forked from CalculusWithJulia/CalculusWithJulia.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
implicit_differentiation.html
1512 lines (1104 loc) · 472 KB
/
implicit_differentiation.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/css/bootstrap.min.css"
rel="stylesheet">
<style>
.julia {display: block; font-family: "Source Code Pro";
color:#0033CC;
}
.hljl {font-family: "Source Code Pro";
color:#0033CC;
}
body { padding-top: 60px; }
h5:before {content:"\2746\ ";}
h6:before {content:"\2742\ ";}
pre {display: block;}
th, td {
padding: 15px;
text-align: left;
border-bottom: 1px solid #ddd;
}
tr:hover {background-color: #f5f5f5;}
.admonition-title:before {content:"\2746\ ";}
.admonition-title { color:#0033CC}
</style>
<!-- .julia:before {content: "julia> "} -->
<style></style>
<script src="https://code.jquery.com/jquery.js"></script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ["\$","\$"], ["\\(","\\)"]]
},
displayAlign: "left",
displayIndent: "5%"
});
</script>
<!-- not TeX-AMS-MML_HTMLorMML-->
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML" async></script>
</script>
<script>
window.PlotlyConfig = {MathJaxConfig: 'local'}
</script>
<script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
<script type="text/javascript">
$( document ).ready(function() {
$("h1").each(function(index) {
var title = $( this ).text()
$("#page_title").html("<strong>" + title + "</strong>");
document.title = title
});
$( "h2" ).each(function( index ) {
var nm = $( this ).text();
var id = $.trim(nm).replace(/ /g,'');
this.id = id
$("#page_dropdown").append("<li><a href='#" + id + "'>" + nm + "</a></li>");
});
$('[data-toggle="popover"]').popover();
});
</script>
</head>
<body data-spy="scroll" >
<nav class="navbar navbar-default navbar-fixed-top">
<div class="container-fluid">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
</div>
<!-- Collect the nav links, forms, and other content for toggling -->
<div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
<ul class="nav navbar-nav">
<li><a href="#" id="page_title"></a></li>
</ul>
<ul class="nav navbar-nav navbar-right">
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Jump to... <span class="caret"></span></a>
<ul class="dropdown-menu" role="menu" id="page_dropdown"></ul>
</li>
</ul>
</div><!-- /.navbar-collapse -->
</div><!-- /.container-fluid -->
</nav>
<header>
</header>
<div class="title">
</div>
<div class="container-fluid">
<div class="span10 offset1">
<h1>Implicit Differentiation</h1>
<h2>Graphs of equations</h2>
<p>An <strong>equation</strong> in <span class="math">$y$</span> and <span class="math">$x$</span> is an algebraic expression involving an equality with two (or more) variables. An example might be <span class="math">$x^2 + y^2 = 1$</span>.</p>
<p>The <strong>solutions</strong> to an equation in the variables <span class="math">$x$</span> and <span class="math">$y$</span> are all points <span class="math">$(x,y)$</span> which satisfy the equation.</p>
<p>The <strong>graph</strong> of an equation is just the set of solutions to the equation represented in the Cartesian plane.</p>
<p>With this definition, the graph of a function <span class="math">$f(x)$</span> is just the graph of the equation <span class="math">$y = f(x)$</span>.</p>
<p>In general, graphing an equation is more complicated than graphing a function. For a function, we know for a given value of <span class="math">$x$</span> what the corresponding value of <span class="math">$f(x)$</span> is through evaluation of the function. For equations, we may have 0, 1 or more <span class="math">$y$</span> values for a given <span class="math">$x$</span> and even more problematic is we may have no rule to find these values.</p>
<p>To plot such an equation in <code>Julia</code>, we can use the <code>ImplicitEquations</code> package, which is loaded when <code>CalculusWithJulia</code> is:</p>
<pre class='hljl'>
<span class='hljl-k'>using</span><span class='hljl-t'> </span><span class='hljl-n'>CalculusWithJulia</span><span class='hljl-t'> </span><span class='hljl-cs'># load `Plots`, `ImplicitEquations`, `Roots`, `SymPy`</span><span class='hljl-t'>
</span><span class='hljl-nf'>gr</span><span class='hljl-p'>()</span><span class='hljl-t'> </span><span class='hljl-cs'># better graphics than plotly() here</span>
</pre>
<pre class="output">
Plots.GRBackend()
</pre>
<p>To plot the circle of radius <span class="math">$2$</span>, we would first define a function of <em>two</em> variables:</p>
<pre class='hljl'>
<span class='hljl-nf'>f</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span>
</pre>
<pre class="output">
f (generic function with 1 method)
</pre>
<div class="alert alert-info" role="alert">
<div class="markdown"><p>This is a function of <em>two</em> variables, used here to express one side of an equation. <code>Julia</code> makes this easy to do–-just make sure two variables are in the signature of <code>f</code> when it is defined. Using functions like this, we can express our equation in the form $f(x,y) = c$ or $f(x,y) = g(x,y)$, the latter of which can be expressed as $h(x,y) = f(x,y) - g(x,y) = 0$. That is, only the form $f(x,y)=c$ is needed.</p>
</div>
</div>
<p>Then we use one of the logical operations–-<code>Lt</code>, <code>Le</code>, <code>Eq</code>, <code>Ge</code>, or <code>Gt</code>–-to construct a predicate to plot. This one describes <span class="math">$x^2 + y^2 = 2^2$</span>:</p>
<pre class='hljl'>
<span class='hljl-n'>r</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>Eq</span><span class='hljl-p'>(</span><span class='hljl-n'>f</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
ImplicitEquations.Pred(Main.WeaveSandBox5030181185.f, ==, 4)
</pre>
<div class="alert alert-info" role="alert">
<div class="markdown"><p>There are unicode infix operators for each of these which make it easier to read at the cost of being harder to type in. This predicate would be written as <code>f ⩵ 2^2</code> where <code>⩵</code> is <strong>not</strong> two equals signs, but rather typed with <code>\Equal[tab]</code>.)</p>
</div>
</div>
<p>These "predicate" objects can be passed to <code>plot</code> for visualization:</p>
<pre class='hljl'>
<span class='hljl-nf'>plot</span><span class='hljl-p'>(</span><span class='hljl-n'>r</span><span class='hljl-p'>)</span>
</pre>
<img src="" />
<p>Of course, more complicated equations are possible and the steps are similar–-only the function definition is more involved. For example, the <a href="http://www-groups.dcs.st-and.ac.uk/~history/Curves/Devils.html">Devils curve</a> has the form</p>
<p class="math">\[
~
y^4 - x^4 + ay^2 + bx^2 = 0
~
\]</p>
<p>Here we draw the curve for a particular choice of <span class="math">$a$</span> and <span class="math">$b$</span>. For illustration purposes, a narrower viewing window than the default of <span class="math">$[-5,5] \times [-5,5]$</span> is specified below using <code>xlims</code> and <code>ylims</code>:</p>
<pre class='hljl'>
<span class='hljl-n'>a</span><span class='hljl-p'>,</span><span class='hljl-n'>b</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-ni'>2</span><span class='hljl-t'>
</span><span class='hljl-nf'>f</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-oB'>^</span><span class='hljl-ni'>4</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>4</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>a</span><span class='hljl-oB'>*</span><span class='hljl-n'>y</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>b</span><span class='hljl-oB'>*</span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'>
