forked from CalculusWithJulia/CalculusWithJulia.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimization.html
5606 lines (5053 loc) · 328 KB
/
optimization.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/css/bootstrap.min.css"
rel="stylesheet">
<style>
.julia {display: block; font-family: "Source Code Pro";
color:#0033CC;
}
.hljl {font-family: "Source Code Pro";
color:#0033CC;
}
body { padding-top: 60px; }
h5:before {content:"\2746\ ";}
h6:before {content:"\2742\ ";}
pre {display: block;}
th, td {
padding: 15px;
text-align: left;
border-bottom: 1px solid #ddd;
}
tr:hover {background-color: #f5f5f5;}
.admonition-title:before {content:"\2746\ ";}
.admonition-title { color:#0033CC}
</style>
<!-- .julia:before {content: "julia> "} -->
<style></style>
<script src="https://code.jquery.com/jquery.js"></script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ["\$","\$"], ["\\(","\\)"]]
},
displayAlign: "left",
displayIndent: "5%"
});
</script>
<!-- not TeX-AMS-MML_HTMLorMML-->
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML" async></script>
</script>
<script>
window.PlotlyConfig = {MathJaxConfig: 'local'}
</script>
<script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
<script type="text/javascript">
$( document ).ready(function() {
$("h1").each(function(index) {
var title = $( this ).text()
$("#page_title").html("<strong>" + title + "</strong>");
document.title = title
});
$( "h2" ).each(function( index ) {
var nm = $( this ).text();
var id = $.trim(nm).replace(/ /g,'');
this.id = id
$("#page_dropdown").append("<li><a href='#" + id + "'>" + nm + "</a></li>");
});
$('[data-toggle="popover"]').popover();
});
</script>
</head>
<body data-spy="scroll" >
<nav class="navbar navbar-default navbar-fixed-top">
<div class="container-fluid">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
</div>
<!-- Collect the nav links, forms, and other content for toggling -->
<div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
<ul class="nav navbar-nav">
<li><a href="#" id="page_title"></a></li>
</ul>
<ul class="nav navbar-nav navbar-right">
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Jump to... <span class="caret"></span></a>
<ul class="dropdown-menu" role="menu" id="page_dropdown"></ul>
</li>
</ul>
</div><!-- /.navbar-collapse -->
</div><!-- /.container-fluid -->
</nav>
<header>
</header>
<div class="title">
</div>
<div class="container-fluid">
<div class="span10 offset1">
<h1>Optimization</h1>
<p>This section discusses a basic application of calculus to answer questions which relate to the largest or smallest a function can be given some constraints.</p>
<p>For example,</p>
<blockquote>
<p>Of all rectangles with perimeter 20, which has of the largest area?</p>
</blockquote>
<p>The main tool is the extreme value theorem of Bolzano and Fermat's theorem about critical points: If the function <span class="math">$f(x)$</span> is continuous on <span class="math">$[a,b]$</span> and differentiable on <span class="math">$(a,b)$</span>, then the extrema exist and must occur at either an end point or a critical point.</p>
<p>Though not all of our problems lend themselves to a description of a continuous function on a closed interval, if they do, we have an algorithmic prescription to find the absolute extrema of a function:</p>
<ol>
<li><p>Find the critical points. For this we will can use a root-finding function like <code>find_zero</code>.</p>
</li>
<li><p>Evaluate the function values at the critical points and at the end points.</p>
</li>
<li><p>Identify the largest and smallest values.</p>
</li>
</ol>
<p>With the computer we can take some shortcuts, as we will be able to graph our function to see where the extreme values will be.</p>
<h2>Fixed perimeter and area</h2>
<p>The simplest way to investigate the maximum or minimum value of a function over a closed interval is to just graph it and look.</p>
<p>We begin with the question of which rectangles of perimeter 20 have the largest area? The figure shows a few different rectangles with this perimeter and their respective areas.</p>
<div class="well well-sm">
<figure>
<img src=""/>
<figcaption><div class="markdown"><p>Some possible rectangles that satisfy the constraint on the perimeter and their area.</p>
</div></figcaption>
</figure>
</div>
<p>The basic mathematical approach is to find a function of a single variable to maximize or minimize. In this case we have two variables describing a rectangle: a base <span class="math">$b$</span> and height <span class="math">$h$</span>. Our formulas are the area of a rectangle:</p>
<p class="math">\[
~
A = bh,
~
\]</p>
<p>and the formula for the perimeter of a rectangle:</p>
<p class="math">\[
~
P = 2b + 2h = 20.
