the <em>right hand</em> rule as the right hand fingers follow the flow with magnitude given by the amount of rotation.</p>
<p>This is a bit misleading though, the curl is defined by a limit, and not in terms of a large box. The key point for this field is that the strength of the field is stronger as the points get farther away, so for a properly oriented small box, the integral along the closer edge will be less than that along the outer edge.</p>
<p>Consider a related field where the strength gets smaller as the point gets farther away but otherwise has the same circular rotation pattern</p>
<pre class='hljl'>
<span class='hljl-n'>R</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-oB'>-</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>0</span><span class='hljl-p'>]</span><span class='hljl-t'>
</span><span class='hljl-n'>VF</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>R</span><span class='hljl-t'> </span><span class='hljl-oB'>/</span><span class='hljl-t'> </span><span class='hljl-nf'>norm</span><span class='hljl-p'>(</span><span class='hljl-n'>R</span><span class='hljl-p'>)</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'>
</span><span class='hljl-nf'>curl</span><span class='hljl-p'>(</span><span class='hljl-n'>VF</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>])</span><span class='hljl-t'> </span><span class='hljl-oB'>.|></span><span class='hljl-t'> </span><span class='hljl-n'>simplify</span>
</pre>
<div class="well well-sm">\[ \left[ \begin{array}{r}0\\0\\0\end{array} \right] \]</div>
<p>Further, the curl of <code>R/norm(R)^3</code> now points in the <em>opposite</em> direction of the curl of <code>R</code>. This example isn't typical, as dividing by <code>norm(R)</code> with a power greater than <span class="math">$1$</span> makes the vector field discontinuous at the origin.</p>
<p>The curl of the vector field <span class="math">$F(x,y,z) = \langle 0, 1+y^2, 0\rangle$</span> is <span class="math">$0$</span>, as there is clearly no rotation as seen in this slice where <span class="math">$z=0$</span>:</p>
<img src="" />
<p>Algebraically, this is so:</p>
<pre class='hljl'>
<span class='hljl-nf'>curl</span><span class='hljl-p'>(</span><span class='hljl-n'>Sym</span><span class='hljl-p'>[</span><span class='hljl-ni'>0</span><span class='hljl-p'>,</span><span class='hljl-ni'>1</span><span class='hljl-oB'>+</span><span class='hljl-n'>y</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-p'>,</span><span class='hljl-ni'>0</span><span class='hljl-p'>],</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>])</span>
</pre>
<div class="well well-sm">\[ \left[ \begin{array}{r}0\\0\\0\end{array} \right] \]</div>
<p>Now consider a similar field <span class="math">$F(x,y,z) = \langle 0, 1+x^2, 0,\rangle$</span>. A slice is somewhat similar, in that the flow lines are all in the <span class="math">$\hat{j}$</span> direction:</p>
<img src="" />
<p>However, this vector field has a curl:</p>
<pre class='hljl'>
<span class='hljl-nf'>curl</span><span class='hljl-p'>([</span><span class='hljl-ni'>0</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-oB'>+</span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-p'>,</span><span class='hljl-ni'>0</span><span class='hljl-p'>],</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>])</span>
</pre>
<div class="well well-sm">\[ \left[ \begin{array}{r}0\\0\\2 x\end{array} \right] \]</div>
<p>The curl points in the <span class="math">$\hat{k}$</span> direction (out of the figure). A useful visualization is to mentally place a small paddlewheel at a point and imagine if it will turn. In the constant field case, there is equal flow on both sides of the axis, so it any forces on the wheel blades will balance out. In the latter example, if <span class="math">$x > 0$</span>, the force on the right side will be greater than the force on the left so the paddlewheel would rotate counter clockwise. The right hand rule for this rotation will point in the upward, or <span class="math">$\hat{k}$</span> direction, as seen algebraically in the curl.</p>