</span><span class='hljl-nf'>plot</span><span class='hljl-p'>(</span><span class='hljl-nf'>Eq</span><span class='hljl-p'>(</span><span class='hljl-n'>f</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>0</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-n'>xlims</span><span class='hljl-oB'>=</span><span class='hljl-p'>(</span><span class='hljl-oB'>-</span><span class='hljl-ni'>3</span><span class='hljl-p'>,</span><span class='hljl-ni'>3</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-n'>ylims</span><span class='hljl-oB'>=</span><span class='hljl-p'>(</span><span class='hljl-oB'>-</span><span class='hljl-ni'>3</span><span class='hljl-p'>,</span><span class='hljl-ni'>3</span><span class='hljl-p'>))</span>
</pre>
<img src="" />
<div class="alert alert-info" role="alert">
<div class="markdown"><p>The rendered plots look "blocky" due to the algorithm used to plot the equations. As there is no rule defining $(x,y)$ pairs to plot, a search by regions is done. A region is initially labeled undetermined. If it can be shown that for any value in the region the equation is true (equations can also be inequalities), the region is colored black. If it can be shown it will never be true, the region is dropped. If a black-and-white answer is not clear, the region is subdivided and each subregion is similarly tested. This continues until the remaining undecided regions are smaller than some threshold. Such regions comprise a boundary, and here are also colored black. Only regions are plotted–-not $(x,y)$ pairs–so the results are blocky. Pass larger values of $N=M$ (with defaults of $8$) to <code>plot</code> to lower the threshold at the cost of longer computation times.</p>
</div>
</div>
<h3>The IntervalConstraintProgramming package</h3>
<p>The <code>IntervalConstraintProgramming</code> package also can be used to graph implicit equations. For certain problem descriptions it is significantly faster and makes better graphs. The usage is slightly more involved:</p>
<p>We specify a problem using the <code>@constraint</code> macro. Using a macro allows expressions to involve free symbols, so the problem is specified in an equation-like manner:</p>
<pre class='hljl'>
<span class='hljl-k'>using</span><span class='hljl-t'> </span><span class='hljl-n'>IntervalArithmetic</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>IntervalConstraintProgramming</span><span class='hljl-t'>
</span><span class='hljl-n'>S</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nd'>@constraint</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'><=</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span>
</pre>
<pre class="output">
Separator:
- variables: x, y
- expression: x ^ 2 + y ^ 2 ∈ [-∞, 2]
</pre>
<p>The right hand side must be a number.</p>
<p>The area to plot over must be specified as an <code>IntervalBox</code>, basically a pair of intervals. The interval <span class="math">$[a,b]$</span> is expressed through <code>a..b</code>.</p>
<pre class='hljl'>
<span class='hljl-n'>X</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>IntervalBox</span><span class='hljl-p'>(</span><span class='hljl-oB'>-</span><span class='hljl-nfB'>3..3</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-nfB'>3..3</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
[-3, 3] × [-3, 3]
</pre>
<pre class='hljl'>
<span class='hljl-n'>r</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>pave</span><span class='hljl-p'>(</span><span class='hljl-n'>S</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>X</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
Paving:
- tolerance ϵ = 0.01
- inner approx. of length 1152
- boundary approx. of length 1156
</pre>
<p>We can plot either the boundary, the interior, or both.</p>
<pre class='hljl'>
<span class='hljl-nf'>plot</span><span class='hljl-p'>(</span><span class='hljl-n'>r</span><span class='hljl-oB'>.</span><span class='hljl-n'>inner</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-cs'># plot interior; use r.boundary for boundary</span>
</pre>
<img src="" />
<h2>Tangent lines, implicit differentiation</h2>
<p>The graph <span class="math">$x^2 + y^2 = 1$</span> has well-defined tangent lines at all points except <span class="math">$(-1,0)$</span> and <span class="math">$(0, 1)$</span> and even at these two points, we could call the vertical lines <span class="math">$x=-1$</span> and <span class="math">$x=1$</span> tangent lines. However, to recover the slope would need us to express <span class="math">$y$</span> as a function of <span class="math">$x$</span> and then differentiate that function. Of course, in this example, we would need two functions: <span class="math">$f(x) = \sqrt{1-x^2}$</span> and <span class="math">$g(x) = - \sqrt{1-x^2}$</span> to do this completely.</p>
<p>In general though, we may not be able to solve for <span class="math">$y$</span> in terms of <span class="math">$x$</span>. What then?</p>
<p>The idea is to <em>assume</em> that <span class="math">$y$</span> is representable by some function of <span class="math">$x$</span>. This makes sense, moving on the curve from <span class="math">$(x,y)$</span> to some nearby point, means changing <span class="math">$x$</span> will cause some change in <span class="math">$y$</span>. This assumption is only made <em>locally</em>–-basically meaning a complicated graph is reduced to just a small, well-behaved, section of its graph.</p>
<p>With this assumption, asking what <span class="math">$dy/dx$</span> is has an obvious meaning – what is the slope of the tangent line to the graph at <span class="math">$(x,y)$</span>.</p>
<p>The method of implicit differentiation allows this question to be investigated. It begins by differentiating both sides of the equation assuming <span class="math">$y$</span> is a function of <span class="math">$x$</span> to derive a new equation involving <span class="math">$dy/dx$</span>.</p>
<p>For example, starting with <span class="math">$x^2 + y^2 = 1$</span>, differentiating both sides in <span class="math">$x$</span> gives:</p>
<p class="math">\[
~
2x + 2y\cdot \frac{dy}{dx} = 0.
~
\]</p>
<p>The chain rule was used to find <span class="math">$d/dx(y^2) = 2y \cdot dy/dx$</span>. From this we can solve for <span class="math">$dy/dx$</span> (the resulting equations are linear in <span class="math">$dy/dx$</span>, so can always be solved explicitly):</p>
<p class="math">\[
~
dy/dx = -x/y
~
\]</p>
<p>This says the slope of the tangent line depends on the point <span class="math">$(x,y)$</span> through the formula <span class="math">$-x/y$</span>.</p>
<p>As a check, we compare to what we would have found had we solved for <span class="math">$y= \sqrt{1 - x^2}$</span> (for <span class="math">$(x,y)$</span> with <span class="math">$y \geq 0$</span>). We would have found: <span class="math">$dy/dx = 1/2 \cdot 1/\sqrt{1 - x^2} \cdot -2x$</span>. Which can be simplified to <span class="math">$-x/y$</span>. This should show that the method above–-assuming <span class="math">$y$</span> is a function of <span class="math">$x$</span> and differentiating–-is not only more general, but can even be easier.</p>
<p>The name–-<em>implicit differentiation</em>–-comes from the assumption that <span class="math">$y$</span> is implicitly defined in terms of <span class="math">$x$</span>. According to the <a href="http://en.wikipedia.org/wiki/Implicit_function_theorem">Implicit Function Theorem</a> the above method will work provided the curve has sufficient smoothness near the point <span class="math">$(x,y)$</span>.</p>
<h5>Examples</h5>
<p>Consider the <a href="http://www-history.mcs.st-and.ac.uk/Curves/Serpentine.html">serpentine</a> equation</p>
<p class="math">\[
~
x^2y + a\cdot b \cdot y - a^2 \cdot x = 0, \quad a\cdot b > 0.