~
\]</p>
<p>From this last one, we see that <span class="math">$b$</span> can be no bigger than 10 and no smaller than 0 from the restriction put in place through the perimeter. Solving for <span class="math">$h$</span> in terms of <span class="math">$b$</span> then yields this restatement of the problem:</p>
<p>Maximize <span class="math">$A(b) = b \cdot (10 - b)$</span> over the interval <span class="math">$[0,10]$</span>.</p>
<p>This is exactly the form needed to apply our theorem about the existence of extrema (a continuous function on a closed interval). Rather than solve analytically by taking a derivative, we simply graph to find the value:</p>
<pre class='hljl'>
<span class='hljl-k'>using</span><span class='hljl-t'> </span><span class='hljl-n'>CalculusWithJulia</span><span class='hljl-t'> </span><span class='hljl-cs'># loads `Plots`, `ForwardDiff`, `Roots`, `SymPy`</span><span class='hljl-t'>
</span><span class='hljl-nf'>A</span><span class='hljl-p'>(</span><span class='hljl-n'>b</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>b</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-ni'>10</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-n'>b</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-nf'>plot</span><span class='hljl-p'>(</span><span class='hljl-n'>A</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>0</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>10</span><span class='hljl-p'>)</span>
</pre>
<div id="bda24fe7-2b49-4232-9c6b-91a936b9a668" style="width:576px;height:384px;"></div>
<script>
PLOT = document.getElementById('bda24fe7-2b49-4232-9c6b-91a936b9a668');
Plotly.plot(PLOT, [
{
"xaxis": "x1",
"colorbar": {
"title": ""
},
"yaxis": "y1",
"text": [
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
],
"x": [
0.04882909509894066,
0.09765819019788131,
0.5491536809408047,
1.0006491716837282,
1.2719791423699836,
1.5433091130562389,
1.772715150106948,
2.002121187157657,
2.2513204437440857,
2.500519700330514,
2.7302593728383977,
2.9599990453462817,
3.20630425470559,
3.4526094640648983,
3.7379782037251106,
4.023346943385323,
4.276949002247768,
4.530551061110215,
4.7529372132562075,
4.9753233654022,
5.217783965977698,
5.460244566553195,
5.704146177040657,
5.948047787528121,
6.217712206886082,
6.487376626244043,
6.743955516846238,
7.000534407448435,
7.267316921280971,
7.5340994351135055,
7.758673485890979,
7.983247536668451,
8.257426998266046,
8.53160645986364,
8.789343240575363,
9.047080021287085,
9.459994330723841,
9.872908640160599,
9.9364543200803
],
"showlegend": true,
"mode": "lines",
"name": "y1",
"zmin": -0.1,
"legendgroup": "y1",
"zmax": 0.1,
"line": {
"color": "rgba(0, 154, 250, 1.000)",
"shape": "linear",
"dash": "solid",
"width": 1
},
"y": [
0.4859066704612252,
0.9670447798660876,
5.189967044117212,
9.00519295204595,
11.101860485075555,
13.051288112119954,
14.584632497650782,
16.012722623510985,
17.44476069702079,
18.752598231564136,
19.848277485412055,
20.83839610501192,
21.78265557331273,
22.605582529298477,
23.4073009857271,
24.04614880700521,
24.477197254649504,
24.779617693775254,
24.93895997940639,
24.999391063704927,
24.952570144163026,
24.78817493895826,
24.50417816135903,
24.101205392563035,
23.517176981200627,
22.78771077170289,
21.95861915526157,
20.99786208461494,
19.85927397847298,
18.57834005295741,
17.389720598242114,
16.100234134961617,
14.389169350967455,
12.527755812649405,
10.640877805105807,
8.621143301298925,
5.108450569911196,
1.254761384648182,
0.631418745760548
],
"type": "scatter",
"hoverinfo": "text"
}
]
, {
"showlegend": true,
"xaxis": {
"showticklabels": true,
"gridwidth": 0.5,
"tickvals": [
0.0,
2.5,
5.0,
7.5,
10.0
],
"visible": true,
"ticks": "inside",
"range": [
-0.24779966165050013,
10.23308307682974
