forked from CalculusWithJulia/CalculusWithJulia.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
related_rates.html
1521 lines (1296 loc) · 142 KB
/
related_rates.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/css/bootstrap.min.css"
rel="stylesheet">
<style>
.julia {display: block; font-family: "Source Code Pro";
color:#0033CC;
}
.hljl {font-family: "Source Code Pro";
color:#0033CC;
}
body { padding-top: 60px; }
h5:before {content:"\2746\ ";}
h6:before {content:"\2742\ ";}
pre {display: block;}
th, td {
padding: 15px;
text-align: left;
border-bottom: 1px solid #ddd;
}
tr:hover {background-color: #f5f5f5;}
.admonition-title:before {content:"\2746\ ";}
.admonition-title { color:#0033CC}
</style>
<!-- .julia:before {content: "julia> "} -->
<style></style>
<script src="https://code.jquery.com/jquery.js"></script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ["\$","\$"], ["\\(","\\)"]]
},
displayAlign: "left",
displayIndent: "5%"
});
</script>
<!-- not TeX-AMS-MML_HTMLorMML-->
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML" async></script>
</script>
<script>
window.PlotlyConfig = {MathJaxConfig: 'local'}
</script>
<script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
<script type="text/javascript">
$( document ).ready(function() {
$("h1").each(function(index) {
var title = $( this ).text()
$("#page_title").html("<strong>" + title + "</strong>");
document.title = title
});
$( "h2" ).each(function( index ) {
var nm = $( this ).text();
var id = $.trim(nm).replace(/ /g,'');
this.id = id
$("#page_dropdown").append("<li><a href='#" + id + "'>" + nm + "</a></li>");
});
$('[data-toggle="popover"]').popover();
});
</script>
</head>
<body data-spy="scroll" >
<nav class="navbar navbar-default navbar-fixed-top">
<div class="container-fluid">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
</div>
<!-- Collect the nav links, forms, and other content for toggling -->
<div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
<ul class="nav navbar-nav">
<li><a href="#" id="page_title"></a></li>
</ul>
<ul class="nav navbar-nav navbar-right">
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Jump to... <span class="caret"></span></a>
<ul class="dropdown-menu" role="menu" id="page_dropdown"></ul>
</li>
</ul>
</div><!-- /.navbar-collapse -->
</div><!-- /.container-fluid -->
</nav>
<header>
</header>
<div class="title">
</div>
<div class="container-fluid">
<div class="span10 offset1">
<h1>Related rates</h1>
<p>Related rates problems involve two (or more) unknown quantities that are related through an equation. As the two variables depend on each other, also so do their rates–-change with respect to some variable which is often time, though exactly how remains to be discovered. Hence the name "related rates."</p>
<h2>Examples</h2>
<p>The following is a typical "book" problem:</p>
<blockquote>
<p>A screen saver displays the outline of a 3 cm by 2 cm rectangle and then expands the rectangle in such a way that the 2 cm side is expanding at the rate of 4 cm/sec and the proportions of the rectangle never change. How fast is the area of the rectangle increasing when its dimensions are 12 cm by 8 cm? <a href="http://oregonstate.edu/instruct/mth251/cq/Stage9/Practice/ratesProblems.html">Source.</a></p>
</blockquote>
<div class="well well-sm">
<figure>
<img src=""/>
<figcaption><div class="markdown"><p>As $t$ increases, the size of the rectangle grows. The ratio of width to height is fixed. If we know the rate of change in time for the width ($dw/dt$) and the height ($dh/dt$) can we tell the rate of change of <em>area</em> with respect to time ($dA/dt$)?</p>
</div></figcaption>
</figure>
</div>
<p>Here we know <span class="math">$A = w \cdot h$</span> and we know some things about how <span class="math">$w$</span> and <span class="math">$h$</span> are related <em>and</em> about the rate of how both <span class="math">$w$</span> and <span class="math">$h$</span> grow in time <span class="math">$t$</span>. That means that we could express this growth in terms of some functions <span class="math">$w(t)$</span> and <span class="math">$h(t)$</span>, then we can figure out that the area–-as a function of <span class="math">$t$</span>–-will be expressed as:</p>
<p class="math">\[
~
A(t) = w(t) \cdot h(t).