~
\]</p>
<p>For <span class="math">$a = 2, b=1$</span> we have the graph:</p>
<pre class='hljl'>
<span class='hljl-n'>a</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>b</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-t'>
</span><span class='hljl-nf'>f</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-oB'>*</span><span class='hljl-n'>y</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>a</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-n'>b</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-n'>a</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'>
</span><span class='hljl-nf'>plot</span><span class='hljl-p'>(</span><span class='hljl-nf'>Eq</span><span class='hljl-p'>(</span><span class='hljl-n'>f</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>0</span><span class='hljl-p'>))</span>
</pre>
<img src="" />
<p>We can see that at each point in the viewing window the tangent line exists due to the smoothness of the curve. Moreover, at a point <span class="math">$(x,y)$</span> the tangent will have slope <span class="math">$dy/dx$</span> satisfying:</p>
<p class="math">\[
~
2xy + x^2 \frac{dy}{dx} + a\cdot b \frac{dy}{dx} - a^2 = 0.
~
\]</p>
<p>Solving, yields:</p>
<p class="math">\[
~
\frac{dy}{dx} = \frac{a^2 - 2xy}{ab + x^2}.
~
\]</p>
<p>In particular, the point <span class="math">$(0,0)$</span> is always on this graph, and the tangent line will have positive slope <span class="math">$a^2/(ab) = a/b$</span>.</p>
<hr />
<p>The <a href="http://www-history.mcs.st-and.ac.uk/Curves/Eight.html">eight</a> curve has representation</p>
<p class="math">\[
~
x^4 = a^2(x^2-y^2), \quad a \neq 0.
~
\]</p>
<p>A graph for <span class="math">$a=3$</span> shows why it has the name it does:</p>
<pre class='hljl'>
<span class='hljl-n'>a</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>3</span><span class='hljl-t'>
</span><span class='hljl-nf'>f</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>4</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-n'>a</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-oB'>*</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-nf'>plot</span><span class='hljl-p'>(</span><span class='hljl-nf'>Eq</span><span class='hljl-p'>(</span><span class='hljl-n'>f</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>0</span><span class='hljl-p'>))</span>
</pre>
<img src="" />
<p>The tangent line at <span class="math">$(x,y)$</span> will have slope, <span class="math">$dy/dx$</span> satisfying:</p>
<p class="math">\[
~
4x^3 = a^2 \cdot (2x - 2y \frac{dy}{dx}).
~
\]</p>
<p>Solving gives:</p>
<p class="math">\[
~
\frac{dy}{dx} = -\frac{4x^3 - a^2 \cdot 2x}{a^2 \cdot 2y}.
~
\]</p>
<p>The point <span class="math">$(3,0)$</span> can be seen to be a solution to the equation and should have a vertical tangent line. This also is reflected in the formula, as the denominator is <span class="math">$a^2\cdot 2 y$</span>, which is <span class="math">$0$</span> at this point, whereas the numerator is not.</p>
<h5>Example</h5>
<p>The quotient rule can be hard to remember, unlike the product rule. No reason to despair, the product rule plus implicit differentiation can be used to recover the quotient rule. Suppose <span class="math">$y=f(x)/g(x)$</span>, then we could also write <span class="math">$y g(x) = f(x)$</span>. Differentiating implicitly gives:</p>
<p class="math">\[
~
\frac{dy}{dx} g(x) + y g'(x) = f'(x).
~
\]</p>
<p>Solving for <span class="math">$dy/dx$</span> gives:</p>
<p class="math">\[
~
\frac{dy}{dx} = \frac{f'(x) - y g'(x)}{g(x)}.
~
\]</p>
<p>Not quite what we expect, perhaps, but substituting in <span class="math">$f(x)/g(x)$</span> for <span class="math">$y$</span> gives us the usual formula:</p>
<p class="math">\[
~
\frac{dy}{dx} = \frac{f'(x) - \frac{f(x)}{g(x)} g'(x)}{g(x)} = \frac{f'(x) g(x) - f(x) g'(x)}{g(x)^2}.
~
\]</p>
<div class="alert alert-info" role="alert">
<div class="markdown"><p>In this example we mix notations using $g'(x)$ to represent a derivative of $g$ with respect to $x$ and $dy/dx$ to represent the derivative of $y$ with respect to $x$. This is done to emphasize the value that we are solving for. It is just a convention though, we could just as well have used the "prime" notation for each.</p>
</div>
</div>
<h5>Example: Graphing a tangent line</h5>
<p>Let's see how to add a graph of a tangent line to the graph of an equation. Tangent lines are tangent at a point, so we need a point to discuss.</p>
<p>Returning to the equation for a circle, <span class="math">$x^2 + y^2 = 1$</span>, let's look at <span class="math">$(\sqrt{2}/2, - \sqrt{2}/2)$</span>. The derivative is $ -y/x<span class="math">$, so the slope at this point is $1$</span>. The line itself has equation <span class="math">$y = b + m \cdot (x-a)$</span>. The following represents this in <code>Julia</code>:</p>
<pre class='hljl'>
<span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'>
</span><span class='hljl-n'>a</span><span class='hljl-p'>,</span><span class='hljl-n'>b</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>sqrt</span><span class='hljl-p'>(</span><span class='hljl-ni'>2</span><span class='hljl-p'>)</span><span class='hljl-oB'>/</span><span class='hljl-ni'>2</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-nf'>sqrt</span><span class='hljl-p'>(</span><span class='hljl-ni'>2</span><span class='hljl-p'>)</span><span class='hljl-oB'>/</span><span class='hljl-ni'>2</span><span class='hljl-t'>
</span><span class='hljl-n'>m</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-n'>a</span><span class='hljl-oB'>/</span><span class='hljl-n'>b</span><span class='hljl-t'>
</span><span class='hljl-nf'>tl</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>b</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>m</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-oB'>-</span><span class='hljl-n'>a</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
tl (generic function with 1 method)
</pre>
<p>Now we want to plot <em>both</em> <span class="math">$F ⩵ 1$</span> and the tangent line. This can be done with two layers:</p>
<pre class='hljl'>
<span class='hljl-nf'>f</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'>
</span><span class='hljl-nf'>plot</span><span class='hljl-p'>(</span><span class='hljl-nf'>Eq</span><span class='hljl-p'>(</span><span class='hljl-n'>f</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-n'>xlims</span><span class='hljl-oB'>=</span><span class='hljl-p'>(</span><span class='hljl-oB'>-</span><span class='hljl-ni'>2</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-n'>ylims</span><span class='hljl-oB'>=</span><span class='hljl-p'>(</span><span class='hljl-oB'>-</span><span class='hljl-ni'>2</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-p'>))</span><span class='hljl-t'>
</span><span class='hljl-nf'>plot!</span><span class='hljl-p'>(</span><span class='hljl-n'>tl</span><span class='hljl-p'>)</span>
</pre>
<img src="" />
<h5>Example</h5>
<p>When we assume <span class="math">$y$</span> is a function of <span class="math">$x$</span>, it may not be feasible to actually find the function algebraically. However, in many cases one can be found numerically. Suppose <span class="math">$F(x,y) = c$</span> describes the equation. Then for a fixed <span class="math">$x$</span>, <span class="math">$y(x)$</span> solves <span class="math">$F(x,y(x))) - c = 0$</span>, so <span class="math">$y(x)$</span> is a zero of a known function. As long as we can piece together which <span class="math">$y$</span> goes with which, we can find the function.</p>
<p>For example, <a href="http://www-history.mcs.st-and.ac.uk/Curves/Foliumd.html">folium</a> of Descartes has the equation</p>
<p class="math">\[
~
x^3 + y^3 = 3axy.