],
"domain": [
0.03769928064547487,
0.9931649168853894
],
"tickmode": "array",
"linecolor": "rgba(0, 0, 0, 1.000)",
"showgrid": true,
"title": "",
"mirror": false,
"tickangle": 0,
"showline": true,
"gridcolor": "rgba(0, 0, 0, 0.100)",
"titlefont": {
"color": "rgba(0, 0, 0, 1.000)",
"family": "sans-serif",
"size": 15
},
"tickcolor": "rgb(0, 0, 0)",
"ticktext": [
"0.0",
"2.5",
"5.0",
"7.5",
"10.0"
],
"zeroline": false,
"type": "-",
"tickfont": {
"color": "rgba(0, 0, 0, 1.000)",
"family": "sans-serif",
"size": 11
},
"zerolinecolor": "rgba(0, 0, 0, 1.000)",
"anchor": "y1"
},
"paper_bgcolor": "rgba(255, 255, 255, 1.000)",
"annotations": [],
"height": 384,
"margin": {
"l": 0,
"b": 20,
"r": 0,
"t": 20
},
"plot_bgcolor": "rgba(255, 255, 255, 1.000)",
"yaxis": {
"showticklabels": true,
"gridwidth": 0.5,
"tickvals": [
0.0,
5.0,
10.0,
15.0,
20.0,
25.0
],
"visible": true,
"ticks": "inside",
"range": [
-0.2494978613360858,
25.734795595502238
],
"domain": [
0.0391878098571012,
0.989747375328084
],
"tickmode": "array",
"linecolor": "rgba(0, 0, 0, 1.000)",
"showgrid": true,
"title": "",
"mirror": false,
"tickangle": 0,
"showline": true,
"gridcolor": "rgba(0, 0, 0, 0.100)",
"titlefont": {
"color": "rgba(0, 0, 0, 1.000)",
"family": "sans-serif",
"size": 15
},
"tickcolor": "rgb(0, 0, 0)",
"ticktext": [
"0",
"5",
"10",
"15",
"20",
"25"
],
"zeroline": false,
"type": "-",
"tickfont": {
"color": "rgba(0, 0, 0, 1.000)",
"family": "sans-serif",
"size": 11
},
"zerolinecolor": "rgba(0, 0, 0, 1.000)",
"anchor": "x1"
},
"legend": {
"tracegroupgap": 0,
"bordercolor": "rgba(0, 0, 0, 1.000)",
"bgcolor": "rgba(255, 255, 255, 1.000)",
"font": {
"color": "rgba(0, 0, 0, 1.000)",
"family": "sans-serif",
"size": 11
},
"y": 1.0,
"x": 1.0
},
"width": 576
}
);
</script>
<p>You should see the maximum occurs at <span class="math">$b=5$</span> by symmetry, so <span class="math">$h=5$</span> as well, and the maximum area is then <span class="math">$25$</span>. This gives the satisfying answer that among all rectangles of fixed perimeter, that with the largest area is a square. As well, this indicates a common result: there is often some underlying symmetry in the answer.</p>
<h3>Exploiting polymorphism</h3>
<p>Before moving on, let's see a slightly different way to do this problem with <code>Julia</code>, where we trade off some algebra for a bit of abstraction. This was discussed in the section on <a href="../precalc/functions.html">functions</a>. Let's first write area as a function of both base and height:</p>
<pre class='hljl'>
<span class='hljl-nf'>A</span><span class='hljl-p'>(</span><span class='hljl-n'>b</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>h</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>b</span><span class='hljl-oB'>*</span><span class='hljl-n'>h</span>
</pre>
<pre class="output">
A (generic function with 2 methods)
</pre>
<p>Here we write area, quite naturally, as a function of two variables.</p>
<p>Then from the constraint given by the perimeter being a fixed value we can solve for <code>h</code> in terms of <code>b</code>. We write this as a function:</p>
<pre class='hljl'>
<span class='hljl-nf'>h</span><span class='hljl-p'>(</span><span class='hljl-n'>b</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-ni'>20</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-n'>b</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>/</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span>
</pre>
<pre class="output">
h (generic function with 1 method)
</pre>
<p>Then to get <code>A(b)</code> we simply need to substitute <code>h(b)</code> into our formula for the area, <code>A</code>. However, instead of doing the substitution ourselves using algebra we let <code>Julia</code> do it through composition of functions:</p>