<p>Following Strang, in general the curl can point in any direction, so the amount the paddlewheel will spin will be related to how the paddlewheel is oriented. The angular velocity of the wheel will be <span class="math">$(1/2)(\nabla\times{F})\cdot\hat{N}$</span>, <span class="math">$\hat{N}$</span> being the normal for the paddlewheel.</p>
<p>If <span class="math">$\vec{a}$</span> is some vector and <span class="math">$\hat{r} = \langle x, y, z\rangle$</span> is the radial vector, then <span class="math">$\vec{a} \times \vec{r}$</span> has a curl, which is given by:</p>
<pre class='hljl'>
<span class='hljl-nd'>@vars</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-t'> </span><span class='hljl-n'>z</span><span class='hljl-t'> </span><span class='hljl-n'>a1</span><span class='hljl-t'> </span><span class='hljl-n'>a2</span><span class='hljl-t'> </span><span class='hljl-n'>a3</span><span class='hljl-t'>
</span><span class='hljl-n'>a</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-n'>a1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>a2</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>a3</span><span class='hljl-p'>]</span><span class='hljl-t'>
</span><span class='hljl-n'>r</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>z</span><span class='hljl-p'>]</span><span class='hljl-t'>
</span><span class='hljl-nf'>curl</span><span class='hljl-p'>(</span><span class='hljl-n'>a</span><span class='hljl-t'> </span><span class='hljl-oB'>×</span><span class='hljl-t'> </span><span class='hljl-n'>r</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>z</span><span class='hljl-p'>])</span>
</pre>
<div class="well well-sm">\[ \left[ \begin{array}{r}2 a_{1}\\2 a_{2}\\2 a_{3}\end{array} \right] \]</div>
<p>The angular velocity then is <span class="math">$\vec{a} \cdot \hat{N}$</span>. The curl is constant. As the dot product involves the cosine of the angle between the two vectors, we see the turning speed is largest when <span class="math">$\hat{N}$</span> is parallel to <span class="math">$\vec{a}$</span>. This gives a similar statement for the curl like the gradient does for steepest growth rate: the maximum rotation rate of <span class="math">$F$</span> is <span class="math">$(1/2)\|\nabla\times{F}\|$</span> in the direction of <span class="math">$\nabla\times{F}$</span>.</p>
<p>The curl of the radial vector field, <span class="math">$F(x,y,z) = \langle x, y, z\rangle$</span> will be <span class="math">$\vec{0}$</span>:</p>
<pre class='hljl'>
<span class='hljl-nf'>curl</span><span class='hljl-p'>([</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>],</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>z</span><span class='hljl-p'>])</span>
</pre>
<div class="well well-sm">\[ \left[ \begin{array}{r}0\\0\\0\end{array} \right] \]</div>
<p>We will see that this can be anticipated, as <span class="math">$F = (1/2) \nabla(x^2+y^2+z^2)$</span> is a gradient field.</p>
<p>In fact, the curl of any radial field will be <span class="math">$\vec{0}$</span>. Here we represent a radial field as a scalar function of <span class="math">$\vec{r}$</span> time <span class="math">$\hat{r}$</span>:</p>
<pre class='hljl'>
<span class='hljl-n'>H</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>SymFunction</span><span class='hljl-p'>(</span><span class='hljl-s'>"H"</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>R</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>sqrt</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>z</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>Rhat</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>z</span><span class='hljl-p'>]</span><span class='hljl-oB'>/</span><span class='hljl-n'>R</span><span class='hljl-t'>
</span><span class='hljl-nf'>curl</span><span class='hljl-p'>(</span><span class='hljl-nf'>H</span><span class='hljl-p'>(</span><span class='hljl-n'>R</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-n'>Rhat</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>z</span><span class='hljl-p'>])</span>
</pre>
<div class="well well-sm">\[ \left[ \begin{array}{r}0\\0\\0\end{array} \right] \]</div>
