From de7c545b1ee7493d6c95a8f736831d6e2d696a12 Mon Sep 17 00:00:00 2001 From: Raphael Date: Thu, 7 Dec 2023 18:28:32 +0100 Subject: [PATCH 001/240] add new "overlay_layer" keypress callback and improve "show_layer" callback --- docs/api_callbacks.rst | 1 + eomaps/callbacks.py | 106 +++++++++++++++++++++++++++++++++++++--- tests/test_callbacks.py | 41 +++++++++++++++- 3 files changed, 138 insertions(+), 10 deletions(-) diff --git a/docs/api_callbacks.rst b/docs/api_callbacks.rst index f3c1f654d..c8a42ced2 100644 --- a/docs/api_callbacks.rst +++ b/docs/api_callbacks.rst @@ -199,6 +199,7 @@ Callbacks that can be used with ``m.cb.keypress`` :nosignatures: switch_layer + overlay_layer fetch_layers diff --git a/eomaps/callbacks.py b/eomaps/callbacks.py index 15eb1129c..0ac66b292 100644 --- a/eomaps/callbacks.py +++ b/eomaps/callbacks.py @@ -1232,7 +1232,7 @@ def __init__(self, *args, **kwargs): class KeypressCallbacks: """Collection of callbacks that are executed if you press a key on the keyboard.""" - _cb_list = ["switch_layer", "fetch_layers"] + _cb_list = ["switch_layer", "fetch_layers", "overlay_layer"] def __init__(self, m, temp_artists): self._temporary_artists = temp_artists @@ -1240,16 +1240,62 @@ def __init__(self, m, temp_artists): def switch_layer(self, layer, key="x"): """ - Change the default layer of the map. + Set the currently visible layer of the map. - Use the keyboard events to set the default layer (e.g. the visible layer) - displayed in the plot. + Parameters + ---------- + layer : str or list + The layer-name to use (or a list of layer-names to combine). + + For details on how to specify layer-names, see :py:meth:`Maps.show_layer` + + Additional Parameters + --------------------- + key : str, optional + The key to use for triggering the callback. + Modifiers are indicated with a "+", e.g. "alt+x". + The default is "x". + + Examples + -------- + Show layer A: + + >>> m.cb.keypress.attach.overlay_layer(layer="A", key="x") + + Show layer B with 50% transparency on top of layer A + + >>> m.cb.keypress.attach.overlay_layer(layer="A|B{0.5}", key="x") + + Show layer B on top of layer A: + + >>> m.cb.keypress.attach.overlay_layer(layer=["A", "B"], key="x") + + Show layer B with 50% transparency on top of layer A + + >>> m.cb.keypress.attach.overlay_layer(layer=["A", ("B", 0.5)], key="x") + + + """ + if isinstance(layer, (list, tuple)): + self._m.show_layer(*layer) + elif isinstance(layer, str): + self._m.show_layer(layer) + + def overlay_layer(self, layer, key="x"): + """ + Toggle displaying a layer on top of the currently visible layers. + + - If the layer is not part of the currently visible layers, it will be + added on top. + - If the layer is part of the currently visible layers, it will be removed. Parameters ---------- - layer : str - The layer-name to use. - If a non-string value is provided, it will be converted to string! + layer : str, tuple or list + The layer-name to use, a tuple (layer, transparency) or a list of + the aforementioned types to combine. + + For details on how to specify layer-names, see :py:meth:`Maps.show_layer` Additional Parameters --------------------- @@ -1258,8 +1304,52 @@ def switch_layer(self, layer, key="x"): Modifiers are indicated with a "+", e.g. "alt+x". The default is "x". + Note + ---- + If the visible layer changes **while the overlay-layer is active**, + triggering the callback again might not properly remove the previous overlay! + (e.g. the overlay is only removed if the top-layer corresponds exactly to + the overlay-layer specifications) + + Examples + -------- + Toggle overlaying layer A: + + >>> m.cb.keypress.attach.overlay_layer(layer="A", key="x") + + Toggle overlaying layer A with 50% transparency: + + >>> m.cb.keypress.attach.overlay_layer(layer=("A", 0.5), key="x") + + Toggle overlaying a combined layer (showing layer B with 50% transparency + on top of layer A) + + >>> m.cb.keypress.attach.overlay_layer(layer="A|B{0.5}", key="x") + + Toggle overlaying a combined layer (showing layer B on top of layer A) + + >>> m.cb.keypress.attach.overlay_layer(layer=["A", "B"], key="x") + + Toggle overlaying a combined layer (showing layer B with 50% transparency + on top of layer A) + + >>> m.cb.keypress.attach.overlay_layer(layer=["A", ("B", 0.5)], key="x") + """ - self._m.show_layer(layer) + + if isinstance(layer, list): + layer = self._m._get_combined_layer_name(*layer) + elif isinstance(layer, tuple): + # e.g. (layer-name, layer-transparency) + layer = self._m._get_combined_layer_name(layer) + + # in case the layer is currently on top, remove it + if not self._m.BM.bg_layer.endswith(f"|{layer}"): + self._m.show_layer(self._m.BM.bg_layer, layer) + else: + newlayer = self._m.BM.bg_layer.removesuffix(f"|{layer}") + if len(newlayer) > 0: + self._m.show_layer(newlayer) def fetch_layers(self, layers=None, verbose=True, key="x"): """ diff --git a/tests/test_callbacks.py b/tests/test_callbacks.py index b98d577ce..12248d16a 100644 --- a/tests/test_callbacks.py +++ b/tests/test_callbacks.py @@ -654,6 +654,43 @@ def loadmethod(db, ID): m.cb.pick.remove(cid) plt.close("all") + def test_overlay_layer(self): + # ---------- test as CLICK callback + m = self.create_basic_map() + m_a = m.new_layer("A") + m_b = m.new_layer("B") + + cid0 = m.all.cb.keypress.attach.overlay_layer(layer="A", key="0") + cid1 = m.all.cb.keypress.attach.overlay_layer(layer=("B", 0.5), key="1") + cid2 = m.all.cb.keypress.attach.overlay_layer(layer=["A", ("B", 0.5)], key="2") + + init_layer = m.layer + + key_press_event(m.f.canvas, "0") + key_release_event(m.f.canvas, "0") + self.assertTrue(m.BM._bg_layer == m._get_combined_layer_name(m.layer, "A")) + key_press_event(m.f.canvas, "0") + key_release_event(m.f.canvas, "0") + self.assertTrue(m.BM._bg_layer == m.layer) + + key_press_event(m.f.canvas, "1") + key_release_event(m.f.canvas, "1") + self.assertTrue( + m.BM._bg_layer == m._get_combined_layer_name(m.layer, ("B", 0.5)) + ) + key_press_event(m.f.canvas, "1") + key_release_event(m.f.canvas, "1") + self.assertTrue(m.BM._bg_layer == m.layer) + + key_press_event(m.f.canvas, "2") + key_release_event(m.f.canvas, "2") + self.assertTrue( + m.BM._bg_layer == m._get_combined_layer_name(m.layer, "A", ("B", 0.5)) + ) + key_press_event(m.f.canvas, "2") + key_release_event(m.f.canvas, "2") + self.assertTrue(m.BM._bg_layer == m.layer) + def test_switch_layer(self): # ---------- test as CLICK callback m = self.create_basic_map() @@ -666,7 +703,7 @@ def test_switch_layer(self): cid1 = m.all.cb.keypress.attach.switch_layer(layer="2", key="2") # a callback only active on the "base" layer - cid3 = m.cb.keypress.attach.switch_layer(layer="3", key="3") + cid3 = m.cb.keypress.attach.switch_layer(layer=["2", ("3", 0.5)], key="3") # switch to layer 2 key_press_event(m.f.canvas, "2") @@ -686,7 +723,7 @@ def test_switch_layer(self): # now the 3rd callback should trigger key_press_event(m.f.canvas, "3") key_release_event(m.f.canvas, "3") - self.assertTrue(m.BM._bg_layer == "3") + self.assertTrue(m.BM._bg_layer == m._get_combined_layer_name("2", ("3", 0.5))) m.all.cb.keypress.remove(cid0) m.all.cb.keypress.remove(cid1) From 5062bdc18592e511bf566528b533cf62b84329c0 Mon Sep 17 00:00:00 2001 From: Raphael Date: Thu, 7 Dec 2023 19:35:31 +0100 Subject: [PATCH 002/240] fix removesuffix requires python >= 3.9 --- eomaps/callbacks.py | 14 +++++++++++++- 1 file changed, 13 insertions(+), 1 deletion(-) diff --git a/eomaps/callbacks.py b/eomaps/callbacks.py index 0ac66b292..95334ace6 100644 --- a/eomaps/callbacks.py +++ b/eomaps/callbacks.py @@ -6,10 +6,18 @@ from matplotlib.transforms import TransformedPath import warnings import logging +import sys _log = logging.getLogger(__name__) +def _removesuffix(s, suffix): + if s.endswith(suffix): + return s[: -len(suffix)] + else: + return s[:] + + class _ClickCallbacks(object): """ A collection of callback-functions. @@ -1347,7 +1355,11 @@ def overlay_layer(self, layer, key="x"): if not self._m.BM.bg_layer.endswith(f"|{layer}"): self._m.show_layer(self._m.BM.bg_layer, layer) else: - newlayer = self._m.BM.bg_layer.removesuffix(f"|{layer}") + if sys.version_info >= (3, 9): + newlayer = self._m.BM.bg_layer.removesuffix(f"|{layer}") + else: + newlayer = _removesuffix(self._m.BM.bg_layer, f"|{layer}") + if len(newlayer) > 0: self._m.show_layer(newlayer) From 9e7bb899eee4c47d40e86a0aafa7a71085ab3b6c Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sat, 9 Dec 2023 18:42:22 +0100 Subject: [PATCH 003/240] add nbformat to test-env --- tests/test_env.yml | 1 + 1 file changed, 1 insertion(+) diff --git a/tests/test_env.yml b/tests/test_env.yml index 09ef72b21..56025a54d 100644 --- a/tests/test_env.yml +++ b/tests/test_env.yml @@ -26,6 +26,7 @@ dependencies: - xmltodict - cairosvg # --------------for testing + - nbformat # to parse Jupyter Notebooks - coveralls - pytest - pytest-cov From 6b867b771c7266a038c1978450576e9e17db162c Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sat, 9 Dec 2023 14:55:59 +0100 Subject: [PATCH 004/240] support multiple Qt versions --- docs/contribute_env.yml | 2 + eomaps/eomaps.py | 10 ++-- eomaps/qtcompanion/app.py | 14 ++--- eomaps/qtcompanion/base.py | 24 ++++---- eomaps/qtcompanion/signal_container.py | 26 ++++---- eomaps/qtcompanion/widgets/annotate.py | 18 +++--- eomaps/qtcompanion/widgets/click_callbacks.py | 16 ++--- eomaps/qtcompanion/widgets/draw.py | 31 +++++----- eomaps/qtcompanion/widgets/editor.py | 59 ++++++++++--------- eomaps/qtcompanion/widgets/extent.py | 6 +- eomaps/qtcompanion/widgets/files.py | 6 +- eomaps/qtcompanion/widgets/layer.py | 12 ++-- eomaps/qtcompanion/widgets/peek.py | 36 +++++------ eomaps/qtcompanion/widgets/save.py | 14 ++--- eomaps/qtcompanion/widgets/utils.py | 15 ++--- eomaps/qtcompanion/widgets/wms.py | 20 +++---- setup.py | 1 + tests/test_env.yml | 2 + 18 files changed, 162 insertions(+), 150 deletions(-) diff --git a/docs/contribute_env.yml b/docs/contribute_env.yml index 4f4ac1cb2..a379885e3 100644 --- a/docs/contribute_env.yml +++ b/docs/contribute_env.yml @@ -25,6 +25,8 @@ dependencies: - requests - xmltodict - cairosvg + # --------------to support multiple Qt versions + - qtpy # --------------for testing - coveralls - pytest diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index d7b9d86cb..d9b3cbedd 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -1177,7 +1177,7 @@ def new_inset_map( def _get_always_on_top(self): if "qt" in plt.get_backend().lower(): - from PyQt5 import QtCore + from qtpy import QtCore w = self.f.canvas.window() return bool(w.windowFlags() & QtCore.Qt.WindowStaysOnTopHint) @@ -1187,7 +1187,7 @@ def _get_always_on_top(self): def _set_always_on_top(self, q): # keep pyqt window on top try: - from PyQt5 import QtCore + from qtpy import QtCore if q: # only do this if necessary to avoid flickering @@ -4016,9 +4016,9 @@ def _save_to_clipboard(self, **kwargs): """ import io import mimetypes - from PyQt5.QtCore import QMimeData - from PyQt5.QtWidgets import QApplication - from PyQt5.QtGui import QImage + from qtpy.QtCore import QMimeData + from qtpy.QtWidgets import QApplication + from qtpy.QtGui import QImage # guess the MIME type from the provided file-extension fmt = kwargs.get("format", "png") diff --git a/eomaps/qtcompanion/app.py b/eomaps/qtcompanion/app.py index 1491cc048..8080c7661 100644 --- a/eomaps/qtcompanion/app.py +++ b/eomaps/qtcompanion/app.py @@ -1,6 +1,6 @@ -from PyQt5 import QtWidgets -from PyQt5.QtCore import Qt, pyqtSignal, pyqtSlot, QSize, QObject -from PyQt5.QtGui import QKeySequence +from qtpy import QtWidgets +from qtpy.QtCore import Qt, Signal, Slot, QSize, QObject +from qtpy.QtGui import QKeySequence from .base import AlwaysOnTopWindow from .widgets.peek import PeekTabs @@ -128,7 +128,7 @@ def __init__(self, *args, m=None, **kwargs): """ ) - @pyqtSlot() + @Slot() def tabchanged(self): if self.currentWidget() == self.tab_compare: @@ -183,7 +183,7 @@ def __init__(self, *args, m=None, **kwargs): # self.resize(int(sh.width() * 1.35), sh.height()) # clear the colormaps-dropdown pixmap cache if the colormaps have changed - # (the pyqtSignal is emmited by Maps-objects if a new colormap is registered) + # (the Signal is emmited by Maps-objects if a new colormap is registered) self.m._connect_signal("cmapsChanged", self.clear_pixmap_cache) def show(self): @@ -196,7 +196,7 @@ def show(self): self.shortcut.activated.connect(self.toggle_show) self.shortcut.activatedAmbiguously.connect(self.toggle_show) - @pyqtSlot() + @Slot() def toggle_show(self): if self.isVisible(): self.hide() @@ -206,6 +206,6 @@ def toggle_show(self): self.activateWindow() self.m._indicate_companion_map(True) - @pyqtSlot() + @Slot() def clear_pixmap_cache(self): get_cmap_pixmaps.cache_clear() diff --git a/eomaps/qtcompanion/base.py b/eomaps/qtcompanion/base.py index 2f4c0a8a7..6adf924ed 100644 --- a/eomaps/qtcompanion/base.py +++ b/eomaps/qtcompanion/base.py @@ -1,8 +1,8 @@ import logging from weakref import WeakSet -from PyQt5 import QtWidgets, QtCore, QtGui -from PyQt5.QtCore import Qt, pyqtSlot +from qtpy import QtWidgets, QtCore, QtGui +from qtpy.QtCore import Qt, Slot from .common import iconpath @@ -257,7 +257,7 @@ def enterEvent(self, e): "", ) - @pyqtSlot() + @Slot() def callback(self): if not self.m.parent._layout_editor._modifier_pressed: self.m.parent.edit_layout() @@ -362,7 +362,7 @@ def __init__( self.press_pos = None - @pyqtSlot() + @Slot() def toggle_show_help(self): if self.b_showhelp.isChecked(): self.window().showhelp = True @@ -371,7 +371,7 @@ def toggle_show_help(self): self.window().showhelp = False # self.b_showhelp.setText("?") - @pyqtSlot() + @Slot() def close_button_callback(self): self.window().close() if self.m is not None: @@ -380,11 +380,11 @@ def close_button_callback(self): if self._on_close is not None: self._on_close() - @pyqtSlot() + @Slot() def open_file_button_callback(self): self.window().tabs.tab_open.openNewFile.emit() - @pyqtSlot() + @Slot() def maximize_button_callback(self): if not self.window().isMaximized(): self.window().showMaximized() @@ -395,7 +395,11 @@ def maximize_button_callback(self): def mousePressEvent(self, event): if event.button() == QtCore.Qt.LeftButton: - self.press_pos = event.windowPos().toPoint() + try: + self.press_pos = event.windowPos().toPoint() + except Exception: + # for PyQt6 compatibility + self.press_pos = event.scenePosition().toPoint() def mouseReleaseEvent(self, event): if event.button() == QtCore.Qt.LeftButton: @@ -452,7 +456,7 @@ def __init__(self, *args, m=None, title=None, on_close=None, **kwargs): _windows_to_close.add(self) - @pyqtSlot() + @Slot() def on_close(self, e): self.close() @@ -483,7 +487,7 @@ def __init__(self, *args, m=None, **kwargs): self.addToolBar(self.toolbar) - @pyqtSlot() + @Slot() def toggle_always_on_top(self, *args, **kwargs): q = self.m._get_always_on_top() diff --git a/eomaps/qtcompanion/signal_container.py b/eomaps/qtcompanion/signal_container.py index cbb305f66..c8cf6131c 100644 --- a/eomaps/qtcompanion/signal_container.py +++ b/eomaps/qtcompanion/signal_container.py @@ -1,27 +1,27 @@ """A container class for signals sent to the CompanionWidget""" -from PyQt5.QtCore import QObject, pyqtSignal +from qtpy.QtCore import QObject, Signal class _SignalContainer(QObject): - cmapsChanged = pyqtSignal() + cmapsChanged = Signal() - clipboardKwargsChanged = pyqtSignal() + clipboardKwargsChanged = Signal() - dataPlotted = pyqtSignal() + dataPlotted = Signal() # -------- shape drawer - drawFinished = pyqtSignal() - drawAborted = pyqtSignal() - drawStarted = pyqtSignal(str) + drawFinished = Signal() + drawAborted = Signal() + drawStarted = Signal(str) # -------- annotation editor - annotationEditorActivated = pyqtSignal() - annotationEditorDeactivated = pyqtSignal() - annotationSelected = pyqtSignal() - annotationEdited = pyqtSignal() + annotationEditorActivated = Signal() + annotationEditorDeactivated = Signal() + annotationSelected = Signal() + annotationEdited = Signal() # -------- layout editor - layoutEditorActivated = pyqtSignal() - layoutEditorDeactivated = pyqtSignal() + layoutEditorActivated = Signal() + layoutEditorDeactivated = Signal() diff --git a/eomaps/qtcompanion/widgets/annotate.py b/eomaps/qtcompanion/widgets/annotate.py index 11d09d617..21b050caf 100644 --- a/eomaps/qtcompanion/widgets/annotate.py +++ b/eomaps/qtcompanion/widgets/annotate.py @@ -1,5 +1,5 @@ -from PyQt5 import QtWidgets -from PyQt5.QtCore import Qt, pyqtSlot, pyqtSignal +from qtpy import QtWidgets +from qtpy.QtCore import Qt, Slot, Signal from .utils import GetColorWidget from matplotlib.patches import BoxStyle, ArrowStyle @@ -148,7 +148,7 @@ def enterEvent(self, e): class AddAnnotationWidget(QtWidgets.QWidget): - widgetShown = pyqtSignal() + widgetShown = Signal() def __init__(self, *args, m=None, **kwargs): super().__init__(*args, **kwargs) @@ -291,7 +291,7 @@ def __init__(self, *args, m=None, **kwargs): self.m._connect_signal("annotationEditorDeactivated", self.update_buttons) def eventFilter(self, widget, event): - from PyQt5 import QtCore + from qtpy import QtCore if ( event.type() == QtCore.QEvent.KeyPress @@ -485,7 +485,7 @@ def enterEvent(self, e): "in the list of background-artists!", ) - @pyqtSlot(int) + @Slot(int) def dial_value_changed(self, i): self.annotate_props["rotation"] = int(180 - i) self.annotate_props["horizontalalignment"] = "center" @@ -497,14 +497,14 @@ def dial_value_changed(self, i): if self.m._edit_annotations._drag_active: self.update_selected_rotation(self.annotate_props["rotation"]) - @pyqtSlot() + @Slot() def do_add_annotation(self): if self._annotation_active is True: self.stop() else: self.add_annotation(text=self.text_inp.toPlainText()) - @pyqtSlot() + @Slot() def remove_selected_annotation(self): ann = self.selected_annotation if ann: @@ -643,7 +643,7 @@ def showEvent(self, event): def _annotations_editable(self): return self.m._edit_annotations._drag_active - @pyqtSlot() + @Slot() def toggle_annotations_editable(self): if not self._annotations_editable: self.m._edit_annotations(True) @@ -654,7 +654,7 @@ def toggle_annotations_editable(self): self.update_buttons() - @pyqtSlot() + @Slot() def update_buttons(self): if self._annotations_editable: self.edit_annotations.setText("Annotations editable!") diff --git a/eomaps/qtcompanion/widgets/click_callbacks.py b/eomaps/qtcompanion/widgets/click_callbacks.py index 7e465f20b..7cc354ff6 100644 --- a/eomaps/qtcompanion/widgets/click_callbacks.py +++ b/eomaps/qtcompanion/widgets/click_callbacks.py @@ -1,5 +1,5 @@ -from PyQt5 import QtWidgets, QtGui -from PyQt5.QtCore import Qt, pyqtSignal, pyqtSlot +from qtpy import QtWidgets, QtGui +from qtpy.QtCore import Qt, Signal, Slot class AnnotateButton(QtWidgets.QPushButton): @@ -152,7 +152,7 @@ def enterEvent(self, e): class ClickCallbacks(QtWidgets.QFrame): - widgetShown = pyqtSignal() + widgetShown = Signal() def __init__(self, *args, m=None, **kwargs): super().__init__(*args, **kwargs) @@ -322,7 +322,7 @@ def identify_pick_map(self): return pickm - @pyqtSlot() + @Slot() def clear_annotations_and_markers(self): # clear all annotations and markers from this axis # (irrespective of the visible layer!) @@ -401,7 +401,7 @@ def on_layer_change(self, *args, **kwargs): self.populate_dropdown() self.update_buttons() - @pyqtSlot() + @Slot() def update_buttons(self): if self._pick_map is None or self._pick_map.coll is None: self.t_pick.setEnabled(False) @@ -494,7 +494,7 @@ def attach_callback(self, key): self.cids[key] = (self.m.all, method(**self._kwargs.get(key, dict()))) - @pyqtSlot() + @Slot() def radius_changed(self): try: radius = float(self.radius_inp.text()) @@ -504,7 +504,7 @@ def radius_changed(self): self.attach_callback("mark") self.update_buttons() - @pyqtSlot() + @Slot() def n_points_changed(self): try: n = int(self.n_points_inp.text()) @@ -516,7 +516,7 @@ def n_points_changed(self): self.update_buttons() def button_clicked(self, key): - @pyqtSlot() + @Slot() def cb(): if self.cids.get(key, None) is not None: self.remove_callback(key) diff --git a/eomaps/qtcompanion/widgets/draw.py b/eomaps/qtcompanion/widgets/draw.py index 11b1fbc0e..586c1d987 100644 --- a/eomaps/qtcompanion/widgets/draw.py +++ b/eomaps/qtcompanion/widgets/draw.py @@ -1,7 +1,7 @@ import logging -from PyQt5 import QtWidgets -from PyQt5.QtCore import Qt, pyqtSlot, pyqtSignal +from qtpy import QtWidgets +from qtpy.QtCore import Qt, Slot, Signal from .utils import ColorWithSlidersWidget @@ -157,14 +157,14 @@ def enterEvent(self, e): "are removed from the map.", ) - @pyqtSlot(int) + @Slot(int) def tabbar_clicked(self, index): if self.tabText(index) == "+": w = self._get_new_drawer() self.insertTab(self.count() - 1, w, "0") self.update_tab_icon(w=w) - @pyqtSlot(int) + @Slot(int) def close_handler(self, index): curridx = self.currentIndex() drawerwidget = self.widget(index) @@ -202,7 +202,7 @@ def set_layer(self, layer): if self.tabText(i) != "+": self.widget(i).set_layer(layer) - @pyqtSlot() + @Slot() def update_tab_icon(self, w=None): if w is None: w = self.sender() @@ -211,7 +211,7 @@ def update_tab_icon(self, w=None): class DrawerWidget(QtWidgets.QWidget): - colorSelected = pyqtSignal() + colorSelected = Signal() _polynames = { "Polygon": "polygon", @@ -356,7 +356,7 @@ def enterEvent(self, e): ) def draw_shape_callback(self, poly): - @pyqtSlot() + @Slot() def cb(): s = self.sender() for b in self.polybuttons: @@ -373,7 +373,7 @@ def cb(): return cb - @pyqtSlot() + @Slot() def _new_poly_cb(self): # callback executed on creation of a new polygon npoly = len(self.drawer._artists) @@ -394,7 +394,7 @@ def _new_poly_cb(self): self.save_button.setText(txt) self.save_button.setFixedSize(self.save_button.sizeHint()) - @pyqtSlot() + @Slot() def save_shapes(self): try: save_path, widget = QtWidgets.QFileDialog.getSaveFileName( @@ -412,7 +412,7 @@ def save_shapes(self): exc_info=_log.getEffectiveLevel() <= logging.DEBUG, ) - @pyqtSlot() + @Slot() def remove_last_shape(self): try: self.drawer.remove_last_shape() @@ -425,7 +425,7 @@ def remove_last_shape(self): exc_info=_log.getEffectiveLevel() <= logging.DEBUG, ) - @pyqtSlot() + @Slot() def cancel_draw(self): self.drawer._finish_drawing() @@ -440,16 +440,17 @@ def _new_drawer(self): def set_layer(self, layer): self.drawer.set_layer(layer) - @pyqtSlot() + @Slot() def get_tab_icon(self): - from PyQt5 import QtGui - from PyQt5.QtCore import QRectF + from qtpy import QtGui + from qtpy.QtCore import QRectF canvas = QtGui.QPixmap(20, 20) canvas.fill(Qt.transparent) painter = QtGui.QPainter(canvas) - painter.setRenderHints(QtGui.QPainter.HighQualityAntialiasing) + painter.setRenderHint(QtGui.QPainter.Antialiasing, True) + painter.setRenderHint(QtGui.QPainter.SmoothPixmapTransform, True) painter.setBrush(QtGui.QBrush(self.colorselector.facecolor, Qt.SolidPattern)) diff --git a/eomaps/qtcompanion/widgets/editor.py b/eomaps/qtcompanion/widgets/editor.py index b6a441899..5734bce76 100644 --- a/eomaps/qtcompanion/widgets/editor.py +++ b/eomaps/qtcompanion/widgets/editor.py @@ -1,9 +1,9 @@ import logging from textwrap import dedent -from PyQt5 import QtCore, QtWidgets, QtGui -from PyQt5.QtCore import Qt, pyqtSignal, pyqtSlot, QPointF -from PyQt5.QtGui import QFont +from qtpy import QtCore, QtWidgets, QtGui +from qtpy.QtCore import Qt, Signal, Slot, QPointF +from qtpy.QtGui import QFont from matplotlib.colors import to_rgba_array @@ -22,7 +22,7 @@ class AddFeaturesMenuButton(QtWidgets.QPushButton): - FeatureAdded = pyqtSignal(str) + FeatureAdded = Signal(str) def __init__(self, *args, m=None, sub_menu="preset", **kwargs): super().__init__(*args, **kwargs) @@ -134,7 +134,7 @@ def enterEvent(self, e): super().enterEvent(e) - @pyqtSlot() + @Slot() def show_menu(self): self.feature_menu.popup(self.mapToGlobal(self.menu_button.pos())) @@ -142,7 +142,7 @@ def set_layer(self, layer): self.layer = layer def menu_callback_factory(self, featuretype, feature): - @pyqtSlot() + @Slot() def cb(): # TODO set the layer !!!! if self.layer is None: @@ -284,7 +284,7 @@ def __init__(self, m=None): self.setLayout(layout_tight) - @pyqtSlot() + @Slot() def update_props(self): # don't specify alpha! it interferes with the alpha of the colors! @@ -477,7 +477,7 @@ def enterEvent(self, e): "", ) - @pyqtSlot() + @Slot() def on_click(self, *args, **kwargs): global _last_info_button global _init_size @@ -523,7 +523,7 @@ def on_click(self, *args, **kwargs): class LayerArtistTabs(QtWidgets.QTabWidget): - plusClicked = pyqtSignal() + plusClicked = Signal() def __init__(self, *args, m=None, **kwargs): super().__init__(*args, **kwargs) @@ -733,7 +733,7 @@ def mousePressEvent(self, event): else: super().mousePressEvent(event) - @pyqtSlot() + @Slot() def get_tab_icon(self, color="red"): if isinstance(color, str): color = QtGui.QColor(color) @@ -744,7 +744,8 @@ def get_tab_icon(self, color="red"): canvas.fill(Qt.transparent) painter = QtGui.QPainter(canvas) - painter.setRenderHints(QtGui.QPainter.HighQualityAntialiasing) + painter.setRenderHint(QtGui.QPainter.Antialiasing, True) + painter.setRenderHint(QtGui.QPainter.SmoothPixmapTransform, True) pencolor = QtGui.QColor(color) pencolor.setAlpha(100) @@ -799,7 +800,7 @@ def repopulate_and_activate_current(self, *args, **kwargs): except StopIteration: pass - @pyqtSlot() + @Slot() def tab_moved(self): # get currently active layers active_layers, alphas = self.m.BM._get_layers_alphas() @@ -822,7 +823,7 @@ def tab_moved(self): alpha_order = [alphas[active_layers.index(i)] for i in layer_order] self.m.show_layer(*zip(layer_order, alpha_order)) - @pyqtSlot(int) + @Slot(int) def close_handler(self, index): layer = self.tabText(index) @@ -842,7 +843,7 @@ def close_handler(self, index): _ = self._msg.show() def get_close_tab_cb(self, index): - @pyqtSlot() + @Slot() def cb(): self._do_close_tab(index) @@ -959,7 +960,7 @@ def color_active_tab(self, m=None, layer=None, adjust_order=True): # re-connect tab_moved callback self.tabMoved.connect(self.tab_moved) - @pyqtSlot() + @Slot() def populate_on_layer(self, *args, **kwargs): lastlayer = getattr(self, "_last_populated_layer", "") currlayer = self.m.BM.bg_layer @@ -972,7 +973,7 @@ def populate_on_layer(self, *args, **kwargs): # still update tab colors (e.g. if layers are removed from multi) self.color_active_tab() - @pyqtSlot() + @Slot() def populate(self, *args, **kwargs): if not self.isVisible(): return @@ -1034,7 +1035,7 @@ def populate(self, *args, **kwargs): # try to restore the previously opened tab self.set_current_tab_by_name(self._current_tab_name) - @pyqtSlot(str) + @Slot(str) def set_current_tab_by_name(self, layer): if layer is None: layer = self.m.BM.bg_layer @@ -1051,7 +1052,7 @@ def set_current_tab_by_name(self, layer): if found is False: self.setCurrentIndex(0) - @pyqtSlot(int) + @Slot(int) def tabchanged(self, index): # TODO # modifiers are only released if the canvas has focus while the event happens!! @@ -1362,7 +1363,7 @@ def _get_artist_layout(self, a, layer): return layout - @pyqtSlot() + @Slot() def populate_on_layer(self, *args, **kwargs): lastlayer = getattr(self, "_last_populated_layer", "") currlayer = self.m.BM.bg_layer @@ -1383,7 +1384,7 @@ def populate_on_layer(self, *args, **kwargs): # layers are selected (and the transparency of a sub-layer is changed) self.tabBar().color_active_tab(adjust_order=False) - @pyqtSlot() + @Slot() def populate(self, *args, **kwargs): if not self.isVisible(): return @@ -1463,7 +1464,7 @@ def get_layer_alpha(self, layer): alpha = 1 return alpha - @pyqtSlot() + @Slot() def populate_layer(self, layer=None): if not self.isVisible(): return @@ -1599,7 +1600,7 @@ def _do_remove(self, artist, layer): self.m.redraw(layer) def remove(self, artist, layer): - @pyqtSlot() + @Slot() def cb(): self._msg = QtWidgets.QMessageBox(self) @@ -1620,7 +1621,7 @@ def cb(): return cb def show_hide(self, artist, layer): - @pyqtSlot() + @Slot() def cb(): if artist in self.m.BM._hidden_artists: self.m.BM._hidden_artists.remove(artist) @@ -1635,7 +1636,7 @@ def cb(): return cb def set_zorder(self, artist, layer, widget): - @pyqtSlot() + @Slot() def cb(): val = widget.text() if len(val) > 0: @@ -1646,7 +1647,7 @@ def cb(): return cb def set_alpha(self, artist, layer, widget): - @pyqtSlot() + @Slot() def cb(): val = widget.text() if len(val) > 0: @@ -1657,7 +1658,7 @@ def cb(): return cb def set_linewidth(self, artist, layer, widget): - @pyqtSlot() + @Slot() def cb(): val = widget.text() if len(val) > 0: @@ -1668,7 +1669,7 @@ def cb(): return cb def set_cmap(self, artist, layer, widget): - @pyqtSlot() + @Slot() def cb(): val = widget.currentText() if len(val) > 0: @@ -1678,7 +1679,7 @@ def cb(): return cb - @pyqtSlot() + @Slot() def set_layer_alpha(self, layer, alpha): layers, alphas = self.m.BM._get_layers_alphas() if layer in layers: @@ -1811,7 +1812,7 @@ def __init__(self, *args, m=None, show_editor=False, **kwargs): # with respect to the currently selected layer-tab self.artist_tabs.tabBar().currentChanged.connect(self.set_layer) - @pyqtSlot() + @Slot() def set_layer(self): layer = self.artist_tabs.tabText(self.artist_tabs.currentIndex()) for s in self.addfeature.selectors: diff --git a/eomaps/qtcompanion/widgets/extent.py b/eomaps/qtcompanion/widgets/extent.py index 27c259b82..1bdaed73e 100644 --- a/eomaps/qtcompanion/widgets/extent.py +++ b/eomaps/qtcompanion/widgets/extent.py @@ -1,8 +1,8 @@ import logging from datetime import datetime -from PyQt5 import QtWidgets -from PyQt5.QtCore import pyqtSlot +from qtpy import QtWidgets +from qtpy.QtCore import Slot _log = logging.getLogger(__name__) @@ -34,7 +34,7 @@ def enterEvent(self, e): "'location' can be a country-name, a city-name an address etc.", ) - @pyqtSlot() + @Slot() def set_extent(self): # make sure that queries have a couple of seconds delay # to comply to OpenStreetMap Nominatim Usage Policy diff --git a/eomaps/qtcompanion/widgets/files.py b/eomaps/qtcompanion/widgets/files.py index cb14c56ef..116d7b6a0 100644 --- a/eomaps/qtcompanion/widgets/files.py +++ b/eomaps/qtcompanion/widgets/files.py @@ -1,7 +1,7 @@ import logging -from PyQt5 import QtWidgets, QtGui -from PyQt5.QtCore import Qt, QLocale, pyqtSignal +from qtpy import QtWidgets, QtGui +from qtpy.QtCore import Qt, QLocale, Signal from pathlib import Path import io import numpy as np @@ -1338,7 +1338,7 @@ def enterEvent(self, e): class OpenFileTabs(QtWidgets.QTabWidget): - openNewFile = pyqtSignal() + openNewFile = Signal() def __init__(self, *args, m=None, **kwargs): super().__init__(*args, **kwargs) diff --git a/eomaps/qtcompanion/widgets/layer.py b/eomaps/qtcompanion/widgets/layer.py index 90d84dc65..170c42365 100644 --- a/eomaps/qtcompanion/widgets/layer.py +++ b/eomaps/qtcompanion/widgets/layer.py @@ -1,7 +1,7 @@ -from PyQt5 import QtWidgets -from PyQt5.QtCore import Qt, pyqtSlot +from qtpy import QtWidgets +from qtpy.QtCore import Qt, Slot from ..common import iconpath -from PyQt5 import QtGui +from qtpy import QtGui class AutoUpdatePeekLayerDropdown(QtWidgets.QComboBox): @@ -45,7 +45,7 @@ def enterEvent(self, e): "select the peek-method as well as the transparency of the overlay.", ) - @pyqtSlot() + @Slot() def set_last_active(self): self._last_active = self.currentText() @@ -315,7 +315,7 @@ def update_visible_layer(self, *args, **kwargs): self.update_layers() self.update_display_text(self.m.BM._bg_layer) - @pyqtSlot() + @Slot() def actionClicked(self): action = self.sender() if not isinstance(action, QtWidgets.QWidgetAction): @@ -392,7 +392,7 @@ def update_checkstatus(self): # re connect action trigger w.clicked.connect(action.trigger) - @pyqtSlot() + @Slot() def update_layers(self): layers = self.layers if layers == self._last_layers: diff --git a/eomaps/qtcompanion/widgets/peek.py b/eomaps/qtcompanion/widgets/peek.py index 6147866d2..b71a8eb7c 100644 --- a/eomaps/qtcompanion/widgets/peek.py +++ b/eomaps/qtcompanion/widgets/peek.py @@ -1,5 +1,5 @@ -from PyQt5 import QtWidgets, QtGui -from PyQt5.QtCore import Qt, pyqtSignal, QSize, pyqtSlot +from qtpy import QtWidgets, QtGui +from qtpy.QtCore import Qt, Signal, QSize, Slot from .layer import AutoUpdatePeekLayerDropdown, AutoUpdateLayerMenuButton from ..common import iconpath @@ -59,7 +59,7 @@ def enterEvent(self, e): class PeekMethodButtons(QtWidgets.QWidget): - methodChanged = pyqtSignal(str) + methodChanged = Signal(str) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) @@ -141,7 +141,7 @@ def __init__(self, *args, **kwargs): self.round_button.setCurrentWidget(self.buttons["circle"]) def button_clicked(self, method): - @pyqtSlot() + @Slot() def cb(): if method == "square": if self._method == "square": @@ -178,7 +178,7 @@ def cb(): return cb - @pyqtSlot(int) + @Slot(int) def rectangle_sider_value_changed(self, i): self.rectangle_size = i / 100 if self._method in ["rectangle", "square", "circle", "ellipse"]: @@ -244,13 +244,13 @@ def set_alpha_slider_stylesheet(self): """ ) - @pyqtSlot(int) + @Slot(int) def alpha_changed(self, i): self.alpha = i / 100 self.methodChanged.emit(self._method) self.set_alpha_slider_stylesheet() - @pyqtSlot(str) + @Slot(str) def method_changed(self, method): self._method = method @@ -338,7 +338,7 @@ def __init__(self, *args, m=None, layers=None, exclude=None, **kwargs): m=self.m, layers=self._layers, exclude=exclude ) self.layerselector.update_layers() # do this before attaching the callback! - self.layerselector.currentIndexChanged[str].connect(self.set_layer_callback) + self.layerselector.currentTextChanged.connect(self.set_layer_callback) self.layerselector.setMinimumWidth(100) self.buttons = PeekMethodButtons() @@ -376,7 +376,7 @@ def __init__(self, *args, m=None, layers=None, exclude=None, **kwargs): self.setLayout(layout) - @pyqtSlot(str) + @Slot(str) def set_layer_callback(self, l): self.remove_peek_cb() if self.cid is not None: @@ -399,7 +399,7 @@ def set_layer_callback(self, l): ) self.current_layer = l - @pyqtSlot(str) + @Slot(str) def method_changed(self, method): self.add_peek_cb() @@ -482,9 +482,9 @@ def __init__(self, *args, m=None, **kwargs): cb = self.settxt_factory(w) w.modifier.textChanged.connect(cb) w.buttons.methodChanged.connect(cb) - w.layerselector.currentIndexChanged[str].connect(cb) + w.layerselector.currentTextChanged.connect(cb) - # emit pyqtSignal to set text + # emit Signal to set text w.buttons.methodChanged.emit(w.buttons._method) # a tab that is used to create new tabs @@ -501,7 +501,7 @@ def __init__(self, *args, m=None, **kwargs): self.tabBarClicked.connect(self.tabbar_clicked) self.setCurrentIndex(0) - self.setTabPosition(0) + # self.setTabPosition(0) self.setStyleSheet( """ QTabWidget::pane { @@ -557,18 +557,18 @@ def make_new_tab(self): cb = self.settxt_factory(w) w.modifier.textChanged.connect(cb) w.buttons.methodChanged.connect(cb) - w.layerselector.currentIndexChanged[str].connect(cb) - # emit pyqtSignal to set text + w.layerselector.currentTextChanged.connect(cb) + # emit Signal to set text w.buttons.methodChanged.emit(w.buttons._method) return w - @pyqtSlot(int) + @Slot(int) def tabbar_clicked(self, index): if self.tabText(index) == "+": self.make_new_tab() - @pyqtSlot(int) + @Slot(int) def close_handler(self, index): curridx = self.currentIndex() self.widget(index).remove_peek_cb() @@ -577,7 +577,7 @@ def close_handler(self, index): self.setCurrentIndex(index - 1) def settxt_factory(self, w): - @pyqtSlot() + @Slot() def settxt(): self.setTabIcon(self.indexOf(w), peek_icons[w.buttons._method]) mod = w.modifier.text().strip() diff --git a/eomaps/qtcompanion/widgets/save.py b/eomaps/qtcompanion/widgets/save.py index eaa100d04..bab0a6322 100644 --- a/eomaps/qtcompanion/widgets/save.py +++ b/eomaps/qtcompanion/widgets/save.py @@ -1,5 +1,5 @@ -from PyQt5 import QtWidgets, QtGui -from PyQt5.QtCore import Qt, pyqtSlot +from qtpy import QtWidgets, QtGui +from qtpy.QtCore import Qt, Slot class FiletypeComboBox(QtWidgets.QComboBox): @@ -245,14 +245,14 @@ def __init__(self, *args, m=None, **kwargs): # set export props to current state of Maps._clipboard_kwargs self.set_export_props() - @pyqtSlot() + @Slot() def tight_cb_callback(self): if self.tightbbox_cb.isChecked(): # e.g. checked self.tightbbox_input.setVisible(True) else: self.tightbbox_input.setVisible(False) - @pyqtSlot() + @Slot() def rasterize_cb_callback(self, *args, **kwargs): if self.filetype_dropdown.currentText() in ["svg", "pdf", "eps"]: self.rasterize_cb.setVisible(True) @@ -261,7 +261,7 @@ def rasterize_cb_callback(self, *args, **kwargs): self.rasterize_cb.setVisible(False) self.rasterize_label.setVisible(False) - @pyqtSlot() + @Slot() def save_file(self): selected_filetype = self.filetype_dropdown.currentText() @@ -295,7 +295,7 @@ def save_file(self): **kwargs, ) - @pyqtSlot() + @Slot() def update_clipboard_kwargs(self, *args, **kwargs): clipboard_kwargs = dict( format=self.filetype_dropdown.currentText(), @@ -312,7 +312,7 @@ def update_clipboard_kwargs(self, *args, **kwargs): # use private setter to avoid triggering callbacks on set self.m._set_clipboard_kwargs(**clipboard_kwargs) - @pyqtSlot() + @Slot() def set_export_props(self, *args, **kwargs): # callback that is triggerd on Maps.set_clipboard_kwargs diff --git a/eomaps/qtcompanion/widgets/utils.py b/eomaps/qtcompanion/widgets/utils.py index 90efef2aa..13479937b 100644 --- a/eomaps/qtcompanion/widgets/utils.py +++ b/eomaps/qtcompanion/widgets/utils.py @@ -1,5 +1,5 @@ -from PyQt5 import QtWidgets, QtGui -from PyQt5.QtCore import Qt, QRectF, QSize, pyqtSlot, pyqtSignal +from qtpy import QtWidgets, QtGui +from qtpy.QtCore import Qt, QRectF, QSize, Slot, Signal from eomaps import Maps from functools import lru_cache @@ -264,8 +264,9 @@ def resizeEvent(self, e): def paintEvent(self, e): super().paintEvent(e) painter = QtGui.QPainter(self) + painter.setRenderHint(QtGui.QPainter.Antialiasing, True) + painter.setRenderHint(QtGui.QPainter.SmoothPixmapTransform, True) - painter.setRenderHints(QtGui.QPainter.HighQualityAntialiasing) size = self.size() if self.linewidth > 0.01: @@ -424,7 +425,7 @@ def set_stylesheet(self): elif self._style == "alpha": self.set_alpha_stylesheet() - @pyqtSlot(int) + @Slot(int) def value_changed(self, i): self.alpha = i / 100 self.set_stylesheet() @@ -484,7 +485,7 @@ def set_alpha_stylesheet(self): class ColorWithSlidersWidget(QtWidgets.QWidget): - colorSelected = pyqtSignal() + colorSelected = Signal() alpha_slider_scale = 100 linewidth_slider_scale = 10 @@ -541,12 +542,12 @@ def linewidth(self): def alpha(self): return self.color.alpha - @pyqtSlot(int) + @Slot(int) def set_alpha_with_slider(self, i): self.color.set_alpha(i / self.alpha_slider_scale) self.colorSelected.emit() - @pyqtSlot(int) + @Slot(int) def set_linewidth_with_slider(self, i): self.color.set_linewidth(i / self.linewidth_slider_scale) self.colorSelected.emit() diff --git a/eomaps/qtcompanion/widgets/wms.py b/eomaps/qtcompanion/widgets/wms.py index 096c0fc2d..d9dac08e6 100644 --- a/eomaps/qtcompanion/widgets/wms.py +++ b/eomaps/qtcompanion/widgets/wms.py @@ -1,8 +1,8 @@ import logging -from PyQt5 import QtWidgets -from PyQt5.QtCore import Qt, QThread, QObject, pyqtSignal, pyqtSlot, QTimer -from PyQt5.QtGui import QStatusTipEvent +from qtpy import QtWidgets +from qtpy.QtCore import Qt, QThread, QObject, Signal, Slot, QTimer +from qtpy.QtGui import QStatusTipEvent from ... import Maps, _data_dir from pathlib import Path @@ -12,7 +12,7 @@ _log = logging.getLogger(__name__) # the path to which already fetched WebMap layers are stored -# (to avoid fetching available layers on menu-population) +# (to avoid fetching available layers on menu-population)W wms_layers_dumppath = Path(_data_dir) / "_companion_wms_layers.json" @@ -597,7 +597,7 @@ def eventFilter(self, watched, event): class AddWMSMenuButton(QtWidgets.QPushButton): - wmsLayerCreated = pyqtSignal(str) + wmsLayerCreated = Signal(str) def __init__( self, *args, m=None, new_layer=False, show_layer=False, layer=None, **kwargs @@ -698,11 +698,11 @@ def enterEvent(self, e): "NOTE: This is not necessarily the currently visible layer!", ) - @pyqtSlot() + @Slot() def show_menu(self): self.feature_menu.popup(self.mapToGlobal(self.menu_button.pos())) - @pyqtSlot() + @Slot() def populate_menu(self): self.sub_menus = dict() @@ -711,7 +711,7 @@ def populate_menu(self): self.sub_menus[wmsname].aboutToShow.connect(self._populate_submenu_cb) self.feature_menu.aboutToShow.disconnect() - @pyqtSlot() + @Slot() def _populate_submenu_cb(self): wmsname = self.sender().title() self.fetch_submenu(wmsname=wmsname) @@ -862,9 +862,9 @@ def populate_submenu(self, wmsname=None): except Exception: _log.error(f"There was a problem with the WMS: {wmsname}") - @pyqtSlot() + @Slot() def menu_callback_factory(self, wmsname, wmslayer): - @pyqtSlot() + @Slot() def wms_cb(): self.window().statusBar().showMessage( diff --git a/setup.py b/setup.py index 7a50b5189..a1cbf5775 100644 --- a/setup.py +++ b/setup.py @@ -55,6 +55,7 @@ "cairosvg", "packaging", "click", + "qtpy", ], entry_points={"console_scripts": ["eomaps = eomaps.scripts.open:cli"]}, keywords=["visualization", "plotting", "maps", "geographical data"], diff --git a/tests/test_env.yml b/tests/test_env.yml index 56025a54d..805b76630 100644 --- a/tests/test_env.yml +++ b/tests/test_env.yml @@ -30,6 +30,8 @@ dependencies: - coveralls - pytest - pytest-cov + # --------------to support multiple Qt versions + - qtpy # --------------for building the docs - sphinx-copybutton - sphinx From 39dc0fa6376444af985ef5380462d68e9247772f Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Fri, 8 Dec 2023 22:22:27 +0100 Subject: [PATCH 005/240] update gitignore --- .gitignore | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/.gitignore b/.gitignore index 9702458f1..3f2defa0b 100644 --- a/.gitignore +++ b/.gitignore @@ -26,3 +26,7 @@ tests/.ipynb_checkpoints tests/.pylint.d _exclude* + +docs/jupyter_execute/* +docs/.jupyter_cache/* +docs/.virtual_documents/* From 8cec5e9f8cb2d1ccb945fb8ff83d7e3ba675cf55 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Fri, 8 Dec 2023 22:23:02 +0100 Subject: [PATCH 006/240] update contribute_env --- docs/contribute_env.yml | 4 +--- 1 file changed, 1 insertion(+), 3 deletions(-) diff --git a/docs/contribute_env.yml b/docs/contribute_env.yml index a379885e3..2f037a0ff 100644 --- a/docs/contribute_env.yml +++ b/docs/contribute_env.yml @@ -38,6 +38,4 @@ dependencies: - sphinx-copybutton - sphinx - docutils - - pip - - pip: - - sphinx_rtd_theme + - sphinx_rtd_theme From 9fc25ecb08e39ea2d442fe954988d6ac29890848 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Fri, 8 Dec 2023 22:25:16 +0100 Subject: [PATCH 007/240] update readthedocs to install from source --- .readthedocs.yaml | 7 ++++++- docs/docs_env.yml | 37 ++++++++++++++++++++++++++++++------- 2 files changed, 36 insertions(+), 8 deletions(-) diff --git a/.readthedocs.yaml b/.readthedocs.yaml index f90e5639c..05593cd47 100644 --- a/.readthedocs.yaml +++ b/.readthedocs.yaml @@ -6,4 +6,9 @@ build: python: "mambaforge-4.10" conda: - environment: tests/test_env.yml + environment: tests/docs_env.yml + +python: + install: + - method: pip + path: . diff --git a/docs/docs_env.yml b/docs/docs_env.yml index fd17ec292..029052838 100644 --- a/docs/docs_env.yml +++ b/docs/docs_env.yml @@ -3,11 +3,34 @@ channels: - conda-forge dependencies: - - eomaps + + - python = 3.10 + - numpy + - scipy + - pandas + - geopandas + - matplotlib >=3.4 + - cartopy >=0.20.0 + - descartes + - mapclassify + - pyproj + - pyepsg + # --------------for data-shading + - datashader + # --------------for GeoTIFF and NetCDF files + - netcdf4 + - xarray + - rioxarray + # --------------for WebMaps + - owslib + - requests + - xmltodict + - cairosvg + # --------------for building the docs - - sphinx-copybutton - - sphinx - - docutils - - pip - - pip: - - sphinx_rtd_theme + - docutils<0.19 + - sphinx=7.2.6 + - sphinx-copybutton=0.5.2 + - myst_nb=1.0.0 + - sphinx-design=0.5.0 + - sphinx_rtd_theme=1.3 From ca8c2448afffa3e93615c7ff42434de516f85f83 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Fri, 8 Dec 2023 22:25:48 +0100 Subject: [PATCH 008/240] update docs conf.py --- docs/conf.py | 23 ++++++++++++++++++++++- 1 file changed, 22 insertions(+), 1 deletion(-) diff --git a/docs/conf.py b/docs/conf.py index b7c44f598..fb88f677c 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -26,6 +26,8 @@ def setup(app): "sphinx.ext.napoleon", "sphinx_copybutton", "sphinx_rtd_theme", + "myst_nb", + "sphinx_design", ] @@ -61,10 +63,29 @@ def setup(app): napoleon_type_aliases = None napoleon_attr_annotations = True +myst_update_mathjax = False # to use single $x^2$ for equations +myst_render_markdown_format = "myst" # to parse markdown output with MyST parser +myst_enable_extensions = ["dollarmath", "colon_fence"] +myst_title_to_header = True + +nb_execution_mode = "cache" +nb_execution_timeout = 120 + # handle compiler warnings for duplicate labels due to documents # included via the ..include:: directive -exclude_patterns = ["introduction.rst"] +exclude_patterns = [ + "introduction.rst", + "build", + "jupyter_execute/*", + ".jupyter_cache/*", + ".virtual_documents/*", +] +source_suffix = { + ".rst": "restructuredtext", + ".ipynb": "myst-nb", + ".myst": "myst-nb", +} # a global substitution used to fix issues with images in tables # in the mobile-theme (without a span they get resized to 0. This forces a size From c8f79ef832c2824c7911f732bce1dbb1e7d14e9f Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Fri, 8 Dec 2023 22:26:12 +0100 Subject: [PATCH 009/240] re-write feature section as notebook --- docs/index.rst | 2 +- docs/notebooks/basic_features.ipynb | 2061 +++++++++++++++++++++++++++ 2 files changed, 2062 insertions(+), 1 deletion(-) create mode 100644 docs/notebooks/basic_features.ipynb diff --git a/docs/index.rst b/docs/index.rst index 700a6a1e0..6de7b81e6 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -189,7 +189,7 @@ Make sure to check out the :doc:`EOmaps_examples` for an overview of the capabil :caption: Map Features api_inset_maps - api_naturalearth_features + notebooks/basic_features.ipynb api_webmaps api_vector_data diff --git a/docs/notebooks/basic_features.ipynb b/docs/notebooks/basic_features.ipynb new file mode 100644 index 000000000..009c1d5a3 --- /dev/null +++ b/docs/notebooks/basic_features.ipynb @@ -0,0 +1,2061 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "de7394e2-8772-41bc-8d4a-8fb4e6c75cdd", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] + }, + "outputs": [], + "source": [ + "import warnings\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "markdown", + "id": "27c9d610-126b-4dc6-bc4f-b149c8f3cb92", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "# 🌵 NaturalEarth features\n", + "
\n", + "\n", + "EOmaps provies access to a large amount of basic map features provided by [NaturalEarth](https://www.naturalearthdata.com/) via [`Maps.add_feature`](eomaps.Maps.add_feature).\n", + "\n", + ":::{note}\n", + "The first time a feature is added to a map, the corresponding dataset is downloaded and stored locally for subsequent use.\n", + ":::\n", + "\n", + ":::{dropdown} Where is the data stored?\n", + "EOmaps uses `cartopy's` API to download and cache the features.\n", + "Run the following lines to get the used data-cache directory:\n", + "\n", + "```python\n", + "from cartopy import config\n", + "print(config[\"data_dir\"])\n", + "```\n", + ":::\n" + ] + }, + { + "cell_type": "markdown", + "id": "2f111eac-4f63-49db-82ab-0adf504fc307", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "## Preset Features\n", + "For the most commonly used features, style-presets are available:\n", + "\n", + "\n", + "```{eval-rst}\n", + ".. currentmodule:: eomaps.ne_features.NaturalEarth_presets\n", + "\n", + ".. autosummary::\n", + " :nosignatures:\n", + "\n", + " coastline\n", + " ocean\n", + " land\n", + " countries\n", + " urban_areas\n", + " lakes\n", + " rivers_lake_centerlines\n", + "\n", + "```\n", + "\n", + "To add individual preset features (and optionally override style properties), use:\n", + "```python\n", + "m.add_feature.preset.(**STYLE-KWARGS)\n", + "```\n", + "\n", + ":::{tip}\n", + "The native projection of the provided feature shapes is `epsg 4326` (e.g. PlateCarree or lon/lat projection). \n", + "If you create a map in a different projection, the features have to be re-projected which might take some time. \n", + "Re-projected features are cached until the kernel is restarted, so creating the same figure again will be much faster!\n", + ":::" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "08af1506-87d3-466d-8a7e-342a66ffa882", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAFeCAYAAABZ12FcAAEAAElEQVR4AexdA3gkTRCt5Gzbtm3btm3btm3btm3bto0k/3udzN7sZneDS3KX+6fybXamp6e7p3amp7rwysHFxUUMMjhgcMDggMEBgwMGBwwOGBzwOQ44+lxTRksGBwwOGBwwOGBwwOCAwQGDA+SAIWAZ94HBAYMDBgcMDhgcMDhgcMCHOWAIWD7MUKM5gwMGBwwOGBwwOGBwwOCAIWAZ94DBAYMDBgcMDhgcMDhgcMCHOWAIWD7MUKM5gwMGBwwOGBwwOGBwwOCAIWAZ94DBAYMDBgcMDhgcMDhgcMCHOWAIWD7MUKM5gwMGBwwOGBwwOGBwwOCAIWAZ94DBAYMDBgcMDhgcMDhgcMCHOWAIWD7MUKM5gwMGBwwOGBwwOGBwwOCAIWAZ94DBAYMDBgcMDhgcMDhgcMCHOWAIWD7MUKM5gwMGBwwOGBwwOGBwwOCAIWAZ94DBAYMDBgcMDhgcMDhgcMCHOWAIWD7MUKM5gwMGBwwOGBwwOGBwwOCAIWAZ94DBAYMDBgcMDhgcMDhgcMCHOWAIWD7MUKM5gwMGBwwOGBwwOGBwwOCAIWAZ94DBAYMDBgcMDhgcMDhgcMCHOWAIWD7MUKM5gwMGBwwOGBwwOGBwwOCAIWAZ94DBAYMDBgcMDhgcMDhgcMCHOWAIWD7MUKM5gwMGBwwOGBwwOGBwwOCAIWAZ94DBAYMDBgcMDhgcMDhgcMCHOWAIWD7MUKM5gwMGBwwOGBwwOGBwwOCAIWAZ94DBAYMDBgcMDhgcMDhgcMCHOWAIWD7MUKM5gwMGBwwOGBwwOGBwwOCAIWAZ94DBAYMDBgcMDhgcMDhgcMCHOWAIWD7MUKM5gwMGBwwOGBwwOGBwwOCAIWAZ94DBAYMDBgcMDhgcMDhgcMCHORDQVnsODg5BcSywreNGucEBgwMGBwwOGBwwOGBwwOCAfHdxcflqyQcHFFqWCYWr0OEifXn/5oW7Y0aBwQGDAwYHDA4YHDA4YHDA4ICJA0+xFc9SyLIlYIVG5XeD5x+VoMFDmlowNgwOGBwwOGBwwOCAwQGDAwYHXDnw9fNH6V47K3fCQMB6r+eLTRMhK1G4ChY8lL6+sW1wwOCAwQGDAwYHDA4YHDA44AEHDCd3DxhkHDY4YHDA4IDBAYMDBgcMDniVA4aA5VWOGfUNDhgcMDhgcMDggMEBgwMecMAQsDxgkHHY4IDBAYMDBgcMDhgcMDjgVQ4YApZXOWbUNzhgcMDggMEBgwMGBwwOeMABQ8DygEHGYYMDBgcMDhgcMDhgcMDggFc5YAhYXuWYUd/ggMEBgwMGBwwOGBwwOOABB+zCNHhwrnHY4IDBgT/AAYIDf/74XgIEDCgf3r4U7jv9/I7PTwkSLIR8+vBWfnxzAxV2cCBwsAQMGEgdCx4yjIQKG1EcHY211R/46YwuDQ4YHPgfccAQsP5HP7Z/vFRnZ2d59vCWOEAgCBo0hLqEHz++y+0rJyVwkGDi7OQEQSOQBA4aTCJGjS2P7lyR9xA6IFbIo7tXJEz4KKgXVMJHjgFMt9ASMHAQdV6AAAEkWIhQEiFKLCFQHIWVQIGD+imLvn/9IqcObISwE0Bev3ikxvHl0wf58O6lKgsTIaqEDBVW7l47g2PvJHT4aKi/yVfGmCRtDslVrIYkSpVFQoYObwhgvsJlo1GDAwYH/k8cMASs/9Ov/RddK7Uun96/kYcQiPgdJkIUCQ3NSrhI0WRwq+Ly9MEtHxtt8ODB5fPnz3bbCxQ4sPz4/l3VSZejmMRNkhYCWGhJm72IhAoTwea5FADfv36uhKIgwUIqIe8NhKVQYSMpwe7GxePy+O5VCRgoMIB7Q6Gt8BIpejzZtWaG7Ns4X35CWPSIsmTJIKnSxJV79x6aqsaOHVO6d28rUaJElECBAiqBLHDgQPLx4ycJFy6MBAsWTDJnLmKq79HGtbOHhB9LomDbbdxGiZUgheUhY9/ggMEBgwMGB+xwwG6qnNErLxpI7naYZxyyzQEKTvdvnJd3ED5go5LXzx7Kq6f3IFB8VcLOoztXbZ9s40jw4MFkzpzx8uLFS+nZc6i8fftO1TxwYIOEDBlcNm/eJQMGjJImTepIt26tZd26rZI9e2aJESOqvHz5Wg4dOi716rU2tR4zZnSpX7+6PHjwSN6//yDbtu1RAoqpAjao0UmUMgu0Ydfk3JFtpkPBgoeQr18+K/OcqdBiI0GydHLryhmLUtddBwdHnOts9VioUCHlw4eP6lizZnWlf/8uMPG5roUomD59+hyCVSQPtUyvXr2Wd+8+SMSI4eXChctSsmRNq/15VBguYjTpN2ufHNi8SNbPGyHZClWSyk37KdMjBcS718/J25dP1b6Do4PSEIaEUEphMiy0cNQwGuS/OXD7yik5e3ibfPn0XopVbaU0wtoVPX90R75/+wItcnAJS40xtMkGGRz4v3Dgy+cP0r5iSl5uGMzP7/XXbQhYem4Y217mwI/vX+XW5VOybEoveYfk4DmLVIMm6Jvs3TDXS21RiLh1667s23dY7t59IKFChYCQ8cmsjdGj+8uYMdOUQJQxYxoIRMs9FDL0DSxbtk6aN+8s1DrZokCBAgkSnUOjFk2Y7Pzl0/sSPXpUefz4qdVThg3rrQS4aNGiyMmTZ6VLlwGqXpcureT27XuyYcM2+fr1myqrXbuytGhRX27evCM3btyRy5evysWL19T+d2jPIkWKKFeuHBSaL32ajhw5KcWLV/N2s9FiJ5IXT+5CQP6h2kicMpMECRFGbl08Kp8/uQqDthpPBy1g457TbR02yv2YAxTSr5w5IFFjJjATlDgMmtxprj65b73s27RACc6Wwytdu6PkKVlbmeI/vnstozpVNFVJmCKTFCjXCObsSBI3cVovPZ+mRvxg48WT+3Lm0GaML4DETphSEqfOpnr99vWz8mH88PYVFg5nlV9jgmQZJHaiVGoB4QdDM7rwZxwwBCx/9oP5h+HeunRCRuomVv2YqW1xghATMlQ4mM5e6Q95ertjx+Zqcj537pLSLFk78fbtEzCHhbV2yFR2+fJ1iRMnpnz79k2qVm0iJ054TaNUrFgBWbx4qmrv06fPsmXLLpk7d6nShkWOHFEOH94kESKEV8f54jp8+ISkTJlMwoTxfA5PCnzUsIUOHQp+ZkFMY/frDfLo3LnLuIbj0q/fSLPuM2RIAw1YIaVZe/Xqjfp++/a9kCfBgweVjBnTQpjcLlev3jA7jzt5S9UxabzcHfRHBU4/f6hFBLU0jm5CsJPTTyWI07z9N2jqqFFcMb0fzNLXxQV/t7H40TSlsROmgtk7pFw7d8TE9fQ5i0uDrpMgWP2Uc8d2yMzBzU3HbG0wUOLzR1ftMetQS/n2lfsFSPkG3aVQhSa2mvFW+eHty2TB2M7q3Bhxk0j3CVtMv4VXGhzXrZpcPXfYdEr5hj1k9cxBpn1tgwuuH26LikDw5Rww6wD8OiNrh41vgwNiCFjGTeAtDvCFsmXpRLl/6yJWo2mkYPnGyq/oxN51Mnv4L1Ob1vioUf2kTp0qynQ3efJcCCarlDlLO+6T3zlzZpFVq2ZLYPhOOWHVfeXKDQg1oaEFiqDMfTVrNoMwddbUJSPpYKuUOAmTSciwUeTiid2mY9oGhSlqorJlyyhZs2aUN2/eSvLkiX1Fo6T1+Td+U4gcNmyipE+fSsqXL4Hv1Op3HDduOgSwS/LzJwILAjjS8qsEMu0aIkSKKq9ePFUmpESpsirNQAg46f9tRC2Nk5OrJo6mWgoLFELoN8f7hPu8x6nJZLTltIHmQgKDJuJCoxEYEZtXzhyClsO1rcjRYsIfLgjur4j4RMa9GRSaj5QQMOtaZcGSST1lP7REGjXvO1tSZS6g7Xrrm+baYW1Le+tcnzopdLiI0IzFlFptR0j0OIl9qlnVzvljO2VKvwZqO2/pulIFpmrvEDVv5NVNLBS3LZ9k1gTdCp49e66e+5+IzKUmWqO08M+ky0C4iFElYcrMdv0ztXOM73+bA4aA9W//vt6+uhdP7smbl0/ECSu0nwjz58osRtykppX4s4e3pW/jfKb2G3WfIlzxLp/WV/asm2Mq1zamTh0Jk9cV+Fh9gYkvpLRsWV9pOC5cuALTWFcl+Gh1Lb8p2NAnypqGqUqVsjJ16gjTKfQratask5w9e1FKlCgkM2cuNB2ztVG73UhJkSmfcqSnf9jkPnVw7c/MqlM4HDt2oFmZsePKgdatu8uCBSvcsSNa7MQSFi8bvuiixIzv7vjfVkDfv4EtitgcVriIkXFfwG/QixQhQjhJlSqZEvSfPXthdvaYVZclKIQxS2pWPI5ZUasB8yV5hjxmZd7ZoZmLz/Wtiydk2dTeymSvtRMIkbc/4C+lUbL0ueTJvRsmDVShik0keMiwSvB78+Kxqsaxf/3yCZqigErTxUIKNxQ0osZKqH73ADjm03T32lkZ062qMNo2EKJ/+83cB8Emmo92079pQXly/4bVNilccwHnCL9CzmnWqGnvmUrYun7+CA47SLyk6SRB8ozWqhpl/ygHDAHrH/1hrV0WzVRfv3yUh7cuK/NcpGhx1CrS0nzxEZF7naqmtdaERIwcXYLBDBAHPhScQEOGganv7WuFo8QTQoYOJ6+fP5KVMwZYPV8rHD68j9StW0Xt0q9o1KjJMnToBLs+UNq5+u/Jk4cJhazChSvLqVPn9Iesbhep1Bx9OCk+pMteTD5+QLTirUty6eQeCQjNC3GiPgMOgURH9fDhw8maNXNh2ktqtb3/eyF5TvMfNVgkClW5S9SUWPGTSwL43PgnunfjggxtU9LmkMOGDWMKnhg6tKe6X7VgCpsnWTkQL0kapRHLV6YB/JnWyaFtS1Ut+vq07D/XzyFB9EP88eObvHn+WD0j4SPF8JJT+rvXrouS0OEi+7pPEgUfCkAadRq9RuInTa/t+sg3/SyvwVRIwfvm5RNC1weNYseJJREhOIcMGUKiRo2MQJErkjZtClmyZI1WRWksyU89MWKY5tik6XJK7uI1DZOinjn/4LYhYP2DPyovicIUfR+4Yr1z9YzMH93B3ZXS5BEuQmTpM32f2URKM8mMIc0RGbTV3TnWCio26mVToMpSoLwc27Xa3Wk0udHcROI4OF7PUpAggaGaPwn/nmCmUzp27CuzZi0y7VtujF93XS6f2i9T+ze0PGTar169vDID0pzI8dCHq3TpIsq8aKpkbJg4sHv3AalQob7ajxozLrx6HCVlpvzC+8E/0rkj22XqgEZmQ2/ZsoEcOXICwvt5s3LuUMhipGnr1j1k6dJfL1atYrTYCQEtEkO9UOngHRNCJ7UtR/E8rJjWV1KBVxcszNGjlp+HliiM1oTx/ZdxgLh4exCkQ0f3T+9fK0f3l49vyfMnD9SCTPNp0w+brgkvXrj3N6VG8tmj2xIkSHBJkTGvFK7YFAvW8PpTjW1/zgFDwPLnPyAFAYZBUytD34GrwCtiBNDtq6dl7Zyh6uqoodJ8QSwvl6abXpO3m0x/PL59xVTZvnKqRMULQr9qszxX2w8VNjz8r4LLK8AtWCNiPH1FuOrvUIYMqdVLrlSpwnihNVI+EGnSpFB+MOTB9eu3pGDBiu6gFAg42nn0WokRL6nyl7EmNE6bNlIJea9fv1EatGvXbiE6MAogHep6ySH9d67Pv51LTK2kSbMrM69+7NGg1QweMpTESZRaKjXtrz/kL7YJNzBtYGM1VmoZrp45aHPcRYrkg5AfHBrOTRIlRjzJlK+sbFw4xmZ9Hhg456DyQaJ/D32Q/kY/NLsXYBy0yQHOQ/SbWzr51wKDfnwBAgbAilcgXAfGPOOoAI2ZMSFa7CRKg6k1WLFxbylQtoG2a3z/AxywJ2AF/Aeu75+8BKqdzx3eLqf2r4dAdVCtnKxdKE2A9KVixN67N+59R+g/0bj7VIVHFS5SdJNa/+mD6zCVvVHCVbiIUWTA7EOAE/gsq2b0lyM7VqquMuUrozCN6LibLH1uSZ2loNJ4bVo8Tp4/vgvfiM+mIWnC1eRNd1Uflg68FRv3ko0Lxiiznekkiw1Ng3Djxm0pBKwlW1SyZnvlgExTJTUG5IFGdTuMkbZWtHJNmnTUqph9Bw0aVAlzZoXGjtLuEZoiWbLECn5Cz5InD26q3cRpcuqL/c02wWOnbP7luEwNcNvyyayOn9hopPQ5S0jt9iMlCLCe+ALdsGCU1fpaITW2ieAE/X8mLvju37wI0OCbKtKSWrv48E9i9N+fIkZ9Dm5ZVOHKtRmyzKYmkYLUsim9FRhwpGixhf6nsRKkVHNbtkKV1bwYJFhw+fbli5w5uBERiYcQbfhd4fEpkzJcEN6/ealMj7zWJGmyy+N71wA4HERBYXB+pylR4YdhgegbPmx/isee6Ze/w0dEmDPTxr9MBg7WX/Lr8oE+uX+Dmoye4EE8c8hzpjv98EvV6ojULzGUiYIRUUwVc/XUXoRfu0bMZchVUhp2m6ROYX8MeV4/f6Sa/FgYDavtwgir3g0H9geIHLSk6LESSHy8NA5uWWJ5yGw/crRYSp1uVmhlp169akqbxJcYwTOpwXr06KmHkYddxqxTSOtWmlRFl0/vl9NIKUNNFv2tLKlWrUoSP34cYFs9k8qVS0u8eLGVczIjhihUEI+KkAmRI0eAOTHqH4VOsBy7X+2PHDlZBg2yralJlSmvNO83z6+G4+v9ECxz19pZAMc9i+iyCzDpBFHQHux4wOwDKqUShSYSzeuPgM7PvI9nDm1RaPwUpuIlS698clSlf/wf5w+avp4h40KwkEhBBQ36B2jXmRuTzvH0n7p79ZS8eeV+0ddu2DJJjCjTP0Ec96ZFY+Up0m/V6zTWqmDDl/8PQJa0q5jcNEQ69T8AcHJ5mMZHtC+nBKw02QqraFNWIi7f5MnDJWHCeHL8+BkpWtTV99TUgJ0NvftEruI1pGSNdmoBaeeUP3qI9/9b+OIxpRYjaknkK6E+LH19rQ1UHzw1avk5FVSh1WM7nLOp9dWeN+3Y3/ptT4NlCFh/ya/GiXr6oKY+Npr2w5YDdXs4HDdP2mwzebockjZHcVk8sYfNOvoDTMXy/fsPSQ9B7TRy6P0OhUEoN99Xb1+/NDUTMlQYhTlDjQLzAhLEVE/UHuSHer1E9TaeepB57sPbl6FtuyMzPIHvo+9L22YkURw4u6ZIkQQOrilVpFjBgrmV2VKr8y9+E/aiU6e+Cu9Lf31EZ+eLtGnvGZIma2H9oX9m+/G963Lx+G559fwBnJRrKdPzP3Nx3rwQ8uT6eYAAXzuHAJcH8Pk8i8jjH15uLQV8kup1noAXaBgvn2vrBAUcjBezhk1mq56+nHPL80d3FSQHX5DMRLBkkv15kFomCl/WqHfvjtKuXRNrh6Rr1wEybdp8mNsTwcUhtyRJksAkwDOlFbM2tGv3y+TIRhoCmyxD7pJW2/PLQuKq7Vg1TZKlywVfw+jStWYmU/fMZsGgjRChI8j1swfkJQInSAyc4NgpeDMqPTY0f6ERoU6LCdOOkd9rZg/FIv6SNO87ywzqgsEg6+ePkJqth0uqLAVMff3NG4aA9Tf/Om5jo2MlsaWY++0nkNCphYkK36lXWA3++GYuaNi6HFuOlqzPKBhqiSwpc/6ycnz3Wstid/u5cmWVAweOuivXCiiIVGzcRz2MXMESmf3atZsKduH69dtaNZvfFN5ChgyJCcxZIkFzdBNmQkuq0qy/Aq20LPfMPieK+zcvyD2sQqm6J/ZN5vzlJTtMkYyojBw9Lj3xJSKSP3+EY+s3hIZ/ePsC5tf7WKXfdNUGnj2sukqRIinS8MwzAYx6pn//WGfnzv1KwNq4cbtCm+c1BIJZg3kjX2MyLVypqZSq2cFLLzb/yIf/45gpcGxbOUUhuodAUvRnj11NqgSUjRkzmrx+/RZa3+sq5+X9+w/NWMQXb6SoMSVc5NgqN2ck+K4x4pQRyT7t3K8FLUSOHhswDgfMxsEdPvcXT+xRflPML/rozmVoKc/Jh/dvlfO6dgLnL32Gh+bN6yHN1HtZtGiVqsII47x5cyD1Vib58uWrNGjQVgXHzJs3UWvit7/Dh09sCgRidG7HESt/u83fbeDAlsWyeEI3taDVfHwZIMTIbkZVMjvGnTv3RB99a63P1Jnzy3ksWjTiAjtWwtRKaAsL4YtI+QyeYSqm0wc3S6Y8cE/xJymXDAFL+1X/wm++wD+8eylfPr7HS/0TVlTv4Sz+UWHLcEKg6p3Osnz4KSBshv+TVyhhwvh4OboXVthG+pzFlF/A0we3JVKUaFKhyQDlqB4a5kUKG+N71LDaFZMVv4BWSKPEiePDAf22JEmeRhKkySObl4zXDkm5csXlyZPncvToSVXGHHpJkiSU/fuPqP0YMaJJgQK5VGTfsGETVNnIkX0xcQdVQKFETddI7zejlfnlN7GF+jXOr6I22S8nFaK8E5j0X6Rw4RJ5eFl9p+/xF/hXHl6IBxWYi5JJuzPmKe1vTBceXJLNwzQBtSgV33Q8U6Z0wJsrqJ7RPXsOKYf/b9++q+MERo2NYAcGPkSKHgem1NgQokL7GY8YPT28fVlJnbWQNAMmFYnmyQvHdklMJCif0LOmKtP+5c6dDSDCGVQuz+TJk6g8nZxrmA7Lr01Sjx49waL1mFqEMgMEF6Q0kZEYKBEBi70/Ta+ePVBuJGmyFZEDm+bD1+yImveo0X/+/CVSfll/t+jHXb3VELl4bDsErD36Ynfbf3p+dzcgTxYYApYnGeXX1a4gekkvxGgPOB94S2A7OtbSpMaVYSI4F8dHfiw6eDMJ61IgQltS1BhxJSHUt3ESpVG2cmfnn1DFRoQJ7pt6iEPBfh4A2gimzuCESpt3sBChTc1QyCPa+SHk+yMO1hVo1DR/pizQ/NDpfe7Itkrjxig+gDAop82Y8ZLJT7RH3CmCE4YJF0FcIBy+f/fG1La1jYBISaHluaMWj+fw3HdvXqnq7YevUAB+5JHGJ2vt+EWZJT6PZ1L2+MW4vNsHcyXu2rVf8uTJjkCHr0oz9+TJM5hFc1ltsmG3idD4xVcO35Ghnfg/UP+mBfDivilDF574Z3GNiHF1HoLJsZ3LTUnKBwzoqvwV58xZKjt37lM/ddDgISVp2hwAl+2vQGb/9O9POIWZg5vK9YvH1cIwDjCoqKmmUKBP0L5792pJly7VHx0uHeBXrdoIQOPp8vChq0nNckDMjdht/CY1T1Ojw3yJhP7wjH8T26KQdgcR5g+B7ZWtQAVhih/v0uHty5GaqBO0S/mkcY+pALB9CkieVcr/7hvwFj9B+38HZuNQCDhKl7MkzH/vJWa85JK1YAU1DmZD0OZrmmUf3r6i/BcZmMWctcRHDB85BtovgGCl2N4d5h89zxCw/ij7bXdOhOI25ZOqCn36dBQmA6ZzNW+6u3fvA5vnJByNxyrzXpkyRSVEiODKgXL58nXqHPosZS9SHTdodGCs5MMN+wUvvRDqBWD5MLKvtXOHQe0a3F1qiHTZCyEZr+vqj8IWE8FO7F3H9sBxhBPAzMFN5MVTV/NAtWrl1Nj5Yqb/jn5lM27NVUTabIFz/EL4hJ2y2m7AgIEVmrzVgyikgEn8GWr0osaMB1T2gpKnVG0fR3a21b++nELq5D71VXSnVn716mG1Ktb2//ZvYvYkTpxVDZNYYEwLpCcKW0y8rScK4ETEp3OvNmnqj//L2zQjf4bz7b8qUL57/VyGtC6JaGNXINHIkSNBGEkpsWPHkBkzFqqflphO9TqNU0DDv/NbE9xz9azBEILOqcUfU+pofKWmnmOggKD5TXIx2XHkKnXPUXhg1onPH95hvMWV5v87XtSeoZo1K8qECUM8U9XH6jDrxPTp82T+/OUQqJ54qd3gWPzqE6mHCh0WkCkf1IKYQQLVWg6W4HgHMA+mRq/hntGjTjZtF4te14UrI64jIfgoaPDQyizHqFgukmkatUd6h/Qh84+ZCdT3rp+XkR0rWJ23swMbsWb70f+LecIQsOzdQX/wWPvKqdQEwXQvs2aNUY6PlsNhZNvKlRtl8+YdcvDgcXcvQn39sND40D8mXORY0AC5yLmj2yVuwuQSO0l6TGbwP0LuLWuUIn1OaTlwkYocHNmhPBzZzScsmsBo1tOb6yJGjSWBgP1CP6U2bRopdONYsWKoFeK5cxeFpgRS17Eb5OSBDbJz1XRlSmMEH+vVrdtKmDRYT8x516JFfSCrh0U04ROk2ulmOkytHn0fLKl+5/GSDvnBGPLs13QfPB2iQwU/f34fri26Xw/DW/01bdoJ/hNrPXUuARIZMVS1+QBM0CE9dY5Ryf9wYPfa2SpBtDZipof5/t3VBEhBmjn3CpVv4iNOx0eh/Zg3qr3WlfqmBiNd9qKSExF0R3euMi0AVWoeYP/Fip9CmDj6GzTia2YPgvbkrkrVs3f9XHX+mDEDsPAKoIQFOqKHDh1SLUaZsPz06fOqDkGPZ8wYrcpVgR/805zbrXWVLFkiuX//EaIN80vnzi2RPeA9/NreSLVqvxzl+/btpOZKnv/582cAmb5G7s+L8P/catZkFPifESPxxdNHpvIECeLKwIHdhP6T27fvVSCo5AHTOGk8iQxXj34z95rO8eoGI92nD/o1Xs3ywHboq0nTIJ3bGRjD3JT0v/sXF2b2BKyAXmWqUf/3OcBVGNPU0O+KfgDMs8ewcD2xDieIvXsPqQS72jH6D+TJk0Ny5cqiolFYZ+HClepwtaqloMbfD3iCbVp1CR7YCQ6eritQFhLEkyls9uw5KN27D5bvP12kbidX3ydGh1kKVzxn1ao5eEBfIi9XINmxYx+cGu/Ly6cPJAtAF4/tWav6v3fvoUqKeuX6A/UQlavXTQpWaKwmSwpXjRvXRgLhXmxO7t174E64YvkuTL4aXbx4VdtU35bCFR9U8khLOl25aV+opStKMACe+hURC0xPqVPnUbt3757+68FLqTGNGDG8TJo0W38J7rYJP9Cy/zx35UaB/+cAXwz7Ny5Qmm1eDV/IdO4+fPi4lCxZU11g2yFLVKSYT1wtAY2ZbSJOnJgqPVWIEMFUYMuHD58URAYj9NJkK6oc0mkaY9h/cUQM74MgNa57dbMhXIN7hUZTpsyVvHmzq7HTpzNgQNfXGucTmuSOHj2FNFt5PdTWaO351Pfly9dVU4Sj4cKSQmDUqFFUQnqP+li2bIYas7V6FJLOnLmAeXcFIGRc/ccCQVO1Y8deFZFYt25VACjXUfAyFOA0onYwTZp82q6KribP9RhcdAPxjCB048IxM+GKjdK/lu4GVAp8RGTkPCuZRVgvVtxEEgiWlFDhogCINZEKXPpX8bDswjQQtZjqR4KkEfGYgJN/kpSPwNGdMItVMbsp/uSYvNM3HQd71supTqU5MHPmdNKjRzsVoXLp0jXh5+rVG7DTT5N4SdIBl+esEiZ4QtOmdZQmZ968ZVK8eEGovAfjhnaC30w4ZVqk5qdKlcYKl4XaIOKy8KavWLE+Js4Tqk+eU7NmJRUFQryWaHGSSutBS1TUxgeAvx3duVI51D+ACv/Z4/uSM2cWpZlhDi5qmbQVkGpM949JTht2myxhoUXTqFf9XBDG7iOX3UJAHCTHCjKYmgBbtOgCB/HVWjX1/fr1ddMKh0JY2rS/Jgd9xQIFcsvy5TMAENrdFOWjP54a4b1hwkdVPluZ8pbx1Si3fk3yA7vslr570zYjL1etmo3nJpCp7G/ZoHDardtAFT7OMREXjH5/QYMGgXn6gdkwJ2284+cvJ7MBGDu+woG5I9vJMfglkcKECSXt2zeTVq0aKo1H1aqNEWpfShp0mWB6Jr0zCN5nhHggWPKu1VMlQdzosm3bMtP9RBNa06YdZevW3Qj3D6d8euz1w/msUqVScAw/Z/IJs6x/795p5a5gWe4f9skvBhDwOfQN6tNnuIwfP8PU9OiVF02L0i1LJyiH9qRpsyPCuoIEh0vAoztX5DGCBmhKpIbqOpzcubglqCqBQkmFCuVBntn+Ztr79+8/QJBOb+pH26BmjcIuFQF6NxIK0pkQQBIFGUr8i5aLv9XTBzeUr/LqWUN4iWFQ9l67Vn7bFbD0FbPkLyd1O47VF/nqNqPrju5cofCQKFE/RHjtgc2LzPpkupgcRaspfA06zMVDItAMuUqY1flbd5gsmX4PTHdDJOD7cMoMHz48VLjP1ZADYBWWHqav+l0mys7V02XVzEFWL2XTpsXKRysAkhgzEsbWy5yh1EOGjFcq8l692pty71EDRkGuXP1ukqdkbQWgp93gdB69fuGorJs7BHAFri9dYqHEQnTO+aM7TOOZPn0k8rStRUj/CTx4P2XMqssmALpTAPyciZyHeqImjOlH9El0Z84cg5x3JfXVlAo9ePCg0LREUKuikyfPKcFRW6EeOnRcgWHSV80elQLyO1MCRYmRQK2YvIKXY69dHju1f6PMHNrCbrULF/ar0Ha7lfzoICcFhpivWbPZao9ZsmRQEBRdugwQCvGkNoMXK6dmqyd4sZCLi6Fty6jJuUydzlK0in3eebF5P63OsPUXWDy8gMnqKyKA6a9y99oZJBXfC6E+oGRHcvLzyH34HuCbTFeVt1RdBZAbMWrs3/Zj8okLvXB8lywY0wFRzOames4pM2ZAs7V2CxyrA0oJAF9myVdOOSN7pV/eawObF1GRyjyPOT+HDeut5iutnfPnL0EjX1bbVd9z5oxXc9K5c5fMyrUdasKpEefCkYLZ7NmLzSBkbt06rjRkWn3j25wDBFPWAlgSpcgIgNyMagFPvCs+/wx00XgfGpAMKWBlof/riRNnAaPjZN4Y9o4d2wp/zgTuylnAeYZJ4pkRolu31vDpi6nq8X3Upk0PWGjM/Tx5sEqzfsoB/hP87F49uw9Lzzv5Co2mE3zvHODwHxAO/yFDIw0RgLETpswizFbCZ4yZRrR3l+rEl//NGd5Kju9dr+/FawJWrHiJ4dMTQxzxkBWp1ExFrulb88ltIikz3JarpksnAfL37JFZ83HixpKKeAFv2bJbLl++ZjpG0xpfwI8ePTaVxU2UQv0Q/GEonIWPGlfhHEWPwxvFRWlqiMkSLmJU14SeAEAjsCVt0j7x8qXa9QFSRPCbP3hcaKFalIynxkdTFidalhNQk348xAA5sHmhAnCkSYb1g8HXRXNU55jHdqmEKJkTpmu0t0FAu40bF3oKp4kO6dQmUeVMohN53jL1JAJs5gc2zQM/AkvnMWvVy4N+OGHBMwq6iyd2V/Xv3Dmpwna5Q0dOPjSkwrhfytXrqraZcmLvBttmJjpZnzmzW/lO8AGmAEUnf/ol0KeJMA+5cpVSbTH5LvFo6BNGIm84yebIkVmt+jZt2onkvG3UMVv/arQeKkxQ7VMaWeKUDWheWKUsstYnQ8PXrp3npw+/tXEwt2CsWGmtHVJlzJ1GJG5LqtCwhxQs39iy2Fv7B7cukUXjXe+L1oMWAcAwp7fa8euT6DzM6Cn6CzHaNTwWGktxXz8Hmrl3KDYWKa0HL/FRwE3vjINmI2qsGSlmj5LDIZovtAc3zwOqoqwCG/YILJRAkoNbFVfNNmlSG4mze1nt4sSJM9BqVMYzWUHxmGavc+f2qHmewsDLl68VlMHGjTvU+Q0a1BBCuWhk6eu0aNEUpd3Xjhvf1jlA4YdzNt1QSI0a1ZLBg7ur+ZdzBbVQxFbUFu00/TECknPsjBmj3Lm1WO/Ffin9zuhTRisJF37E1iKFChUS74PQEjduTGWdYfAXQVk5BrqLENPx4sUr6t6IECWmRI8dX+p0nOjp54mLIwZOae97Lo5UpD0giigzeOT8zzHOHdkGGuC1kCOiILryGYu8JmDp1Yc827do46IxKn2B1j6lXYLYkU6d2gkmx7J6wXy5ai/k27fvQXXcQN0UdBqnmpU+JtSSnD17Se7ghf0JN409Cgvws3jJMykNDYUJMp8h+YzQs3wRUHii0/jl0wdUCCtfTCum9wc+1F17XahjXNlmLVBRRneprPbzla6nMGS4ogQIAeASQgGCIQXCXotB6xJf1eG13rh4TMZ0qeJh+6xwAI7lBMezRnxw+NDQcZzESZZ+DD17KjWn6RRGneQsVlNlgGfEyNhu1WB648ohGfy8tqh6DRvWUAjFmTKlRTsukg8rXY2oEeOkGTdxGmWKuHBsB1TMh2Gff6dVMfvWVh+RI0dUzphmB63sNG7MCaGHMo3qD//ACzB69NTqYaxUqbSsWGG2ylBVo0Oj1WvqLv1p3t4+Dj+0OSPsC3XEA5s9e5y3+/CJE78h/UfNmi2smlaIVv8WwIrv8LzoiWjMTKRNbfH/jRh5ewra5bNw5j1/bKeHl0//RuLBEc+oXbum6rtixVIwj2+zqjHkAkoDb2zed7YQU8o3iT6D1AJwIakt3vT9cSzEeuOc54QXGRe9tBwQxZuYfBSWCNypUYy4iRVWU7CQYeGfGVQ5NPM+iZc0rSrnHEkz5Ml96yVBgnjwEVouXExZEjXQxYtXg/WhpJxChgi6QfC51uYDy/qW+3SpyAmIAI2OH98miRK5zptamfFtmwN0DaBAxXnXPxHfiUXgLkQBnflpXd/ZjjAzv1UI/cw0EBLwQ2Ejwi8P7zvCFDk4OsiuNbOUWY/XSiGrZM12ZrlFed8FAcgpAXMZfRkAEe5Ke4a6cZK65tKkgoaCXbiI0eG3/EXaV0zJ5rwmYPWftd8skS5b+F3iQ078DJr0GPpMJF7mxKNzZcuWDZT62LMPllfGQiGCKQnYNm8mOlG/fPlK5Z2j/xKFjl27DigYhGvXbmH/vdKOsA8KWjTXEV03SsyEcgSmyxN4qXqFRozoi8i5KspnqHv3Qe5wrtgWMVqosWF03es37+XK5asSImQoCYtIjKjwk0qQIrNcQGTgbeT4Ik4Ux02pnoISzx07doA7YYPt8kbkJES/pkuXrsLJfRImxMBQzWdTefiKFMknM2cuhNbLdYXIc0i0uRcs11DeIp/Yib1rVZl3/uWGoHX/+mkIjKWUI/pJqFU5JpqL9qyfo5qkMEjnTcIHWCN7aSpKliyESbmu0mLpz6V/B31LCGpapkxt/SG1nRcwD1WaDXBX7tUCmnmZn8yS9C/QNm0aC6OC/hbigoQ+EPSH4DaTYZ86dc40PI69bN3OStv6JyI0TQPxww06Vh/YvFh2wCRPLerbV2pVanUEXOFSeCK0Cp4w9RzSP5ELOt7bloIEX2LDh0+UiRNnqUUhTTHHj582zTFaJzFiJ3A1geBlEAea7KRpgXmXNJ1VgUg7xzPfy6f2xrM2z1Q1b6k6uPf7m/bprsBcqJeAel6t5SB38z6R3Y/tWSNX4VxOMygx7kj58uVUGoVPnz5D0/xMzalao7lL1IT/6Hnl/sAyujAMGdIDQJ8ZzV7m1KJnz15cJdQ+fXCTWlBHixZFwdTwPC5OuFCir4/mHsByPXGhTadyRufZqgNmC3wYBJOf/lRj2x9zYPHiVTJ69DS5deuO6Sr47BEEmkqEx4+fqPe96SA2qB2jLKARnzH6CPJ9Onp0f5Wl4OZN1/Z4X1FZEyhQQPVNP2YGeVGTRiJUUqoshZVMgF2vCViqBbd/3SdsUtnE9WVe3aYamsBlemLkQdWq5YRRTb4hWOn78so2J0ky8fz5y3DK3KOEL6ovqR3RU48ebRVWlVbGH5WYUES6bdiwplXNG9WiFOZYN1y4MMqpOGbM6Jiscpjqc0JmpB9/aAodXOVxLNoPq/XHb6o0P8McSh8H3ly8IZjK4tMnqnk/KkA7S5wj/fnWtpOlzyVvkXPs1YunyPj+1VSFNycnSq7SSZaCDx3V2SchALp0+TWB06xHVTTt5YPmHVEpEfZvWiDbV05T7Tx6dB5+WcFUnXLl6qoy/hu/9pqcwAp4wRhX4aQsfMVewCxDrRGFdEtasmSaCn22LLeGSk6/mF6Tt//2y4t9cbVOlP3z0EISZNWSaCIktpRfEYMd6EjKQAg6zPLlR7U6FxdcQBDkkIIVJwsK3qRISBdUA6HVCbGQsKbh8Kux+3U/1FRdPr1Ppg1sYrVr8o8+JtSqXLhwWWlj+KzafJFbbcV6IZ/L5oDM2Ll9r9SB6YuRZhRWaBY7duy0gmXhIitj3nIKrTxRqiyoE9jdXLlgbEfMrSuEbhARAKFCB+X08EelXwppfPeqcuXsEdMgCIuQAuCRzIFKnzE9cT4hkOjbFw+V64Qz5sKbl066EwZ5jiU0yatXrxVky+nTF+T0mfNyzy1ggs+9JpTRmZ5+oBrx/suUqYi7uVU7rn2XLl0UfoETtF3j2+CAiQPa/E55gpiEGvE9TiGJ/nq8N/nNQIktW3YhUGod4I92qeOsnyFDWsyZK7RTbX6zPb6XOX/SD3jr1r0Q8JSrgNcELEuwQaKDJ0mXW+UMIjaOVwQiori2LpvENGj60NCWzvBV34qYMHXmQxvEhiFYHH+o9eu3qRUV/WuYi2nSpDnqxc5knr5FFK7oj/T27VtMvO/MtDJMUwE9pvKXg84Nv40jJqxvCpTOBStsrkDtEc2jQeD3xYhC+k7kKVlLIVfTbBAZgsjGBaOsnh4aGCfvAe9AYqj06tVzTffFlClzFBREyZKFZcGCSRD+Eql6vHc4qRMrJV68mDBNtgd8RBF1jGZKDTqgdJ1OUqxKS/UAjO5YToLAdNoaeF2EnVg2pZcybaqTLP4RhqJRo5pmpbdu3ZURIyapCClrwmakaHEAtjoNKMTJzM7zyo7lPa6dO3HiEKlRo6K26+vfTGGRJEk2m/0QwDASXsJhgZdGoYrJWJNnyOtp/wWbDfvDA54x7zLcn9opvyZO5HQ2ps8LMei4MNOIfoQqoa4bLAkdlAneSaK5ng7JpBxFKkmN1iNUMM3yqX3UfPAR2HVvX79Qx239o0aZyc3p78JFJXPwpU6dApqkhmrhxmME7bTlhqC1y3uRWQIIJcPVf7x4cbBwXG0KstHqaf6bCZKlx1jPqIXn1q3LFCZe3bqtgQF4TFVdv36BSnXDxalBBgc0DrRt21MJ9gxwCBkyhFbs4Tff3efOXVb3G+9x79xXtJTEjZuefXlNwGK4K4WfM2cuQtX2VN3kmzfvNCUNrtV2uFrpUpOQCN784aPEwACD2Lwopl9hPr1r548gN9EOuX/rsgrdHzGij3qIgwQJrPb9i8Bl80L94ADNm8Sq0TRJll3yRkmePLGKxLMUKLp0aaXU7vRTIFr37t0H1emUynfvPgCb8g+1z0g/apVo9rCmOdP6ZDoNoiRTLWtJXJ0SWJQmFdrLaRYJB5s4fT3Y/5YtS5SwGC9ebGXe5IqjQoV6Cqg0UYoM0n7EatUk75ugeJkwKXOP2lmgsXujzFvHj58x3Y+sSABUYnRNnz5KmRUsx6PtN2zYTjlsavv67+LVWittLbO56zFi9HWsbU8d0NgsNYe+zps3N/S7vrZNfwS+BJmoNkbcJJK7RG0VxRU2QlSYYIpLkGDBJXS4yCYh2NcG4k8aXj1rkPIRihIjIfKsuT4H2tDXrJmrtI5eWUhq53rmm1rGkSMnK/N+5cpl7C40ubij5pGrbprzuRKPDqfzruM2KC0TtUN9G+YypZbS+k+TNT9y8qWBj+sYrUi5YxQvXkCt2DnXUojic0cNOaOR2Tadjm1dN497Z46mWYbZKPQOxGyL10P4gOBYQKUGDhZdRgoUyAOA5ZlqzMxROnToeNP4CWnTsWNz076xYXDgT3JAB0nhNQGLqjZKg3woNOJqJnLk5Nqu2Xdg5DzKC4ftnEWr28wrxAf57aunwNe4KjvXzJBrZw+ZtcEd2tpr1KgADU0xd8eMAnMOKH5CAPr48bNCX3aNqgxvmgApGBFor1SpXxqd/PlzKvBQ85Zc9/j70kTB1XP48OHUJMuyz5+/QtgKqqI8KLzlzl3adPrz55c9JflzMh05chKEnwVKmOreva2aOLWV+aBB3RR+DTPYc8ypMueT5n3nmvrRNo7sWCHbV0xUwg8j3zLnr6h8u67iXlqC6EbmubLl80RhkWCpNL/UqVNZhQ/TMTlHjhJa82bf3SdsVkEPZoU2duaMaAvT5Rp3R1eunK0SWrs74M0C8otCMJ1S+RLk4oeq8blzl0nv3kMR+Rtd2g5d5u2cebynHty6qNIqeeTczrQnBB2kE3QQgAcyL2VgOIj6F6LWcUAz9xGgfoGlNG3aPOnadaCJVfTLSpjQFSeI24zg0gsjWkUKzzlylFTZDsrV744Q9rcSJVYiWTG1LwJ53uFZDIgF608JFyGSekZePn8CgMkUuD/GA5solk3BSWvfN78bN+5gNeiEfUaPkwiLgRsKi6tr19ZqcaeNhdh7DOknjh6FUUsfN62e8W1wwK854G0BSxuo5h+j7Z88eRZCUCVtV6GR09GYztmzZi0ylfectE1ixEsKy9UPODueQ+TZVmA6zTAdt7fBB4hJdA3yGQ7QCTBjxsKqMcswZ+/00KvXUOWw2717G+nUqaW7JpYsWa2ceqmlIlp9/frVVV4zVuQ90rFjX3fnaAWxkd6nYPmmKlkrhXaPiObPsV0rKVBUmiyGDOmpHN4tV+AFENFoCySVfRCYlaHLFFg0oikmJ7DWPEM0e1rmcPTp6EF9xBSjZOkbpAHIcozpsheW2u3HeDuljR6Cg+2FDhsBUTYdINB9VZAiP2F2Pn1ws0pNRGDZa4gKtaQpm+9ZFv2V+yrZek8sPCBQkhh9vHDhZC+NlYEBBAvmhxQqVAiYC2J7qg0KsjTlFSlS2Wp93r9hgEOUOnVyhaNG30r6fWiQKlZPQuH+/euV1pnpqhwRNUWhihGO1jTMttrwrfIWLboBYHilu+Z5reQ/c64SD8/y2XV3glFgcOAv4cBvC1gFC+aR589fqMgzPuy9e3dQKuVRo6YANbwszE11lFOm5fW2G7ZMRaN0r53V7FCwYEHgOL5cldWr10at1L5+/Q44hQsI+U+oHjRG52igZGYnGzu/xQGaAZlOQoNo+K3GbJzMF0f48ImtHs2cOb1y3NWj+OorxkPEVIcRK9XKW1+ubTMadP28EdCw/YCGJgpAZt/C2f0rQm9nqiqzZo2V8uWta6M6dOijQAm1tojyfmLvOm1Xaf2oZdPIq/hPDDToUNm9r87hw5tVdJPWrle+yUs6omfIUNDuaRmBglwIqYliJ0xlt569g9QMzh/T0V4Vs2PUsDB1EwMYGISxcuUG03Em56UA9rfSxRO7ZeWM/sB3u6OGSCiY1avnKB8hz4yZQSrMjmCNGF04ZcpwTzvB8zceMmSc8rdi3jgK9HGTpFGwJ0wvw+wKP75+RDRzILhXHDV1mSlTOhVQw2eKpn7iCWXJkl769+9iquNrG4D8ABCSt5pntDAFS2rGaZKk0FioUF4VGOStBo2TDA78QQ54W8DKheSbNAH8+PYZZodoSqgiKB2FIK7M8+fPpbCm0qUrYHZ5dE4uWrmFm3npm4zqWBHJhs+b6hAPiNAADx48QsTbN6y23gvDcgkYSWfGAgVyKaRe0wnGhr/jAH/X589fKWR6ptgh2rKeiHQdAKtr/tb83TWKmzi1ZMpXXtJmL6LAHLVyfr969lB6N8ytHHX15do2ffgmThyqwue1MsvvZcvWqdQcWjmd22lS1FNmYHlVaNTTLEu9/ri9bZrWBrdyL+AtXz5Tmb7tnWvtGEFT9ajrRfBcvX/zXEVQvsS4icCfKFVWH1nxU8NsK5KOYfLU8NEnjz51dL7my1xPjKgpWbKGqehv1GQ5w/Q9rkd1ua4TVLiAXLHCVUA3Dd7OBs3ukSIlUzUCAVW6QddJCm9n28qpcgF4WcFw5MLNY54C+tV3w4imGjWaIttAYiRSd0TQSWhg3x1XeDwMBY8ZP5nsWTdH+S8yMKRDh2b6041tgwMGB3yYA/R1JnbgsWOnzFpmfkm6MtGiQJw7+i+CwmCx9F5f0W6qHGtAo8yGvmftDPWQf3j3Vt+W9JuxVyLHiGdWpu0wjJ2aLApsniEfdwomyKgXogs8M0ajzi8O0Gxx9OhJpdGk75ZGRP5dt26L0nLQUbdbt0EKSJWh4IniRUWY7GKFQUa/ImqYaNbQqELDnip4Ig6ELhK1TVpyZ5qkqUWwTALNetSOpk+fyq4GYfDgsSqqkPVJzPZOXCy+MPOUrPNbAgu1bL3qZpPXFpGb+lyLrr3a/2+pJRm57Bwi/cLaP+k3j84Z3gLpHzaatUINCfPHWSNqITZs2K6CI1av3mT6PfpM3/3XgZMSjmHd/OGye+1sdSnUwNF03bZtE5PPorVrtCyj9jVzZteoVwqR1KCunz9SYbo5oHJ6aPk3A45GMxtano+IEREGkkBYtSQt0jYiQAxfYkGhJwadfPn8WQKhsFedKtJy7ED9YWPb4IDBAR/mgBYJb6tZZj5hlgPC84B+X8DSOuJLhBgqSyb1AE7SFymEVBr0s7oDEDpHQATkAZBd6swFJWK02KaXAlXhj+5eFS0PX8QosRSoHsOLQyHcn6kYtq+Yorp49eqaVQdPrX/j++/iQIwYqd2Bp9IJm2HaekqdtaC8BsDowzvXVPGkSUMRVp4OUUQjEFG4U1/VtF21xUDJU6KWwuIZ3xMaErjM8OWVBlg+kaGBChUukhKIbl85BfiHPRDiXfsk3k7Pnu3UMa5Eypevp5z0mXZh7941yhzUqFF7k2mr7ZAlKrG5qePf2CCA6nI4HWtEH5j58ydpu576Jm6YhgkWA/ARPSdt9dR5PlFpeJuS8hBpnEKisTduDZYtWwwaqsIKY43RptQ20y+IQlachCkkEnI9EneJpte/hQh0OblvPWAwAdxYh+fG8WlJzz0zVs5dBAolfhjTdX1C0Ef1VkPlECLeHgPt/MsnJi2uo5K2eyfCThsDo25nz16iVsRaChMeIzgn018xTRihDrwSiq617W++wWtBZKM1AdTfXIMx0H+GA7TGMHiMpm3maaS2isEp9NVlUM/QRSe8h+RuTYNli2uMJNJSv1jWGbfmmin5r3aMaWV2r52l7Zq++eKk/9WoUf1+S4tgatDY8BMOMOScaOA0E1lSpSZ94RuUUmk3mWNxUm9CB9xQUWo0+zEqMTRwuFJlKQLn7BBIJL0TuF2P5TNeWqQeE7fAPALfvwa5zcx59NUiKCbNPi8htDF1AR2WB7YoiiznN9W5dBKmX1bYsKERfdTIDEuIFYjdpSUcLVevG3IoNlXn+cS/dfAV27psIhzR46uovw0bFnkq6TPBQInZpc96r/HAJ8blmTYIi0GAVy6CuHBiuhNnaKG5sNIoTbYiAKTMDhNlNgUJoZX/Dd9M/rpkYg8VWGNrPE+eXPRQc0XBvH79tnLgwFFTM5nzlVVAt1oB/VKZrNxqehYKC9SeA6DXK0SBjsjkzLxAk2SBArlVpKhX2vByXQo1bumzvHyuT55AnvE+w7vAIIMD3uUAnxsCblNT7VNBE7SYcJETJ05MPO9Z1dDoM8kcqyCf02BZu+jH966r6CL6huxYOUWeP74v+ZA4uADSrWgXyIljPxIbL53UUzVB3yvCQHTs2AKr40JqwrOpWrfWqVH213CAaUAYXahRqDDhpFbbURCczH30tON8CW5fPlmBXX5Cwu0NC0Zrh2AazCRthgBc8fkj2bFqunqBx0PqkPlArP6AtB5hwkeSSEhbRG0WMYAun9oLLWgEJSBlBIQEhYJpAxub2uMGsbpogqQwaI3aAdogcWrXh8bace+UERSVWl7StGkjFRgtNWj2iM7TNA9qNHj+UYUdpu3/yW+mkyG/QwMe43fR3t8ArmXj/FEqV1iJGm1/W2PNueX80R3qd+e2nmjm3Lp1qQIJDhkypIeCFc9lwnG9f2nDbsCsgtb0KTIJDGhaUDW/esZoyQc/QrGSY09V4DiwAIC9Wu0a/wwOGBzwXQ5Qo06UA/qJatSsWT2VyFrb98q3mlegtaLGXp+vN0WKpGoBpGsrDOqa+WD56FNP4DsSwSCTZ8ij6/fXZvMScU07nTu3hE9OG9O+T28Qdd01X19Qn27aaM+CA5YZ7dsPX6GiyKzh+Gin8iVdsXFvtbt27jD1TQT6jLlLSpm6XbCADSiLIFBdu+CqFavWYpDCTyMUA3MvLliwQmtKfceMHkFWzRykPkwZ0mXsepixNyOVUDhoX37I1m2LoelyL1wxjQd9BKk982liPjYKj/TRoYaP5JF/YZ8+nUwC1uRNd02LE58em3faC4YULPz4BC0e3xVJV/eoppgAXWkgf6PhRWjv0LalZi0wtdPu3atVegweiBgxgtlxezsrV25UhylIjl973SQARoS/HokTbD5EDNolwA/8lcIVhb6/RUME30wjP6Ddu8h3DjIfH/2SeY/6AyJQLeF/KDgR541Bck5OzriNHYGd1ghpwQoAWPshImubKi2T/pI+fsS1eoGIl7h06RrA+lyAYHUcGVSewj83sDDJM3PoUmn06M4V+Jl+kyJVWsm8Ue2ttu5lJ3errXiykCvfdhWSm2oTKZkqN6aX8Q5Evakhtw2G2BNpnqi/dESlgjk81IM0OU6ZMhe58VqplA1EjvfLvHCW4/zX9vXRY1nyl5c6HUZ7WSjgKuEDNFqBgHsVzC39B/m0ZekE2QgU6sx5ywpNjR0qp1Lse/bskrpnCIpKG7mzs4tSBTOio3btliYWl2/QXdnJKRRkyFVSvn39JO9ePwOm00VEaB1TQRcXXB0UZeKGW0qoM53sgxvEf1s1c6BqkXg/TPzMfJNz5ixWKUgYlaIRsbqI2UWHe77Y/1V6//aVdKmeXk1afabtsnuZFIA9QtVvVjyO1TZevryKczkbeI2SJs2u/C6saRDZF5dtT/wIod9rI/dEbZotyROfNglSY6d7YTsgrZhLhPD2B+Qm7Dkg0MUlKLhK53+Aqaqx4QWqAgKQtN2g/y8HKFTVqdNK5U2Nmzglbt1ACtmAmHykOgj64GKeKZmowdIoQ4bUyC+4Stv18Jt+VSlS5DLVY18x46dCVHtRSZwmG945QUzHtI0vnz/4ng8WX1azhraSdDmLwRG5NrBarE9kjOB59ugWfBfWAWx0ujY29U2n0FSpkis8lHPn9pghx5tVtLHDFyxxeDSHYFajTE6vhw/csUK0y9JBd8uWpSqljJUqRpEnOHD//iOgROdVNYcvOa3MdJ44zUtVKJg74aHp1yS/wgTiyfaCIGh7J5ApMYWYNFd74Jr3m6NMjkQczwoBhsQX985VM5SwVb/LeJUkVx3whX/WgEi1boi0zYUGsYyIVcbV0pAFJ//5/IAPsQp0wB8Bia3Rt6+fZXTnyhC+X0iTnjNEiyi1VrdPQ+D1Pb7r7hCF8cDgp1epTZseCExYjnRDNYXwGMEBm3Dq4EYFgDu8XWn4A95XUbMDkbg4IrDlSFwoMCH0uHEzlEmBQQHMijBv3jKVqJjCtXeEPa+O/U/VD4BoYidolz1DDhCiXOAjSX8rRySPdyZAK94FSkBzE9Qc8Cyoekil5aKLTvZM+0Yd/88BJqgnMPWkyXOgLIkp1VoOkQTwu9WIuH3E7yOFDhsO0CZhgPEYAmn4XM2D+/evQ77MZEjGfFfBATGg6gySkNO/ke9/4kEya8yjR0+VdozvDFLEqLGl7ZDF0KrHUvv2/vmqgEVfl2FtS6v+Ww9cKMnS/5L+tEERKK9ztfTart1vz6Zd0Rqh1ipatJTarvqOHj2KQvOmxGtJlHL1jro8TkTssPChCIEw6Pfv3yvG01+GofwU3A4d2mQIYZaMdNsfPXqqDBgwSpnj4iZOY6OW94sf3L4kZw5slmLV28hqmP/2bpirGps/f6IpQbSt1ilYEch206YdqkqzvrNl5uCmEoPmw3Gu5p/XLx5LjzrZTE34tkmOz8KaWUNUOhnm8Lx7/aw8vnvN1L+2UbhSMylXr6u2+7/91mv+Jm28YzLTWWPItEFN5Swim/Vk6cjO+eLG1RuSOlZ0DzUrxLjp128kUivtVU1GQdLzZw9vI9o5kQqmeHL/pqkr+pFSSP4KX43T1A65Ef0QP7x7o+0KxbxW0Kj3HDfIVPZPbWCx6wgtgDMiHT1N1DhwYY65mUEqCsbCSObsafb514rXr9+Cn+MDBTBLX2z6aWu+2rwm5lVlYNK3706SFT5VZet0cZeG6wcyS6ycPkCd9wjRvDcvnVT4nEwXRZ8pWjjoJkDzokYBcW/FBqZcQFgIXj59KK9fuLqNxE6QTLIXqS7pc5XwkqLAnoAVUOvUu998qY5ZdVmBQEaDfdIahQwdXvIhRyFD1zXqNGqNrJjWVzkjhwgZCjm0XHVNXMEXL14QzxuA9hAayQmRK3r63dCnKgxUxWQYiT9QlixFtSZN348fP1PqRBYEQwLR0Ajjf4nVJrUVrQcvQUh5Svn4/o1M6d9Anj+6IxFjJlcr6G/QlFy9vl74rc/dlw9RQydP7gTAYnRljvr50wlmKDrlF8YLvJqp3//jxmfg8gQLEVJ8Q7giP3eumiZP79+QAoABIbK6JmBduHDFQwGLmgJmS9coElYlzfrMUSjZWpleuGIZfQQ9epFr53rnm474tduPNDuVEXsbF41VIJU8EDJ0OCkCAev/TMSqunb+sGQvVAVO8FGhcaxoV7gir2JCC6YXsM6f32fmzM7E6JUxUT/HZDtsdH+pbevZ5UseK9oUEcPJ+D4dpBgErLton/OIM0xWiVNlVwvJ47vXKAGZgRicyJmySC9WBMdzEQnJx/UCFryNJMiVG66O7za0/ajy15AD/FxcACxrRhSI3mO+pv+OJZo79r0kXLFhvTBF86J+36xjY+dv5gAtSXx/8zl48+atyo8bOHAgpbBgFPeLF68lfvzYClh8/fqtVi8lR47M0P4OUsJR27Y9VR0ubMoj52bAQO610F8/f1Sp+JggPErUyHC5GC+MDI8XL6M6NyTgn6hUyVawmJw/tkPBRxWr0tLUFjHsVs8eAgvJd6kKH197PsNWB+xBoZ/6YHEsvKBAgYOahsUQe5oVT+3fKDOHtlDlvEiq9KNHjwqz4V1TXW4wEmzChCGqbMKEmUjbM0xtV2jUS04g0e79mxfVfqEKTYRI9ETqJlF1r5eOVaGNf9+Bl/P6xSO5cnq/GZYRbxYm2dXT6dM7lf9PggRx9cX/m+1atZoDn2cHbtggCn29IAShOIk8ZyLwDJOeQQBmWpzoQLeeMaiRnD60XTm4b9y4yCwZrK22qGJOliyH6XDiVFmkUfepCih3cKvipvJ16+YjD1pt075vClmmTowNxQGa9cIi7RG1lYTXIHQHfe9IfIartxystj36dw+4XUOB36WRZhqkiY54Z0TE58zz1a3C3r1rldZJq89vB+C2fQ8XRlo27STbd+6XdxDGgmPuoE5qzKorEjRYcFP1ZVP7yN71c0373GjbupHSxDD1DtOL0fRAXzv6gfLl4dk5SN+oAxxuXbio1AQyCHNQt+ureG2bAiSJwoxHpNUlOKom+LDMM+d61LZHx7G4ViZDj+oZx/8oB/huZeojumXQPB47flIJESaiBFHBQ05KK0l8wuhxkyJ7B27jgIHl9tWzasxdx26QOSPbKM2wrYugS8fQhSfc5VeliX76gAby4c1T9N1cPWOc7/PCX1cPQF0QKcQqNOhhq/nfLvdVDZZXR6cXrniu5rOlfbOMJrxshavJmYObuGtGDRvWVMdp9tGEK1ZYNWOAqte4x1RJl6OY2Tnc8crExgTDUWMmUB9q3t4BFmDDgpGIUFrmrt306Quqsq1bl7lLHeKu8j9YMHhwTyVgMQnwpePb5c3zB9Jh5Bov8dseW6LoMgMw7yCJAjg1WJapWtRBi3+8l/Qq4uvAa+tULZ1ZrWPHtqqkyXwJ0ueGNKR1CWmPXJo+FTFn1qGxozjw5uUTld2BO6mzFlIQC3rWBAFmWtVmrs+1vtzWNgX7YlVbmYSzNGnyKR+pbdv2yFWYBQNiYq/QvL9avTLqh3g2NOvpyQXguB/gn7ENqPTvcICr50IVmspPrHBPIYlytoKVTHOWpXDFdl4Cd4cAph4SBRZEQnnGydwlbBjz5n5DuHIArhcGKS5JdNYGjoUCkybA6XvTBClN0OKxpy9EokXW1/LUtsOTZ+ICU5Cnif5YXiFoUNxp1LxyvlHXyxzg/Fq9ejNketgt0WLGk+4TNkmsBCndtWMvSKVJz2nwz76rtM983jjnpsqcHwDmX5XWmPuc89kXF1/Xzh1Sda/iOzruJ8KvJE2aSFmXypatq4Qr4iY+vH1ZoRlkL1TZ3Xj8qsBXNFhMekup1jtpPchE2uEpcJHBd66elpP7N8jBLYsV4jdfqszZZanZ0hjWZxpSdMRKoO366LeSmIGtRMdca3Tq1E6oQF01ZtaO/6tlR4+eUkLMK0QMUQtUv8sESZYuFxzKH8JJkEj+Fi8ILzCCD+YHpFeiSZfQC1Tz7lw1VT08RGPng+UZWrt2C8y5rU1V+RJkglk6xDP5NYmgkhp4HPdDAUZi+OJT3DTIFzjQr0k+aKxum7VMV4CLF6+aygLDT4K5TQuUg2bIE8R55/blkzKyU0VVO1KU6BIzYWrJi4XSB0QtzhzSXAn/jo4BJDrurY3n9iKpfAx3LVer1kQ5xQ6cc1gWjm0vV88dVXW0dGD0xerbOJ8q4wslT8nasnBcZ/iMlFF4Z+4a9KmXP7RxDjC/uADLS5B7UwlG7jrzYgHaVJF6+ohCPBcBEKLulCmt+z6g1XPAPK0c1G1dF7R2BhK7F38Hf1Sd8+b69dtk4MAxyg2jbocxwgwOekWJT1/OFoA2rwd4MylSpIjSunVDFT2ouQzpki6rOn6VcN6eBstXBKy1swfJcziPVYdNkzZQ75DTzx8qsmty3/oqsa2+jVBhI6gJbePCMfpilRx4wJxDPm5H1XdCoW8UJm/6zVhSsmSJVc427Qe3PP6v71PASpgwi9llBgDAYoJk6aEJSIRI0+JA/s7hJe0WnRin9G2gMLUIRkmimXlA0/xSvEhOGeuFfGxUGzNqxCNKlSqPSonCek16zZC02Qp7dIpx3BscGNiiMPzrbinfSO3048e3KTA/oqPfuXNfNiGXZRakSWK6JO8Q7x/mQP347rU6naI+NVOcl1hGs93cuePd4WNR+0VMnWzA5zqCvIKkPKXqQqPWTxgRPapTefnx+ZXkypUVkci7xDFgUAmAFE3NerRVoMnqhN/5R42Rpj3St8Ny0vuPMJ9BwAI8iWe0YK4n2fmvtWutT8vTuAiGkKfQ6T9+dsX5Cg2Bj23gxUtTIoVAgZDl4rZ4sWzC2Pe/HGDeWUbY0opAl4uSNTsgm4P5vO/TV3cZ7jqLx3eRV88f2w0645hyA2ia5Be5W9mPPQErICv4NCVOm0ueAa19w8JRQnBIzxK1V8+BkkzhZf3cofLqxVOzU6PEiCu5AAXBZLxngH9BUx4FHjq/VWnWXwhZ79vEPmu3G4l0LEXcdXXlynWshtMp8FTickSJEsldnX+5gFhUwYFhEw4RmcR5ojaPQG10erxw4Ygc2LJI4iVOJTXajIQ9PomnBC2mYLpy5oD6nEaIfEcERxAnK0qsJAB/e+YldnpGuGKDxELRaOPC0ZIG5iuvmJi1c41v+xzIkr+C8PfVcMhYe/Hi1dK/fxfJl7UYQfrlG0wD5YBl5l06sn2FSbhitDBhO0gla7RTkB/7EFxQPF95OX5hH1D+Dwod4W/duqeEK9ZjjtUv0MjHT5YBpsImLJILJ3YjDPwyHHrnYzLPpvxO5sxZKkngDF4b+Qh9gpTfFZ4jE9GxnD5QmgBEXCgLLZEDgntcokR0b+qj4EN/JjuLCwc4rbsgeEcihDN1aXMDPmAO1KRBAHaOHRMwCrBYUMDi2Nz8tFw4dv34bTbmOwccEBDlEtNVM22zB+SVQxSEzcP+/gCjWRmI4ENE7TBxBps166wWzO2HLZeEKb3nV+iVIdE1ZNqARpIhfUoZs36WJNGbty0aYmopjS7iOSUu458kX9Fg8YIe3bmqgBIj63xobF0ofzjm8lk8oZutKlK3I8Am85VTL7oXD67KwZ1rlaYqQYrMkjJjXpvn+dYBCoNT+tWTq2cPK/8MW/1Qw0Jh6/9O/I35AuvYsZ9SKYcOG17iJcso6XOWkIx5SmPx64zf1tGd9nHTkvGyccEoxT4eHzzviBzZtVI2ABm9e3dqC5r7OGs51vTpC6gQYq3xUcvPAxE+jLZrfPsAB6hdomP6qI4VTK2FxVZSfCAOyEV8IFYotP8CZRtgy+u0b+N8WTq5lzLbbcXL4SoCMq64NcPVZWZ87uNTqWVDmTJxpnKAp1mSkYu5sZCz1u+xXatl7qh2QJTegwVVTLfWfOfLAcJ+4HVb5DtyEbqwL/olUVhydBNmNIELZY4UeJD30p0vFUx6StsE7ZIjogLdRflpx3kJ/xqqui0TJq+VYKbE4XIjJZRFjuB1VHnyj35xWAz8q8Sov4kTZyvohNTwj6rXeYI7p3PfuvYDmxfhGe4JP8rDCkzaVj8EI6WDu0ZtBi9WFhPu0yJGWJyg8Ov0abKnwfI1Acuji+CgTgB0lNqJs4e3Wq3OFBU1Wg0GLkVJYSSBRqcObEJ0YGwkEE6lFf2x74/v30qnqmns9v/ixRU42HI6N4iJjKnRIsYJkyyfPHnWxJSgwYIpiIL4yTOpkFlqqhiGe3DbEmFIfIqM+eQ0gONewPzcrl1TCFht8C4JYDrfpzf27TssZcuaayQadZ8Mx8vIKsm0T/f3f2mPQtW47tWFeQ2t0YgRfaVTp77AV+uqIFrWAqSz1aRtNsFIrbWhlV2/cFSmdKkigRCF9xEvQk6vMKzJK3yi48O7hzqMG/iQ0mbOJaXq9Ya/X2LlVPvy6X0kHn+i/PGixU4k545sl6lYTZN4/3Xq1FJte+mfvZe+RUM0tQUAFp9TtoziwjnEDaLGoprrrhfaNZ1PLRh9sOy1a6pssYGFiCMyZjgnTmBxALt6oc39UeslNC/+zjxp5frV+BJB6DTIWxzYv/8INMqj5NSpc0o4YbAHXXQ6DF/526mtPDugxUja/uoe8CgPbrB7yqBBY4S4jP1m7lNIBWHCRzbVZwYZAla3ANh0qLCRYEFJDGUrFis+QH+VgPXy6QNEARyWPetmyqO7180uLyKEppI12qsooGcPb6lVZK22IyW5FfBSsxP/8A4xe1ZM72cahSNy6DnDgZZEHw9CChjkngMEAqW6OWHCeACLjQLclE/qQWY4fYMuE6HZKqVOGte9mtIUhoS6mxhpLVvWV8j/7lv0+ZKFC1cgz1V3dw0zGXV7TDIGeY4D1AoeQ05A+i9pya+1Mwlx8gpIy2+1ArfvSpVKY9U8RIYmyS7rHAJJ+orNFJ6eVxxp3756Jt1qUU8Fn3B8qBnTE53dnZ0hYIDK1usiu9fOktK1O6kgirOHNsnb1y/VMS7vwsVLpvKPae3s2rUKms7U6jjSBcBk9xVgWSFdkcctI/9ca7n/b09jpIcp4DZj3OFHqMw+PqktQWi7MAE5U9ToKAAWQk7ZM+lKrGxqpksrh6wWsT6FKE3zpqvk8OAxogzxUvSmkBUAKaactN9Da1fPQ63M+PY0B4oWrSLHjp12V79Mnc5QcKRUYJ2JUmZRliVWunr2IIKbHgtzi/oU0df6yNZ5SH931J2Fg/MKEQWYCo++YfSzJawL4V30tHfDPFk2pbdawDNgijRy2fnfCsDS2v+jAhZNaVwFMsu9lostGNR0FKZ+wH8qHUxEhEG4DlDBLuM2SMhQnvAB0K7sL/lmOo/2lVKZhCpqWoj7oaeRI/tKgwbmP7r+uLHtygGumBiJWK/TWGUSZqmG5h0G6vy7d0/5KasoBM6YsVCla7h9+55Z37Tv5y1d19dAVs068+c7zBk2Y3Azs6u4du2IhA8fFmr/ZKqcSbe5ykwJE8TF47uFBpcXr67JdfhFtWjQTk7DxzFV5gLSHIj89oimgLevnmIBd1X5XzEJtEYUIb7jQ5GKQlNgCEJM7GpJQeGbU69eVeSEzK0iTVtWhS8WzEA099NHjD55ngIlhIbIAUKUGdSCPaHKciDYJzaXCwUgz8IWvPsA0xfq6+l/YMbSX65pG7x2AD9caMKzECBNdYwNmxy4e/e+ihZcvHgV/BNvWa3HIKCaUIQQ1LtFyXiqTo+JW5DDL7nV+l4tvHXphIoK3rx5iWSDJldPCxasQDRhd0mKPIFhIkSTyNHjSkH4StJX2pII8fD922eF9k50gspN+vqIydCegOVrdiuuVJkWpGe9HJbXqZzUS9ZqD/OOr3Xvrk/fLAgIU6amsWI/RDWnaeLHN6jf3YggbOeRRoM+Wb7hMB3g/CVxQj5HaytDbQz+4ZtRWUz8vXX5ZLwkn0k0AIymzpxHCecUsPyali9fJz16DDZ1y7FpuQ2pkeGnZf95MF/mNdUxNtxzgEC0GpUsWUimTx+tIjq5Ak0IYeUmvnvADDiweWF5CLDgQKjcA5+fi1ZL+p17pRkc1Kdh/yQSc185fUCh8VtilK2fPwra7/Hq+WK7FKb4BFJQ40wTGJ8hpYpIsKL5VAqsIqWLIul7NuXUnj17cYmA4/GQHHb0mIGA64hvhgJ/w6OkztQsaXn00I6JkLLDhZonPdnSPtFERkdzC0GK2FxeohC8cgtyMwE6QFvlQmd3mtYZDUjBzYYWygEvVxfmB9SRwyM4j//FkYEqYbQ+ZyEAq12AIs70PQRrtZbP0FMJqXU8+D9txsXv3xrgufny5UBARxmzS1+/foGKtm7evIucPZIaUfzRTMfPIGWVTwlY8RBgEiJkaEQPHjMJWMS1I8A1zYKkVoMWe7jgiRAlpqrLd0quYtXVtrV/zMzwBNlD4ifPoAKqrNXxbJm3fbDooPoK5j4ipRMp+cPbl8omexPS5rOHNxF581r2bVoC7dUDNRYCjDK/WsHyjYCGHMKz4/M39Y7vWStzRrQxjbcrct2N71lTPruBY5oOYGP16jm4YXPqi4xtNw4QyyRu3AwKR41FBI/MmKeMPL53XU4C9+rixf0S2asvnN/g7rNnL4C1lR2gth2lSZPaKkqSyNzHjp3Cfe8slSo1gD9WZukwYsVv9PLvn8qMDS1KxTddKOEYKMRQECpZvLo8evFZyjXsJWO7VVN1GI0aCNqHKyd2SCg4rzI6ruXMRTIfsA2k4HBEbwAIjeQZ8qh9ar66VUQuQLSXGD5B+ZEu4/mRU9JkZF/ZvGqDNCxWQN5HjiRxgHnFvIH6hYjClYLA4YRyqz59RE6nQGIh+KiO+Y8aIy2KzlRoZcOKj5BZLYzdFO1H0xaEM9UvK1EYomCmRQ5yTBTGLDVVqEowUZeIEcyaVs7rbBMClSP46czMEz4YYaYgGti+nUhF8wH9w3sUtv9BPtD8RjMc/Ymj4HmMEyeW+hHp5rF06Rq1nTVrRtymDvL8rZMCnPapX5luIpFCOUObtkA1GStWWuVSEjJ0WAXP1BmI8D6lsOlRNzvMnI+gFcsudWFJCYMsE/bIngbLQwGLktz+TQugcguuUsdQSg2FnFxMbaNRuIjR1Kqx0+i1sMEeQPLaKxC24ko41KWjsm9jZGjj+NPf+sTXRZHvqAwAEtfMHSbboY3RE0O7GeL9x8ijif6PDcy14/HjZ0qfPsPUTulaHZGAszIAIltAtXsCGEntpUOHZn94hK7dN2jQFsLyJrUzZbO5+fCvGOBfNIgZg5vLaV1mhqJF86scZYwsJWUtWFHeA1D28ql9av/+/TPQCjtJUARBBAsXTpyhlXj37q2sgdC0Eylsdu8+IIXhB1K0Sgv5DGf5OWi/GgJmcgztJWmql4PTNjQziBIjIKYSRCi80O+Hofn4ckGbSiiAkBFw+15xiRRBnJInNkMCtxnqD0EiIPr/CX9AEzE3H7VB9kgfNm/PCZzCE81Zej8lPrPQxji8gPCEsapjdE6n4OcRaUKZR/X+0uMO+B0VqKlXxsffm6ZYy1yJXmnDm3X5GzHK0yVCeO+1YO/e8F6LvnrWI2g1U6bMrfrYsWMFMLJ6SqAwcaQpFkA+RQcANE6UgZMnd6h8xEmT5pAkaXNKqwE+/x59cOuiLJ3SRwEW12g91Az+iXPSuaPb5dbFo5IJMDPf4Y7wHS5CE3vV5qWGwYLxvf6aPRSwpvRroLBqtJMY2RcHJjCiJWtE+AQ6tSWBxPd/J0a9zR7eCr4iBU2OdvdvXkLqleJmrHnjkcnBrPb/a4dJQ8eOnY6kn9Ndc0rxRcMJE+QXofG2uE2k94ULVyqAvTt3HmA1d95Utc/0PUitFN+0b2yYc6BX/VzKF1NfGhl+mI5IX8Ps9ZnylBUiu5Mg+ig/qdD4LlS+pIyDozsS+kkQYE21hElgOco/4tN/9gG5c+WULBnRViJjvyg+I1bNFgcKUUB6Doj8aC6YEH8WygOBKiy0YJEgbMEMR8GEL14KYNjni1C9xPliixnd9V6z8nJ2hC+YMyPSbJn40L9d0oQ8VvJIAKBAxbynuug+mrIoLKrrsOyI2iO9hg0CnyOwoJwpNOr7tTzP2j4FQQpuf1ILA8FYYYHpzX3WxupbZb4glKrfD3w188ezNn4K2NSy+hMaM2Ya/BJHqtHSZ5Fa6UvXHkif6XuV4sUnLkMLVildugii0E/KT2cH6Tx2o1C541tE3/HwkWKYodPT7WlUx/IQrL4j5sRRXsKvK0KUGEjh84jD8LqAxezxR3euUCHLNPOlzFJAIkaO4VvX9E+2y5X54FZ05n9muj5GzeXMmUXlQmvRor6p3DsbAaDyd7LIqeaddv62c+rXb6MS9GrjIuYQk2tbNeNolXzp++DBY0Jfg8cAN42BEH4CTeppwvpbSnWuLzO2f3GAODTD2pVRk2/G3KWUaY8+Gnp/xMNATF8wtpPpJEdsZUcU7oVDxyU4tEMVcI9vO3BUQSo4QugOj4mcYnc8fKhLKgzfoEyE7kA0WiDkH3SGOfDz+MG/NEvai4s+R3yBQwhh5BphBhxhCnZGgma9RkiZDhkNqGmSNBgBvQmIgg2SwHtb6MK4zciK9sIR6NRKUKLQ41ntM4UqfrwrDJoNynXHEcj2BBb1UfLs9fhop0ZjPsWBD7hfkyfPKamzl1A4U1dP7ZKpU0dIjRrNpNPoNRI/afrf7mr3ully7vA2eXDrElDTPwL4uaBURo7S8JGwGPqDdP38ERnTtSq06C1lK9L4gLwuYNHEZ9DvcYBJJwe1LGazEeYvq1GjgkKFNqtkuSo1O+hDO5yEv303X/36UNO/2wwfXvr3rVy5UfbuPSTz5k3wMeGKwHlz5y6TF1Dnf/nyRflTcVUSGi/yn+gzPDQeYeEc+x1aBEaZnT17URIDmqFW+9Eyf0xHM60uo2gadpuMLPF40RrkLQ5sAJjsZoDK6ilEyFDi/PGDAht1gqCQHPktf/74KgECBYMpca+0gfNtq3ixJUq4MOKENFUBrt8WJzipKy0PohMd6ZBNzRXQyR0RAeoMOBAz4r0PR27llwStjTN8tKw6quOkAMfPKO2Xgi3geZrQZdagnR3ds+x4844401HcAw2Rih70Q39Dm6PXjd1mHb8+QC0kx+WPND0+wiLv3Hv6jn/nt7Riuj6O56IIXDjaDV2qAn5ew7R/4MB6SZAgs2QtUlPK1euq793L29QY9W6QC3iIn1Ru4wqNekvWAuXNFmZebtSHT7Dng8VFokG+zAGu1EvVbG+zF0aqEZpg4MDR5nWo8udNzYfKt4gvCr1pwRP90DfFL4g5HcNCg9CwYQ2Y5iDAcAX/m0Qz35QpcxBu30qu3Xom3x3DSuiowDd6/FylyGF0ysMHCPF//lmu330lb74GlyDhEwtt8W2GLFNpXZjehZhcGp0F+GRX5LtrWTqhXDyxVys2vr3AgWcPrqna2QpWUnlGCdPRc8ouSVe4ioSBL2fOItUkGtIrXTt/TAlXMWHKa9u8nkSoW1V+lkFaHWihfiI60QWaYZfoUZSDODVTjBwLioS0gdZtdXUUf/3GNU8eXzS892kShLnQGWluAly84vqs0TyoETQsjvceQEC7Ky6oT0FNETUvlkTTmi3SPWNK0LMlXLn1zWg/9quIGjOvknfOsdWHbuy2qvhEOSMUPU2cC/TCFflGf7t/nGg2VVho3r3O3/ktyW+LhcXHjzTW4zWFYC4CeNIR/tOnL/DJSirbV0xR5d4dKk2N25ZNghI2gPp0B/RDtoIV/irhyqNr89AHy9BgecRCzx+ng9y4HjWA+XXE3UmhUULl+8rLBxXoprsKRsFvceAdIr1atOiiQOm0hpiI2olmHzcKgujWb4hG04gRjIwG1ej8sZ1Ij9RA7U6ZMgIgmLNEn/tKq9dxxEpJkCKTtmt8e4EDNKc/Bcjww9tX5MObZ7J7/VwFTsomwuKD5YaM7dpGqrSoJ4GhVXSKHlVckPNST453IARhYRIAwtCPArkkKPz5fiCq0Dl+XCWAMcqOLwoX5s2jj5PFS0O1RRMi8ha60NlcJ0zr+/HSti3NgZuJTMEn0HmdQoJbPj99+8ofieZKgwwOaBzQm6q1Mj/+HjZsggwdOl6GLT6FZMxdxenjQ3mKxQEXsiTmCZ6w7oaXR0Xhihkf5g5vKbESpQHw9AQvt+FXJ9jTYBkCll/9Crp+Xj69B0iHdnIbDroaBcUG16kMIX/48JxW/G98UwNHp1H9itMPrmze5DnSVodhpe+S/m+EYMgOpGpqoyZNmq0O95m2S0UrvnxyH1hLaSVt9iKq/N718zK0bSm1nSRJAjl6FBoRECeCqVPnSjKYqMqVq6vK+M+nUIJNDf4PNpgya9rAJqYrDYItTU80Hr5UOXNmxuIjqis+FRYrQTG5U/P0vVYl0zlqAz5WDq/eiEvUyMI0My7A0HJ4+QbO7T+A9J3GVUvFe5H3JTUf1iLNeIwfDSPKwpfJFNmm+WWZj8D1XGuCm2U9Cx8kx+u3MJ7A4gxNHKMGSQ7Xb8KXChobwjZAIFQRdTa0uYHWbpGfGdKIS6zolj0Z+wYHvM4BQpBYgQJhQ6+hDc6QoaBEiJZAOo5aK11rpJd3b17BVSKgtB64EOmwamC94CTj1133cloamgZnD20hMRKklLKIFqag9reSPQELT6xBfs2BiFHjSKdRq1WCaw1lWjMChMLKmy9tvfOv2fg4IXOFazHhm9X523b4orFlEvHFscZOlshd6xMmDEZ+weIyatQURCpOQ/qF26Y6Bco2lKixEqrP88d3ZfXMQRIvaTrgoESWo7tXmeoxQGH8+BkKh2XEiElKuArEl5+O6Jhpzyysq2psunGAkUIaMcXUcyCYE009ftQoUqBUYdcgAmqCSLinvrZs8MuBnYKSm0DC54PCFaO2FPQCAWq1W4H1ELgTANovZwghKpRe0yLhhaEBURK64WfaFOKAui7IkSkaeCf7gOZAIYNTg8B721pqF4/8Gj99wjOBdt2EuwAAUXTKkUU53CsTvHYt6CMAIlZd4EjvnDSR6/hoOnTDIHJlxq//P8oW+7VjbP09HNDfn3/DqGwtDCzHRnw3K0RohiJFqoiTSwApU7ebqpE0fV45tmuVpM1WRBKnzqY0V6+eP/SGcPUSrhZ7pHm/uSqnoJXu/U2R+VvB3wz73xgo4S3WzBqscHx4RfTqSYGPSbiyWN2yjsOzl3h5RPr1MmGhf6A/IBBevnzdxJnoMCWdOLFdAYWysG3bxgA0jSX9+o2QN2/eqXqBgwXHissZsquj9GmYR5UlTZcT+avCA/A0NX4XRwi/znLh8h05dvy8imhhpStI4aInvDbl6X1oHQzyEgfylKytsK+ePLghJ/etV4m+u3cfLMXTJJciFBw0J1ttVa3HndK0PRpOFHpmOLzD42eukYJwhlfCkFu6FKckCX8J/W5CjiZccdA/C+dV2i0XgnlCW+YI37wAl2/Ij/LFsbhxE6oo7NkyH2q+LnTG5kcTmNg4KUQIGdhnuLxCJOOYMQPEKWNaVy0vUN9dYkRVVZibc//+o3J4y06ZBHiQCChtVaOitG1WR0VPulaCoGbFN0Yds/GPmQi2bNkFLLGDEi9OTIkE+Iog4AFD4JmpwCBf4IDl7+8LXZg1SeHf3qKW9yQWBiZNrNnJuh0rWtgniKSuXLmhfP0h0gVQCRpC+vOHrqZAJkSndSY+ENgJRO5ZugXoJ6bTK1+/m9JYEbXAv5NhIvzDv2C/Jvnl6YNbahSMOOjRs52079Dc1cRAp1n6iHhEf9vqyDOgix5dE4/TH8WLgtn9+49gSiopjEDEK1Qo5lSoUBKpWUYpwYnN6okarMyZi+iLJEbcpBCePsA8WFQl/+XBvsC5imKBc7UVaVnWIT0LiRnmP7x9pbb5j/nymDfPIO9zgGmI5o5spxo4eHCjpEiRxNXB196Lg2Y9Ky8FL43izVuAcYU1P0Vrl0IVTHiqD89gJfE8En26CMGAqNSr0JTVLl1LrkMYjIFDxSA8DoBPX1AIZW/Qd+0K9eTmk+fyDL4sNIxQ5MGZiupWKSdjpgzz8jUyhcxDvHTTpy+A3I8RhRqIqDHjyTuYwr/wZQsaNqyXNG5cW23/8X+2fNb++MD80QDAQ+VHGDOa7UFzEU8NLBcv+gWL7TOkevWmcvDwaWk7dLlEB2QNiVaXdhWSyTekyNNo1PLzEjxkGG3X5veLJ/cU5ELfxvkVVl73CZslVgKqGvwHGSbCv/h3yoyEwevnjVAjXLBoqhQv7vZS5ktCE64oaNlaKfNMv14decRPTz6oHjWjQCE9eW3fAERZq25r2bFjn0riy7aTlCgkq4f0kFjw07FFTNfSt28nGdp3hPKBYz0mCSbtXjtLffNf38b5xBKtPTOQfBMik3wUmBVDhYkAx+zLQCvfLBGjxpaUmfKbzjU2vMcBJtNmEAKxsfJAaH5JcF5L4YoCDP2kcJ+YHMG54NAEIvoqWfNXonAEgeY5hJidy9ZJcJh9yyKdjvI3sZbzks8jBRFGccGnS72U3LRhdq9OE/Ywhi9IIL0YyP+Tx82QT2/eq9Me4f9M+E3xwywFWiRx0OAhpVLTvtACZJShbUqqunUrlZIxU4fb7c7aQUYp39y8S0as26IOh4ueTGp0mKJ8DD++fy1vXz6Voa2KS8AHT6yd/mfKNA3gn+n93+k1KEV0O+SmvTW9a+xUpRA1cuQkpf2s1Xa4SbjiKTymF65Y9gUZFmwJWE5OPxFh+E66VE/PqlKqVgdpO2SxshKE/4dwNiG6GvQnOUAMJQpY5coVlxLPkIjVmjbKnnDl2cF7pDL2bDt+Wc8j4QoPNcPmb8OskildAcmHsUXAZ9baeZInUzrXdCNWxstcgvPnL0M6nuEK58pKFXdFZet1cVfGiUA/GRCOw6cSnLrr7H9awAwRFLCoY+ncub8MH97bnBMQehwhJDkDbiEAwGCd4ZukAEO1xQk1Ifi9Q9RuoRDQfyDZs3PIkBLg4SMZMnG2zIPp7wFajINPX2BntejaWhrVrORqOoEflxlRUGOkH7/taVgsTfvQ6DrjGV6xYj3SPPVRyM/tZuxVgs3aecPl5sVjqptwwPOqX7+6zJ69WJlHl0/ta+qeJu72vTq67rNvCpXaNZpqud+4cOEycmi6nhc5ejyp0qyfBA+F1EN4wW1aNEauHt4it+5eVyf+jGZxve6b+/tLtHmO2m/6GXEOoUadvNKE3b//KnxmhBBSXdwEVUJ+OPN+1gQqfQ8vXmKuDO5qataX67ZpEWjTpocCfi5Ro61kK1TZdJTZS6b2b4i0eCFxb8eSRt2nyp1rp9W2qZLbxqM7V2VgiyJqL17StKbD+UrXFcvk7aaD/njDELD+8I/39uUzNYIeXVqLC5CnfU0bZbny94XrDtpziHyD4zEdjE1JadmPZ0wp3hyPM3xrRuHBx1QqO/BZvnyG5MmT3V1rBCxlOPE5oN4fPnwCWC2f3dVxRAkfiB+YiLkiIxEtuMOIVRCkoqt949+f4UBUdPv09Dn3ncO8oaGL04/JBUKKA8xrLjTjwRwXeMlqeZsts1wrX0LipkstwXEv0u/ke9ECMr1lN3mNFguUayi71sxEWNRbJcQVKZJPmDXARFokIQtwPuEfnIDzY43oWG9KvaNpwvCSr1mzuVr585x2Q5cpvxX6rpSr3xXh7d2U1nQmAi++WnkBhsA5XSH4ReE4SHxp8kNB7vNXmDPdzDC8Z3XO9Y/u3Ad4cRl1Sq22I1Q6M97XLUsDuR5RiT9/fFfHmN6EaZ+Sp06u9v31P22eo2uBtkDzKY26f2OMTtDnwsMdaS4Y0Kxa1fK6nUDYhRo1msvlKzekYddJkiF3SbOmnj26o7KUEGX94Z0rsmh8JyRJHm+q8+P7V7l27ohcOrlH9m6YZyrPWqCS1AZwc9SYCUxl/9qG4YP1h3/Rg1uX4IbsKg/vnQZSbcg/u8qypj3zCn84wdtbJcI52QErZ70zsaeb1yYD7QSOlb4DmEipkSIaewQryVX5QmndurvKIaidyu/0OYvBnLdFFTEqkI6bDtjDa1myl66nUrkkSZtdRcBcOL5Lnj28LfnL1DfLS6VONv55iwM0Ebx58RgCrHmuL2uNNSseR+LAGXsfHN/D6EPG9fcb7q0A5y8BIR24WERkh8aIoIcn9x2Wbh37ylP4HP1AWW34O3VD5oSQeNbGj5gos2E6K9F/njDaaf28kTBbvFFDeP78srnDt+5lpSpY+hlyEcGXu9v9H+DEGXGiFtXNvB8lXCKVX7Fep3GSOV9Zs8skPt7Y+jnkxosnkjRtDrzASkkimJ6DhwoD7dZx2bRgpDxC0ATvb/pJVQS2lymf3dv3yqzpAA2FC0FT+Uy40caN26VWrRZqb/iS08qMzZ1JvevKRbzsSEUhaC5ZMlVtG//+ZxzQgkXsXDaFq8LQIr96/V5aDligoqqtVb+CROvje9SEhrmPjB49BRAO7yQpMi+8xjNOoUuZ7N1OrNS4j+QrUw+PCmdc/0+GD9Zf/Bse3r5MjS4EV6QUIqz5i1iOn5P9VwgY+peNZR3v7OsmZ++crr1c1LlcbXMVqb8ejBcimHWyFKC0WjQBXbuFNCg35UfBPL980bTVKeoFhy8MP9aoQYN2sn3NJnWI5rvI0eNK9VZDVNqFib1qyaVT+5VwFS1WfKnfdTL8CpK4c4bft3E+Vl97JXeJWhJYfz3WOjTK7HLg4/s3Slu0d8Mclf4iZOiwUDQEUXnMIiH5c8To8eG78Q4mLGcJgehNag4p9LZp09hMuAoA05cTgEN/AL5gMTDMbs5YKIGDB5XCQYNJKOT2vPXhg6wFgvtxCELBYyeQmoMXy5XT++Xw4umyB5hYZSFole/YQk7B72he7zqSMmMeaCpXSv+mBVR/SaKnllCI1p23YIqkBVyDmWkFz58D0KoVCKn2zFjcf06JE7ryAULdmjWblXBVuWlfd8IVKzninmo5bQ9eRo8QSJHA7MWTLkcxFWxxH6CLO1dPQ1aDdrKrWjnp1q0tfAshUCGdE7VqatFCoY8aMI4Fgl0J+JRRIOvSZYBsQDBG9VaD1ZjqdR4nmxaPk2PwMSxWLL/rOP3rf80k6NH4obFm7kki/f+vyE2Ispp2Sff+YHDFWADylkQ2hExYGHBhyvyrNAu+//hVuk/cqrSulrz79vWzHNmxXI7vWSuxwdt6cHWpXLk0sAHnqShV+qVqFBOZGNIgcCh/2fpa0T//bWiw/uBPzAS4TK9CsMtNmxb/wZH4ctf0GWFoO1YsAY+dlp8A+VTEFxXMMmrSw0TJKCsX5l5jtBW1eXhxOEBTpeogFJ0I3MQCcrx6U5wRUabQr1mfwhxfLBZC2iVgC+UrWVPiQyvQpMdUdzZ+rjzo/0YH9YIVmkjgINBAGOSrHJjUp45KJ5Qa5qiqVcsiF+RrCFiBJAB+u3uPn8odmLWCwmTxHRrJwIDPOI/fPGvm9DJx8nAzAUutiHF/DO07XC7PXCTXgZz/DMlg42LCT4UruIXPl/S5pFi9bhIlRnzZCH+jo8Do+fn9m7jgd+fzlj4zNEz3HsqK46dlGBJ5F+o9E4lkCykMnsl965nMxElhht62d63KU2liDu9L3LMK9JOFem0aF0BcAOB+Z+qlItmKSyhEWzVDZCl9VLxLfOkd2rZUNswbJu/fvZESCOIgxEMk+oWRwEPHu9BkQcBiah9ngN/eg39NoSzFJH2VFlIGgI0aUWvWC1qz19Ca5QXKfffubdWLVTvuZ9/U/FkIp+r5J/QEF2ggR+SLdI4b+/eGxDmCwrBOa+J48ao4J4pnLjx7Fh/q90bz15zNe2otAizq128jXKLi11B5ca8D8PbEibMSL3FqqdFmhMSIl9TdmHnu9EFNhQDB/HWSZ0kvs1fPlaC4t6YvWinTZyyS27gPSQz8KQlH9vQ5ivp7bCt1Qbp/9jRYhoClY5Rfb3KSY2hrq1b1VQSRCpXlxOKfiUKOJvDor4NCEyf+81fEOV1K1yN8KRGDKmAA5VMSGMmXHd69k2+dWurP/LVtaZb5dURtOQJywRlRgQqd+8s3OZatmDSE6e8rHu7e03Z6GfDOonlj1wc4MLZ7dbl+9pA0Qx7BQYiaoy+RAwQropS7RISgwJcq7x9qCuknRw0FwQ7pJ2JJONYpUyHZ8eiZdFoPnCok2/6OMPGbl08Io/DiJk6rtJHD2paWu9fPKZy5WGmyyNVzx1RL7ds3k27AlAoIYahU5Uby6OI1ydGwF6Lr0inolDkjWiOKEWNxo7GDukvtZnVdNUwUojR/KS4Unr+yip7euGoTWbFttzBDAEFsrRFRq+9ePSuB3NrjvJA8A7S1Nujzx3cqse7a2UPwYqwqQ/pBcNJpdPWnOUMQrFGtqew+dELaDVsOnqQxHX7/9qVsXTpB9iAdEbMZtGrVABqtgpIqVTJTHasb1oQiqxVtFGoLKB7mHKATetQZNP8Tj8uy3EZzPloM3ptp3X20cR9sjM/Gb74rmNy+bdueMBGvUQOjafr9m+fy4tEtiZUwteQoWl1SZynoer9bGfrxPWuQkaStOoJfSz1fQYCpFhtR2ydOnhVGAUcEDlZyLHT4TBFf8F8kQ8D6i3/V0V0qyevHN+TmzeN/8Sg9MTROlCRtUuSLUXM4ZTkmroAANgzWe6h82I0HmiZROBsrTZWb2c3x8jWV+kSVUVCjwy7bsBWxxZccz8XKlKspRmD+QL/fAMq4FOO4Baf7dej6GT7pchSXxj2mcCQG/UEOXIVwNRNCVnVEyw0f1e+XMKVNvkhxIxHCuY6Q2gQSfmMFwUBsKt4X+K1/4gVzHGj6M4DGfwzmxJ4b79icwLvUyCg/keMQryQhxk6IUGGVRuvsjhWyMEY0iQIH8ojQiPaFiWTN+q0m3CkNx+fpg5syf0xHuXP1DJzgW8I818ZViOe97gEwJ6P46GjOJNblG3SH2TOcemHxfr14fLfsWDlZblw6yas0o+hxEglhQDLCodia1os+bBN61pKvbx/I2TO7fj13aIVJk11wXRrRR7Fa8epy/PptadZntkLZ1o5xHM1LxNV2JSk0xHv3roHsiOfTFlnRBtmq6qfl1gQ/+sAxy4K96/HTQfpQZ5ZYbTp/KsdL19Si1ZlguiQcc/gKbSuEHz3R/LcQc2UmAF5XbtLHJqSC/hz99rQBDeTskZ2moirNB8hDaJFP7V8vKTLklYbd/x/zrT0BC3eeQX+SA4lSZZPNF45j0f7D3KnWu4PCS8kBk4rJCda77Xh0HgQmR0zkWgSXConGZG1aSVMwQh1l9mOSWrwkf+bKKp9mjBFHaJWcmaCXUVacABnxhRU488op4QqaqiBzl8q3ulVdgfJs5VXDy80B+QRpYpwyZJzsRNoa6jnO4vMEH7z+RFszRYttXXuAKgb5IQfiwOSAX17qQPAQviSYLkYvpMBcaCLNvwkFLm6RYAxG6FiqlsQAzEKoHz/lfrocUrNWR5vC1TOkPAobIYrch4BF+gETIaE1arcbqfyhegxvJV9adVM5D9tULy+t4Eg/sVMfuXv8jKyqn1OCF64iBcs3QmqrNUoQ+cJFAclCY3QPTuYbNmxXUapREUWbKVNaKVQoL5KB42UHurlzhczEh3v0uYoQKZq8ePpQCqRJIZ3HD5HMebJCdnRGdOsXWbVqI0yY22XPnKGyFp84CZMj4W1aeffqqXyFtisc/NSunzsgb1+/lAEDupoJV+yLuRf1RP/E+evmS506LWUOkud2m7hNQoeNqKrQ0ZgC56cPbyVnsepycMtiyQaT5vHj27BusfF64O9FTQ+fd2t17GhX+LwGAG9/FsztungCPx1w3S6WwK76C/Dstn5Bp50DzZy/IvIV94eHxDmVgi5+i+3AVjtw+rxkTRhPSpYpKi4BMPPp+UnfV52/Fdv+hsUpTYNpshWRuh1Ge9idtQqNesyQbjUzyPu3r9VhphYbv/aaVGneH7cF5nSDVFS6wYY/yIHNcDYl+ViKCkyYjvArceID6BmigOPVSYgTKyYCk3DFfvQvSa1fTBQqXQn8aJT5B1orZ314OzUA7JvfJPpdkfAy/cYEvpy8kQMuACYPp/SpXY/p/3McPBdjyQLh6g2OvcSHwhVpwLwj8g3+Ng9vX0HUYHHXQuP/H+VAAMeA8gVO7achWKSE1krD6TENCvdDECTp/gG/RPrZme4r3EtfockskjK30kRlqdZaUmTMK42QjoNamHevnwNNP6I7QesutE6Pbl6UIOjgGz77Ns4DeGd61V3StDkl/pwjCCE/JCtGtZM7i1fLZnwmQiN0B8/QoLJ1JNLqGTIZn5wtB6tzPkGo01MjCC3n12+T67rCoHC0nzhxlq4ECBDYo0iTHJ/IieNL6kzpJV26VFK2bhWzetwhYn337m3k2NFT0G5dlWNnL8mFi6clMhDYI0eJJjdgwqlYvqjUrl3ZujlP09bQ1OYmCDL6kgmz06TJK+urZ5AvcDZu1HOa6rsABEj6IlK4IhHChMKeXbInBNgxXbngGf+ZPSN+14DiiLB/h7dvxQUpqJSQhUWXgnix27Gdg9o8YqfKHz2kNytjIJzXmNTbBRpbx4dYrHLRqSdE8Kn5kbymGwXnWM1NAtf6BWmchiKQYyY0uZ9x3lx8FkcKL7mKF1LBRC74DS3NcnxWTp06Jx079pX3aCtx6qz6Hr20TZDaj+/fCsV5zMSwIHxV4KEhEP1qkCsHbCxRDPb4FQfSZisENesOddNnyJDm97vFw+jkWYdQPIABkK/Pic6+XiFOZBYreHunmxyB9ZXwoAe4eEWcUvGVAzkJ2gyuYgMirP4ncazcVmB02GVEmSU5Iv/fGaQamVCmtjTCwSX4bMSn+oD5MgYvXfrgaMTIwP8rUX1NNPSQME39DXQVwswdaJESA3vJ6n0BE+8PajeoyeILxW2VzhdDe2BJfcf9XbHbZBVZd/nUPiGEAylB4hQSLQEcclsNNbvMDLlKIN1OWykKh3A67QYMRFHrFzGwgSmNIgDr7Dic4A+unCppAFqbIEFceYhq53GvV0HfO9bOUCcRBLRw4TxIdJtf7R9A0MazX80p7RjhJywJegkJAR+zPnPGqaAW/YuPPmguABLVE7VHObCoyIGAkLr6Ax5oOJgo2kVLjaJ/RvGsx4SmOACE2sfYjhjol5bkPbR7wdEHX9LroOnKli0jWA/ee5do0uc4KWhxAUfNEgVTugWAHJHE2xmLKGdqVaCdZiCLt6BbvDu+3znP7X70VhOa4Ot2shN93chn8Ih4fqTAi1bJ9zLFXLX6bkC3AbfuQtDCffleo4IrT8HbpSs2yPDO/eQO/NmY0uvc0e3yEb/rgXOXZezspXL27AX5jACiFh2aQZhqodIwMY1YrVrN5fz5yypNUvvhKwAHktltNF7/un/jvBKM66GPiqWLSp5CleTg1sVSpFIzrzf2j57h+I9el7+5rAaABggVJpxS11obtAOECC+ThTrY5vmYbB2BHv+7RP8YLxFX1nhpaWYfRgM63HukmlDClUVjLlqUlFs50+LUBDZLVQhXF1FWH59N+AREiDudg/XCldsp/9uv96+fyq5VU61e//dvX62W+1YhtSIzBzdXzSfJmsF6NxSoEyf4FTXm9qK/iIivJbv2S74mfRHRlFw2L5kgW5dNMLURMWYS5fdhKnDboOM7adOmHfL8+QuVZ9LtkNlX9NiJpGy9rjJ43lE4gqeWW7fuKo1XDmCfvazeRkrV6aJgOnhSVTiujxo1GVbxn1KpUmlTOwUBWJoaUYgUBjVKmzYl8gveUJ8dN44iT2YW91oFC+FKO9dddB0PgIf2yCRcWVbCsz4bpiRqNQohorZ+l8mmGkUqNVfCFQuIe+Rt4YrXzQ+d2DWCRjLgzv2uAgMFL/6+iG5UggWvG8dtCldsi76cfxPZ09zZG6e168BvArWsq+AJQd4RYK/fAcGh4HfchFE26Zw8CYSuovISGq/WlRpK16JVAJ/QXcKkyin9Z+2Xzx+xOHW7L0ZAk3/xyj0JHCKiSv01CuC1M2YsUCMbOnScEq6YloawC78jXLHBsBGiqsjDCMiAkDB8GFj7g8qrpw9UX8Y/Vw4YAtYfvhMCBgoM8Lb0smDBCjl06LgajeO1m65OtNizFC68PVwKNVbICaYaNSlaOeZhEZ1KQXRet9oGnCuDjJvu/hhX1phcTOjCmBxc4sb0sDutQr8YaSQNVn0vUXANn8f4hEGYPiO1DDLnwM8fTpK5QAVT4f7NC2Vo6xJK87Nl4RAVjWY66Msbr549kHA/4AOFfo7C/OUViuDm+M6ot4XjOsseaJRyFa8lNVoPheP2LKnbcYxayVu2yRdPuIh4kYOCBA0u6QAwqycKfcTyIVEwon+UPqcaX16larZHkEQxqQon3oqNeqm6A2GayZixkJkpcCfQ4PdtmK/GpCrh35WzWAJQi+MV4rOqOfjrz+NL1Io2V19FbdMUZYV69hshFM/ogKyn4CFCm8z0mzfv1B/y2vZ7CFZq8YRedALCTyDjK1M+y6xdl61eqCm35ldlq75flFMo8ioRDNbadVBY4+/pZnZ2TpLIVfDUtc/FJ7V9AmH0Vo8hsmvvIdn+5oeky1UKfoQjJBKi9F5eOS2lcQ5ak15Tdki/WQfUXFixcW/V0h6YsEllyxZXQhADKx7AGd27xNQ4r549BIjveqDvOEhpaNw64Hl4B3+6NEj9ZtAvDgT8tWls/SkOEPiya83MUqtkDRXqGhYD2XD7hITVq/h/d3A22lKO5RSU7PhN2Owaq1HSj/IlrFeBJu17xVLmTptUsZOgmXB4ANEID6hL5AhK4FLlfDkwepBKABuauFk4ZCkuNu05HU1hQjbIjAOW+DUUOO7BJ4mC/edvzshanxJ+SfOFOcIIAGgLSsCsUW/uRIgcU567ncu8fEWL5vdUSz9xz3Rr1F4FMBSv3lYSp8oqezctUA66HmGXUWAaMPsQfEVeSZjwUcz6o8A3GEmOA3xEUtrosZXf0Xs4nuOVp4iI67XajjSdw/tLb2K8Bz8tjZJi4yo+gfCcEX1do7DYeAfNTRg+X569P609q9T+UEDRCS5aH2bf1PrAN0ccf6iFz89cWaA1Qt/QKsUB0nuMlPklMHzE9MT9jjAXrZszWIK4aQz1x9U22lUBJW5mK3fHWaA9r0TStyQKVhQoODZrjvGW9f+VfTxvTM3kQkBYa6TNuzD7KTcJ/L4ERFXnwKRo8kmDkH66ZgV5DCEr4L0bkNeCA7cvmMJsS5K3jIRPk13G5ymjFgjs5vu3L7Jyen/V4x5AJhQuXElmARbl6vm9UqlCA1k1sZu0GrFaafu5sPDK3NmuIhbloBCYQxq1biSXpy+Qj0iYnr1gBeUXqQ4a/xQHvCGOG5zzaQ5w4m+EkFYoi6UGPkHgQxFCr2b3qQ45+VoSJ33tIbc8Zm2f46KjpSdJhYtzYtWIk6vbvgv8L5RJgy8UbdKlnwJXbNpkzfMsxt3ZItdg7IQpJWSY8FoPxrcdDuQpWVumbL4nE9bdkGrQyEQHACbDqg9sWaQmazun/vYhV2HngGonHHzsGMU0cuQk5X9oy8xMNOlkyXPJBuSPzAETXK7iNSRKrARSpWlfm8Cw1EoxPceT+9flxZP74gCtw30IlaM7V5ZBLYvJ43vXEfn0Uh37DOGKd/Ozx/clRdLYSrsWLFwkJWzWQZ40va8UB54pXxk1fu0f8aNId/gPzxLNrqcObOSeomf4P2XCTMg30GJZMxPx3rZW7na+6csjwUqryOfZTYhR+RIZpclFDRZDeeFbdWPdbJlWN6vsWjtTO0N9J4AGOBD8074B4NUqoV0Xt2s1O06NlTUNnaUWjc83x+bZ6zDrxB/vkG8W8AiWV+OAiFj5+FkCw7+PuSwJrEztvjqPfHQzIzZtVk82rZkr9aHtvwdoj571csqyPnWBpA7heGQ7aVsqvswY1ERpYsFs4E/lNnX1Hv6HCcvVlTCI4pwwsJsEef4AKdq6qLq3Lx2TGxeOmepa22AQCXNYdq6eXh3Ogf8N0qeSNm0byzcIhwexX83C/9FaO/+3MgNo9C/6xdcgJPvciilSAFqfSTNGq5HRB8ummZATJ4UVz6qtWd/WCtUn+GANh0bfLidja6tzfR1r2xTqtAhDHO+BsPrpwG+hMnozPpM23Dat3KydbpTZ5wBXsMcAIfAWk2jRKi3tV/7NoxdP7JZJfeqZWsFrVyXqHgEQzyzQtqxcslZuIC1SIJhN3n78KIdPX5A4yTNA4GmoVsdctd+Dc+0TCEkf3r6Sh1dPicvj23LxOV5SoNiJUssXbD+AJgp6GxU9+JYvOTchPQ7K7uGTAG027T1NLp8+jJfLETm6YyU0WIiMhXAWL2k66Tx6LWpZp69fPimtHyEUNCKo6atn9+XzJ2gfkLXgJ+51RjV+gCCnUQuAq/bq3UEmjJkqa+evlKjJEwEotLoUL15QVaEwOan/KImGpO9bsV2zREHpPgpaCD43fG4poHiFKLjpTFNf8BztQ4TmxSMnZTSCSaInT4+IykzKRPro9gW5deWs4tfTV9c8nlO8MiYKYNR2e3ae8so1/s116eivX1zaGWsguIj8zJfzV4ACIq+VMBoypOtZvH/Bc4dXb+XytRtSpnZL+Qi+VkYk6dP7D5Fp4LCpdS6gNGKi5d3r5shu3KuDUVgJkaJBw0eQefBJbN1/pIxYckaeAOctPGBDNLw1PgOWC4udiKTdM3OgMixERTtV8ueS5gsmSlBEgvYbPlFW7z8mHVdedneeNo5/+dvAwfInvy5TWZwAOu6B/UdUAmPi11jil+gvxQGgjCoSSzeJ6o+72/ZJ4QoPPFdbCn6BHXHC9WgC1YQrTPxM6eGcLJG7IaoCrtq0iBvNNMIJxu0FM2DcIJkMAWuL29k/fnyXIAEwgRvkLQ7QPJA0XW75BIRw36YUGfNJz8nb8d7BwgD90v9nIIBAO/Xg9I/gUZgdYqqVdxAJEDS0ZCueRopVbalMGQTm3LZ8gjy4fVXCoq4TNCqZ4JuSPkNSKZ22ghKiNm3aKVkLZ5c0TKmE54Jo1eyLAJpMSZUleU54cj9XOdGO79kI36qikhkmliKVWsiSST2UaaVyk75o3TYFDRZCabjox3Jq/wZVMT4Etiz5y8IEc1Q+vXupUtC4+nMFFyf4eNFUsAjCzXr4wzx4+Fj5znx78glpSZoBLysPcIm+y2Fo6aLHTix7L+6GJumz3GDgh/5ZsD0kVy2SpYZJPy/g+QmG57NYzUpSrEIJSXPmosyFBvHSyc0SAdGFRZEBYcmzcFKNTtbWnmMKawFwFcjdGOD9e3ECxIQiPpcUoHQLIHfDtByXuwp/YQFNmrw2z8yZqOeAAAqF5aXcG3AeNXWWfCQ+GH8Ti3IHpjfC3OgSLgzyriINGOA4Apw8J065s7kyhnMr8NEcXr8RByxikwHq5urZ3bJiyy7Z2aq7bEMtms3jJ8+o7mc9NwMFDop76ZNgaS0zQoWQOh+/iFO8ULj/Iql78u3rZ2bO7vRHvHF2r/x0DgCfxiJKI3v/5gW5goTjadFGjiplpQlgRELjeQrcqZ8E2H9UAuF+To13l6VQph/H/3WbC0iD/hIO8AZt0GUispLXkAoV6snSpdORf82G7R5jVlF43/Ho6CdSz14LzXyc+Cwedo9OVyHlwG5Rwo5+8mE7ge3cTnrtFoFFqfbmBOYmNDlgFaZC1WlK0IQrTkggx6cAJo0QXgLCYZhgpVzpk3C2ohXT+krNNsPc9owv73AgLBzB+fFtojAXA0lf9ZS2eE05Aed7UsVO45S599vnTxCOvkrKTPnkAI7tXThaQiINTkhEoK1eNVty5MgMEyFeYhbUGj4h9qh5l1YypV0v+QmhvFD5xqaq3/FiefX0HkBFm8AvLYWp3NYGzWkNu06U8vW7yUqs7HcjcTKJ6Uaix0kqidPkRHRweFk2pbcqrwpn/NAwPV44vkvSFYgh2RHSTteAXWtmyf5Nc+HbFUxFJd5HclyCmo7pUE6KVynz61lQrdj5h2dZ+fCwih5kUjuFzxlcARTuGOaMIkglVTrScfnZo638cIuEHKjVtfatzTHxY4uT2zOrqnHbnnBlrS3/UKa5LHhmrOCBWmhy0QBByQFwCC7QQrojavH0vEMFxwtXsFL4qYJ8HGBh4KJVIOw6I/oU6lTXOZILU/YBAUxoToQAdgu5AttAuAqPNopa5Jm07LcAtL8HEBySGBG1P2EmdjxwVEKeOq8sAJ+QfF0jaq6YNukInreQiBDcMH+oPL5/Wx2OB9iU+VcOAWokPISqI/Id2tDLCFSJDuGqJGrsgkneIPccsPNGdF/ZKPF9DtAXol7n8TJtYBPp02c4Mpxj2qMwRL8kS+IDa+nrwDpc8WjaIstzsO94+54401nVlnClaY2snKtXeZtwjCxMESpSyG2CcoTgRE2bacXLNtGvs9sKWMvy7hI7pqk35eCJyYo4WQzhZtg+89I5IUEwTT1lAM+gp8Bw+DTIf3KAk/qdy8ex+k6Md4ijzBjczHQhEbE1Ex8KZQ0a1JCaNStKYtwLDAf3LtUAllBnCFhf9m2QopVbqLbZVnQIfa0GLpJwkaJ7qWmiwpep3UnOHNysztM0WtwhPhFBTVv0m4c0JKHVceZ209PZw5vkOfy/NAqJxONsMx4KtNB77ZjpW79Y0QqhcXHhM/cB2qRwWiG+uUjRfCw1k1UwAAAjKvNLvy4qhYqutv1N9ksBgfzn4ojteUUQsd+6/z5K4cqNrApXPKYXrtzmWOekCd3ybWJ+f/lanBGIIEiATvw/tQDW5mLkulQCcgwcR/LripUaqt6aztgrkWPwbrFNK2f0V9qq18AazBQzjcRH1WL4vA4fGfdnBnXi25dPZSk0uDeO7ZSiSK5+591beQ7hKhGOpoofV/LBJzZIshzSGZARDog8f7NktfIZfofjT/GpWr21asf4Z84BPJEG/W0c4MScBFEh8+Ytky1Im1G+YkmpXTCPJKNzNx9k/QvGyirennDFa3WHGGzJADuOqFYdNrXx0McLk4jjzTviDBWy6ouCk0540oQ/qrspPLlEjmjZu2vuQTiGOmXN+OsYXhJfMNmkTwoe6Kh53zkAisyvKzE2/RMHDm9fJg/vXpctW5ZKZgDeEgTRET5MAQIElAcPHslbYKylAhgt0c1/l9hW+fL1JDDuUQCDqLQ5+ijECFF+Cfle6StKzPgydOFxONXfVCZD+mgxJU8lhMlTWLJHAXQpRZiqphywuJ7cvyG8Wif64VhbLPHla0kUdKhJsqZN0gQrOE+LG6acyrAAh3arz7Nl29o+F2TUPpMoLPiEcKXTYrs2/I/+5+9IOAbMY4RecA0YCKJMkCqdGCMHyQs4pzu+AhBr7FiujMCzoAgCscPtO+ISLJ44IaVYdCDhUyxfNrmHNO41U0GQuFZ0///6+SMqkGMXDoXF5xY+x0KGUeZwgsxSADt7eBtKRVLjc/v4afX9Fducbds8fiKNbt+VhdhOgnyxP/FZgW0SQZwJkRINpm2D3HPAcHJ3z5O/ouTIzpUIs+2Hifq7xICppA1GlTl0SIkHZ+DgQKV2CYpVpCbY6EdMbRfL9eY7/XHvbvPhp1+C1q5+ZWzZpqVGy/I499keVeDUVJ25IIHnL5cvuDY9uKIjwCW11Dpjh02Q2Ujs+wFC1luczhdasOCh3YWcs2mD/m4OUAt59cxBOb59qTzev1FyV6sAx+9+rit5z6Z48sYlHkcOvPJFKit/lDR5SgNsc4I3WvHZU8iLl0/vK6T9YMSjAs3qW0+y3DorXeFno0UperpXapm4QNK0XHotNbUhfNFTOFJQDkhRQ/MUFjoekuXz7+EJnqsQADkpVWqvqFHEOUkC6wKi55ryN7VU4nIujK3N35xXuVClawh/J41gknOAoKzlmCXI7WoAxzZp0lEI85MLwrktunBijywCdlzk6PGkTN3OCndxBd4t9PeNGDWOpELQyB2cfA8fvDlUDtcw+ObnCT64YxTmIFNLMWF50OChVGJownsEgs/k/50MJ3d/eAdkK1gRCVkjw5lxn3yBP0p3ONPGhINizKETZAmiDG1lu1cT1sOn8oP+G94lTS2tP58PuyZcUYjTJ+VlPW1C57a1iYPlJE4eqBvg6k3kF0ylBCwn+NV8Q7ivJlwpPwT0R+GKZpLxACsdPHS8hAeoXumqrSRz/nJKw+HaoPH/T3HgIfyFuAImer5n6QeARhcMaylXD2+XHPBTKTest9SrV9X13rKmjfVsw56oxwTMVWFqnDVrkZwASOLnT+8kW8HKwMh6rV4+cZOmhdAeysOWnCCU3Aa44+3LJyUEUhBRg2qJseVhI24VaP4kWKRGdCimM3/DcQMlNLS8zp51EKejObQaQSbNkm+dWrqal7gg0gtYFLw07bSbZsxF69ijb/3z71Fdzx6H0OYETbdKl4VtpdnhHKON0bPt+LN6mpDkbtgUYjVzrtvvY6oDzaT+twoEQaxy5TKyFULWTgCH0qdPy1pgOsdt4/blE/IFEcJ3EcSSAI7whBJ5i8Th8uGd5PlwXqKh3kl8nPB5iQ/uEiVoncJ3oQpN5fDWhZIfz0mlJn1Q8ose3b0mD2+eB3hvSWOh+4stZluGBsuMHX/fzr3r5xGR9EiWTOwuBeCUGwHhtllG95dK9apZjxzy5Uugz1Sw9r3lW+cW8IlKoXqjcy39MZRPFidIvYBGLZV+ktePjxMKom4c4PCuTBYWkBQDBoyW0aOnSDKccwWfkcvOSYhQYfUt+Mg2cZGePbylfGb4wjPIcxwY2bG83Lp8SiZvuovFtuf4Nn90e4UAPWvWGClZsrDreXrh3HNd/1atD9AGMBnz9nVb5SWitqKgNb5MwgcPIXHT58VLpbHETZLWah/XLxyVRWM7yPMnDyHkw5cJ9zD9yErX7ijEGAsO08vv0MKxiMY6t0fWIJw+AFPJeEXoVJhJ0FJR+0FNiGZKJH8ptPA4QUfdyPHGbaU9/oEXtZbzUTtm89sz2mmbJ1scoBBB8yWxukho2wGCIhNCm3IZuh75d/9zroRgTE2+wkOztjglnxjMRIFZr+HFQnfFtj3SuHEHyVmsmrs8nBrTqCG9dHKvSuxMU97aucNlB3JuIsmrcAbPh89hLHYvAhLlq9tJPSZtVVaGmPGTa824+2bE4XMkHmdQhy3hzt1J/2CBPQ2WIWD5kx/8OyKoAiExbffaWbD6eAb/lLNy6dJVqV69GdTEtZEGoZhyANYuxxFJnJXKnQ+uJQFfCMBRvyZgy+Ne2efKmasubeK1eNE63gMcA0Dz3BEnC57DydRytYbKjx49kXwpc8sLbBeq0ETKIVrLsy9xd315UECMl2eYKCwTBXtw2v/+MNNlXDlzQLJx9QyfKY+IwJ/D25aWFi3qSk+gSpuIgrbFfWM65osbFI5eQKgPjQCS+wjGWAboj01L18rPiLGk46i17npmipBJtTJJ9HQppVuv9sI8g58+fZLSpWvLZfilMAo4CMwm+cs2kjjA44oaO6HCFrIMX//y6b3yeYkeN6lK48PoQhLbXwQQ0Lw1y0uvxrWQADiOuzF4WADUcCWUaVogCjCagIVnzvH6bXFmeiyUO0DAEgs/SBXNq/eZ9LDD36hAbTYXX/ww5yr9MXkvIMWW2EI+/43u/vpTOZdqGkv9IlUbOPkCZ3P6uBLtfTVgNsYDxPYRjj/Dp1DFJohq7a7VtvlN8N2rZw8AT+4itFMQ5FEzPfoNmK24lEBaqGDBQ4pmrrbZiHHAxAFDwDKxwv9vnDqwSWYOaY4M6c0hUMXH6qWj6aKoMp46dYTHgggn2sdP4UgZ03Sulzb0EwFPpMlQi3Kk4MSXpV6w46TJcs3EaK0zC5+u8OETK+1A3Q5jJEuB8tbOMMr8GQdmDm0hbx5elL1710gojp1CgL17gnX4EvaoDuv5ENGvpUGDtpIQIJxhIiKaD6Cj6XMWhyAUTT6+ey2dqqWTESP6SsOGNUw9OkFYuY3I3AMHjsr27XtlG7QKGgUPEQopfYpKnCRplHnmEDRTZ5CaCDol5XAMsUISpM4mTCP05P41+fLguuzYvUZi4dm2qfnVGvfMN589Ep7JgAivd0JiXpcUSf+IQOs6EN1/Cn/aPIHnnxo1BuAE3H1AfhYt4DpnaAKH7jR/sUm+c+HoFQ2kRxcGzSsXpA537otLvNhyYesu2QCohieIPqSQdQTm7TErL3rUiun4pkVjZMeisRIbJS/xKQefxEzwTTTIaxywJ2AF9FpTRu0/zYEMuUrI+aNlhVnS582boIZTuGJTuQCE7OXL12Hy76NW5HbHiegfbwtXbJiTnl7rpAlXPGYRWXQSebDCY5XMFf4hTJwHt+2VixDuoiBKkD4xEycOdcX60nwP2AaIkWROTi6GcOXKjn/i/7uXTyQm0kCFotbSjRQkhx2sN78UrjikcuWKK8F+C0AcH+M+XT93qKyaMVAKlGsgyQCAyqhDluuJpsJEwC7ip06dKrjXr6t7+ubN27JnzyFhAuUTECqdsMjIBHNYWmC5RYS25jV8rPbh+C1EeX1DeH7cBHGl2/h5Eouh+z5B2qKFL3t8lsIc+gqCYJNKpaCySGO/B02DorVhq/bvCMBuQS6q6YABXDXumD9+IimxovcQUKhpgwuCCdDY1jj+onJGSDOAxzRmvQmcv4XlYhNuF0p7p6vHPK0uUSKaw+3wuUEdCleklLmzy7Ue7eTplLlSELhYzwF26xViXs/Lpw/IjSunlMYqQ84SXjndqOsJDhgClieY9LdVKQ3cHeY740uAmEAfARbHZMcDWxSWuXOXikdgi79zPQHOX3L1vaIghYf9ObK7P0NOwXkjJkt0fJdB6o8rAASNAJytQADNq1KnlQoRDo9OMe0oR82w+P6EnFjbN+6Q+PiULF1EHl27JTmR/Lc3UonQpNIHEA0LXnCdb9C/woEI0eLK4+PbfpmTcWEmLLW/5CJphq5QoaT6cEjvoZ2dMWOhDEMUK03JGTKkkTZtGtkcLYWtVKmSqeOx4cSfHylFBgzoKvT7OnDgGKAo0krEiBFUMl8HaB523boj16/clCZ22rTZmUcH3BYtT69cl9YALt7x9IWCyOo6dZ6MGdxD6lILZ0s7CO2icjqHIOgAc73KKWqtP1vnW6trWYZzHSDwuUBrZVXT47ZwI8q5Mh1SALFYiFk2+Tfsu9DPDQKjiTRfOBZQu2/JMw2qhsKXGzl8hg+dJlhqWj66VOjaOoT8greA6bYa50AUlWC3LsoZwC2kAwK7Z4j3OpO7P757BZkNChvpxjzDNC/WMXywvMiwP1X92rnDEjN+Cjh5h1FDmAVzC82F9CMh0ckwFhwSH+AhO3hwg0oNog740D8HYPI4AABPn94mAHKarS5eTeqhD47qrUVfQTFJR8VK+AnKv+ETFujA9Ndh1BmTDC8Y28mEvxIFYHnPH9+V2sitNbxPR1kNM0vz5l2k38x9ZlFWFl0Yu38hB04f3ASTVyyJkzi1aXT3blyQUZ3KS7WqZWUcUh35N3ry5JnSXKUDQK6lT5W3rgUaYApYUdMXFGc4n+8/ukWSJEmo7nmmzWEQgE9RtaqNZaub2TIT0gLduXpG3r16IosXT5WCBXOLgg3QO0+zY5qjqKmmQGCL9K4Btup4VM75i1owO8DIqgn4uinBxKN6HvX3B44rDRxNhTrhyOYwaBlwcoa0FPRXFRtaxG+4bxbMWCS3oSndC8zEqzijZM0OUtwLoJ9cnL95/lhiJkiOn9rOb/1rNMaWBQfsmQgNAcuCWX/jLkPb966ZKi+eP5fqLV1fTkziuWPVdNm6dDzmJ0xQIApZTj9/SJYs6WUj0uwEtJw0f/fiqNqG5urUqXMwhbRSrX3D6hYKbqBVzxEmvL156YTch5C3bflkBKmgvo66jFnnLjqLTtL3b15ELrhmQtDJxYiWbISVda9eHSRzjNTKt8ArUWq67oxNX+IAYQr2rpsBbWRAyVGkinJ0T5kxvwrVPgAfo8UTukmu4tVxrw5RC4A9SDa7ceFISZY0gWzahGSzmgO2L43PPzU7ePBYmPUnwXQaXS2M4sZ1NfO8eXPDxy5j3owFsqRzfwkH5HriIHGO6Fw9vUQKGVROXtiHR9oThgwKhNCg+LjGkQKW3lSov2pGPVIwgeO+ii5k9glNm6Ov9y9sa0FCbnOsh5fE+gQhhTC+asc++AS2U6foEz171MZTRE5z0cvcmgZ5nwO/LWARWThKjPiGCtH7v8Fvn8kcZtT6aBnPqblaNaOvvHz2RM4d2WZqn6k+3sLXJQ9Q3/v372IyV5gqaBveXH0SrLEIwBo1IjZK3lJ1ra7qeeNRtf/l0wdo1i7B2bewdprN754VkotzkIByFy/iojlKKHyWXrP2G1osmxzz+wN8QY/vWkm+4AX44NZlNYAkaXNIlab9pX/TAmq/Ubcp8ur5A7l8ai8ilg7jBVBTRQ6GQRSUQb848AZmoPjxM6kCgop+ZAAJ6NmzSxIEJj2baVdULc//a926u6zfuFv6ztivEmefPrhZpSWiwz7TB3mYfkgTdvRd0kmdApJnBDT9edxmJHNI+BR5ggKcPq/gJL4Dw0yR3v/TE+f7pyq0FJh8t9wGrjRg1vJL4jijYFOnzithAXWTERGAJaq38dTlTupTRy6e2AttVxsphfMM8j4H7AlYjp5plpqR92+ppzDoT3EgVeYCJuGKY6B26NzRXSbhaujQnhIOD2FwYPnUQGLZY/CNypO7tLyAr5NV0jumW62gK+SqCvQczpg1IFxRkUy8n7Grr0r+MvWtClesT9BGhvsyXYhnhCueEx1pRlIhpclHOD7HRBJa3qCzhrlqy3jcoD/PgUd3ryLrx09JmCytwiXj73vt7CEkLZ6vBpcpb1lZOK6jbFwwQiKHdpH58yeq4AtDuHL/2/GZ3YmsDSRNuOL2wIFjfEy4Ynvt2zeVd29eyfieNeE3/lPS5SgmabMWkE6d+qoXNP05LekzfJ7oO6bIWjQctUleFK4ckUdPQTLYE67oa6UjJwAOf4frgDJbstwfmgl1l2N9k0IjhVVeO4VZbruRiw3hiofbN2gnsSFchQCAaIFyDbVT7H4TXuUnUjnxvZ6vdD27dY2Dv8cBTwlYkaPHhSoxyu/1ZJztoxzgw9FhuOvEzIYXAsMne/ZM8ujeDbzcukijQYuUQ3nRAhWEkXweElejetI94CqHFo7dBP4KxWw++gT9JOaPT9MT5IPDFCz9ge8ybdpI1fxj4LUQMXzT4nEyqEVR6Vg1nSHw+zTjvdBelJgJJHmmglKsRkd1H/Sdvlsa95gK81MXoYkiGKAJggUNLNevH5V16+ZLqVJFvND6/68qHecrYTFBr5uBcw5K6TqdZDbu/z17DvoYM+LGja38Gx/D/2pA3RzyDsjeDXtMlw4jVkqEGImlRs1myuy/adMOOXfukmTLVkwSwkSfJHY6mYgsCnaJEYeeJBW97JYP0eYpmq8SfY9IFOQ+A4TUzRXCtdDtv36eMjvgAzta/z7QlIdNuDnyuyDPoDKLeuAPRWG8KnzrNh44IuHyl5eOI1d5ytT37OFtIUBo1kKVZcTSMypFk4dj82SFD+9eqfvKk9X/F9UMHyx//jN/+vBWti6fJDvhj6Wn+MnSqxfemC5VVPH27csBi5BOX8V821LtbrnP2pjMwgGfiuQVW786wZP/OPF3rZlJoWtfeX1dRg8YIwcQhvw9V0k5smOFWSu+NQazTowdT3PgM1JxzB/VTs4d2yVdu7aWLl0MzaNnmXcaZrACWAw16DJR4W5N7F1LXty/IkePbZEIIULAwTugj/gfETKifY1mEjBuEilYvomkzJRPCcQHty2VDfOHy6cP790NmVq2mzeP2dRUuzvBWgEXcPQbouO8LdLmHGpx6Kf3AeZSayZlangYgQhNN+cklwjhf7XoEWyE3tSp+T39Ott7WxQwOXY7VgGm/zIbp7We2AY1ggRe9YC6dx8kUzAvksavvSaBAlM8t08Eq+5aPqnCYOs6biPAcFPZP8GLRy8i56ET/IXTZC/qxTP9d/XfNhH678v/t0fP1DEVGvSQSRtum9nfGSkUHuCFlZv2hSuySA2sduySpdqd+zADKUwX7cRXbyS3Wwi6s6XGS6vzm99hwkeWJGmyq0mgZcvu8mreUrmHiaFMnc6St3RdaTNksamH54/umLaNjT/PgYNblijhiprHzp1b/vkB+aMRpE+fGhF9eWT9vKF4V3+VGm1GyCe8lEuUqCEuQfAs+pBzd/HiBeU1+PIOeeTmIW3R9IENlakoT4laMmThSekPf8e6Hcci9Up10UQh+okVLgyNx4iJshbo4UePnpLzgGsxmQ/d+Mz9+/cfqaAbuhMsXbpG0qXLL18oyHD8FBKtaaG034nRcyRqsChkWApX9Bsl0VyJ40xS7U5o0UMgWNNu6U2dWqQex/c7RGHQjnDFpt2N01p/nHP1whWFQSv0HYLYQghXqK0W0Z4RrtgMc26CsxIDGQR8Wrhi+4wOj5/C1Z+Q+wbh5zSY8G9wwBETWEk4KwaE6TBCBEw8mFwWjOkkydLllp+4xBev30oMqPyJ62OVOPHpH2j6XXHi0T/wEcOLAya1WPGT+mrAQ9shSyRpvrIII18pawHaFzITk+lGlgzQYi2d1FMle+Y19GmUVy6d2mf1coxCv+fA4W2LkIC2rEpCa4R8e53/w4f3kjcvn8qe9XOUSwb0OHIN4KBr1mzyemO2zsBz3r5lffnodvyLbpESKFAQiRg1Nsw8z+QcokHpbh8PCPR0gn7zyUEmTJqHxNytpVixqgiiKSvJk+eSfPnKS0qktIoWLZXEhjkxTZq8EjlyckBOZJNmzTrL3bsPICRWV/NRAFxLgHOXbY3MHJqAtdwc/k0n2BBiCFariKlkNOJcZnm+dszyWxO0LMu9uu8FU6lqmotUW/MxK+iFQd1Y1q/fphIy42xlFlwza5D0qZAMkDdbdLVcNx/duap87rhHX8l+625Iz8nb3NXziQLCl4QKE8Enmvpn2qByw6B/hAPMkv4TEV6voGliRNL184fh2PpcxuOhmjG4mVw4tlMSxEkv9x9fcB81pF/5kR9UVQM5+JerpaDd17Jv32Gp3c7VN8q32Pb6xWNkfOfrRRSGVhmspkkLgZv1DC+Eb3CEp2mDKumJvWpLu6FLgbmUBj5hwVU945/fc4C/xfMnDyRnzqZ+37l/75EwBXg5xUPuwfr1q8ki4FNlK1gJz+116YHco4MGjYUGKZ96phX4J+EKbBEXRprjORZZjsixaJYLFM952x7tZRTARn/+dJKHb18LE1jzRfwVz9X96+fkLKKSW7ZsoOA0pkyZL9nhq8VoMy7aqDX+9OGNqv/88R0kSb8t0RLGk7R5E+ASHFXwC1MKEcAyfOTosmb2YPl55qQsnbVIqiFfqi2hwXQ5erOdPXMiTyDfIKSYoCP0Gi8KJzYEFFNfPryh0Nfjx/a8tpFaPWtCo1vOQcvhcXFcNHVeSQ6B8iUONug2Sd69fCZOcA9Jif2DWxYhYX0xOXNoCzJmYJGKyN4jcA0pWL6xZC9cRTUXMBD1Xgb5FQcMHyy/4rQf9TMPWquTe9fKzx+w57tRxca9VbTf8HZl5C4mUCap3bJlqSseEdXo1F5Zmgi1k3XfexGZWK5cXQX+ycAH3yJGrK6fN1y+Ac24QuNepgCLHaumyepZg1W3Y1ddlo3Io7Vz9XT4HwSRyo16SPaiNX1Vs+Zb1+vf210+rZ/sWTdbmbiYvim45qTs3y/Mr8ZPZ2ryDI7NNK1R+0Mat+aaytgwf3QHaJ+jqYCBhNRO28O34/PsgYM02/6EPmPGTMNNM8IrX4qVLCwL5o6Xlw+fSNGiVZGJIbCkR466WAlSSIqM+by0kCGkx8iO5THvnFf9UHAjsr2PEwXLH/hY00bZ4Mm7p88Y6oy0RqF8ZjiaD5knWqPrBU2cniUmI0+TJp8EwgmYraXHxC3Kd+5w43xIJ5ZLhiHPZL6yTWDFaCeLxneF4PVQosdPrRaiMeIlVRHdnu3LqOc1Dhg+WF7jl7+uXafdCDg9XpeKjXqZrmPHiskKpbfL2PXSfthy5Eq7IS1adMECECtATsaeEK7Y2Nu3rqr4kKE9PzGYBuGJDUahUBOyb8M8CR0uskIXvnnxuCkypVCFJkIkauaDCwih6tSBDarVHwg5DhIirCFceYLHPl2FvngUrkiLFk02hCvvMJjpX9yEoshIm5I6dXKhpoHm/mwFK0rvqTvEySGItEJiX7vCFfv2hHDFaiHQJ8FMR43qp/DyVqyYCcGniyxZPlPBatBnKmKcmLJ80yLJlym53N65WLYMbi4TetZQQKVswzPEaOfyDXqaqk6cOAs+Zt8BOLtDTpw4Yyp3vHrTtG11g8KLPaLWzopw5XjvgUoi7Xj1htnZ91CeN1lOiRs3PTR5EMx8gjw5j7IrW8LVRwQ7LBk9Rb7qzI0Hdh+UZhCuSBGBhTgBFomYyNpxfM9aKYI5PHG1ckJIjbQ5iqo61VsNkca9ZktZgMomhE8U4XIM+jMcMEyEf4bvvtor/V+IicKors1Lxku8pGlN/SVKlUVqtx8NbKmWKunu2LEDTcc82uDqmhQ4CFbbPkhfPr2XJUBwP7HPVWBi664Gwl+dBA0WUlJnKQTA0bhqZc8jbQYtliWTegjTCK2bO0z2bpgLXJf6Ei12IuGqzSDf58CZw1tVJzNnjoGcbpgffILjlSuXQU7OYbJpyVgpWaM97ufEUqRKa1k9qr1MAHxDq1YNfaIb1UZ95A7ViE72lhQfeQKnAseM5sGtW3cD6qGlzBzaUqq3GuxpfxvOOYz43bhwDKBWxiLRewoVJRwSya1PntyhBJwv0FaHRB9mvnvE4KJmj6Y0Z2jm9ORJbZFzpIiubeDcB0igHBtmNufkieGL+lHuurUXKVIy2Qutf5o0KfQ9+M42/cI0J34rPRyv1kQiYp7dOmC0NITJ1YmLYBDnxLodx2CBWVaZYlnGBfINLHBG9BgikaPFAhB1EhYrHhqmQMWKP/7vrzQR0oY/H/42X94+lXwVmgvTcPCGoSO3QZ7nANXzTF3DVQxXkhp9/fxR9m9epPwjzp3bA+fUmNqhX998sLmK0pl7unUbKAvguzFg5UUfWxUxdLgNQodtUeDAgbDipVL8F8VOmEo6j15juibmuRvapqSqwJyGyGMv8RKnk2JVWypfkF9nGls+yQFCagxsVlBixYwihw5tNH85+mRH/7O2mPqqb98RMnnyHMleqKLUajdKCTjNS8SVdu2aqoTof4ol48ZNV2MjmHHOotW8NAxqO1uUiq/OCYr/q5bPwPXllWTJcsizp8+lUq6sMm39gl9tcv7xbFolzlecJ7T6el8utPjzyxeJFD21xMD2o189qC3OjDHjxJLTZ3dbHMGuDfOi+4qeK7lx47YcQQ5XCtGOSHWjLUoOHz4hQ4E39vTAUaGYBNFS9uKTHdGb9Gfj4jJKTFfeoVjRk/vXZV7TQnIPe60GzFdRfG6HjC8/5IC/MxFev3BEPsA5+8Xzp0i3FEC9gPlgblk2Sd6+euqHrPPfXVGoIuSBXrjiFR3cNE/5LXG1OHjwOPOL5KTGyQqrJ71wxUrRokVRkUXtK6Y0P8fO3uN712XL0gkyZ0Qb6VQltTQrHkd9RneprM56eOey6exI0eKo7ZBhwgNyoq3athSuWHj/5gVpWTqh0ljRIZ4hx426T5YW/efB59UJzsBh5fblE3IAQqRBvseB80d3yMcP72T16jmGcOWDbA4ER/RBg7pLhw7Iz7ljpdB0zmc1ZoiQEoZ+Q3SCxn3u10Qz1MGDx6C5CidpsxXxcvdcIOcqXkOd1wYYaRSuqBl7CuGKQsUhCBc0H5pIE5ZMBXY2OF/p6+vMhWvWbJZkqV1NbJbCVdyk6SVUpBhyByZDq0T/OB/gNXnXoUNvyZy5iLRp0wNzaUqlyStUqJIUSVdARVoewPXfwCBeAQQ0ZI12MmbVJanVdoTQNcJSuOJYqdks2nO6JEqZSRKmzGJ1+Ebhn+XAX6nBIkuYzJj4HnTWblUmkXDF89WNVzmLVZMarYa67RlfXuXAPTicOjtDtdyhHLTvjshnddW8CQ3oj5OWjii8RIyYVJV4JgHz3WtnZXj7chIxZHCJmzSRSkL9Gs6dixevVi+McQTIQ2g4V7ZOTj/kEbB5hrUtLU0waaTN7jqBcwJmOzcvHZfNMC8kTZJAzp69oBuVSBYgGZeq3UF6AqGaVKFhT4A1lpBQYcN7CoDPrDFjx9Mc6NMwrzCSbNy4QQol3NMnGhU9xYFHSKROCISMcDBv0GWCTEP+uG8Pr8jODQslhEfO7p7qwfOVbt++J3XrtpKrV29Jg66TPJ36yloPW7FQXocgllIQsJ7Aefsk4BsioiJnlg1akms7JkAH5N9z0dDg9cCh1jpDWa5cpeTNRxfJXqQaoAy2KhcCOoOHwEKMQt/2FVNkzZyh0q9fZ2ndupGNVrxZDGF4xrI10rnLANVAdGBQMSvKZTd4maAoDQeXhqzwtaPrBS01XtUMsmHmC75z9bQpWlB1ZvzzEw74Ow0WuaKBp/GGo/1+IFKzRIudUDHs3OFtsm/jfPVi9hMO/mOdxEmcWmmwKLwE0UKZsc1Eo4o0HwGq2XXYWAEwGS1aNEVVoVbKI7qK/HTBgweVi0CBJpI8o4e0tCl0UqdwReIkx987LqAW+FtrwhWPceUeL2k6tYpr1GOa3Ln/lMXKSTdfPleB6tju1Uq4KlmzraTMnB9Bkd8keKgwCtLh9XPLNas63fjnAxyo2mKgaoUr8ncaFpEPtGs04coBRg6SiE1FKlW/h9x6BdDPOq3k8BXqOvyGCDSaIUNBuXDhCp6t778lXHHERau0UP5El+88F6dw8YS4d2GReSJsIZ0PmB1/PpNwxca0+YvbFvQQUZBL5y6RixevImAmBSKp6yHIZ5lUw31LvCbN5aRQxaZYjEWQPn2GI59rIqVRs2jK27uvkfdx9pyl6vzYiVKr/mnOK1DOVZDDDCsla3WQwhhD3lJ1vCVcsfE7V07KyX3rVD/Gv7+HA+Yqir9nXO5GQsTy3lN3SbFqraEyfy1LJ/eSKf0buqtnFHiOAxFhjmMuQTp2KrU8BBnLLO4qKocTGBxDHW7dVQ0TCZopUDYsGIVV03W7nd24cFiZFTU/A1bmKphUv9N49W3rH3MPXj9/xOxw8vS5JUdRV6dchpnv2XPI7PiT+zfl4vHdgHgYIe0qJFd5C3vUzS79GueVbcsnqxxcZicYO7/FgWTpckqKDHlVG8ReM8jnORA9elQ06urgHR0RZC3wcv7iFEzKlKktx4+f8fkOrbS4a9cBVUrQ4nqdLVwKrNT3TBG1zh3Hb5HGvWcqN4abV05LpJjRf4GDcnGni6TTt2kCFtUXWmx36tRPUqXKLc3a9VZHytXralHj1y4Xcb2m7DAV0CfMzFRpOuL1jVatIBRD+9e872zpNm6DwgkjJuGuNTNUYyHxf/nknspU6vXWXc8g9mGStLmkQqM+3m3COM+XOOBvBCzt+jU/He6HCBVaKza+dRygZooJPRmdZ4uCBgshDbtNgcPlKeBiFZDZsxfbfMgJbhgQYc5UzZPatm2CEPKA0h8OlldOHzA7j4LR5dP7lXBz+fRBadDAVSDieTQzfPv2nZtmWipVYPFv7ZxhMndkW3kLZGs9FanYTEFN9J66UyUa7jl5u3SfsFkGzTuiMHq0uh07NpclS6bJxIlD5OnDO7IWUYZtyyeTB7cuaVWMbx/gwK0rp1QrBLY1yOc5EAdQCfcRxKGlpkqcKivSRS2Fw3ZcwCuM9PkOLVpkWhw63JMadZ8kmRHF5hsUHo3embPENVchfZ4CBjD3qdJ16uLBvca8jjNnLlRn0BmfeGJhwkfRteB+kxotwmFoNH78TG3T29/vYB7cuXMftO9NJVXmAqqd+zcvyumDmyVFiqSyf/96+QZ/u6RYOFLI8y4RgHnuyDZy4fhO7zbhq+cxCImAtP9H8ncCVuosBRU2TH34JNRuP+b/+Jt5eM0/YSKbMxz+EjDR2SOioXefuFniJM8OB8w+EJx6wgxw2QyDhee7IMrwR7EC0HBxGsS8B2fSbt3aqO3xPWvKiPZlZPGEbjK0dTHpWS87sHJqycM7V9TxRo1qqW/+o5mBVKxqK/Vt71+lJr2x6kPKkIhcwbvSqQObVMDD3BGtVATkm5dPkFcrCQ66SI862YSAjBpt2LBNhTEzYqcgwrI1Gtq2FNLr7FeO9m3hcN+3WnqZ1KcuohBLAQF5q0KxPrprlVbd+PaAA32m7VIvh927XbUcHlQ3DnuRAxUqlFQLlhEdyprw4IgDV6RyS0RuHlcRaV5s0tPV7969D5N+TXF2CKrmXJ+GZ9EP5DV29uLjAL8z17yFgfSHzbYd7GhLKRDWQDLreHCDGLf6qjK5kV+eITqNawv4QYPsvFsYZOAJYpQg50qCOzNamkQ3C1LYsKFVyiFGjJat00WVeeffiun95NjuNfLw9hXZtmyygqzxTju+eU5A+PLeunzSN7v4a9v2dwIWTYW124+STHD8ZGoGg9xzgP5MDbpNhq9EEfcHLUpixksmdTqMATBpT1mzdrvkzl1G5SwcP36GElBUdUbnkNe6VVb79k0Vhs306aPk9dM7cuvcbsmTPaV0QZLfYcN6SZ06VeTGjaOmCUXfbYbcpfS7VreDhQitwPT0Bz+8faF2XyM9xE2YAge1KCr0sQoROrxEjBJTXxU53G6piXbRolVy/aujmmijIsy5IPDBnty7quoiXlKeI0Lr2tnD8uD2ZQU9EcDBRc4c3CTnECF3Fr5+BtnnAB12w0WIJPfuPbRf0TjqMQesRKs1aFBD+T0SCZ2JmamdJmXEMxQ3UUpgYnWTu2d9Viv75MkzyQ8TXjpEt1Go6jRmvZpzLaORPb4gz9coCxNe8ODB5UsE10WcvTNdAMZqSeTL/HnLpDjyJAYJGUma9pktgeEC4VXqNn6jWgAyklMD+yTe1DedL6q7JNQ2OgmFVGPUoNOhfVwPV01+DMy35ep1Q7qydxI9XgrpMGKl2SLSRlNWi53g33UC/qe5AG+RPFkCpDr6iPvD2WrdP1kYBU78V88e/JND+GN9B/xjPRsd+yoHNAdyz3ZCp8vcJWsD3uCUnITqmg6fa9duhZBSXqpWLaecyi3bSgCgQH7Kly+hhF2P1Nw0I335+l3evHjkpnmybNH+ft5SdRWY3gEkoqVglSZbYQmDF3yAAAGRvme/Cmenqt8Ff6f2b1C5uWgGDR0uklnDzLlGkwEjVMNGiKqiiqYNbCxxkqSWGxeOSyCYP/cCTT567AQemjLNGvanO3yBLJ/SWwiPwYThpFfPHiCXXEwPTRfEwnr7+qXytfOnl//3DJs4TsFcNRz6QdHvcT3woUqXrgWT/H6Fd0QH7Wqth8ukXrWkBrIy7N+/zupiRt+OvW0KKMRoYiJh5hs9c+aCVGnWX/lHcbHj25Q0TQ5Zi0g+mveyZ8/k2h0R1rmw0xbSAOl0fPhYnBGRrKcPACStXr0pFkbHJFeRKlIFEebeXXzzWhlUQ80S0d4TIs/iaCCrE87m0KFNSHD9SxuuH4OtbQb1RALY6W34mJ1HLlhaYApXaqo+ts7xbPl3uIF8eP9WqgHJPV++nApP7DS0/EnT5vRsE35Sj4Fqvp2/1k8uxBudGAKWN5j2r55CoYy4WfxkzF1adqyaKr3gLNqz5xDJlCmdNG1aR4oUyWc2ka9evQlh+tOxyp6K3GauUU/W+MMoMwpgnGCSZ8irUJ0pCKXPUdxLqOuJU2cTfiyJL5ww4SObijPnKyf8WCP6nzHljp6YRoiULH1OTIYnxfHZfbl0Yq/kLX3PZDbQ1/+XtgmRcfrgRmEKpE2Lx6kIrwtHt0nWQlWQyyy/3Us9vH0ZEocHw8vfY22p3YaMg1ZTvWhsyZkzCxYz8WDC3m4ClLwGrcD7t6/kNj5zZi+Rho1qatU9/U3hetKk2TIX2p/bCGQJitx8gfBCpBmfUW1+RTHjJ1NC0VX4emaPG1skepRfSau1QWCBZilcEZdryZLVCp+resvBJpwt7RTvfF8546pt4XzVrEE72blui2omR44SgIjZLXEASuoV4jm1ajWXKf0aSMEKjaV8/e4eLlw80z617KQwYcIIUywRlPkjNPJ/G3368FZpXkPivvq/kSFg/d9+cU9eryZovXx6X2VnP7l3nTK5JUmSULJmzaBWmdu27QHI5CbVIiN2hgzpASGsrtUeChSoKFxpPn98VxaM6Sian9P+TQtU8ti4SdKpVY5n/SWsduIDhRQy+XIZ06WKPMNY71xDdJMbAKoPNP9XNsFr7oUIXZpKH929IuEjxZQXT+7KrUsnPRSw7l4/C/DEdPApCfNXXtu/Mii+7NOlSym79+2Sfk2OSr1OYyFM1EQ02kz4+QST02fOe+tSly5do9LyMOdhgSpd1O/9J55Bmh9jJ0wuGzfukHr1qolHLt+EYGjfvpfs2LFPXXfmfGWAc1XFWzywPOmYmw9mlixFTYe4eKO29saNO14WsJj8fPHiqdKoUQfZsGo6kCWCq6TMpsa9sUHspXlIneRKLki0XlFlvMhVorY3WvPdU358+yLH9qyRIpWa+25Hf2Hrjn/hmIwh/UUcIAYPkYS7jNsobQYvlrAx08imLQekSRMISSevSQkgDhPDhdSt2yDp2nXAL98t3XXkyOGq9v/45pE8un4UgKUR1IorYbzoMEc9VCa9NuWSINnzbt1Zf2YzSNDgUrFxb7WSv3h8758ZhB/3StNqiox5hFg9pw6sl4jREkj6XCXsjuLd62dyG6mYEieOb7eecdAOB2AGCwgtjGeoUhn4HL54Ik8f3JS5I9pB2xQCpvF9WAjck1tuMCpC5HEPiOZAoobTkbt16x4SIVJU5WOVPmdxlUjdg9N97XCKTIUAvXJQOnfu72EfnTr1VcJVrHhJZPSKCxA4xytXAQ9P9ESFvKXrmmoxqfLEDbek23jXheRLDSvQVMNzG8QbnDcPgVm1K8vW5RM9DEDyqFXmZtWIwjdNugXLNxZCp/xtdP/WZYkUNc7fNiw/Gc9fi+TuJ1dvdOItDtCs8PH9awXWx4dbI4K/LoMvT926VWXEiD6upkQ65brV4cSur6+dx/LatVuo1SvLCDb6p4ljGtC0oDzBy6zfjL0SGTkO/3VaNXOgvHh0AybSsyo1R4eRa2xe8tOHt2R84/zyBjUYzECB2SDvc4DYTi5hPPB1ghN82Qr1lY9UsOAh4cfTHH6TtaRDpVQSBF0/JQq67nmzHA1T0gwePFYlbX4ByJVQocNK6mxFobFtKRGieM3sZdm2T+xruQqZG/X06Z1mrgiW7SdOnE0y5K8iZep0tjzkY/v6+YrbzAWZLl0q2Q3HchNBK+8AIFaBQ7tLuLCmYlsb9O3Kk6esBA4dG474s2xV81T5nBFt5Sw0Q8FQ+53bGWNXX1EWAU814EeVpg9qLB/evlYO/X7UpZ92Yw/J3TAR+ulP8W90RgfS0GEjuruYPHCSp0Pj3PHdFHpyqZKFJFGUSFIATvCMyrEmXLERli9YMFkSJcoi353cO/m668gPCjimKEiy+ur5Q4Xh8n8QsDLnK6uCB/KWaSSJgLdkj4LDGZjCFenYsdPIpVbIdcf47y0OuLiF79s9GXXWrp0nd+7cg9/jDGhEhquAjoLQMO9cNQ1o+h/gjxPKXROEc1i1aiMc4Y/K85dvYUqrDj+u3EgCn9nbzuDuOvGBAvpRtkQ+0Ym96yifqjx5srtvFQIKJhOJBsgY387SoJ+vtG1qirjAdOSiEU73DjBVuiSII1DHux+rlRLOgwwKovbw+7evv6UxZEqd4xCw8qGfbW59EevPEUE/OWAuJfaWhr9lZSh+UkQXkwTJM0m2wj5jvvWTQftgJ4aJ0AeZaTQleLCrSjuko3jzyUGGDJsk1Zp2UkCmtSo1QK6vkWoFTd8tS3r79p0QDVwzN1oe/xP7UWMlUKlBGKnIpNUEb/2XKVaClArag1FIjMy0R4zMHL7ktKpSs2ZzlWKELx8/JX1iYD/t2Bc68wA8U99jvHhxZOzYgdKuXVOVteAEXrKk3Vt2qUTthBSYMGEmzH/dFdZSyZI1ZP3GPRIkTAyAlC6TsnU7CwFLvRtppx+LT28nA+hm5GixlEAIpyL3zUNAIZ2/ch3CxVq17VP/lk/to/IS2moveYY86tDmzTvlLaAsRuK+31K2NjSKR2ydYrU8VqwYqvx3saEe3L6kUp5pwpXWmTPgG5jongCkf5LuXD2j8AW/fP4oXJD9H8n+LPp/5Ihxzb/NgUQpM4tmXnpw66Ic3LpENm5aKLJzv6nt588vK62WVvD48TMVaRIjXlKt6Le+qdInceXJMTDJqkdCg2WH3+GcWbfNYJhPYsq4blUkU77yyh/Nst7/dZ8TuZ78/IVtTWvA9CrEbdPITeOh7f5L3717dwB2VDClDeF1de41RG4BxmAZIgLvwBwYN2FKCQXnbOIGMjWNvd+HkV4ErIwQOYYkxPNLvME/QRxjwlTZkAYIwrvu93UE6KkzowvdKBYi5r4S1sKHiJrqPevnqtYKV2pmtVUu/ohpNW3afPkOR/xB+49IXNRMAGf7b6P6SyHkUtQ0XVYbcCtMnTq52nrz4rG9ah4ey4L5aMP8kfJDcM9boeQZ8ql0ZgRQ/RNEIOikqTMDs7LMn+j+r+jTELD+ip/h3x0EtSLVWgySKk37A939sjBJNAE8u3cfLMOH9zZNSD16DFJMoMP77xJTM8wZ1kI+fXwnNduMlA0LR0rk6PFU7kVGBOaAat2j1BlM7RAjbnJJCrR7vmyqtRz6z0cTepXvAd2SdfO8TZsWmQnMHrZF7QTxjYA55qOkF67YsJvGw0f7+Isa69ChmUq0PXHiLHn58rXSEKcAjlO7NuMlQYpMNkf64sl9JXBx8UCicLFp0Ri1nbVgBanTfrTa/hP/UmctLFORHP7UqXPI/pBG5SR01kEj0I8pRPy4EjF8fB8b3jk3UGHOE7boNACISYcOHZOKFUup7UCxE8pt5ECtUqWR2r9wYb9duBpWOnr0pKpLAeR3aMnkHgr2YeNC19+NbRFq5eP7N6rZo7tWIlp7pZSu00mKVWn5O11561wGTaTNXtSuYO+thv3RST48u/mjKzeG6qccoH9F7ISppEnP6QDxnCszp/SRyOHCSEek3OGq79OnL2o8fCi9Qx+RAJyO92cObZGNeFFouduWT+srn7A6fXTnqmo2FHzH0gJ7yyMB6/yxHSoha+osBeQzBDWCDxpkzoHgIcOo3/T+zQvwwaqhDr58edWuc7KpBZ12wlTmWxuMrIPGw6aw9Rn3HjRBiuBXI14w1/nWkD3b7meMXTO5E7eqQsOeyg/S8vwfSJ/1EkIVNVWXTu6RrcsmqSqtBi4QJlHPX6aeAt6lBikftv2anJCwmL5DnAtSAXuN0YGNGrWHL9ZGpaXTj2fH9r1CvKwuY0fpi39r+z603KQEKTLabOft6xfqGJXjhKeJGCW6tJ28A2lwPsuYrlWFz0GWLEXk4cNzpoWjtcY2btyuiunz6F36/v2rymnoAn8w/u43Lx5X6cm+fMb9a0EEj/5TZE9r+qfG5Jf9GgKWX3Lb6EtxgIjsnz+8k8EjRstLRE8NG9ZbQocOqfwJgujCjz3DLq4CZwCF/Q5SiZA4QefPn0t27XI1R76GcKWnkKHCIFFuHGGaiR/fv6kXDp1lCdp4YMsiKQcQQGq54iROK+Ub9JSZQ5oBLT4qwsDH6ZsxtsEB8rpF/7kyHPkdXz13NXdsgR9QyZKF/y7+hAhufzyacMVa/ki44nAJ4EsEdtI9YJIxVQqFlYsn96qIwpuXjsvJvWvgP/hV6AtDCo1oRSYbvnTpKjCZXAVLCsv0zfpTdOH4LkTqxkemhsQQtAJIw+7TZEDzQjIHCaBbEECVUg2gDkiXTrk+6z6JTxckaAgFe0GoA1sUFwvE80e2qcP7YR6s0qyf0s4ERURn5zFrZfqgpnIe4J9MN7Zv31ozzQ21bt9h0hwyZByiEA+qNgiB412aMbAJsMIcJFeJWgpxf8/6ObJ8al/89t/dNUnoG31EpLsK/5MCRvu9ALYh0fp98t6xxz5DwLLHHeOYr3GgWLXWMN2NlunTFyiE+Fq1KkEoOqAmqLTZi3iq3x9YxfWonVWFqPOE5s3rKYgIprdIHD6xinIbDOGNKONRo0aWpUvXSrNmnaRz1bQSAslXX2HSpgkzUtQYcvqQ68T5C7zv1xC6Tdj8a8fYMuMAc9XRZyYINACP714DYnULuXLlkOK3WcU/tOMAZ2SXaFH+UO++32306FHlDeAZaE6jFnFQiyJKwHr57JHqPDiEy2pIdcV6adOmEObHS58+tfIj6tFjMO77LXZNib5/Ba49REW+On0yaUbtMusDc4k2a1BdHIMGVRV/AjfswMmzaptBJz7lK/bw1gWJESehEvBcR+T+f1SYAx0dAyCK0EkJT2kBcaER/TspoFLAunjxCsBI02NuG4XFXk7Jm7ecBIDG7ZJb5QLIh1oc8x8XKN6hty+fugrQODlYiFCqiQ9A87dFNHsaAhbkcwjRP7H4sEydZotvPlFuCFg+wUWjDS9zgJNL7ATJ5P6tK5jwC8rauROkQIHcMn9Me0xeYyV11kKmNp/cv6GgEmIlSIH8eDFME9PRnauEoA49BnQF8Gltkw/QTjjTvzSdLepl7/D6jVSuXFre3H8oH569kIgpksBn5RXShMxRTvDUcXzGp2SJgnDI36k7WzDxJjbbN3Z+cYBgl3U7uPrrcKU8qU89lRNtw4aFwvQuf5pcIFgrAl4RsYr+VaKv0nakLZoyZR4UPYGFSaIjRAinBCoKVZZ05MgJVRQVUCR/A0WNmcDdMGjKnz2slfQZNFYG4BknLV++ToGkEvl93qgO8l97VwEXRRfEBwsUEVBQwQBFFBQVW7G7u7u7+7O7u7u7u7u7RREDEUFEaUnrm3lw53HcwQF3cMCMP7zdt2/fe/u/2NmJ/wybs1v6exBtgDg0NOo0KlbKhPQZ9IRyRcNS0sx7LKlFv1OSuq8UTD4CM6gXYxWIH+hqpvqIskJhCbTehGBOLt5xXSK+V3qZDJBYtLKYgtbx5NZpJKF9Lzul2PbycIFrJ7dB9Sbqcf2+fnxDhEyQ5S45Cbkr89uUTNQlM9FoosLNk8kiQNl99GMUGum6aN26Cbx58x6eP3cUitSAKZvh6smtWLR5j/S0vFizrMPQBRi0bgFTe1cTtdhu3z6NN3VraR8KQm3UqJPY79q1rUhplx6U2wjHYGtHxzeQJ485mNCN6AfGU2zfD9OnL5T2bNptLNRrM0C6zxvKEfjs8hqWDqwHQdjFx8dZLTc/5bPxkfggQDxORHaZRj8X9E8g2WV85lf1HAmBY8aMeuDh8UJYuFu16hHldKoy0aLn+Cht8d3xdH0D+hijSVUNFAlZaGcMqCM9pI9ErWMWHxUJNNJG3KCQg1sYpH9691LZ5gQTKFPizdQ+1cWY+W1Lwoj5B6JkRhMtA80rEaJGCA4KELvmloVg0urzkkPxfvXz/gqXDq/FerCVoCjGp7IAut4DYUQrO4LCEC2FEYBHApOGAWIEkgoBcs8t2v8Clh12EnXVDhw4LpQrWg/9SM1Ed4dEucoUuchPH14jt0ojGIHs1ZQtc+jQ5ijKFXWrWLEckLJWuHAh6NUrQtGKPD3aSwYMtiZ2ZpOsxgBh4QBZjZBfqK8o6irpfPHweiCWcyIGZIkZgdz5bKFQpYai0+DB42LurO6jkdQcUYYly1UKER33L4DBgwm+GrICkRurmposGgleUOQA8sShGdFCU6h4BRHk7uz8XtRCJRedqbmlOIMsEvTdJOqEhEqA33dwRwUrCGNDyZ2mSCi2jaR168ZgZpYdggL8hNtJvi9Z2b9jLU8SQ2MT6DhkHtRCt2BChB5CJcqVsak5DJ21O4pyRWO3wUxtUrwIFwPkqZMoV3SMlENl10XHVRUj5AQsX7sdFMHsapbYEWAFK3aMuIcGEaAfgwxYrLZKg44xzmJVtla046QIUUC7IqH4h1u3ToKdnY2iw9HbcB2QxQAfR0JF6QtiXJZIQavc+EO+AWYPrANe7i6SZn5VgkCZak3FEYqfIQthokmAAmVKgXss0daj5on+YhwV+qgSNOoXjEmbMmU+ps/X0aq6daRcPbh2TJr9K7lIkVySVg+z8+rBb7z2iavPASleJE+eXAJLyzxwbv/qBCsPVJni9oWDcHb3YikflmQNktfQELLLAhw4cAJpZoaL7YMbZohX+f+ICoZIU4fO2YM4V4RcWNMwIfL83iVxepHS1WDGpuviN1N2vF8/w2HN9B5Y5uqxYJoP9P0m3MN7966HmTMjHnQ+vXspe0qs25RAJKF8kO2cC61h9LvNEjsCjFLsGHGPRECAiqquOukCnYctgJrNe2Oq+T8FRy+TPhZfngjla7YUK5k+HV129WpAp06t1L8yzCijmmKS4GEKIKbaY5QunkU/LSwf306YhNU/ccoZkZIUDJHgkoRctcTSr5IgA3l8JS1xCykoEyPGIyUPg6OTvVBQtMz3Ij7XQ0klfv4/oN2AWfE5XWPnULUEoougDEJZobil0YuP43pnwIRV58AMg+GpzA+JGSYvTJw4AihT0tPtrexp8dpu2XsyZiO/AJfXjxSenyN3ftBBxUJHJw1IrLMPrx1XqNwRU/4QpMCguCyq8yj57VI4sAqN/j6eQNajLsMXAsWfycvrJzewgPTtKM3jxg3BYPvccOzYWdHuju77uAh5Co5vWxCXU+Ldl6yDTzHh4sHVoyqNIaHhUamzgk5EW0JjfPviKo6GY9LTywdXwPurm4Le8W9iBSv+2PGZakaAnooc6rQRnDylKjeGfIXsRWZPky6jRZxDm35TkfyzIKxduw3/FuDTa/zTnOO69CIYFE9FrL2/ecI8pCUg3i0W5QgMnLYVg3mt4NnzV2hlbInM3E+Ud5YciUzDl+xKX4mdXYH8RIoCssisxBJM2+4+BuKEAkV9E5NzS8E6taXp3TsXWL58gyCnlCjA2rI2ysKjkAFFQmulOqeSQPj8tqVEN0/Pb5g5WUtYbJyf31V0apzazDFLUAcVvIfXT0BIZOyS7ACUfbYaHwLb9p8q2wzDmheCy0c3R2lT546/jxcc3jQbKP7p7ct7CoeWlA0iCoK81kVFH8K0a9fB8OBBxHdPknGocAAFjZXrd4IKtVsrOKL+JnJfZsffC5006WId/PHN03Dr9BbBOxZrZyUdyOK3Dul9SLEioUSqVVO6wZ6VE5ScEb9mDnKPH258VhIhIMlUW7lyDsZkoAVLliRSw2siDpv581eCkZGhsMpQSQ0qbq2rmwlJoUBwq1C9Ml093GcRCFCx1/UzeoHPR2foObgXTJo0AsnbY/8RjQKfTAagt7cP7Fq7HW4cOgFhH93Ah6g2sDM9oxsiv9PmzUuhpr2dsEJS5uhfsviQ65cFpk5dAJu37odZ2+9LM9+SIywB6P76r1MZaNasPnzEz8CzZ47CdaiOkjBu7x3h+b2LgkbBHxUaA6NsCi1GQ5vbYEwmltLChy7iIjty5DSGOXSAdgNnqzWxgxQPKtP15vk/xUpCDkvvHcWF7l4xTmRZf0QetL6T1mPcmgOMalMMqlevJOUDpL6rT31U69pozKQQcl3eOrsXCXF7IE2HYYKWQBUNKNmKCK6p0ghZJ3NhhmhcJKYgd1aw4oIk901yBD5/eAWzBtWH0aMHYhzEsERdTwjGZ1FB6q9fvaBWrajuSaoJJywouCKywpHVTdusBIkKlsxkdBM4vWc5XDi4Bl27NWHTpiWgJ1fS5jea64kHjSg2fqM7r1jxIsgf5IAujjxYcPunKKh7fuZi2Ig3U3KQFKvSGDOZKoCRSU5BGEuZX0e2zAEqMNu8XEnYfHYfwJt3ABijIyGolFlSqtv08PAUcUyla7TGslXTkv31H906D26c2o5B3aWgdusBoni1Oi/KG2PCVoxvD3/RLUuEw+kz6GKdxtxAbkISx4fXYOey0VC+TBHk6loDy5ZtEJnH5ZCdvQuWGZJ3dcZnbeQ2Wzm5i3D97du3AXbvPiR195Wq3BCqoFWPuAB3LxsLAf6+MHHVWen67mMBcKKxIM4ukgl4jBJQUoMQPxpxhUneq5iumYioJ3SrmKAMT1awYkKYjyUrBMgiMqlHZViwYCpmCHZMkrUT2eG8eSsE19AbvIkTBxE9aVpbl8M6ZOZIT+CH5I9+0LrvVOHuTJJFauGkZH3cgGzXBQpYCksWFcd9+PAZ7NlzGLZhgWKJkOP3U+QOxdo9vvMQvNBKYFmgCFRu1A05iAqBZcHiku7SV3KhjOtcFiju4eHji7AL443KFrWFORt2itpxAwf2kPZNTRtEy9CkSWdwcv4E41aeUxs5Z0rGkILuJ3RziHKJFMLQ87+VaO1oKCpBTOleEXJkzgC3MNiehLIz+/YdhVmDc6ESBrnHV6jKxNsXd2HbwuHgh+7BovgZvn79uHCFDhs2EXbsOCCGJg46CrxffuSNsKATT5eskBvs+qmdUMi+IrpX8+Oaf8fK9SV7fnLdps/7Wax526DD0FgvgeKwqOwQYRlfiUnBiqOtPr5LiN95FIgmIXGL3wh8VkpDQML27ObmHuXSdJA09K8+fkmQM0fTQi6uCROGi2mIIV4inp6OYpPqpFWo0AAOrJuKpvt3oti1pE9qfrXDGnOjFh2Gg+unQ/v2fbE8kgEEBARiTbdcULNZTwENEThSGYtnd8+LOLdnjk+hUIWG0L1uO4wtKRZj9hIFAZeoWF/UoyTy2qw44qJIwJ8+fSmsj4MH9wRjTGJITUIxi7du3Yehs3drtXJFVge6WVEge1ILUS2Urd5UBF4TySkxshPz/Y4lowTJKMWD1WrVH/atnQJB376DvqkJEhk3FQ8Krx9fV6hg0c2cStpQdiGVBFIm57BOJFW5IKGi0nPmTBDbVNBbolwRsWjpKk2EYpBeV/FvHoUv1GgW8VCxfGIn+PsrFIbOPSjGSsn/EYk1VQpRRcjSmBDlKrY5tNZFSBaBNVO7Q9CPABiNP8osjAAh8PHNU5g3vClkwOK9X7++0lpQLly4hj+4vcT6pm28hkH6llq71sReGH23P2Cm1rM754WLp3iFOmqLDSGXyaZ5Q3Dsc+KyqCwJtdGTPD2jhuMPqhcWpCY6jsRQxhMbW/n5qChxr17DoWaL3tCyZ8SNWr6PtuxTADe51am0izaI+CzNHQgv7l8WsVaknFeu3ATSptdDK9UC0MXs5iVIlEys+QsXThVLrl69OeiZ2EDXERLV/t+VvH1xD4mV22DNxXwwbcPVfwdktojTa/W0HtCsaT0sZ4QZg5FZla9fvwUHhwaiJylXZCUjaonY5NLRjRjzmEEobGFo7Vpx7G1sp/DxOCKQLC1YpIU64FOrvoFxHC+Xu6dkBL64YVwNytgR/RM1wD2umJL7y8npNtjYOGAQpSMrWDIA0nfbqnBp8SfTrJZNcpP0w0BfWRnToaTYDaL/0YogJBEsnRETJd3/J0+eFy6rcjWaQ/Pu45JuISrOHBqE1swEFEBWcZo4dbMrUxOyo7Vqy5b1Irnlxo3jMHboRKEEUZJLWYy5OrJpF/Rv0QCsHNA9jW7EnxhzSNlpZFm6eWY3OD+/BY27jBEkoPS5z52/CAZUv5bGRHl7fsYg9tvw0fkZPMIi0TWqVxRZ0hLlihbsgwkbEuk7cX2MllxJP3oNQUzfPL0BPceuxCxET9lD0m3iuqJMReK3YsGi6W+fw1f39+gKboTKafoEQZImQWdr+GR7h3pgXbScmIWeellSLwLkV980dxBsXzxS1BYcPKIfAAaWa1wSQJSZPbsJKljWaD3ZARQPwZI0CPSbvBEGz9gOlep3QNZ/5a6ZpFmd+melWJtNeNOnFH36De00dL7KN2T1r0b1Ea2KlAH9zEaqn6DhnkT9sAsz9C4cXAfFsbDz4sVr8KHpHew9uk2ECJw/sAYVmB+ihmnb7sPgwwdXKFjQCp7cPoO0DRuQZ+kXuhhPI8koFtk2zCqyEUctPATFy1WHT3gTJ6H72owBtWEHlrnxfHcH2rVtIopEy2faVqxYVnq1bnEgDP39Kxysi1UUpLIVMDHnm4crFgSvA3fP75aOF4z1DYMCvKX7qX0jDdJbnN69An4l4LdfgqFWK1iSRZLvekBDS+jfwELSxK+pDAEioCN+mly5cmKm2UGMzUvYk4XK8CWAQ4ksNTVrVsYn2Duwcc5AhYSEKq+DO8YZASqMSyVGqMAr0Wd4ItcNMX+nZHn06JmoMzhq1FSoiB6AbqOXKaQZ0EYMMmU2jMZQnpTrpELKdVr1AyJB9fj4GnQzZhKxg0TVMgIf8Fq0aIjuw4uAzmbwwOziSmXrgqlpNkFg+fLhVYH7oJk7sY7pQCB+KolYFCoJt8/thqXoLjyD2bWU9VamjD3cv3cWFi2aJixlkr6yr+cj6wxewPJAqoiHqzMq1umgasPOojtZqSb3qoLWszdw+cQO6RDksixYzEG6n9o3yPVqhkXQQ4IDEgxFslCwKBCN0mTlsyQSfPU8QLJAwPXtC3zCGyPWevDgZlSyzJLFummRI0f2F6zwFLTtGeneTDaLT+YLpUysm2d2iqugm807xwdgb18kmV+V8uXv3HkAaTDaQfAvXWQ/PwIdBs+JVq9O+dl8RB4Buu807zEOpq6/Al4eHyEsJBi5rjoJLjyia6EYKVKI0qZNAyForQpBQ8CKFRvBCgd6/+oR3DizS2Fs4fKJneH966fw3eOtNJh9wIAe8tNH2y9WrLBoe4QPmtdObhcPbPcuHUbi40YiO5fiDClTV8LlNaN/bUGPQjFCJBIyUtoO8meLFeGgSP78+QtOz27B8e2LFB2OU5tWZxHKXsnyo86yu7ydShC4h2VqtmK6ckaMmalep6pwuSWnS6fitETZkB4zeogJmiVxEKASGLnz26LlqpqY8N3L++I1U6ZMibOARJ5lwYKVMHv2MqiMbtC2/acnG6tVIsMUr+mIOJjK3VAZFX8kOaVoldOnL6ILti306NEBundvD/nzl5GWhHofOcvV49vw/egYbU5XjLUqjjxvV9Eq744FvA8ePIG8elWi9ZNvuHbtjrTp9O6lIr7q2Lb5ou0jlvh5jKVm5CV3PhvIkSu/aL6MAe8S8fn+VbLJr/II/P2DVURKoP/2j/yROO8nCwtWnK+KT0hSBL7jD9FYDCzeiDFTioqFxmVx7i5OovvHj48EoV9czk3qvkTuaGdXGYig9CfGYM0cWBfdnCch+Id/Ui8tRc9Pn7lTW2fApSObpLw/j26cAIrYmzRprtZdO1GMJETIakLKVZMuo6D9oNmsXCUETAXnkqt/wsrTQOSeZNWyKlwSY7DmwJkzl0RvOn6WiG1lJF16XciMcVeKxKJgMfj82QOCgoKFNX7o0D6QObO+oq5R2jZu3AlZTc2h26glMGTWbpAoV9QpMzKa66ELU1ZyWVjD8Hn7pVY0cwtb2cNwHol/z2N8GYXeUMFs4vcjLrnUHu9sbGoG9doOxNjFeVHwis8OK1jxQY3PiREBxwdXIcDPG8iUvWxcGxE7dQfjpuIqVMbgwqF1ouRDBoyF0sGnPUhAQeC4zp+Q/hRoXLduG/jxQ+SuiaGI52cTpn0vGtMahmD9svMH14r4i4TMw+dGR4BiecwKlBKM+nT0g9NjjIO7CyG4TQS12iZ/TbL9W1IcP99E0jp58jxxQ6jfbrD0ZvpvQN5SBwIUQ9UJC9E/wTp4n945Qu4CxWAoZhN++vRZDG9tnQ82blwineoXcjhS7KW/z1dpm2TDtkQVwclG3GxxkVevnLEMTkUoV6MFKtH/nE+rTnzAQPrCorA0ffYpnOa/pSdg/KrzQPskFIv46vFVsU3/Ne85XgTvH9k8W7QRM/7M/jUFUe/MfjXh5M4l8PnDawzYPwsTe1QShZClJyfTDWLGp8QD2Yd+qjJB2MgLVYmgoto3z+4WpXTkj6u6zwqWqkhxP5URKFquprQvfZjvXzqA2TSnpG2qbhxaP1V07du3i3j9S7FXygoCqzpoIvQLxNp59eu3w6dUVAgjxdn5rojHol2Pj29EKveRzXNgWAtbLIfRFb/Ie9EFEfFjLTmHX+OHAKXK18UUeknx4ACfb2IgSoxIKvZ/la9E9vNNviiqw6hEnj93hEGDxkHFOm1FaSYl3bhZTQhkQAoQymqnGoQVareBP5AOSUCXi9HpM9eyZSPo16+r2KdCyx3RAvLV3QUC5eKdCkUGlDdq1BFcXd1iXV0YKt3GxtbCnUjcWyTXMDNZIsNa2sKbZ3fABTkCyTr+MzxMFC+WHKdXXWQqpz+JGJuYwfw9T6AQKhIS+RniDxs2LAY727xwCl2QG2b3g9tndoC3p5sohPwW3exk4aJ4RnVIgN93fAg/KZIC1DFebGPoYLjGKySBpfdKIn7fPZA1/55kN9orHdu3ZopgzI92UIWGfzOp0Jm7MAKqIEBm7OHz9kHbATOwRlgFaNF7CnQfs1KVU6P0CccfijJlSojMHLIICXLIKD20c4csCg8ePI2yuEKFKmBA7BrQxdayeE2+vm/hHmYN1a9fE+uaXYVdy8fCRCy9waJ+BIjIlIRqGr58GeFyVv8sGhgRP/M6uGZFsnDhaiS/HCJKoLQfNIstV4pAUnMbuQftHeqLUbctGgEV6nYQ5XGocoNEZs+egG0bRSmdm6d3CyLSMe1LYn3Nf++j12dnsLAuKk6hItGxCf2ekBQvXwfa9J0qtj+8vAutWzfBeqxDhUIlGmX+e3TzFAxslE+4/8gFuGneIEFTQl2yogusVOVGcOvcXuTfuiP4uqiduLYKFbJCS9xiIFoIn29fwCRXATokZDFa3id0qwAUPL9gBLLco3WL6HNUESr/cwArOCwd30EoaXQOKS9vn13DgP9HqgyR4D6kWFE1CYlVjwY0xntV4dJVlY7dqvdkKID0IbKcZEo7KzigVgXLHZ/MU7v/VgHGqbKpYNHyUA2LkXYfswJvAlbxKkfw1f0DKipPoF3NlqJeXXJh3p46dYx4Erx+/RicO7dPxFdIvhetO7WGPXvXic8Ecebs3r0WJOnX1Eg/hkvGtobLx7aA5+f34ukuKNAf6I8lfghQjExV/CyStGzZPel/o1R1A6Ib6G/W6ETLp09fglmzloCLyyfojgSS5MpgSRwEqjbsBA07YtKNvoGoFkBJLFu27JFOTp81Ihmmm7nr22fS9g1I0/Lg2nG4eHgDmOa2hh74wGmcLTt8+fJV2kfZxnqsqUnSY+wKoUjT74KbizPGd9oIJYvK6UiEOM+sCpcBHzlr+HvHhyLgvmGHYegenCCscF8iLVEOaAGdvum6GKJKlaaQN28JUVqJ3Jz5bEoJihPJ+EUKF0QS1IWQwzgdrJvZFyZ2LQvLsCg2WePJuqVMHt84hdxgm5D09BasxgotPt88RFmrLCZ54OSOhXBy1xK09PmA7/d/Vn9lY6mznZgJyNqoTAyMskGz7v/Fm8FAbaVyvNAUunfNJHxDSkLtln3jdUNVdpHcnjoReIJZMeuxODDJxIkjpC62REcDgz+FyMQ9xHUN/fuPgb17jwjLlaJzyQWQEQ+E4J+9vR08e+YoFAEdnTT4GvGUaO9QB5p2HQs5kaOFJe4ISHj0pk4djfEzfeI+gKbOIEJDFfnW/LHoNWWsmSLjeY//VkHeAnaaWhWPGwMCe1ZNFATC5GojpWDLluXQrFl96RkUn+Xo6ARPnryIZuVpN3Cm4KZaPbUH8mhdEudQkPukSSNERiHR0DggKzwVOs+Tx1y4B6kTxVqRFW3TvMHwEJW1M2f2QvPm3SA0NFQoW2SdJcb20lX/KVx03prpPbGupy+6zItAGMYb3cXMbFmp22YA0N+IVoo/SzZYLNr1zSNYunSmuEaKhyW5d+8xnDhxDq5cuSkIWEnZLFmpAZSu1hQssBi7bCkfIlom9xxlZNIDARVrp1qJZ7Ao8/HtC6XLKVCkFHo+ZiGrvE2yscrGVCpHbQoWPaGTye/Pn1/4pS8axQwnRU+NGxScRoF+MWmfapyOh0oCBCQKlqFhFlQ4roKhoUESrAKnJDcNxcOoeBOMzyIHDvwPCVSvocXuvCiC/OmTOzx8+BQoE9HcPKdIAV+6dD189fwGjTBbrFaLPsnmByg+eGjiHHJnHNo4A5+kNwu2bHKxJKqQIkVKukwMSFznX7JkHcycuRgmrb0oLMNxPZ/7qwcBUhiGNCuEZK6tIOTHDxEMvnr1fGjbtmmUCerWbQuOr95DTszo+4sPah8wTorY3KlkjovTE1g7o7egb/n84VWU8yQ7vXp1QpfdTlSs0qGC9V407183Da4c2ywoayTuybFjB8O8eStEIenuo5cic3w2yRAwG7OX3SKzsQF0sB1/y+SEKh188/wEe1FxlBddjAvcvXsNFryuLH9Iuu/vHwjbt++Dbdv3w/t3LqLETGUkOCVlj4h+Y5IQVPouoWWP4r5IMuhmhPm7HkF6vYxR4qXEQS38TyMKFilUf/EHizRqEgrkIw2WzIqGWXNoHAZiWX39+KbQmDU+GU+Q6AjQj89idJXVq1sdVq+eBwYGmRN9Ddo2IdE9zBg1BXbtPgwOmEbcuPOoZPEDpE04UlWIbYtHwOMbJ2HbthXQoEGtqMsjJYiqBKCrR9uEgp3LFq0GOYtURNf7co0u7+vnD6IoMbm8WBQjQJ+l379/ivveNizh5Xj/gggNaNCgpvSEypUbg27WAtALrY0xCcVDEU8eeYDIdbdmRi9U3ALQNZUBY6zCwbKQPYxdckwMQffa7YtHCVJRRWOa5swN0zffkh4igt1D66fgvg7o6RvDW4zfKlO1GRQrX1OQkpIVaeSCgyLWaOWkzuD4KMJdKBlg9OiBaLlqAIXRPRibkF5AruvtqGitW7cdk77DRcJJSaS4yI2Zjso+T6SkrJnSDd6iK5OkRtOuoJMmPbTqPSm2KZP8uEYUrC0LhkKZas0waKy6uEB6k/QNjMAcC0aSD1gZkOpCw8fLXXywjUxyqmtIHkeLEDixczGcxc8U8V+xchX1jSErxvTpC7GcgxVUadRVmNoLl6wCWbPnitqR9xQiQAHHa9FtQm6PR48uiiQKaUcJrYYKvETScxJpY9iwiagU7oMGHYZC404jNDYr0aPsXDoS6rYdDPS5YokdgVCsSbhl4RB4fu8SJh+0Q16yCYIcmZj1Qd9CcFfFPsq/HhTPRNUfSlVqiPFK7mBuUUh8zyU9LmE800EMGieh+EJidpeVlWjtio93h+Y9sH4aFt3Og6EI1nAUaRwoE5ysv6VKFYdq1Rxg+PB+oK+fSXY6hdv0QDB16kKM2dqK2YploEWvqULJks3ic3v/EogUmEIhJOEgNBiRBPebvAlePbwKFeu11+oHSY0oWKTgBCCrLWnWJPSjlRjBlhTsGxLkr3VV1wUI/J/aEKDMOqIvoHIUbdo0Vdu4yWIgckeGhkFMQf2XLt1AV9ESePr0hbikbKY5YcqGa/EOxkwWuKhxkXQjmd63OnTr2lrUlTOR5aJS4zzqGopIIG1sKiJ/ko8Ycs1pV3UNHW0cskLcPLNbBCErI8uMdlIqb9izYizek3JBhoxGGPA9C/ntQgXTOynEDnXaQGfk0IpNiKaFsu2ym1vG1lW4Fp/dOS/69Z+yCQ6g2/A7uvgkQm3FyslZZyUHY3jdsnAYBu+fhzGLj6KVbAS6+JpAtcbdhAuUgtQ/oouT5Ny5/VC2bAmxHdt/vXsPx9iyk1CqSmN8mDEF/4BA+IqB+sQtRr/z8lKpfnuo2ayXoJxYObkLFLArD/2xYLumjTby61B1XyMKlqqTq7sfBRQGBfhADgz0TY9suSwpE4FP717AnCGNBE0DZeJp65crqdGnJ0tHxzfQvEoT6IiFZW1LKo+TSOq1atv8kqB3M7MciOGN+H3G0G0rFGGiEYkMl9DEdd64cReaNOkshp60+rzwFGhiHh4zfgg8wiy5kKAAqITWlqe3z2GGXR/pQBTMbYDhM+mymkCFOu2gWNlakAtL2JCQwSAirCY73te84erxrdCw00jpuco2KCNx3+oJeH4AuvpqQ/22g+DghhlYA/EhVGvSDYPafaAhWjrjkhBDivWgJlYiczlH7gKoBL0TVjCyhkmE3I2LRrcS1jkPj4iHO8kxZa937jwUFDWXL18XlqqMmTJDELo/FUn5mi0EoStZ38hoM6hJREJPHeS1a47ZfNooMSlYabRxwTGtibI2cucvwspVTCClgGOm+BRnamYhaBo6duwvOIxSwGWp/RLI3F6kSCFIm90UXmChVxbVEajZrKfoTPXk4q3AY41MIajoalJICZQIETSyaBcCVEaHlCsSe4e6MH7FKaRFaCv2KSB+gFUe0E//BykJFsGCkc3h6JZ5okrFrIG1YXyXcrAcqQ7O7l+LSnp6OLxpNty7fBSzEz1FQkZQoJ8YR/a/MmhZWrgvQsERWXnoSaLgebJstu4zBaztyoFhtn+fGdlzSXEhZUpWyHJGBKrt+s+AQTN2IAO9pzicXjfy8x3ZmTihSKGjeNAXLxQH5suOS9sVKpRGC9YmWL58tnA1knLVa9waET+ti4HsVOKHrmfCqrPQdeQSqWuTrqtJ19FiuPMH1sDU3lVF7BmtP7kIprSwMALah0DGTAYwbeM1eIylKbYsGIIpwutg9OhB2rdQLVgRKVlVy5WEZxi8yqI6Ak26jsFA4UuCEkP1s5T0pMB4DUqBAvmgT+9OsHPDziiklRqcMtGGpgDvncvGwrLDTpABb7gpQaiKwMc3/yw867y+w3+DekKpqg7Qvn1fOHdgNSYlp0eX4B9R6Pnr12/IkbUeSJ0JxT89tPIUKV0Nwn74CWtXoeIOCmEZOG0r3L98KMox+j2ognxdEiGF/Kvbe0w+y46M5D+wBM4ryKSfGewrNhRdSIEb1bY4GGM887A5e0VyQ42mPeD8gbUYbB7xECIZiyzmVPiahDiziDBZkRAlTTrMmM2d21y4EmlNT568FF2JyoEC7EtVbqDo1ChtdVv1Byekd/iIBbK9PD4hM/5HEZPWvMd4jMvSkVZriHJSIu1Q7Fi27LljnI0VrBjh4YNJiQBZFejJ8N3Le7BmzTYkicSU3/wWSbkk7Z07PZJSatBFpcqF0w+5gaEhPv36gJGSp2dVxkmsPhnw6dyhbns4tXMR0A0uRw7TxJo6fvPg9yEYzzyzd7m4+cZvEO07i7wSlIGugzfMlCTjV54Rl3N0y1xwfHARxmFB7p9T/8ViGRsbQ+PGdQS3FPFdUebdcqz2QEL18YLRfWiLSQYUDkOhMWR1unRkI+S3LYXWqexgaV1cEC6UrtpUnEPKz7n9qyAPcqNRWZ/XT25g4ktu2L1inDhOilFYSBBmH4+EjAZZ4fyeRaCXxQSVlwhFkArSG+F7QUJ96E9ebp3dIygiJO1Nm3YR/IRVqlTAjMEw/J3eCiVKFAXi/ZMIESrXqlUFundvD4cPnwLPT85YLuwfm72kn6JXYikYNHMH3gPuC5foV3dX8MDzN84ZIGLOiC+LqoaQG5Y4thJL6L2gmDdyyUoqRSiaWy08WFTQ0heZWS0LqRb0pmgh2tZGJlO3946QI3d+IGsKS9IhQDfudSObQTYzYziHRaPj7c5JukvQ+Myt8GkywCAP9Ji4XuNzKZuAso1untmFQb1tRcq5sn7a1E4xMKPaFkOSx5Ei2F2b1ia/lunTF8GSJWuhEWYQUnwNS/JCgH7HXiMFgi66xIgywfnFHXh68yT4en+L14VQ1r4i92H0wUhxjXAJ5i1QBHLkskRW+NVwbMscyJojL+xeOV6cMmvbHSyjYx79dJmWuUMaguu7CEuUTDNmez+GO3ceCOucbHvz7uPA0+0deiJOQMsWDWDIkN7QoUN/CPudAcahAkqxVqSsTOlVBWqjtYrcrL9+hUcLAaI+ZGWjWoskFELyzeOj2Jb8R5QONZv3kuxq9JWUq/tXjoqsSOIcmz+iGc1niOuMElymFgtWZpyAMgrJ1+yKprz8SKKW3G+Ct7GK9l28mbfsPRGvp6xG3ywePGYEiBG4Tq/JsAVJ+Yg9uHz5UjGfkMqOPnr0DC5hPESPsf2T9MozZzGGehhsm5zk+Pb5oI8LzpbNWOuXbWtrLdZIT+0syQ8B+h0rh0HcEqFYrRbo6vJCRcEfs1oD/b+LIHBSSE7vWY6xSZmFS0/SX/5VmXKlg+44/cxGeD8OxfPJ5hmhXNH5bfpNhzwYw0zSFJUfEgq4N7MoqJIhoXXfqeCGLkbKwqW4qbCwYNg4qw+6AetAOQxTkJVp669C9tz5RFM+25LCkpYtW1aksBgP7dr1gUGNraAtrsf90xukavgkdIYbp3fBnlUToG3/6Zi92FU6HOkT8/c8BqqH6Pr2BQSivtG401C4feGwYBUIxrguCvJ3qNsOryOz9DxNbZhgJYUG7YcIigmynikTtViwJIP/RJJRz09vkebeVkpAKjmW3F5d3jwRdaMyYQVy/SxG0KzHhOR2CSlqvUTqN3tQXbC3s4SdO1enqGuL9WKC8EdSCe/M8+eOUA9JA7Phj+R/y09JA0RjHZM7CAScsDbaMixAe+zYdowpqaDVqBBVA9WJK1CsEgzANHyWlI3Az/BQpHsIEd6hD1gQmWr1UYkZokgiJUQiJSrVh1rNe0uVpF3L/4Ob6MqTSImK9ZGzsqkoFi0hBpccU8crUTcQCzsFn1P2omFWU6zXOEJK4URzkPtyZJti6PoMRA6/sfAD+ebmz18ZZfpuo5YiX1YFjE9bha7RqkppJuheQAH5pOiRwiUrNiUqwdBZu2SbNL4dUxahWhUsjV9JIk5AJklKn6WMD3IjUGo0BR6yJB0CVAD5KHLM3Lt3BvLls0i6hWjJzC4urtCqVS/48OEjqGLe15Jla9Uy6Md6au8qUMq+IBYUX6dVa1O0mG7dBqMyeBaadRuD9eMGKurCbVqCAN14Lx5aj+V02qmVBJjis6g48oMrhyHAzwfjrXSh57jVQhGjeLY10yPcZBRY3mX4oihWM01Cc/7genB1egAtek/FQPhc0aYiJWsPuiNllT/ZThQ7Nh4fEuMid9DLdG7fSrTYZcYyRBGxZOOWnxTl+mTHIZfeL1QAc+a2km1Wy3aqUrDoTaQPlrqE6iSF/vCFn79+q0QAp655eZzoCISFBsOsAbWhbCnb1GfFkoODiEZ7tOoB6bObwYBp25HpuaBcD95VFYHb5/fBjqVj4MaNE6JorqrnKe0XHAKQKaPSwwk5QFYsU1NbMcTqUx+loRihGLxMQb7JPTQjIdho27l+SLPw4OoRKGRfKdoNXx1rJWsRZVmTi+8Ofobptnfj7H4xdCmsAVi/zSAp35ay+V49voHB9L7CNemBJXreOd6HjoPniExC2XPcsZbh9dM7od2AGUo/Y5Ii1NZohRoxd6/s6dJtMlx4fHwjAtV9kFj1ObLVf8CyaCTjV5wWBakp/pmujVybuugm1UMvUmxCSufwVkWk3eSJeAc3tRaVL8YuPaF2QvSYFCy1xGBJryqJN8jS5PHxNVgXLa+2lZA/NzF8umpbcAoeiG4gVRt3F77206cvYR25min4amO+tFaoXJEsXHEOS1QZxtyZj8aIAJX2IvHx8Y2xn8oHZZUrvKHgHUnlU2PrSKnvtWpVhacv3klvdBSaMa1PdSiKBJYdBs+ObQg+nkgIUBk3CtzWlBDLvoSOgYpHk/KS06KwKHOjCos7JaetmNgp2vKm9K4G7QbOBLvS1cDYNBe8fX4XViCjOrkAW2FMcnrMUIxJ3j6/g/UTQxX2owcAUgglRKt12wwQHiIK/E+HvFckZ/auhFNoocuGpb+yILUEscorE+cXd2Erlu2r0rALrDj2FksVXcRMyJzRug+YugXjxjwFLYtloZKCsiJaJw00qM/Uo4HFxX3Iv+zGiztoyeoMCny0RVK9G8MnQCiVk0ll8htLcNy6dU9cNWXNsHKV8A8A8QKRyJJ5JnzUyBF+/lTbUJKBLCxyY6xdWsmueM2MSjZZH0a3Ky5iU6IcjNwh18yk7hWBqiSwpDwESHmp0bS70tgl+SsOCQqUb5Lu7101ESZ2rwTDW9jAUiRBlZB7UhyYIqEM4ofILm9unkMcPrlziaJuCtvoN0yiXFEHh9qtRT+bEpWh59iocVryAxAZNRGyPr93XlA1EMdWfiyYLS+2GJtVsGg5uHpiu4jfkj+u6n44xsSRIquqxFnBkgCt6gSJ2Y/SVongjSXlIkDsvvV7ToCNXj6CcyXlXmn0K6PA0Dy57aFdo05Q0K4MVG/SPXonbokTAlTWZMvCoVC9eiUgMk+1S4YMEUOq8WHgN8aNfUXSRYlQybCWfacKi9YvDGXYNLu/IK2UHKdXcqEcWDcVvqNbZteyMSLjW/Y4b6c+BHJgPBJlpEbYjQAzAUtihnZpcHa+i7QLj5ASZAZm+zWNAgxZgRQJ8VSRNG/eEGxtC8KTW6fipIjIjklF68nF12noPIzlyi17KNq2iDnDvmMWH4t2TL6BeMCGzt4tKoTIH1N1/6PzU7hydKOq3SFOChbFN104uDba4PRktAO/tO7oW2VhBDSNgLVdWajYqDPMm7cCPDwUf+E1vYakGH/nzgMQgjdXkq6jlyf7TN2kwFB2Tkpz37tqHFR0KAO7dq2Rutxk+6htG3871SXu7l+iDWVTvCJMWnMBFmAquzUq35RGLhHiDpqCZUZ+oTWtbt3q8On9K3B8dE1ymF9TAQLhYaGCj0r2Up/fvYD3bCcog5//b99eYwHnfXDmzB6M8csGhoZZoFu3drBs2SwYPryvOI3qGuZTwnUZ6O8t+rRt2xQmThyO9AVumO34WXY6rdgm69MHp8ei3mJ8FlSgSFkoX7uNyqfGqmCR+Zz4rUiI6ypXvsLRBn9y8xTcxjdn5oA6cHTbfHgbqc1G68gNjICaEMhboKhgDv7y5auaRtT+Ya5cuSUWOf2AY6yEgNp/NUm/QseHV8Hf1xvLMM0QxWs1uiLZuCxlEwX+UHYkSjuxYpMo8iYQJ0/HYQuxHl496TmXjm7C3+7vWLOyIKxbtwgsLfPCG6SnYEn5CHijxXJ81/IwtHkhmNa3JmyY1VdYM8nVdWjDdLCwyAPr1y8SZW2UoSH53SF+rpdK6p1+/uAoyuIULVoYX83EUOew1A5xVmmTEPO6l+sr5M+KSAaI69qI5iJTZkOVT4tVwXp65xw8un5cDEjlL4qWqxlt8H7IydINizTala0JX9CKRdwUlAnAwghoCoECaMXS0UkDq1dvEYVHNTWPNo1bqFABsZwMurratKxku5b3rx6AjY219lB+GGRWCUsqtEufgNsXDsTa3wcrbJzevUz0u3r1KFomDMDaOj94e7nFei53SN4IuL59jnFUFZG+IcLi2aRJXXB8eEVk203rVwu+ebqhO88acuWKUIgUXS3Fez59+lJqLddVktFHSkcwZc+i2NnZIl9bbriBWYdLxraCZ2gp0wZ5cPUYHNo4Ex5cR/cl/iOPnKYlXWwT1G83GM1pMStLFANADLX0JyEBIwp8FkZAUwhkx1IJXUcuwiKxY4SCtXr1PDAyUv3JQlPr0uS49GRIwaBp+LuVYJjJVfD60RVoVD/CGpTgARNxgJw5c0AYzhdbvUcip1wwsoVYWZky9sIF+vnzF7xhIhP2j2Bk+Q5SKQU+ES+Np1ITAp6f38PcoY2lo714cV1YlkqUqIHxVf/cd87O76V9FG04O38QzfYO9ZElvS0UiMy4le9L8c/+/gEi7opoksjVSPOMHz8LtswfDEuxkHdSy7n9q4VLNDvGnu1ZOUEQ3Feu30Gjy4rVgkWKUmxpmbIrJBOathNyEj/JxjkDYW0kIRutPyQoAO6o8EQoe628nbQIlKvRQmSZXLl6G0qWrIWm7h3CbZioq4p8aovLnGleOcelu7Rv7ty5BFke1f1MSUJPkuRiSMzsNoo/+ebpjlQftRIFSh1PL9XnQQuVMvH3D8S4mPVgmjM3FC5VNVo3urGe2LlY1G2TKFcUeHzu3H6hYFEtw2/fvFG5CkEXY8wPztEG54ZkgQDFQ62b0Ue61g8fHkjddhRTRco2WTOnTRsDV64ckfZTtNG1a1sRh/X4xklYObEzrJvZF9nlg6N1dcG4ptKlI5R4OmhunhMcMLZr4MAego2e6jAmtVSoExE79c3DBf7ib86rR1cTvCQyKH1xfat0nFgVLKVnauEBeip9gKmigX4RAXfKlnh67wqgHyJiv/36+QMsHN1KcHGkR0ZcluSFAMWaTN1wHWxK1YKxY6dDsWLVYMGCleDn5w+AWXfRJEB5anK0vqo0qBJbIzfOn7y55FpU2/3+3Vu4RZWZ6VUbRft6UYznu5f3EvWG7/s9QkmtWbNyogDyN2d21efJqKewLylGZIF4/doZf7vWRiuL5O/jBTPQ9UMuwQL5c4G9vR2cPbsPNm9eKpQrGrRAAUsxdp3W/ZniQyCRcv6jmLw103rAmPYlpQHtc+dOBGNjI+lFUjmo8+cPQPHiRUTh5SxZDKTHFG0INvgubQSxs6VlHqRDuADLxrWDe5ePQP8GFnBu/0phtfqCwfKSWpmy45C7kOQDxj4ltVDWNYWWkHJFkjFTlngviXSNA+unw8DG+UW1F2UDxahgXcHSJK+R6TW5CKWQXj+xFe5eOiQCQKnatqJYsJa9JsCAqZuxYncGCEBtn9wulA5aGotXsiQ/BAyRjK7LiEUwee0FKGBfExYvXg/VqjWHk1cVBPLqJZ0SLbViZNaPF8h37jzELJ6ieGM0itf52npSBl09qNakB+SzKZFoS6SMOj38LCQH5vOHD59Cv36jUWGqDuG//kC3UUvAwrpoNKye3Doj4kpOndotLBRknZAvwLtz5yFxHheMjgZfsm4gS8oqJAN9fu+S9Dr69u0C9eurx0LbsGFtePLkMlzCe2tYoBdsXThMzPPu1WNkqz8GXz67QMuWjaRzSzZIoTcxyQa7lo+VJstJjiX2KymL/SZtEL8z6fE3R7YItqproSLXZ/etgGsnt8NlTB6JTWJUsNJnSA8/8emSnoySgxAnRoch8wTZ2rWTOzDYvpWo2C0fzEaM4FlNzcUlWRcpA8Pm7InyQ7sWzavE48GSvBAwy1sQZSMtrAAAUi5JREFUOg+bD+NWngXdLObQufNAdI1ciXoREl4iaqWsLXl+okgahKgnqWcvTlYMuSnpiYlutAbGOeSO8G58EAhEl4WZWc74nKqec1QgICUi3YED/4PaSLx45fojcKjfGcavPAfkGlck105sBgpkJteMMvFEV6U1Ei6WqtxQWRduT4YIkEfm9dPbMGhQT7F6olmYO3cSBpvHz1quDIKSJYvBs2eXYcuW5YLs9u3zWxjPNE7wyFWqVC7aaenTp4cNGxbBjwA/cHp6M9rxxG6gh1Nihv+N37/XT+JhPEIy16sntsG+NZPF0vPblkBmhQgrnaJriVHBMjHNDWf3LgfKtlEkn11eo/L1VdGhJGszy2stag2VqtIISlVrBjbFK0RRnlRZGKWi3jyzN1pXcj8uHNVKmpUTrQM3aAUCFADfH0sjFC5ZCYny+sCG5esVr4uytuQtWjHEvygeJHFaDx06Ce/euYBdmRqJM2EKn8XY1Azc3Nzh/fuPSXKlaT64xjgvKdT//TcDC1Afho5D5sKU9degJRLsSh4MFZ2cST+L4C9SdIzawsPDsfpBqGD6JsJelpSDAHlrSLJkyQyPH1+Ely+vi31N/Eflmpo1q4+K1hUY0L8bDBvaCzZtWqJ0qjx5IpQ8lzdPlfZJ7ANUu1UP6xxSiFBc5O+f36jzfJOeEo7fp7roblcmOvRFlhc0m5Nz0p80vR8BPljjqqZ8F7Ef4O0Oty4cBso0lBViDSaljIjJiD01uQmlldqVroqKWoYoS6eaX2+e3QG/b5+hQu22ai8aGWUy3kkwAmS5pESGvyEecCOSaiTBg6pjgLAwgDhSLYwYMRkuXXuC1rlz6lhBqh+DiBdnDagFBpnSws2bJ4W7UFtAIStTvXptwdX1M7TpN1Vlxv49WN7E6cEZePPmTpRL0cF4xL+YYXvq1AXo1GkATFx1TloLLkpH3kmWCFCC1qQeFaGkfWHYsWO1oOLQpgsJw9+7nDntRP2/sUuPA3ma1CXEzemCxaKLV6gT5yGnY7yip9t7jOG9AvRQrqoQUenxbQswMS5Q1GzMYmQi6DDwfEPUpwJkx4nRgkWuQb/vX5T6TrEqA1CwpLwE4xvu5vxELED+WHLYL16+djTlitZNdBRUALNS/U6sXCWDN5J87vltS8FHl08Yi4cfVmWCT/aJKqooVzKWNHoI+vYt6bNwEhUjDU9GcV/9p24FF/xsbN68W8OzqTY8vc9r1myBSpUagedXbyhTrSlUa9xNtZOxV+GSVcDL6ztaMJ5HPScs4vO9c+dBsLKxj7NyReuSD7OIOgHvJTYCFHNFlQhePb4uAtuRHwlJZBdqnXJFuOji792GDYtBJ9AXxncpD7tXjBMUIerAzN3FCdbO6B2voSrW6wAZ9dHih0TpcRFisw/+4Seynk1y5oFMWEtRmaRTdoDaC9k7YKS9gdIuVDNIkZAZu16HEYoOcRsjkKgIUNV2quHn4fEV8uQxVzy3bFyW4h6J04qUD2mQmf6PlSWmuPzLJLt27TZcPHkBGmFxZxb1IUAWdoc6bWHhwtVAJT6yZcuqvsHlR0J6BUCSz5jkJ8aFjB8/W3SZvPYiULhDXCSLsanoHkUZQkX9bw5T8R0gRu5GnUfFZUjRd82kTkh/EgxD5h6IlrkY58H4hAQhQNaaR9dPCBLP8HC0hKMULFgA9u1br5li5Qla7b+TW7VqjHFaFWHGjMWwbdtuuHFmN1Ss1w7aDZgZpdDzvzNU27LCGOoZmxXHUp3Hsn5E/dK061isP5gXvL+6oWIUgPWKi4jByyNvp4fLK8hskAVCggNj1HVkV0OJMeNXnJE20bnKJEYL1tNbZ7Gm0Mdo535EXyqZ2DUtikpBaHpOReOfQVqH2+f3KTrEbVqOwM/wiM+pvn5Gza5UFfqHyPRgsRAZC5V0YUj5IJQraQMAUTOM/28m5DW3gOpNe8gc4U11INCo0wgIDAyC3bsPq2M45WOo8Pmj2BZd3QyYzdw4zsoVTXx6z1LByl20qO2/dUQq6idRQSdXTclKDf8dU7JFnov9a6eCL3ovyFLi9PgmODti/Ta0krAkHgJU5sbXywWOoTtqfOcyMLJ1EZg/ohk8v3UMXb0tYe3ahXALk7Hu3j0NFSuWTbyFSWZSIVFD0pVe6QFm6dKZcP/+OdF86+xe+JlAPYIs0bJ1N2Xne/viHiqjJ2Fyz8pw5+JBLHY+DWYPbiDoJcgqSwHvVRt3xTJSEfQ3sueqaztGBatI6eqQDt1iskL+3nnDm4r6RrRITYmX+wd4++y2poZXeVy6RiL003byVJUvKJV1NDCKeKonC5ZGJRY+GTG35PtCyhXeSFWRZcs2gMsnD2g9fi2Qy5NFvQgQxUfZGs2FFUujhcNReYpN6P0dN24oZjCfEU/UsfWXPX7l+BasE3cVpkwZJVwyssdo+/z5K5Dfpjgo8zrI9icSVhpvzdRuokTK9B33YcHepyJEQrYfb2sWAQ/XNzBnaAvkmloFDbHiwKCB3WDr1uXg5HQLFi2aJqyuhQsXjHMSl9pWjRmC8REq1bRp01Jx6nUsp6Mp6TF2OeTIZSmG3754JOjg9yuXZSGxPx3rMlL8FtW0bdBhmNKKBkSq6uPlHu8lxviLnR59p/IBaRkxU6V+20FQoWZLjb6xGbG2UeZIk3e8r04NJ5I50MK6mEpPfmqYjodQMwK/Is3oxHmU5IJVDoSkxa9dTMpSJDs8ZQ2ePXIGeVtKQu78hZN8+Sl1AS17TYQ/f9MgUe0MQZqYlNdJfEPEsH58+0KVl0EPgZcOrYW6dasr5CIKRDqSc+euQpHSNVUakxTOhnjTqdduqOhPJXkyZzFW6VzulHAELhxaJ6wsq6f2AAN9XTh6dBusWDFHKN9Nm9ZPEQ9aLVo0RI6umnB0y1w4vHkO+GmAjYDCm8YsOQ5Fy1QXb8rT2+eEskRxjURr4YsVXWITIiX1iszQjK2vouMxKliKTqC2Jl1HQ0sNx4MYGGbjm4qyN4DbVUbA45MzZMAYq/z5LVQ+R2MdJcH0kpgvyiaMFLpJfnr7Hk5jptek6YvQ/L8VypatC15BoVC+VitJN37VAAJUqJb4806ePI+lQ27+m4EUXYnV8V+rRresKP4O5erxreJVlf8olML7m6co+6PIynn48ClBz0DxZqoI8QQ26jQcHyobqNKd+6gZgcObIuLwqlZ1EJxTxL6eEqV9++bisi5grNTcIbG7ruODAX23B0zbCv0mbxSnhyDDgWVBO6Q9uayQrFd+DvJcWRUpLd+s8n46lXtyR0YgGSJAzP758uVNuqc+iruSWKskihXimAaLrP4NCoa/RQpBIKbjV27dC9Pysbo9HsuDf5vxLzPWAR279KRKbh3szpIABCwKFhdnv3nzDmrUqBwxUjzKICVgCeJUsphT0XLD7Ko/EKTDihRWtvaweeMuJNdtHc2zcOf2A7C2sgUjk5wJXR6fnwgIGGU1gaxG+hgXuBYDwFPuLbpRozowZswg4Z4nbimKOaOKKpoQYgZYeeI9PsS+hGd3z0HB4pVUnobYA+Ir8bJgxXcyPo8RSGwEvuOXNq9ptsSeNmI+CgJVFMyOR/9gMVQPJA+d3agTWKClipQrY8y+TVO6GlhP2wLDV52F8Vtvs3KVSO+cpPyQ2jMJyQImCQambRUKLFMdzQwZ9OJ05aWxNJTzi1cQLFd8nOhJLly8Dpb2VeM0HndOGgQ8XJ3BH4OuBw/uBZmSQMFPzKumhwmKOTxxYqeYdu7QxiLTT1NrSIsPrPmQpqRZt7HRQp80NWfKVY81hVg8xvVDX6+unh7GeUCKqyMXDzgS9RSjrKZQvHypmOck152MdSnmznE4SkGgCgJBKZtr3uK1sHLVZrDKWwCsi5UHOyTzrd2iTxwG567qRIDqkaZFa8H37z7qHBbQnPTvM0BlmbD8mBBShORuoOQmpnJIJHox0OOIDnL/6SIrNY4IPj5+oK+fSXqUyEV9fHyhZGV290lB0eINpyc3hQVS4j7T4qWqbWlU2mnIkN6wceNOWDGxIwyeuRuolJVlIXu1zZFUA7EFKxGQJz/uMyzCqZdRPxFm4ylkEfiFtTTTSoLLZQ/Ibv9GN54mJdJyQTfQ/fuPCVbjJUvWQgOMZRy8+gIMn7uPlStN4q/C2FQ6htwIO3YcUKG3Cl3kLEniDMoclXwWZZQrf/8ArBu3HEqWrAl16rSB3JYFRXkcFWaRdqFqGwaGxjBgwBhBNPoBS/EQ59D06YuxQHgxkS0l7cwbWouAZaHigtT17NnLWrtGTSxs2rQxopB0cIA3zEeWAmIqoCy/5C5swUqEd5AUrPKYdcmSuAgQARwVKw/CWKcYRYbUM8Z+kQd18IZIwc9UfkQiOr5+8NfYSLIb/RXjsJz3HYW+/ceIYx0GzYbKDTpG78ctSYZA3gLF4NKzG+qZP1KBos8FuYn/Ut1Lsl5hZrYQch3j546sS+XLN8C648FoZWoMjXs2BBv7SoIeIS4LoSy/dgNnw54V/0HNyAxvUrgoDb0FZkmyaD8C3758guUTO4uFdus2BNzdn6d4N6Hsu2JjY40POKuwzmFX0aybAgwSrGDJvsO8naIQ8Pf+inxCQVChQhn1XRfG04ibpSRwPXLkGJUrchPhn2tWY0AbBlgULc/KlfreEbWNRISFRGnw9u0HIK6eeIuMy5mUcF10ffyxygc/kUYBJPGykUr9KSQADccySBWb94JWCczMpqw/e4d6guk7PCwEylZvBunjGMsV72vmExOMQAZUvsNCgqTjPHnyImkIRKUrSPwNypzMnt0E/ujoYVjNP1d34q9EPTOyi1A9OGrtKKH4hU0s5n1tA8EPFSyS3Lljzp7SQSuCykIxVXLKlarn6iH/VVrsXAJvgizah4BNiYjMonPnriRscZHxfDreGM8V8AN+lS8Nv6piqr0sk3/kDC1aNgJ/3FbXzYRoGqiGYcW67Vi5Sti7mOhnG2bNgUWL60rntbOzkW6npo16+CCij8+kKUFYwUoJ72IM1+D05AasmtINCdY+x9ArZR568+wWGKPbzg6tBzHJX7QsqSSKXI1KsgQVjVe4WGH4hQfev36o6DC3JTEClElY0K4MnD59SS2Eo3/1MeYS6w/+rlwe/lKdQ3ITygmRyZJQTTUWRqDvxHVQCJNecpohuWtm/PykJomMVc2E5cFCPD/DtZPbk/3Vs4KV7N/CmC+AXAZzdz4AKmyb2uQF8p1Qja40MllVSjEg6wK6h2IURePEIX4rOCQM/uIE4aGU78WijQjUbTcE7tx5AHPmLEuwkqXzzTv6JVImoYyiTsSmehkzQaHiDtH7ckuqQ4CoC2o27wOeWPTd0dEpdV0/hVKgktW8Q0vAxxEI9P2e7K+fFaxk/xbGfgGUIZXa5LPLa3B3fQcNG9aK+dIlbOrk9lNgYYj5ZNWPBmAx6H79RsMfnKftgBmqn8g9ExWBwiWrQFPM7lywYBVMnjwv7nPL8Fz9zWP+73x6OqfPGpVsilTUb968B+vXbgNbnJM4elgYAUKAaFvM8uSH/7DIe6oTDMEog+WifE1NICQklgfeZAAOK1jJ4E3iJcYdAceHV8VJ1apVjPlkSVZXzL3ifxQtFkT22KnTAHj+wgl6j18D2bLniv94fKbGEaiHtVab9xgHK1dugufPHeM2n4SGARXqKEJP5zKftdOnL0LTpl3A0NgM2vafHqUr76RuBIjOp1HnUWhJfQgXkSQ2tYmbmwd4oZswWw6qaZG8hRWs5P3+8eqVIJA7ny1kw2NeXt+U9NB8M5Vd2TJsongSfXjjLvSZuEFkeWl+Zp4hoQjUxKw+k+zmsG3b/rgNRYoUSRaDiFcF//t6fIFNg8ZB0XK1YPCCo0DBzSyMgCwCJSs1hIxI7/Py5WvZ5lSxTQ81xBlYomLyTwZiu3Sq+Mimvou8fnIr/MEU+fz5LZPs4tu37wvpXT6BM66gEAYxFyyGmWQsyQIBctmVqtoMDhzYDhMmDIOsqiZCqHB142csgQfhv2EcWq7SSCxeKpzHXVIXAllNcgBZc1KbnDlzCczzWoFRtpzJ/tLZgpXs30K+AEUIBP/wh9p1qqmeiUMxMmoUsl65RCpXNGwbJBZlSV4I1GjeE4jkf9KkeMRiKbhUeipfu3Yr7N17BJoh55WxiZmCXtzECEQgUKRcbfFZ8fJSIdhbUu8yDuCFYvjCFwymJyVOYjWKw+ka60pVCMzzFYlWtFxjE2pwYFawNAguD510CJia5wdn5/dRF4A/KIJZO2prxB6SQ+p8co92RHBkSQLhJUdlssAkTfKvVcvXlzZRTI+5RUHpPm8kDwSyGJlAy95TYPfuQ0jdcDFBi/4dGgrDh4zH4razoGaznlChdpsEjccnp3wE6rQagJR76WHVrKWxX6yCmqeSk0ixl/y9ePEa5s9fAXZ2VcDMzA4KF64ExYpVhapora2GBcMXLFgJlNlK5ZuSQkjZe/bMEfLkL5IU06t9TnYRqh1SHlAbEDDGQHLH++fEDwulPgvBDK6/lMWlSDAA+W/e6MHn8hxZBw4cB0PDLFgzrpqiUUSbL5ZHCYs82nXkYi6TpBQp7T9AbOh7V0+E8+evQoMGteK14EA/fxgzcirsO3IKugxfiMpV63iNwyelLgT0DQwhb6ESkOnJ83hdeDDWw9y58wAsW7YRi5h/BypoHhwcLGhBSldtCjXblgYqsUTcMTppdODMnqWwcOFaCA+P+PWaN28S9OnTJcrcL186CeWL6G/UKsgn+AdrdQ4ePA7Xkh4c6rZV6/BJNRgrWEmFPM+rUQR8v34GEzmvX5qPn+CPZd44zSvOscBsFlTSfmEK/qA+IyEcR/D1fat0nE2bdotjs7bdgaymMqn6Ss/gA9qKwOWjm+En3nBy5YpfPMjdu49gIhZgdvT8Bj3HroRSVRpp66XyurQQgeCA7/CueIE4r2zChNmicHkwKi4lKzaASk1Kwm/8/cqdvzDkty0FGXT1oo1pV6aGeCClyh/LJnSEsWNnQNmyJcHe3k70DUNLfmWsl0ny7dtrVNjUpz78wSoXbR0awjUMrajWpFuE4idmSt7/qQ+h5I0Dr17LEXhx7yIEeH8Bh/qdVPLNuyKLe2HbApABCyz/bNdcXN2fPHIWKnzCg8iivMouX1Yhu3z5plCudPFJS5mQ+X3u3BVQq0VvVq6UgZSM2m1KVATYAvD1q+I4mO+YTk7he8Rzli2bMVJdhcPlyzdEiv2XL16YZn8NrGztYdzy7ZA9V75kdOW81KRGYMv8QfDxrSM0qlte4VI+ffqMdTNdwMPDEzmjQrEwtB4YIJefo+MbWL16i1BUajTtCaZmqj9UkrU/n00JGDhtK6yd1gNatuwO99ET8BuDEadMmS9dR1o1J2dMmb4ILqJyldIs/qxgST8yvKHNCKTXzQjGOS1UWqLb+5fg8d0TRk8YCD8b1fl3jvyPQizK1b8TI7bCIuMS6Ca6efNuaN68gSjFI+lHwctz5iyHem0HQmPksWFJ/gjkLVBUXMSrTbugxuPncOTIVjh69Ay8f/9R3NzOnr0U7SKzY8sPfQPIW6AIdBmxCMpVb87ZgtFQ4obYELh/9YTo0rhx3ShdSaHatm0fuvNWY3lLzMJA0dFJg4p+xDbtl67aGNr0narSwyj1lxdru7Lw3/LTMLlnZWjTpjd4ogX2yxdPabcXL15h7FYR6X5CNkg5TLNqM2TGQcrXbJmQodRyrs83D3hw5ShUbdQF9JAqIyGiQ8Fv8oJabBZs81988CVycRjIH+Z9RkCrEbhwaB0c3zYfPn16AhnlS9lQqRJlcVixXJXnuctws11fGIn9KAQ0Exb17YA1w25ggKmhgT7cf/ICSlaqDz3/W43BqZw/EgucyebwvUuHYeui4dL10lO+SXYzyJTZEMrVbit4rDLgA0BQgC/4+3qJAF1LG3v+7ZQixhvxQeDysc1w5cgGCAsJgA4dWmDRenMIwgQbsk4FBgahMtIcH+YGQ1aMN6VqHT5e7ljgWxf+ILGxYbYc8VauZNfav8G/h1qql/ne8YE4XKeQNey7e1q2a7y316zZAjPHz4aBiw4L92W8B1LTifvXTYMriD2JxK0vjeNVMEdIcCCMaCXcqIaoT0XJDmAFSwFg3JR8EQj094ZpfapBvZqVYOPGxYA1SNR6MQ+QWXn+jMVwEcnwCpeqCpnQUpFBLxOEBvhAMSQHLIPBo8xtpFbItWYwurm8w7/iDnUhZ24rrVkXLyTlIhAU6A8ndy4Cp8dXwc/nm7BUlazcECsNTAAKgte0uL13hDXTe0JRjM+6fnqXdDqKLPXAv2fPrkJeBclB0o4xbKRxcYXQXGZgY+OAZWBDYMWxtzH0TrxDv36Gw+Cm1tIJ7fH73nfieum+/EZMCha7COXR4v1kjcDV41shKDAAJk1FF52alSsCpkytKtAS424u9h8DDphqz0HLyfrjEqfF0xM8/bEwAomFAClRklJKEm9TTNYUda8rj1URmL3tLuxeMT7K0KRckezdexjGjBkcsRPb/0R3Q4Hxkb/Lf/JZwEGkQPHzC4CxS0/EdnaiHU+XPgPUadUPzh9cK+Z8evsc7Fg2Blr3mYIZmPpxWgf7MeIEF3fWZgTCw0Lh3vl90KxZfbCgzL+4CMUyyBTqjenUKlUqYEBzVtgxdyD88PeJqSsfYwQYAUZALQiQYpWYypXsoilph8pHVarfAbqNWgIrT3zA7fZIAbEBfvwIku2qfJu4uuRCJ+7ffyJY2y2siyo/LwmOUC1SvcjwKB2c//Y5jHkb1SLOK2EFK86Q8QnaisDCkc0gxPsr9OrVMdoSdd65ABK8RGuXNtAXP7a0Y4rfQjHDuKvq1SvCb4x7SBvbOdIJeIMRYAQYgeSJAGXAtsLqAx0Hz4FyNVqgESot5LK0RV6tEAyA91Ltoug3FpVEiZBFjjKzzSwLS5q06nXxgRdiPZIoNHcX5ADz8RJUFk5Pb8L7Vw9jXS8rWLFCxB2SAwL0ZXX78Bpy5MsLDg5loy35b24zgBjYjqOdoKgB6RlonoVzlsGhgyeg8/AFkFE/i6Ke3MYIMAKMQIpGoFj52kgBkQdatuoBqzAL8PXrt0hTEvEQCli659zZyzA0bwlYN3yi+N0kMG7evAeNG3eCfPlKQ86cdlimxx20zXoledPIWth+4Cz4iA16kYlR/3UqA4tGt4Jl4zuiRaslEGdYTMIxWDGhw8eSDQL0ZciP/C3FbHIqNqPrRSfWU3ZxZPKmcg1lytij0eunqNXl7PwOnjx6DlcvXId3Ts5QvXFXKIvp9yyMACPACKRGBIhEedD0HbBv9QSYMnUBTJw4R8BQr14NKFrUFtYuWAXINAiGW/fBBPyrib+nFx4+w0zBElC1aV+RHEQlxGzsK2otfBIPxZUrR8Qa9+07Ju4Ngd9NgGpE5spng5ElP5WunxUspdDwgeSGQK58tnD37iX4janMafUzKVy+DnJZ/c1iEMVULd9x3rzlsHvlZpCPrjIxzYlBzuWhW/vxUKR0NfnTeJ8RYAQYgVSFALkOB8/aDZ5u78D17XMI9POGexf3w1m0XpWr0Rw+Oj+Hr5/fC0zOP3gK9dsNhkadRiQLGpvj2xbAmX0rBd+XjY21uIYGDWrCiRPnhHJVwqEe0mLosYKVqj7xqfhidZEUztvbB8LQmqVYvcKyW1hHMDYh0j5SrrLlyANNuowSPDPZzS0hi7FpbKfycUaAEWAEUh0COfMUAPojoYD4XSvGIbXENZi64RrWFkwLV45vgfCwEKhcvyPMHlwfA+Z7Q4VarbQap7cv74j1GRoaCGJhKytLzJicLraprFDznuNjXT9bsGKFiDskBwQCfL/BpcMboUuX1lgyImOclkxlTohvl75IJKLsBPJbjVt+KlG4ZuK0WO7MCDACjICWIxCIv8fBPwJg5eTuSLy8Amo26ylWTJYuChbfvngkkjI3AF3kENQmEYH3Rzeh5e0Z9Bq/Fm6d3QvXUDns1m0I7N69Fp4+fQklKtaDPhPWqbRsVrBUgok7aTsCL+5fQiXpD4wfPyxOSyVmZAuLkuKcpk3rgZ2dDX6RDoFO2vSsXMUJSe7MCDACjEAEAlRT8OqJ7XB8+wIY3c4eSldpDK8eX//nGkQvw5/fv7QOrruXDsHBDTPEuh5eOy5d3y+zrNC162AwyZFLyksmPRjDBmcRxgAOH0o+CFD9KJJChSpgfUBrOHTopEqL/41lJUiymuaCZ6/cYOXqHZDXujh0HbFUtPN/jAAjwAgwAnFDgLKrKYCdpGbNyhD83RktWv7gYG8jSv7o6uppXQY2WdcuY2miwoULSr0ZtH7yazg5vQPHV87Qc9waURqL2lURtmCpghL30XoEJDWyJAu9ceMuVoJvJNlV+poFA96zZjUCn2/u4q959/+gTuv+SvvzAUaAEWAEGIHYEbArW0N0unTpRpSSOvQArI2yYmJnCMBaolvO7MHyPdZQp04bpJ5whmJ120F6VAirNeoKOXLnj9PS2YIVJ7i4s7Yi8ObZ7ShLIzZ3VcXHx0/a9dH1Y9Jt3mAEGAFGgBGIHwJp06aTZlsfP34WS+L4Q45I5UpHjtE9fjOo5ywqkk1FrckLMmHCMChRoihs3bpXKFfNu4+DTkPnQdt+0+KsXNHqVFawfiPXww0s9ujh6qyeq+JRGAE1IfDk9tl/I6FvPxcWEK1WTTVuFX+kbZCVhp1Gye7yNiPACDACjEA8Eej13yrIgNafSZPmCnLRiIAMgKbdxsZzRPWd9gfDQ45sngMTujlIB23ZsjGYmtiI9VZp2Am9Gf2kx+KzobKL8PKxzXB402wxx5rTrvGZi89hBDSCgI+nKxgj6V1IUACEBv+ANm2aqjzPhQvXRN8R8/aDddFyKp/HHRkBRoARYARiRkAPqXMmrDwLc4c1Eb/PaTLowtCZO8HKtlTMJ2rw6B+sO3sBCzkf3TpPOsslDG5/8+Ydcl5VFTFXRJCat0BR6fH4bqisYJWr2RKObJkHhsgFRKmMSVV0Mr4XyuelTAQC/L7D96/u4BsZ5E5XuXz5enwCGRHrZ/Tjx0+waNEaAUxuq8IpEyC+KkaAEWAEkhABIiOV1PVLwmWIqb2/usHE7pXEdtu2zYBY5ymchKh6aqKOQ2JRpjoUr1AXSldtIvYT8p/KClYWIxNYffIDlhgKi/XGlZAF8bmMQFwQIDPvn9/hUU4xM1NSLiey1/fv3tCnzyi4evWWeFioVK89ZIysnB5lIN5hBBgBRoARSBEI+Pl8lSpXXbq0gWXLZkmva/LkCGtW34nrwB4Z2tUlKitYkgnTp9eVbPIrI5DkCPwMD4OH105FWce4cUOi7MvukHl4UOeB8PjNR2g3YCbWxSoJ5pY2sl14mxFgBBgBRiCFITCuU1npFU2fPla6TXVnt23bB7ksC6lVuaIJ4qxgSVfFG4xAEiMQFOgPk3tWjrKKdu2aQ4cOEabeKAdQsdLx9gUfHYALdx9BpYadoXKDjmyNjQIS72gjAl7uLli2KTekTZderctz//gGvru/BeMcFmqJN1Hr4ngwRkDNCBA3F8XpklhaloLSpe1FUepduw6Bac480LrvVHFMnf+pnEWozkl5LEZAHQi8f/Ug2jCzZo2L1iYaMC34r2k2MDHJBgMG9YTrp3bAjL7VYcPsfhASHKj4HG5lBJIYgZ/hoXDt2AY4f2id2leSLXsu+PLZVZDsqn1wHpAR0DIEKA5s/IrT0lW9eesKF648BAfkuZq45iIUKv4vm1DaKYEbbMFKIIB8etIhULRsTaiI8VN3zu+HP38iEoDd3T2RONQ4xkXNmPEfVKpUDjp1GoA3GBeoULsNUPFOFkZA2xBIg1xCtmVqQx4NJGFQhle9tgO17ZJ5PYyAxhDIheEglgWLwmeXNzB45i78XhXR2Fw0MCtYGoWXB9ckAoH+3liMc0+UKSZOnAPHjm2P0ia/Q1mwoaGh8OtXRC0sc4tC8l14nxHQCgSIrNEOs5pSinh//QxZspoCx/KmlHc0eV1HmrRpYezSk4m2aFawEg1qnkjdCHx69zLakFOnjo7WJttAQe69e4+Ew4dPgo29A7TsPRmyoquEhRFgBDSLgLuLE8wcWFdMUr5WK2E1LlW5oWYn5dEZgSREgBWsJASfp04YAkZZc0QbwN7eLlqbpOH06Uvg6+srlKuOQ+YC0TOwMAKMQOIg8ODqMelEdy8eBPorVdlV2sYbjEBKQ4AVrJT2jqai6zExyxvtan8jL1a6dNE/1lT8uWPHiLIHGfUzQ/lIUrloA3ADI8AIaASBMtWbwYt758Dj03sxfjMsrM7CCCQGAhQW4u/9FYxMcibGdNI5ot+JpId4gxHQbgT0MupHW+CGDTugf//u0dqXLdsgbRsx7wCkS59Bus8bjAAjoHkEiGdo0trLmp+IZ2AE5BDYMLs/PLl1BgZO25KoCU2sYMm9EbybvBCwLVkZXj++IV309u0HwMnpHSxdOlPKcUVWrUuXros+camjSU89l45uhEMbZoKuXiYICw2WzrP08GvRJm3gDUaAEWAEGAGtRIDqzH50fpbofG/Mg6WVHwdelKoI6BsYRenq5PQWtm/fDydPnpe2//jxTzG6cWa3tD22jctHNwnlivrJKle0HxLE3FmEAwsjwAgwAtqOQPUm3WH2tjuQBWspJ6awgpWYaPNcakegbf8ZCsfs0mUQGBtbQ5MmncHWtqK0z7Etc6XbsW0ULFYhWhfiDho+dx8YZYseYB+tMzcwAoyAygj4Y604IlZlYQQSA4Ebp3fBjiUjsZZtBIeiJuZkF6EmUOUxEw2BzFmMoVrjrnD1xDaFc1Jwu6wE/fAHx4dXoUjparLNCreJhE7iUgzHH/40Omk4dkshUtzICCQMAaJPmdyzKoSHhcCUdZcgZ54CCRuQz2YEYkHAspB9hEVLRyeWnvE/zBas+GPHZ2oJAq37TIGazXvHupru3SNoGXYsGQFPb5+N05NLhgx6WqNcvXl2G/o3sIBj2+aD2/uXsV43d2AEtB2BNFjKqlXvSaLYLtVdZGEENI0APUAXr1AH6LOnKdGhQF550dHRyYJt/osPvoSMmQzkD/M+I6CVCFw7uR32rp6kdG2Wlnlh+fJZMGXKfHjy5AWY57UC21LVwdTMAvTREvbn9y/8ga8PGXT1lI6hDQeWT+wUJbC/Za8JUKtFH21YGq+BEWAEGAGNIxAa/AMOb5oFDTsOA0MFfIgaX4DMBFTLdkQrwb9oiPpUgMwhYAVLFg3eTvYI/PwZBkEBvjCtTw0IDQmK8/X0HLsSSldtHOfzEvsEL3cXkeF4/dROMfXMLTchW448ib0Mno8RYAQYgURHwN/HCxaPaQ3dRy8DcvUlpbCClZTo89xJggA94exZNQHuXzkKlGkYFOgXZR3p0qeHfAWLQ1E0EeeyLAwBvl6iZI61XTkpvUOUE7R0h2q7BQX6Jnr6sZbCwctiBBiBVILA718/IW269El+taxgJflbwAtISgTIDf7h9SMI9POGu5cOgY/XJyhSqho07fZfUi6L52YEGAFGgBFI5gjEpGBxFmEyf3N5+bEjgDGFYFW4tOho7xBRbDb2s7gHI8AIMAKMACMQfwQ0Fz4f/zXxmYwAI8AIMAKMACPACCRrBFjBStZvHy+eEUgYAu4f3wDFq7EwAowAI8AIqBcBVrDUiyePxggkKwRuntkJ5w+sTlZr5sUyAowAI5AcEOAYrOTwLvEaGQENIdCw4wgNjczDMgKMACOQuhFgBSt1v/989akcASo1xMIIMAKMACOgfgTYRah+THlERkBlBE7uWgIDGloKzi6VT+KOjAAjwAgwAlqPACtYWv8W8QK1GQFiFB7c1FrUBjy5czF8dH4Wp+XqZdQH4ukK40DzOOHGnRkBRoAR0HYE2EWo7e8Qr09rEHB58xQObZgBP8PDoMeY5ZAjd37BEp81e25sC4Uf/t8BtaU4rZdqCHIdwThBxp0ZAUaAEUgWCLCClSzeJl5kUiDg5fERNszuD9893cAoqwl4fnaRLsP5+R2hYKVLnwGmbbgibecNRoARYAQYAUaAEGAFiz8HjIAcAvOGNQbdjJmhRMX68PnDK3HU5/cvyGdTAspWawYZ9bNA8A9/WDS6Jbi9fwVZschyT7Ro5cpnIzcS7zICjAAjwAikVgRYwUqt7zxft1IELAqVgBy58oO9Qz04uGEm2BSvCDYlK8Hj68dh39op0c774voGLhxaB91GLYl2jBsYAUaAEWAEUicCrGClzvedr1oOAYqh2r92Kjy8fhKZzQPF0YuH18Ovn2Hw8uFl8Sd3Cphb2oC5RSEoX6sFWBcpJ3+Y9xkBRoARYARSMQKsYKXiN58v/R8Cx7YtgJtn9/xrwC0fL/co+/I7lgWLQ+dh8+WbeZ8RYARSIQJe7i7g7/sNrO3KpsKr50tWhAArWIpQ4bZUgcDbl/fhwLqp0GXEIoylclR4zflt7KFJ17Fgltca9DAui4LaddKkAd9vHmBsaq7wHG5kBJIbAn9+/4YAv++go6OD8Yf6oKuXSWwnt+uI73o93d5BUIAvWBUpo/IQZOE+tHEW2JevCX0nb4aNcweImMy2/adDtcZdVR6HOv7GGM8AVM4CfL9D1uzmYGCYLU7nc2ftRECHOHjkBb9kWbDNf/HBl5Axk4H8Yd5nBJI9AldPbIMTOxZjsLpflGspVaoYvH79FoKDQ6Tt5Wu1hK4jFkv3eYMRSM4I0M38zdNb8PblPXj96CpmyX6C4KAgZBj5I70s/cxZoGTlRuLPomCxZHcfoPsa/aXBh6HY5DcqlzP71xIPThNXXxDnUMiAjk4a8Pf5CjMH1gOzPAVgyOzd4OftCQE+3yB3/sKwclIncHnzDNKmTSew+/MnAj/CLru5BeTIWwjPs8ZQgkLiYYwUJ/n76eVjW+DGyS3w1eOTWK9krWWqNoKGHUeCSc48kDZdeklznF/9vnuCxydnyIoPgzlyW0VRmoMC/TAk4gR8/fwBryEt/MX1B/8IQCXPEzLoZYZC9hVFMo+vlwfksSoCWYxNBUa0bZQtZ5Sx4rwwDZ3wE0M6vL9+hpx4rYklIRhSMqKVHU1niJ+5ANl5WcGSRYO3UzQCZMJfMamLUKqI4NMPSULpyT026TZyCZSr2SK2bnycEdBaBC4cWgtOT26CXZma4O31GS4d2Qi6urrQrFl9KFy4IGTJYgA5c2YXN/kfP4LA2fk9LFz4rwj4uOUnIXe+wpAGb8TaLqRArp/ZD37/CoWwsDD8jv8SCSs+aHWO+L7/RYUiPVrsvoHb22fgg0rIr58/IYuhsbh+UoTcP74F0AEwwFJSfqhQkbKWQVcPwsNCxeVnNjCEH4H+YrtcuVLQvHl9yJYtK4SHh4OHhyd8+OAKb9+6iIe1IFReScg6aJ7XCqzsyoOpmQVmKL+Ge5cPQ9myJaFDhxYC/+zZTeDZM0eYNGku0PtAMnzuXqHQZBBWRRAZzqQAvn1xF+NFg6B0lcbg5eECLx9cEcqyzzd3+Ob+DrIYmYKbixNy9IWLcYqUrgr12g4Gw6zZITw0BDbM6o2fBQ/In98CLWi/hfJkbGQorsPNzR0cHZ0gffr0kDdvLnB1/Qy/fv0S40j+y6SfGXJhHGpGAyPkAzRG674u5EHFMwuO/w3XkyOXFeQvXEpwBUrO0fTrlgVD4cW9i1CsXG2o1aovfmZtNT0lsIKlcYh5Am1H4MPrR7BgZHQlycAgMwQG/pAuv367weIptWz15uIplWv1SaHhjWSCgCC9RXcXJW08vX0WCharIJI1Prx+HOUKDhzYBLVqVYnSJtnZu/co9O8/WrIrXknBsC1RCa0qFhCENCXZkGDXxCwvus71IX0GPWE5IAXMJGdeYe3IbJgVKU0MhDIja0kiBYisPuqSIFR0fFBp9P3+BZ7cPAWvHl6BAH/fKMOnT58OFQlLyJAhg2j/+fMXKhJGUKxYYbC0zAMZM2YET8+vYl2fPn2GQoWscDsteHl9B319fTA1zQre3r6QK5cZnDx5HgoUyAfFixcBGxtrsU3KkyIhq9bnzx7w5YsXvHr1Bm7cuAcvX74Gd3dPobiQgjt4cC/IlCmj9PR9+45Bv36jpPuqbtBvGa3LzCwHWFvnh2/fvkO+fBbQokVDuHXrPsycuVhcj2S8HDlM4ezZvXj9eSVN0tefqHA+fPhM4KOvnwl8ff3A3z9AKOV37jyEgIBA8PPzx2tyFr+fnp5eQJjSNZIyKpEsxibC+p8psyHktS6mkkVRcm58XkkBps+8r+dHsLAtI5TJ10+uQ/UmPTRmcWMFKz7vFJ+TohA4umUenDvw74lc/uLIfD5l3SWNfQnl5+N9RkAdCNDNzAndfc7Pb0OgnzcqGR7g/OwOWht+KhzexqYADB3aBy074dC6dZMoN3bZE0jJGDt2BtSvXxOKFCkEoaGh8OjRczhw4IRwn5O15sOHj6h0+EhPIyWK1iN7g5UcNDA0QgtRNrwJh4PXFzcYOG0LWtNqSA6r/OqOFhmnpzfhy6e38N3jA3z78hEtUF7S883MckK7ds2gRAk78PHxQ8UoG+TJY44KhxXo6elK+2nzxsGDJ6B37xFiiU2b1gMHh7JgZWUprHFkVnvw4AksXbpOHK9Tpxo0blwHLCzyoCWshFCAlF0bWfPevHkH37/7wJ8/fwVG9D6qU0gJCwoKho0bd8GSJWujDJ3DPC+0HTgHbND1KK+Qyivd9BmibG7iHEyIbEWL1vP7F2HB3ghXbkLGUnYuK1jKkOH2FIvAD3yC//7FVQTumuJTdnbzfKJOoF6mzHBq11J4cusMjBzZHxYtWhMNg7LVmkJ3JA4NCQqAI5vnQq2WffB8y2j9uIERSCgC5LKiOJgvGCdD1o6KddpC9lz5lA5LfZye3IAPTk/A6dEVcHd1htCQYDA3zwnZs5sK60X58iWFBSNv3txo0bAU1otbtx4IJWnGjP/UakUglxhZMwICfghLELmR3Nw80HriLZQvOkaWDbqpkzKWLl06WL58g4hRmrbxutLrlD9AN9zLxzbDwfXThRJBiiJZa8i9RVak3LkxxiiHiXCzkeuTJWkRIBfzmjVboWpVB6HI0WeiefOuqPj/RmtnBnRfojsVrU2/8fNCylbQj0CwLVlFKF9k7XLBz/ft8/vAvkJtqN9+KMaA2UVTylS5QhEXh58dTbq2WcFS5Z3gPikCAaJWuH5qZzRrVbPu/0HxCnXg7fO7sHvleHGtJ07sFD/IZcrUiXLtFE9gbJITaqMP/8LBtVCpQSeo2rBzlD68wwioA4E7Fw/C9sUjowzVd+I6ETMUpTFyZz9mvV7BwGhyW5F7j5Iy7O3toFKlcvG6ASmaQ5Nta9ZsgfHjZ4ug79nb7sQ41W+0wrm+fQ6OD6+KeCPK+iWr28qVc6SuvhgH4INahQBZRclVSSEZ5G7V09PDGK904sFi8+bdIs7LAGMBgzD2jBQjcmGSskznGRlngxyYMKCHFi3KcKVsbnI5UsxX7vxFRHxcUl0sK1hJhTzPq1EESJmiNOk3z25ClYZdoHHnkaJ8zftXj8S8ZcqUgMmTR0LfvqNE4KkJlrT5/tVNHLOyyoexFBEKlmSR/v6BMGTIeDh+/KxoMkMS0RY9x4Nd6WqSLvyqBQi4Oj+HjCJTy1Ll1Sh7knV7/1IE+BKnGQllVu1aNgae3D4ninC37DVBtJOlieg55F0b4qCC/+izGRToK568FRwWTaHBP4QldfuSUdC2bTMR1Ew3n+vX72CavpEIvKZg6DRp0+A4xYTr7da5fTBwYHeYPn2symtRNn9itVMANcUtnThxHg4dOimmHb34COS3KSldQqC/N1w9vhU+vXsOepmyQCZ8fz86PYZPWIoqi2EWcKhQWmBEMUssKQ8B+oyQ9ZMUKvoOhIaGCfcuxYJduXILnjx5IdybpJj5+vqL74KT01txjgkmJXQZuRSsi5ZLEmBYwUoS2HlSTSNwBX+Q90eWrkmDQbMte02E/LYl0eq0TgQ6/vkTNUOQTNOUUUNBpdOmjVF6g6pfvz3cvfsQl68DVoVLQgM0URcuVVXTl5PqxqeU6p8Y27NhzgCRRt5x6DzhvvJ0ew+Lx7YWMUUTVp2NkglEAc2j2xVHV1MGmLj6PFw4vBaDrA0wsPkyuhvC0Z0wHNKgGyoE080ppd7V+SnoZ8mKN+tHSAL5Ha2YdaEIKszkcnjv+EBqzTTLk0+kqYdjdpaI6UG3gj5mipXCDK2w0GC4d+kwZkwVhAmrzovPDdF8nNu3AnLiU3UnJJul418xS7VRpxGYoRWMqf11xfvZbdRSUcPSy/0DWmHu4Zx3RTA4ZaBR5hoJZfAdPboNXSlFhbK3ZcteEVCcLl1akVGWObM+7NhxQPSleJtNm5aK7C7RkAz+o3giiiuSiGUhexi75JjYvYjZjC/vnwf3D28Q5yCoXLm8UDSDQ0JAF7+vQ4b0grp1q8cYWyQZl19TFwKkhN2790jEq5FLukrDTvAT3Y6f3j6FwqVrggU+NH39/F7wulGyElm+DIzQjYzfWfpuq0tYwVIXkjyO1iBArOu7lv8XbT3WduUEv4+ZRUH4gvEpslIBn4IpA4bk1KndGDxaRvawdJv6NGjQXuyTxYLithYfeCk9zhuqIUAxbO4f3yBJa0G4dpJ4xxZBxbrtoDK6XL9+fgdbFgyLMpADxh9Va9wFLh3eCPeuHJEeGzn/APLyZBRKEVmcTu9ZLvh5ApCj6Kv7R2k/2Q0KuCYXgyQFnWKUKGbn5MkLItNJ0rdoUVuoXr0Sxgn9FG4nUmqIA40oC+hzQNlelEFFmWAk2c3yiLTsQH8/kM1Apc8JxQnRvPkKFcf09y9ijWK8oB/iXBOTbFCjRiURF2VoaAiGaJmhbDWiSZBkt4mOCv6jWCbK2CpXrqTSBwMFp2lF09Wrt2Dx4rVw+/YDoUCWqtQAeo1fI9Y2b1gTERtJWO7YsUrE7GjFonkRyQYBsnxt3rwHkzKmS9cs+W7SwwkF9AcHB0uP0UbJSvXFw5NV4YhMQ7Jwy2a6Rukcyw4rWLEAxIf/IUBxD0TURq6SYEzFDg8LAVMM8HZ1fobWn1Ch/VNvYh0mq05S0Rg8unEKNqLlQxWhwNp58ybhzawANGrUUfjvGzeqBevXLxJBt4rGMDa2ljZT/Fbd1v2l+7wROwK/MFtsxaTOmN12N1rntPh+/MUfPbIw9uzZEfbsORyF2DXaCZEN2TFZwevLJ6GMUJCznZ2NCG6mTCgzs+ximxQjSiunH1ZlP5gUbO3s/EEoSDSGKkIp6Rs37sR1horxKauLMryeP38FHz9+gqJFC+NnKS3s3n0Y990wg80X15AZChbML5QicklTNpuqLkZV1pRc+pCloVu3wXDu3BWwsLbDyglL0AKXAZ4jX9HBDTPgv/+GiMzG5JLll1xwT23rPHLkNNJOXIby5UtBp06thCWUHmLod4AyGykTljjK6MFpyZJ1SMvxL/uUsBo+bx8ULFo+zrCxghVnyFLvCetm9hXuNVURaNRxGGZ+VAIy+0sYh+lJ/pvHR/iDzNCaZtRdPaUbvECCvZiELFWjRw+EVas2w6VLN6FG855oJdkglK4+fbpEO/XWrXuoiHWStlMcTq0WfaT7vPEPASqv4of8Q3kLFP3XiFtLxrYR3ETfv7pL293dn4ug1kmT5gHFT5QqVRwmThwuYi4o64h+COkvJCSCIJKeQiX8OmfOXBKxF717Y8JB1QqxWnykk/JGkiMwevQ02L79AJJOlkZaBVfhqiHSX6KSqFu3Bro8lwilNckXygtINQi8e+eC94SpqHSFR4aDAJTB7PEemD0eV2EFK66Iabg/KSDa8CRLVijK0CHlyM/7K6yd3lOkzurq6WO2RmYRk0J9VBGrIqWheuNumGKeX5j8d68YJ04jzpP0uhnh3cu7SHvwAxp0GCr66aNP3B+Z1MkXTiSFiuSHvw9cObEV+xiL2CoLzBqRxe0pBiKvm9lH+NizmppBNiRAfHn/kqKhRJsBpgYXKFIOXYdO8ANZnM+f3w+2tv8sVZITKfV82rSFsHr1FkkTjEA3FRdxlcIh3di9cgK4Oj2AklWaCXJJCtgmyZzFCH4E+IntggULIH/SRkGsKBr4v1SDwOnTl6Bjx35RrpesChKCTbIEsjACiYEAfRYpZovc9GSNpnABWVl6+LVQ/mXbVNlmBUsVlBKhz4H10+Dy0c3SmSgWpVyN5qKQMMULfcVAWCJWo2KrlIZK3E0/w8MECzMRYUpcHqSgSeI9pIPFY4NKK6xCCxBZmVr1mQwrJ3eNcRSaX2RjYS+q0wWgmFRQfhCKfUmTRke4ZegYnZvFCBUsX2+gkhNFsayBkYkZuh+tMHvICGtm5YfXj2/AnlUTogxlhQHs5liug2qnUQCzfIwVdabaX5R1FRzoI7hVJKUtJAMZGxuJlPYJE4YJl6GkXf7V3LwYWlJCpM3ks+89fq10PzVtUCFssjiUrNwwioJLGNxGJXXH0tHR4Bg0qKeUA0fdZIbRJuMGrUSAMsNy5SoeSZAJUK1aRRFnRe5bFkYgMRC4fPkGTJkyHyijfMuWPUqnnLbxqrjfKu0Qw4GYFKx0MZzHh+KAACkebu9eYtFULCeQMZPg55C1zHz+8Aqe3TkfZcQbp3cC/akiddoMgHwF7ZEzZwQG2f5AJSIdjFt2Amtu9YZvnp+xtlVetLIcFDFRRMhHMTA50JpUtFwtpRwhdmWqw39LT2CWlZEob0Ep4WTCVyYuLg8FWeCnT+5AJlaqU2VikhVdPEGiBlf+/HlFyQkKEqYsPCIYrFKlAlSsWFYohHfvPhKkhOQHpxIUZD168OCpCH599uomnMF2eenVqxP06dNZBCavXr0V/D8/gdfPHeW7iX1SAHPnzCxicczNc4i1UUwO8a1QwDOREebObRZNSVA0GMWDSBQsKjXStv8MRd1SdBuRsa6f9c/6MAOL/lIZFBJS8Ckub+/qiVEwoLIbjx5FFMyNcoB3Uh0CVGrm2rWj8OLFazDCGnfk2qXfDBZGQNMIUGgB/YbTPePlSyfxJztnt1FL0CNRDg5vnoUP8zfxHplJ9rDatrnYswpQ0s2ELEl4VyGbjYjf8XB9g0oFcnWgUmKM1hdnLLxJRSYlYpbXWsTtENcN8eFcOLROjEGWqfy2pbDQ5ysRRC7pT4U8Kb1bViilNBBjXIh/hyqdK5I8WIjTDRUeiVhhnMP7VxGZctRWu2VfweUkOa7sla7xu6cbFgy9JNZGlgmJLF48XQQNavrHkcosECM0xePo6mYQQcz0wywvFKRMP9r0JEwlIoyNDUUcD9XzSgiL8717j2HMmGmCBM/d/Yt02g6DZmPmW0fpfmrZeHD1GGyeP0R6uQOnbcXyJtXR9ecL+9ZMgofX/qXeSzoRhQDVPmNhBBgBRiCxEaD72Ny5y0Whcom3RbKGWVtvQ9bsuSS7anuNyYKV6hQssuxQBfOsprnABguXhob8wCfx56IsSmhIkHBPfcPUb6pI7vT4mnDbBQUGiIBMekfISkI3fzI50uv7967w9es31JYzYApyhBJEQbr09EapoXTDz4ZWnkxYTNTHxwfTv3NgejYVQE0rxqLSAUSsRh8GMqnTB4TYbSlOgZQLCvSlNG6yAlHf79+9xQeD+lF2Tpky9lh0tHqMHxaT7GbC7WhgjBlWBllxjj8Qhtfth3XLKCuLxqI/KltAQnFOVG3+F/IKycrkyaNg+PC+sk0pZlvCMC17QfpYJb7zsAXCCihxz8oeT6nb4rOFn48wLMFCDwTuLmR9vYAZYMXQWvoJSw0tEZe+YcNiwVtElj76DBcuXEh8rlMqLnxdjAAjoJ0IrF27FcaNmyVdHHkdnJ/fgQJ2ZQW9C8UCF0NvjiYkJgUrRbsISWkJwEBqsi6RJcn9o5O4ady7fEjgnNUkB/h6fxMKhyLgGzSoBa2bdhEWElJ0SAGimlo1alQWBVAVnSPbRvwcpEjJBmbLHlfXtpPTbaGgUWFToiR4+PCpSEMlWgKKfaI1/MDyA+Sa8/X1EdPmzJEJKpV2QAtQm8g1phHKHAV4e3l9w3RXrEiP3Dt0DcScS2nqxYsXVteSE30cUhqIjM7F5ZNIo6drJDelk9M74X4kbCQyeMZ2JKmzVysZnWRsbXgl+g3f754iy88DearIGuvv/QX/PAUZJ9W2I7xiErJStWrVOKYufIwRYAQYgURBgGodygpRDa05rTzcRbavJrdTpAWLXBcPr5/Ep+6zMWJHVdepUjmR91EsUUa0Mj1+/BwuXLgGPXq0x6yn3DGezweTBoFTpy4g3cINoVRKFFh6/0gJJsWArIZGRhH8J8R9cvv2Q8GPQtxEEsmEWZKGxiaQzcxS1LIyx7I4lE2ZDcvppCRrFZV4+fLpLbxCa+yH14/A5fVDkVwgwYHcrEWKEJ+UmSgUTLFqhCP9kcuVCDjJmkp8URL3K/FMsTACjAAjoG0IHDt2BjnXhmCsaB6YsflmoiwvWVuwiPhyz6rxEIhlLkwxaPs7BmGHBgdgOYwMyIWjJ4qGkjnQMGt2QTFw5fgWeH73gkrArloVUZpDtjO54uiPRXsRWLRojahNJVkhubHI9Uuih0ryLwyuJ44diWRDF2nZ2h3QxVVcxMxlwy+fHmZqpjSh0jNvnt7CUhEvhFWKmNSpVAxVqqeAT3Jr9+7ZVrjyiNmc/nLlypmiFMqU9p7y9TACjIDqCJiamojOFE/8+slNsMUwIIlQBv/jm6ewkHpdDAWywsD2jEgtYyIqTUj6qPtV6y1Ydy8dgm2LRojrtrbOjzcEM8ie3USk/v74EQxv334Q1bZVAYZipsLC/sUV+fg4a9x9p8q6uA8yw6M78v37j+iGLCJu+Bs27BQB52QtKV3aHooVKyxi0sji8vv3L9i//zg8ffpSIXTEul6/fURwdrp06aUEqAo7J2KjzzcP+PjmiahZ5+vlIWqvpUuvKx4OKOMzN1aGN7csFOfPJPGJ3TizG57cOA4en96jS9tIxO2RFapECTthpS1ZspiwSCXi5fJUjAAjwAgkKgIU/0wcV1T7kqosUC3RNv2mYjiEB8wbpjikYdzyk9GIkuOyaK22YJFLh24QdCMk8kn5eCVZqgO6AZNCJSuzZ4+H2rWrCUoACg6nGCmKQbp//4komEpUABYWuaF16yboBsyGypg7uLq6Qb58FtHmkh2XtxMXgalTF0h5SgYM6C4l+aQSB9eu3RZ/qq6ILJpU2FMi9BkjjjF3FyfBnfX8/kVBqTF/z2MwMMwm6aax16+fP8DZfSvRbX0crWs/IQu63Cwx+9HAQB9C/MPA6eF5UVqFFmCY1RQmrbmkcvwXZfrtRQtvGp2/wvK6e/sioYzKf480dnE8MCPACDACWoAAZYFTJvrAgT2gTZumYGPjAI+unxB/8sujTH7yetmVqYFF3G3kD6ttP53aRorHQBexXMn1U9uQe8lNnK2f2QDLKZSBgsUcBEdFHqsiUKpyQyzF8hypBx6AE7o/riDHk6ycOHFe0N1THTDKZmrVqgkQyaEyyYu0BvTHol0IUDakhAhOlkFd2Sq7jlyMX5AcIhuSeMFIocqONRPN8ctCMVRERnr1xDb44HgPvri9x2zRqBQYNG5QgI/GFSyiNJjaJyLLc+rU0dC+fQugZARZBahPn5HIdH5cXKq/DyYY7FsBLXtNVHbp0nZyn+9fMxm5135AtmzGgl5i375j8ObNO8iSxUAkNvj5BYjvBZnOW7VqpLT2onRQ3mAEGAFGIBkhQLQ9xHe1ePEa6apjohQiCqX+UzYlSh3dJHURjmlvD4H+/wKPpejIbLTtPw2qYQkWiXx69wI5pdYDsUunQ8bun+EhGJNFRJeheBMNEd0otiRfvryQNasR3niyCjqFLl0o9qSgZBh+1UIEXrx4JYLXHz58hkHpl6S0FzEtdcjMnWBbsnK0LrMG1IbPH52jtJNSI5sdl9+mFOSzLQE1m/cSXGZROuOOjxdSdTy9KZQzYpkvXLKKfJcY9wP9vWHBiOaCvLVJk7qwbdtKhf2J0+vw4VNCMfz06bMwbxMRXrkaLRT2lzTKus8lbYpeJddNpKtE/Joxo56IySICVsk2vVLCAMVqkYuxZs3K0qB2RWNyGyPACDACSY2AbN1Y8nb9RD2gSsNOojoKkSLnzFMAq6MYIt1MeviBv8eBft6QK78tUiHpqm3pMbkIk1TB8nR7B46PkGsKXSg+X13B2xP/vnkiSP/ipIjIc/qm61Iw6Kl9UJMC0n3akKRjUj09F6fHyI6+CwPcbkTpQ5lQHz8+itLGO9qLAHF8bd26B6kUvLFQ7D5hnVG02gq1WkPn4QuiWISoH1lHn9w4IXjOyKJlaVMaqjbqAsd3LIpCCEt98xbAOKW67QSZa3hYiGC+f3zjNLx9eY8OS6VWyz7QsucE6b7sBiluRPB6/sAqCEarFfGoEQUISdmyJWHNmvlC6Se6DHri8vb2jfyL2CbXNrmujx49I85pN2CGWK/YUfIf0ZBQZuCfP7+Rw+wn0ix8JRIzNHkXgpM7F8Pz+5cFOa6S02NsJo4rpmGIESI+yAgwAkmEwKNHz9BTNU4UjZcsQaIHSPYT6zUmBStJXYSkXdKfrNCNirKfSBNNlx6ftDP9y/ailHMKFB658CC8f/kA3qHb0DxvQXiBBX4pi4z+iHHd8/N72SHFdv36NaO1cYP2IkCWlH79uokFNm1aDwlOJ8Hnzx4ixo4sLeTmzZw5M9y5eACtoN9FRgjVODTMlgMJVL/AN/d38P2ru7Bq2jvUEZki7xwfQNlqzaDj4Dlwdv9quIoZpySfsMTRp3fKXXIUIE70HVlNzUV/Rf/dPr8Pdi4bG+1QiRJFRXB5794jwNHxjbQum2zHjJkyi9qMmbNkE0S35CKnOpUk9JmmGEXvr26YGegssmiJ9d8Y10Jxi/R9oExBeqCg+C5FQjFfxkhbQTGIBQpYYvZtBuEqzJAhvShdQuZ02iYONcKWMgubN2+gaChuYwQYAUYgyRHYtetQFOWKFkQhREQoqk2SpBYsAmTZ+A7R8KB4mgmrzon6ehTDQozapHSNbFMsWl9FDWSxkKfJ79y5NSxfPltRd25Lxgjs2XMYXW/7hauLiGCJVZ9inGxtCwpuJ7q0PXuOCHJR4nSSfC4y6OqBaY5c8AfSwDcPV1ECKaO+AZCZOQwZ/fX0MiKVA5YvQosWFeAuWaUp1Gs7UClS7kjYuXXBECBlKS0qPlQrMk3aiAzGtLhNVBJ5rAqjApgTff/I2WWYVbzqGxpHM1fTQ8bnD45w7cR2eISZgRLXNylCpFiGoHXP88tXcS2kNFEiB7n0iMOKYq/oj7Iv6RhlzhJHWEri9lL6JvABRoARSBUI0O84kV+TWFlF0CplN88HjToNF+ztVL4usSQmC1aSKlgUT0W1zshFKC8rjr0FsjhIFLC6WOw4JChQcFwRxxH5UyUyadJIIAVKEk9CT+IsjIAiBCgTlYLAyR03fnzMCje5FImks0nnkWBVpIyi4UQbueeIDZ3iAokh/RfyUYWFhgiXXXCgt6gi8Of3TxHLReWYSNmhmlikEAYF+EG/KZvBCBUvCsz3dHuLlrVN8NH5JSqKJqLQNVnBKK7Q2jqfNEidGPeJcoSoGFgYAUaAEUitCDx75ggzZiwS8buyGFSq30HE16bHh9us2XNHCyOR7ZuQbY0oWOFhoSKjLwCLEee1soN0GXQxDiRc3Cgou4tSIPXwaT4mIT4jygrUSZNWEEAaoXsnVz5bdFNEKEh049q1YhzcuXAASMFq0nkU3lSCITjQH92CF7Hg7BTp8JSWuW7dQuk+bzACsSEgX79KWX97h3rQd+I6cZisS27vX2J81n0k9MTs1pd3RdwgHaRg8uzZTYW7jaoC5MxpKqxpFP9HFCL6+vrCXUif+8+fv8COHQcUTlmtWkXo378bVK9eUbjwFHbiRkaAEWAEGAGBwJEjp7H6ylClaBhnMxVxuNmRb7AQ0vgQ2bQR6ikZ0FORUNGIguXl8RGm9Kqq0tryFSomYjvIrPcX/8hdYmCcQ6TUUzCurBQrX1uaPZUxkwGmoAeIG9n5g2tlu4ltesLPn99C3Lzmzp2kUn3AaINwQ6pGgIoUUx1CCjqn7Dl9/YzQsWN/ePnSSYpLu4EzxbYbxmq9eXIdviNpHZWNIfJTopegmo/0V7SobZzIPImT7fDhkyKWjGgW8uQxF0S6ZmY5pHPzBiPACDACjEDMCFDy0LRpCyE4OFj8jhsaGoiKFfSbTr/xd+48FPyYt27djzJQvbaDMATEQFA2UFgHlUvLamIOaTEcQ2LoiXKCgh2NKFg0DxWNJfLGT/hEHxzoJ4Jx3zneV+jyU7AuaROlj1MWFRUWViSSNHM6tmLFbKyZlhMKFrQSNyRF/bmNEUgoAkRWW7t2azEMuZzJnUeVBMiqVK9eDWRHLyOCxRM6D5/PCDACjAAjkDgIUHZ6s2Zd4d69CEYBMwy9CMQqIqSgyQolTJlkz4mGIFNUtNJjzVoLLKuTHWNsDSBj5iygn9kIMhkYiljaTJmNYWJ3BzrdED0cAVHGIZeHvKBCkwXb/PVxoL9//0Am1PAo8DwNZhhlNsouAnj/oDtQJw1mHaE1inycZJWiP109fdDF4GB6TY9uw29YO/Dzh1fiGAX/UhDx83sXhCVLMm/Vqg6Y3ZQPuazCRWFZ0j4pSPfPn7/SJ3rKcqK1Eis7cVuxMAKJiQB99kjRZ2EEGAFGgBFIOQjQbzsZd4gFnjgJydhDChd5GHx9/USs6+vXzhhUHyCsYRRcL0mWikCB7gtCjzLEsVRXsMaPHyaIB2liCqilRbi6umOQro54eqdYEmqnP8rQIu2QagHR4n5giZMgfA0LC1P7O+Hp+ZJJENWOKg/ICDACjAAjwAgwAjEhQApZQMAPVMj8RWjJmzdvMWZWUPTETcFydX0sUr5jmiy2Y6R4kUb44YOr6EqulvDwn+LvJ3L8kHJGbT9//hIlPYKCQoQf1cfHDzw9vcTfF0xJp22JuLs/j1Osi+Q8fmUEGAFGgBFgBBgBRkBdCASgi9HCoiQNF03B0jifAXH3UNAuB+6q6+3kcRgBRoARYAQYAUZA2xFIo+0L5PUxAowAI8AIMAKMACOQ3BBgBSu5vWO8XkaAEWAEGAFGgBHQegRYwdL6t4gXyAgwAowAI8AIMALJDQFWsJLbO8brZQQYAUaAEWAEGAGtR4AVLK1/i3iBjAAjwAgwAowAI5DcEIgxi5Ao5lkYAUaAEWAEGAFGgBFgBKIjEJOepEOkWfKCjNV62OaCfznlj/E+I8AIMAKMACPACDACjIAUAU/cyof6VKi0BTcUKljUIVLJyiDbmbcZAUaAEWAEGAFGgBFgBKIgEC6vXNFRpQpWlFN5hxFgBBgBRoARYAQYAUZAZQQ4yF1lqLgjI8AIMAKMACPACDACqiHACpZqOHEvRoARYAQYAUaAEWAEVEaAFSyVoeKOjAAjwAgwAowAI8AIqIYAK1iq4cS9GAFGgBFgBBgBRoARUBkBVrBUhoo7MgKMACPACDACjAAjoBoCrGCphhP3YgQYAUaAEWAEGAFGQGUEWMFSGSruyAgwAowAI8AIMAKMgGoIsIKlGk7cixFgBBgBRoARYAQYAZURYAVLZai4IyPACDACjAAjwAgwAqohwAqWajhxL0aAEWAEGAFGgBFgBFRGgBUslaHijowAI8AIMAKMACPACKiGACtYquHEvRgBRoARYAQYAUaAEVAZAVawVIaKOzICjAAjwAgwAowAI6AaAqxgqYYT92IEGAFGgBFgBBgBRkBlBFjBUhkq7sgIMAKMACPACDACjIBqCLCCpRpO3IsRYAQYAUaAEWAEGAGVEWAFS2WouCMjwAgwAowAI8AIMAKqIcAKlmo4cS9GgBFgBBgBRoARYARURoAVLJWh4o6MACPACDACjAAjwAiohgArWKrhxL0YAUaAEWAEGAFGgBFQGQFWsFSGijsyAowAI8AIMAKMACOgGgKsYKmGE/diBBgBRoARYAQYAUZAZQRYwVIZKu7ICDACjAAjwAgwAoyAagiwgqUaTtyLEWAEGAFGgBFgBBgBlRFgBUtlqLgjI8AIMAKMACPACDACqiHwPyiDp7q2ym5aAAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from eomaps import Maps\n", + "m = Maps(facecolor=\"none\", figsize=(6, 3.5))\n", + "m.add_feature.preset.coastline()\n", + "m.add_feature.preset.land()\n", + "m.add_feature.preset.ocean()\n", + "m.add_feature.preset.urban_areas()\n", + "m.show()" + ] + }, + { + "cell_type": "markdown", + "id": "3f027b9b-8216-4e22-9329-43ef8f2d9ea1", + "metadata": {}, + "source": [ + "You can override the feature-styles of the presets to quickly adjust the look of a map!" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "7c1eb8eb-9a8a-4dfa-ad14-7168fdcd0218", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAFeCAYAAABZ12FcAAEAAElEQVR4AexdBZwV1Rf+qO1ki46luzulu6QRERAVFf6ICIqigoIIiIQIggGIhEh3d3c3LM0GbLPN/r9zd+ft27dvkwUB5+7v7fSdmTMz9557zne+kyU2NhZ60SWgS0CXgC4BXQK6BHQJ6BLIPAlkzbyq9Jp0CegS0CWgS0CXgC4BXQK6BEQCuoKlvwe6BHQJ6BLQJaBLQJeALoFMloCuYGWyQPXqdAnoEtAloEtAl4AuAV0CuoKlvwO6BHQJ6BLQJaBLQJeALoFMloCuYGWyQPXqdAnoEtAloEtAl4AuAV0CuoKlvwO6BHQJ6BLQJaBLQJeALoFMloCuYGWyQPXqdAnoEtAloEtAl4AuAV0CuoKlvwO6BHQJ6BLQJaBLQJeALoFMloCuYGWyQPXqdAnoEtAloEtAl4AuAV0CuoKlvwO6BHQJ6BLQJaBLQJeALoFMloCuYGWyQPXqdAnoEtAloEtAl4AuAV0CuoKlvwO6BHQJ6BLQJaBLQJeALoFMloCuYGWyQPXqdAnoEtAloEtAl4AuAV0CuoKlvwO6BHQJ6BLQJaBLQJeALoFMloCuYGWyQPXqdAnoEtAloEtAl4AuAV0CuoKlvwO6BHQJ6BLQJaBLQJeALoFMloCuYGWyQPXqdAnoEtAloEtAl4AuAV0CuoKlvwO6BHQJ6BLQJaBLQJeALoFMloCuYGWyQPXqdAnoEtAloEtAl4AuAV0CuoKlvwO6BHQJ6BLQJaBLQJeALoFMloCuYGWyQPXqdAnoEtAloEtAl4AuAV0CuoKlvwO6BHQJ6BLQJaBLQJeALoFMloCuYGWyQPXqdAnoEtAloEtAl4AuAV0CuoKlvwO6BHQJ6BLQJaBLQJeALoFMloCuYGWyQPXqdAnoEtAloEtAl4AuAV0CuoKlvwO6BHQJ6BLQJaBLQJeALoFMloCuYGWyQPXqdAnoEtAloEtAl4AuAV0C2ZMTQVhETKx3QESizVmyZIGHkwVyZM8KH26LiHqSaLssONrmgLNdDviHRCEwNCrJdsscWeHuZImo6CfwDohEbGxson30cySIQ5dVgiz09ypOFvr3kfBO6N9Hgiz070P/PhLehrg5/ftIkMiz/D5En7GxzJYl4WwJc8kqWKJcbTzuZ9gzB49vXc0d0sCvOugNn8BIwzZtpnIRBxTysMHhywE4fi1IW22YujtaqDp8eey6Iz6IikmsXOnnMIgKuqwSZKG/V3Gy0L+PhHdC/z4SZKF/H/r3kfA2xM3p30eCRJ7199GisqvSexLOmDCXJheh1rCLZUoUo+SUq+rFnVJVrsSylZJypZ8DBuVKlxUgH4f+XgH6N5jQaGmdh/596N+H9lbo34cmCb3/SJDE8/k+xDqWXElVwdJf3ATR6Q17gix0xSdOFvr3kfBO6N9Hgiz070P/PhLehrg5/ftIkMir9H2IUSi5kqKCpXceCWLTP44EWbxKH4duHdOtYwlvtj76N5aF/p3HSUPvBxPeCr0fTJCF9n2IJT25kqyCJVgrwVzpLju90TV+ebSXKjWcne6+eT7maf15xL2deieY8JXqnWCCLPTvQ/8+Et6GuLnM/j7MBfNp50xWwZJoQV250pUr7UWRqd5YxUlD78wT3orMbqxSCo7RlXb9G9TePP0b1CSh91EJkngxvg/j60lWwRIqBh3QHhf1qDfsL8aLq3fmCZ+uruzGyULvaBPeCf37SJCF/n3o30fC2xA39zy+D9NzJqtgCc+VHi3orvi89KhHPZJPPhy9M09oPp5HY6WfI0HeusIQJwv9G0x4J/TvI0EWL8L3kXA1CXPJ8mCZIxF9EW5Cf6kSHp7+POJk8V9rdKsVc8SOYzdx7k4YokIfKbLe2CdReBITDVdnB+TKEovN287h/M0QKKo54imzZcuB7BY2sLZzQMsGJXX3P18dvS3R25LkuBh1eIz+fSR8Hal7cIz3NZ5PVsEy3knm9c48TiL/tc78346yc7XPjiJ2D3H8lC+Oe0UimhrDk5hI+HidosJghSxPYlA8vxOOHbSDT6Qzrl85j9DAh4oQ9+6NC3ByyUWlww6uoUVx5qgFvINikS2HFbJmy4YcVnawcswDJ4soNC7n+tytlTGR4bh1ejOyZM2KoIf3YJklAoeXBeHW3QdAlmxwccsFW3tnXDl3FEGBj5Avf0EMXLHM9NNM9/IHZo6oW/81NGjdCw0bNkDVog46n108sbLe0eodrfHnoveDcdLQ+8GEt0IY85MrWUxT1Wg7enk/jtWY3PWXKk4q+kulvR1P3+jKe1fcNQZZQrxw9vIdhGRxgpVdTlg5uGPKsHa4cvlSwsmecs7a2gJhYUkzDxhXa2lpgYiIuH2at+6AoqUqwsrGHkUqNkHHhiWStfg8efIERZzD4G4djjsBwO3HzogMfoAcNi5U5Czx6OYJhPhcRaFcDshhbYcHoVawds6PY5vnYulfv/KcidNRGV+TNl+mdG7ky+uIBw+CcerMXbU6l4c93nqzBnI62yB7tqzImjULcuTIhsePI2FvbwUrq+x4a8BCrYoMT7NS+Rv/60bY5yqhW3yMpKi3iXHC0NvEhJdCt4gmyOK/9H20r+mBbFnpJjBTUlWw/kuCEloKHdCeOdbKonY+uHzuBM5cvsW8k7Hw876De7evIyL8McLDInDu3Bkzr2PKq6wss+PLkc3hHxCGWXP2ITgkTjmZ/XM3WFvlwP6DN/Db3IPo1L4C+rxRHbv3XkX5cnng5mqHgMAwnD5zD2PGbTKcxN3dDu1al4W3dzBCqZgcOORFRSwxp0mDBg1Qt249HDtxChvXrzEca2trQ2UmLEkuTcMOnKlUuQpOHD9mvMowL4qLKGfmiq2Nhboe2fZ6hwp49+3adPHFjZJEMX346LFSrESpSqkE8p5DQiPg5GiDq9d8MXTEypR2T3Zb3rz58ONfe3Hn+AqMGvUF2nfuhbpdRyor4ZPoSATcO4+wQG945rKFNZ/RHf9YxORwhKWtEyzt3GiMiyPi09uSOBG/jErJn8u24tzhzQgJDkLd9gNp+c1lwCQ+vO+FfWfuIyQ6h3re2WhZ1or+zF/eZ65jj9OGPZY22crCfC7CFBUsAbn/2y4ifVSgNVWZo/hkNrdZREQYHt06g/nTPoevjzc6dH0T1tljMPPnGQkXnoa5d/vXxp27zGF58g7uPwiCjXUOPDZRdoYMaoBFS47D2ycYpUp4YNrk15XlJg3Vq122bL+ECT9so2KTOAem8fEWFjng7u6O/AUKwvvBA1y/fp0KmgN8/YKMdzPMDxpYD65U4FxdbHHhojd+mrVHbXuzVzXcvReIPfuuIzIyWq1r1aI0unSqiNt3/PkLwA2vh7h+45G6b9nHmdaoJX/2MShThpNkwsyZs/cw5JMVGa6pTJnSuHLlCu8lTgGtXqMm7B1z4vCB3QgODkmx3qYtWuPbqQv0toRSehGUK+kQLPxPomm9SngQ7pA4byxd7pHB3rh+fAP+Wfgb7t6Ns5gaP+CRo0ajQLXOKJ87BuGhAWjUsL5hc83addC00wDYOLiiYb1aqFmS70gquWn/jUFtmP8dXDuxhd9aNjRpUBPNmjRSUfP3/QIRFRaEiJBH8PY6QzhCFGrVqo2uberjyJXAxLKKv2u9jzI8/v8klEjw6gXdrc2OdpNVsPjSxwr+4EX8OLTH+SI0VnIt/8VR2rx/NuPTd9ppjyLRVKwtbMOpeLjCx8cn0ba0LrzRoyotJMCVq344eNjL7GEr/u4PB7rDUiqixOSiey4yMgZffL0O5y8Q32SmJGdRql2zML75qpU6Iiw8CgdoJVu7/hxddfeQM6cNfv25OxwdrdV26bjOnL0PT08X2NlamjmL+VWi8ImFzc7WAhYWaYZFmq/sKdaKjK7Q0iWWvl//OJCoppIlcqFu7cK0rEUgKCic1rsoZUEMpxJsSatVqZIe2Lv/OrxuPkp0nCz0e/s9/Dr755e+g6pQwBr5HOgKDrHBKa9QdZ9PnkQz0OAhLGxywiOnrSJn/jcUBk3o2WKjcGTVJFy8cA6R0U9w5NABg6W0SpUqsLS2xf69u7Xd0axVB7R//0eA9+F9cTfGDO9v2JbcjJOTEwICAgyb8+bNQ0XsnmFZm5k4cSLqt3s7U5WSa4dXYNLXQ9QpypQpg1OnTuHYteB0n2PBd32wb89OVY/8++TzsZg49nPDsjaTPXs2REfHqEVra2tMW3wQ0TmctM2629wgif9mPyhWvsYVXCTZc/oULMotVleu/tts9rEcvZ3YNAc3rpxBqbKVMebLTxEekx0/zZ6HsZ++a/Rpxc0O+bABxEoTQtfdPytOYfPWS/B7mLJ1I0klaVxRoXxefP9tW4U7iol5Aq9bj5RS4+xkTbdYJL4cs15ZlLTqJDOB/EqXLo0CBQpg/fr12ibDtHbNQrRE2aFc2dwoWyY3LTMRKFQw5zOxKBlO+gLOiKv1z4VHUKKYOxo2KIaSxd3plgzF4qUnlMIrrk0NcXD1mp/hDnLnzoX79x+g//vDULBUdTjlKYkaZfO/cJYrsRbGUhGJK3S9RoWgXmknFC2cD+uP+uKet5+y4Ng5uioLx+iP3zLco8xYW1uhTLkKsGNE5v69u6i8x2H3ChTIR2XTCjld3OHqnps4OGvkL1oWJer2SGK5esT0GnsWf4v5f8w21D1r3lK8+2bnpxrUFshxG80a1THU+W/MiAW4cOHCGDFmKrxjcie5hKex+DygEjh6aG9V56BBg/DGh2PSrVzJwbERgXCJ8cKJYwcw/rvvEl1j+bJ58NA/lLiarJC2RSzRWmnfoSMKlaoG+5y5ULJcdXRuVEqHlVA4/0Ujg+ZCbVHZNf0Klliwluy5r71XhunTfBxaJf/lh6HJQKb/tgVOzOSPiZ3J5ZhN/ULhgIexeQyYmccPb+Lj3gnm/7kLFiParTa2LxqHhXNnGd+Kmv/0kyZ0qfkhPDwaNsQRiTtMrD7X2AlP+HEbQqn4JFdc6GLzcLc3a2Fq2rgEPh3WxHCo4Iq+n7QVl6740qriiVVrUsdzDR8zHeWrv6YaxINHTqB75zZ4QGXAuLSmcjj0f68Zr9Ln4yUwacp2bNh0IYk8xHXo5p4Hbft9CRuXgom2v4jfuf+9K/ikb+NE12m84OHhTkyej/GqNM07OlqhiKcrvLwe4ZH/40THzFpzEe3rFEoUKGFrlQ1vNsqXaL+NGzfCuXCNDCkMxm3Jyr1edDvfgc/1E5j2HQdF4eGG89jYCHYw4frqN2yMa1cuGlyBw4Z9AjtHJ/w2exZu376tjrOzs+WgKRTZs2enNSfO3d1vwPvIU6wKHD08+dwL0FUfZ3nNzGf+29/bMPzdjmw3QqmsWmH8vN2wtPfI1M68QvkyuHTxokE+xjNa4IgMzMLZjpkrCxYvw4MwO3idP6QGcLmLVIBz/gr/etuuXWtmPg9RKHRuzKQ47QwpWMZRhNrD0pUrTRIvrsYubqqYyFAE3b+MiFB/vFazLKpWLo/NJ/0TfRxRYYEY/Hr5hBsymhOTv5OzC0qVqwLPoiVQqkge3LvvjYDwbBD4krWdM4L972Pqd0lN6kbVYND79dGmZWm1Slxwfy0+ivl/HUkRA2V8vDY/fGhjiJI1eOgyXLjkra1OdvrWux9xiPoEkeEhKFmtGcJCAuF76zwO7d1Gy8UTPHr00IAbEqC6RN1NGNcGRQq7Jlvnf3nDRcpcsGSLlx5XYhDXTN/+76BK5Up4lKNYovdKk9OL2rAH3buAEW+30C4zydTeztIQPPHBe3Uxf8ERw3KSnVNYUZnuOHeP3Kjfpg8uH9mIuX/8pvauXbcBeg2fjazZrQxHP29ZHbnki4ggb34iTxi1mwsCSk9r2x4e7Ie95x4hONZBKRSGm+BMZt/HjauXMKxPQ8Mpvpu9Fo0a1MlUi+ide/fx4MoR3L95EVfPHcHevXsN58udywkODpYKD+riYoNrHDwWK+pOy3yCQiaKn7ECKwcLjrNy5apo0qQJStbpqmRlqDR+JrNlpSs+SRUfTebGg49noSRmioKV1g9Q5415egoDeTHS8gG2quqGi1e8sOvUPdy7fhoTRn2ovVOGqbhycuXKhc9n7lINqbYhNiYG6+cMxdrVK7VVKU6HjhyLyePMK1S9e/fGn3/+meR4cbntP+il1st1UPdLcxHKgZXEWFkxOlArU2fswuq1Z7XFJNO9Zx9g86bNGPPxm0m2aSuaNy2pAOmCkYrlnyhX9esUobvHUttFnxpJ4OixWxjxxRq1xtOzMK0YOdC8ZStMnPjDS5lK6/75nRgzrI/RHUJZWs+cu4eLl5JarkTJkkjTSVN2YMu2S4mOk4USJYqjUKHCKFS8PPIUrQzH3MWRLbsFrh5ZwwHISLSkrDZsSOyOnr78DLJbOai60vKd69HNcWJ/XrIqlTsbvh0/GXc5qAwKeISY6CjcuHYRt2/dVJHD5qJ/nQhNCGB0s2lp1KQpj70KW1tbVKnVCFWa90eNcgUyVUnUlat/T7mS592yilv6Qe7GFixduUr4bJ7XR24cvSlWqSfR4RxxxiDqcQAe3jiC12pXwL59B/DVqJHq4iwsLAxYkISrjZsrXrwYhvywweD6k7W3DvyJ2T//iFKlSnLUts/0kCTLAli3YSNx6+bNJNtkhaOjIwIDA81uS+vKkiXcVSdXr44nunWuRLdDVo4Y3VSkoMjg1m1/fPjRcjZyEYmqFLfHfIaR+8bmxcqfBmPT+lWJtsvCZ3Rfiqk/MIjUCk+Am7cfKbxVpw7l0wVIT1LxK7xCuMO69JqXhEOsZMmSsLWzQ/HSlVC/+xeJJPBvfB+JLoALqbVX3hd24uuP45SsRo2bYPu2raZVGJZrVi+kOMV27r4KzyJF0aJdV/z84zjDdnMzPy46ADvnPMiNq6hcsTwOXIt+qax8xvf0rEf/cq6X6RwyqJ3x888Y9tFgg5iknRIwvLRRlpaWqt0SQLyHRy4UL1kK//y9xLDvqDETMGbUJ0+Fs8vsSHCdzd7pqZ5Hr4Z5MkbTIESjqTVWL9PH8TKNBPed88b6NatxeOdK7N+zMxFuwvC1cqZo0aK4evUqcufOTYBxUsycg4MDRk1bieyWtrB08FBKhnSCM8YOxvz5cVYnsXB9OWcvoiPDiK/6Div/WahO0b1HT0QjB4HklihesR5ylayPu+e2Y81fU3GVIfuCjTAtm4/74NqDMBxaNg5zf/vFsPl/n43F7z+Np2su2LAuuZmCBZxx85Z/cpvxzuDPYO9EYGH+XGj5Wg08jHEx4FaiSRsxqGPJZI813fBO/1pU5iqbrv7PL0tnIVQSEyZvZ7DAA7Py6DfwY1Rrm9DRvAzKlbn2KiYqDB+2T/mdadmmI1oP+I7ksdY4v20Opv/wrVmZyEqJNOvSrGIizJXpzi+rrNJzHxIkExtwDZYRd4gJe4CQJ1bwKFwJdu5FDNWYex6GjfEzmSmrNQfu4Yt3miI7LeTvjVmcrCVR3v/dS8Zi8fw5ykI5Yvyv6NupoQK0r95/C9eOb4KFlQ3bzHAc2L4CB/ftVkTFDvbWCAo2Y8lq1AhnzpzBmDFjUKFBFxy/4qcGvE+iwpFVMksQw/Zf6mubV8qJ6DDS8tzJ9tIPPtwcLTJGNHr8WtC/Hnb8vD/AZ+GjlXYitfuQDzri5g74P7iB4yS1XLsmqRXGtOExXR48bBTKlPAkdYENfMNscPP6BZw5vJ1us41q11ZtO+GrSb8p8/ShS/74Z/F8LJg1ngzhcR2oYGu69vkQqxbPwfHjx02rR5GiRVC5en0sXfhHkm3GKySa6tatO8arzM63bVVG4bGEhkHIM8WC5esboubNHhC/cvyc9Xitfq1kzew+Vw/i/MEN2LJxNfFWj5JU1bJ5KeTN4wQ/vxA0aVQceXI74gbpBSRiyJfrnJ1sFGWCTF1dbf9V6oQkF/+cVvy16Ch+n38o2bM1bNQE3YbF4Ypkp8zsBP+Nb/Dxo1s4vGkeLp4+okL/LS1zsMOMAzZPXrhfpVQSC6h0gi0qu+DQ0ZM4czsKl45tRnRUJAqUqAqn/OVgxSjC/4KFQdqrvJZ+iA25g8BIC9zzjyHW0R+Pgx7C3+8e7nhdxokj+0nT4pvkHfr25+VwKVQl1TbxWbxX3gEROLFhJm55XUG79yYqxcb03RXqjSd8poM6ljJcu0QsHjp0CJ3f+QrD327NIB4bNG7eBmtW/K32EV6+EcMaM+OCkwrUGfzxcsOxqc3IeyXylPL2gHdQqcVAZLXOmeiw1PoP2dn0PhJVwIXMUuCqFLHHlgMXce0RFQsOvqWo66fc0kJVUsYlELWqllPH7Tt1E6fvqln1T+op6fEEDSsXemloXR4FRyJ3TqssCXeRMJcsD9b9R+GxOe0t9BBUyup5vLjRd/di0IBeCU/mKefG/rwCq+dPwKGDB5KtqU69+qjdqD0mjv442X2MN+TInpWs7E/QtWtX/P13XMNivD098+7ubvwoqdD4PjQc5uTkiKioaGUZExN7WFjikaA0aj3eep80AMNRq4xbmsy6C1fvhb/PTXybBn4fw4UYzUgkkYBdPQs7K3dlUUaKVataULktjXZ75Wa9bj7EtBm7Fd+X8c2Jq9jPzw9fTZ5Pi2YDtel5fB/P8xwrNh/Cts0bmX3gNqo27gk7j6LqPjOrgzJ2/xvLVuZf1HOE+F7HnUuH4HXpFO7d8cLJ40fUt2p6/aktS9Ri50E/wsbOKdMU0YdBEVh/2JvWdlJuGJWUlBKBXDx+eAcedpFwsozCqQs3MGrE/4yOTjqbI0f2ZO/57b410aNrlaQHcY2QD69YdVpRvlSrUgBioRe+O6ELEUVe0lv9OH1nomM/Hz8H+co3U+tSug/toGf1fUimhjPb56JQmTqoXLYImtUqoZ2SuDIb1KrTAI453XBwz1YDF5rQ4DRp2REW1vbwKMA0Y6RryWHniiyRQSrtWLYnYRgy9BNcPH8ab38+B1ksnQx1BlxYhykTvsbo739CrHsNw3pt5kX8PkT26ebBinkSG+tLJncZTeo+2qfz0aZlRCvAyi5duyMmNguykqNn8+bNKFLEU7n9JNItLSU5oKUcKzQIDx8mdem93qU7li1dnGr1FSvkxclTcUMN4xGXdqDgEL76diJ+nTlFhXcLM/tNclOdJ7u5YKdSKwJqt7GxVBYtJxJ33r6T1PI05PPv0ePNd5K1XMk5kvsApaEIun8RPjfPIXt0ICZNHI+OXXqicoNOio3awa0Aj84CG6c8KOQchYIuWXHkjBfOXbwM7zvXce3SaRzYt0fdhmdhF0z6rr2BYFStfAX/HT7K0SVJRyWCUFj2pQjWL0+e3HzGd9DnnSF4e9BnqFXKJU3Krt6WpC31xr9JVKp15o8DffD1N+OwYc0y1ZHe9Lqpnn+pkrng7maryGbF6ispqiTzgnGRjrdgwYIKs+bsXgCuuQvBPX9J2LkVUi457RyZERD1z7IVeKNHZ7rxCmHEz7sMl6Gdw9YiFjPn/oP1y+Yyv2glcvqdxZmTR+HvH2CgnJCDZCBlnOHh9Y4VFJ/fpi0XVZ3yzVetnJ8ceXlo2YwmCH4z6jE45usvWhjO+bQzTVrN4KAzrpbqNWuj75eL/hUrnzFo/urBf/DDmI/Vd6/xvUlA0PChjVRU5ZbtV3DvXoAKFgoODk9WBI2aNMP2rZsN293c3FCuQhW45spL3jgP5PEsi+YtWqKERxb8/OtfcCjaJFFQlhyYXNuuVao988x4r9LzDWYoijA8Mib2r533dOWq+LNVrvLb+MPFMgxnr9zHjfv+iAwNZL6+UOTMXRg585eFG91UNqEXEUrG7F37DmH29Ana+5SmacGC7rh508fsvs1atsX1KxfiMVwemPTjTJy7/oBJl11F18CXg7qaPa5YsWIqbYq2sUB+Z6VEVapYDg2atMGUSd9pm9CwflGSjYbi7Ln7ap0kJ5YR3Il4Zc3dzQ5VOaqTVDNC4SDlfx80gIVlNkUUKqzpWhG35r85+o9gCpHP+71mwJ5JSL+wvEuj+yqWxi1npHpbly5dQgDcDRg44wNe1AbR+BplPi2j/8I2PiofJfI0AI24icq/1bAnuog03kdacKgO1llhywTpWildKhfq1CqsvtGjx29DAP9RUTFqc6OmLVGkZAW45y0CB7f8yJ+/EDo2KIqA0OjnMjj/c/l2uuxaoUnz1nj9fz+ra4r090Lg9f2oUrUSWrdMrABVqpCPJMK54ELW/cKFXNQgSXKcChRABo7Pswgc4iT9Y5Jd4jQzQMiAVHMVSqCEfc68mWblS4/CYCyD8MB72LdiGrp3fR1Tp03Dnt27qUxZozAJmP0DHqu0X8b7m5v/5KvJOHlgI7bQaJBSkXt/GcnNM6Rg3fQJi91wLLH//FVrSJ63pmv6clkEnEL/nu0Mq7UPXMzG4eGRhvUyIxYi2S4cVTXqNkHR0lXhmr8E8OgCPv5oUKJ9ZaFQoYKoVus1NjJVUcIzL277hCA4xo6jNqmXySltnMjFYwF3VydUL+aAbJb22H0pwqBQx0SE4u7FPTi45W/m5nNTH4eGZ+re4w14lquDcSMHKqZrcedJnTly5EDJUmUhrsQTJ04oQLubmwuxTTHEQgVwn+SLcMdoee4k1Y7goVxcctLqFmfJmr90I3p1aqr88ieuByep6Hl25kdPnEHdGhUN15CWlD2GnV/AGXFVHD56C1Uq5ePoPIadjpVSirv3nmf2akd9/yvKly2JCmR69491e+WVK1FKKpKQ8iIJKaf8fYwJjTkAiS+vUptYvUAM9u7YiF9/+w3Hjx1VdyiJxvPmcVTpoeQdkSKBMzXrNESrPqMYOOOu1sm/5/kNGisMkeT7Wzx5IA4cOKDaSEkJdPToUbRu2x7rjLCsP0/tghLMSvBvFrHy7Nh1FYuWHiM+LcTspVSoUBGDJqyGRCxmjXmMHaf94U8nhpY0XTsouYGBKCqBt08j7NF1DP1wAMKis2VY2Q26tB4jPhqIps1boMMHUxEe5IvzB1bh/u3reBwShNDgABw5coQKa060av86l4ORp1ApFKvRVimLtsxJ2aa6hwr4WLXvFgf05/Hw7mX43b9JJT2C/Vo2EvQWQu/uHeEXnfOlbEsypGAZ0zTIA32VGpK0uOyeh6WkbD4LxY8i8n27by2VZkby0Ym5+v79IJwmN8/c+YeVe69+XU+a4y1w7sJ9bN1+WQ5hcmAnvP32AGSz9YB78dqkcogg6NCGHYCL+hiNP8AjF3ywfyWxD6Ra+HXGD+p47V/rNm3QcdDPSrkSfizf64fw1f96aJvNTr//bRNmjB5AMHtco9usCUP3ee1+fqEciQXQopWArfIPDMFiYrZ+/WUmjh2Ns1KZVpoSzYTsKwqm8M8IDsLTswhqNWyFio16KGbn592wr95/Gwsmvos9u7YbbmPpX28xN6GtYflFn5HRZ+cef6jLtLcnuSbTAhmXyhXzqcTbxuuEimPwqKlo3aYdapRwfilHm8b3Y/x9SECPaTF+r1bsuoIwJja2yVnAsNur1CbWKPgEzRvVprvnnro/sTQXL+7G7AoOhkwJLVq0wKdjZ+KCd1aDDLQZY1ml5gpeuu08lv46DhfOHKN7yA1dPxiv5CrPo2pRBwKoLzGv5QEDbrJq9Zro99VieDhZKqXDm2mb1u2/hjHvtyQ1TAAHo4nfXe2aTKctmpXCJx81Ml39TJcl64Tgr9YzC4IPk9Snp9jb2xkIkeU4wagKo76w6depWw+//ToHdwKz4cpDC0O14SSQ/ah7dcOyNnB1IXYyX758sLN3hEeeAqhUpzX6cXDvQiLVlIJKnOBDrjcO5FmmLD6SSKGO9b+MIX1bm6UH6ti5G1q9PcGgXKV0jufR1z7Lczy1gvUqNSQvinIlD9zZ2VklTRXz+xefNqefO5vhw9BmxJKzfecV7DtwHadO32MIcPJ+bldXF3iQciFvfk/QiIT169agXLnSKF2hFi6dP0VgatyoVKtbm9ar3xA9P52HoAcX8dX77ZI0WOWYl09y8q0xctcJ5kEs6g8e3EX3LpUVu7GkupER4mWmsDl24raqfv+BQ1iyZAmmTplM03wetGIEn4eHPcaM28TGkcMyoyJRhJ07VuQI2UpFE078MUGBkYTCgn0wLWMnz8Ggd95AaGSWDI/S0tPRGncewcR0De/f3HBJC+e9qdL9GFa8wDPjmWrIHHGmuUtu8FoTBWRt9sYoVCud+19108r1paczf5UbdpFFRt9dOVaKtO1+p5bi0+Efx62QdcRDai5AGezVrFUHn306goO4uk9tYRj/42x8PWKg4VwyI3it5q3aMU3VBwSE/4afpkxU2yU1j1i/y5WviL6Dv0R+p1gM/2QY03FdR+++7+HPP2ap/T4a1JCWdOYa5bWK9duWaboEGzbnjwO4dNlH7SOkxyNHNFPr1Yrn8E8Dt5s7VaGCLnjgHQhJJt+7ZzWVLUCSqEtCeq0M6FfL0J5Iqh5JCC9t6+6917Rd1LRgwQJK6TJOuC1Wx4ED6qgE7AeP3FQkqHIuySmqyUSgHuPn7s4wTULMvX3o2qWz4Vo0z4OskAHz1Okz6TLOg9tBFojK4abwd5qXRvbJjHf3RejPu9XLLRY6s/7l7HKjKRVduUqQTmY17NWKOdIq5aKUK8EBCAmmqXIlZt5f/zhIReUOrl7zMYAfJQmxWBcEdF4wf07ViGzcfEFdZIO6+ejquYlzZxNwSyHBD7BkwW+GmxAST0lhI1iKmb/sJeu0FaN6pqrt4SHmR4Pfj22n/O3ZqbUd4sd6j9Y1Ly8v9OzZAwsXLmKOuvNsLIJVUlQJCpSPaMiIMRg3+jN89913Srnq2L48PnyvnjqPgGJNlSvZMGNKF7Vd/l274WeYlxlT5UqUOwGEfj50gPp9NHI8PKu1Jd+XneG4Z/3uBjA60bj07DNfLa765+0XnrxULKbiCvxn+SnjW0gyX4Oda/dP4t6fV6VB1O8j7jFnf/IYd44ux9dffq5WvMcOuTPB3RLYMHTESrXu90Xr0Kdry0yxVs5etBGjP32fmSUcSCVjqZQda2K9wogvnT1zulISPCs25nsZR1oslpoBHw7HP3/Nxkf9O8ZddPz/Iwd2GpaXrTqDKhXz4HUOzgTTKR29FHEJikvu7PkHqFHt+Uf+3vBiY8gidDQtm5dWSqAEGwn9S2pl3OjWqEGSW3PlUbyStIHtvgw8XV3tkJ33fPhIJEIZkdiG5+vE9lYiFWtRqdKKgPjf6PuntqhwtA+YN1PLIykbJIVa9TL5Uh1EOUZcRBMj5UqOdXayVZGRDJAjTjUcA9/tL6uTlGLFiiqi4oIFCqKAZwkUrdUVFnZuifbLrL72WVqu5IKlLRGoUXIlWZqGgQMHxvr4hyCvhysaN26ESMfyePg4S5J6nmdjtZmm400b1qFIjQ6JXoqX6WHIA1+/+wxaNyivZCmNgUTm9O9Tg2Dp3LjOj/L6jYcEpj/Cor+PE0NVHSdoedLSM8iHE0HMzLoN51Gblq9hQxopvJIjrT5SlwAnR361lnV6qBQgwssSGRmj0p2cORtn/h825DX1wUturcEfr0Cp0uXQ/8uFKmojNpxM8Rc24uzp4zh46CAkeqhCubzK6iQ5uEqS70Vy05krtWvXQdf/TUX+fHHgTMFJ1KpSCl43buCH7zugaBFX1ajKdU6YvA1ahI5W19b17yvlTJZFCTNuDLR9ZCqg+O/GtMEPTEC8MT7Kx3h742Yt4eKWG681rIs333gDG48/zPAoTUZIxngP4/OIAjfpf80UNsd4vTZfsXxefD+WSh9Znl+0Igr8DCrY4r6QIiNeGSVLo2waFTZj7Q1ULUas3jMO+HiebcnLCKY1focyQ1bb543kAGmBqlbc+726V0HX1yupQdTnX61Dh05dsPyfJU/FRyQ4ogc3L2Ph8vX4c86PyOmcFdN+6KRgEHJicaGNn7gVBw55qUHnw4dxSonxvRrPS3vW+LXiKgBGBpPmyup/Bii4grltL/o6+S7Feijf4bMos3/bjyX/nDBUPX0Fo6rjB6UnN8/GL1PGomHDBmjVsSdCoqzw4NYl3PW6hKzZssGSls0DJFQVuIbkX/T19VX1iPL6vw8bGKxtsjI0NBLtOs8xnEebyZvXETWrFVKGACEy1srbHwxHyRrkF2PCeHEFp9buvgiWq0qe9rCPuY9t27aBPGlJlSPeXLIKFq0QtA8klPavd0eL/t8nrOBcZnzkyQkqzP8Ozu1fCRcnOxTO544Dh49j/h+JH1ix4iX4EN9Ejich1NzD4JSvLPKUbZroGp+1FUNOlpFzhAc+gCROvX/9JPZtXYlTJ4/DydGG4OJgdf1iHhezeZv3fsS5HfPw08QvE92XtvDjxI4EGNqol96NkTDJdeYPvIMw98/DsLbOQWWupiH33q80o4si98Gwr1G+QQ+0rV0Awn8mrpU797zhe4MJmn8aTazVbXXKfPnzo3KlSli9erV2CcoCJ+6mM4yEiY6Jhd+jQITHZFd13Di5GWNHvG3YV2bEBSGRO8EhCdiJz2m+b9SwWKL9vHnNAvgX+glxlV4g5YMojtoIVUbav88/qM6b6ECThXcGj4R7viJwZJi4rWth4tOyZdq7u33jCvSiJS+lsmj+mxxZ26e0y3PbJg24hJhLJJi5UoYuQKGg+GnWbqXEyz6/L1qLvt1bZ4oVY/HGE/ikf0vVOA/8aBTKN417N55lW6LdZ2afQ7BAjwPuItj3lsqC4Hv3Om5cOsmAkI0q4OP1br2xffM6Ym+8UbRYcbTp2l+lF2rfqCKyWjo8d5e2JgetvTq0ZzP69X0rCRmvtCkrV5/Grj3X1H30/2AEShC0bOWYS6siTW5aUa6aNaiGs2fPquOE1mDQ+/VUBJ9W0ZWrvnhv0N/aopp+ObK5apNkm7kilnCxiEtwhihmq9edNVDIyP7Ll/SHDDj1Yl4CQqasBbBUrV4DZSrWVO6AeXOmoSy//4jIJ7hyNW4QbW9nTXiIM0OYoDI6SDtsWv6Y3RMSSW6u7Nx9hUniTyiIyVu9qyOXh4PaTfqjH6buIKn2nSSHTZk6jX1DGG7c8Yb3vVsIDvRHEH+RZM3Pli07XcA2KnNJrgLFkbsoCWstbRAT5o+cReupAXpmf+fGtBXaxco5fhj1Dvkgl6pVbFfTp2BVqlQhNjo6Bh6589G3nR2NO71HpuI4q4vUmNk34XXjKsYObo+mrTth/67NTKx5S7sXNRWyx0YNi6jkwZrpVTZIB+xIxcTHJ9Cwf9lyZfkgciCQiToF51SiREk4exQk9UFRFdmQw9IaDu6FmUneDYWdI5HLNgq3HsbgXriAwxNbGzJiHRMm4OD7l2h1iibbQRZSFdRWXEFygf8b+R1K1OmhXgRJ0RF49wI8S5bHbZrq73v7wLlAJaUoZrewUUB1OUbwVL+N7oaDBw7KYqpF8FKTaTFyJJ9UakUIJb//YTt9+3FYBfGdv9F3IJWRvFj39xwVaTho/HKEPryF8sXzonntUhg7cTq+GD5YVS0JmSVhspR1G89jMj8aKX3fHYLq7T9S87sWS8qJ2Wre3D8BWS/4o7fCTogZWxSoe/cDFQ+N4Lr82JG98/4Sdagk361SKT+pHnKqZVEYpJEVK5u4WQWr9s13m82dxrDuu0kz8NGH/XHqZthTY0pEEX3gF4TJQ1vh2rVrhnMYz4hLd8K4dgbrnPG25zkvuQXbdEo8SDE+v4eHB7y94xpW4/WTJk1Cvbb9M0VWBzYtwqQxQ1X1Y6b/DbciNTK9LUmuQXwaC1xMiDd8zm1ggEUhXL8bRL60XPhj6hcQmoqMlHLly2PAVwuQw9rRcLim+DzP6OYH/uHwOrYGE7+K+54NF2MyU584PHHnXD53HE1adyXusTdHSnYpKom3r51D9WpVVE3GEAGTqhVNwaChy9C+cw+s+meRatMX/PEGpJ0XZUDgBOcveCs8kRzbvm05DCbMQSumWKcxX7YkrYSntlmfJiMBUX7Wb7xgwMt2oFzff7euan+lrQihFcqZg1tt0G6MBx45vJlqb5OpOs2rA4k72733KqN08+JbtttX6VWRYmtrxZ8lcnvYKUyuWFhlUC7XEE4srmT+uHHjEaEroQrDl69gYXT73zTUKJs/TZZ2H7pGNx33Q3QsO1eWxw9vUjeIgY29K9rXK5Iq+F/akte7dKWFd6mK7L9z5276FCwhGl11kI0KyUZNS2YrVxsXT8Gc6d8bTiMAQOn4pcz/rReZtB0NJmXDTpyRzlXrkO+S7OyzUWuVabJO7cLKLSYvRxCjo65cpaWIHfZjvjQpFQGJV6lRF4WLlaWgc5ILJgeCfa6jfqPmeGRZxkBhIHWI8hR6/wL8vQ6jTetW2H/KCzMnfYHrzJyeWunUtTeqNOyEz9/vqHb9kGkYChT0xBrmHmQvzEgPJxQqWgZFKzeDo3tBZS51ss2O2X+tw//6tU+terV99s/dUKSwq9l9xXwreCrx30sRGS5beQqz5uxLtL8A2Zt17INKTfvBOfoGBvRqC3cPd5QuXR5rVq9Q+7ZrU5acKC7KsiTPY+DgOI1eNnbvPQAV6neEY57SuH1iHS4e36YS6wYGBiU6j7bAW2fJQjeCjQJjauuTm3ZsVw4D34lrEIz3kYFBqw6z1cco7oRtOy4bb1bzEhkz5MekilhGFOpbJzfgu5HvJTmH8QrhAxv1WQIg3njb85oXV/FX36xXlAym58yd20kptMEmedScnJww75+tuBfpZnpImqwYyVmotcoyuy3JzPYqhiPmW6c348zBTdiwfq12yclO69b2VPkbhc+oR7fKKp9mY1plhajVnMVQaE2ioqJUfWOm/IUBb77+TPMXRgbcQZUitqhAio3NJ/2TtO2SO7CAfSj9drdx80EwlZpLuHX9PEpVqgf3QmUx8u3mbFcT2tDSpUshd75CsHNwIm+dNZxyusMjnyc6tKiPsqWKQfL+LZo+TLkZxbU3/cfXib2KG4wZC1GgC0M+WQFJ5bV+zXKFH5KO3hgQbby/6bxAKga8v9iweu6cnoQpOBuW9ZmUJSDQgMfEwUm7+zIV6W8kJZHwiL3L/LT583rAlbjS67dp+fJ5SExfFGztneHokov9XQ4IuWmpgg6YPnUK1q9fr25V3J3vDfkMP08ea7h1ee+ELFcyh4iBxsLCkt8p33uur16zHmpUrUhXZiH4P3FWUeytquVKP5P7xs1bYy8Hu8HCJvGL+rQNonzkZfNlB5MO4OAZ5v/avRHLlswnQLGC8v+LuyutH5ZBImmYESVCUhJI3aJoXaem7M+RkQAOxZws4MCjx24REOlNluoAau/hSoGTqsVd15SknMXL1YBLbk8c2bEMa5bHWVTScGq1y+AP6qNNyzIQQPrPs/fTh53QUGl1lCCvkDstNhJNEhIaQ6bcB9Te7RUPVYnSFVC0bA2cPrgZB/bvo1JEviIHazXasyQpZ7Girhg6WKJp4jRyrU6Zyoso2C6hfpDGaAHzzOUgLqhixbzIyzx8NasXxKq1Zw0jRO3YbLTmDRg4GH4+D5gRfpG2Wk1FjlJvWkq/Ae/h+JED6N69J/JWaIWDO1aD8CUE+t3FvN9+VlUUYQoaf5K9PPJnA2+mGHdGppulY3u9QwWUL5cn0SbBd9hxFHTi5B0M+2xVom2y0L3322jQY5RhfUaUKzk44M4ZfPZOG0M92owx9YREWkpU0ItSZEAiGAjBT9y9F6hwMBeMsHUibwlQqNW8N07fDk9y2RmVlXFFT9uWZLbFZyVdYhf3L8PC36erb95c8nTt+iW6TlzarVuUUd+BDFYEnyigavkqTBUJ6cT+XHgES5edhICAxRUjlCumn1BR5vu0YD5DFzcPlChTFYXL1oYzoQ9VirukaWSeHF5w9+JvsYiJi7XS/c0BaND9C20RESF+eHhxG1OebMHgkRNwJyynYZvMRAT54Pap9Th1hNx4TL8ldAFSxJosintYuFgVQvkNJ3y/3d7oj8vnTxJDekzt60Y3+fvv1GE0ce5EnbkMpvu/txgt23Ykc/wKDqgdFPGnQA6kyOBEBkryrppr32QfsWx4Ebcq1vvk9snGNt6G+wSTOFUvr4YENm65gEVLTjDThL/hhhwcbCAk0GJ58/ULZr8fYdgmM2IZC2XfoJWGrzXGzh3bVNDPkA8bqv73dnx9Twh5EUycGCQiOT1z9oFiro+Od5UKdUbXrt3wyy+/sEdLWpLFYFGzY/+Z0IF+//smNKxT/ak+8q3zvqAy9Weiq3DJaYemjYuTB6rmM1GsEp0sHQty7/LRXrnmR7C3F44cu61SA4h1xLj0fbMG/jBKiisPQjihPBkdKKZsaYhNi5hFRZmTfeVFEFCxKFbSWGn7S4MskX6SokQ4i+TBXrvmS4zTE9PqlJbt7++vUjc4kNdEGjyhcwh7HK1GJj6+wXxpwpIcl9KKZs2akeH9EpUyb0b5JHSwNgyBFqzXzVtxL7Sp4iNAdVFWtxKTNX3mHsMp5N6EusHOzhbfzTuIbLFhOLRpAcTvL2XdindgxdBq2Wf4yNWG42asvgSf81sZffSBWvfhJ1/j3q1r2LB6aaLr0g749uvWqFWjkLZomJpjJRdczNDJ65Ur9mkVBrFoXt7xK3Zv36hIVg0njp+ZSBdhZcrgeRUJdhAQsARCWBIwK2z6kipJBheSukhIDu/SqnvvfjCfcYC6LM8iRdB36Pdo3KB+mnM9GtNWaPeW2YrPsz7HXcIL5i9ZjdEfv6XdQqKpyC9/fid88G49tge+KqGvpE1JriNPdHAqC/Kd/vXNBpwnnrAorcFSp0TViVvsHLnrgoIeq0HWG2/0RuXazRDuUJqAY4tEbaW8u6tnf4p58+YxYKUM8uQrqPiOKtZpxXyR9RVGdN7YXmThTvgeW7ZuizLVGuPonvXYuW1zoquUUXuN2g2Yc/AGv0kbKoyxOHr4kNkBlSk1iVz3JgbDCBXApcv0HDwIUHXb29tT+QxW8z27VUH/t2oazint31sDFtLikLhtNewQP1O/bhF89XkL09VpX2abnoXKbayZQWjaK9H3fBEloLXvOWmgWfpXX8MlSj8uxhXB6wUEhqupWFMPHPTClu2XFLxE+nkpJUvkYiT764Zjk5uR/aVfloHpqTN3ceToXSr3vkk7elaQrIK14PfesdNm7ubBtwznEfxBg0YtULBsfbgXq53kI08J+Z8tNgLvtC5uqEswNOJeEl6kZxUxYThZJs2IJivKSiAf1J5911CdSX8rEV9zj4JeuuKk6thl3bMq8mClo5RRshBDGltlihYtisiIcGSn5UHMnmISlUiPmJhopShqBILJXZubmyuxVPbkzaqI06dPol3Xvnh47zpin0QhT4EimPjdGLOHurrmJLnoI7WtMpnAJ5DSQbNALltxita6vRAL0+hRLaF9BE2aNsfWLZvY8VswOtEW/RhBKQBYKTPn7DVQB7w35As07fIBWlR2QYN6tWBpbYc3PpuPKweWYuq44eq+1EEm/4SGQvAExkU+CLHcHTzspWRnvE3mi1C5+G3+ElwNcU/kCpZtaVUYyhewYhCBtRySqAi5oZAcPq/yiPiCLj3/SPZ0QmCYn8EKeflcc+crjLzMA5a7RC2FB3rRrErPWrn6cwFdc/3eTFZWsmHGlM7KOpXiTs9goxrgEei978AN4hsvsN15bDjLsC8no2Cl5sjjnlNBCCZOnIRRn49Q2yUQRAJCpLze9Q0OdObgyrlj+HjoEEWFcO/eXSrYvmp7cv88CS8oXsxNdUhRUU9oHc6NYkXc8NmX66gARqptw/heJwdD0OqVd1H6kA2bL3KQeBd56IqeOa2zIchG20/Db9aoUQOHDx9mW2Spog3FEjianHmnmFJGyqTx7SG8fBouSDten/63JTB52g5yMV7C8sX96NqzSLMwpO+WQZMYOsQDkpH3SpQ49m3pU7C2b/xQma9EqRAAtIANhehyHzW/hw9D1A18MnoqeZRy0BoRhe4dmsHeJQ+2ng5MtoPKHsvR2qpdOHtsH/bvXIfz584xdN+dgMW6iGKCLwtGl0ko/8uicKX5KT6DHQMCwhRXjeA9zBV5UQoXcqUvOlCZPI33ebNXNWV2F5zCcbrPjh2PU6Jv3wmk1eyWMonK/sJRI1alYFq/zFnOtDolnUZLKhAa2F1bL1MZnQpQXSxz4i8/d/6+6txv376tIk+mMGJJcHJ5cjNdD0eW8rKO+HyNsmRJmp99+w8pmgR5b7LksCXjc36M7leDkU++dBkUYjLpB4mSWBdiiiAvUkuMHN5UuRWMr8V4fuz3mxWBq/E6bX7QR58iZ96ScC9Zj6HJOdKcD0xSc6xfm2B90+qT6bYNcRY443XPYl7wCCPZCQaHhKNUqdJo2bkf7t28hJyuufBmr27wYGqkY7dJ5xEUleT0/zXlStxpn44Yjq3rl6F4iVLYsX1rIplIYIIEKGgDhkQbM2FBrIwLFh+lsuKOpo2Kp9juSTsslsetHHWvXHNGWalLlipF6/pRlQpl1T4vfNGvLvx8/RJdmbCvV2ek2Jgxow3rBY5Rh/xIoohJWyscc/LdXaW1Xr5ToYER0HFy9y3WgIy00QLRkPZEzqEVqUvuZ87vB2ipc0DjFu2wbPGfBMcXIhVLa7Xb/L8OY96CI9oh6EevQa8eVQ3L+owugX9bAo1a/JTwUhtdTLIWLFGwxE0lWpaw4mpFzLjN287SFhNNra2t0K33ewz37wJr53xqm+no3zsgApEhPgi4fxVbl8/B3t07EtUhC+Jrb960JK0WRZNs01ckloA0jEJ3IG4FaYQlks6J0YNaAyij4DNMtPxxPHGgHC3uDSEPNVfk+UpdYlYVRnVpZGWdRG5IFIc0wkKz8M4HSwyHb1rzXpo0f2lMxYq0cs1Z1huLvm/WZMN52KAACvOwRIts5Gj3LBUx6Rz+WLgySaTSjaOr8ffvk3iPOchcT76rVt2Rq1xr+F0/jD8mj2B0yQ3FLm8O8yTWP8mpJvW3blFaJXyVjuvtgYsN92M8s33PYdSuUUVdQ2oA6rGfDcTq5UnrGf9tW1Qjd1dmFXExyzMR/CAfj0pPJKbxtRvOYfZvB5CXLqJB45YYcuaZfoOp3cexq4EIJqt/Ngtr2BLMKSU5F2pkKDnGrh1DrsLl0ahKXuR2dcSOcyFJANRSx4uowEVEhGHSkFa4cf2aXKKhPA8upeWrTmHGrL2GcwouKx95goRgsmzpXKQnEfqVpO12CL93AXX7UEH7Zux4eJOPyMG9CH6eMFKRFwv0IJoDVg8GpMig5d69B8RoukHoDwTflJziZLiQZzjz3cStSkk0dwqJ9r506SK6dq6EPhwEijKmFeHek8GglVV2NGlUIgnGTdtPn+oS+DckkG4Fiy93rMaereFjtAu/QKvBhx8t0xZVJ1WXkXvS8K8mWFork+dvR482tUHrG+Yu205AO8nmfv1J25ziVEzDkkRXL5kjgTsENPcZ8JeqTFyz//ugwVNV/Muv+/A3AbvCbSKpHkyLkIgKqFf4UYStvl3rMmzwHdRu8o5MnbHL9BDDctmyZTF8xKeo26g1tp8NTtYiqoWz3759Bz9+2lmRonoWdsMH79UhbUOeJB3JB0P+SZYkVU7euVMF7CI/lC/zKWpl1qxf4FauXZoUBp8r+5PkcMzs6EHjiClRpEW+p+MJZOWamzRvhQ7vTWLyblt1C+lVrpYs+B2Tv/lYu30VeTOAPGI5bWKZR/IYAoJDsWHtSgZXWJIEtwb2k3jQtMxcf9N01QupXN27zJybg7sasEWSsmrMl62SXHtKK6TjFyVIw2MJz1weBo6kpcjg6DxdeYNJUWCuiCJkZ2eFop4uxGjaqQHUHVJEXL4S5/4zd4ysmz2jm8JgCp4xK+sQ5vR6dNObszAnV0eK63nd2Tj4jqGFO73FHMGw1CH3KvJvwBD51xoUS/Ltpvc8+v66BJ6nBNKtYPGFF+OVKtWrFmB0F/E9HBkVZ7SaABSlcfhr8TE0bVICwz9brfIkaftr01Xrt6BMyeJsIApqq9TUklaWaZPjwGTCWSQjNfHzX7r8gPxGzgqz04rWBY2ULNHB+sJTSUAixySdhEbR8FSVJXOwvBtNWv1sdmsZjswlStKYxdd4x5o1a3KEuwvB4bFJLFeyXza+lhe3/YxYYsuyWrswaskfUQyn//O3OMX9i0+bqQbauE5tfupPuxQpobbcrVsP5klcpC0q658ECGhlwoSJKFLnjTQpV3JMdHgQBnUqpx1umP42qzujm1wMy+mZEVkKJ9ib/eOU4+SObduhC+q27Q+H3AlYr/QqV8uWLMCELwcld4ok68WCVrZMLhWcIaH225gzUyvjflkN5/wV1OKLaLm6c2EP/prxFdOFXFXXKJYdwQ/mIaN9WsoRBql8+sUas7s2eq0EPv24kUHpMruT0Up5xkICLFiQQ4dvYsCAAShSsiJ8ifW8eu4oAvz9EBIcwMhfC3Lh7TMcWbpkbjRrWhxlSuWmdee2ylFXhhFy775dx7DPs5jJwm/E+dQdPKKnISNFUr2Ia1+sbIIXFbCweC08C2fsG8nINejH6BLITAlkSMF6+90PVM658LBQuOXKR8DzE6z8Z6FSghrWL0a3R35FZtm734JE1/r+R1/giy8+V4zgq/ffxriPXsfJE8cM+4z6rBmpAQoRHxSssARi8nZlZJog+08SlV+tcgHF1Gs4IBNmchBsGUVeLA6NMqE2vYrUJCCKikQ/SmMq4ENhWzYuEn1IBi7lrhSiUK1UrlwJ3XqQdLQg+a3sPLTVahrNvIof9arDhjk60XptQVyXw4c2Yvh8cW1VkqlEjkhqDq0U9iySxD3Uo0cvfE/QMNMuplm50uqThNkj+jXXFg3TcUztI51Ieoskxd61J04JkGP7vjcUgY+YmzImEndu3WBy2LHwyVYC7KsSlfQqV8evBeHuue349pO+ierRFiRMvnOnioQLZFeYOmHZFtZ34yLM+h8NX2FYJZasF025WnvwPuaO6419e/carlMGkN9909awnNqMuN2btZmpdrOyssLwsbPZfrlg89KZWLt2LTpyS2+CbdNC9Gt8rv0Hb2DU6PUoU6YMqRyekPHcBfv27VWcPI2bt0PREmXw95+/4M6dOyowpFf3qsaH6/O6BHQJZLIEBOv8FaN8BVJiXCS/ZHW25zdIe7Tv4E16Ru6bVSySxWAdPHws9uRDN+M61bz3mfVYOn86/fr3aD0ISLT9hwV7yAAeR4ypuW80vIeEsY/hyMr7wYNExyS3kNmgYNf91+BXozBNIFmTO6W+/ikkIGHZZ4n1atK4RKI0Fdtp1RCmXsWXQ4zYz8x/J2BWCQV3sIvCjxM7KHJYsWpNoYVJ3BpaGTT8G+QtXlURlYrCEHt3pyHiSyIThcZCcIKmRayjJYvH4U9Mt2nLQq0heDCtFGDi0fbd+qMALRkffvgh1h/1TbdyJXUJVqllFVdltTWN3DTOtaidN6WpqZVk2rLTKtIvOTyUVldGlCvt2DUzh5DsMUFJsuKGIrQ6TvvhdW2XRFPBggmRptCO7KQiGE4+JCmT/tyFetXLPxWty9Pch3aRxrJate8W9q6YggW/x1lXJQVTu9Zl0aNrZQNmUTsupentO/6KVkD2ESUyp/UTHFw9HdOnT1WW/VakdBj0U7dkLVhWTBNiRyyjH99h06JF2hYoUIDpqW4l2ixBJ66M4BM03+/E3N0xCkdPtKO+oEtAl0CmSECLhE+uMjEUtGrVEitXrkqfguXl/Th2I6nkjYtxY7Xm0APcPL0VsyaMIJHXY7zRfxDTKBzDKVqqxOzbrfc7KFiuAWyd8yJ7fDoIMYW7Z7kLi+iHOHPpJmIsmVcuhwWW/TYOTs4uKFC4BObOnqJOuWXd+2YBnsbXo8+/OBJo3eEXBYQ3viJnZ2tFHmq8rnHTFrh7xwsXL1xUqz+hxUncGrMZRbSf4ejmysejJmLYR4Nw8cxhtG7ZnJ1YHPlrM+ZqdGEKJHsnF7gSkH+Z7pR16yT3m4+qRvh2hAJC8B0yEhlBl85VumEESD9rWlflDhrHaELNtbVy7SbSKTRJE6BdLD6mxfj7mDBpCn4c96lhl3p1PPH1Fy0Ny2mZMeYEK1O2HD6csDZZsLlWX2YpJb+81xR3zpxFH1Y8Ir5ywcfUrV1E4XtEoTpFi5VYKkXJKk2rS+GipVC+RlMUqNjihbFc5c5yC+3btyExZgiDN8I0MamplvQ80cpkFqTtEkyhN/nDDh66yahnRsV+Phl7Ny3GuTMnmSstCJ06lGPgRo10KWump5Oo2zW09gr/3nGjwUbZ0nkweUJ7lT5GEnOLspXZJSsHK0+MgOWZXX9a68smBMG8/0BGMupFl8C/LQFp4yR4TLwxEZyXPkSCU4RZQdjez133TT+Tu6mCZdx5mOOmCbx1Ap++18GsLH5adZmKlGWiRnf6+M+Zfy5uJGl8UHZamFqSG0uyc0vHqJeXQwIScv7dxC2q0zW94qlTp8I5b0n4x7ozc7sN5o97C1evXIatnR1u3bypIhAlD16TFu35wtpiz46NZNO/Td6fQFXVjr1HUKt6ZZQqUVRFCGr1T5+3DtndyqJCIVu45SB5ZqQTTl0PxJRhbXCZ0UhShMldXNJ2jLQY+dU6ReCoHS9T4e7SEo5+9914FK/fJ8OWK1MeuCNrpuH3mT8oILpEeE6e0CFNSZ+FZ+jPhUcTZb2f8McWFCle9rllmd974AiEIyqnR37cuHiSDNvLlGs2JibGIL4WrdqiRMU6yFe8OuwYxaaVF8EtaJ81GMt++RIrVizXLivJdMOqd1NVhkQx/2b8pkTJhDt27o4V/yxGNtYoNijbQjkxhASY5tKzZOWzdKIi+oiQiPQUUehueD1i5gXmS6NLsjqjUHPmtE1PFene14m4qgDm9CQyPt3HZuYBWSOikJWRzNHE+OlFl0BGJSCufAm8k5R5maVLSOCf5MgUfPjrPX5Xl/bBBx/gp5/SSdNgrGClplxpo+YHNy/jxM3HuH3TCxuX/MRO8iY69ngHpRow915RR+UuOHTJH0sW/IYfv/1EXZyLi62igXijZ1UFbhcuLC0iJ6OC1Y/7dyTw97IT+OXX/YaTu7jkxNy58+BevK7ZRMHSCR7Z8CvyF/LE1ZsPMGvKOMOx1WrUxICvF6JCrjD8Pmsa3PIVh12eMlg4dTju3r0NN3cPeBYtTeAveXuIEdy4caNKKdS1zyAUrdISD2+fwzefvGWoT2aE7FOsAhLebq5Mn7sa2d0rJNn0NAqDkKJO/maYqvOzT5qQjLawsqAlOYnRCgFPi3tQK1OWHGbnnf+5KVfJpVuR77x+CUtkfRKO43ey4GEITYkmJT2yWrbtLHavmAYH51yo1HKgsnxrbYkpxMD4NMmdQ5SSBxd2qecu88ZFgiumTuqkSIJtbHKkqljJsRJcYIwv/fz7X5G3dCM8fnQTw/q8BkERbmcal3wMGrmeDLA8C6lJrDjSDcvjJFXqRZeALoFnLAGxqH/40XLmII7zZMjphPvtfeatzUiRtkQsykJ2a5yvV8h4ZQAkhfuYHZVkT+2EaVWupEHc/9gNERaRZHnPjTe/qGWo2rhBrFkyp2F9bypVb/WuYVjO7BlhXY/L15fqbWb2qf9z9ZlmtJ+/dCN6dWqKo1eDzCpXce9VKTSuPl655CIu/ahkJu7llm06okWv4WhbIw86t21MoO8+tW3YVz+QZf40ijBsvXCBLCoxrLGgbaxj8NPEL7nqS5Uy5Oe/tuDGyS2wd3TCfTLgr14616xyJel7oqKYVijGAg7GFXLe+N1NzS1ozrJbum5XfPFVKL4d/RUtfFtV7anhC4W/S1Owfl7nBQ8nyxdCuTJO3PwwJNJEUumX1drfR2Hjhg2qnil1O8EuZ540k7oevhyQ5L3a/udX+GfxvETXZUtW5xlTu1BBdVLrBXeV1rIjPipScBZTVlxWCqAcm5/4KDVl1FskE3hfV0vm/8WSyPNFVK5yUOmLpixiSUj8bxcn8lsFSB5RY3ysKMiiI//L1rR/WzbP8vwuDKoI5MAjmjltX4YiRLVC/yPRthKBKu76JwwGESqSbl0qoTbJcx8Q3/jF1+uVlcn4nuTY9BThS9zMdG+CLT595r7KaWhpaUFC4pL0unihZ18GAF4hn2PWq/j++++TrTpFzSM9ypV0Lhqg3fhsxh3UYbJMG5dyZfNAImckiicjFPXGdcm8EFlKWon5fx3BfZJHigc/gI2IEEouW3mKTNbVsGHTBTLH13+ueeFMr/NVW5bosRWrTqvb6tytF4aNno4aJZxhrhOUncy9V9Xa/g8VG/dG1uyWsLaxN3S0lWu+hkOHDqFNh64oUKE5j/6YOSEfMn1JF3z8v9cUyF185E/YIAttgKQw+vrbjbhw/hze79WURIzfIyA8K5zc8mPkz7vxJPqxSmz76PYF3Lt6jMzX3iryS67LzqOYTAzF+N3NiHJlsMa89gXCorLjh3Gfq7q/HLOeYP3aZNCOIt5Gshm4oi3B1loRd6IUiVB7EZWr1L7ztMqq/TvfKwWrRIkSqSpXEiRTtVjOFEHzpsqVyFDyYkqWgIwUYRiXMnHBPoNyFffu5lPrSzGC6GUttqRGyMaE9w/T6bpM7X4tfYIQ4WpvUIwKEbfmZYYnz7iex8SUZaHVwYVR5OHk+wohs30ukuY+Zjq1J1SwLBkB/jA+lZbxcfr800ngIRWSl6VcZtTymLGbmBkkEOXLlyfNkAWKlSiLFcuXq1soeJj9DcO+JSWTWLC0UrKEu+ortOXUpoKr6t47YZBWsWIFNGz6OsrWbA6XwlWYucZSVSFt+9hq7hDD0qPg5JW3ZKMI7z8Kj81pb6HSlJgbmWudR3iwH3r26IE6jdvAs3oXJs5NGBEZd1BHmLg09JEXLh9ej99mTU10nwIgK8o8V5IXaMHc3omY4xPtmMyCdLBnzt1LlCTYiftW4W9bMseIX1ayY4vbQIgw9ZIxCXhzxNDzrT/VwVP/OYma5Qqm2AmaU66Mz6y9V8YuoujIx1SMojD2/caGHGopBUGI7104rw4duaX42bQP7uspfyEiiEp+Visq2f3Vx7HmwD3sXvcbrpw5hNYDJiK7FTsHFuN3N60KQ2r3YY6IVDtGmLZloLFrzzWVSFQakD/WnEanhsVS/QaNZaXVp02fxX1odWvTpzlHsPcVCO5SCInN3UdMVBjmfvMGE1Lfk0gdPHEomsRyJdch79WIPnWZoPyadlmG6cbV76nsA4YVaZz5YeoOrN94Ht3e6I+abd5FLrecCLq2A/Uat0KbpvVw/fp1sooXx2ji+MKblFK1ijtBsh0s+ecETp6+Q4LPIipnpuTak0TFQqb5KkMgqr/zF44x4jSGRNFSshKz8oQZIMyVQszi4PVGdViyDfH84yDutSiJEE83iNXPgti3SLbRRWfshNMlHzxoWBy3u1RGLCEkevnvSOAhgeVCTP3PitO0HBfCoM9/xDs9WhjaxHW/jSQh+QIlkJw5nVWwnL29LU6dPKXW/fJTV3o8XNmmBjKx8w0VUHWRVinBUclAVhK5C3REFCuxjh0Sbh4WT09P/L1iPU4+IEdnTGK4gWkfJe1fIQ+bLOpAk3/JKlgxNAn4BkaaJXs0PsHvS7fRUtBMVTtm2t9wKxrn8jNudA+euYn/da5ocmrzi2lNu6IdLVarlu1/0RbV1JW4rg/eq4fRYzcmWi8L2agAGgN1ZZ0wYjs42KhUMCGhYYr09FPiZeb+eYgJSu/j15nddSVMBGWmLFxyDL/NPYjxv27Aa/VqZrpyFepzBecObkCVVu9h99KJ5AGara7i6y9aGBJEm7kstUoUKyGy3bs/zonz9Y8LMG5EP5QpW4aca4w4pNX1FsH0H3WvbqhCXHIaXjA9FjhDBZwx/j5MLbuRj/2xc8lEvnN2yMJE2pLY9uzZs8aHq/kB73+E6VMmGRqS1D7yzLIqGV9ISveh7Wf8nWeWIqrVLdPzO+dj+oRRatXRy49w5Gqw8WY1ryntPbp1SQJqNwWyS3sRSqt5SRIbe5NSJKUirPmL5uzD9vhoPrG0Xbp0CaVLl1ZtiMxrRVK4FCvqjrfI7D6ODffD+A3S6D965K/thpqc61M2N4pP6PhKcvJZ03NQlAnez37dGrHGLj+DBJLOWN9+hBgrC0Qx6lgiGUW5CmOe1ESFg6ZELsREG/WFl1ECkqLsPnGOgmUSLLbEtBmD0VVe1a/WE9+UFe0690b7Pp+gfZ1CidrEmOgI7Fk6QR137eIZHDl8kNyK4hHLyoCruyrtm8AExJKtFUmxJt9wDktr3L19S1FOybYyzCDSrstbeP/tN8h84JSq7qO17S0quyarYJkfWvBkknw5JcuVNtrM4lwC01deQHjAfUPeMtNGNwcvtudb72Hh3FnaPWL3nn0YyuzuR48coXJjT3bvuIZz995rypcqWByxbEmDePtugMraLpgqiQrTsmXLA+r7zkJDndqMH/E2mnLl6OjIFC0earQpBJVjfvobjrlKITYyELO/fYdMzldQvlItFCxSGmGPQ7BxzT8qpNs4d9/AQX9j3m9vKIJFsZYJCeDXJB+ry9D7tq0SXDva+f9LU+GhsmM04LNQrkSOhzfMwaWLF1CpaR/8j7xYmoIlVoJ6qbgNNJZo7Xm45y6IRUtX8rha6t0WpcRYuZL93m9dSHWez0K5kvotbJzx6bc/GRTRaqR7CLp/AZuXTMO2zetlF5JWuuKbr79I1JCoDfH/XgTFRy7F9Ds3vkaZ1xSflEDzxrguYyXxyr6/cOX0QbTs2BP58uVDxy49U1Su5By5CpZMdAkL572ZCMwuidEvfLAY16NjUZY4t/qJ9o5byMr2Jisb46K/7CEnmiPKMm/nEypYdbg5V65cCvNRrkodFK/AwI3dq3D21DHcZCSs8H+dJ5v9Y+6nqVP29nbIl59ZMIwULFGluzI9ziW2XWF0gWWoME/o88ImFaGydIOZO55wpK8VUYhyrz8LvzpFEUSYh3EJY+qms6NapVm5kmPD8ifIIcYuG8KYHkiKuA0NGLE0KmvqQP3fvyIB6RuF81BSdwUFMT8u+4YcVHQkS4udHb1hVJyFYkSIxaWfN1ckxdlQQj8EUD552k61S9FixdG+72doXytfkjYxht6N6KhILF/yJ4l57VS+TUnQ3qHrb+pYNzc3TmPRrHVz7Ny6HoMGDULzLh/g9O1wtf1JdDj2LpvMbCAR6Pb+WOJ+cyU5h9qR/9LS7mr7atNkLVg3fcJiNxzz1fZT07ScILVGV0j52tcpYLgJUaDErXjn9GaM/XSAOo/k9pJkxa4udjTtac1V3KWIOe+Tjxqphb9phv/lt/1q/n+fjsWezf/g+PETavnjj4eh6xt9ccbHXpn4xHSvacep3UdMVATy2wbh5vn9GDx4cNyJ+V+9LCaU2X9S8RL8T768Tob9/kszwnIrFiLJTde6bQdUb9GXxKBx7hJNDk/T0YY8vEn3YDQa1q6EsZ+8idWr16AEMRpCeWCcDFY7l+lUTMxde801rK5Xrx7e/WIW7t29i+H9mhnWT/quPYZ9tsqwPGPtDQPuRlv5NPeh1ZHa9/FfPMfC9UeomDgjyPsSHt2/juCH9/DL9AlKZO+++y76DR2frFvQmBrD7/Z5fPp2C03U0FyD4jIeN2ELdjLPZGduFTVWFKGZ07sy9Zc0wAmlCNuTywy+WTBuI7aff4C7j6PwITdP52/WmktUHOI6fzli/z/f4c/fZ8msoQxrVhJ3iQWU1DuPiB0S14MoX5L6y1x+TMOBKcwUJI7Jh9GKYtURC48zFb6HtTxTOCKFTVTOsoWEI5ZuuyeWOVLYMW5TDv9QxHKwa/kwBKF037GxQ44AZsV4xpQRcnb33Vfgy/vU3YKpPqZ/dQfpWyWn5rQZuxVHVMmSJeHi5kEaHgc1WLVgpPfmTRvJlVeWA5RoZCf35akTcf20eD5+nzAYly9fSfYebG1t4HXrHqKzWCUy+oT538Ev3/THPfIq9uxemVjrMpD2Xgwi4XRNa6XPgMF4f9how6A2sy3tKVmwklWwjGka5EJTU0pkn6fpPO6e28Y0Hf2kGlX69H8fm9YtxwMT5ndpFIvSp7rvwHUFZtb216bjps7D0IFvGBS4zHCtRIT4Yc/yqVi2eL52miTTaT90SpI6JMlOr+AKSXfUs0+cXEThKVW6PAZ8s8ygzGamwlC7dm0cOHAAJUvkYsht7TTJWzq4/u8uSmQiNn0Mf8zuqbiqNMyNbC9brgLeHfMXebvs1e6ZeR/PyjomF/o036Ac/6y/c+NzhAZ4G/KUtmrdFuvXrZHNhiKM/xsPXscpr1DDOm0muedxdO10/PbzJLWbC9nOmzYuiQPM73fz5kMO2iww+LPvCVS1wPejPmBapcZo3rSkVqVhmm/6Tsxdfw7fcY24BT/431DcJ7WHHJenfGsDznRgq4KGY7QZ4fAbNqSRtpjs1IquEQsqYEEm6YaSPSCTNuRlMIoD8aqXaSWIoTdAigU7JQGTG/NOifVI8FMxdK9IcT56C/5MDZKF7s9iM3fj8qCGKbo4hSxUq19VwH/5VpzC3Xbl0mXd0o5Ny1RdI3GMenl+EnhChVvSOx087KVwS+9+MRMOueK+KeO2RLCufqF085oUaa/sou9h18Ez2LR+FXLn94SVrQMKlq2PGFqVcuf2QEcOLgIfx0DIzUMe3cW9y4dxZM967Nu9XRlhxo5uxVyvORXpseRs9fULhoDTTxKH1eC1Jhgychw6NKmWrqAr48s0vg/NLWi8/akVrNROICczbtiPnL+rTOk54hncZXtyDaJsk6Kdw9EmG9Ye9ibHDl1xtCT53zmN0/vWYenCP1CajN/C+r2f0SZ37wWo40z/nTl7Hq55PBNputo+2jk096axS0Lbx/g+TDVd0ZjnTXgfp06d0nZPNJ3/Wy+aQJ0SrfsvLEiKHHHbBgaGKSvQZ9/NRu7iNZEj0gcdGlXkw7XL8PMoX9AG+e0f49CZ2/B9kgf3Lu7C2oXTGSV4Bj9P7aw+rLTIWPL5SV4/rQiLt+QGjCGA0Y08RlKEVFIjj5Nld3d3jJ57JM3vbkbfK3UugrSNrTGZMTCQeo1LWr/B53UfFcqVVpgm42sUCg6JEtWKlZUlBgwehdINe2urUnweMpoOunsan77TTu2fN29ulK1YHfVa90FY8COMHfG2Uv6zZ8+OKVG0BjGoxoOkgabli6/XERTrhWOnL+ODd/sakixLOjCbnAUQ4X8LQ3rVU4dVrlwZTTr0YaLs/ynQ+2efNE1cHa/JhezvD2sWSrw+A0sWHNA4EucVwdytYbkdFYA8RixRVJAyWrLTIuXIb9g4Us+a6YDK8ns5+W3bJNYq5+O3FE7Ku1EJpXgFVMyb4MqLvwhFvUBXjXHJTtLHaGZc0MvLLwGxCoub74/5h1VfPOLbGShYoaVh8PG0fa1IyLS9OrphNrkSv1XCc3a2RdfXK6BNyzIGyFBoaCSxWnMMwh03azUav1bvmVmutBN1q5dbAnTMfoCpWrAyIqiT636A141baNVvNDEnTkkElZbOIzYmCg9vnsDYYb1pYg/X7kVN3djxden5Nn42IqaUDQUK5MeB45ew4Zhfqsj/9CpXUr888EZl7dmINsCxY8dkVaJSmIzOkrNNw4gl2vgfWBAFq1P33xPdqXRklapURSGSgpar2QKuntVVB5fW96pCQWvmemqN4uWqo0Lz91Td4jf/jhGFFco6KH99ohOmsCAsvJbJRDQZH9ajzzxGK4aoVeOnL8CQd3tkqkXU+Fwyb9qQpOX7MK0jpYHBi3qOUQMaMervKkeeUYbbmTunJ2YSWF5Moopp5clOLiqnXv3wWq+v1D7pldX9h8H4ul8d+Pn5KmLQ7qzlT/4E5xbg54cyZC7/cmRzmPJj9WJkrHDqdO3xJv5eFGeh7fXWu6jbdSSyxERgxuev4/69G6hYPg8VsVuwsbZFE7+HsGKqnDd6VDXcT0ZnctCqZM4NJ8zw2em2tKVFLtzNXlEYBJX0SISRysg5sweF0RWYBTHx+KeU6sjG79xjxyUEVMgHdz6fkGJu8KtbVLkeragAiivRndut7xNmkQpFQ0rn0be9mBIQbqgfpu7kQMgXNWrVRrvenyBnocqGi01r2169uFOarUp3Lx3AnAkfq0TnKQWdXSP1yDsfLFHXsu3IDTSqWijN53iadpcnNKtgZTVIxcxMRgWVq1htDqhisI+JVdPTIIoJ8Ma1y7h1Yj2+IevqqA+7JFKuChcuhMHEWn316wE4uhdUPEFy2YL/mTVrNg6dvPJMlSuxMITHZEev/000Iy2o1BZtX5+jeLgkb9F/rQgWzYoKjDstQp+PaEr+kc54/93asLX0w8FdK/HloK6YNbI9wvyuoVVVN7Nh+ZrMNIVh0fJN2L59G2ZN/Q7TPm7O6ItQcmVZoUSpsvBLp4zTolzJ+f38Ep7dwjkTFM9JWgI+Mqq0/9csV5qZvX6LbmjcOAEHJ7KXUOl3CUDPwkTczuy8txL/U7/rcNmUrrZEO8f1I6uVciXH29J6skVmWP437AsMGPIZKjDSaO7AhWqdJA8Xvrxp5EsT5UpKtRb90KxlW3z4yWilXEmbaOF/FGdOn8GnHzeGWKsmf98ONat5oGLbcujSqaI67mn/5YyPXFT18LsSi5KUJ8xBGMmIq6CSuejaC0EA8/UJAF1wUYV/34/sVH5Mi2xzoQsnpeJwxZdKE8lUjbArye1vQ8VXFLHiM/cQoO4Em1tx1yYuwdCCLuown9dK/KvKVYlpO5CdYOqUirPIRKITX9Hise1ipt6ZWIfFajV0xCo4OObF+Fkr0eeLhc9cuXocEoDxI/ow8voJfv+lR4oR/aJgaeXexb3PRbmSAJvkSrIWLAG5W+bImqZO0Bym5LHvNTg72qBnq2qpjv6dbLPj24k/YewXQ5K7Tkya/itsPJso1tYcoVexZ+taRu1mRfGy1fC/AV1SPUdmuz2EQXbp5HdwYN9uEkYm/yEPHdyQCYrLJHtf/5UN8nEeYwc27ec9yqQsaXSq1qiNynXbIF95Kk6Qhi6rApZrypW8V/NnTcKMH8cqMUlU4ORFh3D96Br89MO3eOuNauiVCdYC02cg1yopUiTxrlamLz9DjqwEV1JGBx9afTJNz+BDUxiMj5d5Y1mZurRl+4t8DgmxDrp/CSPfbSuXqorMfcefIH/e5O8gfzKoatC2X4ZcqJf3L2FaruFUhJrgDpW3LmQN78A65W2ryN88/i7wd4TBM0c2X8BuzotbMm/evGjVuT9KN3iDa+KK9sw3rFqMfn3fwl90L0pOsmdZiv6yFwWo9AUUd8Ot7lXgV6sI7C97K5bzcA8G8MTn67NhhGR+7netT01Ek3ZGK4KFEvef5EK0ZefjsesKrvetpW1WoHnZ7s9ch1IcGQEWaBIZaNjZ3Ay/layMHkuO68rcIc9lHa+LpnI4E3/nL7gsMy7U/FTib3etbKB/8Jx7APfp9kxvdKcrg3wCS3ggiorvq1pEsVq67CTB7A/QvHlzdPxgCt3CNoluV/s+MruvvXLgH0wd9wlT7PVRZNKJTmq0IGSkAnDXyu+L1iLCsZxaFI/Yk+hIZLO0zfQ2UdrYdPNghUfGxErU3bNq2LPQEvH4xnbs3rmVBIIrNZkkmgoo9ZdffkGRSk1x7l6MYdvt00x/4pIPxUtXyFCja6iIM0/bQcVGBOH9jnEP0bhe4/nNawe+0uSCxvea2rwkMhbmd4k6OXbiDi7wg9WKtbU1+VByQiL93vnke8immIhQ+J5dg1XLFqNK7UbYsm4pbt+6jR5sGN/qXf2ZyvX4ydv45LPV2uWp6RcTfoOdoyv6dGme4cGHVPQiKz7GN/y034e5Rjfw3gWMH9admLcA41Op+ez8P7xvTYwj8eS7b9dWpKsxG85j7LGTyFO4ZLqxfA+9jmHf+51wyIb5B+laq8n6C/I3lb9P+ZMiX6+oUeyS0bBhfbQntMHK1VPhSMMDyKUT6A1bPvPurWpg34716Px6J+4J9f71NnaBxXfqamMK/xz5/gdKapg0FPddl5GfJIsPSRcR6WCJex0qJntUTpIkPiKuMNkiEYDB4YgyUsBcJVyezg0/M5QnWWjdSYnLSpS3guTBu86sBKYlH5W9O+3LpwiENz3GntiyYEYIm1OGTPc1t2xH11VIcR5vVMoSgH3+06Zpipg0OkyfjZfACQ5Ifp17CBcvPVB0ShERkXAl9cGwCf/Ayim3QU7mvnPDxviZjLYlOxaOwdF9qzHn566mVSZa/mP+ISz6+4SiXrrqHYVr/laG7cO7lUVwcDAm/7IEtSoURp6CJbDldGCmQIkyBHIXotFVB71TTX+T3lFzeMA9eF87glWLfiZQ+aJBADJTpEgRdOs/DMvnT8XFixfVKHL09zOIRaiUaD9ZeJE6qEVzZ5LT6yPDNUrusigCaKVIaPZkIRXUSxIJCBHo9z9sUxQXQg77OCyKH7K3CqcfSaB8fpUaBwyZfxP79u4its2SHGkFlRtGmP+fR9mw6TwmTdmR5FR16tTG0AnLMv37kBM9y8ZKu5HnfQ4JXDmyYwX5ZsIMya+1a8mfxwE97wXhe21F/LTxa8UxfFADNOs0BwPJlWcxcARK1u1pANLKbqndR0SwL4Z0i8NENeH+W+Pr1iaSosvA9D9mLGZMn4J+g77AzatnsW3DCvj6+iEndxabz22m6JBcmG04v5Y/cYGXpOVCirjw7JkjzZ+4JBcqOg+allLrzf3LQotPLDn+pAjlgn+l/El3o7JmT4UhWOrnfG6+h4F0CwquSTBXUc6JrQdJK0j7mhI/boNPA2YMIEGjofCc9br9hj2L+hksPIZt2gwVNhtyYj2Odwtqq1Oa2twigzZz32mWN+N9C/x9HN7MXBDhbm+8Os3zFUesxMnvOyTa3+kU8xzSjSrWLL2kXwKDP16Oc+fvJznww2Ffwi1/aWQj5YKHZxW0qe6hBpy/LVwLL/LCeVZrn+iYjCpXUsnx9T+T/3A6/ln4Fj0ciZ+jeBv27b+Bf1aeVsmdhZfx2wnT4FI28fkv7VuMKWNHcADvgocPH6prm7bsNIwD8VJrS+Qgc/eRIQVLUuWsOuSjLsT4n7kTGG83VXwiGNYro8Abp3fgp3hGZiHgE2UqJCQUDZp1QFiQH/bu2YGPf1itQPHpPcfTgNPMuTflfkzvI6VzrNzrhd7NSxqUqmbNWyjeD2O5/O+DBmjXpqzxKn3ejARkxCR8VJ+NnYkClVqpPTQ2bzs7S6xa+raZo57dKul8JSedpGu4y1ROxqX96z1Qq+Wb5P0qbVj9sr27z8pCbdpYndy/Ad8Y0bCIwJYuJGcacVHN28yEdKmx9vZqlNmmTRtsXLtWJd5e+UdvBBAntZHRSv+QcqNs05bo8tEsJW/Tc2gYOHE9RpNaxf/+FVjGBmPksA/V/tI0S7N7ir8b8fO7+U75m8HqWDIyr03L0qhG91IM3wFvJpD9lfinli1K4d3+tVWghmljzyqTFFsqXRaMnjNWooTtXAg5UyvZGBUVY2uBAn8fQyhJSSV3nCLfFGUhBeJNN/JHSY7BJ6RN0UrOozcRUsgVkYw+TFIIdxDgfDRl8aoVRxJW2tJ9GsLE3EFl8iS9PXbQ2XjvIme9JJWABJpIfteNzPEnxN7mSpu27TDn199xzCsKbWrEWbUm/EEvk0dxtfvTtomBd06pqOApEztC8hcbl/UcePzAAXBdej0KFyoE97yFULhWbyp+id9l6c/LuofB52EQVq7fhhsXT6BRj5HKZSj1JdeWGJ8rufvIkIJlyoMlJ0ruBNpFGCslq/bdwmOGRQ/tWVPbbJh++tlnqNLi/WR5MdITXZCS4vO8Og9vgq3fb1vUcH8DCZ6dN3sqHj9+bFgnM0I2KJgsjfA00canXCjDkOqL/2uYhHvmKat97ofLiKRFu1nkHyqF5u26wzlXEX44+fFG+3rEu9gT9/Lmc72mjcTlTPxxu+GckoJBMrkbl9FTF8GdgR3p+T7k3XwR3l1NKTG+n2dxH96X9+LrIb3UaerW9sTI4U1VRKc8782tfsav3PLFwv0YNaAJXREOKHv/ATZzXTCfuSWJOi0I3j7D5aqyn6TkKlgGHeoVSeSmPb9lJqb/OF7h+LJSaajHfXfw58mfQK+r8TdDfr2q4tYVHzi1KQ9hfb7LTBH9By7GUG7bw8TbA8iPlT+fk4EFPhGjOPcxLcL+bnvVTwG+o+Nz8Gn7WHoHUikCwvMyoXG8y004sMJJsWBaZH02gsxDzeVGpZzSaoURa5q5VDNZSElSaNER4lKsEUFG7ay0GPtXzgcHWsoeVSloejkow1Rj55g/0biIS/BmtyrGq16oeXcC9f2YYcOUed5933UQ84I7HSsk2ibPtgAJq292lzdLL8lJ4CoHCu9++HeizZPGt1fR1hMmb1PrBbd4lwTOUvp/8Amqtv4wU9rEllVcUbpILnRqX8oQoet18xEtV9fxO92CUiT93dGrQWkiJE6t3b116xaCfK4jZ4Hy5EG0U/Wn1CZmioJlegIZJWZ57I0strkVViFnjhB0alIB23bswrGTZyh4H6xfsUilqJErFHzNkKGf4OOPP8auC49fOdfK7ZMbMG7ke+phyL+jR4+iadOm8Pf3N6zTZr4f2475kvJri/rUSALCZdK+yxzxiqhSsWIl9OjZC+fOncPCv+Zj0fw3kTMT3SNGpzY7K9GgXcgE/zZxQR3blVfs8WKGPkuWbwl0+GzUWoYq18G0uWufOd+K6TdoesHGA5wXTYGLZQP4fltRdeKK0DHkJzO5KFhTBi/Fw+wuaDVoLEZ98LrawdYiK3pFPsHQjuXhSXB6CN1Q3zHoZuLJu7DhHuXohv+CyZ8jnSqptkQSgv/SsTQus75ctA41LE2CwgNeuM2ceCFLjqJXRAy2vFsX+ewt1TM0JsF0I/Dbgozlt9qUi8P0mbiThHJA9herkLniwiSyARxZG9dpbj8HgsmDysSN8M1tFwoGcQGGkkjZkVa7MLrKIuNB9BaMbI1ytIIdO7rHlJs9Ab3ZiYHyo7Jqqni5b78MHyahNi5iNbPl7yExWuXI8eXVqxpCadWJoVUuuWJOsRRl0lh50Y6V6EWbOwEp3p+277OcZmOaoxhrWu7kGdKFmVE8V0avUZRoF3b8fvUSBtwZretFO05obi5xYCLJyqUNlmwFUsZP2oot2y6p+bJ8v7NS9jms8uDnv7ZkWpvYuFFDhAZdxw/xLmCJ1n/MZ50zZ07kz58PPy/chtM3Exs05IIy0iaOYx7j21SyGjZsiI7vT0LNCkVSvI/2NdyRO6cVX7ikJdkoQs2CFXDnDE7uXIycjvbYvHmzysfl5Job61b9Y6hNcoWJVWbtpl1YtHw9rl86Dbe8ReDmkZcJFW3hUaSKAqNndnSB4QI48zQmPq2ejDwM7ViZBt6TVB0t1apPhn8Kz4YDcWTNFPw+80fj3VCpQl5MGt8h0brnuSANfTBxHCkBWJ/n9Ziea8k/xzH7twNq9egx3yguon5v9iCL+37061MDvV6Q0ea34zdjBztnKaIoZIa7+XlZXZ+X5UoJh/9WzxyCDWtWaIuoVaMQIpmj7BhJK6V06voGHvo+wK4dW9XymmUDkIUKRCmha7hB6xCVjWgqtus43S9EpFRwXYkDKdGoP6LCg7Hnx/excM9uhFtlwwNaKe50qYJcWy7AjgmbhS/KIjAcIUVdIZicaCoVkuiZjR+CSuVGlSH/UFGzxh3SLATw29Ty3xX/aScuD6yfxB0nUXfFmKvw6LSu6lrln8uBGwSYFzAca9hgNONIBvVgJoSWiDuP7ZcgRJ3miihsgrcyjga05og9wt0Ouag8CU5JlDkbyuWxWLvY9qZUHC5QseN9vqwl7+rTuMtnk9p9Gt+fpAOyu/EozcEExsc+7XyeVaeQjdCY250rp7sqUWpzkjVf3MEvS/FlloPub85Tl/vTj6+TI2sXSpapifVr12Ram7h/00L8MOZjzPu1l8pH3PWNuWhIlvatWzZl2jm0NjHowUWs+nU09u/fj3GTfsJnH39gOIcMFENu7sXJo/tQreHryJ4lChU9HVC3bl2zH2GqCtaCcb0JMN5teNaWlhakoa+MQ4cOGtb17NULXbq/iYcWpf5Tbg+DAOJnxMJQKnc2dOvWDWWqN0GRGp3VluD7FzG8f/NEu2/b8EGi5ee5YAyyfZ7nTeu5JGno4qXHsISme8njJsq7KDBSnkdofHLXKUzvG+gyFK6VewRlX77qbbC0rd1xDLfDXJMc+rRKu1T4MluuNIF8/8FrJB++ri2qacFCBekmtEb9Ju1QsmYbDOtNZYZlDH8X+KvEX3ZGhdUfUAdOJA3Mv/EigolnGsr1S/j7ji5F3xunsOnzgQpbNZjrrBwtkYOYqiCmU5KpWG0e0boUXDoXbvSsDusHcSlqApmixo2jbtJa4X7z0si37ATsGGBxme5BsUI4MMpVoy5gtapIihivrlUUwDwbrU3GFivhXIoWHE8Kyo7k9VPgbu4jCoDFw8cIY4oPc8WGCpUVubiEXkGlnaFS6LHzMrLRrXevddkkhygwNwH2WpFIxXxrz+DcZ82RHGmptq/p1Ol0nBIaIhF9xkW+wRTuz3jXp523IkVKzmO3zN7r09ad2vGi5Lgx84NweWVmkTRFEsXp9Ub1ZKuVttmB4dOBAsx/ScoiYgR/ZdSvFMEsxj5hwvPA7Phr3VGcuB6c5C4y0iZqwSr1GO165twD5MhhrfIO33tslyluQU25Mr7Y/DYBaFG3DI5dCzacI/KxP6YM70RqpkhY5MgGL6+bKMR27MYNr/QrWHLSYm6xmDpjDgLYgGTjTeUrXQ/W8eGZGRGU8Q3I/KvQeaR2H5GhDzF+cCvcJ65EKxI1V4EfUTEmm02WnJANfUpgVq2uUhO34BJzi5kz3Wv7vIzTb77bpCIKtWsXziFJRyQm6uddThIsO3HyDvg9DEUJJjM9d/Zsokv4ac01Xlf2ROv07yNBHBUKWOOD3s2JlXiCOk3ao3DZurAjCFbDI4qsHp1fhwED3lYH2fG/qB6FS7mjxgUfhNE9WNPVDl50oU3m+hzs6D9mhy/7NeCvFH8R/FnyZ1zOEuvlw2hEKTlJLCkKizUTyGely1CsSDZefrjzemUUIMfPtbdqxCU0jo9UykMFxZvHKkWK57LyDkY43SJiwQqMd/U5MMIqjO9lujmQKIes/Jl+s5KGJojpwIxdd2W/3YCr5K4KZ0J5J0YdBpiLOjRxh4m70fIRFbjMSkLPay3L71EUtsy0fDuRqiWgUoJiaPzs9PkXXwLipuvWez5atOnKIK8IbN+8CiM+boQvx2zAd7PXwikfLY9GJSNt4qntf+LcoY0qt6BQLbRo2Rqzf5mJ+2H2BsXH6BQZcgsaHy/zadFL7MPOo1mTxhgzZgxGjRqVPgWL7KSx4tLT3R5Zntq9mZW+43e7v2b6DA3LTYiXaMGw7komubvEVfCwRmHDfsnNaODZ5LantF5Gx4KdUOHgKe34L2yTj1c65O10wwlJ6VcE3GaWciXEees2nIN/QDgihCiRHVQ0zfo2tEI8IRjYzs4C9vYWCtAeFBShQoCrVq+BnkN+xN8/jcDB/XsMEmnaojWJ96aSPoDYj/iSkYZEO1abpuUjf1VY4I+tn4FxY7/Vbl1NHUjNUD4oGI+55E2S2TJNmiA4NBT2tnaEK2zCu63L4Mc912BNq5ZP9QJwINA8iBYvUSoekXLAY+clhOZ1hi/B8EV+3Y9zX7ZSlAeaFUYsSqW+34xgHmNLi+T9JiXhz2/QOPpOu6CidAkKDurK+/WZUgZ03wkSLO3F7qqPYjmP5ai3MIG5vrUKM8WMiYWI1SmME/fJwvcxN6NXvdkupDvCjcqgMLKbu4+0X3HCnmJJehRPRJqw9hnMmSiJKZ1BcjJa+QabjwxM6cCXfJukNIqxsjDQfKTrdvheKCJZpofKSBGeNfm+jF3X5y48wOChy/DtjGU4f2A19u9Zh9kzujBl2h/o3PM91OjwkeFUGWkTxWL0+Vt1yTgQAmdnJ3w+egKGfvg2jlwJ/FeVK+N2t3EFl2SJRhMPuQ2iID+LrlxlHq6rSX3cGvU1xn7ztZGEE2a3Elchv15kau5HJmatiHLlsfUiHtHsao43RtvvaUaUMjpPj3IlDXcBYqS8eiVv5tau62mnWk7H9gQfyy8zirj5tjHS6OfZe5UlyiOPJ+wdnbF7+yaEhYUBvkypYmsLR6c8CI/ICrdc+ZCvsAPak1DSs1oHXDqwRClX1gTShtFdI2XLxnU4dfyIIs6cPOsv5C5R918nwH0RMIkim7QqiXO/Py27o2OXXrC0tkHhEpVRtHxtbF0yGbu2b0abNu0QncUKi36ZqixVHu4O6E0l6iDdhyCXlfE3IHilWPr+Ln7UWLmZavf/S0WQXaPlKte2y8RAZUMAO5kgugmvDagLS99QkmJWRHGypgeRd8qBrkLZnoXRosKQ7krLVwHy7PgxMKU43YSXqGSZJjNW4GYOiPxqF1H3YfovjEngtWu8wXyFyRVxDYriJdQMjrSO3etQQeHGJO9fWktWDhRsWU96vuuU6vZ/Du6qLLzmkozWvUCLY1pKpAQA8KcVO7Lbh/OdiCaW7lUu9gSZR1G5D6HnI92FVt8MHRd/InMktmEcBEtxtAhHwfx5sINBEGHESnoyL+/c2VNQuXk/xTWVEeVKYCFH1s/ioDqb+i1cvVe57F5ko0+8qAyTZDFYYsFasue+YUdtJiOC0o7VpmltdCXHz4sWDaXdg0zTex+RfPmWTOqHXbt2Glej5tvxfy+ZW/AWxH2ol8yVQAgtdRN+2IZ9BCNrRRJRR0dHa4u0WMXxMGkrypWvgPfHr9YW8eDibowe2lstfzqsCf4mbuc6QdSmZcfO3ShZvvor9e6mFtpsDsOQ3u9DziHu9GBfL/jevojYxw/x26+zEEqrlZRh/B3g79tyeZCTHFUefJaiBJ0d1TIRNqjCpyuVpcrl9D1cGNwAhRceRTAj8wIJ9JZ0M5LaRCU2Jk+U8CMZj8hZvSqWtJC47bmCiJw28K1PVyYbew38ru2TnmlyhKIa+3rBvw7jHlNqWTBvoCRLNi5Z2WG5ExMk7spUr4EWX6Fj0IhMjevR518tCWjvzr95V/P53s5bcATe3t54q19/XL5wEI/8wxg9H/fNSp7ghdu90j3gFOXKIvQavh3eD6XLV8NXE+ekGMn3b+olmULTIA/x37wJ7SV62Ubm5pTExwF3sHjqxzhiFChQmze4nz9rNvprV7yj3e4rMZUOwu4a3TcphKg/ixu9MmMXhpIg9LGZygX/JhQM5dlZizXqn+Wn1F6nTp/D36u34u5tL+QvVgF5Sr+m1htHiBYgDcAfs3uq9dIQLKd1oxBHbMNHJihjM1eeYUI9h0RnfhXeXbmhZ3Ufd89tx7ef9DXIrCHndsYvfTzkNVSkVcmVRJkWTG5sTctSxa/WKZfaPg5KVHg+rbFS7AkSFoXkOq3Br7X/BY/K54ENua7EOnWbFqEYfmNh5KHKxvfSioqUWLKkqDpsLNS8JEjOEsH39oY/XYhuzCaReNAjzOr3GYloJxYnM1kFshPMbMqJpSo2+edM17c/LWPZ6eYUeoGy4zbiEd2U4cR1SSSZgOfLjVyJIHEn0nUYlj9n3HbyWGmuTuMqG7adidukE7kmlj296BJ4Sgm4M7DCp2Fxs7UE8p3t038BSpUuj+l/bkbrusXgx8wHkh3h66l/46vBXRU/VWDwYzyOypquAae4Bv/64UOmw6uIgUNGoXZZ9xcWrpSSgpXVrOTMrNSVqwShZGRknnA0zaku+bF6w07M+mW2YfUJzom/9nM2+lrEnGFj/IxEt9jSRJyDQOuXqYhrJEw6hOdcIuhWCTM55zB21GuXD0Bp0lTcJvZsHfPcacrVRx99hKvBOZGvcgeUq/c69m5aiggygku5cniNoSbp5IVKQnJfNSFJ5obN50krsd+wXWaOb/0z0fKzUkqMT/KynyMkwMdwO5Ji6hrJOT+gorCkSyU0Jz4qD98hd2I+pIjycvHDBjg4h3Zfuj6sjVj2g0lxIK6/XIwSPP9ePZwa1x77/3wLZ79IsHQJzYIj6xLlypacUlKEcFIrlYctR57VZ+By8DpcifOyueZDbqp7arPgWCQljrgOBTNlrliTNDSl4r7tIiwY3i7KlYSiVhq+Qil850Y0VWB6LUxfyEdzhMfA5dRdbo9mxGMpFCBZqOJ4khPQYmVcdjPTwbV+tYxX6fMvgAQkwOJFKtb3AtJ0OQHJDIqFmuG9QUuRnYFvH34yRuGh6jRoqups2rI9XApXxaIdN3HuwuV0K1cWMUG4cWoX+nz2GwYN/+aFVq7khrVAHXMCTZOCpStXCaJ7WuXKuBN0Kt4Ejo5xiocoAtX4EweU9sC0Bl07u7hDcjKEOnu831tb/6JPBdibmbnT0nq/F3yCVAJf2d+NEWjraBlsyZB8a4a8d+9SWbHqOxgxb0fFWuKBf7iq/uM36mLHlnW4fWYbIrx2oH6dGoohXDY+8I7BwiWnsYAcTVJueD3CVVrotNKcM4+uX9AWn5nFx3ACzhi/Vy8rl1bx2t0w5LNx6Nd/AG7cDMHtu4GYMWcfHmy/DEvSGkgEXQhdfa77rxGTaK04q2LiLU6CWxJlp9CCwwax+NIC5EQ8VW1y9DhQmZLReDCxK7KvROr5xpNBRpAtXorCRlHZEQqGY5Nfh3ez0njQojRiiEct9OchFPt1H0ThiSQTukQTChO60EGYK8HFPdTq7LSEWdF6JhgtseRqRfCVG+YdYD7D7UpZuvx+PXWNNnyXbr9eSe0midE3czD1A61Z9pTFN5su4N6IVbAyGmDlJkZTrG1aUcD2VKJsJf2TBHlMnrYDa+cdxCZa47bvvGLIyajVpU8zTwISvfo8i8shrxRPl5XKuhQPKvqSkim5EkkOOdMikdSffbmOVAl2WLBqN0JtS6tdvK7GtXlbN65BjN95tKuZGzk9CqTZcuVz4wR+/bIrIgJuImv2HKhawv2FdQtqMpF218PJQltMMk0Wg6URjerKVYLMMlO50jrByUOa4crlS+okOfm/T9dKaNO3tuK+sWenrRKVJlyC2TkB3AaWzZ06PsPs0Zm/Ms+6s5nCX2NJHqAIdi7pKd48ZsDAxQhl57eNBzbm7zUmspXULOZyx91mWpG3BixMdIrSZcoiNCQYjVu0xe+//KS2rdp6DPciXRPtd23Pr5j03Tdqnbu7u8peoO3w1Y8LkKtEvVdC8ZF7+jcUuCM7V2D85+/Dnecf+3N3eBIvpaKgyGtltjAKLSvdek9SYCc3HEdFSixfpkUUIXcqLd5UxLUilmMJ7pCBguS2UzQKdEfa0Zr8mDxWplQL2nEyleuRgZEcL1xV9lSg9tYqhK1frMMi4gJ/4T5hxdxQeFIn5foMomtx40fLsJzvrwVd2KKmOfMn77IMxQYS2N9yeON0RzHmo3XuBL+D3v3+hHNOO76rQfAs4gnrG164xIwE0t1+SGtfx/blOffvF+eTdJ1WzP/vX8hLfAWSiFsSj9/uFKewm7sVeZ8jOFixIf3JI5L/pqWMGr2OjO5BmLNwPbxjcqtDxOsyrEspsquHGaq45PUAey5FpsqNedPrOqwcPPD9oKa46XUDE37fjAZ1qr0UypVEE7qRYiab0NebKSkqWMevBaUbnGZ6jmehlLxK5zi1eQ5mTflW3dI3X7VCbY66VZHOgiPyJ2zUhTDwTvsKpredrmWJ0pEO4mUqtiT0lLQhaSq0LIyZvhO7yKvThQcs5a8OQ+E/YHoUj1SUtOULj+DUn4exN5UTzVx/M9EeNjEPkd8uCO75iuDg9Vg8uncJl45sUqO2wlXbwYJ5C+UDfNUzGIhQntV3fv3IKkz6ajAq8xwTSM5rjJOS84oCI52Ef7VCkCTHEulk+SBYgcUFEC4gdeGPEkyUKFSS0Fi+Bbe9V1V6myD/x8jx+wFco9JWj1YpHyohOZhUOsbBOgk9ggWV91yMQJV9xIJlTkGTa0quSJDLJqb9ObboGAqSWX5BfICFjH/FhiBZCn6fd0gdLvkYv/hyNLLmLIVh/VqodV+QZb7pSM6zKU8LvksdxH9byfdVZelxdKZyJ6VRkxZ4vc9H6Ne1Ma7duo9Ney9iTt+mmEdlMWRWD7WP/u/ll4AdXd8uZIW/ycAO5UoWfjdzegAHEIo41946xZsWJUqs9nPZVo6f/DMcS7Y27C9pwz5oE993xa+dtvggcjjEKWDajtpAzZ6ZZVbwe+3doqza9O7/Pldkw1mzZkPNisVeGuVK2vZHwZHpT5Vz/1F4bE7yAJkDaYtENEHpncfTgf9D/a5j2JuvoWndIljJEfGpb9oSyOqsvY+ZNnUhBuBh1YLskfiRPaPyvBnihRPGkx3Szs6V8E2/BTjG+1rJ34Nx7dCYlgh/uV8zRXIJrtt4HnOIm4qidSEtZeino1Gs/luGXXXLrkEUz0y50s4wsFXcc+zAdCmDSJFgXCypDLkymtCb7r5q//sbj0mHEEJF4RoVa+lMnI/eVFYvzyXH8YQKb1Y+70AmdHakdTiMn8KkWGA6K5zK3xar7LAloeebBMMLA/wD4r5UMbJ2WVKRjyBA3pQ5PW7HuP+SiiqE59B4qDw2niMgviQ2UtH5YcoOFCxYAD//uRYnz3thw1+TsJcpfqQM+bCBikpdTQuwaREX99QfOsGD1AT2pCQQzFly4GPjY42T9BYpWgxvDvoGudxdUTKfNTZs2IDLC+ZjC/OuxfCgj96ohkbPgX7F+Poye15gFYHE7wlnmRWtdIKxc6fcheommkrzf7UU+Ps4hG5DUqSZlgKLjyKQ/FaBtI4mV4STcBLf3V0MHvnok89RrCFTWcUra46WUfhlTD8yqx9nsE9hzJm7GKuZNi9/xQQFTOoVnaGYnS+tU1T4WGrUqM6MMIfV/PQVZ5lY2f6ZtyVyssweDEp9hTxszHas2dXdmfnn7mQJXzK5v0o0Cc8r1NxYnKkpoo8DfNXuQpp48UnpZ6JcyQmSS1RrfK1PNU+LW63+f+IaI7e82TEJI7V//AfrcpCEqUaWucxS8sRCcYt4lb8WH8NlXnwu/kZ+3Qo1yXQdaAI+FsJSCSm+fMUXpwlSlhQ8pkVcUXn4O8VPRfpUKfnz58dH3//D7AVSe1zRlStNEpnfWJmje5Cz9eGv1BEv/k+sYEVQ8VB56vj+CXmnD3moBJckWCanM3dQcuZe+JRwRTCJYyOofFnRkmVJq9U1uuI3/X0Cq1hji/4foudvP6Eo34mrM/eg1tzedO8mdET2l33iOKX4UkhuwzITt+LCoMTXwWpUyb2ByhTdi3k2iJu8nFoXyijDrxgduP+gl1r+ef5a3ApxRM4CFdC693A8ekjc1fmziJx7AMccbNQ+xv8EOly+V1VUkchFDiYkwvAxAf+OBL7bEXx/N94FJFgsiZYMLCNvMaFdtNING7tJzY/4ZjoKVWkHN4cc6N6wgOIVioiIgAO3liHQ/jy/i5wZJKBUJ3hB/oV4uqgriWQgivyk+CST81FtfIX/2XIQIZZWIaq91VVswImLBQcnkaQEEjd3SpkIHtJV/eXoDcREBmPqzHmwKNgwUUW3b1xj6jDm2QwOwZkzZzD4g7fR8yMZssSVJ9HheOR1HHcv7MXbM2doq1GnWVd0+XAibF0KqXWZrfiYa0uexzkMN8iZZF2E4ZExsX/tvJeq//TfuonnIajncQ7/82swctiH2PxrT1g42cSl5TB+Qs9x3oadx2PiXDJapIGPIgBYLAeCZdGIFbX68hMHIgBh76bxlgFtQ2pTdp4Sxm5MIijXGuVgpRoGsUhJpndHObdJEbO2jLw2MoegcXn99U5Ytmy5WuXCRuYhgZuOXCrPX6XBg1G2agMmAC6HbNkJfL+0Bz53r6NcgzfgkdNad5vHC/Jpvo8nT6IRE+KDTo3Lw9XRSg3kkmtLapRwRkEC0adN6wI7IyuEWDA1q4Tkjsu75rRKMXOfwHQZUITTWvWE4PTL68/CLiwao0mD8GlRF7Qo6Apn0jyEsANaRoCvw/zliA71lnQX8PPzU3e3ac17Ktw8/lYZTUgLcM1CajE7OxwB2j8QBUobxZ+5i1AmXhaqBVH8yxGnImll5Lq8ab36vOUMHOTRk3/6HdaejbVq1VQSyJ7oUxULHz1C9ddeQ9UG7ZCrSBVkt3ZgrsXj2D5rLPZfuwYnEkx+8F5ddGXaID/mZJOSh/cs/FgFaaGQZNVCQqlxYO3ddx1fMc2OlKn/nES+3B7q3e3UoS3Wr1+v1gskQaAJL21hO6MGbPHPIdn7YDsgWLiXDSaR7P2kd4OMGE1k5Lrvmhr4mrbTxlWLcjV46Ao8DnuCWfNXItCiqPFmNS8DTuvg02jVormyMC+ktTg0NAp16jWC94O7TCt2JlFk/OBPx6FkvZ4GC5hU8jRtiRyfmiHjWZ4jJZqGZC1Y3gGpg9OSaxCrF3d6YTkr/u2HIefXirxU/xuzQC3asZ2IpqJgnEBW2890KsqFDVmp/eomfdlN903PsuBTnqYYs81LtFWMZXYYR6Hc7lgh2dyKOWhViLa3TALUt6arJhcjXfIxbcgFknv61fJUl2isCFqR10h+5srkbzfCmsSSUipWrICidJN0fOdbBEVbc8QVzJQrW5RyVbRoUYyfNg8dm9fE0atBKuw4W3yFu9bOx85tm7G49Ru6chUvk4w2iFFhgTi5dT6WLpilRrxfMf2FhQWtS7SmFChYCAU9SzKhsz9iiU9y9yCVRtHCqMhzNuQIXFOuJL1T4b+OkCohL7xpfXny1ToUJPYuOy2PNuxHIpkz8Baj4oruvoo7PPZRLg9kmT4LLfdvRYnfZ6DomQfqLu60LYsSpHI49mYnJnauiuGT/8HwNxsqJfvPdrNwhPitIaNaoTgjDzXlSg60o3KW43EU5N1U7nx2XIEm1h8fuvwF/C7v605iTY7yuK/HTkqiXEl9orR/f/0m3rp8HecfOYF6gKHkLdMYfWc0xmjLu/hlxmSMpTX1CC3EbzESUtyF99qWhzPd/wGMZnSlpThGnbMw8jDi8DUqXr4Erv80aw8OrpqOP36brSAfbd+dQJxgIUT98TPyphHYbLigf2FGotySSxfkyKTcwhGmKZXJXZ4TcXrWjMS836pMcru8kutz0er5gOmW8q08hXttyiYKyNCUdLlxCa5YTCW9bm1PlGaErQxMJf/q5Gm7EB2THYvW7lBWV1MhOVtF4/bRVVi48C+Ud7bBO1mBJrO6Y/mqUzhy7CTOX7hvOKRs2dKo2bAtStXvZVgnMxltS7RK/k3lSruG5KbJWrC0KELtwBflJl6VhyH3UamwkCZaoDwBtj9O7KiJOvWpjEZo1UlLIujUK3v2ewheJYrKm9BLFKKb7tT4uHu1Ig+VA3FnvvWLwuaGH3KSdPFOx4pwZ8fozfyMrhyBCxmkO0daUTRzM98Jrr9ZHYXYEFwe1BAFiR2416wUAc1hCKXlTXAphuS2BF3akmj0vfXnYVf/Nfw+fzEK5HFNZCmJjgjB/hVTYe/kijfe/hD1yuXWBwbESTxLYP6SSW9j5/YtKEq3WTMSdfoHEmROi49raDguEix62zsElkxl48wGvz+f50Cy7bfJ74DOX7WGXTyRqLz7Yi21YxDEOYJu655nPrRKVeF/4Sz6hYdD3i5//sbVrIl3ps3A9RBnbFg0BetXLoINtxemYv1p7+pwrpAHhTjaXk3yzrzLT+LgD/ORu1QDeF/ehwlDeirguTiZatPCOfCXnkyhJHB0AdZHQ5jehWT0IUH1gu3KwevVBhj2pIQIz80E0LRIe3Gfg+8twh4mCH/3qz9g5RjnvlMV8V963M1rD3vj4ObF+P2nb0iS6686wyGDGsCZ5xGZWPgGIy953eSbKbDqNM581gwPCaY/+fNueI/4FP8b8bUB8iFWs2+JUxPXTmUmW+7bu4bqWLXrel5T05RDcl5JoB1aICfpMeIGfJ6/78d1YuNMLTDpuUa7a75MpWOfEBxAy1e1wX/j3MdN8TjerSj12VBpfvwMMLDpudbnua8oUoKr+ua7zWjHE6/mrwU9DLduB+A8CXsrV66EkWNnwDc2b5LLEnezkIGuWLEcI7nVMZcdKkztCtfrD7Hw8gMs2XwZd2kIkOLp6YkeAz5BnjKNSMFgpdbJv1ehP0/JgpUmBUtXrgzvQ7oaRI2KIeHouDntpTpw4SEaVc6L1zuUVTkIBZCbHDDbtI4XdVlIUK0fEFxqQlDnxLDraFqZinM0fXxKF3X52chtJJFfkS52CCOupMykrchO68RhdmYq9F2USAHlc5qFCpOwXifik5HtUriPuCSLELR+9Z26kA7OIjAMFUavxzfcPJcf94lTZ7H1NIHBxBWaFu15vMg5rl6Vb/Cv8W/Be/cOVKX1aOhrJRCa34n8UvsRwg5VrD6SX87uijcinW0Vjs/2TiAe0VIVYJJsWKgTnE/ehfPXa7FBUsOsuaqSbcdEhiPgzklULZkb9evWwoZjfvh2UFucOH4UPfjg79Srgz179qlXoBetYmMYhRjlZoc/yfifxy8MNz6fCI/CFRAdcAtfDX8HkZEJ78sfzUoi/5BGKhGzwhXGu+ls2KF4EO9kLsfgoUFL8BWTUH83fxdsXQslevU05erqzXtYtnYXsuaIUyieUPlxL1YrWbdHdHgQrh5di18mf41WzUvgE6YNelzQJVHd2kJ24mzmEP+18bo/Rvy8Cna5S2ubmJboEQ6v+wV/zZ2lshl0JZ5RIm+LpBK5677jEnz47DJaJIn9IwagiGvK4qHggOwSVWVFEsxIWkPSRLeR6MinX8gINczTnzWdNbDdU3QlT5kjMorRtJOn7cRmYhaltG73Oh76+eDqlQuoVLkqPnx/IDxINXPienCSC5R3N+TqVvTp01tt68n/gjicRAqQErTIHmYEY5eevVCMngH3ojWRJWdJA4+gVtmr0u52q5dbIsXZUSUtqSpYr0rD/qLex9xveuLi+eNYvrhfHC0DTfwvYxFlKQv1HRU+zlGRypPFTjErFR9RliTEvegfB5HzxG2cIaO2gFElJ1wgo1rC8znTOkUQ84QtjNyiVYONr7gMRVELpqXDkWZmc8luJWIonNicCHbKMhKz5Sj1CYHK1ZmyZny7cvhi2UlF3CpO2NbtOqLNe1OSiPZV+chflvtwiSSpZdsWCG9UDD3/1wjSoUXTMqVS0fAZ5iedgCLapNtN2NCzkA8qrIAz3EmM6U2wcjamjhHCThtar/JP3QH3R48xgU/Vbu0N1YCb+85H962ORsyVtpD7CcdO2WK5sfT3yXjyxx+Yy3W+VO79SWq4mNey85IPxE61iT+NxyfA+wYWTfsEx44eRu+eVfEWrT32dE3F0icZUtSdeyZftCg+SWL9WrfhxFU5KuyJjP6z+R3B+PHjcOjgoSQVlChRAj179UG37t1wztcmycBAMGxLJvYnh95JLP6xkyGfoqTW8WDU3F2my9GKYBQPv7MI00Ki8fGkBYplW7aJrFpVdUMeF2ttVxQiPm3mtM60rGsOcsMmw4wkVhYFSCx05jBNqUUTW9KFG+lsTbde5rZ15qxhgpUDFXC/eFJZw028xDNC35NbuAb5jDX8lBCG+tG9F0MOuJKTt8VlBRBKDxYh2BU+LIFYGFsBJaJ109ZLaNOxK5r0HInsVg5q/7S2JR2J5dsQj+WTAz8eNQFeV85iw+p/0LRZMyz5e1kij4GqPP5fWs/xsrAY8LbSr2BtO/XwmboLRNbmGsT4Z2CYvGoPw9hScmzdDPw6YwJMQbWGm0/njDWjiOzJXv2sI2ekY8xDqoMbjBqUYvUgUClJ4Qxh14rwCTlwJKNFEAovSx5GWUlky61OFRWRohXDqSPY2EbkYlQUff6BHJWJVascTdYXB5BwlYqXxmyt1atNBeeVj66Qq3R1HP9xO4aRYyiIG4fwN5e/ovyF8CcogIH/G4Hyzd/nXEJ5ld+rhLtMnxsqNaur8bubkXNke0IrkaszShGf59OlEvP8uZO7qlBcVVTGnelO1qJPjeuXZy3vVgDxTwEfL0O/kEhs4Q5ry1dE7g+/hVO+cmbbkrBHt7Fg8iCGkJ9Q1S1csRU9OjRWruDNW7ai8MdvIJT4r3zcGkusVXi3ysj/4zaUeByNhZYWONWlD0q3exc5bF3xfutC+KquJ+p/3tL40tT8fQ4G9tCVfYXvuAvzFgqOpQbdh+J++f6Hbfgf9xKbzyD+stDtmSd3Lua7vIMZxHnZ1CuCbHSNP6FlQqJbt++6jBN7r6MXv+VR3L90mTIoU6E6/HzuwfHuLaBkOezbux2+zPv27tu1IZYnQ2EdKrG0icVPkp2PJh7x1p1wjJq5BbYOLoa2PU8uN7ocH9Hi0BdLF/7BlEROmDu7ByMNCahJpog7MgvPZY4IWAZO0tmbK/lWnEQBJkm/QEugDKTct15QSpovrYFCoaFRW5g7NrV1xkEPhn15jZkVtWyo81nMxF+nogFh+2isCBmfTvCHgtPNwWTKOej+fczAinvk8dtOMHonvjt5Ca2QbAbC1XY3njtRcSCKJ8DoeUZGxvB5/4E6DVuiwwdTDadIT5u45tADjOxdhYEhD9Xx1tbWmL7yEpqUdySu0Bbrj/omGRjIjuk5x8vAYiBKYLotWDd9wmItGa2i81w92w5K4/jZRhLFzCiW9HkXn7UXZ8inlZYiIzw/hranpwhpoyVzUaWVBFQ4WMyFCcs5pcF4kiN7EpCqGwkdIxhm7XjBG86M0Dptcj9ixcjCkVy+FacUs3YlAp2jWZ8Yu6W7kfmr172w/eht3Lh6DvnKNqbvPw5Dw02v3Ef+tIrP8/rOV+3zwv2mxdGRHHshb9VSEXDGVpDsAaGoMXAJQthx3Hq9YiKXuRB13mr/i8JGnXx/GIpWaACn/BzF0/KVNcIfbeuXgIuDZaJR862T6/H3yIEQB9ph/nr16oXBX/6kghjkPYiJioDvtcM49NVAfEpsVjHZb0IHXGVnVerLtSoTwI9c5zfqB0z+5mO0a10W//uwgRyqyupPlqPL2fuoq63g1MbGOhGjtWwSe5IoWd35+4XM2TF0wxWjFcherApmitCKXGe6k3BSiqxjBO31G4+ItbJGLYL/d1L58yzFiEBGSyZx5xkpFKZcXZLl4KO3/sQUnm91m7b4Y/lKJastS2cYyI7lUnLSPbtwXm+mQkneiiX7ZaQ4k2rDkTxhPg2KwmPXVeUGlu8/G91V/qRXUVirjFT8EhyTyMLGd7biiJWM+rTCvZZl4XbgOi5/0ADGCpbnnL0ILE3AuWUORZgbxkGoJBm/S2VcikROz5PUUIzOXsLlN/nr37AIYgc2UJ4EniJJ9gr5Vi5yAD51xh4OBnzwv5HjUbJuD6ku3W1iaNBDDO1eFSPp0o7h8Vf5G3PjPgrldU/0DUrdWnnVlCtpd8Vdmm4eLMmvI0Riz3pE+7wa9hf1Ppo2b4Utm9arl76kEfeO9kKmdxqR11mxWaflOCHjc+NI2a8mR5vpICAVN2B6mKR9mRrEtIhLUZLr3mAnK0XM2JIbrsLnq3FyfAf4MgJKSjCjoyLc7dS84R8bibLfrMfZwq7ITTegph725g5lpy/GxXaNGZKeU727MXYFUKBiAcOhMvMqfuSSdcG0yIdfr4QVrt9+gP1XY14IypXzJ/ZjPPFTJUldkIMBCqbFjvxV3q8VI7N0tFKuHM/Sqlk2r1Kirn9IIlEeEDjxD1QlWNbnygFoA5Ty5crgaI3aaNl3TKJRc76yTXCNx+Qitsjlki9is+YwKFdy7mzEPeUqWQ+dfl+P9UfWYuLECYgdvhJ58xATyO3iftzFX+O5U/ifigldM9VpmaoVH333JyPTZqgtcf8KFCiAO3fuGK2Jmz3NiSXdbrPGtEF5Rhwap20qxmCMa/1rJ7LeiPWoMhWwYGIKyxnVJvikDrQwJVc8mVvwBgH8QhVh7FaXb70Sg0aseOAF/qLontPaxCB/X6X4Leb6Sd+1Rzmm3crO4zNSBAspgHILuvgfkQfPlcmygz3dYEVrdiCDeXIQG+lA964PA1vE/XuvRRlk5/QuU/TEZs2akVM+12OsOYANYxub3iJyCaiYL+Ew9q2XBjVgFGpOUoDcwLW3iFPiPpWpdF0c8hqycTDhRVe0lIojmX+SA9rbVO7FTS4BQauJ6yswfSeWUDFt2bo9sm5Yg/nEqT7J7YxLE7biFrnbKnMgnJMs7m/0qKrSMImC/eU3G5k31ReFPQtj7MyVyFlQhqMZaxP9755HISpXN2j17Uos5S9Td6Hiorko0eCtRN+gOkEGz6EdK9MX1dslIPfkSvbkNuRgZMyqg3Q16aDgZ8pm//bImTh6uIJyJZhTsPLTnJ6ciyy5Z2eMv9D2UWl3TDAPUXTNCUYqG4G+4rtPd+Gxopi5ER+jJc41W4eJ8ibYqRBG/UW42qvdhSvImfkUhZn61LdtE1Uh4demjNVZ7gVh2+l7uHT8juosAnmEqBcnihfHj7066FZXykIDUB8/eQrTZv6GBl2GJ5KrNFaNyto/V1lJIu3vRw5ABK8knADzHImuKG4hgPnn5KcVUa6kXCc1yQeM8ProiwkoWqAUzmydg2MHtmu7oXyFyihSvl6S9ipLtriz7DtwQ+3rmjdOcTccyBklqya14d+4GgpU64I5Ywfg1MkTuMttb/R9H+/Y2qFPzSoosW8nZs6ciS++Xoe+b9ZAD95DY7pkllLJlzJkyBCE0rI6Z1aCylWceQZnTuuqtsu/3Ia5hJkrtFyYK8F0M5qWrOxQUyrJWYCEdHNJcJiyNJT5eykq5K1rkFX1Vm9jyLxfVLXCe5RR5Uqs0eKOsqfFOYyge7FMPqxSEJWoIJwa3UalJ/JpUgryk3J9oJuaJvdP6hNiV1HMXpQSbWWRoUsRmgix0CUqtDY6nriFx7mIIaWsKhA7ev6j1xBYiQNCMT9RCZMiimo2KksOh2/iGCEWRYmz+4EuvlaNWuD397/C/Ckj4EjlKoD7SiqbgoUKwjFPIWy4dBEgCbM92/YufFfnLjiilCtJS1O+8ZuGaL6MDjhtHN3V4DY3+5UyVPgiaGk7c4FtecVIuexEJaPn0Cp5UZUr7fqSmyY7ZPAJiDB8gMYH/1cEpXVQzxpk175WPqYMqIkNmy7iLLl8pIhSZc0kxFLSq1ypg8z8E7O8+miNtglAMpgdQFaOIDNSBOshDb6QHGbnyNS05GaKkLpdfyUoOTrRJkllISHYwssiRQgAvYkZkCIh8BIhZnqtamP8v3pvL0B7HrONy+/z9xl/22vWwo4Dp56rwvAyDD4OXgxAlYad4yUHXDu4FL+MbI+3mxfA+NHD8P3UOc/tO48IvIdPSJMwlFdzltQK6SkOJJWVsnDOJPz986dY9MdPaNHxLUydPhPLV6xEx4ET4FQ0qaJSsbAd8uaNU9JsbW3hWalJotO62mdHw9K2ahAlNAhRsVkRFRlh2CckOABjxoxBt66d0bjXKAz9fJza9sf8Q+jz9l8G5UrsPVOmTMFvs2dixOgphuNzkSE9L3FHYp1Ia5FgDcGcmRYJ/MjG7yO1YkscmPb9COBcUbrwoHHLTyteMLhVTvTMs1s6KG+F1Kspoqmdw9x2Yby3ZBSxWCE1upQnNhY4xqjhaJIA+zQoroIazB1rbp1gjV4k5UquMSXGc3P3IOvyLz6CQDPKchgjZ60YpGFLK6gEAt1hYI5SruSgeOWq0NyDiuLmJq1QTqRNOO0TgtF5C6Fl+27oOnwKeraqCut9+3CCh4h9bOK8HfiUtBwf/bgJQz6Le1cttojNklxyxPpZEvs4f/ZkBN2/rNZlpD+PiQhFeMB9nD+4DqWpA1bjwPhH9lch9EqUrJr4+5KTZOQc6uLi/72sypVcfnbjGzGej4hK2iD8VwT1vJQr4RsSBa7N22OxcWMVPOBILzcfwj3+XKoXgKXxA3nK+SSjp/j6hEfKllw9gQQlprdolBJHp3c1e+gDuoGysoGXiCOtKHAsR2cR7g7IS4B6LC2lj2g6f8IPX4oFGxw3sTZwRHaL/n1zpRVXbjHZ8PuCpZDcmZrbw2Tzf+YjN313rV01B2qcRJ5Q9idPnmRDa4nHEdlg414Cl/cvwe3rF1CzxVuKSuBZfedWTPwqTb681zWIsdPcbKbPynQ5C7myLvPbaMcNRd8ZgbzFq6LA9kXo06sL8rg5pPrM/958EkfP3YSFXWKLiXW0Lwa0bYx+AYHYky8vHmTJiny3b6MQz3Oev7YdumDGrF8NSrtvUBSp2HJwS1wRYLtWFnJmIH8R1la4eu6wWi32h7f4u8+8hBL9KEqGaRHFS6w+xuBuSa1jWnIxlP4BecMke0FKJWtYJAk1/ZWLTmhPzn3SBAHl8zFt0F1FBFmmdS88Ckvc7GezsML8pZsw77tPaQkJMFu98I6577kWl5bI7B5AQLyF5vLHTZLsYcPghCgSCQtfmDlgfJIDXpEVkoFCIjuNn6/h1qhECcu/FBmgWghwnbQVkqDZiVxg/hXywYuuQ1GQ5fmN7VIZ33Ew63r9GmpY26BtrQJYtXodrDt1w6zytfFZ+RakKolz7WZ9Eo4p341UdU8j3+DOIUuxlOD5mvQQzGL04KlxH+K9FXtUUuVDl/yTpWLQ+ihpV7VUcx92LK1C5qoTO1ee2QOqf7YSZan4+fJ7cS9WW51T+/es2hKtfpm+COcwvh7j+WQtWMY7yfyLcBOmnYf2wLVrfVk0XdP7yGbjii8m/IbjvJEu/N2zzoaiW69ot5VpU2kktdGsVqmkGjFloda2mZsKcNYp3tKWZLvJKF3M3uKuVCH48TvLqDTaJk51FNzFPeIKJB9WVHwKFGHGFkC8sXKlrls7GRWEyWyojUvlynQPFcidakf7sgDBn6WS+MlHg8A0WFi43Qt1un0OOzdP7N2yAv8weuzWud3P9DuXxn/iwv0KR2XPZygRdosJ0r3EzkSoBQyFHYpm8RE26a7vLsFPJD50ZM7AYrU6w9G9MCb8MCVZ5eoJlXM32mrsogkQ33UKJ2+E4NHdi5j3bS/MGNEOIb7XYZ81GLms/BFA5WoyT3zkzl24ucaiGedP5PLAG/0GYuacuUlA84UrtzRcpsxYMzWOlIn8BfMXGvoYa1b+I6uEeQT9+Du74jSC+C24U6k0LdkeRzICN0FRM92uLavE02LVMIoE07YZT4U7Khutu+KC96ldmHkJc5OAN0DlLqxfOCc6/j4T13tWwPldCwyHSdv+xutNkZ2K1hNif8yVKOIuH+dzMmxSz4fPyZqKU07y95kWiQjWisATwhgBGkXwfGq0Ftoxr8r0CQPFfFPgDJNgnSKz9xDsfwdFZ+9Ticsln+S1frXVwNOWeDWhxZDI6wZUtuYNeQ0bSA8ScfoUShbzhFfndjiyZAF8Pn8fS9t6Yvn0D8AxK5pWckczUiVo5T3SjxRiUEGFPw5gWMW8aH77FuZ//SFEudpDXjrJFWhcTPuokEBfDG5fFKPerKJ2+5v/f7ImCTAta3Z05e7kcv1+49Q27d9/RWeQYMDkSqo8WHLgf0VQpi/V81bgDq38EX6zp8CjWgH0HNNWKUPuDNlOjtRP8T7R7x1m1PAl96BlvbgdJdRd405Jad+MbHNlh5ks3wyVLydGRBkDb9N6DudjTBxtFHZ+lCOmBSSZ/JUViFPoIUftG48/TOT20OrW3904SaQ0+JDIojsn1yAqxA8Txn39TNnss/oewbt9OmuPB3U4d5C/SXSP2NCaemHlaTwi1sqRSoIbMUNLODK2rl4DLTq/wwTMdWh5s0ZBizu4dZ0u9St3EbxvOwpeuYAfAgMRSQWkfMVKKHj9Kv729lHEovasew7Xyz1K+ZQ/UaiqkOX9jz8X469lpAM5tR8r/1mAGAJ2Y6k0VK5WA2s37TJYrkxdwdGRj3Hv2D/47ptRUqUqlapUw+2bNxDI6xA9KDKSGQjc3eHj46PtgndJVNrx3XrYSvcitl3GTnJvtWOS9zrx6Z9EmbSbuBXhLjb4jUpXf1qyyo5tp/jd1CBEGNvTWni/7tvZdtDqJS53sZKB/FP5GBwSwtQz4xjif71qNVSvVRfWYcHYe+QwDp86rSJwp/71VqJBkblTSqcvbsDkUnuJAqa1M460vjwm112UkSXbXJ0v7Treq7huY+gO1Yrcfw7i2YxThWnbEk35vuXwDUK9txbgBmlLJOgnGyEb+f45hiC+H/41i6jnJ4q4xcPHVMCuIuSmP7444MUI2Bi4MBoTD4LxFyMDxXbFp4z7j8IN7+6Dh0G4sHshwiaNVu1lQAEnZCMv2GHSgzQ9c585Kk/h0YPrsHP2gK1zXnVp4jZvWyNXIuzx+Z3zYTlhlIrOrsq9WhDDefXbNij9y35coIV5fTDf95VXGLwRp2z8l9rd9jU9OO6Rrz5pSVXB+i8Jypw5VBNZSh2Uts/TyiobmTpHM5qoUMhDjJzXR+XXs6H7TrKdmytue65wZOoEcy4Fc/tn5jpxReTkqMuvjqdSBOU6sxMsH1QyV6qncSXrtaQZ8epV3bCvAuFzdC6YLlsCWzWAr6SuyBIeqdyMMbRyCVZB+IKatv4ZxXi02PkW7biGABO3h1T8tM/jeTzzF+UchR1CkdcxBo8t8iWKshM5SsmswUe1Yo5YsfkQbvhEEmfCyCAre+yl62MLzxHA33uMXrvVrAUiomPZaGWFk4s7ard7D9ksbOFzeT+Wz/8RN86dV5ahpbTW/MSG3pb0BWuYby2Gbfve/V4oywjAGhL+TgJRwf9FsuMrxG9IouOmdf8dW+i2+Xzc97jpF4UyNZrB0t6DiafvY81vXyEwKATjJvyI2jWqpGgRrVDQGt179sbK5Ut51XQFDvgAufLkxaXTR/DgwQOVgiY7+a5kvmBoqHKpyGBgF62154hTKlKkCFxcXXD40GHFlxVFSMZpDkBqMFfmqTu3YRsSqhSsjgPrJcmKoE5o8s+NHFzCJZVcEUuJHcPyhYcumla34zlyYCKVuBvsrHvzu21Jq0h7yqpF4+J4d0BdAwZI6hPlzIHEqpGUs+fv+xBjb42LQxurUwn3lAOtI48YWfkqFbH6CR40lJHKqRVRfvKs5sCAMrCgUpWVCoykBhOFUsOiSR1CvhzESPFoEzev0DHkXXNGpf8SQt2HzK9ZcMlRnPmyFUKYkcCB74WkhbIk95gt3X2Pac0KJH/cRg4+2hGjVYN1l61TX3Glde/WGXVrVUv07h5f/xMsf5qIOvw+WjP4wIfR2veokPUkDcjgP7bC3kNa0riS04rfy719jOi0pmehBnnZwhF4/wJcP+iI/FQaHxchfxrTWcXQAi0BUtmDIxBIhfDLIV+gfLMBqpL/WrsrgzcrCzZEZkp2M+sMq/5rgnrWgPbUFTgPFFu4GC1bNMWIz9dg7OjWgChXfJHNuQZkVCj+/YyUXASgP6xRON2jSkkeKiHWsXT3PIlne5YRcizzxwXRLZFckfxijwnqlITSgaVzIxdJQYWqIcbOSh0iaW5ukxgvPI+jUq6kcRMQfZRVduRibkJ/AuML0LpxbGoXnIp3P4hyJWXtH9+ibvev1bz2T3934ySRdgWuwDO1XBk/D58neYj10p4UO/A3+qP+gt/UCLzm3L9QMMQS4Y9DEE2Oqtwl6+Li3r/hO/VbtGLaGslRN/rr1lSeXdAxPgpVauocX123zpUNFVc0zCXMFCEx7ujpOzH/jh8qt/nQsMEiSySuXbuKD//3carKlZbMvvnbk1C/6zBs/et7zJ0zQ9XVtkNnRjRWQMNGTZDd0hHffDlM4bmGffUjbB1dUebodrxe3BN9+/bF8TvZsGvN71j796/kzmKevOjb2HfxIv4iGep3HZsA5AELIflpksIBhimtiihX+ZlPUdJRmUtoLBigIEZkPuEgJhuVufokp2xOBUu+s31/9cUTRvquSHKiuBXi6g8q6aEsUlfeq4dII7kLxOBVU67krsNSoMIwFZNYrnxIKyPYMhkMF1h6AjdJj6AB1bX9xV37xIT+ouKnK2nupFLjaqd+8lwlatru5kOm+yJ+i5i1IEZRPuEziKxekEnvz+L6gDrwOXcX20jHIB1493eGoMbrQw3EsaYQg7INe+MIFay67Ebu0kqch22/xz1/9V5OfUxi6vgLFMvVlZ1/4sD0afAt7Akfps25fu262iq22vKjWsCF7TeYcSMrlcpHvG5L0qmEcFsos5GIf934O0+OOib1ftDdYIEztR7Lxbxo5xC8ekF3a7m0JCVZCxaVjVjhqNJxK882+a08EdNO8MT+jfj2k76KSHDo/16D+64ripk3ydPjCqE8CCLpoPDeaMWUYFBbr00LLjqiQn+Dk+HdykkyQAO7tnZQ/NSN1icJGzY2h0sIsjTAYl0SZcvmlr+BhFRGYlY0YV8a1FB1CoY0GvFKY26OqIXbRQO5y2mETC+MozRPjs6kgxECPgdGQWan1ewhXYVNWv0cfzVxk159B6JuF3H+xJUX7QM0Bohq12j6zF+GhuRZ3IfgpaYNa4nIcF9YU284z45FihN/w/j7gj/h42vHiFNJQluQCpZEQmW0RPP9/LjtLLiUKolukzaquqUueR4Vc4ehNJUfyV+Ynufx+OFNfNy7fpJLatu+I5Pd3kHfkX8wDYl9ku9czvHrl52ZgueI4Vg3NzcVhBDByMcFH9RDnVblkihTguWSDt24SGYFSS0k26580NBA3Cus6o+qFqBFIguTQYcgQjItUEErypyg/lXyw5HRnMlROxjXL/NigRG3nz8tLALKluTtxpkbTPfXl81LIBvbMQdGBPqTjkHybjrTknSncyV47LwC+2t+9Eo4cCDhggDKWWU2IG1J4dm7iatzRSADgtx3XkWzteeQ2ycIXRbsgaNbwWSVK7mC7fM/h+viBfiS8/KmVeXPnb+1Vpa4s+SM4oKzifXHkhkjkY2pb3oyl+AGWo+DyJ3WmfuV40C6PHGb4Zw/R+vnNgZtDCe57gEu5+HvJ/5yzd+BejUqKtD8f01naFzBJf1Eo7pylVTxSU+jy3dOlYy4VvKSRLF23fpYt3E3HAn+9eRH1Y8m5KAuFfGEkU7+1QvF107SRVp2TEtqOKebPaqZHpJoOTnlSnbyrVs00b6yEBCfdFRIECVaKhev+RqxJjKCu6VZFOK5sFwIiPUjSWMBcgcJmF3AuzJCNi7i1gkh/kQ4sTSMRxAZjYXJexhdPGKLZV+syjdT/4JrMbo04ouuXMUJ4mVR4O6dXI1LtNpMndRJpZcREkRRqIRoU4gRR/B9Ksp3wTMF66j27FObBtMaMOKLtSq0/ALtZU+iI1Xn8rSysnEpiD/Xn4Zbdm8sWbwEfo+IB4sIR+Men8LSIc5lntw5LIgp00rvPv0xbcokrNt+FLW5stKxO7CukJ9klM7aLmpqqlzJSmUBIYjcmENM1kfQJSmRbFF07wlb+B1Jn0LZ+tQvAitietKqXEld0XQLiQVRzTMi0lxUpNqYjn+Jcpim47iXbVfBv9rQvSdpw1yoUIn3QUpIMQ8y2z+Ax+5rsGQEtfX9AEXGGpYvZ1wENoMLxAXp27AECs89gJDiHrhDBv932X5O5PHLf/kc8xeuSNHic/jAboXNmsn93+GvL3/5HBzgxYb0ayb8XvvXWGxet0bx0v3NbfaPwlS07x7OF+ZPlKtj8fM56A6sTOXKictB/JUpWxZvDp38n1WuTHHaFEmikqIFa8me+4l2loWMKAymleidYJxEkmt0ZevNE2swa+IXqqEeGRaOrlxXiL+w3A64S8UkmElmzbkPxKIVyRFIRtiGWb0qyuVnZBGTlYK1sCQbcyhZmYVjx+nU3cTMxHGHqv+SCDeYFq1kC4+3IA5FXJ9RNI0XIgFebuYku/xeXTysXtgAji03eh3OMu+bkI3un7YDFpsvYheP2cKKJ/59lFFP9sTmxLkY5Vz6exUn8ZTeq7g9/l1ZCWbBj+lpbqz5A+W2bMCpukXwAfPpSSfkx3mzIe3ahT/F9NwFMtoPXQYf1pG/XQfUfG+qWauS6Sme5XslsggPuIvKpfKiQaWCymMwq29bjD2wFycJNrek0pSe4nj8trIeS3qpALrixTIsPxnE5CSruiW5tGIYxWt9+xGC2FmLG8qblsHUilisbPh8glinDJwyq5Qavwm5Gd0WaZMd54Y3gz9hC69iERxbVlpPhdDZ6eRtttF2hEw4J7lVD0InsuAJHjJPo0RdKj4zytuVyrFY/33j+QKz8HlsYfDPdxO34uefZ8KjQodkra5+V/fj7bffRnESMTfv+TEc85bDgWXfY93KJahQsCBmkrYlgFeyMv5qxBbry19N/ubxJ4PZ8fzVb9AIbfp8Stc3lXZaZLPmsEY2ph97lt8HT6vKi3wOYXJPLlVOsgqWl/fj2I3H/bT7U1NduUoQx/N44DkencDZozsQQODtxn+WYnhICFyJdcr12xuwpEXI3Aiy6C974XroBg7+3jvhYtM5J1E/KVE3SFRfFE3FIdLYxpech+lWNLKsaetNp8LRY3fZF24cxV1/szrCiVtwIODSVZYZhiyNtxsxV+LSkM4WBOCuIRvxSv5yszFoOnA4PMq2YLRK9kRVP4/noZ8jTuSaAnfn2nnsOXEN1vmqJ3oWspCcrGKiI3BswgA47d2Feuxs9vWqimak68goe3iSE6ewQpSZaSRhXL32rNqrwWuN0eetfggJ8ke0ZS7kcCvFzsMuUQ3m7uPJk2gE3D6DO1eOI2dOF7zd+3VY2bsqYLHpiFaTVVpTgu3cewib+7dA147l0ZKRlFfeb5DoepJbkFRT4bRWVWWan53LB0DoGoSsNMKdLOG0WBkXsYgIL1VwGgJSjI/L7HlJWCwpdWTQJjkoczF5fEip3BmKNM7sa/s36hMlVqAXEoFo68VAH+358L2VdtE4MjM3ZXWfivFGDhj+jrDCiJ+2kwMrR6LL1t7dwUNH4NyPE3CAyZgnL7uo8m9umTsCOVaswGIeIf6DP/iby98h/orz14i/qfwN/ehjLJszCw2790HNTiO4JqGE+FxDhN8FfDTwLZy9E/lMg2M03OOLiOvKFAVLV64SXiztxX0evuZFq3fi0lUvzPx+BLq/9T6+mvA1lneqAE9G+uTacgEPGD1lroifP4bAVrOjzfgP1txxqa1zp/uv6O8H8IC4qev9GFLMKBIZLUsRVvgIN6Zf4QjNPz7dieRAi2TYueE6BKDLkoXYGwlHFiB7DJU1cUsW+n0/vMj/opXfiMFas+QYZnNFD/7+2nwBQdGsy6Q87fMIenAVuSz80LXL6/+ZDPCZ8e7Wq1sbRw4fwoaj3vDyCTc8lZSex6bfP8XmFUswYkRT1KECLe5AZ1pd/OkGNwVuGyrM5JnHVDD+lmwJtIg2pVU2L+tvyF8NdkC56r6GKl0/5Ci/jFkl8aHXMfwy/n+4feu2cmPKpUli5oEffY7S9bpzZO8gq1RJr3IlncepGUPw1qZVcCdthW/9YghJBiepncN4KpxJ9hfv40GLsrAnjcJjuhalU7aJZ1aXZMMqxycHL2KlLj9qLT9EkHSyPZxO31GEpOas18bnMKVMMd6W3nmhmRGrpQzMRAkUy47D9YeK/8mCnH0PJUfqK14cz91DBKMNwwmqtyMDfyhB8okgE2wvHS4Qf8p31o74rFvdqqi2VBLdC95uMeX27Q/b0KXHW2jUe7RBWsbf4L5jF3D7PCMVi1djcIknDq2aigW/TUN+Jg7fxCPy89e8kDMee/njaHwNP8zbpt7/WtUrJ4pINJyAMxUL5IBFxH2myMmPU7fCjDep+f+KztCyipuA3PklJS1psmD9VwSVkQbRVKTPSlYxkeE0yVrix341cM+bWA+OUq+xMRo1Zj06sTFuwMa4gBFWw5NK0N1WZRBBsLhpcd19RX3Q5lyMpvumtizA12CCHiVFhhARyshZQsI1N08BKkh3aKHQlrX6LMhYbH0vUEUUytQUZ+JLQO7RN+dhEg/4+ONhqNVxKIRJ27QYNyQZHd14H1+M61cvoVW/b5M1s7/IIyiRyb/x7t66eRN3Lh2AZ7V2BotiSs8j1O86Rr3bEp3al0E/5vJThQqWEMlGCcs5559nEYuWf0AY7Gwt8IAcUWcYhZeFASU7SpbDzMXbkgB2JUXIg64VcJqdUeN360LyDIZxkDDss9XMlehHhSsbqVWs0LPvh8hXpBxaNKyEcqWKJwHNR0cE4/aZHahcqTwaViuBm4GWavQv9eftQvLd8rnQgZkVLpphRE9NPrnXn1V4LH/iIiXoRGRrR9eo0AXkIBarGAcxx5m6RhjDC/59AiGeLnjQvHTco6AyVpQWvquMFEzUyad20gxut3oQiFieU2gLCjGq8cabtegGi4IrqQq8W5fLYK0v52Hi/nNhcJFfPNWGuAT94vnRtDtyPk4+QAYYeTLiWqLHw47fxGWfUJzkDl/w99Y7/0ONDkPNDgy0OmRqGUni0nvHcPz4caz4dQ6acN1gfno/t+uKqj2GwcraFh2YVietVteMtrsSTfgqnKNXwzzJ0jSkqmA9K4XB+IHr50iQRkodlOz16PI2fD6kn8qQnp8KjfjgtdKEiWc/HdZEWQW0deamFhy1C9j8PjPZp7twROVOQlGfeCyAYATy0RpwJx7MLqzUT/ixRtL1pxUBslr5BMfht7SVJlNpVJVLMH59k1YzFPzg9z/mwrF4c13xiU+r9Cwi+UTkz+MbXD97KI4f3o5Z0zsjL3F6YUxyKyP3lIojOYCeZz66HVSwvh2/mflBqyN33oIoULwi8xc2VVxZUQxpH9y5AgZ/UB/t2yQoAGLBukd33EniEg8yIe9Busu1Ym9vhyYt2qNQiYrIXaQSLm+YhxJ//4nt3EHcMNP4K0AOo1y58jIR70W0PXMKjQY3QI7KBako2WrVZGzKb1OsxPIhyQCnHAdjJBjD+c+am4UXyEmEFiCa2RaehzUxB9shyfIg2CRHWq+KE95wm4pVwSVHcPnjpuqeH6YBdpAx4TzboyRRtdX9IISao9nI4Kk1BavMV2tw/svWsJ6xC4U2nFcYqYWs8xsC1zdzwJvWweCYMV/j/JTxCtD+O493/242ilRukWJEIndLVYF7Hm3Ji3QON0dmT8gI0ahopq8aZ8XL3EFpL1WfN9/A30sW46vPm+PrbzeiD0cuh/ZswcUL57H6nwGw5Yj8WRXhzRHQrLgjQj1d407DDkbj6RIwp+CnpAgR3Tnu58DoI6/rj3CbIePBdAmuJtbAgVFNRYnh+uSjRrATbhWjOuTYplSwxJu4bN99Xbl6BZQreXcnDG1POoa7mESXlNaBewjlgOJVyyqP/V8vYtXaQdD1AeIYfX1DcemKD/mpnqBX3/dRtEI9jB/RBx3alf4/e1cBFteuhP/i7lLa0tJS6u7urrfu7u526/4qt+7u7u7u7u5GKRR3CrxJlrN7dmFhocjSnvCxJ0eTTGwymfkH3QlxO67AmK0PBKLLpGKfyWrsDm1/Xrv5ER4krbGke1epa/QmWBUd8sXpRwrmntQfjOhDZqT0DFJ67tyhJPKLdBvjSkPTa7ZUBoZ1xyTKGUiXMXjhedgQcG9OK1M8nNMk3s/YMO8JJAWzJWZRkKrE9UJCkDBxvcOuMRUGY6JPoJsDh41gOHnc2pHGimCCI2DO4O2J2fUjYxknQqRnzo7TS7CiOtehNuNNuFUsiBePTKLI9c6ojELItvkGPtMC1Yqs8wRMMSaJZP5j5TAYNBjqUh1ak5syZoXNxlsG7/D8+lvSZ3yHLITOP6lqNew7d1ZjaKVwyuPGqW1w88Z1WFlZkRur+2hQxumPkCqlpnTMOyAcTjZGsklPqNSYo1oJFsHtRzPnuWkPvvlniBGTs8L3nH6IIe3Ko1qVnLhEkp/6/7RBpUY9MbJLNXRqXxxisEWV+v69U5ogCk84gofkvoMp0LJtQTtyPnqKFJX9l1+GPSloom8lRNOkGU7MlwtJH04QOOgeSnUI/V+h/7v0zzaH2KTynv796N+C0ODzk+K7bxU3dCNFdx1i0LI3W42R2XKg+n9MS0A5JCTlExhRqe1q12qzW5fOKLlzGypPrEvYTLLJR7lmte8siCauA4cfYdPWO8RoRSJP7oyYRS5C+KIgEdllel/MFU4+Uly2osUF072xevQNl4kRc6e+VJrBmqRQ0D31DN9o629YWCRKUhpM5j2N9DjL1M1Pbras1abKtveZg2kHMjr50rSI2ueSfIOY2bz/ncGLwdU4jp9YtUD8zaw77sC9dl4w/a8fNfKKb2ll3Jh8CTK90nCSzmkS+KKV/Nk5EGMvQHBkJfxAhlv2mbwcMABTtoVoSoYJYrWOr4Qh2GHRBXSiRHzo/7a9HSbNWoLojLGZf3Vj4qkN4wiiYR8taP/B8pVrJeaK6KiOVkJdqqpjsPko0VaEkVHR0Z4EhPcnSHz+hInWLPgpsuXMjyuvIrhX88PLB+P4kQMk/Y/m9W5gYIBChQrh/v17WL20JbKRS4TkDEzXypRAINlKSwiua6/Ccc8DsI1GUr3EbuFGzJE5wRxDKLc76fw5/WfJkgUdO3ZGuUrV8DnMAftX/ItTxw/xp93c3PDmzRvUq5MXUwhMdBdtbSwg5c2ZW6/C2DpLzBe1i2H4E9pVSkioPz44DSuHzLDMlE8+WF25dgv1a1dGdVoUDBtcVV6f6SXiRYsJL9rSykUSF7YA+N1gzPwtktSmOm3zOFIfGbSyDQdRnT3vLMKIERo/ptbvJiF/f8a4Q3h89zOHp2jctBUeP7iNT58+YioxuqWI0c109DExUnmU9CSZs2amcB2XpbLwYWbt60nSx98JeuTHTpdw7xgTEV+wufGeMPEM4rVuju/9tLzHgJsjyGOF4P4rvrwwH486xEwx9HYh2JI+1k8VfSx2L5zo9nnpefyirUgdwtIaS9faDR+HvNV6CK/yY3wMQ0QIYbYFkNuchhXABCpsvk8tvEelTNJJel04J8mKMDQ8MnrrhW98MhcTQpV7kyqDHHIGRqQoI1qjkCVm/W86nr/9hlodJ/HqiPoVikdnN2H98tncsSy7yJiscHInwrYYtvxTCN7lcsi37vhLoh91q0XRI0pRZtrNLFnCCLfqBcEqTJp+AqbE3LUmK8H59OSijXvQtF5l7Dp4Bo8e3ce65fMRERGh9I2r124gR54iSrTyfHsT398/RbHa3RDy9gSGDOzDHeD2IGuZb23Xoxt9YdnRD1yvLL12QCUi0El6LweDKXh/dTOMDA0xfHAfbNp5GDqOpTgm2btbezFn0lC0J9DMJj3JvU0JeyxcuBBTJ49HlszmWDDnH2qneqok+WvP15Pj5y3b78CR4BRWLW2Fxi3WcFqcPd4v2WhylTw3FN50C8cGDMfC/2bhB0EjlHbLjILkHmg4uclhoK6qgXtcYO7VYu6xid+SfA5+bajQPRPDBqi+r+m5Dm176QRH4FccjqBtb3yAT+FMYBAwFm+88IXQ/MW6nZqmkdbPcctM5gQ5HsZc0K9iOwOhZIkNPUWd6JIUlTGXQmDfsyTPFowRYzp2O+l8Meni+tMDy499FB7jx/iYqxDvjzCxdEDj8i6S5IqoFR+tGDHV8T7xMViKWuTVofjx8A2XM1fun14jijzNq0tA8Vb6nzyEsmjTJBgcoQMj+3yo1LinkD3CPDFEWNAP1KtXX36NMVfOzs54RlZD3Qkn5S3pgqgL1mSyzZWc1D2gcp3hszDm6imZDPcbvIf0UwLxgZirkDEzceH5T/Ts2AzvvPWgk6kcitTph0UH32Dx/qf0/wQbDt/Fnr37YjFXLAl719KcuWKSlB7du6GagSG+05ZGXpp0GHtWnv45ECOJYTVV3pSkrilLK9IrwLlTh3DkwA6uuzGwVwfsWdiHJsrPnLli9Zq/eCW8ubIZtWtVw+iRw1Cjmitmz2goMVeMOKLQrElhfuZBRiCtyWpWCBGky8gkxExZ+ndDefLcsIK22PZuX48v7t449cAH3cbNx1nSATtC20xhpFepGhi4r8BcsXu6wWH4RlbJ4qBPjBoDH05sYO85HXnMnUhHGerHyVyxb/4s48Ktks0JZsKJqR0QE8oC0/tKT4G7MYuHuWJlYdaBLFg891BirpiBgs1dZaaJfY9562D6Wq8KOmHbgnMYTe/2HDiGf0P4iY9hOLykD4a2r4QP17ZIzBURLD5aMXpqwvsIdBcf1TJYwtYTe1hXTx8hAV6SdUEM5ZKjMhLLwNnnqgAjS4XYWDdDJC6cOY0DBw7wXPUjFHRLcrxqbGKCYeRY1pwULcf224ngd54xuVY+MJcN8a2oxE+zVRUL3jQw+g7dx/1P2djYYPGBF2jbuTfK5LGJU7GSgTZmcrBF69pFUL5qPSXJlfB91YZbJzgY05gDUXtT7CadLFKfx/YFgyXmiuigSqu0kh7bZviGaMIxK1a8OAFtWiNr1qy4cP4crh7bwqu1afPWmD6mL8aNGwN/33eYNK4OBpJunhmzTpOCEgUsyBXK0gXN+TUG+SCEdSTZetutvNxVlHA9qce2JBH28vqJVs3qE3ZvBDLlr44qNetg0dJL1Ie34BptwamGUFKOZ7pjzHDFrwj5M1SRdEWQ1Ck8DsmT6nfk58Qs5CCYCCdyNuxO+l/qoCBsRXnRIbwnhrl3Z15TZCQcPBYScgUmT+93I8zwhvKcGoFhYDFvGcy624K8cTBrTh4IuoThoakLj8lZ9CbaYj5cthwKVusofyy+OSrU1x0BAQF8x2PAwIHStiAZ4PyuqoSc8CoRtUruYiR3bRnYE8uU/C6qsrbjewT7/YBrdtnKx5XwbDKSHsPV67KBcu22Q+jWthGq0wDYZEJd5BVQgVUagHDKRdPMEWxMYKjCgv6FGVlSMWufR6S0PmTEfv4E27YrntMy2Rmf1T3Lo/6XL3hK2Fl9CWtoLjl2dqdBZs71l9izbT1uXjxGDnS/Yvzy0zAwtUmWlYfUrmSVrmk/z59Zn6xX/wfnEs1hYGJNPv1C4f6S9PHcyiKTvRVOb56C7ds3YtOatolWBhfa3992nDHrFCzI2W+l7dfx8uZReC6YhlJkTFKCHP4mV/iPrAjdSbKdiRxK11xyHPqm1gj4+gTHt83D5cuXUKGcK6pXdePblTPnnEYHctr+mBJvXpr0tCY1UJsNtl3FsPBUse5ivUDMClPcFiRRse4LFxhTQ32ejTsMW49ZF5oRsjnz5feFXCrJA1nW6RNTEmEVG3xY/sxvRBzIipFZ7CVYrt9IQ/wqG3OjjMitETGy0QlsKYaQFea0/53GI9o+rdWkFWr3mC3/VHzMVYjPR2S1NYTX52do2uQfXH4Zmmw6V+HBPtDPEI0MxjZasxhMjbG9VUVueZlBXgGiSIIMlqaDrrR9kzYShq/fPXHn+GqazBaLqhUoW7Yseg+ZgE4t6/Lri+c14850lR4SnZi8/0nm0bbyKyak0B6soijP8KyqtFjLn7n50ifZmSv24bBAL4xvWRysNFmO9cXduWeQ7eJb7GzWBvt3ySQkPAP0wyAcfnflkRod8G9Jw1I/FFvmD8GxY8fImrUkOrYrJVSVdEyAAkyvkW29/0tYRFkK1MDW2V3g/uAm5q5uiyy0fRhGQKwJMiYJpMFuX7v6BpmnncTavHlRuX1/tGvVGFmd7DBj7lIsmzeZoCOYJo9ysCDJ+N7tXX5Lud+ILOvM3/6AZ0WSxhDzFCsQU2VCDF0wKdabv/iOUNoONKF3AshfIoOFYYHpgTLrPObrNIz8rVqTFeYvkgByaTzdZ7pJpgT4yhwoqwvMV6tfQdlOgAWpUjBFfpnHC/aBOPKl7kOi6ww134AcZ/8sm110VRQlRjDLoUf48k9h0cXYUUNybs4wyBhERUJhGWGG7T3wkD+29NBL6Ogxu+z4t7oYWPXOf3LjKj139cYtfIt0TjbmiqX96ellcuEWztsvG5f/BBBRTctBxY+z8cTLYJ19+FPaFmQth0J8qwJ2P60Z0WjSkbt3ciXWLJnFskODoQ4W77yOV/fPYf+MMSTtMcBKwshSGwRRuGiQYYCkJmTt5Et4LCxk3XILq8gp80KPQASTm4W7bwNSxP/Unv+6wvHsWXjXyoceF17iMilzuuy6i1tHVyFPiZqYMEC2pfLk6QvYOrlotPWYVttpfwtzxfrHq0sbMWbMaIwZUYMkIbm4YYLa9ibdiEWB0eOPwN0jEuOWnUHJbDroVygX3Akba+2KNslKy751l3L07qWUg1KlSmLU/EN8omV+IsMDPPHjw0N8enkHhpvWcR91LKN5yWVPacJ1Yt4ibAl+wJCYnsyZLGHCoFliAttODKCtLVvyiehPLrTuEKzCpq23ef7Z82avfnAXWXIfe8KL7EjjD9smE3Cx+HQlGovYI3aEo+clqDbQ8xkIx0ndNiNT0tchVPhIst5LKDAMriBaXDJHzNoULAm41q9w5lhZYvp52xutgBndiR46AQVrdOPPJDRH/Qr0wLOWpXC1QAFMXHk6WZkrloEoUhvIEO6PJlVy/1XMFTNyI2YycQzWxx8h0czM/m/iQpPDP1tam7lWKuRI1l068COxeuXKVdCw+xSM7lCJ6zIZEJrzri2d4wQiZT7BdMjsV0AeZluGDJaBDTpinYfhow+R8YMF1u69kiLMFeuojClZNKU/tm7dimF0/rpuXdQdsALenx5gw3/DUaJUaWzfKpNmTV28A3auZdlr8pDWzK6Qkb+JuWIrvTy5csDN1Yh7ExBoIB01p8A3chnVpec2/Dt+MkaOHAkzE5kkY9zoWqgqeE7Q/HNxPmn0zRdnNt/CRNqOzEhP1DYzQ5ldT+XPMt3bp+c3wGruJC5FzlmsGEpUqENAxsfx6cN7+Pj4yp81ofxlIRc8vgSeycabMLIIjCvkJjTzpYtaIP/s0yRh+onby1prpP9pQZKsQBfbBLfouOPjOvmQhVwdCXhdJuRGzJDy5ZOMW6xxlU18jY2XwU5W4AYC4htq4kxiZUpSOwFcNNZjbNGrwmSyZ86TP1g9shpk9qbNx85CyJf3MNyxDhXXb0SFOk2UFpyBP97A3D47OVPX48ISU4NonH7om+zMFcvX3zruMsY20ThYDKaBOWJNa4ZB2nrUvOEWdDakFaVMH8GEROnBpDS7assRhFvmxkFyInv6xFGUoY4w4UAvvgJlnSIxwY90BJq2XodZC1bAIpds61H8fkIrKE07oJNxAAYOHEAK/Af55yfM2wynPJXw38AahJX1GpkzZyLMryI4fvwYvz9j+T5YEOaSrr7xX9vJ01pf8OCho2jdojGGDqqCejG+7cRtQ4qrp4ABbQFGkNSH6d4sWX4JZy98wJLtVxAQaYzxBLxrbBSJlUtawpgWO/bkR5ShswvbZqpfZa6qQmP8jzILRBeyxn3bvbzSY+GkON6g6WrupFqX7oxfvBd+31/jV3gwPB/dxs6Tx9GStrP0aQw5f/g5Rqy5AEMLB465F+L9CYbRQcgQ+B4vX74mq+IXZFhjBidnV5Ka68LYzALB/t4oXbwgcuZwwYgRIzD65nV418+PaiTFYnhX3xoVUsqP+MSSHMf7FZRJbTg8Aekkia0Zxc8ya0Q9KmN8YKni51M6nmPlJWLwiiKcwSwkFJgCvYrRgPCK4+nn8KiZVziVH4PJ6vNT+7XoQkaftnR12Ow1CPD8hlFzJuAlnS8tXx51JmzHq7uncefsTuQrVh4nD25Di479MKBvT0lYQjRKrjlKzJfEB9OgdouQAY0evOEhcbq0Mk9pnKvk1COaP3kQ9u/dSavJMHnHHDXhf5g0djgqVSiL27dvc7DEhXObcJN55rrBkOAWxAjB8hdVInfJrcfIfw/hvy1XYGKjrHybnA33zK03WLd4OsJCglGx5UgYmdvznLwnk+LZ08by+IpDL2jLcDnWrVzIHewOGDEJecq3Rr1SGaWBhCiUnPWRkGR36JDBWLZ0MQetZO6bjEhSKgXNKcD8LQaQlIcpUzNL3RaE/8bCkoOv8OnRKcwe3x8O5FpnDsFcFCIJlDcz6VczOYuNUxgMC7PCi0tJO4QsBBs0WRUrk4y1caNtuOk9yiGStuyuLLyAw5Y2yN+oDTK6FkCBElXwTwUXjcdED+8grBzfAg8f3OdptWxWBL1UGD5xJjj+FoOI0CAwHC4WGGNqSEwq09li7mXEgTlF1gklyCFLk1jbiRkefia6OySbdWti3AZxqVstYqISgG8QyvKdpF3tO29GZbpwk/4nrz8DfSNT6LavgLwOpmjoE4qOPYagaN2+OLlxAvw9P5L/y2LIVaQymtUuC+dMtpKwJBmsBePalUgSg8Vc5Ry8+UOoX/kxrgTkNymSmgN7emJ8UlPCwMT8zy9tweJZ43jVODjY4+GLz7yDeby9i6lDW6NMKWeMHVUrUYqrF8nJ85QZJ7F432PoGVnIqz256jy7dQQOnLjMfWOxjxsYmcDaPgscXIvDmaRWjBHt1KEdDh8+hDm7HmNG78r4ShaHLIyftRJ9e3SSmCuiRXLVh3iVxoks+hHS8KJVdRaC1GDhxKHe0NfXbHIUfUqKqlCgV/+d5McwAPP3PCe8O10Eeb3DskldYWochgW0MErOcPjoEzB4iGyk7P2RXLFky2pDjHJWuc7XV2LoHs87B/23nshOKgRry5TmYMIMS0tTK23vD/cwtq8i36yd3CTrNxvS5cqXNyOHJMhLVouPpzRUWzQl36f0lKZAyYUmHkEoWVJbvvbEbQJyFYI7SfredtmMSXTh5JE+cYKtCs+m5jHH7FN4SHQ2HloNegzWhHaRPpx8hkYLzoMtM/PkzYcBsw6SUrsBnp1djRH/TcOJ7uXQc801zCamy9zRjUsaoyMjaJfCUNKhjqk8YbxKCZ4hPgaL5K9xhzDC1lANEnMlo4imW12aTFApUeFsazdf5Q7oExqA5QtnoXiJkvJ9eRuXYhg2aQlm/tuLthMvYNigqqrVrPbch1bXLAgWKyyeHA03b8ZozJvQCzt37mKfBGloYAePKX4sLMzRoEEj2GZ0wX808bAwdOY2HFo7ERcvnMf6xVNx5sB61G/RA4bWLjBzzKl4mWJS25WRI7nb7sr12/mHGbMuMVdKTS7JJzUI92n1uhu4d2IFitXri4qli8B+4iSc6NQJe8j3Z/OWxZL8bdUXG9YvIL9UmoArVUPmTFbIPLcpn7Svk3PhO+TBoUeXdqjXdQqH6BCej69dsTGHIYy/Or8K8+dMRx1S0J5KL84i/a2Na9ohjBTlQwhwlC0M2dglBAuCfwhxskAEMWI6ZCEoDmbkRN5fA6fYXwkclUn8mDK8B0mB6pIe2F0qD1PInxjzwVoNlmPF4hZwI2lWSgerR18QlNmabwnHlZbZpbdoRJK5DGStnYceeEn/bPmyhf5HT18G58J1uQETG3d/mGSAFV3/H/l7ZVh0pvaudMZ4sgwwkJgrTgv2kxxzVELzhzwxlYjaLUIxDhZ7J6EEkrMQF+6+x5yJA/H18wc0bD8EGQlkU0dXH45kmpuc22mpKVUS0z05aRXf9k2tItY4e/4iPHRykpK7gpeODAvCy2u7yb3CRGzd0IHjZ8nzR9sKzILHgHyvGZPSrV8htmkgC6vJb5r/kSeoSwjtDEQ0OcpRILMeKsZhKSOkqU+GFhEiZp8NHkWLFkX3ybtoda/Pda5cDL+iRpWy/BXXnDlJ6p4BhYqWQIVGvWFk45KqbTe++vjT2u6+888wtltVWFvpY/WylkqTo1B/0jHxFGBOpVetu469+x+iZet22Ll9CxgsSgUC9G3Rqhi6d5a19cR/+fff2LGbfJ1S3oYTmLFr6ab8g/ExV0KKbP4o7mrOla3ZtXr036d1cZh0KoOW7dbDwjsYw4mZyrOug/AKGPxBoIudRkrjxoSRpU8wMv4xeH+C6xni2rgUyOzJV1QYcQDs6+vkKcgijJGxtDPFjM2dVe7IoCGiiDlTZ60Y64UELnz+7E14gu6oSU602VgmLEoYxuDOjTfQie7lp28wpqo4/Tdt1QGZsuZE9kJVYWIrY4CFcff2vcc4XaYI5tBzoxfugAPh0LGgaX2klQCAZ5J+hHKkhJAhNdNoXNoBTjZGipWBkDgdFbOu6KJqNDWZKzZBnT13Ht/dv+GbuwdXnBxC2B0so/9Omw5X6za481lPY/G0uCypXQ5tYOC89POSmyMaZETh+eWtyJbJjnfwDZtuYTSZ1QuBWcKEE+5NOCnd/rIwEi7zo4WjOZcsHWuSX2MMqu8fX2HG1t348PYVLp8/QRZHfvxbFSpWxH9rDiHyp0waxS66urri7du3sLOzQ5PW3bCaICfEzBV7hq1y7927h74Nc2IIWdB0aN0U+XKXwvQF6xGpY4wNC/6FNb1/5+ZVmJrboN9IAmzMZRUn0jz73p/SydOiHG8fnOf1uWppZ4m5Yo0pmYIeuULp25M8N5BS+NYdW9FzyGS8/qmPNsZGaHDvC+xzvIYfwSaktl8+huz+kJxAW1tbIWvBary0iZ3MW7bril1b18GuXUmYtC/F+/NPYq4u0NduktNiBkEgMB0MA0vTEEKApCGihwXXM9QwcYEMAxYvv8pdb6kyV2XKlMG3b9/w4tMn0duKqAlZV4eSizAmRfudwHTeVq6+isPHnvLPzFt0gR+Lu9mhFcHejCQrTBZu0H+XLl2QMZMzFpdsDT0D5XTF/fylnw2i525Agd0rYUtSQhYSWx/aMEeld9dmDlaGnPZx/SQowUorpoShQ7OtqKhf4RjdyA1VKfeHYkrQtHVn1Ow4WV4eqVHJSaERw5DN4AuYHnKliuW5DtYp0kFgQXDeynBhQsjah1k2iUMkia6ZOJ2FEPJf5hv0S771KH5OqI+3z+/zNGqS0upnWonmz+dI+DihOHn6BZ+QQ0JC8PBjCO6+8qGBNgIBP95hdPe6GE+DRpGytbm00jsgHFv2nydcnttYv2w2mYWb4iXh6YhD0xZtUbHpAAxpI1vBDR83g7sCKVkgKyoUyCgxV+S0l0nPkhtyZe7A6nj75g1ZDlZFfTKTl0LyUoD5+2T+CRv80wL1e87FyRkdYPrwFka2IdkG9U8v5sw9lQLTxWL6l5+/+GPU9NVwylclyZP5o9NrsHz+VHTPlxHGHgFYTNJyNgK1ov9IcnKtQ2OL0Xe/WEDHrKjMstCJrOwE0E5zAgtl4KTMV6q60KPvLpiaZUT7jl3IMnk/subIjXKN+0Pf0ILruL24uAELZ01Ez25l0aq5jFFR963EXmduf7aRbtvs9Yx1AgoWLAg7ByecP3uKn7en30cE+lqxfitktLNARltzFKrUPNEQOGHeH+D+7iEG95esBRlhxYxoSjNwbNFvZMA8o8cOOrEvKa6kFXPFciDo+WS0NYMngcbNfueOvHnz8MxdOnMEr67tBAPXFCbz5J48FFT481YFFcuXxrMvYXz1aBBjscP8YNlffMOLzXQbGHPFXFWYkIsKFnTJNYMuWetMIbc7LEyfPi1e5orVx+4DJzgcxJBd3bB4flP07lEeFcvL9ASMjY05c8VWUEyRl9W3JUEtMF0NgbliouNjdzxhnik/8lftjJEz18HHVyaNMyYT8uIxFkP7dm/jzNXQkeO48+vQkFAUz5MJFlE/cPzKk0QPVqx8UrtiVJAFdYNVp0Ez+APzyAVLIFlrSSF5KWBvb8Y/6OAk2xoq32My9kZEo8nplzivIl1O3pSVv8YWRR27bcWbt15knUwMzm8wV+zLhWp25/pE3mGmCChSGgeOnMSrwkWwPkanKorGpBDS/YorRBJgssBcsfsBpCSvjrn68cMfb1Zfwbv3nihYqDBsCzVHx7FbUKXNeK4/xsYd1s9HEeaYg4MDVq29juoEwur1MzCupJN07R2Vade5V/zdEiVKYMy83Wg5bDXhnQ3k17bQb+NuI8kCcBDGjRqSJOaKfSjI/RFuntuX7IsonsmYH2lMVFBDPCZ6+IYrbqjE1DJYlqb6WrW1cuV1BAb+dxLd+40gp6VemD9tJHbM75MiK3Mxjf7URhVulJEAR01IsdOei+V/0bbgj2q5xEXnqMrBBPTHXFdkJ/0AFsqXzUEuUEpi2pRJ8PV4y68JP6q0unvjIuyIQRZE/uy5yaQky8LsRWviZXzefPiCrXtPKG0FO+Qsg8Ytu/D3meUTg40Qh3dvXpKblqNY8t8UVCbmq3DhwqhXsSDm9K+KR2fWIjJCtokg7hwpvbpJ7/oF8dHK3rU0atWuw6vAjxh0KSQ/BexJqkEb4/zDZvY5MGvZLtgRcOTwMYcIg+p78icYxxcZIjsLNWrWxJjpK5Jl8VGyShNse/4KM3cfA1NjOPvwAbxdyLfo+ZdcZ8qCpNTm5D4oruC8535cl5WuLVp2CW06bUavfQ/59XJNhiiNJeyiMF7ZmBtg3qZz8vdbtd9IY+Iv+fnvROYuOAf374E4cPAQxiw8DN9wIxxcNhjrVy2COX2YsVkrZo1ASTfLJEvaDXUj0bB+Hcybv5AveiWvFakLrcQkWOqCWgaLSSC0UWHXJqNsNccKlJEcy0qSq9ji0HByIeFgFokMEUG83oWBREwrPQMTjJi+Bk+efkeHrlvBzLXjaihs29CRtvR0yXTYicyFWWhDVkxMT2R4x6rwfHOTvyekER7kjWUbD2BK3zq4cvkCdXzF1hHbZmA6FizoZirPj+If8WQ+cfxYzJ3QB2H+P+SPsDRGjx6NM6Sjt2bPFSza+whzNpzD7HWnMH/HLeQtVln+bPs2JTBtUn2MGFIN7969w/J5U9C/cR7oBb6TDCViqJQcEuqbN67zrzEQTCkkPwUcHc3w5sVDLq1n/aNX+wbYsf8UcrjmxBqyNEzp8IQs+ZhSOwuN+5Jie4l6KbKo7UPf30X6ST+q5gYDXg23NEIA6ZnFFTwq5WTKmHHd4teYX8eDhx/z+KIlK7DyyCvomtgpPS+MV8KYGBBljjkbL8if2bnngTyuGmE+DzUJgQSCeufuZwwfPhKRdiU5pqS/+wucOLIfOcg1z38EG7GMxtG65Kni9mu/eBec8S3Uzmwch17dOmLzjn1aiVvp++059EK+/RXjrmq7UMtgsQrVRgW4LPkqoUmLdlizfjM2bNwicexxgKdFRxJezqQ++PLqhnyVJgwk4tWNY67y+N/aU6haoxEWLLkIpnj5hvBuGNKzEBiI39emhfGOrH2YZ3kWDAz0uDNfFp8wsCVWjv0H13ZPRa3KJZArpwuG9miGhw9lK8d/GhZkj/HAthlY6Np3OD+Kf8TMFZMqVWk9GkNmbOII0uw5NiDqeFyBaxYbtG/bGltXTEV0sBfMHFxpfR+NIa1LYea4/vJPXrrylvvGekzWOf/SVot1zJ0+bWvi0JFjzOoDi2tnxYm2hXB0WT+sGd8E35+dh6H3TRw/sENqV3G0KzlxY+qD6XXdf/iE69MJUg7xM1L89ylQvYobLp0/g1UTmqO4cxQH+Dz3JADNOg0ha7SvYO2bIbbHx3AkNRffyF3W0FEHSH/JDv/QmGtgKLPijmssEdJIKtO+hj7gQv85NtwgJHQzhBCEg7rgePE19Al/La7AGMIJU0+gWLGiePvFGyZu9RClY6j0qCpzJYyJZiQZdHFx4c+u33RT6R3xiePZl+JTtXFmzczGyms3bsLd058/p0PbkiyYk0PnQcP2gVmMtu01Jslz7f3Dc7Bt2zY8evQIa5b+B6/3t/n3hZ+k1ofwvjpaCffZMaE07GksgfdTjcFphfpITBqq84emGG3JmYb4W0I8QSV34UF21IZCJEeF/w3lYI5bDfQN0LC0Zsjm46fMwpL5M7lVGNO16ta5NFqQ2wedeJCGvxByMlM4X7zsMnfjUaJ4FoJ8MOcOYN+Tz7GuxJRZWRnLmxDTb2BhwRZiZGxyyK9rWh87N6/C4EEy3YUm9PZ++p+/nQZCGsjmj2yGT5+UtwyFBIq7ucGtZHncvX0F9Rs2RqSeFRbPHs9F9Kb0kK+REQ10v7Bz3xFEhwdgxap1KFOzNX6R9C5boWrCZxIcSDQtR0pMUEIm06J/9GlSCHVrudDWcSkhG9IxCRQwJmXoEAL6VA1Xr7/DhCnHUbx4MfSevh8koOYSrWX/Noav9xccKJ0VgUR7dbpIqt9L6NyLlM7HTz6OV689YG5uhhmbbpA7HIsUkVwJeXl8lhxLL5uJfds7EyNHFjgUuKSI+jZb5CUUmPT93MGHWL7yKpwLFcTW3Udw80MGtduC6vrgr7AAvLm8mXwnzsXhvd05gxRF0DW/iOiCvmpCeRHfv3z1LSZNO4ESJcug22TSG6Z8Pj23AWePbien2LboNWQigkzyiF/hcU3GktpFbVAwV2a4ZCOGlFQm2Fg8e+VemDuX4N9IiPHRJI3kMI6pXcQKXbt2Qa2usxNdH6wg2lIOdTA7SQIa5TUk+kmtylBXCJaVtJg80is3bWRolKgBMXPJNpi2qSl8Pj/CoytHSOFzAy5efoc6NfOgZo3c5A9NNuiJmgR39MqcvVYhkT1jxMQggeLnhLgpOYeN+BUNH/KflTGGwUpMu3Iu0QLTlmbGjVM78MX9M/pVqgMDczuUcLPBgHfvce72W7zxIsDCDNH48vAUzhzaiPbDlyFLJicl8XRISBDGzHBAJFmomlk7omih/Jg0tCMqliuNjbtOcPP4m6c2E/6Mq5zB0vZOzmic1P4RFRWFizumwZEQ/6s0G8Rp9eT5a9x3N+aTuVB/caXx+es3/PzpTZNFAfFjUjwJFDAil1VxMVhM73Hu/xpj+OiD+PbyOsc7YgraHYb8h7mj2qLj3S9YQIsZmWwkCQnTK2zi/0xYUpdJ8nv3wRfOXA0mGJQsuUqnOHPFcpwjfxliEsLxghDXCxXIxAvBsPiiSAIUQUjsLNjc+QhLwol6T/4ZxYGBho6bdAzG5MewS5u2GLZ4DY7f9UrSZF4qX2Zk16+IhfNmke6UPx/jtu28iw3kIHvN8tbITjqpiQnMqMea8n/n9g3Uf3EJGcmnaseeg7Bk7sTfVsHRiQzmC+JaXUugRHFnwhPbgNsXj6Ba+xJaxZT40m5YnS7k+kwFLiip45WY/omZP9jOSErM5/HNewkvDag02lCIP6UytLkcunqGsMteEtU6TMb8tQfgkr0wbpGyaPdW6zBs1EGwlTSDahCH8ySu7ztoNzy9AsWXY8WZlRlriLXr1qcJohwenlyOF+dWwsXII1GiY9vsJVC/11x0nbQTBap14cwVw7m6+zYAb32MZBaJOnrIWrQeuk7cGYu5YqJjpn+WtUgdZC/RCJlylUGJgq5Utlu4/DIUxlmKkxl3LlhaWuLKhdMI9f2iVYNVfLoYSV1tRkdF4Myx/ThxeA+alXfCxo2bMHHsSHx+flmpHuNquy+u7eOWopXK51B6VjpJPAV8ijmrfakIAf5mIQTwp7dPy5/58vwGPD29YEjYdRf3P5BfT0yESWd2kdJ4px7bybJtG3bseUwucwJpG38YcpNvT6uMORK1UEuqWknL+hXISlkXHz96I//Uo9ChbU/mGFpgrliZvEtki8VcPSBcriUrLuMhMVcdli3DiKXrksxcCYuoA4dPcBKy8WorudqJJuaKhe59dsCdtk0TG7asa48ShCY/eWgHPDw2/7cU2sV9cPm6nTwr5uaGBPZrwo2J/Lw9tW68OnTlNQKDgpTIJi5HSjE+qZWGo5V6/VM9pVLHcSIxVwqiCB1QG5X/hVwmW6Oq0RCtm9TB7lP3yTv7KZw/sYdvU2TLaosChGdVqGAm3Lj1EYzBYqFNx03o26sCmv1TWMiK0rHf4D3UyULx7u0bnN00Dvt2beX3t21cDSOCbChUpCTqdpsJXX2ZvkSylSORzroZk5mvWg/cntaBQE/fwSH6A1nTlvvt1aa6LQlGhLRuV6zMi7ZeAn4+wgPSnfOOssH7d6+QLcdDOOWuyOtJXX28IayzvHkcaCvJiD8n/SSBAsTkJOT0l032uQmU8tqFk3h89xq6j1qIwQP6Ys+W5fA3McbtL36oloSkT519gZVrr3G91vwlqyEj1Xda9cF8+fLh8rV3aDClAS2U4l/7//AMwILFF3Hz9kde6tatW6NR844JQsdoMpnv2bmFf5MxnEJwcnIi5sodTC3CyclSuKzRkTk/nzqxHmaQm54VSxaQOoUpclXtGevdxMy1+2l3YdKoPvwbTPrYf8hebkDUqmNPrbL+Z/RGVBjunz+AUvV68PyqG0vEBEnrMZHlRdP60NdT31bV30lEAto8eSSGUFI5YjcqfYtMHIOq78xDmLpkD4qWqo2HT3wxc84ZfPkG9BgwGp1I5M3CspVX+GqSrYpVgyD2//TxNa6RGNva2pSvuAgUGp8JRfnoob1k5ZcLHq+uJHmrS5ympp0jrjrX1TfGP93GkWTGAEePHv2jmStGM0ar5tXzolSF6rAgLLJ3d48jd54CcClSk5NU3YAYHujJEfOzOgsmBOIakOKaUMCUcOaK/HtQk0fRkqzqvpBz8+fPn2PNrEHInNEaC7dd4QuBrzTxM4tfS5LoJBTYhHz/4RcwRe55Cy8Qw5ARtbrMQOYCNdKMuWITcZkq9XH33mcspnEkobBwySXOXOUlkE4PT2/MX7YBJ+97J2lbUHUyb9Optzz5AgULYffFz7h+8w6/5uMbIr8nj8Qx3snvxUSY/tbEsbVRr04+wgT8H7zeKSujJ3a88gnV519m28IZ6P8luRXq238wurZpqHXjlZ/7a2TOmp3nV91Ywm/G/KjWh/geiyeWVimxLSguxw/fMNUsys/VKrm7e4dGM3yQlNiSEFLXNkJpsrpJqgg8qds32kgrSxNd7LvwEv6RZkp6Vwz8dcH0UWhQlzy+960EPRrIdUk/gmFsscAG9rj2q9l1pgh6hVavLFDbS3P4jaI5zNH5n3J48eIF5m6+BNMYP2A8g/TzJ7bdocOG4efXl7h9+w6y53BDj6l71DK7QT8/wLtDZSwgWmze3lXJmEGgkXTUgAKsT5ACtS3pF3mRrlV8wYiYqP5k7XufdKTMzEzRrc9wuJZtgWFNC3C/ddOP9YUegYIK/U31Wz+9gzhTdePWJ/j4BFGdWaJGncYo37gPjCxlek/sHfHkkZpjIgOO7tswB/eNumltOw5srFoG4bxFu41o0bY315VKqTmKjUuO5AaFjd3Mo0QmW2OSIjpg2aIWQjbgRIr1toTH513SBd9r5EEUuTeKLzCrwd4D9iB7zuJoMXQVfzSpY8nxNaPwet8O5KOvHKB/Bh5xidrG028sphySmob4K0llfE6uGojP3zzQZ+quVNluTu25ltHFxZE8b8cR1LYG5l/H0y88WUSuElOS/G5KxHWZFgMiw42hXQul0LpDD+QnsMCePXvi7Xtv1C6WGQVJ+T1zy+IcNysu5op9gF2fPL4umrVeB0Mj8zRnroSBJFfuvKQT8hEBXp+UGKy0HKwEgqdEnRep0AiBPt9RsVEv2JBvs/jS0Kd62kWZYev5J+RaqUIqum0RaPBHHKntM0fCeuSLLgN5rIiO8awQV9lCyaBk7szG5DvPD8zp8sI5k9F7cCS69huM1UsXIJAWM2Yxixnx+48ef8O5C6/w4NE3BAWD+ucAlKtcHR4Z3BAZrdyJ46tz4ZtC/0huVQmmuD954XZMHNSG+zwsFuOpQUiXHa0efYFvwcyoYqiLAG/3FBUACMwVY+CYRwkWXr7+QfAv0TCmLUp7shDMSBiBz0bWQjDhWmkSGH5g1UquWLfpJJoOCIOTnTlnOpLCJJau2QqHiMHaSwmfpX9f+q9UJAt3qN2qbWfkKlYVDrkqpOli8FeAO5xyFkPtzs3/SOYqLukYVYM8qGWwImhVxVYvaYEnkZadXE4ZiqTUQPInpwE0w9Sldti7ZhpWHXiGIBrRHY6/QFdi2D+SoieDgMibxxFlSrmIyYAAWnn70SQze7zMBU9cDTe168MxiythgoXDxMIeesGf8MvAAQ62MnP1pAyIQoFTuxyaLnAsnPKA/bOQUB80MLXFiptvUKN0Tkycepy/s2xhC+TO5cDjqfFj9sYTgeSJ4E8I32szOYRmIVMmS+7/0YLAOFcsmIaMGTOCmZ547n4A2zp5EUCOiQ8ceoRP5Kj4M+lmPXn6jbYBneDqVgiLFiyCk0tuPrZHaqFVl51rGWTLlhXnSLezOjEyPsWzKhHFt1AWfr6PKZtv24pqnWYm2xx1Zdd0WNg4oVCNrnEyJZWr1sBFwiS7dv09Z/Byrb7G8/KYmC5XDRks9oIDQdmwEP7jMerX/SfJTOL3j89hRBAz+UJD+feEHwY5s3XTGtgfP4gVBx4lmYETvpfU8crn82PMHdMRTdv2wD/EVMaljvG7aQjvJzReseeSWo7EpCE8KxzVMljMv47EXFlp3X62UHHsqC2NSrXh2mQrSttLbF0F+H9/gUcX9+B/pMxOGAr8Gvs5ebg3l2oJFxj2DhPJ61llTxZTWoZmzwKTjrE82Di50UCTKVGd3Nc/AOOmzoGxlRPmjG2FBk3aosvkf5M8ILL8qNKKXROH9CQdczZX1kfJEA9mmriMyRUPzWgR61NWpFvkW1g2CbOblgTE6Rdj9h/r4XR+oXvnsjAmzKh1MaCYI44/QRMDAgY+8gRnA8JQoGBhODnnQL3W/4K5pmGYeOoWBtFh/vj55jSuBrogzDwv/H+ZxKJOarTdEm5WqFatOs6dPQSfwdXkeXDZegufyYAm0tSQX+tNbS2MGLBkm6NCPLB1wyr+7b3NesfJlNSg64zB2k/Ma0S9/KhBT9OohtxLL+Iq4f2VKpktThUI/lHRj5urHT8zh4/a+tBkbP+nWWusXzJd9GXlaI1adeBq6kVpWKeJsCTYzwOlypQlTMX2iRp3lUuRftQxVPPNztUqubPJThw0qfDU6IBSGrJaSS/1kTN3IaxdvQJfPIMwd/1J1KrbkBdgOVNkFbmcWLaKzil8/fKJH8U/ia1zr8/PMKtfZYxtXwTuLy5iy/xhOLFmBIYN6IrxEyeSJdBX8ed5XDWNEJ9P5Pm+MKzdqkLf2BKDxi7A0AE9f2tAVE1DNRPpibli0BjPvyqUO+fPboL4rGlUy8qciBt5+KteTtT5L0LDVg1i5ord88vvpPpIvOdsmy49hbati6NlsyI8yz4kAV6/5TZJtLJhypJ96EWgpE0HLkPpas1iMVchPl8IgsSdv8fGks93dmPUiKFo3qwpdq+aGosEqdl2S1asTVARP8Fc3mQg11rmpMD9rU5+RMa4Y2J6TKeyWMO9dn2lfP7OmPjyzhn+LTcCJWY6PHExos9uHufPMGgIhr0VQWePHR3xlNrMvxOPoka9ZWDWjQmFx4Q2z8L7j59/i/FZMXskueEZoZScjY21/Hz71s0oUqQgpk6dlnyMqPzrCTM+LoVrYu2m3YQzmI+XUxt2JTSV5ouKqZEgQ/y8OK4nPlEX/52GK3wzvU0eya1fINCBHVNzsNKWcpy49xOmjnnQZMAS5C1aHqtmjEb+6ChU7VeFr/pCydchC9kK1+BH4UdTWr395I7TN97ixZ1TWLNkFkdmZ9/YsGA8Mn/6iL2Pn/BP2tvbY+Tc6jAwU2wtxZXGuwfnsHPDUoxfcRqW+qFo2qpGnIMu++jf2j9e/siAwkWK4eGDexgycj+n76kjfeJVTuYP0Q9zIp4qgSSYloSRFGZritBMVnEmaXOLFPZjtqxt7n3CzzLZ43xOGy+Ghv0iC7ePPGttyES/QvMR0NEzkGdVGHe//wzE/rMPEBzoi7cPL2Hd8v/4M9OW7ES3to2Roegg/PQN4jpZhaq1l7/PInH1D/EDQhpxMSXsOU36R+GsxnJ8KNiXQp48eQjWgFwELWmBDIRuHyUCOn5I24fvCPW+54T+8mxokkZ85fjw+jH/VvkKFdT285CAn/L0Llx6g8yZMyEHIcdHkRP54gTrcvfuXXTtuR2H9/WIV5J15eo7/h3H/LWSzPgUymqEffv2Y/fuPWjfpTceEXQHc5cTGBgkz6MQefH4DgrW7CGcalQf8dGKfSg56vxPScPSVF9OW9WIWgmW8ODvNlz2HakyBGqmzmCl7Q03T4U26DjoX0w/+gxLCSSQBVMTA8KHMYaOvqmcWJqUo7BTOGqVKoYCObNgcPvKWLlwBooWyST/xidirmSsleyShaUFjK0zk6LqL/wKD0YOiwCEeTzG0BH/olGl3Ph0/wih2T9ERgJZ7T5kCvYuGoBDayeqHXT/5v7Btl+7jl1LAJgKel+/8UFOe22J+JFStDrmiuVRYK5YPD0xVyy/DMD3M+lasfDs0S36jSI3OhFwf34Rfm8v48qeOXDO7IgCbpkwhPrH2N6NsXvzUu5smL1TlKzimG7M1dfhKFp/IEo0GAADE4UURJM+qE7iw76vaf/4TvAsh8/e5j75mLJ7j3GrCbw4CIePPyNJZwDMyZBCCIEkQWITlwn1YxY0TYNJXdUtOC0tzAnLzRzdew1SK1UqVLgYMU48Sdwja73mnQaSBwsd6Bqaou+MPWjUqBFCQiPQq/8urggve1L2q0vSWnZv+eoruENQFCzoW8jyL3siceVo9E8T/lqHLj1QvsUYVG3Qhp8znVHVcO7MCa5+wa4nB63S63z+KywQoZ4vwaS3LCRXOVj/URf01N1g1//mylClS3JVRnyd/G9KY+KE8ZwZ2n/oMZo2Loy6tfPi9t1P+E5bepnyVdVo1Vy9oAXcLEzBhim2Zm/QpDAakm4Ec9+zg8T1N+lalT4VUbGCK2xJ8fc0OWn939wzGN22KOqT8v0h2gbPS05hHTNmxvFjR3iVzxzbjx/FP+cv31Q76Ka2SbC2idl19I1QvlI1PHvyEI8fP8bEacexa2tnTm8xDdMirhsUDkeynvtWv0BaJJ8qadrbmeHs8X58O20oeVuYM6g2AU5G0Fb7V56+MW2r1ayeC+y5XGQQYEILGWaIwPSIlq+6ipNHDyDULE+y6D3+jj7Uoc9Z8c4rCkYxanUmNllRtWZdnDx9De1J0T3EzZ6Xh3mSOEQMF9OwjIwIhYmZFd/S+10F6qeP7sLNLSde+NmolSpd8stLDJUuebOI5Kjz2QtVl9dxARcrlP3f/3Do0CG8feeFxi3WYMyIGhzBfUj/nRj/2QftYp7u0K0/StXvpSTlSsxce/Lac5w+eYJ/jVnzshDoq5Cu8QuiH7btyVR+DAgQ828er3T0TeAXGAq7LFmTjbli8zmT3KpjstQyWGx1+jdXhqh9JmtlqFtB/U3MldCu8ubLi+fPnqNDty041qgg+dPKivmT+mH2onUoVbelfLUZ5Pkefp4fYJMpDwwtM8qxaZYvXwE7qqjS3cthVuNCcqX5W4QptI2uM9uaKvTPmCun409Rs2ouOD3MA2fS/7lbqRBa0bbknoOPce/efbSi53bSf90Szjhx5zPEGoivAuyYXIDuKkJiBsQ/uc6Z26GW/efwseLAwSNo3aIx94n236x/wNy7pGWINNGHZ4wLHzsyqfciv3B/ashDIKQL5zbB3gMPySmxCSaOqQALCyMuGWZMlWp4TD79WDB3SB6jkt9hrlj/+BZuL2euhLxWqNaIGMBDWHT6OXp1L88vnz73krwNfKUyGmDv0hHYdeBEsihQR4+bgjc/ItUyV2wC/eQdxZkrlpECBQril9dT6JlYomRu+xj0dGD6sv0Y27cJ19EaP/mYUBTOXGXKlAkjZ28nR/cu8usskpix5NydD6hTPh9/n7nzypavLI8XL18L184fIRDaF/xc/PP69Wt8f7AHffsOSBZaHTl2Al46ORCtZyJOJlHlSIsxkUkbHWlnIrnnWvY9dQyWWqDR0HBCSCEmKzWB5pRqi05SSzwtSZUS18mTq3O8efkI0we3gL+/P0cjrkYM0MdPPnjz1pNMtbOh/6R1uEVOl3dv3yBvGvny58NackRtS4q85Urkh5eXF9auaE0e5W3lzzykLYShow7w8/oEejp0YFX5PdVIBCnRvnv/kxwdmyOLhx+sSXz/H20DrNzItltkYcCIichXtatwqvUDiZDR5B5INFEQ9f72Cje71MAhysRxAr5kY0iaBVq165ACMgN/1KHtGbEeT5rl6XcSJqu5hFzqaPJ5huPUe8AuuJIj5yakBK8atGXcrZjbCA521tzX5bEDvbiEe/S4w0rZHTpsOMo3HfbbErgzD7zg/e01og0pPVNrnoYq4/PuzXOM6FRNnr6NjQ027DmDhlWLyheD7Gao33c8Jx+dqxbPkj/LImtOfoqXgUtorj109h4a1yjOv1miZBl0mbiVJGp6coahZ/eu2LRpozxNSwsLgr7x5+f5ady8e//xb8/nL998xNy5c5CjQDnuuFpITJVW2iZpF/KZEmNinWJ2aoFGdYSEVY/MIiihCk+uifZvqgxVOqdEhaeXNCwy5sHMbQ+x5MBLtGjfDWfPv+LMFcs/A/gc0aU6Z67M6LxJTKGePX2GsmVKIZeLI7y9f2LWtIZKzBV7rDBJTmpUzU2e7+3QuGHBmDfjPugTyCPbMnEgyyQzcpr7jbYrW7YuiS3rO8hf2L5+Ca7tnUNbEmEScyWnStw6DOaObghu2IRbWM2df070dMpH9X2DlRLJQIwEU1pnId0zV8Qs5lp6AQYaWKkpESGOkzMkBWLbWBXqd4p1Ny2ZqxDf7zw/wpgYqWOMchUqwdjIAJ9oi23ilON8a45tebHAePf58/7DkzsX+bn4J7Hl8PnpiW8fXsAgWgYXExfDQJuDPInqtBC0JaMJb29vlMzrpMRcsQeMSMru/uUDf9bBwR7LVqxCi459fou5ukho8QJzlSWLMzqP3ajEXLFtqnItxqJU6VKcRgwbTWCuWEae0rh55JbHbzOitz/roVClFhzAlBeQfuKilXBPOCa2Pn5XIqrJYjAl0hDKKxzVMljMv47E+MRtrsuIJzUqoQnFPdEq7sZPK64kamCEFm26iF9RigfSWUSDBkrX2EmblsX4tmKsG3RhzMgaWLO8FQEAsk3EhEM46ah4VCWgzRcecNlyi7YbFV3D1kYXm9cuIf2Wmihg558sYvbfsbjS9sGqROXGnOAnCOWaSQhTI+j7hcCcAB/FIZpAbRNyPyN+XqvjxE2861QGOr9JT4Y3t3rdTdSoXQ/2rqWVipyW7YoxV6/vHIOtmS7fbhb6R6uB82BiagnmeJmcCmHuxnOkjC5T1GKLIOZ4+fjOJXIlblagpJRD39QGN8/tw/nd8/Hs0rY41WNCg4M4vdhCsEuHUjzet/8grpjPT0Q/NRq2Rc2atbD30GlksCuCbK6ybT3hkcTOHzcvn+Kv1qhZG/8uPw9dGjMFRpTR6vD1L9j4v264dfMW38b8/v073x6ePrk+eveQba++efFISF5+jI9WYf4esNALUqoPxpSYObhy5X72kcSWI60YHzGtUgpAXU5UUUQxi4gusmhYBFMjVA7xVQZ7MjUKIaWhqJM/qT6a1yuP689/YsTkRejWayDpWOjLC2puboZZs/9Du/YyqVKvbuVQtrQL6tTKK38mOSLMZYlP4cz40L4UVwpmysPsnyGUr17WGlGRAWjasCaYJ3tp8aF+8ZGtYDWOHM7qhG3VMpR+TYIFwwciJeZEB5LuFB5/GD7kWkU3JDzW6yYfvWGqwnzFeigdXGA+BuOzhtSkCAzhPYR0Dxt0m6r0eFqPJYYWduRIvjIalXFSsthlcCojFxzBkHGzMXv9WbSuVxq1atXiebcjKVLXjqVw++Y1/PL7yK/9Tjnqd/4X9+8/gOeHh3EuokztsnLGgi0K5y44z9Pbv3eXEnPHLrI5qlf7Bti08xBektI8TBzhWrIRf579JIUp8fD4DqbD1aDnTGTQ1Y811359dQPXr16Wp8EinWgcy+hogUtX3vDrvu6vlO4nRKsZAxvg4p4FSvUh/kBSyiF+n8WF+fyHTzA2bNmJTw9PKD2iNo1oxcItoXIIaQhMO2MSoyPDkdlGn1sUsjSq5jfD7atnsPf0gySN7UqZFp2oZbBEz/BoUgoh/oZaQokektKQEeNvpdWD94HIUbIxClRphzoNm6FEiZLcsmfK1OmwIZ2rCi1GI1fu3Nh78BFGD6+BTLR6TfZAUo+4Qg5yhdGgbl7yA+eOcb3qIiLYV+kxqe3KyCG03YOk8M6wjN6990G/wXvx9Lls+0eJaCon/gwUNA76m5FOXlzBjpSf/QgPyX/Eflwl0NEQ0rcyIR0+1RCcjXCU4lD0Vn3uTz///MUXu/Y+QLuuA2FoppDsakPbzWhtgo5NK8c5mbO85q/YGq3qluKMj222wryqfnoHozw5yGaWhe+f3UyS5Epc59aOrtyP386dO7Hv0ttYEy1zD8UWgYsXLxa/hqHNcuP5pa38WlyTufhhoX8kxuoxLNAL82aMo7HnG36+vydnSsQMw8Mrh3gyVlZWKFZMpqelS4zD5Okn8Oy5B7+nZ8SULWRBkzrv1as3mrXqkCoW1CfvesDWKTuoC8uDOlp9fXIGb65uhr/78yTXeeSvcMwe0xVRv0K5hM7j82s0atgAmxf/C1MjXXkeWCQhWhnqxz1nsHfVKrl/8AiOPnHPiz2TYAIp0ah4wqIfKQ0FMRKq8D+ZVh6ElzNpcDuMGFKNS7DsrpB1GMEwpEbYsPkmNm+7Q1sUxiSVCUHnnoOhp28AexsLWJsTjpd1ZmRwKA5dfWOl7PzJ9SEuaFwDYojvV6ya2g35XjyHfrOi5DajjEZApOLvWhHmkC85sWXBj7YCX66/jsakR+RCUvY7dM2K/kvSv4GZESYNo3ZBzzDrQec9DxBCkB0eNfPQXSmsXncdJ8+8w1Qy4NDVM+QESY9jyRda5AwmB/KVK7rim7s/6ZP9xO7j19CkZqlY+lBCrWvaBz+/eYqNO/Yif/WeMPjljXAdCy4xYt8R06oKYe2FhISgAcHCMCwyBjzaul1nrF+3Br5Bv5KNKWHwChuntsHNG9eFouDIseMoXqYqTyOU/BCe3jQR7p/f4tatW5j030a0a1YXeVydUKxoZty+80n+3rKjH7jRibgc6XHLLizAA/fP70an7v1QtXi236rzQo6BePfyCfSzVMTbV09hQgYxuuSuTQia0KpxGUdaF8ZtzZMgg6VJAszsXsxNC5ljx7gGXfF9FpfSkFFEopWiZagbEAM8XmFkl5po36YEunQsTVZivxBloKd4MQVjYYSa7ecfQsqtwSSV2aOUkhEp4oaGyranmrZsj0rNh3ApgbpyCC//DXXOjAPuHl+BTasXonSprBg/uhZtASvXGZNC3CEctFs0IZjQNl/GfGyCcIYT+RtkrlEYsGOVWafRhCYzJnspUL8xMhWrBHMbR258YGxmg71rZ+De3ds4RH7hzDd2RKkeW/B4YgME5VBIawS6/21HT69AdO21g/CZOqNSq3958dPzuHvr0ALs2boaRYuXRre+w9CxRd3fmmgF6BjBsCuE3AgtHtuabwm26zsJWWmrrWLJvPCFA9e58nh1DWv/NxhZnYmpn1QfO/fcw5r1N9CqdRvU6DgDv1S80CWlnzPA2C2zuuHalYuYQbpUTKfxEi0oWajXsCnK120PM4MozBzXH76+vvjf2tMk5SvJpXyzF67B5NF95bASs9efATNASc91zgse8xNfOfSiw6AT9hPtGpRKkC8J8nFHTtfsWH5MtsWsDvckOQAAmtBJREFUaRrsOWFsZ0ywkQGJC+MI8TJYTM9EgjCQmERxuxEaVVox1EwiMrRtOQzsVwmNGxQUZy3V4owZ2LT1Nho1KEDWjt7Im8eR9DCApq3XwcHBjKRb4QQ9EYKR42dhyvjhCXbyxGwXqBYyreuD5UfTycPrzTU0I193mZzM0bVTaZQqkZUDZJ6kiePoiWfyos2i2KiYs4rkQFePdLPOk++3yoSb1n7IMESYZEUG69zy54VIDstg1C6fF1npwvS17eG17CIK0tZh329+qFYlF1o0LSI8+lcdGSzDMAIh9fwZiTFLTnHfmvFNUIw46aldpcQcxaAWhrQprdROdAlhfszMVchcoAb3BLGe8Pcy/QrCoM2d+HPMOnPmnDMYPnE+XEs3lb+raf8QynHntTe8P9zD0mkDwJTVc9ICYeXSVhwdft6i8zh+8jn/NkOeDwgIwJKDLwlENAMals2qpDsWRdtgL6/thnOeMjC1zYoC2UxQsWBsq0cho39KnefLYoKze5eiz6DRCUoSj9/+Tn5y/cHw/MQhMf2D6atnczBOHINFE2g0G/jTEorB1iQajco5SxMU1XxiKjylrCS0oQNGhXijH201tWpeFD1J2V0IDmTZE5LJEgEEuJjW4QMxXd16b+fZ6N6jF8o0H/tbJtpp2QeTu84vXL2Ffasn4+b1azCjLb1AQlbOkiUzMV4tSL89Gqb2rrCwc8aLu2fhT+jUz+/fQNliZdGub19UKFcax+96xdKNYYQW+kejxk1w+NABTvt+9LuUx2Q/bVoVI8fIRWFhbiS6+udH9+x/wFHbpy7ZA7scJeW00rZ2Fer/A5FhQdQGsmvMtAtMSUpsdR1dNQynjh1Ar25lUbxYVu7m5vETT0xZeZwYFhe8vLIdq8mn6unJ9RBSSratxHxyZspWGo37LuANS8xcHbrhjstHNyBrvvIws88hb3hC2xXq4/6JlVi1aAa/X72KG/r2qggrksru3H0Pq2ibl4Ua5Oi6VJVG0Dc0gXP+ynFaPfIHY352/9cdoSEBmL/+eJxWj8ndz1OiPlhRVGklLiOLs3LUK2HPeYZjdzxTZdytXthWLQ6WWgkW5TVaqPC4CpHS24L2FvpYO70bfEj02X3SzlQhVErgYvxJDTel61wTWmXV/4Ra1SqA4bSdONRbBoaj2kC14Pzm7Y/4d8IRnpP/tlyBiY2zPFfiQVfYkpDfjIloMpBoQ32obq1oUg4mUvf98ggv75xBnkIlMbhnm2TTW7nz8gcOLhuOUycO86x06tGfLBPDsXHdKo7Wf4HWmduO9YMVgdH65cmIaANlhVbV/Kf38/PkGHk6ba22J/cs5ZoO12iCSqt25fnuHiys7WFG1npJaVfiutJkLEkojQLOBpj9bw8cO3YM9evkQ4tmRdCr705kMjVHu7ELYWNlgUFdG3NJ9qB+lXnyvQfsQf4i1VG768xYTOKLhzc4ynuuXLkwZMFp/rxqP//x+jqmDmuHShVycEMe3Rijjw+E0det9w7+Tp16DVG3yxQYELREQmPJs4ubYWtpgiXzZnBA54UHXovJxOPJQSvVcqgm8ienER/QqLIihIgqbAsoLblQ1vhD2nfBlwB9ibmKx0npn9xwRc1RPpAc3X+GXx5RPz8syDLNn3R1tDGUpq2t3eSTr0W7DfD++kLOYCU0ILKy/OmDFUN3t3YujEYFSsbC2BHXZVJopaNnROjkS/g/+xbrH73/kW0l72QXaCuXBd80duMjy0XK/l65+g7/oy2rhk1aocw/Q7W+XQX4+8HWMYtWMFesDxbKaoQylWqTdZsrNq1ZTBJXQ6xe2Bwn557F5KEdMGLkKK5zFb5jOyJcbKFPPi8JwQG/SOfQTD8C1Ytlxr4d63D02ElUazWc2nxBlCxdFnnyF4Lf91eoWr4EV8E5eukxLl48jw/k2eLEoZ0oRgYdzEpaYK5YK/H3D5M3loZ9F3HdME36h7FOKH3zMOYuXoeXbxUK78LHWP8ok0MXt+4+xCt/O2mupbl27/FL+Pz+DYxdqiA6g4JFSmiuFWgqPlJziDv4BUXEupFQAppUeGImjzC7MrDKWozng616WUjuNP7k7bQ/iVZ1i9thcJ9O6N6tK/ctWJl8k6UGc2X+4jsyJBHc0ZpMz5kLn4tHNpM5cLjUdnkPlv2k5liyefs+TFu8Ay3adqH6+PMV3rlD5CNPMGXmSdSq1xh1ukxDCTcrrdenzUkMd91yrkp6RKImw6OJmT9+d2zfsvs4xo4YgA2rFqJBw8bYtvMu3pPVYkdisrqSgc2c2bOI8QnAT8rZvI038fWbLym9W+HE0YN4cXETzI0yYMfOXchTsCgZvFhza8SuE3egZPlqiPz5itfHzZc+aF2/HOZMGISblw+gaiUX/EsgyWLmihW8UMFMvPzsJ+D7C43HkgxREShVripCLAsja7GGhPv0FYuG1cH3h/vkenafv/3AqRtvJOYqRpDxMyAKKxbNRnh4uJzmCY1X8gdVIgr2TOWG6mlCCaTkZB5N3sv7NszBs+TuHao1HTAtt1DTsj6EtpGSda6aBlvZMXwae0JcXzyvqdyxs/BcSh0DaBspqYFJakoWz4Ld+y6S491hWLNpp9R2iZip1XbLuurB/YcPvkS6wNY1Gz5uXUQK9mZJrc508d6Llx74b+FFwh/z5AxllbbjUNzNRuuZKz6WlNEe5oqN7RHWRdCpxyCcPLILT548gqmpKcZNOkoAniXJirkk3pHT+OPHjvB2USI4AvN7bIVb06Jk9foLZ8+eQrG6fdBm5IZY/jgLFimF4T2b4eiBbShQvDLpIQZyQ5kl85vH28YWz2uGAUP34vKhtVizYUuCY4lpxFeER+kgRxnZdxme1tB2Mr3VfdvWYcywgVxX6YmXBTLnLq2UdmqO7dpm5BOWwQK5c+eBXlQw0cQkwfEqPn+raiVYYmqn1oCobu8/A1lvGBkZwdjYOMFGlZJKj4wmqbmCkhi4DHy74MOrR+jZoztvkv8j34P29ubi5qnV8batS3Cm8NjRQ/jx5S23apFQ4FMH1uXM2fOYMWc+X5kHer7DrRvX4JbTQavby+9k7vjJZxg0bB/MLTNj5qojqNZ+Ekmu0glzRSoh2jbRsnmnTJOhGLv8HN69fYugoCD07NULW7bf5XAt/46sicH9K9N2XQbcISHAfXJCsGvPfTDtvxvXb+AcSa5VJ182f4zs3RJ3797D0yektB6jzK6JhWtOV3vePI4e2kPqB2u4b8Fb5/dh2eiGOLh0EF5f3w2GE2gX/RkeLy+jQIECmD9nJn6FBfL3Xt8+Km9eXl6ekvEYUSOu+TwqKgoXLpzHpb0LE2SuGCPqaGUgp6tqRE/1gup5WjNXLD+sEO9J/KptHVBbaZWQ8mZcjUpcFm2pc1YOJrnq0rkTMdj6ZNafnbZ4bMRZ1fo4G3z9yVWMgYEBnnrowZ+2ClVDeqqP9NIHHz99CR+dLChcrQgnt/ubu/xoZJTgkKdaPenifPO229iw+RaXWlVtM5ZvR0ntSlZ1vyuNYcDBLi4u+PDhA8EmeHBIlmvX36N+3fxoSHpXDGy0Sau1BJkg05NqGdNizh7YiAIVW8nbj1Aft2/fJkbfHisWt4SnZyDOXqDtQoIsSSjcf/BZ/siUyZPQooMHls+fyq89fkT6W0cPyO8Lkbz58pH+ZzZ+emDbSuEy3N2/Jwhh8Dca4DACkeUfihUvwTHE1Al92HNCu2IGV+qC+jv0hjZNtOllYE8rfChWwUKFpzWtnE390LBiLjRv0RIPXnyJ1fYS066u3LjH3z+wqxumM8XPoNgMSqwEtOQCA3ds02ETGEAp288f2aUavjw6hV+h/vIcCoOuJK2USSuTo+2++/wdo0h35tqx9YSqb8hpff3cIbCJb+Waa3Laa0MkA2GquYryxIBz+QyeiMwxqQljrnoPHouq7SZKzJWIdskxJjpaGeLm7Xto2rQZzb46KFWqJFasvoZrN97zlJiUauHcJvJUQyjGdlwyOsokTuyGuJ8XLlIUPzyDyCdkBEnjzdC6RTHanVEvBRE+fODwEzg7Z8Hk2Sswcu5OOXPF7ltaWsDExFh4lB/dyFqx77SdcilawYIyYw/hoXdXN+HpuY3oUy8bnl9YR9CokSjp/AtWpnp/taTdyNIR/3QYhHXr1mok5fvhqzBAEGgrHNUyWMy/jibcW3IMiBJTotwB09p683fr4+OTy/jxwxN79+zGwtEt4PXyDN7fPczbXGKYq23H7mLtioUoUcwZ+uSI2Xn/QxgTaGR6CEzReODQfQgWOR/++vUbpo/ugVUT25L/sjz4dGML8mdOW6y5xNRHelnRXnkVQfAPFVCsanPeVHy/PCZHuJewi84YQK02hWgyw39LgJVCMH3rhQyEB6ZpYCCtK9deQ5feQ1G4Vk8+mYon8/Q+lmiLykeUrglqdZmOQwf24fHjJyhSrAzmLbqI7x6yxZJzFhuMHVVLXm3Mhc2FCxcQHuipxFyx+ihetjq5fArGq0Q6IGf4eqXLV4FDgbqkBK+QxC47/A6FChdBwYKFYG1tzZm7/605jsHzTkLPyILnycogAidOnJDnb+iYqQReOh9L5k7g1xbNnoxZ/aujcL4cKJg/D05sXwD/76/h/uw8/te3Cm09Xo1VDvnHYiLaPpYwZHxLMjzIZRcp10m8/YKwskIDlYrCytGbnHWT0wjMW7gMUb5vlO6rMu0MaFRdUMtgORDX/rsTrbZ0DqkcqcvAZS9cWd7efnr/xLnDW3Hz/KFES0S3LBnPv9OkcSF+/NCuJALdFKtCeSJaFgkm1PFBw/fRKjVAnrM927ugXeviIBgmGqAfcz9mM6eMJdNvM4zu2xr+L48glNxzCEHbByshn9o4mUdGZ0DBGl1hkTEPz2ZYwE9+1CNRflqh/wv0SugYkJewuWKwj/TIG4CVaFtI9d3XbzxJof08d8hbsuFAflsb6+NPwReMggEqV67MdbEq12tNjIw5lxwywjNVgGoECto0ZqzS19fH6CkLyU/mD2S3jlAC7HYrVIbX1dCRB+D+XSHN5hfj+AknD8jV6y7l4wkDFmXhzplt8ieHtsiHy5cu4ebNm/Dx8SGXXaHw//FOfp+NJf9UdCEfqubya4YWjpi66S6qVKkiv+bl5U5MYk2y0v6F1UtmEYhqb1w4vAEfP7wn/69tEebxGKeukbueGw/k7wiRpIxX4UHe+PH8DJgRGwsp3XajM+iSs2xyCu5mLa8Phtj//tktoRix5qgn965h46LxiIoI5s+oMldx6dPKP0YRtQxWxK8oaY+WFBIlJjHxW48f/c0xbdk+DB8/GwWKlUf9LhPRe+zyREtEIyIikI8mHCtLY9oPj4LdNcWgIW7E2hZnEoXnLzyUstWi7Xps3XEXRelqWWISzx7vh/Wr2qJcGRecP3sSo4b0w5C2soE3KYOVUmJ0ktKDFUsvvaTRs3NLTp5fNKa9fe/F42n6o6GESofymyEq7pxu3X4HU2eeQvYcOVC9PW0L0jZVeqmP9KojypTei5SrzStk1vj+6Na9F85deA0mWRJC314VMGNKA7Cx6+zhLejUsh65z3LA3VcyJp899/3jCxQvXpy/wpxEJxRWrb3KH6lZpwEqtvyXx+/fvIjqVXOhc4dSnKFS/caja8fRr0F2vv3XrLwT2rdtTXpinfhjmTNnQpaCNfHu1n4uZTMxkTFt/v6hBDNhjXHEZDFYiE+fPiFXnvzyT1eqVAn1KhXAiE5VsXJsE3x9eo7c90TFYkriYqhrF7XBzEmjUKNGDXz+IlMb+fHuLu5dOw0fAh1OjbbLoEr6d22OVz8gx/g0tnJEziKVeBnjGndrth+LnPlL8q3hxDJX7KNqkdw//giJPn7XU05cFkkogcAfb1GxTBGUzq3gEJU+QCdxFUL8TEJpsGdTozKkNGS1kpb1Mb1XeXz5/AWnKCunBldF3Zp5aUnAZEDaHQKDwnCLkNzZYMX0r0aPPwIm1WKhbu286NG1HCwtjOSFeEaAqcz82pSuBNF/ufLl0Pif5jDMVAIGFlnwK1wmwtY3tkywD7KPSm2XUUF5vOresw+2bFhFWyjGZIHVRa6XInsy9X51SO/GjCRP/gUyyRPVpbYRaaxPo7FmbZvp/oyffIy//zc58WUFTuv5g20zPTy9Bjs3LUf27Dnw9OkTQnnPg/59ZJO0UKk169PWkoiRrl67AUqTa5sAHw/YZM4F56wuGNu7IcqVdoz1rvAN4cikVywsOfiK6xQG/fyAkcTkdO9SGhXLu2LDppukKP+aPzN2+mJcOrGLnD/78K1MfpF+MmfOjCH/24GXN4/A3jknnHJXwO3Di7Bp7XL07dcPJWp2RNd/SguPy4/zl63HiYM7cPLkSX4tp6sdmpNPzyPHnuHJ02/EPNojf/78KFy0BNzKkXNsE3v5uywizB+nj+5Bxw7t+b3ChQuj85jVMDCzx9Oza/Dw9gXUrFETFep2wFNCrDcwc1T6RlrXubgccalEJQnJXQD2FEoqECquBNgzwd6fcHTTDAS8K4ewJj3wzD320kvbCSWUVZqgZJRIqM7ZUylJq84Dp2DaiK6oRel09SERbRoxV/qUNrMsCbdhLFDCwczUkDsXFp48vLcH/jf3DE6ffYnhg6sJl+VHJqVjga1pr9D/zx9vMHrkMNJ1juaIzWyVyEKtOvUxccoMsqbN/FcroTJaJHYsKd9yLGewfHxCsJOUwplicVqEKLKGFTNXLA+GtJUcktkK0Xq6CWYpkBRDJk49jhwkuWJSYXNHtxTtg0KGUrKfp6c0mDXwpEmToBPhh+XLl5MfzSzYf+gxChLDXLliTqEoqFMrL94TTtZLEpcwRuvsySP8nz0wbuo8tK/fHHvJUm3/oWP8fRMTAw5eyiRi9vamJEHKjLKlXeDooNjW09HR49+/sHcJlxzlz+uE7n120iIuAq45bPH23U9E6xii7ZgtSv2jW4fm8CFVjXunN0OHsJ1m0PafOPyCIYKizcSX5PEhfbugEm0jMivuIQMq8zIyfdia1XLj6TN3XLr6FvfuP8Yl2qLUWbyAgG3/QYkq/8AmS36YWtjKUfkNs1bExHmboW9gDHMzY+iZWPOxzYSseq9eucr/ibAoU6Y0Boz9D35kAcyksont53Ft2aVG25UTTCWiVoL1wSM4+sQ9mThdk4m2aA5zhH5/hHfuAQgydJEr1wnpJTehmHIaE9kKjY6lk9xpSAqiaYtN8/XpWc5gMRcVWzd0AGNc0iIY0ASYITIaYRktUiz5OfPPktTrEzasbkeAhgbwIOXZZ7TNyCwRGbgqm1h37H6ACGL2ug0cA5eqXWNJYVJjIEnPaTBG9dre2di6fjmhZdfkWywpVqFxfNiEtpIizA0RoSGjHscnsH3XXazfdBuzNpzjDofTc32Iy5feynHw+he0qZodLdu0J70nX5whBmrE0Gqc8RCXi0mm3b+HIneefIgi6detW7dx4eJl5C5YEpv3ncN/47oSQ+WIJ48fil+Txxs3LICDZD2op6eHxYfe8ut3D87BmpVLkC2rDT5+8ubXOpJ+6qatt1G5Wg30GLkAzavlletQzx1cGy+eP+fPMaZFVXjCbkxZtAM+Pz5j/rQR/Dnxj6GBHqZMqIsSxbOKLyvFmdT+2PFnOHriOb589SGjJD30IKlx69at4amTI14H7Rfuf8a2dUu53hf7KNuynL3lLhztLdCwdEZ5OeLaetSG7eZWFZ0YhFSc4ucEGSx1zBWvJBqwGJPDOgdT5Hv6MQh3XnnBzNpBifgpwfjYGYWTZdAFuBVn8g2JuRITPL0NVnFZp/l+eYKJ/f9B6ZLOGDm0OnU6A3ER/8o42268QO5Prt38ADeyGivRYABfBTJi/Al1nhrlYAq1ZzaNwaF9uzFhbG2UL5tDqS0Z/gjALxN9RJoptnCVHkjDE6bsvKbdeoRXrY96feanaJ0H//wIY5usKJ7TUtJDpTqPax5kbSk6OoIWOro4tnYMSagOcjc35cpkl7eSHn2Zq5xKaNh7XrwCgLekD2VhZY/mDavg28dXtA3XhLb5fGFoaEgSqjCULl0anSfuks+17Tt0xqmTx+TpiCPZsjrjxoPXch1q708PsG3JWD5WZHR0IL+Hl9CmTRvkKVYNb14+xtplczF9xUHYZC2CbbM64zL5RRSH9m1KoEqlnMhO/hYTCowv+Obuh2PEaDHJXgS5GevUazDylKxD0tZc8kWh6njFwFA3zeyC27du8ST69u1L2IGGGDVhprwc4rTjqg/xfRZXTUP1fnLyJfTtxDNYZx/+lIv4VCfBg8uHowaJOStWrcU74OixkxEUZUJEzAHnXCXkhEzOQoixgkJI+z+aymRCmBUplYa4QqQ0FNRIjYb78txKLJo3Ewd3d5eYKwXpeYxJMdasv4Gcbm5o0LI7HK3N0LZFA3wPtZArb4pfkdqughqs7RbNboq69eoT2vYlbFzTFtZWJvIHzF95gOlE+RZxll/Tlsi8RedxlKQEvQaMQtf+o1OM8Qnx+YLti4aj76DR6NymkdziSpUOUrtSUCRvxgyYM743jh49xoFH+/asQMyRHgYSsn7OvFXQcei8RBn5fP7yFR8fn0f2IrUQ4ucOM3tXlMhtJ6/zreuXYdH/xvIMtO7YAzs2rVZkhmKrjr9DZLTylrMmTEkOy2CsXTgR9hmdYWqfHesoziR0kcRM5iW3YcWKZEabVsVhTFuGCQW+IFh/HXsPPES5cmXRqPskOGXNizzO5vJyXLh6CwFeX7j+IVMHEUKhQoWwYcsebN97BG5lmlJZFPyLJuVIjTlKSIOhFCRagsWU3BkWljqdqxDf73AyDULrRlV5B2RWEhl0lYmeEh0wIsQPYcEBMLPNwusiJdIQKlk4SmkIlEi9VYH3uxuoW7cuxoyogRq03/83BWaeb/zNHwF5lJU9xTS4ffcT1pGDWQFLx8nJCeNWXoCOnrLkRWq7CqoJAyJbqF1/8BZju1ZCnZpuaEsThpWVseJBLYwxK9qW7TeRVCOI545JCsQLTnGWf7fO2bd/PjmI3l3b4p23nsS0a+DGZ+WsobBzzIwIXQssnzuBW/bVr5uPM8Qt23TEpo3rE9zq8v/5DVef/kCYgZO4Onlc3HaZ6sq+Rf1w+sQRfm/y/M3YuHgi3r17J39v9KyNyFawivxcU6ZkybSBOHDgACYsOYTN84eiUs0myFuxDb48PY9Te1fj7p3b/JuLyC9i/hjdUXkiaiLTZ53i1pZNmrWEjY0lOb7/RcYBz2BibokL5LNRNfTo0QOde/TH1YefMW1YG1SsWAX1+y7mQhtNy5Ga1v+sv7k4mig4QFGBdERxpSjzr6OOuWIPli+eS85csQpPDeaKpRv1KxQ6kcGI/BUmSa4YQWKCagcUrgvH3x102XdSMw3/SJlC+cEjT+LUGRDK9Scef1kYx8tcsTKXJH2I5Yta4PTRvli1tBW6urvj54eHSuRIb3WeUgwDI4pq2zU0tyc8o2C+uu7Vf2eS25jNrQ+c5gYxgJP8JAV+Hj35JmeuGI5aStKKbQuOGzlQYq7IRZumOj4FS1RFpIEtcpVrhRHTVvAWwKSNLBzZsx3NzY1RunBO3Dm+CoEeb/h1/hPuj9LZovhc++p7GE4f2am4FxNTbbvsconKjTh6O4vfOrsLmzZvRYUKFdgpOnXvg2c3DiPU5wM/15QpKelmie3bt5PLnwCsndkHjx7cx8oFU2nRZoASlRri6rUbOHLiHP/miDEH+VGTn0bkTqgkuQI6sG8X1q9dg/3795Eu2s04mat27dphwvT5eO5jDTPCsfP3DyCp4GHcOrQgzm1a1fTjopX4mdQYE8XpqWWwmH8d1W1B4cW0LIShuSNMHHLBydY8USLXtLIuSEtaCfWVGo0qudP4EWFLZtDZwSAMJkw5Th7qI4XiSEcRBRjAIdONWGFjhpf3FboTyV0ff6LBR/uu/Tgl2QTAlH+TErxLufDXdJmLmxQMdrZmYPsDFvR/+8lHSaqkgVQpNaUYRi6VkbN0U94CMuWrilnrTqIT+VBlQZ8wscaRDrRFqA85d56OSf0b4ubBBXh2fiOm9KmJIvldUb16Vezbshw25ia4sf8/fH5wDGH+P/Dj/i7ktIuKxVBnLVwb/9v+mH/fiPS0XPMWRefx27D82EeU+mcksucrTZZ6dnEyJdFREWSQHc3fZT9sjiqWwwxXHrtjyLjZXOH927dv/L4xufwRjyXfM+REjdr1OfzMm7ee8m/EF2EWlv+b2hDDBlXlFpW+vn4YP2ct6tT/B6ak0M6U2hs1aYE7d+5j7uK1OHmfjEHIqIgJbXoPHsc/vWHlAvyvX1WMHtIbh258jVdpPiUXHwnN56p0kNl9ql6lc+ZfR2JKHBIU68Yn5UuoMsQNlzGz2molkRbl0DM0w4gl5/H1yRnMGtuLrKfuoUPbknG0VOkSY7JaZrWE38WTQIvRSgOi1K7UgwWXaTwI1y4cx2sNJ4r4WlqIs018t3/7nnMWK7QkDLV3J5/jMyniO1gqfzI9jyVvbu7Hf5MHE87TSzjZWfwRC+ecuQuRHtsoXkl+9FuH0PlnFssKnTr5MHbaSWxYOZ+7/2IQDiWKO+OH+ws8vnwJLvTsI/pnqOs1atWBr/cPZHXNh1CLAnRVObA6P3T4CDZs2KCkCK6jo4M85VvKmauIYB+sPHgbOsa2CA8Nwrf3z2BhYQKHvLU5c8UYOIY8nymTE4bN3kXOobOSI+le2Lx6Adp26adUH2GktJ7FORvPSK/+uzhgsnKuZGenzrwgy0cdONibc7BoNka9ei1jyOo0aALH3BXROH8NNKY1Tnxtt1D1rqh49yIxX7fx/v0HvHnzFq/evkfjzmPILSQxrTHeGtJijgrz+wIji9jbuWJ6qGWw4vKvkxaFEGeWxeOrDHZfU3Foaq5u/sTVP6M1CylZH0yqwBCH23TojgN7NqJa5ZwEmGctS1j6VaKALynUehsZp2h9CAmqq/MIcn2RycEaHp5eqF+tQLwqBtowljjZmaNnz16YMGEsvL2DSD/EVCiiVh6DqY6vU84ity1El4nl5HlUVx/CA9o+JppYOpBvPV3YWxgoTebpfcFZ7twNzvhc2TcPV88dweALbxFGDLIQGJNToZwLqhB+loODGW0PPsE1wmhjgW3TBQX4oVyl2gjSzwTdEGJOSOp08/gGZMlZlMbBTKhZqSqOn4xEkYqN+eKcwZA8JuBOt9yFuT/Cl8+vI+J9NvTp3Zt/k+0IsO+26zUKUfo2eH56ISLeumDpnXv8fkQEIWLRDhELJer3R722Q2PVx9ub+7BhzTL+DPsZPvoAuQArgaJFspBD+0i+5Z6bPFXM+u+s/JmstPgoWcIZDernx4XLb8ly8QkCyZWPZaa8CY5XBgQRsXnXETx/eBN9enUn1PxPeP/mJVZM74MP798jX74CWLzxcKr7dKXdY0QFuuP1q/uoXbyLvKyqkQRhGoQX4hsQmUNLvTAvdGtV84+R+HiTovG2Q5dhYpsNGfQVA6+2D1ZCfaX3QVdcjpK0YBpRsgg8jX7hX9I3Sup2jvDNP/F4vtMmfC1QGstPnEyzPsgMUO6d3UFbAb3glj2LVqoYCHUv9I8PX38gT3YndOtchiu7C/e18bhmw3Vs33kPvQf9i8K1e/EsCuWQ/K3G1rNTrcO0phXzvefx6jryuNjB2FAXR46fxbFDu+BJC5KkBGtrK27hl9C7YuyrokWKwMnZBRPnrseeNdNhaZ+V69uxb8zfcYskMjIGSx2tlo5uiCePmIxNORzc0x2Pn7hj3KSjSjdmzZqF+w+fkP7VbgIpdUGr5kXJC8FxmJlnxLRVp9GwbCZ4B4SjXPF8aNN1IJyLNyG8sHDo6hkqCUuO3PJAj4b5ua9FloCbW068fv1GKa0Bo6YhX+UOStfUlUN4KKnzebDPVzy9fhjWTrnQqk5RlCxWmFiu2EEjBis+5op90s5MB1mNPJAxay5sPXAeVs6FlSbBpBZCnN2UIpS6NBYvXoITh7aiTe9JMMtchD+WHsvxp2wRrdywE5eGdkLjuU1RIH/8Yllxnf4N8RcvPdBv8B5s3rIVNeo1U9ouEMovtV2BEspS1yGD+kNv8xo49q+MeqSLpc3h7PlXmDH7NMbP3QCm55PaY+KfMpZoUzmifoUjmGAxQvw8EUJOye2tDOHz/T2mTp3KtwmZxCmxgUkDbWxsyD1XMHdMLX5/5opDqFC2OCoUyiTX6/L9/AhmDjnA1DJYiK9d+RCmlteXl9AJ/4nWrdrgxrPvmDy0PenIBqNAvoy4fFVhyfjq1Sv4RNtzfcE3N/bgvynD0JIYrMLk53DsRBkjNve/hYQI/5SU31dh5OQF9J1fmDd1OAb/Owujhg9SkoJHRf3CluntcPfuPb6l2aN3f+zfswN+fn4cM4zlfdH+Z9A3lAlE4isHezY5xkSbDJ6oVSYnWSFbJo3BSoi5Ehfi0LXP1DjewYLcNzAA0uQqhDiN1Oocv7xfYO+mZcjsaEmo9JYo02Q4F5dKOlfxd8CUqvNwUiJeOqQWrOwjCVW4Hm9bf8uP1YPPCMjtSP7qDGIV+TX5tTszYBdeFMiP4+duyhVExQ8mx0CSFn0wNbaI3F/fwvj+zTF3ZmO+zSGmm7bFGVRDo+ZrUL5STfSduDbW9o04v1KdK6iRXtsus5j/FR5Kyu4e8Hj/EKGB3qhdrTy5xPmIIYP6yQtYt+E/qNSgG6wzuqJxxRwkkeqPtWvWyO/Xrt8YJas0RqY8VVA8l7Ucgyq5VFf8vj7FqZ203RgRDj8fL9jaOeB/M2cAVrnkxhhs+3JM28JkFeiPXt3KITgkHJu33ZHnkUXGzlgB+xzFcffkKtStUxdNmzSOUwrOAF7zZdaDTuAHMAfU4lC1WnW0HL4uXiaRPZ+c/YPBmhgZsE3D2CFeCRZTcv9bdZUY0aIjw7BqfEsuljx3+S6yONnEWeGMrIlhRFOLSUyNCSo103hxeSuWzhmP9SvbkEKmipZv7Lb9x1/59s2PO5L++s0X9x6/xr1v5IaFrG/EITkHkj9xG4oN1jP6VoJzJn1Mm6T9jPvk6Sdw6cpbTJs+Hd36DJOklWQBp61zFEMnf3hmAwpXboHmNQopSWPEfZTFEzN/HLzyHlcPLsWxA9vw86c317caMW0VLHV9kT1bVjRr+g//PJNkDZ+8CC7FGvDzxKSRlDnq/dXNeP7oBtjuj0eYpZy54onTD2OyLu+Ygh1b1guXlI5FihRF/1kHEyXI2LtrK/ZuWEDSPlM8ePCQf2/59jPo0qyqkqpEiO9X6IB0zKyyJStzxcZEpq+ezcE4cQwWvRjNpDVpafKYlJVHdDS578mgI6+4321UelEhYJbYemSx8MLHQrKsJPPotJpoIyNCMKt/DWTNYsB9Y8kr+S+MMKDRm+MIH4aUXXfsOYqX/rYSc5XLKknj1bvbBzBn4iCsWtYKrtntfrs12d54j58idym//UHRB5gUq1aD5fzK6hMf8StKdvNXeDB09Y1hQJZbmmI3pbexXUQGHv3dsT2lFx8MZuH17UNo0qg+bcuVTPbFeUSwLz48PA1H59x4cmUP+TWJwqZNmzltmjRtiXINe8HMMWe8tPJ6ewMhgX4wJafLIT/f48qVy2jScxoMrJQ9GYR4vcXzK7uwiJinY3c845wHz20Yhd27dhAwaCVyOC3Lh7jO2Hxer4Q9bt15iNMksPj54wtuXjqOezHgpf9tOI22jSrC3CgD9l94hYDQCETqkGNoAxP5Z9TVeWRYEPo3ySd/zt07VGnxMbhJLuRwzYnBcw+hUZnMycbsMka0emFbtUCjaq0I0yNzZYAgvH31FM65S8XbqIRa0IiBK+OSrJUhSRiSNgmyOjMyMkGffoPw7+gRuHb9Hcqp+JET6vVvOI4m5orJ8G5euYsrryIk5iqJzBVrK5lzFuNNxt8vlB9/90fMXOkGhiLKQB/RBjKVid/9ti6Z+5ci0EZ3j2g5c8VAl6f3ropyVepg6bIV0nhFRNZobE9hLC0za0eMGzs2xepD38QK+Sq0lDHUneuBKYJbZ85LahTOyJhHsXWmjilhxmnjB7SK1SQvXKhAeFhzkDV/BRiQMrrfp3uYNLgNWQmGo0abUfAOUQgwhJdZGpdidskuE9xE6xEECC7yKiGuj9eB9shcqDYy08uFanQDM44xNDaVMz7DRo3D0vkzkZV8KtrZO6HH1N08mbjK8fPDXSyb1h+NW3XDzosfEf39JqxsMyoxV+zlsXM3k57bD5j43kFYoBGOPteJk0mMKw2eeMyPuBxxSfnEz7K4WgaLSSmSa49WNdHfLYS6lUdQyC+YmJrz5FIqDXFZpDRk1FBXHylBK7MKA/B8wzp0pK2SZ/t6kkNQtU1YnPwfEzf47I3bPiG8PKP+N0dirpJhi8jw1ydOTzs7mXJscjYWff9QhNvqkd/U5AsZM1rg+w9/pQ9aW1vixaNbyJ/TCbNX7keEaXal++zE99kRtOg9C3OWbYG3TrZY9xOaPFKzn0u6rolnEj39I5CnYjuleo1vjoogTCx1Yf60EfyWkZEhuf0Jkz/2zcNTbmkoXGRpuNpGchR4O1tTeP0Mwq0jy1Dmn6H8kYTalYmZlZLUNWepf+i9mShfuQZK1e3Fv6GuHMxlHgNFvUWSsPmzJtHuimMs5op9IFOuMiicMRijh/ZDhIkLuSPKyL8r/lGXhvAMK0fV/GbwDQynNDxjLWqF58TH2KxozF2/oAjxczzOEqhVxDrNtohYJuLr5PrGlrDNkjdR+9lxcaHxpSEQRZPKYKL6tNpOS4hW6bUcpx74IM+gmahKukbMiejfFEJIMbR3r+34MOoAypYtC/tCzWN1cqntKlpEQgM7o5Xhz5vo2a0TihMIZJbMVoqXkykWmom+SfqcZm9/JNMXmS5LND59kjGF7KNGhkZkXbiQcJIII4u2EGeO6opH5zYopcecEU8ZP5y/N3lUH3I5Fq50XxNaSVuPMpL9KbRyyeGGggULgsm62NIiP1kBMgvtPdu74ODu7hgyoAqqVXFVaiehtO0pDsI8uPPAaX65CmEVumSzxbkT+7j7qaTQysgyI0ekr9RmEoysnOKdzxlu196r7rh6/WaCc23BvG7oO2VLkpkr1v4vXbmOaf+bHWvcFdNEHNd4+c8IVa+4HaZMmwbXiiTWEynTvr2xF+7vH6NX3wEkDs3MOUgJBV5irlhDEzpgcup72GQrilIdemDz1vXcEbS9nZm4Tf+x8WMnnuEFiUIyUQnbDVlIKpvK6yOJuVJUvSYDe3k3PVRs1xsF82fE1Al1laBlFF/6/Vg06UUZkfPuQMI/Am3x/W7w9AyUf0JR55kRZXMW338G4sK2SbB1zCp/Jo9jNFrWKUlbPGEoQwqlN249hcfr63DKW5k/owmtJOZKRs70SqvIiDCE+rnD1M5FXufR36+D+bUsRK5s9v+vMYG9KrfNBvXyowHyw9LCiHvSyJs3DywzF5ARgn7FY/u7T9/49ZrVcvPvMfdmJpEEOFyyaIKMT2pKKz3IQ43f1yewdMonRzoQlyOhXTtPHTfkLqMMExQfLqMyReWkU0QCPF4hk5VMcfLVu88wsnVTYq7YkzcvHsHWzetRqWwxDBk+Cu+f31Z8ICaWmEJIUiXttYwRKlYxsOunCUPtnLMgwgi64SeJo/+WcPfBF0RSYZsefA5dM0elYqd1fQiZSU/9/NaVs/Dy+omhA6vAkFDSUypE6+nCi9C642OudEih1/reJ42ywBx9s8CsolQZH+aYt1rHGcicvxp/htXH+YPr8OPHD5IsWGPMyBrI5GSFN4+v8fvplWHgmRf9SOVQEEPcB6/ee4npPcujf+NcGN6xMvYt7gcrgwi+1TVs6GA40XbzvyNrxmKuFF8D7t77zE+fP39BQKlXeFycBmNKvrx7BkcHC+R0tefucdhD14+uxpVrt+Lcskur8crn8wOEeT7Du7uH4iwHvyj6UW1XbFGrZ2Qhf4KVw9HKQH6uGkmQwXp97wy8np/iXOjtz3pwIB9C4sAS2LxjP9av34Dqteriw5sXGN69EYmxf8kfU60M+Y2YiGohxNIx9khaVYZqPqVyyCiiDfWR0bUYmM+tPfsfcsejqnX1J55ny2rDixWto69UPG2oD5ah9NY/Tp0l32/Z7LQC8iOKGDzfApmV6lXdCVtY1KSbIW9OJqhA7WQcgClTpvBPrVjcCmamhnDOYkm+7z5phSK41HYVtZzc8+C1G7cxtE0ZfPnyhSdSsbwrLp09gTY1cqJo4QL4SG5nXLLZwN5e/Q7Aw0df8Yqw9hjkAwv6hiZx9nNTcyuEhsnmfNccdsiY0RIrV65Eo3rV8OnJBf6u8JNWdf7pwQkcWDcTZ04cpqxEoUh2s2SB+NAnCbW6EO+yjVX4/FlT4OkbkiAXapGrNpoPrkrYUZGo32M2TX6yT6e3QZdJz6TtTe3f3qxQMj82btyIbt26EoN1CiOHViMsFCN17fyPuO5AW6H6+tSvYvoWK1RaDVaqBE1v/ZxZXF08dxxFCypLAlXLlSznpIOlFxiGX/G1T/K7qamloS0pEm+kjPXLFr87osifz5G1XDlehLx5HGkLFPjhGYCXr38gPOwHduQ10artG2ncTb5x9+rtxxjaqZa8+W7f1JFLltp32Qz37/7EXH3k9z599pE/E1fk0xfZ/XoN/kGdJu1QrFSlOJkSEzNLBJLFLMOPZI6dF8z5h6ezbOUV/De+N+buec4/n5bj1cEti/Hs2RPkyZMH86YMh5uTKeW15W8b8/2gbUcnm7jnHrWsl4/HRy5+DgiNxtnH/rG2BdURiiG468ZA1WvroMvwSY6uHIrdC/rKJyidyGDM+G+FxFylI8X8XKUaYOT0VeTr6js6dt+GA4cecYejcQ0UKXXN/vKbRH86z9wz0PcLSfR7jo7mhJb8iyM7s5fV9UHxh7W1D4rzqKcTDTczD3x8/TjVtpsf3TiNL5+/ENRHdnFWUiSuQ05wHS691uzbNEFZPZRJHOJ6ITAoDDt23Se3ZM6IsCoaa7wK+vkBL8+tRF2CMCkXw1xVqZQTi+c14zpmzJehLy2Yg0NC4OUXnODCWVpwpj8H1Dcef8Tq6b3kzWf/rm7ybbthg6qCMdvLF7ck446yWL6opfy5uCL16+THUHrn8MG96Ne5KWaM6oLLD7/GYkrePLuHPORtQtBHYnqxTLerRdMiCCKXPcwPY1qPVzUateFFfP36NQc9PXrsRKxysAcSI0k8dMMdn9+/iIt0/JpaBqtD2xbpbnVDa0B8fXySKlPGdasj1NVDy/Hp/WuMnrka+W390aJRDdx7/pUAzQxjESo9TFBp3XAFoqUFrZiuycyNV1CtdlMsXn4Z7TpvIRcMtxFEyr5x6bRYkR4TyAoruYIn063RMGT4xTSoAL88DoggxdHEBh+aGNm2qK6BcZoPVkLek6POqxe0xO0bl3DzhVcshoGlkxxpqOoq+Xm78yII+kxCeVLiyLb/vtUvqNmnSczkp8bXpo9vMJgE4sPHnxjzv/XwCopS+mZYoBdGda6GBXNnwNZaH7nc7LHov6YYP6a2fOITLCWHDhshQXwkA8SHartSqhA6SYm2qy6N6089MaZ/GwxqXgTPnz/nj/XrXQEWIslp0SJZsGR+c+TKaU+Ol4vB1FS9/hD7AJNG1a+TjyxQ68LJ0QKHDx/GgM4N8PnBMfSplw3Pzq3hUquXzx4iu4uNatbgmsOWX/P+9DCWvqDqwylNq9wV2nLXOpG0y8aCDUGbqAZ1PIPwnDDXWpnqoXffgWhZKQtKlygq3I51pP2GuANjViZP+x/sCCU2c26ZmJk9KSSQmpr/moqOI4I8cWrfWpSo6I4qjbogj00AbW+ax/LPVrnVSDRoE4yC2W0I2v8133bRt8gI+7xMs0ERUrrCWUpSGjJ6/067MjSzQ+0uM1C/VW9cO7YeO7Zvx8nTL9G3SxkoWq4snXBrE27OLjtL3d8sBx7hMzk7dW9QKEkJP37yDQULFYYqboym/UOcqKYDSWr18+xl2qYac8XoEPUrghTb9eWMh5g2aR1nSvHi8PzFdxw88oQUht8T7psRJjNIBis38SM87vfmIsE0RGL+nCZcehDrAbpw4rRs4jWyzaHxroT4O9J4JaPG74xXAj2Tsw9ef/4Tw3s3wzVCYhdCk8aFUD6ZPAqUL5cD7J85lp88/SRm/NuHJ/Pq6T3YZ3TG+/fv0b/3P0LS8iNj6K2tTLBo2hAM69Uq1STUcY2JJdys0Hr/ftStVw+PHz1CYEiEPJ8sokl9lHT+hVWLZyMMJtiwZqnS+3GdqJVgHT51CVbE+dqZ6hDyqRd/V9salarpv56pA1r3n82Zqy939qJq5fJwdjAjX0EyjlUgAEMEr1U+H1cQ9dHPhZYjNuL1t2DhNg4sGQC4X45zr1l4SJPK0KbVjSqt/sRydGhUDjPmLsP/1p5B1uz5MX7mSTJJ/yAUlR+DSamTZlUet6F75jRgiIOBVyAyEJZQSgTGXCU1MN0GNrg5Zsyc5itBVob0PtH6+3rBzla9cm9S60nT94xJtyWhdsYcnM+edxb9h+zF67ch6NNnABZtuQCHAnVjJcPqY+OaRWCKzGxrRl3wJhcilStXRpaCyotJbR/bhfJI465ACeU+yHSuGHPVslkR/oCZmSExPBXhSFKn5AxsG3DL+vaY8G9tLt26dP4sZk0YzHHkihSKbaShR4sFZrnq4+ODlZsPpuoiSlxuYbx646WDLhN3kapFBK5ePCt/RNN2ZUl0Xb58GWZMHM7fLVOmNIoVKyb/jmpELYMV4B8AW+JMN6+ai+9v78cpuQrweA0Gty8EoRBpOZlny5GLQ+7XqNcELVu3Q9lyFZRWqZoMJOfPnMD+nZti+TX7cP8E1k1ujadnVvFJTgIRVe7kCWGIpBb8hoFVFrQftRYVKlbB2IlH8WLBOaGJKh29CRMogAYMcTAiJeCEJj7x86kVP3/xNT5/8UX9+vUTtBzTVue3Aq006YMpPZZY2TnBg9DQv3z1FbKVqkenU8+hQwyUusAY6iUrLuPUmZdYtGQFnj5/g/LNhiNYV7blIn5PoJW5hSXMzNRv+UTQQjM0LAIFS1UnDCB9+Se0oT5YZoRypOX8oelEm1qSXU114AI8P/H6NDExwOa17bGDlNpTKjC8rMqkGrFtQ0f80zgfmjfNj3GjlRl2cdqOJORg4cfHx+LLPJ5WdZ4rd16YW1oh+OdHjSRXgrDk0qMf+P79u7wcwcEhGD9+vPxcNZKBdeS4wtatW6J9dLPC2+MLMuetGOeq2Rw/cPrIPpRp0Fupc9x+7o5g98fQt8oKI0vZaio9NdzvLy6hZLmqOHhbpssl0CdDVDjsIggLxP0zGjbrAIYqLkFKJN23YEoP7Mx7+75FfQk65C5WLW0hVGOso25wOCJpYEqNkIEUnk1IehFEpsyJCQsWX8DbD1G49+BJmorZ02pAFNMqOcaS/Fn00bFRWfyK8MfqZS21yuXST+8gDBq2j1thzZ47HwMHDtSozudNHYHTR7dj97bOYnIhIzFz32vlpS3Gd5g49TjmrD8rdwKc0n2QZURKQ1EdydF2Vfvgr7AAjOtcjiAXzDGFAHMZFIc2BSaJrdt4JcGhZMLI+QfA0NdZUC2Hap41oVVpl2i8fHIXGTKWTbR0bMHQOnj96iUeP3kOm4zZNDb48P3yGKe2z4O/vx+5npqC1nVLIFtmB9m2iEoh1EqwmJ5HsC95zXb/ipqFaR/VLDagpKdfFErV6x6LUBGhgXhy/wbCQwJ5cpoQSuAQNeXYVcqRKC40oTSYo0xV5oqlZ29thgb166Fp664Sc5UOFEQN9XVRoXx5mqj8uAsR1TYjnBu5+wnRFD9GE25cqFPCYntb0dYmWwQxBXcWEmq70uqflHLJEjau8UqoXDawVyzohAWr93Am5tDRJ8KtND2yet5LuG49+u6EH/mVa9WqDQYMGKBxnecuUhHePkF8K1lcECaVZeHEqRcoUrRYopmrkm6WuPHC+7ctrqS2m3wWiUzn6uaTz/jx5gY2/a87IsJDOWCotjFXrN0xf7FjR9VEaY/vGNyqFM5tmYR8TuS0/DcctAtM++d3z9G8WdNEM1csX/+06gQLC3Ps2r1bY+aKvcfQ7D29vHD37l2UKJSbMVfscpxBL86rdLFomWrwfvgTHVs1UDtYMZ9BcXGhRhaOKPvPYP7p9MZcSROUZhNUcnSOhCbB5EjjZmghBAeHcQekjg7mcTb3IEIfTrVA4vVI47ilZZYE6mdN/x/al4JvQYUezYO7n6BD0od6Y2ckaSCR+qCidsXjlXuEA5q0bI+tO3aBufiwtDRWPJjMMZvbH+FdIqtc/y+uz//6FYVlq67wW1duPkCJogU1Zq7YS0bmdvxd8a4Eg3z42LI4mB/Le2RB22NgF/6MMEFp0gdblKNFSmgI2k7dQ3o3iilDaleclPxH3K5SUlUi2ucluaTbik3rV8mdMGfLaovpk+uTTqGpIkNaFqtWJReKF3VG+MYbJGFdz/+7d++GIo3GQFdPsV3Nsp2YduVvlAvztl2LVVpWHxcOrMLMm3dQqdlgGFtnIVdB3xAREgDzjLl5Go37dCMXf88QpWuMkOAA6BkqdDLj6x8MiqLfrMNy3oepCrF+FFdQK8FiH9H5fhne3z/G6uT+356SV9EweQIpwZQwPeToyIgUTUMgSEKd4+nZ1fj59Ei6g60QyiccE9Nw/5TV5tP3P3nxjYzi7gACbX73aHflLdj2X3zBQORDLi4ICT9SEmXMFQsCE8Ywi3Yvv4Li9vbIXrZNrM8n1Hb/xjpPTNut0GQgMR8RZHWqHssmFtGTcCHY2TrBt5huC1vtN2/eItHMFfv4yR3z4UDuSlxz2MvT8i2cBdEkyWUWiGGkf+VarHaCW3bMqOnOgdnIZBIIJil5dv0aHty/j+goRfuW2pWcxCk2R4X6usMq2h33jy3BxC4lUaOEM8qUKYM9O9ejVnU3jB5RA2uWt8baFa1QSLQgU+QsZWNmb0n/OhEGQWwBM3RgVWxY3ZZnbM2atYgiPkIcEtuufEJ0YWylrFwvjIlnz13AgX27MbRdeby/exjHN07HyK61OLxEvRL2yGBgjkJV2+HdR3da+ChYofiYKyGvQhqM9/ELihAuxzoqvqpyi/nXafJPY9x9F6y0amb7vaO616M937JgouOUYK5YVqIDvkDX51GyiBE1WaWpK4e9hT7atmgIfWOzRIkRxeQUV0ZKrm6SQ+LzO7RKbOeIy5Q2uWkFQ9nE5kW4WCkZvCq4JozETTphLJiR64kgWnVqEnbuuYfHvuFwmr2NY2CJ30luWqVGfWhbGgzio2GT1thKAJyeZEGaUiGUfL4J1qvq0mCYQ53al8SBA/ux//I7pXFXeEddnb+4sg0Xz59B986liUnTFR6XH5k1LdseNLdxSnALNfDDVaxdtRS169TGww9B6LnzDmbufUSSBplujzb2c21rVwLhf4dWfh5vMaBTA6xZNhfFCtvin4Z5uPXezs0dMah/ZS51ze5iq2TEJaSbGscg5rqLFgWJDc5ZrEkpvhZ/7cWVXfLXf4dWwkfE/aNh77nIniMHvzV7fH+CY9JFgQL5+Xnhgvmw7/xzmDrmQYUmAwgD04RfV2Wu3L38EORDDJgoiNOIaz4XPUqeC9UE5l/n3JMABOkQEUVBz9Acg4eNQqdOnXD7tV+K7cvnzOqI0oVypBgDx4qUEKFYhTco5YjsuQoj0qG8pNCeDHvmqc3ARUaE89ZrwFzMpHEIjzGZ1iWJSbidaZy5YS5VBOkWsxqMIiuyYiVKw9wxl9LzmrRdposkWbom3M+b9xgPPWIelhBQrXh7TYngqXRSnhDYf/36hcOb5sZKUV2dszzvWr8QZcgqtmplt1jvBZMRx83bn1CmUp0EmSuWxuC+XTFkxFg07TSMf8vQ3J4WmDJQxuSeBOOaoP72NJ6e38ClLJOGtINOhjDMnt4II4ZUQ+cOpbn1HmPEtSEwyWhSA2unzIvCsv8m496RBTCN9uNtMznHK7blN3TuQVSuVoNn8+jhg/j06TP69uuPV69eIcDHQyn7qswVY9oJI5jv4gkPquuDwn3Vo1oGi/nXUbcqmD/3f2jVa3yKMVesEDVKuyLMOFuKpiFJfP58Cx+vb6/5tkvmTLFRe1U7Q0qfm5EPOGaa71fACQakeGx984M8STZJhl1/h3uXX2MLgUHu2/8AXXpuw3k9Y1Ss3VL+HIsk1Mn/9glKTCxNaNW0ck4sXLKKW9ndvfdZ/jrDSNMl1zSpGbJklrXTbRtXKiUbXzmYKoW7+3c+YcU1+TKIj3Davu7ds5tafVqWmJDG068RyFW1JzIXkE1MQkakdiVQQkErdTsfv0OrJXMm8oSKEeo6w5xi6Ot/YqhVPTcv1upl8zG8C2FlkS4T295PTst8PSMLtB6+FrOWbOVp+fv7wzlHPszddAmWmfLKyRoXc8VuRmYwRma3Yvw5oX+oq3P5x0QRtcv6sAjZdoboWXkHVJfA7zQqIZ2ECiGlIVAqZTu5kEp6r48D21fCiTy7xzXxCGVMySPTuwqP8VYf6OYgS4r0Flx23oURYTCF25ggM8VLvfUifBV/nKMnytL/2gtv0IUUEQsuOU5QJxnlWUzv9SEURNvKEWCQnWft4ycflCielceDstuSAqzaNahQlGQ9Mt1XcwIzzJEzn/y7CdEqIwGmFi9eDLcOPES92nljbRl9JSOJNtmzI4+bSyx9WiGRhNKQxl2BUik/7trZ2cLQ4BemTqwHppf3p4YKhAzfoW0JbNl+Bz9+/MDu0w+hb64Y61i51TE+Yppo0na79GyNti0bY/uhS7h/7SRK1Soh/0R8aUTTUzp6BgnyPvKPqUQ0rj1NCiFtScioK9FKRof4Gq7QDlOaVpHk0LeGgcbNXMjWbx+ZpMry6TcYe/jH/hYNmj5kUWNACvj6Yw6gwNV3HC4gi7MzZteti8vLd8Bt/RkU2nFbYq6SeUUrVIYqwwBD0pGiYGlpJDyCKFI4T4qOifwDFGESMGticFhgceYpgAW2FUz7kTyu+hNA94yMZVvImvaP1m07wvmjNwGJ/lL6XCQx8yeefEemps0k5opUPrR9jgr0fIefP70Jkb0oUtowR6mhpMEJW0ywbc95s5vw1Kf2r88t/YSsJPf8cfK+N8wz5Uel5kPBkA5YSI40DPXVzy/q7wilpKOmnTwlRHxCNlQHxOQUI6Z0GmH+P2CmE0Qmon6JMkFNjDWUUAZ2TM+0Su5y/LK3Q1jJbOLPxorb0tZccgc2Ofvlz0TbgZlifZpt18yk7cKRfqHYZGGHwpUqYcbMWeQO5QO6j1sHs2xlSefKjQD5FNZgUh+UkTE5BsS4+geDH9DT04OvX0is+krKBcEbQCSBPvrESMQYZIIQTD/8RAaVXQK2Tfzs+Xf+iKmZeaLG3Z8hethOb/r7hwpJ8OPV6+/h5xeM7EVrqlX5kFQlkmeijatdiStDk7Yb8Ok2l7bXqpFH/OofHWeunVqRG7GAAD8sHNOGM1kBhFSgCZ6dNrRdBytDtfVDS7T4gzSwy+ijSedQRys9Q1PcvHwalWo30foVFCutunIILSU5BpLUSoP5nIpve1AnNAK/zBRSC6GM8R6jork7HU2VPJnkQpfSCbMxxdnzrzBzzhn++d5DxiN/rW4YXTqjRrox0tZ8ymG0Mdcx1WvVw/GTV9G8SZF4q1+Tm0xqxVwxiUNQNlsybjDjl8SMdyBJrPbS9t6Zc6/xzd0XufPkxugpCxJlQZ0pbyVYW1tx34U9uhCDbm7IgUUvXXmHwkWKkGgutvJ7avVBbZgEtV1yxRoFq49IqwqYMj4K12++5wrtvLH8BT89u5UDYyoHkgeDmYMa8y3DVrW/4ejzDFq/MIgg/DrdOCx3WbWpdZXzwSM4mim5S51De1Y30oAoG2k0ZXbzZNTh7hnq1XZD7x7lk22YcrjwCpFkXvKTLL6E4Hj2BbzK5ECkqYFwSX5kTJwObd1knn4COR9/49eHjv8P+Sq0SDertPQyQf3OePXk7FpsWDEbh/Z0k9ddkiLEgJP5F3+VuakxJt06H8IpiibHt34xeEVWBCgbSO6SftKz3XvvoK29KNRt2AKFytVDzZo1UDavbaItqL8+OYMlM4bC19eP62HZ2FijYKGiaNBlHEztFG2VZUwaS2Q1q+lY8jvtStM07PS8UYSY4YCAAJ65o/t7/vHbhLJaUPzeu/8ZI/49xC/sOPcWPqGxZUDa1naZvno2B+M4TTtj5z6mrJam+nBxNEl0JxdIpWmjSo2GK6XxdzKJB8/cQVBQULKC8Bl/9oYPAYJGkDRKHDyqqxfpRxHIKfvf1aww8hGDZV+5isRciYinLRLR4uT2YmlQKDnV9gHD6klqMKftX8Y8MQmnX24HZN17nyP0f25YUP5JX2pDLNwna9H65N4G3fqjXLMRv8X4MKu/2dsfIoP7JURFhMIqV014h8TWAtG2CSq5LccEImtLu9J0q+vUdQ85c8XK8Oq1Z7KOXQJdtPlYjHRTra1NSAJrmy6YK9Z2qxNGmboQu/fFPMnwiqQtiZTbkhAqJMUZ0cgQ6Pi9RLUC5n/dNtTjlx85me1jtmUEmqsenY4/Vb2k9jzE2SYWc6X2YZUb9qQfk52ulaxYV5JcxdBGmybBOrVr8VxdF8FnqFShRqcBuR05c8UknSYkvdIl6aUnYf7QdkGs90vXzY/NdNXAyPi3mCv2YTaWNKTt5g7t28GuQEOJuUpnOHDvfI1Rt14jeRvJQVasf2NoRDA2ZcPI0ENFeTw9LAxU60stg8UU1iUQuISdxmq7dOz7qxsYO6AtAn7SfjZx2+qwzbS9HElhRN8/vQ57c2OU+kkSgnjCdw0VSpk/OdVgI3LKrHpP9dwxrxOY8P/jq3t/HbObHsaS629/oUSp0rh240OyAI4ypOufpbPjxtr2+ExWYT/IH5tqYGCyLJQtW15SxyA6JKWfcwKKfrSJaU8ssHLDfotQtnxF8itoDmNjfVGp/vxoBrK8NiQr24K0KInw+IGX13bJC50emSuWebUMVlz+ddJzw5XXFEX+pnL07tIa7z9+wZsAm7+KuWL1fenMQeQu6ASf0i7sVG1gWzkGXkGwevBZ7TPshg/5dVMN3glYKIqfD6R0vOhCcFDgX8fsiunA4traBxu2H4rHT75hw+Zbv81kOZB/Sl1CUY8WYRmZvfkBW1JgFgIDNjUxMUGnVvWlHQOSwGm6nfan7q4w6IJazXqSc/oAvIvxoyq0lT//mIH7NsxDVretqbA+Xj94kdMrc8Uyr5bB4iUT/WjrgCjKIo+mh8pI7VXaqQc+fx1zFeDxGm9ev0F52pqJL1jf+cRvM9c1vkWc43s0bl+DNCBqEoKCwjFz7lm81NVFi95T/rr6ENNIm8cSh5xlwKw7GfjhqrXXxNnWKG7y8af8uY8tiyEyxsm4bmAozEinJjCnA5dqsYcek6Xhpf0PUZu2Ju+9C5R2DGhLL7ESHzmxKaLN7Uqcz4TmqDyFy8HNLSeWrLgifu2Pj0eTJV4YuRMz6lgaUyyMEBQYkCzb5inNtDOmWF3QiMH6UxquVA5FM0iok6d3Wn14cpkXtnix+JkmnxJZFURJgZg1ScUY2OOEKcfx8VMAps1fjxBdu1gp/en1IRQ4PbSrwjW7Y8yE6di19wFek2PuxIQIS2P+uC3hT3GdqxhrwkiCAgl0s5d/6iphr42bcAQFsmRH7xH/k5gribnibYP1jyYVXfDvhKl4QkDFt+58lLeZvyXy40cAngaEwdU1e7rYNne0MlBbNQkyWOlhQGSlkyYoWR2ntnRMW/W6HLPmQXsiibd3sIwwafD7kcAkbWeewsrll1Du0RdMWbAFVjkrx8qJ1HZlJNGmtjtl/EhkzpwJx048i1Vf8V2IsDLht3+S5DTSOO6B15B8A+ahdlGtQUMM33URTLlZNUjjroIif2P/iHQoDzMzU7x9p5CIKijyZ8dev/Hi2/PdO7VOF9vm+nrq2Sj1d6gOpU6uaMh/YydPz+bTFw6twxVC0Rac5ypqMvViUycfxTmyHDx69CneFy8Jw4xFYiUutSsZSbSJuWIGH2zLrmaDVjhLPiH9VNDRY1ViIi9MoW3piYZG6DNyJh5+iG2AIY27CoL+zf3D0TEjAW4ys5i/K1wjHUU3N1d8DTJNF5LdH77k9kpNUMtgMf86fwO4oLYN7H+q8qbQ/lJr8ggK8EXO0tnIEiduKYKQH+HIwUDJikWjwIAkEwgfP3nj/fcAdKHnQum/2sDZsd74mycPMTG0tQ8WrdGRvADoYdWaq+LsJjnOXOEwxPZTZ16g05Q5+OBvFutbqdU/pLFdRnpt7oMVqjfAqbOv4O2TsBTe8vHXWG0poQvhNN55kYW1BzFxbCuctU9tCF+/+aNg4RK4/y42c6mN/YMBjaoLaoFGmX8dT0JyT89SDG2sjL8JJkG10aVmfezPnRc3r59QyoLZW08YkQmwV3lXpevsxMgjALak78DM6cUh44mnCMloAb8YBfgMvyJhe+sjvMgTfHxhdy/mGU4WuvYZDjN75ee1eWAX8q2tjI+QP+GYUu3KwNQGvYfPwJyJA1GOtvzKi5D7hbQ1PRp8+olV2+9i84XX6NmnPyxy14v1akqVQ5yQlIaCGtreB4vX7oYLO9bh8cLzqDypviLjccT8CsqAa+O4pcQ4MctE5p/y+KkXJB3zV3rcjQwwypd1Qd48GZEnlwNtUar3saf0YjKeCMxe5Tp5Y301vbRdccbVMljMv47EXFmkCyW7lLaSSI8TrbFlRrgTM8VWZYKVR6CrPdh/XCE4mw3Yv2r4Xjsfd3MjXD9z+S3MyB1OaeFCHEf/gFBciLk+aupSuBRvoPSUtg/sLLPpsc5TYrxyKVqXpKDGuEkYaEllsKLee2Ht+hvYevczZi1YAYtcdZXaAztJL5OH1HZlVZca/cPEzApVChdB/fu3EBirxSR8IZRcdB0/+ZyMNR7CxzeInJnrIiQknGBBjFGvcSvkyFcCZubWcMtkAhMjPUycOAE7dj9EaOgt/vH+vSuiSeNCSgm9pbYcFBie7AjzNrS49SqWFXPnn4OBgSFyl2uqlG566R9KmaYTtQyWh284IiKVRYap0aikNBRVlF4alTYOugFf3qNLhPKWn+vqq3ibSJ+Ermuu4VOLotzVDbMGPDn7NO5SFZ093k9RUSqxw0eeIISuzd9xC0YWjkp3tZFWUj+3UqtM+/rqdpqUQpCQNwClShadPHnqjqApx7A7gtrD0vUwyFZFdFcWlfq5giRS/5DRQpgHF/n54l+ydP5XQSKNYstXXyHm6iXCwiLwT5NmcHYrhl+/IuCQNS+snQtBV98w1iKq1/QDfEHq9/Uppg9tRTARl5E/X0bkcnPgaYaHR6Jn3508fupIH+iK8N00ylQ8D4XYmuFjm3V4SfqOjTr1gr6xpfzp9NI/5BkWRdQyWKr7sUKFSzgl0mpT1H5SzXrT4+VlTN33GnaFmsklUkI+4uqAEZfPwdrGBGV6bsOdBS24E+av9fMLr/Cj3dW3sq2+eHBMPrQriShy7MzCHcItekNHfQIMVRc2bb0N9t+BfMtJzFVEupeCF21aFwtmTVCrB+PrG4Jo+mM4Z5aE3RMREYnbpMT++Jk76bcEU/wjqhQtgm1z1+FbmG2sZhNX2xU/JI27Cmr8bbQa2Ks9Hj16jBZNiyiIIIp99/Anv5m+8CT083Byx2RI45SJiQEHKN2z7yH69e+PTt374pGHmcbCEibtt8pSAGPmbMHs0R0xetwRrF/VBpGkdyrGhdOJgR8RZSfpUfr2rv33sZ2Yq/4qEv/0UufqCq+WwRK/IHVyBTXSS4X/aSvB9fd0EGUSW88grvrw//4CB37+RA4ScX/WIXBg2tJjITSTFT8KP3HpYgn3hGMkDVhCcHn4GUzdlE2ih48+QeVKOWFhbiTc5srLG7fcQtc+w1C8fn/5dRb50+rj7zHGsAZbS48lqWTHlz8we0YjXLz8Bl+++eELTW7XbrxXqmd2MoL+b1uYI1fBwtiwYTJylWogWQtKOFe8ncQ1XvEbMT/iuXb37j38asUKyjqjjKE6Sv5Tt+64i6gYgxsdHRofoxTK1i1atMDYyXNw7I6nxsyVOB81qlVG63v3CYvKlTDhjsDHJ4QzcsIzb956wS1n3OoWwjOaHiMIhHf+6Zd4SS+I1SkSQyumHpBc+s2h/h54desI8ldsDSMTswS9C1ia6qstKmHhKW8DCk9+8AiOPnHPK5YYMbkKIaTDjuJGlZyEktLwTRdmrsld50/Pb8CKeZNxaG8PGDKMEpEo24rwqHwLZRE3DY3jLgS7oEN+6gbSG4fp342+vZdWcr2tTWFFOgzHPnqjVt2GaEz+xNiAJwSJuZJRIr3289e3D2PWOMWWMFvlZ8rkBGtra9Rr2gkGZrbQMzBGSKAPAn094Zg1HypWKE2Sq6xqtx7TavIQ2iQ7ptf6+Fu2tC8eXo+9m5fA1/cnatXIDQd7M9KPiiBL1McIJhdMjZq0QsUmfUlSnhEZdPUR5vcddjQWlctjCWML+yQzV+LxqnRua3mTKVWmHG7duMbPJ9maouKWzvJ7vxPZS94MPFddQbGVh2FF25cspGX/uLL7f9i6fjnPx9oNW9C2TWtOy/h4H3o4A39B5SdeBuvsw58Jcm/iykgPDl2TezIX6CkNVgIl0rZzhAf7YEK3SqhFA8PAfpUR7mCuyNhvxpgFYRQpKx8mqcVCkmBUr1IdbiZGCHOwR+T7j8hUqwWyFqpDg51iC1HqHzKi/wn9w+fTA3x9fRftWjdHscL5JX+ShDouwT3I2ndK9fOIED9cO7gE1y+egKenFy3cMqBx0xYo3Xiokp4Sy0VKMCUB319i0YSuKFe5JnZtXS8rLP2Oof+Z9L9tQwc4knubpAQ30vF61q0cWrbbgLDwaCzY/4p/JiXKoZq/+NKI+hWOfo3c5K/Uqd+IFs2L5edCRKhzn8AI5uIpcQzWxx8h0QwLS9K5SpmGK1SScIyvwtkzf8IElRrluHN0CdYunYOtq9vByclCydGuQOvfPTIco1n/ncW6jVv56kZi2qWJVmhTwqD792yhpn89u/TCJJZ0s+QS0bTAhzq3dTJ2b10nNHP5sVP7UuhIeqqaBKOvvvhFKhe/rE344xlIaf74xVdkOXgeM1cfh2WmvCnCJKrmTZO59snJRVgwb6781RZtOqJ2h7GIgEwlRNzP2fdcHE0Sx2CFhkdGM1G4NHlIk4fQysSNShullZERYVjTvTwsSUQ+4d/aQrY1OuoT4J4eid9DMlsl+DzTgejVfxdq+IWgycmnCIg0i/WOttOKZVhi2hXVpsmgK8GhyOgl0UrRbv6Wfm4Q5o7HF3fCPyAQGXMURWaS1F/YNgWH92/Fnm2dNQJ01iMl9ihy6BwV4wCdUXHeovN4+SYcwxae1RrmSujnDnbW8Pf3R0bK53f6L1CwEPrNOhxLn7ZOMTu1DJZCUYSVVhSYfx2JuZKYK6FJpIeBZNmYJnD09ETjBgWEbMuOpAhaeMwBGH73U74uOougVVWIE1NnVh8sXrBuBtiR/kGJollwiXBlfIJj6zCmB1pJzJWiniWGQUELqe3KaCH1D0WbYP2jXf2SGDVhJsq1HA/novWhQ2oQmXPk5TphzFpWk/CLrGzFzBXT/75z7wty5yuidcwV433+t/0RV6w6FFO4J48fwdU6FEySuH77EXKjdTnBYqu1ImT+deJT6pJE4Bkk/bSY5qUNExTTZX/27Cl8aVtwRMFMyg2fhLcfWpcka0JD5eviMw3MjkPtzTlOzLFVl3GXELn7TF8OPUNlHS9pgpIRVZqgFI1LG/qHVB9SfST3fJ6tYFU4Z3XG6PFH8E/DAihZ3BmZnKwIKFQXJuS54Dq53yk57zze03iciaxv2Y7Yg0dfsWnLbbz74M0xupi7ntz5CUyVrEyZLhNjbLTFiIHld8j4uSg1dTgvE8MBq1U2N8qULYsb16/zBvW/1cfIRLyyonGpxNQyWHH515EmDxn1pMFK0Yq0afIoVaokjA29Y+Fk0QX4FY4N8aAohXIsJDgMb155Ik9+JwLni+S+uj5+8sHnJ9/w8d5n+JF5fqtWHZG1aD2lF6X+ISOH1D8UzUKb+oekTyvp0ypa5u9Dx5hbZ8Tu/ccxelg/rFl/BSsIyJmFsqWzwzWHLUK338FGOs/z4Aue1VuG5pksMMk9AMWKl0D77l1hYGQMF9e86NOxkdYxV7wg9KOjK2ORli9qyS+dOfcSr958IQtiYw5dYe7oKjwa51Etg6X6tDR5yCgiTR6KlqFtk4dr7oI4fXw3rG59gG8pF0VGRbFMhF/1o6IrflkYi64qR3dsvAnDQ48xWPkycmQkX10lq6LS8BZwcCundFfqHzJySP1D0Sy0rX9IKh+SyofQOpNvvMqMAdN3oMHbV/D6/BRBfj9x6tBWXCfmqnnLNgh9eA87XzKEK+AxOXHu2nc4itfrx2FstL1/3D68COuW/4ecrg5wiXGjVq5Mdly++p4zV7XrNYKOnhGYMaC6oBGDlXyVoS/pdUmmzfK2mNztSt/QlDBjgvG9UOYYWw95UvLIt/oq+lnyO4pIOCG1b6HT7Nmzo23PUShbNBcK5s+DO58ySNvmWijKV9ScLJbc7Sq5t1ZYLiVGVFFr2j7RCjmV2pWMEnG1XVM7F7B/FvJV6YhrO6fg4vlT2HH8Lu6/D8LLK9sQHhqCfBVbYtmoRmjeoQ+6DO2ltZIrVo6Hty+xAzm91scXsoDMQgZQi5dforgPqtWog9rtRnHdMQcr9aon6lkv/unfFyPGVRkxn5YfpIYrI4VEK3mTSLTS45dv7tiybilqEyCfkchKRfFF9THm5iQwKEz+QBjttZubm2Pk/EPo36szGKqxxFxJq3+hgUjjlYwS0ngltAhp61FBCRnP4OfjSYtdX4zu1xqRYQHIW6k9CtfqgfAgHzx9+hiTR/fFVw9frdK5YmVgivfPLm7GkZXDMHPJFkydOpXcEYVgyvRTXFXk1WtPDibdYuhKZHPJwXXHIn5FiYuvFI8XaJSt3ErlUu8IVVp5KGgpDboyWqTVoPv21n7MnTQYu7d1gU0MzoqidtTHQgiaoUGTVfyBSuSSwjWHHbbvukd+vYzx4v0PCQeOKCP1c0X7kfq5jBZp1c8VNSGLSfWhnfVx8f5H7Nm6Fkv+m8ozWL9xM1y7dA4ZyJjI+6c33yJcuv8xiXKVIW7Sul29v3sYs8f3V21myJbVhi/cA4P1MHLeQZJmZZYr5jN99WwOxnHiYKmVYDH/OhJzJYnyxS1NmyfagJ/feFZbtF2P6nWX4hxZ+WkSoiJlMAvOzlnx09cYh46+RpGipUhhc6PEXBEBtbnOxfUrTbQyaqT1BCXUiVQff3d9PP+eATZOOTkRShbPimcPL5Lekg+aW+vCwcGMmBXaVtMy5irI6wMOb1+GHNltaVtQBijKCrCI/j9+8sanz34YMGmNEnPF9BrVuRtk76rVwWIWJxIUgwTFwBoJC9o+0T59cFOW0ZjfB+RzsFoVhbsDpZuiE1NyBG1JCu+fP38CPgP9hk/CuH9HS8wV0Ujb61yoRmkyl1FCYq6EFiG1XQUl0k7NxzFPBZ6N23c/KbnUWUULYNWgDW13/r/t4PH9GxbMacKV2gcM3Yv3BCdxrX1ntNU1RPEa7eCSw00uuYoLUkK1XGolWAyTQhvRulkBtKEyWD6kgZ1RQTvq48rli7LMxPxWrihbPSldVHPi5x8iv3PxxG6JuSJqSMyVvElI/TyGFNK4q2gTUv9Q0ELdPKijo4cq1WvxBy9eeYuAgFDMiWGudHQUrEdat6tQcpLdp142fP3yBZ07lEYuNwccPvaUM1f9hk1C5baTUbHVv4lmrljBFaVU0IvH/IIilK5ER0bg6719yGHiqdWa/yzT6ipcKJDUOQRK/Bm0+vbsnLxADBzOgQBBixd1ll+LLxIYqFBuZ89NmTpdsnSVLF3lTUYaS2SkSOtJUKgQqT7SV330GrMMJiYmWLnmGv5puRbeMRXZb+hEHkvLdhUdGYkbB+ZhSJvSQvPiux7tGizHVspvq/bdUKB6F34vIZ5B/gGViFoGS+U5vLm2HdPGDUHRooW0TvNfnFepA8qokZYNN7XrI9TnI5ydncnyz4zvh1evmkuchXjjt+585PcPHT8D8r+JaIfSEhSDBMXA24Q0lsi6zt80lkh1nrx13qRSdpy7fAtWVlb8w4+NjbFow2HkrdwhzXaioqKi8OjMWvRtmAMbVy3k+Vq6oDlGDq2Otp02IR9dYf45nHMW5PcSYq7Yol5dUKuDJX6BJ9CvOxbOnoSMGTMinMwSxR+VOqCCWglVhkSr5KVVTttwPPP/STpUpEAVE3buuYdunUsrtVHhnvj4zd0PW3fc5ZfKlCwuSa4kyZW8eUgTrYwU0nglbxLStrmCFInaJXriZYGZ2x6K3k47tZJQv28ksSrL81Kzem5CnXcBUydhUD39Bu/h13Vq1Ea7crXhUrSORnXuaGWgVDbxSYIMlphhWHnsPULDQpUmLqkDKsgpplVcCnASrZKfVlnMgrGZPLyLg72dmVIbFd9jcV/fEMycexZ3733iEq/u3bvj8stQSXIlSa54U5GYK1mPkcYrGR3YrzS2K2iRXvvHr2AvOXNVr04+DBtUVV6olWtlbn7GzVmPzPmr8eua1rk+c4SrJsTLYMWVgK6eArVU6oAKqsZFK8XdtOPYxXlg8fTaOdSV4+jFjzi4f5/S7Y7tSyqd85OoaGSIjEKkrg6ujtqPz4EZ8N/8xahYvhw+hDpKzJXEXPFm8qf1D8kSXLIEFwbDv32OGtC8uEAK9OqmcHX2ipxSHz3+DHnz5ks0c8XQFn74hsHJRgHrIE+EImoZLOZfRxs9XIszz+LSgCijyN/I7J6/+xENqhSRESDml4l969TMq3SNnRh990fG8y/xoH5B7CDHzY169UGfPr1x7I4nvALCYz0vtSsZSf7GdqVtTEmw9ycYWzohg65+suqt3LrzENfv3ANMs8DCSdFnpDpXDAd/O1OioET6n2uZHhhDl2ehcYs1yJvHETkJWPrkmZfImjUr2vafwu8lts7ZXKEuqJVtMf86DKpB2uqykABXqfVo46B78dLlWO26T08Z9orqjdBMlvjQrhQpWxqjQrMiWL1yOfLlyYlV03vhV5jyFqPEXMmop411/rdBx1gYRuLq4ZV4dHZDsvfBZ17GeP7yPWfehP4i1blACWlbUEGJ9M9csbIwPbBdRxRzxg/PCLx4HYamrbtg5OIzsMteMlm2gsV0U+sqhyyqorde+IaIGKRr4SWpAwqUkDqgghJp0wEZgu61nVOxfesGRJLJLQurlrbi7m7EeYsrfuPWB0yYcpzei8KkBVvhmEvGmEnMlYxaUj9XtJrErmiT0zl0VNQv/HhzE/ZZcqNZtfwSRhtVS1rWh9AqpP4hUCJ91UdxV3OUKFkSz589w9Tlh2GeMbe8IEltV3WK2cHF0SROU0K1W4QevuEScyX5YUz2VXNySkQjgn2wZdNaeQdhkRWrr2LOzMZK11RPGGMWFvaLM1fsnqVjTv6IxFzJKCVNHjI6sN+kDrqKL/ze4oOBNTrnrcDVNZi+B+s/ycnACflMrTov4hQCE/2odF8Opj7zJ9TH31iOXtMPCM1efkyOfi7/mCiilsFS9a+TWh3wb6zwv23bQ9T+fouB8/32QvwpHu/eRWaCG+tGzIUoUnafMfs0zl98jbLlK6JJ94kwsswo6fLF0Efq54qWkxyDrsS0y+jJ2pWbmSdKFJIpGrdo3R65ilZBloI15QSXaKWglTQPymiRXvqgvBGrRNQyWOLnpEFXQY30UuF/w2BlbG6vqJiYWC632NeEh67deA9//1DOXA2fMA+uZZrxW38DrVhBpbYrtITfkyqxr0hjooKWmrar+f9bKn9p944tAP0vP/aRX5P6oIw0UruSN5F0M15ZmuorMq0SS5DBkipcQTFNBxJJdJw6k7lztuyKyomJMQmVLq2WVcP9h18wfvIxftnMzAzZSzTkcWlgl1FK6ueKFiP1cwUtkrN/5CxZHzlz7sWbN294An2HydylJGca6X0LVZJcydpecvfBu2/8EB7gCUMLB3njTq402HyvLsTLYEmDroJsyVUZpSS9rmRc/WdRVFBM7MChx2jWpHCs6zv33Jdfm7B4P3T0DKRtwRiKSP1c3jTSzao5PTIlkabZMGzRWQWxKZYey5GedeD+Vgbu8PLBOH7kACbM2wKnPBWTtZ8ztAV1TJZamAbmCudvrQylEYBOJOZKQRFtGxBr1aqlyBzFjp18hv8WnucI7cINZil4+84nfsq2JMwdc2k0sNcrYY958+ZxELnBzfJxj+vM6zr7140MlfpHDIGl/iG0NIlhECghMe0CJaT5Q0GJtOsfuQqWRuYsWWDrnC/Z53O/oAhxEZXiahks5l9H2uqSOoe4tWgbc8W2A0zMLMVZxIeP3jh24hmuXHsnvx4SqugAb27s0Yi5YouLefPn49/RI/h3AgMD5d9jkXK5pP7B6CAxV4wKsqCN/UOC2bGCtgHHCu2FHSVGVEGNlBxL8lRsi3GrriJLJqcUB1BXlAhQi4MVGRUdffCGR7o2CZYkcLKqTsmGKzSmtEojIsQPA5sVErIR61ikcGa8ePGDfGjKmCxrayt4e/toNOhuO3QZwzrXVPqmhYUFtmzfi1o1q0mm5pJzaHnbkJgrGSl+h2EID/SEvpEFHG3NU3wSTKvxSt5gKPI7tBK+I5VDoETipWPPruzGm2e3UafzDPKSoJvk+ogPB0stg+XuHRp98OYPRe5jYtJAIiOE1DkUTSOtO/mlnTOwfeNKRYYSiK3etA+/7GTm4uJH4yvHr4hQGOrpomHZLJJkl4gWH60YTaX+oWhZEq0UtFA3f0RFRWFEy/wIDg7Gw0dP4ZDFVfIiQi5YJJ3dlBtLAr6/RJj/d9jkrAhDfd0kq3zEx2Cp3SIMi4hS9IqYmLrOITwoDSQCJRLPTUui/KSL8qu1Go2Bg4YoiK8m1rBefn5nzLCe+Pr0HKJj0N/ZxYTarrGRsdYwV0Ff74PpSK5cMA3+35WxwBIqh8T4KBqHRCsFLdJ6bNfR0cHg0dPRpElTWNhllpgribnijTMlxyuG4m6Xq/JvMVeKHhR3TK0E64NHcPSJe17yt9K6A7KMSAOivDo01iP6m/xJTp45HzMnDlcQSSWWyckSQwdVwep11/Hy1Q+45nRF6Yp1kI3gHgrkyoygkDBEO5ZDlI6h0psp2cmFhBKTRvUaNXHu7BnhVYybNAOZS7WT+oecItICRyBFYtqVpKskGXYJ7Ubb59rIsCBc3D0H3fuPQq2yuTVS+UhOLyICndixcWkHZggVGxuI7mnEYEnMlYyc0mAlowP71dYOGPkrDBHBfhjfvSpUFdMVuVcf+3fmKjgXri1/QFvrPNj7E26d2ICdW2SugjYcuoPWdYpKDtqp5qTxStZ8tbXtyjtXTERbxxLVfErtSovaVag35oxoju3btgFWuZCW3lAal3GErg5tKcQREmSwpEalRY2KsiLVh2b1wVY4F7ZPxZ5d22FtbQ0fHx+l5m9gYIASJUqg8T9N4JorH+4++QATayfYuhTj22/s4fQwQYX6usMoQyC6NKsqMVdUZ1L/kDXz9NB2WU4l5kpWX+xXarsyWmjadotmN8X990FpylwxQzrmVtDIIA50aypOvAwWA1STlOzSx0TLmqY0WMk6KPsVD1YMxdf3yyOEBHjj/sX9+PjhLSpVq43/5syWmBIVWqXlSpANVn/TlraEOm4gWQvGDFni8Urqg+nLkTbTV8/mYJw4CRYNdNEMB0val5f25WPGAImBEwghMSVySmi62pQWatJCTd5oKCItBhXUkJgrGS3S61hSvbAtXBxN4mSw1FoRSsyVNCAqhgBpQBTTQhoQ0/eAKFnsJt1iN71OglKdS3WeGm1XPE+wuFpfhExUL4kq05eoMqWsJKTVpqLb/GnM1b6TN+AbbUMFNFIUkmJSnSvI8afVubQrIe1KCK1b6ucCJZTVSpLC+yi+pIiplWDF5V9HqgwF4aRBV0aL1FgVSGko2l1y98Ftm9bg2qEVigQoltxpJGWwkupcUSVSfShoIY27MlpI/UPRJrShfyhyoxxTK8FSfkwadMX0kDq5jBpSJ1e0Cm3o5Empj8rNBikKQbH0Wg6lQkjlUCKHNF7JyJGU/qFESKldKZFDalcycjDQZ3VBIwZLGnQV5JMalYwW0mClaBPpuX/oGyucZafncihqQ2ISxbSQxitpvBK3BxaX+rmCIsnRPxytDBQfVImp3SIUnpMqQ6DE7+/RSkyJgpZSu5LR4t7xZehb3wUbFvwrWewSlIzkoF3WLqT+oRgrkmMSlNqV1K4ULUoWS652pa+nno1Sf4fyIHVyRZUkV2Uw60wJ/+bPwb8p7hwFS3MT5ioBt44sgd+3Z/JGowlDbW9jyYHqfnh5S0YlhIMl9Q9p3JV3IIpI466MGpqMJRKt0oZWP3zDxE1WKa6WwTLU15FA4GJIJTXctGm42saI+n19inWTW2PFv01gEPqN948MBubInCUrnJ2zItD3J4hb4sTSdECcPmkMbr70QY0us5U6JjuRFjgKkkh9UEYLTduVhDsmwewoeo80lohpkdxjCQMaVRfU6mA5WBnCk5DcJdN/CwnNnlrP3ziwHz5/H6MHdsbXzx/h4GCP16/fyPtR6Pf7hDpeFKcf+mLEYoXjZfbA30gryfRf2t4UOoe0MBAoIUngBEr8TWOiUGZ2VMtgRfyKkpgrV4m5Yo3kb+ocbHXTt211mJiao0Sl+nj25BEjASIiIlCmTBlUr9ccOZ3t8eOnN5rUr4Inj58gi3M2dBu5CGaOOf86WkmSkr+vf0h1LtU5HxRjfiSGWkwN5bhaBsvDNxwS+q2Efvu3MVds8ihctBTsnLLDqWB1GBkZoVq1ashZqAIundyD6ROGK/cgOnvx/CkuH1mDRj1nSUraMdSRBl1FM0nuLQnmI1Y1SGnIKPI3jleS9Fg7pMeqfZKdq2WwmIdocZAaroIa0uShoMWfMrAXcDbAmrkjUWvXLvj5+fECZsuWDaGhoTh27BjoR1HomFjBggXhkjMvSlVtCvvsxSTmKoYuUv9QNJU/pX9I5ZDVqTQPKtq21M8VtFAXU8tgiV+QGpWCGv9v7zrAq6i27iK9995DSCCE3oRIEQEREQELFqyA5Qk+QBEb+ngqIFbE9rDjD2JBpUjvvYZOAiEkhBTSey/k3/uEe3NvSIBgQgr78IWZO3funDNr2ppd1paTqgqLlnTT/XXBO/jmm2+qdo7mYmNj9T5X/9A2pCsGPf6OuAV1gJHrowqMlnR9iFvw6m7BgozzcDbNp5jdoSK5chNJrthaGldd9NXmrkqwhFxVISYPjyosWsLDIyP2MH5bMBM/LVyIg2GHqnZOZ65rt+54b+5cePgEYldkMS6y0dfAAMU5yTC1cRVypYOVXB9VYDS362PF3gtIvJAEkCq1oYkFDI3NabbVTSOTYFmaCAeKs8zMs7/m2OOIbQsxf+5bGDTkTtw/dQEWfjAJx44eRfTsj+Ha5b6qk+HS3JWuj4sXy3CxIAOBLmUoKzTBqogKiCvYhY5H6TUfj+qA36hrkKVlamutqrsCNSueSy6o2HQ0XdwelwC50sXBqwgR1Zw5zSMl+OzeX/H953OQkZFZNXCaa9fWBefOZaCouEy7fOyjj2HgY7MkJpHi0yTeo2nEe/yThwc/zDNjDiDr/BGsW/u3stTm5eXj4sWqdHNbWxuMHP0AnnjsERjYt8Ep4l7VW1O+J/Jzjf8M6GXoalg5WhlixoTbmVvipXnrUV7RChfLimh3DVCSn4b/PDsUgYGBWLdhM5ZtOUlE9ALs3Nti4ezHEUYvZsbGxgq78vJyBRFj5+Prh4CgDvD0DYKzdxA8PL0wamBHlBuY6xGGUzsWY/mSBXQMzqvxajC+a8RoDBozFeZ2HmhlWPkAv9p+1HQ8inNSkJ0SDUs7N9i6+OHuXq5arbmEpFTEHF6HlIRowslQ9V9WlIO0lESYW1hT3OmtKMzLRnpqIrxbh8DK1gmW5sa4b9itsLB1weqDqU3unmhlUo6i7CR06kChGzfofsUkkEhWjfVyaiVYsSmFFayFJcJ/zYMw8IV5PReg5oLmaUsniWzC/+zNx5GVmQErK2skJSWhrKyKSOlioTv/+qwv4d11uO6iFo+V7s7KeVWJRnO+Pk5s/gERh3egS+8hSEuKx0/ffQ5TEyP07xcAfz8HWFqYwtHRUj1kCwtLcT4uE4uWHNSeBnO/WwtrlyB62BuqZTU9zLUr00xjYsUEcsWXk1FeXIDiklKUlBRj8LBRiImJRflFIkFEvAyNjJGVkYrjR/YhOSmZ1imFg4MdEaUKIkOeOBMZqSx4Dg72SElJVcvNzc1QWMjEC7Czs0VWVmWsZkh7d9zWPwB2tuYoKS1HWlo+EhKzERefRcQpEwWFlUKUbBFsQ0StW69+cHb3xfnocKz44xeEtHfD0MHtFP72dhY4E5WKBd/upt9VJjO8+8Uf6NjOHz3aueJEbC4iUyqIABYjNToMxYX58O08FMaky5catRtRZ6NxNpr+zkTAydkNp0+Fo7i4cjtD7rgDr732Bs5lmyE9Mw+fzxyHhPg42l97XCyvUATT2tqU9sMMScm5iI5Jg5GRIdxcbehemY2y8ioCzhhYW1uhbbv2sHNwho2tPYxNTNG7Zzf4eHtg18GTsHbyhaNvZ+iW42roe8mqb6Zj28bVGDFiBEaNnYj0Vl48VL1W3+cub8/P1aJuBKuohHg8nRBNTexRF6n6BurQ2Rzdzat56aMKkoa+OLinhuojK+4YXnt2RNXOXJqztDBBfkFVVtb456chJyMZ48c9Dp+A9tgdVd7k3tI0O9FQWGm2z1PpoxKNxiQMdT0egzraIOb8Bbw6/UWsW70CoX0HoKK8BHv27NHdFOa8czd69fDVW6b5sGHTabz34UbNRzU1p4zaW/sPhJdvAC4W5yqBXVi4wdDUgh6uZshOS1CWEAdXb/TrGgBfbzfsjSIikFdpSdJsjAlQj0CHerMw/Ln1DOLjzyM/KxlHdq/Gjs1rL7NMM1Hw9LAjaxNHxRBBISJlbWWCNgFOcHezgamZEdLT82FoaEBkIge+Pg60L62QmVUAc7LaMHnKzimCs5MVdu6OhpenHYICneHn66Dmayv4y/2kpOaqbUefS8eRowlEXDKRmpYLVxdrDOjXGmPu60rZylVupg2bCfsP9LHXYHelqaWlmRqLk6M5vL3s1dg93W1x24A2OHo8ET8sPIAMIlaa5uhghXkfjoIHrVO9lZWVI+JUMtq0cYY5jS0ntwh5ecUwIVJ+/EQi8vNLkEufY2ifCuj+mZZeiHIiYDHn0vQscS4uLpj4xnyYWthgQN9b0LudQ4NawUO8jBF3fAsOHT0BO5/u8COyd2jvZgT2fVQR5oZ4nt/ZzanuBKv8YkXF8r3J4gem8h3NwQ98o8yhzdVFtG/5PPy44JPq9xHt58DAIEwl94ArCexy3TI55kKuNCdHUyZX7AZLi96Pc+H7kJ+TjoyUBGzduoV028o0w9eb+vrY46EHutH35Rg0MEjvwa67YlJyDj7/agf69PZHgL8jWUHKcCoyGZs2R6GopAy2NmZIJCtNVnaB9mdMTphQ1BR2Ym9vSxYiR7IUlSAuLh6rVq2CU5vQOpeHykuOQtypPchJiSEr0ykS/41UFibNIJydrDF4UCDaBroghwiRnZ25IjI+3vaKHGjWa8rTzVsjMWvuBjXE/n0D0LmjBzyJ0JUQ7kzkwiOSsOS3ypjRW3r5ol9oa7gRSQwJdqd9rLQw1rR/JSXliD2fQVnShaDHu8LIlohjfTYmYYVFpVj+93Es+VU/rtXf3w8zZs1HsW0ntR+6/TpZGmBEHw/tfbeEdDjLS/JgZGqtVrvea3DlgmmKcL+35Ajc7C0a5N5+XQTrQkZRxfJ9KboYqHl5o62E5HoPuC6gDcGmdbfP8zdrHxxfUJARj8LcdDJVe8HC3hv25ecQ0toFb/1nJpb99SfGPtQdi38Jqw4ZHhjzIIaO/wCFBTnY/MuH6DtiAiwcvBvV7aE7SLkGK9FoCddgBcXtJJxYj+KMc6DIH7QLvRclpu66h1vNa4753lMZWL9+A+KjjuDgrvXkAoogC0IhWVZsiMBYkJvJHB3I5cQWDHbtsKXl2PEEZcEopgf0cxNuVZaZyzq4zgVM1NiakV9QTJYgW2XFSE7JJfdZIZGvQvUdu5b4oc6fjYiE/br0MPz9/TH9i62X9Vrb/YpJG8crzX/vDZiaGpMbyp720VZZX9iK5ELWIAd6gDo6WF6RZFzWoSxoEATYxfzHsqPo1sWLLH0u4HNi+usr1PlhampC56q9ksBhSxmTxpycXAweMgTtuvSFGVm7Yk4fxh+//IQhQ+/C0Icm45F7+sPBmoL/D6TUyejDcYUUBwVXB/MGIVcM3nURLA5yX3soTQ98zUXeXK0Ymp2R/ahEoiU8oHhPdPfjl3VHsGvNz/jmy480h1tNX53xDp589AEsXbEeM6b/Wy37aO4odUN+8unFeus6OjrCzd0DI8c+j2X/9xmGPzAObUPHSMLHJZRqewhqQNQ9HnW9IWq2cbP0EXtoJd6bMUmz22o644Mf4Blyu3aZ7v3q0zmv4ecf/wcLc1P07OGFdkGuFIDtjC6dPC+zCmg30IRm/vjrKL78eie8vLzxBk11W/Vjztau7MQIRB3bjuNhu7B/724MHtgW06YOJFdf7ZYa3W3KfNNBgK2iR48lKpdidk4hEWUj5ZJl8rxy1UlcINeslZUZfU/Z2mQJZbJsTC5Jjv9ydnak+LVgWNnYwcycl5vAN7ATXLzb4dY+3dGvo3uDuh51r8HqoUT1QrCu1AEfwuoXh6jAS8ZVQz9oOVtkw89zsWfnZvzrXxPR7a6JeO/F0Ti4f5+6q7Rv54bxT/WmWJJNSKU4CD8/P8oQPKe+4zf8j+aOVBexWkD/5eUX48NPtmDHrrNqUYcOIXjg6RnwbHerkKtLIDWF6zw/KRz9uvigc4d21/xGq3mTrR6kvWvvQRw6Q0kP7u3VHpYWZuPvb17D+rWrMHnKi5j7/geqj+SMQiXPoRtrc6V7Ip+b5q3y8OS9t2ndHtXvia3KClCeuAsTn5uAIYPaqgdPQUEpDh+Nh709u4RK0DqgDSgUSFUXKCA33Z+//oT7R3fCM+NDmwWhYlA5NofjlvhvM8VLcZvz9d+w8+qo5vk/a4NcROz4BQcOHoCJuTUsrWxxggLQT544QbFSZugQ4qYwGtCvjfY3MtNyEOBzpJwC7dnFyTFdbG3lgH+2cIUdisPpMynk3swkS2gRxYNVJg3ExqarwHsvL0/M/uRb5FtWXsO6qNyI+9XIW1zg7mBWtyB3XQvWlW4kvDM3Yiekj6rTRo5HJRaRO5fgk9mvqg9GRkaY+PK7cA/ohO3Lv8XaVcvoLUg/68WU3nqK6aE15v6ueGZcn1ofUJOn/YkTJy+o7/v06YMXp7+Ou+8ads0P86ojVTkn524VIrrn7oHTlJ1VWoyln02mGBNv9H14JsVJmCHQJhODbh9ApDgV73+/EdZugVUbKMnB80QwTE1N8cWSrVi/dAG5FKyxe+saIiRFePjZ1yiOzhxmrYpwKioWh8L2w9bOCUfCdiM9LQ2Dho5Az9BBuGdIKLZu34Gpkyeqbfu39kcFnS8lxcX0Jp2s4ojs7e1x1z33U3BvHpb/sQRBbdtiysfr1HmRcuQPfDFvDoLbd8CoZ2cjYs8KJMXH4Lb7XqDYkSK8/NQgtd2vv/0RhRaByEw5h5jw/Th6YAdlbp1X1QI4c40bv7W/P2sE2ga5KDLy95qTKqCYY5o4o4yDrNesi1Dr9ru1NWa8eofK7lILmsF/s+eux6ZLxIqH2617Tzz9zlI18vBt/4dDO9cgIiKC3ETZ6NLZkx6wpRTzVU5WKgM8eH8X9O7lJ26/ZnCcb/QQOSaN79Oz399EAf35GDP2Kbp+i4iYH0DowLvQNqQLyrLjYWJmgdxyCxiQtpuFjSOsnPxUZmN9GQBG9naFoQH5OWtotco0aAiW7g2xummMtycPjypUBatKLOrrxL1SsHnM/r/w/swpVeBfmuvfvz+2b9+OkJAQnDx5Uu/7jh3cKQPmglr2yQejSSvFQ+97zQfOkpny8l/qI+vocDry96tP18n3r9nWzXx9lFGmWU7yWVg7++Pk9l+x4NNZmDBhAgaPfIxcBeGY88a/NDCp6ZhHnsBLk1/A/PnzsHjxIu13c/63jG6OZnDwDEZr8wuY//EcZGZmISEhDmcpLb2mxhlgDpQl5eluQ6n5FXBytKCYHTuyohDRoUwnTWvT2gndu3nTm/JF5XYyJAXqoqIyimWyUOdKalqByqBKSanMMPb29lKEi/vXzUBlyxa7OgxJxqBL165IIq2krKxMincyQG5unurOzs4SPbp5qrgoaytTstKYUqadPckkOF7V5cVxTpyxxSn9ulY0zX405WnY4Tj8/GsYxYIlKtfPncNHYuTE+WrIP8x8APv374elpSlmvjEU3bp6N+VdkbE1QQTY+rVy1Ql8RkkZmsbnUz55JCxIfoSvy8JLkhea7+8cfg8efOhhDBzQH2FxlDmaWaSuVc33PL3W5zlv38yEbhw1tCsSLFaSlew0/Riflh5T0tnHHE4mWTgYHoczsSkoLSmEjZMPUmJP0HwR/Fq3RbCPFenkJKLMoRtamdronVY3glxxHwbJOzHu8Uf0+q7tA1sCXvhXP5V6PXX6X/Q2bILQ3j54ffoQFQNQ0+8GDftCu3ja6/9FQN8ntZ81M9d6Ad6MGYkXy0qwaO447NlVddPT4MbWRr4psTDjPXd3wPoNp/SEXTXrVZ9yFlJMzDk6fkYU5OyAgNYU3OxspVLoWcPJxdlaaQlxWjlbfZhk1dQ44JqDcC0sTShDzqmmVS5blktp6sv/PkHjLFVp6xw8zhleZ86m4cKFbJXuz+fZOtoXjiXhDDYeAwdjs06St6etCsRubuToMiCuYwFbGmbOWod9+8+hA9XvnPDq5ySUYIiE8O34cNbreGJsTzw0pps6rtexefmJIKAQ2Lr9DPbso3MsxB3D7ggmHbFSWBHR4vsAZzaWkIs9NS1PvTgt+f0wSWdUvvho4Hv3yz/h6NddfazLvb249CJ8XcxrvNnUSrDooVDBIqMS0N78lZv5jLlW4vPeq+Pw11+V1hvNiXel6XOTXyPF31BYuAQr4sJWJztLI/y8+iDFnhTD0tFP7+d1OXGZzFaPW6m+H/NJOHTb5g16fVT/0InSnB99uAeW/nkUB8mfP+6ZSfj2f/Mx6bl+GD2yU/XVybqSgBdfWaZdPunltxEy8AntZ56p7/1ormUxLhZlItipiAhrTz0X6sJ3xyL+fAzpEyVocVv11zPk2jJQIornYjNINd8V4564RbmEzsdlKMsM3wxZEoAFGy1Io4y1ifgNdffeGLIEFWPkiI4qM0mCnLWwNvmZ+V9uJ+IZidDQWxEVFUUuUUuSV4giqYhS5f6b8dodirQ2+R2RAbYYBFgEdv6X2yisoFy5GXnH7h71AIY/82Gd7+2DOjvWXQeL+qsQctUw5Irf3jVvstUJw4180Jbkk25O9B6KcQmBvXEOJo0fo5SKraysYGNjo2KYWO38WlpoaCgmPDsRHYLbYeWGnXjnjcnqZ4MGUSyKoSn27d6uXCtvvfUW+g9/ApFphijJSyNfuDUMjMzUutXdaQW5mTi2ZTEsKXPEPaArHL3a65V6OLJnHd6Z9iTdsK3g4+MDXz9/rFm9qtbhOjk5KtHF8BNHScMnHp99PJqEAh0vW59Tz7/5YQ8440nTZn21DA6+XdVHIVeVqPC5u2fpLOzasQXDR42FoYUD3n/rBfUlB2mzG40bW5vee2c4XEk2QNrNhQAT4zf/u1pvpzlovX9fEtikWEi2BEoTBG4EAnwucsxWDwoJYGs0J13ots+Xn0JPUsuvq9fuurII2YL1647KeBXdQVR/CF7NwnAjCYPuOJviQ3DzklmUYr1AO8wHHx2PJx5/jN7IO+K3NXsRdy6KFG+tYWxqqUo5WDn6oI2rEVq7mCC7lSuOxFwyaRJBY6E4ju/4J8cjOXIXZk55BIFBQZj/6acYNmyYdmw1zbB1gdNnuXHf3KoHkquF1f7jmyj/lt0y3Pi3/ABOT89QJSduG3I3ySJ4onf3DjC3tENSqSNiw/fg43em6W2pV69e6ErxLacjz1LqbiJORYTrfc8f2rcPVuQ1jQKac3JytKUtNCva2FigU0c3ci/eolyGmuXVp8NHLdBzW905fBTFjXxa57eblnB9/LxiBzKSzsGz45DLXgxW/rkIz1BcVfU25r4u6EoaOCz4WN9ihtX7ks9NEwG2PN597zdKIJNHyPFVb795J7lOTZrmgGVULQ6Bg2HnseC7vSTC6oKVq/VjcnV39uNFO3Frz5A6kyvexnURLE2Qu+4g/snDXLOdpkh86uUhWEFiehdOo6QwB0bGFghoG4KRt/poU7QzEk/ji5lPU22qcxoo6jR9+vkX4RHQGfPe/rfKQOI4li8WbcCs6Y/j/Pk4+LdujclzflPZEeHbF6OMzO8uHn546tH74eFso+e+0e3YviwGvTr4ILWUFJ6HdUcM1bGqra1Y+rQSDGQ9k/iEbCKBBqpuFfu62erDZRlY24QLJZ84STFaFDjcrYs3ERoPFXPDbw9clob94JmZBcp6FEFVZI+dSEJ6RgFljVUGEuv2zy6h0fd0pPIS6Vj61zHq5yJlViXrrqKdZxLHukAuLlZwcrKksbHwoIUaE4sQshghx+xorIfaH9YwM2rMt8olxV9xqZEHJ3+C3p38r+sC1Gy+Ma2VmjHw9FqvwV9/W4onHn1Q+9OPf95NxWc9lbv5rh7OiD51hFSzByrBQM1KLDb503djFaHWLJPpzYsAK4efjU4jK7Opcu1yyRppgkBDI5CekQ8T0kqb9f4Gkv44f1l3r1J9WdfW3bHpl/ewa/sW/PL3HtwR2u66QqLqhWDdzOSKXXoctEssASQLi5g9ixEXfZqyi/Lh5OYLe2d3nIvYj5UrV2oPZHBwMCb++0VEnU9Fbk4mfv7+M2VN4fTy3r374Nixo0QyKi06/CNLS0vKesjX/p5nXF1dkZycrCw+tVmK3FxtqTBntvZ3PW/pgwP79mg/v/TSNITe+9JVM+DCorJRlJWA2JPbEXc2nPR2/k+7jSkvDFBBgw19c+QyC0zA2NLFMTZcosPautJ9qB0MzXCQchTdtC0oiJhLRNjQOvw7M1J4vlKpCN1t1DR/Mpwy1ChehAOUU1KrAiBffPMjPPjouJuKXHFg/udfL8SsV5/VQjVz3s/wCu6L0DaG+M+rU/D7779rv9PMsITAwAGBmo8yFQQEAUHghiHAz+qFi/ZT1uohFbup2/GPK8NQaOiku0jNX+sLZ23JSsO6O9c9yF3XgtWSyNWQznb4ceFPyK2wh71/L9KsyUdWQgRVJc9BGVVfv613JyTGRePwybPYs309Ys6eUa4mTW0vTsM2JstNMPlq+WEen5ijrDEmVESUSRBV4lJBuobkBissKiHriTHV7SJdHiomynW7nEidllNI2drCf5xCzrovFTTlef7H5SSsKMPJioqRcqBva0rjZisQf59FxUe5MdfjAL32wa4Y+2QVGVJfVvvP3cONUsot4ezqAXuqfM7uxZLCXMTHxZJFLVZZl9j1V1ZWpn7JFh5jY2PaPpFKnTaBRDsfHtNdZ0nLmdUoTOvukYODAya9/gmGDb+7wYuU/tOLvD6tYxm5JVixM4YsUwUUH2eCnKRInDm0GZ6tO6CiIAlzZr2tYHrjlSFKQZwtliwOyHIDnEknTRAQBASBG4kAl+X5csFObZf9BwzE9m1bwLI9nbt0gVfb3rDxv1X7vWamPu67Y2/zqFWmwUjTUW3T5kyumPCUUiB1cnQYDMoLcDQhEn99lY9FiyoJibu7G1mIUvTiiN7TASKUCp2OHB6orCgWFsbEiCuU9aRHdx+0JuvK1RrHIDCJuhaX1NW2daXvf1/8JJEmkPKtuXrAsdvtZyoGyoVdWf+Mx8BuvLS0RCTFxZAVrhVl7RiRX5oKo97Wq3KMtA7r+nD2Frvv9uyLVcSvjFLpc6msAVdODwxwvtIwmvR3/GaTSfXROKU+kdLoM8klmUH7yerAMbFU3V7HPfnfT3+BPQXUG5vbXrM7rba3m/okPvXVx/6T8SjKSUVeZiJS4iIRH3MaqUlxSKa4tsdTUui4FyrSfaUDylaq228LutIq8p0gIAgIAjcEgRSq1KHb4iiDmeopg5UQGlpaiQ0utbVaZRrYgsXColcSe2yKDw8ec9zRdTi0YxXWrl5e236r5Vyegi1DHUinhgNxzSh+6HRkCvYdiMWI4SGqWOoVNyBfNgoCnP3BwYtsiWNLIVXJVVpIbO1jIsU6SSzkyMSWNXhYOHTPflbPrrT+8aBZPNTZ2QlBQW3h26YjHDwC4ezbAaa2HkQ4Ky+Y+ni74evnRlzktfXBxYRdjJIQc2IXtmzbjn17dqnkAs2BYyE+fz8HuHLcGmlJ2VOsGhNtxtKM9KS4VAVrybQmQU6N+5V1pqQJAoKAINDUENi2Iwpvz16niolHnI5qcHLF9122+Ne5VA6xvwquXl1fb83XqwJ/Rxd7vPXKCzgfnwhP3yBcIPcdxzSZmJrBlCTwOT1/+J2DUdTKBtEJWdi19icqk7Lymo77hlXPK+vNNa0sKzUZBJ7/9++qNpVmQBzXVkwlTriZm5sTKeCg+0p3Jy/z8HDHnSMfgWdAR9g4esPayZMSEPwalfjwuOqbwF1Iz0Va9AEkRp9EXMwp5OVk4ejhA+TizlWu6mDSneKabkyonJ04EYBIJv2xhVOaICAICALNHYFj9DI99VIVjo+/+QPmnj20uxRByV97tqzEHcPuQZ8eHZGW3wppxfRC6dRauw7P1NVrx/dxP1eLGm+itVqwKN6nIpWU3K9F7LEhpRhWL1uC8eOeUgD4eDvSQ8ECDvbmKv6I1Vnj4rNVtW09hGr5wJYNtmho2sbVzze4+07Tl0yvjACXAoknghzYxlk98JetPI7PKOCcY9e4aHMbWs5WKQ5sZ1ftxi2nEXkmtcaNvjz9FTz3wnRsPJKGclKMbmVYZXFpTKtrUU4y0s8fR1piDAqyklBeSq44A1Idt3aCk4c/nDzbwdIlQJ2TdbnIf98Yju1rFmPLmqVKyJGlKPx97ckKZYwgkklgK207qnPHFilpgoAgIAi0VARYpHg5PTu49mXU2VQMv+c+3PHYDBRlJ+OVCXfWuNtzv1sLG/dg9V1d7rsa1+N1ZREWlZRXLN6aeFUl7X9Krv7en4z87FQY0EPQiGJeVIA1CRhqXCsffbkQb0wZp3aeA2g5rkm3Pf9MX/Tq6UvL6VFKAeicYRZOMUjhEUkUN0SBt74OcKdMs0EDg0hzyZxirnJUDI6nB5WuoNIa0poGAvM+26rVKblvdGc9kc+6jvD3P1ci27Kz9txlt2FBRizJaJxBWVYs1q1dhUOHDuG3TRFIpzcY3VbfViW+PgrSY7Fj+f+wesXvRPBLyT1prtzPHAdXSlIWiRQXpnFfOjs749PFO3DvbVQgmDL5rvaC8/5n3+ODmVPp/C8F11p88rFeFCvnJC8OugdV5gUBQaDFI8BZ4JyJ3rOHr0oGe2Dsj7Xuc58+fWDj4IpOvW6Hf7e71Ev49ZAr7uBKBKvWIPfkrBLtA0ozyvp++58z9wP8teRrxJGOEzcbG2v06BUKVv+OsRmAHaWecAgahPl/HEN67FFEHd+NxT98pRmOmu7YfZYCs8tULA5nMw0aGIgx93XVW0f3A6tJi6K0LiJNYz6YrFQaIThdBfXaRvfKO1/A0s4ZJUX56s/OxgpDQjvBw78d1oSRyGh6PA5v+hlHDmzH2agzKnC7+rYKSSkeJlUEqyHIVWlhNl56rL/q+ulxfXDH4HYqGUE38WE2abVs2hKp1klNTcWBNV9jYI/ZVyVXK/YmYN6sV1QxYY4hzKFkhE2bT5MuWobKVOUCp5ycUEzFizm26nYibZLlV/0skM+CgCDQnBFgo8pSqrrBBcU17UqSQu3bt8fD0xaoJCbN+tdLrjS/r21aq4tQV6aBf1zf5IrfzKc/3BkZGfSQu0Kb/Pp7aNf3Ye0aDhdjsWzxVzh8+DAtq1DaUfn5eaQxVUx/hWo9ZxLWdHezJnkEUxW8zppKw+9sr9LItRuSmSaHAJt0D4TF4dTpZFW0s7q1sqYBvz3/N4R073dZMsa8F4fi9KlTej9hUsPWLE3r0fMWBHfqie53PI4+XQIv07kqyk5CYuReReB8/IIw8anR12RV0piOSwoyMW/6fSTeehb9bg3AzBk1m6hZiHHLtjPK6sQWVjZvvz77S3h3Ga4ZqppWvwb3b/4Tc9+cqLdOTR84aJ8zall0ldXVTclVbkIJHTw1NTVUSQE8z+SLA9mtrU3Rs7uvNqi9pm3KMkFAEBAEGhsB3bqxHH/LHIArpLj5BMLexRs2Lv7oEuSBXu2csC0sGscj42Hl2oZEsk21Q/+n5OpKFqxrIljVb+z/1C2ocXvkp53D+fCdSIqPVsHrcbFnKY0+iQKWq/SX/P39Mf2LrQoMtjB09bekG7+JFhyeWbw1ATkFZbCsyIJpfiS+/noBNm3cqLcOKwkv/32C3jL50HQR4Fg5tmhlku7X6jXhyCbxz5ra/Q89iv9b+COy8sv0LD7hW3/C9vV/Ii83mwoMG6Fvv/7oNXgslv7wITasW6W3qe7du2P8+PFIzSKB0QxS4jcxw76tf2Pv7p166/17yovoNGxKjZZdVjY/dWw/3p01iyQg0pAQH4eUlMoYsRDKUn3lpdvhQUr3hSSXkUVvXCxmym9eWdk0JctTNk0vJGVj246zqs+pM95HUOiD2v5rugaZNGXFHyMNtXJcLC+D+cUsuNiZwtyxNb79bDY2blinJ0Gi3dg1zLDGlcgwXANQsoogIAjccAT4JfyDTzaDi8Zr2lerYzWz2mlDeCW0G78082A/d06YqjHIvVYXoWYjNd3YNd9ppte7E5ZOfgju74dOOjFXHJN1ISWdlNOLyS9qQnWCLVU33Ef3AGus2XEcsxeswIWoMJw+fgABQcGIOrIVJq2IYDkYIjWvkCwXpzVD00773OKnnZeZpo8AJyTcN6qzGmj/vm0wb/5WJJPWCZMStsi4uVorKYGlvyxCbla6KhjNFioHJzekp15ATFQ44uLiiNAUYdSoUXBwb4OI4/vR87aRGD7+bRxc+y0WfV/pbg4LCwP/1dbaUoA4y3cYWrjUSK44XnDF7z/h2WefuWwT/FsO1J81dyPOnctAMcVgVW9WVpZwdHSkPycEBgah6y390Kb3A2o1riBwsTADHlbZ+G3Rchw+fhqGxmawc3KntzATZJG2WeTJMOymgssc31VTs6LiupwgYGtnBi+KPWSLLovZGtGUNVy45JExlTDhZQZ0LXJm4YB+bWralCwTBAQBQaDREVi7PkKPXPGAOIPaqXVP7diul5doNnCt3IelGmprV7RgbTqarg0217g9qm/on+wEA/LmpPurb1KVjXn32w0ws/UEx7D0CqGisa6tKI7E/rJ1a1pQUzD8sKHBmDbl9ppWl2XNGIF1G05h1dpwVW+Q1egzMgthZ2NGOigOqu4g79r6jZFUTihHSTdoilWbmxHZ8PYismGiMu94PVtbWyXzkJubS+TNnLZpqurs8fKBwx5Ax8ETeDVt070Af1q+C5/85zk6d63IwmpKJMiYSAtrSZnA0pzM0ZQt6OrTDtYObjC3soOZlT1MzO3g4eaMe0K99VyP7MbMTT6N/esWUWD8Uq3rm+MKuDQSW/fSSJKB98Xe3lIVre7Z3YuyaynlmCoAcKUA1qripA4mU3YUnyVSDNrDJjOCgCDQzBHgex/Hl3K798Hv1DQgoA3GjH8ZrgFdawz5UCtd+u+fugV5Mxruw8lItVmwaiVYsSmFFabGBg2qFZSffApfz3kBkZGVAb66AKw7mIj9e3drCdikKdOQmp6FHZvWUFB7CdIoGFjTxj/ZG0ygWCiULR8SyKtBRqbVEWApCC5Am5SUiy+/3ln9a73Pzz//PE6GR2DYI1Nh61VpTdOsoEuuONg8JioCaXGnkJ2eRIW2SyiwvAC5mSnIykghN2cWSqnsENea5D/OdvXw9CK3XjlZ5LKx6JdlOJlijOy0BGQlR2PVr//D8WPHFHkaPaIDiaG6kFXJEt5e9tpzm4tr8x8LgkoTBAQBQeBmRSAyKhXf/7iX4nfP60Hw2BPj0Xnw48rSb2rjrs2srk9ytT+SwjJsTequg8UyDexyqc1yFeJljF2rFiI6NgEOXsHkbjAlt14pZXa5wNzGmeJNPDC6v7/em7nu3vMDamhXByz58Suk5LB7zwsWts4UgBZIb9tGatXOPub45qNX8MMPP+Cp56ai5/AXUF5WiDKqo3fuxFZ8OvtV7SYH3x6E114eov0sM4LA1RCoXr+qtvWH3nUPRk36TH2tJB9STqM05TiOHT2ErVs2q7hB/lK5KMmixFYjrkHpYG9GJMlcKaGzG46tSuwuZB0vLu2wZl1EjV126+qN+0d1Qvdu3hQ/ZljjOrJQEBAEBAFBoBKBrdvP4J0562uFw8XFGV17hsLXrw1G3j0Ejq7eOJJgjApD8i7oNN0X59q4j8ZyxeSKBdSvK8idhUaX701GbQHtDgZpFC8SqDO02me52CK/tbNWFQfmmpJ7xtvLC506dcZ/Z/5H74d3Db8H3QaMhCsF67b1c0FEdBJpFoVh4def6q3HHxwcrFS2oBE9vCY91++a6gNethFZcFMjwEWKU9PyVBC9DWXPsRjnW2+vAWf2adrUGR+o2fNRJ7B3xwYkJCQqAhXg74TgYBflovOjuo8BVE6mLmKenDG4eVuUEgS1Jbemq4s1le+xViVrNH3LVBAQBAQBQeDKCLAkzTc/7KWQDtYZNFUvtVx83obuq3yPP37iAiJOJePo8QS9DY371zSYU1iHhbU9xaAaYcTQfmgX6I9NR7NI6V1fc5N/WJ1c8bLrIlhcKmf5vhT+vV7T7YCLxuYkRSH5fDjyc7PIPZKCo2F7cObM5S4/vY1U++DkaEXZVAVU4uTyHeJVddPrp00ZqEp8+HjbqwdStU3JR0GgXhDggtmTpv6htsXB3/TCQS8FDmRV8gQnTHTq4KEsVfXSmWxEEBAEBAFBoMER4PjVl19bgRMkSsrN2ckG+QXFRMIq47k0A1CJVO6u9MLrSt45Y3j7BsKTSq55ujmi3MAChRUWMLW0pVhaO4wY0BHBrd1rzCKsNQbL3t6OvCEVyuLEhXHNzC0oaNcIXmR54tIjBQWF5NvkmCczGFNQLwcLm5uZwsWJOjWzREG5MQX6miL1QizOnj6hAn+NaaDWVhZY9fdKvfTxbqTN4+Vlp2JKONtJE6TLxXxdnCuL0LKrhMfDquwsqihNELiRCPC5x0RfmiAgCAgCgkDLQYDv7ay5mEeVX6LIc8GZ6gVkEUtOzkVObhElFZVTxmIm8qicG1vD8vKK1PoaBJiMkXeuxodDrQTr6XGhFYaXisDm5RerTngQSSm54C1xnAnHkqhg2zIKuC25SMHn5aRhVa7MdKz3U1hEwb7FNaeOawZ3PdM1y58jwiaxKdeDnfxGEBAEBAFBQBAQBK4PASZk+YpoFSv9Qs5Q/++stTUSrMpo8hr6eXhMtxqW1n1RGZEvFlNMTMxWP2aSVkrL2B2oyYRiolZGy5mMFVFZD/ajshBjekY+0tML1DQtPV/bOcdxgYr4ShMEBAFBQBAQBAQBQeBGIcCeDCuSwuE/Nyq9x1qHtbVaCVZtP6jrcnbtOTlaSuBuXYGT9QUBQUAQEAQEAUGg2SJg0GxHLgMXBAQBQUAQEAQEAUGgiSIgBKuJHhgZliAgCAgCgoAgIAg0XwSEYDXfYycjFwQEAUFAEBAEBIEmioAQrCZ6YGRYgoAgIAgIAoKAINB8ERCC1XyPnYxcEBAEBAFBQBAQBJooAkKwmuiBkWEJAoKAICAICAKCQPNFoFah0ea7SzJyQUAQEAQEAUFAEBAEGhcBsWA1Lv7SuyAgCAgCgoAgIAi0QASEYLXAgyq7JAgIAoKAICAICAKNi4AQrMbFX3oXBAQBQUAQEAQEgRaIgBCsFnhQZZcEAUFAEBAEBAFBoHEREILVuPhL74KAICAICAKCgCDQAhEQgtUCD6rskiAgCAgCgoAgIAg0LgJCsBoXf+ldEBAEBAFBQBAQBFogAkKwWuBBlV0SBAQBQUAQEAQEgcZFQAhW4+IvvQsCgoAgIAgIAoJAC0RACFYLPKiyS4KAICAICAKCgCDQuAgIwWpc/KV3QUAQEAQEAUFAEGiBCAjBaoEHVXZJEBAEBAFBQBAQBBoXASFYjYu/9C4ICAKCgCAgCAgCLRABIVgt8KDKLgkCgoAgIAgIAoJA4yIgBKtx8ZfeBQFBQBAQBAQBQaAFIiAEqwUeVNklQUAQEAQEAUFAEGhcBIRgNS7+0rsgIAgIAoKAICAItEAEhGC1wIMquyQICAKCgCAgCAgCjYuAEKzGxV96FwQEAUFAEBAEBIEWiIAQrBZ4UGWXBAFBQBAQBAQBQaBxERCC1bj4S++CgCAgCAgCgoAg0AIREILVAg+q7JIgIAgIAoKAICAINC4CQrAaF3/pXRAQBAQBQUAQEARaIAJCsFrgQZVdEgQEAUFAEBAEBIHGRUAIVuPiL70LAoKAICAICAKCQAtEQAhWCzyoskuCgCAgCAgCgoAg0LgICMFqXPyld0FAEBAEBAFBQBBogQj8P6MIMmT/hIaxAAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from eomaps import Maps\n", + "m = Maps(facecolor=\"none\", figsize=(6, 3.5))\n", + "m.set_frame(ec=\"none\")\n", + "m.add_feature.preset.coastline()\n", + "m.add_feature.preset.land(fc=\"darkkhaki\")\n", + "m.add_feature.preset.ocean(hatch=\"////\", ec=\"w\")\n", + "m.add_feature.preset.urban_areas(ec=\"r\", lw=0.25)\n", + "m.show()" + ] + }, + { + "cell_type": "markdown", + "id": "fae57bc2-aee0-4f12-94a2-e737bd44cace", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + ":::{tip}\n", + "It is also possible to add multiple features in one go with: \n", + "(In this case, the provided style arguments are applied to **all** added features!)\n", + "```python\n", + "m.add_feature.preset(*FEATURE-NAMES, **STYLE-KWARGS)\n", + "```\n", + ":::" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "d1a440ff-1dac-42e9-8bcc-81a74a945fd6", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAFeCAYAAABZ12FcAAEAAElEQVR4AexdBXgUSROtGMFJcCfB3d3lcIfD5XB3jsPd3TncD3d3d3d3CYEAwTXyv9ebWSabjRLuuPunvy/Z2ZGentrp6tJXNr6+vmI0gwIGBQwKGBQwKGBQwKCAQYHwo4Bt+HVl9GRQwKCAQQGDAgYFDAoYFDAoQAoYApbxHhgUMChgUMCggEEBgwIGBcKZAoaAFc4ENbozKGBQwKCAQQGDAgYFDAoYApbxDhgUMChgUMCggEEBgwIGBcKZAoaAFc4ENbozKGBQwKCAQQGDAgYFDAoYApbxDhgUMChgUMCggEEBgwIGBcKZAoaAFc4ENbozKGBQwKCAQQGDAgYFDAoYApbxDhgUMChgUMCggEEBgwIGBcKZAoaAFc4ENbozKGBQwKCAQQGDAgYFDAoYApbxDhgUMChgUMCggEEBgwIGBcKZAoaAFc4ENbozKGBQwKCAQQGDAgYFDAoYApbxDhgUMChgUMCggEEBgwIGBcKZAoaAFc4ENbozKGBQwKCAQQGDAgYFDAoYApbxDhgUMChgUMCggEEBgwIGBcKZAoaAFc4ENbozKGBQwKCAQQGDAgYFDAoYApbxDhgUMChgUMCggEEBgwIGBcKZAoaAFc4ENbozKGBQwKCAQQGDAgYFDAoYApbxDhgUMChgUMCggEEBgwIGBcKZAoaAFc4ENbozKGBQwKCAQQGDAgYFDAoYApbxDhgUMChgUMCggEEBgwIGBcKZAoaAFc4ENbozKGBQwKCAQQGDAgYFDAoYApbxDhgUMChgUMCggEEBgwIGBcKZAoaAFc4ENbozKGBQwKCAQQGDAgYFDAoYApbxDhgUMChgUMCggEEBgwIGBcKZAoaAFc4ENbozKGBQwKCAQQGDAgYFDAoYApbxDhgUMChgUMCggEEBgwIGBcKZAvaB9WdjYxMRxyIEdtzYb1DAoIBBAYMCBgUMChgUMCggX3x9fT9Z0sEGOy33CYWrWHHifXzh8TTAMWOHQQGDAgYFDAoYFDAoYFDAoICZAu7YcrUUsgITsKLj5NcbD1ySKFGjmXswNgwKGBQwKGBQwKCAQQGDAgYFTBR4/+6tVCyckV9iQMB6o6dLoC5CnkThKmpUylpGMyhgUMCggEEBgwIGBQwKGBQIKQWMIPeQUso4z6CAQQGDAgYFDAoYFDAoEEIKGAJWCAllnGZQwKCAQQGDAgYFDAoYFAgpBQwBK6SUMs4zKGBQwKCAQQGDAgYFDAqEkAKGgBVCQhmnGRQwKGBQwKCAQQGDAgYFQkoBQ8AKKaWM8wwKGBQwKGBQwKCAQQGDAiGkgCFghZBQxmkGBQwKGBQwKGBQwKCAQYGQUsAQsEJKKeM8gwIGBQwKGBQwKGBQwKBACCkQJA5WCPswTjMo8FNRgNUJ+Gdrays+3t7i5eUlDhEisELBTzVO/WC8vbzl3dvX8vKFhzz3cMfY7SRu/IQSM2ZsuXT+lLx59VzixEsi7m4PZPuGZZI8RQqxs3cQ8fUWBwdWtPIxdcfCDHhMPql6fh8f+fjxo7x7904+vP8g3r4+gl1iZ2evrosUJao4xYwjNeq3lBhOMdGnnakf479BAYMCBgUMCnwXBQwB67vIZ1z8Iyjw2vOlHD+8Vw7s2iRJkrrInOkT1G2SubhKydJl5cXz57J29Qq1L3WaNFK8RHEIDb7y6NET2bJpvcSPH1+qVq8qf079U/IXyC+5c+eSDx8/C2WPWdOnq+u0f01atIWQ4iO2dg7y+pWn2DtGljZdBygBzTFixB8mlD1+cFeuXjorvTo11YZi9dPJyUlmzZoq2VKnkHv3H8qjW6fk/NlTMmvGWHFxSWb1Gm3npEl/So8efbWvEKggkPk1H0hZ3hA+tRbXyV7cnjyDgOUoICUEUkeJGi2GxIqbWH4pX10Ja9q5xqdBAYMCBgUMCgRPgSBL5ew5c99Acg+ehsYZQVDg65cv4vX1qzx+dF/cHtyWz58/ipNzXBk7tKfcuXVNXVm7Th2JHsNJvnz1kmceL2XLhtXmHvPnzydFihRQwkTWrJklU6YMSvh5/NhNFv+1QqJFiypt2zRX59Nqxf329vYQsuKZ+9A2KFBMnTpTIkWKJBkypJUUKZJLnDixlXD2FWO0s7OV9u27yrXrt+TVq1dy88ZNWbXjJOZADNXnkf075csnWoLeyPu3b+TLl8/KUuQLK5K9va14QzJJkyGXbFm/TFKkSi0p0mSB9emMLF0wXVKmTClFixUVG1iOKNc8efJEzp46LhEhxL3/8F7evnmL/r7IzZsXYHHzlvfv38nTp88kceJEapzaM4T1k30OHTZarl69DgvZc3n9+jXu91U9VwTHCEr4SpIkqcSDcMpxHD50SO7fuwdhy1fmrdgpqdJlEgq++3aslyIlK8LqFTusQzGuMyhgUMCgwH+GAu/evZHi2ZWyGwNr0Bv9gxkClp4axnaYKEBryOOH98QbrrhosHo4xYotVYtnEfcnj632N33GFInpHEMuXb4qly5ekaFD+0uyZEmU4HTnzl3x8HghCRPGl1OnzsjRoydl585d0r17F6ldu4Y8e+Yhx46dkNixY0uBAnmt9v/1qw2ElG+HICPAAsO/r3Lv3l05d+6iHD9+Cv3uEY/nHrBcvZYixYpJipRpxM7BURImdpUESVPiWaLLzPH9pGjRQnCzfZJRI0ebO3V1dZHx40dKqVIlzPu4UbdeM8mWLYu0b9dCLl68JKdPn5cLFy/LkcNHZO3aZeLqarI6ffjwARY3NyXwHD12Su7cuSd161SXKlUq+OsvvL5QuBw3fqo4wlUaN25scXKKAaGKwp4PhN4v8lkJd3fkwUO6J0WKF80P4TOWXL9+U3buOSKVajaTQ7s3yN6dWyRhEhepVqepREYZrWvnj8nH968kAgRMmPtMwwW9vfH3FQLz/Xv3pV7zzpI5u/XfKryez+gnfCnwAQL+OygRd6EE3b91WbZvXicXoSywbdx/SeIlSGS+4e+t6siBPdvU9+mLN0n23AXMx/7NG3Tb+/pAecKcMZpBgcAoYAhYgVHG2B9mClCounXtkgzr3Q5WjwSyd/cO1dfAQf3lwYPHYucYTfIUKSuH926XuX+ODfF99u3bpixKefPmUpacJ0/c5cqVa7Jw8XK4BdeY+6lQoZysWLHQ/D0kG9u375aqVWuZT3VxTS6x48aD9cwZFq8EsGw5yjq4HvPBapYwYSIleDRpVFty5cpuvoYbX79+Efb18qWnNGxY19+x/8IXxmwVLVpWCYiM46rfoL4UK1ZIypcrqQQyN7cn4unpKZ4QTPPkzimxYsXEb/UVv/sjqVevqeQvWBDn+cKiZyNxEiSVrLmLSIrU6f4LpPlXPAPnJi2sb1574h19LrcxTyNGjiqZsuYU98cP5OG9mzJl7BDE3TWV6nWaS+x48c3PNWFod7l1/aK8wu974/o1iR49ujr25s0biZ8ggUSMFEUatewig3u1x2/sLekzZpHWXfrI6aMHxfPlM3kGpcrH5ysE8+uyYR/uGymyue/w2HgDN37PDg3k2VN3adb2DyldqWaYuj1/6qg0r1tOXVv0l7IycupfMmlEL9DmhqSC9dnWFsqCr5dEQHzjq9fvJJFLatApsbLe/syxnGEihnHRd1HAELC+i3z/3xfTLcTA61ix40p0J2dFjC+fP0vXVrURJ7XPTJw8eXLJ3r1bzd/p3lq+fI1cuHxdokSOIocPH5VHsHLFgnWrVLkqMvvPCYpB84LIkSMj9sdeUqZKK2dPnzD3oW24urpKlWqVJR7cebS6RI4cSbkKs2fPqp0S4PPChYtyHzFLtWo1FBdYm34pWVK8fGzFNVUmSZE2s2xeNU+8Pr+XRIkSSOpUySVdujSSPn0aZUWLgPijiBEdA/T5/7KDAuSRIyckf/7coPc37f3Klety7vwFWB+d1G/m7e0lgwaNgDXwpFT9tY6kz5xdYsSM+59YhJgcYWtnCvifPm6wXL92UT4gUeCZ+yOpVK2WJE2eVmLFiS/371yTTWuW4Jkrw13spUIqojvHEWfQgYkVLilSS5So0ay+OrT63oTw8+TRA8yxZ9K8fU+J4Pj9712jasXkyqVz6p50l9N1zqbF3DnHjClZsmaD2/4RBJRa8vL5M7lw5hhiFG3k8oWz0rhlB7l47pR8/fJJPsB9fefWLSRVpITL/LpEjR5DYiIukG5leyREODvHktQZsiJez0ngYVdxe1FgxU7imkbSpM8c7jGMnz5+kMNw1dNSTtoyEeR728ThPeXYwd1y+9ZNWbp0vpQvXxaW7nvy8OFjFSrw7t17admyvYoHXbr5mEoQMZJBvpfq/53rDQHrv/Nb/u1PMqRHa9m0boUkSpxEVu86p+7vhniqKsWz+hvLo0c3wWyd5NOnTyquyFLLO3ToqGzdukMxrHnzFkmhoiXETrwlQYJ4UqNGFQg6CZUFZNbsBbJj+w7Vd+rUqWBJSghX3AhJkyaVv/vdvn1H3YexVs+fv4DrLb06TmGqQYN6MnjQUPP5G/ZekHgJE5uZPReczasWQuN+Ku/hPz96cL9cvXJJDh7cJTlyZDVfZ2x8o8ANxKMVLlJG0mXIIsePHFAH0qXPKG26DYJrNZ0/K8i3q37OLS6odjY+8sTNTQ7u26XeWSfnmNKwaSsIDpEkdbqsMv/PEZI6dWp5i8V188aNOOejv4dZv365vPR8g/f5tRSHdY/vY8aM6VVfdGPPxnt84MBhKVW+Gmg02N+12pfpE4aqhT1BosSSLHlqadbmj3B3R508ul8uQ1i6feMSBOAckqdgCRncs60SpDiOzQevyPXL5+Xzpw+IgfyK8VaH9eql3LpxWVYtnoH4v1SSIEly5TbOkDWvUqw+wcK5fu/FcBEGNVpY+6Qlbv6fY8QxYiRJlTaT5C5Q1Npp37Vv56ZV0ruLKYZT6yiZi4uK4YwTO5biaY4QeplsMmbMeMmUOYsUyJ9X3Nyfyu0792X2sp0q85Y8hX+0+Brt/4sChoD1//V7h/hpp4/rLwuQoUaTuGtyxB2B0X/1sYcwlVRixkkg+QqXMjNRBqvrtWsykymj+sqiOVMlS7bsyGwzxWfob/7y5WN/liDGHe3YuVc+Qis+f/6SrF+/GVam+5I+Q2a5cvkC3FJFpE+fbnA3eSEO67myknCxqlq1onJVrF27QebNW6wEq02btuhvpfZ1/KO/JE+dXlxTplduRi6amhXCC+M/fmSfvHrxFAHlL+UDXChsnz6+l1QpE0unDq3MApi/jo0vigIMkqfAUKFCNVmy8RDelaSBWmZ+dpItnD5Gli6cjmzUFzJkSH8VK3b8xGkZOKAn3gFbadmqI96LD4ifOwSr7AHEzm2Unbv2SD4s8JcvXYAl9r6UKlMB1ppoShjZvWOb1K5bGxYfL/G1scNCK5I1T1HJkbeomjOeL54LBZ3IsOQmSuqK9zPNz06in2J85DFL502Vc6eOwCIYW3oOmfRDxsX7PH/mrpI4po7uq1yh0aJEUBbtmDFprY0krsjYTZMmtTjCcrd69XqEBjSTNp37wHJZXhZNHyVPHj/E+3JKogD2pF6j5pIFbvGMmXNKpChRfsiYjU5/HgoYAtbP81v8sJG8e/Na5kwdIefPHBcnZOR5gGHEixdX4sSNL1lyFpIyVesFuPczdzepUDiDeX+DBnXVdr16NeXSpatgGBfE48ULiZ84lXToMURyp3aW6r9Wh7swDmJwXsNFkgBuN1+p+VtbmTVxqKxcMs/c14MH1xVjmjlznuzatVdGjx6KWKZCEHx8JFv2HNAQ46o4h1y5csjoUeNUNt89BEQnQtacPVwzffv2kLp1a5r74wZN9tu2I5MPQdl8NjI5rVVAbFW/kdOVFrls7iR5DesUXRZknvb2NoilcEC/InXq1FAxQ9RIeYzQBXR1GC1wCuTA+5O3QDFxgeDK3zxFmgz4jBf4BT/xEb5/RbMmNlukatepKYMG9lbZlMWLl0McXhS4gGzw/l9WT3H//nUV7M+A/TlzF0HQ2i/bt25R73HdBo2k4C+VYF3Jotzneqvtx/fvpUi2xLJ4/QE5tHebHN63HYkSH6Rc5dpSv1mHn5hCxtBIAQrYLzyeIobthXgzC/rBLXF/dFfFX9ooK5UtsonfqpitvxbPVjylS5ce4C81VSzn2LFTVDLOoHFzVdwahesEUFyN9t+jgCFg/fd+U/VEZOK1K+RVmWFlK9eSI2DisRCnRGvN+3dvISCdVq69HoMmwDVQ3B8VGPfhhoDXmIiJunj6sMI+WrF4DgSX+MjUe6IyArNlzybZsmaUsWMmqEDW9JlySv0qRVQ/PXr+gWy887Jt63bpMWAMXHBJ1P7I0OBuXT2HuA53MJ87cuH8OZXqX6FKdclXqAzccbtk7vTx/sbCL+3atZJ+/XpI48atgd3UNVBX3ZQps+Tu/QfqesINXL9xW/oO/1OSIR6DjdaCGmVySr36dWGZSq6CdV8BcmHEiEFqUdQWQQZqR40aVWLEMAXxqouNfwEoMH78NFm1ZpOkS58JgraL7Nm+Thq36S7Pn7pJpux5EAeTNsA1P/sOCtbXYTHdtGaRVK7xm5w+tlfGDe9vddju7nfk7dt30rxFJ6lYs6kUKFpa1i6fKwd2rJMK5UuJDQBh581dKE9haS1drrIkcUkltRu3tdqXsfO/QQFmS+dLH0eyZ88u2XLmVhmztrBc0lru4BBRvBCbGClydEC2ZJUsOfJInfL55OGDe+rh95558K+1/P43fr3wfwpDwAp/mv4tPTLQ9tzpo3IOC8CXL4gBwcJw7OgRBLBeUPfv0nOI5AfDv3vrqgoyXbd0JuAOEivL0Nu37+XggQPSf+SfWAgDpshfOX8aWTRloV1Fkq69hki5ag1Unwy6vXjmKG8lRX6poFwgDPpOCO1LS1d+AsHs9LEDMn/6WHU9LU4+SGeOHCW6TF9iStdmAG/NMrmVi6RE6YrSe9hUuXLhjLRvUlUiAftpwoSRCCR9JCNHjhFmKGmtQ4e20qJFY8Sz5FS7mMVErKtEiRJJ9hw5xMYhqjRu11s73ernnCkjZMakkVIXwhrjS06fOKLGweB8y/bhw3PLXcZ3HQW2bt2FOLm4gKOopNDgo0AobdyivYpfatS6m790fd1l/7rNjasWITOugyRNllQ6dmwjsRAIHidOHDkGOI+7959IrSZdzM/KTLaKRTIisL+GLFm0AMkA+SVx0mQSMYqTJIOVr2L1+v+65/+RA6ZAy7AAZhT+DDFKG1YsUFUT6jYN2pL4ChmYt65fgSXLPdBsRVpEz8OFeerQTiilHwAf4ywJE8SXJX8tlRMnTimy/t5nhBQrXUmG9ekgQyfMA5+M+iPJbfT9N1PAELD+ZoKH9XZkRLTAPH5wR47u24LA0zfyS/FCCKrMrUA1L164JOPGDUemy0qF0L1gzR6ZNBwp0iePSDZoSjOWmoQb7f6Mmzpz4qCcPrJTBXGPmb4KAaMRtcPo/5MS4A7v2SQxY8eTgsXKS8q0GeTB3VvSv1tLBMKekVr1m0BLy6/OY1ZQpuz5ZcPKhbJw9mQVs9Snby95/uKlEsgWLVgkHbr1U9lH58+cQBzVM/F4+kS5FKNGiQQsqMMyceIY7PeAAJVB4UUlSZJIjecvgIbmy0doBi+phNTrVq2aIcg4JRb3+CpweBFgGohfxSDkKQs3m58hqI2rF05JszrllOWKGVQU1ph5uHnzajV27rPzyxQLqp//x2Oenq8kb75iENiTIT4vpUSIGBmYQD5yDckAnxHw3bb7MMmYNfd/ijRUCi6fOyE3Lp1AplxUOXv2rBQqWU0qwcoVWKO1mE1TPgI77/9lP3nYK7jVCCJ888oZ8Xz+WByBkUYlicko9x8+kRFTl/6j5GBoBC3ZceIlCHIcKxfPlGXzpkmZSjWA+9YM2Yvb1LtwAWEYERwjKoys+TPGyd4djCW9psIc2CGFrj59BsGS5a2C42/cuCUrlq9EFqKrlKlQGS5HKHqEjIMSqz7xz94xCjI5TyoBLBpCPP7r7XdkoR/Ys10OnHdTSvq/+XkNAetf8usxxilu3LiSzCWpAtJs366l/PprPckKU3TMOAlVNlCmrDkQX+UhRw/vMz9V5y6d5N0HTFowt89ffVWALV0Z1Kwmj+otLZs3UppjmzYdZeDo6Vgg38v7N56SJmN2gAIWlroV8smd2zclAtLK06bPIBfOnTX3zQ1q8sPhYssMFPXmLTrKrBV74CJyl96dGil4g8ePHyGTLLXMnTUdpWkKSM8eXZD5N1n27Nln7qdKjbqIc3FQz/XhwyeJD5wppoG/fumhACptUaKFaO6EBfCESy8RwCyP7N8B5iwwqUeVfXv2SFkwuhoNWsMNGtfcb0g3po8bJLu2rkHgajoIcnmkf7+BUrpMGUkM9HJ7BGt98fIB+XzQHUz9wMBhHI4tmDDjuJImTSRZs2SUrFkzmXGBQnrff+t5XCgZE/fX0tVYGD2VAP3E/blUrtVYenRoJFuP3Pi3PlqIxk0cqefPnsL1nCpE5/8/nESF7cbVi1CaHsv1S6fk/t2bkjKFKwQK09MzNIlyQ+TIESV6tCgq8YQu1Pv3HwHIFqCdcKMVLFFFMgCP62drfN93blohfbq2UkNr2KQFIDSuyNEjh9T3PPkLS6o06QQoMTJv1gy1ry4SG/Llyw2FbZtMmjRaVV2w9lwUsPbuO6COZwcIMZVGfaNANmvWPIQxjEP1hqfSrksvxLW2+2kED4abaFAjJ5EodOnMYfn88Z3YRYiIRI7iyhW6Fe725x5ukjZTLsRoZhIfJMUQX027Tv+83Ob8gpQb4DjBXbu1rSvjZiy3vOSn/W4IWD/tT+N/YBRa+GM9R3DlbggDGYErZI+XuG/XFsKaewUhNM2dMcnfRStX/iXuSBkmavjo0UOgdV+QyZNnyBN3D4AAZparly+h7MkBMIE1OOcKNKrosmzZKmTjTZfGTdpKr+EzZQsmB61KxJe5d+eWv/61L3fuXFY4OqlSZZY6DZsjC2uWFP+ltIJXOHxwvxQpUVbqt/gd7r5XMnFIF9myeaXS5F7AulUY2Yj3ETdVpVp1BerJGIaIUaLJ1o3rpFz58ohjEYkE4S5a9CiwVn2WeHHjoHzMBzlx8jT6e6dS4bPmzCfN2vcKMCG18YX0kxYH1hx8BsuaK4TC4IAQ6aZ94vZQgTXevn5e/pw0BsH2N1RQa0jv+W8/j7hYx46dkhs3b8mVG08kcbJUUL595Jdyv5qzNP/tz2iMPyAFuAh6PHPDgnpcThzZI4kSxFHYaEkSJ4T1ObOqbnD02ElYli8hGPwVgGVhvYFVxiFCJImbMCmUKBdJiFqi8RMk+WFFxGmFb4lQhzq/tZTSSCCw1ig8qQUdB1n/88al0yqTGKXglTJFUxIVqufPnslrhCvkzZtTenTvCqXCV8FtRI8eTcHEEEqGpbXY+vUbgrJarczf1c7v/Ldu3SYk9jRSvWw9fD1MiuR3DiHA5aRBnjQxpS7om7dwSenQ9Fe5ceO8Ehbfvn0r23fskd17DkqxogUU6HC6dNlUH+MnjBE3N3ckMI0BMG0nKVaygqxZMkPSQqln5nZExKgxdIVF5+MBy4xuUy3jO8AgfvIdhoD1k/9A+uHxhWbtPoIUWranQEneuGIO2IGvfFU18T6iiPEH2bR+reWpcIVlA6p2HWD1vBZ3gH5u3rRJKlWugvOI1wI0ciBtl6xUVx7evS27t6yQ6M6xpfugyf76WQek9BkTBkvlqtWUK+0MguZjxo4vbX4fqJhawYL5VLma3EA6Z4mb7buPS/NO/XGslIwY1l+BVTZt2hBYMjHg1lylytz07dtd3eM9AvTfoP4emRef2REm927degMxvIhUrFhGmfAVxlDxsqpcS8Nm7aXdH4P8je+f+HL80B7EW2xDHJm91KtTTbk5f4a4kh9BC9Zt7Natl7+uB43+E4xyFqxaHrAyJpfJ89f5O258+W9QgK798oXSqyzbXSi6njJlCoUJdffuPVVZoUaN+tK0VXvJnq+EpAZGVQxAovwTjQrQ5nVLJVfeIhI/kSnRRhsHrSGjB3WRNcsWql3tEN9ZCOW1aHUiZt/3hge8eGELhVCgZPqZ8HAX8lbuP3PGDmEQxPnzoaEm0Ebed/PmbTl77oIcP3EG/NxLsuQqLIV+qRjoNX/3AeIexombQLnP1y+fLenTpZLMmdOjXiqV4LMqptYbVjjWYl2/di2U16fSpLnJEhgzXhKp2bCNnDq6V3ZsXC4fYQ1zdo4uDwDP8xkxsZ/wdxkZuy06dJdm7Xr83Y8WLvczBKxwIeOP6aR1vbJ4WTOqTECxIZaywL8fAZasD9SrZO+e3VKt9m8Kv4kxMLHjJQTgXkkgSZtcF2QwU0b1gUn2EzBYIsFqRPHLFinBrpI5Z0FJ6pJSoaSHdfS0+NDM//jhXVVvcM60UTJozCwEvSeTEf06SUTERFHA+Or1WcVauaRIh2DgxHIWcWGMp4oU0QEI2G8kXqLkapLFjg1GDCZE3KzM2XKoc4jiTmbnHCuuyl587fkc5/gANRpMEG7FkhXq/HRAlotnT5JJo/pDw50WAE4irLT+2a77BUz+yJGjKvWclsV3YKhv3n2EULXxZxvqDx/PhpUL5BrQ0f8YOP6H3+ufvAGFkuMI2J4+fpA8dXdH8fSbajiEbWn4W3PJi2xkotgXLFb2pyr4vWXtEoWKnxIQIhT8xw/vJbMQk1owU3w1/l9+KSYbNqwMN9Ky3qmnpw0su/bgu4R7EQihjOmENT6SL2LOwMsDEaxY15R1Vnv1HgiLfiwV38haj9GAq0ar0ISZy5G8VOq7x0pPAXnr9zRmqvfq3AiYX/1UwXf2xTjhh/duq1hMQvYsXzgFvDyvlKveUMX1Ms5Xy9a2dm+Oi16aL18+K74fF8LbvzmG0RCwrP3KP8k+ZuP179YCZRouWNWoiBB9DyVfiB5MkDvGxWzctF1OAaMqdYacUqxMNaQER1FZcsE9ErFdmBE4eWQv+YoyMYQo+AJwxOLlako6gOJpjUx23OBusnLpPLUrV+7ccvLECZwfQwlEadJlQrbgVhT/3SRdWjeAZay8dPu9k+rvyRO4Ky9dU3EYU6dMRx26wtKx53AITt5yEMH0V88dU3hUNMkT6HHN6tXSsfsgmMMTyI3LpxTCth0Cn1iE2DlOErjmziooCQqNZFgEgqTwWAj4Q86AmPinGmNRyEQaALbiwIEdKnj+nxpLWO97GcW2GQ8SM6Yzfi8TLbPnyC6tWjaV0qVLKDDYqdNmyp7de4H/81WOXXuhhOmw3s+47uemwInDe6Rd4+pSv34d6dKlnUIzp2U5R46CKlRh2MQFqjxNeDwFs5UfP7gtSeBuTpEmfYAu6fob1b8zlDsbqVyzsWTKlivAOXsQRnH/9lUs6h/gxn+MygwvIdxERDwoXNhQ0NjH4oXzzdddh4tfS6ox7/zODVqs7t61k+TJvQPtiRhqZ86ckw3g27T6vPR8Kz42EWBZm2++JkfOXMhgdUG91ZXAnCsqeQoUks/IvPzy+YOKVaJSGglhFfaIUb1+9bLUglUosFi2VYumyYM71xFLewZhJSWBxJ8CWebg9Z9RZQOZnJkgDDnFjGW+d1AbtLDt3b4eysVZ5bnQn8vYsQ0rF8mKhdOwNjkg/ja/4s+fvvhIqYp1sD5l05/+n902BKyf9Kdltl6DqkXk4oXjKAmTINBRMtuNBY+3btsl+/cfUoKJPVSmhCi+mhmB10ePnpRmHfrKsQPblAsviQvqgKGkyaj+nZABmBeowoUlIZC3id3SqnUrMIS78gh1yBKhDE0CwB8U/OVXmKULKFfdqkVT5SW0CyKob1xrCjR88uQOtLQokgEC3cOHDyU5Ypfade0vT588kIa1SokLgvKvX78B4ctbmd5Zu6sEIB6Gjp+DIMgiCiF52ugeUh8utVKliitBcvXqDbJt12H5a8Ec9dwtkTXYrOlvuEc69Z0T+/dufVG+5ojUrl1dqlYpr0rpuKH4M++1ZcsOJWgNnWgy/wdKvB98YNPqv2RQz3YycdJYad7stx98t/Dr/sGDh5I2bUAGOGhwPwi9GxBXc07drBVM92nAKOMgTiI1BGuj/fcoQJDiP8cNFLeHNyUKFuBYsDIzceX4sRNSonQFFIVuLemzACIlMJNMKEjCMjsLpo+WRXOnSYL48VVmYfeBYyUL4nEIxEnXZOVimSFgFJOceQsq+JmESZJJrnxF1F12bFiGbLujKD80VNrULws4hNkq29jaEBiGECdOMiSpJEH86UlYmb7PmmPtHkHte/TITTp1+gO8ahtiR6NK1Wq/QhCxBwSIM5JtUis4h5w5s/urdrFh4xapjfqpRxDzxixq1mllIz/k83z58lVq12kMpToqMsOv4rdKJMVKVUBCzldYwiLJqiXzEWP6XM5DkWW8LWNgT58+K5s2n0EsbCEIWT6yYsUM2YHMxx3HboVY0LL2nLRE9e7cWKHs+/p6iz2EYSZK0UWRKGkqqV6/pbXL/nP7DAHrJ/xJqcHNHN9PxowaZBYqLIf5+LGbHD5yHJrPLvipLwpjnZo3ayhZkNGmFeFlhkopYKzUq1tHfv+9PQILnyjEdPblmjy5zJwxEdl8B+XWvSdw10WSfr3bm4W5mbPmi8cbW5UZxvOpkUwf2wea0yuk41/FApwWDKK1KqzM45ysFPaIeB0DBW37jJgm+zYukIEDesAKkkiVEimIGoO2CFwsXamOKgzLzKMBXX+TKcCl0muPnZEpk7VARenRrr68fv0a5SeWSNmy/s3iDKgnDVjzLjGY7CMId1evXECgbT6VjfgJiO7EH0qWMjPuV/tvD5KkVa4mQE0JIkjzPi1ZzCjq0qU9yfWvaK1QFuYkkgkYk3LkCAvZ2knNmjWkbLmSSpjPXqiyeXH7VzyQMchQUYCYXoRdmY5KDPfuXVWwAuygZq1GUMyKS6WajcJFsGKfFBImDO4sDetVNWUYwiLNSgqPHj2WBQuXSfPOQyQhsocZiN4HGcrMaB42eamqiTh59CCFhF+4WAllialcq4m4uz2SN8/uSsZM6aU0FLfkyV14m3+s4fGQzENMQIGyKXLhwj65evUIguFbmuka3OBYhqdRoxaIT3UPlu4EwH316jOU4U+4XwQlFH/96g2+nUHBYnA8/KPb8sABO4Si+ECwmi5z505VijKVpyZhjHvibzm6f0c5cnAvYtASw3r4TOrWa4YYspdcSOQjYqu2bN4idxGbq7WmbbpC0U8sPgBidUTFhFhxEyIzM+N3CXla3//kZ5gFrBmLNyMTJLEKHgwP7eWfJMLPdu+2v1WUZMCASohixQUK5EIF99L+3C80Kzdq0k7KVGskJxETcePKaanxazVh0DgFIWLK8CVnyRjLxpIysWLR7WPSfnh8D2qqzZ6/StatXAJNyENNXl7fq88QSZ25sOQqUNzcDTVapmDfuHxWHty+JLVqVELweSFp06YT6gJWkgULlohzPFdAPBSUuVOHo2TEe1jO4kj3wVMUvIK5I2xcvXhGVs0fL8uXz9fvhkXuuuTMWUDtI5OdBAvQb7/V9XdOzZoNYUm5IN27d0amSTypg1i04cMHgZG6SrlypeQJrFkpUmQ0X1O7QTMph5JAb157wuUYX1wQp/a9MQjmzgPZeIlg7zL5U8vx4/shKL6Bha4ixtsVsRXRJS0KVFsKjYF084/svnbtOhjtI4VoT/gKlgy6du2GbNi4TbZt2wnL6gVZvG6/pAb+mdH+exSgkrd01kgoZNmhoNVQLn5aqtly5ymGWLtNEgWupfBotFythOuqaP6MUrbML/66JC8YNXaa1GjYQTatnA0oBFtk/XnKu0++cu3yRSiUmWTVSlP81IsXD1Vw9ImTZ+QMwiTOnL+MuRYb4QzzlRt7ytQJ0qRxfX/9/4gvjMF69swGY4GU6NcoWCVN6gMrDqSaf6hxXKdP20HIIgaXaRwcF/RiWP7t4PZ9Jq1bd4IiuFWFluw/98g8UvKyWRMHSMnytSRbnkJqjaAAfu/2DbhqbaHMusJr8Rjn+yIT8KN0bllLVQxhtQNiDFo2ZquvXr1OKZ3asUOHdivLGoXDfMDZY5u5ZAtiuHL/7QqyNqbv/XwBvMeyBdKwmxhYU9/o+7PhImvZIEyRWq/bonzJdTBc+o8nz1tnDnKzPP9HfaeFwJZARGgMqtux4S+ZiQmUO18BqVCtnqoBlsQlhfAlYGAdmcG/LaOLcQKnj+2Tkwc2o+hycoVujuRhcUDsQ/FyNfCMmRVw3wxomKv9YqI0epcpU0rWrFmifQ328/z5i8pcTmuF1ujW+6VUVZmEwGVrtKMwt3n1QnFDTbarcFPWAfqxS3JgXk0ZKmtXLpWtW9cJswnv3LknCxctl5gJ0yAovabWPbCuvsjQni1l3+4dCrQyCcz1VatUgEUqkfxava5iljxZE/rMF1psfPxIbCokAOiYF4VQQgjEjp1UqqDPS5evqTqGf/zRWZo0MWWxTJixVPIXK2PRW/h9ZVzbXzPHIMbss9y4fg1a5GO5ffO6ukEkoOQPHToQoKlNwu+G4dDTxYuX4W59qCA9hg0bpXrMmDmr5MmTS6pULislihdWwnuUKHGkcNFiMmbmmnC467curl48B6vEdMR0MPYuoILw7cx/1xYTQm4C+fsIACmZdl4ewv7TJ4/kPuJh0mfJBbgCVFngS/yTNI539V/TZf7MybBOI7EErVu3zjIQtRmpvPTpNxyYer9IQVisrWU1h+QxWEmBReWzouRWrRqVoVRlD3BZg4YtAOuQUm7duCJlShbGfGmsBP1mzdsjecZbLl04r65JkSIFLOptkWVcFniBcdQ+8qf7iFHt2WuA7APWVO1aNVAlYkSAe4R2h7YsWnpFHz4EZt4XGyWwJEniA0tc4MHsob3n955P4erKFQpRPlC8IVVZNI7d2dkXCpWvKlj917K1UrZKfYBLZ1bwN73a1ZWlyBDevWc/UOjP4mobuGgRs5UxneIHe/celOXLVijg56lYh69dvwXL2VeUUhtqcadvXz9CEKNXhSEw5If6xhjQU6fuQeBrIIWKFFGuxrSZckv1es1hpfwsb1+/gtfirrwD9M/7t6/MQfEEm3aOFU9SpE6nEi2Y6MV19O8urH3r2kVZDaXh08e3yNLfzEcLnYDVo/9IZH+5qILBKdNmtLoA6wn2vdu0nFBSvnDqqHRsUUt1V75CBbiWEkty12RSAxOUAmHpMlVU8eAZM+biZUoD6dkZP+JlWblipbTq2BPWDmQlwCry9vVLuKmcUR8M/m5kvf2TQdH7d6yHSfuhVKzRyGqpBOK0fEBQY2DowicO7ZLNaxBkilIebMwo/ICX9y2sJkBcUFaI6FGjiItrEskHHBcWUQ5pW79+s2zcslsJUJV+rQ9rVgmJjSLRMwHRkBIp2L+Uqxagq8KZEyjNcu/ereZjH4BdVb9BC2QvFkLpnYbm52RcRZv65RSGDi1RFNRYpb5y5YrAnMkFK8rjQGsPap337TtEnVOpUjmlWQVlUS2H8V69eg2gfc/U5S1btYQg9wXC6wMpULy8snKFdcHQxmP5yYWkSc2SCLBNCfDV9PL23TvZtWO7Ou3MmSPQKFNbXvKPfOec6dz5D3/3dnFJBp3UTqb/tVVWLZoiLoljizPiN3r06Is4kNQycf5mfxUA/F0cyi9knM1qlQQ6dk3E9rQI88IdytuGy+lczH2RpWsHSx/5EC1A9SsXVn3T9UFLbocOrWXQoGHgWUnxXj/wd9/mLZsDcNMHmFGeUh7zI4dfXJG/k/6BL3wWFqOeNLKvCgug8BIhgoOcOgmMK6DZs9GSGd0ppty8egFZzMVD/D50aFINFpDrwOJDzKQFwKb+URlvWatZbzmwa6O8fnoDNOxtPswMVi7kmzZvl7lzFkCAGo0YJmUxUOdQ0YoRAxZrV1egpSeTbVtWButeM3duZePZM1skeNhBiAIQJjIENRgG/PxKcGGG4D/dKAA+eUKYiG8WtPv3bZFsQ1r4Hx+f5907G+W6jB7dF8KpSfj6AgF7z54DsmPnXoVf1rVzG39hHNaeke8Kfw8mE4SleXnZgA/bqkspvNLKFiuWaTy3b9+VP7r3Vb8jy6k5OcWAtyKZxIY3hhayyJEjQaH2gqv4o1IALly8Kg9QGSBL3hKqtmjzDr3CMqQwX3PjyjnZvXmVOMWKI+NHDGA/MUCfN/oOg7Rg7TlzHwt3dP35P2T7BRCTVy6YBCTwaQhs7qpija5fvy5FixbCopotxPek1nX16nXlNiPGRqxYseCjfgVf+GW5c/c+QOTeqb4IZfAFvmpbW3tMROSnIThPlTWIGV/SZs4tadJnUeZTLuKUjin0BbagM42VkjNfvDs3r0Hg8UQtv0Ny+fwp2bNrp8reyA0UYGZhJEuaGGZWF2nQqrdyu86dOgqxD8OFBUB5n3NAXud9okZzgrUwo1VQzXlwyX1+/xLwCBHUC8dMQL6ob2ByfY/6g7fv3AEjiydTp4wNEd1oOvbxoXXIG2CjzxGQuV1hVhE7qx3wrrIjSF0D47x64bS4QyPPB8C5fp1/k7ZtGkvBAvlUADzdS2wLFixWJugmrTpJi059zUI5F1a6Cy+dPSLLF8+DwPNJKlepgoD7O8rqRIYeE/XfGCSZJUsGGdB/sAIYLVHyF5QtcZJLwEr5jN8sHeIyXJLEh8WqPGIKGGsQzepzsg7YwIHDZd265TJ48EgZM2a8+bz0GTJI++5DVQC+eed3bhCFPx3cbMkgADOTkuNyQIr03r17Vc8vXz72F8z6nbcL8+W0Yr6D8LdixRqFHs2O2rZrA6EwNdzOL6ExuoFm67Btsmgs2XBIZXkF9v6HeSD/ogupSU9HEDjdUJGRsRsZ8z2ZawrUuDwKi0p7WHG3K8DJxSiWfvr0OflryQqZNXOScMFgoPLjx09UnBtja9iYyZsrTwFp2aWfbF37F9DNy0sOuNt/JuuW9vNQqNQs2xOH/QEB65wC/02ZOr2ybEUBr4oaLYbiEbHjxAuAh/XK86W0rFMKgtpBc9wo+/7wwQbvIatEmCxA9RAQ/ceQ6TKmfzsZOriHsrRrYwjuk7yXXpYKFWpgrk+G9bosBDIbxRcdHEzCBi3gb9/amIULyz55zMPDtPDzGl5P3ujo6AuhwyQAWF7zT37fvNlBihTxUtaooMbx6JEtXJkmwSuo8/6uY5cv22FO+OBd8C8Ehvb++Mnh9bCB2/OMjBo3W7r0HW1W6D8Aa+sN5iyLbjtBKbAsPUSX54zxA5Qw7hwrPlzTbZWXJUH8uKg2YEuEIHFC6ThvXB8N77aDg6PylFAOYKm4pK4pzXOC4w5zDNbfIWA9fnBXZk3oLzP+HPuPo2PTknLs+EnADFyFNvpRxTrt38cYlCzK8pQ+YzaF10FhYRHcQi8AqLZpwyoVGJy/YEHZuX2bv/eE9fTKlCmp4o1atmyipH4WNh45arK8fPVO9u7eLmVKlwSD3il58uaT+vWqqUWYpUno7nJzfyGRo8aAGTQOLElZJQMyee7fuSFb18yTOLFigFnEVj80hZL8AM/Ta3X+BqL7wvuPGTtV+cGLFimADEAXTFJnMJfHcFFmVmcy0DkS4reGjJ0t6TJlBy3eyk4gwU8bP0QmTxknhw6dQJBiVFk4b7aUKlsBGs0HObB3D+K0iqjYoxcvPOXQwUOqrxSp0soUuJdPHt2D4tGVAphx61XIK0MG91ZC2tVrN2Xnzj2yY/sO6fB7P4kUNZqsXjIXroOr0rnHQJmIhIAs2XJKuoxZFJI8GevSpQtVZmLEiI6BCsEcCGO58ucvrsbEf4z7WrbpiCTBZAmPNm/KMKC8j1axYr/++qvCj6pWr5VMHNFHIiB76RrgJjQhNDzuF959MNB96bI1wArahMW+EFLjG4GZ5A6SpuE9hp+lv4tnj6MUyAflnhjWtyvmRzQw0bcQ6itB+Nyghsnfk8IHM9Q0ASSw8dN1Q2GC7pnx46eo2EgqQe5PPWTokBFKseG1HX7vBWHFGdahSBLNKZZkQq3H8ALwfHjvlqxfOkO9i29RVqtBi64SN36iwIYc6H5Wmzh5ZLdMGNkfY+8LZS6BQj8nv3wMV5AHeNer128lsUtayV+kjApgblG3DOZtNin9SyFp2KC21b7bd+wljdoPlJ5tawH9e6A6h4pxTFgvsmXNbE7MsXqxbictOrTs2Nuj1gAUR1qdXF0hKaHdvW0jri5e8ua9vdrPRZowUY6O30IPuI+/F6/HevrTNQp+hw/bKxBTzfJjbZA87/ZtW2Vx02KxrJ33d++7ccNOCbnhNSbGvc5fsEX27d0o27dvR7WQahDgUkhMhMGQxz/FHGNWuw9+WF9fvg/AkowZHevMbni3Yqqkiqp1mssfbevKsiVzVEIX1xVWHuG8JjwNLXbsiwle+/cfllu378F17aOsflGix5Kc+X+RhtWKkZQxcO0bPU2DtGCVq1hFiGnRFdXAA3Nd6TsLbpsPNw7Iuk4xotLHhdNhfk0YD5lxDbDgOwV3+T92nNlzNKOyJMQnpMneAkzA3r17ZMaMA9BGUyJYzwOm9SxqfGS8ZJ6st0frUmCNPyJbcJYBd/ePMIk+g+B3ClraBRWTQHfXimVLlQUIRh1ALBSREwe2QlDpodJ4P8EfTSHnHaxrr1+9kQfI0nn4wE3cnjzBy/IJzCoxTPb7EbsUV5WNKVC4EMYaA1gybmA2EWXXzh2ybs8FmTq6H2JKLkFoSIgyOnukQqXykhEwChTm+NuVgObdon13OX/6qBw/ckBGjRoq7VA/kY2m3F69BshXhPN5uN2WNq0by9p1WyRBMmT8VKmnznnm/lha1yun3IVHIYBpbf/+gwgOryot2nUD/ITJ7NuoelG4gxNK35EzhNcd2LVZpo4bIokSJ5HHjx7CfVwdcR6Z4f5qq3Xj75PBlg0QBM/G8gxdeg+V4qUqI5Mlnr/zvucLY1rc3R/J+ZOHERf4XFJAKG7XuJrUA67Q9D8nKEH8e/oP7bVkCNbQqmnBYubWLVhYbt26C6vnfSD720tlMJokyZKH9jb/mfMnDO0uSxbMND9PZtT9/PDutcKEqlWruooh4bwNbs6aO8AGUb3PnbND7FFA14123icATw4bMlI6de0A8EpPlY7vAWvikSMnxf3ZcygaMaUkcIVYnzOwduX8aczBPZIlR37Eo3yEouMsaQHVoiV5nDyyVw7tXKk08heeb5TW7pIirarksGntYiBse8rq5UvUIrL54BV5hILzT90egL8BSNjOBuVyjoBlf5HdO3fKH/3Hyr4d61DeSmTO7CkBhkTXEy2lRCa/iffr4ycvyVWoDPq7LxNG9Ady+QWVtaq/cMCAkfIWQe2JATGzB7hLxw7tgyU7i7x4+RxxwPBmIHtw1MgBECxMMC76a4PapsUkTRofJTDpz6P1A2snno/KFv9M/Fh/zt+9zdgubRwUDBmuR0HJzs5k5aOV7dw5e1hEbSDsf1XxX4GN8do1OyjMJuDTwM75O/fTggi7hAq0z5XL67uEV1oWb982eUwoHFPQ3IPC0bVr11WKLJWe4BrBXglfsXb9FtShtUEc1QepWL6EVEJ8X2gaY1mXLluNTPohvCx0AtadO5dglSinpLlfSpdBunZxyYn4nLAy4RZ1yiIr5JywOHHpUkVVnFBomFVIH5waiPaihvSa0J7H4GpBMPqNG47hYvIM7P7UxlhuwVpbuXKtbNqyG8zsvIz+c5nKNnRA7UJWeo/gGBmps8+hDUdGjS03IKsfgpC0WzFQ9hUVuCx9+vSQv/5aLs4of5OnQGFom3ElH7TOR7AqpkHmGAMHyayjRY8hC2eOhwVrqNK+k8INdg0xTo1bdVZwCS+ePZZoUezl12qV/MVSeXq+gsDVTcFHsHbZ4MGj5Nqth1KrUQeZOLSbMrX269UOGqaL+fHInJ2cEkqDJm2kYcuuZg1++fxpKi6sBOKrGKu3cMYIsfX1UovRyRMnJUPmbBB8r2CyOQPHabF6PnOnuo1bt+6oGofNmrZWexmzFwXuvPxFSof5vdZ1L4tmTZTJoweYd+UAcOeBA9tDtSibL/6ODeKYubikkxaIP3sGRO6P0MKSJnNV5SxofYwTL7HES+yCZANXiQeBOzgrzHcM5ae+9MP7dzK8bwfZvmktMmFjy0u4Rpkww3efrXDhAsioXP/dz0B9inEwIYnfseRf/C3nzF0sjx4/hdXruSRPlQEWqM7+XIoMsxjRrwOAer9KB9TIo7t33fqtUq9FN7h4M6rxs3j182dP5NzJA/Ly6UMs0A6SGok13X7vAWVxqTRrVlPy5i8GZSsSsgqrS6qUyVW9QWrxrM9HaJi58xZjYTovffv8DoUnZMoJlS1mpe7ctV8qVigtJUsqbR+8SNC/DcZBS5KvSvOv1aSr7Ifw1rBuBRRYz6TGzSzDBg1bwdpfDEkj/UL1W5CWd+/agkfjZn6NwsvLl6hE6CfE0A3IMAvGW/0TjUIU2J6yTKVIYeL1HA+R4imUUNCigL52bQRYWLz9PYu18RL4lM+ixVpZO+fv2sdnu3XLVgmyjA1zcvJRzxPa+3P+vHljg0xtG/VJNyMTnmix5P7LiIGNHRsuvEwZQtv1d5/Pkm/x47uyn9AJWO7ud1WtOF5JzY01k3bs2CszZs6VHoMmSJac+Xko1O3Vyxdy/OAOVGQ/KZUq/CIVAFEQnu3CBXvE53iFqUtOyKdPTem3ZAA0IRPThC158oCakJubrYonYCAkJwJTd6mJMFMjdmzGL5iu1f7zRaFWy2Pf0zjOESMWytv3tzE+DJTmT3YOyxJCysAM7VX2B+OqCFDqK/Zy5fIFpY137NAGz2XSADgGukbZiBK/afNOZQXj90iRHDFRIaihnuHNmzfl2NGjyPSIBQbeGrWzzouH50fJnjmVdIHViAJbcO3Q4WMyf+FqyVO0vEwa3kMmTRwFAb5wgMtYvHrQ4DGSo2BZyVOoZIDjy+dPkQI5U6oCrA8ePJIFf61Tpl9asmo3aisHd66WP6eMDjIQk4GSo0ZNgMDhI7t375WziOFgm7pgHcBZC6hA5tAK/0xdLpwloepH/2/IkP5/GzYW5+mQoWPk6Yt3UviXyqq4KmErYjjH+tuFPD0Nftbtxw/vyYmDu6UMCgWfP3NMFbPlWNesWQo0+5Iqboc8gOVPuOiFpZGP3Lxpyu6ydI1Q6CKvYON5XECYbMX7WWsspcICy0uXrpGi5eogjvDb/FmNzMxSRbLIylXr5eXrD8qKla9IWUmeOoNMGNIVFq6DMmBAbylaFCW0dFr+qVP2cKvZIA7PB7AniDkN43NaG29w+7hAfvz4WoaNGCvOcV0kd8HSsnTOWGnc8FeVnczrmazi6pre3NXt2/ehdEYxfw9qg/Qlj9YLWEGdH57Hnj+3hSBnspRxfWCAOWmr0Zfs+t49OyVI8b1gRmLChAHXBcaGUdhiLFhg74U2bsa28Z6JEwfsRzvnR37y93z82FR1gwIs18NcubxDbfCgtY6xYxqtuAbT6sj6jj/aeBJa+oSLgKW/6dmz56VCxZqwkLyA+yi+qlnlmjyFlKlQVSrXbqEwkfTnB7ZNs9zSuRNRuPiNzJ4xXZ1GPCG6C6kdhQV5l6ZDvrisCxVU4znUnp4/t1ECEs3EmkDFl5wvu74xxdXT09aq4Ma+GEzIFju2r5oElKqpSXBiW06KBw9sldYWmIZB4cndHaVkIIhxTOnT+++Dx9etc0ChYW8IfQzW14804DZds/PmLQLgXVd18DawrYLK6AnYg2kPX3BNyytYqBRwaM5I2nRp8Hk4sEsC7KdVazoy2eoAnZ3ZaxqieIkSRRXYqD1Wsx079mCR2CAlq/wmGRGHYtloddi27i9ldXFGMGLu/CXMiQZ7tq6Vg7vWyvixQ0HjJMpq4OIScNGggKVPGx49egKwrE6qIH9iARHctAgqwNdASYqQWnce3r8jQ7s3hzZ1WbrC3RMRsTSJEycUupdCK6xZPnNIvjOLc/iICZIkVU5AU5QNySXGOaCA++OHUgno4UmSJJFnwLSZMH4UMNnqhQttaIHmgkfLhCVPef78AwSdpOo+Awb0AUwG4gsxn2LHjhXsO0cXb9MWnWQsIDRYgDx3gWKyfd0SuYug30oVS8sSxNMlS5EBSpcPsh0vSveubZBhlsXqM9GNliFD0PzS6oUh3En+SCEBEQty+coxlF5aq2BaMmVML0uQEODlYy/VG7aXR/duylHE0syYPjZQhY19ubublFouuuTbXMgpwFjyWW14V6/aga4/7vm0+wT2SaGDvJNrAsfPPzZ+BjVu01mh/0+8qzRp/pnnffXKZJywBhMRkifh2sbYMdKGzxDc2haSPkN6DtfrOHFQA9dP4QnpdWEWsAoWzA+U3IwybuywAPfq0rUX4kpmwgy9QopBI6L5mJaHadPnYnGboOASGrbs4m9hIUjZ9AlDUNJll1StXh2WFh8gjc+SOSt2yqP7t1GTr5X5PsOGDVPxPDQdB9b4I1ADoBCiSboUjvQTTRNWNEA4/mA83/QiCOJ2vIMkKM81BeZ9SycNbDyW+3kttScKZ/nz+5nBdCdRwKOUTu2Egh5N5WTGNKlSE6FrMGdOlCAADThBadYuXRrFl6EF8dk5YZ8+tVUvBQNog2vMcCpZsjzu+cCfBSu463gvMjFa6NioFb5/7yMbUdahWbPypp0W/ynUMVtTs5Txd6AZPHJkkxYXF9oqs6l+KVVaokeNiKLJc5GemxzuyOhSH1hbRRAfFVLBhrfeumYxUnVPSvGi+SC8/areO8YrHDpkKsZKOj56tAWAp2uQQbdKjbZFqxYSP24sgLyWgUDUE4B4a/Bs75Tb9I8/eqtzDpxH9h/Kh4S01SydQ+4hM5KtaNHCMn/+DJjq44T08mDPo4WqT59BCJaejBJJe1ViQ+7cReWXkiWROPFWygKYNi2SMcLa2P/WdUtlQPe2qovh42dB0KwEugAOxNsHUCMPgMv2HPErwB9DkdZziDc7cXinJE+RRpYsmidzlu+wWjcurOP5kdcxc3fVX7NkzJCe6jbWABM5hznfQsroOaepQNHqxetgcFKLOwOuOY803sR5HjOmrxIW7t07pqojsHBuXMCj5MqTRyJHclDXR4NlOEf2TFiIE8Jd9BmLzz05e/4Sim5/kYzZC8rFU/vlBUpbEU/sqcdLSRAnBnjqBGXRJf4QY/AIRhzUXLK2IFNhpCWeLk0uOmFptOB4eDBg3GR9oCvu1evzwLlqLndQY5UxghHB9GrUaSjeX97Jbw1rwxWZO9SKNXkTrXC5cwfkseQ7Fy7YKX6aI4eX4j9heZZ/0zVc28ij/ykrVmBxb0HRkELzixcM7WFSwvdnGQZ1L8tjXKNJL96ba66lImR5vuX3MAtYJVCC5ctHT+nd63cFc8BIepZrSZUqhboHA8WIh0H/eu/eA1Ftva707NFPcuXOowo9dugxTC10w/t0QJ2r2wqfqVDBvGpS0TXERXjX7n0qHZ992YGL0XwdL15A6xW1ABKBwgdTe8n42Iica0kQ+n3J5GgFihsXgZMwl1qew2s5Mc+csVcWIi78lk3DGUmaNOzBgmSqly6ZFnkyKn0MBic/Qz24j89DIXDHDgflJuDLxuM02dN3TWZVqtRXFdCnHyefgVklhQoFZC7687Rtnk9mb01wpZZJ0ywznvQePz4Dr+OCwT/SkpYsS3eHdg9+0o3cGXW4tFa6TBkEolcBuGglCHgeMmbcNBVg/crzBdxzZ9RpXNznr9ot6TNn1y6z+sl4Ey7wcRH0ztR2QmUsnj1BjsHtvH/fVozPUV3HxY5MXVsc6WrIlasQaPlCuvUbKSXLVZfRA7vKzq3rZT0UBQbJJ0uWFsJCcmRvOkHw36XeX6uDCGTnzInDZPbU0fLnnxMBV9FR6tSpKXPmTAvk7JDvnjNnoYqjost39Kix6sLUaVKrbJaGzdpLiXK/hkoQtHZnYrEVy5HMfChVqpRwbd1COrOLslRnz5ZJSfZpAenAQt6tW7dQVhGWbmKNtC5desB1tUL6D58EHLT6oaad+cZ/wwZ5z+zJw2XZghkKuLIXeFwK/O6WjYoNlR/yEE3B4Dl8V/ftOwR37GhVXJjWyi9fPsvD++6IE+qBdymDuSvyI8bSaNZfHqAAQ57z6JEdhCdvJWwRGqNBw5YyZNIS82/J3+QKIF5evXimMMMcEHR+7sReiQShJW++HCq8ghUbOB+2bUeQO6BL9O4/8yCC2NBCKjjH6aKk0seFhi6tQNPqGZagCzOw1j0DrYkoHlyj5VVfdSK48y2Pc9wnT9rDAhg4D6SwuH+/vQrz4PW0fnHt0AReyz6/57sWgM0+yNcpMFCJ5vplzTvyPfcK7No7d+z+tnvpx0Cee+eOrVpTuVaEtJ0+bY+kBpMxIaTXfO95HCuFK7oc+S7oG+e9KQEioFygP4/bYRaw1u4+g4n9Ql6+eCrxEiTBy+IDIMKp0ql9Y0ycNOZMkFmz5knHjt1k8tzVCK52RBo9CljqUFsZ53D22H4Z1LsTFjxHCD9u/gQNbcCML7gMeII0KDHirEMb5wK/aZMDfPJeSjhg1gAFLjIDEoLH2WiCpluNGhPdQtQQubgGNYl4LX3GnIDc5oSgNSisWptpJAH/s28yLk4y3oPMldv8EdkotJw/b68CMhnQSCGSQiLNpDS3UkNj9oW1RgsbBTJ4ttB84ca0ztQ4Blp1KBiRKWkTgPvZYsb0Uc9u+hb8fwp9ZMJ6dHVrVzELc9ashQjSXI+iqxfVKcs2HZWD2xdLqxaNZPCQUegnBupXeUueIuUkZ57CCg7DWl9b1yySTbBWVUNA/d17D2Xm9BlSpWoVyYzgRuJnlShRFOOJoITTgwftletDb65mEP2JE6dVSZtufUeoOMLXLz2kX7eWcLlmlYiRo0nXfhPCXCKEC/d1xLr9Vr0YfrPDsmvXHgU/UrduzTAJHOeQjdWkcWtYLm5LRSDfN23bHb8R8d085e0bT3FNmdYamcK0j4LqMAR8E408AibRtauXVCZsZcAT9O3zh7KiBNcxrSYpU2ZS2G5RAG/wM7ajsKDfvHoehXHnAtfNTVkCWY4lNG0egr3btu0kq7adlKTJU6pLP0JQaIWsWKDmyBEEkgfWKHDRykAlh/OeVnjyAeLuNGhYDpmyU1Xx5catf5eNK2YjISERkotKAbk6PTLxHsq8qYNk3pwp4KHhQ1/WzyNPIj+gsqePDyVvIO/h4hfcPNc/L4UrzruQWNb114V2m0roxYt2Zn4f1PW3btmZQ0eoSHKt4DrxIxt/a3owuGaRtozFI035e2vwET/i/rwvUd15D71S/yPupe+Tv8fRo/awRHqF6n3h+0fa0ItDg4amFOv7Du/tI0fsgQDgpd570uvSJTtFK/4+nJdcf+n5gOkD/PcuIIpQ9QChNqVKlZCVKxdBMIsAGeSNLFm6Urp26c7hxYDi9UY/ziBhGqzhYL0HHgyzPJ4/fSyez5/IF2AgrVy5SkqUqSjDJy3U9x1gm5hXc6cMQRX1uCgtglRNSkJ4mFmIv6pVu7ZEd44rs/6chADnfvI7YljYKEDxQTVBhPvICDjZKShQUOGPQaJwwSdh+CPRNE+LEE3x/G6DhfWjTwTEdgWfyUBfLIW1ePFMzEYTRHjv8GoUDmkh48tPP7y+8SVlaq7+JaPLkIJicGPRYj6SJfvmS6Ygx9RevkSpUlmvlcV7kla0lnFsvEb9OGIC7KNAxj/1k4HW1MhZkoEClmkfdqJZxhrRDUDXBjVUBuMzADuKcxL81nEkMZhO+XLfEhyIN7J+w2Zoo+ckqnNC+RUAcPpGq0GfDnWBF/arxIPbjeCxEydOk/v37kkCIGk7ARYjPWJYZs1i6Q9b9d7wHbEWg0Vr1tSps+TK1asoSrpNTtzwVKm6zB4LD+yhLRAE16DsxIULJoGS1p6xVlzt+uez3KYwOGXKDFjXNqng399ad7M8Jdy/X0f9yXl/jkFGpassnjsdC6833NB38Z5GC/RePOfSpStyFWW1Ro6cIK079/1pY8Ceo6rA+CG/A25gGxj6BRWLyHffy4vvr+ldJw8JrlWtVldq/NZZMufIq05l4s6cyYMlTcrEUq70L5I5ayZzjCcVPb31Sk0kKKsfvRyQYGEHt78pcJeLzKRJy+TU+aMq0YLVKM4d3yVJEiWQ2HFi4Xd4jjn6Wux8vKVO+RaSLFsGxaNCI/gE91zWjnPeX7xIIcu6gmftGtKUQlamTCG/xlo/we2jFeLsWTurIRj6a8k/qeDqBSquF+R5mmWSvJW/Pfmanvfq+9Fvs0+ez+uC48v667i9dy+BQr+G6D6W14b0O9dErgccJ98txiVrzxrSPkJzHu/HtYMGCwbkc20IbaOhg9fznUOYrIpdDMpAEtr+9efzt3/1CsIDGu/HNVMfQM/nOX36CzKJE2L+RoFMAKHAr7FajCtq4mZDol+GbPkAx1OdR75fwNJuwE/WCrwH4MuvMI27IAaDaOVE9fUALECGzDlRWsFZf7q/bS6W2mLMWIiPCHinmf3urWtyfM9KGT6sn9LySOzgAjA5UfgiJUnCeCpTyq+/m+m+0FRLopKgdM/RUkRrleUEIXFpGWLQelCAbrquw7RJVwHHYmmiDFNnVi7ic1DQpJbHl56+bjJK/fPSTEqNjoIeaclU2qDcf4ylouC7bZuDmkSA0AL9jyIwuIx5BJ06t5e6dWpIq9adVDA8kyCKFi8pRcvWULARdKXV+LUy4uxaoI/oCgF75KhJYgOMqlQpkiLubwLK7jSQZcuWyc7jt82o9ssX/ikP7t7G+5ZKYf4kdUmprKV8n/ge7du+DnE1M6RY0UJwYTVVC6g2qNVrNuC5YkgkuBDz5zctjFrBaAKr7j3zEAzPNOG0a8L6qXe3MQbrCop1h9YNwvR21lQkhtfBC09CXJ4krGPWX3dg50aA7zUUGlgz584t2bJnlv79ekAAj6HmLYtCExvuIZDfPV+/lzQZcwLDKLWkz5TNjL2k7++f3N62frk8e+qmwENvX4NVHlhTZ86cxcLzXA2LwoDGWMngyRcCWxxu3boty1eslTef7KXWb+3kHVx4W9ctklceD6UfoAv0ySOce1xwGNtBRVA/58iH+J08hpZpbnMftfhEiR7g87YsXb5euYDv4n3/HWVMWBBe38g7aMkPLqFHf01ot8kPmFUdlgXzxAnrcVHBjoGEowsSmdAhaVr8Ds/FNDbzc71Qy/WBC3VgfI235G9AYYRxrfzOP63xGBd8xsFqCjHDD8hb9edRkKFArbcCan3oPzdujICC9V++W+Dh/fj8fA84RjauJ5rRgfs4Pr5/5NlsPyKwnv3yfeQ6kjKlf0GFx0LTON4HD+yUG5fP8SMtfaEZl3YuFV+Cg/frP1QVRI+A9aR49mQ8HL4ClnZD7bNX+3pA9N4NbSu2uKHoLVujFh1Q1HWgdor5k+6IUQM64QWzlwJFS8upwzsUAGkkCFlNm9YDUVMClMy6cMUfgNYYBlAy0JtCUHAvtPnGug32w+v5YsBzqZr+5eNEY9O7mNSOcP5HJgbvQpBCFs3MdCWw1pSecXzvULgA0F1B6V1rtOAx8JWCGGMx9AsQGRUnqmZB1C9EFHJoyejZsz8QmGPKqpVrEI8zBQVFa/vD7Dl5eI8KlLZFCYIzBzcBUTe6xEqQAsVx6ysMrzMnDomH+0OAIN5QdQ3z4/2gML5l7RIVfF2qXCW5DvfV8i0n/PWrjZ9ZhqXypkQNq1gIxF+pMrN4bM7cRcD86Qlm9EmqVqsKwdlJCFnRBJhYJ1Fa5/j1l+o+Wj/f+8mkjgVTBsO91gU0foWFNEeIu2Swfffu/WjglagxkypMsBBfHE4nakoQrc27tqyRp4/vAHjzjVKoXrx8JU079JaEiZIpSItwumW4dvPM3U2WL5gmi+ZMhak/O97lhHgfNmGRdYLb6yBiVBKo+2mWCM53vu+WjW6Apk3biCeSCHLkLSIlyteQkf27SDTU/jxxeL8cOrIHmrar+TJaVWjVRdEE2MR8xTkqElNQ2opWVfIsuv3Je/SyPOc3rQvMeONxLUCZvwFDM7RkEfNNsEFhkG4gnh8uWj4Eer1QQz7ABTwsAhzdjuQR1uipfwar2ySOJYGsnhhwJ2lMAFHGWDEOqXBhfEGje5C/SbJkATOKA/byfXs4BvJVCjoUcEhDfqd3gL8x42q55jBGmPyU2eD8zv00FOuhfqj8a1Yn9sM1gH1S2GMUDu+hX7OCGznJynuRp9N4oQmL3M9+2bgmagWjtX2mI8H/p1WI2fbsj+8kY85C0wevY6gMY/dCYkkOfkQ/7ow6dRrBA3JThk1aJDXK5OaNfqyApT0K41AunTsBq0MM1N5zDaB5cwEsmi0Jgp4bSnVkE0aL5qMwT/SwDPSHMrVWe7m0vvkDHD9ur1x9fPkCEzb4klCy56Ri43Vszs4+SsPgi/nwoYmB0GJDrYPnnD1rr+7Ll4PfNUmaLwmv+VGTlJpsaLBa6MKjYEQGZkkjLhikEWnDSU33qjU3GRcCWrY4sWPFMhGI1718abJ6lS/vpTR7Mlpez4w83rNCha9WJw3L8OyEVaNBg6ZSp35DuO2SS/UGrYMs6Pvk0QMFIPoW4KEzxvVGGYMYqEy+RboPGC/5ipZSv9n92zdVoW5aRM8cPyQ3Lp9RuE6uqTOKKyyntKCWKZBGOnUfrIQ5xv7QmjWge2vZtmGllC5XXhJjMe3YoQWSHmIrQevY8XPyEojWGTNnlRmo21i0RGkZBbDW8G581xtWQUwZGOsl4L6FpLFsTREAn7KNn7kCCkjJkFz2rzyH6PfEb2PsZng0CiQXz56QZrW/WVMpnB+BEKTFWXEeWxOm9IqENpatW3eAR9VVSREsTq214b1aS8N6VaVM4fwQocAcdMVvKfjQPUZLWDLEk1BRTJfeFM7g5sY5a5prlungXEA5x2gVYQwLlRfyoKAWKCqaxLDiNVyQuKDpBTdtvCH9ZH+c4+QbFAB4b03YC2kfPI8CI+lJ/hQuwl8obk4Bh/yfwoPefcrf5cYNCjJ//5g4fP6Wq1dHUPTk78tGAYuxQAyEN4VdmGJaOXYmHTGpiwIYf1sGz9OSqH8m1UkY/5FOFEQtDQj83SjAmQLATfUYw/IOUBFnaApBQYNrXP9o6aWhge8M1+PvaQcOHJGNKA5+BmjtrNs7ZsxQs6Id1n6ZiDcHxcaZYT5wUH/JgILjhKx69Oy9LJg1hd3+PQJWUA/ABbVbm1oycfxIoH7nhbTqqMy6FAb48lD7oEWHk5uBldxPQYBCA4OwqbEFFkekv29gAgsnGV9QZs5QaNBbYPhCUALnOAJrNMXSjM9xkXGESUOz0jnjzMjcNIZKi5x+bFYuUebYrVsdlEWJbga+oHy+Bw9sYOnyhjARUPjS+uEiQwGUz0CtiQG31PhsbX3VfU0ujG/mbzJa/lkT1Ngn46dixkykul+983SoUdE9EBvz55jeGHMCKVGhNopdZ1J9Hd2/XS6e2CmPn3jIwHELpH/nBjJm1AA8+1tYIc4h5mcc3hOWBLFTLsf9B47KhUvXZMDoWUhdj6dQ3+0RjEjMtZ2blstL1Fy0ATYQn3Pbli1w87SFhukN2n+V+s06qnuG9z/G/fTt3EROnzqGYtgzoVhUC/YW48ZNlg8+0aRK7abBnvtvPeHGlQtSv0oRyZmvkExbsOG7H0PvlmVnd+5cxpxwgPIQ01/fzDgjPAvnOuc832lrQgmFNVYVYOkYp5ix/fVBoNzO7RqamTbnHQUT8gUulHSVUIDiQsHYH1oNqBDSAkGrCvmIpYbOfVxsmcXLuFFmDXOMIV1sNPcWFynL8jAU3qgo8Tm5qL555SsZMpncRhRG6ELifW7eZHajyc3G8TOLkDh85BXs31rGlT/C6L5woSYfJ//mIk6hzWrj4Cy1RKsnfv9O8teQriHff7eAPRw8yGQtk1WN7wt/D653gQlO5NO0avJ9oMDOpAEK0eHRvrz9Ig/dI0qKVIH3R3oxw4+JV2FpvJ6CIt8v7X3iOsWfnFYqCph8PxiLzGejYBfUukch5yqqiJBn37v/EF6vGCgJ907F8jK5iY0uvMpV60nDVj3lwpEN8G7FRFJUZQixyUL1CFzTLl++Ivv2H0HJp3uovxtNsuYpJqnSZlThUXduXpWnTx4A0LmS/JLblX3/8wJWhcIZULrDTSZM2IZ6cywmy1pCpmwaLvD0a/Ol4stkb4+DaHwJY8TwAbMxIaAHOlFxLpnivn2HUZ7kOmpXdUc9rIP4IVNDo7wOFNj0+EHdQfDY6Ntejh0D2nmmoHGw1AD8/pEBciyaBkGGxZfBMkaLLxWfK7SNjI6TjeZkvozsgxYz3o/MjXShZsP+qbH+9VcEFR9B5k6TLlFuKVhxPBxnaBqZMoVSLjxhaQ0athAf2yjSpuuAcAkS18bAuoMrF05Fse0mqrTO6sUz5c3z2zJ2zDDtFH+fjFtas2a9NG7cElawMVKhWj1lQaMVQ4v54wV8T+7cvAZXZhwpnS+VVKvZQHoMmeSvr/D8wvu1qV9OmjSqLfXr18RCZWIGBF5l02fN8nvChCll+uItQOFOx6//2UYIlzz5i0pxlED63nb10jn5rVoxFFgvpRhj7do14HZPDPfeb/66psBDBk/liEIAlRvOKUvQ3gMHDkvfgWOA7r/B3/X8cvXiGdm0aLYMQcYfk2GYxUuBicoKhSS61ags0o1DaxZ4vrJcMEOKfIOZeawVR+uEZuHhGLj/5Ek7ZV1v3551Q78tflyQA4sh0g+Qz0YXHQUpNsou3KevRPH1/VeU3UHWVEw7JfhQ0KR1zc7OhDyuwSuQ59GVRIUvKL5ruhP+8yF0zM8GK6YviKCNh7GmpBXHRtpz4fVh4VyUHXP0RhxuNDA8rMARfT+JfWRs+6A/Dt4PesV8n+/YIB89fNhBuVYDA3v+ju6DvFQDPSWZ2HSkMu34wf8pzPA94nrCMdB7EdQY6CmhN0mzuIVleFyfCHXCvkh7vlvcpoWM71VIFAjyz+Ur1siuPcckXZbcWN+QpZogqbg9uiPzp49DiMc+9PdEpkydraoYuLM82If3smj+VLiFk4Rq2Ddu3JLGTVpLeuAJpsmUUzIA7DpJshSB9kGMwB8ag/Xg7i21+AU6At0BEmrG+MEyd/p4896TACt0dHQC0ONupNk3UNJ8iCazuQfTxrJlq2TAwOGYwC8kKtQwz2fPpH6T32Tu3AXqBLqtli5eqIrvDhrYG7ABF6Rly1IhUp74QvKFoECln5RkPnxp9cyZ5/EFIuOkaTWoF1h7BGqKWsA9LVm8hlYlbpNRk3lzQnCC8p7UKHkO+6f0zxeV2gCxYEIrXGm4LXwG3oP9hmTM2tgX/7VC7rm9lyp1mmm7fsjnlFH9kNk2FenxLWG5GhzkPWjhWrV6g9y4eQcumpty+eJlWb0bbsHnHvhdIivkd60DakMMVo4RRFKGdu73fDIpZDeQ5vt0bS6FixSGleOdwgBbvHguBOS4gNfIiBTn42A4MWXeonXS6vch33O7/8y1N65elLXL5sofA8bhvcTLGUi7gKLjzeqUU0cZB/ocmGGzZ08TQmRYNgpVFH5oVWLjInD/vgkTh/GIvA0D2vsPniyN2/wh8RP5Z9LLENsVP4ZAkG8hkSOgD1hQySM0i/unT16YpzfwPSoWl8+ARzmPxIoaUJZMAhetaNymIlm+/FelOFGYoSDGT1q8OB8psGlBvlTAONeDIIF6Fm0RpaL2d0AlqJv6/bOBAuubIL5+l3mbCzsteJSXKIBGd/gkb70ignTImH7xXL5EcZKPXx2Uy/Uz6PIVvM8OOHkkkmMCZ0mQwjHYZzffLJgNKpN/N6Alh8T4opBkY5IPa7FSXAstlXj94/F9oYDMNYK8n9dyzWAyFwVZPU/nORTSuTYF9x7xHpwn9N5buhH19//R28T+GzpsrCRKnkVKV66DZ8RD+jVWz6heModUrlJZXAAPU6ZKfSg/p+XUkV2o0HBXxeBqPIMWKWIk0sJ19ep1GCk+Y35GgYU2LejEEJgjsn7jdgXiW7dZF4mPGq0haT9cwGpaq6TCy1q960yg45k8sg9iI45K+gzpkSBiJ7dvXMVL4yRNm3QEAm9yvOzpZMiQAapWnr4TWmpowbH2MpChcb+nJ7F3Mkr+QsVQfyuaTBgzEZprNJiCryOV/67UrFFfLarMVEyfKavKSLPHdefOnZaSvxQHjlJFYH15SmTU3YseLYokQwmXHNmzQoh5ClfiJaCfF8ciba80HmvjoCZ25oyJYesxqMjoGItAkyiDKzkRqLFZNs1yRYbKxu9k/lpmk+X5/M57MhhSH0TI/s+ds1OWLFrAgmpkdni31D14HRk7hUcKadTwQ8IETOPwQnZgBZmxdGdQt/uuY18wERijQ4iQt69fo6xJJixmz0PU58GDR2TW7HniFMdFWnTqJ7XL5ZGO3QehqHVp8/U7Ni6H0NNK1u85JwkSJzPv/1EbLFYdGQuvF7gfs2ZnTx4m+/fsgDaZXBVW5/79Zx/5EwJ/1Fj+Df3mTu0s+QoWlYlz1wY5XLdH96VK8azmc1jMnACiARrUaPd7X8TjfRRlwdYfp1BCKzJdFZx/ly4dkHPn98sTj7dSqERFad2wsvQcNA6LjqMq6v0CAnvValWkZYvG4EOecu3ISbnz6g0C349iDkeRMhWrYc5Hlb07N8vHd6/EOXo0Gd5vmNxwy6TiJOl+o7BBy7NmydKP59o1WxV7w0oQtERZE7AosHDech6zsR+6W0K6iPIa8ioqhuyLVnMu0HRzZstmui/PCVHDQmWDWEzfmM6Bnk7lkJYMs3WON+WiSeZKaYAHdS5D7iKvp2LJbdJLdzjQ+wR1gIorldX06UP5fEF1GswxPhbdk/Q0BNXIm0kjCvr8DRkrxX0kEd3ZbIwhpFBF0tHrQyGMvz/pw8Y1h4KUNUBp0xlB/+c9aWlk//9UmSEaY8aMmSxuz95KueqNwJuTWh00k4moHN+5cRm4cbOkYf0aiGEtCCiMg1jLPFSWOd188+bMkabNmomNfWRJmiItaOSosAQf30VlBLyz+YpWkvxFy4Q6HvSHC1hWn9piJ3FiDu3eJGcBvpgzbxEpCx8pYR12IS4mGkAmM+cqLFtWzZWlf830dyVfNLoQ9cIGXy5qmxRW9u2fJX90+0OatOosOfIVkba/VZGqVSuhvhVQ2hHg1u73AcIYnFNH90sxINNnz1PI3D8BB69iDHkKFBcn55iYxO/l1vXLcmTfFkmaJJHMmv6nOpexHHfvJlJmUk3AevzYTbl19Kn3HBM1YZr+9Y37qI1Qm9D4CDVdToB790z7g5t0+v6C2uaE0IIhOTk1IY/MjBOQ+0g3LiSBuRvICHRKQlC3g3/9uUyYtkTqNO0c5HlhPcjfaN+uTVjUJqguWJqlRb0KIRawdu/er+qdPXZ/KWNmrAgwjDMnDkur+hUU2jozxdZByEr4NwhZlgNhPbwFM8fJmuULZdaSzZI5e17LU/6vvlOodgeoZsJESRUUTLQYznAJJAqWBhTG2EqV+gX1OpcFOP8hzP9NmreVSdO2S7oM3w5zYdLmNlepT8/eyXNPe/ARBCHvWShdh46QmUu3QYGLCWXsmaRMk0Fee77E/PogU0b3k+y58mOcNyWug508evtanJGp6AgBK34iFzl36oh8+vBKihQugPJgCPq1jyUpSlRHEoh1hevbqL5tMXYnYUJiktkqq7UpXsXk7uFZjOHh3A5LI4/gwp81q39hg0rc3bNvJXXuqP67JZOBNUCZNpi9EYrGeBwu3HTPhsVLQV5KwYheBFpVQsqnrA2Rj3Hlij0EHv+wNdbODa99xBMLDBuMQiTXCQrR1mJ79UKwhkEY3Lj8vdfBnYzj2npBZZv3CG2jN4AQLgSXfotgQgdI659R5SErgHwJjZIyZQqsPa/lOY7XrtUQc7GV7N+7C0JcWlh480i9ujVgVY6NKeiLqhArZczYqdJn2FRUhskS6FAeosze+iXTJX1aV2ndqjFkhQjK4uUQLTHWfkd54/lMqtVrKZtWLpDCJSsGiKckEPoXmEzDCtr8UwhYgVJHd4DMkSVG9iP2ITEKr2bMkFZOHD8j06b9Ccyl9VKp0q/QYm7BohXVz33mJUWKlkWWVSkEtHWX6xCW5k0bKRmz5VYYNd+bmcTA6KP7dwA5fAkABDNI//5twMhSK+2V5sUqQLheAjRofeMEoXZlbYJo5/Glp/bBQHLGVH0Pk2Cf7I+WPgp4JtMws4BQ5PWmvdJCyXjpjiBTJlPiOdRSqaVzUSGOVXBmaG3slp9nzpyXtu3/gHWoL8yvkSVDlhx4nm8mXMvzv+c7f98tq2YBI2soxhs9xF2xzEz79l2kERbWMpXrIq4pvbr23MmjENbKSeXKFfA7zoN2mE4JjCu2HgXOVtoQ92+cGP4U+LVkduBVvZQFa/dJoiQuIb7BgK5NZcvGNchkrSMzZkw2X0eQwAQJkkvxQoXFCZ8H926FInJBWX4Yi8mFv3nzT+Lz9r28+hpNvL6+hPb+UVas3CX9e3WWSkjJ7j5wvLk/brAmY6m8qaRy9TqwQG6TgQN6I9i2FJQ1JygxkZVWfODAY7h8vbF4ZPR3bUi/UNk5se+reLyNKBUqmeJl3r30kvdfIyhFSYvVDGl/6jwyDDazRCkKloUWE7qQtMZYsWhRfVT4gT+rEq/XXaudH9wnn4VZ2qwJGKIGa5i1cjy8PXknLe1kNSGN47F2TwqRFNiIoUj+GJLG5+Dj849WPo6DCisz1Ol2DKrROkrBTu9yoxGBXgvyaM1CFVQfIT1GgY3xU1SkSScKTRw71yfSTPsJuWZR+ea4qPgzplBv0Ajp/dat3yybtuyVVOmzAQMzFqpiwEqPxYYCD2GY0mfNBw/ES1UGirWH4yZMKmUr15Z9wNy7dvGsOWzot8aN5MPHryoT/DWs/WkzZMf6bsUSjYHt2bJanj26LD27d1LuPo51PcYxf9EqsUGc1rZN62QtPGuJgGbwo1pQAhaW2Z+jEWsnHaTUE+duA/cniRSr2FQuA+rhzLlL8nvvwVKz1m9SoAA0QNuoylzq7Owl27fvAgREJFU3rkSOpMoKtWrHGavYSGF5Shb5LVamivojCn3PPiOBZZQTQainIBglgoa8QVKnySqVK5WX0aOHqlto6ax8YSnEWDPR8sUmYwzOjWdtzGQuWhwDJ4022elGZfoxhSxaymjFYvFTbTzW+tLvY6YItdgCBUKHLpw9exZhgeUtK2cihiiTvH75TAqWKK/vOty2P3x4qyYNrVJVqpQPsSDHepmMxSkMC0Lq1FkAhhtdqteoBXdNRMTn1MaxKWqM9+5dxSSNIzXL5jNcdOH2qwXd0UaUnGAB+EXrD0nfLo0kOTJ9WKbn0cP7MnDU9FAJV7xT+x7DJYID4hNtmcSCMjYIcuf7snvfUZnx12YUos6jBuT26KZyO3FxowukdOmv6v2PFSuaJIj2Vjr06iezFi2RBav3yKFA8NGmjh2o+lq/einqV6aSE6fOwsqdC1a3hEqBIoAuMxhZDxWR2upc7d+rl7Ai4y9ZyqCVEbqy4rlGlI2zkd6f9Kty2UWNaS9RERYelmaDbBbf9x+wwsb6djmYSCrwjstXI/izrpDXqFwMbSXWrmCaI4PDQtkuHvkoabJGDvlVgVjHOBwGRlNwZaMgiHBbiRYJsWzJgqan5c0pSGTO7KUEEV9f4o2Z3GsMmaAwxMb7kc9qeqPmiaCiyvgkBoqzMa6LFjYtCUrttPhH7wFr9X34wJg9UxIEldvQQPRYdGn1q5ZUwOw/jpu/JYVBPgfHyEx4zc1KASxxYv/vp9VOA9nJbO6ZsxchIDyvdOo73upZOfMVtrqfO4vCqlTklwrImG6CNTwW6BchyDWcEDz3YS3esma+ZM2USoYM6m3ue+bM+fL6c0T5rXV3Feu9fMsxSRgKBc3cUThthLpUTjjdN1Td0F3wa6lssgElQ969iwVT4xo5fuokJGQnWQHLA6Vkmibr/tZKOvUeHqq+Q3vypXOnpFOz6ko7tbyWcUEUrOj2oyZA5qgJQJyUtCTRlE+NIaxaArUtBsNTAwms0V/PcQRm4uW4WEpIr7ExvoFjpUZHbKxy5ah5cGEwNU5QXqffpx0j7hmtVjTrNmvRWdr1HBsk9pV2XUg/79++IUlcUqhJx3sc3bdd7l47JsOH9g1pF3g2HzDCTPLLL0izRRHjbt06gnGCc1o0mqVplZs6dbrMXrYNrjrTgmxxmvE1HCigBaWnTJVGudgunj2GLLoDSsgtDTDZlKnTKoG6Yo3GwEGLE6o7HsE7cvbkQYkVO46kz5IXglVuxSc2wE1A3K1ECFq/haDWUTMGmPtlvKQG0XL79h2Z9OdSaY64Pbql2zepjrIY+WTSvLXm8xfPmigH9myWzr1GSLpM2WXq6D7S54+W6DuhWtD4enHeUNlJkQxgo3Af6huPWXkF9aeYt1kOhgux1xeAVX6BpQ2SD12M8EKqBTSk/Zg71G9w4nvjT4ecfvSwrcT96iZJ88c3CVn68yl9+GDwzOwLxMqECHVzf1oqPp9Xe2ZaS9i4+NNqxjCQsLo4TT0RZd0E3MksNU140I4F98lxaclD9CowhokWqdD0w2xRgr7qfwtapmjh4j4+M+/h4uIDwT/0YwzuGbTjtO4xhoqxaj+yMTB88eLlcujoWenQe4xaA37k/Ri72rtjA9AviaRNk1LaoFIHg9T1bfSYSbJ8+RpJkz6T9Bw6TX/oh20HZcH6IQLW1vXLJEHCZJI1V77veii1mMJFdwJo3xnSppTsOXIjaLWPNOvQV3LlLyolciZDkNobWIKiQvB6J3NXbJeMSKn80e3G5fNSv2pRCEnxEIrwGcj18ZCx5C779m6DEJI2QCVxTl4yGU4wmoHZaL7l9+DSZE1nf/tPASu4oENqUpxcmsb17WrTFhk+NSlLNyYFqAULIsCE763iMbTryH+pzVHzCipdl8JZ3boN5aGbu+TImUvswDzBoiR1+hzI8EgHt1vqME3CA7u3SP4iJaFdguv5tVWL/pTaVYsg5TeNtivcPu/cuYe4jJySI1dembJg409X+iXcHvQf7mjetFHAkXmEuLNFaiTXr5+DgJMYmVYX4WpJpvb16NpbKjTsEuIsZWuPdPn8SRnSq72qX1ksT3a5/uSNKvJ9/9ZlqVWtJKy2AePd1q3bJM1btJdlm4/KH61rQzDwkZnLdir3Bu9xYOcm+fTqjtSqWVXGjZ8mUWB1vwGX87Q542FZcbY2DKv7yBsYXE6lSW/58IUAY2NrUgA4nylcKbcSLqCyZu/1Rdw8HITZdr6YFww5CCy2x+qNLXdyIGgvgcJNXsUkGy3pxvJUJSV9+GgSsChswRUjAHNU+8ksIJXYAK8IEq28tYmurOpBlTujMsi4LD4DW2AxSAHGYWUHedj583bK0hcY/7NymXlXSPir+WS/DY4bywB4pHVQTQpYTEii0EaYiu8VJC3vb/mdmYq0yukFPctzvuc712WWHdu4aReqGtSW7HkLf093IbqWVqut65ZIFPv30q5t8yCvWbRomXh+iiLFy1YJ8rzwOvi3C1gc+M7NqyUOQCOzIvgztI3ozuuWz5anj26rYtLHjh+XePETwl9bB6BeFSUKXDx0KXakJemVpwwcPRMLeBq8UKYJGtr7hfZ8vmCXz5+SJjVLSVIXV/F4CswNBDRFAlfq2HEgSsXUx2Tyk6T8OqcrwhSg+g01nQGFBDzNnds6MjovJd8jA9ImZVAMgKZfWs/I44h5o2fYxBijRYuCVWCNpnbCS1hm1nDstMiR8ekbGQs1NMZykbHRXH716l4skrAaIPWVvweB4c6ePScXAf55AkWc8xQqK/mLl9N3E+Q2ad2lRS05cWSf9Bo0VspXb6DOZ/B7PMSHVKpUQtGIO4P6+Tk+0tKaBc5yAKeRHFGoUEm1+8ilp2KvScWWJxrfv4sCDOwn6n7HZr/KpfOnVaArS9jwvVk6f4n07TdIug2ZKAVC8b5YDojvT540MdXufVDWTp8EftXWPTJo/AK8Cw5SFRUAFi6egzjOguocauXM4iwON/crlMZZsf2U3Lp2CRbUlP4qUozp10rmzJoEWcIO75Uv3EM3xdE2rnzxjaWsHnQ1MXM4uMbFkEoWLQ60wFB5Inp3ZJtP4uUQUfXFBJVIESBVWZpTEDwMf6i6BRfxd27vJFkGXAMXKRv5Bi9xsAdDoKVJZ6FSJ+j/IWj93l24j+wiB++uAn+2oX8Mc9sXAZwUpnyjR9X3prbJhy5fDjyoO8AFfjtY1obKH3lOWBpp6vDhtaTP59+6EaAvnZVNO0bXGiuLhASbSbuGtKdQyt9Oz3N5nMosrVZayR7tmh/1SSXXXGT7K4Rfi3Xoe+9LT1FvhOy4pMuDeVn+b1tz500ZIuVLFZDixQMKc1yD+MeQG74zpUuXR3jA8XAvfRYY7YISsMAGfkwrWb56qDpmbcL1EKrmz5wMRvNC8uXLoyAdHnq8kKw5C0pPHQgkzf/pM+eQUVP/UunuobpROJzMBSBj1lyyZMNBOX/qkIwb3k/16oCFeMSIP9TfkiXzVdp2o0b11UtI4eTBA1PsgDYECk3p0nmhcKQD3AomnCsKABRU9NqX0ljxS5Fhse5iYI1aFF8yc/qz34kU5NgHTcfUoiiIEMlcfw+eGhhKu6WrkYIKA4PJBKl5092p9ZUsmf8JwPgnFlbmX4vmvrJg4VKZBhpFd44taTPnlaxA8w9KgPEGIz+8f6d6ktsABmV7+/qVHNyxRn7vMlB950JCLZ8p74EJUHbA2qGQFZKWI0c2pEnfgUCaHEjjBaRx625SumLNkFxqnBMKCmjYUqyzR0GFCM1ZEdM4sU936dOmgzxFX9cvnYa1qQDqVcYIRc/+T23WvJlMmjhCQXy0Q+aSE5CYZ00cJPt3bBYnoEDbIZnlKwSMJk3ayFebCHArxpW6gI/hfdlS4nzLFhnxmRwzG/lBmjSp/U4xCVV001MZomxOFxjdTpbNhH3no+Zs1KhcnL8t1HZ2FJzgboIv3+bidfFJ7sq8e1PQN4Ulvso6gSluzK8SE0Cdd+9GEVt7k5LFxd7XF2EKCBj+LI7w6HlLsuivxAbwOGycx7Sku9+HsOQYWbwpjNkGLxTyoXz5YH7uGV+HgMIV+6bySMsV+RaTcDQlUd3c7x/Po6KmxaNyLlN24zVhaRRUya9ev44O5Q5B+/aw5Fi4Zs390oXgR0Mqke8evxE7p6hwDZrPCNFGdMdPsudqFIRdmMqTEdpCa6Rvvnzfvmv7+Xze3tZDLrRzwvJJ/me2ZIajcEUA5y1btsva9dsAmdAYbvdcYRlemK5R5bS+vLMqXGnQIlyHGBrYomVPZO/Gkl9r1RNfENnGUikJ0wjCftEPcRGGdDg0+91DfM3+XRvlzwnDJX+B/HLk8BHFsHLkzgfBKr+06Ng7QHe0WpHh/qhstQA3DGZH3Yr5Ae9wVZ0VDda1T58+AtcmK3BuTqJuX1lZsWIRJruNKjhqfvl1fZLJ0HJkaSHSnRLkJqV3MiYy9cDA86jZ8DgDGjUAU05GWq0YzxXSe/NejFVhHAGDNPlih6UR3uHwkWPSpHEr+bVOA4yJtagckUIbF1bPgiiVk9ncLa2VNpDgWApl95ZV4nbvivTr+zsYaTzzOdoGn5OCJAEkKUh+byOOCrMLCxUrKUV/KQ9E+d++t0vjelCAJZC6tfsN6dGfpVTZChBon8Dd9VGqVCqHbN0eeLc+KIsw4VCGDx4rrftODDPdRvZoKdV/LSdzZi+QS6fPiBOCz99h0hXDHL156644QVBIlDUrmHEkeLvspXnHPoHeizxr746N0rNjY4zxeaDn6Q8wuJhZivSmUcP++BYLO0xcFASY2cXGxBVm/urjIrmf1iGbhw/FF1nVvnZ4oSNA+wqsUfAKJDCcl9DCvXKlA9xULIdFCQYWLp8v4pLUS6LGgsAU2gYa2rz0FF+LUkTs5sZFL0mS0sEsVJHHBTcfzwFLkKF28eMHn8XGrD3Kd/okomuXYMGIYarXRz5At9y7+54S3dVZ0dra/Tkuhj/wXPLOoCz8QZGHPJFxZBSqtSxJDfLAWgD71q2IoYOCSmiMn7nRYsXswPUbtosLlB/CpkSKHA1Fzwv9bcNmxY1ndwAi3LShv3uSvqQ3aUgFn2vK4OHTpEWXgf7O45etgGxZA7DimUu3K/kiwAnfseMfsWAFN94DOzfIkD6dUKj3Cyb+FxTbLSM1GraSCfOKCNFZF82aEACvQuuTRX9/prZ4/SFp37iyPAPgWfqMWcB4PyG25L4a4tKl85VwZTLbggFaaZz4IRVwLC8ng6AUz5gJan56hqM/l8KUXhjid15LhqK/NwU1alfWGA2FQLovCIrIpsUX0vXJe1NLt8bE9OPQtol1UgXwCBmO74c700UJy58/f4Gp/Yl07zFI+o1doJ0KgNrjsmLBZGCpZJTq1SoABLWx+Zh+g+P28GC6NBg/aKo1Lix8Xv0+HtPcrWTGbDzHshFQcifibRo2bCbVq5SWSUM6y9Url6Vtt8GAA8ljebrxPQQUWDZ/mowb1ltatWoGV2wBxNHllgI5MkiB0hXk0uUbUg8FwteuXgmr5HlkNyWSEvFiyaoZY6RMneZhsmRt3LxBHj2+J9mBlH/y1Bnx+vhZXjx/JnshYOQALl6adOkBYugKjLzCsnfbWvUErJm6d9sqhCB4yCcA3K5c8pes2X9JpozoI8/d7kqr1i39PymtIXQ5IRbJBtYwX13xZ86vaNG8Vcylml9OXNBNC7uHu7d8gemIgpelcEW3HvvxTZ3K5OLja0opTTND+x9BkMIVT922zQHxZl5KOfp2KVamd+jzKz51FjEet3kAwS5pkm+nYouPycVMzSX883WK4e84v9Ai5RDVETzJxCe4zzz3/HXAI99a3EhvwCujqutprNMa+cvt2wQ/NtWm5X7GpOkb3XT2L9wlSca4ajfnsvIKxI0qbz74yokTpnp6lgaNS5fscZ43rN8h5136+2rbWsUOIvNrjeEaDHq3bBTGmEjEjO2fvW3dtlNGjJokv2Bubl23XK5cOo+ElLyYKwXxm+qYrN+DMJmImFLMwA+vxnJm5w9jwugaFRYK2bQWUgjcuHEb3IRv5fSJQ1i/TElXutOlVIUasnzBn7J+xXx4RHZhPsaQfiOn6U/5Idt/mwXrA0zxy+dPkRvXr8iTRw9RJ260YnLZYK3g7Nu9dY1U+hdbB1YvnqawPA7s3yuzl+9QeFyb1q6Q4cMngxk4A2spLxioU5A/In31ZMBkDpywmttNfxG1Yfr7GeNBAYl/DJykO4BmbjI3Wm9YsJXHrAkNWn/U3PTZiLT8cB8XBPJBatgPHtipsVBwY3wCrWB6rYv34D25QFiZb2oMvJ+1Y9o4LD8b/NZafh/4pyrgzGPEI2O9wLNnjiK+K5ESACnskVaapYr9U1CiVU3PfCl