~
\]</p>
<p>We would get by the product rule that the <em>rate of change</em> of area with respect to time, <span class="math">$A'(t)$</span> is just:</p>
<p class="math">\[
~
A'(t) = w'(t) h(t) + w(t) h'(t).
~
\]</p>
<p>As an aside, it is fairly conventional to suppress the <span class="math">$(t)$</span> part of the notation <span class="math">$A=wh$</span> and to use the Leibniz notation for derivatives:</p>
<p class="math">\[
~
\frac{dA}{dt} = \frac{dw}{dt} h + w \frac{dh}{dt}.
~
\]</p>
<p>This relationship is true for all <span class="math">$t$</span>, but the problem discusses a certain value of <span class="math">$t$</span>–-when <span class="math">$w(t)=8$</span> and <span class="math">$h(t) = 12$</span>. At this same value of <span class="math">$t$</span>, we have <span class="math">$w'(t) = 4$</span> and so <span class="math">$h'(t) = 6$</span>. Substituting these 4 values into the 4 unknowns in the formula for <span class="math">$A'(t)$</span> gives:</p>
<p class="math">\[
~
A'(t) = 4 \cdot 12 + 8 \cdot 6 = 96.
~
\]</p>
<p>Summarizing, from the relationship between <span class="math">$A$</span>, <span class="math">$w$</span> and <span class="math">$t$</span>, there is a relationship between their rates of growth with respect to <span class="math">$t$</span>, a time variable. Using this and known values, we can compute. In this case <span class="math">$A'$</span> at the specific <span class="math">$t$</span>.</p>
<p>We could also have done this differently. We would recognize the following:</p>
<ul>
<li><p>The area of a rectangle is just:</p>
</li>
</ul>
<pre class='hljl'>
<span class='hljl-nf'>A</span><span class='hljl-p'>(</span><span class='hljl-n'>w</span><span class='hljl-p'>,</span><span class='hljl-n'>h</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>w</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-n'>h</span>
</pre>
<pre class="output">
A (generic function with 1 method)
</pre>
<ul>
<li><p>The width–-expanding at a rate of <span class="math">$4t$</span> from a starting value of <span class="math">$2$</span>–-must satisfy:</p>
</li>
</ul>
<pre class='hljl'>
<span class='hljl-nf'>w</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-ni'>4</span><span class='hljl-oB'>*</span><span class='hljl-n'>t</span>
</pre>
<pre class="output">
w (generic function with 1 method)
</pre>
<ul>
<li><p>The height is a constant proportion of the width:</p>
</li>
</ul>
<pre class='hljl'>
<span class='hljl-nf'>h</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>3</span><span class='hljl-oB'>/</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-nf'>w</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
h (generic function with 1 method)
</pre>
<p>This means again that area depends on <span class="math">$t$</span> through this formula:</p>
<pre class='hljl'>
<span class='hljl-nf'>A</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>A</span><span class='hljl-p'>(</span><span class='hljl-nf'>w</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-nf'>h</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>))</span>
</pre>
<pre class="output">
A (generic function with 2 methods)
</pre>
<p>This is why the rates of change are related: as <span class="math">$w$</span> and <span class="math">$h$</span> change in time, the functional relationship with <span class="math">$A$</span> means <span class="math">$A$</span> also changes in time.</p>
<p>Now to answer the question, when the width is 8, we must have that <span class="math">$t$</span> is:</p>
<pre class='hljl'>
<span class='hljl-k'>using</span><span class='hljl-t'> </span><span class='hljl-n'>CalculusWithJulia</span><span class='hljl-t'> </span><span class='hljl-cs'># loads `Plots`, `ForwardDiff`, `Roots`</span><span class='hljl-t'>
</span><span class='hljl-n'>tstar</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>fzero</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>-></span><span class='hljl-t'> </span><span class='hljl-nf'>w</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-ni'>8</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-ni'>0</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>4</span><span class='hljl-p'>])</span><span class='hljl-t'> </span><span class='hljl-cs'># or solve by hand to get 3/2</span>
</pre>
<pre class="output">
1.5
</pre>