<p>Were one to represent the curl in <a href="https://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates">spherical</a> coordinates (below), this follows algebraically from the formula easily enough. To anticipate this, due to symmetry, the curl would need to be the same along any ray emanating from the origin and again by symmetry could only possible point along the ray. Mentally place a paddlewheel along the <span class="math">$x$</span> axis oriented along <span class="math">$\hat{i}$</span>. There will be no rotational forces that could make the wheel spin around the <span class="math">$x$</span>-axis, hence the curl must be <span class="math">$0$</span>.</p>
<h2>The Maxwell equations</h2>
<p>The divergence and curl appear in <a href="https://en.wikipedia.org/wiki/Maxwell%27s_equations">Maxwell</a>'s equations describing the relationships of electromagnetism. In the formulas below the notation is <span class="math">$E$</span> is the electric field; <span class="math">$B$</span> is the magnetic field; <span class="math">$\rho$</span> is the charge <em>density</em> (charge per unit volume); <span class="math">$J$</span> the electric current density (current per unit area); and <span class="math">$\epsilon_0$</span>, <span class="math">$\mu_0$</span>, and <span class="math">$c$</span> are universal constants.</p>
<p>The equations in differential form are:</p>
<blockquote>
<p>Gauss's law: <span class="math">$\nabla\cdot{E} = \rho/\epsilon_0$</span>.</p>
</blockquote>
<p>That is, the divergence of the electric field is proportional to the density. We have already mentioned this in <em>integral</em> form.</p>
<blockquote>
<p>Gauss's law of magnetism: <span class="math">$\nabla\cdot{B} = 0$</span></p>
</blockquote>
<p>The magnetic field has no divergence. This says that there no magnetic charges (a magnetic monopole) unlike electric charge, according to Maxwell's laws.</p>
<blockquote>
<p>Faraday's law of induction: <span class="math">$\nabla\times{E} = - \partial{B}/\partial{t}$</span>.</p>
</blockquote>
<p>The curl of the <em>time-varying</em> electric field is in the direction of the partial derivative of the magnetic field. For example, if a magnet is in motion in the in the <span class="math">$z$</span> axis, then the electric field has rotation in the <span class="math">$x-y$</span> plane <em>induced</em> by the motion of the magnet.</p>
<blockquote>
<p>Ampere's circuital law: <span class="math">$\nabla\times{B} = \mu_0J + \mu_0\epsilon_0 \partial{E}/\partial{t}$</span></p>
</blockquote>
<p>The curl of the magnetic field is related to the sum of the electric current density and the change in time of the electric field.</p>
<hr />
<p>In a region with no charges (<span class="math">$\rho=0$</span>) and no currents (<span class="math">$J=\vec{0}$</span>), such as a vacuum, these equations reduce to two divergences being <span class="math">$0$</span>: <span class="math">$\nabla\cdot{E} = 0$</span> and <span class="math">$\nabla\cdot{B}=0$</span>; and two curl relationships with time derivatives: <span class="math">$\nabla\times{E}= -\partial{B}/\partial{t}$</span> and <span class="math">$\nabla\times{B} = \mu_0\epsilon_0 \partial{E}/\partial{t}$</span>.</p>
<p>We will see later how these are differential forms are consequences of related integral forms.</p>
<h2>Algebra of vector calculus</h2>
<p>The divergence, gradient, and curl satisfy several algebraic <a href="https://en.wikipedia.org/wiki/Vector_calculus_identities">properties</a>.</p>
<p>Let <span class="math">$f$</span> and <span class="math">$g$</span> denote scalar functions, <span class="math">$R^3 \rightarrow R$</span> and <span class="math">$F$</span> and <span class="math">$G$</span> be vector fields, <span class="math">$R^3 \rightarrow R^3$</span>.</p>
<h3>Linearity</h3>
<p>As with the sum rule of univariate derivatives, these operations satisfy:</p>
<p class="math">\[
~
\begin{align}
\nabla(f + g) &= \nabla{f} + \nabla{g}\\
\nabla\cdot(F+G) &= \nabla\cdot{F} + \nabla\cdot{G}\\
\nabla\times(F+G) &= \nabla\times{F} + \nabla\times{G}.