0kV5krNyvd1PQnUDXIRk4ryfjo0vD0iXKuJzz5y+g5NIimTdvoRpuA9Q6bNSmh0SL4aS+G/+CpgDjlIplTypxAA+QNl06KVumuLRo0URdNH7CVBkxfIxMWwhBtnox2QRBZs6kwZIlQwrp9kcn9SLfRGmL2g2ay7S/tqu4raDv5v+ou9sjqVQ0E+AaNsuV85dkyLBREh+p21nSp5c0GVIDN2cD8PZOSqlylSUxMgDt4D53doomzZs1wOKbUHU2e9Jy8fjgoQqKp0yZxP8NgvoGocsGFli9wHX1EuqxZQj5nLBB+MSrT5EkekzTexrU7dQxgoAyw0/fIJit2hAZi7qPAum0FDT0pwa1TUWRQMrWricvoMBCSxyzMUMz5/X35HyldSLQIHvdyVxkeT7nrFXgZDAyG1hJr9+NCPRuFk3GIHWN/IHhBVrtRd2hMG3u3u2Acm8mwYk8irA55OW8D/kMlb29e+2VAtu8OX6nf0Ejhtx7QHtkzZof/N9TZv61RTq3qCl16tVV+yvWaml2o/ds3wAxyW4ye8XucH2yqcN/lz+njlR9MgufayNDYRj73Kr171K4zK9Ac4+jwIidY8UO8t7kRYz/DAwZPsiLrRz8Ry1Yu7euk1EDu4rny5dqaOkzZ5f5a/YGGOa/Wbjiw9Bsun7tKjAVlK8BErhrinRq+6+/poPpXJY2bRjwedqcHRWAANhB9xsDJem3Z1A6mZg+LooTlAKW3uTMwFi+cD6Pn4pzujgquJ2CFrNy2DSFkfXM9AyPzJBxDxRSGKROy4+G6UKBiTFbR444wMpjK7VqfUE6bkQlgGjMQ3Xu949Mjn1TyLJsHC+b5gqxPG7te8oUrnL5wimJGz8R/hIC8+SGtP+9H+K+7uN5gOx9z0YFj5JWZFa0nDEOjOOn5e3GDRNkBONPaFlLlcoEoEiBSi9gsb4X6fD2LQVKGyWo8jtppi0gZPSxYsVTw2zQoJ4CuqXF1dU1vUSLDC3q7Wdp12OUWRi09jzGPgoTEH6hZL1GPMzoUQMVorNGlxgg+KQ5SK3OkFl69BshOzatRJWHixLj2CGxKVdSbFFLkthYr69elUGAQRiJygHWGpHVB/ZoLR4oEB4VwfP3b1yTX4FzNuPP6fJbvTpSFoHrW2fskV07z2GhfS4JgZHFcXXu1Fqh/bdv1kbuu9+DlSyqv+65KOYuWk9lZvk7oP9C6xXdc5wI+mYLKw8tTrrGgso2NgHnilqFCX9g4ebzhak4AvohaKRlAoqu22+bfoHv33ZgCzFTFK5O7f0orqmhSGSGQsQTGEulf+F1F9m8eh3AQuXt+RZzA9qblca5w7ItVPjC0sjLGFxO1xmVTQpO3A6qUZEkeU08D2dCw3JJ72iev9zwBWOIYfdOntx2hKAbWfEE8iP2zYXa/ssHCA4RrQtoQd3cyjGSk/ybfIj8lTzq5UvcBI3j3LbNXlkqq1b9YuXqsO3iukHlmDGmfP34O/CPfJG/hzVFPTR3IhQCgXOHDOkn7dp1lq6takmSpIlk0oRhWGe8ZPSYYciqXQcA54zwPt0WvN4qTjY8lc+oMWLBYoV6sQCY1rAdabnauXOPRI4RW/IU/CXEj8Q5H17CVXA3DXcLFoPVnzx+IGuXz5O8BUtI55a1ZeTkBRIDAGJZgSPzs8RNBUeY0B6nWbJepYKqxmL3/qOker3mKs5k2vghcv0KVFY0AlkuXrwM9RbbW+2eQhUnvSYEUPih8MTJQqsS04D1JXXoGuQxXsOJZcnbtZtQSKCJnS8mtTyaVymEUKigBYvCScyY/jVOalxnztgrlyBRjp8/t1MMnsxjwICPQVrGtPtqn+TfFLSsapjaSbrPdu27ycoVq3DNW5kwc5kkcU2FBTGSbF42WcaMHqzOZH9616bucn+bjG1hNldgtNFOpvDKNHhqnaQPEwbImPhb3Lt3EoGqWWE1xAKqawz8rFa9rrK2xYoTV3fE2LRGgbu3rkutcnkhJKQD3tVB8yl796Le39WnUrJSbSlfKB3qgUaWmUBht8fLnQtuPZsHjzABospLLJSJEA/XvEUrhCJFkvqte/sTbAcDxf2ZxyuZgDmXPl0yuXHspKSHC9IX2XZ2WHh9aUFGn5wPj91MCoxSPBDnhDdEzlyOIgRmtGwv3b3kGd7/BEls/VlHzefRYkSYguBeMlhCv/raK9c00+gDNE5mxlHRVcdPCFXm1RHH7ty1lyTxP4tDZBxnhpg3zre0VKFTBSZKyUPXviLg+8JZ4OcliiAOz59IgkxOYkNpIJRNc6vrL+Ow3R4DZuG1tyRPY6cEGFrYg7Ke66/XtjVLuPadbj8KXeRveqs0FTre0xo/uX4dmGMATaXFnXzHxwc0RAtqLAcOOCj4GcsMQG0coflkLNf7V95KiNWu41j37nVQPJhhGizuHdR4tOuC+ySPZsYkLTlUFklzrfGeXDuoHJBn/6hyQEeP2uO1d0cAelqpXe83mYFKKixsfuj0fSkJt1x4tYOwPqdM5IjawcVUl9NnzJXpM+bBqt0SCpGTFC1dObxuJdvWr5B+3VrK0PFzpGT5asH2G5QFK1gBi4VKGSdFqY/ZW7duXEKWTTyZOmaAHD6wGwWWi0vZKnXkzPGDyPSbKC+ePZVHD24jyy6PP+YX7Cj/AyfQ9Lh8/lRkFfaVLYeuSuy48eUlisF2aV5drly+aH7C27cvgWnEN3/XNjgZqLVZpndTM7l+3VZpRIzToMbCrBxOImpJli4trT/LTwpknGxen7zEMYo9rDDgQMG0Q4cclEuQGhnN3/v326OQphcKYAceP8BxBbfWBHVbd3dfWOLiyLAJc6RgsbLq3Ttz4qDMnDBEDuzfAqEnYlCX+zv2PWPhtVyMKWRZex4tAH7Q6BkowVPT332NL/4p8BxQJuUgPLFNnTpBlbLZt/8Qgq7XyprV6zBfrkELfy4Hd66X1x73ZdKkUUoYUsIVBA5fBBlyqfSOEgkLp4907dRT6nQYbHbR3kMgrNvMYVK82SCJkymexIgL4YEB4vwRgWGlGn9EmjTRkzcENAoLGbLB3QBQUV8IJHfexpUImBdcuJXLm0WLERCvNS74nHt2Pl/F8fFdSVgshXbIFBsVnMDilzZPN1uSuB+BnRWIgMPziPmmf+kgcN245SApEsKCBAFUHeMKGwLzxNuXXnLfzVG5v/Vdfht8yLbogqeipnenUSkkiVkbUFN4yMfCQ1jRRnX5tJekz86FXNsT+CcVJSpJtAbCrg862ivDIH/PwPgklTXGROXKFXgWcuB3DHjktdtHCPrAIswcQVnaN21iHUkfZFKHsLIG4+yCe5dwW9Kdlj7+LkHxcvJ8hj9YiwcLOPrQ7aERgG7QocOaIgQR9QP/miVz5y2WKHEySIasOUPXWRBnUwaZMaa7TJ82Rp01YOAIKVSuUYjqkwbRbaCHCGravE5ZWbBmb4Diz4zP/PjxncSMFVcZjgjjUq9yYfYVAzLAG32nJtulfo/F9u0bV6RQ5gRSMFN8KVswrWzbsBJ+17eqaPLcFTtQYb6CpEIaM4Urtlhx4ykQPzsLbd+i2//kVwqhtRu3kxVbj2Fem9SJmECSnr/2gBQoXMz8zFyYrTXGA9FyYtmojXFd4DG6/shTaXkimGhgTMOyD37nJCfmzldfhyAnpP5aCnuMu+JELl78q/To8UkJgfweWCPqtP45yAioTZEZa6ZsZi8S74b7uE7wHAqXXHwiReJC9lSSxrGVKSN7ysN7t2TmpOGI34kDukZSDIVMg32xHzJVWp2osVo2jSmzfwqYPC+kjddSsNT64HUEtD1x4pSsXLUOaPD9JEu27EAMPxTSLv9vz+Pc0Boz99KlzykXbnhI3ZZ9Zfepe0AkjyJjB3WVPdvXy/F9B2TLuo2S1CmhXPZE/IxnPLl2J6K83H9Vdk+YjyovScQ5WQYlXDGrb0yfjtK8fD5JnrGmeD71lju7HsjNPe7ie+6i2ECbRmEzwc+vhChflHihy83G0UFiRPOWm+e/yMOIKWHdchaXeO+VpQSyoNy4grptyAjWt3i2HpIyhZeyTthnSKUWT/PxECyISmjCBbSUvvkEfzatVNYa0+uJrM6FVmvgp/Ze8OXzQTRa6oUri758kTBy5+hLNcc+fHFQrirtMq1LfnLu0SLE+UnMJs7Hu9e85M51H7VNBYNzh83NzeRGN31jWAEVNhNYsiZc8Vi4CFe4qQ1jF9BSZHBQkA9aMoraGcg/0pY8LkUqX3FNZRI8+J3PQQHZWuPYWc7owQMTj1J0wPPzk3yGfIV/dEOSR/GPQiTpooVA6PulsO7+JrLMn+8oBw/aI0Hms6qM8cYdAj+E/mDbt6kS5KlUvPnbBbcGkIcxfEIJnkH2GPKDfHbemwJ31KjPYUy1k4dIimDWbxIkpjy8fzPknYXgTEIg2QMXjl6DESMmiF3EWD9MuOJwiFKwdPORAMIVj20B4OlnZDNsWLlQ6lcuBJloOXdbbcFasKJG9c9krPZi7AyWAoeA8j5r4hBp3KieAt4cPx64PG/fQWBwAMONY75eb+I278QGBQkGdHOic4LTqkKGo5imuyn+ij5+amp6vkumofnmNVfZmTNMJQ6EuetvqttmFg7TjxmbxGD3gwftpH593QKAc8mAONk5rosXTS5IWtg4Ls31yXgEMiWepz3D3bumoEUyRz2jvnnzNrS+YiqQskiRQlKrdkMpVvRXPB8FUcZrmNLa6UbguFhIlrEVzDaylk3JcTMmITiGpHts8yZdwLPnLEK9uUvQzPKCWbvLm2d3EPS+QPoPnwIA1Hrmc40N6xRgsoIbtL/4CRMHil+3aeV8OX10NxIazkif3n9I9eqVZPnCZWCmCSTiB8TmPHskHfoPhGugqUTDe+Dr9VlSxnaS61t3yMjfO0qkdAAcRqyG17W78tLXSWI3LfPNGuBnQVKTCAuEzRdoLDj3qXdsefsExaDTRUddU9PqRkvVs/ufxT4qgqOT+SWcUBrh5GK8FaxqVAbSpsQcsMM+NRGtP7flXrqtGR9j1U1kxXph8/SZ+CLr1uMFajTe84F3IHj8JI9npjjKBAn9pCPLQeA7+QjdcpxzdMFxbugfg7yGyguFDO739XwtrtmiqrnG7nicc90ycNzKrQLfRcEwBMo4Sc9aqalT+wdQDrzjgEcYzE4PAPloSBqFCPJPuhn5/PrrWNWCoRXss2BBaL9BNAqi5FFMDtDz5iAuCdEh4qgxxiskffJZSL+gEPVDclP2w/eG84O0JM/u3WeIFK/cTK1lu9fPlIGAWWmB4swd+04ISZfBnuP26L5Ssk8d3ScP7lyTpu36SGrULf6nGz1WW9YukQxZcqJ+bV4OJ4AFyxCw/qZfqUOjynLsyAEpVbq07Ni+3XzXsWNHSKlSxeESc8UkNiHSUjNQNdF0zIcvNgt0MsCdzIbWHy3YnYyOLzy1Kgo5NAWT6XECMu6KzJOM8MEDLh4Iwocli8KNauyY2nIwTI5Mdu3aCCiF81mZmznJCHpKQx0LhVLACarxNhSKwsKMKdycgzWChaUDa+yfGY+s8UVmaK3xHO0YAyQZ+/PgwWMsIB/BpAhPgcDUaFGg6b3Hs8WUZAiCfgGcn/fvP8q27XukSOkakhMC3wMUGu3/e2Pp/kcXOXjssuQqUBzYXQWs3dLYF0IKPAXEyaThPeTurWtSu05NOXX6AoJm08ulk8flhecLyV34F1OhZrwLGVFX8M/RvWQRspLtb9+FJchLfCCA2Dx/gcjehLgjBC+4kd2vvRcfxO4lTOloHa+JL4TnKwTaRUTZmy9y+X50ABhjDj01vUd8p+kCITRJJqcHytxD2IIP72HNeQKLEt59JqGEqOnm8pNLryR64qgSxQkdBNGYPUhrm75pLhnOfe1d1h/Xthk/mSlT0C4vJSCibl+wTTf2YM8N5gSCj3KOWoufCuZSxfcePjTFePGLrTeyM2HZIE9hcLyZpwXREQWdV69slXLGMWg8gfzzwAF7KVoUmGBQCoNqtITzWhgxIJwGHd/F/smH9bGzQfUd7DG/AZP/WyqkwV1LYdkXcyV+IuuWvGCvf+glr95HABaWf2ifth17SetuI+XG1Yvy6tEZYBvWlwGDRkrxSs2FHpzvbasXz5CRg3qg1nBL6dhruFonv7fP8Lz+u2KwDAtW+PwUNCmuXzEXWBzTob1Hku3b1qPwcEUs7tDq3dxk7LgRQDpvDEHFTpmmadZWzS8e46sXA9NtoIEErX1R2KIgRuZPwUqvdX3vk2jMyAaxKXSfUDMjc6N165dfgtbiGANAAa1Fi89hErKCGzuFTmvIyLTekRHqmSZhF5q37CTZ8paSxCgiHRXPsnn1XzJr6mgpU74iigxnBMp8bnn1EpbB2PHhJowqKbDYR0QcEF1SvTrUk9kzxkEozqCGVb9JW8kMRPpLwOtq223QT8cAgqPdz3D8/KkjShts0q6norETkmKw/MkbxH0yQ6lc1QbK6jVjfH/EVX2VIgVzS42qFa0rBnwZ+LJiLj1zAyDu1qOSPB1c0agOoeKyIJmozD4qFZwwPviDJdn7obu4SUL5+hkxgKlMVPn4zluun/woCb48kE+RnMQXdU8d4saQhPEAv4CMSDbeioJPRLvPIQoc5/lUBlhwnfFMftEEphtyPBi3DWGpYV3zpcDoZzEznWCCE6GQQMsT32u65PRZurQQvwC+lkuqoBdSCgqacKL1/aM/NR5i7T42wDHyjR7N2qEg9yn3H+I2P30GTWDBprvPH02DuFr9buBhJPujR0EraEF0E+AQ3XEUaNgvleWQCH8BOrGy48OLT/LIPYLYwsXNNUITspkhTY+qlmFn5VK1i1Z+hpbQqxBaZZcWMFrMtHtq9/i1ZiMZMG4R4BmeyNkDq6RL5zZY057I6AlzpWmHftppYfp8cPcWLNp7JUWaTIrHhqmTH3yRIWD9YAKHpvtXKAPU+Ndi8hhYYL16/SELFy1BuShHcbt9W/KmyyJTV+5T3VliwHDN2L/fDnULw16jKzTjDOm5DBRmnAGhHPSZPhwv4zqoWXIRoAXN3d1GuUZCYtIO6f2DO4/xY1iv1Bju3LkrHTt1F+eYcSSaczx4dpA5iUBYllSIGDkGipYWl31bl8t9xHwd2H9Axs1YooLs9fcY2qutHD2wExmVV7FAPkVGaHfgKG0CE00iiVGoOFachNJv9Gz9JcZ2GChA9P5b1y/BPThdXj59AADfjGL76YucPn8eGFnrxTZKREls6yaR4kVV8VP6Wyh0cbjabF+9QomZ5PJw2QlJUgiQDHEgtEFAYpYdV4k37+3ELlIECG76q/22IQmobDy4Ar3tdGn/Vk7le85Fh4sqY100V7y/U61YgTgnzp/2lYdPIkhm11fiwjqCcHuqF9bfxRguYnf0WFo8TKsy4VT4ydhMPhYDtUNsmUIfFy+GvlagxdB+mq8U3gjb8vq1rYQFBoGCGl2CWhZicA/G35u/PYU58jTeX2uMe2IogqUwoh0Pyyetb1SeKVjzPbNBMW1KSuS1WrhEcPfjO0eeSCGccb1UwENSd5GuUMb9Wp7LWrMduvSXjr3HINHtkESx8ZDXr97IuYvXoIRORzzycXFJkTosj6vwD4f2bi9t0P/fBasQloEGJWAFbaMOy92Ma4KkgFPMWLJ2zwWFVj8G+GAuLi4wH6dDDcZ7cuLeDTDJC/husozoO6J7LSHiKWgJ0mfx6M/5J7ZZXoKBh7RmXbliilVgyQhqbowzUcIUOM9b4KU8eRJRoUmTQUSMKFKmzFd/WhQnv7W4FDIxLU7E8hl5nytXTLFXWvYlrVZEUY4V7Yn83rO/NGn6G2IgPGXYyIniiuLcSRLHl+LFCqIAawFo/xFUl+nSZReHSFGlfe+xYFg+4onszxgWFQNyp3ZW5x46dBzjZv20eGJC6jcV+o4cObY6njCJqzTr0NtyqMb3YChA62DDqoUQ65dDYgCL6uljdyxQzIB6BLybDWpb64JWppdrH8qLKNHlS8bYKhmBLhM2X2DlMEDaB6WUnp12k8h50ouNPdxtHi/lkUdk+fwRLsOIEVAnGQvge295+MhBJW1R++f7x2DoSBEZDxhZWbiU0ANR3F8DNAPxlT6+N4ECq/tigeU85WIEG5nZH013Uty4/q5WX3ivnDm9Jac9q1lEkXtY3G2hgMWKa6NciGZB6/lz9gaEeJgoMHF4X04sLuJstF7Z2DBBxFbOLr4pEVMmxMIfTc2/4BZcxjP+VxqflXzo118RFxeGRitTUJl2/F0pTFGQ4h/jXXl+cDQOw1CsXkKrJ2FEqDCaGi2UYIChaHznCBURx89zx3f98mUTwLK+GwpttIp5PvkstpEjKmFRbyXVzmV9wvRZ8qqvrBtaoVQu2bv/pLTqNlyKlqsrsycPlyET5mmnh+pzxaIZ0mPgeIlikWwSqk7+4ZONGKx/+Aeo/ksWWKVyyRcIKRvXr5f8GdPLrhMH1ASmlsGAWJpyGZeVJYuXvH4JrKYPMGUn8zVPNGokljENFFaojXEyknFQ8+DkokDCPp88Ib7MN+ZKNxpdbHRbsDipEoxCQBsClJLpaGU+yHjYNKbDcRBz68RxO8Qz2Sl3nekMAXCjtxIWqelRgOKk/sY8tLO+fXLcTk4mrdDSWsb7affUrqDgN3bsRBk0aLjaNWnSOATm1wI9HZGB+AoLUErtVFhIssqcFbv8QYswKFsr+fDM3U1mjusj1auWBWZOHhWjxXjko0cPgellBw3spOvvvWXpElNGyaGL7lYzUMw3NDYCUIBBo3nSxEQJneYIbq+s6nkqSA78juYyLn6WoNeeCJ965iVxkzio4OxXL1Ds9aO9f4gTxNbdug1k8fiOKsiYN0ya6KtEcsQ7BKFFUOaF8A/M5iM+1ZPbn+SrQ2SFKeR99ba8iRxPvL2A6h7PQb5IBHFCUG+kKIhj+YIsu/uwbH3BC4uXzs4RMBJ475k5aw4i1lmsmO3K2CEqHMQrUg3YXOqZ/F5am/sPxTdZEnXo2vF3kjZPVNN5eHbbu/dQh9BOfJkMAwucihvTVYWgZcPTk5YXU3wmL6SgR2sH8Y+CmsuM5aHL6L/QSOcFC2ht9JVKlb4qfsbfhfxPwwoM7DkZG8Z4OmtCBK9hP3SRUbkNikcF1r9ivGG68FuPHANjxfS879vRUG6R2fq9GPRCsLYs+Ti9DHx3+FrSYhUZtAusZvScuYvl2u0n0qBFN9TwtBO68xg+0XvYdEmXKVsoB/TtdMJBeSO+zilm7G87f+Itw4L1E/84rTr1kbTJosmFi5cAcAYBK2UKNVq+4MwYQlURf1aduJHeQfuI4k8SsWQKzJYjsyfD5WThXCKsAt0IXMQI7ZM7t5fS2i1JQ2GNfnoKD9mymYLlLc/Rf6cvn1Y1lBBUC4g2+Wlu37nTQTElujHYaHrnGHgPNgZ/Xrhgp3C1ChUCGKRZM1OHzf8oFHJMtFDwee7fJ01sQRsTQntgCwiFHhbvZTt8ZK/Ej5cFQidTt5l96ARr4XOAqZ6Tli07SJ5CxWCJ+wwBC1YLtFH9u8iqpfPk+PWX4g1benSUxImXIKmcOHdHLt18Km9RMuLT548yf9af6nztX548ueQ0yq7cv3tTwZdo+43P4ClAa9WB827INLwvxy9ckAYNW4j7EzdZt2iTpMyaT3w/40XCC2eD3ymikyOKCdsr8FsWUKfVx/EdBCf4yZgmrxoE6Qg2H+X9nbdii2xoj+d2sDhQ64eQFBvMm4CebIzFgrzj6BxJ3r/EV+x2yusqsZD84ePlI6gxLh/uesizMy8kUenUcglutTQZgI9mh4tU8WUrAgr7ZMPkc4aFyTmzKekkZkw/RQBo6/chONki9ovlnxhrdWgvYUGwmNthgsJ1rRqzFaH9XLp1R5bNXyS9gP8VI3JS+RoT7k3eApmQTnFM8Tg8X5sLFCoYL8PSNQyIt4y3oZX2KsoPvX2bBLGEkXEd6fLvblTyOnX6pIRpys2RIployExJCpukFx+TlkoKKsghMKPOWwV+1ZGD/NgsPOv2h3gzMOYW4g5MJ2qvdrCX6ZUSayf7QFrjTw5LbPz4EQFYyjXDFMIREoF75cp18tjjk/zWuoe596uovtEa9UUP7dkQZgHrxpULyDJGYXNKk/+BZliw/uEfkcHvxBl78eKRLF64RJo1byQ25AJ4wT69+SrX70VWDJIBjIwtYDxTgMB1SiB+E5jCFEtq0Dr0PY3vN/thJlJQjedpeCxPnzII31veeCBW5lIUxcwIO8EJSyZPYYxWNaIac5zU6LkQkAHWrv1FWSL83Yudk7OhMa6EAhqtcGw8xKxJCoK0funbA+CxlCpVSd7h0wa17/YhW/DTp4SwbrBGoym1Wu9m7dChmzx//VnWrVwis5dtg6UilgLVTYmCcTPH9YNW5y5DJy3S30JtMxZrOQoXf/X6IgMRd7V45jhZt3oJCqOWkT4j5wQ439gROgqQyf6BshzDh/YG2G1GdTGtRzYR/AQj7KGFlCC8/G3Ve6B7Z7S7cRezXhnQbBnbqJ3DOCa+k3w/rp75Ik4JIiqrB6/h9cBPFiZEPQeqe7yEdqa4reAWMXbOi/0+Xz75Kk8eQvDJ5Sjrl6+Ses1aSzQcW7x0KzId86p5zQDtV8DJW7Vxq1y/ehPKyBtUxngie/bvgfXWSdatWis58yAezc40L0ydB/6ft6dw8dnzo2TKEwEKxXnETB6R8xdvSMr02eThzVvy2fsditO7yaoV8zAfIZkE09gn4VYotJFVcQ6HZ6PlnjhkjlFMQhFDDsjeOPf5OxLUVLOYh/a+ZJUMZqd7jxaa/3SDFdUGKa96sFz983Lu3LnB+FNkrcdDzGJkU7iE/hxr2+fPX5SFy7ZK47Y9/R1eOme8JIoTWdVrzV+ktDTv1M/f8eC+HNqzVSaO6i8rt50I7tSf6nhQFixDwPoJfirG9kSHWenChbsqA0Y/JDL+w3t9JGtuOxXISD+8s3MghU39LiQT4mKjz5zT9xnS7dOn7eGmwYIWDC9nNhIXJzI9Mq7gGs+lUEZmxxgAMmoyVVq2eC+GRbFgbJyYXuIQ0Vadw2d+gtR4Ni68iRIxjkt3L3Tqi4tdXDLIK49nMnfRbKlSpSIYM0zXEOr0xWcp9JE+tPwxnIWMuzQAcw8dO6765j3SZ8oipcpWlAmjhvCrdOk5WIHIqi9B/GOpKDuYQCKwY6N9NwVYv3DswC6SJ0d66dK1fcD+8C74YiG5fN1RMqUgLENEcYMQ8+ghCpDDmxYJiwfk5QDBuSozj1YmXo/fzAd+EPV2werFfR8+2irLLOcQFYGTJ+0lS6Yv4n77s8ROFtGMlxVwQEHv+fjRW0aNoCAjMnnaOFXwvkLFCrCa2csf3UYAEuIGgCkryYJVu5A5lVG9R9vWL0fpjlby4skdiYT4stA2KjC3jrvJtOWT5dad69K17xhJmjylv26mDO0mk0DnCNaCxXRncs4yuJsC1s2bpvJbjEPy0+90Z4Ztk1ZtVo9gVjKFZrr7KAgwhIExQRTo9LAw5CVLlzoq+Jjg+FTYRvQvvooCFiyctOiSTvRikH5UdEkrlvUx42jhnQ+W0YMUjGXt2LmPdOwzzhw+oVFo7uQh8sLjqVSo0VTaN6kqu07e1Q4F+nn+9FFpVb+S7PEDGw70xJ/4gCFg/cQ/Doc2Y3RPFM4cIhcWXpGo+dKbrVE8Ro2aGpyGjsx5wHgBxmMF1ohAzHgCf0wvJNq2RYcU1CjgmSEjLI5rX8nAKcSwqLI1gE/tPO2TGD0sTUHXIoUkxktw8tNixucjY6XFjvEhBQp4AcgPgpaf5Yp9kOEyiB2OHrF74yneTjGlW9f6cnvHZslaHuUNVi4KkNqu3ZufdF8yPmvfvhuI0TkmJ4DEvmHdekkEBOIIWGijx4ghmTNlRAHgpRACvSVHzjzSf/Qs4Mck0XdjbP9NFNi3Y5P80a4BmPtjvC8WgitWDhsA9t586iQR71+XL1GcJWICwCi4YhVhYywUfkM7WH4kahTxBRCpL35jQo08BW5W8catJGWO3BLh/Stp0q6VFC9bSnilzWdk7SHeia4kBk7z/aYV9tN7X4EHQyI5YP5RQLPWeE/dsbcvvsgnH6JQi9SsWRYJEN0Vnhovff/urTStWUJKlyohQwb3wZx4I/0HDQWYbTa5fP40YELiypXzJ2TenClwbScz3Y39E1rCL0HD2hD0+7JnL4KyHrGkbrNOkrtAMfOhZyiKfXL/NjzbXZk3ayrKej2ENSNwCxZhB8iH9NYjxoaSPhS86Folv8iQIei4L/MALDYoBMyZ46j4gZawYHGK1a+czxyX4ncanyMjYYfcSTO3JlVY7eG/uZPvLnk4hSn7t68kQRoIWjaIHeTrA9IwnEMJpUw/haua0CUkG4Uwa42Z06PHTpNmnQZCaYE5169R4d22fpk8f+amSuRly10QsYuYc7o5oJ3Lz9PHDsgqlNSp16S9tIIyMQdegzQZsupP+VdtByVgfbO1/6se6b81WFvwgBceiPsokFaSKcUSMyCQRj+5ZcyV5amcICxrwaxDxXR4ghZvYnlyIN85AVlcmkB6wTVarVKmhIVpwT6JWCyXxEFMhz/sHo3poSPGh1HzpXDFBYuI8hTguE235p9/Oirhi5YDgvOxmCgBTfXFSilsERWZ3ODNmxhy/sIj2QbhavnyRYgtK4e7gEtYeV7iXzEu6+HDm3A55ZXS5SvLji0bJEeu3Bh/CnkH3KHGTRqimG4UuJ3uSLlK1aRG/VaSNlP24EhgHP+BFGBsVmwIE3s3HJSyNX/xfye87MwafAtk7QgJE0mSFIi7+vRWfL2jyddPPvJww2WxSekitskKq/qDNu4flfDkHT+13PA4B+GqkPQfO126ta4hVVEpIFeuHIBD2Y7FBuYvNM616FG+4B21U4LEZ7jtr+17JbHSIXMxqq2y2FJJUAsVzmf2ogqcR2yLVoj54WNkKUZ+jeSIrFKyzK9m4Yr9R4oUWbojU2rFvMnyAmVGjhw5Jq893WTHptuw2nyWS6uXytjhg+CujA9BEs/FCakWLjANClqU2rTanFwd9aDBWEmHj5wg1es2kkq1mmKMWGnRenZsLOmAhL1vxzrUdhsLS3d+qVi2oNhRCAmiMYuOsZL6xkU6RgyMw69R+aFixMZQBr0w5ndKoB/kW3XqIJ0gZJ4qcz/+XJTavOezaswvtB2ae/53b0SP7CXRUiOjVf3seG9UwzuiNb4vQukLYgCIT1fy4cP20rgx3l2Ltn37btm49YB0Ajo7y9boG98rj2dP5PHdq+Lz6aWCvcmet7D+FLXNuL/W9crJ2dPHpUGzduKaMq0wGei/3AwX4T/861L6nzW2u3RoM0KSuQSesaENkyZ0xiL5c49pB3WfNOMzuNyspeiOBbpJ1UZjSjiJ5XloSWIGYojKy+BZPF/ZKjR5osVrAe/a/b6+/SxeyLz6c4GzskJ16PDJX/wG4RhYv4uNsSgNGnxWrgHyfcSUA2fKxBzIxN+/8ZEvAF/F0qaC3xWvwHV0V9Klo2+kMTGwMmXKjQUxitRp2Fyy5CqIRWyNbFyzBELfXZkwcQLAX3dL7jyFpHK95rBSuJgXJGIyfUQsA+tTGe3vp8CKhdMkd+akEMbLw4plo94NFYfIH91PaGCw7r2jHuKaBVYqoPEz9YmWDXufLyhAu1jOn70sMRLGlQbVKknymE7qIe4i/mj68m1St/tQtSicPXlY2vxWRXr2/F369v0WvKtOpjDjp5Hz/fOFz+q9V0QFycC09+RJsCjxuN94fB8+kWcREsnTh1/l1oNI8uTRJHn8yldqNWylXMiWVNyNEkGXrp9HtYBfESCcQxzh6mRjkdtDe7bIhZP7JE1qV+nQvoU4QogyY2JRkHOERe7VayVoWpofKlWuI/Wa/w6LWG7zLd0e3pNG1YtjLkSSuXOnQ2jKbz4W1AYtzKFBJOdcpEJIa7r2MwXVv3Hsb6aATgngnalUc85YhnmwePPtBy+ldpNOZp5obaR/juomkycMk8lTZsqtu+6Sq2ApQN3Ekq3rl8rC2VOkbKUaeJ8/y5Dxc1XWobU+/o37grJgGQLWP/yLPoZ5fu+GOTJscD9ofvYSMw609SCCL2nytROkpztDk7R0l+BZOEHoPqObja67AAHxQT2vfsHyO4+T7vhxe2jfwcdi6bu+cRVlRFzh2gRelNYo9LGUz7JlEVQmX7163zQlYuYdROwFY75mzIio8F5YXFrN+ucv5epBT7n8JZW8fGtaeGjVpvVL06iZov3mjUm40tyUDFD+9MlTkiVMKXETJ5EJs1ZKEtdUWIOgKqNdPndKls0dA+9BBCkKy0LhkpW0ofr7PHPisBw7uEvadO3vb7/xJWwUoNCwdslMcX98B+97QsW0v6JiQfxELpIoaUq4zd7AAGkPC1E0SZAoqcybMECmzxitfife8flzuKTcnkk81A6kIPXhxUvZMWMehPZUUjTlR4lToph8QZbe4vFT5aqHp6TIXlAKlvtVCLWxamR3GdmpFdzA0cUXLrddm3fIyi27pGTV3yRtjnzSvlFVZB56SblSxeBOyyv58ucJ+JAQtohJpbIV8S4xzd0y5M77/SdJ4BpB7fdCkeZ27bpJu94Btf+AnQe+5/b1y7Jm0WTp3aszLL7K1G06mZAPtNoqIRDWCFpxaNmCZoK9WDDjyOFLT/1ZHghB8ueQTjJz7hToVCaLU+B3Nh2hK5AuQA1vLrjzeZwuRApaVJjMEBUhuTCk5+is40FegvfLBgWw6fb9LzWybPI+pXSC32ss3JzM4SdEWSu7ZI0OVEY1Sye3ly5bLVduukO46mjtdLWPCujNqxfk/qUTUqlsI4kS0xGv3jPZf+CwrEPR9oMHj0q5yrXkJdw07f8Y9K+BXwj0gS0OGAKWBUF+pq9TRvSUZo2qKSwljksr3aAfI5kUg2K1OCy61yhIUU4gvoumcWjMjO42mnt5zNKKpO83pNscE+EUTAWbTW4TbSyB9cEJT4uUqys0fzJ+Pznr+KqnsvNmCuUGaN/mnUQWLFRkemCUKiATFqY9W30kU057ieMEpojJ+x7lIS5ciygucd6JQ8LY8vr2C7FPGEcSRH0rNrBW2NuYrAvnz9lKlqyQCLUGlOHWSGuv1aKnxI6XQNvr79PzxXMlcMVwjulvv/Hlx1DgwuljcIeNl+bNf5Ny5UqhnMgzeCjsxR4v8z1kfd5AgW8fuPds8F74vHkhtxEnVbJEYSH8hb7dvIHiua6fAWXyUCb/MUAy1msNF8UdeXn5lMT88l5eIg09T4O2kgaFWNko1O3cvAoCTyS5cnybTJ8+Cdm6SKqAW9gbbrcuTdpJ02Ez1eLCBWPUwN9l7fIF6tqb185C8Euits3/aO3l4q4pOdrKxhP4vtthcvqZbXp06SUuWYtIweJ0X39fo2C0cuEU+fjGQ5o2qYdYzEzfOuTiCEuWErAQjAztSnxB2+a/tZLWg6cHSLzYuWmF3LlyQmr8WgmxjnlDJGjRTUj+EtpGIZRW8AAuQ2sCkkXMlA0Q+X2RQfldjb8XGabOlGaDbE1f4mb4WSZV/9Qoed5P2Mj3mTmtPYL2yjEhiAI+jZ5ULsn7GXYRmsdYv36LNKjTUCpUqQTcwN6Ih70qm7bulmx5SkiRUpUDpcYnuDjqVcgrpfLmkzq//S75i7ng/f8qb4BBt+ivlVCGXsjIEaOlz9CJUvHXBmp+BdrZv/SAIWD9xD/cDMAADEP2TjTGVkDLevTUEdl0tmBGwacRc4Ixpok8gX8UepIm1QkY4fzc1F7J+wgXgTVITeIAt+Cg/OJAyIzpXlQWOV4IZn9hx3PZcCqZmvwd2n2UqA4fTW5JaNG2Z8/Ls/uf5FWWQqpbCnVUru/etVXxWUXyIEMvSgR1b46FgqVe+b578pW45nJSQc1c/F4A9DNnlx6yHthKBMIz2j9PAWZZFsmWGFmjT8WOWDxY3FTdPawGyiKE1eONJ7CnUMbmvSew0VB3MGlKB8TFwSqja8w4jer4VW7v3ikLd5+UOl0H6o7637wNc+qkYb+jmsALqVS/JaCjPsp+xB8tXzZf4hOwE8L/HmjZOzbslVod+5ktPaePHZLJo/pK2vTpgWXlKMMH9JWoMaObOlfWIr93CtuBpcOfO35Kfu87QibMXet/UN/57QuA7iYO6yaDgdeWlPUKA3u/wRjOnDonc5esl5ZdBwdY4Ig5tmzeFGnTvCbmc3JAQcQIcA4XdcY9cmFn1u/r516oc2in9oXmMczCGXmBFsejSQn6jnTCEH9nJsUwHjRrVlOspv7UcN8mIw2NZBLuAwi8Q1qqzAIq1gpab601JiPwMagQB9cePXoMSJvKUrNBc6lSqxnio47KzctnJFW6bJIjb6Eg+eZLVLsY1a8dqpLclYL588HyCzDdFMmkdk242fsMl19/6whok3jyX1degxKw/HOt4H4N43i4U4D17wjaVrLkb4hXiKSEB2bjOTqiFAjiTSxrP+kHQIbH+AatcVJpjRYuf8Gf2oHv+GRGI4HunJy8ldmf0ApmDCoySjYOihohBJzUqU21zpSABeGKiNSpr+yTKA7NAeyJpC6HT4gfgerlx9Dex04ih27Hkhf7gar9BBaKZF8kWXpbKVX8o7g/jyBX7kRWQhXN3yrQn4ucD+7nd713dCd1X5tr18U3fVoZu2SFvAMzz4uA5KNXPKzGvqgxG//+NgpEgoUyBlRtZSOgKwuLqQ/wFGhNYnsP8MIP3pFRgJsLuj3A1u3k/iM7iWTzCVhRiDWi0wvvmlMUH/G6e1euXL4mn7nYBNF8kHEXxcFOkiFbsEqtxurMUhVqSZ+efeWPLGklTc1qUjx3DomL0khzxveSD++B4B8roTTv2Efmr9mrzr9/+wYCczvK5ElDABOQSAllKh2Lgg3e98CwhrLmySnJXRPLGwQRRrcovcSg36P7tsn5UwfEASVrCIrrBc3lGt7fslXqSqHi5YEcH8XqkxEGpGLNprJhw1Zp17a5v3PMwfDci7mRPXd2ef70qcyeNFiatu+DXd8sNAkTJwNat6MMHjoWcYcppAAwturXq+mvv/XrHWBh91bWaGJQxXICltxNYCclNdX49HdySL5owhXPJb9Ao3WGwhQrUqCsp7nxe/78XiqWiwJGkM3CGkaWdO+6l8CWg9qjJqDiIK/nQR1tgj33bz7BLFzxvlRiEZtqbn6uQMbNRnj5TGW6isQyHeYxIKODeZpP58aNG7dkyPBJMnbWakmSLLk6litfEeFfSNqNK+fUO/35xjW5ed9Nxs1cKfcwT0aOnyOV67SUFKnThaSb//Q5RgzWP/zzMp11yrC+0q/vUIXVZPKlE5ATC0Iy71C5+Fi49f1bX8mb9T3wHUyxSj/q8YhwfePUB0mbF+49NmqdbDpN+twZW3GJ/1GcEkKIYqOm//KlKTaElgNyQMaK8Br+QRjyfO8oL9y+SrxHZyRakSzKbXjd3VlZwQIIm7hexRbAxfj13TvphAUndozIsu3CJRQBji+v4CaBQR2lTCLJPOAKabEFaizGv3+MAnP7tJfOBUqLV4ES4m3rAKBLe+Xe4IAodEeNhbgqWCiZZs6EBSZ0vH8DbKsn9vL5EzDT7m6X81s3ydtnQFav3UKy5C8a5G977uQR2QAQTQolPYZMMT83ax9unj9Z3O5cBXp0POnZoaXYxosrD/D+jB82TmJD4MgLrT5ewsTqmkUzRkmnFrUlAZDXrbUPCAx8BreTHQSlxIlNsWVvkfm3bt0mmTBklLzz8JAyTVoqoSJe/MSAXzgudSqUgjBVTmwVIrypV7pNz8Kau2zRCnGI7gxrQlZksuZSafBvXjyTRK6p5dyJ/SgV9BDQDr2ghDn7Hw4VDyo5Fu3o0ROyeddJ4Ll18Hfk1rVL0qdrM1m66ajMGNsXmHB5pWLFsuZzyJPoevKThUz7IRw+gFD06bOd4lv+lDkr1hVavPfscZASeV6JA2LhfJK7gg9AwMbi/xiYZbZRTcCuFLKId8V7kT1o9+Qnsey0+Erz4Pw2OEZe8AlB9YzR47WM+SKWHxVDYnUxXOInlp/MdA3RIPmA1KjBN72gELyGq87+qwOE1IiSLNZrsYkSWXwtBCpLms2cOV9iu+aW1OkyWR4K8fe9W9fIpNED5PGjhzLzry2SNVe+EF/7XznRsGD9xL/knm1rJW2aOGbh6uhRO1UChkjjwcU5WT4WoQxuITbFx/O1KtBpedzyO+eoDVDIAzM1W55v/o4LbW3wFzMGdgUUrHgemRysw0q4MpcvoaYfN46KM3uA+oSUqXy9UUA1ginTiG4DZ7g5naFtSvLMSpu8fhvFbT2fiF08dGbZ+ABsYDTLq9SWW0hxv4ROL2LhHNqht5QsX9103Pj/U1HAEW6oaIVSipMLamM6QAC283uHOErUBLQ9cVKiJk0sH23jAR/NXrmio0S3kTTRvWUrUM8HDkem0sqdgVp3LB928B8tZeiQvnIecSV3bl6T5KnSqlPoNq7YtJPaXrdwupRHlmmTnn9IjS5tZfyK+bJh2ixZ37WRRMqcXWp2HiQ3rl6S2PHj+Ov+EWoILvtztjgARmHChKkQ1BJJ8pSpUSz8KSoIEH3dWaIh+zRn3qJyEPhsh1f+JQdPHZLHEKISN6kiEXU1BbWO40HIK1OmpJQp/Yt8wcJ5BZaGM2eOw+UTVzLBbHT9zjVp1rDyN1ws7UK/z7cfTUKFHecmJ5lfy5cvNwBTz8oUoOOX79JfXFOnV0eSuKREOajPMm5AWyTa3JICeTH3dE2PQWfeDUklaTJ+81ZB/gSsNDcrrisYsBV46KWzkSVT2sTIALaTR6deir3XJ3F2Qqwo5r28cwa9oioLubmvIDZoQWfSDNkADeE24En8ZCkcCmIU1PLk8VL76A24f9+E10Uhi7GhmvAWxC3C7RCBlW9dw7gimnCoSA/7p27ilBQW3QSRgMsGCA7LdwFKI4D58GD4DWnh5W/pZ6lSg8d3An/+3qmX+DhGkbfuHrJy+UzAdsRWoMuBDZ7B65uR3HHwyGlpnb9aYKeFaP+921elftUKcguxk4+unvu/FLCCIhR+ZqP9kxQgFsiBrafBJFiM2QRPoM/88+eGC2agZBip0kDbf+Es/o3B/i/UahXGiuktsT8h0JMuj9A03giTm0GrTN0mc9XxcdUTGZoWDOtLrqdrRFLPmOGr2COrxBeLCa0VNghIZ+q5zd37KruL2D6M/YjgDBT2FKggDzwifVMBqkC/P7J0pbw7dFTepHCVpIlTScchk/SnGds/GQX4nru/9RRnFDb2RYC4DywPhALhO8CF8p0nfmvbFOLjBvegq63EjEH3n0lIOHf4mOw8sF9mbT6M9QWKBATpjasWQmD/JNs3rpL+I/+UZCngl7ZoRUtVkBy5cyJ1HECazBax0qoAPoF/M8f3l2N/9JO2rZvKrusPJUm1enJ6xgTZnTqTZMqWV1q06gTQz2nmHo6dOiObT12S40emqn3jZi6TgT3awpL8Rn2fPHkM6rxdlOw5skn7OuUkLwQntpRxYqtP/vPn0jPvxQYsURHgk8+aNbP6U4egTLikyqcqHzx4EDDmkgCqDhFiqFipBAl0nZG4tHJAyXFyTQEF6JlZwGLg/PNHj6RShdJStepk3UUh2yRMBYUZc5YgLWi++KOgRWsWLHqCeDtb3Ds1LEn3L+EHjx1RXNNBmIYwYAMXrsIOC9ntVIIPXYrEygsqmFufjc0sxnBptNRbMrsQdMxyTmnTMWbUJIjy55BkseXZCwd5eB7hFBmcUE4cchSspz5p00D6As38Mh5tACdig0xZn2wQfOlexTvwHr/lRGCc3fV4LY27DpVTR/bIaw8kiKCM1LGjx+XcuUvKg9gIpdccaCn0a6vXbJDt2/dJqoy5pdugKf7cxdo5If3kXN65aS3KLh1THoyu3QfIuzevDTgbHQG/UV6309j8+yiQMm1GObLXWWVTxY8fT1mHOfkow2AeSVSb9xhM5FANKApcLPpGnkA8GjIlzluiJNOkTz5hc/29hJX1MA6KPODFo89iHy0i0oVhtQK4IPdT+CLgoGXhUEJHxIzhV9gZ+D1sEb2gvVFbixTfJFxhH4NpPTy0Ug4wd2OQrGZPmsSN4y1fb96UbKUrCR2hbTu3k2WIY+s35S92ZzQdBZja/wLWlNwFiuv2/nObW9YsQlZgSbn+0FSrktYRZj9pYJ1x4tA95Kzef6zSGKhJuOKIp8xfJh36TOAmUMc95NH92zJ17GDJmDkr4j+WByjdoU7EP18s9qxPeebsOSlTs7222+pni84D5cSh3bJ5y3Z56flMKiKWJHfR8soKRSiJYtlRFzFzJmnbtoUSVqpVrSgNGzSVbv1GSfFSFSVKtOjSd/g06dOpMWpaOiN+KI9Ur17Z6r20nQo8VPui/9QtjIRIYKB3BJLDLvDqCowFg80X1i6LWQ2Ggpxc2b/vkPQdt0h/FxWEnB9CaL16jQDt4qGEV38nBPOFggyrR3yEkEzrEQtQK/cfr4OQZXsLCz8C6CkwRoxqLy55Yvr1GF19WozU7xg+OOkprIEO5GG8B/kXLfsEGiaP/NtbGH2MEVEY3M7O1jxcNXZYpeLF/Iz4vAgqpMoG9SB9MmUIKMChfJEPLPg2r9/KsXMXxB4JDrO37pJK9TpIpWQpxN3tkfTu2kqGDRsobdr3kBRps0nSFDmQjb1aFpesLJs3LQefjqrWmImTZstUFE8Pj3AJ9pEzRy4kDX4RB0CFpE6VHICj7oaAZf6VISfrto3Nf4gCBL2cP3+JdO/eSTGo+6c8xSV7dPn8BenrMP2a0GzCNjgypitXgK8FoSY5eJxm7qcViRYm3/jxTYwsLNwKQaUuLgABPXQPQeVpFPbW7du20GZNwuHXt5/k5IQLkqt9VvPgaZGLDquUwJzP1GtCOTzBWKKiYJzDBxMDZf0xWq/01etZ7JnB/2Su2wb/KZNG9EMiv8iKzWukfPlqsunAJYkbP5SWOPOo/rsbKdJkQE07MG2/9vzpE9kEcFVf8YGAclf+GDDODGqpnfMjPzctmC5Xrl2VFx8qhvo2CQHNsXnNYtTlLATk9bqybMsx2Xb0plqHAyvLwZtEc44jE6fMRVB4M7ij/Ssf1gaRxCWVDJwyTGLFiQtryQdJkDipOo0xXCdueEqzWiWld+/+iBFzV7FSPDhmcHfxfIHMSDsHadT6d4kWwwnzwEPOnjwtCcrCamXFbaa/99mz9pItGwKV2DhpOR91izndXw5we6Ug7IkF12aZKQaAp03rF6NEoQTWIss2c+4iSZ05n+Vu9f2V50vp0msIKicch1CY1+o5Qe2kJend8y9wozpI6qQQjGi18ms+qJKgGsdEDUn3XNo5Vj9JAz8hk9ADrBYRWAyW1et/xM4w8Emfd58QaxgFo8Hvom+ggy+C01hLM1IkbNvHCSBcMcPWl4oo3r3HKPe09PglSZQ+q5Su3hKB6Sa6Xj11WGDzkgjRkkiH3h3Md8gA13betLHE45GbRE2bGrF6TvJrtXIyb/IQaYxkh+8VsshL4sdxwqvtKO8+fJK9B45J77JNzPc3NgJMVYMk/wQFsuTMj+yL6xILgIBOmEi1qjSS4XOHfHcWIPk08WfowrO3p7r3TVcknMOdO4iJ8nYSWwSV+2Lh0XgHmRizd+iypKWL7htav3icCO3mItJ+zM+pIKc3mymYlLhZzIL89CmC3PuSDgmFtoIkLtUe3kPZm0ze6M9e3j1+q8rg5CoKtw069wED+vTOW169wEKSiMzIUV1DRZbj1WLSNjy6Ivu4E61v38ESFxhXhnClyBHsPxaiPn/mqGTNWUBaduqjAr9p1v8MrZgCxY9uPcbPlxpl8yC3AVpvMEKHeSz4rU8eOAKL5jtpVKcaijhHk5lLtqrDIYHfaNy6m7kry41lKFHz7N5NccGi5QX8nrtXz8Pdd1BcU6WSFp0GBnA5MvPvwtlTeOfiYx58o1dqAJfOnjoWeD8TYCcSuXT+jLrVumWrpFz5MsEqMf5qi1pxQTnaecnrN47iAUGKRXr1ygfnI6eDEj6w4fHMRxVJj/nyjvgkhXDIOB4kkHBcBYuXtSSB+j51wXpYPNYoPDKrJ6BfLaHE6nHsjBo7giSKZCPXH0VXfMKcYcwLKFiRgcBVyBRS8pQ7KG9EixQD0DXeY9k3z2OyAyFZ/nHhynJwIfkOut25+lVcs+L5rbQ7DyPB2oRjcJOqMkv2yKhlnBVqYZI4ZmBUzJfIsJa+PXpGHty/IQlYEFPS43f3lUJlqkqxSrUC9D5+aA8gqceQp8BGiw4XY2xY0Dq0aSYbN26VvcCEK16hRoBrQrJj58aVcnj/TokW2VHGAMbkC+Kv+qO+Zp2ug4KEdQhJ3/+1c76pGf+1J/uXPU+F6g1k66rFEgWMuV6LhvLkJjTn1NR6TAHj+niCkDwa+dmpU/ZARqdwZRJGyIVfvaarwSQssU8TECkELbhRNCZH6xFBS+m1Iwoz+T2ZIC6Xx3e85NNrYFslAtMOpGllfCicpc4ZWS5ftkeZGi8VkPoBrkp3d1gVYojEzxHVbFFjV+C7Ejm6Hf747durydR8fULM4JZNZf6ipTwJwb9nZdmmI2rb+Bc8BVikdfysVf5OvH75HLLImsva3ecCdbP5u+A7vjBGqmHjZkq44uLg6fkKSQ0Q8rGomMu/6Ppnse2Jk6bLX4uXyfQl3wLbLSEPdJdY3aRgxGy5SICE0FLSeeLtaxfE1SWhFMqdCkJBfFmz8JnkKjoCKebpAS7qGqAvQhx06jEI0ApHAMhYQcoDLDVJktTIPkwoedJnkSXz/pQbuE/h4qXlzetXsv/0OWTIwz3kGFFBiGgWGXPHnFSwYNj6KSvm/boNZsg9fRFBKTacs5EgxCjlCJci/EzSp9dlG2MSR4AF+MgxBylXAAIg+6WmhcW6dIkiAFAdLC54tiI1mgTAJ4rg4Ij+sLhba+hXWVIsj7FvCAeahY6CEHnFw7uoTfrEQSlqzOKLEsXEc74iicHtvsniRqGShetJAvIeBqxTsdP4B/cTA4+ZpMQFDK9GCBv2zXH9qMbfjJZFZr3GSRbZH5/T35PZlQ4fXmOXo9icOCWCRASBu00FvPu9G0oxhkWQLufpk8bJ3f33pf+sYahO4SKT+rQVF8RsOdpHErvIUSVD9vySww9moUrN31BizENWrNsruxbWlUMN60j0zu2lYsliMnDACMyHtJIybSY5c+KQpEd5psDiE7Xx7tu+HnRjdY5IEtXjsfzRo5PEih1LvJApa5sijepLO9f4NFHAgGn4id6EVy+fy8xBnaT3wB7iHCcDXAzIsPr0AUkhkRSD0dx75iGTudHcTu6kayynw4wZMjB/Mb08X6cdM6aBpv3QNsJBUGAK0CxwaLTjdF8wforBrNlzmeJttGPWPhmnxWfg2NSj6YEJccFVxCHkyl9cUmK71YylUrBYGWvdGPtCQQEKWRRC0v0Nha3bNiwPK2ZGxG54ySuUQToJdPfrl0/D6gI3CGKlLl68InZ4V9+i/uP+wycke+HK5kVD/0hEkb4NLB6365fkjvtDJFrZSKYcBcXj8T05f+64vAckSKIECcUe7rpPH95IvDjOsg1JEREBu0CrViykuaZKlxlAibdl25qF8Fp/lquXL0nL34cHm7rOAPvKxTJK7Vq/ovTTSlm47pAc3rdVrl25ICePHAD2VAHJV6iEdG//G+Qbb2nRoql07NBKXAFP8BCZhyuB0ZYpZ3YpAaFHw6Ui/beuXg9g07Sy+/BxKZ4vl6RETI77Y1PJqZix9E9v2qYyRPc5M4j1njcVdB4dAeZ6wQ39+zxxl0fAoxswc5FkR2xZ2ow5hEHuN66clf5/tJXGDevKpCnjAvCUAHcmL7HCe/TnUT5geax3L7+ixFUEsUfGKC1WFMK02qbkQVTEaKWidVzh2/l1wmdjyIG/DEX9Df7BbQpQq1cDdqKEl9VyZCdO2CNW76u/UmHWhsvasrRG2oCnSXKXb3hqgF6AVGayPuJCGLDk9g3gENp8gEDvKxNnzoVA+kx69/sDCRXvZNXaTagruVBKlK0uv8FFrW9vIei3rFZYGgFepMsCVCtA0OMXWLM69hstbf4YgZC5zwFQ/vXXc5vvZlG4G38pVU5SxoslTYH+n6J4YbFxfwoMrIeyaP0eqQG34/9jCwqmwRCwfrI3Ys/WdRI30nupXb+2SbOjdqgTivTDpX/e82NEuffYUU3SR4/sFKwUGRu1yKAa3Xi0TplrVgV1ssUxuh19vGGdSozSNU5+AfhkuFQIrcR+UCAj83R29kF2C6xqmT6hpMcr8dVlUvEWRCCm5SwKELoTJDEVjSbyasJE6NiCme/atVcqoXgoG+NijPbvpcDcMX1R8y+LbN+1DyCWcSVNjsJ49xFvAxdinDjxJWlyitJ4vfBi796ySq6dPSLOER2QWBEVsAWJIOynkxTI0mPbuGkbYE9SSfrUqcQGwgVdkba2rAhg8lHfvnJN2nbpLYMmLlYWpvh+GFe89hYSAjwQV5Kv8C/8Gmxzf/xQ5kwbKaeOHpAV204BAuIKrEKxZfXSORCSsiiXYzSA3w7r2VZq1G8mj69flKKli8r6DVukYete8uKZmxzfv1latWwoz194yrr1WyXX/9i7CvCmsiZ62uIUd3d3d3ddXP7dxWFhcXeHxWVxdxZ3d3d3d3fX2j/npi8kaZKmpS0tvOEreXLtTV7unTtypkA5cVq+g3UrFmDRnKki6KVRvyltIbY2KGqkXzxyQ5pM3nZ4a4U4KYgmzemTaKjkN+Uhfj17j53E6TPn4SruAbnSpUYc8dNxdY0of64+W+DmSZyyxU4pOf1E2yiwFIrYLrHsHPBt89koh2KIIjUzJ5oUZMQztTz8o2O7qRBpUizgD0WgUBOwjbmXHdKflJvBiBE8ZSP8ARFiiODy0UMJi09fhkbKVOa5WJWUFEqEJpMNMQOBUsV4IcCH95QfKx3ZmdHAiefEChPz7uuXEnl7RyINZb518TDkU3SScbkJMxb2GoDBgrM2aOwcJE2ZBuEjRJTmzTfc3Ig0rJgHh7evg6t8d5Dvzkt+Ew3/7oKOAyf64N2WtUtQpFQlozabwtWCfzqhUt6sYurMhEQEOY3sCufLVyWVyF2MP3QCefpPClJfTh+D/oEX7AlYsp/QKThxoFjZ3zBxeA9JSnxY5QezJVxxzF5idrhzQXaE0Q0JmYm2zPmOf77RnctfxeGVX7/5j9G3egwpT5fWVaJenMRfJTScX7ooTBk3N2eruzXDRlcSvXI37RxK7VaVEMZJmQOVyYDmDndJyhs7VSRxvOd4DLkWo0b4okwEscK+U4Kc06NH8EqaRGkEOnfuYRwqJwBNC2C8qB+EGA78r2UPVM6fSpLAxsCS7afVAkFhykPeETqlf3j/DstnjoaHRPXlL1cCbScNNywiFgsJH7h6tcpmz23p5xUvaWIklbRUH2VzYipcsb+5U0Zh4JhZZvXtncRNkAg9B08QlPTH2LFplbg5fUaegiXRon1v4zO0b1ITxctJKpL6LdUCdEuQrvuPqeu9eOVANnHYPyho7lFjxEbmXCVx5/YN/N6kDe5cPYfUmdIbu2ekJbU9/MkQTd1U00Oz4cuX4kP5SSKC+fNhYUsir0Rg9RJTE0PWXES7V0KAUYuVLAqvDOksS/s81zRhYs71MuU7j/0pXLETui8wSxiJGismcad2iNr7FOKbpCWWZlAOnz2giRtNWgZ8yFEOSHI0NfKP89XnTxHh+d5FaewSRHyFdBlDG95R0wFbCFe8FUoifL0iusNJwGKdBLwZ1FzFkAldgGoZCHTvLh0kBOIhs9xziaYEXIgQzPd11qQZWLrvMGav3OPD3GvaLU1/KUT4unb0BLJWKg+n23fgzECI61dMi6ljWlHcxO58RrTKj+7dlCJnESdBCnnnoqLQ/2ryCxO77W1ldvaU3+eubbvgee8+mOkgdYbMPtr71S/oAlYwewO4+/i70yD806OFRBQmkAkmkXJQtTqJyaQXWXL9JZOdnfjkfiNKNSbh7d9uGI4eXniD+AJwp6UnsbyvQqOtaKJUOe+JhxNSSplE3r/3xJXzktrHNbTayFJuSptafE5Ci+lS6MbJ90gb971M7nFVxKByyKVQFz+emkivnf6EWEkjIFbyyGoCVTtCl88IL075ToLVkyGR+HA9iYUM0SUpNCMehT7JjuzKlWvKuT2sBAVY7thUIf2/EMOBXZtXYsXaZXgrpo4pw7soYfnz5094JOH9iTlpe3xBd/H3SGQDQd0vDxpBtAPFqlYQFPVjKCywChrxHfKLcKXV42dMcXg/uGczNq9frTRlNAmSlmw8hD+atBZzdlF1zv8s04ecOLIH2zcuRRTRCKxdsw7LNx9VZaPwN0KJwluYMTXl37rqKb+dUN9wp6RG5EgeeCn+ldEiiobCVMCibUkLJqBWhr9f/oWPAI/iReHEFCqOErVYJApbHBv/HBBEDJXs/09N1lUBHya8BP3KqIFn5CA1W8ypF1jaK83fy97omH6G85qHaO05PvqJkYg6bw4XYfjexcPUenPe36W6KQKOl0yiX6PEhEcUSVr+LALCPniPaALz8eL6ZwEklYwW78Mhfmw3RIkh39fbDwYBOXIklaB84catePM1HMYu32W9L5OrL54+wZeP75FFBPZ5E6fh5rHjCH//EXJVqmVSCrh87iS2LZuO2pXK4GuoD8hTPBviVi6A6xevInm42NhdpS4Kjh+BT1GioH+9prh5+y4u3b6NOs3boqguXJnxUjvRTYQaJ4LZ51nZQaxcMAF5smVB3f9VRyKJUvKSnQt3S6Z+FfRxuH/fEKLt6CP41/fK1/ZlYaFm6+qh10hbKLoKHef4tATUnI/v3BRQwtehEcnlA9xCR5AJyhAdyF3r5csGh/oMSd6apXmgjwkhJTiXv3j2HFnEkTNKlOii5UuFkZP/83VYeoHgy4EvsppOFqFq+tTRQSIob9y4DevWbEHc5OlR/femAc6Yu7cEFFJe1MhiGnQkyS1xyv6bNVq0aUlQoXp9MDcgtRPTm1bDmOVz4EInSh/qFeaRM5gDeYvmd0bt0tykgfsaH4wCFrVW/PFQPcRkoiQRlpzEZOgXgE+18RLfHU3oMzTk+//83ROOxcPDO2ODaRXeFMGDDu58BrN8e1JOq5c4sbc/pmndADimkES5k1o0atM4xrt3DcmSKScnTy4RmaLhousCIxoJoCx7OoXvp/mIccyaT5nNIbExunuIsKtBL3g4h1H+cxFAKBAZxxc3vHrmiZiun+AWKTrCRpIk584i1PJLFoHs8/0XCJcwhgzUBRuXr8ayjTtRotL/BD29gM1ueWP31nXo0qqeKhNHcNIq1G0k40+LFcvmYfKCDTInX8E6SSUVN1Yk5BLN2TOZY8+LC8bRB48QSXJoDqtZDV6lS6BarT+QSTIVpM2QES8TJkO8xMmRPU9hJBPt2K9M9kyEuoAVjN8MghXev3cbJXPmQhRxnm1QvhQSSI4wryQyCVNVKztJanyePHFSE4F6FDqE8wdpZVLWHtUaAKh2z+YnJ0LORFq7pjtji0pf3rvj5r2wajIqUMDGDlnaO3fWWRYhAR79/Ahvdp9FvAZF8cktjOxcnQW5WiZUyevG1DoUvi6d+4gNq0djxMgxWLnvomgN4ln0qp+GJA5QiLhy7hS2LZyEjr06CEhhSllERE1gqn0JhAeqT6EqVATUatRaIBiC58Jw4cRBhDu7B7/17uIrB/jbOHnSRbGNmp43z93FcV+0X+SlpUmKGijxbVNEPxoRbJzk3CEhy/L37+vIDAVogtMw9+jMbklOkjLo1c03ePY5MpLnjgaXiGEsiygzHIWemDG9lItBQEX/8ZE4PmrMXr92Fj8vQtM4KWGJmi3eZ3BOnDgSNS1mWI3ou0r/K0ZgM4CHIM4UzpIl81QO/Fo5W58qa4X3/O2jjEQQKhR85qaU78dIhNmQ78w00pauES1adkLzziNEbvPJN60u891eOHMciZNJeirvSIm7YoresX45sohwtmt0P7wT/7q7kn3AXTJqJJH1JWvaVDh54BBcosfEwEE9MWTiTFT5vaUIV1m0ZvVPbw7YE7BkO6JTcOXAoLGz8VfbnqjUvBu2SRjutCfvsUJs7kwx8uwVTXLUXklOMAH242RArKrbB57h5b6rKgqPkxInAhJ3W1R105FcU3Hbem6PL/KDlOgW7tpYh7vlS5cFTVkzO1KIoybNlDTzgVwLK2jN9J+IH18GZUncyUko+NOTj5Egvoc4MXvhoXtsJKyVSxLehlYTVHIxKV47I86cIlzxwbw8PyN/wUTIUqI29opDuy5cWTI1ZJ1fv3AGEyTv3ZerBwSBfbTRkTuwhStyaeTYIbJIO6F72/pgEmgKeowI9A99+vBBIBj8V9defzvWLULqKm2UKcheOd6jdiVbNoFi8fyCJw/k89gx8dmR3zzNgpwUTImmPS7E6i+0CLNhHROu2AYXe21zZdqmnWPONRRGGHFsTbji+DxjxMDjaGmRqmhs9QxKSyZtUstO8NXbtw1RhjQZUgHH+Y6apO8ltsH5jeOiBoq5CalNT5pUtPDylbJ/Cl+M8KN5UNMYsl9qDKkppMaNEY4cG1lK7ZY14jxNyAY+C6OjlZDE78KS+H0Rs4yQHtzMmpJ0wHqcx5nA+tOrL6KUdEaj32sK+O4805I+jl+/eoG/6pbF5tULjfe85CG3rlqEGfUqo1/LxoiZOAHei3B17eEDZMufG/fEJzZy5hzoOn4hZq3ajj+bd7cqXF27dM7Ypn7gkwO6BssnT4LVFc2Be3jfjujSfxTmNKiIERuXwYm/aNEinb0kiULld01LAv0V6ABLrRaJmyQ6i1INzrmRkwJ/4FRxm+7IrD0wf+ucIBkpzBxjdOakqS557LeIfnAzPAsVEJ+oOKoqd2TcGaucg+zI27+AO9e0aWTXzAGaEOcOCn/RJarw6yeJFvN0MySFlgVLywDP1CAfJUx/uDj83z15Dv/rPhSZsucxaSVgDxnKTPRtnRznwLGDuzG0dzusEPwsR4lYVDvXzcXoUYPl/ZR3hUTh3NqCY7gbKP+/Fyf3tcvX4pwkPw4rIWovBdsnQvjIyJinODLnyKMWL2sd8/e4ftlsPLh9WcqHFa2HOz7JfuPvzoMDBGTx1rVLeHRoPUqXb4qkGcWcp/HI2mBMrlEouHxenLXlt+QRJrz8pkTjIYt1okSCmxWaWm2ZDCgMcgH3Jua3g8A2eGVMr5yWHRKgHPyuaPLjz55puWySDPraFTEbpnJRgiLfg6/vv+Lmg/Di4+2BiJL0nXATnL+SJv2G4k4NN6c/T3FHoGnOqvBms1PHbnD+u3uXQpbg9UkfPOczceOoweVwLuVcRpwue8TvhoIR52NaG/g8HD+nSi95Zg+JTIiXQDJchBdJztrvgA3QvChO8J4ifFFjRliL2FE+CeRCWFSv2QAtOg8xC9qwHA83ERoo7xtB7W/V4DfJjZgJh1YuQvl0aTF42zo0btQKr95/RMWqdVHmt7qWTVg9f/HsiYI7sXrzF7loT4OlC1gh7CU4vHcrPj6/hjaCqcPJhxg8LVpU9bEgOIkd3YvRKLLLsaSr59zF2VYm47DfJlvLMrbOCQyYNi13bDLjkGgqpCmCkzcXA29hirs/YnGljfNCpcQxFDZsqvftk4k/gRsSx/0KN5ewgvMjO8cU5kIYy3dvMxjLNi3Him0nZX2wsuPTGv3OT044B3ZvQXmZWHQKXA5MGNIVQwZ1Ea1B1G8dcfWyEMK/3Qy6o0f3HmDV0pXwjJpM4BR+s9rx8gmDJSqwIAoXKWi8v337boFe2IKvYmKK4BoF/2vcXgBNIxrv++Vgxei+qNesAcJ7RkHc9FH8UlWVvXHBTVIjOePDl1Aqd+EbCfHPmO6zAcjUU3RbksdKbYwoGYiA5RQhvHFTwwacBPXbS9C/v4e4MSMagOZ7aastN9lc3RPNTvIUXso/7NbTyKJ780LSOB/FV0y0OELcLNJcR008Ne8UVDj3UMigoHPmjOBNZRV/Mp/Th1m31CIxBReJdU2FMvqJGrNTmNUynBAqgtoq5lklRE3GjDLXeRM3ihSWaC40bVO7b+2TrLeclum2ESPSF0SL4z3PafOpaQMEgRWB6vmV1/jw4qsIaq8Eh60wYkqex0cSfThj8TaHtfvcKBC+4Y9K+TBq+EA8vXwNcfNVCrZmc1M2BLdjXcAKbt/Id46nbcNKWLl8nvyoIyNpsgzIm78gokV1RYd2f4uaO4Wvrbt/FVTrkx+RJEskhycFrVGuhVfOeUjYsLf2gTe+iJDlnbhZU21fvhpaqc7VxMdKnFVky8YJiZo2zZmVOzFOeLGiylZRi3aSJh8+lCiX3EVVrjk9SlDjfsj+PH/6GN4+OotmTRsYImO5heefPeLu3bcy9ur78Z6baBSaNG2LbPlKSfqlhEidPrMZwvWUET0wYmgP+d2E99EyF63r12/in2H/IqpEWtHNKbyrJHwuVhHJxN+L+RIf3b+DyQN7YtuuDcifPS/2nzyMdXsvyD7li4TEn5MIspOoU7cHYsSVBTemjy58vcAk6dSQUOtMLXDSJB7yWxIfTRFiGJ6vzFOSPNhXicTXngwFLGVjCkD8jVsmebfW3I1rTsIXL9ECCqDoJXckCv8crkmiSXLo63ATx2kXZw88fRVOaeEpxPBV0AQTzivE8KPJkIIX5xTOJRSUtDJanxSuNK0Tjx8/dlKaPe0+XStYl+5/mqDGT2qmtI0kTYS0ALAczZ7cZGpEP6x791yQObNoYjUiY/gCOKiBZDV7WGe8/16Eqk+e4fD65mskzBxFEOBf4+qm41i5ehb+k+TkHWetEJiQ4izqEJ09eQTTRvTBjRNHkUH8fEcs3CLP74uk6lDLv1YhewJW4KkFfi0eB+nTtus5AiNHTcDAAT1QpkxZtO41VmVU79GzG5YtnevrWEKFcUaaPK4qF5gpqrKvFaUAf3+xJE3O04ceiB3f+8eoCVdswHt208yUqk1WkkXSTXZMF05cQObc8WVHGFUmvVAS1CQ7sufSZiyZQU1o2LAxaPBXe/0Hb8KTkH746P5t5MqYxvAYXDFJ3rtyw4mV/4NQuGLvfCdnTP9X/FxO4f6DB1g2cwPevP+CWg3aIJakwxElkAgwb6wKWPSJSZ06JebMHG98EG4U1q7dhL0b54s25gtSuobF0NH9McBtgQgW7zFr5lgc3jJf3G7Cij9PGrSo31Oue5vMjK04fkAXAcpPdA348NoNFz+GwZvXXiJQiAdlrFjiu/MarjQLCkyKXdI0KHaCWVj//h3R7MR1Vlom7qFu33ZW0AV229ZuihDCqYHwDOnTydThFEOZyy45Z0KY+3Lu9gVfhOEJY7xH+BgRVQ5GOvKTqCWjn5RYepUTOq+ZYoPxnACsdIine0OMGPLFCVHQIhI6iYISpyuaUS0FRQqqvC8WYPVs3BCyvejRPdU11YD3f7z39KmhTV5iTkE2SMBQRSZmVbLz+lXZj0b4huvl9OE9kmUSE3VoN3GLkIwXwpOPj94hlIA4R4n+zQLx0SMcnj9yR9pckWXc4r/mEgGhshTBH0nDw/3Jc0SOEs3Qn4P/ZxaXi74CUNpD/BGrNeukz7UO8s0vxXQByy/cCiZlk0mI7bpl72QCeCSTqcAhvHiu7O/RY8WTCee9dSRmi7HzR0xsHaq/OQE5qt5maoQY4nt1XXZ04V9+ReQvYooUZODHN24KLlVsOBMFWiZnSY+Fy8c+oHX76jgsyXGzpUuHjzLRXLl+DVxaI4gJ5Y34XLVr3wn1GrTD3GmLUbJCadk1xlcjbSwmmF2PRSWu00/DgYxZ82DfhtkomCeXrHTeU48IFsGNKGTlzStjFKpR/TfRWrzFwMGj5Lf1GVUqlxYspLgODzm+CDLNmzfyUX7v1i+I5PwVf8nCFi7MOzHrRTeW0bQmxgv+OKBAEYP4SXCH54fPmD1yJbae2o5tG9aiSeu/0btre/E5jGxbOyiaFwUnIL9Tggt7aWigFmOJm4CCjsFXk0IKfTs5tzhEIjzfPPYSKTNHVZqeWzIX0aGcmiKDXM13RBr94oLLV0U7FfarRBiLY75coqBF3ygKdexP0yzRLKlFGWp+ptq55ZgYYKPlabUcMwVVjShoUUtFihDBSf60O98+NQ0bx+1FTbyzCRO833WO9YrMm8wd6SzaOY0+fYog6aEE8yuMBCqI4Eih7u4JD0SO/QVJM4RTkdYUJqNH+or0Wb5pfJ3lO+pZKiW2yvv5Z6Pm4sS+CGkkys8voMsE8Y0UOQoSJEqqDUf/DEAO6D5YAcjMoGyK+Dkbl05Fw4b/w8TJs+AaNS6Kla6Mi8e2oF+/bg4PhWr3ixdDyY/eXSYugUMQHwNOSPKblR21p9q9sTEnhvCInV9Lb6OAAbc/xMN1I1B59jyIdh3V/mwglkIXbNu6VUyA0TBt6iSsnrMSIwXjqECJsmjerhdSpslgHBtNKmXzpZJJLgz6DZ+IvVtWon/fTkgSPw6+ermgdbseaN1jpLG8fhByOcBovamSEqdNyz+VlifkPknAjPzTe4FUePgJB85uw8C+g3H6wjHV8IULlyS67S3y588TMB1JK49FY5U8RUb0GTIJheV3+ECgX3atn4+JEwyI+Ao2QCLUzIiRwoxwsZQ8TAuxjKaJNL3u4PH58wK0+UV8l8IKsrzMG3RktyZcUnPkLKqf569DScSp7cYpeNFkSJ+qlCkNTvGmwzegrhu8FXidj0eikGVajtdo5mTUX+HCIvEJ0bRIQZLzJU2JpsCvvE8hjBo0WgQoJJniYn16+Vlga8Ion1dtXKxjSSrK+6E7IkpkIx3/afZkWycPuyNn/lDKB8yyjpdIpO7yPeRNlx1PPLywXPxVXUVg0inoOGDPRKgLWEH3PXxXT6MGdkbjlt2MOCZs7PXLF5gzcTCaNKwpglYL/FarASaOHoSDB3cik+CYmPo02eucwhId0hkxkzq1IUqGuy0KWwxTNhIvik6dgtFj0WTdvv1e1Mt/oUDlWqjbsKWxmIdswZjXbd7UETIhcZcZGiePH8T2Y9eMZawdfBRV+STxcenbs52g2CfFyN59kShPWV+B9Ky1pV8LXA5cu3RGTGYJ5H2MadYRo5UqFs6AoePngiYI0vu3bzBf3oWK5QqhXNmSZuV/1ROmhzKYpr7IwpkEixbNQ3nBuUuXLoeY//9BhfJlAow1b16+Qm9BlP998FREFKRw0oqF05AxaVRUr13dsX4oWdDUFUAaRzqtnzrlgjSirYoVUzQ6oahtsyBvM+X75+J79MYNbz1dkSKVSFG+EIdKYYVCk6ngRLMa5UFqmTiVURCj0EVBhsIZNUf8ZDwNHevp5kBtmkb0baMAxzrZs7ubuQayT9O8iWyDpkMKXnSQJ5SD6Vi0NjkOCpAvn7ojTITQ+PpZtP/ptbuGzwMHQinh0yxakd8FG2R0oTxUhAgxJQH0IuQrWta8sn4W6BywJ2DJa+A7cff5QUDIdMnYd14FVon2PYYaw2y1Pg7s2oT6f/fA2OFdsX//NnHObYfZy7ZhzPhZoilogKxZMmlFfX6a7D65g7PckYkcpX7UnKiIEaOIF4Vat+6E2aK1ypO/MIYv2CDmPld1XfuPEX9UVQ8et0C75NAn28mRvaBhxy2o9TlTJUPV3yvisJ7M2SH+BWWhE4f3Sbql5Di4ayMO7tutEPVTSdj3uGG9xHE5hRKuiNJ+8vBe7N++UvwFu0lUWaKgHGKw7osLq8HxWrS3/Xuj2V+tcOrkAVmk76hk1Ry8k2iyvGjG+06KInnu2gwfgJnzZ+D3ph1Ua1XrNMbo/q1RpUYVERS+mZ1sdkXJw1K44kOQvOcFw4n9/9kM55QwXp9FO+StQrLE1NOa8HYQd/3yAi9PP4Nz9myiSZINoIZurpWz+OTjOOJkb1HN7JSPRpBRU2Kk4KVLBogFCkWmEBTsk073rHf8ONMYGcyPGTOaC2Km7THSmumAEiYULK0Mgo/lJabRz2IlwDcbJDVncaN8FNcJOlaYkGZiF2zC5cvXIIngiflFuLpz8ypqls2D3afu+Zi/TXrRD7+TA1a2DT5bZGQB0z/o9OM4oGGYmI4gjGCiNKlTCmtXrZQfdHRUqFBSIA/uoq2Y1ebNXYWWf7c3bMlMK2nHDqj2qe6m8CUpAY20ZeU6zJ0zH8u3HMP4OWsC/Me5V6IjR4kA5yW+XCUb1ZOwbfGDptOoTsGKA+fOnJB3LqbCJhsxaQEa1ymjNKpRo8UU7dVCzJ00BMtnD0X8aO6YOWOcLlzZ+fbatW2BnDlz4M8Gf6N6nXroN3CM4NWJI3oACFdatylTJsezRzdw89pldYnzSYUajdD87y4YOnSsCC5i7rNH1mBSuCb4YV0gEOfRLR8QL8p7JEyhCVdWOqV2xpTixsbHtJmRNN4nZbq7fktAN0VQC0xi+/TrsuxHu04NHMFDzYJ5ZEDUWFG444aVGix7siv9zRj1yHJOoolydpJOGZFNzZ10xL4YAJAsvYVwZfLgd6/dwOQBwzB45kqTq74fbli5EINHzwjw+dv3nn+tErqJMIR/3/t3bsSR3WvRR9JqRBBMm2HDxiJH4SrIkjMfpo/pi1yZUuKPBv/z/Sm59TKdLPnr9tZpXz7nibSZDAI2VdF16jVHh15DfG/THyXu3LiCZWN6YfSsyaL5jo6WzZoidpLUqN+yqzJN3rx6UWAdviBDlhz+aF2vElAcoN9HKBtC+kOBIjixe5kkaBYBXyerHKA5KXJkT7W4ssC58xckAngraonT++uXz7FwXB9MmDrWMe2S1R58XnwnzuoN5bdbvV5rZDLJX3dRhOUtq2ejdasmRq03fcEG9Boozs+J0K1zG8S2l2jb25Tns8dvV6iJuXLFGRkzeJu2vt2yfUShjw7jMjfRRHhDHN0TpQ2rgJLp0kCzm5JCrNnebLfq6x26TDAvarrkn+EiZjtTIlzD06dOonXyVKDNdJTXtGWEqLh50xzCwbSu6TGFzfv3XVTEpTHAiHMuyft5KMBRa2YLo4tJ77t07YdyNf5C4uSpDHUd+J/ZB5wlp6QOyeAAsxwoYs9EqKulHGBgcC5SsHh5NGo7CIOHT0at2g3w99+N0fR/5cFFrmn7/rgr2CmNG7eWecj7x2vrYSzvU+DyprCuoUWtL6+KlClatAgePrij3QrwT+aHO3vvESqJLwHnmVEjRyHSmxcKhiJv2hho3ag6GtYsKQlM1wR433qDjnPAlnB1/vRRzJ88BI0a/u54Y79gySSCT0UoAM3xOlPGDHj05J5KvUO/tkKV62HcuKkGzlCAMfk9+pddkSQScLEk+J3Urx2uSroijdLLZqVV99FYvmY3WrTqjkYyXxSTeeXE+UvIUaIGps79Tytq/dPblGf9puHq44deSJ1UnDztCUN0ZCJRg8X5SJy2FcnGL3y0sIKyH0ZpjG5c8USsGO54eP0LnOg4akpaG6bXTI/JS41MNGUUZgj2yWg94mKlTSuO9xbCFatRI8U/5iekvyqFnzs3xNfqliD6i6LddI+qdcNPQjdQyCRQM537mfuQuFlG4YqFLL5jAknbEq5YPEaMREiRIY+fhKverf5AvvQxA0W4oq/lyaMHODSdvDmgC1g/wasQTUw1xMYaOHYB+g4YpZzcu7f6Uz1ZpVqNcObUKRFQHtl/UktdNs/lB8+JgT5YTLR649wXdGo5GJ8ZURiINE0QiVNnzi5O9JfweO8WeESMrGAojoov1qaDV5AjV35RbUcOxBHoTfuHAwz53rF2HmbPHCcLUGz/NPFL1aEDNRd2AkySGtSrJfArs9VxZgEh3bvrII4ePWEAq7S1cqvSjv/H9ESlqlZGG9mEtRPA4kN7tqjKTBZcp1E7tOw2HB36T8KmA1cRR9D2r1w4KdACN7F79z4RCl77vlEzGQo3dR+954q48Z1w/aa4/NoTgAgyRqJ/EQUxS58v0ZoyD2CqdM4ijIbCvRcRceGWq7lcIvMWTXv0kfLUBDRDq4b/vYVB3r96K6wSqG5c9lQRgJppj/OdBt9gWpX5Cyn3cWqkeS9qVENastjxnfH8XTiV25CmQUuzIdtgQm1qrQjRQCR4+mv5IDZsIoCGcXZTQpmPcnKhc5vOCCvvRInyNazdtnktTsw42Hvmoc3733ODPtrZcxf4niZ+urryJuv0s3AgesxYCB0ukvzQ38iPOC1uXLkk+DrpkDVPYRQsXBYjRw5G1aqVrD8uJz7Ob9pulLspd5lFlBeUIc9hpMzhcPLKY1QTP5HApHAyGbXuP17Mm3GRIXFi/DN3veqOE/aerevQvucQzBe/nv5d/8aG/ZcCcyh6237gwLZ1S9BWUjgZcwz6oe6vWJRrKRdzRuuSChTIixUr1+OtpECJHDUa4qVIh7+at8XRI7vFIT6Apmr5nTdvUh+zRCv15+81cPPKeaBIGTP2M5p3yqAOaPRXQ7zziIKSHQbjxOHd2LR9ppgvn4ivkCRKljGmTJlUQW68f/ceDyWq+OmTZ0rYCS/gwc5Oogm6fx8b168Xs9kFgS2Ig7DvXsDpsRu8EsQz6894YvmMmolQK+BtkiaUA6Ob6STOfKd7tnggXrIwcHsnCZCl7+jRxU08jDtuiabLI1RYJQzRhYzXme6GxETP3yIEqWfwFu7UXZ//UTiifxWTOzvx2UTLFTu2l0oHxGAFheJO7ZgIScxRqJkN2RKnVtZl1KgZqTlWtHU2TO3OYUJJc1LZgjgPnjh8VGUZ4K2nj+5jpyRyrvC/v3zNp9qq3yiL1vTTwOSA7oMVmNz9AW3nTh0NpUqXwID+vdBbkkMP/neeUgd/ElDPItkSYsXS+ShXsZy/R/ZXi16yyx3kI6LR3w3aqLhw5gScOLoPUaJGR99hk1Wp08cOodnvYhJt0QHN2vQQ7JeYaNKyM5q17WGjFf1yUHGA0BzDe7fE/LkTxEyiK8b9wvfr4sicUsxNpDt37mH8lEVo0LK7Ol86bxJ+K5MbOXJkU+cK/JNgvraIi7bGf1mInWSz5RU1qo/So0ZPwP179xAuSkKBWGmtNCdfRFv95NE9/Dd9BIYN7SvrfmgMGzldXBD6+KjPCy+fP8Pd2zfEJyoMEiVJoQKhIrpGAjWZ/CRdPncSW6YMFZ/KaXh0N7QIBfJumGZ+UKVM/qPZzlLQMrltdkh1Ep9XhBoeengwobJtQenQoVDCR0MeVZoDTYUgs3atnDDRvQa1QD8sCmrUPtLsx2hCataY2/H07ZiIn8iQQ5HKO2JtURBMmtRDadWsaq4s+5PsBm4u4ZRQRlOyKS2bOQ8bpsxAMknwXP1/TRUEysp+rZBFMiS8SZQVhUtVFJZ44uypo4ifIBFWL5mLP5q00Z3ZTZkYwMe6D1YAMzQ4N7fj+G1JGJoMo0ZPwikRSP7+s7xS6zP57IptJ1CvUQvs3Xfw2yMYZqZv574chQrlFOjCFYfAxMujpiw2Cle8ljZjViROmhyH9+1QY6DJcO2Khbh2+Tw2rvqPRXT6ARwghEv/zo0lF2ZTXbjyD//dxZmbv0OhJEkSCWK3C2aMH6LOK9dsiIlTF2Da9LnqXBIaGj5t/W9iYqK5yZpwxaodO7QS3K0yWL/yP4wb0gX9OtRHvaqFMHl4d/To3l6SscdDnOhRkTpxTKxcMEUJU5Z+nNSYZ82ZF+kyZVcQPppQpX2yn7RyL3etxmjWagxefL6F248e8bJtclS4Ygt8VprVeOglwKJe1LhbIW/e0jy3enVohb/FfIRvnosw5wApQFRxYGd3xMJi7lRG/qVI4Sl+UJ7qXPnSSZLscBEN0YVEmqeWjVoyarcIQkrTJTVnjx+L+fL9J9s9i2mUWjFL4erJk6fo1mcg0oimisIVadvoPujQqTWuiByWSczKpMcP72H7huWC6+WuNp+WMDqqkP5fkHDAl19rkIxB7yQAOcC0B516j1C4ZV5O3ZArRwasXjQDVeUHmShJcuw8cRdTR/UWcL8YKveZ6STl0DAYShzIxNQ/nMzdxOeCviFatAtNh+NnrcLt6xfVCPZu34B0InTNmDAU/UdMD+RR6c3b4sDsySOQOUNKo5bFVjn9unUOPHweHimdvgkH+fLlxrHzBkGE73yHPmPFN2sOtm3bhVKlillvRLtKKcBBKlWqOI4c3iGaHw8B2zRonMyqOodB89Z/KXPUrrUzcEsSWeeu/Ady5C1iVsy3k7yFS+P5s+coUaIQ+vfvjc6d2/qo4vT8BbxkTrJJtLN5C1NWy1Brp2nuTAo4id+Ygj2QaxGjxlRCDzVLVHyVyl8IvSS7QOXK5U1qmB/StEeEeVNn82jRpLIQzYSpUhk0TMSzCi0Rj0yxQ1YaMM7M26Lv1aNHTioK8vJdVwVsyrQ7/MqoBVN9iBbMU4RM58iRv1WWZx/aphMW7juCsQs3gqnSSNQUJpSEz3FzZMWLBStAX1xS/IRJ0KnPSHWs//djOaALWD+W/4HWOxGb/+owAIO6NUPjVt9MaBRWGrXujaGDO6JX9zYyQaRweAzEygksPLRrl85ix/rFuCUAeC8ePkTiFMnhKjMVsb5u37mL3AXLoJwgxseOmwDxEiZWYy5csgJyFyiOwlniI0+B/2SXGE3yGVZz+Hn0ggHDgXevHmPyv5MDprFfrBUiunOxN6WcOWXTMHsRcucviphxDP5KFWvUx981i6JkyaLGDYdpHf8eR7CWWM+isRx5xUQpf9z0tGzVGTEl52mSFKktStk+5ZxTqcbvKFqqAmZNGIhu3QdIEu1ZGDV9Iqr8VsFQ0ZpgSDBkOk+J4CRJK/DslYuSsVj0w1thmghc9MdKksTTPBrPZCheBEH21oqFEj+rL/eewyNqLPEJ88JruKFfv0HYt/8gRgwfZFLr2yE1U8r8532J6O9hw367722hVJoqmgsZbe3m5qWiDL+VMhzRfJko7hd5ptAiiJkLwkzNQ2Hu3pSDmD+lAYaNGY7looG6d++h5EF8Lf7+kbFo4xGzJmmW/yx5e3buPYCEydKZ3dNPggcHgq2zxI2rlzBW0sNQi6GT/zjAcO+R01YiXeacZg2EkRmiXa/RGD9hhtl1sxOq1cUfQgsj5wby7l3Jn/bslVmxgDi5dO40+nVuCrcv75E8VXpU/qMF1q/fgIgRwqF0ycKYPmUM7l49gea/l0GV4plALCyNuMOnqfC6OPQvnjcF/bs0l1Dh/QJOKttUnQKdAzQfVa9aIUAX/UAfdDDp4NgxOjF7oUiRb9orDo3apFHD+8pCO1iAQQ3vOoWUvCXK4YVoOH4UcQwjhvfHqAHtlLDl13FEihIVYcK54vSZs+jYqxt+K1dKNXHgwGGET5QabyXSmdMO5xya0W7dDiWRh6EFk0qEUOfQygdKi/TLnM1LBQikTethEK5Y0RoEg2ZylAmsSpU/cPzCMmzfvhFZs0aTPH8PBMjzBrZs3CHXdlp/HC2y0fsuEdo1ZAhGDNIfSyNqrWgSpABInDOrJFoud0kfZklMUh0z5nNcjX4Lt6JER7H2XfDWzRWlqjdHy57/ommXwZZVVCDEKZHXOnTsAQrgOgU/Dsj2IPgRd0rb1i9DnPgJxeUgFEb0bY+M2XKjXJW6wW+wIXBEJw7tkQztMfDZLRQ2bryBbNlSqez06lFUJIzI3ZwlZHJ6Jirtz5+ZxgEyAUTAilWLUFp2o9lMgAp9YwHxUe7cuobTx/biiwg+Wzevx2jxr4rvncF90uj+iJsgCeo264nyBdNi1OQF2H/usfKtOn/hNLbu+Fd2nHHRtIlENYm/T52KBdC6Ux/83qSt0eenc98RapE/dnA3Pn38gF7tGqGzRMzEiZfAt+Hp9/3JAeYdfPn0Nqp1a+rPFn7dasxpR7BK+upYI0bdTRg3DB27DsLfXYaoImFFXeL+5AnhvyXyLLRVk5i1tgLy2nUxE+YSzRqFLf9QzT+aY9b4/pIDsRqcvKPntmzZARoH+/QciVY9x6o8gIz4ixOHYJgGE5y1vphDkMIYwT2pVaKFkMIPfaPChv22tH369BnjJkyVdGJ7sXXrZmNTv8k8Vrv+37h66RxGjBwn2sHixns8oJDkxQ2+pzwrGxfiPOjJcyFaLAlfw6TQdGLXiGZC+lsRU8s0Bdm9ew8wbvxUSbI9CdWqVxEn+xRo/lcjbFuzAZv3H8buXbuRNHlqjN19FvSZdYSaDxiHPMf2+/v7cKQPvYz/ORAiogj3bVuHk7JwLlw4C8VLlpVUMMOMZiL/P/qvW5OqZZGgsGfbWsSM+EVygtVWEwInezpvKqA/wjVYmUTbtO2MOEmySGJpx3ZMU0f3RgwBKk2bIS0KFcwn2eYjYMOGLdi4dT+6D55k9iVQsD5/+riUzaJ8r0xvMq/dsnkTULpoDmXWXLFyLW7cvCN/99BX/K/oWDt+WE/MnzkJR6681CccU+YF0vGt61dQu3xecdx9LD4n3xa0QOrup2lWw2lyJKIsT95iGDd7vUrSfOLATji/uYk//1cTTuLs7hU+XJDy5PLlqxg5ZoYIfP+I6d7ETubHUbx781qc6bvh72Z/4ta1m9i85xDc333EgBb1kKJEEUNrVJnb8LlyEicqLzFtKnT48+JMntXggM6Kr145iZbPHCZh/vzFcAsTX9wJilkdKZHNR/ZtgTmzJkiXBs0TzXWc/iwFYJoInzxxVoITEd9PnnQR30Pr+Qbp0H7vmhtSZXRC9Zp1JNfkGcxatl0w/RJjn+SRHTekO948fYph05chkygQwoq5j3Ogf4RXBprQqT1KtOhWn1G/GHgcCPFRhIVKVULbvqMwae5qNdEc2rsVXHB18h8HqBV0EQFq1eJZMlEkUzvp9OnccePsZxUlYwT6Y8i0qdpduhszeiiunjuEVy+e+do5nTCjRQ6LfgN6ok7t6pKwNL5sviNh4X/LETlaLB/1ObFkypbLh3DFgpx8/te4PU5deow/6rdArpzZMG7sEBTMnx2r5o7EyH5tUf+vTthz+r7Ad7n5aFu/EPAcSJg4GXr0H4l27boFfOM/cYt0jraMELP1uCVKFJffqmirhHKIv+HRy3ewdNM2eNiDOrDV2Hdc791nMMqWq4pPX9y+S7jiEGgqbNt7LA6dvC1RjinQacBEFKpUE7cV7p73IG0IV7xL4YpEZ3VT4YrXokb1Eq2SpzLdUYN096a7CEGnEUd8N20R58KKtZqKaTaOaLkOqWL0rWJb1khDXz9+3EUQ3yVBs0Em81GUaW7SZQuF/xYdRcTIsbFw7QEkkN8M+ytcvBxevX6NdDlyiX9bITW/sQH/CFesR1yy7ZtW8lCnYMQBg94zGA3I3lBy5iuCDr1HSgjqEgzt0VQwWx7YK67f84UD+QvL5O3i/QqIcJO1QDjRMJlUolaCmiyqyV++Uje4wxs9ciAWThtuUtD64RUx7yVPlsTs5qZNW5EqfQ40b9fb7LojJ0xQm6dQaVy5dAGLl65Hmw598eDxC5w8dQ4xYsYV8+Eb1KtSCC3/LIeJw3tgwpBO+HdwB6xZMktSkFBrp1NAcoARnkVKVRafmjMB2exP3xaVP8Rs0ohmJ/5Zo6gS+s+NikZN2/XHm6+R0LZdd6Xt0K4H5ie1Ks9evsfs5bsE5HdYgHTFDVOpqr8jc878Sqi4ePYo8hXKj0d33JVw9OiuB7zcvpndzDoVnCgSBRhqmUyJ5xSMEiR4i0yZoqFFm3qIFi+Nr075GbLkkkCZoihduhIWL16unOCJc2VKdESn9or5B0m5c7sr8yAFue3bQ4sGyWIwUubYsaM4fHw9ug8cJwELcVU9ArkSEuO33ypLup8rWDh9lLr+Pf/FT5QE1eo2/p4m9LqBwIEQp9cnpkeECBEleiSsgKy91n1sbLwUjqiaa9Vvg6mSWHn/gSNo0vhP0S65Wm/t7Ts4v3wJL8Fn4e4xRozoSJ0ykYRv77EZsn3nxlVsXjUP06eaTx7bxJk0fJREyrfOemeGqw/u3cacKaPQc/B4s2JRo8fA9mO3za5pJ/QJqiwAfGElPqhTx9YSVRhZge6tWLFG8m/FwtBxs1G0dGWj35ZWT//0Pwdev3klJpkX/m/gF6xJIYDRbyRl5pIkyPTrUWjgFvxIkSKpgHleQ4xYsdUdgrjmE+R1goJu2rwd5b0dxS2qBdgp55ErV65K0MgnxPKOaAywxk0a+vTiFbrUrIcJgt8Uz9NNNktOuHYrtNrbUWFFftHfiThUUSKFQXiTupaHHHPv3v+gU69/UPPP5g5rhcbPXoWR/TuhUaPmqFOnhuZ2ZWyeyZxNwUnplqV9Z9KlVZDTFSvWo5FEcZvm7pw8ogdWr1wgfltJ0KPnQBQs+ZuxD/8cMOhnneAB1pZE3nEFXFSn4MOBECdgUYXavOMg5Qxo+tIGH5YGj5FsFGf0kuWrGVXP1kZFVfXfnYeIH8RltGjZFcOG9JKQ5Hg+iwoStKcIVabUrm0LEchii29BbZSp8jtixI6P8ycO4dK5iwJ0J7nLdm3BgQM7RCP2TSU2btwUzJg+GzuO3TJtyupxAnGAtxSuOMmvXTpTlU+TMQeYr01TqY8d2FGue+GgOLI+e/pYUra0FhOCmziaXkUSGTvxd07sW4c7gqFVv0VXLJBdo7uYmRMIZkz6nAWxYfUi/N6wlSAeR5LFzsOqmdLqQH/xi8kkXL9EqfJKkNUR3B17GSJGNIBOEuWbiOIZM7orzQh9dqiVMaUypYujZeuuAn4eBulFy6JRYXGbGCUI3uXKljT+BrR7AfnZvftARIqVGNX/aBmQzfpoq2CF6nh6+wSc3r2Dl0RRRopCU6KHKkch9IsorZ4+NQB8Prn1GV9Cu8rc4qXcG0wbo3A1duxkMb0VU4Ko6T1HjpOlFG1XshQydx2W1DoFjFXoe8XvSxE1aLLZ1Ijjo9DM74+fFLw03CzXSBGVpSW5wOZoRD3XmzdvJYp7KjycI/gpWbPWhvbJjeiqRVNEO5YIm9YuUm4Swe13+FDGGFoUIoEpoGv8CG6fIcLJPbgx7Wccz2sBmlm7ZLoAlL5AJHFE79Wzg22NlgkDOKGNHjNJJhUnlCpZVJzkEwqcQ2TRHr0QUL8YJiUBOpsOGzEeizceNrvu6Mnrl88FMbwJEieMg2WLlkqi08qS4Hquqr5v+zps27hcQrYjykQoO9/Pn0TeckOy1FlBuIpU6bJKVOJZZMtdSMyJsdGoRlGkTZMKly9dQc4CJZWptGXn/jiwc7NEIn1GweJllNCgoyD7/u3QxNFJTDHUbOrkGAe08H4CVXJRJl255IQ06cwFLF4nEGj3Hv2RKlMh5CtalpcU7ZXgn7BeL9BYnN4l9E67HCCfa9ZsxF7xRwofOQ7qNGwbIG3aa4Rms9XzRormuY8KtNF4Yq8OfdmIkK4JpZ8+fkKnzr2ROU8pFChe3l5Vu/c4lhWzh6F2rUEKCkIF/kgNJuUmOrslEUaC6O4cc5gwBAw1mHyZe/CruFeUl4TMXQdNNgZmvXn1EpyvYsaJj7yFS1k256fzeZOHolPbBgJpcQdt2nTBtMU7lY+XnxoJ5MJ0wL984YzyNQvkrn5I8/ac3EOcBuuHcPAX6JSmt3otuqknffzwvuyau6NSxZKoWKGszN3fdmuWrKAGqWMH891tggTAvn1xRUBxM1OzP336HNRM+ZcoKI2atgI3rl3C7y36ilOqbHO9qVDJSuCfRpwkz4pGzXQCS5k2g3Yb89ceNB67yyS4e/t6mSCdUFCwhkYN7ILY8eIL3MN75ClYwljuZz6gSTdc+AgKGsWvz/nm5TNZ5L59F36t/yuW/5Zo2PD0dKp++cwTdyKEkgTC34Qu3qXf47Ch/dG0eQfkFfOgprWlFmv14plYs2Wn+PP4X6Aw5T81Kx/Fe3zlmm3o2G+s/H5FHRMExI3M67cflJx4966LIQiATKHUwj8SgY7fiIbLG/GdMBf0f/rwwUv8tvZgwZwlqNmkIxIkTWko78//OZY3bz8ppHaaJPPnf48WLdqhZ89pVlvkd0k20UyoDZW+WvyLEyeMQq6fI4JQ575jlamQkX4Va9a32pZfL759/UJAS2Opv0KFCuLZk4fBzkxI0Gs68v+KpAtYv+K37sszxxX8sY79Jdnyob1o366XANpFRMECeVChQhkfEy53154CxmcZpp83rzsuXmSUjeQI807A+u79B/QeaoBmoLnv6eOHSJgkmY827Q2Pju6p0ma0V0Td4yRpKlzZq0BTM82pGv2vYUsc3LsdsWLH0S799J87N68UJ11JSPvsCboPGofJowegRYc+vj73W4leiiDak3fvQqnw+HDhfJptfG3ESgGaXe7cMSzuXLS4eHG9tRRMrFQNcZf4rMRyypjNU4QpTzk2x0/iA1GoypktE+7cvIak3ijq1B7/06cTfqtYWUyFJfwd3fdaotkWL1mFs2cvIkyEqPJ7DS2bra5++l0GBNOdXcIKfpU7Pj7+jKtfIiNRIicFIspkyWHDikO7gHRSuHr2zFmZC+PEYT5Ad9nMuePf8XMxYOwsxafvHQuDpzzcw6h56/2bZ/irfnts27dffKYmo2/fZj6a12RQTbhiAeJ4MS0OqUyZEuI/Fl1gGbqiZdchdt02VAU//KcJ26ySLl0qPHl8P9gJWEw+zXGajtUPjxiii+oCVoj++gJv8Ny55ipQVP1RGDq6fzuaNe+IAvlyIG/eXCI4pZbw5zNo0LA5bly/rgby4sV9mRANpgqiGhOd+Pp1ZxXKvHfvQezZdxiZ81fCJ9EuTfl3EOiUXrpCDZnM3JAxa25jlE3gPZVjLccTv6xc+YqiQY1imLE4haDLp3OsYggu1bBlN2USPXFkn3qKZ4/u4/mTx75+JxfPnUGK5HmVAERcJwI/nj0bSplWCATpHyKK95EjLpIjzk0m5W8tcGF9/txZheF/uxqyjyg40sSULp2HcSPC3w59fjQ/Hu0Js2fPjP0nTuHsqSOoXONPtWBtPngVR/Ztw7nzF/2VC5IbpL9bdUOthu1RsEITrasf8pksVQYcOnQUBQrkE2HfEwRjJeIK8UgZBEw/LPpBUYinqe7gwZuYOWsSXMK4il9lxwBbwE8e2YOFCybj4oUbSJQ4CqLGSYIlm0ajcc1iVgUsa8zid/junbNoA50kKMtLfTddOkZEx3Z/oPs/U8Vtwdx9wlobvl0b1ru1+M9eVMW2b98t8+tRdB5Q37dqQX7/1fNn8PB0V2nOgrzzH9yhLmD94C8gJHTPdDQ0RxQqWRFXLpzF0jV78XjiHCRNlREzlogju6iA6Sj/l0xy/wzqIY6nCcRvBGYIx2HDxkXSRHFx9+IemTTdkS1TSmTKkEYEMhfcu/8Y5QulE/+TTJi7aneQ75ytfQeJkiZHboEF+ZV2XRSqc+QuiFs3ruCPpu0lcMF3Dd6Vc4fxV6NaasdOPtLxmJFV58+bay+t8djaNYJwHj4cSvxWzIUrlo0Vy6DdCRPGSfneWKsf0q59fO8Fz1t34ZIxvnHo9N1h8mBLbV32LJnRtVt/SdB8SCAFiqsI6ugxY+GgCFg1KuYx1BczmngUG9uyd/BcEizPmDFfsKTyIGWa9PaKBsm9EuWqo0i2hBIp+FAJUsmSmfs7UYOpaYvohD5n4VpkzFkEpSpWCdDxFS9bVYS7u7giKbz+ELNs0hRpVfvFS5X1Uz/p03vgzJlQkpZHpEMhbkpnTP8X3Xv1Uwm8qY3/HkqZJgO6dfpLNTFn/hLx85oaLOeryFGj/bKpy3Qn9+95w/W6ZhwgXs/k4d3Rv28ncVRNrEKto0X1lMg8s2JmJ9zBU2Px7Nlz0YylRpe+Y1Dj9wZmZX7UyRFBzr4lIdB1JLrwV6Brl8+LWXg3/pszBX2GjkfOfMXsPvYwyR+ZNWdGdOzokz/EBLp82VlpMemI7Bc6e9ZFhDTzxVWrT8GdkXdp0li/r5ULKZ/EVqKm6s2Tr0iWTtQz3kQBiw7wZiQSxsHDx/CvROMmk81NhRqNEC1GTMwYPxQ50sTDn43+MHcEMqtsOCEa+6rVG3Dz1n1EE+y4omWqf1cUm5UuvuvS4tnjJVtDVhQWO+jYtAAApI9JREFUTCx79M/QMShUroF6fnvlAvLeyH7t0Lt7KwXObGz3i/iFEfRa1GzWkPVv3XIRTC3zZNRLlq7CZ+fY4pdU2NiMfw4unz+NpdOGoN7/amH6wmX4+NkDYwQVPrjR+hUL5HuKjQJFSwe3oQXIeOw5uQeNB2OAPIbeSHDnANPVtOo+HAMGjxW/iM2IEf0jIjjL5GOHrlxxEdMIkDx5DCxbthBRo0W2Uzpob2USs+WmtcFvwgosLnBHTNygtXvO+ypccQy5ilfANclNRzOTJdHvLmNGg8mQJjBHiGHufB9oWrZF3PRTYKMD8c9A9L+ivw5xsEzZSNMoHbgvXXJRZlH1rKK+yZ8/D5Ysno2mDaphhmDYcVNTuUY9nDx/ycAOU5uqN4Poq3VJomXnzFmIKbNWIH+ZemjTa4wKakmcPFWwYmOt+i0xb76d35w3kxJJrkYG4wQl5RaQ43XrNxu65M6QAMxv3sDLNaJV4YoF+Tuw/EoqlC+Fk0d2fvfQ02bMCqfw0bFm0nTB50ommNDOmDKiF+7cuIaXYpb7SpvqDyYCPGfOluenFa58Y+/PMUv59pT6/SDjACPR2vYajTtPPdC1z0g0ESf5MWMn4bL4iJBolnATMwZzfTHsmbs7mn64i9+xcx8KFisXZGP1rSOiTUeJGl0V4yL1sxPNoUyj5CgVL1dFaVRmzpwrWpVJyofLsm6cOIaExtTU2CL6G1EIo/8WNVOmKUqYSNeSmB+Ovi0vnob874TP+vSp5L0LH1YJWdqzEtCSiYLpm2WNmOLqn8E9RWPcFTs3r8LDx08Naa2839O3b9+KeeocmLOzUZM2YtbfB/cw8dCkTS8FWhpcTd80UydNlVnmBhEYTSVOjQneZrUz5y9g89ol2tUA+bx1/TIIV2OLcucvih7dexvecwkIubhjNw5NmKaCQ2zVITiq5WaAgM7bNq6zVcXh6/SNff/hHQ4/fylm9ePYs3MrZk2fiJrlcqNp3dJYu2yOw20FVsFlC6YJnlm0wGo+2Ldre9YL9kPXBxhcOcBJkj5bTdv2RbveY5A6W1nMX7FTnD1jirNnITRp0lrt2pMn9zRbTD1EcUF/r+BCFyTx9J+yOJGG9W0vk+/z4DK0YDMO14jhJQy9p+yW3WyOiThFRMGmg7opMQSeGit+MqcbhW1LkjVEmQSp6TEl+uc8fxVKFjvTq3JskTvT6iJtUUU7pbbIR3vazUD6jBHDUz0/tXZXr5rzR+uSufWsEXN7Thg3BOdP7seL569w79FjvJCUVkv+W4Y27ftg+/5L+IBY8hscJ0Chf/kaVcukx8GBMmTLi0NiCpWQSuNwnCTS0ZTqVauEmCKUBiT9r1IhXDp/ymaT3DwWERiXffsPip9bKPScvhBzbtzHo0uXzeowClR7X7lfsbY3y5c/n1z/vg0C58rc+QojU8Z0iBsvIWr93hDFBfQ3fvz4uHfnNiqJZvNHEp/v06cPQWrG/ZHPa61v679oayX1azoH/MmBJClSoW7jtjh69RVmi6D18vU7ceK9bbaYESJg+tQp/uzBvBrDgjesmIfl8yapSWzK6IF4eP8ODu7eKmCj580L2zjj5JA4WUqJojT4IXUbMFYBltoo/stePn3yJIYPH6SwfihY2yIKRBSkNHp0TyLl3nkpjRXxjEyJGq2DBw2wD9TgsK4G2WBaLkkSTxWxaLZOMXemKZks0qaXrR3TlGOZf85auYC+xkWYpiQmPaAWz5T4bNYUOVoZakOmTxuL16+eoWuPfzB42BS8/eqKTv3Ho8xvdZFdghYc0UoSbiNf+pjInTqa+q1o7f+IT5qqjx07861rmRu8LHDWTl27icyCCRaQ5OHhLs7+GWw2+fDeHVwXn8wjoi0ixUuYCLkl9dao8bNQpdqfWLXKoJViIm+izpPev7cuYC1auFDd/57/bl69pHKBSrppacYTO7duFCDl/CJkv5QMFYnRvVVdDO/9t1kuy+/pz691qSVt2KKzX6v9VOVtz4g/1WPqDxNcOBBbstr3HTkbI0ePxIG9L7Ftm8Gx96VMCjly5f3uYXKhmDq6D57eu4Bzpw4JWOgHzJ0yWkBHj4o/1WIckBQ+jhDbWbN0riNFf+kyWw9fwxBxOKZ2skqVOlZ5Qa0QnbY13yoKUB+/hoKsTz6IAgXD8/Pnd5fgB8MiRRmJYfqWpIXr09SsaQwsy6hzRtbZk1IkqpVEgY3Jhi2FHHUzCP5LkMBTgj0Mz6x1t3FjGKXl086tfR4/flqicSOgdbehaNSmN/JJtK894rs9ZVQvDOn5t7EYI722HLqGXSfuIL7AlPxI4sKcJU9x8cVabBgGhWZKv97kJS/UvoMnVKos7dr3fmoJtd2JC2GDvnz5BPa9avVanBC4jHgJkyNPiYpoIsJs4zb90LP3YDDvKd9Xfpd0cH/71tkAmmrSJn0W48dP8N0RfxtXL0THZrXwV4eB+KNZZ9kARpd0NIkQU/JWPpAoyHci3UUS4Fo6w+v0YzggeyeddA4ELQeoam/Srj/GC/BejmyjRcsUTaIOH6JE2d/8NZATB/fL7m2lAF6Kw7xsGXp0bYNWrbsgf/HfMGfiYCRLkRxXzuxCvFhRkTxlSrM+qO2i38UXSa2zdf0y1Purg5r4iLZcX3C/Fs+ehDQZsyBbrgJm9fQTAweIrl+mYnVsXr9CkK/vK42hqX8Phavz50OpJLlM2EsYBmqJrPkWMZqUju4UdEhhTSxA1HJxwbIM3SfeENuiQzhNkfT58kG+wRaIuYcUPrwXsuVxUf6B1EIEFZFHJD6Lm5uziqrVzKXEFiPdueONbq7OzP87c+asYEflxYUzR8UMaB6p9ezJI2xdt0hSR33E54/vRJ0iPo8xo6F9qwYYNXaqWUOMSPxRdO/ODUlhFUcijl3VEAqXqoyJw7qhWtWKcKXbgAje4sWt7jGH6PVr175bQDF9Vs5Jdes3N6azMb2nHScWhPhcYpIL4/wVC/9bobJJaPeSpUyNUVMWoW/HRoKdJZqtXNkVBmDRou5GaAmWffr0mUrw3G3AGK2qvz6pvbp5/QrGz12LyFGiimAVH9myZMT8qUNRokwVgVq5jH27tuL+3dt49OzDL4ukbslcZqxI4g3Ua3kvMM51ASswuKq36SsHosWIhUTJ0yBd+r0oUaK8aDgy4eKZKfD83dNPOFjb1y3Gm0dPcOPKWezbu9k46RbLnQ3du7TAK8HUCRNmkHE8teo0luSr9/BO0Jo/CPhdifK18fDBXXV/4uhBeP74tviwLFDnadNnREzBgqrT8NtO39iQfmDkQLkq/5Mksx3RumFVDBw4DH36dDPe0+AGqEBi/j0CRdLfyhpRqIgb99sdTfDgFQZFmJkCvxVTGgNiRp086SIClskNOXSSXbyXmNEcJQo5Tk5MveKiFkYKe7wWWETICU2YYh90bGff5AM1fXwuakTo7E/oCy0rgul4unXroATbbt3746m8119F0/Lo3jUF+hvZNQJaNPlTfB2jSPRlZGM1msDnzJyB+i37gNG/P5oSJUnhYwiFS1XFaoGU+KNuDaNwxUIfReOYJm1aH+W/58KGlQtEc5fQbhPcONy5dR3Nm/6Bo6cu+0BkTyQCWJqMOVG0SGlMmjwOOXP8qYSsBAleo4rgluUsX078Bj+g/t99JNDA4kW127PPm+tWzMGDu7ckd+xbJWAxv+HOnbvU3Hn80A4BSb2A9JmyiGY5AmqK/51OBg4kTJI8SFmh42AFKbv1zkw5sFWEo5EDu8tiEgcnD+7E4dNnsWTlNjRq3csoKJmWt3ZcLFNcHDjy2AyUkVqphoJd9dXdU/y6RkqEoiucxFvaS3bCrx4/wcfXbxA3VQqxGnlg2PB/8eTZK0QJGxoVq5ZHntw5JUVOUsRLkFjtENt37SP+Y+2tda1fs+AAF+3pY/vBxesTxoweYnaX6O6ZMrnL92p22e4JBQ0NbNP02FYl+m3RtGhGlMrYKUPqCQnuB6JQSMd3AkbacS/zQ4s+i1pLIPzokbPS9HG4khZQwZjQRMpx2OMf+X9afkMRIoQX37bUPjszuXL58hW07dgf//w714egYFLshx7yeYpkiS8pmO4Z5wNGINf9/S+kzZwbpSvWBoFWA4Lo4E/e2gP/5HjayCbi4/sXghzfHRky51QRmZb9D+7eEgkTJ5UN42HUqtlB8hhWVEWmLFinfOIsy/v1fNGs8RgztA8mzV2t2uOYOecxKGea/P6uXbsqJspESvA6uH+PANLGx+ipS+z6l/l1DHr5bxywh4Ola7C+8Uk/CmIOlJIJMmzY8DgmOQ9bdu6DDu2ao2KZAujQtLrkLJyqJs97d25i0YyJiCjpJrzEmTNd5jwoXr66mnD3bVuL6nVqKfRwLkoM3ydxp+kuE06iZGnEtHJP0mqkU8IV70UTYY5/JCbR7d3LxAlTJlkIcOCDB7cxfvwaMW3tkiTQG1C7YVs/adVU47/gf+R7s/Zi+h3QCZs2b5f8eCWNXGC6EC5glmTP9KWVpfbGFLpBu275GS0aTWxO5honrVML4erePaZhcZI/g9wVO7aneo9M26TmiLk0T582oHEHlJDFvgnNQB+yZMl8mjT5HseLZzoSx47J/2zZsjhU+JzgZtWp1yLYCld8CD7PZzEHPnnyVG3CGAjTrVtf8Um7hnPnzmH0P72xaf9lhzIO+MYUFzE/UiOUIHEym0U5nvQZMqJUsZyY/99ybBOXgoFjZvso33PIRIVcvnTGGxF0Pqn7M5dsRaZsuXyU9euFDSvmK+HK8rkZYOIqGTXixo2tzKdZc+RBrHiJUFJSkU0c2U+lJ/NrX7bKz5k8Cg0ka4dOvnPA2fciegmdA4HDAU5YRUr/hk59R6Fhm4HInj2/OH/GleS1pVCjdHZMGNIZZ/atQvgwofH1w1c4w12AS99g2pi+WLdsNl4/uYYpk8coh1IuVvTRIbHdbl1bI3Pa+LLrd9CUQE2HRBFBcimGCeMi6S1qC/hpFty8cRO7t6z9YZE4gcP5wG21Ve8RqF6tjvhTvTV2ZBkpqN2w5ryu3eMnHc6fPYMA1xq+W3vlU4i/Eh3kqe0yQkJQc2VC7945Kfw1Cmz0byLuFh2Sb9+2PhXSJEcTIds0jYI0adLPhx8+OIF5GplPj4KnPSKMhUZOb94ZMl5rF/z5SS3Q+g07kDN/EX+2EHTVZi/dhoWCUk4aNHgkUmUWLCpJRp4wQULxuzuP2RMHKvNoQIzIEWDOl88fSY7MCujWubmYo03s2RYD+CSqx3lz52Pr7lPYdfKuTC0WmlWL8o6cTh87EP27t8HCtfusCpXJUqVF9XptUbRkORQtWw0Xzgo21pYVmDZtPHZsWO5IFw6V0YUrh9ikClmfVRyvr5fUORAgHCCmyx+NWghOVgHsO3AMHTq2w7B/euCDRAHGShgfmQuUxO17T9C2bScUL5wdA3t2QPdu7Yx9U3th6rOTKWMG/PFHbSVsGQtZOWAdylZvJTHrrYcRcP2KCGoXvyJfPnfZ3X/EkCH9kT6ZK0b3a4Vt65ZYaUG/ZMkBCrik94xR9yYKwH4lpoo5cSKUmAk9RdPjhU2bQou5yPaUFcbri3KCp1mRghSFrIfPwynfJX7HFMBfvnRWgo1pImo635NYxpLYHwUw+o1R6xQQ9PmzQcBypC1GXmobB6/IrtYH6UhDJmVGjZ6E8tUb+frbMKkSJIcnjuz30U+GrDnh7hJV8py2x7tPXigo/popUqfDIQlsiRcvLooUyoUj+3f6qOefC/z6h/RqI8KQdR9Btnnu7Fk0l7HkzJkdj+7fsAlMGlnANcfPXoV6zTsjvOQKy5Alh3+GZKzz/u0bnDp5BFsPX0eqtBmN100Prlw4hcWzxiF/7gxoXLsMqlQojg3rl6KQpB1y+/rBtKh+HEQcCJgZI4gGq3fzc3OgRcf+OHTxGXqPmIVNW3fJwpYSUSJHEl8pT5QQ1PB2PYbg75YtULVKJezdu/W7mMHFlICAdDJmBBoXYy6kKdM6I0XGMApZvptEIzao/z+ULFlM0pPMQqzInli3dPZ39furVP5n7EwRZHLi1avXdh+Zfk5GsljYKKcVLOimogOZMJeJpDduDG0sbnrgJBGMCBfWeIkAnk+eOEl0qpeALorQfF1wi8T0Zis6kN+9t1xobIMHYcNK/XsGLRKzDTDSke+OqTBvVsGBEwqbHJcjxP6NfXGAtFt+BzHn55PnHyTBc87vaCVwqubIU9BqwxVq1EeLziPRsFVPdT9cuPD43x//U8d//F4HB3estlrPrxeTiwYoa878Mhc8sVm1Sq36StAbNGgEtm3dhkVzJlktS5NjukzZ1T2a70JbmKitVrJz0U1s2RV+qyNQDDGslqJ/WN9OTXH0yAH06tUfFStVRs2aVZQQ/fLlaxAQ2K9atMmj+uOGRCsGFV2/cgEfP3zblAV2v69ePA8w7aetseoCli3O6Nd/CAc0UMS/O/TH4g0H4OYSDVXrNlFjIT5PwpTZMHfuf2oHaTpAmpL84iND0wsXXGo7mJaE5iJNk2HarunxH7/XwvhRA3H+1BHTy/qxFQ6ULC+58hZvRu9+YzBHvi8uANbIxcXkuncYvo9yInhRyMiRw8Pcv8obv8rr/Qd4SJScIm8hjeY8ar4IvZAsheS6TOGpfJ58tO19QfPxMh0mjylUaZF78eN7qnHQXEhkev8S37nr153tQnOxbT4zYS2sCX7+7XvwkDGo+nsL/1b/YfVCmQgodOp2dY2sxhJaIDaiimaPTt4BQREFJqJby99tNsXE790HjsOho2cEYPcfbNuwDDPHDQKxxQKT5k0bjVVL59jsgtGjHz58xLAJC7F293kjKPLefQeRQSIbr1y56meNZe36fyNZyjQ2+wzoG5EjR5XfmvUNlGVfsyYOs7zk5/Ob18yFx7aNa2Dx3Cl+bsdehVD2bur3dA78KA5oKvWkKcx9qEpWqIl2DSuhvmiWFHGRlUn25k1nFWVla7wMeeeiy3mYx0TN5uLrF6LvSgbx6bp5bg+uXz6HSjUbwEmkOoPvhpek+Yngl+Z++rJpM2YD//bvWI/mTVqhV78eSJQogdlze3g4KY2QXSHC0wOhxC/u4kVnceL1wouHj7Bh6WrcvXwVbk7OWDV3LmIXKIhSpYqhY4dWCC0Ro6FDRYDb248IHUk0PlycHZC+6UxPyASixjPXIf2jqDAydUSnkPW9xKHQeZ6aUy1K0rLNZ8+cRfvnpN5RpsrhO8trljhglvXsnRODKXS4KAEWeWevr8C+91V+9i9evMSu3fvw1dM5wIJQCpWsIOY8+87oFPCiRI2J5ZLn8cL5I6LVfIbuvbrjf407IjCSZ586uhcvn9xC1cplsUhMgHUatjYTlpil4sP7twgjwHEZMmdXkZDhwruKX+E9mfNeI0++QsqsaC9C0tr3FVARmtbatnYtdjzzucFaGe1atbqNtUN/f+bIW0jVpUmYGsd/Zy73d1u2KuowDbY4o18Pthzo1Kw6Vq+cLxoJg0mI0WCPHjkZkcJNB07soCtXnJVJhmYZpiW5ccPZJhaTaV17x0Qub9WmFVYsX4m6dWuromPH/Iu/WnVA4dLVlJ+Ivfq/2j2q42dPHITWLepLpFtm4+NTQ/PqlQXataiOKPpqvlwsTA3YXsmxN3/Xabh9eYdqDVrK7jqtWVj9pbMnUL+G+OqdO4oPzqmQKMwThIoTzQxDydixxQGFGZqMs2f3G5SERTN+OmV/NFlSiLMkmq4pTPGeFhlJ53heJ1zDixdOSiOnad4s61s7793nHxQqX++HI7VbG5tfrz1+cA8bV85FphwFBUSzcIAJWKbj+HdId+TIXUD8viqaXlbHfB9XLZqBSqVyqMjNj+LU3rptd1T5vZV6L31U8OcFQi9sXDEDc2ZNkKjmS8iTpzDKVqyMRi17Iqk3YObArs2ROUc+/CbmS42YCHrtkhmYMPofdO8/EuWq2tbKaXV+xc8Xz55gy7rl+F+jlv5+fHswDbqA5W+26hV/FAdG9mklE86/xu6JDB49upcPjRTNhtRspUnjaTTzsJIjmErGxm0cUBsQO3YsdZdaMU9PJ4l2mi+gqcUwd94ivJQ8ew3+7momJNho6pe5zJ3i9LF9kT9PJtSpXc24KG7bdhMHDq3A8KEGtX8U4cgb+atevaoENbTAdvHHu3n3kSwihVCo1G9qt2mLacWyJcKwIdNFY1UBjX5/Bydx8rr28LEAeCaz+l1Qq0mNFVPdMbE0ndmtadNoLqSGi/coFFkrY2tMtq7TeT1xYusCFvG3KDxp0CNaG/RZu3vXRd53T+UPxihIR2jnrr3Yf/QqqgmGlE6OcWBk31YoWbwAjp04q1LkuHs5o3HrvkZoi4nD+6BAthT4o+EfqsHPn7+gRctOaNV9tLGMYz1ZL7Vj40qMHdIThw/vlIjF2KrQhw8fMGLEOEkj9B/+J5uM8xIpOMgKVITW4udPH2Us4a2++1qZn+2TvmZXL50TH7hsQfJouoAVJGzWOwkqDvRu9yeWL5kpu3vD1p+mlhRx3+Hp67CIGc+Q6oQmHqKGJ03qczFU5QUxO6CI0WVc+EwXw06demLSpKmS3+2qZJM3CGIB1V9Iboc7/2MHduLgrrVInjQhbooZI2HS9CheroaYrmKaPdqLp09wYPdG0VAUEXyi5Gb3bJ0w5crcCSMlIe8BvH1yDzkKF8b+vXuRMlVKnBXgRxKFJeJvUaCiVpMmOGo26ZfHyEVr1kRqjmge5D1qQBmFSKGejvf+FbbYJv3/rNHVq85ImNDLLowDtX+MiuQ7bo/evn2LNu17o2O/8cF6oXUXSA13gUoJLqb2G+J0vWfDfPG1GiDvh4tgb13A3EUbZOPUXbGbG4Z5E3tj1D99lZsCL65Zsx6v3WPAlsM+owEjCl6VqXbW8rt79+Y1RvdvizKli0o0cy6F48cyX758wdSpszB6zEQs33pSCXH22jFtl87ql84eQ8Ua9Uwv68cBwAF7Alaw9sGaMnYw/mzcWr2QAcAHvYmfhANbNq7HgQOHUbhwAfVEKhItYgR8lpD6S5eclM+MLdwlVuCCSPOMludNYwvboRkmcmRZgf1ABKm0pKFDBygT5txJ/6Bd7zGWt3/Zcy4IuQuWUH9PHz9ERUkZYss3JIakKapcq6GfeMWUK0079EYBMRemTpcR8RMlVT5yk0f2RhQx627ecR4xYiRAorhfED6y+fTH75FCDzWS1AyZCk481jCriF9FqAXmTaT2lHI+7zNyUTPZKYgISe8TLRod7Q116fNn2ibrab5elg/54YOzCICexj4t7/Oc7ykjbKkJs+Wb9VWElvYdekl6FsezI1jrKyiuvX8vGkdhUHARsFKkySCRd3XR/O8O6Nq5jWQiyIA4W3Zg6bxJqP6/v5Qm9c6dB3j/5TNcQ7sqFr0WrLJIcZPZZFfxnEkxbeFGZM2Vz2oZT5mEpv/bD0OH9FZaV60QNya9eg3AkqWrMGXBBuGRvFQOEHNRhpLdw66ta/CMvzddwHKAawFXJFibCLmjMY0eCbjH1lsKqRyg+ndIz+aYMXmEJIGNAHen0GIycfYhLPn2fHQaZn47arkojBFMUsMbIro3idoKLrYxYnipxdNw1W//t5PFrXH7f9TC4beaeumA4sDaZXOxThCwK1T5HTEiOkvqEoNJx1b7jBDkO2WqXdJyKtqqw/eEmFkUunhMQYsCFQUoQi0Ql4vvHBNSa47y1KTS1GcNsoGCGwV+4mD5RrZM3gzKaNuuByrUahGkCW59G6+t+/SriiSJi4NDbkRtjBRs3rx6gRnjBmC0mASjR48mSZT3Ysa8ZZLHsadgrLlj05xRGDtqELwkcmbJ0pXwCJtYzNl5VBN8Jkar5S9aWp1fvnAGceImAJPJE75BI/ZzX5Dk1yyajsb1qyGXJIs2Jab1ihQpDurWa4b2vYaZ3rJ7fOHMCdy5eRnMF/pFUPGtCWbsm8nug4tga/eBgujm6eOHBLLDuhBsOQR7Gqxv37BlrWBwrgtXweBLCEZDuHPzGrq2lMTCf9SAKxPXSvQgkbu1Bcu3oco8ovxWmP9NAm4U7hWFKzrBc1GkBiNRIg8V2UVTERfYiOHcffh2+daP6f3MmdLi8vnTppf04yDmQOWa9TFt0TZkyp5XBGnfBRbCdfB90Ih+Wr5pNblWxoolOGryzjAykO8SzYhx4hi0WokSeSJdOg/lmH7+vMG0TUHemnDFfonLZQ9UVRsbx8n32pI+if2TwlXZGk1DhHDF8ceJnzBYCVccU6ncybFk7iQ0FGGqV+9/1HuRKl1RTBw/BLPHD0SMmHHw6pM71m/bxeJIny4tdmxcihOH96rzYwd3S8BLenXM/9JmyCJgxudVKh3t4th/uqNXmzq4cXorOrVr5EO4YqDOpUthsHjxHpw+flAFfGh1fft8/OAO8hcp460ZNGi9juzbhru3rhqrUsD6JIDOOhk4QH7Qdy0gKFgLWKYPOLxfR+zdsdH0kn78C3GAmqsR/Qzo7uXKlVJPTo0TFxffUMLpb0NtAbUQNNEwCuvWLWflP0PNFfGS6MBMrQE1DiTNlPPuYyi7ZhpV2M5/lSqWRe8OjfBEcGp0CloOcKLUiKanRxLOniRJQu2Sw58091FQIhEqgeZlvk/8o/boyRPHp1H6bfF9o4bs1i0nnDxpbqY0HVSWLO6mp1aP+c5qZkkW4DMvWbISLdv0QOX/tUbyVN8Wd6sNBKOLjvoTBeWQN+y7hHQZs2Pl4tmIGT+FMhe+f/9QJZDv0a0NCmWOh/sP72Pdlv3o1qWvaMPjI3eO9DJnRFTDrFTzTyU4mo45V/6iOHVkL06KEOYmVpo7Ny5hzKh/0KplUxHQkxuLMrKVfoFnzghoqQjnlStnEKE9gsPCEN+FopKKLGr0mMY2R/TtoHITPpExa0RNmu4nqnHDEL0cULhqjs8M3/r/IUfFSlWS3WeYH9K33umP58C+nZsQJVJ4ZMmSSQ2Gu7qECT1s+p6YjphRXynEqZ2aBS6UFJ5MtPMKYJT+WLxvqql4+dJJHKC/LdKmbTp6HCtWTEwQp+sFUx1X6zvatl7OPgfu372JMycOGQsd3rNBwtxzGs/tHYg/sVGLxfeF2iQKU9Ru8V3h+6S9U3yXqEl1lB4+dMK2baElQ4Dhfdu/P5TAjPisb/qO2mqbGliaJUnUWrVq0xWvv0RE+z7/ImGS5Laq6dcd5EDYcOFQuFRFeLh9Fn8sNzRqMwCTpkxUtdOlSyO8f4yyZYph754d2LHnoAomGN2tFyaM7Gsz5Q4T2G9btxBfXt/ArLE9cWDfHnmnkhpHpO0LiNVHX8AcOdyNUB59enfDdMnFaop4vkf8q65ePAv6b2lEAWHqqD7o3KKmdklpZS6ePSquEQ/w+OFd43X9wCcHjh7cpUyqPu/47Yrt7ZPf2gn00rkKFA30PvQOgh8HCOI5QmAZUqZIhIED+xgHSNMItU4k+qn4psUyVpQDTmD0ifGNqLmwBQTpW13T+6dOnkGMOAlML+nHQcABOrzzj8Td/KH9e0WAjuxQzwQCpeaTzuOMNnR2JjL8twXMtBGaBimMX75sACo11SiZluMxtV10kK9fX/xLJZE0TYqhQ7soPz/Lso6ca5sFpsDp3LU/6jbtggTi2K9TwHKgZPka+F/lQshXtDy+uhGb7Kva8BNJvlOnNgLvkRq1a/+JW+LGkFZS5ByTKNYH4lOVOHlKHwM5fXQfmjT+E2XLGjTx4/4dorDOKKRTRmJUK98hy8wS9MOqX78p8ubLJxhXs1Chej20afibpA4rj5cPL2Lbmtl4JJAkCRInVsLBw3t30KB5F2P/J48ekETnF5RzfoxYcY3X9QOfHPj86bMCbvV5x29XfG6b/FZfL61zwCoH6Fj8LgDSR7jLrjFZ0gQYOKAnMmfOYOyLkw8XPPpKMe2IX1KXUPtFU4094kRHB/jvpXmCidW370AsmT8Dp2Ri1SloODCkV2tcOnfK2BmdeB/du4tx4yYbr9k7oOlYrDfekYJOvvr58X0ihhbfQ2JY2SL6c7Gcln6H75nn2w8S3h/a38mk3759jY6d+6Jp+0G6cGWL8d95PaUkWJ6/arfyZcpVqAy69xiohCyt2YriClCmTEm4i+CVNl06NBNNImzs4ZIkTy2CzhWlIaUZ8PbtUJKlwEX8Pw0+fBSumPOSGlNT2rlzr6TpGYu+o+ejTqM2mDNpmPiShsGLt+6QpAWIECmmEu6+CB4XHdYr124izvb5jU0kT5VOyodFMhH6Zk0eLTk6b+CT4God2rsDhIbQ6RsHug0Yrb7rb1f8dxSsowj990h6reDAgdLiHBpBdNzlKtdEk9Y9ZNf+yV8OrB2aVsfkCcNUyLLTu3fwYjoai5x11GYxvJ5ETRYjmOlgbE+rRe0EnYypATAlRnzRwZgYQxTEGHrvX1q2bBWGjZwALw830Zy4IlbMWKLpeIVmHQbKQvxVfDuyBgggoX/H9zPXe/3yhYrUol8PtVdb1y/Hp5c3JJVOa3k/wjn06ITsIOYVzYWxYkmk1RctLyCFc0PuS74rlimX6JtF86El8X1bvz4MqlYVyU2ImtTFi8PiyJFQSmtBHLXihT8jWSqLl9KyIZNzmgWbiNaqWce+iCGQFzoFLgdK5U6Baf9txEeBlLhxbhdat+qo3gstDdd//03Crr2bVERgnHiJJLhik48BMTp+cLdWGDxomtJUMdCBAr0pMRAnhUX+TOb0jBwvC1Knz6yKVi6SHm26DETJCtWxTd7vBImTyZwbSY0tfZYcps2p4zaNquLsyWOoI5GIf7Xvjenj/kGs2HExpG8nFC1RBmUr1ZBNyVEkT51Foh7LIXLUaGJ29FSCWOKkKWzCqfjoKBhfePr4AWJLFKejRN/ZKFGjW42+1NoIsVGE2gPonyGPA6XLVxbgzfgycYTGf7PG44xEv/iVzklS5UgRw4oJMJGq6hUpkg/hijfoq0JtFv+Yq44JhKlu5yTFNCMUlDTndW0M9MuieUbzpdE+OdlxN0mfGwpb/iWiOrdv3xVMEZNFNG+7dm4U5+M5YIuLZgzH8T0rMGloB4wf0k2cXK/iw7u3/u1Kr2eFA1GjxzDuQClgDe3TQTkROypcsUkGQlC4SpbMS8A8PZU/jOE9MyQJpy8WTX7UNFAg14igpcwiYEmEaWCABbUWFMKo6Tp+PJQI3wYhnv5+ZsIVJTCq0exQt+4D8GeLTrpwZYdHAXlryvx1ojkaqlDCP7qHVelr2L7mj9e8eRWkSpEUpcpWtipcsSyj41+9fophw1uoaFNL4YplKLifO/dNgzVz5lzs3LUf4emYJcT8gx9F+3Rs/2YQ+mHvtlXYsW4+apXLg76dm6pNhSpo8h/9mCMLDMaOLevU1WZteyJvYYOZ8uOHt0iRIAImS3Rk3qyJlW/YPpmzZkwYqtqsWyGv1TZNmvfXoanfmL8a8GOliN5JwrVqXwXDzN7ce1/85XZtXasV9/OnrsHyM8v0Co5ygJF/dDLOnqeQo1XMyh3aux0Jo7mhXLnShuveiZ3NCtk5oWaLmiqBf1G+DVS9a1oI4hFxUaQQFTs2cxR+E6a4rmkJf7kg+kYsr2nCuLCeOvVUHJjTKX+fvn17CKL7dBQqnB/LRaP1RSbF/Yd2IVPmjKrZx4+foGfPAdiyZTvGzlguyZGz+tadft8fHGhWtyxOnzgigvZzh2rTdEfBidFbvhG/fw1TjfAMPGeEqyWQLQUrro9s+949Axr8zJlhVfPiS41GjT6bm67lBXYSCc/LCqgknZiXr1iD+8/cUbpyHd+GqN8PIA58EM3V/yrmRduug5GnYHHMm9RfIBuG+2i9TbvuqFS3Ff6sUhhd+wxFqUrfvqMDuzYjgmsklUtx0fzJPupqF/j+UaC/fv0mKlWujRlLtiutLO9vEFy3csUyiWY1FsZPmIZMGdNh+8794gd4DadOHMWSjYclMfRYOIcKg5ix4iG/CFIx48RDxcIZZDzDUP2PZngrLhyrF89UmqoDuzYha9YMGDK4j+r+1q07mDZnNarWbYYmdUqLOdMDZSpWw5dP7/D65QfRcBWXHI0VzLC8tHHb+mR+RGqUGThA4sanV/tGGDx2tq0qweI6N8BJvPM+WhuQrsGyxhX9WqBzwEW28v4Vrji4Vy+eCLTCTcQUBG7+GIl75ReiZotOylwkM2b0UI7EXPSYWsTZmalODEjZlj4zFJaosSC+FsPgLYkaMZqPKKAxjJoT4YEDoZTGjM7OefPGkp3tK1l0b6J588b43++1Be8omgBNvse9RzeMwhXbjRs3DqZNGye+QcNRr1oxXL98ATs3rVK+EZb96uf+58CEOWuUNvWkBBw4QjQ5c3FzhPi+GHCrDForCvaawG1a//z5UMpxOXxod6V1paBFrRXN2dSmurqalpZjeYGtCVdustH4rUodrN24VxeuLFgW2KcEQZ27ci82r12KK5fOIlS4KALd4VNoL5A/F1rWqySRzgmxfeMKASt9qSAZKKAVKFYW2XIVQPKU6UQQv21zyFoU6atXr5BMFniCk2p079ZlpdmPFy8uBvTviX+GjESl2s0xetoyrNh6DLeuXUbceAkVqOmS+dPENUFyp8aNj10n70pS6AaqGUYichObI18xjJi6HBGjJkDrNt1QoGBpSc+TA9cuX0S4CBEwVZDnCxQugXMnD6HhH1XRqf0oJIntgnGD22HRzDE4sGuLzYhJbbz8rFE6h4K12LR6sbpMYatb/zE4uHurWQSkaZ3gcGxPuPJtfH5bsXxpbe7UMahd7y8dEdYXPum3HeNA6Qo1MaR3K4j/puz6mS/um8rcsRbMS9FXhnIahSLR0qtjpit5/Zp/TmZ4QqxJjdfr18549sRLLX7hIxrMjZcvMwWKAYySYdTUTLi6OilNmKbup3CmRaF179YBO3ZcQOZMGa1GsTGnYowYMcAf46Zlk1Gjxm9YOHUgPnz8grARZNWV/Gwcd9GyNZAucw4OTSc/ciCMOPeOm7kCBQuWEMH3uny3Ue22QCGJJj0KP9pCZ7eC3KSjO98jakcpPFlSoUJuKnr1xYswCi6EYLe1a4sNUt5t1yjMKiBfsgPUq/cgiSBrKBqEig6U1osENAdofh4yfh6qFM8s2pdZ6NytP2ZMHWs2P2WWtDqTJo7Ggv+W4PjR42gt0X5JkqWUJMRnMXPpTgFKjoLUGXLizz+bonTpEiJox8DffzfF5s3bUKBAXnnvIhlhQujcniJNRuNjMJFxFNfQ6h3uN2AYjh45Lrk3d6FJs/boOmgKEiVNqf6A31SdEuWqCizDA8GBu4u3b15h2fyJcI3oqrRSJcpVln2rIZrn5vVrOHFkH5o2qY+MGdJg/vxFyJa7oPSdAdGjhMbUzStUe7JPlHe9HCpUKCOuGA/Eh/A4po/uKruKsChWvpbyEbOGabZ+30VVn4jyGjH4ZNnCqWjXrDYKFyuNpCnTom79v8E0WT8DBbiJkNEITHegk86B7+UAIRpmjh+ILBmSo1nT+g41R58Yapf4lyGDQVPAihSCmBiXCx+1DUzSqxEjv86dc5YoRUPKHAoz/OMCy2ied69lAXSVxfNdKOVAT7OhqUmRGixGM5pqLehj8/SpkyRrdVfdEFKCmEWm9bT++XnlyjWJJrqjIpFMr9OXK1y4sMopfsbMBbh4+TbqNG5vBh5oWl4/ts+BF8+eYNa/fTBFoqjs+WMRAJTwH9Ru0vmcARN8b0y/Y2s98V1ihKu1RM7PRVCntPbuvbOv+G00NVs6z7O/V69eo0v3f9C21yhr3evXgpADW9ctQ7ToseS3GB1bVkkS5pEDBWBUgnBMaMeOPTh08hZSpM0sPlNvQb9SBv2Q6H907/ZN0YS/xsIZoxE3Tix8leni3t0bOHLwIKZPXyDuEXlkHsuJmn80BX2mSPS/+ndge3Et6IwFC5eB+Q8XSH7Ebj36o0z1FogTz9yJe8uaRbh4crds+O7DOYwrDu3bgbTpMyjtmof7V5kXX2Pyf1slAtINU0f3RcWyBVGr1h8SQfsQ7Tv2RtQokdG3T1fZAHzTx9DEzTmW8yg3k9yovpMgpP8WrcCFi9fg5BwWVX5vjpjiRG9N2FIPYvIfedG3UxNs2bAaXfuNkFyPTUzuBu9DeybCABewaMpxhKHfyzKCtUWOHNVMbfq9ber1gw8H+B6NG9IF7VrWN2aT92101DrQQZ3mQDq300mZP3zNT9iePw0FKmqc6NTMRZTn9KspUsRNaTC44PHcMjqMApi4minhSRsfJx4KdBSoNKIzMwUzLWGwdt2vn/fFH6Nv/xFo0Gmwjr7sV+Z5l6dPxaYV0wQ9e7DZosHbHl89cO16aFmkvBRsAk14jCTl989FhZpPLiiWGEWWQ6GWlCZGU4Hs2DHDO2Aq3FvW0865EeC7a0lTJ0xHrNT5jZFklvf18x/Dgbu3rmPLymkYNWKQmSZrwYIlcI6cApmz57E7MG4mqWXV6P3bN2hVv6KY5orjzOmT6NBzuET3pdNuK6DRZTOHCiaXG/IVr4Zta+eiXZsWqF2ngQhjTVDzzxbGshRetm9cLuMKjQxZ82C/gDaXrlADkUSLy2jbNUtmo74ESpCOHdyFcUN7IHeBEjhxaI8AO6cTQW+izIE+XSVYnphuDOqw3DjSt3TK1Nm4e/8pGrfp69A6fVx8Uy+cOYmJowdhyry1CgGfkZHBnQJFwLpx9ZKKSIgljnMk5ltj+Ojb1y/13XVwfyNCwPj4w9+wZJzR6ZJD5qJDMEdqCWiGoWaBQhUXPt6jAFSggLsPIYaLI4UgmnscIYKQUgNBQY1mG04iXDAzZ3Y3WzCZMoUCU9y43wQptk8HZwpXpiYfCmLUhhQr5ubIEOyWefHiJXr0HITMeUqgkJiJuKEJik2N3UGFsJvXxFRz5sA69OvXTY2cAjU1nI/vuiOtmH1ffwqrolFpJjYlvgv0y9M0Wqb3TI/5jl696iyYV9+0lqdOhVLvT9asBq2maXlHjq9du4F+A8egRadBMsfGcKSKv8uMGtgVHXsP83f9X7Hi5fOnsHH5DPTu2VE0lEkUC5YsXQVETIYMVmATfOMR4Rxs5eOlQLZk+mAR/D+jWefh+Kd7MzyUxNIXzp1DmUrV0W3Av741b/M+5953794gQcIkoPaLqXw83D+hZIlCKFwovzjWxzSrS59USwFLK3Dnzj0MGDgcn91Dofugcdpl4yc30tSc0U2iU/OaYoqMKEFCZ9Dzn4nKf5fCobO1nYaxhR9/YE/Asi6WOjDmFCJNa8IVizP6iVKuad4jB5rxVxFGI+j0c3OAC8jde49EMBLJyZvu32dklieyZXOXnHIe4lzqBKKtE7iRkYCpUhmc1rXy2idNLY4IV1xk+cechVwEKSCxfUI+ZMpkLlzxOtu0FK7YJ/GOLCcclmPE4qFDoXD2bCizsH5tnMZPDkIcmW1RjBjRxcQ1CjEjfsWcf3ti5pju2LBsjq3i+nUrHEiVLjNeffCQFDWP1Xd+4gSFHwELzSxazwgGnxRT7ZPWBAUrajEptNsjariSJfOU9+dbOb5P3Az4l1asXIc3795jy9ol/m3C4Xrtug92uKxekJqf3aINeo6/Og3FwCHjsXfvAXEveILn4gDPYB//kC3him2dOyV4VckSiRB/TTVdokId0bg+E7PdB+UD/fL5M/90Kel0PmHnltWSASG5UpoUKlkJzTsPRosuI/DWIzo6dO4PauVM6coVCcaQKcsaJUmSCB3a/43wYjp99vgRpv87GDfFAf/Ygd04fmgvJo8egMY1S2DM4M4oWig3bty8K0EE+5TvF9urKY7xL54+sdZ0iLgW4CbCoHhqOuvFS5g4KLrS+/iBHGjbsDLmSyb7+PHjqVFQA2TNzEcBiNoHapj8S9Q6MSqQiyojuriQMuqLYfeWQhQdmV+9su1HQ+0Fc8tRCLQk7vauXaNDs6Efy/v+Pe/wd2c06jHav9V/yXr7JTS9w1//Qw9B5f7777+Vk7rGCApQjAil35UlMVEzNVsqbyUFYfqmUJVqYUah1pK+e/wj0T9w48bQaNjwi2WTDp3/7/e/BD/pHYZNXmTTZONQQ3qhAOcABZNPHz+I2T4mqHlqKea9yFGiyQbRTQTy1HAVgORYiZKhaJkqAgbqalXjTNM1ndAz+WJO5ODZ37J5E3Hy+BH0HDReOYU/f/II61fMQ93GbbFj02pUqFrXz8/Z4vcKggH4DLOWbkPxnEkxYMRklP2tjlk7+dLFEliZ1cifP6+yJlCjy2htU9L8s3iNKX527tqLtWu34NMXD9y5exdfP39EmFBO+O23ijK/x8Hu3fvx0c1FIhwbCxZcWmNTw/q0wUPxSRswZr5DZkZjxSA8CBQNVhCO30dXunDlgyU/5YV6f3VEb8FsOX78tHo+mt20/IOmD0yT3vcIV2yL4KSEcGA79LOhRoPCnKVwRcHJnnDFtqi9+PiRvl/ftBe8zl0eIxCJ0GyxFvP2d1G85IlVlNB3NfKLVc6euxCKFismAtZfZsIV2UCtpy0tFbGsKNAr0hx/rWzh2QZNihoxypDvlrXEzloZe5+RIkXA0ycPdOHKHpN+0L1wglVG4YpEzdPURVtRqfofeCDKgM7tGqFl8VzIlSkhVs0ZjvlTRoAI4W4iiO3atAJTRvYSuIRtKs1RuozZFEQLTWMkprKxRuzvz786IV78REpYo4tALIFhaNiym2wOw6OMoLv7hyYtWI+lm48KZtxhVZ2aMktateMUlixdLfOZAT+QGntLevr0GwAvzX+lShbD6FGDUKVScUSLGhkT529Ei85DcOv+K+w9dB7FKjVEu54jzIQrttmq8yB8/fIV/To1xJ5ta+FfzZzl+ILq3P/66qAaod7PL8uBHHmLoG3vsZgyfaHCmqFJjr5UpkSNEB3av4c0jRTb5zpJTVnWrAb/K8t2uWBa02qYlmMbHJelicmQQsXgk8MIxYCkwvly4fzx/QHZ5E/fFjUJhUtVweHDPhcRPjyVUlbkJuX0zoS8/D6NZMVPhAFlpt8zTYS5crkrLZaxnh8Oxo4ejMSSHeFnIwISz5o88md7LNEqxUO6DFnQvFUX3JJI4Pw5s2Ho0H4okj8jTu5ZpnyoPry8jU4igMUI/wH9O/6JwhnjoEi2hPhXHM0JBNq/2192+dKsbQ+cPObzd2/LvEih6LZoys6dPGLW7qpFM9CtdT2jZi11uozoIcE0zdv3MSvHk6iCxzV92gwMHjwdp0+HUjkULQslTvxVBXkwI4ZmFr8rmquZ81agfvPuqjh9thu26oEmbfsgVbpMlk2o84iRIqPLwPGCxxVZ8aNs/tS4evGs1bJBfZG85J890gUse9zR7/1wDtDBsVbDtgqtmIOJE8dTQSdoA6OvEzd73hs+7bKvn1wcmUqHEAvUSJlqwOi4buqgbtmYpeBkeZ8qc5oZLdvgGKnVYH/Rovk0PVm245fz0JL01YdE55cGAqjsIwkhD0lUTEw2K1dttDpkJt+1pjFlYc3sZ7Wi98XHj0WrEMv8e2ZkYfz4fAeclABHYd5R+igOzY/EAXnd8vmOVgkR5fgbj+OH/HAh4qFkkBmy5ET/UTPRdeAEgWq4iQ4SNECE9w0bt+PBwyciqEdDg/p1BdQ4CapVrYT//puFGjVrol6jJjKhfZZNmjv6j5hh9rjUepkSfZ5LmWirPEx8VrVyA7s2R+7U0bB723qJJlyJJMlTIWO23Ni/Y73KM8iIxSF9O6OWQEFoxHx9Veo28QG59PnTR4wd2E7gZ/KIKfGGaMsuyDxnseuVRtKnz4F06XOiU5d6WLpsgURo3xPNfXLkzp4BF88e9VUw0cbBz2SCjTVk/HycP30ClarVFVzCh9ixeQ0KZ46HuzcNPmim5YPq+OP7t6Jds2/uDxVQg/kgnVnm+QmotvV2fm0OxJdoFlfXuNiwbhMqVCqnorjixv3GkwwZPEDcImoHHCFqrBgqT1OdKVETxijFRIkM6nnTe9oxtRqWgpN2T/tktDV9EChMmZImmHHh5Zj9SsynaAvm4ebFKwItkMyvTQZ4+S++TDgB3uF3NsgdsptnKAEIfe0DfJTfHzeoNBVafpe+dUvNFX36TLWdFLCp6Mqd212coEOL/8lX9Q5acd+y2nyECOGRMlUalCxXzer9kHqR5i3/+AuFlOeNGz8hfqsjQpOQpvHgM9OXeNS4ufjy8a28F84QkRuuAp0QVUxoFy+cB7U1KVKmVEmYr185L/snF2zesEYSNMdB5my5kCV7bjy6ew2hw4RFinTZpW1P9OvaSvUTTYKEXokwXqZiVeUb1qBpK2xYPldQ5MuLf9YqlCxfDXETJEWE8K4YMbAL6jdt41DWDUI8PHv6GBcvXcGrN++Vw/v8BTNQtkxJ9WwRI8ZS/UeIEBFzV+xEwiQpcOPqBfSV6NceXf5G927tMWvWfOwSAal4uSqqLP/btmEFipSsaAZVYbzpfZBIgFqPHtiJ9n/VxeS5a9Cu2wDUKJsbA0dNw87Nq9F/5PQgBTn/KH4gX7+8RBQ7Eb0B4uTOl+aLOK2FCx9RMZkvT0inK5JA86Sg2uYtXFJJ0CH9eUL6+PmOTRzYFpOnjhb/F0N+QdPFi9ooW0KLlo+Q5kUG9HDRTJnyW/g8ecPFkKrs1KnN4RUs+WavH9OyFNQowGnCGB2jaYKkczS1Z9RwOUJcfD08DJhedIynvwP9eJjuRyPyplnzDmjdY0ywD2nWxhxcPrnjL5MtAW4Junt4Kzn/+K4wqtRa2hzCdFjmG+Rz8TsjHhvfR20qPHculNKyMjqVbdKHi/hafiF+z7//0Rzdh043mnL8Ul8vG7w5wO+XRJiEdSvmIkrUGAoUlGtR5MiRZQOZHfPmzhetUTgUK1VBfL4k+4OTQNVIpoc9u3aKcBJO8K2qSbaHnIgeIzbOnjyAlw+vyWYyAk6dFj8n0daWr/7NDOgfbmhj1NZ4ns8aPwhZ0ieROSmxREqHwfbtu3Hq/E0MGDXD2AWd8vt2qIdJE0aooKWGjVshToLk+LNZJ0mJ9gzrVv2H2pIf0dnZBS3qVcSkeetUMICxAe+DU0f3Ycm8qSIcJkLxMr+poIBzJ49iqwhotX5vrBz8LesE5jlTH8k2DMWzJ2E3UYQfb037CxABy7RBRjIwqWRIJ8L5H9m/Q+0WnJxD6Ul4g8EXunHlfBTKlVLU07l9IGVToLEUmjhkmgDpHG9L88MyFJq4tjISRlsQed0anT9vvnBaK0Pndrap4WgxwTSFNwpVjEwj0eHZHlHbsXt3aNGeAInifEayNKEMUWtSiVGT1LYxSpHO8p3bd0OaXKVkM1DaXpP6PRscGDeoPaZNGWnjrgFfjYI5I0pNiVhpFLAsAxYMWlDzbAEsS3gHe+8XcdwYVGHZnmmfAweNQJGKjRE9pkFTYHpPP/55OUA/NS7mkaNGUw/ZsFoRCV51BrU6rbr8YwY6/ODuLSydNQKlSxXFhk27UbZqfYlMzB1oQjmFrJNHJArwwzvQbBY9VlzkzFfER3+3rl/G8jljJIXQCPUMkybPxL4DxwW764yyfi1Yu1/efWeclaTshH0yBV619s0yl+KsCf9g19b1yJ4rPzasXYFNB64EebRhkEYR/gzCFb9MZvwuXLKCJPQ8L6rW59a+X/1aEHOgeLkaWLRoperVFCWdF3hOLZEpPXtmCKe3J1xx00izDRdKe4uf1q4VJYd2y/hJGAYNR4sX79wxoL3zmIIRNVG+0bZtYWRMnpLvyw1ZcrkYhSvW47Pyj+Cnc+asRfiYSXXhyjeG2rmfOGUGiRo9ZbMEkdvpM2VJTAhOeA9LooBkidZO4dq394vvK6FB7FG5siUwrHdLvHj2zF4x/V4w4QDNgAFBxNLShCu2N2T8Akn0XVuZF1cumq6iDV88e6q6GtqnPd69fYtde49JSqXRyJwjjw9hJyDGpLVBbVaOvIWQNWd+3BIH+lz5i1rtj75U/2vWDe069EUXMe+9ffseH969VObR6wJcfnDPVtUkx+ubcMWCDFJpJE7y7XoMUdAW5SrVULkeKfAFF7L/aw4uo/yB46hSuwGuSXJNnX48BxiaHDtRGhyR5Kl5cuc0GxAXNC1cmP5PdDSn3wwdlW0RzYIUUhxxWNbaoJnR3kJJAYrRY6ZluOBSA0KiHxUj0OwRBTKCktIEatqOaR2aHtcvH4KPoWOhVv2Wprf0Yz9yoFyVPzBtZFdMzZHNTzW1AAutEud1fl+hvJjU2cUquC3fTQr81r5XCvmHD4cCTY98bzXzstY+P5Mnz4GWLf7B2MFdMHDsbNNb+nEw5MCVi2cCBbORJrIaYi6uUquRgoUgcKenpzuWLziIx4/uo9/wDQ4lTNaEEQpJPL52+TxS24jocwR/8uDerShdqRaSm2BZmX4tTH3TtvcYdYkaqJSZCmPxnAmS3ucvFCxW1rSoQ8cUsgqVqKDKRpW8kC0bVEX3/qNRtW5Ds/qb1yzGretX0KJjX7PrgX1ivuUP7N4CuX3aeZ8+fhDgvdgKIQ3wjvQGfeVAqUq1MW78NBGmzKNpTDUJFLaoXbDUcmmN08RGEx4FrJw5vyWE1u7b+tS0Xbbu8zrbNvUN4zUuptqmikIgNWb2iP45BQsSj0tWbBs0bNgY7Dp8GtUl75hO38cBaqvDhBOp2A4xLZM14nVCclBQp2mQFCFKKBXkwGMvT/Pv0AzagQVMSIahtLAMFKOQTed6ZgygZpYmRpq7PT0poL9A3kLFTWoC86aNFq3WU7Nr+smP50DR0pUCdRAaHEOuAkWRp1BJgUDoJDhWxxwSrjiwPh0aoUrRjKhWIjOKZE2AP34rjA0CVupJR0IT+ndITwzs2drkis/D55JIvW7t6ti+bpHPm1auUDjKIabEEVOXoW7Db5tE9s2oxz4dm+KxpP/xjSaP6o93b16Lxakijl595UO4Yn2CpVK4unjmhG/NBej9n0rAUhqOnzDcN0C/8RDeWETXSChcrAp2TJxu9iQ045hGetHJmH+WYJHUDlAAowMyBTAKPxaRz2btmp68eWPIgWh6zfKYbVFjZUoUrsSlTxHvWcxdpkXVMZ3hrWkv1E1xzuJO8+q12xgy8T8fdfULfucAJ3Q6CtsjhdpupQDNvUwVQhOglmWAflSacHz1MjUD3yoSDoTvnDVidCnfV5qGuUFgKigC4LJvtk9He2o/o0qk2dcv3i+Ud0Mu0uiFM8cw9p/u6v2w1j4RxpnYV9NaWCujXwvZHAgniPGaA7ojTxIpchSkTpse6cTnaci/c+S9DYvUSaJgxqiuGDOgHeZNGa6EnX27NqNytTp2m5z270CJjC2HG1fOqWTUdgvbuUk/rP/WHUCn3sOVM7udoupWbAFYPXZot2/F1H3mWAxKslgKgrJrvS+dA/7jQD7xjVt+/ro4jL8yNkCTGs0vGtEHKn16D4WZRa0Bd//8ix7dUzCoTFY8qWCSxF6rbvWTmiVLXCPLgqlSeYi2wfxnRa1WkiSGHSEXTgp59sieADZ8xFi0b9UBBUtXlxxn9tux14d+z8AB4gqNH9IF/6tb1YwlBEh0hIjKzshTS62kFsSQOJkB+uP9a4la8IWowaJwTeGM5sfEiQ3vqmXC6ahRo8jO/o5Za/9r0k6ZhtJnyoH/Zo2XqG5zAYyF5wiC+PMHF7Fb0pzopHOAHKhapxGOH9yHWtXKIl6UL9izZzOqVqmIcf8Oxcxpo9CsQRUcObIHxYsVwN7t6+wyjc71iRMnRocOrbBj4zK7ZX27mTJNejOfM3vlq//eFMXLVrFXxHgvT8HixmP/HNCsedYCpNVeO47NIt4tcKd3eN8OH+29efVS2W593NAv6BwIBA5wh1O7SSeMHDXB2Dq1ArFieSnhRdNa8RojAxm9xd0//ywXKzZgqmEwNmjlwJFy1FDxz5So0dD8vLhwcly2iPhJUaKYC4BaWSa+njJtDhKmyCGOpMW0y/rnd3BgxcIpaNqwFgrkz2PWCrWVjhC1oDdvWnzhJhWpVaXg9PWL9e/UpKivwrtWlvPwO4nWMiVqLWr9+Zf4v9RAilTp4GLxEi6ePRGP7t1En97dcObYLl2LZcq8X/SY6XjGDe2DOw9u4fffa6NypfLIkiWT8hPVWJIyZQqZjyLjzu0HYsZrq1328cl3MlOmDAqmoUSJIrh385KPMj/DBZo1MzuQK1J7Vtszg1ZCPjWVMhc2axIgQdBa/FERdcvnFUwLPeLOhHX6YSBxgE6el69cM2ud5hMueMyDRZ8YRwQiNuBoObPObJwwEszUiZ3nRJ/XiAu3vf5YXtN+aHW0z49MJiugdmVr1dcu6Z/fwQFiYL19fl+AP3P4aMXed2RamKZc4pIxuMEa8V2kcB09jneUg7VC2jXRptG5nXAN9ihmzJiI7BrZZpG8hUspx2etAE2DiyRpevu2TUV7GxVZM6XHfdE26PRrcODB3ZuYMLwverX5HZfPnzI+9KbV/6Fxw9qyQQhvzI5BGBkmKTclorC/ef9JAD5tmwjv3rqucLo086TMcka5wbSt4HA8flivIBuGOSetdHtDwidvyp9GGgO1c37myFsY247dEiTVaQoLY+aE4aa39WOdAwHOAb6HceMnFtBO84WC5hXiQyVLZjvNieVgGOHnyIJq6uPFNliH5j86IMsGTv09f+5kJiBRoNK0ZnRY5h81araITvC2/K/Chw+HZClS2qqqX/cjB+7duSG+eGms1iIOGZ3XHSV5Hc2I0aI0STOQwjezsrGiSGp58rhLHeMVqwehxDQ8f8Ykq/esXdy4dilKlSqOvHlzqdspUybFwxCW0sjac+nXfOfA0N5tULVkDiSMHRbzJFrv0PalOHZwt8AjvMXSeVNQpUp5hdfHeefqVWcFgGsKnkvN1LwFS1G+Sm3kyV/IZodRo8Uwc9nInSsLhvVshokjesJa+h6bDQXiDT7zw3u3BYQ1VpAJf74KWClSp0MKsYf6RlzwmLyRYZiNJbmlTjoHApsDDVv2wsAh43Du3AUfXXHC0ByNKQhRALJFXBzt3dfq0ZHelJinjj4zdEAmuCgFLYKdakTtBYU3ts8F+8kTOjDbxkOiD5klfpLWFj+ZKiOepN3QKWA4cPLwLhQrWtBqYxSC7Zn+TCvx3aHp15QMSP4e6t0wve7bMb9/a5tYy3plK1exvOTjnJaHWROHY1CP1ujUsbXxfsaM6XHp9CHjuX7wc3JgybzJWLlkvsw7t9CrV1eFBt+vb1cFZTCkR1NJan8Rjx49UQ9PzWnChIa5zJQbTH315s07ZMqWB4P/nWd6y+zYVYKPnj/7YLxWv15dLBABrkm9qvIODjZe/5EHt29eRZUS2VRKoG6t/wySofgqYAXJKH5AJzevXpSom+NmPVsm0jS7qZ8EOw6EjxgR7QVIb9a81Rj8zyi8f//eOEZqmzSB6MkTZyxcGNZHRKFWmA7oFI78StSUPbkvkpNQuHBeysdL0z5Rg0F1u5bShuH1jDijsOX07LmPrrRUPdqYLQsYhMRQ+PLJ3fLWT3FOjB3NFSEoHoi76qsXTsh3Zl0jSKf1GDEkWlO0UL4RhWd+P6bEoAtCh2jwCvcuflLYbAy4YJCD6SfLULNJYlqnBLHtJ5BduWodchUoYdqd2THdNLasXYwaJbMhpmwArl49I4JeClXm7t17oiUrKlGtH83q6Cc/FweYwHnUoB6SQHqObAIjGR8uvEQZrlixDZMnLZagoGdIlcrwXrCANUBmpo+aK/576xdNRI1S2fHIBmzCeYE/yJEzu3p/jZ3JQQ7Blvv66du8bHovqI9TpsmIbDlyYuPqRbhw9hQI6xTY9NMJWPQ38I0YCbBy8Wykz5xDFb1+5aJoMGSRveJTE+JbW/r9H8sBIhw3btsH2QpWRceuAzFixDiVuJc+vk7uhneBPlDElTp1ysUqJgO1DyxDbCwulo4SF9V3n8P4KE7T0q1bzkiT5ltjFLwYYUjyEqdRSyIwatq05totjoX+EPQn44J8964HXEKLhPYT0rMnD4P0qZycneQ7j2m3T+YKpEaJwrI9olBs6TdFGBBqNjV4Bdd4EeS9dFLmYWoxqSHTPlmGcz2FrMiRxYHdyjul9b937wFs2LwPZav8rl0y+5w7aQhWzRuFlAkiYunSOejSpb1oJhIYy8SOHVuZemrVb2u8ph/8PBy4dPYE1i6bi6Z1SqmHqlSpnNnD0bxctmw20fq7OKQpZWW6JkydOhYzZ4zDynmjcWjPFtXmqv9m4Oa1i+r4zs2LAv6cVvkbUntrGtHNJNbBgYh312/ETCyZP0N8Jr/A7av9jYxvY377+hVW/Tddy0NotbhdAevRvTtBuqu0OkI/XpwydrASluxVYyRApz4jjC8YIfrpwJ8uUzZ71fR7wZgDiZOnQuvuI5E+dwV06zkcU6bOhhsMrze1RowmpH+Lj3h672einxQFHAoyWr5A3x6XSYAJB2FJxEWyFJZYxlkEe0X0irYg0zB/LugU9miC5AJPQY2L8Js3Z5EibSaLmj/HaeYceY2/x6B4Imqrw1r5Hiz7pvBEYdke0YmdQrW1dDqst317aAl1D6WwrWy1QxMNswRQ22qtnTNnzqFnz4FYvWEfWkruOWv06cMHfHjzDKNHDRI8IkNEGBdUUzp//gIO7N2t5zI0ZcpPcnz2xCHMHD8As6eMRunSxUVgvyvTnfn3rz0qtbN+pQIF8qlkzR7v7mHikI5Ys3y+rLVe4mPljhsXT8o8lVolMOfcZ6oNKyEQDysWTPFrd4FSPl7CxJi5ZCtKlavib+QD5kokDe7ZErOmjLE7Trszx1PZVXp6ftuF220pmNxs1aW/EpY42Qzu8TfWr5jv68jqNWtnVubp44c4fUz3UTBjSgg5SZIiNVp1H4ZIsdOhVavOZsK2mmtMJpx3z7/C48u395u3Uqd0M5pr7D0yndc5iZg0p4pT68R8hZbXedPL1dVek+oeF1hqQ6gBoZaDPl4a3bv/QBbGeNqp/vkdHGB+0dix7Wuw2DyFc2KX0VRoz+md5mLipNHcZ6rxOnHCReGxlS3rZu5fZ0VVSjgPQomYasOuSKTsX807YN3W4yhVrTkate5pM0/b5jX/4a9m9exyZfPWXViwdp/dMvrNkMmBvVuXY9PGFUiZIgX++L2uzE8R1IPQ/YDvLzHbqBHnsSUWoKNPTP/A5s0biqA1DPny5sSeLSsxeWQvNKhfx2yDxN+NRtWrV8aTe9e00x/+mSlbLiSRJNnPntz311huXj2PcQPbirbOFYPHzMSYaUttthPK5h25QbTgPZKpuoDkCKJ6LSQR/XP+bNoBTx7e9fOwly+cgfSZsvqoR/C+86ePIUOWHCBirk7BlwNZchWAs0g5jZu2xfBBPRErXlwfg40QLYw4erqIIGOCAi+I3i4u4izlC92756yibyyLUbCiNsIaff5s0HJQK/XoER3aDYmbeV3EL1WFFm5rflhubu5YtmI9WnUdbq1p/ZofOcCop5s37jhUi98Xv1NGjNKhnX9cQPhHzai2mFAgptmY5fjHdyFu3G++gKadOb16Da+YMUwvqWOatnPndldZCCJGvI9BEsTRXnK3OZL81oDi7aNJswsfP3wUqA/fBUuzSvpJsOcAtUh3bt8RU/MnrFu7XGUXePjQkAWAQhUFd43ESuwDq0+75+gnBa3x44bLPPZYfEtDCzSNz3fZtK2bN2+AJjXThNWm94P6OHP2fL5mb7A1ppvXLiBh/Fg4u2UHXjx/hiTJU9sqCidrjqXCvMhS482O47dkN+6KUKGty2H7BT4/Y5ZciCrYPJbEMOD4CZNYXg4R558Eb+jzJ5mIJJzTlOinRVDVY4f2oHTF6qa39ONgyoGrkqj79b2TaNToD6sj5IJIUx8VCvTDevXKgGNlC+yTjdBXRitvtVGLi9RIEPyUfVF4evdKUp7EdVZ4XXSG5qJKQS9fPp/mRq2pS5euYM3mY6hYs752Sf/8Tg5sW7cYcaM6o25d//2Wqami+ZDaxoCmNWv2onefvpi+ZAOYHsoRIpL2+UNr0bFjK7PiTp8+w0v8aDh/tWjVDa17jDK7r5+EfA4smDocVSoUNkJx8Ino6vDlixNs5dEMyqfu2rU3EqTMjeJimgto4ntNFx+/EiGoBnT5C3NX7/VrVdy7fQN3b11Tyqf3AvpbPLuSdaKIPPXWtDG7o3KSQV8UpzlbxOzX1oQrlr9+6aytasH+evgIEX0IVxw0v8RoMWLqwlWw/wa/DTBBoqS4LUB51ohaBjpkenz1UGagN2+cRePgaRNJXWuDueGId+UIETiUwhi1G/SjolkxTgJNu+GpIgspeDEtihmJxsqUvopqS6D7TC/px9/JgVKV6mDP/uN49+6dv1rid0lQ2HXrwiiNgb8asaj0+fMXLF6yAkdPn8HcVdsdFq7YTDzZ0F6+etOiRTn1dvOgg3zG7IV83tevhFgOUEFyQjb84UK5mwlXfCC+m8FBuOJY+vXrgec3TmJIzxZ4+vgBLwUIUXM3e9JIf7WVTNxJEiRJJj8PmaD9SGdPHFapqXyrZleDtfPkHbEzUpmlk86BkMuB6aO749/Rg2w+AAUcOrdTAPKNZLOkzDdMyGvqyGmr3q5doVQKH7pDsB/COTAdDvGxaF7itQsXQoFJgCFClZMs9l7Ro5k1x0m0qWSbb9RpaLBRsZsNMASfEGz06M6l6Nu7i7+fgr5Ze/e6oFAhD5sgsRDBCeHC+tpHyVKVUaJ8TVSq2cDXstYKTBnRFRP+NXGCp6DubYHo1m0AqjfsArpP+IUunz2Oxw/voWjZqn6pppcNJA48f/IY65bNxEfRnDg7eyJPzqz4449a/tLiBNIQbTb75s1b9Og5CK5R4yJB0lQO5xC02aCdG8+ePMLbN69BLE9bREEpgvweUn5H8JA9DZZ125/3aD6LvZ779Ii/uJB17fJ5pEyTwcyJz9YXpl8Pfhywq6aV4dKHhhhVdAaldsoeUSBieR/CFZ2nLKLS6FQaNSqMvlpPBWjU00sAecUfwl3wrK5eDSPYSC6Sw8tbsJOF0FK44liWLFkp+a8K6cKVvS/Gn/cSJUmBjS8/KAw1Oq36hwjzkS+fB86edVHmQgrRPiiM7359rFOkSCFkyVHAR3VHLpw9eRjp0iQ3L+otXDGP5et3Hx0WrmhujC/aX/ranDy0GxGjRjNvVz8LEg4c2b8dGbPmEYFqNj59eIdXzx8jVcokkvD9TyRIEP/HrknU/FiL5rHDGeY1nCiZXkZI0voDu7YGqoD1TrDA6lbMjyYt2uDPZl1w9vRRbF23DMVKV0TB4uXVKBm9fPn8aTsj/r5bdteesBHCI3wEn5NO/apFBWtj3vf17EvtJ48eiI3zui+lguZ29OjmvlhB06veS0BxQCKJfaXEiT1UhA2BHilE2SLOJ9Q++SAL4YptMNIwWzbRIHhT7FgeygTpJGrt0OFdBMrBEyVKuKnwfJoqnz3jdsac7kvk4N5DZ1Cs6u/mN/SzAONA2Sr1MGLkhO9qj8C2xLUyxf8xa9BBH5FO4j+1abXf59bXL19g9cJpaP5XQ9UtMbeoldUiH0+cOIU0GXOZDcnWCUFYG1QvJuP4TxX531+d8FvtxraK69cDkQPPHj/CtFHd0aBuOfTq2hwzpo1G924GbDMKvz+U/ChcmY61bdu/ET6sJz6895953rQtW8fJU6XFv9MX4/G9Gxg1oC0SJ02BIiUrYPnC6dixaZWxWtqMWY3HAX1gV8DiF2jNeWz2ip3Ila9oQI/FrL048RIgsYRSBgeKETvOj90pBAcm/ORj4FxFzVLs2L7nMLQqYFnwhyjePvyqtEVWQC6VGsy7Dh3fiR3D1Dp0hv/wmtotAwr4htXHkTlHIf39s+BvQJ4S2uOrZzicOXv+u5pl6DvBSb+HiJz98e1LP+dv27Z+CRo26CpO92GUYEUHfGYRuHjRIGStXbcFeQqVcmhoLoKdtXTzcdEuVHOovF4oYDlAFPY5k0fi30EdEDnMR0yfOkbcF5KrRN3W1mP/9E7lk72NpH/a9EudMLIhbfV3Y6xePEPQCsR8HkiUr0gZ1GzQTnIkv0eXFrVV5OCwiYtEe7bJoR652aCp0b9kV8Cy1Si/ZAJ26aRzILhzgE6QYcNaUzlZHzk1ES4uXqJNsv3T4ORkizhpUXNAU6MPM6JWUdv5yY9XI/bn/tkdd+844fa9twr1ffGS4bj97Bay5fafyUhrW//0nQN1GrXFv+NmmBek/1IArEJsgrAejBTlu6H9ETOLPn2WtGf3Luzeusbyst3zF4LpU6ZMcuVHyIAKCu18zTJlcpdH+IIXrz/4ycTMYJ5wBHTTKcg5sFWiWyeNGYwuHZvj77+bWFVyfM+gGAW9alWYgHi1v2cYyJ49K2ZMHIUyeVNigwN4lf7tLF3mnBg07j/U+F9jLJKE17dvXEaf4dMcao6bjVhx4jlU1loh26uItdL6NZ0DIYwDW9ctQeGCef00amqe3r0TTZIkX7ZGlJM004vlfS6iXNxixvReOU0XaE2wYqUXLwW2+ym+fhDfnQOfcPToefEVKIZS2aOjRelc6NSuJz6+88DvTTv6KZLMcjz6uWMcYMolmmMZUGAk+i99pxmGAhRR+WPG9EK6dAbwWApA/GMOTGoqLWnq1AkIHcZ3h3jTehmz58fatRtNL6ljDv/smYtInSaTj3v6heDJgS+SJ/LatbNmeQIdHanp62urDuematW+iuBmq0TQXKei5vHjm5Kx4gLu3LgYqJ2yr9/qNMHURdsEespvQR7fMzDHt/bf04teV+fAD+LA6xdPkShvaj/3Tn8a+mM9fUok729gkmyIqWuofTAF7+P1Y8dCqUWTWjBFlMQYIh86jOHc9P/IrnC6eQtHdh3B+DWirhatWfueI5Ahay7RPPhcdE2r6seBw4HUadIGqCmWi92VywLymNwNYcLLasYL/PNe2ZifMlYsL7x44WxmWjx67ASSZijqp4csULwCpg/tgCpVKvqot3nrDhQsW9/Hdf1C8OTAs8f3BWIhur8GR9cEzl2+0Y8WrrTxca6LKFF8p44fxuolc1CldgPtVqB9Mq1aUNEPlmGD6jF/fD83JKG0TkHPAU8vT8RPmthmx3QGtpXhmelPCD7KSYtO6F+/GjRanJys7RTZFn24jERByZpwJQWevX6L5jMW4MSLj6hQux6adegvvlZ5deHKyLygPyCC/ycB5QwoovYoXXpPhIngPc2amIQJyUGiz9bjxxJdavLavBTtJvOl+oXoL/vFSjQHNXK3bj8A/Uh1Cv4coEtDZNdwKsGyf0briHDln3YDu87mTSvx9c1dbFmzKLC7CtL2dQ1WELE7YZLkQdST3o0pBzzc3ewKLXQsD+vshTCiNfb0dPKBY0Q/Kk5aFKiYfNnNzbAoasKW1hexrSwCCbVbPjQX//23DLv2HkP9ln1tAvV+q6wfBRUHCpSorCAxGjT43/d3aYI/ZWyMiZc1k6M3fALvpU7tiR07XgtY6TKcu3AFWXIXs4vdY2zP4sA1SmwwKXSWLAZz4BMxQa9avR7Z85WwKKmfBlcOML3Xy1dvxQXBQ6KVfx1NNuEbBgzoiQEDh2P3ljWYM+1fzJFgupBOuoAVRN9gSMvlGERsCfRuPEUy+iB4btEtwDu1jlOl8hB/B4O/C4Uomv+sEddFAoOSTh9yF2diajoM9Xjt0a0v4mNj0HDx3AdJA06PnyBCioyIIphCWw5fD1BzlI/+9At+5kCylGmx9shGP9ezWsFbgGKaGoiQ7xVW3hVnWTC1RdNEAFv430IcP3kNpav8D0WrNLfanCMX6a+3dMEkjJ84C2Gk/8jR4yJNptzIma+II9X1MsGAAyv/mwHnsK6YM2chmjSpFwxGFLRD6NmjIwoWLI3w4X6OAAtdwAra90fvLYg58P7NS0nUm8BmrxScNF8qOhxTyNKUDNYquX32QLgoYeAay8SmIwVdIoYX86B14Uxr0CtuHCRNmBALN5/QhStrzP3B18IJ3P7LV2++fxT0vfP2o/MS9Hbn/Sclb0k0eKVOwTfF0L63AOYltsH2AoS49dR9h0FAbQ2QCaHrNm6vUn/wPWYElE4hiwNrli3A5YtnsWNjnF9SwKJP1t8tm+L2w08h64uzMVrdB8sGY36my/7JtfSzPL+LA2+4k2SgJzHBs63IQY0fdx+EQfKUsnqZELGrCOTuK8nCmyF9eln49H2Nr7z6AQXox/Thk5t8l458mXYG6C1cfXn1CfdvuOOGWyK8jZkUX+Q1I0QDk39rxHyvdRrUQyimEgggoplJF64CiJlB3My/M1eoHocOHRDEPQef7rJmzihuG3asAcFnqL6O5Nsv3deieoGQyAE6uU4eMzAkDv27x/zm1UvEjhVN5fiz15iXN95PpEheKl2OrbIfX7sph2RiGnGhpPP71QueuHnTWaLBPBXOEZ3hNZDQu3edzZ3hZTF1Fq3Cy2dPbXWhX//BHMhdsKT4Q+35rlFQe8SAh2u3wyFGgjBIWiwR3nlExONX4VVEKmE8zMgplMRCWIk0NSukn/wKHCD+2LyVOwWH7+Wv8Ljmz8gfjmh0o8sGYdH0f+XQ4ndiXjpEnOlb6RDxNfl/kNyVt+zUz/8NhOCae7evRdmyJYzJbu0+ivy4I4T6irtvwwuOlfWSD5+HQ548dD71UoKTm5uTWIKcxfkdCoGdOEemRG0YMZCYEod1aCp8+PgxaMrRKXhyoKDAHYzu3wa5c+eQAcYEhe4wYcw1lvZGzqCJly+dFMhsphSSuDt8ZFXcKFQxktBN/ryjSz9+/ChRhoYy9trV7/06HEibMRt2bVgY7B6YmldGUMeNG0iCD30zRKhKmCwJUosrhRkmXbDjhmMD0jVYjvFJLxXCOMAf57WLp5AzRzb7I9dC5/njFi0CYRmIf2WNWEQJSnKTx8QxOnculIJmSJjQ56QTMaIX0qf3UBqu+/edVSqWNDJ5RooS1Vrz+rVgwAECEjZp2w9tO/SVqL77OH/eAM/BzTWFJ+KfKc2ldyoj0yFfueKC928NaY8IVusV2URwYgN81+gX5S1ccYf+77+Tkb9IBdNm9GOdA0iaOhu2bNkRrDjx6pUTFiwIOAR4pnOitp/WgAcPnCVC2wleEgjiJb6Q+SuXx+OH94LV8/tnMLqA5R+u6XWCPQc+i2YgXBhnuxAN6iEsHIGZT85ZYBto3uOEohG1EmHDmmsyrl2jdspDaTm0cpafzgI0Sif6m7f2Y+bclWjZ+R/LIvp5MONA1Ogx0br7MMxbMFpSzXjgyRMnJVTRdz1lSg8kSOCpkNi5k6dJmJrKAwdCCaaVQHqk8H5HLPy4PL2c8OTFNz8rN7evaNGyE+ImySrgsjmDGQf04fxoDpSqUBOLlqy2qcUhOC2zRlBuDyqiFjZjRg9QMPpeot8qN52M4mZWA6YW4/NodOvOfUSNFkM7DbGfuoAVYr86feD2OBBe0IEjiG+LfyhRIk+FsM0dFU18pFevnGGqpbp500VprsKFsz3DUYv26tJlBV45b/ZiNG3XD6F0Xxv/fCVBXieiayTETpBCBO2bEoXqqbDQ4sUzaClpMqQfu6urlxK2uPvOl89d/Gac8Oq195Rq8j0zrRI1X8bclALRMLXfMJSt1gS5CpcO8mfTOwz+HOA8ET1mPJk7rEfTRY8uAMoi8FCTHlQUNaoXihZ1F+R123OerbEw9ZimpSJm4I0bBuFKGz9N8Zkzu6vn4bxJFBP+BkM66QJWSP8G9fFb5cDJI/uQNG1yq/d8u/j5M0FDvZQA5SqA2hS0TIkmIiK2c8KxR5wcM+cpIpqNhChV5U+ZPMzbsVdXv/fjOVCiXE3MmbvI7kC4MFBDSd8U+uBx8eBCQg0oFxWaDa9dcwY1oyxLuiIpkm67h0KqdJnstq3f/LU5ECN2PJUf0xoXOJUw6jkoiX0+fuxMNykjMUm9PeJcSs0UfwvRo3vJb8NJ/UYyZDBPP2baxvnzF8UPK43ppRB7bJ87Ifax9IH/6hx48eyxaBVyGdlALYLpxGC8oR2Y6Nrv3HE2wjV8+UIByzybDs+pvbBH3IXNnDUfL6RQ2nQZkCF7XnvF9XvBkANML/NJBKFr1244PDpqu7jwxY7tpUwpKVJ4KsGLUaakDx8+4J8hY1GnSUeH29QL/pocyFe0HObOX+rYw9N+HUhEIUkjF8mZeuaMwTLAjSc1UbaIvqx0jKcbBbVtzNGaNKmncpK3t9e8dPkqkqRIb6vZEHXdfzaUEPWI+mB/RQ4kSpYaFy+eRw5vJ/fLknTX2VPyfIV3Q8JUVkLiPUTdLoufl6RsMEVzJ5bRrU+hkS6TQaBSQpryrzGYDm3xdsWSFejapae6PX3JdlvF9OvBnAN1GrbDwMHtMXvmON/9+byfRRO+zczHsgDeunUHfQeNQr0WPRHOGxokmD++PrwfyIHYcRPA3TMsbl26imTpUtsfiTf2mv1ChrsvX77CvPmLcffeQ9l0Gua1L1++olTJQihdqphKvmyqbacWlvJb9uzuShP76pWhHQb55M0rtjwLon8VoWvoq+iblt+iqjo9evQUajYuY+1WiLumC1gh7ivTB+wIB+InSIwth9arotxJxYvnJaY6OiuHF7MNlGOlGd6nOLtTuLIkJ0FoTyeRgDQBke7ff4+I0cLKkW0Bi06gw8dMQLFS5TFk/Hypa3uXpxrV/wu2HKAglCFbfnFmv4oMGdL5b5wilV+5cg1DRk1G215joafN8h8bf8Va6eXdu7P/gO8Clg3mMHn5zJnzcefefYSWCe/Nuw8IFyEKSpSvjZLVUxlrUeO+f8d69Or/Lz5/eI3YMaOhQ4e/RUCKKoEe7qLFNcx34cPT0Z3a2G9aLWMjckD8tydPnOW34keNmnfqKG5CvFwi/hT+V+SLLmCZvh368U/Dgffv3iCi9xyQJInhx+70+rXkE4wqiVSBe/dcjLkF7T10NLzCl8+RET6CodSAvp0RU1LeDB3Sz2o1+hrs2vUROfMWxt+dB1sto18MORz48P4d1iybiyZ/lPPXoLlwLZy1AMcu30HbnqN1QFF/cfHXrfT4wW1kKJDFzwy4ffsOps8QF4VX71GmSj0UqphetFUeNt8/aqwKlayk/tjZsUN70Kv3YIwfN1w2iE5Grf6KFauwaPFyrFr5n9UxMbrR1AJgtZC1i4IneGrPAXQaMAz9x8yzViJEXtO31iHya/v1Bk1U9gunjzv84KcP7kThYgXhdO6CsY6GS0TNlXJZ4K7JF4qfITJOi8/Brl2hlV/Wf0uWoXWrZjZr3bz5DKvWdEG1//k/aa/NxvUbQc6BCBFdkSFTNnHM/eBw3+6Cd3X27Dls374bTf9qj0/h46sIUh2t3WEW6gWFA6eO7sfJo/sEmy+OXX5QiPcw8cFyk3mt34CRqFCnDVp1H6GCKZg6yS/vX448hRA9bgqMHj3R2Pf9+w8wb+EKiaZOYLxmeUDtvQzHz/RRAoKGTZqNMbPWImr0GH6uH1wr6Bqs4PrN6OMy4wAnhxix7E80phWuXjmDVi1qwsvUDmhiquOhG0LLP/uzAZ0xGYKv/AquGjRhDx8+FpNjXB+mPy6so8f2RbMO/yBKtOimw9GPQygHuLPPlKMgqmTPj62XTwl8R0y1mPEdePToEf5bvEqMJU6iFRXtQGgXCYhww5sHj5Aid1HEjhMPLbuN8tPCFkLZpA87EDhw9vh+VCxbyGqyeuKode8xCJ+/epvrZEL78O6t8p9iIEXV31sictRo/h4V3Rpq1W+JmeMGKfP4/v2Hcen6Q4GOiC1wChkUPpenp5PCgWNQB6Nn37+H4Fn5DzpiQZtOyCa/M+bRDA7kIWaOgMgZqwtYweHb1MfgKweoSeCfI/T500fEiB5FcIe87XqmlWQhJJp21KieePPGCTFj2hewtKqMgMkY9znGly6F5g3/Rqa8+RA3RmQUTBAXD8OGQ8zo0bBy3RZUr9dKF640pv0kn3kKFEeYsTNRs3Yj5M6VTZldEiROgYiRoqJey/7G1EdEZv/0QXz0Ivn05ftJWKE/RhByoGKNhti+YakIUgPQrGk9ib6LKwL8V4wUrdLTZ+9QsVZDJE2RNlBH9NXdU5zb86Nx87ao8effGCVppEaNmoh44puYo3hdhRdI5RkjBUl0iCcsQ5Iknt9w33wZITVwJ5zCovX/GvtSMmhuv3/7BsVzJsWYaUuQr3BJHxtpv4zCiQ9nSbJr4wzxZufJOxKOrk8WlvzRz4M3BxZOH4XavxVD1qyZIL8OhcGiYRCZjpxgocmTGyYG0+t2j8VpdP/e/Zi1fCMate6De7euI7wA4r19+RxZchWQXU/w2IHZfQb9pr84wLnyIwWonwAA0V8M0Cv9EA48uHsLh/duweuXTwVLz1kc1GsJjIEvUYUBONKTR/YjngQNzZs2EufPHEetP1vg4ek98HJNjnHjunKK9UGnT4dSju6MNLRFTq9ewytaVMGa+w8Pn7ujcu2GtooG+fVJI/pizvRxArGTDsMnL0Xc+AltjuH9+7conj0J70eROeKtaUFdwDLlhn4c4jnw9vUrLJpG58xhxmdhvivisGjh87xBuIXbt/0hYHm3+rvs5roPmWrsQz/QOaBzQOfAz8qBR/fvolqp7Mo8njptehQsWgpzp08Q4NBrYhb0qYTh/KpFHtJLg+nH6PjKlFGhwlDDZdjY0rTetHkndOw3LlixjibC2uVy4fmzJ/i9USsUK10ZKdNmtDpGXcCyyhb94s/IgeXzJqFSmdxG/Cv6BjBFiaUwxXPitBh3WNTk8s/adswKo+YvWILjxy6iaedBVu7ql3QO6BzQOfBzceDJowfwFCEpXsLE6sF4vmfdLAwY0MPmg9J3le4VFLgkiFH5bj156qLydvL6pUtXsGrjYdFeNbLZxo+68fL5M5TNnxrJkiZFxCjRMXrKEkSNEdPHcOwJWFaUez7q6xd0DoQIDpw4tBuXT5yS1CXZjeNlQlEm43V79AKvnosA5U2UpQjXYCR6s/smXNF/y5vy5M6BsNZ8vLQC+qfOAZ0DOgd+Ig7EiZfAKFzxsWLFjiu+YM/tPiGFKBKn1lChIQEfTirTAVORkc5fuISkqTKo4+D2X/SYsTD9vw14dfu2mEZPYsH0kX4eoi5g+ZlleoXgyoEj+7dhzIR+eP7cWUW3MJUDU5fQ1yp1LldBRXZWSXcJPJo0qYdgYTnj6VM//AQEq4X06vkLDBo8BrUbdwiurNDHpXNA54DOgUDlACP+EqfMgilTZ6sUUGad0Rwof8fm/Seb28fGWwwE2bNnMwYMHIrOXfpi9dotSJg4ufF+cDvIkjM/0uYviAMHnuLB3euYP2U4DuzeihG9/8bgbrbherTnEOuoTjoHfg4OpM2YU5DabyN//rjK2nfxootytGQy3qu3wkqqEyhfLGq16JeVPLknLlxwUUlIQ4X6pt2yxg06OD988BA7t+3Cnt0H8ftf3XREbmuM0q/pHNA58MtwgKa9I/u2o13H/vDy/IrIrq6oXr2iRB5mRd1q/8P2PXvBvBd3H9/Gm2dP0X/EBGTLXwYV6rZFuHDhgw0sg60vjEJi6tQpBfsrlIBLLxd/swc4e+4MRg7viwFDJtiqZryuC1hGVugHIZ0DKdNmwpEjm5A/dy44STRfwoRi+BeimjpxYvpbAXeufIVT6LBKVX30qIvKrXXoEP2xvCRCB8r58pWAmpbIVxyFypaVcqGV/4C7h5cA4MVG1txF0Gbgn6Ly9oPmK6QzVh+/zgGdAzoHbHAgT6GS4B/JTfK0bt+wDPMXrUXzXmPQcWhkHD2wA7HiJpX5NzTW7joHJlEPCfTk4X0smzseZUoVFTgfT9mUhxKU+tg4cPA9SpepguGTFvv6GLqA5SuL9AIhhQNRo8WQPFjiE+ANlUAAPI00X4AUGUTKgqf4XzmJACY7q7vOSJXKkOGdJkWaE93do+OBhBD/0aK3jmmkMVD/1Dmgc0DngC8cICB0uaq/4/GDwjgu2TQq1qyPMpVro3jZqgrihADMZ04cQsYsuQIEyNOX4XzX7Ts3L8Pd7YOsDynU5rtAAXcxFR7Frn1n0H3gBPFHS+Jr+/o23FcW6QVCCgfmTvoHbds2w9u3ooryhWgSZARhihSGRM40GT544Ox9fh1/NGqpC1e+8FC/rXNA54DOAWsceCW4gHduXwMj8UgUvLTsFr3aN0afjsEDVNTa2AnR8PzJY+QuWBJNOwzBgqVbsHjJClV0nyDal6pQHemz5LBW1cc1XYPlgyX6hZDIga9fviB8OBeFdixaaj/R4iWTcfjIMfzVtLk4vafB+fPn4ez0Tfvlp8b0wjoHdA7oHPjFOZBO8nemzZgVjWsUQ848+VC8fG2lsbp26YyAd2aQNFLxgyWHvnz+jG4ta+Pc2TP4s3FriR48gTIVq4rvVSRs3LgN7s5RkDZTdofHrmuwHGaVXjC4c+CBJCPdsmU//vlnpOTFeu/wcO/efYC/u4zEiQu3sGLtNHx2CY96zTs7XF8vqHNA54DOAZ0DPjmQOUsmDP+nG94+PIMDWxaiQOaEmD3zX/F9jeKz8A++wkCm3dvWokO7Fhg8uD/OHd+DPTs2oV/7Zipx+469x/FbHb9p3nQN1g/+UvXuA4YDl86fxMGDBxDONRpWLJ6P3r3bOdxw7NgxcOzQbty9fQNV6zbxU1JphzvRC+oc0Dmgc+AX4gATpecuVB5NmrbC4kVzjE8+e/YCrFu9AvVadDNeCw4Hh/duxZdXt1C2eUfxuXJCqZJF0LhZB4yevgIP799BgkRJ/TxMXcDyM8v0CsGRA9cunIKrJINOmzGHRPgtRChvR/eXL53w+rWzZJn3Qpw4hqhCy/Fnk5yFv/1WS/2oEiZJjrK/1bUsop/rHNA5oHNA54AfOZA9bxG0++t/xlq7t+/C1Gmz0a3/KOO14HDw7Mkj9GjXRIKeLqt14OPHj+jZeygGjp6tzv0jXPG5dBNhcPh29TF8FwfevXmNM6eOIomkNLgnjpVr1y5X7RGtnUCiTOhMv6x378yd33mfoKNXrrxA/AQJMXjMTIl2qfZdY9Er6xzQOaBzQOeAgQPhwkfA0H9nSMR2KpmXN6BC5Zo4e+YMcuQtHCxYRJyrCcN7oUKh9FizZrFA+oTD5k1bUahQGdGw9YBr5O8zZTqswaITccFMcdGweQe06NA7WDBHH4TOAXLgwd2bKF2pFrauX46H926gSJE+ijFMkUMwURIxsRgpSCwsClbyu1J/yZJ54uiJvVgt+Cw66RzQOaBzQOdAwHKgeLnqCB8xMo6fu4JBY2aoKLyA7cHvrb1++QJb1y3Cjk2r0LhRIwx9+EJy1n7BqNHjMLDXALhLk3HiC47Pd5LDAlaYsGExY/FmMMGjTjoHghMH4kuqhUE9W+HenTuIHCUyuvfoj+HDBsDVVSQpbyKIaJo0IlVZ0LlzFxA5agyLq/qpzgGdAzoHdA4EFAfyFS4F/gUHunDmOCaN6Inp0/5F/x7NBTvRWfAPnTFyZAsULFUDey4+l4hHlwAZqsMCFnvLnD1PgHSqN6JzICA5cOHMMfG/iig+VrFxWxJz1qj+m9XmqbmioEXau+8gli9fi8tXbqD/qFmGi/r/Ogd0Dugc0Dnw03KgU/M62Ltzi7iGXBZ09phqPYgb1wufBZ7hxIkz6DF8ToA+u58ErADtWW9M50AAceDpo/s4eeK4aq1mzWpInz6N1ZaZg5Cmwv07dmH9rpOo33qgnk/QKqf0izoHdA7oHPi5OHBO/HQpXJ05cwSxYsXEpUsuSJfOQ1xGvDB7znB07D0swB9Yd3IPcJbqDQYlB44d3I2Rg7ojd+6cqttZsyZLxKArHj92BiMIjSQ/osQx3qsdy+JVG1D9zxa6cGVkjn7wq3Jg7bL5v+qj68/9i3EgXvxE6okHDxmLVq0749y5QyJk3UCnLn3gGjMVcucvGuAc0QWsAGep3mBQcqBlg6rImCkr3n/4JFEgSwWiwUUJV7FjeyJSJJORiG3QK0IEdaFbt/aYPKIr1iyegUtnT5gU0g91DgQ/Dozs3wmfPnwIlIEVK10pUNrVG9U5ENw4EDNOPBy9+gppMufDrJmzcVUgGVZu2ItSVZqgXJW6CCXpfAKanKgesyQB2Yos197sPHlHHIV5qJPOgeDJAaY2WLtsLkYM7Ib/Fs1Fld8qODRQDwkjPHPmHNp37ImJ8zc7VEcvpHNA54DOAZ0DIZsDu7euQUTXKMiZr4jCuPrep3n//i2KZ0/CZqKIPPXWtD3dB8uUG/pxiOPA8L7tsG7VEjXu/9Wtj507NyFv3lwOPceSpSvx6bObQ2X1QjoHdA7oHNA5EPI5ULS09SCowHgy3UQYGFzV2wwyDly+eAYxYhhgFjZvXuOQcHX+wiU0bNQGabOVwKxlO4JsrHpHOgd+dQ50aFoDMycMw+dPH0Hts046B35mDugC1s/87f4Cz+bl5YQXL16oJx0ydKQgtjvh40cT53YTHmjm8JGjJqFj/wnIVaC4yV39UOeAzoHA5sD+PTswddxQFM6SAGuXzw3s7vT2dQ78UA7oJsIfyn698+/lQI7c+XD96iXVTJHCBUW4gmCaUMiCQm3nDaK2Mx9hxozRkDBRQtT5o6kAyemv/vfyXq+vc8CvHOg7ZJz89sLgsiRnry6J1XXSOfAzc0DXYP3M3+4v8GyfP39C9Bgx1ZMOGDBE5Ryk7OQiQLxubk7qjzfDhXuIajXrYtTUZajVsM0vwBn9EXUOBD8OVKj+pyRTr412PYfBmT9SnXQOBAEHXjx7gnpVCgdBT+Zd6Nt4c37oZyGMA83a9sbxw/uRJWtWRIwQHg8fnkGGDOlFe8VX+1uE7Jixy5EwaSokS5nWT0/44f07TBzRF5my5cLHD+9x69olFC9fDdlzF/RTO3phnQM6B3QO6Bz4MRwIGzYcWnbqF+Sd6wJWkLNc7zAgOfD16xe8fvVKhdueOX0X+fMb/Ko+fnxu1s3jR4+xZdtu1Kr3N5hX0xGiI26nFnVw4shBbJekoB/F7vj161esW70Ee04/cKQJvYzOAZ0DOgd0DvxgDrhGjoI8BYPe51Y3Ef7gL17v/vs4kCBRUrRo2xWZs+U2a6h8+eo4deosLl++iiFDR2H3ngMILbbDDSsXmJWzdxIufAQUL1URXfsOQ8GipVCsVHkMnzBXF67sMU2/p3NA54DOgRDAgTevXmLjqkWBOlIdaDRQ2as3HhQceHT/Ln4rnsVqV7nz5sfRwwcxc+ZkhJIM6a3bdMH2Y7esltUv6hzQOfDjOLBwxjiclXxxwyY6vgn6caPVew7pHGBU+fu3bxApStTvehR7QKO6Buu7WKtXDg4ciJcwsUqBkCRZCjWcsOHCqc+WrZrjzZs36njCxGn47beKaNOmBZbOnQBPT8/gMHR/jcHD3QPPnjwK0c/grwfXK/3UHKhVrzl6Dh7/Uz+j/nDBhwOSsea7hSvfnkbXYPnGIf1+iOEAhaYebeupvG3Hjx6Em/hLmdK+/duRI3tWHDhwGPMWLEfKdDlQsERFhBdTYGDkoTLtOyCP79y4iprl8qgmo0ePgXmr9yB23AQB2YXels4BnQM6B4I1B+7duYlESZL/8DHa02DpAtYP/3r0AQQGB9YsmYWRg3oITIMbEiVKJDhYrwXOIboKLAwbNgxSp0ktSNJfsGXLVhQpXhrHjx6SyMMw2HzoqiSMDhmK3bevX2Hm+EG4fPE8pi7aEhhs1NvUOaBzQOdAsOTAtH8Ho1nbnj98bLqA9cO/An0AP4ID7qLB2r97M74KVlavTs2NQyhWogwy58iD0GEjoMb/muh4PEbO6Ac6B3QO6BzQOeAXDtgTsHSYBr9wUi8bojhAs1/R0pXVmEtXrq0+6bs0blhvFC9bHfTd0knngM4BnQM6B3QOBAYHdAErMLiqtxlsORArTjwMHD0j2I5PH5jOAZ0DOgd0DvwcHAgZziY/B6/1p9A5oHNA54DOAZ0DOgd+EQ7oAtYv8kXrj6lzQOeAzgGdAzoHdA4EHQd0ASvoeK33pHMg2HHgyP6dOHviSLAblz4gnQM6B3QOhHQO6D5YIf0b1Mevc+A7OPAj8nN9x3D1qjoHdA7oHAgxHNA1WCHmq9IHqnNA54DOAZ0DOgd0DoQUDugCVkj5pvRx/pQcePr4AcYM6gLmU9RJ54DOAZ0DOgd+Hg7oAtbP813qT/KDODBldD/0at8Qp48d8nN+wHDhIiB0mHB4+fzpDxq93q3OAZ0DOgd0DgQGB3QfrMDgqt7mT8sBpqf58P6dGUhp0dJVFBr8m1cvwASifqHIUaOhVZcBfqmil9U5oHNA54DOgRDAAV3ACgFfkj7EH8eBxw/uqRyFxw7txvTxw3Dv7i1EjhIV6/deRLjw4dXA0mbM+uMGqPesc0DngM4BnQPBkgO6gBUsvxZ9UD+SA9s2rEDEiJGQJUde1C6fF58+fUTbrgMxZcEGxIobTw3Ny8sLB3dvwft3b5E9dyHEiB3Hz9qrH/mMet86B3QO6BzQORC4HNAFrMDlr956CORA6rSZEDdBYoQNFw7jZq1APDmOHj0mDu7dgvlTd2LrprV4+fIlChYtKcmkt6snXLT+IFKkThcCn1Yfss4BnQM6B3QOBAYHdAErMLiqtxkiOfD50yecO30Ur188RY92DdB/xDRxXm+E4iWKQ7zX8ezZYxw/fhqvxQ8rdOjQ6NxnlOQ1jIaIrpFC5PPqg9Y5oHNA54DOgcDjgC5gBR5v9ZZDEAeePn6IioUzqBFHjxELyZMnx9xJg/HnH3Vw/+Ez3LpzDw8f3Ef7nkOwb+cm0WbtgJvbV124CkHfsT5UnQM6B3QOBCUHdAErKLmt9xWsOEA/qisXziJNhszKBBg3XnwkS5oETZvWx6ZN27Fl63aUr94ANZuWNvOvKvdb7WD1HPpgdA7oHAh6Djx78gjb1y9G+ix5kCVnfoFpOYhmv1fA3jMPjQEwQT8qvcfgxAEnLjKWJKHmkeXam50n78DVlYc66Rz4uTjw4tkTHNyzFUP7dULF32ph1bIF6N+/N5o1a6geNF685ChXqQaOHd6HSfPWImmK1D8XA/Sn+eU58PL5MxzZt1VAbm/h6+dPcCYqosCMeIo5PELEyChatgYSJ0v5S/Bp5X8z4e7hjlp//uXjeTesmI8YseIib+FSZve2bViO3VvWyL3YiBCOEcUeePfuHeLES4jY8ZMgSfJ0SJo8FcJHjGhWz/Tk3ZvX2LZ+CZ4+vCus9yT74eEBlKz0P6RKl8m0aKAce7i7i2b+LlxcXEBZ4N2bN3j+7KFo5iMjc7a8+PjhHZ6Idj+ZzH8uoUKGPobP4Ve4nO9h7vv3b1E8exI2EUX6fmvali5gmXJDP/7pOXDu5BHcuHYR0WPGxumj+3H88F78O3Yo4sWLg/r1/4Jr1JjYt2s7ihQvjWdPnyBDpuxiFhyKUGHC/PS80R/w5+XAC3mXjx/ZizKVauLFs6cYPaAtcuXMhooVSiFNmlQIJwEdpovSixcvUbNWPRw+dBj/b+884Kqq2zj+Q0EUQaaIiiLgnuHIlQu3WWra0CxzlqthadZrvpkNW76VTbOyXkdmy5GZlVoOzIUTFAQBUUBAtoCIvr/nb/CKgl0HivKczwfu5dz/+Z9zvvdyz3Oe8XuefHYGhox8/KaCExEWgt9//gEduvZBdGQYOnXri6NREcg9k2sMCWsaCycS43EoKJA8YnCW6ys6OOH06Rx40DiKjgg15+vg7Iotf/6GCnZ2qF23IZKTErBj2zb0HXAvdm8PQE2vGrh34F3o0qWD4ScX9xQaKeHhkThwIARBwSFIy8jkXFbGcPL0roemLdpzHzUQeTgU8959Cf95eybq1PHN5y+pB2++/QGOxSbC0dkd9w17nMZN2X/kn8GK5qPRkTgeE81zDoGTizsiDu2HtVUusrJz0PXOwWjQtEX+PGuWL0ZkSCDq16+D3NO06mjcubo4w929Mk4kJWHpt8vh61MLvr61sH//QRqgZ4whlpV9GtY25VDOtgJq0oi0r+QESasoa22DmrV8KZxcDqeys/m6bf6+rtcT+Wy/8PRIjBg7GS3bdrwuu1UD67pg1p2UZAJneFu44NO3sYyeqlTeZVZ2d0cVfpHM/eQ9PPfcdARs2Y5Wrdtj6stzkEhVdY+qNSz6UivJ56zHVroJRNLICNqzDXUa+qEcL3qDerYyhtQ99w5GwKY/sH/f1iIBnTp1Ck5O1czrA+4ZBCdXF15UK6B1h16UJPFAavIJVPOsRQPAJX8OMS5kOd9Qy3/xOj0JPbAPf/35M9JTTuAP3ig58/gcHR1pRNQ1hoIYVmXKWDF/8jQqV3ZFc7+m8PT0NOtSUlJZvGKNiIgojvU2xoQYmpUqOcCOBlYmi2Dk8ciRo7C1LWcMkcs5LTGc9uwJwl9bd+JI9FEaL17o3+9OuLm5FpgmPT0do0ZPpJEWgX179+Lh4WPInu7Fv4NNZ/g4f97H+duMGD2WRmMuXJzsUbeOD8+nOo3m2oiLOw4vL6mAdjbn+867H3G/cTgjW3KOhvVqYdy4UfnzXO6TjIwM7NsXbAzKmNjjxkgTg1IMsTP0jO3dH4TBj0xEuy69Lnfqqx7/+6rv4d97ANJTUyDtyHzrncuvveqJC5lADaxCoOiq0kVA8iVmTRuHyIhIpNPtfSIhAatXL+OXaSTWbtyDkeOfhbOrW+mComd7SxAQw+YE79xPnIin9+IognYHIDcnGweC+LkeMRRTn3sR/t16ImjfHixc8Clq1/YxYcAyJiZYNILjx+N5caZh9bf3JDMzi16NH5GakgZXNxccOnQYSckpZoLTp8/QOClDT9BZ5BpDwIrX8DI4w4utuEYqVLSnMebGC3024niM4ya/QqNGYpKXv2RnZSEq4hCOHD7E8GYYUpLiUZZGk3XZMqhZwwODHxgID48qlz9xCdlCDLn//ncJz6EymjZtjOrVqxvDL+/w5P3+4YflZn316lVRrVrVK2aZN+e1fpRQqbd3I/S5qx9cnB2RTQ9aDZ+G6DtomOl6ca33V9R8IfwfOLB3B+6+/1zqR1Hjrma9GlhXQ0+3vSUJPNC7FTZvWoNVq9ZgxIjHKCK6EuEh+zB/7nt46a25FA9tb85b2uKoDMMt+REoMScl3lXxmtow7OLkUtCbUdRBSjho8x+/ICo8GGnJCahX14ceFTd4Vq+G229vDgeHgtIhJ04kG0+Dt7dXUVMW63rxysTHJ/AcbfDjjz8h16YyQ1aDLmufki/0wetT6ampSI9UbZ6zL41FX+MBupFes8s6iVIyWIzAo0ePGW9a3im/Pft9BPy1i7qCNUw3DAkjns7JgRUNbfmeHT7+eXrqbBhaLM8QYxb+M/MZ9Lt/JIsI/h/WzJurJD2qgVWS3g09lmInkMPwxiezp8PWxorhCiD9ZA4mTp1lkjTlHz8sJBhPjOiPyMhgcyzLlq1CQMBW3pEfosG1GguX/cl/+HRWBrXBjGcfw5NTX7X4wlfsJ6c7uKUIiNHwr8eHoG2bFnjl5VmYMn0W+t83vMicv6NHIvD1vDfpvaiCvn16oFmzxqjwd8ummwFMLo3J7t37Ydob8+DuUd2iQ05KTMA+6tMFrFuOKZMnoHEjFfS1CFwJHSTh2eTkZH5uyzMMK4nzZ7Fj5258//1KdtCwQ3p6BvPVzuDhh+6n7uBOBO4OhnPlqvCsVY95co4M+Tobo8yndn3znX6jT1MNrBv9Duj+i41AZFgoDuzbwYTGLqZdzQ4mrY99uB9qefsYD5WTkxMWLV6K1Wv+xG23d8HCz95Bu3bt4O9/Bwb073vRcQUG7sFLM9/AL6tX4915S+HXqr2WXF9E6dZesTfwL2z47Sf0HfgQk3jrFOvJisH/xgsTMPvN6bywpPOuPwYffvwlPL18kX0q21SinWZYrbFfWzg6ueCTt6fhzddfQJUq7sV6XNd6cjGsJBw/btxTqOHdEE9Oe+OiXUgifkjwHpM0LV7j6MhQ7NqyliGwyujQvg06dGhrcsku2lBX3NIE5H8kKSkZQUEHTPJ9YmKSKVQIDg41yfuePo1w58CHbxgDNbBuGHrdcXESkFyMof3aw5FJqJ15VyyVTmVYbizl5198NAtRYQcgY+LiYvHM5Cexe38Ec1ViMPutl0zeQlHHFhsbR6HRRpj64luo6lkTLdt0MpUxRY3X9VdH4NDBIDhUcmR5+/89Gmt//p7v43EMeuixiyafNW0iS+OrYPQT03CISc229OCEHdjLarA4DBz6qBkvUgMpSSdofAfCns25w4J38/VjaO9/N+o2bGpyViRE0bdjQ1aCeaEPtc0kVCel+jsozRF+6CCGjJgIP/aZtOZn6tcVi1GvcXPc0fWcUS7Jsz999xX8Wncy84lxcJx5fg2a3Gb2P2vaBESEHcTseT9Q8sDerJM8wMCtf7Ikn3mALO2W7gCsLTN5Q888PTE/OVxycHIYOpGQ4a5duymVY4+VP63B+j824Kv5H990xtWuXXt4U+OPTl17Iu5YNF5570vUoAEpi3in9gYG4DS9zkfCAtG9WydeTFMgCdT29hUxaGC/EpdfZA5cf5UYAvO/XIRNm3fgnocnmpDj7u0b0cH/LnPDLf+n5SmhUZxV4GpglZiPgh7ItSIgF8+577yIY9FRrIbaw/LpJDP1z5sOMp8lDpknM/DfT9/Bn2t/Obf+5x/N3e+ipauRmXYCn879T/4F7cJjOs2S5U6deiIwcBdq16uPAfdRbLQQfZwLt9O/iyaQyQvm0oWfoGuvAahWo5Yp4549cxKc6WEM3LmV71kCFq7YYvo/ysW2fRMPU7HVrdfd+NdrHxaYWAwp0e45xvL7uXNmoUGjJsbIli86r5o1Tbl5GcaG3ZiI3bRJQxY1ZLC6ypdGcy18+91y7NkbTNtGKsmyMeKRB9C8+W0MF0cZg0YSusXAqUXB2XXrN7Ao4gjvmpNxZ5/uePLpaWjd3h/ZbP4dEX4AM6ZPxkMPjUbrdh1gU/Ysj8EeJ9JyWLHU1OQ7xcUcoT5SOWRmpDIUAni4uxoDwtfXx1SmifZQaVjk/0kkC6Kjo7Hkm+/Ro/9INGne2px68N5ATHtyGEaMegTPTJpgKvdKAxM9x2tLICsrG2MefQobN27Ee+++ge0MOaYkpzGc6EBP8CneaGdLeStlOFiEwbqLa6kzpgbWtX0vS+VsRieFsfKSIjYnF+wVS78wdyZRh8OoaXMcoQeCEHYoxLw/AwcOwEDe/UqVTeihcPTu1Z0l2054YtILsCpbHpOfHM7XzpWhF/aGHjwYikH3DoWdvSNmzVmAylWqFjZM112CwLbN6/HerOfRuJkfvRBlcSwqDHf27Y3gkEi08++H5V9/gu+WzjcX36E0VNp36Jg/2x/r1prqtfoNm7DIwB45p3LoLeqM/YEb4ehQEQ0a1EGzpo2MISRl9NfDWJG8kZMnM41nRZLIC0uslrL+w4cjkJCQaIyoevXqwpUSB6V92bEjEB998hVatu+R7wWU/LP/zHwSH855zRjTpZ2Rnv/VEZDcLvnelu98+a4vapFx778/FxFR0TiVcxZVPH0osJqEYY9NuaIKRzWwiiKt6y8icHD/bjw+ciAviFbUialsLiLNbmuOinblsX79et7dZ1HdN8M0PO5z1z145t+zmTPheNE812vF7u2b8dFbL/BiVskcX2f/brChAN6vP68wh+BOvatFi75giKI1duzYhbmff41Hxv0Lb0yfgMUL59J9bFvooVasWNnE+eXC/fv2iPwwT6GDdeVFBPbs2IJfV32HFrffgXdmTcNbb76M/n/nvIWFHaZwYRD8/G5DjRr/DwteNMl5K0JDwxDFL0R//46FGjbnDdWnJYyA6Dm99ubH6N1/qPH8lSlrg42/r4SzY0WMGM4E/7a3l7Aj1sMpDQTEU21LMdSZL7+BlSt/wfOvfog69Rtf9qmrgXXZyErPBuIJklYOEpb5duHHzImIR9tOfQyA5KREGlPJJpfpTO4p5qicZrglnfo6QRCXbEWHSgyrlMdBJqbOeP1j3pn2zs+XGPtgb5Rjye1L/5mPQyFB2LdjI7fJxIOjJl2WQZZ8ItHk5xTlOQv441ej6eNEJWFPhp5W/bAQ8z58C2mpzHH5e2nLpPa6DPV51KiDTt37I+DP1chJj8H0F6bkDSn0ccOGzejZ8268MvtT+PfqX2K8d4Ue7A1aKVVtz45/EAuWbzJHsI6tQ+LY9uPMmdM4SjVsZ2rgtG3dAvffP+AGHaHu9kYSkFy4x5+Yit6DHqNq+YusHLNFE4ZtRZ9LFMN1UQLXi4AYVFJsITmNJ0+eZAoB0wn+Xj76ahlatPm/Bz1vvSWPamBZQuk6jDlCcbxlX88zSbNVa/qg591DbniF2gD/phj71HR0pertzCkjsXrVCmOw5OGQ8Ix4GurTQLGltyf71Gl6digiaMX8EVZ3WJXhA8UFg/fvZS5MI+P5ktDJb2vWGAPLm/kmDw+9l+XkTTHkwRFsPXMbvUZ2plIojWrLDo4uaHlHTyqrV2X7mnMeM9m3VI7Mee1ZLJj/KcZPGI/k1Ay07tgHblWqG3Xe8kxs3rfrL7zx0lR6NTpj7dr15pA/mP8jJRZSkJQQg+QTCcz1yZTZUMaKx8pHVxcn9OjeGa1btzTji/r16bz5eHbKNHTv0R0rlq/AZ0vWoIlfq6KG3/Lr5UJZmDCkFBF88+UcZKQcZ46bDY3tAxg5cihatWppsXfqlodXik9wxozXsILegcZNm+KJCaP4XdK0FNPQU7/eBKQjweKvv6X47CAsXfo9Ro+eYA7hvsEPmvZH6bwRd3H3NAUzV3psamBdKblrvJ20rvhq7pusHsrFimU/mNkH3nsvEhJTUIk9r1Z8txiPjZO2B1YIDg6iMeGJ75csgE/tuli4fDM9KGWNh+ad117AJPbH68UmxVLJlEyvU93GLdCqXWczp4i2SUWUA6unLmeJCmfeUa9z7vred/ahWKEjxQGPY9+ePTSO7sNrr87In04uuGJIyY8YQ7JcmJMiya15KtD5G/KJeL+kSkhyU6LZMmL9+o2IiYmDtFuQNhCmLRb1q+r4ss/XoH5GlVn2sfTbZUxez+TdRwaeeeY5jBrzGFJTk9iclNtxw3r16jHc0JJii1XZW7CqaYUhdytXspw4kUSRvDpm060hSVcyxU2/TRbv+N6d9S9EHT5ohAFfm7PwonM6zkawfTs2wuAhgxEaEoqXX34BHTu2v2icrlACSkAJXG8CeRXht/n54WRmNh58ZKxpxO3Xqp3Jtwo7uB8b167CMPYuvNJFDawrJVfEdhK2Ovy3BEANLyooUzDvGJtsjnqgJysXzl2MP16wgmrgd5jQWypLRRd9/j6+mvcehgx7DN3uHMh2EdFMyt5DFeZEdmBPpcTAkxj/8N3o0auXMRZS00+iTYfukJyoMlanUYmJvWLAbN+2lZ6EspC8qFNM/G3Xphn8bmtCw6IL/giMNgJsA7v70YswDLt272NLilnwoHKupUted/UFn7wOjyqusKfw24wXn7N085t+nPQZkxYhw4aNZi+ww+Z8Nu6NvSGNS280zJMMBy/+4kPKHcRh57YAhgE35x+SfDGt/OZTGuF2rMw5Yyrv2rZujsGDBxkBwfyB+kQJKAElcB0JxMTE4p13P8Zhfn87sABm8aKvMXfhStxGTcPiWNTAugKq4gXatmkt+10dhLSlAENMEhKj2Qur3Ex07doBdgxThYSG49ixWCZB28GBui3iaYlnBZEYQydPZpkwmeShSGNh6dQujT1PUeNGkqfLsneWVDSkpaUbo0r0dqyYXC6viUEl3hdHx0qmUWlF5kkVtcyYMQsHQsKo7eSBCuXLI+bYUSxe/A0vfpUw/NGJZr4KdvYMwXnAwcnVhAAzT6YjITaahl6kRNDOeaHOnuEuJJB2Fq2ZhyVSCM9OHIY6deuZc1uyZP4lK++KOr6bYb2IPLq71zKHOu6p54xW0ZinZlDB3e1mOPzreozvvjoF7s52eJGGtzTH1UUJKAElcCMJiKdq/pcLeCGjE2LnHjw66RWsXrYInSkL48RrnlwLi0sL61IGVqn6dsyTGujXRXRqkvD0czMRGx1OA4TyAzRsxIDKzjmDL+bNZajuMfS/uzeGDhxpKtQk/0SMJwlvSeVZXjisR4+uN/JzZfb9739PLXAMksg3c+YLxrCSY5Zjl5CcqESfYF4SrK1Q08UB3dt1Qk3qBknFoJxPXo6NdH3/7vsVsM5JwdxPPzSJyrKDypVvHWNDqiHFUyX6PLv37EcYK51k6dGnHx4Ze+nkdzPwFvklXqqw0ANIiDtKEdZjRu4il3kLckMhWlK0vfl/cU4Q09qaXxf8PO3eEYD/fvWpGle3yGdAT0MJ3OwERB5FlN2TqVkn3+mH6GEfPr7gdfFGnKOVXIAvXHixrcR1KWt3RtKLIk9vvkVyhD6aPRMLv/iAEgN2yGQyrig35y2dO3fEe++9yY7ftYwhkrdeHoVJngF1/np9XjIISOJiVNQRY+zK+ySeQDc3N6M7JD2sJNk6TxdJ3kvRRvmWBmNCQhK9d0yB411OOUo5ONI7Va1mHdSt3wQuld1v6fdcDClRNQ/evZWaLwk0nuiMZYGCg70dGjduQDXxavSAVjMq4UVJV5SMd1+PQgkoASVQNAEvr/r4/Nv1BTpDFD366l+56T1Y0g4jiUKS1Vh5d4xl4SIKZlPOFuUogV+1ag02gfTJ976kMgdq2qSR2LJxHVxc3Yx0fkbGSbTv3ANHo8IpGRBsiN5xR1vTib0wvGpcFUal5KxbtWoNRo+ZgEdGPwE39yp0sLAtSnICJSXS6IksyxAsDWlJwhevIx9dWSzQ7c4RcObnoTQsaSnJpqG18AgN2oGsk6lwqGiL1rc3x6SJQ28pT2RpeD/1HJWAErCcgKTgiM7agMGjCgiHSqpPBAu5GjQR4WPeXV6HpcSHCCXpevHnszGEOjphgb/Ay8sTDb2qIZveKNGyCN+/DiuWfMjEWjuTW/TXli3YvSsQrdp2YII585uYYC59vTw9KsGvSQ+kdGhHKYKfjUfrOvDVXVwhgZSUVFNhGB+fYAwCUeZ1cLA3is8iWCnihJ9/sRDR4fvO/RPREZvLSsKII9EYP+VlVPP0usI9F/9mkt8Xc/SIaecjQndulKgQ4+9qDHspvAj4YzXCD+xAVY/KaNyoAb1RFXFf3zHMQXAq/pPSPSgBJaAESgCBw+FBCAj4C7NnPk35helwdHYxRzVmSC9I1XNKSor5rpXohtgJH3y5vNiOusQbWBLqc3GrgrXrNsLapizCD0chmXfoJxIT2RQ0Cd8uXYBxY0cUACT5NTt37mK+URL1eJqbsEeBi9ec1wuM1z9uPAF5z1xdPTH1uckY9vAQxtMP4GFW8rnS8JA+dZKEXo5eS2cX9pdjBaUXe8VZMTfImuFB0eKS5TTDg36t2hpNrXNrLv6dVwEqmmR3DhhqpC8uHnXt14SxofGa5QtQTnrWOdqjlldN2LOQ4WRKFgJ2/WYkKk7l5KJB07bo0vseiw9ApBQWfzYbFWxyjb7X5IkPWLytDlQCSkAJ3GoEJMWhS5eO7NzB5uGtfTH28Wd4DYk3/WrFuLIpVw6LV2w2vWmrVPMs1tO/oTlYIgS5fs2PVHwOofFkQ9FNezRs1tY0AhUhyQsXsTiffuwBbFy3Bh07dUDbNq0wfPhDcHFxZs6N2Ipn6cm6eLsL59G/Sx4BMaT9mren0eFE96013KtQmZ29Aq2ZkC/VlTn0RsbT0IqIiIB37QaY8tJ7/3gSsceisWvbBhyNDGX+XQaOxxzDtm3bWCcJePvWw1ufLGEuVvl/nOdqB8yeORk1qlbCpKcmmKrQC+cLDj6IFi3OlRA7u7hiyaotFlcv/rh4HkL2BeAu9vhr2LA+Gxp7F5BJEK7i7RVP2fVyi194fvq3ElACSqA4CcTFHcdLL83Cl6wknPLsM0hLz2CO7ikco2SDHSvoU+iU+X3NL8yvPoNvf9mOmt6+1+xwLpWDdUMNrK+/mIN9Ozfi7rv6wNe3lhGeDD0Uhq3bdiE1PZNhk2q4697hpiXL+TSy2M0+iF3Y42OikJrCdi4MuUgoMYJeiRrVPVCdcgU+Pl5wo5ClVL55elYv9MJ2/pz6vGQQEE/V9u2B2PLXDoQcijJaX05O55r5WtFVRRs7fxFB0kcnzSgQZ8978beflmLDr99jCHWZqlWrijnvz2NTT198MuctM6SpX0uMnfRv1PKuA1fmcRW1iFF/hp4xEXm9kiWdIWr/lrWQmBhdwPC5cC7Zj3hZpUnw408+j0n/nvOPKv8iJit3aBIGz1tq+fjCv1sP5qOlIzhoP3zr1ONn34W5h/vx/NQnWAFbgcdh+/ejPC9vfspT3iPPACvg7c2bWB+VgBJQAiWQwGuz3sbHH32GKS/Kd/tZNGvRjvpXTtettVmJNbDkvZLKviOR1JI6cpg9zCKQGB9LRrnG0ow4fBjd+txrhDnPf1/nvvsq5n3wplnVs+89mDn7s/yX5UKVeDwOS/77EUKC9tA1GIeQA8HYsOFXegn88sfpk5JPQKQl0nknIvISd9zR1VQGulJHTBLXpXChchUPLFoRYFy+F55NUmICtm76DZlM9LYpVx4tKMRapWp1o+216PP38MdvP3HuVMRTqmHJqgB6xernTyGfIflcdvbzRM/evYxXaP4XX2LxyoBLVqbIdju3/MnPXCziY49yX8dR3sYKA/r3QQfm/hW1iPRHIkPe8jNp0nP8iiiL1z/6hgaWXVGb/OP6EArULpr/AVYtW5o/1tXNHbe1uJ03JOnsKZnKlkJppmdjOh8zmc+Yt0jO1tGjoVeVE5Y3lz4qASWgBK41AfHMh4YeYhhwF0aNGocp01/HoKFjrvVuLJqvRBtYFp3BJQbl3fmfP0QqCSePvY+im7YMjdigERN+J4wfQ80nyxXNz59Pn994AiLNIIaWGCHiabGzq8Ak+BjM/2oJeg4YZjxb4nlxc/cwBvaRiHPaTtnZWejU4x7UbdDUGAxSWSjjYplkPmxgFyQxOfzCxcPDAw0aNqCeygH8+MPXfNkK48Y/g1kfLM5PmLxwGzHIJo0egGZNGqBOHR8m5DuwwtXDFF5IVYsYinv3HTAeOdphRipC2vtIayAbG1u2SnJhOxpXVKzkjJZsOlqYcSVe2thjR/haxfyKSPGQHQzajV1/raMXN8cI1YpulWibleV5nuFzjypu/HHn8VQxmmblmINgw5C8/IikxblHWWdtigjkdV2UgBJQAiWVQGTkEbbk6g4PtkTLYv5uaGgoblRLsxJrYIkV+u6rU03bGEcnF1T1rMnqLx/Urt+YHoV6F91Bv//GdKz8fhGTmN0ZTnSlqnh1iEfDLJJYwyuXiCPKIhcOycdKpCdDxMcef2Ismvs1M6/pr1uHgHRIX75iNVX1bVlFeIaq+sdZ1OCGJtR2ktCwtBVasGAJQg+F09g5y96FabBlrp9VWRt6o2qwL1UtFlG4I5dGkIOjMxX57bFn5xZ6eVKQnXXS/Ng7OKO9/535Rk1h9MTQ37TuZ47PpKeNOlwU5SzDvEBrm3LMI7M2uV71GzYt1NtW2HyyTnpX/v7TEnYAyKJT9zTDejbw9qqBDPZjjIuLN8abi6szmvAGokcPfxPqK2ouXa8ElIASuBUJbN68Bd269cUPv+1E9Zre1/0US6yBJReldb8so8ZVPMMpiYhlTlXU4XDjpfj6py0m72XIXe1MvsiMt+bSK+BkytuTk2R8AqZPHofmzf2wceOv1x2q7vDmJiAesW3bdqJ7976Fnsj9D43G0y+8weT6U6YAw5K8JLlhEA0q2SaTxll8XIz5nGYxTJlDbS7JHczKzDA5Y9LIW8RQra1t0IXtHPIWyata98uPCArchNq+NTFm9DDNH8yDo49KQAkogQsIiB2xd+8+/L52AwWoj+FkVg4aNGuDVu38i4w4XDDFVf1ZbAaWtJ650uRfS89ILlarV3yDZs3bMPO/dv5mAnXrpnX44evPsHbNKuzatQV16/7/9fyB+kQJFEFA+kAOHToKTs6uKCvhMv6IB/Tjjz4ssMUXS39Fo2YtC6zLZmeAkAN7EczPXWJ8DIOIudy+LFxdnHhDUN6EMKtXq8L+hu5Gv8vWthykn2RF9qw8zf+b6OhoiJv7/vsfxogx403eoairS/7h3Xf3Qlf/jhd5cAscgP6hBJSAElAChoDYA97eDU37szwkkqbxwINDkZtLaRwXd9RrcjtqevmaoiZLbpjz5vmnx2IzsJ4YORABG9bm71/uyL1q1WKJvQfDeB7wqF6DIT9v2JYXEVAmrvMOX+7yRYXdleKKTf3a4PERA7Bty4b8OX4JCL0oFCOG3L+eGo6dWzdh4H0P8MJDUcnT2aZasDarD5v7NS1SlT1/Yn2iBCwksG9fMD7/fCHW//Ennn/1Q9Rv1IzR57MIZ8++HQG/sxF0BJwqVUSzZo3QjoKnXgzbXekifR8ljJnX2udK59HtlIASUAKlmYDYFmI4yWMWb4DlhjZvOXYsBlu37kBQcAhW/rQau3buxKDBwzHmiedNTmthslB52/7TY7EZWOfvWDxNsTHRppVNcmIck4ePs5FyFCIpnWBDMUgfGkKynGUeTDLFvkQoNJFCoH369EI1JgNLjkw2tY5MQ1lzJ3+WFzVpQnwWNsxhOZObg65dO6FXr+5mHv2lBIqbwNuz30dsLHOdmCguSz16SLt362T6Vxb3vnV+JaAElIASuPYEjhw5ihdffIXSUL4mXUMKkE4yUV6S5cuy4IiCOTRUrOBEgXNnl8qM0tmwHV8dtt6rTJ3GSqhgV7FAdOGKDayRj05gZVE52HFSWwoyipinS+VqrFQqy6Tg7PwkXtMXkF4pUUi1487lAORRqp0khCg9gOKPx/I5E3/FwqQ3YGD3FvnktmxZx6bS9sbilHYo52vy5A/SJ0pACSgBJaAElIASKGYCucyFFfFS6QYj3rD9QQf5PNkUSaWlpUNuueW+W2yZzMxTWPClkYpyZKQj9fxDu6TQ6OHDwahUyYGTpnKSTMYyc03eCOdkxZItc0lOc+fZ9DzlGLVoeX6SFU4iFilWYTq1iiTfxJSj82AkFMJNTbhl+7YtxmLM4Lg0GmAZFEaUnoF5ixhZ9vYOtBgdTMn73j27zUv+/p2xcuW3ecP0UQkoASWgBJSAElACN4RAcnIKxax9Zd8XGVjSX6bIJU/lWR7zFl9fn7yn1/xRjLFMVlqJcSZWYloahRD/fkxJTUd4+GH4eHtd8/3qhEpACSgBJaAElIASuFwCeR0wCtvukgZWYRsU5zprhhMl8/+cSGNx7knnVgJKQAkoASWgBJRA8REoU3xT68xKQAkoASWgBJSAEiidBNTAKp3vu561ElACSkAJKAElUIwE1MAqRrg6tRJQAkpACSgBJVA6CaiBVTrfdz1rJaAElIASUAJKoBgJqIFVjHB1aiWgBJSAElACSqB0ErhkFWFqalrppKJnrQSUgBJQAkpACSiBfyBwKTupKKFREb46zB+Pf5hbX1YCSkAJKAEloASUQGkmEMuT96aSe9b5EAo1sGQAmyaKkVXu/MH6XAkoASWgBJSAElACSqAAgVMXGlfyapEGVoFN9Q8loASUgBJQAkpACSgBiwlokrvFqHSgElACSkAJKAEloAQsI6AGlmWcdJQSUAJKQAkoASWgBCwmoAaWxah0oBJQAkpACSgBJaAELCOgBpZlnHSUElACSkAJKAEloAQsJqAGlsWodKASUAJKQAkoASWgBCwjoAaWZZx0lBJQAkpACSgBJaAELCagBpbFqHSgElACSkAJKAEloAQsI6AGlmWcdJQSUAJKQAkoASWgBCwmoAaWxah0oBJQAkpACSgBJaAELCOgBpZlnHSUElACSkAJKAEloAQsJqAGlsWodKASUAJKQAkoASWgBCwjoAaWZZx0lBJQAkpACSgBJaAELCagBpbFqHSgElACSkAJKAEloAQsI6AGlmWcdJQSUAJKQAkoASWgBCwmoAaWxah0oBJQAkpACSgBJaAELCOgBpZlnHSUElACSkAJKAEloAQsJqAGlsWodKASUAJKQAkoASWgBCwjoAaWZZx0lBJQAkpACSgBJaAELCagBpbFqHSgElACSkAJKAEloAQsI6AGlmWcdJQSUAJKQAkoASWgBCwmoAaWxah0oBJQAkpACSgBJaAELCOgBpZlnHSUElACSkAJKAEloAQsJqAGlsWodKASUAJKQAkoASWgBCwjoAaWZZx0lBJQAkpACSgBJaAELCagBpbFqHSgElACSkAJKAEloAQsI/A/PPFNeRj+vK0AAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from eomaps import Maps\n", + "m = Maps(facecolor=\"none\", figsize=(6, 3.5))\n", + "m.add_feature.preset.coastline(lw=0.4)\n", + "m.add_feature.preset(\"ocean\", \"land\", \"lakes\", \"rivers_lake_centerlines\", \"urban_areas\", lw=0.2, alpha=0.5)\n", + "m.show()" + ] + }, + { + "cell_type": "markdown", + "id": "b2518589-7e39-4a05-bc39-aef32b90894d", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "## General Features\n", + "\n", + "[NaturalEarth](https://www.naturalearthdata.com/) provides features in 2 categories: **physical** and **cultural**. \n", + "\n", + "You can access all available featues of a corresponding category with:\n", + "```python\n", + "m.add_feature.cultural.(**STYLE-KWARGS)\n", + "```\n", + "```python\n", + "m.add_feature.physical.(**STYLE-KWARGS)\n", + "```\n", + "\n", + ":::{note}\n", + "NaturalEarth provies features in 3 different scales: 1/10, 1/50 and 1/110. \n", + "By default, an appropriate scale is selected based on the visible extent. \n", + "You can manually select the scale to use with the ``scale`` argument (e.g. ``m.add_feature.physical.coastline(scale=10)``)\n", + ":::" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "49f9a813-b4d6-44d7-9b8a-b50b4eadd188", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "from eomaps import Maps\n", + "m = Maps(facecolor=\"none\")\n", + "m.set_frame(rounded=0.2, ec=\"darkred\", lw=3)\n", + "m.set_extent_to_location(\"europe\")\n", + "\n", + "m.add_feature.preset(\"land\", \"ocean\", \"coastline\")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "0744f40e-6dc7-4075-99c2-a75b7ad40e8b", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAEAAElEQVR4AexdB2AURRf+0ntvEHoIvffee0eKoNjFgr2h2BWxoCiiAhaUIiCCINJ7772G3kkgpPee/N+bcMflcglF/T1gRvdudnZmdvbtkf32le/Z5OXlQRctAS0BLQEtAS0BLQEtAS2Bu0cCtnfPpeor1RLQEtAS0BLQEtAS0BLQEhAJaACofwdaAloCWgJaAloCWgJaAneZBDQAvMtuuL5cLQEtAS0BLQEtAS0BLQENAPVvQEtAS0BLQEtAS0BLQEvgLpOABoB32Q3Xl6sloCWgJaAloCWgJaAloAGg/g1oCWgJaAloCWgJaAloCdxlEtAA8C674fpytQS0BLQEtAS0BLQEtAQ0ANS/AS0BLQEtAS0BLQEtAS2Bu0wCGgDeZTdcX66WgJaAloCWgJaAloCWgAaA+jegJaAloCWgJaAloCWgJXCXSUADwLvshuvL1RLQEtAS0BLQEtAS0BLQAFD/BrQEtAS0BLQEtAS0BLQE7jIJaAB4l91wfblaAloCWgJaAloCWgJaAhoA6t+AloCWgJaAloCWgJaAlsBdJgENAO+yG64vV0tAS0BLQEtAS0BLQEtAA0D9G9AS0BLQEtAS0BLQEtASuMskoAHgXXbD9eVqCWgJaAloCWgJaAloCWgAqH8DWgJaAloCWgJaAloCWgJ3mQQ0ALzLbri+XC0BLQEtAS0BLQEtAS0BDQD1b0BLQEtAS0BLQEtAS0BL4C6TgP1ddr36cv9hCYyxsZGXCDdujtz0C8U/LF89nZaAloCWgJkEcrmfyS3ltbw8qeuiJXBLErDJy8u7pYF60N0jAYI8d15tPW51uFXjFsqtLLcgbj7cdNES0BLQEtAS+P9LII6njOR2nttJbke47ee2l+Awmd+6aAkUKQENAIsUzd17gIBPtHmtuHXl1o6bgD+t3aMQdNES0BLQErgNJCCawb3c1nJbxm0jAaFoDXXREjBKQANAoyju7gpBnx0l0IHbEG59uHlx00VLQEtAS0BL4PaXQAIv4S9uM7itJhjMuf0vSV/B35WABoB/V4K3+XgCP39ewpPcnuImZl1dtAS0BLQEtATuXAmIufgHbj8SCEbfuZepr+x6EtAA8HoSukOPE/iV4qW9wW0oN5frXqatHWzLVYZt+aqwLR0Cm6DSsPErARtPX9i4MgbEwQk2dqJE/GfL8D2/ob5PedxXodk/O7Ge7baRwJGECPxyaj36lK6PloFVbpt164VqCfwbEsjLofIuKwN5qSnIS4xFXsxl5EVeRO7F08g9exS5544DuTek4Evj+iZxG00gGP5vrFXPad0SsLfu5enV/dMSIPDz5pxvc3uemxO3Iott5bqwa9AadnWaw451G+fr48QiJ7vFAylubsj08ISNl98tzqCH3e4SyM1Lg/wOsj299e/gdr+Zev1/WwI215khLz0NOcf3IWf/FuTs3oBc1oso8gddngNP8rnwLb8/JhCM57cud4kENAC8S240/4HL341HuY3mJmZfi8U2pDrsOw6AfcsesPUvYbGPbtQS0BLQEvh/S+BA3Hl8f2INT5t3C6e+Hmy6NuWN97w2xlBTf2XVzo3Pcv2eBXsU3DOc2cJ31QDYVOsPz8ROqHnoMOrt24vgy5csdFSKgNd44BE+J97g92QCwVsRsqW5dZsVS0ADQCu+Of/U0viPOoRz/cytrcU57exh36Y3HHo/Qk1fHYtddKOWgJaAlsB/KYFzydGEfnmo4BYAJzuHq0vJxymW4Ir0lVIIyVztXKhd9S1qjJpKnT+/ZtgvvGec11gx9C3YYGnP2FbMGg1nLOr6DO3GC/d3x9G2wdw6IejCedTbshFV9++BXa4EChcoohiQ58SDfGY8ThB4usBRvXPHSUADwDvulha8IP5Dfpgt47nRUc+sCPDrMhiO9z4D20BxCdRFS0BLQEvAuiVwf/lmKO2mXUJu6S7V5qgeLyH3SjgyZ09A9vJZQE62+VRt2XCAz45nCAKnmR/U+3eOBDS3251zLwtcCf/xunD7hY1TuBUCf3bNu8D1h9Vwfu5jDf4KSE7vaAloCWgJ3NkSkBd++dsvzwB5Flgo8syYKs8QeZZYOK6b7gAJaAB4B9xE80vgP9hgtm3g9qj5MZvA0nD+cApc3vkRtsHlzQ/rfS0BLQEtAS2Bu0QC8gyQZ4E8E+TZYKHIM2T91WeKhcO66XaWgAaAt/Pds7B2/kOtzuZt3BqaH7bvPAiuE5bDvlE780N6X0tAS0BLQEvgLpWAPBPUs4HPCAulEdu2XX22WDism25XCWgAeLveOQvr5j/QBmzeyK1MgcMubnB64zs4v/Q5OfvcCxzSO1oCWgJaAreTBGxs9GPr37hf8myQZ4Q8K8BnhlmRZ8qGq88Ys0N693aVgP6XdLveObN1X/2HuYrNvqaHbEqWg+vY+XBo08u0Wde1BLQEtAS0BLQECklAnhXyzJBnh1mRyJtVGgSaSeU23tUA8Da+eYal8x+kmH1XcPM2tMm3bZV6cP3qT9iWrWzarOtaAloCWgI3LYG9W5bhhb6V8erAGnhlQA2MGNIAuzYsvOl59ADrl4A8M9Szg88Qs+LN/eVXnzlmh/Tu7SYBDQBvtztmtl7+Q5SAj2XcCmj+7Oq2gMsnM3TmBDN56V0tAS2BW5NAJFONZWVmIDUlGWmpyUiIi8ZyUon8v4qR3+7/dcK7/DySfUmeIfIsMSuiCVx29dljdkjv3k4S0ADwdrpbZmvlP0AJz/+LWwGfP/kH6/z+L7Ap7MdhNoPe1RLQEtASuDEJdCVf6PAv/0RNBgy4uXsipGo9PPn2Dzc2WPe6LSUgzxB5llgAgfLMmX/1GXRbXpteNKCJoG/vX4EQPBeI9hWzr/N7k2Dj5Hx7X5levZaAloDVSSCkWn08S8oQXe4eCcizxPndn5D21hDkHttreuESHcyIETxu2qjrt48EtAbw9rlXBVbKNy/J8CEcTcYiTrsuH/wMG2dXY5uuaAloCWgJaAloCfwdCYgmUD1bSpQ1n+YxPoseMm/U+7eHBDQAvD3uU4FV8h9cCBtE+3etyD/Q96n5o9+GLloCWgJaAloCWgL/pASUTyAVDBYoYsbzmVThnzyXnuv/IwENAP8/cv7HzsJ/aHLP+K+wYHo3pxdG62jff0zKeiItAS0Ba5WAjbUu7C5Yl0QHy7PGrAi5rKSM07fGTDDWvqsBoLXfocLre4RNbU2bJcOH5vkzlYiuawloCWgJaAn8GxKQZ408c8xKW+4/Ytamd61cAhoAWvkNMl0e37C8uV/g9UvyNzo9+Z5pN13XEtAS0BLQEtAS+NckIM8cC7mDR199Rv1r59UT/7MS0ADwn5Xnvz3b2zyBv+lJnJ4dpdO7mQpE17UEtAS0BLQE/lUJSNo4efaYlQDuv2XWpnetWAIaAFrxzTFdGt+sSnH/edM2u+ZdIEm8ddES0BLQErjTJZB3p1/gbXZ98uyxa9bFfNUvXH1WmbfrfSuUgAaAVnhTiljSG2x3Mh6zs4fTY/plyygPXdES0BLQEtAS+L9KwOlxPoP4LDIp8oySZ5Uut4EENAC8DW4S36jE7DvUdKn2XQbDNri8aZOuawloCWgJaAloCfzfJCDPIHkWmZWhV59ZZs1619okoAGgtd0Ry+t5ks2S9i2/8I3LkWmZdNES0BLQEtAS0BL4LyWgnkUFtYDyrHriv1yTPveNSUADwBuT03/Wi29Sdjz5U6YLsG/TG7aB4hKoi5aAloCWgJaAlsB/JwF5Ftm37mW+gKevPrvM2/W+FUlAA0AruhlFLKUD2wvk33Ho/UgRXXWzloCWgJbAnS0BG2i+YWu7ww59HjVfkjyz2ps36n3rkoAGgNZ1PyytZohpo21IddhVrmPapOtaAloCWgJaAloC/5kEbCvVhjybzMoDZvt618okoAGgld0Q0+VQhe7I/T6mbfYdB5ju6rqWgJaAloCWgJbAfyoByQJn36G/+Rr68BnmYN6o961HAhoAWs+9sLSSVmz0Mj1g37KH6a6uawloCWgJ3BUSyINmArTmG23fqqf58uTZ1dq8Ue9bjwQ0ALSee2FpJV1NG20r14WtfwnTJl3XEtAS0BLQEtAS+M8lIM8m28LuSV3+84XpBRQpAQ0AixSNVRwokObDroF+mbKKu6IXoSWgJaAloCVQSAJ2DdqYtxV4hpkf1Pv/rQQ0APxv5V/k2ek74c6D9Uw72NVpbrqr61oCWgJaAloCWgJWIwG72s3M11KfzzI380a9bx0S0ADQOu6DpVUI+Lt2f2ztGP1b11I/3aYloCWgJaAloCXwn0vArgofW3xWmRR5htU32ddVK5LANYBhRYvSS1ESqGMqB9tylWHjfC0ZiOkxXdcS0BLQErhbJGDLiFNdrFMC8oyyLVvJfHEFnmXmB/X+fycBDQD/O9lf78zVTDvYlq9quqvrWgJaAloCWgJaAlYnAdsKhZ5VhRqsbtF36YI0ALTeGx9qujTb0iGmu7quJaAloCWgJaAlYHUSsC1V6FlV4FlmdQu+ixekAaD13vwC6d9sgkpb70r1yrQEtAS0BLQEtAQoAZugMuZyKPAsMz+o9/87Cdj/d6fWZ76OBIJMj9v43b38f5oA1vSXoOtaAnenBPL+gctOzk7H6aQriM1MQXZuDtzsneDr6IYs1g/En8fF1DgkZKUik/u5ebmwtbGFk6093O2dEejiiQpuAajuVQpBLl5FrkbmD0sI5zmS1TyODIrwcXBDZc8SKOPmx/PmwtneAY6c904sNn4FHl1yiYUa7sTrvh2v6c78Bd6Od8JkzQybF82sj0kTbDx9TXfv2Hou/zja2hZUTO+IOa2u99GKbe7Y69YXpiWgJfD3JZCQmYpt0adwPiUK8ZlpyOV/tvwvLTcTUemJyCaoK67YwAbOdvZwsLGHPb9zc/OQmpOBOALGc6nR2Hn1b5G9jR2qepZEn9L1EZ+VhgNx53E6+Qoupycgp4hzLLm0v8CpJZTF1c6JoNAX3YProhIB4p1QbLwKPat85Zn2Wl4RgrkTLvo2vQYNAK3zxhXiTbJxLdRknSu/yVWdCtuNpbPG4eLpMKQkxfMPbi7e/2ENAoPLq5neqN4Tk06ug4DApv6VUM0r+CbPoLtrCWgJ3KkSkL8XAs6OJV3C0ogDiM5IMl6qLcGcBAznUXUouWr9nNxR0T1IAS4/R3c4UAOXkpWOuKwUNaa+T3nYpaRi68o5OLhjFVzcPFG6QjX4BASjVuMOcKFm63jiJRzlJtrCQwkX1WY4oZwv0NkTtb3Loo5PWTgnJCMp5jI8/IOQ4emBsMQIJBKgyqIycrIQk5GMSAJGmU82GV/a1RdV+Tcu0MkToR5BxWoaDee1tm8bV6GwLVRc2ZJcqFU3/KcS0ADwPxV/kSd3LHTEwalQ0+3YkMe/xlERZ3Fw52psW/kHLp45UugyYi5fMALA8u4B8HBwQQzNKd4O8jdEFy0BLYG7WQJLI/bjCrV5om1Ly8k0ikK0dzVonm0dWJVm2tKwN7MkGDrKi+aav35BXFQEGre7B7WrNYCjkzOOHdiKr0cMNnSDi4sLwnavV/u/T3wPPkx19s6EFahbvhwGo6nSKC4n6PRz8kBDvxAEOHsgKzMd6xZOw5TFLyGKf8euFRvYO9jD0dEJAcEhqNeyOwZ0GQx3Tx+CwjSsvHwQh2k2vpAag/PcDEWuyYt//wQUdipREyWcvQpZSAx9rebbofDji2uz2Gg1a75LF6IBoHXe+II2UK7Rxq4AuaZ1rrqYVSXEXsFv49/G/q0rLPayp0+Mf4kyqNagLSrXucYm/+HBebicloAqHiVR0tXb4ljdqCWgJXDnS8DZ1kFd5PaYU4RFgCeBUQW3UihBf7wgAqPaToHw9PQuEiBd4Yvnqrk/UsM3m5aGHDg5OSptn2gHy1SsjpbdH1TaPvlblZuTjbS0tAJCjYu+rPblb9jimV/jSvhpVGbmi/vf+9l4zgkfPo6jezepfh99NAJdu7bHyZNn1BYbG4+oqGhs3boL8yd/hoizx/Do8K/hTKt09egMVEx3QZ6NK3I9PJAbGIgzadE0K0chkn//tkWfVJtMLJpCO3oJiQ+hr5MbKnmUQIcSNVi3qHlTa/m/fhQkgjac+vZ+gBmu4g771gDwDruh1no58gZtCv6q1m2BJu37IaBkOfgywtnLN8j4R9T0GgT8yRvwc1U6mzbrupaAlsBdJoEOJWswaMMRpZx94Jdto/5enDt5EIvGf4iN50/gt6xMVGcu2udGTkU4LQviclamYk0lpe1r/sSUMS+p+uDB92DkyDfg5+eDw4ePYdWq9fjpp+mY+c0Idbxatco4cuS4qtvyxfud8cvh6ROAU2G7MOqZToiLjkSZMqXQoH5NbNmyBhdOHUa5SrV4vjy4efiocfLx7rufoX79WgoEiqk6LOw4VqxYi4MH860eJcpUxNZVc/D7hPeQkZ5qHCcVL98A3P/cp+hSuTE8vAOUVnBX7BnE0mycQI2h+DSmZGUgnEErF1JjsSYyDN6OrhhUtilN0GUs/i0tcIJ/cUcAtS63hwQ0ALw97tNtv8qHXh5Dc0tfePoGonylOswWdOMvhFU9g4s059z2gtEXoCWgJWBRAoumj8XpI7vh6OyKtJREnDu+T/XLzEhXYMvSoDKhNbHkt2+waPpX6rC9gwNqNmyPKvVaGrs///xQBAT4qf1atapBtpdeegqnTp3FhQvhGD36O3XMzcMLHfs9CQ8vP0z54kUc2rUOlStXxORJn1M7mI777nuKgM+bILOG6r945jjs3rBQzedJnz97ezvVX8BflSrNEB0da1xD/ZY9COz8MO2r19CkSQN89dVIBAX5Izs7B0ePnsCLL76DiSOHqv42NGWHVK0PdwZXnDq8Q117y65D0O2+5+FE2ZxMisSay4exL+4cfji5RmlHA+hDWJE+hPV9y6Omd2njeXVFS8BUAhoAmkpD1/81CTjTMbhu867/2vx6Yi0BLYE7RwK5OTnKzGp6RWXLlkJiYjK1ZWnU3vkiJuYaoJJgDXv6ni3/fbzx5bJFi8bYvHkH9m1djgPbV8LDwx2PPnofypcvxFOngkQWLFiOjz8eq/wB73/+E+UfuIzzvflgY2rUgM8/fw9Dhz6g+s6Y8YdaWpMO/ZWmce2CaVg8YyxEuzhx4uemy1aArUGDOli+fC3c3d2QnJyCsqG1MPO7t9GxY2vMnj1JzWkYFBQUgL17V+PYsZM4ffocduzYg0mTZhBQ2qNDu+ZKBsvnTMDKeT+iHv+mBlGT2JGaz3vr3IutNBXn09nE4kp0IvdP0FRsh76lG6JdieqGU+hvLQElARtRW+tiXRJgyHwAV3TFdFVuv+2BDd9E77YybMdkNPGriEcqtr7bLl1f71UJHIq/iPHHV+Leck3QLkg/xO6WH0Z6ajJW/PE9dqyZi5grEcbL9gsspYItsrOzkJqcaGwXrV6pUiWxb98hODg6qz6Ggx06tMYvv3xNH0EPQ1OBbwFngwc/iQate2LIC59hFzV5f076GOlpKejbtxu1gu8ZtYYycMmSVRgyZBiDOHyRkZaMLJqfO3dui1mzfiwA5gqchDtvv/0JJkyYDBe+EGdmpBHkbVFg1rxfcfuZmZno0GEAIiIu8Vy2iI8n9QwBs4eXDxq3H4Du1Ay6unup6Oh1kUewPvIoMnKzGCBTmq40nYqb+h85lpcQg5T76pvPFUgamCjzRr3/30pAawD/W/nrs2sJaAloCdz2EhAftqhL51CybCXYkT/vVooAPkcnF6XBS4yLwvGD25R2q16rnvCmj/CqeT8gMT6GYDCcAM+RAC/TeJqGDetg1679DLLIj6DNJc1Ku3Yt0KNHZ5pfK6JlyybGvuaV9PQMfPTRl/AhzcvDr36FT57tgssXz6Bx4/r47rtPUalSiPkQZd4VXzdfb1d0HdwD/fv3gqzhev5v69dvVXOVCg7AlCnf3jT4k8GOvPaNGxcY1yQmZpl37NiJWP3nTwwuCcMLH8+EDwmu7ynTEL1K1cXow4sYZXyR3IipylfQOFhX7moJ3Nq/1LtaZPritQS0BLQE7l4JiFZszKt9cen8STzzwWTUaNgW4997BCcObYezixv326HDPUNRvkpdBYgEzM2dNApnj+2BgLxaTTrjgRdHGwUolCxzfvjQuC9+baZBEXZ2ttRw5cLf3xevvPyU8qvbuXMffv11Nn3mcrllKfAnE9jRt/iFF4Zi+PDnSOPibJyzqEpqahqBW2dcvhxJzdkL+PadhxT4mzdvigKQRY3r3LkdYmOPF3W4yHbR3kmZO/cXlC17zTcvOjoGDvRXdHV1Ud9FTmBy4OzZ8wSRvxMMbsO5cxe4nnh1NC+vYBCGPaOFharmYlocfj2zES52jvQTtIErs6AEkbdQNIPFZTYxOaWu3mES0ADwDruh+nK0BLQEtAT+LQmIb97Mb99E+Nl88LP6z0kILFUB9Vv1UABQwOHujYvUVrF6A7w2Zh4mfPAozp04aFzS5uWzMGjYh8pMK435iY+MhxX4e+SRwXj11WcUVYuPj5eK1q1SJRTOzk6q48CBvWlybYOBA4eiy73PYu/GhchIjVe+cz4+3tcmu07txInTuHQpn95Fgjjc3FzxySdvFwv+rjOl8fDqsxH4ef955CbGIdHWA2+0roVly2bh/PnwAuBvyZKVNCc/YxxnqLjRX9CRoNDJyYlgVjZn+hMCcXEJ9CNMVr6EtvTvCyodgvLVW6Bd1XpwKlUW7uUr4khCBFKzM7CbkcPHSDKdepUvMYzt5mUOdjDziZ0KGglxD0SLgErWQyljvli9/49KQAPAf1ScejItAS0BLYE7UwInD+/Ej6OeRFJCLIGYMzp1aoOFC5fjvcfz/XOr1WtF8+MRZvRJUFq5ijUaI2zPBlSp05Kky+FISU5CDrV1TcgGkJIYr6hV1i+ehr+mfG4UmJhQJZhjypRZygR73333qGN16uRH2ho7siJ+fb16dcHC2eONzevWbcE993Q37l+vUrt2dYwa9SYECIqZuFevzgpwXW/c1vAr2HU5DumM2k3PyUN5Lyc0pVk3Pi0Tj/1+EPHH42ATz+ul/6qNkyty4i7i3p9+Q6/HO+PHIb0KTN+wYT3lm5iYmFSgPYXBIilXW0SbmprNHSr3AklEXZm54SswMrhei64qEli6HSO4+/rYcuBs+NVR+V+u1Pg1JlG1ZCiRdHNRJ8MQefE0gkJrINnTFYeZoWQ/M5sc5bdsSyL2wZ6+hc4cJxRcJV28UZk8rI38KjCHsWOBufXO7S0BHQRihfdPB4Fcuyk6COSaLO7Wmg4C+W/vvGS3EEqSI3s2kv8uGOPHj1bRrBKV+sor7xrNr30fHYFO/Z+CZPL59evXcIoULqIxlNL7oeGkZ/ka2VlZxotxINCT4IlmzRoqsDdz5lzlwycaQeHwE3Po+fN7lVnXOMhC5eDBMAz/dCZy6OM2fepYBPn7WOj1zzQlpGei5XdbkbD3LHKT6W9IDZyYU0EzqyoEsBnhu5DlmY57GDE8plc7eNJn71RcEjq/OhKJq9eAqjx4d+qAkU8/iAdrVS6wsBSmojtz5jyJo09Tm3kI27btYhTwXrTsdh+DYf5k4Eg6RM4RZ48qDWrPB15RUcsSzPnb+W3YnRyBHqXq0czrADuuraFvBbg75JvCMxk9fWjXWvz0yTDjOYUmJ6hUCJozK0mdpp0RRXy3Lfa04h1MZpo80Rya5jau4BagOFldiwGCOgjEKF6rr2gAaIW3SAPAazdFA8BrsrhbaxoA/v/vvAC3v6Z+jrULfqHWLlvl6Pb19caCBdPJmfcOQd8+46JEa2dgk5DMGMLX52Bvi8ceu19x3A0Z8jSc6Bvo4mTPCNjRED84GbNlyy4EBvrj+ecfV35vEsxw+PBRzJmzEN9+O0m1nTixHV5eHsZzFVVJybKhRs4Fkan2yMyxIejKRbcKSXCwK2rEjbdn8vqnHj6HJftSsHfrOaTtWwDHRqUw7bUnqRGz52aH47EJ2HUpCv4ErQ1L+qNdmRIWyZjH7jyMn3+fj/ClK8DwXfAi4Vi2LEo1qo/m7VqifeXyaF82GN7O+Zq28+cvok6ddgUWKxrSbAJn8XeU6F/z4uziSu1qIMpVroOq5D8MLlsZMZEX8cePHyKeWU6kiL/h9OkTsGHDFqxevUlxD0q7cA56km8wuEJ1PPLaWHh6+1PLmYm95BjccOUYzqZEqcwr79fqJ90tFg0ALYrFKhs1ALTC26IB4LWbogHgNVncrTUNAP+9O3/h1CE4u3oy80QgxMHM0dkFi8hnt3jGOJ40D61bN0OFCmW4lVPZMWbPXgAv9ovnUcmkISTKNWpURbVqlfDcc2+qhQrVys6dKxS4E/664cM/UGAk7vIpcuHNRtWqlVS/4j6yqCkUUuQbCeSwNM/ZBAdsjnDFkGoJlg7fVFvdH88iZuVSpAvJcqgfzeBvoG+VCjc1h3nnozHx+H7fMewMO4Yz6zcj7fgJce4DkTZz3Hli6twp6F29ohr2+effMRr5ZwWcJQI4mSTUed7e8GlYH1lbt+HD915VATLzwk7jr6++Q9mmjVCCmkLhEUxISDSeukSJIHIO/gj5/uabn9SccjAgwJ/aVmdINHRmZhaXEa/GSCDPgCfeVXXDx4i9s5CQlaZyLmcxnV4GU+ZJcWTkdwADTaozF3NtWwbxDGlsGGL41jQwBklY0bf2AbSim6GXoiWgJaAl8G9LQLR7U796ReWsTYyPLnC6UhWqIiriHNvy+WE3bNhKLVE+dYl0tKfpL54aocGD+1Kb97nS5Em7aO4MRahTRLN38eIljBmT75937vh+dbhZs+7k4xt3XT890VDJVlRZetodLUunwoOaPktl/UU39Awp6FNnqd/12r7acQTxNPem5DLTxvrJKOvpfr0hhY5HRKQRHO9hlG4mJk9uRDDtjqp+3vi6QxM6MnJ7/iE15kJiClbQf+/1Nz/Gwz0G44eFM3Bvzcp4/fXn1Cad4uIyUePl2Uj76wvE7dwNZGXj1Y/HwdbPL1/jSA1ecJ/eWPp4fzWncASeO3eRWUYCCPwI8q8WW1sbQ1XlJzbumFQatumj9gxmfMne1NQ/lFlHwkgpEy6Gb9jSXC8llyb7E0mXsYXE0+4pKXhfteoPa5eABoDWfof0+rQEtAS0BP4BCYiZds38n7Ft1R+4yFy5Ury8PKmhe1YFdaSmpqpMGJkZmQR6DiqQQ0y1EmwgKdmk2Nvb4OWXn6Xv3zAj+JN2oSKR0rx5I/Ts2RlLl67G/fc/rdrko2HDuirV2dmzF1C6dElj+61Utkbkm3odbPNBqvkcJ+IYvOCYAz+XwuZR876G/UvJ9lh1zo1+cyrOAgIr7Yhwvtlsg+QN32Hc7HE3Df4OH05gYMlawynU96xZF/Dmm9UKtBl2cuOA19qEwd65HwHVfrw85kfcO2UMUjOz8cvB41gzJxxrf0hhd4LQcr0x769hWE7AuHrbXsRRg5hFjWnZQf0wZXA3w5Tw9vZSm7HhauXDD99Q9/Dnn2cwCGasMuEbfC8NfUe/1IsmYF9yL8YSXNrhlc/noG/1huhLbkFLJZE5infRf/DguQOWDus2K5SABoBWeFP0krQEtAS0BG5UAqKhWTRzLLYT2Dk4OmHgUx8oLj7z8Uf3bsIfP32kNEGSkiyDQG/y5G+MlCdXrkQTAH6thgntyOzZv+Lrr3+k2XaNcSoxE4aFHTfSsRgO9OvXU2mgHn98iAKG4icoRdKvTZnyDdq3b2XoavxecSYc367ejP1bdyE3IwOO9KXzKV0Kox4dhG4VSxv7mVaSM22w45IrXmwQY9pcoL7hoiserxVfoM3SThbx4bwTnsjOZeAG/QYHVU2Am8M1UPnN1n1IGPsYHDp0wIM1Qi1NUWybi4sdSpZ0Js1MOrkLPVCzpif9HStZHJPIe/HszxvVsezMg0TSjZB6+jR8KjcHCMxVya1M570u8CX+mvH9C2haNgDtygUDbRpZnLO4RtEkZmU5kjPxKWpa2+O998IIAkWnl4ZHHolW90wocVq1oJmZWsYVK9Zh+ewJ5HLcrQJR8n0+KSsRF18SXNzc4e0frPwNG5SuWNyp9TErkoAGgFZ0M/RStAS0BLQEblQC8hA+zKhOce6PDD+rzHyR4ZewY+38QgBQIkD3bFqspt60aaEKIBgzZgKefvo1ctKVUkTL4jOWQSAmRfz6mjZtwNRmP2DsmjR4R6xAQvRlXLgQQX6+YaqP6YeYfJ98Mt+UKe1Ll85CCk2BNWtWK6ApDE9KhReDQdadj8SD3e4Fnc5gFxgIO0cHpOfmIW7jZtz/22y0evV5zHv6fthLEl6T4u6Yh8o+GTgW64gqvpkmRwhdsm2wm4EgWQR0xZXEDFucTXTAugtueKB6PHyccgXDFCpjfpoO+Pri6MSPCh27kYaQEHeC5a430hXVXvgAqQsWwpmA69FXnsHE51+HrZcX6j31GEqGhuCeaiGoQZ/LMh5ucHX8e4/tjIwchIQsMVtXvgD++KM9wXogs4o8T0qcDVi8eBtl87vqe3DHKkh+5Vq1qhPsS38bRiknkTtR3BbjcerUWRzewbzLq5JQ12x2vWudEvh7vyTrvCa9Ki0BLQEtgTtOAhdPhynqDyH+jScYG/f2/bh84ZTSsvn5+SIyMoqUHhUw4Mn3Cl37F6/dg4un882+Qp589OgJpQGsUK0BDh4OYz7bFOMYe2riJK2ZoQxp6o75Jx7BS3XiDE3X/Q4JKYfLUXFYvfcy3DMjFHHxK9/sxoWNIfljyy0DG4FGjXBx3o8qmlYOxKano82I0dg46nOUWrAUv3//BdqWp5bLpHQLScYfxz1xOt5R+QAmZtriUooDgVwO6geloUWpqxozkzG7LjvjeJyTapEo4YYl0jCsTmyxUcKuvj5IYjCK0LgUVS5cSKUGdR1iYvLBaFRUb5rJC4LWosYa2iXKOHXLVhCVwb9KJUx8+S2lVVv8xyRyCwYauhm/d+6MpWb2OJ55JpSAzN/YfqMVR0fL65s5swm5FYOM02zaNIX1jRIbpMr777/GCPCn8nf4+eqr+7Fnzxm1Hxvbxwj04+n7+Uet1sZ+umK9EtAA0HrvjV6ZloCWgJaAyqKxhdkzNiyZrqTRrNNAJJDOQ8DfF1+8r/y3Xn99JOo274rH3vgmP1CDANHTJ0Dl1ZVBbXo+TA3gEqZvO05+uYOoVKMRHhsxnibhkTgdtotBCo/j3nv7MECBmSRoHjaUTJpJZ4R547FaNw7+DGM7dRyAaNeqCKreEi7UWsXmBMEptAyyo+ORc46asWqX0aBjWyP4k3G+JJg++PX7GN2/Jz579R3c06IbAgf0x+4vRsDdBIgNqJyI89Ti2drk0WybCx/nXMNpi/wWnVU/jnOyu4poLPS8lJyKlczg4ZyXg8gVqyXUGdsirjDgpITqHZNmh3M874UrOdixPwUTXmKfq1QsnToFkTfPDhE8finZAVGpdsiiWbWsRxYyqJ10Z8BK7YB0uNLMfCAqFiNmzseejduRceRofgTwxYu4SGoYt1o1MO6D4YXAX1ZWLqpXX47oaIOW1gujRx8nkM+lub4J/TkdLFxR4Sbx6zx8uAsOHEhAxYpu5GDkNbA0aeJXoPNCgr8vWrfEfff1VqTbCQlOGDfuBDW9IYzOtqOPZ1ll4pZvmdNQnK5S2Bj29bf1SkADQOu9N3plWgJaAnepBM4c2YMF07+Eo6MLDmxfaZRCfwKjuXPnKH42aZw7dxHNtD/xwfwTNXyHsXb+L4rGJSszAy6u7uRy+xq1m3ZCy673qU3GiM9gJsmdV8+fhN0bFuPZZx/BRx+NkEOFygdbAtG7YhLNttcHWOaDD+5fTQ3VLITNc8YTT1TAQ99WR5abI/q+sx+JC3YB585iz29z8FiQPz7q3halPFyNU7zRqgGGrvsTj06eg41jvkGZ9Rvw2oQxeLt5XWOfsp5Zxrp5ZfU5mqqnz0d2UjLqNqiLvrUbISEjBIejnaglTDfvjkUnL+DZLyYgcdUagmYP5KYnwKnlQLS89wmcTyqPmUfyg0N8nHOQGxOHxwdthGOpQDR8ojWOHo5Hx46B3IKw/mIeSrlnoZpfBlqVzsaRGCesOe9GkJunQKAEmlT0zsKXq8Nw+mMGX5BsmfZU0O6KpeM+LAT6TBdqx6iUfv1KMeAmmpHUDRV469Rpk4oMdna2rNUzHW9aDw52gWyZmbnM6BKEKlU8GCxSEEC2jDuBllcHJSRkUlmbbzYODXVDjx7BaNDAB5UquTMifBtdBrz4MlJb9TZoDE3Pp+vWKQHNA2iF90XzAF67KZoH8Jos7tba3cYD+Mvnz2PnugUFiH4XLZqB+vVrK168kSPH0EfrB/VzWL/+L/rZVSVfX2+VL1caS5YMYmTnCFKwTCAX3Gl8OGk9rkScQdjuDUhNilNkwCcObFVRvpI27XuaWYVfzlJJp+ZqJ/3qTtLc2r9SIjxvEgjWqzcLZ886q6ldaoRg/OQW6FEhATsuX8Hiwyfw6/dTkbJjJwNb3VF36KN4tlcHaunKqYASw3oWnDiHR4YMQ15sLGxKloQjI1sDggLhz+u0oYbunpaMTK1cAdMPncDyjTtwmRq1yF274ehRiSTWcci5fJpgrQFyHdPhUcoLpenDVp/p1x6oVYmkzQHqNP69H0POgQOo9dovaFe3EuIz8tCyFDCgimsh/0DxoZs06QxlZkutaZkiNW8ChL7c5YfXGsUYLsX4LZQvE/YeweHIaGx8+0NQ9YrIJdMYCGOdOpkcprv74oujSEvLxYgRVZUGUC5m8uQzjCber64rLq4vaQzz0K31Igw8/IrxWq9WNA+guUSsYF8DQCu4CeZL0ADwmkQ0ALwmi7u1drcBwK/fHIxj++kTZlIkmtbJyYkam0wYcsYKSfNff00jp94jWLdus+rt7++HDz8crtKJ/fjjr6qvmOckYERAnhArOzs7UYPTES+++JQKADE5TYFqOv3xYqjtKlWqpAqwWHHWHSlZtqRHycO9VRILASPTwRIp/Pbbn+D48VOYP38upk6NpKapBKo2LEGuO3dFt9I3NFGZQ389fBIjx09B9PKVjORIg03p0qjQoR3u6dUJbzWtrcDgdNKgvDtuEhxJgpwYE4N08tsxyiQ/QpZjlBZNEJcrAZu/P7wadME9/V9BvUAX+gamYvHRFVjx5xLm6D2J3KiofP9D8tp5dX0duTStij9imR6d8GbLmuhZMdn0Um66LpQyG8NdcYVZSdqXSUZ1/3z/QNOJJOvJ4JmLsPKtD2BXtSrm//KV0cxs2u9W69m8JAmGcaHm8d8sAgzXrbuCevV8GC/jyN9bFlo3mI/nounHWLBoAFhQHlaxpwGgVdyGgovQAPCaPDQAvCaLu7V2twHAHGZXEOLk2KgIePuVUDl1jzIPb1JCDGKZ0istNYkmu1CmTJvE3LylVKqwiIhLipj5o4++YqRuuAJNASXLquhg+d2IlrB8+bL0D7RTmsU0AqmDB48ogPfuu6/gqaceKuDHVYcAKsMjBI7lmiCLPHTZh+fRzy5H5ecVIOrr60XzX0X6j9VD27bNqcBzN/48z527wCCSTmp/+PBrJMbGDqwIncuSMx7IuRqxKy5kbUrF4dvt2zH5p1+Rvo9apaQk2DDjhVPZMnDw80dJZhtpTXqUWoF+uL96iIoQFiA1cst+RPN6+lNz2MYkBZv4CIrJtaRbNiRwxLScT0zG01PnMaVdOEFSAv3c7sFLTeujhLuDabci6zkEWH+ezKeQkU6mZk9f8g+2I/BztCtyOCbtP4bhfR+Ae+tWOPjDZ8bUb0WPuPEjVMLRZO2FZsGpytx84yP/mZ5p0TGYUamp+WQaAJpLxAr2NQC0gptgvgQNAK9JRAPAa7K4W2t3GwA8c2wf/poyGscPbCOwINIwKYb8r0KsLKBl8+YdzM+7nObcbNXLJ6AkmrTvj4P0Gww/e8xkZPHVqKgjBIf55sf4dFs0f3ERZn7UD7X800ElD/487oHz4VcIPlPgkBmHtKiziDq8FieOHkN4+GWVk1Y0jBJEIuD05Mkz2L17P4YOHYL33x9e/Ml5VIJNvtnjh+frxxqDNF5YvhkLV6xD+lEGOtD8KyZgFTkss5F7xLdlc7z67GN4rE7lAoEkhpN9ut1fZQOpFZAfNGFoN/3eF+mIA9Gu1EjmwZ6azWD3bAS6Mvcxr1n8HoXt5EKSA4M2nOAswSPc5/+KN7BbhWSUILi8lRKZkopqHQfBlmD64qpZFtd/M/OKxm87+RFPx0tgDNC2bAp9Ea+/tsjIdOVTKD6M3t6W3QCut44rV9L5ErKSqeRyGJkcgj4d3XGgXxfzYRoAmkvECvY1ALSCm2C+BA0Ar0lEA8Brsrhba3cSABRT7JXwM5j8xYv8PoUMmlkdCJwyyb8XVLoCgzv8cPzgDnWrJatGdHSsMqMWde/dPLwQWqMJSodUw/mTh+DJnL6bl/2msj+IVk8AWRIDIdau3cR5xG/NgVrDYDr011U+hWLelRRhkr/XUAT8VOvyBo6tGG1oMn7LsWhGwop581C0s1Hz5Wyfi5I2lxC2bQ2O7N+rzvHMM48aQaVxgiIqkSl2+HxnAMa0uVysaflMfBLmHz+LmYvX4OT8BWAeMziSqHnbtyNRwfvaNRhO89dJD/hRcylp465X5NouEuydSbCnVpDWZfo/CjlyCbcscg+Sr7CYOAvRAIYx4COSchFS6fIMUJFAkOLKpN2HMbzPEFR6aAi2jHq1EOdhcWNNj8n5vtzph8Eksq7glVWs/EzHHT+ehJb9D8KBwSx1Kzrgh09DUNqTSJxF/BzXrYtSvn7r1+d/P/B0dWyKcEM5XptQ6RjodjZvjkbv3lvo/5f/suKGZHyAD01PJXUNAM0lYgX7GgBawU0wX4IGgNckogHgNVncrbXbHQAK6IuPuYxDu9Zhzvfv06SaDwxEmyfHDA9Oub8eXuSeS4gz3mp7B0dUb9AGrbs/gNTkRPgGBhMoVsSRPRsYHbwah3ZQ85JWGNxUqsSAi/GfEejVM85lqEjk56hRYahWzZYP7spUpuVr/gzHhey5RYseOH9+r6Hput9Cj3KKgSICgJLJyyekzAPpJ1hUrl5LE+6JdFYg6oHqCZYOF2rLJuB4Zt5KzHmBGsbKlRHSrjV2vvtcgQASGSSp447HOqFOIDVVpGERc3NxZSMziQjAFX9HSTdXxTcDNfx5z3ivxKx7OcUel3m8OgGegVLmM2obQ7wy0bp0CpzodyfXfSN0gB3GTcWe0V8ywwc1d/RddK8YgorNGqNZg9p4pFYoKvl4GZeaJHyH9C88T5Aam06uRnIZuvJcvx72RuOSqTR/F/4dGAdbqMyfH47np+ahTNQJnIi0QbmmFRAVnYnyaRHo1DEAX355nCZ/e6Sm58K1YXV88WUddApJwxVev/g1GuTYosVaEl5fu2fl/LO0D6AFeVtjkwaAVnhXNAC8dlM0ALwmi7u1djsDwOSEWPzw0eM4Gban0O0Tk6u9gxOqN2yLtuTpK1e5DjWCKbh07jgcnVzg5unD9FoliA2c1NhL508g8uIp/DDqqQJz/fjjlypQo0aNKqQGaazMsdJBNHtHjmwu0FfIokeOnIiZM2sb2x0doxhIchIDB/ZUY5966lV8+uk7pPe4x9jnZisSPTz5kA/alU1W2jMxS95I2XHJBUcI1hwJvDyYz7c7ffeKGyskynU+/QHxjPpN37kL9qGh6P/i03izYzOU8/JgTEkOlYTpzD/siv3RLooGRpbiS62gmEmvFyQhWsFjXM8h0se4UMuZlGmnTMQlaV7de8UZJWgu7lAuRWlCZf9MggOBo53yv6tEreH1ioD/H/cfx8pDx3Bw03bEhR1BdkQEaE+VRM146ZvP8Hb75phxxFvxHZb3zGRO4ix4UzYbw92opbRF9wpJxWonLa1h/QVXnE0gkTbJsyNX7cVbbx1S3Zyrlic1TTZeGuBGIE0tH4mmf/nlDNq0CaBfpy/316h+v//eFK3al8R3e/1QJu0SMpmTuHlzf2qbs1CldC5mVtY+gJbkbm1tGgBa2x3hejQAvHZTNAC8Jou7tXa7AkDR7r39cFPEkZRZSqkKVZGekoiS5aqg84BhqEgyZluzVGeW7nFc9CVM/fIVRgZvsXQYmzYtIg9bFXVs5MgvSRHzvapv2LCAabuqqfrEiZMxceJUleqtY8fW6Np1KB566LBxvmbNIvnwXoT4+ETy7c2DrW8IQshXZzDzGTveREWCa3cS0ImpuGO5ZDXfTQynOdYeC0554qnasTcEcF5Ytgm/vjUSDIFG8FsjcHj443jnnYPUhJ5Sp121qo3irpMdMTmvveDO1Gp/7xpnHfWk6TWxwGXxtmM1uf/EnCzXXdrj+r54phOkZtngl4PA2FnLkHnqFAIbNcHS5xsi0I0T/0PlLIFqeZqLDeXChRQMGbIDZ86lIZfBPf3uD0Gbln7ozPUbqH927IhFly4b1JAXX6yEDz6ooXwlF592V/6GBn5FHQRikKr1fxfU/Vv/evUKtQS0BLQEbgsJXDh1yAj+WnQdjEFPf6hSud3M4iUS+N3HWiIvNweff/4+qlYNZRqwH6kVtEft2tWpdWnE7BCVjVO+996rivpl2bI11AqWUO2zZv2Jb76ZhN9//0mNMXSOi6vE9HHp5CBej86d2xVI85WRk4iph7z/FgB0sAW61yyNZrHk5yP1y1YGKUipF5BmkRrFsC7DtwCn/pUS8As1iWKGbUyTpxAqF1UaMlvHr1euwLF/P7zdvZ3qNmhQGQUAhfTYNAVakFsOBlVJwI8HfBDqTf9L7t9KSaZGUFLRedLkayhiGu1IraAEZqzkdWfnZhQAW4Z+RX3/fsyLpmYbLHqjB56a8QeOzZ2Mqj8/hw7DX8Ln93a36OtomCsuLhMnTiTT9O9DE23RaldT8Cdjy5Rxw4YN7RSPX0pKNtMLOiA1K4mmfN7Eq6VxY19cudJbpb0rUcJZtYp2Vs4S4HJzINcwp/7+byWgNYD/rfwtnl1rAK+JRWsAr8nibq3drhpAoXM5tm8zQphv15lZOW6lHOX4cW/dr4Z6eXkiISFf2ySgb/PmxdedUvz5WrXqxSCQeQwIKXfd/qYdJIvF1nP2cGJEBPEImpNWxI8PejemMvs7JYWWUSYEuaki0a37rrjQvGqjtHZty6YWGr/+/CX0bd4Nj/w4DmO7tyl03FJDBH3qNpGzT3gNb6WIyVqAXvNSabcy3OIY0SBmkh5nH03K4ve3+cJR/DR1IlKWLQVJHPHwxLH4umNTi2Pff/8wwf4JRoiXJS1QfXI97sW0aefQsqU/5sxtAWfHokGhxQlvoFHM5GLu70BzvwBLrQG8AaFZSRetAbSSG6GXoSWgJXBnScDOjs7yDOD4O8WdfoCGYgB/si8ZF0aP/hY7d+7lw74fJEWcoYhf2f79hzFv3mJMn/4Hff5eV+BPTLJRDF6QYA3hiLtekELy6Ut4tfMGNa29swO+ntcDbv7u9DuzU1ofg4JJAAv/V35wEjQhRQIupPiTE09858TXztD/ZsGfzCPmaNmkTGPQA2N0pVqgJJGvUOhhZkybfcMAUDRXAnSvMG9voOvNaQEFnG0nALyvWkKBdfzdHZGTBJc0KZkPKmv5l0eg+/fY0X0d5j8zBAGu+do3S+eRPL0Ld+chsmxF/EYuwLQq1eHW1BN7yLPz6x76lXo5Xb13eeo3EEQfxug0e0V/U5yvpeFc3j7MksIUcYZy4EA8A1Ls4ePtqUze5ppFQz/9bZ0S0ADQOu+LXpWWgJbAXS6BjUtmYM6PHyhTnvD+SYo34f2LiYnF0aMn8Nln+Q/ihIQkIwDctWufygwiASCVmvXAc1N3wyHAk5GiQDYpTYKF0oTmVNHoXa/Uq+dt7JKdzsjO7vON+2IOXLq0lQoUMDayItowgYCbGEkrIOYMAw2EpiQ+w07tC1gUgCNEyqEMkjCAHNM5rlcXzj5L5a0Fq0AbJbLOnkPZIS/grdeewdP1qlrqamzbHemi1hBAoHqzZTZNtY/XilPZTG527M30j0yNwthxLyPxRAb8nvkDjzGFnaUi0c4n470wdbI3qjJC2cGWBNfVnJA3LETlC46NjUZoaL4mOpuXuymCgTHUMno45OKP3XZ4ukUGiPOLLabgr2evTdifG4xcAu8ds91QyucGflTFzq4P/r8loAHg/1vi+nxaAloCWgLFSCAzIx3fvvMATh7eyYwb3szB+oGK6HVycsSrrz6NQ4eO4vTpc6TpmKhmWbDgV+Ns8UyRJvQyzz77OB3578O8454EAjmkJsn31UrPscUWRo9uukjmEVKaNCphOVvEV18dx3ffnWAEaCOakP2xZMkl/PHHRUUaLCe7ciXDqNEznpwVg1ZRyJcXkIOvim8mGhFwStStQQMomkh7YgXDvun4G6mHeluOrh3bvwueO3cOMcwznLR2Hd51ccXTkz4rdkohT36hfswtrUWIo4X2Rrj3/o0iEc7tx0zC4Yk/qRR3LegD2JqBQyXcC5qrDaD6RJwT+jC9nhBYmxbxBZwy5Rw++ihMNbu62vFFoj3als/vZTATZzDH7xtvFA+YDfNKgNOWnQnw6lIDmZeiUaf+GsydUot0MIlwzkk2dNPfVi4BDQCt/Abp5WkJaAncPRJIT0vBmj8nKfAnVx0bG4/HH3/JogBatmyCRx4ZrPL7Gjp07NiGIG0hunUbTJB4lubfN9Qh0bgVR2RsGG/4Xrv2CrVGWXjssZ2qKS6uL6OGyxsOX/dbTL+P1Yon/54jdpPfL4ZmRskoIqTMncsn3xLgMpy0KK1hh3LBeOnRwRjx9GvKV64Vya6LKxIJbE9toiUgOnfuRQbF7EOTJr6kzGlaIIDEMOdDNeIZpexBQO1KHr40lSpPru8or1mutyjyafFjFGAeQJOz+M0JEDcvy05dwJChryD3+HGEPv4UhvZ/mZlIXGBPrarpesX/TjSR8i3mbNNgFNM5n35aeCFP8veUgNTUXcwhncmAIl8VTFSBGU3atbNhMJCv6ZBi6wIq169syUwvu3DifAZcalfCjz+e5ovCZfg6peHNYkfrg9YiAQ0AreVO6HUUkoCBILe4aLZCg3SDlsBtJoHsrEyaekdi28rZyGJdtCumxdXVhQ99yUohpNH5xNGS0/c1mjjbtGlu2lXVJdPHmjWLULfuE3jwwSQcty0J0fyl0xRryx6OBBF9qSkqChBGR2cw4xr96UzKjBnnSBNSzqTlxqqVqQGsQI2dRARLuZBoj+lh3gp4yfnlUoXXrn5Q2nU5+fJnKP7zRGyiyiHs3bE95j01uNjO4vMnZuip9ClswPPXFLLnq+XYsSQlg9Wrr2Dbthi0bh1gOGT8FiDWJzRJpbGTABXhABR/OvGDFOLoLJpZLYE7CaJ5sEaCIpT+43g+eHPgPRFTbCJzJM8gp+GOSRNh71wK/X+ejjblA9CrYhJlJmZd4+lVRfz2JAPI9YoQOp861R2TJ8/CK68sIIXLgkJD1q4VRaMLAWIaeQFfwvDhzxbqY9pQq5YXlq5qhw/mATW8knFf+/LMT30BS+ccZV460566bq0S0FHAVnhndBRw/k0RAPjsrqlo5h+Kh0JaWeGd0kv6f0jgdo0Cvp5sIkj4vH7RNJW3VzKFDBjQmwktKqJHj07M7ZuF8uXLko4j32eruLnEPPvaa/tx6VI6qV6aYjlz6M6ceQzpmTXgM6AjMk5exMNNMpn9o6by2ZNMFououZKctyEEZ8HuWQp8GMDKqVPJJP1dVeiUogW8lbKOpMPhyQ6MtE0oBGAEAJ5LdFDBFNmMfG1PcmYhWb7VIn8zWo6dgiNjxsKlZQss/e5j1Anyu+50QnkjwSqiyTMEMggdigDhoCDn647/ux3ET1IyqLT9eAzCZ85DQJ/78N2LzzNQIxfujhTS3yhnz6agXr2Vaob169vSh/QQ9u49qNwIVq5cT3N+tDo24In3cHDHKsU3KTRDly4dUu4ERZ1aSLY/XeuGwTWScGzPFeUqUKnSUuhUcEVJzPratQbQ+u6JXpGWgJbAHS6B9NRkfDSsk/EqJW2bRPPm0E5qxwiNm9F6R0SkKfAnkz3yyCxmvyjPWnWCvTwkLN4E5+oVMI0RoAEbXdC8sg157zIxtHYcEjNscZbgawf94BIybMj5ZsfUYrnMwOGO+QfuRxYB2RWaSffujVeBHRsY2FHLP52mzoI+ZnLe4kpbpiiTVHG/HBSqkBSldTP0Fy2aAC5FH8LsIZtpTl17wY3BJDZKK6dSsBk638C3EGtvevkRPBNSBr+/Mwpt2/TBT/OnYUDVkGJHP1wzntcLLDvjwUAKR8XjJynyzNPkFTvJ3zgoATMOTlm4+Mdc2LdqgmNjn+FsNx+YYmkJcg116niT5DsLTk52NPe2VJuh7/33P82AntXYtnoOug5+HiXKhKoXE8kqM2hQH/VCIkFIonUW/1LZpIwceRiT1+ZgCvPjJR08jRH0Ifzkk5r4a+YR4JBhdv1tzRLQGkArvDuWNICjXn8DKaQ4kPL33gf/zgUXPLOZpervTFzk2FxebTP/StQAtiyyjz5wZ0vgTtEA5ubkYP+2FTh7fD+2r5qDhLh8zYvcPT+/IGpm6LvGMmBAafz0U0NVv5GPzMxMPProyzRV7qWWbwQf1PWwfXusmqdpUz9I7t9sCc9lvtlL1P5J5GsGwdaZLafgnxWPBx4oB0/P/PBP8RUUehNJMfbJR4cx40c+zK8We39Gl7atiMeeqwEPFxI6B6ahHM23hsAPQ7+ivuXvhaQgE21gDiOS25VJRhlPy9o+6bvzsouirBHtWD3J43uVWqao+c3be05fgM0vvY5yw1/BvjeepGkzW/k1Bgc7E6gcgb+/E556qmKBYWK2/ZlA9em6cQXa/1871d4YjcvTpsO/dw+s+eJdyscNJ+McUZGgXcCy3EYB05dSmMmDaeGiaHIWWYkmlw9zFajz9tsH6TdaAW++WU0tWzKLLCWwFTlyCmMRDkTxHazsHo/Ta6dhyo+TmP/5Irx9A1G7WRfs2bQYkspQiryQyPltbGyZbrA8+vbtxlZ3LNllgxqMMj992oP8g83oV+ipeQCVxG6PD60BvD3uE4Kcyenk4lHkak3/YRfVqeA/fwu9zCYx27UwQJoK9iq4V8QQs+ZC6zKZxI5/cDqWqGE2Qu9qCdx+Ehj9Ui+cP3VYOd7XrFkNr333kfLrE61VRIQvzbjn1EW1bx94wxe3atV6PP306+jYsRUzQGyi1i/fSWzgwDLGOSQDhpgBe/ZcSW1OSfIH1qavYS5CnwyHQwl/vP/VJjSr7oCpUxvDx8cR3tTweSMXnZq7Y+0iF64tTc2VHR2PQ3/sRtXHXFG9agCDHZyosXODu0OO8icUfzTJitGVQR5+FmhVBEAYCJwFCO6LciHASTKu07QifcUcK5uU1efcFDFy3ZsAgfvn0s+tShUsffYBNUebNutx8mTB81Wv7knT5TX/PjGDy3UcjHKCRDL/v8vhT4fj0TrVsWDE+6h/KRJhsyZi2yUvlRbvIoGz+BdKRHUpZkkRAmsJJBEQN3aaDeb/sA/pR8+qJX/+xXHU7l0L0QRpotU9MHsXvvsqPwpYXjB++KEBM6z4Khqb2HQ7ODo/hTfaP4PDW1dj6qgXsWHxr8ZLf27kVIi7QnZmBl8m0nFox2pGpo9Xv13pZFD2de/ujZUr52DLirXGsbpi3RLQGkArvD+WNIBuv+2BjZefFa5WL0lL4N+VwJ2gARz1TCeEnz1O6pYPGVl7v0WBiYaKLmxwd7/+e/mZM+fw5HMf4sLlWEyd8D6jVetZnNPQuHVrDLp332jYVd8zZjTG2+8dQaRLIOz9fZAdFYt+dcVMaI9nnqlIH0Q3Bf48Pe0ZaWxPreRpBAY6wRRcykTpVOKJRi+Xmx2pUcSEm0DePynEUiqNW3Xy0pmncVt6xl0RRTdiircbKbOOeik/va6MWhWTaVFla/gV3PPpeGTMnQefhx7E6dGvq64+PvMLDBk4sDTGjKlj1H4aDhq0j/ujnFWwjICs/3eZtOsQhg98FHZVKmPKd9/jUEwFxd34dN1Ymuj5IzEr06efwyufXIBTxdLIoxrXzsMVcz8tgYa0fEvwUIsW63DkSIIaVbeuD1atao3Jh33xSM24Qhrco0cT8d7oI7h4bD7H/AE3kpG36nY/ylSsiYrVG8KLGkIpMm92VgauhJ/FqGe7SotqFzvVB6pW4CPwtby8qAIteuc/l4AGgP/5LSi8AEsAcFxAMPwr1cajw8fB0enfd0ouvCrdoiXw30jgdgeAsVfC8fYjzZlvty21bN8xm5dTAUHGxmagQ4e11NKlE3zZUovSGrVqeRfoY77z/PNv4mSiK1764FNmYnBQj14BWzXoo1eVvHtSF9OsaNIMRbR+n356FGPHHjc04cyZ7jT7pTKaeB0cSgfBsXQAbB0dOR//y8iCjRNNw1Qxpe47jpgLnY3jbrQiJssTNGHup7ZPgNUgRqyKhk2KHJOsHuLnVxS1S37Pa5+x6baYddQbj9QomoC59LtjkfLTzyj15FAseW0oo4zd1QSbN0dT+3mUkbCNlKbT1rCQa9MXqMn6xA9Sspj8nfL007sZnHMB335bT5nbb3SuqXvD8FLfB1GyVw8c/Gakkpvp/TTMI0CsfPklzAGdZWhS32vDBmJPtJtafy77RIQzlzLzEgeU8+HvI09l/2hVOrXAGJnrs8+OMu/0Mbbn0AdyEyOD9yCKOaml2FDD/N2CU0ZNs2rkh7g3HNm7EbbMflPGvwTwVAfDIcO3BoAGSVjR9/VfNa1osXfzUuL4D/Bi9CVkpKdoAHg3/xD0tVu9BITI2c6e+XP5MJTiTs29+FAFBPgpZ/uwsGOIjo6h39R5cvZtM5rSgAeQkVGHxzIU3YsAFKF9kdyuP/xwGpMmNaQmx59tuShdOhhbZv+FLhWuPcAFsIQxrdnCU54KEKbR90sAg7dTjqI4KeORhXffraa0exI5fOJEMh/u9qhd2xvff9+ApuTdaF0lj9xuIaR84bq4/pbNvLFxaxzcGt+aG4aA0Gp+mWozv3FyTLgCJfBj/gkP9K2UZN6l0L4vzdMPVY/D7+S+u49g0lyrKAPcCVJSPDxwaORLBcaL7BYsaFmgrbgdWZ/wBP7dIuBPyvPP78U77xzCxIn1ydNYsshpz1+Niq5bqj5qv/45js36Cz2/X4pxg3oJAkMMTbYpWbZKI1ia97Skm/iAlsesWRc4f1Wk5pCKhkEv51Kc8CiDW4ygsbqckheFhCLPLVrefPAnXXielDZ8YTls7J/H396HT7VDqfLVEFqjsdIIlglldDkDQ2o0bKv65SXEIMU4QlesWQJaA2iFd8eSBjB5zFwEMan8zUQHWuGl6SVpCdy0BG4nDeCWFbMxfdzr9PNzxCuf/0FfuwxcvngSM8aNKPa6BewJgXN4uDfuvXer6hsQYE8wmK00Z4bBZcv+SmqS8yhbVsyXH6BBgzqGQ0V+x1NrdjjGWfmR7d2fgF9/Oo53B9gT8FUsMEZoT0RL6O3tWKBdIpP/Ou6GIE+gRalrgLNAp7+xI8EJQowsRNGSxaJnSNI10HIL876/cTe+ufcR2IaEoPGgflj6wsO3MMs/N0S0aq1arcXhw4lqUjGt793bqcgTCJDnEOVjmZCUhWenTEfk6q1wrl8HwzoPwKlNUXj4/tIIqegB8QsUsm0PxxxueTjN1HuXk+2UpjXUp6BG8Mknd2HZskj06RNMDbMXevcOZoaZa9akjIwc8vhdVBlgatb0YlBSJtatE6ttNLfd3Py5xZJSJora6nMMqInlPuDi6obaTbug+/0vIjC4PBQAvK++OmbyoTWAJsKwlqoGgNZyJ0zWYQkAzqzVFA++9xNc3PhXWBctgbtIArcLABTH+d/Gv2O8M6IlCT97xLgvGkDh9hOuv/xCQmZGU7Zo0cSYzWPZssukg9lmHOMzsCOyYxIUl1/WlRiM+9yf5M6NjcdvtpKQkIXq95xExpkIRJ/pcFPD9zFvrARHCIGzWE9LMK9w8+BUEkvf1DTFdpaI122XXBQQlIwhxfn6FTWRaEifm78aC36bi5RNmxH6zFPY+e5zRXX/v7aLf52fnxO1wQXdACwt4ty5FJJ5rzQesgkcD48m3yEv1QM2UdE4t7628ZhEbieQ1qcUORRFfhIoImn4TIuPz1/cJbK8Wlq08MOiRa3UXhKBZvnyi5UPqjSsX99Wgb/337+m/VMd+SEazGHD9rCWxZcIe6YmXIFduzZSe52JNj0fRt/+TyHrkWaG7oZvDQANkrCib20CtqKbUdxSjh/chkUzvsbAJ98rrps+piWgJfAfScDNw4fuGS7IzEhTKzAFf1WrVsLWrUuuu7KuXUuQvqOqMsM5O29Fuzodkb7tIlYRdHm0bUB/vZjrzlFcBy8vB7zazwmrrjTGzaaHkwhcQxSuaKguJDlgrmSy4AklL66kfxMzs2S1CCLJtCszXtxskcwcsp1lVo0/T3gqP8FuDPrwIUdeSkqqIsZOT88g2MiAl5enxeklEnpCv05qa/nJRBwe/z2+69oWzzWqqfoLQBSw4uJyTftlcaK/2XiAYPlgtLMyuoqMeAup2fQijwu9667kISU9F55udiS/TiYpd06hs5Ut68qsHZUxJ6MWapS3Q6JjA+ybMQ112j+Ee+tXLtBfAkMMwSGS1eSnA768FwX9JFu39sOGDdFo2dIP+9MD4NKsFH474onXh+9Xc3k3q4mUqESMGtMQIVXzlGuAAMMxY/J9Rn19HenC0EplRsk/uQNdB0B/yl6Mrv4S7703mv6VU3Fk3Z94rcDq9I61SkBrAK3wzljSAH7AdVZt1RMly1eBLwNCmnUcYIUr10vSEvjnJXC7aADlyqd+9Qq2rZqrnOHF0b5HDwK49EwS6vZGldb9VcDDjUpo2LDh5Krzw0cfjUBsqg3GrHbE+10ZKOJA9ZuFIqbahx/egd2748gD2MEY3SrZLJo1W42LF9No3nUgV1xzuFUIwh7yAQpEq0zAdaORuBZOq5rEbCn8dBcJCjMZOCHZRtLIJWhYqZynik+GApBFpaCzNLeYh/8Ic8Tnj3fB+RNHSGhcA8ePn6JMMxRB8TPPPEpQ6IbZ9Ic8fz6c5vEUJCWlMGghmtlM6sI3KBA/TP1dkBeaNaiNOlUq0p9yGv0zbWluP8Acv46WTvu32tLJsSj5eX2dsyERy+JLaF769NmkwFj79kGYO7eQtkxp8yTHsIDhcuT7C6MJ/1isHd6YOAMZ58OwZtJL9Kt0NZ9W7Qs4PxztSJoYt+vyGYp5+ssvj+MTBgd99U0DavAqKCD5/T5fvN00Clu2RJMrcTdllf9SM316Y8o9WPFKLl58SYHBwYPLKqJpObncm3s6DcTLiUnma9MaQHOJWMG+1gBawU240SXs3rgIkI0lMz0VoTWbwNuvBFzdPbVv4I0KUffTEvgHJJBFPrQZ37yJM8f2oHW3B9Ch3xMqmKNcpTrYvWERgU8ugdYv9P269nCff8JRpV+7UVqRffsOM2DjUbVaX9c8PNc2Gx8utMfyZZdwYcdpvDLYC6++WoX+hvkIQx7mBw4wx+zldPTrt1VRfchg4QEUQug//rioskF07LjeKAGJiD1TtRoqeGUqDZ7xwE1WBOQEueWozdJQASUSoPIHff2ySReTQ5DYs2IiQZLoxoouYgLe+sMruHDyKJoRWBzZvQ6VardEYOmKWLFoKk2YK9Rge3sHuHp48lqdGYDjSOqSACxeupba2HSqJ/mY47Z790Hs3Lhd3afs7ByCxgWktfEjOG50Qyn3il7ltSPCybfmvJsiyS6OR9DDIx94rlkTeW0wa3v3xqHf/btRqkE5dHm6CXypVd100YvZSa4gLmk/vCtXQXxcDoavzUWPUB9FvSNBPhLoIWBbgLZ8iyZWsr0YimhUN0e4Ki2k9BFtYcdyyYwQBvknq6gtv2+WykbTwC8RP+1xhweJqD/6s4KilqnpGovKZfNN1/a84X36lFKb4RzyLSTREgCly+0hAa0BtML7ZEkD2HjxbyhVJQShoU0KrdjJ2QV1m3dTgLBR295wcrb8ZlhooG7QErgNJGCNGsCd6/7CL5+/oKQnL2Cf/7YX377zAPOo0mzLVFvff/8FwYV/AelKRgYxzQkVSgm3bHVMzLDCNyfRrMKVZyiizerS5V5GAM9TWhYBUB06BJLMeZPq4lIjBHa+Xvh4QB6DRsoo+hhDgJhEcgroe/jh8obpjN+TJ5+hWXG/cd+zbihGftsC1f3/vhbQOOkNVCTjxvQj3mhBH8LKZr5qMjw+PkFFTD/zzBtqtrKVauHNcYsKzCzUI+dPHkR8bKSKQHVwyAcnBTpxZ2n4fiwI34PmzCj0IDMKCS3PV68PQMyVCNVV5BYaWoFBEV0JuB+Br6+P+RTX3Rffxd2Rzjif5Ij2zHBSLyjdSHdjGCxaUcnEUsk7A24OubhwIZXncjLyPu7dn4huT52CA3MXZ5wJx4KfqqBpE198snU/vugxkDZkomwvL9pcfTHw4/F4sEZNLN8Qj6Vr4zD5eSemAMxRmjhn54JOmfIbG0+N3vP1YhVQlPUInc7MMG88xChhTxNeQYlYlmhwQ6lay4e/5YYoXcFT8TvaEWK2Ymo/MfdbKuPG/YAvPhiDDwof1BrAwjL5z1s0APzPb0HhBVgCgENObMMl8vP3atMWmXbu+PrLd+Hvyci+ixGkNljObZmaqFHbPnjs9W8KT6pbtARuUwlYIwBMS0nEwl+/QnpaMroOeg7LZ09gBoTfaV4cQ0DWp0hJy8N4/klPxS8noI67qBOQjtPMP5tMag8pwe5Z2LZgGvZuWoUVy7qqNvlo0yZAcb1Jbl4pDiX94VSpLCfJRW5yGsaOq4vG5XJVXl3VwezjgQd2YPHiCJQp40JNU2dEJtti5NYgfNvpMv32zDr/H3bl+r/bm5+NQvwFExISqb28onz9OnToX2AFr33xByrWaFSg7UZ2DsVdwA8n1zLCOAfv1+qHIBcCqKslMz0N8TGXsXfzMuxmBPbFM0fgRJPw1q2LVbCOod+FRHtsoDlVitwhLtsI7kKoOT1O8Ccgqjujl6VYMvlKWjvRwtUkT6NwIoqmUAJpFi26hPUbGGlLYQy+ryymfLQZTUMFkLqj07CmOJPiSpqXPXi8CwFg9eoI//NndQ5Xx3wtm5Bbu7driOS1u1S7ZDX5eVZrlfrNQGEjvzkB2eZci/JCsogp3ITrUDStkud5/6pTyuSrJrv6IbmpT5/urlwKZMw6En3HkYpG5CDX3yw4jfcshb/9qUyxNw6NG7ZF/x1rTKeQugaA5hKxgv38X5EVLEQvoXgJzD3mCd+SXoy42ojfyIjfo1qCGtCkSX1GitU0AsCajdoXP5E+qiWgJfC3JSDR+Pc+/YGa5/zJQwr8vfzy0wXAX2RkFE2071Mj2Jy5WR9QfcX/rX/lxELnr0kyZEM5Rx64z8ISENr+BYx6rj4u0aQbdSWT4C0cttQYuTVNJd2GO/O0ZsDh6BFkMddvk9ZBaFU2AyeTXLGVpj4DpYr49hm0jaVLO6tTXLiQRt/Cv9CpUxCeHtNR8fAZUrQZ1vD/+Baz5WO14hjs4QH7g9OoeRpe4LTlqPV78p0flc9zgQM3sCOBHr+c3oDdsWfIl2eLJ0LbFQB/MoUjLSeBpSqgy73D1LZt9VxM/fIVZJAKR4qktdvAlHXJWXa4n1pbWa9pES2m0K4MqpKgALRQ6Hw7/hSy3T3w8H3BjGTOo5+lM/ZctMOc7w/CMzocv/3WFNWqZhqniVhyEYs3hqF5r1BUreaJMXN6Ke5B+Z2U9klHNOdccTqaPj+Z+O27j2EAfoYJtm3rgK83uSCgZiiJpk/SlFtZRQA/WD2+0HoNYwzfTra5yNlzSIHadt2CcTDRE4dtS8GtSQZyEpJhd+ECKlXy4ObOLDIb8NxzlejLWoZAN9kwBY7EOGImn0ffv/AQDu3aiuoNWmPwsFHI2tHc2EdXrFcCGgBa770psLL+VRJhyzydy866q8Tgpgft7a+9vufkZJke0nUtAS2Bf1kCKYlx6gw//jgNp06dQdeu7TFhwmS+rB1V7ceOnTQCwBtZSvyZfQhb+B0mv9MT7iRRPhHnjPgMF7iW9EFZxyTkurmjBDkCXWk2dnGoAWe7/AjQZJpE9y8+jFpV3dG6tT8BjB197vKDEQRgfvxJbYwcWRPvv39IEUu7uzswAjUFop2aecTLuDRJ5ybZOUxBqfHgP1xxo+ZvcJU4+Le4Bv5G0NTrE1ASnt7+t3S2iymkyzm2AsnZ6Sjp4o2XqnSlhs7lunOJOdnJhTmKc2pjV1h+BpAWpVKK9GsUrakp1YpQ7Hz85Rm4t6oH30rkUyzpCYnITVizFwfm5/8W0tNzjCZfWZBE+comwS6OtskFQJto277cmYkFTz8J2oox58BxBpWULnAdVap4oHaaL4Y9bq/ubYGDRewcOpSg0vr17BlMk/ce1euBB6Ixffp5KhO8kRWWCIdGtZHCvMLTpzdhn93kMExS1C8eHvYqCMQwtYHku9TbT2HAgB24fP4EkhNjYdkYbxilv61FAtoEbC13wmQdlkzA9guPwMXfV6nxy3sVBnnlyzdQJhR7EtB+OfugzhZiIk9dvb0lYI0mYCF4PrZvCzavmIVjTIGVlppiUcjDhj2CUaPeLJQ6SzpL1Oyqc27MpWuLNmVSlF/Y7/ty8N33v2HQPe1RMqSq4nWrxOhZP/K6eZIk2cCLJ1G3wv0m+XcFPCSzfj46Fw8/GwY7NxdkxyWiS8VUTP6lEY/ZKCJo8VOTOa5HtCzmyR3kkhOalwHUVpprvixe6N9s3Lp1J7VM96tZJi45d8uzzb+wC8svHVSBEN2C66JX6XqF5srJycYJ0molJcSSxNhd5biV/LbvPdYSUZcvYOzqM7B3dlMm2nKeWQXIr8VsncYoXzGbinwO0H9TFIMiI9G6njmbhsMEUL++6Mi4E6rxWCTHs6TbE22amFNvpAj4E0tPVPJRjH73JZBnRQWybN66FNUDfIxTbItwVr+B5qXSjG0ShbyLoF7WJyWAlDwtSeBtyJoiROMrV0aSRNwHw4dXwaVL6YoY+vHHd+L116uoCOkXPo2AW2k/HJ0XwmCZCyqLScWKblixog2xqOXI6YMHw+ij+gAcqLUckVbo34M2ARvvkPVUtAbQeu5FsSsZSDODG9/6LZVp036n03f+P/ac7CydLs6SkHSblsBNSEAiaqMizuLQzjUqK0OtJh3gH1QGu9YvwPrF03D2+H6V/1S46Lp2aUNzahvm2f2Gjv3hfPDb0RTcFx98MFylfzOcVh7M8lAX5ymJ7nS2z0VUqj2eqx+ruhw9egJfPXAf53kXpRtXQNOScYp02TDe9FuwhY9ZBG1lX+Zr+LUsqlVbBofgAKxyL6kifwcMKK1eHMUHTPLyTg/zUlGgQtPiSN+v3ozGXb3yMoMuLqlctRERaQRjJeno78ygFR+0JTi1FKhhup6/U9+1ax+1S/nBHoOf+eiWpkrITMVXR5fiSnoiPO2d8WLVrgh2vQaUTCcd/95DzFu72bQJH05aD/+S5RUAtO9QAQ/EnVD3/WisE3497KXug4A+KRJ168AUcWJal3R0BQByNXbolm9qV535Ien2qlb1NOwW+y1m579oEs8hsBfwPfUgfxs0xSqG5ubN4S65mU2K/AZ2kc7nbKKj4nWU34Xy56NfaUvm+RXAGsnf2KSDPniydqwi7f7ii9r4668IkpCXYkYZV+Ns+/Z1NtZ79CiJHEZWOzK7yAMPlLuhHMa1alXH5s2L0ap+B+M8umLdEtAaQCu8P5Y0gBIE4kJOMEulVateytxUt1kXtO7xIKrVb2Wpm27TErgtJfD/1gBKcMDrQxogw0yL4eHlq7RGktFj4MA+uP/+fvTLr0wAcH2tjmj6hCOvHx/qEjCw85IzjjCFVznPbOWDVy1yNp5/9iuMG/ciKVxIYsyoTT+CROGSCyJJcIh3ppHo93o3UUyRo0cfxeTV2bAv6YesS9GYNqYiOrci+DQrEg264qwHFi+5jHXrryDjVDiywq+QJNkOERG9VLCC+BRKpLIAxdIe2WYz3Pqu+OkNG/a64vDzpgbusRHfoRKprW62bIw8hlnntjKgJg9N/CrioQotLWpcDfNOGfMytq+Zp3bFYuLlG4SgUiEI27NetS1bNgtNmjQwdP+/fEughgQCCVVLn9BEI7gftWUfvuz3AB74dgy+Hdj1htayalUkf59b8dVXdVWOYBkk2ubV/A0KR2Mws4WI6f9mSjZVzvv2xZPs+bCKRhf6oaLK5O9+Rs67n5kf1hpAc4lYwb5llZIVLEwvwbIEJFJu3rwl5Fsqx7e7PIwf/4sCf217PYxBw0ZaHqRbtQS0BG5YAuLDZA7+ZLCYDKVERcWQb+8QPv74TbVf3IdEkK4454HGJVLJu3btobv+opvSrEkk6OlF4zGO1C2ZmUMxdGgK6tdPwbP1mGiLoCAxw06RKgu33KVkewypnnBdICjZPj75pBaeJXlvzdorYOfjidXJpdE2J6lQ2jbh4RtMLdbgqi74JCMV30a5wblyQ2RcjFSXJeuT/L/NSNey6JQH1l+0pc9hnlq7ANS/U+bOXaTAnwRivP/9apJn293UdJnZ2fj2+AqcTI6k/xxzG1fqgGpewcXOIfyN4WcO5/chcHf19GE2DlvEhIepth49Ov1fwZ9o6EQjm0dDcohXhpKrqWZ3RNPamNS3D6a/MBzTP/gUtn5+sA8NxVevPokhNUILXOuZM3QjYGaR2NhM1R4fn/8tO3Kv7q2aqNoFDN5sGTPmGF8qjqlhW7fGMJ2hB3r1sizrxo3rYevNnkD3/08koAHgfyL2WzupAL777nuKNAW7jBM402m57yNvoPPAYcY2XdES0BK4dQn4BpbC+EVnkJqcyC0eW1fOxrLfxxeY8J13Ximwb74jplbRnPm5ZOPRmnFG2hBDv1cbxmD5KQeM/HQCojdeJvirZThEHysHVRd+Z3lwu+RlIGztSdQJ9aYWpyRi0u1RkfQb14vcLVXKBXExfdRco7Y6k4g5y5jKzXgyk8pbb1bDiDfyGG18CWGxFTBDAROgErNRCEVI79Ak1Vv80yQYLYXmyp4Vk4zaKpOpbqgqZvM2bZoz7+wWHNixEnWb3ZiGSyY/khCO70+soUYrG5U9SuDZKp0UCCzuxInx0fj8pV6K/08Itl944QnE2JdW96msR2YBgF7cPJaOVay4RAGv554LZeaWmpa6FGqTvMoSgNOKplqRsaViT+6/4999iNd6d8EGkljHMcgocdkyPO/mhpLDPyNozFa0PydOJKFx49VqirCwLvTr6wVzPkDD/NcD7idPJjOgYwuCg10g5uKHHtpJGphkBoh4UQuYoKbZsiWmSAAo+a41ADRI27q/NQC07vtTYHU5jPIzgL8PflxLtxCah0qHFmvuKDCB3tES0BK4IQnERUXgh4+G4sLpI8rEK0ClVasmjPDtUKzZV7jeRLtXilx+xVFxiNX43fvaId4lFPd98RmmTo5D2smLGPlcELl+CzrZz5x5ns76B9S633uvOl5+ubICDlMOeeMREvler2RSUScARwIWDLl8ixpjS5WfaHZ6qQ4JyodMMniI9k/8BSW1mXD29auUBAOZ86PXWYOkqBOKFHNA4u3thT//nMLctL0wlWZZn9GlUS60ePAkZuOpZzZiR8xp0rvY4IHyLdAisHJRl2Nsj7p0DmPfGIj0lAQCzvnMc1tDHQtChiLgPsP7Jv6ZvC3K7C0ceuKDdyNp62LTbFRghGjexKcul1E0AqIqVHAzZmk5cSoZnbtshLOTHeYt74A9ib4q6OexWvHGNRZVcWRmjdHtWuCX3CC8s2OkIoR2r9CNgDdbZZaRcSEh7hgxoqoy3ZcowcCUG3BLKOp8KSnZOHcuVW0tW641dqte3ZPX5I5u3UpQ02jP4KYwPPJIeZQu7WrsIxX5Delye0hAA8Db4z7hi8/HY+7yNWq1g58ZReAXcpusXC9TS+D2kIAEUP019Qv6h/2BxLgYZtdwVBk9Onduy4T33gUuYsNFV4TTp0/Im4WGRZI0SCnBiMv7q8UzSCB/v7jPJUtmKrqYRaMGwC4uHZU7jIR3q7r010pTmj/DWHnIygP3r7/CaZ70Vc3C77dx7WWUe+48xr3kqzj9unXbxEhTN2YPqaf6G8Y70uL3UM18zY2h7Ua/BUcIJYxswk84ndkjyjAyVrJdzCJgEnPw9UqvXpv44hrD3LdtGW3qXaC7AJXZs39CzZqt8dkLPfDxlC0QDaylEpEah6+PLkMS6V1KOHvhJQZ6eDkWBB/m4xKYJURS9h3csZr0K25YvXoeg2QqmXdjKrwsbtdkFEFz+/f7fdG5fDJCmbmjOEC1M9INr0/vh76VSJ/C+z5ixAFFs9O4sS+WL2+tQPR3u32RGRKKbBI4j59P0u5nyB14A78Rw0K/++4ExvxObr6M1sipylRwbduqIA/DcYkufuONqsyFnI3mzdfi6NFERfj90EPlyUV5Y36qMpdEgNfkPXrmhSrYtzsaW6npc3KyxVtvVeOcSQTs4WoznPebb06SVLwTRNusy+0nAR0EYoX3zFIQyEg+YbwrVEXvh4ZDkz1b4U3TS/rXJPD/CAKJvnyeqdwexBVG/nbo0IquFvegY8e21MZ5FHldotmqXn0ZrlzJwLp1bVUariI738CBihUbY+PO9dgdF6hoXQRaySY4wZbcfLUDMlDVV8BI/mRr117BkHcjYcPI0E8fZuTri/vUgVat/AkWWxQLWvJnuLVPSWn210kP5Rd4nqAwliZpH9LU5OeWLQwI33rrICZOPEUKkdZo1CgfwMqZxaVFshh98snXOH78FPOaB2LU5C3MJZtvAjdd3cILe7D00n7V1LVkbfQu08D0sMW6ZPb49u0h9OdMptb0KWXydXEpGKFrceDVRgFDn/+RjgkzohDgY4exH4bgTJKzus5SDKQwLVdS8zkXezAbSFZMAho3WYN+z9RHp0FVkcHAC/GhDGUgz8WLacq0eqN0MKfjHTBmpz8qO8dj8mc74NzJEZd2bEPmpX3IcY9Hx8H98Hmv9ihBcCvFljLt0GE99u+PV/vyIcE8EtRzvSIAf0u4K7IysvHma3tg505QRxJtO1LQnDnYVtHZLF16GX5+jti0KRpTp56j2dkPP/5Yj1PbGF860qJjMKNSU/PT6SAQc4lYwb4GgFZwE8yXYAkAukzfydyfgeZd9b6WwB0vgX8TAGakp2L9ol+xYOrnfIC54Pfff0TTpg1vSKZRURl0hl+q+h492hVBQcWDi6Wn3UkqnI1oOuHHM5WWUMGISVY4/gTUtWt3D95880WIxtG8CBgRbrfdpPwYQg2j8PlJ2bw5GgOGh8Mh0Bfpx8/BPp6mZOaErVvXB2vXtjGf5ob3xYwppkAPj8JgTCaR9Uhk86VkBxWhXN0vHb+G+eDpOrFGvjnDyWSumJhMUuI4GZoIUA7jwQefVbQ5gaXKo/OAZyBpLB2dCsowMZPaMtK7XE5n8MtVepdSRdC7GCZPSojBr2OHK62fi5sH3pq8HI1qlkVl8imaBlgY+hf3fe5cCjVqa+Dk5oh5KzujhL+DiqaVwBlz87AE7QiAik6zV8Dd3SFHRfZK3lyDFrW4c1k6JtRB00hDI7+TxiXTaV7OJTXPccxevRFhi1Yg/RgDMxo2xMTPRiLPpgYzkuSbrmWujIwcZY51uKpqlNzDrq52BHBOJHZOYBDTEWU2rl3bu8CpJeK3QYNVirvQuUJJDP+4MV7pdvWto0BPciLytxYcvFC1LlnSCs2a+UEDQDMhWfGuNgFb8c0xXdrNRsiZjtV1LQEtgcISWLtgCub9PArZWTRptm+FX34ZZ1Hjl5ycQo3HdoKVCIKBRqhRo4qaTADNlSu91UO2OI3OpUuRNIHuRNixc4izCUD5IBcGdAQioHxV7LoUjMupDgg/dQRnY3OpRcz3TTNfrbhVNSaPX1W/DOWPV9ojC60ZPNCihT+2z3LFc8/vwQ4PNwx6qwXOn01CjbxL5lMU2E9MzCK4sy9SSzhhwkm8++5hRRYsmjtzvy5ZT+fyKWpOCXiZf9ILj9SIU7llzzA92hO1YuF9ladQxpqCv4iIy+QZvA8Ozu54ftSvqF6/dYG1GXa2RB3HzLNbyYmXi0Z+IXikQiuuo2i7qYCjY/s2Y/q44UyTF40PPniNNDOPIsfWCRE0jW4mOIshOBNi5PpBNCMTjF+vlCvnhvDwfI/ImJgMzJpyCg27hmLWMS+lmRVfwYHM0iRFcFabMqlmU6ZASLsFuP/GbCsC9O1t2MBvIQAXPkEhm05lXeYStwIp9kzTZs8+4mIwiNG7XlcBv1z/U3Wrqg2vPoFXlq7H5Cdfwl/HT+Dk95G4SEC+o3kewXV5Re5supjOnTcw13I6Vq1qowJWRJt34kQydu7saNpNEVjv39/Z2LbolDumHmIGEAb8CJg1LWJqNpQwEmALANTl9pGABoC3z73SK9US0BL4ByQgQGHflmWY88MHTJnWlD5zn9B5v3ShmQ8fPoYnn3wFR44cV35chg4TJvxOAFNTBWsYtCuGY4bv2Nh4mhzfxLZte+hD5UB/rFJ0lg/mw/UM1u6IweyoaMTFJTD6Nz/608bZE29/+zsWRIagu1uSygBimMv0WzgE72ce8E+2+aMkAYxEj0rgwYK/Whq7xaT5YEuE+NElGdsMFaEK6dZtAyIjM/Dll3Xw2GMVDIcKfPfvX1oBwN2742i6jWTwS4kCx013ZA0HGWASkZKfOeTng95G8GfaT+ppaekK/OXm2eLNb5aQg6+wVUMie8cfW4njSZdVZO8w0rvU8C58fwxziyn52P4tmP71ayrC155BE8uX/046ndpXu+QxfWaW2qQhiubafVecsfi0h+LcMwc1hnnNv2fMOM80eofRe0cszZ+NzQ9b3BdfUWfbHKZVO4c+TX0VKbRpR9HwXaJJ3ZWk4JnM6NKCpmJzzaJpf9P6itMXMZPmcyZ2hreLE1wzkmDrXBJzooLwU+u1hUzuH39cU+UL9vFxUMBefDKLKpGR6SSBtqXvqyMauUdj8FM78bZDMF4ZXg3NqtqpNIHuDrk4eDDBOEWtWl7Guq7cHhLQAPD2uE96lVoCWgI3IIGE2CuIZsRnxRqNLPbeu3kZzYOvMnVbMrVtNTFr1k+MTr1mmjQdNHz4hwgLO27axAwfA5gb9RzbzhPA9S1wzLCzdOlq9nkDgwffg0mTxnL+gmZNQz9L31m5cVhJipW15+3Ql4TA7szEYKm81TQaArQkAEXMyhLoYSjijyd+esRFSuMk2j55oEdEpKvIVAF/UvbsiSsSAJYs6UK+w96YMuWsMfDEML+lbyG4FpPw3khnBbCEQiaUwFB8FkV7df78RQaBbCPYnoTz1KS+/uV8i+DvSAKjr0+spt9cNkLdg/B85c6QKFhLJT4mEgumjcG+zUvU/RQQP3nBrzThN2D0rWXTtcwTQGLtTtRepmWncs3uiiRZfPQEyBYXwPrEEyHw9HSgxdXH0nIKtO267IxjcU7K7y9671kMeXQP3elssGNja4SGuuMoScCFGLxN6RQVgFJg8HV2IlNS8db8lZj39ke8mAA8+sVHGNO+MWJbO2Dienv8+NY6+qZ6ol497wIz9etXmiTj14C0eUCOofORI4nK7C37J05045bEgJAY7sXA66Ij/OuUx9uTU1CyrAdK1K6FYT9VwHPtaQr2LVo7a5hbf1uXBCz/y7KuNerVaAloCWgJWJRAOrN1/DXlcxzYtgKxpG4xlMfe+A6N2uSb7gxtl5io/sePn1K7Y8d+RH6zewuZFEWbtHv3fjq2/6rMtoaxhu8aNSqhXDl30ohY1nY8//yb1D6tYxDGNPapbhhW5LecT4JIAgOdlDlWzIjdQ5IhXHuioRJA0p/gylJ5qEY8NpJyRvo1L5XCIJF8baKMEd6+Occ8Ffnvd9+dJJ8bfcVYpkxpRDNgLxWV27p1gKVpjW2Sy3bo0BDj/vUqpkTXAj4PX7HBt3N2Y+nkr5hlY7sa7htQEsPe+xnlq9QpMF02tbIzzm7GtuiTNK3a4P5ypN0Jyje1m3YUIucr4WexduEUbFnxOxwIDrt0acd7OVCZ8YszEZvOI3UX+zz0ollT/BmFj+9LBltI1G8d+tsZitwf8Z3j8lC+vJuiPTEcK+77ZLwTOpZNJjjPIdWPH3z7t0dWZCye/zkL9w7xVmZfAce/HPIhAMxUmTkkjVtxRTTXpYe8iLQNG1Q37949sXfs+9S2Oqp9L0dmjCnrjnlL2kOixG+12Ivt+Wr57bfzzANciS9KTanNjsEjQ0ojPj4Vv45YrnqIFnFAbx/+Br2ReMGOv8NUVKCsdLk9JKAB4O1xn/QqtQTuWglEpsUXee27NyzEOoIB8zKDfmCr/piICtUaoFP/J3H22H5sJmAwlJdfflf58jVqVI/BDqkkuD2EmTPnkgR5FSTbjmkJCPRH715d8PDDg0hXUpWmXRtG/V4h8NigONGefDKEvG/HmS91mDIlHzq0nuaz/Iey6TyW6vPmhRNk7VKHhG5DOP5eeKESXBm1Kb5lX+/2Uz5klsCBgEVJ6SXbhguu9NNypW9bmgIXkvf3FFOLiX/eo4+WJ9XKBcXrlp2dR5O0Hdq2DbS0nL/ddvr0ObzzzqfULh4gsI1Wkb4eXj6479mPUb9ld7gznZ4UAXxhCRfJ53cKJ5OuICErVbUH0hT+ctVu8LZA77KTeZh/Gf286ic+0R3ufQJvjHgOdUo7M/hBNd/whxAbT5hwCk8+XRFRLoE4Qq7DepSd+Fgaivj8hYYuNewSAHVAlSoexv3iKhIVnM18vlK8vR1JQO2JGm5OCPbIoRYxXrXLx1N14qgJpNbugK/S+EqatqKKArdOTqDfAMhlg+fv7YcKJZeo7j//3FBp9yRTzOyjnvnmZIKxmy1CIxMXl6U0iOLTJ6nfZBMqmfffz/dPlSCSb7+tR1/CSJTly9BUgth7GRQTQP/AvTStT2EwEFepy20gAR0FbIU3yVIUsNtvNCF4+VnhavWStAT+PQn8cX4HVl8+rE7wQpUuKtVXfPRlnD66B2kpzH7Qri9+GPUkDu9ap7R5devWVIEU4ls3Y8bcAgsTB3xfXx8F+NLT8x/0jo4OfJ5mGft58N+YRJFKWbbsd5r76sCOYMO8TJ16Fi+9tE81jx1bl/xynzOowoOgYrR512L3k5KyFH2L8KsZyurVbei/5qN2t0W4KE7AojJFGMbIt2iyxLdNfMqSMu0QTRASysjXswzKEMJoZ2q8/ski2rHZs/+ixnMtM0Wco6m4Pn76aTqcnF1QqVYzZYavUqc5ylWqrbSbu6JPYwmpXGIzkpWJ17AWZzv6SLr4orF/RbQMrGJoNn6fPb5fUfTI/bajxm/hgmnEP5Vh6+JFU6oTwqKdVPRr9zJxpPFJoYbWVYFc4wQWKj4+85kn2R/Olcrip3eC0KWhaGCBY8eSGM3tpECbkFcHBi4wjn7xxUr4bRvw3av+infReMCkMv+EB03Ltgzsscf9VeOVBlAOL2EEeE1yKZZlwIelIrmAf9jvgwcI4AwR3oZ+ArQyM3PpO1lSRQG/v34nxn/0JfLC+JvJGG7oxnvRzLiu+Sfd0ZiBLsE3kbvZ/HqNE7MSGOjMlKOdjcTWckzM2L+TC3JorTi456apNUqwz9awVBxuUcd0uNQ1DYy5RKxgX2sAreAm6CVoCWgJWJbAusgwOtE74J2afUiX4oHZP3yAtX9NNnY+d2I/ecvS1L6YyFxcXPDVVyPVvqurKwHJr4yUbUJi3i9IV1FCARHR+A0d+jIBHlOJmYA/GWQAf1KX/pbAnxx7+OHypG0JoDk1g6Aykem/dmLMmA/lkKJPOX8+FVWreqjzqcYiPoSfLTk5p8BR4XFbtKilivBtQFPeDyQkLuUepzJwFOhotiOmX4luNRTJACImRgkamX+S5uAqCcX6uBnG3ci3gL/hwz/Azz/PNHYXapeQavXw4iezCtC5HIg7j98YzRtPLZ+Yd30c3RBK8FaJKdya+VeCp6OLcQ5LlTGv9kNOTjZKlgzCq5PXITHIi1q0FMqW0cGUj2zx6UxLNzwWpw9GYkCdTHwzrp6lqYxto6Z0wiffXkTllDNIzwjANzSTP/pwOfoPrlZ9GjTwUb6Pb71VFWfPpijgI8E2zvtzMPMg8zh3yI/6NU54tXIu0ZF5nGMYxVvwSDtqaQUsFZW5RQI/5NhCZlyRsQ15TSXdspRv58CBW9Vkv//elBRBJdCralskvdMb2RkHMfv77+Fk1xC5jCR/9LeFaJ/aCPfWaEqgaIO/ONewunEFFiJA01KQSUJCFj5lrl+HsiWQx5ej7CvxHJf/wjB+fD0MHFjGCP7EvH+MmmVJZVeZfpMbF59mtPUe43kGdmfua+OerlizBLQG0ArvjiUNYNRPK5DHxOW5V/9RGv5xyj9GKbmqkr+T74KRd7Xtas+rHQ3j8/sbZ8mfwzD31Tnlj7xUOZM6ruqGY2xV/5num9SvjZIaDxQ4xt2r65Hm/LNIm6Fbfmdpt7exQ+uAqkU6gquF6Y87SgISBbo/9jx2Mt3XwYQL8HZwxaf1BqlrlOjdH0Y9lX+9VNkEliyPuOgIZGXma/RKlSpJTcUGozyySPFSVEDAt99OIsXHJTz99MMqQld+k9HRsWpsIM2+RYE/4+SsCOisUKEhxo4dSRNcTxVs0ajRaohm7/33q1NLWNnYXYIuhBC5YkU3BpOUYWYKe5VC7PHHd5EQOcLYTyqfflqL66qo2hIzbBV3YAgjWW+2CFHz0jPuaEqTcO2AdIKmm53hWv8VK9aSp/Bj5XNn0Pq16/MYmncaCFd3L3j4+DPK2dEIekU2P55ci/3x5xXwa0IN3+DyzYw5e3/6dBj2bFyC4PJVEMqgnfZ9H4cE8Vy5eBpunr6KKuV02G6smvejWsSxY1upifKnadsBy896KNoZSUtnKJs2RWHYO2dw7xst8WaXzEIgzNBPvg9Ra7ifkctS1s0/iRV7s5G4cjtfGBriiSfyTfLq4NUPoU4RUJiQkIk0W2f8ddpL5fCtbmIylq4SfCN0M+Z+m0kZNipzyuBqifBgJHdxJYY8kaLZFGJmubqES4n4Y9JhvP5kCaQFl0Nqji1zAGeqbeNFFwYCHcHEJZuxd9kO5CZl89/CZVTr3w1vD+iGbiEl1KnEnLv0mCN8Snnhscb5/1bk9yj+jcHBzuj51Gm4li+BFKYjtPf2gEuAFwJSLiOdP7mPv2mGysG2Kr3h0jMeippGrruWfxq1ytRuLrmEDz8Mo29gNs3+aXBDMj5A/suQyXVqDaCJMKylqgGgtdwJk3VYAoAfDB+OFCYAvxtLhxI1MKCsfqe8k+/9afqBLbt0gP5gl5GWcw3ouJP8d0DZRqhq64kLpw6pFwchb7aj2XDrytmK7PfBBwcyBVqIolppx5ypXl6e/zdRzZt3Aa+88jU1gK3IvdZXaf/699+K7duZDWFGE2W2k8XExfGBHbKkwLqEY27fvk7GNvG/EuoN2W6miD/iPfdsUUN++aUR66UKDDeYhiXQoQz5A+Mz7NCKQSNlPIv2NzOdYO3aTdR4Pk9Qm2xs9g8qhUFMSVlUViJJ2yYEzsnZGSjj6qfStrkSHJqWr5ib98TBHcYmJ2dXyL01LQ4O9ipvr4D0/v17GsGlALgUcuSJr6N5EdP3mvME2eTPu5EigG/hAVvkURv8y6gyDCYJYsaOVAXWJ08+a5zCNOo7gaB89A5/vNwgRkUVGzqtoy9mBgFaFwaTmJfkTBusIHAVIvBB9JkzcPuZ9zPfF0AoYFCirCXvskQxF1WmHjyOD7/5GXHLV4rdltq5GfB0KYEnHt+O464VUDWA6Q5HByrNopjBpbzzTjWMXeOAlO0HsWp5K/6Gc/D73AjM3cbzUGX4xXsVcDzSFsu2puPLp93QuvG1f19Cfi2+qFKEQDqJANQmJR5/1GqR33jtUwPAa7Kwmpo2AVvNrSh+IZL+KMsjn0jURlhEVcmvGd7qZc94hI3GvauNhv38f6/Xjst4wzFDveC+HDeMEmoJ44Tqzd6wFvk2nN/2ah8x+ajC/YLHDDPmjzL0zx+W3zOLmqBvjq2gQ/M1QJA/mf68UyRwMSUGE0+sQWxm/gPTk4Av1KsEKti6ohQfJhEnD2HDzNcx5ciefBWxhQsXP7Qvv/wQffp0vfbbtNDvn25avz4Kjz++m9O2wuuvr0TLlvWoDSxH03KrQqcSPrWFC1vwIZmngjFk7IMPlivQTzSC5kWyOUhu1zZtAmjarmN+WO0LkPTycqB2KotzpxTqYzAN16IGMI4ZSAKLARCmg2fNmk/TXr6PmZuHN4Y8/xmpP0KLpNgxjF0WsR8LLvJ+sfQsVQ89StVVdfOP50dNx/LfJzBCeL0K1lnz5yTV5QA/1y3ajpRcVwTTT0+iiyVi1/BnRzpJWrVph70tAsBT9HksTw2ZpSJgeAHT2Ik/pKSuE3Or+L5lHL8Il9qVMGGnJyo1c8YfMUFoMLQ0mjzZGs7nzsCDWT1Mi5A6P1M3thAYC2FOYQFqpsDIME4ofYQuJzxJ0sZ54vFa8YZDxX77MbhCtgCXbCw45alyTYs8LJWHa1XGwz+Nxu5Lr6FjrwfRqkUP1HvnL0wbVwXPDtuHLZszUeN8Jl5ksNGTr9ZBajTzFzvybzNTvvXvG6zIo2fNuoC+PYOwZ8cRVKjoivu6+2DcuJPwOHsFNhlVlO9r5cru6P1gVcw84o3XG0erpUjU+E8/ncY3n+7CB5YWp9usTgJaA2h1twSwpAG8G4NAUrMz8eqeGWgVUBn3Vyj0RmmFd04v6WYkcDY5Cp+HLVJDGvhWQD9q+myoZRpLzdCViHOqXV42xBfvscfuox9SH2r+bJmyzZUaNfpLLVzOCMXPC5xy8+bFjGCsXKDt39rp0WMjtmyJUdM7Oe0nWHKl2TcfMG2/5KLMgX1Ck9RxSZmVSac8L6+CWrDrrS0+PpOgconqJrx88pD9t0o0c7ju3x+mciHLOUJDGzOFW5w63cifNyCgZLliT53Of69jjy7D+dQYuNk5UevXBaXd/IodIwfDzxyFaANTkxNpHi+PefMmG4m5JUJWUuBJRgwpAmZlcyT/YTXSqOy47EoQl4f6pG4Jds9SWrUkatqW0P8t9+orZyb94eoFigmcvm3UWG2/5Iq9689jyqJEzB4VSM2sO8+3SGmvZs9phsyQimhMHzzRtAkdz7wTnkpzKplXDCBUfA5F25fHSN97KuffY7VAfojG7k+O8XLKYRYTG1RhIM4+mpsdmaZNXm1l61cpAU7E+5JJ46+/ItCrVzADW67vM5qUaYvZzELSuEQqavF6iitrz0XgiVFfIzu9AZxKnsFXbR5ipHq+xtWWwTTOtUPx+Vf1ceBwEqZ8uQdZZ8IpBzfjS0TTpv6Mbk9iZHxLpjz0oEvCbqZKvKBessRd58yZbtgS64sEapRFs1yNZuENy0gb89haAsAPzZemNYDmErGCfQ0AreAmmC9BA8B8iWgAaP7LuP33Y9KT8Ff4HojJNzYzX1v1Vo1eCiicO34AY98cBBum/nrppSeV03+9erUUXYsAQaFniYyMUvQiFy6EK789AXuzZy/A229/ooQTElKOPH6r/i+CEp/B8PA0rNhwHmO+/ghhO2YUOK8iA6Yv14E9MZg6/iByUzIw4oM6KFGthPIDk4e48MRdr1y6lIbZu+3hF+KvumYwe4TgQCdqgXL4ILa3ySNAsoPknm1bhgELBBq+V9OwXW9u0+PPPPM6fvvtT9MmVa9Azr7Xxy4o1G7acDj+Igmc1yArLwe1vMrgyUrtucZ80Gbaz7Sem8OAivFvYfOyWUxm4Usanu8htDzFFQEeu0k2vfeKC56oHae6ElfTp4/Ey5S1AJGWBGqG8uWXx5jqLA7PjWmnTN89KyarQ2XK8MWjXk24MWXcjpWN4W6fQ/Abr0y/CxdewltvVVO8f4Z5wkgTs5gp0USDJ1lFDEW0fULdYu4LKMcly4cd782YnX4Y0STGCB7l2K5dsYzY3aD874SgW8qvvzZGz57Bql7ch8jg692+8CbA7FeJGsUUR+XvLanlBFxK3mFDxPeSU+cx9IUpcKzVGqc+zk/pN378SYwadUSdQnJYC01NXFwGNdI7mfnDgQFIlwqc/pHv+qJBPS/KJwG/vLaMASf56/3zz+Z0vfBAtliH3N2QFpeCKuUckR4TixmVmhaYgzsaAJpLxAr2+Q6ii5aAloCWwL8rAdEOzadZcP2V/AePk609glw80Te4PoIc3ZEYF4XRr/RBHgMHpHz22TfGBYkfWFaWZX+1NWuWM+vGo2o7dowkwmagY8WKyxg0aJuaq1Ild5UHVbI5/BMll9qdU3kMfKhdAjnBdVQQk0FDJPM3LJGuNo+zMfglmhG4JOxtWNkerRmVKxok8cm7ct4e2UwB1pSZKCSiUnjUapLE2TSzh2TleLKrDX4+YIfHSLlhMP8ZziVAw4mgL43fEoAgAPGlt48h+cxlZJy4AD8/R0Xk27Chb7GXPXToA0YA6O7pjY79nkbLbvdBzL/Fle0kb55yeiPBji0eCWmFJv6hxXU3Hls8c5wCf88/P5R+aC9flzvxOGlHxLdPyIYN4E8mE1lJ9LNsQn4tPnaS3i0yxQ4/rcxG5K4rcFiUigmPsePVcuRIV6xZcwX7bJtg2iEvVKY28WSqCz6deAQ2TiXwR/MNiAm/5lIgAK8yNXki3z28b/Gk2XmkZpwyT/90wEdF7PqYgW4BYaINDHbPKQD+ZAnCtSfFAP6kLqbo4or8NpKpATxJfsdG/G1JUM8GEoELABVNpPwGBPzf+3kadsw9hKG9XPHDVua65m/vkRGf899GslrHc89VgmymxcfHSUWeC93MuHHHVWR6bGym0gb6lvNF+zKJzJ3shs8vduWxLJVTWFwWqldfrqZp3NgHO3bEoXfvYHz9cQXTqXXdiiWgNYBWeHO0BjD/pmgNoBX+OG9gSRL9uSHqGLZFnUQMffvEl1NSe0mRiN5nKndEKRcfTPzgURzevV4FdtzAtMYuQ4cOUb52b799kW01+DDtZzxmXhHt2b33bmVkMB9gJVyUH56k4vonSgaB2wU65/vkXkabz87h0Xs74pWG+ZqeXDqbSfo1AW9du25ksEec4mmzlH1DNDqSM1aiUpsFpyleO3/XbPRgRhDTIuTCuwk+upm1m/Yx1H38/oJX95ZIWLRRNUmmEQE9tmI/vVoyMmgSzc5RJnXhRfz11zn0ZfxQHf3mr+OMnnYydC32e+yRpSpv72d1B8HLAoFzUYNHPduFOXAzCRzyQURR/QztL60pgZ7M3NGCANAAgg3HDN9i4v2dJlKRqR0v1efyGTz84jHYB/gifHUVQ7cC30KNItyJZ/ZfJuH3Jtj5e6P2PXXx8lNl0L0CuQep4DIUMUkL6KJrJoGmPTWO2RDt4FtNooxaN0Nf+Z5HX7/GJVNR2gIfn0Qt9+q12bS7CuCZNKlhgfskHdZfcMFfJ73wEoNOSlPLaXIbC4yXHaG0GfV9JFxq+PKFagM6PPQAvu7sYQw6OZPgoCJ6TV8yCk1i0pDFaxVfv9Mn4hHHGN9W1W0ZG0ItNGl4Fvx5ETXtLlMT6E43jV1q1IjnS8Dv2wdNZlBVrQE0l4gV7GsAaAU3wXwJGgDmS2Rv7DnSSKzRPoDmPxAr3Rct3+7YswwA2I3EbFKO8D93eydqJhwQ6OSJWk5+8KPTuTs1SpKSTXK5mpf16+cjlSam+PgEZeo9evSEkWhY+n777Sf0YxqohoWGLqGPWiYBYF/SseRh48Zo5cTu63tzfnbma7jZfQG8Vau2wLvf/wabEnWUliXq4AV89OpWRpZmw47gNzvPFn2H1cOYt8oRvOQqsFDcQ1yAgwBMKe6kDakbkFYgaldAy5zj+UBH9EaCUSTAQbSCMioiNg97dkXj6/vzKM9sFSBSu7Y3j1wr/X0qYQ13q1QJpa/XGXLt8UnP0vuh19B10HOcK//8qrGYj3f2zVHRvl83fKCYXoUPzZ30MTkdfyYVyT7yNzoX7mDWIgqyWGrUVjBXsmi7XEgB05q5dM2jaRV9FWUhYFfAzsy9znBJjMErva//uxCtlx2RowTVCKXLIvoSCoAT/0Gh1FnAfQn+yCIAcqTvofgXityLAqQCnv5i4EZFBq3UC8w3nZpelgT5fP31CWq8jxqbT5/uTlNswbVO3Ec+xwqRSnMoKemKK2sOXUL/Nlv5g0hHg/eyserlh4zdBRi/sSEIR9edguOZ05j5Y80bijqXl5nGLyciKyIKwXbJuL+HD6PfK2MPzfGSRUXcEfwZwT/rpyMYPiwIa9u2M57zakUDQHOJWMG+BoBWcBPMl3A3A0B5mG6LOYlD9CnaRwJZeQSNoI9YGTqTR106z5ReexFzJRy1GndAcLnKWDD1C+5fxAMvfl6AfNZcpnr/35NAVHoiJpxYhctpCcaTCHVP39IkqM3KxJ+TP8OONXOVk7+xg4WKh4c7Hct33RD/ngyXdF5iShN+tpMnk+k/tkrNOnFifQweXNbCGf75JoMp9/zOdXj7wzhkUQT9e/pj0LN18eCwMNi6u6jo5Y8+rYvGZTJxMZk+UjTRpl4NapDAAHPOOPNViuP/rkvO9PVyUJofeYgLNmtF8CMaKEsljcELEnggWUDY3TjOk35jnRj9GkgC5tJsD+cmwR3lKtdGo7Z9IZk7hI7lZsqLu36Fp4MLPqoz4GaGIfzsMYx6prPSQE6b9p3K5XujExhyJQsANPejfPHFvZg24yJaPt0KzzxWGl0r5Js+b3Ru837fE3y5OeQS6NngLEHg+82jjF3kXswhWO9PXzxTTaGxw9XKJJqJe1VMLLRW836GfTEdLyTYFKBL3Isk0s4c+HEVTfQXFAn511/XNXQ1fmdmZ+PRqX9iyagvmC6uE0pUaoI9y7tDlO+vv36AmWrsMWnSGea5boCXPjwLhwAfbJgaglKl+BstpkgaQfEbPHAwEWVrBiI+OASZZyPw5hB3vMA8wVIS+RsVLbZQwrR2P6d9AIuRpzUd0gDQmu7G1bXcrQBQfIl+PbOZju3yJ49v1dQcvVS1G8oS/Il24qV+VZFNQCGaCXnLl5RT2fyjl5OdhaBS5fHBT+uvSlB//b8kIID9ZUZqC3lzRfdAldmhlkcwwo/ug7OLG36f+C7Ok8qlU6c2isdNgjpWrVrPSM8lzObgzmwXjam1q660UGXLlvpby54167wxI8GKFa0JCH3/1nwyWDQ455McEMXUXk1pnjUvQkXSsWwSdl2ww7CHlsMmoAzSw85gxZ8NVTq3lBQS81J1JY72lspqBhGUcMtWjvuWjv/TbeIXtzGcNCXULq5fthC/j3xcnWLI85/S3+/+WzrdsB2TUdWzJF6s2vWmx186fxxjXhuAyqFlsHbtnzc1XiKthQ5GKFJMy0ejwvDTHg8ERp3Fro2tTA/ddN0muBHGLjytTK8y2BK9y+7LzjjDDCADGCAiJT09hxG9y6jFFhJyGwa3MDNHaIgCRxKkY1CsGoC8GmT2IaZmIbt+qEacegkWbfG2rdHo0WOT6mnKSXgpORWPzlqC7d99D0RFwbdPL6z9bATTzrmrvt99dwLvvnsY9ep5MxIdzOtbCRUblsJWphlsUI5k+9RkJtOnUaKoLZGN9+mzBRs2XCHVUh0MGFAa33xzAt/+kYR7nmuArx52KJCh5gCzgxzmy1hK9+pmV6SDQMwFYg379tawCL0GLQGRwLTT9L+hI3mfMg3RJqCayv4hqbme6VG+gJ/YwIG9VQ7SjPQ0SFJ4KXWbd1ff+uP/K4FpZzYp8HcPtX2dg2upk3/7zoPkdtug6k5MXv/DD1+SwqWXcWFC2jxs2KPG/X+qIlq/6tU9IXl1xSfpnyiLTnuQh9IGBjoX0zlF6+FKzVCwRw56V8/B585f4t2XXmN2jwYkL/ZSXd3crv2JffXV/fjllzOQfKkCUMWU14Ecd5IDdv6GFHw9YjNs4uOp2eyhsoSYnksCPNZfYAoyAghDhKcc37kzlunB6OfVIVAFelyPJka0ZQagMqhKS8z+KP9lys3r1sCyaH+lBNOn81ZKYKkQ+qnlqBzNNzvelAQ6JiaDWqpTzKtcCU+9Ugvpm1zRsnwog0bsSRGTBm+zAI0bPdek5SfwdLVYY3cD6bGxgZUGDMj4Ybsr1ozbQx/CYJWLWMCflKysPP72t+LceT/sj3PH5H1ucGb6DIlcnkvNYQMGrrQuk6qArPJDFI0ttYr8X/3uJKBH+AOlNG/uz6CRXspErRr4MevQCfL7vY7cU6fg06YV3v91Ah6sEUrzt62hC4OgypKYPFZpDtu3DzT6F5alWTsy2Q4pOXYIos/pLKaqe5E+hq405xpAqkzy55/NGFkfh7p1vVU6uHfeqc6gHfEL9MLJOAajBGYYzyWm8tSoTBwytuiKNUvg2l8na16lXttdIQH5M2fHP1z+TpIPM/8PmLOrO9yZAi8p4dofYSH+NZS6zTrj8RETCvzBMxzT3/+uBITwd3vMKQQ6exrBn2hmj+7bzJyqDZR2r2rVSuSTq0BfvVj1kDf4lUlKrRMnkjFlylmatc7Tf6+9Am8REWlKwyD0EkKULFkxztKPa2uEK/2McpUWJZAPK9OHv+lVip+bua+b6fGbrQvgWnve3Qi6hPZl5MjDiibEM4iEwuSjkyKa0IiISGo6hWrj2sPX9HzC8yYlKioDb7xxgJxqzdT+U3UYPfnxXjiU5sO5Ulk0euIy+Q1rqIewgAEpQvciPHTykBYfQgmGcKMPnMF8t3r1FQLLBcxeUdD8LdpHWXNQEP3gmHfYtMyZs1C9WA3/8k/m8K1veuiG6yfo9yWl3A3w/VmaNIxBQGmpyXj22ccsHb7hNkmlN3bsceUDKplQ3uuQrCJwbW1yMJecfDdKumw4oZiYT8Q5kU4nx3jvDccsfS8YtQI25Nb7beY2/pbbqfsggE2IuU+fToGHux3mf7BdvQCIj+HBg11Qv2U6plKDLJlLlJ8sf9eNSyQUAF/m5zLcw/OJyej47hhE/fEnbENCMHHFXAyumW+ONR8jLxx9+5ZiurbjDIZKMKYnFFCcD4zzwapkGVlO/8o00sk4MsCjZ2iy8m0UX0pL2vQOZZOxghpsUwAo55Y0dRoAmt8F69zXANA678tduaq+pRuQKmSXyh8qAnAkVYgEEQz7YSkcYxiBxpyvJcqEYsPi6Vg59wclo9pNuxT5wL0rhfh/uuhd0afxF2ld5P68TDO9lBOHdmDy588RDOVg27bdajNfjpeXB81jNXjMk4fkz48AqEiCxeGqa7lyH/Ch6abqwsv2zTf1mNUhi1uC8p0T5/vTpMGYQe0DrWJKU+LJIIkg1yzSp1D7wIeXLbnXnOk7JXXxpRJuONOcsWryG/wQao+kq/56MuT8+VRqny+qLSamD/wIEKQsWbKKqeiCi/0tDh0aAtkEFBge5GowPyZPrI0PPjiM6dOPYcHqNqhPqhhL5RE+pAWcSHCCkAzn5nnhz72D8O6DS1Wks4BLQxHy6eDghYZdrrEVmjXzM+6PGvUVSleoesvgTyY6lxyt5qtEE/CtFHfm/HVwdMT99z9FE/B8/jYsgxhLc0vqvNGjj+Khh8qp63ruuVAC8CDVVXznxDQsWiqJWL3ZMoeRxPWC0hTQvt7Y7fTPdCgZgJz4JNVVQLfBB7VsWVe0ahWg2p9/PlQBwByi+cuX02iSdcaXgZHYT3qXXQymaEjyaVPNW1Hn/XHnQbzxxMtMEpyAdm+/julDB8HV8dqjPI4UQ5to5m/K4BVD2rjGjX0poxhFOF3UvCVJJ9OvUhLBaTzORmRjclIIOlZMJ0UO7cYWimiTfZ1yqZl2RRtqMQ3Fg2263B4S0D6AVnif7lYfQLkVqcwduj7yKI4mRiA2IxnRpBFpFVCFEXDNjXfqwPbVmPjhNY3BzVBWGCfRlb8lgSmnNijt35s1eisfTZnsG5p+TxzYwrRlzSFZJdLT01Ve3qNHTyIxMf/heL2T/vbbdDqrV+RDKIEPTn+SQHsVO0QiMAUQRVKLsv+KKwmW87MvSKCFOO77M31WWIyzerAKcW73G6BQMT/hvBMeJDdORqXAfHXcxo1ROH48mbQX5TlvPri4555HaIpt86+Yts3XY76/JdxF+aDJSrIJduoTuAgYFv9DyXBB5aQqr71WmYTZ1VWE9d69B+nP9TjqNOuKJ9+eaD7lDe9/RQoYyd88ofGjNzzGvGNyYhw+frYz7EgpvGjRYpIh76TGOIN+os3Rrl2geXfj/ij6+n355XG17+9Pwu0DnY3AWgIShKKnFzOxyAvCzRT57fxOTevDBNvFFcnt+/sxb9RhhHbJnDjyCkYq2p+2bQNuOGPLpWR7HCGB9ck4RwgA60XNblElMSMTPT6biEM//EzuydpY8PNXaFbKsnzkxUd8JOXn2Y1BMMUV0TJLwIm8OMWl2eLdN/chx9aOEb+Mqu9TG1/1SaFm1bvoKUo1ZjTRDuPxNP7b10TQRnFYdeXaa4NVL1Mv7m6RgCs1St1K1VGbgQfQ/NovnDqEwc98pKIIXd29bpivzHwevX/rEqjqGawA4DECdQnSkSLa2aN7N9IHqhRzgn5JKgtv1S4fYho+f/4igd0R+hMd4D3jg+9ILh/4cTzqwvpQ8vRde5i1aOFvHFtcRZzjxUfK3ZFBKN6JFrvWC8rXiglQvJXidPw42n6Xgi3fl+S1kQeNGh2DVscwn3DqTZnyOwJD66J/p3qG5v/Ld/NSaSRHzg9Q2bEjFj1fZAqz/ccxY2woDh/uStPfYeVTKL5gUt57b7Ti/JP63s1LkBB7BV6+12Qv7Tda5CXNydbhRrtb7CcuHi9+8htGPt2RUao/EPzVUP0+/DDMCACFLmXFiki+SGSR17GM8kV77LEKKvdsYmI2XzgyFGgsXdpVjRXwN6R6gvF8AijzAXG+dtl4wEJlG4FTG5r+r1ckr7I3f3dC+C2/4QcfLH+9IYWOiyZ7UJUEtC9b+Hzbt8cof8CmTf3w8+4wvPbkyyrIo9oLw7DqlScKaP3MJxbtpwTICNl4cWXyIW9FZyPXG3GWWU7ss/HZEHuMn3AKaeRDTD9wCqdq8gWoOABoAv6KO5c+Zn0S0ADQ+u6JXtF1JLBo+leqh2hfvpxz8Dq99eF/QwI1vUsrE6yYgcu6+qOKV0n0feQNxEZeIBCaTcfxpdSGPUyn/CdVhge5V+XKlVFbjx6dVCqqRYvytTeyvmrVtpDKpRuzVjj9G8tVc96qGfjwYWbxcHShOfqkioS0tMAlS37DH38sxMdzTuDNZ58hpUkLfPXVSLi65gMSS2P+jbby5V3hfIiR9BUq4n7S0ESdFH+0BsZTZWVlMSp1HjwY9DFo2Eeq3dMn30Rp7HQTlSTyPXqRAubvlmxG8stLws8/TyGQO67AmmkAjfj3jR59TJ1G8tKKT1pwsAvN6T2Vtvjs2RSjP6R0Sr/KoSiZLYKCFhiXFx0t+aSLfhEQfsUj1BhLLuDrFck1vIfm2/5Vkq7XtcDxdeddEZ6cT+nTin6dZTyzCxyXnSVLLmHIkO2qvdS9+xC+cB7satTAzDk/o3NI6UL9LTVUYmaZosy30l9eiGz5LUDZNIK+ShVPumi0V1OK/MQPV5c7UwL6zt6Z9/WOvqoHXxqjrk8eGHs2Lbmjr9VaL87dwRkPVGihKHsM6d0cnZxpbsxWPoBxcfH45JNxpHzZYPESJFLXtAiXn/hGmRchgq5fvyPJcn8wP6T2hQvwyy+PcjumEtUfOBCvwEM2U0IcO5ZkcU6LExXTKP5cWRev4PfDbszoEV9kzwEDemHEK0Px5bwNSHMPQY3aHfhg/bPI/v/GgcBAZxzd3wH9KsajfJsqvBcFZWrPQAUB41XrtkSD1j3VZjBj38p6hP7Hz8n9VoYWGBN58bTaF5ogX7/KKFO2Ov0prwE1SV32/vvVMWdOswIBCRE0ocbw5SMptBrmn/TEmKFL8csBLwSNeAfeJLp2CaptPE+LFn400S4gyDyt/NwkTaD8TkyLkG/b0BRa1MuC/M1p3HgVtdvzsftoBiN4rw8UTedfxHzC4lcqoOs++nkWFcx0JfbavOHrVqHOqy/i2F+Tbxj8yTnF/FtcEfJqiS4XahuJ8O3atQRf0Fzx5ptVjMM0+DOK4o6saA3gHXlb7+yLat55IB3X62HymJfh6uZ5Z1+slV6dRL0eTsgHcUHOXsZVHt27mZqYkvQ1e5k0J6UZDdzQeMxQEcCxZ08nwy592ZPwxRffITY2GIGBlYztKSmpdFzvrvZFc2Ve1q69gn79tpg3F9gfP74eAwzKFWi72R1x5N+3uBbuf/08did6oy4n2LAhioDkMMaMqaOIqA1zDqySSN5AVwS/9gpCuz+PN1/uibSAhqhctQpqMcev5z/oIC9ghP8XAEqGdYwjUfAPD87BnguDsGPpCThTi9O/fyn6ZDoq7sxj9NX8uyXyKvH3rVLAmJ4/oGRZtfv55+8hvmFd00OqLnlnX3qpsqonkBRZsoFIQJADOewk2KFt2VR17LdXB6t8uI7j30NEqeEKyO0+l4bVx+0x4rG1JCbPw2uvHRC6Abi1qIuWtCAMe6MB2oTma+EE+FVkFKtk/fCkP6k5fUx6eq6KXpeTzfkjHB0f9FWBRuZchGoxFj4k1d9sBphIqWMhM4i0Lz12BiMW/A5b7zAE31sb2z9aV6y5V8bcShGAOIC/158O+OLJ2mA0ftNbmUaPuY0loAHgbXzz7uali7/Zm+MW3s0i+M+uPSEzFaPDFiEuk1kYSAHTpWQtXIk4iylfvAAHJxeVwi0s7DgjextRA5ULqe/bd5B+WnGkQIlhBGQkiZG9SP5cUZmERVN48GAYedx+IUeaUFZ0p+nUmSDxoPEapY/42B0+vNHYJinOHEr4o1Hf6uhVn36GMXEMBIhHZkYuAwjCFTdev343Zi4zTlpEpUQJZ6yZVhniM5WUmQiJQBVtYMeO6+nH2JLX6q9GykO1nGeW2pziTmFamSaoX6UEvEiyO4P5VIdUj7+hoIS4uEzKLZHaJgIMprsTYmEpBpoX4f4TDkAp771XHS+/nA+OVMPVjyemDcQDb57Dhn1EiaT1+ItAaNDgAJSpWhfR50+Zdr2luoECprxbwC2NNx104VSY2i1TppRpc6H6OQKzhSc98HjtOIvp10SrJkEc4dQMTgvzVpx2KVk+6NAgBaNndMGiTanYvuosnL3oC3j2PLbYlcehhzfg0ObmjBZWuFDx8i3gOYRvUbgeJdS8LO9pS8lBTCod4eKbM+cCunQJwJIoIIVR4jcKAKXf03VisZem45+YHaR2QDqukGTc1ykZEzcuxIrxk5BFTj/barXw1JTJ+KSNUyEZ/JMN/lyPRNBLxphQmox1ubskoAHg3XW/9dVqCfxtCUw4vkqBv/ZB1TGwXBM13++/fYMzx/Yb5/7uu0mQ7WZLenpGkWbTbt3aF5iuR49gzGIGiabls7E32o1amwpo01YCToC2rzDHLekrnJ2vmdIKDL6FnWhGVgrHmQejSrt3L4nvv2+Ap5/eTZPZQWoE26kZM5lq4fDhY0hKSsaTT76Kzz99B3VKO/BYFh6tGYdfCUqeIHi5XunadRMjjROZwaE6fSkrMhgiQPm6SbSraP4k0tQAAEeODKOWs6zi+jOdVyyoY17wJ73KFUyefBZDG7qgFwHS4hB/bI68aNr1lurnU2LUuEqeJW5pvGFQVMQ5zP7+PfJAVuE1FA8my5LS55l6sSq1nWG8+bcAt4reWSjpFo9TpAy6wEwuuyMZEevjimY+F7DpTDgeuz8I781qRuC8H037BjMThg0Bo4/K8ysUMqLJNS3HYx3xzR4/RZS8aVM0XzQSEFq/JDIJNgUc3kyRl4T6JICuQ/B3NNYWby38BXt+nKhoXZzq1kXfH77B5x2bMe9wEP30EozmaCGPHrfbD6VN0v/JXLaCUPktdDeyL54U1Xwz1DmKW9cJRh5vDndlxHi6Bn/FCeoOPqYB4B18c2//S+NfMl2sTgIJWakqY0uPUnWNa2vSoT9io8Jx7sRBZKSlMM2bRwHql0aN6vEBXxk1a1almdcfp06dVZrB8PDL5EOryWwJvZXpWCKFO3YcoOa9997eTDg/DCEh5Rj1KSCqcGlfRXj4bNCC2pkWZsqjXUzR9fNBH7g75CieMkm59neKaEtM+c4GDSpD6pcglfpL5n3ttQ9UIIiAGNFk9u/fk5HNTZjBYQ2BRiVeYxnFG5hC53shcTaUVasimZ/1NM3gtakRpWaKpXv3EgoAduwYqLRO8+a1UO0C/jp12shI6nztn+SEXbky0qIZWAZIoMSQIeXUpibgh9wD4S2Uuf6O/9+ltHjBHYyE/XuBLhuWTmc2kGzMnz/VsMQivwXgyDlvpIg5txYzU8gmRdwhF7hUw9fNK6NvtVQ4OQITJtRXxy4k2hEwFgRy4kMoJT7uhAqm2HYpB+fjbfHIZ3Gw9fTDxul52PppnOpzsx9nyBn42M+zsf+3OciLiEBwv974acTzyDtnp14oLtK38N5q8SSK9kXn8kn898asL/w9J2XZkZ8wCVVNuPlEcym/Jnvba6sQQGupSN/jBH57CIhFG/lwDd5Dy10tDddtd5gENAC8w26ovpzbTwLrFk7FoZ1rGUX7OkqHVLf6C+geXBe/nduKt/fNwVs1eyOAZuCqdVuo7f2hbVChdhUsW/b7LV1HQIAf6T5m46OPvsKIES+gQoVyheY5ciSRHHw7GWVbtwCxsXlHoeeQTTQnq8+5I4a0Hf0qJRo1KtJf6EFef/2A0rI1bOhrPsV19318iCKuFgGprVs3xbRp4w1N2LQpihQ3idQG7oZkqJCHuZA4D6p6TcMkpmQBcXXrrqSZPD9KVQIeZDMvAtgaN/Zhdokk5nStorKlPPxwefNuFvcl4EFSxTVsWEcdP7B9Jeo07Wyx7400xpKj8+9SwMh5HBhQJMEqvr7eN3La6/YRAuzx40+qzDKiqTUU0Yj2JS+gcO9NC/NFeU/mFefBEuTfOxrjVAgICfAzLfeSrmXTRRf0b++OvMtXkNasLjkmkxTnomm/4uqpmdl4csZfWPzplwCpg9ybN8VL347Gq83y78mEBSeVprd9+/Vqml30lb2UHEB+R6BHuQRsnrgRH5BEevnySHV88+b8DDrm5zSkjzNtF27AOcc80bgkwSWvxcHO9Kiu340S0ADwbrzr+pqtQgIRZ49j5ndv4lTYLrUev6DSuO/ZUVaxtuIW0TqoKqIyErHq8mGVDWRoaFtjdw9Sily8GG7ULokP4PTpfxB42NNM2c/Yr7iKaAsXLPi1UBeJEm7Xbp16QMrB7t03Ms9wA8ULZ945SxSDLPKQc+TWjQTQiQwe+JORopL3tCNz8EoR3jzxF5Ttl18aKZAmmh/zh7/qfJ2PDz8cTl+9lti//zDq1KmherdsGYCzZ7sT2GUq8EXooDQvs496Kl8z0UqK/56bmx03+2IpSgyn/+STWoywrmXYvaHvt98+iIULIynXZtSwtlFjdjDzRu0mnVT9VjSBySRt93L4e9o/OXm1+q2wdNY3vK9HCIJrqvX8nY+jRxPx+efHlDxPny5RSMsphMvP1I1FFMnDBRRepIl4cNWEQgDQfA1iWu5YPhUd3y7NQ6WRkROjglFEsyg5cK9XRq7fhbFv89/36dPw7dkDXw7pi1qlg1CxYnnjUDH3SzpEyWss5bcZ55h3103VJQ5q6tSzqm74EPO+5L++kSJp3h6rFaf+PdxIf93nzpeABoB3/j3WV2hFEog4J6DvLbi6e+IgM5qoQq2Ol48fej7wshWttPilRKUnqQ4DyjYu0LFd70cx6dNn6CB/L5ycnKgB2248PmBAT8UJaGy4wco6ppoSUtuSdFYX/z4pFSq44cyZFKZfc6UTvg2i0+yxPcIF2UyPJkWiQ6PYNrBygjEdlkTgDqEP3CZmiZAUYSkxyQghOvz++/r05dujtIqipbsV8CfndGRKs2+++QSDBj3BtGwbFOiVdom8lc1QBHwmMbhgK9e77Iw7HmBgyLBhoYbDN/U9d+5FBqFEkOy5BrN+5AMFSxMIWbKrqx0q12sEZ/ojVmGnPRsX4xluDg5Mxfb8p7BhDuMzR/eiY78n4F+irKVpjG1C/yJboLOHse1WKgL8Fs/8Rg2dMOEXPPzwYKbZW8AAnpbo3bvrrUxJlwIfbN7cTpFfFwdsDWnSbjSAw3QxL7/8HjXVa/H13DU0zQYoAJidna3yQQcF+avfvqH/b3sP45VR45C+aTPsSpZE/RaNcXTZMjw65w/V5cEHB6rfjezIekeNqqU2Ibf29HQwTKPIr8+e7YHVq0Vb7M3o+Sz1bexQTEUCY8T8Ky9D/2aRc6w/X/Tv8N88t5775iWgAeDNy0yP0BK4JQksmz0Bf00ZbRzr4OiErMwM3PvUB2jT86Fi88gaB1lJxcU+H9AsjziAgQSBtgQPuTk5cHZhpozuQ7BxyQzjSsuWLU2fs5kWwd9lmtJE87N9+26ajdcygOKoGvfUUw/hs8/eVfXqfhkIi3bC+otuGPr9PchISkdIQB5S8hxxmkAq/EweSlCrJ2m/7JiHePbsC6jGB+Q9tb0wiT6AXcsnq3zChgW1JPmulGptdiHFJwjPNc/fl7aFCyMK5EsV02Rqao4CE3JcikTo8nILgLr8IzTT9eiI77fSt+rVCZgx7gVDc6FvCSTpXD5FmSO/3+eL3ly7pK07w2jMVTRXV/NLV9khhJdOsjmID9h5aqralE4xBgG88MJeZvQ4p+bu0qVEsQDw22/rqX6MLUYma+tpfpw/fwn9NFPIizcdU7961bjG3RsW4qVPZ6EU8wQXVXZE52uo6vqUK6rLDbWfOcq0YySBljJnzkK1SX3atN+VFnXIkP7o06eb8huV9hstlSoVBqaSo9fBgTfuJotwOf711zK88MJQclLWxuLFqxiR/pua5cCyqVh7ygYLwzdj4/rNKupdstw0aFBXpUK8FBmFyEv55loZkHPuHA5eiUL1Bm2NHKamL0mmS5OAH/Pi5eVA6iPRQN54kZcmiUAfSLPvFWo9jzGgpT4paNyYQaeoIv0kOlkCYiTjiTt/r+FJ9sp9QvxtTYu8gJ2Ic2I6RnuciXdAZ9+zuGjaQdetVgIaAFrtrdELu9Mk4OHtV+CSBPxJEf85AVC3UxlUtgmOJkRg3ZUjdD4nxxxB4PrFvzKa8304kgpGyhxuLS8dUgERqsHk49df/yB9yWcqL61Js7HapEl9Yz3QNQeBV3nepFGIay/Tj8vOJhWnEpxUVgWJ9BSAdOFcCr79NRO535/H6VXVMZQmrw0EjpsY7Rgdm4Wv3tqG1wa48GFeCQ91dcPE3XY4ejSJ0ad8gEVmUBNzogAAbNJkNTOUJOPChZ5GEBgSskStbcGCFoVSwsmB+zvXIOVIKmLTbeFL0t/iipgjhbokjD5oeyKd4UUt5Qv1Y3CQgPeP416kMcllAEKGojwRGhIqiIylXj1vBQAffricRTO4saOFimhnBw26Rx154IEB1JjtQOXKFRVo6d37QXz8XFfUbNweNQhUGre/By6uBQHVntizamxj34rG2SWo5Lt3H8TRfVvQoE0vlKtUG635MuDg6GzsY1659+kPkBgXhYS4K7jnkRHw8gvCpM+eQ3JCjDKlizn99ddHwpsDnZkqUPwsp0+fgNq1C/tHms9t2H/22T3MfnJe7a5Y0boAkbShj7nZX4KUJCJdtHnDhr2uui1btsbQ3fg96sPRvD4nuLh5oF2fx/lvuTnCdm/Evs2LkUfNarwrtWE9eqBXvS5oULYWPH384UxZiqZvCnlMt6+Zh0sEiL/99ieBXfcCmkPjSf5mZSN/+82DUxX9kAcViuEMinpzYwkGx6SjAqPaDe4Qpqfxc85R/65SSXHjy7pQ3QhlzdlER0wP81IvJAIOU6lZTMu2VUFY9QPT0LlcMtJjsk2n0nUrloAGgFZ8c/TS7hwJ7N2yDNO/zn+QyFX9+ut4lZP1zJnzCCxV4ba7UGdqAF+p1h3vHfgDKdmiU6J5iZlApGRmpKnvmO+/KAT+hB7lxRffZqq4fBClOl79EACycuUcFUFsaBfHdQc+aDypgTAU0Ybti3JBCiMd6/sloUWV1Gu0INWAg9NjscneD2uP2aFbHRjzrCYlZeFzuv1/OjMZzz+fp4iFz3xyEQ26teR556rpJbDCtAj4kyKRun37llJ14fzbvDlaBW6Y5wSWDlM+fhWP9uqGWUe90a5MMrV5+fJRgy18iAlSNgGxfSslqR7iU5ZHc/a+KGfls5iZkIqPvzmtfBRr1PBSfR59tAJku5Uimk0xoUvmhzx7F2RV7E4NYv617tu3lkE4XxKUzFNuCnMnjcLDr32NBi27q1OJX6dwAHrT/8+Rvp1ZWRnYzKCflX9MZCR4hOpzcOsy7KSP4bxJH+ODn9bBQPRsvlYxNY8w4/PsP/RtTP3ylQJd42WP2mIpu3fvpwtAWaU5btasoQJT6kARH+IuYCjmWjUD8Ithh094zdu372F6uYv0Y82/DsM4Ozt7DHjiXdgT1AUEl4ebhzezzOSgVPkqqs3QL5mp8aLLlkSFDq2wJ+4cgZItnq3cCdW8gg1djN+PvDYWpStWx6q5P+CZZ15n0NNH+Pjjt+jb2oEvG27qusLDL5FSKAUSHGWaK9s4yQ1UBPzJvxkp8gJRL4i8kn6XMe2wN+yZ9WTecU/0q5yY3+HqJ3myUc8CUXWQW5rKXiKmXvm9iv9jEP1YDVHtsm9w0ygwod6xSgnYyFubLtYlgTE2NgFcUf5fu6tLc/ttD2y8CmqQrGvV//xqUulk/uqemWgVUAX3V2j+z5/g/zjjmSN78Pmr9xjP6EQOioyMTLToeh8eeOEzY/vtVMmkz9NLe36lmcgBL1ftBtfkVLz7aEt1CT4BwYgjGJAHWXJyCjUbjthIots+fR6mxuOy6iM0KZIvNySkIR+mueRWW0+fvvwHpTxg5CEkRLxC/CvhmvIQE46zTJpFO1HTMG/yEZWN44UXQukDV7OA6CRgZCYB2IM1EoztAgCrDbqgfN0ebZKBke/mgz3JzRoVnog/v91FKpY6BXPKpueovKw9ewYXyIl6/nwK8+nSt48+WiYZy9S5qlZtzlyqy2gi9sRq+kNduJIDB5L7DhkUXCxYES2gAF7JD2soEsE8k+a7VcvCsX59FOlS8vDycxXQsq6L8ou8Ff81mbtbt01cYzRBcCXc/0I9rKTZWQIjzIsAkHr12sPRxQNPvjURFarVx8nUaHxzbAX8HN0ZBd4HB9YtKGBCFgoc0Winpua/CIyavFlpvRydnanBczI/hdqPDD+DkU91oKbRDSnJ+WDkve9XYi4B5OFd6wqM+Z4vFj/++CuJwg/gueceJ1gdUeD49XaOHTuJhU274QA7npXNw13xNopWLqBkObjz72ybng/iNP0hbW35EjH4Od7rgn97N105pjLhRKTGQaKhs/OuvaAYzi85kodX60HqH/5+r1Mizp3A9HHDlQ9mUV0bN66Pn376ikA9/0WkqH432i6PfuGlLEH6G9H09aEbggDE65WzCQ4qm0kj5kt2poZaTMUy3jA2IzoGWb34JlawBL6WlxdVsEnv/dcS0ADwv74DFs6vAWC+UO4kAGi4zQd3rFaULxtoLpXy0S8br+twbxhrjd9rI8Mw59x2xUP2UpWu8CdgOrB9lTIFm6/Xzs5OaU2kXXgCT5/eyahXO0amLmN6shyawHoYh+xnpoRDNIPKQ8XwTCrrwUhaO9AcmotSjqk4sCeaY7aqMaNH1ybVSojKA/zzz2fIlReEbH+SJdN/rh5Jdw3ajNGjj2Lu4ijUfqwtfngoB8fouySm13tID2PQYhgXUURF0oQJ+a8Ek5Tht2T+kCKasZdffpdAbQuzhKw1jv765wh8tZSpv7LOYOFfLYztlipTmGmkT2iiyhcrxyUjRTNqcNxtMlX2iVWrr+D9T+sDri44SO2gBL3Uo+nNj+bww4eYW7aJr4o2tjS3advXXx9nMMEV5lCug2i3QKTn2Bo1pab9pP7qq+8z+vR3de98/IOosVuCaVf2EgBdpAbJDoN8qmHz+FHIykhH+NmjxuHt+jyKzv2fxu8T38W+rStU+5vfLELZ0FrGPobK0X2bMO6tIYZdVKndDC9++pvaFzPpge2rsXfTYrUv2UIuXAiHE/1NhXPS39+PqQdfoum+M8mx9zHfb5ACoNLnwIEw0vAcp0bvkspC4+LiTJP+GcrIgZq8CgrwuXp4oVLNJoxGbg0v30DjGixVziVHYTyJ0JOo6ZPiwOuXXMiBTIcorhCOtvao6VVaafxc7S2DXUvzGtrC9mzAst/Hc5f5iN28UKFqPaVxlJepRdO/4ssGXQReeAKPP36/um7DuFv9lhctKYeinSFZVnqE0I+WL17FFdHyfbQ1AK83jraYjSWNAHBGpabmU2gAaC4RK9jXANAKboL5EjQAzJfInQgA5cq+fnMwju3fiqBS5WkeW29++2+7/Z9PrsOu2DO4l36B7UpUVxqb7957GE899bAiHRYAIRkyDEUoUqZPn4jSpUsamor9lqCOuX9G4IFna6F6TS/lc9R96ElknLsE3/RYppZLhwDAoU+EYPmWZAx9Pxw5NJtNeCOQJtPS2BLhqpLem/o6RabYqQARcWhvQ42bQXthuhCDedC0TbInbCTwe6xWvCKZbhwQi2ObFmHXrn2kklmsslnMmvUDTd/OxmESfFCqzhbYebghYltdnssAaY1djBXxb/xxvy8eIkGvBIqIBvA3ajKFsNdSkeuQwJF7nzlO7WAuauddwOKF+VpYS/0ttW2/5AIB3E/WiSt0OJ2AfvnyywTqwtN3mYD7EQjVz4eTNmIvTZxTTm9Q2i8BPU+GtsUVppjLZSCOq7sXhNZIykqaOOf9/InyBXzr28WQNI6WSiYBpLwQ2BGcmRcJMJJAlcsXT1Gb7IJmnQeiYZve+HrEfTh9ZLfqrgKRKAPTIho8Dy9vavX8Ce6CkJwYx+CWahDfQwlYutky7fQmbI0+wZcSGzxdqT1q+5S92SmM/eV686g5dHJ2VW0XzxzFF6/0oQtFPrg0dmTFhqZkZxf+jlPzzfSiXY5PyNeUSr9bjVw3nEN+Zzsvu+IItdCSsaY4ELibhNQSYd+1Qv5aDHMYvjUANEjC+r/trX+JeoVaAneWBMpQA3LuxAE88+HUO+LCwhLC4WLnqMCfXNDvE96Br58PtVH1aJr9Elk0FZerXAfnju9X1yuO/bVqtVaRnceO5WvwihPEmjVXsGLZJbWdO9cdh5giLWX3Ebg1qo6U3BKo0JiZNVrWxO9H6Y9Uxg0fPhiLd8an4PkJKfDxuULuwEBFuTKDzutVGFAh5NA2BAqVmfu0lVlEo2QiEaf8Jk0aWHyoCnRzd8gHGQ9Xi0KtByYhwNMRtRzTGPixFIdI6Dxq1AmaJWsagZ5EnlYPzsHxPFdqotLoM5dLs7e7xUue+etZ7N62/3/sXQVgFMf7fSHuQnAL7u7ursVaXEuhUFoolEJLW6yUGtAWipUWKMVdi7sGDw7BibsLyf99E/a4XC4hoRb+vxu43MrM7Nzs3u3bT95DYNe6TGAJRYG8VsrCt5K0NXLs0q5xqM7xayWPPbVcGZe1fpI92nY/B5fxTZmRaYWSWdB1jes9FhWTaMU8/LXWre5dCKoHDjyr1letqkN+uq8wdOgYJnocQ3VazCS2be6NP+FFa+CEi2vwLuPdSjjm0bWXhZbd3lGvVBuNrGgxpEZ2IQeB4aDxc1LtWvnjRB34kx1NOg5Ek04DER0RRsqTRLjlKqAsehkB7lQdZmKlr0c9ch/aYo/PFfx8ez+quBTG2yWaZiqJSyzjJxnj2vat9xT4nDGyNb8bCXBydlNhCWEhgchDlZwjRw7BkW7pwMBgEpUHK21t0co+efKcsmaKW/5NPfAX8/k4ChIzbMA+BUhm4mOkqWJFy7o8DBUhOfZvjA2sTbLoALp2HzPzVxJAJDlJg9bFmTiSHvhL07FpQ7aeAZMFMBueHpMFMOWk/H+1AGbDS+4vDel9zxVwsLDBjCo9VD/vdiiqrFH6neYrXBI+D2/rb6K7dDgTYT7UbXv8OBq3b0cqwKbbyAWJUz59OpguyGTKo0VQHi4FSGp1fvmlBi1TKdYmbZsAl0HfRWD86KJ4u2UKfYXsE2m42uYP0LDBAdhVK4txkyqgyNzv0X7jaLrvkmjlKqW6CDFQgdD6FU7CAszcFYA1cOB7tGwmYMjMFbhEd2xFh1AMfO8GzMg+XdnsCTZsqEs6kwfkhoul9F0EjiYWQ8TRC0iKiiE5dHvGCKa2dMnndHPbog5lXaownoVFonEFC9K01FCUMxKzNe+CG0ZVC9aGk+Zd6iz1csUQZj9ntmy67agyPEU/17BIssiuXT4ExU9JfzKP7u3jCth+tmA/8hQspqu+n9neGx95EiQko7474woJlP7pzHYfxs0d2LoUxctWR7kaTeDk4q4bz19ZCPZ/gqcPbqrkjmd8eJHM5Jy5CzDT10nXrfw2CfB9GB2kYiGruBVBITs3BMVFkiQ9QtWr7lYU5Zzy6+bhvc4lkZgQr/aJZdKS18nIkYOVLKJwCJYoUYzJIINeSnnjTKLyML3rUyzVEUzCeaaXOa8b6CsuyPdEtK8n0M2b1WKyAGZ1xv67+iYL4H8396Yjm2bg/8UMFLB1xb2oACZsxDBb1xYeJSrg3q3L6rNJ5mKVKtVw8+YtpfU7ZcpH1MatqRIkhPpCEgymTJlAMuOcjHF7rNqEhHRJNS9iwalTJ6faVquWG7NAQyBWwffeK6kk3FJVfr4iMYC36udERLIVFl92wfvVg9SeDsWY7HGzEOp1K4cT669hxbiHTCZ4T7kt9TOTHz16qktI0e9f3MWLL7tiYOf2cLSzotv3V2r1RqEO4/QkhrCOkz9O+DjgsltB5Cu4i1kr9K2x/PlnQ5wd5Ak0rYGw7UcZmxbKDN6zmDChDN6m61qKfM5Vq2qTPDsQ8+Z7w7F5Tew/ch5lyuwmAOvE/aTV4fGFxLo3qWOMFaljQRJsIf4V5QpjbmzDdlSHo4XUjoH8sTrdXK2OPznrtm+fjTVrtqgEjjZvjlJWNkOw1TxfBVR188DsG7txnC5SsQi+z5jQfHYuWld/+3u+IiXRhwTWr1pCAn3w6O5VHSjTLIXLvvsQcbFRabq1IAWNA7N/HV1zk84lF1zoqrZk5vrdQjmxn4kghuVU4B1ltXW1skclWgodaOkrUpDtGg5HkfCjGP3ekFQqIIbt01vXB39S56+6f40dJysPEMbam7a9HjNgsgBmw/NksgCmnBSTBTAbXpxGhnQzzAdzbu5GRZdCdAG2gN9jb3wxrCkmTfqAVCN1CWoeKmuXWL3EpTVv3q+YPXuBrqfhwwezTiWlbNCtW0HGeOVQyQk2NvRLpVPmz7/DwH8vWsysqBqRmwS9tHoNKUqQQjSjVySGbc1pM9SuYI0yOV9YuPbet8e5u0moYR+AFnUccOHCFTRr1lXXcvv2LSSiDsYXX5Qnqa+rbrss+EZZoO2Qb/DN0GpKVk0sk35+MRy3Oa04BH0sOext4di4GsL3nUEyrYSSbFGjXUkM+9gbbzdMVAoPog8s5cmTDlTpsFAE0xrH4LhxpXDrfhwuupTHp3UC0KNbAVVX/ngyBusKg/YlOaQ4FVIkO1oykcX6JwS+FxjPdyvYGvkdExSXW25SzHCXrpShG1zc2JLAYkuQKEWyjw8ztnFQrbzYTzelgOFDh07g2rWbunaFi1fARMbwvaxsfHgWe329FPjpX7Qh6uQq8bIm/+h+oanxf3wPG5d+ifs3zzPmTpJHIhEdlRa0aQPp3r0jJdjG0HpnrkICHjx4xLm4RQv1XUUTExISprL4A5nwIDKHzsx6T+K7BetbMTHEnDGgsVZ0n9LKF2NLuhRa+Jh2DavChTF12Qm09EiEi82zl/JESmb4okuumN7Aj2TM+meRSUdc5WlXDwbauLPDu8kCmB3OQubGYJG5aqZaphkwzYD+DDz2vo6fPuuHvIVLYfD4uWqX19mDiIoIQYO2vdMQ5+q3/f+2nMfWWX0kyYCUcvbwFuX2mvzlHEyd2JxbbhMYPaIl8DvePB+pOvJHFEK2bl1OLrpCmElDjrgbc+bcovaXLOmgePq0yteDrOhmtVVyVmLl8rKgRaWhpVK12EmgtOWUP2lmApgJXJx8fcdRurQjlS7q08XshV0+ueAeeB+HdtdVrlTps2nhKNwJdUNtpaPKeEBacqQUIsh5dNeLlrkfqUrSim7qi4zJaqr2aX9Ev7dJ596YPHcmKtdrhqU/XiVYvEGeNjt+joqkFEmg7nERVKx5CA4NqsDq0iV0714QGx464NCSIsoyJ268MkfOElzEKvAnfZtrZG1c/vZbSgae64u3+FnbFrXSDq3eJYaxOjObJbnloj/nhEBAg725qIhSxi0e5amecpVZ1GUJ9kRxRCuSZHI31ErR6+zydkQMKXV4CDwlsXaNCSPRnNbcgy17aNV17wKExsxaq1vPaKFr4ZqolbMYvr62A6senEQNLkuG7L9ZIkgkHeDzAA8Za7vm58/Voe0ZI9e+XQuqn0Sg4p8HUWn5TwT3lakZnBI7p1GiCdm0tk0aCjVRrVpVjQ5fMoqXL1+rkoCE1kmK9BPNZI3EwEhYMDbPMjYWcXwI4MWN+IcPMW379yjZfxzigs1wg0B9ZNWgdCXaRAWnT7kwRQruwfg8yfqW2DwhYZZzJt8Foe+Rd1MxzUBWZ8AEALM6Y6b6//MzkBAfi/CwQIQFU8GArwl9aqSaE3tHV9Rr1TPVtv/PK55B3urj1WDMk5Tr5w7TLWqDvasW4vbyRdyyDV5XbVG4ZGUupwDAI0e2MBGknFTXlRw0Y82dW4VE0RfJx3dTkRxrcXJCpqxPqFzLMh4louIw/J1iuHIrBt0+MsM+ryBUIredlJs3I0gVEs2YqhLY3MsLweVLonTLK9j8cwnUqe6MEaMuwt+jPIZVslT1z5w5r95rUMGiesP22EzJvpo1rdGvX0dltXRzc+VN9sVddkZXd1RelU9x9N17Hibl6xuNiROvMMO5luISvHOnHebuBj5hPSsr8qTxCGI99HBOUDFcFbleUf48L6L7GhTUGWvpCvcvUg55HRIUfY1kaHqSzkaoZ8oXLgq/gDsKRAr9S/U8Mcrid5+ZwDI80UQWgEBMCFfrZwS6kVr36l0MpAIQpQiQ1IrQgdxe/xVq1TyBQzEhyEsqlTZMhvn1eYUCHiWZnWuuVX/pe0H7nOhSqDrWPTyDTY/OokeR2i9t81crCPDa+MsMElBv4vw+PynPOxXqlEmT3qeV1vqvHiZV+xIlimLq1AmpthmuzDnjhSnd+ikTrd2IOfi4bVEd5Y5QFG2966Ti7d6iVJuLEeUY4duTlyT3OFnRakiLbmKSmbLeHiTP5GHGpTbRU8oxPL5p3TQD6c2ACQCmNzOm7dlmBl7cdv/7IS2aMRwXju9SdBUilfWQsW7hoYHkE/NQtBdCIFupTqv/fqD/4gjsn/OdPSFwqIIi8CB3mZDoiqSYuMfa9RqNDn3HKt3jsd3LK/oXQ/CnDffTT73UoujvenjsUBa14cNTrHNaHXlfssQbCxd6Y9rUa1TpaITE0AgkJyTScldWvbS60dGJWPxVURVz98Pl82jb4i3Ub1QPx4+0hLlzIDpHVMOst/wpizYMBYuVRfMuQxQNSRjlyQ5uWUpeuR3kXdN6o6bqyp+p1NAC69esR/H48xhRJQh/JFbEjlu2iDxyQVWsUcNNvbvZJaNdXVuc8DVTN2ihcllKnr/uVF2QrEpjRUCwTbVyqJMYhLVzb2JthXLkqMupyKHFWnT0hD+svZMREJqIm9fCGB/ogIYlk5ScnLH+ZJufXywJhL3pao5hZmk8506SSlKAr9ZGaD8EGH58dx9a0x1+gO7wea4uDDALQ4UaTTByym9a1Uy/N8tbHruoFX3I7zo6FqhK0Jrakpnpjp5XFM3gfZuWIMjvMboM/EhRzej3EUu37r6Ni2lRtcX8+bMoF1de8U06OzumUpfRb5PV5V3eDhD5vipGVDKM9SXckF9NnAY+EeDWgU3Y6e2OARXCdFXFmizXg4D8DZT+E7duWVr9RF5NZNry81ha0TK7Y2KeUTHkGurWzUmVufxYesUFTRCtVTO9m2Yg0zNgigHM9FT9exVNMYApc63FADaiEkivbKAEIvxc779ROtWFYEUOr6p126DH8M+VPFSqnf8jK3KTE8WWWFKJSCakh30uVIMz3KzsVAblwunD8OTOFTi65dURBQvps/DmSfHyOqISRGT5+vVwyA3u8uUw5X6dM6cKBgzwkF0KwNy9G4lGjXIxXjCeVC37lX5vz54FsX53COwqlcSjbSl1VQP+cXXdrC0SMNqTm/BdtS4ZqtbWNRAbd5EZy/Fwdc+LyT/vTZXpKZbeQN9HmE66DuGhkyISZOfP70eTJl0Yc9iHFsIeavu1AEtcekwqjZxhdG3bqW3yZwNltuoViEI+0rVISZA3PtGIJU4SNUJizcmpZq5i+nLZJsDdNgmitACv6xg1JxSl3BNwaGNV1Vb7I65yd/ctKuZP4h6//bYyE2muYs6c2/htY1OUqpRLUdxIBZnL7767qfZp7eVdizuUZbGc7dy5j67ukySHPqqyUq2ob2tP9QshIBZ1jKm/HJGqWS4XqBm86M5BVGOCiNClZKVER4bh2J+rkUjN7NAgP/JLHkCw/1PVhdDC5COf4OAJPyF/kVJq26VTe7Fg6lBMnjyWmeIjsnKodOsKL14wz5FQpIRS2/nP+w54s0x4uvX1d9wMCkPbkRMRcuwE3v99MZoUbwwPWnHFAqyVuLhn6N//LK+pEIYs1EPpss7K0mfHhCKx+PnRYizxnc2pfCOa2FJWkCpo9OiLDFtwZHZ8cxUjaIzDUTvG3/0ulERigeSwOKZE1MoXnSqW0RQD+HfP+D/Xn8kC+M/Nrann/2czIDcYwxIfG43TBzcyFqwVqtZva7j7f2JdwNQXlbri51v7SYsRiEfRwbhFZQTZ9oAW0uvnj6IeXWW+YQG6+dDAn8RXCeeZVsqWdVKLVatSEaNzfgK4F1YjATmSKbxiRS2INNuNG20VKLS1Ncf4jxOx7okQS4dpXal3icmbOHETYxKXEvyl3HiLl6tBYPOEhLu30KBJD6W00KBtrzRxm5ZWNhD6mlIV6+DxnYtMitjMpI9uqFy5CV3ctujTp5vuWOVyJcA/1g63knKhMKJ02yMoZeesp2PMnAAIlcwjqi5I1rArEwEcuL93mTBcY5xjMm+rRaMfYTVpb95sQXqWzpXZV2rAIVbCj5Z2wH3fZ6hc2xWRzL5esO8ZnFrXxbuzArDpl9xYR2vSqjWPcO64H2K8HsIyn7six3bj8d56qzDnw0wBvXHjPlf6tzExsYprLz8/78APZ6Nmk84QACbKNdXoEn/VIpnBuawdIUAwND4aLnwoyGw5Qy3hTb98mar6unVLCNytmES0EAcPHsfXYzph9obryj0vlnkpDRvWTdXmVVdEGUPcq6ISI2XTHSclQZiZ/t5cvhl7pswk0rdEuzmz8EWTmqQgslKk44btr10Lp2U2TiUBSUa2FuqgKcxEJZhxHPYIiTNHL14n1au7MS7RDtO/qsIYUBv4ECTKg4VcW/9G6VkqTHcsCWk49theubDLu8fhDkFrQtALq+W/MR7TMV59BkwWwFefu3+spckCmDK12c0CKGDmqw86qsFZke4knjdeKa17jkQnBnX/07xn6mDZ/M+6h6dxwPcaOtDl175AFRzZuRKrfpoE3xsnYBsRiafUBv7111U4fvwM1Tsmo3z5Mpn+RKJI8dZbp1R9X9+OKutWayw360OMhxpQIVTbpN7v33/IWL7WlJpLpGWsDgZ/9INShEhV6SUrNy4ep0xZb455BwmcC6ss0NKlSxhtdcHPmjF5trT4JSqyXLl5b7ztrJQ9tAYhtCS5Gon1kv1ijStYcAeTCFJuoreedEOu55Yfrb3+e2S8Ga1SjvAJSECO6Ci0LRFDK6W9qnLpUiiatTsFmzJFkMPOhi7yJMz9uihCzvyBtWu3kk7nkpJTq1q/Heq06I4S5WuminPUP85fWT4RcAsr7h1HH3IDNsid2oKeUb8yFwJAvamjfevySerknsf48SPp8j+isralrbWNLb5dc1m57R/cvoJZz7+fEmIgcaZZKQKijj8hWXekpYqnzGWbCFGPOUOllJt0v4trthYJkl9WLgcEo3HddsjZpBH+/OZTFHdNeaiRa3QPLYgdKLcmbmStyOeUoh9jqu3TfxcJQlGhEYugxHtake5HiM3lJcDxvyxyHV4PtlGxiiYL4H95JrJ2bJMFMGvzZar9/2AG5AfX99FtxDM7L2/hEkqKSdx9YvGRIi5NoYmIiYpQ8X2+JDAO9HuEyLBgeJSuwrZ3VPyRja0DZaZc0XnA+Jf+eP8/mLZMfYRnEsTE4khiaCn21FmVsodJFh07tkZeLk+c+L7apv/HxyeGVr1jTKCgJutzK6D+fllu3VpapxTDm6VY0uSmeIQ3yEbkygsICMIPPyzBgoW/qYSISrWaY/DHP+lkt7R+MvOeM08hVe3pU19KvZVihrFx8CeVquaJU6+bwVa64Py+5UJVe+1PeuBP9svnGjCgCH7++S4GD6ZWbQbgT+oLNUg3xpBBeUEFBdiTFqcbXYqXZbcq0edT3t3d3TC8RQR57+hqzlsITTsPVrGZryKJ9rzrTL2FPX9Qyvs8WzxTjVhJ5qJS7RbqJTJp343ryuSgeap5noLFkd+jNF33+SAEy5Z0WVep11rXdZcuWbPGC+nx2pvOaFooCo0LpZYGFFdsW4I2zQWrO0g6C7FEkjksHFCvUR0d+JOqYtETfr35JPPuwYSPW9ShrugeqxI/hL4njBa+fPYJaehetMNIEpBkBGfHItehJKqYyus1AyYA+HqdL9No05kB0Qg9d2QbajXtypilwunUStm8dNYoeB7ZrlbMmaTgkjOvCiwXclckPyPoC07TXpIZrKwsydKfC7VqVFTxUnb2jowb25Om7v/yhq4Fa+A0CXCF/sORklnVGrRHsTJLCGpGMdHiDbph+9OFWj4VYBZAvmXLE3h7R3FeA9IFgDKv58+3pKWV1g9m1eoXJ7pRRT/3+zOuOLv2e8wkBY30W75GU7w5YqpOl1a/TWaXRdNWSIAPHTpGF3CjTDWzs0jSxXqJxSYr5csvKzJ7uTjy5bNVdC0PGBMo5M6SpCEg92XFg+DvOeZLVVWkxcS123XwJLgw5vHfKgFx4epQBW3dMnVIibcUzj5RjhHd4Kueh8gteVe1dXR0JM1OBGMBH+q2yY4ExgmePbQVJSrUxN2rnggODsnUsSTe8gAtx5KM0adsqNHkHMmW3n7XkRq5oZma/1r5c8G53XjsXLoY6N811TjkWniTblxPP1tUyBmLA3TtxlBqLZZ0PJVzxZLqyBFRDBvIzwxwsTgWdHxhKUzVkWnFNAN/wwyYAODfMImmLv6bGYiJCsfFE38y828hpZtuq0FcJRffR7O3pDsgAQXnj+1Er15dqcDQl9l0cxTNR9dOTZVbUmgdatasgvz588LFxYnUXW4q8N/JyVHXZ3R0DGNwqqBm0zd020wLKTNgRaD8aYXOmHJlE4P/D6AeZcFGfbUKmxZNY9LHeqxevYl8ebnx008zmcxRlyFSliQdfkKroJfqQIigMyqae9NYnaPMwpj/7psIunuewLMdelMlwp7KDX+1iGvfitZhIbAeNmwAkzwKvLTLQk5/7cZdsKCdSjh44PcMXgfuon6DXCjTgMkhBmUns1LFLelOahCt/EKZsF+4Ite6WEKrVGnKZJBYtbsiLWr/JviTg/rEEDjxX2azgGPIobef2b5SrpFSqFChApz3fkzu+BAODCGIj49X142vr6jBTFSJK1JXLLWjpi7Hr9+8z3O1FC1bNkb9+rVUJrrs37FjL86cuYiGzZvBrXR9nCcI82CmrWRnSxZ0ekWAmA0BvcjwSfavFTn4nkRaIJwWu0a0GBZlUocYvkUzV0i6H4ZboVkD8j6uu4uttx+gU8kiqboWq27bopFqWyGniFT7BGzytKnEoIWX3DC5bkCq/aYV0wz8nTNgAoB/52ya+vrHZyCOSRfytH9kxwpsW/GdOp6HRyF8+eUnBHOzM4zDu3vNE/5P7ysX7717DyhDVhHr18utMnMlJCRUgYDFi1eoBnVb9sxcw/+xWjltHFUCyHfXd+IEZcFO8pWrUXUM7z0cSd7ejAmcSGLkISqYv169WhRIyMkZSqDrsjqzW62zPFuXL18loPyF2rs7YGPniFHTlqN89cZZ7iejBo4uOakcEUFC4FZMnjibiig4o3avuk+yTfPTHXhi53ms+OE2fM7nwZtGkhtaeURi0tE8mNXIT2edmjXrhiKmbto0F3WEq6gh5CNh+ejpK/518CcHf0oA6JqF5I9nifFqzPLn7Nk9JBEvqmI47917SOtfpHrJd3DXrgPqu1yR7v1KdVrS+ldLufgHjpuDacObkxB8QApdU4WyfJBzpXzgUdXvDz8swve/rcKQTjV0c6Y7YDoLAvLerRqMJxEWtNbloDU2Do60Oh9oPRUn536nMmIlmacSrXhNycm36dRV8WETWGaALNM5llh5/cnlaEvQ+SpFAKQkhog+tVjGJYPZVEwzYGwGTADQ2KyYtv3rMxAQG4G7EX4qi9Q3JgxB1NaMSHgeU/Lc7xXEOLzp77ZCbMyLHzQJ9I6MjMLAgaNp5YhDv7HfGx27ZKL+8Glf3b779x9TpjWZXHXHceJEIGOuqtFFWYi/2fz1NSiiHDBz5lzeTP9QN6LSleuh5/ApKkPUoKpp9fkMuFk7YEaVnjhDd/B+JoVIZvAPd/ZDOAMrT/4aVeNtcHnfJpw/tYfnLcXKsX//Tnz00X1abWoyAzj9GC6J0dQSAcSqc+XKdVhZ26AOFSx6DPsc/0RM2+eLDkGSQX74pA9EH7do0dRWnb/zxIssWzBfrQnuin1UGq1a5UGFCs5GD3GPBNDNqGqif9mKTrKUgweZEbzJX+nNenndgNkrgBGjB83CxkjqC8cnJaKYQ6FMtzLX4wts3bonatSooqzzUVTV0IrQ1DTqMAAd+ozRxZlq++T8f7HksMpAF/fxOSrT3H/kh+ZvvI2QwKc4f3QHGlVwTzVnWtuM3sV9a2jZbb7nMzYJS9PsvvcDkXahazlzWc9iQXwUYak0mePpDi5EGb9xNYPS9Gu4QUtc8YlKsQ5b5kjifOdQSUgSk6dvGTZs+6rr69c/pvfEE9OmlceoUSVftRtTu2wwA6Ys4GxwEgyH8P85CzgkPgp7nl4h0AtCCEFeVGIcf7CeGU4BM9zMFVhwtXLAwGINkcvGCaf2rcey7z9URK/NmjVQrkTR5NywYbtqL2S1FWo2TdOXbPh+Qg/cvnKGWp6naHkixxl/mAXstWlzlG6hYNVGNGifPu2oKDJkg+h8zpmziMS5v9PtlMD4wjfQdcgkJQSvGpj+ZHoGwpkIsP7RGXiFPqL8WIJq9wbjBVvlr6g7r/qdSbanN2+icp6Ee0/KpUtXIdJbYgkSMCDyZJKE88aQTyEKHubm/+zzrP+Te/j87SbkJ3xHJbKI+9qw3LsXRV3ivejZsxB5B6sb7n7pugAB0X4dUilEcQVqDeRGH0Q+urz2qb8rIgd28qldSiKIVvn5u7d3pKILqVixASxsc+KTebuNPuAYNMvUqriXpRh7YNLvQMDf+54rsswD+OxZIjb/OovhHYtUd3kLFWcs5zTl0hdCaIkNtLFz0D/US5elz08G1EWJovn4ALFeV180fuU3pEePjrh//xEBd5MMPQm6hhksqEzg5t1FRw5PNv0CO6uMr02hmxEQX4ugzea5PrOx7kWx5Sq5CSUrOYFcfAJK6+ePSgNMDds+CregskxiqmvKsE48Ly3JYBfLYzG6xiWxY/Xqh6qa/sOxkLXPm3cHderkxPbtDdR+fRlDUxaw4cxm3/WMr8rsO27TyF7DGdjv40UQcFaNXMUEmVuSF8weOQnyJEOwsJ07ijvmVmDP2McTN48UicFzpUpBq1ZNMW7cF2qbJH4YA38SUB7o+5BB/CmuxVKl6pL+Yq+Oe+7PPxshNDSesmNnKe6erKyCwpH2ww+L8cWUb9i3GarUbY2e73zxn7jP1If7f/DHibQ5g0mEK8U7wh/zb+/DpseeuB7+FO1r1EOf0V/hxoVjKFSiAo7t/J3kxT/D3sGJ5yMRMaQ3keLg5MpzkB8VardGw3Z9Uaxs9ZcCENXwb/qTu0BRJfEnHHRz5y5mxvJ8tG3bXNd7SEg8M52PqfWcOa1027OyIAkJbRgfJkTR+x7Yqzi18swUfULrUGHHeHLBpfxkW5snEUjnUETBQwkWjZVixRxIqH2NZNkBBMj1/pa5kpjb8NAAbF32DXWvQ9Vhpyw+BJkbY0X0oc3NOE5a9bNSwqnEooE/aSeEz4WKlctKF2nqypjDgv3R6p3eJF8eyYSiK4iNjeNDBhMy6CZu3LgLQxBcuS2evy2NFcl3nTo1XgkMVsrlhjenfoI1Iz5A57W7sat3uwz1kCXzOL0iFuHdDAkQZ7KAviqUAGxbNCLdbGH9flyoOR3KmFDhCNxIUnK5rrpK1rheiSZV0aobLirOUQBoHC2Q359zR6+SwRgx4ryqKQlJjRvnUsvTp1cg8Xh5zguoRHIMJ08GkZexCr0wHnq9mhZfhxkwAcDX4Sz9PxnjlsfnYZ3DEqNLt0IxAr2slhy08AhVi1C2rFixTr2cXd3RiTQsLbq+naY7sRTMHN2e6hM3dfvEcjFu3BQ+8S/VbXNxsaKrrL5uXRZmzfqRChHJqN3sDQwcNzvVPtPKX5sBOfdTK3XD99d34QYBoLzgBli0qA1fWnrL1fiGYveWCIiLQBjJg2nk4EOCPQaXbPrXDvw3tO77/teo3/ot8gL2Um5oAYCXA6wZ+xXHGNTriphaDtOrV4rV0vCQQUFxvPae0IVWFIsvuylrjwP1XbuWjFBV/Rj71YyJBbvuOaC4c5xSWpBkg/aVjYM8w/711+Va79p1kNpUvFzWrZHSMMDnAVbPn0zJw4uIjEgL4oSKxcGZJy+dItb+Z8lJCgSmU8XoZtHTljHHxUShy+CJfxn8qbABysRJQs+ePQeVlW/GjE9ooMuf5vjBwaGMKZ5DS+9kJtEE0wJdiGDwTQKcN9PUTW/DbXom1p334lOLAzzf/xBj8ubEjy3qplc93e1iudtCAurBpI8RdZCsFgF/UiTLWRRMFl92VbJzVgSEUoST8o/rLhhYIUQRk8s2sTYzuBK5LWOV0sjBg/609qU+x5rF7/2Tc3ESfamzfMUEAGXyXrNiAoCv2Ql7nYebg5aAJN4MxL2b2RLLG0Agb0IR5OBLSQBJyWaU9l2HfoIWjOsRN9Q9as8m0VpUjCoPmlvq0LblCvwVLjwQjx9b86m1GrnkPODm5pLh4cXCKLQvUp7cuwqxRty+chrXzh+B0M3Y2NijKPVuHeh+9Hl4R2VbWlhasQ3pOuSdL1EIkZtnQVotGnfon0a3NMMB/A/stGMs4KcVu0BiP0+SKFgSBXxjQ1XGqGgKayUH4V8y/3lHBaA9rUh5ssglp/XzsnfheNy15icc2PyLiu38bME+o03k2hLLo7NbbpXR3GzNHiRX7oZKO8Zh5MgSTFhwYFxpfmaR26ZpHxGRwP271PZu3QpQIi4a5Zhh+geltaSItaZ1rlL4dcMJVKWVZ99DRyo/MIGC4PJVioxV4mOrN+yAJh0HZLmLo7v+UCTeoq3bpk0zSNatEHhLyZ2/KIZ9uhAFCADTKwL+xMorcZ/vl2mdXjWj2yWmc9y3GxHLjGBvEkBvXf4dCaE9uR6BIR/PfynVk2GnwumZxFCTadM+ZtzaEMPdqdbl9+Hbb79Q2yT+9+jR0xgz8VtIlvni78a81CJ4LSAE9b+YQx3ADWAAJtzbtyXAKpXqGJldCY61QDkqbLwK+DN2jO5U8VhyxY18h5EQXsGVBH/DKgUzs/lF7av+Fvj5o4OYfc2btExNFT3TF19cZRx0pReVni+1DlmPdfv8qNttn2afaUP2nwFTDGA2PEf/X2MATwbcpiLAMd7OARtaAq1p0ctJmagSjnlQ1bUIXcA5U/24ylP7x32qK/CnnSYnF3d0e/szumVbKekqAXnXLxxRdBFSp3yNFOF6ufnNGtOZgeCX+Bv8IWPH8qguzpxpjpIlHbXujL6PGDGeN/fNap/EmEWEpQASiUcTehgBiL6+fnRPJuliCZ/R1SwarTJmWTZnALhQxwgfmQSlS/yVRihs9KCmjboZEMmwOMYJyrVhQYvN1kfnsMvnMiZX6IL8dq66en9lQR4mJItcHhzCgn3JK+dDIJ+kuhQLX9/3Z2XY/bHdq7Bq3iew47kOJkiNCrml6ouFz4KyDM7OlmnaC9fhwIFn1fbg4M58F9ebs8rS1GS/9BttI/dc7bxRSmFBXISLNoZgxdxL+O6bSsxGTm2R0W+nv1y+fEM4503JANbfntGyzM28zwbittdpUqk0wW+//aDibnv1egd//nkQ/cd8R+WQbhl1gX0M99jAcA8Bf2LtFcCfmSIPW3vWL1Ca0f582AoO8FHN5Psk3z35Plkywej9r1YjL8mgs1K+HNUWlpTpO3fOOLjX+pI4zAt+NoqoWbbF0+1qySz15YsW4nFwAqa9WRRvdGiivuuenpfIYbmLll8fDB8+kJay6ij48deIWrYCBUe8gyufjdK6feV3UScRvsKcpPqR8IC/WuTzefra4j6VRdqT4FokCfXLhQshaNbssNq0bl1dxkaeVMuBgZ35u2amX1Uty4NNxYp7qM+dQEqexihbOAkrS9YxrJd7XHJygOFG0/p/OwMmC+B/O///U0evm6skswFzY8vjc3gQFaRu8vci/eHN1x6fK8rV50AFiXy2LkpKTIBhyYq1ydu3SzdP5ZnkUatpZ6XMMeuDTkqdQ3ZK4HalSuX45D5fxfyJW+oJ1QPEDXbnzrd8ivWi9SKI7pyXP6lq1j/J9CxVqhjpJNoy/qUeiXnz6MYhQC+BigqSUJJRefzYh7yCrTD/84GYvGB/RlVN+57PQFb0Yl9l0p4+uIU5H7+pYtiKF/dA5fLFUHNgV6xatQl+/sHo/vbkl3bboE0vJiKUxHfju+HtAT3RZPNtxpFeVe26dy+IxYtrpOmjTZu8lGCriyZNcikr9amnjD1jfJ8x8CeNna2fIbd9Es75i5vOGWe9Q3DfuSjGfngJx442TdO/sQ0Sw7Z58y7GUUak0To2Vl+2ndizRoG/H3+cqfSONYv606d+6iGmVtMu6TXVbd/KcA95yMsK+At4+oAPbR2V1a9AgbyoVL4oLY9D0bRpfUUFI+5bT8+LeOONgZgyrBkq1mqmEkOEqDszpQR/S07+uSrDqiLXJu73hrTOvkXCZj5H6krvuX2xeutRzDiQhPEf1OJ2M0UvU6NGZY6vmOIklKS0qLBwIWHE44PMRH5/AIo4Z/zAqTuAwYLE5kkRGpf6BchjSM7H60wAEV7Cv1IkcUS4I9OTtStY8IX1ukEDdwLc+oqeyRj4k3Hs2OGjwJ8sHzsWiLK9M/dwIvVN5b+dARMA/G/n/3/u6OLCG1ayme5zC5CSjOALwQ9wJ9JPBYvfivDF/Fv7MLtGXwz4cA6eMoYvltJsbXuNRsO2fVXby6f26cDf8OED+PQ9gBm+99S+iLAgSMamxAoKcezOnX8wacSaUmNp4310A9FbkBufvDIqcjN6GfiT9qtW0Y1FyTm7v4GQOKPxmPZlbgbu37yoMsLdmES0f+8uWoOL6RoK3UiPHkPw8M4V6gbXVRaemxeP4/G96yrBKF/hkrq6siAxarkoqbZs2RocPuzDLR3V/uHDjVumrK3NaVHLo+r4MHtXMjkNtYvFinzlShgl55yUpJ1U1kiDe5d1xZFObrgSVBarrlvqwAnZjFCJQLKigatYHlDu3r2vwKY5kzHkuyYubuE0rN2sqxqHsT/xcXGqTc+endS71JEHKT8/fz54BWDtoil4a8RUY03Vtj+fXkYCFXXq052dWcvfY+/r+IZSb7Z2dipJq0iRQkb7l3N0+/Zpfj+X4PvvF2Dy4Ab8LAPQb8znqbwHxhoX8CijvotiwRe3tmHxizJXetI18sSgPN2uxspbnRoitLArynzQFk3I96dfPv10jFo95xuEt3cdxb3Pp6JKk65o/M4gzO3VMctAUIilDz2yZwylGfLYJSIwxkJ3Legf9+9etrV9AQt8fWNJ2J4rw0P06FGI85qkrN5t2+ZFcmRohvVNO7PPDLw409lnTKaR/A/NgAApD4dc6qV97LHnfoelWcqlGR7iz7g7b7XrjpcnGrXrp5YbtetDN9F1XDt7gHQbK/Abb8ILF3yj9n0z9g1mjLpQIN5CxUD17j1C3VSsrKy0Q/wr77/8slIFk8vNts/ojAHlvzKg/+GDCPgRqcBljOESJY/9+zeoTHL9KdFAgdCLiBt0bPcKBE3PVJUzBzfhk5926VdX4GjST7uxjoBIKIpu3foauXLlTFVHW9m50wdDh3ryOmyhJN4k27cfFSgMy7p1j/kwc44JCKXw2WfldLuPHUvxnjWiIkgjpAYeUmn5VRcVWiHJKFoZNWqios4Z8fliWNnYYueqH+n2/lbtFvJkOwdnrWqqdz9qXQvgE15N+c7cvHkH8+f/prKJy1VvjMbtU76DqRo9XwmIDaeF/zzszK3QrbBYyTJXfp4yCE7OTpiyYg+KFHkBzpYs8cbVq+H4+utKVP/IoTqzsbGG0ASNGDGQHIETcGr/b3zAciUH5AcZHkziPKVIXKR2rsXKdiXQBmL5i6QEm4BtSZgwLOI2FTesgLA6+WNwli5UicszZkWrzoQPzwGd8H25YopN4PC0WahJEmr/tT8bdpvhuiiG9CgdDskClnE2Jd/jP1XE7XvzZgTeeqswY5xz4IMPSipJxszE9ollUD8DmM/qpvKazIAJAL4mJ+p/ZZhyoxZeQCfrlJtAYkK87qNLfJBWJNGiHzMypcj2r5jtO2DAe9puJJFf8Fliyg/548dP8eDB41TWHl3Ff2hB4gAXjPsCJcrXpBXze50l5R86nKlbzsD1C0chluEkcs/dvnIK4aT8EPJjeRCIjginyz6eHH2V6BJdpqMB0iYuLCyCmbvv0ALlAPe8hVVCj8imXTr5J0Txpcc7n2lVU70LWHxj0ETq0G5mqEB/HOK7IT+gn18sXamnVTuxqAilhqsN9W5vO+GNEuF0JCaTTuM4jwlMmFBG1TOMIezY8bja/vBhe47dMtUYZEV0kFcznvAx6WJEqszBMglnb/hT5zoPKtVuqehPNPBXrlqjdMGf9FWlXmuc3LcOn38+SwHB5cvXqnhbCb0YNP4HqWK0COffV1e38dMkY2SplhnSnuh3EB4aqGL9Fi36Du553LH2hrkCPomJdLWOv6yqDh7swTgzF/1myro/bNhoJnaE4uDWH9GgTTsm8JRKVUdWvK+fx4Yl09S7yA8+s8tL7kRLRaHjy6zrlkUiVdKNfiKEtNt8m7q8iSmgM5bvpV3jkIfgMJExgc0LRyoJOKlnrMiD7bjalRA4rD8WXr2OpJAQY9UytU1i/3K+wMSZaiOAMSuJI7Nn38K2bT7Ik8eGLvfc6uHD0zOEqisJRq+3TA3CVCnbz4AJAGb7U/S/NcDlTBIR2ohKLoUJ4BLgeWS7Il6WrNpiZasZnYy4uBiEBPnBlQL3b1DofunXo1WihnADRlMv2BzPUKxYEaNt/6mN06Z9jzvsfDzHo8VQ/VPH+l/vV6x1ov966eQeWi+slStQkgaiIl+YIvr27Y6+fXugdu0X15DGkSbWrj59htMyFI2pvxzRgaPhkxdlamol3nTE50vx46f9MGTIGLqEf0x1zsPDE9SNdcyYkpQfdFV9tisWiaeR5ire7M6285TDC1Tbe/aMZMZ6ByYXWai4qp49Tyqi8k6d8mHrVh/cuBHBmFI3o+OSmDVxY0oJIXVMp5Y1MPe7k7Rmxqj5ke2SqT7oox9kMd0ifJuShSuubSlt3hyJdr3fJ7C1TreN7Pjm6nZEP4tH90I1s0TztIuWSfmONGhQm+A4CkJ9spBk2LVpaRs3rhS8vMLTVUIZO7YUBg+er/SOpw5viZy5CyiNbnl/cOca7lw5rjwIIgX3weczULzlEBIpJ6GESzwqU7YtI5BUnHUM3eoZToCRnYv+2AyiKHyxeI6Rvf/Mpr337cn3l5zGRZ3R0fr181AAsGvXE0xerseHpSRaA08RZFuQeJ0chkxsMpX/fzNgAoD//87pa/2JboT70P1rjq6Fa5Ji5TZ2rJytPs8YZv1JXJaxItmCUkICfZUeaL8x3+Li8V24cma/2r5t21ZmL/qTtDdvqhuz2qn3Z+nSe7zBhlNHtRJBREoAtt7uTC+ePXuBrp9FjFfsnS5ozXRnpooZzkAUuem+GdtZUe5MmzaBVCxDVNxb/fodlPUrF+lKxBr47ruD6dIqmaovjSNN1EWE3qR97w+Y5FAwVZ3MrpSt2hDdKUO3buEXKhlg5sxPdVZGyTq/caNNmq4u+tuiWp5YWDHeT9xoIk3YuHFuBf6kcnx8kk6lRgDShQstX0q3kee5UkhuxoytWrEK+YuUUm7vm5dOqOO/P3OVItROMxi9DT4PbyE+LoVuqUjJCug84CO9vcYXNz30xGPS91R3K4rm+SoYr2SwVUiZf5/7EbzOHiQvYl9dkpXIrQ2vEqISX/qMqgwP6vBmVFxcnBg3eZjJCHuVXOOf6xaQwzMRZlY5kb9gXqxn4y5BtGZ90JNLERl1lWpfZsDfaR9b3A21QgGHBBiSOQcz9jf53DkQvcLFxiZV3//kykNagYdUDE1zCCF4XnfTCY0LplUOad48d0p94rxu3VKuFdkQGZlIqcygl8YBpjmYacNrMQMmWP9anKb/nUGWdy6gAsg/Or8K+xL90H7qz5i88EC64E9mpnyNpvhswV5Mof5nIgPfnzBoXwN/OXIUpzrDTeWC8/ePIKXFamq5plhb9Gf1998f4ENmVy5efI96vyl0IPr7M7u8adNOAs1e5CkrovSCM9vOVO/VZmDljx/Djwk/u3evUSAvICCIiRxDCZ7imezgjjtXzyjQL9nc6RVNY1bi4v5KadZ5EFr3HIE//tjIe34jRQ2SUX/+dD8m0frYqlVeJUHo5dWKIOgFUMiVy1rJyQ3EWbo5K6jrs1y53Uq5JqN+ZZ+QHct1Ljx6F/gwJMUtVz4VkqBWMvjj7JYHjRjn99a70/EhufheVkTlY6/vFTgxg39wsUYvq672C8D8fGhj3L58nATak0i8ntbFXpRyZAGMuctMcXR0oMXqDezduw6tZlxlkxkYOmAhrnhuQnOSIUc8J0TOTF8vqyOSadeDrPDLFRdSWSWjS/FwUvWktY7+duUOaD4j54on3uvUC58eIRjMZAlk3N93Z3NCpN+yUq6QlLysW5zRJjLW3mXD4BVkg0v+L64zqSwPvLt3N4RdtXKo0pSUXIVtUa+em+onOPhFGI7Rjk0bX9sZyNy367X9eKaBv24z0MejHmOHzHEq8DZO8CUlEbnRRS2l/pOQEIdtJIi9eek4Rk1bjrvXz2Hh1Ld1lRo06EZagspcf4Z33vFFmTLV1T7h8+vRo5OungR3b79jD7sa5ZDDxgrFOnpj1uzq1NmkYB0NgZJl2Zk/8qKNmVHZsWMf3VHvq5us6BJLnKKp/HMzIDJxkcz4ljJgwCiEhIQyG/HFzS8uwo+WoCQV8C8u4fSKRvvzjFajv1q6DPyYsWi98eV77dCwYUcmcwxngPxbOmugfv+leaNe6uWGz+oGMMbODDW63USCXzB27GqIQgXJOUntVtEU7tlzhnLJHTjgr5qfOxeC5s3z6HeValk0lCe89Y7SzQ0OeIry5Uvj+o07eH/m6lT10luR5JBeI6entzvN9h9vkgybW0dR4Udi3zJTHjHTWlz3Bw5spFu8otEmvlEWJCyOMrovo43T37RB92ZDU+Irs2DIj419RiB6Q1m8VqyoxXAC4fK0VAkYx8jFJwkgxOuUVUtWLmSJu5S8lKOPbcnXGJ1mSB9UL4fCx3czwSQS03sNxbzZCzC21o9wy4Q18E9Kv7kx9s88c9OpO7ZYfo88doa4rzVrsG4nF8SxoWWV62+X5dq1c2LCrJIYVTVY1TPcb1r//zcDJgD4/++cvtafSG4gvTzqqpdPdCimem1CTKLxJ1CJ9bvIH1gp6xZOYSD+llSfPSTEizfPBFoFDtOSEqb2lS5dAt27d9TVE5JVcY1MGeSEEcev4f7VCPU0PKr+VVomKtCqVILHN8MvlFBqViRK6bEaAkGxtMybxxgwUlMULVMFY75ao4LmdQcxLfwjM7B2wRdKoUU69/HxS3WMrVuXE4DVpev1tiLmTrXTYMXKylJt+eOHj0lw3J3nTm70yXCj7nCV+m0yDBsw6EqtShLJR99vxoKpQxlMPwt79h3Dti2/UceVMXi8ActDhZQa1F29RmuMGJx/pTXpWWQM7OtUwn5/d4wpkdpVKRmw16+3wcOH0RmSQItahwBPM4I40ert2rU9edx2q0SW3Pk91HH/zj9C+RIUH4n67iVRyD5nprt+5H1N1a1QoUy6bUQWL+NHLuNNS7jG8yEyGetuOavv7gACtcxEdIiu7fnzIarT0qV3K1qT+QfeRCjjKVswUSQ3s3KNlYYFY/D7NWdUzfPi4UPqyW9Z9zJFFf3O5W+mY+vIsSg7dAL2z/4CFXK5GutKbTvy2A62BJktmGiS1SKgT66rhxFWBIAxWWou8aMeVAfJzFxlqWNT5Ww7AyYAmG1PjWlgjtT9zai06jYcBYqUQVO63kSk/vzRHbzZJ1KKqw3jgfaQPuImqTnuoXDJirQOnYOLizO2b/+dVBwhKEgLS968NopkNeUYdOksqs4s0b26Q7ZokWJlsbVIZkxSMF0+rijqRJUH/+PUvpyuxOS1yhKjlUL38pUJ/GmT8g+/X6UKg51dbsZ9TSfI2Um352GlFPHJJ2MU+JPDlylT8qWjKFWqOJYunYvJk79ituiMVPXb9/kAHfqMSbUtMysiGygATMqd+74qnk1urGJBElAjGFAsy12YBbyG2btdSkXCflIBlKrmhCqlwglgpKVIsiZj4sQr5Jw0p5RhOXXNpuwx/nfw4A+U27BZ5wHYvfpHghgnBWY79R9nvMFf2JpI6+rOp5eo722B3rTcZ6VEhocotRzDjGn9PrqWCMUSTyt0KBWLsrllxjJfJG7QwzklKWYFKXJ6lg4jADcju8ALn2oiWQK8HkWjSlEn1bE88Em8m4SA/PbbfXxDxRVJ1slMCYlN38IsQPDXLs1R4vYHCJk9G8O3NsaxIV2Ndisu32skex5eOQWIGq2UzsYLdOte5EtAXJNXsJye8rFjZnPKw/ZOkk5n9rOnMxzT5tdgBkwA8DU4SaYhGp8B0eOVl5So8GAF/mRZ4r/kxi8AsEO/cYwLjMPda+cwderXpII5KlXQv38RzJ1bFfuoY2lra4769d0Z92KHn3+uxoxhB2Zauqay/MgNuTl5uD78aBqOrF+i+tD/I9qwHfqONbl99SflH14ODQpkprgHz2syXf1fK84+PxIVFyiQL8tHFrUXuWY8PArxerChpe0JKlduQom4p1nqS9yax6ihe/7YDgjIyZ3bHVvXz+d1F5ZuP5Ek/N33wIE0NEVw/34UWjQ7wQeMsio2UADj5csRigNPljXrobHOTp48C3n1fu9LiPatWDFXrlyPGo07QSQU/+6y4t5RUjbRTV24trJ2ZaX/GGbnG4I/oYBau3aLkps7d+4yM/mj6Ya1wW91xyLh9M9ArDaHJM55LtsnvIsODg48X4+Vm10e8kTLV6y67u45Kc1WAxXqtscP5/MoQmXh+Av3PotlW8+SXD4GCWQQaNq6NcZ0q8C6Uj/FivnRR+lbJo19zuokj15JK6Ag+57U27U0wIMCAr3GDEChnTtxe/1GIB0AKC7fwRWyDv5kTBLXN6hCqBqeJG8cORKgYkq1zHO1I4M/nZ9bnSUkhh/DVP4HZsAEAP8HTvL/wkcMCfLVfcyTpy/Bxb2AcueJZukXDDavVq0BRo8OZ51QvmZg+XLg44+PMRZwN9edaTlK0bkUItT0iriWfvqsH+bl5BN2k3q0OB1i9uF1JU8VShqaIP/Hr5xFmt4xTdvTnwELiwjYWDuTYsVWVZJYvlcBfwKUOnToQ+vPWWUlFsk/cR1bkzy5Y7+x6Q/AyB4fysytXzxNt0fUYvTVRnQ79BbeobXndogVNt1xxFd99lHpIpKW6qfqoSQxMRrvvx+nyItXrFhL8mpnyo+5kVkkkpbsSwokCciRY4j1TxI96rfuhRsXj6kjJCQkKp5CvcP9LYuPKeV4Jsgbua2d0DRvuSz3mRAfpwON8jmmT59N0movPnx5UIe2AURVo3jxoqpf4bT7834/iDKGSNHWyhfNGLeUzODffmO4BUGThHV4ez8kgH5IGp2nisRa9Lp/+20V7tKyK3bXHCVawszFA07BnpgxphfatW6ER4+eMvO6Mywiv4FHlQaoUcwRQbGWsKHVvyR5/8rmTLGIvewDrvzyOJN/HmL+lvbYbuFGy25EGrAeQ4ujY5VKCNuzj3Q90XTR2hnt1pCPUEIEVl53Qb9yocqEHBBAPkLy9RkWcXvLQ4J8VsnkPXMmWFXx9++kHiAM6xuuR5AIe9S+fHiTdEJZ1RwWSiWvK5cIxqnxbtixaT3bzoAJAGbbU2MaWFZm4M3hUyAvKXJD3076mJ1/zEUoqWFimAlZvXpjumx3ce8BVUdctuXKNeAPY24G2I/nTXUL48g6KlebqvD8z5dfzsGCBcvwxRfjFYmw3NDFSvTOO+MQzuBul5y5IDxwtZt1Q8GiZfWbmpb/8RlIRLt2Nli0qO5fOtJlt1I4wR6avzEU3tc8ERkXr6y5Elpga+eYYd/CVXn6wBZKrC2m/KC3ih+0p+yfuH8bN65LubIXYDCjjkry4WIf+dvGjSuNsWMvYcWKmwR5NxnKMI3Xp3EaFCG4zsGEKVHpkGJjZ4/3v1ylgJXQ0rz9yQLkLVicD0N51f6/88/Pt/er7t4t1eKVupXvytGd0SR3bsT2ZlRJ6YM1axYp5RHDDoWr742SEWqzKHJIjJxYTLvTVT5w4Ju66hJPmFFMoVT8zcsFfQiknouKoFCh/Dh4cCMzrD/H6ZXTsdQ8J5LDHsHcxhFV2vRB/e4jMKrmyxNR9uzxU+OI836C0qUdyTVoTZ3nOLXtkl8QOs/4CWHbj5OragBgF4PW0+fB7+o1mNHC+c67g/B5k1oqVvBGUBgKO9sz4cwqpT/GJ8+/6IY2HoxNJvhdRJaCCRMukzg8H37/vbaqo/0pwKShw4/scNfnmQ781a2bM1PgT/pwtEpCg4LRaO0RmeU4QH+/m6hW8wwsnB1wd2M+bUim92w+AyYAmM1PkGl4mZ8B0f6NCAvBrA86KnUQaSlWOcn6PX9+O9cu6ToTAChAMSHBn9s+5fIYRbybO3dq342X1w1lbZEbhGEpXKIiuQqZuUmX8/5Ni9XLPU8BlKvRTLnditE9bU7iXVP5Z2agSr022LRpqwJZovn8qmV8zapwvvtYgb4fPumDOlT+EEoXY0XURq6dO4yCxcrT2lsA343v8byaB5VAetKCmECr0xq17fThk8oaZYyEPCwsgRmmFqnCDI5tuYl9O3zgYn8QUVG7qViSYn3Klb8IJv2wU4UXxMZE0bUcTKBkA9dc+VV7X/JgPmZSRaVaLZTkmxxcru9q9ds+H9vf+3Yy4DaC46NU4odoe79KKVC0jGo2adIHdH13zXQXAoKaFIpGvfzR+PliTrxbJSiNuzW9znbdc1B8fRr40+oVLlwII75bQ9CVhJpMoJBjBAeHKiWUOWP74mI5Z8z68mNledXaGL7fvt1W/Z7IvNNXrXaLS/uzfScwb+ynjFGJgpPbGP4u0eoXXQcP1s+GTbECiKO+8pz+w/Fr1y4IO3QE8M0N2IfAvnJBVOzUHo3L9uZnDNHFLjZtmothBdZ88EkL6qvmjiHwtMGbVeNh/WNV8lFeUBY5w7GKlVCAtGGG8eMIC8Qy4S2esZK2tCZmpUyffg1WHvkQdfQCm5kAYFbm7r+sawKA/+Xsm479t8zAhRO8Wf7yJQIJ9pIowaYVUQJxdc+HxJhQpWeqbZd3yfY8sWft801x5BDzRqnSFdW6RhAsK3/8sUC5iSTJ4MCBY7hz5z7yPHqCGO57GvQQPXt0VJmWQjNy+/Y9suhvx+l9a3BkxwrGXbnh3SnLUYRJKKby989AkVJVaH3bxNhP+siyWMTF+8YbAxkvmqASR9r1Gs14vye4d+OCegmBcpkq9VP1KpmrP3zSV7etHoFiSmnJt1a0YjVQbtsLBID+hUqoZKCuXQfRgvxNqsxzSUIaOfIKrTjuTDwpp+vv7SbMWF8+Hf4hN3h9dkWTjoMUzY1H6Sq07jmoeg6kFnJwctW1kQWx8snr3yh/Pr2CzY89kYNWu54edV75kGIlleLhUVi9Z/WPgDh7yt0JWMtsCSa3Xp9yYamqy6Xzx3VnlQwmwEeAkfQpcYQ//jiTrvdIuqO/ouZwK4YJtGTc8Ayd61rrKJ6u3c+PXcCVOw9QvEgB5HGwo3SbNfZcu4MDH06ERc2a2L3oG5S0c6K10R8FqXWcu1hLFHKyhw/VZyoOGYew3XvgUKUh4gPrwdIuGlH+q3D94DMEmv2Jj2s3ZKZ4Et5euxueZ86jQF9nfHHiFHYl10Dn6hXQqUQhWNEa7GKTpEtq69u3CLlPC6d6wJDxCgiWeZDM5opUQnEi6BXOwSckjxZ5QqGAURhW+3CZfO/YMT8WH+TDdv0qqNDGCxMz2c5U7b+dARMA/G/n33T0vzgDohW8aPo7ul4kDkyy+3Lmzo+JP+zA9xPeVPxwUsHG1h4VajWnYsNnuEd9UAGA58/vY0ZwfkodWSD05xmQWBZ5SdGAoLiJRo0aql5qRzp/Gjeup1xZogN8lhmqfYdMVNbI9swiFYCRYh1Ip7Fpc5ZnwJu8j66uLsx0dcxy250790MoU6QUL18DTToRDDKBQyuiCCIWZckK9n10h9JotrhB658kdaxevYhxal1xYm/KA8TBg+9SiqyC1hT52jSD98nzmLqU1p/J/alyMZYJRgVJ31JV1cmZ04oWvCSGIDjp2shCVNQ1JIRcxwdUvSmdjupNqgb/4UqPIrVhxezfVy32z0GsKLDUrVsjU92I5Ur0jsU2Jcv1C0SlsWKl11ECnwsfEeQsuOiqgJK0z2GWTJqYHIripaBjYpqmEpd5wS8/5syZjq+//owPie8wDKQFs85nM6SkMjbfesC4xASMnz4HMXvy06xWDsdtvqJp7UFKX/wdsKhVC370DjyNssJ59tekjTWcn2ciC72UG3+Tbv62EJtu28KayGv9hseoXMUVB0Jq4dacj2HToAdyt3wLCffZJ62IzGzBY3nI5e/V9m3bsZ2/dcMaNsTKGR+jbfGCqT6D9nsjMZT3wqwglFd1aDkVHkD5/A/CLVVcZSUCQUlwexXgpx1Q5Am/fzcS7465AtvyebTNpvdsPgOv/g3O5h/MNLzXfwZiGF/1shIeEpCqitDAiHvss4UHaRlKgC/l5LQi7jPPw1sR5PsAHft/pDb37/8eb+gLdckDGujT2hi+S6D03gf2KktO9ERFHN7Vmj/ILJL5FxlvRqF5J9yyaoGdB6rg+88mYM3v3+PMgQ0YOP4HFKU1x1T+nhl4+uCmkg8TV752s3tZz/JwIGowM2bMVlWbdBxAlZl62Ek92nJVG6DzwAm0AJ5XJMqhQf44vH25qpfT3Y3UMrWwZMlsRSwtgE4yT8ePH6kDf/fuPcBGAoSzbCERawe2LMXomX9gdOdSuHjxig4AenjYM0OziepX/0/u3LnU6nW6mLMrAKyZs6iyAD5kEshfKY7OzN51clPn4e23+2UKxAtA6VU2LMuHFQC01MsVHYpHQDJcg2Is0JByaMWeJ5KI1U9oT0Q/uYB9AvI6JCrAFBGXA7n5/V5JC2F+vk+YtxqX/vyDyTYf4dHjN0gyTjes1WrA5SnBn1iBSRc17gsc3BNI678lWox2Q7dyHspiKABT+EYPP7JXoEs+hChzCBUQ/2NAeWZF8/ejX0VnriWh1h0L9F/2DF6fT4VF2TKoOHQgWjesjU/qVVHWQAtmvkgiydA1u3Bs1vfo3aobcndoh4p8EPm9X2cmsby4tT8m8I0m0O3L2EdN+1jm8mUSezLGrJRevQrTnU/9darx/FEqKy1Ndf+rGXhxlfxXIzAd1zQDejMQEBsBLwZhXw55hBvh/GFlcbay06uRetGNou+z11/FSUpAbVxKsfdyNdGRdCwiZr9n/TJaAxP4o/QGVq3apH6IRXN04cLlzJbMjyEfz8OK2R/ShTsIp0/vTt2xkbUgukrEAtGPxLLmtB6IBug5P1uE80YhhTAEVuZ0w/ApuymfqOVHWtx/PXt2YjzOJHzz4Rv4nLJ2eQoUNdK7aVNWZ8DewQnXvM5S6aIhb8q96fLqptOTNdZXTEwsmjbtwnCAuwwNyEsKmQQc2rZMvYSS5NDWX3XNfpk1Cu9NW4G2b72HXeTT68u+v/jiI93+S5cOMmY0nHF8jmqbp+dFtG/ZA8l00eaQm29MNJ7ev4mHt6+o/Y0mTAOG9de1N7ZQs2YVuoVbYuf6hWje9W0ISMpuxc3agWTWOXAvMsV6+qrjUyoujGWUsmTJCiZhvPuqXb20nYCubiXDkY/AThIzxPq1mMTudk+TkIfKGbXyxeA8v8ef1Amgpc4CvpEWqOgeC80qKABRVElWkObl1LHSDBv4gMCP1rhYoErbt7H8+9oY/OZ5sgEwNpNWtZtnuI/lj3l14e5qrZbljxtdrMJFKJQxpdzidduNLXSgW/fO7t+x/74PupUqksrtLL8rUiSLeNvgblhXrxomzl8O//0HsX/VGgxwc8Oazk113b7sWLqKf9PCX7Ek/k1DMHWTyRkwk6dnU8leM/CtmZmYAlL9wtqvOg+zbHhD+CszJ3EtR/1v4FaEL55EByMwjq4J9Tyc0mtuGyd0KVgDeSPjcf3CMVSs1Uxp7Gb2mJ8Oqgd7azMEBQWjYPEqlIo7q7SCpf2kH3cwiL4AprzTFLWZOLI+E1qhYiVoSUUAeVLPaomOjkGJErVQoXZrDP7oh6w2/5+uv/XROezyuYzJFbogv52rbi4kyP7quUPM9p6DB7cuqyD83r27UZXlK10d/QWN269+m144e3ATihTOr1z2rVs3VS7aM2cuqIzbU6fOKcvUpJ92oVCxcviRblzvq6eZx3x41AABAABJREFUJZ4C5vT71JanT/8e3333M62JddB71EyEBfuhZMU6+GXWezh3ZBul2xpSaqu6kmWTcZw+fQ7Xrt1S8aXmjMbPkyeXongRSpR8hUpiwtzt6iFG6z87vX9+aQNCmATyQ82MAa3+mGOp5jPNazMtUfFom78yYvbuxu41P6kqZcqUwiefLEaDBu5MorHSb/aXl+X2tvyaCy1soan6ku1RtAxKLNxOb0eSHkfoAF+qinorUVGJKFv2TyaF0TNhvwJuXWvhztyPdNbnZzTnmZOnJjAwTqmIxCWbK0vipQAbRV9jbZHEbN5InRVOr+u/vChWzi+OeWFx396o+PVMHOnT7i/3adjBdWY2n/KxRcMC0RBKLCkCjP2jzVEpV5yuekxgEFaWrKNbf76Qe1xycmp3jWEN0/q/PgMmC+C/PuWmA8oMXA19jIW3DyAhOcV9KlaFwpSS8rDPhVIOuRHheQpxkYHwv7kTi35NuaGvW/iFIn5u3mUoqjfqoCYyJNAHj+5eVWTPufJ5QGKLJPFDuQT5Ky83W6HKeGvUdFpU3PHkHrPVGM+Vl0H6X45qgwTGfU09viNTJ+WvMOPb2ZFTrmNrbN7yp7I8mbKDMzXlGVYSct2KNZupV3RkGPn3ptPSu45AbAoJhF9YXrROChcuoCyE/syaFY4/CfQfpmeVq127mqoqljih/1n90ycY//0mXk/5VVzpgwePFDGxO93BhtrCH3zwDkHdeRJSn1Ik0GI5lFKlXmvGEN6G54UbOHDwuNImlu2Ozq7ImbcIajTtprb5Pr6DJ/4haNS+P3owRlW7Pk7t30C5w52o1qgjqjdor9suffxXpbhjHpykTvf1sCco61zgpcN4EBmA2Tf+RFxSAizNzLFp9RyQgV21M6O11DvcFu98H4bofmcYr9vlpf1lpYJo+Nagxc2wiJVKuP62X3PEMPIwZiaZxN7eAg8etEOzxetx8eMrCDlIacj+eVCsUUV83aGBAkPR5CqUksTHd6FVKUJVjrfIq6cpuxiO4+9aNzd7hlXrb8GhyWhUy9ecMYWOytqYSIuj6AM3o0ciM58xo/GUzSm8iHFYRmUVDQBK4sj2u45Kt9qd2sWm8nrNgAkAvl7n67Uf7fWwp/jl7iFEJcbxqTgHehSuhSJh8Ti4cYm6UZ58eh+HSRKrXxwdHRh03xBnz6ZkaC75aiRWzBmnMvaEyd+wlGUs18ipyzDxx90qnitf4ZI6guZSDK4Xq/ePn/aFP4+1c+cqBuP/OwEro0e/rZQOzlGyrhZdkaby982AHbVvLeh+lXP79KkvCYWLpOn88OETKiHI3NYN7fuMxer5kxnYP4zu+aEqPk9TppCEIAGXUZGh2EUrVbtetOId3cpYv2aqT3m4kGvmwIGNirdu2rTvmSiwUPG4CbDU1Gmkcg0CN3lJEYtleLA/H1JcYPkSmUOpHx8Xi2XffcilZFw6tQ9//DgRLboOeyVpOunv7ypdC9fAqcA7+P3eccyo0lPX7ZPoEGx4eAZPmXWfQIUQmSfiLETyuy5LvagYcuOXH3DheAr4Q7/+SN63F/H+1xDvc501qb9cvxPKt22NCW91IiddHiZsvLpFUPgCJWyjIbnt9ItY/04+tcX1YBt0Ib9gZoFRaGw8M3F3IjEyAhg+Anb3bZF49xxCK9khl20dupdjmZnMzjMoogd9hC7p5tQVT6/I+C7Salg1N33MmSzWgjATziDy4A5ca+yIyXV7KVobiTN8SLf0r4yBbFIoUkegfZqWPLHoiWVUwHBWiiSNiPaxBmrFCihjNpXXbwZMAPD1O2ev7YjD4qPx0809avx1KR7fuWA1RPk8wawJXfkjlIxSpYqh/cCetMy4MoHjGbU456m61atXUgH3cmPXSudOLZHkkA8uJergg07FlXyXULRILNYnn3xJKpaNqNe6JyrUbKo1Ue9REWHYuuxr5VL+8ccvlVsuVYV/cKVSXBxKEZjs+mO2CQD+jfN8ZOdKkgqvYMLPHdWrqGUYlps375Cnb4DaLPQxx3f/oeJFDxw8oaTHxA0rfHCSUSzJHXL9+T32xo6Vc9D2zVGYPH8vvDwPQST/hHNvOxN7duzYRyqZdgrU5yENi1iabewd1YNFifK10sgCCqjMCilzkN8jjjdZSZqVKVOC1sXTajwtu71DC6ad4Uf819YdLGxQK2cxnA66C89Ab9RwL4Yjfjew6sFJNQY7c2Y5m/PWQlCQxD9i1e9gXRA/DW6rG+O4bzdw/mvgs/2HUaxGJcz8rTGm7zuOC1sLwmv5SvSbvxD8UiNHLnfG2zkiOS4cZpy/ZJJdz50zjckSGT+0iUvUh7F8b5YJ1x1TYnV30N0riiL16MYcUjFEty8zCz0W/gHPGV+DgZ9wbjgeMYHHMX3ee3i7qoyFbmGDIgoeAi41gCmZyD9fckMPElhnVPaQ5LqoU3xGVYzuuz1/GvLR/Xr2x58R37sDk0xSrpHCtEJ2pub0Nlrq8tqH4QrB5V1mBQvnn4A3iY1MrwgjgmFinADT9MCpJMFtuumUXnem7dlsBkwAMJudkP/Pw5GbhNwQBhVriFruJdRH/emb0bSMJNC6tycVJ5hIOmkA8NSp83gSG4u3WjamK+6ZomQoUaKoar/hlhPCbeJQwC2OVhxXZcnZuvVPrPxxAuycnFGlbutUUzp34lsQPjdRDOjTp3uqfcZWRHLrypVrdAnOZSanF5kYXlgTRG/Uz++asWZptlnP/xVWy1bjS/9AdI+Mws1LJ1G6ct009UwbsjYDwQFPseqnSapRzSadcfbQFsXVWLZsCaURq/Um2b/Ozk7q/B3fvUrbDEeXnHy5Kw7AMMZ4xSUnwMY5H5mAQ1WdynVa4fOhjSAavyUq1Ea3oZ+icp2WOLJ9GZOJlikAGEV6jpCQp7o+7149C3kNGj9Xt+1VFiRMYcRnS0gwvgRnzl5UXVSu2/I/BX/a5+hdtB48g+9hzcNTqObmgbV8t85hiU8qdEJigD+WfzcWAU/vCSM1AtnoJz54aSVPgWK46nlYcTgG+T7CW91aomqenNjQpxPAV1B0LBZeuokle48i7MYt5C7eneA6mRZ/c0Q9fIhJ0w9gVoUjOPhhX+Sys9G6TfUu9C5i/dIvTqRfyUoWsVhsB67dhV3LVuHZk6dIDghA7t5v4eKsSVh/xwV+0f0xtIpxS941WtcEbDYpFKXIpWUcYjHjf7jTJWusiBVNqGH8o8ypxpF1ANj3D4aynD0L8urQ8hlHYJcCAOVYOemqrUzL3d77DhBA2JVJMcGx5hmCP2lnCP5kW0Zl/S1ntPO4h60ZVTLtyzYzYAKA2eZU/P8eyJI7B3Eu+L5y+1ZwKaSC5PdvXqqsKaLfakgIK9x8ixd/T4veJRUwn4NB+2uNTJH8kC1kRp/Epmhl48Zf0alTPyycNgy1m3fFwA9na7vUDV9WZsyYhBYkgw7kE3OPHp0o21UPu3btV9nC+fPnURmlDx8+ZYbi78oaZMeMUxt7t1QAsFOnNoozMDM/ks9KFUfsmBHo+NMSVLpxB6vnTSJVzQHlJtMNzrSQ5Rk4uOVXXRsBf1L69XtXzauAPpHua9WqCa1obpQdK8sYrsdMvHiiaxMRGsTEjboKAAoRtMTeSXawFNeceeDvcx8BPg9VHwcO/MmEju1wccul3LkS8/fFF98Q/KWAGzOGNNRlJnAc6YaaUVburxZxoVYi2JSXFAGhf6flL4Ljvn31OqIjH+PpAy/Gx15HRGggYqLC1RyIO13URuq06IE6zbtB3OxaEQ7AxnnK4IDvNRzgQ9Az1q3hVhi5mLj1w8J38eD2ZbrXu/A85FDxk/Xq1VQZ07t3H1ChHPs2zCeVnSVl00rwfPXQulXvOQnqJtWtrF76OwQgbbp5D29/sxzmt8qhzfzDODcu9QOeVl9UPRoTfP3e/RckfvEhfGjpGlcjMEsJXD037cf+cZ/AolRJ5GvZHDXq18LPHZqifRtaKi+E8EVtYTN77ZCp3sX62Ll4eKpsX3G1CgDdcsdJydhJA/lMIt92J9T6ObG1UBql6ipTK54+AdhPOhg+AWPLt5+hQi7XVO2kz2p5YtVL2yHScX9HETLtQ3RrX/C3IadiFBxzcIOpvBYzYAKAr8Vper0HeSfCT4G/vDbO+LBsO5zYtgIbFk9TH6ohua0WLvxOZeqKi0ysNMOGfYjQUN6cbnvzRpuM48e3pzsB8sNmz+w6/SIJF23aNIVkVJ7ev5ExWIwrqtFEgYIB4+Zg1vsd0Llzf9VENEm/n71QZXDK8cswflBIoj/5ZKa6eUmySctuw3hTjyapdE/UqVODOq0/KbecdBBKkJqZktiikaqWQDAyaetuvDVmMkHgp+g04CNyzr24sWamL1OdFzNgCIhEH1eAy6FDm5E3b26VZTtz5lxaBe+RjqezsvyO4dxLBq5o7LYlQXenfh/i4R0v6vn+wvi9ali74DMF8AZP+Albln+j+rty5ToGDepF0GKO9eu3ITQ4RF0fc+cuUqTjQz6eD1HsUMlHL4aXaikmOgKbf52FEFot+74/C06uuVLtf9mK4Wd9WX3D/WLROrV/H/ZtWI1A3/Mkug7RVZGkmbx586BwPnde20VpPRXrkRn1eTczyWoK1i2cogCgZM/nzFNItWuUKwUA7ve9qtatCQrjY2Nwn2oqErM7f/7XarsAhIAKb8Dn0C583a6DjghZ7czCH/mudy1TFDOqloD3jKnI02wdVpGjj91DEhDq5IvW9S3WP3n1XT8EZ57GkKvTkucmCwdj1QOLfoNZkcLwobKPRr0iPXTvXkABwN9/f0CVkHJpOt1HnlA/Ak4BoIbFlr9V+sI1Eut3IcAW71UN0sXUGbbJzHpANB+A7QlGaQHsPvFLjHynPyY3qKZiWY21N+baNVZPf5u4jIW3UJREgmMt6ObnCsthxlpKdrMkmsgcx4jJ11Reixkw0cBkw9P0OtLASHzfnUg/8mjxpsJfAXfyhdkwFkgCgSTx42jATbTOVxFdCtXAUlJjnCUhsxRLulETExLVTVbW7907h5Ilu9NqYIYTJ34i7UJJ2Zxh2c8fXBeSMVfP+yJouhZjV27rtWrGzOEewyarLUIILQBUlB8GkZIlISEO/o/vIXcBDxWcLzdKVQgkclDiTdYnC6WMTQ7+8O9PkwGqd5hML37++Sz88MMSVT83tV4r122Deq16quzkTHfyP1IxPRoY+fhybryveWLJzHeVhazfmO/I7TgWri6OjO1bC1FxMVbEOtiuXW9cvnITczZeT1VF3MqRYUEQreeYqAicObiZr424d/OiLotXGhSgXNyEH7bD0tI6VXtjKwJKZzDr/Mm9G2q3JIuUq9YY/cd+p5N5M9bur2wTWUT5nt3xOgO/J3cZI3lLaWWTuRhFilSmTnF+0q7kp7JFW1rAixg91Lx5SwlyZur2lavemPyIy9W6d4Q/vrm+Qy2b07k5o3Qn/Px5fzwimJaHtjJlUr67QoB8mUDHwfKZsnRFkkxdoIPExoXHmTFhJIeSIdPwmYAIAUkWdPvWZ6yexscnB4rlectXsy0cSpbAvdXzdMAsgFQkv111xfiaqdHH2htOEBqWL+r7w1ADWA1c748+KBJ5tzy12sG9Vg3cXvClXq2UxYCAOKXlbG1trjYIBYyfX6wCQL8x4WJiyxe/RfqNhVNwAeMA2xWN0BExSxhLPOdI5qRYgg+mTDjHpKIqtI466jd96fKTiGi889s6HP9lBfDkCVrNmYU14lb/G0o84xd/OJ8TJUn/Iu5kNwJuAYRSZJtkPGvFRAOjzUT2fzcBwGx4jl4XABjPTL+VzAS8EPxAR+fysun8pHwnFCTdi9B2iDttzc+f0cWa4oqwLdwdyfZvwdzRHvGPfFEhbyIzLZuk26X8KAk5qznvGF0ZWC26llLkh/zG9ePq6bd06RdxdvN33OcPtHabSd2t3KAjeNN3YjyYYRGX2NgeFTFt2seUgxtiuPuV1mWMj9lyxZefKP1giS+UxANJWhk84UfY2mXtx/+VBvGaNMoIABp+BFGG8STvnlismjZtAAkHMFZGjfoYK1duULuKl6uOpp2HKJdk2WqNUvHvfUVr8YPnZM59Rn+lKIZy5fdQrlix4BleT3IdyXUtxOSS8FG4RAUUoJU5MT4ecz/pjY8/Hs3rshJjSt/msZMx7NOFqFqvjbEh/qVtPlTAWTB1CBNSHtCaZ68k7IoX98C77w6loagkKlVyoXs8BbxkdKBkkl338KiOY6RO6jliigKt+oksJwNuY8XVvUg+fQo4elRl/bYY+x4qMKTCke53e0sLAj9LZqSaEyRYPn9ZwYkWuZtBLrgRYoe2xaIUXYrhOOT7vYhgaVS1YN2uPfee4M0G7fDhml/xQa0K7FceMlPKvAtuGEktW63wVGDU/nwKSM5t5qttTvMuoEwsWwIQhRtQJOPeXDgPD+fORdkPP8CJ8UPTtNHfIF6KIkV2UDc45XfMvUQu3D5bX79KqmUBt7+RSqUcw1bq5o/R7ZMM4XeWAlum7MFbXfNg3tzKun3yWWaedsf4WnRjc5xa0Qet2rbqn82G908/o+TUz3FmVB9t80vffzzvho5US9EUQvbct0cAVVM6cZs1Ce5X3XCh/B9jMdlTLGMsCzomMFYxMk2/JgCYZkqy7QaLbDsy08Cy9QyEx8fgiysbEfMsHk6WtqhBPrCi9rlR0NYFQbSmPQl4BAGIVrR0WOXMhRBLymMRSLmacYHFm27WPxi8b8EbRKXy5eHlVRIxT+ogZ8EnMAtlHJZLbtyAlXqqzpPHBk8ZU7P0cADWrN4CKzsHDOrbCXE2+TCYmXyuFEHXLxKTl1d/A5dF+cHwZq1VCfR9iO/GdaVbLwDd3v4ULd6Qm/OLYmvvhGJlqjLe62tUrlyekmB1XuxMZ2k3RddFZJ28sOrmIu/8DUcjSlCJRUPG6MD1EfIaMRBxzBD+9ddVSnh+8qD6eP/LVShUvHw6vZs2G5sBAV3LZ4/T7erYsZVu2XBBpNykyLmU7Nq7186pdTO6MUuUq6ZInIVk+rH3C+ugJI9MmJNiuVaVDf6EkeJFQNd9klKLZvCj26I3vUbVEkuyFFGFadZsN5dkPRGnqCf8dwJAsfqd3L9ecRi60Aq6bdvvJFiuLYd+pWJx/TZ+3rESndv3IfXSR3Am6HWjCzghLhpREaGIpVs7OToqpW8CvWS6IfcuXIq9Py/J+HjMmHasPxqR55Zi4rNYTgfng+51/iDAjMtmBIv25d9EQuAFTIv1Y2ymhXqpekRD3/Uagu8IMG1q1cTY94ehMalpJKM1NDYHHtwMZuJWGON4C2NeCx9MPJrH6FjEMrmR1jf5XloS2Ahnno35M8bokePvsgXshn2PLSMbGW2rvzEHTZmTJpXhy0ttnjulmP7uNMtMOFcaxLWpQKJfBNh924sWNbdmeKux/E7KyFKKZBTbkmLmGccoY9WKfvyxaP2WcInDgLZNMe20J27P/BpfVCiJL5rU0qqneX/C39Wjj+2ZHZygCKotn7t1nzyJwdp9zFoekEQLNwfGok+mLYBU5k+/XA+yojvYHn3zBelvNi1n4xkwWQCz4cl5HSyAc2/splSbD3qS26uucxHMpHvLn8HyQoWRlMRHd70iwEu40e4xNkgsJMKzJi44KfPmzULv3l3V8o0bT/H++2MUj9vmzRvw62FrNGiSF21oIZDiSqvZ+vVL4f3QB7OX/onLBxeqvtROgz8S/zdx4gwVcC67vll1AQ7Obga1gAsndmPZtx+Q4NcSYaGUiyJn4GcL+MtnUCS26ZsPuzBY/pYSh+/btzuf+CX7MxT58+dNdxz63ciPuMQsiUycvltLv4639wOVwPL0qZ+SIRMOOo0UWL/e/9JyZi2AItm2dfm3amrkGrt8+VCG0nDaHMbyutr96yZad8/wZkcxe9uz8PX1R9GihRWRuFj63p2yTHFJ2tjaa8107xJCsHHJlzi2ayXbm+PHH2dSXrC9euCQrPF79x5iaMOOuKlrQcBBt7G0s3d0wbdrLuntydyiJKr4PrqLB3cuM6P8BN2uVyDWz2i6rJPpFq9btwYTmhYpWpvM9Wi8ltljHyQXyIt4xkvu3Ekuwj82qkQaR1rpc5GiRa79smVLkeS8FddzIpLhHGFxCXzFI5rL4fEJfMXTspZInewEAjQz3ArNy33JlFR7Bvu4k+p7FBUZSfW8aMRERiOekn3PXJsT8Xgg7tEemDmUxLPYMCQlxiLq5gaY2eaHhb05ClcshltLf6M5KhY5ihRHhb4j0LJqTwStoyTavmB+TyvApnQRFVsncm9SRMv7nJ8NNYGtYMd4POHjy0l35q+XbuCjL39E0v37SHr6lKbAKFgVr4ekiowjXfRlKm1d1ZHeH2NWOL3dRhfXkirFhmBLFEg0Pj2jFZ9vFGJn+QwZJW4IBcvOe46qTs084cjfsheSQkLwJ7lOa+bPlab7jexTvCaN+VDqE2WpHlirkOJFsoOnz3mI9ScTkcDf2u/H5yOYLpKmvbEN4nJv4PAQOyvWNNxtUgIxnJFssG4CgNngJBgOIbsDwKckfP3y6lbYM8ZvVrVeuHHxOOZO6q37GJs3L6NLpKC6AT58GEp31yo+ke9iJmUjiOyWBORfunQVAnaWLJlNgt0Kuray8PHH07Bly24FEku1HwnrZ5G4c3gtb8zWOMhsYDs7OwLFT+je26HA46xZn6m6hw+fVMeUuK9WjKeLiU1QlpymXQajXNWGqY4hKxILOKZbShC33LwCAoIYk/Ut6jLr0VgRYt4F04bi+vmjKglEMoiliAbtTz99ZaxJmm3i5ll8mSLxJcOo5ZkaKGuVRTbugw8+xbp1W9WmD79ZB+GV+18tmQWAAopEFSbI7zGELHzHjj8g2aeZLY8fM8uWbtFcuawZQuXDa+xT7N9/BI3a9UWvUTN03Yjla/2iqfA6u5+gJZIZsykPM2++2QVTp05Q1j9d5ecLIkf40UdTsWnTTvUQZEe+QAGACQRHohbSmclAQvtirEicox+VQu5Q9/jqucMEe5cREuiri5uVxClx7wqPZvHiRdFqxmxUDL6VrsXb2DH+yrbMACCRC5NMUTFqCehxsHphxTJ2bHHLSqygWPUKkbZEwNJexvq28oiCuCrfe+4WPvnEH7tu3cPyRcsRduQY7Dt+iFOfd8fBff7M7i+Egz7OCtBEkANQtHjFR10zbwyKOjMBaOkGnKKl0owWvOSnPuRKyQmXShURSsoXuiQU358kVvh47s4QABobv2wTLkLRDu9PsmVjIC++cAOs2HEVZUhhVY/64elEp6juxaMgQFXG/rKynlbNZoUj8ZOnJ2Z/OBkM9oRVqVKo2qs73m1aBx1LFMH+h/bwppa5qKAYK0suu+DW6uP4/biEdDOGc0NxTo+1sapq2+MIC2YB2yrS6X75b2NtmTReEhMATHf2/rsdJgD43819ukfO7gDw4wtrEJ4QjWElmsHm4SOCP4kzEXdAyo/6qVO7FL2DfMBff72HsWMv8cbkQEqXFrIpTZEfe4m7KcyYEv0fwXv3Hiiy3VPmzVDQzZJxS+XVUaSDfHRZPDm6HOPGfQFRCgkPj6AbNV7XtwTZf/zDDuQlQW965SKtfwunv6N2yw25/4ffk+OtVXrVddvPMMP08PYVSoJsC0mlW5KfcO3aJbr9L1sQrq+lV1xVlqCI06dXypVrQP1ZP7zDOLEq/0CcWHrHzQ7bBfSEJcYgiPrQK7yPwZ9EwIZawOmN04fJDlOHt8T27b+jfv3a6VXLcHv//qPoPv1T1fEoVRlF+CpfoynB5SNsWvolrWzP0LZtM5XoIFaw+gTsJTKhJx3M7OH55IT08wvkg4wNFi1aoRtHkZIV0WP4FIYbVIPE8ImGsFyj/k+8dRZzd/ecis5GsudTtIXLZMnKJ9eeyJUJmPi3ijdDOsTN2JFkxG4G4RqvMoYlpH2S5BB96ifpZ+SuY/hj6Eh8uW01RlQrS2tjPNbcYKZ+nANiEnwxsKIbLe9JmH3mCnZ5XsGF31cLuoF72dJwYrbvr+/2paatG2afuoz5qzdBvKH9u7fHpIY1sjTMmTOv49ctoegzpRkG1EnUxdSl14kocohqiSSGFHJKeZjQr+sVaK00hSU+LzPF09dGUcqUzRlPMuxofLD9IA6TgzTu6lXkcC2A7l9vxUe1rXSqINJnCF3nG287KYtgpxIRKhbyGM9ZdVt/HL/5DJetimEow220+EDDcUh7uQO48PyaYgANZyf7rpsAYDY8N9kdAI4+u5xP5Jb4ssqbWDx9GC6f2ptqFqtWraisIJ9+OkZRSrRpc5S0LHnx1VcVVT0JghYRdnm6P+Nrq+ga8hPQiTZnHb2g6FSdvmSlLN14vqxTsGg5dOg3FqXJ7WbDWMGMirijJf4vllYcIaeVeMXMFtEgnjGyNeOgwmjV+Q1NmtTPbFNdvb0Msi7YoxfKnjUOHjt06EMC4EuY/tsJo8kpuo7+HywExIZjy+PzuBfpT+mwWMaPpgYocnP5mtZmUaFIr1y7cBTXaSHLmbcw1lDmTSu5c+fig8jcTFsDvbzC0KjROlrYCALMY/nwYqncnhKnKUXiBhct+k7RzGjHSO/94sVQPqBYYGtIEZgzdktcbkKfUZGyYUWd4zG0/9tKiSS99uXLlyFfZSMmtNSHfK+cnBzTq5rh9mVeLmhDgCF0KXKjl9KjdDg/IyMR+X2k5/pvKeJiFRqUNyixphW5zsvxQScj96VWNzPvMuajjHe7SwvWm6XDVOyatBu7/zR+7dkfNOHSTUwwU2UoYu8eQZz3IUkXh1mhgjQrRiGZblGaelXcYdVJ43FgcDejhxXlDiGUFgLprJSiRXciiXRRQ2KPYPLG7qkeatPrRz7TEj4U9i4bmkZOThJTljPDeUSV4PSap9ou2blb7ziip54KilRYdOE6ps88jj4jqmJm0+qqjSTaCC+hkEOLbJ7EJR7qNReBUyYrWhfJ8JUiv9liNQyle9iwX1VB748JAOpNRjZfNAHAbHiCsjsA/OPeCUXrIlMn3F8TSreFn5cn6Tc+Utm92pQOG9YP4p41LOIG3UNGeuHva1I42nD3K60Lt9tvv63Gx3O20VpT6ZX6yEqjkwzeXz57PAmlJzKzcrCuqYqZypuLwewWaluOh49hsfsgzK/d5K/oM+TwZZwWpaySSX7tR8b/TbwZD6oYqkCwWIeEKLdcudIIY/alP1VDxNVt6+CKST/tVvFiugO9xgti3bsd4YvzJAa/FxWgrHzRTCaSImoSzla2yGXtyJcTrxFrVHItzOQiV5XVnd7HFu7Grz+UWFLeSdMpvXq9oWJOtWSg9FyXUa7VURCTVS/z51dDr16FlbtVYvnkoUHcrZkpBw/6MxbwBGrWdMOarU1w7AldoCxi6fEKtMFDWr1vXDiNL9/ubLQ7GeeDB+eVhdtohSxsFJC34pqLus66lwrDJ0yMqJInVt3QXegatSUo7Uji4r8CBAUkfOfpjrcrBadKzBLrlujRiuXRlccS4CklnGBx3U1nkiKH6fj7wuiqdc4k4BLiYanfpFDKb0gwYwGLV6GXoXRpFC1fBS6lu6N1KX8+bMYT98Vgw4o1sCLX4bg+XTGsahn4UnGksFPah0QZ1zYCKHqGYc3fqMh4c5Smm1ZAu106Wr/SZjul1loUiYR1QiwfHMyQVLktljb+AF1md0nXcqZ/CmWehGKlvBGvgCSrCK9gZiy3lwOs1Xx3KB6p3z08Rv7MSXdHXPg1JEY8hU3xhnDjb+WQpo48ZkmUdU9GfgciwgyK9H0nxFqxLqRXzQQA05uZ7LfdBACz3zlBdgeAMmVjz61UGcCyPLREE1R3K4rvP+qB2+QckyKkuT179sPo0Q/Vj+GJE01VLIna+Q/8caQF0IV0F8Ur1sfwyYv/gSOk7lJcgZ8OagAr0lD4+V1VO80YN2a9mMoh5D9LKl8Kz2i9AeP57PuPhPnte0isWQU5nvgich0tfs8tOZIpvI/an/LUvnR0a1y5cD71gfTW5m3zVryEepuy5eLDqCASfzMTPDoYAXERDBeIIddbyo1FAJTIAWpFHEcOljYoYOWEiv4xcLd3QcVazRXQ2vzrVzi1by1jNaPJFZmgSy4SdQlzZorWppJLn/dmUlXGn8kf3+Dise1M2jivkgokicbe3pY8d864QeWVNm3eVIcUC9qNGyeUdrQ2hvTep0y5yrjQOMZ3VkuvSobbb92KoGzhTSaXlGCcq4s6xwLC3q4UkqrdiRNnmUE6A7du3UUMEyD0y4kTOzPFham1EYWKs2eD8fbbxdJ8367SlXjOzxa9yoSSj89KxcGJ1V2KPIyso4xXU4IMYwBE6z+jd9HaHX84L6lYguhKTbGW6teXJAU5hjM5O1swEUqu/ZsEE0IsLP7DAI6hMF2gEQSKPQgK0wNbWp8/X3RLYxUrMHg8os+dx5WjB7HsWk4MrBCSJcvjo3ALZRETdgH944ubdqe3gzp36VkEJeZvzrmc+LBmkALaMk6x7AnvX3vGPQqTgejuFqG1zVj55YoLBlUI1WkH69cR171Iy3V/iY6w1PvjuotRneP+W4Nw6thmWkMT4WiXD/53TjD+sQySScllSbWZGZ3rqoeSMdUDaaXWP/qL5bn8fE0ZX2js/Gq1TABQm4ns/55ipsj+4zSNMBvNgNzchf6lpEMevFuqBe4T9H04vBOtfylP9jLUN9/swZtuCjCS9bt3I1GihKMs/iMlgvFXfZg8snDhcsZMCalz0X/kOFqnx5/Te6xatQBmjNOzOH8ZSQ60JhCoWB44iuQTBML2doiZ+Slix42E5aHjiH13EKyXUVWAtCOJzRsix537cC9fGm+VCVPddtm4SCkvXLjgxaxkayxjXf3i8+gOCniU1t+UbZbFqrePihA7nl5U9D/awKyYFe5gYQs7ofmIjyNws1Su+YKJ5gjZuwtVSIYsGr6/zBqFtYe3qWbztt9TPH6Htv2m4itLliymFGIk85SHYfZoPK+n++TxW4VrdPmKsoZ+EdAnL63Url2NwPACCheuqmJF8+eviOHcSXuIrujTacjGuLhnzCK9rfZnFgD+8ss93L8fxeSDgkwe8cc77xRjklMN3THuhVmq2FXdhucLkqgiyiVSxo37DNev31HcfSKDaM9rKCtl6FBPJlfRUsSA/W7d6PLUKwL6WtJCJVY+iQ/TL5KQ9E7lYCwjifGrAkAhe+5TLjRdcCCJH6JHK0Wk2gRIFXNJwHlm5QoRco9SMQp4SEKB0Im0LZragqU/XgGTArgMy+ghvfHVrt1Yc/kM3qtZS8XWXQmAyrw31AbW2oob9GawNU772HE8dMsToGvAWKsj8YZFnOJVlq08rIkbX+ZSn4JKAKPMo3DlaUVimt8k4D7ra4eSpGgRt/VBulLFmieJKPrFgnUFMKpgOv0dXPZ9FIklS4PQZJw9w2qsDfa+WL3Bz5HH7kW/okksllJ55upd0QHLOw3RVY5O6EyrZRDe6d0L5vE3cahqIYyp4Yrf+ZAiQFTGbliEJsYY+EvPmm7Y3rSevWbABACz1/l4LUaTQFemlPLU9LWxsFL0Lhr4E/fY2LHDyaKQhzXuqnryp2bN/ejQIR+WL6+VxjKhq/QXF0aOHKIAoN9j7ywBwMjwEOzftARP7t9Amcr10aBt71RkwIbDEmLovesXqs15ZsyFxdt9YTvtOySSIzCJYMViPwlx6cJNprUpdsQgPOMNXl5SkooUguWOvbDcexhJdAMnCKh5zkknoOWddwaoevJn9uxpinpj/PgpKhnkwOYllBD7+h+bP92Bs7iw1+cKtj6+gMTkZ8qF29i9NJKPHcXFPesRTutcMPuTl1Yq1W6JE16nlebs+X0bcGj7MkVhIpQo8hJQJ5QqGWVXiyVx5cr1CvzZ2trSchajuhc5P2NFEoWCgm6SomUJ+Ry/QbGvPwOYlSvAT25ehjcwyQZeu7Yu8TwRZyaKjGfcuEuqZkhIPLPcKY3VLDd5I110rcu4xTP+zhmlGFdVisvGyvjx75G3rwNlEE+njKlwAVVN+tdc18baadvWr6/Hh4iHVPbIpW3SvSckmdG69AKc6HY8X5B4N1vLzH1ew7Y3gq2URa+LXuyf1BGLlOAIDVCJHq1hMdwmbs4HdBkbKxo5sUiqDaKVzrCMp4bwN5VItP3h5xhyeBM6FE+iCok1hJ5EAI1k0Yob+kmkJc762CCKnzmvXaICvQPKh2ToAheAp1ngBHzupeU+hDFxwu0p7nxbWlPdbRPVcfTHJYkvGmGyAF5pu/WuE+XpIpS1T4CwbAtiIoW4kvVBpdaPyM5dve6AM2fiqGCTT9uc5r0qaVyOP3HDUsZ8WvJcSwxfbz5gGgNz8nl6lnHDilHDcPFgJNaP7ob1zWph+jvz0/SrbZBYbbGE1mHWsn5Cj/YAJaEGpvL6zIDJBZwNz1V2dwFHJ8bjw/MrkZ+kzxPLd0SwzyN8+V47JcWlTWeePLnw+eff05KVBxMmeNKVFsFdjoxp6sJAduM/7lrbrL7LzVvKFb4q8fX2pPmo1qC9bMpUWUVN3iM7VkDG7OcXoLR5CxYrj7ote+La+cOIZqKH3Hwfe1+luzFA54rU7/xA47qow4zTxNZNYLl2Kyy378GzujUR/cMMIX3TVXUgPU2Op75IIG9a7IT3kKxnqdJVMlgQ69qsWT/SnfgTGrXvh14jpxvU+O9WF9zaj0uhD1VSUHO3Ugjesh6XmLkqSi/6xYbKJkIaLEXm0tbWRnEnWjMY38XFCW5uLrxWyM92/6FKuNDaXr16VHHNaev670ID9Pvv6/HZZx9i8uSvCPBCKB+4Q7/Kv7YsahAdOhynu9aR56kSmTeiSYVkn+b4ApQEEJVOBwBKg4bkDHyf5Mbdu3dU7Zctu48xYy5S27oluQnT9qkqveSPgKAwJl41LJgSL5de9S2MfaueJyZdnsr02olrcBRdv0JyrF+E/kVoj4ZWDE6X9ki/viwLyMtnn4iKBm7kK/wMIfwMjV7yGdZeu4t3WnZF7YnjsHtUP133Ak7EBS6JKpKQkt8hAbfogj7HrNlWVLQQcJbVIs8HYtGT8QoHX19aQDOT7CK0LqI+IqA77rlFsUruGBUnKtY3wyKhCJ8sCcPb/QugZoGMx/kbwZ+QNhsDffr9ynwIH+L3nkHYfuYmItd8yuz2WPy07gJa0bqZyy7lQV+/jSxLssgxJuFE0VUvjxMedGlX4zUjAPhOiBVOX49CTPtyhs1MNDCGM5IN1k0AMBucBMMhZHcAKOP96eYeXA2jagf/OVMJpH+xhvCwcMCiL0fwxm7JWMDTiGPslmERygxPz72ZisHS2koWnH06wdf79vnR5XYSp041R8GC5ihXsDIqEGT1++AbrflL3/dtXIwNS6ZDyJ1Fks3L64aujchoSdyYWGBKlChK6o1qiprm+vVbavn06fOq7oafv0Gzt7ro2pmRIDrZ1UW3ri2Y01UscYLRsybr4gC1fS97Hzv2M+UW/mqlJxydc76s+j++f8713bgZ4YMi9u54v0QLzBnfAw9JSCxl9Jd/KPWVH8gPKZx1orwxggkxDRmnV7p08TTE2ZoFTsDutGnf0/2aYmGdMWMSk2wGZeqzmIucXoUyKtlGZXlmqlX2q7Rw4TJmBh/SydhVrPgnAWUMrl5tTTBs+0oDXknJxD7lUoNyYx0JeJBM1PRiwPTbSAyf6HCL+zY3XZ9i5eLXBLuZ4CWqGhLrJ/ROooKjhTnot09v+RZB8jJKpYkrujhdspKZKm7amadzKeoXcZUK8JKM6rbFjLuJS7/7KfwPHMKK7avQoUSh9A6ltsuYdxKQBURboA8/u7jI9Yskt4j7XIBPvQIplmb9/X/n8hkfW0i8oXAlGgNgf5BIvnfZ9M/jMSaSCJGzULlIafX9UnjtP0wpwjhYky9ywPChqF6kuQKez/hdO/voKv74inKc967AruNYlK/dBJOalNQl1hh+Nonz3MZkF0mQEZe4zMdd0vyULFsJTszkF0ugKQbQcNay77oJAGbDc/M6AECZttOBd3DQ9zoeRAeqLM1PKnbRzWZkWDCJcg/g5L71uHX5pG67AMALF/ar5AndxgwW5Id+G2kKosWVxB+di4xn+aaxn66Fq+tmtfzxx2VoaSyDkSM/JoHyNszecC3TChpCIPzzlMEk2T2i+rKkxW7o0L4YOPBNSPyZMddbaGiYis+SulktOa7eZJJI6TRux4z6EZ3gr776Ad9+Ox9jv16HkhVqZVT9H993huf+V++jKOmYF2/nr021gK7wpQRg2aqNqJqxFHevelLq72OEBjzBPl4DFSumsQi8dIxVqjTD1q0rCB4LGK2rWX4191OOK9dhRaLlJF5jYNJJ/LD+Rttl943Nm3elGkwbZQWUsXp7R5IAPYDXo4dKqMrq+IVnc8ElVwykVUgsaAJ0xAomIM2HVEwCgMT1W43uw9hm/XC9YBVUXvZhGouY9COJDEHUh73IeD8XArw2jNPTj62TRJObtAK1oMJGIK1/Euf2MkuU9nkEYG0luBB6HLHyCcg49MiOXHaWCmR2Io+gI0Hfs2Qz8graMb7PHlPr+6vvkfShXQeyfC80AtUqNITr++/Be/wQ2fTSEsDxSkJWLwOAJeDzdt1hOL54nUoC0T6PWCoFhGaWukpor8TCWp7xhA0ysGI65CyDHw75UuYyNM2YhVi6IV3O6VkZV1x1Rr/yKQBx/I4jWEJeRLMKFWDv7E7QnBvW1IGOvrcVyWYxeBbOmG1/f+QoWRJffjcdDvZ1M3xIENm4HTw/QmytufTTDJAbTADQ2Kxkz22mGMDseV5ei1HVdi8Bec3w2oLHzPj8/PIGNM5dBk1yl1Wya6FBfgr8tWrVRGUFV6pULl13XnofWGQou+plvhXjzeHkU1udiPqJE81w8mQQ+vUrorro3r0D5ao20OrkA3fywWWm+D25ryS0pG7FimUxc+YnKFbMI0MZMf0kA2PHMAQn+nWcGOMlRf+Gpb/fcFkUSoQTULJEazTqQBBggVljOtM1HcysYEu45MxLsGtFqbICKFa2BspUqQdntzyG3fyt65dDH6v+RpVsiatn9inwJxucXN0xZVgT8is+VlyQEyZ8jfbtvamCYanoUEqUoKJBBooC+oMU0GsMfGt1DOcvOacrYywLwpwqM8l2tinJNozLTGZyjnbT1tpmx/cbN5jI1Gc4JQ9d8N57Q3VDLFbMgdcjE4xeoQhQkng6ASpCvSSUL3no2nPn90gsc5KMIEBLYs8u8eFqz9zttP5EEfxFpTnaclrlPNhOFDX60dUp7QyLJEsIt6fsyk83a2bnPYEgay0pYYaSQua59KzqWqN40T8OIasa9y66XAWUprkOuO3sIY7fYjATjfjwmUkAKBa3fHQLr2G8YGWCYYnZlCLW0PJnFsH/YTw86ULW1DjinjGH3YxPqJksfgSA0tYw5tGweWTQDcRezKEysw3VgnqS91CSUNIriQTHUsJJfbNk3CcwK1wMM79dRdDsRp1gX8zdswm3HIshnh4KK5cKqNFmBNoUL0OlEjPGS6ZYDY31LbGcQo0jyiHGzruxNqZt2X8GTAAw+5+jbD/C8WXaY8Gd/bge/hTrHp5BGGk/3ihUAzv+mKPGvnjx91kisBVWeYkvMaaXW5dE0UKXIO9SypZ1Ui+1wj+7dh1Qi2LVyEyRhIMfJ7+wFF2hFalDh74oVKiA0pLNTB/G6hjelPTryD4BiJrbU3+fsWXRNBbw55a7AAoULYvvxncjiHJT9CCSEfv06QNSDD6D99VTjGX8XXVRqlIdvPXudKVtbKzPv7otimTNUuLBm7y63af0eObgJo6rFH74/mdmgTdHly4nEBERQNd6GBN0HpDj0J5JCnVTKmfwV5NME1m/zJZkWv7iB7z5PJWSrYg+JM5pCa1fwj2XGQ61zB5Lv54E8IsVzDD+Tb9OZpYHDBjF+WrPeMaxmamuqyNxdrcZyyauWLFiiYVMgJd8B2K5zVhMma7x8wUBiB506QkQlAxXAVaGN/qBRmLTDPuRNhJDeIBxcWJhFKteNz7AvWzul19zhYAbffBn2Lf+utQTuhJxbcu8y3G177x89edtfwyHCh1h5lRVAVuJtxProUZsrN+X/rIAThnz5ydy46fmPvq7CKAE3NrpAGAHummlXgmrUAL2i6T6ceaDDkMQnpcTJwJVNvgnn5Qlh6WZsoy2oZs8M6UzrZ0bmDD0rgH5s3xOfXoaw75k7o8zPq8+jeZvTfsUO9Y/xWefj8bnk4czzrEcWr79JjbfGap+XyVbuT4tkQUcwg27SbUeyt9joS+S8y/HN5X/PzNgAoD/f87lf/JJYpkQsvDOAdwMT/mxzGvjjJrmOekS7E7utniVySkxdEJs3K8f6VDoMhVC3q5d26dL7CvB6mK1MAYA5UMmP3/KNfzAJ0+exeLFK9C00yDkylfYcLfR9VuXT6nttpSCk+zfijWbQ+Td7l7zxKNHTwkEMw9AjB4gnY0ZAUTDJrNmfUrqB9IzMOFhy7Jv0LBRfaxe9TOlxNLGg4k+8erVm1XSyNThLdC861B0HzrZsMu/vH47wg/uJGsWZY4ty75SGrRbty6nW9w+lTTZ4sXV1Y3ZxiYHs2ofq8zYzBz888+/VjrRmambpo6e2Uk0WIeQ1mMlb2BCYVGAWYx/F/m4dlxRtZHYOZHqMkxc0Opk5v2bb76gm3c0KWseY+7c6UrzOr12Ehf7Jy1gAvDkpixasgLcGhRITBPDll4fhttFhuzbJr64wRg0kVurNaQnyhybz+QcmsAMitDkhIYmMHHKxmAPE7GYvKFRhZylNVDIznsQ3BkSPAvYFIJjAc8CosXKlJUivw+au9Ow3ZsLC6DB2CW48ecqgtkWtH46KooXbyY9FCXQTS8LW/oRsNqAUnMrGW8XHGWGaxcCkb+ALeqVt0InkmVrRS4zkaTb4O2GE4EuiLwQjdH8DOIenTfvDj791EtVldAUKyszpW0s2csCVPUuUa27VO/i4q2SK+VhV4CmoSUwVWW9FZnLUEHALD93b42+VhHYMWkZPhk2Bv1PbqPt1IYWxBxMVglLqfSSvxKCI7Qww0kRZBgb+ZKmpt2vwQyYYgCz4Ul6XWIAZeqmXtkEn5hQ5GNGcBOL3Ngx/X1F6fGyaV29ehFat25qtJrEyQhZahW6YYyVX3mzNWbV6NZtEM6eu4avVp5LF1wa9ifJHXExUbC2teePcsoN6OalE5gzsZfS9xWd379SMmvly8wxxMq37JIdBlWNe+kNRGTLxHL466+rMGXJYeTO75GZQ2SqzoPIAHx1bTua5SmHNi4l8FGvakrxRZRfXlbE1bf/oYPKGsxNl5tWxOL0+fyduHT6JCxi/HH5wgXcuXNG2/23vX97NqfK2BSjpdyIRXmhCUmJJYPxrxSxGglgEBBoyO9mrN/0rotYqll8SAqTnTv3EUB8iCHktTNW5MYcT7BhT269f6qUa38dQY/D4XsxLXXTsGGejLV9rDt0o0buzFQupehntO+RtjOOIFVARF2C1HJ0EWtFYugk0SO9eDatXlbeN996gAW7D+HS5u2IvXETFvXqIoCUTXJ9iWpIEh8eJY74MZNT9mxgDPPepyhCkqLjRxorK53hsYRYu//bV6hIk8hEs2aGu9W6JIlIssuhR/bKyqjiK5/64+zGK5g2tTxDIVJAsiR3SAJFS1oBha4lM0W+L9tIAB1FsCyJNlWZKaz/vTHsQ0C0AG5pJ+5gG0oZjnqvM33C4Tjz504ce+qKGrQSag8qkrUrsX1CEdSc3wNDYCoE4cLJ2PO5eovh8Yytm2IAjc1K9txmsgBmz/OS7UcVnRiH/T5XFfjzYBboBNLBzGXGZ3hIQLpjlyzazp3bMBasKiQu0FgRSgYJLk8P/EkbcQ8buqhERu3MmQvwKFcn0+BP+pKblaFmsL2Tq+wivcgsRUSsVl7hj9zkMyrpgYD02nj6O8CVurJmZi9uounVFXqVzz8frwCgyKT9nQDwkP8NddhGjPf03LdJLQ+cMBXIBAC84G+ryIDlJiUxYuK2lBtoYKwFfl2+CQOHDYFPDg+smBiW3kfL8vYNGx7j8OEAVOpbFw3p4pOsUq2Iy1RuyuG04rWlpeVVwYhYjbqWDKd7zUmpMBgCSjnXVwpWxbG1f6LQuyPRguonWtG/DoQKZ968WaRNCkStWm1QrVpFpQGs1dXeL3IeBdBIsoV+EVD7J2P9hJYjI6Cg3ya9ZZ8TN+HQoApJt6OYAZ86BnHy5HKKcPrcuRDV/MiRQMjrHZzEVyGzUnUpVqnBVOQ4SIAkRMgCkqWI5dJSjzQ5VaMsrjwKj0LdUZ8iav8B6rdZw6JcOTT8cgrmdW2lepJjafx6zTln8vsReiIGe3yD4F+lBIm/k8hMkNbSWbWqK1YurZQh+bK4oD2Y7DLQOVQ36st5HGFXqBmO0hz3Rq5wcqA/Q0GrSBItxymlESG/LsEMZ5kb4SQU93v1vGlBoVjdupJbUc5rELN7TzNLWDwkFuT4k7AGQ8Am151kCc845Y5JtQP5W2mGCa0/gNnhY3hnxzWMI1VVw1KFdXGTbuQttKFV8lcSgAsANCwyPguDc3SKMdgS66lv0RULrlDqCIl3uF+CYTem9Ww6AyYAmE1PTHYdViR1LpfcOaToP2SMEv8lMnBSPEpXxY2Lx5VM19SpE9C0aQPF7+bu7qa2qUov+SM/hhmBP2n+jE+r/D3XFU/Pi8q9HBefSHfnp7rtr7rgff2cajp0aJ80XUhWYmPGzRj+8KapyA36sX6yX1vX3L/au7G2+tsEIK2nq0xcXm8YEO3q1zNcfvz4qdpkaf0CbBjWyeq6X0wYzgTeVa5f0es9uPkX5CteAWuXH0DOtpNQb/PEVDcGw/5rPQdf7zCYXFyAcoMRcmLeQ3GqtBVWz3wfyebWiB42Bzny2aYCa4Z9ZXb955+9CVbIy9f5GXyHfQ2fu0eR79pG1VwC/8W6IRY8AU4ZUWy87HhyfsQVu/4maTKeB0uJla6sZSDCFu0G7cwYXi83/J3yYXXtIbBrNR05Fs9EwbsPYB2WjMKOCbo4wly53NWDTHoZ0BLrJVxyQgsi1htJzBBgJdel7BOgIC7hVh4vbur6QPNln0X2Hz3aFGNWJOFwVAGcvia0Hwkqe1XAU6FCdszubqzr5tq1cFoEHzHhp5FumyxIDKa44WVczQgwJClFe3gzBK+pGmZh5RxBXKuebyPp0SP0+fFrfNWhKZVGrDLsQU7P+8MKqdcVf0vseGSLLoy7k7k0BO+VKrno+hKlFxcXJl65ZNy/5gaXhLVlV5zx5RcXER0eh7nDHcjvWFABuvsMc5G5qER1lFXM7jUGALUDy/y58yGjfTq0N1o9AYrbOn6HuImzIBnDYo1sVs4c23/ehOK53lKWR/3fHRerRBx8EMW4xpRzpPUj75toTV18MYTWxII4+tAb1fK64YxPALO77VArf126yq3Uw7rQAbmQzFr0koVn0tIpHH/od2RazrYzYHIBZ8NTk11dwKHx0fjs0nokUPGhgK0r2uethEjPU0q1ISE+VknBiS7riBED8eWXn7zSzArYEe1MsQzltU9UfciPnzlBgriQQsIJQNcexNTBdZj84KuyimvWbKUsJr1GzUCjdn1f6bjSKIqEzzuZuHJw668KvG7YsDRNX3vptpKn/ZcFk6dp+Aob5ElbLCbxvCm1K5r5OCDtUM2bd8ONW/fw9R8XMk2Jo7U19v4kOgTfXNuBuKQEfFC6DW5sWoHda+cpvjoB+2KRiqzWFac27VGB/8b6yMy24OBQ1KvXDgv2XlSJBH8VKEi8mlh4hIBcrq+TzSfBhXrFFc4sTDUcAScOPYeg6okfU23P6kpYnHDg8U78vBx/bIOSjy4hLwFtUp7ccKEUnXYTllhXoUsRN+n9cCu67JJ1We8iXffrrz+gOWUDX1bkwaQQAWRxPTLj35kgIXOnfY+yCgANjynJBQ85XrHQp8e/Z9hmMWMJDbWPpY6MRSvaXGjrWX3P1X4AEm/exIQVC/Bx3SpZba7qi0zfWYJmAasqFpG/OfJQIskj4tKvwexd71thvC4PoG7dnHTRv/ycaAORMJP58+9i5e2cmNYNaN7QVdule1/IRCV5KPqrZfNtRxXfKK52DWj/fOE6JrXtAcu3h+LplNH8jPLJUkqjpRtxa91ZfuhoxMfeRe7SJWHh4gKfM55IevhQoULXTrMRumsSkpncpwr5A80qV8bC2VPRplhx5fZ+3p16M7mA9Wcjey+bLIDZ+/xkq9Gtun9Sgb8hxRqjhnsx/PBJH1y/cCzNGCVjVX70pBjGA6WpbLBB3Ckjqwbrtgop8wFq6169/QhLA+Nx/9Y1+Hpfx/Kpuiq6hYzcz7pKBgtCF3OCur6eh7bAjxrCMt5evbriu++mGNQkGSzjZYQGQgK//4kiup37SKwrGqPi5hZwkBnyXmNjEZf4eZJOdxv6yV8Gf+eC7mHNg1OIYOYv74voU7guLjOG88CWpRg8uLcCyzKGInmLY9/1R7CNJsrKRBEwHUsqjQSCn0akHhELx7Vrt9C79zvMxG6lyGh3UHZK3ErGEoIyC2hE1k1eUuT6KrtzFjzfmIYKBmMU68XqfHS5Gmw3tprRsfXBn7StX5CuvYKloc2KPuARq5q8pAiprlCtiM6t6OauWDGPSVQjSAJ9Se3P6I9YrYSWRL+IRWsn48d6lglXm/WPq18vs8ty3Ut2qWERN6Ncr7l4/uRhTYCHFImJE8ukYdEHf4b7XmXdtVxZBHh5YdabgzGrbFm0emcQVnZplgrovKxfAXnGYjflZ0y+hwKsYuId0OLduujW3FE9SMi1lJkivykjR5ZAjotuaG6Q1au1F2ttPKfKKuUy1TZn+T2S56GwQyzjQ58hjB6RxZduwjeSv1dt2yJhyS98iM6D3QPeQE47Gz5cJeHa6j2wK9Ue9arF4fRB0gLeuo3k6BhYlCiB7pPGYlbL+rwWLfDVqZ+pmBKEb5vWxIVHPhjG7+iwviPQZ+bn+Kll3SyP09Qge8yAyQKYPc5DqlFkVwugpvzwTbVeygU4//OBuHKWvxp6pXfvbvjpp5koU+ZPcozGUr6qxStxmMXGxmHp0j/wySdfKlBma2cPcWXmMDOHLfViS1Wqh+oN28P/6X0FSoqWrYa8BYvrjcT4oihN3Lh4DJdO7sGNC0fY/oHqX/j/OnZsTVdyDyUJZ6y13Ng20BUrmXyP6aoWWgkBROLGFFb8GkZieIz1Y7hNXKESEycuwFr5oqmuQN43xgcJYazcUDNbBHSHkN/r8uVr1BQeh+AQxgL9dpLcfLky20WaegGxpLogv2MODqQitZ/rww07f5qMe7cvY2Kp4viUQC2R3Iuwp2uPah8CXua9tw8f/txcWVPSdKi3QSyGEl8kH1HAwsy5f1BW8AEmdsqnVFmkqlhj1pEfTshn/67iyThTexIfl80Zn6ZLiQcUN64hbYlYDsVtKOcjI/CXpsNMbFh700mFNQjYcLVJpHXthdu2bM1uGP1uX4wY9IbKlBWgZ+yaECqYLYw/FJ1bXuJ8UEsJkxDeuZdZq+W4YoEStQ4X6tZmtojqxE3GfblxzPJdEIJpKTI+6VPiEDOSvNPmUXvP7HEN68l3+vAjX0zYfgi3f19FfbP7SGYyzV8FvIbHEQ3c23wIlBhSmVPDa0Tqy+eWhJALTDSR3wnNBS8Wxgd86WegPwq3wJEn9iTgTpHek3jIjAiWDcdjuC6AzmO2J2K3/YxnT27Q987zERbGC/c5Uo2hBc/SCpYVm8DKnUg+wRY5LF2otFMBHzesbthdhuuB0dEoWb4xXDt3hPecz1LVNVkAU01Htl4xWQCz9enJXoNrlreciv3b9fQSehSujbdGzkDA5H7wfXQXHh6FyWHWBuPGjURUVDQD2EOwfbs1EhP5i5hBuXnzjqI3EfBVq1ZV3L7tjbfeGsaYrQeqVfkaTTB88mJY8IfLWClRvqaxzUa3iXt62oiWdPWSyd7GmiC1FD4eN5WUNB1SUZcYbcyNAgAk8NqHWXMSi6PdiCUAeukVVxX79rKbrX7fEh90j7QUAnL6MHBb+/HXZJz062Zmedmy1czETPkxFhqcj+esfGXwl5iUiLUPzuB4wC1SRyRjXNn2sAkNx/QRrWBnZYk1LRuh271HRMTbYXX0JGIo2QYCQLFcdT27gsCu+UuHrB9E3sYjHPPvrqHiS04kVZ1MS1iK+60K46MKE1xL+atAQRtQZfb5C4PenRi3ZJj0IZmaFd1j09zcv6QMmciSibWyk89dkHJaWSbF8pURyNGOmdF7Ci1HqLq+DOvlKNuFLsOqavNlqm/INaefxKLVl4QPcbWKK1kUWrNC2SF9CsAWAFmY1khjFu6YGCqrxCfxe2KpHZJW2QRI/FeXLMSl6hpzQQNo2rv+vqws5yDAaVokP86M7I2kEW8hZ+32sC5WDH4GnTwMj8QyrzsIio5FVCQzXgkS75Fy5wGVeQLvP2BadTwsLZhgwUScHEwkEeCUxGQdx3zk7CzXDu55qmFa/QfI62AOVxVX+8IEKCTaV3ntCEmz/AYIjYw+QDRmYRRuvXE1A/+y1U8+5rHHvug66Se4FByEmNxuqN3pbdy69wAzhvdDE87NlYAQ+EbFYPuNCHhejsSzR8fhUswcY96qh4EVSxrM1MtX3e3skLtfb/gvXoqKTk7YOnYIiro4vryhqUa2mgETAMxWpyN7D0Y0X6WEx/NJkmXp16MV+BO5tAEk4D106Dj1eCurffLnzz/XolSpjH8UltRpiyWs+9NPvyBv3tzw9fWHA7Nwuw/7DCXK1UThkhV50+Md6m8oZw5uVuCvTZtmVAtZoOtXKFMEcNra2qgxvOx4+Zi9ql+EmDWPXYICcomJiWl0bvXr6i8LmbXczAVYplsS6B4kqz91mtJUEYufuHnnzVvKGLd4PHhAQMbS/I230XXIJJVEkKZRJjYIt6OouwTGRypLb79CteEQGYN5U4eQcDoRXjfOIDfPl9nl60jKlRM5HvvAcssuJJE8O5nnsOT539I9ioxx0KD3ce/eQzU+Z2dHEkWLhiznkPFxP307BnWfW/vE6qbvZvurQEEblICjYQRLQic0RE9uSzRNJbtRYjz1i7jmpEiCiNCvLCN4tDKnJTnYGp/VDUjZyb/6CjXaRnFfy/nNxWzL9EBZa48IrKDrV9yAcqk7W6XE2A38YiPcraJRqoSH6k4kxyQZSPoqphfrpx1L3sUa/SpFrmGRQJM4SEkgMQSZNWvuQ2TkM563trrvjR8tfpKRerrRONQ+8u2rHFa5PWUeNd7AV+pEr9FO7yfUq3sK295v6W0FnkREo0q7Pkj2vseLiheATDTfLfl7ZVO2NXLXbgULPtjEJCQiSb5zydQwdijIa9QaCaS5erDtD9y5PwadynVA5LlfYV6qFJyKFEbhiuXRtFoLWlxd4Gh5m7JwuZgIkS/VsY2tCHAW1/9fdflK35f8gtCxx9tMpQ9G3nEVcG36N2nc3/kc7NQwOpTIgX0VHZj41NDYsLK0beUIymXycnv8y6+odvQ4vp09HUOqlM5SH6bK/+0MmADgfzv/r9XRna3s4Eji33PB91DSLy9a9xyJtT/THXj/MTnLZqb5LHv3HlJWPcMdMTGxVIbwwp49h7CWJNEIj0Dj9v2UO7dm20HIXb8ZKuUtAascf+/l2fyNoSph5cCBY/jhh8WoXr2yko3bsGEHH/5TrExlypREEcqJDRnSJ0sUMFev38GwwQ3URz13bh/d3kUMP3aqdc2apQN/4jt6DnStv51H+TJ7JHRoDTMSaFucu4T4N9pRysAhVR/ffDOPsnVz1TYnFzflfmrYtg869R/3yuBvn48XNj1iADitSCLp1yFnWfL8VaVb8TkK4tHGjv2MhNvfI/bj0cpKkoNxmmY8hwL+XlaE306Ijm/fPqXGePToKTRs+IK6R9zhYXH04vknwSuILiprKzRl9qgkMsgUiXbtTQKGnARBFckhJ0H64nqU+EnRqRWt26EVQzJUS5Axyrwbqk4UI/CT42xkvJfwrsnpUC/WH1k1SH00aTOU4FFcpqOrBeustrJTMtjD+TAhlkWtiMv2CvVxBViJpe8NqmKI6oZ+EZLfAXoqG2u6LkDM2hGwt7VAIlGwuDjFyiWlG6lmlhK4FnMJVevG/ghgfcCEEqEZeX5JGatmdJvEQe5qOwtPHp1FAa/1qo6Ac1/fWEUIrf9wJCCxdbmCKf24btFZ9Ix2bLBRxijxiWHx5rSmRxjsffXVQT/8qk5aTY+C2HPvCZoVyYcfz1zGjHc/QnJkJJYc2ILmHgX425KD1ENJ2Psgj6Ko0eZJspYlHEPUVBpRczeXHYE7pz4pqRp+u3IX+x4WxLValnh68DDCL1zEracOuHd6P8IPf5vi/2UCxYeL5mBszYqI4sNgLsbaSZFzGBBjyfAOcVeHM1ykAPpXCE/zQb1oqXOh9bGgk53K4JWkm2heN5r8XJoG3NDkoy8BPz98x6SswZWNAzCZ741UFpHvUKtMqpEYO5b+tmiSDSZE8NyRcgeenvhx614TANSfoNdg2RQDmA1PUnaNAZSpEhqQL69uZWZqIupQB3hAsYY4vH05Vs+fnGYmrUjFcPDgJhQokA/Xr9/ib8RF6vaeJV/YaVoTxIVKd0nFOqjTojuiy5fBnz5XVKKBdCTuZnEz/93lMRNIVswZh4d3r6ofbCsra1Rt0E6NwZ+awKvmfaI7ZEUuVeBrwO41qF27mm67LMhN8fjxMwSxB2n5PIkrV66p/c7OTrQmntXdsFM1ymDF/OwFWO4+iLi3+8Jq3VZYrVhHi1p+BazMGMSd0KElEmtUIa9GIlGQHx4yMcaTFrMBv61WvX5MDdcitJa+ahGX7z7fq9jy+DxszZl8UqgOLv46F97XziKUrvMkklDrl99++4Gcjm31N2V6uV+/d1UG9/79G3Vtbl4KxJV992DNgHLzAH+UXPwjKgddRXyjethapx9CHwTDnPFM+XNboESX6vDlzVQUK8wZNyXJI+VzxkIC4AVUZFa1QNQ7jMmbieVR4j3Ts9jJoCUMYA9jNQfoxSZqsZzC0SY3bEO1CXHPisLG29S7zcjyc+yxrcroLeKciKqDlmFYiwIY0aeFbq4OUmZN+qpAV7W4sDXwolWQm70nFThE9YIYVtFzGItPleQNoVQS6pNbjG0TwCi0OEKULK5wsQhq5e7dSGpj21CdJGsPZTKXx5g9LOBYxiJFQLvEu0mGsr6bNGVvyl+Zf+FoFCujkDaLpZFdobRrXIaxtq5t+4GEoDSF2vIk5mdQJVuFPoF5xYoY/dk4fNbgxffYGBG1xDXKmMQSbFgkQUcStDQPwI/n3VDJPZLjvEmQ9oxzmYyxb3/ATAp/0J0gqA9m7jmBRi3hFF0WjnZR8Dm3G0mBD2FRgNnghUvCjWETo9r3xNrrkbh99Toir/F3hGbvboP7oKlHbp7fBMWXKZyZxsrbu49j/ZB3KXczBCFTRxurorZ9fcZd8VOmN9/pNsxgR8OVO+A16gMFAAs1qIOFo4egLj+XKQYwg0nLZrtMADCbnRAZTnYGgDI+AQsfXVjDDM4E9CtaHx6xZji8bRkkHu+XWe9JFeOFdypnV3fq2ZajlWo8XPMUwvX4QOxkTKF/bDgsmeBRxpnxKqGPUJfgsj/B5T9VIsKCEOT3GIXJYZdDXELPy94Ni7DxlxmUkiuCPAWL4eHtSwgPDSa/WQu8//4wlGjVE7dYdyJfF7RGz9+/Y1LE0N/nI4ku8cyWHHfvwXLrHiRWqQDL0+dgRhe4OTNhzenaNXsOupLlDs8xPmOM5KUihVBj1UZd93JTLVGhFj6YuTrV59BVeMnC7XBfZfG7HxVAmx8tY7xNT63UDbG+TzH93Va61hYMKBf3tn5Zt26J0l4ePnwAPv54OkaNGsxhmlMiLBydOrXWr5pqWawhdeu2RbduHamdOkrts9h3GEnfLkbA/RAUDfKG2fNjJbu6IDmnK8z8/OHZfQSud+yDKFpPRBHBMIlDXJd3SJsjFjaNbDjVgQ1WNnecgy7bPjDYmvnVywGSte2gAKehPusCWgjFEim0IvpFdFVX3XBRXH0CcsTSJHFjApAEzErij9CsSFJMn3Kh6DhmJR4GxaNjdXfMGtNR15UAUAFtAo5eliku4xTiaOnf/DkKEwApx5EkHLGGCrDaQx7EvjymxHGKYsq4mkG642V2QWIFu/Y4DfPqFdH7LfLdsaEk1RjLsM2oz61UA7Km9bQgAZCAIC05RahohDdS0wI37KPk3BUInDINaPgRHK7mR4LTY2rilsT3bUXpI/XJEECnn1wkCR5nCJwlHle/iNVMkoPsmDikURIJOBUrsIQQaIBQ2iy4cAM/rtoMG1qu87s449jceQCzah37fo+IY3NhmScP3IoWQViICyzMXZAU5MdcjCgkHN/COAHGmXbpiHsHjyCJHonD21dg0p/HcPy8F6zj4+BAmqrQh0/wLCABOfK4YAIBnwUfsqf1GAimzSPkpy9kCLoiXgYpO7yeZDhnugZZXPBjrHeFAWOQyPjJoDM7dfNrAoBZnMj/sLoJAP6Hk5/eobM7AJRxe0f44/sbu3gDk+dyKCm4sWXa4vC6BdTRPYdydVogV4lysOCPRHCQL5Ly5sEd3nBCnsUiMC4SkaQU0dpK+5o5i2Fg0RTAN9Jz2T8OAOWYmSli+dq7cRG2r/iOAOhFbFju/EVUJvKx3atRunRxrPlqMkqf8kRc/55wLt8w0+4wS1r7rMWKF5+AZLrDE1o0gjWzn81402BgH3IEhSCJN5JkxsrFkV/Rm/Ub3vJGKOPmpJjxpiagWnw78XGxSOCNQrb1ff9r1GzS2ehHFDLvfb5eOMYEjygqukgpSF7HambOiPM8g4vHd9Id/5Bdppxbo51wox1fX1Uqh5kBQUrWbwMTQhzpppaYvosXDyoScM3VbdiHZHf70JK5dOlc5LhAqa23x8I/KAGXKrXA5RJ14cAboyXdYMkkEY+KegbH+AjOtxvKwwc5enXCQX83lW3pwJuyHbMtBdAI6NOPGTQ8ZjDB1/wLOfFRrQBlgRMAIJYo+ZQiCdemaMqcGraTdXExSxJG91JhqUDdWR8bbKfVsYxbvLIaduxUG0539uA+Mz7PkTKoG12+hkWAn/A7CreljFfi9vLQ1Sg4XwCOxBkKj5uMTwh2gwIDsGzjUSwb6IaaNSrrupN6oqX75nOaF92OV1yQZCaxuAlYW0RwI2DQENi+rOtFi+5ixkFHlI9/gJ0bamZYXQMoWYntFDAm5NeSkCMuaEPrpxzQteMg+uPD8fGbM0ijU5hxyXKlpi0C6kSBQ5NFW0aLsL4rXloIBYwQboubWqMikhCBRLHAMpnoKYG7BgrTHgFo/fMfCOH1O7D5u3i3Kt2lz8u8CzkwonIiOixeg5M/LYJ7uza4PWuC2jvp0Fn8/PZoEpNGqRALC/4uJJrT8kqdbft8eZF4rRni/PmZ7Geg2Q8zceD3tWBcBXxObWdIAuv9i6XQ+K8QuWYt2sz9GqveaKGObAKA/+IJ+IuHMgHAvziB/0Tz1wEAyucWS+AexoxdD3uKO5F+aipsza0UsBMXsbEi5BQ2dDG6Wzsgp5UDyjoXQI2cRXkTt1bVxTr0XwJASXI4vnsVHt29hpDAp4gMC1HjkkxYyUS2d3CGjb2jAlxnyR3YuHE9KiAsgaWlpbGPm+ltDi17KHevZCLG/DgT5mcvEgRGqwSQhI6t8IyxifoxgEKTs23bn7hA8PTgwWMmnpgrwOXq6orZsxegSceBeHPEFHX8XU8uqbjNcBK5CuCT+D4pEmNZ2TYP8t24hxN04wfSIipWksqVCbMIziwtLZQ1L4FB8Y6OjiTdzsNQowD1usw7cUKrJqjseQkJtPbJK5Fk0FK+//5n/PjjEmaMOqmM8GLFPLBhwy9wcHBQ+x89esq4v444fWw7CjFONAczvy0PHUcCtaEtTp3jDWUxzPm5bCfNQDIBZUL7lkjo3RVmpLVJkthKPUuOWGIExJ18aqfIesWFmV5Z2eMXdPFcCft7B9KrYnT7VcbwiTtViMhTaICSSXvyDO2YCS4Ztz+cz4kPaS07S+uRbaf+OoJpcTH3LB2WZRAlBM59y4WpeC0BOAIY31nui6vH/sSJxQN0YxTOSEkkyErmua7xSxYMrWMvqa7bHR2diEWejvigER9g/oGigcajtx7iKClUxN2vi6N9frzcIz5FwrbtGPfrPHxCHjtjRdzkiy+7qfbaQ4MxjXFRiJHzO6W+v64bLXRALKuBMRZK4US3U29B4gnFpfwwworsAWFpFEa0qpLEUdDRXnHzyTZJHBpzIBDRTOwqk4vW4ry5lPtc+pN42P2bvfHboQRc9P4UuOFFMzI/TJcuCFn0pdblv/ZegRbXJ19MBYoXhwBV2woVMbZDczi8OdBwDLnHJScHGG40rf+3M2ACgP/t/Bs9+usCAPUHf5MgcPuTiwhm5qhFDnPkt3GBu40j1ymARaCRx8YZ1SgZl4vbMir/NQCUWEaJaRRLlgAYyVKVIlm2AbR0hVNUXawQkjHcp083JmF8mums34w+t+XqTXhGN7A5Ez4S+nQHxMJnxzgiPfd0Ru1FFeX339czqWWjygYe+NFcRJYugb209IUR+JkTSQg4d7W0R25aenKHx+Henk24dfmkClAXHsRRo4bQ1d2ShgYmLJAiY+PGnejepikS9h/BVPZ7nTeaHj06q88df+sRnFp2U4kBcWwX997QVMBMzqNk/Er8p2gqb9q0k/OWjPXrl2Lv3sOYPv17hDJW0nLdNlitXI84uoIt125hcBhjxejmyuEfADNSdcR8+iESBr6Z0UdX+4RTUFx0ErDP2HT8REufxDuZEaA50CUsChsS65YVih2xsP1x3QUR7FvIyfWtTZLUcfgxVWFoQRINVRdaEOdfcMMH1YN0VsgrBAj+tKiJ9mxWipAO61OrPKG798NVPgi8uAv75vXXdSXWQgGHkriR2aIBqJdZ3TZxDDFMPpCkGJFwy0pZRsulfmxkVtpmpa7My166reVY+udGdIFrvDsJ8QcOouHMqdg6oIuuW/nuSjux2r5FUKa5lqWCAH2RT5tKsBfKc34n1BqnSdUkSRNaPKckGp1iqIHo80qRc1WRlkB9BRa1g39kDsVqmFECh1bXl8lNkvAhVuaizvGKGN2C4F+K9tnkuhbQ68e6AgQtzSIx1/MqDnk/wk+U4KuUyy2lQSb/SqynJFXJNSqZ5fJAk16RY8v13piJMfqxsd+dvoLpPy1Fbn7vopkIFnnjJuwZq/uFcA6mLiYAmHo+ssWaCQBmi9OQehCvIwBM/Qlefe2/AIDi5t287Gt4ndkHn4d3MpSyExAjL8N4oix9Ysk4folWaWb6k7kS2pyztBYOHvy+GlfBEoxprF0HD4uTkoU3EHEle9x8gOQbNxAa8ETFM+pn9A4d2hcffDBMATVjx7Ra8Btsp32PJDdXJJDwObFODeS4/wjR1x5gSyytkqTXKFPcGiVJsfOkU0887dUPZdwT0gT3y1iLF69FXtowuDMwfjYpIySuUtzcMkaJ9ZOS4/5D2E6k5Y/AN6Fre/VSO9L5I3FbJwiEhELFiSEGkiwgMoKigqHd3MW1KWAmqwHwAhbmUb1hJNUbtJuwNoylV1wwiJm7sn0XCYLlJtqN7mGJn9OKWHIkmaKlnh6vtk/ejYGxX375g9bTxSoTfdCg3jTstEV0fDKqDVwKj4hj6NqxGXkyu1DWLuXBRCyStfJGo5CTcYu7/vG0Y74M/Om3EfJjsbBl5B7Xr6+B5n8DAMpxZY53EMwJrY/+OZLrLU+3d5Do7Y1LR7eQ39BBucsjmChUxDGeJNWxKltb2h8lsJEi141Y2WxIiePIh4kybnGKkF0/jlMInsVlLy56KULi3ZoAUZ/TUu3gH+l7M7kVB5YPSXVdaPu1d7HkyvUpx3tZ5rYkGolLWpJ3tNKWMpHata5tk3c5F5IhL8TUkjkvD0NVB/eC6/4l1PS1JfizxJsEwZn5Xsh3QcCiPPhI3GqiPEwVf/Ed0477ICwC2zy9YNP9xYPK830mAKhNUjZ6t8hGYzENxTQD/8kMeJ09gL3rF6Bs2ZLoP+E9fPjhiHTHIZnL+lQY6VZMZ4f3mQto3ronmtHN2oDciRUqlFEuV8mY1oq4d2P4BJ3IzEIn3rishZT2eRF37MmTnti6dTf1SPcrV63sylOgKMZ+txGTb5HShu53Nyt7FKIG6JUNy/CIFC4NWceOgKtixXKoxLg9oamZSKAlN0qx0mklB0lxGZ2OpOIeSkkgnpm+FhxzfI9OsNyxFzZfzkFii8awbVYD/TbyWPY2uJlcASeKN4ObS24UeeiFlQG1VHatPt3J24zxE3qdggVrMgv8FEm4i6cckp8tWft8BIK2YybD/PY9BQDj+3bXhpXuuxAx96MFSCxh4o4Ti5Uhf6DEsdlZ0oSRhZLiurNUSRIubiUZtH9b1/pY00movOp7BTjkxniDahjvkSZGHyjcCLZSii7v0EWZXjEEYpJkI1nl4tLv168nH0TGKwv0j2vOIDogHI9JQL1rV7Ki/rl794x6CBFr0f6HDsoNnM8+IV1+QG0MhsfUtqf33pZxkQKyZX4NXa3G2my45UwS5KxZDI31k9lt+Xi+hV5HMos1i5m0lQe0udMnYGTnvqjcpCsGzpyCjxs0wAHOlQAiod6xsYjDb+R0/KQOrc3EU5JYI258Y1ZiAYZXA22URVDI4LUisYFrqVQj8YgaKNT2ifVPtosVebBeQpC4lWW84XxYOc7QBbEit2D86suKgDbhTMzInaz1Idflp0fzkAYnSiXRaMkuXjt+xa3gFKv0NibaSOKPqBoNrhCSIRCU+ZFMZC3eVCyCy0lkrc+jKccuQo/JkMqlsFIbiOk9W8+ACQBm69NjGtw/PQOSOLFnw0K6dG1J67Ij0+BOuAyvXr1Bi1YEY+PyqkQQQ6tgUGAQPI+chD05Ah8TyIXwprR56y6E8kNtvHQVG8mnJ0XiB0uVKqbi5fz8AhX4Uzv4R57zbemSzZ3LHS4uTrhx445yz1pRiSB/kVIY3O8TqjtZo2iZajgYdk+Bv1Z5K6IKwdDX68arbNxvv53CBMOcWpe694/J49ez51B1bOE9XLBgGVzJkTiU4DOpSX3EEQwjXx5EM1FDyjOCR6uV6+ieDYLN9NkwY4KPGYFiqYE9UZZE2g+7NsefvKEUtWHMIC0oWhGQuW3bHkxgf7lzu3Oez/KzOGu7X7zT5R0z6zPYMkEkkdyAFsdOI5mWR8l+Tq9UyR2rdgk40bgCv/d0V27ft8qEUhrtxTjS68Nw+y9UdZHM1QbPXav64E9UW859uxDD3INVM7kxCjXIaR87nYLGLlpoJMHjXVoOXQkepaQHvCSmUtz2f/yxAaLfXKJEMUya9AEVXd5RIGbIkA+QlLsiijboiUGfv4/mlXJhxkcfEEDX43krDiE1b968ESztyqsxBMbEU04wJkuqKZJAc5OA1RgZs3w+zf2pPkgGfw4/skNZWrGMuUMzaPaXdomFrTutWPrgW+uwddGC4EQxs+Y41p3wxOzWdRW1jYBZyRgX8u06lF6UzyhFQgQkjMBYEZAtiT3vVE5tabTnw4VYguWci0tVupL+y5OjshjBubh/xfK2hq7lN0qEkUeQOsLcL9J5IkfYp2yo0bFrY5BYxd8JtIRPsjTnVgNy2v703oNizQlyE5V1Ur9OBY6LZne1ScbZk/J/EjbxsiKAcj/phyRJSKyPEnebXvmTc2Eqr8cMmFzA2fA8mVzA/04W8P1bl7FgyiAIJcw333xBN2rvDK+Gx6RVGMdEhUsEb+J61S8SE9iXFqtCVMO4fv02ihYtjN+Y3SuxeS8rjdr1w71bF2Bn74S8hUqgYPFyTDZxIQAgpQozqJ/cvwG/x96ICg9BwWLl0LTToDQKKUf9buKPBydgz2Sar6r0xPbl3+HApkW0EHopapb0xiAJGX36DFfj7FWoIMZRKeFWAuOWnl4x3oRgDhFRsP3ia/rKrJGD1qokEkDHjRyMhVFVFdeYoaVIc3W2a9sc0UxsuXLlOi2B+bFjx0pdYoj+wcweU8lhyrfIceceolYtzBTBtNZeOPJEokyoQ5YQyAlZc1aLgDy54RqWBRddlatNlDsMgaUkEIiWrrRbySQOURMRqhrDLFoBwwL6WtMKLJZeodcpX740ybVHkBqnhuEhU617U6lE3HYi1SbxlWJJlUSgW8wKj3Epi1ItB2FkjUhcvpRyzt97bwgjDV5YllN19nxFLJ1iAWpaKFJZxeRcpQdWjbXX3ybuUcluFrJqDVTp78/KsrjVxa3fuFBUugBJLHZH6f7vqWeR0z+GzLX7+9OQvHEjev86H/NapU4IEVAj51r/HM09l5NE38EEZ2nPvwBcoeuR6/sOraLtaP0TV7JhEWAl8YRXg2wUaKv6/CFFEmsqMV5Qe2gxbGe4LsB8BzOVhfZGPybUsJ6xdXFNd6JVUZOXNFZHEqh23nNEX4LQ2zxvYkEtxKQiQzUZsVjK2DuwP0k4EiqjxVfcqF0er7MIiha1fPfkuj97Iwo2XUsbHtLkAjackWywbgKA2eAkGA7BBAD/WQCYEM8Eh6UzcYjchQVovVu37hfl/jU8D/rrAviqVGmGHBZWKFa2OspWbUjew1pwcHZDgM8DHN35Oy6eIMkrbzo2tiTqjWNcm4AlFtEyLl2lPp7cu47fvhuDQJ+Huq7fGjldqaDoNmRxQQTgF9zeh6thT5hsY4kvKnWFCxVbVswej6tnduP+/XOZ7tFuwCiYMdmlFgHuFwu+oWu6grI6Gu1APhstmgLShL4mmZa9yHgzo7FOGgAUYKEBjF69huEypeSuXj1qtHvZmIN8iMm0XMorvSI3cQnKF7eexCU5jP8cnbaPVdU9femepstMCI0NQWl6/WW0XW5ye8n7J1aeaLqeB9BtpllPJPGhFy2OVuYqQVzRh0iigdxcJT5Lkmo+/5xUGas2qezqUaOGKiuf/vHks0h5FfAUEBCI4cM/YqJSIGMtPRTIFFeyNr/hTGoQC5dhvJdQqojE3d9VznHOExkjJq7Pv1okKWIz3ZQyPiH7Nix+UebKhSnzJeEGNWhtMyRMvkZljfo1W8LjnSG4MHGEYRdp1kXOT8IKRMv3ZeBpNsHijAb+GZ4vAZQDeZ1IjKBY83wJ4EVv+WUlgrF+YvmTLHLDc/aytrJfLPHV+ACSUVa81BOr5hHGQIq1Uop8j/QJwCU5RZRRJM5Qk0gUMvMBjGvUTwYRq7k8GMncWYYH4EDVNA8zJgCoZjh7/TG5gLPX+TCN5h+egciwYMyd1ItWtZto3qwhM2fnM5PVmkwKz2gF81M30HPMxO3Zs7PKAtaGs2TJ70ou7uvfTinQp22X95x5CqIMAd4z8gRG0krn5JpL7Y6KCIU5LTy2do5qvXi5Gpj2y1HExUbj4R0vCJegs1sete9V/lwIfoCV948rahcP+1wYU7oNrHg8KZERlEOTLOIslOgF35KUzgofUq5t3LgvqNbCLFy6uufMma6SEVJ1RbRi/d3PlKwjVx8BYEKvriiYp4RR65G+RUlb7tu3J0aPnkj+2j7Yvt14xFBSuVKpDqm/ImBJbk5XmWQhrrQ3aHVSYOw5+JO6on5hTAFDv5+sLOcmxYxGEiw3PAGX4lK7Rfep8MUJ+JMSExONx1cu4zjpUM7+cRQhN48R7F7jQ0YpWutO8nqzSan4/K9YjOSGL+THkon5Kjf8XAwR2LBhqepRYjtF7nD8+JFqfRVBnmRCb9qwFRaOufkgU1654GUOxeKT6eIfCOtFyxHHcAEJDVBFOiECE3AjBNeyKhbKv6MIUBKal9XstySJqg3JnyWOr1/5MHXMaFryJDtWSlB0LKYePYf7d+7i+JbdCpF3rV8zU0OqQ+Aqmbg76cb0obVP4u3kvBsWT3I8GiaeGNaRdbEmSmaxxMrJ9ZEZ8CeWP7FeC8hye0kIg/ZAZXjsQrSCiwJL5xIRGT78CKjzcA5VVmt5SDKM35SsZ0ky0sCfgHJLWmYF/Mm5FpewJIbkZfypxpMYkw4FmOEYTev//QyYAOB/fw5MI/gXZiAhIQ5n9m/C2oWfq5gcsfqVLFlUUZTsJ83JfWa2ivVOK198NBVlqlVS6h+SvPDTT7+gfI0macCfVl/ezS0sCehy6zY5OLnqlvUXrG3sUJLqHZkp8UwMCEmIgih13CX59pPoEASSFFnInIXPj7/Z6FywGtrkr5yqu4hQJiU8B4OpdmS0Qje2lA4dWqmXLAt9y4gRHzFhZLoClEWoRDJ79lQmdBRKMVXxLpDYroVUNQr+1A4jfyQDWIBI3brtjOw1vulc/fdxh8LzEu8VQLdUSZIBSyzV32FtMn7E9LeKtUMA4C2+qlldxdMDp7HZrR9ub/0W8+YtpYs7H0qUrQD3Ah6wKlgEk6dtha2VGTZ4s0+etOcGVHX+eB9VqhzVCVhfBfwZjtKcch/PmAlzOdxdxaNJAoOQZA/9bqQ6b8dJMGxmlkPFZDbq1wNPnvgQPG5XNECGcaxa38LLmOPmXVit2QKrrX8qbkbhu0kmVZJQAAm46U/i6FexXmrHMPau+mWSz35mykq2rDHSZTmmuGyLuSTgbkg4Ggz8ALGnzzDQjg9e1OYdMO9bTG5Uw1j3abZJX5XpshVX7W+06sYRWBorJ/c+xPC9sZjwflHUKWlm1BUs7SIJ7IVkPDNFHgLEAilWQpnLl4E/6VN7oDLsXxJSRJJQQhMMEzUM68q6WM8NSbBlu7i4V1x1xnVe58JNmY+hFcJ9KZn18y7mVBKMkgij70aXdqbyesyACQC+HufJNMpXnIE7V8/SHfoh3bQPFU1Kgwa1yUE3ETNmzCEf3SGSO1uiEOXg2tKCVbR0FdgTtAlwO0YyaE8SPQ+gW1SKC4GdqGtktohm8onA24ggUDMsFrz5WpLmxMrMQpExW5unvNvQhWtDF/OjqCAc8SdtS0JaS4oQaduRzy+/rQsquBRC63wVVRv9Y0hM470b55kcYolYckHYaH5K/UqZXO7cuY1KdBE6El9fP8bt7UPNmq257IW4scMZOU8LEudQigDo9ACEdjip4+V1A2vWbMLq1Vvothyg7Xrpe+mDP6CKRbhyZaZxz0k8HaX0zK/dRFzfHqlIs1/acQYV0rOwaNYOcdOZMV5yzbcTse2P5XBBiFJBibdyxTXGgYlLLfZZDvRgfKB+VnQGh3ylXacIHEIY+N+SlCTTp0+iNN9odOj9EZp8aIVhQ99ScatigRQrt1ghRZdbrLxTp36rrN8hJNmuV68maojetJEirn7ze6QTEnc8z6H5jdt4RsnDeAJIrWQG/EnsnMjPedjTRZyFBxThUjxCS5O4NoV2xbDIg1KHH5fj7A8/g4GleG/lYkxtXtewWqbXxQoXRUCmnWfDho5hAXC98whNcv0fe1cBGMXxfj8IcU+wYMHd3d2tuBcvFAq0hVKgUEqheJFS3K14cSvu7u7uCcQ9wP+9CXtcLncR5Efgf9OGtdnZ2dm93befvOckR56lU5Y9Y27qjbeiaGAM99eW7/snk8HjH0nmGnkkH7SdqUFc3QRtkLZPfKdM3gnFeTA8oRVCEWJ7DLjBxU6ATRoaJjDxvHk9aeV7EhyVJczjckwYI/gPMpvLpAmS0mlxHQ0KLajm8nmMgDkGMBFeJ3MM4IeLAfy+QXa4bsN0V3nEiIEyDq7LgMBgqd60m1Rr1FWsbIy7Ssn3d/PSCQkJ8pds+Uqq2D5dQwYzXqEBctDrqorFewLwF/k6fl/9Bs3oFgkSszqmVnQudgCFHgB8VE1xBb1LbIWAd/bIbhIeEiBrNy6X6zalVGICA9ZjgKbYGjKxjQAuTZp8cvLkDh19DBNJqlRpLD4+vnChXzaxJ2gv/AOkTJm6eLFA+xZWp/v3kfhiZ2eyfnw2JNu4DVrBbmJx4bLYjP4bqcqv5GXhfPIKequhP3SV17DEfaxyydtKzoEahHFPi+ctRBavr/Ri4gUsvIz5KsKYNGRixgcYGfZRP27ScJupZcbEUZuYrjyCLB73z/m7Jej6Pgm5vEW6tvtKmBhi6IJmRjEzkK9cOazUZOIC8klAiE59ZkG8qLyxGhv2yVT/6e5evS9Uij8/I5nSWMpLStslAAheAKgmsG6mJ3935NEzqf/NTxJx+oykb9VcVgz4TnK6uxh2KUHLpL7ZCz3mTqBvMXb9yLFHCzCTPTje+tQw+gf6hzGWAP/G2tDq+SCpgrKBd6A20whckvGx/Gn7xmdKCx4lCWOz0hHo0crHxBr2leEVNzEGzCQuDZd+VPZwlFShM/g26WKmlB6tgoZl3n5QMdXPZbjaHANoOCKJYNlsAUwEF8HchY83AgVKVZfHd69J1vyl5fblE6DYGC6kUPnl7y2SKl3mWA9MoJI1T7FY6xz3viWL7xwA/UoU4EsKC507ZO5yOHlAzzibZLB3i7Y/nczk6QtDvGAYpqEvtSkk4F6Gq3WOFjZQTckYL2uaD8idH9y+Iif2boCqxwHx93mugNmydSvAMZhLQL0szOJjfFkILFGVke2pTxrMB/81POj5EouPpBhdPxHIEqbUG+lvotyHm2AVLCAPHjyOdq6GC40adVCxhMOG9ZeMGYtAMzjonQAgExro+uWLyu6HXyWJn7+8gjUqFPQp4bDkJkMMJ61TtFq9/AgAkGNGGhGCLGagohvS8o+qUg8ycKNaz5bBv/WVsMKtlfUkthf/bQTgHwEPHGlBXiFxIi8sQMwQZexWbWSABz6/YjiERpc1KyVj4lq/eSHzOpGqo9zA4vL0pi3uhe919xPBy3rQpzCwn6Dg0qUDsBpOwDWsBpJuN4RDPABfZE64/X9QPJWpUqWIdlxdUk4CwR8lyyyPnJRiqbLI3d1PJUvYS3kFHW2NBFz/IKYAJIFIKNyyzEqtByLicfv2yZSe/RC7ai3DVi+SHiUL6JphXOJNqHlQto/JIbzHWXj96BbXT2LgeoLL2wBh1Bnm9a0Ceh/960fuu613HJVbNxwu04JwE9P9qU/+zXb0S35cU9KnGHNda/WYUc7t4S+DcF6uiBv00Ta995TnyvjP2MAfD8LzpNtY4zIkjyWzsJvoaVkzYYTqNqTCIUC8Bv5Lw8LfJql0Agw3mJcT5QiYLYCJ8LKYLYAfzgJoeHn9XjxTLl7G671v8Q0PloFnVuDFklSKQc+YgC+bU+r3bTbW/WmNPLLzX9kHubqnj+7oMo3tHeylNGhEWkEzt379mrqXvX5jfIFRSsq35ygJgYQdH/rMDM2OAHsSzNYGICCIIM3DKhD6ZgBBLV+IdF2yLq03dP9s339GHt/HsX3uSpakt1TCDOXjGjfuINevH9U/pJo/9NBWNhx7JBtWr5N+/QlERHYduigHdmyVNqVd5McONY3SwcRo6M0KvvwbIOmD/Uq2+4BEIlsZmRcieoTWpvZNyPo9oP3IjCB5Y4H7pGRJjuQAza1LKw456dK+vCFf16ggV6+fkGU306iXuTGOulnIpCSvW3FYCTXLLHnkeB3oCjwLN5oDXqQEGhFw49HqEptUV0LOi3Uph0aQEwLrJd2EzHq9CpfmiWeOki1jKjl++pIcmNxNbl27Ki6I8yNo/1rP3Ruf42nAVL/u0YfWcuCOlfxQHAlShghMv6LePMEaVTpIsaMBMoLYWnNvycnBDcS+TGnZOX205HB31tsr6n69WryzeK1ZolzxuO3U/gTc5XC+hteVvw9+JN0CJQotgHQDI5xSV7AbZP+i6HJ0K2OZYXt0WbPPdWKRWdOaIHULAa4GwrT1/+spz3saFHB6FX6uA810DzPznbGkHBveq7xvDUmzaYXecz5EAmrlMey22QJoOCKJYNkMABPBRTDsghkAfjwAaDjWCV1mrNHuZ5fkiPcNeRqKDEQ00CtHDbhn05hs6sqZgxIWAmuXowuyhF/IrcsnJVWazFKiSkPE6cUvXsb7yT1ZNPFnuX4B5Mhww+bOnUMYn1cQ+sE5YEXJkCEdXjR6byuTvTG+gRQuixHXQ9DBVgj+KKtWN0vMeCvjLYhUrNhAWQEzZEgLXsXfpEiRArqq/23fJ117DJZTh9cqNyM3nDp3TfrNOi53LXPLmT9yxGkNJG8ZMypJ0Kxxq+kO8A4zxgCKfjO0nhBs1nwDjPW3Gc6TToXyc82GbJXQ00tlx+b5SgqM3GhM1eF9QoshQQjBDClLSBYcWwmCFY/Xgtabc7C8nIKbkK43Ej3TAmpYqIBCChZDHjfDeobLBFPHAQYJNiumj4o7pfWMwNUNRNYzkB0+bNg4OXRok06CzrCN+CxzPBmP1h7EyQkpdKPa4sODnH08v8BwhCEM+UO+C3omjoUd5OyInwBGTDuz4rrOxvpCIMPsX1M/KWbHuiK5Q58vkh8BB/CBxcQPXm9+MDFeMS4qFh6f2bU3ADzj0l2mFW5rj6Vi37+TSnopBcJyzbJp7DwSuo5Aj4onJFHnxyCvGTPeyWnJJCUu8+OlA1zjxmIK+Tuo4XJb1uQuYXhoMwA0HJFEsGz6V5MIOmfugnkEPuUIhEYCBEXgazYyVB4H+8o+ryvyIPiF6hJdvRnskiP7Nn+s4O/u9fOgnWkV7TSo/EFJt1evX0n52qDUiKMwFnHyr20lwOeJ/PD9N0L9XrpfP2ShG+tbuHb40uLXPYFLn2LPE3SIPXvWqvqkzOnSpTdcvMHgWJytpO5qVCsvXds3VATIx49vU3yAhcELWMljsyzZMVO23F8kjXMYB5sENofhKr0EyhfSgsTTcBRn301lUGo78uXvbhupAJy2ztSUVjqCgQouN2TGtcuKhy8dXKekKYlvOXDAS06dQhxhr2xqF30yYqp05ANgpB4rrUq00tDFy6B9uu4JCPchZu0RaDmoS/xdwec6Wpq4js8XuWEwP7NvWThGzTG9fPkqPjYqycyZ46QqpAD1yxG4dYtDrSXOBCDcWwTBCS2UesviHCol04TA/RspuXsMEZ/j6yVnz+9kb1/EXMYC/nisuK6zsf4Q/JgqtIDRUkvgHIa+8T4hMKKrmQoy75LJTWukoUXS2PG3gLi5y4Im2OQnt2CdJ8UPtXkJBOMTwmGsTW2dH9y31A7+vsjb3z3X8Yrpk1cTcBoDf2yHdeNyN7OeuSSOETADwMRxHcy9+MQjQELl/QB41/2fKJDnA/euYSIHnnviCdBXJXUeKWIQo3fxxB5F8tyi+zApUq6u7mxs7R3VfNeu7ZBR3Fxpu6aGcoYHsndvXzkZLwBIBZCnD2+r2L4biGtbtWoDgvk7v5fFT9fBNzN0Ca6Epmkqu0gVi9a76NuXgH5dvuiOQS+V2ZwMELdL9kpZQnIi41CzlhCg8m/r1l2I+WunNICpfsEkkRw5silS5JEjfpGnUBOZP385OPL2yOJbVvqHiTZPrj/yvHUBQDVWaOG5imviHOIjqf0evdML31i7zHb1v/IQ6iy22Gy6f9yXlikWcu85gBuxTp1WyLTdrtbF95969Q6qqhoANNyP48tYNi0ui1ZbqnhsfwMIswIItvb0g8YsdHBPJpefinnrrolhWwlZZpIPFUUKFcqHe7gnKJFGScOGtWXhwuXQJZ4E0vMIKOAUlnnz/oTGtIPJpglM40uJot8IXcCBcD+yDNx1XHzWrJGvJoyW+a3e/s7063+I+dishgRa7wu24uojs7p5zgUQZ/gI19gTFnmqrKQBDQs/0q4i/i4nQgjYD/4mGWdIPj66ZW1gLW2kF7vHEAxa7y7jd8R9jamXsD9R8m6ooFdIYl4CcnnL8WzgRwdlD9mGqUI6GXP5fEbADAA/n2tl7ukHHAFmOt6CC4lJHNcDnwppW8irx2KFAPzkSORIb+8urpb2sOyA38/SToq4ZjJpbVg7b6SQZNrH63G0XqZMk1EKla0ts2Ytkm++eWu5Y6wepeKunj6g+ANTps0sbqnSg1HFSpzdU0mGrPnEI0M20NRYydkjUUCCCRf8o65ut27tlYawdjC+sFjexdrBWLCtIL6lKD0LrRskNubDnBQmzrBs8OEfBGtHJKbMbqU6A7n4GBdEeawNN61jxANRp/b8+T2yY8d+qVy5rNy791BGjfoLCQYVoHmbSQiEw8PDlWWp84h5cjhl8RhkvwSmG5FtyGxMU4XnbAu324G9j8Vrxnp5eTSZBNs4qj5TSSE2a45+m7Ts8GWq074NhywWrptNhxkS+uy8ftUY8+Rc493D11+3bh1k8+adUrt2S4D1OXG6trXGatRIJf/99xR9ALciACXPm25IU8TKJwDESdFRPl1QNAUMJ2Qgl4RFiNeRtCLvU0gqvWzZaqkIbeiMGTMouboePfor3ejbQY7y5+INsuq/JLJt7W3QyCyQ3393EH7saOXmzdsAjHPl+fMXipcyPH8nyf11TknrnBQhDG0RM3r7TVW4xxEc6ujoILUgGUgi9rx5c6ptTDqYf9xa0n1zXbI6IdYTFEoWIG//mCWhv6PYAGNC+sl7kB9YGeDqJ8A7jnlPWAcPwQKeEh9njMFjkhBDNebCNeuJGFXWq5KB3I5RR2K4wNzzLmINMIjHnOJIXHwJ9wLqaWTaxvrri5APYwCO1mf+Efj9e81JHZ9cifr8m8we3g0LtFs8OQ8TMibmuh9vBMwxgB9vbN+5ZXMM4IePAaRl76LfA1j3fECm/EK5dqNe2XifIIkjubWjVEiVU8qlyA43VcK/i8JDQ+TRvWsKuEVGhMu/s4fJ0/u3pGbz7yRjzkLya4fS4mBnBV36jYirclXca4MHj5abN+/AghKOF+EtRZNCRRKqbxAE6Bdm9H79dRMlz0btWAckfRgWWoT8wy2igQHDOtoyM4O3MkAdK/hi0c9SpGsrBGCPzh+6IekGYuKGlvCgtaE/ZewQLRUEih0hfQWOYJMlCSxKNuOmSji0k1+Cd466tuXK1Zfhy/aIx5BJUmjdEMmMGEn2LSEvYr7USP0S1r2D4qvjC2vGWTfpVvCFyb4YbliFFxxj9Dxg3aTlg4H8O+85RrOoGO5D1zRjuGpmCtRt4gdG376/yzooUfDFPGXKaKlevaJuu7GZSJi6fH0jQCZurfrdHOCVVBsdoSKhX64iQ3M/5LuKo398qc+54KqIg/Vdb7x9puPc20JNQt+VrN9ObPNjx06BRW+pMAN4w4ZFEpI0Sk2Ebu5Dh47J4yfeYpW9uiR3c5QT1yJlwZIH0jzbcZznYGQRn1LAvly5ekpNpkaNypIqbQa5bllI7j/B78+2gEScmCfVM/iAVHyYjrCcHwPUiZ4+fYEcPXpKgcH9+9crYHjlir/U6nlfLMLCxOfl72LtkVoerZoR2yn8v9jGuFgC/c2QHfwW97kTPtYMdaoNB4L6z3fBT8lkE2Yya8CR9TZBg5nAzhinIbOvp+GeagqqGv4+tN84+RnJQcmMaMaNhng/l3+ylTQ8rDkG0HBEEsGyGQAmgotg2AUzAPzwAPC7Y/N1Fj4bC0vxsHGRnKBqKZE8q6SydTa8BO+1fHTnauUOZiN0AY9feUEegYpmZK/aUq9uNZk7969Y23cAkLmNGkcXTVEv0JIliyjrS6w7YeNqgJcK6YNijUEKDw6Xw5ci5JZNWsiaRclTxdVuQrY/CEgmp5/ZKkuF0f0AbpMdPCbJdu2XiMZ15eWbRJEtW3ZK9+4/i1OGfDLZIq342bpK6t+rKm69//7bLU2b1heOQ5yFJg+i1TeFdBYEpnEF12v1OSV4eoRYu62It7K2eKUsLKYk5ZgMQJBGS6OpF+9pqGg0adJJ2rdvIQMH/qAAjf7xDOcJ5MNgeWUs2T+XorR6+ZJmv04+tVGccbSKaYWUL9QdJnAlSOeLmC9nrl+JbO5KLWtKhnPLtOoxpobWIKq//PrrKFm9FrJvzjmURSo1XvjS8zfxGj1c3Tc3EX927LGdovywePhQdv57HeTquSVTpvzi6uosEZYuUqV0Xpk3d4JK3pgHkPo11C0Yq8gsc7oW4ypNmnRUgLBSpTIYu5ZSuGhhmX4qUv6c9q9EJHkuB8Z9LVlcneJqJtFuNxz39+koE1BIwEw+wZ6FnscaJzv5lJt0L/RC0d6cxz78UKKLmICQ9xjvmzNetlIsdXC0OFLWm3nWFUDz7b3HPjOxh88Sgj9+PF68HignShYyPB0zADQckUSwbAaAieAiGHbBDAA/PADsdmwekjbcpV/uunG+gA2vR0KXqQF8HCoi4WGhsHxkEnIRsgztWkUypHFCbNzyhDYZr/ov8BKgcDv1TKNlmBIU+frLjT+Wyh7PilItU5BkqJJHksJS+drFOV5tJ6TSiitOUhEuKWMaqqod9Me23zB5lTmDhMFdqhW+EJctnYHs4fxSp/8meRXwRByeHVaZznR7u7m5IA4ytWTJkglJB4XhQqwRg9RYa0ub8uVUH3xxpsCZVu9dp4y7IkULXWSxFbpAO3TohXjHyyqRIi5roNYWYy3P4CXdKKuvLD6JpI80URYazfqi1dOm5GfbhXgw4EVF8cOXOEGBMcJebR/96YEDR6R379+kBfgUXav1U6AgB2iCNMBGoLEdZNOM5SOoJjBt3fooXN6PEeZQFEA3nWrutk8S2XDbVVmSCCjIl0jXdEIL4w+nT5+PMIK9chs8k+SgRCqyWLtCAadMebkz8euENvlF16d1mK5cffes4QnznqXLluoq/Mgg6KOLmbyU/HTiNS2GMA/GlGqFv81DN+7JXdSpZUBpQ7okfnjcgRWcyVCerx7LhTIFtV21qRkAaiORiKZmAJiILobWFTMA/LAAkO64704sAFdfZumYpYI2zO88ffkS7g/ItyW0jOxVV5xsIoVurY9ZaDWqTvoJqzCx6/SDJAkOkaRwNd+2SCmZn14RQfzUq3RplPs19IcuUaoOCPKP5gt6jw7SbUqLTznQtZiMQUM2Z2wKECOPJhcmouhTmpw9exEA6pL6uwDlD7oLZ8+eIIw1ZDFmUblToJWcyVBcGmz4QdX50P/w5fkc7i9jLjNjx2L/mSBC3kTGcX7/fRdj1aKtOwWr39C5B+Ts+umQaDgtyexcxCJ1ASmeNkz69u8t3g75AdTwsWGQufr4cYjUGh4mvvBMz2gZigzs1NHa1V8IDg5G7N5PcL2eltodf5K8tTtKpQzBIEWOUMTLzDg1xU8XHBwJ+p8QaGuT847QM6qQSmY+7gPGojH71wVAmQDDH/GatCgyYza+Gd1Tjp2TQU07AJkUkxQgq/ZCVrJL7Tpyu19H7XDm6ZsRYGZwS8ToxlYIyvmhwMScdtBaNvVBod8GuS9tkfTl4YALq1dIMk+1kHXgwWyeA235e5tdwHrjk5hnE/4WS8xnY+6beQSMjEDwq6gvWduk70b+zJi+iyf3ytq5I+SF1yNl2bODazdtptzSssdwlaxh5LAxVlnb2ou/3/0Y6z/0Cmbz0e2ZIuVLCV4wWZIeOy2WcKNmXrBckgQFi0A318IbQflwTSZBZm5kuZLyMlc2eVms0AfpCl/q30DNQKMr0aeQ0B0gmelHD0EVXYX64I/7FSiQR/1xnnrCdeu2RoKFLRdVMRYvWPDecdmXI8oCq9X7kFPindjAH91mjA/MiGB9lvz5cyPm8ZSiiWnZsqv888+/oMpZBnnCO1KhQgpp1ChtNBDFfVKE35KHq3+RBeN+l1y4Tv899ZTkVsGyeNMpaTPuhIReGIT09HKSK19++apeVUnvaqGsc3/MuizPH6SQV7h/x+xOITlLWYpDxFOVnELZumS4BowlDcI9wTjUGrWrS/9VF+FWjUQowVsAwczSPQjwNwYAnyEGbf+DqLjJk/i2IMkyXYGc0kpIzkJmijNb9QWAchIkyzjj2jJ7eSF0lElEXhuxk4YUKPfuBSPhZCcShlwQg1hafoXFOEkGxBEunCjudjYcFsVPFxLpG42LT234jP/p1+8cmAIsocKSM8Z9EJ/TOogEEWYMx1UYL0oLLrN7aWGmrB3j+vghQX5DjQZIv53M+BgwVtIhYWUF+DlpdmbSWMzoZGN7mdclhhEw/RRODL0z98E8Ah9gBALCQ1UrttDUNVaYcPEMNCt3r5+Tq2cPyb0b55DN+xBWPrhEEE8WCBqWSFisPD3TS8cOLRCPl07OnLkAV+5uGdmztvQc8Y9ky1NcggP95PyxnfISdZMik9gSknP30CaJn6s26iJOrink5PkjyJasrdzATk6OxrrzQdZRjkkryU6fU2DvNVyoqsCCSevbK1cXeZkzm4S3baZVfeepj0+4enElfcNKS2DEpIjDoLNIaOG+LwEMTJXVa7ZI7x8HwTU4VsqXL2Wqmm695/ObEK93RpySn27du84YszIaa4tULNRWZRZnSSRraACQdXlPeXikEvImFitWHe7s5kia6C6LFt2V7dufQmavEDK8aSuD5W7GAkW1kjt3dilasqQsv+aqLGk1s72WmtkLoQb/mqsEov79/5ARTftI0hQ5JGmmSmLz0lequt6RAwdOyqNboNGxGilP1/8qbXG9e/fupvZhZjY5Jele34lEnozOIcrqx2NrZTMTA+BK1i/3/clHiI8gvPxJlG0HkAjMF4OUmNnkKmkFwKS9nqWJma2dkNxCa/EiAEHDRBdv7zAJDn4Jhbek0n3Ndnl95Yo0nDpBB/7YF1qb6OInf2ViKLSEPnsWJv/++wCUOa5SqVKKBIG4l0DNM2feUqeSJo0t4h4zmjwtY/ch412ZsBVfxZjroJLpAFLu0+D9bAm9YmbcM46QCR3MQk9jH4FQjujX3ViH+PwsBQugRs4Ozntz+UxGwAwAP5MLZe7mu49AIIicWewsYlJHnNy/SdbMHS7Pnz5Udeiay5w5o5QtXllZRZiZmDVrZsic1VW0FPouLl9fP7jVmsuEn5tJjgKl5RrA3Stk8RorNy4e162+fPm6cmOWLVtCty4hM/pghlm3tJhpcmJspwnirfjSpsWFsUDhHVpKOKg5kuBlbw1AYblxG+LvPGH9A/UNgAjQbazuWAbtk4iZrrx04CHjF7++LNf69Q/BDxd1fk+e1MNLGybAN0WjndCW4zulPB3JqCvBSqFf9lQZLP1e+QFAL5OcAK9xlcdeN+QZkjQydflWZO/ouKrHud2YlZE7MauamdAk5SV0pf4qM3S7gbja0L12+PAJWbt2M8iyvwYnYpgsXz4c85vEy6sE5u/DnbpIrlw5rIBiQEAA7pU9kiJFcqVfy8xg/WxfrcP8mJg61fT5MQaxQruJaNNKgT/ux300qhUu+yB2rCSTPVBo2duBWD/eW3TjkzuOLt2dWEerXRDof6iVm+mNZZP7UCeWdfVJggn0CCRmnHWRYyfOwYL+DPeHpRQuXECBTlqLCVSnLj8gTSvnVOfJtgoXdgVvZAMpNexv2ff9THkdGip3apXnJl2J60NBV/EjzxCs5snzH0D8248uHpJAvk0bz3gf3QK6c9u2lZfvvjulwGNsOxq7Dw8gMzw2uiTD9nwBFunW1YBbOsdI/Lajrj/r8oOAlDJxxbcWSR1m2LR5+TMZATMA/EwulLmb7z4CGgC0tYhuAQzwey5zRn2HpIKM8ueoSaAiKSHu7m7xPpALEihoxRmZJp8svH1e2oPo+aefuqMNV/BvvYZ6wjUEr0MCrWtbWAZAm4E4O2traOvixWtrG+XGMjwYKUVoNbJB9mnznP5qM1/CAXjhMhaM2rxFUoXodgtBLA+D8injReDBF3BeaMnSEEdCWFUY34fyGhJt4c0bSBiAB0xM8trWWuzb9wIAjJCIts1VHWP/UBSevHLMMr0P+ggejzJxdDVVgHRYzpxOABaw+NX0gNWUvXj/wkBzgir9wiSXYfkKSm+AIFPgj1m5DHCni5FWOFu4usiTl+oDgD/9vmjztJ5cwEuSgK8h9ImNuc60utq0V69f8JHhCc3mtrAGF4MVs7RculQS98oBKIFcQ2JLDlmyZJhyb/v5+evuSbpW30VJg8d1pbX35k4ZMXqw1o0YU9J8kDKGkmvMKO8EN74G5mipm3bGHbFlvupjwxcfF4Zu2yu4d12Q6KG/nvfu1JMOMqF9CUnliCxl3PtUwSExOCmPJFV+sYKUYtoHK2Rs/5vSqVNrGfDLj0ryj/fwwzspxOqrbrLjtxZSBL8dSrQ9CoJsGpJj2F9mPH/qYmtrASuuGyyt3rqu1KplKUuXjkFMpRPAXBkQotdWgF5XwcRMsWJucuxYVRNbY19NAB+J8baM50+QMZiL2ywWz3/axPhI4ZHK4XfDuL64AGDsvTJvTcwjYE4CSYRXx5wE8mGTQLxC/WXwuX8lpbWT9MtTF+4qa3XVfbwfyy9tS8a4Aw4e3ASt3ewx1v8vVkwHzUIlULlQjo0AUGl/gq8vrUOk0uOkEsQbL2uM7pCCgbE8Z+HGIXlzfHR8+WJnfBeDuBPCF3f5sr/svW4h1pk/Dp2M4cmRXmbDTScZ1zyvHD20VgeK9OvRLbngoquiZGGSQVxZp8bcaPrtxbb98nMrZRXNDCk2TT9Xf19j84GBgXDxLYKlbr7cuHHUWJWPts7fPwDZ1JXl1q23lmj9g2nuv1pw28+G1mtTgGznN1m7tAAvueKi9GHdYqFvIWBfgZgyfd5FXreWPSdgjIKgJ9xf/5BqfsEFFwUqCZwDg0OleLPRkqZARbG+sVbuXz4t95/iwylNQbGq3EpGdW4pKSHNRws0QWZC7tcYBzaygu5TJjQQaOOnJHXg2tayn41UV4o2w4aNh8t3o/qgY/hDeHikWp88ubuUa9Zd/EG7dGX7Qnny5BmI4L9WZPAEwR+jMIv3NDK+9VVA4joOLb0EeZ1BtE6Lqn4heJ+Je4EJJaY4QKnSQuaBpvA6aMXMA6iNROKfmi2Aif8amXv4niOQwsZJSrhnkaOIBetzaokkA/FzWls3+Sl3Lek6aKbM+KNLtCMsWfKv/PHHgGjrPtYCX5pkz+fDl5JNdBvmgKwa/1hSgKSZljzSK+i7Z4z1h9aavNCL5V98y2HF5RZF+BzffViva9dTCCO0kFUbHRToygerI93Nhi+RhLRpqi7HiBqoIbtHSoa0yY2CP1r+juBcCD7iq8VqzI2m3wdT251JibHPO17utvuPvGXoHxNlz/btsI5a4MMiB+L8VugfRjfPF+6D/M3keqrcknPtH0guiYyXRVHXgMGMPoAl6EiXzkNRqnz7bXuDmqCMwf3FP5bCsDD/B2WYZm8s0JtuOco3+WLXYJ668ihUdVylcy265ZOA0Npfhg79E/QwOyR5rYGSp3UrxGEiUxuZwMxQ55GWI3EgJyzWBH8E1HsfuMqq2YOQbPW3pK9bWir+2VesEJvYeOE6ufj7z9Jj7yTJ36qZ7P6hfbysaTyX+JaTT2zUh1MbcBU+D0mmCM018Kc/jqSlmTNnMWKALypCbNLSFAWZeb9+PVSMsLU1FEswzozzZGFYgHW7NmL5YL+MHv23TJw4A+7tfFK2bEklGxjf/sWnXkaAYrrtE1JI1URwvoQxsrn9ou3K3zIzhPlBwN+VYSgDKz+AR4AhAebyeY6A2QKYCK+b2QL4YS2A2iW+7PdQdj25JJcwpexbn1y1xROE0Cum/SYHti5V1ZjocebMLm2XDzal6+ooAEowFDaYZcfsUMbo8aXPAOwnoGM4ijg7U1/vpGxgViUlmGIrtOjtuu+gXrTk8jJlLdTa0Nx9hg9/bbup6alTPnBpJ0UMmbOqsgWAIZNzOEiT485AVLJycF3HZk3SP+6ii85SL8MTKZivjBw/vk0XJ6Zfh9Qi0864QRIrUEyRNuvXj+88A9xXrHgAV6275MtfQO22sng7ybhsaJx6sJOXH5G/N92Sah6PZWi/TirmzdhxvQFw97WYqDZlmNFXxdstQnLD13j5xnX9jLXHdQQtLPogloorFSo0EF+4lfXXq4r4hwk7gRjHahmDlK4ss0LJBXfR21qox0wuP/1Cq+LBo+dl+urjcjvATnKEH5WTJ86Ig3saCXz+WNHzkPg6bVoP3W50z/NeIUinCzIFAAgLFVg0jWNd5TczpHFq++8eObhuvfju3CkWOaGEk9FTFv7eV8pnSC2MqcyYMb1KrDHcN7Zlgh7+Dkm6TQWNxtDPJdihVZeudlrTGR/HTGatFC9eQ2ViV6pUTipWLKXkDGfMWAhFkxkAhhOlSpVyWlXdlPcvQS9pek5gfK5evSE9egxQ48LksuSgtWndurGSENTt9A4zlHPkb1D7eIxPE6SDIWUTVW9M/W4oK/dV1gCjH1bzYcFtDdCshQrwmGYLYHxGPnHUMVsAE8d1MPfifzACuZzTCv8Gnlkp/hEgOnVMJbs3zNeBP3Zh2bIZH6UnSy67qJgqR2TnanQYrnCxaRazEMT40dpnqjAeZwmyJeMCgHyY14LrikLy5APjC470DYzfM0yo4LGYzMH4wYQWBunrF7rmXiEBIq7COEbGzZFSJL4JImz33OkzkCVLqcCfvkVGOx5dVP2Kv43B0ta/7/TiRX/59tuTeLFDt7jcfGnbt6i4eboB/EVPTtGOExLyEvJ+gQoYX7j5RBwjvWTSyB91FiGt3rFjL/Dit5JAWxc5+8JeGq/q9Sa5A8kOJOQFXcq7gj/tGAR5zMA9Bbfgc58ISWKRU5oPWyrWfRtKUXARNm/+FTKCm2vV1fXgPUOLqxc+SAiEWEgqTiqbORvPy8R/L0hkaKCi/CAXpoONBWT7Msn+MZXF2fEbueljIb/vc5JptV6IvVXM+8EDIQy0FC8GVyV1bbViCvxxO61pv1WtKWfyN5DxxSfLrR27xW/XHml4+46Uc7FHwswN5DG9hAUuLWh28qjkLQJC6hcXLVogxtizTQIfgt0uyCB+CTcmrVt0g9O1rMki0rV/5O4rGbjGV14+vSjXd8xTbS0AtZJ+IZcjs9Hr1h2OD4UwWby4UrREqBZwoc6Dbi9dqbQW8q8liLapttKnT3dQGl1G7OMPkiFDesmePTM+rCyVNVH/GPGZZ+IU3dcJKXg8IKbzlVHwN3fubekz4JIUblZYOv79FsTrt0+6JlqOST1lLp/fCJgB4Od3zcw9fs8RyOqYUo49vwUguEKKwSXX8JtBcnrvRrlz7Yxs2rRDBagfA3cehelz5swKl01+Fbz+PoelWoQWR2PMRUlLy14w9JM8mYWWQRIM8+G6E9Y/WilKwWISW6EFhy/Y9E5RQDKXO5Q+0M6LnHXENeg5/DVHjO5OqwHJowk40iDLl4kdCS3ZYflj/BfjkMjrpgFbw3Zu+FoplYH4BpbTWmgJF7glkla0DGxj1ivD43yo5bRpbVVT1yFvRW66LG0cZFRp4+Nz40YgaF12qPrjxxeQ6b80kGZ95kipzvPk6NxOui7dvRuE7PF9UDJJI9vv2EmrClby9e/ZddsJAPFpoNyHlPbTt67oKunNHMF1L5nmrZWKm+48vinrLjjB6hQp9tcvSXdkaWfP7iQtvw2T5NV+lhzVysnUWX1l8uS5ikyb/IQsjaHzyo8IhiUw7lQrVJcYv/6OTOucQ8qXKaytjjalu5OQb0YdcvPFBH9aZQJKgiG6gFvA+m14rxgD+OQRtAAo7lypl1zNXUFmdW8pr65clULd2sFCO1slWC1cuBzJNNdAR+QoFy9ekdWrN0FKEAAPCM/GxkpNmXhCq65n4UryVd/JEgAQSBDDEu59W3ZNnycDd+yVgIAogE/wmTp1SnHNWV4sS/0gfzQqjpoxrfCFCuUDR2U7JPKA0zDDJjxD6qs2+Q+vH6UC+RtrjvPlWNJ1Onz4L6oOweO6dYsAyL9B8tgr8DLCArt/o6RPn0b9flnJcIzUjgb/mOLpM6gWbZFxlFYAb3xOGB6jT5+zYuHiINduRb+39Bvg+BnLStevY55PvCNgBoCJ99qYe/aRRqBdpig3zckXd+S/51fE0dNBxkxcJzOGfYPYv/HqqEnw4H+Nh7FWGNRdpkwxqVevhorjSp06hcqs1LbHNqXLSwN2sdXjg5iJHGHIbpx5zk1p0PI1SuqPEOWmetsfZrjSmsb1nA8It1D19a0qPBYf6u5XN0WpZJg4uH4Sw79wxVHbllZEWhOMvYyNNcOXKCkoCF7mwNrRGRmkxgpjBY89sYt3ZuErKLc47Tyh4qdatmxorEm1btu2PTJv3hKAqlrSooXpeiYbMLHB1dUKGdz1wcd3Exabi9Iunx+C3j0UcDHcRT8DOnduJ7V5+sDGElCxm6ypHygN13+v1q1Z81BNi5RPK0dfJRNX2xfRmoriXgtWcXGk9jBmudV24Iv7BLLG6e7XYrRowVsGcMXrsfO/7aDogcUOpWbNVLLxn8HyU+sm0rBZVtkMsLr/xHVp3rGLWL2CaguIpG2SQDkkTQ2JsE0h668tABgJAR9fsAS9tpMQ14rimLKUasvYP7QaxqVAoe3HDwD9jwAm8DDphIk7hgB/w/W7MnTxWrmxey/AVBKxkEziWKWPtIQFM7eHmzwLC5ZUySKjWTO142jTx4+f4oPOHsTXDmrVgAHDZULrQvKi/xhpWSal0qF+9OipVK5cFvfR34qwW9tXf3rO67XwN0J3sWGZM6cing3/ScqUMa3DjCdkmMV2gGSGcvD3QsCsWRuZdHb+/F7VZLt2PeCJWKNiBB9D2m8vkrRYaKln1nNsxOOqYgL/oYXdEPyxCS+v+jJhiY+4ZUmFpbcfA1rz2+8YJwfXtpuniX8EzDGAifAamWMAP04MoLFLvezOEdn77LK4WTlIEbeMksTLC+6hUHniaI2sYUdJHhQuYbduyuPzx+Xyyb2gsIhyi9EaRSmvdJBUu3PnHri7OuLLP120Q9D9xpcz44k0SpdoFQwWll9xQuZugDD+izE5V15AqB11gMNUUHoquIhpPeBXNy07pIOhC5eZeIYyYAZNJ2iR8YrMuDXkeYtvI4HhSUCLAmRipDDTkrF6fYt56wCLkWqwfIqsQx9IN9I+r48UzF9etmxZpqwi+vWZWUtKkaJFq6sYO8ZTPXz4FNciDWhUAFpCQpQFd9iwAeLiEgXK9PdPyDx53hj3yJiur/P46XYlx96QIWPB4ReVnVypUlmARtKcvALVSw2oOgyXXM1+k9VjmitN4ufPw0AR5C/HQPfSPoeXPAy1BX9gUjFUTCHv3oyzbtIWsYBaRq7uoHozjKvbhkzxZKT9wf8uABgEFgXzlsZL/Dn6MUrVdnD4TyyK5ZdaNSsgCaGUeunTDUraoWxJb0rg1V3iGHJH0bREou/OTg7K8k26IxJFkx+TVilThTF1rWDZM1UmT74O93iQ0DqqWXO1ukMOpcD9HKoAjr7re+6ZK9KHEnBAuklz54a70kJyVSwnizo2gbXbTt0n+wCSCXqDEF9LYuP4FpJgt2zZBfdIqHwFmpbMjYeqDzV90m5jbZHv8ATc6m0R+6aBbq3e9eu3pHr1ZqBy2Wo0VlWrx+lU/A66I7nCsDRo0FbFT2rJOsxMZuYzP574m+AHImmHKiAsREtUMWwjvst0hW/FvdMo21t3vP6+jPH7+s150nLKol27WYiXNJY9bI4B1B/BxD1vBoCJ8PqYAeD/DgDy8i+8tV+OeN/Eu9M4aGEde1DHVHHPKaUd08n9mxfk8PaVcubQVuWy4XaWYsUKQue1muRv0AtJHdbqBUvrnbGv66g9ov9LGaebPpZy6bkNFA9eyg+FvXVaqYzlo24n6U3+V4XWyLjcj/HtyzWA4YNIcqEbvCisVSQIjq34BkXI8uvJpWtBP6VYkStXGQmCpjF1YClhxpcR476skDX76tJqBbjy5MkB19kGdU1WrtygZM4IXBYvXgnwuAugMC1UL1IBhNzFoV9Lq1aNFXBneyzM0jx06JgCbmwrVy4AtPZRMXJ89+3H9dl7+r7s2L5HHm0Zo3sRkt+R4QLjxw8FaXhGGTHiLxXLtWPHfriNH4AmZJ7UrPO1/LriZDQL2Ty8XHldiwL45IQEF2P17oDnEcOuQD/7REk1BuBrbkquMyz8ILAGb6TGQci+/gtqjmSXloNP8F9w0Z0DCF0sTZp4ytpHqXXWWcb1MbyAVuOEWpWMWYZ5/7K/mRFSQBeyvmvQzw8AJt82XLukoMCpiVi6JLrT4L3Be7vsm/AHbqArtMigcXJnwWJJkiuXnF8zF6ojdrp9DGfICUgAaqgoYljPcJnJVQTQLHkQl8p7NBti6WiNf4ZsYFrHrDC2ZRB+of+RdfSxrbomxuTxSPUzcuRfIPteoJMuNDwul/feR1IYYnXJeakVJtYUKFARiSKHlVtbW09r/zEAdYI+JloxxncLyN55X+jvr9XXpsauk7aNU6qH8CPLMIRAqzPuuLswM5rn3rfvWdAIhcn8+YVwv+M55W0l3hij8ggZ0T+OGQBqo5f4p2YAmAivkRkA/m8BIG8BvnAehfhIAFRDrJNCu9U+uXiFBch9xM5d8n8kh72vKxD4Z+FWujvmJSTVQoICZEL/ZhIeGiLeT+6rbbNWrZWVM/0R3O0vR45UVg9L3U5xzMxovVzazGuBAHq8SeMo+g/dOKp+ss0EOOQJY2mQ1T+GxcSwY7wOtWu3lOvXb0u4ex7JnyaZXD53Wjp0aAUXbG91nUKhCvEKEOm8ryviyJwkA9QLyuLFaOfjJXlyOeiAmX7bbJcAb8yYyfLXXyNgzUovf/45FdfoKpQ2ditrYaZMReV3ZJYmS2YJC84pFUNWp05VZfk6ej+JXLn1WKweHUJSSHsFDAn8YivM8Pzxx19BhbITbukGkq3lGFgzob0MhEd3KYHeTcREEoBQWaMMuBgTksGpHfuvk+7SFYoj+mowVHBYedRHTkMG8Nbt+3JiRjMV4znpVFRoQXAk49CSyfdFnicY5PO+Y6Gr1vAevICM4adwW5LQ/LtCL6IlslDmLl8+Z8TU2aj9mQxE8mgvWO+6IhlDX/v5yKNnUqtkTUnbqb2s6tEWANlF7WPqHx6P1kz9jF1TdU2tJyCjtd4T1jbG3/JakASd4HIvrIy8TgzlyILkGIJuytB1QaiD/rhrbe/cuR9USX2Uigst0aYK3clkBSAVCzFxmTI7YR2+A3f2Xdyrg6KBQP6WaK09D57Pysh2Z8wfM7Rv4aPBMPTD1PEM19O6yA8y8osaK7QQDjuSUinaHN9+Gx9Iz8HnmAe/lyjQTPqcIqmjx0SaAaCxkUyc68wAMBFeFzMA/N8DwLhug27H5klup7TSM2d1k1V/ap5fggL8kA1YXTZuJBi8rOqWKFFYZs2aEKv7TGuU1pu4LIZ8Ee1CXJDDz0MkaMwQFXiv7UMLTHE80OkyonWBNC90ExtLPNGO+aGn+qBgzXVH9SI1Zikxdly6dDNkKAyL1fewWNWF9eqUlCpVVJcVyfGhy4ouP2aTUo1kLmIOrb2fyODJzyTZ+fOyeGFxtGEH97xtNDB4+vR5SPp1VCTMGk8bsy+ZLMDMTPIa0s2sFQLNbt1+VjrQaXMWEfsCjaR7FfAQgsLEVGE8JrO8+bKm9YjXg9qqXHcLYK9H4RdC11lWgIgkSGrglFbdhGZvasfncZh8w2QKw5IlSzGA6arS79cBsu95enWfkPiXdfWtWYb7fYhlWvXuwMJYHZQyxgqvo6lY0fPP/KV8PXxoQTZu7JpFUiZdPjn1zFZZ5fKnCDUKkglk6PpWFlS0zVhEfUBprA/G1hGQMfGI40qaGv3ECrrkT6MfBF2FYLWlLOI28O6Z0pgeNGgEngM75L//liODPYWxw6l1HKuTsP4SVP7S6F95+cJfihQ5K3fvblYfGz/+2DVGJvNCgE/2j8lj5A8Ngfu7Ctz+CSleuBcIbGPLwKa7+xCsoh0RTxpfb4AZACbkKnzaumYA+GnH3+jRzQAw8QHAX5Ax7BMeJIVcPaVJhuLiZu0Q49rRJbxh0TgJ8n8hfj7eMbYfE0cpJgExgtxjVHyPFQjdUlaCR7DCMMOPknJ8OTyFxSkZAEdNZOjGBmDe49AxdvWBgsRmkAgbcgzqA0TDncaOnaLIinfvXotYNGcFhi2Tu8i+h1GB8AQOtFjo8w1SIq7rqOeya+5xsS+cS15jEF7D+vZ1i7RS0uU5rImB0rlzJsQCloZrNgt0hJdHO+xPPw1BfKCz/PLL9zFetNEqYsFU3+mio2XGHXQ4dKcSkNPJSYsSyY/pEmUcnwbUDdt912WOBzn0HEAvZOgKTJ++oFDVJn+Biuqe+w/AmaCFWbgfopC8mZnCphRX5oA/rgq0nI3F1PHDgJm9Gmn5XYBFZjNHItFhHCymXsdOSqfvu0p2N2fJCJBPyiBaTldcc1ZxjgSx+vF3tHhSnrAsrKjXIBO3H8AmK1y5+XCuzEynhZX9YOgBScPpruaxKJ3IsSOQ0i8c1xVXnUQjSja8bvuQsc822QbjdVnPWJk8eQ44AqfL2bO7dQkoxupxHX+77cf6y3/zz8n9M6XgPTgK5ZA+iC/ti3CFRtF2Y/9IpVMDv2cem+d/BuCUlC6UJDQG1miNnj9/mVy7dgTxie4KcFLvt4GR+D/+dtcj3tDdJjJeikL6nTMDQP3RSNzzZgCYCK+PGQAmPgDoGx4sE69skaeQlWNJitd7sqQWUt0jn9RJW1Ct0/6ha3hg2xIKBNKSxdjA4cMPIKC+kixYUDhBLmGtzQ8x5Qt0EbgEGShvCsh8iOMEwW1ERQK6AmmJiS1+Tf94jRp1QMzcQyWVNn3uM9nxLIXkjrwnP/1dVcnj6b/wtf0icVIF29wX71vPJez6PfnnnxKyatUDuKgspHbnQtKh3VEJv/cExLtZQXfSAhxxYYiLmyFVq5ZXsYRaO+86ZQLIylUbZP3ZUGnUtCFoSlK+a1PvtR9doARQzAYmqCJgKVasOoifS8vg4UNlB2Ld+EFQA4TEH6owQYCgK7V9hCKJNgRJBDTMXKUFWisEKgcB5klvQ6sw3asMEaAbtFJ6f6n85yy5veO+uFauISu7VkVsIJI7ALQIND1wHFouSXicAkDb0PWoHUObnntmLQS9jKG0A8j7746jopLhsap5BgIkvQZYtIbr9TWAYHQAqLXBGLnFhy3k5Jy98teoXPiAcNQ2qWzg7K6hINC2V0TPBJh0ieaDlVKLx2RlxgPOm7dM5s6doBRAuI7u74KoZzhm3KZfsmYtIStXzhbSzBgW/p5JXE33udbO2SeWsnqnvwxsaq0SlvT3GQW9c4ZB0Bp55cohWQmAq3SyMab6hawFtKS2zInnRCzSf/r7cJ6WUyYj+T19IaF1chtuTvnT69dehivNy592BMwA8NOOv9GjmwFg4gOA2oW6FfBMdoEU1gfUEw9DXkjYq0hJCam57yFor28VDA0Jkh8b50YiQXbEzWySbdue4KEbID17ZsXDmrah9ytn8QKhe9dU8Lap1vcgzikVLAa0fBgWJn14w1JILsH3KaQgIWdhXIkePAZj83r2HIDx2QMKjcJYbi0HDniLTd4s8tI3QJqNrCPls0HXGPQX+kkFWv9IzzJo3AOJ9PLRVomPTwPd/JMnoXD5BgAMucH6sVjWr/8P1CbBSAS5I0uXTlcvZPahb9/fYSm8CXfw/BjA8MiRkwDwE5SeKylRKP9FFzI55ZJ5lhaPQjXk0s5lsn7691K8eCHdsT/2jCGIZ+b0OVghp649K4f375dQr3vy9Xc/SJ6cGaUmgB8tdbRcUW5QU+Aw7CNdn3RbG7MgGdal5ZGAkgkorG/qtiYQZHwbKVAos5YbCS90e9+Ape7f686w0iGb3RKg6KmPLJ0yW0LSRcrp3zsD/DmperTQPQi0VPGSvEezwW1OZRK6LmNznVNnmJns+hKKdOPqgzPDczK2vGHLM+kxD1blS1fkwKFqSqKP9yKtcEyi4YcOs9u7F/JRcYJ0IzP+UX88du8+gJjAvtKmTRMZPLgPwgEsZdc9B6X2Qle14bXU+sEM8suXr6mEEm2d/nT/A1tJjxhYzcrK306LkQFSwuYxko9K61dViVNubtnVut7z9kidUlmU6ox+JY7vUpDWM/M8IYUhGcsRisCkN7ugZ/JPtpKGu5sBoOGIJIJlMwBMBBfBsAtmAJh4AaD+tSJwWHj7gNIY5vpeAIG5nNOoKk8f3JIhXSqpzNAOHVrq7/bB5vmlTpAV3/g6HpgvLQq8G4vpuYmX0n244qJ46N6tmwSlp+EOLZ3WNHmsfssMlv/hh0EyatRcvBzP6zY5OFgi8cMTerJ5latqMSyXlJzSyLT9/SNA7muhyJmHDLkIWS1bmTnzFgiWPcChVkLXjqmZrVt3qeNawKz4Cqgna9ZMQq640NAwJH1kkC5d2qpYzrNnLwppOQYO/BFgsQQ43lIoSpQXASFI4kAM1ePkyvrTpV1nIY/c7t1r4nQjm+rT+64nUCWHnJeXt9Rr2kyqfz9ZSZwFRliopnlteK/Q3apPS8R74jJkzwgeacUpmioYbmLjFjH9PtKNS4kzWhZZjIEYWsTOedsoaxtd4bTgMSyBhOBMAOlZ+LmiDLrvD9qalt3l1dWrsmDLcqmfzVP/ULr56wCNpEJyg2vyLPprir7kCUAZ3bzG+Pp0jSVgZuT4G3LeMqN0a+ikXMyZYO3TEje8Q5LKxJPJ5Y+yz1SLdDkfwrGbQDpPPw6R8a358lXEx8cxdY8QNBIsxpa5TE3lhg3bCTWIK1QoJX//PUIlLGldL1x8t7jXLiX/9rUSJ/uk+D0ESbGGl4RhE99Xw4fNTzkUrY+39wslladZAUmL1KNHR60Z3ZSJQccgWWlKklJXUW+G989C/D4bwfVMa7/ZBaw3OIl8NiqVJ5F30tw98wgkxhGgFah9lvIITk8m+72uileonw4AJvfIIKnSZoRI/DDJli2zAg8f+hxqIf6HpM3HQElBqobYrCHasWmVoOWE/HLMytW3jhD8xacNrS1jU7r74gv++EIcMWKCIt89ciQKMBYp4gpXbVFou0bF/PEYfKnUT+cl5bp6i8+Bs9KwQVpZdcZS8hd2l++6QBN2kYOyMA0dmgcv1vhZV2vWrKzcYA8fPgaFjLdysWWD1YLxVnThU6aLMVPk8ps6dYzUqlVFd7p84c2+nF5ZUalOwf4tXToTALYb6rWE5WVOnPFeusb0ZsLCQGsDnsGEWIipLXvo0HEkGKWVn3/+HYC5P+63TNK0aWfp3eeSZEyfXoFmfWsUs0bv40V/GCAlgokqcNPmgVWucTY/He2QXrdMzjK2lFmyWjEkcCbAuQBKI2PcfPlABB2C+5eqIzxunSmL5NWpU9J69mST4I/HYdygVvYgEYoWS5KPe8GyyIxqXn0rWM2sxg1Q97dW932nA3pnfdNEsMoEJsibjt9QC7hJHZGxT6uqVggObSwg3QhaGnJ1aoTXJKEuWDCv/PbbGGTS9lcxocxaplVen4xda4dTclfyo+LFC19QFv0q5cpNgIW8v9jaRoH629f95MHq05J9s5XM+c0DNFRp5ODyXFLh24cyevJ9+aZzamF2O8tTeC4CAqJCAHx8fNQ6w3+23HZU7nHD9bEtk86IGezxDfWIrS3ztv/tCJgtgP/b8Y7X0cwWwM/DAqhdzP1Pr8qSu4ekMBJEOmWpqLMAhQQHyJ+9G4Ie5i4CujfjQeyp7fJBp95wv6xDFqSdXqwVdYUZgK//4tc/KF+cJGRuCpeNfgB7lFZvFKDUt17o7/sh5ufMWQLVlXHIyq0HuovBujEz1TZj/SpWOyh3bNKIkw1eZiduyuZVRSR9nlTgMrMGLUbCMiC146xZsxk8gavwUv4JKiJtcZ22xJqxSfA3HxmY5fDCM0wcYJvffddPtm/fp/yhSREjmj5dasmRIwsAZn5hNjh5Am1scAIGZfHiu3CFn1ZrN24sCzqQ5LoaV6/egIV0ErjhboifX4Bym9vZ2eBlHgxrkI3kyZNTET77+fnL4cOb1Vgy7mwVYhNPntyha0eboQIFE2eaZA9QwFlbn9BpXMTPvMf4F9tHRVB4pBQcflgC962XMNuncm/tbFgErWLtCq2UtJyR9sUe7mG6P1Pific9Szzxv8n26a42jDUlXyJ/F4wl1P89aTFvdAHTutoTGd6GZTWspLlAJ6OFXNCiV7hwZfDpnVBVaaUkmIyL65GVv/9+vyxc+BwW7pKwdKdW+7u6rlVT+2K5JezeGfm+zQPZu/ewnDzzCH0lQPeFVTtU1TH8p3Tp4sg2zieBgcGIUVwqI1Gh1dObuL8APOOI/SPdD2NNt0ENhB8C7L9WzBZAbSQS/zRZ4u+iuYfmEUjcI1AmRTYVF3jK566cObEQQMwakm6RqtODR+HB+m1ViMV/pUiHv/22nco4fdczMuZmY9Zpp3y+0ZoktQRdxLX1SGb1K/BFyUxKxoQ11MsCLAx6CwKbVQgQN8ze1d//febpohw2bBwoXrbqwJax89I/BgmED+wuhzi8UGi9WsICkuXN5kiTHGba/suXr8OxTirlFlpjtUIXfu/eg+VbKLq0/HGqvEpqiZdhoK5PWj1tygQGkjWXRNanMfDHehMnjYblx0VZxtJY+4nPuS0AYWehMb1dZTfTAkOX8+vXr5S72S1rUUnh5giS45SIgcwHN50Lpk7qkOzfggXLwU04Fu7wlsotnT17Zpy7DdROniilCWPqJoynXLhwhYpZzJu3PBJjpkUjJNbkx7TzepcpgTD/Yiu8x+ICZL/uPCjeM3tIxn7jpVulBmKdLG4gzw+T2BRHYusTt5m61whWRx9LrrgRNbc263sgczolLKYMnaDVPcMbEnP2g/x7jm45pNMqP5WlbAh26aL+B5bA5EhaYdwlrxc/DLTChCneT6xTy/Wi/DZ4pBw/fhofRUMU/RE1jMkjyHuhYkVLXEsotgQy0SgKAN6+XRuW33NIFDmOj47hMm4cEmXSZpL8RREGAeu0lXUycXRxk11r52qH1E1Jes4/rfj1/14XYqGtMzYlfQwBeDZXb4BwKLMYiSc2tp95XeIbAbMFMPFdEzFbAD8vC6B2C+16clEOeV2XAEjJRbwGSfTLCMlg5y4tHXPIuhm/y9Wzh5R7r0qV8pCgaqDcdoUL54/T+qW1n9ApaTgYpK/v5tVvg/E+dAeW11Ng4Ha+2JcikeN9XrL6xzGcHz9+GgDKSli1BqnkC1oo6PZk/F2PHp3wQuthuIvJZb7Avv66h+Lqu3v3lNF62bKVAM9fAfCqPcALb7OyiCxbtk4Y/zdo0EgZtHCXpE6XXlFexOa+DvMsLwLVmNgso+S2a5LdL1bpNvIRfvNNb2jshsgvo8bJ/VBHOX3TT+7eviV++6aolz1BIscjZ86sMnHiH5I3b06j56a/kiCBlDabN++ANbMmXNjfgvR6FsDnNjW+c+ZMVHyH+vu86zwtV3T/Muv4XQvj/vLXaysIXJODx7ZJKofkKsOXoJGWNiajUDeX97C+5e1djxef/TZBXaMAsnON/WYIEKkcQkolZyskJmWJcqeyXcoDVk39XDzcY9pUSDBN0EjXMK9R5sxFIR8Zda8ycWfNDSdFX1Ot+3xp6PlALl+6Jrt27RfKGpJM3NoaFDew/DZsWBvA/5Hs23dENmxYpMso5vHHuuaQkQB8IxcdFWe3VFylK2vmjpAHt6/I9fNHJCL8rau6WbOvEAZxAx9UjjJlyug4eUr5AXQaH0DMoqZWuCVwLJ8VMwCMSYitgX2zBVA39Il+xgwAE+ElMgPAzxMAGt5KU6/ukPN+99Xq3jlrSaqXFrL935lyeNsyCQr0V+tHj/5VWXYM9/0Qy3xhkTKDJMSM+zNULCBFRnZwpfHFZFhmnnWVFqBw0ZIuDLe/z/KmTTsATgYJ3WGrV8/VvcgOHDgCK2l/cKbtiVfzpI05f/4SrCLTAai7IlvyQDTlBDbCFyhj+27fPgG3al0lGUdwlStXNgUI+UIuUKy4lPthHl78wVDHsJJmOaOuTbw6oVeJSTSPkK1KtQhThYkmRYpUlcmTR0qjRnWjVWNmKKlKSFFCCyPHx5iFL9pOWLh9+64Celu27ARQzIX280unTq2jWTKZ9PLttz/BfThLSpYsYthEgpYJkpwR96gv3RbfBmpMXSIn1m4UK1gxwwKD5DWSPlrM/Eum1a5gtAmSLlN3l4XxlrxXGW9GvemdyKLVdz0abcDESn+4j0NgfXuI68U/Us1Q8u01YiLjkzhyGQksJEim65lceZ6W/lKy6xOxv3EVyjVVFODmoZkdux5xuu2RVUsQO336fIC3bQDlS3Q9Y9Y8rfG5ynaULqMXSh4nJMYEXBW6aHl/8p6xtbWVXr0GABS6I44wn06ikI2cO3dJqlT4SkrUbCFteo3WtavNdKvtqc1Gm86aNV6BSguLtxbJaBWwQJf4ESSF8Do4AvQWS/5cMrtbRPtoJa/idjxLmDnMczQDQMNRTLzLZgCYCK+NGQB+GQCQt9ZF3wcy+dp2yeyQUvrmrqPuNurYBvn7SL/WRdWDfNy43+N1Fz7Eg5YapNUBEBziIRWnNcqX3SLErbXL46P2Y9A8FQBIsFsBOp7GytMgcJ/hxWvKhWxsn/isY6ZqrVotdKrL92C1c3JyVLtyW6dO38vFiwfi0xTUPgrB2rVUWcf69RuqKF6WLJmu40wjZUuFCg0kMKS9BKYqKEOG5peUqW1V7Jh6UYWEyjwQ4xYuXEBaVssjdwMspQ7oZvTdf/HqCCrRkjMNSQGGkmaG+1PrtWLFBvL8uQ+se9mUSoR+Hb5wqXRiD0Jf/WxsgvkH6B+58Gh5YSE4oIuXCia0KnftCsk0tGmqaNZSgt9p08bGafEx1g4tPky+qKQXc0mAQkWVEIxn2rSpdYkGKVOllL0hL+X5vfvyyttbLNzd5eW1a5Ikd25kBYNEGY01+a6TLO/0XbzJ0WmBY4YvrVCcGkswYb9poWTsHvn/CKhfAtgxI/keAD75/xwAYJmNTMUcyqCRaob6uiTrjm/hWNCFe9PXGr8VG5nYd5/4WDnLmXke4u5Ojd2ksuSKi3yT74XumhUpUgXWtjE6EE4qHFoUCWoZjvDM20faD5uryNoLpTQeu6ffP2pNly5dR6ztnOW3mXvg8rXR36zm79+6JCN61Iqxniv422vXrrlKUiPdDK3TtEzzWl6+DG8GQHrbLt9Ktw5fyeajd2X0nB1i7+Yhdk4u0u+rDNK0NlzNKDd8bRBOYqssp0l9veVe5fxqvd4/ZhoYvcFILLNmAJhYroReP8wA8MsBgLysYy5ulNtBXlIhZS5pkrawzB7eRcIiIuTpvetSvGhuWGVm6l1907Mk3qV7cf5F0Ljk9THKi6e/N19ADJJnicQLkJJpHbDfKqgpfI2sYYIgU4WAhvVI5PwhC0HLuHHTEOeWAxmLVaM1HR4ejizH+rBcJTfKx6dVZhtMtjhz5qLs379ex9vHhI7ff/9THjx4ipi3CXLqVDBecOHyMkdBCQVJ9IlDFRD/ZW00wJ3B7KRIMeb6045rbErARv4zYAHFtRebyooWe3YJLr46dVoqF22vXt/EaJZgb0nTOXI6Y0kp2KEUEimSIjEBGrVwI5IGhXFnjCfjOGTNWhz0N+NAbF0hRjvGVnCfCRNmgE5kNrKV58JaWMBYNbVO669hBbaxcuUGgIbi6lpSSu+77zrK8BET5Q9ktzo5OcC9biHHobO8YPZikTRpJGW1yuJ37aa45csj//X7VtI7vc3yNmw/PssEd1RdiQusMxOZVnC67Skjpy/tFp/jJKTOQQCgVZft5bti4MJDQtYmqOC0x0eXBtjZFsMRrl8/qmuWRM7t8ZuMDA/FtaiG2L/f1O+CcoFcnwy/UZJpGws7OHDgqMr2TmZlI4Ombovh+tUd5M0Mk9KePbgt926clwNbl4hL8jQSERosV88dxr1E9Zok4ujsKpZoj3GKaTPlFu7D7VrAJ93S3t4DxALEj07FkktSWz/8/u6Lvb29DO/bSsplSSqP7zyTPcVLGx7eDAANRyQRLJsBYCK4CIZdMAPALwsA8oXZ78wycKxFytiCzeSHr3KoS64estnySLfpu5WcVL7kodFeFvr3BS0Ny2BN6ARNTrq/ON8ZcTfGCrWCmelpjZeQL9y/5F/jfFVYQjbBHcUsx7jcXEwgYUzPh1SO0O9r795nYAlLIfXrp9VfrUBNjRrNYUUKkP4ISmdAPF909+8/VG4nusDIaZYlS0YVB2WlnzGKcQZvi2TN1QMWtrcWD7tCOST8/lO5cqQULDPW0Y7HBVqSqEZBC6kxsukYO+itoFwYrTdUqohvoSWuYcP2OP8ysnz5rGi7aS57J7jb6iCBJzaQzh1p+SQx9fjxQ6O1E9fC3r2HpPOPf0oyN0/JbOMtS5dM1Vlije1Lvka66A8ePI4M1jvKJfkaejhlyxRBBnVfxTFnbL+fNuyWOd1+FHF1lYId28r279shKxg3oF4Jxr3N8ef9ltE5SvZNb/NnNXsW6iNURwlCZiwteCS81i+ZMn0FKcLFyAyPsnozdjDgwBQZO2qCyoj/888hqjoz+ynTxg83akn3ALG0VvihNH36AlAWjRWP9Fnlh9HLAdzctc0JnoaHhUqAr5e4AhAmNeIO9nvxTE7sXS+rZg1TbadJMwqcl1FmaAeHZPht1lUfAlOmzAEYtBQr9O8HZKQbFDMANBiQxLBoBoCJ4SoY9MEMAL8sAMjLu+PxBfn3/nFJZ+cmbWyyyKheUe5gbrt2/Zg8fp1aSWTVyxKdm4/bmXU3+bQ7QJufjlOMWb4H4OZipq6+dYBWm0fPbqh4Py0om22Qq6s2ArfJl0b6BrqBNfUAbtcK9z92867cRHIIMx7jW7gfiyEXnP7+gwdfVMTNc+YUQSzTerWJLw++RFgYr1e2bD3EvvmpZIWnT71UEkTt2lVBe1FJ1Tly5IR4eqaHq9FDLUf7B+5V24EjxDdHbkn9q6OkkefySPBiBLBwrFhUKtndlwWLS6ldkoI/7/5rFynS/bm07pFPxnxtFYP+I1rbJhZ4bRhLSaBmiRi1OrDOGbNKUX2EL+00aVKp7E7GLD596g1AtQHgKSqjk4fYcsteueljiyPkB8W//26URYtWwMp5AZnCf8MFXE5lt7KN2K4Bt2uFMmznHr+WP5eekFOLh0idSgVAVVMEZNfuKpbS3t4O18Ze9ZsKKtWrV4C1ei0oQyZJ/or1QV9iBaWNuLN2V1+5LX3+nCa+m7aIQ6eO8nODatKzaF7VDUqincFfU9zbCQlr0M7hfz2l5ZGULzlA7WKqMBHIxTpShU/oy+Ax9MPdfZlUqpQR1y/qPpx8UOSv9iXUNWTMn7GyZN8jcfK/gGtiidjRuYr3kSo0hcrWlo59/5JkllbGdnvvdQ+ROHL13CE5c3CL3Lh4XN0T/fr1RAJTB3yY+cDafhnnkgIfAHmiHWvj8rXy5Nu+0dZhwQwADUckESxHPXkTQUfMXTCPwJc8AlU98so5n3tyPfCpeCAWsEzNlnJw61J1yufPXQQZsqtyQS5ArB4JVYEnlPs2PWKUSJrLmKes4DnTSna8gGgtoQSXfuHL304XYfd2ixYrRSUGFio/0J1YLWPMFzhj0PQtDm9biXvOlNuQe1686IfsxmeIdcqGF0hVWbfuISxJUZYEbmdcHC19Gzf+o4vj43r9YuolqeognikURM7usK5FZgkBuLGABSWpFH15R9Y9qS2X81UUx+I15LWdrUSCk6/rzVpikyOTXFx6RCzaldc/TLzn6YptAxDOkiRNUfln53XEkUVZ77iO2sMnTpxV8V3X4AI1LLlzl5NZsyZIkyZ11aZamYNkP6h51l53kHR+B4xm7TLuj2CZOtMLF07VJYrw2mtAnAkpGXDv6LsfDY/NpKDi6UVW/FxU7rWYIZMmzQKh9WollUeAwSxkWpuYNHLs2FaAFze1jbJmVWvXlrXIXqWqCOMmtfvK8BhcbpQzkzSaPUbKDEsnlyZOkWFnHkrKP2dK6Muk4ukYLmUgG7gObfGDBTZc2BVFxePRYm0sQYltfqpCy/g3JizvWp9qZAyAMoi7NNTjxuM2ulg9PM4jGclNVWUm+p/LUki7Vr1Uwoe2f+vWx1Sd7t2zIkv3uvRoUAceWMQFoNBFW7F+RylVtQlctHFnhmttJmR699o5WTZtkNy5elbtRu3g/v17Isa0vcoY5spKlVKpP2PtVoT+9DJjG8zrEt0ImAFgorsk5g59qSNQzD2LAoCzru+Wdu37yU18VT+5fwNf1D8iJmuk0NJFPj/qlbIEgGOL6ga0KJBryzCL1+otdora4c2/AUj6YMZkbO5M6qkeRBajYSGISHracG3cy/GxOg0YkBMcZi8lXTpAVGQ1lmyRElrKIWKH+CwWvmhmzPhTuUf3gRg4Q4bo7uG4e4FQJbT7KkM6sdxzUApYQxkiCJmmsGTV9wHZcHBOKCpEiKubi5z2AfeeBMjhPSdlzOYS8Wk6zjqvHh6XzEd3ycDfJ8mGSi3kFZQXNi5doALqbWztpecfiyR9ljxy48Jx0HGEyqK/fkbsVxgIfn/RAUAehNa/RgPXy97Zg6RntzZw9f0c7dhM+qD7WF9ikG5UXm/tOlgATE094w4g/zxelk2OteZ+jHYwg4UGDWpBJWW0/BboI72LvhYed8D+VDKghLeyjNngWtIaynuQSUb6AHT/wB6S/Owlccz2tZINYyLSfSS2MDyBWbAMTdAKeL8BhO0V7Qq3GbOqanXfdUpak5xQ8DD1OzL2MeMBly5l3mLLgGYcafeCLxS3X32AQC2x5NSpG3CdHgYnaDPch+EA/vsk0vo7mTz9BaxpIvXqHcSHjzMSmx6pPwLAGzduK/DXtOsQyVOkgqQEx19ClGISMjYvvB7JgnE/yrVzRyB36IpY0WHSunVjsbS0TEgzYoH701w+jxEwA8DP4zqZe/kFjEC5VDlk6+Ozctn/kTjkcJU0GXMoAEiZp9atu0EWbaAiK9ZeSEwocLcNEcpFxbcwS5KSbs3x0oytZAYAdEMQvbGSGZZF0lzkgav4Q5aiRd2Q9VpO9tyzkxfPLYTuMap4kHxaK3XrVleu0apVG6tEkPjw32n7qinoRcK/bipiYy1J4EpOtvugJEGmRgR4AAM6tRMpAOtSl+by+EVK+dXaV2akwMsq2fs/Bmkxq1GjGUifz6lunDpyCPFUcLcXqyi1W/4g6TLnQmJE1HGSp04nI3pGhQBkzpwRrtWKkjp1XmXJ00iinZ2d5PrlfeDz+1pWrFivLHHkaytRoqiylNI9e+ihrXLDUpGCgM8LcWNusBRfxZgy4aFQyhBZDFJqZrs2ACGxfqhAtDFLwEL9+jWlT5/fpFmzTrJjx78KdA4s6SXnocvLjFuqQrDwWLRk6uvcUjrR1sVZQo4tlw4bckuLfEnk6zzG71MSKjPTuAQAJq2DHzoZiX2kAs5SjE+7vL5cjFao/PHk5GOpLYHR1lfOEAiy6BT4bYTCKk97pfHCZJOwlyGyEBb9qtgnF7SVx4zxFkfHTvjA6YcPoW7YsZzY5g+RJLhnWQ4c8FJ/nP/llyygQ6JnoJxSENq7YZ5U/qoDN33wQuvi2nmjZPvqmfjZWMnYsUMUO0GyBP4uSHnDuMWXPhEfvI/mBj/OCLz/k+/j9MvcqnkEvsgReIWHrTW0g18BMFw4tlM94B88eCR0D/7yy3A8eFsopYd3OfnDj6IoToy90Azbo7vNzcQLjLF/s2F1pHVE3yqj34Yx64j+dlPztBg9DLKU1sguJkDQspT16zdu3Ub2BuWTFm17y4VTm/U3xT0P81Mk4gUjy5WUJADWtoNGyCvEDL6EBqu/k7u8+vEbEMq9lswg6j78JIU09fCPtc34nuexY6cV+CtZtakEB/pKmerNJVfhciqj0vAAzu6p1Spy9Smgd/0mXOOrYRn1QEzgMaUf7erqDFqbrSD9Xa+SLjw8UilajnXrtoI38mvJVf9HdW0M1VoIBpMiBIA2VYLC8qD58Ucm7CzwOvKjgKoxtNC9ayEoqFatoly4cFklhZQtW1IBKWOxgASjzETP6JFFWSbZt47tRsri9ftk8/dl5Tiu05YGteXvmmWj8crp941WTcIsJkEZswJyPS1yz0ClQksi+S7jWyjBxgQeY+XYE1vQt/jE2PQiNJmUhMs6NvCn7USibFrtj4NO6YyXrVTpVgqW2+SwtB4FAIyqFenlIzY5M8rQkbtg8bZGjGwY4i5XQH/aGtyO+WB9Ww1rnI08e3RXQoL8xdbeSWv+g019vB/LtlXTVXt0+Q8ePApZ3utBVzMKWeaZ4jwOk87oGue91SCbPwCgv/wT517mColhBMxJIInhKhj0wZwE8uUlgWiXuNfxhSCOdZBODrlk+Hc14cYbjRdCA+i5UubsGXRpp4IGoppWPdYpwRRdbeQ2uwSiVloliqZ+a02Ldec4Np5FYD6pR5gw8j6FySrb70bRcJTGy5Yccm1zR/ERMqxpJbJo+eLOBuJjnstpWF4eXT0hK4Z1kV9+7iJt2zZ/98MjWSIJpNdew5rGQm7DXSAPDgUQYdIB+dvOwHJlhfMshZe6saSY+B586tS5MnDgSPnpz38lS+6ice72R/fqYm8VqeTw9CtnylREII8rdBm/8HosxYoVhAVwNqyDzrIb1t17cJkS3dFyOrL8U7UrX9qk1uH022/b6wigA5B40vPvQ+JoESH2SUNk/TUbTEOlb5tS0qyMh/5hEzxPreElS1YDyATK0KH9ocbSVLVhCjA/C6Z8GAmPAcqThUuNvxbIuQWACc+eIXYSvHkFCsjon7tJo1xZYvSFAJb3DdUnNtx0kkYAeRr9Dl3OvK+Ybbv4krMuHjNGI0ZWUM+WiTDGfjPMok8BQFPACBcfFXYIri1xbCaeMwZUH1Tzvp50yl2KpKL1PjiGizkcF7hZs7mgMToHhY+qkiyVm7wOuywZXFci3rIokir6wAr3CON7X9asKQllnE6K7HnS2qtGPyiMnFqCVx3YukyO7vpX0mbMpc7lGD5IQoIDQVZeG/dTNiQCPYeGdUHoXFfUSRXyPBddclEyd9Wh1qLJ4JmJoBM8/J9sBzMA/GRDb/rAZgD4ZQJAZm9+d2KB5HVOJ/lvecmSvwfgJhguPj7NhCoOrVp9qzL9Hj06r3jUjN0hfOhSgeAKgBUtLEwYSQU1AiaK6BdTL2L9OrHNE1zSCtgZVpDYYglNtUF3EClNUqBv1ZApSj42xjMWxAvV0KpIK9GMFQdk9rQZ8vLpZSQbuCiOvFatGplq/r3W89w09QWeG8EEAQYVDfgS+yqrf4LP+dGjJ8jEbSzBYa/kj/mHYLmxjrWP6xaMlW0rp8KqdxBZt8lV3VmzFuFlP1TNk04jMjLKlWYDd/aCBZPlWbqvFFDmGCYBCtRCBX788VckaZxW6iaka1m1ao6aL9ZtreSxvgHVDSfxfeUggzpVQtzpaRn9z3EJvrZHveit3TLIS4QkMOGjY8dWcunSFdmydbfkyJ5FEQLTAsQMY8ZnkreRurRMQEmbtgAkyqyU5Y5xYsOH/2LyfBnTOu5EcvmxCEAEwL5WQtHO8H0nVGax9/adAtOXPD+706g1kOCO935dZFkbs77xmpKPUUt20o4R13QpNHhNuZeZkFUXCS6xcTsyK/hQhyniPLY39JwjlPs9GG5wJraY0ovW75O3d5gcOXIb18se1EbIyEGZO/c2rH83AaxzIQQgLbwEjeSxd5D8NmO3/q4fdZ7UMBsWjZO9G+cjXpX3Ia9bOlAvzUemvqc6Nq1+fPboh3BwgxkAquH5LP5J9ln00txJ8wh8ASPwONRPnUUaO1d5dOcAXnT2cOflUuuqVi2vpuF42JKk94cfuiouP6oE0NrAlx8fwZwSADBZJLaiJQPEVie2bQRG5BzkF34VxDBldY07rufycys5AdcZAR5du8wOdXnjZua0iAnrJLc5BV2VZL435OqNI0YBAAEtS1znRdWTh7CSxSZQz3PTj01jfzUXJq1NzIJuhJi5hJQ0aVIDeM0FkXU9GdS+tPT6459YszTL12kju9fNgVLJVwBv/ym+Q4K/tBlzysM7V3Tgj30gOOvc+UfZc7YydFdTgDMyekzo+fOX4TbuCU7FGkJ+v+bdx0rSzJWkVgFX+av/4GinUbJgFsSbNlHr6D6dc/QV9GcfIwzSAlJjv8Dll1muXzssk+88kAjnLDJvv4/s3ztJfJ9uQyboMICVLZIiRXLEsjkgQeFotLZNLSAtRN0P1PbVLzZwJw+rXFKOIzHEe9VqwQnosoD163Fey7Q2XM9lgj+So5N0OT6FgP8xuB+ZrBEOa7Cp0iqXryxhjCAkzkwVavxm+LcLrMshaNNSGuDjQT/xxdR+2vrkya0R4+cBN38AXK/dkDF+BqoqfUEV5AkycxcFti9evCplarXRdvmfTKko0rjzQGnYoT+eO6+hI3xcJg1sKXv2/AsA2Fv14dmAqVJmYfv/SX/MB/k4I2AGgB9nXM2tmkcgxgjcDHii1mW0Ty4HH98BJYSTjByZT61jpt1TZI3OnLlIGv06SgQAkIH0jJX7VIUxV7QAjjmeXPoX947m5jLWp5ygpsnl/paqxlgdU+u6deugNFKrVWsidevWgLJEB8U7ptXXgJ++ZZNgeBvcy7QuEh1TMUGz4Gn7JXTqBCmwhII/7Rh37tyDMkN9uGzXyc1LJ2IFgK7JPeTnCetleI+aUhMarreg55sWSUEFStdUAJBtFqvYUE7uWyfWcAeTGNteQlRiDhN9KutJsT18+FgyFa4o/8BKliRlLRk0u5aUdbsrWdO6aF2LMaXuMMfum5J0yaZR21eunKOmjI07Y51N8jqEytT2jmLZ6U+1nnJvdeu2VlQwz5+/kOzZS4Lf2VnR9hAUmiq8j3kfTYdUHrNj9a2A3Mcn2Rseu4ULZXizuvJbmUKmmjK6fgUsf6khkRdfSzUB/w6ce3skfySD+5/3kb4LVzsIKZYovUcJucq50osfMuRNFdLgxEaFY2o/rh88+BIoknbh979DVZs7dyvof5rJnTtnkBi2OoqKB9blT1E0YuicBUGiniodlHfegv5mi9vJ+mZTxfHPn6R8uiDF48iEkhvXb3+KrpqP+Q4jYAaA7zBo5l3MI/AuI/Ag+IXaLYtDKll64wLY970hCr9dF/OXMlUeGYQaGtiJjQz4XY7/LvvwZVkfbje+vONSyjD2Ek3IMcn/N3v2P4h9+hcEx2dBdDw12u6My6r0/LpYvFm7GuoRVE/JhIxmvsQ1l2i0neK5oA8sTe1yBEk2L6DKoL3s9OtduHBf2rTprla5p0wjJePxwk7jmV3a9ZkgC/78UZxdk0uv4f9IeFiIbF4yUbWTKm1GpYwSEhSgQgJSQcaurasvJMYclHu95hui7gjICp559EpypA+HdThEcUMmSeKi2jD2D1Um6PLuCj47Y9dsH+hXaP3VJxJnO7NmjUeM6kpYK8+Cp64YqGvqKS1iZrHHBgA5ti7Yv4c3KIaMGNxeQ7NZXUBkCU/D9W+cPaOce+aDhIIMYmcV9YpaBTLpmWevSfdCOaVBdk92R1cI5BgSsQEqN5TJi09hhjv1gpkEQis3M6UrAlQzM1i/VAdP5jHob085+EwsLkNohvcZQGOF9EHvDPj02+f8pEkFYX1dDQAYteXp0914LvCPwDSplK7WTDJkzWu42/90OSjAV54/fSBdOr4Foszib776WxDVh8hdr1CZO344Mvc3SwSy74f8T3tnPti7joAZAL7ryJn3M49AAkfANzzKdedkZavAH3fv2XOADgBqwC+BzSaoOnVmqbzAJAJKxFVD8LYhmbRhg3xZJgdlDK0m5DX7WIU0IcxwXb16o6I6MTzOCwCXCFj5TiJRhCTWTFAhIfaHKHGNPQmPyVlHyxsTEWg5yoEs6Xzow+7dzyDjBRcmStve46RYhfrxVmcoXvErVV+f2y1HgdJy9ewhkEiHiL2jqwQF+EDh7qVKumBcJKXraG3VyuDBfeS3FuWkXO8FMrRtQaUZrG0zNiXwoXveGPhjfXJIcpwNaWN4fZiUoyXmLFy4HBqwdpA1y2rsMLp12ti+sfPp1mszB/p0lIHFC8mhC1dAFD1ZyhWsqKh5vkufXn747We56u0rW4YMB39PoHQA0u+SO7f0HdpP+pZ+aynkeJD+5r5/MugMR2pNm5wWSx0iC6COQwCY0dlXJYPwA+M5lHJ4XUumeetmJw2TPhUTlUD4IfChSpo0NnDdb5AM2fJJmgw50OxryVeimrIIp/DwNCrP9qGOHd92tiz7Gxj9tbRr1zzGLlYRPvJ1vUZy9+59yV20olSu1FBkdM8Y9cwrEt8I4PveXMwjYB6B/8UIBL8MQzTUWxNIkiT2iO2a8N6HpvWLgfZMYiCBLpf1C+k3Nt50UFmSDHoneGmew09lKc5DoscWWJRuAFBphSCRf/qFlhEqj3zIMnbsFbgQ10Il46yu2cGDR4M/Lams27BUHgQkwwvZQvVl7XVH8Ba+VO7DBzhPZoIay9DUNfSBZ6jIwoxRJgQwaYAZqS+h0/oPxnP1LVexLVIJR0wiEYjXS6g0lz74Y7fbwyrITOLCkPrqjDgrrXz3XT8kx/wq7XK/EPLU8bqyEJCdObNbzi7oK22GbpanvrFnggciTpLKMqYKFWdIrRJbOXnyLLJVx8jatQtjqxavbVaIBRxbqZgc7Pm1LN62Sn5YMV8GzJ0sFjY2MvHrLrLlx5/FrVQJqT4eoRFOThJx8qSMmDgrRtu0/q1EprEKCYixNeYK/g60Qrd03SyB0hbxfqRvmQ9wyNhCY4WWr4RoPxtrQ3/dvXsPFMC/d/08LMLj8Dce176WpEqXOVGAv4gIfOSsma26bEGXgF7ZtWu/FC9eUx48eCx9x62R74bMk5wFy+jVMM8m5hEwWwAT89Ux9+2LGoGQl+GwriSVsFC4vFBev64D7riE/wRfIGv2MDKBgyKSKu4tWsMITJLbRCrXHoPc+Zzm642Pa1p0NJcVASIBALcxZomB7rQIXQLx81EkcBA8BqNdgi19TjVai/IbZBqjifcqI0ZcUfsXLeqia4dScGmK1YWb01Gdkw8sLaSHYf8ZtM+SGpmHW7CdnGOaS5HWiQMHjkIrdY7i48uFGLXSqFvlvxWIpypgNLFENRbPf67CxUiqGq1Qt7YQknH41zybhdRJm0J+bZVELp7cJeURJ/c+xSV5akUno7XR/6+NMur7umpx/vxlCMQ/KLMWz5dFFwsoIMfEgz3P0kj/hftl2a+tpOcUa2kKaTkCIsN4OzZC1/Gc827StcAL3fhpxyKopMYvk49IxGyqjBkzGW7LLpI+fRpTVd5pfR1kwvKPpTwoYZrOWSVOyEA+2v4ryfBVJ2QX2UvFmVOkjoEbmPV5L9B1TYm64qmD3ykelfc5s1p5rQkmU8DyTSt5CvdsPIQuPEMtvOc/Dx4EA0RfkIcPZ6iW6rb58T1b/Di7M6O9Xru+sumfichWLqNkGklLxOQUxp+m8MiAeNZFiuz84/TA3OrHGoGEv30+Vk/M7ZpH4AsfgYCIULjVkiED+OqbM/UAXUjCTprkyb5hFir2LSWAEF1R+gkBplq7g8D+OeedQBvzUhyQocs2CPZo7SBf2XVw4vmFiXKpGmaZmmrzfdd7e38FV28YaFBsdE1RaWLAgD9k5LcVJUO6tLr1+jOl04ZAqeSl4sVj9i71djt0+AFUOjvgMnWWbPlKyVN/H5l4/ayMgToHS86c2WT06F8hw1VKv6l4zRMck2S7vYlsUEv40GvV8pBt7ZsibnEV+NMCxNbOMV5tx6eSJ1yDg6b8h4SRWrhmr5AccF+qla0iFSuWlr8X/oMMWBdFhEw5tlLjBkFSsKVM7V1JVl1zUvx4VQDk9N29/Fhwwn3gi+QZfTJwfjjMBGE0qVbi0uANDQ1VgJsuaVLEfIxSMk1Kuf9rd13TlZo1kF2DhsqesROlx8ooi5Ru45sZyq4xa3c6zoO8jrTWmSr6Y2JYh/RKbOchrM2LML7uZbtL9TW9BZ9I0aqGhb2EssdhyZzZDh8fhaNti2vh6dMw2bp1Deh29kmrHiOkXO33+3CI63jvs71m8x5SukYLBQKvnTsoN24B+EGWrkPLflKsUgPcX0DO5vLZjYCZBzARXjIzD+CXxwMY/ipSvj+xSHI6pZG8Vx7IqplD8cLYiqzKDFCDSCAKTMA9S9cwaWTIadYKrktjFiH95ggKP/WzfNq0edAhnakyTHv16gxwVRVKGfvlmZe3dPimo7JoLgTtR2OQOYf7PQXgaSW3kUXbtOvvUrFeW93LiGorNy4dl9uXT8s+8Jm98H6ilA0IBCtVKqurp3/+hvOUWyNYrp050HBTjOXHj58qQu/chcvLt4NnJ9gVHKPBNytO7NsgF0/skdfgkTwKgl6tlChRGABiuVqk5U6L2cudu6zSliZ/H5MjaOHNAy1p/bg2Apu9SAThPaGVCNwrM865QT/4hbbK5JSJH8OGjQNR8WYlX0gamo9dyKOZut8kSXb0oTgGnpaZE4aCRod23piFFDe8R7oh69hUYVIP4wZp4UvjEGVdNlWX9EBLriDbGB9dQeD5i8R4lwDXn4eFv2TL9h+Iul+DhPuximFNl76QshSuX/9Q5q/2kb+HZwFvoq3Rpps06S7HT4KbcclJo9s/x5Wv/Z5LUMsYYDjlT69fe32O5/Ml99kMABPh1f3/DAB9w4JlwNnlktbWRXKDMLmIW0bxdPg4Fob/5aXf//SqLLl7SFpnLC0XZoyTRzdOQv7t8AfvAmPDqOPLQiBHolpaQqjvqx/I/sEP/BEa3Lp1l1K4oFRexozpwRF4T9qNWi7Zc+dV7kmL4KfgJKsrfv5ByKBdIplzxXjp6HpFF/Hpg5tl9ew/5PmzR5Dbs5XChfNB6aAOCLgbQ+Ugasx0O2CGMYjMiNUHSfrbjc3/888qJPb8Iq5w4347eI6kz5LHWLUErVs6eaDs27w42j6dO7eGtuxvRkHsuXOXQKn3tQwZ8rPSdOWOpDK5428F0Oyv7ol0iGm8htABAqCv9BJ7GAu6G8CwALSE43O/+Pr6I4mppcpS3rFjVTTqnmgdfs+FZ0Gh0nH9I7mw65JEvj4iI8rnB1nyTHVc8igaK6sRN1oJoQPGiKO1+ox1paWUmb1Us4iLSubC9QeyeO5C2b1rr/ilrS4vz6/Ah0pKSY7rbQvL6qlT52Btzgpql5/kOo4/55ibLPrZHjJvdtoho027d+8nGzbulLHLz0Vb/zkvmAHg53P1zAAwEV6r/28AMBJf9rvBgbf9MahRImMGsDsms5FczmmkYfpi4mJl/EGqfxmDI8PkjM9dBMlHSgHXDOJm7aC/+ZPM/3Vlq1zxfyx/Ff1afmtXSgrlz4Zs1/kftS+05rF8aoteVC/e79+NG7epjOkTJ7ZDKcQNxLl3FSfdC+iO9p+0SVKnyxKvAxAIMsP2+O61mB4EGHwIAQp7WNKWwXqXM1ob2+7YS1W4mLU4w2gbTSwQlIwe/bciSn72zFuSgzutQr32Uvmrju8c0E/L17i+TeTW5ehWIje3nABfAwGESsQAgszIbNKkE3ImHMCvuFgpeDCRhvGg5M37poAP6GyCZTvOkZJmFaEZrFl/CYpIsWOX7FWsls/ZsxerRBB7xOX5gvrj4MGNsIZljjYyjDklN6NhiQ/tjv4+hcedkPuzh8jrdI7yNyx/lVO4SMWKDZCBnCVaIsq1awH4sAoAt2JqOfDIARm94eIRh3WPx2GyEfkVmehjKO3G7cuXr1MWT85XqFAK2bAtjMaW8lpR0WXOnCUSHBImEQW7iPvNxeLvHyj//js3RsZ09+4/y9r122X8yots+osoZgD4+VxGMwBMhNfq/xMAPP3ijiy7c1j8AfyYIFEQgC2drbtktHISC7yJ9gbckUt+DyXkZYS6UhntU4h9MlprXiuAF4mYKKukFsjIfCXeYdB9xX/+ESHRrmoGO3fJYO+u9iuVPJuksnWOtj0+CwSpfI+RCuNdSu+T/0gynF+/tGVlUIeyIHwep0iD2RZjr/jSTYiCwLv04UPvk9CXuP7xjx9/IadP+8g332SOAV509d4gkkePHkuRItUBADtBfeK27Eeyh7fXc8TZOUifP1crugzdPgmcefLgpowHuEqfFuTcBzfF2JvnyKJRmcSoYLBi0KARAJO7QZi7AcBkC3gNFyurkFuKNNLx578lS56iBnvEf3HFjCFQD5mHYPvc8uDWJezIe9ER8Y/f4HieIA0uJNWqpYrWYL9+Q8EntwNqI1vF2sZO6TIzm/saLH8apQ9pgRjnmMM1LJpaC+PofqiWTkKfnY/WprZw+vR5xL+1h07sWACuytpq3XTiSXcVg2jdb5gEjvhVWdjelSw5Q5eV8jpwn9xd/Jf6DZIqqHfvwbAMZwB/npfKomUcmp/f14gJTQP5tJuSsVEz+bGyraTzSK7rE5MWGLOYDJnHxgrpfk4iGYpZ5ixeCDuoWrWJ+kiYMOEPZLwWMrab0XW0ut7ziRSXJ3vQrwBkcA+SUaMG43dfT50DP0ayZi0uqTzzwYId3cJrtMHPZKUZAH4mFwrdNAPARHit/j8AQAKqoedXi1dYgLoC1T3ySUFkHu5cPUu8Ht/FC+6iIsG1tLKSVGmzSJWuA+U/8ZKnkFN7Y9hSlCrwcirQx0ZsLazUuuQ2jlLG0VOskyaT/f535EbgU3UM7R8CMYJId2tHyQpS5uxOqSU55gkiQwE0L/o+UNY6HivsVYRaz2PyWLRAlk2RQyqmyiXnfO7L4xAQpIYHSAprJ6zPLu44tmHxCw+W/meWS0GXDOJ5+oqsXzgWgfwnxdbBUf6DnuYtZF1SeJ6F1jriHgLCLKDj0I/bMmz3Uy6/D/jji8/NbZ3q/osXXxkFgEmePJO9f82S8dt2y15Y+7TCJI9MOQtLUUioFYJqhpWN8dgqrX58pluXT1HXZOWJm5IteVJYjCJAi2MtF7ytJQTxXo4DflfNhIwerJaZaZqQcuzYKch7/QiqjEfgd6si9dr0USDuXQLnaWHiRwjH0PvJfZk6pKc8uX8G3XHFODaRFy9+jtG1AQOGy/r1WwA+pkF5xkvSprOTCv1qSY8ib8+DlCfkF2RiETOcWZht/g9IkpuBMog0QIaWZEr/RTw6J/XrtVYWVCba6JcloMjR3OeML6RW70WMafMcURQ++u1F4CPIFB8lfwue366U8Mdb5P7qmULaGBYCWzs7G3wcFICl01HJpp0/fw+WtgtIrDgjp/3cxevBbQm/fUDV55jZ5K4nYVe34QcWjgSsZJImjQcUTTKrzNbs0D9Ontxdbr7KJA9vXZVja2cJtZUHDOiF+L72qo2E/LMPCVtpcS9lcYn6eN237zD0fcepJB7SqVhaWiGL9pF888t0RfuSkLYTc10zAEzMVyd638wAMPp4JIqlLxUAPgr2kQNeV5Xl7kV4EEDWIynunlnKi5ssGfujPLp3XX1pp0uXRmrUqCSpU6dQD0sGmnvB4pOnaCXFj8YsWp/nT+RlRDiA0itxcHKVkCB/CUTwMV+qocGBkG3yVmgqfeZcktozhzi7p5akrm7indxRHjpYSiAoWcjLF/Wqi3nZgcOErmdHS1txwNQB+hO+eGncDfZGDBLeViaKZRILyYiYxbyIXySAvOB7X1k3Wf27bFVl9YD24mKfVP7d9p8swwuxVU5fk4oCJ2BBuAYgwr6YEqw31o2EWq2MtWG4LgksYVOxclOZ4nB91Ycrq5RUrJgCVo0z4ulpL4MG5YLb09JwN5PL+/d7qezfHDmiA+YkcJuGTpkjPf7dKKsePpFUzm6SB2CvJCTiUqfPKpZWbzOGTTaewA13rp2V0T/UlwX/LBXnfOXFv9sw8Zg9UMXBGVplV151UkogCbVkkch58uTZAGF/K21ftxSp5buhiyWNZ3TQlMCuq+oPb1+Rv3/tKn6wpt+7d1p9ONFFTn3fvHlzqd8ErZHffbccwKiB2mfFsWaSNeVrXbYveSJJK/QK3IbUtyVBMktgeBI59sTOaKb59pMPZfoeX/G5cVzyuvjKpJE/qH20f8iRyAxzkjTTFUyLYNf8L+SGn7WchdXREnF3buAjpIQf3eymVDwIxAdu2iv7+n8jNcAFuKxlHe0QRqe+AK4bQRPEOEe6trVCfsDFALRMDOHxmMhy6NAxWEdPywWQUFPeLhiqFqHInLIv971USn5HBvTuoMCl1kZCpkehIOKO88uqRx+k7c8s6l27DkCXuZuQ5oeZ3l9KMQPAz+dKmgFgIrxWXxoAvBHwVObc2CO+EW8fxhx2GwtLmVCkjYzp3UBuXzktU6aMkmbNvorhngkJCYXY/VD57789AIJeeCA7QXrKXaytrZQlhO4VxnHRtRPy0kKsQMHRsEYJxN0EyAF8cZ8CZ1VQULBQMouFRL2u7qnEPbWnOKXPKEnSppUk7slxXCuRyAixf+EvATevQgD9kESGh2O/MAn09xU7Byepjqy9yMwZ5SHAjmekpfgcOygp3TwkSerUctshqdyM8BOCW63QCulp7Sq5IqzkPigfTh3YLK1++UuK12olwYg3cgFtBS0c1qCrKOkRrOO60/bnlEHqNRCgTmqK+JT3sc7pt0+LyZw5t2Xz5oN4QU4Vb+/nYg+wHejng2p5YInyANhg7J0n3J1l4Y6LkKtXbygLJgE8S0L6wuNt375XvmvfUwJCw6VZm95SqkUPBWBUYx/pn0h8SPzYILs0qlNNZiyaEutR6K5nDB0/HGwRI9cwW5QFO9ad9DbyHtyxY5+KZ4x8ZSFD5xz4IFbMuyARJlcgP4A4jlrh74SJLrVqVUF8XhapV6+/hGUoINkq1JM5XbOA7zGq5p57dioEgcBv8y0HxRXpAvBCLkB9yxyTPnLnLqOSaPj7aorf6/mbXtJk0Fypny+ZDlCyVVLn3PS1UjF1XCa5coucbzPR2U1S0ZCz0snEvc2kprNeNtDE9hWPyo3QShJZOn+SVM+Ulk3qCmP4CPoIKvlnyIHI7cuQxds+r49Q4zquwixiXucOkJlLSOFvmeDyMbKsGUdpeDx+CJDGx8/PX44ePSW//DJcRi0+Js5u0V33CTlmYqtrBoCJ7YqY7o8ZAJoem0+25UsBgM9DA2Tyte3yBJYwKmDkd0kvOR4HSMDje/LK0VFePXsmJ3avFh/QcxDA3b17Srm3Yht4zQVmqg7pGsiL1hr0FuQ70y8EgVQw2Aa34rlzl9WDmPFD4QB5hoX9qRGIDEJseFqvBmhDSss//6xW+7OucsNhime9srhwHd6+kHLKJnlL15AISGRFvvCWZzcuyfULR1UdvpyHDesn3bt3YtVohS64/+44KBJmZiOmgMtNK3wZUX6ML8//Zenbdx1i2KbjkDfELUU6WKzmQ50gk8we+bucPXwI5/AA5xWKsUiGaXQajXbYywN/XW+fAEWGc5zdZhJBJUhI8eXokSGLdB8yX5KnzhDnfh+qwqYlE2Xj4gmw0A2Srl3Z+7gLVVV4TQyvZdx7ily5ch16unWlOM6Zyg8folw7f1SunTssbtAiToWkmJnDukgArOL6gLBnz85SulZj+WnuefmlFqiBGlXSHXraGTcFWMidR5ftXmRAk1pGX5Oa1vjvvx8oc+dORLLDYsRxXgBlzzBQ8VRVqihMoNAKLYD8HWqFVj9+9JTSk1nTtulPaS1MghUEhkxS8YI8mz24Ky882i1/dv1RScK5Nu4kvdtCIcQ2yuocAVqW5nrgUr89gjJeq7JIevGEdZMlPh8mBIwJ/c2RlP0YYghTgkC6IEjC9X/HVPzgNQ/Ec0Ur2fOXlB9GLsM9xDP+MooZAH4+19EMABPhtfoSAGBwZLgMOLMM7p2XktPRQ0oFIMvun7+ElgrNSkEQRSqOXifOSgWAP8bxfIjClxfVAKhnGok/Z2jektaCdCiGhS/HFy98AD4fwNIXCRoLS8mSJaPJvtBFdPbsRei/HhDHsVOkPVxu3OfWrXuwXu2RpUvXvLGCwRIBlue8sPh8hYNOgSWGx3Jzc0XQfguTMUXsOy0Z/uEW0hAKD06wELLwBZYQNzCD2fcgq7E0LDr6ChZsi5YXvohpCaHCBa0VzjaIf8Q6luC7J+T3fgPk/PnLYpEslTTs8JNUbtA0xkuKYJyxmmcPbxMmU6RMk0nFMi35+xdYCb3lhddjKY86rWeNU3FamTJ5qvYN/6ElqXPnH2UH4q26gT8vb7HKMY5luM/HWB7fr5k8vXsJ1/K4ohcxPIY+aCA4eIlx5DW6cdlHAgIipUQJN1iRgVriWX79dRSs3nNl2Nz94p4qfTz3il+16+ePyfh+TY1WLl26mGTPmVOOBGaVUYM6QWUlKmlq8SVnnbVO2/E4wAwBVPLgS9KgQXv8LhwAXm/IDz90lV9/7Q0AeB5W+85q2aXyj1I1Q6AupIExhPpE05tv2svx/1bKyyfnEQvXTztEjCmtdQebjpVXiNUNHfubknYjmbUTfsf+Yb7Sd8Vm2fPHKLErXVpmjuivUw6J0dCbFVNOuynpvsxvYvFM1eN6nit/BcRjU0+7SvdCPrFVj/e2mzfvwArbQoJCIqRz/6libWcvT+/flCLl64mV9YcPa4h3xz5CRTMA/AiD+pGaNAPAjzSw79PslwAA59/cJ0ef35T2mctJCKxFy6f9qgKshw//RWXBBQQEKqvfu2bVJmR8+UJhluMtuKO+Brt/Qmg94jqOPijQ6hLoRUZGKgCoreM0EGL2+/cfhQWwHyyJOwAGXfQ3R5sngfMskPKyv3SPGXs5R9vByAKB3qxzAJxIWiAQpmWH62ghpUWFADkjLCKeTuGQW7NQLs0TR49Kl5YtxRGu3gYdf5EScLu96zU6d3SHzB/bC8oYURaPQoXyKUsRgSMD75csWS3Hj59RFCL8KGjUaaBUbfSNkTP536y6cfG4olv5D/JxcWV7hgAsc2xruj6QEoWRVIDSu3d2gKLc8e4sLdLZspWQnEUqSRckAnzIsmnJX7BomrYscrxTpkwulnkaSJfeP0uudPbK7dvAhEu7cOEqSvqtffvmMbrJ2LnKuE9eJ7OVMt3+ktHNPIx+QFUAbUtgjq/F98hCqVY6u/T66SfJnSVu1yc/ihiHyDEnb2ETEICP2rFN5vfsK0ly55Eba/+JBjRZ79RTW6WS8wK/fYZXxGXJowV+6ZWo3wVPkL+/EwC/L0KhBFL7gQKEMU4cK86f98WH42t8yLoa26xbVwsxtGftHaXP2H/fK2td12AinjEDwER8cQy6ZjwX3qCSedE8AgkdAXLe2SLGr0TyrDJo1ddSsGBeBD2v1ll2PpS1Lz79oiuYbizNlbVu3UPEtT2W5v3LSeVMUdYPAiMWfvk/fRoKMtetarlNm4xQVSio5o39Y4wehC9XWv8Mi4ODg1JOoMUrS5Zi8tVXNQEGOxoFG1YWAikqH8QtuUg+WC8ZmH8aLjRqz8a38Fwo67YSsUy0CFIq7ABUIXK5RVeFiGovUnx8fOX7Du3FA+7D/n9vwjlYx/dQRuvlL1FVxq+6pNyQ54/ulLXzRiAL9S8VP0dVCwcnF8lRsLxK7CkIt7lrcjqNP3wJCoA02NBOkjVPCfmq/c8mD8DYUJbr128qy7QpqhDWIZjuVfgFXN+2cF2ngkX4KUCtIzfFu9gjTKBp0/qwGq9VcabvO976B67dspdQkWT3+nly5tB/EhEe/b7hRwrDH5J6z5UJIeEA+71kfBMn/SbUPO/V4cMnIP7zhY5U2rASeRnPnt0jZ85clF6L7+B+bq/ieIcN6w+amNqqenBwsISHhUvtVDfFc95/cm7BT9Lo101SIt1LWTAmdtDPRBwtKYXEzlNOO8r2C6FilaqAeFZrL2sRa9cxn69Su0mG+D+SOhdNHQLt6tB4xc0S7A08kEp+L/MMwC+Jai8SzwMqomRGJj5/R8bKhAnXYMm8JPnyOcu+fZWiVSGHJF3XtAfbJw2Ro7BmNoCcWtqMOaLVMy+YR+BTjoAZAH7K0f+Cj00yZldre3WGSWByu3//If4egRE/evD2hxgCBubvgXoBY3zuA+jsB8jJgAxA6sQaKz0H3ZSXSPxoDBJhyRQF1P7FS6SaZyDcxeAT9A7T7ZYyZRQo0K14z5mpU0cj868xXhq5ZdKkmQCAP8MChn6g8GU5Fi4vrZCOo2amANCR2GAaKHPPu0he99AE8QUWAGBMDwvfyCMplPUvMDypeBpxhfOYP/wwCPGQkdLzj8XvDf60c+DU0dldSldvpv64TIk2H+9HiFVLp/sg4PqPVfZuXCg3Lp5Qf9Wbfiu29jGBDmPlHt+9prrQo8cAla178uT2OJUtkuLeXr26FIDga1hKTSCFWE6sW7f2snDhCuVGLwp34Icq/AjJlLOQuIJ/8PiedSabVdfi8AKZhz+3K92Qzd07Wt1vv50Bmb2LMmPGn7r1lJFLjo8qTXpO21CgQB7paVtKsvStL2G3Dqj76eeff0cCV09Ff1KrURPp3f8nWX3TRsaMGy7jJUJK9VgLUuUeiCccH+dYLzp/TcYvXSdPr9+SiOvPJVOr9rK8U2WEdviqLtB9qx9zqPXL1JRZwZNPuyu6pQYMt4ClfQIylXsWem6UvNqwncqVUyKW2Ff6/5JbEUkzo3nbXQd5FmQheZKHgfcwSP3mbjx4gekrFZdp2IZ52TwCn3IEzC7gTzn6Jo79JbiAh5z7FzQo/tI5a0XxQHzUn30awBUYKOnTpwX1wibl/jVx+glaTcvdDBDWEiDpx/iRgoG0FpURO2RYnjwJxQP5tXh4vEmBRAXGwh3DPlYIem8GnjJTX/2GbWnLxlzB2jZtGlsd0kLUqdNK0d2kSZMadB4PwVGWWsaPHypnLUrBFeynNaOmJKgtVqwGgFoyRYZbt241JC+0haSZTbR6XFgB6pIK6YLA7/ZK/sILrl9xbxVgb1ixQIFKYoNEnR9HLTPc9Fku8xrfuXpGuUIvndqnzuGXvzdHk2dbM2+UbFs5TXd+rXuOVJnOM4d/q0D6lCkj1VRX4SPM5M9fEVDIRgZP3/lRAPHFk3tl+6oZEhYSKMk9PAG+H0uhMrWhR/17jLNhWMKyZbNwbxVEpmoE7q1Nqo6PTwM1ZVzf/AuuKqbW2AeWV7CFHHpkJyUdbykCbOoFM2aQUn57Du+WdTccJRtoYeiipYV73hlbOTyxnap7+fLBGP3RViy6eEN61W8tQIkwqSG29Zv2sqlrC22zmiY0TILPDrrxGWZBiy6fGUwiqwbgZqrQkv4gwFIpqtzDlDyRBMIMqfAJtVCWx9zQXdYv585dhHpIA+k5bKHkLlJBf9MXOW92AX8+l9VsAfx8rtVn1dMuWSvLqIsbZPaNPdIrR3XQXeyXvi0LKUvgggXLlYD8u8aWGQ4ErXb64I/b6fpcdNHZsKpaTp06JkiiZBT/5sDK9i7FmCvYsJ3Y6hC47dy5WpbtuCzevkHSsFRa2bJlpzQdukscLDbL8LOrVXOOjg4q6SQ0NAzSZTngUp4vlEljhvKkSbORvJBUcSj26NEJtDgpkYHrJLVhRaQ1keNRAbxozK40LASnmSuWlvOX7hhu+uyWX0De7crZg7IHqhn3lWLG21Nwck3xdgFz4aFRIQDaStLcFCpTSzr1+1tWTP9NvbinTRsjzZs30Kropo8ehSAD9pqULOkujRun061P6Mzw4QOkbdsecnDbcilbIzqoSWhbxurnAejgn34JCQ6QTf9MUPyZ2voUaTKK16M7Ur16U0mb1gPkzsulYkUX2bv3MX63T/Hxlkqc39C1kB7GsFyHZe766+ziigz2Ro3ayxOQeX/3XUfEDn7zhtrplaKJSQY5uvYAfwvByVc7W6D0+GealC9fH2ERxXHc1FKqVFHI6Q2O1nwWZ7jXQ0KkwK8DZE/7BtG2cYH3r8OxJ8oSZ5j9T1DH8AlS0jTBx51GOcOPvHagefEBqLVN9lI9MwwbXrLkLs4jTMV3EjDSs0BL40vEz9LFHJt2MD9AtESfJEh4S5k2k2Hz5mXzCHzSETADwE86/F/uwdPYucrQAk2QCbxc9j29Ik2cs+tOdtCgkXhpFlGZobqVCZwhVUQY4nWOPrYD+AuPsTeVBfDMVSU2y5vhjkyWSKj1z7CNuJYfBCSTfaDYoOuaSaN4n0Am7rXYIiv3nlM5+a4C+PYw37lzG7Eq4SA5Q/ZL/vw9lJwU47aYicx4vRIliii3WaNGdfHCrasOy+ST3LnLAhRuVzyJXHnlyiG1LfxVUqNjxY0Ep+XGT8PL/rDK6I2vtq5qOBH9sxygbc/6+apH7sndhC53xtqRSPynn4bI0d1rpHrjrroeN+/2u9QF3yBl5R7cviTpMkUlcRStUF8KIC5x6pAOyNjuq/YnqNYv8+ffAU3ObVm16lE0AEjy5P24vsy+NkYCrN8G5+vWrS5VqpSXJZP6i70jACiO+7GLLbgyx688rw7jCxqmE/s2SOFydZQFcvWcEXJi73pYPssrbk07uyDwaBZF3VTq46El6FZmw3LWCtx8mmoItW+H/ntXcuTNL2UbtJNMmTKIs7MTgFM33alMOgVSb1jHyqYLVeu+hR6xVvbtWw83+ivhx+HgwaNjAMAjj71U1VS21touaqr9tnn/pn8SIevPJJFCtr6IOXZR2+/BYkeNXwLWYogLZIygfqH1bs99B+Wq5RaCO3oBqMxDV/eAJRSXtJTgnJaSKSOonfB84Hb+UanHWDl71hcfZvfxu5sG7tLtUq52a6nT6vsviuvP2Hmb131+I2B2ASfCa/YluIC1Yf351FIJRDxgr+zVJeLqZXl8/7qsmTsSD/k+UJH4VqsWY0qQRCCWFkLuJIO9jOw/UkzQ2ucbZgFePEc8pCNhtQuTXO4xH8RbQGZbBA98SlglpLBdEjLr83clZP/41J0KvrU2eHlqFC/ch5mOBLQMeNePraJCgx8ydPniJK9YfEp7ECmvXbdVMnqmg9TUY7yMPeX333+WKtUqyc7tu6E/mgnZp5lVU4w/3LRpG9x+axUdztWrN8UGYGjMktOS1AKd+YzK+WM7Adg6SseOrRRFiSH/YMGClcXKKa30Hr083mf18mWk9KiXRdVv376FymAn8LbA2Ny/D4m//uchI+YCcJlD1XkE0LAV8n5fZQUJOWNRkbwTn8QdEkTXrdsGqhSnkAndBdQ7/T/p+HuBq3POqO6KtoknRpL1tWsXIDkqmzpPgtzpZ8kb6Cvnj+zFmH+v4vjateupwhAY60vd5i1blkGNJKfsBgijLFp2WNljK0WKVJE+fb6TVq0aRat22zdACrfsLoiNEJ+Le6Nt01+o1/2WHD/hK0tHp0NyTko59NBW0uAZYugh0N/HcJ6/Q7qy0zlG4qMrHMTdz/CBBbL4N1+G/K3SetkermNDazqtfoUKbQet1EY0u0Wy5i0hP45c+kmvpeH5fexlswv4Y4/wh2vfDAA/3Fh+sJa+JAB4L+i5jLm0UcXcDcnfSKyCQ6V/m2JqrHzw1W6q8CHMxA5vPIhzvQE/lOFinD0D0MnBVtVEkgfbXHPdUalnxOaiMXZsxhE1hZtIH4QZq5fQdee8rKGDaiMw+qks3MKp4gfmtONQVYExjbGds1aXoG/69AUqy7ho0YKw6h0C92AvdQ0Yg0kKHv7Z2trKM0ivMd6rYcM6kHRLK4sWrYRu7H9SrOJX0vHnSVqTiX6qD9QeP74AEBLdUsQTqFq1iTx5HiqDpm6L9/mEhgTJT83zy0tYVi2trJFNGybu7q5w/f4BVY3qRtuhq1CzIlNhg1rPjDPTV9QwtqMD3JjdOreGVfEfWCJzgnh7obhAseZTlqtnD8u8sd9DZu6psjZPmDBUucPDXyeT6fiQqWJ9UGkBr1u3UJgEol94H/Xu/av89ltfSVMemcGwvpVHopY2Nvp1OV+3bmul2LNs2UwQTS9RhMnk2NyyZZc8wJgGIZHMoV5duT9jhOGuuuUDF8Nl6hJvGf2tC1zWduDTTCqr8NzgMyQuAmpdI/GYWY9YxlJpYn4ohoW9RLzjZsj9PYMFdTtoYk4i+7yY/Dh6xTvTKcWjO4mqihkAJqrLEWtnzAAw1uH5NBu/JADIETzufUvm3torDdMVlVwhSWVEz9pqYG/ePKaIkUPxct1666HUzZoeLwn4RD9AoQWRgeb1YYlJSGEgOLP5DMmTE9KGsbo77trHC7wZ21dbZ6isoK03NaU767YfiK1BgEvXMP/0k0SYaEION/LzaaVKlcYqID9zrsLSd9wabXWin1LOredXUdap8+f3Sbp0HjH63KJFFzl+6ooMX3AkxrbYVrBtZnFaQCrw1uWTsnzqILiLr8i//84F/105tevdu0EgRfZFIo8HEnOi38NMnCBVSXa4hJmpHlfZuXOfigmMgKmp7td9pGrDbz65BenmJZz3tEFy/+YlFXv628xVciXUQ6b2bi5/9m2C864a47SaNDmMuNaniO3bAvfuDek57whol8J1ahyKhgZfdLRC9+kzWHFk0mrLxCbGAXKe4Q60BjbuOUhev3ghw8H517342/vV8KBU4qCHgO5e/XISutoPAi2VZVZ//bvOkzpm9XXjSiGBgZH4uLKAlTiJon2idZRu4FY9TAPXd+1HYtzPDAAT41Ux3qfoTyrjdcxrzSPwXiNwI+CJ2j+3cxpFCG2Ppd5jf5dm89eKR9124pG3onSoVF8yjJwJ4tWEWcZMdYzum0dByVRsj6k6xtaTwuE0XM4MGg+A9eBDlfhY7uI6FkKkElRoMfXDy5CFnHb64I/r6KbTB39cR0k2lm8GTFPTz+WfpBbJQDfjqrp78+btGN2ma+7x46egoIkuWRejopEV5Ae0tLJRFhxac/pP2iTpMueSli2/hazgHmVZbd/+hPz88xXFL2nYBNUwyFNHQuIFIOFmfGpshfGA587tAbgso8IlBnVAcs7xXSpGLrb9Pua2LLmLyC9/b5EeQxfIteu3pWu9clLy5S4JTeYqAemqy549XnADHwdgezu+mTLZqS7dftJIpOhE2bNmsaRI5ger4GDJlauMVAQxNDPZy5f/SsVAXrt2WPhReO3aEcQCTpa//hqu3MqVKpWV4/vXi0W+fDKwcVsp3HekjDh8VoJBWWRYkiKWlvQuR5TFHO6CN6VA8mDlEdCWOWX84LuWnfccpDQsgFohz+GOHXtl3LhpsnLlSgX+uI3UTj/91F32b/5HGJ/6OZbwsFCVLMQYTXP5skbAnATyZV3PRHk2EbCesCS3dpRnkAyLdHaW8X+MV+ussmcTz4b15e7ZCxIyf4FMqVQSLtiMiNlxUNZAzSJ45bmvVPpuIBIbrCW5Z3p5/OCxZMyeSZK4usuYOhWkdLqYrjLKR62Bq6aRCXUD1YE3/9Btx2Dxi89tIADvoxQAaLULe5lUgUha0+h+5hT/iwNoH6pBszc+wvL6x3nXeYLRhLilKetGpY+EupoXLpwiZcvWlbs3zotL8tTv2t3/+X7MKK/Tpo8smzII2au7kL1bOlofJk6cAVB1Sdr1jrrvom1M4IIFwOYPI5fLuJ8awh36jeTIkVW+/noACKTdpFxeS5M6s7RKpUMcHBVeSDhMt2QN3EPGCsmV6QqlUso33/SWqb91QIKIs5Ss2kxyFCilkkUCA0LhTg2XF898cG+GgUwaMa/I5M2er6RY2dgaa/a91+UpWlF+nbZTRv9QF7RDfSWzq7N4X79Fyn8AAKtmSURBVNgpew44gd7pBTg0w/FhEfVaGTu2ABRBLGXC37cke5CPnPp3onz/cL88evQEwHklXLRplDrOit03xHX2Prm9aqQk3zfOaB+zuDrJqZUzpMHf/4nXhecyoevvMrduGbkxok+0+pnBcfksONkb/WD+UgWAMgAWxvNgHsgEJZq3luHYsvKjNWpk4b5/Mnm8Z5bch77vxYtXEbt5WlHd8JyuAyCT23HVqjlIAtmjXOcMvWByUtkaLSUt3PuJvTx/el8ObVshx0De7/30ga67lqDhsbK2FWsbOxUrbGPvjA9LO0mS1EJZqZNiag2LeVPdHuaZxDwCZhdwIrw6X5oLeMntg7Lf6xoyXZNK5G+D1YjblSsju+b9JTncnWXn3UfSpHQtBgGJPMDDBoHeeJtFcX7lzw+05SAWN27Iy4sXkRWSFsFAQVHbOA0IkGTNmorX30OMXklDPVKjlbCSXHk5kVCSP0WYqSrR1psiw41W6QMu0CJJeySJneNb6M4mZ1nj7P7x2oW0Ha1afav0XX+esE4y5SgYr/0SS6UlkwfC0rJYhRXQkqRfMmUqKqkz5ZPvh/+jv/q95mlVPH1wi6yAzGFQgI9s2LBYatZqqWszNoCxFjGqTO5ph9jAuAqPc+TISXBCToXiyEF5yfTxWIqTi5uMWEQ94yggFkvVd9509cxBmTSojbJK0pLctWsH0Mc0QoKRY4w2jx59Dk7LCGT9V1Zu3cmTR6JuRVVvJz6yKN1WN0ug0H17zssmxv1Kd+uBh/ZKzYZu9DzuvlJ20nV5OLOTnAFZtycpYvQKCdNpcdXKpUvgI+18ApnF+aRcuRTa6vea9h42X3aeeSplUr1AYkxWuOybK8olrdFhw8YDBC5XuuLMhvbER+usWYsQC7hcAXStXmKY8v66B432S6f2yuXTB0CIfkUC/SGZiY8qeghIgcS416dPn4ESx0tlxDN0xMfHD0ky/oh3DFX3JC2E/LOOfCk9sd2gpPzp9Wsvg3XmxU88AmYA+IkvgLHDf2kAcM6NPXLixW1JbuUgz4f/JknCwuTs6V26OC1/SERlbvuDvDxwUPCkFJhUpED2LHL28jXB5zXI2sLFMm0aqdG+lSxqUUc3ZL6h4ZKpVmtJCoB4bskUSetop9t2+PBzpdPZuXNmPMjeuoJ0FfRmaOkjd1h8sjX1dnvv2bMAdS6IN/REpmhcZellZ2kO+o04TiVGM7RqprSLlLxQJjBVHsCaOmbM3yoTmF/yHfpOEkqzfW6FL7IBXxdHwsIzmT//b5UEo52Dh0c+KV2zjTTt8qu26oNNQ0FwPqb3V/IU1u2/fvpOeoyZrNq+9vCWbL7lqChDyqUNgiJLdJcls9upGJEQyy6zhdesuSZDhhyVFCnsYNXKJX/8cQvu1xzSBFJutQBAaWEbu/S0ODi7fbBzNNYQx3nt/NFy/8YFeXjnCiQTR0qbNk2MVYUF7jfoX59F4kwNzHfT1TEEa0x2ogWPWdRPEMJBy/e2O8yq9lf3sRUiGmiF/2mPtczrkE+SFSwg90FybYMQB63svW+n+Plocb15MxDA7woUd7LqqGG0erFNmcxhbR0VPsF6dPH+/fccWBNvwnq5W1IUrCVjRw+SKrkdYmtGt43xtgUKVJQ6rX+Quq1/1K3/lDMhQf6yavYfcnr/RqXXzedk+vTpANTzKy7RWrWqCHlHE1pCvJ/LP9lKGu5mBoCGI5IIlt/+ahJBZ8xd+DJHwMUqCphV88gr14pWlpN7NyjAMWnSCEl6+rw44Svz3qJJoHrxk3zJncVK72HOL0ofAD13O5sYg+NiYyXJXF0kEsAxb77yYl2ksCwc8ps0L39cV7d5c/KRWeqW9WeAFxDI7RRvqg79fd93fguoQlysX0oBgD+Nyyy2NqkuQCoNY+oLse1HJZQ5510lryvilSDBZrlhm7yCwkgkeBiPHDkhtFQcPnwCMYKWUqR8XWnS5Tdo9LrG1mSi3UaajiZdBoO+pAd0a3siw/kSEgosVZwerRTps+T5KH0nbc4AxAVSPaQnwN/hVo0Rv/aH2AKpfJ3bVwEW8j7uQNxY2bTBugSjhLrn2XmeT7NmedSfdjItWhRQZOCFC/dCoopl1DX8yOCPx3Z2SwmX+jgVH9a7aX5F/Kz1yXB6Gr9zxsKR81C/EAAfBF2OpvXLTN0L3tYyH1a8IFgGi6YOlRb48NEnd+ZHUGc4Bla1+0sCVwwCSERyk94zg2Tn5CkskipEyTquXPkAcXkPQHP0FVzmxj8GN4E2ikoe9+8EyN+/H5cksCoO7J5GHLOlRSiKyLo/f5FbyOh1T+UhttmriHXqXGKThNb4+AEkWkkZD7h2yV+wAJaS7PljACT9Yfmo85T/ozzgsqkDlUY0r0mnTq3BK1pYuavf5eAk274Bom2C81xvcfO7NGXe5384AmYA+D8c7P+Ph7ro+0B2PbkE92USSWcH3c3mPRUAbFi2hNiA8NVq+VoJGdpf7OpUAW+fe4whohvCGPjTKq6Y8DteFtflEaxYJwYPlT7/LMemzGrzpk1lTYI/VqClIA1isgwzBtXOH+kf0lKcfGKrHpQaLUVsrkKtG3T90mL07zWnGC4yrY6paboHl+XO7YeSZ+lMeZXMQhYC+Y5H7NoVUME4Aig0AOdchbqQkbO1N9XEZ7OeerpLJ/8iwYH+oMKZjxdbG0UAnSpdJileqcFHOw8miXQfMk82L50kSxaPV/GGM2eOU+5BCyAWDbiTPuQwpNLcbCLVOkqQfYgyefIcSYY+/DHv4P8cwE/7vRPczUkB7qoZPRVmn1MlhHGNWiGPICmavEMsYhAq01qdChyff4E4+ir4P439PvlBFLBxqLiXLQbOzpgfh7UzByiZtyrZrcAHeBCRJeFSv/4q5bIMCQmVFdt3yvNQS5UkRXk3gvE6mQPlRIS/zIpErObrEEnrgZhBgE9ixqct+8sF+U9+7tcJH6mhsmr6GOnwVV2VsKKdU1zT6dPHyqVL1+SvX1pJzebfSdXGXUBAHt19HVcb77M9KMBPdq2djVjEeRIcFKDcu0y2YdxiXIUfyywafg6KSKK8EWEA6WtvOKmP2Zy4JiTKXoREJzOwiBqvxP6v2QWcCK/Ql+ICPup9Q+bf2g/dzKTyU67aktEhBfjUIuT7Bjmkd/tm8ltxKFmsXCdJQT4cMrSfRJYuBsbZFAm+Iluu3pZW7XvhKf1UNu9aI66hjgghfA0eLudY2+LX6mIQuraNRxxWrA3FcyMBHGOcKqYPShAxrX7ztBzWgu5xQkqSO/dl4ZxbUsvvkPy2fqUs8QuQjBmySS0Av7zFKn9x/GTPIGc2b0xPuXPtnG6Yvvt9njpX3YqPOHPhxG6ZBWsgsycdHOyRHdxDSaLpSx8+B/ChLi4BYGYoSlC60LDwfiEfpvahYLhdf3no0LngJhyNVY5SuGwNqd+2m6RKF/UhpF/vQ88HB/pJn2b5wfX3k/zwQ1ejzRMAZoNL8PbtE7rtv+xPqVzf1ZEEw3M3DG0gKLsGfe7cAIPrATCyuYaprFuCRnoF1t64J53qtxHP5k3k1G+9ZMaMBYr0PBLxZ05OjnLhwhU5cfK8JMlUUdLkKi4/VrYF6AlS8aErV66XI97JpXWdouL//Kk0qpJPyJcZW6EFOVeustHOIVu2EgC2R2PbLcY2P/z2yI24evUmbCNMyivt+nQF72b1jxaz+RCUResX/SkXQJRugbErU7GMlPz6V+nTIIuybsbopJEVVHEhqT6fmbShWkIJxQIZ1wR89bIEwAL7BiFiW9Cz57I0RwwLp9kFbGRcP/UqMwD81FfAyPG/BAC4A2S8/94/LlZJk8kveerji/4tGBvRtbKksAiXg/VrisWZC2Jx8Qp5SiSyTHEJnvGnmjcyLDFWTTt1Sf7o/4eEP4bEU7pOEn7eUpbPLwjC31Qx6ppa8Q+In1vn9jO1+YOsZywTLT9MHBlS2kv3Ff1BGo+lEQZoM0Px5J5Dcg7ScHsfPBfvwOfS8rvhipcsll2/iE1ej+/K4ok/K7co6Uv+l8omBH/Xzh2GxWUOAuv3IzM2HcCHi/j7B0jmzJ4qxsrb+4UUKVFc7iWH9nA+H6NjTmJyujIZJxobqXlIyEtQqSyTy5e3AkichLc/QmUEV6zfHuCiwUezCoaFBssPjXIhpOM3ZCu3MRnOkD17yWjWMoI7Er3TkpfaPhIu3khxBV0OC2lyjkHi8QrqdHqTzPEYvx2Ga3TO7yPVBy6Tc3M3IKThuCSzSSVJI8tKztw+kr9ACkW2zTHOkycnEjOaKqvjHXBhUpXl5eskQotVPmj4hl3bCTWiUepaECyS/uibb74GyMsO4ukdyoJLsEbNbVo3CWJJlj5mzGChtZV/qdJllJ7TNisQZOhYJhdh1wIvdMCWsYwX4dq+CVLwFjn85OGDR1K48Ghcp5M4Y5BsW9tI/pLVVRiGe8q0iMkLRKatvSRPnV7sHJxNuq7VgMXyzyHoSy/Cb8DOzhZhES3k+++7SMqUySFViDjJZK/gdQmNZe+3m0irUxLu+fgUcwxgfEYpcdQxA8DEcR2i9eJzB4Cr7x2X7U8uiL2FtfyarwEE5N8mZ/BEd+Kl+O/MoXIRWq0Z8dKwhvpEJFQEIhB0HFG9okiK5NHGw9jCovPXpFeTDpLECdm7PbpLlvOZZfd5a7F3tZZ9czJKKvuXxnaLsY7ZmJWhKKIJxMeoEMeKp+ANXAcLRRc9XVPDXchLxgduPmQYM+HEmISU4T7vsswX38GDxxDvtF727TuiSJ7ZDuOe3ODqTemZQ+q2BXUHSJ6/lEIAcv/mRcmcs3A0gEdlkFP7N+Hl11epd5CeogRIrlv3HKEA4f/y/E8d2CyLJvRBzFxqcULcnNejW+L7/Jm6Lkxc6fBNBxk/5hfVJWpcM3P7GjJin4ckEx8ACWuLV8rC0jpX/D5UCFrWrt0CkDJbfQCwYbrACQSLV2ooKTw8P+jp/9Qsn9SsUR4KJhNMtlujRnOpWbMy5B+jWwlv+lrKU3wgkbT9u0IvlIVpGiTmcrs/lql7dsiNa1fl+bXr4pwlM6h9asmZG4FyaTisbkndZN728hJ8RmBdPS12RXLJsZU5JK2ryS6oDbRgEQzSEt8+j49Oy/jcuQfyyy/9VUZryZKFQWxdHRnNGZFok1wlgNjZRT3DqHk8HprZkyGdeON1VhWf6GgVBVz1j0zr7R2APVouL0ABiPyEReBmprVXs3ZG4mJv3fpYwsLuK1qcFSvW6zehm2d8rgM4Lnn/WIKCJcDnqQT6vUC/AsUB1ECeOQpJwVI1JGfBMqBmcZKwkEAFIPkBRDm/0iDVXrlydoz4PobAkBybVjxPR5Cdd+wr5bb9rvrHZ5YGyHUdieeMGQDGc6ASQTWzqz4RXIQvqQsL4PI9Atevq5W9DM7bAC8uqxinV75OG1k76w/ZhIzGLrWrSfjXzeQ1aAbwhIpR19iKwoMnyO0Fi0VSp5az21cgu9JekfE+fBgCPqokKtg+KXZ0RYZtVc/AWN0cDC73RfD3uwJAAk07cAKaKmTs4Jf2vQArqY0Yo7qITZp7wVVZfLQXgal947t+//7DsF70gQfcS+1i5+AoWXIXl9pta4lntvySGq5AJgd8aYWuQFqfWMatOKcsJZwnKJzQr5nSsaXlje5JyuGRm+3h7cvg8FsitvZOrPo/KYXL1oZbtna0Y7GPjBtcM3eEzJs1SyJS5JNS0AJOun6bZH12RTIP7CTVMwYBRFjKi1rdJP+BSdH2j22BMngtWjRQf7wn1qzZLAcG/CHbF0+QjfhzhbxcHSiMlKrSJBpojq3N2LYFBwWKa8Z8MaroJzcRHJYrV1fJDTZqVFdXlyo1/Lvha60s4zvuOkiJ1M+kRuMm8vrefXi0HYH13CTw/AXEVi4Rx/I/iGS8KqWq1ZcGuT0lPOsruH5D5NjVcNl020lSer8WJj7p62zrDoYZ/uYoR0c6mU3I0G6e0x8Wv/ugP1oPV/0AGTAgZqKQBv7YDj+y0lf5RnxtMkrnrD6qz/rta/NkFPAFl97hPdckacAD8UyfWsaMXw/d7R0SDneyK6hh8nmmk9KF80uZjOllkI2NWKX1kMWQcaydL5dkL/+9TJxyCYCZcdGP5cqV69AXvi+hwX6SNWMqWJQLg3cwHZgOLsvRo6dl8bFd2qGjTTNlygBS7b9jgD9WYrIMC0ExNaxfrx6OGGM7xVFJzXVmY9NaWjhliNIoV5XN/3xRI2AGgF/U5fx0J8OX8ZRrO+SS/0PxsHWB27cegJfx2ysZQSGexJERkWJx9YZENH77QojrDMj+f3vDZkF0vcxCpiXBHwutXOnSRX2lt04TZSmhHNwMWBNItZLZOdxoLFUmrGf2WoZ4ULHo943ALigyqWxFTJ5+/It+Hc4HQr93HgAfLTuPYelI6xCJGL4AYSwfg87fp9B69OefU2XkyIlw92WCdauPZMtXQlKmBUG2Fq39PgdI5PsG+HrrepjM0hov1hA5gQzz9QvHgMfshSxdOkNZnVipUaM6cgexkPv2HZazR7ZLSVgDP2UhkS5L486D5OG9m7J0dF/p+/qu5Dp4RJLefSARjk/lZcYMkhEyaBkPxR/8GZ5TKsTUfvttO/UXGBgk27fvkYkTZynX+Lblk6UbEldSp89quFu8l3kPkho9FITp/4GuhcTWXDXjrKsUvXxfikqUi5GJBhs3LsF1aA9WpwhFnp0jTy458cRbwvHsmLNnnyw6k0+e+9yR23O+FQkNkr+3rJJmuTIqVgA+Xy4995Ptd9NJt4Ltdb85K6uk0rdvzjf99QeBe1LZcNNRWsJaaviBRRD1/feDFE3O1183FYsCreWn2RNBGbQC+0fCsjcH5M1uyj1fo0YlgKy0oB31iAaeKFPnd2adNMzWNtYxGjRohEydOi9aHUsoyhQqW0f9Ph/cuiRXr56WfWeXSqQaw7dVfW7ekVMvrmFFesROFobiTIa3G03MvXjhAyB4CrHPESru1AHUWM7IZM4OOq24ngUcJyonsTR19Ff0O/zw4JUlBQ/jMZtBH91cvrwRMLuAE+E1/dxcwJF4OI+9tFHuBT+XrA6p5MecNWNNLGA22k/N88sCBI03hbUirF/PBF2FJrNWyM5ho6TH4tkyrHzhOPe9hwcYQR4tA4aF2Wy0OpB3LCFlITLdaGGkHJQ+RYWxNiLgjSaVhIbJ6F7Zi/inhOoUG7Zdp04rqC8cl3wlqkjXgTO+SCuf4TnrL9+6ckrG9m6oVjGGKiI8TFmCc+bMhpfv6Bgyd//9txtWsS5wFxeSn6BzHNeLUf9YH3OeSgtDOpdHPNhLqWZhIRmR+d4d6iK58ueWkLGDJdmBYxLJ0IgPWA4cOCrt2vUEma+v5C5SAVmpPWA1LprgMTkKpYj5f/6oSLAts1QESLOWQMS7EQjegguUVEf6sWOUgSOX3kEQW4NoL+pHQQAEehsE2gkC7qDu00LqNK4ofb8tKxnxYaZvzXsWbCEn4S6OKxGKbvBnz7wRWmwBN667Srro0aO/WNs6ihti7Bg2wJIEY10SllBSIB3Y8o/4ej+RB7cuqpg/bbgzAoiPHDlQ0SYtg+uXKiYEh6YK6ZXq1GkthcvVkQbt+ym3vx+STZxcU6pYP/39GKrw+N51uHW9JU3GHHL9wjFZNu5HeQU1jfKOLpKmamnJUqQgCKU9FZl0rlzZ1O7kKQwNfRUry4H+cUzN88P0Fp6N5+GmpnoQwaAHmBE47nRt8/ohBDJBxewCTtBwfdLKxk00n7RL5oN/TiMQjof2sItrxTssQAq7eso32SrH2X0S5rK4VywtYcz8TWDpULmU7BzyEpaBuJ9MEYgoX3DUUgZUCTJ6FCZopAJRckILY3qY/RafYmkRvdZlvCTzgkrifQotL5QgIwB8gJfZl+jijWt87l+/oKpQM/bSpavi4ZEKVB81JFMmT6O70qozbdoYkCf/LDcuHpdseYsbrfe/XHn51H6lqGELLkE7WAVvIkZwO4iVZ124LFvu3JPnSJKyBICpWrV8rB9VCe1zWdAwnT+/V0aMmKhc4+P6NhEnF3cpU7OVVG/aLd6UQJuXTFSJE2xPJERl9Abjo4oJK9ndwkF5Y6s4+XJAZYcfYtnb/S2eYAI49n0ricjhKoO6tkFyxmtQG2UED1+YBPm/lBbfeMvFa84KjGzDxxkwCfgTg2TrHUdpAEJoxgxqZe9eL+nX7zzUKtLJunWP5OxZX2TZZoe1sbcCmqzHDy9iTAL/jv2myLDuVbXdpWPfv6RohfpqOQ+AMEskwNcLr0fyHMD86YMbsnvdXFjhuiogeebMLiRU2KlMZFpU+TtkprcFgGtwcIjMnbsEIQdjJBWs8K16jtTRvCRPbdyKR7WWdJkQxpAJoxccAJCYXKq2/F7WLRwr/wX4isB9r/5Uz0TuY7pbCktbaanW7N9fSfLmdX6zNfaJ5pKnssqGm07K1RuKLHPS2hT3CJYUCIeJzZsRe+vmrZ/jCLz9JX2OvTf3+ZOOQGBkqAw9t0YCMK2QMpe0yFgyXv1ZNLGPuILAuUQZvICR/Wuq8IuUcTqcki6j0RtJMzdYDVnugjg6rjJj5i2ZscVCvs6WEjEzUe5iUmvQCnfX30qO4gXVLq9vXM1E237iiY3kwMvtXQuVOXjszIh94suSVDT82qbbKj6FMkylS9dRFg7Wz1W4fHx2++LqJPeIeqnSojRy5KB4Wa+aNftKBg0aqdzEfcas+uRjkiZjduWCLVOzhVRt+A0k5XxhHS+g+lULAEMAbFnqFKwsy/p8K5EtG8U7VlbtaPAPQQpBC7NC+ffHHwNkKCiY9uw5CBqZGbJr2d9y9vBW6Y2xsYcFKrbCdryePJAMxTqKfpaofrYyKWyKIov5HhJbSIKtgbHZ9bvLg9k9pe34ITJ90m2x97SSLB5O8jr1a6n/dXLpVwUJE6CAIScgQzmOIiu4SXY/WXnVWe4BGLcc0U9u3riFBJBR4PaLxAeAv1L+YX+nTr2JjOtg1XUSg0eEheA3UgHxsPnk1uWTSJKI2sYKL18BDRmUZHDVMhOXusq5CpWV8nXaypBvKojX43vgzCukyLjDoGakFbq3qT3N5KswqBpRL7kLLPK0SrMwNIFZ2abiTmkF/Hf2cNm7cYGQpJmFoDJ58uSwNKaBjF5q6O1aQ0kkj9i3ay45rgdKjrbHJHduSsxFhRKoneL4h3yjTFpbg6S1pniW6nsuGMri6RQOfep3f67FcXjz5kQ4Aqbfvomws+YuJZ4ReB4aIH9cXIfYnwipl7aQ1E5bMF6d41f1k/sAZaB7SWYC/B2Dhu1lEMAyeaICOPNI3cAkCq1ceu6rZq2sLLVVJqfpc7hLdi97cUwRtT8pJpj5y4dfOscIlXmouWYNG9G+mLX1BGvbYZGgmyS+1j9tX/0pA6yZ5VkJLmlSW7SBWgTdZbSWxMX5RjfhV1+1Ex/fAGnadYgUgZuJigz/HwtdlxXrtZMpU+YqHdafIMMWVyEXX5Mm9ZUua1x1/xfbnd1SyW8zduoOZWVjK2VrtoQFKbOkhWUofda8cg4xi8xm3pAyhdSKZ6KUrsE3MwRrQ4eOg5zZLICRV5If69eBl8/FBZY2jEnlyuXU3/79R6Rx444ysF1JafvjOOXGNGxLW6YLPUf+UnJi3SzxAr3IlKeZQW4dCE3t6CCCFnAmerAce+Qlracek/A7vmJZrIiMGnoNVrPbSrHjr78KISEB6h8lUoCexUc7jIpPS+cYZW332jJcJsBqqZXSpZ1BfVNILc6aVRRgMAIxhq+QMJFeqlVrKmcObZWOP08S1+Qeqk7mXEVA2D1Xtq2cJp7ZC0oBUK/oF38fL+nfpjhA8itY5nJKfyi80ErXY9giZJVvRNUkcuH4Lrl56YRut/v3H8nixauUFT4TrIweGbLj2Rb1bOK1mza0s6pLC+tvM3crCyNjGu2dXAAmreX2ldPKyshKVaqUh0V2sqxf7wVL9SnErfIbOSmsmtlA45JLtZM9uyPc0VXUfEL/IX9fp7w+MZI66LKfDcWghAJAEno7WL1OaDfM9RPJCJgBYCK5EJ9TNx4EPZcxlzZJxOuX0sqztJRLlSPe3T91cIuy1NSoEd1VTCkhWglOQCUjF7jB2r0hZyZ3FkEXQZJWvIPhPoXrOQQuI8Ny8nqE7HqRSgqkCpP7AI0d8Jx0zm4nL5A84o3qwUjccAP4Y0ygF7LczjyzVe4htvMSzzE3xPXVBNEyQR6/mAkCtTJii4+ie0mO/d+nJEv6WmUnUwXBCg9k0n4wbio+msDUVL0I3sQewxaK5rJ6n758zvsSgDTvNlRp8E6ePBfWoE5iaxtldTF1XowLW7LkX0njmd1UlU+6noCgda9R0fpQCkBm6ZSBinuO+qzvUn7//U/I081UVDhZ4fpeMqk/LEqVADLaK8sS4+TID1cGVnm6Odu0+U5mjewuxY82lPZ9Jhi1rjKT+cqZA6o7Idf3SufGrkh4clEUK5R2Y8KTYWn22zgJ2H9CnKqVlX1DhognlDDc3CylS5cs6nfIRBLyAt7AB1KKpIESGPgSiRi2umbOnr2g4vbqg85oHXSIe/QYIMOHD9AROVP2kWB33LgNap8biKn7pW1JSYv4us6/TENGfBbJV7yK+tM1qjdjY+sgji5u4o+YvAcgUA7wfS4uyJqmNbB6k24yG7Qq+uBPb1dFch/gfVd2rD6txqVAqRqINbygq+KPtkiarV8s8BGsWf24fufOfdAvvg0gG+Xl4DrSxcydexcZyrngJk+qkjQSCtTYDovbG67FqKW3/96Bex7DluCy5LJLrBRYCW7QvMP/dATMAPB/Otyf/8Gu+j2SSVe3qQyxrlkrS0E3zwSd1Mm96xX5KjPU+MBhlizj8HZC55auIgI/fYscLXV0j7oDmLH03rJX5g0crtxg6Q2Eyk+ceCFNh/mLZ8AhabmuirKmAcdJQVAy7EbSRXpY/OxB2VLKI0yqgfuPsmwkaGYdyk0xZmnjTQdlnTO0Yhy7eVcK+IZKQsAfyW79wi2UC7sEYmwoZM9zpgWQf/PxsmwKUljvN3xvJR1CeIomy+jRf4PSYbnUatnz/z340x+kum36yNg+DRVA6ts3ditgx47fSziycrr/Pl+/iUQ9z4xmxqVRwiwoKFjs7ePv9uOJ7dixT4E/yv216D5MnSuB0Jo5w0FsPAX3JMzibwoB4IYNi+Xk6XMyZHAfZTV0T5kOyiI/aVV0U2YypwG35KO7V1UCi1XSV/It+DBpKWf26F58bJFjjhn4BISLLt4Qvy1bJU+v7nLg5y66dgYOzK2bpzbwaXDorZt/Uf4YehHxhU6Ic337sXgVqkFpoGJTA3GK1rCWboa2Li196dJ5ACi9VGOUIoWb3LhxR9cmZx7euSq/d6kso5ecRKxj8mjb9BdogR21+ITcQxymFWh6Nv0zUZ4+vKVAud+Lp3L64FalNEI6GJbatasgmaaFOnauXFlV/OmsWYuQnT9Nti6bpLwcbqCxSZ68JLSSX6I+FHjq5EE8pDWsfmfR9hO4ct2kbFlPcf2+v7isXwQFo9z4ExBPp5WTJ32Q2ftKihd3V8cjN9+Gm3YJttSpnQ3+0UJsQuBhSQOw/g1IthNSmEASGwVWQtoy1/00I2AGgJ9m3D/Lo558flvm3NwD61hSZPrWkKyOqRN8HgG+XngoUoIN7PbYmxYwgryuePjoAz9KZW0EnYMzstA6wGWhbZs3bJyy/nWcP12GVioW7fjBds6IswmWXu2y6GgNWMEFD826SNi4j6/cFJAzuuZjrbLeePzGiCuyR8A6wSCtF2mRAacP/jSd3hOXbaVRNv9ox4ttgUBv/0N7gNBgpYNM8Mey7IqzivU7iThCBl/z2PaWESp7cullZ6WMQN1fwzJu3DQZNWoSgvRbSD0Anv91CfB7Dtf9TWUJckuRRmVS/q/7YOp4JLa2tLKGmoOvqSq69RGgHmIslot7wu9dXSP/4xkHJzeVpXpy3yaQExeX7t07ICmhkbJ2UvbM0eBDSL97BCrM9mWiQbNvf9dtypqnmPQdvxbALRKkws+Vxevy6QOKl5AyZY1h/f4RtU+ePCs7180xCgDZWJ+xK2UStG27d+8nQ4aMhe7yd0qBo0E2/ADelH33X0uXba9k+7a1gk7L8m5ttE0xprSCR3r5SAeAP5bff8+jq8O4u5ugSCEYpfW3Uv0OUgHxeeeObpd/Jg1Q1D+sbG3vptuH+tad+k+RtfNGKhC4Zu5Iadcbz5BYCtum+sbgTuV0tagokz1/SbWsgT8mFLVo0VBXR5uhogj/tLJs2T3lzqVb4UF4DnmaoRS0hv3l6AIPCbp4ARZ9kerVi0o9jDmLFnqSMqWN1KrloTWjm2YAaTOpbsgpqj0XdRuNzAQGRoIH8xk+Hl4i/CGd+OKj9DqegQy1aQ3PiimroJGmoq2ipnVRfDiby+c7AmYA+Pleu/9pz/c8vSzL7x4RyyQW0h8cf2nsXBN8fLo6ImDJcHdxEaoaGHt4EYgtAxB6Cvds/xJeStpJ/0DVO7eTbb8OlbXIjhtXpYTaxKw2qibcF2e5+A9oJJJE7cEvVLLwk/WfbldaIkh3wK9dzcVMebaVV6O4/FqhT9YApIaFcS7JkPUb3ww5Hnf2OVepiBg/fTDJ+EO6oFkuPLfR9YHLpLXg9vPoK8ExAWQm5whkVQZJrx79ZNmyNVKyahNw/Y1SLz/u86GLP3j1rp8/qtxd6bO8ffHyOGN+qCfeTx/qDumZLa/0Hbc2UWQfH96+UlHAlCxZVNc/UzNdurSRzp17y4tnD8Q9VXpT1RLVegKSzgAxpBRZNWuYStYYP3666iPj93r3/lYGDiRci1nGjp0Kq1gI+P7mGs0iZnwb4xD5ly5zbjl9YBO48gYCkFRUwPLFC1+QRZt+TRAo9ftro7pv1swbATLl3xFnOFtOnNim+PMmHj4jv/8wUJI89hLHSj9J+i5TZN8DD6UlS01sYxb1FCmskaiTS1q39gTXu43upDgOSQGi7lw/h9/Ha/U7oLxfwdI15T549WgNZGE2LWP+fLwfS2hIkBzfu04GTvlPqNGc3Mg1P39sl2xd/rfK7H2NpBBqSQ9C/QyIv6TiRkoQqVdt9I3MHvnWurxmzXypCE3d+JRS1Tylzd+ekgQcfQWzWEpHfOxS5m7CyJxybk2oBNrhw7NEFjQVFdKifXSaartihmClk8yPyWBY7+yQIEcyZxYmuPGjGkOFD0+EsSCrevjv5yQJxsnCxUE2Pw2X5nXd8WwJlx5QXmG9dy0M1SEI1H/GvWtb5v0+zQiY/mV/mv6Yj5oIR2DD/VOy+fFZsbWwUtJuVPl4l7Jv82IVU7Ny2ZQYDx5y5S294qIExhsbZKjpH2tp+4bi/vd0CQ8KRQKFI9xNSRXHHhNF6GbSHmjcFgawlRMPqbZv4gn129HmCfgM3c7aNm3KIOdmUAyIbyHdBbOE9R+Mu+HiZjZjTZBAs+QCLca2O/ZK7UFr1xJP7MKQi+IfiaYZl9OrRGdZdnOffNXuZ3C1vX0Bafu875QWoL0bF8n2VdMgT/ZUNUdutKkbb0dr2sbeUbfMF/FdULCsWzBWGnX6Rbf+U808vHNFHfrQoRNSr16NWLvh7x+kttvFkeEaayOfaCOpRL79dZYCJQ9uX0LMWaSQh49k4KSJKVGiSLSe0VI1c+ZClchBq21cRQHNAVOV5atMmTqIr+skhw+fUGTVpvZlPPCEK1tVSIhzx/aS9d5juTFljPw0YLhMGve7TF+2TuTePWm3aJa0yp1FinqkwG/UDxQkItNB0t4WFiha6PWLk5Ol9OmTQ3+VmrdCAkznvoNlxqghAGPdlWWPAJiFv41LAHh3rp1TzxiSoRcoWU3OI2EjNzKAeW75ilVWdQ3/If/frcunoq12cHaXAUgA0QrjHcMAJkm9NHr0ryrrV9sW25RZt9seOsnEVj7g0+PrNgqpUYnkpo+DJKtVSZohAYPPr3/w4csPP1Ld8GMzNpYrhqvwL67yCsjwdqEQWbX0joRlyiodqrlLBXxs+iKW8BDAG+lfIgAayWuaavAQHWdOw/Xfx9W0HIC8pTFu1Th3NFdINCNgBoCJ5lIkzo78c/ugHPC6Js6WdjIYur52yazfqaPhYaGI6xkFOaiSMV5UdPdOOe0m3fFFaswioH/AuvPXCoJppNRX/YUWBGPuC4InPmBJIRFXMXU8zQ0T1/7Gtl94YiE5wKgPVlvd5uQQu6d1UwuML+4Roh74GmearuKbGZKv+tw4Lstv7VOWv48B/i6f3i+LxvcRHwC/okULSsdhvZUr7zUyFOn+ypq3hLT5foyyHPWfuFGePLglR3aswt8KuNt8xQFZjYmhVGvcVXaumS3Tp89X1jAmNJgq585dAMednY6fzVS9xLzeAbrOOQuWVV3MVaicXDt7ULlft2xZFq3bBG/h4eFwmfaNtj62BfdU6RQFzLwxPcCvN0yNFbOSTZXZN/dI8MtwcQwMkyezx8Dk5KuqLpq3VMaO+EWeIvkKjMVy97mPFEuTQm2j9c7KIomyQBHwxKfQOv7XSXdp3K6zZHKJlP79/xCHaYOl5Xd/qN2ZPNNv4gYFjq+dOywZkY1L0KtZCmM7hsq0PrpDV+UrWFo1ChdtJa2JUcklQ5AoU0JbHed0Pfj22iOExZBMmUlmdbIEKpJrhqQQCPPjNQDPiOVXXVS7dPVWgxxgbIVAjlRZHEYMqZrS06GRb9NiOmZ4Hhk+LA+8GKKUi8Ycs0aizUsVnjIPmb9MRvuhyHOxA+ijJBzjN3EhYxzW8JlIALoCtDzNEMesT9YdY0fzikQ7AmYAmGgvzafv2LRrO+Wc7z1JZeMkg/J+hS/Sd79dti6fAo3WEASjRz2w9c+OihopkflnCMZWX7sjnb4bAKHKR3iy4Q3ApxxeMJaVK8nieq54iWCdkcKHbXzAn5FddavicsPoKhqZWTXvimzf7ycTerkiRiiDqpEvRZicg/tZH/DVR1wis+gs4Z5untMvmouZwf4tWnTFSywt3L4jjRzl3Vf5vXgmc0b3UG47kiavXL5KihQpoBqkduyGDdvk+vVbQtcqFSKYAUmiaWZSNu48UFn9+ELUqDXevScfZk87ByddQ3ElSNxEMo9jLEkAuoY+kxm6QMvUai1blk7CT8NP0bpoXXdzc1GzBMeky6HkGy1hcZUsuYvIsHmHVPIDEyFsQFJtqgRFhosVngsdkC0/ST8GE8gudZY3QKlqVfm5XJR1kiCqWrX94Mt7Be7BCqBYSaJAD92WxsIveFxmBPPjiQkQTNYq1rUdtHFvgC5lidRt86M4wlqnFYJjKnBoJT7nW6fVD9BqrgMSah+lylG8UgNtd900aVILNc9Ek/gWWvwJ9GjZN1XKQZeYAIzJcEx241+nfD6q+lHE6DGUpLNBcgYTQ6p/dUwmL6ogD+zTSS+AN23sCKiPg0lhASx6DFtheQlqHTIcECDyWXMVFFutcz2VtI4vJatLOKT4kuj2p0vXFB+p4TMxN7wrdCWvuuqkrJWZ0VYJfNiay+czArHcmp/PSZh7+mFHgBxVYy5uVOAvk30KGZy34XuBPyYQ7Fg9AxlwVY2qNHhB3skQ/PGMkkMgHel8KnA8TcOvJFuLJlJ+JOL/Rv9fe1cBVsXWRRetdAi22N3x7O7ueuZv++yOZ+ezu7u7u7u7W5QQFEFApJF/74P3erkCEle4wDnfN0ydObHmMrNnx9r/kvCn2TlrsrX+LUkgoSfxqPUB5FcU/hDm9lngY9JnReGHPT/cOUBlFz1Et5IJiANBmOqB01Z5UpquPpM2gIlpNVl2rZwkhD9uM53De3IQv6psfiCl51u/fpHIKZo+S85Ifab4pcralZi8XJUN/8ENFmi5cEYQJjeOrjg7u8LyBydcdPWS0rnK9TsI0x0TXKuWUqWKkR9dC1wi14tJvWpgTOeyeHrngmqVKLf53nKkMKdNi65USZuPBIgQ7NP3QN3W/ZRVjQoWoWTZ36BnY4NLS6eRRspOnON2mzbNgLJlrUmzHF6dg69Yax9ZOfLWFFdIKGEBp2kub2WVMWMGEYeeHqb3qyd49JQn4rDBY2JaIM6jXal++0gFXsaQC5ucjx8/i/79/6XnWVtBpWNvX5zyCC9X9sw+wPy/zMJUF9L+/a7UJO5E5iZlVgAO7mDzOJfCtuQK8vPxEX6Q/i46qweTorng+jEQvYp6KoU3ptLaRn6BChqtdvm9KcjDW7jA/I/I7tkVhoW76sSAYEfBcKzRo6krr+cOmCBfIUwqO4xmgwn6OxTwFu1yxDebkq84x81FKJpu5Kk/hIAUAP8QsEm12RB6mE96vB8O39xRyCIzhhdoIB56cZ0P57n8r38DMoHoYNas8ZE28+GbAZqS34t6qZQlHbovmwt4euLDpas4NLQ7DpAPYLlMadWratV+yZLWeHgwH3oOKUTY0RP2R2GBL5LnuYiC5ocoB6E0oUjj863m4fShsyhfqw2RyuZSXK6xdbXGXWBqbiXae0lO8ZMnzxUvNU4kz8J/hw7/0JtOX5gCWcOk7eX8oQ0iFVfjxnV/O9TPnz1gmz7rb+slpQrmVrao2awHtmzZQ9kwnkYY+uLF0+HkdJ+4D5fDwtQQi8Z2xA4ynWqq1CcC+OLWWeHk74n3pQujXO3WounAxw/Eb/e7kxPMVTJv8Mk+fXIS/Uxh5QcEa/9Us4eofjRZEl2SFTEBsLZJ1d3DxsYaR49uQ2r6NmIKoAfXTmpqSpG2w/nLuTRq1EGkhdu1+zDeOnrgi08A2NdS8RHFWr+l962Fb1zLPD5CwIq0QZWD7GPM//+dSUhj1oA9lAbvzHsTpCJc2JWFqaoUhd1lGjZIjwebyFTfxkJoDPkcZ/I4RKZgJqhnQZLTTbI2MLKSheiwOBORukaP6zIRd1wL+2CzkOlBH7CyJA0E5J1KGvcpQUbpR+acsQ/24GOAN8qnyUUJ6WvEq9/goAAS/urD39cTR45sEblaI2uwGNGeqPvIKOrNrFMRpadOEJrAS05uisNav+ZIxowZSIOpVvgBv4xeEPvoi/+Zh+EvD2n+ota7dA2BelZEOPtG7WrN7DJtyrSN1zFl3RWMXHCI/OFMxEuNNRn58pWnfKpP8Hff6UohUTO9/rlWOEpVX18PzC2pWtjcqFo4d+vXr76UYSOv6uFksd2wwxCRy7dfv9G/zIfN4kwgfefOKfQk8ykLzBzpqqnSPWdVZDexw1MfFwTXroUiFJXLhbNqGJD2umnTTkoBKbI+OQcta764bNnyHkWLniYyai+xz0IF5xFmLSFrx13JR43L+/dOWFu9ufg45fu8YkoPvCfuPtXCxzmKNz6Fgz8ObZpL7isRffHa9J0GTjP3lSLnCxbMS+NeJrrh4I0+pJVjMuu4FLaE1CN6F87Ry9o5zhb0lczDisLsCIaGZA63Isn3R2E6F6bSYmYF/sjsQ77U7Eu4iawNbA5WL8yIwCbnyErbfF6RHSb3giCRseXbt8jn5e4eqLR2VCXfbFmSBgKR/wqSxtjlKDWIgFeQHwl/u+AV7Ic66QujffYK8W6dtUlBQYEUWNAFxYsXjnN782uVAzG9okefkcRfFf4lHufGEuBCNuG+9TIQ/jH8Je/544uY5RHONJLPOoAIckF0GCaYfiON8NfZ9MQCx+grnku+u+uQo1R9ynBBTvzkNxmXwtjzElUxIN8udvhnTeDMbfcxfN4B5C9VA+a22TF4xk6UqtI4qku17jhnauAcrCzgqZaSJWsiC5m5smYtIQTcceNmiNOcCSK5FXYT+IsEoqeUO5jTBUZW2NT5999NxSl/X5/IqsT52KB8tWFnZI5bPk54VqcCFh14TYTKt/C/EYvh6eWPJk06CR7LyDpgfk0X0pxxKV7cikiTDWkOP4V3jqjvUshLkKYr/kd69BiCLVT/u174/wwLe3tWThRCJ2f+OLx5LqV0I67DtsXA6SfjWtbPHoSj2xbg6a3TogkDg/BxMi+g05twbWuVKhVE7l6uwAJcVB+zMR0D++kxOb6ihJJpVVEuUuRtfRIQVcuXQD2YGvy852x04CAz1saxwLzzuTlRYRkJFgI2L7Nw+Ir8KiMrzEsaWZk9+wVFZj+gx/BhSqP4lqiFfvbn5hZAmVweYPz4J+JSM9LaypI0EJACYNK4T390lB/8vmD8w90imq9VltJonLmERvq7eW6/aKd9++ZiHUK0Ff37j0bevOXg4uIaZR9MncAPKjZjcNBEXhtLtBg/EmGvXuOvYtVRbNrSKK+N7ISrqz8WLnxFX837iaj2AeXXjCgoRHZNXI+xVu8AJVvnL/VHn1MLpvzr5Au04I41hpxPJwhY+YVWJ9s3NM75FYNLeggaGjYBcbYT1nKc9s6IWdM7kQAXitsi/2jMR8Opr/7rXw/9GuXE0FaFxAvxd1ez8JAtT1HBNcfEvuwLlZTKu2e3xXAbN+4gIjV5J4DSBL59+x78qsxRuCIuXLyJdRSZmsE+F5mA7UX95PanINGcMNH148fPo5waE0dz8XR3ibJOXE5wgNjEIs1RliwH7BO4xuGi4A8sXLoGui09LEzDnMmGBcG7dx+S+fY0pT27BHd3D6HpcncPEDl8OfPH2bOVKSjJSjkMFlZYgFn32EpJOzJwYC9x/qOLg7IeR4kZGKUS/H9HiBOQNZBc4hP0w/l6ufDviQvju2PHKpGZ5eDGWShXqzVloFmNe/ceifOa+MPm8AykQWRzLxd+BipKDdIIMn3OO28DxSFwHt/rrsbKfdWNRvSMqU20L9wCC4/tjmRGLjIrs3k6NqVgQQtl9eHDHyJDBoq4JoJpLnZ2RpS5xJgYHtIo68iNpIGAjrqZJGkMO3mPcraOji3N8JPqLE223YWOSrSb6rn4bL/++hHzicfrO0XZds1RBSVsssWnuQjXbpw3FE9uHCdzzV1xnE2MChb9nRduIpe9nWCjDyG/E3Y8zkumnksuxiInLufGZToDJkwuYBNAjPMBGHbuFlbPXkyszx5wv3qQAlOi/355THmEH3xKhYWDz+LlDSfl2AoWNMelS9WU+5rcYO0f5/blqF+maLhJJhh3IqlOZxwiXl5s1omu8EPfknyeWItQqVIjvHz1jrRzB2OUu9bzkwv+7UzaUpUyetERZM5RUOVI8tvs3yQPEUEHiIm1a9ecuABr4fDhU9i8eTcRAB8XWTD4Oefl4SYIjxXccckNidCQYAxuWRBp7Sjw4tJBMombK6fo5PSBUsJdAOdCnjNnKfIWq4x/iBxa04W1ztOfHoKzH5EMi8Z1SCwLg62hGWq6BVEO4lERurSxsSLz8HmUG/AF/k8ccGp7QQqssIxQhwVA1ohxxCxnA3F1/UhuwV6oThrPiEUH/xs2DxaU5eXS0S1g+po8RcqRgPnzn47N31dPbCfN5CKkp6jo3xX+3bx/+QD7Ke/wiwdXRXVDQwMSVoPFdvNuY7Bn9RQiz+5B1DT9kSqV0e+ajNF5Dop5QKTw/DxgsnqmdVHwirJAyMFkPSjtnqKwqbcgZRZiF5LoyiqKKm5DjANsKo5LcXHxJx/Ou8SHaIbp0yP6OCva8yc/2y25yih2FWu7oWFh4RK54ohcJzoCUgBM9Fvw6wASSgC87/keK1+fEw/q/nlqIY9Fhl8HE48jI9uXRL7c9jh2bBtRNuygh+QY0dpr5+dw9TcmAUkPJYjWgR9aHH321tuQIn9DkNk8/MtS0fVVl9TkEB2KhRf248CgkTDt2AFO/w1TnBbrwMBQODhQ5o28P196fILNrqM3UB7SHa7QNSKzB/mKhXp9JR/HL9i5/ZeHVIQ2E3vHze0TqlRpio8fP1FWgkJo2XM8OIVXVOXY9sVgrQQXYe4j+pjoONyiaiepHf9I/ITnD60X5vKrp3aGD59e+hwYoQ1E1QmJ5yvSAM8d3hKbNi1Bgwa1BDVM166DSKt2SQyDhV/O/tFv6mbkIp7HP1UuUuagW5Q60jc0AG7+lG6R+EM7BtuBPwqZbkVRDAwMMH/+UQyd+QF6mTPC9/I9fPnSRHE6wppN23Z2+SN1bejTpwuuXLmJp89eY+D07chKGm1VwU/R0LS+9ShryBOxO5M+qlUpZBR1olrzBxZzZz69c5FIuIPRgPwuOXPIf5Qlh7MctWzZkIi350Z1eayOs0tICfrotSX+UAVDAsuxbL7dSYwBBSkohp+d/LGZlTIGxbTwc3b2rTQYRVmWVANvYnp9TOpJATAmKGlHHSkAasd9iDCKhBAAL318ga3vrxJXlB6G56+PzCY2EcagiZ3e9bKSaSAvSj96htU/GqxUuRwO7N8Qq+ZZq5Cr73h47tsPfeIUOz17DIqkjTje5cvfYNSoR/QyKUq5T7P+0j77qbAj88OH3hi8IQR+d57C063+L/W07QDzAXI2h0mT5sCICIzn7X4a6YuNx80O66zhOLN3Ffy/faXcrxNQsV47bZvSHx0P/1a+uH8grEySTBCLJgBhDejeNdPx6OZp4fN26NBmVKhQmsxyjQRnXpMuo1CGNGacuu07ZX9hXseEKEtenMJjb2f0tSuFxf/8/H/LTMLeuHFDwOn7ylW6Dx2irOlW0JO0txkoCMQy0qGxNm4y5QKfN2+F8jy7L5hQVhemAmIKID8/f3GOiZxLVm6MkpUagrO+ZKLAH56zi8NzTOlTW9TpNGSuwETZWBw2Tu5ajiNb54lUhCdOkO9sqaJRtqLwa2TDRbdut+HtzebkMoILUfUiDuoIoiCQCqTxVC/8MexAGYIoRER8uNuQgPjB1wAcSMcawKj8D/lDmK0rn8g15QWlofu3zGf1pjW2LwVAjUH5xxv66Wn6x7uSHWgLAsdcHuCgy12k0jUQBM82qcL9gjQ9vpKVGuD+teN49KNh9j9asvi/WHfz6stXeB46jPyjh+NSn3aR0tK0aZOZNAAesLEhLV8khXOKmlgb40ZIFnTp5IEuS+wiqRX3Q0xWe4GCOjjCTpFnOO6t/bzy2bOX2LZtvzhQrFzdKIU/rmCUyhi1W/amxPfhGG9dPBpla7bUOI+gGIyW/mENFwe3pLSyYnIPPL17ES3pTW8/rI8QRFgYfvz4GRp3Ho7qTboqIUko4Y87dCZ6mNR6Bnh76aSyf85MwkEaW7fuRYsWDdFjdS74X72PixfcwdHzRYpYKH/nAQGhOHnSTQiGrNEbN26oWF6/diAi6StYvXoLXrx4LdoO09EXdEAdOrQk/zRfHDiwF1dP7hDnsucthqFz9okI8CnrLgv/xJgQmTON1Z2Lh4UQWaJiPfpfMsLsIU3AtDCt/5mCa5QVh7McbTt+Cq9Mi+DlM1CAlw7YhYV983KSvx2XqVOfUcq+FxTkYo259JF6wo0+YMnOu5MoX74G6aEcRTtzCkkO6GAXkPrZfQVPnzpVS7mM/lQ3XMgVDdMfFu7ukavLdsrKQbIlFMbd9AZ+8H70DldufkHu+sVQOHsY6lEqykymqQTBdCOi3mI+wMjKpk3vyF/7PkVj14S9vUlkVeSxZICAFACTwU2MzRR2vLuO85+ewUw/FaV2a0rRY6lic3ms6nYdSf56VCb0qAp3op34++9mlLO0uXD8HjSop0hgH5mZRr2TBZfv0FPtO/4uXyJS4Y/rW1oaktnrL/VLlfuct/IFpVz6m2gOUhfUo+Oaeagxz/NhorAwIjM2k76ymSa+hTUdhw+fJK3fXOLBfgsLqzToM3Ed2Mk/JmXq+qvwIHNVasrgoGkS6Zj0L+skPAIulBu4fPm/sII0f6qFTayBajx8quf/5PbJD4/A7AL2xmmQ2jSQ/jd0YZvBHtWadBH/x+xX5+joDI9nDnh84TFu305PyxeyGljQXNKIoTVqdAW3bnmSMFeO6FYMYG1tJY7nzJkNvHTt2o7obR5g7Ng5uH79BtEB6ROR+XYsXTqTgjP+I/eJ8Mw2TJJ96/wBcJYPG+K+jGlZObUn3JzeiOq7VkxA56HzKSWig9jnbDote4zHzuXjsXj9EQxo5ki+cTmQJUtGQWx9iZ45nM2Do3ID8uWHRVVTZK5ihyuBduhe/Qt6t89AJm0f+FMeYM7OUZS0eBlMQ5RDUxf+lCfUNviZo8ghrjjFz6XuY97jJH19h303Qed0juhRIb04zf6EnFGF+Qr7FfdUXBJh7ewcLmTu3u0caV7mCJXlTpJFQAqASfbWxX7gq8jf767nO6QxMsXYAk1hSA/LhCicxJ79tFav3ooQ8p3hMmfOMpjmqoQezUr91hfl6pMX4jM3hIiK41J2EA1CJrMQZYqluLQR1TXMvF+GEqrnsPw5Nv4i54g7Ns1w4VR3TGSb0TQ4ShONon02YbVq1U34M9nRy5KF6OLl65HGgoXWmBXO3vC7DA4xa0nWSgoIhAQHIcD/W4Q0cKz9Y9cBJve2pKCIhC6+IQHYTzRGqfUM0dgoM1ZuHkGaqu/4RFG7/Cyo0qgzjmyZh5btBuIlkUZzGT16Bglz70jjfZtoe45QIhE/ZM+el6L3s1HAwR4S8K6LAJ+JE4crMwrxB6S+flYKbulAOcaz03ci+R7eukfUU8MpKGMyUqdOLQRFbt/L8yOvYlXK124rgjwKFcovSLZDCWsuGTKkowyVbkL44/0r2+fTArBx+TgtLLxVyaJiws0HTG6mEDy9gZL2fJko7APNwp8mCwudA4koeu/S88TFqIvW0yuL5teuJb9Mit7t1jt3tN2NGpWPSK8zIEcOU2W91Q8tRfSwBdG88DPOk3y4LziZIA0FuAWQEMsUMpy9JGHeKsphyY14ICB9AOMB3p+6VNM+gPwymP/iBF59dUNmYxvy+Wvw2whaTc6NfdM+uzkhbcZsOLVnBQUqzMaMGWPRqGUrbHqdSSQTtzf/KUCp9/2RXgRFWvVGIKWFW7FvI/IQLYy6D6D6Nar7ax5ZCrOsPttHNFjeENcff7nXI3ONotz9mAr3yRxTmchQs/9wzv5Eqe7O04OS+69LJpjonK+7dRuEvfuOovOQeUJboWhXrpM+Ahw4wCpiDsKIa2FeyEc3z+DJ7XO4ffEQaXe+w5w0xJ7urvTRcAT58+emYKj3aN68C60dUaBEZfQcuxLM+5iQZa/jLZxye4ze2atieeeqYpyK/tkXkf3vzu5fiz1rp8PI0Aj+fl8VpyNdpyL/V8s0Geg58p4oWIKRO3d24hUci7Rp7UgYy4xly95R1Lyt0Byy4LdixUbRDrsE8POPSzYyAw+fu19sx/QPp87j7CmKYmFtJ/wN2X9x/vyVgtUge3Z7iv4ltoICeYR5OlOmcE2b4hrVNdO3sMYuuuedan3FdlDQdxJoH9J8U2HEiLyKw79ds99zSEgYcSsaibotWlyHSf5sKNs8L/6maGDzWHD2vfpiQKnerESqOZoCAslPsVUeb8plTKZ3cn0Jpv3bH1PD7NsnOFUrpD42GQWsjogW7EsBUAtugvoQNCkAhtDDb/qTA/jg74V85hnQN3fNKM2o6uP4E/uOrx9hOqWGO3mSHaaLiS/J+XdtMIgSmkdXXL76oVDVZghzdQV5e2Pz8Z2on0PxRR3dlRCcgpwIPSoH6eivjng2OBRwpdR1TLsQTL4+rekByA90Lmx2WUk0C71U6BnCzwh3H9yhhyNTOrjR9W3yeonk9orzvF6zZguGD5+IEkT/0mX4QtVTcjuJIfCOqEOWTeyCem0HomyNFlgyvhNeProhZsHceE0pKCPdb2hI2Lds75opuH/lGAkxocLH8xsROHOAj6GhIVGRhGujrK0sMWv2BDRrVp8iaL1QslQtBFBUfI9/VwgalMSAbtHzkyIzyFDTwpg9tFmEIVSiwKS2lEmDC7s7vHtxHzMHNxH7bCbOTprCeQc3CW49Dvjw8vKmgB5L2OcuSgJtFejT3A/RR+TXH1k+WAu4a9caooWpKNrgP6xJv337Prp3Hwy/wO/KjCB2GbLCnIS4Oq36oEDJKsr6UW3cI+xXTu0lTlvSdTkpcpoFb848w4I8c5v27duVSJCH0nPgx4OAajONCwdcOFGULheO1jUn374clkG4RL7CTNIcm/LsmQ9q174stKiOjvUj9KXeDlNRHXMwE8/WhsQDaK5C+bL/aSpYGwajUk56kMWyMK0Vk9czt2B05ebzb3hYtqh6FSkAqiOiBftSANSCm6A+BE0JgAGU2o3z+n4J+obSNjnQOUcl9a4SfP/Qpjk4vmMRaSfugINCmPSZiZNVOa0iG9Q1l0/oumkfXPcdBNkw8PrWCdgYJ4xWgx/mB8nPz4/SJ3He0rRE0loirb8weSjGytk+thI3V/PcPsSxFSrOqbwPFNXEmoXItURq261+Xjg+uS0eqsz+P7rZXzAlk9XQWbsjTUgfoRG5o7UIbFs6BhcPb1KOj4NzWAvOPHHsk7aJCKnZ0ytfsQqo2bwXCYbX8fLhNcp+EQIrMtcG+PvC85MzPlMGC9bw1axZWXD6ff7sKQSAf/8dRMLNA4p6nyI0+T27/o0pM8eL/jhX7fUbdzFm6SmwsJNY5YjLfRx2uYei5pmQ66UzTuxYTMTMn8Vw0qTNiMnrroptP19v+iCsj9DAr6S1bCD49YYO7Q2OEubC1C9MGr1nz2EyAd8R+OmTX2PJyk1w/fQuUYf/dOvWTqS7mz1+Jirkz4PpOw+AnSa6/K8ttu84CEO6B96e7sr6mbLnR9s+Uyg6OD+dS608HtnGs7uX8JCiqxu0G0wRxxaCYJqfY8wraWCUGvcuHyVTcyrUqVONGAha46+/iuOokx3RWxF7wY8gEHb/YAqXx59TiUCxyplVzMORdRrJsbdvfSnjiD75DUb93LvllgqPiD+wfX4vZV+FiZNUUTZQSr0CFC3MPoMqacoVp6Ndf6CP11PvTdGWPl4NGdwoysu3PrhYooT6WSkAqiOiBftSANSCm6A+BE0IgD5B/iT87cO3kEDUSFcAzbP8pd5NouxP7l0TRroBlA3gjOiffUk4zycHUZjQA7MmRc6ppyNiE04aim4Nu3aN0jrkQMM+3bCxTf0EG/+Rt6bChy/bD5MuE9PmpC95VQGPM5cotIwbn1iiQQ6fCMnr1QfLjt/byX8wPQmTHC3IKbwqVGiAdv3/SxHcfep4JJf9z26OGNulEjp3bk1+a2NoWSCENRZqqlatIKbJKeuYF3Pq1AWkqfIjTZKu8GljgmEW8jhwI1u2LESHUhBdurRV+rspMGJCZ/YT5Zy7vh4f8fblfZiZscYnTJgkW/8zGVUadFRUT5Q1Wx6mkeXBlSwPTFgyJFdNeD++j6PbF6FN78mkSSuF968eYd6IVkRLE4xq1cbg1Stb4iusQsJuuNYssoEzofWECbOwd+/hyE6LY6yH46fD4nd3KQPQKrHM2vEQO5aNw+0LB4QJmbWvbk6vYZUmHWo06ykCU6Js8DcnrpzYIUzybC5mQf+vOi0xlO57zazffnNlxNPu5CrCz5ayFKSh+mzhWpx67ezZjxTV7YNevbITRobiYtbK8Uepwq2EBbxOBb3EOfbL20b+z01JY2eZir5iqfDH7Evqg7MRxVYA5Gf1BSdjyk2sh4Y5vor2FH/4nDOl8/tA1o1XDj4IqJ9fcUqxlgKgAgktWksBUItuhmIo8RUAPxLx6rQnB0VKpqaZSqJWhkKKphN9fXzHEhzYMBPPnl1BunR2yvGw+fTIWzPiJQxDXRWfOhb+ak5bgrvLVqPbmsWYVaei8pr4blhSntiYRtqp9sV+fqGUvYQj6dQLJ7XPZBYseLnUz0W1zy/uatWa4cWr95i59a6M3I0KqCRwfMvCkbhGZNSOjvcEL110Q+YADfbTy5IlkzKDxDfK8hAQQlQ2lFM2svL8+Svi9mtIdCb5MYz82YJI4Di0eR5F+lK6L+L0TJs5O2o07R6tiTCydv/UsQNOd3Dc9SFa2ZfGkf5tBH0Ka/BKV28BYxNz4RPMfIWpU/fC5ctfKICjBjJmjF4jx2NlHF68eEMC8gDh49dh4CwRXMKE4EXL18HdCwdhamaKnj07kL/xYnBkPAdGBfj5inqsdd27Zqpy2gsPvCTBO9xPTnkwmg3+n71weCPd612kpaX83uRrmZ+WLQtGwNrcgLSVx5RXqz9nWDA762gSwXdYUfldkb9xatMxFLfzxxsvQ6JpCcGD536Y1PUkvvuGaw0nTSqAQ0fc4GmWlrSYhWGTJhWKUBAJcwHue2mGprl/Cmf8ockp9LoXog8LFa0dZ1ZxpaUoBW1YWecS3fOzkP2Vz5CWj7OFqAuh/NtcSWno+hX3EP7MijHz+uDrcCYE1nTmwAeZCUQVHC3elgKgFt6c+AiA733dMfvZUYSQH02nbBVRxjanVs3Q3dUR47pWFPk0a9Wq8tuxddp0AAeHj0G2/v/g9oie8fJf5C9UJljNrhKx+9sBRFGBH3icTqkq5ebkcodML0wzw8fUv46jaEJ5mHPWlihRQ+QV7TBwpvK43Eh6CLCGi/3Tdu1aTZRHlWM9gWDS0OwhbjjmkyybwU+Q/bKWWPEybtiwPe7ef0YCzbUk4SbANDCj7u9AulQWKHL3FU7sXKrEpGLddjC1sMYxwqx//x7k/9oPJiZRmzeVF6ps3Lp1H7VqtSSf2UUoVaWR8oz7h/eYP6oNBcd8EMfGLjtF2r+DwoTOPITsr3eaCNM5jRuXKo3+JzTvGbPmEfvqf7599YLj68d4fOss0TLZIl2WnOTj2U29mtjnjCBD7njB/sY6pCLLRmRlA1kJouILNU6TH3eI25AtDh4Uacvp1zrND4DPs/foUic1Vu3xgpF9evg9eYNbx4qjIJlbF5x3IxoqL2FVaJvPO0KXrCXcRb+pbBaBIp0cMyIw5yALgOyj2ILcVrjwsXMUrFaS3FvY5eV/1F46+u2xZtKUnmtrH1mJIDbF85PbPUq+hqxVzEcsB5yuk4skghYwJIk/UgDUwtsUVwHwiZczlr48LWbUO3cNFLTMpHWze/PkFmYPa4GLFw8S31e+aMfnS07umSs3h66tLTwOro22bkxOspn2KrHhc27e2CZDj6x9NrdkpXzF7ODNgt/vnKO5DdYc7CT/pP37j4m8poGBQcJh/f79xyJTwcL9L+Ml5EY2Tnks4RBgP74ZlBrM6c1T8ftmXjrmhZs0aYTQ9MV0JD6UsouDhrhwTuteRT3h9/UrcuUqjfIkOLXuNTGmTSV6vTWvz+O2p4MQAku/csd5ErzsKVVbyfrtUYhy9a6f1hsPrp8WEb3bti1HsWLRWyzOnLmEadPmk8DYl7ShZcjnrragZDGzsKLAl5XI8SNdIvsXLh3fGSbmVmjRYzx9eFYSWMzb8xSpKFMMlye3zmMxBegoSqtek1ClYccIGlSHF/cwc1ATRRWkNjHD1A3XcGD9LLy4f5l4Ad/ANn0W8Mctl0GbHuDG0U+ktaN0biWslNepbnA2jssuJmic00ekenOg6GAmc2ZzLYuMqubZIUMeiA/X/40qhdTkx9hiyleUNvpAms3Cgjib2+WgNG6DAz7qZPNV7Uq5/Yn8rbc8t8RA0uApPiiu0PPQh3wTa9r7YuszS3Qg30E+d+1DasFvWjBNoMjTzowHPCb2HayY6ZsIMuHrWuX2jqBZ5M6kAKiEXOs3pACohbcoLgLgjc+vsf7tJTKh6mJIvnrIamqrhTODyFawaEwHPHhwXrwYoxukK5k88ldqAsPCBfFx/dzoqsbqHNO08EuVHbRLp/eP8bX8sCxPjP2KwpQO/FDMEg2FjaIur69evUWJ1Efi3TtHoUUwJOoIzsqgq2dA+3YUENAT+YprzsSt2rfcTjgEOC/sqb0rcPPsfujQD4RJ0Dmi18bGGgsWTEH9+jVjNZjP/nrCPeJbBVuMof/vaSR8WJLvWlIqq0kIvENCoC7pNE2JhJ55AolNjvZ0YE9pKHN+/Y7bS6Yi0M+H+PbOC6yiml+dOm1w48YdcZrpVwYN6gFPT69w6heSXmZsuQ1zyzQRLnd59wJT/qlF0cTW6Dh4Dgr9VU2c713PHkXKVMdnVye4vH8pjnHQzthlJ5WE0btWTibKmtXiXLEK9dCu338iGETRAd9bTj335DYJk+M6oXadcThx3EycdnJqIAI3FHVV1yGkOWN/YQ4AY00hu5SwaZjZBboX/qIUAps1u443b3xx7VoVcivQx5ZnFminpuXjdrtvTQXnHedwdH+ZCAKsap/cflbzoAhWkLck3F39YAzm91NYL9inL4jGYUT+hbx9/J0p+W6HISO5t+ynoD2ms1INLlHtQwqAqmho97a+dg9Pji4mCJxyfYS9TrdhqKuP0QUaIW1qi5hclih1HMnxm4upqfFv+09PdbKWL4N3l64KPx/m9FIUf/8AEXmn2Fdds88Nl6j8+5h0lZfjDqbk02KFZmQCUSRcV21HdZsZ/Zn4VLXEJgn75MlzMXfuMljbpke/yZvIXyhcG6Hantz+cwiwZu49UbPcuXQEzm+fCDqPOq37xMrvK6ajY9Lu2i3/EQtfw35nD66fIpPjCrRv/48IBmEeOQ7yiEnh3+Zf6fzQq2pTGN8+K/L5xuQ6barTLWcVlPDMhn1Ot+BH7ASZjK1J8EuDZ94uePftM97Rv3a3Sauwtl9Tim6eSiTWc6IcftWq5YUAyILcka3zKdBmoVJrbkzZb0KCfka9Khph0y7nBuYgkAPr/1MKgHz+w7uXmLT2MqV1242Nc4cI4UlP31BxKVp0H0N0Pv0jCH3Kk7TBwh8X9gE0IE7DK5fnklayLjp06Eom7YjPDFHxxx/mBe1SyEv1EJrk8hGp5PjDkt1KslOw2fbtf5GVIASfglPj0ZtUsCI6mcjK55M38MCbUst9DSGGBYPIqqASae+WUwaQnqRRJn5oUdikm93SO0J91gKy8Mdm3nXE/Vcx4zeliXfEX58j1JU7SRcBqQHUwnsXGw2ggnDVRM8IYws1gYXh7wWrxJoymz9HtiuO/Hmz49ixbTEaRo8tB7FryGj8M6g3vhEHoJGRIY4cOU1+Ma701f8yyi9ddcfrqDpjSpYl921gS0nVudDHLsqR71VG8pNhZ+335Bdzm8wrnMmDUyjFpcydu1wksa9I/GdtKH+oqiAbl/bkNTFDgAWvS8e34s6FQ3BxeCay0HCELQdfKAq/sJkgmH3ImOT3TxbWDJ4kIvSTO5cQ8bEvpQ3LiSVL/iMzYZEYdXvs2BlKp9gLmbLnw7+Lj8fomqRQadjdbSQUBqKrnj1Wje2Mxo3rUDq3RVEOnTn+ypSpCx/fQAyZtRfrZw8kjsAiqNSgA5HNZ4/ymXCX6FpWT++DBu0Hg4V//j/8RNpZTpdobZtB9MeE1F6fP8LV8SWKlY8+93ZkA3z15CZ2r5go/AVtbKwoaveSMsAnsvpRHTtKzAOcE/guuQGwsKZPAtnie9aC3sXqR0Sv+rXr7puhqK4LihU2Vz8VYX8FffT2IA2jwgwc4aTaDvv3rSbfP/YTjCowSe0SaQJWB0SL96UAqIU3J6YC4Po3F3HD4w0Re5pgbMEmZEb4+dWqhdMCP4BXkb9Pq1aNaHg6lGj8saC7sLNLQ74saYjdPxvq1atJlBamePnyDeUKnobT5O8jbBB0RWoTU8GLFvAjt2nJkkWJPHn+b03JscGCzR1HSTPICdotiM/PlqLw2Lk5pgKlel8+Puy3VYaiBKug19hV6qdT9D5/ELBWjn2sSlZuBDMLmwh4MOGuq+MrZMlZCDnylyTznVWE89Ht3Ll4GJvmDxWmV87UwBxtLFiwf9nSpeuIuHemuLxbt/aUonAz2g+YgfK120RokrNuvCB+Po4ejSo4IMIFMdxhbSQTDO9eOVFw07EgyMKCHmkOmcy5ffsWIqdtZM1lz15KkD2zD5pCaImsXlI69s/NdchhmhZ6mzbB3ekpmYAv/jaCmkmea9ZsSYTSU1GpXvsYTZcF8D4Ns4u6Q2fvEb8pxYV7KCL49J6VqN6kG84eWCN8dfn/tUjZWooqUa6Zw9HnizsRuDcUv+V1M/uLzEd8wd27p3+h8YmyITrBXIG7XpiLlGr83GFamDPvTVCFMgtx5G6E9HJqDZ13NIY1aYujMs0qqp8gc641padkkzO7sbDvIW9zcIh64eeeu8cr7CDKKqa54lKd/AXtjCPXQvJ5aQJmFJJGkQKgFt6n3wmATI2y+OUpPPP5gAypLTGqQGNBCKuFU4kwJOYA/KD0s0lNkXS54EP5OZk7i/1oOMUTf5WnTWsLV9eP5KhtjOrE0XXCVgchZiYkjFmRWUIfec3SI93L99i9fJy4rn//7pQMfrBWatZY0Fi0aLVwGrdKkz4CHil5h4W/TfOHCRoNxoEd64tVqE/+WLVgn6sQ2IF/Uq8aESDKmrswOg9dgLSZwl/ifJJf6kyc7P/NB74+XoJQmaM9OeNM8eJFsGHDIqin5mIN4MaNO4WwZWRkRLQjhVGLeCab/m+ksr9Xj29g1ZSe+OrzhQRTK8zcdl95TlMbLAheOb4Nl45uJu1kEIIDA+HxyQX29plwkDJhMD2Mejl9+iJatuyKxp2GCy2W+vmkuN/31gb6iDVF3st3ceXYVkGhYmCgT3l/OxDnOwUckLUgb95wtw7V+dWu3RqPn77GLLo3McmVzb+5fZR6jiODfTzdBIXOsHkH8dXLA6M6/CWaNiJS6EAS/Ll0GUGRxfRhwveJ61japBXH1f9M6FGNqGXeoNn/huPFo5vCF1BRx87OVmQLCaSAtiAK+FJon2/ePEEfhtlJmA/C7t3OaNMmM334GmDLUwuih/n6S5YgppfypsAg5h+NyhLBH69rH1tSznMvRfdRrtn/8BGRUrOwObikB2kaU4nMJawV5JRuHJwSmaaRr2PifmZTYIqa6vbffulDCoC/QKK1B6QAqIW3JjoBkAlWZz49DCc/D+QyS4eBeWprpeATGayc8un5/SsUZdcJRhSFp5o6iet70svvIr0Mnd8+pWCISqhEUYLMzTX9Mb3Qab7s4xhK9Da8sPN4WfMsCD18CDfO7lV2N3XqKEoE30W5n1AbQpv13glMVGtpaU45WfMQceslerD3JMGmHrqNXJJQQ9FYPzwnTml2nLI4vHt+V2hFomqcXxzpsuRGzRa9Rf5Z9XvLbXl7fhKmsZcPr+IORYF7eXzCgAE9yKzZjNZjKDDoMRHeBkToonLlciRAT6eo6aOYM2cZAr19kLNUVeFX5/Tmifh4iHAB7bDgNGBAd/yPskCoj0O9Lu/36DGEaFsOos/E9TTf+zh/YC045VrWrFkoyrQ0Nm3ahaFz9iJHvhK/XB4UFAC3H1rKX07G4cAbygzDaeOsLE2JQPoU0hOHp8KX9dWrtyhXrh6MzawwnAQXG9JMJoey+MVJPCFfwL/Tl8Sh4R1gaW5M2r1KWLt2G6W/Sw19Uj3t378BrPFXLXfvPqT0b81FruOiZWurnvrt9sh2JeBNmUkmrr6ANOmyYNvi0fhCmT1s0mamLC4bKYjEGhNWXxTPornDW4n2uo9eiuL0kaJeTu5eLgRLC2tb8RHCOZ/zUpYXcwrsYp5GzsOsS2TfN86EP6f4o+PKlcPC6mFvf1o0N3ZOGViUyocy6f0oU8evPoyKPk+TNrCGmtDl7OyKzYUqgR36H3UbihI5zJEnWzrBs8pCprFxeDS5og3Fml1cLjobowIFtimIpPkcH2ctIQt5sWVL4P9zh8fPcZbSWaoVSQStBog27EoBUBvugtoYohIAg00sMPnJPnwO9EVx66zonrOq2pXJd5e1ngrfuTseDtjleBPewX6oli4/vLduIoHikJg8m4/UNT4xQYUfXGxWevfOSWgf3dw+4dOnzyIPKZuk06SxQdmyJeHu7oFTpy6IPKycyo61lcWLF8by5RvI3+eZsis26XFkYpacBclPabd4CShPatmGAwnmJ8gc6UwClS9pYHVIqxZKeIQSwS3jbmpqQoEL5aP1ZQoMDBaO+ZzqjH3Ueo1dTS/TTOTr9hUXj2zGOTKrKVJxcR7bIkUKYNiwPsSVV0kppPE9YE5EzorCEbNZs2ZGhgzplGix79cS0tatIcz5JVqpUhnRDt+bEyfOktbsBAUPzKUo24iaQ2UDUWyEkZnLWuVcpUplRWox9s0rW7ae0EINn3uA/MwKq9QK3+QoUi4Dp21DnqLlwg/G8y8LttMHNIClhbnSdM2//Q0bdlAO7QukjbyXJDgAYwpD0PcQDLy9SZiBm+tlwCzKHcyaXRao+k7aSAJxZwT5fxXmVA6m4rRwVlYWOH9+v7g/mXOXQq9xv3evYP+8M3tXkybOHw07DCZ3kjBkz1dcOcwdy8fjPrmpNO8+jvz/6uDAxlk4tXuFOM/p4phLMA0JiOrlE3EOju9WKcLhCnX/FjmOP1K2keDgIOW5jBnTU5q7DCKtHR+0tMyOPMXaoPHovqid5gVRquiK88oLYrBRsmRNvH/vQsEoRuK5FKLSH38A8UfUhAnDxP+KanP074aPlK94/ysij6bgk7QmEc26rBV84WmEWpSp6Hf+f/y/u2npWswcNxNe9MyYoNpR+LYUAH/FJNGPSAEw0W/BrwOITADEpmuY9P4CvhJ9QhW7fGidtcyvF6awI73Jd4i1oIWeOglW/23bVogXpgKGsmXPksAWiDt3qitTJynOqa4DyfTWvn0fcIotLvzQ5OAANkFzrs8Q0vIE+H0j3r5w7ZQ1UXDo01d9cKAfmSp9xHFTM8oD3H0sBRQUx0eXtyLSMFP2AmhPxM6xyTCgOi5NbvMLlf2UPD9/EJpW3ufoxfMH1ws/t0yUhqyZsTFMKcjGgEIQDYNDEEwZGgqRFqx6icIIa/B7Xyh+CVyxzo1/aODOJLCwhoq1uixElipVDL17d6aAh8Iiz2tMNHMxnT/ft759R+HMmT1kzo29md2EBMCh1NluWqq2a47586cIf7waNVrg8ZOXGL/irPADjGw8nBP26sntJICsFabryOrE5dirRzdwjHJmv3l8k17qPzVCbCqfu+txXJrU6msGkABooKuHmUXbiBRtyyb8D5WadYNX4fwoY5QWs3rVQuZM6cQHQhHS9j2kqOrSpYsJP+LiRBUVEwL1QS3yi/9jBqL/1C0iF7MqKIvGtCeaqktIlzmHuOdssdhO6eM4Arhw6fCPirfPKLMJZTOq07qvUni8cHgDti8dJ1wTSpLmq0bzHkQ5UxMeH11Um4+w3YKETH7GnN2/ip4X78THLf+f8P/F5cuHyYKQO0L96Hbs7PKLdHaNOg0T1VgD+dXbk4JZXPHwxhmcP7SOXCS+ko91DvHRVa9ejQhaQfYxtCKfQOb4Uy8cBbz9hYXgB1RP0amo+/TpS3Tu1BevXjsgNwVUVa/zN7KTe4dakQKgGiDasCsFQG24C2pjiEwAnD5yNDxTGaJRxuKom7GI2hUpc3fcg91wpyTy/dOXxarBLcRDTuFbw4hMnvwUDx96Y8uW0jA01FWCxGbGEyfOiXRSQUHBlJVkv9D6tSJy3bLkWG5IQl9kAgqbMPXJJM0J4RWFhR72VzM2tYj0GkW9P73msT25cx6P6IHP/kr+37zpZfdVmKACSeMRTD5IkRUzSmI/lTQEPUjjCXrZ6pLWM7BXJ3zPnBHfKXhCBOCwfTeaoh4gw4EvHPnMGtUyZUpQuq6/I2jyomkq1qdGjpwszLfbtq0k6o1isb4+sgv4ni5Zspb8Sv9Dt1FLUaLir2a/yK77E8fY/8zrsxv4pf7h/QsSRDMJrfKf6Csx29zleANn3Z4iNXFi5rPIiG/BgXjx1VUMqTrlMn8yZQQRLr+lwJd0mLzuGtH5HMbaGf3EeSZ1nr3zIQnt+tFO4ei2hcJXL3fhsiLrjvr/OGvOnlA+XxP6X85ZMNwnULXBr94eGN42XGPIH08L9r1Qnla1UPBBrvvoxml4k5vDwU2zRT2ONmeKmoYkqBUqVU15Lbu8PKIMIwYUjbxn9VQ0alSbtL2Lleej22CtOPuwth8wk4KYWkdalX9DtykS/ujWeRT1/F4Im0ygvW7dAtKkWgoS6afEi8o5hbl8/9EK/RsIfkJ3IpBmbsJuFDmsairmahcuXEXz5l3omUgk0oPmoCC5Z4TR3L/9wOlHU7ySAqAKGNqyGf1/jLaMUo4DgZQwvV3WKqhgl0ei8QOB3rlqYNLjfVjnfg+jl5zE2M5lhWDHfi9cxo7N/6Nm+IodsHv3Hi6ycISSBkyPsjToErEum5pGLDgMezLXRlciownhlwg//BKj8EuHXzL71k4jLYKDGAKbTq2tLZHRzpwe7hmEKdXW1ob8gWxFNGKmTBmEiZwzVPDLg/0VjW/eQ8gHN4SQOTaMzLMgk6+y/Eb443oKHzXFNWwaZ5NTQhTOCsFz0pTwxyboVq26EfHuO6H1SUzhj/FjoYZN6VzsMmYT6+T4p2WW0jDVS4UTlDf4ruc7MUVTfSMijA7El6BvIhKcBcAMWekjhbTLHJzhS1qunWS2DfD/JnyLCxAPX3SFNXnRFaaDOUNZSjgAaMT8g8hK1DKqhUmkc+QvIQJ2uo5YonpK6Z6iOMgR7eVqhQtkthmzwonSyKW3z41Lx7ZgF43ZPldhJVl1puz5yW0i/Fnl+ekD0VxtREBAYLQuF4p+Fi5cJT48cxQoqTj0y5p/Q6WrNRXLJ3pOMN/hmX0rSStfGzdvHqcIYIgo4F8upAOepAG0JtoZDyIj3/fKHGShRjrjYBEg8uHOEcFryfMaOnuvMrtKZO3IY9qJgNQAauF9iUwD+HbpQRTOGvGBpIVDT/AhHaRk88fopVHQIhOC16+lYIU75It2jCIpf/XV6dt3JGkD96Ba4y6o3KBjkn2hujg8x8ndy8gMdpJefn6CSmfIkH/Icb4ymFInKRZ1LWJs5pAnT1m65yeEMBub69TrcgBPqVI1yTRnjHZEC8OmRnUtkfo1cl/zCHCgmz4JeVxG398pBMAyNjlQzCMYGYg5gIM22J1hRLtwoad2qz6o3ao3UhubxXswozqUpuAkN+FTyBHpmii3zh/EloXDldHF3Ob4lWeRLlOOX5pnloQp/9QWH2kzZ45DtWoVyHpBH2U/Clsvzpy5SFRG60nzlw63bt2joA0DTFh1XlElRmvmP+TMKNmzZRa+lKlSGcXoOg4QeezgiQXzl+Pw9g3IRhH7g2bsiODjLDWAMYJSKypJDaBW3IbfD6KQVbgW4Pc1U1aNRplL4IGXIx57O6Nb79FwHtaOIiXri8jS8eOHiQAGRmTWpDlC+Kvbph8adRyaJEFiTrwtC0fgzdM7IgtKndpV0bNnJ/KFKh5BUImtMBXb+n8CPHUtYmz6YG0uazLjW5aSE3toaBim0Ms0NpyD8e1XXh8RAYXwx0dHF2yEWU+P4Drxnd7TNcA4q9KiMvu0Kcr9K0fRpPNwxW681qz5c3N6hbxFK8SrHcXFT+9cxLpZ/UWg2OTJI4kVoAes0maNVPjjazKQNm3IzJ1Ebj0Abdv2JLOwgbi2YME8lArujnBbYc2/uaUNbt95SK4dgfi77zRFdzFe22XIKgJs5o9qS5HuDQXxdoECEa1L/H/l7PxBaMNZM86UPMePnyWt4T163uiiApmcOSc1a05lSZoISAEwad43OWoVBHrkrIbJj/djjdttNBm7CA/XLySC6G3YunUf+afUp4eovqCU4EsqNu+mcmXS2eRgg2PbF1GKJzPMnDkenTu3Fi8H9RmwMMclNkJdfIQv9f4Tep8d0BkTTZSQkBDBJ5dYJn2OTp3QvSpKVG6I5l3/1cSUknwbnDd4YmEKzHl2XPgEOvi6w9rIFLYkwLAf3ePb51Dv74Eamydz/fGiqXL9zG5Bn8TaPKas4TJ0bkTzsXpfOQqUotR0VwQFDVNcPbh6DPcfPCXNZ2bUbUPCJPmksqDIROX8mzG1sFZvIkb7uQuXwaD/tmPllB6oUKGBiD4uX760YDN48eKNkrNQ2Ri5g9hQxpR6bQegWpMuSTIloXIuckMgIE3AWvhDiMwEbLLtLnTIr0SWyBFw9fPC9CcHERwWKiqY+HxDyPFjCHr5HGH0JUupFSjHWzmQsxj0Tc1QkXwpW9mXibwxLTvKGr/ZRI3RqlVjLFgwNUa+QVo2hT82nFmzllCgzxPi6lsa7z7Yn7BFiy7oNX41ipSuGe/2YtvA6ye3MGdYC6HNzVXoL7TrPxOsqZEFuOr+EpscrqBbDsopbPPTF5IDdrTZTL9tyViiQdooMrvokFm7MJmVtY0TlINfrp7aKQJFnN88JsHOHCWrNIGZZRqkz5yThO1sIoc5/w719A1++3OUJuDfQqQ1FaQGUGtuhRxIfBBIb2yJ2cX+xpq3F/D6qxu+e39AMLHwhxHHGLEzA9++ccgarL394NmkPq59fq11AiDnrr1ycgcuHFwHH4rkTZclJwWopMVTikzMkiWjyBvLwRuy/ETg5s27pFmp+PNAPLbY36oKXb+Ookt7jFlFZsDyvzj3x6P5316akzQ/zDXHGXNePrwhfLRmbb9PZMjGv702xVTQiThTbRL+gily+fzBDcJ31C6DvRhoevof5sKC/OBZexItYEwMIoo/bMLldHoxTakXRTPycBJEINzTNgkOXA5ZIqCOgCEJR71zV8fffhbwX7MSRufPIc1nd5QvWkAZldq26T8w0TOiPCJEd0C+NPEp3kHEA0hRivEtTMS8ZPz/MKRVYcoPOwnp7czQulUD6If64NO7B6hOgsm5c/uizA8b3/6T8vVM0s1+SpooLEwse3YFdrbWYE64CUTu+56iNxOysGmvIfmoshaGo1C1gUMyIecfVV9MSRKbwqklWTuYkOXkruWCj/TG2T3Kbjnr0fy9zzB2+RmtFP6UA9XABqdjZOJ3WZIOAtIErIX3SpqA43dT/qMsCiF+nym12DlB6MutMa1C/gIVYJDKEvmIO+6C5xvYGZljUL66sKSoz9iUt18/YQnlYvYLDRKXWRikxoA8dcBayNgUDupYP3ugSI/GgszQr774HzVg9uVVbJpJ0XVdXFxRhcxVr17diBMOkflKsvM785v17j2CssG4Y/jc/UTwXSxO7cuLNIPAlU8vsfndFfSg7EfFKAtSVIU/6h4Tp95KyuNcgDjpuo5YjOM7l4hc0S26jYmRCTOqtqM7zv54A5rlFVUGkl9dHuIaTAmFBb6bZ/dh54oJInsL+ylOmndA8gAmkZsv7UlJ5EbJYcYMAea5ev/qEQVKjFMKf3wl0xxs2bwMDRq0w+u5U1DqnyG45fcB/xLNRK30hdAwYzGluY/9Cc9/fApn/y8k5AXiK2UCYYLa0mlyIoeZHQl/p4V2oQztMz/jvS/vsfDlCUwv2jpmg6RaV05sx5ZFo2BBAQxLl84Q/n16enoxvl5WDEeAM3/ExwwYWQAM34dq1SpSBplT5BhfFJz9QQqASeMXd47yOO9eNVkMlrOFDGj6M7KVs9+07TNFnGMN4bevXwR3nVEqExH8E58ZhoSEfwxyG2/IlzM5C4CMoyP5CjK59Jl9qyLA1nHw3Aj7cke7EZACoHbfHzm6WCJwkKJlWdjr0KHVL1dyLt+9e9ehZctu8JgwCM0GTMMJYz8cJx7Bk66PYEzEsyzQKQJJKCuuIIo21jeEV7A/jny4L9pk83HXjGVwdHJfyv9aEXkqlxERitscrsItwBvmpBEsam2PEtbZfhkDZw05vXclRfQuJt+1Sti4cXGEtEy/XCAP/BaB75TT9U8UzoHMAiZHmlZv2u1PdCHbjDUC/N8XdXl275I4uX79IpEv2NHRBceOncHRo6cpGGOTSE340fk13F0dlY3wB0QhSvWWI38pWFGaxwxZ8+KLuwtlXnlJ6eIqInOOAsq6TD6dytj0F+oTzgTEARKcsYX9dpNyeUCC827KDW6XMTult8tBASAZhKD82c2R0kZehcvbZxHyG/Ncm/xvJKWj6y6IyzkIRJakgYAUAJPGfZKjjAECLFzdo2TuXbq0jTJSlhOj37lzGq1bd8fe6QOQLU9R2FaqhfdpjOGn+x2W+qmR0TcY1k5u8H7/RjzQnd48QtF8JWGUOx98w4Jh6vYZm6bPoBzA/vjg+BqDW/wPr33dcNH9hfAtZHHktqcD7AqYI7OJjRg5m6ZYO7F//QzRZrNm9bFq1Vyl1jEG05NVokDAyspCmGz53mq6FCyYF2fPXRXp2CxJOJAlcRAIQ8yEfFNiSmDap2vXbsHD4wtlwLFDO8rv3KlTK4waNQ2eLk+RPUsGDOjTnnLjZhfcdnfvPsSuxWtEVh11v8FrmbZj0MzdeP/igUi1eOHwRhQrXxc9/l3+CxATiNyZ+QlVBcZfKmnxAX5GcZaVqxSI9tnNCYa6wXj75Aa5zwSIUTMnYWZKEdmlSxusXr2FODNDUZIysrT5Z3Ky92/U4tsWr6FJATBe8MmLtQmBs/vXkmn2O4YM6R3tsDJnzkAJ1w9h2bJ1tGzAzVUzRX1++PlTQnp3+opnrQCnVGNzYFaq/+j6CQReOCjq8YOwQoXSop+GDdtj04gOKEERnDAxhlHwd7jqBOG1AS2hdgiySIv7V0/gxpldlB/0C2XrqEJULlOQPn3S1hJEC3ACnyxMOYx37z6EPyEAZstmj2DKG+35+QOkAJjANzaS7qLX/wH1iROQhZZ163dS9HRqCkrwxWIS7hQlNeW+ZqHQzMwE/LtJm9YWTZvWo7zhI0UVDw9PIlt+LbJstG//D548eYERf5cQ5/j5wCVjtnxirf6HM5QktcIfzSz4rZvZD8/uX6EPWB3aD0VtIplnDTgTQN+59whjRg/AsGF9xfS8vX2wYsVG1GndB407DU9qU5bjVUFACoAqYMjNpIsA+6WcO7BGCAH8gP9d4Yd5nz5dxeLo6Ixnz15S0MgTYovxFynVihcv/Itp9ts3PwQFBVHWCQul39mIEf0ocfsOPL56hHKEhlLaJgN8o3RN9HmMnfv3i2HoUgLNCkSwynXLlSNBURaNIeDr6ytSYz18eEFjbSoaOnXqPJYvX48qDTsje97iisNynQgIxDSg1zZ9FkGirBgiCzdfvdzxmUy+Hz84wPHVYzy+Sb6BA/4VAo6Dw22h9eIsF1++eImI8nfvnITZ2NnZVdEMSpQoIjSK7945oiilCEwOhbWdw9oUFQKgvr4e+vXtKj6kPD298PTpCzRpUo+Wupj14SPmjp8JJofmYLWLF6+J6R/fsQSlqjQlUupcyQGOFDkHKQCmyNue/CZ9l9JB+ZH5Zdy4IbGeXJYsmYhnLxN99VaL9loT0vDxolpYqONFtbzw8EaZjnTs3n1YNG6Mu/8Ng7VF/FOVqfYht8MR4NzOxYsX0Vg2EAWunHO1Z69hSE+5Z1v2HK84LNeJjIAuaeZjU/hDj33yeOEMG+Vqkm/wP5Nw9/IRrJr2D+XOzh8pXYyBoRGMTcyQLnN24hL9jrfvPxINkwFqNu9JPoJ5YjMEra3LVg4WkLncv39O+LtOnBi5Ru/Tp8/CrL5nz+EI83n/6oEUACMgkrR2pACYtO6XHG0UCBzZPBc5cmRDsWKFoqiRcIfz2FjAad9qVJ28BK/Xrkeuhw8xiTJ49ClZUDmIyOhHlCeT6cafmPMdyoeq6XvOmhHOw+r1xQdjpu6GB/lDbV8yGjkKlqY0WP2T6d3R7mnF1AcwprMoTJlemhMtjK+PJ+XVtYWZVRrhx8YBD1a0pBTybdZuXzi8QfjzRYUdUy15en7B1au3iBy9HJl9R4ioacs06Qm7NFFdJo8nAQSkAJgEbpIcYvQI3DpPCdyd35IpdnH0FRPwrKmhIW5NHoR1LepicJvuGDNsIvqc26UcQWT0I8qTyXTjT8z54cOnwodLU5Cx8Ddw4BgRVNJpyFyh3ehdz140z0E/UgDUFNKJ2w5nv+Co1ZReGnceTv7Ju1GyZC3hnlK+/F/w9vYWH1XTpi2Eq+tH+Pv7g9PYVW3cBS26j5WBa8noRyMFwGR0M1PiVJiIdOuiEcJHp2HDWloHQXpzU2ahhkmxYlo3tqQ+IM4DHEx5TOvWra6RqbBz+//+N4CyrlxGvb8HoEz15qLdCnX+FgEgtVr20kg/spG4IBCzKOC4tJySr0mV2gRjlp4UZNkPrp/ExUvXhcmbMeFsNKWqtUCugn8hX/FKMtI3Gf5QpACYDG9qSprStkWjEUxEzevWLVQGZmjT/CtktEOq2rXwbetW9KhVGSvrlNem4SXJsTCv26hRU2BkZIhTp/bEew7sB7VmzVbyH/2PgnxC0GHQrHBfsR8tt+s/Pd59yAY0gwBzc8qiWQSs7TLi777TAF6ouL5/hT1rpqBum37EjVhSs53J1rQKASkAatXtkIOJDQIOz+/hFlGzcBAGU7toY2FTsDVRvnygdYMcmbRxiElqTHv3Hsbw4ZOwfv1CouIpE++xs39Tkyad8Pq1A/IVrYCOg+dIupd4o6r5BsJDFTTfrmzxVwTSU1Rv30kbfj0hjyQ7BMKJjZLdtOSEkjsCoaEhWD29N4rSRIcO/Uerp9utZgWQrRJ3P3zS6nFq++DuER/Z4MHjsWfPOo0If5wfumrVpnB2+YQB07ai/7QtUvjT9h9BLKOAtX06cnwSgcREQAqAiYm+7DvOCOxeOQme7q6YdWoX0TNotyJ7ULni0LG1xdrt++M835R+4aRJc9CiRVfi5ZuFIkV+puaKDy7MZ+bu7oGB/+2g6EZpmo8Pln/6Wk1HAf/p8cr2JQJJAQHtfnMmBQTlGBMUASZ8PrZjMc4f2oB+/bpR9FrROPX/JyhJohtIahtr+BGXlixxQ2Ddum1E1n2ZUvylilsDkVxl8YOb0eeL1MxGAo88JBGQCCRzBKQGMJnf4OQyPabneHr3AsZ2KY/DxPnXunUTREVaqj5nFvbUy5+gJFHvQ3XfjzINpLWxUj0kt2OBAKff06Twx13/9VcxlKX1jqVjyEIfqBzNJxcHjGpfCkNaFcT62QPA6bJkSWQEZBBwIt8A2X1yREAKgMnxriajObGv3/XTuzH2f+WwaExHmBnr4yrNb/uO/TGO+k1oYU8dfsG2TynLLDJqZ6AKjzcyIVl9Hom5z/lJNV04E8LYo1uFK8G0PnXg5vRaZIW4e+UYvDw/IZh4/26c3Y8dy8ZpumvZXhwRkDHAcQROXiYRiAQBaQKOBBR5KPER8PjoRAz1m3Dl+FaR4i1fvlxYtng1atSoJAQ/r8QfYoxHcNvNA5R1Hs8uX6XUS321kkg1sYXk34GZNq0dduw4QJrfxr+rGqvzZcuWwlESAlu27IaJPasLwltO/cUlODgE+qR5LFm5UazalJU1j4D0AdQ8prJFiYAUAOVvQGsQ+PbVG9eJlf7SkU34SGY4YxoZU/F2Pb9fY47/iTHZvzLYonHf7jgwYDhWPniJXsXyJsYwknSfy5bNRKtW3TQuADIoZcqUJBqYG9i16xDc3D5RoMl6eHh8AeeDDQ4KpJyxvTB90y1JhKsFv6DY5gLWgiHLIUgEtBYBaQLW2luTMgbGvn0Pb5zGzMFNMKxNEXB0bxpLQyyg3LkvnO5jI8FQuUqTJA+GmQF9a+npwc5Ec0EMSR6UWEygcOH8sLNLI7SAsbgsxlWNjIzQvn0LQSm0fv0i5MyZDUWL5MfOnatICAwSbgiKxk67PgYvQd9DFIfk+g8jwM8JWSQCEgHNIiA1gJrFU7YWCwTY52rNjL5wfvsMGTKko+wOA9CxYyuyltoqW9F206RyoL/ZOH7qAnSsLNEsd9bf1JSno0Jg3LghlK1jxh/RAqr2WaFCady6dVJ5qESJwti9ajL8/XxRsF5r7HG6Jc7xOo2RGRpnLI6SabIr68uNP4mA9AL8k+jKtlMWAjryy0r7bvhsHR2WgCJwU5hsuwsdCxvtG2wcR/T41lksm9gV2cjfagylcWvcuE6Mgzri2GWiXlZh+Q48mTwNK07tRav8ORJ1LEm1cw6mKVCgIooWLYC5cycjPWVYSYjy+PFzVKzYMLwrJiLOnh0VW/WEk7khHAO98R1hsDAwRkv7v1DCOlukQ/rg9wWPvJygp6OLIlZZYJvKPNJ6KfUg39uL7i9wz/MdQsO+I6upLYz1DPHW9xMMdPRgbmiMi5+eo3+e2shnob3BVCn1/qnOO8zbA9/aFlc9xNt2Q8PC3NUPyv3ERUAKgImLf6S9J3cB8N2L+5g1pBkKF86Hw4e3wMSEvf2Sd/HwC0Cuio0RZpsG+1fORuUs6ZP3hP/Q7EJCQjBhwkxhCs6aNQuOHduWIETgbkQldGbxf+g7dgbg7Q2K5hEzzFW4DIwbNsUjgwAhCJobpEYus3RIl8pCCHsfA7zxxNsZviE/aWb4QhZu/rLJgQyprWBFwk1ei/TQ101ZBpkgupf6urpw9PPA0pen8TUkQGCqQ/l+owr6GEgCYB4pAAqctPWPFAC19c78Oi4pAP6KSaIfSc4CoJvzG0zvVw8Z0tvh8uVDKUL4U/ygBh88i3V9h6LzumWYV7204rBcxxGBLl0GwNPTC/v3b4hjC7G7jLVUNrnKotyAPhhfphAuXbqG+fNXwpc4HnMXKQfjRk3wRD8QwWERKWsMdfSRK0gPmb2DiFPQB765suFJqDcCvwdHGAALhSwQVrbLm2xNyj5B/thLpvO7pOlTxYn0qiija42vhw8iNCQI6fIXRxCtzaCH7+Q/65zeCt/SWGFw/nowTGGCcoQfSRLYkQJgErhJP4aYsj45k859SZYjfXbvEpZN6AIrK3OcPr0rRQl/fENDjUnTSZlMSGJIlvc3oSe1evU85M9fAc+fv0LevL+SfWt6PM89SPMXGIiiFJDCJNK89O3bFStWbMTMmYvxbfJVWNmkhaVdJhhaWMGYli+Ob+D69imeBAbgicqAMtjnRuYiZaBrZoEwKwt8SW+LD2H+eO37USz7nG9jYN46ycZU/ML7Awl+t4W2j2Ew00uFPF+BIP9vIC0EbJ0+4cqhSTBOnRpmZiZ4dveioEvSo8Ap1vqyq5KNXQbcbP0N+UtWhrWtNAOr/JzkpkQgTghIDWCcYPuzFyVHDeD5wxuxkwh18+fPLcy+lpYWfxZELWw9hDRIWToOhP+FS6g0diS2dW4OY0P5DRafWzV9+gLcvfuQKFzWxKeZGF370N0TlYtVw6Ad6zCufLEI1wQEBGLz5l04efI83r1zJiuxN3Qo9Z9RlkyoXLks+bjWpbSFRchy/B3btu3Dxo074eDwHkFBP7WALOAUKF0DARUr4KbfBzKE6iCjsRVKkl8hm5XtyG/Q1CBpRZF7BvoK866L/xeBVxZDC+R85Yy7BzYS2fZPlzAm5W7evAHmzZsMU1MTIfDxMS6M7fnzVyjzz2wh7PMxExKcC/1VEzWa90DGrHn4kCxagoDUAGrJjYjBMKQAGAOQErpKchMAd62ciLP716JevRpYv34hOK1XSi0vSItU799Z8Dx4ELq5c2PZ0hkyKCQeP4YgomjhwJBXr27Eo5WYXXrSwQWtK9RD0/n/YW3LujG76De1WLPl6OiMU6cu4sCBY7h27TbxD6ZCvf5TcM48GN7B/sK3UNGMLgmFHHncJHMJFLPOqjisles9jjdxxu0J+fMB+VPbIs3V27h+fBuCSBtarFgh/PvvQLAfp66uDgX0pKNUf0a/nYe7uweuX7+N7dv34+zZS0I4LF6hLrqPXv7ba2WFhEFACoAJg7MmepECoCZQ1HAbyUkA5BdcnwbZ0KRJXaxZMz9ZR/rG5mew+cFz9OvcDzA0xJK1i/B3AUkjEhv8VOsWKVKFMsRUxqxZ4/9olhXW4Nq37Qe/589xgVwYCttaqw5DI9vOzq6C8PrZs5cwNjFDmvT2MM6SHcY5ckMnfXq4pdaFa6CPEAqLWdmjR65qGulXk42wlnPpq9MU/OICDoqp4v4dp1ZNQwDR6DRsWAtjxw4RPIvx7TM4OJh4GyeQ5nU3Fu5/CT39lPthGV8sNXm9FAA1ieafbUv3zzYvW0/pCHhTTlUWAtm8ozDppHRMeP7LrtwFvpBZjPwCc1ubSUjigcC1a0fx5o0DChWqjIcPn8ajpagv5Sjuv5dsgt9dum/m5mBN3J8omTKlF8FR27evQONGNWBiEIT3107h7qrZuDNpCFz/HYpqT9yQiYJF7n15jxMfHv6JYcS5TRaSpz89JIS/7MZpUOD8HRycPwq5c2bBzZsnsGHDYo0IfzxAtiQUKVJQmNUD/P3iPGZ5oWYR4Oe9LEkDAemAlDTuU5Id5UeK+uWSK1f2JDsHTQ/cLygETxcvh3WF8ji7ZArsLaQAGB+MjUmI3r9/Iw4ePIGmTTuhZs3KWEyULfr68X+8HXvjjFGrt+H9jl2C+sWkZg3MH9ITBW2t4jPkaK/VJWqU2rWriUVRkU2fT5++wNateyk7yTK0zzgLu60NcMTlPqqnKyjoVBR1E3O99OUpOPt5ophZBnxduwrXntwSBO/DhvX5Ix+AlpbmYrqLxrRD7dZ9YZ0mAyzTpIWZRRroUgCJLAmPgLurI0wSvlvZYxwQiP8TMg6dyktSDgJXT+0Ep9nKli1Lspz0VeePuO3qjpuPnuPGtZsI9PKBPvkyGZFQkpqc2VObmsLU3Azm9KIyp+hGKwtzXHD1oDBIM3j6B0jhT4O/ikaNaqNOnaro0WMI8uQpRybhcWjWrEGcenjw0QP1Zq+E3979IBU2crZri3k926JCpnRxai++F9na2lAwSTmxODg4Yg/51VadtxHHXB/i1VdXIkfOGN8u4n39669ueObzAdlMbBG8bSvePLuNdesWkPtHvXi3HVUDzZrVpwyLehSNPRIrp/RUVmNrgxlFYZeu3hINOw4hbeHv/QuVF8uNeCFw+8JBVI5XC/LihEJACoAJhXQK7Mfh2V3cOn8Af7dtmiwDP7rtOYE9g0eDeCpAHuyU6s0K+iTYfSffpO9EFxJGAQriHO0L+hemgOGFTST0gtIvWSIF/ir+7JQNyaeSc/ly9o6GDdsTPUxuEXke014D6F4uvf0E/42YiGCHd6jdrwdWD+gCU2pXW0pb+n8aPHgc0hmFa7+8iVtPG8qOd9eFYbzqVwOsvX0eG2hQjf6g8KeYM2cRYt9CD48v+PDBTSxv3rzHhQtXcG7PClw9sR1Z8xaHUWpjpEptghD6f/zy2RUmphbInr8kCYnN6AMtjaI5uY4HAt/p+Xbt9E4pAMYDw4S8VAqACYl2CuqLzQDzR7dFtqyZSRMzIVnO/MjqzdCjtGB7NiwkPz4LpDc1jnaebPr1IEqLLyQcevkHobCddbT1k/pJS8qekVi5nAsWzAvWCK5bt00Eh8QUy667juPo0H+BjBkxaPNKjKtUMqaXJlg9G5vw342pX6Do04HSpZWxzZlg/UfV0Qd/L0FkfWXretjZpUHD51ejqqrx42w2Zy0pL0WKFBDt9+3bhT4EnlHQyQyKEn9OlDtBgnaH61oR96KL2ys8uH4ShzbNxrDZe5E5Z0GNjyulNfjg2kkK9vmW0qadZOcrBcAke+u0d+Dfvnph9pAmROpqhBMndiB16qTFXaaKLEc0BoR8F3x9nLpq6zMHrNx9BC+On8L3d+9QZOyoGKd1Y84/XjKnEA+ZxBL+FPevXbsW6NNnhGI32rVXQBBef/HG0f/mQadoUdzavAg5iLA8MYXYqAZcrVoFYfZ8eGwnDErmFMEgbbOVi6p6ghz3pTRunBM5G+XwvfvmEerXrfpHfP5iO5mCBfNh3771UV7GvpUVKjTE6v/+wYRVF7RizFEOVstPML3PtiWjkCN7VuDtOy0frRweI6ArYZAIaBqB5ZO6IdD/K3Gb7UKaNDaabj7B2rv+4RPSEO1HxiJVYV2kGtLmq4hBtZvj2XbKYpIzO1qtXoyjPdok2HhkR7FDgDN1cKq435V5V+8iW/EaqFmyhqi6ft4kIfzxTmILsZGNnYmS2ex59cQ2lDShYAsSvnYT515iFn9K28bFSM+AhFMDkb0jMccT075ZY7h48XR8+vAe18/s+eUyL4+PcHh+D/5+lLYkiRQ2w/p/80nw0e5aMQG+Pl5YsvS/BO9bdhg3BKQGMG64yauiQODD+5d4TZF/M2eOixPdgzZpXLY8fo2wCxdQflBfvCTfIqM0tujXoBo6FsqFVL+JMNWmeURxq1LE4TSUP5bJlcuWLRnpfK+5fMKkLv1hkD0b+vw7GC1zZ0X+PxjhG+kg4nBwwoThRBx9HJ/Xr4Blm2aCcJnz65ZLkwtV0uZL8IwhNoamYhZuZAa2oHR4r187xGFWiXMJm4OZjHrH0jH04foNX9w/4OXDa/jo/JoEv5/mTFNzS6TNlBM5yG8wZ8HSsM1gD5u0mRI9wIQFPsfXj3CK/B0f3zonQAwK9BfZUsrWbI3qTbpSZHQ6eH5ywe2LhyjXcgiqN+0GQyPNWWae3DmPy0Ty3b17B+TIkRXXE+dWyl5jiYAkgo4lYAlRPSkTQS8e1wnvnt3E27e3iONYexzn43Lfuhy9jH1de6PfxuWYVLN8XJqQ1yQyAiNHTqbUy98ELUxkQ8naYyS8KTXf2YsHUSxt0tJW79lzGN26DULuwmVh0LI1Xnz3QUjYdzFNQ109mOingh4FG3HMkQHt21IqudyUUu4vmxwwN0wdGRzxOjb07laEkstExQeOOLNvlXgGWFDUuzYX5o+sWbMVpk4dhQkTZuPTJ3dhXs+e3R6lSxcXlEJZKJ3fgwdPcPHiNdy79xjOzi4IDqbArx/F1MwSdplykFD4F3IXKkOBJSWQ2thMcfqPrU/vXYVj2xbA79uv2klOPfjt2zfKlnJZ8CQam5rDzzeiVnDOzocwpkCY+Jb7V09g5dReqEG/vYFHtqJY7uzYkquMerN2Q8PC3NUPyv3ERUAKgImLf6S9J2UBcEirgmjUoDqWLZsV6dyS0kGmeKlfswX0qlTB52WTk9LQ5Vh/IPD8+Su0adMT9++fjRSTrP0nwufsWXx+eO6PZhGJtHMNHNy+fR/69/9XmFztcxWGfeW6+JLJDh/0QvEtLFiQsHNKXSZoDg6jCPQfhQVEO4oiLmCZCfUyFoWhbvyNQbscb+Cs21O0sS6InQNbg30Vd+1arehS69bs35snT1nMmDFWSRfEgSJMK8NLVIWv44wtnMKPf1+sYb5//zGcnMIFQwP68K3bpj9qteil8ewkQQH+8Pz8AU9vn8eulZOEkHrjxl3lUEuVKiZyTw8f3lcwL/j4fMWWLXuEAJuBxjzvyg1lXd7oOGg2/qraJE7jDAzww+HNc8GCKJcVK+ZQFptG8P/sIQVAgYj2/5ECoBbeo6QsAPZrlBMDB3anPJ+DtBDZ2A2JueCqFK8Gi1Ej8faf1klSQIjdjJNn7Zw5/8LLl9cjvX+zrj/AtGYdMO/EHnQm035SLF5e3vTBtV7kx2WhRFFSEe2JoVFq6BsYwoDWmXIUhGXh4vBIZwNnnUB4Bn0TgRuc1SSzsQ1K2GRFRds85N4QN809B0kNvrdFZEmp7xSA/aun4s6d02BtmjYWFuTy5i1Pv41rGhket/fmzTvSJM7C0aOnif/TkrSzbDkgHknSDlZp2DnOQSYsbG1fOhY3z+4VGj0ecPnypYkAfb0gPOfsG9FlWtKl38XyQWMxgjSCTJDNZmNFsbC2w5CZu4VJW3GMfR7fPb+PjNnzEZ+iDX1ghPt4hgQF4v2rR8KUfJN8JoODg0S/7G97/PgOcbkUABUoav9aCoBaeI+SqgAYGhqCvg1zYM6cSejSpa0WIhu7IW168hr9W3cDvL2RrkM7PJkyOFIhInatytoJjUCFCg3opTxM5AtW75s1Y7Z5ysO+TSvcn5z0P1pYM8VaqbcUhfny5VvKNuhFpkA/sJD47Nlr+PiEmwFZOMmSqwjSlqmCx2lT4/P3ABJTwkt2Uzt0zFYBaVPH3jx4xvUxdjvdQiOb/DjYrxVphWaTVqixOuxas587dxnxcaDpAT169BQjR06ltt+QgARwtLGNXUaR25l9JK1tM5D/YGZkzVMUmbLli7b7hzfPYMOsAfhOpt5OPTuixYqNYP1kIfdnUWa70T95HiG1qvxslwU+EhIfUY7pzZv3YOXKjcpzRkaGJOCFonjFBnD/4EC+j2/J99FXnGdhUU9PH8Ek+KkWdu/h/O7//juQNL3NSeDdity5c4gqUgBURUq7t+Ov99fu+cnRJSAC7HjMRZGeKQG71nhXH+mlGRIahmKjh+PhwaNw27kbL4d0Q14bS433JRv8swhwarjt2/dHKgDqEyecZYnicDpzDkgGAiDnEuYFqBQpqC4urrhy5abQUF29egtP71wQHzVsPs5coSbe58yAt8QrOOHRXlgYpEat9IVQLV2BSNuK7KArBYFwMaT/Hy5mZuHBIWJHC/8wJ6Cr60ekT59Wo6MrVCg/jhzZomzzyJFTmD9/JZFVO+OV41PhnxcUFCzOW5FAWL7u3xSs0Q2pjH/i5fj6MWn9xogo5Hz5cmPTpr0iwAL/jVW2G1Wwmf4J+j3TPTDtMiA8kv2HSZvHNWNGfmTIkI60sw9Emj7e5kwqFy6eRbq0tmjSuCaYPoe5HJcv34CiRQuKhQNlOL1i4cL5hbDH2HHp2LEVJk6cTabmZeHjCgtfyb/aj4DUAGrhPSINoA0N67Pq0Iw334Iuqeq1ubDZYHCLglizZj751NTX5qFGO7ZFNx9iXL9RIEcfkbGDolmQrm0rPJksNYDRAqelJ9+/d0KDBu3x6NGFSEdYbeoS3Nu8HR8fnYPhb6K7I20gCR/kaF3OL8wBJWw+trBKg9JN/geXbBnwMsxX+A3mNE2LAXlrUb7h6PUF191fY4PDJVhTRLDlpq346PicTKI3RSpIbYVowIB/xdAWLJia4EMMIFL406cvYNGi1bh16z757BmiROVGwmz/+NYZeHx0oY9pCxKuhqNDh5bRmngjDN79M4xHTYWu8wcEEhdmMF0LCoQi6Y0yFhlFqKqJnYCAAOTLV57Itm8IAdHP7RO20r5asaEgEE+1Y3I3kREIF+ETeRCy+18QCHe4UD0cHFEFr3pKW7Zd378SQ0mbNo22DClW43hFRMDlR0zHuCbtYUAp3Vad2Yf7Ty7B4ellPJs6VJp/Y4Wm9lS2t88Mf3//SLnpfMnp/8H+Q9DLli3FCX98h3LmzIZx44ZQkMA5XL58CJky2ODkull4Mm4Q8p+4gtyp0+C170eMuLcDH/y+RHlTb35+jY0k/HEwSaknTnhLaSBnzRqv1cIfT6Z//244d+5ylPP6kydSkTDWoEEtIsvfiYcPL6B27Sp4cOUwbpzegSwZrLF69Tzhn8gatuj8+1THaLhyE8woqln3xWvovnOC4d4jMK3YEHq37tG+o2pVjW2nojSYxYoVxoIFq0SboZwC89cS6cFfq8kjCYlA9J90CTkS2ZcqAvS5FrGEqfBRRTyjPXvuH96Jwbx65SAclLVnZFGP5Nz7D/jv4Bk8PnYSfo+fEF+GAbL074tzAzvCmh5ssiQPBOztM+Hw4VPCb0kxI3baL9DrX3wnjcnsVQsUh1PsukCBvCQEHiby7C9Yu3Yrpk1bAKtXD1Bz4AScDnbFlMf7UTVtfjTNXIq0geG6A68gP2x1uIpH3iRskPBX6bUnTmxZIDRWbdo01XosfX39RLRsYg+UzfYbNy6O8zB0b96D4cFj0PlMSjY9XejSOszGCjrePtD99Bmpp85HwCjyI8ybK859RHch+9i2b98bQ4b0RpCPb2RVw30CIjsjjyUaAlIDmGjQR90xqcq/09kIn9thPtqvPS9avg6y5yuOQRRtxqYNbS49Dp+HTZ12aFauLm7OXUjRbMEoPGIIrt88iQcje6Q44Y99iZJzqVOnOnbvPhhhik2XbYHPsePoMv8/dC2aJ8K5lLxjbW2FoUP74Pz5/UBoAM6M+wf1P+sKXsGzH59i0J1NWPHyDGY8OYxR93cI4S8tUcrUfv8NpzfORfPmDUgbNDXGWqvExHrBgpWoU6daYg5BI31/pyjcoL9b4Dv5Cuq6uEGHTb4Ula3r6AJ8D0MYfdjqfvz0S1+a+r9nv0D2aWQf00D6gFArnj/eaWqH5W5iIyB9ABP7DkTRP/kBPqNTeRWnjYbOg0G1ZopdrV0zvcD0AfXh7e6Ed+/uaKXZdOaVu5je6n8wypkDHYf1x4hqZWBjLLV9Wvuj0sDAPn50R5UqTSgS9gree3/F5CPnsWfov7D/X0fcJ/O+LJEjwDxyHTr0ESTIeYqURfbmnXBJ9wt8Q8JdUjIaWaCYqx9u7VmNjy4OaNiwNtavX6iV//fqM+Tgj7Jl6+Hx4wswNf0ZfKFeL8nse/nApOcQ6N1+gDBTY4rEMcR3Dm4x0EcoCYaBA3sg7A+m5uzUqS/Y3aJD/jy40HuYKmzPSADMr3pAbmsHAtIErB33IbJRONJBpQAY9tE5sjpad4xpA+q2GYBV03ohwCYPjL+E+wVqy0CZq+y//iNhULAAPhzbnCReVNqCXVIeR1qKbvQLDEKuHiPw+fwlipD8BvOG9XF94sCkPK0/PnZzczPimtsgaEOmkhnxxbhegi8uS/qsYFJi57dPcJjSpzHX3+bNy1C/fo0/PiZNddCgQTuiaumXPIQ/BsXSHCHFCuG7lSV0AgOhQxo5NgkHEyF3EAWD/Enhj7ufPHkUqlZtiiY9O/CuauF3mSxaiICuFo5JDikcgdeqQHwnbqakUpzfPhVM+qk8XmjVkJnzrWDP0QgjE8Xc2ZOk8KdVd+fPDebYG2dk7TocPl998fnCZRTp0Bbrzh3EqyWTf5vT+c+NKum0zAEIPXt2EhG98+ZNRtaM1vB2e4nv/h9Rs0YFYSpmwuekJPxt2rSLBD8T9OrVOenciBiMNHBkf9L8GUCHeAdB0blhRMMT1LYZwmyZWOLPlixZMhJ9TB5cOnROvaMI7zL1k3I/8RCQGsDEw/53PbMJWFm+v3uu3Nb2jUc3TiFz5oxaJWB5BQShWLeh8Dp3Ac3mTUf7Qjm1HUY5Pg0h0HXuSvgfOoxKU8dhU6fmMCfiW1lij4AB+ZF17txGLLG/WruusLKyEGnytGtUmhmNPwV7mHQdBD3KX8xmYB0/PyXJt2Z6iLqVGTPGYX/t/8EkYpWk8/KKOO5kvyc1gNp7ix+oDu37+5cII5OLtpdn9y7B2eEZhg37J1GHyhGeFx3dMPPsdZTsOhTZClSE16076LB0Dta0qpeoY5OdJywC03q2B4yNcYd8o4zJH0oWiUC9ejWI5vMD/Eg4SnaF/P503T5Ch/w3/eZOwvds9tFOkTkI/6IgsLZte0ZbLyYnrWztYf31k3rVCO8y9ZNyP/EQkE/DxMP+dz3fowocDRwupH8PRejL+9AvXPZ31yXaeR+vz1g5padgiW/dukmCjOOp+xfUGTwB+qHfoUP0B55EQqrr64vvHmQCIT8vUkOCaO+RrlljLO3bGVXtMyTIuGQn2oNA58K58WbRDCzuMRB1KRPCqX4dtWdwciSJggBnsShSpCBRr+xMdmZgBvQrcTqaEvm5/vmrCPlNlPPy5evBntqvjp+lwD1HZM2aJc735BNlF9GllHMqhd9hd1X25aYWISA1gFp0M1SHQlFTvrTPQqCyhD64qtzWtg0/X2/MGNiA0sp/x96964QPoKbHyFq9AAriUC1bH7/C1xOn8OW9IzzfOMCMyFUtcuVA0a4dMXLneuy/chQvz+3Bs1mjpfCnClwK257csDpykO/f7bmLcNzBOYXNXk43MgRKlSqKm8SflywLabzZFzAsjVW00+Pc0fv2HUWRcrWhR5lC1q7dFm393530u/nLO+ouvcvoS1wWbURAagC18a78HNM52iyh2A29cxHoMESxqzVrFswWjG4LXy8PnD27Bxkzptfo2Dh4o+eeE9g3cyHC3N2FOU/HwgJWWe3hQ6YOpEuHjxf2pMhMDhoFOpk3dnoSuQIcOoquE+fDZf3sZD5bOb3fIdC6dWNKWfm/31VLsufDiMg+jAJdois7duwTvpCdBs/BglFtcezYGUyaNCK6S6I85xesA8fT9I6KWPgdJouWIiA1gFp6Y34M67jq8L6TCfj7ZzfVQ1qxfXjzXDi+foINGxaBswlosrBwWWLYdOztPxzGWTKjxsR/kbNlU1jnzgkvytUbGhSIHjMnSeFPk6An07YsUxmi9oA+8Dt/Ho/JdUCWlI1AjhzZyEvED/yMSY4lNHcOBBEpd3SlUqVy4vSmecNQpGwdivR+h7dv30d3SZTnvji5wfvBQ/XzJ9QPyH3tQUBqALXnXkQ2kkt00JsWC8XJkMtHYNikq2I30dfP71/Gse2LKQ1QS40y6k84eRkLJswEPpKGj3JLVp88Hru7tUj0+coBJG0EprdpgBNTZ2Ly0QvY0alJ0p6MHH28EUiXzo6sFpdQo0bleLelTQ3ofPYg6hdrwDZNtMNiM/i0af9i9OipCAr0h7GpBaVL7IT798/GmsXB8/hR9b743fWLSlC9ktxPPASkBjDxsP9tz+Q7EUSVDqhWDDm9W3X3l+2ndy5g88KRCAnmS/9scXrzBIvHdkL+/LkxZ84EjXTGWRpy9RiJBZ16w8jGGn8N7IOJezdJ4U8j6MpGslmawTBvHpzbtkuCIRGgyNdmWLRodbJDIowym4RUKBOjefXu3Zly+P6DJ/Tu6DhoNpycXMgMPCdG1yoqhVHgx6ttexW7ivUBeocFK3bkWvsQkAKg9t0T9RFtUT3wnUiWQ18+UD0ktlkYWzqxCxaN7Ygrx7eRSfbRL3U0eeCzmyPmDGuO9OntyG9kG9FNGcareTbDLLx8B0UrNsbnM+dQb+ZkOB9YixMUsdm/VMF4tS0vlgioIlCjbUsEP3+BFx6soJAlJSPQs2dHPH36MvlBQMFwoWVLxnheLVs2BDkDwjBValRp2JlyOa/ErFlLYnz953uP4Pn4uXr9zeoH5L52ISAFQO26H5GN5gwddFQ9EXxwveoubp0/gGn96uH1wyviuA5RHGTLWzxCHU3ucH+Te9eEcWojnDmzB5wuKj7l6BtHpG34P4xv2Rn69llw6vJhbOnQBPpM4SKLREDDCPSpVQEIDsaRt04ablk2l9QQ0KfIVx2d5PecsSRev9gUQ4oYDi86aNVrAsrWbEmm4flgjsCYlCcrNqpXc6QDZ9UPyn3tQiD5/fK1C994j4ZU6KHUyArVhkIuHMT3Ty7KQ6f3rRLbAQGBYl2uZit6qOkoz2tqw+XdC/w3oAHWzuyPIoXz4fr1Y7Czi97H5Hd9d9t2GO2qNkEo+fr137QCLvtWo2R6299dJs9LBOKMQMl0NuLaN1++xrkNeaFEQJsR8IplDnZLSwvxzrh5dq9Yt+8/AxZWafDvv9N+O01fpw94s/eIer3lP95d6sflvhYhIAVALboZ0QxlJZ37mQYkNARBO5eK6h8oQ0gQJWPnUql+B0xcdR7tB8wQ+5r64+35Ccsn98CUf2rB290Ry5fPxokTO+Il/J15/wHZOg7CnsGjYFmvLp6c34uJNcrJaF5N3TTZTpQIGJLWh95yCAzlbytZJAISASsrSwwd+g+ukY/5+UMboKunhwp12+P27fvw9vaJFqD785YjLCI/K7+rwrUS0V4pTyY2AlIATOw7EIP+6UvqM1WL4KkccmI7fJ7fw9Q+teHm/BaZsuVFm38mwy5jthi0GPMqLx9ex7guFfDszjmMohyTz59fAfNnxUfD6O4XgBb12sLrzh3UmzMdLxZPRHpT45gPStaUCMQDAQevcM2frXGqeLQiL5UIJC8E+PlepUp57F83XQQR5i9RSXAEvnsXtauEN1HGvNj0S0DV6h/vrOQFUDKcjRQAk85NZbVeuI2Xx0xawI9kimVBrCw5+/p6e2h8JtfJv2/+qDbIli0zOUpfwvDhfWFkZBTvfhx9SGPp7Y1Raxdjy98NpNYv3ojKBmKDwGWXj6J6ibThpuDYXCvrSgS0FYHY+v2pz4PfJdOn/4tAyjm/e9VkZMyWj6hg9KKNkr45boa69o/fUfyukiUJICAFwCRwk3iI9EXlQqtFqsNNT5G43SuWwadPn2Ftl1n1VLy37109gQ1zBqNy5XK4cGE/bIiSRaOFHjZ6tMgiEUhoBO599BRdls+UNqG7lv1JBLQagbx5c2HgwJ64cHgjjm1biLpt+mHPnsOYMGGW0AaqDt7p1AW8P3JK9RBvL/zxrlI/Lve1EAEpAGrhTYlmSFPpHJuDlaXAi9dwIfb2gn9VUx6Lz4YT0cwsHtcZK6f0QKlSxbBr12qNaP3iMyZ5rURAkwi89Aynf5FuB5pEVbaVqAj4fIXPrZMaGcL48UPRrVs7nNi1DFnzFEGVRuG0MK1adReZU7iTIOrvyuBx6v2504HfR42oXyX3Ew0BKQAmGvSx75i+rLzoqhGqVwa4fkQj0qRVqt9R9XCstoODA3Ht1C5M6F4Z0/rWxbtnNzBmzGAcPboVTJMgi0QgOSHg+SNaPrmmAEtO90rOJWYIGO44AB3f8GDAmF0Rfa3//huLggXzYdXUXqhUrz3a9p0qMqbUI9/tUAqeuj5mOnydP6g3MuLHO0r9uNzXUgSkAKilNyaaYa2jc+dVz5diAs+7F1UPRbsdHBSA109uCT+PSb2qY2DTvNg4bygsTfWxatU8ODjcJmb43lL4ixZFeTKpIlDDPgPox421V+4m1SnIcUsEIiAQ3Lw+wjToUqNHUcD79q2DlZU5pvevj4z2edF7wlo8fPgUE5p2xstfAz/O04DWRxiU3NF6BHQ4hYssSQuB2To62WnED2kxUY48tQmM5+2HbpbcykOKDTbrHtwwC46v7sP/my9x4AaJUwYGBiKNW61aVdCckobnyZNTcckfXd9x80CNUjUwZs9GDPmr0B/tSzYuEVBHIIAoK9IXrYG0tWvg+Zwx6qflfgpDIHfusnj58lrSnjUrATbuRFCTepQ53kxjc/nyxQs1iRT6DbkZ1WrZCxZ+31D4yCaoxc/7UoeFSfvnoLGOZUMJgoC07yUIzJrthP7R3pIQ2IdaXa9smbgA/Sd2g/HcfdCx+Bnd6Or4CtMpS4ipqQmqVatAEb32tGRB4cL5UahQPvCXniwSgZSEQCrS/mUm85bTnftwooj0zOY/v6NSEg5yrskIAdL+hRQvDB36uNekSof5AZnwfzD5++3dtBzj7TIiktC9PlL4S5q/JSkAJs37xlHBG0gIrEzD/59iCmGu7+E/oStST9sCHdIIen12w8LRf5Ma3xKPH19E6tRq322KC+VaIpDCEMhYMD+cHuzE97DvKWzmcrrJFQG9904Ic/+MkGoVNTpF9gPv1LYpLMjsq6OSgepHJ2vpXbRRox3KxhIMAd0E60l29CcQYC3gLdWGv7+4h4DJ3RHi50v5gesgJOgbDhzYoFXCX/sazQA/P9Vhy22JQIIhwETkNw8dQ6pCBWCvQXNZgk1AdiQRUEeATMBhhoZAQLh7j/rp+OyH+AfgzdgZsP+1EX739P31sDySVBCQAmBSuVORjJO+vPzpcBNanFRPh96/gi/DWyLQ+ws58q4X0Vyq5xN7+5svuYykktrIxL4PKbX/f05cwXdHJ3Tt1TWlQiDnndwQIBOw3sMnCC2SX6MzC6bI4pNte8LnzgP1dh3pQOMf7yD1c3I/iSAgBcAkcqOiGib9A3Isfh1aPFTrpKbAjz76eshvn1n1sFZsm5A/Ir5L05tW3IwUOIjLR0+BmM0xqEyhFDh7OeXkikBoyaLQ/eypsen5f/bA0aad8OHCVfU2+V1Tl949ruon5H7SQkAKgEnrfkU6WvpHfEonatPipVohQ0goDtVqiS/PX6keTvRtf39SXJLJ4sS9pwiRgmCi34+UNACXr34IuHMXRWpXh43MBZySbn2yn2sI5fENpcA+TRR+Zxyk6F/3279o/ryo/do/3jma6Eq2kYgISAEwEcHXZNf0D3mH2qtBC3+dKctXSuTN/8hv9h5RHkvsjXy5c1JW40DcmjAF6Wq0xoYHzxN7SLL/FIKAbWryk6LId4+v5IYgi0QguSGgG/5K57zAcc0NzO+KAzVagN8daoXfLTV+vGvUTsndpIiAFACT4l2LYsw//jEr0ekI/7nsx3Gu60Bc7D8aQXF88XHWhDdvHHD16k14eflEMYKfh7l+374jkTNnaeTOXUa55MpVGk5OLjAzM8XE/VsQFhSMgXVbIXevf/Hcw+tnA3JLIvAHEDCkiEYbCv5wufuAvBCkG8IfgFg2qQUIeH15BV5iU/jdwO8IfleEfPNTv9SRDlSSwp86LEl7XxJBJ+37F+noiR4mA53YT0sp9QqmmTOi/JyJyFyTGWSiL++JVmD79v04Qgm/nZ1dYW5uBhOT1PD09CIFXiCKFCmIhQunIXPmDLh8+Trs7bOIbRcXV9Su3RoFCuTBhg2LKN7j14APBfkqk/K2W7cHZ2fOF2bhSkP6YVvX1jA21I9+cPKsRCCOCAw/fgmruvbFjstHUStbxji2Ii9LLggonkXJZT5xmYfTqQu4MmQ8fOnjPJJyi45xwIf0+YsEnKR8SAqASfnuRTN2EgJT0+nFtHSJrJp9/Zr4a9IIWGSPJLifLnhOPiAVKzZE3brV8fffzcHZQnR/mBe4PdaeTJu2AJs27aTckN9haWkuNIO6ujoIIq0eJxT/3//aRta1OKb+0H3zxQcNxs2F214iss6SBaNnTcTQCsWjvF6ekAjEFYEXHt4oU7UpdLNng8f+NXFtRl6XTBBQfxYlk2mFT8PPH/qXbyCEnt+RFe+373Fz3Ay8p4/8KMpaOt6XhD9y3JYluSEgBcDkdkfV5kOCYEc6tIQWU7VT0CFzWJ4OLVF0UC+YkhZPveTJU5Y0gCtRrFgh9VPx3o/qobv98Sv0I9b5kEePYVa1CnbOHosyGezi3Z9sQCKgikDmFj3g7/EFn8/tUj0st1MgAlE9i5IDFDpun5B67H8IqVIOwQ1qIczCXEzL1+kD7s9bjhdE7hxGVphICjvJcoaPjZGck4eSCQK6yWQechpRIPDjH7gwnT6vXoX/8Z+v24YdxavjfM+hcL/7UFmFk34HBAQSW4a18lhCbLQpmAsfj29Bm0Wz8fXhQ9QtWxeVpi+DZ0BAQnQv+0ghCASRG4OemVkKma2cZkpFICydHQL/+R/0T19EqoFj8JlMvfys52c+P/ujEP7OE16c21cKf8n8hyMFwGR+g3l69I/sQKtqtDDz7WdaIhR+CLzeeQAHqjfHvkqNcH7SbLRr0A5r1sxDliwJ7yPFpuZlLWrjKeWgzNmhLR4tXYkcZRpg+JEL0nE/wp2TO7FBgN0W1j54gUz1OyLo2TOUaVw3NpfLuhKBJImAT1pb3ChaCNsuXMP+Vt3Esz4Kwc+dJtiFlmo/3hlJcr5y0DFHQJqAY45VsqhJJmFLmshoWvrTYkRLlMWWkotnql4R6SuWgV2JItA3ZrdCzZTYmF3OODijw5CJ8L92HUYlS2DN3EmonyuLZgYiW0kRCHhQ+rcC/cYh8PgJ6KRPj9ojB2NNo2oy2ChF3P3oJxmbZ1H0LWnH2RDy+/tEmTtcL12H85lLESw7UYwwkI4vpGUaCX5eUdSRh5MhAlIATIY3NSZTIkGQVXsjaOlGy28lOx3iTrPMkxPWFNlrmSsb+QxmgkmGtDCytoKhuSn0KA8l14FOTHoHypSph+vXj8as8o9aMy7cxJrJcyjhuTsyN2+CzYO6IYOZcazakJVTJgLVF2+F44qVqDV6CBa2bgA9ClaSRSLACMTlWZRoyIURWUJoKEKDghDk44tAzy/49uEjRe86w+uVAzyfvIDXi9eiTgzGyIEdq2mZQYJfpOG/MWhDVknCCEgBMAnfPE0MnQTBNNROd1p60SLVapoAVbYhEZAISAS0FwFHGtpyWlaR4PeLS5D2DluOTNMISAFQ04gm0fZIECT1nfATbE/rxrRYJNGpyGFLBCQCEgGJQEQEvGn3AC2baTlLgl9oxNNyLyUiIAXAlHjXfzNnEgYpXxYq0lKblqq0FKdFlxZZJAISAYmARED7EfhOQ7xLyzlaTtBykYS+YFrLIhFQIiAFQCUUciMqBEggNKFzLAQWoSUvLTlpYXNxWlqsaZFFIiARkAhIBBIeAU/q8iMtjrS8puU5LQ9ouUsC3zdayyIRiBIBKQBGCY08ERMESDhkzSBHYrDWkM3IskgEJAISAYnAn0OAzbdBtPiRkMeaPlkkAnFCQAqAcYJNXiQRkAhIBCQCEgGJgEQg6SLA2htZJAISAYmAREAiIBGQCEgEUhACUgBMQTdbTlUiIBGQCEgEJAISAYkAIyAFQPk7kAhIBCQCEgGJgERAIpDCEJACYAq74XK6EgGJgERAIiARkAhIBKQAKH8DEgGJgERAIiARkAhIBFIYAlIATGE3XE5XIiARkAhIBCQCEgGJgBQA5W9AIiARkAhIBCQCEgGJQApDQAqAKeyGy+lKBCQCEgGJgERAIiARkAKg/A1IBCQCEgGJgERAIiARSGEISAEwhd1wOV2JgERAIiARkAhIBCQCUgCUvwGJgERAIiARkAhIBCQCKQwBKQCmsBsupysRkAhIBCQCEgGJgERACoDyNyARkAhIBCQCEgGJgEQghSEgBcAUdsPldCUCEgGJgERAIiARkAhIAVD+BiQCEgGJgERAIiARkAikMASkAJjCbricrkRAIiARkAhIBCQCEgEpAMrfgERAIiARkAhIBCQCEoEUhoAUAFPYDZfTlQhIBCQCEgGJgERAIiAFQPkbkAhIBCQCEgGJgERAIpDCEJACYAq74XK6EgGJgERAIiARkAhIBP4PkGeJQI2iUJsAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "m.add_feature.cultural.time_zones(fc=\"none\", ec=\"teal\")\n", + "m.add_feature.cultural.admin_0_countries(fc=\"none\", ec=\"k\", lw=0.5)\n", + "m.add_feature.cultural.urban_areas_landscan(fc=\"r\", ec=\"none\")\n", + "m.add_feature.physical.lakes_europe(fc=\"b\", ec=\"darkblue\")\n", + "m.add_feature.physical.rivers_europe(fc=\"none\", ec=\"dodgerblue\", lw=0.3)\n", + "m.show()" + ] + }, + { + "cell_type": "markdown", + "id": "4e3b3f84-6c79-4ae6-b6ed-189b1248a648", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "## Advanced usage - getting a hand on the data\n", + "\n", + "For more advanced use-cases, it can be necessary to access the underlying datasets.\n", + "\n", + ":::{tip}\n", + "With EOmaps, you can quickly load the data of a selected feature as a `geopandas.GeoDataFrame` with:\n", + "```python\n", + "gdf = m.add_feature.cultural..get_gdf()\n", + "```\n", + ":::" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "c9971a4f-7a69-4763-8823-5ae41854bd1b", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "from eomaps import Maps\n", + "m = Maps(facecolor=\"none\")\n", + "m.set_frame(rounded=0.3)\n", + "m.add_feature.preset(\"coastline\", \"ocean\", \"land\", alpha=0.5)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "e2a2f2f4-74ee-41a4-a13b-1aab4ff6ae54", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "places = m.add_feature.cultural.populated_places.get_gdf(scale=110)" + ] + }, + { + "cell_type": "markdown", + "id": "452c8a5f-6492-404c-aedf-eb7574d920dc", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "This will load the corresponding NaturalEarth dataset of the feature, containing the gometries and all associated metadata. \n", + "\n", + "For example, the first 10 rows of the `places` GeoDataFrame look like this:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "68b3a623-8d4c-4282-92b5-fa20414ffce0", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
 SCALERANKNATSCALELABELRANKFEATURECLANAMENAMEPARNAMEALTNAMEASCIIADM0CAPCAPINWORLDCITYMEGACITYSOV0NAMESOV_A3ADM0NAMEADM0_A3ADM1NAMEISO_A2NOTELATITUDELONGITUDEPOP_MAXPOP_MINPOP_OTHERRANK_MAXRANK_MINMEGANAMELS_NAMEMAX_POP10MAX_POP20MAX_POP50MAX_POP300MAX_POP310MAX_NATSCAMIN_AREAKMMAX_AREAKMMIN_AREAMIMAX_AREAMIMIN_PERKMMAX_PERKMMIN_PERMIMAX_PERMIMIN_BBXMINMAX_BBXMINMIN_BBXMAXMAX_BBXMAXMIN_BBYMINMAX_BBYMINMIN_BBYMAXMAX_BBYMAXMEAN_BBXCMEAN_BBYCTIMEZONEUN_FIDPOP1950POP1955POP1960POP1965POP1970POP1975POP1980POP1985POP1990POP1995POP2000POP2005POP2010POP2015POP2020POP2025POP2050MIN_ZOOMWIKIDATAIDWOF_IDCAPALTNAME_ENNAME_DENAME_ESNAME_FRNAME_PTNAME_RUNAME_ZHLABELNAME_ARNAME_BNNAME_ELNAME_HINAME_HUNAME_IDNAME_ITNAME_JANAME_KONAME_NLNAME_PLNAME_SVNAME_TRNAME_VINE_IDNAME_FANAME_HENAME_UKNAME_URNAME_ZHTGEONAMESIDFCLASS_ISOFCLASS_USFCLASS_FRFCLASS_RUFCLASS_ESFCLASS_CNFCLASS_TWFCLASS_INFCLASS_NPFCLASS_PKFCLASS_DEFCLASS_GBFCLASS_BRFCLASS_ILFCLASS_PSFCLASS_SAFCLASS_EGFCLASS_MAFCLASS_PTFCLASS_ARFCLASS_JPFCLASS_KOFCLASS_VNFCLASS_TRFCLASS_IDFCLASS_PLFCLASS_GRFCLASS_ITFCLASS_NLFCLASS_SEFCLASS_BDFCLASS_UAFCLASS_TLCgeometry
08103Admin-0 capitalVatican CitynannanVatican City1nan10VaticanVATVaticanVATLazioVAnan41.90328212.45338783283256243022nanVatican City636762636762000201771776868160160999912.33333312.33333312.48100912.48100941.76666741.76666742.05000042.05000012.41990741.903477Europe/Vatican0000000000000000007.000000Q2371019141850Vatican CityVatikanstadtCiudad del VaticanoCité du VaticanVaticanoВатикан梵蒂冈nanالفاتيكانভ্যাটিকান সিটিΒατικανόवैटिकन नगरVatikánVatikanCittà del Vaticanoバチカン바티칸 시국VaticaanstadWatykanVatikanstatenVatikanThành Vatican1159127243واتیکانקריית הוותיקןВатиканویٹیکن سٹی梵蒂岡6691831nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (12.4533865 41.9032822)
17200Admin-0 capitalSan MarinonannanSan Marino1nan00San MarinoSMRSan MarinoSMRnanSMnan43.93609612.4417702957929000077nanSan Marino290882957900020303011116363393912.39166712.39166712.54166712.54166743.90000043.90000044.00000044.00000012.46215343.953472Europe/San_Marino0000000000000000006.100000Q18481018373810San MarinoSan MarinoSan MarinoSaint-MarinSan MarinoСан-Марино圣马力诺nanمدينة سان مارينوসান মারিনোΆγιος Μαρίνοςसैन मारिनो नगरSan MarinoSan MarinoCittà di San Marinoサンマリノ市산마리노San MarinoSan MarinoSan MarinoSan MarinoThành phố San Marino1159146051سن مارینوסן מרינוСан-Мариноسان مارینو شہر聖馬力諾3168070nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (12.4417702 43.9360958)
27200Admin-0 capitalVaduznannanVaduz1nan00LiechtensteinLIELiechtensteinLIEnanLInan47.1337249.5166703628153423300975nanVaduz45442454420002045451717909056569.4333339.4333339.5583339.55833347.09166747.09166747.23333347.2333339.50373447.167478Europe/Vaduz0000000000000000006.700000Q18441018286030VaduzVaduzVaduzVaduzVaduzВадуц瓦都兹nanفادوتسফাডুৎসΒαντούζवादुज़VaduzVaduzVaduzファドゥーツ파두츠VaduzVaduzVaduzVaduzVaduz1159146061فادوتسואדוץВадуцواڈوز華杜茲3042030nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (9.5166695 47.1337238)
36308Admin-0 capital altLobambanannanLobamba0Legislative and00eSwatiniSWZeSwatiniSWZManziniSZnan-26.46666831.19999797824557054nanLobamba97829782978200501818773232202031.18333331.18333331.23333331.233333-26.458333-26.458333-26.391667-26.39166731.201993-26.430254Africa/Mbabane0000000000000000006.000000Q1014184211997831LobambaLobambaLobambaLobambaLobambaЛобамба洛班巴nanلوبامباলোবাম্বাΛομπάμπαलोबम्बाLobambaLobambaLobambaロバンバ로밤바LobambaLobambaLobambaLobambaLobamba1159146343لوبامباלובמבהЛобамбаلوبامبا洛班巴935048nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (31.1999971 -26.4666675)
46308Admin-0 capitalLuxembourgnannanLuxembourg1nan00LuxembourgLUXLuxembourgLUXLuxembourgLUnan49.6116606.1300031072607668410621998nanLuxembourg107260107260107260005060602323717144446.0416676.0416676.1833336.18333349.55833349.55833349.70833349.7083336.12527349.620833Europe/Luxembourg0000000000000000006.000000Q18421017517650LuxembourgLuxemburgLuxemburgoLuxembourgLuxemburgoЛюксембург卢森堡nanمدينة لوكسمبورغলুক্সেমবুর্গ শহরΛουξεμβούργοलक्ज़मबर्ग नगरLuxembourgLuksemburgLussemburgoルクセンブルク市룩셈부르크LuxemburgLuksemburgLuxemburgLüksemburgLuxembourg1159146437لوکزامبورگלוקסמבורגЛюксембургلکسمبرگ盧森堡市2960316nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (6.1300028 49.6116604)
56300Admin-0 capitalPalikirnannanPalikir1nan00Federated States of MicronesiaFSMFederated States of MicronesiaFSMnanFMnan6.916644158.14997446454645044nanPalikir412412412412010011004422158.158333158.158333158.166667158.1666676.9083336.9083336.9166676.916667158.1625006.912500Pacific/Ponape0000000000000000006.000000Q4275111419091410PalikirPalikirPalikirPalikirPalikirПаликир帕利基尔nanباليكيرপালিকিরΠαλικίρपेलिकियरPalikirPalikirPalikirパリキール팔리키르PalikirPalikirPalikirPalikirPalikir1159149061پالیکیرפליקירПалікірپالیکیر帕利基尔2081986nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (158.1499743 6.9166437)
66300Admin-0 capitalMajuronannanMajuro1nan00Marshall IslandsMHLMarshall IslandsMHLnanMHnan7.103004171.3800002540020500077nanMajuro2084208420842084010033117755171.366667171.366667171.375000171.3750007.0916677.0916677.1166677.116667171.3708337.104167Pacific/Majuro0000000000000000006.000000Q129198904514630MajuroMajuroMajuroMajuroMajuroМаджуро马朱罗nanماجوروমাজুরোΜατζούροमाजुरोMajuroMajuroMajuroマジュロ마주로MajuroMajuroMajuroMajuroMajuro1159149063ماجوروמג'ורוМаджуроماجورو馬久羅2113779nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (171.3800002 7.1030043)
76300Admin-0 capitalFunafutinannanFunafuti1nan00TuvaluTUVTuvaluTUVnanTVnan-8.516652179.21664747494749044nanFunafuti000000000000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000Pacific/Funafuti0000000000000000006.000000Q3412611419091430FunafutiFunafutiFunafutiFunafutiFunafutiФунафути富纳富提nanفونافوتيফুনাফুতিΦουναφούτιफुनाफुतिFunafutiFunafutiFunafutiフナフティ島푸나푸티FunafutiFunafutiFunafutiFunafutiFunafuti1159149071فونافوتیפנאפוטיФунафутіفونافوتی富纳富提2110394nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (179.2166471 -8.516652)
86300Admin-0 capitalMelekeoknannanMelekeok1nan00PalauPLWPalauPLWnanPWnan7.487396134.62654970267026055nanMelekeok000702601006622151599134.466667134.466667134.500000134.5000007.3250007.3250007.3500007.350000134.4815487.339881Pacific/Palau0000000000000000006.000000Q1540028904438830MelekeokMelekeokMelekeokMelekeokMelequeoqueМелекеок梅莱凯奥克nanميلكيوكমেলেকেওকΜελεκέοκमेलेकियोकMelekeokMelekeokMelekeokマルキョク州멜레케오크MelekeokMelekeokMelekeokMelekeokMelekeok1159149073ملکئوکמלקאוקМелекеокمیلیکوک梅萊凱奧克1559804nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (134.6265485 7.4873962)
96300Admin-0 capital altBir LehlounannanBir Lehlou0Claimed as inte00Western SaharaSAHWestern SaharaSAHnanEHnan26.119167-9.652522500200021nannan000000000000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000nan0000000000000000006.000000Q61475411419091451Bir LehlouBir LehluBir LehluBir LehlouBir LehlouБир-Лелу比鄂-雷楼nanبئر لحلوবির লেহলোউΜπιρ Λελούबीर लहलूBir LehlouBir LehlouBir Lehluビル・ラルフー비르레흘루Bir LehlouAl-Bir al-HilwBir LehlouBir LehluBir Lehlou1159149075بئر لحلوביר להלוБір-Лелуبر لیہلو比鄂-雷楼-1nannanPopulated placePopulated placenannannanPopulated placenannannannannannanPopulated placePopulated placenanPopulated placenannannannannanPopulated placePopulated placePopulated placenannanPopulated placenannannannanPOINT (-9.6525222 26.1191667)
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from IPython.display import display, HTML\n", + "style = places[:10].style.set_table_styles([dict(selector=\"tr\", props=[(\"font-size\", \"8pt\")])])\n", + "\n", + "display(\n", + " HTML(\n", + " \"
\" +\n", + " style.to_html() +\n", + " \"