<p>The question is to find the rate the area is increasing at the given time <span class="math">$t$</span>, which is <span class="math">$A'(t)$</span> or <span class="math">$dA/dt$</span>. We get this by performing the differentiation, the substituting in the value.</p>
<p>Here we do so with the aid of <code>Julia</code>, though this problem could readily be done "by hand."</p>
<p>We (again) re-express <span class="math">$A$</span> as a function of <span class="math">$t$</span> by composition, then differentiate that:</p>
<pre class='hljl'>
<span class='hljl-nf'>A</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>A</span><span class='hljl-p'>(</span><span class='hljl-nf'>w</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-nf'>h</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>))</span><span class='hljl-t'>
</span><span class='hljl-n'>da_dt</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>A</span><span class='hljl-oB'>'</span><span class='hljl-p'>(</span><span class='hljl-n'>tstar</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
96.0
</pre>
<p>So what? Why is 96 of any interest? It is if the value at a specific time is needed. But in general, a better question might be to understand if there is some pattern to the numbers in the figure, these being <span class="math">$6, 54, 150, 294, 486, 726$</span>. Their differences are the <em>average</em> rate of change:</p>
<pre class='hljl'>
<span class='hljl-n'>xs</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-ni'>6</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>54</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>150</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>294</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>486</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>726</span><span class='hljl-p'>]</span><span class='hljl-t'>
</span><span class='hljl-n'>ds</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>diff</span><span class='hljl-p'>(</span><span class='hljl-n'>xs</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
5-element Array{Int64,1}:
48
96
144
192
240
</pre>
<p>Those seem to be increasing by a fixed amount each time, which we can see by one more application of <code>diff</code>:</p>
<pre class='hljl'>
<span class='hljl-nf'>diff</span><span class='hljl-p'>(</span><span class='hljl-n'>ds</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
4-element Array{Int64,1}:
48
48
48
48
</pre>
<p>How can this relationship be summarized? Well, let's go back to what we know, though this time using symbolic math:</p>
<pre class='hljl'>
<span class='hljl-k'>using</span><span class='hljl-t'> </span><span class='hljl-n'>SymPy</span><span class='hljl-t'>
</span><span class='hljl-nd'>@vars</span><span class='hljl-t'> </span><span class='hljl-n'>t</span><span class='hljl-t'>
</span><span class='hljl-nf'>diff</span><span class='hljl-p'>(</span><span class='hljl-nf'>A</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-n'>t</span><span class='hljl-p'>)</span>
</pre>
<div class="well well-sm">\begin{equation*}48.0 t + 24.0\end{equation*}</div>
<p>This should be clear: the rate of change, <span class="math">$dA/dt$</span>, is increasing linearly, hence the second derivative, <span class="math">$dA^2/dt^2$</span> would be constant, just as we saw for the average rate of change.</p>
<p>So, for this problem, a constant rate of change in width and height leads to a linear rate of change in area, put otherwise, linear growth in both width and height leads to quadratic growth in area.</p>
<h5>Example</h5>
<p>A ladder, with length <span class="math">$l$</span>, is leaning against a wall. We parameterize this problem so that the top of the ladder is at <span class="math">$(0,h)$</span> and the bottom at <span class="math">$(b, 0)$</span>. Then <span class="math">$l^2 = h^2 + b^2$</span> is a constant.</p>
<p>If the ladder starts to slip away at the base, but remains in contact with the wall, express the rate of change of <span class="math">$h$</span> with respect to <span class="math">$t$</span> in terms of <span class="math">$db/dt$</span>.</p>
<p>We have from implicitly differentiating in <span class="math">$t$</span> the equation <span class="math">$l^2 = h^2 + b^2$</span>, noting that <span class="math">$l$</span> is a constant, that:</p>
<p class="math">\[
~
0 = 2h \frac{dh}{dt} + 2b \frac{db}{dt}.
~
\]</p>
<p>Solving, yields:</p>
<p class="math">\[
~
\frac{dh}{dt} = -\frac{b}{h} \cdot \frac{db}{dt}.