\end{align}
~
\]</p>
<h3>Product rule</h3>
<p>The product rule <span class="math">$(uv)' = u'v + uv'$</span> has related formulas:</p>
<p class="math">\[
~
\begin{align}
\nabla{(fg)} &= (\nabla{f}) g + f\nabla{g} = g\nabla{f} + f\nabla{g}\\
\nabla\cdot{fF} &= (\nabla{f})\cdot{F} + f(\nabla\cdot{F})\\
\nabla\times{fF} &= (\nabla{f})\times{F} + f(\nabla\times{F}).
\end{align}
~
\]</p>
<h3>Rules over cross products</h3>
<p>The cross product of two vector fields is a vector field for which the divergence and curl may be taken. There are formulas to relate to the individual terms:</p>
<p class="math">\[
~
\begin{align}
\nabla\cdot(F \times G) &= (\nabla\times{F})\cdot G - F \cdot (\nabla\times{G})\\
\nabla\times(F \times G) &= F(\nabla\cdot{G}) - G(\nabla\cdot{F} + (G\cdot\nabla)F-(F\cdot\nabla)G\\
&= \nabla\cdot(BA^t - AB^t).
\end{align}
~
\]</p>
<p>The curl formula is more involved.</p>
<h3>Vanishing properties</h3>
<p>Surprisingly, the curl and divergence satisfy two vanishing properties. First</p>
<blockquote>
<p>The curl of a gradient field is <span class="math">$\vec{0}$</span> <span class="math">$~ \nabla \times \nabla{f} = \vec{0}, ~$</span></p>
</blockquote>
<p>if the scalar function <span class="math">$f$</span> is has continuous second derivatives (so the mixed partials do not depend on order).</p>
<p>Vector fields where <span class="math">$F = \nabla{f}$</span> are conservative. Conservative fields have path independence, so any line integral, <span class="math">$\oint F\cdot \hat{T} ds$</span>, around a closed loop will be <span class="math">$0$</span>. But the curl is defined as a limit of such integrals, so it too will be <span class="math">$\vec{0}$</span>. In short, conservative fields have no rotation.</p>
<p>What about the converse? If a vector field has zero curl, then integrals around infinitesimally small loops are <span class="math">$0$</span>. Does this <em>also</em> mean that integrals around larger closed loops will also be <span class="math">$0$</span>, and hence the field is conservative? The answer will be yes, <em>under assumptions</em>. But the discussion will wait for later.</p>
<p>The combination <span class="math">$\nabla\cdot\nabla{f}$</span> is defined and is called the Laplacian. This is denoted <span class="math">$\Delta{f}$</span>. The equation <span class="math">$\Delta{f} = 0$</span> is called Laplace's equation. It is <em>not</em> guaranteed for any scalar function <span class="math">$f$</span>, but the <span class="math">$f$</span> for which it holds are important.</p>
<p>Second,</p>
<blockquote>
<p>The divergence of a curl field is <span class="math">$0$</span>: <span class="math">$~ \nabla \cdot(\nabla\times{F}) = 0. ~$</span></p>
</blockquote>
<p>This is not as clear, but can be seen algebraically as terms cancel. First:</p>
<p class="math">\[
~
\nabla\cdot(\nabla\times{F}) =
\langle
\frac{\partial}{\partial{x}},
\frac{\partial}{\partial{y}},
\frac{\partial}{\partial{z}}\rangle \cdot
\langle
\frac{\partial{F_z}}{\partial{y}} - \frac{\partial{F_y}}{\partial{z}},
\frac{\partial{F_x}}{\partial{z}} - \frac{\partial{F_z}}{\partial{x}},
\frac{\partial{F_y}}{\partial{x}} - \frac{\partial{F_x}}{\partial{y}}
\rangle
=
\left(\frac{\partial^2{F_z}}{\partial{y}\partial{x}} - \frac{\partial^2{F_y}}{\partial{z}\partial{x}}\right) +
\left(\frac{\partial^2{F_x}}{\partial{z}\partial{y}} - \frac{\partial^2{F_z}}{\partial{x}\partial{y}}\right) +
\left(\frac{\partial^2{F_y}}{\partial{x}\partial{z}} - \frac{\partial^2{F_x}}{\partial{y}\partial{z}}\right)
~
\]</p>
<p>Focusing on one component function, <span class="math">$F_z$</span> say, we see this contribution:</p>
<p class="math">\[
~
\frac{\partial^2{F_z}}{\partial{y}\partial{x}} -
\frac{\partial^2{F_z}}{\partial{x}\partial{y}}.