~
\]</p>
<p>Setting <span class="math">$a=1$</span> we have the graph:</p>
<pre class='hljl'>
<span class='hljl-n'>a</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-t'>
</span><span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>3</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-oB'>^</span><span class='hljl-ni'>3</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-ni'>3</span><span class='hljl-oB'>*</span><span class='hljl-n'>a</span><span class='hljl-oB'>*</span><span class='hljl-n'>x</span><span class='hljl-oB'>*</span><span class='hljl-n'>y</span><span class='hljl-t'>
</span><span class='hljl-nf'>plot</span><span class='hljl-p'>(</span><span class='hljl-nf'>Eq</span><span class='hljl-p'>(</span><span class='hljl-n'>F</span><span class='hljl-p'>,</span><span class='hljl-ni'>0</span><span class='hljl-p'>))</span>
</pre>
<img src="" />
<p>We can solve for the lower curve, <span class="math">$y$</span>, as a function of <span class="math">$x$</span>, as follows:</p>
<pre class='hljl'>
<span class='hljl-nf'>y1</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>minimum</span><span class='hljl-p'>(</span><span class='hljl-nf'>find_zeros</span><span class='hljl-p'>(</span><span class='hljl-n'>y</span><span class='hljl-oB'>-></span><span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-ni'>10</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>10</span><span class='hljl-p'>))</span><span class='hljl-t'> </span><span class='hljl-cs'># find_zeros from `Roots`</span>
</pre>
<pre class="output">
y1 (generic function with 1 method)
</pre>
<p>This gives the lower part of the curve, which we can plot with:</p>
<pre class='hljl'>
<span class='hljl-nf'>plot</span><span class='hljl-p'>(</span><span class='hljl-n'>y1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-ni'>5</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>5</span><span class='hljl-p'>)</span>
</pre>
<img src="" />
<p>Though, in this case, the cubic equation would admit a closed-form solution, the approach illustrated applies more generally.</p>
<h2>Using SymPy for computation</h2>
<p><code>SymPy</code> can be used to perform implicit differentiation. The three steps are similar: we assume <span class="math">$y$</span> is a function of <span class="math">$x$</span>, <em>locally</em>; differentiate both sides; solve the result for <span class="math">$dy/dx$</span>.</p>
<p>Let's do so for the <a href="http://www-history.mcs.st-and.ac.uk/Curves/Trident.html">Trident of Newton</a>, which is represented in Cartesian form as follows:</p>
<p class="math">\[
~
xy = cx^3 + dx^2 + ex + h.
~
\]</p>
<p>To approach this task in <code>SymPy</code>, we begin by defining our symbolic expression. For now, we keep the parameters as symbolic values:</p>
<pre class='hljl'>
<span class='hljl-nd'>@vars</span><span class='hljl-t'> </span><span class='hljl-n'>a</span><span class='hljl-t'> </span><span class='hljl-n'>b</span><span class='hljl-t'> </span><span class='hljl-n'>c</span><span class='hljl-t'> </span><span class='hljl-n'>d</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-t'>
</span><span class='hljl-n'>ex</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-oB'>*</span><span class='hljl-n'>y</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>a</span><span class='hljl-oB'>*</span><span class='hljl-n'>c</span><span class='hljl-oB'>^</span><span class='hljl-ni'>3</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>b</span><span class='hljl-oB'>*</span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>c</span><span class='hljl-oB'>*</span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>d</span><span class='hljl-p'>)</span>
</pre>
<div class="well well-sm">\begin{equation*}- a c^{3} - b x^{2} - c x - d + x y\end{equation*}</div>
<p>To express that <code>y</code> is a locally a function of <code>x</code>, we use a "symbolic function" object:</p>
<pre class='hljl'>
<span class='hljl-n'>u</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>SymFunction</span><span class='hljl-p'>(</span><span class='hljl-s'>"u"</span><span class='hljl-p'>)</span>
</pre>
<div class="well well-sm">\begin{align*}u\end{align*}</div>
<p>Defining a symbolic function is done with the command <code>SymFunction</code>. (This command's name is slightly modified from that when using SymPy under <code>Python</code>.) The object <code>u</code> is the symbolic function, and <code>u(x)</code> a symbolic expression involving a symbolic function. This is what we will use to refer to <code>y</code>.</p>
<p>Assume <span class="math">$y$</span> is a function of <span class="math">$x$</span>, called <code>u(x)</code>, this substitution is just a renaming:</p>
<pre class='hljl'>
<span class='hljl-n'>ex1</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>ex</span><span class='hljl-p'>(</span><span class='hljl-n'>y</span><span class='hljl-t'> </span><span class='hljl-oB'>=></span><span class='hljl-t'> </span><span class='hljl-nf'>u</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>))</span>
</pre>
<div class="well well-sm">\begin{equation*}- a c^{3} - b x^{2} - c x - d + x u{\left (x \right )}\end{equation*}</div>
<p>At this point, we differentiate both sides in <code>x</code>:</p>
<pre class='hljl'>
<span class='hljl-n'>ex2</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>diff</span><span class='hljl-p'>(</span><span class='hljl-n'>ex1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-p'>)</span>
</pre>
<div class="well well-sm">\begin{equation*}- 2 b x - c + x \frac{d}{d x} u{\left (x \right )} + u{\left (x \right )}\end{equation*}</div>
<p>The next step is solve for <span class="math">$dy/dx$</span>–-the lone answer to the linear equation–-which is done as follows:</p>
<pre class='hljl'>
<span class='hljl-n'>dydx</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>diff</span><span class='hljl-p'>(</span><span class='hljl-nf'>u</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>ex3</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>solve</span><span class='hljl-p'>(</span><span class='hljl-n'>ex2</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>dydx</span><span class='hljl-p'>)[</span><span class='hljl-ni'>1</span><span class='hljl-p'>]</span><span class='hljl-t'> </span><span class='hljl-cs'># pull out lone answer with [1] indexing</span>
</pre>
<div class="well well-sm">\begin{equation*}\frac{2 b x + c - u{\left (x \right )}}{x}\end{equation*}</div>
<p>As this represents an answer in terms of <code>u(x)</code>, we replace that term with the original variable:</p>
<pre class='hljl'>
<span class='hljl-n'>dydx</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>ex3</span><span class='hljl-p'>(</span><span class='hljl-nf'>u</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=></span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-p'>)</span>