<pre class='hljl'>
<span class='hljl-nf'>A</span><span class='hljl-p'>(</span><span class='hljl-n'>b</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>A</span><span class='hljl-p'>(</span><span class='hljl-n'>b</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-nf'>h</span><span class='hljl-p'>(</span><span class='hljl-n'>b</span><span class='hljl-p'>))</span>
</pre>
<pre class="output">
A (generic function with 2 methods)
</pre>
<p>From this we can solve graphically as before, or numerically. We search for zeros of the derivative:</p>
<pre class='hljl'>
<span class='hljl-nf'>find_zeros</span><span class='hljl-p'>(</span><span class='hljl-n'>A</span><span class='hljl-oB'>'</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>0</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>10</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-cs'># find_zeros in `Roots`,</span>
</pre>
<pre class="output">
1-element Array{Float64,1}:
5.0
</pre>
<div class="alert alert-success" role="alert">
<div class="markdown"><p>Look at the last definition of <code>A</code>. The function <code>A</code> appears on both sides, though on the left side with one argument and on the right with two. These are two "methods" of a <em>generic</em> function, <code>A</code>. <code>Julia</code> allows multiple definitions for the same name as long as the arguments (their number and type) can disambiguate which to use. In this instance, when one argument is passed in then the last defintion is used (<code>A(b,h(b))</code>), whereas if two are passed in, then the method that multiplies both arguments is used. The advantage of multiple dispatch is illustrated: the same concept–-area–-has one function name, though there may be different ways to compute the area, so there is more than one implementation.</p>
</div>
</div>
<h3>Norman Windows</h3>
<p>Here is a similar, though more complicated, example where the analytic approach can be a bit more tedious, but the graphical one mostly satisfying, though we do use a numerical algorithm to find an exact final answer.</p>
<p>Let a "<a href="https://en.wikipedia.org/wiki/Norman_architecture">Norman</a>" window consist of a rectangular window of top length <span class="math">$x$</span> and side length <span class="math">$y$</span> and a half circle on top. The goal is to maximize the area for a fixed value of the perimeter. Again, assume this perimeter is 20 units.</p>
<p>This figure shows two such windows, one with base length given by <span class="math">$x=4$</span>, the other with base length given by <span class="math">$x=3$</span>. The one with base length <span class="math">$4$</span> seems to have much bigger area, what value of <span class="math">$x$</span> will lead to the largest area?</p>
<div id="cf14c6a3-1258-44e0-904c-c941ca5bdb13" style="width:576px;height:384px;"></div>
<script>
PLOT = document.getElementById('cf14c6a3-1258-44e0-904c-c941ca5bdb13');
Plotly.plot(PLOT, [
{
"xaxis": "x1",
"fill": "tozeroy",
"yaxis": "y1",
"x": [
4,
8,
8,
4,
4
],
"showlegend": true,
"mode": "lines",
"fillcolor": "rgba(0, 0, 255, 1.000)",
"name": "y1",
"legendgroup": "y1",
"line": {
"color": "rgba(0, 0, 0, 1.000)",
"dash": "solid",
"width": 1
},
"y": [
0.0,
0.0,
4.8584,
4.8584,
0.0
],
"type": "scatter"
},
{
"xaxis": "x1",
"fill": "tozeroy",
"yaxis": "y1",
"x": [
0,
3,
3,
0,
0
],
"showlegend": true,
"mode": "lines",
"fillcolor": "rgba(0, 0, 255, 1.000)",
"name": "y2",
"legendgroup": "y2",
"line": {
"color": "rgba(0, 0, 0, 1.000)",
"dash": "solid",
"width": 1
},
"y": [
0.0,
0.0,
6.1438,
6.1438,
0.0
],
"type": "scatter"
},
{
"xaxis": "x1",
"fill": "tozeroy",
"yaxis": "y1",
"x": [
8.0,
7.995890785500673,
7.983580027646492,
7.963118313982131,