~
\]</p>
<p>This is zero under the assumption that the second partial derivatives are continuous.</p>
<p>From the microscopic picture of a box this can also be seen. Again we focus on just the appearance of the <span class="math">$F_z$</span> component function. Let the faces with normals <span class="math">$\hat{i}, \hat{j},-\hat{i}, -\hat{j}$</span> be labeled <span class="math">$A, B, C$</span>, and <span class="math">$D$</span>. This figure shows <span class="math">$A$</span> (enclosed in blue) and <span class="math">$B$</span> (enclosed in green):</p>
<img src="" />
<p>We will get from the <em>approximate</em> surface integral of the <em>approximate</em> curl the following terms:</p>
<pre class='hljl'>
<span class='hljl-nd'>@vars</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-t'> </span><span class='hljl-n'>z</span><span class='hljl-t'> </span><span class='hljl-n'>Δx</span><span class='hljl-t'> </span><span class='hljl-n'>Δy</span><span class='hljl-t'> </span><span class='hljl-n'>Δz</span><span class='hljl-t'>
</span><span class='hljl-n'>p1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>p2</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>p3</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>p4</span><span class='hljl-oB'>=</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>z</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>Δx</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>z</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>Δx</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>Δy</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>z</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>Δy</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>z</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>F_z</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>SymFunction</span><span class='hljl-p'>(</span><span class='hljl-s'>"F_z"</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>ex</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-oB'>-</span><span class='hljl-nf'>F_z</span><span class='hljl-p'>(</span><span class='hljl-n'>p2</span><span class='hljl-oB'>...</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-nf'>F_z</span><span class='hljl-p'>(</span><span class='hljl-n'>p3</span><span class='hljl-oB'>...</span><span class='hljl-p'>))</span><span class='hljl-oB'>*</span><span class='hljl-n'>Δz</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-cs'># face A</span><span class='hljl-t'>
</span><span class='hljl-p'>(</span><span class='hljl-oB'>-</span><span class='hljl-nf'>F_z</span><span class='hljl-p'>(</span><span class='hljl-n'>p3</span><span class='hljl-oB'>...</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-nf'>F_z</span><span class='hljl-p'>(</span><span class='hljl-n'>p4</span><span class='hljl-oB'>...</span><span class='hljl-p'>))</span><span class='hljl-oB'>*</span><span class='hljl-n'>Δz</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-cs'># face B</span><span class='hljl-t'>
</span><span class='hljl-p'>(</span><span class='hljl-nf'>F_z</span><span class='hljl-p'>(</span><span class='hljl-n'>p1</span><span class='hljl-oB'>...</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-nf'>F_z</span><span class='hljl-p'>(</span><span class='hljl-n'>p4</span><span class='hljl-oB'>...</span><span class='hljl-p'>))</span><span class='hljl-oB'>*</span><span class='hljl-n'>Δz</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-cs'># face C</span><span class='hljl-t'>