~
\]</p>
<ul>
<li><p>If <span class="math">$l = 12$</span> and <span class="math">$db/dt = 2$</span> when <span class="math">$b=4$</span>, find <span class="math">$dh/dt$</span>.</p>
</li>
</ul>
<p>We just need to find <span class="math">$h$</span> for this value of <span class="math">$b$</span>, as the other two quantities in the last equation are known. But <span class="math">$h = \sqrt{l^2 - b^2}$</span>, so the answer is:</p>
<pre class='hljl'>
<span class='hljl-n'>l</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>b</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>dbdt</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>12</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>4</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-t'>
</span><span class='hljl-n'>height</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>sqrt</span><span class='hljl-p'>(</span><span class='hljl-n'>l</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-n'>b</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-oB'>-</span><span class='hljl-n'>b</span><span class='hljl-oB'>/</span><span class='hljl-n'>height</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-n'>dbdt</span>
</pre>
<pre class="output">
-0.7071067811865475
</pre>
<ul>
<li><p>What happens to the rate as <span class="math">$b$</span> goes to <span class="math">$l$</span>?</p>
</li>
</ul>
<p>As <span class="math">$b$</span> goes to <span class="math">$l$</span>, <span class="math">$h$</span> goes to 0, so <span class="math">$b/h$</span> blows up. Unless <span class="math">$db/dt$</span> goes to <span class="math">$0$</span>, the expression will become <span class="math">$-\infty$</span>.</p>
<h5>Example</h5>
<div class="well well-sm">
<figure>
<img src=""/>
<figcaption><div class="markdown"><p>The flight of the ball as being tracked by a stationary outfielder. This ball will go over the head of the player. What can the player tell from the quantity $d\theta/dt$?</p>
</div></figcaption>
</figure>
</div>
<p>A baseball player stands 100 meters from home base. A batter hits the ball directly at the player so that the distance from home plate is <span class="math">$x(t)$</span> and the height is <span class="math">$y(t)$</span>.</p>
<p>The player tracks the flight of the ball in terms of the angle <span class="math">$\theta$</span> made between the ball and the player. This will satisfy:</p>
<p class="math">\[
~
\tan(\theta) = \frac{y(t)}{100 - x(t)}.
~
\]</p>
<p>What is the rate of change of <span class="math">$\theta$</span> with respect to <span class="math">$t$</span> in terms of that of <span class="math">$x$</span> and <span class="math">$y$</span>?</p>
<p>We have by the chain rule and quotient rule:</p>
<p class="math">\[
~
\sec^2(\theta) \theta'(t) = \frac{y'(t) \cdot (100 - x(t)) - y(t) \cdot (-x'(t))}{(100 - x(t))^2}.
~
\]</p>
<p>If we have <span class="math">$x(t) = 50t$</span> and <span class="math">$y(t)=v_{0y} t - 5 t^2$</span> when is the rate of change of the angle happening most quickly?</p>
<p>The formula for <span class="math">$\theta'(t)$</span> is</p>
<p class="math">\[
~
\theta'(t) = \cos^2(\theta) \cdot \frac{y'(t) \cdot (100 - x(t)) - y(t) \cdot (-x'(t))}{(100 - x(t))^2}.
~
\]</p>
<p>This question requires us to differentiate <em>again</em> in <span class="math">$t$</span>. Since we have fairly explicit function for <span class="math">$x$</span> and <span class="math">$y$</span>, we will use <code>SymPy</code> to do this.</p>
<pre class='hljl'>
<span class='hljl-nd'>@vars</span><span class='hljl-t'> </span><span class='hljl-n'>t</span><span class='hljl-t'>
</span><span class='hljl-n'>theta</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>SymFunction</span><span class='hljl-p'>(</span><span class='hljl-s'>"theta"</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>v0</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>5</span><span class='hljl-t'>
</span><span class='hljl-nf'>x</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>50</span><span class='hljl-n'>t</span><span class='hljl-t'>