7.934589726078059,
7.898111494021338,
7.8538335146920435,
7.801937735804838,
7.742637408246779,
7.676176209783681,
7.602827243735913,
7.522891916738269,
7.436698700195455,
7.344601780522634,
7.246979603717467,
7.144233320244339,
7.0367851366210505,
6.9250765804816705,
6.8095666862447874,
6.690730108842615,
6.569055173262065,
6.445041867912629,
6.319199790066759,
6.192046051815364,
6.064103155143311,
5.93589684485669,
5.807953948184636,
5.680800209933242,
5.554958132087371,
5.430944826737935,
5.309269891157385,
5.1904333137552126,
5.0749234195183295,
4.9632148633789495,
4.855766679755661,
4.753020396282533,
4.655398219477366,
4.563301299804545,
4.477108083261731,
4.397172756264087,
4.323823790216319,
4.257362591753221,
4.198062264195162,
4.1461664853079565,
4.101888505978662,
4.065410273921941,
4.036881686017869,
4.016419972353508,
4.004109214499327,
4.0,
8.0
],
"showlegend": true,
"mode": "lines",
"fillcolor": "rgba(255, 0, 0, 1.000)",
"name": "y3",
"legendgroup": "y3",
"line": {
"color": "rgba(0, 0, 0, 1.000)",
"dash": "solid",
"width": 1
},
"y": [
4.8584,
4.986540439961425,
5.114154323369012,
5.2407172574027445,
5.3657091678190145,
5.488616436047241,
5.608934009758748,
5.726167478235116,
5.839835104007875,
5.949469802421097,
6.054621060982432,
6.154856790615576,
6.249765101206973,
6.338955994150631,
6.422062964936059,
6.498744509193911,
6.568685526010691,
6.631598612746,
6.687225246031625,
6.73533684409952,
6.775735706073321,
6.808255824363647,
6.8327635668289,
6.849158225898396,
6.857372432401375,
6.857372432401375,
6.849158225898396,
6.8327635668289,
6.808255824363647,
6.775735706073321,
6.73533684409952,
6.687225246031625,
6.631598612746,
6.568685526010692,
6.498744509193911,
6.422062964936059,
6.338955994150631,
6.249765101206973,
6.154856790615576,
6.054621060982432,
5.949469802421097,
5.839835104007876,
5.726167478235116,
5.608934009758748,
5.488616436047241,
5.3657091678190145,
5.2407172574027445,
5.114154323369012,
4.986540439961426,
4.8584,
4.8584
],
"type": "scatter"
},
{
"xaxis": "x1",
"fill": "tozeroy",
"yaxis": "y1",
"x": [
3.0,
2.9969180891255043,
2.9876850207348693,
2.972338735486598,
2.950942294558544,
2.923583620516003,
2.8903751360190326,
2.8514533018536286,
2.806978056185084,
2.757132157337761,
2.702120432801935,
2.6421689375537016,
2.5775240251465914,
2.508451335391975,
2.4352347027881005,
2.3581749901832545,
2.2775888524657875,
2.1938074353612533,
2.1071750146835906,
2.0180475816319614,
1.9267913799465486,
1.8337814009344717,
1.739399842550069,
1.644034538861523,
1.548077366357483,
1.4519226336425173,
1.3559654611384773,
1.2606001574499313,
1.1662185990655285,
1.0732086200534514,
0.9819524183680388,
0.8928249853164095,
0.8061925646387473,
0.7224111475342124,
0.6418250098167458,
0.5647652972118997,
0.4915486646080247,
0.4224759748534088,
0.35783106244629836,
0.2978795671980652,
0.24286784266223904,
0.19302194381491633,
0.14854669814637145,
0.10962486398096738,
0.07641637948399715,
0.04905770544145582,
0.027661264513402006,
0.012314979265130921,
0.003081910874495497,
0.0,
3.0
],
"showlegend": true,
"mode": "lines",
"fillcolor": "rgba(255, 0, 0, 1.000)",
"name": "y4",
"legendgroup": "y4",
"line": {
"color": "rgba(0, 0, 0, 1.000)",
"dash": "solid",
"width": 1
},
"y": [
6.1438,
6.239905329971069,
6.335615742526759,
6.430537943052058,
6.5242818758642604,
6.616462327035431,
6.706700507319061,
6.794625608676337,
6.879876328005906,
6.9621023518158225,
7.040965795736824,
7.116142592961682,
7.18732382590523,
7.254216995612973,
7.316547223702044,
7.374058381895433,
7.426514144508019,
7.473698959559499,
7.515418934523718,
7.551502633074641,
7.581801779554991,
7.606191868272735,
7.624572675121675,
7.636868669423797,
7.643029324301032,
7.643029324301032,