</pre>
<div class="well well-sm">\begin{equation*}\frac{2 b x + c - y}{x}\end{equation*}</div>
<p>If <code>x</code> and <code>y</code> are the variable names, this function will combine the steps above:</p>
<pre class='hljl'>
<span class='hljl-k'>function</span><span class='hljl-t'> </span><span class='hljl-nf'>dy_dx</span><span class='hljl-p'>(</span><span class='hljl-n'>eqn</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>u</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>SymFunction</span><span class='hljl-p'>(</span><span class='hljl-s'>"u"</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>eqn1</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>eqn</span><span class='hljl-p'>(</span><span class='hljl-n'>y</span><span class='hljl-t'> </span><span class='hljl-oB'>=></span><span class='hljl-t'> </span><span class='hljl-nf'>u</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>))</span><span class='hljl-t'>
</span><span class='hljl-n'>eqn2</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>solve</span><span class='hljl-p'>(</span><span class='hljl-nf'>diff</span><span class='hljl-p'>(</span><span class='hljl-n'>eqn1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-nf'>diff</span><span class='hljl-p'>(</span><span class='hljl-nf'>u</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-p'>))[</span><span class='hljl-ni'>1</span><span class='hljl-p'>]</span><span class='hljl-t'>
</span><span class='hljl-nf'>eqn2</span><span class='hljl-p'>(</span><span class='hljl-nf'>u</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=></span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-k'>end</span>
</pre>
<pre class="output">
dy_dx (generic function with 1 method)
</pre>
<p>Let <span class="math">$a = b = c = d = 1$</span>, then <span class="math">$(1,4)$</span> is a point on the curve. We can draw a tangent line to this point with these commands:</p>
<pre class='hljl'>
<span class='hljl-n'>H</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>ex</span><span class='hljl-p'>(</span><span class='hljl-n'>a</span><span class='hljl-oB'>=></span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>b</span><span class='hljl-oB'>=></span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>c</span><span class='hljl-oB'>=></span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>d</span><span class='hljl-oB'>=></span><span class='hljl-ni'>1</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>x0</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>y0</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>4</span><span class='hljl-t'>
</span><span class='hljl-n'>m</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>dydx</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-oB'>=></span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-oB'>=></span><span class='hljl-ni'>4</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>a</span><span class='hljl-oB'>=></span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>b</span><span class='hljl-oB'>=></span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>c</span><span class='hljl-oB'>=></span><span class='hljl-ni'>1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>d</span><span class='hljl-oB'>=></span><span class='hljl-ni'>1</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-nf'>plot</span><span class='hljl-p'>(</span><span class='hljl-nf'>Eq</span><span class='hljl-p'>(</span><span class='hljl-nf'>lambdify</span><span class='hljl-p'>(</span><span class='hljl-n'>H</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-ni'>0</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-n'>xlims</span><span class='hljl-oB'>=</span><span class='hljl-p'>(</span><span class='hljl-oB'>-</span><span class='hljl-ni'>5</span><span class='hljl-p'>,</span><span class='hljl-ni'>5</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-n'>ylims</span><span class='hljl-oB'>=</span><span class='hljl-p'>(</span><span class='hljl-oB'>-</span><span class='hljl-ni'>5</span><span class='hljl-p'>,</span><span class='hljl-ni'>5</span><span class='hljl-p'>))</span><span class='hljl-t'>
</span><span class='hljl-nf'>plot!</span><span class='hljl-p'>(</span><span class='hljl-n'>y0</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>m</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-oB'>-</span><span class='hljl-n'>x0</span><span class='hljl-p'>))</span>
</pre>
<img src="" />
<p>Basically all the same steps as if done "by hand." Some effort could have been saved in plotting, had values for the parameters been substituted initially, but not doing so shows their dependence in the derivative.</p>
<div class="alert alert-success" role="alert">
<div class="markdown"><p>The use of <code>lambdify</code> is needed to turn the symbolic expression, <code>H</code>, into a function, as <code>ImplicitEquations</code> expects functions in its predicates.</p>
</div>
</div>
<div class="alert alert-info" role="alert">
<div class="markdown"><p>While <code>SymPy</code> itself has the <code>plot_implicit</code> function for plotting implicit equations, this works only with <code>PyPlot</code>, not <code>Plots</code>, so we use the <code>ImplicitEquations</code> package in these examples.</p>
</div>
</div>
<h2>Higher order derivatives</h2>
<p>Implicit differentiation can be used to find <span class="math">$d^2y/dx^2$</span> or other higher-order derivatives. At each stage, the same technique is applied. The only "trick" is that some simplifications can be made.</p>
<p>For example, consider <span class="math">$x^3 - y^3=3$</span>. To find <span class="math">$d^2y/dx^2$</span>, we first find <span class="math">$dy/dx$</span>:</p>
<p class="math">\[
~
3x^2 - (3y^2 \frac{dy}{dx}) = 0.
~
\]</p>
<p>We could solve for <span class="math">$dy/dx$</span> at this point–-it always appears as a linear factor–-to get:</p>
<p class="math">\[
~
\frac{dy}{dx} = \frac{3x^2}{3y^2} = \frac{x^2}{y^2}.
~
\]</p>
<p>However, we differentiate the first equation, as we generally try to avoid the quotient rule</p>
<p class="math">\[
~
6x - (6y \frac{dy}{dx} \cdot \frac{dy}{dx} + 3y^2 \frac{d^2y}{dx^2}) = 0.
~
\]</p>
<p>Again, if must be that <span class="math">$d^2y/dx^2$</span> appears as a linear factor, so we can solve for it:</p>
<p class="math">\[
~
\frac{d^2y}{dx^2} = \frac{6x - 6y (\frac{dy}{dx})^2}{3y^2}.
~
\]</p>
<p>One last substitution for <span class="math">$dy/dx$</span> gives:</p>
<p class="math">\[
~
\frac{d^2y}{dx^2} = \frac{-6x + 6y (\frac{x^2}{y^2})^2}{3y^2} = -2\frac{x}{y^2} + 2\frac{x^4}{y^5} = 2\frac{x}{y^2}(1 - \frac{x^3}{y^3}) = 2\frac{x}{y^5}(y^3 - x^3) = 2 \frac{x}{y^5}(-3).