</span><span class='hljl-nf'>y</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>v0</span><span class='hljl-oB'>*</span><span class='hljl-n'>t</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-ni'>5</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-n'>t</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'>
</span><span class='hljl-n'>eqn</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>tan</span><span class='hljl-p'>(</span><span class='hljl-nf'>theta</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>))</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-nf'>y</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>/</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-ni'>100</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-nf'>x</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>))</span>
</pre>
<div class="well well-sm">\begin{equation*}\tan{\left (\theta{\left (t \right )} \right )} - \frac{- 5 t^{2} + 5 t}{- 50 t + 100}\end{equation*}</div>
<pre class='hljl'>
<span class='hljl-n'>thetap</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>diff</span><span class='hljl-p'>(</span><span class='hljl-nf'>theta</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>),</span><span class='hljl-n'>t</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>dtheta</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>solve</span><span class='hljl-p'>(</span><span class='hljl-nf'>diff</span><span class='hljl-p'>(</span><span class='hljl-n'>eqn</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>t</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-n'>thetap</span><span class='hljl-p'>)[</span><span class='hljl-ni'>1</span><span class='hljl-p'>]</span>
</pre>
<div class="well well-sm">\begin{equation*}\frac{\left(- t^{3} + 3 t^{2} + 2 t \left(t - 2\right)^{2} - 2 t - \left(t - 2\right)^{2}\right) \cos^{2}{\left (\theta{\left (t \right )} \right )}}{10 \left(t - 2\right)^{3}}\end{equation*}</div>
<p>We could proceed directly by evaluating:</p>
<pre class='hljl'>
<span class='hljl-n'>d2theta</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>diff</span><span class='hljl-p'>(</span><span class='hljl-n'>dtheta</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>t</span><span class='hljl-p'>)(</span><span class='hljl-n'>thetap</span><span class='hljl-t'> </span><span class='hljl-oB'>=></span><span class='hljl-t'> </span><span class='hljl-n'>dtheta</span><span class='hljl-p'>)</span>
</pre>
<div class="well well-sm">\begin{equation*}\frac{\left(- 3 t^{2} + 2 t \left(2 t - 4\right) + 4 t + 2 \left(t - 2\right)^{2} + 2\right) \cos^{2}{\left (\theta{\left (t \right )} \right )}}{10 \left(t - 2\right)^{3}} - \frac{3 \left(- t^{3} + 3 t^{2} + 2 t \left(t - 2\right)^{2} - 2 t - \left(t - 2\right)^{2}\right) \cos^{2}{\left (\theta{\left (t \right )} \right )}}{10 \left(t - 2\right)^{4}} - \frac{\left(- t^{3} + 3 t^{2} + 2 t \left(t - 2\right)^{2} - 2 t - \left(t - 2\right)^{2}\right)^{2} \sin{\left (\theta{\left (t \right )} \right )} \cos^{3}{\left (\theta{\left (t \right )} \right )}}{50 \left(t - 2\right)^{6}}\end{equation*}</div>
<p>That is not so tractable, however.</p>
<p>It helps to simplify <span class="math">$\cos^2(\theta(t))$</span> using basic right-triangle trigonometry. Recall, <span class="math">$\theta$</span> comes from a right triangle with height <span class="math">$y(t)$</span> and length <span class="math">$(100 - x(t))$</span>. The cosine of this angle will be <span class="math">$100 - x(t)$</span> divided by the length of the hypotenuse. So we can substitute:</p>
<pre class='hljl'>
<span class='hljl-n'>dtheta</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>dtheta</span><span class='hljl-p'>(</span><span class='hljl-nf'>cos</span><span class='hljl-p'>(</span><span class='hljl-nf'>theta</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>))</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>=></span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-ni'>100</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-nf'>x</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>))</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-oB'>/</span><span class='hljl-p'>(</span><span class='hljl-nf'>y</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>)</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-ni'>100</span><span class='hljl-oB'>-</span><span class='hljl-nf'>x</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>))</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-p'>))</span>