</span><span class='hljl-p'>(</span><span class='hljl-nf'>F_z</span><span class='hljl-p'>(</span><span class='hljl-n'>p2</span><span class='hljl-oB'>...</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-nf'>F_z</span><span class='hljl-p'>(</span><span class='hljl-n'>p1</span><span class='hljl-oB'>...</span><span class='hljl-p'>))</span><span class='hljl-oB'>*</span><span class='hljl-n'>Δz</span><span class='hljl-t'> </span><span class='hljl-cs'># face D</span>
</pre>
<div class="well well-sm">\begin{equation*}Δz \left(- \operatorname{F_{z}}{\left (x,y,z \right )} + \operatorname{F_{z}}{\left (x + Δx,y,z \right )}\right) + Δz \left(\operatorname{F_{z}}{\left (x,y,z \right )} - \operatorname{F_{z}}{\left (x,y + Δy,z \right )}\right) + Δz \left(\operatorname{F_{z}}{\left (x,y + Δy,z \right )} - \operatorname{F_{z}}{\left (x + Δx,y + Δy,z \right )}\right) + Δz \left(- \operatorname{F_{z}}{\left (x + Δx,y,z \right )} + \operatorname{F_{z}}{\left (x + Δx,y + Δy,z \right )}\right)\end{equation*}</div>
<p>The term for face <span class="math">$A$</span>, say, should be divided by <span class="math">$\Delta{y}\Delta{z}$</span> for the curl approximation, but this will be multiplied by the same amount for the divergence calculation, so it isn't written.</p>
<p>The expression above simplifies to:</p>
<pre class='hljl'>
<span class='hljl-nf'>simplify</span><span class='hljl-p'>(</span><span class='hljl-n'>ex</span><span class='hljl-p'>)</span>
</pre>
<div class="well well-sm">\begin{equation*}0\end{equation*}</div>
<p>This is because of how the line integrals are oriented so that the right-hand rule gives outward pointing normals. For each up stroke for one face, there is a downstroke for a different face, and so the corresponding terms cancel each other out. So providing the limit of these two approximations holds, the vanishing identity can be anticipated from the microscopic picture.</p>
<h5>Example</h5>
<p>The <a href="https://en.wikipedia.org/wiki/Maxwell%27s_equations#Charge_conservation">invariance of charge</a> can be derived as a corollary of Maxwell's equation. The divergence of the curl of the magnetic field is <span class="math">$0$</span>, leading to:</p>
<p class="math">\[
~
0 = \nabla\cdot(\nabla\times{B}) =
\mu_0(\nabla\cdot{J} + \epsilon_0 \nabla\cdot{\frac{\partial{E}}{\partial{t}}}) =
\mu_0(\nabla\cdot{J} + \epsilon_0 \frac{\partial}{\partial{t}}(\nabla\cdot{E}))
= \mu_0(\nabla\cdot{J} + \frac{\partial{\rho}}{\partial{t}}).
~
\]</p>
<p>That is <span class="math">$\nabla\cdot{J} = -\partial{\rho}/\partial{t}$</span>. This says any change in the charge density in time (<span class="math">$\partial{\rho}/\partial{t}$</span>) is balanced off by a divergence in the electric current density (<span class="math">$\nabla\cdot{J}$</span>). That is, charge can't be created or destroyed in an isolated system.</p>
<h2>Fundamental theorem of vector calculus</h2>
<p>The divergence and curl are complementary ideas. Are there other distinct ideas to sort a vector field by? The Helmholtz decomposition says not really. It states that vector fields that decay rapidly enough can be expressed in terms of two pieces: one with no curl and one with no divergence.</p>
<p>From <a href="https://en.wikipedia.org/wiki/Helmholtz_decomposition">Wikipedia</a> we have this formulation:</p>
<p>Let <span class="math">$F$</span> be a vector field on a <strong>bounded</strong> domain <span class="math">$V$</span> which is twice continuously differentiable. Let <span class="math">$S$</span> be the surface enclosing <span class="math">$V$</span>. Then <span class="math">$F$</span> can be decomposed into a curl-free component and a divergence-free component:</p>
<p class="math">\[
~
F = -\nabla(\phi) + \nabla\times A.