~
\]</p>
<p>It isn't so pretty, but that's all it takes.</p>
<p>To visualize, we plot implicitly and notice that:</p>
<ul>
<li><p>as we change quadrants from the third to the fourth to the first the concavity changes from down to up to down, as the sign of the second derivative changes from negative to positive to negative;</p>
</li>
<li><p>and that at these inflection points, the "tangent" line is vertical when <span class="math">$y=0$</span> and flat when <span class="math">$x=0$</span>.</p>
</li>
</ul>
<pre class='hljl'>
<span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>3</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-oB'>^</span><span class='hljl-ni'>3</span><span class='hljl-t'>
</span><span class='hljl-nf'>plot</span><span class='hljl-p'>(</span><span class='hljl-nf'>Eq</span><span class='hljl-p'>(</span><span class='hljl-n'>F</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>3</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-n'>xlims</span><span class='hljl-oB'>=</span><span class='hljl-p'>(</span><span class='hljl-oB'>-</span><span class='hljl-ni'>3</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>3</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-n'>ylims</span><span class='hljl-oB'>=</span><span class='hljl-p'>(</span><span class='hljl-oB'>-</span><span class='hljl-ni'>3</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>3</span><span class='hljl-p'>))</span>
</pre>
<img src="" />
<p>The same problem can be done symbolically. The steps are similar, though the last step (replacing <span class="math">$x^3 - y^3$</span> with <span class="math">$3$</span>) isn't done without explicitly asking.</p>
<pre class='hljl'>
<span class='hljl-nd'>@vars</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-t'>
</span><span class='hljl-n'>u</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>SymFunction</span><span class='hljl-p'>(</span><span class='hljl-s'>"u"</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>eqn</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-ni'>3</span><span class='hljl-t'>
</span><span class='hljl-n'>eqn1</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>eqn</span><span class='hljl-p'>(</span><span class='hljl-n'>y</span><span class='hljl-t'> </span><span class='hljl-oB'>=></span><span class='hljl-t'> </span><span class='hljl-nf'>u</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>))</span><span class='hljl-t'>
</span><span class='hljl-n'>dydx</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>solve</span><span class='hljl-p'>(</span><span class='hljl-nf'>diff</span><span class='hljl-p'>(</span><span class='hljl-n'>eqn1</span><span class='hljl-p'>,</span><span class='hljl-n'>x</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-nf'>diff</span><span class='hljl-p'>(</span><span class='hljl-nf'>u</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-p'>))[</span><span class='hljl-ni'>1</span><span class='hljl-p'>]</span><span class='hljl-t'> </span><span class='hljl-cs'># 1 solution</span><span class='hljl-t'>
</span><span class='hljl-n'>d2ydx2</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>solve</span><span class='hljl-p'>(</span><span class='hljl-nf'>diff</span><span class='hljl-p'>(</span><span class='hljl-n'>eqn1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-nf'>diff</span><span class='hljl-p'>(</span><span class='hljl-nf'>u</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>),</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-p'>))[</span><span class='hljl-ni'>1</span><span class='hljl-p'>]</span><span class='hljl-t'> </span><span class='hljl-cs'># 1 solution</span><span class='hljl-t'>
</span><span class='hljl-n'>eqn2</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>d2ydx2</span><span class='hljl-p'>(</span><span class='hljl-nf'>diff</span><span class='hljl-p'>(</span><span class='hljl-nf'>u</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=></span><span class='hljl-t'> </span><span class='hljl-n'>dydx</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-nf'>u</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=></span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-nf'>simplify</span><span class='hljl-p'>(</span><span class='hljl-n'>eqn2</span><span class='hljl-p'>)</span>
</pre>
<div class="well well-sm">\begin{equation*}\frac{2 x \left(- x^{3} + y^{3}\right)}{y^{5}}\end{equation*}</div>
<h2>Inverse functions</h2>
<p>As <a href="../precalc/inversefunctions.html">mentioned</a>, an <a href="http://en.wikipedia.org/wiki/Inverse_function">inverse</a> function for <span class="math">$f(x)$</span> is a function <span class="math">$g(x)$</span> satisfying: <span class="math">$y = f(x)$</span> if and only if <span class="math">$g(y) = x$</span> for all <span class="math">$x$</span> in the domain of <span class="math">$f$</span> and <span class="math">$y$</span> in the range of <span class="math">$f$</span>.</p>
<p>In short, both <span class="math">$f \circ g$</span> and <span class="math">$g \circ f$</span> are identify functions on their respective domains. As inverses are unique, their notation, <span class="math">$f^{-1}(x)$</span>, reflects the name of the related function. function.</p>
<p>The chain rule can be used to give the derivative of an inverse function when applied to <span class="math">$f(f^{-1}(x)) = x$</span>. Solving gives, <span class="math">$[f^{-1}(x)]' = 1 / f'(g(x))$</span>.</p>
<p>This is great–-if we can remember the rules. If not, sometimes implicit differentiation can also help.</p>
<p>Consider the inverse function for the tangent, which exists when the domain of the tangent function is restricted to <span class="math">$(-\pi/2, \pi/2)$</span>. The function solves <span class="math">$y = \tan^{-1}(x)$</span> or <span class="math">$\tan(y) = x$</span>. Differentiating this yields:</p>
<p class="math">\[
~
\sec(y)^2 \frac{dy}{dx} = 1.
~
\]</p>
<p>But <span class="math">$\sec(y)^2 = 1 + x^2$</span>, as can be seen by right-triangle trigonometry. This yields the formula <span class="math">$dy/dx = [\tan^{-1}(x)]' = 1 / (1 + x^2)$</span>.</p>
<h5>Example</h5>
<p>For a more complicated example, suppose we have a moving trajectory <span class="math">$(x(t), y(t))$</span>. The angle it makes with the origin satisfies</p>
<p class="math">\[
~
\tan(\theta(t)) = \frac{y(t)}{x(t)}.
~
\]</p>
<p>Suppose <span class="math">$\theta(t)$</span> can be defined in terms of the inverse to some function (<span class="math">$\tan^{-1}(x)$</span>). We can differentiate implicitly to find <span class="math">$\theta'(t)$</span> in terms of derivatives of <span class="math">$y$</span> and <span class="math">$x$</span>:</p>
<p class="math">\[
~
\sec^2(\theta(t)) \cdot \theta'(t) = \frac{y'(t) x(t) - y(t) x'(t)}{x(t))^2}.
~
\]</p>
<p>But <span class="math">$\sec^2(\theta(t)) = (r(t)/x(t))^2 = (x(t)^2 + y(t)^2) / x(t)^2$</span>, so moving to the other side the secant term gives an explicit, albeit complicated, expression for the derivative of <span class="math">$\theta$</span> in terms of the functions <span class="math">$x$</span> and <span class="math">$y$</span>:</p>
<p class="math">\[
~
\theta'(t) = \frac{x^2}{x^2(t) + y^2(t)} \cdot \frac{y'(t) x(t) - y(t) x'(t)}{x(t))^2} = \frac{y'(t) x(t) - y(t) x'(t)}{x^2(t) + y^2(t)}.