</pre>
<div class="well well-sm">\begin{equation*}\frac{\left(- 50 t + 100\right)^{2} \left(- t^{3} + 3 t^{2} + 2 t \left(t - 2\right)^{2} - 2 t - \left(t - 2\right)^{2}\right)}{10 \left(t - 2\right)^{3} \left(\left(- 50 t + 100\right)^{2} + \left(- 5 t^{2} + 5 t\right)^{2}\right)}\end{equation*}</div>
<p>Plotting reveals some interesting things. For <span class="math">$v_{0y} < 10$</span> we have graphs that look like:</p>
<pre class='hljl'>
<span class='hljl-nf'>plot</span><span class='hljl-p'>(</span><span class='hljl-n'>dtheta</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>0</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>v0</span><span class='hljl-oB'>/</span><span class='hljl-ni'>5</span><span class='hljl-p'>)</span>
</pre>
<div id="9279b54a-5d12-41cc-a7c6-5e20f171bb28" style="width:576px;height:384px;"></div>
<script>
PLOT = document.getElementById('9279b54a-5d12-41cc-a7c6-5e20f171bb28');
Plotly.plot(PLOT, [
{
"xaxis": "x1",
"colorbar": {
"title": ""
},
"yaxis": "y1",
"text": [
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
],
"x": [
0.009765819019788131,
0.10006491716837283,
0.15433091130562387,
0.20021211871576575,
0.2500519700330514,
0.29599990453462816,
0.3452609464064898,
0.4023346943385323,
0.45305510611102146,
0.49753233654022,
0.5460244566553195,
0.5948047787528121,
0.6487376626244042,
0.7000534407448434,
0.7534099435113505,
0.7983247536668452,
0.8257426998266046,
0.8531606459863641,
0.8789343240575362,
0.9047080021287085,
0.9459994330723842,
0.9872908640160599,
0.9936454320080299
],
"showlegend": true,
"mode": "lines",
"name": "y1",
"zmin": -0.1,
"legendgroup": "y1",
"zmax": 0.1,
"line": {
"color": "rgba(0, 154, 250, 1.000)",
"shape": "linear",
"dash": "solid",
"width": 1
},
"y": [
0.04950809751224789,
0.044593550147662954,
0.0412865515134893,
0.03825402569473333,
0.034686015412084784,
0.031115722863681958,
0.02695325477935689,
0.021641600097026228,
0.0164200316928397,
0.011399698769934952,
0.00539306160556112,
-0.0012873114720058328,
-0.009531718891645233,
-0.01834813832743783,
-0.028694851098128762,
-0.038495000666983574,
-0.04503846951272888,
-0.05205723158614451,
-0.05913046990546089,
-0.0667091355958481,
-0.08002953992683977,
-0.09501149648320276,
-0.09748215908554222
],
"type": "scatter",
"hoverinfo": "text"
}
]
, {
"showlegend": true,
"xaxis": {
"showticklabels": true,
"gridwidth": 0.5,
"tickvals": [
0.0,
0.25,
0.5,
0.75,
1.0
],
"visible": true,
"ticks": "inside",
"range": [
-0.01975056936985912,
1.0231618203976771
],
"domain": [
0.08399557694177116,
0.9931649168853893
],
"tickmode": "array",
"linecolor": "rgba(0, 0, 0, 1.000)",
"showgrid": true,
"title": "",
"mirror": false,
"tickangle": 0,
"showline": true,
"gridcolor": "rgba(0, 0, 0, 0.100)",
"titlefont": {
"color": "rgba(0, 0, 0, 1.000)",
"family": "sans-serif",
"size": 15
},
"tickcolor": "rgb(0, 0, 0)",
"ticktext": [
"0.00",
"0.25",
"0.50",
"0.75",
"1.00"
],
"zeroline": false,
"type": "-",
"tickfont": {
"color": "rgba(0, 0, 0, 1.000)",
"family": "sans-serif",
"size": 11
},
"zerolinecolor": "rgba(0, 0, 0, 1.000)",
"anchor": "y1"
},
"paper_bgcolor": "rgba(255, 255, 255, 1.000)",
"annotations": [],
"height": 384,
"margin": {
"l": 0,
"b": 20,
"r": 0,
"t": 20
},
"plot_bgcolor": "rgba(255, 255, 255, 1.000)",
"yaxis": {
"showticklabels": true,
"gridwidth": 0.5,
"tickvals": [
-0.09,
-0.06,
-0.03,
0.0,
0.03
],
"visible": true,
"ticks": "inside",
"range": [
-0.10189186678347592,
0.053917805210181594
],
"domain": [
0.0391878098571012,
0.989747375328084
],
"tickmode": "array",
"linecolor": "rgba(0, 0, 0, 1.000)",
"showgrid": true,
"title": "",
"mirror": false,
"tickangle": 0,
"showline": true,
"gridcolor": "rgba(0, 0, 0, 0.100)",