\"\n", + " )\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "4a83349f-3d08-4d16-9f2c-7ebcc62c260f", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "You can then modify the obtained `GeoDataFrame` as you need and finally add it to the map with [`Maps.add_gdf`](eomaps.Maps.add_gdf)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "f128bf4c-31a2-42a7-836c-9f9c640c75e5", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-output" + ] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "m.add_gdf(places, markersize=places.NATSCALE/10, column=\"NATSCALE\", ec=\"k\")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "3321ad8d-38e6-4b5e-a7c0-76378cc9dba0", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAEAAElEQVR4AexdBWAVR9e9cXf34BDc3d2t0AKFlpa6u3/9+9Xtq3spLbSlxaG4u7uGkATi7u7/OZO+FEmAQLBmpg0veW/f7uzZ3Zk79557rlFZWZnophHQCGgENAIaAY2ARkAjUHsQMK49p6rPVCOgEdAIaAQ0AhoBjYBGgAhoA1DfBxoBjYBGQCOgEdAIaARqGQLaAKxlF1yfrkZAI6AR0AhoBDQCGgFtAOp7QCOgEdAIaAQ0AhoBjUAtQ0AbgLXsguvT1QhoBDQCGgGNgEZAI6ANQH0PaAQ0AhoBjYBGQCOgEahlCGgDsJZdcH26GgGNgEZAI6AR0AhoBLQBqO8BjYBGQCOgEdAIaAQ0ArUMAW0A1rILrk9XI6AR0AhoBDQCGgGNgDYA9T2gEdAIaAQ0AhoBjYBGoJYhoA3AWnbB9elqBDQCGgGNgEZAI6AR0Aagvgc0AhoBjYBGQCOgEdAI1DIEtAFYyy64Pl2NgEZAI6AR0AhoBDQC2gDU94BGQCOgEdAIaAQ0AhqBWoaANgBr2QXXp6sR0AhoBDQCGgGNgEZAG4D6HtAIaAQ0AhoBjYBGQCNQyxDQBmAtu+D6dDUCGgGNgEZAI6AR0AhoA1DfAxoBjYBGQCOgEdAIaARqGQLaAKxlF1yfrkZAI6AR0AhoBDQCGgFtAOp7QCOgEdAIaAQ0AhoBjUAtQ0AbgLXsguvT1QhoBDQCGgGNgEZAI6ANQH0PaAQ0AhoBjYBGQCOgEahlCGgDsJZdcH26GgGNgEZAI6AR0AhoBLQBqO8BjYBGQCOgEdAIaAQ0ArUMAW0A1rILrk9XI6AR0AhoBDQCGgGNgDYA9T2gEdAIaAQ0AhoBjYBGoJYhoA3AWnbB9elqBDQCGgGNgEZAI6AR0Aagvgc0AhoBjYBGQCOgEdAI1DIEtAFYyy64Pl2NgEZAI6AR0AhoBDQC2gDU94BGQCOgEdAIaAQ0AhqBWoaANgBr2QXXp6sR0AhoBDQCGgGNgEZAG4D6HtAIaAQ0AhoBjYBGQCNQyxDQBmAtu+D6dDUCGgGNgEZAI6AR0AhoA1DfAxoBjYBGQCOgEdAIaARqGQLaAKxlF1yfrkZAI6AR0AhoBDQCGgFtAOp7QCOgEdAIaAQ0AhoBjUAtQ0AbgLXsguvT1QhoBDQCGgGNgEZAI6ANQH0PaAQ0AhoBjYBGQCOgEahlCGgDsJZdcH26GgGNgEZAI6AR0AhoBLQBqO8BjYBGQCOgEdAIaAQ0ArUMAW0A1rILrk9XI6AR0AhoBDQCGgGNgDYA9T2gEdAIaAQ0AhoBjYBGoJYhoA3AWnbB9elqBDQCGgGNgEZAI6AR0Aagvgc0AhoBjYBGQCOgEdAI1DIEtAFYyy64Pl2NgEZAI6AR0AhoBDQC2gDU94BGQCOgEdAIaAQ0AhqBWoaANgBr2QXXp6sR0AhoBDQCGgGNgEZAG4D6HtAIaAQ0AhoBjYBGQCNQyxDQBmAtu+D6dDUCGgGNgEZAI6AR0AhoA1DfAxoBjYBGQCOgEdAIaARqGQLaAKxlF1yfrkZAI6AR0AhoBDQCGgFtAOp7QCOgEdAIaAQ0AhoBjUAtQ0AbgLXsguvT1QhoBDQCGgGNgEZAI6ANQH0PaAQ0AhoBjYBGQCOgEahlCGgDsJZdcH26GgGNgEZAI6AR0AhoBLQBqO8BjYBGQCOgEdAIaAQ0ArUMAW0A1rILrk9XI6AR0AhoBDQCGgGNgDYA9T2gEdAIaAQ0AhoBjYBGoJYhoA3AWnbB9elqBDQCGgGNgEZAI6AR0Aagvgc0AhoBjYBGQCOgEdAI1DIEtAFYyy64Pl2NgEZAI6AR0AhoBDQC2gDU94BGQCOgEdAIaAQ0AhqBWoaANgBr2QXXp6sR0AhoBDQCGgGNgEZAG4D6HtAIaAQ0AhoBjYBGQCNQyxDQBmAtu+D6dDUCGgGNgEZAI6AR0AhoA1DfAxoBjYBGQCOgEdAIaARqGQLaAKxlF1yfrkZAI6AR0AhoBDQCGgFtAOp7QCOgEdAIaAQ0AhoBjUAtQ0AbgLXsguvT1QhoBDQCGgGNgEZAI6ANQH0PaAQ0AhoBjYBGQCOgEahlCGgDsJZdcH26GgGNgEZAI6AR0AhoBLQBqO8BjYBGQCOgEdAIaAQ0ArUMAW0A1rILrk9XI6AR0AhoBDQCGgGNgDYA9T2gEdAIaAQ0AhoBjYBGoJYhoA3AWnbB9elqBDQCGgGNgEZAI6AR0Aagvgc0AhoBjYBGQCOgEdAI1DIEtAFYyy64Pl2NgEZAI6AR0AhoBDQC2gDU94BGQCOgEdAIaAQ0AhqBWoaANgBr2QXXp6sR0AhoBDQCGgGNgEZAG4D6HtAIaAQ0AhoBjYBGQCNQyxDQBmAtu+D6dDUCGgGNgEZAI6AR0AiY3soQGBkZ0YD1wI8nflzwY4cfC/yY4Ec3jYBGQCOgEdAIaAQ0AjWBQAl2UoCfLPyk4CcePwllZWWleL0l2y1jAMLYcwfCnfDTzsvLu29xcXFjE1NTp5LiYiMHB8dSB0cnsbG1E0tLSzExMTESI6Nb8oLoTmsENAIaAY2ARkAjcBMhUFYmJSUlZfn5+ZKTnSUZ6WmSkZFuDBukzN3dI83U1DQ4Li52HXq8Fz87YRQm3kS9r7IrRuholR/eyA9g8Jnh+D2tbWzG2NjYjktOSnQNqFO/tFnLtsb1GzeXOvUaim9AXfHw8hFzczr9dNMIaAQ0AhoBjYBGQCNw7REoKMiXxPhYiY4Il9NhIRIafESOHtpXGnE61NjVzT05Jyd7bm5OzgL0ZBPsrKJr36PqH+GmMgBh9NFt19XZ2eWR/IL8sdbWtqbd+ww26tStj7Tu0FUcnZyrf4b6GxoBjYBGQCOgEdAIaASuAwLpaalyYPc22bl1vWxZv6IsNze7yMLcYn5aWurXOPw2GIM3jdftpjAAYffZ4uduJ2eX14uKilwGDR9nNGDYWGneuoMYG+s8letwz+pDaAQ0AhoBjYBGQCNQgwiUlpbKkQO7ZfXS+bLyr7ll5ubmKakpyW/ABvwZP9k1eKgr2tUNNQBh9DlaWFg8gzj684F1GpiNn/KAUd/Bo8TCwvKKTkZ/SSOgEdAIaAQ0AhoBjcDNhgBDxutWLJI5M78rQ5i4qLi46IOCgoKPYQim36i+3hADEIafJSzhJ01Nzf7btEUb06kPP2fUtmM35G3oxI0bdSPo42oENAIaAY2ARkAjcG0RYAR4366tMuPrD8uOHd6PfNai/xQWFn6K9/Ov7ZEv3Pt1NwBh5A1zcnKe6e7l4/jYc/816tC114W90u9oBDQCGgGNgEZAI6AR+BcjsHvbRvniw/+UJcbFpIMjOBlG4LLrebrXzQCE4eeGzJhf4fLs/+iz/2c0YtxkyrVcz3PVx9IIaAQ0AhoBjYBGQCNw0yAAeRlZPHemfPXh/5VZWFqugeLJnTAEk65HB6+LAQjjb6itrd28jt16Wz77nw/FxZWSfrppBDQCGgGNgEZAI6AR0AikJCfKh288K7u3b8zLzsq6DUbg8muNyjU1AGH4mdo7OH6KGPfDz7/+kdHgkbdrnt+1vqJ6/xoBjYBGQCOgEdAI3HIIwOiTFYv/lA/eeLbMzNTsK4hNP4X3iq/ViVwzAxDGnwtCvmsdnVxavvvFTCOIOF+rc9D71QhoBC4TAQ4wpQg5ZGWmYzFmLHl5uSJ4j+8XlxQLBh0o3hcLFe/PbnieBWr3SnTdHFn6rLqDJC4xNjHWi7qzgdK/awQ0AhqBq0QgIvyUvPjYlLKM9JRDyUlJ/TA+s/RcjbdrYgBisqiHRI+drdp1dn39g2/F2sa2xjuud6gRqAyB9NQUQXlAMTE1UQYKt8lITxWKc5qZm6uvGBubiLmZudg7OkpSYrzk5eRIKQygnOxMKSoqFHsHJzHD53b2DmIMI8ncwkKM/taj5HuWVtZSiJR+bgMJo8q6cc3fKywokOBjB8GjNZXsrEwpKMhD34ukMD8PxlypmJpZiIOTi+TlZkt6crzS0ywzMpWUxFixQI0dg7wmiiaK/J18zxeDQqlxxW9/nwoMQECk3oW0FfBSdiPeM1LYlbAaprGZtG7XRerUb6SeeVMzM20c/g2fftEIaAQ0AtVBIDcnW954/kE5uHdHMhJEOsIIDK/O9y9n2xo3AGH8tbSzs98x/LY7rR5/4U0t5Hw5V0Fvc1EE6J3Kz82V1JRE1mMUGxs7ZWCAMCvLF/0pcTGRyqAxpWY4rBi+Ggwc7pgGCxWGYBPCoCu3YsqwYRFKe8OBhffLsL0JDMdSGHplYmMNA6+wWAoKy6v3FGM7GkY0gGjo8DtsKASJ75RIYXGZePnVFR+/ABiFFuLp7StOLq7lG13k3wJ42fJyc/AdM7GGR41GnQk6bgpDlb+fCTupvm0CTxuNUJ63rZ29bN+8BgrzKyU/Ox3GqIXY2ViLu7sb6mDT4Pr7gOwrfkyMjaRjhzbAoFRSUtIkPPyM4CylXZvmEhTUGPu0UclY9PCZmZnivIuUp8/KylIOHToiK1eyvOXfjTsnCH+/GN42vKpDA8f8wlKF+dnGoZdvHRkw7DZgphO/DHjpV42ARkAjcDEEOG5//v5r8te8X/OysjI7YS48fLHtq/tZjRqAmETaWFvb7Lj7wWfM737wqer2RW9fCxHIz8uTtJQkQd1EGA0lgtqJ6u8CeLJoLNAVToOLXivYJ7Q9lGFDoy6/sPx9S3OaczTuzgWwX7/e4uHhJpGRUbJlyw5lu/j7+8rEibchxFkgISGheH+71K9fV4YOHSTx8QnYpky8vb2UoUljaMGCxXL6dETFjps0aSh16gSqEGke+k6DKiEhCX3iwVEwvNRI0rNLpEffYVJUXCQhx49IanICjCtjcXBwkGJ4GOmhpJeutKSo3FCFTZUPW5NGK41Xe2cviY+LEytzI7E0K7deDcZnIazW48ePigkM2aLCAuX1o3VKg7NFs0ZiZ2cLb2CBMuRcXZ1lyJCB4u/vV9F/ZUzj3GngXapx26ysLPTdHMalhRw4cFiWLV+lrGEc8qwG7yD+Uu/hO0b4j/3l3zRCYbNLAc6vc89B0qR5KzmwZ5ucPHZImrbqIM1btavYD1e8WZkZKgRNzyuvP/RCxcrattwLW2HdVnxF//IvQ6CosFBios7g+cpTHngfv8BzzpDPDheB9Hxr+sE50Og//qUIcBz+5dtP5Ofv/leYm5vTGX/vr6lTrTEDEMZfMxsb2333PvqC+Z33PlpT/dP7+RchkBAXI2GnTigDwc3dU/IwyO/dtgbGHU2Gvw08GDawgSo8WTQilGmlfjGSXj27wgALkMTEJNm4cYvk5uZVIFRuBnL7MrnzztslMzNTjhw5DgMtUUaPHqG+V7HxZfxSDO/etm3b/zbyEoV/q9AnvlsKQ4+NHsFieA4LYenY2jsj9Gop8VEh4u5qr8LMhTD4DIYpv2GwYQYO7CvW8DTSYMvKypZ5C/4S2ITSrGlDGD1mEhuXKPGJyerc+f3bxo5Q26akpEpycopERERKZFSMREXF4vs5MPK85b9vvKz2qTp2Df7Ztm2nrFu/WfWJJ1Ju9vFANPhwgdBPvhQWlxuAOA2xMDeG0QsLEC0120jqNWoue3DNE+Ii4em0lX5DxoBPaC9J8VGSlRanDODyA+AL2BcNSO6TeNPT2q3PEGkY1ELtT/9zcyNArmkhFimkTFTWeM/EwtiLOBMmWRlpkpacJIf271QLQEt49z28/OTp1z4QevrZzoSFyNoVC9Q9wnvCv25jaduxu9q/pZVVZYe46d4j3QSTOAxYY7WwMZyboaPEJBU45IDWYefgKI7OLnjUyscawzb6tXYi8Ov0L2X6l+8XwlnSFvfJ0ZpAoUYMQNygAeBGHZs49RGbex95rib6pffxL0CAgxnDsyuXzIHHqkTN6/TklYdQEdYtKJGYuGRlVDk4OoidtRU8XmUqVKs2xiDPxhcaAAzPGv89GNL4sMb2DRvWl7ZtW8N7ZiwZGZnKMNywYYsyHGg4cXMOny4uzvLQQ9O4u4s29tkw4NJL+NFHn6nj8x/YeZKbV4gfhKNTM+DhK5W6deupULGdtenf/RShR/LRh6epYxYVFUscvHnbt++S0NBwbGMkdrbW8sQTD1cchx0KDQ2DgWcHj+U/EknsCxtfq6qJTc5iWlqG8ujx+ze6sa9nzkQozyQNxqjoOOUVpeHM6+Hp7oxrVleFo5mAwvdzcvLE1cVJhbHptczNzZe1azcow48I0NtbVAIDEHZky/Y9BdziG32atfr4vMax0RFSDA85vdxMKAo/dRLXuVi8YLS5unsobu32TauVYdcMnt7hYydhgeSgcONCcMm8WWJhWia7dmxT9wXvjZSUFPyOe93UHN7tYiwWmuK+tsbCqAjeciRCmlgog+h0aIj6TkBAHTxjdur+CGrTXVq373pNrsveHZvl0L7t6vnu3L2fNG35j9e6OgckbrO+/wTnU6jGJK6LRt0+VWnAGZWB2oLxrKgQkY+/IwEcb0ws7MFdtpKAug2lTYdrc37VOQe97Y1FYPpXH8rvM77C+iCjKe6niKvtzVUbgJgsHZycXU5iJe/x7GvvnzOpXW3n9PdvDQTSUpIlMz1NzCzMxdPLV4XuyF1gAeyEmDCxRu6FsTLeyo2xwYP7S4sWTVXodMeO3XI8OFRy8ksk4vRphGGRsIDJgEaija2tNGzSHAahiQr/cmDER8ow4OCJ8VTMQCkzOovXR4OBjUkMhu2xgXTv1kl69epe/mEl/wYHn4Q3LVp27dqn9uvp6SZJyRnoFyc5HMvYXCLDT4qTox0MOBv8WKp+BgU1goGXIG5urtKxY3sVMvX09BBXV5dKjlJ73qJh+u13M5CAkwHPq78y0r28vFDn20JOngyBAZ2uvCCcFOkN2bhxqzLai2Ho0atKwxC2trTBpO7g6Kx4lQYD4lZFkc9ENkLc9OyUIGHnlx8+k9OhweLlGyDWlubi5Ooh3uBKmptbIIyfL6HBh9RrnfpBOGXQAWAMWVnbKC+vKcLy1FPF4FspHAylstwUE5sy4V1zcfOUrj3710jSUvipYNmwapF69kpL8uXYkaMqKcrQEb/AOmJmXIrnIh6LGntx9fQTFw9/ePaS1XO9a/tmPJ+l4u7pqagf+VgIkBoRFR2NZ8pYfP38kJ2eL0gkFHc3J+XB577rN2goaRm54ufvj6gB9oB7hDzTIriJu/cdLvUbNzV0ocZe6cVc9OfPkpWepI7XqsPVGZqRp0PlTHiIojqcOLJf7LEYtLE2ExtLY2nWLAjng3skO0dxc0lJ4aIxt6AU52gqUx9+Xi0E6TFnkptutQ8Bjpcf/fd5eMIXJqSlpjTC3xlXg8JVGYAw/kwg9bK1UVDLTh99OxsDub4pr+Zi3IrfZSLDHzM+F3NTpBbAOmvQrKu07dRdhTEW/zld7BH9obeOjZ61li2CwEsbpORHmIBAzxa5dGfORMKTlYYQI7x3GNlLigpUMsGZyHixtzETSwtTcUTWLkNDbPQn0jNEjwGPq7JZ8T69ghMnjhdnZyfFH+O2qLOoeID8Po+5Zcs22bV7H2YP9kmkXr1ACQs7owy/QhgguQUitg6u0gAeCGa02js6yVYkXUSHH1JGH79D49McHgxfHy+ZOnUyD6PbZSDw8y+/y8nQaDl69IgU5OXAG1KiJvEGMPStbezFN7CRdOs1QCwQ0qvK63kZh7mum3BQXr9qiTK0CmDMgKytjk8+Z2mZsfgF1hMvH3/ZuXWdYN0AuR2BpzpRjhw8AG+xsXTr3hX3pbV6TnhfMeknv6BY3V/8uzwj3Qb3qrEK/9Pw4VOVW2Qqd057Si24zj9hhkvXIVyKW1U1fuf2KQ8q4/P8bav7Nw3ZkBNHVJgyMSFOjh3cKbZYFFnAvV+MZy0Hnv3wk8F4npOkVZv2CPVbSYu2nSQi9LgyGqOiY8XTp444g7dK75ojFlU21hZy6OAhade+vZhg+327d2E+MQK31UMGDh+vHlRXNxjIwJEJUUySYvKUSQ1mmvM6Hj+8H/zbaBiuDtIIVIOqDOzqYnb+9rN/+lL27lyvxjmOQ1nZWbjmBTB43cqvGS4cx0v2qQwXrwH7olQJuG2eFIAOcc/Dzyk5Jm5DPJRaAQcn3f7VCJAD+8wDd8ipE4d3JiUldsX1x0x4Ze2qDEBU93jb2dXtpV8WbDCyxQOj278LAU4iG1YuqDB6SLy2d3LDgG6JCS2ggqQdDl5fVESYkhxp0747uDn1FRBHDuyR3dvWCcZ2DPwY5fA/vXKGCcwEXkEOV/3794H37J+wClf/hw8flTVr1sN4K5HQsDDF58vLK5AmQU1UGNHLy0Mlb6jkDuyDEyXHPu7v5ZefxeSTDq/SZoQii9Uqmh3icflDrwFelAFJL5MNvBRMQCiG68nV3VsGDR+neEeUlElJSlDGKnk7TOYgCT0+LkocYdj27d1V2rdvqxIkuH/dLo3Ajh27ZN26TRJ8KgKhPmtx8/BEeKux9OgzSGU/X3oPN98WvCd+/OIdcXM0VZM270HeX/Rm8tXbw1niElIxaWNhYVEmTE5iiDvsdJREgsvJ0LazszPux2LxgefZE54xPnT8Nhc2pDkkJqbAM5SLZBpI/ZTyOfTCc9ZQ6tVvrMKxMBNghNnDsPJTfaBBkIrKAtRrZBi1Jg2lyq4AMWAomBqRlpZWysO1b/dW9Tw6ObtJs5ZtVR/4XRo2hkYPGz2DfHgp08QseHo5YxBiprcssF5DZNcHGja/pq/EbNYPnygvJccTZzdvGTl+yjU5Zsjxw7Jn5xYpzM2UmBjcB2dCxQWL1qZBDaRRw3rwfjohvO2iFgbkOR85cgz3QT3ZsWOPolWEhEbCI/ichCCZqiAvU9FmmGjl5VdHAus2gCc5UBn7t8oi6pqA/C/eKZPl7h7buwx80Xeys7NevdJTvWIDEA9xT3hjNkyfs8aoQeNmV3p8/b3rhEBKUqKcPHFYEazLsIIn6Z7GmIOzh/j615M2Hbtd4HE5uGeHHN23GbIg5YaaOYw4LjaKy6CxB+ONGa8FReU6cI6uvjJs7ESZ8TVI26YYzLFKt7Cyw6u1MNOXg34yNPdsLI2Q3Uou3z8nTm5eePhplWzRrVtnmT17jmTnFmICS5YzEdEqM5jeD1tw3OrUqyf2dlZqf0qrDvvhrrgPev0Mk8vevftlBSVMlGVYfiz+ajAAs/JFRo6bqlbN5CkmY7IkEZ0TUm52KvT0crExhJFxzpaUYLG1Uh4Hfu7k5CidOrWvdlLJP2dc+35jxvWfcxao8C6TRFJSM6XXwNHSvHX7Wx6MxPhYmfPLl3Li2GHF4QxqVAdZ5QMVB5Q8SN7D5abgPwuVCRNuU6Hebdt2qAUKw34nQ05JHrxnVjaOiu/F54Zhb2ZC20GbEgtuZWDRYAo+sgee9l6ya/vGiqQIugH6DR6jjKZbHtQbdAKUdaIqASkMzgixn5+kcS26xTGFYxB1PI8d2oNkKMpdYbUAXiDHSUZ7SXPh2EZvXwFkliKjE8Xfz0tssKCwt7eTjEyoKOAzC9wr+QWFKhHLxsFNBo6YqKSmHBDF0BJM1+Lq3bh90gs/7fYBZRDt74X7YvOV9OSKDEDciPYODo5R0x57yf72KfdfyXH1d64xAhwoDu3bJSeOHhBHcGkO79+F8QSyIcjKKy0uAPcmV2Xo5UBfDyF8uf+J/6hQp6Fb/H5WRjqy8nZJ5KmDalUcHxuLzNMIhCLslKQJV+teXu5KNy4fk7qZtaskw2PmbFtuIHKhTy09JlPkFxlL0zbdFFfwNPTtbG0sYAgi3EVuIA7KbE8alBzwGCJLSE5TGYKNG9bBAAfOCz6gfh2NPu63TZuWcvDgYbVSHj58sPj6+hi6XvEahSzZAwcOqlU0V840Y7lKptfPwOXZtGaZxJ4+ohI3sFsVQuaKm3xBZujWq1cHE6+t2idd71xRG4zMigPpXy6KAEP8H3/8haTlIAHG0U0YyosOw7XzrCMk1bMhknDRfdzMH9JoWDTnZ0lNipGjB8HrAsevefPGuJdxU8PbjLWMen4skODEv6k72adPD3XPzoFRnJaFCbvETMgJk9J8tbBwcXNXMkfkQ3r41JN6DZsAN08l90ODc83yhdKt5wAFC4XOjUC/Ib+yPmgL2utzM98tl9c3GoX8IReUi/d8LEhpFMbFRsuRfVvFyx0LA3AMuKBl6JfSTxzfSnHDFCLqYWLCbDsrjL8lqC27QYXOvX39ZfyUhyqScS6vJ3qrmxmBP2d+j+jDu5koGeeHOTuzun29IgPQ2cXl1waNm0/6/CeEB+lG0u2GIJAD3giz8SgtwDJe9LBFnYFuHkK1Pv51JezkUXG0M4dMSRlCqoekcQMIFZtD7Jd8EWh0FCGT4mhwmEy46zFp37XXOedwOvSkbFmzEEMKdOlcfVRYgcLHxw7ukdOnjos1rLdchGrpfwsM9MXEht/MbGTo2Mkq+YOk6fycDFSrOKIMNqTwokpEOyWNQiNs1IT7hcWvqQe3d/taNYB5+gSCyN0cHsk6smfrGoGjT7n3mAGcQ14e+FMqlIy3YZ/ykOLn64UQShx+E2nUqL4KmxQjHOWIrOIdO3dLdEIOjLpy/pQ5vJEeOAazSA0re3pTfvzyfYmJDBUPd3fxDwxQAyuPYwUeGo1BGpw8FidjS+D2+OMPKCK+Oqj+55IIbN++U1au2aIMInr/CpDhefjQQWkHDxa9rXaQz7lj6qOX3M/NvgENweiIcFAK7BRtgNnvDriHz06AUg8Un5kAX5UJHRmfUyFtE3ryuGxZuwT0gvJFDs+X9x1DyQwfc+Ey7dEX9ALkZr8RKukfjbnQkOPi5e13WTxMLsBJS2FSjBV4y4YWjPFyx8YVKpnH268eIhOQUAIPMzkpTnIyU8EXBHcUgqlGGKtNza0xxqZg/C8ur8yDqkXTHntBhegN+9OvtzYC5OM+NnW0hJ489mtqSvLk6p5NtQ1AeD+6gOOxdfbS7UY+/oHVPZ7e/ioRoD5UVORpCQs5KhlJUYooTq8ZGycLJZNC712+kdRt3FqOHtqLTMBshE4bYiJCQgQ4JzTkjEwgtYCBoXmr9moVSfJ63QZNKjwxJHMvXzxHctKjVWjCxtFb+kOzjQkR9EDQ6xAH7koGSqx5owIGBzaSsktwQ7q5e8EwPYPsuRmSEBupMv0swA1ieTIjdNY/sCHkD+5S4YzQ4GOyZ/sayc1Kx0RXJnUbtkRGYLYiizP0QUOsfbvW4ABmIUQWqgw/ni6Nso4d20pwcIikZ2ThHMq9g8SAK2EmcnB17OXXABUoxuLdqtuyBb9JSkKUkmKpi4xVK1TUYOMxmI3M8B2PyX3z9dlnH1eyK/hVt0sgwIzfEydO4h7IUVmheVDv5rXKzCxPACk2tpFxdz5wWZVTLnGom+5jZsYv+P07xYElZcLVhZ7BZrJpE7JzC4zE3beRtGzbEdmw3qrvXMgtnDND/Z4DbUgKgRshIYRctEDw/dw9fMQFEiu6nYsAJ0FydbloJe8xH5w4joOW1g7Sok1HxYs89xvX/6+4aMhhLf4dxpyD3HH3QxftAEp/yf5dm1Ro38beRfoOHg0DjuF/kKnParu3rZdTR3fj/kKiEcLBdQL9FF2AHFsukEkJyC8sz6o/haQcC3BBB4+coAxQegqZSczsa2aUkz/K0Y2e5/OPc9Yh/7W/cvF1KvgoFqXdwUv2uqXOMxr2wMRhXREKzmNCyI7qdL5aBiCMPxMXV7ew8ZMfCJj60DPVOY7e9ioQiIJXYRW8CXT5m0BegaEkLw9XSUpKVnulQC7FgK0s8LCDn3f6TJTExScixOQLwd1oJaPh4uEnPfsNVd41V4gwM4y5Y9MaCT60Q4zLChEWsJE0CPWOnThN1cJNT0tRGbcUcv19xpeSlhilzCDuv03HHjDa1qvBlsanO7TrKNHAQYcGEz18to4ekpmW8HcCCIeWUoQwMOggVEVNN3rTaGDxJz4+SYKPH5NUGJPMqu3YsSPCyvjgb4uLBkOAnzfCznbI1j0tOXCFOCIsnMmqEdwGjefD6hhMDomIiJJ0GIyOTq7i6t1Y+gwepba51D8MtSz84yd1DjwPa3AVlQGIrkyePEFOnTqlZC24Ore2tlTyFDxnGqeslMHqGhR3ZsiYMjDUtGMGZ21tFM7+8MNPcT+wXJ5RRUiTVvTxQ7tBSSiSSfc9K+279PzXQsTkCC6YIpEkFRV+QoryM9VzQuOv35DRVZ437zFKuTAxgvd2bW1cYNLDlZgYp4wVS0trBQVLKFI+piAvG9nIKRgripWuILX0GDYtxeqPY4OxpaeMnjD1hsPH65mK8YWcTkP0wdApRmQS4mPUn8XgAdIYmf/7j8owY/JMMRQRvFFqkhSU7IxyKR1ubBij6tevIxMmjFPf53FYwpHVj8gdTUpKAgc1BmHhMsUvtbUioZCOAoaPMR6zBCYy8U8zISkS4uwQsh86ZpL0GTjipucM0klB7jaT9ZjoREcEnxcqUyQgVH65Qtp8zlBlQzkd/Oo2kb6DRiosDf/EY18l0Lv0QWTqZm0/ff2RzP31+4iU5KR6uAdAorq8Vi0DEOHeKahz+vOclbuN6NHR7fog8MPn7wlyENQDX4ibe++evdK9e2dJy8yDd+UEpARK4LlzQkgpHUkdrhLo4wYjzhbbg68Gw4ueN5KDCzEZZWYXYCCA96x7f1WV49CezQgN+2FbbGlkqj4jB4/8PBo3Hv6NMaDCG7jwV/DvSpRgbxJqyvL6163jp1aOXFkyQYRt9OjhsmDhUklILVYVG06dPAYuYSpW5yfggYRXEppmtvYgtOP2oegz5zZ+Mz09U+nplRrjA/QjEJnECZg4/fDQObm4YxKNQUgkCwNZEQbSeGigeSj6QW5OJlbVtvA40huKncG7mYNkDh5j2NgpKsnABKGP6jZ6Jjev/UuVoONAS+8pxl8MljA0EWIpxYBgCbI+k2KsbR0RZkGJNwzUBeTq4JXeS1OkcNLr44XMTpaPa926ZXW7cctvnw3v88mTp2TPngOYUIxxTRPBicMCwMgSBmCe9Bs6AQNr4C1/npdzApycSTkoxr1DL0NtNuwqw4uePCoPMCGCSWr5eLbJW+azRK6wJxaarOrDdrZNzPGD3n5SRSiezPHDytYJ+op1pRlKDTITuiabwZijIXe52pQMAWeCU01dxnQYtVxY0/DjmEZKDWQgYZSVj/FxcbFyOjxcLZgzkdxRr0F9jLV1EJkoF5vnuAxfgHTo0BblLE+pco9161ZunHARxnKXlOihBFbduoFqkUrqVvmCvPyVFY9mz54r5jCwnZxcJCtP5O6HnrupjEDFfYW2bF8snGiQrf7rz78dDHQolCE50VTMrR0x/qdi/kKyIu4FUNCVs8HDyxvnZqfum6Yt2ip5n+SEeHH38lH7IoeSzgkUtLjgnNetWCSnw4Ll3kduXvoFFz3jB3Yog4TRXXiOZl3u/X7ZBiAGK3NHR6ekp155137wyNsvd/96uxpAgNwiuqft4PUiB4QrkjoNGoPvB+mVzGSs9EwkKiZRXJzsxNmh3DDHWFIxSHJw5OBCA4wrYzZ64bhNTGwMBgbUj8VKmnp4+Syw+3fjQFNihsEgI0XSk+NV6TFrhApYzcMNoSg7O0ccA5lnMORoQNJQYuJEanqWHDxyCjxBSxhmkdK4cUNliCbCY8mM437DJ8nuHZvEpChZpt1zp8repWzLTz/Nwqq9PF+SykbKOEQflCI+9m0O1Wc7DGIeHi4qpMjKFzxeLhJZjp84BWMMntCcfAk+GS5jJkyrEc8SV4ccuEnC5kqzXsMgtbImNlWJsfI79FykpiSiIkKCBB/dJ46g8XTr0k5atWqpskMNGP/bX1mOb/HiZUrclmXsiBuva3RiDgx2E4gbW4qVnZuqFHGrlPP6t1+z63l+fE4gaotoQpKazLnQsoTqQOvWLZS4OjNjuYBgslo29O+oj8jxwNgUHnfoRlpa20MdwFEl3tjb4xUUFXtkTFf1bNbEue3etlGCD+8EjcZCJt//1AW7pCEbhoXvlg2r1M3u6eklGSlxWOkWqTGS4xjHRnNQZuwR1UiGl85Q0nLSpNshA+QhVDGgR46VgQLBS+ZY5+7upuStfv75Vxk/fkyliW8XdKYab+zcuUfWrN2gntFUJGxNe/TFanz72m+6ZtlCSYk9KT51W2A+RBIZxtTWrZrJoEED4AlMVtQKio9nIaO+a5eOsnXbLlCBoB5hyVVBecuDaoWxBRbshfkCtU11L3E8wiVTkSt3XCuW9nRA9IiVV6gDyfmXCTg3e2h8xeI/5ZO3X8pMT09zw1z4z0RuOPlKXi/bAMSK4b46dRt89xu4f1rwuRIka/gtcv0YkuRKkYMgs3dZIJ1GDisAsNySHQY8DjZ5GBwzYKQd3LO9XOalpFAZZOxSCbZntQzYiBg1MR6pQG65QUhjywRcwAxM0sjgUAYW5udyw0tMlURMUMuOsmXdEjwhxeLhHYjV11h4ufJUVQIjjNazUM3ABPcaDUF+ly02FqFf6EKSkFwEziEFYZs1bYKBzA9ZbPDe+TZTvKaDO9eoMCu/Y29vq1anBw8dw2q+XP+sVavmEh0dg4E/W2UdM7Tq5uaiqkiQD8iz6dqlgwq/pqPixP79h4TZyPRwDoX3z8Ct4v5vZEuBEbhp7TLJz07GtShVvEaGlAMC/G5kt67LsWNiYmXGjF/VpFIMDw3vEXpSwyNixd/XW3lWkRMiw26765bj3tQEgFzMxaAebisIJV+Jp7om+nCj9sHwOENXFIunqHobGH00dpj1z+z9UyiPmIMFHT3G7t71wecNxPPvocrBWUBr8EZ5UGmsrl42H1VqulTUpU5PTZaD+3ZKk2at5dcfP5UzjHjAsGga1FB69uwqPj4+oKd4ImJic45c1Y3CnselsXT69BmJxjN64MARpTWJYJI4uHhB//BuVX3nRvbv/GNTlSI+Nkp8A+pCX3YjhMWPqEiVA+hLdG4kpWbDY1ysvMGGZ4nGHecDG1BzGD3yq9NYOvfoh+9vgJDyQdx3WMhjbiRH13A/0RhkwtXAUZNRj9rn/G7ctH+TIjBxWOeyM+GhD8Au+OFyOnpZBiCAMXF2dkl8/MW3nIeMuuNy9qu3uUoE5sz6DkuSNAwikEmBoWWJGAE5ZrxJkyGRUoTJtARePJZB4k3MG52hD0dXb3gHmyB0WlcJqlLG5fDeLcoINKx0rODFs3NwVyWonF3c1Ha2EENmaIrHIoeCRj4raDB0QRkZU4SQz2/cjvzEk8cPYXtTVeKIhivd5XUhUHsvVpBHkTW8+q85ePiKlRHHgK8jRE5Z8qoQK6uYyDPKs+bt6yceEMDF2cJrFiem6ryNYDymwgAuVry6QlgKyEDHih+Zb8huo9eRq2n2kaHvTNQCZri714Dh6sGlgj7DjoYH+/z+X++/OdkvW/Cr8nRYwWv6wgtP/ms4glyYMBxVLl5rAw6nsTq3xYuXyr4DJ5T0ibr/YAEyVMcBdsykh1R2Iq9DbdUoWzh7Bu7/BPDUpsGwcb3et+QNOR6NJUxScjrkiBTnpagQ79Ah/cXf309WrVoLPdAIJMkYi7mNE/jLTtIW5ddcIRh+M7Ws9HRZ8OdPEoGybkyA86vTEKX7DkNNoY8c2rtTCvPSlFHrDmrOK688f1OMQXxGGWk5dOioUH+SUSA+h4mJyRKOkoSNILlFEX5Laye597GXFYeOPDs6IPh8Msnvcp9THosG/mEUA3AiLaleg6vGYC2kj6LPnIRSRCvp2nugGveZ+MOERHJCGQY9AU47RfsbNu2gnCSmoP80Q6Ij54zKGs8vFfcj70meJ5s1ImKUqiKH8FZryxf9IZ+/92pqamqKO64BzPmLt8s1AEd6eHovXLjuIJLSyjMkL75b/enVIkDdvoO7oN/kZi1PPPHwOQ8PddWocceqCiyNxkoBLIFGHh2FZ1PwmpGRJ371m6sSVP4BUJZH2SWuEHj9aORV1g5DNxAHQg3RTfDcpSHsYI9ty13j3fqNQpZwY/U1PtwMP69bPk+twKhrdvzYcUlLTaPai/L2NGrSDMdvqWq5rls6G0ZPqVoRd+7cHiFUCzUQJcOIi42NU9tnImt55O3TVIj60L4dkhAdBksBvAzsz1DrtwDePWb3MnaNynDKqOXvbKGhEeDauYLvY6Pc+eXvYmUHUrOdkztqCrdEhnGTKs/dsP21fKWsw5plC1RSgMPfXo9nnnkMhr3VtTzsNds39R2//PJbeKYLlATPyZPlWdqKfI/r4uKMkBw8uySh0/DHbaNCMg2ad0TSUBOd0QpUuHihl591fmtDQ3xKvvv0TfB/EcpFGI6ctDp1AhDedBeGIOntyy82lVHj76pQJLhaXLhIPX54H+owp4ubp4906tb3nHAeF7Ks0bxg9nQJg+euXsOmcvvkByp0UTnesbEG8h5UNirXU80XZtYmoaSfNcacFi1bgmeNuREDIPl5bAxVU1Dg4YfuvWG0D3r5WEWENc6po2rwbqlEPUvSajiclkpsfLKqNIPUELFxcIER5ACvmRWMogIsyUuV556LczMssMsjUSL+9ZpIhy69McaaX5DYsnH1Emh9HpPjRw/BkHIQ/zqNlEC1pTVpOzaYA6wUf7Jeg6CK6jXlqFX9Lz3lK2DguKJc3sjb7zl3TkQG/dzffpBdW9eCkmQsLVu2gNFnozjbZDWdPX9VfYRb/xMmEY3q07IMJRpH4b5dcqkzuiwD0MvLe//oCfe21pm/l4KzZj7njb56yR/gOKDe4z2Txdvbq9Idc2BiDd1QhEp279knx45hNZSRoZI2TMGvatiwocpEzcwzQnjNB2Fkru7sFb+BRuDxQ7uUvEBgg6aYqB1l//aViowcHhYObb1YDA6mKmxB7bwOPUdAZDZIefw2wPArw6DAwYTeRxKYnR1tUeKqj8yZuxATvYnsRUjBDKPL4BGTMBDskzYtG6tECHJbGPpkmIfFzvcfPC6o7y5DRk3E2GksNBZdHS2kY4c2amIg6fuvZaslMxeyDhisDIkjdSDXUl6GzVJ5Kj/6+EtgEaUmlKAm9fFeEVa2SSp8rAZw8HVMLZxkygNPXzBYVQruNXyTJPcvPngdQfYCJd/w3zdehXe08hXqNezGVe966dIVcuDgEWXYKQ805kkafzTaOWeSbkpvH8NKJua24oTEHYoZt+3U/aqPrXdwayFAqsqOzWtRumy/5GclIpu/XHczHWG9YtwgjGj07Dcc3p0WEtSizTmT+5WeKb07q5bOVXWaWU+ckQDSDZq26ixMBGgY1BxG3HHZu2UFxs5jKtmMSR3UDR1x2524j01VNGLXllX4rgnqVDeQtLgTUifAWyV0GSODlo37ZXSGWbcZiEIwCU69j1Fy2rS7FKdPvXEd/yH39vPPv1VGKK03xa3GK0OdFhbmMEgdJBtSQ/Xr10VCYVflHMjKykKJwo0wBhNVCcIePcCBw7jEBWopMoW50CPfOgzzQ9jpaMlEOaUjR46o6E/Hrr2VEHketsnOylBjAPUs77zzdvW9AwcOwWkRjbmpSJo1a6zG5vjEVKUMYGzuIBOmPnRV6FByad6v38EbmCahKE3qi4iSBSYneixpj/vUbSpdIZxOnrGVte0NnwOu6mQv8eUZ33zMxcz++LjYtpfYFHPQJRpu7gC4UVsNHzvpElvqj2sCgWOH9sluiCA7wvgbN25UpcYfDZo9MPho/O3dfwyT8GGVANIYQshNmjSUpuDbcUVNsecvvvwB5YLgLStNk7atm2CVvVeyUyGlkl8urCxFKRITgnJUWHlzcKwb4CZPPHYfZGWyhRP8pq17JLBRW2X88fwoNm1mWqqI2hhP1MqQ9UrvumsSBgpr6Y5SbgkJCZBGSUNWcgY8fJHILrZUxl54+BnJzsmT4PBE1TcOqnUadpAxnXuq2qGL//hevN1t5ZGH78NKs/zW5OqVWlY8Fo0/NvIAJ026Q/3OfzgwUT6G3MhjJ8Igg7MRA1+ZWsHSQKWXhTxHksPnzfhEjJAN1mfgKBUmvhHhYSbG5CHDkRVZOLguWrQEg2MsPL0PKbJ3xYnd5L9w4uBkQu+CcpLgPuCUmAuNO5b7U54QTDiYIaVjj4ESgDCQbrUPAQrWh0EEmcYfF7Wj77wH41QjjA+p8s23PwkXqJ16DJbGzVrWKDhbN66U/IxIGdi3M8aIfFURiBETLlxPHtwAHdQiUFUayaY8lHzEzVo3wFOatO4NIydb/pjxmcTAc5iSmq6qDVmBQ+bk6qXu7cjIWERerKRBg3rKEDx7DGFFIp4bE1e4cL9RCzsuftn4DI4cOVTxDvk3a07TWK2sUbrKxcVJ4rHoZnk5GoCVtS5dOqkIDqM3W7f6AM8yhO99FW2IXOzQ0HTlOBg8uH/F/MVEQENjmb0ffpypZLuoNpGOggFMtLjSxB1GVpbM/Vl5M93dnMTPpwvGoXIZIIpgM9u5JDdBNq/8Ddeci1Nmi0NmCb+zao+jswsiQ6Yq9Eu6E2spsz78rdpoq/3wxXutabvBVoi42Hlc0gMILtjLbTp0efvLGYsuO/5/sQPW1Gc0gphtebNn5lT3fH/88j2xR0SQK7UmjWnQNVYGHQcZhn7p2SLXasmy9SqbKQGkWE83W/WgMzOMFTD48POnHQSUaRyRu2Fra41Xc5B+I+S33/5UYePOnTviAfVUq7uFWLXuORimPHod2wXJiBFD8aCUybx5i+TQ8Sjp0ns4is/XV+8xqeE4SsxlpCZBfT4F4dhiadGsIerjdlBGowNc/qdOIUMZNSuLxFaiI8MlPvIkPHwmYovwwuDRdyIM00etnA347NyyXqJDdsttY4dihRhkeFtl+370v6+VLIG9VblsjLubqzzwwD0V23BV+r//fYlyWihHh3A07BDlfSIJm38NGthHZSJ/9dUPik/I1TCNyrzCMngb2qowujWyi13gnboe8hzE9euP/yv2yE6zox7OWf3lwMtBePDggRWDttrgJv3n2LETKsREjzL7fvx4sLpHyflUSR+w/7jY6D98vPiBvK1b7UKAPLD5v34tRiU5eBhLpHOndqqOtqOjo6r//cuseeLsc6H22tWgRIMz+CiSSI5sk9tvGwLx7aYVu6PxsWHDFtm0bb+4eMGjh/J9JUW5ynggBSwfP5mp8RIODyU15QIDfGTUyCEqPBoVHQfReegOFlBFoXwBbYHkFVO4vJ9++jGMI1hp/wsavZjUOb1WGqYc/5jJHBkdr3CkVMvoiQ9WcO6o77h+5ULFIWzZrqsqLEB+OsuMMmuc14XjDSWVqGXIeywcfFJWjuK8edttI2Gc11fb8Fg0AIODT8oiqBHgTzUulUevENTGHEHjlKVRIyNR9ACe6GyMV4MgmO3hCaOWGkS3YHvqvvGyY+v6l4HNuxfr/iUNQDc3t4T2HTu6123YDBP3jcmspAcnE9puVEPnzQGtG9m6bpkiD9Nr5ebhLQF1GiiOWh4+Z6NOHVO4z16dXQyIm+UzZv5ShJkSIok4z6yUKGnRtJ4yXE5HsCoHUtKxgnXyqCMDMKlu27AS5ONDSpqFqz08FzB5aCgZqQy0MWNGXtap0YiaNx+eKAiIjh07Ag9FI/U9DphffPEdZDvyZWolOkgMs5w4flhOHISgdCmysGBccYCkCHM8PIEWpiV4MM3E3Y18MDsJORWO4LG5+NZriRJYgyv6Fo+qIuuW/oZwcvlDybNwAH+sT5+e8JAtVQ9uPlL46Ri8795JyKrzrvgufyGfkFIAjRqVrzRpiHD1fXaN4DVr1sNbtVeFQ1hTGDDC+EUmNAYNGoq8l6A0gQy4KcpbyMVFVXzJcw5+BX/sgQxO6NEdiseYiBX36TMxCHn7I2TvqK6/s5OjPPjgtBsSPrrU6XBQZUiH4fnNm7cpY5uVPkpKjeGJ9ZT6kBMaAlI/FyvffPMjBlxMqgjh31PDshIcF1jpJvJ0qJLnadK89aW6fst9zkUuMxoT42KU/NOBvdvLz7VpK1X+KwuebSZyceFC0vq1ul+vFDiGfpfOmwly/k5VxxYPGhamraBh1waeqWGyYMESOXg0VEl7BDVrA3UA9ys+ByZZLUeSFSkp1pYm0hV84169up0zB+zff1AW/7VG0jFNkFJiZ1kmrCXOuuKhp2MVx5jfp3KCSsCDgcC64G3btlLeeorvHzx4CAbFKcW5Ji+ZHOiHHrhbSbZcKU618XtUeJjx8+8Kc5+6zaQB6lg7ODrL7F++ETd7VCXBQjguIVXVhsdlUPO9rY2lqi+/FxGwTESpmOTRBZIvLBZA6snA/r3UAqMyPHkv8n5j9Sg2OkzIn2dj8suvv/6BSFWiMhBp4NNY5IKgZ/8RMAa9MfcWwVDMAl80U6ly5EENg2MQnzkmTVIPlx5EVsJiqJlhaWpQGjKS1YGu0z8LZv+EGsHvJSQlJXpe7JAXNQBhRNTBiYXfc/+jINK7ycDht1+Xkk0siUTDg67dv+b/prxSf0cE8TDj4cSFDgQPgzcQOUdsBhFQWvS8WXjhSHQl36gMF55ZqgUgWzPDhxfJAeFADpg32kBk4kViQqy07di9UmwpSMyqCRbgLXj7BqqsOBsYwk6ubhUD5ZyZ34pRUbryfikw/v6HiSH0AHIFZAfjy8vTXRlFXPFQbuFy25Ily1WoucgI/AkrOyRTBKGcWz0YdA6yc8tascFro6CWEonEEGbesnA9jaef4M10smUKvqVKZOFDQuNhyZJlsnPvCQz6zZDh161i5bcdHKEzwXtVqJcPNJM/GF4+v73yynMXvW4c5Bk6HjJkIDyi9uesZMlzWb9+k9Ljo4gzFfM3b97OeUk98BR6piHI+wxRCeDugHJdlHtoXoH3+f25kr+JAyscbFz9F0Jj+3CvZ8ID6aUMfZb6o+ht86YNkCn8NPoPq/cmaczI/vnnWaoiy959h9QKml2jCW0KbTYP3/qKd9qknocEBTWStes243ksw6raWCZMe6ZGB8MjyDDcs32d8n43bNZeOnXve5OgVL1uFANTcqwMCXY09uaB0J6N2q7RUZEwpAsQBWgKHEuQpBCmxryWbdqLjZWFelaodWZCz7cJuFp4bnygtcnqKhzrbobGifdMaIisgBpA8JF90rhJE/F0R+gNGnj0MqGGqTonVS2myFjGT3kIRn0YFvAQc/bxv+izbjg/Pk9vvviwONhaoGqQhzzzTOXlGimMvHs3lAnWbhFzO1/om0aLr6e93DlpPHiAJ0B9yVLyKHFxCWpMUIYFxiF6lQyLYh5z5co1snXnQYx35YbJlDvHQke1rqE7+vUyEWBi4hYIVXMsycTqm2MvKzBNmngb+Nx1FE0AKa1qbwypU8ya9xPHbc5LpBE89tiDal6hMeiEhfPVzOnsDw1BUnOckcS2Y8deJS3GDnAqooPFFEaGBVU54PFldI32BR0z1KrMxwkwtGzrCEULPNP+9RorPUF1AtfxH5YTfGjycHI76+DZOFPVoS9lAD7crlO3L7+e+Vcl03BVu7zy96mMvm/XFgk7vg9Al5fhYoUJTs407EaNGqZ4HOQqUBiTRiKzYenlYciTat58n+5chjlpwTPzyRb8jSLoAzGriSXTeJFwnaUMsik0AkxQb9MayvE2EBTliruwgOGKMqjJO4hfYH1Y/z7KI2RwB/MGvNhKmy5p3oQkoPKcUlOSlFcnLjoCA+FxBRDsJHDQ/FGDNhJVPspUSLJtN/BgmraUEHjUtq5fjuwofxk8aoLQO8bMK+7TCgRlF6z4z5ZlyUdoOOTEYdkFbSNy3pQnkFcMPzRkiINqeGWIlF7t6vLNzpyJUA8qy6wxhMoHtYDlhWBpU5PrnoefU4dIh1gyPbSuIPyTl+FkWyYtmgfJsGGDyzHBE0Rv0SeffIUC9/AWwt0+8d7HVRYkB/H9u7dJ2In9KiwTcSYcVQFi4QVzlzZtWqiH3QGGLB9yJpHwGpB7QuIyv0ueDxNMgsG/sbZ1VkkvNtYW0q1rRxVGp0QJk2PObvxeePhpqODPU54s3mc2NtYq5MPt6HWkCGhxmbkMh1ZdTdZipfTAzG8/RHbhMVwq6DUitEERWIaUmG1XiAw8P9zbr7128yjQM3Hnxx9/wfOWLCeCg4E7bzQOjCZK3sfL21sVqFeeVdxreFTUNlaolkKtv/PLYKkvX+E/9D7H4V7z8vI953m4wt1d968xVDn31x9UJQhqa/K58MYz7wKKw7GDu+HRTlL3NBdyd9w+FoZgMZ4ZkPgRdgTiuPd91PhneL5Z0istLQPZlRgfXfyxoHRTHggu1pyxYLwZGjNuI8+EIpKTh3BeCicoGLlnVEUMDlbtUWYyjvXDk8PxzCHrP79MGgS1Vpp0NGhpMPKHv59/L7G05eb1K6VtizryJPi0VTUaerPnLJU2XYfI9o3Lxd/TTu677y416Z/9HY4NNAjZON6c3fYimW3lyrVqDGMJylEjB2FR2eLsTfTv1UCA9wGNOhp0TEwhReBmaPQM0rbgnE9OPecGw9xzfv94vzAJ8/Dho7Juww6xcamDxKYh6hnk9wshU0N7gIu9ymo7MxN9K8TDOQ9QFaAO+Kko7SYnj+wpT1yxslXcU2Zd0/A0x7zLuUKVPcQc5Y5IKKOhtFPYlwcmDi47uG/XI/j9m/P7avj7ogagl7fPFtSG7XbXA08Ztr9mrxwYqJFmXpYJXpQVeBtBKo5P9XOG96iIfiWNQJy9IuCF4E2WkpKCST5HfUa9O7r20zNQ0xWkdlaXYKM7OALk/CIYKjTYjEAU5US3f+8uadmuGwprl3tEuX/u98SRA0oeJS46nGOZKhVWmAvPHIwyTpN0UdOrxe3ZL06e9iAuULU8LS1Ntu08JDZOPpKcEKOSQEimLyhBtQSEUSnkzGGf/TA1txYHVz9MFB4YtGyU55AhoLUQJ42POKzq5tKQ4M3KVRE9b/ybfeLfrFd7scxiQ8ZWixbNVcIFV13s8w8//KxqDJPblYPV2qGD+4S1E5986T1ljNN4Dz2+X2wQVjGs5vdsW49wvKk0Ba/P1dlJ9YHY8lzywMOjly0RoeIUlJd76OnX1H6owcR09hBUP9m3azMMCxcV/irOh/4hvCF0xfOmJxY5EIl290IpO5xjZMQZeDht1Xu5yP23xgNC49QSx2eWMkOsd999pwofn31PsD8cgFhDs1GjBirLbcmSFeijEYzZeKHodJt2HXAtzGXiPY+oB5rfudoWFnJCdm1crCqpsC4uqwGwnF9yWrbiu/BebNO6uXzwwZsK/6s9Xk1+n/cvw+m7d++F5EIzGGFeGJRMIcZ9EOUJQ1TYl88NPfFNWty63rmawox4scyZLTQ4mZyQEHNG9mKxYw0vnhEWoQUIl7tD687dzVl84Ongszpq1FDFwb333rvUPbtr1x5VDYKeJsO4xrGLGfu//TZHDmHiyc3Nl7bt2+P5wLOOMYPPF7Xe+NqxW288++VjG3XROGbUZHiKEZu9OzerEm5mFjaqxF+Dxs2qfe9ywbttw3IkSqWhhGQwJsFk6dK1CwdgnDcXFOXjoJmlLbyEEFdGJKdp8zYYzzNlDpK8CvOzZeCAvggxD6k0qYqL2B9++kO8AptLUuRhGT1qsIqIxMfHq3GEDgbymM8fI86/F1Ihe8X7n2HEqkqxnf8d/fe/HwHy7Gf+Su1bUVQZGnT169fHPMhM9PLzLyszhsceGcqwJywsIWSNCGVcVJicAHfVDTYPs5itHHxQ5zpNVZFq1JA0sCKEqgskMSkV8zhL+KH8HZxNJjAs6AzJwYPO59wchqKtgyscQptk346NW+Pj47pXhXqVBiBufiOkw+ff/eAz5qPGT65RkVLy+LZtXK1OiD50ypOwyLWFSaFMmXx7tcKTVZ1YTb3PAZbp65yc6WHkRVi9ep0qSWRsZoULh3qQSGw4FRIsHq52ildCbw4NHLZiJCbQmwnbj9af8vTcffck5cWiAUoDlwMNB3Ty1miExMTEK2PlBLgKTlgJMau3E8jTbCTosj9Hj56AgGUG3M5wmzMOboR6vxjcz4SHSXREKDxohWKPEArDtB4eHtKscSAyZ8criRiuQOgl5bnxh/tkRnEIEjfSkPUWG5+C7DcYWwW5KtONoRpmttELyPOixEBUTDJW58Uw1u2wmmEBdnqrPMvDtzCmyMvgymnFqg0SCmHX9p16ipWFiTIOGdYlr4bCnTt27FHnHRwSLv2GjBErkwIYD8bi7BEo3fsOqQhjLVs4WzKTI4QCynT502Cmbhj7XFRiLCkZBdIZ9Y3JkcrPy5G0xGhl1PcaPEaiTh2Cly9c2rVvJyUF2TAcIUYNfiDrFhPbyhoV8jmpFgCfSHAvvXwD1AKgefve0qJNx8q+Uu33yB8JOQFR1o0r1H3DDGkjVGYJqNtITaQu9qYIBbvJyy8/qx7wah/gGn+BHvhU3C+8Frwnd+zcp4x6UwtIR6BMV9deA9Ti5GLe8mvcxRu+e3rE6eWjl7ceuJFJyVkYAwolHtGATMhl1K9XT0kXMTuV7WL35KVOhgZJBmRVqN9Jbzgz+efPX6y+Rq8964GTEsLG0CaCzqj64C3efnXBvwq6aOYjx6doUBPIrWa2P73iFhZYXGExaTCUdm3biESuHYq2QSON2b2DRk9WFXko1Hv88H6V7X8mlNV+BPfHYPHxC8B4ko7FMYWGzcFBPq2wykT1IDevAEX0L8xNleZNAlUEiBMexxqOWVzEU9UgF6sMcraMTK0gaByGMnGm4o2qG3YWJSp6cPfdE9W+1YnjHybR/fLbIvH0byqR4ceUlinnZXJVuUgnP5ihvg7tW8vAgf0qzs/wff2qEbgUArw/T5wIlv/85201Zz76yP2gEDSAF9FCGWwU5OZ9zPvZkNxJW4Bz5l9L16B6SZH4BDZBWbssscacN6BPJ+ndu9yOMyz+zu4D3yMnmz90cKVDb3MbSuH98suvReD3W+BzTt0XtIsZgA3gLQp54sknpLDUVIX8GjSBRhOIugyDGR76C/Z4iTe4Svx9xpeqjh9d5wEBvio13Q1hD2Z/0jt1K7RylzXKOGH1zQmQKfGJSSkY3EVN2OTdvf/+/3DxIYEBwnP//n1wsTHkYll+pdhVhgs9jzExcRX9yMzMwu8xauXLm4Fq7zHx6fC+oW6mBUY1DPy8EzgAsz8sos2MzRjwKellNEMMmQK+1MJiQs3uPQdh7BbAHc3qIgHKBc3QbFlpoYwYdw9W6CfAZYuFF85fKOAcF3Ua4XoQYwEEeZccSX386omrp195th2O4evlJA89NE2dDu/Lv/5aDj4NyvrAQJw8aQxI1kdQ2zdE3ALKQz+xURESGXZUbCEmXb9+HZkwYZz67tatO2Q9Mvp4LtkQkp5wz5OKe0jF+EP7d8q4SfdBgLQ+qpHsxST8rfIexoBTRXJ36zZtYFzbwdD2k6l3T74gg4/Xk7WJ+djQ48mQN3+4wuo/dIyiBNCLUlNZ6AdRPeD4/o0qGxF2ofLgUErlRpaM+/DDT7HgKUatzX7KwDNIKnAxlIB7PQ/eJhoWTEqiN8YL/D+q7lNWoba3SFS62LDmL1SKOCUJsWeQqVgIw8lC3T+OqG5RJ8ALC7LbkVzQ+ppDxTGKzxmpMlzw0XvORVxERCQWRmck/HQ0kp9QbccJUkoksMNr3rINS9PhYf27cdH+2/TPEX4uT5riQMdnw8HND/pqg9Q1T4yPlS1rl2BswINiDM8mPHYW4EnlZoHIX5ir9kTZDy7AUrO4MCbfi+NE+UHotbRGZgYF3dlnGpAUKrYAlWD48KpDrExgi46OVZxwLkTCz8Qqryf36mhjJC+++PQ5CyhiQHWDkFBUIULNW9JmmAzi7++twntHoafKRDYuVMePHQQPd/PyDup/NQLVQODkyRD5+usf1bP2/fdfqgjJ5XydYWdqLW7fvlvN1e6QPevbt+cFNIRL7YsGprt7IJ1WDfD8h1a2/cUMwDswOP3+ww9fGs2bt1h9l44mhnWMzazF2d1PKP5Y3XIpjIH/8t0naqXFbCsrc2OsggMg6tsak3u9yvp4S73HgbYmDbwrPflZs36XU2ExaiDjypbhYvJuSFgthv4cxl7JR51e8o5iYOyYYDR2RtaVOwRCKRnDMmstmjdRnsLVazYoD7ADeDD0zlnbu6nB3wo8nDyl4VQIw9FKEsAPo84Xay5SS6uIPnBjkGWpKm9pDK+bjbSHNE2LFhSetq84Ndb6ZYYuM3s7dGinPKxrN+0X3zpB4IPCy4dEGFYQefaZR89ZIJRnkf2mBvF2XftJ81blXtJTCB0f2rtNBgwbr0K7Kxf+An1BG5VYsXPnbtm2Y58ENQ2SCHj5qPc0ZGAvGFp3YIIu98JUdAy/8HrSO7pv3wEV2uQzwPA2Jz8mGXnBe9Kj7+CrCguTdzrr+/8J4OER6RRntEtNQE8/fe45n923a/U7V5AbN26WI8dCINJdLsBNukIh+Gc+qCpjbm6pyjvRALaHMUN9RfKxbob7/lphUp39JifEy2fvvQQKho2imSTER4MGYoKFlYPUCQzEgheJRTAqWMT+ZkjwoSeXiy6Grk6gmgsToYzMbOGBaKSqZhg8uJR/WvjnDHG1g3wSEnyOHz+pkjdyCkGNmPqYkobatXWDUiQg7cXOBqGvugGKRsJJjVUpXFycEao+rsYXZ/zerWsnRUfhQpbbeHq6KW8dF2DHUF2I3syOHdtV694iZejEiZPwduZJt25d8FxbnXP5eL6rVq2THbuPSqvOgxTv3MWmWJ577nG1He//z76cjj6WJ6GRjkRZLH1/nwOj/uMSCNDBEhERoSKapCjdiNatW78y0HImYh77o7LjV2kAosPvTpky8cWvv/604nv0enFlRp7PoSMnlLSDObJCGePOQKjDG+58FsOm3hffu1SjNzACK+UwaPjkpcdI546tYDjkKjcoNeU4SOqH7lIoVv45B1saLbxmDPcWw03DsI0lsnNp6DDkRF4lw0aU8oiHRycClTSot/Ts049gcupfsWN6gUhuJfGUYWB6DhhKonFEqRWGhTjYMkGA3kg2GngqZR6yKpxQnO1NVGbe5TwIdI//8cd8iYhJgecpUhztLOTtt/6j3NrknQ0ZMqCC20Pi8MyZCA/DWzDpvufO8VqwH5SG2LD0V3hAy3mM6elZUmhki7CUr3LBM2no9Kkj0qFVfQhvj+ZXqmycIFmknkZzBMLCbEwSKYSFfRrYNWzcHNI2g8TXv0617tsdm9dJ9Kk9irNF/yy9xjQEYQbKmNHDqgxT8/g13eg1/mnGb5JbbKnI90GQVjFUPKgpb2dN9/lm2x8XWkcO7IYBaCtbkZhAIXbQOVV96/OzSa9V32lQ/fLLb+p5pLE2fPjQyzI2OWklorwZuW0HDgWLd7020qVnf7VwjI44LTvWz1NJKPSKU0rFE55/cgk5bsSE7ocEixGeTRscbwg8jkjOOcuLeK3Otar9cnzi4pIeT1tVIrIMAs0hEC/eKVHxmeLp1wB84QwpzIrD3NNaRWm4L3oIp0+fiXB9qnoSydu6EQuxqs5Lv68RuFwEHnroCZk1a/a7sANeruw7VRqA3t7eGxF+6nnXXRPVqu1sjw0Hlx9//FnORKeofTJtm14mzHrKe1FmAm+LH0SMm7VSg0NlB05FdktqcrnmHUufMYxI/gXHC2axGqo+0FiZMOG2C3TfKtunfu/KEOD1pDTLL7/8IblYhXfv1hEFzJ+rlhFT2ZEpt0IeAkdRVuqYOnVyZZtV+h4NV8qzhIbCI4HfvcDpOXLkuAr30jyqC88CFwfR4EumZRVJYIOWqkB4ZTsLRbmnFIiIMgGGHus69RqpjCwSboMP74TnzQik8T7ING51wdfJzwhBEsi6dRsxkZTIlCmT4NFwVRMexadpHJMnuGPHbrjbPRAqR/k9r/rSf9htF+yrqjciwk7JptXzK/iR3I5G4GgkAZwtil3V96vzPifFI0eOAtNSJWtB8VpyTykgHhISBh7fXikzd0H/x1XwL6uz/7O35XN9AIkOrTt0hYRR+fU6+3PD7+xTFrhrR1Gv1RacUnqr87AQZO1pg/fJsO2t8Mrz2bxuuUSFHoXxBx0C3rBoDKW3a9em/I9r/C+fmY8+/hz0jSK1ADNo2lEJgdGW8iQxG+Ud47U34My+c1F4+PAxVAHaKVaOAUquyAVZxH4B9UGt2CU2ZvnSqUMreNlOSXJ6jjoTjtnNghqo6kXX+NQue/cMo733/qdY2EYob2xbaPmREpOFRSmTw4zLUIkHxvnEO8boJI7LRlVveCsh8MknX6Be+/cbY2Nje1fW7yoNQCQOxHfp2tWjETTjGjWoI3fccZvy+Bg8chwkfvvtD0lJhxgjOFWsechBhB4eSrAwo5ZZnlZ2rjJm4jRMnqVCGZQUGH1hJ4/K2hULpRkI+B7uzoovxioOlATB+KMGTKh3KG4IPSIjhg1UJXcqOwH9Xs0hEBZ2Wmkg0biaPHniVe+YkwkFVmlEseqI4d45e8dU5d+2bUfFWxRlpQwAw2ds3333k0THJcPDFocak2mSixU7JzeSZP3860rPASOlHbQeq6N5xizD1Ut+UwZX545tVcKKra1tRR8Mv9BbMHfuIuWL48RBkWgkbSspHeWlw/kNw71JLySNU/IDWczexTNAho6eYNjNJV9zsjJl4e9fK08RN+Y9z/b44w+eEypXb17FP7weGzduhQdkhyLNG6NOC4TeVSIHz49JAX7QZuyIKi2X48GvqisUQJ0z6zvFrSK/igYQn+3OqMUZHnIM2Wr5mHyLkBCQqRZ9JkimKi3OEz7z1JFkX3ILRfoNHnvLlY9LQyTko/8+K0X5uah60Up5kJ599okLOKZVYWd4n9508tmoSEBjnfxLUiSYoVqdRlL599/PUPcmZZeYEWyFrHjk36txV/HwwMVxcnJQ43s6yOu52AhJ9JA4KefoWZiUSCq88k7gdvL7vh528jDKNbJP9Biz0Yik0Htlz3h1+luT2zJK8dlnX8umTVvhqfQWf0hEkcpAZ0WAj4syxpnBW9mzX5P90PvSCNwoBFhE4ZlnXoL9F+tTWR+qNAAxARcMHXmbuYcnFOZBkGVqchLSj23toE8T6C9DIbJL9z4HKj78y5atUhwpHoTTF8N+GZgwW6OUS1tM0NR3O7pvCyZdcpvKVDiPmaKjR49Q3pTt23chJFeoJndO8BxMGKKshyy5GxlGqAy0f/t7NBSu10D+AzzJ8XHlk0gJpiU41Mq1CukFxsSUhxnnRMgZRQ4PDQuDpmIaxGF9xcvbVxq36CDDxky86OU4HXpSgo8dVPIXxQiBkwOJ05Oo0yeVMTdqxIAqFxcMBbGSRSq8HEwAyS0Qad66gxyBRpsTCp0bolvkBZbhfs/E/d4FmY3VrWlKvH/84n2xt0YKPwjvbDSaKFtzds3ji55oFR/S+N62bafKtqYmJo9FeaGUBGhLwoh2cHZXRe4bNG6pdKeoYH81jVmvC37/QWFLk5LSJVGRkYom0BQJInX9vbBQLIP8Ubn3iXqC1LOjtAkNHEoX0WApL9cHXCFufOe0J66mS9ftu0yUWLnkT1n0xwwJalJfLXooRk5tysttDFl++unXilvHcoVMpmKSE29aM+j/denU5hx6xuXsVy2+QQlZv36jBIfGSJc+Y5T8CyWkzoSHgL4B6xzNCAej8Z4YE4bnTaRp43qKv0QqjjkoPcyMZxUFKgJUR0j+cvp4LbdR9zw8yhzT6LFPR71aymDdDPzLa3neet+1CwHe27zHz7aXqFc5dOjYAiR94Ym+sFVqAGInWLdL0WPPvS69BoyQCOhXGWGpaI8yLRQrDD+xBwO5qxq069YNVDIjHyPcwImQ2V0eEGZ1R+mUNgj9GHhDrO6xce1SJSXAzC8bC6h9IwvOB6FBcr64muTgR48EBxpyzchdI5eEwr+6/bsR4CBNfikV9mP/NghpBGUgwmQGjmHXdg2UrMv+A4dxT1nCI5ElAfWbS71GzRDSbVipTBGlhiJD9iPRqEwN+FHgJ1KgmKWbsGtFTu/du2dFOaDKEGa/KM2zdOlK5d1THhRrOyVcS48VS0bR8+fXAOWtuvSuuN8r29fF3qN4+J4dm1EpYbc4wrhkYy+tYARTtJsSGdVt9P589125MUXDusTYWnn3mJ2ZDemNDJRX7NKj/1V5+87vE/lvs374THnvN6xeKidPQGbD0gXPdx4Whfkw7r5EmHCMGqioX0UD9fzMf2K+bNlKlZiQhizNKQ9cyO08/7g3+u/1KxbJ8kWzIeTsKV6IavC6VVWN4mJ9ZfTkeEik8jaPu3Maro0FBnQz+erjN+RU8BHp2a2tvPXmfy62iyo/o+d3+eqtqGxgqhbXTLooyU+FgWn8t66oJ65RiYRDiN8ZEkTPPPOYiuhUuUP9gUZAI3DDEKC9xKolyeCqGhpnDs5tjKRx4bdr1248xy9z4W+KH8xU57aqDEBXbJa0fm8EVOXtz/0G/go+ekhCTx5Wgp8lhVnKY8ONSMTv1OPiHpASzJa/Qk7A3KignPQObyAnZa5yGY4gV6Ww2AQZlqXKWzhyWL/rIpVwwUnqN64JAjTuGZphse6zVypMWmGGLgWF6fnlZEVvhVdgkMSdOSoTx5cnQ9A4YKLQ8uWrQOgOVfcNJWCat+uBMA88g77+Ff2eM/MbyUoKV6LiDPNwe5LXsQtMdPBE435jZRTqMvr6eiujpOLL5/1Cr/TcuQvBSYQEDj7Lwr1et3ErHNMPBmAxSuG1uOj3z9tdlX/uhREYEbwNn5drRnLDPtB/6tatc5XfqewDPvz0XnJxxZCqmZ23jEKN4+vRoiLCZdHsH2XWT9+Ii2NDsbf1AealkpR+XPr164iqKz9X2g1mdTPsTq8gJToykWQQ1LKjEjCu9As3wZvE+ShK0i1fOEuy0hOVKPZ4JBPVq1fnguzTS3WX+3rnnY8QOTGS2+8ur47D2uA7t6wBn/CgOIB/MAACxz17drvUrir9nM/OW299KAmp+VhUWan72AEOX1N4ZLnYsof4cUpqpspA9/P2UJnx9PzpphHQCNx8CDDJc8WKNRUdY+UcaliSemdolqiI9f4bL/BPVzz/KYb3Da9VGYCB8AKe3hkMXTuODFU0DigUB92xZR3kQHJQA7YxQgtmKrmDgsksUs6Jka+sc2nYF7/HMkBZ4D7lIRPYzt5RkXKZOUeivSu0qFgfNy7ihIwe1lvJAFTRBf32LYbAW299oIw2w23Fu8vPr7ykVR4yag3NxByVOxo2lxMHd6hwlD24A6yIQI8ROT2Hj4fTRVaRLETDjtweCxt3cE7vge5aMcJxc2Tn1nUq25cJSY2btsYk56g8XvSqJKDmamT4STEuyVSGYIcObYUC1YZJb//+Qyh/t01l/Xbu3AmflReWJ68oLSNbPWiDR98trqjgUFMtIy0VmoXfCwqXCAr6qIn5EYiIVtcLToP1k0++BF4FkgkDeeTt911XfT5K8Uwa0V283Nog89xBwZOQchRUEivoK36jwr30+p9E2b5wCIXngXSWmYUwHa67gzP06FzdpWnLdqqoek1hW1P7SYLe3e8/f41qNYWoRIG64jCiuJBg2NobGnb33Te1WodisgKrUzDLPCwiQeoFdVTnH37qhCTHhYunq43imtZEtQkutCivQrH50NMxyntNXpy7i5U89eTD6l5n5zUvrlqXUG+sEbghCNCWol1FaaNCyK7RucL58RgkmpifNfn+Z6VrM3d6AAPxE3F+J6syABtaWFgEbzkS/8+MfP43K/mbK9jffvgfkkLAtcLn5DMVYWIugQeiTuPWqjLA+V9jeaT1KxaoiY71QkkONyopzyyzB99w/LhRykA4/3v671sTAXoAFy9einB/Ls0bxW0idSATenMBKJzdGIaapaW1qiARcvyI7NqyAosDW2gK5oqHk7mqPlJsZINtg1RY9PCBXZKZlizOTraKp9epZ3k95WOH9sm+baslOTEW3mRUBPD2rzSUyHt2xeI5qLcMTUBzPESQs3nhhadVWPLgwUOycvVmtV9ysZiZbm9vCx3D5rIZHspCGKxN29VcZRDDFaWg7sqFM6VhHXeVBMBqJdXJBiZ3cdasP5TuGpOrzKw9ZPSEqYbdX5dXhoKH9WgmpUVm4u3RDpnSEB6O2SptO3aGN7P7397+8vC5jRMI+qhXSzmR6kroXJeT+fsglK0KPnZI/vzlG9wvp5FFjQS5Rg1VyIXjHe+R+++fqqr7XKpfHLBZxYKDNT20BbiX3H3qKS29ZCx+G2K/dmDtDB7cT3kVr4QCcLE+cOJQ4vWgCXCxTg4mNfp00whoBG5dBDiu0Lnx+effIEE3R2W8z/j2kzLMCY3wzJ86/8yqMgAbQw3++ObDsRjSqtdY4D4TZUjMoTN3DLIOEagUYWRiJgNQPcEH+mhnN3pgli2YpcSDeSCMSZDiaInsrNZKq46ZoJejG3f2PvXvNz8C9HjMnj1PeexYkor8tCatuyvOaFW9ZzIHvUqeSP7g6uLI3g0qy1RlzFo4y7CxU2AQmklM5BkVkvX28ZNtm9aiPvN+cXZzh+fJGyXW6sO4RLmoU8FyEELRbh4+0nfQSPHAPunJ/ubjNyQnM0UZJ+3bd5B2bZspuYz16zer0DGTQBg6RrECiF7H4AHLladeeU95uKvq95W+TzHhJXN/FnskQzPL/tVXn7+sXVEAl8Lt6CYyb2FUgyfZAwXJDd73y9pJDW10GJIhzzw4STLSyyMPvfoPk3c+mY4QowkygFFqEIYHa+Na/Z3xfbWHTUtBPW8cKyCwPko01ozwKg2lpIQ4LBL+RKZygcpUpvi5NZJl/Py8IW00BRycZCwYrC47Y5tlor744lvlfSNtplGzttK6fWeVyf7OK49LaWG6DIZkDMWHq+v5vVoM9fc1AhqBa4MAo1fkuFMzlmVguWAcOvTqFU7oxKD4OYspMJrC6Brrsx86dFQtLj/75FMYgAVBGMuCzz+zGjcAzz9AVX9v3bBSIkKQnQmCvqurc0VpsKq21+//OxBgSHXlynUgucOKM7WW9p17lnv9qpF9umw+hIrTo9SCwdjCUTr3GoRyc4Ew9iBQvnOlMuDqNesGYzBMJC8BGYt+kozs4dS0TGV0ZmVmI/M4RnzAc7KG15mGXfuufVUyyQqEjRk+bgBR59AT+6WsJBcGGDMky6sCKImSYgsYkDsgQ+Mnt9/16AULm5q6UuR/LZ37k9gixEhux8iRg5X38WL7N2SRMpzetA28k207Xmzza/4ZqSFnEGa3gaHnBy/ftTJED+/fLZ+/97LKbn30+bcqqsJczQnS+Pvxy/fFFp44c2TgsjSYoU2cOE6VViNdgGEXLmqcnZ2UXqVhm6peKX20ftNOlTU+GRnOZ2deM4O4LD9BXn3l2Qqs6KmDmKuSG6LXkZnhPJZuGgGNwI1HgGUVo6JiGGZVhl0OIgVMbEMUtUJblp65mTP/kNAzCUriyhkUH47p3t6eoDZNqdZJqEVpUjIUWOJVlaqT0G/Nyi5AUYJy6SZnF3dQUqB3mZ4gpFJ9/cnbZcj0r9QAZLbvdW/MJD51/KDKduzZs4t07971mvWBZX1Y/Hvnzj0qq5ii0hQV5qBap06gqjri6OioPI7XrBN6xwoBXoeNG7fJiVNRElg/SO6897EryprtM2iU8sBRq87Lxx8GH7I50MgfZSiupMxUhRLJL407HQcD0F8mThyvNMuysrLUfcDyUNQb3LiROoS75Ni+dYovOP7O+8UKdZBZx7gVvDIUK88GV5VCxQkIzcZGnsLDlqFK5hXgiTvfq606UkP/uMBzefvUx5FV+7m42IniiDVr1rTifLnqYztbG87A3SLt4lr27XJPkd69Js3bXO7mV7xd46YtwSV2knRwKOvWb3zF+zn7iwxjFxdki4WtdYUxxs/JEyUfjwPxp59+pWp+s1IOW5++veTbbz5TxqF647x/WGnj++9/lL37j2AGMIOw8m4ZNW6y9IEnmvexB6gKUacSlDg3Q/8UU79t3J3Ioi4VK2cPyUHVm/fe+x8WUYuQ3NT0vL3rPzUCGoHrhQA9bywQsH3nflA4UMEJk48xop10wZWi9jcl71hGcO/eA7Jl6y7JgaeBcmJUQWnXpjm8f4Oq1VWON3PmLFBqGIkpmSpyZmHtKH51WknLwLri4emjFsCGndKRwWTCrz95x/DWBa815gFknUhHZ1d04NKhFwL364+fQ3Y2XxX7ZoiLfDBniJE+8MC9qACxFWr1bSrKfV3Q68t4Q5W0+mkWBE0hoop4GN2tXMVzEU9rvRgk+YAAfylFTM8ULp577pmiskvdoXd4dtWTyziU3uQyEKDkxIwZv0pYVBr4aNMqlW25jN1cchPSCkwQYjRB1Q/KkTjbmciA/j2kT5+eVX7X4DVjIgnD0cxIB21Q6iPLt0uvARCfzlI1gw3eK4YaV/41V4V+Bw6/rcr91tQHND5XLvlDivPTxZL3sFGphCNhIDUlQ7qiasskGLcs7UfZJGbb/vzLbHEPbC3deldvgKmp/t6o/ZCfx4pCPG/DtTq/LxxESSXgT+8Bwy8qIB4XHSm//fixuDpaiQMWieQeqEEegwhD8t9//5M8+eTz4hrUVZzrtZYC0AcSD6xC4oujHNi/9QLpHup03X7HFFm5YrWYOjuLZePGUoJVfF54uPQHRebNj76XA3u2y9E9q+WB+yZDH9FP6tZrLiVWrhLYdwpW81ZShPrdYSu/Fz9XO4R8ligjlELkjRo10Ikb519s/bdG4BohQHUFiiyHwsHg37ANuM1MEDRWDg1SRlYvmqWqANG7n55dJI5u/pKemgpnQoY4YTE/berEikUixwVqUtIuYoENqlywURKPldA4Px09ekIZmxTIz84X6dlvqATUaaBqsF/qFHu08IYHMO/aeQA5QS2eO0Nxs7r3G4bwWbNK+0TP38Y1y8ARTEbNSBPZv++EtGnZROCwwaRbpiQr3nvvY+XFoRQIV8DVbQTrJxh+UVGxcvREmLRv10o6tWum6jueOBGidpcIz0lcfLJERCWCi5Su+DuUnQk7FQaj0Ftuu20UMkEt1AWhEn9ubl6FrEMSXK9sLAem2+UjsGjRX3ImJk2G33b3NTP+2BvqT3Ly371toyQhAcTa0lcoMn4xA5BeM07odOUzE/Ovv1Yo7gS1L7dvWg0JjsPSqtMAeLJaqRN2cnGVAiSLrFs+T2XWduzaW71/rf5h+bpxkx9UPLT46NPIai4Fv89E0jJzJB3q09Onz8I5lx+dxmsWuH/923S6Vt25afdLLyB/Lta2bVilrlsaPIV9oHF6scaklJjoaAh0B2DhyEVq+UKSlT1oSH7wIRYY9duJf9exaje2nnXFysVbghd8rO6hMWNGnrP7r7/+XlatWitOQ4ZImVqdg0/aqaNYwBBcs2wBFqMlamBfv269LFqwAGNRAIz8FKk/ZLwUZKVKcV625CSeEQsHD2RPH5DX3/gAiRuuSn/VymwNxqhAJZnVsGGDc46r/9AIaARqBgHSPahRevhoCOwWW+kzfDJ0j33O2bkzHGGFMGpK8sBxdvcTTycziT1zXGysTMTZ00L8UCObYuR0Up2CzRFyKhyOMBiA0OPMRyYveeZsNpamEgDh/FNhkUimNUOFqQbSBrXZazJRrkZCwLb2DtKybVc5DBkXG9TyrKrlQSk/JSFSEamNMYA2qF9PnDwbSmxUiKo2QgDoSqWbzqBOX9W+Knufnj0WQKceTgYmSHd3d5UoQO8T67mSv8UJMikxRYWKWrVpL/7IJrW1c1AG3+Fj4bJ91yHJzCmGXIiTOkS5NmG599AXlQoio+NU7H7MmOEXGKgM7xQU5FeUMausj7X1vaysHPHwrVejkinnY0l5jt9mfCmjx0+VDl17YVXWXX765kM1dXPCrsorZNgPPb+UJaGfWE328CTaIqyY51UPD12gYTMkZ/wqpQXp4mhnIQd2bpT6DZuifq17xefX6pfBI28/Z9dFyPZdBU9kamIUqkSUS5HwHm/UrIOqeXzOxrX8D+qPstIFJaZ4LV2QAHSp5BMmkrgjrAL2nzKyyAG8887b4W21gIh2psTGxEhgnz5SmJ0uWbEh4lS3lVi7+IilnSNW7MflfAPwW3gMbVq3Fsd+fTE55EnW9h1SEBEpRhbmYox7b++uLdJ38CiV4X7q5LHysRDXLTP6hBibmldcQWMzKJCjOXnWR3QDtahzs7H4NpLgkAgJDTsjDz5wj16gVqClf6nNCHDcp1OIhpuhUSLLwcFeeduc4YknPy8rK1sWLlwCpw+eKyd7SQFnvG3b1irT3+Ds4b5oX4RFpoBf3U1ate10TsjVsH9TUJOmPvi0nDpxRI4f2i1lBakyqF9nleA64+ff5dCxMDl0NExx1enNszRDmdH8EmnRrpu4o2ShtbUtJKaKZP+ebRCFPwWjsT4WhsPO4QobjnW1rzViAHJibYtyb/y5WOOK+vapT0g0hGLToQPY1t0TmZkNFL8qDJpXTF92w3vLF/6mBA7pmWGpOS8vD6x0XSD+uxJcmBKQ4YepjJfu3buoCg88Jrf76effUDnCCBnI1tIDIb+j+5C9CY0RAp6H8le2Ds7Ss89g6TV0MuoSRypS+tkTdxCs6+jIcAms20gZsvSqUPohKiIMRmOCJKSnKnFaW0sjWbBwqapYwhq3mzZtUcbFsWPBynh46cWnzxE5vhgmteEzura52inBHEZeFSUtLocqUF1sUpKTkMjRSGX1csKf/8dP4Jki1wQT+aWMP8OxWHnGY/ceWbpsjWxDotLtdz8kTVu0VfwsDgDMFk5JjBZniL+1bzMIwtBnZMmcn6R1h56KM2jYz/V4JQdy2NhJSFopUeXumCndokkzadCk+fU4/C1zjMjTYfLJOy/iPjCVx55/U4aNm4q6tq6X7D85ea4e3uJsyyVBeTOUQKNCgQ3Gp9RTeyUfZGu2+EPrxd6viRRkZyqdw/JvlP/LSScCEkiuyC5nOcKCM2ekCF7IEngCHPr2ERMsnLNXrZY+A0fAMzkcg/922btjk+zbs1Nyk6OF3kVDy0uNLY9Q5CWr0JGDownEobsrQjlpAGdzQg3fqeyV93NkZDQiL2lqQuS5Xe5zUtn+9HsagZsFARp8GzZsgqcuGBG8AkXdMPSNi3vqdnKxzGIAeAxUI1WM9d7zQuJQL9tEImI3iMOGrRBKL8+qDQ2LQAg3C9FLIzm8d2uVqhU5oAytg7RdQWacNGoQIP37D1fP5Pz5iyU6NgWyXC5SWJArQU3bKZuJqhReUK2wsbM3dFG9khZCvWQ6o2pK1eCcA+CPGjEAz9/pxf5mTLx+43PJy/aOTpBB6KK+VlhQoCQs0jKy5JFHn4VnxVuR9S2gwVaIYubk8X32xY+4cGUgYgdWGIAk9XOFbgUjIzMnS9avWqSEfx0RIvELqKt+zu7X+W5bfubs6qZ+zt6O3k2S2A3BaPaP9TP37UTywK6jqlwVb6B8hJClBCTPEpG3334f9TIbo+pBb52tBzBL4XalMV2YkyQLZn2mXN09+o8Rf8iy1GRjDV5DHV7qABoVIHxW10fuuGP8ZR+GnItgeAG5aoyLOiOblv8medCyY1nD5KR4SY4NUzV7qZk2fvxYeffdj1Uy08E9m8TF3eOC++yyD3wVG9KYbtqyrfq5it3c8l/NQbJOCLh9TOKxQLnAo6jZTF7ODlTSiI06rTK+uQi9lOfvbCD6DR4tW9YsVBEKlq2k0UQjKSEhQZqBorJr914la2MFz19xfrZEb5kLLp4Nyt2NPns3agFhAzpJ1u7dUgyZLNVgFFo1biRWdepIzv79SlSaRmdYyAn55bv/QZMyS30vOzYU2ejF4hjYXLJiTkluUiQST96SKVMmqtrplIqpjuHGBRlLzn333feyn8kof7dmzRqBg32/3HXXnXoBawBFv95SCJBPt3//QdmLKhnxyflSr0lbcccijiVpSenhc0KPHxeFlBTjwozvsY43ZalaQjUhIvyUbFm3DO9lgRNuJLmY03fuDxU3r0AoQuRAFQCJbTDYzn/mODZEYb97tq8VR6timXzPRKVhzD7Nnj1Xjp2MkNMR0PisbyZmMCotbWyVYXe+PWQAnPtnXsW1bDWWBFJTnSQPZuvGVZKSlKAuVF9kfPIiHdq7XWKjz6ji9Xnpsaq+6yuvPAfeVpYqOL9r1z4Jj4hHsfJgrNZLFDemSYsOEP99uqa6dsF+4mOj5QDCNiHH9shpCFrTEIyLi4NocQFuOnfp26cHhGHvqSB7XrCDWvQGPbfkdzZsWF9xPRMzREbeca+a4GoSBj6E/CHflB689KQI8QBh/rbbRlYsFi51PGaIs4g2M8ijUTGB/NRirBbdXOzFDhmhpBZQv4mNnEFOplw9Usy6B1Z79Rudu8C51PH051ePQGF+Poymj5VkTkJyNjxaDuJoQzYJVvq4OOFn4qTfsDukTv1GSmT8/MH7Yj3YA08cK9Jwcck60vagjKSkZ4qxhZNsWr9adm1dX/F1K8g/LFo4u1Jlg0cffVp+Ru1O206dxL5HdzFC4k7uocNSAu5p5saNctfUR+Whp1+V+b9PlxQYfeHhYbJt61bFNzUcgBqKzz37uPzf/71ieKtar3wO7733AZQ1XCSD+9rKPRPsJMDXVGLii+XnP7Lkr9XZMnBgf0xYv1RUxKnWAfTGGoEbhACTJ1iz/fDxM+LuC75ch+6Ko32l3SnAmMJqP9bwznNOMahNnL0/RrRI10iMi0JU8YyYGxdI/Tq+qhavQcPzwIFDMmfBaiU35uLmoapRtUO01MHJ5QIj8ux919TvF0sCuWYGIAGLi4m8IDX5ak6KGZ5/zadwNBTyB/ZWQocxcUjkgKYc+Tj2EExjKDkfnD8vnwDpO2z8dcmEpLdp+/oliPkfUrIynFzoZXBC5mD7di2RYPDC1Zz2v+a7hmwnlqP69vtZEhjUGaswPyQFpSlBYN+AOpVyKqoDQC7Cb6dDQ6Rpq3bqaxQm34zVnJVRpjz6yLQLMjMvtm8OJgcPHgbnyxwTejdhqbjKDAdKDK1du0ERemMT0+S1d75R4tMX27f+rGYRmD3jG1m9dA7K/Jlg4VgqPZEd3a9fTyXBQE1EqgCwkePTomP/antLORmsXbFI6XtZ29ipUm0WiDrEgBKwc9NylHJD3XQYhqlJsZIC6SBPT0+5ffxoVWfaUMWD932r1p2RwFMgdjAAS5BJWJiEShwYuzyQvDRz/gbF85n363cqxBQcfBIyRGni59lFklIRyspPki5d2ysJmPKzqf6///d/b8vHH30is7/zlLHD7C7YwaoNOTLq7ni5Z+pU+d8n71/wuX5DI3CzIcDKRxyDd8IJlJZVJB17DL0gynit+nxwzw4sDjcpdYbmzZtI69atkLzld87hWON8xozf1HtZBSYyadoz14QCdc5Bz/rjhhiAMQif/TVvFoR+e0mrdl2u+IRpSDKt+sjBPRJz+oTYW5UH7PG2ZIPX51evmbTG/mdP/58wTBwaGoYVfxm0cRrLtEeer1a45yzMqv0rb4Q1S2dLXnYavJAhiPEXYEKwBcGgVJ5//kkVLqz2Tv+lXyAf8Psffla1dKkaZGluilJhxeBkGIu1vTOI+r7SvHUHFRKrLgSsPsMM4DF3TK34Pg3MZXO+k7vuHAUP5LXJkKReGwtzs55tQKM2MmLcXdXtut7+KhBgpY4t65ZCOspe9u3eIS0wGH/00dsw+M1UQhkFmzdu3CxHg6OwMJwkngjhXGnjomLRHz+qBDNSUsgR2nMgWLZt3qBqVVs4uEGyxQIZuxGKBrJg/mwVUuVENQKJPGHhkVgcR8MYRfgJYSnykl94438qkWjd8gWSkxwmo0YNQQ30XuJgGygOdn7wPqAyNLaPS9kJz3TUFXWdtIZ6SHp7+C4LeeeVqkNL73+RKv/3UQbG0mOXzSe8og7pL2kErhIBJncu+WslDL9i8akTJPSsWSO0ej3akYN7oR+7RbzdrFSkz/QiEnjUn/3of6j+Y+Igd9z1YKWOhGvV54sZgKbX6qDevgHSve9QqFGnqCSKwHoNL/tQNPpUWScQII+i1mtuRpzi/tlbgUeGUFxeoUBIuLl0a9FGabExFFtGUdXDkOto30169h+qqjpc9gFrYMMWbTpAhy0bAtf7IDIdD/0eCwlHdQBe+Ndee0u279gl/fr2UROCublZpe7kGujGLbELSuvUrROgOJxNmjRS4TrqKrFOMGV2jh0PkWVzD0rdJu1VAgZ5mJV53s4/WRrd33/6NhJ2sGDYv00ee+FdFfKztLJW2d8sln2tGpXf7RF2NLeyw2Jln3TvgzJe4J/qdn0Q6Ni1j7givPLbT1+rsC+YelDeny2PPHI/hL53qkUZPYGNW3a9KuOPZ3Ps8H5ofCEcDB5yx45tZTd4gHExEagNjZq6g+6T1NB9YgqekEeLPrJ2zU/yxhtvI0mjGzLMweWD0kF/ZPreBWrKnh2blaeCsg5svH/joYgwdGA3CQpqrPRIzUysxc25EUrPucrJcHiycS8z1MX7rbqNJHQmiTx0t/tFvzptkoO88XEawsBz5LHHHrrotvpDjcCNQIC0MAosr16zSWxc6srwwf2h2OBw3bpC6bsju9dLlw5B0rdv74tyZsk5/O67nzDng55UmAE9wJSbZm64ZgYgJ2xm1RIo6phdbouPiZKNqxaqElycsEuL88XR3lbJMOQVImvH3F4m3otQHlb0bBlYjUeeCUVN1zEyduJ9Sgfuco9Vk9sxS6drr/7iX6ceJBssVdixEfS9YmNjIRmRITt27JXjx07Kli1blZdi0qTbUYkkoCa7cMvsi5MXz//sxtJWhvJWfKD27t0na9ZukdPBe8TUwhYhVV9lDLJuL3mixPt8o7C4uAgJANbSrFlzSUN2JbX66K3ZtOYvcbAxAyHX9+xD1ujvnTq1V5mfX331nRgV58hPX72DhcgoleV1fj9r9MB6ZwoBR2cXadayPbJ7nZERna2yWz0QhqUmKGtwUv6JnjrydUmsrtfQkNZVfQBJKGcS2kMP3YvQ/3o5fPiEnDh2FJm8zpIdHwZZmDRo9mWJS4O2Ym7jIMuWr5XcYopJO0vXviOxOBikMv56DRh2zsFZfYaNnjq2F198Sl544TWEtHPAZMSiOCNcvd+iRSdZDI9ndXVSucDy9bYUPx9UK7hIc3E2kUb1LMFBPH2RrfRHGoHrjwATmHbvRpRnz35JBNfXr0Er6dy97zXLkq3qDJmoZW9tqviyFHG+WFu9eoOkZBSqrGNGLs+WyuNchjq9oH5Uf0F3sWNe7mcX7/nl7qWK7TjxMcP3Yo0SFqdDg8Hhi1Siu96erlJalC1mlg5y9PBBCQ8NFSuQMIeMmiAjJ9x5gZWfAQOzYZMW10WH7WLnYfiMGcdT7n8SvDEr+eOXr8XF2RElqnzlNAbTwkJXpR/GuqhMHKD4sG4XIsAHivI6LVo0Q1JNvJrMt23fLRuWByMhyAiGHwi5kAwyM7NSem5deg5Uiuh0/T/50rsSAv0lEmxjkPl5cOdq8XK3h5DyJCV1ceHRau4dPz8fefPNV2Uryv5s3bZDgg/tkMP7tsNb3ViaNGujyL/np/rX3NFr5564wFy3YiEiBvESDv7vnt07VUYftT+TklOla+d2KgnryJGjCKsOhzdwh+zevFxla9OQu5JGT+OSP0+oyjZHj52QUxijSBAvxoKjGPIODNVyokoLP6wkXyhF5RtQX/oOGaO2Y4SDSUqMGNhibOM9kQgNy3UrFqtSUfRsDBrUXx599EG1KGIEgbQJf+9u4unaTI6HLcTEM1JYwpLHYXnLl1567qJeCJ6nKarjFKIyEo9/qUVJQSFC23jGdNMI3CwIMDFv5869EhGdLNHg/pNbW2JyCnW/21/Szqjpc0hJSURSIWruXsL443FPIkzt7tsITqoRyEoDHxljhaEtnjNT1ext320A9EnrIlvZ8rKqexi+f7Wv19QAvFjnmD2TlpIkB/dslazUSKW3xzqr2ZlpEFMulIefeV386rdEJucqycegSj0cZuOc3/zr1D//rZvi76FjJkoiylKFHNsPHo2r5EHo0Rqk8UIKXaMNGzbopujnzdwJaq3Vh1g4f+jt4ORNLx7LnrE6SxII9Hv3HUUGdmBFBQjWgo0MPaL4oD5ebjJqWG9p1arlJSfHmsKBg1Lbti0hBHwUQcgstdu0uGDZHB2sJvc2naufgFBTffu37IcGDCMFDJmuXj4fkgtlsn7lQiXibQn+XamxpYSeOon7I1FsrK3EC4lGyOOBhmgxDKd+SKJ4Re67YyD+RjIGEjdatO2iOKNn8wK5wl+EwTkWXGZqhQ7D80xeKg0nCyzuUlDWafOW7VjgOWFRl6WMpeJ8VGaJOC5lRQVSUpSvvIHE3BLCroWF+UgQSVR6jXHRoarGMGWrcgpEPH3rIls9SixMCsXc2ggJR53VpeKxJk26Q95680MkgnSShoED1fvWFi6SmHocxPM66I+xyq7n8/Duu2+oz6v6p127NvLOO4Wy52CBdGhtWdVmciKkUE6G5smLr7Spchv9gUbgeiJA/uzyFWslM89IUtIyILdySkVcSiDIHxEeirrngSoyRCkuw+KG48Rx0DWY+V/TvECKNWemxlUJAXUId0NPNgzC7Lk5OZKZfFKNP+cvOltDXmzjqgWyAxWnLLDPAlT7GTjiDvHxC6xy3zX5wTXLAq6sk7wgh/btkp1b1srh/TvVwOwbWB/6fWXSsGkbhD6g43X8kAweWS7XUNk+bqX3jhzYI+uXz1Hi1dbw+vnAC7Bk7s/SLKihNGncUIWmJk0aj1Bw4K10WjdNXyMiomT6jD+kTTdIr/ytLUnu6F9zflTJQi+9hGwrhIpvRMvBQ79//yGVlBSN6jGlMAeZgZqRJ9Kr/wgJxMKFivG6VR+Bw/t2ynefvSWdO7ZTK+ZwCGAvWLBI6vafqoqw52cgszYnEyLNuyUI2pADIKhqWpqN8Ker/PjDdDkCcVhvTzNxdzUSJwdj2XuoWLJzSmTytMex8PyP/PzdJ/LtJ2+JGTidpqj+U5qYJAXJyUjsmSwPP/UaFqh58tPXH4mflxOUByxg3BWrgX7p0mVKugo3nar1C1cb+gMaC+gI9Rs2luEjRiChw1LatG4mFF1mVvw88PIYnrZD5Xgmjx07HqyyCO+bdo/07t1dgdOtW39McpnSqskUZfBt2PWWeLu3lkZ1hqrPQyPWSELqHklORlURGI1VNfKmmga1ltZNM2T+T16Vbssx+p4nE2TFBlNktR/TUjBVganfv+4IkMJAWsKBA4exAMrH/Z4kRiaW8JKDe/23K8ve2Uf6DR2nvGgpKN6wevEMMbF0kvGTH6jR/kaeDpWd6+fJYw9PvaDqDqWWvv7mR/QxT1y96iJqVQxpsGZV0k4oHM1IBp+9Xds3SscuvcTL17/G+ntDkkDO7n0KVr4LUZWBOjl+/gFiLjkqeaNtp54ycPht50h/9ANB+l/TMBi7uzoor2Z2bhY4Su1k4WxMQIePSBo8CJSK+eWX36VLl44yYEDff81pX68T8ff3FVsbczmExQRXVtRY4vxnZecCD0wKJuqCKyLL10T/P/nkKymAiCj7Q9FPLnJoi9pbGcmBrUtk73ZrGTpmSrX4sTXRr3/DPijYSpkVY6MS6dalDWgiwarmJoWS088cVafo03EYlPhTJDICtXOtbCQpNlF++O6/qOBSJJsX+yIbGAkXiSVq27k/Osp3MzPk1fc+Q8JauGxY/Zc4Dugv9ijzlnPggGTt24dicGVYvM2SmDMh0rtPLwn0R8km83JvfkcYouPGjUISU7gcPYVwz4MPiqmri2SC71uGvhbBUx168KAE+t2jRJaZkWxor4EGsm7dRhk9ZoKYIYHIGmWfTm09AC3B0fLhh++oJBZSRcaOnSh7jnwDTyMSmkqKoEf4jwfP1NRKeRcM+6zqlYuht9/5r0yePE0efSlJ3n/NFc/PP+GovLxSJH+kysw5WfLVV59o468qIPX7NwQBOkr4w2d//oK/xNrPA/d9eZnWnj06iwe0dxcvWSl/zvhUvAMbS2QYxgUreNkRVWTZTEPeQE103sevDvISzFTi4tml4gwL/+TUTGnTeYg0DGpxycORE2jgBY4aP+Wi25PywYVlTVUGuSYhYPL6UhEjV2XU4KoNPnFYrCDRwlrAFGV19W4kL9774gV8voue+S34YVNkKS/4/QdJS4wRN+h8Uc7mwadflwW/fS97kORgC1HhKNQCxRVV3sA2bVor5fBb8FRvSJdLUDWbmZXJKelSkpsopSa20HfroAztgztXYbV4BgkhQTekbzyoBSRCKEDdoAG83Jh8WauaFSRYKeLPuUskGN7u9p173rD+3aoHboRBdf+e+mKE0YuEcCaLGRmXD2Xmto6SmxKtBsnSkkIkY+RIXPgBOXH8BCaBHFk/318lQbRvZSnf/Jwu6Zml8vmP6ViomcjzjzjJ+1/+JeZeXuI4cKDkIIyfuXGT4u1YN2wk+cYQZ4bg+6f/e0vpQw4ePEBxVOnNY2b/0aPHxH7IELGA15DNCTV/yzBDlcIITEaVksVLlst9991zDuwc0B97/Fmxdg+UugPvw8BuqjwB0TsWyssvv44qNrcpPuAK8BynT5+pFjXJye447+3gH1nDCDaRyNhNoJQMVskjGzZsVnVP27dvU2lkYezYUUo8//HHn5HfF+TIhNE24u9jKrEJqFawMBfJU0UIKb8pU6dOPqef/4Y/ODmTS+mF68uKP7rdmgiQDuTr6yPHjh2Hd60UHjgX1OxtpE6Gckl/zlkgW9cvl5ZBdUAdaiSHj4SgDGMovHA1Nxew+pKdoxuSPP8JA69Zs152QIuwEGoDRVhb0vNXk41apL/++KnydnbsMUSV/LyYx/9yjn1ZBmAeHhwzcwsVoiVvjyfGjLW1yxfCuk5B7NoBNX1RmBzcF3r1yIM6E3oCxZZTxQbE/EZBrZTQ6cQHXqw07HA5Hb0VtyHZ85W3vpAZ334sNqgfvHXDcpn22Mvy9mczEWJ6U3ajZEwcahiT83jo8HE5cuS4TgypxoWm7tIdt4/GA79Y9h8KRv3ngRCAbo977yQyJvOQfbn6hhmAlSX4MEmEP1999b2a5PdCBkQbgNW44H9vejr8lCr7aIlFJRs9cEuXLpe4A2tUAgbfKwKXpiAtXpoENZPevbrDo7ZAHrnHoSID1hz1PG8fZSerNkK3EZUwNmzNBR/QCJVejKQAxG567ijUbN2iuTh06yYmdnaStXevJP8+W0m0sFA8m7e3l3plaIocQ3MfH/W34R8jJF6Y4MfU20eiYv6ZLAyfh6DY+xmEtuoPul8Zf3yfg7pn6/6SdGyrqnlOI7BHj27qh59TBub++x9D2Hsx/xQaotS3DKzTVPLwmaENGTpIvv/ui4rsesP7NO769u2FDOmZ2Md8LNbTVYLU5Cl3yrRpd0ErsK5h03/N6w8/zJBnnnkZ16hIRQWmT/9a1ZT/15xgLTsRBwd7RM46XXDWDRrUA9kGpVlzcxSVgjWyD8EAvBbN0ycQxuUOJe1my7rgqWmqGtRtdz6oqCnn8/2utg/0YDZo0lK2rF8haUv+VDYZ+Y1nNxqJCXHRKhpmUBU4+/Pzf7+kAUjX6czvP0aYbTcGKGPUp8yTRk1bIXPNEUR7E5ChU8QFRGSGYZiN64jsS7oznSG1oDlOyLzDRZv22IuoUrBAUtOzJTMDhdeRGf3Q0/8B77GlrPnrD8lBsepykmr5hGa4SIoTsGuvkpLhiqd9+8orURi2r42v3bt3VbyQ+MQUVYWByQE/fPGuODk5iH2jck/MjcaF15HeB64Ws7JywF1JQfIKMpVdvVBcPBOC4fY3uou31PHJIXayYSarwMvljyy70+Lt4yuxe1eKpZOHWNg5S+LhjWJpYSa9enRC5uBuJGogQSMDBd6jiiTArzy71dMdhpmxyCvvJMvBowVINvsbhuwoiX7vfbHw9xOX0aOV8cdPSiHPwtBLZdmxDAOZQnS6MDpKrODxPb8VREWKHcLCVTaezGU2yij9+ut0ePq+VgsJSg/95z9vin2vnuJCYxXJZjlHjsjaZctlxIjxsnHjyguSoPxxbiwnd6Ul5S6zqzfFZluQrPPEE8+Jr0cHlHMMkpiEPQiD3wepqc3XTBj+pjjxWtgJ8u/YcsEBpgQbk6PIsT2bdlFTsDSBzN2pI9tVZIdj+slTEdKyffdrRuuhQ6lH38HSvlMPKKTsFWotn9+Wzv9VMtKTkfjSVEJPHgXPuABjBMLGVbRLGoC0Ous3boFJK1mVOmInqHdHzS2uVPk5wxj8/Wx3pDb+/kGcuAwcPlZ69husMgj5CV3IJKcz6SUmLlzc3ZzwrpGko1C8vb09PBor5OVX/wvDOqxiRw0bNZTvvv1ceTwq3qzlv1haWqCA/b0qJEdF+PXLfpegRoHQA7RCWZ6WNxydTNR5Zd3VyGjUtsbYdOrkSXjQi5QIdhY4V5aYrHWrHgK9+g+TjWuWIsQuEhYNySjILH3643xoby6X1csWoqpMgfQcNV4lmZUYlSJrMEIdwMICJRrBwTx8LB/1fI3l1OkieeiFRFyPMmnayFxGDLSVrJxS2XcoX3buy5DcI+li07q12LZsKaVYCOfs2Ckjhg+uVPrBDh7CsWNHysKVa8SmVSsxdeLzXN5yUO+34EyEHEJJqH0oUm/wHvLTcs9doCQe2SC2XtAQ/TsEHH9gLY5jJv379/l7Lxe+8N6nN/C9D/6H2sI9xAVJJoZm16GDmEF9YP+XX8mqVWtQu3qQ4aNa97phwyZcd3tpVHco5ihj6Mr6y4adb0KTdYc2AP9ld8OuXXskt9BERk+4X+IjjikNXk83RzlxZD80ei9cmF3p6VO2qbi4EONFHhK5Fkl+kSkKF7RD1bPOV7rLy/4ecweqihz1GTRKJaJRZeXksQPgC9P4q3pxeUkDkL3qi8QM/lTVzta1qWob/T7kIM4TeyQn0N7WUlLA49mwcbsSsX3mmZdQTzhZOGiZQ/LE44H7xdLfXwqioyVqxUoZAqNx29Y1FZwHjWs5AiQAN2pYDzQFcL6gHejn5w2PaZsahYery/j4+PJVJbTe2ODcU/wvJiZYQMPJ0dEBBkWJKj8WFRUtmzbtkPwyK2nZZSh0LtdIw0b1xcrcWOKTMpV0zeW46Wv0JP4FO2vQuBn4PE3VmZy96GS1IWpw0uMadSZM1i2fJ47WyMR1tFHbJiDp451PU+XQ8QKV/btuS55KgrjzNjuIypbg+hlJowaWMvUOByxqy+SFt5Jl5W+/SUlWtmTv2YNs3nSlt1cVhG+/9TqkinZJ7EegfLRvL2YuLpIHjcBccAntA5pJfnIUQrePynPPPYXw41AYJVZKE+yLzz9EEshEOTnvPZUEUpAWK9lJ0fLBB2+Ji4tzVYdT72/dukNycc/7dulywXaWdeuKFULUXEzWZgOQHlPSk4qK88TczAaUm0xgVaa4uBeApt+4pRHYjwxhr4Am0qFLT1kMA5DjQ5s2LWTpqh1SAooG6RhX2+jw2r5xlezcvApVhQIk195FBowYJ24e5XSQq93/1Xz/7OpT9z/5KuTzUmXOrz9WucurR6PKXesPLoWAs4u7FIAw2hAVQzIgZMvi7+lpxnJgPyx3TGKmXt5SAH6Qhbc3wkoNEJLyl/gPP5KPP/5Cfvjhy0vtvlZ97uXlKbffPladM71u5GTU5MKE4ds/5yxEGD9HyblwXRUVEQGtuQSQkN3hHbdD2NkZBF0jZRQy7MDFlz+0LPt37S1M9TczKlTGXyGyg40hYl0EPlIOQsCRMFZo1NRkltq//eKfbfidf67U/tq3fQ2wLq8XbmnritV/XQmPjJWeXazE0cEENZuLQb0ok8/ecoEhZizBpwqlXw9rad38n+SAeT96Sf2OZyR2wQLBzSTGOBBLO1bVyAfcumU1tAZHSMj2HbAxSsXC0V1cGnWU9NOHpATyMcHh+XLPPQ8iAc5Ovv36UxkzZqQqJbV92zr58svvwCk6JgHgTN837TPp06dnVYeqeJ+Z7mxG8AZW2pAdTw212twmThwvn3zypew/DnkomwBJyzwFfliADBkyoDbD8q889wxILrnY1znH0GOCyOq1W6HBeQhJgm2v+ryjoRSQlhyLRWgj8fJrBNm62xU15Kp3XMM74Px3tkFY2e61AVgZKtfpPYaBpz74tBw9tE/+mPkNsodKUcS+kexEqMkIq9b88HBkFPpIxrZtYtOsmVj4+opVu7bIJlymDcCLXCOG0GuqRUZGIdM4BOW+jktMciGSnRorDhi9ufmYV71hnJsaI9sLKanZUPW19aur3PMWFlYgm9soqR/yaBf9OV2c4I1i+b/w8AhxcTCTuMhweeP5ByU+LlLuuPth6TNglNq+pvpeW/cTgFBPPhQHKAvEsE8ujG83nwby6tPTIJ9SJv17Wsvcv3JQ7swMVQXKM/X6dLOWlk3PNaIsLIzl4amO8p8PUsSyzF5KjPPlr7+WV0o+N2Dt7u4mvZB0EhmXIo3HvSy5SZFycumXYo3n13nYUBWWLUpJkbRly2TKlPvg6d+C5BMbtc8vv/zfBVw9w36reqW4Mwf6XISZ7bt3O2ez4rQ0yUPoudOTj5zzfm37g4b5pk0r5ZVX/isRZyKle+8BEMT+P+Bu96+HgtxjJgulpqaDOtReWLLy39romcO6GxGZf55jLn5YBcgEklG7ETkjb+9qHAPF2N++HaBrYGHXo+8Q8fA6N+nrVsNWG4A3+IqRK9mqfWdpDMHaH7/6UNLSkhSn0hLGnjFCRLknTohpvCNkTnLFldpneI+ZPrpdGwRYQozcKg4mK1euhVzPYcn524FihdyBzIQQJOxYSXZyMTK7RRJTCiHy20RSE0HytzPDa6yq+WrQdYqPjZa/5v0qjEKaIWlqzJgRKlts2bKV8Cglo26wu9QL9JAMfH/LhpUwAofr5KmrvLQsCt+2U3dJhVDswb07kGiDutAwCJu3bg9u3x5JSilRPx0gBWNuZgQjz0Ec7E0qPWqX9pbK45sr6XDpCqp0dK10u7PfZPUOFn+P2bNMCjJQssrVTdwn3wnR2vJjMDTsduedEgNv/vQZM6Fb6SSffvoVQlWtZdmy+dUqWUjP97jxY2T+4qVKe9AK0QR6R4ugwJAy61ck4zmjVNy4s7tXK39nNaE///ylVp17GrLY+/QZohawpqbmirP2/vtvymOPPfSvxOE4RNSLUCqUVUFioiIEw62EoAzbkWBUGkMFEfhb5PefvpQ7Ifh+JY1FBs5AWzAFr4NRmvZWN/6IgTYAr+ROuAbfoUfp0WdfVyHB3Tu3SVxUlJKUMEG9z6KUVClFimIWvIF5WM20x0pOt5pHIBQJN3/8Mb9ixzkFrNso4u5kKa1aBqn3Wd2jfl1/JSXBpBMrK1cZMnoi+CUlkgXBUcolGYw/foHGnzUWpGbwPD388H2K9+XjYwUu2D1Kt43l7t5++0M1cMVHnZITCFPQUNHt6hFY9Md0hPwwyOEa+nh7yuCBvaF55y67doIPVJIqHdpYyguPOV/0QIbSjdzIGrSCNWvWScuWzVUZqqq+WF5y7f+g4/d/8Ayj2siQwRXGn+E7Rrix7Dq0hydwhfIU5iScliOrp6ts3s8++9Cw2SVfVyLpJCT4FAZyI0n44UexROKHMaIHuRg/nMEfXLL4T0WHuOSO9Ab/OgTeffcj1KCPks6tHkMZUjc5dWYlOKyvK9qBz99alf+WkybtZxcUM0qNLKEIECBhIcfUqQWHhEn9oK5qQbhm2QIoA/zjHazuuZNbHAeVidunPHTNMn2r26er3V4bgFeLYA1/n4XhH3/+DUxMd8Hoyxfrhg2lAOnsxSCgZ0CUthhCwk+9/98aPqreHRGgynzDhvXVqjGv0EhVehg9epjSfWPYYMaMWars1+79JyQT1+Po8TAkHYxQ4DGcT3mQ33/6SnoNGKY4ffTUQolEbCwYmBBZDl1CGxtrJJIk4AdljJCcxYSR8NMR4urhjSQEK9m5dZ02ABVaV/8POZhUhWAOHJODGtTzlwfvv0tVDOjVc4AsXhV8SQNwyaocMUW6sf3Q4VKSkSk/zPpDvv/hZ/nvG6+o8P/38PQNHTYQGnNPKM+boddPPvkoJFiGSqvWXZQRaHj/nFeuLv5utp51xSWom/z22xzw1d6/rDDV5s3bVIUQZ4e64ubQSuKK9ou9sZEMQgia2ojkxDIB4nKbCqFhkrtR5RMvt596u8tDIDQ0HEmGfqiH7a6+4O3RFtSE7aheEXHRBczl7f3m2Yq83B+nz0KZTVPpM2ScUthww3jKZ1/gEazXMEg9mwOGjb3iTseA94fhBIv9CVe8j5vxi9oAvAmvSm+QyO+460H545dvlcFnhFVLKbgcZQhL/ve/r9XqjL6ruVwcKCi6zczK85MIuLpjJQdKZrh7+ouNlYk89dQjMNjgQvq73XXXJJXd++ef82G0FYFgiyQeSI7Q+0cDcPbPKNWFMAM5f9s3r5XmKP1Xt3ErhIXjxBghmBgk+BQnpMu+3fth7JlBj85LMjJzIQOULOSOWZlZqqQgw/H069UhcM/Dz8mZ8BBkbeeo+uPWiVngX/4CQeXO8syzT6LKxl2yaXsuEkMqN5Ji4orl5z+zxLZHHyUGzd449OgusZ98Kq/95y2E8I3EUqxlF4q+s5RjC4hGn924oGjevKkcR1KXQ69eqFbyj8HHZzl7736x9UZFE64E0MxtnVRflaA0qCGXatOn/4Iawh4VNYJdnRrIgRMzIYt0jwr9/u9/X6rfDaWqzt8fQ4RhYeH4OY26v2FKL41deeH5J2tEN42Vbw4fRjUVeGcCAvzw7BWhX47AqVnFOZ/fJ/13zSFQr16grF+/FeHPFLGydIbywCG188BA/5o7yA3eUza0OWdhUZaeayzDb7urgkOdlpqsxmJT4zJZt2K+jBw/tdpJdqVYnM+b/ROSxpykGaIyzo4XjxbcYCiu6PDaALwi2K79l556+R0oz5ZIRNhhcJiyYTBYyPfff6HlX64A+nyEzx966AlwgOapb7dt0wYZvb+oKg4Z8OpwIqVgKD1zUVGxaoJiuJYVbc5u9ALSo8KyW+R4JYPvd/LQNjlxeB+U363EBLptAXUayNGDO8W4KFOSoBU1YtzkCyY7M3NLWYCBhSWpWnUaAM6fLX4gso4Va+uOvc4+pP79KhCgUV4P/Ey25q3aybaNqyUyZL8qEThkyEDp2rWDjL13v8z90UN6dz3XCAwJK5QRU2KlxMJW7CGubGisCOKAEm8p8+ZDa9JaVd4wQfmpyhKPXn31DWT0H1RfTUIFEedhw8QUMkHFMIhSly6VwphoCRhSzseiWGt62H5p2arlRY2vpKRkYWISjUsS3E2MLXF/lRuWLA3HtnzFaklJTpc8iPazKP1t0CcMCirnBiYmJqkKIIhJ43PUKcY9hxeVvW6J272uv0/F/tTOqvkPF1JffPEtvmUkyalZ4D7YIuPZRQ6hqgmVDZiZ7eTkKBSi1u3aIvDii8/KihVrZcfBz3FPgTtekCNvQaqIRQX+LY087TjwsAePnlxh/PHc0tNS4EWHBBR+LytIk/mzp8OpcnncR5aw5X3MfWSnp6ikkspEl/8NGGoD8Ca9ivQK2GPF0atnTwzIokvEXcZ1YsbbHNSBpJwO9fjGjRsjJH+zSsK8eYukUR1kYWKSPHFiDcJjd6Hs1RSEe8OQ9GGlMB40qB/qoL5xSc4UPSrM9IyLS5RDB/ZhEjYRH18vyL4YS0JslAT6OkHmxVyyoee2a+sG6dS9zzm979F3qHTtPUhVf+F1bg3xUHqq2OojXKHbtUGgS8/+MNpsZN2yP5XXa+7c3+X28XdKv9t2SvvWMOz7WeL+MJLNOwtk1YZsMYW14v74QxWVQAy9MpR7++rrT1SGYb9+vYX1gA2NodRoiD7/8P3P4mPVRGLyTkjuwUOSc+CgmKJKUnF2ptrUBF7hrLhQKchCFZtTeyU7PlxOJJtjcTFdiZsb9sdXejoeefQZmT9voUpQMoWeWadOHSBpcgbcrlUI9XlLePR6GFdOeK9EjpwIhyc6F5npuTJnHhJEjP8C7/RuLCJ/lqx8EOUDG0pQ/caqROfvM77GAgY8SU83ZCZPPPuwl/07vX3R0Cpdt26TkD6RU2gs/QaPQdZ8AzxbRsLsyTiUqNq2Zo6SSbrsHd+CG9J4WLduA8KSMyUM9ci9PN1lyuSJMmoUErwYIrhOjZGO7Sg3+uefqEKFpKDOnTtUlBO8Tl24Zochxtu27ZSDR05Jq86DMVc6XXCsklIjVAXyVhWiSsoyLvj8/Df43G6CwHxU+HEpLjMRRhBuv+thVD2zP3/Tf83f2gC8iS+lP7xJuckhqj7nTdzNm6Jr69dvkgkT74ZOW7ZYubtLEbwsb775PhIv7scqeI14ubURP69Oqq+FRbmoyLBMEhITpUmThvLpJx8qeZaLnQjDWGcgqbF27UblLSwpM4Lwp7u4e7hKLGq8RkL0uS6Ed1l+aNWRPdKidVtxdPWG2HOLC3ZreR4vizUjGzY5N3x4wZf0G1eNAA0RKvXP++0HsUOI/wwkQZavWIyw/1oYRj/KlzMOwIgvlfr1GsATVyrBEGQ3c3O74LiFMO64YqBO33hk4J7dEhIS5YsvUesZskDmlpaSkBKmPm7oPxRaYUYoN5chaUYRIJEXSyOIgm/eslkKoeVnYmIuAd7dwFvKB/XgBeUhY41fQ5s69UFZhXvPu9NIsfWoI1mxp1B4fpVKSDl2bKdExBZj0eMk/YeMlj5Db5fJD74gJ48fli3rlilpDPbXysoSmpUukhmVqrIZI5DRSA+JFYw/ev+Go8rJlbSiomL5Bp7GM1Hx4hPQSIJAfWjTvitqDCfBQ5ojO7asQ834VAkNOaHkj8iD/bc2Gia8ft9//5NYQcnBFJ7O05B9WjtlmgwY2E/mzpl5QWThWmJBz/R99919LQ9x3fdNzzdVFPYePCkNW3RDadp/xlgacftQY/0EqmDExcTLuMmjxAKrGytr20r7yWdv/u/TVek4ynbl54FqhS0HDr9Nbf9vNv54gtoAVJf55vynCMKxTZs2Fk9Pj5uzgzdJr2iY3TbuTjGBuKvfuNtUGa5SVObI2r4dIbDvxdPDA6W8sit6m5YRrn5v1jQIRuJrVRp/9CjSs0Hu4AqE1YJDzoiLuze8JdZiieQOJnhAIRhVR3zA9QpCybEMTOwuYmxuJ/1H3ClNW7S9KQVCK4Cohb8wjF+/QWNxti2DJzhYWrVqAUHggernbDiYXTtmzATJ3rdP7Nq1q/iI4dusDRsUDcAeYs6Gxgxyeu5++WUWvHV56m1XGI+l1IiElRUWuUqaN56AsJQZiPjbwPU0w70VZfi6NG0wTtydG6vQU1ZutKreYTAAKWXBCS+g10RxaVDeF2tXX3AKTeTIriXYdh6ykzeCRlBeccZQ8iqoRRuUlkyRYFAU7KFBeeDAIUiBQL7IvEy4gCmCILkJstOtzMqQsDLsisYZGn/ffvsjNBKtpUvvEdKt90BVE3n5oj/k8P6dMHYspK6vIxZaDaQoy04lSl2NDlsFYDfpL9Tco/HngnHIrlMn5f1kV3Nxr62dMQMJPl/J888/dZP2/ubvFsdkKjWcjk6Tjr1GSV08y+e3kBOHJTI8WJo1DpRdm5ZJ1z4jxRlSTGc3VshgiHc9+IEcy5E7pap6NMXixRX6oaz5XRuaNgBv4quch4LWdna1z/jLQx1DemVIUm/SpLHKaKT3pqrGAbcYn3vcNUWM/07zNwYfzwHh8yJ4ZKilmJlxXA4F/y5mptaSlBqstNF++OGrSrMtmZnL8AL7EHIqXBl8Pv51JbBBS9mCEkCdOrSUxhh4IiKiUXfSSFX8sDBylgYw+BjyckBFEBKIY6IjIMXhdo4sTFXnoN+/fggwF4M8tOHDh1R50IHw1kyePEFm/Tpb8g4fFgtU4qGwcvbOXVIKr4ET5Jneee9T8YW8THp6GhYS76gKIxNGobQjkn3qBZrLtt3Zsj2pFEaPKQy7Yjlw/Gd1PHrqimEAdm3zkLr/DhyfhTDuir8NwBJkhheBd2SmqAzHjp1Q4Wp+0d733MmOf0fvWCSvvvYmZjBLNYF16G2pjmH4p0uP/sj4DJRt6+bLmvU7xc7FXxrCO+3q7gmPoI0kxMXIwd2bECZeJps3b0dVkh7wTDY0fP2Srwx1p6RlKR5ht17gs+K5Y2vavK3sQqmsuk3qq78bNKgvt902Wv1+M/2zGPqJ/OE1uvPOO646RPoNuMHW9euLfefO55ymNcYx67Zt5VuMVc8992SFYXjORvqPiyJAvvZPM36V5Ixi6T9sIpQTPC/YnouLCfc8Kkvm/iwN/coXaNvWzpPj7nUxNjeUhPhoaINuR0KHPerHH8DCvZW44Tnq1W9ordRf1QbgBbfQzfEGM0vzc7MgCutwc3ToOvViOngzL738OhJfsiqO2KRpE/n91+lVTkybMHFZBgVVGH8VX8QvNq1bSfzOnfL66y/LwoVLJTkpFhOiO7iC87GSnCsNGgTK1Kn3yF13TUQIzVFofH700RdSBP5IVr6xmFg5S13Unb1t4r1qVZiXkwFZBZHTZ6KloNRSWnbsIXXBpWKB7rNb1JlwWb18vrRo00k6du119kf69xpEID01RfYg5JOG2rn2Tu5iYWmtiqFTV9PJ2RX1t62gz5ihjB0mbTBEB1UX6d+/d5VcT3q19u7dB57obSpRaMmSFXJq6TLlPTMvM4fnzVLWb9gq73w2Q7ZuWCU/fPkBkkisZOmv3opDOGtelkREFcm9k+zlpcedZPTUOBzXCMZVH+nduxuI+B+Kj3s7ZGY6KiR8PdujRNxfMAJXS0Z2JJIz0vA+a5h2PQepXNQSdvBrot4ryEyRM+tnqN8PHzoAg9RcThzdLSsW/yFdevaTl/77GbLZvdXn/nXrYxEzEaGtMvHy8T/H+GCpKIbQIsJPSQhCxr/NXixdOrWSXr16KEH0czpQyR/M7h05fIAsWrIa1Yy+g8juYxXHnHDPk7Jn2yqp4+uuEqsq+fo1e4uLONZTP378JIx9B2Xs8/k+u9Fz+fTTL4qDnQ94lcXy669/gC8386ILg7O/X9nvx+HpM2/fobKPxKphA4nftUvoxWKpSt0qR4BJe0yKYq1sQ0uBFu7sP+YpqZfh46YgsajyeZElN/mTn5kM/ndLad26JRKgTsjOnXvl+N5VqI2bjqS9A+Lm6YWEvfrSqHk7PC/9DYepda/aALxJL/nBfTsQYiyrVQbg3LkLoFL/tNh27CC+/fqpUG5+aKicXrJE+g8cKfv3bhVXV5cLrhizPcsKEWqrpJVhMmfr2bObLJi/QOLi42Rgb1t56VGEauH337IzRV577XX5/PMvZNGieXLo0BFFki/DJH/XQ0/CoDjXo9J/2B3gNK0SO2d3GdhrYJUEYU66w8dMqpiEK+mafusqEdi9bYOEHduFah5l0gji3EXFhQjlFGEhgNJoeelyGrI+haACWEBShfI/ZTCqYP8h2cHxnLD/G2+8Ld98PR2TRQv54cevUDrrL4lLylKeXTMTMxk+Yri4uzlDsPsDyc7IQfi0WILg7fX09pct61eIj5epBDUyx7HKYDQZy13j7SQkrEiWrc2BAK+RzPrKXSY8kCAB8CB//c0MZO8WSETMVuXxs7JykeS0U+iZsURBow3dQytT4WR/764wnnri8xA5FrpAorfNE+Pud4iptZ2ELf1cPJyLZPgoW6kXYCYTx9hLgK+p/LkkS/7vwy1y7+19Zfqf69T9R++5l69/lWjz88B6DZX3OvjoIdmya50cPXZSmgY1ROWTLucYK+Tazp49RyWijB07SoXOGUZfsnSVONo7VxyD+2R1I9a7Pr53rcyduxDh9uZYcP0je1OxcQ3/wmf49gl3ocZ2pJjg2pfgHnjs8efkjf97RZ544mF1NC4EXoPn1MejnTSuOwLvlSFC8BsWiu9clQHoDM9yIhIuKmvFeN8MHlILi3PHlMq2vVneozLCHzC8mHlOJYquXTvJoEHw9F6DZBZek/Dw0/L77/PU6ffs2UVlLB9BfeyDh4OlzNRe+kLnryrjLw+G9dyZXyHhyUhs8dyRlsP7sFmzILWYYaWQAwcOqzrcfHb5DLds0/FmgfqG9MOIoJ/fAFpjZEYe33w4tuq42/lf0n/XKAKUrEiNPiQvvfh0je73Zt0Z78MWrTpLHAi77vdMPcdLQd5V7NvvyGuvPF8pf+b99/8nb0H13ueVl8/J2OQ+E3/+WdwxMNjZWKA02Gn5a5bHBTVfqfc2Ykq8xCZaoazWBHH1aypD/2WCnzfrdb+afs2Bx8mkJE369OqqDJWz90UyODO/f5j+M7y1keKGhcMECCOPGTNSefUMPDRmjNPT5mNaXxJKz8g0ZMpa2rpIryETxNPLF9SBdJSVOgNZlQSEbYtlMww+W0jBdO8zWPZsWS0zf/pW+nS3FCcHE2nayEJGDbatuL/2HMyXletzZPgAGxl1dwIkf8Dzg1duzqzvlVfSCIkiJsamKvGDfacRWC5cUX4mvTq8gom23FjYdfgLMbMoQWJFCr4j4udjKu+/5irHThbKnbfZqZCz4fxj44uly7BY8avXVT79cb7h7ct+pQzGkQN7JPzkAXFFzerHH3tAiUPPn78IYfFpYmeLkpSQnsnIipWvvvoEHvTJMnPmbDl5OkmGjr37nIxMamLu371NTh7ZpSRgJtw+QiW40LvDybmmG5NwWuN6FtjZiuPo0WLh7y8liCZkrN8gmZs3w7D+QoX2mUjg6OgtTeqNghHYVnUjLHK9ZOYdATcz+Iq79e67H8o7738iXs8+o+o+G3ZUgmzshE8+kTGgFkyf/rXh7Zv2NRelR5966nll7JuZGkndQAskv5XK6ch88fP1lPc/eFdlNdfUCdAr+jnkg/ILIIeUW169h4lJbCaQyWqKuaFx01ZKb7X83XP/zcM9O3fmt6i6VKQq/9CsoXe6U6d2SMyLl/UbIc1lYY/ELBsVJaASAyMCtaH1aOFdlp+fF4T58IIbWxuAN+kdwJX40d0r5KEHyisXXO9ucgCYPXseeHCr4bEokm7dOiNMeieyCF2vSVeoTt+0aVvxmHavWCOce35LnDlTmoAXtXnjyvM/kuTkFGnTtpvkYLXvMHKEWNarJ1xtJ0OrrSCEISB7yCBkyt7VftK6efmEev5OElHbN7DdGXgpOiCs2wt6f3Yy8Z5Hzt9M/30TIUD+2tols0D29pdJk26v6BmNv2n3PSJ/zJ6r+FhmSA4qQgWd3OPHFZ90+VJo+P0dXjp9+gzuu3biYgK5iJI4efiRB1DyzUECgzpL+849K/Z5/i8/fP6epCecgmdrgSyc4akMsAXLs1Xd4E5tLaV/T4abRRavzIEkS4Gs3ZwrZ+Jc5b8f/ijN23SQDSuXyP/efVkSoRVpZmoDr2Q7Sc84A6MqSprY95DjmRulRaM7xN2lqeTmp8qew1/Liy89BePJF1mdj8qfP3iKl7up2u+YobbSvInFOV38ZU6m3PNEgky570mExDJU9q+rmxcSmpio5CzNWnUUv4C6FxXHTUqIA76/yJSJIxX9IiioHbJ5rVS/aK4eD10oBSWRkH85qWRqZs36UxIzyqRVh+7IMg5R3vN2nXqqMHws+LBbVs5WJRFLgcuAfj2kS5dO5/S5Jv54660P5P2PPxOfV18Rk/NoGYm/zBRX0AGOHdmtuJft2nWX6MhUGIFjwbsshJd1rvTs1REe4N+vuCvpqBDUtfsAiYFeo23PHmKBe68QXrSczZvEEguIrVg01K1b54r3fz2+yBDsyBFjZf/+PfLmC05y1+32it/KY+87lC9vfZIqrJDzExY/d9xx21V3idqUv8z8Q1LSwa31CJBByMBlEgZreXOhRk61YcFW1cGOH9oH3t8MVPvxlZx8ZLXbOoOqYy2ZqdFqwRTQuJN06EJJtZpfdFTVp5vl/YsZgDoEfLNcpfP6QX7Cvu0migjuAbmR69no7h84eJREwHNCQnOZmamsg6TKBx99JksWzcGqqn2Nd6cIYRo2o79J5OcfwAi6ekVFhee/rf5mWHjVykUyYdJUCfn6G+wE2Y0QAQUNCPVerSQmNkf6dLM6x/iLTyyWkPBCam0rL0pUbJF4uhmD+7UHhPYShMQaV3os/ebNg4AtNPXYmIV9dmOlFhp/bpPvFNvWrSs+yke2+N5vv5UPPvgfQn2vqPcpqPzBB2/Ld99Ol8ZeneFlsxEjc0eVwV3xxfN+oYFpC22w8JPZ6pNmML7qBpirMPCOvfmybkuunAwtlEB/M9xzFjDOzGXr7jxkAxfJ3h0blP5jj76DJezUCfAH3xdv9zbwXDhLnaAesmnPe5JUEIH9GsmRk3+Kg7235OQlo76pp9xzzxSVcevqYi4jB9piUhTZvCNPFizLliUwNDu0sYB3zhgTnzFqIBvBeygy84dPK3rft28vlb0cDwHzfZsXyU5jW/H2DZS6uNfdvVA6C89gRnqqOEB/NDsrE5zCA2ryNAhN07tWUmws63e+gZqqjuLqCFJ9SpoqZ0hO2/jxo+Xtdz6SKaP/U/GsBtRpKN/++hcWVLYqpJ4DDULfwAayZdtuRedoCF5cTbaVq9eKJbL7zzf+eAzbDu0lAvWSafTXq1cXZfemA49xsuvQ16oLTZo0ka+h7Xg1jTzDDZDeYc3dudBsJKZsg5Fp/u47b9z0xh/7+tlnX6G6zW5ZN89burT/h4fHz9q2tJT5P3nJtKcTIbH1uFAD82xaDrmX1S0luGEDOLw5xjJ28qPncKld3C5/3vP2C5DA+k1RF3uvxMYlQI6ogTz3nw+FHOHYmEhpFNSiVhp/vGYXa9oAvBg6N/CzUpBgWS6KoYrr3SbfdZ/EZ+WI7wsviBlKlLGVQIg26ZdflNzKqZCDFR6UmuobJ2Lq6uVAMNcKGZdnt1JgkA/vTY97Jp/99jm/N2nSSA7s2wa5jBXy8EOPib1dnsz+xkPatbIUu7qhMrSfzTnb/+f9ZDkaXAgiPqp7gC9iYWEkHVpbSkQ0zhuDB7Mndbt5EWCWdTi8TEkp6cjCzTino9//OEOsGzU6x/jjBpYQa7bp0AFh4Zngf72kvAp79uxT8j1DR40XBxdPaNh1kDr1G13U47AXSSfREadgyJXfU9/NzEA41k1NMJww/bxNwaPLk9DThdAqy+d6RE6FlUo7yMk0b+QlB7f9Jds3GquEIxp6ptAANFTxYD+TCk6Ds9pd2rdvA+4Vko2QdeyAzOH/vP6uHD1yRHEef/4TtAiEeg2tuKRMtu+B6+PvxmM6O5pIkUNL8es6VlJD9yJxZTE8oB3kheeegAbiGdmz54AkJoXLrg1HVUUQfAWTN+tTqzUUvI92MmbkQFUfOyYmVo1F1pbuEDoHLzH1hETF71JZ+oYJn+Lrc1Btx8zEFtIvnZWRGHwans63X5K3P52uPDNw4kN+IxlcygKE6JfIiy8+dVGsDedzua80zo0QVq+sGUrxlbBINBqznQ8e3A5P1yHFaWvbtvVFq7BUts/K3mNZR4Z5P/nkPYQf42AguZ5jJFX2nZvlvWIkH06fPh20AtsLjD9DH8md/gD0gz8WnUHo/3fwth9SMkWHjxzHOGoO0es7UOXIU23ORftMePfmz1+s7p9Bg/rCg30PuO326nPiQz1OZ1e/c4w/w7Eu99URCV/unj4SF3lCOnXpgq+hshKeGxd3D/VzufupbdtV/qTUNhRuwvMl74hJIL4QE6XO3dGjxyEJg4eyS0dMFubXrMfUCtuza6/i4RmMPx7MBCt8lzvukOh33sXAvRA8mok12gczeBmfwEDy6mtviBl0++y7dBYjuDCKMbmnzgP5HfplDz447aLHpHt/+/Zd8D7kyPp5vuBJYbZBY8jJBCK8bGnpyK4uKIP3rwielVLp290ag78REkOsJSu7VOb+lSP3PfYCPCMBanv9z82HwM4t6+WtVx5H+DRGdW7JvN8w2WZXhIFPhUK6p005r+v83ltCrDtx61YlGE7DasXKdZKRYwTB2AcQGnWEEGyexCFcmY1MQnJIK/McMKHCxdleOg/sIsHHDsncJdHy9ktl6j7i8XjfTRxjJmciC+XNTyAdk10iUbEF8jZkUBo0qIf348QGfL4ic8i9gFgfk7hHrC3dlD6gmZmxbNq0QdWgfvf9z+QU9AVzEdMqgoHXpFkrJbmSnFIs0fBYcyI+v40cZCsN65opI+7jbxHuDfQQU5QpdG/aXQrSk+RbaBW+/PKzqqRk48aN1DlmZGRIDMTMmaDA6hEp4BlaIvmJJcMMobfVq9dhn8XSpundCFlbKd7c5j3vQwy7R0UXGMpjxYn6/gOQEJOrfpzs60KQ+ojaxsnZSUyLU8XcJFsc3K2kK8Yyw/4rdnKVv/RB9vLRb36Q0vx8KONYnrO3bNRk9vLxPscLx1rfTHS5Fo0izJWVCLwWx6qpfR5AtZro6AS5Z4LvRXfp6mICbquV/PnHHCWpFBaZItYOfpKYEC27du2RkSOH4T5KlfG3T5adO3Yjex2lCJFQteu/78tM1O79Y/bPkNGKlN17D0NpwVXadeh20eNdzofxMeFSx99LLVhOnAyFOsBG6QF5F92qRkAbgFVjc0M/YU3ZvdutZdKd90owpAUMzRWry7ff/I8iMhveq8nXgwcPq91ZIxxyfjNzcRErrOy4TU0bgDzWk08+orLNqOuXtXaNmCLVPy8+HiEtK6WgTy/hxVpeXr7MhBDvvRNtK4w/bt+kvrn8tTpbUmH8sXFih70pndpYypsvuqr3+M8r7yRDs88aQqDlq9eKD2r5LylJiQjh2VzVCr2mIIwIOyVPP3CHWHvWg2frNslLiZEi1Di9D5w/X19v5Tlzg8clBn2urBXifRpdJsik+O33ucio9ZRJEyYovhoXXeuW/gEPlkhI6GkJQharN2RTzi8z5YPFgamZlfIW9e3bD8K/P8hU8O1+/B9kaJCBbGiB/uZyN/hTw+6Mg1RQQzly7BTEp0MkHQZnA1R+yS88KlOmPSqL5/4mSYlh4owybosXz4FsRZBMRFWbpUtXYHJECA6GTAmMtPDQkxIQWF9lGwcjxDxpbLkXpV5g+UInqCEkauj6Q/tzcZYyPP0Cmhu6I9bu/hJxfKvyKBo4kNyeYUv+GBqNwPNbhbFJYiMbF1WIQZ8d/mMZOlNTM5SiO42kmLpIvPKU5IgT4oMMYzZW6bHAQqysrFBehRfS0Ff14d//8Nmk4UCRbXNweqvb7r9/KjKtf5CE6T+J6/hxqpILdRszt2yR7D175P8+ekd5+6q739qyPRcDbD6eVZsGvEa8dvn5ZRINz3BcOirsdOonOzauEEcIjjMM/MmnX0N6ZU+58RfQTBwCmkpeWjzoFVZC0fRevQdL736DZNCoSapqjAn5ClfRMqHFWViQD8+iqarOs2PHLlmyYitKEPavlfp+lwvl1aF+uUfR21UbAT5gc2fPkDgQsZ3HjBbbli1VEfmMDRtRJ/QxDGKmSsy42ju+xBfskOHIVoLBmoXrz25leLBLspFR+/c2Z39WE7/TG/Dppx/IQw9NUzV9y4WgGymi8eUckxmdqWmZcttwv3O6M3KwDaQxQPbGBMmwGFuzxsjYHGJbsR29f9N/z5FhY+5RBkLFB7X8F2pqRZ05BSPI5RzVfYZgOdCnpSaLi6s7svOuz1Ay9/cfxQQerTp9p0jCEVS/QLKOZ9tBqK+bqrIIGTq9CyGoV//zlhSiLJ+5t3fFFWQ2ee6OHep+yszMwoIgR1p07KoyfA9DdsnByVXx1JhlO3bifeLh5aO8ghU7+PsXyrjkop7vzl37xNbBSe5/4hX58cv3ZM3mKJk20UZaNLVQ3uQ/F+WAD5gjbTp0lo++ni1/zftFzIxyxBmPmJ2dgwwee68yPCfc/Yh8+cF/pCAvTVauXK0EyJei8odlw4ZSgmQsEzxvTpCiyYaeZcTJECRVWMrytbkI0VnKE/ddaKylppXIq++miK27r1g5/7OYyUKyhg+8evTuVbcNGNAPRpmDHAyeidBwCxD2TyJOXApPzz8eFktLC4R0n4bO4fvwricwug1jr0gef+51dbj+Q8fINx+/Ls2bNlDen7PrJ3MDyn2MHzdZIiIh34JY9EsvPat+KjMUq+q/N663AzxvieD5Rb/7npjCq1uCDNEyeC+fffYJjC33VfVV/T4QoBHPFhlTLP6+5QsL9cbf/xw8WqAW01xmhJ4pgqB4gIwYd5fs3rZRzDkE4IMDRyPFO7CRxCeBj+nkoRbcUdsXqtReVtUpBr80D96/vxbOFUcXr4smW5197Kp+Z9g/AdGAxIR4qQedTBqoSUjCIXeV1XJ0qxqB6zNqV318/UkVCKxGpmJM5Bmx79ZNShGWKgNvxYxckgl3CBRp5f/eeEetdAz8myp2U+23Bwzoo7L2MjZtFJeRI8/5fvb+/VKISXTMmBHnvF/Tf5Cb89prL1Z7t9R6Y7MFAd7Qjp8sUCtVR3sj+WNhlowbYQtdOCN5bJoTiPvlAxyNv7H3xiPb0lTumHK/4av6FQjYINGieeuO5xh4m0FyX/jHz6q+Zv9Bw1Dz2Etat782YbTzLwKzS63cApC8U1zxURGMPxt4BOldY7vvvqlKNPbEV1+LDfhA5P6pTMzt28QRxs8rLz+vPBjmpmVIytgIvbq2cmj/DuiDuaBKwC5JSYqX0LBImXTvo+ClelUcx/CLOaSKzK0dJSM3W4LqN5M+rdpJd5RAWzx3pnz+02/Iuk1TmwY1bylvfPiQdO7eV3nvkhPjxdfDDlw4ZDYi0eLs8lTPvfGx3DWmtxKq3bd/n5gz/AqDiqHMUvBvs3btFpvmzaUIlTcwraHGboG893kGwr0Wir5AD10JwsTUHnz5nXQ1gZtY5Ura6UNiYeciqaf2gQe4D6Hy9yv1vBnOrapXcrpWrFiAxefjEhKyXkm5/PbFHyqUfPZ3qAk4dNQ4eEgt1TlSCzMAtZXZTDAZe/rUkRTw/8LCwuVsA5AyICNGjIf4vQl4knfAgI5RhiSlPCZNwph3mS0SxmMCMr5bNpokxaUFkpObKClFp5DU5SL//e9rl7mX2rsZr5+/n7f8NDtDunWE9/m8tn1Pnho/XZ1N5BRoNI8+O1FtAZkR9ZqcZSS3Ty6XAlq28E9IuFhJfno8jD8T8YC8l1V9KDRgDskLDpbsAwdk1o+fS6/+wzDGtD/vSJf+sxjc8N9mfC0L/vgBdX9j1RfmzRb54ouvpEHDJjJ4zNQqZWMuvffasYU2AG/S67xx7VKxgpyJQ98+krVjp2Rh9a8avGR2MAqjvv5arZj5wNZkI2flVejtvfrqGzA888WucycxBucw++BByUQN1HHjxkDVv3lNHrLG9sUQINv+wwVKk42/k99nDoOP4bJZ8zLl218yxcPNRLp3spYTpwpVFuWM2TnI/DWVj779U3z86/Brup2FwPnePUdHV5UFW7dBkHj7NxC/wLoSfPSgympt0LiZNER481o1X0iXHD4C0j68gJYObpKfkSQFWamSlxgBwddAdVjyulavWqIMiJ9/+VUS1q1T/DaWInv99ZfAc3OS73/4RYqMHGXA8BFKm2/JvF9l/uyZ4oCyUOYO3rJu/WpUclkgX/28SFq163TO6VCi4p5HnpfQk8fluYfvhE7gacVlu/vBp2XtnkhZMPtHyc9KVl6sjOQYWT7vR4R4E4SyKs5OraTXoDFiqNdr2HE2JkUXUCzCTocrHqKNu7uY4m+2otQ0MUIYk1nMxuDHlsCz2aFjZyTBnER4OVa8PCzE29MEvMBiSUgqlA4dWqPqzcsweN6XPWt/UfsgJv8HIeT7779H/X0l/7Cqwm6UjbtYs7W1kSZBzWTsnY/gfGPlr/m/STTwYUnEoaMmgF/7oiyb99MFPGaKN9Nw69jyYYSOvcQD8jcZ2VEwOtdUywDkebIVFGWKr2cHeIOgK5eJGt5/Y3mxvuvPyJU2kfsfuE/eeONNmTwuFxVurM+BpSkEz9dvzZVfUe3GyMgEeql3SGjwMcVH7doP93VgvYo6usx037B6ifq+ZVATyQ89JQUREWLXvZvYtofBh7mMCxp69WkAMqqAnV4WL7QAC6NnHrxdVQGqG2CqxNeZoeztYSL/+TBR1q6JUuUJO/fod87i9ZyT0X+INgBv0psgHze4EXSMTFEKzhyr78I4rKLQbFq1hAcQDwoay5YdPnwEhuBx9XdTlEyrCYPwqaceBefLCrVOP5Y4yAGwMePxyccfwiTyqvr7ZvyHpPU+fbrL1z/vVeK4DB15eZTf4i5Ysd53p4Os2Zgr0fFFMvaeOHUKDg52MnTMfTJ+8n068eMyL2qLth2FP2c3egCS4iJUePFaGoC3TbhHFv0Jcef1s8SjZR/JSYyUlJDdkpVwRnrCGNu37wCEnVupLMMPP3xb3nnndSQmpCsyvhVCp7uQ4PTTL38IncVtugxQYd7T4NatWjpPfDuPEvdm5UkNpahgEbr8a/n0vVfk53nrhBNONjTkmNXIZBGS4B6+a6Tk5xSKh2sLGDTW8tPXH4mXtx+y90vE0twEkil5cuZUMLIfCzDZWUmHHkOlbafu4uMXeDZ06ndHZxfp2X+EmGxYKfGx0aBfOMLPZySmeB9ifVIQF6sMv2JwtOxQSSKvoEjate8o/aGnxySxHAgN90YVitGjR6jyV9xp3769laeNnDqODQbj6IKD1+Ab9eHh2bhpp7zyxCTZsHY1OF/mYuHjI8VILPntp69kwt0PKe+hwuSs4xrC0oVI4GIrLStBoAPeJmSVVqdRMosl/Fh5JD0rEglfyBLH6+OPv1+d3dTqbR+D8Pf69euxuNgurz3lCE61PYTUWc+6DAaiEWpc5yvprCHDRsl66FkW5iSivGKZRIUelK0lRlJYXCYjx0+VgQj5z5r+hYSHHFfzWDFq+ZJGVHD6tMrSt2nWTDI3bZITRw6ofZNOkpqcqPixF7sA5CQ/c/84CTl5VCaMsUO4t1gGIIlvxABb9E/k8IlClaT1zOtr5IsP/0+efOmti+2uVn+mDcCb9PI3a9lW9v30pQoB2ZD/B4FReuQQ55Gco0eVgOtzz70ICYMj55xBmzbN5ZVXXpLBgwec8351/qDhxIzbe++9GwkfhzDpFalanrdC/connngUvKTb5T/vp8h/X2C5t3/OnPpoD9zlAK4fVq8mNvLjH2tQzstPrxD/geiKf2vVrrM4OrlIWgq14qAFdg1KRbFz9Rs3haTIT/L2q0/IyUWfqv6amJhKrz79JDGtSBb/tVa2bt2heKSnToUpHU0KmXPyygSvNT4hRTzrtEJ2b0vwlzzV99dCQ9IYyQtWrr6SEXlcinIzpDg/F/xCBzl+eD88ej9JQS68cNDxK8M3QDmSOBhk6ZiwvN3bIiRmr/ZjZeks9Nw/+9oHkoSSg88/MhkSNanwQpvDmCkQM4SNR4DjVlUbi3rTw0ZPlLED20rKvv3KS2IMA8q+axdJW7lKitLQB3ACneFloU4odfr8UenCzs4KmaxdsfjpqRIoPv/8W8VjDWrSUC0I/5+9qwCs6liiJ+6eEJJgIQGCu7u7u7cFWkpbWkpdf92dQnF3d3e34BAkriTE3f+ZpUnjBEggtG/b8O67srt335XZmTPnJCQk4tq1G+o+vsnsSAcHe0q9eaBpk4bo0KFtYd15pPWOjsR0NamLb4m/M6hShfq31YnDdIAWQ+/xPKeVi2ahY+du0EmLIodcp+w2JKrQtClD8RfX0KBuQAxhCP/C+Awan71PcRfmzPldZaZu2bIdhjqEd3QdQF3YqsU9/D+/n7BMrFu3iipUHzOLfRk+JX66UoX7SiAhoSnkUKxEqpj3eC/dozrIPXTr3IqJRUmcXJ1Hmk5WgkgCbPTt8d3vizC0RzOGfl2RweswhUl9yZywCE2TFpOxtPhuMTJn4lD4PUZqDGBTQAKeJH4t47vwCCdHaYQ/VWAS1o1rl0m2bqQy3of0MUWfribKOBX+TSld2xkrHe4fye856dV3CpXs/K//2BolkDJ6BYjKwaBujaHHG8d2xHAaLDqIOnRIef9iKWmUwRuhXUtjvPGiBbpRdYA2G/aRgPbXOTE4eCyeOIifHunhWUaHQ3VLPJ7nzl1Qy40bN6CXMnd4Iqvvv/46g1QX/1Nh3ldeMKeeqi4Wr43FNY9knL+cwqwwM8xYuAXVSQ6qKSU3AiL7JbN4kTsr7SIeufNnSOdCqbZGTVsr8Lk1k1EWzPwBtqY003hDJKUCBiYMV5tbqe5IKFuSLxo3b6vuF1HhuHD2GPbvXIcjhw6ifAOGi4hZMjCzVokmMUG3cffCPvz44zfUFa0Na9KYCOBcuDlFuWbcuIlo4DZGaQPHxYcg+N5FJnw0wfSPv8O65fOwfvliZqAzUzkhjFQz/rh77yo27nN/IMxg89ql+Io0N9rMhDWoVBk2fXoj5tw5xB0/QYNGByPGvEjPVjLuhQbDz5tKN9Slbty0GSo5WnD86fFK0IKLWz14eVzEzi1rFfGxDIBkco978XXoaKUruazWzesoYuiS/q1GkZB996lzsJv6GlJIKp/Gl7tgGbXouYzjeRjzN9vCbGfh3ctZREXj7bc/wonjp5mJb0Mc8Du5jMSc+xa1/McfsxQRszYNDH0HB6SGhiKVOMqPPnqXz4W3izpUsy3PCEQQfiBqN/7+gTTQ9JQWcMeO7VWYViZVwuO3cOEyJKdpISFVj3CJluoek4laVnlxVG/cCPSGgSQ10YtuSi5OMQDjzp1H2IoVGDx0GEa9+K5Spsk6Rj6jIyOwe+tq/PbD54yGGcGoQQNk0NCUiQRT/7FmTnl6/kwU8XnWccvXE1/I7GTxWoaEpqNyI2+889kvGDj8uaxd/nOfRSmBaAzAMnw5HD+0F+9OHc+Ib5p6EUgYJZXp7lImjjbDrO/teSPS8stRMkh698bHYZi5MBonqTpQVvF6Obr8wEV56X7LcPSvv89kGC5W7W9MrNHUVyfT2/mOwq3krWTHjt34+edfyQt4NnuTeDYtKSv001+rKIXVJHu9ZuHZHAHBDK2jd24VNYEDfDyhQx67xjQGnSm15eRQjgaHFYaMmsgkoAQmZsSqpAShgBGZxSvnjyI9JZ54UHPUdKtGr/EwlKvfGU5Ne9E41KIHMB53tv+JxrVdmJW7Od8ASQZ0t279OCG5BBtLN4UzS06JxswlW2hgtlHev8tnPeBgW590L5Ris66FUxd/x8zFm9GkZbt89eVdcWjPNnz96XRE0aOaVWrUro+xE6aicTNmLnP9ljVLeD2bo37TdqhQ0VlxEurTyKpS1VUZmZ++PZkv0PWws6qpQtQh9y4zfM3nxtLNOLR9OQb260ZVn2bcVrxAkNB3rFmzgW2Hq+SP4dRWLojnztmlDpJq02Du1Sur69mfAvwPW7qMhsOdXNQz2Ts85sLevftVBMCiQwdYdu9G/Vcm0ojCCUOaUZS1XLp0HgYPHvCYrWgOlxGQCflPP/1B/WQ+V+k97ztktLp38o6OYAQnjuqJFIZjdKjaJJn5ktgUf+mSgiy4VnND/Va9c2GH5X49vHc7fvjiXaSYGMGsVUtkEreRScdH4m0m9egG4PqRKtlNBd9NIx9nLCKjM9S6D9+wVvhv56b+6Nj7Zbwy/ZPsff9rC0UZgMW78/9rI1ZGzrd1h67YevCyAlLf8rhC9Q1j3ObN5Ot5ES+Ns8xn/Em3xSD8+TM7ajUm4a9Z88iJ9VsZOZtH78Z7732CGX/Ohjm1NZ2aEDxMmzfu/HkKkv+iQl6//fZDvsp7UXpJ/jw8blHq6xdFD+Pp6YOadRvmyr7Md6BmxTMxAuJ9+Oy9KcrDJbhY2xbDIfi4c4eP4MyJQyoTmJK3WDX/B6g5Eq8ZRoKZ1WxOgyAGTRrWUrg4CVkKJ54kSPzvf18hPuA69MxsERd8GybMwv35528LHA8By2/YsBLvvvuxCjnrGzFbukEn1P8bG1nesQKOxlL3tUJHcuI5wzfoOF+O2lSZKV4oskO3PiSx7YW5f3yLiGAvCEbQzsYSESG3sH39LThUqs4M5fIYMnpSdnhLCKpzlivuzBw2sqfSja1abW3hgtDwqxjRq6X6/tefM2BHXtFPmHFfVKhVxlrOc8aMv6BHLLDgkpNmL8D79LIvo0HVo0fXnM0St8dwocBVCijCaCDlUTj+Cqgu3yrhnzOi/q5V3z7Zxog2JwZW3bsjhaHHX36bSUWWxqSbmqGoQpowDP7KK5OLbQTna/A/ukKuCdGKj6bx16XPiAJxrVlDI97Axev248NpE/j+uopkLy96ra1Qq0kjkjZXp560LirkSL4LCfTH0f1bEeRzjRO3GJg3qq+gT/xBoUOvuDYjP6GBGfDx5w3NspiqOGnEHXKzCgO3bGKosIDSx2SS/pemcELWOT6rnxoDsIz/clY2tipsI92UC7pjQyc0a2BAAy8OnuRhalDHANWq5gZKS+ar8JF9+8dacqP9zJkQkbHPaBEJqj9p/FnRm2DZ+R/MkHWfPuRHM8fcuQshSSs5KSWyTlUA++vWbSKuxB7nztP7QS674eNe1iR7ZA3QM/wpaiA7GUa0Gz0apo0bqTMR74CUWIZKl69Yg4sXTqiXvCQYCO+fJKoIhsiVsAqhF8lZ3nlnGmXSmmDRouXMRg1D06GTVcasE5UjCisiZzVr1q/0tJ/Gho07+TIEJd72YeGcn3Ht4jl12Llr8xRpsvzz5offEHNaobDq8q0XXszxL05jUog/fL1uM6s2ALHEAcpEsHnrjvTmDcw2cvIdzBWmDHeH3fVmy5RHI3mMZMSSGI0Z1AybkRTaokodGrqelPKarpK+Ro4cVlA16v4T48+6Xz+YEY8oBpUY2+Hr11PpYRzczx/jmLpkHzuQKhAz5y9Geo8e1OQ1zl4vCQDxp06jU+cOhcI3snd+xAVRoTDs1LHAcTEijY47VYVatuzIpJ4MykDaMlt6K3+/s1hFWiPx/GpK8UZA5PRCQ++pnW/fuIrzp48jNiZK0Ua1YuZtXhiIKCuZc+LQib9NXeI9z7lfJndfCE6fvQq32vUIk0ggt2YcYR1HOeGhNx/JKplKGkiVe5fGu661NSzatEbirdtK0emHPyNQjskpUpJTMumFJy8llXBE3Ul+y5PnEpkVn8yJGZ0GmlLgCGgMwAKHpWyuTJKbhEDaujUtcORUoqIwqVvLQJEbCymsXPhZIWG36vrEQqSQfT9WAaLL5hk9uFdbt+5Q+EcBwuctQlETvXMntmzZwSy/l7M3i6F86hTFzPcfRkKKFqzK18CUt6itygxMA1FW0JRnfgS2blgOQ2aXmjRqqCZGaTSMku7cUQ9+y27dEM4XfRxJy4W6pLhFSKTl72GKYKT27D1KObcYvsjq48M3J0DXzA6VO4xSL7CwK4eZvBWNb35biDbkCnzYYsjrtQqVNOTvYcsrb32CqRMGI5TYQz0ql0THBqgqDCxsYWBZDlZVG8C2RnN6RJPwzbc/k1g+vwGoVB3oNRPaDosO7bO7IF5Au7FjEfzV1zSC5zIU+I+n9JVXXsTipSsQ9tdfMO/ZEwZU8EklxUv0nr1I40v/w8Wzs+sp6QXxLGYkJRdYbQYnAGIYJCWmoVm9V6mpbEJc5hVs3boGIoEp2eOaUrwREKfCqFFD8Oqr0zDrt++Jjc0k/6ouPb9pHGNttKcE27QPvlFZ9lKjHn+XToRMHN63A6FRqejUYzCEouXS+dPYtWU1mnOSs3vrWqQnRZBxwgjnzpxXOFc5VhIgM+k5zuD7T5JI9EiRpE084k3PVMXsYGoizJhQjA/GTPSTIv356tdIVKxUEc3bdFTrNP/kHwGNAZh/TMrsGsH3yCS1opMOGtUz5wsuAw7k/1q8OpaA1zQE3U3HqIFmfNhrIepvLEQWvUKZPakHdExe4nKzS8ZY3iIZkjqSXUim/6wixt9XX/2AxFQtGFk4UarKBN36DM7arPn8l4yAsP7rkBNPcLEJ16+rDEMdhidNGjbMNgBiyK1X2sWK1CuuzIq8cvUKVjBTMVNbFy49X1TJJNK2ZZW6uL76axJMnyy2AZj+tyczL/9icc5FsilPHduPOE78LCyt8Muc1VhBstxzp48x01lfZTon3gtAPGlzTOwqKiPQolId3DmySlHc5A2X+fkFKJJd+1698zUvnkADytYdOnIi1zahY9pLHsaJL76CS/PoAf27yMt4BnkBW7ZsnrWqxD9FmWQ1J4QZjBYI/i+rCA4w8ew5pW8cF6OjjD/ZZmF23xN871541q6az2KMQDQpXYYMGUmOxzsY1NsEjeoa4O1XrBAXn4Hl62MZfdqDicPPYO5KMi043R9j8Qq2pP6znVM1dO19/5lctVoNhmkTsXrRr6hRrQozi3VwxyuAspMWaNeuNhYEBCg1HGNSxmgRq5pOb6BkleuTI/fgMQ/MXx6Drz9kohfJ/wOD09S7Lz4hA9M/vYddB+Lx/YzZdIrcNwqLcVr/uV00BuAz9JMLtUaTlm2xYcd5HN/qhKvMag2+m4rqLvqoRYJOH79U5RkUT+CKDfFo1Yrp9+Q+e5aLzMrT6PUU7ijDqlVznUoyWf9FmaRhwwZKluwIX0R3PD2Z/UkrWdccA4aNy7V/SX8pTbqTku5rWa7v/KmjuHz+OJ6b8q7y0BSnr07Eu3kc24c49wvQpXyVvCDkUzw8WaTplWhwlHaRl8uYMcNJYdIQXYXHj9Qx967TIJKZGouesTmNroq4SE/Hg4rQXdy4eh6RJI8WHkJTS3vUrNckFzi+sDqEG+237z5iRvNGGnJpCgslyiBy/+vqGVASzhGuvV5CbOBtJMXcU/yJfkfXwJzSWQkRgUoCTHR88xaRnJSSSQOqoCKGlWSH5i3CO3iChqgQPHt5eaMcvTat+PIv7Zfxm9NeU7CP0NlzYCHex4oVlCRgNGl0MuhJGjLlRfz6ywwEhV6ApXllePrto9Ggp/Cgec/hWfounmiByqxYRVwew/M13WrgZVJ5DR7cv9j31MOc7/Q331XG35HNjgyla2Pp2hicvZiM5tRXf/k5SwzoaYq2/YPxyVsTMGflHlW1eLMzyYfp7OKmvvt53cFy8gQGUPHKtX0bZten4fnxI7Fp83a+27yVBrcoyawXGiYqh5g0a6quwzjCCJJu3ULHbn0xe+l2MjzEYVAvY+JdtREWkYYd+5MI9dDC/76fTW7N/BOXhznPf/u+GgPwGfuFh4ychHdfO4pte+PIfWRKxQt6wShe2pBYwCVrYuBBdYvk5AwcPhHPB8JIZmolPVUjUDQZhZxXQjMy839Yg1R4yqpTGs5v3XrYTngBen8z+kvIL2LNGvKhVeGLtxNWEPPl6e2PuCQtVK/TRMlvleZPe54elcT4WLTp1LM0m/lP1G1B/kDaKsQBxTP8Y1qsc+43ZAwxgKuhx9CiYEOFJkmKyExF79uHnr26oXx5+2LVVRI7iXxhzVpuuHQnGKYOVe/j7VhxckwEkiKCkGiqjaAA30Lxp3I93b58jJO5CmhWt4nKrj171h1nj2yH9x0PhtIqEl9lCtcatfO90EVh5MWR3Sh8H4qvP7CkKoI5iXB1lEdk/opo6hBHKs9kJrPpk6JCKZvnDCvnerhGz2TQ2e24d+Mk3n5rar56ZVxEXacmVRz8Tp+GcV16Yf42bGVbOjFbSeQk7fv2G/I1X5F9hZi+JMjp81VeyIrq1V2xY/t6TKJe+u1Zs7L3kufEbF4vrVu3RICoT5DaRIpwzy1YMAtFYT2zKymjC8EUCejYuRd/77swpgdct2ZNXLp9R9EUHT9+UiUy5fzdHvc0QkPDsHbdRnz7oSUqUy94GRWWJPKybU8cKVm0lM66EPD/+KkVCffP4tb1y4pyq1nrTpC/rCLZ+eUotTh45ATs27GeanGZ6NG9IwxNJHu/C424VPQe0QFdeg3Eglk/4czmLepQNybyjSe/YOce/SF0aZvWLMaRfZsRTYYMS2sHjH9pMPoPHUfsd7mspjSfhYyAhgamkIEpq6uF+uK918bi1NE9+PlzGyWBY8gZmBRP7xS8+b8w7DmYhA7kaqpTpy5Cw8LRmp5AeQgLl1lpz8Czxk0oAqZNe4+G2WoFvJf1AgJ+791peP31V3K9SLKOKezz1q076NVnEIICgxWhqADqE6klWo4ZjLso12VNcPBfsxciPE4LYye+rrSMC6urpNaHU9oriaGLglQdSqoNTT2Fj8CFsycx55ePcZ5cYsbVq93nGIuKRgL1qm0tLXBw/458iR6F11YyW1avXo/nn38JTi36w65Wa16mGQi5dAAh7nu4fhxc6rZTExMxcvOGd1ct+BVtmrnlyqgVvkEhtfYjB9tdAu7j4pNJTm1HRQ8zvuioC87kJmfXGnjthf4I8TuPwxvL415EhtID1icMJCU1kxKI1B5OyKQ3JgA6VtWY/FEFdrXbqBf2lWWfqBN3IUny+XPH1CStoJHYuHEL5dheUDhAy65dFBg/iZ726K2UqySu7vzZoxAFjrJUxCAR1Rd/f38SXzvk8j7KtqtXr6sEoZo1a3B7+bLU9Yfuy/jxL2Iz6W/Kvfoq9PgszCoxJ04qLOw26soLSXhJFUm8mz79HYRccSYOLwW7DyYgKCQNt7xSmKmug9VzSPxN418ycys19ke3fi/htXc+K7T5QD9vfM6M/jatGsGMkxxtE0cSpo/Pt79o/6ZzEmNA2I+mFH8EiqKB0RiAxR/HMrNnCklgv/n4dWzftBo2VvokhCZGjjfckZMpfAGkoGZNN+yiusGixStwyydceQ7MeM80rFcdgwb1L/XzkAds/4HDcfDwcVh07wbjevWQyZs39sQJxBw7To3Sj/DWW28U2Y8EAn6FniNr5hpHb8PKlWuZ2HFIvbw6dmzHl9Jwko6a4ZtvfuTDJxhjX3onX/ZZkY1oNj6zI7Bl7SLUcrbkSyYds/6ap3SxTUkRMXLYIGa1vvxEvX9ZgyjX/dtvf4iZM+eosGsmJyrpzEQXAuL+zIzduHknJdzSKXOmDXMre1SpVpvetXokJtfHlrWLUbmcPq/pYVnV5fuUbGNPT29lqIWGhiMsPIoQkHAsWzQP779uhQoOusx6TM93HAMEOEb5rr1HEuDc5XlYEZcYdG4nQkhyLZOp+fNnFpgAkrOixdRUfptUMFk8nLKtult1LF86H7eYlSl8cNeve8DRyQFTXp6olISe1GQzZz8fd1l+Q0kIEfYBwTLKxDnrGfS4dZfG8ZGRUZzouMG8dy9YtM9t5Mm53P35Z/Ro3hTLl80vsea//voHzJvzKwIvVVLPYqFaOXo6Eb/8Fcnsbm2snXffAJQG2/QLgnWFfvj0u5mFtu/nfQdrls1GeVsLqvXEolWngfn0tws9WLPhgSNQlAGoCQE/cPjK3g5CZvvp938pQfqNpC/wvHWNN2IGuvWvhe59huDC6QP0HJxA3To1EZ/iiUGjJyscxY0bt5SSQWk/mOVFtW/PAZR74XmI3mNWsRk0iERNuirj8KWXJijjTbbJg0qOkVCG4HFEu/TSpatM4JDZ7N9YKgKARch+4sTnmAmdoGgksh7M4m1M5WwzL/VAVruaz3/fCKQTeyZA9PHjRxOMPqBMnKBcjz/++DWv0fGcgO2l4aCNfv16wZnhRynOzpVJMRNKebhoZcjduHgAt69fIDdgNcRHh1KHuIHar7B/BEKRM4FC7pN33vkQFua6Cv+kr6+lNLCrVr6Pybt0LYWarcmKJaBRPUPsp1JQuMdJYhRJ2RF4SzXz3HNjMGLE0MKazF4/fvwYDBs2mKTY+yBGR40a1VRfFixYSoP7TVhUqAHr+l1xj/W+9dYHOHLkOHkDf+Y9bJNdR1lfOHfOHS+9/Dplxm5kd7UmsYyzyaXahJx1ZbGIEodQGxmQ+zBvketRt2IleHn75N30WN9FEjQmNk1BjYRybPGa+0mIzRsbEVepLWqlpB67/1wP5YSkolvRsI5KlDUcOvpFLCMeUDg76zVs+lj90xxc/BHQGIDFH6syt2dFkspOfffzfP2KCA9jVuJ5dOncDilJsbhDMe5Gzdrg7OHNuHPHi+SbrvmOKckVmzZtgwFDEcZUA5Ai/F9JfAilEaMhOCThfFq0aJmS1hIPXqtWLbBv/xGEU8bqyJFjJP+MhwWJb1u2akt1h/vufiP9dHxNT18G+afMKO3lVsOZL/6BiuOwT5+e2LzjKDFQIvOmX5KnoqmrDI6ATBiMTS0RGxdeBnsHpZLhRhB+3iLShVnGoNDTiAG3fcce3PW/gPat6j90mM7GRtQOdFGzmgE9gDJZyl2qV9XDmQtJ5ArVJVaYOqtWOogM8VQTr06dOkDIr0VSMWsilfvo/N/EIz9gQN/sDRKi/pTk2dbVmqJimyGQpBI9Zm+aOVUnNdN2VKYW8PvvTSsVxY/sTpTQgngxe/QciEwarPYvToJBhQpIZgaqD5NHZP2J4/v43KxWQq2VXDV2draqslTSoxhyvPOWNGJkHakJXZKlR48ueO+9j7F+exxlSE0UA4XUn0Ts+YqNcZzEA1Oet8Kp80nkqk3C1I+6P7B5uadFVaYWk560/8bzPvAgzQ6PPQIaA/Cxh/DpV3DrxhXePJbZ6fa16zWCv9cNHDx0HMb6mdiw7E8GevTU9p9+/gO/k7dJ2PpLq4hHTocvu6wXSyqpOqIPHlRZmtp/ZyUfOHxa0VSkUtvx8uVrauZnSYxgeceKsC3niLc++YHJLfeB/dJP4YjazDCZiYk5hozpiSs3ziNjzXolJVStmiv0tA7izu0biouttM5LU++THYF7pHpxP3sc7QhwlwzCrHLlwhlEh3pi2JBnO8NPDLhxY0dkndYjfZqQ+iY8Ml150bPut6yKwsLTGSJOw7qtcahCsL5gAdu1bc3w7IQS0QC+ceMmInhvV289CkmRIZTWS0ImPfxOzfvCY8NPfPnfZYLFcmJ+J+e6l7P6V5Y+f/jxN6QTW1Z+8uRs+hhjNzcYOjsj5IcfGeL+HbNn/1FklyWC4eFxm5jCcmoSUOTOJbRRcNDdunWhlvVhJunUy0W8nXDtOhLJnjD2q/tYzxJqUhnCHTu2Js+eO3p1NsHHb1qTmDkDf8yPVJ7oyOh0ZvRm4oOvi8/DJzyXr737ZUl1UVNPMUdAu5j7aXYrwyOQSt3SG1cvZPdQAOL9R0yEhUMtpKZrwdHeCiEU477lcYMZcMHYzDR70dctrSLySgmcPUfu2YOInbsQT6oOKYZUC9Ajd5uUUROmY9TE6WjZsS8i47UQwb+oBG2yxNdHrwEj870wuvcdil/nrsd3M5ZSBaED2nUfjOu3Q4gJPKiIro2MdHHyEDFW8fGqfs0/ZX8E5Bo8d+IAjuzdRnLeBFyhekZUxD3VcfHmzvr1c3jduqx0fGVlchJxbNvW4Yb7QbRv24xJTrXK/kmWcg+7deuM215JioIjb1OVKvwzv/9lTiRJejOYNV+1xBLBTKnHLSUtMQ4GZvT42zjCzLEaM7LpAmKp06AZwqMSFBxFrSjD/2zctBVGlIjLyR0o3ZXvRk2aYD0TYYoqK1euYVi8IXr3HkhC6daUl5uW6xm7YcNmtG3bDY0btaH37BOq0iQXVd1Dbfv++y9gSEjE3V9+QRQz4OPOuyNs5SqELlyoDP2+fXs9VH3F2fmXX34kibYuOg0OxlGKEliYa6kJf/tWxujcxgS9RgVTiSMZH349q8jrTTx/IUFUuImOKk6zmn1KeASKnQQiQE1rGzuYmluUcBc01T3uCMQwtCoErkb0BmSVG1fccfPaBZIkJ8JIO5ZEmUbw9L0HG/uKSE2KRIPaVUm02fqxMuDk5r1585ZSJ5GwsmBDpIj6SKXKNZFMbIoR6TGM3Woqua7U0FCELViIxvWb4vf567K6mv0p9cXFRFPiyjJ7XVELC2d+j3IWWtQpfZPhrK9w8ZIHedcsMWjkC6hTv3G2B7KoOjTbnt4IyO+9dd1iEprHwffODVRk2C2OYaTeA0cQ13oDl4llDQ6NgI1tOdRt2BzREcEwM0hFv749lBcir8fr6Z3J02tZlDrq1GkEl0pR2LHcgc+B+5jZrB7duJWCpaTpWLAiFobG9hg+agxqu1Ulnm9QidwfLVvRAPUPg0uPF5nwkozwm2fIMegDxN/DThL1Ht63nfw+gRg1cojKFC6rv5m5eXmY9+0Di7Zts4Yu+zP6yFHEbNtGOcGQ7HU5F7wJb6lfvwXsrOrCuUJ7RER7wsNrKxVSflMY1c2btzHJ5jnYWLrC0MASIfcuKmzo8uULclbzWMvSh6+YnLF2zQbyQKaSncAJL780USVE6RE/XRrlGrGS48Y9jxs37sDWWpd8gJL2pIOAoBQ4kKz5k+/moHHzNkU2vWn1YgT4eKBGnWYkhx5Y5L6ajY82AiWSBGJgaETcjdmj9UBzVKmOgDkZ//MWLW0dHDu0hzPOhsRUgDfqKMyYOZ8GoCNB561x8uA23LzlSYzOG8p4zHv8g74LxuejT74gvvCO2lVCdM8/Nxpffvk/ErFu5MPeHv4kak5kGILgEMSTRyyJXsFqNeviMyawFFTk5VBc40+MB21qnEqo4fPPv8Evv/6JVHqNpGzfuBLCFfUt5bdEg1JTyuYIRNwLU14SB8dK9O4lil4UjJFAPd1dTOipiK2bN/OlG00QaQYO7Nqokgratm31TEsblvQvITCJmTNnMMt4MAY8F4zvP7FReD9pR+6RGKoFbdgeTxk4LfTo2x3RCcDl616o9pjSZ2fOnMOc2fPhTY3ixNgE3Fj9P/5+psiQMDA9u3KPC11HizadsHPjUsycvYRZynYYPnwQRENZjP6dO/f8nVBSXSWUFEQoXdLjVVh9jZnkceXatQINwKRrVyHbCysXL15WiRjVqnRXCiPGRjY08twhYyRJSjNmzIG1RVU0qDlOGd3mpk7UIN5MLd0wRWVVWL0Ps16wpfPm/onZf/3O5IzkXAwKD1PPw+wrZN/nqHDzM2FFS5etJcQgHrXqNsYbHw9F6/bdmO/3D4SnoHolWpPK6yUiIhptO/UoaBfNulIegWJPDewdnEq5K5rqS3IERJd01AtTcePCUVWtPIzq13XDhUvXiNsJY8bwGOzfugxz5y5WWZSCJSlukXDGmDET6Nlzg/2kSdBhKCiBD88585fQqLxDElor3vz6WLBmL65dPk+9x1OkxSBdzTs90YEakXk50Irbbs79xFg0NLWi2sAOHD50BBadOyOdDPiiG2lK3WAvcpRNGN6dWdGD0XfwGLhUr5nzcM1yGRgBSxJAV3KuoXCbHbv3Uz0KCfSHqZk5fBlxiI6OQAWjWjDRtcTNeyforbbPNv4ky1QwV3379lQZ4WXgdJ5aFzp2bEuDYjUmTZyMeh380KSBEcqX04avfwaxsolwrlIRz7/QHcZWzhg+7iUc58Rw1+6DEKWUh83SlbD9u6SDEdWJqpUN8cYkY3K/meCOdyoWrSYJN8PMkmBy7tRB/PnT58qwHzPxVXTsPgwnDu7AX3MW4R45NBcsXKqSwbIGzZzcjZ9+/D5eJoXM0yhTX5usuA4j9+6FZceO0GJyTSYjGFEHDiKBpMpT/1e4t06wnFJi4gJha1UdySlxpPuJyh5bwUTr0zjO8n7q6913pAhJf0kXmRBIstGTKOJ9PnToqNJcDwwKRHxsDAL9/YgHJCGzlTXqNWpeaDfi42LVtiYtO6D/sOcgzBYlXSQyVpBzpKTbeZbrK3YI+Fk+yf9y34Vk8zQlsxJjw1VCCO0mJKZooV7zruomPbhzHSTDdvzYYahS5cHeMrnp3Wo1QqSFFco9/1z2Q03GOOH6Ddyl9ufw4YMJAA/C+1/OgGQql1aJioxAj1bVoWVmiooffIA0ehViGK4xadAAcefOIpacg+JRtCtnzxlmL7w87aMi8Sil1U9NvQ8/ApcpnTZpVC8Y6VBKjX9RqYHwuHlBKTbM50RDqEektGjeDPsPbM91HT58a/+OI1LJObiFOrjyJzAMMUwGDx7AJIHO6kV94NhlUkK9zIQrLYbel8DOPBOTJo3Ph7ctajS+/PI78m7+gN++tKPklwXvJz5Q/i6JNP6mfRKGuctiVJ26maQF0SuHu8le+OKnuWhH1Zy5M74l3ccM6DPcr0+C5tSIcHKEpiKdGdF69PSeOX0IrsQKP43y5Zff4+uvv4c+s1F1qSKTFnJXSU0Kj+MHH7xdaJfkmdi//3AcPnwMlmZVkJB0l5MYQ1JbHYAjQ6HCm/fVV9/DtVJ3GBpawjtgH5wqWNN7dvShxr7QDjylDe7uF/HSS6/jGif/JsRJmtSriwwyOMSR71WykgXm07Rl+3y9k0jN0jk/854F+g+fAGvb4jsf8lVWyAqR6Qzw9aT+tW6pvoMKab5MrS4qBKxdpnqq6UyJj4BTJWcMGDEBPQa9AG3j8kjL1FJYqrXL5zDjthKTMPqQQw8Q6pbiFJGnCqQygUXHDvleukYkoDbiA08Azvrkh7pKUH9pFj+Gn0QZxaBSZSTe5jJlwLRJA6PLF5+RKzODqT8aS69goE8wFs/+Bd9+Mq00u6Opu4RGIJ2el+uXTlI9YyzMbQ1haJNOj9E/cl27d++FmbY1qhs0wanTZ1Q4sYSafqarERywGHyLF8/Bhg0r6d3/UymLCO9n06aNYKyXBvczxxRVUtvOfbB910EsW7aq2OcserM///wblYis8MoLlrmMP6nEiFqsM78rh24djBl+Tmdmvj5SMu57uT6ePgnrVszHoX07YESpMrtxY2FKbVfz1q2ZHOZKndcmRIok4+OPP2cm7U2E0PgSTePiFjHCLl++oojBi3tM3v0++ugduLsfx5QXxqJXvdrqU74XZfxJHeJ1W7duOQm/30HbDm4YN34YjpM2RhRGRAZTCKUFunDbdxeu3FxFfJwlFZIWPtPGn/w2fxECIMafWds2KDdqpOJ8NWvRHOWnvgZ9UtJ8+7+3FQwh7ziHhQYr4y9TW69UjD/1mzD8bE3ssJMGApR3+HN9L3YIONdRmi/P1AjIC0B0EXsOGIVvPpyCurWcqRt5E1cvnUWVqgxZ8DkbFRPPF8dyRfZalF5vLN38UnQtLdVnzn9UiIPhu0RmdDZp1px4kIY5N5f4cgo9HlKMyM+V7OuH5KAg6JEXS4d4RJN69RDN8I0ZZYXK2dRCZLQ3NSOX4LnJb2pwgSX+S5Rshbc9rtF4SCa28yPip37KV3nPnt2wbdtOxCZHoFXLFtnJR/l21KzIHgHh2+zQviW27z6OmnUaKim5pJR0LFqySiWDZfETZh9QwIIYixkZaZg6ybKArfdXiUdw+stW2HMoAXGIoGCwFrG6OrDUd8SsX76igZYC+4kToG9rizRdPSQzeUFbiONYDKs649SZC5i3aB0M9HWhx0mk4AK1mFpQr24thWsTI1SMPS8vHya1GDOpQo9Ghjbu3buHtAzuv2WnMsTu9+bh/xX+xq+//uyhDzQ0NFDJaFkHbt26g8/SUbh48VrWKvWpp6eN2wwpt23XjSH753iNf/hIGOxclZbQF5m4i+zfwgWLmNx3k9hxbSa31KeXmA6EHl1zGaxhYWG4ROyjNnGeRoQCpdPjnOTlrSbfwqFo0aUz/P+aDY+rl1CzboNcPXRwqoSBI8lSQQhIaZbi4slLsw9lvW6NB7Cs/0Il2D8fz5uUOPIjduouGtRzw85NKykTZ47BDAtl6NtSTi1I8V0VNfMWmTkpCZyl5y0ZpOlI8fEhyNsCRsyqE4b30iji3v/r16/w9pQxqvp4PniE7yqFBqBMLbVo8KbyhZDMJBTxROjqGPBFcT97ff/OzaXRJU2dJTQCkrjg53MHDva2iii8oGrFM7hnz1bl6dq6bW0+T3RBx2jWgV7AJrAnXs/9zFFicnXxwee/okbtRjh16kyxhkck0po1NEQ526L9Bp3bGjHUqU1ISSXWmwlr/QqUv0vNBb9I4v0ac/IkdV9pxNEDCBobOoRrhDMkPPP3X/DHr7/BJzASTq7NkWnggAvXg7D38AVcvhkCv7AM6JpVYkSjAmJSzFhHRVSu2QYxibzvaXAePXqiWOdTWjvNmiUwmHGws/DBtmWOSPBxQZyXi5JIa1xPX3m/9Gyd8ceM2Zg6tfDQcmn1r6B6fXx8CadogwkTXoaBzlXqS+tg8lggMuw0hg4dg+7de6uEHXk3iNTh559/S23qFGjzWW/g5ITYM2eQEhyMxBseivhfz+5+WPfMyUMQntoTh3YrGidpWxwFQlWWhYksqD+adU9mBIq+k59MHzStPKERqFjZhQTQprh4+Tp6EONiamyABTO+JmfgCxg2ZhIWzhJvSyq+++5nNZstiD5AwhmivLFnz24YUn5InyFfKRmkHri3dh20CBKvUcMNthWrltoN/tOX7ylpO7s6VAqJCkOMu7vC7Fh06QIzhpVShG5m6TLVr/SMVL4UkpGYFE7VBJLhxkZh345NcHCqiNqkitGUsjMCYtjv2b4Osfe80bZXpyI71qZNyyK3azbmHwG5n9u3b421G3bh2EEDtOnYA01bdSK28oyCgIiXRzxZhRVJANHR0Spsc/Z6ebHrcr/nnhurQsx37niqbY2btcL5MycQunoNjFxcoG9fjvdrM2Ty2ZHkeQfxly5BN1MPtV0HIyY+CGuWzqUsWHP0owFSnCJJB/t2biIB/jH2UxsuLlU5ibCmh+3JveZETu6tt97Dm5MtmZGd28gZ1NsU/XuYYMK0UCzfcB12dTthyZIVSivaycmxOKdYKvuItF/v3gOgnRmGiwcqoW7Nf66BT6YDh04kYOjEixg8aBgmvzwZ592vwD8ojM/PJvDnRCzh+nUmzegpov/02DjyQOoggYaglJiocHpwxYfLa4J4PE0pWyOg8QCWrd+jVHsjPIG/EZj7/hczkKptSS+LFeKjgnF473aF1ZDwqGudlohP1SVZ9Da1rqAO/fnnL3DhrC/wp59wd/ZshNLYCvriSyRfuYLFi2YzdKALY6N/OAkLquNR14Uzg3DDKtK7NO2FCi36w7nzWFi5NlKA7cgtWxDy3fcI/PY7mCSnwLV6bWX4efntRWJqKPoMGgl/fx8EBviQ07J0ww+Pen7/5eP279qkjL9undvQW6UxzkvjWqhXrw4YNWVo7qK6vwWkX60+s3Yveyv5tqLaFMWdC1eS6fnJKGo3nL+UxH3SIW1duHBC6SNPmzYVQwf1UpPCTIYLMzPSYdqylTIW0ikNmXTnDhml0xRXXlJKFCxMGUY0q3ifR7DI1v7ZqEf8b8u2nRGbpIVde49iDhkOrgkN1RMs4h2T7OjvPs5t/GV1QcbOpbJoN2uRQJvjQI/3lSu5w8RZ+z6pzzlzFiAkOAh71pTPZfxltd+hlTFWzipHvK07CbG3MZvcER99/aeC06TFxyH21GkY1aqpGBj0iXtMo9Z1LJWfatFA7Dt4LKm/6qB1B6GF0RiAWWNaVj41v0hZ+SWeUD9EZ7EqKVEqMDt3N8NnIh+ZQL1g0dgV3iZ5IZSjFNuJ/espL3cAXbt2yufJE/3JY0f3Yg2l2DZu3Io4PsCbThhPrMhzKpP4869+Uvic0jilmx5XiENKh46hCe5ePkTy2SQYmNvCyoWZyZ7ucKlWE3V6DMCrb3+msDUnDu9VoSfBPYmc3A2++ESyKtDfn/UATpU4AJry1EdAXoSBfp6wMs5E69Ytnnp//q0dEO9cVefK0A1LQxo9b2I0NWjSAuYMv547sgkNqIlbmOatcNp98833WLQqBq9OsCx0iP6YH0VS7/Lo0qWTwo1NmfJi9r52dtaYOPEVJDJhI5AwEh1m8KcR15dFXWJrXYMGqimiYonpTYnlM4nW6kMUS2qIDxn7CtYtn4f0jGSFtxPc4IkTp6lj3KdU1WMEQ7dhwyZ8/k7u7Oic3Y+gZNqVG8k0ErVx9dZ5tcmentCSLpIRvoM60wEBQahF40w8v4IFz1sET7lg/gKMHGSCKhX1iN9Ox1uf3UO7FsZo09wIfoGpnERn4vjZJFRy0sWlS1ew7PNZlGY0VkkWI5+fgpULZ+Le3HmgTqfCYicRP2hD0Yivf5mnwVvnHfAy9v2ZMABFJkZIYytVdc1njJSx8XxmuiO8Sy3adMaZYwfQiJJNOUk7K7tUY2ZlVxw+vldRSTRu3DDfeUmiiJBL16DSx5w587Fm9Wp6/xaTANoO9o6VUaN+0SG8fBUWc0UkrwMpsUF3aPjl8OLxxSalVo0q8PO8gR/+Nx1B/r4Y8dzLDHX1VteNPKxEdujI/h1YTBqCcqSHac4xMDYxQxsNEakav6f1z22PqzDSyyDeaIDmHi/lH6Fly6bwWrEBm1fPR5few4jHsoFosR7cDU7qNhaaRFGR6hJjx47Eu19S9sxVD13b5/byixH/+9woLF0bi99++4QhP518ZzJy5DA0b94Uu3btVcaE4IVr1qyhNL179hwIjxs7Ud6uEZPSvJkVHEUalYfnnzWhYMH4l6bxPt+JU+6XaFB6kpVA7BNj1Z+DB48ob2fnzh3QhATP5QmHKYkSGRlJYvo01Kyun13dXRraF68mo35tA9yLSMf6bXHEWqfgblg6J6+U5qtcCQ0a1MvevyQWrl69rmhpgonJEwM6PS0V9dnG5k2r8xFP370bCv+AEPTrfh/KE3Q3Hb4BaViyNhonzibC2ur+b2hmqo3h/U1J7RKojL+sfo4cNxkZyTG4fOEcAkNCYaVnhO6Tp2PIqBcUzi9rP81n2RyBMm8Anj1xiCHKLbxwyykOqwA/H1Sg10YjSff4F5SdvQN6Dx6dryIxuMUzYGbthOvXPaht2SDfSzmNeC3hYpPMYZcqhnhumBH1IA2oMhCGVZu8ceL4Mfw6Zy2ate6Qr/4HrRBjPzoqgnxl92esYpBKEXmwsBBf2BFgHOF3HaYOLjCxr4KU2AjEBnjAluvFe+HmVp1ZgeG4djEES2jonTlxGG+8/5U6p/KOFTCYUnFhd4OIdzJWrPl+5Is6dXw/2nbsSYOwdAzXB53zf3l7AsNI54/v5kvSpVDv0395fEr63Ksy23bKy89j1er12L9jLQaPmay8QxWIEbY3Sy2yuV9//ZEULSHoOfIgunc0xdihprC306EecSrmLefveCkBb745lV6+5wqtR7WfwyuYteNWeujfeONdnD59FpWqWNFb11JhdbO2P+ynXTkHBHvTANTNJHH9cPY7FNOnv0fjc5+qajZpTAQr2K9fL7z99puPbYhleTEj6eWTEh3DZLXF0Wr51Pn7dDjyxYZGVXBoulpfl2HykkyGkOfy4CGjEZOqjZqD34GhlT3igilNd3g5XnzxVRqGfVTYWZ6Tjo7llYdWOiKSgSfPhtGIS4NzRV3yuKYihMbrO69aM+lHh9EULcxaFEXKsDR1fFaf7fk8daxSC/blK6B9z6H/ec499aM+Q/+UeQNQT98ATVp2gr1DBYSGBPFFsZNSX+F0P5dHg8YtUJ9/EtbUlJIbgcjwe0rX09m1Fq6e3av0foUeIWd5+633sXzZCsz7pRzGDzPnC+S+B072cbQPw4Yd8QRCD8O8lXvhVqd+zkMLXL5z8zpuXad2cUwE0lLioUvbL43P0btUe+gzfBJca9TmDJ5SU1p6nN1Px1+/f4to36uIC7qt+mrDh/3r737BYxMRExEEI1MbxSPn4eGBcg7mWDb3Z1Sr1QCVSXsj5NRTpn+Ki5Qx2rhqEdp17kl1ghCGxNIK7JtmZemOgHhldbXSGDKkAsPfntzSbVFTu5BEd+rYDstWbYHXbQ9UrebG+8sMoWG3ihwcSRJZt24VVq5cjdmz52L0y1fU/vKzdSfh9ObPXyRspHORdRS2UVRJli2bpwyM7dt34cSZq2jSqmNhuz9wvTx3oiLvwf/2OaxevY4yld+iWlUD9OlmDOdKDC1nAq7Oepi1eD/VS/Zwn6WP3HfpjEjcNWlcHys3eqJHR2NFiF1QJyePt8DnP0XC1KKS0moXoy2nt1Q8qbt374Ofnz8jLNVI09Om2PfFoUOHKcHpD7cB02BkXV41b2TjCBOnmkzc24+KVapRM94CPn53SaeTjASS50vbOw/Eo6KjLjzupCqS7xaNDfO1eULCwORczXmPyvKQURNw5+ZVDedeQT92GV9X5g3ABk3+yfaTLMHLFx2hExGHU0f34M7183x4XSeNyaQyPszPVvcqOrsgibg+kXGTIg+onEWEx2cTOPzzZ7Z4fsR9epWc24f2M1MzxjVb4jH3j6/x0+zVOTfnWxaP35nDW1CreiVUpoqHSH4JLubkydN8KG9WuD0xAMszc/eFl6er4/vQcynEssmUWXJ2rYH2lJgTr6WUFBLK3iT1wNWz+9CMWcES5mjcoDoB4Rfg6XERjpWqKc3KS+eOUVnCXtHVdOk1UB2r+efJj0AwqYlSeYmtXLkWkydPyPZKPPme/LdaFONCvGM3rl5QBqCQxp/xuqiSEurWrV3oYIjBMHbsKPUnerai62tN+UfLArhBC62kkA2C1xO+wWMnzqPf8BfhVLFKIXs+eLUYJy2YFCLe/i8+fgMNauujVxeqk5jrKI3kOm4kzu5jhomjLTDsxbsYNXI83C+choS6H7VMenEi1TFe4wTYiN6yTIixJx40wRtnZVCv3xaL6/S4/e+76bgbcAvffvsToymTlQEpmdbjxk7CBmoFkzCFf5msbwIJuL/NZXgV1j+h+JJiaH0/pCvLwe57EB/iKYuo26QTnSbNsXH1IkSGBtATGY0mLTowE/wIdix3VM9tXZl95ykhoWlYty0ek994O88WkfDWJ9dfI8SRI/bYwV3o2nuw5h7ON0plc0X+X7ps9lP1SnBqA4aNw9R3PsPw8a/AoaIrvO/cwH6m/ouwtKaUzAjIg1Myhn29b0NPJ1Mx2uesWaS4LC10MWlMfuNP9mtc3wBu1fRRp6Yejh7cg+AAv5yH51sWbWLB6AwZMkAx5osUlIRTDh46jrv3ohRZdd6DjOkNHDfpdUya+h7EeMsy/mQ/wTfWIcVL03b9cPV2GFLIDRZLeoIKFRxgYZSJeHo5Du9aRa3KVrBzZDIMQ0+CF7pw5jj+985kdGnmgrb1HDHtxeGKyDRv25rvJTsCjZu3hY2DK7FRgQTt339RlWwLmtoKGgFJCjA1NUV5RlekCA6wXMXaWLdhB9au3agUfQo6Luc60RCXkG5JGH9S79x5i3HW/TpSiI+zIlfc4xZ5ll27cpH65Hr4ZLo1cWxmeP1FSxqB2oqrUOoXzsLlM+1ptKRh/vxFj9Vkhw7t0LhxA7z+YZgy8owMSILCPojxl5CQgZkLozDmlVB06dmfxPzDUatRO8QnA++88yEEu7dmzQZl/NWtPhydW/4PblX70tM6H4JbLE7JwhNG+dz3zMaFeKvDdPRNlB57g6YtFYbPhioZ4ZFxiIy4h658fkbHaGE0+8UIb74SEZmOgc+FUN7OAv2GjMm3PWtFbEw0vYl6iCKXo6Y8GyNQ5j2ABQ2jhHw7UTxexOS9rh5BdMgNrF/hizE0CDSl5EagbsNmuHB8O4QkVGb48iCTcu7sWco9GdJIK3j+IPsNoxcwMDgNm3fGw+PaJThUqFRox3y9blGxw4izz38ux3PnLkBHzxidew15IF+fCIsHB/rDmS+wLKoB6YMLs50P791M6pdgeHr5KTyRHh/EElq2snXA7ZvXMJOC9aJcsnTeH2rWmpFJZRHbCkwwKY9z7hdwZkR3zF+9G2616xfaf82GxxsBQyq3yO92/OhhpCREEz82ni/Rho9XqeboYo2AKRMjEhPvT57lnmnfpRfDeZVx/uQ+4mM3YvTo4dn3fbEqfIyd4jmJT0xMRevO/VCuvJNK+nuM6tShIiu4a/NKvPWyKfp2N1XrkpMzmGSSAYqMZBdJchg3zARLFi/B//73Yfb6h1m4ceMm1qzbjNbtOrH+RKzbehOHT6agbXN9egAzyaeXTEMrTRlR7376kxrXZq3ak+9wNifbt0idkwhbGytSaFnC3raOatrJviluem9X8nidOrUvsDuCd758+SqsrCyp3FGX2s9dceDQGiSGByIlPpocrUlICPPBc0yM0adc4IJZP3IiDNKAWcO5sgPJnv3x5S8L8NG0F1CrXSAmjzNBh9bGNAYzsWNfPOatiKeH3gi/zdsAc0urAvsg8BljY1M0ataG8Cy7AvfRrCx7I/DPG7fs9e2BPZIZYga1bSV8JGBUTSneCEiYQSggBGtiQCmfwko1tzoIDQ7Exq37qGl5iQ+WjormJS09lQ+S+8ZgYcfq62uhdbP7dR8/vIcPhtaU/rHO3l0STe7dC8XBXZthqJeOHl1aKQNM+pSYmIS9ew+wf6SsIK1LQfQF2RVxQQzMi2eP0ZsxWoWJs7aJ6PjF82dx+vhBtcrAwAhfkZqgLTF/0ZEReHlcP6Qya8/OujZlpwwRFHoerr0mk8k+jV5CP2Jo+HC8447Zv36NX+auzqpW81nCIxAU4IuvP5rGEFIUQ/c3SY67nJnlf9D4GFHCLWmqyzsC1taWuOkbwkzRNGWEy+S6eq169KIb4tTBDZz8+cGZtDGlXSSUfOLEKRX1LO9QEa5uhYegH6Yv0VGR6nnSqN4/houBwf2Jq2DacmYyN6xriBnzRYM4hZPRfzJ5i9OehME3kiMvOl6LuMVuGDnpA6VoIxhjHy8PZez1G1YPA4ePJ/WUc3aVYnT/8OcyfPbeK0xS8adHjv1NiqZ0pQ/MzZzopbvD52AGsXcVs4/JubB3736MZFJbQsJ9I16MvwULZuLDD/+H5ctX04hLYzSHYe5X38XEV97GLWbbWzIZuke3dpAw/+9/zIWlYy3ioHth4bqDWD7/D3zywzqkfnXfi2diaozeA5/D6OcZcStiEn/18jkmFG1A0xbt0LxtlyLfKzn7/zSW/bzvQDygJpQt/a+XZ9oArFTFhYkhzSmuXRGCW9OU4o2A4OaOHNiBWvUaF5m1JQ+n1h27I4gA8Ytnj2PZivXo2rkdH0ZVcPKU8PFl5kr+yNt6dCxdbSyWpjrYvnYOnJzrEnicitjocCTEhBNnGIerV66iZfP6EGUHySh+991PEMNQgpWVFb28fTCc+L4HFTEua/NcxJOUVeSF9sEbz9P4OwQn+yYkla2Eu+HX8BFF6Wcv28Zkol3MKr4OI0MbPmDTEUvlAUOLcsggZYJCh/NfLW0d6JvZ4OypIzh5ZB9uXzsnuHHOgu1U9nBMdCTDz4OZeJKMgyTTbsKHn6iL5OxHVn80n4WPwG/ffsJEHnpsK3UlQa4twiI88Mor0zFoUH+l/1r4kZotjzsCQtZ8/cYmRlDmoFuf4YoSRuqsXLUazp+yhsiqiaSbPAtKqwjGeDE1ieNTDWDjVAuSqV9SRf9vXHB8gty5RRcJ0cpkU4dE9g9TBLe4jp6/pExjDH9uPOU1zdThgk1+86NvHliVGN1t+Zzdum4JmjRtBMFYn7++kI8hPj/JhCBUW927d81XT0xMDEaRbsXYwAkNavQiH2sI9u9fp6TaZs36jZCagVi3aS96DhyvuF+lAjFsZSRCQu7i0OHjiIpLR2dCMKS41qiFT7+fhbc+/k5FVERSUzCYD3qeXbl4DpdO7UdSYhyOH9kLPU60W7Z7tEQg1ZFS/seIpRYuvAAA5PhJREFUHIZ3mVBaVWMAUqf7GS4SNmrepqOGH/Ahf0PB9wlQV7JhH1TkwS8PgZ79R8CyfA1s2XkE2vSWefokY/aS6EIPF0/enwtiSK1QC1998SG6dGiGiMCr0E8PQ+PaTujfuz3Gjx2E11+bQPzLNBw4cAgvv/w6TAycUdmhDaKj47B983pKt8UU2kbWBulj3oeUzHx9vW7TwLOmt9KMs+pIWFJZIInhXslyhjb1gQ2NSDWjQ0k8e8KttRkuiWKohAS0UaH0/jkqg1Bm38bESd0LDYYxHZqm/PO6eYmSVsdw5eJ5JHLm/cpzgzB/5g/0KPZFu/qOeH/q8/SopGd1T/P5gBHw9/WCtQVxn0Y2SEtPIg9cffKpJVOzOuQBR2o2P+4IVK/uikkTx0AvIxq7Ni1TCVRSp9xTTcm+cMszAMePn1LRgsdtK+/x4ulfsWINlUL+QERMCjr1HIKOhPaUJMWXeHlcq9fA2q1xuZoXkmMTQlhkEptV1mxJIAl5swdGHLL2l09vb1/8NXsRAu8lk1NxeLbxl3Of4ix36tEf73z2iyKs9vUl5IbqRpXbj4Rtjea4SXJuwQjmLTdv3mYWcTyqViSXKe+dcja1eR+54uzZ82rX9u3bopqzA04c2ILwsFC1TmAyld2a48qtUOiYOKHHwHH5+qzGjB5YgdDkfa7m7YN897p5GdWrlsfzYwYQs1iez76UgnYrM+skEuXv41lm+vM0O/JwU52n2VNN2yU6Ag8Kq+ZtTGapHbr1owGVCAnZnTx5Cu987sVZZwb6E1sjdApZVDBi/H32YwR2H4xnRt90RSYt+BWhM8hJdyBt1KtXVzW1efN2mJvao5brIIY/vBhKCSCOxocEo2eUjFDe/jzou4S2JTMtJHCnepkZ07MUF3/foKhMQvEWbTtBn2oiP1JXWDtKhxl7ifT+pSA9OREOjbpz4q2NuLskoyWOZtD4l0gm3VORSIsKSYvO1gxxGGHPtnXKwyjgZ/oNoK9tDCsK14ukWZuO3Rg6Gfmgbv6rtovBHeDnjVbtu6oxl+tASlHeI7me7Ms7wt33DIwMrGiUWyI4zJ2a1Qb5ko/+VYNVyidz4MBhpel93v2i4s2cRFzla6+9nAtnm9UFB8p3vfH6ywwHzsP1y+6QRAEpElWpWK0htu44oDJUZVK1desOFZLs3bunIlHOquNhPhPIMCCGk2gEX7nhqxIhGjMRpTSwY3LtDR71In74fDpl7JIgYV4pQgNz7HSiImR2sNdVerdHT8Vj6dKJxToV8VpuI1XNhYvXYWbrTC1dZr4+htSZPI8tzK3IgXhaqRpV6TBK9SMtKQ6WVepi7tyF5Cp8g9x9Dtn9s7W1VcsxcQF8djpy8kRal6Qw2NrWU+vlWTt8OCenC5bh+KGd6NV/JHTpEW3euiMY2smu53EW3Jk4N3fGj5wc6+Prb/6n7tmgkEAqS6WXWXo2gTe0ocdVUwCNAai5Ch5qBGRGKJxhfy3bgRdHdsfH3/hi5fpYtGhiSHkjgp350l+3NVERwn7++UcqjCcNBAQEEqNnUmi2oDysMjJJMooM/mXC0MBC9UuExG+T0oVmBFwYongYw3XCy2+p7F4xKAz1LRAZ40sMznPZGJxh415SUkV7mUUu9Qo2cufm1YjxuwJdAxPEh1NGqV4jvDDlLTVLtrK5/8BVHeM/o154laGzhez3fW+fvpYxTLQlWUab/GMRWbv9Zz4P791KIzpZYS770PiNY3JOQnyMMp7zDkIUsw9n/Pg5dm5dg1TS9ki5Q81mbW15JGVg3ryZmvCvGpWH/2fbtp0YNmwsTEmSblm7I+Lo0f74ky9w8eJl4ivn5qtQDHXJPt27ZxcSt+/GWx99pyZPYjx5kCLmNj1Nr776pvIsGRibya1I4/IXxbP5xx8/FeuelHtLNG+vXLkOX78gxCelqX44OddCw6at8vWpJFf0GTQKW9YtJnm1B5bMsCXuzxgVHO6/+kSp47R7Ep5/PYxyaa1ICt3ngU1L6PXy5WtMEruO6vXbUkqvZbHG4EEVnzl1WGExzSu6Ka3ksGvHFMepjr6xejaJZ0+InLOKYDNFnk+gM6HhV5GcGsUnZzLeeuv1rF1Ic+WIsSTBXr5yHceAPIc0VM0o+1cSRZLvXnueEBhODOSZPWrMBHTq0JbZ5LWJo0yFAZ0GZbHItagu4rLYuSfcJ62sWXrOdnnjuzE8dv3I5SDe6pqiGYGCR0AUHNYsnUsjaDYxFXezd6pTpyZfDuOITxnOUF4Kw7uHyTTvRS8ZMYO8oqZPfy375S7eANETlpfTrFlzOZOtyHq0EJ9wF5Y21pjy5ocQNRhJ4JCHl+DznF3dYGNXLru9ohYkvLh6yV9UFokicXhLDBwxvsiHtcfVS9hFWhgJ7Qqmr1P3vkXO7CXR5O0pY3CC2JesIi/O6XyJDiOf13+pxNET6nH9EpYvmAH3MyfVS6tW7Xr4ee6aXGEmSQB6blhXKg3chUnb1jCsRELca9eQcO48E4J0sWLZ/Mci5P0vjXnec5Xnef0GLRGaqAOXHpPUZET2Cb91Fr6HVzLEeCCf4sX7739K6bY/ee85ITE5kjjdJHzz2yKGY/ti346N2LF5jeJ3K9+oGxwadlNNht88Db9ja5lw8BdGjBiStxv5vktS1+HjF2BpVxmOhJQIr6dMusSTLvdLaRehJnnv1dFwP3eaUm1G6NxWnx7BZHj5ZiD4bopKcFu6dAHMzGjgFlJE6/f48RM4fuIsUtK0YGxRHr0HjeXzoWQMnU2rl+Drj1+HqaMrTMv/A8+Jv+uD2MBbVDDZpKIoQhAtRNEpKalo0aIJzpxxVwk0lpYWNNRfUpjBvKdw69YdbNq8A6GRyeTNnVwiRuB3n07H+pULoGNuAWNGcjL4LE+8coWTdyMsWb9f8avm7UdZ+J5KeIm35y1Ur1m3LHSn1PvQrp5jZlJSYi0+GzzyNqYxAPOOiOb7Q4+AuPsDGRZOpEEYS8xeoO8dKnqEU92BmcasLQMGTLK47+UR6oWK5c0xgqEJCfN16tQbN27cgK6OHkMYqaSbsWZGGzUobWwUIbQWPUIVK1ZENdcq0KcqTApnlslMGEhgdS9MebvEHr4PfdJ5Dgj098aQbs14skQTZuogTYvC8HvPZ3sb8+z+r/366zcfYeWiWcTxNWQYKAmhEdfRZ9Boeor/yD7nuTO+w/y/fobj9DehR/k+KfEXLyGVhODxfMGOHtQPf/75S/b+moXij4CA+6tWrQ3nLs/Byvl+KFCOziR04cqSj/D5Zx9Qbu2V7AqjODFypMHhUqmLSpbyCTgG/5CTsKX05paDV9T99fK4/rh00R01+r+eS3/7zo5ZaFTdETu2r8+uL+9CKulBPD09sZZJEub2NdG554C8uzyx72Icnz91FBtWLYSP5zWVHWxBg2/atClqsprTEI2NjaUXK01Rq8h6OXb+/KXwFgUNUAe57whS1TiWqPF67dJ5TCEzQRINO1u3FrB2aQhdqnbc2T4LepnJ8PO9zsnzB1i0aBnnyIyN0MOWwedhy1YtsGL5AkWeX9RgCl3MwoXLkKprkx0OLmr/orYJ88K4gR1g6OoKw6pVYd66FWJJD8aBQvyZs6jr4oZZS7YUVcVT2xYWEqyylAujtHlqHSulhosyAO/7wUupYU21/40REHxgzoSSxs3bMDM2Bb4E2uoyo65ilarZeBBJ6ti3Yz0WLFrBTLMAeN7xRov6rxKQXQ63fXfDL+i4msF6enoTuBypHrDufLCsWLmQ4ZneSh5JMgb1OOlePPtnvEBqg7JQkukdSCd9THlDV0SlkEoiIwled27+5wzA7RtXKjC6rrY+AeS2xHyaKI/qR1//nv2y3EFReuOGDZXxJy/WuDNnkBYZBeO6dZBJbNXKVetQ3NBiSfz20geRHjt3zl3h5caOHQFzc/OSqPqJ12H0dya8YMdylvSUJJWBb0Lev5wlMjJafRXvn76eCUxN7EnKbkLjKEERwUsmq8gkanGClkpOOQNzm+zD9UysIBmweYt49a9du0HDzxu37/giiaTOFraVIc+Fp1nEkGvSsp36k34I/nT1ot9IRxWRfW0eOXIMX3z5PY4fO6G66uxSFW++8Sr69OkBv8C7aNCym5KTFCL6ki7CIDCPnKOvPD8IYdeOIi7QA4lkTBBS/IGDB903/pasgFX//jBr3gxaenpIuH4d5zdsQL/+w6i/vl9RaRXWL5HaGz16GObOX66UkqS9Ry2b1yyBPpkazFq2QCqVlpIDApBOsv0MXjdm7drh/Pr1CCQeOCflzaO2VZLHyb1+cM8mmFvYoAfH7L9etP/rA6A5/9IZAQEbSxZZZZdq2caftCQZZr0GjgYM7HD4yHFm6ZKPicafPJydyt1/IPl6i05lBhrWfAGtGr5F8fTqBLC/pToqfFgfvE/PkUxdGEIqK6WysyvpKyoiJOmOMv6kXxtotCYnJZWVLj6RfvD5SkxQCg2J8vxd7WCgzxeluIFzlMjIcOj9DWDP4PiI8SdFj15fWS8v5uTk4mcSCqYnnV7oRy0SAhXM3Iw/FuK99z5Bq1ZdEPl3nx61zqd1nOjRdu/RDfeuHEQyvfBSMjgxCTy9VRkHAwb0zdW1ChWc6Dmyh3fAQZUkpatjgPSMRDRpVB9nD2/C8YO70aZDN6QlxSI59l72sWlMlor1v462pG/KKuI1E9L432fMxabtR+DL0Gr1hp3Rc/BE3vOjSDFjm7VrmfgUPHPDZh0RERWPoKBgleDSs+dAuPsHwnb4MNiNG4tQUrq89tqbzFT+VaCP9BwZozSMv6wBEe7VLQcu4qOv/sDgwSPw7qc/YPH6A2QisCB+cwUse/SARbu2JDEwUIlqJnXqwGbsWFwhEbRo/T6oSBJJNZdK8KGC1uMUkW/UJb5Q39FRVZPs64cMTvrTOCFIIxREiiSECdyjLBWhB3OsWBUicqApfIVqBkEzAk96BES2rVsfPmAdqvClE4xbPjvhG3gc3oGHVVca1BxL205XhQ/FejAnXUFYWBgNi/svecnElTqqlxBZbEmcv2QA1m/UnC8JbZQ3coWjYQ0cP7yXknIO+PGLd0uFRqMk+l3SdfTkrDoyxhNJxJLFxAXBN+gouvcdnO1hkfaqkGMumWFBKTp8CUv4SEr04SOIv3oVdtSBNjQ0UOuK+kcIe19//W2G6ZwoTehI78YLhCDEFnqIkPX++eccfPrpl9i0aav6TUS94fffZ6Ja5R6cbExH83qvIsA/iNqrvxdaz8NuEByshFrF+/Akyi8/fwNr8hVdX/MNbm/9HTdWfUFC83P4c8bP9HDmNsJEfWf16sWkdorHqUt/4vLNFQwpNmNSyBIM6NsFQdQGrsxsYD0dbQSe3IK7lw8hlOpLt7f8BgM9baq2PKeMpy1btuOnn2dhweI1yNCzwcDRU9B78FjFi1nWDL+cv0Gdhk2Rwex9wSC/xmvJqFYt2L/2Kj1szWFKXfJy48fBqk8fdd1Ehocrb2jO40tiWbDUMSSsziqG5KnrN3QMpr77OTOYX1CcjF7MmpZJjnj+pKTzWk6NiGBoPwOGzs4w5D2zZ8++rCqK/LSzs0HUvYBsyp8idy5ko2050r3cDROBY0I37iGdXl+mmKuQdBInAVK2bViKxX99/0Ap0EKaKPHVQgF2kxhlA2YBO5HLVlM0WcCaa+ApjYDo9X76zZ8YP6QT/ANPKYMvIyMVVubOJGy+qh5sIWGXGBI+QWxgourlp59+gS+//JT8cHeJKUxBq7qPHsIojdO+cPYEzdUMRCYHIYUhYG3+V8G4FhNl5iiJraYt25dGs2Wqztep0y14s63rV6gkkF4Dh+Ptj7/P1cehoybgs3enIM7dHaaNGkHnb+C9vEgSLl+GeXl7XL/ugdq1a+Y6Lu+XDz/8nLisJaji1J7vIX1s27YHL700ldxyC/PuSl7JGGZ59mBY0osgdVMmGUVh8uSJBP93Vvva29ZWn8KnZmriAF96NB63iGfy448/Z4LFTDUWNWvWpGG1GC4MK5ZmqVKlMtzdjyklCHfSwJQjnm/cuJGoXr1agc02a9aE431WZbZKpr4oROjwxd6oUQNltG7dvl/RZvjcvgbvM1uVMd+KuLOGjRoyXL8J6bRrM7UNUathJyZn2VNbuGKZweYWeMI5VkoiSgVnN+zes5uiAnfhOHq08qzl2EV53OIOHuQYXYMWieObte6Qc/NjLcukYOPKeeQpTaJax3uF1pVObLGUNE5w0sn9F3/hovpuyGvJqFq1+3jAvzkNpU7B+8lvmQUJUDv//Y8NPe0MuFAFKVnppufcVtzlPvToblm3DAlM+sikYZrKCTozDdRzO8Xfn9eBHWwszci351XcKkt9v+0bV8HaygJN23Qt9baelQYkkKYpmhF4KiNgSVqVFVuOYeXivzD/zx9gRhySnU1NBN11J7VKKjmt7vFlbYW6NYbTm+SPX36ZoV5iQl4rRWa/JVVkBh4RHkYsowuxezdUmEe0Lc1JmXB43w5sI7YtnNJ1FSs7KyqZvHimi2dPIuxusOpOQoZ4oTJgomNFKgQTtU6k5/4LRUL/b33yPaZTTUBKTmB91vn37D8cZ08exY5lyxFHrJVe5YqI54skneEjbW09ymElUhmmC1UNtisjJOu4vJ9r125CBfvmJMLtqDYJZZB4ogS8n1NXWjaKl0+455rVnaJC0/7Bp/DXX/PQpcv9Y/2DT8O1cldeZ4GIiQ2Am9vj44Nmzpyjrlnpn/BQ+vodIo3HCFy4wHPOoXud97xK4rtks4qBW9wimEdR48lZFGauSSOSDdNzctOD9B7VyHfXnXx9tjSgU2BmXRlu5NoUZYVyDk787R4cULp1/TKOUoXIhCHN9l16FykvlrMvpblsT93hvUGhqgm9AtgFtOjd16XRlEQDR9STSrJIdrLXrasws7Ivslpn1+rQ2qOF2OMnYNKwQfa+SZzQJHl5I5Eh7Pbt20CyfYcNG8fPW2qfV1+djG+//TzXbyPJd5K4HEKZT5dHVMOo36QFBrCdTfQUG1Z1hhZxihkp2kgLCoIuDVBzc0tcdD/Pa8aNWNI7nIBFPnU99Vbtuih6LtNHPOfsQf8XLWgMwH/Rj/ksnopgAie++o6ScvvozUm45b1DUb4MGT0R65bPg61lNT6s9OFcoQMioj0VpYw/MTqppGHQZcjhcYvMlr2ZrHFi/2aC4DPhV6Uebl69yHBLmsIuHt6/E7c9rsGIYRadcnbwoiTenm3rMWbCa3iN3q4sA2f2r1/BRNcaTsY14BXrzkzBFMSnR+J27CmlpNKy7X1P0+P291k5PmtcCuqvGAqffDsD7anJvJEeMc9bNxFD40+M/fK2danMUp6h40P48ovvsWHjioKqUOsUdyR/p6ySkZGmfo+C2hZNW7O/cYmyv6gm3PTersJqX3/9GT744FP4BR9XHq+mTRszM/TVrGof+XP7tl2wtXKjgdpJ1SHJFe7XF6msWDe3Go9c75M+cNmyVdiyabNq9vQJM7z7vx9JAl2PdEw1sq//gvokk57b1J6tRHysZMxKCWNCibEBQ5jJ0WrCVZS+bEF1lsY6kb2zsCqnqk728YZR9eq5mkkXTGowlYCYzFaFJPIlWUROUp5jRsb3J4oF1S2e5JioCKXKEXeK0RKS3GsTOmFAT28SoRQxhw7ToDZVySIDBozAvbB4TppHICExDDNm/AXBeU6d+nJ21ZeJF+QcCVaPgcmUe+y9z39R4d3bN68hgkaorLOlB7hW3Qak+8oklMKH/K++CLh1At7puooKKmeyYHaHntCCXGtl4Xp7QqdbrGY0BmCxhkmzU2mPgGhH7j19m96fcFhSqkdoBsQA1Nc3Q3jUHb6YM/jQilOfwXwYJ2cY8aFt/UjdEqNP1EwkI9mHfFDhIXcoQUcKVRqVouphSLF4LVI97N2zF3duXodV376w7NhBtSXHxhw5imUUTRcC2BZtOik84v2OaDEBJJmuSS00bNEaw2jEikh7ewqti6GrKf+MgBiBwjMnf8LVOLhrYxrglNyLvEX8YDSXLRBy9+4/BxSw9PzzY/AVMzaFN1JCwAGkLxk9ekQ+tRk5tGbN6orsOJLqMpbUhRYPoBTxJvft20t5vy5cuEQVBRuV8SmaqY9bDIhjTEtLUEalvBxTuSxFPDBlrYj+7F1iuirTGyvKIFklkcbP8uWrYKNfAabE9vnGX+I5pSoy+Kx95FPuJTFUJDlASiBf/ncDvaCvlYhb190xasIbar2oxLjVbkCDp3STKVRjRfwjxqkYXQJFETxxlz4jsHvnFkRs3ITyxADqsH9SJMoQsXkLLdZ0VK1Rr8SzWiWqEBMdjZr1WxTaW7lXIihfKdKV1tZWCDxwADo0AuUvRWh8yKtow2jK7DmLmITjg0a1n6ckXFVVn3i0d+7YnW0ACo5QsrPTGFK2tLYptM3ibEhgOFpIpWuS6/P197+h4RmMvVtXMfRsCi8ahA2btMLpE0exc+c+tGvfFkIcrSkFj4C8V6QUNHkt+IiSWasxAEtmHDW1lMAICJ1MFsFzzToNSNzcinq7R+m5ceTL/bR6ga5btym7JRNKJ016rXDcTPaOORbEoDtObUxi2kk6nMmwswlGDeuDDRu2Km7BzHu+yhi8P4P1hJ4T6TH4QhS+rQy+DKUIXUnCuXOY+csXOHdiHzMJOyiw+3l6B+Pi7ql9bl+/qoikS4p1X1X6L/2nPGXALCxtyCMZox6AySmxiIr1QYXM2pS/+gCdO3dEjx75cTvvvvumMjoWUuoqOTmNCQnj8c03nxc4Sq+++rJ6EZ08OV+1IQ/czz//OJs0twlDnfJXkuXFF18gMH80Lt5YqkLAIVSk6dSpAwSjV1aKGL1vTn8fp0+dye5Sz17d8esv35N/k9c+jSNTaocnMAs4KT1e7XOIkIjqteplv9AjwkJwN+AWzXDmAejef5E5OpRDx9Z1ILyEfqH/QDXkBZd1j2c3+BQWIsJDYZlhm42Bq9OgCYaNmYRFs39B0NffwIgJIJJpm3yNChth9xhWHczf0KjEeyqKGebW9ujQtW+Rdddv1AJ+PnfQs1s7Zi0TX8yJsQ49h/Ubt1CTUO/bHlg6WyZDUMlXYgDenzQnKM+hYGDDmcSyZ89BJKRooXrtprnCwkU2XsjGTWsX01tvxHF7UcEDyjs64dblE0wwCYSudia8PG+zbX2GzhOYKBQC99PHnnoYuJBTeeqr7zIcn0KIQaUS9jA/6MQ0BuCDRkiz/amMgBiDv85bjT8pF3b+zDEYxtEjFByPSg6tYG3pAp/Ao5j7x3eoxwdj89YdVB9lhrmaCRch9EJUrVYTQ0a+oLQvs05AvBKnD22BhdH9l9SUKZOyiV5FjcSCUZgO7VpQEJ6kppzdfv31DzCvVx/JzGqTv6wi4Rct0m343/GCna01PUqGCPa/n9VqoVsOOlr6FLcPyOEZzDpS81nQCIgH5ts/FmHapGF8WTDclhKldrt+7TY8bwerDEwx7F5/fUquwyVR4aOP3lV/uTYU8EWyikVJYceOXfR0hSo1DEl+eJiyceMWym5Jcks6Bg7sh+eeG1PkjL0XDanlJOj94YffmAUcjDFjh1FC7Ysij3mY/jzuvsLV15X63hmWlig3bhz0mEkqGZwH9u9HR3qtT1E1RDyiS5bOo9rHeCQym9mAhseJw/tx6uh+TJj4PMozYcfIyBCD+3dResFOnDDp6moT43jfg/olPbSR8VT24b1pQkqVslIcnCpnG3/SJzFM23fpi8zkKMoZJmHv/oMknU9DN3quRo0aRhk8d+gQQlDSJSI0GM5VnFXUo6i6Rb/c2tpSjasT4SiDRk3MdR1VJeWWnaMzCfRtccd3j4qaCA45KsaPv0tTSgF+pbgcre2roku/cdkh+aLaLGrbvbshnBTHU7ouiWH9YLWryF/GxyXgytVblPw0hRZx3PoGxnCrUxU+/sFo2tYp2xteVN3/xW1mjBAZ/Q2TeJLnrzEAn+Roa9p6qBEQvq23P/1eUSR8+tYEys2FqFCfOT2CTuWaMBM4kIDyncoATGRm3AtDu8HP25PcglaIS1iKo+Qw+2P+umwewjPHD1ITOBPvvvtG9gtKOiQZc6npWohLgsowFmyZZM+JESoZqirLjhImgr1Jow5osjdDKFHRlI0yxdBBvdG9excSF89WD+TYtHCJSKKqa03Ofo0f6nz/yztLUs2WQ5dxnfjLeX98jzseN2FvU5+hYGMahLH48MP/KQ+fCb1Rj1ok8SKnlmpB9UiiiChXaGvroE6dWsygtVO7LV26QmUYW5lX4TZd7Ns3TXlU3nrrjYKqyV4nhqL8lcXy1dffI4Pjaf/qK8rbJX3Ud3CAcU03BH33vZJm/Pjj91CvXh0l6ehauTsc7BrQwxSAmz7bGPK7i59+/LLQUxPpNGFukj8JX5alIhyAeYuzS3UcMzAntMSM1+E5tVk8xQsWLKVRFU4j/jbKV3BGSWbzt+rQPW83CvxuZGRCCh97TioNYG1XHpfOnUR9QlCyQobyOXnah8qwk0mwhLjNTI3RuetAVCGNz7Wb/ujPpI16jZo9tudPEua2rltEGiAtVK5Wj1rOrVWf7UgN4+zWEOHU+Q4N9qexB1Su6IgbN+/w2R3EYxYr6IBoyZdU8fO6oxKQCvo9S6qNJ1HP04IIMRCmKZoRKNsjIJI9DZu1UyGNFM46A+6e4XIaYTmpTNg4hz++/xRrls1RygWO9k1gZ12byQT1lIbwglk/qTBhSFAAYiPvqpBFlnci66wNDPT5UMxUL6p74ZFqtXiMxFhIOHtGeUbkxahL5nvDypVhRPLVdNIevEIP4pQpLypajw8+eEvhz6q7uaBSlUpUG7j/UMxqQ/P54BEQvjjJ1JOQkY1lDZWtm5aeQmPc5n6olzJWpVVEr7p37wGknmlMxZlhxAEOhqtrbdKnTFSqFt988zPsbesQX/UCGtYaj4oOLfHdt78oj0Zp9ak06xVuwi1bdsCYSg4S6sxZdOkRFKWWVWs2qNWhoWHqU4xfIfa2s3YjN2cFhAoPXBElgOoQgjXrN1T0csu+r0EmfCk0VrOKZJOL19cv4C4CA/1RztYSt6+cVLjgrH0e91NwzGJkPggfl0LKFl3iViTMfvLIHmbfLlKe6Jzt61B1aTAplhas2YvnJkwi7m8yXEkRE8+Q77gXXydmmb91MTK1c9aZdzk4wA/rl8+GES+ZytUbY+yk1ykbaK92k9+4Zt2GqERtb8GDJiVT2tPGUUFhWrRsSXhMdDZGNG+9j/JdCOP9fT1LtM5H6cezfIzGAHyWf73/UN+HjX1JCciH3LuE0PDr8PDexvBTeXTq0BrlbYxw6shu4vr0+JA0VIailtb9S9v3pjspZr7Hns3LUN25HCZMGJtv1IQyo3PHtqhawQwdO7TJ3v7Jx+9Cj16MkN//UDqXwnYfffgIwv6ciUrER7388sTsfcVTNGfOH5Rrep3aqo7MjvOn5N3GXASv2TtrFoocARFpFy5IydoVbkg/koQzzQNzZi8o8rhH3bhw4VImggxGfPR5LJlBVYyzVXD7VBX88Ik1LpzbhQ4duhKEHwETI7tsj4ssxzPBJ4uc/FHbflrHCaWJaHjrFCJ5J+uzSLVdXJxpjJsQdnGYL3ViyZiUFRF9G40aNyi0+2IA7NlzgFQxTo8dbiy0kcfYIEZXSnJyvhradupJI1CLNCq3cfr0WbhfZpZtkg4cnCopXFtlJxucPba7xBQuRDIzgokgBfUlZ+fEuLO1tqA3uQ/qulWEfXkHZqjk3OP+shh4oplOhyCfk7GwcqyNDt0HK4Ms/94PtyY89C52bVoKwvpgYecMSdzL8kBm1eTEhJR6zbrAyNSaE2EX6FPLODo8CDVruKBPLxKLB/hk7frYn+L1q9OgKfGH1R+7rv9qBRoD8L/6yz9j5y03+9yVOzF24iuo3bA26jdsjMHDhhPjZ6wezDWqVWGSSBLDwkHM4rVEdKy/OsPyDnawMgXMDDMVGa4lvRvy8I9hKFeUIWRZinCgvc4Zc07y4Ro1quMgOcta1qQe6spVCPrtN8Rs347+JA8+uH8HcS6W6tisf6SucHoQJZlg2KDuiLnrobRG33xpOIb3bIVXnhvIpJb7oaWsYzSf+Ufg5Tc/Vtii05dmkg7mGI2OKIX7DCF2r1fvwWjTths++eQLlWCQ92jJWp027V2SGTenpFtnJvdszrtLru9nz57Hq69Ow+TxFji+1QmjB5ujUgU9VK2sh6mTrHBhvxOaNdRhGDoBgfQ8h0XcUAaQf8gxtKAqQ2nz+eXqbAl+kUmPEycxiTdvFlhrMtfXIyG0FNl3ydK5iE3wwbHzP+DC9cVo1qwxw/LvFHisrDxx4jQCQ6LQnKS7eY2EQg96ghska9nrjkf2/Z/VdA0mt9g41qD2+EYcOHgcNuWdEUl+UGEkWLRwEVVT1iGD1+OVSyVzHwtv5t27QYSybCc35uGsbuT7vBsSiLPnziuP5KBB/UiPZYTrVy7k209WSITDprwLHKs2QIdufRm+T+azyrrAfR9m5anjBxQfpEvtluhBL3lB3kSh1DpzbB8aN6yFerWcYWUCdO7QAm+/9RqqOldBQizVS/5+5hanbZlIfPfpdHRu7IwP33iB5NUpuQ4TD2pZvL5ydfIxvwi8yf3McUQxtF7Spez75Uv6jDX1PbMjICDyKdM/Uf2XmfMl99MMncSoh6ewzgtWSTiu7kXef6m1bNUGTvTGtWjRhMZCqBKunzt3IRYuWEiKkXBVjwt1MSdNmkRA/2iSl5rnGxsxCHdsX09sYIjCCjpR/1KoGAoq8iCSsIs84GQ5gtx2Qmjs7xdEWoZqCA+9jcmj+1Dbcz8EtB1KXIzIElkRuK0p/4yAPcHQbrXrk5/RizrQboiI9KTRdUvtcIFJITqGZvjtjzk0Slbh0MEd2Vm1Mu5jxkzE3r0HCQFoiCh67caMmUAN1QwMGTIwuwF5qRw4cEgpX6xcuQbOlfTw25d2fKFpZe+TtWBirI1Vf9mjUmMflLO3wiWPFWqTm5sbFi+Zm7XbM/cp1+crL7+IDz/6DMZuNWFcv566ZoX2JJqqF4m+vnj1l2+zz6tnz264evUsSawvqfukZcvmBdLtyAGJiUk4cvQ0Krs1ga19ySdOZHfqMRYEk2hEXd+8xoN878jEmKuXHLlNm3KOewgvmQdLKhQJH+n5c1c5yYvAIFNbpLVolyvJ7FG7U6d+Yyw6eQhxMbGF4gslw9acXIXHTrrz+UIFNnr6JBGnLqXs8hYdYpi79xuavVr0hUuiJCXGoZpbPcJb2uUbN6lf7qsjezbSVy/JIbpI1zaAAbPCn39+LLOAg9RkSV8HynsqsJ7ilLMnj2D9ygUw17bBXkZUhEao98CRxTn0sfdJ5mRSOA5da9QqEs8tnvRvPpmG/aQREq/oZ9/PeqzrQvTjU5KTFMWOQAPG9m9PTkVv0utYYPHGAxQjqPrY55ZVgcYAzBoJzeczNQIyc27coi0fmtFqZnSLZM0du/ZCo5ZdqJ1ZHRJGlNBKwO2zxKSQZoRZu02btkJyUhzGDjVFu5blGb7LxI59kfQmfcrw4hxs3bYJzs6VCxwH4UbLyY9W4E5/r8x6qVy5cpW8XL5wsm+qOO5cbDrj8q1lWL7wT2pSXiaW6Jo6oiNn6Z//OIdC84ZFVfuf2vb17wsxdcJQSkmdyT5vS5J0l6vTDiblqyCNLyPRo/3ii+8oBzdT7RMYGESql92o5TpIhY9v+exW68eNI73HouUqA1dC9f2oV3yJ2q869JRkpKXgp//ZMrnoH+Mvg5JaMbEZ1Bfm24rF1kYHw/qZ4vRFXWrGniT2NAPVqrkWagCpg56Bf0Ql4rz7BaxfsgRGzN7V5tik+QcgmZJ87703PR/1jqOjA+ENDg88s717D5BqRBsNG7d84L5Pawd5flSmsklBRbCA9ajrLeXLDwnpKNeQhN41FA2VEJVfvb0OCTH34Ef+ypJIaDCjaoazS01yn55Tk8Is0uycfZNEi9r1mmAtsc5xiVG8vpmoRhzezs2rVRi0JI2CnO1mLYeHhcLj6mVe+ynZE9ysbVmfIcRJJifFICj4Hp+tadSQro7y1vrkQk0gNOZDNdmtQKUl2Vbcovc32X/m3/HuvPjt4tbzKPtJWF6YI+RdUlQ5SUN889qlsNetTCN1A9p26kEP6T8GeFHHFrTNnawX+nQMSGKcODnE+LPTqYgwqmEdoTDB6BdeKeiwR1qnMQAfadg0B5WVETA1t0C/YePVQ0lmTmJEZRlg4hG6QyWCNZQMmzVzJmq6pmPTosqwsb7/YpdzGDXIHF/4paLHiBCC/wcS93NMMeqXxPklJCSqarS17rcXGiEGnzY9lrsZyshE7WpDKVuWQKm5nfjjh0/x1t/yaSXR9rNeh2CJVm87Dm+vW1gy53ccPkJKkpotERNEoujoUFhUrg2ras2wmdJv8/8+2eS/MV3yu5+/tgC6nDFXbD1EbT114Sg5+HqhCVU+PG77oFqfV6BraIob675Dtar6OHY6ESFhaYiOyUBA0P0XlKGBFnp2NmEoywCN6upj/fbgQvV0n8Xxlmz3JYvnYtzYkVi2bDWCSbxdrW9P5bF5VE7EeIarLly6jrpNiAN7jIztsjKeYoDEEVqir2eC+MRQdus+aoroSVK32JRYN4VQPi01udBsaXmmybNt4Ijn8e3HU2Fpqqdk+cQbeXzfZk58OytuxpLqkEysd2/bgLjYKHKcNoHHlfNwqWInfNjYvXWtCgFnPWelTQlP+vBeDQsNV9Rcg0jBdezALiRF3qEaSCAxi46IjktRTAvWtnbF7mZDTtonTX2PBNMb0KvNUHTpOaDYxz7ujmaE+HTve//5UVRdQiYuJTEjXn0+LtF7SybCSZH3WVWXGgrTeS81UK2rxSSbkixa8rDMW/jDutFFfv3I5aB/psV5d9J814zAMzAC8rDaumYubt5wh+fpyrCy/Mf4y9n9m3dSUKe9L+lcflEvwJzbHnU5jASygkUj1wYqlG+Ju/cuM5R5W1VnZ12LGcn2alnUL7T1ErFg7V4lG1cQtuZR+/BvOO7HL97B1i0b4Tb0fSRHhyHa7zoTGFKRlhCLeN8LpCPxVacpCRlNGreh5i8pKOjFqT3iA+joG6ltqcwsvrnuG6QkxqNimyGwrdECMYE34blrLj3CZqjhog+H8roM9WkjMjqdmciZ6lqR68LURJsJHxn4bV4KQ1k+JTKkAg8QOIJwEjZmMsXIkQVjqh6lMaGy+fXXGSokJ9yJrq4uj1LNIx1z5Mgx7D5wFgNGvlymDcB0XisiU5dKVZPqDJEW5n3fuGohw3tvohyZBZJTYxW2uKprNXz41YwCw6+PNGh5Drp17TJDj1fQrnNvFQbMuVne1ysZQfC9cx0vTRxOeAsnQZu34+LVO0y+6Eqt4kbZE+Ccxz3Msnj7XhjWFcKcoKOjR49dMrp07UJy8G+wYsVaGnHaSErNRN8hY1WCj4RAl8z5mful0lhspmQ9BZsn2uj7d6yhNnACpeGA8Fgt9Bk06l8nxya/iXDS7t+xGS3bd8bUd3NrLz/M2GftK+H0lYtmQSREZVzF81e/cfNCIQJZxxX02a6eYyb5VWuxnx55t2sMwLwjovn+rxqB3VvX4asPX8HL443w4//KFXlu/ccHIzCsMo4fP1zkfg+z8cSJU3y5P48w0sbIjLl9+7Y4dOgIOe7qorJTa2J5DHDRYxnMzHUw7vnnYWThhE7d+2uk43IM8unjh/Da8+Qz6zga1q6NKc+Vjns3TiL43A6Vvb1+/fJsQLoH+QNbMvlDy5gE3VVyY5/igjwRF+IFx+Z9+EKicH1yAsI9jqF1I2DjQgeYm+WeHMiD/fOf7oPWV25MoORVR6xes4zC9jEMOy9iaCtJJUN0Y1LQrl17sXTpSnp0U5mp2ZfEyUMLfREL72Tr1l1IbB5KihsrhptDmKA0mrx7vxZ6TI7hKHJRwm116zRD5L1YVZeJhSGuXDmjIBBFHlgCGwUnO2/BClSo3uyRXlQl0IViVRFJWbXXJwyBx/VLan/J8P1jwXqlWZy3ArkG1i2fjxU0uhLo3WzSsi3epwauaSlKOy6d8wviI/1haVsBhsZmvLZ1qRDhRt6/Fuo3FfqThX9+Q1YDW7Rr10Yls0VEROGs+3U0at3rsT2BYvDu3LgO9d3GMZP4mkp6Es5Vb+/rEEqgTZu2qYBsIull9IxtYGFuhkoubpQDjEUjhi1zegbFiyXGS0igD3oNHF0mVGDy/sZP6rvg1YUdwtWtdrGaFNUqB6eKj02gXpQBqAkBF+un0Oz0rI6AYEaSklLQue2DwzVd2xnh7c9vluiptmrVgsTCV1USiY2NlSKYlixV8f7Ig1L0YROTwvH7H3+iZctmWLZ8LdYsmYnWnXo/EHtSoh0tw5U1a9Ue3cjLt2fbckTcOgsdI1PE+F5TY+lUyYX0O4vQsGE95U27ev0W6YEcERQWke+MUuLCOeZAtM9V2NfrCCuXhtDW1cfxMzsQFJKezwCU32doX1N88XME7ngno3EzU2LjPmXYdBmiqN8qSQHCU9ivX29y6m2HhVkFGpa62LZtp+rLG2+8mq8PsuK33/4kMe49NKv3KhMRLJldTPqZJcsxefIEpVBS4EHFXOnhcQvBJExvZjOQijS6OHlvLXkMrzMjukUxa3i03URjdjN5BXWMy6FR0zaPVskTOupbZpV63fFEg5rj1G/o4b0F7019Hiu2Hs3XA3UNMLFoKP+eVKlRuyH8byWjds3KTLgxU3Q8Fy4eppfSiDx7DZS3Mjk1XSnMvP/+p6pbxgy3d+7UHr4BIWjdoQcTF+qgvGOFR+qyn48nSZ4tFd2WsNpbmFZQ5N9+fv7U1HZjmNoA4dEpSEkjcThb8KX+cOdeQwrkehTPatfeA7P74XH1EiQEXBDOMXunf+mCJBVlcSYW5xQl+aS0yzNhAEZFhOP86aMUju+XPdMv7YHR1P/vGAFvz/sGXWJifqhD3jPkZL9UimCtRFc1q/z44zcqoWTr1p18mNpRYeIdDB06SG3u1bMLdu7ahzOHd5DOxuiJa0Nm9bEsfcpL+PMfZjMcwrHZsoa4pBj0f2EKhpMbMiMzAxfPncDm7YehS9mp6rVa4bnJjvjsvSnMxDOCXe37xkjotWNIiYtCa2YRHj+8FzEBDtBiJmU6w1vyu3ccFIBVs8szOYgyf2IlskiSkPuVZGzcmUAsjiusbJ2wbsMGeuziVGKP8E7GxAcrQmUhR65XY5Q69qbXdogE2uuvv5JdV87xlGQVUxNKqNH4k2JjWU19BgUFP7YB6EyqDeHsuxV3gq9ubRI3G6BqVWdVf2n9I14yMXr9g6PRrZ+QPuf2pJZWu49a76Xzp6gk1JgQjHI02HUoL9ka129uVJirwkLBj9rWoxzXiLi3u0F+uH3HB4OpNCQJRxkZG3H66C5lPMmkdsPKRcyy1YNzl+eQlhSP0Iu7sXXrDtXc+pWLed0BbTt2x4RX3lNGo2zwZ9LK3q1rlIyckK4XViwsqKSUeFIRnwv5uZf/YfXerVSpIq/pdwiRiCH3Xi30Gz6p2B69pMQEZcDu3rKS14cBXn3ns8Ka/9euF2Ur+StL5ZkwAGXAfCmELfI2GsqMsnT5lP2+CHWMoaE+tu2Lx6A+ZkV2eM/hxGzusyJ3fMyNYhC+++6b6i9vVQK+l1n/mjUbccvjisYA/HuAJDOz98AR6i/vmHUlN6Dwg4k2sOwnoTIPZlmvXvIXQi7sUbunJSdi5HMv4/X3vsSKBTOweO7v8LxxQklrdaH3wtfLA50GX0HdWkZo10KfoVxmiO9PZkJIMjr36Icpb36iqCBukZomOU6fWZgOyitiRM7JKAbETI3LZxt7piSw9g85pcLB+sw2zVvq1Kmtfl/Bfoq6hi91rQX3WZN8k49brKwssXHTKnz66ZfESWZQA3aG0ut93HpzHn/p0hWsXbuRCQHpyvsphNFnL9xEs3Z9YfO3KkTO/cvasgU58WIjQhS2TVfXELFxwcxQNcqlDfw0+ywZyj37j8C+nRuwbMUmtGxeH126dKIUXQz2b10OT2Jck3m9l6vbAlHelxHp6Y5mjYzQvqUljX9tvDDSAjsPxOO3OYcxYcQ+MgzMU8kTAb7e0NfVwuULZ4gv7FXgKUrWq6tLZVy9YIVbPjvhHXCAUYpk/PLLd0oPWYv3V2xCGoaOf63YYXDJpj2wcyNl9KogMjJSSdgV2Lhm5QNHQLCBmZz0CjF4SZRnBgMooN2yPrMsiR9EU0fJjYAicCVtwu1rZ+B+/jjunMqdAZyzpRu3UlC3gy9mzvwV48ePybnpqSwLpuz0RV8MGv1itmHxVDryDDd6h9RAR6gVLUVeeDlDKumkohAtWwvykYlmszxYz544jI2rF5J65hYfsNqoXrsJhoycQDH7+tmjMOuXL7F07gxSgzRh+NCA3hBfRMZ4Ks3i2q4MgzEs7OG9mRJcjiRD3p99XM6F1NQUDCIYfv/+Q2q1eBx//vlbeoIn5NytTC6LZN6AAcNVVqx4ThOTotGn3wBlENSsSzDlM1D279qM96c+p5KwdPgbRsf6YSo9UmMmTi0zvT9H/rvYGBKg25bDzQuHMLB/N2pT16YRdg7T3nwft31DYFevE/yPrka/HiZYP98BR08l4vCJREydSCk/GoI3bidj4rRQXPEg+8GBy/TW2SPI35c8fHSk2Npnh4i9SYh95cJZpBITm5IQiZrVK1IZp5ciURe8q3A+Nm/ehOood/AN5Q/jkrTwKbnuilvEABRVJOH2rOTsyueZtnqXC8GxofE/XIxyT8o5iw53cXkCi9uHf8t+V9zPUKf6AoaPe6nYp1QUBvCZMQBznq2IUYtn51nQl8zZb83ykxuBa5fO4+DO1YqIdPy4kRjQfzAJf5OxZUl5anrmnj3d8kxBr9F3oW8oL+3DClv25HpacEve3j6YPW8lhHVfyEU1pWyMQEJ8HF4a1YdZ5ZfUiyqDCSndunVVST4XLlxUnXSuUoWckmuLDL2K9+zw4WMKK9igQb0S8f49iRFq2KAV7oWmQ4zdiBgvePkdhI5BOvaf9XoSzZdYG6eOHsDmdUuVHF6Hrn3ocRtWYnWXREWbORGJi7oLh0puSvGjsqMpRgznM4w8pW+++R5mz1kAfTNb6KaG4dUXSIXVwxSO9rqYszQaCUkZ+OgNG4RHpuP85SRMfDMUoye8gxdJpyJFsp/NGea1YhhYKEy+fP8VGOmlYuSIIRCi++rVqxWqcDN79nz4+Iej+8Dni03yLUk3xw7tYki6JyytbVQfPK5dwr6tq1CnYQtK1fVX6ySbOJb0M2ak9hJPvqbkHwEfQpou0QjsSSWWLPqZ/HvlXlOUAZj7TZj7uDL5TZix1y2bDUY3FD9QmeykplNPdQRE5un00b2wYQbkq6++pPB2mzavY3bmUFRt6kfuPxOF9aJTmUTQ8di0Mw4uxElt3ry+TBh/MniVK1fijDwOW9YuVJlgGr3Lp3dJCcbtwO4tyktiYmqK/30/E9fIi7ZvxyaEkurCwECfBNQbSfrtw7BiOmrVqqmA8kX1WMLVnQjaL82yb98BZrSfZAawBRVRRsLW9v7L9+rV6yoJ6eyZU6q/zlVdSH00Dl27dlJh9KL6FED8oqWJGwLunmMGu67CiXkHHFKG1LP00m7RthPkr6yWPoPHUTbyLBKV3nQKohN0sWjJGvTr0wVvvfU6s9CXkBIpFBUq6+DQiQSEhaejaUNDemaJ/CScgP8rfkvhuDxyMglbNi7JNgCtre2wff1CGJtawrZ8BfKiWqFmNQdOZB480WxKHk3/oL0kJ/bJZQDKPZKFnc05pll0O261GmQbf0IYfWT3enjcYDJWhX/wqXL9CH2MphQ8AneDAzFpRC+yEERgyezfsHTzocfGFD5zBqCAKPUp4eNWu0HBo6RZ+58eASEk3bphBQ7t3UJeNzscPXqCCRYD0ahRA5w7dxILFizh30LMXxGsxqlmTVdm003kC3IEpXbKDkBXHuKTX3pe9ff65XMawfOneFXP+OF/WDrvdyZu2KqQ55ql89SLKtDPF3q6RsQP3kbPngMZ0t3+QMPvSZ3Gjz/+SoWbL2FsZIGU1ETyW85m/7bh66+/V6TPDvb66NXZkMarFk6dD2BIeielFGti3bpVqFDhn4SlnP2V0LWjY3nisW+gWuUe5EysRFWMNVTeqaHx2OQcqBJYFrhTA2JZL58/DTsrc+gzscfSqgoN+tN47bWXaMDPoHzli2jZ1Ij4yyTsPpgAL98UJrVoISA4TXn/ZnxTThll9WsbYO6yu9kKHhvoXbQlHLqasxVu375CI96E+uWNi9XrGjWqwVBvD264H4JkTym8LTN7L507SmUcPThVrqawgUKTY0RoxdlTh5Ec5Y8Qc0dUq1lHtSEYRBsLAzRv0Zwh59hitavZCTi4Z6sy/sy0rCkv6kl94GNo07HHYw3NM2cAyiyjLGE1Hmv0NQeX6AgIe/2yOT9i1bJFxHRlItAvAgcPvkgetKuUDPsEdna22ckXolcqOK+CQPol2qnHqMzd/SKOHT+DPkOKxxv1GE1pDi1kBAL9vJXx51KpKxzs6qnr6ty1OYgmoXfd6sMRlxCq8HAXLmwjP9pW8v8NKaSmJ7dayKXF+Kvi1A4ulbowYSCWyiiz0afPIKoy+GPOT+Uwbqg5w3xMFWUR783Jc0kY84oXevXsR9WV/ZBkkpwlhUkHQgIsWqxhQi1zZ73aLKHEL35annNXzXIJjkD1WvVw/tRBaCdGwK5GXdy6dFNRSnXo0Fa10re7qVKp+eb3KJy7lEyDH/wjxk6H4mnEaEo2cGxcBpOddLM9dAZ86zdv1kh5/OS39/MLUKHf4nT79OlzSE7TYv2A9+1rCoZ19ex+GoX0AKYDIZ5nkM52MzO1mKEP6LEfsn/L5u2yqz96YDsqOZaDtY0lIuJSs9drFooegSxN53hEKy+vSJ4+bnnmDMDHPWHN8WVnBBLi4pipOZOhBEfq+PaFyLo9TokhgPjcqWOcBRugZaNXlXfGO+Awfvrpd7z88qRcOqZGRoaP01SpHisPZWH3//jjL+lxSsK6FXPpYdFVTPBCWltQqKVUO/QfrvxuSJA6exMjW0QxWcDY0AZmxg6ISPXiS444FJaU1Di+EPUUSa5a8ZT/EektKeVsaqtrxdDAnLxu1vDy8sHiP+wxZoh5rh7K9dSKnqR9ax3QsLM/Zsz4i9fefbyY7JiamoZVqzfgjl84hjH7cxxpi86cPExC7gzqlbbVMDPkGs2S/WJoZITeDAdfOHsCidS/ztA2wspVGzBq5GC4ublgzea7WD2HXtmAdLgT7yeqZFUq6pG8OUOp2fBwrNwUTw7LNtkdE3WcO57e6MrnjPz2lStXzN5W1II8l9wvXIFthZqoVaehCumuWvgHjJjoHpusCzMzM/JiplHSLo1Z+Ul8/kIljDRt0wNOlf4J9Vao4spM+ntITKYhqUXZxlNHVYLK3u0b4FixssK3CR5QQsLPEqygqLEriW2iDfzz7NU4dXSf4kUtCf1njQFYEr+Mpo5HGgFf79sIYMal++kjDKPdJMXHaAhfVA2G9x9FDm3XppWIj48lRUcFZfxJp2wsXeHpt0+B7YsjZP9IJ1LCBx07dpIg78WKosSK5NFmJoa4c+04QiiBZmrlxFCLriLbrVRVMurue3FKuAua6v4egcp8WQnlQliEB0NldRV1SFSsL42/dJJNX4CJUTmuSyQlSqqCGZSFgRMuQAnHBYScgVvVvkhIvEe+Qj9UraJP/KtZoV2sWlmPsnimxJctIOH1m/QQ6qvs6I0bt+CmVwg69hwOO3sHdXznHv0LrUezoWRHQEiTK/E6PHN0J2rUbYZgf29Fuv3cc8/hww8/pgxcMt540QozF0XB2zcVV26kIoVa4wePJygv3MUrifhlzj9Zo44VqiI86CoNxKSHwjynE3gfR33z2rUqKjk3yeKlYxGJKcDzr7yN08cPkj7mLFxIYCzY2NrMCheoVk72jgjKzB1kFraerjaT27qjCymcjh/azXsoDX5eVB2564so0r0hLV7dd5Wr1YNdOQc4V3PDLVI7+RBu0a5zz8dWxyjZX+jxaxMWgpTkJMVIILWJsZ1GVSG9PDRSbTp2Y9i3m2pQSLXLOzrRELd95A4QKqopmhF4OiMgiQ26eoaoVLEiEpi4ceLwPvh731I3wsP26MrFc6CdRKqEWogiLUdktA89M/HwIceaEafBLi7/zEAftu4nub/oB3/99Q+Ud4phvw3x7defkWh4Dfr26srsL3ckRvkhMzEEpw6ux4r5v/Khe0hRO0jii6aU/AgIr51If90Nv4SLN5bA/fpC0sLUQ4++QxERdYfkxycQTEPwk0/eR5s2LUu+A8WsMTw8gjjWiWjcqA3xfjP59wNC7l3AwdOf4dSlGSrcO6yvCSdWRU8YhlD5JDQ0guo13qrlgweP0sDwpjJN/2zakGJ2SbNbCY6AEz1jUTHxuH3jAvVmuzMJJ44ewOqoX78uuo8IIdVLCkbSuLcjw0G92voYMdAMIczWHv7iXRpMPWhsdcnujRjxV67dZoLcdHoVE7PXF7UgEnC//TaTnID/7HX9ijs9y1DP3fUr5uP8iX1IZaj69uVjOLFvM6MxR3IZf3KkZK5aWtlwvQEJ3aPUJOO5ydPRhJ7k61ev4sSxI9DLiETPLs3RqW0D3PVxx9mjW7GfSVbbN65A1F0vrFkssnz0htJLmEZoQkkW0UEWOponXYR/UZgBsopweArbSVF9CSAOcDvx7kXtk1VfYZ8aD2BhI6NZX+ojYERg84jnX0MgualSU+j5Y6aYkbFp9izoYTqQyAeC4E3mzfuTHFZDmfAxXx2uTyWExYtnk1w5d9jrYep+Uvt6eXlj0aIVfMhmUMFBX/0J7cLCRUsRFHSXmBlb9OjWUWWP3rp1W9GI+FDhYicz/KztKigR8ifV1/9SO/2GjkGdBk1w/bI7X17WaNGmkwpNmVuYIzM5ElOmTCJPWtOnOiSvTHkTu3fuh41eZXz33S98Wf+AU6cO4eTJM7C0NMeb095iEsuD5/tmf++TmJiMM2fO4cSp83Br0LpAndynesL/scaFF6+yswvS4kKUKlbFqrVx8dI1rFq1DBMnTEa/sSeZ9WuIxvV0ccszFas3JVCxJh3Vargx+/eD7IiKEKYLMb51OSfERoXhxo2bD/RcizdqzpyFiEnUQsMWnTkBaqhGP9D3DmrWqIpy5coRN3oSjnamSiP4+MnzSEpJ5mT+NnZTecSf0nI6lFzU1zdEuy49MWT0JPjddoeZtRPPyRVCE+PjdYuKJQ2REBPBvurAhNJ2jRs3hGAdv/r6J0aG6Hms35SZ9+sY9dBW+swG+jo0ApNJlVMD9Ru1eCgogpxTKOEdSdTOrlDZmf3TVW24E29p71gF9Ro3f6JXWN5wrnhNhaO0KKq75q074dL5k8p7WtR+RZ2IxgAsanQ020p9BJxda0D+5IZ8nHCmEIhK+eOPvyhXNIUvPQtmTMXwIdKo2BgXVcFT/MfR0ZFepBbMyGugmP+/+uoHXOcDOj4+CTY2Nhg+rH+2l0m4uuTv5s1bfAmsR1KaLnZtWcuHoB1pbyqgIl8WjzOeT3EYymTTVRmCkr+cpbxjJehr2RJb512gAShhnZUr12IWjXgP/o6WpNsYzSSR1157OZuSJWd9j7os944Ya6batqhp3haxGaEQqpdJk55XHnGp99dff6Osne8DmxDpOylnzpyl8ecOh8o11cv1gQdqdij1EehAnPTeHRtw89oFNGvTmQTkyZwYBlM6cgsN/dMM3S8mWbMH4pLjiavWYfjVFq1aNmVkZS9DyC70mjFky4mlGPcjnnuFsnDLqS4S/cB+y/XF/5HMfI26De9PdITcOTYmnMafM420NlSbKYe16zYjMl4LE1/7CDuoRiP4vds3LhMmoY9TRw6TssSYEygr1KEhJ1AfCWvLPl63byAp5i5hLa3Qol1XHGK26569h0ittFe1G8/+xkf7oe/gMTQmbyui9rPH95ISpyulExvj8uWr2LX+KqzsqyribPvyTjTqqtJ4YqZKIcXz5nWcOLiVoXJmTusbY+ioiTCzsGT4uj78qDoWRuPQmmTZRdVRSNUltloUYYoq0t82nXoWtcsDt5U4EfTOzatpuVqjSYt2xSYqfGAvNTtoRuABI3DrxhXs2bwcd0hyWpd0Fr9QWeFZL8IpFxERQTzgIpS3t1Uv9ILO6eef/8C585dRhXxuhvraBGIzzKdnSpyMJfQocZWUGEtqBksmkbQqtnZnQe1o1uUeATHwFsz8HlYmmRg0oDfq1v0nW1temlOmvEHv83IY1agBw2rVkEZsU+J5GlX2dji4f0eupKTcNT/ct2nT3oV4iqXoaOkyCzONUnNLmfX7z8vhr7/m4Z2334fX2Spwcih43i99btItCHpGbmhFjrzwqERMmf4pYRqM82lKmRgBCXkumvOrysB1dasLO3NKvz0/ioaYXXb/rl27Qam+zfD19UVAYDAnw5ZI1zJCRloSqrvd1/AVQuYdG1cihVCZ6tVdFZdl27atlVRbKrFnoj8sOGyZREqY+Mcf/0B0sgF1tt9U7Rzauw3hAVfwyssTsHfvQdy87cXryo4cgfdQu0lXeusaKyNPDEex4uIJadmydgnqNWkF1+q1EBkRhqNU6REyajEGjU3MlSOgVr1GOHZgF3xuXSLPZCbVdsB+JyMmKRMt2vdBaLA/okJuoh0nys2YySyeQnlOXr9+HRcvXkVQ8F3qGKfSsDSGs1t9laxiQkqavEVCyGdOHFLhUwenivREVoPsJ3rJB3esxg3W51qjtiLMlkQn52o1n9kJdVFE0CVuAMrAXqRbUogfrW3/uSjz/gCa75oRKMkREDzIotm/4Obl0wx3TUbnzh1KsvqnVpe8lAMCghT/mpAHF1SWLl1JbrdVmD59KsPDHegVCFKewZCQMAKptUkEbA4fX38EhkShcvVGaNqyvWZyVtBAPsK6ZALpt61fStxSNMaNHZbNoSdSfoMGkXx55AiYNW2aXXMqDfrQGX+iP0mXFy+ek73+URfimElfrlwVuJo1g51BZZwkRcurr07G999/mavKmJgYGqiNUa1KMrYvLw9zs9zXklxn730Zjh9nRmLCxOfhXKs1uvYeVGovPT/vO/jqw9epd30V5eixmf7h12jWukOuPmu+FDwCkpk+99fPycHXBumpSZyAUJt3yIBsI1AmJqdOncVP5ILcyeswZ3F0csLLb/4P3fsOgaglnTm2l4YWFH+giUEG0qFFLBqxepwjaDGgO23aK4SlLCcMZTlGPv86uvcbqqrbs209Eu7dQtu2LXHw0CnEJgGd2tRVHknf4ASMeGFqzmaVkbdm0e8wZpayj18wMaZ3oA0amq6uKkIjhqLQxXTsNVolgUjCi5kRo0I5aolmCNrUUBtDBvVC7do1c2z5Z1GMwUCSld+44cEQ+XUmP6XA2NyWHsHqqNeoebGee6KZfOHcCdwL8Sfs4zzx5NH48KsZcCZm/VksT9QAlAGSWYoW4/hPyn0qF7wAJrNkZp7FH0nT50cfAXl5iVJDDGeGnTu1RosWzbIxL49e67NzZFJSMmfBqUUSWQvAWHgFdzO0AlKC9Bw4BgaGhs/OSZbhnsrzbufmVdDPjML4cSNUeHfYsHHYd+kyHKZNy9fz6MOHEbN9B/nXPJR3Jt8OD7FCfvvy5Z1hrV0Jlvrl4RFzjGTOy9GrV/d8tUiYuD8lEa0s0jDlOTP0p4asgb4WTp5Pwoz5MTh+JoEv/NeQSe9Jz8ETHwpTla+xIlbERkdheO9WSIpPh71NPYYyvRAT549F6/ZBeO805cEjIPg1ee4ZE0e9f+d6mBtQ93fCWH43hrAIDBwwFLbWmVT40MEHr1vBmRneG3bEYdm6eBJHJ2L6R99m68nK+/MYPdLxdN6IMS7qIzeuXlTJHULxcv0G2RoCAjBgxIs0HAerzvl53eEzdyPKWeoyjJqKSHINOtoZc2JhjNveoTS67NCl18DsDFVpQ+TtUhPCiE1MVAZaYIAvPXSNqMjSGffuBkI7IwH2lWqjY/e+KuP37OFNivOwYsUK5NqkN5IG6YgRg+Hq6vLgAeIeEt4V/WJfXz9coDEYn5iOytUaMCGma7Fsk4h7YZj929fkVdQlLt0CnXoOgISXnzWd4lIzAL1ue6ASY+1ZsWoB4ocEB1C6qjI9Dzr5UpiL9as9wk7yQAkgYauASDXlvzcC4k04uX8dRgztU+jM8L83KgWfsWQZL16yCvGphmjWtisqkJ9LgxUseKweZq2EsXYyS9FYNwEvT34e7ah76s+Qku2QIfmqSfLyQjC9gO7ux5nJWSPf9oddsXz5KvJcTlOTgOHDhxALNrPQCZAkD3333c9Yv34jX5D/ZDu2ZUht8ssvwcubCVk6NuhDvFVplf2kAXl/6nNo0WAqeS4jYGHqhLNX/8KQMePx2juflVaz/9p65f23c9My2JhC4fF69OhLcuhM/PK5DTZsj6NWsCXl3u57fMVofOfze/j5ryj8tWwbGjVrXeC4yH47Nixj+N8AjhWqIDw8DG1IAp71rpeD5P1//sgmXmuZqFCtBW5eOQ1D3RQcofpSaGg4PvthTq53shiBku1qbm6pYAWSgCFZ9lKkvSAahJaEj0koVpI+NqyajxtXLjDpqgvuBvnC3DiT0QwzVHetioYN68HevpyyM1QFD/hHsuSvXbvOZJXTSEjTR/WaDdCIvHpFJU/s37mJdDkeOMbzadq0IXXZ2yiKG3sHpwe0VrY2F2UAFgwGKWb/42KjcZWZcSJZIyWEWnXCmRUdRdbycuWLWcvj7yZgSI3x9/jj+KzWoEWsihRDQ8YXNKXIERA1lAkvjKGXaBOO7VkDfSNL9RC1d3JWM3GNMVjk8BW60ZCyV936DsOWNXNVdnYFRwd43/IscP+U4BBloEn2ZEmU0aNHYMCAvsRqJT0wuUSwXf369VYYL5F8E+xYlSqVcOjQUXL/fUIMVTBxWTb0DhurEHBJ9C9vHUJxIUWHUSIh0U5JS+AkRDsXDUbeYzTfCx8B8dw1adkZHkwOef+Dz+nJi8fymZVp4N8/Jl0kOf4ucn9/97Etdh9KxqpFMws1AGW/3oPHZh1W4Kd4IQ3omUth2NWcetPpGVo4dPgko3FRxBXWQPi9f+TnpALBFObMdjUxNcuuV9pzqlgl+7sQYHfpOQgdu/VT3JPh9MYJh6CQ/Z8m1u/U2cuwMDNEzx5dijXpt7GxRrt2bdR1P2vWPNJn7VeZ7brkujSn/SARknRGUSIoJSqZy/Ubt0SgjwdDzpmowoS6pDQ9Zj83UDyza5bORv+h4/8VEZTHMgAlpp6zSDbnkywi/SX6lCJHVJQl/yT7pGnryY+APDgSmLx4/vxF8v1VffIdeMZaFJmvF14YCw+PWwovmJycglPnzlHTtRpn+5WfsbMpO90Vz0XVGo1w9twp1K9XF3t270M8uc1M6tTJ7mQ6MXtxDAH36tUD1swKLqkiYHj5e1D5+OMv8PPPvyuDS3gmT5zYT+qkxUr9w9iGJONmtohm1vmH0ybQoExAvyEl7wkURQMzcyvqCK+FY7nG8PI/QLLqKHTq1vdB3ddsL2AEPG9dRwpVQrqSVHnujG9Qw0UXfy2OUXtGRacj9F46wsLTUdFRV2E/hQvy5fGmmPrhLkQzMcmC1EZSJLNXyPkl+aE4E0FxAKXRcEpJy2TYOAFtu/SBD3lcM6gGInAsWSfQrKz6VSPF/OfapXNYPv93NGeUQov/Rd0LQLN2PdGcONGmLdoqQuhzVKNZu24bPXs3MGzYoGLV7OBQXiVrXbhyRyWliGKJja0tPG/dgLNzZUWcTbsSd66eJAaRcDYm1EkyST8awwJpCyPB9akjuxEbHcmEmLeeebvjsQzAYo14Ke5kYGikOHCyPECl2JSm6jI8AsJtJU5AwXsIYWnOjLgy3O2n2jWBaAiQWv4k/HLrtjfpFbw0BuBj/iqmNAJTCGbXJ69Y584dcGDRYsQ3JL+lZAFHRCLhzGmY0+vw3XefP2ZLj3b4fBp7lU3qo5pZcxwJW6yoQ/78czYcmvRESmyEUv6wdm2MiNtn8MePn6FXv2G5wn6P1mruoyQ58M9FG/HRm5Nww3MzPY52+PrX+U+cey13r57db8JLKcmXeuQ8jY6MRNfWRvRoZdKozkQwyaDXbY1VBp0kezgyA7xdCyM0qGOgfmuPa5cUa4dQHIkSRRw9bCLxp8Xnw4OKkEtfvWiJw3u3UCbxADPGP8GbH/6IOzev0uizYabvPXjfuYkGTVs+qKp826NpOIoMZk163Wb9/BlMicOzLleJ1Db1FXWM9FcydxfO+gF37ogsY/FpxPr27YVatbxw9qw7s5d9cOMa5e0oR0o7E0bUNBau9HRqGROqiJoNWqJew+bK+JNOinhBrboNYMFw9N7t60iy3RuGxGE+inJVvpN+CiueaQNQZFI0iR9P4aopY01KMkOHboNx7uR+UqYsoU7mQI0n8CF+I5ntu7pUxuWbErLs+BBHanbNOwLygjq6fwuSY0MxZMhAlZC0lBg9P9K/SFhLeADfffdNVKpUMe+hT+R7+fL2CPEJgm/8ZaSQRFd44OTlWa52W0R6XkCEpzsy01NgV7MVbm11h5fnTeKl6pZ439zq1Me6PWcUDceTjt7I+QprwJNut8QH8e8K5TwEBiXFgDCYCg7ACyPN8cHX91C9qh5qVjdA/VoGCAlLw9UbKVixIRbiGZQifHrlbM2p4rEb5lYOyut7nbg7ZnGiNZMlgoP8lOxa3mifHCsh3OZtOtJojIQBIRAyrhbk+WtMD52UdIaG0+kNlKJk4wwMsw0pWScRPEM6cXLiCiWhyoeYbkkMadaqg8K1VqrohJPHj6Fe03g5LLuIR064Ec8e2YoDBw5xwlW8Z5dAhWTiK1J4fv6BqFHdBR16jVJGsidxjUlJCYqepiZl7IzyeNXlXdO+2yCcPLgJCQE3MfPHM4p7cOjYydm/QXYHn4EFzgk0RTMCz/4IVHaphoEjJ8HYxpnSabs0eKKH/ElFJzk+5p56aD/koZrdc4zAlvXLsGT+X7ifmPE6vvn2J4wfO5Kk5EHERPnhzz9/eWrGn3Rz/oKZsLA3hGf8GYwcORTdunVWvU9Lioelcz2Ylq+KDMJqUhNi1XpR6ynN8jSMsEN7tmHBrB9L87SeWt0Nm7bDmi2JMDHWojKIPvG9WvC4nYLdB+NpTAGd2xrD2lIHx8+SPsbKAq2b1cZQ0qr06toS6fEBOH5gK6JDfRDi70nFkcPUo02mShPxNUUUN2r+hhL/n07+wJxFhUxDgzGmf3u0b1gBrevY4yNCC0KCApVn0JeGnsf1i8oTKcaiJInM+/N7/PnDRzjCrGThn9Sn0diiQz+89MYn6M/M+pxFjPgA6iILB+CWLTtouBXcT0kAWbp0BY4cOUbYy01lqEo98fEJhA5po2rtFlT/qIDy5ANs3aErROdakmPyGn9ZbUuI3KFiTdyLTIQR+VVTU2KwZulfKonl/OljJS5Pl9Xuw3wKPZV4hSU6VlR5pj2ARZ2YZtt/bwSEVV7kcXasm49Dh45xRtj+vzcIj3jGwp8ls35tiROVgSIvHRGUzwkMLwPdKrILokf9zcfTYFOjGcmUzWFETF1ieCC++OI7hpxqkoKlT5HHP4mNjRo1gMfNC+plK2GrBOK0zMzMEHh6Mxyb9UUy1R2SGQpOYr9FmjEnaP9J9O9JtFG9Zh0SE983cJ9Ee0+yjSGjJ2LymE3YeyQR/3vbhokgmTh0IoFcdhk4dzEJx/n9HvGAF6j4IqpD+vp6yvNVpUplxWGZwOzb+IRUXhP68LjqDrvyFWBbzhFCiSIGWkTYXdyhcoejE2mHiPNzqkgWAZ5gcyqTaNMTKcWLeDpPhn7LOzjivanPIyYyFg52DRFHCpg92zcgmaHmajXqoH2X3mQhqIZzJw4w7KpNL6IZUhIi4ELS5aYt26m65Bpt2e7+JEWtyPHPZfczCPO9wolrOAKQgpkz5/A+c0OPHl3VXqKG4+PjS7olf9ylvvWN26SaYWctzakNX7USvd9R8Lx5kR5HT5X4lNfTXVhYWSImXciR2bF7P8z59QviaI/DgdjpGvQe+tx0xyZmL+vpG5HY2o3qJaM4TrY5ev1kFkUtZvrkMZx4Rggbi/xEBZYSMwDF4hRgpDnTuEXw+d9YxKKOpdtaMpzF2NCUsjcC8lCq1agdDh87xIyvqk/V21L2RqfwHgl20tjUSr0MCt/ryW15WqLsj3OGG1cthJFlOVRqOwxRPleRFHkXjk17IeGuN5U6FpYJAzDr/LIwS8Ibt2DBLIwc9Txubb5D7JcexBtoamqOT779I2v3f9WnE6mP5O/fWBpSTq1b74GY8MZmGnIZGDfUHN063PfiJiVlYNOuOMxZGkfDqyqGv/AmvAO8cfHqdoWhprOQxoIxLMj9J0kloroRcOsMdqxfrCA1N0khZGJsqLgGQ3zsqDnspdSGqrtUUkMpiXi0jeBF4+/8mROwsyvPpAlKqlm4IJleMn09Ixqc5lRruoJmNPAC/DxRo3Y9hk6tebwWLrmfwr2IWEx4ZQrrNX/gz+Pj5YFYZjzHxCVCz9AcgWHEMJ69gJo1iQ+sXJFewe1IYoLb1q076U00xgdf/UbFEVNKvXnivfffgr+fD3kwjdm3BNy+6YG/VuykFv39sTpxZB98PT1Ifv2qiorIeeV854sRKB5KUyYzSd9jIu6q7GFRbjp74hA9r/o0mFOxhKota3adVhKdDzyhEtxh4exfkRiTiHK6lRCeFlhozSVmAEpsPDFBXzGKi7izDKRgXv4tRWYDwpoeFhaGtp16oTxdxppSNkegPoW8PT0uKZDv08Jalc2RKbhXsbGxDKPcRiXXpgXv8BTWSjjmWSvBQQEwII5KSmJEUHb3DWwc4Uci3bJaevfugcuXTtEQXEzliP2o7FoXb7z3pQZfXVZ/sCL6JYbJp9/9hW/I3/fSW6vwyfdR6NnJkMYXGPZNxTWPRNSu14CKL6v+5uBrp8KEcbExyjOXQkeOuPQuu59GtVpaCIumDBtDpZLtS1QflTuqkr9HHDxaTBpJI44vAHbWlkwkMacMJWXbMkBjpxxat+/BfTJx/dplhlwBU5PypP3RpRcwlA4iY8UzKdRJUmoyhCxFWAgGjXih2A6k9l36UjXkHtp0Hcb3cUVlcxzas4U8pyvZT2cIgbSQQNvZ2aF67aao5lZHtXP25BFl/JW3a0DPZH0kkIvyxvWt+OmzN9G59zDFLCL6xFn2y+Y1i5hcE4Zh419RuEdVyd//jHtpGr1/VbBvx3oEBfrhyoVzsLWibBw9l6kp8YiO8cOXH07FT3+tzHlYqS9Xp0zgycP7kZARo37PwhosMQNQGshKyJBP4ezJGsDCGn+W1suN5exai7xVV3Hz6gWE8MduwNmWppS9EZDfqnaDFrh0ajtv5lR4e3uTIsOUXGl9NB7BPD+XGH8zZ81HdKI2ujYoOwZgnm4+E19rMLR45fJSapfex0IZmNkwozId8UGUzOrQokyfg4QAP//8ExLsNsCZSyTk5TNcU57NEZDkyE++n4XRE6di/coFOHf1HL1YKXByro6X3x2Ppq3a5/L0y/5WNra5TraSs6v6fh9DpoWI8FCFcdPV1YMQIQsdioRTdXUykMTL3dy2Mr16HVQihLz3JcFj86o59MRVYgjWh0ZgGilW0ulti8aUN//M9rTlbFS8cw9TpM95+92BvIGnjx1AQHgUDR89pGpbYuTE6WhAXr+sEkC9XyNDK5gY2SKKBpqN5f1zTUuOwu2rp3Dq5AmxgdGkVSeVLNS4eTt6NT1UmDqrjpyfXelx7dJrAA7v2453XhkLK/PKVB0Jl+ZZdHCTmdZCbP0k7aHnX56ukln8KWt39sTBTOE5LKiUqAGY1YC8gLMYvrPW/Rs+K1R2IVi0In75+n2SUzpRi7Flrhvp33CO/6ZzmP3XHBWy1zc3Rzpntu+//wkVEyYpndSsENi/6Xwf9lxEKmnTpu0Ij05F176j/hXEpg87BiW5/1Dir9avXAjPnbNhRkmr2KA7pFM5h6Toe3j99Skl2VSp1VW1qjMuXL7JcNZaRcT7pOQ8S+2E/sMVCyXR4JEvwKX6D488CmIcShGjL6cChnDv3gsNQYDvLZIlJyHyrh/xhsyqJY+gS/VaWLHwT/jduYyBgwZi3/6jxPOGkPvREu+8PA/tu/Z+5P486EDpb5tOPZRX8+LZY1QOsVba5zmPq1TFlRQzUTAzcaRhmg6fwKNqsxCgmxtrK57A/Xv2IYiJMGE8R0kwlL+iitg8VV3c1C5JyYTCmZZHXPxdfk9Txu6tG1dQp0GTfHQxksgifzkzoYtqp7jbxNic9sHXancqgRR6WKkYgIW29oxvkIw1+Xvj/a8RHOAHwT0+Sav+GR++J9Z9kUaaOmkokgz0YdayJax69YQWf7fYEyfo7Zqr1BLee2/6E+tPWWxIANALFixHeEwqBdiHMYxxH8dTFvv6rPRJcGV/LtyIrz+ZBq+z21W3bam8snD1EkpJNX4mTqNevTrKa751+36cPnEQrcj1JkUwUeLJEH3Xf2NiyDPx4zxkJyOoxCG6vqVR5L0nhlxifAdcu3wepmYW9BD6MVRKTyGjY7HEv2rpmcGtcVcMHPd2oRm1WX2TLODk5ER63uh7ozElIVhrG7sCn0viXbxLFRKX6jWzDs/3KQbZ5nXLiFc0VYZXTv3e3gNHYh9l3k4dW6KweumkPWrbqSeath/EZJe7sEzRQrPWbSn7Vp/ayIUbT3kbrVTVFa++/Rlm/PCpcgwJbEzCzl279cDVcwcYrg4nb2DPXIetXvKXwlR27zectoRxrm1P4ouWdDJv4eC5kZ/n+pHLQeIJfSZLOnPeMxh+0abc0NOgGngmB+1f0unlC/7E799/CqcP30f8+fPQJTeVSaNG6qYM37SZAJdL8Pa8BlFC+K+WL7/8HjGJWhgw8qVnTty8rP9m8kwVbfKTh/eiUjl9TJw4rqx3OVf/JGty7oJVaNy2H1UhapHodzvefmUM99FidqgFNh+8SPC7Ra5jNF/K3gjIdSikzjmTF0qzl+LJEqeIULPcuXkNbTv2KPZ1MvOnz5iRewUNGzWGj68/khNiEB4ZTS/WN3CuWj3bQ5bA7O1fv/mQ9Zpj6rtfFno60o/5v/0PVpbGqF6/YzY3YdYBYnAeJF4wJMhfkTu37tA9O5onGc+iMGZDAzTLMyf61depTlKJsnA16zRC9Vr1sqrK93nt0nnsogdd7hUJxYYzc1r4BYUj1MauXK79xTMohNkyqSrvUKFUfqtS0wLOdSZl7osWX/K3UIUXj8YALHM/Tql26Cwlggyru0KPhp+RmxsSrl5DaijBx/b2MG3SGEFHjuDy5ato3rxJqfajrFYeFnYPqZQ4qlK9nsb4K4UfSbwP8kC/SiPJ3FynFFoo3SpFJUaKhBClXLl4FroENFlrl0dorD92bF7N0OKEXKS+akf+I0aH+5njiiZE41XOGpWn8ynXYXEUPUqqd2JoCneeeL2yEi6KU7eQP6fS+5eUGE/Pnwd0DC1QyaUO6hmlwv3YNpw7pgcLGwcmhxgxyeIUbnlcJTxhoLrW5BwLKpKJa2dryTCvAelszkGIrLPC2bK/QBvEm11QEaWavEVXR5ek1fpUmrqL9uWd8m7O9b12/cZUSDmDeErl+RNvKKolhSW1CfWMGKub1ixEw6ZtSoV0PVfn8nzRzfP9kb9K2O2nr97HxbMnlbjyi1PfU7H4R67wMQ+UHzgvr89jVqk5/Fkagb8d2/qOjkhmJlgiCUD1qPnIp4Y6i0KeG8/SGT50X4UodceOXbh92wvahtZow1mvppT8CIgRdPHcSUST+Nm1VeeSb+Aha9y2bSd2U5fY2NgIzz03ljQZNYqswcTEWAH8Iwn8F7aDzj0GENM1C6Fp/iQPtqVHI5gvrEXo1L1/PhC+APD9b52FxyU9DB47RQORKXKkNRtlBMTL1qH7AKUdbG1hoDj5mESLurXrqEm6t7cvbt68hcAgX1RxsqSmcTcmk8QrDKKdvUOBg3iTBNM2pplo1aoZduw5ikB/H+XpK3DnYqyUcPfDYBeHjZuMuyTHtitXcP9yNikMKkPHvJQPH5hzn+Isi+6yPHt0CXcSXfLilIc2ACX+HslYdk4ciLh+X580jJb2FTjYNkRYUBjenDwSM4iHada6Q3H6odlHMwIlNgKijXmCYYI06mKq8G/9eog5fgJJ3j5IuHyZGY5WqFevbom196xUtGvXHixbsZ4PByu88OqHpRJueFbGojT76edFhYOLR9C+dSNm1dYvzaYeWPevv/6JDz74FOZm5akEkYg5cxZi796taNLkPvVGQRXIREEmSLExpJBgqUnt000HLsCHERWh6pDwmM+tq9SOJoFujuxRj6uXICEtM+qpmppo49ypw2jDMKCmaEagqBEQo+X6pTOo4eqIHt07KZk2MWL0yLMnHj4nJ0eSVrdUVZw9y/AqqYoMzcqRoLp8odVKhrK5uRlatmyOK1duqJC06Pg+qSL9fhiquJJISjQm9Z5INwqRdnEL7eyHK3Ji0TQAcxZPAjavMkxgZVYVerpGcK3UjVkwjti0dknO3TTLmhF4IiPQhyBfARCHzpuPJB8faDMsocOHQdTevYg5dgxvvvEq3fnCZfVsFU8Sr+7atRe3SMj6KOXU6XPkvErHhNc+Yhb7g2emj9KG5hjA/fQh1KpeCV27dsrGFZXWuMTFxSEwMKhA6cPExCR88skXqOjQEk3rTEHzelNJfGvDdV8V2R1b8ZSTwy0ncF7A8DKZl0zQCkx2qV6nMWrXb5JdTzx55FYv+ROB3tfRtm1LNGpYF0F+d5RHInsnzcJ/egT8KP12aO82amXvpGhEVPZYXDp/GloZCWjfrpVKlhJycn16BQsK727fsRf7Dp2kFzqUMnWp2XXkXBDBBgM9oGPHdqqOChRHjouJyLlLmVsWIzjQz0sllz5q58STKlHPh4G8PdAATElOZjq0t5KCkY6Ja7FOHr4w2UeKrq4BklNjERZ5UyVgRNMlqSmaEXjSIyAA9VmLN8OOhKPBv/8B/48+Rvi6DUi6fRtTp07B9OlTn3SXHqs9ydgdQKO2bt1mGDRoJBo0aIk+fYcgIuLh7i8jhhoEj1LUzPmxOqo5GBKGSYoLp4etYYEvsJIaInlhfPzx5yhXrgoVb+rBza0RLl68nKt6USVIYzKcDZUY5GUq6gTmJhURHBySa7+8X3QJnxEPyqXzp/Juyv4uBmFOihgJsblVr4rRIwegffs2ioQ3PTlO6ZFmH6RZ+E+OQDhxc7N//QoHd61DqN9V3PO7iO3rFkLWiyTf5bOHUMPFiROHVkWOjzwH4+KoUkOIgjHn75I8UVAR7kJevkrmTrbbMRM/LjoM65fPxW3iB8takXtZJlDnTx7EGeLXn2R5YAhYXLGhISHMfnEttF8ijlyOmoGxsUGcbbZCbFwQGb/vok371ws9RrNBMwKlOQLOrjWwbtcZnDl+SIWl+AZEMl/M1as7kyAziRnARg9sXm7M27c9CXmI4gu2OjmlioereGDFD7nDxImv4NCRk6jScTRMHVwQF+KN46c2YezYSdi+fV2xa6tatTL07smjUVNKawREv1iPORQVKhQNFH/c9hcsWIqffvodVSt2UnxmPoEHKTU3nIou50h6bqKqt2fSky0B7f4hJ/jSdFByXGERV4n97PXA5sUAjI8p3gRDgO7HDuyAlUmmCrmJsSn6woLjEk+PianZA9vT7PDvHAEhIF624A9kUG2jHOXZmjZtqCYIv/42E9vXL0R6BhMyeJ34+gY8cMK0b98hZOqYod+wFxgeJnl1IRq7QqeSyeFU+ub8rFu3Nm7cuKVUvM4d2aaocSQppKyUC2dP4NKZI7Cyc4QT6bhCAv0LTRop6T4/0ACUzJ4GTVsW2a6AGP9YsA5vTxmLG3c2KuqVia++ixHPTS7yuLK0UWYNgm15WDbysnQOmr7kHgHBVbRo20n9yRYB5R7cuRbLlq1Gr17dFLYk9xH/fEtNTcMLL0zG+vWb1EpTvsRWrSLwvVP7f3Z6AkvexC3u2LEbldszrO3aWLVo7dJQfR48sFSBo2vUKB62xZzUCTqRcU+g1//dJny9bqFiBftsI6y0RmIPiWptLF1oAHZUTRjom+HM5VnEO11HixZN1Trx5C1fPh+DB4/GsfM/qHW1atZUROhF9UuegzpUfHCuVnSyiITazpw4BH/Pq8r469KlPSwtLdRz9MiR49DXyST9xY0n9jIr6pw0257OCCyZ8zO1paNRpaITXn31RSYRWaqO2NrY0EALhTEn4gkJiUxMevAzrEqVSrju4Uns6W3qlpuTeDo5V2Zv1hlmZmaoXL8M0aVjkcn++PGjFBxh2bKV8CJ+tSwZgJJDoYMk4iBP44r7CUZp6lDF5bWs0ynVz0INQPF+CFdOTjd/UT0Rj8va3afVjE/AiFn8OUUdU1a2Sdjm0L4dipF7wPBx2d2SjGZJ334YMGf2wZqFMjcCgl/q3Hs4ThzahTnzlqNhfTe0bt1ShQjydva33/7Ehg2bUct1ID0sDrjjtwcjRjxHj+ClJ+oJlAw4Kablq+bqohk9gVI8Pb1RXANQXs7xV+7Xl6uyf9mXRBomVy+eQ1Ni1p5kiY6MQIifB7p0aFLqzQpOKiU1TslraWvp0LsXq9rMy20pYbUrV07jzJlziveyTZvWReJfxWuyZs1GxCVro12z1vnOQ15WN65eZCjtMuJI+qvPhA8LY2DgwP7Z2cVxcQnUnPUiDEiLOELrfHVoVvy7R0BsB4GFXblwhqHXCGoFm2LCBEqk/W38ydmPGDFYRVcaNWqg8KvFSYKQxCVHRwd8TAzraeKZI+6FYsCw55RsoVyXor8r3ucQanLr07IRgzFnkW0uLlXh4XXqoWybnHWUxrJQ5uzYtEJxhybExyuDWMZQ+vs4RQxgf29PekPFH1pwKdQAJImyVgBBiZL1VdwiHc4JHC7ucaW1XxBxKcKx40zcU1FF5F6io+5h+NjJapawdB5DKzymdftuCtNT1LGabc/WCEjyQ9+h43Hr+hWcO3sYFy55oGYNZ7Rr11o9XLLO5uTJ0/SwVINjuUZqlWul7jh96U+GEm5me1iy9i3NT2fnKqr6uBBPGJjbZDcVG+ypll1cnLPXPWghJCQUpha2D9rtmd8ezbBjBfLwPekicBkJe2b9ZqXZ/osvPo+1azfgwrUF1DQtj7vhl0h50ZKQgF0YNHAUvSMp6D+gN3744SvY25dD374PDvsmUq90yZIV8AuMIAl0b1hY5TfehOD68pm9sLcxQ6tOTVWmZbVqrrkmRQKViGP4ODpRB0PrNCzNYdDUXcZGQAyX4wd3E3ZzEUb6gIOdBfWCM3M9W6XLAhEQ409KFu+k+vKAf8QAnPHHjzh8+CiuM6y7Z+tKVHGtoxKvjI3NMPalN1Wkx5T8f1lQiJxVqgSnjFTC2gILVBnJue+TWpb7bOJr7+OLd18ix+E19Te0e3P8OGvZI1HXiAG8b8cGeFy7ABfnSooMvLBzKdQApEWeGR0VoXVk/w7Klzz44VFYA09zfRyBlccO7lIGoGBR4ukZEC9QXstaJGWq0NCV7Bm5gG1sy6FFq45qv4Iegk/znDRtP/4IyGzTrU59ZkzVUfQA1y6dxe0FK9C8WQOGeDswmUkH1qSKSUw+z9kpw2EEz8fGB6uGra0tH78DD1GDs3Nl9O7dA3v2beZRxFY5uhID6IVAYgA7de5QbO+fXNf+AcGwr9L4IVp/Nnd9Wh77ZHo9ZM4uGYylXYTeYuvW9fj66x8QER6B7n1G0NCzw5dffocK5ZvDzMgASxav5DMvAQsX/lVkd3x8fJVH5dZtbyRnGKBxm16FcqjevH4JtpYmmDJlkrpPsioWyITcN/JsvXbtBi5dugZnSmkVN4KUVY/m89kegTPHDyLI+yLMDYFURmBdqlZAt26dH5vjLueoiJe7R4+uatK+bdsuXL5yVHn86zRoDlEK8fI4jy7t8+vuSh0yOTM11GYm8lYMHTclny2Qs50nuXzyyAGcP3saFqaVYGhgwQSZYLw+cSjWEseub8CMl2KWNUvn4LfvPqEW8v3EXJHCoydQHksFlkINQC0tbbK5V6Z+XYQSVhbjqDhu2gJbeUorXelarep63/t34sheBPvdhp6RBUa/8Eq+HmWlTssDTLQCcxYBsq5fMQ/NW3V6oCh0zuM0y2V7BATfKpI+LtVrk7j3BA4fOy43i3pgvUGqmPXrN+PMlZkwMrBBeNQdZuD2R1RUNAYMGE5x83to3qIJvvjiY5iampbqic6bN5MhlJeJBVyZ3U7Xrp2xaNHs7O8PWkhISEA8sTaVGTrUlNIZgUQqGYgHsCDPQ2m02LFjW1JdtM2uunbtpvRYN4Zb1T5qnZ6eCVavXofZs38v0CgVo008hu6XbkDftBxc6nZQkY/CZN6SEhMQGnAbg/p1yjb+/P0DSS79Ek6ePKU0Td95ZxqB/o1Qp2EzjJowLbtvmoX/xggE+NxE/TrVmGiXDC8vXyYm9aaX2LxUTl5gEMOGDSKeO44JUTMQHBqFLWvmwdJEp9AojZ6eLo8ZiIVL1iOMCVsPo/VbKifxd6VHD+xkxMmVHtOGiE+8B3vbOrh8k3jFO/cl5IrTtry7Zv78BfGEhpSVa4LEpHBExfiK36DQUqgBqI7ggfFx971oopVXkCUaxVRsPX26W8tgppcYrNp/z8abtmyP8/xuZW1X6GAUtiGcIeI92zagVt1G+XYRbqNTR/fTMKyBpi3aash1841Q2V8hXorG/O10KPdz7NRRhIaFY8zoYThyZA9++WUGs4AjGV4bxuy1dujSpTcNQjuYGpfHgvnLKCl3DXv2bH6oMMbDjoiE1NatWw5JCPl/e+cBmGV5tf8re++9ySBh7z1lKFsUnDhxz6922Pq1te3f7q+231db22q17oUgoqAMkb33DiEJIyF7753/de4YCJBAAknIOLe+5B3PuO/f87zvc55zn3Od+PgERESEm1iWlmxn5cpvUG3hhICgC+NiWrINXfbyBKT2Z3WNpTlGw4e3v6dVblQtLc//pEtsoLSamktjgMQjvHbtOuzYexwjJ8xh4fs+V/SG2NrRrUPHQP2UncQL3nLLXThzOo1G5828cGXiV7/6LZ544hH4BPbqkNeEyx9B/fRaCEiRiHzeIOfm2eGhhfcZtQUx0tq6yQ34z3/+PDPgY80Nev/+fa5Y5z3uOEN/hiR1GANQbKuqaqpTsEJTCQ23+pheW9pWzW0SgyyJWb5e/ZhZTSFtajJ7uPZATsGJJjdx/tfiokUkk0a+8FEx/Vj1I7xR409WsWPHDx/cCzGwLm7SmZRklkPij8v1bp6c1r1x1vyr6oYPNa9eeOkv9BRdOo5AXlDH3HATaxmW8+TPvUAZ/6p2pitdNwKS7e7E2JR9W5Yb6Zd+/frgzTf/ca4/Tz31HIV03TCs36PmQpuV24+ej3exb9+By1ZWOLeBa3wi0xdXG1928lQyInsPYcC09zX2QldvioDEP4dEDsDKVetNzJNUMGjPJp6NP//5b+aH39raHqfOrqd3ZNolSR+FhYV4550PkZpZgEEjb0RUr77N6qbcUEtN1ri4eBO/FR8fz5jYYxjc5wHjvZCNFJdkstLIOjz3s5nN2mbDhSReu7ystEPFkTfsnz6/PIEt61chxN8ZsxmyIudKexh/9T2SmxKRe2lO8/dnVZyKUpPB3qf/4EYziZuzncstk0q7x4eVSpqbDDvvroUUyZ6PhCRWOeE15mTyesb/xbQoBtDVzZ2efntmV5eZmzk/7wFIOLPqsjd2nLBookkGCu8S7ehBO0k3ZMNWTXHRswwGluxZuQscMnxsw4/PPRdx0ILcrHOvO+sTmRYWrcOLYwdlPHKARRlfEk0alkXqrGPt7v32Y6Fv0abKz8+/BIXEU9lYO5/zsjjYuZtlipm51RFaAUt3iYcwOfmsiWWt75NM9dXWVte/1L9tSGDMxBth5eBjjCDxsrVne/HF/8aTTz6ClMxtvIB8gxkzpvIG5p/nuiC/1QcOHMJ7732MM2nF8AroiT4DLp3VOLdCI0/8A8OQyJsJmeKztKzzMFYzqF6ajLeqqoSejFrE9OnfyNpNv/XNV0sxeWgPTB0RgRd/8KhRZGh6af2kIxGQ0IBdFDDOy0jEjOmT4e/v15G6d0lfpNa1hCqIbuWit/+K3ds2XvB7eckKLXxDMpI3U2ni6OF9zV5T5Mr+9Or78A10Rq1Npim1O2HSNGNIN3cjEsb2/C/+iJz8eGp/bseR+EWMwywUj32TP0RNegAtOHEsd7TOrPwh6dX17ciBPUbvL4sFwaXd/eCTeO6/f1v/8QV/mzKaLlhIXyiBDkTAhXdRFlZ2SEtLN1OtDbsmGoCSeZmYtB5uLiHGw+LO78j1qCssF3MrKqjKTcnWrdvxt7/9E8uXf82kFVqvbD179sAjjzzMx4Pm87wi3qjxRkVb2xKQuNKho2/AplWfGI3GXr1i2naHDbYu8U0vv/w7k/kr8UD1U7X1iyQnJ+PzL75GQYkF5i14rNEs3/plm/orHuTTsdWcVq5GVFQERo4cgf37PkcRk6QkdqmgOAVTZt/fIk+zyI299MIzcLHwhq29E1YtX4wpM+bihhvrYhmb6ou+f30IlPKGN4kKIbGH9tBjW4SK0iJmolvhpiljm52Udn16fn6vopUZHR1lwiAOHd2KE8cOICg0EsPHTIQDZeyupclvwLgbpjc5vRx39CDlm2oRzRwFWdbcOLGs3cQbZ5mH7PvQvl3IzUpDVnoavP38m92duXfcz3GEY+uGNWbWdibF4e+dO6HJ9Zs0AGUN+RGJjzvK4sJ9TDaXlG157tE7WbfP0bj9peLHR2//k9ZqJG675+FLdtKYx+yShTrpG2IIS3Hpjhj72EmRdohum3OW90v13o2Gnbr//gVGu+ovf3nFvO3j40Nx6Pcv0LdquHxrP5eA+zfeeIsenPdpoGYZAzCcaf7x8afQO9oe//uSF/r1skV+YQ0+XprNuJhf4oP3P8T0GbMQFj3CZMC3dp90e5cSCAzpATefHti8eTsryLSfAVjfEzmHLzb+5DPJTq6utsDYyY1LvNSv39RfuVAdP7oPfj4eRlxX9rNkyQd49tkfYv36zUYSZs7o2Zg2546mNnHB+3J9SWYVEQnPKSsrgbOtN2ws6zKoi+jN1nb9CcgsnxRHOJUQR1Hvo7zhtER22ilYW1Qiihm+gYz1lIozIkfVnOpK139E53sgSg+33z4Pw5kF/+qr/8YHb65ASI8IhH+XOHp+yZY/C2BFj6baZk6VO9tWI/bwXkycOoffqYM02FYbyb1b73zQGIX9Bw/Hvp2bkZmR0iIDUPY5jPHs8mhOu6wBKBsI7RFl7vasmFuScPwo49yyMbTvXGTlUo3bwcuo0YsafGMGYHM6cKVlpEJHRXmZWUzqEHeEJi7eXn0H4AhjHzuSonhHYNMV+iAe78pGCo3LBe83v/kFfvSj/zIxgsHBgaYkUXuMeeXKNbj33gepqVWN+253wuD+vpT4qMVHS9MQzw4E+lnggTtdWfKrzlt/8zRn7D1Yhom3Hscni8rx7ufPtUc3dR8kIOeJZMFuWbMIsbHHzxmBYvC89db72LJlK3Xz3PD004/RixbZbsxEDzA8LAAnKOUiReNb2kRcuyg7CXc8cPu5cBi5iH7wwX/MpiT84K33PqPDoHezNh1//Aj2bF4Bb/9w3HX/E/j43X8BFTyXqT4xcWrLYwibtVNdqEUEDu7djt3bN/L3xQ2RPYLMusOo/zhkyMA2Vz9oUUevYeEePcKMULUDdQQz6XFrDQPwct2ZRZ3O1cveg01pGr789D8Ijx7A2NliFOenY9WXizF6wlQjbj14xLjLbaZVPrusASiBnPYNaqbaf5fRU8E4D4n7KC8vMNkqDm2Y6SN9yM5MN3eJrTLiVtiIuG0pX6nGXyuw7IibsLN3pEeitMmuubu7s+SVe5Oft/YHkmRy1133YdoNdnj/H8HnjDzZzzMPu2PtphLMfygV9zyVhs/fDjh3cQ70t8bsGx2xaFkiEk/Eou/Aoa3dNd1eEwQkLlhi7Fat+pYVCXqYRIwf/OAFvP76f+DhFmrq8r7PWLxNm1efMxCb2FSrvV0XKN8HS5athUzjOXxXM7g5OyijSPThPRsxmBIfcsFsrMXGxsHWwaPZSRz+AcGwc/Li7JIdvv+z32H8lOnIy8nBmAlTmIzVMW72GxtnV39PblT27dyCtNRkFOakICbCD7fNv5kJaI0f967AQzz148YO42/pTpPs6eXj22bDEi3iqbMXYM2XH8LJvhrJ8fsxevwUU50kKfEY9u9xalb4gyRNnT554qpu5uoHdz64r/6dy/yVmD7J9j2W8Bm9ghXIyoulWG4O7rj3scusdW0fSWBjKEWam9Kmurat69pK4EICkuBUXJgLoxh/4UfX7dUf/vAyIsKs8cnr/hcYf/UdmjLeEf/+iy+Wry7G1l1l/G7WIi6hAm9/XICYSFuEBNlh6Sdv1y+uf9uBgHgBR46djMz8Koj3VqbvxfiL7jGTMyiPYsSAZ9gLe/zxj//bDr05v4vQ0BBTJmv9N8vPv9mMZ+msLiDTflOn3nDuBqPhaqWlZRTkPU5vRr9GP2+4bP1ziTGft+BRTJ5xi1lHri03zrpVjb96QNfp7+nEEzh+cAsKs05j8vjBePqph7u08VePedCgASgtyMYfXnwW777+f6acXf1nrf1Xpojn3/sUPAP7csoAyE2JRVBIGMZPvblRRZXG9i+/MRKedy3tsh7Aizcs3rg//+tDvPrnX+MA6+SGsFj4w0+9oZ6Fi0Hp605LIOXsGVhZ1LASiGeHGENKSqpJ7vj7730oudT4/VpObjWSzlbC1dkCz/40A7fNdkFlVS0C/Kwxb6YzTp6pxJGTxzvEeLpTJ8TA8QuKwIFDRxAaGmyG7u5aFxtkzUQjR3s/ZGRktQiJeGeqq6uuOvRAzmspzdVYiMPlOiKzPyInmJOT26j3OykpiUkglSaw/XLb0c86PoH01LNwYI3ngQP7Umh8QrMN+o4/ssv30MfHG/37RcPSohoF2WeMd03q9LZVEy/3pGk342wS5VqYa5GXmwlv38Bm5xU0psvc0r62yACUjds7OOKHP/99S/ejyyuBTkEg7tgh2FnXQuL7OkI7evQYs8SAGZMvzUzLy6/Gjj1lWLu5BAePlsPL0wrpGdVwcbaEny8z0UY4wNvLyhiDFhS51tb+BGxsbCFme8+ekaZCSGLSOsSEz0JRSQblGk5QP/KmZnVKRJ5//vOX8I9/vG6MtxsoSv72O6/B19enWevXLySZ41Ib3psaZS1pUkNbqoVs3brzkux42U5i4ilWWXJV711LoHbgZR2ZCXvzzbM6cA9bv2viUXv00QfNhn/wo59jLaWJgkOY3NKCUImr6VUQk8bkIVO6rWHUtaQPjbsUWrIFXfaqCcjdfAUFpLV1HAJywba1t2/Vu16p4DFjxq0ICY7BqJGTWGFkS7MHXK8lR+f7uVZcUoPPVhThlTfyzIO2AV79A4XOJzrCn16/Zx9xxx03u0BiAMvKavDNhgomLQ05t74+aT8C4gWUSkkuFBh/7703UFx2Blv2/gUHYt/H+PFj8MILP2pWZ15++a945a//QLDfWFbdmEMB8j0YPGQMk/T6UKN0ELfzC4i3+EpNZIJo/zEGsOhKi17wucz+uHv4NOo5FOM0Li4B/sERrfq9uaAD+qJdCEiC46m4A+jbN7pd9tdRdzJ0cH+knInFl5+9Z+Jl26Ofdq183WlOn9Ut0BxKbbRMcWEBigrzGTTt2Wy3bxt1RTfbgIA3MxvlgtcaLT+/gLWF5zJ7vhy+ngOon3USc+bcxkzQtZBKI1dq0dF1P8TfbinFA3fY4ERiBb76pphePWA6vYK33+xMTUJLM927YWspBg+wu2CTbzEOMDu3AvPuevCC9/VF+xBwcnZlTU7GS2dlmwL2R4/uYfnAQyYLeOjQwY3KtTTWM6lL7efDutWhU5CUuoNJJMWotnKE04D+KGeN57+99ibefvdDbFj3ldFiq6ysYHzh/2HTpi2csnXD9773FEJCQrB37z6UVzF2qJGqRo3tt+F7oo+WfjoOUle6YZWHhISTSM8uxI1jBzVcXJ93QgIVVN2oruJvVQs9y51wqJft8oIFd3AKvB++Xvkt1q3+goUeehtx8q6WSKcG4GVPg7b9sD6xRbUE25ZzS7YuHsCivJKWrHLZZdet24CzZ89izJDvM+bL02TPb9//f/jkk8U0AH9x2XXlw7CwENzIwPu//HM7KzBU0DC1gKe7FR65xwXubpKNXte+XluM4wmV+Of/+Jo3xHP48edF+MEvszH39vsQGh5Vv6j+bUcCPSKisXuLg6lTOmHCWGqm0VN745QW96BOw6+cdUJzcPzkCriOHw/PW+ae87h5TJ+G1L/9HQ8/+gx+89KL+OUvf4Pdu/fB26MXSkpjGUe6EncuWICQ8N4YPHpGi0pM1Xd20LBRWBK711QSGTFiKKyZoLd37wGkpGbCxTMIXr5+9Yvq305KQOJL3b1DsHPnXkhSRGvdCHc2HEbKqV9fc6Pz/gdL8NF/1kC+y2oAdrYj2YH7KyeZVJ7Q1nEI5GSmwMfFsdU6VB9sb2VpY7ZpaWHFH1VrU0KxuTt5/sc/pPfoZl7sqyH6fk8+6MaLL1PHvmui93fv02mc8rXCgSPl2LS9FB99XorYE6WYNns+fvLLl+sX1b/tTMDK2gp2rG4hXrNraQsX3kfB5R/Qm5gNS9Zf95g185zxJ9u1cnaGx+xZ2PvW26z/e6vZVZ/IW5k45Irc/FP00B1EUnI6vv+LVy5YryV9kvjvyTPuwP5dW7B46WqzqmdAJIJjRqF3v8FXvd2W9EGXbVsCi979JxMSjqFPnxjeQOzFiBHD2naHHXzrERHhGDF8IMN2NsHGblAH723Lu6cewJYz0zW6MAERHfeLar0EkAkTxrFCghsOxX2EQN9hyM47QdHPHE4Dz2g2xXHjRmPBgrvw/vsfISuniBmgFhjUz47lt1jL8osiyr8UwZdB+mCA/wu/zeRF3xbDRk/Ff/38EQylIrzcaGi7fgScXL1wktUGxCt7tcfioYfug0zPvfjiS7ANCoQlq3pc3OzDw81bHjYByK1MpVC/N8+3eO7TkqW6WG2D8cZXu//6fYl8hTzycuqyl6U0nLauQ0BqoMsUsFSUlKn97m4AypGVTOjFn32JtswIvl5nkBqA14t8B9mvVFoRoW13Ty+T4d1BunVduiE1SctKC1ja7cqxec3toEz5ffnlIjzwwOM4Gr/UxH699dZrGDNmVHM3YZabPXsGklOz4erphz/+/VOUluaY96OiY1gA/HHMnnc3PU32LdqmLtw+BEQU+vDO4ygsLOTNgOtV7VQMtyeffITZtol448NPUcsEsoY12mWjFenpZttV1Gi1trQzU8UBPoOYbZzAyk3Hcduo265q342tpIZfY1Q6/3uPPP1jfPLOq3C2q4XUy9UG3lDbISw0FIUFeV0OR+tEunc5LN1nQNlZGVi9YjE1iOoMiu4z8ktHmpF2Fpa1lU1WOrh0jea9M3z4UMaA7UZ2djIzNeNx553zm7dig6X8/X2pF1qLBx79HtbuOo2vtxzn35P44MttmL9goRp/DVh1tKdhEVGorLbEsWNx19y1OXNmojw3F4Xbtl2wrVoKmBes+YYF6P1QXJOLqhqJF8xA3KmvjPE3bc7teOCx5y5YR18ogYsJSFz69FsWoIyJQuWqUHEOT2JCAtbwOlnKkm1dqakHsCsdzasYi39gMO579Llrnhq6il13uFUS44/D3dURPj5ebdI3B4er99BlZ+eYODIJyrbm9F9blipqk8F34406OjkjtOcArFu3BUFBAdSYrKup2lIkdfWgHzarZS/5DGUJiXBkFnAN4wuLt21HFT2A//n8E8rLjKWHuMSIRf/q//0evqEDMe3m21u6O12+mxIQTTpbBzecPHm63coUdnTUN944CR99utyEcXT0vrakf+oBbAmtLrrstcYFdQUson+VmpyIqMiwq66y0FYc8vLyEB+fyPqQNyOI04naOh+BUSwLZ+Hkh3ff/9RcWFs6gszMLNyz4CE42oXA0y2K3mBLlB+JQ+a77yF78RL0cHXGmjXLMXnyRJ6/1kZ0et++/bC2c9aa5S2FrcujR8/+2Ln7ENLTM5QGCcj3avCg/sjNzuxSPNQA7FKHUwdztQRSU5JQXZaLqKjIq91Em6xXUFCAt976EDnFVphIA1Bb5yQgXtvpc+6CjUsQln3xFQWVKeTYgnaI5eRKy0oRGTKFMX3xiA6fgYnDXsDEET+lvmQflq+yxMiRw8wWRWD+s8++wIqVmxDRe4RJ2mjBrnRRJYDBw0aj2tIR69dvVhokIDMwIrhva3f1szgdEaQagB3xqGif2p2Ar18g46Ysr1muo7U6npx81hgJX321GnmlVph5633w9vNvrc3rdq4DAZGEGTPhJmRkF+H48ZbFA3pSnFxaYXFdtQ8r1hIWz72NtQMlgRyYucmr03dt5849lANKxNipt2HkuMn1b+tfJdBsApZWVujVbzhOMBNYG5CUlAx7Zy9IScSu1DQGsCsdTR3LVREQeY6vv1jEZJhlWLvyMzg4OGDIkCF45JGFLInU+6q2eS0rVfFi/tZbH5iSXdU1Fhg87uY2r0d5Lf3VdZtPwM3DE25ewdi372CzKsHUb3ngwP6QTPAVPEdtrB1x4tTXqKmpYkWYYqRm7sN9C79nFpXKM98y1jAkahBCmXyiTQlcLQF7R0ejVypVZUQgvzs1KW9YWlpqhKDlRktqXXv6hHQ5BOoB7HKHVAfUEgKiZ/bkPTPwm58+i6zMOIzon4Le4QlYtvR9DB8+Hg8//ITRX2vJNq91WfEOVdLwK6u0QGEpEBEVc62b1PU7CIFqZusWFhXht7/9HyYbhcDLM5D1ocfhX/96w8jENNVNuQh98MGb+MUvXsCEiSPg5e2G2MQvcOrselPA/mc/e8FcrJctW4EKOGDEmBua2pS+rwSaRcA/IBgVzAY+fPhYs5bv7AuJI+DbbzdQpeE+lk8MYDm8HvDk9/PBBx/FvgNHu2T8tYUM+uLGH5te9vYORzceTFEF2Yvh6OsuQ6C0uBiPLbgJ2Rkn8MMn6vTZnn/aw0ytVVbW4r3FBXjmv7NYWWEmRZjfapdMaZn6fZMxf8VldZin33o/pT0Cuwzz7jyQgrxc/OCJ23Fw7x5ER9giKsIa40bYY/eBCixbWWTKxC1btqTZXueysnJTjs2aU8tFNCoXL15Gz2AmJs28E5Ldr00JXCuBdau+QFXhaTz91COQcoSt2eT8PXz4iKmTLZVy5CYnL6/AlL8cPXqkEbRvr1J0Ejf7/e//GP/+99vo39sBD97pBD9fa5xOqsTr7xXhdHI57nnoGXzvhV+3JoJ22daEAYG1ZWWlfWjrxV68Q50CvpiIvu42BD775G2cTIjFzpXBUkQDn35ZxLqptXByZGwVq208dLcbXJwtcddjyynhsdFkgrUUjtxgnTx5CgUFhYiJ6Wmmly+3jbff/gBlFRaMRwSTPuaq8Xc5WJ3oM4nR+9ETdyI58SDWLw3G4P52ePU/eRg51B4/edbLXGhuXZjOad5bsGXLegQGXjnWyN7ezhAQgel33v0Ymfk1mDzrLvgFXJ3MTCfCqV1tJwJDRozDV58exSlWsomO7nnVexUD79Cho2Z9qTd85kwyEhKTUFpRC0cXL9jYOpjPrG1dkbDpADZt2QkHnt8x0RHo3TvmmvbdnE6LR/6NN97Gay/74uEFrhfc7Pv5WGHJ8iJ88J+/s6Z6JG6988HmbLJTLKMGYKc4TNrJ1iZgMiU/eh3zZjnxjs8OiacrzS7yeBF1cjwfGXHbbGf04x3hv19/s8UG4Ndfr8bPf/FrHDtSN4XiwJiaxx9biF/96meN3k1L3Ik45EsqQNHe7zPjrO4C39pj1+21P4HN61Zi/95dWPdZMMaPckDS2UqWZqtFQSEtfbawEBus/Ngfvccl4dVXX+MU8a/M+1f6JzHxJD5f9hUKyqwx45Z7IEK+2pRAaxGoreX5aeYBr24y8OzZFBp+R7B33xEUl7NX3IyUJnTzCkB43/GI6tUXopPZsBUXFSLxRCyKCvNxMO409uw/hjkzJzMkZ2jDxbB163acPp2Eu+++No1LiZv961//hp8844FH7jn//ampqcWSFUU4c7YKv37Bi+EaVnjz77/HzfPvgyR0dYWmBmBXOIo6hksIFObnmYuhTCs01jLTU5F0+gzueqnO03LsBK0uNi+P88afvJb177zZES//a4O8bHZbtmw5f5gehGNMNNymTEZ1YREfhXjl1dexf/8hvPLKnxAe3gNWzLaTJp7CzZu3opRxf7ct4HSLGn/NZt0ZFvzsozfo7XPChNF1no4TJ+tuOCLCbM5139fbGgvvcsY7b7+LX/7yp43eJNQvLFO+ItGxc88huHpHYNbMWZooVA9H/7YKAblJTj17hr+BoK6kY4u3uX//QSxdtopyMg7o2Wck+g4YynKjdef/5Tbm5OyC/oOHm0WkD+/+63+wctVaxuT5mulh+SAnJxdr1m7kM86W0LsuYRBX2z76aBEqyivwzMMXhtp8u7kUR49XQL6jUnv9+4974P3FZ7BlwypMmDLzanfXodZTA7BDHQ7tTGsQEOOuMD8Hou0X3bt/o5usqJDbUZgpXvmbnllF488K9vYXGoD1y5SW1i0vr6/UxJP3/I9fhGPfPvBduBB5q9fA2t0d3rfNR0lsLNb/5y0MGDCSU8LR1Gv7iIZgGJavWIXtuw6hz+CJ8PDyvtIu9PNORuDo4b14/onzGmJjhtlj0/ZSM7XUK8qWF7C6G5XZNznhf187i23bdpqLrq2tDbMRy1mf2p2xUlk4cjQWObkFvGBVorzGFgNH3ES5jsEXTFl1MjTa3Q5K4HTiCezZuhpernbw8vK6pJdy03rgwCFkZGSaEJeysjKGztjwN9SOZeQqkHgqCd7BfTBx6iyIrMzVNIkBnDnvfmxa+xWWL1+Jhx66z0gorVu3mQlyFnBzqL0m40/6dIQzNP37OCDA77w5lJlVhS07S83s0LxZdR5KMQJ9vG1xIvaIGoBXczB1HSXQHgS8vH3Nbur/NrZPTy8fet8scfBIOQbzi51EN//MqU6NLYoDR8sRGnLh3WGjC3735q5de5GclISAZ5+BBX/ALO3tUcMfxwLWb7V294A1f0xdKt2QfCaLGWf3409/+i12UXV/0Kjp6N1/0OU2rZ91UgLiybA+f3254Ebjt/+Xg1tnOiMlrQrrt5aYES5avByuHj50Ddfw4kkvYU0lOCMFWNogLKovvH0CENGzl3qKO+n50Bm6LQaeDe02NzdnetnEY30+JCU29jjkdy42PhkO1Mezd3SFDavOFGfk8Zwt5nlqAWfPCIy9YdpVG3/1jCQJbuLU2Vj5OWP0XnuTQuglsHMJhJ0198P7pj179mHo0MH1i7f477FjxynyfKEw+6Ivisx2xgw/f9MmbzQxodTifV7tCgf37EDCiaOYdesCnD55AhlpqQgICjG/BVezzQY/SVezuq6jBDoeAbnbvJJgp0wzTLppDv717mqM/u5LHhPJC+1FLTevGh8vLcaPf/LMRZ80/VKqd0gTr580h+hoFB88iJriElTwIa28sgBODv4mC27ZinXoNWisGn+GTNf8Jyw8Cpt2xOP5p8+P74kH3LB2UwkSTlVi6VdFsLezQHJKFQ1Fa0yYfhfPh8EUeOZrelXyc3MYKG8LOW+1KYH2IBAW3hPFRVMQe2gX/vb3NxAZEUpdPAdIzFzsiTNwcAvA0HGzmpxlac0+yrlfQRs0r5C/n3ZeyM/LhgON0wJ6Add8s4EzKn2vSqtQQim2b99Je7UGaRlV8Gfmb1lZDbJyqjF2hIN5XT+Og3QEZGRySjiqV/1b7f436UwiEmL3Y+7kPyI7M/3c/vsMGIKf/+YVE1N57s1mPFEZmGZA0kW6JoGDe3fgkbumQ+7ynnrQDXfPq5OCqR9taWkNbn80HZt31uDgwd1GpqP+s8v9lcDk3r0Hw/uuO+EyYoRZtIpGYcmhQ6hiXd+CDZvg79EPlpbWSMnYjWXfHoR/UPDlNqmfdXICyxa9i9+9+D0c2xyGnpSAadgqmAl5lt4/V2cLDL0pBQNHzccvfv9qw0X0uRK4bgQkKSP28H7qpKahoqyENyJ2iO4zCOHUJ20qxrotOitx3Xt2boarqzu+/vxDkyTi6OyGvjHy22mBO26fi169YhrdtdQ0/uCDT4wig5+fLxYsuAMREeGIizuBQYNGw5pOg58864aXfuKFL1cXYe/Bctx/hyvCQ887BR56Lg0rvrXDlxuOMQnk+vjOTsQexv3zJoGWOOwjI2Hj7w/bAH/kr1wF66JivL90PYJCelzA4HIyMJcGPF2wqr5QAl2XwIAhI7Fg4dPYuqsMr7xZgMXLC5HB2I+zqVV47d18DJt2Fuu3VOCjj95rtvEntMLCQjB9xk0o4JeyIr3uLs3a1RVWzs4oOXYMtZxOqagswtn0XbjzvsfV+Ou6p9i5kU2bcxsCaeTf8mCGOb/OfcAntrYWCPC1wqM/yuT5V4t7Fjbf29xwO/pcCbQFAfE6Dx01HtPm3I45tz+A6XPvMlOO7Wn8ybhc3Nxxw42zkZ6ajPCwQAwe1I/TzdU4k1pIORkLbNq8zSTTXczgvfc+RM+eA/DLl36Pj9Z8i//5v7+zCs9wvMTXIrdkx4Q7O1sv/P6vOXjj/Xxj/E0a63jO+JOp8D+9moN3PinEQ0+9cN2MPxnXu/9+BZZOTnAePgw2Pj6orWRoCCuWeD/8EIgA773xt4uHf9nX6gG8LB79sCsTqGGyhmRnVhQkY+fOHZQV2HVuuBLrMXvWdPz3T3/MO8QB595v7pO0tHTcNG0u4hMSTSawJY2/8mOxqOSUg7ePLwKDwxlIPAP3PvzMNcfINLdPutz1JXAmMR7PLJyDwoJM3H+7M+Yw4UOMvy07SvH6+8WcdqrlRegdjJs8/fp2VPeuBDowAQmHOBl/nDGxNfwdDTO6lwlxx7Bn0xd47OEFCAkJOtf77dt3Ub5rBpxHjoTnzXNgxSzkGs4l529Yj7yvV1L4+VWjxPDww0+adcTY8/W2xPce9aCn3gankqrwxgfFiEsopfH3Izz+vZ+2q9fz3ED4RPo2bkAAnKkqIXVCa0U2jCEi4mSw8fZi3KUlallicu3OhIar4XIeQDUAL0ClL7oTgS8/fRelBSm4/555iIqKNNllJ04kmB+E/v37Ijj4/A/J1XApZqWRDz9chCWffYEiPh8xbAh8Of1QDjfMv+exq9mkrtPJCeRmZ2HR+6/j80/eRHZWjhmNg4M9vSt34O4HnzLTap18iNp9JdDuBLLS0/DNF2/j7jtmX1BJZ8E9C7GSRqD/D39oEvIadiyDagyh9CDu2bWJsdhHsWnTFj62Yi9lus6cOmUWlUTBKdPnUprrUQwaPrrh6u3+XBLJRvWiHuHtt8Fl1CjkrVp9UR9qUbpxM9bsSEBebjavNQHGuaAG4EWY9KUSkC/Th6//CcH+znj66cfb5a7uc9Zp3bUvjtUa7tZqDd38FJTkjoy0FFQx+9DH15/6aI7dnIgOXwlcPQGptLOC9dutKrNx49SJpnqIPdUXwiL6omrAAHjMmIGKtDRUUkrJPjwcVpxGLdq9B5kffsjYwP8gOyef0krlyGEpOth6Yva8+1BSUmySrq5XvF9jNO69ZSKSUQW/Rx5GeXIySlhKz5LxgDWstFK4cydCqQ5w6213AtWlCAjrz2pSsy7rAbw+kYyNjUzfUwLtSED0pVw8/BgDcmHZn2vpQmVlFTPRzn+lRKA0MzMTSUnJOHosDicSzxqpFy3VdS2Uu8a6clEJCA7tGoPRUSiB60xAKnPMmHs31qxYjMWfr4XditUmtq+qogKVuXkoS0xEKRM+KrOzkb9xEzxnzURFRl189u6DpxDUoxfsnOzRI8AeklFrzaxjVz46Wrtn4VP45fNPcAp7g1GXkP45MPGlcMcOVDPBcOItcxDTw5sajGfg5sFp4Su081erKyyoHyuBrkZAymZlZGaZ2IprDWiWWpl//svf4cvA3GBqBhbkFyOf9X8rq2tBBTh4+IRgzOT5CI2I6moYdTxKQAkogetOQKRiZlIfT7KWjx3aR22/akRF92MZup2QJDxrdzdUZmTQO1aN4iNHULJzFyKie2PePU/Cjt7CztCm33wH4o4dYl1ixi4yntHChYmFjF+vyMvHT3/6PKZNm4pVrJpSXGYBkZ66UlMD8EqE9PMuS0ACiI/sjKXuUxkc+GW6libTDYVFJUg8Q5HO0IFwDeyBoBh3eHr7QASpO9I0wrWMU9dVAkpACXRkApK1PGz0BNPF4LBw3D1nHEoOHIDrlCnwWXA3ys6cQfbiJaY054//8SecToxjSE4wPWaeHXlYpm/iqPjeC7+BBWMXjx6gYcsKQsOGDcXChfdRrLsKn3620mRER/Ya2KyKUmoAdvhDrh1sCwIyNXBg92aEB/tfs/En/RMjMjS0B6bdOuVcHcu26LduUwkoASWgBJpHQDTxXn17KX74+F3IXrTIPGRNTx8//PQfHyC6Vz+899qfUFJWimee/22H9wSW8zpTy+zncHo2l376Ib2dBUxejMf06VNRKPXma4A77n8Kjs0UjFcDsHnnkS7VxQikUkvKsqYEs2bd1uKRSQLJV1+tRmpqGtefhgAKccbFxaOKX75ITiloUwJKQAkogY5BoP+g4fgTjb1vV3+JMyyfNnDIKMy9/X5TcSc56RQO7N/HG/gSZKSnICQsomN0upFeiIzUulWLGVeejSUfvQN7W3cE+Y1AbkEC5s+/F/c/cD8Gj50FJxfXRtZu/C01ABvnou92cQIpyWdgZ2Np3OZSDDwoKADu35Vuu9LQMxk3uHPPIbragaTX32eqPUu1VrNCkaM7JWT0K3Ulfvq5ElACSqA9CQwcOgpnk07D06kWXi61WLnkDZHSM7WOJ00cgcycYvj7X5vsV1uORzQA92xfBzeHWhw+m8AwxkqWjvRAZWUxfD37Ugx7C1IyC/Dod1Pfze2LXq2aS0qX61IEclhHccuWHUhPz2SMniciegTjvvsWNGuMnp6esGax835DxqKKSuwSfOzHguUBjCmU7GJtSkAJKAEl0LEIxPQZgKKskxg9aqip7CRTpqGhIdixYxe27z5KYWkxCTteE+Nv5bKPUVWajfvvvQ05OTnYsG49HOzdUUPPg0wJizJ0dK/+Lb7+6NWq4x1v7VE7EMjLTuOXPxBxlGapqrZgRQa7Zu/VmpIDFiwefmzfFiQe24Gkk3EICg1v8Zev2TvUBZWAElACSuCaCET07IX8UmDjpm2mBNzw4UPh4eGOLVt3IDevCJUV5de0/bZaecfmdcjPOo3ZMycjMjICjzzyICVubOm1jKXsmBNy8uPh6OSCqTNvbXEX1ABsMTJdobMTkASQqspS/ggEQoJqba1qMWHC2GYPSzKxWCmOBl8tPYFShlybElACSkAJdGQC8rsdFd3XJErs2XMAp0+fwYu/+A2ys/NRUFgMkQXrSE3Erf/9yh8Qd3gn7K1rMXjwIGRkZLJayTbcdf9jjDePQl7xEYRFheBf731xVcUFWjQFLOVWln7yNm6cNQ89IqM7EivtixJoFgGp/7tz6zqW4cpELn8QgoOD+QgwiRzN2gAXSklJRXWtBcoqgeDIgRg6clxzV9XllIASUAJK4DoRkPrrH7x5Ahs2bscXX6zAps074BcYikf/67+vU48u3a1UCdqzYzMO7dsODxfA2qKWXr8HsGvXbqxduwHZRRa49e6H8fTzL126cgvfaZEBKMaftWUVPn73X3jh//2lhbvSxZXA9SdgwRg9idUrKilHcWE+PPkNa6kGoIg+c3U8+MTzptbi9R+V9kAJKAEloASuRED0WO968Gls2/gN3PzKMDeoL2bdejds7ZofAnSlfVzt5xLrd/TgXuzfuQ42tLNC/R1x042T0aNHKF577S16KUtQXmVhEldsbFqnSkmLDMB7Hn4GG9d+DRrM2pRApySQn5uDvTu3wM/TBftOxyMj9QwK8rIxb97NjAO8/JdK5F/iWE5o7bcbYWltr8ZfpzwDtNNKQAl0ZwJi7EmN3I7UykpL8N6/X4GLAzBsQE8MGTIYYWEhJq78q69WISuvFBG9R6JX34GM+7NpkdTL5cbZIgPQ0ckZ02++/XLb08+UQIcmIBm7VvQC7tmzC7k5ufCnht/QIQOvaPwlJCTi82VfM+C2BJW8Cxs96cYOPU7tnBJQAkpACXR8AhKW9Odf/xjODhYYNXgM5s6dQ41CaouxiVdw794DKKvgZ+Mnt/pgWmQAtvredYNKoJ0J5OVmY/f2jahgIkhkVBSNvwEUc55+2V5kZ+fg08Vfwto5CJNmjYU7i2zbX2PpuMvuUD9UAkpACSiBbkHgyyUforw0H74ePuZa1ND4kzjFCjocxk+d3SYs1ABsE6y60Y5IIDc7y+gp9YoKQmiQBzy9fDBi+CBmVw28bHfj4xORV1iJGTfeAC9fv8suqx8qgc5GoJI3Q9acVpIsybZoxw7t5U2TB2Nvw9ti87pNJdCpCTg6OVFHNphZyM74+S9+h14xUejXtzfOnEnC0bgkBIT1RY+Itkm6VQOwU5862vmWENiyfjUcGOZnYeEMT0cnI+Fyww3jr7iJvn17ccp4H9Z8+SE8/ULhHxjMer8j2uyCecUO6QJKoBUJ7Nu5wZQxHDOhbcIaPL39kHqWFzI1AFvxqOmmugoBUVUZNmoC1nz1GbJp9C39Yg3SsssZluSI8dPuaNPydGoAdpWzSMdxRQLyRft25TKsXbUMgwf2hbW9pYmxuNKKzs7OJg1/8+Zt2ErR0MMpJxDZs3erBeJeaf/6uRJoKwKS2OTpEwQ3d4+22oXRJ/ML6Lhlttps4LphJdBMAh5e3vDw9EJAUA+Mn3ILxk2+fFhSMzd7xcXUALwiIl2gqxAozM/Dsk/fRWZaMotouyMkNBSrV6/FLbfMueIQJUO4T59exgAsp/6fAxOitCmBzk5AShdGxfTp7MPQ/iuBTk9g6sx5ZgxtFYrRGCA1ABujou91SQIJJ44BNeVMAClHamoawnuEMNX+yppGVVRkX7lyDXbtOYRaa1fcNGemln3rkmeIDqorEdi/axu+/vwj3Hz7/QjpEQlnF1eVbupKB7iLjaU9Db96dGoA1pPQv12eQGZ6KoqKS4y+UmlJiRnvlRJAJA1/27Yd2LrzCAaPvgkxfQbqRaTLnyk6wK5AYNum1SyhVYUVn73Daj9BiOwzEiPHTeoKQ9MxKIFWIaAGYKtg1I10BgLRvftTVT2ChbQtkZWZbbosBl5Td17Ll3+N/fsPwcrKCl4B4ejdf0hnGKb2UQkoARLw9PJFlSMvcZZWkLAN8QBqUwJK4DwBNQDPs9BnXZxAcFgPpKWlIjXlLEaNGmlGm56eAX//S6VdxDAU46+EApzllTW46YbhXZyODk8JdC0Cs25dgFJWWCgrK4WTkws8vX261gB1NJ2eQH1lquGjJ1AGxq3dx6MGYLsj1x1eLwK06eDl44+aGtZZDAlkBjCQmZnVqAF49GisqbvYb+gk9B/ScsmXlKRTKC4uYnalJwqYfGJnb8+qI8GQSiTalIASaHsCckG9HhfVth+Z7qGrENi2aS3SkhPg6OyCkWNvaPdhqQHY7sh1h9eLgBO/ZAHBYUhPPYst2/dg6qRxWLZshXk89dSj8PQ8L4URG3sclhZAeloKBrRAIFc8h0cO7MaKpR+ipDALBQXFiIoMN9VDyqos8fAzL1yv4et+lYASUAJKoAMRmDztZqSlJCE4LOK69MryuuxVd6oErhOByOi+CAsNRllpKZJSMlFNL6A8Pv30M04VlZteSZm40tIy1FSXIeXUMUjySHNbaUkx3vrny3B1tEEZE02sLGpY0LEaGRmZFPSMau5mdDkloASUgBLo4gRs7ewQGh51iapEdkY6qqk+0dZNPYBtTVi336EITJt9G5JOJSA1PQs2Um+bQri1sEJaRjZefvmvNPxKsXv3PlTX1MLWzoFGYRnCYwbCx29Ws8bhSH3Ax5/7OU7EHoZ/WG+kJJ9m5ZAQ9Bs4HDF9BzRrG7qQElACbU/gdMIJ6nk6wdc/sO13pntQAs0kUFxUiL27NlO6KAq9+g5s5lpXt5gagFfHTdfqpATkjmvoKJZ/q6nAxm/XoLKyHGNGj0BgSBjvwqxwJjmdsXpBCAr04ZSwp/EExsUewtgbpsPKWizGKzfJNpaHNiWgBDomAamA8s3XS8AoD8yaf5+pVtIxe6q96m4EJFRpyIjxJmyorcduITFLFzfKYvSyt3c4uvFginw/tCmBLkdA7v7f+PvvUJifiXJO9xYVFRt9wHTKw4ydMBlO9lbo0ysSIUwWWbN2I6wc/Wg43oDg0PAmZWM6C6Rd2zZARHIjevYydSZ70lhtSgqns4xJ+6kEWkogNzsL2ZnpiGQlFD3/W0pPl+8sBCYMCKxlJnwf2nqxF/dZDcCLiejrbkMgjQXqv/zsAxTlZyP++BEUFeaDNz6YOHkqp4drYc0I2dmzp/E9e6xdux7pWQWwd/FjJnEA3D29YcEyWpIoInGF4lnsLO29f/8VtVWlsPnO/x8cMQBjJ02/JA6ls4xH+6kElIAS6AgEdm5ZD29ff3Nz3RH6I31QA7CjHAntR4clsOjd17Dyy0WwpdVXVVUJZ8YGWdK6y8vLp1xMDd3x7vDx8UVgoD/sndxw+nQqDUFfM208bvJMRPfpXPF9kgQTd+wg9mxbBysaujPmPcA4x4AOe3y0Y0pACSiBjk7gm68+g69fEAYMrdOZ7Qj9VQOwIxwF7UOHJiChEEcP7sXGtV+juDCPXj8bZgFXoqKsGAcPHqKQrDO8/YIxjPGDMX0HMT7QByUlRXBxdTcCs511Cqm0uJjjKDbGbIc+QNo5JaAElEAHJyDXkY52LbicAahJIB38hNLutQ8B+dL2HTjUPGSPhRRvTqU+k6TiW9h8TLe+NyZNuxWhLCrflZpkQcpDmxJQAkpACVwbgY5m/F1pNGoAXomQft4tCbi4uUMe0kS+pZayMM3NAjYr6T9KQAkoASWgBDowATUAO/DB0a51DAKWTPaASqZ3jIOhvVACSkAJKIFWIaCXtVbBqBtRAkpACSgBJaAElEDnIaAGYOc5VtpTJdAhCezbtQV7d2zqkH3TTikBJaAElEDjBNQAbJyLvqsElEAzCQSHRsDVzbOZS+tiSkAJKAEl0BEIaAxgRzgK2gcl0IkJiH6gagh24gOoXVcCSqBbElAPYLc87DrorkBANPxSkk+jqqKiKwxHx6AElIASUALtSEA9gO0IW3elBOoJiGBodkY6SstK4MPSQba2drC0sqr/uFl/N377FVLOJKCqBnj02ReatY4upASUgBJQAkpACKgBqOeBErgOBPJzc/Dl4rdZdq4a/kGhiOkzsMXl5EaOnYQjLu4ICAq5DiPQXSoBJaAElEBnJqAGYGc+etr3Dk1AvHy52VlY/MEbsLaygA29fLfd85ipvOHu6YXxU+aAdYNYbaQSgcFhLR6Lu6c3xt5wY4vX0xWUgBJQAkpACagBqOeAEmgFAjU1NagoL4OlpRVWffkp0lLOIC0tFelSTq6iDCPGjGclEdYXruV87Xctqlff+qf6VwkoASWgBJRAuxJQA7BdcevOuiqBNcuXIJnxeHfe/yT27tyMjLRkRPTsjbsffAp+/oFw8/DC2aTT2Ll1A3Zt/gZJZ06h/+CRmDP/HgQEh3ZVLDouJaAElIASuI4EalHb5N6bMgBraht4KppcWz9QAkrAEIiI7g1fGnriCRw94Sbs3bUZM265G1kZadjy7ZecCk7HmdOnTLJH4smTcLCzQUFuGhLijqoBqOeQElACSkAJtAmBWl6T2Kob23hTBmAFm4XEMFkwRkmbElAClxKoqa7Grm0bcSrhOOJpyFnWVqC4lI/iItRWluDozlWQxN68rGQkxJ9CXm42cvMK8L0XfgNXdw/07jcYLq5ul25Y31ECSkAJKAElcI0ExIarrKwUI65RrbCmDMAiWbGstAQOjk7X2AVdXQl0TQK7t2/CtvVfYP/uncjNL0SAvx/6DxyEQL+eqKbXvZzfu2p+7WwcPBDW0xG+NAwt6I4Pi+iJ6N79uyYUHZUSUALtTkC0QAsLCyDJZeq0aXf8HXaHYsOJLcdW1FgnmzIA82ThgvxcNQAbo6bvdVsCmempnLY9hsHDx6CSP7rZmVmwtrHGzBlT4efrjbJKSxSUAf0Gj0XPXv1gZ+9gWNnZ2xvB5nImiji5uHZbfjpwJaAEzhOoKC83jhaZEWhJiz18ANs2reZvTH+MmzQdO7auR/zRvfAOCMOsW+9uyaYuWFZmNUSZwNJSa0RcAKaTvsjPyzE3BDQC8xobQqMGIBeucnFxLc/OyrTzCwhubD19Twl0OwL7d2/HupWfo6QkHzu2fAsvdxcMHtQHd995M6Kjo7Dsy1UoovEnURMJJ45i4JCRsLa1PcdJnjd8fe4DfaIEuiABiYctyMtF0ulEpJ09wyz5Et40laG8rNhky1szK97O0YUe8V7GI27T4LvSBXE0OqSVyz6mFmglZs27lzeL9hcsczL+OENMNlDq6SYEhfRAvXEmMV3bNqxCVXkB1n79GXKz0lFcmIfTpxJQWl6JNSuWwtvXD27unvD08jHhJk0ZdOmpZ3H4wG4UF+SgrKQQlTxGllY2NCR7YMyEG1vtZlXOBem3lXWjJgdEFzU7K8PEUFtzmdISOVfKUUoPlpe3L0J6ROLMqXj+tlrCl6UnbWxsYUEjVZh1Fo+nHL+Wiv1fcEJcxYucrEw4OTmX0zvcohhAODk7ZfPkCOzTf/BV7FZXUQJdg0BeThb27NiMan55k04eR2ZmOgIDvBHk78zpXP6o8d8DRxIQezweZRUWcPjO3pMLnwUlYbQpge5CoJhTkMeOHEAghc3FcfD5J2+iojgHjg7W6BEaBNcgd9jb28HZ2ZnfJ8omiQc9OxtH9qzG/u1rUFljibsefBb2DnVe887GTYyp1ORTqKishJWlNULCIng3CEjJRsnENEYYZ+OKiwuQnpbC94s4bZvHGQR7bPhmBZwZD1xcmE/jp5CxwV7Ys3MTcjNSuM3T9PT1xZ7t603Vn34Dh1NRIBFOjvYYMaQ3YiI9eJEPwpTxA5HH353i4hKkJuxEQnEZmYLSU5bUILWHi5sPvHwDaEyG8fruwgS1dJOg5u9lj8F9YnhcouDi4oyysnLs3LkHXy56HXYOboiMGYABQ0c2ejhkelEe9QZmUUE+crIzUVxUZGKeRRrL1s4ep04cQE1VBeyd3DFk1CT0iIyu90xh64Y1OBO3Fzbm51JIWZCfBaytreDq6ox9x3dg+3oL2NlITgJQWQUuU9ds7V3h4OJGnVVbTn97w5HjsuONhJ2dA2zsbOEfGGI8rNVVVRy/e6NjaI83F7//Oq8HFujTfzh69RvYbkarnJP8vmU3NcbGzXEuTav6xNmkk4FNrajvK4GuTuBUQhw2rfkMORlnsXnzVt4RT8GwQdFw4EWsnFM35VU0AfkDW1Frx79WCIqIQHBIOHx4hyrJHe19t9fVj4eOr+MRkFrUaSnJcHXzQF5ONj5++2/w8nSHfzCNHzZvV0v88IdPM/v9vCe84SiysrJ585Rg3rK2qMUnb/8VfoHh9GAFIDwyBmXlpeYz8QJJOIV4e8TgkPALK2ZYNeVRariPtnwufUk7m4RTiSeQGHcIq5d/xu++izFwI3v2REhwIHjdv6BZW1kiKNAXAQEuiAkNRz7jh21sqpCTexIeNOp6BnkjKzsXk8b252/NcGMI1dTUImD6eBw5chw9gx0xZvCt8GfMcXR0Tzg4XOg5rN9ZaWkp0tMzkJOTi6KiYpw5k4TkU3twKnY7aH/DhrO8fWOCcPOcGfD09Khfzdzspqeno6DgKGrKs7B3xzqO7zhDWEp5DBy5brX53cvOTIM1tyGlKK1t7ODm5orSgkwaYzAGnKenG+zt7FCcWYrxI/sgKCgQ+/cfwo51SymF5Ujj0slUQqopy8Hc2ZPQv39fM1apjmTH9eqNysTEk7xRyEFkZIQZq4xDlpHPT58+Q4O1jDcTlUhLP4aMU3xOA1x48dCYmwpzoy7P6QMbNXEGevUdeG6s7fVk0LCxOMnrSUbqaQSH9jDGvihEyLWiLVty0knZfFxT+2jSAMxIT992OvHExKZW1PeVQFcmIMGzG1fzx9y+FscY52fD21M3Z2vzY86sKk71WqK0ohYzb7mT8i9BvMNu/ALXlRnp2LoPgWpecEuKCxn+UIzC/DxO6yZwyrAYmWmn4czvSFEZrRx6YaSkoSeNvgA/L17E7XnRDm/S+BN6cvGWK7WzvQXGjBlJo86CAuoZOElD5cThrTQk6hhz98bosGY1HXGr1VSVmQu8PaeQbe2d+P2jx4efiUFoQ2PEwdHRTBMW0qPm6OiMQcNG1W3oKv4VI6+8rNRU9cmnhy2fsfF5OZkcfwEfzPivKqXR64xRg8PRK/wRfl6A3r1jjFElRo8rDUIxXGUaVJoDPZz1xs1VdKfZq8h+evQIM4/6laQPeXn5NAiLTP/EG3txKywsxIGDR2noSSwg4OZQS6PTAe7u/sY7KH3ft+8gPJkfKiOSQxQa6g1fxkCHho7kI5geSadGx9ivXx+IQXf2bCrPpRKz6x49xqFXr5hz3bCxOffUPImICIc86ltMTHT9U8P53IvvnohxKLHWBQWF3E8KPWBOWLx4GUqZlLdl3dc4uGsDvcwu6BHVhx65we0SliOi/5ExfSAeUvFEfv35RzQGk3D/E8+3qTfwDG9MMjLSt13MqP61kXqpf9HwL0/Yu/oOGPzhW4u/vej+peFS+lwJdE0C8qN/4tgh8CbIxKGsWr4YY0YNxrNPP4I333yPiR4WnE4JQVRMP8Rxud79B5mkD6EhP7Lygy8PbUrgehOQ87GGU2CWNI5aYnhkZ2bQu5eEXBo7SYlHeWJXmBsgMcqC6cHy8HCjceVoLt67d++hYVGAVBpvt982t9ELc0s4yDRkRkYGpyRdzPcpMzOT38MyYzDK9LGXlye9QFXIza2b8hRjQj6Xz0q5bnERY8g4V1hZWY4ShmZMv3Uhv69+LemCWVa+2wd3b0JFaYHxbFnTnefJcfv4eBrDTgwoPz8f9OwZ1aW+7wUFBWb8YsiJp7WxJnxlmrYz/M4tWbIMR48eR79+vXjsfJCVlYX9B2ORWwROb4/ieexkPJ819G5Kk5t8Dw9P9KRaQ/344o8fhUyp9hs4lML+no0hafZ7WelpxpPqFxDU7HWuZsEH50+qPXpo/wJezz5ubP3LGYA9bWxs4tbvS1bvRmPk9L0uQ0AkFPbv2c47/EwToC5f+JHjboS3n78Zo1xA3/rH//COtxbPP/89/POf/0Z+IS84vLDY0odeyangorIq3HHPI/DgVNXSj9+ihyALC59q27u7LnMAdCBtRmA3dSqPH9pBL1u1mQIbOf4mxiANPndRu3jHMrW6ed0qZKacRDW1LB3srWjwuCMmOpJemB707Dgao6yxaUe5aRLDrbHPLt5Pe71eu3YdNmzajagB4zFkxNhm7VbGUVJUiGOH9yPu0FYM6BOOQYP6w9vbm14wd2P0NGtDulCHJrB58zbGOjL20NaGsZglZpanPmynhB5SuXFg4J4J5XFwdGNCU5aZESqrsoJvSIxJzPFg3KFMVzvQy1xVWWFiEOsNxus9+Aom0UwaHCLGbE+e0/GN9edyBqCFk7Nz2Sv/+cy2/6Dhja2r7ymBTkegnFNORQxW9/DyNt6QWP7Ii3evpCADvaN78Id+AI7wTjErv5LBylN5EdhtgpfLy0rgyqmuF1/8sYlBktiT5OQUJCUlIY4iz0djT8HVxQn+IT1NJRCJefIPCul0fLTDbUNAjArJdCwuKmjXkIEvPnkL1aXpnDStZayWhTEC/UP7Gi3K6uoquLNEofRNMkZteSHbuWU9UuJ3YeKEkYwx8zdTuE15gNqGVOttdf/+g/jiy5UopLf+vsd/fIn30xh6TMQw2cjMJpUkln27tyKTU3NlRdmwtbHApImjODU9Wo2+1jssnWJLkqC0ZcsOTh870gNdyzhKJjM5OmDgwP44zoS/fYxlTM/IRhUFX/kxl+FUOO1FK1tHuHr40dvsjwEs9XlxZnd7Dv7gvp343sPzK5iQY89znb28tDUZAygrBAQG7dy7Y/M4NQAvBafvdD4CxhtysC6uyNEtAHNuv99Mb3m6OSL2cDL8fdzM1FJwkD/jlrKxe8tqTgtUwNvNDhMmDjVByjJqucM7H1sz2gQof/rpUixa/AXy8osRFd0LfQaM6HyAukiP5beu4V24vM5mxqPEhTWmwbiDRo/cvY8ccwOsGIBUw2lEMY4kuN+XUzQNs1JlW6LdJsaSTAeVMg4umIH8DWNAT8QexvrVyzF5+lwjw1HJbR87tA+H9mzk8qUYNvZGTJo2B5KZmHz6JIPhHZiteF5uS7zHIndRP83UMKRA9r1v9zYzZSXxSw2TICRuNY9GZoUJii9nDFQekygqYMMoreeee9wwiY2Nw4qv1iL77BEebSZTVDPOixeuGlijqLSK8V7ADRNGYMKEcZ3ybBDWX3zxFS/SCbw4M26x3BLDxkw9Z/wV07NnSbZJZxKxf+cGVJcXmQu4BbN2pfyph4s1BvaK4rT2eCZp+BtvZ6cEoZ2+JgJyAz9p0vhGtzFy5DDIQ2INZSpZ4lgl7lM832lp6SaG9VjsVpyKj8WQkRNYE76X8ShLyEL9d7rRDbfym/t2boGLs8uOosLCRo0/2V2TBqB8mJaa8tHOLevGPvD49zWYSYBo67QEypgRl8ssxbMpacih3pSNfSLK6SKfPucOijqPRXFZDfYd2EEpl88ZI+JhstvcnSxw4mQOmP7BeBB3c0FoDIDEI02cOA4pqRlIySzA6q+WGU2roZQ78PLxbWwVfe8aCIhBJIZQvWEmRplko8p7m779GmdPx2PW/PsxYEidEb7ovdexc/Nqert88cT3X4QPazbXN9lW/LH99JBVI5rC3V8v+4hTPdmc/g9BWvIJ2Dt7oXffQZxGqeD2S41WWmlRLuPpbGBRI3IfwA7YwcM32GSuyo983KHt8HapxZ5Ny855BkSaI4uSHtZMcjgTfxCL00/TQKEuWo2EEgAz5j3AWCtrxB8/gsSjO40xYu/mj7Dwnjh2YJsJWr9h2q00OllW8Mh2zuhWG409V8YiieRQNjPVi/LqsjIl9NSCGbUyXRsT5kuv9liRgjBDHjp0sLmREa+GJFxIML49vV/Hj58wgf0DBvTF5MmdN/fvyJFYevDjTHgGKdDErYUfk7Tq2+f0iBbmZ1FSxBqD+oVjxIgpPLZV5iIu55Ekb9Szql9H/yqBxghI/KNkYjdskpUtTTKVN27cgl0bluHIgT0oyEkGv25w9Q6BPaeLRXfRmlqGNvQYyhS0PbOrpYqLSCi1VBS84f4bPqftVpuWlvpRw/cuft7kFLAsyLvocIoyJq7aHq81Sy8mp687FYHF77+GqtJcXljFVV/DmrzU2yqtpEyABbPXfEwAeSkz+kICvBjzUefOf/aZx/D6628jITkfPQLd8PyPnm1yKkgMid/97mVe1IHVa741mV7//eu/0SioiyPsVLA6WGflwizVVyQLNYA/kJ9/8g4v4ICjizuTb4YbTbMt33xm4jFFviItNRWBPXph4tQ5ZiRrVizBprVfoU+fXvDw64GZrJRgSSspLCIaiRTsPpVwgtOzGagqK0IixXcrKFYc06uX8aZFhIeZIH87aoqJhp3opEksWDk9a15eHiag/MgRbuPUGd4AZPL4V2H40EEYNWqYWUaSEyRGSM4PGYdkhIqxJbIcZcwsFS/C9p0HjJSG3GWLQTl29BAkJZ9F8tl0E4AfFRHK16nIK2SSQxWnkhmgLyK5kojg4mRvkhICAnyNTIafn6+ZqrJlRqwNjZzu1oRxRkYm1q3biPj4RBSUWmDePU8a2Q3xkP7rz79EeUk25t16M2bMuMkc0+7GSMfbfgTW8Fqwaese/t7Uog89y3J+ym+HJ6WSRFtWbgxFwqaIf7Nz8lFRbc0womiGiQQavUa5iRHNxoYzDM3pfQEz9aeP7imJUuHc56mm1rmsASgr+fn5pzz1o18FzLzlrqa2oe93MwKSyi4ZguXiEeFFTDwvctdSyPcLWHrGit4RH+p45WRn8OR1RQwzqRyYTXY9W9zRg6zOEYu4oweodl9IEVUHc6fv4EBPDr0EcncmzcfHywS7i4TF+PFjOJ20Alt2x8PWshI3TRnN98aaqbS6pS/894MPPqHEwWlk5RbCwTUAdz/4FFk0nkF34Zr6qikC8oOZmnwGq5a9DxdHSzNlKdpjNla1iImJwiGKcFfU2FDTrBLzb5lmjJ9Fny5jhl0tvW2c1uN/ojW3a+dOGvq+CI+IZKwmA7Zp+FdReNjJDggJCYA/Mznlbl700CTzUeJ9xDPWcCq5qT5e6/tisEgGq3gUxPskemrS6o1GicGTmKRkGoUi31FaKokWdjRAvYxXuiWZvdfa146+vpwv33zDxI8teyBhHsPHTOL325Lc8nGU0/DVxSn4wXNPmGPc0cei/ev8BOR8rJsWTmdYATVkLyNyLt/xTZu2Ge/hWc4mlZZV89dLasrDCKS35Br61ecf4x8v/yo1PT3t/HRHIzivaAAyxuSno8dN/u3//ntRI6vrW92NgJzQn1LVXLxpEjskF2OG1NRNdVnWGVIVjCvi7BYvyowx4oW2rLwag0dN5nSoX506/nfQZFsSR1XNUkji2ZEMLCmXI4+2KJkm+1u26C2UMeFDPC2M36VoKP+yrxLIK8aANQ0L+eymGycbiYndew/DI6CXUbevLk7DU08uNB7Di4+7ZD++/PJfjSdH9LMowo+Hnnnh4sX0dRMEJDkn+cxJhLHkU8NjL7F7y5e8Y4w4ERt2Zoza0IHRmDdvrtnSsWPHkZKSQsPN0yTwNGaw1YnG1snyiDaYeMYOHz7Km5dyDKW3Tgw+bV2DQGzscbz/8Rdw8w7H8cN74OzuZZI6XJxs0a9PFOO6JqBv395dY7A6ii5HQIzApUu/NBqJEp5RQYWJMl6jZs578JwqRXMG/f1H78C2zd/+lHHGv7/c8lc0APmDGsZp4JNfrD9kodNZl0N5bZ+JcSK1EqW+YWMXsWvb+tWvLdpHMm/aI6In9u3ZhuMHtpspqCoaed5UMZfYKBFJzclK4502Y5p4zyLuavGeODIGyYp1JWM55RUQEMBU+yL0pgSFqKJL4HtGeir2bF7F0j1WTLlnJY2QUORlUx+pspRzYQ6cqruH2YkeZtq2iIKu4mVsio3IV0ishcT1ebH+pfS3oSEhfCUwP/HEEaMfZstSQaE0NjLTz1LKXgLDaQhy+lZ0oOS5BM+Xs46Sp0+IyZTMSU8wchC33XbLuYDyi6kmJZ3FkiWfUyKmmDU5qfYf3hsTpsy8IFD/4nX0dR0B0Vvbt30d3LwCTNybeGuK8tJ5LtlRMPUMPba2CGZVhYH9e+NGGudNnQfKs/sSEE/qf/7zHtLzmMRTUcLz5hR13/ogLCwYE+i5F4FiPW+67/nRUUd+8uQpHDp0xIRwiP7g8uUrz2UWixTNlNl3GcmZ5vY/k9fVuZMG1H43/Xv6cutdMUiEF87TAQGB+79c8sHghU/+8HLb0s+uksDBvTtwYOc6Y3hIWR0nV2+MnzzDZPo5OjmzCHaC2bI1MxSlCLZMCYlsgxhf4i2TGpJt9cN2/PA+BpgnMf5qEvdrzWkqBlV7O9NQopVUW2jirpydLeHDKU9p4rKuqKgyXrVKxitVV1ciKrKHmR62sqzB9k0rWd/ypDEQJfh63+7tNKgYjxUeDmt/O4wcHIEDBw5Ttb0UKz97AxZW9jSMq7jhKtg6elJaJZyGpRNEf0kyMYWDyLqs/Pw90xc79i+Jfdu1xQ6hkX2Z3VmJzIxUOLNe5KkTB2FRXWoM1cNHTiE5MZZGWjQ5u5r6nFWsVVldWcbPLYwmlJuLPWyRDw/Gfo2dMRHDhg1u0viTsR84cBB5BcXylBIS7AfFc0tGTbiuNShNZzrIP0mnE5ldbcc6sUGX9EhKfSUnJ6GyLA8l2YnmpsOVFQj69w9H5PwpCGcsngbnX4JN32hAQKZ+SzhtJvW4Xd1d8etf/t+56fQGi+lTJXDdCRw/Hod16zejD5OOJFmkutYCew8cNXWO5dpayevQ7l27Mf3mu1tk/MnAln/2Iby8ffYxifeyxp8se0UPoFnIwmKun3/g0qVr91uIEaKt+QRE6qGKU5xMxTaJNGK0NGwiS7Bx7dfITkmgp4gFr2nAyBSiGIJ0WiEjmyV73J3Nj5qsJwaWvH8i4QzrTAbTKLNAzIAxpr7hrm0bcTrhqPn81rsfMfUbTxzZYxIT+gwYjkHDR7OeYwVO0KsnBqM7MwhF5uJyMUTS/0ypWciYPkvOjf7n1T+ybFNdkoT0R6ZOaQpyG4y54tTpwoX3mtgkiVXKZAk1qUcp2YhitEpAvKTXu7q60sCyYQxhOXX0kjkVV0FZlRAjrSL9klJEsq48F609Sa+XdY4di2WlgUzjSSziHKuwEK+dNDG4+veNweDBg0xw/rffbjRVCewZvC/bKGMZoCzGLRYU5PIvyzhxyjE6OhpjRg83AblSLkimAt3c3Mz2JNi/Ph6ruTpocXEn8MmipaZPucUWuPn2+xo1dswOusk/4nmVeJTUs6fNFHsFRVQfePL5C0ZfQi22g3tZvJ7Zrw62ErXH84mPhx++D4GBdTcWF6ygL5RAIwTktyY1Nc0E2YtMU0cSpG6ku/pWNyQgU7xy7Xv33Q9w9ESq+b0rKef1ntcxCUkaRodB/4HDTG3pTd98gX5Dx2D46InNJiUOj1smD6zl7Not/O394korXtED+N0GljPrLHf1iiWemgzSONKzjF9KYzyb1CB0cGBKNwVWJctHZAfijh02GYhyWRtEaRCZBpVpU1n2q6UfUSMom16zGupVTUISvX2ZaWfpaRN9Lj6s7GjAFMCRF0Yx/yS4Xe5ypf5lXFwcDStLrluOI3s34PCh/fRg1Xnf7GwtmdhQgwF9I7kchSupeSWes4P7djF+r65gN207RA+8vEK+6Iw11Cibe/uDOMM6oCJHUZh1EraMmRMLcN6tcy6IrZGMSW9vr8ZhNXg3OPhSb5CUf5KHtPDwHuav/BMdHWWei1EhxqRkU4kOk3RAsh/rg+dloVtumW2WlX8keF6+eJKNKUH+EmwvmVetkSkpXthdu/aaupO7dpM/7+Q4c2yYNObpOtepbvREDDwx6OruXlink8a3CKTKcdy3ayti929h3CXDB7hQOQ11G94E9QgPadb5040w6lCvQEAC7BvWjL3C4vqxEmg3AjLbtWHDRmzbsQ/JSWf4W8dZM79AiKPgdlaQcueMVsMmtYPl0dJGG000TXO53ormrNssD6BsiF6iR8Mjer72wfKtFs31iDSnAx1hmdLiYmOV18eMSfadZLZW0EATj6c9DTrJfBVPWDKnsUqo5l9VVc7khYq6uD1rO5QWpMPLvS57MJ+B5iUl5WZocrDF0yVeLUvqi0TR6+Rg70DvFm0EpoaXcN+JiQk0YPw4VRopbxqjjpqkTFCg9hgNFTEki3gRFU+beNDcWUzaxdUJ9jRopAC3TI9JK6HIrOiQiUdPAt/FCJPXXy5fY7Ie+bbZhjW9dZL4UMYAUyYUIjScgffM3LV3oBeMKeem8eJcTNkNKfxexenYGr6uZXycxCnKOGRLxcxcFC6OdGpKSTTZ7siRQ3HTTVPqttHF/xXD8u23PzDe2mJWG5CpJyp1sH7kAAwaOrrV9Jy6CsZESrnkMUtcssJFpuDrzz+EiwMw+YZRpp6snOdi2Issj3h8tSkBJaAEOisBcTqIDIwknIkBKImB9q4+OLxvB8J79qUBGMBY9RhTR741xii/nwtmj649lRj/OG2Yfzdnm831AMrd+js52Zkvr16+2HXG3Dubs+0OuYx4HcT7JkaSGF9yIfrgzb/SO1GNyN6DKBHhitysZL6sNMaS+N0kDVsMHHkEBfggKtiTXj4PY4yJerxoeoWGDuT040AzZtmHTDGKISnJELIveS4HSIxByT4U48yehmBba3XJSSjTmVK0XaY4Zb9yQq5atRYxof7mfTFGK2nkFRZmctq0LoZNBuJGzbJQH1eu522mY2Uc0l8puJ6fn48T8dmwYX1cC8bw1UmuihFaYhh0pX/k2BXzXBHNJpnaTmPBe/E8Hjp8zGRpiZBvWGQfTsMPMrp/LdVs6syshI1I/2RnZZpSWkW8aZA6qpWV5SyhR51FaurVtzLqLNbWlOP4/k3mLTcnnmMujhTRHl+/iP5VAkpACXQJAjk5udi775BxnuRQGmzvvoN44LHv45Y7HmyTxEDaZqxnn1UotlpzATbbAygbpAFwv39A8NuLVu20EJ20ztIkQ1Q8WYs/fJPeNdEQq0FcbCxSzlKdm56vqMhwGoUlZopxQP8+1AULMlOFMkUohpzUlExIOInHH3+IOnHenWXYbd5P8TJK1qzENLRVEkprDCI7mzVYacCJsSKNWe3G8BVxXzHWxaMt08Ni4Mrr3Nw8HDlyzEwd5+TmUzSawruVHCvvBmQTltb2cPHwYVkfH3MX5+3jb2oLd2QG18rRcMnOMrI9GQxRKCrMo6BuIUubFTBUoYbfKfCmiEk5vNlwdXU2NxrirZY4LFlXmtyASH1ZmQsWVjJlJ/ItbX0TZHau/ygBJaAE2pmAOH3k8fvf/wlHjp3C/PueQl/G+LV2k3CyO6aNqE1LTX6A17n3mrt9+rSa3/hD/gFV8l/68D+vhl2PjGC5kJxOPGFkRpwpMJxPz4MMXKYvrTgtKdOXUk6lvj6mLL9t4zf49L3X6LkpZCB6Epe1NCVYnJhdS4+muej7+/tiyMC++K//euKCOLJ6MlIeSNulBCSWjnotl37Qgd6Rado33/rAeOpMDBr7Jh5P2nrnPLx8abQMrShoWE2Prky/V1uwvJdPMI28nugZ5mYSeBxZwkfEOCUzuysbe9U07PNys1HMUAcR905LSUJOZjKqWDfV3saSiRm+CA7zoGc5wHxfpBSehDBo0H0HOvG1K0pACVx3AuJckEffvn0ZG26Lk/FxrBM/9ILrhziosjPT4UklhIuTRJs7gA/e/LvMtpymzfNhc9eR5VpqAFbzwrfgrX/+efNNs+ZbBIX2aMm+rnnZ40cOYt+2r03VBsmYkaxTiaMDA+/FxyDv1VrYUnbD23imOBfObJo4nD55gnFF/sbzI/Vgo2NiMGT4SMQdj6UHo4TxcHUYbFmTT1vnIyCePckAlILc4smT6W7x7olHTwwT0Y7bfyiWdX55vlg78n0r1grlCzapxyiagSJSXUsXn0xnOzIW0j8o5Kq/jG1JULKyJalCYjuNJ5PGaP0Nz7XsV4y+FGbqHti9BQXZqcarJ0kZ1vxHKmX0H9XHJOQEBwfQY8dgR21KQAkoASXQLAIxMazpfSwOJXlnqEf7JfVhZ/F3m4UPeO16+19/MbHQVE8zs0yyQZlpGsdlohkvfaUmAvrcRi2rci2gAVh9peUbft6iKeD6FT29vN6Piul3z9/eWmousvXvt/XfFdS3qcg/zXi7QF7gRRrEhVIdTpyeqzRZmKGhIfxbxDi0YmN1Szzapk1bcSYphUWWQxi3lUndmxrW+eyJoUMGUiA01MiNxMcnmMDzuXNnX2CZt/V4dPtXR0BEM1esWGlqefbp09uIL59g3U8Rp5YbAdottPRkmpF/+FQ8VBKrmcep3YZNZialaolfWD/ccOP5rOGGy8hzMbry83JNAoyXr9/FH7fpa/FipySdwuEDu1GUT/maYk65NvBeyg+FnQOzpj3olQuNMHGILSk/Jz9Ah/fvwtH92/irU4aoHoHU3utDw9kX7u5uJs5VpnK1KQEloASUwLUREHvkm2+3oIih0T2Zc5Cfn4tN336N2kqqWjDhM7p3H8beu7HkJTB87NQrThfL7/ezC29F/PEj7+dkZ93X0t5dlQFIL6Crm5t70iPP/rfrnfc/1tJ9XrK8DCKLGbYiFCsxZTLVJhkyUnlEvDj1LYcGnFwIczLOMvBcdOLEQ1FXQN2KGaih9E4sXHgpA4lVy8nJMdsSY6ArT9/Vs+rKf//+938hNbNQQsnojZKYTj6VAL3vmhh2rKli7qJET1G+bFHRfSFJCOVlRab0nFSYcHD2REiPCPSM6WfuxsTYklhRCQ2Qh5yTGSmnaEtWGqNLkoEeePIn7Xb+FNDo/IqZshasVBIW7GtqFMv5W6ejaM0bnyqIoOju3fvMyEspodKz3xgMGz2hHsUV/3678nPknI1Fz6hQjBkz0twUNfzOXXEDuoASUAJKQAk0SkDqAC/6dCk1ewMhoWRSinL16m+Ns0IuYGKXHDnCspSUNAsMDMG0W+7BiDE3mLKojW7wojc/efd1vPG33xfk5+eF8PpVcNHHV3x5VQagbJVG1ERmuK5745PVFs1xU16uJ2u/+gyZZ+OYZVtrpu8ERlkFTWBLO7h7BSEwOAzhUTEXVFQQ6ZYP3/obY5JoAHAG15IeHxtag+IVlKmxMkqU2DJtd+LEccabIbpyMi2oxt/ljkTn+ExKPon8SgnndCvpwaMdZIQ0628GahkSILI10kTuxsHZ3bjSKWaOoNDwRgeZknwa29Z/jYqSvO9uKuoSFdLSMxEff5IyPKW4afZtuPWuhRfclDS6sVZ4U4zRN/7+R3g71+LOO29Fz55RjZ67a9duwJatO/hTUuf9LKGxO+2W5glQ5zEc4uWXfoTCPMbCiquUDx9qN44ZOwr+9ACWlpaY5JdKk+xTY0qxzZ41rdF+tMKQdRNKQAkogS5BQPRhP/xwMU6eZuw0r1EyvSuOCljaMI7cjWVKHfjXmXF7FYwLjDWhNqIDPHj4mGaPX8pnPnLnTZz6LbuB14uNzV6xwYJXbQDKNpydXX7r6e3z328vWWfhQrfl1bZNa1fgTPyhugsvDTknJ3sjlVJ3SauL7StjTbxBo26kS3Toud3IRXL1l4tx5OBeCiPbw8PDG1Exven5oSenIA+ZrIRC9CZW0Eyb8QIn25SL3R13zDsnLHxug/qkUxEQOZ3U1FRTTWTr1t0ooYvORoSp62y/c2Opf1lMxfVb7n7ighuJ+oXWrFiK/PRYc27ITYK44IvKrBicm0pvM6uP0FXv7OqBXr37MZjXArPn32e81PXr1/+NPXLAfKGNZiJ33H/QCIRGRNV/3ORfKekncX0lIqPCEIaT8ceRcGwvXOxr8bOf/eiyRqd8D6TPp08n4b33PoKFgz/m3rmwyX3Vf5BO4fIVS95jllpdPecyShSVUuqmZ++BxhO/ezurqTABpGdMf2pillDeJc/cyUZGRjDEwtL0Scr4WTJ5Rr5flgx25lfLjEP2ITV7Bw7sX787/asElIAS6PIEZMbxD3/4M8uZUme30hojx05iaTZfc91prQRCSc57cP6kWs6K/o4Jrj+/WqjXZADyomPp4+O7hcK3o/782scm7u5qOyLCy7k5WWYKTubFpUSa6IlVsSZeVbVcGEswctwUREb3PrcLufCt+uJTxkgl8gLI6z4vuAufvnCKrozJAR+//SorVlSZZWRlJjJi0MBerBYx59y29EnnJlBKj29eXh4f+YwJXGbOBTr/vms0+/mimHkfA4dN5GPUJV4smfo9dni/ySx3phakh5cPonv1MxVEziadxPo1K5AYdwjFBTkm2SiMdYaje/Wnl6yY3uZSU1ZPwhcKctPhSqOtX79eOHzkOHKLgLl3LERTsYNi+Ml+jx7YgYrSuvg+VveDB8v/9e/HZKUhg42kikjTSKKLaBFKbKuMV/6K+Lc8ivh+NnWn5EYput8oxo/cUD/4K/6V75F4A0UfU6rKiHZkETOAt29aizMn48zdaWU598PkE5lpHzl6LA0+MfWM0/C7f879Md8z8cb2jAzDggV3XHH/uoASUAJKoLMTkOneN954x1wfqun1K2XIUHTf4Rg9YUqrDk1kZX74+F2IO3pgG/MaxvH3+/ylroV7uiYDUPZFI9DNw9Pr+NSZ8/x+9OIfL7mwNrc/Egco7lCJP5LqG+LRuFwTAzE7I91Uy6imgVjOi6NIwkhySDUvxBK4X81tSm28o4f2sMZuXbygTDPLtWv0qGHGQ3G5fehnnZOA6P6JMShZweJVkyQGyQw+cSIBO3YfhI2DFw3CapPxKwkUFdSALC5kjCj17MT4qqEEjE9guKkAI+cWtS+NQSgu9307N7KSCzONGXtAh5cxiOTrJ+XLJGu2/qyNpLbk8RMnUWnpjtsXPEyXf+OJFCdiD2P3xuWwl1J//L++OTo70wsnkjQ1NPB4E0SvoxhfcpNjbWvPDGUHPhzNcwdHJ5ZWczR6jBI7GxIWYTZTX8dZvhvZ2RnIp7RLKbX7rG2oY+jqbr5jRYX5yM/h96g071z/jZec30MHR3szVlt+HwMD/cjQwdRKlkzrOnmDOi+gPJfM6nqvoLyWmsoaclF/NPWvElACXZ1AUhIrQ73zYd2PNC8EtNOQW2KBR599odWGLjfrL7/0Y6xduTQtJzu7F1/nX8vGr9kAlJ3TWAvjFPCRBQufdnr46edb3B8x5L749C1TaUNWlhguqXkr8VuBoZGYfvPtxjgsKiwwOn8SHL/kg9d50axPAJE+mDXNdJSTk6PRBbThpLtIZEhsoMQFSjm1nOxc07/bbptryk+ZF/pPtyEgGd9iCIoRIzdOhYXUtmP4gL+/33dZ5c6mUkpKSirDEDg1Ss90ZnaeORflfLRk2T8p8ydeN6bdG8NHblgkS1iEjQcOGXnOjhNjrE//IabubVOA5aZnL+vhyo1KnSH13dSqGFUytUqrUkoRiti09FmeX0n2JY+edKk/nXh8HyxYeUNueJwZVuHHsoEi0izew9y8QjPN68FMXy8vDxMOUW+0ieEm2ppXuglrakz6vhJQAkqgOxNIT8/A6/9+B3nF4gUcSpkxX4Qw/tyJs0vX0t589U/MfXi1mFPAfWn8nb6Wbcm6rWIAmg1ZWPSjuPKeh5/5ie29Dz/Ton5JcfhdW9ezOsdh47kTY04uWvK3H2Ooho+djC3r1yDuyB6z3RFMj5Yg//y8bOMlYfkTCtWmwM2xFtE9IzB37ixzMW5RJ3RhJdAEATGYpPSdeBUXL15mXPwS2CsGIcM9jMHHU9U89wsKM147V3dPjJ14k8kubmyzcicn079ZFADNyUpnzKpUG6mkUcp6uExwqigr5k0PazBzmRp6IatYVq2G5QktrSSI2LVuupbLz7zlXv6ouJiShnKDdPzIPuRlnIaLsy2GDRlASZe+RipJPKBq0DV2JPQ9JaAElEDrEpDfd6kmFRsbZ/T/RKO4oorTwgxDGjR8HHqE9zQzna7uHs3+XX6fYs9v/v2PFcXFRUO5/cOt0eNWMwClM7zADHFwdNw+/+6HbO5/9DlTmaM507mybuKJWBP35+bmYdZzI5iG02YSI7hx7VcmOP7GWfPQIzLaGH/yfnpKMlavWEJvDOBox6xPm1r85Cc/0BJTAlZbqxJYuXINduzaR+OvTmZGzjkx/qRJ4ki9QSjPFyx8xlQNkc9kOjeDSRdpfGRlpCI7/QyqaOBJrJydLadM6ZmTqWorbtDZ2fGc0SbVVsR7LeX25CHxeQU0Frdv3200DCW7TG6WZPpZ/gYF+mAs5VxiYqK5HjeuTQkoASWgBK4LgTfffAdnU9KNk6CG1wzagWZqWJxbtBFhZesId+8gxpB7maTCgKBQEwbXsCKIGJPv/Ot/8fZrf6lgguBovt7bWoNpVQNQOkUjcABrfu7o1aev/djxN9BTV+cp8fIV8WYHM+1WKxg4xWtpZW1SoQMo0rz4/X9TwJdZnJRucXBwprVsiTvuf9xcXCW70IrLljHg/hRLwR0/stdk9pqYK4KU65wj54O9OZUl9Uj79euj2YetdYbodi4hIPp7RUVFJilDpn1lynTz5m3YvmMPynmXJxVHxk+92RhuFYxLPUsh54yUk/zml8LJ0RaBAX7Mpg2Ct7cnH/zi+/i02FgTb+Tx4/E0Gm1MbJ5oA4oEknr6Ljlc+oYSUAJK4LoQkFKk+/cfNL/L9bXRPT09TNgR5VuMgkUSC1UkJp4yN/QyqySyZr5BEaxQFW3Ch95/4xWs/2Z5aVFh4SgafwdbcyCtbgBK52gERlIoeqevf4Dn1Jumw54XSAmSl9JtF7c6i5hiLcw+FN2xXF7YCgqKWZnD1zzEAhRLWR7ibRG9P/F0yGMWNckkMF0KysuFVKe4Lqarr9uTgEwV//nPrzBhQ/bKuz1zzlogOMgPEeE96JWLQkCAv56n7XlQdF9KQAkogQ5OQLx8Mru0e89+k+wn3a3k9M5XX31NKa7UHAo9D+cyia09jDYxAKWTNMa8vLx91jq7uA34r5/82sKW2bmShSiB91SPMY+M9BSje+Yk07bMghw2dBCzDQNM9ma9tSzeFckMloeHhwe9HK46tdvaZ4Fur1UJiA6UZB/LuS6JHXIua1MCSkAJKAEl0BwCcXEncPfdC2uzsrIPZGZmTqXxl92c9Vq6TJsZgNIRGoHWzCz8KwVmn7xh0hSLXn36U7DZkRdGSmbwwlhYWGg8ebKsJSfFLVnOjY69usYn8lw8ffLE/DH1XeVZnRdQnv3sZ8/LfvhMmxJQAkpACSgBJaAEOicBsY0+/HARvv/9H9dSieFVhvp8n+9xUrhtGtXx2q591/GnaaCt2LJpw5LK8iL7xx9/mLITnvSQUKuPE941NdTr418RN5SHZEKKwG1REbXZmA1ZzBJc0mSq2DxkXk3iCmkMypSyrKvB7gaR/qMElIASUAJKQAl0QgIiHfPccz/GunUbSouKim+j/fRVWw+jTT2ADTtPI9CHcX3vU6z5xl//+hcWCxfeZ7yADZdpznPJpixnrWCRxbCxsTVVEpqzni6jBJSAElACSkAJKIGOREAcX2+99R5efPGlWhayWJORkXEvjb/M9uhjuxmA9YOhITibSRvvBgcHuv/2t7+ymDLlhvqP9K8SUAJKQAkoASWgBLoFgbVr1zOM7f/VMls4Lycn5z4afivac+DtbgDK4GgE2jMw/jnqmr00dOgg6xde+KHFxInjNZavPY+87ksJKAEloASUgBJoVwI08rBhwyb84Q9/rt2zZ38V5WB+Ti/gK3y/rF07wp1dFwOwfpA0BN1Z3uqHNAR/3LNnpM1TTz1mMX/+XKORU7+M/lUCSkAJKAEloASUQGcmILp/S5Yswz/+8Xoty5Ey3aHyf1hq9M80/PKu17iuqwFYP2gags58PEAtv1+x0oHXXXfdZnHHHfMxcuRwI/9Sv5z+VQJKQAkoASWgBJRAZyAgOQs7duzCokVL8PHHi2s585lNaZdf0eh7mw9WCr6+rUMYgPUIaASKnssYxgg+Tct4vrOzk82sWdMtpk6dhHHjxhix5/pl9a8SUAJKQAkoASWgBDoSARp4rAy1Fd98sw4rVqysZUZvJWc6lzDG71X2cysNPxE06RCtQxmADYnQFrTh6wksKzePhuAdGRmZ3pwmrhk2bKjlgAF9Ta3TyMhwBLOklr29fcNV9bkSUAJKQAkoASWgBNqMgEzpSqm3hISTLMsZh4MHj2D37j01nN619PX1yaLht4hSdp+xAxtp81W2WUeuYcMd1gC8eEw0CH353kg+hgUGBk6urq7qnZ2d48mKCxYUm66ltmCts7OzMQatra2/cyZevBV9rQSUgBJQAkpACSiB5hMQpx1tjVox+qQOPG0Pi/z8fAvaGmJ75FhZWR9LSUn5llvczccOLp/R/K1fvyU7jQHYGCJaeVJdWAxDfz68+HDhg4Xl0KYC19y+NiWgBJSAElACSqD7EJCKHOV8FPIhpdnS+MigsVfDv52ydWoDsFMS104rASWgBJSAElACSuA6ExAPmjYloASUgBJQAkpACSiBbkRADcBudLB1qEpACSgBJaAElIASEAJqAOp5oASUgBJQAkpACSiBbkZADcBudsB1uEpACSgBJaAElIASUANQzwEloASUgBJQAkpACXQzAmoAdrMDrsNVAkpACSgBJaAElIAagHoOKAEloASUgBJQAkqgmxFQA7CbHXAdrhJQAkpACSgBJaAE1ADUc0AJKAEloASUgBJQAt2MgBqA3eyA63CVgBJQAkpACSgBJaAGoJ4DSkAJKAEloASUgBLoZgTUAOxmB1yHqwSUgBJQAkpACSgBNQD1HFACSkAJKAEloASUQDcjoAZgNzvgOlwloASUgBJQAkpACagBqOeAElACSkAJKAEloAS6GQE1ALvZAdfhKgEloASUgBJQAkpADUA9B5SAElACSkAJKAEl0M0IqAHYzQ64DlcJKAEloASUgBJQAmoA6jmgBJSAElACSkAJKIFuRkANwG52wHW4SkAJKAEloASUgBJQA1DPASWgBJSAElACSkAJdDMCagB2swOuw1UCSkAJKAEloASUgBqAeg4oASWgBJSAElACSqCbEVADsJsdcB2uElACSkAJKAEloATUANRzQAkoASWgBJSAElAC3YyAGoDd7IDrcJWAElACSkAJKAEloAagngNKQAkoASWgBJSAEuhmBNQA7GYHXIerBJSAElACSkAJKAE1APUcUAJKQAkoASWgBJRANyOgBmA3O+A6XCWgBJSAElACSkAJqAGo54ASUAJKQAkoASWgBLoZATUAu9kB1+EqASWgBJSAElACSkANQD0HlIASUAJKQAkoASXQzQioAdjNDrgOVwkoASWgBJSAElACagDqOaAElIASUAJKQAkogW5GQA3AbnbAdbhKQAkoASWgBJSAElADUM8BJaAElIASUAJKQAl0MwJqAHazA67DVQJKQAkoASWgBJSAGoB6DigBJaAElIASUAJKoJsRUAOwmx1wHa4SUAJKQAkoASWgBNQA1HNACSgBJaAElIASUALdjIAagN3sgOtwlYASUAJKQAkoASWgBqCeA0pACSgBJaAElIAS6GYE1ADsZgdch6sElIASUAJKQAkoATUA9RxQAkpACSgBJaAElEA3I6AGYDc74DpcJaAElIASUAJKQAmoAajngBJQAkpACSgBJaAEuhkBNQC72QHX4SoBJaAElIASUAJKQA1APQeUgBJQAkpACSgBJdDNCKgB2M0OuA5XCSgBJaAElIASUAJqAOo5oASUgBJQAkpACSiBbkZADcBudsB1uEpACSgBJaAElIASUANQzwEloASUgBJQAkpACXQzAmoAdrMDrsNVAkpACSgBJaAElIAagHoOKAEloASUgBJQAkqgmxFQA7CbHXAdrhJQAkpACSgBJaAE1ADUc0AJKAEloASUgBJQAt2MgBqA3eyA63CVgBJQAkpACSgBJaAGoJ4DSkAJKAEloASUgBLoZgTUAOxmB1yHqwSUgBJQAkpACSgBNQD1HFACSkAJKAEloASUQDcjoAZgNzvgOlwloASUgBJQAkpACagBqOeAElACSkAJKAEloAS6GQE1ALvZAdfhKgEloASUgBJQAkpADUA9B5SAElACSkAJKAEl0M0IqAHYzQ64DlcJKAEloASUgBJQAmoA6jmgBJSAElACSkAJKIFuRkANwG52wHW4SkAJKAEloASUgBJQA1DPASWgBJSAElACSkAJdDMCagB2swOuw1UCSkAJKAEloASUgBqAeg4oASWgBJSAElACSqCbEVADsJsdcB2uElACSkAJKAEloATUANRzQAkoASWgBJSAElAC3YyAGoDd7IDrcJWAElACSkAJKAEloAagngNKQAkoASWgBJSAEuhmBNQA7GYHXIerBJSAElACSkAJKAE1APUcUAJKQAkoASWgBJRANyOgBmA3O+A6XCWgBJSAElACSkAJqAGo54ASUAJKQAkoASWgBLoZATUAu9kB1+EqASWgBJSAElACSkANQD0HlIASUAJKQAkoASXQzQj8f8j0+mJatbh0AAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "m.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 5dec36838b7973cff53b4e8ad8f65a70b4f8b1fc Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Fri, 8 Dec 2023 22:30:42 +0100 Subject: [PATCH 010/240] update path to docs_env.yml --- .readthedocs.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.readthedocs.yaml b/.readthedocs.yaml index 05593cd47..2c6a4ac65 100644 --- a/.readthedocs.yaml +++ b/.readthedocs.yaml @@ -6,7 +6,7 @@ build: python: "mambaforge-4.10" conda: - environment: tests/docs_env.yml + environment: docs/docs_env.yml python: install: From 95c377979c7e75c83c06e3f20cee98b277400ba0 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Fri, 8 Dec 2023 22:31:52 +0100 Subject: [PATCH 011/240] update mambaforge version for docs --- .readthedocs.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.readthedocs.yaml b/.readthedocs.yaml index 2c6a4ac65..84eb1cd96 100644 --- a/.readthedocs.yaml +++ b/.readthedocs.yaml @@ -3,7 +3,7 @@ version: 2 build: os: "ubuntu-20.04" tools: - python: "mambaforge-4.10" + python: "mambaforge-22.9" conda: environment: docs/docs_env.yml From dd5143caf26600e38ab98953cea9191d716da5cf Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Fri, 8 Dec 2023 22:32:54 +0100 Subject: [PATCH 012/240] update docs env --- docs/docs_env.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/docs_env.yml b/docs/docs_env.yml index 029052838..2104f3465 100644 --- a/docs/docs_env.yml +++ b/docs/docs_env.yml @@ -4,7 +4,6 @@ channels: dependencies: - - python = 3.10 - numpy - scipy - pandas @@ -27,6 +26,7 @@ dependencies: - xmltodict - cairosvg + - pip # --------------for building the docs - docutils<0.19 - sphinx=7.2.6 From 6857d0b6c8a79350f172c0b1485aa9833db6747d Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Fri, 8 Dec 2023 22:35:29 +0100 Subject: [PATCH 013/240] update docs env --- docs/docs_env.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/docs_env.yml b/docs/docs_env.yml index 2104f3465..3bbd51341 100644 --- a/docs/docs_env.yml +++ b/docs/docs_env.yml @@ -31,6 +31,6 @@ dependencies: - docutils<0.19 - sphinx=7.2.6 - sphinx-copybutton=0.5.2 - - myst_nb=1.0.0 + - myst-nb=1.0.0 - sphinx-design=0.5.0 - sphinx_rtd_theme=1.3 From 3ac16a4ffe93515127c18fccdea823a8ba031fe7 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sat, 9 Dec 2023 00:43:43 +0100 Subject: [PATCH 014/240] update docs --- docs/index.rst | 4 +- docs/notebooks/inset_maps.ipynb | 352 ++++++++++++++++++ ...ures.ipynb => naturalearth_features.ipynb} | 0 3 files changed, 354 insertions(+), 2 deletions(-) create mode 100644 docs/notebooks/inset_maps.ipynb rename docs/notebooks/{basic_features.ipynb => naturalearth_features.ipynb} (100%) diff --git a/docs/index.rst b/docs/index.rst index 6de7b81e6..0a70f4780 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -188,8 +188,8 @@ Make sure to check out the :doc:`EOmaps_examples` for an overview of the capabil :maxdepth: 1 :caption: Map Features - api_inset_maps - notebooks/basic_features.ipynb + notebooks/inset_maps.ipynb + notebooks/naturalearth_features.ipynb api_webmaps api_vector_data diff --git a/docs/notebooks/inset_maps.ipynb b/docs/notebooks/inset_maps.ipynb new file mode 100644 index 000000000..059a28fac --- /dev/null +++ b/docs/notebooks/inset_maps.ipynb @@ -0,0 +1,352 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "a5ea710d-94b1-4396-aa3b-481ceb117a8b", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] + }, + "outputs": [], + "source": [ + "import warnings\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "markdown", + "id": "563102a7-ac5a-4b46-af2b-b29d068fbf4d", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "# 🔬 Inset Maps" + ] + }, + { + "cell_type": "markdown", + "id": "780a75df-00d3-4148-8251-d17130e04b81", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "## How to create inset maps\n", + "\n", + "Inset maps are used to show zoomed-in regions of a map and can be created with [`Maps.new_inset_map`](eomaps.Maps.new_inset_map).\n", + "\n", + "```{eval-rst}\n", + ".. currentmodule:: eomaps\n", + "\n", + ".. autosummary::\n", + " :nosignatures:\n", + "\n", + " Maps.new_inset_map\n", + "```\n", + "\n", + "\n", + "An inset-map is defined by a **center-position** and a **radius** (in a given coordinate-system).\n", + "\n", + "The shape of the inset boundary can be \n", + "- projected \"ellipses\" or \"rectangles\" (with dimensions defined in a given coordinate-system)\n", + "- \"geodesic_circles\" (with a radius defined in meters).\n", + "\n", + "\n", + ":::{note}\n", + "[`InsetMaps`](eomaps.inset_maps.InsetMaps) can be used just like any other [`Maps`](eomaps.Maps) object! \n", + "For convenience, [`InsetMaps`](eomaps.inset_maps.InsetMaps) have the following additional methods defined:\n", + "\n", + "```{eval-rst}\n", + ".. currentmodule:: eomaps.inset_maps\n", + "\n", + ".. autosummary::\n", + " :nosignatures:\n", + "\n", + " InsetMaps.set_inset_position\n", + " InsetMaps.add_extent_indicator\n", + " InsetMaps.add_indicator_line\n", + "```\n", + ":::\n", + "\n", + ":::{tip}\n", + "To quickly re-position (and re-size) inset-maps, make sure to have a look at the {ref}`layout_editor`!