~
\]</p>
<p>This could have been made easier, had we leveraged the result of the previous example.</p>
<h2>Example from physics</h2>
<p>Many problems are best done with implicit derivatives. A video showing such a problem along with how to do it analytically is <a href="http://ocw.mit.edu/courses/mathematics/18-01sc-single-variable-calculus-fall-2010/unit-2-applications-of-differentiation/part-b-optimization-related-rates-and-newtons-method/session-32-ring-on-a-string/">here</a>.</p>
<p>This video starts with a simple question:</p>
<blockquote>
<p>If you have a rope and heavy ring, where will the ring position itself due to gravity?</p>
</blockquote>
<p>Well, suppose you hold the rope in two places, which we can take to be <span class="math">$(0,0)$</span> and <span class="math">$(a,b)$</span>. Then let <span class="math">$(x,y)$</span> be all the possible positions of the ring that hold the rope taught. Then we have this picture:</p>
<div class="well well-sm">
<figure>
<img src=""/>
<figcaption><div class="markdown"><p>Ring on string figure.</p>
</div></figcaption>
</figure>
</div>
<p>Since the length of the rope does not change, we must have for any admissible <span class="math">$(x,y)$</span> that:</p>
<p class="math">\[
~
L = \sqrt{x^2 + y^2} + \sqrt{(a-x)^2 + (b-y)^2},
~
\]</p>
<p>where these terms come from the two hypotenuses in the figure, as computed through Pythagorean's theorem.</p>
<blockquote>
<p>If we assume that the ring will minimize the value of y subject to this constraint, can we solve for y?</p>
</blockquote>
<p>We create a function to represent the equation:</p>
<pre class='hljl'>
<span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>a</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>b</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>sqrt</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-nf'>sqrt</span><span class='hljl-p'>((</span><span class='hljl-n'>a</span><span class='hljl-oB'>-</span><span class='hljl-n'>x</span><span class='hljl-p'>)</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>b</span><span class='hljl-oB'>-</span><span class='hljl-n'>y</span><span class='hljl-p'>)</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
F (generic function with 2 methods)
</pre>
<p>To illustrate, we need specific values of <span class="math">$a$</span>, <span class="math">$b$</span>, and <span class="math">$L$</span>:</p>
<pre class='hljl'>
<span class='hljl-n'>a</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>b</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>L</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>3</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>3</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>10</span><span class='hljl-t'> </span><span class='hljl-cs'># L > sqrt{a^2 + b^2}</span><span class='hljl-t'>
</span><span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>a</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>b</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
F (generic function with 2 methods)
</pre>
<p>Our values <span class="math">$(x,y)$</span> must satisfy <span class="math">$f(x,y) = L$</span>. Let's graph:</p>
<pre class='hljl'>
<span class='hljl-nf'>plot</span><span class='hljl-p'>(</span><span class='hljl-nf'>Eq</span><span class='hljl-p'>(</span><span class='hljl-n'>F</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>L</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-n'>xlims</span><span class='hljl-oB'>=</span><span class='hljl-p'>(</span><span class='hljl-oB'>-</span><span class='hljl-ni'>5</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>7</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-n'>ylims</span><span class='hljl-oB'>=</span><span class='hljl-p'>(</span><span class='hljl-oB'>-</span><span class='hljl-ni'>5</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>7</span><span class='hljl-p'>))</span>
</pre>
<img src="" />
<p>The graph is an ellipse, though slightly tilted.</p>
<p>Okay, now to find the lowest point. This will be when the derivative is <span class="math">$0$</span>. We solve by assuming <span class="math">$y$</span> is a function of <span class="math">$x$</span> called <code>u</code>:</p>
<pre class='hljl'>
<span class='hljl-nd'>@vars</span><span class='hljl-t'> </span><span class='hljl-n'>a</span><span class='hljl-t'> </span><span class='hljl-n'>b</span><span class='hljl-t'> </span><span class='hljl-n'>L</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-t'>
</span><span class='hljl-n'>u</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>SymFunction</span><span class='hljl-p'>(</span><span class='hljl-s'>"u"</span><span class='hljl-p'>)</span>
</pre>
<div class="well well-sm">\begin{align*}u\end{align*}</div>
<pre class='hljl'>
<span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>a</span><span class='hljl-p'>,</span><span class='hljl-n'>b</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>sqrt</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-nf'>sqrt</span><span class='hljl-p'>((</span><span class='hljl-n'>a</span><span class='hljl-oB'>-</span><span class='hljl-n'>x</span><span class='hljl-p'>)</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>b</span><span class='hljl-oB'>-</span><span class='hljl-n'>y</span><span class='hljl-p'>)</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>eqn</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-n'>a</span><span class='hljl-p'>,</span><span class='hljl-n'>b</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-n'>L</span>
</pre>
<div class="well well-sm">\begin{equation*}- L + \sqrt{x^{2} + y^{2}} + \sqrt{\left(a - x\right)^{2} + \left(b - y\right)^{2}}\end{equation*}</div>
<pre class='hljl'>
<span class='hljl-n'>eqn1</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>diff</span><span class='hljl-p'>(</span><span class='hljl-nf'>eqn</span><span class='hljl-p'>(</span><span class='hljl-n'>y</span><span class='hljl-t'> </span><span class='hljl-oB'>=></span><span class='hljl-t'> </span><span class='hljl-nf'>u</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>)),</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>eqn2</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>solve</span><span class='hljl-p'>(</span><span class='hljl-n'>eqn1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-nf'>diff</span><span class='hljl-p'>(</span><span class='hljl-nf'>u</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-p'>))[</span><span class='hljl-ni'>1</span><span class='hljl-p'>]</span><span class='hljl-t'>
</span><span class='hljl-n'>dydx</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>eqn2</span><span class='hljl-p'>(</span><span class='hljl-nf'>u</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=></span><span class='hljl-t'> </span><span class='hljl-n'>y</span><span class='hljl-p'>)</span>
</pre>
<div class="well well-sm">\begin{equation*}\frac{a \sqrt{x^{2} + y^{2}} - x \sqrt{x^{2} + y^{2}} - x \sqrt{\left(a - x\right)^{2} + \left(b - y\right)^{2}}}{- b \sqrt{x^{2} + y^{2}} + y \sqrt{x^{2} + y^{2}} + y \sqrt{\left(a - x\right)^{2} + \left(b - y\right)^{2}}}\end{equation*}</div>
<p>We are looking for when the tangent line has 0 slope, or when <code>dydx</code> is 0:</p>
<pre class='hljl'>
<span class='hljl-n'>cps</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>solve</span><span class='hljl-p'>(</span><span class='hljl-n'>dydx</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-p'>)</span>
</pre>
<div class="well well-sm">\[ \left[ \begin{array}{r}\frac{a y}{b}\\\frac{a y}{- b + 2 y}\end{array} \right] \]</div>
<p>There are two answers, as we could guess from the graph, but we want the one for the smallest value of <span class="math">$y$</span>, which is the second.</p>
<p>The values of dydx depend on any pair (x,y), but our solution must also satisfy the equation. That is for our value of x, we need to find the corresponding y. This should be possible by substituting:</p>
<pre class='hljl'>
<span class='hljl-n'>eqn1</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>eqn</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>=></span><span class='hljl-t'> </span><span class='hljl-n'>cps</span><span class='hljl-p'>[</span><span class='hljl-ni'>2</span><span class='hljl-p'>])</span>
</pre>
<div class="well well-sm">\begin{equation*}- L + \sqrt{\frac{a^{2} y^{2}}{\left(- b + 2 y\right)^{2}} + y^{2}} + \sqrt{\left(b - y\right)^{2} + \left(- \frac{a y}{- b + 2 y} + a\right)^{2}}\end{equation*}</div>