"titlefont": {
"color": "rgba(0, 0, 0, 1.000)",
"family": "sans-serif",
"size": 15
},
"tickcolor": "rgb(0, 0, 0)",
"ticktext": [
"-0.09",
"-0.06",
"-0.03",
"0.00",
"0.03"
],
"zeroline": false,
"type": "-",
"tickfont": {
"color": "rgba(0, 0, 0, 1.000)",
"family": "sans-serif",
"size": 11
},
"zerolinecolor": "rgba(0, 0, 0, 1.000)",
"anchor": "x1"
},
"legend": {
"tracegroupgap": 0,
"bordercolor": "rgba(0, 0, 0, 1.000)",
"bgcolor": "rgba(255, 255, 255, 1.000)",
"font": {
"color": "rgba(0, 0, 0, 1.000)",
"family": "sans-serif",
"size": 11
},
"y": 1.0,
"x": 1.0
},
"width": 576
}
);
</script>
<p>The ball will drop in front of the player, and the change in <span class="math">$d\theta/dt$</span> is monotonic.</p>
<p>But let's rerun the code with <span class="math">$v_{0y} > 10$</span>:</p>
<pre class='hljl'>
<span class='hljl-n'>v0</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>15</span><span class='hljl-t'>
</span><span class='hljl-nf'>x</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>50</span><span class='hljl-n'>t</span><span class='hljl-t'>
</span><span class='hljl-nf'>y</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>v0</span><span class='hljl-oB'>*</span><span class='hljl-n'>t</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-ni'>5</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-n'>t</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'>
</span><span class='hljl-n'>eqn</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>tan</span><span class='hljl-p'>(</span><span class='hljl-nf'>theta</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>))</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-nf'>y</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>/</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-ni'>100</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-nf'>x</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>))</span><span class='hljl-t'>
</span><span class='hljl-n'>thetap</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>diff</span><span class='hljl-p'>(</span><span class='hljl-nf'>theta</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>),</span><span class='hljl-n'>t</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>dtheta</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>solve</span><span class='hljl-p'>(</span><span class='hljl-nf'>diff</span><span class='hljl-p'>(</span><span class='hljl-n'>eqn</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>t</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-n'>thetap</span><span class='hljl-p'>)[</span><span class='hljl-ni'>1</span><span class='hljl-p'>]</span><span class='hljl-t'>
</span><span class='hljl-n'>dtheta</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>subs</span><span class='hljl-p'>(</span><span class='hljl-n'>dtheta</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-nf'>cos</span><span class='hljl-p'>(</span><span class='hljl-nf'>theta</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>))</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-ni'>100</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-nf'>x</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>))</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-oB'>/</span><span class='hljl-p'>(</span><span class='hljl-nf'>y</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>)</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-ni'>100</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-nf'>x</span><span class='hljl-p'>(</span><span class='hljl-n'>t</span><span class='hljl-p'>))</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-p'>))</span><span class='hljl-t'>
</span><span class='hljl-nf'>plot</span><span class='hljl-p'>(</span><span class='hljl-n'>dtheta</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>0</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>v0</span><span class='hljl-oB'>/</span><span class='hljl-ni'>5</span><span class='hljl-p'>)</span>
</pre>
<div id="c33a1917-2b07-40cb-8991-7f98c40551b1" style="width:576px;height:384px;"></div>
<script>