~
\]</p>
<p>Without explaining why, these values can be computed using volume and surface integrals:</p>
<p class="math">\[
~
\begin{align}
\phi(\vec{r}') &=
\frac{1}{4\pi} \int_V \frac{\nabla \cdot F(\vec{r})}{\|\vec{r}'-\vec{r} \|} dV -
\frac{1}{4\pi} \oint_S \frac{F(\vec{r})}{\|\vec{r}'-\vec{r} \|} \cdot \hat{N} dS\\
A(\vec{r}') &= \frac{1}{4\pi} \int_V \frac{\nabla \times F(\vec{r})}{\|\vec{r}'-\vec{r} \|} dV +
\frac{1}{4\pi} \oint_S \frac{F(\vec{r})}{\|\vec{r}'-\vec{r} \|} \times \hat{N} dS.
\end{align}
~
\]</p>
<p>If <span class="math">$V = R^3$</span>, an unbounded domain, <em>but</em> <span class="math">$F$</span> <em>vanishes</em> faster than <span class="math">$1/r$</span>, then the theorem still holds with just the volume integrals:</p>
<p class="math">\[
~
\begin{align}
\phi(\vec{r}') &=\frac{1}{4\pi} \int_V \frac{\nabla \cdot F(\vec{r})}{\|\vec{r}'-\vec{r} \|} dV\\
A(\vec{r}') &= \frac{1}{4\pi} \int_V \frac{\nabla \times F(\vec{r})}{\|\vec{r}'-\vec{r}\|} dV.
\end{align}
~
\]</p>
<h2>Change of variable</h2>
<p>The divergence and curl are defined in a manner independent of the coordinate system, though the method to compute them depends on the Cartesian coordinate system. If that is inconvenient, then it is possible to develop the ideas in different coordinate systems.</p>
<p>Some details are <a href="https://en.wikipedia.org/wiki/Curvilinear_coordinates">here</a>, the following is based on <a href="https://www.jfoadi.me.uk/documents/lecture_mathphys2_05.pdf">some lecture notes</a>.</p>
<p>We restrict to <span class="math">$n=3$</span> and use <span class="math">$(x,y,z)$</span> for Cartesian coordinates and <span class="math">$(u,v,w)$</span> for an <em>orthogonal</em> curvilinear coordinate system, such as spherical or cylindrical. If <span class="math">$\vec{r} = \langle x,y,z\rangle$</span>, then</p>
<p class="math">\[
~
\begin{align}
d\vec{r} &= \langle dx,dy,dz \rangle = J \langle du,dv,dw\rangle\\
&=
\left[ \frac{\partial{\vec{r}}}{\partial{u}} \vdots
\frac{\partial{\vec{r}}}{\partial{v}} \vdots
\frac{\partial{\vec{r}}}{\partial{w}} \right] \langle du,dv,dw\rangle\\
&= \frac{\partial{\vec{r}}}{\partial{u}} du +
\frac{\partial{\vec{r}}}{\partial{v}} dv
\frac{\partial{\vec{r}}}{\partial{w}} dw.
\end{align}
~
\]</p>
<p>The term <span class="math">${\partial{\vec{r}}}/{\partial{u}}$</span> is tangent to the curve formed by <em>assuming</em> <span class="math">$v$</span> and <span class="math">$w$</span> are constant and letting <span class="math">$u$</span> vary. Similarly for the other partial derivatives. Orthogonality assumes that at every point, these tangent vectors are orthogonal.</p>
<p>As <span class="math">${\partial{\vec{r}}}/{\partial{u}}$</span> is a vector it has a magnitude and direction. Define the scale factors as the magnitudes:</p>
<p class="math">\[
~
h_u = \| \frac{\partial{\vec{r}}}{\partial{u}} \|,\quad
h_v = \| \frac{\partial{\vec{r}}}{\partial{v}} \|,\quad
h_w = \| \frac{\partial{\vec{r}}}{\partial{w}} \|.