<p>We would try to solve <code>eqn1</code> for <code>y</code> with <code>solve(eqn1, y)</code>, but <code>SymPy</code> can't complete this problem. Instead, we will approach this numerically using <code>find_zero</code> from the <code>Roots</code> package. We make the above a function of <code>y</code> alone</p>
<pre class='hljl'>
<span class='hljl-n'>eqn2</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>eqn1</span><span class='hljl-p'>(</span><span class='hljl-n'>a</span><span class='hljl-oB'>=></span><span class='hljl-ni'>3</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>b</span><span class='hljl-oB'>=></span><span class='hljl-ni'>3</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>L</span><span class='hljl-oB'>=></span><span class='hljl-ni'>10</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>ystar</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>find_zero</span><span class='hljl-p'>(</span><span class='hljl-n'>eqn2</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-ni'>3</span><span class='hljl-p'>)</span>
</pre>
<pre class="output">
-3.269696007084728
</pre>
<p>Okay, now we need to put this value back into our expression for the <code>x</code> value and also substitute in for the parameters:</p>
<pre class='hljl'>
<span class='hljl-n'>xstar</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>N</span><span class='hljl-p'>(</span><span class='hljl-n'>cps</span><span class='hljl-p'>[</span><span class='hljl-ni'>2</span><span class='hljl-p'>](</span><span class='hljl-n'>y</span><span class='hljl-t'> </span><span class='hljl-oB'>=></span><span class='hljl-t'> </span><span class='hljl-n'>ystar</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>a</span><span class='hljl-t'> </span><span class='hljl-oB'>=></span><span class='hljl-ni'>3</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>b</span><span class='hljl-t'> </span><span class='hljl-oB'>=></span><span class='hljl-t'> </span><span class='hljl-ni'>3</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>L</span><span class='hljl-t'> </span><span class='hljl-oB'>=></span><span class='hljl-t'> </span><span class='hljl-ni'>3</span><span class='hljl-p'>))</span>
</pre>
<pre class="output">
1.0282718234751367
</pre>
<p>Our minimum is at <code>(xstar, ystar)</code>, as this graphic shows:</p>
<pre class='hljl'>
<span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>F</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>,</span><span class='hljl-n'>y</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>3</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>3</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-nf'>tl</span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>ystar</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-ni'>0</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-n'>xstar</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-nf'>plot</span><span class='hljl-p'>(</span><span class='hljl-nf'>Eq</span><span class='hljl-p'>(</span><span class='hljl-n'>F</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>10</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-n'>xlims</span><span class='hljl-oB'>=</span><span class='hljl-p'>(</span><span class='hljl-oB'>-</span><span class='hljl-ni'>4</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>7</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-n'>ylims</span><span class='hljl-oB'>=</span><span class='hljl-p'>(</span><span class='hljl-oB'>-</span><span class='hljl-ni'>10</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>10</span><span class='hljl-p'>))</span><span class='hljl-t'>
</span><span class='hljl-nf'>plot!</span><span class='hljl-p'>(</span><span class='hljl-n'>tl</span><span class='hljl-p'>)</span>
</pre>
<img src="" />
<p>If you watch the video linked to above, you will see that the surprising fact here is the resting point is such that the angles formed by the rope are the same. Basically this makes the tension in both parts of the rope equal, so there is a static position (if not static, the ring would move and not end in the final position). We can verify this fact numerically by showing the arctangents of the two triangles are the same up to a sign (and slight round-off error):</p>
<pre class='hljl'>
<span class='hljl-n'>a0</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>b0</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>0</span><span class='hljl-p'>,</span><span class='hljl-ni'>0</span><span class='hljl-t'> </span><span class='hljl-cs'># the foci of the ellipse are (0,0) and (3,3)</span><span class='hljl-t'>
</span><span class='hljl-n'>a1</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>b1</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>3</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>3</span><span class='hljl-t'>
</span><span class='hljl-nf'>atan</span><span class='hljl-p'>((</span><span class='hljl-n'>b0</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-n'>ystar</span><span class='hljl-p'>)</span><span class='hljl-oB'>/</span><span class='hljl-p'>(</span><span class='hljl-n'>a0</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-n'>xstar</span><span class='hljl-p'>))</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-nf'>atan</span><span class='hljl-p'>((</span><span class='hljl-n'>b1</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-n'>ystar</span><span class='hljl-p'>)</span><span class='hljl-oB'>/</span><span class='hljl-p'>(</span><span class='hljl-n'>a1</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-n'>xstar</span><span class='hljl-p'>))</span><span class='hljl-t'> </span><span class='hljl-cs'># 0</span>
</pre>
<pre class="output">
0.0
</pre>
<p>Now, were we lucky and just happened to take <span class="math">$a=3$</span>, <span class="math">$b = 3$</span> in such a way to make this work? Well, no. But convince yourself by doing the above for different values of <span class="math">$b$</span>.</p>
<h2>Questions</h2>
<h6>Question</h6>
<p>Is <span class="math">$(1,1)$</span> on the graph of</p>
<p class="math">\[
~
x^2 - 2xy + y^2 = 1?
~
\]</p>
<form name="WeaveQuestion" data-id="IX3rsT6M" data-controltype="radio">
<div class="form-group ">
<div class="radio">
<label>
<input type="radio" name="radio_IX3rsT6M" value="1"><div class="markdown"><p>Yes</p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_IX3rsT6M" value="2"><div class="markdown"><p>No</p>
</div>
</label>
</div>
<div id="IX3rsT6M_message"></div>
</div>
</form>
<script text="text/javascript">
$("input:radio[name='radio_IX3rsT6M']").on("change", function() {
correct = this.value == 2;
if(correct) {
$("#IX3rsT6M_message").html("<div class='alert alert-success'><span class='glyphicon glyphicon-thumbs-up'> Correct</span></div>");
} else {
$("#IX3rsT6M_message").html("<div class='alert alert-warning'><span class='glyphicon glyphicon-thumbs-down'> Incorrect</span></div>");
}
});
</script>
<h6>Question</h6>
<p>For the equation</p>
<p class="math">\[
~
x^2y + 2y - 4 x = 0,
~
\]</p>
<p>if <span class="math">$x=4$</span>, what is a value for <span class="math">$y$</span> such that <span class="math">$(x,y)$</span> is a point on the graph of the equation?</p>
<form name='WeaveQuestion' data-id='mdhFgLDR' data-controltype='numeric'>
<div class='form-group '>
<div class='controls'>
<div class="input-group">
<input id="mdhFgLDR" type="number" class="form-control">
</div>
<div id='mdhFgLDR_message'></div>
</div>
</div>
</form>
<script text='text/javascript'>
$('#mdhFgLDR').on('change', function() {
correct = Math.abs(this.value - 0.8888888888888888) <= 0.001;
if(correct) {
$('#mdhFgLDR_message').html('<div class="alert alert-success"><span class="glyphicon glyphicon-thumbs-up"> Correct</span></div>');
} else {
$('#mdhFgLDR_message').html('<div class="alert alert-danger"><span class="glyphicon glyphicon-thumbs-down"> Incorrect</span></div>');
}
});
</script>
<h6>Question</h6>
<p>For the equation</p>
<p class="math">\[
~
(y-5)\cdot \cos(4\cdot \sqrt{(x-4)^2 + y^2)} = x\cdot\sin(2\sqrt{x^2 + y^2})
~
\]</p>
<p>is the point <span class="math">$(5,0)$</span> a solution?</p>
<form name="WeaveQuestion" data-id="WTWkjhlf" data-controltype="radio">
<div class="form-group ">
<div class="radio">
<label>
<input type="radio" name="radio_WTWkjhlf" value="1"><div class="markdown"><p>Yes</p>
</div>
</label>
</div>
<div class="radio">
<label>
<input type="radio" name="radio_WTWkjhlf" value="2"><div class="markdown"><p>No</p>
</div>
</label>
</div>
<div id="WTWkjhlf_message"></div>
</div>
</form>
<script text="text/javascript">
$("input:radio[name='radio_WTWkjhlf']").on("change", function() {
correct = this.value == 2;
if(correct) {
$("#WTWkjhlf_message").html("<div class='alert alert-success'><span class='glyphicon glyphicon-thumbs-up'> Correct</span></div>");