PLOT = document.getElementById('c33a1917-2b07-40cb-8991-7f98c40551b1');
Plotly.plot(PLOT, [
{
"xaxis": "x1",
"colorbar": {
"title": ""
},
"yaxis": "y1",
"text": [
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
],
"x": [
0.029297457059364394,
0.3001947515051185,
0.4629927339168716,
0.6006363561472972,
0.7501559100991543,
0.8879997136038845,
1.0357828392194697,
1.2070040830155968,
1.2830847006743307,
1.3591653183330645,
1.4258811639768623,
1.49259700962066,
1.5289660997069845,
1.5653351897933092,
1.6017042798796337,
1.6380733699659582,
1.6746586115390778,
1.7112438531121974,
1.729536473898757,
1.7478290946853168,
1.7661217154718765,
1.7844143362584364,
1.8046391677102833,
1.8248639991621305,
1.8450888306139777,
1.8653136620658246,
1.9057633249695187,
1.9462129878732128,
1.955834696270795,
1.9654564046683776,
1.9750781130659598,
1.984699821463542,
1.9943215298611243,
2.0039432382587066,
2.013564946656289,
2.0231866550538715,
2.032808363451454,
2.0424300718490365,
2.052051780246619,
2.061673488644201,
2.0809169054393655,
2.1001603222345304,
2.140177699309411,
2.180195076384291,
2.2002037649217314,
2.2202124534591716,
2.240221141996612,
2.2602298305340516,
2.293915938150673,
2.3276020457672937,
2.3612881533839145,
2.3949742610005353,
2.4361011802401746,
2.477228099479814,
2.518355018719453,
2.559481937959092,
2.636802972172609,
2.714124006386126,
2.837998299217153,
2.96187259204818,
2.98093629602409
],
"showlegend": true,
"mode": "lines",
"name": "y1",
"zmin": -0.1,
"legendgroup": "y1",
"zmax": 0.1,
"line": {
"color": "rgba(0, 154, 250, 1.000)",
"shape": "linear",
"dash": "solid",
"width": 1
},
"y": [
0.15149474620035736,
0.16883618157422722,
0.1835877592409021,
0.20001229982245017,
0.22394832823064667,
0.2545017604800756,
0.3016882315084115,
0.38906728414396285,
0.44692968171364084,
0.523596964094341,
0.6130711869722063,
0.7327497363284579,
0.8154853633286466,
0.9144691039168831,
1.0338307659873809,
1.1788956004332591,
1.35765999084654,
1.5781156595849242,
1.7072471125443922,
1.8509357493920942,
2.0107191303084027,
2.188102211736774,
2.406313637514533,
2.6489389148105813,
2.916195861670879,
3.2065492441286585,
3.836109606879472,
4.455358150795099,
4.585636448534443,
4.704439884021035,
4.809296646239133,
4.897851738706502,
4.967985831037462,
5.017933532038204,
5.04638974352394,
5.052592709432821,
5.0363741932663695,
4.998170725351409,
4.938994541243175,
4.86036776349817,
4.652813397210451,
4.393914476492629,
3.7741901779635643,
3.155229870341887,
2.871433048495969,
2.61063289362026,
2.3740012574877642,
2.161143712174867,
1.8525769529269822,
1.5986648275211155,
1.3900017784798215,
1.218072872215596,
1.0476585567144456,
0.9110783840494161,
0.8005137931272506,
0.7100978979360354,
0.5800768845269185,
0.4864351640702269,
0.3836476424959012,
0.3161261632513535,
0.30783888275902216
],
"type": "scatter",
"hoverinfo": "text"
}
]
, {
"showlegend": true,
"xaxis": {
"showticklabels": true,
"gridwidth": 0.5,
"tickvals": [
0.0,
1.0,
2.0,
3.0
],
"visible": true,
"ticks": "inside",
"range": [
-0.05925170810957737,
3.0694854611930316
],
"domain": [
0.022267181880042772,
0.9931649168853892
],
"tickmode": "array",
"linecolor": "rgba(0, 0, 0, 1.000)",
"showgrid": true,
"title": "",
"mirror": false,
"tickangle": 0,
"showline": true,
"gridcolor": "rgba(0, 0, 0, 0.100)",
"titlefont": {
"color": "rgba(0, 0, 0, 1.000)",
"family": "sans-serif",
"size": 15
},
"tickcolor": "rgb(0, 0, 0)",
"ticktext": [
"0",
"1",
"2",
"3"
],
"zeroline": false,
"type": "-",
"tickfont": {
"color": "rgba(0, 0, 0, 1.000)",
"family": "sans-serif",
"size": 11
},
"zerolinecolor": "rgba(0, 0, 0, 1.000)",
"anchor": "y1"
},
"paper_bgcolor": "rgba(255, 255, 255, 1.000)",
"annotations": [],
"height": 384,
"margin": {
"l": 0,
"b": 20,
"r": 0,
"t": 20
},
"plot_bgcolor": "rgba(255, 255, 255, 1.000)",
"yaxis": {
"showticklabels": true,
"gridwidth": 0.5,
"tickvals": [
1.0,
2.0,
3.0,
4.0,
5.0
],
"visible": true,
"ticks": "inside",
"range": [
0.0044618073033834416,
5.1996256483297945
],
"domain": [
0.0391878098571012,
0.989747375328084
],
"tickmode": "array",
"linecolor": "rgba(0, 0, 0, 1.000)",
"showgrid": true,