~
\]</p>
<p>and let <span class="math">$\hat{e}_u$</span>, <span class="math">$\hat{e}_v$</span>, and <span class="math">$\hat{e}_w$</span> be the unit, direction vectors.</p>
<p>This gives the following notation:</p>
<p class="math">\[
~
d\vec{r} = h_u du \hat{e}_u + h_v dv \hat{e}_v + h_w dw \hat{e}_w.
~
\]</p>
<p>From here, we can express different formulas.</p>
<p>For line integrals, we have the line element:</p>
<p class="math">\[
~
dl = \sqrt{d\vec{r}\cdot d\vec{r}} = \sqrt{(h_ud_u)^2 + (h_vd_v)^2 + (h_wd_w)^2}.
~
\]</p>
<p>Consider the surface for constant <span class="math">$u$</span>. The vector <span class="math">$\hat{e}_v$</span> and <span class="math">$\hat{e}_w$</span> lie in the surface's tangent plane, and the surface element will be:</p>
<p class="math">\[
~
dS_u = \| h_v dv \hat{e}_v \times h_w dw \hat{e}_w \| = h_v h_w dv dw \| \hat{e}_v \| = h_v h_w dv dw.
~
\]</p>
<p>This uses orthogonality, so <span class="math">$\hat{e}_v \times \hat{e}_w$</span> is parallel to <span class="math">$\hat{e}_u$</span> and has unit length. Similarly, <span class="math">$dS_v = h_u h_w du dw$</span> and <span class="math">$dS_w = h_u h_v du dv$</span> .</p>
<p>The volume element is found by <em>projecting</em> <span class="math">$d\vec{r}$</span> onto the <span class="math">$\hat{e}_u$</span>, <span class="math">$\hat{e}_v$</span>, <span class="math">$\hat{e}_w$</span> coordinate system through <span class="math">$(d\vec{r} \cdot\hat{e}_u) \hat{e}_u$</span>, <span class="math">$(d\vec{r} \cdot\hat{e}_v) \hat{e}_v$</span>, and <span class="math">$(d\vec{r} \cdot\hat{e}_w) \hat{e}_w$</span>. Then forming the triple scalar product to compute the volume of the parallelepiped:</p>
<p class="math">\[
~
\left[(d\vec{r} \cdot\hat{e}_u) \hat{e}_u\right] \cdot
\left(
\left[(d\vec{r} \cdot\hat{e}_v) \hat{e}_v\right] \times
\left[(d\vec{r} \cdot\hat{e}_w) \hat{e}_w\right]
\right) =
(h_u h_v h_w) ( du dv dw ) (\hat{e}_u \cdot (\hat{e}_v \times \hat{e}_w) =
h_u h_v h_w du dv dw,
~
\]</p>
<p>as the unit vectors are orthonormal, their triple scalar product is <span class="math">$1$</span> and <span class="math">$d\vec{r}\cdot\hat{e}_u = h_u du$</span>, etc.</p>
<h3>Example</h3>
<p>We consider spherical coordinates with</p>
<p class="math">\[
~
F(r, \theta, \phi) = \langle
r \sin(\phi) \cos(\theta),
r \sin(\phi) \sin(\theta),
r \cos(\phi)
\rangle.
~
\]</p>
<p>The following figure draws curves starting at <span class="math">$(r_0, \theta_0, \phi_0)$</span> formed by holding <span class="math">$2$</span> of the <span class="math">$3$</span> variables constant. The tangent vectors are added in blue. The surface <span class="math">$S_r$</span> formed by a constant value of <span class="math">$r$</span> is illustrated.</p>
<div id="61ff99c2-4240-46ed-9ff2-138df093577a" style="width:576px;height:384px;"></div>
<script>
PLOT = document.getElementById('61ff99c2-4240-46ed-9ff2-138df093577a');
Plotly.plot(PLOT, [
{
"xaxis": "x1",
"colorbar": {
"title": ""
},
"yaxis": "y1",
"text": [
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,