\n", + "\n", + "A more advanced example on how to use inset-maps is available here: {ref}`ex_11`\n", + ":::\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "052d389f-a7f0-4a35-83fc-57d0bfa992f1", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAEAAElEQVR4Aey9B2Ak2VXuf9TdynEkTc55djbPZnud0zp7HbDhDxhjbODZZAPGgDFgP+ARDQ/83gODSQZjnHNcp9315jQ7aSdqsmZGM8qxu//nV6XbXWp1VnerJZ2zq+nq6qpb935Vde93T7o1cRUxMQQMAUPAEDAEDAFDwBBYMgiElkxLraGGgCFgCBgChoAhYAgYAh4CRgDtQTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCkUwQjI2NycTERKafbb8hYAgYAoaAIWAIGAKGQJUjUFdXJw0NDbNqmZYAQv42btosvefPzTrBdhgChoAhYAgYAoaAIWAILAwEVq1aJceOHZtFAtMSQDR/kL8vfG+vNLe0LowWWi0NAUPAEDAEDAFDwBAwBBIINMi4PGvPDs+im6oFTEsA3ZmQv5aWNvfVPg0BQ8AQMAQMAUPAEDAEFggCDTVjGWtqQSAZobEfDAFDwBAwBAwBQ8AQWJwIGAFcnPfVWmUIGAKGgCFgCBgChkBGBIwAZoTGfjAEDAFDwBAwBAwBQ2BxImAEcHHeV2uVIWAIGAKGgCFgCBgCGREwApgRGvvBEDAEDAFDwBAwBAyBxYmAEcDFeV+tVYaAIWAIGAKGgCFgCGREwAhgRmjsB0PAEDAEDAFDwBAwBBYnAkYAF+d9tVYZAoaAIWAIGAKGgCGQEYGsiaAznmU/GAKGQFUiEKqpEf1forF4on71tSGJ69fJqbjURmqkuSEs7IvFROr0OyfovxLiPD2Ozwj/BITSKINyp/SgyamYHhv3ypjSfXyf0D8TQ8AQMAQMgYWBgBHAhXGfrJY5EICw1CmpESUpjfVhCQcIDIQlpD811oWV8CgZ0v8gP0NjU1Kv31saIx5pGp+Meb+H9Vif5OhxeuzYhJIdLQNONRmNeWVTPscgw+NR3a4s+YHotWq9qUeLErpabQfkrjYMAazR9mm9tT2QPdqMQN5oI2StvbnW25frn7GJKJBKGJKonBASGNN/aC448h2BLlKXScXk8tCkhw3X41iIJ9fleBNDwBAwBAyB6kDACGB13AerRQoC6KQcYYDAtDREPKIDCYFkTCihGBid8vYvb6/ztFapxC9YZFyJCISIshw55LygtDYGv/nbnIdAqjIJRGdI68IxI0oGz/aNyxQMc1poS0SJGX8hJUn6v0eYPNKm+/R06R+e1N9DWr8aGRzzCWV7U610tflEDQI6oURqbDLqkde2pohH9sKUqdeFhHa21rtLep/gERTa3cS+lP3BY1K3G5Q0OwEL6jANiUe2+Y3vED0IMW1pbQx7n05bCPljm/vmhDpzjokhYAgYAobA/CBgBHB+cLerTiOAVg5SAjniE4KGJssjS0oSIBVo5CAeaLcgTUGBlEC8+IRgQDQgOo7kuWM5hmsVKkHiR10cAeMThRb1wvQJuRxXTSHEr0O1a91tjV4dqI9rC/WHsKXWjToNjNRq/WPS1Vrnt0XLhUzCFB0uwbo7MsYxw+NT3jWDv5drG+0h9ecehWrcvfBJIeSPNlwZ8gnsspZaaW6NeIQXqrf3xKCHVbPeZ7SXlwYnveOpa0RVtB3NEWmoCyXINm3EvDylWHBvaSvlmyxOBJgU8Fdfy+RP361J7v/M+82z5zTao6qdNjEEDIHiETACWDx2dmaeCKABa9SBHe1Xu2quMNXqpowqYbrQP6FEYMLr1DG1drXWKtFTDZL2+1Nx/ccjFUq89DfX8XNZHSc8jZkjaHx6/mz6G9pBNGr4uTFgQMD4dMfmWW3vMAgH2jeUVdQX4odJc1TJiK9RrPHMoZCdeIOvIUOziIYunUAWteoeFsHfg8d7bdFB0DNpBw8KbHMMAyVtFMnPnBs4vahNrom5fLbQIl+oD9paBAKHZnJsXP0DFcfVy+o907NfZ5F13Q0ewYfksY/B3wnaQe4jfA8z9JCnFYUIziQE7nj7rD4EeO95J8f1mU8V7jWTACZI3HsmRzzvTA6YGKBRxwLAcUyAeDSG9RngePoC3ueG2rA3aWAS1jc0kXqJkn7HxQRSyvXnIn69/UkOzzXPPkJb6Kf4a1Ac0Lzze5+6U5hv7VwQt3OzIZCuN892vP1mCBSEQHN9RFYoIUJjRKfGgBAkYpACTLn4jUGsLg5MeJ07vmuM9czyoQUQj0jIJxRo4hgMIAmQDTSEEDT6UmdWpMPmOzo/fstXPE2i1gNNHde4okQS8gHhY6Bi0KKD7m6r04HJ78g5Bwm2K9P1giQ20zGLZT/3icHbEcLUdoGX57eoP4AhpB3CiMmYcwdGphL3M/XcxfYdX1TIQJBg8KzwaFUj6eX98rT3+p7ib4r7AiRNd3ta8W51XYCYMXninR5Uf1uE4zi+XbW9MKpafZfqdXJIO7nvvHPeM6Ftp79Y1gJJ9P1Lx5t1wnhl3HsPeRf9/iHm9RHlfB4gbdwLgp6C96eYa3I+zzhCua3af4HFio5673tqmUySTl8a9ybJRgRT0bHvc0XACOBcEbTzEzNxNHxn+sYSiDBArOmq9yJKGewZHFJJEudgMuUPwcSIqQ/C16eaAIghJLFNO0kGDiSuTy0DEJoFp93D7yy1bO/gNP9ANhicEDQP1IGBioGWa15UjSSDUVDQZqC95FjOhBiGQ7XeYJTvdYPlLYXtVHM9bYbYnegd9bDuVnM3g/+gEj0IApqdhTzI8YxAgiAzfPJsMqnhPwRtFhMHtMiYtdm7plPfDyVFmL55FtEy+xOcKY8UuOcQUuQ/o76vJUSCd8397l0g5R/M6gQ/IZTpJkf+nrn9C1nlnvEHGYPAosGj7f3DU9774b1b2mY05Qj9AZOnEZ3U8V6DFySocUo1f0okufe1igXPA+8nk4fj+qykki5Pozg6t/oXcjbXp86lFPqv5e312s+FvecCbR/3nmcGLL3niAsqnhBE7jP3D6x5TwZ10lzK+1nKtllZCweBGh0M/d4pUOeBgQFpb2+Xbz96Qlpa2gK/2OZSQwDTBIOIM8/RmWeKeKUzT+2sGYTQBkDoIHAM+AyKHIc2zRG4dLjyaKIFgmCxPaIdX61eo1PNxBAxJ3SODHCUxUDp6up+55M6u8HVGwz1+viVMRDRkXKOZ+7V/bmEdm5Y3ugN5rmOtd9nIwCR6bkwKv16b5Fq1HDNrnX2PZCbnWub9VnyiR/PGEQGooRLwGUmMzpp2La6yXueef6ZbEB6cIOALPFuLNOJkHu2ec4gCDzpPOOQIp7jXj3eacCz18p+LRQBMEfbR1+VznRdaHm5jofQ0fdwXfpDnhX2pQr9H/0g9cJicvy8P4niXCYPPH+QwoU8gUpts30vDQINNWNy3fbV0t/fL21tM/mcaQBLg/GCK4VOjkEHQpdK2oKNoTNids4g1KXaC0y4lwbUv047HcyzV4b8QW5YNQGUw8y2Wc0argOlQzqnZhvhT4UBbnVng9dp0ellEogZHZvXCeugyuDHf9FozbT2ze+oGSy5ZrpOE20iJC/1Olz17OXxtMSDDpWywIe2tnrRtj5WXAuyyG+pZWZqh+1PIgCJgbgMjEx6g9ViIH6udTxTz5wZ8d6VtV0N3jNUr4M54qXdUVNmu/4x+anVXpfnh8GegX1lR523X18fOafPJdrloHYHTZnTInoF6j9MzNAk8rzyHjNt4f3L9i67c+0zMwLgV8ngEt4JJ6Sl4v470o9mWP+XJu1/nTaXftWRfwLGNq7wg83oZ3FTwWxOX4wWFqJohNCha5/pEDACmA6VRbiPAQdfLLR5OFojmGzo8C7243vla2NSm96vgzXnMOCcVxLXpB2Mjjmegz77tq6u8waz05fGvN8ZiAiIoBPD3ONrDONeahTKQguC5oegkE7twDDzoLnDBOICPTC3oPljYEPTBonraPYJJ2ZFzs3H7OqlWZl+whloiVrtHfGDToLkY6X63+CnCPHLp9xUjOx7bgTQiB06PeyRFo5m8JpQDVgqscldUnUewTPLxIfB+eDpIcG87d4vT8OnkwnazPtGtDPPvJMzmjYIPzkmFuvV52vD8gbP75R9BMKkMz96UehaAERxXEmlyeJAgPcBTd4MGZjxzeu/t61u9j4hfdx9fQw87TMk0p9k+JpFJgg8V5TLMUYIZ2K51L8ZAVxkT4DTTDHQsL1C/UwYLCBX+OPhX+IGH0yimOIykT8/wKLGM5OqHiOBFMQPrSCkDUdsF8GK/w7XOt474pkkSFDMjBRNHsdwDp0QRBBH6OFx35GH6zAcss9pPrhGt5IyCCTXOdHr+wI2NfhmZs9cq6SCMp2kkjfKOnByWB2ytINUPDDHpesAe69MeFGH1BUTMkSwq0VzCyrx5foQUQgMeEGeGdhNCkPgkpIZNGPce7QeDFQMSkwA+M7zutAFzYuTHn22GXzx8UPDxzPDd30lvYGa4zDnPnViyPvkO5qnE/o+Mri3qTkQv1beLyZDaAWXUlAMeJikR4Bn4tj5kRl9GVpigtLQGmK5wGLi+lI3WUhfmu1dyggYAVygdx9y5wdPaEJgJXVo5fCtYkCFrOA8zSB79nIyKAMNDL4imBHQqjHouk4iHQxoMzBTQSJ7+30TLsd5hFKJnpOx/uS228dgxky0vi7mDXrUyZGv1MEe8oeZAxMrgxwdGfWkE1vWTCRgrazSQBC+QxYYSCFp4TrO9NOEQNSY6dI2iB7aSvBwEXfegRn+ATvII1GomHxZ9eK8tpd9TUpeYzEfX0ecMxRju7MgsFLvHwJh59ngPvIMMwFJfR6yFLOgfuLdIqWJ7zrhP+M0AG30kbMjaVOX8M7sPznkvZckAsd8zLOd7T1dUKCUubL0DUzYEOc2UuZL5l08/RP9YD73ksk0FpTgpNhdyBE6SF+HuhV06mSVCbbrnyif54h3DO0zbjQ8c+wLWj5cefa5dBEwArhA7j0dGx0IBA9CREQqqUp4sfHJI0UBpsw+jWAdHI16ZAstgtOwYHZloIUUOqFMSCQkjy7zsA5Kwc4JDQ3Ej4Ea7Q0dyhX1LUFz4WkStT50Uh7x0utDuPANhMRhxkCbRl6/Tq0vJJW6oue5qJ0SnTMaNsgWA5z+5B3vO8mryXmaqDpiBnHwffN8kkgbOGd8mohSR+oCieQ6+AUSTTx6cWxGmzgvVWizwwXfGYgv9UVz41/TLzf1PPed66VqH91vS/2TZ4XnEZ9O56TOc4eLACmCFiv5c/cdsnvqoq/pZlLDe8sEJVPeuuD7h7bUJDMCECD6GHBNupT4bhy8kzx3THr9XidzOZX6xU2A87keRM2RNfo2955gGaHNCCQRlwG+B/sf3i+XIxRiyCTCy62off+ylgZFjcwHqonW59Dza9ZPrBs8qy5wKZ86LqZjfMz8COtqeV4qga9FAVcC5RJcAw1Ynb7wdAZ0JJBAXmpeWu3rPKIC8WLAXaudAr56mJ2YDUPcOIaB54oOxJznOhcizzavbPLO5zc0X2Tgp3w6HfyQGJQ4Dh8mzFKXp0ngcg0KoeOgLEymEFKE+j15bDDR8dLhoNWDVHmrOSj5IzJ4jQaDRLTzYmbKzBiCwIzVzXBTYeMlpR36kRBmvXRkWgWvbmg26RApE2zmInSwEBUGGAglRNXH0s8TOKoJjqkL+7gv/HFtb/auRJjzaDckMthBz6VOC/VcnhHyevMMkr4EQojp3xHvhdouq3d5EGBSyXvDO4QLCRNZJnj0Ewj9Bu8k4iwDvIf0HbyXvPuFEC6voHn6B7NthxI1+kfaqN2lN6nG/9NZMBwGXj+uGJAJodQCab6sQX30+/h0uzGi1NeZS3mMAW6SxPNBWiWeEe61UzygnECpwfNAIAzPDE9KsRphR5gdCZ9L/efjXIsCng/US3xNosMQHkZmKKen8+1hJoJ0oPlr0+2VHY0e2dA+xSMkrKgBKUKD1qDn45cHQURrCHmhQ8G/iA6lQ0kff06jhe8dq3Q0RPzO95Rq09xSZ7yIPRfGvJkkJgheSs3T7F0bx2T8UOp0tspLykDPJy8Q5TH4X1BiSRBIm4ZE+rNVljzzAzyoE3WmfpRLh04HSBkMDGzzQiOOWDHL5YUnaTOkda7kj7LpAC8P6V/A/5H96SSm9UUZOZZGacNAtXlVk6dtTXfuUtgHKY7rAzI1EZctOuF4enzIu79MLGY5vS8FQKyNsxDAGsH77TTv7t3mQN5vJo/8eRMxnXhi2mSiNx8aG55b6pIPKWBiSP/LpBySh7bSTRhpL9q4YFuDwHQHv5R5mzpQT8iUI1llvmTBxaMIYSwEv6vWtXh4ukKwgGGFYpLJWMHkEgXFVeubPLch7hVjmAvKIvCP3ymLNmP5QTgu2H6eLxQMi1HMBLzA7mpqZxc0E0Gs+M7Dz4CLMPtpVGI1PslKGn7SY4gVGfYhS5AmHn7ySqEtZH7NC0HQCC8EL0Mk7PuTKF30yoQwBgWS2TfofhWvY6RMzqVDQUtH2Wx7A/7IoEckMS8z4+U4j9RpxRp1ps+1uzVSMlOnyLUhp9QT8ovQsXIdTN0QyGoSOqTDmiKEhK4McpjFMb0sFeH+8hziY6kfckGfOTQ19bXg4CcILgVhXyp4LrZ24l6CmwhuH0FhMCcCmgEf14zUvi94bKW3s01a0Ohh6qdvY2JNf5ytL6t03VOvB9lhHXOSeg+p2Zz+nXe2GsUtNMCEG5clrFCMb2DOeAKh5rlxCgTGnH09Q15/i6XI9TNoAyGCRO4zbrQ24uvut5jfUCIsBeuEEcBqfMq1TmjYiCDEjAvR4bvn3Ky8YUSJGbNPZi8QOF4AjmE2zEPLbzqPSbQsFvfX1oX4MRBDziBZ+XaoXIO/TBIkoa6evJCYo+m862s14a2alSFr/O51iOqKCGHlD0Gzye+eul7riVrfCfvgSxApzkdog3ctPYe28x0iSseVb7tc+ZX4pE50rAwckB8GPdeWSlx/Pq/RqwE5EH/8kXiOmIiwBFbwuZnP+s3ntb1nWAegSiQdns92prs2g/VadQNhYsQEDsH6QD9GEBsmvWp8l11bfBO09kf0TdrXMenGagABQXjeU0mtO3e+P+knSUSORYbxgras0T4Jv3F/bEmOH/NdV3d9xggUBY7EMdalkjTyzIJ+qpLClRH85J0bL/Ma0sHrVeO2EcBqvCtaJ2ZlBFxsX9PszVCC1YQcdU3vcOZa9zsvNpoWFhF35IoXxr007rhsnxAq/P34hG+xMDu+FKmCQzK+gsyyqAekD3IHYcMk7SWA1pM4bvNKXfZIj3MzYY73iJ1eA18X0ho4f5eauH9dSAOkkM5JD/e0e3RYdAQuzyB+hxA/CKDziwn6rjhfwGqZ0VIPSDFtIiH2YhLaxr3kWWPiQsoc7jd+OvzG33lNuWPEL3nXPe2LEp6lJPQrJDBGG862E95bTHRoX0ot9Blom3kGM4lLtky/FDQBBo+HtKLZc/7OlEsfSTv4o18jEA6h//WsMdPkNlhOpbeZeGE1wXwO8YM4kd2BZTYhqdQViw8EizbS33qWm0D/C3Zo1hDwwTUnE0FnYgOxx+zNOUx83SSdcikrE8aZsOFa/gRSxxg6/TTC76yrjHmXvoe+iFV40G6azEbACOBsTKpiD6QpHflLrZwjVMw6vZQBXgeny6UpMSMZLc7S3rJBSpAgaN5LyNutwjX8l9p/mSBzDNYcQ3QunQGzWjrEIAF0yaDZjzaLwJA27cypC+fy0mFe9sy9+uJjDmE7KBwLuaOzP6m+hO6FZtZM8uegBhBNALkFmZ1evaHV61QZN1zbKXfFeJ1HEPGvade6OKFD1nFFfR4nPL/JbAOAO6cSnyT/ZcAAc6f9qMR1S3kNsKXDBV86dTp0Bhgc9sGZQYXf0VRjwmNfpgGjlPWysqoXAfocLBtuokgfwnNxVt8HVohBy19KgaDxbG5Swsm1mBinTkDwo6bvpA/l+pwTFPoi6kjfRtQtvsvZBH9FJNIGOZxZVrbzSv0b7yfvIIhi4uUT8kobcLUJ9qH41jmhvUzqg+Tc/eY+IZFo2cAUzFybwQn86NvBnDEHoS4IlifGFYR+HV9w6piv0MdkIo7e+Kb1OaUBLLSTOtAGrjeYzIaW76WWxHEzR+Ul0eTqb6RP/pq8jitbbXmp0CbReUH46MjczNSdx4u5QtOZ8BudLuegWaTD7dJIXGZKqPxZGg3TcutKTS9DzzAtzMiDOQDZTa48iCI+Ffq/RwBdR8fskd/Q9jHoM/Mj6pikzhTLLPOEmne8WaCeG0yei1mQAIFUQkROPyZ8OPlSN8px13P1dKZyEuk2qJaJzhoiAi5ci06AGS+ExO8U/Q7JnV/pT+qDCQJijbaVTm2hmYS5B2gP6PR5znhqeMZOXxqXlcvqPA0Pvo7cPzS3JksbAYjF7vUtM/xf6R/oDwqxUOSLIkRkh67PzATVCX0ePl6kOzmmk0oEQuhbMiJeyh4mKUxECV7Dp5ioUvoT/liHmf1MrDO9r6n9l7t2pT95L5kMB/vzfOrAO0wfm02wtjiLS/A4xhd61lRsXH8N8UQgjigF6B8YE8B2LgL5Y8xB8AtEC0tfr9Xxxjx8/SCqBChyba7HM+fI/lKdmBoBnMtTV4ZzeVkhbGhVeJnci5N6qTM6y6EzwqyxUTVmdFjpjqUzgvg44RiWoqLDc8LLsWVV2EtAe1IJFOYZVxazdcwFdNROGND5o66Y+aa0fIJKOIdOh/10Iu6VRksIyWSGfQaiqS9eOoEkpus8/ZB+P59fMv53Zgl6Se/aO9RkzrXRQKINpANwZYIRJmFME8xg59PHCDzoqDCDIXSCENZCO+uZKMzPN+oc1sHdyZZVjd6khNk9zwNmX5OliwDP9eplDZ5WKTX4qZz+Zmi1eOdTpU53OXcTrBkkoec9pI9j8k3fyISMvmPHGibi/sR5RE2e1PfQGV3SUDVZ9EuQIMpInXinXnM+vjvtW6HXpv8sVhgDcnBHr2jGLfpfz+ys10slgPQplIVvZT6Cfzz3jQA7N3YFrUiUASGc0HvNPWQcIP0ZE3Guxf1GSwrhR6kSdCPK5/oL9ZiseQBPnLkora1tnu8AA2amgXs+Go+miT9uZiaV8HzUq5TXZBaF1mutLuGm46j3wvCi8PCilWNw5XXjIaajoyNiZsoDzUvMS+FehnzqxcxIaafX4QWPR9P35PHBrC8FLxt5/XhxiK7iHDRcvJRoBB3RQVMEcUUDmTrr4ljIKilkaAOaO1d/Zm6QzhadNVJeMQKhRtysHt8UyCkDFG1HK+D8Fospv9BzGKDADawgS2hpIacQ12I770LrMNfjIfVe5629PhpfsAyaj+jA6ehPqiY5tZOf67Xt/IWBAM8yA7M3WdRnHc0PzzjvNn03LiCpVoZiW8aYQF9IX4Lries/guXRP6F1bG1SNxtdds+RUnLfMc6xugbvJX0on/RDqcJzT193UdNpkb4ql1k49Xz77iPAeEA6sWBidMa03RtI8aLpzRRfeAd3AEUFz43T5KHJ1WHC03LCAxgH3TiTCV/6WkYBxpdUcX0ZygOUHowJ+L9zvYUotBE8dEFVWb+6S/r7+6WtrW1GU7ISwKcOn5OGphYPCGY888WKGVQgN9wGXka+84JzD8n2jjCQ45TKQ8OtZdAJ+q15By3Qf/DDg+xlIroQRfzmmI3qpid8gBcPNQ8wQQdBQuUfld+/vDS+1m/CexaCxI1rw6uC+1ypdMZXqcmHz1RhKax0pljIHX/M1jgP8417AV2bXIqb1DKD37NpT4PHsQ22zizAc45JiHbROXm+Qfp7OYXINUwjzIa5JgMSgxja13QDWDnrkm/ZEDtM+wyyCM8A31l6kEGTHF1oRWgPGlhWZEj1vcr3WtmO41lgoAa7dM9gtnOr+TfeV9wawJX3HrMjgU9M/mgr+zBNojVnMsXghwaL3+ern84HT+qMxo13nG36K/ol2kSfjU+we9/zKS94DO8s1hMCG3JNoLgOgWfgukVzdAa1Xm6iSB+ETysTmnR9DoSRfgNiy30wKQ4B8KafJQUNzzAT41Sf8Uwl8x5w38slPANkMWAE4DrwC55b+jbeUS7Nb1oN71nw/N+nU+lwvPNtL1f9spXLO8YYOjE6JFvWLy+cAH770RPS0jKTMWa7YKl+QxPigIboscyZiyjM9xo8GAzmaB3QhDGGc8PQ+jBb4Mbyh7hj6Ti5aW7GR2daykEFakpH7R4WHg7I7PruRk9rFpwF0YFBvKhbvkL5lIcGjTYwA4BM+OXgN+evxQq5SNeh5boOLyqdM5012jJeVjpIqpiunlwDAhjsXN01OB5VO7PxVM0QbSDgg5fMvXQQDb093nPBvqBQFvfKtZn72KtmR77z3KA1zCWUQbu4PzwntIs3G20ll4OsptYzV5n5/E5b0fLitMyzybMKYSJiDyLlTWhS2ptPueU8BsJM/bgPzJapHgMhTyrPGpHAtIX7zr3Af5OOsRz4lbOdlSrbJ0K++wTvGPeffo/7D2a8r2g+CKZBI4Hpkb6NZ5UJAtgStEU/Cf68U2iUF5LQd7m+lu3NKxu9dxCilu9zw/PIe3zD5jYPw2ztx7fZTVZYfrKYdC28B/RhvLus92xiCDgEWO7U+Zi6fcV+QuLoQ4slkwtmJRAIyzZVydPhzVXoDBhc+QtKo35JVz4dLyDjm+C0LgxqRKYxyNEJ8TsdDPvpdNMJnRcDn17eO4bABmaQlMlgzgAPKdNiPO0IWjvIHpqu+kshT9PGDcd5mU4KUgiT92ZEes6EDqjMlJgtuw7T1YNrrlFzcS41uDu+0E/qzODO4EN7mPWeUYf/SYCZFvBmBo6ZFdJ0XGfZDFi02YvM0raCMYQNnwuHFd/BFoGg84dwH9lNW9FyMlhqv6vk3V8Cj/vCwEjbKcPdW1LhgCMdNNhRh2AaGq/wwD9cJzjrZPBFe+VrI32SQ1mlFjTb4ML1mhUXSCiaCerDc0OQDs9NNQnvKeYY3hlHQoL1Q+vM/efdcZOt4O+V2K4ZH5PwsCaAHR6W8Ih+juinfg/rd7ZrpjQ6Mqxt0JVo+BS2dcUbf59OOlvbZXJZl0wt65RYc4s/eyphxfE145nFNIqjPhGVPOdMdCCA+pp4/QLvBM8CEuzPnDM9+3l2EJ4d/NT4DZ877g3vKu8hFpJKCRO/QrWQwb6MbSI5aS/aINoPHq6PYCLIu0kfTHvduWBF5gMmb9452tfmktWqZS+G/FEu7wH5PE0MgVQEcMXCnQmrB5zAU2hpP88zw+uM8ol+kneeyTLPLv09yi+E74z/KDEInKJPYHKHAoZ3mveB94DjeMoZjzFbe/2t/s47wG+5JKsJ+DuP9khTS2uuMub0O+DQSI846MsYHITnVHAZT2bgw/QMyYAcckOYDbKEER0WN4sbzHGQNUw5DPLcKR4A/jKJM0dCjJyGku1UoYOFQEFGUZ+jjeN4vjMAQHa8mbM+A2jSCBSBhGUS6opPBddHg0B5kB/uDdoIhHpzDQgcfjsMLHS0PNw8a/jO8NC7+vIAMhMiwpi6cG8hh0QRu0GNcokExg+Eh3addqhcm7JTH2DKJoVBsB3Uh5yDXIO6I2jw8MnhZeClIMqWstEGcn8QV0fvS4Z/wISXE9JL5DQDTj4JRjMUl3E3uIIN1/LuqRJq8CENEJ1CtuclY6Hz8ANYn7884RG/Ys14eVVb8ak/1SN1p05I3bnT+ndG6s6e8j/5fva0RAb68yoqn4NidfVKBH0yONnZLVPdy2Vs/WYZ37RFxjbyt1WiShSzCaSI94h3C98ziAqmUO4zzyLPGo9vOe415nr6Ka7lETO9Du8jfRj3zL032eqf728717Z4kzB8do/qRMZN5ILnM4lj8Mqk0XCYuEk2S01uUo1gOmwYRC9rPwz5RTvKZBBCCCneqqZdJoH0f6mCDyB+h831Ec91hq6Rc7kXTNIhhfj2OWVA6vn23RDIBwGefyYrwdRkuc5j7ONZxvrEGEi/gWKsEHHjOePVYP+AbN+0onATcF/fFYlFGj2/DF6wUnUUvMi8nE5bsxheMgc4bYM0IZAx9vO9km3koaET5X7hmH/y4qinFQRv9unP3kCA4o7vDAYQKbQRDFQQVlcGZhI6a1LE0A4oFjMRCDuDB+11AwufkE+iWyEuEGPKJvcWJA9tF+QPEpeKx+Gzw97sB00dwvO27+Sgt80/1B1TuXMedz/wonAN8uq5AYNJhVZlBoFE40JdGXTw+4GQU8dUMurK5ZOBk3uILylEnmuVc8UGCDfaWwZPyCDaXO7HfAnPBk+yI9w8ywj7GSzdcwNpZRLi8PcOKtE/kb6L0nhwnzQd2ud9NvJ5+IBq9YZLdIXSFDPV3uERQUjhyParZPi6m2Tkmus9TSITFz8gQZ9rxQkYudf5TEJKU7vMpfAuQw4hQ/QVqZOu4JkkSuad8bW+fv/GYMXz4IQ28Z7x7lMW27xrTsvGu8+zc/D0UGKi5hFgLQAyhyWEd5Ln7qD6jTIxYgCkv8lHaM9FnRCy1jm12q5RvOneIerMBP6YLoFJn7VNxyMmsvRLDNisRAJ5JCOCiSFQLAI8S/SfvAeFCv0rfQXPJWNrsTIwMCDt7e2FE0AXNULHD1mg8/KCK1StyfZchJeLQZ2OsZhcRXO59lI4l3uGyZIoNcgds2InPIyQOTpVOkLIFqSJJeW8qCF94PCb4x5RDp35FTXpoVlDO8dA4Tp9F7GLxgcTDb47XIlOnePx4WEW1KGdOH59dLbphOsESeH+k0MewaTzh7DxrKQbBGjbgVNDHhkJlkun78xQXHfztDaAeh88pWRTo20hd5jG0uUeDJbltmkHvm9oAxGw4CUthbjBhteceqFFRovryFcprlFIGdwPBvcTvWMe9uAGweMeB5+lQsrMeeyUThL2PyWtD93n/bU88bDUXuzNeVrwgGikToa6V8lI10oZb26TycZmmWpo8j4nA5+xiAZMxVQrFp3SP33+A59hNQ/XD/VLw8Blaei/5H02DvTpdp/wWyEytnWHjF2/R2I33SL1z75N5PobpLmjsNl8Ideby7Hcc7SC3Gc0lekIPQPRjVvbvAGJ55SJHWTJvQf0IwSrQBTpS1LdLrgGkxvGQ930nvO51Hku5/ZoyiuC26gzvsrU2Qn70SLS75gYAgsZgTkTwHSNhwiyOgMD8FwFQrJBtTsWSTVXJNOfz6yYztabkSvxS51NuMGemTnEkKCEXMI5EL1gWeyDxKE500t6BJJOFgLJTDxI8HKVj9m1RzWX1Nvz/VNCmUloH1GmmZb7QSO5Uk2/TGIgcCSLdgSWMjEN79Ko1XzJFu1E0IxCsoOksFhyhIkekoz5iYEV/BgkIYKVFgZ1Flp3g3q5rl8zoSa4px6T1gfvldaH75eWRx/w/PRyXa9/1Qbp23yVXFm7WYaWr5bhrtX6uUaGlfiNtnehssxVRHG/632v1Yi65ovnpP3Mcf07pn8n/M/Tx6Xl4hlRn5rsZdephvvOO0Ve9jL/77rrSu5f6CrgntNC3jt3Lp9oBTGVBoW1e1kzlokd73bwPcJ9g2AInuFirxm8Vrm2ea5ZHYkxjEeFFSuYaAbrDHZMjDEfMzkrRoNTrvpbuYZAIQiUhQBSAZzVEdT6AyO+ozxqfHKppZs9egen+YcZGBpOXrS6WtVE6cwL53fIBS+gvXxpQCvxLtfhYe50K26U4hJozSAyzgQ0lzIZbCCTPCuYghE6afz/0EoWQ77QLuJf5Bzps9UPjIKDhDuWZ5168TvmNLQn2Uxp7rzgJ1pK1gbG7wiBR1Sa/FF/NECk6MnknxWsczHb4f4r0vGdr0nHN78s7d//VlZT7rhmILi4Zbf0bbpKLm3aqZ+7pG/jDplSrV41SnhCtaVKCJcffkpWHHrC++s6ul+1hlkicletEnnpS30y+JKX6DIGy0vWNJ5BovXxf0Ujjla+EL+2K6oBfkZdMxD6YEf2SKCLCZvnHh9fBLcR9lVbXw3Jw4uCsYTVIcgrR4AJzzrmZVxOCvHP8hpr/xgCCwiBogng0ZMXZNmydk+Vn669vEQMvLxIQUfb4ECIE6LrOFwZ+JJgbsT860x7pO1A7e7mz7yYDMqQB3tBHXLl/+RegXk6olP+q8++AoMYhMqZZJipo3XG/3Bi0jfhzj4r9x5HuPA5ytZWzMhoDnmO0fahAWnXYBceVK2aN/BxNZ55ksiSfgPTcKGCucz5GzFYoYkth1BPzLhE6Xbrsli0HZKOP5QX2KTuHaUQ2uBS8ERO90j0M5+T1q99UU2796q5Nb37yPCy5XL2mtvk7LW3yRn9vLxhe/m0eaVoZB5lhCZ1ycVjB2TFwcc9QrjmqQektfdU5jOf/WyRH/1RkTe+Udc+XJn5uAJ+4R3CnH9laMp7jnHDaFIyRPYB5woCOUTQjuHv6wIr6KOJlEUrjemWdxFtfq48ewVUr6yH0p9Rd95J+jXaQBtJWl9tZLWsQFjhSxaBogngg0+flhZdCYSADYgZpi60EjgB08EHhYEFLQiCPxiDCokyg+SPQRdTnEcYeRtNljwCDE4QEoTgBzpqz39IiR7PGPtYRYI1ffFkZBDjWaNTz3dlGjTMqdpBNCKkcHBBJ9luBIMemgSXp5HyNutyZ0QXI/zGoEI9MX8XK5BLl0+MwalUJBC8MO/jkMz7SHQZ6Ycg0NSddzUVn2LbwHlo8ldH1fH4M/8l4Y//m0QefyxtcaNty+TkTc+XM9fd7hG//jWbymYOTVuBMuyMhOLy3N21cs9eghDS9HF6L9pPH5X1j35P1j/yPVnz5P1SOz7TzEq14jpJHr3z+TJy95tk6OWvkbgGmTARJtI+te8tpBks9ZhrtRv66RXqBsKSkdkmR4Vc1441BAyB+UGgaAL43cd6pLF5dhoYwvJZ7zPYOThzA+skZhM6L2aVm9SMkG2AY9DSscpmadnAXIS/QVDcRALTzZFzao5Usne9Jnd1ZBFSiKn6kmrbsqUbgaih5VqnLgr6OHlEhyheci3x7BWiAaBePeoPRQAI28x/vAAV1SBSXzSUpRC03uR9wh8RwjZXMzDkjj9M5aVabitjOzWIA7Nu96f+XTru+aqEJmdrE/HfO37HS+X47S+Vc7tv8nPwZSxw4f2wa21YbtgwKj19TXLfwdyaYDSEq/Y94hHCjQ98Uzp7npnV6FhtnQw878Vy+e63yLq3/YjUNtbPOiafHfSpBGwQIUtkIc8x7h5o1NFeu0kA7wcTnHTRs/lcx44xBAyByiLg5RTUNxj9A4GZjpvxzvdevCKrVnQWHgWcbSUQIjwZnNDMEFGpfYnnMJyv7x8dD2YHHIbpgKg4gzLaAzQtDFqkT3B52yoLp11tvhFgcMIB/ZKmdOA5cObRYL0I/iAaHU1zOrMrAxgJtZ2/IL5QpHNBS8czx/NHvkBn/gqWnW6bl4l68aweVWKKGbocQi41yC7vAzokki4XI9QXYcAvVVb6dPWoP3ZYlivp6/rsf0pd77lZh1zYdo0cu+Nl3t9l9eHz2POsoxbHjtu2a8R594iMTjXI5x4qUBus96vz+EHZ9t3Py7bvfV7azp2cBUp8zRqp+bmfE3nHO0TwHyxQ6J/x8URjzbO1VidHJKvHP85L56MTBdx5cI1YKGbeAiGwww2BRYMA4xHdPAoJ/H1JQI2rEoo2Xymn6dviI3Ld9tWlJYCVQBC/KJLhmiweBJipjGrqFaddYAKAtguyggmVQQnBR43BCneBVZijdKLhhGPJkq7PvhcsBM2BjDGAnVdfUqfJ4Hj8TXlJeEF4IVKF39dqvj3MuUE/Vo7jOlxDq5eYUbn9l9UUfWFg3DOhppY51++8vLhdMCjPJQKR9kJ0j+qAn6+5PO+6a9lt931XVn30b6T9B9+eddqI+vMdfNEb5OBL3iRX1m+b9fti3VGvj+lrblLLRU1U/vN+/OrcE11gixVf/AYhg1u/9wVpvnxhZgG1eqE3vEHkXe8SwW+QB7wA4Z1Aa42/H8/4huWsHBIuoAQ71BAwBKoRAfp9rGakOyPNWbal4LKuBJJNA5ip4ZiwCOygg8GXBE0e/kfZFoKHDOg47A1WnI92kEZwfqa8cZmub/sXBgKQKxyyeVAhKaSUQCuRKgQSsEIJam1StWCCJbG1OxYdGRo8/Ab9Zy0ZYIApC39VT+unkRxcJ5NgDt6hk43gusHUkTyKPLsQMdLJ+Elwazzih2N9ucyqEF/WKC1WC8P7A5FkNghZDpLiTBjks79GzbrLvvpZWfUPfyPNmrMvKFFdTq3n1hfJgZf+iPr2PU+TyCdJe/C4xb798hvCGkRRIz98pjQaYoJm1j5xr1z9xX+VjQ9+U0JEJQXl+utFfvEXRX7iJzR0fGliHoTDtg2BpY4AYxe+3izVOq8aQAZON1inuymQP5Jw4pNCMEDQfp3ueNu3eBCAQEHK8E9zARb5tg4/VMxUaO16NFlxprQlEMR05IfnziWKdtfErcFPxaLrAKudF/cGfCkwNVPX8/pCudUKMMtCRJnolEt4d8gPiIuF8+nI51rkUER7SnqcdKbxfMpIPSY0NCjLP/mvsvKfPyL1Z2ZGsQ6sWi97X/WTcuiFr5exju7UU5fU97WdIXnOzgn57wfC+kwWppXLB6iW86dk91c+Lld99T+E5NQzZNMmkfe9T+Stb1VHID9Aacbv9sUQMATmFQGIGQoN3JBY2KCQfj2fiqMEYeUdl9PWW4r1Ql91moBxoicBNDmkTJYOAl6SZ9X4oc1LR85yIYFma72arCBjzHKCE4zVyxo8v1KSSGPe3bWu2dMQekRTXw4+Ca5Aa4i2jzRG+BkGy3CkkaXrMD1zLGSMF5Zj0VZyDKmMeOHKKVyTBLtoxgt5T9xap3OtW0iXXIP0rfro/561vm7vjuvl8Tf8rBx71l0azGHmw86WkFyzvkajZ0U+/3B5nwtyDm75/pflmi/+i6w8+NjM27xhg8hv/ZbI296mS/IUFzAys0D7ZggYAqVAgCVPGXO2qnWHMSV1adNCrwGhZAwimwPl4hOP9QcFB1YxL5l5rAp9ABnQMLkVMqgVCk7weIDCeT9b5HHweNsuDwI8rARQ5BssVGgtCBiB5DmXg00rmnKmeuF4VjbAXMrLk0mcuRm/CohmKnHMdF4p9mP+xiycj/CsP3NmJIFBPuekHoOpt/uT/yJr/vZPpe7C+Rk/n7jlhfL4G3/WS91SqO/ZjIIW2Re0f9duCMlXHy+N6TdfeFbuf0Ru+viHZcMj3515yvr1Iu99r8jb325EcCYy9s0QKAkC9LWsdQ/5QvxUW/5SqPiWO79aVldikQDGGBYfgAAWKyg+WO/aW59eyw0qL9KVWVEfwHQVyLQPx3u0gJjyGHfnmvIi9TrcDBKaEhyAj5e3TJGamhnwk8ujiXf9UqtiU+ti31njNiZP98xet7dc2EDYWOWDFQryEbduMc8Hf97qHqqjTCeUjRSjwUxXXq59aDO7NKUN/rG4SeA7iW8t666iEQ3KkKbI2a/rIxcl6l/W+ZXPytq/+pA0nDiaKCIWCnsm3ife+E5N0KyRvCZpEbh1W0QjrnU1mIH0z03ak0q0c8WBx+Sm//iwbHzonpklYhr+sz8Tef3rCw4WmVmQfTMEDAGHAOMZ/tUk/08V/M9ZYpA0ZWc0SwU8BGHcwLc7GNSYem6m71zvbN+4Z/XKpqhIPb8iBBCVI+NQLjZK5RjM8PljkCUZr1vdAYd/BNDyTc3hnZDyD6wcVSjrPTJgpib77VP2fFqdI/Hz4jr8QRIYSG3x7xQwS/SVe8J6veTvq5Tg09emL2Ixsy2SP7PWNS8syXfxAUyV5vqIPmeVaw/Xb6j1/ROZsODrgZ9im/oIso0/IqQVEzXPf6HSdu93ZN2ffUCan35ixqlH7nyFPPiT75H+dVtn7Lcv6RF47m4lgec1qv1S4fcgfYmF7V2uy9ChEdz04Ldmnvj854v81V+JEDRiYggYAkUhgPLokubNRJuHNSiT4L5DfwxZQ9lF8n20f0ErJL9hFYP7sBIT/fYUwZDKpSCR8BFydGJtQstYjMKhIgQwEwip+wEFQsZABjMeVBUmAyk+XYqFt1SRtl2/N6aemtd3AB1QoFjMHuf5zaoBIpKSwRENj4s6JSccpCTVh4sbRB29AAGtD1pJbliX3jzKQZVbqD9WXhVf5AehjX382EDZW4mmNxiYAam/ekNLQhWfqwI8EzwjvOAEeSCQwNQXj6WkeCZ4zsplzs5VV/c70fKYGtCk4/ORa6UHd577rD13Rjb8z/dJ51c/53Z5n6evu0MeeNt7pXfnDTP2L/YvN2/VaOaLJM7WDmABS/czT8nt//RHsu7xe5Ot0Mm3vPOdIn/wByVddzh5AdsyBBYmAvT9BKKinMpkEWRseEYXu8g3ByyKMVIsoeSiTJReZI7QS3m8AhJJ/01GjHRl4tI010wTVUUA83k0cI68blNrxptAGdys1JuEI+Sx836SU46BQcO6IXlocPLRTnJeNqnXujH4Qy5TTdaOPKTuz1beUvmNZQSfOjFY9uYGyRrbqOExnaY+K7kqghn1oGos06nambywWgcRyDxbJNbNNhPMda15+13Ti6z493+QdX/5IQkPJ+/NxS275YdK/E7tee6SNBnuXqf3d21MI3kXNgH0nivtJzf98Btyxz98UNrPnkg+au3tIh/4gMi7360jUX6+pcmTbcsQqH4EGI+ZEJMDFb85J5AvllVkfXesf3xH6YT2DbLlLIEoElaosop8xETVMoYhBC+SQzMbn8DKuUZ9ALEsuhWnqE/PhTHvGlinsq1i5V2oRP8sOAIIYFs0ES5sHK0d0SwQOVSgqERRqxKBibYuKNwwbORnL495NzHd4B08fi7bkAsvinmFH42K+pa1M0lgjGaoUMIxl7oshHOZOXnRs/qmMQsqVXqSbG0nhQprmhYqPDc42KIF5lk70zeWKILOgE6B55B7jDmA5eUggfOtCUxUMo+Npr2Py6b3/4o066eT0fYuuf9nflsOveBuzX6tmqIlLG+5IyaPHq+VQ2czm3gWEjwsOXfdZ/9J9vznX0vd6HCy6jfdJPJP/yRy7bXJfbZlCCxwBBhj5rJaEyQQSyB/TPI9Mqmf7M/FK1Bg7dQVqFwACFDCTbB4krUCCyjf4TaVkAVHANOBAvCwcBwhScjL0mCOZHFzGKhZEgx2zvJx7APsXDcr3bUK2Ue9IIK+Ghd7v3ih3ZiLzZ9wJpI89J6JVsng3p7BrDOomWcW9417AxnneQi+jPmWxjMEcSXYAsJKWc431T17lAVRZBkeZnee60C+F5iH48jnt04DPFb8299LTSCh8L67ftQz9463dsxDrarvkq/aE9Z7HZNPLQYtYADexr5eue2f/5fs/OZ/i64C4P9C8uj3v1/kN3/TEkkHsLLNhYcAffbRc6OexS/VbaecrWGsYWxbqWMN/CTo58d1URAUmuu2VPVdFATQgeG0g2hi0L4E1bFoBLvV3IdprleXBMNxslKCuXmdrqvJzAPVMHXDFGzawPR3wAVZpP+1+L1oZpHgy88zQ7JxfDcLEToTJEj2sp3Pvcc/pFo1gS2PPiBb3vNOqT/Vk2jGpY075fvv/pCcu/qWxD7b8BGIhHQCUIZkztWALxHDz/+rX5fOnmeS1dmzx9cGXnddcp9tGQILBAHcds6oBdClAKtUtQk0xSqUTcmAFlE54rxYirIRwLLaeWDFpRS0bNeqbyDkD3v8M5pU8cg53yETtStmYrJss/xJJckfbeShI2gAB1K0kSPjMU/Ni/bIZDYCaEfxj9igZlryQWKu5b7iYzlXCZI/ykLzeF6dbQsViF++5I+ySc+yWmeApX7uC633rOOnpmTNX/+x7PqxVyTI32R9g+fn96m/+ZKRv1mA+TsWK/mjdb27bpT/1nv/6I+8S2LO3P/ooyI33yzyh3+oau3ZUe8ZYLLdhsC8IgC5IsMEqa8qTf7cWvXZyB/gYEoeVreialMOlHwt4NQnwTP56QBcrHA+kTCYWVmHFbPuZdXspaa5wOkSybQkWLHXL/Q8tEztSm5YKgzigTaQm0/QSNURg0IbV6HjeaEhbCS7LFSIusJMy+NAUJATlo4rJh2MOz+fTyKdyQnFBCSVhOZzfjmOqe85Llt+/Z3S8thDieLP7r5Zvv1rfymDqzck9tnG0kWAtDEv+Mv3SOeJQ0kQblGN8Cc/KbJxY3KfbRkCVYYAKd2Oabq3crt6pWs2Y8qWVUlXtHTHBPcxHqGYqpTvn7t2Ng1g2Qmgq0Qhn542TwkfBApNEewajd/loSkvcid4syFVwe+FXKecx6LJWtVZ7y3JQsoZvrPsS6OSQeprZDA3+lfIsK4vDf53aFXzIVU8O2gSOcfNtvDH3K7JN1n6rdzCM8skhbqnC+sv9/UT5esz1vW5T8jG3/+NRIQvyZwf/rFfksfe/C5duq38WCTqYhtVjwBBIjdr7sAbPvl/JBSbDnxZtkzkX/5F5FWvqvr6WwWXFgK42xCcV2kyFUR559qWvPz8cSXyM0X4VsFs0cPB8ku1vWAIINo+zLz40pGoGU0OiXZH1ZyKM34+BKBUoJWiHLSWq9Q/AALIA4t2kKTCaLhYZ9Yt2FyKay32MtCu4d8BjjwnBAOROykbMcQfELcAko274I1K4cSEhaAQSCjPbiUnKaHREdn0u78sXZ9XDc609K/aIN/6jQ+r6W+P22WfhsAsBJYfelJe/CfvnpkyhuCQD37Q0sXMQst2VBoB+n+CPUmOjJWHOLb54gV7trR78Qa5MGC8f1qDHtMJY1STt2Zv0lqV7ri57KtqAshgvlbz6jFAs1wKmhtNT5Yw5QLQfN/ouYAPCUT7h2kQ7dSKjjov8TWpbUwKQ4CZVKpPHjNAcj8Gxcv/qLiny9UYPK6c29QVxweCgVgDkk6AZztoli7H9etO98i2d/2ENO97MlH8wRe/UX7wc78vk00tiX22YQhkQqBueECerybhLfd9LXnIc58r8p//KbJ6dXKfbRkCFUSARRgw92rX6nECgj7RppHPbz7kmo2tOQMLUVSg6Dl4KnPyaBRDKAmwHsGHSp1JIhsBnBc7EOZPFyZNo0mqSC41BADY54RhVDFcsMIMhUGfdqGtuqDRyQ3LWft4NplZsI2sUMVTyR+XRTOYKjw/7appxR9wvoS6EgIV0oj0xjq/FiT/JDFp8PkuZf1aHrpXtr37rVJ7+ZJX7ERjs3z3F/9Ejjzv1aW8jJW1yBGYaG6Tr//2/9W8gR+V2/7xjyQcVe3E974ncsMNPgl8wQsWOQLWvGpEAL96SBdC0Icjf6wk1trkK1QuqvtNMMEyKcDICFIOCwwrjmXKLIGmkqVEGfsZCbJpKZ2rEu2KKRGspFRshCRIA7AIiNiky7Mh3EAGQ0f+2FeuwZGy50PQQhF8gBaQh4DbW6ukgIeU1UlKzfbno43zec10i2rjewfRmk+B4OOjwlI/CH6J3ZoqAHM0Ec+ZOo5i67z84x+VnW99XYL89a/eKJ/5i88a+SsQ0D1bIrK8tbTZCwqsQnUcrhOYJ+/+Gfn8n3xChrqntX69vSIvfanIP/5jddTRarFkEaAfJd/e6mUN3lJr67sbhb/tmlHCLRCBxQ0lAJ/lEPzTMwk+4M7ak438ZTq/UvvLg8x07T3zLdo+JX8Ec0DuJpQZk6G70o6QlQI09TqnLo55gQxEMCOw/SPa/md0BoMW1PNtxFyIXtukYARY4qdbF9revKLJe9FdcI17+QousIQnkB+KGajzP6RuXs4o3Y+faymkZmJCNuqKHps+8B4JaboX5KQu4fbpv/q8XN64oxSXWFJltOvc9PLwbK3ykgIh0NjzGjH+33/zZem56Xn+Xp6xt79d5Hd+h/U4A0fapiFQOQRwoWLyTz8aDO5jm1XE6HNZjYP+d7UGY5ZDyESSOm4z7hxXl6Q+JYDlELgULk6+fWnuV5gzAWRdVCeYuJxg8oT5onolNQtZsCF9QfWsO3Yxf9J+SCAmQTcTgQSSHxANIM6skEDyBpoUjgAvPFrlExdGZwRbXBoozdrPhdfIP4P7zTuQTug0AotwpDskr33hwX7Z8dOvlxX/+bHE8Y+/4Z3y5d//J7EVPRKQFLTx4OEp7aPS37eCCirxwW2NNdKgC3bMh4y1d8pXPvBP8uRrfzp5+Q99SOTHf1zXdfQ13MkfbMsQmF8EyMXLf84FCD/scgj+fSxEERTMvvj7lysDBFwKX3LnQhe8djHbefkAQlycZgVwIS+Ayn5IHp+QmCC5W2ym3GLAdedAAllk2uUqZD/78H2EzY81xbRzD3mYWmSwQy3/TwJr0LCeVKINuebFhxQGJyT5l1b+I3lXcGjmneI5KEYily7Ijre/MRHsMVVbL9/9pT+WZ174+mKKs3OmERiuMj7Trebo5+/WANyQ+klHG+QzD+LaUHmCGg+H5b6f/T0ZXLlenvX3f+AvI/fxj6u6+aTIZz8r0tlpz5AhUBUI0KWiISR4FKG/LZf0awAKgZ4Iq1vh+1duYczI5CvImILiAdcyzwKrGGTTFuZFAIPm2rGAZnNscn79rMoNdKnLT5ekGiIwMBKWFlVTpwtyKHUdFmN54NauPnbMikgVwwojDJHVQqbpgND2cq+ZJOHMzDKB1JeVawqVOl3Kbadq/hqOH/FOHW1TDY1q/Xp33lBoUXZ8FSOwoTssz9oOI/UHlfrwmKaVapBzV8o/yGSC5anX/bSSwHXyov/1C1I7Piby/e+LPOtZIl/+ssiWLZlOs/2GQMUQwMWMyGD6V1aaWq6+12fVF7vYyXa2iqMMg2z19GpqGrVyzrcEySFL4mJtSjVTB+s4zZGDu2y7kghABpix8IBiKsanjZuYLrq1kvVaiNcCS5yAySWZLjhkPtqEun7fyUEvIgzTgL90UJ03UyxmZtpw+IBc9aMvT5C/weVr5HN/+kkjf/Nxc8t4TWwrt2/HvBQkeyElf/M/6T5+x0s1OOS/ZKSj20fg4EGR5z5XQzMPlRERK9oQyI0A+Vf7p82yzgrJZJt+t5SCVo3xhj78qeODVUH+UtuHidphkPqb+15aVFyp9pk3Aqxd2Fgf0kCGem/GQkT06Ig6l2oJXRrcACGEyZvkj0C58MK8jCaPQCZIu6dm1A9U7u4++TmdePFEE4BHdUWQKc9NgtqzdBBBIGc1OhjTgVcGP+QpzU88LDve8SMSuXLZO+Pyuq3ypQ/+qwytWJtnCXbYQkHghi21EpKRGdUdn6rT70FCOOPnin65sON6+cxfflZe/v6fks6Th0VOnxZ5/vNFvv1tkV27KloXu5gh4BCgT8UtzZPpD7ZZEKCU6wS3NKqLkY7Ll9Wqs5DFNIBVcPdIFfJ0z5CfLFr91/ApGNE0JqiyiTQybeD83yTcIPafHPKy0KPJY51iyCDUnPtFNne0fTgBn9JM9Wcvj3m/u84Iv8S1XfWeOh5z9cYVjV6kGv6zzeqv6HxsM7W09YEfeGleHPnr3X6dp/kz8pcJsYW3v6OpRlZ3+F3y5aHZRO/4xerqrvEH/Pz/+i+5uPkqH+yzZ30SuG/fwgPfarwoEAjGIQQb1KUEMBiwGvyt0G36bPp6+v+FLqYBrJI7iH9gj0aykrRyjRKFlRq+DrkgupVZzeaVTd6Mo0qquySqge/EJY3S7tVgHQTfQkwJBEJxTwj5P6s+h4T8sx/TM/vRFAYFcwGpCFjTGiFARfRv1zTxUxdG795DLNNJ82MPyvaffYuER4a9n09fd4d89f3/YCt7pANrge67Y0dENnaNysFzjXJWffxOXozKbVuTjZmM1ctjxxhw6BWqR8bau+QLf/Qf8ur3/Zh0H1Xid/68TwK/9S2Ra6+tnopaTZYEAoOB3HzNqqWjDz98dsRbiYnUMOOT2ZMy5wKJiXous2quMqrp9+qaUlYTMvNUF8yGaP5O9I56vgydql0isuiCRhGblB8BfDpw6uUlZ9khEkpDvndvaPUcitH2kWgUwuf8SjgWp+NzShRTyR815hySlqYKvimYqyGAjUoGXQLT4HFNuqTbjp95U4L8nbjlhfLlP/iYkb8gSAt82yd/Ixrl60geS2HWyIlLTdI72CT7zzTKpx5AI1hd5M/BPt62zCOBvdumCd+FCyIveIHIE0+4Q+zTECg7ArjhMGEPyuCouuFo34wFB63dXIUJvhHAuaJo5+dEgLVjWUUER1O3ckq2aJ6cBdoBeSGAXwfpY06q5hWtHaZayBkC/qN6X05eHJUzauZlDWJn4s1UeCv3T8tQjuidnyhHtYSUxx9LBEI8SWUTNAUT8LHjba+XyOCAV/ypG56tS3R9RKJ1pUkinanOtr9yCNy8NayavxG9YFi+/sRMknf/oSn59t4peeIEGuXqJH8OKfJOfvF//ruc33GDv+vSJZEXvlBk/353iH0aAmVDgH55n7roBDOT4EbVp646QcnVXwePDW5jxUGKPT9YVjVtmwm4mu5GoC7MWMgrtEaXvIEkEFxgaWICAJVpEyJGfkYyzEfUby8o4A8ZXF/f6Jl/STmTKtynoBZwSDuhJzVKDBM/nYgLzSdwxAvyUWbIzJSs9cwsMSuTGqa+55js/Km7E0u7Td12kzz8oY9KdMLIXyrmC/X7xuUh2bZCU6mojE3Vqr/vbL+/hdS2iZZ2+dKH/lVe8f63yqr9j4r09Un8rrskfu99Elq3diE1xeq6gBDAQoaZN0j+qD7Kkxb1zb6sgXjpUrDl20T67cVG/FzbZ45wbq99VgUCvSxs7WmG/GVvqqJSi7QS4MwfATdrVPOXSv5Sm00UGD4l+AUGtXaQP/ZjNkboOFzn420THqzCORA/EoST9qfnwphnvoD41509pQEfr5W63nPesVM3XCNDn/h7ef5N9Zo4vLo1QV6F7Z+8ELhli6qF9flAGiLjct0GX9Ps7Vig/0w0t8mX/vBf5MLWq70W1PT0yNiLXyaH95/xNDQ87yaGQKkQQDly+MzwLPJH+fTDk9qnr+2un9FHF3LtXONAIWVV47FGAKvxrkzXCY0QhKQcCSyruNkVrRq5kkjrgrIP8y8avnw0rRA4zMN8ktplixK+Do3u5TvblEXal3TCfWW26pYLYgZLEtEzmh7GW97t7W+S+tMnvVOjV+2Q4U/9o0h7q36fkruuj2mwiZHAdLgWum+TauBu2RrRFEyVx3N5O64GQTIUl91rxzUivNBWVN/xk02tuhzhx2RAE0YjTQeflhVve7OMDAxrf+YT3uqrtdVoISJw+tK4jKQE3bl2MBk/eHpIzqmlRrvlvAXNIf04wviwWLV/tM8IIChUqUD8CDl3D2OVVnNBVoulDDG34ltVpzPFfEgfDXV+ezgWozHET3BZi3YYatIl1xT+fph9r2hkcMFOx1NTsuWX3y6N6vuHRLdslKHPfEzincu87/yji/zIK25Qk/Gaha8tSjRqHja2rw7L7dvGZeuKEXnxNRNCCpZKyvZV6e5fTFa2p9tfyZqV5lqjnStUE/ivwio1SJumMdr2mz8vy5oWR/tKg5KVUiwC9MP4aZNuK1UYL/mP9GoIuXVzBW7g9422j1QxKASWitLFCGDq01NF3/ETc+sZVlG1FnxV6DwwDeAfgqYuXzmtgR+H1Nzw1IlBj+CRDobOAq1he1PECx6B/OFDSEoXookLkQ1//DvS8f1veafElnXI8Cc/KvGVy9MUEZUbN47Ky66HeJpGJQ1AWXehQb1pE4ODwy4ud+yobFfY1eKuPbOqjSkawIje39s1Rcwbbq2RN98Rlxs3LRy37f51W+QrH/hHmVSfWaTjS5+Rxt/69ZkNtm+GQIEIoJU7eGrYy7qQ6VTWAr5GMzeQmiubYCYmQwMTeKKIscwU2m9nK7/af8uOTrXXfpHXD+1fvpqpRQ5FSZsHpvW1uYkf5ncIHaaEK7q8EJFmkPIdGrBBLj80gEQET/TpcZpuYC6zxuX/8Y+y8l/+r9fOeK0GBPzr/5aYagCzybKmEXnjbXXyvf0sEVYY2cxW7mL9jeXVNq4Iy02bIV8z8bo4mPt5KCUuteH0BDB5DSV7m2tl5yqiGIkS9iUeX1hddu+uG+Ubv/W3ctcfvENCsajUfPjDIlerf+A73uGaZJ+GQN4I0BeTJo0sGZmEfpgl4VCesDQoE3f86V3/jIYQgkiKL7Yz5V/NVP5i2r+wepPFhHwebYEAmlQeAbR6JHcm07vz03O1aNR7gtaQzoM0MHRImYTOxXU6mY5hf9u935GNf/AbiUNG/+L3Jfrs2xLfs22EZEKef1WNXBpulO/uI4I429FL+be4vOkOTOizTUY9fU3y0JHKAbd5RUjqwrPrwd0ZmOZ6r9qjEYz1SeLn7tzKDt064b4tjM+eW18k3/uF/ynP//Bv+hV+97tFrr9e5NZbF0YDrJZVgQAT8mdOD3sm3VwVYi14Jvr6v6xf3iirdGEFXHKUG07na40p+ZudtD9XuYvtdyOAVXxHO9S3zKSyCOArcpgl+DKs8cjSfCzbh7kgl3NwPuSv4egzsvWXfkpqoj6RHHv322Xix99UYKPj0tU8InffEpGvPRGWKyO5tEsFFp/m8A0EUGgUa21oUjvkOnnsuC4H20duQz+JcZpT5nXXjtURJX+jaeoQlh8+Q/JYHQ0qJL4GcvbFYlKr2oopWdWhScHr09VVz6lcNWdXcA57DrzsLdJ1bL9c+/mPiUyoVvMNbxB55BGRFSvmUKqduhgRQLsHcSOlFoLLTp8meEaThz9fNuEcFCek2AoKSfc7dR++32gDo4s8uCPY9mzbxjCyoTPPv7mVJua5Gkvq8iwllIn8OSDwQSmFhEZHZNu7f1IiA/1ecZMve4GMfaB4H6kajRJ+2fU18pXHQzIwWj4SSKTqs7ZBmnzSWh8Z04AKh0iNPHmyQfadyqwZdUdW4rOhVtS/LyIr2/D5my3nBup1UKic9o8aREIzk9P6tQpp0ueQGqbjWf1+p6YWKAPURt7/9t+W7iNPy+qnHxI5dUrkLW8R+frXFRAbhvxnYGn/y6QaywtLotaqlYU109HS4X6TmuMvHVIQP1J4cZ5L64W1BgJJQMjFAQL3NOm+kkATHwGzMVbxk4CZ0aSyCNA14OfHf+WW9R96XzLil3Qvf/8XevG5RUkSJfzyG2K6TF356n/nLuqY6dmMy3XrJ2dE1eJ7l9vnrfRoc91X7tE0PW2YUtPVNyI/2A+Rrayg6QvKlK7z+519dXJxMC5XrQ3LbQkyHTzK3x5Jxx1nH1aVe2K1dZ4/4PCy5X797rlH5H3vq8q6WqUqiwBavyNqeTneO+K5zaDpI2cky2vmQ/7oryGABHM8o4F6Tx4f8P6IFEbjd0q1h5Rj5G/mfbWp10w8qurbJV3GhkTDJuVHgFliv7cKR8xbkxffvxIp+tJWvvNLn5YV//XP3m/xpkYZ/thfi7S2pD3W7WRd2OWtE9rVZddYQQJfeYMuZ9fXKPcezH6sKzvfT4jlsqb02rRkGeQrhHBBFNGW+hpTpYEyNB7RWb7WUH8mJxyflwZjcr6/tLNyomfvuiGiJuoMplRF8b7DkUSS7mTdy7918lJEl3+DybHeb6Pcf8g3Qd+sOQm3aVqa9KJpLQYa5YfTx6Y/pvr3jnSulG+87yPy6ve+RcJRfTb/9E9FbrlF5E1vqv7KWw3LggCuMofUt28u0be440Ai6VNqNZ0L/te480AgTTIjYAQwMzbz/ksltFDz3sh5rABRvUT5Qvb61czgOqB8gzeKrXp9z3HZ9Du/nDh99E9/T2I7tia+Z9pobYjJfYdq5dk7IFe5CJMuJzdT0ZSp2Az74+pTGJYvPx6T8WklGbnyXqaJqB2hy3Di9G7qN5N8Qkxb6/mbfWZcIkoC67R9yUAWVj1huTSI+Mg4eRt1sfchrp9Zuwnxu21HraxfRsefifyF5KFj9WpqAsfKy8NHJpUAhmR0sk7JHxj57dmyfCZefs1CcnmkQf0Uo94ExR1b+VqX7ornrr5F7nvn78pzPvJ7fqFvf7sfELJxY+kuYiVVFAFIHGvvklO10ODFuL7SmGznKtSB6F/Sc5GUn+T6JtkRMAKYHZ95/dWCQMoHP5G+Jy/6ZgFW4ghKPsEbweML2a5RB/itv/zTEh4e9E6beNNrZOJHX59XEecHQnJSgwS+9lSdmglD0tZAGgPY2czOMxqv0+Micwpu2L0uIvWRUXnpdY3yzSejQv/8omuhH9NsMK8a538QWs1V7VPyeiWdxy/We4EsN2yAxM28N9QgpmRxYiqsxF3J0bB42kPu4Q5Nju0Tv0xaNOoTke/sj6hmoPLkb6Wu/oFv5uhEjfzwcJ36TU6qf2K9PHR4UpOJo7WYqa0YnWyQLz2K2SodMcwf22o88ulXvVVWHnhMdtzzWZFBfRd+6qdEvvUtXZrAvJKq8X5lqxOBFazF2z8y6QVuXL2hJe/0ZX1q5TrRO6o92Mw+LNv1Mv1GTj/WcCf6t18T9ZPFoRTlZrreYthvBLCK7+Lpi+NeIsuG6WioKq7qgqkajsaMMXQ3rARS6Q5i3V/8oTTvfczDi5U+Rv7895XTZNZocSDasSO9dYLmCAJ0eSguX33cEZiILGsO6Yy3Rp2l40qIHGFKapa8ixXwD0TluvX+7Lm5blReezMnMzC7sgsorOBDo7KpOxuB0/unJLQhon8tIt36t31lvhcJybf2huWCmpznQ7bp6iP9Slj3npxSnyS9f9tENYEj+sf9nz0Afv9AdUZUlwQ7fea//64PakDIw9Lae0rkO98RIUfgr/xKSYq3QsqPABPl0zqJ9oIrYpoQX8eprauaPALGhIy0K6RuIfoWchaUi5oov1fNs2RVKJVguXFCIEibJueHlJpkRmDmXcl8nP0yDwhM6UuFidJk7gjQIUH4WDfSczg+O1xx8tf6w+/Lqn/8315j4nW1MvKPOuDl8PtDm/fJB2qU/GUidEoIlfgd6415nxDEuQjr475gN+Qv9bmbH9I0l7aknnvycoOSv9lEK/W4cn2/98CUrOvSNX/XheWWbdjnHcbp63T7dtYLTv9buepYyXJZM/ieX/2z5CV/67dE9u1LfretqkQAYkcfSloWfOwYpxBIHhzswKkhLwCDPKkEXzx1fFBJYtIci79175WJkpI/rq/FmhSIgBHAAgGr9OEXNIKpVGlHKl33arke/iV0WET3NukslWizUs4882knKV82/c4vJQ4d/f3fkOj1Vye+Z9rYfzqiaUrmRuoylZ1u//bVXGvx9aRE2t53YP61AYfPiS4nOKVa29wYtzWMyhtuE7ltO8sM5j4+3f2s9n1nrrtDnnid+gAi42oC/4mf0Oig+b9PfoXs31QEcJ1hGbanewYTa+0Gj9l7YmjWGuiQwmZdOckJJtqd65pLHuDIuuyUjRBAado/h3jmTyOAmbGpil8IUHjmjK44oQQGdTqzJ5PCECAaDNzO9I2p75jmgSqBw3FhNRBZ8zd/LA09x7zTpm6/WSbe+ZM5i4ip9m/vycoNho2qlOpsTnc9XfZOCRR/fmRvzqpX1QGY0L/xFLS2ckQ6EwCHz+HTpymp1Q8wH8HncrOaxN94W1SevSuSzykL7pgH3/ob0rde7eHIo4+KfPCD/rb9W3UIEGCxcUWjrGiv96JtgxW8on536VxqCMhAO0g/7ITJ+AZdoaOhNkkM3W+FfGL2hVy2NEQ0+TNadfF8//ArNMmNwOLsUXK3e0EdAQkkYGHLqsbEDGdBNWCeK1unnZY6jXlmh+PaMQQ7okpUrenpJ9T0+7fepTzT74d1gMvD2X3/GTpHZyYsb01J7vyqPVAkTM1OauT0ZU0lo6lHcPT2JaQdd63sWh3Sjpe0xSynROJp0Rl33POv61eTNP36+q6wbFohqnX1z4X0DI5BfkRzcsW96GKKhZwzr+GouJIjDErs47hwTVzNpQS8FNehj0cb5J69pPjx6+C3Yf7/PXQ2pvkJZ9ajb7hJ0+SIpx1srScgBCScxDTAZUTzK/oBMm7vYviM1jfIt9/zV3L3r77OTw3zoQ+JvPa1Inv2LIbmLao2oGFb3l7ntYmsCVfUHxnN2zJdeg0z79hETN/bqDfRdg0nGtdPqxX3iCOBGggkcPuaJtl3UldW0o7AZb1IRyJdWe7TI5Q6kSdDAD7ym1cmx0b6jkr38a5eC+3TCOACuWOsTjEwElWHWlPaFnrLIBd0ViQJrbRZoEbNWZve9wtSM+0nM/br784r5QvJgp/qyeT3VygCuY9/9k6WSpsZfHHwXKM8diy1DjWaPiXm/SVLDRIVfy9rEh84E9W/5FHFbn35sajcuatJ1ikByibkGRyb1Ojg8ZBHLg+ejcqF/tl1y1ZGpX473RdTskxeR79N1P3rTybJdygUVoJYJ6TCWa5BOWs7IIRRdbIPyyNHk8dVqr7lvs7F7dfKoz/6i3LLv/2FNlMnPe96l8i99+Y1USp33az89Ais7WqQlR1xTTrv0wi+E317ZVjXJlcTbFCwvKCtc+QM8odA3pbrc44vYT7Ez5XJUm9D6osIGYV8OtMvv4+pmdokPwSMAOaH07wfRQZzZljLdH3g4MM+7xVbABWA+GEmWNFRV3ECuFKDPpr3q/1RJbp7p4z/4s/khdjZK5gzKjPQo/3rbJ6pYbs01DRN/vKqbtkP+oEGUGB26tSI56aGGjUdoR3UZWWVK/SpFoKcfuMeXHT+C2MA+NbeKc212KDpdsZ0goK2N1lv/D7PXonpH0Sa5eNCGjxSp3kR47LhlpDmD9RF7auU3Bb7MDz2pp+Xbd/9nCw7eUTkhz8U+ed/Fnnb24otzs4rMwJurV6sAyy1dlb/sqXQYiLeqP2wI3+uevTPmSSiv6Wu3tHZUuct+VZT42sSg+dSl7N9TJZM8kHACGA+KFXJMWivzmn01OplOmKbFIQAUcD80flUyjxQf+KorP2bP/HqGdcBfOSv1bRVV5dXvU9cqJzJcptqlZRKJeqF9vGbT+ELmLljThxcwY1eXS2kt78yJvFKNWvaZ13qwuDNfUgv+A0+2RPVP8ggprTMx6Yvofr3slTcD37+D+TV7/v//Mr+xm+IvO51ahNfVv2VX6I1pC9l6bWh0WhODR4aPjIxpK5ulS1xtCN/EV3dAzKIJjFo7g3Cjm83njX4KY6ri4lJbgSMAObGqKqOOHVx1BuWVxkJzPu+MCscUHPB5UF1Uq5gv7DuTz8goQl/Njr+c2+V6E3X513n8xUkOofUVHrVGsieD87BMxHdWlxEK2/gy3ygR946whqQ5Gv7asM+zoUEqEAGz1xOagvLXOWKFn/6hjvlyJ2vlK0/+JLIxYsiv/u7Iv/7f1e0Dnax/BCA/B1Q/z1Sa+Urzn8QU7CeLkQVp5qLKYvgEHzembBj8cKPm+PRMKIx5HxnCSM4kiwPZHagF2Oib5IfAuZQlh9OVXUUqWFIaMxLYJIdATDq04zwzFAH1Y8ym4kie0mF/dry0H3S+fUveCfFVnTL2Ht/sYACfB+2Ak6Y06EEW0TjmJyRsDx1ojKmZ/96S+vflUr+NnYHu13/HZ6KzV2jRxR3Y34K5qoGnWXiJhua/Dp+5CMijz9e1fVdqpWDvDkSlg8GrNGL4LtHKq79Sh4PqfaQwJGg4BO4e32LNGvgHkvLofU7fWlcBlV7SBlM6I+eG1X/3gm5qH+sI0y+QczQfJrkj4BpAPPHqmqOHJtUU5Am1wzrmMHLQtbzpkCepaqp6DxXhMCPU16m+qR5syJV0oCP9X+smotpGXvfL+dM+OyO5TMWr9xr2alLkF2/MaT+dCNeFYbG69QTLf8ZfbDetp0bAYI/BnU5uKT4Zvba0ISauCJeipjkb4VtjarZ65U3RuTxE7pCw7SGMVcJrBddr9qV9UpK13XWKIGMeausxOJhGRgLy7BGbZOEfBQLdYVkuHu1PKIBIbf/0x/ry6DkgICQ73/fAkIqhH++l8Gfb7cu+3ZeAzh6Lsz0IU5XBhrDw0r4nFnXHeNMwASJbF7ZJBF17u3t1wTTquSYmIrLqmV1SjTJNhCVDnVPuagBJkQV21q/DsHiP4NT0eJLsTMrjgDZ11F1M+PBB4O8R2gFTfwUInRIjx8dmJGBvlLYdH75M9Ly1KPe5aJX7ZCJH39jQZeeiFbutdy4PKTRpj75o5KnLhVUVTu4CARYD9iJGrOmN+Oyc+1ciX+NfO2JKbl6HQEjuTWKL7o2InffPCGvuGFCrl03qmY3gk549lhjekI6GkdlrUZev/bmSXnFjWENQPPJqqt7OT+f1OTQl9dt9S9x330in/50OS9nZc8BAXz6nHYvVzHkBIToBQViSBnXbmzV3Tp50THtyvCUBnoQZVznue306/de1fah5evp9fO5Bsuw7eIQqNxIU1z97KwsCLi8ScyUmDH1qH/gUhfMA2c0CoxZ6XxIzfiYrGN932kZ/YPfVKtq7sHYHc/n2OTMDjL4W6m3ryTWDvZLPqORpyaVQyDo+7epe+7XxT/wm09OSl+OJe/wRexqcWo9n4Q21o5pQl2RXk1PM1PiXh7G519VueeSgJD73/E7yWq8//1+epjkHtuqEgTw0yPDQi7BYwliF3TDgThCCDs1lQsWG9YNXr+8wTP7ouU7qObd/bq03LCG+GMKPqljXKZ0MW48zFUP+z2JgBHAJBYLbsu9CO6F6tMgB16ipSqX1dePpKKs+FEJSdfhrPzX/yf1p096l5984Z0y9eLnFlyVeLxyA21vSiqR+NJ9fAq+T/me8NyrIvLmO2Iauct9hWzFhTWXkcdPoPXzt1sbxtXZ3ds9p3/UMytnihiI4ifvF/newQb54WFlfer7yYopy1smdIAm9Uxjol6uMnURXAN8suj2lfOz5+YXyNndN/uX2L9f5D/+o5yXs7LngEC3Erf2JudHnL4gxiu3brA7Ah9txix8/FzwBr59kD38A93Y5o7P9unGw2zH2G8zEShBdzOzQPs2fwjwspy6MCabV/kzeLRhRGjhH5iqdp+/WpbnyjgWH1XH4kI6jLnWJLXDCQ/0y+qP/LlXbFxntaO/r9q/IqStkYG2MjI8zoDuiInmA9RE4xcGS3f9kHb6tbVavl7Gz9NXmXZV01WWtxKdOCUbuurkhbuj0jdcp/kMdVWP5iZ5/PiUuinUyouvhbZNyu267u/39lcmCAfto4tGJvXPmUtRebn6EK5Sl4DlrfXyzb21ahZWf6yBmFy/KaKO+8wO8pshhFTDeO36iGxeEVdS6z9PU5rrsG84JMd7Y3JC8zYGtZ9p75e+Qw/95HvkNe99i//zBz4g8uY3a56P7EQjbVm2s2wIQNbG9Q9zLSQOH/V8xfkDst49CaUhhFd0Im9SGQSMAFYG54pdhYjXFWNRjaDS9VvVNEykFSr6VR313pI9hURtVazSJbgQZt9Kkr90VV7x7/8gkcEB76eJH3u9xK7Zle6wnPvCNeMa3FMvFwYqoW3BC41VQPxOd2VHjRw8k7OKeR4Ql9fcEvaCCsamauWzD+VHHvIsfMEd1u7Ny6aU/PkEb9fqMTVvReSSJrL+/sGwPHfnpKzRFT9I+oyGrlKCb99Nm0SetS0mX30iqv5YjWpqc4m1/WfwocP5ktK4ktla6W5BCz9zICfX4ao28f5u3xZWU3O9PHREo/MDPpGpbT5z3R1y6oZny7rH7xU5csRPDv0zP5N6mH2fRwQI4uCP9epTJ8X5VgsieF5z3KINdKQw33PtuOIR8G0PxZ9vZ1YZApAg/CQQQujJ1o6TLQRpIb1YzhxAh5DLrM2skRxQ8ymh0RFZ+bGPeFUg6fP4r/38nKpz7YbC/AbncrHh8eQ8sLuldCStVqP5vvN0XP7z/rCSv+LvDyuVtOrqHwtV7jtUI9/aV6/aPjBIdrkTUdWYTPMqNHEjk5hdo/KCa5L3oxJtvjwUkydP1sgjx+vkisYDHT7nyF9hV+ceveamiJI/LSSnpjAqK3QZvFdqAArBKGgMM8lDP/FryZ/+4A9UlTw//r3JSthWKgL00QRpFBuIyBhFgAeJok0qh0CyN6rcNe1KZUZgUM2h/CFoAhFmZucvVzgdinflmf/woqcTTLgsdUdEM9G7+PLt6xmUpzTdzV79O3Z+xCOynM9xwXLQarLU23xK9yf/VWovX/KqMPn6V0ps88Y5Vae5Pj1Ocyo0w8k9frW9X+vC44plhgML3I0l6MqIa0chBC4ue7ZE5DU3h+Ut6jv36j0Tmt5kXH7kjri3Fm6B1Zj3w1nSbfPysE5k8Lmr05yLvsP8xcGZ3e/9B33y3aXL8hGdXTmpUfNuVJ7RhODFSpdqEV95o7qb1PmTz/zLiavf4Yi86TaRq9byDrvnJVnC+atukhO3vMDfcfKkyP/7f8kfbWveEYD8EaVLH1yvSodi3Y1YwWNS076YVA6Byk41K9euJX8l0sJsXNGoA0mj90JCCIkUJhM7L2mlhQANsrVf0cXCmSW2NkW8FF/kfFrX3aDru6rJWskdSUExXfPfVGA8gvQNq2kbfxPIX99grWxd3eSZt2lLZ2ttxdf5dRjWTOjyfP/w1+6rjP3yzya2i91oqA00vthCcpyH6e/OnSH57r6Y7F7jDo7LC68JyxceKf/13RXTfW7oIh8dZsSkhNSkeMvmqKY84lkphFAmy5iPLfwgtywf1yWq6uVeXdN4UtP8hLXnXdMxKm+4rc77/jU1vV7QyN0jF5pkqx57+7aoOsbratBV3M62xhrZsjIsa5YRJcy9Kn7wxgXh+g2Tct2GWum5FJHLahYnr+HIRFwatb8684vvkY0/cY9/+/78z0V+XjXsERu+5uN5Tr0mkbykccHnnMjdYq0x9O0mlUXA3qDK4l2Wq/k+QzNfHpJmHtDweQjgBg2rJyEyPhb+Woy1BWVwL7bSmGbRzkH8uH7QOXhcCZ0T1jgm3yvEr6UxrMelH0hokxPOOXhqWK5a3+xdAwJ4to9zk8e4Y8v92fX5/5K6c77j3ORdL5TY1TvneMmIHLuANqR8bakNx+Ul1+qySjIuz9uN6TF5vWbV4uxe1yj7ThV/fTwL/bs4m6ihYXzxteqeUIuPmLvXnOFPTHTRJ92fyRQU0+AJksG68/TQKhfWJz1+sT5h7j3fH5KGuibVdois0zx7zMdu2dokP1ByiK/dI4dDcvO2WtWAxuTzD0crQALjqr2pUb/TkE6udELWVaPpYOLyjSdn3n8ilK9eF5H1XXHV9HHvMt2j4m8IRHBjF38pZWzfIZMvfp7UfvO7IidOiHzucyJveEPKQfZ1PhEgEAQfdJOFg4ARwIVzrzLWNDW03h0IMTyhCZExA6/pavA0aMd7R3SWViebVDtYzoAQyB9paU5rSpYJJXSODri6BT+dvx/7nOk6+HumbToc1wYvl5SSwDN9MwetTOeWbH80Kqv/318lihv71Z9LbBe6gWnw4JmwPNnDwFredrxij0aGi69hg/ClynXrJzUIJVxUIMrazpA8Z6dPDr53QNe9Daxbu2N1WG7cNKVBJzO1e1y/ZkablZpG63XyUKPpJaa0rm5gCSn5gyDOJpapbaiW72jxfvhMkizdfyi5DdHubtXfD9E+v03EAz+oRDC8I6JEMDTjt9K3KS53a6AOkbpMwEY1B+XQmPpj9asPsY4OrMTg6vX6W3gmkxO30tcle4njP/9WnwBy2F/9lRHA7HBV9Fe0fwNqBg665uRbgeb6iJfnL9/j7bjSIWAEsHRYVl1J5B/u0mhSgkGIBF65rF6G1M8Hcyqka72aXllvsRxyaWDSI5/ljMxlgXAiz1iSCGlXs/LZvqTuqRztSi1z2Te/LA3Hj3i7J59zu0RvuTH1kLy+n77cJN8/AAlgkC0vudm2KiyNkdmkb2ZFp+RFV2OurJcHDtfIKQ1SyEdWd0D+IAn+8c/dReLXOk+LVRuG2uS6LmbPevnSY0pGAmuEvvG2eo2OHZfJGClAFo72LxdmSS3r7HueJIqzf8tVbr6/UzIBOn5KlpgGcYS8SOQ1HTG5Wt0CJvVefOoBh3d+z0C+1y70uKkX3CnRndskfPCwyA9+IPLwwyI331xoMXZ8GRA4qRYe8vcVKoxLWIhM5gcB3+YyP9e2q5YZAUges3onyzTb+toutb+poGk7q1FXQe2bO26un/j4sV5jOckfdaTj0IlnQtB0tuhfJWX5Jz6WuNz4L74jsZ15Y/ZgfuYK5A+t0OzfMpdT/C/Xrg+AlqOYWg0KuXPnuKDVyyWt6hP2vKtox0yiwLJiBJe4VDPZyiEljU/+gkfVeClkHj3eKF9WYmhSOgQgfsl8fDU6UQTf5P0L1fh4Q+znnXirO8n4z7012fgPfzi5bVvzhgD9MEqFbFaeTJVDY1jMeZnKs/2FIZC7Vy+sPDu6yhC4pERs7/EhOXJ2RE2xMV1Yu14TdvokkMCMw2eHvcCMUlY7rIEdlaEy4kUN0y4Ec3B7s6/RjOjMEu1mRB2UG2rLQwrre45L+w++7V07umm9TOnKH7lkMqZrWyrJcTI21aCJf5150+0t3+fythqpTwmuyH21uJpts99RaMRd10MWIIDFy8PHalXzN/P8RlX64SN6SLXXqb/NPNK+zRUBfy3gZCkTU/4Qcf2m6hgqJn7ktRJd1uFX8BOfEDnj+94ma2xblUSg2AT8BI6Uq1927a/cKOSuuPA+q+OtXni4Laga4yPYNzQhT2taFcL116o/IKp3hNnb0GjpVfBdujRQJYQUBGgy8TlEJqc1nkQUD2tEGhnmccIvh3R/8l8SxU785Js1xVvuC9WGJuSJHiU5SvzODTTJF71o2+zkKnGREmzcvCV3HdNdpqV+TIljul/8fc/bXSth1fTNRS4ONXnpSCjjNl0R4023i6aBicprb57wEkqzv0HJYKnS1FCeyUwEHjnKZCQ5YeofDWlAUFg6GnOb7meWVKZvTY0y+VNv8Quf1Lr+3d+V6UJWbC4E6FtRIgSD83Kd437XuXrZA/ZMs+jQzvxZ3GiQuTz7pYoRgBSRrBPyFyRoRAb3qabQkahSNKGSSadJb0Oia+pPh5QqkFw0gqWUGh18ln/q370i45qOgpU/8hPyGMbkcw/FNEmyElQNEKicxKW9sViSFpc7dqZngJCyVe2zgzoKaRdJkL/5lH/vGnXusLl7dJpQMjkJyYASkRs3R+R1SgZfvWfSIyWFlF+dx/qTlmqq22S0Rh47weTNJ4Hc2+vWQ/6qp67jP/P/Ce8cEv+nf5IxVQvj0kIi4XK7nXgXtX88BJT/Fe1CZClfquMhSt+jV0fdrBZlQADyB1HCF5CcfLyIw7ocwZFzU7pYfb2XO3Cul6X881cqm60fB+RL6ocS7Fha1AQMvSIvFYSU5YqCv8+lnR3f/orUXuz1iph85YslvnJ5HsXVqNavUf0j52YmzeNCaQ/ZuorXvXhNzqq2MXnFjQRjaMevvKxvsEaxjcs16yFpvhk+7YVz7MQM/uVHwcQnw2uWQT4cUY3Id/ZFNFWNLnHY6jTVSmSbKkmcczSgiJ/RcG7uHlPUwhpgUysPPjNZ4clA5kofPBP1otHJv/fam5PE3l8ycH6e3WBt42tWydRLNCXMV74lNWoCPvGJL8nAs1/gHUL/1t1WmTRXwTottW0sLyTtd9o/InnJy0rC/nSZHMjSYOS8+p4SI4DVd0/KWiNI33HlLevUDOytEqL9uyNFkCgUZSRmdulViqkMgSWuzGLOL/QcfD3okFKFDqdNFxgfVFMwQp1KRQKX/+fHvDK9ct+q5t8cEpda+doTIV0ZY/4G0LmTppgm/PUJZJO2dxnpA+cofSNN8vUn0PwlCd14IA/ko8drNSVJVH+NysnLDbJ+2ZjqojRVzon5w3GOTdb8ixHp8pZLQ7cZkw2dk7LhtrA8dapOnj7pSO5crzL380f1tuw7Uy8dSrbJu7jv1JQuyVcv127UtFIdaNUrO8kLtmjiza/3CCD7uj77iQQBJM1VU31L2bIbBOuwVLcJ+DirFheXcxVyB/kjK0NwJQ9ndWHybeSvOp8WI4DVeV/KViteRF5gfAG3rGqSUIfIwdPD3guKz8Q51dyNaMLl7Wuai17Sx88dVrYmzCo4k68Hpl8InxM6KtdBzWVGWne6R9rvvccr1gv+eN6z3CUyfl4cqp1X8kfFhkarx4ynyzjI/jO18oRH5JLkj3qScmYi2iAn+0Ia+DElN+mycASX3Ktpcmo1txErmJBI+nMPzyb9nF/Nwnq5XS3ptLBRuXbdqGzoapRvP61r8c72ZJiHZtUo0Q4S0hqdTMXlvoM++W5rVDKoa1Z3tuj0RhOLE+ldKVPxqdvvkk3NbVI/PCDLvvFFOTGifVhTs4fR8fOjmv6qzlsdKPj+zwOAaS+JhWQuE+y0hVZgJ9kd+nUCe1JzywZdfFZ31nurS7EKiCOFVCd4TAWqZ5coAoHk6FjEyXbKwkXAqfBrlSA1TefRc63BJ7BHl5KjoypGikkGWsx1iCRjVYjOljppVU1fY13Sed2Vh8bTCc3B+ZhBYS4z0mVf/bwrUib+vzfkDP6AzLAE2HyLwjXPEpbB8Ub1MWuU/7y/RslfkFzMrNqnH4x6q2Kw98DpKfnhYfzS0PSSGFrzGNaOCfkMc4uuH6zLld24KSK3bovILl1vlgTH8yXru7kJmd+rdg22ePWemYR4vuqa67oDOqG4V8kgywZ++sGYtqoywJIn8p6jYTnynFd6VQwr+YMEOmECe/LiqKelcn1YpfokV4dsnyPjilWRfWu2ckv1WzB1mCuT+j6jGSOOnBueRezcOuyD82jdcPW0z8IQqMwbW1id7OgKIQAJ2ntiMC0ZuqBaQvxp1utScoVKuc2/rDu5SlPZcJ1BjWBu0wTQ/NFJ0Xn1XBjzgkFYZzhoGkZTSL/LElyYJ5iFMzAUSgY7v/q5BCSTr3tFYnv2RkTJTq36U2UmOrPPKd+eTEvsle+KrmQ12Z6s80yIyRVOcpGc5O/DqlgavpDU9rHay/quJl2lJDeuL71OJwjNI64i3ucNG/BYrNUVLyJy8KzIpm7VdKnp9UJ/ZmI2o4A5fCHxc31tk2zsjnlk9qL6UaKZZQXDZtUOdrZAeGlreepCBPXazrAXTb1R3Vb3nRI5cj43jvk0ORbXPILJ25bPKUUd03MJ4h+XQy96g+z+6n94ZXR97r/k0mvfPKM8gsNYMhJfYHKg8jffQh/FJPSiJsoHqm5dm73aBMsJQv9KmhcsOqzDnmnFKbSCDTr5JgjHZGEhUPUEEFMdGhsGc1TMJqVFIBv5gQSuVX9A7kEhUs/ipmUStHztTbU6wx/zHJDppIZ1IL8yHNY0JSHP9IM/Ch0tHRPBKGg0gwIRZLCKK/lD8CGkidmwcOfXnTkpLU887H2NXr1LYts2u59mfUbjIdm1Ju75XGqczbzLid6o3LaVe1kecpGpgT84WKtmXQaVwp4jyiO/4LN31Xrr5LryIYTf3psfoMuaJ9xpMz5ZWq6tYVJumb59L9hdp35uEbln76Rct1G1ybo27rieOq6DX736Nqm10yNNEJxh3Q9puzQU16UOk8R0xgWyfHns2JQ8dizLASX+CQxv2FSrmtDZfns3b6lVx30IceH3JrWaA6Nqnm9K3Vv67w3TnOnc7ptlYNV6aTt3Utru+47Unj8rkytXz7hgt6ajwkQZNLlCcEaU0FSKfI2pRjKkE04mnxApJp30raxiBCklb2qlhH6Rbo/JfapQL/y3PRch7TMx+fJfLqGPHdNVe8zkmwup6vu96gkgg7LnVzBtyeOFIW9dULNTfbAu/BrRQdAhnFNnX9YRLkSYcUPUXIRYvudyTWaSrObB+dx3NHp0SE4oEzMEQtQyvw3oLJU/hLWH0Qai4VvX3SjtayKeNvCUEkbWDnbiyJ7zBfRIoEc3snd4y77+RVeETLz2ZYntdBvkxSOJ8cplDaqVTF473bGV2BdRIlNu8nfsos8ANnT59+Nob0TJX35kLR0Gy1rCmucx+z3pbAlpnsvZ+IZ08IL8zBYmKGDhazowKY5rwmM0w1zvqjVEvgbPcxMahsOINE3pZEMnOfjDVbtEdGWPN9xGa2dqQYP1LgX5o7zjFxS/jcGSy7Pd3jiNu87aDr3gbrn5P/5aajTX6bKvfUF6f/KdMy5KfwD5IgG+E9atJTCsq8zRwkTDOnJEfzSm5Cp13CJDAf1VJYT6sD47BLhDE+ZzXZIx92nqLCbJuMswEabfL1TQtJosPAQq8+SVEBeX5w2fLzphvhfzwJawSouyqLlgira2s7VWTl/K37REXsJNKxq9zjoIKPkJgwQw+BsmnlSh3u4ZYWZNx8+koVPLZyZ+9Nyo1wEylKMxrK/THHPa+TlCmFpe6vdlQfPva+5K/Tnt93ZdIq0a5M5dvO5JMl2OOnVpQMC3norKA8+40osnf5QAsesbcmWl/7xxc0j29mjqoRQTLsTm6IV62bLcJz9RXZO451JEHjlCyhWRNZ213gSj1zsv+aw+crxBtR+iGmS0yJi+anRCEdfI+bCSHIim+0tfn2raS92/tVeX6NtdL7WzonZVy6lktlTrTz9zZkpu1AhhR6zLhUNdJEn2j975Co8Acq2O7359FgFkP/6ATCRJD0PwG4FuSFAr6O0o8T+kpXJ9UaaiybzQ2hgua13oEzHPci1HQLGmXd3cKoc0lcsMy1rh3G9G05hI56M1nHGSfZk3BBYcAXRIMZsZHtOOWQf5uZAVV559zkaAl7ldgyyKEZabG9DO1qVgyVUGs1Fm6kFB20eC52KFTo+/DaoJXKlEEO3i7g0tXid4Uv0EWSYvqBXMdZ3ac2ek9dEHvMOiu7ZLTBemzy0hOXo+SS5yH1+eI3auCWsevcxaoFJdlTQxr7ulVr74KDkCS1Vq9nK+9VRmkvng4UlNrVKnpi31D/V4A8f6z9mZDObbZ84G75d/7IuurdV0KBNKAJ02MHudqulXUrh8Sh/b2nCtbFgekd1rNW5J1/j94TOQZkCZ+d4VW3cI97c1Z+MLd1NCEMNiS8x93o2vukaGfm+1tFw8K60P/EBCgWjg4NlnL4+pJhnNri/lXoYMojWk5t5cwgpNkQtqrWB1pjKZgi8q8TujmtBUQTuZzhScepx9X7wILLzeLHAv0Nps0CCF3etbCvZTCxRjmxkQYCZXrGqfjgVfvHz8ByGaXk7ClHpgrijUjJxShA56IS8R9IFTQ95SeCQvPXRq2DOFcCxEdaumw8FXaNOKJu/P88tJIaMcG4w0nHxtPtq/GnngSF3FiBB1TC/qA7axciYaDb2Rl14XUkI/R3VC+sYUuNcnoqVYcSUayyfquMDqVfBwIqiPnIt6Ubuk0EnVmJaiKmhTHzpWp0WVcmiJyHldNtEJ5NVJ30iNnLjlhd7X0MS4tN3/XfdT1s/G+lLWL3kprAlnlWztPzmUd9+FhePA6SHPMpEsqTRbvUry8JcOCv3teibF2vdtXtXo5UoN/j6XbdP+zQW9yp9bnreggu3ArwKiYFIeBE5fGlNT7pj6RyXNLvleiRQzdDK5BNNMuhQuhWh2M81kmYmj6UNjjO8Lfi6kiXAdVe8VnYErSdysJHC5RuTxt211s5cjEV/GoLR//1uJrxOvemliO/NGXIMuxuXuW0JeKpLMx5X3l60rWREls5asHFevj4zJj9wWk5ffgL9cOa5Q2TIPn1Pvv9BUlZDayra90KtBMr93sE4wubOkHD6W/GUihSRJZylAUgQNTzTqKjMN3ueZ/iYvZdB/acqglvok6QvXTOnz7H8noKbnVp8AUs/2e77OR04Z1VQsBDmUUgjqYCWMU9pfEkyRr6DIoD4EUpRaLurY6Po6VzauNrjGkP6L6zr/afd7sZ9eZgW9MyYLB4GZI9zCqXeipqfUv8OkcARc8EM+Z2I+wJSKRo+8e4XIGl1yrkH97CBgzHSZfdZqMIKfty+kpCwmm1YmZ/eu7Cvq28k5+Uo6suiCSiCvqalp0PJRF6flDDpiEylH57hN24uTNlrDkEYItD50n1ed2IpuiV29M8+q4Ws4JtdtaNB0G3meUuLDVnbMV6cc1bWHyWtXL59+KCaxiq57XFoQSZVyvUYH37wlLA8ezv+5LG0tFk5pmNc/+UPq66ds8WuuwWHafSxrDemKIv4zeUr9hH1Xgczm0g3dEe0zguQoJletq9cUNv45p69/tkzV6RKFqgHs+O435IS+v140Qxa4vMDCEr4W9DGHz47M6meyVGHWT/gqoplMNxmedXCeO/BzHk45Ngo+KpBUyGophP50QsvD1YJFmVJJZymuUaoyXL9fqvIWcjkLngAuZPDns+75Bj24OnL8Ee3g2tVXD79ACFI6s6073n1CNMnbx1+ndhKNel4+2fkhXi4flSur0E9mpGs1BQR1xRmbzs4RRdIxoOHjOzPvw5rkdKO6E7AqCpFw7tpoB5Hmpx+T8PCQtz31nNtzDjDegYF/SmGCDBRX0OZ8Jj6moiwZ9ryrmuSepxc2cbo4GNb8g1ElgAXBbwcHEGB5udEMvpeBw2Zs9lyMetGqezYld1+9LqYEECKjuu2GRjlz3R2y4eHvSN35M9K4f6+M7r42eXCGLYLCmlO0/BkOzbobs+8JTZwfXAUj6wlpfoQwkW+PSTLm2VLJppWNXh8XdOXp0ZU88P9jVaRCx4F09cLNBjcahL706R6/n0x3bDXsq2ZyWml8jABWGvEFfD06i8tqQuUPYkd6mFUddXlHsBUSUDIjMq1IzAjwIMot3YwPjSAO2EEhqfRUyprC7ntLwLdo6rl3BE/La3tgtITqhryu6B9EKpSVbfPvIrGybVSDKOp0OTxf+1BAE6rm0PsPTcrV6+gyM2urqqayC6Qim5aHdDk5tQroUnIXBkLy8JEpgSQ6IXH1K25UPWLNTEtPuGZcz2uSp3r8SQV+gBBApON738iLAELc5kIA6Q8JsMDHrhREirozMQ0KE1TckYuNWMYKQh5ErCnBOhZiog7WJ902Fh5XP4IyQzpnTulG051m+6oAASOAVXATFmIV6Ewwv+NkjGZvhfr6sRi46wjm2qZ0yxEVW2a+Mz5H9tJdp+3+7yV2Tz0vXwIYkb2n6lQDKYmBKlFIBTYwt71ij3bOMl6Bq+W6RFyec1XIC0DIdWS1/k4QxeNZlq+r1npXa702KPm7fRvPpj8pWLtMVym5mdV76mRgLKQBK6IR/KwuMpK2CbvXTup7RXSzyO6fep7IR/zDWh7xbM9pzwnuxP1kLnLm0viMyOK5lOXODfod08dC3PwUNvhTFie427C2O1YOZwEprqT0ZwUD/fD75nrBJTjTn2V7qwEBI4DVcBcWcB3QpJFXiz9Mu6vVuZicfsGUBvjUXdGUMLU6O2zSJM/BDiNd0+k8cE52wvFaxLz5ldSMjUrLow961YluWCexjetd1XJ8RjX/oMj39lXa9EnUb0R2rmG5qdJem0TIUxoNSyRmuAZVjT945wDC+7m5bkwDQmrVTyifo+2YxYwAPoDP2sazmfr8aEhIeFy6mkW6tqK/zhx5TbT5LVubpHcgJuGtqyXW1SmhS33S8vhDmqpR+w9UUVkENw/6pkInrZAy8gmymkeppUl9AN1qHWc1BRbXwJWlXRM3Y2otVvBx3rG2WY6fH807Ojmfa9Hn49PtBEzBppolnUWomutbzroZASwnukusbMjgCfUvIXcffndoBnE4vqTrXg5Pr4XGwuFb1F+EnHyZhEz9mC1wYKZMzBit2oExE+aPqN5KzjAhf6SYQPLX/nG07xDNViXlxZqzrrslvdak2HrENKLzoaMhOdYLMfcH7UgoIq+/VU0+NfkOhHF56bVh+cKjM81cxdbJzqtOBMg5ec36mBIXVr4I67vPSi2+FnxMyT9m39s98peLKJBZMDkRTNfaLSsm5cxl7Ut0kjh16x6p+8o3JdJ/RRqOHZaxrTvSnZLYh8/e5aEpL2l9YmeWDQI96NvwpyulCTV4SczJrMwBf3V+e1P6uoyrb11tY/EEkGugXUQT+HTPYMk0gfTNRBUjREHvU/+/fC0u3knz8E+116+SkBgBrCTaS+RapF7pH+FvtqqH4I79modvu0bYtqipIJ2wakc2adHM+S0DYU1PM16Rzqb14fsT1Zm687bEdj4bV4ZTNRz5nDW3Y0rtf0MOtu88TTqJmYMxgS3HL0Z0pY18CaAG09RrVPBNjfLVx6eUHCQ1B3Nr8dI8G/2Yf0eSOEKurlqrZIicf+fjcrQXkpX8vZxIreoIabBPVK82mrhMXXhS6po08lf/tq4IydhUnTREkmbfxIFFbvhaQH8yGb31BhElgEjLYw/mJIAcR3aDZS2aJonIrxxCSpV0qw/lOK2gn5nwTqRZ1pB0Zy0+zyqovNSDWT0LwnbkXGkmiG4NYKw79O0oKbUJVS2Q1nKYwqu60Rkql34EznCw7TYESoEAvnakVmE2mokEZrsOZgeiikuVwiDbtfitad8TiUOit9yQ2M69oUuRna+8tuu+g1Oae5ABba7kMyI/OOjW8k0/QA6OFn6N5rpR1RzWynf21ZQlGXHu+1LdRxD48PyrNX9iRA2gqkXD3O5rwvg35KXTIcl2SM37mOT/6/641NXWCEv9LQ9ofrtaRE2ktXKyLyIPPsPyd+nvYanQOHclqgNrSDV/mUqMKfkrTdqR4BVcmWgAnaC1v/jGH3dfM35imbioFgryf+aSWiUO8yVDanamzyuFkMqrVCQIbRrrrJO6hnyuJ3VVk7n3O6VoZeYyjPwlsTECmMTCtiqIwJSaeUm5QqJo1sJkZprNLJxaNSJ8K+XL0fz0k97l422tEtu0IbUqab6HpX+0Tn2TVBcygQamsjKu6R38/Gtzu/b3lfydzpGyo9jmobm5cXOTpwmsLDrVebWtK3GZqNHUJlPyqj082+m1qnCroGsbOP7IHeS0RNs++xz2b+jUv9vCcqa/Xl00dIkyJe3Nuj51o5JG/OcuDxVO4tOjWCOffiAma7t0dYkmXYe7XWR5K9q+ykyCojdeK/GIavOmpjwNYPo6zt5LIBvkJZcWMIj77FLKu4eIZYgLxG2uwpKbbWp9IZtDKYSFGLav8clph2pTVyiZPq8J9vEHpLYk3q8WqdSYUS3tzVUPI4C5ELLfy4YAUW7+Gp3+Jdqbaj1nZ3wHSScwqn4v+BKmE/L6VcKXI9J30cstRh2i117l+Rqlq8/MfZo8WiMYD5+bGwGbWWb+39YsA7O5a1r60piiUmsxB790ze1W5bai1MZm+N6g0daYPxlY8V9V1zIlzgx6+Q7W+IrGdTmwqNx1A0NUYc+NT/4yVC6xOypr2kf0L7FjeqNGTl1ulB8cgAzkW9/UMpLfoa4nNbmzXBJdg1m8iNCXXqcBDJoLsjhRH8KJOkFrnFMaGyR6/W6JPPKkNB45KGH1BYy2d+Q8DYJCDr56JcTZhElqOYTgDoLcpnD8yyAuR6BbWQk/aPYRdFeMlIJIuuvSVxMYc7ZPn1uFsFdT4+Cm06B4lYpkumvN9ZOAFXAz8REwAmhPQtUggM8gfyQqJfK3s7VWNqdZJaSSFW7a52v/uObUdbvzvvR1G+JKAOlosg8qeRdYwIEdzaW55s1bIvL9A9nJSKtqkooVTHe3bmtaUCtr3Lg5ImuX6cTlSo2mKIlJvfq4pdNwYZrtuVQrDx3Ox/SqvpSqmbvrBogSvllgWqlBKi7rlo3I625pkM8+VAhpze+u4yLwqQfi8qJrdanFgHk6v7NF3QRqda13XSs8T+tn9OYbPAJI+by7g3c8N69LDaqGrT6HGThX9oK8LpTmIBLq54qcZbJ7WTVtjgCSMJql7NC2IYUSOhLyy2CayhSxC79F3HKWt9erb6G/7sjQqGq0tf+uNqGuJkkEyjOlSZZvW4ZAUQigHaSTO6tO2ukkNWFqumMK2Yf2cYOuBIL+hc6U1AusAtIcIIDRvAlgRD77YOkH03zbMzJeGvKwdtmYanCyE7x1nXPrUDtbSlPXfLGZ63Gbl+sKMhrIsn3liJI/tKzc59mCFm9j14i8cg/a2Nxy/cawdDSO6DBfK596UPNHntaoCfXyyyQcl+33TOdl2g8Zv1n9BcsjNfKtp6bkwJlGLT778zTz+mHpaquRFa2Q4vwkumt74kC0gPkK6VZIv5JNLikBK5fksmbQJwVrB/kj6OLRI/3y1PFBwURciKCxK4VAihs0EeNZXS60X03K+AJ6qWFUK4hWG+3gNRtblagWp6ksRR2tjMwIZO5hMp9jvxgCFUOAZNMQwaDQUZcqDQMd2Cr1Q9ywvMFbGomOmHQJJDPFnNc07f/H9aPXXR2sRsbtA2dq5bW3hHUZuvl5vQozP2Zshv4Q89a+zXTE1etZ27V4UzMkhmjghSSxeCEERjx8IHdBiWgAxxtvUw13S/L56J9eIeXKSK0XHb1XV7h46Gi6QTMkT51qlE/cXyMXhhqCxaZsRzwyqQvx6f6Z1085MPF1rmQ+UVCGDZJo33uIOifbneHQ6d01sntteoKd6bzojq2JnxqOHEps59pg5aFz6reWSehzyhUBDO9k4plNsA4TqAzxI90K5M8JWRcIqss3NRZtYd3eUgh1YrKOT/ZFNUtD+CCBuO/gpjOhawPjI0j6L5PqQ8BMwNV3T6xGKQgcO68aAO0ku6fNHXSGc1kphM6IjPVdaqKgs8IcMqp+QPjVQAZZ2ByzDDPu+KGnvNrEG+oltmNLSs1mf7003KgJmKe0O5/Ugbxehzp/3o5vVKWE9CqspkBC3blKZ0tyoAmWVa/KomvXza38qShEwMcnWHY1b49NqsajwF7zqjW6DF5zk3x3n092icb9wqNxJYfJlmICvn1bRB49nsT7yPmoak6aPE2iO3L/mXr1rfOPQavWXF8n21Zpbs2VGgkc5rnzr/HQ0VpNA8Nx/nO3vqtO7tgxpc9jZi1WQ2RCr1erRAdyUJ7nFf/AYxcbZHN3bq3eyKS+n7WZ6+swCX7GdiYJYGMBBJAyzuha4cs1GMSt/x0sl20/SKT0zyvau1waQH4nOT6BKOkSUEPCIFrkTvXMu6mVn/4OWSRqtxSBGU7753K8cgm0f5t1/WHWRoYANjeFPT9uPyAELWbp8cvQVNudBwL5TsXyKMoOMQTKh0BwbWBWGVlVpPNzZ0udXLW+xfMtJN+g6yxxWN6o+bHWqxmY1DR09qFoVELHj3mNim5X8qcRhrmkf4S5vD9obdeB+WXq1xUJZMrPdX6pfn/oGAN4chDXNLLa6TfK0HhhZrhIKElIgnW7ai1YpP8teFy27XOay3Ghyf2HIEe5n4PUdq1un6ldYjWU4LrIbWpqPz9YJxf6Zw6Q9x9STeAxzdvW2yT3PdMgT6QsRTesHJx9n3kwplrBkHzliXo5eqFJkyPPvDcQr2/vZToSYJ2plVSN7wt3j+vau4W3b1ZRWXY8oClpcmklnznfJJ9/2I8izVLUrJ/iuhpIrGuZt7/haP4aQE5wJGpWobrD6w+Sr1O6Q4raB4kihU8+QoStGiU8opfueAggiaS9ADnUitNCu0gjc17dafaeGJplUXHHFfrJJJkMDkHBatJzYczrn/FXxFUHbeMFDQwx8hdEqjq2y/umV0cbrRaLAAHSxtCZqCuMR9oggPixFOrL4tI9RGb2W14uMPxYWnUJtYRD9cmTUqMkEIltWp8TRUhWd2uy46Vbb22c0qiz/Dr4nBco4IAe1ShJvEGWNYscOhtVDScn+225am2DXL8hj6hKPUM9ebx/g2SSki4NajtX065ke9lfiOzt8etTyDnzfSym2nsP1cqzVZtWiJDJL5sMjMbknr2+5o08gHfuUs10XVw+p4EZBBQd7xW5bVtMNi7XwJz9ma9N/R48nP73i3rPPnG/yI7VjbJ7XTxjTr62hlFZs6xBSST1KYdoJGY0ohrLzPe/dnpkuqLplDr0HSpEYtu36pJwD0td7zkJD/ZLtLU979PRrpETMJgSBrPr3hKunhGsjGc+VTNpPoLVA0sFWrx0AsEiiA5t2wW1amxb0yRxPRRz8cHTQ+lOKXoffn9o+1gCNChE/eJPTeJqVoGin8aFx0VQZ6p7sAzbrhwCpgGsHNZ2pTkgwKz2kPq5kMGemS5EcPvqZs9cGywWk+4WjRxe09mguchmzm/w7cuUa5AOCj8WlntKyLFjic2YrgGcWWp08fpG+eZTYTXJJQc1zKT3H5pZh8xllP6XnotRTzvkk79k+SMT+Q04/hlxzRk2u5tAo/TI8UL8uZLXd1ukT1mIQtsfVq1cNO5HYOZuQ1j6hnM9BzVKzCLy5jvi8uo9E7pyxqic68dNIaS5+kK64kpMPvewLqeWogHMfe3UI2q8CcFnH4rJN/eqhka1wukkMQlK9+Mc9+E7WpfVPSGs7fRJ3zef1HXBJ7P5Os6uTDRgBi7ED5CSWNkiNVEwvm2QL9Y4786xStHs2uTek8v/z5VASqw6DUyjryJILZNAsrh/aBdZ7u6kZlUopdDHEuGLy0w6YVUQrk1k8yUlf5iuqTPrGZdauI5J8QiU/o4UXxc70xDIigAriLAuJqkGIH90KBvVZMuMEz+aLvXfaVfShxmEDpBjmJGyADrmiq26/FymBdUxZRCtNoMgHj+eqE96AhiWcwP18oCa6Ua1o0XiBAlM90nNDXE/J1qilOrYaGmYTeiy1axDExQPaDqPVHlGNYtjE/WqDWMgSBLf1OMyfX/B7inpHazXHHRoSTMdVZ37D5+Leml+btjUpMRNJyRpfet07WT1d/NNnrnx2bNJ15hVzdgpTR+zoVvXVVVfP3C/GEjFU8ocZmgEv/BIVNZr4ma0i5FErr4aXWaRG1KewfXademJg7vTDx+rSwQ54C/5uYdjctv2prz8BikjFgwEOfqMDN9wiys65ycaOVYGcS4mR87qhHPIry+BYR3a5+A/h5at0sKEtk6J1HWb2uSJYwPYrDNWAX7IMncnNYguX4KZsbDAD2DARPqMWksyCYR5QK0zVI8+mxVM+GusC3nrwpfSFMz9MikeASOAxWNnZ84jAiwDNzLuJ4ymU8JsQ2dzTMkeM1NmyMza13U1yNZV+NmEMpI/moHJh5ntDAlqADeuS/wUU83P0QvqsH9EF21PSdp76GxIIxf9Q6u1byJB9bXrIIEBbWeidakbuoKEarwykQG0Yd/aG5EXXsMwUyiL0yAHTfHxqj31ng9bLjNpas3m/3uNPH58Sv98s+ouve+NtVPq21erEw+R/ZrY2XdRyI9IfeUJzQc3AtYxeehI5VrHPTx5Ka5rCDfK1esINHBrDJenDuNTEQ1WyPSshKYTqM/E7IFndCm01kbVsOtkayKSNTF0LPCu1p0/U3AjCJIgYTDaJRdZy3aLTiJJ9k26qAOnhgouN9MJECImrKmax9TjcYFhIktdVnfqqi4aaJFJSFkTn9bQlZJwTWoSZZL3ZxMm2eu7GzwTMWQZzSntg6w11YcS5D5bGfZbZRAwAlgZnO0qJUYAXxg/3Yl4eahWdNR5SVHdjBCfQbYJGEFTmCXJfuaapRDAiWiD7D2JCY3Bi7+ZgxQFBTVlFwdn/84x8y0EIPQONuSVX40l7aZi2bUdF1ST9JXHw5rIWFfDSLMcWa72Yg68+9YGTxtFBPPCE9+seugsNaf+mchN9pb5qWDmq/01HmHdf1qkQ5dxm4tvZ/ZWiia9DsnO1ZmOytz+Lz3qJiJRNZNDBtMToNiK7kThtRd6E9v5bkCYjqqrSapAChGIINq4QnPvpZYX/J7PZPG8+tsRDLd1VdPsyWqwMN0uJelzRUPiMClnE8zUuN+g7etTtx3y/3EeAnFtVu1hMIVNtrKCv+VDkIPH23Z+CBRmC8qvTDvKEKgoAvi8sHoI2r9gRn2cj/FBQbsHESxYAibg741slU9rpCUBFemInyvbJU7u6WtS/7/iiIArq5yf9x6kbrlf/1FNe5KPQHw/86CuVjCCT1nuclPLrNOkyjvXznYK3NAd1tQcJOY2U08qZuX6HoxOLsc1nujRGUja3IQ1cv9hnoHcz9yXHp+Sx040yn8/UCtEDDM5I8L9ymiTTK2cVsFrSbUXzpekCUwmmVQi9CdotUoplN+aI78Qq1jgC32mb9xbZq2jmTWgc2NVqnpCUgn8yCaYh0nb9XTPkLoRjKmLiE8YydtaaMBe8DpFTeCDBRS5XQi+ENxySbnKNg1gue6YlVsxBJzpJJ1T8gklhqR1cVFoBVWqp8c7fLS9S06N5+eIfrqPQaJRntJEvtUsaAGHx+szalFc3UfG3VbuT7R3X3uC1B1huWFzg+xchYYmf+J2zdoJeUZN6Cs7QnLhSkx2rYtoGb4mhvQlRLCaLHwEYurX99iJOrlxI6ZEcsP5rhePn4jIiQvZNUyu9ZRx8Iw/GXvk6JQ8ctT/hSCamhXt7rCSEUAKHFETbHsz6/b6aVUSFynRRr6aMYLgsGpsU59mSBnBcXMhV/lUP6IJCLdrVDFBMsd6Z2tHXRkQPcia00CSbxWhfr2aaDuYM9Cdk8+nKy+fY0t5zHxdN7UNzrKVun+u340AzhVBO7+qEYAcEtlbFAG8dMlr22h7Z95t7BuKqekj78Pn9cB8qBkDTKGCL99jx6Zk0/L66eXS8i1hSu6+mQEjppocSHRMCaB/7lSM/UVUJt9L23EVRQDyduIC6UK4p77mpLEuqulpwrLvVH4kMF2FLw/XSqfm0Yl1tEvoSr/UXizcBJyuXPaheYMAYdoM5iXNdHyh+90g77ROmcgHJAs/xV3rWlQbqf6na5o1cGhMMBGXS0juzES6sV4TTg/VeoTO1ZdrOs0gaWiCcuTssBdQQ/9bLPkLllfN20E8SlFPnoNMz0ApyqcMI4ClQtLKqVoEnA9KQRWc0Mi/EX+mO9HcVtCpC+VgVhXIJaSyKUZY5qw+a6qPTKX6gSkt9TH18VRfLE1qvKErKl9/MtPxtn+hIjDmcYWk2WxU0xMRh/WiayK6iklMfQX9Z6GQ9n1776Qmsm6U1pXdmmlbCSAmYGYxJTDPQfrKQfxS28d7uU0zGBDFC9nzJrHq5uIEUhBcCYnAFIIuMBPmCtBwZRTySdBLh66OhNCXogmkXhBirC4EfWCeTojiXdd7Xuo1EXed4j8wOiw1mkS/o61DJtZukLGtOyVWX5843DbSI1Bu8sdVjQCmx972LiIE6Jzcih95N6u/P3HoeEt7YnsxbYRqcmvU6ovsIW7dNjeNXc103Uhq/ODhxYS6tSUzAhpV7eU5JCJZI32VI7DSSSFC2pjPa2qbN7WulC45IuHREQkND0mspbWQYub1WAgfZuYda5sT9cCfLph6hSA4/lzmAvwS13bVe4RsBhlLlFD4Bv58pG9Jl78P8sfqIpBOyCgJ89vu+64s+8pnpO0H90j9udOJCyZ1vP6uWFgDQa67Ufpf+HK59Oo3ycSadYljbaOyCBTZvVe2knY1Q2AuCDjzREFlXLmSOHy8pS2xvZg2poPzsjapLpKbJKYroLWhODPe2FSD5lTUaMMJNEOTakYOF6UJSlcn27dQEPAjkudS277mbiWAvtT2XZLxDASwEma2YtpBwvvtatolxRWyRtO+EAAC6XMyPJokgOyDBLIWcDYCSF+Y7XdXNumzVms0b6rgToM/HxpAEufXTGl6nk/9m6z6v38lDadOyOjmbXL55a+TwZtvl7Ftu2Ri1VqJNTRIjToGhvsvS+vZHql74jFpUbK4+m//VNb+5Qfl8otfJWd+8b0yuuOq1MvZ9zIjsGAIIDONUtvYy4ytFV8lCFzRJNEFawAvX07UfrFqACOhgNkm0dqZGw26HFnhom79NbmCYFh5pU7O6moXz6g/GEuhYamLasoZPx9gXN5wm+Zu1OTEk9F6NQfnrmvh9bQzFisCU/VJ8lIzQbBJeqmEmS39lbPvRQt46PSwR/xISg25u0p9/o5r7j+XmLpXMxws0xU5gi4uk6qNyyZoDHMRQNZLd4mwg2WhlRxU0km2Bcbi5icekU3v+wVpema/XHrF3XL0Lz+qmr09ac3t4dpamerslv6u5RK7eo+c/7G3S3h4WLo+91+y8qN/LVe/5k7p/fF3yulf+12JNjYFL2vbZUQAO82CECN/C+I2VV0lmREvVzNGwRLQAC5GH0DMa6GamQ7b6TCqC+cicrPP6lL/v2xJps8PNGn6jrB85qGY/FBT5Vwa0kAdjSDGfOeTP5EbNtV65I/Aj+fsnPTMgbOvZHsMgfQIRGuTPmahsfQE0AVbpC9hfvdSN8Y8gjvwBURIZcVqRvgHohAZVp/E3pTAj9R0V5BDjnVCkEamdru+cpMGfEA4U4V9+CfGVJu36u//Wq5680tVu9coT3/mO3L0r/5Rhq+/KS35o5wpQoNVguN4tLlZen/sbbL3Kw/Iqd/4A+n+xMdk190vkEKX7/MKXkL/ZLp/xUCwYAhgMY2zc5Y2Ass0TxYdZqSYHIABArgYTcC3bkP5n11bwNOj6xPkdRzHOvEjO923mZ/ka7vn6SmP7M38RdTcG5IbN/lGie2rgsQzKquX+alCUs+x74ZAOgSidQECOJ6eAFar9o/2aFyFt845gz0k0OXT47dlGpCBiRY5r6lV3GolfGd/kPChSQySLo5JbTdBHLvXt8p1m9tkk66jHtQocnxQ2nXJzJ1/+B5Z/6e/J2ff8Uty4BNfl5Grrw8eknY7HWkhKXRErx2vq5NzP/0u2fe578NyPWLZ8ugDacuxnbPv31wwWZAEkAc23QM1FyDs3MWFAM8InRmdTFEyHQHMuVP1i88k0d2a9CXKho+fo222NiDbOTju92sal3Si41GKxHXN5rC87paQ3L5Nk0Gv1uhrlZkBKmFd47mwOqRcxL4uMQSCBLBm3NegLSQISDqNzx9kDUK3/+TQjDQvrHyESXiNBn6QEobkywRjsEIJCaJzCQEezjeaVTtYYi6nqEay5l3vktaPf0yO/tHfqrn2/RKP5HGeFpxKOlm/HR/kaMBkPbZlmxz4z6/KyK5rZMdPv0Gan3o8Z5WW4gGl5D4LkgCy8kPqA7UUHwRrc2YEWBu4KM1fmiLjacwhaQ5bULtCNfn51F0eLsJ8rkh8RVdqOHRe00Woxk+n9Qlswikrerz+1rDctGlUGiJOS+OIqc8UT+qKKp97JKzmrlnMMVGmbRgCqQhM1fkaMvaHMmgAU8+p1u8QOp5+VjtymkDMseTlI0p3naaAISjjqeMD0tvvk91sJIHfSCJ93aZWuWZjq6zV8/OSv/xLkf/zfyT+//5eQm/7qRmnYD52hDL4A+R1SxqtImlrWDauQclnUKKtbXL47/9LRrfvkm0/9xapO38u+LNtlxiBItUjJa6FFWcIlAgBouZc51KiIhdhMXja5UeoHjvmCFmhMNTIo7pCw6NHOQ8NXsQzLfUNUZ7T5pH3LdUPMa5Ju6mff11ywY2qUvCAt+pDoXWw45cqAkENYGhi4WkAg/dtZDwqTGjxBUQruLozOaGCYEEQ+cQUfObSuDfxJfFypnV70fa5FTpcGpng9dJuP/KIyG/+psh73iPn7v4xqdfrYWVBGYOP9cqOeqnTaxJgQrJs9k9Nxb0UMpipMUU7oa4DGkmMtvJCv6/xd7/xSRDI4b/7uOx+3fNk02/+vBz6p09n9C0MnmfbhSMwk34Xfr6dYQjMCQF8QEopdG6YfdM5MZfyOgu5rG2rmPcFfezSt2YqVi8XBpMdd/qj8tvbP8IKAmgdHfnjPB20RmdqGOOamnTzCgY4rhvR3GfFElDKN1mqCERrk89VaGx0QcMAkXOBIBcHNBWMEsJUaVXfPJ+I1XmpYrJF+qItJJ1L3qI5/uQd7xC55hoZ+b0/9Nb4PXVx1CN5EEj6cNLWYKY+pp/kLLysy9VB+jBPpy7RiU8i5mqWhstkpZlcvkKO/cnfSft935Guz34i76ouhQNLaf0s7ei7FNC3NpYUgWY1A+DUnM58UOiF6IjSpS8otJzFfvw16/MjdZeHk5qGuWISUdMvkcep0jsQJIQiDxyOyLpOv1uaioWVBs78PfV8+24ILBUE6Cshgwc1PUwqgWPCS6oryB2auZYsPn1o53Kli5mB6cc/LvLYYyIf+YiMB9w5OAYzLgTPJaYe0+uzjYbvnEYo85kqTUoaEVZVgaiiEeS/1csapKvVJ+74CMZf/BLpu+t1Xq7A0AL040xtdzV+NwJYjXdlCdWJDqChNuyZB+kE5kIEV+L3l0924yWEb2pTIWFJf7vUX2d+7y+h4uQVN0bk1Xti0hEI5mhQX/XtK5MmoL7hJi/pc3ujr+EgLUyxK5HMbIl9W2oIhCeTzxWpShaDjKpplb4SAndUgz7SSauaVesivok13e9uH+ljprScnKLaOvmjPxJ59aslfttt3uofwXMw47pJN9toITev0OUbuzWVjP6XTkggPaC5WV1fjUaQ/9jH5VjjmFVQdq1vkYb/9SH1Azwj3Z//L2+MWNFe72GQrtylti8TvoXgYASwELTs2JIjwGyR9SuZudIJZDNd5Lp4u/rCmOk3O0rXbsjf7XddZx4DRPbLeb+i0Wuqg01OyfN2JweFXWvCOkQkNQQh1RLyVzude7AhMi533zIhL76WOqdqLVO/51ERO2TJIBAO+P3FAilhFjIAqijzEkPTBsgSS7GlCho0CJSbTDenmUGhccOX8OQFF3iVWkrg+733iuzfL7Ff+mVP84hWzwmaxi5NRI3/35ZVmp9wVbOs0O0+LXtCySV+iFwrQvLAgJASkOXlgn6B/Ix2E5NwcJ3jpmt3S/Sul0vXJ/7ZO55VSFxaG8hw2/RKKYHi57RJmxaKMF7OlQQunNYulLti9SwKAfdSF3Vy4qT4rE4l8dMcNmqYli4SWdmRP6lDU7i8NUnYioVgPJDqIVjG6mXBb+rxp73Ry2+A7DkfJx/37pYRuS6FuL7wmlp51s78yezMK9m3akIgqBUuVb0igdU/YoFVQUpV/nyUA2FiJRAibhHnF5hal5BaQbrbar3gEPKgppIEzwdPy0ITl1M++UlNLrhOxp/1HG8JuODxDUrw3IQb4gmBe7pnUEg2ff7yhDephwRC9vAVdGQN4oKfIKlunKA5pCyimI+qHyHmYTSURD2PvvnHpeXJR6T+9EmvTMrCbejqjS2yU8nutRrJzPmQzUKEVDit+hcUtKsLScByLmIEcC7o2blVhcBpjYAjqiwW6FiKrmBTU+LUyHh6c0vigAW0EVezaiFy89a5dxEX+tUZ/LKP58RU8vo9l0SOXWyS3sEmGdU1gE/11UhrfdDujK9QSIbHG2XvqZnajkePojleWJ11IbgvlWOJRr/regj/3AayVLyCGsB4fX3qzwv2O+RtQqNrIUH9qgVEE5hOlqupdIW6xPD7Zl3ZA8FE60gY34fHogltGt/Tyte/LvKKV+hrODP3LqRyta5PjEBM0SgSfOfWD4aY8B8WHucjOKTXCwplOA3hBV3WzpmkaSPRzASQDOnSc/WvuktIxdV67z3e6Ss1B6JbDYUdDYoFOV+v10TWu9VsvEbXMMZfMpdAMgf1L5Ugk0kCVyQ0l4WSylzXrLbfZ9Lfaqud1ccQKAABZp5EATMDnrN0dCSKqB8aSGwv9I29J0Vu3Qo++Q247Y2kaZk7CfzBgSnZs6VJCXryuk+fnDkg3H1rEN0a+fpTtWpO4hj+Zt7TKxpVzJ/JwkZg51o1BcYh8sXfS9wG3nibSO9ArXxHV5lBggRwsWgAvYbpPxAr7w1WyNCWXaWkB01bUFxi5xElYJApiIxHdAKvEURr7/FBj+zQZ25c0SiknIG0kV8wPDQo4QMHRN77XiVxflJqdw3qQB5CBPJ3tm/c08qtUnKGf2E6Vx4CRkhnc0nJHsEiG5c3eiZfUtIQ1MI1XB5DtIMbOxvV7097n5oOkWuvlfanH5fW5T+nGkV1Hk4jmI8j4YhHRNcoOWXdYq6F2TibtpO2BIXjEUhgmzoqM66kmquDxy/kbSOAC/nuWd0TCNC54YfSqT4pJZEAAawbXjwE8GhvVKMFG+Tadfj/zOz4fJKFTkYXjI+GdSCokfbGKXW6xj9n7qiSFzCzaP6/cNK/KKYpYGanjcl8tv2yMBHYtlJXjRlBW5Pt2cjetlu2ah48GZGVbRznM5zwZOBZamjIXsAC/BVihxDNu69nSElgs6cJS20KhA7TLAKRSRWIEX8QxKeUDDoyhIl2zbGnZa2e0Lt2qwZnpPYVIk8eG5Tta5u0f9Dl3PR3zLUQUbSTk6qldGW5a/I79YVs4ufHEnf4fkNE0bZBDp2wzjHaS4hkrQa1dF11lSw7fURqAse4Y9N9Yk72NJ6q9UQgqReVDAaXzUt3XnAf1+Y8IqohxUGTdfC4hbxtBHAh3z2rewIBlkQqGfmj1GXLEmXXD/UnthfDBpq30fEGuWlLVMI1E9qkGjl9pVF+sJ9ZvlMRJM2rftJot79cCKhj+kijRgmzWH1MnjhB1+QPXOW6opVbWQRY8q9bfUrvP+STvRXtNUoeYro29GxykW/NNnSHZXP3qHd4jUzKC65pknv2aoRpYPWPeGBVkHzLXUjHTWlUxeGzI97qHphDg5KGtwV/TmxDwlJl7OQZb9fZhm6ZCAR/uOO47uh4zIs6hkQePz+qhLDZ8z/ECHNZE1MHBQJF/kAnkConlEUwYFBY+UR5nK99a1shnY8+KhNKaFm6zvkeBo/Pto3PIH8QupNah4nJ2QQ13fmssgJxRjt69NzoLFKb7pyFtM8I4EK6W1bXjAik6b8yHpvXDwEN4GIyAbu2owk82huXHasb5aIme+4bYlBOR/LyXTPElVz859eecHXAnJUcHIov0c6sJgR6LkR12b8pOaZmwnNXYvLsHTXyjafi6uNZeC2v36jEb4VoQAQkI0leVrYyodGo88sXEoVOdnYlthfrBmTqadUErl/e4AVEOII0Fx+2+PCwB1es0fchTIcdpma3PB1mXUzSaMzCJXDD8Ujp9K1lab/o4IgXZIKGkcl+pxK6VMKbro7BfZBA6vz0iUHV6AV/SW5Td0y++DTiD4gmEm2l02i635NnLNytmY4DC7cdVvMljgDq/ZIEfzgc29vdliw2DWCiYUr4Dp2NTptak3tTtzYsr3Q3kY6IptbKvi80BManrbw3b/HzO14aCql2JUneCmnPUyen1LSJ48d0oSknN04TQJYVizW3pPy6uL6CAulLIEwnNEqYpde86FnMlnOJag1NaxOn0mPMdelzyU+IEEGLSRdNn2fqRX03B3HRzlynrkbpV8SvD2QXE/XeE0OeWTedeTrbZfEV7FAiSB5C/PwglEQEE0kMQSSv4SpNZ7NdI6hZdQUNIO1ywrGpqW3cbwvts9I9+0LDx+q7QBCgAyxuKMnQwDr1R5mOBF5MPoAZWpt1955Nojm+ZpqWsp4wTz8ub6tJu9rIPFXHLjsLAf8NHVHf0hs2RzTpd/FvbEyj2e87mE5LzL54QgM4uVydDOdIRGY1o8p2oJkKpi/BxLn/1LASJHz6NItLV4P3RwRwLs1cUGM4tazTa2nkcl/aFnPd/ad8EuYOgJyRngbSBCGFvBUryiM9IbF128gVibb79XHlcX0IL3kFCxHauFmjhq/d1CZrFRuEeoMNxI+8hvgPos081jsyq2gvQGVFw6KIEDYCOOv22o6FiMCwqhfo8K6oj0fJpMs3HTX2p+8AS3adKi+ILhxzW7VLrc7s9yixMKlWBGrkaxrZ/b19OOTHpediOgKXf92vWjd7UjI2Ve9FADdM++1Odi+ABzf/Jud9JJo/NFurVZtFahb+yJl3g6ZKwazpNFgsy7ZBo3FZeg1i5EgbxG183Ubveg0nj2W9LgEfmQSSVqw4Uku08dTBQzK+dsOsoqjv6b6ZvoOzDsqwA00gQSuYrDH5kuQaQvvokX45dGY47TJ2FEWAChHGa5Q8oqUs9Xr2Gapblt3WW5YFVit0PhAgaotFyckFxbqYc5YN2uGcPCmN/ZckMjYiUw1Ncy5yIRbgZuLVXvczmhewtx9SUbzWodrbuNDrd3kIQlAjR84XT/46W0Ly0msxS84e+BsiE9Ic9P9DA5hGHNlJ89Oi2YVW6ymdFK/XZdnICUj0LX+sFIJAnvR/T/OF1ovvmI95ewiWGF6zTqbaO6R57+Ny5fkv9c5J9w8kr1g8U8/jOz56LhUL17vUPyYbnnpC+n763ekurwEdGkmsnRRtyySYiZ1fZPAY0teki44OHpNum3Q1zheQ5en6dD3khRglbBrAdHfX9i1YBOjEzuhLXahfSNoGb9qU2N3aeyqxvdQ2yMUVTOBcze1n/WCTxY0A6YHOD9ZpI9PZ/mKybCgQAJKBANJPLBXBJPyIarX2nxzSfH1jGq07osvAjUr/sCZBDrwukK9lumoHu0jJggZx8OZnSct9380JVT54omXsbNEVP6b/o1DOwxfPaSTJP5iqUWzW/H+RgX4ZuuVZs+qxRU25mzX9Fz6H9PmZ+n00dph0SS6NBs8dt3lV46zVQGZdJMMOtIZoAAkScZPkZZqjMDUnY4bTq2K3aQCr4jZYJUqJQN/QhLT0hz1fjjmVu3lz4vTWcyfl8oYdie9LbcM58C+1dlt7qw+Bl90Q9jQ+fZo2qLMpmVbEr6muL32+N1HpyeVL0wScACCwwcoX/CVETZ4EQRDUUFcLCavxtFrQ6k71gYNUNbzxddLwP35W1o5dkqHOVR65QdGG9ouVSLC6QBbh02gNEUyr+GRDkCCYfIdsujV+8a+jHvG4b3L2NWe+v2A6Tdqyr3xOJjs6ZejG27zy3T/UAeJ1RgNCIHhcb5OueoKJG4Hk0QYI2kklfi4g5uxlXRVFj9mhKWuo5851zV4uRZdb0ZWfqp10+4OfrMrCBJnAERJgk/oGoguWREVTvsvDGDyvWrZNA1jAnWCWMhen1gIuZYfOEQEckfOZlWa9TJAAnj+Z9dDF/OPAqKbZHV86GpPFfC8XQ9saa+PS1ezniDvTPzNFSd+wOvCfT2rrJ1auWQxNLlsbIHBMmOkvSXVyQjWD5Op7/NiAruc7LofvuEtYSaX5X/5R3Wr8dX0hbJAlzkXIBYgJtl2JXYPm6CNiljIxrZJ4GXJ43eZWj5yhHYP8QdZS+2dMyalm1ND4uHR/+uPS95ofSUQBOzAo47gGaeC7hw84ROvQ6WHPfOw0fPgFc/2oEsGgDOhqH5h/OQ7T8AbN8wcRTicQwYba9C5Ffp1VI611cCZm2jes0cOc151n4up0163EvvQtrsSVF+A1eOD4L5+ZwQJs3qKqstex6dJCmBSKloAJuE01gEtVWEjgeG86c9tSRcTaPZ8ITEZ1QNaRa1njqDRrfrh7n2lQTUuNNNXXyN6eSbn78pFE9ca2bE9s20ZhCBCEMdnUKhff9OPS+Q8fkaNveaeca2tPFELalA41eaL5g4SlSqveJMyzCOZnViUpVLo/8TGJXOmT8z/xjrxOhVQe1AhoJ2g2gylc3H4+CR5hGTo0mGgNd6kmEB9ytHp1+jy5RNaUmakMVx7cIKrcAGGbwBp8E1mKDtKb63xXTqU/TQNYAOKQPwS1tkn1I3Chf8Kb4RVd0xkawKRWoejyFuiJT/ZENSJu5gx6gTbFqr0IEDjfTyP8oasuPCbP3j7mkb+L/TGNVte1wA8+k2jl2Nal67aRAGGOG+fe+asSGhuT1X/7v2aUdEHJDaZVCBRmz6CgJOlSgkg+woOniyN/kb5LsuZ//4lcfMP/J+MbtwSLz7rtq2kICpGcxAsNIjkFIbFjms+Q9DDNGkCI+RYfSCdu7Hffc33ia4iWEeJXaJqaXGWX8nfTABaBJgwfU3ChD0URl7JT5oAAqvjLusJF0UvErV+vzi7aCUSj0nauZw41Wdin+pGbC7sNVvvFg8C2FfiazdRIX9bAECbm67vUp+2ErwGcWLFKoq1JjdXiQSD/lpTCWjWxcpWc+cX3yro/+3258uJXyeAtdyQqgNmV1ClO8HlDc4g5GHJVtKjWbeP7f9U7/fSv/G7RxeDj6EzVmQo5E0gjw7gOoUWIoi5W0Bo6jWebakIj4YiXtDq1PO4Pvowu5U3q7+X+rhzZpBgEjPwVg1rlz8E3w/mDFHz1iM6PtmzxTus4pQuRRwMO1AUXZicYAobAXBGo81QWM9/D4YlGNedpAuIrusb12T5pHOjzLjO2xbR/qX52xeJ//qfeJYN7bpctv/w2qTt7OmMxjsg482nGA1N+gAhhhiVKGNK29d8/Ip1f/7yc+MO/ksnu5TOOhqRBmnIJ5mk0eoUI4zopXlLJn7tmPtdNvR5+kKxUlU64Pw6zdL+Xe58RwHIjbOXPKwJoAc+qM3PRcuON3qmRiXHpOOlrFoouy040BAyBOSGwZtnMIUvjLOULj0AIa+TmbbXS0ZM0/46a+XdOWAdPZhm2ox/+J4nrCknb3/Z6qb3QG/x5ztuQPggggSZtn/hX6fyD35ap33yvNP7oj3irckAQETSMRBVjhcsllNek5XHOXAViCPnL57pci2NpU77i2pfv8aU6Lv8aluqKVo4hUGEESG5atBPuNAGkysuP7K1wze1yhoAhEESAgKSgHL+A75lPDh47Oimn7j2Q+Nn8/xJQlGSDlDqHPvZZiQwPyq633CUNRw6VpFwKwZR8aUAn2X/7l7L5t94t429/h4T/54e8pdp2rm2RPVvbvAT/BGps0ohdtHvZhIwdXa2ajkXJnzPpZjs+n99ymZKDZUAUCzm+VJpaNJWFiBHAQtCyYxckAuR/IhlqUbJnT+K0Z43slbfcMSWvu0Vnqw2FvWiJQmzDEDAEikbgdF9MDpxplGi8To5eaJIHD/u55yiQJOCdJ4IawJ1FX8dOTI/AmAZjHPiPr2hqmHrZ/YYXyvJP/hsJ99IfXMDe5isX5Zpffqs0vf99Ir/921L/9/9XaojimBZSrDSrL12DBmawyhN5BbMJWkJHqlZ2+Mmnsx2/WH4r1DUtiXABCGRimYSFmxgC1YgAUV7OKbeg+gU0gOEn98nQeL0uY8UakgWVYgcbAoZAiRB4/ERUPvlDUfLnm36Dxa448Fji68ju6xLbtlE6BFgj+MAnvyF9d71WNv32L8jOH3ultD50f95EMMgfwsPDsvr/fVh2vfgmCd1/n8hnPyvywQ9mTLVBVPHTPYM5M3GwnJxbo5fP2kj1T9iDuJTubmUvyXOpzX4ICvaZEa+ZWObFgUkvmSIOlEwKHAPPVb79bghUAoE8/IZnV2O5OiCvXatJo05L7LGn5YsPq8YhMDOdfcLi3XPthrA6adfIY8csLUzl73Jctc4hGRybu7al8nWvzBXD42PSPe2mMbp1p0R1HVuT8iAQbW6R43/8t9L36jfJ+j/5Xdn1/71Chq++QS7e/Rbpf+FdMr52wwwSh49boyaJXtaquQNrdc3uL90jDV/4jHR97hMS1hQz8rPvFPn93xfp6spaYXL0kbCZLtitPJLuhNRgjSbVGuI26FYDSXfOfO+DpNK+SkpeBDAT4UutKMfhdG9iCFQjAsd7R2Xb6qbEzDDvOmIGVgJYPzKoqwyclIHVG/M+dTEd2DcUl+Vt09rPIi3qiwmPSrbluVfVypqOUfnE/RHtZedfm7FpeUh2r6uRfafisqYzJKvaY/LYcZFj85gwfPkzT0p4OlJ/6MZbK3l7luy1Bp79fHn6s9+Vju99U7r/4x9l/R//jmz84HtlYvkqGd2+SyZWrZFYU7O01+lScwOXJXLsqMjevbJRV/iYXL1W+jTB88Bbf0a23LorsZJGJjBRKLGO8fj0CiSZjmN/arDGZl0iLqQagJMXxrwo32znzsdv85UsOi8COB+A2DUNgVIjMKiJOQ/qUkE4FeMjkrdAAL/wBe/wlQceXbIEEP8r/kwqj8B9Bydlz5ZGJX9Jn7fK18K/YkhrcdOWuNSGxmSHTqi+/uSUdLfWyK3bQkoA56tWuh7r/kcSFx/aYwQwAUa5N1Qdd+X5L/X+woMD0vrgvdL8+EPScOyw91c3PiK1mr8n1Nmpa8KpWf4nf1LkzjslevV1slx9+jpU65VPFCw99truBulREleoJs+ZgzdqAAlpWQoJ0Cg3fJS/sqNeLrJwgW6npqAp5/WNAAbQTTV1B36yzUWCAH6AT50YVK1FvazQhJ9u/caszXvOcxI/r3nifnnmBXcnvtuGIVAJBAhwSOfzVolrp17jJTdElPyN6mBV65E/fr84GJcvPzbbJy/13HJ+XxkkgKYBLCfUGcuOtrbJlRe93PvjIFbTuGp9i6d9Sz2pYXoHy7XlI/TVXWpCxgTM2sXeSk8eZZp9NilgMgnatmojgKxLjFKCbBVEME9VaPkQtaQvbsnXsTJI/vI9Z3Ejt3hbx+yxRxc9f7pnyOtEWMg8qzzrWSIa9YasfeLerIfaj4bAYkbgWTsj3hq8tFHXL0iJhs9vIC8LPmoeXLXP1wBOqe/f2OZtZbmMFZofAuTeW6VarVXL/H4zv7PyOwoChybv2k2tieXaGmo16APHwGkhn2AmwR+w2oRk0OQNZBm6fF3ucrWB8tZ0NmguxMztzYzSdOkLnQxN54/MhdUM0Et1A3Je1A6YVwRQtbNc0RPHBqVvcDLziiGNjSKQQJW286ekdQkvCzevN8wuPo8IxOW1N4dkQ+fIjDq0N80j6QvUpP3M8cQKIEM33LJkA7UCkMzb5vruRlmnplqkWzODpAZklKpiEEG0izvWNAtaROf3x7rEEKlMslpJaSFJmjOVU+r9/SOTGkMRzc8qleHiQb7GcnyYu6eimRUcOQlghussmN0uEhkfA1THQYAKaUSx5xVyDTt2fhBA3X7k3LCc0CCRjPKiFyV+Wvu4aQETYNiGhwB5EuozW50SKD1vd0RecE0eBybOqI6Nq9frKg21Gq0ZkLhE5JQuwVYNsu7R7yWqMXTT7Ylt26gsAph80fqRhHmFagDLLZDLdpZ8W9GkZLPWG+PXdjVkJVG1qhmDmFajoHyC2BYrnL9O2791VZMXJT06Hstq7s6rJ4L8LHStGERwWNm1iSGQCYELul6jauI988KsIJEXvjBx2ton7pMDd/1o4rttLBUEmEnP1Hh1qAbs+VfXSENkwvvt0eN1cuhsZl+4Ke2CTl1YeIE021fN1iKc7WcQrY6sDxsf+nbiIbzy3Jcktm2jsgigbUITBzGrz9O3rxQ1rFPStKmAdX+LSglWiormUcbwHDKpgDvJsumliHp2CrBMl81JAHMRPzRruS6S6eKV3p+rLdnqk+vcxUCSs7V/qfzWNzShGef9WeyMNt+iZqXWVpHBQVn75P1+0tN8/QtmFGRfFiICkVBc7r7VtwOMTobVrCJqZsJhG+KXJEd7No3KrrWN8vmH00827z1YHYSpkHtwwyZdgSEy0/R7fqBJvrePiOSZhLiQckt1bGRsRAjOQiZWrpHRq64pVdFWTgEIwAVYqq1cJt8CqpLz0E4NJjl1aaZGO+dJFTygWc0Jw+OF9xWQ78Nnh2fWNMsrWryucfoS2cgf3WU+4d0za7swv+UiiAuzVUuz1mkjxCI6V3rucz1Ami5fkM7jB5YmOEuy1XF51U1hCddMaH+mE4S6UWlvHFXyN65oOPIXktOXm+QzD9VlJH+Vhu7GzRFNzRKRdZqnby6yXOc9QYH83fM0g1OWkSV4Qpm30chHJrkXIleep9o/m5iVGfH0xeNbh/ZpIUidJl3erBrDbNHCc2mHP1UsvoRxXRt5LtwpXx/HufUMOdoHKcpGEHOcbj8bAvOCwEgmV4G77krUZ8u9X01s28biRmDXWjRgaAvCmoS2QVM0zPZteuhovXz/wJT+Xj1Y7Fw1LluWj8idO8fz8k/MVPPOlmTuwSujjvxlOrry+zc8mDT/9r/gpZWvwBK9IpG++PyRmmW7BmKs1tRaC0VIKYMf4K51LULQCm0ppcxVIYQr0lzmMWmVGGkamNMEnOYc22UILG4EMik2Xv96kV/4Ba/tW+79sjz847+yuHGw1nkINOoqBmeuNAnJmJP5ueqEhMhruyLS1iS6PnR6k+98QniuX9NwtGO6dRGSmR7s7LUcHo9IS71PAh8/riNTNYn6djv/v1hdvQzc8bxqqt2iqotzcyLKtrNF/zTQAz+zhS4ErZATdt/JoYokYUazRx7as5rL0EUusy+oLINAxuPlx7ZoAoid31W+3A+Ae/DKfR0r3xAAgYxpAdesEXn2s0XuvVc6TxySjp5n5MqG7QbaIkfgsWNOrTezQ44psTp5SYnfpeoE4Dv7ptQE3KSDWlyJa/EE9YuPqjkqpBGWmlttYLS6CCCuGC0Xz3o3YPC2O71lx6rzbizMWjH2MtZDWJYrScLhYSH4+BWKNkQWInhMl5ort0D0BnRVqt2awubw2RGPdLKvQ6OZSdviJEgI3b5SfxZNACF/lSJmc1Wnlho0K29xIxDNkjdJ3vhGjwCCwJYffFke/bFfKgsYLK3V0lAjxy9E5c5dug7sskl933QhsGhEfc1C8sAzjpRkv/yq9pCMKAEYGHW+atmPr4Zfn71L/da0vYfO1ur6svm1M1u9yVW3ZWVYIHIEcxCdOD4JKeKsmaQuWE5bY01FcLtlK356MekbDulgIPLMuaimcCjN/fJXDwm2Kv/tXWvDcs06TZp+KayrkExWBIv8a+cfyTvo5MrzzPzrsCjVZ5vmkiOnX7ZkwqW61nyXg0n4omaCYMnQcsvAyJQcPT8qG5b7S9OdvzLukT9M6gtmKTgjZuV+TKz8+UCgsS6LPwhm4F/5Fa9aW+79SlYCSIqQ6zeFZUAnlU+fmtJ8TPm1Zn1XWJ69w19q64qSgnXLkrPSuvCUbO5WknC2QfqGcmtjblMF5am+sDxyNM+Lz6pikoho+iwlTZkJ06xTi9wxpGR1pDmi68xOKgHkenE1OYW1vWixZl7/6vVh2bJC5OAZUcKY1HJtXRVWjZXo2rQxefn1zKrHZdtKTUpbk5xhUxa57A6cicgTJ5LnUm0iX5v0/PsqELV74ExUljVr5Hm7X7dDZ7I8f1SuAgKuu9dGpX8kIk+e4NmZiXsFqpD7Eqo12XHPZ7zj4roKxOWXvTr3OXZEXghAhggkIKfeUhK0cJO6NjFLspWb35Du5ZCuTY9mFSLI6lSVJH/c16I1gEvpobC2Li0EskaybdggctttIg88IN3H9kv7qaPSv27LLICIvtyyfFT3x2V1u8jO1ap1itbL/YdEzl3JTtyuDPu/P3JMM7mPRGVSgw5qvYjT5GWes0vkcw/HpaslJM/aGVIn/5hcGg7LPXsn5bqNEd1foyQxpsdQVvbrJUt1W3G5ZVutbOyKqsZs5uB/uLdOV0+JaUeleTX9wEt3Usk+j56PKVmDckzpclJ18ryrsDaMeWTtG0+F5TlXqRlK+Qj0rTY86gVmLFMcaOfqjogXiHHL5gm5OFQvZy5TLb/9RPHOFMqd1GtAAGf+0tkieq+KJc1+WZ1ap3SkdeaVNLOQEt6vP+nj7GdcTZLu1GMr8X2bkudV7TXyyR9ytblhUM76rtr3sLSdO+ldYuBZz5fJlavLebklVfZKTeKcdSK8SNFYqf0N5PfS4IRHyMrdTEhmb7/fkab6AZb72pRvBLASKNs1FhQCOARnlTe9ySOAHHPbE1+Wr697d+DwuLzomlpZ3prU2vk/qukxPCbP2tEgn34wcLhuom1ZswwtYVzO9EGuYrLvTKMcVlMg8uXH4vKy6xumI1G9Xd6qDG++o1YJDKTGJwwrW0Vecm2Tkj//2ivbauRLj9XJ4Fj+hGLT8pDctBlilVp//7rbVozKthX+dkxq1QeuVh44NKkUa64aorjsXheRrUr8muuIuBV58mSDXL/Rd46ukToZGg9r7j1RHKY84sYx0Xidpl4Bp5i88Jo6WeHhHlFEajwC97zdqWkpwnpORMYmQ0pga5Rgq/bw9GyS8+29s/dxvdwSl22rInLdBl3bU+83kcMT0VoleSG5TwllLtJMvedbTl6M6rM337XIff0d3/pU4qBLr/2RxLZtzB2BuGpXiZRdakKbI9plYIqtNCGrhM9f6v00ApiKiH1f8ggQQk9m+YyCH+B73uP93P3pT4i8/H8k1h4lZchs8pcs6cKgr6liT6v6+D3nqpC0NaAp1DSDO6FyPnlBMyXxWnmyJ6qEUOSzSnJu2dqk2qq4EiRIn64ZyTEp4sifvzsuN24Ja8LemWTmRboUGSbPi4NJYviy6yPS3jSpka0++UopNu3XkF5/Y5f+3RGWK6N18uixmM5mk2UmT4orJrpu57qwHL+oPmUpK2Gg9XrdrWElyD4OCqY8crxenc1FiWhc9p+OyN6TU3L7jho1jSeJ6d7TTUrewMAfqC5pe7pbNDpXNX0nLjZ5iVS/tTeqpuRGuTwscv7KlPpQcix19Ml1so6ZtyCdrQ0hCenAoKsGeqez3aC5xOprxUux0qCRwu3N6sjdiK+mawdlRpUIRpWUh9XMW6t1KlQbm7le5fqlmlLZZGpjeGJMtn7/S97P0aZmufySV2U61PYXiECzLpm6FHz+ssHS2hiW9csb5NTFsYoFu2arT7l+MwJYLmTzLLdSgTR5VscOUwRyrsW4caOq2l4i8o1vSNvZHlmnawOf2vMcD7sxNY1mlhp5+PCU+rOFVFMHgYPIzRTMnm7evWttSNOLyLTWqEYeOuITORY6f8WNfmLimWfP/qYT2RmyXINLIKh37GiULzzikyCI6LImiF+x5CSqxGdUXri7Rnr6GuVR9Tdc1hySZ+9UOhuCoCXLXdMhGljQKN96KprImXezmpvrZ2gcFUPVQFy7PqbEl8AXXd5IiRZ/MdX4TcY0AYsesrcnSf5oJKR2dCIsKzua5MFn/N/G9eMpJdG+OGSnv6b5aNXAj43LtYw20fQuMa0XmM8k0GlOy7pL9amC6Tofn82sBdmPCQQ2PvgtqR8e8L5D/mJKAk1Kg0CDTn6XovYviB7tX9Fe760tvK9nSKeM2fr14JkLa9sI4Dzfr8X6YM0zrHO6POtZ1uZ6M372Zz0CyIWu+urHEwRwOIu5dWCsQUYno57WD5+2XBJSgviqPRElQaEEWUL91NkSUY2WJjJtmU0gU8vsbhmXtZ21clpNy8jGFSHPbPq9/UlStmMNLNH3Q/EOKvqfuGzoHNG/7AWg8bz7lohcGKpTk25cmmp9jRnaz8GxWtXeifSoGfJ8v+o4p7nbmBK573irT9ARu7rPJnQEghw6y/Vn/5a5VnG5fXutrO+aUt/CUuCQvNLgeKN880nIrqtz8jfbKh6B7d/+TOLkS697c2LbNuaOwOWhSQ1YUysIUV9LXNCEblvTJCcv+JrASTI0LyLJNcwtoqZaUwyB3AhENJqwVk17OeU1rxFZuVLtiudl0/1fl6a+8zLSqd8znqoBGk/7bCaiZs18BY3gq/bUKzEKS/+oEjglKaEa3fAkrCRK83NN+/y5Msd0tYrBsZB0NkNooro8U7JSUY3iPXM5otGdSa3W8Hj+9XHXmNtnWClcksBORuvU/zGk0bjUyWnrlJJqNN5sSbZl9m/F7YFkt9QnTcvFlTLzLFYLeepkSKOTk+2ZeYR9KxaB5ovnZMND93inT6xYLQO3P7fYouy8FARYEYPczqd1nVyWSjMRLz8fkcHHe0vbR1QDtkYAq+EuWB2qBgHlf+oEnMfMt1btkT/90yJ/9EcSjk7J6w58WmK/9rPajnSkRdORXKxX86RPuobGatTvL/8m14bHlcyJ9+fOQlv27X26DJP6nS1vcXsjah4Ny8h4SE2sjuCh3UuSED+pMXVMEqkDGgRx1ZoG9WUbl+GJBrk0VCMdTXElRXqeHgZpjOlfXSS936G7uv+pCeLVdzFU40fYBn9jGbUne2oCq2a4OlAf6ui+B88q7/aO1aSLcYR6btcanWzQtoU09QzBHq5NcyvTzp6NwNVf/BfvneOXi2/4MY2zSfFzmH2K7ckTAawf5P5DA7hUA0HSQZXTLSjdSQtgnxHABXCTrIqVQwD/l7zlZ37GI4AcH/+Hj8tjr/8fskkTDrc0RDVtCwQMEoDJoEbJG9u+dLUWZ0YgHcyJi2Evbcix3qh20nG52K8awVCjnL0Sm04eHNfvai/NSqZSiVaNpiGhTgQpJMnidHX1g7rzBwnUdT+VNG1fFQ9EJbMoWlh/nZLDvY3ysOerWKN+hk3qCxj3zNWHdam0C/3FtTtZj9JuLddUJzduAqu5y4GzTfL4ce55dbVx7i2rrhIiY6Oy+yv/7lUqppOw3h97e3VVcIHXBpekMfW72KFr+y51P8DgrUQruhjFCOBivKsFtqnS4e4FVq+ih7c2FvBKbNki8tKXinz969J+rkdGvniPfO3m50/XF62ERoXquplXRiAFSWIVCeVDEvzI2idPxNVcG1OtZI1+QsKcZs+/DHq2faeSZbMXbV2hkis9iSsPJebTJ6P6p+la6smZFVL/mKhn0vWzSiXrN9c8eu6apf/U6OjNtbJzVfGBLwR2jE2FZUjTuzx2XFfxGEq2u/T1tRIdAts18XPD4BXva9/L77bcfw6YEn6SBPlC/4RGwTaWsNSFXRT9Lz6RaEYXkxQw2i2mZltbggjMR/6h4PWrabtDFzkvSAgGUQKI3PDf/0dOJggge8gz52vO+Obku/trNKVLo7TWE3BAhxJSX74GGVI+wkzzvKZSOX5hSolckNhRTnUJpHHYS+niCKf7rK56BmuzSwNertuga9vWFOfPE43XazQ2S/Rx39xf8Aq2XTYEiAz/7EcTxZ//qZ9PbNtGaRHAR3h9aYtc0KWxOAC5AY0ALujbaJU3BDIjgAN0wdnvX/take3bdW22Z2Ttk/fLyv2PyPmrbsp8Ef2FXHlfehRyF9ZlgGo163xMyV6qBqn6yVTWRlbZj43K61ljuDslYCafahLQMaqJoy8M1Hhr4mY3r+dToh1TDALrHvu+dJ487J06eNPtMnLNDcUUY+fkgQBLkrEuLqtimPgI4BvZP1Ial5FqwdQ0gNVyJ6we844AK4AU7PeCA/p73yvy9rd79b/xv/5Ovvp7SS1F9kbVqKlltoYw+zn2az4IhEK6IsfKiOb0I6CFaGhS5vCXn0D6zlwJyxPq1zczoMOIeX4Ilv6o60z7V3pQs5R4tm9clqlFJLxYHeCytD3dT4tN+0cbjQCmu9O2b0kiMDSGVq4I+fEfF/m93xM5dUo2PfBN6Tx2QPo27yqioPk7hRU3VneGZ63SMX81Ku7K9dqj3amavuWt+PcVPlsfGGuUHz4Tn07anKqVLa5OdtbcEeh+5inZ8PB3vILG166Xyy96xdwLtRKyIkAwyNDolK5wU6BbTNZSF+6PVzQ/4mITI4CL7Y5ae4pGoKVBtXnFSJ2aSX7910V+6Ze8s2/85N/Jt37jr4spqSznrNRo153q+9baoNpGVWAxoYfwkaqFNXFZ+qurmc5tXL0R66f928pSlbIWeuu2iGxZjl9l/po+VyGCOh4+GgmkqHG/2Gc1IHDLv/15ohrn3vZuVV3Y0JUApIwb0Zj2GSZCYMxiTOZeQM4LewoMgcWNQLeagIsWUsJ0d3unb/3eF3SJuBNFF1WqE9t0WbM33lYjL9g9Lms6RpQAjmrgyaiuJTyq69OO6TJt414OvK5m8uCh7dIVMbaNy0uvi6gvZKlqUYly4vLyG8JK/kb0YoVrcYcnGuXTD4qRv0rcqiKugV/txunEz+Or18qFt7y1iFLslGIQCCaML+b8xXLOoGpCF6MYAVyMd9XaVBQCEzrLK1qamkR+5Ve800OxmOz5z78puqhSnXj9xrBH8gorT5eaax6R194EFgth9h+XV98UkXZdi7gYOXaxyVsTmfWGTaoTgVv+Nan9O/Ou35B4XX11VnQR1urSwKSMps0NWp7GTlXpUmtoABejGAFcjHfV2lQUAmMTc3zJ/8f/EGlv966985v/rb6A+4uqR6lOevAws9ZiTWVTcus21scN66Lo1UuO7roh4mk0i8FsMlovDzyzOGf2xeBRjeeseeI+Wff4vV7VxjZslkt3/2g1VnPR1onE0Oev4FZRWompabl/eFIOnx2WJ44NyCOH+72/x44OyIFTQ3JFfxseq453k9VRiIhejFLs6LAYsbA2LXEE5uzj0dEh8tu/LfIbvyE1mrPsjo/+T/nSB/913lDFt+87+yNy69ZaNelOeit1FFIZTKpblvtnnB9sknv2VkeH7NqAmbqjkWCPwiUar5N79kFsF4KWs/D2LYoz9B2aof37hd+UOEswmlQUgYIzI6TUjiXlBjSv4PkrE97ycrxxwxpwlyn/LOZWZ3JlWc5Vy+pltf6lE4hkqMxRyheU/C3GCGDwNAKY7qmyfUsSgXbN8zRn+YVfEPm7vxM5flzWP/o9Wf/wd1KSQ8/5CgUVcO5KTD7/CKeEpK2xXtZ1hbyE03Xa1K0ra2RZE35zuWVl64i3tFs1re6xdRX3q/CZOSlePvtQTKbUVG9SvQhsePgeWb3vYa+Co1t3yqVXvbF6K7uIa8YqGMVKb/+4Llc5kWGJydylYhK+pASsU9PRpK7HC6mERHaUMUr5RO+otypK7pouzCPMBLww75vVOgcCLG9XiNSofiy1gynk/MSxDQ2J9YHZd8dHPyQ10erQnA2Mxr1l43ouRuXwuah87YkpefBIo+rA8iO+G7tGPZNwoq3zvLGhq3DtHdG+X3osruSvsOdjnpu65C4fmpyQO/7+g4l2n/6l39K86UVG6SdKsY1CEYBckQswl6DlI2KYTyekkOnpHSua/LlySEq998SgTAaWYWNfz4VRqdfl2colmKghsJjBF6vk1/Mv1tZbuxYtApnMC5ka3NVWK7Wl6kze/GaRv/xLkQcflM4Th2TXNz4p+++qTt+lo73akV6s0bVxm2TrCnx9skXRxuXZO8bk4LlGeezY/JPatobCtH8T0QYlvTEZLey0TI+M7S8jAiR9XnbqiHeFwT23yuWXvrqMV7OiMyHQrKmxMk2MIXunLo6pv96UZyKlzyVpNH/wQHznSkWeKPu4auO2r2mWc5fH5eTFUVmuq5SUy/xL287qdRa7lI8+L3bkrH2LCoHWxhLOhdA+/vmfJ/DBj6l2ZCjxvdo20IY9dGRKvrOPmX4uzVhcdqyqjoSoRy/gF5SfVshP9RJVbUS1oW/1SUWg+cIZuek//trbHQ+F5MT7/0w9GGyoSsWpEt9PXxqTfT1Dnk+e0+7hd8f+R48MyDkNECFhtJtwowXEX25STbelIn+unSMajXxZkzFDOiGZTUpOD58Z9vwJ3TGl+sRH0fkhlqrMUpXT3lSr2R1y9dP5Xc3eqvxwsqMWMQJN9eG8zBwFQXDnnSKvf713StPlC3Lzv/1FQafPx8Hn+mNy5EJjzkv3XMptEspZSNEHxGVVu99tPXp0UqLxXARQ1/AdItULGsvSdJpFV91OzAuBZ6npt3bM903t/dGfltHd1+Z1nh1UHgQgeETmPnJ4QB7XKF0idc/0jSVIX3muOrtUiCVRwxDLOrXW9GmKmjFNzwIXKmXEMET3jC6DV62CKfzqja26zGWj9mhz69OMAFbrXbZ6VQwBoszKst7ln/yJSL0fvXbt5/9JVhx8vGJtKvZCD2nqmMdONMqkBkrMlJD6zdWr+bdJ5jMQ5JV7InLVOr/beun1kek1foM1rZHLI41y76FG+fLj9fKf94flW08Z+QsiVM3bax/7gWz9wZe8Kk52dsvpX9aoepOqQADihWbPafvmq1KQHsy/XfqHeXrfySEvwhjNZCmkX03a/SPVYeVI154R9X88oxrYrtY6IUCnUH/3YJkltHsFi7VtQ2BhIFCraQbKFkW2bZvIBz4g8lu/JSSHft6Hf1M+9eEvSKxW85dUsRw8E5WDZ4gbrvXWB17fHZKHD08qAaSDhUzNj3S1qtmnLipfetS//thkjbQ1MAOmXjUyNN4g9x1iHd9ooIJzmyEHCrLNMiNA4Med/+f9iauc+vUPSLS9I/HdNgwBEICI9qgPYFAuDU5IQ11I1nRqEN4cpVpNv8FmkZoGH8vlunoVZnGCYooRI4DFoGbnLAoE0PqRX6os2j+H0K/9msgnPiHy+OPSdfyA3PCp/yuPvuUX3K9V/RlTUnW6L+b9VYP59NJgTD75QyDzSd23NS9hYx1RiiG5rL+NqqnKZOEicOMnPyLLTh7xGjB0wy1y0ZI+L9ybOQ81L1VWJzRsC0FYpq+tOeJpQlnFiojlQsVMwIUiZscvGgRaGiKyMkOC0ZI1ksS1H/1oIoXFTR//a+k4ebhkxS+EglpVS/f6W0Ny9y1z624I0u5SshcUInrPKEkdrV6LTbC6tp0Bge5nnpI9LvBD072c+L0/tcCPDFjZ7vQIXFACROqZQgWfP/wL0aKxAsmcV4QqtAJFHo8pflxXr0KJ0a3m8KY63x+az3w1oTN70yIrYqcZAgsRgSFdashFtpW1/nv2SOyXf8W7RHhqQp731+8VKdV0tawVn3vhm1eE5JU3TkldeEx984rvbjYtD8kbb4vJLduKL2PurbESyoFAeHxMXvhnvyzh6XyZZ37u12Tk6uvLcSkrcxEjgIvKIY0KJlCEJNH070QlO2EfuQPHAho+jnlao5xZjo5cg8/o+Qtp1Y8Is2IV0vXs3tAi121qk13rWyTfrBZmAnZPh30uOQTgYPhR1EZK4ydGmgKcciltUstlAXH2kVJg6K2/Krs/+Slp6Dkmq59+SK79/Mfkqdf99KLH/FhvTDvjiHbEEbmiHXAxAom8bSvJ+2LS3oiqz0hgMThW6zm3/vP/ks5prfiwEr+z/+M91VpVq1eVIwDhwyeOPySi6YPI8arKMs9ESu88pP3xqo56L3K4V1cpme+glmIhJRVMh5qAnbBkX30tORj9ND1uf7bP5NnZjrLfDIFFiADOxMwKiSYrhTCzPHZ+NH2H0tAoxz/4Ydn1k6/xLnX7P/6RnL1G/Zy2XVuKS1d1GZeGkrPwfCsaCWm+wTUR2bxCpLXed/genWyQb++lrMLLy/e6dlxlEVjzxH1yvSZ9RmJ19XL0T/+Prfdb2VuwqK/Gco/nNVehE/p8UsYc1ZWQSNe6UMkfK6BcpRo/ghiDQn5GAmJQPuQjM8/O5ww7xhBYJAg0qq9EewnXkZyYimftUAZvf46c++l3e+hhCn7JH7+7qhNEz9dt7miqUXNvVK5bP5ogfyOTjfKFhzU565iRv/m6L6W+bu3IoLzgL5LavlO/9n4Z27ar1Jex8gwBIXlyMNgPIujIX6v6gjfU5sonWl0gjqvP4lPHB70VUYJmbvwY8yV/tMgIYHXdV6tNBRHAcbbYhc5Rs6f6D2LuzSWnfvV3ZejaPd5h7WeOy3P+9rdVoWWkJogbcTNITNPQHLuoSZwfrZPPK/kjKtlkkSCgz/xz/vZ3pPXCaa9BA7fdKeff+nOLpHHWjGpDgLx+EKV0OfMwCRe4dPy8Na9ZFy1wyZ9pD8vijU6POxfUnO1M3/lW0EzA+SJlxy06BPJ1lE3X8HNX9GUbnNQUJBFNRRL2IsjyyR8Vr6uTo3/5Udn9uudKZGhQdtzzWTl9w51y8CVvSneZJbnvQn9cEzi7rqk4v8ElCVwVN7pZ84qPjqvWZZrEX/3Ff/aefaocbW79/9s7E/jIrupOn5JKu1pqSb13uxd3e19wsA02hDFLMGAb4xjHQIJ/kIRsJGQgGxBPmIQQSJgwkB+BQCYkBDDDBOKwE0LsmNhOYhu8u93utrvd+75IrV0lac53S6+6qlRSP6lLUunpf211Vb269d6731vu/517zrm2408/pajfCj5+Sdm1S9YvCkEeR1ws8dzd1FBtWAD3+NDpdHPpzRYbZj+5wAM8mKWEfWeGFsQgASAEsxDgMtUiC+BUial+YgjwtHTEE2riB1hszTtdI+s9A33PQCbcOLZ51Bk3kLjRYwNr19vOP/5EbhM/+ek/sMW7tuU+640IJIkA4u/6F45a+6Jsd7PCg6Be8td/nGvijo980gZXr8191hsRmCkCR/1+T/qv9csbbcOKRlvWWmcNblXLHx6eqW2fyXoJ+CC1C4Eeqzvqbc2S+uD/h2XzuQO99syentyQ9lS2IwE4FVqqmxgCTCG0sr3OnvegDZ6euLCmUpg/GL+S5R5NRqTZVMux62+2Q7e+LfysZqDPXv2RX5c/4FQhqv68IIDlr8qG/VqptsZjB+3VH/61XMqX/e94lx1/7RvmRTu0k/OfwN6jA+N85DI+vR2ZGiq5LPN+hlk/okLA4TE3YERRz5E/Y/R93Nep91xx16x6IlDBBBCA+E7gDNw2jUAQnhjxH2T4d4raMUdl9+0ftt5zsk7vHTufsVd99DctNVzZN6LczutNIgi85Ly0XXVuNNw+cZOWtabsRZsmrrdxRbW98cUpu2Jjtg6BPNdcmPbhtZQP+xK3XW3tNR749OF3WtPxw2FDXR4Utee3PjDxRvWNCJSZQBQFHK0W8XfC5/6dSuBE9NvZesVVibQ1UWGft+7t8RRm8SJ9o9+Vep34ii5VW8tEIAEEcATGh+KApwdoqvMIsNqpPwdhNWTomJD76ZaRhkZ77pNfsAtufbWluzpt/YN32Ys//6f2X7/ogSEqIjALBI55ip7L1vZZ3YWN9sPNp/wt25pT3sF4Cp6GlF19jufKrMqm0ljVlk3F09XnF9BYaffZWa7cMOSfMrbJ0/Ysbmx04TdideleTwJeZc8eqrfNe0dt+R/+D1u5+UfhV4MrVtlz7gtraXVBEUe9zg6BbKousxYXVruP9IcRIIRhpRVGljYsb/BMFencCBWi74nnu31e9jMXf7Q35b5P41re1dVlra2tdvfDO625uaWAC9C6pjHdSsFK9EEE5pgAIhArXvuiGlu7tGHKe/PM3u4gAKf8wxI/aLn/Hjv3HbfkrH/3/Pc/sy2veXOJmlokAuUhwMwqV20asi376uz8Vb1hpSf7G/zennKL+KhPKzWxQ/lApt6+9eNh74Ty3SZG7aXn19hZbdl1Fe9l6u+/bq3v/t2weKSm1rZ8+bvW84LLi6vpswgseAIEpbQ119jSxbW5qGWGek/4kO9xn6puyNONYYCIW+pT/XbpOSuts7PTWloK9dyUTR+IvygMOe4OqJ4IVBqBVe5Iy0XGvIlRGH3cfWS4oJzzRXa99OW28wMfzW3+ZX95u6184r9yn/VGBMpJoKHGgvjz+Ftb0caas1a4RfV9ttoF3GTij9p16QFb01GcNy1l92/JhLQ9ZBdzm6EhFIdHPdXS939oLb/9Pn4aCue6xF9EQ68icIoAgR7nrWkKc9Tnp6zZdajPth/sDWlepiL+Tq259Ltp2d8r0VxaunlaKgLjCXBhZTyRJrEbKf+LOwSMUCRqmHx/cSN+x2+99JLDb/kFa3huqy3/wmeDg/xrPvQrdufHv2Fdq9aX/oGWisA0CfQNcQfPPsYztd7zR2ps/ZL4FoWu/np7/nBpX9UHtmXsgW2IQ6yDI7ZsyyN24/t/I2fdPvD2X7Mjb3rbNPdcPxOBZBKgT9roUcmL3ShRXIbwU3R3o5koU7YAzsROaJ0iMJsEajx4gyAQptFpbTzlXzHZPuDvt3l3d/AbnCkXiF3v+5CdeNmrwm7Unzxh13/gbSFqcrL90nciMHUC+PdlLXgpG7LewVEfzj3lZD7Z+h7Z2WD/8tjpOqPs0HDrnu32uj/8eUsP9IdVHr3up223n+MqIiAChQRWttUFX7/CpdlP5CwsR8BHqXVLAJaiomWJJUA+pU2rmoLvH6lc0kVzKU7UcDKuTzfUfqJ1jlvuDvHbP/E56xubDouZQm64/a1W13V8XFUtEIHpENjk0bq3eLRuTfWp+VEvXDXkFoYqGxyeXAQe6Gy0Z/YV+/6V3gvSvVz/B7dZw9i5S8Tvjo/+lZI9l8alpQucALOR0MeQmxZ/PwqvO3zYlxyzM1UkAGeKrNZbkQSY+5cpc072DYcM6nF3cv2yBo+InJbHRNxNhHrDi1pt6+e+agOrzwqf23dutev/x21W29M1pfWosgiUItDW5OmLqjLWn2nwod9GO97b6NVStqS53x581mzXMT4Xdgsj7sf3H8/W2z15UcKl1h0tY47f6z7wdms5uCcs6j3vInv2U1+00drJBWb0e72KwEIjQEJnhN4JD/LYvKs7/D2582RwOZpJFlOOAp7JndG6RWC2CKz0dBZkU59qIWieNAJnkv4lzjbrdu2w83/2Oqs9dCBU33/hFfadD33RMvV00CoiUE4CUSKI7NAtM3e84qJqa67rt32dDXbv5qHgMxhnizyoXOeuCyuefjhUH1i1xp7+f/9iQ8tXxvm56ojAgiWAVy7+6OWekq6sUcAL9uio4YkgUF9THZJqLvI5IAnoKJEFadJ2ZtwsH2fO30lXEuPLgbUb7JnP/5MNtXWE2uRPe+0H32HVgzM3HBBjt1QlkQQQflnxR/N6fHT42w8P29ceSNu/u9WPgJE4pba7066//bac+MssbrOtf/M1ib848FRnwRMgNKvc4u90UAtt/aerre9FYJ4TWOa5ler8KWtoeNQ6PAdg3CngEIqHOgfsaTfPlzsCeCKk/e4LuPXv7rRMS2uosubR++3aP/FptCQCJ0Km5WUkUJjnz5PFVEWWwvEbqfOgpRt+/+ds+dZHw5dDi9tty99/w/o3nTe+8iwuqfQ5XmcRhTYlAuMISACOQ6IFSSZADj8SbdamPVfZxP3ZOATbD/TZTs/FNODpY2az9F54qVtRvmrDjU1hs+seujv4V+FnpSICs0Wg3rNT3HhFNnK4eJsEKb3+/W+xZc8+Eb4aal9iz3zxm9Z3wSXFVWf1M1H+m1Y2hTm7l7TUzuq2tTERmA8EJADnw1HSPpaNAFnUseD1eCb1OAKQSKyQhd2dc+eq9Fx2pW377FdyInD14/9pr3/fW6y+8+hc7ZK2u0AIXHtp2m69yuymK4attrrfc5UVikDOwde//822ZPvmQGRoyTLb8qVvWZ8Hfsx1IWofp/qadGpW3Dbmur3avghMlYCCQKZKTPXnNYEmt/6RCqajpSbMBJKfbb24YRkfJt59pM+6PWK4f6h04tvi38zk56bHfmzn/tLPWPrE8bCZ42s2hsCQ7mWrZ3KzWvcCJnDzi1Iu/E6ljAHF4HB9eHiq2rXb2t7yNktv3RYIDS5bYc8w7Lvx3AVMTE0XgcoioCCQyjoe2ps5JEBCTfL/NbsQHBicfDgXnz8CRSpB/IGM6bOe9jlUB5evCgTb9jxnN/3OG23xbs/foSICZ0xgNOfnd/nZbvm7etTF3+C4tWIJbHzsAet47etPiT8/J7d86dsSf+NoaYEITE6gwacjnauiIeC5Iq/tzgkBhoCZyu25/b0eAOLJNt3KFyXezN8hgj7OxIEcH8MVi+tC7sDVPr/jUvdBSjP33BkWAkOe/sr3rH/9xrCm5iP77Q2/e0uYcusMV62fL3ACN7ww7Umih91nLmUN7jLnoVJOZLyjbM13fmDNr3+rVR3OuiD0bTjHttzxHRsYOycXOEY1XwSmRGC2I3/zd+7Me6T8tem9CFQ4AfyCSAGD+DvkCaF7XAz2eBb24kJ0MKKtxaeKm2pB/OF0Xu1TznUs8qhjn3aOqONyzSQyuHqtPf1/v2c9HiBCYbaFG9/7JjvnrjunuquqLwI5ArVpxN6Ive4Fw9bWNF74UbH2M5+3xtt+3VJ92XREXVe+xPP8fd8G1q7naxUREIF5REACcB4dLO1qeQjsOzZg/T78u9hnBal1B3GCQpjrl0m3sQjynqFfon6nYwVkffuO9dtez+zOOrb7dD44o5dLAEIh07E0RFp2vfgnA5T00IC96mPvsav+5kOWGj7dXK3l4ai1JIMAEb61Bc85GWuq7Sts3PCwNbzvj63x/X9i7jgevjv6+ltCmqJhz/enIgIiUD4Ck/mml28rxXP+lHPNWpcIVCgBhBhWuX0u0I6eHPIhr3Tw82OKuAMnBsIQMeJw/fIGY/h2OiIwajrJPWeqZKeN+0c79Oa35zZx2Z3/J6SJIS+bigicjsCl66o9wnfQbr5yMET5lqqfOnLUmm59h9V99gu5r/e983ds+5//9bye3o3rGmu9ighUGoFyGgsma5vO/sno6LvEEugZyATfPwJCuvoyNuLxIK2NNcEayITcx7oH3WLnw6v+PbnE0p5TrBLLaG2t7fzgx+35P/qYjaSzZpyzHrnXbn73jdbm8wiriMBkBM5bOXkgVPUDD9uia95gNXffF1bDObbjw5+0ve++3ScPiTdDyGTbn8vv8P2draTuc9lObVsEJiJQmb3aRHur5SJQRgK9g8O2/UCv7fchYQJD+Kt3yyCisNYF36AnjabgB3jxumZb3VFflkCOMjYht6rDb/kFT8HxdSMJL6V1/0776d+6yTb+8Fu5OnojAvkEsP5VpwpTvOS+x0r+qb+15ht+zqr2HQyLyfG39W/vtCO3vDVXTW9EQATmLwHlAZy/x057XkYC+Fw01VcHv0CGhkgey/AQFoIaD+Zg2aBHEPuLdbqP4DEfOmZ4F8shvoOVUmr37bZN73yrNW1+PLdLz7zqjXbfr33Qhhqbc8v0ZuESYEq3n/b8ftWp8SleoJLq7LKG33if1X77BzlIBHts//jnbMhz/amIgAiUJkA/MlvDt6X3YPzSyfIAFrj+jv+plojAwiDARXvSh4L54yJudjGI6GtuSNvhMEQ8at1j0cKVdoHnH6HBVWfZFo8QXv8H77aOb341fHXeXf9oK556yO76vb+wQ+e/ML+63i9AAhuWp138FQV5jHGofvhxa/zFd1v187tzZPb/8rttD0O+Yy4GuS/0RgREoIBAJfcNBTs69kFDwKWoaNmCJsBFjF/gcY/cZSaQzp6M9XnUMMvnwwU+0tBo2//XZ/3vMzbctCgcy9YDuzxp9C12+Zf/QlHCC/rsNrdyl/DdGxiw+g9+zJqvvTUn/jKti22rT0G453f+p8TfAj9n1PxkEpAATOZxVavKSICh3koa5o3VNLdiHn3Dm+zJb95r3T9xZfhJ1ciwXfml/x1yBi7avyvWalQpeQQe2e4picwzPY8VrH6LXn6T1X/8M/5wkM2J2X3p5fbU139ona94TVRNryIgAgkjIAGYsAOq5ohAPoHBs9bZ03d81/a+6302OjYTycrNP7Jb3/lqu+wfPm1VmaH86nq/AAhkRlJ2z2a3AmL1+6M/t+ZX/4xVb3k2tHykpiYM9+JGQMJxFREQgeQSkABM7rFVy0QgS8B9t/a96722xecR7l+zLiyrGei3qz7/Z3bLu64L/oFCtZAIjNpLOx/NWv0+8VlLEcnkpeeiF9jmO//N9nuOv1EXgioiIALJJiABmOzjq9aJQI5A9wtfbE/5kPCBt/1qzhrY7rkCb/K5hK/5i/eakkfnUCXyDbN9XFB9xG77wu/Z8utuLLT6ved2e/offmB9512UyLarUSIgAuMJKA3MeCZaIgKJJ9D41GMeKfwea3rykVxb+1ra7T/fcbttfeXNPkeQng1zYOb9m1F7xaYRW3vHp63+Y39lqe6eXIt6Lr7Mdvzpp6zv3Atzy/RGBEQgOQQmSwMjAZic46yWiMDUCLjD/7I7PmdrPv4hq+45mfvtkbMvtAfe/l7bffk18362h1yjFuobj1x/+bP/aud84oNWvWNXjkKmpdX2/cZ77eBbf0kRvjkqeiMCySMgAZi8Y6oWiUDZCNQc2GdrP3K7tX/v6wXr3HvpVfbAz7/fDp13WcFyfTg9gVRIE14i3crpf1q2Gku2PWFX/d1HbM2j9+fWSSDQYZ87eu9v/r5l2jtyy/VGBEQgmQQkAJN5XNWqBU4gZSmr86nrmK2kHPkJW+6/x9Z87I98WPjRArLPvfR19uDbftc612wsWK4PpQn81CVpW9Lc7xKwyp7YXWOb92RTq5SuXf6lS7c+Zlfc8Qlb99DdBSvvuupltuv3P2x9519csFwfREAEkktAAjC5x1Ytm8cEmGpuxCek9//LIuDKgsIjQtv++RthWLh+5/bcKkeqqoNv4GNv/GU7vu7c3HK9GU/gTVePujSP0uuk7NDJBnti57AdPukHegbLsi2P2BVf/oSt/dE9BVsZWLPWdr/3Q3b82hs0pF9ARh9EIPkEJACTf4zVwgonkK6uslH3xxpG7c2DkhoasiVf+6Kt+suPWu3hgwV7vPPKV9hjb/wV23fJVQtOUCxZlLINy6vtoWcReKWGeEft1qtTbvsbP89uZqTOHtqesp2Hs2lXCqCewYflT/84zPCy9sc/LFjLwMrVtv9X3mNHbnmrjdbWFXynDyIgAguDgATgwjjOamUFEYgmBU+7z1VDnUfUuu7rGRiuHEtfTFZVvT22/O8/Yys+90lLd3UW/OrQOZcGIbj9pa+10eqFMa342cuq7UUb+2zHkUZ7/PmMvfKSatvu+vjpvdlh3msuTNvK1t4CTsUfOvsa7PuPZnw2jlICsrh26c/Vg/228d7v2EXf+oIt3/poQaWBVWts/6/+lh25+Wcl/ArI6IMILDwCEoAL75irxbNMAH88Mqdg4cPaV1udsoy/xz+vuOC3Nzw8Gr4v/q5SP1d1n7SlX/uSLf/8p61u356C3exacZY9df1tYYi4r21pwXdJ/HCrGz4tNWpHTtbYskVZsff80UZrqTdrb5pc/EU8sAbe/VTKjnWPPz+iOqVemw/usQu/e4dd8P2vWEPXsYIqDPXu+9XftqM3vdmFX23Bd/ogAiKwMAlIAC7M465WzyEBBCFzCFOa69P+V+3CMOWCcNS6ejPWvqjGuvsz4f0c7uaUN83QcNv3v2Er/uaT1rT58YLfD7sVcNeVr7Qt195qu694uY2kawq+T8KHjSuq7coN/d6UcgzlV9lDO+rsuQOTB4kwP+/qR++zi77zRVv34F1WNTZzR8Sz14M6Dnpy76M33qoZPCIoehUBEQgEJAB1IojADBJA7FEWN6Wt08Udw7+rO+qCJbDJhd/A0Iid7MtYnQd97D3WX9IqOIO7NzOrdn/GRf/577bSh4Zb771r3DZ63RJIQuktPs/sibXnjPt+Piy4+UVV9viulD2bJ9Bee1naFjfEs/LFa2OV/euTNW5NLBKUznfZM4/YOfd8086+99vWdPxwweqYs/f4a260Qz/3DmOGF/NzTkUEREAEiglIABYT0WcRKBOBpS211tZcYzsP9dlif0X8LVtcaz39w3bs5JANDY+E4d4BHwqurkpZjVsB8QVMUqnb8awtufPLtuSfvmK1h/aPa9rhTRfbjquuteevfo0dW3/evBErb7562B54rsZ2HDo1THurR/hW5SJ8xzV1WgsYDv7aA74N14Dtz2+xTS76Nv37N63Fh3uLy+DyVXboLT9vh3/mNsssXV78tT6LgAiIQAEBCcACHPogAuUj0LGo1loa09bq1j9sMAeOD/qw7lDiRF4sYpmMtd53ty35xzts8d3fsyofLi4u+AtmxeC1duDCKyoieITAjpMDI3a485QVrq05Za+5ZMCeO9TouRbN7tuSCU0puwAcGLD0Aw9b33f+y6r/+QfWvmtbMTIbqam1zmtebUffcKsdf9V1mrljHKGFuSDtD5T+fJlzNWmsq7behD1cLswjW95WSwCWl6fWtoAJENVbX1tlfYPDwbdvdUe9McxL6ewZsmf39+ZG4+ZLypeZOJzpY0et41tftY6vf8WafN7hUqWvpc2nm3u5p5N5se2/+MXWuXrDnFgHCerYdjAdfPE2LKuy1e3mAR19Y7vMsR22bz1ca6+7LGXpqoFSTYm/zId2q7Ztt/S/3Wc1d91r6fsftFRvtK1Tqxmtrrauq6+xoze80U781PU27FO3zeeCmwQWcPxgsYJjUyUHJkFSC/k6YcSAv0yRX+fpjjWBZh3uR9zZkxkLPHPC/gSKu8l0eJKTtIbgtbSLSj9Hu/vmX8aC0zFbqN9LAC7UI692l5UAN0k6rCVu9VuzpD50ZhmP5j1wfMDa/GZ84JiLA8yAXrgxl2N2juza5ve/tft22+K7vmeL//W71vLgfUZQQ6nS436DCMH9F78ovB4j4TSh1TNc/tsF6ZDX74bLXaSkxufvY/Mj5sP70xn6dQtf9ZNbrPrHj1v6kScsfd8DVrVnX8kWjXoPjj8fou/4a99gmY6lJevNl4VcL7hHYCFf1JAOArB438mNebx7yP8ywU8Wl4n5XPKDv07XjiD+XBRn8trM7xHJcOB72OE/7JhOzfrjiBr9oROf4lXtdZ5mKvsAGm0PAYglEDHY5699gyO+jdHw0Fp8T8JqeO6qJqvxdeWXfn/A3X2kP/we95UzLU0eCIe47HNLe/9Q4fVPm5e01FiznyOI2FHfXNrr0n4eFmj/Cb+fci7xPe41PDxQuv09rNDPUdDdme7rTPyehx/KdMT5me6PBOCZEtTvFywBbsDtzbV2pGvQhvxGuHFlk9V7Ghd0yT4XfCw77N8xHEPaF5XJCVR3nrDWH/6LtbkYJHikuqd7wh8MNLfY0Q0X+t/57jt4vh11/8Fj686zTEPThL+Z7hc3XemW3TTRvWdQ+vqtavtOSz/2pFU//IT/PR7EH5HTE5VB9+Pr+slXWufLXmldL3m5z8+7ZKKq82J5i3fiiAk6acqFa5tLCr/8xnAN7TrcHzrHiYRKfv1Kfc/oAOKttgZJ4/95n9/kAgsedP/R3aHGxQ2jBtwzKNw2eItgw7LHOuBA8Y+5kvIVZutkram5L2K+QXwg7E66dQ/R1FBb7YFrNWF7pVbBPrC9HQd7wyuCnmW0i1dEDW0dDFZH83amrNXvl4hK6jJSQp0hr9vg79l/hBv3TTIhRGJ/RVudLV9cV2oXYi/jQaLfhS7bop3sH8KatrJfCERGbfibyzIX/YQE4FwecW173hJY5E+tZ69otD1H+8OTODfpVr9h8jS+/UCvR/xO3LHP20bP4o6nBgfCvMOLHrzfmh/6D1v08IMuCE+edg/wIzy6/oIwZNy9dKV1L1lpPUtW+esK61vsAmoaVsNYvn0c+K5uq9p/IAi96ueeD6+IPt6n9h3w9IDZjnuiRuDPd/KKq63LBV+nC7++8y6ak2HvifZvKsux0JDeCDeIPViLvANGvJy9osEFTjp0xFwzdPyTFQREtf8uspJgpUJAnnDLIEIConTcdOrkz+QzuTSpx2/p9Pmu2Lo12TbP9DsEHsKCYVMeEhmORfBE5XRtjupV6iv8SVMFZ4Qi1rv8NgXB5ezhzzGiXhUHu0IL+8s5eqRrKBwnRnJK5Widrd3nXOdvNvZBAnC2jqq2kzgC3OjpcrhYN7n1j5s9ndGOA30e6JENDEhco+eqQR5E0rjlSVuEGPS/psd+NG4autPt2nDaI7CXLLeejhU22LjIhtxaOFTfWPja0Og5CmutajgThqN5Xd48Yqua3QLIsiH/O95pqWPHLXXkmFUd9Vfe8zqJNa943xjS7T/7XOu55Ceyf5debr0XXDwvZ+cgl2WwWmHh8g6foCesGfmigPb3uGhA/M12oYPHkuYvQXhiVeQzwgWL09GTpYf24+xnfU21D09Wu3DwPxc6/NW52EMAq8wPAlgFEauIdM5ZzpejnqUB62bSiwRg0o+w2lcWAog9LBh0IsVO2XR255/VHJ6GuXngt8TQL75NOEzjpxJZIKKOIfpclp1boCshmKRh6+bw1/hM9rVh29NW7VPUVVLJLG6z/nUb/e9s6zv3Autxsddz8QtsxIex57JwTi9y8cLQYtwhMH6DjxnWPR54guBx0VMs9uayXVPZ9n7PvYkVfzpliad5Wr+sYd62fTptXii/4T5OYn6GpbEio+cjTV/tb/a7bzfCke/7XTxi5Vy3tCHkcj3hPquV7HOYfwwnE4Cz/6iWv2d6LwIVQADBxo3+rKX14ake68HWvT3W65Y+hB+dp794gED2iZ+OsN0DQfij4M+CrwwWEiKB5QtYvoOaae+wk1e9LPzl1uoOPXV7dlntXv/bv9dqD/ofrwf2jb3utbT7GparjNTWuW9ehw21dQQfvUzHEutfe7b1rz/bBlzwIfyGXQBWYmGYEjcGhljJS0lQwIETk0cyM4QbnduV2Kap7BNDmbR7KiVYOF344u5B4IFKMglwH69zH0ZKQ4kmct2UKowEYU0knyvXU7AuupDEX5PgG1wh5svDvwRgqSOsZYkkgGWD2ToYyjnUmX26Yxk3eS7c7K0AZ+Yqu8Cd15/Z0xMsgud4lNxkBSvJxeuaQ9ScP0OG3+RH9k32W303DQLu4zewdn34m+jX+BdWd7u/nlsKq3vHXj3gpKon+5mh3FGfqm60Jh1yEY76NHajaY+mDK9py7QstgyCr63dRhr9+I+J/4m2F2c5wUR0FrPpOzrkHRMdFc7+PORQOF+xePBQw3c82BBNiRWbqNIkiB6EHxaafUcHwoNcqeODbxtWTo8VCMeFOmd5dH80TFjqN1omAhCodWsgf6WuFcQfo0Lb9vVUvBCUANT5vGAI0CFgyqfzIyoM8ceyyD/oOc/hx0VNp7DIO8mN/gTIRUyaFyLVJis8TXIziKyBOIdHUW6T/U7flZcAx5QOvM+w2vkxc8tdJPJxai/ldE06jbT/4b+G9YfUEzwQcDwZ6o8KlmK+x9LLevCLY1jomPuXIaCip34E1llLGoKgQoBhGcCtIOWKi6hQhBdDT4jB5W21dtQd09m3qJBmCL2JiwGF7bC9aN+Lv6cOVmoiMIm25D3bZF9JERIFV1CPgmUrKu2Lsu+i4TDaM98LQvbQicHAsHiYjkhd2ohv4MaVjV4neuyb763W/lcKAe4T3AMuO7vF9rv/6f7j/eEBjOuRbBLcJ3jP9c/fXBYJwLmkr23PGgE6RaZt437PxdfS6Cb8MasHHQIXIuKQTp+6RBtiKdzk1r8nnj8ZOn38/SYrCMeVLhTpuLmuJQAno3Vm33EsGHaPRBEWrrYxYZNyDbPLp+YrHopf1V7vVtq+cTfdKM8Zxx6Hf4ZLl7WS4qLK1niEa4hQ9RNnoijHpa1Zy15IMeHHHYGIsCAdRqlC55BfSBLCuZMdkqoKOdE4f5haEHlCfVJcHOr0VERurmJ/8VWlPfyO87Q4SjN//XHeZ7edDDHEucEf1/C2/YW+ogyJb/AhbvwaJf7inBmqM10CPHhl54TnwTHrNoSFmWub65eCfyGJt4li5xo/7Nf4bI4QFN6JpttS/U4EKpwAQ7I8iXFRkqsM0UcHTefNssa6rOWkuBnUo9MgsfPpBCAdChYXLDZsS6V8BDhWiGuGLBFpJI6lYJ0lmg/RtcSPJQXr3Qa33kZyBnGPqMfKFQSdH2/8dLC6LWutCwIruiGHFUzjH84hjvt0SrTf+b+lf0DURoXzap0HI6icngDHmcjfQ+7rmP8QgCWYDpihXxURmA0C9An5o0c8RObb2LOfSSfkfoh+XuKixDmLcYLRJIRht1u0o4fUcu/z9O5Y5d4LrW9eEaCzw9qCrxzDbXSeWGM4gRtcSDGkxWdSJ+ALwclcKSlTuCCxmCDssB4d9E4Ch178gJYtrg1tQAxSh44E4ccwHoKO4bWOMT+qUgcMiwOJVklDh5Uxsk6Vqqtl8QlwrHg6fs5zLyLYEO1RWelWMP7yC2JxIutbfj29TyYBxN8+j/zlvKEzbaRjdWvqcr++eRBQEYFKJUD/hAvK4qaq8ABIBHv/kPs8e181E0UCcCaoJnSdPEEzHMVTyZGivFoIHm64vCIQI0dYrC8IIcQh74sTtrY2vvA+agAAFURJREFU1gTRiCUH3wnWQd3w9IOj3gyUwx4AElkG8AlC+LHP7Bt+YIMZ7zhcxOJLhJWIdne4XxZDhJMVhgqJnmTfEb4SgJPRGv8dog3rXVQiEcf5gPUVAY6lT0UEJiLAwxz3Es6XFT67BMP4DPdONHw/0Xq0XATmigBuHjzwci4zBR590kwVCcCZIjvF9SKsECGDQ0TtzdwBn+JuBVFGR4wQwqGaDpiOeGAoHb5zzRZuriyjuNHMhY9PIeSiD2sYooqksYg7TmzSqmA59JdgdcN6yB9O88vcssONmuFanuIZwsO5Hi5YGnHIn0hUNdVlE9US6Ygv1kHvBEjjkl8YomPWAvKi7TjYF9aFyKPDiLL6I2CHfK5ansIQfCs9kIA2E9RxuoLFMBs0kJ0SCRHM+lXiEeBcYYiW4U58Y7DCRiIw3hpUayET4HojoKvdZ+VgajGdOwv5bKj8tpNujL6QfgOjgd/ywiv9JIFpuLvkB4fNRIskAGeC6jTWicjhoK9Y7ClJXLgM+BMAHWLk38RNjcJJMur/YIHDWkYKh+Oeey4q+EdxI4yEElGHAy4qixMbR/VP9xoseXlPIAyZ4tOAIOLEDekkfH/Yf566z9SXiv1hmGatJ9wsLvjvIC65cPDhCoEbYyIPy1vkXI9ga3fxBgOsckwujgM9YpVlPZ4GDf8q3+UQCRhH3BXvS6nPmO/pdLhwmUi9OAKx1G8WyjLOD4Jwjk0m4v24cQ5xXLPuBLL2LZTzoxzt5CGz2B2gHOvVOkRgJghs91lIlrbUZd2QvF/C1Si/z6Avn+kiATjDhOn4oqFTlH2xRYjvsTSd9CeA45mhkKQVARTSRbjRCUHFsBiChuhGP0NCJ4qPHSOkUcfqi4OVDf+zvoFs1nIsXmtcNOGb9vSe7mAZo7lEDyJUWC++MlMpdM57x7LqY7Vj3xFSWGtmuiCwSNyJ8G0erw8LNo8lMbdPvmtwKChFHwu+m+aHSJj2utUSsen6WMUJ0DFznoKD83mwyCiKGOd853vSJLS4WwAWXxUREAERSBIB+n9GmSj40TMVHUaWUqV/qHAEq1SdM10mATgNgnRodGR0ahSsSlg3sNIh3hACjOFzWKmDKOMYc6ARcogoLFPRcCivRDi6PvTClDTZ9TIMNtLKsmxhMd8sbmwMQ6WsO47F7YRbCOlkGR5lW1jIEH/5/lbRNopfo86b5Wyfz1j+fNdCSg2Ws25O5ibmy3RxFu0/3yW9cIw6XbwjpDm20fRBSW/3VNqXtUiPhifd/N9xI+RhJD+oI/97vRcBERCBpBBA7PGAy+hGSBlVAQ2TAPSDQEcUWdoQOAikMLzqYgmxhmrHx4whRvzZIgU/0fGLY6Ga6Lczsbw4chUBh4UlGlZmmwg6hpyjoWOW0c6J8otFfgsEUwQhCiv//YifUa5tE19oP8PR+ByFKbZ8KDqOoE48mLEGch1hheWBIyr4WWLp41zjYSJcT35NqYiACIhAEglgDKJfwJedjBKUShF/7MuCuvsyFIugYZYHhB3lpEdrYrlhKBMhU+fCiM4ryaWUhQ7RFtrvFrw4hXXkzygQ5zfzrQ7WPQQxCaKJyMLfEZHMBc1FHJ1D861d5djfyHrNQwIBQARu8ODDZwJoFHVZDspahwiIwHwmQJBHK38+QkbfwRSklVQWhADMt9hxIOjU6dzpsIg8pXCg+KySPAJEWHX6MHhW8meHsaMhfJxumYmBIXl0vxv2QrTysTA9V3Y+0eQRmVqLeHDCYsxUY80epMHsE1wvKiIgAiIgAvEIYGCptDLvBCC5nei8UdMINt5jzKPjRtjR2RMgkW/EQwBSj5JNWEySXu/6/TfBPOtDvFgAVZJJgLQvWOvwvyCrOr6W+dFWyWz19FqFZQ+Rh59KrQfcECFdruju6e2RfiUCIiAC859Ah89ehA7ZUyJDBL7QaJdoVAl9Q9DoTJd5JQAZmsWfbbL8Tqs7CpEBkkSKpObI9+/LtwoW/kKf5gMBAguioXr88RD2DOdzAXGR8bTFAxevfEbEMM1ONPwd+fAhCpmwu9IFIW3lgQdLHOcun7PBFT43rAccMUzN5+kWfFzxbyXFTyU+qU63XfqdCIiACFQCgZDayh+s6ZdISxb5AkZ+0tzbSQVD0ChBpLMQBDy/fADp4J7adTLky2MIClBM8xNle8epPOrgowNO58+wb9L91aL2LpTX3Yez6WsYloyCdkj7ggDEX49E1OHPL6SDJwaDwEM0BfHk5w0BK8EK7N9MVBj6RHQxvR05Gon2jS7aiX5T7uVY4HBTYLaSyaaxot37PD3PAc/TOJUCE+aY7fAI9uJrZyrrUV0REAEREIHxBAgEQYdE91eyceAj7bfeUKIH+JAmrnd23Y4qwgJIJ4Tlgc4cMAzlMn8sufGInim2zkSde9bK4xYe75yxllIXNQ1YjCEo6gj6+MOiJfOZwKqOunB+dPmQLqlXsAByvLnQyI+IIMLKhwU4On94gJgstxIijwcFIlWDpc3FX9Z/MBOGj6Pp42aLGwL03NVNk1q8aSPnPe0N/nn+firZ47lWeNpE3HI/QiATrRtZAbmuIpY8aHGtqoiACIiACExOgPsm/QduZtxfG71/op8K+sVfo8J9nn5rNoZ8o21GrxUhANkZOqFUKhMsLlhdsHqs8mm4nGEQg4fdZHqsezDa7/AKYHLc8VeqsB6SIROliMUQyEQosnwya0qpdWlZZRHAMsbsH+2LsvuFbx9CCF/OMBTq501k2+NhABFIAmsuyFKFi/Asn30kcg0g9c/evT3hgYQo8TWe9Dry0cCl4HRiEAGFEI3EZ6ltnm4ZwRbR8MBEdXnAYXg7Ks3u7/jUzu7YNxP2k+unq3coPCwhmBHJ8OA6Qe8xLOEfPdcjw+ie+HvsIQsx6G/D5/Dqn6lPXQnF6IjoVQREYKERQJuQG5ZpRqPSM8GcC/QRZJiYi3Kq55iLrY9tkw47iLvuwp2IlDFosHSUKqET8t7HdZ3BkHlkoxLU9tBgsGaQqJhITwo+hBryiigl4zVYv8aEEBcfw8DB+ufnDWcO7zMImQkKtZ7d3zPu2xH/XRS6j58cjry4HmTn/B1XPVgPNyxvDGlRMP1v3t0dLNrjaxYuYdofhrKjhxSEFqlVTleCldPbS9u4ieDTSFvjFqztpQo8EII8KJEaKZqZhikIuS4ReuHPf4wIRQDyGi2nPumWJARL0dUyERCBJBLAiocxC4PESR/OrfRSEQJwIkhxlDHikU66tF0nu2a0Ix1drc+lxjAzQ1kqySWAVQvxVDxbHKIf51ueyqjDecEFi+jClxQrMXkiMdcXT9kHrZ6BjA0e86FmP3+WtdaFVyyBCD2GjnmwwGKHQOS8JChlIoGVT591LXcfPwr7hHwb9jfcRHz1YR+Z3o+HG7aH2Avb9fMeX0b+i1toNwI5vyA+CZDBlYJnJB6UqEdbeOVzZBnN/53ei4AIiIAInCLA/ZtRRkanuGc+f2g4OyJ1qkpFvasYAYj/VaNbQLAu0EHRMeOkn2/RyyeHZYJOi2EqQNOJY98Lw1NFr96HZa0U3jFTR36B+SQXznuO+3JPI8TfZGVle9bvDUsa5w6CEGtyLrjE3xNVHoaax1Z02C1v+YWzMa4ww8IYWRnz13Gm73F/ILKX4XLcIAiS4Tphv2kLMpBrB5GnIgIiIAIicGYE8h+Uq1J+73WDwsBQ4QP3mW2hvL+uGAEYHCO7s8NR+cO6I95pRx0tcPmOoSmEIcNdUcGKsWF5Q3CEj5bpVQSmSyBYvsaEEVFbUWHIFV9ABGDWxYCk4jxUZHNMRo68ccVftN78V8QjVjeeJFlv9nrIvmbFG/NFZ0VqsYWR/e4IvpE1IWFzqYcd1ocYVBEBERABEZgZAowoXbJuUegnQiCITwV3wv8ydBgVUipGAObzoJMrNaxLZ5e18+XXzr5HFG7b1xPyBJJUEUuHigiUm0DWz80FmosoHkgYOsbqTGHIlnMUCzZ5+YqHWqN94RxmuJhEy+SGCmlseLjx9bCmtD81ItImKwjRA57ehm1yrrMv/GEV58ajIgIiIAIiMLcEsP25rcrv0dmE+rgm0UfwoE7/0O1uQojDMzEYnEkLz1gA4idEh0N/hRWu0XOm0UniF4VTOo3lj0hC77NCvWiH+Rw1nA4vGq6iPhMnR99F9XllWTSkFaw03vnlOlEfDs5aTSbvPPPXp/ciMFUC5JvkL78gyBhmPXpyyIeMh8aJPwJIFjenQ8QuojEKSMpfx1Tec42t9NRJxp+KCIiACIhAxRFA1/CAP1lBCOKSQ2Aho0q9Ps88onA2SmEvNo0tBqd032EKO32sOztUhVUCYYggI6IRf6SWRu/4xqwlKGPm40Ud43BPff5wamd4jShCZxcUI50rVlPG01kf681GJUrowV1l7gkgyKIp1EjLEtwW/CQnIITPssrN/THSHoiACIhApRFAE4WgRdc8/a6lstPUZs1fIQWX7zAjnAQCIhaDYHQjGa9nWiYVgAxzRYJtKhsLfkpu8cOSF5WDdiofTrSMVwa9SK3BsC0BHRTN2hEw6J95SADLXrtHG6uIgAiIgAiIwFQI4Jtdf8rlfMKfYhRjBBUNiGhktDUShxjRgmGOV/4GS2svVj6pALzs7FZraWkJO4G1Dr3JhjFTZn2h+Jxdxo5kdyi7Y+xMsPD58qylLxoOdgf2sfXwG/yemApl56G+seFbjH4uC70S5lMfOg91EKNYU6jPcsQiFkHeq4iACIiACIiACIjAQiCQ00jeWEaeJitdXRMPJ0/+y7y1Ro7u2OxmYxaNaNiXfGiRsmUYmPeDPm5MFHBro1taJh9ez2uB3oqACIiACIiACIiACEAgtgCcbVwo3GoXd2QGVBEBERABERABERABESgfgazTXfnWpzWJgAiIgAiIgAiIgAhUOAEJwAo/QNo9ERABERABERABESg3AQnAchPV+kRABERABERABESgwglIAFb4AdLuiYAIiIAIiIAIiEC5CUgAlpuo1icCIiACIiACIiACFU5AArDCD5B2TwREQAREQAREQATKTWDSNDBdXV3l3p7WJwIiIAIiIAIiIAIiMAsEJtNxJQVgbW2trVixws4666xZ2D1tQgREQAREQAREQAREYCYIoOfQdcUl5TNu+IRs40t/f78NDg6O/0JLREAEREAEREAEREAE5gUBxF99ff24fZ1QAI6rqQUiIAIiIAIiIAIiIAKJIKAgkEQcRjVCBERABERABERABOITkACMz0o1RUAEREAEREAERCARBCQAE3EY1QgREAEREAEREAERiE9AAjA+K9UUAREQAREQAREQgUQQkABMxGFUI0RABERABERABEQgPgEJwPisVFMEREAEREAEREAEEkFAAjARh1GNEAEREAEREAEREIH4BCQA47NSTREQAREQAREQARFIBAEJwEQcRjVCBERABERABERABOITkACMz0o1RUAEREAEREAERCARBCQAE3EY1QgREAEREAEREAERiE9AAjA+K9UUAREQAREQAREQgUQQkABMxGFUI0RABERABERABEQgPgEJwPisVFMEREAEREAEREAEEkFAAjARh1GNEAEREAEREAEREIH4BCQA47NSTREQAREQAREQARFIBAEJwEQcRjVCBERABERABERABOITkACMz0o1RUAEREAEREAERCARBCQAE3EY1QgREAEREAEREAERiE9AAjA+K9UUAREQAREQAREQgUQQkABMxGFUI0RABERABERABEQgPgEJwPisVFMEREAEREAEREAEEkFAAjARh1GNEAEREAEREAEREIH4BCQA47NSTREQAREQAREQARFIBAEJwEQcRjVCBERABERABERABOITkACMz0o1RUAEREAEREAERCARBCQAE3EY1QgREAEREAEREAERiE9AAjA+K9UUAREQAREQAREQgUQQkABMxGFUI0RABERABERABEQgPgEJwPisVFMEREAEREAEREAEEkFAAjARh1GNEAEREAEREAEREIH4BCQA47NSTREQAREQAREQARFIBAEJwEQcRjVCBERABERABERABOITkACMz0o1RUAEREAEREAERCARBCQAE3EY1QgREAEREAEREAERiE9AAjA+K9UUAREQAREQAREQgUQQkABMxGFUI0RABERABERABEQgPgEJwPisVFMEREAEREAEREAEEkFAAjARh1GNEAEREAEREAEREIH4BCQA47NSTREQAREQAREQARFIBAEJwEQcRjVCBERABERABERABOITkACMz0o1RUAEREAEREAERCARBCQAE3EY1QgREAEREAEREAERiE9AAjA+K9UUAREQAREQAREQgUQQkABMxGFUI0RABERABERABEQgPgEJwPisVFMEREAEREAEREAEEkFAAjARh1GNEAEREAEREAEREIH4BCQA47NSTREQAREQAREQARFIBAEJwEQcRjVCBERABERABERABOITkACMz0o1RUAEREAEREAERCARBCQAE3EY1QgREAEREAEREAERiE9AAjA+K9UUAREQAREQAREQgUQQkABMxGFUI0RABERABERABEQgPgEJwPisVFMEREAEREAEREAEEkFAAjARh1GNEAEREAEREAEREIH4BCQA47NSTREQAREQAREQARFIBAEJwEQcRjVCBERABERABERABOITkACMz0o1RUAEREAEREAERCARBCQAE3EY1QgREAEREAEREAERiE9AAjA+K9UUAREQAREQAREQgUQQkABMxGFUI0RABERABERABEQgPgEJwPisVFMEREAEREAEREAEEkFAAjARh1GNEAEREAEREAEREIH4BCQA47NSTREQAREQAREQARFIBAEJwEQcRjVCBERABERABERABOITkACMz0o1RUAEREAEREAERCARBCQAE3EY1QgREAEREAEREAERiE9AAjA+K9UUAREQAREQAREQgUQQkABMxGFUI0RABERABERABEQgPgEJwPisVFMEREAEREAEREAEEkFAAjARh1GNEAEREAEREAEREIH4BCQA47NSTREQAREQAREQARFIBAEJwEQcRjVCBERABERABERABOITkACMz0o1RUAEREAEREAERCARBCQAE3EY1QgREAEREAEREAERiE9AAjA+K9UUAREQAREQAREQgUQQkABMxGFUI0RABERABERABEQgPgEJwPisVFMEREAEREAEREAEEkFAAjARh1GNEAEREAEREAEREIH4BCQA47NSTREQAREQAREQARFIBIH/DzocWuEkVQw0AAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from eomaps import Maps\n", + "m = Maps()\n", + "m.add_feature.preset.ocean(alpha=0.5)\n", + "mi = m.new_inset_map(xy=(125, -5), radius=10)\n", + "mi.add_feature.preset(\"ocean\", \"land\")\n", + "m.show()" + ] + }, + { + "cell_type": "markdown", + "id": "5b9039fa-c055-4d1a-9192-74db4855a6bf", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "There are many ways to customize the appearance of an inset-map. \n", + "\n", + ":::{tip}\n", + "The [`InsetMaps`](eomaps.inset_maps.InsetMaps) can be in a different projection than the parent map!\n", + "\n", + "You can also specify the position and radius of an [`InsetMap`](eomaps.inset_maps.InsetMaps) in a coordinate system of your choice.\n", + ":::" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "35d0a654-5a34-40d2-8053-a53f77c2ab35", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAEAAElEQVR4AexdBYAd1dU+6+6STXbj2bi7GxAcgrsXK7TwQ6FFCpSWFilQoC1QHIoXlxAs7u7u2U3W3e3/vjt7386+vLe+mw17T/L2zZu5c+fOGfvmyHc8qiBixGjAaMBowGjAaMBowGjAaKDDaMCzw+yp2VGjAaMBowGjAaMBowGjAaMBpQEDAM2JYDRgNGA0YDRgNGA0YDTQwTRgAGAHO+Bmd40GjAaMBowGjAaMBowGDAA054DRgNGA0YDRgNGA0YDRQAfTgAGAHeyAm901GjAaMBowGjAaMBowGjAA0JwDRgNGA0YDRgNGA0YDRgMdTAMGAHawA25212jAaMBowGjAaMBowGjAAEBzDhgNGA0YDRgNGA0YDRgNdDANGADYwQ642V2jAaMBowGjAaMBowGjAQMAzTlgNGA0YDRgNGA0YDRgNNDBNGAAYAc74GZ3jQaMBowGjAaMBowGjAYMADTngNGA0YDRgNGA0YDRgNFAB9OAAYAd7ICb3TUaMBowGjAaMBowGjAaMADQnANGA0YDRgNGA0YDRgNGAx1MAwYAdrADbnbXaMBowGjAaMBowGjAaMAAQHMOGA0YDRgNGA0YDRgNGA10MA0YANjBDrjZXaMBowGjAaMBowGjAaMBAwDNOWA0YDRgNGA0YDRgNGA00ME0YABgBzvgZneNBowGjAaMBowGjAaMBgwANOeA0YDRgNGA0YDRgNGA0UAH04ABgB3sgJvdNRowGjAaMBowGjAaMBowANCcA0YDRgNGA0YDRgNGA0YDHUwDBgB2sANudtdowGjAaMBowGjAaMBowABAcw4YDRgNGA0YDRgNGA0YDXQwDRgA2MEOuNldowGjAaMBowGjAaMBowEDAM05YDRgNGA0YDRgNGA0YDTQwTRgAGAHO+Bmd40GjAaMBowGjAaMBowGDAA054DRgNGA0YDRgNGA0YDRQAfTgAGAHeyAm901GjAaMBowGjAaMBowGjAA0JwDRgNGA0YDRgNGA0YDRgMdTAMGAHawA25212jAaMBowGjAaMBowGjAAEBzDhgNGA0YDRgNGA0YDRgNdDANGADYwQ642V2jAaMBowGjAaMBowGjAQMAzTlgNGA0YDRgNGA0YDRgNNDBNGAAYAc74GZ3jQaMBowGjAaMBowGjAYMADTngNGA0YDRgNGA0YDRgNFAB9OAAYAd7ICb3TUaMBowGjAaMBowGjAaMADQnANGA0YDRgNGA0YDRgNGAx1MAwYAdrADbnbXaMBowGjAaMBowGjAaMAAQHMOGA0YDRgNGA0YDRgNGA10MA0YANjBDrjZXaMBowGjAaMBowGjAaMBAwDNOWA0YDRgNGA0YDRgNGA00ME0YABgBzvgZneNBowGjAaMBowGjAaMBgwANOeA0YDRgNGA0YDRgNGA0UAH04ABgB3sgJvdNRowGjAaMBowGjAaMBowANCcA0YDRgNGA0YDRgNGA0YDHUwDBgB2sANudtdowGjAaMBowGjAaMBowABAcw4YDRgNGA0YDRgNGA0YDXQwDRgA2MEOuNldowGjAaMBowGjAaMBowEDAM05YDRgNGA0YDRgNGA0YDTQwTRgAGAHO+Bmd40GjAaMBowGjAaMBowGDAA054DRgNGA0YDRgNGA0YDRQAfTgAGAHeyAm901GjAaMBowGjAaMBowGjAA0JwDRgNGA0YDRgNGA0YDRgMdTAMGAHawA25212jAaMBowGjAaMBowGjAAEBzDhgNGA0YDRgNGA0YDRgNdDANGADYwQ642V2jAaMBowGjAaMBowGjAQMAzTlgNGA0YDRgNGA0YDRgNNDBNGAAYAc74GZ3jQaMBowGjAaMBowGjAYMADTngNGA0YDRgNGA0YDRgNFAB9OAAYAd7ICb3TUaMBowGjAaMBowGjAaMADQnANGA0YDRgNGA0YDRgNGAx1MAwYAdrADbnbXaMBowGjAaMBowGjAaMAAQHMOGA0YDRgNGA0YDRgNGA10MA0YANjBDrjZXaMBowGjAaMBowGjAaMBAwDNOWA0YDRgNGA0YDRgNGA00ME0YABgBzvgZneNBowGjAaMBowGjAaMBgwANOeA0YDRgNGA0YDRgNGA0UAH04ABgB3sgJvdNRowGjAaMBowGjAaMBowANCcA0YDRgNGA0YDRgNGA0YDHUwDBgB2sANudtdowGjAaMBowGjAaMBowABAcw4YDRgNGA0YDRgNGA0YDXQwDRgA2MEOuNldowGjAaMBowGjAaMBowEDAM05YDRgNGA0YDRgNGA0YDTQwTRgAGAHO+Bmd40GjAaMBowGjAaMBowGDAA054DRgNGA0YDRgNGA0YDRQAfTgAGAHeyAm901GjAaMBowGjAaMBowGjAA0JwDRgNGA0YDRgNGA0YDRgMdTAMGAHawA25212jAaMBowGjAaMBowGjAAEBzDhgNGA0YDRgNGA0YDRgNdDANGADYwQ642V2jAaMBowGjAaMBowGjAQMAzTlgNGA0YDRgNGA0YDRgNNDBNOB9ou1vVVWVFJZUSl5RueQXl2O6QkpKK6WkvFLKK6qkshKfqhNtrxo/Xi9PD6noCDvaeNWYNYwGjAaMBowGjAZaVAN45Ion/nh7eYift6f4+XpKoJ+XBPt7S0iAN6Y9xcMDjU4gafcAsAKg7mh2iSRnFKvvtJxSKS3vAAivnpPI19vD6KEeHZnFRgNGA0YDRgNGA22hAT6TY8J8JS7cT7pE+atvL4DF9iwesKi1OzRVWlYp+1OLZG9KoRxOL1aWvfasxOMxNgMAj4fWzTaNBowGjAaMBowG6tcALYUJ0f7Sq1Og9OgUIL6wGrY3aTcAkDj0SFaJbDuUL3uPFhn3Zj1nigGA9SjILDYaMBowGjAaMBpoBxpgyFavuAAZ0DVYOkf4tRtX8XEHgIzZ232kUDbsy5WMvLJ2cKhOjCEYAHhiHCczSqMBowGjAaMBowGtgagQHxnWM1T6dA5UMYV6/vH4Pm4AsBIWv13JBbJmd67kFpYfj30/obdpAOAJffjM4I0GjAaMBowGOrAGQgO9ZVSfUEnsEiSexyl55LgAwCQkdCzdlmUsfs04+Q0AbIbyzKpGA0YDRgNGA0YD7UADtAhOHBAh8UgcaWtpUwBYBMqWpduzYPkrbOv9/MVtzwDAX9whNTtkNGA0YDRgNNBBNZDYJVAm9o+QAFDLtJW0GQDce7RQFm7OlGJk+BppvgYMAGy+Dk0PRgNGA0YDRgNGA+1FA/7gFpw2KFJ6xgW2yZBaHQCWV1TKkm3ZKru3Tfaog2zEAMAOcqDNbhoNGA0YDRgNdCgNMFt40oBwkE63LnVMqwJAJnfMXZtmYv1a4dQ1ALAVlGq6NBowGjAaMBowGmgHGmBs4GmjYlSVkdYaTqsBwKPg9PsO4K8YZdqMtLwGDABseZ2aHo0G2kIDPiCIZRlHXcmRv4P8vaSguELKUPmoc6SfhAd5iw/e/pkcGOBrxQSRS4zCkpd0FZFo1k7jT2YFLitBmI0qkYlv/i5FmUzeh1k+k/0bMRowGjgxNMDr/LSRMRIH7sDWkFYBgPtRweOH9RmGzLk1jlh1nwYAtqJyTdetogGCGsIP1s0MBuAhoCHAIUjRoCY2zA/cWIKa3qIASw68CAnIjiNlQnFphZQDNXF9rpdTUK7WI7jJKSxT0wQ/FC5nnU56IQi0+ELalkKoxmBugrkA3MSjQ30VkON++1RXBODYuK+dUDqKuiAZPvclBaUv2T4Y+1mflAHc5QLYESxqfRJcUp9cRn2Ta5U1SrmcYJNVlqjXQtRSJx6kzvLw28Rn16dts9xooO01wOv2lOFRqCbS8nGBLQ4Aye3388aMWm+mba+yX/4WDQD85R/j9r6HuC8pcMXvKACWLspy5aOAGsEEQRctUUN6hKg3WG+gnYhggjfCo2OFQIQfgr3GiK5m6a5f9pWRW6oADq1hvEex2pBdvLETfNv28/FUAI1DpIWNYJOgiYDpQEqR9I0Pksz8MklHf1xneK9QWOt8YFmzrGxsl43lUaE+2FcfCYT1zhd9Uhfk+2rsvtnH2JBpgr58WBIJ+ioAKAmka01Xz1MgEW1YdrMAx4j6Sc6sAcl86LCNEaMBo4HjrwHej2YOjVL3kJYcTePutPVseTfB3waAv3ramcVGA0YDJ4YGCO66xaKOJUAQAQ0/tGwF4UOwRMBGoETXIsFHGMAQwYMWOzhTYAPgxBPLaRVzBmzsj5/Gir0fgi+CT7pTaTHkuPJh6aK1LRsWw3xYyyiTB0ZgrN4KIPHmyjqdBID8djU2rrNyZ7YM7h6iLIsV6Dc9r1QBXLpoY8MCjmH1pxUuE23SAK7Yb2uDP46Rx4Ng1N/HSwJRnN4LO6etgASEHDcrLh0GFyutkQMRbE6d85jsSCpQTA18uaS1QddkZ78UFrqPp0UTxx5dqX6Z5EerZRFdzNAxdcJlRn6ZGuC5wRcaf3xw6CUL15uz8LxiG7788dww0nwN8JoituKdtQ9eJFtKWswCeABuBcb8mYu/pQ5N3f0YC2Dd+jFLG6cB3tAZh8bA44hgX3y81Q38QFqx8NompiO46w4w2BUFzmkZI7jjQ4DftCIRfNB1SUDBGxVdnQSHruRwejGsh1UKhPgDQPmhrZebtq7W1/No3VIWL/TFh00GAEh+UYVyHx+FK1W7PbkNAhiCQjiIFQC0A1XdH61ebBPk36Lvxrr7dvfNfU3JLlUAmcePOmIBe+rGOr5VOA8q1fF3dkmT15Vgmw/6tBxaEIvVN8GgkRNDAwRrPH6ujL182eN9gdezto7z3GD7PSjfSvCXh2uN9w1awRljyhctCq97fuIQ3hACiz6t5wxVaC3h/Ynb40uXq31pzHZDcW/zw8sg7y26PC29AHyBox54L4nFdUJJxovUQdwj2+qdh/t5KmICeR9uCWkRAJiKG+2XK1JVfE5LDMr0Ub8GDACsX0emRcM0MBQuWoI6b4CwCFjFeIOzC2/qvOEzNo2gjUAhFjd2WsoIvjJhUYqGy5Pxe3xYsE12fjkeEKUKSNEdilnKpUgLFG/QtLrx4UNQoa1uOjbOvm1X0wQttPrR+kRXbg3wqFBs+gShkQCyjB3U+8IxHa9yS672ob3MK4B1tKFgl9ZTAvesgjIFsvnNY98RhICYQEcDHO4z54UGeCnLclsBgMbomjG3BGZ8WaNU4V8kQB1d/axDS4oRXsu0UG8/lK/APMMaKLSOa4s1v3mNMnyCFnW+GPD3Plx7I1HKjNdzAK77EixnqMM+gD0NUOgVIGBMzy1r1ZACjpFD58sH96mlROthbGK4usfZvQ16GwTCS7ZmKau6ntea3wS654yNVffg5m6n2QCQ7pVPl6aog9zcwZj1G64BAwAbrivTUhA7EqgeBrTmpcJao2V4zxBYfALg1iRwEwWc6gNKLOVIFzDdhuv25khSRomcO66TAn46bkw9WLAdWhBoDmSig34Q6W3X9a0fHNrdxLa0MhJw7ISrksTyHK9dCEK7xcBdjYcTx8GHHy0WBKVGGq4Bgv2N+3OVNbArzg0+cDbtz8PDtfUf5A0fZdNaErTRskOhlYdid1N2CvdVgLikzDrXGLfJc5cAg+cX2+bhmccEJOqF5xutQIyB5UsOdcTwA55/fGHasC9PbcPVH1K88Vy1QIVlaXXVrrnzCOm6RPnhMvSQcFj2aa2l1ZfWXuqC+8HftHJxX6mdI7DmUk28fmlV65cQpMbK2FeGAPA+whc43gPY3y9ReC6Qj4/3LW0Rz8Jxj8Gxps44jy+hPH58Cd1+uAD680UoTJUCwowHbi1hgtv5EzvhGDTPU9EsAMiT/MsVKerkaa0dNf261oABgK710tHm8kYUpt5+cUPCNIFXNiwzfBg5C+5XyvJGt61d6M4Y2C1YWcho1WM/tHTwxkeLAQEUb/SuhFYhvgEzO5djSQYY7A3rAq1wWlTcGayBfNjxw5uXs/Bewr540+RDljdWFVeGebsBSAg4aX2gNaEhQtqEU0dEq4dVQ9qbNjUa4LGgK33u2nQ1s4THA/NOdBnfL1wG4Tyn25rAhi8Tu/EiwThIgp+FWzKxPMRhveKLDsHc5gN5ytJNixrPK57btGAzwaZThK8VEwr9pAMIUU1cjy8ptI4baXkNBMPqypARupxLAbZaU3he8D7Ia4Igvwdcr33wMu38kkyrqLYOMjRiGUve4r7F+zBd6Xxe8z5Kd3FLCcHmOXjxJhBtqjQLAHIn63rDaeqgzHr1a8AAwPp1dCK3oCsmFA8cgieCMXe3Ob6F86FEaxff6JmJS9ccH1zsYy/cMbTSp+ENnw8+Ct9geTMimGJcDt/wtRCcDYNVkC4iTuubml6uvwk0NbUKt8XfxbCaUOgq402TYI/f2t3r3BdvqjkYK8Elb2LcV2bYsj1vlNvglnIlBKm0yHB8fBjzo2KVMJ+3Qm4nBA8J5+256svMq9EAjwePKc836p7Hwn5u1LQ8Mae6xfgr1/XEARHKIqYf4jzvmDhD4TXhnMjElxFadXiep+SUyNaD+Y7YMHea4PnIsAMCFE7Tks2kGn0NulvPzG//GiAApeWNXhOeQ7wXEeQRLFJ4jPnSwFNqZO9QlblLgHgE15bm9twHqjy+gNBd3hzhvXoC6gc3VZoMABkL8vWq1KZu16zXTA0YANhMBbbD1ZmAQfDEuDgGIvOG4o03x7zCClm9O8ftiHkjoquKD3ACLj5wKHzohAX6KLcugdZPyCKj+5fxfiNAX8I3WvLQ8UZElxZrdWtLD8+vnsgEpYuLNzze6A6nFykgSgC5cmeOsjROQjYtLYi0zjEblm4vviU3NJ7PvlN8EKfCxbR6V7ZyK+m3e46FZKgcr3Hn2jXWstOMA5uPc4BCQM44LrrafynC6yTIz1tK8WSmq5OAkOc1XZh7sJ8D4OYMV9YaT/VSpS0rtOzN35yhrpN+CcHqoc711uCaZFgCLX6/JKD8Sznex2s/6NrvFx8MYBauXij4UoFbs3ohUNZ03Od43tCCSbexennFvRqXXJPiSc8aE6tCXZqyv00CgAwG/WjREWPiborGW2gdAwBbSJFt3A3fEZlJpjMlSRTcGRa8naBQGoCHC92ndHfSnco3ScZjrd6V49JywBsGKQH4MubsGiUIo12PgIz9E1jStUp3KoXgkvFxBGqJ2Ca3pV3HtObRAsSbFoWgi6CPNyx7XMvg7sEq6YLWET4Eua3Z4zupN188H5XFhPuqXSj6gWr1av3ldrYczFMPYo6B++HqYcp+rAxlvml7ApwGKMufDkzn/miLFQGusf7ZtVz/NK1+5EdkfNeeIwXKcsV5jMWkZZkxYr9E4bXRH8CPiTC85nie0bXL4H+ewxsRw7diR3YtC/wQUAHRnUyLN68N6uZgWpHshzXHfn38EvVl9ql+DfBeRM8MQwD4YqyFQC8CL/lcxucAM4zZhvfb5gj7u3hKZ+VxaWw/TQKAzHjZBBOnkeOnAQMAj5/uG7plxs8R0NFCRmscLVx0dxJM8fqhBcF+g2C/tPwFwFJBIERgRVBUlzAuidtgUDYz7RorfNARcBJ0cZvcHgPDNfhjfzzXaAmky5WxTXRtdYn0V6AyHpm2tBQR3NHFRZcy4174YKRrhEIQQcsjH7B8knrgDXkvgCizDznmhtwA2RdvrATOfRGDwwxG9ueDsUWH+Kq4RW6Xrjw+1A0AVKpv9B9akXmscmEx5rMrBW4r8gP+koUAkGEUtHhrCzP3e46bUqY8D3nd8nqg649VaEg9ZKRhGqCOGcbR0hm7Ddu6+1YEZfR2kNqmPuHLN8NucIm45ELU6/Peyvhq3iP5AqvvS7znMQOfGdm0PvMeyRcPvsQ2RfhSQm9MY6XRAJCM8f9bcrTWG1FjN9qW7fngIG2Edie15bZbc1sGALamdpvWNx8IvLH1iguUrnAvkRaFQmC1HFYEWg0ItA7BWrAZcUSM0SMAIzgklZIrAMcbUj9Y+UjMy7gSdw9jbo/A8ghuKIw14Q1KJ2Lw4UaglAGwRdcXLXmMQeE10SsuABaQYIfLi7EqtPxshWWObi6C0dIyxuaVqjYcI4PmCQIJVmlV5E2QN09SrxDg0t3MfaZ1kYCCLjYmqtAKGQmwRmG2JB+ydIGwNFljhG+81GMiqnL0hq55jVP3dYk9SLuudh1xGeP+eIzo7iV3ogbwYxLDZN2eXOWu6gh64fVIizxfapj1TDedkeZpgC9pmo6GeqVnglZmCq338zdlKCqn5m3l+K+tXwp436XFnPdBTvfpHKSeB/rFwtVI+cLNa5BeIIbR8L7N0BwluLmyLxV/imuT9257xR7dH++/F06OA8isSb7Ty+r6bhQA5E2UcX+kfWhJoaK0xYFmd2Zq6Zqg3NZBPCCImMk5xFT2wxlFQN1WGj4Vw4dMU+REBlEn8tibcqza+zoEN2PxwOR5SkBHVBSNGwGt5bwJ8qbHt7xDcNfSRdkXoI7B5qGBdAdY7kta0Zh9Sbcobwg8rXnjYKAvY/ZodWA1Cj6s2SevEdIP0AXFdsqSAYDH7RJw0k3KGwLds3z7JBDUb6BLt2WB6qPGis/16RJm33xhYgLH2L7hij6G+8S3dSaT0CVN0OZKeO0SNPJ61Ocnv2mtY5+MbeR2qAcCQYJQgo2mCm965BgkJyHftHmjTONNEvcEJoFw3Po+wQxjbp83aoJFgka+wZPag7GF3N+OLAT0vJfyYcSsbpbzpFuUenO2UndkPZl9tzTAZzatn3wZ64T7Ct2bfEnlixmvb96feE/UXIMELnyxpIucL4ikkyFXqI45bu96pReHwI4v7LyH6WQOxofyRZrMCbyX8KWY9x0F5NC+pUUDQYZrOCeQxIPqh/GA+h7fkG03CgDScvHN6rSG9NuoNnyLp+mTN56TUfSYv+07QeDJZXxo0I1GEDp1cKQ6AXnj4pvr4i1Zyn01rm+YeojxgctljMvgQ4muoV+SFVA/YBulaNO4TTRAYKJxjXVjDFA3Pp7DJBTlzYRgiTcSghJa1QkaGSvHc5bnKy2Cyh2AjniT5DJNrsqd0O00kKPVUQNM3pRpyeCNiJloMbgxsYYt+6BVjtfTAgT7M3aQIDQOVBZ0o5IXLRVgUls/6ErlDcVeoYN90mVBSyetfwRUzDrmfAJMZsdx+9wvPUaOl9tkzAstg3RXb4EFtL0Ijxd50k4fFaMeWO1lXMdjHHzAMOuV5x6TgvjQo9WXx81Ix9YAX5pIFM+EM96L7Ile+vrmC6xKKgPQy0ViGa2ovDe0tTCWk2DMznla1xj4wtgZYS28dxHYWuAVIBY4gmTyruKX6+qvtZbxnkpPzo6kfHiEjr2Hnjk6Bt6nhlcJaTAA5AH+fHnrc/7xQPAEozWCB5AolxYFbF4F3dISQaS9O7lQzeeB4dsEmighMIqBZYRmZ7q7+JDl2wrB3yFkMbqzXrTWAWutfg0AbC3Ntm6/dDMRUBFc8eZIaxQfrgRw4bjBwhiorFGcz3ObhKw857XVjzcAntM8nwkcCap4fvNc50uOKzcyb2ZqOd7MaSWjNY7r8W2dtDHcNl202nWxAxa+JbAQUgiKlGsX29AVIzgWZrppd64rjfF+QcskQaFd+IBgUgvdvrym25Pw5s+6x4PhgeBDwP4S2p7G2dJj4bEimKelj9nmPCfWwvVLIMjzhvdfWpH5MmGk42mAwG/GkEjlmrSDPr5w8j5ES/6GfbkNip1rL9ojhx6vcQJZxjPzntqeRd+z+dLOOt68B7sS7hcT8Rp672owAOQN4KuVrUP7QtCnb0CudoruKz6cCPpOFJOxq/1oyXkGALakNpvWF0EcGfJJSkqXB614tPgR0BH80OLHpAie2zx/6V4j8OJ8u9CKxgct4+34kOX62WhTXwKIvY/GTPNmRwteNt7QKdw+wSbBpb+Pl4oX5FjprtEvVmzHc47tCEjpCqGbg+0IENiO1nn2QXcqMyRZQ5YvcXwbJ7ggQSqvXwLP9iy830wdFKlcW+15nC01Nrrm6NpnyEAFjh/dWjz3lm3PbqlNnND9EADlQUft+6xtHRXTG8dSkQwr4bVP4XXOeLW1e3LaPejj/ZhUWgVI7NCeDN5/iDlY5WMwiL9VyE7rqK/JvfKljPff9XtzVUw3zz8axnrgGmWctz18x3kjZ6NMHOMtGyINBoDfrk5V5Kx8o+cNkhYKOxLluYExqxt9Qzbs3IZWCrofXAkfWIwL5EOSDyGmTjPtnq7fjvpWagCgqzOl7edNx5sxkyjcCS9kiv2NjHQrjOFgQkdTswf5psfrgckdyi2LBziBmV0ISuMZ1A5regRcvVxOIMr5fINkFjIBKa2SI0BYyhu98xs+gR3d1cz+ZTyjfgjyxsq3Z75F817AoGVev1vgliDo5fXMpBQWgue9gTezLGyLGctsxzFzHV6/BLtc3p6E19fl07oo9097Gldzx8KXC+o6Bzqn5ZcPPwJ4HhN+8+Xk+3VWBZDmbsusf+JqgEllk0AwTF5ELbyXMXyD3oGGZMrq9Rr6zfsQXyB5z3EnTIojO4I7tzIhKu9xfOlkf7x5cZ5+QSeI5bVNTMEXc96n+iE8xn5/drft1pxP3TLumy9eNLbtgrGL4x+HxEGCVXpu9lXjHVLJrESMN3XB+zVfsim8fplcxySShpJDNwgA8g3xg4XJKr5nwoBwlS6vlcGBE5BR4QyMzISLh25bPlzqOpB6/fq+6WqipYEHnDFMVAYPHoNLD8Kl29QHaH3bbe/LDQA8/keIRJ8ETQ25efA6UQ9eWN1oNeM9Tr2JAiDR4sKbKi0NdKtoIMebVghuUFxPX0unDI9WbXhD4DlAAFaIG9lP69PVdUit8CbHmDZW/6D7lp8xiD3kdUNhlvB+uG0Y72eFT1TJjad2U8uc//C6m4eEAJ2py5sp6Qb49qwtAnQV0lrENuOQOEJgyJuXfuPWfdJVxJsck0v0utQL9UdAygQXJsm0F+GL7owhURKJkBPGZZ6IwuNH9xG/GZdJsE0rH18ISMPD+by/88FO8KfPsxNxX82YW0YDNLYkwIJEqx9OFXysKhaM23XnemzOlnlfYmIcX0j4ckzuRbv3g8sJ6uj+5FXojA95L4nFCzEtY2x3BuLgiBnqEp7z9ILYX3jrat9ay/jixfsi94Fj4r7yfs1nAT+u7jsM9eG9uy4rH4G0q3Wd96NBAJArEV1ijHU+7LhRjc6XokwcEzCaI7zn0s3Gg8SbMes08iZFBZAzpxx/eANjFQMqkuiXJyhvYhzrL/lmZgBgc86s5q/LzFzSutQH/vjAXQFgw4xT3uAYv+q8DpOrSgD8SBlAIT/UKsTJkVdvDMASLWy8SZCQdjiygYf1DHXsAB/uH4CUnW+zWvhGyIx5cvcxmYSxeryZ2IU3dT70GUhMS/6MoZGKvZ7b5LZJB0IrH4OoeY1pYfIVaWDswm18uSJVBoEYmtcob2L8OAv3S1uXeMPjNTsEAJogloAxA7piXCNv5E3lw3LeZlN/0y1OKwhfOkf2DlNuct6PnI9dU/tv6/WYzcv7Ie/RdPfyhZ1AnUHunP8+XvA76st0Wx+L9rw9hj6Qt04L7xMLkWCpycH1/Jb6ZubqaYgz5v0Al5e6vngPolGJtZn5wkjh8/wU1PbmPZChK7y/MLGNbXmvID6g1Yw4ZebQKHVu8xnZnq9XXotFCJNhhZrGjJP3fIK7lnBd134qKFW7/sMDVJ9wUPnFZerBwoBqV8KHE11EDRHehImGaVXQSJ0mW7vwBMjDg4WZMXQLs84jH5i8cfPkpTWFbw6k1qDlw4jRQHM1wLfVOLhfCbo0p5Vzn3wZ+Roxs3xhISjiWzUtMK7EOWuL5+80AC37TYFuZgIy0nMww1dzDDJD7STc8L4DaS3dqRReX/M3ZaqbJvti3MjQHqEKBPKa4E2SFnQGPy+GW5dyMLUYL1v+ytW7GZU50OwYofWdVUOchTQsfANn7B+5vVyBP26Xb7gEryzBResnb/IcH69zXt+kk+D1TCsA3SCsM263BDhvtzV/M2aR2Yy893B/eNPl+LmvJ6LYz71RfcLUyzKBNnXNc9SAvxPxqLbcmEfjnOA17GxV4m2AyZOtwaDB62o6LOz0HNqFwMYb9wGelzqMhVRNvP9xHIkggieOYBId720zcP+j8FplSAtZCggeaeGjC5UvmI3lx7OPp7WmiZec8UxDtsV7fktJgy2AjdkgHzAsmL0MVkC+XWohsShjjWgZ5A2e7i5aJ4jeCTCJ5PmmygcYH3h8wNL6QIuDsztJ98lvPlx4YrhC/BwLLQ10TRMAko+IYLG9xRzZ96e+aVpFeeLzIqArkDqiPnnit6cAe46T+uaD/pcqvLnwjZOWPcbF8CWELl66MrU7kzcittMkqHRP8MIn+HEFlurSFUEIgZgdHLL9FpBEL6oGc67W5+vbUFgt6dohoTSPCS3n/nj77AX+Lj4A9BslLZK0AjpTKPAanQz3L2P7aEHi2PWLGa8zxjXyLfzMMTHqDdXVOOqbx2uZ4OtQWrHSKc9pMgLQs0Aewg1789rMOshjRuBOYEu+RT6QCKR5v2JsY0Neiuvb37ZYznOGx4f3Vt73qE9apLXQgsugfle0ErqN+f5la0C91OJ+zfgx3rNpXdPcmDw/flyf0WDDTX2aYpY5gSZj7+wvJno9Ps++AdUbvXmzYPXrCc8JhUlkTETlvbMLXdS4DnkvpavaWXi+81lICyJjrWfCw8GXXiO1NdAqAFBvgi4fxgPyQNKS19B4KR681ry58gHNUly8GfIkJ3Cki4wnE4PqmdVJ3Mp2JXjw5KLUD/eBLjOCSYKu4wW0CDToSmQwNx+KdEtp9zeBrQ1v68PQ6t+8rlhGCeoCKADpMfTI34zHoCUsCWCIDxxWlyBo4IcuT/LNHS89tqRScDoAEFl0Lu76JRim+5TnGUGOPr91dizX0/VI3fVR13y6TulqJuhE97WEFjZux5Xwpcw5+YPtWNd37tp0dZ7Z12NfBLy8BpjpS0DJfedx5nVDi7uzu9m+vp6mDpxBrF7m/M22PMe5B6weQvc0zxs+KAjKdDaz83ot9ZveDF5ztG4STHEfeQ7TXcb7WnsVhg3wmARi/DwnaMWkZZj3PQL5wSgfReG9hB9WeGpp4bXBhzy/W/s4tfTY6+uPL+DM3OfLlBduxCNh3CiEjmk55nOFLy+8VgioDuClivP4HOFv52u0vm211XKGBDBGdBTCHmgR5L1cVaXA+cMYX55TzSkEwZeqiYiddvZ6OO8fr/mPFh9VpNGMGWbIjf1+QfcpdUjvHr19pLFyNhLxWt2436KnmY57rztvjfO2O9LvVgWAba7IFTfiLrO51TbLk44XMB9EzRUVoImbYhVQU1P64/ocz/EQbpsPQIJPWoBUwD9AoNqnRgyIgJHxnOhGib7AmVRAvFKOBy7bcDm/OR9fajvcNne/pXXAfeDDihvV4JQ3GM5jhQm+FGghiOPLSmOE6/BDAIX/6qbGzen94PZpiSPQ4vzGCofDvgiOaGEn8KtLT3ybJnmzq22RsoUPK/ZlF46RL0raQsD+aRHkMWE/rs4DvX88xmzDFwBa7Xnu8FyiLuoT9sFjwu1ymvvK39pNTIDTGkJLLd1PlKLAgeI94VVljeS5QFe884OnNcbQmD758CRIZcUF6od6LiihFRC9QGcE63T9Uu/8EJixnY63asy2OkJbWvB5jvP8pr5o6Wf8ZDdYUnnu8SWAVnECDNJ20DvD66oQ9wsSrROI8Pyhy5LnOS3rtLBz/okivDyhAocwdo+hLTsO56uXTl6LDRHuP+lMtNvW3Tq857w7P0mdu/ROjGIVMB6ARohOqCNHIV9yeSyM1NbALwsAzp0gkrG89h6aX0YDRgNGAy2kgcrIcbJz8I+q8tBgPFT44Ce1TXsVd94UAkAmg9C1zYxCdxbi9rpfrT0uvoARxNGaTUsprb/kvyO3JY83ATOBH8E2wY+26Nc1Lh6L3UcK0I/14kvwyHACesl4LNpKGFdHKNXcY05vFD0ADOOiPmgpZFID95PeAQJc5yoyBICnjoxRFTeoP3egji94r849pKzHl0zu3O5estrqWLX2dlxHpbf2Vk3/RgNGA0YDJ6AGGKe8AG5UGjwKEeISDSLw9ix2YMKH9BYk+DBW01XFmPa8H609Nlr26EakkYmAmOC+O7Lo6f7XFnkCJm311uMhgAGeapDwWPSLr8mw1StpsmUeH4InuuMp9DYlI1GHYQ4tJQxFOQtEwRwyyYRJvUQAaxeCX1r0GXbhvEy3o1Wc41yPRC2GUJ0MeiqyDjgLATLPNcaoMwafIRxz1qSpZmNRtpWxhvRAOAvDm7htgshVu8h5561yAgjEGadIEMt9MW5dZ8017rexADZOX6a10YDRQAfWQFHIGDk0ch4eZlbWNDMS3Vkx2kJNdHvbswL5wMV/FbDPJB+d+EF3MB/AdAcbqa0BxvKRXikKFi3GvtKKxUo37YEgmCPlMdyL2Dsm6dRXkYQWRX4IjAigCCLtrn0CXFqtCd50ch4tnVyH4JNJTiSZZxbt3qNFalrH+fJcI1BmUgaBMeONl4P/k5m2BGM6iay2do/9xYTMzUgSPYiYQrICkArKlfCcZVwzx8H46b641nQiB3lMyYhw/oS4WmTVrvox89xrwABA97oxS4wGjAaMBmppoDR8nBwe+bNyCTJzUtdHrtWojX4wK/InPAQZL8UHOB/2tBa5s9q00bBOmM1QZ4xhZrJiWKCP4n1kkgKP6/EE9XUpkMecvJ103TPjnlZDZ2EyChMn6EZlHCLplJj0qIWJHp0iLMoXxjI6W+BIxaRis4EWmUR0vGJcGcP3+o+H1QsNj8mZY2L1LijXOwEgE7E0E4FjoZlosAaOtb02eNUTp+FRrxHHZbCVlRWSl3lUwqLjj8v27RvNTjss4RwHXwHbWIoLctUN1S/QetMrwu+jh/aIn3+AdO7eT8pLQQlUUiRlZchgxdPL2wc3Zl9Uk/D1Fy/vpgfu5qQntZruSzHepH3ba2mSDw0fjL13796SmZkhPXv2xPL6kzl4Cz98OE0iIvBmHRSEmzoSTnC/DoG3KDsHSRVW/gGWW5tLgwclNsaa3n/ggMTGdpOsLLhEOjMBQyQrO0vS0tIlIyNDIqLxhhyNBfVIQV6WpCbtRx+dpUf37rVal5ahDnD1YUhBOfDs7APSq1eClJWWSGFRoRQWgoAVGQbl5d7WPgSjPrKfn+TnW2MPcgqR4/4dRcJpQvVlUVyC0N2MZOnUqRPe8N1zXGXn5GBb5RIeHiWBx3qbao25DPH1qRhrfBckxSD54Qi2FxaGqkJYj1nrTIigpSwzUyQ62tIbO8jJRbvQ6q5cxBPT9UTXIAP62QcTk7RVotYAWvEHrXysHMOyezx3KAR/RhqnAXLGUXhMh/YIEJY5JXNBWwqPZWPAJi17TKLgZ/LASPkIJPB2SjO6Y4cgZpEvBT+gOhCzZLWQcPisMZ3gToVbG8DOndCS11Brnrs+mjufpSeX78hS12h38IaS39cu1BktjzyG3B+C2sbo0d5XR57+xQNAgr/PQz8/Lsd46devSJ9h0yQ2tO9x2b7eaFrSbtm7a4mM632NntWm3/PmPisTzvyV+AMAVpSXySvP3Aiw0FkGjJwKEuOba42FN8TczCOSeminpCfvkdwMPLlxsRO8Rsf3lqi4HhIa1RmgyD1QYIfs5/svHpNTr3qwVv8t8eO1v94sqxd/d0xX/v5+MmvWafLRXR9ILwAgSjHuv/yEh6ufLv/kZIt8su1t8S0ZLL/+9UjxBLAIwPPc2x/gBGssX271kZ4ucsEFAB1HAFSCRD79VGTe4kdl7NjbAW4i5arTrO4jq0F+r37D5K6nPmkYiAboefXNGyU/46Bs37as1jjLCgpk665dsmrVdklK2o7vDRIYGIt9HS1DhgyRQYMGSUhIiPz3vyJXXl6z6tK5AjAs0qdPzTxOvfe2yOVXY6L67rNx5Q5ZceBn+c11t9ZqCPwqX38tcv75AMN4d/AtLJbrrrhPPvvs2VrtXP14+zXE6CGuPjyVgBWZh4kiEyeK/PstwZhFPvpIZMQIkeuvB/irPpXKARp9gQm2HwDAhrHBZ94ECSmB8m2is8AJtEmR0dbWEcZALQX42364wDYqM9kUDTC7l+5HZoi2NYjX4yVQ24ZjSZcq4+5IWMxvV5n0eh39TetfOFzVBIAEsfxNFz/pfK6c0UXOREk0FkBg3Kq/D7nz/NodbRFfoA6AhJ7cpky44UvVkq1wPyMxJhLW2L4AuiNASUPXs7PQculsvXRuY37XrYHqW3DdjczSxmsgF5a/4sI8ie16fMEfR7591fcydMrsxu9EC6xBK2hJUb4Cf+yuqDBfNqycp3q+/S/vHrMFvsWFRXVRn8Th09Vy9pGTlqQA4fbVPwAgHoWlsFL8g0IlEoAwIrarhMckSFBolOMtsLggB8vDjum/qTMIKJd+/4F8/vrjkp+X7ehmwYIF8tVXX8nf//53efDBBwHEOinrl27gDxDHT11CcDhkSLxs27ZHXn99pLJUEYzAmChDh4qMH2+tPReA6o03rOmSEpHrriPIiQIQy5SDByPlXagTWE26dRuE31vk+vtebBj4qx6ct4+vevDMxYZ2794t+/fvl9LSUoC9QGXVHDhwAADoLOzrDoC+fXLFFTa0V90H1ES8rmTMGJGPPz4WAMbEiKxdKwCuVrtVq37EOtPUD87fts3qg9a6K6+s6W/1an9YVUNg3UyTGHbiJMnJIl26WKCReuP22deAATUNf/MbEWBZef554E/c/Wgl5JhhfJTcXMH+ivTvL7J+PcBjhmWFrVnbshSS641xU61lceC5RgtIZ1Rq0byR2w4VqIpH2/FAJ8VLSwjdnQzm7wnaElqKyFVHXfBhSzBBaxhpgJi8QMsS25OSgzVh6WrWROctMZa27oP7PQ5JCCQUPl7gj/vM+M0RiD9knB/1ypg66pxEyUx8oAs2JNBLxe3RascXANL2MK6P5wjpmCYOYAyev4rrI1ct902fmwNB1dKehbqn5ZX7zPOJL1gRcM2fiuQQcskaaV0NGADYSvpd+/OHMnLGJa3Ue8O7LS0ukCKAIYKq4yHpSXskJr6PY9NBIeFqOiTU+nYsqGOC1r6ITt3UJ9HWrig/WzJTDkpWygHZv3WFFOTiiY0nmK9/oAI+FWWlsCTukJCITgoM6puirYsGTRYXFcjXbz8lP33xRq3206ZPlylTpsjUqVPlqaeeAmhYLxs3blRtkpLgfoyv1bzOH+npE+DG/bdcglNm506Rrl1FoqJgLXtPlOuX06eeanVRBisVwSElMjJSuZtPOqlGx4GBD8tVV10suzctl6iTLrAaVv+trEBiQE665GWlKOsq3eR5Wam48ZaLZ0URQFCu2oezzz5bubDpyqXs2wfuPoBObA5gcJBs3fp1dY81X3RVE0BoAAjcqNyvNS2sqdNPF1m9WuTll0ESHLwO61TJ4MGDZc0ay2pHmoyrr3ZeywJs48efJD/99JNceumljgZz5sDFe8TaNofL7Y4cKULATBcvP5MmOZora6D+RUufFu6bluHDAaaxz1Kk51jfeP4qDkdWKeLDt6XAAy1B6SDz5gOe4Iqk7rTmMHGDlRh0wH7t0TT9F0Ef6U3Iw0hhNuZ3yM5kPBXJizkGPpiZhUkXG1vp64fuOMaJrQPnHYFjGsZ9IgkB0vQhkQpk2bOkG7MPjE9bsxshCQgFYMwlz3kmk/RGPe+mkIMT7NGlyWSUd+YlKWoYd+OhtY/H7sJJcQok2tsxpu9EE75M8cPzzUjbasAAwFbQN0EPrSnhMY1AAK0wDna5e8NCSYQb+njJ4d3rJb7PcMfm+RB55D/zlHXUMbOJEwHB4RLPT++htXooAWDbuOgzqfArlaQ9GxXYKcrPUW08EWNGS6H6hPE7WoLwHRgSgWN27A2oEmjkkRumSE52htxwww3yyiuvyAHE3XUFQvNyilcrAULy9fVV20EoX53CGD+6cK+5xgJJ5eWBWBfu79zaYIXL33/fAkQaWO3YIQBMFuAJCYlUsX7cGIFUDuLksrNTJDQ0FNYFb1nz0/sKGDPukuIJlBYcFgNQHCshkXHSpdcQNe3p5S3lAMzP3nO+/Pvf/5azzroLlkwvtQ7/9OiBOLM066enZyhiFPOELmnGz2mh5WzVKtTkHGfN4b7Q9bpsmciECbqV9T16tAg/Tz31IyyZ1ymw++OPcG3jMNHNTd3Q9WsXupNzcyfInDn31AKA06dbsX1sS3D84ouWixe4HJZCkRUrBJZVyw1Pa6DdImjv33laHcqi2nOZwZgFK8sAlKek+4qAra54qtprH/uLx2w3OOBocSOgspMDs5JEa8lBlNoj4KQLjTWYGVt2GvjZdOyXfhi7q+rCdlad1QKVjdla42zJfulmJcDtD+oeViaqxr6N3gStVXSzErTbhcCS1uFpg6Pssxs1zSQPjosuURJOs+43s3B3g7onC5Y/Cs8ZukcJGo0YDTRHA+YMao723Ky7bv7HMvHsG90sbbvZvFHs37ZCTmuFOLiG7kXa4Z0yfCqe6DbplNDL9qvlJ/0CgmB5qpB+o09R7mH7FhiDWJifJQU5GeqTlrRL9m1dJkVw65aXlypLB17oVYxhAFzMZfDF+vt5iz98hDNnzoTlarUEAd0dOnQIrl1/5R71RzKLh4ePcpdqAFhXzB/Hw/i2bt2skR0+bE0fOeIBq1sl3LrFUlRUjMSQImyrCECsABa9POnePR/byIWbNw9AJxduyyzZu/cw5uXLDz/8oAhmIyPD4OLcpcbF5I+gMAvg+gfWz6TPl5YLbv6TPHX3+bACfgKgdLGKXyQoo4uUYG/RIpRjS2FCRTgsllkAgREAxFbMHK1uMIQqCybzSAjA+vZFneIt1n46/6WrOQqmzWh0TNcvk1xOOQVJLFkiZ57p3NqKgwwK8kUcYqTcc89RgOc4BYTpKtbCeEsC5csu03MEVlqRyZMtndMlnZBgxRTWtHA95ePm7rgd1Q/4YKb1hxYkBqA352HMGtFfrIBFFta2thKoSCWQ5KDMJfVFiyBBR0OE9xVaQFfDAkY35Ikg5LZjOT9aztyB2obuB62jzuCP1CnkwiPIbI6EA9ixwga5GikEg6zd3A+g1QfuUoJ2fkjCbMRooLkacHOLa263HXd9WrzCY614tOOthZSD2+F+TUSQ+/E5zLTEMZOXVre2FsYJhsLC5SzMKg4Jh/ULn7qEQJExnC/96RoArgJl7fsNAsgIVkaMmIjYsWQkCkQCxPUFcCwEWCuH5S0dgK0CIAkoqQFCN/HnnyOpA899AsLCwj2SjEA2AssAoBp+OB0cHCznnhsMqx4eXqFdVcJFWVmIbNgQiZi3NLhnvwLwugOWO5GLLhK59dYLkWV7VDp1H4jYy+AGjKSmSRdkZVMWP/uMXHLRhdi+Jz6WtZHgjrF1GA6SWgbL229vhqt1imzaBPdXqAXg7rnH6mvrVkFspMi6dcda8tiiEjGcdJlfDV8vAcXIkYQkluhsZ/1bf3MbBKF33nmS/Ahz4bvvXimXX24ldeg2TBahu9wu6F4JY/4IZjn+OgWxj8o/PbXCZbMUEAUv3polU1BPlyX9mgP+CCJZW7WtiZlZ5i8fFiYCDL9wT+VypvWJJLvO8Y2sgJEHqhTyChLwHUovUu5pl8ppRzMZt0g3OsuWTR8SpdzWzRkez1PG3v20ARdrtdA9PgzceYO6BatzQc9vzjctq/zoOD/GBTImcDTqdvObHyNGAy2hgeODDFpi5O2wDyYmbFr8hcy85HftYnQ71vx4XOMQk/dukvheQAzHQRjr1hwKGa4bgCSS3ds2AvQMBe1JL4C1zxFPlgkL1061R3FxcQBs78GCYoGXb775FkAQADPkFBX7xtkEdxdfXOOitKtCZc1eiTAzuBmrqorlpZf+LXfddZe9SZ3TzGJds6ZSVq7MUFa4X/8a9CZ4WH/yySdqvX3b1yHTekqdfTgv9PWzzGkV5Ezh4OEHJYB64QWRa6+1LIGMBfzTnwYjSWQBklemwF1sxdzRzcrEFO73wIGCcVmxjN9/b7ms7duaN28eLHlJALBdYPU7Rb5no3qEwJCfsrJxyOL9CEDwSsQDWsOkLijM+AVeryUE2h9+KMK4PoJAxlUy3o9ueI6dMYO1hAGWSOiRxfNrzbb/SAYXGx/Q/RKC7bMbNU3iXWZ7smD98RLGr7EUGT8UHDqJg3WT8WwEN6zIsBeu6JaOQVQba+KfqirUBMf1XYW41SpY+vGjeroS01iGT5CvhyR2DUKMI05h/Nm2LV38kF0bCGt+KnTOUAh+GMbhjZNCf0jjxA8t+byuCfoyQTWyHcCX5MN0yxJYUj+DugcryhW+BLSG0A2vXfGt0b/p02jAAMAWPAf2blkq8YnDhS7I4y20XpUWF6r4ruM1lqQ962XYlPPafPMEf/XRxDRkUB54QERGxSp3LEFVEZAagUdWVh5coHHIgj3HAf7YXxli6Pr3D5Jp02p6pztz+3aLcqRmrjWlLVN0YWZkFGD9MmyjFJY/X+embn+PHBmKseQpgEYLXUZGmmp76sW/lv4jJrtdz90CWmt79BkgRxnEqILgLNcr3bl0A1OYaPGnPyXK73//qnKn7tlj7R+tg7QG8ptCwEhhXCDx3axZ1m9aOR944AHlTuccuq8ZP6kTTqxW7v/yAc0sYH//ZGyji/z8M2h0PhEAUmuMpHaxC12+d95pZf7+rvrdjDyEBH7VWBkudtsaDcjeIXCah5JwB5EEMRlJEY0pSUXgRzciEyjW7slpV9Y07JYcQfmxIwKU38pCcFVVUSqVZUX4gEuytFA8ysBtWJYn5UU5UlleDFNxBeL2mIRSqT7leCkpRZ1ZQDPQ8MD66s9SbFxWJam5VSAwtgbdrzu47g5iGQBgdlGVLNtTiQVVEgKL9pieXspaV1HpIQczKuVQBvoD2OsU7o2qEr5ShvklAL7p4FYsKWN5NiRd+eKk90SpOE8f8QoOkNAYxMEejJCtBTGw+gcrqzwt9TyH9QthK6vPdG800GwNGADYbBVaHRB0kG6lNXjnmjLEXevmSd8RM5qyaousw5s7s0uZgdvWkpuZggSH5m+XN/KBY2bK4u8+kHvvvVdRvTBhgRYl4iO6Ru1CyhQdA6jna6uV/m3/prVKC2PhunQZI//4xz8ALC+Fa7mbXlTnN8cInKoSJkhvkpgYYwEpWEea+iAidTXBqBYCVFrP7EIQVoEEmfHjKwG8POWZZywrZy0ghRUYJ3j66Yly8skvynPPvYmEjJWw0mWDBNxPzrjsN8hIzpR5X72NzOI+8sQTj6vklaeffkYiI8IBal+QeFohmYHiJLQaEjhegywZZkeDtUZRvpA2xpUwCoHuY3IDEvjBeKuSQ/ibMY2PPmrFH9LNDFrDBgutY7QIkR6FiRGM06pPGDcYAgsSy1zpl4D61jkRl9M6V4H41IrifKkszoDyU8VXiqUEBOJlIH9nglWQH9y0peUKcPWMQBIVSDC3p6M6hW+FJEYVy7ojQQDXFTK2a77sy/KTnXkB0je6SKljJ9p1CiyS/rFlsvJwsFRUecilY0Tm70TowcFKuWo84SxeMLaAJD2sSmb0hSV4dZVsSy6TK8fi+O9DvOpRD8y32s3bWSkzwktkXE+R/66AhbigSkZ1KZSd6f4owVYqY+OxL2i6JgnbykUYRGeRLxchHjbQQ3qDsiQ5u1Jx8oUCIHp6ASjCi9AJJ1p0bLxEREYhbCIcL2thxySPqUGaP0YDx0EDBgC2kNJ3rPlJkT4zkP54C8HXoZ1r5bSr/3jchsIYvDAQNh8PsSqAdGmRTa9e8IXqh2THWmggoo7pMGO1DVKYPPzwwypWzxkA6nVcfZOa5JtvahIeLrpopjz9dC/Etr0vd9zxG5XI4Wo9V/OY2fr227TWeUjXbj3l0O6Nrpo1aF7KkYNyyYXnHNuWrm9aBQHISK2SkNANfIMH4R7vIXfffWzz5WCw5oc6+vDDi9WDb/CoKdIVoPXCWx+TKDwYKYPGnCTzPnsZnH8Weuuc0ENCkHX9+3795AUE9UX85z8i59Qez2ikEL8L4kMCQArJpum1rUtmzxZ56y2LQoe0NsS4f/ub5Tb+05/oTrdc1f/7n5WJ7FFXZ9XLeBqQo4/xcWeOjm3AGlYTZhPT/VuhzqMGr9buGvI6oPWuvAhgtjBdKgtTpLQQFRwqoFwAwCC/KokLQraxT4mkoVLMgWzrrcnbs0rGJeRLeECFkFpn5aFg2ZVhLYvwL1eAj+7b8d75sgLgbu6ucLXvBH+JUSUOPRAE8uPrVSWXja2SbpEi8eEe8u7KKnltiXUEEyKqFOCD91eBwneWe8jjc60uCP6mJuruqmTeTg98cI6gv3EJBWp84QH5anxLD4WohpEB5XL1eC9B9TjpgZeKd5YDTO4uVMus/spUgs3P2xFFsCoF8zdIgA9AYmc/KavykfIqbwBeJlJFSJeE7tI5vquyaDO5rKkvbXoPzLfRQGM0YABgY7Tlpm053mj3wf172tUPuWnRtrOPHtgqnbr1Py7JF3pPk0j/0nuY/tmq3xWwvm5a8ZMMGTtTvXXnoKxYtI17sKkb37VxGcLgyuFmvBZZpZep7FpaxpiYMQJBZ+T+W7x4sUq4YELDGDAPZ2T4KU46lh+j8cqpqlqtoTBr9rXXLKsUcRUtivff3wOgpAfiAZcC85x8TBUNdsB+CV5ovQKGUA+N0NAKxN95qcoZ3boOll37NtTaVmN+RKJ83FZmcTgLU3qrhTF0Q4YMQobvFuDBHnq245t6m2DjfuneZ6Bc/tsnpVufIY42emLQ6OkycNQ0WTX/C/n45YfBW5knR/LzZBca3ImdHH3ffRYbto20jzFbjMFkNjYpeRoiTBC55RZR1kow+qgsbFpPWW2EWcN6uHv3iiLVPtsPD+mGdIw2yXCbfo5M3uEobs+sXvZLwl5NqOzcDeuz0hV8Ignj7sqKMqWyIEUq85OlND8TIXdlEgI9dQoskTDfYmSdV8qW4gBJLQI6gszoma3i8DgdFVjuAICcJvijEOj1jS5WQI+/Oc15FLZh25R8qz9aCbVwmuCP0j2qSjqHVsFly8xZWvs85Z0VVkta/gj+KAnhyHiOrpIdKRY4pLVPC6cJ/iidcT25G9+A2BIAOm7Xw21/7H1yHwDAPewN51pkpVwwhJZLfkT2pMHKuBLl/HbsldE9QcEk/lJQhkF6+kpAcKjEd+slCV27I9EsVsUnqpXMH6OBFtZA9WXRwr12sO62rPhWBow59bgCLrvKd6z+UUaffLl9VptPH9m3WabMvq3Vt0uS5reevF3Wr/hZLrnlYZl+zvWSk54svYdObfa23372LnDjlcmbb76pPs4d3nzzzY5ZL4PVmMkiSUm+ih+PZYBZiaI+IYCje5JUMMRR/B0cnCqzZ09QsW3OZdTo5kU+igIYBGEbNjAjN1zx/5EUmlmxBw6MlEWPfKlcbE3JwO4/YorM++l/itaGgfIEW66Els/3QVJ4pp2zBch3K4IeSY6t5W9vr0Apvzj90+U3LR/7QOZN8Mdsa4I7chpWsJQHU4uZJm0DgOxkFoIK6Qa+3jnoz+UWLDcxORUZm6gxI2MAOVRVtrl6PeqXn6IvMAOAoqHCeryLtmTKwi3Mcq5SlCDRqKZBkuXo6hJfTCJgMsFBVN1oz0L3bTkseWU5h6Qy75CUl+SJD9yzsUFlcOMWya5MZKn7IPbOE5nVheDWiyxSgGkXXoBSC+D6DAaZdaG3spzRfUuhlY+WPw3o2JbWvOwiL1mTHAQgaQHCNcmBcnLfYvGSUtmV7qfAX139dQmvlF2pXrJ0T6UCXSl5HnD1ekhsiKVhTtMdTPC3ENcPwV+/TlWyL90DIAzVZsZa7TiNwhzVANFbYhHT1zW0QFLzPNX4QjE+QvYVh+B6Di+TvnFw4+/zPKa/i0dWqlrRn29AHCJCAjqFVKKNF7ZtWRsPZ4Onck3N+DYeLMf48tT4FuyEC3trqqSDnmrRPGTg+/nAUojsf1gL4+J7SrcevRQo5HVpxGiguRpwfWdvbq8daH1SnTDbdejVs9vFXjP5o7ysRILDY47beBgPSVJhVuRoLSGNyAf//IOsmPeFlJYUq80MHD1TfRfmZSli5+Zue8Y5N8jHr/y5VjeM4SEwoRWwmKRzkJEw5bEUHKuATJniq4Ackwz+9S8BmLHAWq1ObD9I28KkCgKSw0CBX3zxBfotUjGAxF30EBIUamHsIQEjP+TfY2zekiVRKjuZAJBCS2QZ4hEP7N4kPfuhQSNl08qfFNEzA9oZm/f1118huaW/cnvbXVTx8IUfOnQYmdBWCTZy2hx+/HEZCq5ExgcOGT1Fbvrj64oU3d0QynCubluzUN76+53Y70I5/Ywz5Nlnn61pTjZpBua5EFph34JP1x0AZHUQ8HYrSx8zl5ltff/9lu50d7Si2sGfns/vAH/8KbDPqX+62EYOTOJefpjsQS43UqwwI5UZpe3N+FdZjri8vBQpy9wpFYUZcOGW4FMhvSMLJT6mTA7m+CprW5BXuRwsRBIEwJAd2NFNq4GddtMS2HH+0oMWEisqA3l0tduX4I/Wu5xibwUUQxDzV9NfkPy4MwD9+SjwV19/vWKhUyRvLNztI0fzwH0KYBcLa6Ad2NHt2wOWv50Af9rtezi7Cu5bD3l9qXVcs3Eu1ABFuoO9JTc2FEARpyD2d3LPIlgYKxSQ/XKTj0Tvq5CjuV4yulu5DOlcKt3hev55l5+8spj9eYne38igCqzvj/78ZX9GpSRle7ocn7ZM1oyvEuNDqEBVhuRkpsvmbbukf7y/JOX4yG/uvLv+k9G0MBqoRwMnJAAkYeqRTAQT42ZLnicGVZcDEAxFMAmepW0qm5Z8IUMm1c4GbdMBOG1s9/r5KhbRaXab/kw9vKvVayAn7dsmi7770LFfdz35scR26eH4bQcqjpmNnOg/0rJiLVq0CETCk49Z+xb4E+fM+Q6xY2vUMpJER0aSBsYiGqZbkSCQ4WvuXMFsSyGgWws25E5ItT0fJTAIqoYMEYBKkWHDamrastatFt0ngR/j7PpUmwvHjZsBC6GnLPjyDYm+6SEJQaWTxkhK8kFH8z17doMQeoD6zbi7VUzprRbq2AdsyTEACLt27ZffIVFmGEyU/cCT+Kv7XwaNjmvgptfn95O/PUMOH9itZj399NPyq1/9Sk0T+BLAdekSCkukZSGlVc4utEzS/bsf6b+u3NBM9PjjHy0ATQMicST1bBeCa4LAY6hg7I2aOc3avbuSC9WnmV212OqViNErzTkiFVk7xKM0R/w8SiTOH7ydXmWyuch6cSNYiw5CvAGEljqCNe2KJVjTblpOM0aPy2ip0zF6dKGO6lLgcO1q8OeuPxSuUcB4bNeCRvbnKeN7Vkk23scI8CgEf9rty2nG/HFZX1j+dMwfLYKXjAYIXGGtc9U4y0rI9dkmCUkdO1M9+VPGQBfAw2qf9f4ezYV1D/ubEIwM5kpvSYxlSbNK+WyD9Vg9Z3ApXMk+EhoUICN7eUk5ElB2pFj9uRqftky6Hp8H9qlK1h7xkrPOPleNyfwxGmiuBqyzsbm9tNH6jKdZtj1L3luQrCgYloIgk2z0zKZbsztXUSu00VDUZgpRizbjyL42i3Wrb98YkH1w5xrp1m9UfU1bdbmK/7OVf2uNja1f8nWtbhMH4y4PYe1jXz/rAVarQRN+aPfpESCRi2CqY7ybXV5EzbH9+/c5ZqWnMwu45hWEHsvbb7cSPWjI4gOEVih3MgSIjwTOBG8EeqRTIcUJDY11lS+z6gFnOrqtrIRVYvQYWEc/l3svGyl3nNdXDu7e7Fhun1i76GtZ8t17Qle6lj+/vkiu/O3jcv29z+lZ6psAl9nKXzNorlq6A4X+EShr1KhRMi81TVIefFlu+/O7DQJ/7CI7M031RAsqORBZwo5C8EdeQZaRY4bxO+9YJM5qoe3PySefrEihbbMckwR32npKcmgkLjuk2nireABffVWgd8eiX+QE7w1lBRlSnLRS8rZ8LDkb3pO8PT9KUeYhGRKeLOM6p0r3sAJJyvV17D+zX5mgQaE1jy5dLczI1WKfZhu2pXBd9qGlrv6S8wIB2LAegH9j+yNPX3IOLOIA+VqY4UvJRdm2r9eXWD/wd386XiayrZ9MxNAxf5zDafBdI0EDYQzJ5cpFbLWsPSb7+DKpE+8A6RkbKCGBvrLqoLXvXG9tko9EIEAyEH5lbpMuZy16fPxtn2Ybd+Obs9VbBow+RXrCKm/EaKAlNFBzRbdEb63Yx9aDeQB6Ocrq14qbaVTX6xf8T4ZPuxAPmZoLu1EdtHBjVv6ITeiLWMTje1jTUAt5xIyLW3jvane3ZO6HjhmTZ13kmGb8XyhKoLWExMR1U8f2YjI5Q1i1wp4NrI87+efINVdVBbdZla+K5yNwY6IGkw1uuskqkcZMWdbTdcfw0hO+SHIN5ufnq4xinlY0iCG8UH77W8aV1Viw0ERVtCD9iY9PFCyG29UY+YcczosWLVRA7U4Q4DFR4j9/vkEu+80TKtlCjzsP5fBe+dttar3P33xCHnlloQSFhEk09jtwcpi8/Mi1allUbBfJQOUTComwzz77bLnwwgtVNY+lS5eq77iufeSMK++W/sOnqHYN+UNQMnLSabJ28bfYl7tl8+YawmgCYFAFKg7B3/8ewL7UAoHVBkJH98PhA3/jjTccvxs6Qasfk25Yso8E2kzGsYV0NrSbdt2ORMmlOclSnr4FCRuoUuNbLiFeJXK4wE9RqTCJgnF5K0FrQkudojsp9ZJJ3fLUftF9y+VMylAxetVuWgIgnXzBhpymm1b3x/Xc9bfmSLCMjC+HVdBPIoMq5doJHgoALdjlC28OY+y8G9WfY3y7vCUisEIuhUVvw2FPgDlUN0GmdTFctvbxrT8aCreqp7L8EfCl5nrIDZOAOiF0BzN7eEy3Svlqk7dot7Sr/R0YWyyT+njKZxuReLXZG2UBS2RLip+kIf7Q3t9/0Z9FP1PjlibgY7axQrv4y2m6fRX9zEprHLRM2se3NQW1i6OHy+Chw7GGEaOBltHA8UUKDdiHIhTXXrcnV7YAAFbgAdheJC87FfVjs5Bt26+9DEmsyh8WWDleg2IMImP/WoKIua59uPmh1+XJ/ztXNZl8xtWOpswADo+Od/xuzsSc955VcW/sgxYqAh/y2j0IvpF/s+4ahN8TJ94q336Lh0lqGYiifVUCAfnw6BlGcrCK0yOAYzyaJkNWK7v4ExHRFyXU5iMr9Sy1lC7iGTO4HbikkixXJUuZgSEF/HqWW7NHj0iAp8xavZGOhq7kiRPPB8nyAZk+fYb886Fr5PSLb5Fzrr1PtX367tmOdfJzs2Xjiu9l1JSzYEENkKOH98jOrevU8lsefl3mf/GaLPn+Y+naq58c2rtD/geulODQcBk+bqbEdIqTWZcDpdmkIC9bPnn5Idm/cwMAIol74WpFgkds5+4SA1f9/p3rJT31iIpVTExMhI62yp49A1X1ECayEJwRAI8da3VKFy5jJVnlg3GQWljJoS43sG7n/F0dLqlmE3gixFEJkrpVTGADuKCdu2wXv0m/UpK5T0rTtqhkjbjAAukSXihJ4KUjEMpCkIyOqeOA6c5kjB5BG4XgT2e/0mW7pHoZEzS021e7eDUIbGh/E7sXyMJ9wfL9DhAuwz189XgPRY8yPKEMlUY8ZA2SKygEVzrbtzHjG9k5T/YeQfgFjHB9o/1k4xGrv/7ob3TXSniIcC3G5cqaIwCBKyznF8EaXcEUxv+ROuZwFsI4qve3K/rphCQTZu/a93coQGwl3L7jEoqxT0HYJ5ywEFf9MRuZCSna7Wu5eC3KGa6jY/44zTaMSdRuafZXUuEphX495NxZZ7CJEaOBFtNAuwWAjO8jS/7Wg/lgd7fe0Fpsr1ugo3XzPpYR0y9ugZ5apouSonzl/jwexMv2PWBCTJdeQ+yzWmU6qlOCo9/ufYc6pnPSj0j3/mMcv5sz8c0H/1KrM8ngbpjvUsAYzOxUu8wAOiN4YJze5s2Io4rzVQmr//ynxSW3cCHnC8idrYQO8ueRxoUJHjr2jBnAtCBSunfvivq5m6wf1X/pCqZVj0TGXJdgSMfD0c3s6xupLHO1VsIPJj7MnYs4p0u6y969e+S8886Tbz57Tbr0GCCjp8+WwGB0Wi29B46St5/5nSz++k255x/fSK/+I+Vvby9HMlEUxuojl8N6eM61f5AsWAIfv/NstdZf3lwGQudAmfvOX3Q3KiFn29qFsvCbt2Xr2kWKI5F0MEzaYW1jxhAe3b9Jpk4ar5Jn6L5OSkoGeO6LeseWi/yDD6zuqCOSUBPokiaH+0xdjhvn2JyaOOkkqzawjh+svbT+X7SsMuaSbmFWNaH7mZ7oU+tftV20YMZuafZBKU/bLKUFmaCeqVAZuuO75zni9NrDQAnotZAD0Rux25RwJHuE4jhraWl6nNhQP1T4KFUkzQwyLC2r0pty/13dxKragosOcFoLXdV9u/irl5pIZHcvOaCXtPx3QQlcxEei5LJrLlbeiJbfgumxI2sAt9j2J/mI2/hyRaqK32h/o0N1g9RDqgZlZFz3djO83RsWHvfkDyqD8X/Dp1/YJnoJgQXqopsfqbUtWgBDo7vUmtfUH5279pIjh/bKB0AkLPNEqhe75KGYrIdHMDjzrBi9o0erZOZMlI+LROxRriCjF1aFqyyeOdK1aJBHYEPJSCmXQHCA0dqlpbDwENbvpFyfdhoZJil89x1ACVDJjz9aQIml2aZOZVWLUJWZrPvQ34xroxuaiQ90+/71r39VxM2vP3WnRMQmyD3PfiVHD+1W1TgSeg+S1fM/k7iuffXqtahbGA8ZGh4twSER8utH3hACRoI/ig9iLnMzU2X1gs9lxxdvyOkAicnhETIbgPN9FN5lxrQ72QDFeHmtg4vXUgrCH9U+du5srcFqKYwFpCWUrnOSZzuENfaAvpkNTKqeuoRuehd0hWoV8jHSNc/j2Lu3IKGl2soIvZ0IkrdzjoRUHkXlCk+Vrdo3znLZ0j1KC5p2YdJSR9GWLO2y1dmqdAHTEkjLH4XTJGXWLuDm9xek+hvSpVSWHwhQPH1XjbNi4OgGndS7EnV3S2VbaoCiW2nu+Cb1qkRSi8iCXZ4Axd7SKchTFu8LkEJkI0/vXSS7M/2V21dXDKELuHNopQyKK5X5u/2U+3usHKu/TUcDJHqX5bJ9fzWsc6WgmUECCV227MPeH0motQv4vystC592AdPyR9HuYO0CVtnI7G8H4oe3+Mi1v7pM1SdWjc0fo4EW1ED1o6gFe2xGV2UMvj2UD8tfbruK9XPepXXzPz7uPHv2Mankj+2rUIbuAfvsNp/mOPJz0iUkPLbVt00w8sT76495Ky4rKVIuzJYYwK//9LY8dMMUWOoK5fnnn3d0yYzTQCAyT89gZO5aGaorVlg0dUz0oNCCpC0edF3SqoR8Bbh3ayxYXd/5q8hDDynLngYojAHs3z9KlTZj4oK29KH0rQKVdP8yO5ikxenpVoJJZKQnXNXWdu1/mSU8Ivkb2b95miSOCJaBAwfKTz+tBE3MAPnmnSflt3/7SDp3S3SsMuUMoNV6hECQhNt2CY2KlzefuEV2bFkvL0ZHyWnYp7898sgxx4YubGfXampqKnQVoqyV7JPgWGdG8zdj9JhI41IYaAkASDdwAtD1AfDiMCnFlWjwh8050wmq5tQlwfSXX1qk0AqzznXVU/ubF9z7ZMnZ/iWsfrkONy1BHAFcfRU07BU5dMULun0p9oocLdlfaICXzEwslp9Ai/L4XMsKODURLA5dyhBLh8oilUWyA+5qAtWmjm9wXImcPMDXOlgghl6wk2g+BFyGVXLWIFjqQz1lbO8qeW8V4j+rK4ZEgnB6eFyBIpIeB7e0O/3FgM5nHvoj4CNvoKaOiQ8nuXPzKpDY+9uT5S8x/U/GC2GktR/mr9FAC2vAs4X7a1J3BH4b9uXK2z8nIcs3GzcAF0+zJvXc8iulgeLELyBYQiPjWr7zJvaYdninRHfpfdyTP3Izj7Ro+bcc1PRd9sNHitDYlWp0MoNeRgDqQF16ZjO+wyJjHDGAupsHkJmwF6UiNm3apKhD6JalhY0gj4kZ/HAYdL+So++zz6was7Qw/fe/orJOdV8IKMS5bmW6MvYsF2ZDghgSSl9yiWVBdLTFxPjxILJdaLkrYXxUwJGV0OgSZTKIqwxjjs1z1w5HN8XFZZiuAq8YkFALCI/RnI/+LZmph1HH+Fm5CW7ybqirZj82OuOWZe+cZTN8unQRg1pRZeJyvAS5DRJkb7A6HcU5G5iAmhY9utedxRksE7Sz/BszjWk11dnC7Snm2Hkf7L89ffwlbNCFeOvoIXuyQ9X5xxg78vJp0TF1/G2fZhsd80daF1r7tLiqyKGX2fuwT9fV3/CEUtCkeKoSeKFISNEUM+xzYi8PiQKXX9cofzllkLfejNqHpoyva2iRpOeWqn66h9XsEyuG9O/iI0eyiiUjt0QGw9qnJTGyWIE//nanP77U9Y2x6RXcgjqGkLQztPZp4bSmomEb8vxpca5AouezDdsezPKQQp9uMnzEaL3IfBsNtLgGjjsAZIzF9+tAcnkgTxVI7xTuKyNRWL29yvoFn6jM3/Y0vu1rfpR+o08+7kNK2r2hxShxSCQ9D4kHbz97j/zxuonyxuO3CBML6pLCvExksUbU1aRRy9YtmXNMe7qB9yBQTDPxM/6Prlpy/jG+D6VxFZjQSRsEeAQjjBFkvJ7dusXUXsb0Ma4tKelnJHq8KKeccoqiQqEr1PnFn1QwZKIBV7Laxvz51vDYL12XH3+MjXEQ9PsyqA3IpmjmmVIc09VCQ2j+yCN3KpB5GcqyNVey04/KX28/VZHUMjvaXQwegR+wrornc94mS8Z1QcovS7QRhPFDK9wTT1i1jen2diXcRZYIJvCm0A28bt06NQ1sruhjuF26ye1CXfEhzuOihcVGWCOY1scLLrDUx2UEpSeKeOCECex5kqT6DpP1aRGwntVU0KAVje5bvGerD6c5jxx25O4jKTPFXpGDSRDM/NWULmyjef4a21+YfwWSIKpkyb5ACccF0D8hSLlfj+T5SLeIcmWVe3NZVTUFi8jnG73VvE6oIdzU8S0/GCwZ+RWqzx92+GF/K+HeLZPdaZ7y7cYKxTe4O6VCftxhJXww41fvL6+9Q7kBatsJ4RVKV9RZp4gA6dEpSOZu91GWP1YTIXcfq4tQSN+iK5Aw6YPTmtLFXoGEVj66g0lDww+nOU/3R9fv/H2hcupZ56t+zR+jgdbSAG55x1dI4nzmGNyVIaR62Z9aJKvA60cZkximrIH7MI9cT1q6RPqpC/hoVome5fY7PztNSn0LW6QqxZH9WyQ0qrMEhUa63V5bLyhF9YTigtx2YZE8sm8Lyr/d2mwVVJSXyV9vO0UyATAo/F65cI5ccPOf6+zbooDpUmebxixMT957TPMCpKE6u2TodSRNCb+ZrECAxkzVl16yqEVIBk33Iq2A69cnA6zEA6Asg0VvvKCcqnKLZmevBbi7A9Ynf2H8Gz90GzuqbGAk3AatVQSU110nQv666dOtIYaHh8LqmCcI9BO59FLLFAlT2tChofLi434yIPlpuR9+5P8QNUF6DRhtrdjIv6WoUpKFRJtOCb2UFTE3OwuWzf/KCvjAmeThSmhVY7iejuuzt6ms9FCZ1REREUJrJmMnmRzD6nK0BlJ3zgI6QmXd427S1U4Q/c47XnAXx6sYxw0busmVV1pgkjqklZZAkf1RaAEk4KMOKTxmLAlHrm8mzdB6S7k6Dn+K1eQJ8YdW14D40VKQGiiph1ZIn6gi6RdtlVqjO7PxFTmClRu0KRU+CByzUA84KqhKZg9FXd1gUqwA7IB0mVa4Xak+Kht5OLJpk7JQJg7je20JrNXYB8bAXT2hSiIDPeWr9UWyPc1dxZC6x/ftVj/x3w1gi1J1l46uEH9UMVmyuwLZwf5SWO4tBzI9kIACsurO+eLvg1JyBwNlFShxekQhTjLVQ2XnTkn0kJ1HK+RTlHX7eov1uDy2YogHeAit0nKuKpAcW+Gj7goky/Z5yLmzZ9UZO3tCnJBmkO1eA3jXaT+SEB0gYxPDZVC3EJkxJFJGwRI4pm+4nDuuk3pr5Ju7n4+neoPvDBDYEPELQFmh95+UnevmIXGjsiGruGxD9+LGRZ/J0CmzXS4/XjP3bFokvYdMOV6bd2y3EsikvKwYQBvIp5mybf0SOXJ4v5RU+w5ve/RNeeGLXRIaEVNnzwSAYVFd6mzTmIV9hwO1QUhOPHv2bHDFvabKrN1zzz0KzOm+1HlZDTAYm6dpSuiypQuY1j+CIHQhWZ+8BKYzkMQiTo4C3AP37Rq4kwNAL+OvsoWZQczYQlrFCFQI+igEKrfdZlnGCGJQilclmnBZJLIlClEd5eXI++TttYPljX3T5d2vQpUlLKJHiHwB8uZ/0KwG6dSlm8OCqWY08A8zef/xh4vkkZtmyIsPXy3+QSFqTcbxRQNlpRHh2oRWOgI4sOcIrWxImD5GAgJGIy7yKzWf1lHGCIIVxgHWnFdYvtwC0qBkVOCPy2m5I3isqqpNCs2YS26X1DEa1LE9j5cGf/zdt6/1m9/kbSQvID/U94ko/rEDJaTnNMkqDVHUWXRnkpcvr8RLfTit3aqkdNGWwHKAcU31QncwpzlPW/40/UtD+kst8JUyrHvdRA+JC/cRf29WssBLDM7lXQBXumJIQQnAIcY3EmNKz/dA3V2rOgfdoP6410/qjfO12lJZ1/hYo7hfTCmSPjxlYII3YgxLJBf7mwpevotHVUnvGE+Jj/SXi8b6KUsbLYFlFRgfeAgHdg2S4T2DQeHiifEB8GF8tMaRrsUD//rFecklo0DzhLHZx8dzg2205Y77pqle6PrV++uuwoer/vrGVUnXhHjpP3DQiXjqmTGfYBpoVwAwNNBbWDx90sAI6ZcQ7FAlQZ+aF88LNUTOHttJRvQMxaVZvzBD8bSrH1QUKaSrSD20s/6VXLRI2rNBojr3QoWDMBdLj9+sA9tWSvcBuLMeZ0lP3o04xD7HjKII1snvPnhe3nzydgCZcsdygonDACy09jnLpmVzas0qKy2ps56sbtySHIDsMycDqA0yb95mAK+7AQ5uQAzeQmSJ7lbgw/l9Qmf3qpXwhzGAtGZNmWK5E1NTquTljz8WamELUQ6EYKS8PAnccz1Rys2qG8xsYQIXJizQKkWvLgEfLV20fjExhL8JMMlKQxLjA1UjYJ3Olb6bP5VLRuxUAIfUM3Qbcxsvw6o1Rm0Rljhb4kf1rHq/tqyaJ7ed1VP27dykLKAbVy2QeZ//B5nAAUJAzBrJzpVSyIGIAiEqe5cWULp3KeClVtZMWjdjYqYCHFt6tpZaf7mvtKCC4cUh8+dbuiAtjLPQbXfzzSPgPl7nAIZMIGHWMGP6GlXqjUAWiNEX652o4hvZSyo6T5OVR6OVm7GhFTnsVS7s002t8LFwZ6VDhfaKF7q/ECSE9IgLlsP5QY52TK6ga5TWwAoPP8koAJqqFvuY7NPZKFMXGxkqQ3oES2SIv2xN9dOryPxdVn+ckZRduyLH6gPInA6w+rePr66KHHp87K8lKnzo/nBJy3c7guXs8y5h10aMBlpdAzVXVqtvqnkb8MGbHR9kYUHWXVlxAxIB8qqpR1gZY/CEs6T30Cmy5qcPZPvqH5DFe5kEhkTWs6a1mNa/TUu+lJkX392g9m3ViGXoaPHy9vFtq0263Y6K/+szzLF8x4alsuibt2T98h8B8nA3h1x0618Qoxeupj9+8UGZ/827sPR4Sx9Qiow7+SJVPqwS1QvCGbNWLQk9+8nQcSfrn3V+52WlSEhEbJ1tGrNw//bVABNhqORxnqPe71gwE8+fP09xxhGMEWAwLo9ZwAQ2tN7R0kdLFs9XJoVQCIBWIyaoM3kpIPv2Ad1VS9euw5FU8hVIm611br3Vqv5BEDhzZk3cIAEmY9ocGcYAk+NAnpeY6AsrYqzsy8HyK28UvzG6Z2sc11/viRjF/Yhvu0BQvFh69BtR06CBU34BgY6WrAZCoUU9MqYLqHL2KAC4FVkX06dPV8voymVso7a0EdwSV7FoB5M8kCsCAmeRiy/2RPKIl6KxIYjUQoDLAiw6DpKuWS6u7l43q/XdrZs3iKM7w8WOAyHWOcRtMS6TYLDB8v77LELMpNETWvzCu0lJ1VRZvH+eMNGuNSt8MEZO08XoChqpRUGydB/i5Xyq1Ms66U6mg/qkT3SpfLLWS7mXyysLZN5uT8kqdFdBwxMWxCpY06rkh63lDrJoHhhmCY/qWianDPRWcXSkYLlkNGlV8PKU666/5lXk4Ha5nZaq8GHvr2e0l3TvMwRxwif4icedMnJCaACPlBNDCMJC8KYW5G89QEtxQ+NDojFC693kc24WxnYt+vzfqOIxQAZPPAsAyq/Obg6CYqVzj4HI/g2qs11bL9yx9ifpN+rktt6sy+2lJu2WYVPPV8tIBPz8g1epaQb4J8PU07v/UAf4oyWQdWrHIHuCxMA7Nq1QH+eOYzt3lZsfek2BROdlrn7TDd2SZfAY75abmyPrwVXXPXGIHNi1ScXuMQGE4W50GVKQ/6A+TD4gePvb3yz3LWlcPDwYV1YFDjoPAJ8qqWA2BGTOnP8JawmzpNp553XBOkWgaBFlBSTlC+PVWAWD8wgotTBbmGCS25iwu1gOF/vCncvs4kgA0P0q/pDXBZKJFegh8NmJVNlLETC3adNmqxsPrNBI6TN4nLz47QF555n/k6U/foqYugBZOOcDRy88jn4ItMtB5sSePbi+Fg2HRQ47bxO6x/lxFoLGt99+W37zm984FtFqp8EfZ+7b17BSbTob+DqNPLGuu9J7jo05T7BsC2Xu09b3CfzXL6K7VFVMkqDUpcJkDJ6PLV3hw1V/4UFeMqKXJ2LsaipeDOlcImFexXIkswruZbw0HaqpQMKKF6RR4S1dV+TQFTSuwHVQUFImCSFFkhft6+AxHA4+wTOGeMNS6LqCBt3IFOf+tJuW7ltu0eLhk3orcrR2f/llvnLbxe3jfk7NGPnla6DxT4LjpJNdyYWyErWAf1qfAVLPKgkP8pYEUAY0RaK79JJZVz4gYSAMnvvOY3XGB9LKsWX5tzJo/JlN2VSrrVNehhgXxLxFxfVotW00tGNy79GSp8HXip8/VasyM5Pgj3LV3c+rb5YGu+fiIVJUWIBA/SsB4qtUhQ3y37HSRgbKXJBmhTJq6tkS3QlPigZIJUBlS5efO/Oqe+SK3/4NFsrRCvxxGBdddBGsbbuVC5OJBbQuaaG7l8YxghcmHvBhe9VVhXLOOQHI7u2BcnKPyYvQx3X3/EN6Jg5EnNmvkRkcK8888wzaB6k4NW0EI3BjfKDmzWMCyMaNVrwbM2Pvuw8PrItjACDxPYOZq1FwVWfKp1A9490IChnD9g1SYUfBD0u6lVsfflWeeHe1zLro13rIDf7OzkiRD198qBr8+SO5ZIhj3Z79hqmSeNuR6TFmzFhsbyT08qdaBNeOxi4mOD5vmDfnzZtnLSUTsw58rG7PeD6W0qNVsS4ZCVbntQyghNBFz6opFFocGyM0Wh852pg12m9b/+hEqYgaJZvSw9tskPlFFbLjcL6k5eDErRZWdyoH64P22tgLPOUUlKFSRxkshYSAtaWsvEoKixFjbF8BTWgMoJv4lyDIQZHpM09W18EvYX/MPpwYGsBj4sSQTaCJoZTA8sdrnhlvvTsHNnnwXL/noAmID/yjlJUUypy3H5XDqGLhLHu3LJWufUei2kGA86Lj+nv/1hXSA+NvD8Ls6LgeMINVS3B1lrSm5TjtopulU3xPtfTHj/8J92kR3Ko3gbvtTPWQJghitQh+EwReg4h+Hp8xM87TXdb7zdrMLen+5QaZdNIb4G/HxuWO7X8KhEWAQfBHV6y2LhWhek1oqLeaR+CmZeXKQwCLJbDOHZCvv/6jdOreW0ZPO1fufW4OKmtEqmaMnYuB2Y9gbsECa00CPpIRA0OrRBAYyFRGMEmgGfdHUmU57TRVuoyA8NNPI6CzTEU2/fjjVu3gN974Xi4FP02X7v3kr++skoGjpqt9om4bK1++8ZjM/+otVRFly5bN8u67/4UVNFCiYrvIVXc+LUNGT0Fm7lZYHverrjMyrG/GepLfsD7pDz6d5czwoDCLhijWJnQh45QRWkDrEgJJlus7DAJAgmBmARPMsaKIU46K227ItcjqI7Tg/lLEr9NgyfHrJ1vSrMxZkjzTcscqIJoihlQvdKuyYgg/nOY83HJVG10xhOsyq5iZvvxw2lV/W1J8ZXOKVXvYXX9nDCwRVsv4chO4+bI9ZE8qM2QRyhBSKVyWVcDfVbAalsnRwiA1JlbQ4GfJXi9FwaKpVHQFDfZHNy3j8/jhNOexWgfbaAoWUrPQ+qf74zTntXV/b2N8keEhMnT4yF/K6Wb24wTRgPcJMk4Vw8Kx8i2Q1DGUHrEBstTLo1m1gr1Q55TWvcTh02XDws9k28rvZOSMS5Dw0VMREO9AvOCsK+9X22tPf/ZuXiLTL7yzXQyJCTL9R58K0uYPJS8rVVb+/IkaF4HGtb97VsZMn60sfWsXfS1rlnyvltH9SVcqa6+Sw64UiOfRRx8F/9sTEhYRJTc/+BKSFfo2eP9yM44oip4Gr9DAhkcO7lYtFwN50GJJN+XFDE5zkqNHS2H581HAUOMrAp8ZM/qrlgOGT5Ih406S8Yh11ByCiYNGS07KXrh6xyLZ4SRlsaPlkPGEDEEjyTEtgayRq2PYaFClZUtbCpkJzM/Ro+FggEmTqeMGyAZY4lgdowJWtL6DRsmvHnxFgkMjnEbcuJ/MiF728xfy1FNPyZNPPgkKmlclIipW/vD8t6rvXz/6X9m6ci4yt4vkm3f/AYtkmXz//fcK1NHKy0zqPkBxw5EZ05XBf06yGgGVtzHFmcKddxJaVmndZGaxK6H1VSd6UJc/o0rI1UgVJnAkxQtpZeqoSOfokhnDixaJgO8bLmDH7F/EhH/CBEnZkYGM3BRHtm9LVvhg5nDD+6uU0wDwwsE3OLFbufy0y08+WgfTOYRgcnhcvnhUIAwC5NEEmN/uDFXLCNYs1y1/Wu5bxvyRR6+1KnK0dIUP5/6iQZFz0qwz1Uuv2knzx2igjTRwwgBAug+cJcDPSwZ3D5F1e3OdFzX6N+lLxsy6UsgbyFJvJCKOiO2qrGz1xQg2emPNXCE386j4B4a2WMmzZg5HctKSJDg8BqTN96quCHBOPu8GGXvShbJ2wRdSkJslW9cukDdQg1bLNmQ4kDyYGa10T86adSqsf0flpHOvk7OvuVd8fP110wZ9kwImolO3BrVtTCOdYEML3T4GolULPZSaV46z8vNLVQwcpwlGCHruuOMO/pSLb35IZpx7g5q2/4np3EP2b19TA3ywkByCn39uZe8yFtBuTeS6xEaMAXSOE4+L8waYPCpXA/zdjXYEf5TfPv6Rcs+rH834Ex1n6fZWBjlCRk8+VWZdckctYNkZVuAda36QnOwMlKlLV1a4e++9F8DWV1HELFmyRN5DbeDBg8cAkM1U/dDqR90SMNJa6E4YD3jtta4BIGMeCQ7J/UfJyBiNusnvKQBI0MfldIc7Z2lbrWv/JYi0xx7WXnpi/+ILWUjf0yV/22ewchWIt29ldcWLMsmF+9XXs1QSI4qhMCgNbVnhg1ZAiqsKHwRmFFcVQ0gdQ7FXCandX4VUgTYqqxrQ94mskoxCq79RAIThgV5CN3IMLIHkDdyTZr30O1fQIPhT23FRkYMxhBRXFTlIzUJpD/0F4eWsT2JfNR7zx2igLTXg2ZYba+q2svLLpKjUejjEReBODmHlEJaOIxk0aWJaSghkpsz+tQybcp5sXva1pB/erUBhS/XfEv3sWMPkj5Naoqtm91GQmymBcPkSKI0/6XyAUn+Zcvqlsh1cfn+9/XT57uOX5Nv3npa57/8DlCYz4ApNV4kfrEtLobXs4YcfhqsuWW7/8zty/o0PNRr8sR9SwLQkByD7pPQbNlFCQsOV1U/HM9IKpcubWa2YnWtZAPl7zJgqxP1dJW+++aacfsmtMv2c63WzWt+MQc2Gb5LVMLRQHxMmWKDFGfzpNsxspUuY5d8ouXOXyeGfdkgk0OFNqBH3J5RiowwcPr5FwB/76jN4rFz9f3/npLJU3HD/f6Rr70Hqt/4Tjv0hEC+F+7YbfOPXX3+9cu3zhaAT0pcnTDgf1s87QIa9DVbEf8tzzz0nG5BgQ0shayuzyoodZOt+9TcBnBuuaWUV1e3OPNNb+vWLctDL0FrKqh4EgvUJYwz79auv1Ym73MPTWwL7nC6rU6JhSi4Wj/xNcnHUi3Jv76fkzp7PyWh5WQZXvSnRletk/WHvNqwYEiisPsLPfFgDg4OCVUUochnuAWcfufZo5dPuW+2m5TzNw0f3LYVu35aoyNEW/UUEecq4STPUNaUGb/4YDbShBtq9BZCWlC2oEGIXuoHX7slF4fAK9an2CNubNHs65eB2GQuLILn/ls95A9U/omTYtAskMDi82X03pwNmurIe8eiTL29ONy22bjLcv116DZHDe7fK8p8+lfhuvSVx6GRZ8M17ytXJB3tGSpIkg9jZCz6dmJgoSUiIcmw/HzwpX4OkmJKavE9KigoAuiYoShhHowZMFORkqGPUgKaNauLnHyg3PfgfeeWxm1Xljvnz58Oa1Av7ULsburCZBUt5+unHsE/vyhW3PyaTz7iydkPbr0gkuNBSxxjAYWSLrhbG+PHjTmjtYvk5Wk8pIen7ZMW3O1BrjhUvglEbeLKaf8rFv1XfLfUn4+h+1dWZl93uskuWIyOi79qzr6wiR45NgPOUS/uWW/xhvbxNXnhhq6LQGTnSehFgU8YQ/g9kgTPBfcPEkIYKQTNdxAwbrD4Eqg8mlVyGGEjGadJ4C6+wqrHsql+6icmSwxjLOgyRv4gHtRfOkV7xPjK08jXxCag2wdmU4luVI91lgVzfZalsLj9HKv27qlhAWgNzwLdHDj9N9cLVGENIa2BTKoYUIvM1tQBUL6Ei5w+3kkQ+2+CBuD1PVTt3R4qnIzv3cHbdFTQYw9eSFTlau79LR4Mbc0uY9B9Q+0XKdijMpNFAq2oAd+z2KxUAej8g63fzgXzHINNzyyQ5s1gBPz2TiWUtKXT/Msauz7DpKhbw5MvulV5DJsuSL1+S5d++Lqw5e7zk0K61KimlKYH8rTHm5H2bpUvvYbJ19U+q+5jO3SVxyDiJjolT+XwEeJlpyWrZ38Bdoh/QeiyvI9qe4Inywb8elJf/cpM8cPU4+cvN0+X1x2+VBV+9KRtX/CgklK5L+KKgAEhdjZq4jBQodzz+sRQUlcgAWC5nnoQ4OyIam3AfGAPIjN7PPntIucDrAn9cNTA4TPVwww2/svVU/yTVxRrExFsUjysulyOnXqtKsWVlFcK1PlbNT9q7RX27+0MSbvIxvvKXXwGIlrtr5ph/0gW3IJP4demHeMAX7r9Els39wLFMT4THJMjYmefLBrBAHyIxYrWsWSMqyUW7rq+7biAAWQ34YzNahZkMcoSZGy6kLmBG9zBoER0ybtw4VZ6OM0jTM3RoDSejo5Ftgnkq1V7zOpNFEHJ8wktC2QI5V34v3h7lxOvqY98pvlBzvo9HmYzw/VRCq/ZLa1UMOZzjJaXlHnLBiApwvHrB5est14z3UBVDGlNBo6UrcrRFfztSvWXoyPG/iJcK+/ljpk8cDbRbAFgJVLdoa6bsPVpYS5sxqBTCMnDxUZa1pdbCFvpBomi6WD1tQV6duvWTUy7/A4DgJFn69auy9JtXpSAnvYW22PBudq9fIH2GT2v4Cq3YkqCrKB8lyAryJGnPJrWlQWNOQnZrtNz19OcOn9vhfbBOQVyB1vPPP18lfxAckktuFyhAbrnlZpk6ebzkHN0tH//nUXnxTzfI03fPVkk5qiOnP6TEYTJPa0qX7onyx5fmSY++w2XXzu0qmUFnOVMPC5C++xbqtt19990yaRa4/W54sN7h9Bk0RqafeQUyepPqbasbMJuVLk0+oG2eYwVeWKO4tDTTkTAS4qZ0HmPtFnz9ttx+Th/5+at3ZO3SHxpUJrEE1D0bl34rT997kWxdv1ze/dcDsnrhl3po6jsmvg+SQ2LUsdaWXQI3O6ZjXeB33rGqhNRaGT+K4Vt3R4RLdhc7yLOvS7e8PcaPcYfsh7GIlHXrLGoe+zr26VNOEXnsMYE72iLbti+zTzPu+EQW38ocOTX/FrULnh5Vde4KzzFcxNK76hvE45Upy59ewV6Fwz6tK3ywHbOHG1qBZM6mMtmIWO7UnBJZvk9vxaraQZcuhW5fHfPH35zmPArbsHqHFntVD/v08ajwwTE5j2/5XoQxISN7yLCReshuv3l/KauolGyEQiVlFLtt19QF9KhxG0Y6nga82+suM7Fj++GCY4YXhnJxOQXlql4wE0NoEWxJIZg4uH2lnHbNQy67je3aT2gRpBuWrmH/oFDUBz5PQsJjXbZvyZm0PNLK1V7K0eWkJ0l4dLwc2b9Dtm1YLuddd69MOv0KtcvZcBcGBAYrcKh1QJJgZ0mAL/WPf/xjrdm0omkhPyC57Mi/dwhuZhIyOwuTYkKjOjvPbvHf/tif2dffJ0/+32zVNznnYmJi4XosVq7cuM7xcu3dT8s4JL80VOKQ6bxwzvvyww8/gCsQKATCEnBgxHEp8+db5eH+/nfE/sFqRTJqWgJJWVJVFQlXaCYyq/eodd1ZTT9//S/yw6evOfq/82/v1VtNpiAvWx69ZSaAYgVc3E+rsngXXXSxvPb4b2T9oq/kavA8+qIsHAHgkX2bEArQS3788Ue0u1Wef17kVzByElD8+9+We5t1ji2AYVnmyPzC3wEI8mO5PcYQsjyeXbifdpBnX8YoAtYHpvBZxr5mzJghdNmTbJtxlUhcdit06T+ES576ZWk9hC+Ck+5YKWYsss+x80+UOf1KP0Et6iLsW8Me+NSBZ1WZlOTtgds3QmUPE/Dp5BDuN6dJ88IkD+0OZr1hgr+8Uq9GVSDZnlYlOwDkmO3LBA3G/FkVPpjxe2JW+GASiopJDGVFE2T5A+DSvTxsWHdJySmXuAgvB7OFPo/4bDsCT1dGXpnsTy1SLBhkvbCXSNVtm/LNyjDpuaXKu7YvpVAC8WITFeqr+BbPHhcrvkzpNvKL10C7BIAp2SWyZneOS+XztvXj+nTJBgiMDG75O/G2Vd9Lv9Gn4KHq5XL7emZMQqKcdOk9qqrIqu//qyxQQyadI5GduusmLf69C9Y/0tW0F0nasxHu36HSrd9oeeztVSoBRI9t/tdvKfCX0KOvigH0D/BT8Vh6eUO/CQg0QXBVFR6+LiQn/UirJIC42JT0RBm15z/fIXu2rpYDO9ZKbmaq4ojsFN9DggKD8DIw29VqbucRLH759t+RFXumsn6Vl3uCCPtYAEgQNW2alWEMijtFEM1iF3auus8/twAgCZkpIyadccx2044clJ+/eFORUP8baGzG2Vch5nLSMe2cZ6ya96mieDmAEiME7ZS5c7+DJe8dgLsb5aMXH5Ar/+8ZlQ2emXJQUo8mwQI3W5V+s4/zkktqj5leYsY0Mk7vvPNECKpJYUO+RWZRk9dPC2lxyJXoSljzeAcMzWyOqAP0IyitN1Huv/9+BQDp3tWA09X6et706VYcIbmoEzHTQy+o/qYl5kQUr6piiSzfLiOKX8DweRdtuLD1uLAVIM7vh6QQD+UO5toaBBL80UVMGds1X5YerKnwwfJz4QFQPsRVxRDiDL2u7q9fdLEM7OQhft6+CjC9vhQgcIV1JFgxJCFcdXfCVPjQFU10BZKRXctl9SF/SfUeIAfTipDgiIxoKJkAzwcKWYf49o37cx2Jj9zbMBQ+6N81GAUQmvfMo6WPiZPzN2WCeLvcUiT+5oNoOx8UTs7nu6OBmfhFaqDm7tpOdu8A3nZ+2pAuruL6GJtyCBdMHugBKJkwibeklJUWy6Edq+X0ax5ucLesKjLz4rtU9uOmJV9IcWGeqjvcqfsAPHBa7nLihct6uwSZ7UWOggA6ccQMNRxm/2rJzUqT829+VAYASL/1zF1q9k8//QjXZLhu0uDvL7/4QlWZOO/ae+F+HeZyvVxkAFPfbSWkqOk/fLL66G0yNjMvM0X/dPvN+NI1C7+S/iOmSFgkCLBhVbzyzqfkzcduke9ueV1OeuFXsAzUXp2AZvJkEeI6AhtaqegGtoM/rkEXMF2eOqGEx4Fk1nb56q2/4jhEyF/+8hel15guPe2L3U6vBgDs33+yAn+MQbSscR6KauXgwSOwnt0nvQePR7bwOElGtZehyOKcPfuBWmXs2Ll9zKzSweQL0irqkEqWDuSHll9yDd5CU2G1MHFc40FaSUmToy8xhPwhsxi0I9gdJnJQSC6ekuIPMJmFJJAIR11ia6n7vyzB98EHpDdx36bdLsF9IqgqRaIqtkpU+TZ887NVwir3iac0DbzyvhvukwXLYTF2O6DVdx0OSYCTCgkPIdjBxltcqhz9EnyB0KnFt+CuQz7fDoP7psI7Riq9AmXDvjxV0WpE71Dxrg4wDYWXqxTVT0JR+pSFD2gNnDY4stngbwuYM/amFLl0I3PbPvjEo7qWHoe7fTDzfzkawPtX+xACnFW7smXOmjR18rsaFU/MM8fEyvh+4a4WN3seSaAHjDm1SckEpPSYfO6tMvGsX8nBnWtQYu4vwmodlXCZtYSkHtohtDrWZ5lsiW01pA9mI9Nd7utUIYWWot9fMVqev+8yB/i79NKrQMmRpYiU80BTosUdqa9eznNiLeqy9uk9QE6po3xZTiuRQOtxNOS7EgF5dcUhlkFXG1f8JHddOEjefPou2bj8e0e38T36C7CN9Hv3/1SSjJ3qhOCPsX5QhdDKxeQPYiJ601mtgkBFCwEgXcDkV6TlbPPKH/Uix3dJUaFyrUZUc8z89OnLjmV1TeTDBZyYmKg4ClnOuLqksVrl97+/Cxm9k8EDeY88dMNUicDgXg0JktlnBrvtEpSA4OoTEGtb3IbOpdoYG8rjT4JoLUzk0DJ3rmUN1bGFBIK0DjKTl3qicIwDB04D1c4CYXlfqOcYIfAE1lRud8YlUmCARBaxNd2e/3pWlQDkbZG+Jf+TCYWPyll5l8k1OSPkqpxxckb+dTKu+EnpU/aVRFTuaTL4s+//pmQfFdfX0hVDXPW3Pc1PSsuqlAu45St8eMik7gWKcPp/a71k1b4S2Z1S0eoVQ2gJzCqokA1Hg8U3drhDtYcR10ePF43LPOcZ5z60R4gM6BYsDHk6Z2ysdIn0d7RvykQKrH6Lt2XVAn+05hLc9+gUIDeckiDXnJQgM4ZGNaV7s84JqgHv9jBuZvsu3pYp2w4V1DkcvhXloeTW8F6hEoK3o6U4oQtABUMhOOQJLU3EW6xne3jXelj/HqpzDPUtDAyJBH3MVVJaXCjbV38v3731Z+k+YAwsZTOPAUv19WVfvnPtzyrW0D7veE6nJ++R6C59jhlCUFiU9Oo/XPZuX6+W0QpaUpIv559/hvr9wgsvKEBDAKOrWRzTSfWM//73v/InFNu97ZHX67SmMhHleMdFlpeXImmIFotjhWD533+8UrZvXOlYOHEWfKHVEosyeSGnXixD5n4kRxHY5+GB8zvEWkjOPwp4sx1Ex/yNkEiVWEEAw8QF8hJGR1sAkHQ0/OSDGuevt82S0y+7Q0ZMPpOrSWRsgrAiyyKWu4DMnH2T+q7vD7n8IiIqAAIRggFcecUVNWsw+3nRooWgedmJeM5VKOUXKbsBNIdhvl2YDMJKG7TeEXTZ+wBbkPz0kyBuz7Iucj2CQBJHjx492t6NmqZLl3GD/GhhRRm7MN7w1lsno0LKw8jQnm1f5Jgm3Q7oGtFOYD21xkYrJYmj25P4V6ZLdLU1z7LqbZPwit2wXZW32TCzSgJk7i5L4Xa3LwdA9y0/3p6I3UOJObp9wwPyVUzgEriEKazwQRcx3b71VQxZfTBAVh9sXoWP4QmWbqpgu2TMHWMIyRt4xbhKSUVpubFdy9T4vt1qgauEcCtGzw9PRVYVYezh43jRoDS3Asm5Q8vlsw1e8kV2CM5Fb4mI7G51XP03NbtUdiUXyNZDtesnc/E3q9OkU7ivjMBzrwssdLoSVq0O6vjB5+sSPCv5EmkX1mUekxgmEQilIvj0hm4a27e9PzN94mnguANAvvEw29dVwoezOgN8QSgb7qdmsw5w91h/VWw8K79ckhAwK7nOazT899YVc2TguNOaZP1ztRVf8McNnTwb7uCzZf+2FfLzh09LeEw8ys6dgZq1nVyt4nYeXdOFeVmIc+vstk1bL0jey/i/IcdsduDIaRIeFSd/vnWWWsbj+9lnn6npt8FeHBYWgTqylpWFD3FaWyiXX25967/kxrvt9ttl6JhpMnjsSXq22++WdLe73UgdCypBqeKuYsyS795V4O8LuLMZ33bWWWfJkUO7QZhcpDKmWWVjxJRzZBEA4PXX/1rV2bVvisCJVkAtvJETpPDDMnDJyYIavSSHjgQozFTEygVAWoHgrjyEDOwtq392AMBucKPP/+ZdVBOZKt169pMJsy7W3br9PoqxHk06qErWkVIFhwbVNmq7c7lyX2SkXHZZX5A6p8maNS8ra5y9U4JU0gCRv9AZrBHQktiaoA2HXUkhSqqQRujDDz+ENS9Lpk+fLt9++y0SRYLwED0d1vUExSHJpBcCVJaAG0yFVMt99xFMBimdsywfy9E5C/ipWVJZEWtPmWLtE7ExcnLkvlHQq/MKrfzbowpVMCr3HuPCDapKa/aW+fyvBBjyBGj0aERvXK9EwiTQ30fy8q0V3Vf4wPirY/4I9FglRFcMGRhXosAfe2AbzRvI3+7669nECh9dQ4tlZ1IJu5YQdZMJUdPsr1uEh0TgHEpKL6k1vsEYn5eXL9qhdnA4xoS2LVUxJMAb1tpAX2GFFN+QTnjJg3JsQjC2YHOmbU7NZAWWJWeW4JMmUXCLnzw8WoG2mhZ1T3nBOHLu+E7y4cIjkgsDil1W7cqRk4ZFGbevXSkdaLrNAGABgkxzUG7IbspOyymVlTuz5VA6ngx1CA17veICVSCsPTvJ28sTlDD++MCyAD4AvsU0RfggTt67qVUsbKSS6TV4ovqkInN4zU8fgM6kXPqPmSWdew7GjaD+W/G+LcukJ/poT5J6aCfiEc91OaQFX75Wa34AkiNOPmkmYr2uVLFjV11llfSixYUPYDzTBYY+lQjAFZktfPLJp6DMWKRcddc/avXl/IOW1saWjXPuoyV+k1PPN+BYuJCbnS5fvPUkEhzOQ3UQgLxqy9vy79+Xn754S+K795EHX/wJMYGTkWAyTBYv/gnWJz5yrfOCZeX4sRNDs1oF49wIBOkiRsickptv9ocbtAQ6Dle/N1W7gAeOmmE1wN+xMy9wlOy74YH/NIhw+5OXH5LO2Mg111yj+iHYJCh1JbNns5ZxDABgDWBJSclArN92ufHGSQBurtayYvkY3wcMp+pD9+xZCcqXj5HsMh4rWG5tJoacfvqVsnHjHgDCH5FgUoVxVKpxMWaQJNLMGJ80aRJiJierc41bmwJkx8xiAm9XwrhBe8IxrZSs4le58NjW0RVbZEjx67LD9wIp9Qw7tkEj5pCSJZqxejbLXkTFLkA0C7g0oqtjmpYCumZ49ZcMJBpkeA3EZ4BkevWTASUfyMSiR9EeJ08jZEvhaIAXX+kUbNHBMNuX1jwKp2n504COLl0mdmQXecma5CCJDATsBAhZdShILh9bKayFu3iPB/pDubmoSlCkeMjGlFA5e0g53L6V8t12X2Wp0wBs4S6r/i+pVHSFjwoc9/dXecgp/Uqkc2ilyjgmaXR8aBn69ZavNvtgfJYeVx5AcgXG1ysGiUIoAWf1542XJm9ZuwkAEdVHKD/u9JOikkLp08lTtqf6oq2XqjJC6hhmIzOJg8JpWhLrGh/bcay0JPJ4rtzvqcBfMF6AfDvjzaKJwqzgT5YeVdZAlkFtaBUsWvbCsL/OAJDDoHUwLsJPedWaOCyz2gmqAdxyW1+SEeOwaGuW5CHrqBusdpHBvioTibEPDREGyA7qFqLM03QB0/1LYZo8T15SMzCLqSufiE2Qrcu/gfXv9AaBsSZ071glFjF8sRfegdq4GXAP/yDrF3wi3frDPTx8uvjhjdSd7Nu8VGZecre7xW0+v7y0RFlK3cW8nferh6X/yBmSkrRX9iFbdvuGJXL22dfIE0/8TR544D68ZSPgGECgc2dr6GdOL5Cn7twiVREfS+mmTfIa/J05sNj84flvJTgM6L4Oyc080iYUMHUMQS2qqChTMYD5OZny1VuPy4Gd6yUFGbeVeCsJCPBH5YsXVDtas/xAlxKHc8HH108uvf1xNZ8vAuegBvJz91+hQIwGKwyZZLIDE0BgtFMVLXSSA98dWP1Cu4upU1rXfv/7fiCkFtm/Y4Pqe+Co6eqbfypsgZe6vq9joZuJQrjYx8ANy6ouFMbikVdv1izXKzAho1MnX7nzzmKMpwhg7VVY/jzl2Wc9EJM3UdHXsNyac7EPOwj74YefAP7i4SY+xbGR6OgpwtjBxMRIWD2XwyXdRa7C2wStfxRmDTMGkiX4CAAZZsB4Slo7f//7v0r37mc5EkQcnTpNMMGFfINIyoZi8cmo3QC0xQpAjS16SuYGvySHfabVbuDil0dVhYRWHqgF9JigEVKV7KJ142flenZ1gLx0AD0CvjzPBKBqSy/2HglcOXYvJHQ0JCmksspDKqq85YcjoxXViwZ2tOox25dSVIZyZtVuXx3PpyuGhPtXynWTPVAFiMCpSt5bqSt8eFS7VT0URx4rf3y+0Vf1p2L+AJxohSNYc67IccmoKtCX5Crg+cMOv2rg6Xns+A7A3YoN5+GYTuyWL4mol905zP+Y/obG5qmkQwLZJQcCAf7KJaXAS0bEl8qpg70kLd9TuYOZjUypb3x2oPjOcri+Awj+fAGKi+RISbR4B0ZaHTXxL3n7aLlj3OCoPmHq05Cu+nYJQhLlsc9cPj8/XnxEusUEyDjE1+vna0P6NG1ObA20KgAsRQYTLXx07/Kkpew9WiR7wUPVUPH1hjkecQ+M9yMfEvvpjnT5/glBKpWdGVLNEVqQjuzfKsOmXtCcbhq1LsvKjZp5qbIEHti+ShZ8+ryKYRsw9lTE1fWu1Rdr3AaGRLQLK5ce2NGD26RTt/76Z61vxrvlweq1e+NSkAy/jYezl0qEuemmC1U7Zoy++qoFhvSKHqAfeOm1cXIUM2LxOYDPg/+aK7FdemCqbmECSHtwjdMCSLfOi49cLUcP7YXVrsAx8D17dks84uPKQDD3DuIax804RyafeZX6OBphgnQsPRMHyR/+cJ+ihSEopIWUQtcrsI2jBjHfdZhEcfrp1nL7X8bi2YWZxlrI1ff7Z78Qxh1q4KSXuftmxZK0tHTHYlocP/kkFUD+MKyVBbDeHlSuWlrhWNeYbv+SkjS4+x8G+IuF5W0WEjP6gV/vNbiPl2K7VbJ/vy+ydM/FfvVw9MuJVAQIpiAjhCTb5H786COB69ayEBPokk+Qjtlp0+7jxDFy4EAw4gzLUVfYSvqg9XTYsFAcm1IksBQBAAIRuhECRhgQEXvopgFmA8dAqhSAOiP/Wvk2+M1aINCnKt8Ceo4M3G0SWbEd1IENv+epTbj4Uyb+sOLBqqdAHoCeNy17/aXMwwJiLlY5ZhatlgSuHHslIGBdINC6YyPR6MglEo5khMQo65ym+5Y8f9q1q8EfN0aASPBHVydlVDzeYKqCYanyUhY0xtS5q/ChqV6uGldD9cKKHCzvpl2xFpWKhwThhYIWyLm7wtW2aJnUdDLO42PCB618R7MqJBZxiIkxwY7+rhqHl6LKYEXHMh79zWF/BT7K0tkluFA24WYUh7Cji0f7y3+rqWjqH5/a9er9paXTspxGBwJY+nZ1aWhg5i/PrTI83wha7RQtVm/H/iVTBoFg3/igBoG2RABAGlBW7sSJ7iSMr2fRhfH9w1UsYlSIr0SqLGynhubnL0oDrQoAl2/PVkGtzdEYT0zGP/BmFASySl4YTKXnpyVky7KvVVxeQ1yxLbE9ex+eXt7Sc9AE9clOS1JJI6t/eFe6DxwnvVF6ztc/SHaunSd9R55kX+24T9NdzvE5SymA3D2XDUNsW4ljkXMW9Guv/RPWqRfUQz0fppZFqP5x2k03yTtAMx/ecIO8gKoYPBbRnbs5+qhrIhcAsEuvoXU1aZNlBIDrl86RfTs3K9flpZdeqsDQwIGDLN48WLN2w4+b+/DDMnTCGS7HxP0++5o/yPMPXiX3IYDt8ccfd7RLg0d12jRx1CCm9Y+xa4yrY4iTdq0yxpAVVbSMm3G2nnR89+g33DHdkInouO6ya+Mi1ZRxeXTNlpWly7JlMXA/+8HK1xVA0BsxiVHSj6Y9yOLFi+UwCAu7dbsUlkOUvcPn6qt/A9cwEk9miqr48s03n6NdgHLhkrJlCcx7ixYtUfWiR4wYAYtdd+XeZqjAqadabmLVeR1/hg3zVn3Gx3/tcPk+9xxjASciRpEmHNfXEjOAGZ948skWB6N2JvCh7EoInFB8UE7Lv1E2+l1fHbe3DXQrB101b/S8fI/O1e5by6JHy16uZw+p8sDBbqbQakngyoogHgCmvLd6qr9Wx5WY6wEFlAO2fpB8iewt7KNcvHTpElzhvV65XPUwSPjMhA/G/LENq4FoIWn00B7Wr2MrclhAz1WFD7qJmYxBt6+9wsfi3VXSI7xIUaO4qkDianxbU/xUwgfHl8T+MrjH1pHlmKYmekn/+GBYGzG7WnRFE/Z3OKNE1h31xRJL90wmcTc+qz+rE/v+ZhR6SZVnqPjYXpz9EdM+BG7cfgBwwdVeLa5JkuZdRwrlMCjPaPQg0HMnIQFeuF+6W3rs/JG9w6BXT+WRc17K7Wzan6eoabqg2tZZYNzwZPyVkV+sBmquVDe7mAG2cJ4EzBRqjNAKUFhS0ZhV3LbdgzcTXiRMiV8LksyWkpKiAkk5iLJe0y9qqS6b3A8TRMaffh2oVUrlACqRLPjkBfGBtSYr9ZCMOumyJvfbGitmosrHmJOvOKbrtYu/rgX+4kECnbQfd0snWbfqJ5mGYK/lsFStAafJw/h0QmBZDAPaICQn9kMSTUOEAHDAWCCh4ywEgHu3rFLcc/fcc48CfxxSXl71+Yq7NK8JSl3u/gEjp8rpl/xa5jzxhJzXo4eMq+bBAxZCMoSV9EFLFRNjGYtHFzGwkwMAhiG1+l//+pfaDv/0RAZ6cyUmoY9KUCHH4BtvvAEr2hDleq2q8pTlywEGcIiZe1GN/dTmBoCL5Sek9fJdQFfooHVNh+HFxyfK9Ol3IpnkJ3kOCC06OgbWvxQZN+4GGT8+FpZDKxuYFjxaAe+8s569ILIEz4sn/Mi33XabPPXUUw4AyHi+9PTp8hzKDV5y/tQaZdm6ZAwq4yyZ/MGEJJbcK0zGgx6g0J2wmgbju0aWvOiuSb3zK8QXVr1EhwtXW/dKPCPqXbc5DQgC3wlbLn1LP5UhJW8AuB5wdJfn2U3WVZ4nq/f5A+hUyanx2crdSotfUyp8LNhZjpd3q/pFkyp8hFTJjD7FsvaQJ2IH/SQ1GkhOrGok7iuQICmoT4FEh/rJJ+u91PiZkMKYxBDfCgDCXDmQTXewPwAWbKG4Pulqnt63SoZ2qZD3Eb9n398CuLlJQk1hdjDd2fYKH5eNQaatclcjLxteEMans78JPWFxjC6XOdtgA67wkwumgMoL26Ilrifi2gMYTOgkJIMeCNLn/njmVeKeQbdtGp7D2QVl6jnM9XNhCOka4w/y6MBGJ3AMAug8AlqY3QCZzkIrYCCsqzS6MCnF0MI4a+iX9dstAOTDavOBfBVjx12+aFKcKhXTkN3PRNAFT54UpLa3hEwfEimxYQzQrVBmalYBaQlR1r8JZ7k0ybdE/03pw9vHV1nXaGEj9UsR+Ne+e+tRlTDSZ/jUNik5V9e4SXRNyyRL0uWBZoRWv6hOCWqVfsMmO1YdOHwC6sUuU7+ZCDNiwizZuPIn+dNDD8lkcm4gsO0kPKSfh6XnBrj7ljLbs3rtdUvmwEp2OlyiEx39uZsoLsoHmXKIu8VtNp9l1/bs2AjAU4I4vX1qu+Hg2vsNie6qhQkLlOyMo1IEPfojacSV5fnMK+6SV0AW/eWvfy3+qGFGYmeWMmOWLPnvGH+HssNKGB9oF24jmWnB1RLfc6CebPJ3fK9BqtQdyaNvgJWWAFAL8i2QdGGVWaObujpMUFkDM5AqzJhE5F/AGmjhLp2I+/PPCAfZSxqXk9BmJMb8PkDkOJk+PVZZNNjPxo1MKLG4AvHMqyXURVBQTRypPaCwFIF89goiXDE6Ohqxh7lShvuaD37TcsrDQV3SgvrAA7W6R3whAGgw5pXVnt+cX4UeMTXuW1j00uHCzfHsJZUeHFHbC93Bm/2vk81+14pfVbb4wn1d6hEsJR7hyh5Y6fc/WNuSlGWvORU+mIRBsVOp0JXb0Aof03sXS2ZeCcZCFykTPqz+7FQ0zuOb3CNfxvQOUNauM3A+fLnZTwE6uoLZltbA3pHFyrq2YBfeoGzjK6vwkLMGlatEEu3mvnhEGWISrcclEzteW+KB6iTIGkeCy8UjkbiUnCeITEIcoq8s2mONj+CvVwRjLT1lFChpDnv1QDhTgIqBVhus5w8NL56wVBIo8tOSMmNIlHIbbwY5NN3OWvonAOQjrjC/uNwlONXtzPcvQwNuASBj9ZhgQWGaOOsEMkOLiRt0w3YCWSUzh+wm4gwAv1WILziUXtTkjFxntdICDYeEms1C7OQAZBmb5kppcYGQXHnEjIub21WrrX9493qZdsFvVXxgMuqrrv35QykG0Og+YCzcxhPrtCS19KBomfz67SclPWmnHNi9RT5+8znHJv7w3NeqRm9ETGfhdGbqYcmES1sDQMYFHj24E1YqH7kdjLxeZ5+tCq564An8JYh+C8Dm2xcluwbD7NIbmaZ/haXmufsvl4tufFBmzP6VYzvteYJVN7SFj+O86667VM1c+5j79OkjPYGIXnv8djV7wsxz5erfPW9voqaZXBM0aIz89cghOfLcamTGDlOAheCJibj33mtZx8ilRyBTzems1k2Dr5h6ZjwepTNqDTdXevUfAYobC6TYwZ+9X1rPaMDVAJDLWMbPz68QIC5Qua+ZHELyanLssdYxyZmZk5KdHQHqmhjEDIKiBA9mWt9YHo5UMTfeaG1lGd4lCIK1kDi6uiKdnlXrm0B8M9KlB6J8iI51HAMf+iqcbywRN3++lYHOWsorV9Za1fGDCSHVtx7HvIZMwP4j2Z69a7lwadkr8oxpyOpt3wbousQjArZMoN5q4R3Xr8s42Z31gwyIytWzG/3dXF65Mtw70nJr6GOsJ4E1DB9Y2dxJFfyZrPJBd2c5QKN7qQE/ZKWoqPJBciEoV7JKUYWj5vHI8mndohiGVDOPfZK+ZWdSIRIUMQ0gpbhoqzfmj7jHPp3xlgLZneMvY3ACMwGuPQi9auv2HntcWReYGdvDeoa2h2GaMTRTAzxvaUW2s6/Yu6x9NtuWkHuIwhgD1iFctj1LxQdUz1b3RZqgzxiNO3m1MC6PMQstKXp7uk/sS4vIlmXfyKAJZ7q0wLTIBprZCYFeFaqIMAGEEt97mPqQE/Dg9lWy8LN/qqxTWgoTEkeo6WZuss7V//vsXbJi/lcyBCmg9moeXOnxO86Sq+96Wkpg1Ro0ZibA4OnyyK8mq/68AWbK4R7tPXisLPz2fbjYflAEv/D71WwvPF5GvfCWzKi+55x7LoDR1dcCZD4pI6eeo0qm1TSumaIL39evZd+Ma3pv3FRJETIJAWjpJn3//feRvXrFMR0wzm0tXJXkRWQd3m3rFh3ThjP2InN66Y+fSjym//GPi1S8JOeTf+/rr0UQXqiyW5nhWl6ehwSNYmGN3q1btyLGbo1Ex8bhBQwPI1iTg0LCuGqzhDQ78d16I3Fjv8t+vvrKckMT1NmF8YD7EQJw773DVQWR//zHorSxu3OJK2nF9Pf3BChbiLjCgwB+VyqSaMbkaSH1jQaAvAfQNYzdRZygblHzTT2TRHo+UB7pX34NSyplxowZKkM4IWGiskiSW5E4mbsFikbBaaeESSjfISZ1avE+iWmgcXmb78Vy1HusMFYvCy7dSg/b4K1uW/UvEwfslpyW2JhveFc5khQsvcJyZQ2+dbYvY/5oGWPyB4XTJHnWLlZNEcMYPbalW5Wwhy5RJtCM62lRqegKH4ypo1uVljUKpxMiqrAeElBA9aL725/lLzvQ39DOpSpObgvK/NEiSA5BtnEeX/dOAI/5FfL9dv86xhegsoe53c0pARKwuUxmDgiQr7bA41Sd3cx9WHqQfJKFKJXmKR+t8VLjowv4g9VeshQWzjHQhd7fAbHFCijO28nHq7W/20E/M6OuNxYOoI2ExNDJ5M11Iem5ZXCblyn90hVt5MTTAF98yLjC+8H8TRkg+w53uxM8Q+sUf8QozF2T7qi4oRvzUu0c4a+sHtqNxQBTZjP9vCFDmdZ12+Z8E2SyNA6FGb/aKtmcPpn5e7SdxP652489mxZJ76FTjlnMhzHn80N6jr2blsgP7z2hgCITSrr0GtKiYJCxbXTdEvz97ne/Uy7OaAT7z5s3r9bY3n7mbgtMv/wnOeuK30pIWBSsgEflgpsekj2bliIzOBM3ULiC4fK1C5MbgJdU/BXJhUkxUlbmhezQ5wEaPlOUKlf+3zP2VRzTrAHcHjKAOSCeUwS7ERFRIDK2LHyOgVZPVGFH73rkEXkPYI3Xz9AxM5ybCAH+t+9Z+zseCM9OXkwX66FDCGRPIvVLiZx62mjZQmRkkxCkyo6bfpZc/8Dt0He9l7dtzbonuycORYIGY/pKYNWrDW5o0HUltL59/DFQqwxXNYHpcgUXuEsZM2YMEkNS4A7upEq6sRFjHXXSCF3A8OAqMPzPf1o1kVmVxJ30R828OJgl/4nGJBVneTzSyhw9elTmzKmQm26ygucZQ0lgHRqaDmvjPNzPlqJdKJJOTpUeeT1AAwNTYwNkecD90tpxe3UNwxn8+fvA8Qj3Ce+Z5IprSjw27+s+sUPl570FqmSYzvZtTIWPcT3KZXIfT9DA4ADirCcI1BU5CPhI9cKECsbU0a1KIfijixh5RXLGoDL5douvyvblMrp9u4aWcBLWOljf6qhA8t4q6/xvTAWSVahAsuogqmJAd877O29PEHy9HK81PhT0kAuGl8uniDFkNjKF4+sbXQqLIEmlg7CvrEKCWNyuYQ5LtGp4HP8cQHKJu8ILPExc1hnevX5wBxs58TSwdncustdxY2uAWFdIHQ1pFnclgXDHJnYJVCiTVC1aaPLmOixy3Ryhe5mxhOP7hqtueCMjAaamk2lO31uWf9smvH/NGePBHWtk1hX31dlFYHA4Ko2cqT552alCwugt4DRkOTqSTxMMMtO4qUKX5lP/d7Yc2LNN6L687rrrEJD/kQquX79+PVx4v1WZmw8hrm/LlqGw2vko+pLFc96Tv7y5QkoBZvwD8OYMv967LzygHsY97WRvGBjBDPESXX+07OzYYVmTpk6NAND4kwKdE0+7QnoNGHXMbrSHGsB6UCT35gOuCpxvOltQL9PfRX//uwxBxgQfX5NOPl8uvOXPepH63rZ2gbzx5G8lLzdbRmDOjSxNwWA36F7LhLKFsvLVo3Lzp48g1nCb9B0yTmace4MKB+jSva/sWLdAPCpQdaA6LlOv19zvCaddKQu/+0geeeQR+Rtc9A0RgrDU1G8cTcmvZyvU4ZhPy+k7SMP18BiCTN1pjvmMz9Mxg9dea70oXHml5SJm3KFdyJNIi6jdIrhyZTjqJt8K+plXAcwjkFHcBS8Yw2Dx24BtjcRLTDpoX37GObcMcY3BsKzOgHX7bxIe7g83MXqfW3Nfs2/LPs2MWSZNMG6uPUkx7pe0CtIS3BTwp/fFP7qfFCetlnDfIrcVPmj508YiZs1qQmj2Ee6DuMLyEAnwAaDqSSug1TNJlAn+KPSq0prGmDoKpzmP1Z0qSllBwyJR5jJ3FUO4TW6bwrHYK5DUNb4hnSvEBzXQArHBsCACStUFtslSdq776weQV16BqihFlRIT7CHdIr1kN15kKRyfJ+igaD1j3yv2I6wBp9HQEWOsBu3gr4/tee08HN6DKe3FVW2NxvxtjAaG9CBnMu6TsALuTymqc1W36ICWvAsnxsnR7BJFucIbih0M8qZCQEauP3IGnTuuk+OkGQfQlo6spSSkz1N4ATi7cl2NirEHmuolH1lSl07tggvTSzXlMmZONVdY9ePo/i0yfNoFze2q1dbPQJZteHR8oyx5IeGxMhSVOfjJyyIYXCqbQXETAJDYvf9YSegzXLxBPOxKCPTI3RcaEVNrMecTwFHS4Np89NFHlRWlE8jp/vSnP6lsSx1fxUxQxn+dccYZoOFYorKZue6qBV8q8Hc5UiuZneksw4fXzOHbJzCDQ/7v//4PwfkPyu5Ny10CQGYAd+070tH+eE4wEaUYAXnbQGJtL0dmH9N7sCrdA1TTOb679B81HckrwcqC/tGLD8iuzSuRMb1LuiNz+vSTZ0oGguA+RODbNIAWf3TCGzP1EzptuPz+zlmSfGS/zDznGjnlottQeq+TYzODx50iq3981/G7pSaKCvJUV6SmaSgA9PEJh8UwV63HWD8COh3Tp8dF3sAPPvhAgbMzzjhHUbHoZUjqVa5e/maVEMYYMi4Pp5hKgqEL9+KLaQ1FQfsegkogtQEgcmdQSzgK7uALlVue/eTkeAAAvoSs4kDwKoaAkmYmrJN/QyKLv9Iv9fzKKyLTp7N1/YJDIpv8rrMOTv3N27SFK6ugNx7++UUWsGnIYJjs5RfdR1KPbBPnCh+6ggYza7W1jG3IAWivGNI/oUo9AxpeQQNE3INKpRL1tV31xyQOCt2+dVUgqWt8CWEVGKcn3NdBytrIWL7XFiF6s46KJuyPmd8L9wZI1+hK6RHlLd9vrQT485C4kDJJB3n0KrjD6Q4uLqtCZRF/VTEkHAwafRL7NUTdbdKmCzx3g7qhUgyqijBGzJWUl+NCMHJCaoDYbXz/CJU1TgDI54Y7cQsAaYGjRIX6SHiQj2Tll9UCgFxWBAZxSrC/l2RiuXbV0vUwFiDws2UpanlDwB8bktAyFYBzAsgoyVrOpA8t9Gnz5txc2baCNX9bv+pHc8a5a908SRwxo8ldhEQADKIOMT8FOemglVkl8z5+VmXudus3Srr2G60SS/QG3nziNlm58BuVPBAeGSOjppwtpyMT1dfPX8657n556u7zJQeR+dthZumBJy0BDsttafDHfviAplxwwQWouvB7WTznHRl70kXy+hO/UfNffPFF9d2YP+w/CKmexYUWiHBelxbAQVFdnGcfl9+a75A0LK6EcWjUQWg46vUe3i+vPfFbVZ/3wM6NMv/rGsD26MP3yRAUS/4zOtmJmmQPAzg/gZjBpCTERSWg+g1Q0Lq9K+Sau5+R8Scd+xJDIFpSDdZcjaOp8w7t3uRYdePGcljS3N46HO0Yr9ijRyCImQtACROkwJpjYfUEa/vSAsiKHnTHVueaqKXI14DVuWYN0sngvUP++lerigi93ygDLHyJ4Lr2ZBiuRRLt88/Hg/jHUnUebdiwARbJDJyrHnAzPwsLapCqRkOjtL5J8pvAsiFCIuUKwPOdvuc3pPlxb8OXeK+GYz/HeP3jRkhV9m5Yx0BQDJJncuRZVCr5qg2BGOMAteVPZ+eSE5Dz31oOO6kHqzV5yrQ+hTKiu6+sPuAFa6CHInkmz19saJVcDioVenjeWlaFDFxfh+XPub+lB5E9jy0XIVRkRp8i8fcCUEz3k+1pAVJY5iMpeeQrrFRl4qLx/PpsvaesBNCLDamUpBxv6RtVDGqWYsVZuAJjf2UxiL3xzMor9aoFZOledre/76/yku54QdmV5qXcvhYBtpcsR39LUYGEAywq85BT+xfLpix4MwLwdlwtjFvMQf16lmZzTmSxPFyImcSJyPKpfJi3tNC6N2UQBg8h799qVBTRBRWoB+qM54qRE1sDrOhyxugY6QQic3fi9uyi64AWv+/XpdfrQiDA0+BPb6iu7C+6jEnwbBeCyGEwXYYFWSemfRmnV+Ekba6UwfrXWjV/mzs2vT5diVkpByWqc089q1nfQWHRCvAS9DJp4vCutbL8m9fB11eAah4DpArFzzetWaC2cSbqXzFz8/33X5bv/veyRHfqIukpycja9AUVyQgV31ZYeB7A35ha4I8r6wpjO0BC7A2kvuyHj2UM6s5qYVwcXcXMzGRN3D14crMyBK1mTBage5nB+85yCWZsR3KJK2Emd12ceq7Waa15tCwzxpFxZs5S8eWXysrF+df87jl5/7nfCalV7r9ytOTmZCmKEiaPUM4GAZ4/0lJpCN09epr4z5mjGKATAALxOqaADLN805J2s/kxwsorVeA1a2n57I3HHV2+9NIdSKiYrsqt0RqcBD8+KVYYZ2cXqiJlXrls+OJ7Oefy8+yLHNNMuGCpNtK2OAM4UsjYBe8CcBHXWEPt7mQmkiCZXAkzoFcDPZJY+hCCJktK+iNcYRri/m4CeHwJ5+ASJOL8Ba7ecCSDTJZNmybhxaWmFjXdv4xVPN0L9zUP+whqpgn+KHODX252TeCaXlt/Ctij0eLpA+toQLREexxS1j12oKlU9HRDKnLQSujnUQ7PUKVMSQyU/fhmvV3KoOgc2XJATcponDf2/oZ2KZOoYH/pBeLkuCh4ntZZjy1W5OgVHYBMXH+wQ3jIR6tZMcRa9qvJsFx6B6gOrxyHRLW5ngB/nsoySfBHoYt3VLy9okmBw+3rXNHE1f7uSkMdbiRM6AokYehvNPojCKRwf/OLK6XcJ0re+jFJJg2MUDXtdyUXyGKURmVs5kiUOR2K5x4BH1k05q5NV2AsAPs6HVQtrQEA1eCq/9BdOKh7sOSAWo0enzAYe+p6dtvXNdPtWwM8jizvV5e4BYBMhf9+XdoxQM1VZySVJHu5PWuIrly+Tbuy2mnwx0DbUGQYZ8IUPXFAhDr5nPuvBLokGCVAbK5sXfkdSINPVRdbc/tqrfUP7VonCXBr6sSaltwOwZJOIGFyRwpocN58/BaJ7xwHAFcmDMRnXF+/fiNk/fqlcJUdUADwZdTVIv0HyXVHjBinjumGDeB6XDBfbr55JgL9vVUSB8ca8cgjikziMLI/CWZpUczOTFMxXozzUm3wpM8i069N8mHZIoFyLQFR3IMgUp6dW7ttrTbt5EcFaHJosVyBrNMJ06fXGtUdYEDm/vbsO0ReevQG3GC94aZPAQi3HkSMp2TljCPg7yt+7z2ZBzBVgB6yUpNkCjMnoHcQ6ykuPlpE6WZf8vNncvbVv6+1Hf2j9quVntv07z3ISrbL5MmTVEzd/+BzLSoqBoindaMQMXWbkXF7kePlYOxYgLIXPeX5jzIlbrxVp9jRz803K1Mek1yOALnpCiJ6OcvekVqG9xC7wIuODGoBABVQvFhL+ODas2c/gNwS0O+sVdsfDd6/yy67TFUTIWcik4soI0ZcD7LpcbBmL8c5fTYSW97DdwmyfmcCIFptaFEkBU3xl9Zv+19Lt4itg+WP4O+wz1T74l/stHfsCMnZddSxf8x41cCnoRU5dMUQgo31B8rkUJZvvf1lFSE2Dz7+uHAkAZYj43i/YxUVT2hV5LDqCdsrhrivyAGKHlgmCf7wyFJZyrpHPT7GELqqaOJqf1Pzbf3BurojzV93p/qOC6uSyqheYHSoUty45MfVQqvbMlTLIhcfp/lcxCNRhUsxUzeykcUXdL+N/SaxdGMLPTR2G6b98dMALc7OlmY9GrcAkDF+Gqjpxu6+6a7V4I83Y7KUk2fIGfzx5KbpOSHaX4G6EH+L94um7iAAPII9zStIQJmP+dsP5ysUuxGm6uYIsyuT9mxQMXLN6ae1192zAQDizBtaezMqvrBLz8Fy3QNvyKO3nKzcv58i7iwTT97s7HLUmD1dAUK654bjifgVuD5o3QoI+BbA7wwkfbwMy0qZ/OUvJXhwni1du2LIOODjFi2S1Gp24rQjB+Wupz6VLSt/kMShkyRp31bJSjuMsmLLZNIZY+Xrd/8Bd/IQ9PFnlDU77dh9BhjqAmBalH7kmGUkpPYDkXJ7kcjYBInvkSivAZl8cvfd8nckfFBoHfsX+U/gE9q3c5P8AVbWEWBzvm7nFpl5+W9lzvsvKGB3ySWXqPZ/QzzcXzE19txrJTrlkDwGIL0OoHIjslm/AFcJLaYE6xNmzlbtS5B93NCqKWqFRvwhyfeRg7vk77+7QK118vk3yo+fvqLq/jKm82TWTYPwOmf93VdeeR1l/uYjg3YmrIEW398p/7pPPr7paUUIrRrrPwCAJbD2cz1n0mY2YfwfPxRiYFr3aFHs3FkQSyrI5M0CpctqWERXwq2bLEwuCgubiBeYC2FRxUN46VJHQCAMs0pIRr13rz8SQ0ZAl2+ApPs2nPfXy/z5byKOMBz7wRcvqy1pYS6PxnTN81otYOUOZvzu9LsApMmhVuMO8NcnpJN4evvJrJ4psj/bqsKhd5uuUrppNR0L3b51VQwZHFciK3b7SafQKpnSs1C2wwq4PhkULGCcYNziTrhzJ/euRPYwK25YtDCXjGYGMWpF53rUWZGD2cMEf5pyhmPkNEmoB3Yul/dQz7e+8Wk6G+3mtuhdaiwpx+wvLH6zBqAU5BFvKYDb94yBRVKAOMslBwKlOMtbguNjqu3FWmM13zzfGGLF+vYEgRv25arnLjOc+TFiNNAcDexBtRca0Bhe50rcAkBXjV3N4/0yAKVj0uEuJgfgQaSY80Qu4euVTeginjY4EvEFvrjRIukAF8iG/bnqou+Bk58Wr1W7spVZnDeCbYfyASrxZpderCqSNPda2LZqrgwYPUvFwdmG1a4mFfcf3HdM3GgriencXemeoIIccosA4Ohi3LJlKyw6K0HiuwUA5QPMOyJ33PFb5VrbufOvcJ8FI+P3NDyI5yDWqhTDxds8juHq6ioYHD9JiMlDNx1ZqqwaEhl7MmIPQbFxyW/ljSd+jQd2OCxfi/Ad5np3zztPKh96SIKP4sntJLmZRyU0CmignQgTbH73zFfy3vO/l2XPPCN//vOflTs9BmCY5zbP+WeffVbuhPWzZPJkKcN+5QDYcj4tYN26dVN7MuaxxyT/lFNAxuotIyadIT8cPSD3gSQ7NDRcxsGlzpKBJXB9z5x9o3zzzlPy9fv/lNGTT5NLbvubBIdZiIn8f+XInnSX9NMQleVkpshfbztVuah1e4K/WJD9jaVpzyZ8iAUjnika7rguXUJxvog8+aTIH/4g6hhv3ZqrYvSYrEFh3N7SLSOlarOgAkgKkocGWwvc/OUptW9fIT5rVZ3jvbAM0307btwoWKmvlYcfBjKEABursnGq9JxK47U6JGicP9+ie7EKs3jihaWrrF17AOc34r8QE+Xr24enr0M4zRdWZ0n3GqSqZzjP/6X/5jnsF50oWcWZDssfgRBFx+hxmq7SpQdDFMji70nd8hxuVbpEl2DZImTGxuJcuGocs30DpF8XeA6CCfBwD4FYFUMs5RPQNbRiCNv64Yk2NZG9WJQzur+JvatQ+qwY46uod3wEiPaKIdryV9f+frvVGvvUHnnIwq+QYPwcC3fwmtQoAGdrGcfiLKTH6dkpUJFWk7pDG134vCuDRTDA/arOXZnfRgPHaCC3sExC6ogjdQsAyb+nzdHH9GqbwXcUUr6s3pVTK9NXZ++y6bCeISiB469iCRfCBF4IokLWOWSQIi2F/ROCqrOGi12Xj2sm+uPD8DBcq6df/ZBt5O1v0h33X2uNNGn/Dnny/85RIITb2LJlO7Is8SaO+/pQ+My2bx8qL7xAC0whsiZvBknvMlhQ9sLi4g3y3m6w1gLogxeOZLuMtwpEGvC9LFMBufXhVx0kxJtX/Sz/fuR66d57gPz++Tlq+b7t6xCgf5578MdWSC3+5OGHlVs5ad92ie/ZX63LP8wADo2Mc/xuDxPk3YsD6CWoo8uX8ZT8JqAODA6FLl+Qy2CZYtycz5//IodB4xIUHILat+Nh2eqsCKIvJcszpAeqb4yYfBYSaS4EoCqHrhlSURuR7Nu+VrVdvfg78QE339V3P69+BwSFodRcDgL1Y9VvV39o2c1KS1aLXFHGHN67TYE/0v7MAh1NCABuClzWBLTFSATYtMkCVAR1wKuqugcJwhMTYwFmrWUkWbbOpUCcWwXYTyR5pQrcrZYV70vERu7DvWPv3m8QqxepQJkeazaSjpi0Qff43C+3IyZyr4y94hIVP9oLwYFaFyhN7BCGkFJFtBjCG++Qk06ySr098ohjFmIJpyMGdT6s26UA1xNwvofWLMRUM285tfr6pfzwjRko+/ftkNigtBNul7bBk1RSnbTYmoO3x1gWl3uId4D1UuZum8w+Xrgl85jFtNi0dvzfMRs1M35xGhgBbmY+j9yJWwBIK1wiXLs7khiNVLdEhaD0FC4uZgproQuZmcSjUVeQxaXpwmWh6TNROSQI1UUywDiemQ+rIdKU1+7JVYWp7evrflrie9vq70G7cUq7tv5xPxvC/dcS+tB9rFnwhSMO7Zln/gHA14+hZgBl1oO02iuJB/RRGT16BCyAd6hVC1GGYRMQwLp1i0FTtxsxgB8Lg/kZx9dv6BgFRCJj8FoP2b1llfzr4evUNMmStcT36CeLFi/WPx3ftR7eSBY5AwOaCGvaWXecKQNvfkSmnHmVaksLICugtBchNPvhk5dk6Zx31ZC0VZOJB6xN2xVl8g7u3SEJsDwNQvBaYWGBHNi1WW66/0XJSk+Wj//zZ1DePCCsn0vZsOx71EM+DdYpb/VRM53+jJ91KcrybZZ8xElGxnR1LCUALM4HAAQ1kF0I+nZtXoExviNb1iyUgvw8x+I7H38fx26i4zdrG1OmAPylbALIX50uud0GK4DFChwXXcQMW3hI8ez6/HOLjiUKx4qhAowlLS4eK0jwlenTBfF9feEK3wlL54jqtpny4Yc/oIJJmirVxiomOWB9ZoLQOnDFkKyZ+mMNZCYm3eIbJEf/sVsK+81GbF7tBypCIlU1DwJNCmMDETkg5Au0C2P6mGH8HhYehi+4sLBCDh5cim2cjeotk5V7Wbenq5hWQynXc8w3NeCF41BQhWdCGu7XmTUVNLRlTLuA7RU0aE2j5Y8hPiuTAh0VND5cbbl37S5bWv4o2n3b0Ioh5A2sr79JvYNlQGwZEki8alX40OPjdjntvqJJ4/aX/W04GijBPRM52SjhS8wIlDw1YjTQEhrQL8uu+nILANl4BDKUGgIAmcRhTxun5ZAZTn06Byp3MGP+pgwE/QWSRQgM+cZDDiItq2A9dCfoCsb8ZgjQ7yGQKp9+zUPN6KT1V20K919zRzUWNCJzPvyX6iY5OUkFvtM9R/oMu6xCZi8f6lpo6WMgPT+33HKLykz19Q+QaWdchkxeP1k553VVmSS2a1+Aov+o1WgFu+yOJ3UXMn7WZfLSn29SxNJ0KZJehrJxo8DqY1lwhgxB5RBkCLMcxFCQD7/9rweFlVDGn3KRsgCGjT9DrdNe/nz62t8cQ6HlasKECUpvtHTt2bHJsezg4aOO6TeeukOGjp0hPRIHwR25wjF/xbwv5KTzb5Kuvd27R0dPO1eGTTxN0o8ckE7xQDjV4k8LYEHta2rrmvny/gv3STri5TqDW/CmG3+lYvgIsCj/+MNl8jgCrsIiO8GCVikLv34D3GWJqpoGkzH6nkLLWiW49tJl5MhUAL80lKXLArDLBtjLl8ceg8vZGzQjXj5qP4qLFyC+bzQsgzMQ/zcAwHArSreNkAcfFHn11U+U2zsaiRorkfFMK/I3SJQhvdC1YHymNZQ3LbqS4U3HvD7S/dZfYT2Agw0W3yS86Iofm8NH2KSDLoZUOegO20bdVoBDLZqmiDGZffvei3M8G23yMI7zETdYQzjN9jDaWgTUmXpt882sVMYSFUX0kT0Hsmq5fakdgkB+yKNHwMckC6tiSJBy+7KNrvBBNy2rgLDk2+NzuQTAHeDPct3yV+MqhjSsP09ZsscP1UWq5PQBpeIH70XXqBL5eaefY3wNrRjCOPXtqe72N9jRX4AvKqmE8k2icdILLmGTlNE4nZnWTdNAnQAwFC7acX3DZMXO2g8T503ZwR+XkbSZFsH1CGjtjjTk3gCCZHVn9tdc0Mo0RpoF/rAhPgj7jpzR7q1/zeX+a4xOddu4hN5y/z+/lX/+8SrEpz0Dy8sRGTBgNoDL+eoBrNvRKqOBgp5n/+7evYeEduolZ17zgGN2QW6mpB3eKf2GjIXF1w/xf/GSum+jVJbkg+KmlwwaNV264u1YJz+wju2AAQMUp5smh379dVaO6CRBQKRv4SmfAQvjp6/9RYZPPgOUNqCUaEdJIM7n6YIFC1Rm7zBk9hLY0Lql6yJnVZcXCwoJlQJY7zavng/uuXIAHiAeyCQA3GnnXAfwN0j9LsjLkR0blsiwCbOOsQb6+PipWEvVsPoPAWBxNQA8CP6+xd++I4u++xBW3HHywXsfgPx4suP4LoZb+nUExi0YOEqCQyNhjTwi3777jOzaslZ+9atfOZJZdP8lJdhe5yC4FcJUJvD+/Ymw/HYGr14kwKAnAJUFxmgNfgWMyps3+wNsFcHF+w3ar5PLL0+Cxa4IbuNTFJfk9ddfj7g+f7iIQRmTYlWGAT5VwuQN5NPIf/8rqDIjGI/lmqWFhKWkWSWEQA/hqwq0aRoZkkOrJI7L9agttzCBIb0hu3f/CPLnkwFgT4IFcgHGdUFNQ0yRaubDD0XGOL0I1WrUwX4wrpviF9UXlUHWNLgix6Q+VfL1ZktZusIHf7EKCKuB7EjBwYTQ2qelsRVDuF6D+4tCGcEevliDH4QoIGxAVyDpF+O+ogmtm6Qv6xkXKEN6eDuAa/eoKokOAtUL1ONcgcQL1yatpo2VfgiJMmI00BYacAsAyxHMkAWyypgwP5VBsrMBrmA9YB3IyuzeXrhgmNFL9+/xEAKFXoNhLmjH0tLcf43Z1a7ko3vhO/n73bPxoMWTVv4LoPKEI5aPVh+6fIODg912S2tNZTV40Y2CACaCBo6XHvhQGIdA6pOM5L2yFzxs2amHZejICRLo7ytZGWlCNyBj4yJ16ifWQWgcLEQARJNUF/Kvf/1LlaT75p2/SzBeTtqT8DHWFZauQ4idIx8gSbNfeuklSUMc4//gOj/33NmSBDD4++d+lk2orfzV26DUgfVu8dyPEK8G6wr05w8r6mW3PYa4v9qA5F8PXib7dm2R0VPOkCvu/LujOou7/Q8IDpPczCOyZfU85X4PDQ2T++67D1a6xxzAT687ESm1H8EtOhzxnQ9eM06yszLU+P8KtmVWYrFzMyIcUAEoAiyCMAoKaSghgA0OPoj4vj2IddwDwLdbWflIbxMSEo19TMfxHQrKlYEAc1fXyvxl+T8YkpUwPpDAnwbhadOs6h903WrR22V4AsMVeNrRuvfFPw9Jr/gSGXFRH1UZhHWCceo6YgHJ88fx33jjb+Q//3kblUTegmXyIoD0h+DmvkBZF8FFrUrJsdRxXl655AcXi/uzXo+oY3zD+KeEmcCevsGy/GCZjO+Wr+a5q8hRWO4jS3b7qoQPNqSbVtf/XbgLlCkAf/06VQnpW5jtS3cwhdOIQHIAxIW7LOvg4WyrDyaQUFq6vzVJQTK22nrpqgIJM5F9cbLVHp+ndIsIlTHdEVKQRf5CLySQkFOPVEG2E9casuMvL59qlTrmcSIE4VHxiJc3YjTQFhpw+xT1RjE5Zu7yzW9nknWhN3ZAfNveejBfkpEheLwAoH9gKOrh4m7SjuXw7vUqnq0uX31rDn/ftjXg+0tCgH8sHp7BMn36dMfmdu3ahcB+PE3rENJ4kGanLuG+MWmDn56oU0xZv/Q72fHFezL5nHMRh5WukiRIQ0NARMoZuoU3rE2QxB5dJQZmoe4o9HrXXXfJ008/LSefCRTSTkQH2f7u75/J+mXfSfL+beA9fFmBrgHV5sxZs05R+5eblSYzYN3jZ/3ibyQf2dF5mBeIbOkJsy5H4scZaq8YO5kJHkBaTgn+SMa9etG3MgSl3sbOPL/OPec5n5+dJl+99GeZgGzYBfPn1wJc9pV5XJ4GP+OKJ56QTkBarPBCSh47EGd7eLGVy3XIkDKA9SQF2PchPZeE3kz+4DFLgP916tTesOZNlFtvvRoZwR7yBPrtHHcN6u3+G7Qrv1HhAvbt09JGbj8tmg3o4EERJnjw26l8tGpKtzRFg8MLbo6Wt18qlMFl1jxbxIJqx2QVJqWkgafNz+9qZB8/izhDT+jVA8A1H/Wtg1WmMhtzv/LyPpLcoByVzak6MH8cGvCLHST5B5aqbFrO1DF/dPsSONEVzAoa5PBjhQ87sKPbV1v+tNv3cLblDma2LyW70HIR06pH8OdcMaTV+luBF07EAXYKrZDD2agYAmobZgDriiYfranCdeThZnxeCsjGYX+vGOcl+9MRbyt9JbJ7iMP7RRc6wd1gEC/HgA2Dv5lAmZpTosiXmTjJClqGiFmdBuZPG2jALQDktvlg251c4Dozt4GDY5YvT2xtFWzgai3WjKWx2rvs2bBIxp1+7XEZJt2Ln73+mNp2UtJhlbFqHwgrKowePVrNQrIvqj/UWFU4sxxP7Ds3bZQvr77bvlqDpg/sXA/rcLk8c9ml0h0JH6gXpsw+Ffv3SzKCAfeD6iPEZ4M8fecrUhJvHUdWdiA4ZLWLowe2CcveBQZHHFcXPy24nkjWYBxkdFw3+fTVP6v9Z3UMLW+++ZaaZFm9noj3O/XSO+TDlx5WJNlDRk2WXz/6X91UNiIB5KW/3KSuPz1z0qQpoOX5SZbO/aBOAHjk4E5Z8MWrcmTPelX55R2UtHDFs6f75bc3MiQmgauw2tCqYvJokU2GxZIJEweBwlasSIbeK1VfBHqkUSE/5PnIBCGZs11YwYOl2WhJ60LgnoFkoaQAJHjsxPkzQjWlde799wUvF7CcdrWvbU0zk5guX1eCdxIBlaKguEyNIAtk3BkByl1sLx9X08ByTcMQijhEf1hn4xHH+DMobSapDHYSnL/xxv9Ag1SmElJYmq7L5s9FMvbZuzDT0IBvZC8JTl+DcmZA2xAd88dpAiaCP9YDplw5tkpRs1jTrMhRY/nTMX8EerSuvQOOPgorfHAehW2Sc2pcxQR/jPmjcLpF+xvH/kgq7a0sk+cN95UjmbTTlaJiSL6sOGTdg+ocH/rg+DKKA2TwqEF4eYlQY6UhJQeUHAR+9hf9qaBGa2upxHOdRNOau7ett2+21340UH0pHTsgkjIfAKcfXW2ByOAiQScTOBorzP6iK/i4CSwc7Vnooq6oKFNJE205ziIQKb/xxO2yadV8tVnSfZC8+MILL6xl8SMVx3ng46Ow8gIMOkhsECQQCB6UCLiHVed7PI279MRCF/I1uOr2bl0l19zzPBIMqs021e2SNyyWaTg+kQwAY+AVN4AEEy8kfHSFO7orMkEH3P6IHB50tgx+4EzlD/wAVTGWgkolIrarpAAA7lo/XwrzspRvkjfWwNAo8OFFi3JBq+8ozItUySMuhtcis1hVxcvbeuCtX/y15MCNSrHz5RFcH0bpu4+Bot/ZtFUlwLBNbOcEOenCX3NSyW5k6b7x1G/lJHCXMGOVrth//OMfCvyxAZztVkPbX9LErIM1cf7nryLZZKOEQm8jAM7ee+9duDmBxmxClz4pVlLBx8IsXH4zg5tgjzV7KUzYYSKGp2dnJIEkIE5zAmIU4+DC9ZZrrrHc8uTco4WfmL369HBshRm51ZXtVKLJZyhjd/btp8IFux3MPiPQjwAMWkkadusfO+A5hSRgZA6r3B8knNS4m/UGYAhG3J7+VfPNdZBwjVABQTwp4sISkLnqZVX1YCtaC2dXfALwdwHO4Smybds30PPlSDR5ptpdHIhY18kq8YUWV9lc07eZqtEA3cAlldCPWACwrgoa7ipy0O1Lyx+BHit8kORZC6etCh+CNrDIoq2Wlu5v2V6EmuAS4RiW7cEJjSuMsicNhNH7PSXEP0jyJUT2YKyBvlaN3jnbvCQG9VUrKj0UV192UZlEhnrievGQdzf6iT/OHT+8DI4hc3m1MCkyFuFUrqSuSg2u2jdnXnpuqRxKK5YC7DCZPliKzg5Im9O3WffE04BbAMiTmQSVFILB79enN2nvjiv4a9KI23alfZuXOlyibbnlNQu+coA/bvdiBnZB7gfpMN2xpPRgXBozNLdvD1QPYiRtggpGFL0H2/Lh6olM4I8wfSNAkLOUozzatx/8S1my7r96glx151MSBQsZb45Z6SByRmbsW1zp+edFli+3Ivr59EafCiEAGEYHFkrlf5+Vaa/fLd0O7ZWH0DwK/r98gJXpF5xfa5OVlRVSiOSTgtwMfJBpfnQ/qHVWq3nlZSWOtj6+AeIPXj7SpTBhQn8zqcQ3IAjjC3IAOsdKdUwQwGsAOPP8W+QIxsnEDloANR1MCHyQA+68Ux7C50GAsA+Q1HLjjTdJ98Qh0m/YJFn58yfyNeICu6cekf4DByHb9n9qXYITP5jSnnzySaXH7ZtWyVN3nSu3/4Wxmj7y8+evIWP3TRBtZ8kQcDcSMJLDkTFuzLCdC3CekZEFYFSugFVcnAdc/eGK0JmcfiR2ZpIKrarOcZ6sQHf22VbWLcuksSzxm28K4visw4WEWlWV4/vvRWbNshSEcFGAVQGQsn7Tjc/ydQWglYmI2K6SOYA/1XJaAYFxVfY5EqaVwPAIsnELAJJrkJbA6sIyVgP8JTbjuq6EY+OHVC4wFtcCgFypFAT0rDjo5dUT7mtfRVvDhJVdu47AWhnvIOR21beZV6MBn4je0iNohUQFlCv6FMYB2itoTOheKPkVIQ5KF66pK3Joehe6gxta4ePyMR6ybK/lDi4sZZUMnCcHPGRoPOoBx9BVDPC10kMGJfjIgXTct3A7GtDVX8oA0lLBPvHKcsTmBfpKHqpURYR7oQQpKm+Uw2WdWyVHd+Oa50kV5CWTxodIQGAwzg8f9e0HcslQvDn0xnK+FNg/tKw3FzzRDbzlQD5qGYc6lFtQXA7aHLePZke7xk7QCrlmd47sA/WaFvIQjoPb2UjH1EC9ZxndwOTw49u+kZbXwIHtK+WkS/FEagPhsdy+bpHs275G1i76Rm1xBEws27dtU5mZnHEqTDIEHJQdiM6Pju6nsizVDPxhwD2zKSnMC9mx44CySYVG4C7sJB6ICyPYKy4CiMPD961n7q7V4hX8SsUnlmRy9OnxJEMygvLt0UxEUPrIIxILa+C34Mi7BG3/gU85xvfdx/+Rs67+A37VCMmSg8Nj1Kdmbu0p6qAc8YrMDmembBH48jidlXpQuUxLQGlSWlSg6hjXXhNgF25eb2T2+fj54xsfkCPzN4FuDoipt6/+AQ8Ob+ndf6gwrpMATOvS/qDg9JtAUr6+PpKN0njvPXuHbF27SHHiTZ05TXoCDZFbkeCbGbNVVcFwh94OQJmqKrFIWZ786/fnqtjWKuh10IB+im6G1j5WyGA8Hql6ZiJDIwKmMm/vcNTP9UVtXEEZPytxgpm29LrXJUzEQA6LysymxY28f2SqYUTAiBGWZQ6bUlXXdD8YtqJkqT6F1GxmerOeNEmxef7wRYLCdcnX9+67lgGYSR3ArsoKSAshkzJQAU+dBoqXD+swU5inBpM/gJFhsbbAIEGlLX9IWf9oAawl2OCuERfLdA+CzNXK4knrZ1ZWHiqK7EEdYwzGyDEaII9rYUllrfm+UYmSc2iLDA7PknEeqPBxwKr+EexbIRN6FoP9AZZ8HN/CMgu0ceVBnatAbuwhG5K9pU+cJ2IHy+XT9bCq4V/3uABZfNATxQQ8JD4W5wA4Yr/d4SmREV54QQuUL3d7wYLrK0P6e0ghrnMmTE3vHiyBQSF4I/CXk/v6O8DZaAA2O1CjRdt+/dXakeP8g/F+pUiSTMkukU6wKhajSAKTL1sDANIKyUpcdgC4Cc920rVFhQAAG+lwGsDtuG4hYXNGXmndjVwsDQ/yVrV8y/mqZsSlBggaAkMiFYhw2aCFZ676+VN54+m7HL3SOrUWHHvuZNmy1aD4GC2jRtW0AF0b6gRbv2khvPnmWyQYdCbxPQfUNKqeKi4sAEVJH9kHt+T06dNRsuthFS/GrOJ7YIb5J6x+u9D21EcflZk33mhxd4AWRIkuKQfrFDg7JAxo5Tugio9BBrcafuimljnjg8DHL0B9GltJhK5eWhIJIMtQXYbf/J2L7Gb/AFgOYE3ctPIH2bJqPoCgFyhPLkfM22SV9UrgaZfTBg5GDFq2lGL9zasXqDhLWl/54OIDi1VEmIHri4fbY4+B+3B8AACTH+hJfOzdyFSkyi6YP7/WPP74Hma5vnCr6wffr38toD2xMmtZJY18iyj9rEDdMStXz2AIo6bk4SxW2mBmLsWeV0V3sBZSsrBvJm9c0G0VgwAlDNZFWhhJ9cNaxvbMYq7H4ie0NtLwi9NEuXGpLm6D1jwSTXMbwLbCsRNAgi4QFWgEGb0WEGXMIfKD6pVhw0qxrX8qd/A18GfT0v3884cBOt8COK33dlhv/7/EBjASKTDHwgAs9UmKL29/UBhVhcuCwyxjVokXnXIcCE/x9oMFrrKXHM3CixLP5VgvmdzFF+dzEGJ1Q8QXL0/B1Za0flMtixrPd33e8+Wlo8mwnqGqklYkCiochHu2G6pwtZYM7RGiDDqa1ofP5zXg4Z01Mqa1Nmn6bccaqPOOdwgX+3dr01W2UmP2gW9+uTC188ZhxL0Gdq9fIInDp7tv0MJLIqqrc+huH3nkET3p8vv77zciXupiZbXRDeyWlreRYLBmzWphFQk//0DdRH1ng+vuvqvGOuZdAB4OgkAtLCtXBSDoQV+eppi5+Wa92EIbfCCjCgieDhaiwMP6IgDFV2BmqjhwEMArTVxZHms6adkpunkJ5Ogq3r5+sSTt3aKyn4EpYY3zkeiEvjLnnktUGw34Pgd6OQco5jpYMJV1U+sAqa13/eMZNUBm0dL9qsGafdQotALrnUWNQmzs5fW2ApS6zUKa9FwI+zt8uAAJFsFqKd2ppNNhRQwKLW2c504IuOxEygjjQzwhyjoOO3YNeFDBI2llCdOYy4xbDuuciQfEh+Y6yMknnyk//vgjXK27AOqA6mxCoMfQArDmKPdv//6C2DyrAYyYDqoZxvfxfYVxqEwcYSzq1KlWO7qh6fJ1lVBi2xQylOdA1z3huj7PMTsiIgF8hcnKSt0RAYhDEW4mGALkiZOcliMCB5bu3I5zK6jfOeoenxDsI1MHRUgUrEu+JMMz0igN0DLHogvfrk5TTpCl27Nk9vhOEh5U+2WvUZ26aczED1bnWrIty9FiL47rApRo7Q7g2T02wOV9yNHYTPyiNOD2amWW0BqUaGOMQmOF9RCbsFpjN3NCt6frLuXgNunUDU+7NhACki/felxtiXFfTPi46KI73cZSkdfN27scWZX+qFFrWWC4Mi081neZomNJHDC8VgkxaylcdYf3qElfuEkpb4NqxFk84KZ0gD8iBiaDaKHZEWNQ3COcBxciU0uZqEAAUQ5r3Na1C3XrVvnOyUxBbF2GHDm4SzavmiefvvIn+c25ifLte8/Jc/dfIV+89ZT8+MnL+PxHlv/4P/nzradIAI7rcoJb6JsuT8qzALG7mT1BkjuatijwoTLhgRICf6cr8MdlffpY7k6CKgqzUxmz9sc//hFxmSPlMqZluxC6gktLre1zMWlTdGKGbk43KsGbK6Grl5Y2Arqff6arv+ZQ2NvPmyegjRFwBjLpRVR8HQHcFVfAwuhxoXy4rJuic/n++3C4pSOQoLER3HsIsrdOD0dXTBxhH4zPmz7dMbvWBN8DGCsIQyl4FWu7nmk9RMEaS79/+EOt9ew/MjJ2IPbyTMcs6oRAd/jwQcpC6VhgJhwaIIMDkwC11Yjgj6Lv8RP6h0vnSFirDfhz6KyxE2TKCEHC5FHEKxbDojpvYwbuzdX3isZ2Vk/7IbAC8pjZZduhfGXsWbYdlX3ghrYLscD+lEJhxS8jvywNeLvbncMZxepkdLfc3fxO4b7Noo1x1+8vbX7Kwe0AfwPajL6kvLxUdm9br9RI9+Lvfvc7lFxbD766Y4EZG9FdN3XqAOVqKyioQCyWF7DLSoCCQGSRJqhYwS0AbHf+7X3Vp/OffsMmyrP/2wJrWZA8f9/FUmL3Ezo35m9ahejHoxBl0vRF4TfTO0FiTElCUBqTFwiYstOS1LyW/LNz4zJ59g+Xuuyye++BEh4VK/O+eF2VwaMVk+NgCbfZcFPnZKYKcInkkqcEiIQgjGXgLqD7GoR3t5MuhUiO1kC7OBHdMc6NoISxloyLg4cMVTYsPEyjKJMqLkNAX2/0dQ2zHVwIY/8KCrKwpKtaSnBEUGYXJl4z45Yg0y4Mx6S7l5nexN1M6CDOJABzFrp6Z8yw5lYb+9QPAjKdwKE9qxkZ3RBrtxag8grFybdokQUEkRej9lP3rcGu/u3qm6pkwgmFemLlD1YLUVmcdksyZ1ULazLTNU93oxbqlUC3X79pMn/+fJUQo5eZ7/o1QKJ/lvo00nwN9EsIlp3J1kmdkl2KClzZAGoRze/YRQ90OzML+GcATbsw3n9ncoHQ3R+HmMS8onLFU5ieU4akmUq59qR4ty+r9n7MdPvQAA14TMQNDfR2OSC3FkD9tudyLTczGSyclgM/jZF6NUD6kj7Dp9XbrqUasGTYDX/4p+qOHG8UUoA4C910rP3LIHkCrVtvvR4PSB9wpwWgOsg4uf76IUhWGKQSHAaPnoYM1onOXTh++yObjgBpx6bVKhnBscA+QYsYzUGM4Ce/B4VBZC++aHF52B7WXMTEClYEYRA4y5Z998Hzsnf72nqJqLluffLKX26sBf44dn7i4jorWpRwuLp6/z97ZwEexfW18ZOQhACB4O7u7lKspU4LbakrdXfvv/3q7u7u1J22uLQUKO7uAQKEBEmQ7/3dzYTJshuSkEAoOc+z2d2ZO3fu3JnsvPOec94j+Zy4zRuVHDE30w8hsimYcIjVwDeZbicqjXaNaLRBqgwitG2iXb1VyvJN/xjkt+SQAYCAP0xDcOyal3zDskYCxWvFkO5SggUgJtgQcvYYSNYRWkU/GP2Qa6OwPNtwzT0BZKnla+ckuooYJHx4sX64YHVJyEW6h7x0negPp85jhL1l/nemxAN/PyuFOFDuLtUlnxx1VCCO7//+L6AHSGgBUwQJzPHQd6jjYrlUgJwxNoztMqndpAPqdAI20Eh/ycrOFOcn1Fg9dp0qgXCpNZEszCzXFmZ0X88rGZ0exh96tShr/dqoyot3YR3Gc5EXh161bFEJRRfN6GqqRKJXiRHML6ui/QEMagjAx8oN7RkMJMkhQ6X8MX7ORhVx2Go1K8Y6Bnh9IQvoTdMh8b4pRTkckv4JZ6FhYbjW+1genCm2j+aH7WoSB5ApiS8XAA0HaiKi092x4fZH1ik1WrHWiv5HAxBX5pEDBrtsu7+Hf2tVatS3zRsTrHJktB058JJwXWUsX7lknvrYZQ2gm0IZNw/u4PgAYfmI8gc59Oqlop1tTQPKtBUAFR27CGXbjvpZsYdKDPn2/ac0vjg7+rQr7KjTrsoEzDJtnMWXaX8NtUljf7NSpctZ6679bOxvXwr03mXXXnttJvC6QWmrFytt9VuBCTKbiRkjGea2W2+1gRLEmzhpkgNn/l3BxqmTAJOJ1t7QoXsdV+b2/m+Bz4AUv7HfCCHFHUrJLbnNvybwGfbRA4AwZcT7KZnaGTF3JHeg4WenP2Ad+BXQuLb8Od4uuuw4BxZdQ/1BqBlAtH59QP7Hk3eh5i+l1cgG3pd9//33TlD6elF9t8s9CxPnsXAAU5JAhg8PuKlhO3E343bGPc04PYkYYgBJ+qCsG4ZsJMazgx/sSd7QuZmJCdTpc4bOYXlRfZyr+WKV60N7yo9cLrBa10yg+sykScs0lhpO27BO+rrCt71nIE7uyoZiiQot72aAh80ezcraZ6NWuQcgPevYWMXqndChohEnmNeGRm8JuZ57CsiPmrHBliRsDbmLbk3KOKA4XXI13/21xiqXCQBHspYZF+5rgKQXAsA9g2PZIKHwaFVOiVZSQLKYxI0pO1z7QsY45DTny0IAe1aVZfjpD2uREYrvaVfBNunE+YNGvQ2i1AAdoULL2QwsmT3BajXpkLON8qB1q8797Kr/e1f1YS9wveHCJKYMZgbGj6oPGP+81IK+4OanrV7TjlauUnW3/NizbnDv+/rDD8DKxXNs5sRhLkauhnyBzz/3nNtszJhAIoGX9+EWgiq4q5OWii+PumMAv8GDA4yZxuN+EXVHr6csBoSpf/31d/vis0+c0PBEZQYgM/Leu09IcibZ+p9/+76GuNf699MlashaHvnTJ/LS3uWyloMblhFb976yFd6QPIuXMACgKaqAvmiBv86gEXyt0u1zFFtwB1B7+Fb302CzADMAqSCS1PUM6KSkGcaU3n13gFV0C9L/AJpEqDq2K1bjqnXFcf7VGZ+J6YN5ox+AGcwbDBn4PBiYZmyU/oFri3AC6grDvgG8KB8H4+YZLlh50DMZ/RMP6NUIJhyUS+iKK/aEjbIBMYqMi+oftHnjjVUSuH5bEQVtpSZ0tNjsiQKDo9UyQsznNlVmqCP2c1wAAGbaIwklR4gBHaFs4nPEjqsEXdD6wq97ZgAQgFZsoeXtDJD40ViuYGLyMDxqVNNqmp7MlZd7g7ntrFjAoordjCqy97lk2RECpA2rlTAEpDHiQclUxgCEngEy4qX8we8EOoa4HskFwLhMPJhQTpnORyvjOJxLMrBF4d+8mIGZSzfb6JkbrFcL7zF3716j9l60Z0lXIf+aFYrZeMlVeMbJJHYgRVVBCsGfNys5e0f8ucfJV+Zsozxq3bTtEXb+jU/pZplqk0d+a8NGjnH6dvFlKlnvk/pZg5bdRFaVs1WLplmb3gNztFeqUfwz7CtbumC6rUtY7eKtjpVmzKsCTMQdYpBfsDp7GYrDKA0T3a/KFw5AgU4AfxjZwkpjTRRQfO2196QBF2HHHRdY1UUUURe1q6FMhweVItqu5wCrVrtRYGU2/iLvAmjFyOx9U1Izxx57kZjGgPSIW+H9UZWSNQsXWlEC5dItTX7QaETnoKrI7MAvijsRH2so844p1LpsLnv77bcz2NrgTdj9qFFlbdKkRDGkgbBDcGewQbYSeom4s+QfM2ruMhWqxufc0MoXcsaQAWnEEjp83kei21uKBFZm8RctSeLu1otCxE3eWGhythhfPwD0NkcihvCE2bMXiH3eoOswRnqIEWLuyjr9v9Kl1yuPJsKVnwN8L1++RYLaCwQshylGdZemXTqNUSnSBhygS+lnJTpNczWN+/U7RfutqWWzBYqH7jVvOp0ShEbwuoNiE79Qn+c4fULb6I2s8N0/A0h8UbO20PJnBtrXL2VLxcZxj8VmLNlsuIfzIysYFg+wtjV9X7iCKRUXJdauc6PSDvwxBoAbeoHzV8mdEMLoI1ySiAf+2AxGasT09XZix0oheilclBczwLn4ZdJaW7V+ewbwDtdvWAAIxV+5bHG33fxVKRnbczK9CzNjYeGHbM/AluSNDnAhJXIwLFI3485Hnup23f2Ys0IOYfLwL61KneYh14VbOHHk9/bmo1crFqueHXv0US5JoVevXhnAj+3AcGAiWBuAiRcf5vpE2I0oftALWh+krWLQOsQIkgiiO/XOm26VGzDCqEyRycR43ar00J8EAFcsmpUjADhHiR8pyUmOpbxQWiteRQyRfCHtT9FgHXxxfn6XpgvswzcqGzYsIEsSnGQRstP0hcwNXuKgsMA9m+C3ldsX5g8R42DDmw7hdfLJZbR+o7QIg1tk/k7CBTkTFGDxausC9gijg4VDC9Bf6pfDhlgsdsPl1kzjsDrnBkqFZO424xtAb5X8xZ+o8G9n6T42lJr0e57Go1qhCQlDN3nyVDGaxFyWFPBW/eBa9XTKU4WjSdyQe2pJhNzNejBZtVQ6fk+4/gGMxYqVUxJKT4Hd2hJ//tuFBzSVb7hq1boCj6vVrrYTsxY5q+0bi71s7GIgvQGSiMKc4SqOiIjRJVZMQHWjroHStkXnP/AL6LUufC8WE+kkSmJFAhRa/swAItCNJLUzSSocGKAJt3BvMTmwcXltsHfHtq/gqqSUlSA0AIKHQD8riFeod8tyAqKxtjJxmxOu3qyqOrmxFQImw6ett3pKIKpaLjZLF2Vu+s+LbTw3dl70dSD72KiYP6q9UO4vOxYeAKoGMBQxQYTJuTzR2RnA4dZm4bTRVq9F9wJ92GtXzLOW3U/K0RgRV8aoP9usWTN30w8W/CXeCzBElQfIPjCdl2zgNqYByBBqCiMDWOBv98ZNtrtBI/v16q9sxbooRw6SpZrJ1FmC2qZqYbHiQjU5sBl/D7XBiiG8WnRYhM83DWmJTAjJGIAi3JlJUh8uIz92W0+wWvuBASQzN9iEf01SiS5pgaoW9LEvQ+yYzFslabvsX9ce5Aw4ppQHiTLKHrn44osNFvCdd96R+/PCjG7BzXyNjCyhpOpkB3aY0qyMcXHYb7yhuqidA7sA9DHH/nlWIrPqAgvz1diB0rSZahs7N30WncPUHSmXN6/n5MOtL//xasV6JgrpMnasWLGaumYuUeJ0vBOr5lmAMFDiDDl0NAvJC4KlxIhtpLQe5fLS0gZJmzDSPS9UqnSUW8/N64MPYjW02pSWdkYco4hdF1/o9cMKMpWJb/TODcLdu3aNth9/PMH66/jTNw90UvjXmtUsqVq3heAvvy+F6CCXLNf06JnS6pNOX37EAxKnB/jDwsWMsbxpzTj3AiD9MGGtrZBaSG4MKSHYxAFdKrkqJPSHR5FxHGyDAYXNpGpKQTWSdIOvA87FjxMS9sn6+Y8p7GwD/NKU9j1SwaGFlnczsHzuJKveoE3edZjHPXnuUK+2bXa7r1mvuSv7NmDAQJXqquSqUHTr1j0jrtDrB8kQSpDB4HFTz8p2i038IaGjXfbHIPvg1mlWfnB7O6LMBovdvDbkZs/KdTxP2cENWnQKuT7cwrWqxHF8pcoWgVKyzyAfcXeKvJJL0uRS/MJeHK3awn2Ozoj/o3kmBtC3PaAC4AeQIQGYxOZ9HTMYGAA0ZIivI/knd4O+TjjBVAqE9G3HAF6uADkYNJJ1PEO/T2WGBXS0cxml2YYP1wfoPBA3K0MYYYtgWhInIFyDDVaSlzMC5GD/iOMDoWXTqPiAjiMu4aGKBYAdvOmmmySXc5oOLd7V/CUJBPCHKSzVuagBaAyfmyAWKG8XZbVrnyFwqAmTeRI0JIognK0w0Qzwx/qffgq4sAk19WF8RzATg+gZAHDs2DGGbCPnotD2zADhP80EAAot/2egea2Se8018Xdk5xYEgxE8sjWMYNFcD4cqJEPGrLYf/k4QI5iY637yekN+Oal+NlkMLDI4Bc0Ay1MXJ7liG/+oisuvcvd+MXqVfa95xEObEwv7E0d5n98mr8s1ws/JIA6XttR9LVm2kuUUXB3I+Vm3coFVqCaaLodWunxlu+Gxz7VtPTvi+HPt9Cv+T8H2Y+0Y+TLHUdA1yABXiYnrAokKiqtTiYhMLXDNvfhShHWb8KyrEHHuGWkCASusumIKHVLwt5avFnbu44/lZux9kiE/k11bPHeK9V25xPovWmiLz7wjELtH/J6QGi5qQJGntVy3bjGxVZI6WlsnA4ywn3AA0GOdLjppvZ3Xb7Vddso6x0A5FR5iBf2pq74BA4CIwRsxIsDKzY1rawm1O7oWCV+NstkjExxrxYLyYtJifRQf7BY4ETkVABu1dolxS91ZJIBAibUMYQAv4TIXV0lmL554QCuZw++9F4iRoy9nFBIGoaINEyoDJUT/LIIpJTEFAAhohRX0GzGXHpGKJCQ4E0aTawGR6eDpAiAGVyZRvomreOKvAzx8eGCYHkj075PKKJ7kJMspj4hrmYz4knH+loWfSQgspozPQsv/GaBiBxnBwYLNJOcVFCMXoE6l4vs1HDKIu6uKDO5lP/s3QRqIEFAHwrZK+BqgR6Yy7wvETOJCnbIoyb0OxBj8+wh3jhEGh/mbtUzsqfQivx632v6Ru5cKPbmV59EtLrwtW6fH7kLLsxmYP2Wk1W/VM8/6y4+OVi2arvi/ZrnqulaDlnbF/UIMsm1bku3HD58Wlb7JfrjmGluuu+9p0sDbKaA2S37Rx4dPE8B4VmW9ijkWK3iHkHGICcfE/F9g1aIFtkxUUL0QuiPTBGrOXpMggJBoXY/1UEpwj3t/375ti/34xDX2pwBJpJis5FrNbMWP/1q18tvNyH7A9yjDTcirVauTbZX8iB9uGGu/fNfGjq06xdUjSxNtFu3FLPp2A6AaNEhV7AY9bKXm/WhF33hRsXlH2mdvp1itvmv3CP35tvE+4moFhJFX8vXXNez0G86WT/gCKxtfzpbXbW5kUwPaysgVOkEIqRGpuumGviCJ1YQi8rTYqVOETZkZbR3kfvUbWoC4fD33p38drm9c4Kee6l8a9FkbAq5w44fqI6i1yMJdLt4vIiJK8jINHItJG+IQAbzIvtSuzRJAdUB+hs9gTBJQeI6gZJxnyMCgUQiOhB1E6gaNQOoe+43lugT3GBNLI0qKKNiRfTJXSDRyHMR3ooXZPezj8Z6uDpdPMZLzQC+u0A7sDCC1M0EsD2wZllSAwrGQeZkwb6MbV27/JEuk+Ce5kk/sVNFKKuzMs0T1TTlZygvmlwGoiJcjy5qwBgAn+6TqjWcJEuQ+UJaq/c9xrvEUIzknVvG2CHZvkDt6icryzlqerNrxu9y1kFOmL9wxZOsnDuq/0PZvBij9lrBsrlWs0Wj/OsrnrROWzxOL12C/9wIL98RnU+3uHxbZD+162EWSdLlVuh4fK8jtXn0eJvBXR3v54Ycf9t7Xxx9bZNLGPeQSqacCf8tE71QHVaUbYsyfySXaUokR06ZPsyv+94bVrN/CW53l+9aUJHv7vvPt5ZVLrYKougjtMzGmssWmJQW281KM9Y28C2L51q3daasU+1anTg3bvHBtRjHdVLFwMQQ2YrCHBDim+yuJ6Wv546M2cuCzDqlEb060E+9tE0BXaAN6pqosLq4u/TtJGEgnAn4Agw6wqA5y1KCBzpOLNxfXcj9p663Q/mFA/QYpuHNnnOIJU1xOjQ8fZjQjnPCFFwLC0BkL0z/Alm35YIhtfPTV4FUZ35XT4WIM/eAPdhPWkPA+5Fn8huQQUjDnnXeJiwH01jE2joVjBpQydWj5ea5gj50kgYh2noFncVmznx9/NFddxJON8drAJHIOMhmokYBA1WnGevUKeLSpRcw0IgczAvq10DJmgPivlYl6MCq0AzoDMK7VlCjhGXFeMFUH25Il9fLN+DVOFmZ/x5Kk40FfcLkIJ0rh/S4Balit/BTBZsywaZS7RZ+Q/cKi+cEfbZDhSdiY/9c953W4qrIgt0cVGCqy8M6cfCWmj4cAcjEIA8gr8Mfx7YHcfCu0fJuBNcvmuLq/xE4UVNu1c4djjKKi9/+pa9608fb7ly+LpYqxkuUqKfM5xp559jmL1B2WZ6qTdDd/X0VkSwWxUm5u8Ov579pIriiBYI38epURnpOOzC+6iSMxgzGnF9/xorXodJT7np0/74v5e3baBOsB2iDjQXRSw1I7bOvYpYEgPIk9O6SlrJW+fUs7YPDkk+9Y0S7H2XXKZP3xx0jbWKGrlRZ4TBOSiqYgLugBvyk6N77zvDsq2hLaaj2mtNqNx51tiduqZNaZw0+LWzgbhlwiAJB4SmzHjmgBqg0qSVfBPA8vu+/SpbSYwA3KKI4LNAz6iydXuSRuyLxjuI6Vw+Pi387rOt/s6afV6NRAvTStx61MXCTvtPMnVEhr2eFfACugDZxFQne7dq5rJ8RM/F5ycoKAm5BbuqH2wza43GEdn3km4Pol5wWDGSTUUNPuQhgh8IjPI0GFWD9c7eSjSIt7LwMcenOSsZLrBiTpadxoBZVEAMRkPVfXdUbmsq4MqQcWGjNASBAB5mccUbVQw+0AXxLo7XoGaKFCR4+mZa18/P7/Tnv95uSd+DPACd6FvDIyin/Q9eU3Hjry02DV9mUc4S+T1ikDu6zVkCRefhjM44jpiY599PcP+KtVYQ/496/Lq8/6yd235SXi3Pfe/pst5k8ZYS269i/QB7d2heL/qtbbrzGmpW6zCcO+sW/ffdSKFysqFqeqTZ8xwZI2bbTS0hfcLJdwF7nYPhs2zFXxCLkzkAVaJlBDVAchk0E+yd3ybRaRwPJaqRoXEWiroY1jm7WzC297ycqUrxKyq+CFG9evse/ef8z+/Xu4JeA7pJgtNccEOCu3rKkguLaBTYRgdt97ry0VDbdMmQOltb5o0c2KEWusJINI1YwVWNm8xuz+TyxV44oB8dx3XwCJiJn0G2CM+DZ+LyNEay1v3NfKbg/8uFH1ApDSvv1A6S4q7k3fAXdZGUCF6h4Aoe3JWwWA0oRlKrjkBmLgcI1igC2ybWuE1ZQJJErgAiUEk6ofTH2GkY2CNkx6YJ5IUgf8SJAIFfoHoOTl2ZG159v4+eUVLlg6o3oHNYxfVzmPzaLmcAl/8kmkgGEAxJEkgy4h3z3QBrHqedeZP7+sDXNAxjTe3Iz4RG/neseNDHj0P0tkrPY6zVhgEhnfg9tJUNm6dXRhFrBvfgqFn32TcQA/4gr0G+BryNjVEvgtK7mYOP+qA/J55tJkx5rl987yIwuXDF/GD7M3Z0VKtg5hizQSR8xIdBI4AMG8JHFcIozOJa5nv5UvFe3qQOMWP6FDtH2nBI/8sMxXVog9kI6ez0A8xF7/W4vIrE3euNbiy/vujgXwEAPxf0I2+2Hfvv2QffDcbU68l+oikyZNFAhZ74R5zzrzdLtLcVdkgFLCLUsjyxRQ1a+f8zOK5AmwMeozRgDrS71vUzm4ky+6K9vgb1Nign3x6v9s3NAhbtfnK3ZuN4jpwQcDwWO4mlEEJlVXqGGp0kWHCDwhZjxKbduJyrrg/H529YUp1quXFGv6dDe74w5Lk8hcDP5QEMkvvwT8kkEHh34eenNkWiQnplmTxkIzMgCKV+qMah0wUbBQsGIYiQ+4VNOLtLhl8lA6ULTh+1G2+MpHtSzCganeApDedjQso0SGjZonspg916rrQH9Wrw4kV5DLQVilK5bhrfTe8QOngz9crABLeaFDgj9vk0zvctsTYwjRhmoMBpA+XwiSbGASQsju5RhxsxNLCLD2Z9/ynbFCyFIZxJ8IgsQLSTq45/3AE1/w7hUrHStIxnl2DeDteeVxA1NtpdD2zECEPvrPzZ41hZ/ycwZCCUDz6zFKVR48Aef83L+/b1i/A1X7eZX0BvPaJszd5KpjZBf8efvH/QoQzK32oddP8PsauZdxQfstrlgRO6lzJef6p2LKxAWb/Kvz9HNUVr2h/h2vAUCVxggI4n8utJzPwLK5E61Gw7Y53/AAb7FW8X/Nu56Y670umj3Jxv3xlbvBv0t5iXRDC+4YuUh5Zds8ETrcdcOH2xqpFVcSI7hL2Q8pvXrZv0rdXCuX63N3nilAUtSOOuVS6zfomiy7//CZG6zCxNFWUq0261VcAGnN119bZdAJmQKgrP/9L4DK5JKNff55i5KmyGD5OXeVLmsT7vnO/n3lL6s68TtbXq+XVa1f3Dao3M6qDSk2Jq2bbWt3uu3+ZZl1mfue1XtHyMVngCAH4ppE2VEP97Z33gu4NWG7ACmwhGSjgnmjI3bY4o//VjJCVwdIkGiR5J9jxTyvJeTo7obd7fPPulmJle/JJT1W67s7IARghEErIxZrg6jHM08O6N+h8wdo0mG7+Dr6IAEDmRWWZWWMz4vJy6pdpnVk8cjw2pNkAQsKG4dMUGu5yZHteUFBiOybcDyOnflAhgb2DpaRZV5cH+GfuIj9RsKLX6uQdTt2F7FHzphu8adV3Sth3L9tVp/r129mq8cK0Gt+Ci0wA8RHLVTAfMvapQqn5ADOAOLPCZu227yVuh59BntEYkDbevonOAA2bvYGJ0NzoDyCxAbmpcH8TV6Y+4e6REnDjJ+zwfq1qZBnwyILGoLNP6ckpxDysityt855ipRY9vHjvB+jicpqW0rBEYC6TWnSSMIU9CBgzWOBtAUSf+56wiUFcmzeoIj/27V7l+Um/g+G8+dPnrOfP3vZabs9+uijXrc5et9FMobQSISHcryt5Zdc/tRTVk1+ykiBh6pi6X5WzV3KfRFLdodYuIWzJnqtM73v1HFNGferTfjhPZs/9S/jp1IYwwHAOnq/V37HptJNKSKmsYWC2HpSbFZ1a0EilYSWSgpxLFXQW00hpU7vXx8o0aGU1crzRmtrgaIjelpc0ybW4Yh4xY6ZPf98DVt3+d1Wz63d84fiFyR1YLAoPu3mwEL9hf0b9d0G6yFNvGN3/yTB667SyQvExuGNRd9O+TO2/bV3beHf66zI0UdaYlIza7tho42aPFZJFDVFmNZ0oYh4zZs0Ka3s2sWuf9itrFzL6AdmZdT9BSNDCubGqKoCWPOsjWjHaXQogwx2iS7pK9HqIzkFgEouDuATAwziMgcIwgx6xo+l36KKx9g9o/o5JpXnEFhLvxHnSAgijCbnzM9q4WYGiI8cGWlH+1f4OziMPwezFYfxVBywQ0fwt49kUsgMpbar39CqI1M4zpdB61+fF5+pLkEmKrV//UAlL/rOqo8NyTuyWp3tdVQ2GavkCgDg/tiW7bv0ALTVsa55JYdUJi7a+neq5BJqvLGxn/f/XG5UhAl2DXtt8updt6LwxuAwUqSDlcnDb3Xw1ui3u8DZ9q3JRgZwsRK+u1+BG6VC7KT/V17ls3JqW5I32cv/O9d+/OQFiR6f41y+lYPiqz4UJdVWCKJcufLyKMbZGYoD25Se8EA5szXyjaK7dpkYozeEMF5R4sF2fIM+W644PYLznSkxo6wAIPWFqYaBNW5zhHv3/gBKx/zysT1+UVdb//CVdtfSOda3Vy9Lk6CcsJBV0Otevc4SJdVFmjMNBTzHikpaIRDqgpsJRtN5O0sxiBtw7UoMj+trQ7L+KcvXtXXVWtqmSg1s6dYKNmt1nMYf7YDEGWfsre6iMDxngAvvc2BJ4K8HYAhJjHv4Dpv4wliLnj/TBh2TBPnpDNCDqDQJxtOanWGNXr/JUrfvtnadomzm2r4acz9lVP/i2pKgAbNHDCBVMzIZgwhh5MGQvxKOCfTYu4xNvUFnLNj3Bw/I0bKPkn+2ChXiXg82sn2V3Ozc3LiuPaNMNIkmzIl/9xxrqPwZjonEkmCjLBx5OoByLh/vJS+/kzfEZU7CSYmSpYM3Pey/UyK00A78DBB3hgh3lTJFM+0cVpZ4wPwSLAb8fTpylf0qAgggdSANF/BOHd/+GAUtfpm41mYI/O1fT3tGsTZJ7gmfId+yP1apdIzVrVwsUxfIPeY3+GOHIX4e94zDH/tXr0oJuYIz35T3tCz8FG4GFk0XM9Osa7jVBWb5qkUzrErtZtkez5wpY+3f0T/Y5DE/C4hsc648JD7uVIwfP1YAPgL+F8ifR8xXvcatpUM3UCApSkkP79k3cr22UrbvDAWt3am9vq8XUOBjvY4S7fWEMoZbtGmtGLlkAYHKStQtZVdddZXqus6VLt7Xiu96W4kLc9VvK7vi3rcEALvbsG/eslmThlmRhOVWas1KixOaGdCuvV38/LPWXIxeR1FwccruXHHbbZYmf2ZbqmKorq8LktPy5gIks5X0MEuAr5rcy40Uq7hI2iQtSDHVeoioUpVLWJHeR1jaeYMtOibC4gUUa954k7JnY4zsXACgv/bvsmeH2IjkdnbaLbXdetyowqEZRnwbbBfsIDFwdY6oaZNVezt1/CSrM/krG7brgoy2uE9hx/RI5pa1uqCNy8i96rWWygDepfDD39xyclqIZQsJAIcPN2VhBI7ZtQ78AVwBomAZIUCDDZxGPF+G3X+/GUGLQQgLgEvmL2DWD/jI1MU1zXEi6kxVkJ1aGC4WFMALSwfz6BkuYRLEybHxk3NoHhIHGMz0kSQT9CziugID4zbGHe5lP7OCME7iMT3tw42RQpb6If4vWQVljq7XDcy7l1Pv1dOY29dxcj9oJHdkoR2cGeB3FXdwsDwKDOH4ORvtqNbl82RgAA9cj+j8HQgQEm7QXKPoAXLN5sYQVP589Oo8Ba78psHEegYoHq0EkV5iaHMbG8l5PbJVefvd1jmG0ev7QLyHBYCkYKNGjiE+OEOxToWW8xlYMnuC9T395pxveIC3SFg+15p10Z00G7Z21RJ79o4zXcsqQjTNmzWxa6+91n2PL13GNkqQGZsnl+10VYsoVryEXf3QJxZTNABcWnc/3r575yFbtynZRFbZY2XKW7XajVQkeIxt0fdv9WpStrLNmLPIorXNrDkLXAWCtwTEqCYRJVmVWvWbWLvux9g51z9lRQQmnrrxJCu/cLbVFSA7qXwZS23byuYLiT3xxBOBkhLS56sJtaRMgrLQWUI0O8tWsJ3b0yz6qqstYtlSqypkUFUu4PVCWr8LZBaT/3C1gGNjMoXTrcj0KVIjvtqiq1fyoYvdEiqOdMnEsFEAMDJ7AXSz09rY2bdVt4joQClfrx/eSQAhLu+BBwK6d7grK0adZkdf3cBmLLnRuoBgBIRQl8nAWZ7GoHyjUVG7JGKcqp5iBah4hxnbJddmpAOVXbuWdNm2boX3p1evzKjKW653XLSZRJRJiJF7HCTHlGVy/957b2aEl96PiFnnygbUwlh6SRVe6WSAIMkVryl9l3q+cf66bL6x8BHACQOICDeG+DXgDy+93wCnZEYHGy7jdKUgQ5+QbUU4u7kkIQcQSHIJ68iApuKLP86xdLx+/9YH93pofyf7EQM0ICkSo9/4HZyUbBg3YtxShXbwZqCi2KJgwy3Pq3uTnftVqYU4w+FTEx3oCt7HwfrOw0pOASAenH8XSUdP2n55zVpWFvgL/N9EGEzguNkbbZX0McuojnKbuqVyPU1k2B8pAD9pfpKr7pHrjkJsWCwoi9zfJOx/M5QkyJTJ/EYijRRHLrSczQCZv7ElSlmUkhQKshF7RwxgVHT2xhmtdhUqVZWbVmKdYsbWy3166iV3W9ejz7TYYiXU107JwDxi9wISZGdddX8G+OM7Ys1XP/QpH9XHFq0LXGvDv3vHJvz5pR1z5vV7afp9/+bd1rZPDYsvV9ladj46U38Thn9jSxbMso+FELp27er6pTzbMxKU453gsRglkbhivIjFEZAmH2MRlekoIjbQ3nzDlnQaZDuiYq3eeedZOVFAPcQMrhL4awRgomIE/lFoJgxEEkQtAUKQLIGlA2iIrFQ1CTXtVdeBP7dd0J8p/6TZoPg/xWYd7cAVmayDrm/gpE0ueO1a+SB3WtyQgERKBgDErwlFJU2WMaLJhg0bJmAUL9DVUr1vVdzg46o+Mkjxf3WlmRfhQGam3fII6wvGQ7eakr6eZUrO5thpL0OkecSIAKh1C9KXu89Bf5BTAaS99FKAYfNjPJi9T+Rj5TzVEmqbLSRG/d1gIwKApBnCQYnJI7uZGEl/7CQAGgDH6fCAXnA/fAfgCc+7ZJtgZhJXMAAbt/mXXwZiLEP18V9bxk0My4n7yl+p4b82H4fK8RCWVVbJmbCx65Iy35P3R6aH+/xslRiDcStINmXxZqtftbhFFdHDWDZsrqRdlippdb7KueWHkbX72+S1jgVkH97/0dKErfsFABkrDGL7BvESo96lEnSb82z4UelEXqgOwwJA6Fd5B1zm74FONQ810OwsA7AWJCP5o16LvW9uBWmMjCVx9WIrW7lOtodF3d/73xlnyUkb7NfPnrPmHY60Rq33HGek7vIDBt9tdZt2VN3jKK3vE7bvorHFM9b16n+h8Qo2fpwAiX0HCsSFsCVzJrvMUg/80QRdPkp6wQCeIN9sBaGHqvj3vJRREAW6KZhc1Ysv+dDWJUZavcUtbS2IQVZN4LEMQshQc1Bg+B0JPhPocvI0NEo3SBTcqNSvRbmGpplcpl7D9HcURhaviLZiyfpHkwlDuwxXdgOgAeetW1fENuoHrej7HweC0sqVCxS6VSDcaqGiacpeLi4/JrV1J08eLZxbRlUseivj9nMBtjpyRbdwwsluByH+EAsHI+YHgJmaQWemG21UdMWxmt6yrN5h3wDBuJTB3t60jxFIx/XbTXGX1AN2JdfSASBzCEDEKOlGOTpAIKeNZBDANeWHUenhNPACEIbSJHSdpP8hdJRScF7f/nV8BlyDiWE4qUBSoUJwi//Wd8ADP5UV4ovqwT41WwcHY9ixYelstS1slH8zAEjo16a8kfzhB4CIRZOsyXnKiRHjt0KCw3Pl8kVfsKAZbuilCj2rW7l4toZGJQ0PlGVrgxw2Ahcx7/65p4tNQTp+Oew2U/NOjUq7hFuPrc+0MhdfUsimDood9boJCwBRoaYESrv68VZVmcAUSC7oBlAoSLZywdQCL/7MfK1arPi/XNT/jStVxk655L6wU96qS7+w63KyYtuWJMekhttmjUrs1a1bL/NqsY99+va1XqKjIoV0vr/0UqsKNZde39c1Ji1Wbtad3XvakmWRKlGmpavOsjhRQX+p3RhpEV6gwLBqd90VQBtcXwKLpoxku+++QPpq+l498WXA2803B2IBhT/DmnJKHDCKiTnGtQHUwHABQgCDoJslgx+0i246UnXVhIZI/5VNVIAdL5Jo+ur4iLWkDBxMbExMDcc+XnppNQeu/vpruMDWfA33KQcULxMSQ5LHMxKEwzJnVF+BTQXJiRZctNA0P0INOTA21bQ74pUavjt2pLpawFek+3BjYhrYH79/7LKAmdp27fYIUXsFYljuf66DofSLQYcdDuiQoD4dQzjgF7wtIBcm978OADlu5pXyV9m1+lXIiE9H59ndqLBdvswAuoC9FXNGUohXOmyHkMky3bPjtW5fhhgyABJJH8qfFXQjg7e66lATrrAvQzQ7PwFguP2jEQiYDqXZGG6bcMsB+Q30/5ZXABDQGs7CAkBcA1vlJuDHFz3AWhXKqRzQTlsiqnObygJt0MHyI1JQzH+T8I+JDNyDYYlrllh8hWoqgVbwfzTXLJ1tjdofdTCmKVv73Jy42kqVETIKY2tWLLaOxweAVEYTWCVp+kWOHGm7JaQ3V9kHL6nu8AlqUAuERXYsaO3hh62IAtfO3KkVZDAILBWTX7TXffdZG23zslDMxXqv4KECuVidSF0mX2nGXm3aT8vswlPibfTEUmIg9ywP/gQ75mGx4cPN0KOmwgZGPNqKL8ZYdM3K9ltyVzvuna7OlQ2zt1EaJqeJJqwg13UkJTxkJN941T4CcXplRW72dq85c2Y5oPjTTz8pNnGXElGowDFBDGMzAa8qGcyc68j7I/Foh7JwleO/VbJHR2i0TgO9Fu6dfy0qcZB8AYsWytDtIxZQkopS1vlS8i3NXUIPbZs0KW4V1v5j556UFKA8Q3QQ/H/N3GTLiJ+ERs2B4cInoeS/blndEMIdO1mUdSoVdzficG0Klx/YGaioeLRj2lawr1WTl2QNkkOa1yoZdhBkxAISaXcoEDregSRv22mLVRuYBJh92cFUKwEbla4Tva8hZmt9TZWdG6v4wvy2yKx2wPM+TxiLpH2zWmwgF07XxmUCT+QFCPwhTRAOjCYlrrK/fnnXkjety+pQ83zdgqmjrX7LHnneb153CEDekZbqXKx53Xde9ZckAFhSSSGhbOWSebZWGb8lSgT9OOCHpbyEXhFiyG5SANtZKnvxi6i3uXIJp+I3pAwGYsUqgxH9wdsBHyNC0JS9EHqLl18wRu3GwyR5hiozfkf0UvBZphtJBXiK+dOs5FLntkRmJJx54I/1JIvII+rcpXwniSS+Wklr+cAgVcHYoTi5pU40OUKBcZf9+69V0pgAf8S17csAhpPEgBK3OX36LmXgrlMSxhgxiJ+ocMnrUrd51yVkZOoHOhIfNQAQoAxgRsSbgaGZgk6KjGM47tjdNv+udzJt7n0BIOJiJsaubNktisVbnlG/2WsTp/lP9k+Gt2J/3wHofrHAbPRH3GGw0HQ2NjtsmixO2KKC9DuM2qWFVjBmAD2607pVdokSJCP4jQSIRWL5Zi1LtmFT19sXY1Y7HcFDCfx5x7NY4Co7Viqf9BA9SbysxjBlUVJGTC1hc2Rm55bFi8mhKz+rcWW1LiwABFBtUmYRgG+94kQQUVy5fptNW7LZBaFqdYExnhDCWXz5apJh6WITfv3Ahn/5nNO7C9c2r5bjiqaqRoXqDfOqy3zrZ0PCMitTsUa+9Z9Vx8xT4tqVLmkkq3ZJiWusVNlKmZqQPIIEzUv3nKVkgtqq43rf3hp70FL4EpF7USxfpMBgBSGtSXq9iDuY+meklqrsl6spBhAJYo1wm4bSqqO/nRdf6nAg2nS//26GWHPLpy+wiEoVnVwJiRPZMVgukhHIZMXzGhm5y+bHtbS3BFBXr35aVTI+VTZtP6s7drd9NOBbe6/V0/aOMBdJzS5QLoudRESUEcbtpBq7LZVI8api6lJdzOCl8s0iw0NNXqR2MgzmTEypk8d5882AC/ioowKaKRQMFpPoT5WdOi3CilwsQBzCmF4wOPF8O3d+J3d1i0wuaDZpKHYVaZ8DYc61nsWOyOuB/Cy00DOA/AWCw546ROhWhUsP9AxwPk7oUNHKxEXZMiVAANB5/0H1Y9HvGzE90dW9za7cD9JAvAqSrd6wTdJF+0YdWSU87M/xxJeI2ufmVEojGQQDk/yrqiPEMJLUkVMjlrOEwH1+W9ijYgDLBfgmzt+k1P8iYv0ibLNo5koKJpykZQNUqw6X8C+T1uX3GPe7/4o1GhkvmKTp436wiX9+Zk069LMaDdpaRD6wDwnL5mh/Dd2c7ffg87mD3Mb/5WZYAL6pfw21ek3aW1x8WZs86kd749GrlDlcTMCgiDWVlt/gO1/bq+vNG9ZYifgKNnX8bzbmp/dtzYpFtm6t9J1ELbVu3UZuzSHy5pZ1oIiyYyErXkgSJl49D5TCL1Ipjz32mKtzmyoX7xdKJT1evr/SZBmkG23+VqLIcPlnu3jFer2VvKv6yMxh62zmNwHhZ8kHBowEElJrg0Xp0ldn9UY1DJImkpIeF+uXquNoaNeVibKRS2pbuT6treMlra1LcAdPvx8IWiPgDhFCv2m+d+4sraSQDUoKOUpMXILA7LeKy7tU12acYu46CctVET7+1F588UUHBLvJh9xVGdBFTj45wPyhgehl6fbqlVnEUPtCx5Cyc6EMdy1JG5dfvkvJOEvkCr5pr2YeACSWTif3twAA/pVJREFUMb8NRjIrI0NYhWEcGA/n0s5q+//6OrIra1csVggAC+CJ5n6NO/iDYSv2u2Qr5V9r6TzPXp7i6t8WhMOlOgbgqrbCEMIZSTAeAAvXJjfLgcKUZ9uXIbeSmi5cvS1tp2v+p5hXmxrQz+zcuLQVU1GN7BjkW4pYxLywrMB8WADooe2JChaNiYpwWTjLdUMZo1I0uFz/EQjs26pcXozvgPVRSm7ErsdfbFTnmD3hN5s+9ger1aSDNWjd22J82aj7O6AFU0dZk47H7m83B2T7NUtmWf1WPQ/IvpYvmGGv3n+JHTXgIht4yb22Yd0Kt99rhJ4+Egib/s8IJzsUnM2dlJhgj1xzrK0X6GsodNf/hGNVJqyxJOpOULxcgwygjajvz1+m2LKX/7TlbU4kv8PlfODlJTuXpFZcfOvXbxEw2umYvdGiqZYr1ZRKJH77QrXU0DEk9q8nPtoQ1qJ3eWuh5c5DrNrBzieLzAxIA1rPrzIcYvtQiwgZjYlppfH8rbCFATZh8Z+KR+y5l2tSxJ07Hrdz6r6hshxsot7aNy1q2yI3pse2ne2GRTPYMDy5ERE15d29XMzjPKu7IcE63zfQIlK321yB4Ya4faEks7CsXKYkLRNWiaBzOGuk8zlUgtsHwrwwzqz2BQtLJrBfDzCr9ofTOmrREmBfWSRAs5olc5xxejjN1YE+VmL2p0kyBRYquwYwaKc6wnAg6Nl5RmJIQUwOGSnBZeIeqZ8byshk3pYubxRqfW6XxSn5KTuC2Gmae8AiFly3GWFtJHZOFnGGxvK+LC8ru3ArCmdhASAH4xmxBD2bl3WBmMNFJ5Nx1Fqih3MkUQEYzMoF6/VRkN6LFouzVkcMtBbd+tviWX/bsC+esZJlKlrTTsda6QrV92uo6OltWr9KbtX962e/BpHNjWHkUrdJZkTafQfCyletJfA32PoMuNTWr1lmtRoFWJ/TTjtNem8VpdF8i82aPMoat+qWKXkmYcUC27Zls4vFw52ZlR17qo7l1BNdEx2evfpqIA4NfCbFFJfTsHt3cYGslqqcMVLl5crKi7pOZeqEVtJt0aJE1dBdIrfycWLjJniLQ75vo14lQnWqV2wEkfHfhi8REbxQdCTpv162R1CPjJHE25o1j7I335yjzOdvbGuv0zOBP8LyFMLowg+pUBfT9Ek78f2LrGi/3jZvYiCTNqNbubpLy6eJ1l7wjwCHCz5ljn79tZRyPtqp7rfGP6qNLb7xRpumTOhiqtdbQxkcZBn/pWLBSLcEGyAbIwt5nFSbNypBBfYUGRra33xzrFi1SKf5N1IJOZSA8xvzjo7k/hqYm5BMiND9sQb1d9uWz36QTmTgGtqfvv6L2yZIKiRF7q0GVUsUAsACdILJkG1br5STI0ELL9hwYVYrG+u8eWSqFi8a6bx5ZJxOV1jXoWCwgJMWbLLuTcuGHC5SOPlh4Bt+J/dlgHCygXmfL8DnNwhE4gEJoyOUIlyMH/dkZG9GzUz0b57rz4hoZ1VOLywA9O+xRNEox/iVEjXMRYYoNAGPXHQc8KFqkUWirG7zru61ftUimzb2e9um2rYN2/W1Gg3bOrdkTo9thaRfqtVrmdPNDkr7TWLgyFQ+UFaseEkxf/+zL16+3f784RPrfcI5AjfFRV59aDcKdNyvkhgv3H2uxZcpq0ofLax974HWpG1P2yDmr39Kih0jzZLFyqwgOcPp8vlctqGOAdCDWw+QQjLCHq+sHnmtf8Ymrwol8rpAQXxUpvjpp+kCTJWVpdpWpdbG2ZNPviMdubOVNRuTsY334Z8bPrLddesre/jYgPAdFNI33wRiCxGx8/zRMIygEx/4W3zjc1bxpvOseLUyrjuaIKJcTHFWaWnXKufiSQHVtbZwYQVl0ArsFdlpI+/700669ygHZANjqClZwpqWODIQvih96AzNPNZTDm7KlI1O7sWHcQObCrBFSKzwmGO8H85YV2i3tiZurY7jfQlfEwP5sTolTnD9+kSxrse7OD4A32/SIUxM3Cx3ek2BvhlyKbdzMX38iAE6X1A5kLOk2XLOOdV0jispCWSu9erVy20fGEDgL1nMVHihPFxOjR9mwjhhROvXX6Ns6vGuwkio/WSn7wYNNRcNBf5AlNCXhZZpBmBYeH0xepUN6lFFBEBUpvWFXw7eDOA56dGsjBOJBmwg3UM26XYBEkBHOOYpWh6+Q8UQX+7cqEzIGMXsikXn9FgBzMTyZccIkZgnAB7OY/yz6hJ3UV4Fsjb+xBIYRlg/cizIeM4ra1YjTjHf4c9vtv57kzQwKM3eLcoK/G11TxH427nIypdSbUkBwrwuuZJXE5DdfspVqWM9TrrCMU1zJ/1hM8b9aFXrtrCGbftY8ZJlstuNLZT4c/sjz8p2+4PZcPXimVa5VrMDPgTi+bAiKunWvH1PJd3+ZM8995wlCKVNlhbHu8qkHSP35crHr7OPpSAMSyRvpbUVq4TwsTPi3ajOkYVfb+PSJPv551KuHJmKY4S1yy+/3LGLxMHBRg4e3FHjGWctm6ZaywYX2INPvSAQtVoZtDUz9QHOK3/OGRb9w/SATt+jjwZUiylYSwaqQGuGif1yGbW+gVR+4GqbfMVr1uX9K10zT5AZMFOlyha5pneq6EcFoyIbzF/xTQnWpESCD/wFevf0rPlG8u4vvwTeUXCJiyst8LbBTZWwXCY20RX/1U0jkynDGPf3MvltKyke8BUFxcXEVFF85JUKbXxTy19RzN+JrppHly49BAprCCtNkvh1fwHAPddSC5XkG6tzSN3mLaIqqciC23348GliATU/Pqsn1LtIwJ54wJwaw+/adZeL1fz883HK4WmhB4RVTgAc8FtWEj8dVXx4pTJ1WkrbMeP62deO8ItR1279vhoenutxNf44Ya31aFrG6cQenrNQ8I46ukik9WpRLkcDy8uqEznacS4aI0GHfmGwJMxUEVJ/zd0kkCtPgJ7d8tKyC/4A4DwckTsRzgCGE8ViTpi3UV7VcgqtK6Zcil1ywUttJQ+BH/tvULW4Tda84OYPZ9kCgGzMbQLGDxcALmAmhScKhKKHT8vbX0l3S9Kf7NCu4Q4st8tjxVK17H6yE3BesWCKjf/pbdcVrGA1ldvKKmkkLXWbbVN8YYn48rnd/QHdbrXi/zode8F+7XPjutX297CvbP2qxbZZUjuUk6vduJ0tmjnBZkwcadECFEccf64r71ZEjCt23Nk3uRefX/7fOc79y+dYgT0SLlzShcDTBikzPyEGjUSFayjl4LNdpUrbknGrrU7/AJj0rXIu2eSKdW30ea9b3Hk3u3gu4tCQI+FFVirqJgT6461FMaazmLDq0rojFhHA2UCu052Sg1m6YIEAZJwtWFBTQGLPXshupbpFu4677Kdfo11pNhfs5vlECebzZxSTSRtksYkrxTS6qz3TGjyitWsXF6tVUoko41VhpHP6+ip6PztTW6plwA56xi49jAmjOGdOvEDPJlc9juOWdvQeI8YvyEaMGOHA3znnXC8mLVLMXJLcu6WcYs6VV14qYPyApGPek8ZgXwHUri7zuWzZGkG9BL5SmYUXrmEYwf79+4vN3PvmBPAj0zqnABBQCUDlHbB3ndSmY2LiXB3k66/HbT3WAfsZ0k6sLdkcACnXEuAUPUK0F7kOOnQg7jLkIRQuzGIGuAf8PmW9DexSyWUHZ9G0cFUBnQEyVEnuPJSMmsV+AAj5NFNSN/ySAn5HS7oOoJiXRt/Cblkang80kxHjLl0izdVnDrWBNzbc8gBCWD8Kb+SVMdZWdUraErmSSSbJygJ35KxapK+j1MkPExLcJHAAFcT8NZUSOSiTAEcEJvPK3ETva7bzamdh+gHoVW/Qxr22bE60uZOG2dRR34gVbC5WsG9IVnDp7H+sVmPdTQ4B42LdlrLJipWIz/VoieO7//K+hpZgNYGncmUVz5WwwSaO/kU32qrKNr3ExYS9//6LVkIsaq+TBu+1rw2SgWnRrdNeyyXsZ2Ukg9JSGarcvIPtr2s/cqXBgpdv2bzTZl3zrs0+50E79ftrrWjJQKYqUi1K6nVGUi/AD5O2spI9cB+aA4DU0U0WBbdQ0iTfKNhuPlouxdIE9raotdhHsViJU5fb/Hk17bLjl9um5dsEHoQe0rUCt06ZY6mbAuGAAVFmt5uQf3YPG26N/3xJ7kZRc75sdEjNiRMjnfv0TUmxtFdFEtykoQyvKewgGoRU3QB3Yt99F3B7d+umH5ldO3VsAXnDPsXk9u2qCQhhsH5kPvfocZW82JEO4KamlnLe0Ntvp79Iu/baa5WgEi8GEHAYYBSZW1hLz9vt7xpP6ixlRVOWD2CN4gtAlFhHzwB+X1KIN4yp8IlLzHB4VZqG0pMRcNvgmOIkUZ4k6nDecN9jyPG8/nqUXXnlEVL4OULj3+XczgBAEn5+FLBvqtItycmRGlMgGYZ5BIsLo3LpFVo2Z4AQILJF29UvFfJhJpvdFDY7SDNARZC09MzVgzSEHO8WHUOIJzJq1yel2rd/rXHJLwCqenJ7k9yS1+ok2YEjxNvFakydVcqtrGo2uwzgLI6Oef9SoRQb9gHSsuhir1WAP7KN0X7cmI1+Q99V9upWNxZRqyjBd1HniEN3bVImozQL8QV5CQBD7P6gLipesqy17nmKteoxwFYsnGrjf37HgZ76rY4IxAqmM1uLZ46zbv0vP6hjze7OkzeutTglvuyPzfl3jKWKZuotH+QdkkU5KgTLRf8kBnz51sO2cvFsI6GjSq3GlqJYy3pNO1jKZoHQLFJJV0h8OFTyQYfORZxkSuOmyryaJ1QhoLbwzjet4luPWOtBJ1o7R5TFuMMD7HmAL/h4lUjsZO8I19NhuOQF2rR45BGz++93YnvfkxL6rbKWl1axMpP/tNIJa63XHe/I/VzX0kTBRYO6FBMHpRiZuM4lAyclbLOrrytikUWFLIIM1zGsY/F+R9nuOx8PIDVf2ikqMpSFw30JU/W0NAdh0rp7ciy+/giHVKie2LNALgogDCyK9xIwg24zAE0kmatVnNTiHIv/4i09KvcK9ILPGJSmeMr5SmapWLGKGLviAnoBMElei1fHNzDEMo41g0kU6ebmjjHwUsiftayXYj2PCyAoklQCWtIbXBIIOxTR6uR6/AAQsWrAZygDMJKVy7lxRrFk2WsqQcJ1wQvQyndKzAECAXWwoPLou4eEtLRIV0nPqxX9srR2AIJNmtR054rTx3gA7ABpajpXrep2U/gnGzOwQi4vAGChHVozQMzZVGUOH2qGy/RXyc91V/jBJAFYL/O5snAIHhWkYmpWiHXJFHl1bDwckmOSlXuZfZPkQenc2pWKORBI5m84+04VXHaHW5nL5ZTC+2fepmyD+sjs7ueo1uXdQaHIjQSAvy4fsgC5sYNZtiU343WsYP3W1mfQjdb1hIsNfbpfP3zYuYnR04NVw4V8KNjqJcT/Ndmvobbs3M9tP2zYMAGafq5GbagOn3jiCbtOc/PXsG+sYpkSNvzHj2zCiB/s01cEqgSY3pLW3NKlS0Nt6rJLK4dAbxBiuGTnz9O/EDIiQnJ1n7rK4jYutyLfDBGvPk1qnMkh+/QvJKQQsLDX7gEkiNgJOR2r5JOaU4Zb/EM326JVybZd1TNKVU9xyChVzF00VSeoDyz/clEd3wXn77ZTTky1xeff699Vxmfq7wIC3/m5sg259a+9NEdIakAYGjvuuOMEXga7LNwJEyYEFgb9RT+QEsdkEYOPAIAeVrzoogCwQfIFRZdXr5lp2zr32tMDFKhYzZnyhwKkEhL6GmXqRo2SEPymPeAPV7O84/bGG4GkC/T/JBfoQCBgluTsa67YYTXvOsclQ7MD5nblymkCkLHyhpdyIR3ICoqUy2TUJ+Z/h5ffcNfjaudcE+7JvscV66MxrlVCTlExlT0cs4f7vnv3Hkq8fsuxffQBmOM40Chkfwh1e+a53ZEFov7zKaeYYhADeuGwqFxOEJLbtntbFL5nNQNUiCJzsdAOrRkYPk2KHocY++fNMHWsv1RlE+IBPUOuxbMODUp7H/PkPfDTJASYhVFqDy/pqkR5hRQuV8I3nlCbZf61C9Ui58twh+eE0dVP674NYUhoflg+doB/GbqTH2yycrIrbhi8p0M5caSYguubdz3Rvcgg/uvX923r5g3SFvze6rXsYawvyEb8X5tep+3XEHfuVPHrchVt4/oE1w8xdKEMrb7rROXcJ1ddSd11E5VdSW3a0mKdcA+iwUfCQShDgoTsUP4BeQrzG3ho8GA9w0hH0NFcnp4con8gIArQ+rJu/dsGf8btB3jKSCzG7SxGCeoQ92s10Wlzb77ZZn/ylX2lsRN3VleIi2Nw7lmBYOd/vfdeN9BSi6da1G/vib66Ya9EFfCikmNdkum6dUJJPoOpq7lzkVjNtACtp3W4Ti9RCvPbovOWSGj61FNP9W1hAkOBXSxejOv4LbnfI8WyKRi8V0/lodSWi7qInX32DjfOM84o6sAdZO0EiWEvE62XLJfoaiG64sUvVJW7ii4eDtYPDAyzxzzDxJ15ZiZPtRvDSy/tUJvJYunWWilN4ow+7S3xmUetTZvWchEfo9jJdRahEnBvvLFF+y/uKsqFukyqinKD7fWuIRJfYC7Rh8ZFj2QNLOGQIT8JzCUp7vEocGuGy7tLl87C69NcnJ/HlAIcYUJ5Abh5YOB4qlatbp999pnmp5fG2cZlXcMwctlQ25jTDvO54XNh8+hMU134JcwMDJ28zuorHKi9XHNUCym0gj0Dy9ZtNZjb/5IhT+QZ+KS0XMLZcYN62+zrvZQA3Raxj2hhhjKYSQx28hSV52uqDNw1AqoeQxlqm7xcxv0RF3QqT87ZtGz9p0J9Ug7OA2we4EOXZ3S6MHQ295epmbDkf8LIIKbWat/BDxjAauyPbzoXce2mnRQT2FEMUbECd5wpStiI289klTE/f5QB/sj2DAfiOPia+DTTDdfmOeec474h5hxssC+AmhNOkHtXVzXgDz0/Jeu6G7PnMSZ4X/H9Lohfd/IAVcTFj08PMOjP2gjeSdB33H5U4cD1yT+SM/yV6XFl5e+5x8pr4dBVp9pN1xfROLa55AZYuSlTptg2oZVYarOhlSfqrOi7r9namq2tmj9DI71b780DJ9533gkn7Fg/UezjkgAAVBIK2jAwaMTfkan85JNPCtCd7RIa/NuKKLRnnklUzGRbZQ6XEGD6XlOxVezWSm0zSecnWUzhv/reRK7OUpamY2gkuZfqmtDTTz9D8ZAx7nBJjCDU7sorJWI/1Ux5IdLzC+zp55/NScrwjXabNr2ic6AHQoH75XKDJ1fta7dc116E6Eti42ZbdMQ2a7Vxtc1NfUds5skqX6c5CmHEASK8DQAkZi8pKdKVXGY+ypdfo1rIn7hrAVDbWvQoCi1KHHdgzbseThcVipwPjKLn7vV2df31puzmgLc7IuJEJcN0FeP5haFNeNNNN7lmkqK0AQMC7WCFi1bSYu2n0PY9AyQGeiTBEc0k4yQ5jPwwNM2oQLVZN/uiki+JLx6tazwiP3b1n+7zL9Wp/a/ZOsUDekbN6rwUU6ZfwGTGvcHbUYh3MoHRK+T/4IIjqzug/fM/a8NKw4ToIleLWtQqaQ2lz4mG4Bol62bH9gkAy5eKtnVJaZn64uCwqmWL6h8wyhIkB3M425bkjVYkOsaKyv1bq0lH96LayGJpkg378lllwsZKa7CbSyhB+uRg21aNN7Z4qf0expGnXmlrli+wCSN/NOK4YPYAd/tjuB1JKODG/88/6yUzUt7FjJEAwD8fen6483CRKpnT3dQBgtJvCaAWuZvdxtKky4mRBIAbE9YpA6OQSQEiSEcYME7F4oq4bnFr9m7f3irITbxIQCqCWDplutrw4a6jGJUdrDZFA4WFVHZqTqxaf8aePn4NaEuVeo4Fa9UqkIRBrB5s4FFHnSpA1ygjRu+dd17T/Jd2btwLL1QmWCsBWNldd92lv3/KI15JjOnZKoE8WmzZ3zq0AU4axTXSH3AzrJ/k/RzjBvBjmarnZRjzJKUeh7dnzEgV2NomkvUad24AZeBu3Kn1618lYL5SotbSCJQ7PlJuW/Qe0XDsqwBCqn8gCwMgRAiaONGFYlQBgSR47NoVITHs4zXGsjrH79nJKk1H9RfPuMxg6nApQwBjgOSr9YXMYFzE6BJ6xvUkzOwMTC1eVQ8Ul7uSgGgcegkkxDny8KGkZGuk663QcjYDsDC/TlorNrCE06RDlmR/DC8T4JIqF7OXpRiSZH4j8P/EjhUL9Qj9k7KPzyROBN/T97HJIbGaYyL+DYaOqiBZxevl5oB2ayPICGxfcjNcq7UrFncPQjXKF3Oamd8o5s/LAA70knd/yyr7mOSTSLF1LWqXtG2ah31lALP3sADQi88LdaFAaY7XEwT1B8PRoXl3aAW/p8UzxlmdZl0zDZRqI43aHeleZBEvnD7Whn78qJUoVc65iCvXbqqTpbvrQbDVS2Yb+99fiykaayeef5tNGvOry1SFrUMj7tlnn81Ipgi3j1Urd9vKax+1Gf3vcCXNyKGA4SMIH+YJoPHFF8vFLFUz4tg8wzOLO1CFKeyhh8zwuGYYiRv4Vr/9NpD6m4HkAi0AjuyH2DQSJNhHelKpawDhl8nwe3rJIFrBP7/3A0C7nXIFr3j1NaveorkVBYkAFAnwI4gvXQNwzfI0q5Sp0+x/wR08KrWHzVTXe0SsAVf1BcyKKAbvG7mEe8kNneQSOGAlb7jhhsyubO2uiQQGAU9kE2OnKOhtgVAQ+nueMVyGP/yPnWLeqP0dYFc5F34rV26X5jBS2yYJoL8trN3MVaErsWG5bY6vLmY3ELc3cGCU+qjpNo0UUi82lgSQrsqwne6Epdk3VV0Wy29NRi7ZvHM13yxDpmWNkD5u2vff367x9xdIDIA/3NGAVEC/njl0XIFrAfCOofOHu5ykkAT5dInfzGS6AOpN+8uEKN1i9vWuMq17yAfMZ9jDPn0ChVxuaqFrJNPGAof6zSu0rGcAzw7VKIiJOq59xbBzliaBYtqSSUx5L+453MAwvE1LFG8O2RDqHuSNgJsc7uf+nbJXYsvb7nB9p6YtJdX+q0aJ2gNhTeTepTDG9CXJTh8GVtofe6fLWmBvZ8ZQEJMe2KWyff/3GjGTe5ZnNNiPD5B0RypHw/vfqV+lhCvdy//gxH3MR1gA6D+YcGMrBH+BmVk2d6L1PePWcNMkyRhlc3Y5wb2SxAwtmDpakjJfW4nSFQQcu1jVOs1V+izsqQjbb25XrFECSOMO/XK7eabtyleuafe8+rtKuy23lYtm2m9fvOwAynmKrr9X6CyUhAsd/Dl0p53x1jXWtlS6yLFAGe5csjEBZljx4iv0qurkRrxlgTUBts676XvL3Ltu4uvKNrSZvyy1IwZnWuOqgrAElhF3L9KCeI7DGq5B0oPTjZgyQhUBgRHPPmNr3vrM5jVuarWPPnpP1gZt5Q5Nev8bG3ffL9alc2Vv82y/A/ykfuPmgWpyfu0+qm+QrEFcJNIn6PZt21bEZWK7CinaS0YcY/oeiVOEYfMHzcGsuOxrMoAFemDtAFTFnrvWEo95zjYmR2UkongDnzp1kVzLn2i7aLmGd2o+j8wAlYmnP2iPVX3eipwf4zKc3TZkUf/vf+4j53XChFiNN1mAv5LYyXOcNE39+tRyDuwBDcZWiGjL0Ou77rrrBRYDsZJkAhPjSMU9plskpnNNk4lMtjHkq0cQwgTeJAD5gk5YipAt7OE//yhDW9itY/mtgQ3x+WvHxwgkbtXF8LlWUu7uUmWBkBxC7OG6KYusSjU3nIw//JC3rl3K/l2YlLGs8EPoGcAN9eWYVdZJzES9ysU13REqI7fDxY0j5bFRANGLjwL3lSsZ47I3ufcgY5GdexB7Rpt2q0AksYcARy4n/Ys6FyDnq9D2zABZs9l1D+7ZqvBT8Awwh11V0aOlfgswmO+vpUvrL4uLsHOj6nEZmwIYSU7ZlzxMxgb7+FBE/zRtVJKXiiLB1/lSPTzxP8a4+N0LZ3mGOhBALIgFpMMdeF4tR04lVlp6UXIBZ8dKla2s5ItTXVPAIG7i6WN/kGsx3oHBavVauQoZ2ekrt202UgKufNCdLbedabuKVWu7V5M23a37cefYkNf+J+bmA2WNfiw33htOZNkv8guAAmAUiQ/8c8DIYdzMyS71jKSA2jsqW+r6zRZdWXdln0mnOUMbzgMQ3upxk5QhekoD72vmd/kv47XDk05q5JgrskDDGkjAK8+R3gjmENvdrbuN/3eFRXepbzHpcYIsFymocTW0WktHWa8TS1nRU/qxOIBS8Cv6EScMIzGCPre5sJ0DN7CewUCObqiYMVA+WeaT5BNq7oZEyDRONwAgSR7SkwlkQwg0klgyVanBrVGL1s5EwjkZl0s+fcQ+/SnKVAJYenm4kbeJiR0m1/gSJTlvEvgaKJdzdZWf2ynwF+/twsp+9qqdMMoUD8k26YtvvTVjPa7dUaO+F3jeLdf1FU6Qm/7BpTC6WAklkWyW/59EIYzz6rltIVjJRCZbG/c/IBADFOJ2Vm6Mk/qhPxI9yqgqy1Va/53c+M8884xjRkePjrKRy+vaEfruWaQOtISqylwoUcPHXn7VW2z9equ60fiEjO/eBw3JOjaMt1ICG6j5e4Hf3vrC98wzANvx+7/rbXzsRqtYOsaxeqFcczCBa+Wa5JVT06Yu+5IyXMRpIRTMcw0ix4O6q1ydzhU3y8PdSEiYvHDT4T4NeXL8VEEb+u8669OqnJhrZfzGFnGyNH79QULjeCDxX3slBQKzMjQMuVS9B6NwbWMU/3p2r2oh2XVc/OybJB/+r/hfCGdZYMNwm+xZzr8UA8HyMtvGdXiI/Fk4fYzVbdEtV6MFDFJ15Jjz7rZ2fc80AOHvnzxuw754VizhKNu+NSVX/Wa1Ueq2LYpJLOaexrNql9t1RWOL21nXPWkPvDPaKlWrpfiw8yUQ3Ehxe7+7C5HqCyR0IB0SbOAo2ByYQG74f/yxwiJ2VBRTGp2pKe5KgAZskMK9FMhvyiTe00RJxy5rdc8S3ycAmMATyjIAFbJDc2PvTO9gC5pXsRqKcfNq2JJFSiggice97ulhRU8/OXPX0Fl+e+cd0nYDS3RQiR/86AhHlUXeC/xNkq/6KUnNAKBw53rC0Ekrk21tx+Nt2Sej/T1n+kyVDOLq3L6Qx9Hk9es3wJK1/524q2U8JTLuH0eVcnF/MK6E0D355Cva5xaxjUfa3XffIhdtY3m44+z66+Mz7YMvsJXMKdp/kH+b02JdG5I6vpKoNmX2br75JsUdFnc4mGRm4u088xJBvO/+dwAxsX7E6Mlj68A/6wkJQOaF8SITA55WqKFt2xHl5giwDEj+VmEBvXoF2F+yijOMIEfFc+4S+KxZs7qbY6dJqA6TisZkNPN/iBQyRQQfN1ChZW8GYEYWrt6a53FZ3t65//y7SHVUxXyQnEggfoX4omJl1mSSCvHaH27vVG2hDm0o8H24zUVeHS8M308T1opRDdx80B88tl0FxaPqN0VGaINfpoZl27QsKwMAwhRmZQDEY8OEVsCEw/LyAvzty7Le0z62pn8PqXoZwvvY5D+3esWCqc61u78HRkau5yYmqWTZnIk2+ttXxJSkqgRdC6upCiMAxv21hGVzrFLNRvvbzT63L1uhqt3x4m/2xSt3O90/RKKvumqIY5AI3g9luPm4kaNBJ++ismyT7LxHOilSNcJJdEBiubg4rQcQwPTQV/LAcy3683fVZeAfDxaIODHctUpy3dt0A0fmBLAC2AxlAFGSUegj2FbNT1Hs2xK5p2Md+AOUYcOHB1gr9yX4DzTnbbdlXgrSk7tYAXwuiaWMgNnx3/ysNkdnavfKK0PkylyhChfnC+CUz1jnagRvjrWT//zafvk21s7NWJP5AwzgJvze2lfqX6q1PKqeq3axtNupNnPtdNuudNoLlUJcunScA7Cey6BcuR0Wl5Sg/d5gEaNGBsqlqOtQzCRToGl1JmLSVQUp+dV7RlDgh3LtAlpJFAo2tiHru1cv1a4UcicOsK38r/SnxHIXSolrl5g/sBrvuGdxkZO1y/nhQQAi9IEHAu2JlwRrIzfDgwYuYFhAgN2uXTWcHmKJEslq86q+73LnkPhJ7zx6Y1wmZ2IZ70uIdwKvC63gzsAOoR2A4HSV2mqgpJTD1Zw+3d8Jbi4O1znIr+NGAxNgfVq3Ko4FJPu9cpkqNmzqevcwMmK6VBkkCu0lQ8UExRAD+IjL9MAaSSK8AHneMm/sJJ7wUNNSSR5VwmgvF5UQ9La0rEGm1x/v+wUAQw2SQF5+GA+HOINN61ZaSVXTyOv4veLSEGzUrq977UjbbqsWTbepo791wtNIztRs1N4qVm+o/eqOmENbtXim1WnaOYdb5a45AfWnX/Ww5qiCff/hs7ohzxegHaubeivn7gvuFeDx3ZepKt8WowoYAer65Zf1RFQq4CXlhg4wA/QB4DAARMm7rhNy3DMXJHOI5HMgADFgD5gEtsj8F9AJYPSDGmEBFyPouR8zbyG348djbUfNBGsv+mmdGLUYxR1iuCWzlGDygTe3gQAZ9HxSyRpWYsAgW7+9tFWO1QEF2dq1C+UKPTMT+MObjHbhiSdGSfsuyho3C9oo/StZzTExpV0M4M7FS+2V76vb4CsDJfBKlk+zzotL2rCk5nL/viR8KICoGK16P/5ib82oaxtEk/bYkCAYJDRGuREyMBQXSTZ0sDEegBrAjQQdwLmVq+ZQG+5nZH/IviUb148D2Y55FkGo66KhknL+dILWnPPjjw8Au+B9cdmzDYwf5w22GFCIe54scUAhDwiwxIDLU0+NchVVJsv9f9RRNdyyd975XtVW6gh7z7Qz5AKGUeUFwOa6RZg8hQshC+PHPko/gmSpFlrBmwEveYQEk8PVEiXf9oNYKtioQsvbGaAABnkQsKtjJL3Sr20FtwMSxXq3LOdiAmGm/1S9bGoUs5xqJYQqLF271QG8cELcwT8pjaqVsJ7Ny+q3ae/7g/+o8E50b1rWhoxdnS2R7/0CgMGDRIm7jIJukw6x4tL+CczJ5wXTRlu9Fj1yskmO20ZJX7BGw3buBUOxftVCxw5OGfmVRcUUFTvY0qo1aG0lS1fMVt+Jqxdbuz5nZKttXjVq0KKLxRZ7TeXibsvocoKC3dpTt4w7fboBDG6dfq7VHv+ZE4f+7rtop8vnrQ/7np7d6l9PWB0VMnARk13ssVr+NnzGrUgb3j0DpAAycDfuZZIsWR9VSf2ttijFqqVpRyWgLWUO9Oy1wb4XrFhX1EaUv8NOH3UH6iQZBpjBcztgwEDFU35q99xzswOzJDwQ8+YJKlMFBDYQGRYvNs7rBIazdu3iYgBT7NsqV9jR/VfZD/c8Z9sadLcNG5NsRPtBVq5MGyHe1VbziGSrcf4RVv70AdZPKdYRZMngo5XuoENZAFixlk2aRLivsKswtRjgD/vhh8C8IYdoEUfKjb9AoDBGsjWRzl1LFjaAPF0G0rF2bMf2v/xSXhVJ1uk6CRy3LzSSJnuZlxkNK6gyv066hXlhPjAYXgA5XvZmogmJB4SI5Vo45phGkrv5SwzxPQ6Qeg8JCI9PE6i/++677f4eseplm+sr1B+e6imJOVo//sG/haHaFy47ODMQF7tft7mDM+j93CvAhAxq5HMKr839nMwwm1ONBAOTEXqAzEvvFmUtXhgIsHdCh4ouKWT28mT7fNQq696sjAN/lNMlw31fBnO4WG5mDJH1fYE/rz9c0PvAiV5T009heKOTilLUDmXEv9TRAP3WTMtAxVWkD/hfN8AY5dQqqa7tgTKy6MpXrWdteg+yo8+9y7r3v8JpD/47/Ev7+b37bdxPb9myeZNsR2rgwgwe184dabqIdHHkgjkM7isn3xu06GwPvvtXpk3WcPeGOQMRpBuuQ8AftkrLqQ6B4b2cfd+ntn7YVPc9u3/wriLoS6JAOGMqYI78zB0AwZfXkXlTZSL0eGGQrV2z2ppJaDpNNFyMECOuRDJ0qWySE2Nf5JlQmYNkBs+oNLJDMhmA4hYt6lnFdctsxOOj3Wpcn8RSSg3GGWOlSgeeZBhFvwHQZs2KcDFzPR46Rgkmf1iiKLwSJbbodZyyXlu4fRzx4lnW79HLNJYmjgmMkPC1U92mM0riYYBB+cXB24hOkzlMvJ/fAKGspwofsXoLF860RsXL2Gn9tzt3PMcJ5ld+z162cmWE5j1SDOMOf17MXu28BeRyePsnyxjtw+DjB8TD8GJI52DMebt2bfWepIIxOyQ9tFKyMUOUFX67E4WmSg1aiUWLaaD7MGIB0d8qtIIzA/6ge4B9s1r6BzmMjJi0L0avsimKiSwEf/l/4nHjEv8HIEQezzOSj8BDHRuWdtfg70oaoUoIZRNLal1W1qRGCTtGjOLF/arrvbzrJ6v2/nXRKkPnYhH3UYqObcKOAoHnvq3KS0+mmNOtIX2fLF9i/WKFbtkJ+kt+I9CXWIvh09b7F/8nPyeuWWJlK9Z0gOpgHWDRYiVc5jBSMgDSjWuX2/L5/9rsCb/ZLt3kK1Srb1UVP1ihegOXWbx2xXwrX63eQRluiZLx1rJjH5s1eZTcuFtszYrderrYERCfCzEiMoC9qhG4HEs3q2aTl5W3VR8E1EwAbftiiOgW0irY8xq8O+VxZBj7Ir7MDwgzVurDGyMbWfdXv7MaXz9suxVTBlDbKhQyZMhXAmUzxDZNFBv3vctkJeaNWr64FLMyVpO4gusUUWLcj7BVgEqkWniPbdTQxm9eZL2su4uTFBHp6uMCcMkchi1kzIBlsqn9RnwcQAi3eULCYCta6yOrGl9Z89fG9UHiyo03Rvg3ERNZbs93NiQt+MEHMzG2sHjTB/7POrx8ofPV4uIFxAPC0HOkru5jj82yBitK2x+xyVa9VVE3VvZHjCaufG9qYO5I5KklWpHjr+urHOMNhBhQWFb0CjFAKNU9wHWQyQBPxsT5k1fX2YgRgVq/y5bx8BM4D5s2rRdTOd6dq2XLrheAr6IEkM4C1Dfr9Zedro2LK7O/dLmy6iMh0FGYv3g7ZkiypNAKzgz449G5qp34bomCM778HMki1cb9Q/Fn4VyL+bnvw7Vv8iAoPUfW7TKBO/QtwUeeEYLQuHqckzn6e+5Gl4lNBZtgUXOvPe+1KgR+5KLkZQBc5sSI+Vwo5rBa2VibIy3ArEw/16EtVsGEv09Z52hkWvBPBQNVs0KshDlTbZEyunQLz2SUXpm5dHPI1ORMDf8DXxZJ2Dm32b/5cficmzIVa7hXC9Uo3iUWZe2KBbZy4TTFD37j/G67xADWVKUSwOGBZgE55hWLZqi82wku1koJwrJo/oQ0PwB0QO+0HlY5vSUgTfjIsUx8hulD79cDEyE7zGohgWuaP9gr4soALsEgis3HKGM2KWmzRfSobdWEdpYpw/QP+R8rVqhklYpVsipRRews+ZLXgc7S2z+hyiRkCXN+OHYSHT744AMXk0d2LsLZMTHxcqlOUd+/2+uvq7yVUE5zBUEeo/InCCKPGzfOCT1HR5dyAA8QBPgBMKkrJTnsccW6Hfv+wNIBuDDUVRo3/knVNlZp2SmOhQNA+vSgAw35S7bNkCEBapHqKqIZn3s+wnr1CrhYdTgOiHV4Q5MlwW3C5X79NTB3SlZ2LN9HH6lOuJ5Ce72mNunmVeeDKCWkEDAH8IXpxFX/888NXSJIKAAI0ANYAhwxmERPxgegR/YvMaLERgIMyTImY3zLlo2OmUUzcbrYzCJFygisb3fJIWchHJ5urdu0tSn/TrZa9ZrYtY98ZpG7ztcPn7d273c0tuavSrE6iumZsTT7unV791S4JC9mAGICNsavxYb7l2WHgy1as8V+E8vEz1mhHdgZ8JfWmySN0Hb1JA3nu+4AgZUkg0RsIMSZlzkcbpSrpTOYU+Dn9fXX3E2Zso9LZsEEhgWABNAGFKt3ugPxnigIeAxlxQQY8Xuji0UCCBkrpJzXEmAsL3T870Lpe2kgZSVauEQo2f+UFqq/grwMti1h+Vwn3VJQx0liCtm+XsbvjrRU+/nd/7OUjets6CePKbBfzJjcyZVqNVFCSYMDUq+4XKXqyrqd4Rgtj40JN38AwI7paAF2izA7j/EDCFChzTPYI4p/+Jd56/b5jq+SNFJlDHz4YWm75ZbQQJKKFX/88YfYxEoCKbNskJBXNQXh1X7wLWvxy1hrP+9nq75xmkUIEMalB+Ihgk2t4ETF0zV++GH7SKgEKRSODXkcAMnrr78uGb9IFxd34YVnOQFk/5hhQU8VkiEubefOagKD5srCkfyAC5hKHYCxcMacAcwoXUema1TUDoHABtJBjFVcXhjwR2dMOPOCpevyATyJSQQbFl2tSScIUHNA/J2G5+QIJS3o1qPt9+23vwicNwz0EfSXaUe+p0uXgA6gdwxIweCCBfwGG0CfGL5Q1rNnYCn/m0OHrlZc5xQllEwR07hC8ZLxLrOY6iP33HOfA+OPPfaME89mK44JwL9YaLm8rtGbn/4uoOuZDpxD7S9VT/l/6AGZkmdk5NUUCEyW5t242RsKtQFDTdgBWEbGrwXdnkrHKbGnVMwB2PvB3cXyddscsCgEfwfvPPAAQl3qyZJg2S3CrLOEov0WG6Ma8rpGeVUvH+tcxp6Kir8dn0neya1RB9lvWbmbo/wN/Z9Bq8WLCsXJ6krFvaLSj3F3LBfN6QU/+tsTdApg9MqfeHpDKxO3uzsUwZEgWveEpgGuVpwCAqHoCBI0iZo1pUsOBVu/apGVq1zH3UgOhfEyxiIChNFFi1mHfvKRyYgH5DhWL50ll/Gvlpa6TeLQVa1yTQHCmo1Vsk7IIY/tuLNvtmfvOFMlzP50VSSy6p4YQKpBYLhwkczzBIODtwOHACZyZdBjQo9rlIGL1zEci4ibl1i/K6+8zD1hk2E6bLRC4pTl1eLDe2zC8LK2YPpI27qmrR2l/z9coRiyJqWVzlpLSstHCvV8LH0SatRybGSfIpBcRlnfMS++LUZLlFa6UYBE0+RwGD/qu3a1cMwWmbG9e2fWz/O22etd9Gjp0kVcosYjjyAGvVGgsb4A7M+unrIXQ7jXdiwAkXnZFOkNAEnIKBaNEi1GYKUmHhaS2MPLLktvpDdi7qi0kpa2RJm8x+1Z4ftEljfJG8EGaAZseyZ9ZscQEvMIs8ex+42kDeZwik7I1KlTnQu9srKXTzutlT6frfjJaqoOqGORpaRs05z+LrBXWue5lDsHgFkEpjm2Rx55WOf3SputMIXmHfv6d7PXZ9yKBFvX1A85sT4YHhB+KxsqY48H5qkKwF+Wnu23VweFC/J9Bri3kH35XzeEf3+bvLYw3u8gn2iAXbnYaFd9A03KavptoA6w34oJBNbQcnBUOPBHewA9OAschvcoO7ZLN4qNIuj8Fdoo0BHjc0cH95N+mwpeLI+PftSOVhAiacWlVXCbmneU7olMH0sJUZopvtRygk2JGwxm9ijnw1P5FtXFQ+/GhJDpu55+PP8uvsmBShArfnMMgMgELdMEeKzj3qM7uEv2R/z5YI2c+MAyFatn7L5IVLRVrNHQvVjIOULWhsSWiX9+YluSNkgwuqhjCYkhLK94whgByP2xhi27WPmKVcSy3aJKEsMETkqH7S5Nd/6iJB0IxBC8TxybNtkLAPg7ACh5/yvoGyMHA1uYpSnRZPjcqrZ06p64seD2ABJi8i6StggMF25F4s1E5gk8pDmX9u4yZa3c4JOdkDNC12QS44KcL3RErVsMRhMWiiocnuESdvbgrXsGrwVDhy5VxY/qcgdHek1z/v7ee44mbHDEEXIpl5a7eJb6mKA5qeakUgA9IibtzjsDXQO28PrCtPnLz3k7prSyi8NrpElNp9wAgH36eC0C75zWFi1GKZFCAsu7GrmF9J2eLO2+e3F8gS32/EWKZSd+fZkIV1f5g4zi7t0D1+hK6doMHTrTMcmcF34cmcOWLVsJbB6fUUWE7clIJmPas7p1a4kVnCTg2UH7SHMucJjIzZvX2XPPfeQyz0k8Gv7tG2EBoC4xW6w4K0JkuklugRqg/O+s0oMu0g6UZvIAYbVysXJH7nCMAD/om/QAXWgHbga4wU5ZlGSdFISf3QzKAze6vNkT91S05rICE3mzp8JesjMDJMAC8gB4MIHV9RvgB3B4SanbS43eCfM2uSRbHhyDKwqxzS/SFzyhY8VsM9iUf4NU88tSIR8TrD3oP44o/5fgz5WkWQOaROgQJg/sxw8gIBANLGIBER7kxw+wFhxwWEHUOzsn64UXbZooGNIbIKrVGAdPKRX0cdrUKyXUW9QBQuJqeIouSBpG/NivW7nAOhx1jhv7ofIHpq+S2L1wxgVXukI192rc/ijXLG37Vh3rQsUSzrNZYgl3iCUsJrYK13G5KnWtbOVaAomx4brcazn7OO/GZ+zV+we7G/Z3332rsl6t92rHHGeYRIqRHgGQoOkGKACgkDnrBxQI/kpvOENehCprTooko6PQH0hYWLgwoBsXqsUPQhHEjZ100ln22WcVxU4FMna9YQNUYQZJagBQEYvoN+L5yAz+VJkJMH4kdSzUDv0xbpR3myNBvHWiopijJUtWiD3bqszdwQKA1f3d5ewz8W0gLxns2aJFXynWrrayq8+2f/8NsIjE/xH7SDweZdZOOWWPq91t6PsDs+dPmGEVpKWPuMxovWzZYgHwBg5kIcPCuQI8wjqyP/bD+WSIHlvKxp9/brZ+fRl79tn1knHZJXA3R8B/hlzl83QoaS4zHEmX/soCImHEy+xF+BmQ6DeFXDr3LjiY5JCGuyQXs2q1AOQf8m4fL/C7Q2EDo5QM8reLxSxZsqlzy0+bMcffTabP+umzOmL5POOJe41oxA16OG6ruJ/gH1ti0Ho0K+tcOmhzeZ4Rb/vC9/ydgXkrt7jzUtRjLvJ3dwe0d+6LJFxS9qvQCsYMQJShDYp3AMzEuQHPBFu9KsVt3soUa1c/3uEowKDfINJ45QT7UHXEw1ZeX3hXs7KwAJCbME+txO/xA/blGH68Ajdm3mamZ76FEkIlDZ//t8RkauHt2T3FicmUQUKGH8b2DeIVM7PRNcDFfISEDj0ji6a1nqZbSPUahMx2jAe9HT8+8NofqPd1yqStULV+JlR/oPa9P/tZs2S2dTr2ghx1gcu4Sp1m7uVtuGVzogOFKxdOVQ3j721H2ja5lovLJV7bylWt694BieGsgVjAW5/9wV6+91y5E9sIFJ0pVk13b59RtQLg5Mzn94VREwEkgBBwCZOs4Rniv8ijAPwQgQZowALuCwTi8kU0OJzNlO/x/PNvthdfjHIuaLT3iDmkSgUxh2QBAwARnEZUGvLKzzpef/31LubxZflE35Efe70Gjzu5mwYGI7hAySTIx1AuDyYLkJOaeore3xfYnK3j0A5za4r72yKEO1Zl+Ii9pCQasYBNm05yMXF0y7Egp8L4gzUEg3cLqwnjt5fhR2VlupG1DFMHI+fFbbKKLGVAJPMD0CNBhf9l3Lhk/uIuX7Vqjo5/pk2efKNcuA1czePuQnYXSuOFeQ5nuHFDGcnLgHbJ+tnR2xLs7EEn2QeqarJgwe96kPjRxo/f5four9rYnDsY2r8mTAzVVchllRT/hxHfHAz+/Bvwe0ZheGS1iMmZpuoUPEATN4jXg99Mv+vGv23h59zPADfQ3xR0f5xKdBGf9V8xatGOmbUhZDjWf+UYD9XjAITpOd79XwPskHPxJ4RwXLCER4kJBCQSNgK+4TMEGNqNnveTSiM10zOC9zUfkAd+w30MA5mVhQWADADmb2DXyo6CbCa9K9i4vUz7PEIAEZAG3d6qTikXA8MPGv98ZMpRNBnjMwdYTwcM68cAcYukimXsJkHVUEY/pYVieTWrGQCDswQ+EVIkISUdk4baNF+W4f6t1/KIfOk7PzvdtiXJiknaYn+teMmyqkTCq31GV6nbUmy9BKaJKaSG8baUTXJnRlqpMpWsTKWaGdnJMbEl3DaVqte1u1/5wx664ijbOGN6Rj/eB5IkPA3AYHoJaUBexODB3vlj9qgGQUYpAJC6tBSvYFk4d6O3v1DvgJhP5O/FXVu2bJQpjyPDAJeSiXPAYubMNNUTjnYqKYwrlJHwQmwZ2bxxyqb98ccfJceSIFD5ogOHgBtiAiHr7rrLnJu7b98LxII9K8auhgOG+0qa8fYLmCJZBVZxu9AaiR+NdAzVhVxxubeQ9iL7R+8PNpL4SUqoZceQefGyeDPaU1iXtFyBTIwxMwbAbFk/+tO6yMhdAnerHQMaGblQ3xepNnCiY/Fg8wDBZEV7wJjqIWFtxIhAyY90BWqYV5JaQoF5SgsiO1n3u8WiKxvYrbfe5OaFcQKIvxQVuWrVGukAXudcyNu2bgm723ArSmRDbJjfOH7PMNzDPGTjuvPqqVMrF5mIQldxuFnO3XJurj/+k+CEef8rruBZy5MLwV/uLocDshX5EMTfQVrxP434sx+g4QouGh1j5eQl/Xrcatuq+tUONOr3we8Bm54eR8yDMuElEHJzlqc4b2kxheHx4Em/5F6QBe43kp/29dAT5d/A/5knVnaQKO0/DoQkDQYYzL4BFNfqSRbKEzDGIGZICoYfNn7qoDopDUc/BEnOWpbiqoVMVqo0LpPuTcu4OEP/vrP6zNMzwoq8SEpB7Rzq80DEQHBiADodjz4/qyEWuHUpm9ZZ8XxI6vAOFGBXpbaYQr0827Vrpytdt2HNMknRTLeZf/2sMmMpuoYiLaZ4KRs39AtR5butjEACYMsPcGCPAIAkQgCq/CDP658bPhU8/FpyuHIBf57p3p7Jvegtz877h9IUgXECnIXaP8wSiSkVK6aJCYx2+naAznDG8cFqwnThtsQdzHFj3rHjxgQABsjPGIlYD1Ic20+Ky/vOuVABbIA4YiNJGAE0Vq9eS8Ax3sX00d/bQkG0o/YyAKyEfL8xAnxzNDjiLn8XUCuprN7n5FqnPi+uVG//4cbOcnJlcCMzpwCnOfffbyvEYq6U7zu2Vy9bJqkY9k/WMpnOy3Xyhg8fruzgJYqD1ImxjW4/JGjg/iYuErCHFE6wsexXUpd9Boun/JAMS+vaU8ypysU1DizCjUxoJa54AL+n/aiQP4FRgb+6anfddRlxlgA/bMqUuRLRPtN9XrEi0V566WmrUqOe+56Xf0Jl4vHDXTSaX8mA8VtZQ6oJiMnOVPhLoeXdDMCuoI93ZKty7oaZdz0f+J4gUmYVXh8HfuJzuEd0kzGIM3CS38PpdYVXFTbXI7KCXcHkUHglDYn15DsGfsJO61bZ5VeQMAKrmKrfZs9mCyiiNXh8+4reor3ewwJAWpKY8af+aXhaBQCCQCcpsDHYYOQ8o/adZwx1vty+flupp7HvVJgadwfrOjaMt6oSLARk+sUT/duE+1xKSSdkebWXH324Jidi76GF2zRXyxOWzXU1eP1IPlcdHeCNVsv9S3bvgTQqjsSXq+petZt2ytg1GoQrl8yyX7543QGZuckRYsducjdtgA2M1xL5JVu0aCuAt1IxghUFKPa+TLnZo2FHHBnvVISA/fM04tghBBQuY1iunBoA5hQFqqHZB6DqqaSHSviZ0w03Jt7pW25JFWCLscqV54lVquEYJa/NZ5995piwttCQMrJvS5SooBtQ4Hj8wOunn5ycXjr4C/RQtWptuSWvdPspX36XYuhWO2CVJDSGJmFMTBmtlwtR0i5RynjEfQyT5te2cz3JVx0tdAwA7CEgeLW0CgFx74siJTZxr/aB3Wf6y+8KLmJAHuC4vBjMTUJXEULoc7VsuoIIYUvJ3iYjF8axePGaSphpbrff3l9gdW+gl2kHvi8AwA1os/gMfT8AH7GeGLIzHsjjO0lCuPyJZSSxA7BKbCKAUIo7AeMJNsji43WRpNtTT91vHY44zk4efI+36IC/k7HXQw/F1FSnkkOh5d0MEILEvFJT9VD7DffPwrTFkhnxLyj8XOBngJC5YlJVQR/Qz0KTueuBv30dhAf+/O1+/Cd8nWcHLiXJl5XtfWdNb71TSFO/684mzNvomL94ZQPvr3Hh+mNd/pZooeoXODcIVURIBEEjJyf/oGTdHd++gm1cFqkgrP0dYfjtF8n927Bt3/ANCuiaNUoAadblhAIxOgSoq9dt7mIFF86ZojisCnJ5PuOYuyZNpKSuOzZuxIkTN4gp+1CxYmt0Yw+cVIABrBfsYEREBTFYFQW6dN43xrmyYyLrMjF+XbvstrEvSdj31gAAy+4EAI526vXVV185uRpi02CkzvNUh30dAcCQtRk/frxzXXr6dQAl4vtwxcLEjZRODQCtWrWeSoKo4/6f/HgERtP/nV2QxcoxBZIsIt1xc+xPSWm5r7JiiI3DcH22bbtLCRob93K7Mg5A3mJRaDCQgD+MbNsLLrhAAtRvOTbwXFGansuWbQBgaxXUCOjkhVv+b5UcSVEKNOwZLt6qcmfzOlaDP0KZxv/8849jFal+snt3pP12+Vd27L3tbPjwQOygTp0DcMHH6QYU9AeWlPPAODHAvK9qoJOjgQEmwTpdpjAjAYj2MJbEBVJ6LisrVUq/GbIy5SvbFfe9YzXqqsODbPz2UV6O+B0euAmlwXvi/908yEM8ZHcPK8I9Jrciuwf7wGF6FsjjdSAtVJz/gdz/f2VfE+cn2cr120VaBeoFc1zM7f7YvpJEqFCSlYVFdMi2OB+utkbYmTgVGDfGm13EGmrHHHC0+iIGkDp5a3RBAwpx4ZL1y4ugyL6i6r14mVD9BC/jRxO/eha124M3ydH33dwUE5a5mLYcbVgAGietX2WlylYuACPZM4TmHXobADBGrN/pp5s9/TSsTayC8BsoTixGGaSX6YYe6USPiT075hhpHCmDAPfw119TyWKBgM14bZOgGLwtrkytMIpzb1ZUNghgplTJ0jY/ScBobpxzNQIgPUDhRgI9RAmKICNZ4/hvvrGFGhiSIQCesagdYyrz5ugmhOxkm1Ubd/Lkya4dgMkzsnoBXDBhlIajsgdgcMaMWXqwqqMYwEAIm2sv+jICv2WQwXoFZ9juUhwhiSeALWLlcFMT9/bWW5FWfuZ0S+3c3tZsLu7K96pQiZM4gVG97bbbjIQUmE3mEYDHi/kA3OHqxjWMi5k+mSvAOXMJkGWbTp06KXv2ajGBoX9UAKSA91mzluu8XG6larfTOAMZv+Rv6PAFNgMJJ/4Mbg5b3TuAR3Y3BpPJuEnKwCBf5cnOMEAkcX1I7lx9+Q6LmPJvQJsnvQXzFjx3GRv7PniJJUXEWBcE8OcNjd+zGgr+5oUhPP3R8JWFINCboP14JwHnUAWAwXFe+zEN2d40OLM02xsWNsyYATSVtyjOj6SOHyYk2DFKSopWtYwd/izZjNZ59wGvKg+ODhuF6DYsAETaBa0rstS86h8AQYwf3+BYwBB9h1zkgT9W8pSL1g1Pt34jpq9upWJOZd+/fF+fi8sHnl+2Ztkcyag0zhEzmV9jyUm/xN2RpZsTRjUn/ee2bacjB9l3Hz5rk+VGpCLG1Vf3FOtn+hxgbooVC1THIKYP5ojxA0p4IQOC4epDFob1rVqRiLrbAbIEuTsT33zTvos71ipUSXZJEYnSHgHEwCo5A3FoWXEBM4CP/0V83YwbbnAJE7MlJEcyBa5NXhXkg4xCnzDdqGsMK3e0/KMkdbyhWnJ8RjewSJFzxJhJWqd0ANxUk5Zip06VHNDxeZMDFB5puOmmZw2xj67IhlsCIwfoI6Fjq+rxdrz2Whsqd+6/0nIho5j6wZGRm+3VRz+xDd16WmQUgHizjRqV6lzryM4A/tAkhA0E5DGPvAO0YC2XLNmguZ8pl/ICaRy2UcxhtJtLspZphxubsnSLFsW4cnm4v/kd8Btg8lKlZj/77JtOpqfdgFru3HhtcNMSOwmQo3wdRuYt7m/haFfGzQOAVARB4NkDgOyLKiC4+j2sDIhUorH99t4q6zf+NVt+b3u54jPLAwX2Ev4vrCzWtN0R4RsVgDW4hvGM4MYstP2bgdUbUlXXPtURGtyEDyXbpBArKkoEqnQdSiM/vMcK+POMc/f9XwkO90CskQdBEi3XIsk9sHrh8BWkmKfG4vWX1TtYCsYbcfpQFhYA0phg01AWbnCh2gYv8wQPSYtGBoEn21A2QUKJaA3mNC4wVF95sYzs3yYdjs6Lrg5oHy5uUSXhCpqN++2TjCHhzgSYURasUyfFk00PiCh7DTwXn/fde5f3Ufp8gW+4Qfv3j1BcWCkrpRW7Jbuy67XLrPMlLbzmmd+FNHcrKWDrPffYZqGGzQJXsHnea8OGZAewHOgS6iBr9zq1BxzCnDFe2CNAIeLCvDBcrd99971ASgnV7V3tXJT+HcuL6kCMwgH3GKhGgNMzeVwFupRwsW2jipSUduCX+EiYyFgpUKfJbRsjOm2mQFK8gFxKSpzAXW0b8PZDOv44B2bJNmYbSsihZXijMihu1xhvRsDwyCO9XWW841rv3LmpOx7c2YBOQDHJGrCg2GOPPaZhSoppcawpB8QRoSTIwLwKkzpgxvwQkzh16u+qfbz3fojdRMZH0+3K2kGkEiKJyDR1jT3DxUzMpOdSJ+v6xKNTbeLjo6z7vX29Zi65Y+vWGvZpkReswpyAWHiwtmBG4xAfPvvsB7f0uLP3zH+IZgViEVVHCgHg/p8KbqB4nsqVFC19iFnj6iWk/Zd4iI26cLjBMwDpBfhrXD3OmkphhYIbGNJ4gLbRMzc4bETyCEQZRThIZCLxFRMOzPDE+j+7lTn4E5VVWzpOTzrJqtle60KhVOplJmzanqELyIFxkOGM9RT1LhMX/gmNrNwDwWzh/qVKRpmKNcINt8AuX7N0ttVo1L7AjW/C8G+cThySJMTRefFeuFErVaoQcryQd4j6UiYWwOA3kjphk5xJp+X3W4faURcLXYQzgb0IJSsUF7gp/u67Vik9UwCRYvqCXURwmv9L3LlfS/gP3UJAGO5cXLsIRMP0PYOQXrptEiv3r4BiYueeVn5pJavbta5VO62rW0vJNBJVzj7bax3iXYzUlJnRVvyai6zcurlWZsaYDKYNBu6mm26yqnItV1ZnU7SvZ55/3h038XBkuhIr59nnEtvDjXq6XNlFyYqQUvZuKTn/9GNAsDpUdjNAcECYosqAuy9Uz5h4wXvv9fYSYO4A7eBESrZVrHi9nmDfc4CRpJ5Womc91patwJ8vvWR2+eWBZA2WwXpmnD99h5kETHvGQ8CU8Vut6ds32Qe1J1m9BpF6WAhoCkIIN4teGggAPVKTkAOrpTi7U9V+25YU8+WD5KCHA9c0lKDsgdv7f2tPZFpz8/UH5B8KR4jruoyySvHQ/ZcNYjafvaMHffoIeyNDGEHo07pXURYvXq8IFwJHGBz4hsQPEpdYzncUV5CWwa1LPCvvkGm5VUHRNIe37JwAysShEcggAIyYR1GWUnIGRuxguVLR2T6hteX+PbtXVbctfzjwUAaKHisxTIQ+87PmJu5fyqYdirZO2nzlq9QpUENfv2a5rVm5zI477gIXZ8bgYNUwTwLGffH94RKQd9UxfsHgj2ZgFoSgPUs7oq+tXpN+QXoL/e9izlzmCbor1HZLt5LFFXA/4i/XV/pDmeINk+R+LK6Ys0sc+AEIBpJXenubqXjjcufKjRcl2VMJHwPuvtl6vH6upT3xrGP3dn/9jb32WhbgDz+okifIkmhVZLo1ePxSi61ZyV58dofAsck9PtGxYR8JxD0rFHyTXNgtX3jBPlNZPeVLuOzn115712naeYOCvURyhde8pEoW2ai1rSxRzTFuaP/5Qha9TbJ879Wrlzs/gF7czk4VWjIyxXduduCPcQ4dajZ4cIybKxhTACDJNDCKngnbCcjuAX8sHzEis+sWF3SGu17rcfHPXBFvZRZOsnPPV7xjeeIeA/KDFF53JUWkcejSgL0dee8gSzG1vKV7fL011kMJLL8JCc/458+MZQX1Aw/FBcm83/uCNKbsjoUbJkUFDjUja9Qrm3qojT0n480O9shJfwW5LV7R9/9cYW8PXW4jZySqRNxGlfdb71QAcAd7JBfvFMyILx7tCmlQKAPLLfhj2wBC41OQlZXsS9cmpW3xmq0SGVQMkly1xKCk6R8HGhJBwmXrtjoXLa7c+tKwApESN0h7DA0aDJRKiZTsGjWFp0jnhnrAbIsruIOoUW8iED1EG2fywk1S0A48CUGbDlRchw8DZHd3+2y3aMZYa9zuqH22K2gNkFwRerbIImFP80EZ8oIZ8oPKTjutlzJEe9k3YpXe1t38tttvdwADLTmM5A9yLzgMXpKNyyT94Rql//HiwrxlVAD55RdzCSbeMveOOjTJH3RGMV/F1Dn6Kb1RdIySlARQ33yzk4tfI8YMFyjxdn+JviMRIqSJEZQPOrMOjRrWnvAF5Xdty/tf2l3Vn5b/s34gEA6qDl8ooAWqESFlxiVGz1GQAqi7Nq60O2+MtmtvDGgFlilXwa5/+GOrUK2OPX/7aTZ01XJrL1cvQsbECBYpslbu2E1KqHnaae4R31a5cg0TTnTsYGJivEDoRsUslpAYsrm6xsyT9JezZbB4JIwgaA07dy0UHuxnuo8eTWhhY/2fBrqDLQUo8wAHsIc1DWe9e5uSR0zZ1nsqkpBEQ9wmMYgYSc9/TYh0NZ6JDeUlctbeejvCmne6ztpHv2ZRApxgTcaQkLBLcYQTbVfiKussajLp4tudlMyppwaqt9AnrvJyco+vWqydF3BLlPB9QbL9SQYsCMdBxQWYlkPJcBUSl19o/70ZgO0L1v+EqcZ7igwf2KqEtJlJ0MUbALEGFqqlRLE/VRKwqSqskWVcXJrMyOqBnUiqhUEMZ2GRAYAP8WZ2niIUilghAM+zNEH0EzpUdNkl81akZAA8D/x57XhnIDmxYP0rBBVhgPCP89RJRgsH7wkken3zdJTXhvt3Y8LyQzL7N3HNYtXrrZ3XU7Lf/c2bOsZpxlWoUN7eU/bpLDFEKbpBK4fCZs9eKcHfri5LFoxE0kBuTNjBMWd7bUvAGcK/CMl5ysKeLxQmUK7SL3cOcG5aeaczDMHkt99+x8mcAEycqVJIptpo0F+URYNdTGc0F3Q+y+oNam+jkrraMV2TAsATBWnSnvFn046KFzCAKEmDdKWzt00U1xQBzq3pIzj+rGvt6NOvEciLstn/jrE1An+R8iXvFoCBnRylpJdGAlmt5FutIYoNBg1JnenTW9pllwUqta1cWVol6DYprq+aYvSWKZ5xmeobS8tPN5VevTrqe4xLeCGZI0Ys5gydgE1iEStWrCSgVML69OnjMp4BwV0I2CS1Nz1Ll2E2Lr3aJv9dzmYumWpNz23nRl5bcwwARIAa2RnPSC4Zqvki1q9du0BbEkDIGk4/DQJ4gUQQLwaR9dR77tzZ6yUAXgGwmzada1/8dK6l/ADLt0Os7VAd1zQ9MJS3OM3Fm0rkSXnnCcVf7rQnn9zlliPrA0glBEFPSns6LaCf5spVVGh5NwOIbh+KVlEVtJau3XYoDr1wzLmYATKHeQUbwI6HMMgvksQg4toJI63duN3FC+KJxWuQVZhDWACIsCwdB9OL7PRo1barWraooyspS3IgfjpRvv5XpebAsihebxXyPRBPoAnLJf58CLp/t6Yk2d+/f2ZFYorZL58+Zx16n2LlKoVnYIIvrvz8Pvq3L133yKLUEU3XFsCkBIP2pc0ef3ylhI8DmbP7OwZyK8Bj4JQMI+sAAzWwMt1Qd4l75WWr0Lqa1ekzSAkNkdK/CyQrgNF++KGcgEwgRsOlq0IzASTJ6sBgFkltxaVMuurw4Y7JW1qqj5WLLmpbWnSyRVGLrY6SUxxAPOKIQPbDt99CQwWoSpapDjKBgotEPXZXtxfc9Iy16nq0xSqpxLN6TdvpmIqqTnB9FxNIAspbos7KChxu7tnTXhUwLV36dLFjVRwTxvF/q/2g44cMzM033yLpnI/FDtaSa7WtGMFYiTdPFfijHNEOMWipFiHQ1FJpu6mLK8rdu0QJ00sFFnU9yd9Mdi5ZxMFsaMSdd9hZapN8/lVC7gJ1An6xelGVBBf2k08+6WRnOgvBoYtIJRISVMiy7tq1qzs86j0D8po03Gn15dMnc9kDgDTgnIYyMDmng/bEa+J6Pvnkqx049rfnIQMpxJ8EuKnPjGu6uOjjRFWsKcg2XdIlxP4UWt7NgCKr8q6zA9hT/SolCgHgAZzvgrorTxg6kBG+0xF2lJP0jCQTNAdhA8NZWAAYp9qWlFsLTtSoqqBpyr79MWX9ARek9Ag+GMUDAf6YtEUzxlnDNn3CzV+BXP77ly/bV+88LoKrtis9BsPx3QfP2OmX32c9T7zgoI55584dGfvfBNh55BETMnABYMW0BpdfBsOW0TJ3HwAEkGzoxe1lYvq2RMbp/AbizyC0mp5Zy5JHTZY78USl866Xvl5tuUkXK1ZuqLBMovUUqC5FEWKCDfFHKns5Q+cEJWdEiyWDIkVmIZgmLp6v+9gJ9uvUKlarpmKO1la2P3ZdZP2EjWqW04hAZhJ1diiNi5vBDhtmqv1mUXK11laT5QunWae+AzMNPzom1mo3aCZ35lC77777XIxdilqkpM8tZeYef3ynXK5nOVDExrhuybYmceXpp58V+Oom93jvjH47dGjrYiwHD8bdHFgsLOdcus2bN3Iu5tcUxAhYa9mypWL2RuwFAO3uux2LGYcrnDRfgh41J10lcQPAw01NljVxjIC6dVJqxq0MIPQMVz4SM78+Pduqpyy2ebuFwn3Wq5cJuIltbKwa5MLLTLln84XivxKTfJaY0XDuZi+jHLFqXhigcchX33rdFLj3pWu37vU7XOAGeQgOCEa1Vd2SGRmYh8oh1FAoVgWx9SQEFFrhDISbAci7P4XTjpenlmIZoSz0UrXkadMDf15cHxfdel10n45aFaqvA7JMt0nn4/bSofNzp078ec3SAu3+XTJ3qurqfmKzJ4+yxq272y6BgFG/fiFcUsVVsUCYl5vuVboJD3nzQStVpoLKwjVUYkhNuQmL5uf0hex70ezJbvn77w9XmbfWIdt4sZ4hV+ZgIYmvgBlYo+AYQbrZcsOdlvLMdy6BQl5QuTOPsaKnCbwAxgTEiss9XavWQs3fVgGpi6wCHZLuKp0/V2YCpWbP8FsK0O6uVNkiKOqL6rGydqMlo3LCqNtE4R9l7dZNs16vvGp//JImliraruusweF+BMUwAFykuIEVDNdAbtFHBDIv+Plja9GpnzVs2cXbk3tHR/GD525XNu1LrjJIppX68s47DwugnWUwaiLznJtzw4ayisVrKoDVX4AsLtMmo0YhwbMH/LESgtQjTJG8ueaaa9w2lHqDAdzLcAf7XMKu9q6vEX1QLu5aNGNkMMDoElLWjhJ1fjv6xmYCek1t/Zzr/YvFepp7KblZjGQgfJLycDw4RN58sw2Wq7lcFrGGTDWnl+kGFFMZ5RuJfteq2yjTfgrKl9kqITV29oaCMpz/1DjQt52/cktYjbSCerDFFAc2oGsl+3jEysJ4wIJ6krI5rvzOdtZPndMVDDec9Gf9cKsDy724Pp44kGbJiVVUsgjJI5SRI+CW7+EMynJfxoQN6l7ZBUPuq+3+rl+7Yp5VqN5AN4t9j2t/95Wb7ZFSefT6E+2f4d9ax3atbeaEP2zh9LEO+CFKjJQG8WHUsH1XUift2rW31x++0u6//Ei7fkATe+L64+3zl++0P795U7Vch7nYsnAZ17kZX6htpo//VR7PkgImYtCCjKxPXIzBhrfVY3/961gmjOWSGcBloYw6wa+/HmKNNih/5emqphEAA66FZE5cAgZoUeAP69WrlwDkVsec7UIfhg1IoSWVldg9WeL/PW+Ltla2SU8PtzHPTwwgJ7FwTucEmkrnosoJ7Rw7GCGAfuQbp9vlTUcG+vJTWGjQgLrSY+Jq/u9/tl1M2g/vP+724//Tpd8Z1qpjLwdgYHhr1G7oVperWM29p6Wl2kMPuXDCjM2WL4+SyPOmvcAfDUjAELGXyTJlzAJo0xeMElrsTdbGfloduZgrVGgkb/kIiUc/6+R2/F02bx4hxjEyPUbPvyYw/cjpcA2MH5/sru/Viq0sJ9dvKKOdQiQzZT4PFt35+x9/Wpc+J6n+r9jLAmaE4FDjPDgMp4AN85AezgrVpj8kTddzalBsPbepQzkz+5A8D/s56J279rOD/dxcz8P5Z1yQlZREgg+amr/8oFGIu0XtCCfbskgZxpSZKaoAxuwWRa5SNlaSM6qLWq6o9HO25N/g1TPu3/qteubrPvan858+etq51oinCgZO1K5Ff80zsh3Hjh2jWK8pIqo2OeHib7/9zub9O9JG/fJZhuRG83bdrWf/wY5NjIqO8TbPs/eZE4cLVPUUI7c30KPmbGWJMoMzYHeIvQNzYYTV4VWE0QMjckOHPFMRDhd699tvgZs7eMuPIXH5KZdhb1N9371ThPduFqkdkrzwiYurK+20AMlM+XdbY2vRtYql/fi7DS/bx+oN+8fq3XWGxQ9526zL0ZmZMBgpj5WCZhNzWLRRbRMFaq6Om+RSiDeMmrPKyidqXHIfA8SPOeUUN6A23Y/fa2A8lJxxzeO2+/lbrGWXYyxCpcw+ePZW25qy2bVdtmypXOkpyqQu4b4jqPzBBx/pGthiV165V3cZ8+xfgxdbnl5TWKEpliDg+hadiLwM8Yf7a3PnbpM6y2IbqJp1U1TKjXJ7jRSbSVxeYuIWaT3G6rxXdy5artl//52m879H+xPgixxNiqojdOrUzf0vhBuTPNcuwURT7di/BGWeN1ASSlEl1xx71g3hNjtoy/k9/HvuxoO2/8Nlx8XFph2Kxr2V30C/cR+l0lZhlRD/rBR+zmoG8hUAcoHOUhpym3qlrFuTMm4cJI9AYTeQFAU3OWh4Mlh4EuOm9ufU9VmN11rU0h1d1qpOKUffB/0PZLltTlYytvWrF1vHo8/PyWYHtG1sbHHbpjtbKNYOoHcmQXA+Y349t2tP3dVvSK8+8cEHyQKLG5QYO1I1Y+VWvPdCVZgoZ/3Pv8069h5geQUEkzastWWL59n//e8O36j2fKSqBq5rAJy0i53rcs/aPZ+8Hz6qQyC/B5YDpCifwGnDcbNHWQUSDvOqhQS+6S8dkHVLsdxsGG5LYt9gUz2bWrSD2Ssf2O75y+zk26Mtskx9s8pxgZ2p9FpIbRUoKJhFElCQoZk61ZweixI+vhpSyWrXrG7r0ppZP4HBkiV3Otd9h14nWa+TBnu7zfReulwlu+L/3nfLtm1NcQCwUctONnncUDdeBKtff32qpPFKKuaugbDmpXK/XqnQvMkKVWzjgJDXoTzV9uefpkzfwBLANlNEBrEzhwIDH5mHV1WEd5DoVWouhzXpJ7oEF+RuKAHiBRemb/D997/KY1xZcYBNde6+d309/vjjakayTREHBDdvXuD2RdxhWlpHxTFGu+V0wUMPyR5FVeoQjcisjAcJQhM9myzq+HMBzRv6Zf4f8dYfzHf+n2dINmujgG2h5d8MkNDYoOqe/+n821Pe98xvOWoYaTwFpxu6uDt2BpbvVPZnuBq+aPe2kYbcsMKKIt7UHbbvUfl95Ee2Lhe28DYXcdn0cjxkNv34T8I+h+Np2pRXPGI1uZbzKzNu7Yr50lur70DpPgd1kBocd85N9vL/XawbW3+X1egfBtme4QLh/e34fOaZcXLBxYndOlvSIWc5lvBWCcXBKH3z9sPW7ejTrcfx51vZDPfidt18BXqCbujB/QZ/nzDsa3fTPhHwE8KIyaKuLt1m1bUuG+f6hSEE5CEdAnghLwPtP+Epp3vn7QLPbibDnUlwnJIt5MsMSRGKpHMyMmyLhEmJEjWF1xq50D/cpVSz+HPHyVY2cq5FNhGgSzcqbUTgHg5l0JVo52HDh+/Zr1yqp7yjaiRP3GwpfU60P3/fJVdlpJ0SV97WCWzxf7IvI0v42a9maX6jbO7UsfbCPec7rb5zzqkvjDlM57SpmLKqAsaVRUCOFghsg+Z0xjypwpzL2fAAIPqLhCR6xKV//1eKQiSrl7rHx2uyAZohTSybUGJAHZo6b+jq+E7s7t2pDvCz7UlC6dRV5gHFu67IzG7adIZA/miRohc6Zpjkj1DmJXeEWudfxgMD18r8hNbGr01K8iYrXb6yv8lB/UyC2xiJ2y9YlXJQx/Ff3znVqqi+gJzYoWg8JATKpO4BgBwHoM8DfrCbCAkHGzq7jarH2RIlF/mzRoPbFX7/78+AbrX5Z5Xl/s1u+aLv/l5jCRtTsxwMMYIVJYDoWZkS0d7HPH9fpFi6Os265nm/ednh5k3rXXfEZJFh6VmKEhJgabIDHNiGMDQqM5C8+uKLEarx2loZpr+5uLcBJ/e3Yd+9Z3dd0NVuGdTCva47uZHdekYru/2sNvbb5y+GZCC9sfjfqf9L7BjabORM+B5eXTMYQABgKFMei1NaoeYvsW2K27cju8MaB0qQQeYh6we+UmjZ3kblCo86xF+s5AMnwizGKZRp+qSLF1hDTdy4uB2u2ghE1lkpr1vtamkCU2lyVca4Rriv75P/+TS5SN9VsshDKpa7ACXrcIa4sY5Xmiq2s1df2x2hf0X5vkt89YGdeFlVu2jDUzZYDzlL0pNmwnXjX15UjDBsbdN2veysqx90q6hhfPPNZNouk0uYYyqm3WwVuNvmpBDJV/HOgxJyXX1eNoTwQ5QZljWUcY2V0HFSr9czyiGPuO4r++vnxMAiUopBZhTn5aQFAdn4+HYuFAGXL5IwbaXRCPjTkB2TS7J13771bKEYVaYyKE/E262AbiDn5uGH9xyLt5J/C641jHhRQgsk/6frvYVbtnTeFPdeUP7MV2bq3BUp2a6aVFDGfaiNo2PD+EMW/DHX/LZH7SPgLxT4o8pWB6l7YI2qxbn3wj+H7wzo1r9/Rgk43LKNqpWwGcpYQ10dY/kRzco4d+++9rBDkZAkmnRS0WOefsMZKuhFfJC1fHy0K6iM2KEefPLMAu7fRXL/6k5RgK1kvNCIjDgo6sTiDsNmzJiRqfaqWxjiD8kVlO/iHReZNHkdeIJ5obQaEh3vSZrkBZWS4EaPWxmRYNx+c+V3BfR8/e4TNmnU91atbjNL3rjW2vUcYG17nLCX23jp/Om2YulCe/iBp5ShGtgv2am82D8ALlwZOIYOjuDGncmeey2gGUJ2rs+CcEZgDfIsqjTiMh3EXrnKG4hCB3eKQDTgzJdM0ELVOkYLCY0c+acTQ7aoPm7gHTqkSoIlWgU9JBmjBJslm5KszmmX26srF9k/AoB333uvXK2XugSHYsFpyAxS8Y7YO28qjnHUMJU50RdKWxD7p1jBFLnou6vU25rlC61S9bqubXb+zJv+t33x+gPuJsG1TP3gBg0quoxevP7IruDCvVxoecuWWCVQBM69coVcJTVYNpJ8iRWEJFWIqZNc8e+bDF6Am5cZzDqm7vxHj7U5i4s6RRj68Vz5f25sa310yJ6BxVNT6wpEVxAj96dLXMLtDGBDXxutvkAsZ6xiVrc59s/b1v8u/Wt3zdZfNszK1aK2awf/aqe0A1OsYikuAYQHHWzy5MnufUPCMvdeUP7k5e9YQTmmgjiOOqqpe6gbFR8sKftHwT25b6tyqgwR6TaCoCm0w3sG9gsAEj8B+PNYua6NSzvl6bWbtrtsYf3GZ8sod7JJ5eWyAn90BNCjT+8+gtu4dsXizg1M7by8svWrFkompa67geZVn/nRT4tOR1mn3ifbX8O+EYCLzdjFVMWWdSRbNQv7/PPATV5ybA6QEesF6wUbCPjDvCSMUqLCTtednFewAQxvveVW6z90iH3QoKG98+QNRnLKaVc8YDXqt7ANCSsNlmWqtAlPLFFKjM/xjsnBheoV1CBmjxv5Mj1AwLaFtWA9F9y3wcAq3MaoC3uG0Bw7JCNg2DD8jN6aAAL544+A/zN9KccP0CERhBg1rHjxSoqz6ys2s4g91radjVSSwk1PfWNVajZw60/dlGhjfv1Y1UOeFZP2m30+6DRrLfQRA8ryGWRkr16+EnfEB0raRRkP1l+gvoMYsePvO9/OeexLI+YvO1Zc85yWqklNt9flqr3nnnsUK1fULUFyBWD4vMrOkeBSp05Fw1tLGbfzzw/IEYJNkckDiyKejFQfsoWe9ex5rsIOXnWJG1QIwQBsiVuLWf2GgeScE04w1y8An4cLv+kZxfXXrt1AYfG3BB5niJ08R4CwnMPkAfAX2GLz5mICr1v1pZi/C3fqUJ2BHTzixl7WoGFEBsnIPrmuYIq5piEhedjAAK4XiZ2sVrOeS3gKLC0Yf6mwVGj5OwPFVFKrZIgktPzda973jh7gkhzUM65XWR4CH2uIRw1QWNBqTOf9TBX2GG4GAo8C4dZmsbySytE0q7kH/NEUWrp1HUl8dKtiZx5RVf9k+uXNhtEP/e3TIuTF8/0+EsdBIGw91SHOSzp70YzxVrup7niHgAH+mGW/u3f27NnKM2gs92ToA9i1crVFJK5XhYYA2UVeAkDE8KGlm7zKqh6hsnvCDMTwh6vAcKwEkKdOm2o3qibs9CuvcMxKhXLx9uL/LrDbzmrnZGo+efkeiywea//7/Cf7v/+LdvslwUChdc7Yh2QKM1x13hgyvas6hjJV9MTre+RFt8QXU5apvfcFqgkfIO+qN+yEp8WqOUqRNj7g7KhIDjRE/Tlc6siGoBt3NDqAtllAOdWW/fubLVLJtSvvfz8D/NFtXHxZO3rQ1Xb78z8KGMXax088Yb9Xq25/+FJwJV3nsn9DJtQqFi5G26zXPoesXm5fX9bHfvzwSUvdvo3us7RqdRrbRbc8m9Fms+asUeOmcu/+JbxczMnakARE7CjyQJ07b3H1ggFMAK+LLgoQpYRKYpCkIgwdOxdYEmBrN2yIEmM4y1vkHhyQ3KEPzikvgBdqOSQ/e7bozDtt05NvKMkFEBinGNTrxAD2EUP3hoDibMc+chqI7cTlX79+XZ0moTyfcb0SzwdeBtg1bLQH/NEMJpGQQ65xSj574E90uS3u1NXWya187Fk3WomSpX29HvyPsfo9K7T8nQHcoP7fy/zdW/71vjKbEjYAPVzeRzQrm+m4edaor3tnoR2+M5A9hBZifro3LWsVQmj6xafH5QHMsmsUOqauMIWLKYactHVHyE2JJyyiJ5ZQRmZTXhjMCPp/7fuemRfd5Wsf/4z41kS22AlilYjHwmA30nT3jH7uOfuxyi3OxStyygX0Q6598sRyO/6Zvnbc6QPNllzuBNWQXSm2KyUgS+J6CcRbeTFX330XSHrAK6qQNYeZfB5S96MSTcaAmLLWAmS4iilPhksXdzEJKUuk3Lu5WGoG60eC8rhxAZBJli4xjJGRWZxDyj9wxyeWzwvOSx9ryDcllDgUwIBh+wgAIwv3jjsk09LFHOIBEILCCIIDSPKdGEQhGBikvbClgtN2aW6/EgtYXXGM9ysBIkWTG33+zVa3SbuQw6hWu5Hd8uKvtmLRbPu/j56wc195xWorVrCe3OfxpcvYeW+8rqyEBqaU7ADADepliurhpsqVfL6Y1m8+fdmeGPOzXXLPW1axau2glpm/dlD2dpmKNWzL5kRLTtpof371ql3UtbO17tTZNghtA2iJu0NAGc3IRo3OkMu/ptOvJoaS2EDwNgnNFDxJ125219ejjz7qZIOo41urVjeFB5hRCIU5QzoG4/pYvz5V0xmlecz8W1Dn7Xusjmi5DsLkPATg+o2NbSHwN1ff5wmbNzYY6l69AmB02LAGTgrGn2zCGAGsZHsTu+iZnn1cf8Qj4mVnbJnwvOSQPutxpm3+5y9776kbrKgeAJp3PNLb/KC/lyoefdDHcCAGABF1sNzdTZQAcagb1WGQUcvKqNiF2gaAN1Qs/qgZibZ+c2pWXRSu+4/PQBZ33L2PHOq8rDT9alYoZlQHyUsjo6m1UtOb1YwzXMKAQejqUgJ2iZuFUGTlS4X/cWRceWEbFRNUpkIN6arl7fHlxdiC+xj1w3u2TDewRoo3o0wXIKqLwE1tUUqRusmfGxPYAswkyTNHhLU4trqVuX1Opq7weB5f+l+BopcCfr9MawPgkWpt11+/tysvoylxc+nGDb89aaU+I84LYAjz5AECcBgZtQTmd+kiQBRf2bdF0Ee5ME2MmCvDFrQq5FcC0uTTXPzgg1ZUKa1jq9ewk/78w6JADujFgG4kOeNoK/om2G3CBIf6mC/cnRkuTyVr7ND4tyueb7HQSoSQzk/a6aKmraxat2PsqNOuDDkE/0JYuXNve8WePlWVQe6403Z36WzShLaNVs7KK85y21c/2aqj5Y794nH/Znahqls4kyh0V7mFT5Bf9fGrtc8zrrYjjj/PisndG87qN9tzDjr3PcV+++IlGzX0Y7tXgLK8gHEdHWgTndiTVcP4668/Eairp8zgfnIJ6/+wWQALg491ebkKd7iF165dK7y801XuAOQXKzZJFTVqOoJV2CojVjA+fr7w9CcCgJWVqX22QF3xPcNMd9tzeaZXY5MrOUmZxfOVl3Odw+DEIBKiiaE5SB1iSFxe/GviUgbgkQCiSm7uHdYQQhcMD4tJW0o0g+/9LuU7nr7OrrrvQp36Afb6Q5fbeTc9be2P6O/2dbD/HC435IMF/ji/h6r2n3dtIp1GiS9d3iENt+5JnSq5+2VWTOf2HbtsXVJayD4KFx4eM6Cf0uwZ8QZcVKjSN60Rl233bvZ639MKINi9aRk7tav0wRTUvVmxgRgXdcvaJfc0DPpEQGuxmCJBS3P+dfFMuX+bdc75hgd4C5i+uTMm2lYBEpIULtIdj8oKv0gHBc20PeglIMVGXB+uOHBPsJEIUvKYbgGfWfBKfedGS/ZrhhstRBt3l4Vdw/cWwmCaEPNFOiTJ58aFMeKmPXbsShF7unOHM4GABZsrqmxYUAMPFXiLCS4TrbT1ww9taLuu9qt82V2q1bGHlyy22l172MkD7rd/a3SwyQKGW1WHdzc00l13BagrEITmFSATE62fVxhBHc92geudopEu1/or+g6wlCeHWO+vZtvJVz9qtRq2dgyot/us3snQLVqpmu1OWG+LlkTaLGtiOy+5wnbPnGWx115qqWsSbfeUqQG2EloWxtJnSKSQ4PNQm9bW/r0n7b2r+2XLJUwXkUJAR516hRWLixe79rl9uGCJPTN9hktqaaKTMGz4cJ3fFPv7b4Fj2bGtVtqaN75z8ZpMDw8Qy5dvcC5j2EMyudGRJHN7587XFB85S4zcNue+ZfuIiEQB+oqaznL2zDMvKFlGHYQxHg5GjXpFjF9XgdFYi9yZZv3eOM22Dr7aobhq1aqJeV7h3ND+rGTCKUmk5tpG+od33L3dugV2xHVLHOJXX2XeMRVniOv8UT5i3PlvPXqNKuH8kbnRQfq2eoOux0LL1xkIyKfk6y7ypXPKn/67MMm+HLPa0PwLZzUrqFawvHNZgb8UVfRaV1hLONwUHjbLo7J7pJ2V4FFartqjWpdP1x/K7pY5b8eFW14XMK7huFjpmkkWoVH1ElZCn8MZ27isKN3D98fWLJ1trXqesj9dHJBt161eas21pxPlS4X1w+aJ1QFopQk8JCoA0BPppXKDP0nENfb9wXW3LyOQPkuDYnnkkdBNBC4G6u5MxQeqlpCBisv6MmWekFWMQO+1166UO7GqkwBB/iOUEfBPzkbXrgFQmrpVYskC67Me/dbmSeOudOQm6/Tpk1b1l3dtuGiiG1XruPnFd9qtJ19i86aNtzE/v28//Pigrfz2PjtOO3hNr1sFZuoi+keSCIgB/RN0/ACWStpIFkP25Lr1NkLot8U9b1i3dr0yhrZTQCVSuns5sbhaDe3z5L/tphHvumN328I+an7KN0+0YS/OsGrbv7dGV/YNpK6SqOLzt8crc+Y6BcDNUxBlOYkg/ihW73jpQWbHikRFW/8L7hDTl2q7I2OlFXhuYDNdAL9J82WtXNy9JEnz4Yd9JZOoc9FZJ0bGqcWNOmTIn06nLxADGdiUc/ivmMlffhmppJLvXSWXI5XhQ1UPSg+u/2a3XfDgcfb4ky8p43iNYgLPymCAAz0EMnKJrwRUOtM4qpbdZj9XOdOO0zkh+3/dul3KWt5TBYR2hDTIm56l8eACxscAq4Bf9Ab532B//O+MHz/eJg3/2pp30JwfZMvqxn6Qh/af2D2u55yEJxWEg06Umxav2NK127I1nHb14vfZDvCXrN/PQju8ZyDbdy+eGMrpB/dACmcS79dCrB+vbJnu2ftjSYmrLa5MRd2gdMcr4FZG4rXzNMYFRNLjpxOgggn8R5HzSMK8qbg3NPUAfjNnzhQbE+9ueEcpKr5iOISVxTF7WnGZ/HBZtM+0ivhEmEFlBRyhOzavb5VhAhCsW7eu4s8aCZSsUnGMFnIDBuLJMm3v+0IywX33BZJGfvihiB0/9m+rlRZh3WtoFx/9ZruGfmhXqP2MIwfa4AvvcskYbN6oVVf3OiUxwaaO/82WyXU6ffT3dvTEUfajwGJDgaAdYlGjCHwUeMGPuOnrr220wMyXlatb/yfftZr1gdx7bJd8uDkFgL0HXm4fjPnNqt52m50rBtIZiFbgpNxpfaz7wCL2zYfJ1qhj8UDmBKDUMzJzYHd1LhtIYPlL+Tc3DXndtp1yuSEEnR0rpqSHTetW2rqExZmaE/uKS5fXscfO0HX0oD34YJuMNlxT8+VrBdz5DXc++n2zZ7cVmNqlinGj3LXH8o0bu1ta3QT76JNYq1rlemWVv2yvKAYS4IWANOUJMR4GkNLJAIBi/CJUGaTEiIAkDPGi8ZI8GjlyvfB5Okj0D2Ifn1NSkgReh7rxI0LeVFnfgD5iUxE8n6660JRFXLNikVUSW3ywbMGqLVbIAObv7ON6BlB5BQjyd2/73ztA7ZtxazLEnbPTY6pcu/syBMcLrXAGsuUCRt6FuL+CbriJ98eo/XuoZP9u3qgsXh3sHVRhIGBLvlGAFTe386XlceONN0rYuaa7yV6v4D3KdtURWMQF6xeNZr4gu/ZlZHQ6wzVJhkAoI0mDDFsBzkwmrZndMUWNWEMSP0RIusoPJUq0cvFkn38+RMzfv2JmkuWSC/wwPacklnckGEjMmd+EcV2MFxI1eGwrVY7IIMjGVa9oHQTK1on1O+v6pzLAn3/7+LIVrcdx51iHnv3twrvesPOUoHFG+Up2kxqlCNysF/DbqCohrysu7k0FqD0q1uzsRz/fC/zR5065EqmIkhMjWSSmbTfJk3yzZzNiEQFDOhEkO4+aHGe7LNKVddrTSJ8Ap552jr6ef8UVdq7crn/98WWmZll9iS1W0rZtSbJu/c6wUy++y8pV1L6D7Oeff7Lnnmsrt+zPGWtwPaMz2a5dO3cOidv0G+zs6tXrnV4iDxjI5sDORVSqaL177rLzkl5WpvdVRk1iEoIAX551VwmXn0gLDzLIWO/BA0HoJUsWSJcyqFE2viYlfaVrZYcbE/8fGFqIp+o8w0Cjcwn4fOaWgfbv2F+y7VbPxq5z1GS+qn9k538xR50WNt5rBoarBFpaNkDSXhse4AXEvv/8z9ocgT+GuDwb2cE5kY85wIdduLsDOAP7BIAkXjST1t+hYPsH/0TCLJpuVesIUB0Ctn1bipXWOONgiAiEkmttusTcvExJbmwAQm64xDtRY7erAESMMhtY5zfk9ELeeAB76lsEiXPNEivoYgsJJgxl1A1DYw9Gkg7XrctoJTzngBouOUR58bgWLdpDrB+MzMWKFVsvYDHOnhIrhtYedV4bKgMWEPi+mC7cd57Ja+uGQaJAhsnP99OVV1lKzbrWWy7f7FqFqrXsknfGmT3+ufUuX9HOEhN1m0DnSxuS7dueJ1rv5360MuX3Bkn0vy8XMG76bQK1wVa3zRH23dKlmRfrWHViHMb73/8CCc9vvLIjUN8OHzlid0FWVSza26JEpw37KmhN+K9Fi5e07Vs2O6HuvgMvtToNW4VtfJwAMNqPG4S2a9duqHOQ4NryMECihWewdwsXDhF7W8KdNwSmYZwlM+iSPOrUU5H6G69xrt96IEUZ5xajpBwuZK7LUMZlBMnNdkWKzHeyMqHahVpGrN8X+p/YsWOdrrETXeZzqHbUev7rr/FWr24de+3By+yGU5rYA5f1snWrFodqnm/L/GRvvu2ksGNL2JRqkxVLV5Bt6qIk+3z0KksJUcptX+Netg9X8Vb1uWjNln11U7j+MJiBzEjAd8AllELetUlpI2Uevb3/uiVvWqcA+dI5dukdrHnZtXOXgX/qkp7LXVIAaapSInudfXb4IYkpjFGCBLIfCAADDImPogRcSJPbdt41z9vIPo+4YHoyKrlPE3wP+BIZ5MLmMm2LMBsGYFHyxDtNHnfbwAal3/Mz3gMNiTErKwKspipPXOkWcePGAKrEaFGFA+YSZon4s3PPrSOQGHADu4aSVEGH5Np5c2141357xZi5Nln8IX60QfNO1uDdvwTqdtjGdausdcXqWQZR0x0u4CJRoYHLFtWYvffinlZOtXfvB2D6LHX7VoGSHcqqvl4JEs/stR+kTbArrtG/5zWjTdRoQJ2ZDAcvTo4GOueDpaHzs7I0kiU8jfbgvixWAHCbAKBn59/ygnXoO8pii5ewqrUa2c8S8f7ze53odPtSaB12DvYOoLRUwLVt25qKEwyUMoZ8HjLkKw1lpc5hgos/HSM2ulmzbs5bDVj3GzGghCXgCiYWDzfwdl2EiFST2ORliHvbUN4PtvHkk+u78oRIGvmnwGsX6h0WmXlOk7trypRfNO6BoZq5ZZWV4vzxx/9oLFMVZzrChg8fZWnbvgvbPq9XrNm4PdsxXnm978Oxv6mqWNVcxEZBywgmFGPkjA02S6L4uTWSRbIyagDnNgsbLLAztxtnNajCdXk+A6C2OAmeZ6XYojtMaKtWLtZ4HS62eOZfh4z7l3PCzV6wxyJh6Uh71M15rmK0LoGaIe2R2moh7DolFXyqOri/Kui/RYvTXPWPcADw699KWP17H7ErWwQ6QrCYhBG8stRrffbZgEYcYWl7GUyPXJQnxQeAwl7rfQv69UuVMkt0hp6cn6EEEMBkAiqilYhBEP8NF19udRUXWqJEZKAX/IQSe66om/3WzRt9Pef8YxEldZSrVCNbG+7ckWYxRYMQTvqWlG8D0Kxds1Ku4jQBxWibOWmEff3mg7Z88Vyr27i13KzPCSg1s0su2QdjCYqiVAuT7ze5UU+W2/ruu++23b9+Yv0GXeVfG/JzVEys7UiVDz7dyExu2amv99VVcDnxgttt1qSRqjxSWddZORvy2t322GOPWXUxvMQBPqmHjnPOKWnf3zzC4qvOsU07N7mwAxKQYPZwqRIzuGRJfwHDKKe2QyLSOjHCnEfOaW/Rzv5qNUOUCEO/uJlPE9D1rgGy1rnWAJ8wjXoLaXqucawkLnQYQx5Qtm6VMkCxHhLwbi3X8QsOvBIWgWwMItOYV9wGwWmiKWrVqijWvJ+d1KKZ1fj3F7XQE9IBsEkLkgorMhyAefZ2QfWLf+ZvcuLI3rKC8k496P2xuvsQd56vWNPcWu2KxWzVhm22ZXvQb1FuOyzcLk9nAC9CtELhKK4RTv/Rv8OwANDf6HD4vGLBFOt7+s2HzKEuWzDdGmu0yaLh4sSQOdZM8XdR//d/AbHjEEeyUKq+w4cPdxnCyMZwkwzldoJQ/Pv0p6z5oCOtQQvdgX2me7djAGEBuWHi7Q1rkqUpG3blnhXUFG7QoHLYyiW0BFhwjACDsZdeZDvE+H3/fSUHJDYIXKQoznC6Dqbq1L+yzYbtGUHuPoVKAtkg9nD4t2/Zb0PesMrq1sGH9EkeoeWAP6x9z5OsdNkKrlYwYAkQl6Ux8bz8pmMur+89Fcv2w+cvqQ5z/32C16ykIbyuSShp0+1Y76tdft/7LnHmjYevsNdV6oMMX2pEzy2lLN+i061nh55yEdfOaH/aaVepIsxvAmCviJy+Si7/r0QIL1Ds5zY7QQkv7YhlRPvHZ126nCKAtkWu5C+dPMtJqIPLcDej6a0r1b22bNm1B/izWPb33wFmmmsR2RcYQqZ80aLjHXtZtmx7xzCOGbNACkE1XfUQTZn2ZwKdgRKIxx6brHMxQHGqv5sep6y9XrfdJ6lITmI+20QBkcKYrHye5BDdz5O6RPv68QWKBeT/s32DeBs3e2OIEe97EXHwnRqWDtuQ5I8V2YgR9DooXjTS6qqE3PQlyW7RgtW5B49en4XveTsDnPPypWKse5MyVgY9ZN2/wxXMCN5z0B0lePXh8X1L8kYxOcVcXNShcsSTRnxjDSWoW4JsCBk3WARzlboZKI/gHQiBWGKOcOWReVukSAvFZ93oZDDScYnXMuN9wZwdVidpijUYIISXhbE9IDLDSP4QSMupUTGEjOVggsvfzykqStunz+mOados93U1uZph2HAlvqcavQsUA7lLoslnaP+jf/7Qv2m+fQ64gPUPl25/fvOG3XV+Fxv61ZsuwaCtsls7at3GdatdizOvfcIuufNlO2XwnQ6sXawklKMGDnZ1ejk/npEwTRygZ/O/mW6LepxnOzeH/vFlDo4VUvr0zjNt4/o13mZ5+t6ycz974bsFdvHtL9ja9RtV2q2TJe38ypasS5L0S9tM+6pTJ06u9IFibHfbn39+7HQfb9HDyUUX3m6bn5ti7z6zIdNlgrSPpADlEi9upUufIXHw2S5znU4BgJDZVKOpVq2qls+RXvcEd95/+mmGq2NNqCkhBiRT4z6fP3+eXNQfuvg/YmI/UsBpXFxZ7bOnE4iGMCcMVgno6vMre+75RooxLOlCDc69/jHr9PgXFvnop7a9pv6fDoBNkzuy0A78DKSJBRwzM/D7eeD3Hn6PtcSy5daOblM+S5mbZXL/8oCfXYPpW5qwLbvNC9sd4BmgdGQrld89sWNFJ52Hiz674I+h6mew0JbOkpRIY27Vh4atXbXUEsf8amXr1bWI9LTIaap84RJA/EFX+k9PVUzgc0qsqKA7I+5f3G8UvPDKd4U64io1ouy3y963AUVCrc1iGQxVkZxuRPboamUmV8koIxZqD/LwuqoOkuZziSOZ2qQjx4+lJbdeK1YumpVpdX59wbXrycAkJqywr99+TFUvznAxlujMcVy1lXxTa/40MXPV5VKtZG27H59pOCdLqmboV285t+dDDz0krbvLHTin+gaGd3vOzvrW9bv37bvbf7cTH+lqUSWEigCMvXo5OpZ9PfLB+zZCtNZD1xxj5zz8qVGCLpzl4Pd/ry7aqWJGqy7H2HtPXKsKIee5OMZx48aLleue4Z7lwQCG7dtvazjh6m5CXFx3v/5W1C767mZrtckE4ALVRQB2AF4vr+jss2Okv91ArN8Kl9HOAMgtmj9/l6p9pEmI+iVl8HZy68aN+0lrv5druYg0MGPEIjcQeJzl6h23ku+YBCiX3as4y8jIi1THWdenzxLkWz7nnFOtbqOWdtZVD1qDll2sco09oC82qaROgG+DPP6IG3Ke3H28F9rBmQEYrTrKvq5fpcTBGUCIvZZWOdV4VcDalLIjxNrwi9A3rK6CDVnZrOX6Ic2hhSvNmsNuCpvn4QxwrhH87tyodJb6yPvaZeZfxH21/o+uXzZvklVv2PaQObqPnrnB+haNsXYIQKcH8E2TH6yFXImZTHfiSGVj4lYg6YObMCbPoavqQSZuKMKOZWGSMjN1v9cX1ZYN6VNWQ1ie0b+JwRJb51CNb2MYwPXrq2SU/vKtyvhITVpYngxT5qjz/bFA1U8k6GYrlVTwvb6edNFdLM13cwxguhD0r5+/qLlMU7zZ4AwB7jKiR7drFP6ki+BB7RZfX7t+E7f4f/fe61hcSuZ5Bp4+/pRYx7T2ubeHvfh2cduUrIXQVz43agOVcDt2zhy7JWK3PXnDiTZWMYEElIcydC4Br7k14gYvuuMVa9S8vYv3e/DBK+Rq/SBTd1xqVHwBgMEWYgxXYXzuWEgWp7wzBDY6f55RUbBWrV0uKxiXMXp9xAdOmPCULvUier6op6bnyg2N2/kWZQVfKOWhW5zMEUklCE2TTATo9HQFa9aso88j9no2oRIIc3Tezc9bj+PPzQT+vPHk5fsu7YsA+uRtO/QvsFvivhtsxPTEHMt85OWYCvsyK4gMbNWyWQO5UOcN/b80VeoKZ9tSd+bI/Ruun8LlB38GKpeOsZ7Ny+4X+OMoAojg4B/PQRtB6rYtwiyRzgV80AaRgx0vmvOvzZn+j3XV3TMWEAB9ItugyPeyAoG7Ejc6nTYVBXHmBdMHvu35i56vwuhcNq0XEO+thVALgx28Jtl+R6tP93Cn/df9SP2oSfzZqNPrMyReKAOHWy6cEW+IhuDuBx+SkmuiaLE5gWh/NsB/KOazh5AtGJEM3ANhZAx7DKDt1qTJPHFjPpPZyvxvlRBxOCPp5Lbnf7FXflpiD74z1mJLxNugU061NJ1XgLirmkfBWwWsxVcsKobQlAij+LZlmixKYWDUMtZ+qulh4AIl+Jytk7vjudvtpbvPsoWzJgXa6C+gL2HlYtu2NcWWzp8SFiBmbJDFBx4qLr/vPTt20OWWLDcR2pPLli3LtIWLZ1JNaErHYTyvzJ0baEI5YIqc8MxCHB7RA1x3uPUBjgiakyQzZ848AcYyduGFF4rBu1pMY4KrSkLVQSWEK0O4krbZLQD6j7QFN0nO5S9dXtPc9n/r/4G40WXLFqs2daPAjtP/okN42223W/N23a1i1dqWtHGdjf9jiM2b/rfTAVw0e7KLJc20US6/APymL9lsHw1faR+nv974bVlGXFUuuy3cLI9mIEblRwua5UankN/sSVnI26wqLDNY0E5zrsezQ795UUX2/7rN4pab67EdUhsumzvJahxC7N+vnzwjl1gN52q022+3nZWq2trVG3UTLm/vdX5AFRQCyRkjRphcYkoSSU52DGCokyLPoSlszgEK3aczDI1eqqFlx8Am3N+Di4twMyd7E+kYeeLktqM3XbAMLMg2C7zWVNYSZXybxWvnVOKQcLXfcCv2a7XGdh33mBW57NIAdYkOjdjD3UJEP6lW2YQ777JvK1a1wdVhifLfAkkg0W5HrbsdZyN//tTVYvYYL3QNASAllUmbHcNFfMGtL9rU6060gR062oPvf21xO8pYqXefIqPBhIAsVpVcLrmkiI0/c6RtfeIF2/Ha29YSJMWDgABncTGBb+r1nSR4RsiP/MRNAyy+dFmxv0Vsk8TDAVjU1v3zx8/sZMXk9TzxwuwMLWSb2OJxdvy5t1qdZp3shbvPcy5vsng92yr077GQaIfD9imUM8M4pyStn3de4JmA0stt2/4rlnCDJGSaCwg2EtavrUSfPcRyCrEAMq7rzz77UMfTXAnSn6n6yIsZ/fo/AB6RsCktapFYSTQlK+hiHa9zsz11h508+H+u+fO3n2Yrli50n4sVK64Eli128n1m9fU/lFvbLPHpmUuTLTE5rTDJI7eTeAC2y07ljAMwjEy7yO2YtqftzNSP/8viNXoaL7T/xAyQ5ZsXFpUXnRTkPnaDRLKwpbMnWOfjL8qiRcFZxc107vQJ1rXLifblu1ut69BZ9nWNSCmgTBfAai4WJsAYoQLDZ4yAeeQ7wtkHH+yRwvDaEFQPeMyOkXFJHJc8b5kMtm74cIG2foHqZZlWhvhCO8bS7JxqmVGC11ZBi40FHjeXKG8lcSOL9dqluMa/xHqVEwgc+PDD1qJ9TzvvlufF5sZ6W+XrO0LQRdJpy50K1qurvTV46SUzuXKxG264QaxcXSNuLrtWs34LS3ngffvgmRute/eWNllyPQoqDGxO4ObEiaaCvNbpw2ts+PtLbZMwS8uWOglB1l+yMcfLz/r999+rooekVxYlWO2+HcWmNVYXP7ls3pWLZgZtlbuvE1VHF43G1hqX3wBdsHkY8i2TJxPvGWCDSRpWpT0X37dmzXKBvlkCqVHKwp2k+L62YveE+mQc7rvvBtoJ+zopIFzDRxzRU/1Ncm34c/IFN1vnI0937F3ShgTH6G8Xu//+k9cqL4qydg9mtPV/eOKG/ta7//kZ4I91l+kBo0aNc6x+pSv0bYK/ebY+83+Kztxfqt+qB/VCK+AzgG4ervmConfLeBCrzo1tSN7hHrpg3/0GoCTetND+GzOQVyV5I/8b0xH+KKjvO/zL52zFgqliCzI/He1ISxVxstWKye12KNjI79+1rVtSJFdxip0+OM7KKhP42mtN7MY0VZBo6dy2MHK4AiSZ52yefMEEx4cyyBTwcXpJ1owmePIyMKNuts5UvsvdvdNb4Z5E6xnWhpJdwYZg76WXBm76WWHwNOkYou+HqfBEgOoJlUhC6qZitkquXRTwHQpYTBQr9uzwEXZe57520/M/2sX3v28lVOv2QJk/BrBesw4mLGZX63i8UnuLNWdN2vWUm7hIjobUpO0RdtfLf1hliTb/I9STKsZOvk9b0fYESznqJNtxyukWsTnJep9b3bqtHhK2b6qpnKySdk8de7Q9UbqIY8L69WvldCArVa1px51zc9htc7Jis9yn6OtFo0mpeD3PuO4Wc0HKcNeiUEQTMC3vCtlTcsdLLsYPRi8ubr2u5YGScunttuEPJK+8vwLDyMGscIwquomAv+5Hn57Rrm2P/kaZvwpV9EAgEW/OTY16zZyEzTGnXabSd4My2nofmJtWrVraiB/etzZt2kra5n0lhezW/9IzenBpp/+jnJ03+gVI/DhhrZPxKAR/3kwX7PetqbsOOkNLTOhCJaT8/u86+3TkStumMeXGqCXt1/njYWRTSpqNl6xM4fWYmxktmNvMWLo5TwYWlSe9FOBO4stXtXZHnmnz/x1pU0Z9ZeWr1LX6rXta2Uq1bOXCqVatbosCPPo9Q1u2cKZ9+eZDLtZq0KBT3YoS8YHTN23aXGVCXuJYFhI8uGFiuLwAI175LZbBwADacKtB2HAjxrhP43kFrEm+b49BvzzwQKDw7m+/BXQ2BCxIQkULUHKCGaFo3kYASIWsOZcfumzc8Ik3DGVo4MEeYXuJ/JIxQHUQuTN3SNYjUoCPJ5adel2q16Jjz7QjB11tvStU1bcDb/4YwGICa0cNuMiGfv22pusBx/5RQi2uVLlcDaxEyXg7XzWIH77xJItVzOPRAsBVJ42xrX9Ps89Glbea06KtR8tNVuGIJvvun4BPXkouWS7kjhu1Yatuqv5Rct/bZqNFvead7cePnrXtui6K+ny8MIJ/qAD0dNUSJEOdUAGuT+IAud6Sksa6GElctJ5RYYSHB+UuZbJt2zYoLKGWKzHHigEX3mprVwC5A5aStEHgr5ZjPx5XEsyG9QnWpsuRduk9b9mxZ95gd57X0WtqAwYMcPGFfnc1K8m4Zt+ERhBzmjhdC3NwHyZu66uxq21DDrM3MwZW+OGgzQAJEgfL1iWl2i8T1yo5KG/G8MeU9fbPvE3WsFoJByrXq6Zwof13ZqBYTKSSebZb4uZUK1syZr8OLGq/tj5ENi5ZuqK16XWqtd59iq1bMd9m/zPUNq1baamqp9vluIsL/FGkqXLDO49crhtgTeVQvJoxXlxqo0btlPtstz30UJTLrvRWEuu1SXczAuf9iQkkEMgz6fIwYPGIy8KjSj6JSBgxIoEbIMkbBOq7O6JcrAokDIAxVffYfb4yihcttN5n1Avs7ocfAgq86TsnDEz3WAfo8JBSpSGcIZVCneJgS5B/ME5+7FjFB8795hubJyC7SI0W6/WPslAbXP+4DeqtnRxE26UJpMKHZ23EQgEAEUrGcAt3PmoPS+W1y+57+co17bQnv7H7bzrJoiT2XUtounnX1na2Yv7GKAP2w+/jrUrMDuv967MWecP1Gd1SqQXC1h/X6VZKB7Kl0nP79DnSUseOtO/PaGXbe55o3U+40GrWbx42VjSj4zAfylSorgeJNJVRS3OJLzxEkAVM1jnZ52/piQMwDCPI+9atYxV3ukHXVxHh0gtcqTceSLjeIHqHf7vJ+s99wra36mSr2p/ogNn69bEOLLKfE8+62nqcdLlLZqlWp6mVEeNXu1FrNzpcXwMvvtt+/ewFqytg+voDFxnnJSU5KWP0VMIJVXtYl5nLSCasAStbRn/Wu4/Z+pOiG3gh+MvWVBW4RgcTJCVsTM0z8OdN7Ca5kScIBBbaf28GXOx02aKudGQhAMzB+eXmUKF6A/fakbbdvn/jTpsx/gebMnK71W7WxWo36WjREoQuSEbG5gdPXW9rE1baJAVEUUfVM/T8jjtukViPOpnAH+u5+RKDRe3W2rWbOgkMaqpyg4WJSVfmMJWRdawfZJuKbbgyWbNny7370XiLL6davPiYCc4jQ0Mr1lVrZT89sMiOO1Lo0TOyPIIMdhCD6fEViXDL/H+QgAkGgKMUqJ8gOZWPBbCWla9kkXKvkmhQsWodp6d3mhI9oqOL+rs5KJ+JAczIAtYIACH9z7nefv7sZSUm/2mtO/Vxbsn9GVyFqrVswFPf2j0CMmtFu/YXW3qimLDNCV/LbdnMViyPtpvHX2FP+3aCGDJxmZznpk19K/73P4vUOXxKTw5fq/ZtP/n+i/z5jb09dIi9XUaSAhJ7btX9RGskPbycuK1xvWIPP7xSajwN5UoNMHiww+hP9lDlD4TKhw8fLta4kjWWXNCgQa21RZwygCNVBSUQD0glDxKbv/zqC/v624fsOY2vDgGpSm6pX7+YKxV3ra7H8UM/s0XzZln/C+6wXicNVj+ZjSorMJy3ndXOrVi5ZF5Gg3feeSck+KMBD0Ae+MvYIAcftqnKQqEdmjOwQOXRujctk+uHoP056iq6mRda4QxkdwYQ50YHsHXdUtndJGw78TOHp60VE1i7SSdr03uQYwIXzRhnw758VtVAilqdpp2VGdzOomIO7j9mstxaD17ex5I3b3LZiy1atMg4WTB0MC2417zlxEiReVlXdB7ALylps1xwjV2mJfF+xPURU0XsFS5a5OZgAYkZhKnbvj3wTshZ5/Nq2oevJlsXHjfSNWV2a8MNtzxkp3/wsBVt2ShjLG7jPd8yfaLuKu409kF2sS9J1LVDAoZav87EUH2r7JEPVHd2jsR5L7j/gwMa05dp4Nn4EsgC3vMvxAPGsWfdYC2VEfzGA5dIXLydztEuB8az0V3YJoDAy175w5YtmGGv/d+F9kq6anIVbXGGXr9UqqOE8PFWUWBp1Y4K9vuUCq5es/SP7Y03grpVvGUpFXFOFhBqLkC4U3GVV6nRE5r7ub99YUOUyfxapWrW57onrFHrbkEbh/6alLjGrTj//Dhdb4HQAkpBo/PHQ8WKFd0k9yJQGfmUE/H2AP+kSQHGDc3J0yuPMOvRwMaJuvz620tMl6pdK7D4uFAhIQJcJ1SyIaaJh5txAq68nv5immJ49/wQpuh/ZdXS2Tb9r9+tQdM27oHuqEHX2HN3nKlQiPqSkDk39EFoaXqCcdj1+1pRIraIRUmJH4mGQju0ZgDwvi4pzSrE62I8wJawST+8hVY4AzmYAUrzkQm8v8kge+5eOdj5f6Hpkpl/WcO2fd2hxMSWsEbtjnSvrSoLt1jr/vj8KWUSFhfz1MWqN2hzUMrETftLruqNiRJRHma9evXKNO26H7pYv8cem2pXyC2LfQbFJ8P1yI2yb98zlCEamZEQElhnjqHBPagYeMgVB/wAgsozcFhvzBiYu6o24DZtUVQ3M4T8lIE6/8e5VudsVaLwgz86zcJgAmEUJcnmZGEoA6sqbhnmdwFv1429ttxz/2pt4zY9CjT44wCYY3T2fnj/cbvqwQ8dK7kpMcE+f+lOW7NyiX373hM2Z/IIu+ahT3PEqNF3KCOp4eZnvpeG31Sr07it3qfbhk2JFvnKPfZEp952co9rrMtHV9ugAYNsdxuBz6ObKHazd7ovP71HAax4xep52blFjj/eauslHRVroKydW8Uw196ZaoPvPMvaHz3Iep50cZZVReh1wfTxTlqmSZOqmaq5kASEK5rww927I+2RR0orVnWdHkCqCIwFYkhHjrTANumZRLuhjGUVux1tn/z9p33oSgTqScdnPEzUbtjSFs+darOnjLU2XQMM9G9fvGRfv/N4RsuXf1zsGB1AIfZ//3efmPAiGev9H5Qs7dhx/7Kcfi6s6JHTGStY7UfPTLT+nSod8GzgpWu3FayJKBxNgZ8Bks1WJW4TAIzbr7EelgCQG3diwlIrU6nmXpNXLK60Nel4tHtt2Zxoi2aMtz8+fcIFzNdp3tWq1WuVKe5rrw7yaAFj/OGDJ5Ss0VtZtj336pWYPYwbKm42rLtSJRHQpRJCOOP+l44XM5oAAnlhwmBOQgbiL2D60KaNrY6saotLKo7rysbeipDvJJngeiyVTsoAKqnuIAzr2Efu734AuFEMT7wi/tHLu0YVHcYIMSzTYPo1bB2y/4K28K2HL7eNG9bZdmVnb4/YYi/dc7bBiKE3hwDyqaqJ9sVr99jpVz6cJ0NHK7B0uaNcX82UYYwRz5b6sKpfLA48CBQd8omyLVqpuK4QWO1vMgcD9unj6j/uJODNbxpnhILwiqie9CDFXda47z57dNQP9vWvn1ty3UZ2wnm3WvOOQnIhjIeHjRuT7bHHNin2M96xfjSDVQboYW+99ZWusW3WrFkzd42xDD1wACJMNuwb7l+ue+x4ZSifde3j9s+Ib+3Tl//nlkXHxEoge5vT6GvesbtdI9DtT2TZkbrdteNP5Wq1Mtx5JNSULV9R8bKj7PTTT3fSOM+IHk1OTlF86lA9AFEnOBD/mtFBLj4sX7etkP3LxbwVlE3WKBaPZIyjVE/3QIlDb1XyCddNoRXOQE5nYOKCJKtbubhF74eQuW73h5+tX7XIylWuk3GDCDcDxUuWtWadj7Ojz73L2h95liWtX2W/f/K4Dfv8GVswdbRcx1vCbbrfy2dNGmmJ6xIkd3ePk8nAvcgLds8zBJRLgLDSrWPHji7D0/uem3du2HvA354eilStZH2vyhr8/fF1ktN5Hjo0sB1uZoAq8nUqkWtTpwbkQPb0GvjEcb2qrJHNSg/tcONT9uTn06yl4tEKvAmsRMjlh4zNpy/cao+e39nWr1nhGFtcjaekZ8ROGP59BrDJj2Nirj6KK2U/qPNf9RKest1SXt4NChd4z5aB0lU3GjquiGLvuiv7+2v18a5ovHbKOnvtgUtt9M8fhTyONkccq+tukxjeB9y5/umnvd2piYnzlXx0lXPfeuMhdPS22wKhCL7L2K1OTkp0DHDPE863Hsec7pYB/rAIiVqXVMxi8bj4TP11OfpMa9f9GKsoKZj+F9zu2np/+L/5QLGs9QVwBw4c6MAgUjKETBCm0L+/1zLn74DWv+dutDGzNuR848ItCtQMLBMYG6nyfAfCYHC+HrfGthfGjh6I6f7P7QO9yDkr9OS8H3ZYMoBLZv1ttZTwkRMrEV9eGZgnuhdu4iWzJ9iIr15wXVBJpGbjDrohlc5Jl1m2/e2z5+wkBfuXlwTIDaed5tr263edvLFFFFNl1quX2cKFM8S2NMvUD/FRCOX6k0UyNcjll3SSMezWlObd/fcEO/3BXuYVXRXh4hgg4VKxVAHJGb/EB/Fx2G/K9n1WmcStLrrNeh55qlt2KPxh/BvWr3VDbbNsjl3Zt4+doNg6T9aGFSQdDB58sdyVU6xOeqZqXh/bGw8OtvXKcn2wz8lizH6wU6WBV12xoacKmFRRfGWtL74IlNzYx44nKsnouhNPtNckzVNdmdnxyohor6zdT++80zbdeKO9/cKd9uq4X+ziu98w2DjPUgTWsPHjx9lTT8FK75EDhFnr33+by+Dl2gw2HjbIPPdWdZBOTM2atZW9e6lc5x9arQYtbdAVD1qtRm1s/tSx1rHvqVapWm3JOo0I7srKlK9iF9/52l7LWVCuYjVbOGeqYhET7PQr/s++ffdR66QLk6ooxLzuj81bucUm6Wm80P4bM4COXrv6aVYmLjrfDghtvh//WWuFYQP5NsWHRcezlydb81pyneTS9v5FzmVHh9Jma5fPtYo1GuZ6yLiJG7c/yo46S4Bl4DUu0Pyvn9+xXz94yKaN+c5JzOS68/QNiwhcnCL/2Cq55pZq2YUXXqUyY8+akjdd7B7B9i+9NF0SMC1cTB/B/pCDVP34UGJqHrja33Fkd3sA4JGP9HXgDzfv66+bklMCycMtWwZ6oeQXijHIzuwY+7etk1zKBh3j9XKXVhfLc+QpARdmdvd5sNvBXBJThtTJG7Nn2UUSQfaDP8YHE1hSvs1/hg3Jt+EOuvIRu1bu0PNvetZadepln2lPE/qdZoObtbWLlfG7BZ98CPPcraxCL3LAgIG2OLq4DajX1L7RU8YTYpivVwzexUq+KKcMoevVT6nJY5SVfkOm3tr3PNnV1EX+pn37DjZ8+Jc67t2uxFunTnOcdNGuXVXto48CoQCZNtYXD/yxfPXqGEkXTbBaNavbs7cPsg3rVrn4225i986/5QVr0ranstOr2qb1K4O7Cft93tRxliQ3PbZt21b75p1HLU6C4X8rjX4yWkrBRrxCUF3j4CZ8R7+Np/C/520Mtbpw2SE8A3NXpuTb6Pm/Gz1zQyH4y7cZPnw63l/2+LADgJtVJgo2j9qoeWExscWtXovu1vu0G+zIM2+10tJEmzH+R/v53f+zcT+9Zcvn/2s7d6TleFcX3fuuCS857btLpOXxzDMPOdcsLlrYtDPPVJxT5Tm6WTZyMXsiblzJrNPEFhLgT3LFgTR/bD3FQyg+AvBD3w0mEGPceBmp+DHqzTn2x+CrLVVZv+UFVgZd/ahzcQdaHhp/I4RcTj7/Fs37uzaUzBmfRI93BADEXr162lwlK+SXlRW71aRtDzd/l9z9lr3y0xI7U/FzA6942H6Xi/MXSdIEWzHF++H+9Oyj55+3tcuW2vm3vmhXPvKZfSc29t2SFe1niY1+M268fSW3cLSyOd6Ti3jCqJ8EqNZ6mzo37BX3vW8X3fKsJSZtMa7BRx991K3/9tshKhPYXyzoGe7cE2tKAlM4Q8OwX7/y0lIc42IbP3n+VoVa7Bkn26G9uMsXChGuL2/5kNfvtXWSUfJsu/pbl7BK8YRpqqt8SaZ5cG0AfwQkZmFUbvhDVRumLk6y5K07s2hZuOpQnIEZSzbb1u35c15x2+FqLrTCGdjfGdis356NqjWeWzsgABCFfLJWCoLhusVdmx/GjQl3cNcTLrFjzv+fWMJ+lrh6sf2uJJI/Pn3S5kz83UgsyY5R0qxuw+Z2uRo/PnOmC573gzqeIreLlfFcvTCDZ565SyzhLw4IVGbBATSkZebMCexQMm/OTc03qoog9yGCKcOo8rB9UAW7et0yWy7NubOuf9KBiIwGefABgLBtS3K+M6F9T7ncylWopGIlr4UcNUkuI4WAq9QUIj7AtiV5k9vjD6Jd/WCPhSTeIBSOcS1Nk/RO0zZdrUbdpkqsiLOjTr3SrhEQvOGJr+3Su9+0obRVquw6ndwIbQP49Ru6gR0kzH2ZHlzqN21n90hiBikiLyShTJlA665dTbqPgcQP//Z8RqT8r78CckWM7w3RyDPFON53cXdbsTj94krfCBd06vbMwDC4P+97yy7HeB8zvVepXlu1hieq9NwJmZY76lIxkeF+sfgtGzZtvZUrFWMzlyZn3rbw239iBlJ37LZRYun8LHleHNjStVtt1IwNedFVYR+FM+BmYLzij3NrmX/Fc9tL+nb8s1CeZNxsxQ2pnuHbQ5fZG78us7d/X24fDV9ps5cl2zL9AxxMMLhywRRl8oqaymfDPVimYg1r2f1kO/qcO637SVcobqqYTRj6kf3y/gM24bcPVYpuWpbsYM8TL7KOPY93I0Xj77LLrs4YNd+JX/LbO++8YomKGaS0Vqh4K9oitvvSSwHXLN4vYrTywpD8QNLDM1hAXQ4Co9J4O91M0nOmSm7OEhISBFbPtKo16krI9xJvk1y9r121xH77/CV74c4zbc6/ozP6eOaWAXbDqc3s/y7uZqN/+iBjeZ5+0AFynlt1OVrJDz+H7JrKLTCyAy65N+T6/FxYt0lb63n8Wa7GbY0aqv0r6vVEUcUzJOrtB4BzhNyfUeBep/4XhRxOvabtbXrvk6yGQF8XiVFTR7hkfLm92gK6H7nmWJs/c6Ku6x2OXSP5gjrBGIRjOuZ05QiDO0BuEobYKwlIybbzFR+6IXGdPXrt8crcXyHZnYn2z8jvbbQ0C5GfyY4dd/aNjhW9/uGP7YSzrrFjT7/C7n3tD+sz8DK3OSXruF6/unW8zRq/SecrUBZxxXJdwCFsjeqtJqq8FuLBBeS5NsQoCxft7wxQm3dJgi7aPLIpi5LsJ8X9Hcz7Xx4dSmE3BWgGFq/Z6kJRcjOkqNxs5G1DIOuURZttvUBfdJFISxQVuSUMbc7y4enZVVFFIqx6+Vjr1bysxcYU8brLeMe9UkRt8tq2b02W+yjGiT3ndd/76q9osRJWt0U399qt+L71qxfZivlTbPrY7x2bUrlWU6tWv5VAY00HKuivY99T3GvFoj6WsGqp6qje4MSUEXT26qt6+0UoF0bwnHSRYG857wAvr74vyZ4qsuHcxcJhLgMyPcfEv0mOPyMiTd+e+YGlwsgEShWXNsEUH2aSSDndxb/gtixVtpK3SY7eYbe+eetBBwRwsyIjk7x5o9389DdOj29Liu7isoTVK+2jF+82WKBSZSrkaB/ZbcyDT5QygUMZEj05cVeG6iO3y2Ckz7jqEesz4DL75eOnbf7iJUpaWW09e/Wyp558MoMBHKLYxWj55xu37hF2V6df97j9KAma7SO/sy79Tg/ZDlawQqXqtmnDerf+N9WOhon2ShFS6o0XxoNBsJER/P/tnQd8FOXWxg+EdEICCaGG3qtUQQQVpdgrFlRULjY+u2JvF7nXK3ZsqKCiAjYUUFGQpoL03lvoEEhCQhopgN/zvOuETdnNJuwmk3DeH8vOzk555z+zmWfOewrSQBpf1p49Wcv6cfnkk0/MYsfhRjFj4uuyEFVL2FjlJjUpzkzHblwm2yAGL8RxVvEPMPMK+4+Jrfk6sHurbFu3WNb+9YtZrEGDZxFpD9/a68Nla1KOuUYx0i11kyAAjxbcEv3D+LdOW8Un4I36vCfx92Hl9hRZvr2Qi6niI9QjLAUChf099WS3JRKAh5OzZGVsiuyG8iz8Gdn9rhn5RNV6OCZbYiAEaUWxGp0aN+xJlc5Nw61ZXnvfu3WFGaL12gZLuCHeKKPqNjUvboL5y+J2b5StK+dK8uG9wiCTurBS1m3cDnwrSwJSizz++ONImdHLBFdQTFEA0tfKanTAb+mcYM/6Au+W+LNm0VXtnnscn556SpAw2lH/1/q+uO/YNSxKeVN/XHyxoxIEgjqFUcBM83H++YJ6xhkydOh8uWn4S5J5dL+EhFUv7u5k1cIZMvmdp0xOuFGjRsHHbDCOsbHs2bFRXv6//vLch/NNwuTFs76RqRNewVBhllm22DvycIU1i2ZKtIswaUa1Gsv4oX0mStXDTXp1sei6jWTIY2PMNmkxfWHYecjBtw4VYqDM0XbiCaFaeA2IwEDzubD/OOR61dBnzKuw7zmPv+P7//u1PDKoHUScw7TMgKRnUeuNdYCdG90EGAxEX1Y+iKDYh8kbyOcX1qdmKbvOnTs7ryJH4g/AonmzbIc/5cW3PCI56Q6hOW/aOFn+568y69uPkEJobZ6/J9YGeNx7tq6Syv5BMuXDFyQxPg6J3vFDQBv1UA15Fe8p6FAn5CvqZObiv9jK1lTuO603W08z9ULuxnTC1gSiqvlL65iqp9VHBgnNh7vAgSNZp7UdXVkJuCMQhNJwJWlu1+KNK+dEXv89+vPNW3fECLiSiD/nTtIc7pzHhuJv8Rb6XTgv5b3pPVtWSIOWXb23QS9tiSXnWG2kx8V3GN/Bbv1xF0RbMfdrmfLuwxjqrWvKvcXGxhnrCL+jf5U1tMbP58C5aivy6HnamHj3++8defpq1PB0rYLL0aGfL1b64NDd+PG4oY4SWbBATH1iBJDKO+8IfOQcw8/16/ub4em//z5phFFJgnG+/eB5SU1JNgmwL0CUSSMUG2ZN4ZpQEamojMHrNjgkTC646l/y38+XydPv/IwawjEFO++lOazQsR3J5BbwoPM1nic2X+4/3y7dfqxZpyFKpHWWOQgMsXwAmayaguj5O3rI9x//W45lpLrdhrsvA4KC5cWP5+UuEhIaBiHXBUmiX8mdxwnkLDe1dzlN8Wc1RrezljCF4BX5kvNtW79MkhMOyAOjv5NOvS5Fwu04s1rfq+4277T65jglg7a2yfdXH75Cxr3yoHw06m4JDHbc1LOzMs0ilJGH8KrWo4f5zP84DJzAL/I1Wv502DcflAr6kaXhOGxb3JaEa+Qg3ASWbEmWbxYcVPFXXIC6vMcEKPy6NQ8vcTLoKq72tBP+DxyytcKMWXOO07y50kHWW+3PDUekUXSwpGeekOlLD5uhoWvPqS0UmqeT4Tp//xiJmwOn8SCnuqH5l7HLZyagbn7W+ea1a8cWY9FgKpEvvvgYyZQPI89apPH1O4R8bVawB+ur0gLzFcbQrr/+epc+gDzGebg/09/qyisd5bhO57iRKk769RMM8wmqKjj8/miYzG+MZNAmb+wREf5SvUYdiduzRSLCw0q060th/fkKIpCi7x6YMhciApfDmPEwJd3z3Ed5jp1VIPjyZbOqUTD/Yv62G2lueF7CqgOUTRp9SyeOGWGqxlD8DURG5p9RE5jXztffTJQVqADy0P++E9YgLkmLqt3A+NwZy+fhfTJj0puoVfykSblyMUzD9EGkZTQ9fZDxC7SGhbkvWqP5evChh2TM22/n2T2H+dcsmSdrBneR6Nr1pHataBn74hAZ+tRH8srE5aYqiGXVy7MiPnTuNVB+R51jNpbrYzMVVBCd9P0PP+C3cKU5T7ikBB/xcHFcLgnKQN4Ys2juf+q/lYvijJhgtG5kWIA0qOkYqeL5532Q96vVEIcn8TkHI1r+cFli3kBW9UiGa5Q375FnBGg9yBIRwK1FmtYJcbkuI4RTjx2XmJrBhS7jUgDyorbEH9ekKdtXjT412/ZnmP01qhUsW/alywkIzbNbRHhtlwd2rpM6Tdp5bXultSH6cR2HeqIDP18cHnv00T9wg0qHtW08EtseMnnmWOGANzQ69BfVYmNFGLThjUbXN8v9rX9/11uEm57QwEKh2KZ1UwTAbJRaPfu6XgHf0BKVAb++GtH1zc3ZWrjXwMHSs98NMv/HT+S7j/9jcu8xj1233hebgAxrOV++U9ygU2YXaUcTTT7Aviizlr/RAhhWLRzfu/yp5V/F55879b5U5v0wVn5EdPB//vMf03fr+ho5ciRK9nWVXye/Ibc+mleAFbdjFL60fN768BtI6NxRJqOkm1WvOhD5YHbtukZGjPAzFuJ/UObuoi5DhZ1aMHxoT8JqzBQuXbp0QYLxpvCH3Yeo4QUY0n3epL1xWrzAZNe+g3IFoDXUzWuGja4UPHfMoXnyZBP4KSaY0ojndU6VqrhutZ25BA5i6PbgkXhphptsWHAVWYf0MK6SN++EW5M2JVCaBI5ln0TA7UHp2DgMr2oSEuj4g8W4jN8xUnv4aLb07RDpsktlflfCCLP8tSnZdJDBIX/jiYq5tbo1j5A4mNGjIwKkcv67g8vDcf3F7k3LpH2vK1wvYMNvKDLWL5snl14yMLd3TKfRocMBJNy90tT+5RcbkSbmI6TMYPJnBoI8gqoN9LnqiBIL7ZGNmRGfzs2dUHNezt00LYjM7xcT47AAulvW+g7pDE27447bTaRyo+ZtjEWZQiF/+/Wrt2X29x9LelqqXH37COl//X15FmHakb5X3YmScQNkxpevIf9iPRl4wwN5lvHlh5PwcbOGr7dvWIEyZw/nsTxa+6ZIqRbh+gdoLVea7+Q9AJGxP41/0aRBYQlBq3E4vXPnTrI3bq81yyvvnftcITMmj0GASILZHgNRfv/dL1/d6VO7egIRIXyx3OGaNWsgEt+By8IPCOKqIvFI3dIQArE6fgxMg7Rp1Z8uryNrizVRHq5mrbq4nlLkgf9OliOH9si21b9jlMFP9u1YKwfiDhkLZZMmbXFdz4JFxw/RSj8g6aC1BX0/kwmwOog2JWBXAgzG5asKSpMGYFjYVTBu/v6XuQB07lATWP9Y3Pg4ROAyZNdnhPDFXWqedkkeRt2mwl8oPDKvVcF533acTsBNOBkRlSxg79wSEzdIu3YOUbgLZTd+RH42ij7LJ5BDZfRJ442TeQGZhoQisDVCG9tAhTmCRQo3CTvvx9X01KmOam9DhzqGfF0t52o+K2dMgQPi4oUz5fjffjIIpb6cW0LcHpn2+Ru5s2gFddU43GgFOLhaxhfzKQD9/E71K9LKXYKdcYizGurwcng+NnanhJcw0tkX/ba22bJDL5kJizGHfp0FIL/ng8PCv8YieCYzN1DCWq+k73/89JkRfxRwVUOryrsQdAgShvXNkSOSScLZ6Jvq54cHn/UrhOlZ6PpwLhwG+Zo5czlE4/eyYvRomQ7rZVVEAlMAxh86AHH5ttSs00jad+8rwfncPFiqLvnQLrli8H2SgOj7NfO/Ng8MHREZfiThkOzfuwt+gVUk9NhJOXR4NyyT/iaRuUlYmLjb0TH9XwkoASVgcwLUTsddZGIprOu2EoBbUVOTL6tlQ8jMRrb9QeeennBLOLBDouo1tTZbbt5//Oy/GDINk969e+fpM533mQaDbRqiLOjHZYk/zquCm2wrhFnyZYlHJiTevHmzsfhMmjTJWAopWigI+bKGkLm+u8aIX6ah6drVsRS0tbEEstoYa7qy0kNRjVbK+shhyCG4vTvWF1g8CE76TNJ7cN8u5GwbjjQmdxVYpqxnMMq1MjjTShsQFJhbUiwepSzatWtnusegFPolXn7zg2Xd3QL75zBoWLXqyAn5HsoM3mECafjAwGhzpm9hHsnszAyvCcCdyN/H1rJdN4nbux0VbO6TJk0Gw7IXiAeTG3Gt7jHD0UxYnZWVjaTQX0utWrVQ9vAqGT58OK6rQDn//PYyYEBX2YE8Rt8ga/TPeBLZgwikxMRE+enLN832e154lTRq3l5C8btJOrQb+QizEWlew/z+G7XpIZ0uuN5UEuF547U3bvRNZj3rv8aN25gk5vmClq2v9V0JKAElUGEI2EoAFkY1xwsBJ6z+0bBV98I2b9t5G1fMR8mtX+T99983VhCroxRyzkO6OTk5xh/K+t7VOwVjDzjh8WW1BCT/5fDxH8jg/OmnnxpBRssVLYQcQm7RogVurtVNdQa6vLExYpil3NiYSJovVAgzzvzQlSbyF/fsQlsSHBife+455AH83BxDK+RkGzT8vwWWrYqUJFfc/rR8OOou+eXr9+W8y++AFS26wHJlOcMaAt6KOrOpEOQUJC+99JJJqcJ+Dbzh/yRh/w5YnQ/K2fBXtGOrB7GzeuUy45d3EU4irWxhYH/hlbdJC1gIeR681Vp0PFc2rFwAsRwsTMz85ZinsGmYANEaNnxKdu/eZaat/2rWjpF6TVrJlxMn5VZZYTLrjRs3wII3X4bjWhqI1DuDYd1uf1ZXoZWPojUudo1sX7sQlsR0GTVhSQFrIIPBZn83VqZ88rJ063OptGrfXRIRqBJdv4kkxR9EcBVKxOWk47oPlUirM/quBJSAEqiABGwvAFMQwbICCTS7NAsvMf6E/dulS98bS7x+Waw48e3HzW5pKXn00UflRuQno6WGN7m2bdueVpcYSMJSwa1bR0mfPn3My9ogBeY2OPgxpcxXX81AkEkyRsKqmDx7tBLS+T4rqwFytwWaVC/332+t6Yj8Rdo34YtDe87WQFb/eBeCciYiZbui9m9okD/80J4SpsAprDVr2026nHsxkigfl6qwVNmtmSFgDE0zBUwIhjTpu0qLKy1Vtes1kMtveVTop2jXxpx6e7atMRZMf0TxMPgjDL6KT7/3mwQh4MKbLS0lSb6H4GJbvXguBOAIadflfDm0bxuGb/fnir9rr70Ww6+7YaVeLvFwf0hE/d6GTVvJntjNCMwIRrUORwBIKMzOP2NbtRs2xO/BT2o1aC3nIrJ5HwKLDsRukBl4aGCb+un/pNfAm6RBs/bmM/+bgYTYM75yfN+224VyNpKtW425Ap//Vx9YHaPl1ltvlfeuPKEugBYcfVcCSqDCEbC9ACTxZduOmvD6VjGhUjWoitRAuH3wP9EudHZcuCnJRMEUZiPijTo0PKpA7VK7n8lrhj0rB3dvMTnLkuL3I1XFNGOlo3/WU8jezAoJE2Edoa8ffQA7dOggYUjo2wopYIYMGZL38N59V+Teex2Oe/iGgSQzZzqseRhly9NoKWSKDr5YlouNVsYJE3YiB+E2MzxIv8Pk5Bz4ufmjLw1hOWqM4bwmZhjxlluChXWBv/hCZNiwU+vzhjovPUOeHTtbmJh45pf/dSn+uBatT8OeHuvYgA3/N0PAiOwNqRour361VhKR6HnFH9MkIy3ZVN6ws/gjzu8/egERtRkybtw4Uz2GqXRCkbPP2+KP+1q/bA7fcltGWpL830sTZPfWtfK/hy4386+FGwP9AnltrV692iSq3rt3r8l3GYNIIw4N85WeeVx2xe2TVPh+CpIGnkAC8K2o6hEd01xSkxPl8tuekGbte8rYl4bJHzMmmlf/a++UcwYMllqw8jEaO7Jmbblh+Chpf3a/3D5xgjkS7/v3p/LN2BeM1fGZbvUlJjjPIvpBCSgBJVBhCJQLAUjaTKzJl9WYLqZWeICsQkUS5lxiuP61EIP5bRcs/2bH5M/Wcbh674KoSed23d0jZcuahTLri/+YOrr0YWrUrDWGrppLwtE0+WzC59IoNUXGo95aHgGIKFR54w2Ra65Bbau6uZtEmVWhLoQuy5OIN3cBpwlaiHr04HBwC1PSzfrqhx+yEHm8F2lgYs0w8gQk+uNNmlbKnKRg+eDjpZLZ7BLZCAfB3377TQbd+awRf9b65fndDAH/k9qFYo858wbe+EC5OSQm4mYABS3LtFrSbzQd5fV80ao7BV+xbN/Ked9K5ZM5MhepaGhVZm5AXjNMa8SKLnzIoe8ffQAZ2U5B+CaKSU+EaXnoUx8KaxxX8YcF+pcvZe5370okxOCk9543Xb948MPSsEVHTFeClbG37ILInDXlYyPMb37wNVgfHzWv/MfJ3IAsEecfFGrKLvJ7RnBDV2pTAkpACVRIAuVGAOanz1JyfFmNlkAmPMwvAOnIzrJq5b3xBtnqrHNl55oe0v/WZ6VOg+YSgdqsVuONcu4PH8n68S+bqgtMoWEagi1gTnHUYrMWxjuHZzG6LLivCnLu5hmudVosd5JxDTAWyXnnMcpVZOVKQYWSQORPa4Zl+DrV2Je4/Qdl/TuhktItRiaiCkSbtu0kO/WQsfyFovxbWtJhiV23UKpWj0Y0Z034aoXnyfV3amv2nDJDwDbK7ecppbh9O1BDN0EO798lDevXMtVAXn75ZePDOACWstNt9LHLSD0Ca1y8pOHF6PsU1B++6qa7JCnhIPa701gZd6B+79aNa1CX+l/y9NNjEDFd+J4pGCkEJ3z2mcyZPUfef+F2adyivdz1/CfS+5JbpUZkFELRBdbMLNm+eY1MRoLrK4c+ayKYI1GXuP+g+2TnpqVSq2EriT+w22Vy6wW/TJSfJr4lXXsPNB3h0HJIVf41SSm8YzpXCSgBJVDOCZRbAUjulfCiJbCoBJysY1oRWtrReJPKpnWncwscDgXiRdfeg1JZB80QMa07V8PMZ6KDWYi3kEYRyLrCyAWMSGLIOOg4RvM6N8Q2oLKIYw5SxBn/PgaC0HLoqrEvdWPqSd3Rz5ghxhXI2/Z/L34i7bpfCIvOCTm0Z7NkIsnzcURo7tu2ygiFY+mwPsGqyRx1wRCIYRCFHLoPrRZp6gUzktM/MNg2ItEaAnbFwC7zc7IzkVA7zQivT0ffj3q6B83vhvWor7v6MuM+wGTQl9w4XC679XG33WY6pWMZKXIsNQlBF4nmvKUdTTDv3A8bhVNoeKQR9VXDa0rD1mdLtRq1EfwRIgt+nSS///ajbNq43ixbu24DE4XMAJT8Zd/MAvhvKWoMnn02toFk2q1atYQ/am0EHi2XiW89Knc+Ow6BIu1ly4rZcitqHbPG8VaUi+Ow/AsfzTWBQ0vnfGesiGNH3mnyAI78dJH5zOvMOf9kj4sGGQHImsJsUcgZmJG210zrf0pACSiBikigXAtAPPgb8cfkh8x/U1gLwJBORWnx+7ZLzXrux6SuufMFmTPtM1j1HjIvDhW7a6zMMWIEOO50lGrDvdbU9I07cFI2LTwinfpF5a7OaN+iGsuzvfrqq6jzmmYCRqwasE3adDWrUiBQSNRq0EpadLqgwOb4HX3EaD2iuEiM2yV7t640VqVslPIzDccUEBgiIdVqGHHI8n58BYeEm3dOc4jQl815CNiX+3He9vb1i/GxkkTVbig/jPu3ZGLI9qIbH5Tm7XDS8jVa4mZ9+578PPkdpEI5Lo3w/cMwsz2H9154DURqlSZIAP3CCy9Ki7adpQ+saYf3boUwh8CDH2MGRB5fx3AuaNFlo2AKCkG2eQh0sg+D9bZOo7YSCrEeAHFeVOvS+zL548dPZe/OrWbR2x5/Vz5/7QFThm3AgIEyffo0U83GeTt0P2A7KZWNGOR0tfDq0q2vI3ijGsoK0sJIv9KuvS+RFQt+kb9mfS3d+16NIJNYlAx8kauYlno0yfg9PnRNa6kRVUteghi0fDVpLYxGsujDB/cYC2W7bn2xzoR/1tQ3JaAElEDFI1CuBaB1Onq0ipCGqCdcaRYOJ92a63gP9HJEY96tl+6neERNFiaanHtB65u/fwACN7KRvmWJ81cup5FrF0EkgqohqMrylyAqE5bVbXOk+0vXSaVHk7FeJZfrWl8wp98DDzwg4xGc4o/o2DDcpJNQQikH88OqRchx9MdqFHcc9i2s0TJFqx9ftQpb4J95FIMZSP3B4UZaDykCDu+hgDkqmekpsC7m5K7N3vNBgFYo5/dAzPPHPL4H4Drxh6j0h3CkeGQ/3DUzBOwmQbW7dUvy3dK5U+TT1x4xqzJ/X42cTHkdwu7lldfLrC69pOM5F8v6RTMlHaKN1wAjaOnnd+UVV5gAHfpm7kUwT5PZsyUZkdeT5s4Vf5Ry8fOrjDJtrWXTspmmli4FXnDVCPjVNTJCj9OVvTTUzQTNj7/1s6xGP9vDGhwI9s99OF+Wz58qE954VB588EH54IMP8uDp1KkTak33RwLo3+Uy5FPMhk/vpbeMwHl0CE4KOFqV2c7qdQkCS1bL7CkfyIyJb8ijr081AR+1Y5ohUGSp9BpwvTx7W0+zbA0IPq67a+salKurj+s1Us677BZcNyeMJZ1it0HSCiy73iyv/ykBJaAEKhqBCiEAt+5Pl9YxVcUvyK+AAPTWzcsOJz45fp+Eo+RZUa1Zm05ycuNKqf9PdQpkXoHDf1Fr0cID6xDNQ2x9+sHhDzdAznRu8+Y5Pl1wQe5cRglzGO+vRYtk4KB75MJr7jb512h9ZKQprUMUJVajZS+meSfrY4neuc0AsGAJuKIarYoUjNlZ6RAQeKFP2Znp6Fu6EUycNq+sDDmenQWxmuW+xAmYMLiISYYTD8QagUQxwWutcmW8zPup43X0z4mjNQnjLMULX38jWt2aPonazxSY5jPe2Z+NK/8wkdlkSjHHerh/oLpLI1hcmctx4Y/jTG7FerUjsd5JOefsztKzZ0+TMqgqzLx0CWC935N+QXLZ8NHyC8rnBfhXkehGteXKO0flGQ4tiufpfF8FDydd+1yeuwkKrW4XXC2rF/5s8hHmF4Bc8IcfvoeIbSo7YAG9/79fF+grUwnl4Px2wXb5+mz0/8nOzatMWhvmAvzP8AsRwX5czrtymOzC/Ijs2vLwK9+ZIJKJ7zxj+vLBjN0meju3Y5gwFWgc2tJ5tk4rASWgBCoEgQohAFnweAOKdJf/UA/X1xRFARuHUItq/a5/QCKeuVkOIVKjLvL2UcNBo8G6VfiaGyZPlqXI0xeFVC51UGO1HgJHWMasEp0C8zcn4Wd99fbbbyMn4AK5b+Rn0qbL+dZsc6MuLK0IfRk5bFhajdY8WoKNNTji9PdKQblr4xJYHpOlaYfeRlxQwFFkULjxnf6MVss7DH9qPr+vhPPpEI0UkP9Mo78OEekQlWsWzZJpX40z+RkZNZu/UYAzqTfPHRsyuhh/TucUP9/CmTM2NlaeGvOTyYt3z4sTMOS7BXnz1hUQVPm3XxqfN69ZJNdcfZXZ1fr165FwvAaC1uuaz6HwYf3ww7HGp3Xt4pnCEm7OLSKqPnxf90t2znEZNXwAKoG0lec++h2RzY4LnlZNiuL0o0fksTd/zF3V8gEcdPfzufN0QgkoASVwphCoEAKQJ+tQcjaDAT0YrCyfp5bWv+rRMR51PqZJG/kvlmyKMlm0szHYw2r0zfsL47y8yTJ33ybUCsbdVT7CArushfAehSoLlyA9BxNFs6oCK4h07tzZWPKYKLo6IoujETlyEPt48d//lh4XXJlH/DltqsAkfdcY9Vtem2N4+G8TlBKIsnW+blYQE0u1FSYA6SdniT/2BYY/lAh01NWl9ffaa/6WZsgd2RDD8s5JkQODw4wl09f992T74UhCvXHTJvn2228RdHQ9BGCkzJs31+S3TE1NNddeF9Qf/GXSmwUFYDQEIH4fqxfNNrvatW1Dnr8Dj7z6PYaEX5c/f/4Uibtfc1j2sGSvgTdL9wuvM8P+nvRRl1ECSkAJVCQCFUYA7ojLkO5IElt+ZYX7yyoe1UxqIuefJ41JlKMwDPzsa68jN92NyPMXbVajcOt5zjmSCGsRh2RpFWmO9ybXDpNHbh2B4IujwnxoiYf3y9ZVv8sPU6ebsm3WsmFh1SAMo+QQLEmXYYtrW7VG6awj5oZ61b+e9aRrZhkj1PMPLXu8tj0WLM0o4Hbd+0r7rr1RXWWQREXVRERsNUR6P4nUjtcgqXf1AkBwSmEtc8ym5Xfim/HSFUmV6/TKazmjeOVQth3aDff9T8bAak3xx0Zr3jm4Vplb8pZbbjVVQHr37i17EFFOi6plveOy1WvGyI61f0qfK4ZKvabtjUA0w7f8Eo3Lzps+AXkOU6T/9Q+ahNCOb2gVd3o6smbquxJQAkrgDCBQYQQgz9Wx7BMVWABuk7P6OCIfPbkur7jjGXnn2ZuRQqOHLF68yFQMYa3X6Nr15Nn3Z5k8gikQe7RmWXV2w2sEYbqWsRJ1OmegMPk0gyk4lLZ721pZOudbSTlyCJGnI4zPVey7T8HJvo48/soUqVbdsyFdc/P25ABsvgyHegP8Q0qllxQw97wwQRb+OlEOw+dwDwIXhqHMCivCsAoM06S4ahz2731ttPT/T5hUQyk1in7LH5OBL3YRgC07niM3/d9LYvnkjfxkgYx+6DKkJ7oOgSp+JvffnwhaYVu1cIZ0PvfS3EMOj6orRxMPSK16Tcwr9wuniXue/xj+f6slul5jp7muJ4/gIei4XzZ8Llwvo98oASWgBMozgQolAMvziSiq72nJCSYvXlHLWd+zlu5TY2bIGyOuNUO9GazPhnb7E+9LvUYtzXREVG3z7uo/WlEsS0qT1l1QgaFLnkU7QiQyktPZGpNngUI+UHAEhoQV8k35mkUB6C7AiD6bOzYul5V/TEXN3bXSoEUnOR8WqiikGmE5suI2+gf2vnRI7moJcXvkw3/fYYbme/Y8R8aO/cAMl+Yu4DQBN1Dpfkl/1Hb+StYuniVn4byxWSl5nBYt08lzL74FVTw6mYcLRgyfM+Am1BD+n9Rr2FwefnWKfPLyvaglPEd+/Ox/eQQgr1GmvXHXmrXrIXx50viQ8szt50i/Uf5S3zO96MlmdRkloASUgK0I6POtrU5H4Z1hFChvcsURWryJsT7tVf96RhpDuNWu10g69xog9A/0VmOAR3H6xP2aFDBI8GzXdiT+gKxbOgfBHKfCP48haXXiob1m6NHqt6sh4GxY2aagzu6TN3eSN564XtYi5Uns1vUy/6cv5MW7LpCRd54nqUcTrc2U+D0K5c+efHemDB3xlsTu2iNMl8JIbL5oGaTfpnN7/fXXjeXv9+njnWfbbjqmaVuxckYytQ1bzToxZqiWZd3YzrvyX+bd+T+KcedUQ87fFXfaOj/OqYSKuw1dXgkoASVgdwLFN0XY/YgqYP8SD+6C5ah4pojVGCab+t/hcjd4fPEPkziU/+q/awvyvrUvM0rpSAHDCh+n23ZuWS2r//wRQ9iVkK+uhrC83K7Ny2XVX7Ow6b8ltCoSFptXuFRF0uKqyPPWHtGjLKfnqm1YNk/e//e/MEx6Qjp0P18uuOouadq2q7z33K2yY9MqCa8eKX0uvRXlxf7PRPv6+WF81akd3LNNxr98t8Qf3Cd33HG73HbbbWZ49umnnzbl+W655RZUUvnSVGth3jm21X/9InOmjEXqnHuQx84heJw26XaSlkSmUOmE4dC5P3wsa/6aIUyJ8jt8P7/66mtZvnwZkno79sNI4SDkzrOGf91u2CZfMrnz+z/vyn3IqPJPGPuWlfPl/Mtvz9PLiKh6ZhiY+QtPt2Wicoo2JaAElEBFJ6ACsBycYQaARNVv5nFPc2Ax/GH8KKnfqbM88NOPcg/WfPbZZ+WPH6aVqfjjATAHYHikI12J8wGxRu3mlb/Dv201kkdniX9AgEnIzLxxlSpVxrxMY+GpgYjP3dvWyP4VC+Q9CIL28GlLhLVzN96PBwbJWXcOM4ERh5HWhqlR+EpM3IN6sMtl7o9fSOdz+sltI95FbsIg5P47JishImNRl3bvjnWya/sm6Y7qGDfffLOMQnm0L54eLOehk4f/6ehllwyUryeNkV3L50jdVmfJ0nnTUPHkKPzoMkzwzJHEeKTPqYOKFUukY8eOuYfHWrvkn5iYKJMmTpTl836ARRdCbdrH8ufMb4xlMXDGhAICkMdsklIXETBDRv2v/z/z4k4P7N4mrz92lQkSYV69phgDZnUW+nve8cQHuf0qDxPOFuYhj7wps75+W8699LYCXY/4JxLYGwKQwrMaAqlEjhTYj85QAhWRgB8epE+4qKZVEY9Xj8lBQAVgObgSEiAAmyHfnKdt9rfvS2J8nMydPVOi/sml9i8U8j2QfES2b1gqzdp293RTXl+OFsC6TRwZGzlEzQTAaxf9Kls3rDTO/o0aNZaqVUMlLStbWF2Er5OoaBEEwValip9sWD5PIpDYePrdd8s5TzwhlWFlQ64aybnrLvHDsQ6tUvglzSHxL774Qu688055A+KoYfMOsvzPn1E1JE2eRiTtLpRCef7pETJ48GCkzQmU+++/XxYjt2EK8ufdiXQ4vRBAY6JvwTHnlVfkEgpZJGJmzkQ/v+qSEhkmIz4aKwMGDBDmrXNuFDFMxlwVibITse0rvh8nr/06WfA311RPYR7FvbGbnVfBeVomH7wwRHpedJ1cd89Leb4r6kNd+MwNefg1Gf/K/SYRtLV8VHQdWEIpbE41P4hHuhj4unTeqT2WfKp5+x7CV2EtomZ92QMLcElaCvxrs5AgvGadhrmrj/x0oTQ4xojkdbnzdEIJlBWBoIDKkpl90me7V/HnM7S23nDhd0tbd/nM61wmfNBY39aTlpRwUH795gMjdNq1a5e7Sk9YoHZOnCQbELn7+Ns/w8IWlPtdaU7QApgOq9k3Hzwra5bON6KP+QXHjx8vN910kwQHBxfdHaQGMdmOObyJkmZQhpJ3MLbgJijChgwZYgJibr/9dlgb58vNg2+SJ5980szLvwaX74m0I8KXU2s7apT8DZaPjx0rl156qRGAY8aMkWuvvVaaN2/utGQhk6je4R8SIoOQnG9rWFUM0S6Xt956C/5t/nLfqIl5VqjJYJEqAc75pPN8X9QH+s+99s162QSrKlP7pCYdkvrwr8vfrFyA5UEA5u+79Xnq+JekGYThTiTnXvL7zzLksTEY9q9uEnIf3h9rfGGjESFMSzKrv/CBI3bDErnx/tGSmpwoox+5SqpF1JBXJq2yNmmCm/yy8efxRO4snVACZUbAl+KvzA5Kd1zmBFQAlvkpcN8Bli3zh/XL0/YthFVISLDxOXNeh75fX375BUq99ZLPX39Ihj75Qa5vlfNyvp4+ijQy/3voCuObRvEzdOhQYx3L3e/774u0QaAKrHpQhQJVKFgg92szQasfXyVoTIWzffv2Eqx5apVKKKtGgciSbO+++y40Yu+ixR9XR3WLUAxJD0Y+xmExMRIfHy/vYP3zLxuCBMV5xRnT8Yz+as2pnZZgisPcHXsOcLsmq6NkweeNtZfLY5vy0Ysye+qnMnPKOJMkm+f26SFnyzVDn5Rfv3pHjsLqnb9RcNMn8rmhp8R9SiHL5V9PPysBJaAEKhIBFYA2P5sJB2MxjNvUo15uXr1QVqEawrhxjrqw+Vfq1q2b+Y7BCZnpt8ig4f8R+jv5omVnZcrGFfORBmWaxK/4A8O2YVIXAQt74L/XpnVr+MktNfVpC+wb9WoF4gjRCgIzZoGvS2XG0aMimzcLIjhc7u74cZZ8O4E8icelEYaFPW4QjpEtWqBSxzQz3MxI6oE3Pejx6t5e0CSDzkzz9mZLbXsUf2wcst+5c6ccxbmjsP7mw5FyCSy0jz7yiDRu3FiWLFlifEM5PE9LbS3nOnlYv0W7LmY7+p8SUAKlRyCgSiXJPv536e1Q95SHgArAPDjs94H+fzXrNSuyY8yD9vV7TyH44CxjVXO1AodBeRMcNuxOeWHYedKoWWuTly4VdVJDQsOML1i3vtdKj4vg/wSx8tPno2Xtklny9HuzTeCEq+1a8zncOOPL12TxvKlyYVaWTIC1ZSFSkzRHXeKxUz+REFj3pkyZUrj440aKI6asnXr7HQEoEhHhdqu0ILFWbQzE6v79+81QsNsVnL7cvXu3qerRssPZcttj7yBaOdzp29KdNEPA5TjqlddvoN9JI/72Hzgg9evHwDKbaazgxzKOydSpU2UUhu1ZYWQdyhd+8sknMnnyV7mQm7RoJw3gD3rRdf+XO08nlIASKB0CHRuzTjdSlqXlSNqx45KQklM6O9a9GAIqAG1+ISSg8kOrrv2K7OX340bK4YN75efp3xc5tEt/tYsR2MC6qxMRlcqghzp1esihQ4dky5YtMvn95+WrD14w+6yE4AkOIh7YvUUatejoth+bVy+Qj0YhGAPWuwdgkRkGS2PLVauk9Q03iEBUtYyLk88++6x4FjO3e/TRl/RDbNnS7cZp+eNQIq1NV1t119yucerLefPmmSFIDsMz4bG320+fjpSVi+bKQ6O/g29blNvNmyFgm5SDc9tRF1/2G3SfTIZfa0bWSYmuVRtLVZa2Xc8zeTP3HtgFF9ExppwcU+YcOZIIYRgqZ/XsLzddOAgBJWebhx8Xm9bZSkAJ+JjA4aPZEhLoJznHT8qRVBV/PsZdYPMqAAsgsdcM+gAGBIW67dTi2d/K3Omfy+jRo4UBFZ60EAQjcCiYr/xtM4Y/58+fb0RKfyQY3gF/vFsh7Ppddw9KaTVBYunOEuxUzSN20wr5acL/ZMv65aYyxfTp03Pzz4lTIEocBGDt2rxJl/9GCyAFIIeBGeFbnGYNP9Ja6gsBuHHNEjm4b5c8MbiL3P/SBGnT5XyX3aMFMAUBIuW1de59mfDFFrdroxzas1k69rkm93C+ef9p2bZuibRAqbk23S6Slh16wsoNC682JaAEypzA7sPHyrwPZ3IHVADa+Owz+pc+Wu4aa/ROeucpUzP1sccec7eox9+1atVK+DJt3z7ZiBQr9ZDC5JsP/21y1jGgpFGzNlK7QXNT5mzf7h3INddM3njjDbn33nth7Cv8BksLoyV+PO6MTRekAMxENG8VF2ln3HWbQSNdIcB/wVD57T4Ixnn8rZ9lxI0dJS0lWeb98FERArCqCQJx19/y8l14zXqyZeWcPN29fvh/83zWD0pACSgBJeAgoALQxleCw//PdQAI85eNRT1YOrUzxx0jU73e6teXq5Hy5GpsmKKHjvavIA/esmXL5GDsGunaqYOMfvkl42Plh3q17hoFoHNqGnfL2v07suAwcEkqa9Bi+B8km9758cfyfux5cvnTH6LmbGuvHvKLH/8hW9f+Jc3bne12u+V9CNj54IJDwxHclOI8S6eVgBJQAkrABQEVgC7A2GF2/P4dUqdx20K7kpIUL188dYNUz8mWmTNnug6qKHTtks3kkGcLRLB++OGHJv1JByRP7tu3r8cbowC88MILPV7ezgtS/HE4OwuBLpwuriWwPypzLIOVddbjj8vg+y+Vnu/87FURGBoWLp08KC3nyAOYamfUxe4bk3775GGo2D3RFZSAElAC9iVQ2b5d054lIgVMpFMN4JMod7Z761okUX5Gpv+rt0xAbd+fPp+AyMf6pQqLYmf48OGyCgEefHnaWJ4tOjra08VtvxxFBkUxq5UUu6GKSLeHH5YARARvP3nClKor9ja8sAIrgZzAQ0RFaSGoCZ2RmlRRDkePQwkoASXgMwJqAfQZ2tPfcBaiM3duXiX7YjfIzvWLJXn1ItmOlB0tkMZlQoMYqff661LrMocD/OnvrXhboJ8fo4cpgDxtVuSsp8uXh+UoyksyDGyODQKyOkrJ3Y5SdPOQH1Hk1lI/5IpmKWNJuKMJ+5HYukaps9QdKgEl4F0CEaFVJDn9uHc3qlvLJaACMBdF2U9wWHfRb1/LpuVz5TBSWFRDubBZ302Q79G1HvCvmzZwoDQdMULOOeecooUXhiWR+EwEUbymsapGNaQcGTTIawdKX7aDBw9WGL++koBhLeDFixfL+eefX5LVzTqb+/WT5T/+JNfePdKUICvxhnRFiUAgSHL8PtSbbq80lIASKOcEVPz59gSqAPQtX4+2TivSz1+8Kn7fjhVm/Es/p5f07Hq51KxZU1i3thX8xCrD127o3XcLsjh7tE2URHBUs7AEYP/+RSY39mzDp5ai9chT3zcOk3q67Kk92H8qMTHxVMR0CbpLLstXrJDIWnUh6gNLsAVdxZkALYB7t650nlUup1khoX5UsFSHBWRvQqYwX5o2JaAElIA3CagA9CbNEmwrC3n+Pv3fvVJ56XwZgsjQW8aMkftRM/ZjRIiejVJkbVgXF1G4KDvhKI/m6T4iIx11dK3lWV7Ny41Dn57mwKP/X0VJAWNhZBoY1gM+66yzrFnFfmct4Z2xsfLk2z9K5SKiqIu9cU9XgJD/Gw8hlVh+r5y3quE1JS05vpwfhZjyWLFxGeY4WtUPlXgIwL/L/VHpASgBJWAnAuX/L76daBazL6yVO+revrJ5zSJ55rvv5KEvv5TqEH9sW7duNRG35gODPGx4c6agO4DyW540JoGuaAKQJd3CEcxR0paAEnIf//vf0qXXADmBIfvVC6bhPaekmyvxegGBIZKd5RAbJd6ITVakiGUUcEVqm/elq/irSCdUj0UJ2ISAWgDL4EQkJx6Sb1C3d9XiOdK1azf5fN4cad06bx44phcJCgoqg955vsu0tDQJCwvzaIWKlATaOmDmRIykpbUEjcP+k5ASp0bOcel/2xPy4p0XmK2M+rQzhoO9b61110UmG2fAUVFJx91tw07fGUFrKuiE2Klb2hcloASUgK0IqAWwDE7HRyPvkK3rFpvC9EuXLikg/hISEkosLErzcPbDguVpYueKJgDpu7dmzRq56KKLio2c4n7w4MHyEOoud3jsTalWvaZ06H6+3DHizVIXf+x8QHCoZB9LL/Zx2HWF8Ki6JhLYrv3TfikBJaAE7EBALYClfBaOxB+Qnds2yLhx4+SOO+4odO+sxZtbiq3QJewxk0LG02HdiiIAjeVu0iTZu3evPPTQQwisRmR1Mdr69evl6muuMX5/tz48Wjr2HGjWvvfFCcXYincXZTLozGMVJxk0S8IlJxyQmvWbexeUbk0JKAElUIEIqAWwlE/mopmTTa3cQW7SsWzatMkR/FHKfSvu7uj/tnHjRo9Wo1UzKirKo2XtvNDChQslIyMDtY+bmhJ8xenrL7/8Il26dJHU9Ex5/M1p0rPfDcVZ3WfLshxcRbIARkTVUwugz64W3bASUAIVhYAKwFI8k/t3bpbfvv9IbrrpJreWIwaAsL6v3RstgJ5GAZ84caLcp4GZNWuWyfl3ww3FF26sHTx48M3SpOVZ8vS7v0mDZvbJU2d8ADPT7H65edy/8EgdAs4Py69ypfyz9LMSUAJnOAEVgKV0AaxdNEtefeRKiUFE75tvvul2r8UKAEEqEkktm+E7WsIaNWrk9lisL8t7xQkO+a5DYu0HH3zQRP4W93iYBic5OUl6X36HBAQFW1hs8R4QFCpZqDBTUVqVgEA5XoHK23njvJw4WbEio73BRLehBM50AioAS+EKmD1lrIwddZf06dPb1M6tjtJfrlqxA0DgjyaLFrnanE/nUwTRJ66oxnx5LB1XnhsDXurUqWOOoyRpRrjuO4iYXjlrci6G2E0r5PPXHpBFMyciDQuEfBk1+gBmZVacIBBiZDqYk6ixrE0JKAEloAQKJ6ACsHAuXpu7aeXvMmX8y3LvvffKr7/+WuSQKQNA8qeEcdsZBpKwykcZNFYqWbp0aZF7pvUrOjq6yOXsvEBwcLDQMsvG4Wy/YiZtZtLsmrAeHlr+h/CBgMJ59rfvye6506TK20/LN+8+WWaHTx/ALBsGgRw9clhSkhNk97Z1svDXSfLXzK8kbu92jziFRURXiITQHh2sLqQElIASKAEBjQIuATRPVzmWkSoTXn8YFT16yDvvvINczkXrbQZV9OzZ09NdwNRRdr49tGrFxxdddaEiVAGhKJ85c6YRbseRtLkkZe2uHzlSfkfpuA8+eFlmTHobVUQyzHn+BP9fXqeR5+fcy0vSB9BOQSC0sE79ZJTMmjIu90hpbbYsrzWj60hEVG2p06CFNO94rrTr1leCQqrmLssJEwmMmsDVatTOM7+0PwT6V5YqfpUkPVOtkaXNXvenBJSAewJFKxL36+u3bgisWTRTjiYlyldfTfZI/EFdyLY//pDmzZq52ap9vqqL8nQHDx4sskMVIQUMh7AZxbwCdXspAP39/Ys87vwLUMS8//77Mn/+fHnggfvzfD1j8hhJPZqYZ15pffCr4i8nTxwvrd253M/eHevl958+k49GDjXi73HUwP72229N4A2Tjqenp8s333wjV1x+iTSuX1O2r10g41+5X957bnCBbToigQ8UmF/aM7JyTqr4K23ouj8loAQ8IlDhLYCZ6Ucl0y9FgkKLl6/NI3pFLLR+0a8o59bS40AJRAlIFoaAg3CjEww52r21bdtW5syZI3PnzpW+ffu67C4tgJ07d3b5fXn5ok+fPsJI4GYQ6CWxAFrHed555wlfXbt2NYKGyaTvuece+ePHz+TSWx61Fjtj3rMzj8mUj1+QP3752jwoNWjQ0Ahluk3kb0yf5JxCafz48TJs2DBhfs0aNVEv+58WjlQwO9YtsD7quxJQAkpACeQjUOEFYKVKleWvn8fJ8exMqd+iszRs1V1Cq9XIh8H7HzlctWXdEvnXUPjoediOYLnql14qMDV5uEbZLsYhbQqXDz/80PjF9evXr9AOVQQLIA+Mwm/KlCnC4ymJBTA/nOuuu074Yhs1apT8NGmMbFnzl1w97DlpjHQxpdnKKkZ0z/Z1Mv7leyQp4ZC8+uqrsIw+UKyAIT6EsH3/8Uhp0+V8OcYHPrheVPbzl+zUQ+Y7/hZT4Uu4ccXvErdns/gHBEnXC66VWvUam+/1PyWgBJTAmUigwgvAwJAw6Xv9I5IDAbhv2ypZ/tuX5iZRq0ErIwar12oANzrv+9ElxO2RtNQUxGd4HqCxBaXBykMFEOcfCusVU8R8/vnn4koA0k+wIiSB5nFfcsklMnnyZGFUcEl9AZ35WdMUlgMHXiz7YjfI6IevlLoxjaV5+x5y8eBHJLxG+Q6gsY4x//u6Jb/JuJeHS+PGjWX+nDXFC376Z2Nnn322vPjii0Y8rljwC4R5gASHBCOqOkvqI+XSi8POlRS4YVj+lpF4uMpIz8AQ80fy2OtTJaZJmzzdYuDJCQyHV8aD44nKGBb3/p+GPPvTD0pACSiBsiJQ4QWgBZZP/Y3b9jSvk4jiPARLwNZVcyXp0B6JiK5vxGDthq1hOfAOkqVzvjWRoj169LC6UOQ7BWDHjh2LXM7XC9Cvj0O7jHal9YTlzpiYumXLlgWsMxze/eKLL+Syyy5z2S1GvJ7OkKnLDZfBF+3btzeR3KNHj5ZJSMEzZMgQr/SiW7dukpiYINOmTTM+bzt27JAZv/woK2dPkd7XDJN+g+6TIETrWi09NVnWwsd056ZlUrNeU+ne99rTEoomyALnielTSqNtWvmHjH3pLrngggtk+vTpEhISUqLdst8vvPCCPPPMM+ZatSyzrNXMc8PPrNrCmtW9evUyqXzoT9gBv7PPXhkuT4z5FRbBQNmwbJ7M/Oot2b55TW4/zntRpF7z3I86oQSUgBKoUARcqp2KnDi+MlJ41Gnc1rwocJIRLbhn8zJZt3CaMCdaTMsuUr/ZWZjOG1lYnDO/cflcc+Nxl/Mv//YoAJ39m/J/X1qf6WjfoUMHYd95g6UFb9myZcb/jWKON+vatWsbyw350bpHYXSmNApjDj1yKJhiwtNqKJ7wSUVS72tQK5iCMCkpSRbDgnzLdx/Jgh8+kaZ16ktOtUipBGt28y3r5Jq/T0ofXMuv4Rw89ekrElE9UqrAAla/SWtp0bG3dDr3EojCWp7sVgICQ2A1yzita96jHWGh+IN7YPm710S7MzWSNx4O8m+DQTv0rezevbu5lp37xvP16SefmO/fevxakwPxwN6dKL/YVj777DNzbfM6b5XyMHL+bHFeVaeVgBJQAuWKgLtnepcC8EwpHUSBUz06xrw6yjWSkZoke7eukIXTP8Sw8TGJjmkpMc07S2SdxsWyjpx7yRD5/K0n5M8//0QC6D4eXTCsrBEaesrK49FKp7EQAxq2bdtmbnjcDIUeBQhr/NIyU1jjjXHfvn2yfft2UxmDiavdWS2ZO8+yyhS2vfI4z4oCZhqcBQsWYOh2oNcOg+LS4kUBfjGE98rdu2Xqa69J8xkzJCBupxytUkUCbr9N+qNmdCAsry8iWKLj1Kmydu1aI0gXLVos3338kvzw6csy6K4X5JwBNxUZhW7KwR1L87kA5APDlFfvk1Egdhssf/mFm9dAYkOsUrMb7Pgwk7/RwkqrIYfemzVuLl98Ns5c8/x7kNtmjhQpm8Ds3C7ohBJQAkrgdAi403IuBSBzV52JLSSsurTscpF5MTXG4b1bZefGRbJ89kQJrhoh9Zt3knqwDgbBt9Bd69HvBpn35euy7YknpI8HlToovNxaknAjkwYNvJr3b/Xq1XLjjTcaMcdj6dSpE3bRwO1NmYEfXIYvTxpFZXlPAp3/OC3fP/L67bff8n99Wp9pXY2Li8uzjYYNG8qDyCOJZJJ55lsfqmNi6NCh1kfzTuvh3XffLaveeVoOfDRSYuvESFTdRhJdvyms2x3lrHMG5hGFARheLo1cgHu2r5eLMMx6b0SEBOXpsfc/kBsfcvI3PsCQz/PPPy8vwn9QmxJQAkrA2wQ4ikrxlXPCEWIXhJyg/JyedcLbu3K7PXdazqUADKhSOr5Abnvugy+Za60K8p4Fe5AWhv6AtRu1MS92JSP1iAkk+eunjyUbpbOi67eQuk074L15ob6DJ7Cf3lu3CjzURUaMcBwNhnkFlhx5+OE8R8fhX/rYuWxXXSWClBfIp+JykeJ+QWuHR2IuJ0cw3inwqi/uLswwaUUTgDngQSsd2aWkpBh/yQsvvLDYbApb4eKLL0ai6A9O26pI6yGH8pcgefVR+Ct+jM/bYLV97Pt5Mh95DL+84EoZMmJMbheMBTAzLfezrya2rlkgSbBgVkFdZalRw1e7MduNiYmRPXv2FNgHA3hq1aqVRwAXWEhnKIEzjADFSaB/JQkJ9EPy8spy/MRJYR7L1GOlK1jshj00yK9EuTzrRQUJddT+hEz8rakk3E5m9gkEmIkUtzQ3RRzXD8W5CQqoLIkpOXI0A0FqHrQAnEtXzaUADMROimq8UOrUCJS0Y8flUHJ2gcVrVw+UZnVCTIePQwX7oyP+VSpJWHAVs8663alSs1qA1AwPkPiUbElKzZHAAD9JSsvBAWYLC5gXF1SBTmDGsfQUmQFr3O5ta2TbxlXSvE0neeS1qYUt6nZeSFgNadH5QvNiIMnhfVvlQOw6WfPH90YAUizWbdJeakQ3kNjNK+VA3H6J/fFHaYHI0dxGyxnyluVvLAHnNgJ45UqvWv9Yn5fDcR41+JnJASTVLYEArAhl4PIzsiyAHL58EOXdxo0bZ4YaGXRwOkOa9LOcN2+eV/0pzx4wQASv3Fh05JjcCv+3RUi30h1W6lZn9TKHFxjEcnDIP+njdjQxTjZGwlexBNdScbvGCHWrfJ/zuvTf5NC9NiVwphOIqRkk9WoESaNawRIeUqXQjBi8v6/fkyaHk7PkwJGsco2MHh6e3vZ4oLTaUbQ5N86jVY/6pEZVf1Pp5/DRbKkajPskWhoEM5fhfvj9hR0jIfqw438a77sU1dQ5RuukZksaKgWlY14KWOdv57apLm0aVC2wjQ04J5v3pUly+nGIddf3cndazqUADIYQYwuAYIuOCJT6kUHmACneIkL9cQDHzQXj/4+lMDYuQ9btSpVMPDEQWC2s0++sKETCnjpw5wOrDjAxNYNzZzWqFZI77TzBEkrJ6TnmAI3pFPD2JWZBGP5t9r/n8DEDzzKzOq9rTX/9/jOyZN5066PUqt8sd7qkEwwkYdQwX2xMMxO3e6NsX/27JByIlR0blxlB15ZRvc5emC4SPNMCePnll7vujtMF5Hohz7/hMCP9zY4cOQJDTA33K7L/cKYvSWOghDsfwZJss6zXsSyA7AeDDYYPHy4/Qui/+eabZkidlqfiNEZd01oXGBhohnJ9mjIHPqZ333efPPX8C7J1zZ+5AjAAAU/H0pKL0+0SLVsb5dvmTp9gfE3DwsJKtI3irEQrN69z59rNdLWgUKcfK3M7alMCZwoBf9yPm9QOkWO4Rx/AfbRBVLC0b+T+d0jLE4VMCu7DNNbw/l4erYK0vLE0YySMTrRsUqRRz9QI8zcWOn5PIUWrXUTVKhIZFmCGbCn0BP+O4/0Yhm/DQ6sYw1TO8ZPGqEWNcxLf0cqXjXnZ2DaZ5fEndrrAOL8axDZfDaNPaSAuQrFNMZkIUch9UiPViggosC1uoy1EYQN8vyf+mCzYmATLbWUjEtkH9iUz+yS0WhUJ+UfLOXUhd7IS1Ch2U7BxtoHkZuWCa5X+nH0wr85aFW9gnn/wconKXlGgE8t2VjE52/iFP27YdRq2xA3BpfYtsH5xZhzPyZZD+3bIieM5xgk9B5+zs3PMDYcBHnxRNOSXxTt37ZLGcFovjUbxzKuLQSepqWlSBxG9vmoHDh6QqMioAuljfLW/0tguh31pBcwvnDMR8JKIWr+cHwzrkyftCHzRMlEJIyKiuoS4eDjwZDvFXWb1mjUmWTJ9Atlyso6ZoCdauX3ZcrKzkOtwo0krFAVLoK/bfliuayJKnb8553YMzI8ePSq1a7m59hMXO69ipuP8OsnUalMLzNcZSsCOBIIxkte5abgZeVsIkcC//G1iqkr3FuFGLFDbuPMR4zFRAGVA+FAsWY0icNuBDBh8ThiBQQvWUQhEGmKsZQMgsGjAScs8bsQI9URpNordMIgsCr12DcOkHoxYFIDUNq7EWWn273T2xWPYvC8dx4G6ERC0PDc8NudGMXsIVtu6GKV1dbwuBaDzhuw8nYChYqpc+izIzJ6I2iv4R9vO/de+KQElUH4IqAAsP+fqTOopxU5jWPZCIPhCg6pAFPibUThagpwbR+6qYF4w3LdKu9FKRoFIAwQtacdgoaLfIQXolL/iijU069x3HmJdDGNH4pg5OsmhbI4wlsUxOverPEyfkvTlobeF9JHqV5sSUAJKQAkogfJIgEN39Jdn23XomEd+77TsRWE4tjGGEDmkWR3Chxa3opqzFa+oZb39PcVoINUamuVixmkOe0ZAtCXBl624jda9/p2jjAAs7rq6PKy/CkEJKAEloASUgBIoGwKt6nNINkKOwO+rfmQwAi5SMY3MCy4aR7wGnVvHWM9cLFJuZtMXcU98ZrHEHyVk3chAqY04AwZH0OKprWQElFzJuOlaSkAJKAElUIEI0KrWsl6obNybBmf+Ql3jfXK0uxHI2K15OIIRAsyrSe1g2YV5Jocc+nE0I8f4cG1BxCeDC/p2iCz34o8BFAx2oJ/anxuOFMqVxsIYpFKhH99RWAfpr1gHltKOjcPg01i0tbPQjerMPAQqlgCMaJfn4HzxgX8WGGXD0Gu4Lpi0NVl4imGEkBXqTQdNX//54L4cwRy+OErdphIoGwK8rq2oOvoMOf+O6OdbBa5LfA/EDYC+Q7QgZGQ5ot3o2+SucVv0gWJ0HJ2n82/f3brWd0l+bnJ1Wgvpu1sCYUiXwXPgnLmBEZGRiMbciSHQwhpFUWyc4zs6tVM80OmdedE4bTWKOPp/8TtuvznSkB1Buo0dyFLB9Bxs9Jfr0izciIndiKDkNcdEBxQjTEtG3zGKMgYzMBKUw7MLNyVZu8DwpSOoYNuBdHMf4HVIYbIXAYls3DcF3arYlDz546IxZMu0aVVhsQpAvr0gfz/TV/JwdtIPQuAlrYL5W5em1YwIyu/sn385u38m59Vgk4jzwvNHfs7XAhnF45xe3KWmCdyw+/GU5/6V+yCQsoK/N+GYHEROpK74ofO2wwgn+mBYwiwHT258yqFQ3J+YKat3ppTYybWwY2R6ntJ8Si2sDzpPCXiTQEPkJKM/k5WEng9azHXF+C7Oo2hoghs6/Z7YrDRStCAwGOzqnm4iev/pKFNK8cbN3y4j5JDrVpsPCNCvjUKH54WWG57DHi2rG6HF/LE7Ici2IorUahRtLeqGmBt/bCEikCKBqUiYsoN+bMwny+1XhUUsBC8mu+U8ZyFlbdt6p/inJYn7oiXN00YhuAZ/v9l4HTZGzjxa6zhMeyQt2wRbsE/rkdeW1xSvUx5ztRA/8x37zeAET3z0PO1TRVmOQvvXlfF57o1nI0K5NSKVKYS1+ZaACkDf8s3dOrOq8w/GPojBQ0lZ5g8VzfwlbSoAS0pO17M7AVpKaOVgklo23jzp7M0cZIXd4LfsT8MwUpLc2KeOEQXujo+/w/3If/YXLDqeZtJ3tz397hQBWqiqQgjRItepSTWTmosO/rPXJMK6dlIGdK5pxJt1DmiF5cOzlfCf55iRoelIG0KBxXPEa6BF3VAj/Ao796f2rlPliQBTxsxdm1iggAR/49f0rFXo77w8HV956asKwDI4U7QIbsDTYmFPup52RwWgp6TOzOX4h5TDWRxao9O4lXKhHpynmc2f1hDL0sYM/8zpxSFSOzQmna8P3x/2nRZAulSw0hCH2SgIGPnPYTn6SNHyzhsJLQm0Bg0+r65JgurqODi0RCsN37fs933lE1f9qGjzmRyX1jUK98u7R5tzVNGOUY/HOwSYQ/CbBXGwlKJiBqx8tLDS+tsMQp+/e46iaSsdAhXLB7B0mJVoL/Q3Yrk73rBYNeV0xF+JOqArnREEKII4TBYHKzNFjtUoligEtx30M1YyXo+cx8as/hw+C4eljeUY6c9qNS5Cf6btBzOQnR4JzTGDIowVfziM6u3G/XFY7cCRTDOMxu3zpsDEtXSr4M3CGr5l8tltEHH0H6JfVu+2NdyKP26LwpjCEpoSx5SuQ8CE4mHjQyeHMS1fOn6mdZb3a4p2sqU4pxVQmxJwRWD1zlTzO+7RMsJUueDwuV4zrmj5dr5aAL3MlwkuWXuPTzEc8k1BBBeHRFJQuJl/PDPxPZ2FnZ1eS9IFtQCWhFrJ16GzMvNuUTnQGkUBZJdG53la9OgTSnHTs1WE+Uxna8vKx+SofNqmNY1DbnSMp/BLxjvH4VguiPOz4HfHZa31GGTBckO8ZlshQpI+emx8iKFI4wMN/VzZBzLZDf+tU/IxL6Gm9N+D/xRzgLF8EUtHOmlNs3BXOOe3a1jV3CB+X3/EWJXoC8ioP8vfiwEgFKz0JQuDHxjPC/2s8ie9zbt3xydaHZhBn2KYAnnlDvjmFragziuUQAOI/2Z1Qo2lj+eetd494V7oxnTmGUcgEUaQNfjd829MZ7gM6LB+2V4CKgC9zH/ljqNmi7ROMKkn/V2cgzUo3CgOT1dAqAD08okrYnMUgPVgiWJaAjqQ89zSMZ3RhRk4180hjjjkSrFCIUVxtRW+aW0ahEksrGemjjX2wXUoPhJSHHm+aLmi7xNFlLeECC1mvFFTKHG/tHYx8pHz6QDvyz+6rIPJ0k/0r2MZKFrsKE7Jr1vziDy1wfmwRGsjj5++sXSNoDXARHGi70nwE4piagxk+PfWsBAj52kdXQMrBIeNtZ0iwIcHCnSyKaxxePdsWG0otin+eD1ZVuTCltd5SkAJ2JuACkAvnB/e4Hijs5yY6ZNEi58vmwpA79GlJYk3Nw6dHoRVi2lFnBv9zShgKPasRosXLVLQe0a4cFi0cXQIPsMilnYc4s/hX1YFgp9DY1yWQ5i8yfLhgOKIw7C921Y3Du8MZJi39ojZPPvDXF8UUvSBcx7KtfbvyTuFZt+OkUYAsr+mXKInK1bgZciSkanM9VZSrhURD/+e8LprWa+qLNmanOcQ+dtgVCaH//mAwyHftniw4bWsTQkogfJLQAXgaZ47DoXNQZRbIPI64d5/2pY9T7ujAtA9Kd60yIhDh0zLQMsbh0Ytn6UkDH1StPv/kz6Clgxar2i9Y8AEm7HOYbgyGCktOCTK85sDiy6X5U2Qn3lDpIWNn80L61FocYiS67AfRVlJuN9l245iiNZhDWQeMlpZ6He3cS/9ZRz9MZ0q5D8+eHAYF/+Mm4HJb4c+0crsGAauJB0aVTOBExSCZ1qNTD6MLd9+FFZEnq+/zfB1IRh1ViEEaEnuA99K9dEqBI7OUgLlnIAKwBKcQN5UaUVgioOluHHzHbqhVNuZJgCZGoQ3cooaWtOiUQaIopsCLhEllOiY3gyRZCwKbkWIluoJ8fLOKOIoKHlZUdjx3TG8esJhhcFnCkzemCkyC2sUuMxXyeVoveE7/VA5xHomNLpfxCVlyyZUUOBwL3+32k4RoFuAuSbwsMKheP6WIjHcTh9NsqJFsC38MZ3rtp5aW6eUgBIo7wRUAJ7mGTwAv6XpSw+f5laKv3pFFYC8KdGpn07C9BFjsAyH2JlElkNO9L/jjUmbEmBACx8I+GDAF4fVGeSRgusl4SiDXLznV1neaPOhwfqtMEULK1qYBMj47XA+rc2+9AUtb7y0v0rgTCSgThynedb5BK3t9AhwaI71HtNhxattSiX5mehPDq3St85UVYE1JwrWCb1pnR5rO65NayfLZnGoniW5OLROqyaH4B1D2xzKd1irKPporTqMSGwOkdPKqY3WYJQjg/W7Hn4//A1R8BXleqDclIASOLMJqAXwNM8/b0B0Jmc5Kjr3O7dGiKjj0BtD3zmex9JwVlSm83IlmbarBZD+aL3aVDepb2jNo9WBQs6y1jBZLIfjWOWVkZ0caqI1ggKQrCgCqsNPjeuQLetkcnlG2PbrFKUCsCQXSzlYh+eaaWGYHob+meaaKQf9Losu0o+T+fYYtMRh21oRjml9OCqLs6H7VALll4AKQC+dO1YXWAlH893xjoLg3Gyr+qEm+IApQWjlYnBB/FHv1B+1qwBk0fa+HaLMcXuClsKQKUPikFSYQ3e8sXH4l8EafhCQ2sonAQbTOFug+PDDfJh8WDK+Z3hQoPWc07T2mQAY+J5Z6/C64DaYc3HxluRyEbFLiyWvW7oq8HjYmC6FQ9FJiAw/HWslH44a47fFsmhWDeTyeWVor5WAErALARWAJTwTvKGxMcrUakyMm4j8bhyqZJ1fyhdWT2DAiBVZai17uu92FYA8Lt7EaZ2g6OXN0HrVqe4o73W6x67r259AAoTekm3JEoMKERyaZFQzBT2FHX8L9Nljmhs+HO06lGGEHo+KIopBBwzXYE1Y5xyahR01fwe0MluBLdsOlH51D+bD69AozCTMLqyPnMfjpmXz52XxuTkhXS2bfz5L4DGdD3MkalMCSkAJeIuACsBikuQfclolKOp4s2H5LEZn0nrFAtdwVcttvDnRiuE8L/fL05wobQHIYSbmAquF6FumPmHJMApe1pXNP/TtfGi8MdeFT5IpEQXnc1ZJCcCwFdUxh6/okK6t4hHg74TWvoNIukzL3yG809rHoX5WjuBvhr6dTMxMC7AnEbp8oKLYqoPrqTp+d6xKQgsbBeQeVCopi7x+DaOD5eIuNd2eQAYzsQwkDtX8jaBFE38WPG787bVpUBV5Rv2Mrx8jv1m5hYL6BFwoWL2FD6R8GNUAKY+x6oJK4IwnoAKwGJcAb2p7MMQ7e3XCaZdyK8ZuC120tAUghVy9yMDcIa5quAlRvDG/Hq05LBW2Go787sRg/gPhuhSGTPHCYV/mp6MPYQi2S2uHNRyYfz39XP4I8EFo/e5Uc755bpmihY2iiFqI7xwqnbUqwcwv7D8GBHVpGm6uOQrGJRBSFJgUhKxgcQz5ElnizvLLLWwb1jym2OH15YnwtNbJ/85h2W6oUdyxcbX8X7n9zN8JRaAnzbKis68UzhTBtCQyOt4IarDksVBE8/O5bWqYgBkuz98X+0ihyHd+5jTif02wjfoMenIGdBklUHEJqAD04NzyJsE/unzR2hCLMmBl3UpbALo6Xt50eGPhDZ6cCrNssK9MjswbFa0hhS3Dahl8+WEhLteuoVYacMW8vM/ngxSHgSn4aAmkqqE1kH60rHxSUlEGjWOuG/oUMvcfc0MW1ro1d4g2XrdrdqbIos3JhS2WZx42LbT2WTWIea2yRrInWQCYPJzBTXzxGCmEWfrPW40PZ1URLMVAKYpfWkUtwUgmFI58N/Pw42KkdWhgFfNAxxEMbUpACZyZBFQAenDeOeTJP6y8CfDJ+zdYABnNWpbNLgLQWwxoUWQSWvoOcpiZaSx0eNhbdMvPdvg7o4WdLhWsZczPfLigyKGVmNZD/ARl457UQv0DKXRMEBGW5zocEk2GawbdDZrUDjHXFH87FEMUofNQtpHWa3eNgvIi+ODRl5UPLxy2Zqoax7vDxYMuIYzwZx5CS+wd4zTEWHEELftPyxyP2Wr0mKgHX0r+LvjAxWTeZMMyg/SX5LGwb3zXpgSUgBLwlIAKQE9J/bMcc5b9vv6IqfV66k90MTfihcXLQgDSl483VDLgzZM3PHdVUFiRg/5LVYNODRcbKwRuVLypcZov52EqM0RFE6A2JeCGAMVXFq5B6qT0rOPwMcw2ojEVQ6EUj7wu3QWQ8Aory98vD41irmmdEDMszt8V07tQ4PLypxWP7hSsQa1Jm91cCPqVElACJSagArCE6DiUSX+jfagEwnrApW0RLAsBaKHiDcox9OsY1mUFBjaKOebto9WmsJsvHdl7tozIEzltbVPflYC3CPB6ZO5IWv4ooigG2WhVY1S+NxofWijMaI2j24Lxt4NFjrktef3TEsjhYbqNUKQ6Nwo9BlQ1hUXyTKvL7MxBp5WAEihbAioAS8ifEb/8Q2+ltOATO//O475gIv6Y147Dxb5qZSkAizomd9YVpsjp2ixcGtUKKWoz+r0SKBEB/hZ3wlfX8gEMDsRwKaxtDFY6AgHI3yx/u/zsqvH3RQs2LXPR4YHGNYHTfPihsOP3RQVRcPuOYA9HXV1a9+jiUB/DuUWt66pfOl8JKAEl4C0CKgC9RTLfdjhExeEopn/YhaARfo6N817wSHEEoOUfxBxrvAHxRkSne94E+aLFhMNmvHHyBkcRyxsUnfWdU9jQt6ouIoExWw5C4DLysLBGAUh/Pt4w6XvFGzBzAEZUdeQE5DxtSqC0CfD63rI/zaSL2XYgI8/u+XtiUAdf0XBb4LWuIi0PIv2gBJRABSOgArAUTiiHg5IQNMKcXcZ3CTci5u3iMOlhRAVmwCLB71KR+JYO5J604gjAwrbH9elfxCEo43+ECEJaJijcKOA4bEUBSKHIoTQKRApHDn1xGI2i0SEWubRINpQiv+O2+IpAAXqNMDRo9D+bEWC+QF7T9GXldc5gEaYiYrSsNiWgBJTAmUJABaDNzjT9lHhjYoAF/QqZQoKpMrJy/kZEoSPFA0UiU2jQAsdbFoWYqxQs3jg8+vVx2LYZylDRz0+bElACSkAJKAElUL4JqAAs3+cvt/e0LFI8cniWApEpKDjUSnHI+XlesDZSMNJHkZZI845pWiopKmmNxGaMEOW7lessBEO5nKajO5WnlQOQ+2F+NOudIpHpKaoiobM6ueeeIp1QAkpACSgBJWAbAioAbXMqyldHLP9AWig5TOwY0nYMa1uiktGO0chdpk0JKAEloASUgBKwFwEVgPY6H9obJaAElIASUAJKQAn4nICGY/ocse5ACSgBJaAElIASUAL2IqAC0F7nQ3ujBJSAElACSkAJKAGfE1AB6HPEugMloASUgBJQAkpACdiLgApAe50P7Y0SUAJKQAkoASWgBHxOQAWgzxHrDpSAElACSkAJKAElYC8CKgDtdT60N0pACSgBJaAElIAS8DkBFYA+R6w7UAJKQAkoASWgBJSAvQioALTX+dDeKAEloASUgBJQAkrA5wRUAPocse5ACSgBJaAElIASUAL2IqAC0F7nQ3ujBJSAElACSkAJKAGfE1AB6HPEugMloASUgBJQAkpACdiLgApAe50P7Y0SUAJKQAkoASWgBHxOQAWgzxHrDpSAElACSkAJKAElYC8CKgDtdT60N0pACSgBJaAElIAS8DkBFYA+R6w7UAJKQAkoASWgBJSAvQioALTX+dDeKAEloASUgBJQAkrA5wRUAPocse5ACSgBJaAElIASUAL2IqAC0F7nQ3ujBJSAElACSkAJKAGfE1AB6HPEugMloASUgBJQAkpACdiLgApAe50P7Y0SUAJKQAkoASWgBHxOQAWgzxHrDpSAElACSkAJKAElYC8CKgDtdT60N0pACSgBJaAElIAS8DkBFYA+R6w7UAJKQAkoASWgBJSAvQioALTX+dDeKAEloASUgBJQAkrA5wRUAPocse5ACSgBJaAElIASUAL2IqAC0F7nQ3ujBJSAElACSkAJKAGfE1AB6HPEugMloASUgBJQAkpACdiLgApAe50P7Y0SUAJKQAkoASWgBHxOQAWgzxHrDpSAElACSkAJKAElYC8CKgDtdT60N0pACSgBJaAElIAS8DkBFYA+R6w7UAJKQAkoASWgBJSAvQioALTX+dDeKAEloASUgBJQAkrA5wRUAPocse5ACSgBJaAElIASUAL2IqAC0F7nQ3ujBJSAElACSkAJKAGfE1AB6HPEugMloASUgBJQAkpACdiLgApAe50P7Y0SUAJKQAkoASWgBHxOQAWgzxHrDpSAElACSkAJKAElYC8CKgDtdT60N0pACSgBJaAElIAS8DkBFYA+R6w7UAJKQAkoASWgBJSAvQioALTX+dDeKAEloASUgBJQAkrA5wRUAPocse5ACSgBJaAElIASUAL2IqAC0F7nQ3ujBJSAElACSkAJKAGfE1AB6HPEugMloASUgBJQAkpACdiLgApAe50P7Y0SUAJKQAkoASWgBHxOQAWgzxHrDpSAElACSkAJKAElYC8CKgDtdT60N0pACSgBJaAElIAS8DkBFYA+R6w7UAJKQAkoASWgBJSAvQioALTX+dDeKAEloASUgBJQAkrA5wRUAPocse5ACSgBJaAElIASUAL2IqAC0F7nQ3ujBJSAElACSkAJKAGfE1AB6HPEugMloASUgBJQAkpACdiLgApAe50P7Y0SUAJKQAkoASWgBHxOQAWgzxHrDpSAElACSkAJKAElYC8CKgDtdT60N0pACSgBJaAElIAS8DkBFYA+R6w7UAJKQAkoASWgBJSAvQioALTX+dDeKAEloASUgBJQAkrA5wRUAPocse5ACSgBJaAElIASUAL2IqAC0F7nQ3ujBJSAElACSkAJKAGfE1AB6HPEugMloASUgBJQAkpACdiLgApAe50P7Y0SUAJKQAkoASWgBHxOQAWgzxHrDpSAElACSkAJKAElYC8CKgDtdT60N0pACSgBJaAElIAS8DkBFYA+R6w7UAJKQAkoASWgBJSAvQioALTX+dDeKAEloASUgBJQAkrA5wRUAPocse5ACSgBJaAElIASUAL2IqAC0F7nQ3ujBJSAElACSkAJKAGfE1AB6HPEugMloASUgBJQAkpACdiLgApAe50P7Y0SUAJKQAkoASWgBHxOQAWgzxHrDpSAElACSkAJKAElYC8CKgDtdT60N0pACSgBJaAElIAS8DkBFYA+R6w7UAJKQAkoASWgBJSAvQioALTX+dDeKAEloASUgBJQAkrA5wRUAPocse5ACSgBJaAElIASUAL2IqAC0F7nQ3ujBJSAElACSkAJKAGfE1AB6HPEugMloASUgBJQAkpACdiLgApAe50P7Y0SUAJKQAkoASWgBHxOQAWgzxHrDpSAElACSkAJKAElYC8CKgDtdT60N0pACSgBJaAElIAS8DkBFYA+R6w7UAJKQAkoASWgBJSAvQioALTX+dDeKAEloASUgBJQAkrA5wRUAPocse5ACSgBJaAElIASUAL2IqAC0F7nQ3ujBJSAElACSkAJKAGfE1AB6HPEugMloASUgBJQAkpACdiLgApAe50P7Y0SUAJKQAkoASWgBHxOQAWgzxHrDpSAElACSkAJKAElYC8CKgDtdT60N0pACSgBJaAElIAS8DkBFYA+R6w7UAJKQAkoASWgBJSAvQioALTX+dDeKAEloASUgBJQAkrA5wRUAPocse5ACSgBJaAElIASUAL2IqAC0F7nQ3ujBJSAElACSkAJKAGfE/h/EeBQM5e6mGcAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from eomaps import Maps\n", + "m = Maps(Maps.CRS.PlateCarree(central_longitude=-60))\n", + "m.add_feature.preset.ocean()\n", + "m.set_frame(ec=\"none\", rounded=0.3)\n", + "\n", + "m_i = m.new_inset_map(xy=(5, 45), xy_crs=4326,\n", + " radius=2e6, radius_crs=3035,\n", + " plot_position=(.3, .5), plot_size=.5,\n", + " shape=\"rectangles\",\n", + " inset_crs=3035,\n", + " boundary=dict(ec=\"orange\", lw=4),\n", + " indicate_extent=dict(fc=(1, 0.6, 0, .5), ec=\"0.5\", lw=0.5, hatch=\"xxxxx\"),\n", + " indicator_line=dict(lw=3, marker=\"o\", ms=10)\n", + " )\n", + "\n", + "m_i.add_feature.preset(\"coastline\", \"countries\", \"ocean\", \"urban_areas\")\n", + "m_i.add_feature.physical.rivers_europe(ec=\"b\", lw=0.25, fc=\"none\")\n", + "m_i.add_feature.physical.lakes_europe(fc=\"b\")\n", + "m_i.add_gridlines()\n", + "m.show()" + ] + }, + { + "cell_type": "markdown", + "id": "3cecfa72-98e9-4472-976e-14b0b271a4af", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "# Zoomed in views on datasets\n", + "\n", + "To create a \"zoomed-in\" view of a dataset, the data must be plotted on the inset-map with the same classification as the initial plot.\n", + "\n", + "For this purpose, EOmaps provides 2 convenience-functions:\n", + "\n", + "- [`Maps.inherit_data`](eomaps.Maps.inherit_data) : Use the same dataset as another [`Maps`](eomaps.Maps) object\n", + "- [`Maps.inherit_classification`](eomaps.Maps.inherit_classification): Use the same classification as another [`Maps`](eomaps.Maps) object\n", + "\n", + ":::{note}\n", + "If the classification is inherited, also the the used ``colormap`` and the associated data-limits ``vmin`` and ``vmax`` will be the inherited!\n", + ":::\n", + "\n", + ":::{tip}\n", + "You can still change the shape that is used for plotting to adjust the appearance of the data in the zoomed-in view!\n", + ":::" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "2a2560d1-dfaf-4995-bd9b-cd905710d6c2", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "x, y = np.meshgrid(np.linspace(-20, 20, 50), np.linspace(-50, 60, 100))\n", + "data = x + y" + ] + }, + { + "cell_type": "markdown", + "id": "9521c322-3b26-4c9f-bfa3-e7cae7dc0408", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "Create a map and plot a classified dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "3a96a635-3c2b-49d0-a25b-f58c555f85bd", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "from eomaps import Maps\n", + "m = Maps(ax=131)\n", + "m.add_feature.preset.coastline()\n", + "m.set_data(data, x, y)\n", + "m.set_shape.raster()\n", + "m.set_classify.Quantiles(k=10)\n", + "m.plot_map(cmap=\"tab10\", vmin=-10, vmax=40)" + ] + }, + { + "cell_type": "markdown", + "id": "e19988aa-eb39-49bf-b4c2-52059b32973a", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "Create a new inset-map that shows a zoomed-in view on the dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "b5bfc055-ec33-4672-9a6b-570defce9f9e", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "m_i = m.new_inset_map(xy=(-5, 35), radius=8, \n", + " plot_position=(0.7, .5), plot_size=.7, indicator_line=True)\n", + "m_i.add_title(\"A zoomed-in view on a dataset!\", y=1.05)\n", + "\n", + "m_i.add_feature.preset.coastline()\n", + "m_i.add_feature.preset.ocean(alpha=0.4, zorder=10, hatch=\"///\", ec=\"darkblue\")\n", + "\n", + "m_i.inherit_data(m) # inherit the data from \"m\"\n", + "m_i.inherit_classification(m) # inherit the classification from \"m\"\n", + "m_i.set_shape.rectangles()\n", + "m_i.plot_map(ec=\"k\", lw=0.5)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "11d46e5c-4769-412a-a74a-b5a1dd38dc0d", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAEAAElEQVR4AexdBXxT19t+aqm7QoHiFHf3YWPIYD42pszd3V3/c/uYMWHMFRsy3N2dUqCl7pFKvvc96Q1JmoSkTZq0Pe/vd3vt3HPPeW6aPPdVHz0JpEgEJAISAYmAREAiIBGQCDQZBHybzEzlRCUCEgGJgERAIiARkAhIBAQCkgDKD4JEQCIgEZAISAQkAhKBJoaAJIBN7IHL6UoEJAISAYmAREAiIBGQBFB+BiQCEgGJgERAIiARkAg0MQQkAWxiD1xOVyIgEZAISAQkAhIBiYAkgPIzIBGQCEgEJAISAYmARKCJISAJYBN74HK6EgGJgERAIiARkAhIBCQBlJ8BiYBEQCIgEZAISAQkAk0MAUkAm9gDl9OVCEgEJAISAYmAREAiIAmg/AxIBCQCEgGJgERAIiARaGIISALYxB64nK5EQCIgEZAISAQkAhIBSQDlZ0AiIBGQCEgEJAISAYlAE0NAEsAm9sDldCUCEgGJgERAIiARkAhIAig/AxIBiYBEQCIgEZAISASaGAKSADaxBy6nKxGQCEgEJAISAYmAREASQPkZkAhIBCQCEgGJgERAItDEEJAEsIk9cDldiYBEQCIgEZAISAQkApIAys+AREAiIBGQCEgEJAISgSaGgCSATeyBy+lKBCQCEgGJgERAIiARkARQfgYkAhIBiYBEQCIgEZAINDEEJAFsYg9cTlciIBGQCEgEJAISAYmAJIDyMyARkAhIBCQCEgGJgESgiSEgCWATe+ByuhIBiYBEQCIgEZAISAQkAZSfAYmAREAiIBGQCEgEJAJNDAFJAJvYA5fTlQhIBCQCEgGJgERAIiAJoPwMSAQkAhIBiYBEQCIgEWhiCEgC2MQeuJyuREAiIBGQCEgEJAISAUkA5WdAIiARkAhIBCQCEgGJQBNDQBLAJvbA5XQlAhIBiYBEQCIgEZAISAIoPwMSAYmAREAiIBGQCEgEmhgCkgA2sQcupysRkAhIBCQCEgGJgERAEkD5GZAISAQkAhIBiYBEQCLQxBCQBLCJPXA5XYmAREAiIBGQCEgEJAKSAMrPgERAIiARkAhIBCQCEoEmhoAkgE3sgcvpSgQkAhIBiYBEQCIgEZAEUH4GJAISAYmAREAiIBGQCDQxBCQBbGIPXE5XIiARkAhIBCQCEgGJgCSA8jMgEZAISAQkAhIBiYBEoIkhIAlgE3vgcroSAYmAREAiIBGQCEgEJAGUnwGJgESgySLw3nvvwcfHB926dWuyGDg68f/++09gxetzybPPPivanqudq88fP35c3Perr75ydddNqj/+n+Bn6KycPn1aXLd9+3ZnL3VL+71794rx8OfCmowaNapJ/+9LAmjtUyGPSQQkAk0CgS+++ELMc8+ePdiwYUOTmHN9THLWrFlYt25dfdzK7B7NmjUT9500aZLZcblTPwgwAXzuuefgTQSQx2OLANYPKt57F0kAvffZyJFJBCQCbkRg8+bN2LFjBxSy8Pnnn7vxbk2r6xYtWmDQoEH1PunAwEBx3/j4+Hq/t7yhRKChISAJYEN7YnK8EgGJgEsQUAjfq6++iiFDhuCHH35AWVnZOftm8yKbyKwtbFJSRKPR4LHHHkObNm2gUqmQnJyMO+64AwUFBUoTsa6qqsLrr7+O1NRUMIFJSEjANddcg5MnT5q1U8xVrFnj8QYHB6N169b48ssvRbt//vkHffr0QUhICLp3746FCxeaXc87hw4dwowZM8Q9+F6dO3fGhx9+WKPd/v37cf7554u+4uLicOutt6K4uLhGO1sH2HzI+JgKj3Xy5MliXDxOHj/PWdHCmrY13S4vLxfjnTlzpulhsc1Ycj/333+/2LdlAj7XvPV6PRITE8XzUW5SWVmJ6Oho+Pr64syZM8phvP322/D396/xHI0Nqjd2796NCy+8UPQRFBSEXr164euvvzZrppjV586diyeeeALNmzdHREQExo4diwMHDpi1tbZz+PBhXH/99ejQoYN4VvwZmzJlCnbt2mWteY1jRUVFuOmmmxAbG4uwsDDxzA8ePFijnSP34bn0799fXMtjUv4/+LPAwi9cV1xxhfjMKp/dK6+8EmlpaeK88of/Bx988EHxf8O4xcTEoF+/fmCMTIX7mzp1qjjP7Xr37o0ff/zR2IT/Ty+99FKxP3r0aON4pHuAESKAPvhSJAISAYlAk0KAfmT0kZGRevrBEvOePXu2nr4W9fTjcE4csrKy9ETCzBYiBeL622+/XVxPpE4/YcIEPREF/VNPPaVfvHix/s0339SHhobq6YdKT+TQeJ+bb75ZXHvnnXfqibTpP/nkEz1psPQtW7bUZ2dnG9uNHDlSTz/U+k6dOumJvOoXLVqkJ0IlriUzl55In55+JPXz58/Xk/ZNTwRPf+rUKeP1ZOYWc+Z2c+bMEWN64IEH9ERw9PQjbWyXmZmpJxKqJzKhJ3Ip+rvqqqv0rVq1Evdavny5sa2tjWeeeUa0NT2fkpKiJ82gvkuXLuL+PH76gRbtVqxYYdq0xvZ9992nJ9KgLywsNDv30Ucfiet37twpjh87dkzs87gVcXTeRE70HTt2VC7Tr1+/XvTF9/3uu++MxydOnKgfMGCAcd/aBhFofXh4uL5du3ZirkTO9UR2RH+vvfaa8RLGkj93RI71jDG342fIWBOp01dUVBjbWttg3PgZ/vzzz3re/u233/TTpk0TWPEY7Al/RokYic/JSy+9JD4P/Nzatm0rxsTbijhyH342jDvP58knnzT+f6Snp4tufvrpJ/3TTz8txsj90QuXnj/T/Fk3/ZzfcsstenqJ0fP/FOPz999/6+klTf/+++8rw9EvW7ZMTy9V+uHDh+vnzZsn/m+uu+46cW/l2fP/6csvvyyO0UuOcTx8XBG+f9euXZXdJreWBLDJPXI5YYmARIAJEP9QMdliIe2WnjQg4gfFWXT4h5aJGf+YarVacTkTOe6fNHtm3fGPFR//7LPPxPF9+/aJfYU4Ko3JH1Ecf/zxx5VD4seSryXNh/FYbm6u3s/PT/zgm5I98sES11OQi7EtE1ImYJYkioknaVD0eXl5ou0jjzyiJ+2NnvswlXHjxok++Uf5XGKLAPJ9SONjvFytVutJw6PnH317wgTPFDelLROxvn37Krt6awTQ0XkrLwEnTpwQ/b344ot60lDqScukJ42WOKbT6QSJN30uxpubbDCZZAKu9KWcYvLI5IY0l+IQY8nzuuCCC5QmYk2aLHGcXzScESaMPEYmj0ya7cmCBQvEPd59912zZkwGeUymBNCsAe3Yus+mTZvEtQoJs7zOdJ/7KCkpEXiajoECsgSJNW1ruc3PhV+kSDtsdopfiMgPVE/aW3GcSSfPxdZnljStetLMmvXRlHakCZg+HVIkAhKBpoUAm3/ZDMUmKRY2f7G5aNWqVcJM6igapC0TZjMOPiDtizD18rWkoRBdkFZCrJU/fA/SAmLp0qXiEP0wibVlOyI2wjyrtFOu5/sQ4VF2hfmLTcZsXmTzoSJs2mVRzGtsjua+pk+fLkyF9OMLZSHyAT5PGi9xDY+JtCLo2bOn2Ff+sOnYVOiH0tiH0pfpeWvbPE7SbhlPsemOtG7GcRpPWGywSZvnTcTCeIbIMzZu3IgbbrjBeMxyw5l5s9mVZcmSJWL977//gkivMMfyNgub30tLS8UxccDGH37+Y8aMAWlxzVrwc2YTJ/djKmzKNJUePXqIXeX5mZ4z3WbcScsF0qqKzx6bptndgE3ejI89UT57pHk0a2b5nPlkXe6jdE5kD/Rygfbt2wsTOo+V/+8YT9Ox8mefyCkeffRRsFmZXhKULsSazdHsoqCMW/ns8Zo/yxkZGQ6Zz7kzsgIIk7vZDZrQjiSATehhy6lKBCQCAP+ArFy5UgR/MIlhPzJeLrnkEgHPuXzSFAzZJ45/cNhHjX+w+MdEEdLMiR85y2AE9otKSkoCn2dR1kzsLIUJnXJeOcf+UJbCP/iWx/kYCxMgFu6HfyDJjIaAgACzhefAkpOTI9bclsdoKZbH2J/Nsi/Layz32dfMUtgX0fJH3rIN7zPRY+LEP/4sTAb5WvYjsyXOzJtM1CCTrSCACklTCCD7Y7JPHpNDfnFgH0x7wve19Uz5Oj5vKpa48LxYzoUL+z6SiwHI7Iu//vpLRLKTFk6Q93Ndy2NgEmZ5b8vnzOOoy334ehYmlh988AE4QpzM/4K881j5f8R0rJyaiYni77//Dvbd4882z49JLYvij8l+gpafP9KkizbKZ1ns2PkTFRXVpAmgvx1s5CmJgERAItDoEGCCx8SP/KbEYjlBJjZk/gOZVi1PGfeZ9F188cU4cuSI0Bpy1Kup8I8qEy7ybRI/cMo5vi9rDRVneeXHl7UWln1wSg0OwHCFcDADz4cDKTgQxZpwsAoLj4nHaCmWxzjYgH/A60uY6DERYSd+MlPim2++EcSA52ZLnJk398Fauz/++APkowYOzuHAG/LlE9pV1gIyASS/M0E8bd2TjzOG/EwthZ8pi6ue67fffisChlgLaCpMgJjc2BPlM8pEUPkccnvL58zH6nIfvp7cDkC+fCCzstDs8TEWcpkAuR4Ydqr/soacU7fwwmRP0Qby543Jv4IdB1hddNFFZtcqO+Qnq2zaXZPZ3+75xn5SEsDG/oTl/CQCEgEjAhzZyQSPNT3Wvvz5R+qtt94SPzocsWpLbrzxRvxH5in+cVLMdaZtmUhwZC//cJIvlvHUL7/8IkxefJ7lvPPOE2tup5BCPsDEis1iHBnqCuHIYNambNu2TYxX0RBa65vb8dg5RY6pGfj77783a86kwZQ4mJ10ww6TOdYEkf8mBg8eLIiKPfMvD8GZeXN7NgOTfybeeecdkU6GyR8LPy828fNzsSRbooHFH6U9Ez5T0zyPncfkqhQ5rFFWtIXKEDganPxBhalVOWZtrTxnCnDB3XffbWxi+Zz5hKP3UcZiqtFTrueXH+W8cjP+H+T/SVvCkdlsNufPIj8T1swyueOoZz52rmeh3M9yPLbu19SOSwLY1J64nK9EoAkjwISNf5QpElNodyyh4IogbKZiH0FbBPCNN94Q2qe77rpL+PMpvnPcF6fwYH8sNh1S8IEwZXGqjaFDh4ICGYQGhNNVKClN+MeMooCFaZbTjVCQgEhay2Y99h8zJY+WY3V2nxztMWzYMKHBuu2220Q6DjZjs0mczYeK3+K9994rUrNwfkTWhPKPMJMExfTq7H1d2Z4JHwXSgAJXhMZU8duzdw9H5819MCFnskNR20IDpfTL97n22mvFriP3ZE0Xv0wwyaLIV2HGZAyZnDG5NnUXUO5RmzV/Rlkjyul0+EVky5Yt4M+npTbZWt/jx4/HiBEj8PDDD4uXEk61smbNGvHZtmzv6H34xYpN5DxX9kNlHz8mwLzwvXhsrMGjqGehZeX/M0tN5cCBA8X/Hs+HST+/CLG2l0k/k2eWTz/9VPyv8P8YE0ROf8OaRG67detWUPCHaKdU+GFSz2SefU5Z0628uDBRZw2otySuFoOuzz/EyqVIBCQCEoEmgQBpkET6CNNUEJYT5whOTt9CpjDLU2KfiICevqOtLpxWQhHSOug5opbTn5CvkohOJOKlz8/PV5qINUcscmoQTkHC7egHUn/11VfrlfQZSmPu21rKCu6fyJrSzLjmMZK517jPGxwlSyRKpHjhe3EKDvJn03PEq6lQCS09R/1y1C5H6ZLGU0+mUTFnWxGVptcTARJtTY/ZGifPyxQ302sstxkrTo/DcyPtqOVpq1HA3MjReXNbji7l/okM8a4QjrDmY0Qc9Jw+xRGhXHx6MluK1DukcdWTNlVvGR3LWHK/HK1qKjxePm7Z3rQNb/NniZ8Np+0hcqQngq+nQCaBpyOYku+r+DwQCRPX8zMnoi/uzc9QEWfuw2lsOEqXP188B6Uf8qPUk9uEnkidSJFDeSb1lCtR/H/w/5QiFPyhJzIq2pEGT6Sl4YhmMmsrTcSaNID6yy67TMyd70W+i3oi8MbIfqUxaQ71RPpEtLwlpoyRtf8p5drGvvbhCRIoUiQCEgGJgERAIiARkAhIBJoIAjIKuIk8aDlNiYBEQCIgEZAISAQkAgoCkgAqSMi1REAiIBGQCEgEJAISgSaCgCSATeRBy2lKBCQCEgGJgERAIiARUBCQBFBBQq4lAhIBiYBEQCIgEZAINBEEZBoYNzxozr5P9Rjd0LPssjEgwDnYOB2BFImAREAiIBGQCHgKAUkAXYw8k7/Q5JaoyjOUVXJx97K7RoAAl1qiNA+SBDaCZymnIBGQCEgEGioCkgC6+Mmx5o/JX9y8hfAJCXVx797bnZ6yuRe9/ix0a/+DT0wc4r7+zSWD5X7z77sRlceOmPUXNH4KQi67Bn6JSWbH7e1UZmag8nQ6VH0G2GtW53P6ygoUvfE8dGuWI+j8qfBv3xklH7wm+vVt2RqZ6ceFhlhqAesMtexAIiARkAhIBGqJgCSAtQTuXJcx+fMNDTtXswZ7nkkOFQiCD9UXVSTq6deg/utnBI6e4NK5V+WZF07n++lLSxDQtr1y63Ou9TqqOXnTZaJdwtKtItv/OS+qRYPK3Gyo//lNkD++3CcwGKEXXSEW3q8sKkTOtFG8KUUiIBGQCEgEJAIeQ0ASQI9B33BvXHHiGAqeug+V6WliEhEPPYvgiRfCh3zbQi6e4fKJqbr1gnbNf2b9+sYlmO3b2ik/egg+VGILJvnOiz94HX6xcUKD6OMfYOvSWh3Pu/kKVOUbipv7tW6HiHseNevHlDCbnZA7EgGJgERAIiARqEcEJAGsR7Abw624cEzenddCX1JsmA5pOv3bdXDr1FQDh9UggBAaSPu31W7dgIIHbzU28o2NR0CP3lD/9oPhWEAgQi+92ni+thuMSfn2zVAv+tNI/kCkM/q1D2vbpbxOIiARkAhIBCQCbkVAEkC3wtuwOmfNlV6rgV9SczHwyszTwpzpExwEBKjonBaVOdlnyR+1innvSzLFupcAhky+WGgXi1592gho4Iixxm3LDZ5D6byvUfrVJ+KUP40viMzSQeMnwy8+ESUt26B0zqcIJv+82krp91+gZPb7Zpf7tWiF4OlXIKB7H/hGRYl7mTWQOxIBiYBEQCIgEfASBCQB9JIH4alhsPZK8+/fKJ37JSrTjsEnOATxf66Enn3VZkwyG5ZPVLSZb1/Itbe4nfwpAwjsPxR+LVJQeTINAV16QLdpLVBRDtWAoQYTLzWsKiuFdt1KInefoTLzFIKnXILQGTdQoEgzpRux9m/VWqw1/y1GCLWpjfiEhZtdFvX6xyK4RJibzc7IHYmAREAiIBGQCHgfApIAuumZ3LjmHwQGBuKTkdPcdAfXdKtdsQSmmjWfkBDRcf5DBtNpQOfuiH7rU8DXD2V/zEPZj9/Qti8CR45F2GXXumYQDvTiGx2D2C9+gnbtCqGVLPvpG/DCZl3/DqlEWAtQfmAfRVlUQNV7AKKeexP+5INnTVR9B8InMgql330OVbfe8G9jvZ21a5VjIVMvhV+zZBQ8cgfCbr0Pgf0GKafEmrWQun27iFz/A1XPfggm7aMUiYBEQCIgEZAIeAsCkgB6y5PwwDjKjxyEdsMqszuHXnsbij94AxUUPMHCWjSfoGBUHDuMko/fFscCevWHX3Qcij9/36h9Y41YyKUz4UsaRHcJB2wEkemXF9b0lXz5MfwSEqGv0gvtYOCoCQgkcuffpr3ZEFgzWL5/N4rfeRlBI8ch7MY7EfXC/5B/9/UoeOYBxH75M0UzO/+voFm6QNwnaPT5xvvpq6pQ9vO3KPnsXVJJVonj5Xt3SQJoREhuSAQkAhIBiYA3IOD8r543jFqOwSUIlHzxEXTrVpj1Vfz2C8b92M9/gl/LFLGv27vTeJy1bdqNqwFBmvSArhyVGSdFAETEPY8Z27lzI3DwCPByLmHimv/YXajKyhRN1Qv/FHMK6NQVodfcLMzFJZ+8g/A7HjxXV1bPM/HVbduAQApU8Y2MBpPCkk/+J0go35vJcvSbn1i9Vh6UCEgEJAISAYmApxCQBNBTyHvBfVXdegoCGERaPvapq6KgD1PxS0qGkiYleOI0qLr2hC8FUVjmNyz54kOUfv+lML2aXu+J7crsLPJn/ALaVUtRlZsjSKp/67aIfOxFSig9S5iM2eQdOGIMIp95gzSgq1H2+zyRsDmgXUenhqzbtgk+FBzD/YVeNYs0i3eg8kyG6IPJH0vo5dcYtaTigPwjEZAISAQkAhIBL0BAEkA3P4RbV/xe4w7e4hfIUb0c2BE4/DxE3Ps48h+/G+VEiBRRL/4LQWMmwpe0XBzcYM2nTkvEsfSHrxBCRCeISJUnpZISRufOuhT64iLjMNhPL/p/s0WCaj4Y8eDTIpAkcOBwkQw65u3ZyLuHTMEP34aIR19EYP/BxmvtbVRRGhxR7o8qlbCEXGLIf8j3UyT2i5+tYqacl2uJgERAIiARkAh4CgFJAD2FvBfcN/iCaQg6bwL8W7VBHmnHyg8fMBtV8buvCFOmqkcfs+NMfjjFSvnBvcK3TtV3EMKuvdWsjSd2Sr/9PzPyx2OIev4tQWA5KIOFI4RVFLDhExws9nkd9cr7yLvjGgrouB0RDz1DSa2niXO2/rCfX8GT91LAiYH8hd/9qDD/cns2S0c+9SpU/YeI+9rqQx6XCEgE3IQAleNEScnZpbj47DYfp3rt4ApGAZQE3p9+Au0tYWFAXJxhoaA+KRKBxoQAffqlNFUE/BKSjFMPplx75S89btxXNoreeBaRz76BgHadwOXfKo4cQsnnHxjSsFQ3inruLZGnT7nGU+uq7DPi1n4pbYmQ3iI0m0pwB6eOYdGuXkZzOACO4mVhYsgBJYqPINceNhVOk6PbthHlu7aLHw09BZRUUS7E8p1bRTMu+Rdc3Rcf8KV9zjkoRSIgEXAhAhxQdYb+v9PTgZMna65PnQKKSPPPZK+83IU3NukqnFI/xcefJYSW261bAx06AC1aiEwJJlfKTYmAVyIgCaAHHoupWdhbzMFBo8ZDR+ZfzbKFxuhVhqbyVDrV0L0CsV/9hqriQuTfdV0NxAqeuJvKql3rsPm0RgeuOuBDZur2nRD72Q9mPep2b0fBo3eKY5z+JeyuR6Cm9CysxeTgFVNRde1l3OW6voUvPHqW7NG1HBFdVZiP4IuuFBHPgUNHSx8/I2JyQyJQBwToZQsZ5EO7a9fZ5ehRA9ljgldRUYfOXXApk0teeEz2JCgIaNfOQAaZELZvf3a7eXNJDu1hJ8/VKwKSANYr3N57M93WjdAsmW9zgFznl7VoYTfdDc1//wrzpoqjcPVV4FyCbD5lTVj4nQ8ZA0dsduamEz6hoaggM3ZlXg78YuLEXcoP7BHpXnjHt1kLVBHhKyRfR1PhSN3y7ZtEtZOi919DzNufkbazknL4zRfkj+fMWj2lQorptXJbIiARqAUCbIrdvfss0dtJWQaY+OXl1aIzoIxcOdS06Oh7yt6ipfOVZPL1IbLpS1pFsdD/+pptO8gqcAn8aduPFl77U6L5sLIyxBQWIJZe+njNSzS9CPsyWbUlbGLes8ewWLZh15NOnYB+/YABA4D+/YFu3QxmaMu2cl8i4GYE/N3cv+zeCxGozMmCbuMaEf3KhMkvpY0hhx8RJCZRlRw9m58rRu4TEQl9aSl8iVD5+Pgg9MrrxWI6rZCLr4L69x9E/sCAbr0QPPYC09P1th1ACaE58XLOJeMQTSXqVDSWondeMd5fr9MatmkeoC/w0BvugG94BNjXkYXNuUwEc66/mDSfJ4waB9/kliinpM4+gUHghNRSJAISAScQYLJ08CCwcqVhWbv23Fo0k+6Z3BVFRKAwMhJFZIYt4jXv08Lb7/3yC66+6SaTK5zffCvtJMJm3uzQhX7kChNFgWaCGBYYiGECfV8mUXnJVEqc35a+O1JOn0SgNVO0Wg1s325YZs823I9JYZ8+BjKokELWIPL3lBSJgBsRkATQjeB6Y9dlf/xoJDzK+LgEXPGbzxu+cOjL2p9y5PlTsuXK0+kopyjf8Dsegp7ehuHrg/I9O6BZvhgVaUcR+egLoswaRwiHXDQDmpVLRbStpwhg8PQrKTn1BwB9yar/+lnU4q0gDaAiegsTUimlrzEKOYRHPvocdDu2Qk/X+7NfH2kI2J+w6NWnRMSvX/OWiPv2T+Ml1jb05ICu16iJSIdRcmk/YxMOHNEs+hMVJ44bj8kNiUCjRID99VibpxA+XmdlnXOqxRRwkZWQgDO0ZCUm4gwtObGxKCetnT3R1DNRqqT8p7lRMWI5lHJ2ZEULfkfEi++IA76kQUwmn+TWRAbbnjyBNmKdbljTth9jpAiTwjVrDItyLDraQAhHjQImTAB69ZKmYwUbuXYZApIAugzK2nVUn/6AXO+35P/eEwONePR5kb/Ol+rkcum0kIuvFClLuDwa+8ZVpB0R/m7cuOSrj1FMyY2F0NuvIqwVM62zG3Lp1Sh86n5KC/M1gsZdAD8q01afUklftEz+WCrId9GHfHGEBpPqGgshM44Qa+Ybelv3jUtA0KhxIpmziszCSom4iPufRNlvP4C1m6bCGsWKo4eh3bwObEKvTD9OuQezjU38O3RGzMffCh9B9fzfYZpk29hIbkgEGjoC/P/EWq2lSw2kb9UqoKDA5qzKyQTL5I7J3u/kT9f2wgsF4SurLkNp88IGdKKKXv7Sk5qLZRVlSTCVEPqO6nZ4P3pTdaJe+/fQeg9aW/giI5++qxYvNiyPP24IPhk/HlCWpCTTLuW2RKBWCJArhLVfw1r1JS8iBIooEi2SzBKPPvqoqAXsDCiuDghhElRFiYlZI+UbHYuC5x4yRruG3XY/Qql0m6Vwebi8my4Xh0OvuQXlXAHEzxd68oUJoDJrmn8oGIRITvzP5AdIb8Gmwh+lotefhYbyB7KEXDyDfAbvoWTJAabN3LbN2jdOz8IJmrkmcOSzb4q0LFkTBoh7sjbPh0xIFft2G1O4BBD5DSSTtY6CXwShowTOekpzwxL/69Iac+TjVQV5hMsuFL33qsCTA0M4FQ4TRtYSVmaeEulmuC2bx6uocopm+SKqFjKccg0+j+wpw1FYWIgIMmFJkQg0SATYvMlE7/ffgT/+AE7Qy5cNKSIN3SbS4m2gNCrrab2LlvJqrV0xBVWEc3RtHcQVfWRrdQig78i6iIb8A1WUV7U2EkvfV33Id7A3mZT526ovfWcnkhbRpvTsadAMsnZw6FDKPxVos6k8IRGwhYAkgLaQqeVxbyGAaiI0RS8+ZnUWXN83/M6HaxAz7dYNhvx+FDXLwomMuSZwYXU/sd/+RWbhkyh4/C7ynYsUGrNoCpiwrAzCUbLqBX9SPdx3RD9xPy2uN20gm1qzxvUTPn5RZI4JHDISairPVkbJqtksq6Rv8WuRgsBBw4TmjufIfpD+bTpA+x+9dVcLRxRztRAmdOW7d4ichxX05i4qjFCbgO69EXbzPfBv26FGDWQ1mXu5OgqTSV/ShLJmMeSSq6Ev10kCqAAs1w0LAQ7cWLTIQPr++Yf8hKs16hazYJ+9tJQUsRynNWv79OQmYk1mkx/crFmzrJ1y+Ji39PHm9/MQ9ulch8dtrWHRrTMQ8cn34vurNbngjNq8HqPIDWcYvdSGqcusXUJvmSHAuHHAFVcAU6ZQ+aFQ6+3kUYmABQL+Fvtyt5EgwAmPFQkiDVfgsNGCsHES1IDe/UVAh3JeWRc8dJv44mFiE/HI8/Bv3gK6XdvE6cgnKSk07fMS/c7nyL/zWqr9m2vUpCl98Jpr4vq362A8pNu4lpIrX2jcd9UGR+rq6UuR8/qx9s8nOMQQrEKVS7gaCGsDfSjIgzV5wVTRhKXwtWeEL17lyTSU/X1GRPcyIQ6+YLogxOVX3YDS76iUHBFBDpDJnTlVXMc1fwO6dEfw+dNobh3h16KVIH7s/2hNgidMBS+WwgRQikSgwSDAvnt//mkgfUuWUCJNbY2hV9L/wLE2bXCgY0ccp3U2J06uZ7+8GoNq6AcIv+PJrfAVLxdehgDSuPYla8wocjcZTYSw+6H9ZyORyTojtLCsiWUySCZ1QQZZOyg1gw39k+DW8UsC6FZ4nevc1B9QubK2ZmHWTBVytQoSrnYRREEd55IwiorlJM+RT75KARQJonkIkSMVEcKq0hJhIvVRBcKfvpSE0LYvRQlbk4LH7jYe5mTS7BOo1BU2nnBwg8ld2c/fQHdwH+UiLEbliWPgJNYV5IMosvlbibbzo4hmzvHHRDBrXH/E/71aJGnmUnBcs5eTRvtSH5Z+ipzwOurp16AhwqxoPnmYcXN+t2oOdnAKsplEoOEgwP9PrOH74gtg/nyrL3kaIhYLifhVXHABDlGeOy3nvpPiNgTKyY1mfc++Ynn1xjsRS24ow7dswGgmhPSCzVHIQpgMziUtJC9RUcBFFwFXXgmMGiVTzRgQkn9NEJAE0ASMxrSpJ38URdR//UJRsb8g9Prb7KY6UA0gXxIigFziTSGA3Ec+aQaNwQ3+ARRhQT8QLBQEwTkB2bxpKQkL14kk0kXvvipSq5TM/gDht95n2eyc+2UcPPHmczXaVSjBFvRjFXT+haLyR/GHb4pKH9w4lqJ1OW1NMQW9sLaP8xiycGSuHwV78GJPgs47n8rknU+EswiVWRmS/NkDS55rHAhw7jomfd98A2Rn15gTp2DZTznsDqSm4jhVvfj0yy8xi3PYSal3BDgK+XeyavDCEceDyFIzjdx+Jq9cghgl6I0Dcfh58kIBN7jsMuDqqw35B6WGtt6fmTfeUBJAb3wqLhgTm1wDqIZv2c/fQk2pX1gqjh2x27N/2/Yi8pcDP4KGjhJtWfPHJEiR0Fl3wY8cnTmPIJt5VL37KafM1qzt86egi9AZN6CAcuuV/TiH0sQsoQTSESLaOIQqaQSkdjW7xnKniszVxe+9YjwcOHIcQi+bSebXFKHVrCIfJPVfP5F2cbKIRua6vyKmidK9MPljCackznURzhPIixSJQKNEgIKR8MMPBpKwcWONKXKuvZ3du2Nf587IoCoWekkcamDk6QMccby2Vz+xPEFVjkZsWY9JrzyJqfQ9aPQbZFP+Bx8Ylt69gTvvNJiJG1HktaefQ0O8vySAXv7UTM3CzpqD2VSqkD+eJvu16Yh4cYJka8KpTDhiOIDSlyhSQVGxrOlTJHjEGFERI3j8ZOWQ/XX1texDx+XmOChCt30z8u6Yieh3v7A5Fu60nINRyPzLPomhV1wH1cBhZmXXWEvJZmtTEcSvnqKOTe8rtyUCDQYBTvywYgXAiYgpiTL7BZtKBRGK/aTl20a55462bWszgMP0GrntHQiwqXjpoOH4rVkyEuj7dez6VZhGGQjGrluFIMX/eNs24MYbgQcfBG64AbjtNkPpOu+YghxFPSIgCWA9gl1ft+JIWE6ErFS4UO7rR18KRv89OsjaMj2lKNFt24xKShdT8un/RNPAkWOVSwRBi/v+H5TMfl/UCeZ2zpRE4yjchMWkWaA6vUpi5Mq8XKrWMZaCNw7aJICGOfwEHjMHnSgaPePA5IZEQCLgHAKcCP3nn4E33gC2bq1xbQbllmPSt4s0fmqpGaqBT0M7oKHKRX+T1YSXMLLkTKZE/df++RN6K8nxOYr7rbeAt98GJk4E7qCX6fPPlwmnG9qDrsN4JQGsA3jeeimbcE3Jn2k+O85hpyXzLUfPls6bgwpKRmoqoVfPEmSLyWEZJY7Wblht0MQRgQu9ahZU5IjsrJgGf+hIq1fy6TvCITnIhGia9llFWsLClx6Hju4dSQEZkvyZoiO3JQJOIsDpW9gP7H/0gnf8uNnFagre2NmjhyB+mc2amZ2TO40HgRJKgfUDuQXx0pvyoF7/xzxMpYpOQivIGmEO9uGFNL5CI8iawZiYxgOAnIlVBCQBtApLwz6oBDwos8i+aAzif/9PpHQpImLFZl4Wzl8X8fBzIlVKQMcuIlDCNzJKnOME0qz1M4q/HyqOH0EF5QHkVDB6Cr7QbdsoiBpHDQf2H2xsam1D0fop5yKfed1qYIV60d8oeuMZUYYtjErQsdlYikRAIlALBDIzgffpf/jjj2vk7NtJpsJDlDOOffsqqDKHlKaDwLbO3cDLs1QMYAYF2bFWsCV93wuhyix46CHguecMfoIPPEApEOKaDjhNbKbyP78BPXDFH/BcvoD+7VOhIj8QHfl/KJI9bZTY9I1PFFUrQi6/xqb5lRuymTfkyuuh/vsXQRTLd2yBds1ysbAvHmvnFOE0M/aE69/mXjfd2ITHxqXWTIWJJSdr5vspUvLhGwilaiJSJAISAScQOHAAePNNQzSvRd4+TtmydsgQPEE5/WaRqVdK00Ugj/K1fkDf8R9ddo3wFbyeggU5rYwQ1hq/+qrhBYJNw+wvGB/fdMFqpDOXBLARPlhOThz98ntUD/cEVeT4A/4UNcv58gI4gTGXQ3Mwko8jaHlh7R1rDlnjx2JK/mK/+g3+rVqL47b++EbHIIBMx0wiWZiYail3FRNHTtEizMx8LkBl1gX7D0qRCEgEHESAid+TTxr8/Ewu4UTN7Ne3dvBgUXNXnHLwO8CkG7nZSBHgKOLFQ0eJpW16Gm7+5TtcueB3BHI+yNJS4PXXDdHDt99uIIJU2UVK40BAEsDG8RytzoIDPsIpbUtdhM3F+fffJJIvc21gNhtXErEsp6TMqj4DhNmYaw6X796G0l/nopIy1DPJVFG1kaq8HBH84RsTS6xPZxgGJY8OJA0gp3fRk2MyV+8ISO2GiMdfotQzowUprMt45bUSgSaHwKlTBpMd+/mZ1I/lZM1b+vbFhoEDUSTrTje5j0VtJny0ZQoevfdxvHvVjbj5litxPRFA4SfICaZZq/zhhwYfQTYTU9CQlIaNgCSADfv5uXX0nBC64OkHUJWViTDSBAZSNRF9KQVovPwEETottCv+RbGVEVSmHYWWHIv9ydwMikjWUSoZ/9ZtET7hcagoN6GGEpbqdmwGRxf7JjZzWCNp5VbykESg6SLAUZyvvQa8+65ZKpcSqgXLZt4tffrICh1N99NRp5ln0Hf3A1Qp6dMX3sEd877CTCokIIigWm2IGv7oI+CWW4An6LdAmobrhLUnL5YE0JPo1/Leii+g5eXn8g20bG9rnzV6+ffcYNDgVTcqoYoavIBSC7BGL/qNT0QZOB3VpeSIYd+QUPh3SIV27QoEdO5OuQRTrXbPbdVkXmDNnzPpZKx2Jg9KBJoiAvwjzEl9X3nFLLiDNX5riPitHzQI5dWVb5oiPHLOrkMgk3KtPnXnw3iffAXv+OFrXEPpxYI5tyvnjuQXj6++Ap6hoD32E5SfOdcBX089SQJYT0A3pNtoKHGoMN/SoH1j4xB69U3wJ//BypNk+t2zA8HTLqN8gi3FlLhcmqmETL3UdFdsc1oXDWkLy/fsFCllqnJzEHrdrTXayQMSAYmAHQQ4j9/XXwPPPgucPGlsyImbN/bvj9XDh6NM5u8z4iI3XIdAVmw8nrnjQQoauY40gkQE//wZIVoigVxJ5v77gU8+MaQZotrQUhoOApIANpxnVW8jDaWoMCZ2lRknwelhjKXQqIJI8PlTjePQV1ZARwXJVX0HCT9BThPDlT6iXnpX+PlxwwoK8si9Zpq4xr9jZ4r+7YfAex5FIF0jRSIgEXAQgeXLDWk59u41XlBFWwvimmPnxdOgTYo3HpcbEgF3IZAdE0fpYx7Ah5dfi0e/+JCCRf6AL+cRPHgQmDQJIqE0J5amSjJSvB8BSQC9/xnV+wg5jyDn+uPFnlSeSEMZBX5wQEhl5mnoq2sGFzx+N3wpjYxvRCTlDjxq7CLm/a/hI8u0GfGQGxKBcyKQnW2IvJwzx6zpP37+eIRewPbknMb1uiq0MjsrdyQC7kWAieADDz6Dr8ni88IHb2Agl+1kWbAA+Pdf4C4KPnz6aSAqShyWf7wTAUkAvfO51GpUpr6BrvIHtDaQqrJSUu1VwI/MwMEXTEPhsw9RMulI0TT0+tuFfx+bkKsK8+EbHSvSxARyhK8kf9bglMckAjURoOApUb3j4YfN/Pz2xyZiM0Xjv7FiPfZsXYxRo6agVavEmtfLIxKBekBgJ1mILqSawxeS29DTVOEpOfuM+G0QVWe++QZ48UVg1ixKLOtXD6ORt3AWAUkAnUWsibXnmrwc6KHbtY3Sv6STibcIuq0buZAwJZseISqAsE9g+b49qDhQiPKdWxD1+scysreJfU7kdF2IwO7dwK23AmvWGDvVUNDUfxdeiY/0KiT7hGAnkb8BA8Zg5Mg+xjZyQyLgEQQop+Qf5DK0mPK2cqDI7eQjKPwDcygNGH+OP/8c+PJLoGtXjwxP3tQ2ApIA2sZGniEE2MRb8hHlfyLxb9Oe0rY0RziVaOPE0iUfvw3dxtWG6C+OCiOpOHpYrOUfiYBEwEkEONfa888Db71l0KJUX76n/1Asm341ysilQr96NU6nnxRnBg3q5eQNZHOJgPsQUAcF400K7ptL9Yaf/OxdTCetoJBNmwBKSSSClzh/oCw96L6H4GTPkgA6CVhDaa6Yg+tqCvaLSzBOOWjM+QidcaNxP3DoKEo8WwXfuHiRF9CHUsRIkQhIBGqBwPz5hlQax48bL86LT8Liy69HWmp34zHeaNUmBb6+/vjtt/loTn66Xbq0k2ZgM4TkjicROEW5XW976lV8deFleO3h25DKRQB4efxx4NdfDdrAbt08OUR572oEfCUSEgF7CPh36GQ8rVm2CAVP3ouSOZ9Cu2md8PVj8sel5ST5M8IkNyQCjiPANVfZR4ojKKvJXwUFeKyZeBG+ePzVGuSPO26W3Bzd+8xAevo+bNjwL5YvP2sqdvzGsqVEwL0IbKCk/4NbtcEHV1wHLkcoZPNmgKrT4OWXzbTc7h2J7N0WAj6UmJdiuKW4CoGioiJERkbi0Ucp1QklZvW01FUDyOPnYI6Szz+EvqoSVWcyoNu5FeA6kdUS8/G38G+fCh/p6KtAYnNdReXvsqcMp/RZhYiQ5bls4tQkTrBpbMYM4PBZt4kdccn4eMAInIqItgpBmVqDotwYlOt8cWTfXKjL8qkQQ6TTPvbFxcUIDw+3eg9HD8o+zJHK1uoQQEFvdRFtQT4Co6w/e2f61RQWQFXHfnQ0Flf10Z+Sl3965rRBG6hMhIkgJ5KW2kAFkXpfSxNwvUPe8G7oGxmNiPufNA6c8/+V79qO4vdfQwWVecu77WpxLvjCyxFBOf6kSAQkAnYQ4Hq9XMKNKyhwcmcSjX8gFk+fiX0jRqMNadTbWLm8slKP337ahtatOyG1axC+zFyA6Kgw3HDDZVZa2z80e/ZsUjyS5rEOIvswB0/gMeNy84NO7rmiD77lm9/PQ9gn3zt5d/PmRbfOQISL+jhAXU+gCiIPfvUJbv9xDvw4yn3LFoNvIP8fcLS7zBJh/gDqYU8SQDeBHHZgK4LoA13cuZ+b7uBYt4ovoGXrumgGfchExQmdYz//Cdp1K1HwxD2ie/92HSxvI/clAhIBUwROnABmzgRWrjQePRzXBvNvvAPqls2Nxyw3mPzt36MRmj8mf2HhfrREIfPUIcumcl8i4JUIaFWBeOnmezB/+Bi8+/rT6Jh2zGBJepKUC//8A8ybB7Rs6ZVjb6yDkj6AjfXJ1tO8AgePQMglV4m7saZQehTUE/DyNg0PAf6B69HDSP6q4INfu0/CXEqo6wj5U5dVIaF5mSB/PPnW7TqhsOAMiovVDQ8LOeImi8C2zt0w7tO5eI/qCxt9A9etA3r3BhYtarK4eGLikgB6AvVGds8weqtTDRyGwmceQO6101H6/eeNbIZyOhKBOiBAfsG49lrgiisMtVOpq5zQGDw/4SHsuuZKqMJUNjtXNH9M/ljzFxhEprNq6dSlC23pcehQunJIriUCDQIB1ga+fNPdmPz+V0inqGEhubmGUnJcQYTdJKS4HQFJAN0OceO/gY9/AKJefg+Rz7+NypwzKP35u8Y/aTlDiYAjCOzZY/BzMinltrbNADw85Vn4jO2BoGDbX8GW5I/NvqbSLDkRwSHRFDycZnpYbksEGgwC2zp3F9rAxVRUQAjHpL7wAjkMTgDOnGkw82ioA5U+gG5+cuH7Nte4g6f9AnlApr6BdfEHVCbHqWD8W7Qib3YN9LRUnD55zlrCyrWeXrPZmqObK9LTUPrdbFHXmHLbIOa9L+EXn+jp4cn7N1QEfv/d4O/HqV5IyuhF6esh12BFyiB07hFcJ/LH/fH/XPMWnXDqlCSAjIeUholAASU4v/bF/+EOqiDyKGWb8KdsE1i61GAS/uEHYEQ1OWyY0/PqUdt+/fTqYcvBeSMC/q3bwT+1qxha7tVTwClPGoJwWpacGZNQ8MjtqMrNRlVWpiCE5Xt3ouyPH6FZu6IhTEOO0VsQ4AhHrugxfTpQTf4yklNwRY/rsKL1YJeQP2WqKW07IT8/A6WlGuWQXEsEGhwCesoT+AH5BF7y1qfIjI0zjD8jAzjvPEPEPP9PSXE5ApIAuhzSpt2hX7MWRgCK//eScdtbN/QaNfRlpWJ40aTxi53zBzidDWsAyw8fRPG7r6CQkl/nPXAz5UGUX0Le+hy9ZlxM+C691JDipXpQu3sPwuNjHka6KgqduwfVWfOnzLWqSo+omG6064NVq7Yqh+VaItBgEVjfsy/GfvoDVvUeYJgD+wJSTl1MmwawL60UlyLg79LeZGcOIWBqFvY2c7AygdqahbVK/UfqSM/lf7xcfKh+pSKcyJrNasEXTIN6we8oI3OwIuXbNomchwHtOiqH5FoiYI7A0aOGH6pdu8RxPX2Wll1wGb5IGEs+7T5IpAjeuvj8md6Myd/hA1o6FIW2HYZi+/Z1GD26PyWfDzBtJrclAg0OgZyYWFz++kd4kCpO3fvtbPiyX+BffwHDhxvSxbQ4q2RocJPzsgFLDaCXPZDGMpyEpVsR9fxb9T4d9ufTEVkr++dXVKQddUxrR+YH36Tm8O/YWYw3oEMqol74H0KunkXJSc9GaOY/dBsqiwrrfU7yhg0AgWXLgP79gWrypwkOwQ83PoAvEscJ8seavwAV/ZDZkHMFfJheppC/gvxKdEwNxJSLp1Gp1TKsXbvDtJnclgg0WASq6GX89etvx4xXP0CeUkZu505g4EDQ206DnZe3DVxqAL3tiTTg8VRVm1LD731caNLqeyp6yjRf+NrT0C5fbLy1X0obhFItykBKU+MbFWM8broR0L23CFzRa7XwCTH8SwT2HwxeQi+5GuUH9gr/QH1BHnKmjULC4o3gyGcpEgFKfAl88AFw333G1BW5lNZi3vX3YU1WDKhojkvNvnw71vwp5C8qhj+vSYhLaIO0tDTa7icfikSg0SDwX/8hGN2qNf6gMnutM04Cp08bNIE//mhIGdNoZuqZiUgNoGdw9/hddWSezczMJM2B68y0FYf2iXkFdOlRb/NjjV/F8SNQL/4L+Y/cAe2aFYh86lUk/LMWUS+9C7+kZBS99gyyL50A9cI/rY4r7IY7UEnawpyrJqOEShXptWcd6n0pQs2vebLZdeU7t5nty50migD7hN5/P3D33Ubyd6RrL3x+93NuIX+s+cvJDLYgfwbs4xNbUX3pnCb6IOS0GzMChyhn4OQPvsYWShkjhP1sp0wBPv20MU+7XubGr49SPIhAffsDqqko988//4yj7K9EEhQUhNTUVJSXlwutnZa0YKWlpWj2xx+IiopCs2bNsHjCZfAJDUXlieOozM6k7XCoyFm3kqJl/Snowyc4GFwfWLNkAXyjY+DftkOtEWVCp1kyH+U7qZTe2AsQQFHFVfl58KV0LOyjZyps4i16/VmU7zP4XPF9o15+F4F9yExAwlVKeKnMyULRG8+h7OdvEXz+VNMuxLaKNICxX/xM578TSazVf/+CMCrNFTxxmjjvn9wKEc++gdIvPkJVSRHyH7wFgUNGIqBbL6j6DhLztRxbjZvIA40LAfp/oWK6gEl+v3Xjp2Lp+Euwb6/O5Zo/xeyrLvMTZl+D5u8spP6kka5kdaMUiUAjRCCHflcufvszfPDKk5i8cqnhhevWW0E/ZMArrwCKmbgRzt2dU5IE0J3oeknfTKq2bt2KHTt2ID09XYxqIPlStG/fHvv27aM8YqcQEhIiyripVCrExMQgKysL+/fvp7R+pA2bO9f2TPz94d+mAypJPa8vKUboNTfDp5b/jNqtG1Dyf++hgkyuXBhcTX58ivhERiFs5k0IHDVBEEH1oj9R8tl78EtuKTR9bMb1DQtXmput/eISBPErfOFRaNb8h6Cho8zO844f+QCG3/kQRQBfhpIvP0LRWy+ST2AXKEEfwSPGghfGsuSjt1D2y3fQivQw7xIBDkHUi+9C1btfjX7lgUaIAL1E4fLLDY7pNL0qCvZYOOMmbOk7Avt3a9xG/tjsG5+kpsjfml/beTkZiIiw7uLQCJ+AnFITREATGISbnn4dT332Lm7/cY4BgddfB44dA77+GiBFhBTnEKj5TeLc9bJ1A0BgFzmm//3330hJSSE/9f5C49e2bVsxciaBLMFlZUgik3B8djYiCwsRRiQuICIClaTpOBoaiXxSw+c0a45j7VOxNzwSO0kTVpXYHJXpx1Fx9JDQiKn6DkRA156iP2f/6HZvR8HDdwiNX/RbnwntWsWRg0K7x+uKE8dQ/MEbYlH6Dho3CRH3PQHTSF7lHK819KaoXfsfIh5+DirSBPq1SEHh849A9fty+BJpsyb+LVMQ+fiLyCUSWjZvjtg2bcdRwuF3PIhAihTOv/FScUqvLkP+AzeJ7bif/4VfTJzpJXK7MSFA/xvC/LRqlZhVBb0A/Xn9XdjTua/byR8HfOzeW2kVzfy8DLRt08nqOXlQItBYEOB8gc/feh9ONEvGS++/Bj92w/jpJ5AWA/QjB0RHN5ap1ss8JAGsF5g9e5NQMt+ysJP4FVSPlM2+7LzekrSBnUnL1/7wYSQQ8WOpIDNrERG/krAwaAMD4U//cFGkjWtdVIDEY4eQ9Ncvop2aCOH6Hn2wlIIr/rruVpwhLVtdRLP4b/jGxSP63c9Jw2f4WLL5lxdFKilJs27rRlK5VBJB7A1/0v5Zk8rsLKjn/4bSrz8Rp0MuuwZ5sy4zNs2/+3oR5ctaP2vCAR7Bk6ahZM7/IeyG24V20LKdqk17RP9vNvLvm2V2KueScQgln8LQS6+GD72xSmlECHBpqvPPN0Yhaun5/nrLAzjcunO9kD9rmj8FXY2mCOHh1jXgShu5lgg0FgS+IkvNSQq2+pRe6EMplyuFwANjxwL//gsyYTWWabp9HpIAuh1ix29g6g+oXOWKPIHt2rUDk0D27dtCJXYeJt++vlu2ICY/H8VE9A516IDVQ4fiVHIy8uifh9+yrAnnBgwhbVdX0sj127MTw8lk+9Rn7+D5j97EfxQx+8W0K7CECCEnUXZW/Cm/HvvelVO/KiKW1sQvNh7BpPWzJxyJnHP5BNHENyFJVPWoOHkCYbPuAlf2CJpyCQofu0tU/hBE7bKZ8CEyaynBUy8jE/RvyLv3RkQ++QpU5O9nKewHmbBki5gv+w+WkGlC1WcASr/5jPwFP0TIxVch7Ka7rPZv2Zfc93IEjh8Hxo2jENzDYqBl5G7w022PkCaitcPkj5UV+/dooC6rQmrXIFjW9jVFQPH5M4/2NW1xdpsDuSordGQBq/k5PttKbkkEGhcCSwYNx7R3Psf3j92JePITJz8nYMwYAwmMi2tck3XTbCQBdBOw3tbtrVddhdDPPsODRPyCieDt7tYNf0ydihNkFuaEtY5KGZlONxEZ4uXjy69BBPn9TVq5BNf9+RO+ffxu7GrfCa+SBmwp/XM6I4qmr4x8O2wRQEf6K99bHRBCOf1YQ5c9aSj0pL0MnXGD8fKq+5+kYI8vBFHj9hEPPAkml6bC/oR8feGLjyH/nhtEQEjw1EspyCWWUsaoReAL+xYq/o6s8eOFpeJkGvLuuEb4CbJpO/q1D8HRxFIaKAJ79gDjxxtSUNAUiugzMO+OR5EZ08xh8sd5/rJOhyBE5Vryxz6pB/YWCGCDg6XGuYF+wuSwa4nALvqev+jt/8PPD9yCxLwcg3aey8dxLeF48+/0Wt6iUV9mXdXTqKfc9CbXee9ePEbRio/R1Oc3b4537rkHv1NpnbTWrZ0if9aQKyKiNPeC6Zjw8XeY/r//Q3FoGL4jIvjdo3eiReZpa5fUOFZVmC/89fhE4NDRNc47c0DVzeCDWHFwn9AogszJqp79zLoImXwx4r//B1HPvEFawR3Iu/kKlO+nH3kL8SMNYjTNiX3+NGuWI+/WGUK7mHvtNORcNqE6CMTiItr1J1/DhD9WIOaT71BJZJDTy7BJWkoDRICTz3Ixes4/RsI5/r697xmnyR9r/sp1vi7V/DH5Szuqw84thpeehITYBgiwHLJEoG4IHEppK0igsYYwJ2MfTb8j7LIhxS4CkgDahcfzJ9ksrCzOjiaQIngv+vVXXE5OsieTktCJOviYgj5KaukrdOuK32FtEeMiLeI6Ilr8Nnb9c2+hE+Xm+4+CJC6l/Hy2pIrMyUVULzj78omkLfseIaRBCxoz0VZzh46LgJBq37uSj9+GP2kkObDDmnAql7ivfiUfPzJ9k5av5KuPUZmXKyJ9lfbsjxhy0QzE/7hYaASjXn7vrInbhqlcuTaAoohjPvwG+tISaFYsUQ7LdUNBgPxjhV9RHpmXSDJatcV39z6D3LAYpzR/itk3gUrBucrsq5C/zNPlOHFsMZKS2qFlS6nxaCgfLTlO1yJwhJJFTyeLzWnFF5219qNG0T9thmtv1Mh6kwSwkT1QZTqxOTm4afZsdDx4EL9Mn45fr7kG+UT8yija161CRHDB8PMw6vOf8DelTXn/1afx+tuUUqWiXOQK1K5fhWIiZnl3XQcOmOCcf5zeJX7eAoTf9gD5y6lqPTw93UOzbCHi5vwOTgvDvoh+lD/QXk1irg7Cpt7gSdNR9tO3NKaxyJ48DDnXTjfT8PlQIAz7/AWSaTvspntE3qmCp+9H/uP3iLJzVWQKtya+8QniMF8npQEhwKkl2Km8Ojhqf2wifrjrcRQGhtWK/LHPX2BQlU0AnPH5U8jfmYwKqgryJwoL0qlM6jCbfcsTEoGmgMAxsrxc+MxbOKGqdoXgFzgmgRwhLMUqAtIH0CosDftgi5MncdV3FJRAAR6f3XQT8mJj4UNT4mCQEydO1MvkSsgUfO8jz2FD91547Z2X0ZICMaZQFHFpYQF8yd9OkCnSwAUOO8+mhs7ZgZbO/ZL8+mZTn6NQTr53bP7Vrl6GgmcfRDRr7mwIk86Iux9F6NU3QcMaS/LW125cg4In70UokdOQi66Eb2S08erQK66lvIJTBNlkzV4xaTFLPn0HYVS7klPTmOUjZM9/Eh/KsyilgSDAPxjsTF79w3GGflieHTAWXf2Cak3+XKf5o2h+Mvsy+YtP1OC3H/5Bnz6j0KVL6wYCrhymRMA9CFRVVGD7e+9iVGUVlvsGIKWqHCAFiCCBy5cDLVq458YNuFcfepvUN+Dxe93Qi4qKEBkZiRenj0cQaY1cKY5EBLckgjfz22+RQRU85l55JTSc8qVavvjiC3Ci56uvvlo55JI1RwfbkyGUuuXrh2/DViJD06hMnOr9r0TVEXvX1OZcMUUkl/3wNXzIST+UUr+wSbmA/BG5qkjcj4vMidk5bqBe9BeK331FBHxw0wCKTGbzr29IqNmVXH+YzdfqBX+g8nQ6CGCE304JpUmjyDkD1UsXoOilx0WlEf/W7VBF5uDsKcOpbFchJe6NMOtL7ngBApQAHSNHUrguaQ9ITkRE47HzpiGj0heFuTH8boBEMuUGqGx/bXIbDvhgnz82+yqaPw2VGAyySA3E375c3o0rfHCS5+DQSpsgcNszp32gVYchNkFD2/uwb/tiJCQkc950p6S4uLjOaWNkH+aQewsePKpsqp0bQN+DdRENvayros6++NamL11Bfr31ocssQWXRSSS1vxID24bho7Xz0Lyk0DBsynSBNWtkYIjFQ5QaQAtAvHlXSRNjiwgmkNPrVd9/L9K5fD9jBspNfhUKCgpEFZCLLrrI5VNkv0BFrJHBfylR9Hj6VVxESXN/otyC11HJqgrKtedqCR43hQI/fhWVPkIpQpmFS8HpSJvHZevMNHPnuLmqd39EvviO0CBWph2DbttGUUou7JpbjFfqaU4FzzwI3YbV4phfy9YiMXbx2y+g4uBeRFC0cSVpPlm0m9aCCaAUL0aA0iKJaN9q8pdP/kR/kc9fakgk9v+8Ax3In7Rz9yAEBfvanARH+7LPn7Vo39WrV2PYsLOmWsXsG+hXabW8m+lNFLPviSP7MX5iF9L+BeD/3ttA5Rqb4bbbZpk2dWh7NrmHzOJSdnUQ2Yc5eN6CB49KjGXG5eYDdHLvze/nIeyT7528yrx5EQXORdRDH2X/LIb6rUcQ0/NqdKTa3OUtw/BY1uV45eHr0JxfzA8dAiZPBpYtA+VEMx9kE96z/U3WhEFpiFMPpRx/M6hkWz5lQp9LyZ5NyR/PRykBF0vm4PoU1o6VUJ7AnZdfixtfeR8jdm3Dc1RKzVT0VFqr7Pd5KHzzOVQVF4mAjDPn9UYxXeeM+Ldph4AOnSmieInxsorDB+BDKVgCnKxPzBHAgZTTj03DUa99AD+KNCv96hNkXzoeJZTjj0VDWkImf1FEFMNuvpdK4rUn30A/cY5zGvJcgqliCAsHpBSTmViKlyJAGjFMpAAkKpfIUkS+oT/c9QTymPxReTfW6jlK/lyd508hf2z2Zc0fk7/KykqkH9+F1q1JsyFFItCEEdAdOIKS959DcPMB6HrXXQgj8seSk9AMj7/+JXJiDX7Y2LjRUMKRTMVSDAhIAtgIPglkx8f0336jQIsKYfbVkZbNVPgHZPPmzWQqSqBowSTTU27d1m3fLEhcyKUziSDdg1V9B+HJOx/GjUT2ppFplIWDQrImDUHxe69CM/93ZF84Er4UuMGiqW4jdhz8o9u+ifL+FUJPJeyEkBbUlwqJ10W4Mkjs7HmIfPo1qvdLiZ6/nS1K06nJX9A3Ng6cxJr9AqOefUP4DPK9Arp0hw+lyOEglMhX3hO3L5v3NSW6NhCMuoxHXutiBDgwasoUYMMG0XEJlTpk8pcTHmv0+WOzryOaP3eSv7YdVAiLMHyuD+47BJ2ulMo60kuHFIlAE0WgsrgERU89AD9VFHo+/ArCW4WbIZGd0BxPv/wZSgJUhuP//APccouohGXWsInuSALYCB58f3qzaX/kCH6laF8u42YpK1asEMEfYymq0fccqUssr63LfjFVxvDv1FWQP/aHY5lDlTh+Pe98vEr+dc2yz6Dk60/NbsGEKpJq98ZzHr3/m2d2zpGdgM7dKRGfvygXx2bfyswMkebFkWvtteF0MEGjxiPiwafgS7V+S778WOxXlZQYIoa3rBeXh117C2K/+g1RL71r9HMMaH32R7rglafs3Uaeq28EWLU3cyZA/yMsavLxnHfnYzgTnWgkf6z5s+fzp5h93U3+WPOnyJ4d22hMIWjfPlk5JNcSgSaFACs2Cp96ElUFZ0jz9zpiujSzOv+0Nh3x1HkXQqe4HZEvPJ55xmrbpnZQEsAG+MSVvIC8brZlFcYu+Rfb26XgKEX5WgqbitaQ82twcDC5P1BELPkCulOUPIF8D1Fdg+7P6VgUqUhPw51Ub1hNGrrnP3gDUc+/LWrn+rdPhS8l2eV9jsr1DY+AHxEtZ4VLwfnGxKPw9WeRc8VE6NavNJhmne3IRnsuGxd69SxoVy1F0MixiJ9Lb5QUCKL971/jFf6Uk8o0atiP5sX5AP0paz23leJFCDz5JEC5Mlm0QcH4kSp8nI5vYUb+XKX54yCOwwe0cKS8m6nZlzV/puSPx3r04A4kN28HPz/5Fc54SGlaCAjy9/yLFOC3Am0vfwzJo/vYBWB1QBs8Pu4hVCm/RS+8AHz6qd1rmsJJ+e3RwJ/ysF0HUE6EalWPTlZnkkVRjRVkGlaTn11mZqbYttrQDQeDqWB3xaF9yL1mmkiwzLco/W42Mv79Bw8RyZtCJGpE+nGEEaGK/Wwukan5EBq8OoxFT5GWVVkZ0C5fJPz2wm68E6FXXl+HHmte6te8hUgVU/Dcw8iZeaFoUFVWUrOhyZGAzt0QS87QMZ/ONTkqNz2KAFXHwSuviCHwD8MfN9xNtX3buIX8ccAHR/u6gvwVFpCfbO4J0v7VfOHzKJ7y5hKBekCAyV/Rq29Au+JXtJpyHzpde6nduxYeKkRxbgDWT56C/7v10bNtb78d+P33s/tNcItsZVIaKgIxhcXomnYK//bpBp1JxK/pfDjti6mcpByBcfVQKJuTMnOZNZbKjJPQq0tpi9KzUE1e9u2bRySK0j7jUQqomEIRt6ZaQnFRLf/EzfkDFUQq9ZR+gFO3KLV6a9ldjct4XsXvv0ZOfirKNbgDfgmJiCBzbwBr9xwQPZmlpXgBAhSRC8qRqcjSi6/Bgfbd3Ub+WPPHqV46pgYiKsb21+65NH883rSjaWLYrVo1V4Yv1xKBJoNA0dvvQfPvXLQ4/3Z0u+vs/7A1AJj8FR4sRHhsOSI7ROLPDjMRm3MGl/xEZmB2/6BUaViyBBg61Nrljf6Y7W+iRj/1hj/BAfuPoJgKwO9u09LmZDjq98Ybb8Tnn38u2nAqil69etls76oTxR++BfWfPyKYkiiHXn4dBUMYIrH8KZo2/q9V4jZvUH6+7x+7CwMpMngDkTVXiA9pQwNqkW5Ft2MzNMsXgzWIovzbxVdVD0cPHSWVLt+7E7rN61GVmy2Os69iVW4OpZkZCZWDY9dT+pv8B8kBWYpnETh+HCB/WYqiEOPYOnws1g8e61byx5o/zvNXV/LHAw4JDaG/Pvjvv7XkvmjQQIuJyD8SgUaOQNH7H0Pzz1doPmYWetx/p93ZKuQvsmMkVAUVxrZf3Xg/YnOzMHrZ3xRpqAGmTgW2bAGF1BvbNJUNSQAb6JMOpkSfndIzsKZbR1RV+wEpeQJ5Sqa5AltQBvSbb74Zn332GVW3Guv2GZdQYIT2r58wcMAAnN+9I7B3rfGenCfQN5h/wCgl04ChONiqDWb9OtdlBNB4Iyc2Kk6dQP591W+SpEllPz/1/N/MeuBgFoX88Qkmf2Gz7kTIlTeYtbO74+MLv9ZtUXn8qN1m8qQbEaBE7SIfGJVKZDlOz3XB1Kspd58WxM/dmupl917yh7Uhjmj+lEvbd2qHjp3Hkj/hcqpbPdUYbKScl2uJQGNDoIp8yYv/R5q/+XOQNHwmej1yv90pmpI/1vypN55trqdAyHceeBGRBXnos5V+m7jW98UXA2wVIF/5piSSADbQp51Kpl8f6LGndQuHZqBUnShX0qM4dJVzjXLoR3XTpk2Ubsnw39avXz/7HZDf1XdUMePx2e8jknLmFVLghyek8vQpcVt/SvQbOHAY2HeRzbu+nAWfvizY56+KTMp5N19BaV5uprZ6Uc4uePLFTv34sjk65v2vRSUQT8yzyd+TA5LY5MOF4klyKU/YTzPvxt59FW4nf67Q/CnP79D+fBw9tBZt2lCqIcWpXTkp1xKBRoZAVYUe+XfdiYr9G9D8vFno+ch9dmdoSf6sNa4gF55Xn3wbb996KVpkpQNbtwJ33AEylbnMHcnafb3tmK+3DUiOxzEEOp7MRFpiHNRBgQ5dUEqJolmYAHJkMEsevfls374dq1atMpI2caIWf/bQj+rHH3+Mffv2ITExkWqTdqEqBVHn7Ok3SgkTQEEqE9b+d862pg1YY8LCa67IYSlV+XkonTcHefffDE4qnU+m5soMA9GzbKvqNwhhN90tNH+lVEou75YrqazbCfglt0RA1x7wo4oQ2urk0kwOueZvyNRLXe5faDkuue9iBB58EJg/X3TK6V5+uPEBbD/q5xD5448YV/ioz1Qv1mZfmKfCor9+o8+9DhdcMNpaE3lMItBoEKikgCdd+mlUHt6Jjte/il6P3m/3pccR8qeAcybfF3ePexxqVZDh0JdfgsxkyukmsZYawAb4mFW6cjTPzcOSPt1tjl4xByumYCZ6LH/99ZdYoqliCKeEUYgUn1u0aBG4VFzXrl1595zC13IfVfTr+A8l2ExNTSXXqumUhs/2x0opG6eUjMuKjcd2MsONWbcK80aOQ1VJMXRbN0BPcxTiQ/EWqV0R0K4TOACjgsynZT9+A+26FQgcNtqQLJoIZCBdGzhoGCqzs1CVlwPNsoVUx1cjtHfcD1fsKHrnZZG0uezHOYh87i1RMk5f7QfGkcK88PWl31DiUMpPWDL7A/hSRZCo59+CH5mqWcp++gbht9wrtuWfBoTA118D77wjBlxJ1Vp+uu4erD0T5RD54zx/XNvXWnk3SwSU8m6uiPa17PtUug4ZJ9U4lb4cfXqPQExMuGUTuS8RaDQIVJGyouCRByiKUIseD81G8pi+dufmDPkrSS9B3s486Pp2x3stn8cjrz5s6JsqiaBnT2DQILv3aiwnbf9SN5YZNsJ5tMjJgy8pwE4kxjo8u06dOglixpVAtFotOBq4WbNm6N69OxWSDxCVQhYsWICff/7ZjABqiETtp9qoG6hKQhlVTGDtYSBVGuG0Mn4UcMH+fiycZ3DChAl2yR+3Yw1kPtVc1VEASBVV7GC/uiXUzzWUEibLpIQbtzUVVb/BqDhyAKzZ86F8bQG9+lGKmf2i2oZvSJiosKFd8S98IqNEDj5O2hx2/W1iu5IIIVca0a5cCh3V5GXhoI7AQcNR/DGROwpQCZ1xozjO21zDl3P9lR/cR1U//g95d14Lyp8jzgeNnSjW8k8DQoBr+3LKh2qZf8l1WKQhX0wnfP7Kdb5I7RqEsHA/pZsaa3eTv5Np5UREl9P/XyjGjRtc4/7ygESgsSDAyoXCZ6mm+uFtaN/3EreQv7CUMER3jcbKbpPR6cBuTPttDv9AAZdcYggKIUtWYxdJABvgE07KK0RZoAqFIhrQsQmkpKSAF0V69+6tbIp1//79sXTpUnDaGM4byMuPP/6IY8eOifPt27dHhw4dBMFj0hceHi5IIBNKbst9K36GZh3TDv8zcz/btm0TJmLFBC3aUYWNlUQAH6Y23W5/EOmUVkXVs68xkTJHzqoX/gnNgj8QSKSOiV0AJY32sXDWZe2gngiqL9X9tRROKB1x7+OUgy0P5RRxzLkGw669laJ9/URpNyVC2fQ6rgXMi6p7b6jp3hXHD5NJuJXQRJq2k9tejgC9qODyy0l1WyYGunXgKPwQNtgp8sdm3wQqBedp8qfVHkFRwUEK5JpOJDDAy4GXw5MI1B6B0m9+gG7dX0iZ9hBaRhpclmz1VhvNn0L+FB/aL256AO0O70X3XZuBU+QqxN8ZS5YYqkrZunEjOC4JYAN8iHGFRciOooAJFzqA8z/Ctddeiy+oTM7777+PIo6WJJlKIfKcSqZly5Z2fS9swci+h/PmzUN6ejqZrGIwevRo0defI6dQtY9IobHLoJJwuPIC9GjRCtmklTMVkZJl0kUIocWecL1eHyvkT7nGNypGRO4GEKGLfOYNUW2EzwWNGKM0qbFm4lr6/RcIppQwoURMpTRABNjvb+dOMfDsxGS83+lSp8kfa/6276jpZ6qgUR+av+RW/pj75Tx6AQvH4MHdlVvLtUSg0SGgO3CELC/vIqbHRHS9/XqoqXiALXEF+eO+K+n347Un3sI7d1yKOEoRI0pDPvII8NZbtm7dKI5LAuimxzh+1zGEkYZpfs92Lr9DZKkaGTFRDvWr+AJaNlZ8A02PN2/eHJMmTcKff/5pPNyT/CGcrR+ckZEhTMpsOmb/QCaXV199Ndq2bWskkXce22G8x6fDp0JDUVmtT580HnPHhj+lYCnftxvl2zfBj4JPziUVxw4Lnz8Nmafjvv4dPjaSbZ+rH3neQwj88gvw0Ufi5uX0Bf/mkJuhRqBbU73Yj/blJM46nMmogLXybpYosc8fm31bpATQehtys48hOroF/T/6WDaV+xKBRoFAFflkFz3/GAJCY9HnuefszskZ8ldW6IdS8vmz1PyZ3iCfSoi++uT/8MqD1yKA/UPefhv0tmUwCZs2bETbvo1oLk1mKqEaLUooAbQ7hKN42ScwPj5edM++f6wJs5Ts7GxRWs70OJuCFy5cKPINHj58WCScZlPzzJkz0Y7qFCvqdtNreJvzMmXHxCKBfPXcKeH3PA4/0jIWvvgYysmf8FwS0LYDwu9/CiHTr5Dk71xgedt5TvZMCdAV+XrglUgLT/Yg+aNUFjmBtSJ/Sc39sGzRTxRd3xYhITX/F5U5yrVEoKEjUPy/91GZeZTy/L0OVWiYzek4Q/444KPgjMou+VNutDU+Fa+PvEXZBSXQBU6fPrvfyLakBrABPtBAipDVqlz/6DiP36FDh3DhhRdSIFRPcoFYgsWLF1OS9C2ifByTPvb/Y18/bssyatQo4TfIJJFzAHJU8Pjx4zFw4ECnNIeFYeEIr05V465Hwr5+0a9+iKxJQ6Bdtcwhf76QyfZNz+4aq+y3DgiwIzfn+yssFJ0sju2EJW2He5T8seavuFCFwUNUiE+0779nqvlLbqnCqmWrUJh/GhdceSNWrlxYB2DkpRIB70VAs3oDNIu+o/q+NyO+Xx+bA3WW/HG0b0hkhQj4sKWE4Jups9TI2ZKNP8ZciuEVRzCC/9coYBE33ABQgCRpMGyOqaGecD2LaKhINKBx+xLZqqSqEq4WTuAcGhqKbt26CW3duHHj0LFjR3Kh2imIHQeBsHaQo4jbtGkjAjv4GiW3ILedMWOGUXvozPh0ZAJWleucuaRWbcv+/Elc55vYXGg27X0h1OoG8iLPI/D008D69WIcWWFxeKHNBIztEYygYNv/M5zqxd15/mITNE6Tv/LyCqxc8guaN+9I/4stiAB6Hl45AomAqxGoLChE8ZtPI7RVN3S57Q6b3deG/LHZNyi/3KYFim+mkL+g+GDE9YnDR52eRtfdWxCbl8350YBPPwVuvdXmuBrqCUkA3fzkLthxpMYd6uoXqKcXESaBdRFT30D2B+Sk0FspG/qwYcPMUrlYRg/buidrAGtLpjg3YLOCHFRkBUHJE8j3UXIF2rqnM8f1lL5G/cePKPm/94QZuPiNZ0UeQHuBI870L9t6CQKkscarr4rBVPj44d0RNyM0qNDj5I99/g4cIs2kHbHU/HHTlUv+Q3FRFqZPm27nSnlKItCwESh64QWqy1uCPk/Nga+NPLK1JX+c6kWzwzY+luTPh3xsiyOi8O79L+D5J6tJ3wMPgMLvAcqG0ZjE9itxY5plI5uLjv5BVORv5yph8vb333+L1C5DhgypVbe1JX/KzVTk/FtOKWjcIVXqMuTfeyOKP3gdwVMvQeQL/0PsFz9bTRnjjvvLPusJATb5Xn+98WZz+1wE1eguCFDZflmqD82fswEfbPZlOZORhZVLf6YUS11J455knJfckAg0JgRKf/8Hum1L0fG6RxGe0srq1OpC/uz9Nlkjf8oAtgwYgfmTLjPschqpa66hcOFK5XSjWEsC2AAfI+cA5EAQV4iuohL//vuvMOdecMEFwp/PFf061QcR0DDyLSwJs+3061R/Fo11m9eLRNGRz74pav2Ccgb6pbS1aCV3GzwCnLah2mF7R7OuOHrZFJdp/ljhfviAlnJJVqJjaiDsR/vqax3tq5C/4sISfP7BayLZ+oUXnt/gH42cgETAFgK6jesQlNAGbTkBsxUpzvVH4cFCRHaMRGSHSCstzh5SKnzYi/ZVWtsjf0qbz29+CKebtzTsrlsHvP66cqpRrKUJ2AOP0dQsXBtzMCeAjiylN5I6SHZxCTYfP4V1R9KgJW3i5B6p6FNBGpR9m0Wv1tLE1OF2di8NpberQNIAFkSa/3Mr5uC6moJVPXrDhyLKSj57h2r8nhRjiXrlfQMZtDsyebLBIMDOceynQ6LxD8Ty629CUKjtrzdnNX85mcEI9Ksf8pd+/CR+/OZTaNSFlJvzBkr94p4XowbzbOVAGzcClHLFLzDE6hxZ81ecG4C4ifVP/nhAmuBQvHbL83j72Rvhp68CnnkGmDgRlOLC6ngb2kEfMv/Ru60UVyHACZQjichsbN9B5AE8V7+1IYAjduxDx5MZmD3pvHN1X+P8nlNnsGTfYaTnFSAowB/9UlpgRKc2iLGoKlKfBLA1pey4jmq1fkjlurKr08+YDryuBJD74rQvxe+9JiqB8L5/h1TEvPNFjYoifM6dUlVaguwpwylAtdBm5RR33r9R9k3lCkX9zoMHxfQ+7jEMC7p0N05VTUFLQYFBxn1KTSlq+3J5N67wERhEB2wIfzsy+Ssq0qN5i3IEh9o2AXFbTvXC0b4c8BEWYe7zp9FqzMZRmKdCQR5rE7WIjNGJoKTdW3cg7dA6iqCn41FxVGLR/Ou5uLhYuGrYGK7Dh13Rj+zDHG5vwYNH5YqxZGt1CIiONZ+kk3uawgKooqLtXqU9XQQfbSGGXXGTWY5L1vwx+QsJLUZUsu2XOe6c8/xxqheO9o1M4IAP81tWkpLBL8RAMjUlvsg7HUgviJWIbq6r0db0Sp3aF7mnAvFA+jLMOkEaQBYKkqREt6ByPIb9BvzXPqoNeGKNeehZ0RHof+AogskMrA5y/EO4bN8RzN+1Hx0SYjFzcB90aZ6AAEpW7UkJolJdbY8cobQ2KuRQxRF3SUC7Toh59wtUHKNyWu++jHKqRZw1bSQCh4xC6JXXI6BjZ3HrquIisfYNj3DXUGS/rkaAHciryd+pZi1RPvl8jKHckoosPZyOoRTcxKJo/kJUVQ7X9mXNX1jEToybMFjpssaa36M51YvKp8JmqpfVq1eLICu+WAR8oBy9egdAMfsu/mshkb+16N17BM4/fzi5Y9T8ep49ezZmzZpV4/7OHnBFP7IPc9S9BQ8elcvGMuNy80k6uffm9/MQ9sn3dq/SrN2IwidvQVGbLmg2bKhoy5o/DZl9WfOn2vgTgq+y/Zlnsy8neY4eYajta83nj6uJcB9s9i2hVC8RfQ3RvhzwYUu0+VoUb8pCaJcA/Nn7Yoy+bjza5ecAu3cDnKT65ZdtXdpgjtf8hmkwQ2/YA62iH4wpx4/h2IH9mNKzM0Z2auvwhNLjDUSpVVYuDrRqfs7r+Mdp8Z5D+HfvIYzt3B4TunWsdcTuOW/mZINeO3ZgBP0wauhtauiaNdifmoqcuDi35Vzyb9MO0W99hvK9O6HbQnmnli1A3q0z4Md+HkQaKk+m0doPAZ26wK9lCgKHjkbgsNFeg5eT8Db+5vT5UfxyKum5LZt6kUgsbm3iCvnj2r5c3s2Z2r6799rT/NXd54/Hq9Vp6SPoT3k0h1olf9bmJI9JBBo6AqqBVPs9IgGnlvwjCKBlwId6o+0ZutrnT7kTk79sIn8BYVQUYUAClYrzxSvDJuLjhT8ggPOMvvkmyD8D6NRJuaRBriUB9NBjY6OTPwxvH/tIM/eaRu9w2bhSqgKSHRmOthQl6AgBXH/0hCB/E7t1wnmdbVfkMIXCMk2M6TlXbnemyiMsQWSmG7tsmVhYE3iA/rGYDJ5MTnZ5ahgf0nqqqCYwL6EzZ4mk0OX790BPP8ABM2+Cnsy05ft3o+LoIWgW/03m4s4ISO2KgM7dETRuEvj62oiegk9K5hj81GpzvbzGAgGOhGdtWHVE/KahI5EXn2jRyLBbF/Ln7oAPZcDtKM/mmuUVyMjIpajfZsphuZYINGoEfPn7eOAY5K7+B3l7c1ByrMzlAR9s9mXNn5Ln71yaP1Py50vkj+UolYr75ZIbcMVc+g5nEnjXXYYcgZb25gb0tCQB9NDD8qcPzR+UTDmXfryiakEoDiUnoe+hY/CnKN4Kf/uE5HhOPppHRWBMl/Yemq2N25JmsrTaL8O0RVxuLuLWrsVQWkooMfUBSjDNZPAY1RJ2tfj4+SNo1HixmPdtMH1o16+CZukClO/eDvVfP6MyOxNhM282b+rAHuchLHjmQeg2rHGgtWziEALvvmvwxaHGuXHx2Dx0lNXL2OfP3UmeHUn1wj5/J8nsy7V9FbOv6YC3b95IidaD0ayZQcNvek5uSwQaMwLBEy+A5t+5OPH3ErSZPtHl0b7s8+eo2dca+VOw//HKm3He0j+RkJUBSp8B/PorcPHFyukGtz7rKNPght44BhxLOf38avEGsS8lGYFUJYCDQezJgcxsbDtxGt2JMHqd0LxDyAfweEoK3rn7biycMEFsV5ngEUbl4fpu24ar5s7FwxSCP/vZB3Hxv/8gstpXz91zChw0HJFPvIzYz39C4PDziMCtrtUt+TrdupWIfLLh+43UCgBXX3T0KPDUU6JXSkGOJZMvJjNNzfdZTtuVdToEtTH7ulrzxwEftshfcVEJ9u5cga5d+yMoSOVqtGR/EgGvRiCgZ1f4xrVCafoql5M/Lu/GAR9c4cNZzV+FWoPcnbugo6wZLNqgYHx262NnsbzvPsDNJUzP3sz1WzW/MV1/D9mjGxAoCA/F8cQ49Dl4DHuJDFoLZdKQmvrb9dvQMSlOmH7dMIw6dZmUmYnWaWn4kfI/FURHY/2gQWIJoYitDuTUn3rgANofPoyAahOfiuYzeeVSsVSQv9e6nn2xkMx+i4aMwsmkc/tC1mmwdHHgoBEoevM56HZsgYru7YxUZp4im78/AvoOcuYy2dYWAvffT/Wb1OLsjn4DkdmiVY2WTP72HvYBR/s66/PnavJ3Mq1cRPta0/zxwNetXEMBKuUYMaJ/jXlYO1BWpqW4lxMUJRxEbkgtrTWRxyQCDQYBDtwIHDoeRfO/RTkRqgCy/FiT2vr8hXK07zkCPljz5+NXgcLDK3D8j00oOXkI2pwTAKV/CSAfxa6DJiCYBrWy1wisadMPQ49tBtLTgZdearABIZIAWvuUeeiYaX5AZQj20sRsTG2Hy1ZsQBvyBTzWPFG5xLjec/oM1LpyXNq3B/xMoiKNDRzcUPwBXZ0aZuSKFciPisL+zp3NRlJGZuEdlGeJF3a4bUvantT9+9GRSCHnDGTxr6rE8G0bxfLSB29gZ/tULCIT4IJho7C3bUerhNjsJrXYCRp3AdSL/0L+A7dA1asv/Fq3gy/lF/SnpNIB5E/oZ8P/TIy3U1fhq6ZbvawWd5aXmCFAnxv88Yc4VBIWjrWjJ5id5h2F/JVRhhhO9eJMwIc7yB9r/sqhqzFO5UAOmZRCQ2POmfOPfRl//30ZduxYpVyKp6n2sbXIR2MDuSERaAAIBE+eROU6Z+PI3O+ROuumGiOuLfljzZ/mQI3ujAeUgA8fv3IcnHMf1BmHKACwM/w79kDoxEtouyVKPngZabu2Ir60HFnrs/DGhDsxYPYsg3KCA0Kuuw5UrNvYZ0PZkASwoTwpK+NMp3Qu6fExGLFzP44nxdeIfixWaxFIWqfIkLM50Kx045FDLenNqTORut8uvBBVdshpeUCACAjhoBAfcubi65gMsnYwJj/fOPYeh/eDl4e+/gQnSBu4kLSCCyl6d0P3XqgkPz9XiI9/AKJf+5BI4N/Qrl0hooj1JcWoys0W3fu37YCgMRMRfMF0+EZGmd1S1bWnqD6i3bTO7LjccRIBdujjupzVsm7UOJRb5OMyJX9d2uuxMYOusSFVVfp6q/BxLM3GIOhwbk4uEcBI2w3ojFZbjszM02LhhrGxLXH55RdJ8mcXNXmyoSAQ0K41ZVy4EEd/eR+xvfsivm8f49DrQv4c0fxxtG/ervmC/EW//Q294HcT9+YMGiWffYmqomz4R7ZC1roz8A3wheaCvvi18AZcPvczQ0AIuTBhwQK3KB6MILhhwzW/jG4YmOzSAQRIbf5fzy64eslq9D50HFstUsmUkfZPR+ZT/pHztaP+duBOLm3iS7/QF8yfj1PNm2Nnjx4O960noniC/AV5WTx+PBKys9GJyGAsaTp7Hdhr7KcV/Uje/Ov3YsmLiMQS8uNbQOlcVvQbjLJgVuLXXnxUgQghfzNeFKnMyxV5BbVrlqPky49Q8tXHCL/lPgRPv8L446xe8Dsq044i5JKroP1vsXKpXDuLwPffA1u2iKuyE5Kwr8fZHwk+aEn+yFPCpjhH/lDn8m62BpJ9ppwSQmejWVKsrSbi+Lx5f1ef96Hg59uRnBxnt708KRFoaAhEPPYY8m7eh20v3o2ej7yFxEEDRZJnzvPnqvJuCiaK5o/JX/Hx/3Dsl3dFOhqF/FWeyUbR//4H3cYFSBp5BSLL2wjylzAwEX5Bfph3xc0YvYQCQigwEIsWgVTzwPTpSvcNYi0JoJc/JlOzsDVzcFZMJLZ1aI1huw/iWLME5EeEGWfUKjZKbK85fBzDO7YxHq/thmIKtrzeWdPw8FWrkHjmDGZTCg8mdbUSIr9ZCQli4euXUQWWTqQVDD2Th6HbNyOAyguxxBQV4jLS2PGiJvK2su9AoRn8l/z5cqJjRJu6/vGLiYUfaaKCaAm77X6Ufv8Fij94HRxBzMd0NB6OJA6ecgkCR45D8Vsv1PWWTfN69vl7/HHj3FePnWj2+XEf+dOLCh+c5NmRaF+R5Jl8/mwFfBgnQBtM/rZsOIHSkhOU+qWv6Smz7bVrd1K97p3i2E033YHmze2TRbOL5Y5EoIEg4BtMFXBeew+FTzyILc/ehOQxNyAoLxzxdpI8K1NzpLav0taU/HGev13vfQ6f8DjEfD5PNCn99S+UfPgs+Q36of3MpxDabDgqNvwHhfxxI21wCP7vtsfwxPP3GLq9915QBneQY65hvwH8lQSwATykcw1xNeX3a03RvpMp4GPueUOMaWG6kl9gBDmJ55fRD6eXSOtjxzCS6rauHDGCimw3d9moiiIisKl/f3DZuAgyy55HUbcT1/yHMbQOU5eJ+wRTnr8JFInLC0cab+zWi4JIyFRMy/HkVi4Zi19MHCLufBiq3gNQ+sWHFDTyvEgyHU7Hgi+8DPrqsbjkZk2tE077Qi4ALMfbdcQJMrkr4k7yxxU+uLzb4CEqxCcGKLe0unaW/B09pMOpE6sQoApBv35drPZ58mQ2li0zaP/8/SMk+bOKkjzYWBDwp9+t6E8/R9Err+PUv/9HZlUq3abZhObnTUby2LHwp980S6kL+fPx80FQbHPoDm1CzmVjSAtI7lRqKj+XOhjd7nkWxUfJgkZm39gWGqH5M7332qFjsaXvUPTdsgY4cQL45BOAI4MbiEgC2EAelL1hllNN37+otNuMpWtx/sYd+Htwb+GLsILKxRVSGHvX5ER7l9fbuZi8PFz688843rq1IIDuunERBQb8Tr54vKh0OtIIbsL5ZJ6dQH57Sbk54ra+5NsxaNc2sTz7yf+wv3W7ajI4GjuoLFytNZPVkwoiUsmLnoJYfMiPURG9siHXziGQlWWMtGPyvnoMvWlXi7vJ35mMClHb1x3kL7GZPyV/PooWye1tVv/4889/6FwMWrcbjH27/4ROV2GzrYKJXEsEGjICvlQaNOqZJ1GRfgMK7r0dRXmnkf/+wzj4TRKGffwzgmPPWm/qQv6UJM9D3v0cZ9ZvQAlV5yo9lQYdlXzrNOt+I/ljzZ/upBVE6bvo85sfQu9b14J/U/DKK8BNNwFhZy1xVq7ymkO+XjMSOZA6IZBDiZ7nD+wl8gKet20PDlBk8N8UHHIeRQq3qy4dV6cb1PHicCpif/W330JN6vGfKe2LvcCPOt7K7HIdfZEsHzAUj9z3JHrPW4SJH87Be1T792CKuUk89fgR3Pvd51h4+9XYcsVEvPrOyxhJARui7I9Zj87tmJI/566Urc0Q4Nqb9Bli2dOrH3LJ/4+lPsgfm33DIsrF/Wz9qY3mj8lfSlsVFTLRUQLosy8Jyj3YAX3LlgPIzk5Dz37TkZ+3n5Qh/l7lz6uMVa4lAu5AwL9lc6jiQxD33U+Ifuc7VKhLsPN1+i6oFleQP+7Kl4IluQ5xh6uvRq9HnkBkah/seO0lVFVozMy+yn1N10ebtcPizqMMh8gvHe+/b3raq7elBtCrH8/ZwZ0hTdKrvyxE16AgTJk06uwJk63DLZLwb9/uGL9lF/pQ+bfOlCfw/O6dTFq4Z9PUN9CaP2BkYSGumTMHfvRrPWfmTHCaF3fJrSt+t9o1m4ZZq7eNyrnx8vJNd6PdieM4f+1/mECm4n5UG1i8wdHVzXOycN2fP4mliNK8LCUCyRHFvC6hfSn1jACXC/z0U3FTXYAK60eOFdv1Rf5Y83fgkO0514X8cfqWEIr+PXZsL376yR9xVAe7sLAIeRRYlJl5jCpOqcWN9+36E8VFZxAdlUTpJP1sD0aekQg0UgQqjqdBT4SMX4xYnCF/OrUvik1q+yqaP2tQFR5Ox5HvSZNHcujbk8jdPogCUNqhefV9Ta+p1FQia8MZfDz4aozbvwJ+nKWAChbgttsASnHm7SIJYD0/odNE5JaSj9pAIkEdA4Mcujt/4G88mY4c+sXL4189G6KlyiBvkKP8r/Sj8hFF/o7088W/VCqOTcSekuanT+NKquJRQW9YX1GuJE747C1ypFVrfNjqOnx4xXWIox/c8etWCL/B4Vs2IKhcJ4YZQXWBpy9fJBYdzWE1+fYtHDqKkk+PxJm4BG+ZSuMexxNPGFR9NMstQ0agjEz8zpA//t4+fECLgvxKdEwlJ/MY2/8P/L/GPn9s9nV1wEdJUQDY50/R/Cm5+6ZfcS3++3chnduOvXs3IjgkiiqX5Js/U30lrrnmJqo+9Zf5cbknEWjkCFRpq5B37z2UaWEloruPRv8X3nCK/HHAR+6pQIR2CQAHfNgjf+Wl5Ti5eLsRUU3WUZxedlTsR0+7GaaqC4X8VZVXQT25H5alT8W4xb8DBQUARQ+DrRZeLra/Cb184A11eN9T7rov8vMwITwc/2uejCr6wcmgVC2vZp1BIhGMJxISjalDlDn+WFiAo+TL1oHMmW80a47dygmTdQEFenxGSaHzaF1F6WB+JZPw1M07Eb90DfkE9kFuZLhJ63rYpHn127wZ51N4fGZSEuZecQVKvdgvIocieb+fdJFYQihQY/Qm8qdc/R/GrV+JKCLsLCp6TufRcV5eJxPx1tRuIvH0Qkoxc6hVmwaXA6oePgV1v8WePcBvv4l+OOnz1kHDnCJ/9B6E7MxgqPw8S/442jc3KwipnQxmX4X88cSSWzXHVTfeIOZYScy2uFCPt164U1T5OP/8CxAfH42YmHBp+hUIyT9NBYEqSvpf8ulsaE8chn9oNlJveg5tyH1Ik62BKO8WH+xweTd/VZVD5I/z/EW274qkEVegirTv+opylGWmIaR5GwRHhBqhNyV/CYMTqXJJAOZedTtGL/0b/pyBggngXXeBVPrGa7xxQxLAen4qV5IGbAHVsZ1AP2Y/FOSDCeFhIncszYgAXhwZiSzS2g2hUjgBpMnLJdLxHKVMYRlBBKoVkUBTAphfqsbWE6ewmvIA+pOJ8/5xw5FAqWDSqP33RPomUWTw1f+uxvou7bGpUztUkVbQ3RJNc5r0zz9of+QINvbrh0VU49danVZ3j6O2/ZdReP8/I8aKxZ++AAbu3EaaweUUSPIfWmRlGrvts383eHli9gc4QqXImAiydnALmZir/KSZzghUXTZefdV49dbBw6H1VYnyblzhg5M8283zR+Tv4FEf0qb5e1Tzx+SPNX/hkTrh82dK/oyTq95g8ndwvxYtWw9EetoatGuXLAM+LEGS+40agcqCIkql9QO0i35EVWkhEqnsWvfX34MqItxpzR+Xd+M8f2EttOfU/ClJnhMGpqDF+KdrYKz+brY4Zo388YkzzVpg0cSLMenveQZ/5TfeAF57rUY/3nRAEsB6fhpRRAw+TG6BSFpfmnYcgUTyFHmTtHuXUm1c8iLA1y1boT+Zia84wVSOlEu0XF5dXcJn1TawVjCdiONpIojcx8TwCHQb0RdRIcGiPf9hrd/3Y4ZiyJ6DtBxC1+MnsZp8Ag+2aOYWbVWwVofhP3yDPkRGWdv33YwZONShg3E8ntxQfAPZF9AZqaDqH2v6DBDLk5TKpdvhA4IMst9gtyMHjV21O3kCd8z7WizZlF9w0WCqUUxkkPMOain/oJRaIEAlAEHuAyxqIuU7evR3mvzlFwHxSWUeM/sq5I/Nvjq9toZ23xSVgrwKQf6iov0wfsoYfPL2v9i9+wj69OlkbEYeJFixYiv5BpZTKWQ1BY+oqH5wX4SEyM+YESS50SARqEjPQOk3c6Bd+Sdp3nSk3RuHjtfdisBNK+pE/tjsqz1mGxI2+54lf4Ykz7Za2yJ/Svt5V96CcYt+g6qclDocDMIpYcgC5q0iCWA9PplSchDtf8hAGla3bYfrY2IwgKJi15PZdkB1YASTP5ZM0jyxvEWkMJ2+7CdRnjuWFSUleDjjNHrRdROI9PGar2VCOd+E/InG9KeCHMZX9uyMPa1bUMm4fZiybhvywg9iW/vW2JeSTOSkZvShcq2j69jCYvQ6nIYuaSfFJZso8njZhZegnLSVjUqIaO/ukCqWN667Da0yTokAEg4kGbRzq8EBmCYcTyb+q+f/JpbSoGCKQh4iStNxRZI8qRl0/CPBb9DVPq9b+w3BjhNBcEbzx+Qvta0eW7Nt+8260+fPlPxxtO/JDNtTNyV/7TsFIpvMxSw8vqNHT2P//qM4TKUO8/NPUVRwhjiuUoVTBHEZtm9fh6lTL0GXLim2byDPSAS8FAEd/S6VfvsldFuXkZYuEM2GT0f7q64jrV2yGLGaCKAzAR+WSZ7P5fPnMPkjyy4HfLDPn2L2tYQ0Nz4J8ydfgWm/zaG3VrUhLQznL/VSkQSwHh9MCBGI6VSaLIRMtTGU9uFG8jtj6U7aDUW+5MLTlVU4r9pfrgcRPF5Y+MfgnZxs9Kb9z0lDyCZiR4W1gb8NH4BmufnoRz8mo7fvxcgd+5BGkcJHKPHmyYQY5IeFOqQZ9CcTdWJ+IVKoVE77U2cQTwSwNCgQW6jayNYObaAJVDU+8mcF6BPNkvF/VNqNl5jCfIylyh8T1qwQ/oMhWrJRkoRq1Ji8cqlYKiir/BJKPj2RT3DS0G7deEuKNQQyiC198YU4w6l85sUMqRX5i46kLrKt3cDw/+SugA9L8mfP7GtJ/rhsY0lRiRj032xOIvHzV6FV6x6IT+6OpGb9sGrJK4L8VVVVUo3gEoog/goXXXQ1undvJ9rLPxIBb0egqrQUhU8/Dd22ZfCnKhxtLroD7S6fAVWkQdmhjF9T4ouSLdkIcsLnj82+jgR8OEz+KNo392QQ/JNtkz9lvPMuuQET/v4RweX0G8CJobl6UWKictqr1pIA1uPj4B+Bl5qR+dWODAwhEmZD/qOI1ANarTAPWyN/5yobx91mxEbjr6FkMqIE0Z1PnCYCl4mxW3dRChRAQ9HCTBSLSJPIhI6jXvU0Zg5tDyJzc5haSwERpYgpLhUpU9SkPTyeFI813TriWFKCmX+haWoY0+lYSxNjet7d24opmO/jrDnY3tjyIqPx44SpYgkm0seRxCLFDCWfjiVzPYs//VgP2blFbNMvNdCrFzBtmmHhmshOEHpDJ434LztRV/vGLmszCDlVwQ77/CmaP0H+bEDkrOavMI80eHC8vJu1aF9rQ7FG/rhdW3qRmnbF3SgqKESrNq3RhjT25TpK+P7bLiS3bIGg4Ahwee/27btR2pgCHD++GxoNmZ2kSAQaAAIVVL+94OG7UJV1gsy8T4rgDj8rFiPW/OWdDkREX8cDPtxB/oTmr9LHpuZPgbyqogqHDlVhXs/JuG7zz4bvMCaBzzyjNPGqtSSAXvU4bA9GRyTs+/wCdCR/MvYNrKuUUTmdLRQtzIuKTMzNc/KRQM63bM4NJ3LIGr4A8i/0IWJYRb80GvrnZFKYnhArzMeZVGc4m97U9PwrJMUMATWZfRcPHSUWXzJh9t+zQwSQcBBJ7On0s223bwfZ74BnnwVSUs6SwWHDiC024X9NqhiDjz8WOGl9/PBnq6EeJX+c568gLxC9egcQ+bLv1lBXzZ+YNP3hl8VBwwYpuygprsT+PRoqGVeFbj3DkZE+CSuWfI/BVPUnMTGa2l1kbCs3JALejACbfAufulsoHfq//DXietHLrxUxmn1DKx2O9nUb+SOzb1xL+v+jaF9bwuQve2MWykvKsfj6GzBz62+kPCH3k48+Ah59FAgMtHWpx4770Jsw/cRLcRUCRUVFiKRI3o3tOyDMBf5enCbmR8or9BX5lXEOQU4dM4ZSyJxL5vf0TlOQpzWApri5UgNo2q/NbXqW7fftwpo7r0Vh796I2LbNelPyDcXkycCFFwIUQQ2KCG9S8vzzxjfmH2K746vBQxAYRF+kNoS/wbLPhJDLDZl9EkspIKLCrKWaXBaCKIE6C7fNywlECdX2jU3QnLPCRwFp/gqJ/AWFl4AyNNkVzvPHqV442jc6jgM+zJtryC0gqDr3p7rUT6SnCQ6hH7ckdY22pldqNb7IOh0iyF9EbB5C6OWtXFeOJX9+C1VABKWIcf5loZiqqoQ78D1iOg7LbdmHOSLeggePylvGkk2BgQHRBlcnBS11WjY4l3mfCRcjxCS1inKe15oSP+RlBCKQyF9EVD4C7Cg9OMkz5/nzV+lFvV7ysKohFeSP50d9VOh8kJMeBF8/Q1s/O/86nM2Fzb5VpPlj8udTUSr6qNE5HSD9DLUNpP6pZnCyFqrgKjy14m+MPn7Q0Pyrr4Brr7V2qUeP2Zm+R8clb16NAAd8zKcv6/GUNuZ9ih7u4IVvEfJhOYgAMYKDKW0Njf/7D6CXBfz5J/D778Dy5RSxU01cWANGlVPEwsRl3DgDGZwyBUhIcPBmDbQZBTmh2mm6korAL+jZDRN7pdicDOf541QvIZEU8NFbj+hI8x8bvnAZ+bye176lIH/H0qktvYi3669HYs2mZvehoESkF/lgQE9KzVJajKHDhpudN91RNH/W8vwp7VavXo1hpN1VzL4prfzAAR/s82dLFM1fUi9fpHYNwrp1a0Qf3H4X5aP0JxX99ddfautym8dnz56NWbNm2TzvyAnZhzlK3oIHj8pbxiLGMeNyI1Bcx/o1So0yaPiluGDsKONx0w3l/yO1j+H/Y+1a+swP6G/axLit/H+06Wb4//Dzs/6/tHjjJvhNuxZ5lOcvqK3vOcu7KdG+pj5/nAYm+Kqa/zOK5s83sRzJ/RMQGE1fMCR/9+6H0ffOMIz1nXdAmdy9zs1HEkDD4/HKvzlECBYR+bubkkneGhvn1BgVf0Bv0wQqvoHeoAk09QdUwK1XrWCLFsDttxsWzh6/YIGBDPK6uu4tOXYBf/1lWFilNHSogQyy72D79sqwG8+aiS8TYJI9qT1REGNb+6mQP8d8/gAmf5k5RP5SHCR/GT5o2UxPC5HMw7YhVsifZYUPa1coP26c6sVR8hccYv3HLTiY/HULMq3dRh6TCHgdAvn5JfQVt5y0ZRXo1LWr1fG58v/D9Aas+csl8ucb4Dj5sxftq/StkD82+8abkD8+v79zTxzo1B2dDuwyuPqsXAmMHKlc6hVrX68YhRyEVQS+o4TKQaTPVvL/WW0kDzYOBLhu5JVXAvMo6pMLijMJvPVWyg5uEjTE9kvSIuGhhwDOr8hfolwmbdMmgw2ioSPB86uu+ctT2cW+kDakPsmfjSGIw86QPzb7cpJnV5A/vnlxUS6ZgA3aBntjlOckAp5G4MSJLHz44fsUrLQPI8bMQLuObWsMyV3kT6OuQg6ZcuuT/InJ0Qv7HxeR1k8R1gJ6mUgC6GUPRBkOB318QwTwEvInjG7KAQEKIE1pzWb+8883BEKcPAmsXw889hjQubM5Cnv3Ai+/DAwYAFD6IKFNXLzYGD1r3rgB7G3cCOzcKQaakdwSOYkm5Ndk+M6Sv7zc4Fpr/kxuW2PTGfLHP25cks5V5C+bUjBlZR6ij4TFZ6LGKOUBiYDnEdi1az+5Ovjh4WffxQXTJ9cYkDvJ375d5L9HaS4SBtYtybPpoO1p/kzbrR4+Hjmx1W47f/wBSuppetrj25IAevwRWB8AV/go01dhlBfXz7U+cnnUpQiwR/PAgQaix4TvwAHg9deBIUPM/UlOnzYQRg4aiY8/q01kP8OGIp99Zhzp7t5Eaq2Is+SPzb7FRapamX2t3N54yFnyx5o/Dvioq9lXGcCmtevFD2qvXp2UQ3ItEfBaBE6dOomEZu0pQCqsxhjdTf440COOSsH5BfnVuLdyQPH5q6vZV+lPWVf4+mNe3wsNu2zh4OogXiQEjRR3INDpkkxEBPpg3w/Na9X9ds4iThJrL0zJgZ4VX0DLpp72DVR8AXlc3uAPqOBj6hdYr/6AygDOte7Y0WACZjMw14hm/0AOIlmyBJQR2HA1k74ffjAslHAc551n8BucOhVITj7XHTxzvrDQMF66u5Y0oAe7dK8xjtqQP/b5i4svo4CP2Br9mR4QAR8mPn+m5yy3a0P+WPOnrVQ7FPBhy+fPdBy7d6xD8+YdKUA8yPSw3JYIeB0ClVTYIDsnHf0GXVBjbPVB/lK7BSFzO5EvG+Iu8qenL6ycrTn4oe04zAqYg8By+n7+/HPgueeA6speNoZUb4dJvSDF2xD4Ii8Xj2dmYAxp/9pZSY7pbeOV4/EQApxdniM5//4byCGm8/PPwNVXA9HRZwdEqYOwaJHBPMxBJ6baRH4j9Rb57jugrEyMZn/33qiw+NzXlvxxwEdYOGFgR+qD/LHmzzItjOmQlGhGR8jf6fRcSmVzHJ06Se2fKYZy2zsRWL9+NyqoKkaXHj3NBlhf5E+lsk1znCJ/VeSeXZ3nzzLgw2xitKOQP0021eseRqVRx9HLNwsH91XXNzcc8Oxf28h4dlxN8u7l9IP8LgUAvEnLTVQm7h3K+WevhFSTBElO2joC7Cpw8cXAN98YNINLlwJ33QW0amXenv3sOHCEA0iYQLAmcc0aY81d88b1tMdE1CT4Y3fv/mY3rgv5cyjVi5s1f64y+zIo5RTNeDLNl3LKRmP37l2iPKQZWHJHIuBFCHB+vDVrlqF12z7o2LmDcWTOkD/Og8lJ0B15OeKAD/b5Y8MZa/5cRv4oyTPn+bMW7WucVPWGKfmL6xuP4IRgLJh0+dlm/B3tJSIJoJc8CB5Gv0MH8Slp/24h8ncvpX7xs6cy8KJxy6F4GQKK2fe990Bhd8DWrYbEyj3N38CpZhHw5pugxHIge+JZbWK1+0G9zcpO8AdzQ87zVx+pXuzNl5M817W8m7X+ndH88Y/bGUoIHUSJDCdddAN5ABzBtm0HrXUrj0kEvAKBkhI9JWgvwuRLrjSOxxnyx/8fnATd0+SPNX+c5NkZzZ9C/njiR9p3RlpKOwMG/MJ95IgRD09uSB9AN6Pf+QpyzrcQa36BXJCFNYAsdxD5c7fmz9Q30Jv8AU2h8rRvoNf7A5qCZWubXyKo6ohYnn2WkuEdO5t8mvNS8Ss6S1aWwT+FfVS48ggHk3CuwUmTQKUmRBO3/bER/MGaP67wIZI8t+Ukz7ZHwP86dcnzZ7tnUqjmUpZ/qvDRqZM/Utqq7P5vOvvj5qxmg2OCDJqNvlj0Vxz9jhxHnz7SFGzv+clznkEgP78YpaW5aNGqGy3JYhC1+f/g8oecBN1Wkmfu2J2aP8XsyxU+lCTP1hC1pvkztqPv4WVjL8T1n79tOPTtt8ZqR8Y2HtigrxMp3oDAopJiMYyPqdqHv9T8ecMjaZxjaNMGuOceQ+URJn1ffw1Mnw6qn3Z2vqWlwK+/GjLXc+URDiJhbWJa2tk2rtoyC/4IwsGu3UXPitmXy7ulepj8HUnzQRiVd/M0+WOzVmLzMqNZKym5PTIzT7rqSch+JAIuReCXX/6hkmv+uOrG20S/tSF/rPlLoM+8p8kfa/64vJstsUv+qi9aft5kGHtgM3C1wsdWn/VxXBLA+kDZgXt8mpuLBMr3N6Kp1X11ABvZxE0IcGQslydissdBJFyW7oYbDGlklFtWVhrIIpPG1q0NmkSOYtu+3TVfYL/8YhL80QsVASoo5I/Nvlzb15OaPyZ/SXGkBBW1fX0UVGqsa/vj5qxmw8+fVJ3V0jy5NQpkJRAFDrn2IgTYonXmzHE0a9EV0bFRxvKHtcmDyVpvW1Ifmr/amn0tx5wbn4TtSS0Nh9kEzPldPSz0TimlvhEwNQuzOThdp8MBSuHxQmKSXfOSu8Zpag5W7uFpszCPQ0kV42lTMI/F1BzM+yxemSbGMDTn/wYHA1xrmBcmfevWGdLLcIoZU38VJn68PPsskJJiMBNfeCEwfDhQm4TlHLlcLfso+teU/LHmb1tGhXK6xtrdZl+F/LVpqcexIzVubzxQX+TP0qG9ID+XfKMijeOQGxIBb0GAXZji41sh/dhm/P3LQsoBONxlSdCVOTpF/irIj3jDGbg6z58jmj9lvEyK/4jrjj6Z6YZDrAUcPFg57ZG1HW7tkfE0uZseIuJ348l0yvfnh/Mjwpvc/OWEvRAB+iyKwBAOEOFAkd27gRdfBPqbR+cKk/C77xpMxJySRtEmsgnZEaFKNyJ/IbUtjohERrMWXhHwwT5/puTPnkeGM+TP1dGMWZlpiItNcgRp2UYiUO8I3HDD5QgIiMDq5XMocn2Dy5Kg80ScIX86HZeCC/Q4+cvfk4+/Q7pAowo0PAsu+0nKH0+K1AB6EH1+I3gs4zRU9AvzvxYtEUqlcqRIBLwKAWY/nDJGqTvMpenYVMxljZYtA6hijZC8PEMKGn6rDaLkxGPHGrSDrFFkP0JrwkmsOU8hycHUbjh4zNct0b4F+YFIL/NBy2Z6WqwN5Owxd5E/JZoxqZevyxzaC/JOo1s3C1J+dipySyLgcgT27DlO1czSyEhQQUsl/ftXiu0qCiaroO+CqqpK+pfWQaMpo+jfYtouQURkCoaO6u6yJOjOkr/9uzWUl88HCYMTERAaYBMTR8u7cQfOav6Y/JWklSC0uQ/WhY7F6OX/APydOX++4XvS5qjce0ISQPfia7f34wV67CUN4HuU768r/2hKkQh4OwKcTPr22w1LQQGwYIGBDPIXGSc5ZdFoDMmpOUE1E0guW8cRxWwq7tBBNBF/TMy/yyK6u4X8cZLngvwg9O/tWfLH0b6ujmbUE4i+9hykziIttyQCdUIgPT0LCxcuxenTB+lzHEaBSIEUmBFAi78I9OC1sh8UGoLwqBak3AqFX0AIrr15CuWttE28nE2F5GieP9b8Mfkjrkql4Oj/z8PkL6ZHDPwKKrG8/1QDAeQnMmeOJIB1+mQ24IsP5FaJ0U++pBBtootrXTbOHRCY+gV62h9Q8QXkeXqDP6CCt6lfYKPyB1QmeK51VJSh5vCVVxrK0C1fbiCDrB3MIObFwo56nPeKF0463aWL4QtvzBhDhRJqUhAcga2qlm6L9o2K1nhU86ekenFlNCP/uJHTpdC+MMxSJALuQCA/v4SI3wocPLgFgUGxGDb6VlwwfZjdFw9Tt4gzOZs9Tv46dw9C9i5+XbIu9aH5Y/IX1jIMahrCtj6DkR8di2jy4cU//wAlJQAn8veASB9AD4Cu3PLfIwbz2daMSuWQXEsEGiYCVL8X558PfPwxwGbiDRuAxx4DOnc2n8/evcDLLwNMAKv9X9YldkWndj5ui/aNitaaj8Fiz51mX4X8cbSvPWVdbcxaPj5+wgRnMR25KxGoMwJabTny8yvx0UfvU+rQvWifejGuvvElSkA+3GHy58ryh7X5/2DNH5O/oGDbNMcp8kcckmv7cnk30yTP1sBm9y7F7KuQP6VdFWlL1w4da9jl70Cu2uQhsY2MhwbUlG676oSBAF7ykxo/7Db4QjWl+cu5NlIEmOkMGGAgekz4DhwAXn/dYAq2ElGR2aeb28ifJ33+TMmfy/KYUTQjm7WyqFa4VkOpoxLiG+mHSE7LUwgcO5aBd9/9kEpzZ6Fdp5EYc8FLGDtxEpHAMLtZKkw1f64uf1gbs69LyR+lJ8g/raoz+VOe6aaBo5RNgxbw7F69bkkCWK9wm9/sh0tC8M4E0pyQXPmLGqfIeVaKRKDRIdCx49maw2wafv99dl4T0ywOCUdxaorNKbMF2Z0VPhyN9i0r9cPB/VqPprJgsy+XgmPNxumTK8gPK5QCs8mkLkUi4CIEjhw5jblz5yA4NAp9h16DLt0vozq+UR5Ngs6feVKanbO2r6nPn6vJn9D80XdAXTR/po9oZ88B0CrRwGwG5i86DwjBKsVTCLSN9sU9gwIxLTUA7d8vwW8x6fhwUrDZcKyVjTNrUA87ij+gp30Beaqm/oDK1L3BL7DJ+wMqD+Nca04XE09aq+oSdEc7d4Hehm2UvxPzcoMRrAbapeiRGGu/cw74SM9wfbRvfiGVpMsMQUorP4+msmDNH8PWup0ev8xdja5d+hMJ9N6vcDaDrVu3C+3atURiYrT9hyfPehyBw4dPYd6P39JLTnNcevWDWL0yDYnNvKn8oW19ldvJH5l9Y5prEZxg/vts+tDsmX1N2/G2NigYWzr0xZA9a+lt7rQhtyqX7KxnsY1oPQ+kKd+unL7Uw1VAvsYzbwFNGXs5dw8gwEEi1XK4czdl02zN5I81f8VFKo+Tv/1HfSjhcoXHyR9r/rgU3Ka1q1BRrqVUjX3NMPPUTmVlFQWAq838EfnYL78sxr///kYuTqs9NTR5XwcRYLPvvHnfIDomGZfOfAiZpwMQ7oXlD61Npz7IH2v+gsIMQZvWxuAM+ePrCw8VYlm8CeFjLaAHxIcGLlmHC4EvKipCZGQkCh8NR0Sgj0M9X/pTGX7eW4G7BgTgvYnmbxjeoAFUJuENGkBlLKZrb9AAmo7HXkRwVWkJsqcMRyHVwI2IiDC9rGls89dNUhJAdYjL/ANw1dSZqLLQAHIT1vwx+QuLKkJcjP2vKM7zx6leONrXWsCHWleOYFWAwLekOAA52ZSmIkKHmFi1yFJjC/iyMn9knwlFcHA5wmKLaW07VRMnec4iUxWneuFoX4spiVuoKeVTUGAQynU+wpTLbZjQmZZ3sxxLJfn8sQmMNX/ctqKqDKsX/kF5yFiRav5dYXmtvf1iStkTHh5ur4nZOf6Z0Gp9Ka+b3pj7rZxIKHwo91slpf2B8ox8CVPWSurJqmXwaw4NbYaoKOu6BmfHYTao6h3ZR01UnMGEn21WVin86X+kz5BLUVwQIchfcHghgu2kJ1OTSTQ7kzT0IZWIS7L+v6TRasRn3pH/D2UWlv8f5ZVq0Ydy3nRt+f8RoFI+h6atKHsE5Sj0CQpF7skgVND/X2yy1n5tX/4OygiEluYY04z+b8Mo56FaDT/TmunVt+Dvq8KsAJQV+iMqUYeQSNtBnZVlZShTR6A4NwAdgnPw17JPDb0MGmSovmQ+bLfvea/9wO1T954brD9p+MCMaVPzcViWjfPkqBVTsOUYPE0MTc3C3kAGTc3BClb2SKHSpkms9+wR5I/nmtmmHUZ1aW82bf4yZc2fMPt21mNPdiHOS21r1sZ0R5h9KcmzvTx/y/YfFX2IaF9q242UjlzezUo8irFrNvuy5q89uS92pJJ0/x0ow3ntWxrPm24UlwJ7D5PpOYWy3LTXUz4067bqpYfT0bfvELBDeyy57qV2CyITrnVixP0rmo2IkLPRjHPnfE/BH3m45JJrKTd3a9NhEEErpwDsbOLXMQgNtU1W+aLZs2dj1qxZZtdb26ki5/ctW/Zj7drVVHf4pGgSGBiGsIh4ongxaN2mPaJi4olQR9C4NMghIpGXW4aQUD269uyEf/+Zh7ycNCQn98WkSefRSw9NxkQcHYfJJTU2ZR81IHH4+fKVe/cex08/fY3zzr8boWHd0aO7wey7Zs0a0jIPq9k5HVECPs7lFrF69Wr06jkYHBDlTBJ00/8P7sPaOKz9f1gdLB1cuXI1YkO6UT7AKpGIPSzcz1ZTetnS4/ABLaIp0XXH1ED6fBt+lxdv3ISgq8z/Z5g8c7RvOSV5TqxO9WKzYzqR9d5X0LQ7D3ETI1HVIRLHjyxF67TDhqwJ2dnmddjtdeSic4aZuagz2U3tEPjh4mAM/7IMCw9X4ELyB5QiEWi0CHD1kGpJb91O2RRrhfxl5pz1+dtD34m2xJ0+f0z+oklBy+TP144iXyF/IcS3DOTP1mip6AlpHuoSzciVFw7sXk+av9Zo2TKBSjIfFiRWrdZg3779OHXqIOUFNGjdQkKjERoSQTnYgmmhVBikyQkivyPWYvK2RuNDGjomwdYnxxUeNmzYQ8tqMu9mIy6hIy6/5iEiramk8TFoHi1/mE+l6+hcOQaPDEByS/JpIenRpzuWzv8Xq5b9hA8/3E8/5GMxdGhP0pBav69t9OQZdyGwYsVKREa1JNLezeU+f64uf6hgoJA/R1K9VFaShpO06CGkned0TI6QvwJKgWNK/pT7mq4V8scVPixTvZi2U7bZ7MuaPyZ/kUT+WDYNGmUggPzlt3AhMHOm0rxe1pIA1gvM9m8ytJU/7hmowq/7y+1+KdvvRZ6VCDQABExyXp1sfVazZ4382ZuNM+SPzb5HSPOXFOe45s/V5I84GplyQxHjhObP8sdtzfLV0JTloF2bDkSmPiINIakeqyU0rCV6D5hKWreuZLbOwun04ygpLiSiV4qikmJk52RCpy2DVldG5uMKcdXbb3+E1NQe6NevOwVpRIljOl0F5ezejs2b11IakHxEx3bDtMtvwqDh3arvZH3F5O9kWjlapJwlf9zSj+pKj59yPvoPGYRfvv+Gqgf+gZ07t2Hy5AuQkkIBQVI8isC+fWlk/j2GXv1uRVLzAJdH+zLxckbz5+poXyZ/rH0s1xlKMHqS/BUeLER4bLmR/PGD3zRgBC6dN9vwGWA/QEkAPfr/4LGbj2vnh3c26HA0X492MfLt2GMPQt7YfQhw3eD//hP9l5EvTU6CgQC4k/yx2Zd9/pwx+7qD/O055ENaL73DZl9L8segnT6ZJrDbs2cd/VD3oaS8V+LkCfLJox+3PgMTjZqNzqSlA0aItsofxazFmo2U1sDyZX+jpCAb27avJrK3jPwB42l8vlS/tYSIZRmat+iLPoPOx8ChHRCfaN8qYYv8KffmdXRsFGbddRfWLB+OJfPn4OuvPyMT9kDSWJq2ktv1jQBr/0JCkzFgaD+Xkz8mXq4uf+is5o/HoC4z+OV6mvxFdoyEqsDw8qU8531deqE4nHwui4sMlZHY2Zf+D+tLpAawvpA+x306xhp8EtIKq4gAWv8AKP6A3hQYwtMy9Q30Jn9AU8g97Ruo+AVqKRDgVdOBNaXtbdsACpJiOcnmXx9fkf7K3Xn+OODDUZ8/d5E/UoSJ4BBHfP6skT/G7PJrZyIkKhptSXOa2q0zDuwlR3Yya/Xo7bxZq0XrZDLHXk5aPjU2r92I9ONH+BYUCKBCm/ZDSUuYgLYdVC4hf6Jj+pN9phz+AR1w1aznsWfnYmxcTcEsel+kpZ2R2kAFpHpcs+/fmTNHMey82+iZB9t0B+AhKT5/UdHOpUJydflDpbbvufL8KZo/Jn9s9t2+g4iVDTF9OXKH2Zc1f0z+2Oyr3mg+CK4KsrPnQAxd/S+BXMAOmRBvq+bN3LYnCaDboHWu4+DqJ6GmKDspEoFGiYCJ+Tc9pW29kD82+6pLrUcoKhgrAR/uJH9dO+iRl2b7f9sRzQb768XERVN5qy7CrKX8uNVFsxFC/nwjxo4kKEYK95O0ozqcyahwiPwV5qlwEjXNvgqupmsmf0cP6Yw+Zu07XUTaxaH49J2XKADhR9xyyyzs2XOUnPX/JS1kobj0ySefIhOy9Zdh077ltvMIcMLn336bR1HzbXH+1MFuIX9MvNatsz02d5V3syR/dfn/MB09WypslXczbadss8+fKflTjluuWQsoCCCfWLu2Xgmg/O+yfBoe2j+Ya3hDaRkpH4mHHoG8rbsRsAgAcbfmz9M+f2z2Zc0fk7/qLDRWEXaE/CkXsoVIMWu52qHdGfLHZt+CvMAaPn/KOE3XluRPCTxJap6I/iMmQleuweefz8GiRT8byV9KSlcZKGIKooPbHLxz5kw+peoBmdeta7044fMPP3yD0PAk3P7QI/D3t60Hqq3mjz+bri5/aEszbgqN+8ifnlK9qOBMwIcj5I/HvjW209kpMAGsR7H95OtxEPJWwPe7ytEyglJUJEgCKD8PjRABMn2D0jmwFEVEYltJHDLJP8/TFT4cjfbVavxEqhdHon054MMd5I9/3NwVzegs+eOAj6gYrTHa19Yn1hb5U9pHRIVj+hW348c5b4pDcXEpuOqqSylvYKjSRK7PgcDp07lYsmQlcnMzKWI7hzS5BuL34osvIjAoDH16D8GYMQOENvXAgXTSuH5Hef5a4A4if+HhYTZ75zx/3lL+0DQVkq0Bu5P88f9HKeX5cyTVi6OaP55HSXoJ1hclQOcXABVH8EsCaOvxNt7jp4ur8PWOcjw/OpBSTpw7AETxBbRExBt8AxV/QE/7Alpio+QK9LQvoOW4msz+hg1ki1WL6e6Lb0fkz8ch8sdJntMpgrdlMz0t9tESef7S3BPteyYzFC3anDvVizvJn7uiGWtD/jjatxw6uw/kXORPubh3/95Y+EcyNGT6nTnzshq5ApV23rhmLVtJiVosarUPpeY5hFJyOVDTZ50XjUaLgIAAkXonhN4egoODweukpFjExkYYp1RWpiX3r2PIyyunWrx/C+2dv79fdfoeJY1PIOLIBaBNm2aCzJWWarBt2wGsWLGQgi1CyWzfk0zsLZCQmIQ9u/fQPRIoMvsomWEXY//+XXS/RBw9uguR0W1w58OPUK5I85yMxsHQBmv+OMnzufL88TUlxZVCKx0cYoi0dZXmT9GMs9bbWZ8/15l99VD+P6IStQhraZswMxbOkr+8nXkIaxeDw526osve7cChQ+Qsm11v+QClBpCfmoflxz3lItfYbf0MubM8PBx5e4mA6xHYtMnY59aQNg6RP071whU+7CV5Vjp1J/njJM8czXiuPH/uJn/uiGZUftxqE/BxzBCUrDwCs7Wj5I8vWrN8C4oKT2Hq1Cu9mvzt3n2MUtjsrk6poxbR0hUVpNk2kT/++F7s+fmpoAoMpc9NEKXf0VEakjIidYYXIKV5cHAkEbpkIoqlpL1LF5o7/4AInMrIFjWefVBByb3L6FrDvZRqK/7+VCEnLJaqCZ0R1yQl98KsO++gKPBQpWuUaEuMyZMP7BmFX+d+iROUGii16yRccvUUivy1T/5Y88cVPtp3IqWEnZyN7iZ/bPblCjhBwbYtY+7W/Ck+sYVp9kPWa0X+UsIQ3TUaO1u0MxBAfoLsODl1qvFZunNDEkB3outg32vSK9GvuR8ig86t/XOwS9lMIuBdCGzdahxPRWozJMYad61uKHn+uLybJzV/TP7Y7JuYVEJalwSrY+WD9UH+XBvNCKNmozbkzyYQdMIZ8sdmRl2ZgYzY80Wzd7/6OLd+/W7yUfyVTKeJiIhsR1q0cMqbF0FBFOEICaPKKGHhOHLsCIYOG0JELIySbwcaK0ooSYXDI31QWlxGJQ6LKeo6DWnUPuPUEYSEx6BHv5GIjafgnn35GD+xS43oa046XFpaRtel49C+vUhPO4XE5NHoM6AnevZtaReCmLi2VOXjKWMAjuKDae0iU58/LRFWT5M/1vxt3mI7eKq+yJ9IhWTnhae25C+YrBo7XqNAqP9+xxXKA2EzsCSAChqNf32mRI820bbfcBxFwNQ07GlzsGIKthy7p03DiimYxyXNwZZPx437nAKGpMKXoiLa2yZS3EYhf2z21RSaa1j4vKm4W/On+Pxlk2XGltQX+XOlWSs/JxAqquPrSfKnmBn79m+DrRvi8M8/v+HAge4YMKAXWrWy/xmx9SxcfZyJ17Jlmyk59kLShg3GwOHXUck7H6sVJfKL8xAbZ3izsZVahH0eeUlu1RyDRgwWw+V7KJrY2ISMGuSPGzFpCwsLBed4jIhsS2SudtHXjpI/1vxlkY+uLakPzZ8rzb4cwcvl3RQyrpR3szY/0+fhyP+HJfmrouSWmqwclJw8ibKMU1BnnkY51YD3o5cC3Z5DqKRxBCdQPeDjBUhf9A30pObcdt4lwJJ5huHYC522NuA6HJMawDqA54pLNRV6HC+oQncZ/OEKOGUf3ohAKVWs2L9fjCyXkj9z7itbYkr+WPNHmRRsSn2RP47ktSXOkL+KCh/UNo+ZK8kfk43iQhUGD3F9nj/TVC+OkA02M3ZIDcJ1tz6MlUvJV233Giprtwn33HOfx83BBQWlFDDxJ06fPoiuvcaSpu1Sm+TP9PNhi/yZtlG2LcnGgUPlyimra0eSbisXOqOJNdX8udLsW9fyh8pcLNfOav5yyJ8x0M+x8m4KGVfIn05XTprbUhRm56Fw/QboCgtRXlQIHeU0LT2VDfWZPPj4qXH8j1xoC87QuWygutqOGLc/mdGDw6Avp0pfWvouPLTEMB3Kg6oaPBnht9+OMoqIT9uzGilEGLFxI9WNpM8B+Y66W2x/E7v7zrJ/gcArq7TIJA3gnQNUEhGJQONEYOdOcl8ymHGyk5rbnKMl+bPZkE44Q/7KyvzhaLSvM7V9nSF/9BsiIni9IZqRfZpiEzRWNU2mmNcH2VDMjC1bt8BVN96AbZv6YN7Xr1NO3JJ6IYBqtY4SUWdSQmwyxe04TGbbKrGUlJSRK9ZyVr3h4hn3k5m3q6go4e7UOwcOmT4B821nnkdJUYBZ3kVHyLizSZ4dSfVyhkrBxXZBnSrgmKPA6W0M5d2cyYOpLvOzWtuXCfjpkxnYR76dJ9IOozCvmHwyS+jrSk2pdMpE+cTKSt3ZISz4+uw2Re76BIYJcucTGgGfmAT4degMVUISfJOS4J/cHH4tk+EbE2XMs1h06wyEffgNKDpI9OMbGmrsb1PXngYCyOfYYjJggPGcuzYkAXQXsg70+8/Bcry4SoenRqjQOd6OmsGBvmQTiYDXIlBt/uXx2SKA7iJ/nOQ5+0wo2ncEOrbVi2ArWzi5k/xxWpiqKh+viGZkzYa3aJoszYxx8XHi8Zw+ne02MzBH3O7YcZA0jftw6tQhei4UaUDy++/fibXyp0Wr7rjiultxJjPIIfLnTjOjM+SPNX+5WUFI7eTvlvJuzkT7clWz1G5BFNRi28VJifZ1Z56/+CQ1pS0y0J383AKqRLMbhygyOv34HpSVkgaPtHFRUUkUpR2K2JhQWsdVR2AH03aQiNxetHkLQh99Hr5RkfCNpYXKWdZGfNmkYEL8lD62pXbDJUvmG3a3b5cEUAGmsa0rq/Twf6FYTKtvM18igIEun6LiD+hpX0DLiSm+gZ72BeRxmfoDKuOUfoEKEi5cmwSAZFnRALqT/LHmLzi43OPkj2veJjYv9YpoRnZod5WmydVmRtYEJiR1IAXIFgwa1NWFH0IQ2cuhQI5lRtIXE9caQ0ZdjG49e2EvBVb0798P/OPMwSh+lIIlODjEqaTbdTEz2puos+SPzfDhkTqPkz/29OAIXk+TPy7vtntvJfkAHsES8jM9fpS0a9CThjkBrVM6on37NujUKYVInv3f4WX7t0PVPdXeo6rTuQNU4tEo9HJSHyI1gPWBssU9OKp+QLIvNp6qoo8hoKMfBztR7hZXy12JQANDoFoDqIcPcsg8YiruJn9c3q0sqMyjmj8mf1wNZO1J/m+3LrUxa7nDod0ZsuEuM2OfgeMpL+CHIqder14drAPm5NH9+0/gl1/mUi3icPI5vBBjJg5FqzZnP4snM9LJJB5v7LU2z8OWmdHYKW1Y+vyJ6FLTBhbbzjwPUzKu02uNZkeLLsWuu3z+LMu7bdxo+zNfH5q/Dp1UOE1a3lWLF5B59xhCKX3OyJGT0LNnR0RTBLc3yaFWbc4ORxLAs1g0ti32x9gwKwxrTlRgxFdlmDy3DH9fGYLgAGKGUiQCjQkBHfnP7N4tZpQXF4cKlco4u/ogf2z2PX3AeMsaG+42+yrkj6xINsUZstEUzIyhYT0RE5tK1S0WokOHlmQtswOeTVTPnsjPLyHz7k/0498Co8bdhd4DYt2iiTU1M569+9mt+iJ/KW2pRnPG2ftabtUX+XOV5q825Q8PHziO/NwtWPzXJkpUnUUpnEIxfvxF5FbXVSTRtsTEG/bPxMajKDQMERQxTP4J9TIk24b5erl9077J0Fb+IGswlh2rxPLjBj+Upo2InH2jQ2DvXlJxG5yosxObG6dXX+TPTg5bOEP+yst9HS/vRgEf7PPnavLH0aVsZvS05k/RNLnLzBgS6ocrrr+RPjZqzJnzI61r/93ImHEkL/tfDht9m9vIH5sZg0NJ1WtD6pP8uSrgQ6vxdWuFD0d9/rj8oSMBH6dOZGDOZz9i7pdPYOWS5ymifCmaJbXARRfNREJCJAYP7u615E98bEgxZNQCnjgBSvxo49PkusPSBOw6LM166qb5HL76EBwPmmF23HLnnxnBmPS9Gt/uLMcPuyuw4VSlSAnz5YXBCA+su0ZQ8QW0vK+nfQMVX0Aelzf4Ayr4mPoFSn9ABZU6rKu1f9xDdhLldSFxhvyVFAfgCJWCS4oD2rQkI7KdfwkO+HBXtG/m6TAktDSYclUBYhpW/3C0r7vIH+cxazpmxmRcfu39+P6L16g02p9UIm663aTEVh8GHfzvv83IyDiE/kPuoiXRLZo/Jn9KgIG1cTRE8sd5/ph4JfVyT3k3R8mfI+UP046lY9Gfv1LU80YieAEUPJSK7t1H0dKO/DkNwZUbNiyz9mi87hgTwL77dhnGdYBMF336uHWMkgC6Fd5zd/7HfsPb7Vwif4oczK3Cy2OqiAAaPrzKcbmWCDQ4BI4dMw65ICbOKfLHqV5yskPQrZtnyR8TOl9fvfDj8yT5Y81fUzIzduvVFZMvvhV//vQhZs9WU9m0RPLd6oJ27c5qko0fLisbTLy2b99EQSX9MGn6QLvkrzZmRndoYgvzyHxLVZa51nJyy7PuElam51TFldqYfbn8oSOpXvbt0lDQjPuifRMokMRaHsxjh49j8d+/4tjhLRSwE4ERIy7AkCE9qQqLnTc0a0B60bFDKW3OjobNwJIAnsWjMW5FVGv5OsX64r5BKszoHuASzV9jxErOqQEiYEIAD5ZHEwH0odJueofLu4VH6Dyq+WPyx1kbEpuVQBVwNkjA8km4W/OnkA2OZrQlDVHTdC4z45CRQygXmxZbSINz6PBu7Nq1Fqmp/TB58nk2fQPZZDx79rfIzk4TUI0cf6Vd8sc+mKztCqkmPNbIhoJ5XZI8OxLwUZAXiF69PU/+ONULEy8/P9sqd8uAD1f5/Fn6xG7fUaXAL9bFhSVU2/g77Nu9gmoaR2P06MmC+CnaPrPGDWznYD0HgkgNoIc/IEVaQ5TU5I7+uKWf/Tc+Dw9V3l4i4DwCJgRwV2kMWrZynPyx2VddqvaY2VchfxzBu/qInWhGN5t9FfLnSjOjt2iaHDEzjho/GoOGj8Tu7SXYs2Mp5W/7E++/v4/StgxH3741U8UcPnxKkL+goHgK/AhH30G9bH5uFbJRrjOYOj1J/k6mlZMpWetxzZ+S589eRbL6In+mz4NfcFYtXYmlC74j/9pyDBt2AUX09jGaeW0+5AZ0ooYG0M1j9yFQbX+zufnmjbH7IioPExkZiZb3/gjfwBCrUzT1C+z/fyXYfNrwhnP6/jA0C6//uBxP+wNaBYkOepNvoKv8AbWkzXj11VdRSOWEIiIoR0ljlzZk0jh+HIV+QZg66kZERWvtzph9/tjsy5q/mFg1NFQSKdiG3ZUrfHCSZ87zF59YZpMoqkk951sVRAl9Q8FmrcSkEjLp2h4GB3ywzx+bfVnz5++vB/dhbRxc3u1MRpgIMkhqXkLVm8y1FaZ3KaV8T0V5MWCywdqVwCDbbflbOZsCPtQ0x/ikMtJ0GDR/Gvr8BFFNUVPhtnlU27eEyrtxhY+wCGKkdqSAzIzZWX6IT6hCZIzOTkuAU71wUmEO+IiO49QiZ5trtBoay9kIXXWpnxgzl3eLo8S7pm3PXmXYYs0fkz+9j4bMnRX2n4eOMKa2/Mw4rxxXati1aT2N6xB1Rsm9fcNIGxhO2z4UMKKFVpcPP99gnDdlJmFsMmCLQbDZl8fAzyMyLp/+H22bDhljDsBhH0w2w1sL+FDw4LZca5nL7TnyPJiMs+aPyV9gaJEZphZDtvs8TNvyWPQVoU4/D/7/4M8mY63Mx7Rf3ubybqbPw4/+P2xJaakWhbkx9P9heHYBKtttTZ+H6f+HMo6t6zbgdNoWyisYS0mbg5yqlFZcXIzwcP6M1F6ytToERMfWvgO6UlNYAFVUtM0+fOnDk3P4AIL4Q9S5M8BBdG4UqQF0I7iOdP3DxSGYNq8Mu7OqKCVMKeZeHIzVJ+iHgn4nr+tFDq2Rdn6pHLmBbCMR8BQCFeTXmp4u7l4cFYOLBifbHYko70YBH6Y+f8v2H8V5qW1rXKcEfDhS4WPB9jTE+LRGC+KiXdrryayVUKM/5YBS3u1swIfB7GttHIrZN4bSybGWMDiIVJY2hCOCf1iRhfaxcWIM4WS6siUUuIqDlMCaMkIgtYce0ZFRxqZiHO1bGvf5d+JYug84h227/kRYz/H7JAJwiogUJWRi0tSBxn6sbSjRvrYqSqxevZq0MMPEpYqPWUorPzhaS5YDDHILtpDvlqEPa2NQNE2W5cTOnzgBhQVF2LR2AzasWUJk6yRdTs8gJAHtOlyAC6aPI02avedhKCemmH2371hnnIvlOBSz77lqyTIeQ4cOBdeSVflUOF5rmXz+FLOvKaaW4zjX8zBt/++idYgM7wFnn4epz5+1sdh6Hqb3VrY5z9/vP+9Ah/adHK6AozwPU80fjyM+Op7I31ZK4zIWEycOVW7h8Hr27NmYNWuWw+2tNRR9zLjc2imHj735/TyEffK93fZHZ12GLkfp5eYQLfzFwT4obhJ/N/Uru3UQgXYxvthxayjavluCw3l69P+/MuOV8SE+uK2/yrgvNyQCDQoBJn/8BUaiibdNePi8M7V9FfLHSZ4dKe/Gmr+z5I/vZl0U8sfft0zobCgexcUK+XMs1Qu9yB/2EZomJqDhodbvz0cV8pdfROSPchhGR9puq5C/zBwifykOkr9qH0x1qX3Nn0I2Epu5t5xYXcyMkVERGHvBOARFBKNzaneKAq2Avx9tdw8SPn8nT5wirVoUwsLMAVfMvo6kFlHIn2NmeAjyx7WWudyeIz5/bPZ1R8AHa4+dIX+K2dfVPn+s1VOeh61P8rmeRyX9k/32w2xK3NyMcvkNttVNozmentjMQAD5BTo7G6C6wu4SSQDdhaydfltrzr4BsDnYl2wlW24OQco7pSB/ZGjoubOE1RP3s5YqxhvMwkqqGG8wBZumhzE8HcBVZmGlv0a3NvH/K7Rj9nAn+WPixWYtg+bPNsLuJn9lGjKBJZUS+bOtlaov8teyGWkYD9vGor7In6vIRiWZ4U+dCCDyFyDIxqn04/jnt7k4nb6HJknaTtIMnnf+NRg/+Xx6HzFo/lxP/vTC7MuaP0+Tv4P7taQJrXRYE+su8sepXthkH2SnzNW5ngeTv52btpC2N4NSAc0iZVjjt4hlUbYEo2RmSgJoBKMRb/y6j1I8hPqgQKM3EkAVRWCxi6a9xJ6NGBI5tYaOAPn+KVIUaV0D6G7yFxLExKvEIbOvuzR/TP6YgG5KN2hDFUxM1/VJ/kzva7ntDPljnz8mG1HRjpt93UE2Mk8Fw19fRL5/B/DFRxtw4tgO0vrFisoPq1YtJZ/BQqoKkeNW8sdmX/b5GzzEs5o/5XloK9Xkx8fk17pwnj/OseeO57F/twZKnr/NW0ijYSH8m7Z7xx5sWLUcmRknoacPfzNS0Ws1PdCtV3ewZrestAxZmdn48+dvBZFn02+bNvTm0gQki9xEjJKRAfTqZdx19YbUALoa0Vr2ty+nCmdK9EiO8MEUigj+hhJDX/GLGv+31Q9LrjE3YdTyFvIyiUD9ImCiASyyogGsD/LHxCv7kO1p14fmz1vMvqz5syfOkD/2+fOEmfEEJf09Qr5RZ06fJIJwEnm5mdBo8rFNbyDXMTEtRK3XYcN6iejQ9etXo3nLQbj4qhmC8LhD88fkj82+HPDhSbOvQv7YBzMr1/aTri/yZ6n5y88twOrl/2Hn1v9QXJRFgTuxSE5uLQaaSfUaD+9fhb9+prRL/gFEIA0uCoFB4WT6bVErvz/bCHj3mSzTQBPWALpRJAF0I7jOdP32hCDwokjPRF88+K8WS6lMXGZJFZLCGr/qW5m7XDcSBOwQwPoif/b8p50hfxzt63iFD4PPn6L5c6XPX15uMILVzvv8uZr8ecLMyIl/P3v3SbKKVBF5iKFI0HgRYHCMPmfDhw8lDVFzxMdH1fjnCQ4Jx4G9XEXFkNjYNMDAsrFzPn96M5+/A4fKLbsz2z+VroO7fP5MyZ+rNH8c7VvXJM9VlVXYunErNq5ehrRj28ma5YuUlC44f8JECnJNMbNu5eQUUQnco6Sx1VBENtXEpSUlJYkqwXxrhmNj3zEzAbMG0I0iCaAbwXWka0t/QOWaB4YE4oIO/ujyUSnuXajB7RQMMiKl/h6XqV+gp/0BFV9AxsYb/AGVZ2TqFyj9ARVUTNZZWcadknCK2KgWZ8gfp3pxV3k30zx/5wr44FQvZ6N9lZnUXHNQCPsduoP8cbRvcZEK7To7F/DhDvLHZt/6NjNu2bCOtHqBuPfeexDCYc/VwtGZAwZ0UXbN1oGUiivt6AF07FyOLj1CrVaUUC6oC/ljzd8BO5rmhkb+ONqXU71YRl8rWJmuOdrX1OzLmj82365evhzbNi2l4KdiREQmUrLmCRg4sDulYwk2vdy4HRcXQUS+l3G/qW6cMTUBSw1gU/0YUPRUvB8+nxqEG//UYN6eClxPaWF4X/oENt3PRIOaeX6+GC55sUJXnbvOGfLH0b6c58+RVC/FpQbixT5/7gj4qKryqU71YvsJuJv8cbRvXHwZpXqxn+vFmVrLzpp9TTVN9WlmZL+xg3s3oWXLjmbkz/bTMJwZO3YMaZC+wKn05Rgw9EKbzal7cK1lx6J9zTV/rjT7ct7Fo4d0lH/SvdHXjgTgcC7A1G5BlHfPtvXJkvydTDuKRX//gvTjO8nvlgJz/CNx1VWXi/J98nfL5sfP7ES2aRCImzWAtp+s2ZDkjqcQuKE3JQl9JByJFCDy5fZyLDhMoVVSJAINAYGCAjFKbRBpa8j04yz5Y80fJ3l2JNULa93cRf6Y2HGS5+CzHho10K8P8sepXsLC7ZsZ64v81beZcceWnSgqzKTSqL1qYG/vQMeOLdCly0BsXvcrBYdQWiIrwpo/TvLsafLHZJyTbnsD+ePavhzB6yj5C4/MwVefvIPZHzyNgtzTGDVqMu6//36q36xC+/bJUmlh5XNn61BWjMkLnps1gJIA2noKXnQ8krLZL7s2RIzosp/UKKRIYSkSAa9HwEgAg2tF/jjPH1f4sBPMCHdr/pjYcU5AexU+6ov8OZTk2cFay96iaWIzI5ONc2maVi1dQBWWkojMpTj9sZ8yZTT5DEZThPDL4NyApqKYfbnCR8dUrsZh282GtZBKwIe7Ur1wxZWUtiq7hElJuu3u6Gt7FT4UzZ+mTItd23/A7Pcfo0CYwzjvvAtxzz23ihJtpmZ6U8zltn0EtKpAFFAJQyFu1gDa/rTbH6M86wYETP0Ble6VsnFdyBx84M5QdPqgFM+t0JoFjCht3bVW/AE97QvI8zP1B1Tm6w1+gdIfUHka1Wu2qVUTwBL/YBxJ8wHX9m3TktMaWbQ12bVM8kzBgTalvsifqzR/DAlX+HB3kudz+fyxJpY1TZ06NQwz47Ej6WTC3SnIRW3MiEFBKlx33Ux8+eUcIiov4sY7nkDL1i2oPJneaPbl8m6eJn+s+dPpudye7X+Q+iJ/jmj+TqenUYDHbJQUZ2PQoHEYPbo/aQwlpbD5heXECU4FE1VSDEgNoBOoNfKmHWP9xAz/t16HRdIU3MifdgOfXhlVtOFM9iT5+qBakT9Xaf64tq8zAR/uivbNPhPiFeSPyXiYl2iaHDEzzv91PhGLUAog6Fbrf4ro6DBcf/01VN0lEJ9/+BKOHDxqJH+s+bNW21e5WX1o/s6afZW71lw7Q/641rI78/wdObgLK5e+Qt69eiLXN2HChMGS/NV8ZLU+kqvkTS0l52Y1hf27SaQJ2E3AurvbV9do3X0L2b9EoPYIVAeAcAeVocFOa/5cRf441Uvm6TBRTtMd5d2cifZVqwPcWt7NEc2foomNifMOTdO5zIzbNuaQ9m8d1YfuV2eCwSSQNYGBgcGkCXyGCMw/aE+ZFrxB83cus+/h/aedSrqdRaZ1dyV5PnpwN9Vg/ogqlLXF7bffSIE5CbX/npBXWkVAHWTicKyhLzE3idTXuglYV3VrahZmc/AwKra++kQlZnQLcNUtHO5HMQVbXuBp07CpWdjbzMEKVk0uTUy1+Zfn7xfNkesKEjXXlmZfV5I/1ub5+urdUtvXGfLHZt/4xFKq7Wvi4G0BBZuIOdVLbWr7OkP+2Ax/7IjFzU12ndE0uTup8J6dKynvXyWGDetnMsLabzIJvP22G/HXX8uxe/ev+PqzXZhxw+1WO3RW81eYp8JJuL6273eff4dd2/7ByLH3ot+g/g5V+ODyh6ldg+jFx/Y/Hqd6cSbP375dahzat43Mvv9H5K8Nrr320jqTcqvAy4PQkKbaKG4kgFIDaES5YWz8dWUIelCSaNYAfr1dJ0rFNYyRy1E2KQRMCKAuyHreL8bD3eSPE0EnNish059t9HUUWOsus6+pz19IiO0I/vokf/bIuDPkz91mRp22AieP/4e2bbtTNYgw2w/QyTPsp3bxxeNwySXXoKjgDN5//VEc3nvI7LvUWfLHef4K8gLRIiUAyS3tF3F3NPUO18FVyB9PMT9vn0PkjzV/CRTB6yryV5Bfgh/nzMcfPz6Dzes/QmJia0n+nPzMOdtcqzL5DLmRAEoNoLNPxsPtoygiuEW4D+YfrsJ1f2gwMNkPqRQgIkUi4FUImBBAjak5w2SQ9UH+2Oy7+gip1mxIfZG/6EgaQIb1QTRE8seaPzYzJvXydbmmSUkqXFa2C2VleRg69BLrwNXxaNeurdG69a349deF2L/zX3z8djaGj7kAnbulUsWOSlHezZlo36gYrVXyV15egZ1bduDE8aPo1GUwJfOOtpvqhcnn1g1bseivuZT65jT5Po7DqVPppH1bTzWNL0R0bFSNmVtqYtetq9HEeMBRzR+PY9nC5Vi2aC4qykvJ1JtKFTzGoGvXNnaJqPFGcqPWCGgCpQm41uA19guv7aUiAmhwDO35aSkeGarCPQNViKU3PykSAa9AoLDQOAydFQJYX+TPVZq/qir3Vvhw1OxbkB+I9DIftGymp8UIsdUNZ/IuOqP5U8iGO8yMCvnr3D0IH721mEq7taYSb+eYqNXZO3YwNDQIM2dOwzvv5CDnTBq+m/0ygoKiEZ80AENGDkNcQlu7HbHmL/24DgGqLGSe2kl58DYiL/skRRhXiZJ1oCAJtboYOm0JkSZ/bFzzB2kJB1Fy87Y4fTKKqmJEIIxKnhXkF1D1jAzs37sbG5YvogToR8Tcr7pqlsijl59fjI8+/ggL/vidTNbXmY1JeR6u9Pk7lX4aKxf+jeLCdCLJ3XHBBWNoPPwWI6U+EJAawPpAuYHdQ/EHPN51Bi7rGoA1Jyrw7c5yvL1Ohy+2lWPh1SHollD/2kBT30Bv8gc0fbye9g1U0sQElNtP5Gs65ga9zcnxqqWKSwqYiDPkT6vxE6XV3JnkmbWE50r1ciYzDOGxhiojrqzt66zPX0F+EPr39jz5c7WZUckrV0lWciZ/J44fIUJ0CJMmXW7yyXHfZhhZmG+88S4cPHgS27btxNGjKzHv60X4dW4IIqOSEE11AGMTmiEhsRmaJSdDq9Vg+6a9lFx6P2n0jqKcNGQs0dFcj7gZVcBg45qPSOmiInNe9+6d0Lx5HFas2IwdOzeRhnF9NUEUl4k/Pj5+RBIpYj6pJS68cAZ69mxvTAkTHR2OHt0HYseO5aQFnGbUArqa/GWfycbKJcuwZcN8GpM/pk27Sozj7CjlVn0goJEm4PqAuWHfY2grf/Dy1EiqG/xdGUZ+VYaHh5A2cJAKQf62nX+9ddYaemt+PTsLgeSk9GB8AvzsOSt56yTkuOwi4Az54zx/ZzJD0aKNe8q7KUmez0X+uMpIuc5XlJjzJPlLpyTPUdEaj2v+FE2TK8yM/GGxJH9cS3blkoVU8i0avXt3tPt5cuVJzr/XqVNLsVRUnE9BIkdx+vQZ5OXlUt7EEzh+ZCsRvbMRmb5U6iwutiWRu36kJWuFtWuX4ZZbZtkd0vjxg8ELm1dLSjQoLi6jtZqSXIdS1YxIylX4BWbNsk56R40aiJ27NuD7Lz5FyzYdUUrXQZ+IVm07IrlVIE6dyCFtoxoaCn0/TSVh0o+fpAjnKKoeEwotFQ+wFfChLlNTVO9Gqtu7Ehmn9pPvoD+ZefsjO/u4JH92n6b7TnIyaKNIH0AjFHLDCgLNw32x9JoQPLZUi8eXabHhVKVIFN06ylzzYuXSej/EX3yHdTpspy+qg1ot0st1OEP54grp1zizOm8cD+prSiPSjt6Cro+JwfSISOObcL0PWN7QZQg4S/6YeLGZ0R21fZ0hfxztm5hUivDQOJtYUE7heknyrCm0n/7J3WZfhfy5KsCgssIHpmZfJn852bk4cmgjBg0cS2TEM99h/v5+6NWrg1iUh87fXUVFZcjIyCUNnx+RviSxVs5v2LBM2TznmslmeHiwWM7ZuLoBtx89aiKWLfubUhsdBBNQraYIO7ZY72Hrmt/ECTY9B6gioAqMpBeIKGzfHIWQ0DC6Vk3ay3zSRu6mlJ1aYXIePXoK+vXrIuotz54923rH8qjbEZAmYLdD3LhuwP5/n00JxuAWfrjtHw3+PFCC18YG4v7B9ssK1ScK+UTwbjl1ErvpjYYN1SlE8FICVOgdHIxoCtcMpHqxGWQi7RBoePvZpC7Dk5QJfb9Gi8cSEiQJrM+H5eJ71Yb8sdk3MamESECCzdFwnr/6SPK8Kf2sSdtyMPVF/tjn79BZ10rLYThVbq+s1M+pvHLuSirMpeAiqMolm32Z/LH8t3gx/Hz9KPijl9j3lj9M2lhTx4unZMiQHhg8uLvxuzCfInTT0jLEfhDV3OaqJ7z88suvVDllHBHWEtIyGpbS0hLwcvpEJjTaUoqMJ8yDQtGjx2AMGNCDonujPTUteV8LBKQG0AIQuXsWAcUX8OwRwxbnCby+twoXdwnASyu1ePBfLU4V6/Hm+ECqp+pj2dwt+4o/IPsCVtEb8waqCPF1fh4yKRIuixx8KujYx8kt0C8kBKEWvmGWA5oRHY3vSRP4YtYZfFeQjx9apaA7kcXaiJIr0NO+gLUZe0O/hixM2E8l0Li2b8e2eqdq+2Yfsj37+iJ/njb7ujrgg8l4dmYIUiinaPtO9N1gJ/Giq33MlKepmH05uMaU/GnUWuzcuhwdO/am+r30BiClBgKmpeI4PU50dIcabVQqPVJTW9U4Lg80DATMfADdWAnEh9TaZLyQ4ioEioqK6A0xEi3v/RG+gfRqW4+i1A1WbvnhRh3uWqDBzJ4B+GIqJQW180WvXGNtvTe7EkuOVkBFSUWvpb5y1XosPFyBG3oHWCWW/JH66PMIvJGVhTTS6HUhjV7v4BDh2zc+nJyZnSRxXQ7sNw5re8dOUNWBzHqaAGoIjyd/W4xCipKNiCBG1FhlzhxQsjAxu5dajcHfrbpSIuQy0lTYnjAHfLDPH5t9WfPH7wdqytMSbCWUl8u7cYUPTvLMef78/W1/jf1/e+cBH1d15f+feu9dtnDvvWGwwTaG0BMTIEAgQFi8hE1lk2x6NnWz2f+msCTZkIQEkg0ETAkkhGYwYOOGjY0r7k0ukmWr9/o/543eaCTNjGZG097M7/oznjev3Hfv9z6Nfjr3nnMam2WJwfkc8cyUfMSljUhIENXhoqggUYcPXfOn075JyTbLn7N26DenpnfTDB8a5HmoOH9nKhLQ3pKK/IJmWZfl3hlIvX3V4UPX/GXn9E37OmtHY0OCTJumIiOzHbl5LW4ZNzfHS5vTEJfUhtKyLrfnapw/DfWi46Fx5Qb+vdYiSziSe8NVdLTHQK15eo6md3OX4UOnffVcZZ2dX4P09L6YZwf37Mf+XW/IdORICTLsekwdh6+hoUGmUjMcd3m9HUl1aOcjqT+R1JeqNvEYzxFvsiHKv9RW479lPbxRHn8cuP32Ia7w7bC6KrFEKIHPXKihYWJwx3MtON/cg4evT8bITNs0i6sun27oxosHOvHZl1rR4eT3pE4vm+V329rxq2tTMKc41rDqvCyi8PFd4o18qAvVEvpggQi9HxSXYJ68O/7Val7v6fv6ceOx+PAh4/ShHlgVn8O5l6dt4nmeExhbmI5blhZ7ZPnrc/iwTfuu2XcEyyeP7Xcz0/JXWIbeDB8F/Y47ftA4f0+9VYUpxYXGuSnJrtfx6bpAXXfY5+3bd+7AdpjTvqlZwGTxyvUkw8fxlnO4bmEeivLc/wKQ9ftGqBdn3r4D22Gs+ZOwMNOnw+N0e+PFr+JU+2FcPqE/V0du6oCjLMpGmQ44g9v8xqFyLL7kEnE6sGWUyJsqLKYni3Bz/R1jWv7Mad+t722QLB+XGLfWn913Xn0BI0ZMEkeI2xyb43Zb16qtXLnS7TlDHYykOrSvkdSfiOvL7bcO9Thi8fr1wOuv287z0mAyZOUOJwz1+9ThVG6GOwHHqWHTGnibpIzLkiV1dz3figm/aMTnRBR+7ZIk5Kb0mWKa2nvwj4M28fYPEX9aunr/+I6X73JNP9co59wwKQEpCcCvtrTjSE0P3j3VjQW/a8KorBiMEoeTtRI8dXphLD6zIAHLRsdj+Rh9vGp7X/ImxZcwMTkSUkFr0paZrdap5HckUbZaA2fJD4g0CztlbeFd5SfwEbGsfa+oGEkDTRZyjjkVLJsItTVQ2xANpTC/B2fNgXPSYVNsBCrUi1r+PAn1ooLH2/Ruk2VK2wjy7KRfukseU3t6N7X8eST+xNs3ENO+jtPwp/e7aLDs9mY8TPEnjqMeiz8z1Iu55s9sya5tu8TqeQpXXH6XuYvvJBCVBOIdHCJloWbAGFAABgxt+FR8zYQEHP58PH66oQ0/lZiBD29tx4rJCbhndgK2nenCzze147SsFZxXEotfXJOMj89IgGYccVW+eLEoSintohI3n+zCg5vbcay2Gy/cloKPiEgMRPn1yDL888lyPHTuHC5JS8OLMtX+VF2t/VZ54kTSrr9tpfxNjunrzbHjUJQQmPbYb8yNIQm4m/b1RmyYlj9N76aCzsnMsL0tjhk+dNrXE8tfIMXfuFE9aK1yP+1rWP6CIP7crQTxZjx02tdVaBH7QPRumJY/V+JPT1v35suyfKYIU6eO7r2KbyQQnQQoAKNz3APW68ykGHzvsmTotPCvt3TgzzJVq0Gk1cJ3uwi+by9Jwvhc11M3zhqmawIvHRVvvJwd9+e+xSL6Pp+fbwjA30hcroElX6yE0+UvJbVcvt7YgEZZYPS2WAgv6nU2yTMCsw68ip9DScAbseGr+FOhuPGYk7UMvR03p30DLf6KZAZ1T5Vr2lYTfzoelafTkOvFtK878Xf00DGJW7cTGoaESzhcPyc8Eh0EKACjY5yD3svCtFh8Z1mSBI9OxPYz3ShOj8GIIdYFBr2RLm54f14+Fqem4THxKp6VnIIyMQFNEQeTXJl/SnSY7v1mdyHuPnEC362ssNe0d9Jk+zY3gkBAzXS9JVZX+w8owRJ/ngR59kT8qXH5gHgy19TLVKcX075q+VPx5654I/7U4eOwrPkrzvd8zZ8v3tcOwzeo6aYYVwccT9f8uRN/XaLCn33iEXHkyIeGOWEhgWgnQAEY7U/AMPtvrgc01wIOrE7Dwswr7fslPfB4oD47honx5R4aBuanKSNcXtomYuPqI0dwXn6paADpv9bXGefq9PBA72HH9YBmhVwXaJIY5rt4wpslcUAke2/En3r7BiPO31ChXtTb13D4CKH4U4cP9fb1xuEjUOJPBaJ6Bnvi8OFO/Okz8sbLq3Hu7BHceus9/QIrm88P30kg2ggESwB6N+cXbaPA/lqOgLrOq/jTcndujhGCRre3SjxCliASyM623yzZQQB6I/7U0qShXrxd8xcIhw8N9RJKy5+Z4UNDvYwpU093O95BG74G3fY244q70DuerPnThjdJKrS1b6zChAlzGbdu0EhyR7QSoACM1pFnv4dFYGxvDsW7JYj0RIlR9uSo0UZKuacdHEaGdQNe7BkBBwGYJCmntHgr/tTyp9OM3jh8BEL86bSvxvnz1NvX39O+pvjTad+h4vwFS/y5dcBp7x6U3s3VQ7Pj3Q0SHigOH/7wFa5O4X4SiDoCFIBRN+TssD8IaPaQ3RIs+quFRUZ18WIqUYeQ0nh6A/uDr8d1OArANkl632SLK+dtqBcN8uxWbIhjrQpFNfoGSvyp5W+oIM9Hy2NQcQ4IpPjzp+VPg25r2Btvx2NIMe6F+NuyYSuqqw5g2bKrvMqJ6/EzyBNJwKIEgiUAGQbGog+Ip8021wIOPN/V2sCB5wXqs7kWUOv3JTagu3Y5pr2rE2VQKTGVJkueTE+K47pArgf0hJiLc0SImyW+qcVnsfHOYVtoH7Mux3fHUC+BFH+G5e+M4537ttU5xGriT8W4ZlzpC7rd15+BW6bDh0fT8F6Iv0aZ+n3xucckK0s2Lrpo+sDb8jMJRDWBBMkYZS8BjAPINYB2ytyIRAJnewNqjmQ8wOAOr4TfkRX9xj176lr9b2nywvKnTsiBDvLsieVP07uVh0mcP03v5u2aP7eWWC/EX5fEanr896sk3V49srPTGfYluD+ZvJsFCKRJCDOjSPgzBDATCAWgBR4GNtE1AU0f1SS/4c0g0APPPNX7l1RiDB/1gWwC+lm9FHqngdO7WvwrNrwQfzo1rLl9PQn1YqZ3C1SoF83tG+gMH54GedZcy56EevG35U/F39ur9+Poodcxb95Sj/P9BvRZZeUkEGYE0hsbbS0qLg5oyzgFHFC84Vu549RwOE0HOxLzZGp4a0sL/ioOHgslPuAKh9AjWo+mi/vt+fMYJda/iRIv0NvC6WBviQ04XwWgZG7JEAHoN7HhpfhTy19He6whQIcK9RLoOH/ZOa0iAAcwGvDR0eHDn2v+Bq7BrDo44MYOHwM17avib8/OJmx4+4/IzMzHlVdejMce2+dwZ26SAAno+r8UM3JCyRBfGMPERbPIMAHy8tASmCTCbkRCIpampw9qyBrJCPK+eKB+qaAQCe7iZgy6kjv8QqDXApjU2iZJcQcHg9Z7eCU2fBB/avkrKm5CqMWfWv6yc4SDmxIs8ecvMd7ZGeOxt6+Kv317WrFt8xo0NhzHtddez5h/bp4FHopeAnbrnyIIsAWQAjB6n7OI6Hmm/Db7jKSIy3byW61V5/Sk7BUvVJYQEOh1BImBBOFuGyx+giH+dJ1bUrItLqQzAoGe9g2XNX9+9/YVMX72dCqGCvKszE3xd1YU7qF9z2PixHmYNKnM2XBwHwlEPYF+ApAWwKh/HgjABQFd/+eudPQe322a092dzGP+J1BYaK8zvaHevq0bwRJ/4WD58+e0b3NzPPZJSrpAZvgYMtRLryW2uzsGU2YkIznFtR3BFH8tzd3Yu+MpWQoQj+uvv7zfs8APJEACfQTSGxr6PgTYAsg1gH2oo3bLcT2gCSHU6wK1HWaomIFrAdXp4yunT+NERzueGz3G5fTu93pzAX8gAnCvvKYOw53ecT2gyYhhYkwSLt7HjLEfyKytQXWBLTajN+JPpxmDEedvqCDP1edTkNIS+jh/VZVpGD8RmCixCT11+PCrt6/DNHxRaZPH4q+leTfKj72Hq666iTH/7D8V3CCBwQRoARzMhHtIwE7glAi/N5sacbi9HV1urICdvVdoarhvVbgI5GavlRt+JzBAAGr93og/jfNXeSY94EGehxJ/GuevoT4xLII8p6R0hIX4UythQqJrC7yj5S8t7Sxe+/tvUVo6EQsXTvP7Y8YKSSCSCPQTgLQARtLQsi/+IDBB0r39e1ERZiSnIDnW9fTTQolFd1LCwFyfkYlPOAQm9kcbWIcHBEaPtp+UWVfjtfhTy59OMwY8yLO9lf039G8LM8hzfkEzivLy+p8w4FO5/I0R6DV/zcnNIbf8DT0eNocPnfYtKGzEYw//BKlpWbjjjhsZ82/AM8OPJDCQQIYZAkYPBHgNIKeAB9Ln57AnECMevbdl92WaGNjgJ2tq8Jp4AG9tbsa/iQfwXbm5A0/h52AQcLAApp+vMaZy1VfH0zVmGsOvuLQRKcn5Llur5wQjyHNrlZgj3ZRgiD+d9j2933UjBoZ6ceIXZb+4oyPWp/HwRvyVjerCo//7E7lnD+6683ZJp5dkvz83SIAEnBOgBdA5F+4NIgHHdYGhXg9orgXU7g9cD+gMydMSF/AD8Tq9LC0dmhs4UMVxXSDXAzqhXCaenqpCRKUlnq1B3AzvxJ+KjY3HnIeP0bsFS/wVieFvT5WT/vXuCpb48+eav4rT6SiU4fFGjHsj/jra9+H3v3wCLc01uPPOf0JuboZrgDxCAiRgJ5BdW2vb1kxKBQX2/YHYcD1/Foi7sU4SCAKBHxaXGHfJiouF5gJmCREB/QJTESilQISAf8WG55Y/ncoNdJBnTzJ8NDYk4PDxGBSLQTOQQZ7dWf7MNZixsT1+Hg/btO/JE+VY/+b/4IVVP0WSLNX4xCc+KY9AYH+Jhejp5m1JwO8EYsTBMU+SFxhlwgTbH9B+v0tfhTESSsP1St6+87jlIYH6+npkSUaKsgdWITZJ8qFGQAm1BdARoScWQD1/6v6+DAPvTZiIFDdrBR3r93XbUwtgq6xJ/NZfX0NdXZ1kQ8j09XbWue6yy4C33jLa+/EVd6FZgnY7K+rtqw4fuuZPp30TEmyWvxbxBEkZkIRWc/tqejfN8KFBnt3F+dNvt1OnktDVkYyCoiaZhjRdgwa3Qs9Vb191+NA1f+kZfdO+ztqhuX01vZtm+BgqyLOKvzNnksQS1oXcvBZZCzf4/uYeDfWi3r7q8FFQ1Nzv3IHtaGuNExZp4pDRLSwa4e4x12lftfyp+MvKq0F6qgh0F8XVeDie3tLZhWTxrNfxOHk0BscObUZdzTapPxmZGblIS+secs1fQ0OjeAUPDuLueJ+htuuNOoZnYWyQ0BsZGZFRh/KKpP5EU19GSxaQdyorbY/8jTcCzz471OM/rOOuvwGGVS0vJoHQEvjliBH47KlTRiOOibfwlGGEgAltTyx+d10H2CsAry/Mwrkim3XWsVfq7asOH7nFtilJxzV/a/YdwfLJY+2nm9O+GTItq+FNMtLEnOaimEGeT3Scww2L8pCTJRe5KCr+1OHDCPUypWeQw8fAdhjTvs0xWDCnx7P0bnJuW+5p3Ly4pJ+gG9icmjoYcf5chXpxbIe55m+kILaFeumLuziwXtPyZ077vnO4oR9Xx/PdjYfjedqWSSLennllA06c2iL96sGlE2bgmumlSEyIczzV5fZDazbi84vnuDzuyYEH12/HvStXenKqy3MeeeQRrIyQOrSTkdSfaOrLxP2yyPfJJ23P6ZQpLp9Xfx2gAPQXyQiux1wPGA6WQMf1gCZyZ1bB5el9f823B8HIzfWA5mgMeHdwBNFYgAMFoCk2VNgNvcbM82lfU/zV1Mv0s1j+PBF/FecCG+evpcm95c8Uf+EQ5Hmo8Thw9BTWv70Wf5ekwvFxiZhzwXhcNXUkctITBjwA/EgCJOApgQLJnW4vFIB2FNwgAa8J/EPEx3VHj+LjJ47j4REjscRJvmCvK+UF3hFwEIDZ1Q5fblJLMMTfZPGc3X6m02WbTctfoMWfrvk7Jn/cuypWEH+6WmjrroN4c9NanD57xJjqXTZ5Ni6bXITURM8sfq76z/0kQAJAPgUgHwMS8A+BMbIIXWMAvihpyO4/dRLbZS1gkrtFUv65LWtxJDB9uv1TgUMw7mCJPyPIs4sY4MEUf+7W/Hkj/nTNn4a9CURuX1cZV9rbO7F2y06889461NZXIi89HzfMWYitxw/gupml9vHlBgmQwPAIFFQ5hBuYNGl4lXlwNaeAPYDEU2wEzKnggTxCPTXsOC08cDr4/5WWIu9sHP4osQEfOH0KPy8d4TZ49MC++fLZcTrYvN5TJxHz/Ih5nzoVSBTHD1mHWVB52uiWN+JPHQyCEedPQ724K+rwUS7r+Dzx9q08j4B5+6rDR9+aP9ctNtf8qUewL97Xau3bfeA4Nu94HweO7hRrbSvKckfgIxdfihkjMwznjm3lB103gEdIgAS8IyA/c3YL4AUXQLyovLveh7MpAH2AxkusReCrhUVYJD9MXxCnkG+IFeqnJaXGLzBr9cKirVXxp1bAbduQK9MbPU3t2HNcvHI9XPOn3r59Dh+uGTiu+dNpX0/Su3kz7avevh47fAQw1It6+wYqt68KxcrzZ7Fx2w4Rf9vR1FKL1KR0zCwdg0XjS3BBXorrAeAREiCBYRHQDCDJEr/WKEFY/6f3oQC04eb/EU7gUgkK/X3Jq/iVM2eQEVuB7xYVUwQGa8zniJenCMAYyQjRsK0CXdmjPHb40FAvNm9f140NtPjT9G4a6qWsxHUb9EggLX/mtK+GeomLG9rb1xvLX52EQKmu3YFX3n4f52pPIUGcOsaLu/CC2TMwbUQG4txFoHaPhEdJgAQ8JJDvOP1LAeghNZ5GAh4SuD4zC82iFr5bWYFJSckBzRLiYZOi47S5c4Hf/97oa1nNaSQsuEDSu7nuuhnqpbkVRpw/T0K9qLdvICx/Zm7f1rrev8xdNDsY4k+FsDjduizeTPs2N3di1Uvv40j5+6iplUplkeIFMsV76ZyLMH90NpI8DOPisjE8QAIk4BWBfuv/KAC9YseTQ0jAcW1gOK0HdERirg38mATpPihm9h+erYQaNtzlFHa8frjb5rrARlE33xpuZVa7Xi2AvWVOz2m85aH4U8GzpVzmil2UYFj+zDV/B+tcNEJ2B0v8qVXPVfFE/HXIs7dj7xFjXd+h47vR09OBwsxCXDF1Di4el4/MFIZwccWX+0kg0ARG9satNe4ze3agb2fUzyngoGDmTcKFQIxYOr5RWIhOWXD7fYm4LhoQt2bnhEvzIrMdM2caFiZRHCiusjmCOOuoo+UvHKZ9TfHnrK3mPm/En2b42HckBsGO81dT34gX31iHPYe2o7VNMm8kZyEtKRv3LZmJ0mw3atzsJN9JgAQCTqCsvNx2jxRZa+vwR3Mgb0wBGEi6rDssCagI/PeiItSI4viVOCaskKnhZIaHCdxYqTfb5MnABx8gXy2vXZ3ojuv/1RNI8afp3YwMH6M0w4f7bhoZPmTNn7/Fn4Z60fRurjJ8OLbKzPAx3FAv7ZJW6uW3NuGdrW9AxffUktG4cGwJJhal4RdvbqL4c4TObRIIIYF0WYebU1tra8GCBZBcmEFpTf9v4aDckjchgdATUBH42fx8fOz4Mfz47Fl8VxxEWAJIQP+iFQEY1y25cKvO4lxxX/y4QIo/Te+muX3HGend3PcvkOJPLX+a23eieCi786nwl/h7d8d+vPjmP1DfeB7TSsfhhrljkZManF8q7inzKAmQwEACZSdP9u26+OK+7QBvxQa4flYfZQR0PaDjmsBw6b7GCnSMF6jtGp+UZIjA5+pqcU6sJSwBJKCOIL2lsKJvGjjQ4k9DveQXNIfU8mdO+xYUNQdc/DW3tuNXf34KT/z9j0gTK+unly3FPZdMovgzHz6+k0AYErBP/2rbFi0KWgtpAQwaat4oHAlMFW9glX5nOjrQIlGHJe4wRmnsOhb/EtBpjd4y4sQx7J0934gFGIwgz61VHeatnb4H2vJnrvk7vd/p7Y2d/rD8VZ6vw68ffwyNjdX48KwLsWRiPkMduUbOIyQQNgRGhsgCSAEYNo8AGxIKAhPECqjlVskXbJYdEychQaaIWfxIYOFCyBwo0NKCsmOH0dXZg72HY6GhXgLt8LGnynU/giX+/DXt29ERC03ZNjDOX31jC37950fR3taM+5ddgtH5qa47zSMkQAJhQyBOZp9KT/fOikyYABQUBK1tFIBBQx1dN3I1DRxOYWI0NEx+fP8fgYckVRzFXwCeVRXal1wCrF6NjPo6nHu/Gs0J+UOKP/FdwAFZPxfoOH9DBXlubEjAYUkFV5wPjCnr0bB5Los3uX29tfxVnE6HxGjul96tta0Dv/q/P6G5pQ73L13MjB0uR4YHSCD8CJRIcoJ4XQujJYjTv3o7rgFUCixRTUA9gvUH4blRo3FFRkZUswho55cvt1c/9tThIcWfxvmrqkwNufjTUC/nqlJDLv7U8hcb29NP/HV1dePhvzyFczWncOdFCyn+7E8YN0jAGgRCtf5P6VAAWuMZYSsDSOBGCQOjU8GfO30KdeZfYgG8X9RWffnl9q5f3HYYGRIdxlUxgzy3tCQENMPHUJY/M85fRmZ7SC1/5rRvUUkjEnudeXvEPPros3/D8ZMf4Ka5CzCllH+8uHqeuJ8EwpVAPw9gWgDDdZjYrkglkCgxAHXq95Q4grzT1BSp3Qx9vzQUjGRi0TLm5GGJTacuN4OLKf502regqAk5tksGnyh7dIpYQ72ot++4UYGL85eb1xKyaV9T/E2b0IP4eOlwb3n65TXYfeBdXD19nsT3yzV3850ESMAiBGLF8XDM0aO21mZny4LoqUFtOS2AQcXNm4VTmBgzNIy+X3nXOUzKi8WbjQ0cpEAR0PWWS5catac2NxtBoQfeylH8aW7f1FT10XZegiX+Qrnmz1H8OVr+Vr20Bhu2vYHF42fg8qlFzgFxLwmQQFgTGCnZP1JaxRNOy1VXyZxscCVZcO9m6yb/94JAjwTObT97xIsreKqvBD41LwGvSUT2KsYE9BXh0Nc5TAOPPNb/uR4o/sLB8udP8dfWGgcNezOcDB+dnV0S6uVpEX+v46Kx03HDnLKhmfMMEiCBsCQw8eDBvnZdd13fdpC2KACDBNrX29RvfhZ1G56S2bIuX6vgdR4SuGdOopES7tHqag+v4GleE3BwBNFwMGYJpPirrUlCeYDSu5lBnj3J8FFZkTYs8Vdb34S1b7yCQ8d34SOzL8TN80cxzp/5APGdBCxIYOKBA7ZWa1iBq68Oeg8oAIOO3Lsbps++BtlL70ZMbJx3F/JsrwlkJ8fg49k5eKq2Bk0U3F7z8+iCadOAwkLj1BHHjyJGOAdS/Gmcv9qa5IDk9vVG/KnlLyGx2/B81hh+rkqLzAY5m/Y9duosfvrIr9Esqd0+uXixBHkOXqwwV23lfhIgAd8JZEnu38KqKlsFGic1iPH/zFbHiCdZ36picy/ffSZQX18v69yzUPbAKsQmMRirJyBDHRvQsY2Pbm/HP/2tFSceSEfjyyMdD/llu1G8jC88dBB1dXXIzMz0S52Wq+T224G//MVo9jcvvRZresZLfOgEw+Fj4Jq/lvYOpPQuftNvqurzKUZuX03vlp7R4bbravlT8ZeS3oiiQvcWdI3zp6Fe1NvXmcOHYzuam+MlPE2akdtX07u5iwmo075q+VPxl5lbg7TkXhdeJy3XIM8a509Dvai3r+nwcaq8Atu3vIYYxCM1IQ45Ga7rcFKt0131zS3ITJXA3MMo4VJHncRBzMjMGEZPgPqGRmQMMwRUgywfCYc6FES4tIXt6P9YOvK4q7ERP5LfA0b5wQ+Ab32r/8lB+NQ/Cm4QbshbkEC4EvjRujZ8c02b4QxSmhGDXuN8uDbXuu1ascIuAK+sqMbhiSWYPKdHvH3zBvVpzb4jWD55rN3bN6VFvH2nqLfv4HMdLzYyfEjg5gVS70H5ktU6XBUj1IucO3266yDPZjvMIM/jJwKeTPuq5W/kGFu2k7cPNrpsh2n56wvybLPwvbZuK7a9+xJKs4rwz0tm4g8btuDzy4efLP6hNRuHXU9Y1bFYPMyHUR5cvx33rlw5jBqARx55BCvDoA7tRLi0he3o/0g58rj9iScglgDbCSFY/6c35hRw//Hhpygm0N5lM4Y/dXMK4tzl7opiRn7p+rXXAsnJRlUzT+zBlNFdYRHqxZ8OH95m+Bg47dsl4SH+7/lX8NLbz2FayTh89vLZSE/m3+t+ef5YCQmEmECChByzh38pLQVmzw5Ji/iNEhLsvKkjgXBJG/flRUn42cZ2vHSwE7OK46DhYcyiaeNY/ERAp9p0wfPzzyOnrQFT64/jdI6YyZyUcAn1otO+3q75G4637yNP/RUfHH4Pl02ejWtnlNLZw8mzwV0kYFUCoyX2X4IZbUKtf+7WkQSwk7QABhAuq7YWgfREmTIcEYe/H3Ade85aPQrj1n7sY/bGTdi3277tuGGu+Qt0kGdPLH+65i9Hlmx6Ou07HPGnDA4d34MFo6fiupkjKP4cHwpuk0AEELB7/2pfQjT9q7emAFQKLCTQS+Cf5yZi48kurD1OERjQh+L664HEROMW4/ftGZQVxLT8NdQnBjTDhyfiTy1/KSkdQRN/6pfX1SWODclJAR0CVk4CJBB8Apr9Y8q+fbYb63egQ2zUYLeGAjDYxHm/sCZwy7R4TC+MxVdfb0OnxidhCQwB9YDWyPdS0hvqUXKy3H4fU/yp5U+9fYvc+3tIjD8EPM6fevu6WxY63DV/9s7LxvnaBgmNI+si0ygAHblwmwQigcDYI0eQbqYcVetfenrIukUBGDL0vPFQBEKRNi5W1mL8/KpkbBIr4Av7+qyAjmnjzO2h2s/jQxC4+Wb7CeN7p4EdxZ/m9h0q1EswxJ9O+7pbouNP8adATqrylVKanWq88z8SIIHIITBz586+ztx1V992CLYoAEMAnbcMbwKXj4nDzKJYPL3XfZy58O6FBVr34Q8DCbaYdhM+2C3ZbnpwtDwG4bDmLxAOHxrnb6C3r7NROiPBYWPkX0k2LYDO+HAfCViVQJpO/37wga35ubmARkQIYaEADCF83jo8CcSIuSdefjIyk2LCs4GR0qqcHOCKK4zeZNTXoXv7yYCIPw3yfPh4DIrzXcf5M5Gacf4C4fChQZ41C8i0CT3ojW1t3rbfe8XZcxIwOhOJcfx67geGH0jA4gSubWnp8/699Vb7OuhQdYvfMKEiz/uGNYHTDT0YkcEfj4APksM08NS92wPi8KEZPkIt/tTypxk+hhJ/kvhEpoCrkJMaunVBAR9z3oAEopTATSIA7eXOO+2bodrgb7hQked9PSZgrgV0FS/Q44o8PLGlowe1rT3IssUqdnmVuRbQMV6gy5N5wDmBm24CUm1r3Zad2Y4RkorNXfFlzZ+md/PU2zcQlj9z2lfTu7mz/Kn427KzBdV1hzF6iEwn7hjxGAmQQPgRyJQ0sYva2mwNGz8euOiikDeSAjDkQ8AGhBuB321rR5v4f1w3IT7cmhZ57ZG82bjtNqNfye1tmLhnl8s++iL+1PLnLLev400COe1rij+1/Jm5fR3vbW6r+NNz9xzcLrt6cOmEYvMQ30mABCKAwAxx/rALrk98ImTBnx1R2tvjuJPbJBCNBJrF8veV1a348mtt+PSCBEzIkwVbLIEncN999ntM3/6ufdtxw1fxFw6WP0+mfVX8dXR041TFu2L9G4ncdJtzjCMDbpMACViUgIQ3mOXo/asCMAwKBWAYDAKbEB4EVPw9uKkd37g0ET+TUDAsQSJw4YXArFnGzUpOlSO/8ky/G4eD+GtrjcPeQzEYboaPfh2TD6blr6tLLICHXkFd41ksmThq4Gn8TAIkYGECJRUVKBTvfqMsXgyMGxcWveEcV1gMAxvhKQFn6wCPJd/u6eUuz9t8shO/396Bry5OxHeXeS/+HNcBMm+wS8zOD2iQPbUCfuYzxvHp27fgras/YmzX1iShvDkGZSU98nJ+ubm38jwC5u1bWZGGkZKueOr4HsOT17znwPeWVttUrifevo7i71TlRuz4YJ2R+3fGSAmSzUICJBAxBOZt3drXlzBw/jAbQwugSYLvUUugS+LP3biqBfNK4vDNJUlRyyGkHb/jDrszyORd2xHf3m5k+KitSQ65+FPLX0Jid8DEX3PLXry56e+YVTbJyP0b0nHgzUmABPxKIKW5uW/6NyMD+PjH/Vr/cCqjABwOPV4bEQQOVXdDw758W8Rfcjxj/4VkUB2cQZLEUy5/4y4jvVt2TmtILX/mtG9RcWNALH8JCeV44fUnMTq/DLcvDI9poZCMP29KAhFKYN577/XF/rv3XgkwGz4Wfk4BR+hDF03dcpwW9mU6+PFdHcgSw9/iC/zj9OE4HWyOA6eFTRJu3nUa+A9/ME6Yu+tdbLlpHlrresMmuLgskNO+pvjTad+qgy4aILt9nfbNy6nGb574E3LTsrHy0mmIc5ds2PXteYQESCBMCcTK4t4Lt2yxtU6Xunzuc2HVUloAw2o42JhQENhyugtLRsUjPZHWv1Dwt9/TwRlkQm055sT2dwaxn9e7ESzxp+v5XBVvxF9np4Z5iYE6fFxQ0ozHnnlMMs7E4r6lc5CcwK9iV4y5nwSsSmDq3r3IbGiwNX/FCmDs2LDqCr91wmo42JhgE+gR9/ydlbK+q4A/CsFmP+h+pjNI74G5m94ZdIq5wxvx19wcj0Dk9vVG/KnDR+WZdEP8TRjVgT88+2exHNbj3kvmS9YPhnwxx5XvJBAxBOR3y8WbNvV154EH+rbDZIu/9cJkINiM0BDYctq2/u9DY7kaIjQjMOCud90lkZtzjZ2Tdu9AYVPvX88Op3kj/jTIc1VlGgKZ4cPTOH/d3TFGKrgnXvwrzp47IWv+FqIsN8WhZ9wkARKIFAIjT57EiNOnbd2ZPRtYsiTsusbfemE3JGzQcAg4rgd0rMfV2sBn93agMC0GS0e7medzrMjHbXNdYH1bD/BjHyuJhsvS04EvfAH4zncQ29ONj+7fiYPzZtl77q34U8tfSkoHJo7tgbsldg1NCHicv+LSRpw404b9R7bj6unzMH2EeASykAAJRCSBizZv7uuXWv90hiPMSoxMgclvJBZ/EaiXfH9Z4tFY9sAqxCbZcpz6q27W4zsBZwJQw7/M/W0Tpsn07xM3BWesVABm/bgBdXV14gwWPt5gvpMNwJXV1cCoUUBjI9p1jdw1t6EmJRWNDQk4V5UKze07VHo3nfZVy5+Kv/ScOqQmuZ5m1SDPGudPQ72ot6/cclBpkTncFEnk29ERi4rT6XJODzS3r7v0brrmT6d91fKn4q+zpw3vbViPuupTKMlOljq8/4VQ39yCzNThWw39UU8k1VHX1iHP1fAEeX1DIzI0zMcwSoOsFxtuHXp7f9TDOvoPpDc8Sjs7saGyEoaFrbAQOHECSAq/EGO0APYfY34SAi3H3kd75WFkLbwponl87fU2Y/3f/1ztfeDniAYT6s7pFPC//Avw3/+NxO5ufLa6HM/NvgaHJSD09OmAp+ndxk+EYfl7a38zlk8e67RXpuWvL8izfFk7KWv2HcHFo8caThyFZTCmchMTCpycadtlBnnOLbadm5Kcj+c27kD1ucO4YuocsQCWuLzW3YGH1mzE55df7O4Uj475o56Iq2PxHI/YuTrpwfXbce/Kla4Oe7T/kUcewcph1qE38kc9rKP/kHnD40OvvYZ4EYBG+fSnw1L8aduc/K1razP/j14CTXvfQmfd2YgHkCCzvmKIwbLR/Dso7Ab7X//V/qU5Y+tmVBxqRXG+5+LP32v+1PKnHrzeZvjQ9YEpvX9f7N+7W7x9k3HZJOciM+zGgA0iARLwmkCazFwsMDN/JCYC99/vdR3BuoACMFikLXSf/GsfQN6VYoGJoKJrAweuD8xO9n4KLoKQhHdXSsRCds89RhuTOtpxU9UGjy1//hZ/6u2r077DEX/naupxtuIDzBs1AUn6lwcLCZBARBK45J13kNghbv9aVPwVFdm2w/B/CsAwHBQ2KTgEZAkguAI2OKx9usu//RvM9BvL96+XL9U2l9Wot28gQ73omj9PvX01zp+j5U8b/erajfJ/LK6YIsKWhQRIICIJZIoPgN36l5ICfP3rYd1PCsCwHh42LpAENAXc+Fz+CASS8bDq1qCpvXkzU1paMH17b0T9AZUGWvyp5U8dPsQHxGUx1/w5E3960YnTx5AYl4GMFC43cAmRB0jA4gQuXbsW8foloEWzfhQX27bD9H/+9gvTgWGzAkPAnArW9zONPRiRyR+BwJD2U61f+5q9orkb1yG+vd3+WTeCIf7UmufO23co8aftbG1rllRvfNaUBQsJRCKB7JoazN2+3dY19Qb/ylfCvpv8Rgr7IWIDA0Wgqb1H0r8FqnbW6xcC06YBH/2oUVV6YwPmbn7HXm2wxN9wLH9mY9s6WnwK+2Jez3cSIIHwJrBUrH9xErXAKOrElpcX3g2W1lEAhv0QsYGBIqABoI/UMAxmoPj6rd4f/ci+FnDehrVIFSHojfjTOH97D8UgNRmYOr7HXFbotHnepnczc/sOXPPnWLmGWm1vb5E4sDGOu7lNAiQQIQTyzp3DrB07bL3JyQFUAFqgUABaYJDYxMAQuHVaAjad7MKLB3o9tgJzG9Y6XAKTJwOf+pRRS6J4BM9d/bpXDh8a5DlU4k8b3dTcge6eLpkCpgAc7qPA60kgHAkse/ttyVzUa0xQ57Xs7HBs5qA2UQAOQsId0ULgi2NWIalsOj76UiZGVPxsUJiYaOFgiX5KajhJkWA0dc6erZjWXeFxejfN8BEKy582VteDb9/bYrSb+s/AwP9IIKIIFErA5xm7d9v6VFBgc/6wSA8pAC0yUGym/wnolFz+dWKql8X5Z5/+Lno6+zsY+P+OrNFnAppO6RvfMC6PRQ8+sf9lj3P7ano39eR1VQIx7av3UvGnU8+1DTYBGCehZFhIgAQiiIBY/a5cvbqvQxr2RfOZW6RQAFpkoNjMwBCIzypCwY3fRmfNaTRsfzkwN2Gt/iHwhS8AZWVGXWOOHMAFhw86rddM72ZO+7pzvg20+GtuBQpzaQF0OlDcSQIWJzBl3z6MP3zY1osLLgjrrB/OUFMAOqPCfVFFIDH/AqTPuAJ1G59CQxutNGE7+BpYVR1Cesslb7yMGNPrrnffQPHnL8tfZ2eMkQrOVZw/s036blr+VPzp1HNSEp8pRz7cJoFIIJAgIamufuWVvq48+CCg31EWKhSAFhosNjVwBLIW345u8dQsW/dhYy3gwLRxgbsza/aKwO23A/PmGZcUnK3AlJ3b7JcHSvxpnL/KM+mGsHPn7asNGSj+MtIAun7Yh4gbJBAxBC5dtw5ZkvnDKFddBdxwg+X6RgFouSFjgwNBID4zH5lzr0f9u8+ho/pUIG7BOv1BQOdzf/pTe00Xv7UaCW1tCKT401Av3d0xg9K72RvRu+FM/BmHGP5lICp+JgFLE8g7fx6LN2yw9SFBUgQ99JD8pWe9P/UoAC39GLLx/iSQtfjjiE1KRf2W5/1ZLevyN4GlS4EVK4xaNTj0gtWvBjzOX3FpI1KSXXfEpfiTSyz4e8F1R3mEBKKdgDh+XPPyy31Bn7/8ZWDiREtSoQC05LCx0YEgoOIvbdpyNH+wFt0drfapYE4HB4L2MOv82c/s623mvb8ZMxqPBzTUS0JCb4R/J812J/709KrzNcZVsfQCdkKPu0jAWgQmOzp+qFPaN79prQ44tJYC0AEGN0kgffbV6Ja8rQ3vvUgY4Uxg7FjgBz8wWqhhYe7b+SwSezpdtjgY3r7q8KFr/gaWHft2ozCjEAlxrkXkwGv4mQRIIPwIJHR04OpXX+1r2M9/DqQ5+aHvOyOstygAw3p42LhgE0jILkbmghtQ+86f0X72aLBvz/t5Q0DDwsyfb1yRd74K89e/5fTqjo5Yw4NXPYLVicMfuX31RkNZ/vSc5pY2nDxzEFNLS/QjCwmQgIUJqONHdl2drQcf+hBw440W7g1zAVt68Nj4wBDIXnIXEnJKUbPmd4G5AWv1D4H4eOCRRwB9l7Jg/dvIrarsV7da/ipOpxuBoIMt/rQhseK0ogHHu3v6NYsfSIAELEZgilj/Fq9fb2u1On784heWX+BLC6DFHkI2N/AEYuIToGFhWo/vROOu140b6jrAga/At4R3GJLArFnAV75inBbX3YUrXnzOHhvQnPbVtXehEH/aqEQxNxbkTcI7h/bgXH0Mmtu6huwSTyABEggvAnGdnfif6ur+jh+TJoVXI31oDQWgD9B4SeQTSJ20GOkzr8T5V38pU8FHIr/DVu7ht79t98IrOVWOmVs3wRR/Ou1bVNIY1GlfE6Va/Q4cicHCWTdj1uQlaOmow+/W7UIXzYEmIr6TgCUILHvrLUwVEWiU6dMBzU0eASWmR0oE9CNsulAvgSGzsrJQ9sAqI6RI2DSMDfGaQE9XB07/4XNIyBuJwhu/Nej6Y8kSlNjLUi+ZRrJ+3IA6WUeSmZnp5dU83SWBtWsBDQ8jpSUuHjdP+yQqUzIM8dfR3Y4UFwv/NMOHBnnWOH8a6sWVt2+LRINOEstwZUU6OtpjUVTchKRk19Y8/VatqkxFS4tYAIuakJraiUOHyrH3/VeRnlyA3HTX17rsoxyob25BZurwsw34ox7W0X+k6to6kJGZ0X+nl58aGhqRkZHu5VWDT6836hluWxqkLaxjvsQZffbcOcjfkpAvCODdd4HZswdDt+Ae2+IZCzacTSaBQBOIiUtAfGYBWg7JDzxLeBNYsgT41KeA3/wGKV2d+HHF23jlk3fLFGwB1uw7guWTxw5qv2b40CDPucU255CU5PxB55g7Xt97BEVx45CRZ0vvlpHm+lzT8peaBUye04OcLLmot2RgOTa//yZWzFqEOaOyzd0evz+0ZiM+v/xij893daI/6mEd/ekaPBbP6b/Ty0/+qENv+eD67bh35Uov797/9Edkfe3KKK8jUdK93f/wwzbxp3i+972IEX/aHU4BKwUWEnBBoLV8F9DjPHyH45pAF5dzdzAJ/Nd/AaWlxh1nnD2Ihdt6F2w7aYMp/tST15P0bmr5M3P7Ogv1Yt7CFH819SL+xqr4M4/Y3m+5ZjlGFI3Dc9u3cyq4Pxp+IoGwI3Dla68ht6bG1q5Fi+zrjcOuoT42iALQR3C8LDoIpE5cjKSRU6Ojs1bvpSy9wKOP2nuxeM2rKJI1gQOLt+Jv76EYY9rXVZw/s/6hxJ+eFxcXi2uXXo6W9mZ8cKbRvJTvJEACYUZg/MGDmP/ee7ZWpaYCf/yj/gCHWSuH1xwKwOHx49URTiAuNRPdLfxFbZlhvvJK4GtfM5ob192Na/76JFI72u3N90X8qeVP1/wNx/Jnb4BsTBpbhvi4ZOyvqHbczW0SIIEwIZDS3IwVf/tbX2s0//j48X2fI2SLAjBCBpLdCBCBGM9+RDgdHCD+vlT7/e8DF9vWyWXV1uAz762Tafwe+Cr+1PLnzuHDE8uf2Q11Djl0rBudXW3ITE4yd/OdBEggXAjID+l1L72EjMbeP/yvvtq2vjhc2ufHdnj2282PN2RVJGAlAjEJyehqqZNlgLJYjMUaBNRT74kngOxso72XnDyKyVu3Gg4fnq7502lff6z5cwSm4u9oeQw+OHJWdvegLHf43p6O9XObBEhg+AQWyHfF9D17bBXl5AC//73lAz67okIB6IoM95OAEEgdfyG6m+voCWy1p2H0aNsXd2+7L1v9d5TUVHjk8BEo8Vd9PgUV57RBZ4xWjcobfjiX3u7xjQRIwA8EysrLcfUrr/TV9Nvf2h3L+nZGzhYFYOSMJXsSAAKJJRORdMFM1G16OgC1s8qAEtA8nZ/+tHGLxO5OfHHnX5AR17cecOC9Pcnta17j7bSvWv4a6hMxblQP6hsrJBZgpsQmjKwF5SYbvpOAFQmky5TvLatW9WX7+OIXgZtvtmJXPG4zBaDHqHhiNBLQPK6p4xago+qYx913XA9obnt8MU/0LwFdvD1zplFnwfmzWPrqi07rD7T4U8tffkEzivKAkxUnkJ8mHsssJEACYUEgVr4APvb0033r/pYtAzSsVIQXCsAIH2B2b/gENDdwj8QC1MwgLBYjkJwMPPWUzOWnGg2f/v5WTNu2pV8ngiH+1PKXntGBHfuOoqq6HPNGj+jXBn4gARIIHYEPrV6NUSdO2BowQn429TsjPj50DQrSnSkAgwSat7EugdiUTECyS3S39nqFWbcr0dnyyZOB//1fe98ve+UFjDx22PgcLPGnlj8tr7z9OnLScnHR2FzbDv5PAiQQUgLTd+3CxZs329qgDmTPPAMUFoa0TcG6OQVgsEjzPpYlkDRCBISUtlP7LNuHqG/43XcDDzxgYND4gNc98wQyqs7BU4cP9eA9cCQGrjJ8OPI1vX112lctf6b4Kz9+BmeqjuLyyZOgSwtYSIAEQkugsLISH/n73/sa8YtfABdd1Pc5wrcoACN8gNm94ROIyyhATGIKGne/4XNl5lrA6a0SUoAlNAR+8hPg2muNeye3tuDax/+EmPoWeJLho6oydVjir6a+Ebu2v4mSrGIsHCuhJVhIgARCSiC5tRW3yVRvYkfv0p577gHuuy+kbQr2zSkAg02c97McAbXWZMy9Hi0HNzEeoOVGz6HBmsbpL38Bpk83dhY3nsM39j6OrOQuh5P6b5revi0tCU5z+zqe7cry1yUWxz88/Qy6ZA3p3Ytm0PrnCI3bJBACAnG9Th/2PL9z5wK/+lXExvtzhZgC0BUZ7icBBwJJEg5GS0f1KYe93LQcgUxZz6lTPgUFRtPHlB8Wz2D5rOptQDHFn077FhQ1IceN464r8adVPr96HcrPHJC1fznIz0gccBd+JAESCCaBGPlhXfHCCxh35Ijttnl5wLPPAikpwWxGWNyLAjAshoGNCHcCKWPnIyY+0bAChntb2b4hCGiQ6L/+FUi0ibGZ297FrK0b+13kKP4mj+0RJ+LOfscdP7gTf6+vfw/rtryK+aOnSuw/13U41sdtEiCBwBG44vXXMVMcP4yiUQI0569+J0RhoQCMwkFnl70noKFg0qYtl4DQz6Cz4Zz3FfCK8CKweDHwyCP2Ni157R8YdfiA8Xmg+PPV8vfO1t148c3nMLV0PG5dMNp+L26QAAmEhsDCTZuweMMG281jRf48+SSwaFFoGhMGd6UADINBYBOsQSB72ScRm5CE6ld+acQFtEar2UqXBO68E/j6143DsWLGu+bZv6Dg1Mlhe/tqhVt3HcBzrz6JcQUXyLq/iVz353IQeIAEgkNgmuT3vfrVV/tupqGhVqzo+xyFWxSAUTjo7LJvBOKS05F3zefRcnQbzj3/Y3R3tPlWEa8KHwI//CGgKeOkJLW3YcXjjyLj5BmfHT60nuOnq/Dki49jRE4JVi6ZirhYhnxRLiwkECoCi9ra8FFZ9mH/Sfz2t4FPfSpUzQmb+1IAhs1QsCFWIJAiaeEKbvg6Wo68h7Orvo2uplorNJttdEVAp4H+/Gdg2TLjjLT2Fvz71t9jTKfraX53a/7a2zvxx2efRGpiKu5bMgMJcfyKdYWe+0kgGASKJNbfI+fPI16jvmu5917ge9+zbUf5//x2ivIHgN33nkDqxItRdNsPDY/gqr/9P04He48wvK5Q7z9dCL5wodGu9JYm3Pjn3yOjtmZQO92JPz35iRdfRW39Wdy+cA5SEuMGXc8dJEACwSOQVVeHOx5/HJn6g6vluuuAhx+OunAvts4P/p8CcDAT7iGBIQkkjZiCgo98FW0ndqJxx2tDns8TwpxARgbw8svArFlGQzMa6gwRmNZQb2/4UOJv8/v78P7e9Vg6aQbGF6bZr+MGCZBA8Alkivi7+49/RGZDg+3mF14YNTl+PaVNAegpKZ5HAgMIJI+aidQpS1G3/gn0SK5gFosTyMkBXhMxr7mDpWTXVuOjj/8eKU2NRpjAo+UxGJjezexxVXW9OH08g7LcEbh2Rqm5m+8kQAIhIJBVW4t7HnsM9kDPEyYAL74IpPEPM8fhkJiIpm3UcTe3fSVQX1+PrKwslD2wCrFJqb5Ww+ssQqC98jDOPPYFFN78XaSMmz9kq7vbmlH+4C2ok79OMzUoMUv4ETglwb4vvRQ4etRo25GsPKycvALnOySQc0Ez0jM6+rW5q6sba994DU0NZ1GcnYH4uN7ppn5nAfXNLchMlenmYRR/1KG390c9rKP/QIYLD21VXVsHMjLFqj2MUt/QiAy1jA+jNIj1Ldh1lHV2YtW5cygz1/yNHw+8+SYwcuQwehKZl8ZHZrfYKxIIDoGEwrGIzx2Jpn1rPRKAwWkV7zIsAiNGAG+8YROBIgbH1p3Hz3e/jOdv+2dkl+T1q1rTvP3miWfQ2HAad160GDPLXIv6h9ZsxOeXX9zvem8/+KMOvac/6mEd/UcvXHjYx3fxnP4N9PLTg+u3496VK728qv/pj0iszZVBrCOnuhqflGnfLFP8TZxoE3+ltMr3HxnbJ04BO6PCfSTgIQHNE5w+7TI071uPruY6D6/iaWFPYMwYmwgsLDSaOqvpDO5/yTYd7Nj2J154FQeOvY+PzJrvVvw5XsNtEiAB/xPIFU9fnfbNklk4o0yZArz1FkDx5xI2BaBLNDxAAp4RSJ9zDSDhROo2rvLsAp5lDQKTJgGrVwO5uUZ7i86cws1/+i0y6mqNz5rj970963DZ5Dm4dKItt7A1OsZWkkBkEciTKV8Vf3aHj2nTbJa/kpLI6qife0MB6GegrC76CMSlZCLroo+hYduL6DhXHn0AIrnHM2cCa9farQi558/hY4/9BvtffxtvbX7ZyPF73UxOL0XyI8C+hTeBgqoqQ/xlNDbaGjpjhk38FRWFd8PDoHUUgGEwCGyC9QlkLrgB8VmFOPfSz+gRbP3h7N8DtSasXw+oJ6EUDRHz/U2v4qa8Eczx258UP5FAUAmUnDljhHpJb2qy3Xf2bGDNGqCAFnlPBoIC0BNKPIcEhiAQE5+I/Ou/jPbKI6hZ87shzuZhyxEYPRpYtw7QXzBS8uX1eF0FLjh73vjM/0iABIJLYOKBA7jn0UdhF39z59rW7ebrTyeLJwQoAD2hxHNIwAMCSaWTkHv5fTIV/A9DCHpwCU+xEgGdUtJF5UuWGK1O6uzCjeu2YPzJCiv1gm0lAcsTWLBlC2578kkkdnTY+rJoEfD66/b1upbvYJA6QAEYJNC8TXQQSJ91JWISktFydFt0dDjaeikxPvHKK8CHP2z0PF7CwHx443uYfoRrP6PtUWB/g09AAhfjSgnWft1LLyHWDGF8yy02y58GcmfxigAFoFe4eDIJuCcQE5eABMkG0VlLq5B7UhY+qrmDn3sOuOsuoxOxEvf5qq07ccnOfYjpdh4E2sK9ZdNJICwIJIi172NPP41FGzf2teerXwX+8hcgOblvH7c8JkAB6DEqnkgC7gl0NlbjzP99SaZ/DxsOIe7P5lFLE4iPB2T9ER54wN6NhfsO44b1W5DY3jstZT/CDRIggeEQSBMnD83rO/WDD2zVxMUBv/kN8OMfGyG4hlN3NF9LARjNo8+++5VA+5mDaD+9H4klE5Exf4Vf62ZlYUhAYj/iZz+TeNE4nQAAFJdJREFUtBoPAfoLScrYM1W44431yKnvDUkRhs1mk0jASgTGiuVvpWQUGakpGrWkp9vy+t53n+0z//eZAAWgz+h4IQn0J5AyZq6RFq67pR497S39D/JTZBKQTDD43OcAWZeEvDyjj7kNTYYIHHPmbGT2mb0igSARGHfoEP4mcf5yamttd9Q0je+8A1x9dZBaENm3oQCM7PFl74JIICY+AYUf/Sa6WxtR/cZvg3hn3irkBJYvB8QzERqEVkpSRyc+Kh7CF35wCDAXq4e8kWwACViDQIw4V10m8fw+8fjjyDZ/fjQo+6ZNwKxZ1uiEBVpJAWiBQWITrUMgIb8MSWXT0fzBWrSe2GWdhrOlwyeg+YM3bABuusmoS2yDuHTXfly3aTviJWQMCwmQwNAE0iSjx51//jOWStxN/RkyinrdaxzOkSPNPXz3AwEKQD9AZBUk4Eig5dC7xsfKv3wd1a//Ft1tvVHqHU/idmQS0PVJq1YB3/++vX+Ty8/gtjUbUNZFEWiHwg0ScEJg1PHjuF+cO8YePWo7qmtr/+u/gOefBzIznVzBXcMhQAE4HHq8lgScEMi94j7EJKaKd1o8Gt77G8ofvBWddZXokNAwZ//6H06u4K6IIqDOId/+tu2XlgpCKUW19Xi5tg5Tj53klHBEDTY74w8CGt/vElnbp56+9py+JSW2tG5f+Qo9ff0B2UkdEsuAhQRIwJ8EMuZeD331dHehac+bOP/Sgzj18L3GLWLT8/x5K9YVzgRWiCe4rlm64QZAFrNn9ADXvLsD6hzy+rwZaEtMCOfWs20kEBQCKS0tuEEsfJMktZu9XH458MQTQGGhfRc3/E+AAtD/TFkjCRgEYmLjkD7jCqSMX4jW4ztkKrgZ6il86tefJKFoITBtGrBtm81TWKwbWnRKuPR8LV5aOAunCvgHQbQ8CuznYAIjTp7Ex555Btl1dbaD6lWv1vN//3d7aKXBV3GPvwhQAPqLJOshARcE4lIykDb5EuOoikCWKCOQkQE89piY/64BPvUpQH7ZZTa34NY3N2HzlHHYOG0iunXamIUEooRAfGcnlr31FhaJ05Q9pVt+PiBev7jyyiihEPpu8lsn9GPAFpAACUQDgVtvBXbuBJYsMXqrHo4XfXDYcBDJltiBLCQQDQTU6vcpcfS4ZP36PvG3aBGwfTvFX5AfAArAIAPn7UiABKKYwAUX2Ba2/+hHgKaTk1JSXYc7V6/DjCMn6CASxY9GpHddrX5XrF6Ne//wBxScO2frboKsg/2P/wDEGsgQL8F/AjgFHHzmvCMJkEA0E9DQFl//OnDFFcAddwAHDyJR4gReuXUXJh8/hTfEQaQ60+Y9HM2Y2PfIITBSrH4rXnihT/hp1+bPt+XTnj49cjpqsZ6I97UZZttiLQ/T5tbX1yMrKwtlD6xCbJKEAmEhAQcCugaw/MFbZBmYrANjXCsHMlG6KUFv8a//CkiuU7O0ycbDKcn4VWoK2nRRvEOpl7WDmbJ/uMUf9bCO/qMQLjy0Vf5oS11bBzIyZf3qMEpbfQO+JxLjPnnO5c8eW0lMBL77XeDf/s1uBTcP8T24BGgBDC5v3o0ESIAE+ghonMDf/Q648Ubg058Gjh1Dkhz9Qksr7oqLNcLFnCjKt5//0JqN+Pzyi+2ffd3wRz2soz/9cOGhrfJbWxbP6d9JLz6NqKrGPEmHOEGmfu2FVj87inDY4BrAcBgFtoEESCC6CaiH8J49wNe+ZreK5DQ242Nvb8a1kkoutVXtgiwkEP4EMppacN3GbbjtzY194k+tfv/5n8DGjQCnfMNmEGkBDJuhYENIgASimkCqLBnRX5K6LvD++wHxktQy5cRpI3j0upmToRkTWEggHAmok8eF+45g/v7DSOjq7mviggW2tX4aE5MlrAjQAhhWw8HGkAAJRD0BtZCsXWtbF5iba+BI7ujEh97bjefq6qFTaywkEDYE5I+SySdO4Z9efhsX7z3YJ/40rp+EezGsfhR/YTNcjg2hAHSkwW0SIAESCAcCGhj63nuBffuAu++2t2iueAvr1NoNsrYqr67Bvp8bJBAKAoUSwkifx+s2vY8MWbdqFA1v9MUvGt7tuO8+ZvQIxcB4eE9OAXsIiqeRAAmQQNAJFBTYsoh88pPAZz4D7N1rNGGc5BMeK6+9o0Zg/fSJaEhjxIGgj00U3zBVxN4lu/dj+tGT6Oenfu21wM9+BkyaFMV0rNN1CkDrjBVbSgIkEK0Eli0DduwA/vQn4DvfASSumv7inSZxAydJbuH3x4/Cu1PGoyVJFtuzkECACKjwW7D/CGYdPt431av3UsGnwk8FIItlCHAK2DJDxYaSAAlENQGdWvunfwIOHAD++7+BnBwDR3x3N+YfOIp7X3oTC2UNli7GZyEBfxJIE+G3bPserJRnTJ81u5OHxLzFz38O7NpF8edP4EGqiwIwSKB5GxIgARLwC4GUFODLXwaOHLGFjdHPUpLEUeSS3Qfkl/RbmL/vMBLbO/xyO1YSvQTSm1tx2TYRfv94E/MOHusTfsnJwAMP2Nb56bumdGOxHAEKQMsNGRtMAiRAAkIgO9sWNubQITgutk+TmIFLd+7DfS+uwZIdHyBdsoewkIA3BDLkmfl+Y5NhVZ576BjUymwU/WPjS18Cjh61Wf50jSqLZQlwDaBlh44NJwESIAEhUFpqC7ehnpff+hbw7LOAhOZIkqlgXa81V6bs9l1Qiq2TxuJcdiaRkYBLAjkNjcbzos4ddtGnZ2uMSnVCUstzYaHL63nAWgQoAK01XmwtCZAACTgnoAvxn34a2L8f+OlPbQ4jbW2IEzGoziL6OlpcYAhBFYgsJKAEYrp7xKO8ErMPHcfoynP9oaSlAZ/9rM3qR2tffzYR8IkCMAIGkV0gARIgATsBFYK//S3wgx8Av/gF8L//C9TUGIfHVFRBX1Pi4nBcBOHBkcXokm2W6COQIksFZhwtF4/eE8gcuExAc1R/7nO2eH4a0JklIglQAEbksLJTJEACUU+gqAj44Q9tjiKPPmoL03HsmIFlelcXpm9+Hy3bE4zp4d1jynA2JyvqkUUDgOLztWLtO2aED+o3zaudHzsW+PSngXvuAXqz0EQDk2jtIwVgtI48+00CJBAdBExrzr/8i219oIaQee89o+8p4ik8R6b+9HVW1gfuHj0SH0hw6VbGE4yoZyOxowMTTlYY07zFNXX9+xYjESU1fp+u8bvqKkCz0LBEBQEKwKgYZnaSBEgg6gloHMFbbwVuuaUv1/AzzwCtthRehbX1WP7+XiwRD+LDpUXYPWYkjhcVoCdWBAKL5QjES9pAzRYz6cRp432QtU/jSGq6Qf3DQC1/LFFHgAIw6oacHSYBEohqAmrxWbrU9vrlL4GnngL+8Adg82YDiwqFSSfPGK+GlGQj3dyhEcWoyJUpYr2WJWwJxHZ1Y1RlFR4Ub97r/rYaiSICB5W5c22OHbfdBvTGkBx0DndEBQEKwKgYZnaSBEiABJwQ0EwO991ne+3ZA+haQU03V1VlnJwhGSAWSlBpfTWkJBmWQRWD5QV5TirjrlAQUC/ekefOY7JY+nSaV6f1BxVdD6qW3zvuAC68kEJ+EKDo3EEBGJ3jzl6TAAmQQH8C06YBP/mJLbj0Sy/ZrIL/+AcgDiNaMlraMFs8RvXVlhCPcTGxiDtxCkeKC9GeyEwQ/WEG9pN68I6SkC2jxaNbQ7do8O9BRQOF33QT8PGP26y9ugSAhQQcCPCJcIDBTRIgARKIegKa1mvFCtvr7Fng738Hnn8eWL0akLiCWjTt3Ed0Y9P76JI1gmoR1HWD5YV5OJ8pIUQ4Vax0/FZ0arf0fE2v4KtCUU2987o1bp+OnU7vqkNHYqLz87iXBIQABSAfAxIgARIgAecENOuDOgroq7EReO01mxh88UV7bME4mYJUK5QZRLhFrIEnC3JxMl9eIgirsjLpSOKcruu9Eqg7u7HZLvjKzp53vp5Pa9AsHVdeaRN9118PqAhkIQEPCFAAegCJp5AACZBA1BPQcDI33mh7SVgRvPOOTQy+8AIkqrQdj65Bm3Cq0njpzjaZejyVn4NTKgrlVZGTje64WPv53BBfjLZ2FFXX4gsSkHnFui0oke1U2eeyzJ5ts/CplW/RIjHJJrk8lQdIwBWBmB4prg5yv/cE6uvrkSULq8seWIXYJPnLjIUEHAh0tzWj/MFbUFdXh8xM5mV1QMNNqxLQXyE7dgBvvGELL7Nund066KxLGnRmX3wc9ksGku1iPTwunsb6udrH+HP1IpoyU1Oc3crjfcGsI0V4TZc8zbNlGn2meOnOlu0LxPPabVFLrFr59PWhDwHFxW5P50ES8IQALYCeUOI5JEACJEACzgnoej+1SOnrS18CVMzs3m0Tg2vX2t4rK+3XJsvWbEP4dOFW3avWRClNyUk4l5UhU8YZve+ZqM5MQ+cQzgsPrdmIzy+/2KjD1//8XYd65maIMM1pbJKp3CbkNDTb3ns/xw5ldtEsHAsWAMuW2Sx9s2YxQLOvg8vrXBKgAHSJhgdIgARIgAS8JqCWvJkzba/PfhZQC+HBg32CcMMG4PDhQdWqJ6u+1LvVseiaQo1H2CBWvkbj3bZt7ksK8iRWjAjcZJnm1mlbnaZNaZd3afe3ZM3e8ne2ILuhCVlNLRgUeNmxU47bGotv3jyb4NMQLSr8NDAzHWkcKXE7AAQ4BexnqJwC9jPQCKuOU8ARNqDsjm8E1KFE4w7u2mV77dxpez9/3qf6VCS2yqtDrIXtMp3s+N4hn9tlv/neKVPPsSIaY3u6oZa6ONneJKnwFks+ZN0XK/v0uPxyNLydVegZLxF6+q7iT2yevhV12Jg0CZg/3xaPT8Weht8Zwsrp2814FQm4J0ALoHs+PEoCJEACJOBvAupQsnCh7WXWLYILFRV9olDF4ZEjQHk5cOqUfarYPN3xXR1PnAZAdjzJzfYSPbbngJszvDiULJPc48cDEybYXo7bpaW07HmBkqcGlgAFYGD5snYSIAESIAFPCOiUZ0mJ7aXODo5F1xVqTEIVgydPDn5XgSgOeGhoAMRSF5CiTlsFBUB+vu01cHv0aJvgGzGC6/UCMgCs1N8EKAD9TZT1kQAJkAAJ+JeAritUz1d96bSpu6ICsKnJFrdQp5pVFOq7+WppsU25asBrnXp199KYeqbQY1Bld9R5zIIEKAAtOGhsMgmQAAmQgAsCKtT0lZPj4gTuJgESUALyZxULCZAACZAACZAACZBANBGgAIym0WZfSYAESIAESIAESEAIUADyMSABEiABEiABEiCBKCNAARhlA87ukgAJkAAJkAAJkAAFIJ8BEiABEiABEiABEogyAhSAUTbg7C4JkAAJkAAJkAAJUADyGSABEiABEiABEiCBKCNAARhlA87ukgAJkAAJkAAJkAAFIJ8BEiABEiABEiABEogyAhSAUTbg7C4JkAAJkAAJkAAJUADyGSABEiABEiABEiCBKCNAARhlA87ukgAJkAAJkAAJkAAFIJ8BEiABEiABEiABEogyAhSAUTbg7C4JkAAJkAAJkAAJUADyGSABEiABEiABEiCBKCMQH2X9DVp3u9uag3Yv3sg6BPhcWGes2FISIAESiGQCMT1SIrmDwe5ba2srxowZg4qKimDfmvezCIHi4mIcPXoUycnJFmkxm0kCJEACJBBpBCgAAzCiKgLb29sDUDOrjAQCiYmJFH+RMJDsAwmQAAlYmAAFoIUHj00nARIgARIgARIgAV8I0AnEF2q8hgRIgARIgARIgAQsTIAC0MKDx6aTAAmQAAmQAAmQgC8EKAB9ocZrSIAESIAESIAESMDCBCgALTx4bDoJkAAJkAAJkAAJ+EKAAtAXaryGBEiABEiABEiABCxMgALQwoPHppMACZAACZAACZCALwQoAH2hxmtIgARIgARIgARIwMIEKAAtPHhsOgmQAAmQAAmQAAn4QoAC0BdqvIYESIAESIAESIAELEyAAtDCg8emkwAJkAAJkAAJkIAvBCgAfaHGa0iABEiABEiABEjAwgQoAC08eGw6CZAACZAACZAACfhCgALQF2q8hgRIgARIgARIgAQsTIAC0MKDx6aTAAmQAAmQAAmQgC8EKAB9ocZrSIAESIAESIAESMDCBCgALTx4bDoJkAAJkAAJkAAJ+EKAAtAXaryGBEiABEiABEiABCxMgALQwoPHppMACZAACZAACZCALwQoAH2hxmtIgARIgARIgARIwMIEKAAtPHhsOgmQAAmQAAmQAAn4QoAC0BdqvIYESIAESIAESIAELEyAAtDCg8emkwAJkAAJkAAJkIAvBCgAfaHGa0iABEiABEiABEjAwgQoAC08eGw6CZAACZAACZAACfhCgALQF2q8hgRIgARIgARIgAQsTIAC0MKDx6aTAAmQAAmQAAmQgC8EKAB9ocZrSIAESIAESIAESMDCBCgALTx4bDoJkAAJkAAJkAAJ+EKAAtAXaryGBEiABEiABEiABCxMgALQwoPHppMACZAACZAACZCALwQoAH2hxmtIgARIgARIgARIwMIEKAAtPHhsOgmQAAmQAAmQAAn4QoAC0BdqvIYESIAESIAESIAELEyAAtDCg8emkwAJkAAJkAAJkIAvBCgAfaHGa0iABEiABEiABEjAwgQoAC08eGw6CZAACZAACZAACfhCgALQF2q8hgRIgARIgARIgAQsTIAC0MKDx6aTAAmQAAmQAAmQgC8EKAB9ocZrSIAESIAESIAESMDCBCgALTx4bDoJkAAJkAAJkAAJ+EKAAtAXaryGBEiABEiABEiABCxMgALQwoPHppMACZAACZAACZCALwQoAH2hxmtIgARIgARIgARIwMIEKAAtPHhsOgmQAAmQAAmQAAn4QoAC0BdqvIYESIAESIAESIAELEyAAtDCg8emkwAJkAAJkAAJkIAvBCgAfaHGa0iABEiABEiABEjAwgQoAC08eGw6CZAACZAACZAACfhCgALQF2q8hgRIgARIgARIgAQsTIAC0MKDx6aTAAmQAAmQAAmQgC8E/j/PnDSRPmEojAAAAABJRU5ErkJggg==" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "m.