7.636868669423797,
7.624572675121675,
7.606191868272735,
7.581801779554991,
7.551502633074641,
7.515418934523718,
7.4736989595595,
7.426514144508019,
7.374058381895434,
7.316547223702044,
7.254216995612973,
7.18732382590523,
7.116142592961682,
7.040965795736824,
6.9621023518158225,
6.879876328005907,
6.794625608676337,
6.706700507319061,
6.616462327035431,
6.5242818758642604,
6.430537943052059,
6.335615742526759,
6.239905329971069,
6.1438,
6.1438
],
"type": "scatter"
}
]
, {
"showlegend": false,
"xaxis": {
"showticklabels": true,
"gridwidth": 0.5,
"tickvals": [
0.0,
2.0,
4.0,
6.0,
8.0
],
"visible": true,
"ticks": "inside",
"range": [
-0.24,
8.24
],
"domain": [
0.022267181880042772,
0.9931649168853892
],
"tickmode": "array",
"linecolor": "rgba(0, 0, 0, 1.000)",
"showgrid": true,
"title": "",
"mirror": false,
"tickangle": 0,
"showline": true,
"gridcolor": "rgba(0, 0, 0, 0.100)",
"titlefont": {
"color": "rgba(0, 0, 0, 1.000)",
"family": "sans-serif",
"size": 15
},
"tickcolor": "rgb(0, 0, 0)",
"ticktext": [
"0",
"2",
"4",
"6",
"8"
],
"zeroline": false,
"type": "-",
"tickfont": {
"color": "rgba(0, 0, 0, 1.000)",
"family": "sans-serif",
"size": 11
},
"zerolinecolor": "rgba(0, 0, 0, 1.000)",
"anchor": "y1"
},
"paper_bgcolor": "rgba(255, 255, 255, 1.000)",
"annotations": [],
"height": 384,
"margin": {
"l": 0,
"b": 20,
"r": 0,
"t": 20
},
"plot_bgcolor": "rgba(255, 255, 255, 1.000)",
"yaxis": {
"showticklabels": true,
"gridwidth": 0.5,
"tickvals": [
0.0,
2.0,
4.0,
6.0
],
"visible": true,
"ticks": "inside",
"range": [
-0.22929087972903095,
7.872320204030062
],
"domain": [
0.0391878098571012,
0.989747375328084
],
"tickmode": "array",
"linecolor": "rgba(0, 0, 0, 1.000)",
"showgrid": true,
"title": "",
"mirror": false,
"tickangle": 0,
"showline": true,
"gridcolor": "rgba(0, 0, 0, 0.100)",
"titlefont": {
"color": "rgba(0, 0, 0, 1.000)",
"family": "sans-serif",
"size": 15
},
"tickcolor": "rgb(0, 0, 0)",
"ticktext": [
"0",
"2",
"4",
"6"
],
"zeroline": false,
"type": "-",
"tickfont": {
"color": "rgba(0, 0, 0, 1.000)",
"family": "sans-serif",
"size": 11
},
"zerolinecolor": "rgba(0, 0, 0, 1.000)",
"anchor": "x1"
},
"width": 576
}
);
</script>
<p>For this problem, we have two equations.</p>
<p>The area is the area of the rectangle plus the area of the half circle (<span class="math">$\pi r^2/2$</span> with <span class="math">$r=x/2$</span>).</p>
<p class="math">\[
~
A = xy + \pi(x/2)^2/2
~
\]</p>
<p>In <code>Julia</code> this is</p>
<pre class='hljl'>
<span class='hljl-nf'>A</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-oB'>*</span><span class='hljl-n'>y</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>pi</span><span class='hljl-oB'>*</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-oB'>/</span><span class='hljl-ni'>2</span><span class='hljl-p'>)</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>/</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span>
</pre>
<pre class="output">
A (generic function with 2 methods)
</pre>
<p>The perimeter consists of 3 sides of the rectangle and the perimeter of half a circle (<span class="math">$\pi r$</span>, with <span class="math">$r=x/2$</span>):</p>
<p class="math">\[
~
P = 2y + x + \pi(x/2) = 20
~
\]</p>
<p>We solve for <span class="math">$y$</span> in the first with <span class="math">$y = (20 - x - \pi(x/2))/2$</span> so that in <code>julia</code> we have:</p>
<pre class='hljl'>
<span class='hljl-nf'>y</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-ni'>20</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-n'>pi</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-oB'>/</span><span class='hljl-ni'>2</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>/</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span>
</pre>