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/notebooks/basic_features.ipynb b/docs/notebooks/naturalearth_features.ipynb similarity index 100% rename from docs/notebooks/basic_features.ipynb rename to docs/notebooks/naturalearth_features.ipynb From 1468cbdfb90049f3550b595c1209872efd039cbc Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sat, 9 Dec 2023 01:08:35 +0100 Subject: [PATCH 015/240] update docs --- docs/notebooks/inset_maps.ipynb | 41 ++++++++++++++++++--------------- 1 file changed, 22 insertions(+), 19 deletions(-) diff --git a/docs/notebooks/inset_maps.ipynb b/docs/notebooks/inset_maps.ipynb index 059a28fac..713e89a3f 100644 --- a/docs/notebooks/inset_maps.ipynb +++ b/docs/notebooks/inset_maps.ipynb @@ -46,7 +46,7 @@ "source": [ "## How to create inset maps\n", "\n", - "Inset maps are used to show zoomed-in regions of a map and can be created with [`Maps.new_inset_map`](eomaps.Maps.new_inset_map).\n", + "Inset maps are used to show **zoomed-in regions of a map** and can be created with {py:meth}`Maps.new_inset_map`.\n", "\n", "```{eval-rst}\n", ".. currentmodule:: eomaps\n", @@ -58,16 +58,17 @@ "```\n", "\n", "\n", - "An inset-map is defined by a **center-position** and a **radius** (in a given coordinate-system).\n", + "An inset-map is defined by providing a **center-position** and a **radius**.\n", "\n", - "The shape of the inset boundary can be \n", + "The shape of the inset boundary can be one of the following options:\n", "- projected \"ellipses\" or \"rectangles\" (with dimensions defined in a given coordinate-system)\n", "- \"geodesic_circles\" (with a radius defined in meters).\n", "\n", "\n", ":::{note}\n", - "[`InsetMaps`](eomaps.inset_maps.InsetMaps) can be used just like any other [`Maps`](eomaps.Maps) object! \n", - "For convenience, [`InsetMaps`](eomaps.inset_maps.InsetMaps) have the following additional methods defined:\n", + "[`InsetMaps`](eomaps.inset_maps.InsetMaps) can be used just like any other [`Maps`](eomaps.Maps) object!\n", + "\n", + "For convenience, [`InsetMaps`](eomaps.inset_maps.InsetMaps) have the following **additional methods** defined:\n", "\n", "```{eval-rst}\n", ".. currentmodule:: eomaps.inset_maps\n", @@ -90,7 +91,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 11, "id": "052d389f-a7f0-4a35-83fc-57d0bfa992f1", "metadata": { "editable": true, @@ -102,7 +103,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAEAAElEQVR4Aey9B2Ak2VXuf9TdynEkTc55djbPZnud0zp7HbDhDxhjbODZZAPGgDFgP+ARDQ/83gODSQZjnHNcp9315jQ7aSdqsmZGM8qxu//nV6XbXWp1VnerJZ2zq+nq6qpb935Vde93T7o1cRUxMQQMAUPAEDAEDAFDwBBYMgiElkxLraGGgCFgCBgChoAhYAgYAh4CRgDtQTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCRgDtGTAEDAFDwBAwBAwBQ2CJIWAEcIndcGuuIWAIGAKGgCFgCBgCkUwQjI2NycTERKafbb8hYAgYAoaAIWAIGAKGQJUjUFdXJw0NDbNqmZYAQv42btosvefPzTrBdhgChoAhYAgYAoaAIWAILAwEVq1aJceOHZtFAtMSQDR/kL8vfG+vNLe0LowWWi0NAUPAEDAEDAFDwBAwBBIINMi4PGvPDs+im6oFTEsA3ZmQv5aWNvfVPg0BQ8AQMAQMAUPAEDAEFggCDTVjGWtqQSAZobEfDAFDwBAwBAwBQ8AQWJwIGAFcnPfVWmUIGAKGgCFgCBgChkBGBIwAZoTGfjAEDAFDwBAwBAwBQ2BxImAEcHHeV2uVIWAIGAKGgCFgCBgCGREwApgRGvvBEDAEDAFDwBAwBAyBxYmAEcDFeV+tVYaAIWAIGAKGgCFgCGREwAhgRmjsB0PAEDAEDAFDwBAwBBYnAkYAF+d9tVYZAoaAIWAIGAKGgCGQEYGsiaAznmU/GAKGQFUiEKqpEf1forF4on71tSGJ69fJqbjURmqkuSEs7IvFROr0OyfovxLiPD2Ozwj/BITSKINyp/SgyamYHhv3ypjSfXyf0D8TQ8AQMAQMgYWBgBHAhXGfrJY5EICw1CmpESUpjfVhCQcIDIQlpD811oWV8CgZ0v8gP0NjU1Kv31saIx5pGp+Meb+H9Vif5OhxeuzYhJIdLQNONRmNeWVTPscgw+NR3a4s+YHotWq9qUeLErpabQfkrjYMAazR9mm9tT2QPdqMQN5oI2StvbnW25frn7GJKJBKGJKonBASGNN/aC448h2BLlKXScXk8tCkhw3X41iIJ9fleBNDwBAwBAyB6kDACGB13AerRQoC6KQcYYDAtDREPKIDCYFkTCihGBid8vYvb6/ztFapxC9YZFyJCISIshw55LygtDYGv/nbnIdAqjIJRGdI68IxI0oGz/aNyxQMc1poS0SJGX8hJUn6v0eYPNKm+/R06R+e1N9DWr8aGRzzCWV7U610tflEDQI6oURqbDLqkde2pohH9sKUqdeFhHa21rtLep/gERTa3cS+lP3BY1K3G5Q0OwEL6jANiUe2+Y3vED0IMW1pbQx7n05bCPljm/vmhDpzjokhYAgYAobA/CBgBHB+cLerTiOAVg5SAjniE4KGJssjS0oSIBVo5CAeaLcgTUGBlEC8+IRgQDQgOo7kuWM5hmsVKkHiR10cAeMThRb1wvQJuRxXTSHEr0O1a91tjV4dqI9rC/WHsKXWjToNjNRq/WPS1Vrnt0XLhUzCFB0uwbo7MsYxw+NT3jWDv5drG+0h9ecehWrcvfBJIeSPNlwZ8gnsspZaaW6NeIQXqrf3xKCHVbPeZ7SXlwYnveOpa0RVtB3NEWmoCyXINm3EvDylWHBvaSvlmyxOBJgU8Fdfy+RP361J7v/M+82z5zTao6qdNjEEDIHiETACWDx2dmaeCKABa9SBHe1Xu2quMNXqpowqYbrQP6FEYMLr1DG1drXWKtFTDZL2+1Nx/ccjFUq89DfX8XNZHSc8jZkjaHx6/mz6G9pBNGr4uTFgQMD4dMfmWW3vMAgH2jeUVdQX4odJc1TJiK9RrPHMoZCdeIOvIUOziIYunUAWteoeFsHfg8d7bdFB0DNpBw8KbHMMAyVtFMnPnBs4vahNrom5fLbQIl+oD9paBAKHZnJsXP0DFcfVy+o907NfZ5F13Q0ewYfksY/B3wnaQe4jfA8z9JCnFYUIziQE7nj7rD4EeO95J8f1mU8V7jWTACZI3HsmRzzvTA6YGKBRxwLAcUyAeDSG9RngePoC3ueG2rA3aWAS1jc0kXqJkn7HxQRSyvXnIn69/UkOzzXPPkJb6Kf4a1Ac0Lzze5+6U5hv7VwQt3OzIZCuN892vP1mCBSEQHN9RFYoIUJjRKfGgBAkYpACTLn4jUGsLg5MeJ07vmuM9czyoQUQj0jIJxRo4hgMIAmQDTSEEDT6UmdWpMPmOzo/fstXPE2i1gNNHde4okQS8gHhY6Bi0KKD7m6r04HJ78g5Bwm2K9P1giQ20zGLZT/3icHbEcLUdoGX57eoP4AhpB3CiMmYcwdGphL3M/XcxfYdX1TIQJBg8KzwaFUj6eX98rT3+p7ib4r7AiRNd3ta8W51XYCYMXninR5Uf1uE4zi+XbW9MKpafZfqdXJIO7nvvHPeM6Ftp79Y1gJJ9P1Lx5t1wnhl3HsPeRf9/iHm9RHlfB4gbdwLgp6C96eYa3I+zzhCua3af4HFio5673tqmUySTl8a9ybJRgRT0bHvc0XACOBcEbTzEzNxNHxn+sYSiDBArOmq9yJKGewZHFJJEudgMuUPwcSIqQ/C16eaAIghJLFNO0kGDiSuTy0DEJoFp93D7yy1bO/gNP9ANhicEDQP1IGBioGWa15UjSSDUVDQZqC95FjOhBiGQ7XeYJTvdYPlLYXtVHM9bYbYnegd9bDuVnM3g/+gEj0IApqdhTzI8YxAgiAzfPJsMqnhPwRtFhMHtMiYtdm7plPfDyVFmL55FtEy+xOcKY8UuOcQUuQ/o76vJUSCd8397l0g5R/M6gQ/IZTpJkf+nrn9C1nlnvEHGYPAosGj7f3DU9774b1b2mY05Qj9AZOnEZ3U8V6DFySocUo1f0okufe1igXPA+8nk4fj+qykki5Pozg6t/oXcjbXp86lFPqv5e312s+FvecCbR/3nmcGLL3niAsqnhBE7jP3D6x5TwZ10lzK+1nKtllZCweBGh0M/d4pUOeBgQFpb2+Xbz96Qlpa2gK/2OZSQwDTBIOIM8/RmWeKeKUzT+2sGYTQBkDoIHAM+AyKHIc2zRG4dLjyaKIFgmCxPaIdX61eo1PNxBAxJ3SODHCUxUDp6up+55M6u8HVGwz1+viVMRDRkXKOZ+7V/bmEdm5Y3ugN5rmOtd9nIwCR6bkwKv16b5Fq1HDNrnX2PZCbnWub9VnyiR/PGEQGooRLwGUmMzpp2La6yXueef6ZbEB6cIOALPFuLNOJkHu2ec4gCDzpPOOQIp7jXj3eacCz18p+LRQBMEfbR1+VznRdaHm5jofQ0fdwXfpDnhX2pQr9H/0g9cJicvy8P4niXCYPPH+QwoU8gUpts30vDQINNWNy3fbV0t/fL21tM/mcaQBLg/GCK4VOjkEHQpdK2oKNoTNids4g1KXaC0y4lwbUv047HcyzV4b8QW5YNQGUw8y2Wc0argOlQzqnZhvhT4UBbnVng9dp0ellEogZHZvXCeugyuDHf9FozbT2ze+oGSy5ZrpOE20iJC/1Olz17OXxtMSDDpWywIe2tnrRtj5WXAuyyG+pZWZqh+1PIgCJgbgMjEx6g9ViIH6udTxTz5wZ8d6VtV0N3jNUr4M54qXdUVNmu/4x+anVXpfnh8GegX1lR523X18fOafPJdrloHYHTZnTInoF6j9MzNAk8rzyHjNt4f3L9i67c+0zMwLgV8ngEt4JJ6Sl4v470o9mWP+XJu1/nTaXftWRfwLGNq7wg83oZ3FTwWxOX4wWFqJohNCha5/pEDACmA6VRbiPAQdfLLR5OFojmGzo8C7243vla2NSm96vgzXnMOCcVxLXpB2Mjjmegz77tq6u8waz05fGvN8ZiAiIoBPD3ONrDONeahTKQguC5oegkE7twDDzoLnDBOICPTC3oPljYEPTBonraPYJJ2ZFzs3H7OqlWZl+whloiVrtHfGDToLkY6X63+CnCPHLp9xUjOx7bgTQiB06PeyRFo5m8JpQDVgqscldUnUewTPLxIfB+eDpIcG87d4vT8OnkwnazPtGtDPPvJMzmjYIPzkmFuvV52vD8gbP75R9BMKkMz96UehaAERxXEmlyeJAgPcBTd4MGZjxzeu/t61u9j4hfdx9fQw87TMk0p9k+JpFJgg8V5TLMUYIZ2K51L8ZAVxkT4DTTDHQsL1C/UwYLCBX+OPhX+IGH0yimOIykT8/wKLGM5OqHiOBFMQPrSCkDUdsF8GK/w7XOt474pkkSFDMjBRNHsdwDp0QRBBH6OFx35GH6zAcss9pPrhGt5IyCCTXOdHr+wI2NfhmZs9cq6SCMp2kkjfKOnByWB2ytINUPDDHpesAe69MeFGH1BUTMkSwq0VzCyrx5foQUQgMeEGeGdhNCkPgkpIZNGPce7QeDFQMSkwA+M7zutAFzYuTHn22GXzx8UPDxzPDd30lvYGa4zDnPnViyPvkO5qnE/o+Mri3qTkQv1beLyZDaAWXUlAMeJikR4Bn4tj5kRl9GVpigtLQGmK5wGLi+lI3WUhfmu1dyggYAVygdx9y5wdPaEJgJXVo5fCtYkCFrOA8zSB79nIyKAMNDL4imBHQqjHouk4iHQxoMzBTQSJ7+30TLsd5hFKJnpOx/uS228dgxky0vi7mDXrUyZGv1MEe8oeZAxMrgxwdGfWkE1vWTCRgrazSQBC+QxYYSCFp4TrO9NOEQNSY6dI2iB7aSvBwEXfegRn+ATvII1GomHxZ9eK8tpd9TUpeYzEfX0ecMxRju7MgsFLvHwJh59ngPvIMMwFJfR6yFLOgfuLdIqWJ7zrhP+M0AG30kbMjaVOX8M7sPznkvZckAsd8zLOd7T1dUKCUubL0DUzYEOc2UuZL5l08/RP9YD73ksk0FpTgpNhdyBE6SF+HuhV06mSVCbbrnyif54h3DO0zbjQ8c+wLWj5cefa5dBEwArhA7j0dGx0IBA9CREQqqUp4sfHJI0UBpsw+jWAdHI16ZAstgtOwYHZloIUUOqFMSCQkjy7zsA5Kwc4JDQ3Ej4Ea7Q0dyhX1LUFz4WkStT50Uh7x0utDuPANhMRhxkCbRl6/Tq0vJJW6oue5qJ0SnTMaNsgWA5z+5B3vO8mryXmaqDpiBnHwffN8kkgbOGd8mohSR+oCieQ6+AUSTTx6cWxGmzgvVWizwwXfGYgv9UVz41/TLzf1PPed66VqH91vS/2TZ4XnEZ9O56TOc4eLACmCFiv5c/cdsnvqoq/pZlLDe8sEJVPeuuD7h7bUJDMCECD6GHBNupT4bhy8kzx3THr9XidzOZX6xU2A87keRM2RNfo2955gGaHNCCQRlwG+B/sf3i+XIxRiyCTCy62off+ylgZFjcwHqonW59Dza9ZPrBs8qy5wKZ86LqZjfMz8COtqeV4qga9FAVcC5RJcAw1Ynb7wdAZ0JJBAXmpeWu3rPKIC8WLAXaudAr56mJ2YDUPcOIaB54oOxJznOhcizzavbPLO5zc0X2Tgp3w6HfyQGJQ4Dh8mzFKXp0ngcg0KoeOgLEymEFKE+j15bDDR8dLhoNWDVHmrOSj5IzJ4jQaDRLTzYmbKzBiCwIzVzXBTYeMlpR36kRBmvXRkWgWvbmg26RApE2zmInSwEBUGGAglRNXH0s8TOKoJjqkL+7gv/HFtb/auRJjzaDckMthBz6VOC/VcnhHyevMMkr4EQojp3xHvhdouq3d5EGBSyXvDO4QLCRNZJnj0Ewj9Bu8k4iwDvIf0HbyXvPuFEC6voHn6B7NthxI1+kfaqN2lN6nG/9NZMBwGXj+uGJAJodQCab6sQX30+/h0uzGi1NeZS3mMAW6SxPNBWiWeEe61UzygnECpwfNAIAzPDE9KsRphR5gdCZ9L/efjXIsCng/US3xNosMQHkZmKKen8+1hJoJ0oPlr0+2VHY0e2dA+xSMkrKgBKUKD1qDn45cHQURrCHmhQ8G/iA6lQ0kff06jhe8dq3Q0RPzO95Rq09xSZ7yIPRfGvJkkJgheSs3T7F0bx2T8UOp0tspLykDPJy8Q5TH4X1BiSRBIm4ZE+rNVljzzAzyoE3WmfpRLh04HSBkMDGzzQiOOWDHL5YUnaTOkda7kj7LpAC8P6V/A/5H96SSm9UUZOZZGacNAtXlVk6dtTXfuUtgHKY7rAzI1EZctOuF4enzIu79MLGY5vS8FQKyNsxDAGsH77TTv7t3mQN5vJo/8eRMxnXhi2mSiNx8aG55b6pIPKWBiSP/LpBySh7bSTRhpL9q4YFuDwHQHv5R5mzpQT8iUI1llvmTBxaMIYSwEv6vWtXh4ukKwgGGFYpLJWMHkEgXFVeubPLch7hVjmAvKIvCP3ymLNmP5QTgu2H6eLxQMi1HMBLzA7mpqZxc0E0Gs+M7Dz4CLMPtpVGI1PslKGn7SY4gVGfYhS5AmHn7ySqEtZH7NC0HQCC8EL0Mk7PuTKF30yoQwBgWS2TfofhWvY6RMzqVDQUtH2Wx7A/7IoEckMS8z4+U4j9RpxRp1ps+1uzVSMlOnyLUhp9QT8ovQsXIdTN0QyGoSOqTDmiKEhK4McpjFMb0sFeH+8hziY6kfckGfOTQ19bXg4CcILgVhXyp4LrZ24l6CmwhuH0FhMCcCmgEf14zUvi94bKW3s01a0Ohh6qdvY2JNf5ytL6t03VOvB9lhHXOSeg+p2Zz+nXe2GsUtNMCEG5clrFCMb2DOeAKh5rlxCgTGnH09Q15/i6XI9TNoAyGCRO4zbrQ24uvut5jfUCIsBeuEEcBqfMq1TmjYiCDEjAvR4bvn3Ky8YUSJGbNPZi8QOF4AjmE2zEPLbzqPSbQsFvfX1oX4MRBDziBZ+XaoXIO/TBIkoa6evJCYo+m862s14a2alSFr/O51iOqKCGHlD0Gzye+eul7riVrfCfvgSxApzkdog3ctPYe28x0iSseVb7tc+ZX4pE50rAwckB8GPdeWSlx/Pq/RqwE5EH/8kXiOmIiwBFbwuZnP+s3ntb1nWAegSiQdns92prs2g/VadQNhYsQEDsH6QD9GEBsmvWp8l11bfBO09kf0TdrXMenGagABQXjeU0mtO3e+P+knSUSORYbxgras0T4Jv3F/bEmOH/NdV3d9xggUBY7EMdalkjTyzIJ+qpLClRH85J0bL/Ma0sHrVeO2EcBqvCtaJ2ZlBFxsX9PszVCC1YQcdU3vcOZa9zsvNpoWFhF35IoXxr007rhsnxAq/P34hG+xMDu+FKmCQzK+gsyyqAekD3IHYcMk7SWA1pM4bvNKXfZIj3MzYY73iJ1eA18X0ho4f5eauH9dSAOkkM5JD/e0e3RYdAQuzyB+hxA/CKDziwn6rjhfwGqZ0VIPSDFtIiH2YhLaxr3kWWPiQsoc7jd+OvzG33lNuWPEL3nXPe2LEp6lJPQrJDBGG862E95bTHRoX0ot9Blom3kGM4lLtky/FDQBBo+HtKLZc/7OlEsfSTv4o18jEA6h//WsMdPkNlhOpbeZeGE1wXwO8YM4kd2BZTYhqdQViw8EizbS33qWm0D/C3Zo1hDwwTUnE0FnYgOxx+zNOUx83SSdcikrE8aZsOFa/gRSxxg6/TTC76yrjHmXvoe+iFV40G6azEbACOBsTKpiD6QpHflLrZwjVMw6vZQBXgeny6UpMSMZLc7S3rJBSpAgaN5LyNutwjX8l9p/mSBzDNYcQ3QunQGzWjrEIAF0yaDZjzaLwJA27cypC+fy0mFe9sy9+uJjDmE7KBwLuaOzP6m+hO6FZtZM8uegBhBNALkFmZ1evaHV61QZN1zbKXfFeJ1HEPGvade6OKFD1nFFfR4nPL/JbAOAO6cSnyT/ZcAAc6f9qMR1S3kNsKXDBV86dTp0Bhgc9sGZQYXf0VRjwmNfpgGjlPWysqoXAfocLBtuokgfwnNxVt8HVohBy19KgaDxbG5Swsm1mBinTkDwo6bvpA/l+pwTFPoi6kjfRtQtvsvZBH9FJNIGOZxZVrbzSv0b7yfvIIhi4uUT8kobcLUJ9qH41jmhvUzqg+Tc/eY+IZFo2cAUzFybwQn86NvBnDEHoS4IlifGFYR+HV9w6piv0MdkIo7e+Kb1OaUBLLSTOtAGrjeYzIaW76WWxHEzR+Ul0eTqb6RP/pq8jitbbXmp0CbReUH46MjczNSdx4u5QtOZ8BudLuegWaTD7dJIXGZKqPxZGg3TcutKTS9DzzAtzMiDOQDZTa48iCI+Ffq/RwBdR8fskd/Q9jHoM/Mj6pikzhTLLPOEmne8WaCeG0yei1mQAIFUQkROPyZ8OPlSN8px13P1dKZyEuk2qJaJzhoiAi5ci06AGS+ExO8U/Q7JnV/pT+qDCQJijbaVTm2hmYS5B2gP6PR5znhqeMZOXxqXlcvqPA0Pvo7cPzS3JksbAYjF7vUtM/xf6R/oDwqxUOSLIkRkh67PzATVCX0ePl6kOzmmk0oEQuhbMiJeyh4mKUxECV7Dp5ioUvoT/liHmf1MrDO9r6n9l7t2pT95L5kMB/vzfOrAO0wfm02wtjiLS/A4xhd61lRsXH8N8UQgjigF6B8YE8B2LgL5Y8xB8AtEC0tfr9Xxxjx8/SCqBChyba7HM+fI/lKdmBoBnMtTV4ZzeVkhbGhVeJnci5N6qTM6y6EzwqyxUTVmdFjpjqUzgvg44RiWoqLDc8LLsWVV2EtAe1IJFOYZVxazdcwFdNROGND5o66Y+aa0fIJKOIdOh/10Iu6VRksIyWSGfQaiqS9eOoEkpus8/ZB+P59fMv53Zgl6Se/aO9RkzrXRQKINpANwZYIRJmFME8xg59PHCDzoqDCDIXSCENZCO+uZKMzPN+oc1sHdyZZVjd6khNk9zwNmX5OliwDP9eplDZ5WKTX4qZz+Zmi1eOdTpU53OXcTrBkkoec9pI9j8k3fyISMvmPHGibi/sR5RE2e1PfQGV3SUDVZ9EuQIMpInXinXnM+vjvtW6HXpv8sVhgDcnBHr2jGLfpfz+ys10slgPQplIVvZT6Cfzz3jQA7N3YFrUiUASGc0HvNPWQcIP0ZE3Guxf1GSwrhR6kSdCPK5/oL9ZiseQBPnLkora1tnu8AA2amgXs+Go+miT9uZiaV8HzUq5TXZBaF1mutLuGm46j3wvCi8PCilWNw5XXjIaajoyNiZsoDzUvMS+FehnzqxcxIaafX4QWPR9P35PHBrC8FLxt5/XhxiK7iHDRcvJRoBB3RQVMEcUUDmTrr4ljIKilkaAOaO1d/Zm6QzhadNVJeMQKhRtysHt8UyCkDFG1HK+D8Fospv9BzGKDADawgS2hpIacQ12I770LrMNfjIfVe5629PhpfsAyaj+jA6ehPqiY5tZOf67Xt/IWBAM8yA7M3WdRnHc0PzzjvNn03LiCpVoZiW8aYQF9IX4Lries/guXRP6F1bG1SNxtdds+RUnLfMc6xugbvJX0on/RDqcJzT193UdNpkb4ql1k49Xz77iPAeEA6sWBidMa03RtI8aLpzRRfeAd3AEUFz43T5KHJ1WHC03LCAxgH3TiTCV/6WkYBxpdUcX0ZygOUHowJ+L9zvYUotBE8dEFVWb+6S/r7+6WtrW1GU7ISwKcOn5OGphYPCGY888WKGVQgN9wGXka+84JzD8n2jjCQ45TKQ8OtZdAJ+q15By3Qf/DDg+xlIroQRfzmmI3qpid8gBcPNQ8wQQdBQuUfld+/vDS+1m/CexaCxI1rw6uC+1ypdMZXqcmHz1RhKax0pljIHX/M1jgP8417AV2bXIqb1DKD37NpT4PHsQ22zizAc45JiHbROXm+Qfp7OYXINUwjzIa5JgMSgxja13QDWDnrkm/ZEDtM+wyyCM8A31l6kEGTHF1oRWgPGlhWZEj1vcr3WtmO41lgoAa7dM9gtnOr+TfeV9wawJX3HrMjgU9M/mgr+zBNojVnMsXghwaL3+ern84HT+qMxo13nG36K/ol2kSfjU+we9/zKS94DO8s1hMCG3JNoLgOgWfgukVzdAa1Xm6iSB+ETysTmnR9DoSRfgNiy30wKQ4B8KafJQUNzzAT41Sf8Uwl8x5w38slPANkMWAE4DrwC55b+jbeUS7Nb1oN71nw/N+nU+lwvPNtL1f9spXLO8YYOjE6JFvWLy+cAH770RPS0jKTMWa7YKl+QxPigIboscyZiyjM9xo8GAzmaB3QhDGGc8PQ+jBb4Mbyh7hj6Ti5aW7GR2daykEFakpH7R4WHg7I7PruRk9rFpwF0YFBvKhbvkL5lIcGjTYwA4BM+OXgN+evxQq5SNeh5boOLyqdM5012jJeVjpIqpiunlwDAhjsXN01OB5VO7PxVM0QbSDgg5fMvXQQDb093nPBvqBQFvfKtZn72KtmR77z3KA1zCWUQbu4PzwntIs3G20ll4OsptYzV5n5/E5b0fLitMyzybMKYSJiDyLlTWhS2ptPueU8BsJM/bgPzJapHgMhTyrPGpHAtIX7zr3Af5OOsRz4lbOdlSrbJ0K++wTvGPeffo/7D2a8r2g+CKZBI4Hpkb6NZ5UJAtgStEU/Cf68U2iUF5LQd7m+lu3NKxu9dxCilu9zw/PIe3zD5jYPw2ztx7fZTVZYfrKYdC28B/RhvLus92xiCDgEWO7U+Zi6fcV+QuLoQ4slkwtmJRAIyzZVydPhzVXoDBhc+QtKo35JVz4dLyDjm+C0LgxqRKYxyNEJ8TsdDPvpdNMJnRcDn17eO4bABmaQlMlgzgAPKdNiPO0IWjvIHpqu+kshT9PGDcd5mU4KUgiT92ZEes6EDqjMlJgtuw7T1YNrrlFzcS41uDu+0E/qzODO4EN7mPWeUYf/SYCZFvBmBo6ZFdJ0XGfZDFi02YvM0raCMYQNnwuHFd/BFoGg84dwH9lNW9FyMlhqv6vk3V8Cj/vCwEjbKcPdW1LhgCMdNNhRh2AaGq/wwD9cJzjrZPBFe+VrI32SQ1mlFjTb4ML1mhUXSCiaCerDc0OQDs9NNQnvKeYY3hlHQoL1Q+vM/efdcZOt4O+V2K4ZH5PwsCaAHR6W8Ih+juinfg/rd7ZrpjQ6Mqxt0JVo+BS2dcUbf59OOlvbZXJZl0wt65RYc4s/eyphxfE145nFNIqjPhGVPOdMdCCA+pp4/QLvBM8CEuzPnDM9+3l2EJ4d/NT4DZ877g3vKu8hFpJKCRO/QrWQwb6MbSI5aS/aINoPHq6PYCLIu0kfTHvduWBF5gMmb9452tfmktWqZS+G/FEu7wH5PE0MgVQEcMXCnQmrB5zAU2hpP88zw+uM8ol+kneeyTLPLv09yi+E74z/KDEInKJPYHKHAoZ3mveB94DjeMoZjzFbe/2t/s47wG+5JKsJ+DuP9khTS2uuMub0O+DQSI846MsYHITnVHAZT2bgw/QMyYAcckOYDbKEER0WN4sbzHGQNUw5DPLcKR4A/jKJM0dCjJyGku1UoYOFQEFGUZ+jjeN4vjMAQHa8mbM+A2jSCBSBhGUS6opPBddHg0B5kB/uDdoIhHpzDQgcfjsMLHS0PNw8a/jO8NC7+vIAMhMiwpi6cG8hh0QRu0GNcokExg+Eh3addqhcm7JTH2DKJoVBsB3Uh5yDXIO6I2jw8MnhZeClIMqWstEGcn8QV0fvS4Z/wISXE9JL5DQDTj4JRjMUl3E3uIIN1/LuqRJq8CENEJ1CtuclY6Hz8ANYn7884RG/Ys14eVVb8ak/1SN1p05I3bnT+ndG6s6e8j/5fva0RAb68yoqn4NidfVKBH0yONnZLVPdy2Vs/WYZ37RFxjbyt1WiShSzCaSI94h3C98ziAqmUO4zzyLPGo9vOe415nr6Ka7lETO9Du8jfRj3zL032eqf728717Z4kzB8do/qRMZN5ILnM4lj8Mqk0XCYuEk2S01uUo1gOmwYRC9rPwz5RTvKZBBCCCneqqZdJoH0f6mCDyB+h831Ec91hq6Rc7kXTNIhhfj2OWVA6vn23RDIBwGefyYrwdRkuc5j7ONZxvrEGEi/gWKsEHHjOePVYP+AbN+0onATcF/fFYlFGj2/DF6wUnUUvMi8nE5bsxheMgc4bYM0IZAx9vO9km3koaET5X7hmH/y4qinFQRv9unP3kCA4o7vDAYQKbQRDFQQVlcGZhI6a1LE0A4oFjMRCDuDB+11AwufkE+iWyEuEGPKJvcWJA9tF+QPEpeKx+Gzw97sB00dwvO27+Sgt80/1B1TuXMedz/wonAN8uq5AYNJhVZlBoFE40JdGXTw+4GQU8dUMurK5ZOBk3uILylEnmuVc8UGCDfaWwZPyCDaXO7HfAnPBk+yI9w8ywj7GSzdcwNpZRLi8PcOKtE/kb6L0nhwnzQd2ud9NvJ5+IBq9YZLdIXSFDPV3uERQUjhyParZPi6m2Tkmus9TSITFz8gQZ9rxQkYudf5TEJKU7vMpfAuQw4hQ/QVqZOu4JkkSuad8bW+fv/GYMXz4IQ28Z7x7lMW27xrTsvGu8+zc/D0UGKi5hFgLQAyhyWEd5Ln7qD6jTIxYgCkv8lHaM9FnRCy1jm12q5RvOneIerMBP6YLoFJn7VNxyMmsvRLDNisRAJ5JCOCiSFQLAI8S/SfvAeFCv0rfQXPJWNrsTIwMCDt7e2FE0AXNULHD1mg8/KCK1StyfZchJeLQZ2OsZhcRXO59lI4l3uGyZIoNcgds2InPIyQOTpVOkLIFqSJJeW8qCF94PCb4x5RDp35FTXpoVlDO8dA4Tp9F7GLxgcTDb47XIlOnePx4WEW1KGdOH59dLbphOsESeH+k0MewaTzh7DxrKQbBGjbgVNDHhkJlkun78xQXHfztDaAeh88pWRTo20hd5jG0uUeDJbltmkHvm9oAxGw4CUthbjBhteceqFFRovryFcprlFIGdwPBvcTvWMe9uAGweMeB5+lQsrMeeyUThL2PyWtD93n/bU88bDUXuzNeVrwgGikToa6V8lI10oZb26TycZmmWpo8j4nA5+xiAZMxVQrFp3SP33+A59hNQ/XD/VLw8Blaei/5H02DvTpdp/wWyEytnWHjF2/R2I33SL1z75N5PobpLmjsNl8Ideby7Hcc7SC3Gc0lekIPQPRjVvbvAGJ55SJHWTJvQf0IwSrQBTpS1LdLrgGkxvGQ930nvO51Hku5/ZoyiuC26gzvsrU2Qn70SLS75gYAgsZgTkTwHSNhwiyOgMD8FwFQrJBtTsWSTVXJNOfz6yYztabkSvxS51NuMGemTnEkKCEXMI5EL1gWeyDxKE500t6BJJOFgLJTDxI8HKVj9m1RzWX1Nvz/VNCmUloH1GmmZb7QSO5Uk2/TGIgcCSLdgSWMjEN79Ko1XzJFu1E0IxCsoOksFhyhIkekoz5iYEV/BgkIYKVFgZ1Flp3g3q5rl8zoSa4px6T1gfvldaH75eWRx/w/PRyXa9/1Qbp23yVXFm7WYaWr5bhrtX6uUaGlfiNtnehssxVRHG/632v1Yi65ovnpP3Mcf07pn8n/M/Tx6Xl4hlRn5rsZdephvvOO0Ve9jL/77rrSu5f6CrgntNC3jt3Lp9oBTGVBoW1e1kzlokd73bwPcJ9g2AInuFirxm8Vrm2ea5ZHYkxjEeFFSuYaAbrDHZMjDEfMzkrRoNTrvpbuYZAIQiUhQBSAZzVEdT6AyO+ozxqfHKppZs9egen+YcZGBpOXrS6WtVE6cwL53fIBS+gvXxpQCvxLtfhYe50K26U4hJozSAyzgQ0lzIZbCCTPCuYghE6afz/0EoWQ77QLuJf5Bzps9UPjIKDhDuWZ5168TvmNLQn2Uxp7rzgJ1pK1gbG7wiBR1Sa/FF/NECk6MnknxWsczHb4f4r0vGdr0nHN78s7d//VlZT7rhmILi4Zbf0bbpKLm3aqZ+7pG/jDplSrV41SnhCtaVKCJcffkpWHHrC++s6ul+1hlkicletEnnpS30y+JKX6DIGy0vWNJ5BovXxf0Ujjla+EL+2K6oBfkZdMxD6YEf2SKCLCZvnHh9fBLcR9lVbXw3Jw4uCsYTVIcgrR4AJzzrmZVxOCvHP8hpr/xgCCwiBogng0ZMXZNmydk+Vn669vEQMvLxIQUfb4ECIE6LrOFwZ+JJgbsT860x7pO1A7e7mz7yYDMqQB3tBHXLl/+RegXk6olP+q8++AoMYhMqZZJipo3XG/3Bi0jfhzj4r9x5HuPA5ytZWzMhoDnmO0fahAWnXYBceVK2aN/BxNZ55ksiSfgPTcKGCucz5GzFYoYkth1BPzLhE6Xbrsli0HZKOP5QX2KTuHaUQ2uBS8ERO90j0M5+T1q99UU2796q5Nb37yPCy5XL2mtvk7LW3yRn9vLxhe/m0eaVoZB5lhCZ1ycVjB2TFwcc9QrjmqQektfdU5jOf/WyRH/1RkTe+Udc+XJn5uAJ+4R3CnH9laMp7jnHDaFIyRPYB5woCOUTQjuHv6wIr6KOJlEUrjemWdxFtfq48ewVUr6yH0p9Rd95J+jXaQBtJWl9tZLWsQFjhSxaBogngg0+flhZdCYSADYgZpi60EjgB08EHhYEFLQiCPxiDCokyg+SPQRdTnEcYeRtNljwCDE4QEoTgBzpqz39IiR7PGPtYRYI1ffFkZBDjWaNTz3dlGjTMqdpBNCKkcHBBJ9luBIMemgSXp5HyNutyZ0QXI/zGoEI9MX8XK5BLl0+MwalUJBC8MO/jkMz7SHQZ6Ycg0NSddzUVn2LbwHlo8ldH1fH4M/8l4Y//m0QefyxtcaNty+TkTc+XM9fd7hG//jWbymYOTVuBMuyMhOLy3N21cs9eghDS9HF6L9pPH5X1j35P1j/yPVnz5P1SOz7TzEq14jpJHr3z+TJy95tk6OWvkbgGmTARJtI+te8tpBks9ZhrtRv66RXqBsKSkdkmR4Vc1441BAyB+UGgaAL43cd6pLF5dhoYwvJZ7zPYOThzA+skZhM6L2aVm9SMkG2AY9DSscpmadnAXIS/QVDcRALTzZFzao5Usne9Jnd1ZBFSiKn6kmrbsqUbgaih5VqnLgr6OHlEhyheci3x7BWiAaBePeoPRQAI28x/vAAV1SBSXzSUpRC03uR9wh8RwjZXMzDkjj9M5aVabitjOzWIA7Nu96f+XTru+aqEJmdrE/HfO37HS+X47S+Vc7tv8nPwZSxw4f2wa21YbtgwKj19TXLfwdyaYDSEq/Y94hHCjQ98Uzp7npnV6FhtnQw878Vy+e63yLq3/YjUNtbPOiafHfSpBGwQIUtkIc8x7h5o1NFeu0kA7wcTnHTRs/lcx44xBAyByiLg5RTUNxj9A4GZjpvxzvdevCKrVnQWHgWcbSUQIjwZnNDMEFGpfYnnMJyv7x8dD2YHHIbpgKg4gzLaAzQtDFqkT3B52yoLp11tvhFgcMIB/ZKmdOA5cObRYL0I/iAaHU1zOrMrAxgJtZ2/IL5QpHNBS8czx/NHvkBn/gqWnW6bl4l68aweVWKKGbocQi41yC7vAzokki4XI9QXYcAvVVb6dPWoP3ZYlivp6/rsf0pd77lZh1zYdo0cu+Nl3t9l9eHz2POsoxbHjtu2a8R594iMTjXI5x4qUBus96vz+EHZ9t3Py7bvfV7azp2cBUp8zRqp+bmfE3nHO0TwHyxQ6J/x8URjzbO1VidHJKvHP85L56MTBdx5cI1YKGbeAiGwww2BRYMA4xHdPAoJ/H1JQI2rEoo2Xymn6dviI3Ld9tWlJYCVQBC/KJLhmiweBJipjGrqFaddYAKAtguyggmVQQnBR43BCneBVZijdKLhhGPJkq7PvhcsBM2BjDGAnVdfUqfJ4Hj8TXlJeEF4IVKF39dqvj3MuUE/Vo7jOlxDq5eYUbn9l9UUfWFg3DOhppY51++8vLhdMCjPJQKR9kJ0j+qAn6+5PO+6a9lt931XVn30b6T9B9+eddqI+vMdfNEb5OBL3iRX1m+b9fti3VGvj+lrblLLRU1U/vN+/OrcE11gixVf/AYhg1u/9wVpvnxhZgG1eqE3vEHkXe8SwW+QB7wA4Z1Aa42/H8/4huWsHBIuoAQ71BAwBKoRAfp9rGakOyPNWbal4LKuBJJNA5ip4ZiwCOygg8GXBE0e/kfZFoKHDOg47A1WnI92kEZwfqa8cZmub/sXBgKQKxyyeVAhKaSUQCuRKgQSsEIJam1StWCCJbG1OxYdGRo8/Ab9Zy0ZYIApC39VT+unkRxcJ5NgDt6hk43gusHUkTyKPLsQMdLJ+Elwazzih2N9ucyqEF/WKC1WC8P7A5FkNghZDpLiTBjks79GzbrLvvpZWfUPfyPNmrMvKFFdTq3n1hfJgZf+iPr2PU+TyCdJe/C4xb798hvCGkRRIz98pjQaYoJm1j5xr1z9xX+VjQ9+U0JEJQXl+utFfvEXRX7iJzR0fGliHoTDtg2BpY4AYxe+3izVOq8aQAZON1inuymQP5Jw4pNCMEDQfp3ueNu3eBCAQEHK8E9zARb5tg4/VMxUaO16NFlxprQlEMR05IfnziWKdtfErcFPxaLrAKudF/cGfCkwNVPX8/pCudUKMMtCRJnolEt4d8gPiIuF8+nI51rkUER7SnqcdKbxfMpIPSY0NCjLP/mvsvKfPyL1Z2ZGsQ6sWi97X/WTcuiFr5exju7UU5fU97WdIXnOzgn57wfC+kwWppXLB6iW86dk91c+Lld99T+E5NQzZNMmkfe9T+Stb1VHID9Aacbv9sUQMATmFQGIGQoN3JBY2KCQfj2fiqMEYeUdl9PWW4r1Ql91moBxoicBNDmkTJYOAl6SZ9X4oc1LR85yIYFma72arCBjzHKCE4zVyxo8v1KSSGPe3bWu2dMQekRTXw4+Ca5Aa4i2jzRG+BkGy3CkkaXrMD1zLGSMF5Zj0VZyDKmMeOHKKVyTBLtoxgt5T9xap3OtW0iXXIP0rfro/561vm7vjuvl8Tf8rBx71l0azGHmw86WkFyzvkajZ0U+/3B5nwtyDm75/pflmi/+i6w8+NjM27xhg8hv/ZbI296mS/IUFzAys0D7ZggYAqVAgCVPGXO2qnWHMSV1adNCrwGhZAwimwPl4hOP9QcFB1YxL5l5rAp9ABnQMLkVMqgVCk7weIDCeT9b5HHweNsuDwI8rARQ5BssVGgtCBiB5DmXg00rmnKmeuF4VjbAXMrLk0mcuRm/CohmKnHMdF4p9mP+xiycj/CsP3NmJIFBPuekHoOpt/uT/yJr/vZPpe7C+Rk/n7jlhfL4G3/WS91SqO/ZjIIW2Re0f9duCMlXHy+N6TdfeFbuf0Ru+viHZcMj3515yvr1Iu99r8jb325EcCYy9s0QKAkC9LWsdQ/5QvxUW/5SqPiWO79aVldikQDGGBYfgAAWKyg+WO/aW59eyw0qL9KVWVEfwHQVyLQPx3u0gJjyGHfnmvIi9TrcDBKaEhyAj5e3TJGamhnwk8ujiXf9UqtiU+ti31njNiZP98xet7dc2EDYWOWDFQryEbduMc8Hf97qHqqjTCeUjRSjwUxXXq59aDO7NKUN/rG4SeA7iW8t666iEQ3KkKbI2a/rIxcl6l/W+ZXPytq/+pA0nDiaKCIWCnsm3ife+E5N0KyRvCZpEbh1W0QjrnU1mIH0z03ak0q0c8WBx+Sm//iwbHzonpklYhr+sz8Tef3rCw4WmVmQfTMEDAGHAOMZ/tUk/08V/M9ZYpA0ZWc0SwU8BGHcwLc7GNSYem6m71zvbN+4Z/XKpqhIPb8iBBCVI+NQLjZK5RjM8PljkCUZr1vdAYd/BNDyTc3hnZDyD6wcVSjrPTJgpib77VP2fFqdI/Hz4jr8QRIYSG3x7xQwS/SVe8J6veTvq5Tg09emL2Ixsy2SP7PWNS8syXfxAUyV5vqIPmeVaw/Xb6j1/ROZsODrgZ9im/oIso0/IqQVEzXPf6HSdu93ZN2ffUCan35ixqlH7nyFPPiT75H+dVtn7Lcv6RF47m4lgec1qv1S4fcgfYmF7V2uy9ChEdz04Ldmnvj854v81V+JEDRiYggYAkUhgPLokubNRJuHNSiT4L5DfwxZQ9lF8n20f0ErJL9hFYP7sBIT/fYUwZDKpSCR8BFydGJtQstYjMKhIgQwEwip+wEFQsZABjMeVBUmAyk+XYqFt1SRtl2/N6aemtd3AB1QoFjMHuf5zaoBIpKSwRENj4s6JSccpCTVh4sbRB29AAGtD1pJbliX3jzKQZVbqD9WXhVf5AehjX382EDZW4mmNxiYAam/ekNLQhWfqwI8EzwjvOAEeSCQwNQXj6WkeCZ4zsplzs5VV/c70fKYGtCk4/ORa6UHd577rD13Rjb8z/dJ51c/53Z5n6evu0MeeNt7pXfnDTP2L/YvN2/VaOaLJM7WDmABS/czT8nt//RHsu7xe5Ot0Mm3vPOdIn/wByVddzh5AdsyBBYmAvT9BKKinMpkEWRseEYXu8g3ByyKMVIsoeSiTJReZI7QS3m8AhJJ/01GjHRl4tI010wTVUUA83k0cI68blNrxptAGdys1JuEI+Sx836SU46BQcO6IXlocPLRTnJeNqnXujH4Qy5TTdaOPKTuz1beUvmNZQSfOjFY9uYGyRrbqOExnaY+K7kqghn1oGos06nambywWgcRyDxbJNbNNhPMda15+13Ti6z493+QdX/5IQkPJ+/NxS275YdK/E7tee6SNBnuXqf3d21MI3kXNgH0nivtJzf98Btyxz98UNrPnkg+au3tIh/4gMi7360jUX6+pcmTbcsQqH4EGI+ZEJMDFb85J5AvllVkfXesf3xH6YT2DbLlLIEoElaosop8xETVMoYhBC+SQzMbn8DKuUZ9ALEsuhWnqE/PhTHvGlinsq1i5V2oRP8sOAIIYFs0ES5sHK0d0SwQOVSgqERRqxKBibYuKNwwbORnL495NzHd4B08fi7bkAsvinmFH42K+pa1M0lgjGaoUMIxl7oshHOZOXnRs/qmMQsqVXqSbG0nhQprmhYqPDc42KIF5lk70zeWKILOgE6B55B7jDmA5eUggfOtCUxUMo+Npr2Py6b3/4o066eT0fYuuf9nflsOveBuzX6tmqIlLG+5IyaPHq+VQ2czm3gWEjwsOXfdZ/9J9vznX0vd6HCy6jfdJPJP/yRy7bXJfbZlCCxwBBhj5rJaEyQQSyB/TPI9Mqmf7M/FK1Bg7dQVqFwACFDCTbB4krUCCyjf4TaVkAVHANOBAvCwcBwhScjL0mCOZHFzGKhZEgx2zvJx7APsXDcr3bUK2Ue9IIK+Ghd7v3ih3ZiLzZ9wJpI89J6JVsng3p7BrDOomWcW9417AxnneQi+jPmWxjMEcSXYAsJKWc431T17lAVRZBkeZnee60C+F5iH48jnt04DPFb8299LTSCh8L67ftQz9463dsxDrarvkq/aE9Z7HZNPLQYtYADexr5eue2f/5fs/OZ/i64C4P9C8uj3v1/kN3/TEkkHsLLNhYcAffbRc6OexS/VbaecrWGsYWxbqWMN/CTo58d1URAUmuu2VPVdFATQgeG0g2hi0L4E1bFoBLvV3IdprleXBMNxslKCuXmdrqvJzAPVMHXDFGzawPR3wAVZpP+1+L1oZpHgy88zQ7JxfDcLEToTJEj2sp3Pvcc/pFo1gS2PPiBb3vNOqT/Vk2jGpY075fvv/pCcu/qWxD7b8BGIhHQCUIZkztWALxHDz/+rX5fOnmeS1dmzx9cGXnddcp9tGQILBAHcds6oBdClAKtUtQk0xSqUTcmAFlE54rxYirIRwLLaeWDFpRS0bNeqbyDkD3v8M5pU8cg53yETtStmYrJss/xJJckfbeShI2gAB1K0kSPjMU/Ni/bIZDYCaEfxj9igZlryQWKu5b7iYzlXCZI/ykLzeF6dbQsViF++5I+ySc+yWmeApX7uC633rOOnpmTNX/+x7PqxVyTI32R9g+fn96m/+ZKRv1mA+TsWK/mjdb27bpT/1nv/6I+8S2LO3P/ooyI33yzyh3+oau3ZUe8ZYLLdhsC8IgC5IsMEqa8qTf7cWvXZyB/gYEoeVreialMOlHwt4NQnwTP56QBcrHA+kTCYWVmHFbPuZdXspaa5wOkSybQkWLHXL/Q8tEztSm5YKgzigTaQm0/QSNURg0IbV6HjeaEhbCS7LFSIusJMy+NAUJATlo4rJh2MOz+fTyKdyQnFBCSVhOZzfjmOqe85Llt+/Z3S8thDieLP7r5Zvv1rfymDqzck9tnG0kWAtDEv+Mv3SOeJQ0kQblGN8Cc/KbJxY3KfbRkCVYYAKd2Oabq3crt6pWs2Y8qWVUlXtHTHBPcxHqGYqpTvn7t2Ng1g2Qmgq0Qhn542TwkfBApNEewajd/loSkvcid4syFVwe+FXKecx6LJWtVZ7y3JQsoZvrPsS6OSQeprZDA3+lfIsK4vDf53aFXzIVU8O2gSOcfNtvDH3K7JN1n6rdzCM8skhbqnC+sv9/UT5esz1vW5T8jG3/+NRIQvyZwf/rFfksfe/C5duq38WCTqYhtVjwBBIjdr7sAbPvl/JBSbDnxZtkzkX/5F5FWvqvr6WwWXFgK42xCcV2kyFUR559qWvPz8cSXyM0X4VsFs0cPB8ku1vWAIINo+zLz40pGoGU0OiXZH1ZyKM34+BKBUoJWiHLSWq9Q/AALIA4t2kKTCaLhYZ9Yt2FyKay32MtCu4d8BjjwnBAOROykbMcQfELcAko274I1K4cSEhaAQSCjPbiUnKaHREdn0u78sXZ9XDc609K/aIN/6jQ+r6W+P22WfhsAsBJYfelJe/CfvnpkyhuCQD37Q0sXMQst2VBoB+n+CPUmOjJWHOLb54gV7trR78Qa5MGC8f1qDHtMJY1STt2Zv0lqV7ri57KtqAshgvlbz6jFAs1wKmhtNT5Yw5QLQfN/ouYAPCUT7h2kQ7dSKjjov8TWpbUwKQ4CZVKpPHjNAcj8Gxcv/qLiny9UYPK6c29QVxweCgVgDkk6AZztoli7H9etO98i2d/2ENO97MlH8wRe/UX7wc78vk00tiX22YQhkQqBueECerybhLfd9LXnIc58r8p//KbJ6dXKfbRkCFUSARRgw92rX6nECgj7RppHPbz7kmo2tOQMLUVSg6Dl4KnPyaBRDKAmwHsGHSp1JIhsBnBc7EOZPFyZNo0mqSC41BADY54RhVDFcsMIMhUGfdqGtuqDRyQ3LWft4NplZsI2sUMVTyR+XRTOYKjw/7appxR9wvoS6EgIV0oj0xjq/FiT/JDFp8PkuZf1aHrpXtr37rVJ7+ZJX7ERjs3z3F/9Ejjzv1aW8jJW1yBGYaG6Tr//2/9W8gR+V2/7xjyQcVe3E974ncsMNPgl8wQsWOQLWvGpEAL96SBdC0Icjf6wk1trkK1QuqvtNMMEyKcDICFIOCwwrjmXKLIGmkqVEGfsZCbJpKZ2rEu2KKRGspFRshCRIA7AIiNiky7Mh3EAGQ0f+2FeuwZGy50PQQhF8gBaQh4DbW6ukgIeU1UlKzfbno43zec10i2rjewfRmk+B4OOjwlI/CH6J3ZoqAHM0Ec+ZOo5i67z84x+VnW99XYL89a/eKJ/5i88a+SsQ0D1bIrK8tbTZCwqsQnUcrhOYJ+/+Gfn8n3xChrqntX69vSIvfanIP/5jddTRarFkEaAfJd/e6mUN3lJr67sbhb/tmlHCLRCBxQ0lAJ/lEPzTMwk+4M7ak438ZTq/UvvLg8x07T3zLdo+JX8Ec0DuJpQZk6G70o6QlQI09TqnLo55gQxEMCOw/SPa/md0BoMW1PNtxFyIXtukYARY4qdbF9revKLJe9FdcI17+QousIQnkB+KGajzP6RuXs4o3Y+faymkZmJCNuqKHps+8B4JaboX5KQu4fbpv/q8XN64oxSXWFJltOvc9PLwbK3ykgIh0NjzGjH+33/zZem56Xn+Xp6xt79d5Hd+h/U4A0fapiFQOQRwoWLyTz8aDO5jm1XE6HNZjYP+d7UGY5ZDyESSOm4z7hxXl6Q+JYDlELgULk6+fWnuV5gzAWRdVCeYuJxg8oT5onolNQtZsCF9QfWsO3Yxf9J+SCAmQTcTgQSSHxANIM6skEDyBpoUjgAvPFrlExdGZwRbXBoozdrPhdfIP4P7zTuQTug0AotwpDskr33hwX7Z8dOvlxX/+bHE8Y+/4Z3y5d//J7EVPRKQFLTx4OEp7aPS37eCCirxwW2NNdKgC3bMh4y1d8pXPvBP8uRrfzp5+Q99SOTHf1zXdfQ13MkfbMsQmF8EyMXLf84FCD/scgj+fSxEERTMvvj7lysDBFwKX3LnQhe8djHbefkAQlycZgVwIS+Ayn5IHp+QmCC5W2ym3GLAdedAAllk2uUqZD/78H2EzY81xbRzD3mYWmSwQy3/TwJr0LCeVKINuebFhxQGJyT5l1b+I3lXcGjmneI5KEYily7Ijre/MRHsMVVbL9/9pT+WZ174+mKKs3OmERiuMj7Trebo5+/WANyQ+klHG+QzD+LaUHmCGg+H5b6f/T0ZXLlenvX3f+AvI/fxj6u6+aTIZz8r0tlpz5AhUBUI0KWiISR4FKG/LZf0awAKgZ4Iq1vh+1duYczI5CvImILiAdcyzwKrGGTTFuZFAIPm2rGAZnNscn79rMoNdKnLT5ekGiIwMBKWFlVTpwtyKHUdFmN54NauPnbMikgVwwojDJHVQqbpgND2cq+ZJOHMzDKB1JeVawqVOl3Kbadq/hqOH/FOHW1TDY1q/Xp33lBoUXZ8FSOwoTssz9oOI/UHlfrwmKaVapBzV8o/yGSC5anX/bSSwHXyov/1C1I7Piby/e+LPOtZIl/+ssiWLZlOs/2GQMUQwMWMyGD6V1aaWq6+12fVF7vYyXa2iqMMg2z19GpqGrVyzrcEySFL4mJtSjVTB+s4zZGDu2y7kghABpix8IBiKsanjZuYLrq1kvVaiNcCS5yAySWZLjhkPtqEun7fyUEvIgzTgL90UJ03UyxmZtpw+IBc9aMvT5C/weVr5HN/+kkjf/Nxc8t4TWwrt2/HvBQkeyElf/M/6T5+x0s1OOS/ZKSj20fg4EGR5z5XQzMPlRERK9oQyI0A+Vf7p82yzgrJZJt+t5SCVo3xhj78qeODVUH+UtuHidphkPqb+15aVFyp9pk3Aqxd2Fgf0kCGem/GQkT06Ig6l2oJXRrcACGEyZvkj0C58MK8jCaPQCZIu6dm1A9U7u4++TmdePFEE4BHdUWQKc9NgtqzdBBBIGc1OhjTgVcGP+QpzU88LDve8SMSuXLZO+Pyuq3ypQ/+qwytWJtnCXbYQkHghi21EpKRGdUdn6rT70FCOOPnin65sON6+cxfflZe/v6fks6Th0VOnxZ5/vNFvv1tkV27KloXu5gh4BCgT8UtzZPpD7ZZEKCU6wS3NKqLkY7Ll9Wqs5DFNIBVcPdIFfJ0z5CfLFr91/ApGNE0JqiyiTQybeD83yTcIPafHPKy0KPJY51iyCDUnPtFNne0fTgBn9JM9Wcvj3m/u84Iv8S1XfWeOh5z9cYVjV6kGv6zzeqv6HxsM7W09YEfeGleHPnr3X6dp/kz8pcJsYW3v6OpRlZ3+F3y5aHZRO/4xerqrvEH/Pz/+i+5uPkqH+yzZ30SuG/fwgPfarwoEAjGIQQb1KUEMBiwGvyt0G36bPp6+v+FLqYBrJI7iH9gj0aykrRyjRKFlRq+DrkgupVZzeaVTd6Mo0qquySqge/EJY3S7tVgHQTfQkwJBEJxTwj5P6s+h4T8sx/TM/vRFAYFcwGpCFjTGiFARfRv1zTxUxdG795DLNNJ82MPyvaffYuER4a9n09fd4d89f3/YCt7pANrge67Y0dENnaNysFzjXJWffxOXozKbVuTjZmM1ctjxxhw6BWqR8bau+QLf/Qf8ur3/Zh0H1Xid/68TwK/9S2Ra6+tnopaTZYEAoOB3HzNqqWjDz98dsRbiYnUMOOT2ZMy5wKJiXous2quMqrp9+qaUlYTMvNUF8yGaP5O9I56vgydql0isuiCRhGblB8BfDpw6uUlZ9khEkpDvndvaPUcitH2kWgUwuf8SjgWp+NzShRTyR815hySlqYKvimYqyGAjUoGXQLT4HFNuqTbjp95U4L8nbjlhfLlP/iYkb8gSAt82yd/Ixrl60geS2HWyIlLTdI72CT7zzTKpx5AI1hd5M/BPt62zCOBvdumCd+FCyIveIHIE0+4Q+zTECg7ArjhMGEPyuCouuFo34wFB63dXIUJvhHAuaJo5+dEgLVjWUUER1O3ckq2aJ6cBdoBeSGAXwfpY06q5hWtHaZayBkC/qN6X05eHJUzauZlDWJn4s1UeCv3T8tQjuidnyhHtYSUxx9LBEI8SWUTNAUT8LHjba+XyOCAV/ypG56tS3R9RKJ1pUkinanOtr9yCNy8NayavxG9YFi+/sRMknf/oSn59t4peeIEGuXqJH8OKfJOfvF//ruc33GDv+vSJZEXvlBk/353iH0aAmVDgH55n7roBDOT4EbVp646QcnVXwePDW5jxUGKPT9YVjVtmwm4mu5GoC7MWMgrtEaXvIEkEFxgaWICAJVpEyJGfkYyzEfUby8o4A8ZXF/f6Jl/STmTKtynoBZwSDuhJzVKDBM/nYgLzSdwxAvyUWbIzJSs9cwsMSuTGqa+55js/Km7E0u7Td12kzz8oY9KdMLIXyrmC/X7xuUh2bZCU6mojE3Vqr/vbL+/hdS2iZZ2+dKH/lVe8f63yqr9j4r09Un8rrskfu99Elq3diE1xeq6gBDAQoaZN0j+qD7Kkxb1zb6sgXjpUrDl20T67cVG/FzbZ45wbq99VgUCvSxs7WmG/GVvqqJSi7QS4MwfATdrVPOXSv5Sm00UGD4l+AUGtXaQP/ZjNkboOFzn420THqzCORA/EoST9qfnwphnvoD41509pQEfr5W63nPesVM3XCNDn/h7ef5N9Zo4vLo1QV6F7Z+8ELhli6qF9flAGiLjct0GX9Ps7Vig/0w0t8mX/vBf5MLWq70W1PT0yNiLXyaH95/xNDQ87yaGQKkQQDly+MzwLPJH+fTDk9qnr+2un9FHF3LtXONAIWVV47FGAKvxrkzXCY0QhKQcCSyruNkVrRq5kkjrgrIP8y8avnw0rRA4zMN8ktplixK+Do3u5TvblEXal3TCfWW26pYLYgZLEtEzmh7GW97t7W+S+tMnvVOjV+2Q4U/9o0h7q36fkruuj2mwiZHAdLgWum+TauBu2RrRFEyVx3N5O64GQTIUl91rxzUivNBWVN/xk02tuhzhx2RAE0YjTQeflhVve7OMDAxrf+YT3uqrtdVoISJw+tK4jKQE3bl2MBk/eHpIzqmlRrvlvAXNIf04wviwWLV/tM8IIChUqUD8CDl3D2OVVnNBVoulDDG34ltVpzPFfEgfDXV+ezgWozHET3BZi3YYatIl1xT+fph9r2hkcMFOx1NTsuWX3y6N6vuHRLdslKHPfEzincu87/yji/zIK25Qk/Gaha8tSjRqHja2rw7L7dvGZeuKEXnxNRNCCpZKyvZV6e5fTFa2p9tfyZqV5lqjnStUE/ivwio1SJumMdr2mz8vy5oWR/tKg5KVUiwC9MP4aZNuK1UYL/mP9GoIuXVzBW7g9422j1QxKASWitLFCGDq01NF3/ETc+sZVlG1FnxV6DwwDeAfgqYuXzmtgR+H1Nzw1IlBj+CRDobOAq1he1PECx6B/OFDSEoXookLkQ1//DvS8f1veafElnXI8Cc/KvGVy9MUEZUbN47Ky66HeJpGJQ1AWXehQb1pE4ODwy4ud+yobFfY1eKuPbOqjSkawIje39s1Rcwbbq2RN98Rlxs3LRy37f51W+QrH/hHmVSfWaTjS5+Rxt/69ZkNtm+GQIEIoJU7eGrYy7qQ6VTWAr5GMzeQmiubYCYmQwMTeKKIscwU2m9nK7/af8uOTrXXfpHXD+1fvpqpRQ5FSZsHpvW1uYkf5ncIHaaEK7q8EJFmkPIdGrBBLj80gEQET/TpcZpuYC6zxuX/8Y+y8l/+r9fOeK0GBPzr/5aYagCzybKmEXnjbXXyvf0sEVYY2cxW7mL9jeXVNq4Iy02bIV8z8bo4mPt5KCUuteH0BDB5DSV7m2tl5yqiGIkS9iUeX1hddu+uG+Ubv/W3ctcfvENCsajUfPjDIlerf+A73uGaZJ+GQN4I0BeTJo0sGZmEfpgl4VCesDQoE3f86V3/jIYQgkiKL7Yz5V/NVP5i2r+wepPFhHwebYEAmlQeAbR6JHcm07vz03O1aNR7gtaQzoM0MHRImYTOxXU6mY5hf9u935GNf/AbiUNG/+L3Jfrs2xLfs22EZEKef1WNXBpulO/uI4I429FL+be4vOkOTOizTUY9fU3y0JHKAbd5RUjqwrPrwd0ZmOZ6r9qjEYz1SeLn7tzKDt064b4tjM+eW18k3/uF/ynP//Bv+hV+97tFrr9e5NZbF0YDrJZVgQAT8mdOD3sm3VwVYi14Jvr6v6xf3iirdGEFXHKUG07na40p+ZudtD9XuYvtdyOAVXxHO9S3zKSyCOArcpgl+DKs8cjSfCzbh7kgl3NwPuSv4egzsvWXfkpqoj6RHHv322Xix99UYKPj0tU8InffEpGvPRGWKyO5tEsFFp/m8A0EUGgUa21oUjvkOnnsuC4H20duQz+JcZpT5nXXjtURJX+jaeoQlh8+Q/JYHQ0qJL4GcvbFYlKr2oopWdWhScHr09VVz6lcNWdXcA57DrzsLdJ1bL9c+/mPiUyoVvMNbxB55BGRFSvmUKqduhgRQLsHcSOlFoLLTp8meEaThz9fNuEcFCek2AoKSfc7dR++32gDo4s8uCPY9mzbxjCyoTPPv7mVJua5Gkvq8iwllIn8OSDwQSmFhEZHZNu7f1IiA/1ecZMve4GMfaB4H6kajRJ+2fU18pXHQzIwWj4SSKTqs7ZBmnzSWh8Z04AKh0iNPHmyQfadyqwZdUdW4rOhVtS/LyIr2/D5my3nBup1UKic9o8aREIzk9P6tQpp0ueQGqbjWf1+p6YWKAPURt7/9t+W7iNPy+qnHxI5dUrkLW8R+frXFRAbhvxnYGn/y6QaywtLotaqlYU109HS4X6TmuMvHVIQP1J4cZ5L64W1BgJJQMjFAQL3NOm+kkATHwGzMVbxk4CZ0aSyCNA14OfHf+WW9R96XzLil3Qvf/8XevG5RUkSJfzyG2K6TF356n/nLuqY6dmMy3XrJ2dE1eJ7l9vnrfRoc91X7tE0PW2YUtPVNyI/2A+Rrayg6QvKlK7z+519dXJxMC5XrQ3LbQkyHTzK3x5Jxx1nH1aVe2K1dZ4/4PCy5X797rlH5H3vq8q6WqUqiwBavyNqeTneO+K5zaDpI2cky2vmQ/7oryGABHM8o4F6Tx4f8P6IFEbjd0q1h5Rj5G/mfbWp10w8qurbJV3GhkTDJuVHgFliv7cKR8xbkxffvxIp+tJWvvNLn5YV//XP3m/xpkYZ/thfi7S2pD3W7WRd2OWtE9rVZddYQQJfeYMuZ9fXKPcezH6sKzvfT4jlsqb02rRkGeQrhHBBFNGW+hpTpYEyNB7RWb7WUH8mJxyflwZjcr6/tLNyomfvuiGiJuoMplRF8b7DkUSS7mTdy7918lJEl3+DybHeb6Pcf8g3Qd+sOQm3aVqa9KJpLQYa5YfTx6Y/pvr3jnSulG+87yPy6ve+RcJRfTb/9E9FbrlF5E1vqv7KWw3LggCuMofUt28u0be440Ai6VNqNZ0L/te480AgTTIjYAQwMzbz/ksltFDz3sh5rABRvUT5Qvb61czgOqB8gzeKrXp9z3HZ9Du/nDh99E9/T2I7tia+Z9pobYjJfYdq5dk7IFe5CJMuJzdT0ZSp2Az74+pTGJYvPx6T8WklGbnyXqaJqB2hy3Di9G7qN5N8Qkxb6/mbfWZcIkoC67R9yUAWVj1huTSI+Mg4eRt1sfchrp9Zuwnxu21HraxfRsefifyF5KFj9WpqAsfKy8NHJpUAhmR0sk7JHxj57dmyfCZefs1CcnmkQf0Uo94ExR1b+VqX7ornrr5F7nvn78pzPvJ7fqFvf7sfELJxY+kuYiVVFAFIHGvvklO10ODFuL7SmGznKtSB6F/Sc5GUn+T6JtkRMAKYHZ95/dWCQMoHP5G+Jy/6ZgFW4ghKPsEbweML2a5RB/itv/zTEh4e9E6beNNrZOJHX59XEecHQnJSgwS+9lSdmglD0tZAGgPY2czOMxqv0+Micwpu2L0uIvWRUXnpdY3yzSejQv/8omuhH9NsMK8a538QWs1V7VPyeiWdxy/We4EsN2yAxM28N9QgpmRxYiqsxF3J0bB42kPu4Q5Nju0Tv0xaNOoTke/sj6hmoPLkb6Wu/oFv5uhEjfzwcJ36TU6qf2K9PHR4UpOJo7WYqa0YnWyQLz2K2SodMcwf22o88ulXvVVWHnhMdtzzWZFBfRd+6qdEvvUtXZrAvJKq8X5lqxOBFazF2z8y6QVuXL2hJe/0ZX1q5TrRO6o92Mw+LNv1Mv1GTj/WcCf6t18T9ZPFoRTlZrreYthvBLCK7+Lpi+NeIsuG6WioKq7qgqkajsaMMXQ3rARS6Q5i3V/8oTTvfczDi5U+Rv7895XTZNZocSDasSO9dYLmCAJ0eSguX33cEZiILGsO6Yy3Rp2l40qIHGFKapa8ixXwD0TluvX+7Lm5blReezMnMzC7sgsorOBDo7KpOxuB0/unJLQhon8tIt36t31lvhcJybf2huWCmpznQ7bp6iP9Slj3npxSnyS9f9tENYEj+sf9nz0Afv9AdUZUlwQ7fea//64PakDIw9Lae0rkO98RIUfgr/xKSYq3QsqPABPl0zqJ9oIrYpoQX8eprauaPALGhIy0K6RuIfoWchaUi5oov1fNs2RVKJVguXFCIEibJueHlJpkRmDmXcl8nP0yDwhM6UuFidJk7gjQIUH4WDfSczg+O1xx8tf6w+/Lqn/8315j4nW1MvKPOuDl8PtDm/fJB2qU/GUidEoIlfgd6415nxDEuQjr475gN+Qv9bmbH9I0l7aknnvycoOSv9lEK/W4cn2/98CUrOvSNX/XheWWbdjnHcbp63T7dtYLTv9buepYyXJZM/ieX/2z5CV/67dE9u1LfretqkQAYkcfSloWfOwYpxBIHhzswKkhLwCDPKkEXzx1fFBJYtIci79175WJkpI/rq/FmhSIgBHAAgGr9OEXNIKpVGlHKl33arke/iV0WET3NukslWizUs4882knKV82/c4vJQ4d/f3fkOj1Vye+Z9rYfzqiaUrmRuoylZ1u//bVXGvx9aRE2t53YP61AYfPiS4nOKVa29wYtzWMyhtuE7ltO8sM5j4+3f2s9n1nrrtDnnid+gAi42oC/4mf0Oig+b9PfoXs31QEcJ1hGbanewYTa+0Gj9l7YmjWGuiQwmZdOckJJtqd65pLHuDIuuyUjRBAado/h3jmTyOAmbGpil8IUHjmjK44oQQGdTqzJ5PCECAaDNzO9I2p75jmgSqBw3FhNRBZ8zd/LA09x7zTpm6/WSbe+ZM5i4ip9m/vycoNho2qlOpsTnc9XfZOCRR/fmRvzqpX1QGY0L/xFLS2ckQ6EwCHz+HTpymp1Q8wH8HncrOaxN94W1SevSuSzykL7pgH3/ob0rde7eHIo4+KfPCD/rb9W3UIEGCxcUWjrGiv96JtgxW8on536VxqCMhAO0g/7ITJ+AZdoaOhNkkM3W+FfGL2hVy2NEQ0+TNadfF8//ArNMmNwOLsUXK3e0EdAQkkYGHLqsbEDGdBNWCeK1unnZY6jXlmh+PaMQQ7okpUrenpJ9T0+7fepTzT74d1gMvD2X3/GTpHZyYsb01J7vyqPVAkTM1OauT0ZU0lo6lHcPT2JaQdd63sWh3Sjpe0xSynROJp0Rl33POv61eTNP36+q6wbFohqnX1z4X0DI5BfkRzcsW96GKKhZwzr+GouJIjDErs47hwTVzNpQS8FNehj0cb5J69pPjx6+C3Yf7/PXQ2pvkJZ9ajb7hJ0+SIpx1srScgBCScxDTAZUTzK/oBMm7vYviM1jfIt9/zV3L3r77OTw3zoQ+JvPa1Inv2LIbmLao2oGFb3l7ntYmsCVfUHxnN2zJdeg0z79hETN/bqDfRdg0nGtdPqxX3iCOBGggkcPuaJtl3UldW0o7AZb1IRyJdWe7TI5Q6kSdDAD7ym1cmx0b6jkr38a5eC+3TCOACuWOsTjEwElWHWlPaFnrLIBd0ViQJrbRZoEbNWZve9wtSM+0nM/br784r5QvJgp/qyeT3VygCuY9/9k6WSpsZfHHwXKM8diy1DjWaPiXm/SVLDRIVfy9rEh84E9W/5FHFbn35sajcuatJ1ikByibkGRyb1Ojg8ZBHLg+ejcqF/tl1y1ZGpX473RdTskxeR79N1P3rTybJdygUVoJYJ6TCWa5BOWs7IIRRdbIPyyNHk8dVqr7lvs7F7dfKoz/6i3LLv/2FNlMnPe96l8i99+Y1USp33az89Ais7WqQlR1xTTrv0wi+E317ZVjXJlcTbFCwvKCtc+QM8odA3pbrc44vYT7Ez5XJUm9D6osIGYV8OtMvv4+pmdokPwSMAOaH07wfRQZzZljLdH3g4MM+7xVbABWA+GEmWNFRV3ECuFKDPpr3q/1RJbp7p4z/4s/khdjZK5gzKjPQo/3rbJ6pYbs01DRN/vKqbtkP+oEGUGB26tSI56aGGjUdoR3UZWWVK/SpFoKcfuMeXHT+C2MA+NbeKc212KDpdsZ0goK2N1lv/D7PXonpH0Sa5eNCGjxSp3kR47LhlpDmD9RF7auU3Bb7MDz2pp+Xbd/9nCw7eUTkhz8U+ed/Fnnb24otzs4rMwJurV6sAyy1dlb/sqXQYiLeqP2wI3+uevTPmSSiv6Wu3tHZUuct+VZT42sSg+dSl7N9TJZM8kHACGA+KFXJMWivzmn01OplOmKbFIQAUcD80flUyjxQf+KorP2bP/HqGdcBfOSv1bRVV5dXvU9cqJzJcptqlZRKJeqF9vGbT+ELmLljThxcwY1eXS2kt78yJvFKNWvaZ13qwuDNfUgv+A0+2RPVP8ggprTMx6Yvofr3slTcD37+D+TV7/v//Mr+xm+IvO51ahNfVv2VX6I1pC9l6bWh0WhODR4aPjIxpK5ulS1xtCN/EV3dAzKIJjFo7g3Cjm83njX4KY6ri4lJbgSMAObGqKqOOHVx1BuWVxkJzPu+MCscUHPB5UF1Uq5gv7DuTz8goQl/Njr+c2+V6E3X513n8xUkOofUVHrVGsieD87BMxHdWlxEK2/gy3ygR946whqQ5Gv7asM+zoUEqEAGz1xOagvLXOWKFn/6hjvlyJ2vlK0/+JLIxYsiv/u7Iv/7f1e0Dnax/BCA/B1Q/z1Sa+Urzn8QU7CeLkQVp5qLKYvgEHzembBj8cKPm+PRMKIx5HxnCSM4kiwPZHagF2Oib5IfAuZQlh9OVXUUqWFIaMxLYJIdATDq04zwzFAH1Y8ym4kie0mF/dry0H3S+fUveCfFVnTL2Ht/sYACfB+2Ak6Y06EEW0TjmJyRsDx1ojKmZ/96S+vflUr+NnYHu13/HZ6KzV2jRxR3Y34K5qoGnWXiJhua/Dp+5CMijz9e1fVdqpWDvDkSlg8GrNGL4LtHKq79Sh4PqfaQwJGg4BO4e32LNGvgHkvLofU7fWlcBlV7SBlM6I+eG1X/3gm5qH+sI0y+QczQfJrkj4BpAPPHqmqOHJtUU5Am1wzrmMHLQtbzpkCepaqp6DxXhMCPU16m+qR5syJV0oCP9X+smotpGXvfL+dM+OyO5TMWr9xr2alLkF2/MaT+dCNeFYbG69QTLf8ZfbDetp0bAYI/BnU5uKT4Zvba0ISauCJeipjkb4VtjarZ65U3RuTxE7pCw7SGMVcJrBddr9qV9UpK13XWKIGMeausxOJhGRgLy7BGbZOEfBQLdYVkuHu1PKIBIbf/0x/ry6DkgICQ73/fAkIqhH++l8Gfb7cu+3ZeAzh6Lsz0IU5XBhrDw0r4nFnXHeNMwASJbF7ZJBF17u3t1wTTquSYmIrLqmV1SjTJNhCVDnVPuagBJkQV21q/DsHiP4NT0eJLsTMrjgDZ11F1M+PBB4O8R2gFTfwUInRIjx8dmJGBvlLYdH75M9Ly1KPe5aJX7ZCJH39jQZeeiFbutdy4PKTRpj75o5KnLhVUVTu4CARYD9iJGrOmN+Oyc+1ciX+NfO2JKbl6HQEjuTWKL7o2InffPCGvuGFCrl03qmY3gk549lhjekI6GkdlrUZev/bmSXnFjWENQPPJqqt7OT+f1OTQl9dt9S9x330in/50OS9nZc8BAXz6nHYvVzHkBIToBQViSBnXbmzV3Tp50THtyvCUBnoQZVznue306/de1fah5evp9fO5Bsuw7eIQqNxIU1z97KwsCLi8ScyUmDH1qH/gUhfMA2c0CoxZ6XxIzfiYrGN932kZ/YPfVKtq7sHYHc/n2OTMDjL4W6m3ryTWDvZLPqORpyaVQyDo+7epe+7XxT/wm09OSl+OJe/wRexqcWo9n4Q21o5pQl2RXk1PM1PiXh7G519VueeSgJD73/E7yWq8//1+epjkHtuqEgTw0yPDQi7BYwliF3TDgThCCDs1lQsWG9YNXr+8wTP7ouU7qObd/bq03LCG+GMKPqljXKZ0MW48zFUP+z2JgBHAJBYLbsu9CO6F6tMgB16ipSqX1dePpKKs+FEJSdfhrPzX/yf1p096l5984Z0y9eLnFlyVeLxyA21vSiqR+NJ9fAq+T/me8NyrIvLmO2Iauct9hWzFhTWXkcdPoPXzt1sbxtXZ3ds9p3/UMytnihiI4ifvF/newQb54WFlfer7yYopy1smdIAm9Uxjol6uMnURXAN8suj2lfOz5+YXyNndN/uX2L9f5D/+o5yXs7LngEC3Erf2JudHnL4gxiu3brA7Ah9txix8/FzwBr59kD38A93Y5o7P9unGw2zH2G8zEShBdzOzQPs2fwjwspy6MCabV/kzeLRhRGjhH5iqdp+/WpbnyjgWH1XH4kI6jLnWJLXDCQ/0y+qP/LlXbFxntaO/r9q/IqStkYG2MjI8zoDuiInmA9RE4xcGS3f9kHb6tbVavl7Gz9NXmXZV01WWtxKdOCUbuurkhbuj0jdcp/kMdVWP5iZ5/PiUuinUyouvhbZNyu267u/39lcmCAfto4tGJvXPmUtRebn6EK5Sl4DlrfXyzb21ahZWf6yBmFy/KaKO+8wO8pshhFTDeO36iGxeEVdS6z9PU5rrsG84JMd7Y3JC8zYGtZ9p75e+Qw/95HvkNe99i//zBz4g8uY3a56P7EQjbVm2s2wIQNbG9Q9zLSQOH/V8xfkDst49CaUhhFd0Im9SGQSMAFYG54pdhYjXFWNRjaDS9VvVNEykFSr6VR313pI9hURtVazSJbgQZt9Kkr90VV7x7/8gkcEB76eJH3u9xK7Zle6wnPvCNeMa3FMvFwYqoW3BC41VQPxOd2VHjRw8k7OKeR4Ql9fcEvaCCsamauWzD+VHHvIsfMEd1u7Ny6aU/PkEb9fqMTVvReSSJrL+/sGwPHfnpKzRFT9I+oyGrlKCb99Nm0SetS0mX30iqv5YjWpqc4m1/WfwocP5ktK4ktla6W5BCz9zICfX4ao28f5u3xZWU3O9PHREo/MDPpGpbT5z3R1y6oZny7rH7xU5csRPDv0zP5N6mH2fRwQI4uCP9epTJ8X5VgsieF5z3KINdKQw33PtuOIR8G0PxZ9vZ1YZApAg/CQQQujJ1o6TLQRpIb1YzhxAh5DLrM2skRxQ8ymh0RFZ+bGPeFUg6fP4r/38nKpz7YbC/AbncrHh8eQ8sLuldCStVqP5vvN0XP7z/rCSv+LvDyuVtOrqHwtV7jtUI9/aV6/aPjBIdrkTUdWYTPMqNHEjk5hdo/KCa5L3oxJtvjwUkydP1sgjx+vkisYDHT7nyF9hV+ceveamiJI/LSSnpjAqK3QZvFdqAArBKGgMM8lDP/FryZ/+4A9UlTw//r3JSthWKgL00QRpFBuIyBhFgAeJok0qh0CyN6rcNe1KZUZgUM2h/CFoAhFmZucvVzgdinflmf/woqcTTLgsdUdEM9G7+PLt6xmUpzTdzV79O3Z+xCOynM9xwXLQarLU23xK9yf/VWovX/KqMPn6V0ps88Y5Vae5Pj1Ocyo0w8k9frW9X+vC44plhgML3I0l6MqIa0chBC4ue7ZE5DU3h+Ut6jv36j0Tmt5kXH7kjri3Fm6B1Zj3w1nSbfPysE5k8Lmr05yLvsP8xcGZ3e/9B33y3aXL8hGdXTmpUfNuVJ7RhODFSpdqEV95o7qb1PmTz/zLiavf4Yi86TaRq9byDrvnJVnC+atukhO3vMDfcfKkyP/7f8kfbWveEYD8EaVLH1yvSodi3Y1YwWNS076YVA6Byk41K9euJX8l0sJsXNGoA0mj90JCCIkUJhM7L2mlhQANsrVf0cXCmSW2NkW8FF/kfFrX3aDru6rJWskdSUExXfPfVGA8gvQNq2kbfxPIX99grWxd3eSZt2lLZ2ttxdf5dRjWTOjyfP/w1+6rjP3yzya2i91oqA00vthCcpyH6e/OnSH57r6Y7F7jDo7LC68JyxceKf/13RXTfW7oIh8dZsSkhNSkeMvmqKY84lkphFAmy5iPLfwgtywf1yWq6uVeXdN4UtP8hLXnXdMxKm+4rc77/jU1vV7QyN0jF5pkqx57+7aoOsbratBV3M62xhrZsjIsa5YRJcy9Kn7wxgXh+g2Tct2GWum5FJHLahYnr+HIRFwatb8684vvkY0/cY9/+/78z0V+XjXsERu+5uN5Tr0mkbykccHnnMjdYq0x9O0mlUXA3qDK4l2Wq/k+QzNfHpJmHtDweQjgBg2rJyEyPhb+Woy1BWVwL7bSmGbRzkH8uH7QOXhcCZ0T1jgm3yvEr6UxrMelH0hokxPOOXhqWK5a3+xdAwJ4to9zk8e4Y8v92fX5/5K6c77j3ORdL5TY1TvneMmIHLuANqR8bakNx+Ul1+qySjIuz9uN6TF5vWbV4uxe1yj7ThV/fTwL/bs4m6ihYXzxteqeUIuPmLvXnOFPTHTRJ92fyRQU0+AJksG68/TQKhfWJz1+sT5h7j3fH5KGuibVdois0zx7zMdu2dokP1ByiK/dI4dDcvO2WtWAxuTzD0crQALjqr2pUb/TkE6udELWVaPpYOLyjSdn3n8ilK9eF5H1XXHV9HHvMt2j4m8IRHBjF38pZWzfIZMvfp7UfvO7IidOiHzucyJveEPKQfZ1PhEgEAQfdJOFg4ARwIVzrzLWNDW03h0IMTyhCZExA6/pavA0aMd7R3SWViebVDtYzoAQyB9paU5rSpYJJXSODri6BT+dvx/7nOk6+HumbToc1wYvl5SSwDN9MwetTOeWbH80Kqv/318lihv71Z9LbBe6gWnw4JmwPNnDwFredrxij0aGi69hg/ClynXrJzUIJVxUIMrazpA8Z6dPDr53QNe9Daxbu2N1WG7cNKVBJzO1e1y/ZkablZpG63XyUKPpJaa0rm5gCSn5gyDOJpapbaiW72jxfvhMkizdfyi5DdHubtXfD9E+v03EAz+oRDC8I6JEMDTjt9K3KS53a6AOkbpMwEY1B+XQmPpj9asPsY4OrMTg6vX6W3gmkxO30tcle4njP/9WnwBy2F/9lRHA7HBV9Fe0fwNqBg665uRbgeb6iJfnL9/j7bjSIWAEsHRYVl1J5B/u0mhSgkGIBF65rF6G1M8Hcyqka72aXllvsRxyaWDSI5/ljMxlgXAiz1iSCGlXs/LZvqTuqRztSi1z2Te/LA3Hj3i7J59zu0RvuTH1kLy+n77cJN8/AAlgkC0vudm2KiyNkdmkb2ZFp+RFV2OurJcHDtfIKQ1SyEdWd0D+IAn+8c/dReLXOk+LVRuG2uS6LmbPevnSY0pGAmuEvvG2eo2OHZfJGClAFo72LxdmSS3r7HueJIqzf8tVbr6/UzIBOn5KlpgGcYS8SOQ1HTG5Wt0CJvVefOoBh3d+z0C+1y70uKkX3CnRndskfPCwyA9+IPLwwyI331xoMXZ8GRA4qRYe8vcVKoxLWIhM5gcB3+YyP9e2q5YZAUges3onyzTb+toutb+poGk7q1FXQe2bO26un/j4sV5jOckfdaTj0IlnQtB0tuhfJWX5Jz6WuNz4L74jsZ15Y/ZgfuYK5A+t0OzfMpdT/C/Xrg+AlqOYWg0KuXPnuKDVyyWt6hP2vKtox0yiwLJiBJe4VDPZyiEljU/+gkfVeClkHj3eKF9WYmhSOgQgfsl8fDU6UQTf5P0L1fh4Q+znnXirO8n4z7012fgPfzi5bVvzhgD9MEqFbFaeTJVDY1jMeZnKs/2FIZC7Vy+sPDu6yhC4pERs7/EhOXJ2RE2xMV1Yu14TdvokkMCMw2eHvcCMUlY7rIEdlaEy4kUN0y4Ec3B7s6/RjOjMEu1mRB2UG2rLQwrre45L+w++7V07umm9TOnKH7lkMqZrWyrJcTI21aCJf5150+0t3+fythqpTwmuyH21uJpts99RaMRd10MWIIDFy8PHalXzN/P8RlX64SN6SLXXqb/NPNK+zRUBfy3gZCkTU/4Qcf2m6hgqJn7ktRJd1uFX8BOfEDnj+94ma2xblUSg2AT8BI6Uq1927a/cKOSuuPA+q+OtXni4Laga4yPYNzQhT2taFcL116o/IKp3hNnb0GjpVfBdujRQJYQUBGgy8TlEJqc1nkQUD2tEGhnmccIvh3R/8l8SxU785Js1xVvuC9WGJuSJHiU5SvzODTTJF71o2+zkKnGREmzcvCV3HdNdpqV+TIljul/8fc/bXSth1fTNRS4ONXnpSCjjNl0R4023i6aBicprb57wEkqzv0HJYKnS1FCeyUwEHjnKZCQ5YeofDWlAUFg6GnOb7meWVKZvTY0y+VNv8Quf1Lr+3d+V6UJWbC4E6FtRIgSD83Kd437XuXrZA/ZMs+jQzvxZ3GiQuTz7pYoRgBSRrBPyFyRoRAb3qabQkahSNKGSSadJb0Oia+pPh5QqkFw0gqWUGh18ln/q370i45qOgpU/8hPyGMbkcw/FNEmyElQNEKicxKW9sViSFpc7dqZngJCyVe2zgzoKaRdJkL/5lH/vGnXusLl7dJpQMjkJyYASkRs3R+R1SgZfvWfSIyWFlF+dx/qTlmqq22S0Rh47weTNJ4Hc2+vWQ/6qp67jP/P/Ce8cEv+nf5IxVQvj0kIi4XK7nXgXtX88BJT/Fe1CZClfquMhSt+jV0fdrBZlQADyB1HCF5CcfLyIw7ocwZFzU7pYfb2XO3Cul6X881cqm60fB+RL6ocS7Fha1AQMvSIvFYSU5YqCv8+lnR3f/orUXuz1iph85YslvnJ5HsXVqNavUf0j52YmzeNCaQ/ZuorXvXhNzqq2MXnFjQRjaMevvKxvsEaxjcs16yFpvhk+7YVz7MQM/uVHwcQnw2uWQT4cUY3Id/ZFNFWNLnHY6jTVSmSbKkmcczSgiJ/RcG7uHlPUwhpgUysPPjNZ4clA5kofPBP1otHJv/fam5PE3l8ycH6e3WBt42tWydRLNCXMV74lNWoCPvGJL8nAs1/gHUL/1t1WmTRXwTottW0sLyTtd9o/InnJy0rC/nSZHMjSYOS8+p4SI4DVd0/KWiNI33HlLevUDOytEqL9uyNFkCgUZSRmdulViqkMgSWuzGLOL/QcfD3okFKFDqdNFxgfVFMwQp1KRQKX/+fHvDK9ct+q5t8cEpda+doTIV0ZY/4G0LmTppgm/PUJZJO2dxnpA+cofSNN8vUn0PwlCd14IA/ko8drNSVJVH+NysnLDbJ+2ZjqojRVzon5w3GOTdb8ixHp8pZLQ7cZkw2dk7LhtrA8dapOnj7pSO5crzL380f1tuw7Uy8dSrbJu7jv1JQuyVcv127UtFIdaNUrO8kLtmjiza/3CCD7uj77iQQBJM1VU31L2bIbBOuwVLcJ+DirFheXcxVyB/kjK0NwJQ9ndWHybeSvOp8WI4DVeV/KViteRF5gfAG3rGqSUIfIwdPD3guKz8Q51dyNaMLl7Wuai17Sx88dVrYmzCo4k68Hpl8InxM6KtdBzWVGWne6R9rvvccr1gv+eN6z3CUyfl4cqp1X8kfFhkarx4ynyzjI/jO18oRH5JLkj3qScmYi2iAn+0Ia+DElN+mycASX3Ktpcmo1txErmJBI+nMPzyb9nF/Nwnq5XS3ptLBRuXbdqGzoapRvP61r8c72ZJiHZtUo0Q4S0hqdTMXlvoM++W5rVDKoa1Z3tuj0RhOLE+ldKVPxqdvvkk3NbVI/PCDLvvFFOTGifVhTs4fR8fOjmv6qzlsdKPj+zwOAaS+JhWQuE+y0hVZgJ9kd+nUCe1JzywZdfFZ31nurS7EKiCOFVCd4TAWqZ5coAoHk6FjEyXbKwkXAqfBrlSA1TefRc63BJ7BHl5KjoypGikkGWsx1iCRjVYjOljppVU1fY13Sed2Vh8bTCc3B+ZhBYS4z0mVf/bwrUib+vzfkDP6AzLAE2HyLwjXPEpbB8Ub1MWuU/7y/RslfkFzMrNqnH4x6q2Kw98DpKfnhYfzS0PSSGFrzGNaOCfkMc4uuH6zLld24KSK3bovILl1vlgTH8yXru7kJmd+rdg22ePWemYR4vuqa67oDOqG4V8kgywZ++sGYtqoywJIn8p6jYTnynFd6VQwr+YMEOmECe/LiqKelcn1YpfokV4dsnyPjilWRfWu2ckv1WzB1mCuT+j6jGSOOnBueRezcOuyD82jdcPW0z8IQqMwbW1id7OgKIQAJ2ntiMC0ZuqBaQvxp1utScoVKuc2/rDu5SlPZcJ1BjWBu0wTQ/NFJ0Xn1XBjzgkFYZzhoGkZTSL/LElyYJ5iFMzAUSgY7v/q5BCSTr3tFYnv2RkTJTq36U2UmOrPPKd+eTEvsle+KrmQ12Z6s80yIyRVOcpGc5O/DqlgavpDU9rHay/quJl2lJDeuL71OJwjNI64i3ucNG/BYrNUVLyJy8KzIpm7VdKnp9UJ/ZmI2o4A5fCHxc31tk2zsjnlk9qL6UaKZZQXDZtUOdrZAeGlreepCBPXazrAXTb1R3Vb3nRI5cj43jvk0ORbXPILJ25bPKUUd03MJ4h+XQy96g+z+6n94ZXR97r/k0mvfPKM8gsNYMhJfYHKg8jffQh/FJPSiJsoHqm5dm73aBMsJQv9KmhcsOqzDnmnFKbSCDTr5JgjHZGEhUPUEEFMdGhsGc1TMJqVFIBv5gQSuVX9A7kEhUs/ipmUStHztTbU6wx/zHJDppIZ1IL8yHNY0JSHP9IM/Ch0tHRPBKGg0gwIRZLCKK/lD8CGkidmwcOfXnTkpLU887H2NXr1LYts2u59mfUbjIdm1Ju75XGqczbzLid6o3LaVe1kecpGpgT84WKtmXQaVwp4jyiO/4LN31Xrr5LryIYTf3psfoMuaJ9xpMz5ZWq6tYVJumb59L9hdp35uEbln76Rct1G1ybo27rieOq6DX736Nqm10yNNEJxh3Q9puzQU16UOk8R0xgWyfHns2JQ8dizLASX+CQxv2FSrmtDZfns3b6lVx30IceH3JrWaA6Nqnm9K3Vv67w3TnOnc7ptlYNV6aTt3Utru+47Unj8rkytXz7hgt6ajwkQZNLlCcEaU0FSKfI2pRjKkE04mnxApJp30raxiBCklb2qlhH6Rbo/JfapQL/y3PRch7TMx+fJfLqGPHdNVe8zkmwup6vu96gkgg7LnVzBtyeOFIW9dULNTfbAu/BrRQdAhnFNnX9YRLkSYcUPUXIRYvudyTWaSrObB+dx3NHp0SE4oEzMEQtQyvw3oLJU/hLWH0Qai4VvX3SjtayKeNvCUEkbWDnbiyJ7zBfRIoEc3snd4y77+RVeETLz2ZYntdBvkxSOJ8cplDaqVTF473bGV2BdRIlNu8nfsos8ANnT59+Nob0TJX35kLR0Gy1rCmucx+z3pbAlpnsvZ+IZ08IL8zBYmKGDhazowKY5rwmM0w1zvqjVEvgbPcxMahsOINE3pZEMnOfjDVbtEdGWPN9xGa2dqQYP1LgX5o7zjFxS/jcGSy7Pd3jiNu87aDr3gbrn5P/5aajTX6bKvfUF6f/KdMy5KfwD5IgG+E9atJTCsq8zRwkTDOnJEfzSm5Cp13CJDAf1VJYT6sD47BLhDE+ZzXZIx92nqLCbJuMswEabfL1TQtJosPAQq8+SVEBeX5w2fLzphvhfzwJawSouyqLlgira2s7VWTl/K37REXsJNKxq9zjoIKPkJgwQw+BsmnlSh3u4ZYWZNx8+koVPLZyZ+9Nyo1wEylKMxrK/THHPa+TlCmFpe6vdlQfPva+5K/Tnt93ZdIq0a5M5dvO5JMl2OOnVpQMC3norKA8+40osnf5QAsesbcmWl/7xxc0j29mjqoRQTLsTm6IV62bLcJz9RXZO451JEHjlCyhWRNZ213gSj1zsv+aw+crxBtR+iGmS0yJi+anRCEdfI+bCSHIim+0tfn2raS92/tVeX6NtdL7WzonZVy6lktlTrTz9zZkpu1AhhR6zLhUNdJEn2j975Co8Acq2O7359FgFkP/6ATCRJD0PwG4FuSFAr6O0o8T+kpXJ9UaaiybzQ2hgua13oEzHPci1HQLGmXd3cKoc0lcsMy1rh3G9G05hI56M1nHGSfZk3BBYcAXRIMZsZHtOOWQf5uZAVV559zkaAl7ldgyyKEZabG9DO1qVgyVUGs1Fm6kFB20eC52KFTo+/DaoJXKlEEO3i7g0tXid4Uv0EWSYvqBXMdZ3ac2ek9dEHvMOiu7ZLTBemzy0hOXo+SS5yH1+eI3auCWsevcxaoFJdlTQxr7ulVr74KDkCS1Vq9nK+9VRmkvng4UlNrVKnpi31D/V4A8f6z9mZDObbZ84G75d/7IuurdV0KBNKAJ02MHudqulXUrh8Sh/b2nCtbFgekd1rNW5J1/j94TOQZkCZ+d4VW3cI97c1Z+MLd1NCEMNiS8x93o2vukaGfm+1tFw8K60P/EBCgWjg4NlnL4+pJhnNri/lXoYMojWk5t5cwgpNkQtqrWB1pjKZgi8q8TujmtBUQTuZzhScepx9X7wILLzeLHAv0Nps0CCF3etbCvZTCxRjmxkQYCZXrGqfjgVfvHz8ByGaXk7ClHpgrijUjJxShA56IS8R9IFTQ95SeCQvPXRq2DOFcCxEdaumw8FXaNOKJu/P88tJIaMcG4w0nHxtPtq/GnngSF3FiBB1TC/qA7axciYaDb2Rl14XUkI/R3VC+sYUuNcnoqVYcSUayyfquMDqVfBwIqiPnIt6Ubuk0EnVmJaiKmhTHzpWp0WVcmiJyHldNtEJ5NVJ30iNnLjlhd7X0MS4tN3/XfdT1s/G+lLWL3kprAlnlWztPzmUd9+FhePA6SHPMpEsqTRbvUry8JcOCv3teibF2vdtXtXo5UoN/j6XbdP+zQW9yp9bnreggu3ArwKiYFIeBE5fGlNT7pj6RyXNLvleiRQzdDK5BNNMuhQuhWh2M81kmYmj6UNjjO8Lfi6kiXAdVe8VnYErSdysJHC5RuTxt211s5cjEV/GoLR//1uJrxOvemliO/NGXIMuxuXuW0JeKpLMx5X3l60rWREls5asHFevj4zJj9wWk5ffgL9cOa5Q2TIPn1Pvv9BUlZDayra90KtBMr93sE4wubOkHD6W/GUihSRJZylAUgQNTzTqKjMN3ueZ/iYvZdB/acqglvok6QvXTOnz7H8noKbnVp8AUs/2e77OR04Z1VQsBDmUUgjqYCWMU9pfEkyRr6DIoD4EUpRaLurY6Po6VzauNrjGkP6L6zr/afd7sZ9eZgW9MyYLB4GZI9zCqXeipqfUv8OkcARc8EM+Z2I+wJSKRo+8e4XIGl1yrkH97CBgzHSZfdZqMIKfty+kpCwmm1YmZ/eu7Cvq28k5+Uo6suiCSiCvqalp0PJRF6flDDpiEylH57hN24uTNlrDkEYItD50n1ed2IpuiV29M8+q4Ws4JtdtaNB0G3meUuLDVnbMV6cc1bWHyWtXL59+KCaxiq57XFoQSZVyvUYH37wlLA8ezv+5LG0tFk5pmNc/+UPq66ds8WuuwWHafSxrDemKIv4zeUr9hH1Xgczm0g3dEe0zguQoJletq9cUNv45p69/tkzV6RKFqgHs+O435IS+v140Qxa4vMDCEr4W9DGHz47M6meyVGHWT/gqoplMNxmedXCeO/BzHk45Ngo+KpBUyGophP50QsvD1YJFmVJJZymuUaoyXL9fqvIWcjkLngAuZPDns+75Bj24OnL8Ee3g2tVXD79ACFI6s6073n1CNMnbx1+ndhKNel4+2fkhXi4flSur0E9mpGs1BQR1xRmbzs4RRdIxoOHjOzPvw5rkdKO6E7AqCpFw7tpoB5Hmpx+T8PCQtz31nNtzDjDegYF/SmGCDBRX0OZ8Jj6moiwZ9ryrmuSepxc2cbo4GNb8g1ElgAXBbwcHEGB5udEMvpeBw2Zs9lyMetGqezYld1+9LqYEECKjuu2GRjlz3R2y4eHvSN35M9K4f6+M7r42eXCGLYLCmlO0/BkOzbobs+8JTZwfXAUj6wlpfoQwkW+PSTLm2VLJppWNXh8XdOXp0ZU88P9jVaRCx4F09cLNBjcahL706R6/n0x3bDXsq2ZyWml8jABWGvEFfD06i8tqQuUPYkd6mFUddXlHsBUSUDIjMq1IzAjwIMot3YwPjSAO2EEhqfRUyprC7ntLwLdo6rl3BE/La3tgtITqhryu6B9EKpSVbfPvIrGybVSDKOp0OTxf+1BAE6rm0PsPTcrV6+gyM2urqqayC6Qim5aHdDk5tQroUnIXBkLy8JEpgSQ6IXH1K25UPWLNTEtPuGZcz2uSp3r8SQV+gBBApON738iLAELc5kIA6Q8JsMDHrhREirozMQ0KE1TckYuNWMYKQh5ErCnBOhZiog7WJ902Fh5XP4IyQzpnTulG051m+6oAASOAVXATFmIV6Ewwv+NkjGZvhfr6sRi46wjm2qZ0yxEVW2a+Mz5H9tJdp+3+7yV2Tz0vXwIYkb2n6lQDKYmBKlFIBTYwt71ij3bOMl6Bq+W6RFyec1XIC0DIdWS1/k4QxeNZlq+r1npXa702KPm7fRvPpj8pWLtMVym5mdV76mRgLKQBK6IR/KwuMpK2CbvXTup7RXSzyO6fep7IR/zDWh7xbM9pzwnuxP1kLnLm0viMyOK5lOXODfod08dC3PwUNvhTFie427C2O1YOZwEprqT0ZwUD/fD75nrBJTjTn2V7qwEBI4DVcBcWcB3QpJFXiz9Mu6vVuZicfsGUBvjUXdGUMLU6O2zSJM/BDiNd0+k8cE52wvFaxLz5ldSMjUrLow961YluWCexjetd1XJ8RjX/oMj39lXa9EnUb0R2rmG5qdJem0TIUxoNSyRmuAZVjT945wDC+7m5bkwDQmrVTyifo+2YxYwAPoDP2sazmfr8aEhIeFy6mkW6tqK/zhx5TbT5LVubpHcgJuGtqyXW1SmhS33S8vhDmqpR+w9UUVkENw/6pkInrZAy8gmymkeppUl9AN1qHWc1BRbXwJWlXRM3Y2otVvBx3rG2WY6fH807Ojmfa9Hn49PtBEzBppolnUWomutbzroZASwnukusbMjgCfUvIXcffndoBnE4vqTrXg5Pr4XGwuFb1F+EnHyZhEz9mC1wYKZMzBit2oExE+aPqN5KzjAhf6SYQPLX/nG07xDNViXlxZqzrrslvdak2HrENKLzoaMhOdYLMfcH7UgoIq+/VU0+NfkOhHF56bVh+cKjM81cxdbJzqtOBMg5ec36mBIXVr4I67vPSi2+FnxMyT9m39s98peLKJBZMDkRTNfaLSsm5cxl7Ut0kjh16x6p+8o3JdJ/RRqOHZaxrTvSnZLYh8/e5aEpL2l9YmeWDQI96NvwpyulCTV4SczJrMwBf3V+e1P6uoyrb11tY/EEkGugXUQT+HTPYMk0gfTNRBUjREHvU/+/fC0u3knz8E+116+SkBgBrCTaS+RapF7pH+FvtqqH4I79modvu0bYtqipIJ2wakc2adHM+S0DYU1PM16Rzqb14fsT1Zm687bEdj4bV4ZTNRz5nDW3Y0rtf0MOtu88TTqJmYMxgS3HL0Z0pY18CaAG09RrVPBNjfLVx6eUHCQ1B3Nr8dI8G/2Yf0eSOEKurlqrZIicf+fjcrQXkpX8vZxIreoIabBPVK82mrhMXXhS6po08lf/tq4IydhUnTREkmbfxIFFbvhaQH8yGb31BhElgEjLYw/mJIAcR3aDZS2aJonIrxxCSpV0qw/lOK2gn5nwTqRZ1pB0Zy0+zyqovNSDWT0LwnbkXGkmiG4NYKw79O0oKbUJVS2Q1nKYwqu60Rkql34EznCw7TYESoEAvnakVmE2mokEZrsOZgeiikuVwiDbtfitad8TiUOit9yQ2M69oUuRna+8tuu+g1Oae5ABba7kMyI/OOjW8k0/QA6OFn6N5rpR1RzWynf21ZQlGXHu+1LdRxD48PyrNX9iRA2gqkXD3O5rwvg35KXTIcl2SM37mOT/6/641NXWCEv9LQ9ofrtaRE2ktXKyLyIPPsPyd+nvYanQOHclqgNrSDV/mUqMKfkrTdqR4BVcmWgAnaC1v/jGH3dfM35imbioFgryf+aSWiUO8yVDanamzyuFkMqrVCQIbRrrrJO6hnyuJ3VVk7n3O6VoZeYyjPwlsTECmMTCtiqIwJSaeUm5QqJo1sJkZprNLJxaNSJ8K+XL0fz0k97l422tEtu0IbUqab6HpX+0Tn2TVBcygQamsjKu6R38/Gtzu/b3lfydzpGyo9jmobm5cXOTpwmsLDrVebWtK3GZqNHUJlPyqj082+m1qnCroGsbOP7IHeS0RNs++xz2b+jUv9vCcqa/Xl00dIkyJe3Nuj51o5JG/OcuDxVO4tOjWCOffiAma7t0dYkmXYe7XWR5K9q+ykyCojdeK/GIavOmpjwNYPo6zt5LIBvkJZcWMIj77FLKu4eIZYgLxG2uwpKbbWp9IZtDKYSFGLav8clph2pTVyiZPq8J9vEHpLYk3q8WqdSYUS3tzVUPI4C5ELLfy4YAUW7+Gp3+Jdqbaj1nZ3wHSScwqn4v+BKmE/L6VcKXI9J30cstRh2i117l+Rqlq8/MfZo8WiMYD5+bGwGbWWb+39YsA7O5a1r60piiUmsxB790ze1W5bai1MZm+N6g0daYPxlY8V9V1zIlzgx6+Q7W+IrGdTmwqNx1A0NUYc+NT/4yVC6xOypr2kf0L7FjeqNGTl1ulB8cgAzkW9/UMpLfoa4nNbmzXBJdg1m8iNCXXqcBDJoLsjhRH8KJOkFrnFMaGyR6/W6JPPKkNB45KGH1BYy2d+Q8DYJCDr56JcTZhElqOYTgDoLcpnD8yyAuR6BbWQk/aPYRdFeMlIJIuuvSVxMYc7ZPn1uFsFdT4+Cm06B4lYpkumvN9ZOAFXAz8REwAmhPQtUggM8gfyQqJfK3s7VWNqdZJaSSFW7a52v/uObUdbvzvvR1G+JKAOlosg8qeRdYwIEdzaW55s1bIvL9A9nJSKtqkooVTHe3bmtaUCtr3Lg5ImuX6cTlSo2mKIlJvfq4pdNwYZrtuVQrDx3Ox/SqvpSqmbvrBogSvllgWqlBKi7rlo3I625pkM8+VAhpze+u4yLwqQfi8qJrdanFgHk6v7NF3QRqda13XSs8T+tn9OYbPAJI+by7g3c8N69LDaqGrT6HGThX9oK8LpTmIBLq54qcZbJ7WTVtjgCSMJql7NC2IYUSOhLyy2CayhSxC79F3HKWt9erb6G/7sjQqGq0tf+uNqGuJkkEyjOlSZZvW4ZAUQigHaSTO6tO2ukkNWFqumMK2Yf2cYOuBIL+hc6U1AusAtIcIIDRvAlgRD77YOkH03zbMzJeGvKwdtmYanCyE7x1nXPrUDtbSlPXfLGZ63Gbl+sKMhrIsn3liJI/tKzc59mCFm9j14i8cg/a2Nxy/cawdDSO6DBfK596UPNHntaoCfXyyyQcl+33TOdl2g8Zv1n9BcsjNfKtp6bkwJlGLT778zTz+mHpaquRFa2Q4vwkumt74kC0gPkK6VZIv5JNLikBK5fksmbQJwVrB/kj6OLRI/3y1PFBwURciKCxK4VAihs0EeNZXS60X03K+AJ6qWFUK4hWG+3gNRtblagWp6ksRR2tjMwIZO5hMp9jvxgCFUOAZNMQwaDQUZcqDQMd2Cr1Q9ywvMFbGomOmHQJJDPFnNc07f/H9aPXXR2sRsbtA2dq5bW3hHUZuvl5vQozP2Zshv4Q89a+zXTE1etZ27V4UzMkhmjghSSxeCEERjx8IHdBiWgAxxtvUw13S/L56J9eIeXKSK0XHb1XV7h46Gi6QTMkT51qlE/cXyMXhhqCxaZsRzwyqQvx6f6Z1085MPF1rmQ+UVCGDZJo33uIOifbneHQ6d01sntteoKd6bzojq2JnxqOHEps59pg5aFz6reWSehzyhUBDO9k4plNsA4TqAzxI90K5M8JWRcIqss3NRZtYd3eUgh1YrKOT/ZFNUtD+CCBuO/gpjOhawPjI0j6L5PqQ8BMwNV3T6xGKQgcO68aAO0ku6fNHXSGc1kphM6IjPVdaqKgs8IcMqp+QPjVQAZZ2ByzDDPu+KGnvNrEG+oltmNLSs1mf7003KgJmKe0O5/Ugbxehzp/3o5vVKWE9CqspkBC3blKZ0tyoAmWVa/KomvXza38qShEwMcnWHY1b49NqsajwF7zqjW6DF5zk3x3n092icb9wqNxJYfJlmICvn1bRB49nsT7yPmoak6aPE2iO3L/mXr1rfOPQavWXF8n21Zpbs2VGgkc5rnzr/HQ0VpNA8Nx/nO3vqtO7tgxpc9jZi1WQ2RCr1erRAdyUJ7nFf/AYxcbZHN3bq3eyKS+n7WZ6+swCX7GdiYJYGMBBJAyzuha4cs1GMSt/x0sl20/SKT0zyvau1waQH4nOT6BKOkSUEPCIFrkTvXMu6mVn/4OWSRqtxSBGU7753K8cgm0f5t1/WHWRoYANjeFPT9uPyAELWbp8cvQVNudBwL5TsXyKMoOMQTKh0BwbWBWGVlVpPNzZ0udXLW+xfMtJN+g6yxxWN6o+bHWqxmY1DR09qFoVELHj3mNim5X8qcRhrmkf4S5vD9obdeB+WXq1xUJZMrPdX6pfn/oGAN4chDXNLLa6TfK0HhhZrhIKElIgnW7ai1YpP8teFy27XOay3Ghyf2HIEe5n4PUdq1un6ldYjWU4LrIbWpqPz9YJxf6Zw6Q9x9STeAxzdvW2yT3PdMgT6QsRTesHJx9n3kwplrBkHzliXo5eqFJkyPPvDcQr2/vZToSYJ2plVSN7wt3j+vau4W3b1ZRWXY8oClpcmklnznfJJ9/2I8izVLUrJ/iuhpIrGuZt7/haP4aQE5wJGpWobrD6w+Sr1O6Q4raB4kihU8+QoStGiU8opfueAggiaS9ADnUitNCu0gjc17dafaeGJplUXHHFfrJJJkMDkHBatJzYczrn/FXxFUHbeMFDQwx8hdEqjq2y/umV0cbrRaLAAHSxtCZqCuMR9oggPixFOrL4tI9RGb2W14uMPxYWnUJtYRD9cmTUqMkEIltWp8TRUhWd2uy46Vbb22c0qiz/Dr4nBco4IAe1ShJvEGWNYscOhtVDScn+225am2DXL8hj6hKPUM9ebx/g2SSki4NajtX065ke9lfiOzt8etTyDnzfSym2nsP1cqzVZtWiJDJL5sMjMbknr2+5o08gHfuUs10XVw+p4EZBBQd7xW5bVtMNi7XwJz9ma9N/R48nP73i3rPPnG/yI7VjbJ7XTxjTr62hlFZs6xBSST1KYdoJGY0ohrLzPe/dnpkuqLplDr0HSpEYtu36pJwD0td7zkJD/ZLtLU979PRrpETMJgSBrPr3hKunhGsjGc+VTNpPoLVA0sFWrx0AsEiiA5t2wW1amxb0yRxPRRz8cHTQ+lOKXoffn9o+1gCNChE/eJPTeJqVoGin8aFx0VQZ6p7sAzbrhwCpgGsHNZ2pTkgwKz2kPq5kMGemS5EcPvqZs9cGywWk+4WjRxe09mguchmzm/w7cuUa5AOCj8WlntKyLFjic2YrgGcWWp08fpG+eZTYTXJJQc1zKT3H5pZh8xllP6XnotRTzvkk79k+SMT+Q04/hlxzRk2u5tAo/TI8UL8uZLXd1ukT1mIQtsfVq1cNO5HYOZuQ1j6hnM9BzVKzCLy5jvi8uo9E7pyxqic68dNIaS5+kK64kpMPvewLqeWogHMfe3UI2q8CcFnH4rJN/eqhka1wukkMQlK9+Mc9+E7WpfVPSGs7fRJ3zef1HXBJ7P5Os6uTDRgBi7ED5CSWNkiNVEwvm2QL9Y4786xStHs2uTek8v/z5VASqw6DUyjryJILZNAsrh/aBdZ7u6kZlUopdDHEuGLy0w6YVUQrk1k8yUlf5iuqTPrGZdauI5J8QiU/o4UXxc70xDIigAriLAuJqkGIH90KBvVZMuMEz+aLvXfaVfShxmEDpBjmJGyADrmiq26/FymBdUxZRCtNoMgHj+eqE96AhiWcwP18oCa6Ua1o0XiBAlM90nNDXE/J1qilOrYaGmYTeiy1axDExQPaDqPVHlGNYtjE/WqDWMgSBLf1OMyfX/B7inpHazXHHRoSTMdVZ37D5+Leml+btjUpMRNJyRpfet07WT1d/NNnrnx2bNJ15hVzdgpTR+zoVvXVVVfP3C/GEjFU8ocZmgEv/BIVNZr4ma0i5FErr4aXWaRG1KewfXademJg7vTDx+rSwQ54C/5uYdjctv2prz8BikjFgwEOfqMDN9wiys65ycaOVYGcS4mR87qhHPIry+BYR3a5+A/h5at0sKEtk6J1HWb2uSJYwPYrDNWAX7IMncnNYguX4KZsbDAD2DARPqMWksyCYR5QK0zVI8+mxVM+GusC3nrwpfSFMz9MikeASOAxWNnZ84jAiwDNzLuJ4ymU8JsQ2dzTMkeM1NmyMza13U1yNZV+NmEMpI/moHJh5ntDAlqADeuS/wUU83P0QvqsH9EF21PSdp76GxIIxf9Q6u1byJB9bXrIIEBbWeidakbuoKEarwykQG0Yd/aG5EXXsMwUyiL0yAHTfHxqj31ng9bLjNpas3m/3uNPH58Sv98s+ouve+NtVPq21erEw+R/ZrY2XdRyI9IfeUJzQc3AtYxeehI5VrHPTx5Ka5rCDfK1esINHBrDJenDuNTEQ1WyPSshKYTqM/E7IFndCm01kbVsOtkayKSNTF0LPCu1p0/U3AjCJIgYTDaJRdZy3aLTiJJ9k26qAOnhgouN9MJECImrKmax9TjcYFhIktdVnfqqi4aaJFJSFkTn9bQlZJwTWoSZZL3ZxMm2eu7GzwTMWQZzSntg6w11YcS5D5bGfZbZRAwAlgZnO0qJUYAXxg/3Yl4eahWdNR5SVHdjBCfQbYJGEFTmCXJfuaapRDAiWiD7D2JCY3Bi7+ZgxQFBTVlFwdn/84x8y0EIPQONuSVX40l7aZi2bUdF1ST9JXHw5rIWFfDSLMcWa72Yg68+9YGTxtFBPPCE9+seugsNaf+mchN9pb5qWDmq/01HmHdf1qkQ5dxm4tvZ/ZWiia9DsnO1ZmOytz+Lz3qJiJRNZNDBtMToNiK7kThtRd6E9v5bkCYjqqrSapAChGIINq4QnPvpZYX/J7PZPG8+tsRDLd1VdPsyWqwMN0uJelzRUPiMClnE8zUuN+g7etTtx3y/3EeAnFtVu1hMIVNtrKCv+VDkIPH23Z+CBRmC8qvTDvKEKgoAvi8sHoI2r9gRn2cj/FBQbsHESxYAibg741slU9rpCUBFemInyvbJU7u6WtS/7/iiIArq5yf9x6kbrlf/1FNe5KPQHw/86CuVjCCT1nuclPLrNOkyjvXznYK3NAd1tQcJOY2U08qZuX6HoxOLsc1nujRGUja3IQ1cv9hnoHcz9yXHp+Sx040yn8/UCtEDDM5I8L9ymiTTK2cVsFrSbUXzpekCUwmmVQi9CdotUoplN+aI78Qq1jgC32mb9xbZq2jmTWgc2NVqnpCUgn8yCaYh0nb9XTPkLoRjKmLiE8YydtaaMBe8DpFTeCDBRS5XQi+ENxySbnKNg1gue6YlVsxBJzpJJ1T8gklhqR1cVFoBVWqp8c7fLS9S06N5+eIfrqPQaJRntJEvtUsaAGHx+szalFc3UfG3VbuT7R3X3uC1B1huWFzg+xchYYmf+J2zdoJeUZN6Cs7QnLhSkx2rYtoGb4mhvQlRLCaLHwEYurX99iJOrlxI6ZEcsP5rhePn4jIiQvZNUyu9ZRx8Iw/GXvk6JQ8ctT/hSCamhXt7rCSEUAKHFETbHsz6/b6aVUSFynRRr6aMYLgsGpsU59mSBnBcXMhV/lUP6IJCLdrVDFBMsd6Z2tHXRkQPcia00CSbxWhfr2aaDuYM9Cdk8+nKy+fY0t5zHxdN7UNzrKVun+u340AzhVBO7+qEYAcEtlbFAG8dMlr22h7Z95t7BuKqekj78Pn9cB8qBkDTKGCL99jx6Zk0/L66eXS8i1hSu6+mQEjppocSHRMCaB/7lSM/UVUJt9L23EVRQDyduIC6UK4p77mpLEuqulpwrLvVH4kMF2FLw/XSqfm0Yl1tEvoSr/UXizcBJyuXPaheYMAYdoM5iXNdHyh+90g77ROmcgHJAs/xV3rWlQbqf6na5o1cGhMMBGXS0juzES6sV4TTg/VeoTO1ZdrOs0gaWiCcuTssBdQQ/9bLPkLllfN20E8SlFPnoNMz0ApyqcMI4ClQtLKqVoEnA9KQRWc0Mi/EX+mO9HcVtCpC+VgVhXIJaSyKUZY5qw+a6qPTKX6gSkt9TH18VRfLE1qvKErKl9/MtPxtn+hIjDmcYWk2WxU0xMRh/WiayK6iklMfQX9Z6GQ9n1776Qmsm6U1pXdmmlbCSAmYGYxJTDPQfrKQfxS28d7uU0zGBDFC9nzJrHq5uIEUhBcCYnAFIIuMBPmCtBwZRTySdBLh66OhNCXogmkXhBirC4EfWCeTojiXdd7Xuo1EXed4j8wOiw1mkS/o61DJtZukLGtOyVWX5843DbSI1Bu8sdVjQCmx972LiIE6Jzcih95N6u/P3HoeEt7YnsxbYRqcmvU6ovsIW7dNjeNXc103Uhq/ODhxYS6tSUzAhpV7eU5JCJZI32VI7DSSSFC2pjPa2qbN7WulC45IuHREQkND0mspbWQYub1WAgfZuYda5sT9cCfLph6hSA4/lzmAvwS13bVe4RsBhlLlFD4Bv58pG9Jl78P8sfqIpBOyCgJ89vu+64s+8pnpO0H90j9udOJCyZ1vP6uWFgDQa67Ufpf+HK59Oo3ycSadYljbaOyCBTZvVe2knY1Q2AuCDjzREFlXLmSOHy8pS2xvZg2poPzsjapLpKbJKYroLWhODPe2FSD5lTUaMMJNEOTakYOF6UJSlcn27dQEPAjkudS277mbiWAvtT2XZLxDASwEma2YtpBwvvtatolxRWyRtO+EAAC6XMyPJokgOyDBLIWcDYCSF+Y7XdXNumzVms0b6rgToM/HxpAEufXTGl6nk/9m6z6v38lDadOyOjmbXL55a+TwZtvl7Ftu2Ri1VqJNTRIjToGhvsvS+vZHql74jFpUbK4+m//VNb+5Qfl8otfJWd+8b0yuuOq1MvZ9zIjsGAIIDONUtvYy4ytFV8lCFzRJNEFawAvX07UfrFqACOhgNkm0dqZGw26HFnhom79NbmCYFh5pU7O6moXz6g/GEuhYamLasoZPx9gXN5wm+Zu1OTEk9F6NQfnrmvh9bQzFisCU/VJ8lIzQbBJeqmEmS39lbPvRQt46PSwR/xISg25u0p9/o5r7j+XmLpXMxws0xU5gi4uk6qNyyZoDHMRQNZLd4mwg2WhlRxU0km2Bcbi5icekU3v+wVpema/XHrF3XL0Lz+qmr09ac3t4dpamerslv6u5RK7eo+c/7G3S3h4WLo+91+y8qN/LVe/5k7p/fF3yulf+12JNjYFL2vbZUQAO82CECN/C+I2VV0lmREvVzNGwRLQAC5GH0DMa6GamQ7b6TCqC+cicrPP6lL/v2xJps8PNGn6jrB85qGY/FBT5Vwa0kAdjSDGfOeTP5EbNtV65I/Aj+fsnPTMgbOvZHsMgfQIRGuTPmahsfQE0AVbpC9hfvdSN8Y8gjvwBURIZcVqRvgHohAZVp/E3pTAj9R0V5BDjnVCkEamdru+cpMGfEA4U4V9+CfGVJu36u//Wq5680tVu9coT3/mO3L0r/5Rhq+/KS35o5wpQoNVguN4tLlZen/sbbL3Kw/Iqd/4A+n+xMdk190vkEKX7/MKXkL/ZLp/xUCwYAhgMY2zc5Y2Ass0TxYdZqSYHIABArgYTcC3bkP5n11bwNOj6xPkdRzHOvEjO923mZ/ka7vn6SmP7M38RdTcG5IbN/lGie2rgsQzKquX+alCUs+x74ZAOgSidQECOJ6eAFar9o/2aFyFt845gz0k0OXT47dlGpCBiRY5r6lV3GolfGd/kPChSQySLo5JbTdBHLvXt8p1m9tkk66jHtQocnxQ2nXJzJ1/+B5Z/6e/J2ff8Uty4BNfl5Grrw8eknY7HWkhKXRErx2vq5NzP/0u2fe578NyPWLZ8ugDacuxnbPv31wwWZAEkAc23QM1FyDs3MWFAM8InRmdTFEyHQHMuVP1i88k0d2a9CXKho+fo222NiDbOTju92sal3Si41GKxHXN5rC87paQ3L5Nk0Gv1uhrlZkBKmFd47mwOqRcxL4uMQSCBLBm3NegLSQISDqNzx9kDUK3/+TQjDQvrHyESXiNBn6QEobkywRjsEIJCaJzCQEezjeaVTtYYi6nqEay5l3vktaPf0yO/tHfqrn2/RKP5HGeFpxKOlm/HR/kaMBkPbZlmxz4z6/KyK5rZMdPv0Gan3o8Z5WW4gGl5D4LkgCy8kPqA7UUHwRrc2YEWBu4KM1fmiLjacwhaQ5bULtCNfn51F0eLsJ8rkh8RVdqOHRe00Woxk+n9Qlswikrerz+1rDctGlUGiJOS+OIqc8UT+qKKp97JKzmrlnMMVGmbRgCqQhM1fkaMvaHMmgAU8+p1u8QOp5+VjtymkDMseTlI0p3naaAISjjqeMD0tvvk91sJIHfSCJ93aZWuWZjq6zV8/OSv/xLkf/zfyT+//5eQm/7qRmnYD52hDL4A+R1SxqtImlrWDauQclnUKKtbXL47/9LRrfvkm0/9xapO38u+LNtlxiBItUjJa6FFWcIlAgBouZc51KiIhdhMXja5UeoHjvmCFmhMNTIo7pCw6NHOQ8NXsQzLfUNUZ7T5pH3LdUPMa5Ju6mff11ywY2qUvCAt+pDoXWw45cqAkENYGhi4WkAg/dtZDwqTGjxBUQruLozOaGCYEEQ+cQUfObSuDfxJfFypnV70fa5FTpcGpng9dJuP/KIyG/+psh73iPn7v4xqdfrYWVBGYOP9cqOeqnTaxJgQrJs9k9Nxb0UMpipMUU7oa4DGkmMtvJCv6/xd7/xSRDI4b/7uOx+3fNk02/+vBz6p09n9C0MnmfbhSMwk34Xfr6dYQjMCQF8QEopdG6YfdM5MZfyOgu5rG2rmPcFfezSt2YqVi8XBpMdd/qj8tvbP8IKAmgdHfnjPB20RmdqGOOamnTzCgY4rhvR3GfFElDKN1mqCERrk89VaGx0QcMAkXOBIBcHNBWMEsJUaVXfPJ+I1XmpYrJF+qItJJ1L3qI5/uQd7xC55hoZ+b0/9Nb4PXVx1CN5EEj6cNLWYKY+pp/kLLysy9VB+jBPpy7RiU8i5mqWhstkpZlcvkKO/cnfSft935Guz34i76ouhQNLaf0s7ei7FNC3NpYUgWY1A+DUnM58UOiF6IjSpS8otJzFfvw16/MjdZeHk5qGuWISUdMvkcep0jsQJIQiDxyOyLpOv1uaioWVBs78PfV8+24ILBUE6Cshgwc1PUwqgWPCS6oryB2auZYsPn1o53Kli5mB6cc/LvLYYyIf+YiMB9w5OAYzLgTPJaYe0+uzjYbvnEYo85kqTUoaEVZVgaiiEeS/1csapKvVJ+74CMZf/BLpu+t1Xq7A0AL040xtdzV+NwJYjXdlCdWJDqChNuyZB+kE5kIEV+L3l0924yWEb2pTIWFJf7vUX2d+7y+h4uQVN0bk1Xti0hEI5mhQX/XtK5MmoL7hJi/pc3ujr+EgLUyxK5HMbIl9W2oIhCeTzxWpShaDjKpplb4SAndUgz7SSauaVesivok13e9uH+ljprScnKLaOvmjPxJ59aslfttt3uofwXMw47pJN9toITev0OUbuzWVjP6XTkggPaC5WV1fjUaQ/9jH5VjjmFVQdq1vkYb/9SH1Azwj3Z//L2+MWNFe72GQrtylti8TvoXgYASwELTs2JIjwGyR9SuZudIJZDNd5Lp4u/rCmOk3O0rXbsjf7XddZx4DRPbLeb+i0Wuqg01OyfN2JweFXWvCOkQkNQQh1RLyVzude7AhMi533zIhL76WOqdqLVO/51ERO2TJIBAO+P3FAilhFjIAqijzEkPTBsgSS7GlCho0CJSbTDenmUGhccOX8OQFF3iVWkrg+733iuzfL7Ff+mVP84hWzwmaxi5NRI3/35ZVmp9wVbOs0O0+LXtCySV+iFwrQvLAgJASkOXlgn6B/Ix2E5NwcJ3jpmt3S/Sul0vXJ/7ZO55VSFxaG8hw2/RKKYHi57RJmxaKMF7OlQQunNYulLti9SwKAfdSF3Vy4qT4rE4l8dMcNmqYli4SWdmRP6lDU7i8NUnYioVgPJDqIVjG6mXBb+rxp73Ry2+A7DkfJx/37pYRuS6FuL7wmlp51s78yezMK9m3akIgqBUuVb0igdU/YoFVQUpV/nyUA2FiJRAibhHnF5hal5BaQbrbar3gEPKgppIEzwdPy0ITl1M++UlNLrhOxp/1HG8JuODxDUrw3IQb4gmBe7pnUEg2ff7yhDephwRC9vAVdGQN4oKfIKlunKA5pCyimI+qHyHmYTSURD2PvvnHpeXJR6T+9EmvTMrCbejqjS2yU8nutRrJzPmQzUKEVDit+hcUtKsLScByLmIEcC7o2blVhcBpjYAjqiwW6FiKrmBTU+LUyHh6c0vigAW0EVezaiFy89a5dxEX+tUZ/LKP58RU8vo9l0SOXWyS3sEmGdU1gE/11UhrfdDujK9QSIbHG2XvqZnajkePojleWJ11IbgvlWOJRr/regj/3AayVLyCGsB4fX3qzwv2O+RtQqNrIUH9qgVEE5hOlqupdIW6xPD7Zl3ZA8FE60gY34fHogltGt/Tyte/LvKKV+hrODP3LqRyta5PjEBM0SgSfOfWD4aY8B8WHucjOKTXCwplOA3hBV3WzpmkaSPRzASQDOnSc/WvuktIxdV67z3e6Ss1B6JbDYUdDYoFOV+v10TWu9VsvEbXMMZfMpdAMgf1L5Ugk0kCVyQ0l4WSylzXrLbfZ9Lfaqud1ccQKAABZp5EATMDnrN0dCSKqB8aSGwv9I29J0Vu3Qo++Q247Y2kaZk7CfzBgSnZs6VJCXryuk+fnDkg3H1rEN0a+fpTtWpO4hj+Zt7TKxpVzJ/JwkZg51o1BcYh8sXfS9wG3nibSO9ArXxHV5lBggRwsWgAvYbpPxAr7w1WyNCWXaWkB01bUFxi5xElYJApiIxHdAKvEURr7/FBj+zQZ25c0SiknIG0kV8wPDQo4QMHRN77XiVxflJqdw3qQB5CBPJ3tm/c08qtUnKGf2E6Vx4CRkhnc0nJHsEiG5c3eiZfUtIQ1MI1XB5DtIMbOxvV7097n5oOkWuvlfanH5fW5T+nGkV1Hk4jmI8j4YhHRNcoOWXdYq6F2TibtpO2BIXjEUhgmzoqM66kmquDxy/kbSOAC/nuWd0TCNC54YfSqT4pJZEAAawbXjwE8GhvVKMFG+Tadfj/zOz4fJKFTkYXjI+GdSCokfbGKXW6xj9n7qiSFzCzaP6/cNK/KKYpYGanjcl8tv2yMBHYtlJXjRlBW5Pt2cjetlu2ah48GZGVbRznM5zwZOBZamjIXsAC/BVihxDNu69nSElgs6cJS20KhA7TLAKRSRWIEX8QxKeUDDoyhIl2zbGnZa2e0Lt2qwZnpPYVIk8eG5Tta5u0f9Dl3PR3zLUQUbSTk6qldGW5a/I79YVs4ufHEnf4fkNE0bZBDp2wzjHaS4hkrQa1dF11lSw7fURqAse4Y9N9Yk72NJ6q9UQgqReVDAaXzUt3XnAf1+Y8IqohxUGTdfC4hbxtBHAh3z2rewIBlkQqGfmj1GXLEmXXD/UnthfDBpq30fEGuWlLVMI1E9qkGjl9pVF+sJ9ZvlMRJM2rftJot79cCKhj+kijRgmzWH1MnjhB1+QPXOW6opVbWQRY8q9bfUrvP+STvRXtNUoeYro29GxykW/NNnSHZXP3qHd4jUzKC65pknv2aoRpYPWPeGBVkHzLXUjHTWlUxeGzI97qHphDg5KGtwV/TmxDwlJl7OQZb9fZhm6ZCAR/uOO47uh4zIs6hkQePz+qhLDZ8z/ECHNZE1MHBQJF/kAnkConlEUwYFBY+UR5nK99a1shnY8+KhNKaFm6zvkeBo/Pto3PIH8QupNah4nJ2QQ13fmssgJxRjt69NzoLFKb7pyFtM8I4EK6W1bXjAik6b8yHpvXDwEN4GIyAbu2owk82huXHasb5aIme+4bYlBOR/LyXTPElVz859eecHXAnJUcHIov0c6sJgR6LkR12b8pOaZmwnNXYvLsHTXyjafi6uNZeC2v36jEb4VoQAQkI0leVrYyodGo88sXEoVOdnYlthfrBmTqadUErl/e4AVEOII0Fx+2+PCwB1es0fchTIcdpma3PB1mXUzSaMzCJXDD8Ujp9K1lab/o4IgXZIKGkcl+pxK6VMKbro7BfZBA6vz0iUHV6AV/SW5Td0y++DTiD4gmEm2l02i635NnLNytmY4DC7cdVvMljgDq/ZIEfzgc29vdliw2DWCiYUr4Dp2NTptak3tTtzYsr3Q3kY6IptbKvi80BManrbw3b/HzO14aCql2JUneCmnPUyen1LSJ48d0oSknN04TQJYVizW3pPy6uL6CAulLIEwnNEqYpde86FnMlnOJag1NaxOn0mPMdelzyU+IEEGLSRdNn2fqRX03B3HRzlynrkbpV8SvD2QXE/XeE0OeWTedeTrbZfEV7FAiSB5C/PwglEQEE0kMQSSv4SpNZ7NdI6hZdQUNIO1ywrGpqW3cbwvts9I9+0LDx+q7QBCgAyxuKMnQwDr1R5mOBF5MPoAZWpt1955Nojm+ZpqWsp4wTz8ub6tJu9rIPFXHLjsLAf8NHVHf0hs2RzTpd/FvbEyj2e87mE5LzL54QgM4uVydDOdIRGY1o8p2oJkKpi/BxLn/1LASJHz6NItLV4P3RwRwLs1cUGM4tazTa2nkcl/aFnPd/ad8EuYOgJyRngbSBCGFvBUryiM9IbF128gVibb79XHlcX0IL3kFCxHauFmjhq/d1CZrFRuEeoMNxI+8hvgPos081jsyq2gvQGVFw6KIEDYCOOv22o6FiMCwqhfo8K6oj0fJpMs3HTX2p+8AS3adKi+ILhxzW7VLrc7s9yixMKlWBGrkaxrZ/b19OOTHpediOgKXf92vWjd7UjI2Ve9FADdM++1Odi+ABzf/Jud9JJo/NFurVZtFahb+yJl3g6ZKwazpNFgsy7ZBo3FZeg1i5EgbxG183Ubveg0nj2W9LgEfmQSSVqw4Uku08dTBQzK+dsOsoqjv6b6ZvoOzDsqwA00gQSuYrDH5kuQaQvvokX45dGY47TJ2FEWAChHGa5Q8oqUs9Xr2Gapblt3WW5YFVit0PhAgaotFyckFxbqYc5YN2uGcPCmN/ZckMjYiUw1Ncy5yIRbgZuLVXvczmhewtx9SUbzWodrbuNDrd3kIQlAjR84XT/46W0Ly0msxS84e+BsiE9Ic9P9DA5hGHNlJ89Oi2YVW6ymdFK/XZdnICUj0LX+sFIJAnvR/T/OF1ovvmI95ewiWGF6zTqbaO6R57+Ny5fkv9c5J9w8kr1g8U8/jOz56LhUL17vUPyYbnnpC+n763ekurwEdGkmsnRRtyySYiZ1fZPAY0teki44OHpNum3Q1zheQ5en6dD3khRglbBrAdHfX9i1YBOjEzuhLXahfSNoGb9qU2N3aeyqxvdQ2yMUVTOBcze1n/WCTxY0A6YHOD9ZpI9PZ/mKybCgQAJKBANJPLBXBJPyIarX2nxzSfH1jGq07osvAjUr/sCZBDrwukK9lumoHu0jJggZx8OZnSct9380JVT54omXsbNEVP6b/o1DOwxfPaSTJP5iqUWzW/H+RgX4ZuuVZs+qxRU25mzX9Fz6H9PmZ+n00dph0SS6NBs8dt3lV46zVQGZdJMMOtIZoAAkScZPkZZqjMDUnY4bTq2K3aQCr4jZYJUqJQN/QhLT0hz1fjjmVu3lz4vTWcyfl8oYdie9LbcM58C+1dlt7qw+Bl90Q9jQ+fZo2qLMpmVbEr6muL32+N1HpyeVL0wScACCwwcoX/CVETZ4EQRDUUFcLCavxtFrQ6k71gYNUNbzxddLwP35W1o5dkqHOVR65QdGG9ouVSLC6QBbh02gNEUyr+GRDkCCYfIdsujV+8a+jHvG4b3L2NWe+v2A6Tdqyr3xOJjs6ZejG27zy3T/UAeJ1RgNCIHhcb5OueoKJG4Hk0QYI2kklfi4g5uxlXRVFj9mhKWuo5851zV4uRZdb0ZWfqp10+4OfrMrCBJnAERJgk/oGoguWREVTvsvDGDyvWrZNA1jAnWCWMhen1gIuZYfOEQEckfOZlWa9TJAAnj+Z9dDF/OPAqKbZHV86GpPFfC8XQ9saa+PS1ezniDvTPzNFSd+wOvCfT2rrJ1auWQxNLlsbIHBMmOkvSXVyQjWD5Op7/NiAruc7LofvuEtYSaX5X/5R3Wr8dX0hbJAlzkXIBYgJtl2JXYPm6CNiljIxrZJ4GXJ43eZWj5yhHYP8QdZS+2dMyalm1ND4uHR/+uPS95ofSUQBOzAo47gGaeC7hw84ROvQ6WHPfOw0fPgFc/2oEsGgDOhqH5h/OQ7T8AbN8wcRTicQwYba9C5Ffp1VI611cCZm2jes0cOc151n4up0163EvvQtrsSVF+A1eOD4L5+ZwQJs3qKqstex6dJCmBSKloAJuE01gEtVWEjgeG86c9tSRcTaPZ8ITEZ1QNaRa1njqDRrfrh7n2lQTUuNNNXXyN6eSbn78pFE9ca2bE9s20ZhCBCEMdnUKhff9OPS+Q8fkaNveaeca2tPFELalA41eaL5g4SlSqveJMyzCOZnViUpVLo/8TGJXOmT8z/xjrxOhVQe1AhoJ2g2gylc3H4+CR5hGTo0mGgNd6kmEB9ytHp1+jy5RNaUmakMVx7cIKrcAGGbwBp8E1mKDtKb63xXTqU/TQNYAOKQPwS1tkn1I3Chf8Kb4RVd0xkawKRWoejyFuiJT/ZENSJu5gx6gTbFqr0IEDjfTyP8oasuPCbP3j7mkb+L/TGNVte1wA8+k2jl2Nal67aRAGGOG+fe+asSGhuT1X/7v2aUdEHJDaZVCBRmz6CgJOlSgkg+woOniyN/kb5LsuZ//4lcfMP/J+MbtwSLz7rtq2kICpGcxAsNIjkFIbFjms+Q9DDNGkCI+RYfSCdu7Hffc33ia4iWEeJXaJqaXGWX8nfTABaBJgwfU3ChD0URl7JT5oAAqvjLusJF0UvErV+vzi7aCUSj0nauZw41Wdin+pGbC7sNVvvFg8C2FfiazdRIX9bAECbm67vUp+2ErwGcWLFKoq1JjdXiQSD/lpTCWjWxcpWc+cX3yro/+3258uJXyeAtdyQqgNmV1ClO8HlDc4g5GHJVtKjWbeP7f9U7/fSv/G7RxeDj6EzVmQo5E0gjw7gOoUWIoi5W0Bo6jWebakIj4YiXtDq1PO4Pvowu5U3q7+X+rhzZpBgEjPwVg1rlz8E3w/mDFHz1iM6PtmzxTus4pQuRRwMO1AUXZicYAobAXBGo81QWM9/D4YlGNedpAuIrusb12T5pHOjzLjO2xbR/qX52xeJ//qfeJYN7bpctv/w2qTt7OmMxjsg482nGA1N+gAhhhiVKGNK29d8/Ip1f/7yc+MO/ksnu5TOOhqRBmnIJ5mk0eoUI4zopXlLJn7tmPtdNvR5+kKxUlU64Pw6zdL+Xe58RwHIjbOXPKwJoAc+qM3PRcuON3qmRiXHpOOlrFoouy040BAyBOSGwZtnMIUvjLOULj0AIa+TmbbXS0ZM0/46a+XdOWAdPZhm2ox/+J4nrCknb3/Z6qb3QG/x5ztuQPggggSZtn/hX6fyD35ap33yvNP7oj3irckAQETSMRBVjhcsllNek5XHOXAViCPnL57pci2NpU77i2pfv8aU6Lv8aluqKVo4hUGEESG5atBPuNAGkysuP7K1wze1yhoAhEESAgKSgHL+A75lPDh47Oimn7j2Q+Nn8/xJQlGSDlDqHPvZZiQwPyq633CUNRw6VpFwKwZR8aUAn2X/7l7L5t94t429/h4T/54e8pdp2rm2RPVvbvAT/BGps0ohdtHvZhIwdXa2ajkXJnzPpZjs+n99ymZKDZUAUCzm+VJpaNJWFiBHAQtCyYxckAuR/IhlqUbJnT+K0Z43slbfcMSWvu0Vnqw2FvWiJQmzDEDAEikbgdF9MDpxplGi8To5eaJIHD/u55yiQJOCdJ4IawJ1FX8dOTI/AmAZjHPiPr2hqmHrZ/YYXyvJP/hsJ99IfXMDe5isX5Zpffqs0vf99Ir/921L/9/9XaojimBZSrDSrL12DBmawyhN5BbMJWkJHqlZ2+Mmnsx2/WH4r1DUtiXABCGRimYSFmxgC1YgAUV7OKbeg+gU0gOEn98nQeL0uY8UakgWVYgcbAoZAiRB4/ERUPvlDUfLnm36Dxa448Fji68ju6xLbtlE6BFgj+MAnvyF9d71WNv32L8jOH3ultD50f95EMMgfwsPDsvr/fVh2vfgmCd1/n8hnPyvywQ9mTLVBVPHTPYM5M3GwnJxbo5fP2kj1T9iDuJTubmUvyXOpzX4ICvaZEa+ZWObFgUkvmSIOlEwKHAPPVb79bghUAoE8/IZnV2O5OiCvXatJo05L7LGn5YsPq8YhMDOdfcLi3XPthrA6adfIY8csLUzl73Jctc4hGRybu7al8nWvzBXD42PSPe2mMbp1p0R1HVuT8iAQbW6R43/8t9L36jfJ+j/5Xdn1/71Chq++QS7e/Rbpf+FdMr52wwwSh49boyaJXtaquQNrdc3uL90jDV/4jHR97hMS1hQz8rPvFPn93xfp6spaYXL0kbCZLtitPJLuhNRgjSbVGuI26FYDSXfOfO+DpNK+SkpeBDAT4UutKMfhdG9iCFQjAsd7R2Xb6qbEzDDvOmIGVgJYPzKoqwyclIHVG/M+dTEd2DcUl+Vt09rPIi3qiwmPSrbluVfVypqOUfnE/RHtZedfm7FpeUh2r6uRfafisqYzJKvaY/LYcZFj85gwfPkzT0p4OlJ/6MZbK3l7luy1Bp79fHn6s9+Vju99U7r/4x9l/R//jmz84HtlYvkqGd2+SyZWrZFYU7O01+lScwOXJXLsqMjevbJRV/iYXL1W+jTB88Bbf0a23LorsZJGJjBRKLGO8fj0CiSZjmN/arDGZl0iLqQagJMXxrwo32znzsdv85UsOi8COB+A2DUNgVIjMKiJOQ/qUkE4FeMjkrdAAL/wBe/wlQceXbIEEP8r/kwqj8B9Bydlz5ZGJX9Jn7fK18K/YkhrcdOWuNSGxmSHTqi+/uSUdLfWyK3bQkoA56tWuh7r/kcSFx/aYwQwAUa5N1Qdd+X5L/X+woMD0vrgvdL8+EPScOyw91c3PiK1mr8n1Nmpa8KpWf4nf1LkzjslevV1slx9+jpU65VPFCw99truBulREleoJs+ZgzdqAAlpWQoJ0Cg3fJS/sqNeLrJwgW6npqAp5/WNAAbQTTV1B36yzUWCAH6AT50YVK1FvazQhJ9u/caszXvOcxI/r3nifnnmBXcnvtuGIVAJBAhwSOfzVolrp17jJTdElPyN6mBV65E/fr84GJcvPzbbJy/13HJ+XxkkgKYBLCfUGcuOtrbJlRe93PvjIFbTuGp9i6d9Sz2pYXoHy7XlI/TVXWpCxgTM2sXeSk8eZZp9NilgMgnatmojgKxLjFKCbBVEME9VaPkQtaQvbsnXsTJI/vI9Z3Ejt3hbx+yxRxc9f7pnyOtEWMg8qzzrWSIa9YasfeLerIfaj4bAYkbgWTsj3hq8tFHXL0iJhs9vIC8LPmoeXLXP1wBOqe/f2OZtZbmMFZofAuTeW6VarVXL/H4zv7PyOwoChybv2k2tieXaGmo16APHwGkhn2AmwR+w2oRk0OQNZBm6fF3ucrWB8tZ0NmguxMztzYzSdOkLnQxN54/MhdUM0Et1A3Je1A6YVwRQtbNc0RPHBqVvcDLziiGNjSKQQJW286ekdQkvCzevN8wuPo8IxOW1N4dkQ+fIjDq0N80j6QvUpP3M8cQKIEM33LJkA7UCkMzb5vruRlmnplqkWzODpAZklKpiEEG0izvWNAtaROf3x7rEEKlMslpJaSFJmjOVU+r9/SOTGkMRzc8qleHiQb7GcnyYu6eimRUcOQlghussmN0uEhkfA1THQYAKaUSx5xVyDTt2fhBA3X7k3LCc0CCRjPKiFyV+Wvu4aQETYNiGhwB5EuozW50SKD1vd0RecE0eBybOqI6Nq9frKg21Gq0ZkLhE5JQuwVYNsu7R7yWqMXTT7Ylt26gsAph80fqRhHmFagDLLZDLdpZ8W9GkZLPWG+PXdjVkJVG1qhmDmFajoHyC2BYrnL9O2791VZMXJT06Hstq7s6rJ4L8LHStGERwWNm1iSGQCYELul6jauI988KsIJEXvjBx2ton7pMDd/1o4rttLBUEmEnP1Hh1qAbs+VfXSENkwvvt0eN1cuhsZl+4Ke2CTl1YeIE021fN1iKc7WcQrY6sDxsf+nbiIbzy3Jcktm2jsgigbUITBzGrz9O3rxQ1rFPStKmAdX+LSglWiormUcbwHDKpgDvJsumliHp2CrBMl81JAHMRPzRruS6S6eKV3p+rLdnqk+vcxUCSs7V/qfzWNzShGef9WeyMNt+iZqXWVpHBQVn75P1+0tN8/QtmFGRfFiICkVBc7r7VtwOMTobVrCJqZsJhG+KXJEd7No3KrrWN8vmH00827z1YHYSpkHtwwyZdgSEy0/R7fqBJvrePiOSZhLiQckt1bGRsRAjOQiZWrpHRq64pVdFWTgEIwAVYqq1cJt8CqpLz0E4NJjl1aaZGO+dJFTygWc0Jw+OF9xWQ78Nnh2fWNMsrWryucfoS2cgf3WU+4d0za7swv+UiiAuzVUuz1mkjxCI6V3rucz1Ami5fkM7jB5YmOEuy1XF51U1hCddMaH+mE4S6UWlvHFXyN65oOPIXktOXm+QzD9VlJH+Vhu7GzRFNzRKRdZqnby6yXOc9QYH83fM0g1OWkSV4Qpm30chHJrkXIleep9o/m5iVGfH0xeNbh/ZpIUidJl3erBrDbNHCc2mHP1UsvoRxXRt5LtwpXx/HufUMOdoHKcpGEHOcbj8bAvOCwEgmV4G77krUZ8u9X01s28biRmDXWjRgaAvCmoS2QVM0zPZteuhovXz/wJT+Xj1Y7Fw1LluWj8idO8fz8k/MVPPOlmTuwSujjvxlOrry+zc8mDT/9r/gpZWvwBK9IpG++PyRmmW7BmKs1tRaC0VIKYMf4K51LULQCm0ppcxVIYQr0lzmMWmVGGkamNMEnOYc22UILG4EMik2Xv96kV/4Ba/tW+79sjz847+yuHGw1nkINOoqBmeuNAnJmJP5ueqEhMhruyLS1iS6PnR6k+98QniuX9NwtGO6dRGSmR7s7LUcHo9IS71PAh8/riNTNYn6djv/v1hdvQzc8bxqqt2iqotzcyLKtrNF/zTQAz+zhS4ErZATdt/JoYokYUazRx7as5rL0EUusy+oLINAxuPlx7ZoAoid31W+3A+Ae/DKfR0r3xAAgYxpAdesEXn2s0XuvVc6TxySjp5n5MqG7QbaIkfgsWNOrTezQ44psTp5SYnfpeoE4Dv7ptQE3KSDWlyJa/EE9YuPqjkqpBGWmlttYLS6CCCuGC0Xz3o3YPC2O71lx6rzbizMWjH2MtZDWJYrScLhYSH4+BWKNkQWInhMl5ort0D0BnRVqt2awubw2RGPdLKvQ6OZSdviJEgI3b5SfxZNACF/lSJmc1Wnlho0K29xIxDNkjdJ3vhGjwCCwJYffFke/bFfKgsYLK3V0lAjxy9E5c5dug7sskl933QhsGhEfc1C8sAzjpRkv/yq9pCMKAEYGHW+atmPr4Zfn71L/da0vYfO1ur6svm1M1u9yVW3ZWVYIHIEcxCdOD4JKeKsmaQuWE5bY01FcLtlK356MekbDulgIPLMuaimcCjN/fJXDwm2Kv/tXWvDcs06TZp+KayrkExWBIv8a+cfyTvo5MrzzPzrsCjVZ5vmkiOnX7ZkwqW61nyXg0n4omaCYMnQcsvAyJQcPT8qG5b7S9OdvzLukT9M6gtmKTgjZuV+TKz8+UCgsS6LPwhm4F/5Fa9aW+79SlYCSIqQ6zeFZUAnlU+fmtJ8TPm1Zn1XWJ69w19q64qSgnXLkrPSuvCUbO5WknC2QfqGcmtjblMF5am+sDxyNM+Lz6pikoho+iwlTZkJ06xTi9wxpGR1pDmi68xOKgHkenE1OYW1vWixZl7/6vVh2bJC5OAZUcKY1HJtXRVWjZXo2rQxefn1zKrHZdtKTUpbk5xhUxa57A6cicgTJ5LnUm0iX5v0/PsqELV74ExUljVr5Hm7X7dDZ7I8f1SuAgKuu9dGpX8kIk+e4NmZiXsFqpD7Eqo12XHPZ7zj4roKxOWXvTr3OXZEXghAhggkIKfeUhK0cJO6NjFLspWb35Du5ZCuTY9mFSLI6lSVJH/c16I1gEvpobC2Li0EskaybdggctttIg88IN3H9kv7qaPSv27LLICIvtyyfFT3x2V1u8jO1ap1itbL/YdEzl3JTtyuDPu/P3JMM7mPRGVSgw5qvYjT5GWes0vkcw/HpaslJM/aGVIn/5hcGg7LPXsn5bqNEd1foyQxpsdQVvbrJUt1W3G5ZVutbOyKqsZs5uB/uLdOV0+JaUeleTX9wEt3Usk+j56PKVmDckzpclJ18ryrsDaMeWTtG0+F5TlXqRlK+Qj0rTY86gVmLFMcaOfqjogXiHHL5gm5OFQvZy5TLb/9RPHOFMqd1GtAAGf+0tkieq+KJc1+WZ1ap3SkdeaVNLOQEt6vP+nj7GdcTZLu1GMr8X2bkudV7TXyyR9ytblhUM76rtr3sLSdO+ldYuBZz5fJlavLebklVfZKTeKcdSK8SNFYqf0N5PfS4IRHyMrdTEhmb7/fkab6AZb72pRvBLASKNs1FhQCOARnlTe9ySOAHHPbE1+Wr697d+DwuLzomlpZ3prU2vk/qukxPCbP2tEgn34wcLhuom1ZswwtYVzO9EGuYrLvTKMcVlMg8uXH4vKy6xumI1G9Xd6qDG++o1YJDKTGJwwrW0Vecm2Tkj//2ivbauRLj9XJ4Fj+hGLT8pDctBlilVp//7rbVozKthX+dkxq1QeuVh44NKkUa64aorjsXheRrUr8muuIuBV58mSDXL/Rd46ukToZGg9r7j1RHKY84sYx0Xidpl4Bp5i88Jo6WeHhHlFEajwC97zdqWkpwnpORMYmQ0pga5Rgq/bw9GyS8+29s/dxvdwSl22rInLdBl3bU+83kcMT0VoleSG5TwllLtJMvedbTl6M6rM337XIff0d3/pU4qBLr/2RxLZtzB2BuGpXiZRdakKbI9plYIqtNCGrhM9f6v00ApiKiH1f8ggQQk9m+YyCH+B73uP93P3pT4i8/H8k1h4lZchs8pcs6cKgr6liT6v6+D3nqpC0NaAp1DSDO6FyPnlBMyXxWnmyJ6qEUOSzSnJu2dqk2qq4EiRIn64ZyTEp4sifvzsuN24Ja8LemWTmRboUGSbPi4NJYviy6yPS3jSpka0++UopNu3XkF5/Y5f+3RGWK6N18uixmM5mk2UmT4orJrpu57qwHL+oPmUpK2Gg9XrdrWElyD4OCqY8crxenc1FiWhc9p+OyN6TU3L7jho1jSeJ6d7TTUrewMAfqC5pe7pbNDpXNX0nLjZ5iVS/tTeqpuRGuTwscv7KlPpQcix19Ml1so6ZtyCdrQ0hCenAoKsGeqez3aC5xOprxUux0qCRwu3N6sjdiK+mawdlRpUIRpWUh9XMW6t1KlQbm7le5fqlmlLZZGpjeGJMtn7/S97P0aZmufySV2U61PYXiECzLpm6FHz+ssHS2hiW9csb5NTFsYoFu2arT7l+MwJYLmTzLLdSgTR5VscOUwRyrsW4caOq2l4i8o1vSNvZHlmnawOf2vMcD7sxNY1mlhp5+PCU+rOFVFMHgYPIzRTMnm7evWttSNOLyLTWqEYeOuITORY6f8WNfmLimWfP/qYT2RmyXINLIKh37GiULzzikyCI6LImiF+x5CSqxGdUXri7Rnr6GuVR9Tdc1hySZ+9UOhuCoCXLXdMhGljQKN96KprImXezmpvrZ2gcFUPVQFy7PqbEl8AXXd5IiRZ/MdX4TcY0AYsesrcnSf5oJKR2dCIsKzua5MFn/N/G9eMpJdG+OGSnv6b5aNXAj43LtYw20fQuMa0XmM8k0GlOy7pL9amC6Tofn82sBdmPCQQ2PvgtqR8e8L5D/mJKAk1Kg0CDTn6XovYviB7tX9Fe760tvK9nSKeM2fr14JkLa9sI4Dzfr8X6YM0zrHO6POtZ1uZ6M372Zz0CyIWu+urHEwRwOIu5dWCsQUYno57WD5+2XBJSgviqPRElQaEEWUL91NkSUY2WJjJtmU0gU8vsbhmXtZ21clpNy8jGFSHPbPq9/UlStmMNLNH3Q/EOKvqfuGzoHNG/7AWg8bz7lohcGKpTk25cmmp9jRnaz8GxWtXeifSoGfJ8v+o4p7nbmBK573irT9ARu7rPJnQEghw6y/Vn/5a5VnG5fXutrO+aUt/CUuCQvNLgeKN880nIrqtz8jfbKh6B7d/+TOLkS697c2LbNuaOwOWhSQ1YUysIUV9LXNCEblvTJCcv+JrASTI0LyLJNcwtoqZaUwyB3AhENJqwVk17OeU1rxFZuVLtiudl0/1fl6a+8zLSqd8znqoBGk/7bCaiZs18BY3gq/bUKzEKS/+oEjglKaEa3fAkrCRK83NN+/y5Msd0tYrBsZB0NkNooro8U7JSUY3iPXM5otGdSa3W8Hj+9XHXmNtnWClcksBORuvU/zGk0bjUyWnrlJJqNN5sSbZl9m/F7YFkt9QnTcvFlTLzLFYLeepkSKOTk+2ZeYR9KxaB5ovnZMND93inT6xYLQO3P7fYouy8FARYEYPczqd1nVyWSjMRLz8fkcHHe0vbR1QDtkYAq+EuWB2qBgHlf+oEnMfMt1btkT/90yJ/9EcSjk7J6w58WmK/9rPajnSkRdORXKxX86RPuobGatTvL/8m14bHlcyJ9+fOQlv27X26DJP6nS1vcXsjah4Ny8h4SE2sjuCh3UuSED+pMXVMEqkDGgRx1ZoG9WUbl+GJBrk0VCMdTXElRXqeHgZpjOlfXSS936G7uv+pCeLVdzFU40fYBn9jGbUne2oCq2a4OlAf6ui+B88q7/aO1aSLcYR6btcanWzQtoU09QzBHq5NcyvTzp6NwNVf/BfvneOXi2/4MY2zSfFzmH2K7ckTAawf5P5DA7hUA0HSQZXTLSjdSQtgnxHABXCTrIqVQwD/l7zlZ37GI4AcH/+Hj8tjr/8fskkTDrc0RDVtCwQMEoDJoEbJG9u+dLUWZ0YgHcyJi2Evbcix3qh20nG52K8awVCjnL0Sm04eHNfvai/NSqZSiVaNpiGhTgQpJMnidHX1g7rzBwnUdT+VNG1fFQ9EJbMoWlh/nZLDvY3ysOerWKN+hk3qCxj3zNWHdam0C/3FtTtZj9JuLddUJzduAqu5y4GzTfL4ce55dbVx7i2rrhIiY6Oy+yv/7lUqppOw3h97e3VVcIHXBpekMfW72KFr+y51P8DgrUQruhjFCOBivKsFtqnS4e4FVq+ih7c2FvBKbNki8tKXinz969J+rkdGvniPfO3m50/XF62ERoXquplXRiAFSWIVCeVDEvzI2idPxNVcG1OtZI1+QsKcZs+/DHq2faeSZbMXbV2hkis9iSsPJebTJ6P6p+la6smZFVL/mKhn0vWzSiXrN9c8eu6apf/U6OjNtbJzVfGBLwR2jE2FZUjTuzx2XFfxGEq2u/T1tRIdAts18XPD4BXva9/L77bcfw6YEn6SBPlC/4RGwTaWsNSFXRT9Lz6RaEYXkxQw2i2mZltbggjMR/6h4PWrabtDFzkvSAgGUQKI3PDf/0dOJggge8gz52vO+Obku/trNKVLo7TWE3BAhxJSX74GGVI+wkzzvKZSOX5hSolckNhRTnUJpHHYS+niCKf7rK56BmuzSwNertuga9vWFOfPE43XazQ2S/Rx39xf8Aq2XTYEiAz/7EcTxZ//qZ9PbNtGaRHAR3h9aYtc0KWxOAC5AY0ALujbaJU3BDIjgAN0wdnvX/take3bdW22Z2Ttk/fLyv2PyPmrbsp8Ef2FXHlfehRyF9ZlgGo163xMyV6qBqn6yVTWRlbZj43K61ljuDslYCafahLQMaqJoy8M1Hhr4mY3r+dToh1TDALrHvu+dJ487J06eNPtMnLNDcUUY+fkgQBLkrEuLqtimPgI4BvZP1Ial5FqwdQ0gNVyJ6we844AK4AU7PeCA/p73yvy9rd79b/xv/5Ovvp7SS1F9kbVqKlltoYw+zn2az4IhEK6IsfKiOb0I6CFaGhS5vCXn0D6zlwJyxPq1zczoMOIeX4Ilv6o60z7V3pQs5R4tm9clqlFJLxYHeCytD3dT4tN+0cbjQCmu9O2b0kiMDSGVq4I+fEfF/m93xM5dUo2PfBN6Tx2QPo27yqioPk7hRU3VneGZ63SMX81Ku7K9dqj3amavuWt+PcVPlsfGGuUHz4Tn07anKqVLa5OdtbcEeh+5inZ8PB3vILG166Xyy96xdwLtRKyIkAwyNDolK5wU6BbTNZSF+6PVzQ/4mITI4CL7Y5ae4pGoKVBtXnFSJ2aSX7910V+6Ze8s2/85N/Jt37jr4spqSznrNRo153q+9baoNpGVWAxoYfwkaqFNXFZ+qurmc5tXL0R66f928pSlbIWeuu2iGxZjl9l/po+VyGCOh4+GgmkqHG/2Gc1IHDLv/15ohrn3vZuVV3Y0JUApIwb0Zj2GSZCYMxiTOZeQM4LewoMgcWNQLeagIsWUsJ0d3unb/3eF3SJuBNFF1WqE9t0WbM33lYjL9g9Lms6RpQAjmrgyaiuJTyq69OO6TJt414OvK5m8uCh7dIVMbaNy0uvi6gvZKlqUYly4vLyG8JK/kb0YoVrcYcnGuXTD4qRv0rcqiKugV/txunEz+Or18qFt7y1iFLslGIQCCaML+b8xXLOoGpCF6MYAVyMd9XaVBQCEzrLK1qamkR+5Ve800OxmOz5z78puqhSnXj9xrBH8gorT5eaax6R194EFgth9h+XV98UkXZdi7gYOXaxyVsTmfWGTaoTgVv+Nan9O/Ou35B4XX11VnQR1urSwKSMps0NWp7GTlXpUmtoABejGAFcjHfV2lQUAmMTc3zJ/8f/EGlv966985v/rb6A+4uqR6lOevAws9ZiTWVTcus21scN66Lo1UuO7roh4mk0i8FsMlovDzyzOGf2xeBRjeeseeI+Wff4vV7VxjZslkt3/2g1VnPR1onE0Oev4FZRWompabl/eFIOnx2WJ44NyCOH+72/x44OyIFTQ3JFfxseq453k9VRiIhejFLs6LAYsbA2LXEE5uzj0dEh8tu/LfIbvyE1mrPsjo/+T/nSB/913lDFt+87+yNy69ZaNelOeit1FFIZTKpblvtnnB9sknv2VkeH7NqAmbqjkWCPwiUar5N79kFsF4KWs/D2LYoz9B2aof37hd+UOEswmlQUgYIzI6TUjiXlBjSv4PkrE97ycrxxwxpwlyn/LOZWZ3JlWc5Vy+pltf6lE4hkqMxRyheU/C3GCGDwNAKY7qmyfUsSgXbN8zRn+YVfEPm7vxM5flzWP/o9Wf/wd1KSQ8/5CgUVcO5KTD7/CKeEpK2xXtZ1hbyE03Xa1K0ra2RZE35zuWVl64i3tFs1re6xdRX3q/CZOSlePvtQTKbUVG9SvQhsePgeWb3vYa+Co1t3yqVXvbF6K7uIa8YqGMVKb/+4Llc5kWGJydylYhK+pASsU9PRpK7HC6mERHaUMUr5RO+otypK7pouzCPMBLww75vVOgcCLG9XiNSofiy1gynk/MSxDQ2J9YHZd8dHPyQ10erQnA2Mxr1l43ouRuXwuah87YkpefBIo+rA8iO+G7tGPZNwoq3zvLGhq3DtHdG+X3osruSvsOdjnpu65C4fmpyQO/7+g4l2n/6l39K86UVG6SdKsY1CEYBckQswl6DlI2KYTyekkOnpHSua/LlySEq998SgTAaWYWNfz4VRqdfl2colmKghsJjBF6vk1/Mv1tZbuxYtApnMC5ka3NVWK7Wl6kze/GaRv/xLkQcflM4Th2TXNz4p+++qTt+lo73akV6s0bVxm2TrCnx9skXRxuXZO8bk4LlGeezY/JPatobCtH8T0QYlvTEZLey0TI+M7S8jAiR9XnbqiHeFwT23yuWXvrqMV7OiMyHQrKmxMk2MIXunLo6pv96UZyKlzyVpNH/wQHznSkWeKPu4auO2r2mWc5fH5eTFUVmuq5SUy/xL287qdRa7lI8+L3bkrH2LCoHWxhLOhdA+/vmfJ/DBj6l2ZCjxvdo20IY9dGRKvrOPmX4uzVhcdqyqjoSoRy/gF5SfVshP9RJVbUS1oW/1SUWg+cIZuek//trbHQ+F5MT7/0w9GGyoSsWpEt9PXxqTfT1Dnk+e0+7hd8f+R48MyDkNECFhtJtwowXEX25STbelIn+unSMajXxZkzFDOiGZTUpOD58Z9vwJ3TGl+sRH0fkhlqrMUpXT3lSr2R1y9dP5Xc3eqvxwsqMWMQJN9eG8zBwFQXDnnSKvf713StPlC3Lzv/1FQafPx8Hn+mNy5EJjzkv3XMptEspZSNEHxGVVu99tPXp0UqLxXARQ1/AdItULGsvSdJpFV91OzAuBZ6npt3bM903t/dGfltHd1+Z1nh1UHgQgeETmPnJ4QB7XKF0idc/0jSVIX3muOrtUiCVRwxDLOrXW9GmKmjFNzwIXKmXEMET3jC6DV62CKfzqja26zGWj9mhz69OMAFbrXbZ6VQwBoszKst7ln/yJSL0fvXbt5/9JVhx8vGJtKvZCD2nqmMdONMqkBkrMlJD6zdWr+bdJ5jMQ5JV7InLVOr/beun1kek1foM1rZHLI41y76FG+fLj9fKf94flW08Z+QsiVM3bax/7gWz9wZe8Kk52dsvpX9aoepOqQADihWbPafvmq1KQHsy/XfqHeXrfySEvwhjNZCmkX03a/SPVYeVI154R9X88oxrYrtY6IUCnUH/3YJkltHsFi7VtQ2BhIFCraQbKFkW2bZvIBz4g8lu/JSSHft6Hf1M+9eEvSKxW85dUsRw8E5WDZ4gbrvXWB17fHZKHD08qAaSDhUzNj3S1qtmnLipfetS//thkjbQ1MAOmXjUyNN4g9x1iHd9ooIJzmyEHCrLNMiNA4Med/+f9iauc+vUPSLS9I/HdNgwBEICI9qgPYFAuDU5IQ11I1nRqEN4cpVpNv8FmkZoGH8vlunoVZnGCYooRI4DFoGbnLAoE0PqRX6os2j+H0K/9msgnPiHy+OPSdfyA3PCp/yuPvuUX3K9V/RlTUnW6L+b9VYP59NJgTD75QyDzSd23NS9hYx1RiiG5rL+NqqnKZOEicOMnPyLLTh7xGjB0wy1y0ZI+L9ybOQ81L1VWJzRsC0FYpq+tOeJpQlnFiojlQsVMwIUiZscvGgRaGiKyMkOC0ZI1ksS1H/1oIoXFTR//a+k4ebhkxS+EglpVS/f6W0Ny9y1z624I0u5SshcUInrPKEkdrV6LTbC6tp0Bge5nnpI9LvBD072c+L0/tcCPDFjZ7vQIXFACROqZQgWfP/wL0aKxAsmcV4QqtAJFHo8pflxXr0KJ0a3m8KY63x+az3w1oTN70yIrYqcZAgsRgSFdashFtpW1/nv2SOyXf8W7RHhqQp731+8VKdV0tawVn3vhm1eE5JU3TkldeEx984rvbjYtD8kbb4vJLduKL2PurbESyoFAeHxMXvhnvyzh6XyZZ37u12Tk6uvLcSkrcxEjgIvKIY0KJlCEJNH070QlO2EfuQPHAho+jnlao5xZjo5cg8/o+Qtp1Y8Is2IV0vXs3tAi121qk13rWyTfrBZmAnZPh30uOQTgYPhR1EZK4ydGmgKcciltUstlAXH2kVJg6K2/Krs/+Slp6Dkmq59+SK79/Mfkqdf99KLH/FhvTDvjiHbEEbmiHXAxAom8bSvJ+2LS3oiqz0hgMThW6zm3/vP/ks5prfiwEr+z/+M91VpVq1eVIwDhwyeOPySi6YPI8arKMs9ESu88pP3xqo56L3K4V1cpme+glmIhJRVMh5qAnbBkX30tORj9ND1uf7bP5NnZjrLfDIFFiADOxMwKiSYrhTCzPHZ+NH2H0tAoxz/4Ydn1k6/xLnX7P/6RnL1G/Zy2XVuKS1d1GZeGkrPwfCsaCWm+wTUR2bxCpLXed/genWyQb++lrMLLy/e6dlxlEVjzxH1yvSZ9RmJ19XL0T/+Prfdb2VuwqK/Gco/nNVehE/p8UsYc1ZWQSNe6UMkfK6BcpRo/ghiDQn5GAmJQPuQjM8/O5ww7xhBYJAg0qq9EewnXkZyYimftUAZvf46c++l3e+hhCn7JH7+7qhNEz9dt7miqUXNvVK5bP5ogfyOTjfKFhzU565iRv/m6L6W+bu3IoLzgL5LavlO/9n4Z27ar1Jex8gwBIXlyMNgPIujIX6v6gjfU5sonWl0gjqvP4lPHB70VUYJmbvwY8yV/tMgIYHXdV6tNBRHAcbbYhc5Rs6f6D2LuzSWnfvV3ZejaPd5h7WeOy3P+9rdVoWWkJogbcTNITNPQHLuoSZwfrZPPK/kjKtlkkSCgz/xz/vZ3pPXCaa9BA7fdKeff+nOLpHHWjGpDgLx+EKV0OfMwCRe4dPy8Na9ZFy1wyZ9pD8vijU6POxfUnO1M3/lW0EzA+SJlxy06BPJ1lE3X8HNX9GUbnNQUJBFNRRL2IsjyyR8Vr6uTo3/5Udn9uudKZGhQdtzzWTl9w51y8CVvSneZJbnvQn9cEzi7rqk4v8ElCVwVN7pZ84qPjqvWZZrEX/3Ff/aefaocbW79/9s7E/jIrupOn5JKu1pqSb13uxd3e19wsA02hDFLMGAb4xjHQIJ/kIRsJGQgGxBPmIQQSJgwkB+BQCYkBDDDBOKwE0LsmNhOYhu8u93utrvd+75IrV0lac53S6+6qlRSP6lLUunpf211Vb269d6731vu/517zrm2408/pajfCj5+Sdm1S9YvCkEeR1ws8dzd1FBtWAD3+NDpdHPpzRYbZj+5wAM8mKWEfWeGFsQgASAEsxDgMtUiC+BUial+YgjwtHTEE2riB1hszTtdI+s9A33PQCbcOLZ51Bk3kLjRYwNr19vOP/5EbhM/+ek/sMW7tuU+640IJIkA4u/6F45a+6Jsd7PCg6Be8td/nGvijo980gZXr8191hsRmCkCR/1+T/qv9csbbcOKRlvWWmcNblXLHx6eqW2fyXoJ+CC1C4Eeqzvqbc2S+uD/h2XzuQO99syentyQ9lS2IwE4FVqqmxgCTCG0sr3OnvegDZ6euLCmUpg/GL+S5R5NRqTZVMux62+2Q7e+LfysZqDPXv2RX5c/4FQhqv68IIDlr8qG/VqptsZjB+3VH/61XMqX/e94lx1/7RvmRTu0k/OfwN6jA+N85DI+vR2ZGiq5LPN+hlk/okLA4TE3YERRz5E/Y/R93Nep91xx16x6IlDBBBCA+E7gDNw2jUAQnhjxH2T4d4raMUdl9+0ftt5zsk7vHTufsVd99DctNVzZN6LczutNIgi85Ly0XXVuNNw+cZOWtabsRZsmrrdxRbW98cUpu2Jjtg6BPNdcmPbhtZQP+xK3XW3tNR749OF3WtPxw2FDXR4Utee3PjDxRvWNCJSZQBQFHK0W8XfC5/6dSuBE9NvZesVVibQ1UWGft+7t8RRm8SJ9o9+Vep34ii5VW8tEIAEEcATGh+KApwdoqvMIsNqpPwdhNWTomJD76ZaRhkZ77pNfsAtufbWluzpt/YN32Ys//6f2X7/ogSEqIjALBI55ip7L1vZZ3YWN9sPNp/wt25pT3sF4Cp6GlF19jufKrMqm0ljVlk3F09XnF9BYaffZWa7cMOSfMrbJ0/Ysbmx04TdideleTwJeZc8eqrfNe0dt+R/+D1u5+UfhV4MrVtlz7gtraXVBEUe9zg6BbKousxYXVruP9IcRIIRhpRVGljYsb/BMFencCBWi74nnu31e9jMXf7Q35b5P41re1dVlra2tdvfDO625uaWAC9C6pjHdSsFK9EEE5pgAIhArXvuiGlu7tGHKe/PM3u4gAKf8wxI/aLn/Hjv3HbfkrH/3/Pc/sy2veXOJmlokAuUhwMwqV20asi376uz8Vb1hpSf7G/zennKL+KhPKzWxQ/lApt6+9eNh74Ty3SZG7aXn19hZbdl1Fe9l6u+/bq3v/t2weKSm1rZ8+bvW84LLi6vpswgseAIEpbQ119jSxbW5qGWGek/4kO9xn6puyNONYYCIW+pT/XbpOSuts7PTWloK9dyUTR+IvygMOe4OqJ4IVBqBVe5Iy0XGvIlRGH3cfWS4oJzzRXa99OW28wMfzW3+ZX95u6184r9yn/VGBMpJoKHGgvjz+Ftb0caas1a4RfV9ttoF3GTij9p16QFb01GcNy1l92/JhLQ9ZBdzm6EhFIdHPdXS939oLb/9Pn4aCue6xF9EQ68icIoAgR7nrWkKc9Tnp6zZdajPth/sDWlepiL+Tq259Ltp2d8r0VxaunlaKgLjCXBhZTyRJrEbKf+LOwSMUCRqmHx/cSN+x2+99JLDb/kFa3huqy3/wmeDg/xrPvQrdufHv2Fdq9aX/oGWisA0CfQNcQfPPsYztd7zR2ps/ZL4FoWu/np7/nBpX9UHtmXsgW2IQ6yDI7ZsyyN24/t/I2fdPvD2X7Mjb3rbNPdcPxOBZBKgT9roUcmL3ShRXIbwU3R3o5koU7YAzsROaJ0iMJsEajx4gyAQptFpbTzlXzHZPuDvt3l3d/AbnCkXiF3v+5CdeNmrwm7Unzxh13/gbSFqcrL90nciMHUC+PdlLXgpG7LewVEfzj3lZD7Z+h7Z2WD/8tjpOqPs0HDrnu32uj/8eUsP9IdVHr3up223n+MqIiAChQRWttUFX7/CpdlP5CwsR8BHqXVLAJaiomWJJUA+pU2rmoLvH6lc0kVzKU7UcDKuTzfUfqJ1jlvuDvHbP/E56xubDouZQm64/a1W13V8XFUtEIHpENjk0bq3eLRuTfWp+VEvXDXkFoYqGxyeXAQe6Gy0Z/YV+/6V3gvSvVz/B7dZw9i5S8Tvjo/+lZI9l8alpQucALOR0MeQmxZ/PwqvO3zYlxyzM1UkAGeKrNZbkQSY+5cpc072DYcM6nF3cv2yBo+InJbHRNxNhHrDi1pt6+e+agOrzwqf23dutev/x21W29M1pfWosgiUItDW5OmLqjLWn2nwod9GO97b6NVStqS53x581mzXMT4Xdgsj7sf3H8/W2z15UcKl1h0tY47f6z7wdms5uCcs6j3vInv2U1+00drJBWb0e72KwEIjQEJnhN4JD/LYvKs7/D2582RwOZpJFlOOAp7JndG6RWC2CKz0dBZkU59qIWieNAJnkv4lzjbrdu2w83/2Oqs9dCBU33/hFfadD33RMvV00CoiUE4CUSKI7NAtM3e84qJqa67rt32dDXbv5qHgMxhnizyoXOeuCyuefjhUH1i1xp7+f/9iQ8tXxvm56ojAgiWAVy7+6OWekq6sUcAL9uio4YkgUF9THZJqLvI5IAnoKJEFadJ2ZtwsH2fO30lXEuPLgbUb7JnP/5MNtXWE2uRPe+0H32HVgzM3HBBjt1QlkQQQflnxR/N6fHT42w8P29ceSNu/u9WPgJE4pba7066//bac+MssbrOtf/M1ib848FRnwRMgNKvc4u90UAtt/aerre9FYJ4TWOa5ler8KWtoeNQ6PAdg3CngEIqHOgfsaTfPlzsCeCKk/e4LuPXv7rRMS2uosubR++3aP/FptCQCJ0Km5WUkUJjnz5PFVEWWwvEbqfOgpRt+/+ds+dZHw5dDi9tty99/w/o3nTe+8iwuqfQ5XmcRhTYlAuMISACOQ6IFSSZADj8SbdamPVfZxP3ZOATbD/TZTs/FNODpY2az9F54qVtRvmrDjU1hs+seujv4V+FnpSICs0Wg3rNT3HhFNnK4eJsEKb3+/W+xZc8+Eb4aal9iz3zxm9Z3wSXFVWf1M1H+m1Y2hTm7l7TUzuq2tTERmA8EJADnw1HSPpaNAFnUseD1eCb1OAKQSKyQhd2dc+eq9Fx2pW377FdyInD14/9pr3/fW6y+8+hc7ZK2u0AIXHtp2m69yuymK4attrrfc5UVikDOwde//822ZPvmQGRoyTLb8qVvWZ8Hfsx1IWofp/qadGpW3Dbmur3avghMlYCCQKZKTPXnNYEmt/6RCqajpSbMBJKfbb24YRkfJt59pM+6PWK4f6h04tvi38zk56bHfmzn/tLPWPrE8bCZ42s2hsCQ7mWrZ3KzWvcCJnDzi1Iu/E6ljAHF4HB9eHiq2rXb2t7yNktv3RYIDS5bYc8w7Lvx3AVMTE0XgcoioCCQyjoe2ps5JEBCTfL/NbsQHBicfDgXnz8CRSpB/IGM6bOe9jlUB5evCgTb9jxnN/3OG23xbs/foSICZ0xgNOfnd/nZbvm7etTF3+C4tWIJbHzsAet47etPiT8/J7d86dsSf+NoaYEITE6gwacjnauiIeC5Iq/tzgkBhoCZyu25/b0eAOLJNt3KFyXezN8hgj7OxIEcH8MVi+tC7sDVPr/jUvdBSjP33BkWAkOe/sr3rH/9xrCm5iP77Q2/e0uYcusMV62fL3ACN7ww7Umih91nLmUN7jLnoVJOZLyjbM13fmDNr3+rVR3OuiD0bTjHttzxHRsYOycXOEY1XwSmRGC2I3/zd+7Me6T8tem9CFQ4AfyCSAGD+DvkCaF7XAz2eBb24kJ0MKKtxaeKm2pB/OF0Xu1TznUs8qhjn3aOqONyzSQyuHqtPf1/v2c9HiBCYbaFG9/7JjvnrjunuquqLwI5ArVpxN6Ive4Fw9bWNF74UbH2M5+3xtt+3VJ92XREXVe+xPP8fd8G1q7naxUREIF5REACcB4dLO1qeQjsOzZg/T78u9hnBal1B3GCQpjrl0m3sQjynqFfon6nYwVkffuO9dtez+zOOrb7dD44o5dLAEIh07E0RFp2vfgnA5T00IC96mPvsav+5kOWGj7dXK3l4ai1JIMAEb61Bc85GWuq7Sts3PCwNbzvj63x/X9i7jgevjv6+ltCmqJhz/enIgIiUD4Ck/mml28rxXP+lHPNWpcIVCgBhBhWuX0u0I6eHPIhr3Tw82OKuAMnBsIQMeJw/fIGY/h2OiIwajrJPWeqZKeN+0c79Oa35zZx2Z3/J6SJIS+bigicjsCl66o9wnfQbr5yMET5lqqfOnLUmm59h9V99gu5r/e983ds+5//9bye3o3rGmu9ighUGoFyGgsma5vO/sno6LvEEugZyATfPwJCuvoyNuLxIK2NNcEayITcx7oH3WLnw6v+PbnE0p5TrBLLaG2t7fzgx+35P/qYjaSzZpyzHrnXbn73jdbm8wiriMBkBM5bOXkgVPUDD9uia95gNXffF1bDObbjw5+0ve++3ScPiTdDyGTbn8vv8P2draTuc9lObVsEJiJQmb3aRHur5SJQRgK9g8O2/UCv7fchYQJD+Kt3yyCisNYF36AnjabgB3jxumZb3VFflkCOMjYht6rDb/kFT8HxdSMJL6V1/0776d+6yTb+8Fu5OnojAvkEsP5VpwpTvOS+x0r+qb+15ht+zqr2HQyLyfG39W/vtCO3vDVXTW9EQATmLwHlAZy/x057XkYC+Fw01VcHv0CGhkgey/AQFoIaD+Zg2aBHEPuLdbqP4DEfOmZ4F8shvoOVUmr37bZN73yrNW1+PLdLz7zqjXbfr33Qhhqbc8v0ZuESYEq3n/b8ftWp8SleoJLq7LKG33if1X77BzlIBHts//jnbMhz/amIgAiUJkA/MlvDt6X3YPzSyfIAFrj+jv+plojAwiDARXvSh4L54yJudjGI6GtuSNvhMEQ8at1j0cKVdoHnH6HBVWfZFo8QXv8H77aOb341fHXeXf9oK556yO76vb+wQ+e/ML+63i9AAhuWp138FQV5jHGofvhxa/zFd1v187tzZPb/8rttD0O+Yy4GuS/0RgREoIBAJfcNBTs69kFDwKWoaNmCJsBFjF/gcY/cZSaQzp6M9XnUMMvnwwU+0tBo2//XZ/3vMzbctCgcy9YDuzxp9C12+Zf/QlHCC/rsNrdyl/DdGxiw+g9+zJqvvTUn/jKti22rT0G453f+p8TfAj9n1PxkEpAATOZxVavKSICh3koa5o3VNLdiHn3Dm+zJb95r3T9xZfhJ1ciwXfml/x1yBi7avyvWalQpeQQe2e4picwzPY8VrH6LXn6T1X/8M/5wkM2J2X3p5fbU139ona94TVRNryIgAgkjIAGYsAOq5ohAPoHBs9bZ03d81/a+6302OjYTycrNP7Jb3/lqu+wfPm1VmaH86nq/AAhkRlJ2z2a3AmL1+6M/t+ZX/4xVb3k2tHykpiYM9+JGQMJxFREQgeQSkABM7rFVy0QgS8B9t/a96722xecR7l+zLiyrGei3qz7/Z3bLu64L/oFCtZAIjNpLOx/NWv0+8VlLEcnkpeeiF9jmO//N9nuOv1EXgioiIALJJiABmOzjq9aJQI5A9wtfbE/5kPCBt/1qzhrY7rkCb/K5hK/5i/eakkfnUCXyDbN9XFB9xG77wu/Z8utuLLT6ved2e/offmB9512UyLarUSIgAuMJKA3MeCZaIgKJJ9D41GMeKfwea3rykVxb+1ra7T/fcbttfeXNPkeQng1zYOb9m1F7xaYRW3vHp63+Y39lqe6eXIt6Lr7Mdvzpp6zv3Atzy/RGBEQgOQQmSwMjAZic46yWiMDUCLjD/7I7PmdrPv4hq+45mfvtkbMvtAfe/l7bffk18362h1yjFuobj1x/+bP/aud84oNWvWNXjkKmpdX2/cZ77eBbf0kRvjkqeiMCySMgAZi8Y6oWiUDZCNQc2GdrP3K7tX/v6wXr3HvpVfbAz7/fDp13WcFyfTg9gVRIE14i3crpf1q2Gku2PWFX/d1HbM2j9+fWSSDQYZ87eu9v/r5l2jtyy/VGBEQgmQQkAJN5XNWqBU4gZSmr86nrmK2kHPkJW+6/x9Z87I98WPjRArLPvfR19uDbftc612wsWK4PpQn81CVpW9Lc7xKwyp7YXWOb92RTq5SuXf6lS7c+Zlfc8Qlb99DdBSvvuupltuv3P2x9519csFwfREAEkktAAjC5x1Ytm8cEmGpuxCek9//LIuDKgsIjQtv++RthWLh+5/bcKkeqqoNv4GNv/GU7vu7c3HK9GU/gTVePujSP0uuk7NDJBnti57AdPukHegbLsi2P2BVf/oSt/dE9BVsZWLPWdr/3Q3b82hs0pF9ARh9EIPkEJACTf4zVwgonkK6uslH3xxpG7c2DkhoasiVf+6Kt+suPWu3hgwV7vPPKV9hjb/wV23fJVQtOUCxZlLINy6vtoWcReKWGeEft1qtTbvsbP89uZqTOHtqesp2Hs2lXCqCewYflT/84zPCy9sc/LFjLwMrVtv9X3mNHbnmrjdbWFXynDyIgAguDgATgwjjOamUFEYgmBU+7z1VDnUfUuu7rGRiuHEtfTFZVvT22/O8/Yys+90lLd3UW/OrQOZcGIbj9pa+10eqFMa342cuq7UUb+2zHkUZ7/PmMvfKSatvu+vjpvdlh3msuTNvK1t4CTsUfOvsa7PuPZnw2jlICsrh26c/Vg/228d7v2EXf+oIt3/poQaWBVWts/6/+lh25+Wcl/ArI6IMILDwCEoAL75irxbNMAH88Mqdg4cPaV1udsoy/xz+vuOC3Nzw8Gr4v/q5SP1d1n7SlX/uSLf/8p61u356C3exacZY9df1tYYi4r21pwXdJ/HCrGz4tNWpHTtbYskVZsff80UZrqTdrb5pc/EU8sAbe/VTKjnWPPz+iOqVemw/usQu/e4dd8P2vWEPXsYIqDPXu+9XftqM3vdmFX23Bd/ogAiKwMAlIAC7M465WzyEBBCFzCFOa69P+V+3CMOWCcNS6ejPWvqjGuvsz4f0c7uaUN83QcNv3v2Er/uaT1rT58YLfD7sVcNeVr7Qt195qu694uY2kawq+T8KHjSuq7coN/d6UcgzlV9lDO+rsuQOTB4kwP+/qR++zi77zRVv34F1WNTZzR8Sz14M6Dnpy76M33qoZPCIoehUBEQgEJAB1IojADBJA7FEWN6Wt08Udw7+rO+qCJbDJhd/A0Iid7MtYnQd97D3WX9IqOIO7NzOrdn/GRf/577bSh4Zb771r3DZ63RJIQuktPs/sibXnjPt+Piy4+UVV9viulD2bJ9Bee1naFjfEs/LFa2OV/euTNW5NLBKUznfZM4/YOfd8086+99vWdPxwweqYs/f4a260Qz/3DmOGF/NzTkUEREAEiglIABYT0WcRKBOBpS211tZcYzsP9dlif0X8LVtcaz39w3bs5JANDY+E4d4BHwqurkpZjVsB8QVMUqnb8awtufPLtuSfvmK1h/aPa9rhTRfbjquuteevfo0dW3/evBErb7562B54rsZ2HDo1THurR/hW5SJ8xzV1WgsYDv7aA74N14Dtz2+xTS76Nv37N63Fh3uLy+DyVXboLT9vh3/mNsssXV78tT6LgAiIQAEBCcACHPogAuUj0LGo1loa09bq1j9sMAeOD/qw7lDiRF4sYpmMtd53ty35xzts8d3fsyofLi4u+AtmxeC1duDCKyoieITAjpMDI3a485QVrq05Za+5ZMCeO9TouRbN7tuSCU0puwAcGLD0Aw9b33f+y6r/+QfWvmtbMTIbqam1zmtebUffcKsdf9V1mrljHKGFuSDtD5T+fJlzNWmsq7behD1cLswjW95WSwCWl6fWtoAJENVbX1tlfYPDwbdvdUe9McxL6ewZsmf39+ZG4+ZLypeZOJzpY0et41tftY6vf8WafN7hUqWvpc2nm3u5p5N5se2/+MXWuXrDnFgHCerYdjAdfPE2LKuy1e3mAR19Y7vMsR22bz1ca6+7LGXpqoFSTYm/zId2q7Ztt/S/3Wc1d91r6fsftFRvtK1Tqxmtrrauq6+xoze80U781PU27FO3zeeCmwQWcPxgsYJjUyUHJkFSC/k6YcSAv0yRX+fpjjWBZh3uR9zZkxkLPHPC/gSKu8l0eJKTtIbgtbSLSj9Hu/vmX8aC0zFbqN9LAC7UI692l5UAN0k6rCVu9VuzpD50ZhmP5j1wfMDa/GZ84JiLA8yAXrgxl2N2juza5ve/tft22+K7vmeL//W71vLgfUZQQ6nS436DCMH9F78ovB4j4TSh1TNc/tsF6ZDX74bLXaSkxufvY/Mj5sP70xn6dQtf9ZNbrPrHj1v6kScsfd8DVrVnX8kWjXoPjj8fou/4a99gmY6lJevNl4VcL7hHYCFf1JAOArB438mNebx7yP8ywU8Wl4n5XPKDv07XjiD+XBRn8trM7xHJcOB72OE/7JhOzfrjiBr9oROf4lXtdZ5mKvsAGm0PAYglEDHY5699gyO+jdHw0Fp8T8JqeO6qJqvxdeWXfn/A3X2kP/we95UzLU0eCIe47HNLe/9Q4fVPm5e01FiznyOI2FHfXNrr0n4eFmj/Cb+fci7xPe41PDxQuv09rNDPUdDdme7rTPyehx/KdMT5me6PBOCZEtTvFywBbsDtzbV2pGvQhvxGuHFlk9V7Ghd0yT4XfCw77N8xHEPaF5XJCVR3nrDWH/6LtbkYJHikuqd7wh8MNLfY0Q0X+t/57jt4vh11/8Fj686zTEPThL+Z7hc3XemW3TTRvWdQ+vqtavtOSz/2pFU//IT/PR7EH5HTE5VB9+Pr+slXWufLXmldL3m5z8+7ZKKq82J5i3fiiAk6acqFa5tLCr/8xnAN7TrcHzrHiYRKfv1Kfc/oAOKttgZJ4/95n9/kAgsedP/R3aHGxQ2jBtwzKNw2eItgw7LHOuBA8Y+5kvIVZutkram5L2K+QXwg7E66dQ/R1FBb7YFrNWF7pVbBPrC9HQd7wyuCnmW0i1dEDW0dDFZH83amrNXvl4hK6jJSQp0hr9vg79l/hBv3TTIhRGJ/RVudLV9cV2oXYi/jQaLfhS7bop3sH8KatrJfCERGbfibyzIX/YQE4FwecW173hJY5E+tZ69otD1H+8OTODfpVr9h8jS+/UCvR/xO3LHP20bP4o6nBgfCvMOLHrzfmh/6D1v08IMuCE+edg/wIzy6/oIwZNy9dKV1L1lpPUtW+esK61vsAmoaVsNYvn0c+K5uq9p/IAi96ueeD6+IPt6n9h3w9IDZjnuiRuDPd/KKq63LBV+nC7++8y6ak2HvifZvKsux0JDeCDeIPViLvANGvJy9osEFTjp0xFwzdPyTFQREtf8uspJgpUJAnnDLIEIConTcdOrkz+QzuTSpx2/p9Pmu2Lo12TbP9DsEHsKCYVMeEhmORfBE5XRtjupV6iv8SVMFZ4Qi1rv8NgXB5ezhzzGiXhUHu0IL+8s5eqRrKBwnRnJK5Widrd3nXOdvNvZBAnC2jqq2kzgC3OjpcrhYN7n1j5s9ndGOA30e6JENDEhco+eqQR5E0rjlSVuEGPS/psd+NG4autPt2nDaI7CXLLeejhU22LjIhtxaOFTfWPja0Og5CmutajgThqN5Xd48Yqua3QLIsiH/O95pqWPHLXXkmFUd9Vfe8zqJNa943xjS7T/7XOu55Ceyf5debr0XXDwvZ+cgl2WwWmHh8g6foCesGfmigPb3uGhA/M12oYPHkuYvQXhiVeQzwgWL09GTpYf24+xnfU21D09Wu3DwPxc6/NW52EMAq8wPAlgFEauIdM5ZzpejnqUB62bSiwRg0o+w2lcWAog9LBh0IsVO2XR255/VHJ6GuXngt8TQL75NOEzjpxJZIKKOIfpclp1boCshmKRh6+bw1/hM9rVh29NW7VPUVVLJLG6z/nUb/e9s6zv3Autxsddz8QtsxIex57JwTi9y8cLQYtwhMH6DjxnWPR54guBx0VMs9uayXVPZ9n7PvYkVfzpliad5Wr+sYd62fTptXii/4T5OYn6GpbEio+cjTV/tb/a7bzfCke/7XTxi5Vy3tCHkcj3hPquV7HOYfwwnE4Cz/6iWv2d6LwIVQADBxo3+rKX14ake68HWvT3W65Y+hB+dp794gED2iZ+OsN0DQfij4M+CrwwWEiKB5QtYvoOaae+wk1e9LPzl1uoOPXV7dlntXv/bv9dqD/ofrwf2jb3utbT7GparjNTWuW9ehw21dQQfvUzHEutfe7b1rz/bBlzwIfyGXQBWYmGYEjcGhljJS0lQwIETk0cyM4QbnduV2Kap7BNDmbR7KiVYOF344u5B4IFKMglwH69zH0ZKQ4kmct2UKowEYU0knyvXU7AuupDEX5PgG1wh5svDvwRgqSOsZYkkgGWD2ToYyjnUmX26Yxk3eS7c7K0AZ+Yqu8Cd15/Z0xMsgud4lNxkBSvJxeuaQ9ScP0OG3+RH9k32W303DQLu4zewdn34m+jX+BdWd7u/nlsKq3vHXj3gpKon+5mh3FGfqm60Jh1yEY76NHajaY+mDK9py7QstgyCr63dRhr9+I+J/4m2F2c5wUR0FrPpOzrkHRMdFc7+PORQOF+xePBQw3c82BBNiRWbqNIkiB6EHxaafUcHwoNcqeODbxtWTo8VCMeFOmd5dH80TFjqN1omAhCodWsgf6WuFcQfo0Lb9vVUvBCUANT5vGAI0CFgyqfzIyoM8ceyyD/oOc/hx0VNp7DIO8mN/gTIRUyaFyLVJis8TXIziKyBOIdHUW6T/U7flZcAx5QOvM+w2vkxc8tdJPJxai/ldE06jbT/4b+G9YfUEzwQcDwZ6o8KlmK+x9LLevCLY1jomPuXIaCip34E1llLGoKgQoBhGcCtIOWKi6hQhBdDT4jB5W21dtQd09m3qJBmCL2JiwGF7bC9aN+Lv6cOVmoiMIm25D3bZF9JERIFV1CPgmUrKu2Lsu+i4TDaM98LQvbQicHAsHiYjkhd2ohv4MaVjV4neuyb763W/lcKAe4T3AMuO7vF9rv/6f7j/eEBjOuRbBLcJ3jP9c/fXBYJwLmkr23PGgE6RaZt437PxdfS6Cb8MasHHQIXIuKQTp+6RBtiKdzk1r8nnj8ZOn38/SYrCMeVLhTpuLmuJQAno3Vm33EsGHaPRBEWrrYxYZNyDbPLp+YrHopf1V7vVtq+cTfdKM8Zxx6Hf4ZLl7WS4qLK1niEa4hQ9RNnoijHpa1Zy15IMeHHHYGIsCAdRqlC55BfSBLCuZMdkqoKOdE4f5haEHlCfVJcHOr0VERurmJ/8VWlPfyO87Q4SjN//XHeZ7edDDHEucEf1/C2/YW+ogyJb/AhbvwaJf7inBmqM10CPHhl54TnwTHrNoSFmWub65eCfyGJt4li5xo/7Nf4bI4QFN6JpttS/U4EKpwAQ7I8iXFRkqsM0UcHTefNssa6rOWkuBnUo9MgsfPpBCAdChYXLDZsS6V8BDhWiGuGLBFpJI6lYJ0lmg/RtcSPJQXr3Qa33kZyBnGPqMfKFQSdH2/8dLC6LWutCwIruiGHFUzjH84hjvt0SrTf+b+lf0DURoXzap0HI6icngDHmcjfQ+7rmP8QgCWYDpihXxURmA0C9An5o0c8RObb2LOfSSfkfoh+XuKixDmLcYLRJIRht1u0o4fUcu/z9O5Y5d4LrW9eEaCzw9qCrxzDbXSeWGM4gRtcSDGkxWdSJ+ALwclcKSlTuCCxmCDssB4d9E4Ch178gJYtrg1tQAxSh44E4ccwHoKO4bWOMT+qUgcMiwOJVklDh5Uxsk6Vqqtl8QlwrHg6fs5zLyLYEO1RWelWMP7yC2JxIutbfj29TyYBxN8+j/zlvKEzbaRjdWvqcr++eRBQEYFKJUD/hAvK4qaq8ABIBHv/kPs8e181E0UCcCaoJnSdPEEzHMVTyZGivFoIHm64vCIQI0dYrC8IIcQh74sTtrY2vvA+agAAFURJREFU1gTRiCUH3wnWQd3w9IOj3gyUwx4AElkG8AlC+LHP7Bt+YIMZ7zhcxOJLhJWIdne4XxZDhJMVhgqJnmTfEb4SgJPRGv8dog3rXVQiEcf5gPUVAY6lT0UEJiLAwxz3Es6XFT67BMP4DPdONHw/0Xq0XATmigBuHjzwci4zBR590kwVCcCZIjvF9SKsECGDQ0TtzdwBn+JuBVFGR4wQwqGaDpiOeGAoHb5zzRZuriyjuNHMhY9PIeSiD2sYooqksYg7TmzSqmA59JdgdcN6yB9O88vcssONmuFanuIZwsO5Hi5YGnHIn0hUNdVlE9US6Ygv1kHvBEjjkl8YomPWAvKi7TjYF9aFyKPDiLL6I2CHfK5ansIQfCs9kIA2E9RxuoLFMBs0kJ0SCRHM+lXiEeBcYYiW4U58Y7DCRiIw3hpUayET4HojoKvdZ+VgajGdOwv5bKj8tpNujL6QfgOjgd/ywiv9JIFpuLvkB4fNRIskAGeC6jTWicjhoK9Y7ClJXLgM+BMAHWLk38RNjcJJMur/YIHDWkYKh+Oeey4q+EdxI4yEElGHAy4qixMbR/VP9xoseXlPIAyZ4tOAIOLEDekkfH/Yf566z9SXiv1hmGatJ9wsLvjvIC65cPDhCoEbYyIPy1vkXI9ga3fxBgOsckwujgM9YpVlPZ4GDf8q3+UQCRhH3BXvS6nPmO/pdLhwmUi9OAKx1G8WyjLOD4Jwjk0m4v24cQ5xXLPuBLL2LZTzoxzt5CGz2B2gHOvVOkRgJghs91lIlrbUZd2QvF/C1Si/z6Avn+kiATjDhOn4oqFTlH2xRYjvsTSd9CeA45mhkKQVARTSRbjRCUHFsBiChuhGP0NCJ4qPHSOkUcfqi4OVDf+zvoFs1nIsXmtcNOGb9vSe7mAZo7lEDyJUWC++MlMpdM57x7LqY7Vj3xFSWGtmuiCwSNyJ8G0erw8LNo8lMbdPvmtwKChFHwu+m+aHSJj2utUSsen6WMUJ0DFznoKD83mwyCiKGOd853vSJLS4WwAWXxUREAERSBIB+n9GmSj40TMVHUaWUqV/qHAEq1SdM10mATgNgnRodGR0ahSsSlg3sNIh3hACjOFzWKmDKOMYc6ARcogoLFPRcCivRDi6PvTClDTZ9TIMNtLKsmxhMd8sbmwMQ6WsO47F7YRbCOlkGR5lW1jIEH/5/lbRNopfo86b5Wyfz1j+fNdCSg2Ws25O5ibmy3RxFu0/3yW9cIw6XbwjpDm20fRBSW/3VNqXtUiPhifd/N9xI+RhJD+oI/97vRcBERCBpBBA7PGAy+hGSBlVAQ2TAPSDQEcUWdoQOAikMLzqYgmxhmrHx4whRvzZIgU/0fGLY6Ga6Lczsbw4chUBh4UlGlZmmwg6hpyjoWOW0c6J8otFfgsEUwQhCiv//YifUa5tE19oP8PR+ByFKbZ8KDqOoE48mLEGch1hheWBIyr4WWLp41zjYSJcT35NqYiACIhAEglgDKJfwJedjBKUShF/7MuCuvsyFIugYZYHhB3lpEdrYrlhKBMhU+fCiM4ryaWUhQ7RFtrvFrw4hXXkzygQ5zfzrQ7WPQQxCaKJyMLfEZHMBc1FHJ1D861d5djfyHrNQwIBQARu8ODDZwJoFHVZDspahwiIwHwmQJBHK38+QkbfwRSklVQWhADMt9hxIOjU6dzpsIg8pXCg+KySPAJEWHX6MHhW8meHsaMhfJxumYmBIXl0vxv2QrTysTA9V3Y+0eQRmVqLeHDCYsxUY80epMHsE1wvKiIgAiIgAvEIYGCptDLvBCC5nei8UdMINt5jzKPjRtjR2RMgkW/EQwBSj5JNWEySXu/6/TfBPOtDvFgAVZJJgLQvWOvwvyCrOr6W+dFWyWz19FqFZQ+Rh59KrQfcECFdruju6e2RfiUCIiAC859Ah89ehA7ZUyJDBL7QaJdoVAl9Q9DoTJd5JQAZmsWfbbL8Tqs7CpEBkkSKpObI9+/LtwoW/kKf5gMBAguioXr88RD2DOdzAXGR8bTFAxevfEbEMM1ONPwd+fAhCpmwu9IFIW3lgQdLHOcun7PBFT43rAccMUzN5+kWfFzxbyXFTyU+qU63XfqdCIiACFQCgZDayh+s6ZdISxb5AkZ+0tzbSQVD0ChBpLMQBDy/fADp4J7adTLky2MIClBM8xNle8epPOrgowNO58+wb9L91aL2LpTX3Yez6WsYloyCdkj7ggDEX49E1OHPL6SDJwaDwEM0BfHk5w0BK8EK7N9MVBj6RHQxvR05Gon2jS7aiX5T7uVY4HBTYLaSyaaxot37PD3PAc/TOJUCE+aY7fAI9uJrZyrrUV0REAEREIHxBAgEQYdE91eyceAj7bfeUKIH+JAmrnd23Y4qwgJIJ4Tlgc4cMAzlMn8sufGInim2zkSde9bK4xYe75yxllIXNQ1YjCEo6gj6+MOiJfOZwKqOunB+dPmQLqlXsAByvLnQyI+IIMLKhwU4On94gJgstxIijwcFIlWDpc3FX9Z/MBOGj6Pp42aLGwL03NVNk1q8aSPnPe0N/nn+firZ47lWeNpE3HI/QiATrRtZAbmuIpY8aHGtqoiACIiACExOgPsm/QduZtxfG71/op8K+sVfo8J9nn5rNoZ8o21GrxUhANkZOqFUKhMsLlhdsHqs8mm4nGEQg4fdZHqsezDa7/AKYHLc8VeqsB6SIROliMUQyEQosnwya0qpdWlZZRHAMsbsH+2LsvuFbx9CCF/OMBTq501k2+NhABFIAmsuyFKFi/Asn30kcg0g9c/evT3hgYQo8TWe9Dry0cCl4HRiEAGFEI3EZ6ltnm4ZwRbR8MBEdXnAYXg7Ks3u7/jUzu7YNxP2k+unq3coPCwhmBHJ8OA6Qe8xLOEfPdcjw+ie+HvsIQsx6G/D5/Dqn6lPXQnF6IjoVQREYKERQJuQG5ZpRqPSM8GcC/QRZJiYi3Kq55iLrY9tkw47iLvuwp2IlDFosHSUKqET8t7HdZ3BkHlkoxLU9tBgsGaQqJhITwo+hBryiigl4zVYv8aEEBcfw8DB+ufnDWcO7zMImQkKtZ7d3zPu2xH/XRS6j58cjry4HmTn/B1XPVgPNyxvDGlRMP1v3t0dLNrjaxYuYdofhrKjhxSEFqlVTleCldPbS9u4ieDTSFvjFqztpQo8EII8KJEaKZqZhikIuS4ReuHPf4wIRQDyGi2nPumWJARL0dUyERCBJBLAiocxC4PESR/OrfRSEQJwIkhxlDHikU66tF0nu2a0Ix1drc+lxjAzQ1kqySWAVQvxVDxbHKIf51ueyqjDecEFi+jClxQrMXkiMdcXT9kHrZ6BjA0e86FmP3+WtdaFVyyBCD2GjnmwwGKHQOS8JChlIoGVT591LXcfPwr7hHwb9jfcRHz1YR+Z3o+HG7aH2Avb9fMeX0b+i1toNwI5vyA+CZDBlYJnJB6UqEdbeOVzZBnN/53ei4AIiIAInCLA/ZtRRkanuGc+f2g4OyJ1qkpFvasYAYj/VaNbQLAu0EHRMeOkn2/RyyeHZYJOi2EqQNOJY98Lw1NFr96HZa0U3jFTR36B+SQXznuO+3JPI8TfZGVle9bvDUsa5w6CEGtyLrjE3xNVHoaax1Z02C1v+YWzMa4ww8IYWRnz13Gm73F/ILKX4XLcIAiS4Tphv2kLMpBrB5GnIgIiIAIicGYE8h+Uq1J+73WDwsBQ4QP3mW2hvL+uGAEYHCO7s8NR+cO6I95pRx0tcPmOoSmEIcNdUcGKsWF5Q3CEj5bpVQSmSyBYvsaEEVFbUWHIFV9ABGDWxYCk4jxUZHNMRo68ccVftN78V8QjVjeeJFlv9nrIvmbFG/NFZ0VqsYWR/e4IvpE1IWFzqYcd1ocYVBEBERABEZgZAowoXbJuUegnQiCITwV3wv8ydBgVUipGAObzoJMrNaxLZ5e18+XXzr5HFG7b1xPyBJJUEUuHigiUm0DWz80FmosoHkgYOsbqTGHIlnMUCzZ5+YqHWqN94RxmuJhEy+SGCmlseLjx9bCmtD81ItImKwjRA57ehm1yrrMv/GEV58ajIgIiIAIiMLcEsP25rcrv0dmE+rgm0UfwoE7/0O1uQojDMzEYnEkLz1gA4idEh0N/hRWu0XOm0UniF4VTOo3lj0hC77NCvWiH+Rw1nA4vGq6iPhMnR99F9XllWTSkFaw03vnlOlEfDs5aTSbvPPPXp/ciMFUC5JvkL78gyBhmPXpyyIeMh8aJPwJIFjenQ8QuojEKSMpfx1Tec42t9NRJxp+KCIiACIhAxRFA1/CAP1lBCOKSQ2Aho0q9Ps88onA2SmEvNo0tBqd032EKO32sOztUhVUCYYggI6IRf6SWRu/4xqwlKGPm40Ud43BPff5wamd4jShCZxcUI50rVlPG01kf681GJUrowV1l7gkgyKIp1EjLEtwW/CQnIITPssrN/THSHoiACIhApRFAE4WgRdc8/a6lstPUZs1fIQWX7zAjnAQCIhaDYHQjGa9nWiYVgAxzRYJtKhsLfkpu8cOSF5WDdiofTrSMVwa9SK3BsC0BHRTN2hEw6J95SADLXrtHG6uIgAiIgAiIwFQI4Jtdf8rlfMKfYhRjBBUNiGhktDUShxjRgmGOV/4GS2svVj6pALzs7FZraWkJO4G1Dr3JhjFTZn2h+Jxdxo5kdyi7Y+xMsPD58qylLxoOdgf2sfXwG/yemApl56G+seFbjH4uC70S5lMfOg91EKNYU6jPcsQiFkHeq4iACIiACIiACIjAQiCQ00jeWEaeJitdXRMPJ0/+y7y1Ro7u2OxmYxaNaNiXfGiRsmUYmPeDPm5MFHBro1taJh9ez2uB3oqACIiACIiACIiACEAgtgCcbVwo3GoXd2QGVBEBERABERABERABESgfgazTXfnWpzWJgAiIgAiIgAiIgAhUOAEJwAo/QNo9ERABERABERABESg3AQnAchPV+kRABERABERABESgwglIAFb4AdLuiYAIiIAIiIAIiEC5CUgAlpuo1icCIiACIiACIiACFU5AArDCD5B2TwREQAREQAREQATKTWDSNDBdXV3l3p7WJwIiIAIiIAIiIAIiMAsEJtNxJQVgbW2trVixws4666xZ2D1tQgREQAREQAREQAREYCYIoOfQdcUl5TNu+IRs40t/f78NDg6O/0JLREAEREAEREAEREAE5gUBxF99ff24fZ1QAI6rqQUiIAIiIAIiIAIiIAKJIKAgkEQcRjVCBERABERABERABOITkACMz0o1RUAEREAEREAERCARBCQAE3EY1QgREAEREAEREAERiE9AAjA+K9UUAREQAREQAREQgUQQkABMxGFUI0RABERABERABEQgPgEJwPisVFMEREAEREAEREAEEkFAAjARh1GNEAEREAEREAEREIH4BCQA47NSTREQAREQAREQARFIBAEJwEQcRjVCBERABERABERABOITkACMz0o1RUAEREAEREAERCARBCQAE3EY1QgREAEREAEREAERiE9AAjA+K9UUAREQAREQAREQgUQQkABMxGFUI0RABERABERABEQgPgEJwPisVFMEREAEREAEREAEEkFAAjARh1GNEAEREAEREAEREIH4BCQA47NSTREQAREQAREQARFIBAEJwEQcRjVCBERABERABERABOITkACMz0o1RUAEREAEREAERCARBCQAE3EY1QgREAEREAEREAERiE9AAjA+K9UUAREQAREQAREQgUQQkABMxGFUI0RABERABERABEQgPgEJwPisVFMEREAEREAEREAEEkFAAjARh1GNEAEREAEREAEREIH4BCQA47NSTREQAREQAREQARFIBAEJwEQcRjVCBERABERABERABOITkACMz0o1RUAEREAEREAERCARBCQAE3EY1QgREAEREAEREAERiE9AAjA+K9UUAREQAREQAREQgUQQkABMxGFUI0RABERABERABEQgPgEJwPisVFMEREAEREAEREAEEkFAAjARh1GNEAEREAEREAEREIH4BCQA47NSTREQAREQAREQARFIBAEJwEQcRjVCBERABERABERABOITkACMz0o1RUAEREAEREAERCARBCQAE3EY1QgREAEREAEREAERiE9AAjA+K9UUAREQAREQAREQgUQQkABMxGFUI0RABERABERABEQgPgEJwPisVFMEREAEREAEREAEEkFAAjARh1GNEAEREAEREAEREIH4BCQA47NSTREQAREQAREQARFIBAEJwEQcRjVCBERABERABERABOITkACMz0o1RUAEREAEREAERCARBCQAE3EY1QgREAEREAEREAERiE9AAjA+K9UUAREQAREQAREQgUQQkABMxGFUI0RABERABERABEQgPgEJwPisVFMEREAEREAEREAEEkFAAjARh1GNEAEREAEREAEREIH4BCQA47NSTREQAREQAREQARFIBAEJwEQcRjVCBERABERABERABOITkACMz0o1RUAEREAEREAERCARBCQAE3EY1QgREAEREAEREAERiE9AAjA+K9UUAREQAREQAREQgUQQkABMxGFUI0RABERABERABEQgPgEJwPisVFMEREAEREAEREAEEkFAAjARh1GNEAEREAEREAEREIH4BCQA47NSTREQAREQAREQARFIBAEJwEQcRjVCBERABERABERABOITkACMz0o1RUAEREAEREAERCARBCQAE3EY1QgREAEREAEREAERiE9AAjA+K9UUAREQAREQAREQgUQQkABMxGFUI0RABERABERABEQgPgEJwPisVFMEREAEREAEREAEEkFAAjARh1GNEAEREAEREAEREIH4BCQA47NSTREQAREQAREQARFIBAEJwEQcRjVCBERABERABERABOITkACMz0o1RUAEREAEREAERCARBCQAE3EY1QgREAEREAEREAERiE9AAjA+K9UUAREQAREQAREQgUQQkABMxGFUI0RABERABERABEQgPgEJwPisVFMEREAEREAEREAEEkFAAjARh1GNEAEREAEREAEREIH4BCQA47NSTREQAREQAREQARFIBAEJwEQcRjVCBERABERABERABOITkACMz0o1RUAEREAEREAERCARBCQAE3EY1QgREAEREAEREAERiE9AAjA+K9UUAREQAREQAREQgUQQkABMxGFUI0RABERABERABEQgPgEJwPisVFMEREAEREAEREAEEkFAAjARh1GNEAEREAEREAEREIH4BCQA47NSTREQAREQAREQARFIBIH/DzocWuEkVQw0AAAAAElFTkSuQmCC" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAD6CAYAAACPpxFEAACNhElEQVR4Ae29B2BkR334/13tqqza6aSTTtf7nX3FvWLAgGnBdAzYgYSeBn8I6fkFCJBCIIF0AiEJBIjpxdg4EKoxxrjb5+u999Pp1Ntq/9/PPM3q7ertaqu0kuZ7t9q3782bmfd9M98+3wnFFcSBw4DDgMOAw4DDQI4YqMixvCvuMOAw4DDgMOAwYDDgGIgbCA4DDgMOAw4DeWHAMZC80OZuchhwGHAYcBhwDMSNAYcBhwGHAYeBvDDgGEheaHM3OQw4DDgMOAw4BuLGgMOAw4DDgMNAXhhwDCQvtLmbHAYcBhwGHAYcA3FjwGHAYcBhwGEgLww4BpIX2txNDgMOAw4DDgOOgbgx4DDgMOAw4DCQFwYcA8kLbe4mhwGHAYcBhwHHQNwYcBhwGHAYcBjICwOOgeSFNneTw4DDgMOAw4BjIG4MOAw4DDgMOAzkhQHHQPJCm7vJYcBhwGHAYcAxEDcGHAYcBhwGHAbywoBjIHmhzd3kMOAw4DDgMOAYiBsDDgMOAw4DDgN5YcAxkLzQ5m5yGHAYcBhwGHAMxI0BhwGHAYcBh4G8MOAYSF5oczc5DDgMOAw4DDgG4saAw4DDgMOAw0BeGHAMJC+0uZscBhwGHAYcBhwDcWPAYcBhwGHAYSAvDDgGkhfa3E0OAw4DDgMOA5FUFAwMDMjQ0FDqaffbYcBhwGHAYWCOY6CqqkpqamoSWEhiIDCPpctXyvmzpxMF3IHDgMOAw4DDgMMAGGhvb5eDBw8mmEgSA0HzgHnc/bNtUlff4DDmMOAw4DDgMOAwYDDQ29MtL3v2ZmOhslpIEgOxeIJ51Nc32p/u22HAYcBhwGHAYWACBpwTfQJK3AmHAYcBhwGHgWww4BhINlhyZRwGHAYcBhwGJmDAMZAJKHEnHAYcBhwGHAaywUCgDySbG10Zh4FSYKAiFDLVxuMicf3nwGHAYaB8MeAYSPm+m0l7BrGNhENSFamQCtUlIbrQ3JoqT7EcGolLpV6v1Oux0bgpOzwyqsciQ/o9queAkNbD9YHhmPld6B/6U1Opn6qwth2ScEVIhoZHvd/an0Ftu1qv11aHzTXDMjy+ITwTfZSx38P6DPQ1FovLCB/tZ+9AzJSJ6QNzfdQ8eKG9dvc7DDgM5IoBx0ByxViJy0NAIcBh5QHVlWElqCIQyho9boiGDfHvH4pJVIlzbbWWU4Ic1nsqKKgQ17Ies0hvnaQMAOOwx8NKnLt6R6RP6+7sGVZmw/3arrYDsad62oAhdWo5+kg7EPV5dRHzGyYBMac8zEurlwWNVaatXP7A8ADqo3/V+ns0LKZu2qT7oRqvX32DMTndOSgR7Rv9g9kA4BHGxZPCKB2TMWjJ6U+ljgHwD9N24DAQhAHHQIKwMoXn6qojRmOIqtbARO3pjxnC3NxQJfNqI4YoMokHlZjCNCCK8+sjhvjbbkJEkdqrlHBDvD3ib69O/EYDob6uvmHp1XsHhkYTmgxsaOXCWmnUtgEYBP9oF6IMNNVXJo7NiRL94Xn4pAJ4gYnwDPSpurXC4AomSH/RyuqVwcAgKTOgTLGrb0TOdQ/rdY/BpNY5F36HVK3jXfKNZghYhsu5ehVQeM/gD8FhUPF2oWfEMOcqLY/miCCDtss461B85suYuZ93hUCQDSCwUJT3h+YKc6MOhuRFFWh4zzybg6nFgGMgU4jvhmjEEOthnQRM1EXzq81kqK+JGE2CrsAsetREg/R9rmvITOYLqhEsbqkRNA+IZLcSwwYlopiJmFRoBdTBxIZopgISOPd1dA+pmQrGMWImb7u2j4YAY4JABN0LMUnYk8YqtowktZ2p+u31My5RJSR8gM7eYfON+Q6GuvfEoIcv1YSmm7BE9MXYPjAGIIC8EwgyhBDQ4WAECIgqDD3VnAjOKcP7zpVoG5Oi4gXij6DC+OIc4xAmAM4g5LTLOIhWVRrmgRYJU2F8QZrjA8q0tc/0AzNirv0wDzr2B4KfC8DoGKdt82qkWQUYhjk44ZsxfORsv2EiPEe2TCmX9l3ZYAw4BhKMl4LOzqutNBLeqM4RiDXEg0HNpLPEl9+YggDjqzAT1/MZQGQkKtKi12AoEBzK9w2OSuu8KjNhPF8GPg7PjMV1iA+TGkbDbyQzjo0krsRhhA4pwLyQQGFMENuVbdFA5mEKl+mfVGYHXo+d69fnlgnEd6oeAVMbjL5O3xcM2286Q6NkLIBvNCIIOEwfAghh5N1B0HlnVivw95v3qq80L6A+Pl3ijbfUSuiTBdxgaKXFBqv12DGaT/3mGRSH3f0jBnfMBcZyVBncusV1hrGd6xqWw2f6jVkV4QeNHrwyHxwUHwOOgeSIUwgVEhvqMxMfAg0h9gMTsikSkeaGSkPwETJ1/stZ1SjO6wBftiBq7udemAjfMJ359ZZZeKo6RAiC0qQmKxhFY60nrSK9USdmBgtIhRVGW8C0E5JTFwfNRLOaTuU8NQcp0YJxoLmkEmBbz0z7xqSx72SfIczgKFVyn8rngUShNQ6pANCofqERpcO8KwQCggAwC4L7U52eBhrSd4gGcGJwMMHcrYDBNx8In9VepvJZit0Wz4CgVAiAi54BjwnCRE5eUJVIATwZc5Ye4xNcv6TOaFLwjNZ5XqAF7wUGznygnkK0J9Oo+2Mw4BhIwEBAWkLVZ7AxyTFBXFR/ARIjBGFhU7VR6zk+qxKOHyBiOJU7lKnAMCDa1AMD8cxEopLygNEqcIJDUCDqTIyOniHDKJr0/gvKOCCOqOc4iJkw1ItUi7OYSdOvjIpjziGdIXkxRf1SHpMFJkUf0GQwSXBdfxpp3fo6/M8wk455B+36Ps6pea5fNTTwDS6mA2iXD+/qREdIliyoMf4i8/61Q+d1PBzSdwTx4v1hwqTvmIUQLHoHR5IImyNy3lsEf4zjIGCugieEMAD/394TvUazY2yjDXIOMxxjnrHvoHgYcAxkDJcQfphGU12lmfQ6v01UEjb2MyrNewMxpJM8LgdP95m7GLwtjZVGEzhxfsAMZNRlpB0Grx4acwWmDRgRxG2Bag2YCPBxcK81d1SGR8yg12bNZJmvzKJOGRbaDsxnvtp9YST4MDQsSxmOZz9v0OuYtmASSHhB0irMiedjAiGp1dd7k4qHwETGlIprtbghaWOmaCfg0Ht2z5nbpiaNo8qcywHAKia1M50V5t1BABkXFiB6xzvKo6+2T5m+YXjMCcYipiHGMgIJAQ0EOsA08UOUAjIxD+YHTBvrLP1jDtO/Fa1RFcx00imAa/wmi5prjBYCs6H/APPNMH01L/fpJ2j+mILT+MfiPh0eprFr4hjIGPYZdEwOnLEXVdVlMDK4kGwX68CD8CLFAEgxaBcQZl5ui5qqDCPQgcygRQKCIDOYG9V8obTbSEEwFeqhjUOn+w1B6dNJiBTNBFyupq0FSgSpH7MYHwi8FZrQVqyqjubRNzisBGrQTAAIaabBD2O70MtHTSYdnjkLZmQYiD63lXZhiuCCvkMgWlQD4rscAcLl+YQqFZfDRrOzRK5c+gtxIsx4pgECB0JLnUazMRbANWMa4ovGNDTsRQae6Bg0ZsN8iRvzh7GcLjqO62bcax/QRCD8zLXqsd8mGEHHMec5x7og5ogfqEN0CGPeYrwEAT5FzMUHz3jCYVCZQs9h8mauI6Quaak2ghqWDZ24RghFQ61VfOMrxbTJczAvoUvMXz/wTHbO+s9P9bFjIIpxXoZVbXnB/hdD5MoJlRTNC1Mpsr252kjpZhDroIUIHz074DEcHadIMQCTArOEJepMyIt9Oop1MHAPE65F/R7Uw8Sg3fPKrDBnoXIThsoA4rre4vWJAwXuh6hTB/4WtB/bjlci81+IGp8goB58L8P96nRVpobUDCEhYsvvcwm6d6rPwfzoqxdV5kUQhRV3MONyhUzmmHLoM0Ru5cKoMddCnFkXBGFFYEo3ZgrpN3Nt1EpIWhHzDBwhlCG8oGFwLhP4x2V1ZeayqfUw73pVEER7P3txXENMLVeM39bMNqiRClgMEEiJfAOwSjCWERrN+iedhzx2A1YIGKIeD2pZTOMGZ3CVMoA5z0CQBtYsqk0MUl4OL4qXaWLfdYDxUnlxEOzuE+mJE4Qfgo8WYqOveMdMCC8c0vN3IGWc7hxS7WFI2pqqjJN1la69YDDDyE529JuJy8SBkSD9MS0YdPQB5kGdDEgmPO3yQUop9iRnbQrSfb/iBOck7U4ngB8c5bX63OCCCchcOqOTv9jPXornpM/lCAg4i1UqxufGuIOo4qtDiMgF0GCBVIGGcYOZyX+edhCSjNlUaSTvkXPMO+YQ1/hdTEDTQQCDKTLfrCkLwY1PPM4c9TQY3hX0gDGX+t7oG3MPAc4Kn5TNBDwnJWAWvYOeuY96WhXnPCb19PSNm9GY35bpZKp3Oq/NaQbC4FysGoV/kHKM36NCBxcDjMGE2ssHJy0mIAYdAwe1l/UYrNxeouGb3McgYdIhBTOemJCMGiQppHgGEKGFvTUx871EzWOUY1BR5qSaBJD6cNivVcZG+4R9HlSTF4wOBoV2A0AwUXvxlTB48bXQNhqRf6KawgX8oS7UaggKfga79qKAKnO6FU2DyQVT5znBFwyN58cUaMOTc6rUFU5gACkXhz+SLgzZMA414+Y6hhDGmCe8HzRXqwlCaBnD1Acj4R+aAr62S5bWme9EZ/QAYg1B9c9L//V8jtGmmGOmbq2AeekFtYwzKMzNzEG/D5DxdkHNSUM69kZ0vDF/eT40pHotz9iEMbIGCy3mqPq9EDiDIGhFP+OaOcvcha4QWGMEyTIVNFKfa04zEKKpGNAMAjtoGGAQJb5Xt9caf4BFWl2NDjydIABqpkkjovcPNo8aByLXGPQMAAuYsdA+0CIggDAYLyVJlUpBfcbfwuC20Tn2Ptq2khBSCsNcbzUTy5ahLTQPzqPj0sbCak+KhBFhEsMmnCshsPX7v6nDMCltg+gv7M00a/HmL1vsY9rwJESPuCCVIUnCwB3zKAzbCDCYihhjwLHzjMlgApipJcLQEXjseGDM7zjSY6R0ogo7usXY99GeEYKYXxB0IgdpG+ZjBZNSaLkIXWZ9VYaHsO37izDHwE864HnDYy7CUXUSwSwvyDj+MIGnCy3nudctqktiWtAi6Ad+WFIUMacBmDEWi3Ib7yHtMEzVQFdXl8ybN0/2HTkjg7qSDTW2WICKrPgw5hds6qiQIAMCBwGczAlcrH4E1cPgZWD36EtCirAvnBBL+gohN2GAHqUOqiKJCVHgkEZqYTf2AxODQcyzgwsWP8FMAMxT+072JorTbts81Y50/Bh/hzIfBpXRaBKl0h9gzoLA83Z1rhr7LgyFicsnH0BCYoJYSZKgAKJbYGKlBKRXAGkN0x+pXFiYBxM/kkHiy9Qn+szQzxcXmerO9RpEivFlhAwdfzBq3jlabqnNcki+mFSblAEQFajDxvj8cOKmOm6DnovxsEy1F8aCZR6Uw4RLVNZyjYZijJ/X+pg+jCHmgV/SZ95xfXlrTVIdQe2V+zmEmuPqk0SrYA4vNRkkPNM02gUzDxM5OICpIVAiiGYDMBaEN8zpWASYdgafej9jiHEDPYUxI5Tyu1jAe66WAVm/sk0uXrwojY2NpupABvLjxw8XvKUtD2TUROWg2PGJ5uBcEDCRrS3RDkKIuLVv81KQ3plkTHhSMWSLHNpEGkLNRHKFKAMsQuIaUgDnUatTJXXOsYgPFZ+XzPugXe6x54Keh3M8E8wIJtytJiteuo00sXjYuKw+IXVxD048Jp19NpiNNVnZbxstVqUmACJhKAtWMa3BCG0OKOqzQBkGH8QCPGL2YpDZ9B+2XDbf2GsxxfFsVhOhn6WQGukP75u+MyEwATBB+M3zG1OgjgXL8LPp/3SXscIAxINxhBbM+8FkyRyAyEDEeacIDzzjiQualkWvAXZsmB9F/sN4p03mIOOX74Xqo4MZQLCC2oYAXqrj2O/Iplvc/+SBLqOxs3A2E/COMftAcEs1jjK1P9uu8Z62HuzOKABAg2AKzB1wzrFnJvZ8ilqFGYSWZoGjnp4ued5VK5IYSNFNWJYokx4DG2E2wEDFju+HxgwRxhATiAhZaiGiDD5CaiEuDHikoT7l8pWKmBqdkDAPJq7+NFyfdigDouHgTFxsmuCMKComDJIfjIqJY4h33OPwDHLu8QOTBeSjRViNwUROaCHtqqkPgsB9SOyku0AltSGQLCibp8QfJosZgPP0hX6fGgsBZXJvWl5vpFTaOqfMBmkchgJAjPZd7DMMDyLPhLbX7GChXKV+WJDoMWTP8c75bAGcIC2CO/BOW+CyVMDg5t0B4Jl3060RYmcuekENpWq3WPVaCZPvVhVeYPARnLX6bq15wrZl8RgZM4lwvqFW/QT6vihP+CyaAbhnDuAHYnymCj62vqBv5lm7zhGCDqyPgnL0D8blaWSMPs9kekqZF8TlspUNZu7Yudet7ZKTDeEL8ys+wFQhkbHP2Luowg318rzUlcok+J2tZm065v5kxAA4h1YwT5k70AY9ZWgaNIV3iLmO93da17hBbNaoyTxIE4LOYgEg8OB4bOI6n0AN5PCJczJaETVqGBVkA6zWJkoHCcpqEdncV8wyhpArcjCXMcn0/4TBmk971IvEjXORSQxD4SUgEfMNMYaxwDRQzTFRoXHQPmYAvnmBTCIm0AplrpzDpMQkZvIg1fPiAZIeGnut/txzTNeU6DkmJ5KcZQqUgdEwgbmP+iAkzfVVxl8Ak2HgkE6FNi3QX5ij0YpM++TKyk2yhZkR6snYgCEG2Y5te7l+k/KjW4UBmC3PNqJ4Z/DSFr9LbdLJtb/pytN/CCNaIWOC98aiu2LPDd4zjBwiDVH3S4z0AeEEbQft1q5boi/0jTHGmK1TDR3hi3rwV1CeMYXmTop/fmOGCuq7ZeoIFrYtixP6tPdEn2xQRzltYXJk8SQRhw5KjwHmUhBT8LcMTYJ2WLriv5Z6bF0ck5qw/AXgPji68FEYyYfWMoAZtBrZhGQKBA26DLeX7SXMaBAyT0LzMuDyrPxGKoaxIIVZJsCDMLnQbpDsvBBBoxUahgNDwFaKnyVVErVIAN/HlWlFtB2kRj8uGRz7TyU7PCEK+FXoE8wOxgDj26QmhqA2LJNlYrPYDQ0qG7s3fWY9jB0K4KEYgEmNfsMoZjrAZHnnaOJoFv53l8+zMZZ4r5n8TbxPgjYOjS2G471sXt5giDaRgozRlW21RgMt1jtL9yyYbqEbPPcqFTasiYv5YAIiSuw3S9cvdz5/DGTNQM51XJCW+U2JlnjpTGqjYiv/wN5ORIB/ojNhkHgpg5SIFI4EY1dxc222ApMbfw1EGiKeLYAn/DqTERfKQVzxYSBxwsLxY6BFeL+CW+RdgH+jzfiKQIiwqaNBIRXrl2E2SKFIjaQDgRilA+qDMCLdYPqYrP9B9cCQuQ86Au7MCvnzmO7St+uvB0YNE/bb5hmDAIwTjRDtbjo0FvpBOOtSdS7nMh78zxd0zHzDJ4I2xupw5hQBHoSjAuAR0xROaUwXaHIwDOYhplmkTEvIg+ov9BzvAgEELZd+gAOc85NJwYW26+6fGgwEMZBA4zWScShCyBgExotQYkBadRXaghQxMKSmE/3HZMUZaB24lMPWBinIRjWamscvXSsQwnzMOEFSIMQd/GESAIEQSezekAgYBpId14IIPNJptb6XQWUEMKYFGqmUyjzAAhMcrQlzAkSIUEK+MXOQ9yuobj/2IGL0AXNHrgARRLiAyNGmeSZNIpgLgDcbgr1oPoko6YtnKgJ/lilzfFpt+Cf1M9kz5dJ+prIwD8yRLMrza6NB96Dd42PQbhqmhykz6H3ZezFF8kGb2OuL2KMd5iTzkHVNNpqJcQQwPrP1R9q28vlmrJqcIfqXKDkHsx8DgRQA2/xgvM88fU3lkHHMMkERrpFO/ZoHhbCdYiph8CJxISXDOJB6sJ8iiTjIDgOexIrt3NPYIPSs6diyst6YLyCEOL/AuT9MGCJyifqgsLdDUHkHAEQ0VQpGajX7VuiEp+yOoz2GmKe+13Q9RmggoeR6NZfZEGe+MwHEDE2W1OuFagVoSixUwxeFlE8AggX/s8J0p1L6hbij8TXWpo84tP3k+7BG3PF+gRYluP6+m5Np/qBR0BZ4xPmJDw6N0tMwxn2Q+WiGaZp0p+cYBhAyEWygCZYunBhLIutHRSAD8RcgzOvUBU9S4jwSFlKS0iujTlvJDsl474lkSRJJEanEMRA/RiceQ1xhwADHRNfgk7BaB6HE+KAaot4mUJgPcY4TY4/WwAvmfew+3muYPLZuC0j5SMSWQFE/Uj/OUwgv79JI6mPRXva+bL5ZHc9K4my1TEwchTIP+gUD45n1UUwgAeYcngOtmDZgiqyZQYChbCnBmNKUkbGwEt+QMetlsO/b9wsDhHkQFYXzGW0uW4KPprl5RYPRRnmXRNW5KKZSvuW5V7cJpNDHZl5BwxFiL/Qmr2sDK5MykFTUMSExYUA0MFkxWS0Toex8JUpIt0jA6SI3Uuuc678hHKR2wKwDPjFr+J3ZXpSNZ/KBALOWxWgh6q/wA7ZwmA8Ao4epYC8ntQlpWCA0MJSoRsp1qLOVlCkwEmzn+QB9RKMgxQoScTqg3FllepiSiglmrdDF6XG4wzjAJ+Md7XwyTQfGAXND60ATA9aq6RA/VbaaRyruYD6p4e+pZdxvhwG0CcYcNJv5n62gAuagH4xdhJzTZ8c1fYvVnBkIN8JEUJvJ2OoHJF1WXubSQf/9c/WYF0RILlw+ncQMk0bqJlwa5zDECEBCwD+FJrJGCRJMhGgxGDiSuWFIWi++DT4wFlYe45DH3AVRD/LFZPsu6NMe1XwwpaSzs9PmVPohsu075cCdJejZ3oevgXEO3pDUsgHexy4Tkj2uEcHg82Ue2bTpyswdDEAfEOw901PcBEswtrEumLxkqu2uVkFvMrD1IMyixUNnoEkITP51Q7aevBiIvTn123PyeuYUOg9ky0zgdHTQ02wihlhyDocoCQuZptnWZRqeQX+Oa/SR3Z5zsm6T/oXNpCyAMz68YJyy1ZXJ6z7wpcBkGETYyTGbYG4cT5qia1V8Ji9bby7faEVoIjiOyZKL7dSmaOGd4VPza6m51F3qsmhmQQDTA4IYOlIc45QgEyZQNkwEzTC1LiZ3KiBMgDO+gdk65lOf2/3OHwPQyYMa0k/UnYVVGn1n/KcqIBIpybotaEQ6wEpAsA7WjyAzM/M3dfxSV04MBGmJcZ1KDOgYfg7WEyBJQ0iQfCFMk0VjMFF40GMa+UU0EKYAzDPkkrEhi9i2YUhky2T1uWUyPAB94vdMBYh+tswj6BkhdLxY3gmLF/0OZVseHBG1hBS8/Ui3kZw55h7eHSZH9hSBIOYLDEDi/i2QmoO1QLxP1naUKwRNCvrKeGOL2SBgwmL2w2znZx6W+Afdg6nqspWNJlUNWhsZFMALEh7XCAxAE+LDvNHXY3xXhFlbYSyoXndubmAAYUOncZJAwXiDbuITTaXJbIzF+FynWgcWB7O4WRkEywGwTLBFA4wCLRp/qhcNmPv8z4mBBElMvD467991zWbzRPIlDBinLlKbXRkJI7TckHQcTCSYBGGlLGbzr6al/hH13TDpkGT9APGEcWFSIDIFoqhdMW35y5XzsdJdfQqPCeTTT0sAGQiYEDMBA5B3wiCyAw78kaIdX8gBlWIKYSL+tln1zGemAeMU4p6OefA8MBB4rd/vAeFnbQ7vICgijcmOsEA5K+EROOFphDFzH+8BhmQ0b50PmfxKMw2vrr+ZMcDYwAzNmOAf9NEyDOYq4wT6awQzHScIhVgUEGTsXLYtcC/ZLmAMHLNrqWUYCHp+wI94oiN/P2JODMTfcDbHTJanD3tJvUhrDALIOUXoJQCBgZjBADjGzJILgGhr28eRCXGEkCLVYUIJmsi51D8VZYlwuGJ1oyEsu4/35N0kOhiaG4wgrdlDC6HKDgxVG3WVAWadakjBy3XQHTmDJpI8yPLuVJneGBoakpoDe6T6yCFpPH9Sc5gfkwb9ruy8ICMXuyTe3S3hPjXyxdT+G9YpEtFcVPodq62TkfnNMtK8QOILW6V/5TKJr10nHQtXyKnmJRKv8tKit6m25weYB34itGorOHGdY/COtg7YtUS8EwdzAwNWi4B5pBPQ/ZhAOLcCuv88x5iqoIFYFKzWimZh1vXp3M+m/tQ6J/udNwPJRmqmw7hgADgd2giTiwnDehKIHhIbKjuMpBDgfhgHoa1oPD0XRkxqETh1uQMmOBgeTBBpQv+bZ0mVLNI9B++CZybCBy2MARQElngxuOwAs+VgOuS1AluE52bbtr2/bL9HNFR2x1apf+QXUrftCYnu2SE1B/dJhZ4PgolxJkGlks/hmlyiwQ3Dq9dK9+YrZejmZ0jVjdeLXHmlZkz01kDhA0Gj4NPR4wlKaH+8c3xYmH8dzB0MwDjQKo6ryR+fZKEA4yCNUSq9Q6tF4/VbiApty39/3gwE6T8bJkJjMA4YBQwFM4k1bUDQWJBWLM5o7fBI1kj2ZKxtUqKYuvOYHwHldOzfkAcCjg/I2MnT2OLpOzgknNSquJg/CgGbxdeuSymkrum6t/rIQWn64b0y74GfSP3jD0m4NzfNbrhaw9Br6mRUdwoKqTZWEVPNQRlO5UCvaPbRwMeiXNW+PdKiH/n2V0yZeJ3WcfNzpO85z5eqq26W3uWrjCmWi6zlYB8NGPcmzVflYO5gAHrHtg25WlzSYYitJUhkawVEfzkT6FFCH3HeDIROwkTSAaYktA04LQ5CtnrEpGUB5mOk3PRV2KI5fWN+wazVMOTlgWINBY5I7NX0qVwh1ezEYMC8cemyOmPnREq1A44QamtHh54R/YbVyYSX6qY8+QJ9QDNhfwcGuGVK+dY3lffV7NslLXd/XZp+dK/U7tmZtulYpFIuLFsrHSs3SOfSNdLTtkR6Wtqlt3Wx9De1yLAyjrjdYi6llpCatKp7LkpNV4fUXOyQhtPHZN6Jg/o5JE3HD0jzoT0SxmE3BqHeXgnf+11p0M9GPde37hLpuPU1+nm1jKxao4ITjMSWdt+zHQOE2JI9Am2gUEHPjyuE5CDmQZl9mg3Z789DcMEXnYl2++ue7DgwnXu+G0rBFCBASP8QPM/Z6GkqdKRYnZ7soez1umpvlTUmIn9GUHt9pn3DjC2j2a9hs9YUwipkm7SyWM9EWxA4GPAJDW6wDKtY9RejnnD3RWn+7rdkwTf+R+qfejSwyt6WhXJi8/VycvN1cmrjNdKpzGNUmUixYR77diwYkQM/3CZtu5+Uhbsel6VPPiC1F84GNjV69TUiv/EOqXjDGzThWV1gGXdydmGALRgws7OZG7QRTQQB0JqLIe6pAUTZYGDR/JqEX9mWp34EQJN01Wcig0ZDD2kzV8tP0IZSBTMQ9t5gEyWIdZc6eIoVxWMRUcj3at13gCyvIJJVv7hDcFSm2gkLaWO67sUxBmFnQKBdXbGqIcFcitEnFhKhHOKUx35Pll4yrNrBXow28q0D5/fCz/6rLPjmnRLu93K22briqkWdvuRKOXTDi/TzfKNlKGLs5ZJ9r2ytkOvXxuQrD/raUrWw5eBOWfb4/bLioR/Ioh0BTE63kJa3vEXkne/UpelrS9Y/V3F5YAAfJXQSRkIwEYt+D6nPEQENQZA5nSsgtKeaQbce6iqqlkOfCmIgECq/BoHKBPfEv+DPvZTrw5eyPIyCHFCYtOgvayEw85A2BG4/kwEND+mC8Dzey4Yl9cbkVapnQiMh6aLfDFmqttLVW6vO8EWf/geZ//27jG/CX+7cqktl9wteJ/ue/VLpb27zX5qSY3a7fv5llfJ/W9M7ROvPHJc1P7tb1t73HWndvz25X0hht98u8r73iVx6afI192tWY4C5zLzC4f34/q6chTRo8+UqQBJ1iqDHDpF2nVcuiKMeE8auzCxIUAxiIGl9IPgLILpwRr4Z3yPqwoBpQLBsA6QOL1dARSM8jv7TXxbsEfG1RDm/3xxUrv3P1C/ykI2OVpp0A6wkKSVgu2WQTxdUH9ovS//+r6T5f7+V1IXh6qjsef5rZOeLbpdzazazyirp+lT+2Lw8IofPZZ4L+Fueuu23zKd1z1bZdM/nDTOJDGuOMJxYd94p8qUvibz+9SIf/KDIhg1T+QiurWnCADQVYZchkA9Aj0k7gq+Xhdz5mpuph2jZVKBv9FEXCKReIqiESx7YDUPy9YHYesr5m3A3s3BOwym9NRPJqzvLue+pfePVES2FaQ4zFoyymGA3l2KErFtcK3tO9BZdLc7U30jHOVnyj38tC772haSw276mBbLt5W+W7bf+mgw2NGWqYsqurVmo279qipmzFxPTKau2q7suyMb/vVMu+9ZnJKrHCdC1J/Lud4u8//0iTU2J0+5gdmGAObz1kJcdguAVolRTF0xP9sS4Echrx6LC1IWCk92by/Xenm557lXLxb9j7ZxjICB7ke5bQvw9q9shuTj9Z7pJK5eBQFm0M0KELQ5IhIjkYh1rqMBoHai1G5fXG5st9lki6gCklZKBimI4xpf97Z9LRBf3WYBxPH77u2Tni++QWFX+0Wa2vly+G2rIPq1JITvTi4mU6R7IDy+R/l7ZfM8X5PJvfFoZScd41xYsEPnrvxZ529tUBJzZZtfxh3JHFgMwkMf2dRkaBAPBX5vrgmJWp9ulEbbeUnwHmbDmHAOxiGUzonaNXiCFCuGx7OVgVwLbMrPxG3MUznCiNFBN0cLwYXGOhYSkVGDFtAUiPJZobjMAZzqmQMyCNqTYlivWN+G4K9//Xml47JeJKoeidfLUa35Ttr7ybTJcW584P7UHcXnJlRG594mJKn4x+wEjuUKZyBVf/5REhnzp75/7XJH//E+RVauK2Zyra5oxQDqSbZqfDl8tPlpWjsMMsjFDIdwhU1ihr9SPEsRA5qxIQyjd/lO9ZtMhbIdw/tkMSDqot6eV+PO85MpBE4OBAoQPEmzgZx7eAtCqRHQXSdhgvNxPapqigvav7fP/Lpte+Zwk5rHnua+UL33mp/LYr75nGpkHTxqS/adRAvLTMLLF1Ygyy0ff+Hvy5U//WPY966Xjt/3kJyJbtoh88pOev2T8ijuaoRhAyycjB8AxzIPQ/GyYB/dgBZgq5kF7QTBnNRCLDIjkWrXvIwnM5s15GKBINhB/u5YEHKCR7Fe7KwwU7cI6zLhmsxxb3woRbGgoLRpuiHmrWOkRIufOyKo/eac0/eyHNGugc/Equf+dfynHr3ymPTUnv5dqCPDN//jH0nD2+Pjz33qryOc/rxuPNxtiw86LvKt0+7GM3zh+hECBEFVFNKLKEOW8yHa817PnCMK/V32KNjiFEF5M6f6M1ume1gYFpbteqvNBGsicZyC8jMtWeiFwpUL8dNYL48C3zscygtT+4CxnwaDSFOlURsLe9jBU/57rqMvW70HSNuTwYkg/9Y8+KGv/vzdJ5fmziW5hqnrozX805X6ORAfK7KCyr0du+K+PyKZ7v5jo2ciy5XL4nz8nFzZeJQvnV2lalGjiWqYDGAcmSEyW+L8A8nOxRa6DqcMAmR78Ahi7jDLnWEdn30tqb/DfltJJntpe6u8gBjJnTVgWOUbqVulttgGEAm0BGylaRSrzsNfxZbCYCftrW1OV2VmQgUx6FD9Y5sE5BnkxmEfrlz8nG970igTz6J3fKvf8xeflF7/xAcc8fMjH73P/u/7K4Ka/sdlciRw9Iqtf+yJZftcXZbH6qbIBBIVth3tM0k0idhAEIFyTbQOQTd2uTHYYgN6gZfiZB3MTxkCS2VTmwdyFwVOGe8sN5jwDMSvpEc9nGWCmIjFiKuNAIyGlAoN4+5Eew1xw4J3XzWbYnAa1Gs0jKB68aCjSxIQrPvj7svID75WK4WFT7bErnilf++T35djVNxetmWJWtGFxkX0+eXQO3Hz9X+6VU5debe4OKe7a/vBd0v97fyjDQ5l9eDB8ou7se8XktVS1luWaOw3ziYPSY4C5R24qfI1+gDE011eZUHm2mgaICoU28YGpUKYYQpu/3WIcz3kGgmN4rgBOum26Pws+D5gEAg1+kZ26wpxFltYPAj4wWZUCQoMDxmTVdud/Jap/Sk1W3/2L/5aBeS2Jc+V2sP9UZgKdS39XaNqTK1elXcObsareBYvkOx/9iolIswXr/+nj0vOq18qFc91mgaw97/9GkvWn+UfiLXQLBX/97ngiBiD4aPoAjnGCdlL38mCewSxInMpuolvUnH75qkbVOjTpod5vGf7E2svjTH6juDz6XpResLBwLgBhu0igflMUxzCVIPCXC7qezzmSH6797TdI48MPmNtjkSq5790f0dXkt+VT3ZTeMzJaHIZ6xcqIXLKoT/sekicOMvZyr5dkkJj5Li5eKTd96s+lQtfNzL/329L10pfIzs9+TdasbQvclZPsBTjLbZQPDGTnsV5ZqRF5qfvDTClyZ1ljMA1WhpPjip1SsQLgYwwyQbU0VpoQXhvgwnykbN/gaNJcLVcUzR3xO80bmO3huzw2AxoGQpTHdEFYFwRu+PVXJJgHazvu/fBnZwTzKCbONizyTHYjo5iNcmce/r5sf+mvy/c+8B+agr7WnG586Oey9E2vkd6zF/zFEsfkSlqvmw75I67YzIicauyYaKXlxA3uIC8MIKhhCkbLgxmwsjyIeZh1HMpcTuoCXcqzIv34ed1gSn2QpRDg8nqYSW6a8wykwDk8CXqn9zLM8ZBu2PXkwW6zupUMoNMBFZoCYf3bXyt1258yzfc3zpe7P/IlOa5+j7kArY0hedV1TDVSz8DEw7L1SHGm3pHrbjG4HKxrNKhs1J0Xm1/3CpGurkDUslh2dXutWFs7hSBY+ETmgjAViJQsT6IlQOwJfU8HCGqdvdmZO2ES+EUWNdcYLQXNcKYwDvv8xRnFtrYZ+M0LJ8HibAJrez2jG9fg67B7DEzH4KzQdOvrfvN2qd/6mEFxn0Za3fWxr8nZ9ZfPJpSnfZYm3Sfklk0xNRWhbYTkW4/E5MsPhmXPyeIx8zMbrpC7//pOGaif5/XjATURvupVIoPB5kmYhZ8GYmJZotsgY4N3MBEDMIyjGnaLlsZmbuAOzYJgFBgAwJwjNBcfYy5+C0xc+D9Y1DsTYc4zELi+XcwzE1+gv8+YIHgWBjUpndkLZVpBo63WvPvNglQMjM5vkqc+dad0Ll83rd2aysafuxnGMaJpcvgG7Lf3q1h/z63bopqIMhGbXPLHPxZ585sDV62f6RxKWk/AmIEYOpiIAaIVMS+dUmEMfzjM5Gnda2PfyV4TjGJT+nCe0OggU9XEWsfPkEoI4N6ZCHOegfDSDqqziwmUSTWdCS8XWQjmQbz/xSzV6FI+1/K/eZ803fcD00S8oU56v/FfcukLVwuO5JkAL7wsIq+7QaQhmh/Rj6pAXx32UlWsb08m0FUGBZ70WixcnNeU9vd+6LPCnu4GvvxlkT/8wwnVo3X7AaI3UwmY/zlKcUzggc3cgOZmNHpUEAU0N7LgEmaLf2nNolqzZiObfuCHInware+cLurs0DD6mQiOgehbYwKRRx81dCYDZI4NvlhlPJ0rVsFh65f+SxZ+/tMGnfHKSum989MSu3KL/h41UUgvvSqsdnhzuez+VCvhf+YlEWmu61MiMSRLmvObJoubx4MWvLX7IusXheW1ypRefe2QNNXmV28mhJ255Cr54Z/8q4yyghT4xCe8JIzeL/N3dXtUF4zWmTUGnDBrhfLjkb5aZ+chaXswL61sqzUZK9ZpEELjWOQmdAPt5IBuLw3tIFQa/xKQLgw+ou+FTOCtunkU0W8AyUynw7xsGi/wT/FHcIEdmq7bkSJYTDeTAUmpSlVif5TNdDxPg0YDrfjwHyWa7v/Eh2TkmdcnfnNQX90vr7o2JpfkuUDv8hVhuWULe7voMxeZEb3kygpZOp9QW/VFD0Rl1/H8/BWXLR8XSIZHI8K2t1et7JewMiWgqa40VPvw9c/Xlet/bdowf9gu99FHE79Zd9DcUGl2sbtsZaNcuaZRVun2zw6CMUCof1N9xJiFYRj+hKPcodNOmbB3L3MP5uFnCIZBj1XNNrYwocXqOLeazUzVPnikIk+9MSzN0C/C75Dgm3Vl9kwFEutNp/YR0ZxWq3/v7RKKeUR34F1vk6E3vjYNOmNyxQqNaonX5ORUXtVWIZcu7jd1Pm8jX2H57hMR3YuD9BykWsmPMKMRvfSqkErmntkJOfKXe8eZQJqHSHu6KuLhYFQq5b4doosHk/vVP5R/3WkbHbvAniktum3u5u9+wXOmv+Y1Io89JsL+ImMAAWN7ZweZMYB2sVdXkBPyHASYrwDmXY+mALLMA0aC9sKiQBgLBg6yWeOr5JioSBPEo/fNVHAMxPfmePHelpDxsb3TZ5aCRn4dHKS5RIH4Hr/wQ13QtuqPfluqzp42dQ0/9yYZ+KDfBh+Si/0a7RP1iL/XYNxI5bF4VJ2S6SX95QvCcuRczJi9rlmdOuFicuuV4/dCsEdiYSFApquvQh47wB4ncTU9sOqXcFWS1iUTTuq/bg0MaDxyaffJqKbXDiYa2SDrbHelNKgN/e5HY/LCK8LSFPW0mrj2b/fJSk2tn3/d2bTPYsMFB7ZL+87HRY4c8Zzqd9/ticzZVODKJDDAXjkIZ5Y5JC7oAQxmv5qxCEaoGFNFYBSkiuEaDIOAFlIGdZtQYM9cTkSXjZD01zeTjud8Nt6gl2VVUJxcy3UQsF1sOQNSDCGG08Y4xpDT/p//LMs++gHza7RtgXTff7fE9dvCYKxGvvVwTDYujahfQaS2ij1KQnK8Q+SpwxDTYDxD+F9yxYh09mvK62plDz4ib+vO/B2SvqEabc/PuCLadljPV6iEGNe05lbr8GraejQqO46NM6XM9U+8Su4s0p+88toK6egNS1sDjCmmzxCV7z2Z/lkn1lTYmbpzp+Q1775VajvPeRV95jMib397YZXO0bv3qfkqKLKRZIfMQXwi0A5Wl+PjOKl+1ValIUOqYRDUgqmrW9dmkYx0JkJQNl6ngQS8SaQMBgIhegyOcs5WSh8xvU2n2QoU1uzfI0s+8ZcGm3GdKX2f+tsk5nG+p1Z+8LRHOCHMO46lIj6YebD47iVXoHHEVIL3M4DU+zP9jqcwD8qOqKlK90fx/JhJN5/Tvu44Rl/zh87emKxeGFGNpl+Zx3g9DTUxWdQUzrg17njpwo96F7TLT9/zMXnJh97qVfbe94o873kiq1cXXvkcqwE6YMLkUxiAP4MusQssDWCfFWgHG0ZNt2BXytekj+sgCANWVWXlaUxVTVRR8tSkhkAG3TtV5wg9PqgrzaebeWj8s6x833s0s67nHB5851tl5LnP9KGhQn6+Kz+CfO0aDYlSYg8MjNTI2e5a861uSz2jdmU1Bw2pZsMHXwgQV9deLF6lkl514jOsx16ZdIzK3CpoST9+uvBgitMXRTUrvwZD3yqMA/3mSweMZkJPpwKOXH+L7HzR7V5TPT0ib3mLNj01bU/F801FG2gXmD8n849CJwil55sUJrOZeYB3p4FMMvpQN48rE1mm0RMwED6XrWrwQh8nuTffy54qjDMY+6m3eInoKn80B3WXS9RY65c/m9iGNrZquQz86XuSHr2jt0b6h3NnIC31IVnT5vkNjl6olQcME0IbAfxD157ziPS4KSyVSMbNZlk3rR9VXI6qjqkTPY4ZK6zJ70Lqk1Bn6Un6mZnJmOaz+NOrVquzqs201vfJj7ZHNOeU+ogWVqstPCQrFozIluURefpI8drL1KVfvOP9suTJn0vjaVX9fvYzkS9+UeTXfi3TLe6aDwOMCEaTTUTpuzThsE9TwxCtlU3ZCTfPsBP+WTjDuj513WUHtza1aS7UDZdwshN2V6w9FNBo2MAJh1q1MolKlXJwxMGoaBdAGyKKw6rQK1qjZuESi5ymOyV3pOOcLP27DyVeRv8//KU6N5LtQgfOpBLyRPGMB5cu9TQKtAKPeWQsPnYxM/E/0TEqX/slRf3Kt19TyHx/Nj2wZWBQe0/GpXWdtz4HlrX/dMzsrf7wPt2Rtj6uPp2Q5qKyd5Tu22xK9c6/kls/8CbTyMjv/4FUvOxlUtHUVLpGZ1nNrPOYVxdJ2vYg3SMOjeQ35tPVV67n/bOoXPs4bf2yEj8aATu5QeDRRCDshUoXrHrv0agNTFB7NS3CoTN9JuHhzmM9uumMt1cyjIN/AO2Ra4ccPLs0BTeRHQuUqTGopxMW//NHJaLJEoHBX321jDz7xgndOd1pNYQJlzKeONXpPfu2o9P7jBk7mfZiXFa1RdT34hUYCAjZ7egZ9TEPIv8yPycLHL1FjfkRp6PXPEcOPONFpkORs2dUU3x/2t67C8kYMGusVIgbzDJdiZ23ybXMvl+OgWR4pzAOC0RikbWU6Aqm+W4l4jjU8gGIP7mqYBapdWA77dNFjX7HXGob9Ity7FY2nfuZ1BzYK21qvgLideqbeP/vp3ZVf4fM+oyAC5Ociss1qxDNK8bMSpMUL7vLITlwJmYib+jamnZPm0rfTY3eqa+YsOo9UhGXV19XIa+/cVRefHmFPGvDgNx+44i84hpNhaGmsFzhF+/4QCLVSfQ/PiVd23ab6KFc65mL5fE5TmY2ZpEmAThzBRwDyfJNE689NOzlDCJdAUT8oO7shxaRK2C2KmT1KdoI+ycDMDSA/a2nWhtZ+rcfHF8w+O63S7y9zfQl+Q9DLJ8JxT0Vqn9BePO5P7kXU/nruZsi0j6vQt8NaWXQviKyrNlvJgvuzT5dB3NcTWx+IPTzWEeFCTmuDMc1DJgV4xrhUzms4dDpmVKNaiswn1ToWbhUnnrNb5rTIU12OfSBD5ltVrHbI9jwfVy3NkZAcTCOAeYsEVWZAlawWEAn5or2AXacD2R8jEx61NGjSc/0s2h+jcljs0dNTTjLLl/dOMHBnaky/BmseB8swE5KltC6ZWHDOGiL6c4AjivB8WtOmfpRyLXojqdl/o/uNVWMLloog+98W5rqCFutzCtsdWSU5xtS9hHR55uciVy/LqIEULOlHpmcWKfpbFFOtzYOS9P6iC56HNKFk9Vy16Nx1RhGZFlLlRw9n1vfWCfz8D5dO7A6rOtflBmH4rqORHe5U4zoRgTa32S8XL06ooEHuqBtLF0KUWrndEHjI/tjqu16TGHrq94um7/zOanpuSgtd31FTv7G78r2NeuNAKI8xISfsvkYOZsceEEspHOfzGyNADeqvsy5BE4DyeNtk5GTHP4NNRETKbVP0xwMqYSSLSDd4TQvBBjMrH49qc52C0x+wPpuvF+l+bv403+fqHjgvb+lORqQjINh3aL8hllnHxJ2XHfRy07OeWjvcFrm0d5UIc/bHDHhszcqcS8l/PDpCnn6KC1USM9gSCPQRA6fr5Yb1qlJy7D63Ft/8sCIMpIheWivp/HikPczDxjKr1wRlnULvQSQtgXVXXQdSp/cesWw3KQJItFKhnTzqSdv03dGDRqCvfhfPmqLmzxN0Wo1G6pg9NTBLrNAFU379FhQxwnVThBeWHt0QM+f0AhFNJfZDGxPi8aPeSoTU82kncxW/JR2Js1SrLEuBB8GmTrNKtO+YbXTj8raRXWBe1GnogG/RzG0BAa1VZeRftjXmqgsjkOqithrqe0X+rv64D6Z/71vm2pGW1s019VtGapE08pwOfBSXHNSRTQazSNMly+PyZ4TPE2ytO2/lbKjvvQkV67SRIuN3B9SZi26YHBUNYI+c8uKFpH986rVvFQawkcW3kE1d17o08i9xpjJvvu1Xw7L9esqlYiLromZqDn4nyXomJxV8zR7b0tjSLYf9bQYnO6XLglLa8OoMWmJZFpoOSrLNEHksuvDOmYrJb7xrRK75z8kfO68NH/vLrn4gb+S1i1rjU9Nh48J1kBISUjd3UG98s4x7jIR1vR3lv8VBDSzFkyFPrYD7lcnOnPMCmnwzlLNs/LHjjNh5fWOGDCsACdx2lLdyW2/SmLYjnepU3zjsnoTYpup4uECTFfUy+BllStMCNss30x0uzuaCpVKfMnRk6kX+V9r/69/UQblEd/B33mL2jxqAivrHozK/TtHJ2QvDSzsO3nd2krN1usRe05jjnnltTVqhsEfMPGhSBtypSZl7BmskXM9IfU/jErNGLOw1bII8eljUVnV6mUCvqARUH4J3pYrxvc2s7ZDVKjgPWi0XIOngaE94BeJKjNAK8kW0BquWl2pQRPKCOviGlIekZ9sG5EXbYEzj2ug2dUX01XScNQKGXr7GyT6N/9k/Firv/FZkes8TaRes89evqrRjGm0D9KNZwI0cHxxy1u9cWCzzGa6J9dr7Bpqkxbmem+25YmMtLmssBLw7DZ1Sa3ON/buOHmhx1RXDAEw236Vc7kpy4WF+jfTE4cFvUgiLvwSCNLYpuUNQUUT53BSovrnAzAsJihrRxbrMetGMKmxnzUf/8Bm7wF++8/l06b/noqeLrnimRsl3KehxLpJ1MVt94s0+p9XqZymHSEN+r1PKKHKGeIacWT0hoA7Q/K/T1Xpor9xzWHx/Ap59iWsl0lP5FiF/o2HLMMY1aSKYZNcMaCBsj51zZqIrDULKyPyw21hef7mXJlH8uOFzpyTxi03S2hI8cd6kGPH1BRZl1SIcUa0YDZO9YVN1bq2RZm/MiDMOWjCVlJPqjTLH9Y0hqyCgEYEFEyqFAyKLtnwfObRgEZC+nNW8RyE8B9WX8hchWnLhWWIrI4Cwk4BJGU/0Z3JL8T/HDwnA50BiI8kHczTayc60l2FeHrmKByZmBO61VRFKmkG8WnNtsuqdDKDntOwQhzyTFoWGfKBOdmU0iOqiphJrPUVi4m03PMNwzzo/dBtL09hHqJO4yo53RWSJw/kbqahzkuXRLS36SaphvauCcuPTE4tSsflpg0wBj7pgPIi16pWs6Z1SO8IyVNHKmS9CsuPqmN5JsGTB4fVQa5pWnRvkeduyvTM2T0ViS6HbnupVN/5TZHOTpE77xR5xzuSbiZ0PRvmwU2kJ2efC4AoQ8xa+aaLh4CzaBfmwTFaEP1gMW+NagP5AkzpfNewCZWnf5CkDl1b1avWBDLlpgPmz5Gz+Ql96eqcDefTU7kiPh1EFnMKFnugTp3PSDbFImpF7GpBVVlmgvkoE8AYYDAwmiBYOL9KpZ2oucSkYf9lAHwR5eF31mG6Yr9mJgGr4zcs8ey0SFNeqDDpOsYldlNRvn+0ntYvfy5x99Bbbk8cc0DuqUcPjqokR3vp/RVJN6X8WKkmpkzQWt8vr7muSoZHySulQb6hTJM6Ij/bFZHOvlFZMp/wSpUyNSLp8uW6fXG8QhlIppYKv7ZleVg2LhlW01ql+j00I6tPc8qndlLQf+0hkevX6oLWFiV4aiJsqIZRB4+jbNoYevsbPQZC4S98IcFAILSdmkGWxavZQo8SYMy4mFdZ8Ipww+LbfIDsteSSSoXj5wdl5ULNkI1klSPwTLs1a7UVsMxiXmV6mdZc+ZtgfqdaHPzX5+LxlDCQVMQiTeOQIq4625eXWkc5/2a1ar0niAV2ExV8ja4l2XqoO1C6q1cGawEmk47R+AczjIRJixQIwHhgOC268xwaS7VOZpzuMBbL6Gwb2X5H9+yQuh1bTfGRqy6T2JaNvltDmm1XNZACiWQmR7nXGJrsoPEH+BpPOST6qVruU/9Ld78nqe89FVKGGpENi0VNa2G5fKU6fms1vXpAfz2jZO4Eyt8J/BablmBiGlUiPyK/oosAd56o1rT1hWk9BAo8uGdEHjQMmro0r5aadVa1VsjCeYQ858ZMYldslsE1a6V6/z6R++8XOXhQZNUqEyVoBRf/c012zHy2c5pQ9VwBbQMtGx9jEBBGz1hnVz+SG+YCBL7Yhbvs10FixLqaUZMFIpd6XNlxDIxTqvFzU3KEOjjTM1X6CbgfaQdPa8oRjdRgH+V0gxyfENuIEh6J6sxvNh/CUdik+XYAmIBlCP767bGfEdAXysNsrKRUr7Z+cvIsa602EltzQ9xsZco+BUwk/CeEEyufyYqpzNdoHQtDr3+lPdR7K+X+XSQkLNyswjPkDyHZfSoqTx8eVm0omVDbyKVz3eQdC8mx85pQ0Uix4+3h8H7d9fyGCGsk1UilvpsKOXA6blaV237BYLx1PPbMxG+lcXLoXI2aW9Q61KOZXJWY9gWkM5l4p3emSocAyRabajW2SpWMX+xOxxhCapcfNZ9XXBNRB326cmlaClXIU898lVy3/2+9AppkcfBP/syYQtPckfXp/sFRJdBZFzeaNTv/TUYXMBMjLNlFtNm24J9L+GuwBGDyzRbQrAiAwZrin3vZ3j8by00bA5lskMwEZKcbRJxngPf0d5vkayRixGyXCvPVdwGzIJIqnV33zMXsHKWYzdi8Blsx0ht9wNcUUjMPm02xreYFNQsQyIAvhU+Ttg8jGVCNCSYCEwLSPVfz977jXdd7h1/+InPMH/2lprNKOXGhcAYCcc8VzmiK97rquBJRka0ZstuiFbQ0hNXkp1KnEl2AdCDnuj0m0liDucXD96hm6Q1r+XnRmKxZqNqK7om9duGwEpCwSU8CETnfU6GRYSP6/kxVKX/YDjdHYj5WA5Fat2zkXk8KJzV9NnDqogolC7Ip6S+ju3D+yqsl/vm/M5F1I1/5qhx883sz+gP8d2c6tppIpjL2GkwBjYe5MBmgWROEkisDWbuo1uS0Y3wj5FWoeS4XgWWN3o8mz/oYBAQHLoy3pGMAXwXEHKcdpiSSH3qO8XEiiTkrHfMgdDHbAU450s77wT+Be3yXjC9FJyFb4KaCdscwk9TzNft2SXT/bnM6dsPVE9KWjEU3pt6W0+9mzQXV3ujraJZ3s9vfT3dUyimTNiT9TfgQYB5+GPLReMxZjxyMKkMFl5Sz2olX6PEDvLdRsyCR1e5nu3w3+yst8Bgf0o+26Yrydk39Xh+XJw7Rj+R+BzXxuAYuLNM9uP3b8gaVm3Bu+VK5uPFyadr+pES2b5PBAwdFFi+bUCzXEzbdzmT3XVRtfZ8uimVcZgsIQIBxiqvDnvk1WXQW82xVe1TDc/uNkIQQkAuQLgitFWHwoq79cqBh6g4JpccAEg8RUzgYn1a/BwuTkLhwOrKal1W9QYwCjYFkiXXVEZ0gVWafdhvJVope008mCOG/qdD00/9LnBryaR/eyZAmAYyr+SRRJK+D69d6BDr3m2PyHJXYWWk9TvSzq4W90v3Avuyp+aj81znuU8WgvsYjYKnXivX7rGpFaDDf1VDobDU7tLd7Htd8VsNRXSzobablyYgahSdV0jsUNdd61Pl+6Hyt+U1/59eFZN+Vz010fd59P0gcF3LAGEcISgf4O1jVzhzIhXlQH050gkRYg0VGaxz+2QDzaMPSOqOBZ1PelvEitkLGsmD9KPbaXP6eaFeZy9iYgmfHAXhM7a58/IBEQ2CBf7HUIg3L5eMHtAomHJOzFICJi+iZVIG38cGfJZobueXZiWPvIK6O4n4NI66Rg2fSE4yUmyb8rK3K/178Fsvmj8gN62vll+pkLiU8um9YbtlSWdCzlqp/AyoYf+dR/9hAGLACAXixjC8uL77Cm/7rF8flgetukWu++PemWwgLZ+94a8FdhCmwr80y3b8mCDAjIUTlA72a3oA95y0wHzAJZwMIZUt0DdXRc9lHmFEvokanmqZzZXbZ9Cm1TDr/amq56f7tGMh0v4Gx9pkA7PPBQqmoRogYIh7QNxx5nhbiJxIBBYt4ioVm9Y8+aGokceLo2lUptWsKFU0aeOw8ar0lUClFJvm5WR3GleHx1eeTFE97eWXLgDxRiV8pbZGCL2AK+/G2/J+14A7kWEFjNKR5ssiepVqvRqedukhqF/WBRT18RyMDUnv95TK0oE2qzp2Rhod/oREcOr7C+a+3sF0koor1SX7ByF7LJxTX3pv63U1IfEvq2fS/WTuVCwMhrPicRjDWquO9PVxtwubJ+MBaq1JAOj9kKdoqpE4rmhRSh7u3SBggsIAMv1sPdhvHNz6KoFj4UqvQNiWKtTPXPfWohPs9YmM2jBqzP48/dkx+un3ERDeNn8v+6CVXhmXzkuyYB+aZHSeicuCshiclJGt/W6PyjBInS6S1fJz9/l6W6nj5grDcokkjr1sb0aAKZRK1Id1HhOBoGJ6Gl6umuLatX/NnJeP76jUqYd90relWuLdbont3FqWLEEKSEQZBPmG+1IMjOxXwt7C1AqZgTFqTQaVGxdnxPVlZe52IRRMco23BFAMsvbZoQd/FZKwFdSSLm50GkgWSprqIN+mGjaOOwYTGYVe2YwLLFcgaDBChZZlDOjWcSWWv2e96ZSAWRm66zh76vsMaeun7meNhVSTZDxF8e1i2Hq2SHcfGNa9FuuAS6TkVFjb2yQsui8oPtkK48tOIUussxm80gY2agp/XAfEhySPhusfOx1WiHZVnXcKeLrow9GJEHlb/R65JKFe1Vcj1azyzTGuDyGqzKJPnnxy/1eEBGb3+SpG7vmsetf6Jh6X/ks3FeGzjq0h1cuP8zscMy3yw+apSOzegEVyEzeMbGRjq0VXrmlpFnetBkKviQL1dyqBgXfQbC0GjmsIYXunWrAS1m825IH9oNvdNRxmPskxHy67NrDDAYCK8kUy/MBGbPHGym7Ghsg6EtCnYfLE3E04MkFPIH6HFOcs4YBqp9tfa7U9RxMDIlVvsofnWFQ7yy30Mo9wZm61ocFgj0SYZiQfPVSvzSJZk/dl3bV32u6UOKbtaV55PTjztPfl+RxWtrKnp03UPmLdSQWMgdLGfJnxcOay4nRj51mq2sh3v55KmIXnVtRXq5K42VaHt3Kca3mQJGPE/nblYpX4z2orpKn3CgMfrTe4XpJBr49dHrr08UaT+sYeK4gehQvx7EHWyV1tgPQVpUnIFxilh50GAcERGBsYwvpVeDYioqqzTgIeJgwtNwgpIQXWlnkPpZgE0whwr4XH+Mx8beLlzGOb208+QFw8TYTtNGAIraFHhM2VIrdG0rZdopAnb8DLhiIQhfNFOpAYd+EygKp0MJGKkflRyUjucUTsvESf+9Se1unkUEK+uktENauvwAYvqLuhCuUKgpnLy+xc1TSQa1ZGJ5/z9uG5thYli8p8r1vHNGzUyrl4DDsIQadsPTWzZHdUQ3GRGx8ZhW5aN6juLKKOkrC1vexP0/LoIr8rTJij1cl0k+M2H9V0qM8kEvcqf2NnwwBn2ByHVyXgd/vuOXaiRpZre3Q+xyzZKvFLDYYeHpXb3Nv+lgo9P67hKYiBK7PMBNJd0/oEaXet01JevinLsmUMC0vmE+WqDRGuhMZCSPVsgChJGS8g3jIQ8dKQaop505rls657p5SYaE2f6E83S/hPSS/w6ajppHKwdGAaxgJQMPkmIaBScllwDUL29vFgecmAkTICFyjQ2La+Xy1Y2GHUfJsLqeL8KXaFZd2sO7TM3xjZuUFE72STQNVAj6xaFvYrz/Mtq78mgRk1VrQ3jxHOT2Y1xojTvr2fvKf+v4h7XVulqdDX7JDMDzRWmvoVnbPDkssXNdt9y1em06995LCY/340U7j3HkY5aTbdSI4OxmsQ5Qm07emuVUXjah+01KUpINJktoJ1993FNuNmDr2giLJ4fQECrVEBYs8IUrjm433OkT7w1rzNI73aRIIIKWnW2UVP+Bv0Zcv3nOWa8p2oVmHwPqE+EVegQeyIYc2EeBK3AiKy2RH2Y0NBwMGvxLHYupvYn02+0/NkAk8/c2fCUs+AZCK8lD9BujdQCNiytN8QeBgDBJwEjqVPadKOkJS3JxIeIE8IWg4DFV3YBFt8NquVg8ppXi8SmpqVD+xN7f8Q2rk+qYjReKY01A5qDSQSCni+QFTcWr9YIoagcv6D7zWtqlCBo19TtFta3TybBhjTMNlkTsPcW4/upw7Q/3h9/ncubkexZLa0LScdMaI8eUF1NFY8KRdPTx2p0HUZUHtNdBk92jsq3Hh6VLz+IKbBGo7ti8n/qu/mGnjtriP94GxuX9MsVK7NnIvTpx9thFMnEigCEmCajDILYutXmdMXQoFQfOxxUJO9zZzQoBA1i+5EekxKE8dpcD0MtDrBI9xKdF1Zw8tdKBBW7LKYyGH+Z1GPMVfhcUn01hCYz5/RRZEVbNEmzSq0j3e90WlS68uV6PngUlWtvXb9M2CATcMeRbjOAuzUNNXm3CJdc0AijqE4wBIsuGEO2kR2UJUXEes3qixkseuKIrUZGVy5LHLNB047jELOYTlhNdX0u1SyTKDrpASvAv/bLuC6Ci2lOLc3C2hPMQOZpRJGFn++BgGcipkQglW54s7jv0YNq9puQZkRTxvSz7mG8r/R5SUuF3HZDSNa1VyjxUTPTCVLKcMVCyKRXwQTlQcikrf/6Q5qvSZmqZVbtTZMxTnu/971hETjy31OhkX4xXaSI8XEi/kbXj5soa8YyDyTXmP8vskY/pRGGRBtW6aZaSPBmvKbgarIWghgEBHmfMghWi7MnTyqwkDdXgEmkrlOh7aW6LwhmXszChNwjcE0GQX2e7J6ZcH3yJ58JTzHH+shkUU3aOPJsKCEmAiSjRWP7MRQDJWwMFD9/IlHV6LJlut6jVh7Zp5v7aNQQJGjzUi9nVHfKiu7ETXkcdKqS1Vo/8cYuX+Zc0n3c+2RYF8Opn8eEqKaWH9Vw1kET8ru1wAy4qTXb3/ga9p2KyyVLopovC2dxSLZpipPOvonO4b0nY/KQMr2R0Ykaga0v6BunPEw1quFaN6lp7LQ+dy7Q6GO63Net60DoH0z7B09HNOS5Us2fI/ouPZNWbM3KRPXVx48mjot1YLciwImONkC6d0JqSfqZLSD5ox3Yuux9mGrZ8ImNn/DlBYXA27KTfUPw2R4hNXt1jfb3hKaUZ/3HFbprI+Yw/ImTQS6az2R1ZbpOv/NpC2tDPlqRYyCZ3kaZX+OFI81awMa7qNn+Ks53/alxDeS+/hVy5Mlxs5BZXaCbG/1ib/aTP5tePaY5ndYuxISWPDH3n04mzKQh+c6jmnhwC85iRHcfMsYa2ri4X4lKtRL3uKxuC6vEyJ7iuRHxzH0Oya7jugj0eOZS3v7rSSpH5htSrvarAP3DxEZaKRcz/Hzq0IgmWEQTAzc8+/i7InT4nseVWev2tgvn1cpSTUfTsGCJ1I3VV3n2dIaaC7sEkSOSiYiqXEPTGfesyUCrhpn4CSbEnGjDVRophSaSy2JB+0QQ02W6oJfkpGiJMCPaoD18kBxXDA7K8Sf3SK1qUhfiirG6AInHVjiF335c5NJsPsyD+h0DyQXLZV6WyVRsCJ05k6jyQlN74tgejG8Va88U41uDXUcqNGIpmYH0D/OAyUSY9Sc4iy9dUq0bRfUHNv7iy0c1BDaia2B0A8WaQSWipTNtBXZgGk+Cn/t2VukKavI4sZ3vxM6gzZ29OKLak8hN1QsTC7ordVV6KaHQ9ROsxSDDLkSdIBE0DghovzIltGeCQgjtPXmBYIfsAM2GXQ/xJQIEmqgly9RdvXO7tHzji9J4/49NYlE7Etu03GD7Eum+8dly/uWvk65n3KzD1F411czaP1PGQPJVkWYt5kvwYCbEUSeQdYoXpQm2Oh2Dwfp59tD3XZqJEjT/6qorNP08TGQiYEJKB2gyUQ0V/sbjujbGrAkIriPd/TP9PI56CzDRZS0qmZ9P1ubs9cf6WmTL2I/KM6fs6bL8Zi2T3aGQRX0kZyRainUnNtU7JqdUIMw9aDsJzm/UoBTrL2Q+YRa+uHOfrPqr/yfzf3CPDLW0SefzXyJn3vouGWpfLHG1IVd2nJX6nU9L/Y+/Lwu+9SXp3XSFHPnAx6TnymtTm551v6eMgeSrIs06jJfwgXDoFZV50NcLF0yP40rRh6JTp6azXW0qkL8pHQPBjp8MYbX3V2nkGiuISV0fk5dcFZaf7Rgnpsnl58YvcNGlgRfpYLC+KXEp3NOVOC7XA3wQO4+qBqrRV5cuqzcMBY2DjdVY6OcXRKx/AObhF2hhGAgW5KGzzIPnRbMZ/s49svF33yaxugY58NF/k46X3SbxyDjZtHWef9lrRf7wQ9L40M9lyd/+uVxyx4vl+HvfLyd/4z2zWhsZx8QUjRD/i5uiJudEM6jcRIcUHcY0kCGdQCVL/pPS6Tq1HkQqJkbNtDZWyDENjQ0CEgVaGNa92b/5EHugQyjisqotoiHOYbVX98vNG2vkrkcnMid771z/jmsCxVg4IuGYpu1QO3+5A5Fc+FHYu52sv14Uopi9bjBnsYCwtjNsQnH9/gEEWpgFkVaE/gZFbkXv/ras/o07pPO5L5KDH/s3iTU0TkCHv84GDX3vUTPWrq/+QBb/00dk6cc/JOGuTjn2hx+ccN9sOTHlDGS2IK6cngPVm3UefumpaP0bIyIjlZ5NuGj1ZqhopRJ8uxufv9jZrmDmQZndJ1nQOGwisoaGK5Q8xOXyFbouYDHpQ4bkdFe1nmHTKUwa6evxtzdXj2NVugWyRjTNBAaCA55xzyLFY5qefaUuhGUukH3hqO6zg2+ExYCpaznQOFiQy3l265wATz4p8oY3SOy218iJv/m0KD/1FuuqxRZTGYyHUF7axZRGG+Tdwv8yokz4+HvfJyNNLbL8I/9PBtZukHOvumNCE+V4IlcBf8oZiDNlZR42ViXOXGr8KgOXxYRFN12NN+Ed+W0BqdeK/LtJg1pSgfUW6bQPyj6h0UZPHCLRXqWuDsacFdLIIqYDx2E1UWjKld5KeSjPbWZpY65ArFIX9/X3Smigf0Y8MsSc1D79SswX66fKhAZXqEkqqruBDk3Ye4eHQnPhY5OUJj0oqezf/GaJX3KJ7Prwv2imgJDJKQejYRV6gy5YrNbjXjUFdirzAMxe6eqwZ2W6hdNv+W2JakqY5R/+I3WsP1eGFk4MQrFly+U7V/ocwHrL5VHmZj+QYmAK2WoThBqWnHlM8atYGpBm42L/xMVhQd26bFkksYBwbG7LvjPVUlulCf10fYmD2YkBGwq8+3hvIuM0DAK/IN8IZn4gtYnf/OS/Jl/+sshTT0nsU5+WfgQSNYWxVoWFkDjVWW9yqmPQ7DJq72M9C2H0WtS0xQp7sjmMfvwTJr9Y+6c+YdauINLMJnAMpMzeJnHs2HSRqiYDBmObhhxOCTAzpgDamyr0qZLDd2m2oSY7sxMmq5su8YZ1e6Nnw6fnaCLsg/GcTZ7SXVMpskjbmjuQ/fsLD3v+p3hNQMxvGSOMSCxMSv5EoGgYLCyEgWDqtUB472HNUB0I//qvMvqCF8juRRvNZe4lZclqNY9tXtFgHO5oIoQRs/KdfzAwtBD+watIPUQY8cKVCyX8nnfLgm/+j4Q0rxwJUWE27KueC9AH/pUbzKUZVG64D+wPjCNbNZKBykY6qStyAyvO92S15/uIDE+NQ1XD8AMhUqFbo2r46WSw70ylJs7zJtq2Y9Um59SaVo8h9QzWaH4qj5AO6pqSXPfbmKztcr7+nE2V6h/KzESWt1YocVODn+bBAkbH3n05P5e/b+SKIwM1q8djyiAszFNfRXtztSHoaPYQfuYYmXkJ1U2CUxq6/OCDMnTHG6VvTIUlVQkEHJ8HUV8wKPwenoynaYK0TeagDQ2GqaClsF87GkvvbbebDdnqfv4Twzw2LKnXfWHqjfOe4BcsDkHAmhQ+gNWC6Ec5QW5ssJx67vpiBhW7Fq5pry0dNpqaTN1VukudGnhLHol1XKOsDp+vlRUtfaZdcm4NjYQ0vl8lyKqUyR7w1CRmtLDtqKYAUYK4smVE3eaVJteWvcYqelZiz2ZgnxKkYhWOVfpW+3wGCZayz1g7IsfPqfkUj7HCTGMg9BnJH6JLBt7VOi9gGHwWqTZwVCO1ALZEQGMgHQnJSfGZsG8OYbvNP39Q0Lt6rrvJlOUPEVoIdtTJwkUYFAyEtgA2rsJqgJkLZgCJP28sCTGjoVRfsl7iixdL264npaHtjoTJGcZk82iRioh9ethz3W7VkCoY0ueIrjthbQvO+mwFTdPJEv1xDKREiJ2KapGIYB4l9YHMn28eJaSSWlV/jwzVNZb80R7cMyL7Gqs1TXYoyXFOSC7GqFyATZjufly5yBwENrm6eaNGBHWIPLDLI3ZBaFihmsd1a7g+IkvkfKJIrL707zrRWBEPILydvaNySE1UpDSxOxhCdGEEJB+10K2EWwa8leaciz+9VxZrWvtjNQsQ+00x1pU01UVMxBbJS8mRdaJjIGFmhqGYe7W47hpijtEU0Brwm5xULWTtijVSe+qouRb0B5MWHyLIYCJEkKUyEO6D6TVUVaowFTbZuYPqmspzaQwGU9kF11a+GECyKinzoGNjGgiH1T0X+ZoSONsVT2IeNHrjhkpjYsm1A2S4Hc9yO/HuxSZN/OTazcQ7y/sMZjrYLVvndg+kf77DZ2EeHmOuOHUm8VDDbeUfNZTobMCBt8iwJ7EPSUCRiaf6+iVWWyfDY8zDFsBvAfM5dl65jYJfjIFR8PFrBPwG0EwwbQ1WR6X7XJc8fbhbw42V+fhMbKbg2B/mNBtvoT0Bft9HRDUrhEb2UWG1PUD56QSngUwn9gtsmxh2wgathFVgdcG3L1yYOF937pR0L1yW+D3VB9jnmzS7bK4ZaSfrJzmimIbpSexkNZTndXw8//ukt5gymeQl9/eWLbpwMOSZdyrOnE1cHF7QljieiQcQcfwYu471GEI8T7WIqK5xQYvoTXGA4aCGAcRq1ezVM9FcyxYKjBFMTXYdSDY4wYVhTIiDvdK7YLFhZmg0MCMc8+kA5//m5Q1mx9Ae7S+pWeo1fBgzFxvLWWZF4ACJJVPTzqert9jnHQMpNkansD7ssAxs9u1gB8KSwKpViWobTh+VU5uuTfye6gMmcE8GSTrf/nh7jVP77ARPDwl+tkiF7gpihg5/lNmc9mkgrePCQ/DdM+Os5zsImTmCLwRgi2i0AzahwpVxUc1aMWU4Q8tXScXIiNToZloDemwBc5KNgoL4pwPLiLiOM93soKj1RvbskYGrn5m4jUSSi9Wxn2neEoKMgAiz602zORrmuPmqleB7gZFYv0yioRIflIjqlLjXrvoEBlCPj4+p1YmTxTxIYiDHillzznWd6cIUlX7y5lyhu8GsyZ9f2ycDI7r3RXetnH9i3E4/uGT6tM1ivxoIOSvVnzrYpRJ8n8mVRRuYpubXkwcratZt1DzrRomHKqThl/ebLuCQt4zDSv3WrASD4LhBfReU4ZgymJXY5tYyh9o9OyVy/qz0Xnld4rFYBe+F/mI+VO1XmQwfwvjZdpcFkGhQmKswXWUCmAhhyfi86K9/e+tM9xXj2ozWQHhh1tZYDGTM1DrO6mDDbmojOor6HCtXJqpr9O0Nkjg5hQfbjmD3nb2awhSiMtFUSz3EidT5/dITqpXogb2JawNrNiSOZ8sBRNu/O+FxdYZDR1hsyMiqqWuS/mfeLO13fUmi7/xNY3LiHgIQMYGxABETFkoI7gfCcNFOYFBYBAA0FL+W0vKtO2WksUm6r/c0EFo6qBFdEH2YzQbd/bNGV7azhuWQ7pGCFkFq+nbd/Iv8dsvUsY5THQe6pXlEY/HbAn0I637JtEsUF8ytVrUrkkqWEjKztlK2XIS6lUEbhBahqhlfxWmN9CgJrF+vNNsj2s2Hdpekiewrdcwje1xlV3KJCSAgJDQiD+wekbpD+82No+orGFy6IrtKZngphFCYBIQX5/TxX32H1DzyS+n89v+apIz9g6OGeaAVQNhJGQ/hx9FNGD2Odcs8UlFReea0tH7ps3LmjrfIqEZ3AWgphilpuxD+bbo99WP7umTH0Z4kExQRXGxm1aJbVa9bXGsWMLKGBfAzD3NC/2CNsAJ1c0NVbsEDtpIcv2c2A9EXYRGW43PPuuIsikpNGFeUh6yrE4GJKCw4vEs2LRyXeopSv6tkWjFwRqPdyDO2/ZgSnN4hqT580PRnYNUaDfEJT2vfit24NUVNVm/n814sXdc+Q1a8/3cl3N1lCDORU0S1oQFYLQCCbxcbBtapGsKK979HRqPKaN7+7sAi9iRbUwdFVJJl+IkDXSbbMOtRYDyTARoMix1J6eXtfzN+B30vJsxoBlJMRMz0upBqGOQlgSuvNNVWDOkCqq17StJEtpUShTW/vriTINu2i1nOW9NSzBrzq+vEhVH56i9FWHS5YP92CY9gJhTp27A5vwrL+C7mSFagRPbQ3/yrRDovyNp3/bpUDAwYQRWpH4GVD8Ka30zlrxf/x1I1O63UdO7zf/J9Of53/yYj85rUcOUxH39Ze4z5mdQnQUA7aD0wBSswUxdmrHTgOfBHJ0RncX+2jDRd3f7z6XvgL+WOZwQGUL9xwhUdrroqUWUVaa6nEVS40oiTmc9AbtlSnMWNLcpMX3VdhaxZWCFXrirMpblw1+OJN9tz9fWJ47l4MLhspez71J1S98TDsv7XXy5VJ49njYaR7h5pfOc7pPUz/yQj//CPsvItt8nlKxvNhleE7gYRcNZ3tKqpKtt1HTDDIDOW7aSJ/rI/Ur6zZqQp9wX9zImB8OD+hGRBFbpz04sBVN4J+X0K7dINNyRqWPT0Q4nj6ThgQdyJjsnV+OnoWy5t/vDpwp2bleG43LJZJWJFx/7To/LEwcKEh/YdjyUeoccXMZQ4OccOuq+7SXb/zz1SdeqEbH7JDbLo3z4ukYudabEQUg295a6vyJZbb5S6u74h8sUvSkQTKQKkSyFkGAEviIBzjWirVJNT2sbK5EJOIovhesbbr9FPOmiDEFEmzzVnu0FkB/mPqiqLKKVfr9KoLrCSvj5Z+tQDxBwmHOtzFtGTPDg5uGqqQ0owsjSbTFJf6uUKXb/xqmsxiQypKcOaPgp45/pO27c/bJph+9b+dZemNjknf/duuUp23POALP7Hv5bF//Ix8+m68dnSe9nVZk/0yqqIzOu9INEdW0X+7wfKYC5I7GUvF/nEx0XWrk3CWb+aoZifCOKptNNqHs0atouZqVuTMZYSaC+dCS6XdnNiIFScSTXKpWFXtjQYYPDtOt6joYH1Jsa9KK0QPfKsZ4l8//tSd/60zDt+QC4uVSfrHAUW361aGFHmMGq2yl3dNiz9gxG5X/NNdfZ5DCNaXaFZX0FQaRjINas1u26oz7yBPacwJMTMcb5/FuzfJnUXzprbu697xqxzoOeLF+4baZwnR97/UTn5W78vLXd/TRp//mMTWVV1/oxX7bx5Ihs3ysg7f0f6Xnu7VG7eKOGxaCl/uxBsnOCpzIMy1mqwQFecE3XFAuF0kV3+OvM5JpcXmpANBsinDntPzgzE3jiV30Eceyrbn2ltEU++TXPu4JRjvxCbErqg57jlFsNAqGP5o/fJ03OYgdx6VViz/PYn0MlWuQfPhnTCjzOLfDP9tukuipuXhYWEkv1DiSYmHKxY4EmoO09E5ekjhTEPKl/x8I8TbXQ+54WJY3cwjoHh1jY59dZ3yum3vksXCYakvTGiu16qcBXxyCh/MxHUenWUs3soyRdP6IZUAMo8vnAWNFogGouV5aViIKyCx1RG9uFR1YiyAWhwrW8/FXvPeK/tGf2m8HRAunaDOPZ09G8mtYkmQsbQrQe7zUr1gtXVW29NPP6qB/43cTz3DsjmWqEZfqvkl/tqZJcS8J/uqDBRTCnplfJCTVxNw20Ng9JsFvilr6J/KCyd/bXy1OHCmQetLPcxkIs3vyB9w+6KyfDbpoxjYUttgnlkixb8HIuaa2SjMhLyW0HbgnYVXVjijeLIneXffjdT/9FUWJQYUrNXKmRimKllS/4bZMJEWBXKAptMQDnHWDJhyLtmGQl5f1ZqBAib3+QFqqLLpWoX37lTFu14RGo7Tktf88Ksqtq4NCzdatq5YpXnO/v5bhZsJUs+EEyYXOr5rBqYtFBcXnRFRCX1iQ54bxSN42RJs26qpNJlRJdAjChtPn2RxHteA41RNgqKy892etJ/79nMY9R2a/PyiCxoENl7clRTq2e+52x3XL7yIBsepSsXl+duYm/3mKYeScahbS/X7/ozx2XhnifNbX0bNsrQ4mW5VjGnyjfqinTCZAsBNAx2SmwZ28I6tS60FZhNKXNbkYQ1Gw1kje6Bcr5LN9JSH04qBDKQIMIcRLCDzqU2kOtv2iYp2GQQ1MfJ7pnL19mtje002fwmb7jtNpG/+AthbxC0kO0ve7PZsOlFV5AKY0RThleqND5OcL124rJxyag8fjAkdVWe2efZl0blyUMim5RO7TquzlvdWvZU56icuBD83huUcD9jvZqNqtR+rEX2nQ5pTPyoZioNLh/0fINDIdm0NCTXrxUl4ipRqYO7oYaFYXF5cG9cCXyFLGnWdBVR0kCMr6eJxavka7pOAli+IKyaRvo28Y20N4U1DT0TbZzAkIJlbXtE+5x83lQa8CdT8sPNyyplx7HiMQ+aX/eTbyd60fHiVyaO3cFEDCxdEC2OSVirxlSVaWtbHOr+7Xkn9qawMzAnzNuTCev7TvSZZBRBNDeQgQR1K+jmoHNB97pz5YEBtJCC4LWvNQyEOjb86JuGgbz0at3xLeQR3IaaETW9RDUCbFRuWk9St2HDVDrV13vgjGZ6rYjKZcvjhpHctN7ryQ1rsaKO6o5xNXLI8+EqYwnL9qMxJfAhefZGTWxXjQowpgbo0Zal+kc/I6PVsv9MOBG+2hitULOA1qc0fv9pT1q6Zk1Y90If0jQVmnSys0KZTkjt1iIkELzQF5X/eyom16zVjbla++W7T1bK1asj6uis1c164mqrjuvOcuNEn8V29GlBo8ccEKBIMV+jEW8LGuPSUofTglDasHzvqUjCoQ4z2XdqvB4tkDfQh6KCcuT1P/5GosrzL3+dOS5WlE6i4hl8AJGNaq4qtsYttWnJjybWjDSrhkJofkmyTGhj1nnvbzf1GDqP4BYEWTOQoJvduTmGgc2bRViV/sQT0rbnKWnRyJ2KGzclkIC0XqsKzk3rx4l9ozIV4DmbauWn20fkxHmR526OSmONp43APIDq8LDJaor2ub49rgxE5IqVYWUeyn3SAPukb2jXaMmFVaZEODTe7sYlUTnfG5LlzSShw8kdljNdquWodrCsJaL9jOqe1bonthL3R/aNyO7jVRo6GTd9TG3uurW6U1zzqOnjZNFO5JT65T6YR4HMOrUTJfrduvdpmX90v6m9+5obJbR6lfJA1cLU1Fmw36xEfS51tQgGtRpFB8Ng+9sG3ZvDhtmWuu3U+lmhfqnun77tUHdiq9vUMtn8hgkSUHNyzHnP86B5FBpVmxUDKUa4VzYP6cqUFgMFEwRVueU3f1Pkt37LdPSFD31Z4m/8UKLTj+xnb+nEz6SD9sY+ef2NlTo1kcSVkHfWyuKmPiXglWqSYgWuyJDuxc1Obb/Y44k7mKhI9jcYq5KqMPcBkPxkKTwc4rf2zYD6KQZqlFmwRkLkxzswA1CfvSckR8/buuw9YnwbYxUkfd2yWVcIN6RnYrYwe7efUg3n0f2aWptFUjMENt3z+URPz73i9UZ74wSRfHMR8DugZRDBWOy8Ufnik36QlXe/pnnPF2AW+DHYg4RNqQgnLoYLQs3Z48pJV1eXzNOY5h8/fljqZ+h+yPkieC7ct0SjPxZrjp6CQMeILF6sG3P0ynBtvTx136PS0NZgbKSPH4jJZSvChjEkt6FO9AFN1jcSkp3HRzWDKTspsjo3pKGEySVTf7FgbnR0nNBzvU61HNJ28I2De9fxmNkDe436GQ6f1XTbk9SZ2kbw77jcsK5SVi7o18tp9HchpXalbDtWYfoQXE/5no3quo83vukZmv9qyKx1eOpn22VUt3Odq0CmWy+1ukZQlBkg/LF2g3x3k/ksJus6WlWfZhjO1QXR09Mlz7tqhVy8eFEaGxtNM1lpIJN1yF2fGRhAFS8YGDhveIPIv/+7VPZp+ulPfk5+8trfTlT7kJqDrlldK43RuPohxKxlOH5eQwaTFrp5DCEbQp/KPGgIpvHzXVajsE2HZPcJq1nYc/l9s0f6Mzew90KwxIfWdOxCpTy4a1ifC+ZSnHbz623+d228938M86CGs69/05xmHuCADZlqNDqqHAGTEwsAWaHOOo5CgMSMxYIiUJRidcXVU2oMFE0l//3fF/nMZ/DAyWXf+g95+uVvkVi1p9kMqvTPvhLJkKxBJF/L/IvIppEUDSTzHfldJXx3y3I1wUWHVbUfmFAJKc+PXYjIU4d0e1FlYJ5JLP/nmtDAFJ+I9PfK5jHzVVzTtp95w9unuAfl11xJNmQr8mPiWCeEmL1CygEcAymHtzBlfUhnismxA+wPQkTWV78qtZ3n5JL/+4pGZL0px0qSiy/UFdhXrqqQ2iovtDak4bVoH5XhUXlgT8Tnt0i+r9BfMCjWiDRUY6oKAvWZXIjKA6ptjPtRgsrNrHOb7/5viV48bzrd8eJXuLUfiglMRIvVzJv3WqkpGAIIgct0+12gHJiIui4dzBUMFFU9/9M/TaDtqq/q3gkDweaeRKFJDm5YF5KmaL86ywdUwhrU0OAhZR5IWSMa1dVvQnsnqSLnyzCPV1xDmHB65vHAnhplHn4nfc7NlN0NVb1dcsXXP2X6Fdc8Gife9cdl18fp6BDzI+MGUdPRqTRtlou25BhImheU7WkiGWYCkIa/qKGIV1wh8opXmEcnweLl31STVgHw0x1xk5qDUGBd3qQ1JeN1y9IBuf3GmKxfVDwb9VWakNBjUsEdP3A2WjLNJ7jFqTmL2bGm56Jp7LxGXg2sUY3SgVlrwXqPmQCEWRfNJF3AA88MbBXwgKW+NddIhlL3J1398zT9QtHhox9NZG1FoiW9Sb5ACpPvPTliVn1/9cGQLsTTqK2YP2LMc1ZftXLQrFzPtx3/fYvnpw9VPXC2Vh7WgIDZBvWnj8nl3/i0eaxRTQJ44p1/NNseMe/nIbqJraFnAnj7hyQLWdPRb8dApgPr09AmO54VHTZsSKwJqVQT1nWf+9uiNUFa9G89PCp7TqcuLBmVmy8tThRJV3/Q8A/J1qPRWck8eDnP+MyHpXLQCxLAcT64fGXR3tlsqOjE+YEZs4DSaSCzYcTNkGcgqWIpIPa+D8hogxcTfskPvyZLnvx5UZt5/MCIHDxXq5vsVGm9rJ6tlkcPFqZNrWrTLWDbw5o0cRwnPYNR2XemVn7wdJXJNVXUhyiTypY9+lNZ/Yvvm94ML2iTE+/+kzLpWfl0Y1AX2M2ERZRDumncwHBxBKlCsF/YTCykZXfvlGEA30cpNBAWNx2K10vVH/y5LPtzDe1VePY//al87ZP/JyM10aI930N7RzT7LPsmRMZSUKefOON5bNOr972DcTmniQ0HNCX6qrZa2X1SkxOaRIdF63LZVcSanWf9658l+nX0jz4ksYZ5id/uYBwDrLWo1cV25Qw9Jd6xMNtnD9Lhs73XlZshGIDQD6tkVWw4qkneunQgn3r9m6X76htM9fNOHZFrvvjxYjdl6gtaVOhvaGVrhbz2RpGm2vTDmtXrV60Kq6M+ZFKrsyCRpImzHZ7xmb+QRvV/AF3XPkNwnjsIxgD5onwJOoILBZxFczmpe/AcPtMvBzXtyGldqzEwlF7YCagi61PMu3IAp4GUw1uYgj7ARPLxgnBfUPQWDImcOsY0pqGgh/7yH2XTy58lFcNDcrlG+Ry76mb9PGsKnmy8iUNnR8cy+k5kCITsXrKkUlO6D5ukdFO1QHG8d9N3tOKhH8ql3/+y6UCsrl4OfeRf1RqYXkObvp6WR8uM+WwAhsHugqwfgeFg/kqCbu9XtaZIYQMp8mwBzBlyvlXq+XzgYu+wdOjcKwfI7wnKoeeuD0kYyBROTI6ffNeAjATszcK5Ayph+f0qhIIe/733mT6xX8jz/u53JdpxJqmPU/MjmDC+8HLNarpkRI52VMq3H4lNyer2qXnezK3UnTslN//j+DqPI3/6V85xnhllZpMn9urwAwyCBIRoFIx/0quzbfTJCwPGFzGBefhu5toe3VMDxsSHfFZaXV5A+/tOJs+9vCoq0k1OAykSIqe7mkzhxPN1Y5p8oatvRIltXPf5qDTZbannkKroQSr0qbe8Uxoe/Jk0/eyHZoX68z7+e3Lvh/9bSJUx3XDvE9aUgOqfTBymu2+laD+qr3xpY0w2/d5vmXdBG+x1fu61v1aK5mZVnYx3mAWCF4zjnGaxPa7RWYUkMewdGDFaw3nNY8VK92793VJJYEhuwF7qfsEtt7snL53NBlP+WpwG4sfGLDxGM2Hv5XyBexkkWw91yZMHvU+nqtCBoKasgx/9pAy1tZvLy564X67/3N8EFnUns8dAu26ShcnND2zFyxa744CJTvet1vNsD1yp2/Je928fkvZdT5gig4uXysG/+aQzXY0jLO0RJqmndf8NPlv1c+hMX0HMwzZEPSQyhDGREBGmkgv0q/ZB30oJNbqQct2iOh1H/rGVvkWngaTHzay4gvbB/suFAFvhMuiRyiaDkZZWOfDxz8iGN79SQrGYXPGNf5fOpWtk14tun+xWdz0AAzCJNe2aHfiSuNy3S2RVa1jqa0TaGsjIOiKPHKzSfSJiuuFVWHd7HJHNS2E2A1Lx2W9Kw+f+29Q4WlUt+/758zLS3BLQgjsVhAGk/FKEyWIZ6x2IaZbqmOw53iubljfotgbZyfHn1N9SSu0DPBCBVqP9YaEifZzMH5Rdz4Mw7M6VPQZQR9lAplCAeeQC3dc/Uw5/4GOJW571L38mi7c+mPjtDrLHwPM2swUv+7QPyS0bB2V1a58yjz6tAOk1Jpcu9uo63jEqdz0Skp7BCun95s+l4Q/+NNHI4Q/+nfRtuTLx2x1MHwYgyL2Dur2BMihMZdmmVseUVqptbVOxgcmuVVPHL2zyaAcLFtNpJLlRhtSW3O+yxgCDDpW0ECDShJ3QstE+/O2cveOtcvrXf9OcCutOgy/+0Nuldc9WfxF3PAkG2H8dIMFkR+/EdTXsgviT7da3o7sIKk95/MuPSNvv/LaExnZFxC917rY3TtKSuzxdGDh0us/4V4yvUVOpwFgI/7XzDVPXjiM9xpwW5HcsRb/xp5JrC+HzkqX1JoKsXjWSIHAmrCCszJJzSDgDygByMWGdvDBo1owwgPt117JC1Pgjf/KXUn34gDTd9wOp6u+RW9//a/Kdv/mKdKy6ZJZguLSPsaItrPjXJJO9tbpV8KhsOx6VzUuwgcfkdHdU7tuhYdS+vVLYo/4lf/6WRKqS8y99jRz94w+XtpOu9oIwwBw9oWtHACR9tH3mHGtRMCXhbJ9qYOMqNp8jEo0+nO4cStsPt6XtVL+dKWyPDLzEnwet40jXjR1HurNWq9PV4T9f0d8n697xOml8+AFzum9+q3znI1+SzuXr/MXccZYYwJneVKdO2O5kpzra3Uvf9wap1m1Hga4bni17/uOrElf/h4OZg4FqJdipqVRYFT9V5iswFdFgmMUt1caEhQZ0ULUkIGhL28LsG6Za96dcMdBUH8mKeRCiiApNdNWgSrzFhNForez91Jek5/JrTLW1ug/3K/7otdK2+8liNjNn6mJ3xo7eUWltCMlVqz0DArh86Z+NM4/uq66XvZ/8gmMeM3BUwDzm1VZqxulqDZaISNu8at1yYGrINH6P5voqqa2pUCuEWi/UiX5Es01kgqnpWaYeuGslwwBmcAbAZJEUF5V57DvZK3tP9Kpjb/JIq1w7PFrfoNLw16R30+Xm1mjXBXnZn95R9MSLufZrZpaPy43rKuWWzYOyfuGAvOrcT+WVf3aHVOsmUQBpSvb859dltL5xZj6e67Uh3It0Z8RLl9ULW9gW6sfMBqVoOUtaamTNolpNBVRpwox3HO2ZlHY4BpINdmdomUa1YxKKp7kUM0KbrvVoach/rUjGyscuxuY1ya4vfEe6rrvJnCH9+0s+8BZZ/8OvZ3O7K6MY+JUrwrJ5WaUsa/ZMClX/8QVpe/NbpKLP+911w7Nk72e+KqOarsTBzMUAK9cv9nnrPdBISr32Aw1nuW6TS2oVkjQeG1s0OZngCYYzMpCpUp1m7qsu354Tdodpiiy8qWkZ/L1mkBzV1ApnLg76T5fkGKkY6fjCLS8x9YdHhuR5n/h9eca/f1jXjEy9s7AkD1mSSuPSUh+SedFBXeehDtfhYan5f38ltX/4wUS0VcevvEr2wDxq60rSA1fp1GLg0Ol+IUJrp2oBNiKr2D2IqGRJqO7mFQ3CFrkwD7JM5LLWJCMDYel+uvjfYj+Mq6+4GMBsyiLCSg3HSweE+bJwaETf81RBvLpGF7X9t5z+1bclmrzs2/+pEVpvkpqL5xPn3ME4Bp6zqVJesAUGr/Px+HGpf+kbpebfPpcocPId75H9f/8fAm4dzA4MQMTPqgO7kPQpmTABbbhsVaPRPAjZRdjceazHWCwy3Zd6LSMDoXCmHEuplbnf5YMB1FFMV0gWQdCvKRW2a3w5fo8pB91K9Ygubjv04b+X0UpN2qSwVDeiet3vvEjY9MjBOAauXBWR9kYvzDPyo/ul4eZXSOThx00BcHfwL/5BjqkmopuljN/kjhwGMmAAq8Sa9tpEgA1WiDO6yj0fcKMuH6yV+T3EkuN8MxqIHgcBjnP8I9MJZ29/s+z+77uE3fEAIrRu/cCb5Bmf/pCEhzyiOZ39K4e2N7TrxO66KNH3vl/qb3urVJy/YLo1uGSZ7Lrzf+Xc699UUDedhaEg9M3Im/GrHDmri1O7h0zkJQsV87VCBFOXGYkW12mLAULwSPmcCdrnV8vGZZ7tM1O5Ul/rueZG2fad+6Xz2c9PNHXZXf9ltJElT/w8cW6uHnR/95fSeNNLpfpzX06ggKy62791n/RefrU5V8je2M7CkEDrnDlAcCRs/6D6WbBAFLJY2DGQWThsotUVAoNglSt+jiDgPPZVVptPN4yoBkL00OH3f1RI/AfMO3FIXqZrG2752LunaV+R6cVKve4e+MKP/I4se+MdUnHshOlMTB3kh9T0x7qaWNP8RAdzcXombnIHcxoDMI1ijBvHQGbhMIJnkIKAKLp0EVjHzw+WbN1HXijVtAlnfu03ZPu3f5rYHpd61v30LrnjHc+Rq//nH4R9vWc7RPp75ZovfFx+9befJ6vv/27icQnR3Xb3A3KW4IMy9HeQ7YD95Rt08ZuDuYMBl8pkFr5rGAf5bNjLg9QIfjDRHZrb5oTmvMrX7umvryTHuphxwTfvlGUf+4BEOj2bP+30z2uRx+74/2Tni++QWFX5RRytatM4+kGNnsljj3UYx+Z7Pi+Xa/r7aFdHAq3DzQvk2Hvf520EVYaMw3YUX4rKAOaTzfoBe5/7njkYCEpl4hjIzHl/WfcUmzjx3fPqIhOisNhPeU8WkVfWrg5RmC6CEOk4J0v+6SOy4Kufl4qR8XUifU0LZNvL3iTbb/01GWwcN+VkjaCiFMQ0qMjxwe03eou/Tl2MyuMH1c7cH2w+9N2iocsdcun37pTLdB95VuhbGNVItTO//lty4p1/ILGGefa0+3YYKAgDrP3AtJ0POAaSD9Zm6D2sQq+rjhgmQipma8oifBcHeybHGRoMq9MxS7AqlvTS0wlk9F3y938pLfd+K6kbw9VR2fP818jOF94u59Zu9sTfpBKl+3HZirA014XUjyTKkNnQqUIuWezPGxSSoxei8sAumEoyo6FXJD/cfM9/y5r77pbI8Dh+48qxO259tZx41x/LwGqXcLJ0b9DVnCsGHAPJFWMzuDwaBGG8zQ2VaqqKmzTRhO9h0mLVeanTI5QCdbU7tkr7v/+DNH/vrsQKbNvOuVWXyu4XvE72Pful0t/shQXba8X6JhMuay7jyhA2L4voqnAYBtIcZsLgYAT27PjOI+qw1HvqzxyXtcow1t53lyw4sCOpW3E1T3Vo+vUTv/0HMrBmfdK1mfrDarHFcNbOVByUe78xPWYbiecYSLm/zSL3L6KaxGKNxkKTgMz16N4CizVJG79J0Zx2b/Mi9yOoOgZuVaVqOMrUcoXqI4dk4ec+KQu+8T8S1nTxfkCCP73hCjl044vk0A0vMNvpGsO8v1Cex5er1gEetx6OycuuDktdlV/jCKhUfTnhbTtl6HsPy/C3vy/tOx+bUGikcZ6ce/Ub5Mwb3iaDK1ZPuO5OOAyUCwYcAymXNzHF/YCRLGisNFoIm0uR3iSsH3LfnO8eNulMiNyaakkRUxn7reerDYW7L8r8e78trcpI6p98JBCrvaqNnNx8vX6uk5ObrpXOZWtlNOKtfg+8IeXk5uUR3YshbvYhv2RRTHlRXHadiOhWspimxv0y5rbBQWUYuyT82FaJPPqkRH76gFScDU7P0rPlKjmriwDROlz+qhSku58FYSAXrSKXhhwDyQVbs7AsJgUYCLlviMDq0zUg2aqv5Y6Omn27peWer0vTj+6V2t3J5iF/32PKPDqXrpGOlRvkgjKTntbF0rugXXoWLJb+phYZjtZJPDweilqny1Ket7lCtQ1dGR9TBnKhU0K6Gjx0rkMqjh6X8P5DUrH/sH4OSnjnXglposN00LfuEsMwOl7yaqdtpEOSO1+2GHAMpGxfjetYMTGAiavph9+Vxgd+Ig2PPyTh3tzWj4zoYsbhmjrVVCJSoUyjOjTiZQvu6RMNW8y6qyz8Y/1G1zOfJxefdYtjGlljzhUsRww4BlKOb8X1qbQY0PDf2p1PS4NuqVu3/UmJ7tkhNQf2JoUFF6MDOMEHVq6V3suu8j5qouq7dIvuClhVjOpdHQ4D046BIAYyrqtPe/dcBxwGMmMgL9uuahF9W640H1t7aGhIag7uFTSVqpPHpeq0fvSbRYsVutodjcVoLeoEx5wV1zpEv2O6Pe9Ic4t+FsjI/BYZWrhImcZq1SzWyODSFY5ZWAS77zmDAcdA5syrnvkPWix/DVpB/4ZN5jPzseKewGFg+jCQnOdi+vrhWp5lGLBrAGbZY7nHcRhwGPBhwDEQHzLcYWYMsH4ExsA/Bw4DDgMOA46BuDGQFgPkzamr1jQoYwyDnFisFcnGlDTVa0rSPoS74DDgMFAyDDgfSMlQO/MqtoyCRYboGOwXMqK5s9jhMDyWCXa6dzGceVh1PXYYmL0YcAxk9r7bnJ9MrVNmkSHfjbqXei1JGPVfnzKR87r9ZQ5LIHJu293gMOAwMPMw4BjIzHtnJelxu6Z/J2Mv+anwc8AwejpjJlcVK9enK6V7SR7WVTpnMIAAlI3Jdc4gpMgP6hhIkRE6k6pjclVGQmb3QjafqtE0JyRZ7NYcWf4kh0O6x7qD2YkB8pExBhAS4prXckCTW2K6LFdAuEn1r6Weq9ddERF4CPpAmx4YSv9MzIFoFTioMIymuy9WdIYzm5mYYyDlOlNK2K9aZRRsKoNvY0lLjUnxfq5rSPdHH5B+nWwxTf/uYHZiAGILYQXWL6kzxNPuFcO5uNopT3QMmj1gpkPrpH8wM13DKdVK2PVQCbpnWiWPGwwBUyp9IykovA6t2Y5ZPW0CP9gPp2LsOXkmtjRgbA/p/jaYZHsHdCMXBcY/ZS3YBKNseeAHy6TAXa0GlrAtAudgPvQXnOEf5Nzq9lpNvqmZm7Uv1p/YpUIZASn0AaAsfUJQ45vnGeB+rZ8+FgvoD5DKdItV/zjmilWjq6esMWC2u1Vtg42l2tRsxcDddaynqIO2rBEwxzoHwYNwNdaxL8yo9PbHZJUSOKBKNQ8/8+AcxJrtkBc3V+uYiAs7WFIGogahA6iT32gqEPBRHUNcI87Cr7mawhn+QNwgxHwQZti/BoIMQJRT+5ahqoyXqActCy1jMoAB0Y923QaBKETSjY4oHpgn9Il+Wsbkr4t7YBhgyDJo//UmxT9g++BnWv5yvKOj5zRxp0KPvqtMG7/570t37Gcc9IvnKCY4BlJMbJZxXVYSYdIfOdtvJsey1qgZUDU6aZGquvpGjKRCWf/AK+PHmlNdgwBgZoT5B70f3hvvsUEDIBo0TT5BEBBBPyFGGvf/TkWgR9Q9qbVaJXuEjGwB5rHtcHdg3/x1tCqDWqgEukYZR6a++O+ZquNUwk4YSWV48tZ5Dv1fMLD1wqqFHoOH2J+9OGSYs60bc5zVXuap5oQ21aeaSzZQbOZBm46BZIP5GVjGMgE0jibdG31FW9RIh/t1O9sqnbhIpUpbNMVThWxYUm8m/SlVw1G18YE4KB4GIiqaj2CTKRCw7a9dVGveDyYTCAKaAFVDYDaoSapemUcmKCXBhtilMjYlqyqVx6UaDUN3x5xXW5lkMsrU17l+DYEBTSgTIBDAVPBdoQWiDcJULqjmWAqGkdqXzKMttbT7PSMwUKMiU51KnzACCExn74hUdw6Z0Nw1SoCOnR9QybIqSfqD4SxWe/Dwmf6EXTaVGMyIh8+jk34CD2NN3ScFE8vQsNrcMflo/fiPmNxI99jpwR3mDXZ4RArHnAGxB/eUb1BJER/TsJpC0BCsfb25vsrsEqnVGXs+kiXaAwQApoBmyG/qxt4Pc8B8Mk/NIXwAa9+HeES17ukAdrq8oBuTXVQN1gL+CvwLCC/gCxyBMwfFxQACAe899d2361g6onOZsQXaYTDgn3ECYynW3HYMpLjvc9prg6hBeACIGIOHweU5/SBKYZ3UlUrEhsz2tqkdRuLBzNXZM04MUsvMxN/YrjGZ4NRECj55YcDgByIH4YbAY8AGV/PqxDhZIYzgCmZsd3LEhg1BD4LlahJEAgyykVsbONdbVBKnDPZ+JrgB/aY9Jjd9hdEE1ZPaLgTEs++nXpm63zBdnNIwTABcXbqsPsEwYH4OphYDvIO1i+tU8BmdwFwQOnDmM+YJGhhUwQbfSz7gGEg+WMvhHqRbCBAEXOe6Eq+IkQaQyJA0UfuBYsWqI+1dVI2DsFwkDpgBBBLiCeFjoHSrpIiK26ZlsLn6gcEFQch3m1l/XdN5bE0n9IFjJHpMdyvVlAfRbdEtfiFrHPNuLIH39xkpjfeUC0xG9LnuNzP5aavVKnJprxzKHjk7YMYLeFzQUCXNilunbUz/m+EdpGom9Ioxj4BCoISKlHLqwqARqPLp8ZxkINhjmcjYDotFuP3Ix++AqgjjwClHO0ieSK89KqlxzYbvNdWriq+/7YTD/IFUwH308YyaniiLlElUhr+/SKowJKTYDjUh2GvUyQA52TGgUqGaNlTSRRLxQgo9DQW/Ryrz4BloE+mlQbWXbpWIZyqw1zo4AOeEVBqfjz6bhWwYQzZlbH1z9RvhhPG5ZUWDGV9zFQ8z4bnRbqEzvC9ChqENvD9oTL4w6xkIRMBv7+O3kQKVqGBfhqac6xqWpQtqDJHu7BlW34EX5YJKjj/Bqnet86o9W7ZK8ZynXqu2+18AUj+ASQL1nXaQziLKBCBkSACZgDBKC37JmAFAezADY0/XZ4BIAstbia4R4/egdtqLqr+DNR88b7YAfmByM4V52CCBs5igxoBJgsYFA29WhjwZvu197jt3DCBssJ7EQfliAKsCc8AzWcU02nLY+KXoMXPFCp75PMGMZiAQOwilIZCKJAZzozrtILQQWIg3UjpEd1A/+AcogyQOFzag0vuSFm8V6rAK3Dg8m5ToGOlVy2ESAiDBmEKIddemjOSPHfGESvkA7fGPPtEmNDukf+DypzoHzYvCvwDBIzwyH+Bl038+qWDt8n6Gk1om029CQxlg9Jdw3pkCMOsOZfoAuF2mgkCLMmAmDeCYh0GD+zMHMYDVA1q4/1SfsVIY38dgstWF64VA2TIQiIEFJHJjm1eJEpMEJh+AhH8wg3ygIZrdXakOwMXNNYkb67UOfA0A/aNXhtEoE/EDL4mXCQNIueQvNmXH9BVGMaxMlegMmAdaB47QQqSRUj4A4wFTHH4Mw6AVl2aIKNKtEOEPIHCMo5Rvw9U9EzCAhYT5jQndWkWK3e8pZyBI8QCEFCHRT7CQ3jE7QAjQKrhOOUIB/Y7HYiOhGPVBsJLZxnitMA4+pQYGzGl1iKFd0R+rlRjGpY0PqbSOg71Uvp9iPR8Mgggy/ED4L2AaU4G/YvXf1eMwUA4YwMdZX+NZaWYFA2nRCA1CHSGlaA5IwhA7mx8GSR3zCQSkWUMdKWdMT3lqGeXwEovdB3AGwCAYFH2qNcBsLZNCI2IdA2Y78HlezVK9qmGUGmCfhA/z7gCr3fj9T+n6wD2MDd45dfDenQaRDlvuvMNA9hhgHl2ytE4O6ZqQ8+rrRWBfNL/GONGVPBifaTZzNF2LJdFAIGY4izE1wRyslkGKcBgEZqFmNUs1qYRJmBlrEyz4HcicCwpDs2Xn4jfhqMfV7wKOMelgvsH/QuQW2gXOb8tMwL9/cOD4j1brPUqwYcyU91/PF58LNd3FIvw7Y8yDekhuR4QHeX0IJkgHZnX14lrjv0hXxp13GHAYyB0DmM0xTUNvMfcDyJ/MS8zVxdBKSsJA7EpciBt26n6ViM/3eMyDTg+rQDygq6FPdnhRABA8HjIRraTHMBXud5CMATQ3tDi0C1Y+M0AwVSHFL1DtAymeleb+6DBMgysXRg2RZt0JK9MJErC5dGAmfmDtSlh5eiLQwH8x5RhBgcV4vEM/0E/Mjut0MdP2I91J/fGXo597T/QZrQPdqkrv416eD61Eu24CE6geTcv+ZryY4Al/Ze7YYcBhwGCgQ4X1g6f7zXExhMR0aC0JAyGah08m4KHCSg2QnjWDjvCo5GEivUNDbbJWkqmeuXoNgg2BBSC2mIyQLjhGizutkV8WILrkuYJY26gysnwS4ot/gaR7aDasNSH8tU3DldEbtx6cmBiPdgkkgAGRzRUmr00aiYZwZ7Qe89GTfLNY0s/MbJ/sN9dgPWgv+L5QufndpKvF/UAbNMSzUCCuDMSBw4DDQDIGmP9oFwh/0ANr/UkuVbxfJWEgSLDkCOIJlKZ4D6OPYgHCZTUMnOYQJQgDkrIeGsmSbwfZYQD8hX1mQCR/tAJwiikJDQXCzDHaBoMMws4g42MWOuq7GhwOGbMWaU4oEyS5cJ7QZTM4sxygsIR5GgjBB/MZ7x5fDgwGxhGUVjy7J3elHAYcBvwYgBYQfFKrpmrWs/Wq+dgKjf5yxTouCQMh8+jIQLJZhA4Timkcv2qDIwUxD7swVC1sp4rZwkHxMABugQrVEiyA41psUwqYCyHipCwxCyeVMQDYR4eVsMMo/AATwH/CGhS0FMxHMCY+hvGrvEAZtBCYE/XCHChPyhQ0HQcOAw4DU4MBIrDW6L4vaPisk0IrAZibxfB92KfImoFgXoAoIT1CNCwg5QJ8QXKQaKE9OG1w7PbrbwBixSK8+dFKkyYDYob9HBOIs2UbFE35H7SSZhP95DXNO4KZkAIFpsA7wk/Ch2AGy5Qyd5RkhJWyyLdeJnN5d9VhwGGgFBhg/kZVYFyic9cCcxwBkYwbuAzIaoElAIExH00lkIFENVoHp6y2ZSqHSWCKQrNIdbhCVDBJATAQpNNFmqQLRuNgZmEAhoL621hbP7M67nrrMOAwkBUGmOOYjNkozL9ZGIzF+i7xS8NQjDIwxlgwf1eMTGQXE89oNzYub5DGxkbTISqmUYBjtAvCw+w3DaEm8RuGQxn2BSDxn1FL9D6rnVg3COlCXISVQan74zDgMOAwMO0YgMabbQG0J9HxVHxJ/WqpnRiOH8hA/HdZ5sE5jrFeZWfK8Nfijh0GHAYcBhwGZhsGnGdztr1R9zwOAw4DDgNThAHHQKYI0a4ZhwGHAYeB2YYBx0Bm2xt1z+Mw4DDgMDBFGAj0gXR1dU1R864ZhwGHAYcBh4GZgIEgvpDEQKqqqqS9vV2WLVs2E57H9dFhwGHAYcBhYAoxAH+AT1gIadgtyzcSMDCgifiGMuexShR2Bw4DDgMOAw4DcwYDMI+amvFN9SYwkDmDCfegDgMOAw4DDgMFYcA50QtCn7vZYcBhwGFg7mLAMZC5++7dkzsMOAw4DBSEAcdACkKfu9lhwGHAYWDuYsAxkLn77t2TOww4DDgMFIQBx0AKQp+72WHAYcBhYO5iwDGQufvu3ZM7DDgMOAwUhAHHQApCn7vZYcBhwGFg7mLAMZC5++7dkzsMOAw4DBSEAcdACkKfu9lhwGHAYWDuYsAxkLn77t2TOww4DDgMFIQBx0AKQp+72WHAYcBhYO5iwDGQufvu3ZM7DDgMOAwUhAHHQApCn7vZYcBhwGFg7mLAMZC5++7dkzsMOAw4DBSEAcdACkKfu9lhwGHAYWDuYsAxkLn77t2TOww4DDgMFIQBx0AKQp+72WHAYcBhYO5iwDGQufvu3ZM7DDgMOAwUhAHHQApCn7vZYcBhwGFg7mLAMZC5++7dkzsMOAw4DBSEAcdACkKfu9lhwGHAYWDuYsAxkLn77t2TOww4DDgMFIQBx0AKQp+72WHAYcBhYO5iwDGQufvu3ZM7DDgMOAwUhIH/H5S6dFQoLog9AAAAAElFTkSuQmCC" }, "metadata": {}, "output_type": "display_data" @@ -110,10 +111,12 @@ ], "source": [ "from eomaps import Maps\n", - "m = Maps()\n", + "m = Maps(figsize=(4, 2.5))\n", "m.add_feature.preset.ocean(alpha=0.5)\n", - "mi = m.new_inset_map(xy=(125, -5), radius=10)\n", - "mi.add_feature.preset(\"ocean\", \"land\")\n", + "\n", + "mi = m.new_inset_map(xy=(125, -5), radius=10) # create a new inset-map\n", + "mi.add_feature.preset(\"ocean\", \"land\") # populate the inset-map with some features\n", + "\n", "m.show()" ] }, @@ -133,13 +136,13 @@ ":::{tip}\n", "The [`InsetMaps`](eomaps.inset_maps.InsetMaps) can be in a different projection than the parent map!\n", "\n", - "You can also specify the position and radius of an [`InsetMap`](eomaps.inset_maps.InsetMaps) in a coordinate system of your choice.\n", + "You can also specify the position and radius of an inset-map in a coordinate system of your choice.\n", ":::" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 8, "id": "35d0a654-5a34-40d2-8053-a53f77c2ab35", "metadata": { "editable": true, @@ -151,7 +154,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAEAAElEQVR4AexdBYAd1dU+6+6STXbj2bi7GxAcgrsXK7TwQ6FFCpSWFilQoC1QHIoXlxAs7u7u2U3W3e3/vjt7386+vLe+mw17T/L2zZu5c+fOGfvmyHc8qiBixGjAaMBowGjAaMBowGjAaKDDaMCzw+yp2VGjAaMBowGjAaMBowGjAaMBpQEDAM2JYDRgNGA0YDRgNGA0YDTQwTRgAGAHO+Bmd40GjAaMBowGjAaMBowGDAA054DRgNGA0YDRgNGA0YDRQAfTgAGAHeyAm901GjAaMBowGjAaMBowGjAA0JwDRgNGA0YDRgNGA0YDRgMdTAMGAHawA25212jAaMBowGjAaMBowGjAAEBzDhgNGA0YDRgNGA0YDRgNdDANGADYwQ642V2jAaMBowGjAaMBowGjAQMAzTlgNGA0YDRgNGA0YDRgNNDBNGAAYAc74GZ3jQaMBowGjAaMBowGjAYMADTngNGA0YDRgNGA0YDRgNFAB9OAAYAd7ICb3TUaMBowGjAaMBowGjAaMADQnANGA0YDRgNGA0YDRgNGAx1MAwYAdrADbnbXaMBowGjAaMBowGjAaMAAQHMOGA0YDRgNGA0YDRgNGA10MA0YANjBDrjZXaMBowGjAaMBowGjAaMBAwDNOWA0YDRgNGA0YDRgNGA00ME0YABgBzvgZneNBowGjAaMBowGjAaMBgwANOeA0YDRgNGA0YDRgNGA0UAH04ABgB3sgJvdNRowGjAaMBowGjAaMBowANCcA0YDRgNGA0YDRgNGA0YDHUwDBgB2sANudtdowGjAaMBowGjAaMBowABAcw4YDRgNGA0YDRgNGA0YDXQwDRgA2MEOuNldowGjAaMBowGjAaMBowEDAM05YDRgNGA0YDRgNGA0YDTQwTRgAGAHO+Bmd40GjAaMBowGjAaMBowGDAA054DRgNGA0YDRgNGA0YDRQAfTgAGAHeyAm901GjAaMBowGjAaMBowGjAA0JwDRgNGA0YDRgNGA0YDRgMdTAMGAHawA25212jAaMBowGjAaMBowGjAAEBzDhgNGA0YDRgNGA0YDRgNdDANGADYwQ642V2jAaMBowGjAaMBowGjAQMAzTlgNGA0YDRgNGA0YDRgNNDBNGAAYAc74GZ3jQaMBowGjAaMBowGjAYMADTngNGA0YDRgNGA0YDRgNFAB9OAAYAd7ICb3TUaMBowGjAaMBowGjAaMADQnANGA0YDRgNGA0YDRgNGAx1MAwYAdrADbnbXaMBowGjAaMBowGjAaMAAQHMOGA0YDRgNGA0YDRgNGA10MA0YANjBDrjZXaMBowGjAaMBowGjAaMBAwDNOWA0YDRgNGA0YDRgNGA00ME0YABgBzvgZneNBowGjAaMBowGjAaMBgwANOeA0YDRgNGA0YDRgNGA0UAH04ABgB3sgJvdNRowGjAaMBowGjAaMBowANCcA0YDRgNGA0YDRgNGA0YDHUwDBgB2sANudtdowGjAaMBowGjAaMBowABAcw4YDRgNGA0YDRgNGA0YDXQwDRgA2MEOuNldowGjAaMBowGjAaMBowEDAM05YDRgNGA0YDRgNGA0YDTQwTRgAGAHO+Bmd40GjAaMBowGjAaMBowGDAA054DRgNGA0YDRgNGA0YDRQAfTgAGAHeyAm901GjAaMBowGjAaMBowGjAA0JwDRgNGA0YDRgNGA0YDRgMdTAMGAHawA25212jAaMBowGjAaMBowGjAAEBzDhgNGA0YDRgNGA0YDRgNdDANGADYwQ642V2jAaMBowGjAaMBowGjAQMAzTlgNGA0YDRgNGA0YDRgNNDBNGAAYAc74GZ3jQaMBowGjAaMBowGjAYMADTngNGA0YDRgNGA0YDRgNFAB9OAAYAd7ICb3TUaMBowGjAaMBowGjAaMADQnANGA0YDRgNGA0YDRgNGAx1MAwYAdrADbnbXaMBowGjAaMBowGjAaMAAQHMOGA0YDRgNGA0YDRgNGA10MA0YANjBDrjZXaMBowGjAaMBowGjAaMBAwDNOWA0YDRgNGA0YDRgNGA00ME0YABgBzvgZneNBowGjAaMBowGjAaMBgwANOeA0YDRgNGA0YDRgNGA0UAH04ABgB3sgJvdNRowGjAaMBowGjAaMBowANCcA0YDRgNGA0YDRgNGA0YDHUwDBgB2sANudtdowGjAaMBowGjAaMBowABAcw4YDRgNGA0YDRgNGA0YDXQwDRgA2MEOuNldowGjAaMBowGjAaMBowEDAM05YDRgNGA0YDRgNGA0YDTQwTRgAGAHO+Bmd40GjAaMBowGjAaMBowGDAA054DRgNGA0YDRgNGA0YDRQAfTgAGAHeyAm901GjAaMBowGjAaMBowGjAA0JwDRgNGA0YDRgNGA0YDRgMdTAMGAHawA25212jAaMBowGjAaMBowGjAAEBzDhgNGA0YDRgNGA0YDRgNdDANGADYwQ642V2jAaMBowGjAaMBowGjAQMAzTlgNGA0YDRgNGA0YDRgNNDBNOB9ou1vVVWVFJZUSl5RueQXl2O6QkpKK6WkvFLKK6qkshKfqhNtrxo/Xi9PD6noCDvaeNWYNYwGjAaMBowGjAZaVAN45Ion/nh7eYift6f4+XpKoJ+XBPt7S0iAN6Y9xcMDjU4gafcAsAKg7mh2iSRnFKvvtJxSKS3vAAivnpPI19vD6KEeHZnFRgNGA0YDRgNGA22hAT6TY8J8JS7cT7pE+atvL4DF9iwesKi1OzRVWlYp+1OLZG9KoRxOL1aWvfasxOMxNgMAj4fWzTaNBowGjAaMBowG6tcALYUJ0f7Sq1Og9OgUIL6wGrY3aTcAkDj0SFaJbDuUL3uPFhn3Zj1nigGA9SjILDYaMBowGjAaMBpoBxpgyFavuAAZ0DVYOkf4tRtX8XEHgIzZ232kUDbsy5WMvLJ2cKhOjCEYAHhiHCczSqMBowGjAaMBowGtgagQHxnWM1T6dA5UMYV6/vH4Pm4AsBIWv13JBbJmd67kFpYfj30/obdpAOAJffjM4I0GjAaMBowGOrAGQgO9ZVSfUEnsEiSexyl55LgAwCQkdCzdlmUsfs04+Q0AbIbyzKpGA0YDRgNGA0YD7UADtAhOHBAh8UgcaWtpUwBYBMqWpduzYPkrbOv9/MVtzwDAX9whNTtkNGA0YDRgNNBBNZDYJVAm9o+QAFDLtJW0GQDce7RQFm7OlGJk+BppvgYMAGy+Dk0PRgNGA0YDRgNGA+1FA/7gFpw2KFJ6xgW2yZBaHQCWV1TKkm3ZKru3Tfaog2zEAMAOcqDNbhoNGA0YDRgNdCgNMFt40oBwkE63LnVMqwJAJnfMXZtmYv1a4dQ1ALAVlGq6NBowGjAaMBowGmgHGmBs4GmjYlSVkdYaTqsBwKPg9PsO4K8YZdqMtLwGDABseZ2aHo0G2kIDPiCIZRlHXcmRv4P8vaSguELKUPmoc6SfhAd5iw/e/pkcGOBrxQSRS4zCkpd0FZFo1k7jT2YFLitBmI0qkYlv/i5FmUzeh1k+k/0bMRowGjgxNMDr/LSRMRIH7sDWkFYBgPtRweOH9RmGzLk1jlh1nwYAtqJyTdetogGCGsIP1s0MBuAhoCHAIUjRoCY2zA/cWIKa3qIASw68CAnIjiNlQnFphZQDNXF9rpdTUK7WI7jJKSxT0wQ/FC5nnU56IQi0+ELalkKoxmBugrkA3MSjQ30VkON++1RXBODYuK+dUDqKuiAZPvclBaUv2T4Y+1mflAHc5QLYESxqfRJcUp9cRn2Ta5U1SrmcYJNVlqjXQtRSJx6kzvLw28Rn16dts9xooO01wOv2lOFRqCbS8nGBLQ4Aye3388aMWm+mba+yX/4WDQD85R/j9r6HuC8pcMXvKACWLspy5aOAGsEEQRctUUN6hKg3WG+gnYhggjfCo2OFQIQfgr3GiK5m6a5f9pWRW6oADq1hvEex2pBdvLETfNv28/FUAI1DpIWNYJOgiYDpQEqR9I0Pksz8MklHf1xneK9QWOt8YFmzrGxsl43lUaE+2FcfCYT1zhd9Uhfk+2rsvtnH2JBpgr58WBIJ+ioAKAmka01Xz1MgEW1YdrMAx4j6Sc6sAcl86LCNEaMBo4HjrwHej2YOjVL3kJYcTePutPVseTfB3waAv3ramcVGA0YDJ4YGCO66xaKOJUAQAQ0/tGwF4UOwRMBGoETXIsFHGMAQwYMWOzhTYAPgxBPLaRVzBmzsj5/Gir0fgi+CT7pTaTHkuPJh6aK1LRsWw3xYyyiTB0ZgrN4KIPHmyjqdBID8djU2rrNyZ7YM7h6iLIsV6Dc9r1QBXLpoY8MCjmH1pxUuE23SAK7Yb2uDP46Rx4Ng1N/HSwJRnN4LO6etgASEHDcrLh0GFyutkQMRbE6d85jsSCpQTA18uaS1QddkZ78UFrqPp0UTxx5dqX6Z5EerZRFdzNAxdcJlRn6ZGuC5wRcaf3xw6CUL15uz8LxiG7788dww0nwN8JoituKdtQ9eJFtKWswCeABuBcb8mYu/pQ5N3f0YC2Dd+jFLG6cB3tAZh8bA44hgX3y81Q38QFqx8NompiO46w4w2BUFzmkZI7jjQ4DftCIRfNB1SUDBGxVdnQSHruRwejGsh1UKhPgDQPmhrZebtq7W1/No3VIWL/TFh00GAEh+UYVyHx+FK1W7PbkNAhiCQjiIFQC0A1XdH61ebBPk36Lvxrr7dvfNfU3JLlUAmcePOmIBe+rGOr5VOA8q1fF3dkmT15Vgmw/6tBxaEIvVN8GgkRNDAwRrPH6ujL182eN9gdezto7z3GD7PSjfSvCXh2uN9w1awRljyhctCq97fuIQ3hACiz6t5wxVaC3h/Ynb40uXq31pzHZDcW/zw8sg7y26PC29AHyBox54L4nFdUJJxovUQdwj2+qdh/t5KmICeR9uCWkRAJiKG+2XK1JVfE5LDMr0Ub8GDACsX0emRcM0MBQuWoI6b4CwCFjFeIOzC2/qvOEzNo2gjUAhFjd2WsoIvjJhUYqGy5Pxe3xYsE12fjkeEKUKSNEdilnKpUgLFG/QtLrx4UNQoa1uOjbOvm1X0wQttPrR+kRXbg3wqFBs+gShkQCyjB3U+8IxHa9yS672ob3MK4B1tKFgl9ZTAvesgjIFsvnNY98RhICYQEcDHO4z54UGeCnLclsBgMbomjG3BGZ8WaNU4V8kQB1d/axDS4oRXsu0UG8/lK/APMMaKLSOa4s1v3mNMnyCFnW+GPD3Plx7I1HKjNdzAK77EixnqMM+gD0NUOgVIGBMzy1r1ZACjpFD58sH96mlROthbGK4usfZvQ16GwTCS7ZmKau6ntea3wS654yNVffg5m6n2QCQ7pVPl6aog9zcwZj1G64BAwAbrivTUhA7EqgeBrTmpcJao2V4zxBYfALg1iRwEwWc6gNKLOVIFzDdhuv25khSRomcO66TAn46bkw9WLAdWhBoDmSig34Q6W3X9a0fHNrdxLa0MhJw7ISrksTyHK9dCEK7xcBdjYcTx8GHHy0WBKVGGq4Bgv2N+3OVNbArzg0+cDbtz8PDtfUf5A0fZdNaErTRskOhlYdid1N2CvdVgLikzDrXGLfJc5cAg+cX2+bhmccEJOqF5xutQIyB5UsOdcTwA55/fGHasC9PbcPVH1K88Vy1QIVlaXXVrrnzCOm6RPnhMvSQcFj2aa2l1ZfWXuqC+8HftHJxX6mdI7DmUk28fmlV65cQpMbK2FeGAPA+whc43gPY3y9ReC6Qj4/3LW0Rz8Jxj8Gxps44jy+hPH58Cd1+uAD680UoTJUCwowHbi1hgtv5EzvhGDTPU9EsAMiT/MsVKerkaa0dNf261oABgK710tHm8kYUpt5+cUPCNIFXNiwzfBg5C+5XyvJGt61d6M4Y2C1YWcho1WM/tHTwxkeLAQEUb/SuhFYhvgEzO5djSQYY7A3rAq1wWlTcGayBfNjxw5uXs/Bewr540+RDljdWFVeGebsBSAg4aX2gNaEhQtqEU0dEq4dVQ9qbNjUa4LGgK33u2nQ1s4THA/NOdBnfL1wG4Tyn25rAhi8Tu/EiwThIgp+FWzKxPMRhveKLDsHc5gN5ytJNixrPK57btGAzwaZThK8VEwr9pAMIUU1cjy8ptI4baXkNBMPqypARupxLAbZaU3he8D7Ia4Igvwdcr33wMu38kkyrqLYOMjRiGUve4r7F+zBd6Xxe8z5Kd3FLCcHmOXjxJhBtqjQLAHIn63rDaeqgzHr1a8AAwPp1dCK3oCsmFA8cgieCMXe3Ob6F86FEaxff6JmJS9ccH1zsYy/cMbTSp+ENnw8+Ct9geTMimGJcDt/wtRCcDYNVkC4iTuubml6uvwk0NbUKt8XfxbCaUOgq402TYI/f2t3r3BdvqjkYK8Elb2LcV2bYsj1vlNvglnIlBKm0yHB8fBjzo2KVMJ+3Qm4nBA8J5+256svMq9EAjwePKc836p7Hwn5u1LQ8Mae6xfgr1/XEARHKIqYf4jzvmDhD4TXhnMjElxFadXiep+SUyNaD+Y7YMHea4PnIsAMCFE7Tks2kGn0NulvPzG//GiAApeWNXhOeQ7wXEeQRLFJ4jPnSwFNqZO9QlblLgHgE15bm9twHqjy+gNBd3hzhvXoC6gc3VZoMABkL8vWq1KZu16zXTA0YANhMBbbD1ZmAQfDEuDgGIvOG4o03x7zCClm9O8ftiHkjoquKD3ACLj5wKHzohAX6KLcugdZPyCKj+5fxfiNAX8I3WvLQ8UZElxZrdWtLD8+vnsgEpYuLNzze6A6nFykgSgC5cmeOsjROQjYtLYi0zjEblm4vviU3NJ7PvlN8EKfCxbR6V7ZyK+m3e46FZKgcr3Hn2jXWstOMA5uPc4BCQM44LrrafynC6yTIz1tK8WSmq5OAkOc1XZh7sJ8D4OYMV9YaT/VSpS0rtOzN35yhrpN+CcHqoc711uCaZFgCLX6/JKD8Sznex2s/6NrvFx8MYBauXij4UoFbs3ohUNZ03Od43tCCSbexennFvRqXXJPiSc8aE6tCXZqyv00CgAwG/WjREWPiborGW2gdAwBbSJFt3A3fEZlJpjMlSRTcGRa8naBQGoCHC92ndHfSnco3ScZjrd6V49JywBsGKQH4MubsGiUIo12PgIz9E1jStUp3KoXgkvFxBGqJ2Ca3pV3HtObRAsSbFoWgi6CPNyx7XMvg7sEq6YLWET4Eua3Z4zupN188H5XFhPuqXSj6gWr1av3ldrYczFMPYo6B++HqYcp+rAxlvml7ApwGKMufDkzn/miLFQGusf7ZtVz/NK1+5EdkfNeeIwXKcsV5jMWkZZkxYr9E4bXRH8CPiTC85nie0bXL4H+ewxsRw7diR3YtC/wQUAHRnUyLN68N6uZgWpHshzXHfn38EvVl9ql+DfBeRM8MQwD4YqyFQC8CL/lcxucAM4zZhvfb5gj7u3hKZ+VxaWw/TQKAzHjZBBOnkeOnAQMAj5/uG7plxs8R0NFCRmscLVx0dxJM8fqhBcF+g2C/tPwFwFJBIERgRVBUlzAuidtgUDYz7RorfNARcBJ0cZvcHgPDNfhjfzzXaAmky5WxTXRtdYn0V6AyHpm2tBQR3NHFRZcy4174YKRrhEIQQcsjH7B8knrgDXkvgCizDznmhtwA2RdvrATOfRGDwwxG9ueDsUWH+Kq4RW6Xrjw+1A0AVKpv9B9akXmscmEx5rMrBW4r8gP+koUAkGEUtHhrCzP3e46bUqY8D3nd8nqg649VaEg9ZKRhGqCOGcbR0hm7Ddu6+1YEZfR2kNqmPuHLN8NucIm45ELU6/Peyvhq3iP5AqvvS7znMQOfGdm0PvMeyRcPvsQ2RfhSQm9MY6XRAJCM8f9bcrTWG1FjN9qW7fngIG2Edie15bZbc1sGALamdpvWNx8IvLH1iguUrnAvkRaFQmC1HFYEWg0ItA7BWrAZcUSM0SMAIzgklZIrAMcbUj9Y+UjMy7gSdw9jbo/A8ghuKIw14Q1KJ2Lw4UaglAGwRdcXLXmMQeE10SsuABaQYIfLi7EqtPxshWWObi6C0dIyxuaVqjYcI4PmCQIJVmlV5E2QN09SrxDg0t3MfaZ1kYCCLjYmqtAKGQmwRmG2JB+ydIGwNFljhG+81GMiqnL0hq55jVP3dYk9SLuudh1xGeP+eIzo7iV3ogbwYxLDZN2eXOWu6gh64fVIizxfapj1TDedkeZpgC9pmo6GeqVnglZmCq338zdlKCqn5m3l+K+tXwp436XFnPdBTvfpHKSeB/rFwtVI+cLNa5BeIIbR8L7N0BwluLmyLxV/imuT9257xR7dH++/F06OA8isSb7Ty+r6bhQA5E2UcX+kfWhJoaK0xYFmd2Zq6Zqg3NZBPCCImMk5xFT2wxlFQN1WGj4Vw4dMU+REBlEn8tibcqza+zoEN2PxwOR5SkBHVBSNGwGt5bwJ8qbHt7xDcNfSRdkXoI7B5qGBdAdY7kta0Zh9Sbcobwg8rXnjYKAvY/ZodWA1Cj6s2SevEdIP0AXFdsqSAYDH7RJw0k3KGwLds3z7JBDUb6BLt2WB6qPGis/16RJm33xhYgLH2L7hij6G+8S3dSaT0CVN0OZKeO0SNPJ61Ocnv2mtY5+MbeR2qAcCQYJQgo2mCm965BgkJyHftHmjTONNEvcEJoFw3Po+wQxjbp83aoJFgka+wZPag7GF3N+OLAT0vJfyYcSsbpbzpFuUenO2UndkPZl9tzTAZzatn3wZ64T7Ct2bfEnlixmvb96feE/UXIMELnyxpIucL4ikkyFXqI45bu96pReHwI4v7LyH6WQOxofyRZrMCbyX8KWY9x0F5NC+pUUDQYZrOCeQxIPqh/GA+h7fkG03CgDScvHN6rSG9NuoNnyLp+mTN56TUfSYv+07QeDJZXxo0I1GEDp1cKQ6AXnj4pvr4i1Zyn01rm+YeojxgctljMvgQ4muoV+SFVA/YBulaNO4TTRAYKJxjXVjDFA3Pp7DJBTlzYRgiTcSghJa1QkaGSvHc5bnKy2Cyh2AjniT5DJNrsqd0O00kKPVUQNM3pRpyeCNiJloMbgxsYYt+6BVjtfTAgT7M3aQIDQOVBZ0o5IXLRVgUls/6ErlDcVeoYN90mVBSyetfwRUzDrmfAJMZsdx+9wvPUaOl9tkzAstg3RXb4EFtL0Ijxd50k4fFaMeWO1lXMdjHHzAMOuV5x6TgvjQo9WXx81Ix9YAX5pIFM+EM96L7Ile+vrmC6xKKgPQy0ViGa2ovDe0tTCWk2DMznla1xj4wtgZYS28dxHYWuAVIBY4gmTyruKX6+qvtZbxnkpPzo6kfHiEjr2Hnjk6Bt6nhlcJaTAA5AH+fHnrc/7xQPAEozWCB5AolxYFbF4F3dISQaS9O7lQzeeB4dsEmighMIqBZYRmZ7q7+JDl2wrB3yFkMbqzXrTWAWutfg0AbC3Ntm6/dDMRUBFc8eZIaxQfrgRw4bjBwhiorFGcz3ObhKw857XVjzcAntM8nwkcCap4fvNc50uOKzcyb2ZqOd7MaSWjNY7r8W2dtDHcNl202nWxAxa+JbAQUgiKlGsX29AVIzgWZrppd64rjfF+QcskQaFd+IBgUgvdvrym25Pw5s+6x4PhgeBDwP4S2p7G2dJj4bEimKelj9nmPCfWwvVLIMjzhvdfWpH5MmGk42mAwG/GkEjlmrSDPr5w8j5ES/6GfbkNip1rL9ojhx6vcQJZxjPzntqeRd+z+dLOOt68B7sS7hcT8Rp672owAOQN4KuVrUP7QtCnb0CudoruKz6cCPpOFJOxq/1oyXkGALakNpvWF0EcGfJJSkqXB614tPgR0BH80OLHpAie2zx/6V4j8OJ8u9CKxgct4+34kOX62WhTXwKIvY/GTPNmRwteNt7QKdw+wSbBpb+Pl4oX5FjprtEvVmzHc47tCEjpCqGbg+0IENiO1nn2QXcqMyRZQ5YvcXwbJ7ggQSqvXwLP9iy830wdFKlcW+15nC01Nrrm6NpnyEAFjh/dWjz3lm3PbqlNnND9EADlQUft+6xtHRXTG8dSkQwr4bVP4XXOeLW1e3LaPejj/ZhUWgVI7NCeDN5/iDlY5WMwiL9VyE7rqK/JvfKljPff9XtzVUw3zz8axnrgGmWctz18x3kjZ6NMHOMtGyINBoDfrk5V5Kx8o+cNkhYKOxLluYExqxt9Qzbs3IZWCrofXAkfWIwL5EOSDyGmTjPtnq7fjvpWagCgqzOl7edNx5sxkyjcCS9kiv2NjHQrjOFgQkdTswf5psfrgckdyi2LBziBmV0ISuMZ1A5regRcvVxOIMr5fINkFjIBKa2SI0BYyhu98xs+gR3d1cz+ZTyjfgjyxsq3Z75F817AoGVev1vgliDo5fXMpBQWgue9gTezLGyLGctsxzFzHV6/BLtc3p6E19fl07oo9097Gldzx8KXC+o6Bzqn5ZcPPwJ4HhN+8+Xk+3VWBZDmbsusf+JqgEllk0AwTF5ELbyXMXyD3oGGZMrq9Rr6zfsQXyB5z3EnTIojO4I7tzIhKu9xfOlkf7x5cZ5+QSeI5bVNTMEXc96n+iE8xn5/drft1pxP3TLumy9eNLbtgrGL4x+HxEGCVXpu9lXjHVLJrESMN3XB+zVfsim8fplcxySShpJDNwgA8g3xg4XJKr5nwoBwlS6vlcGBE5BR4QyMzISLh25bPlzqOpB6/fq+6WqipYEHnDFMVAYPHoNLD8Kl29QHaH3bbe/LDQA8/keIRJ8ETQ25efA6UQ9eWN1oNeM9Tr2JAiDR4sKbKi0NdKtoIMebVghuUFxPX0unDI9WbXhD4DlAAFaIG9lP69PVdUit8CbHmDZW/6D7lp8xiD3kdUNhlvB+uG0Y72eFT1TJjad2U8uc//C6m4eEAJ2py5sp6Qb49qwtAnQV0lrENuOQOEJgyJuXfuPWfdJVxJsck0v0utQL9UdAygQXJsm0F+GL7owhURKJkBPGZZ6IwuNH9xG/GZdJsE0rH18ISMPD+by/88FO8KfPsxNxX82YW0YDNLYkwIJEqx9OFXysKhaM23XnemzOlnlfYmIcX0j4ckzuRbv3g8sJ6uj+5FXojA95L4nFCzEtY2x3BuLgiBnqEp7z9ILYX3jrat9ay/jixfsi94Fj4r7yfs1nAT+u7jsM9eG9uy4rH4G0q3Wd96NBAJArEV1ijHU+7LhRjc6XokwcEzCaI7zn0s3Gg8SbMes08iZFBZAzpxx/eANjFQMqkuiXJyhvYhzrL/lmZgBgc86s5q/LzFzSutQH/vjAXQFgw4xT3uAYv+q8DpOrSgD8SBlAIT/UKsTJkVdvDMASLWy8SZCQdjiygYf1DHXsAB/uH4CUnW+zWvhGyIx5cvcxmYSxeryZ2IU3dT70GUhMS/6MoZGKvZ7b5LZJB0IrH4OoeY1pYfIVaWDswm18uSJVBoEYmtcob2L8OAv3S1uXeMPjNTsEAJogloAxA7piXCNv5E3lw3LeZlN/0y1OKwhfOkf2DlNuct6PnI9dU/tv6/WYzcv7Ie/RdPfyhZ1AnUHunP8+XvA76st0Wx+L9rw9hj6Qt04L7xMLkWCpycH1/Jb6ZubqaYgz5v0Al5e6vngPolGJtZn5wkjh8/wU1PbmPZChK7y/MLGNbXmvID6g1Yw4ZebQKHVu8xnZnq9XXotFCJNhhZrGjJP3fIK7lnBd134qKFW7/sMDVJ9wUPnFZerBwoBqV8KHE11EDRHehImGaVXQSJ0mW7vwBMjDg4WZMXQLs84jH5i8cfPkpTWFbw6k1qDlw4jRQHM1wLfVOLhfCbo0p5Vzn3wZ+Roxs3xhISjiWzUtMK7EOWuL5+80AC37TYFuZgIy0nMww1dzDDJD7STc8L4DaS3dqRReX/M3ZaqbJvti3MjQHqEKBPKa4E2SFnQGPy+GW5dyMLUYL1v+ytW7GZU50OwYofWdVUOchTQsfANn7B+5vVyBP26Xb7gEryzBResnb/IcH69zXt+kk+D1TCsA3SCsM263BDhvtzV/M2aR2Yy893B/eNPl+LmvJ6LYz71RfcLUyzKBNnXNc9SAvxPxqLbcmEfjnOA17GxV4m2AyZOtwaDB62o6LOz0HNqFwMYb9wGelzqMhVRNvP9xHIkggieOYBId720zcP+j8FplSAtZCggeaeGjC5UvmI3lx7OPp7WmiZec8UxDtsV7fktJgy2AjdkgHzAsmL0MVkC+XWohsShjjWgZ5A2e7i5aJ4jeCTCJ5PmmygcYH3h8wNL6QIuDsztJ98lvPlx4YrhC/BwLLQ10TRMAko+IYLG9xRzZ96e+aVpFeeLzIqArkDqiPnnit6cAe46T+uaD/pcqvLnwjZOWPcbF8CWELl66MrU7kzcittMkqHRP8MIn+HEFlurSFUEIgZgdHLL9FpBEL6oGc67W5+vbUFgt6dohoTSPCS3n/nj77AX+Lj4A9BslLZK0AjpTKPAanQz3L2P7aEHi2PWLGa8zxjXyLfzMMTHqDdXVOOqbx2uZ4OtQWrHSKc9pMgLQs0Aewg1789rMOshjRuBOYEu+RT6QCKR5v2JsY0Neiuvb37ZYznOGx4f3Vt73qE9apLXQgsugfle0ErqN+f5la0C91OJ+zfgx3rNpXdPcmDw/flyf0WDDTX2aYpY5gSZj7+wvJno9Ps++AdUbvXmzYPXrCc8JhUlkTETlvbMLXdS4DnkvpavaWXi+81lICyJjrWfCw8GXXiO1NdAqAFBvgi4fxgPyQNKS19B4KR681ry58gHNUly8GfIkJ3Cki4wnE4PqmdVJ3Mp2JXjw5KLUD/eBLjOCSYKu4wW0CDToSmQwNx+KdEtp9zeBrQ1v68PQ6t+8rlhGCeoCKADpMfTI34zHoCUsCWCIDxxWlyBo4IcuT/LNHS89tqRScDoAEFl0Lu76JRim+5TnGUGOPr91dizX0/VI3fVR13y6TulqJuhE97WEFjZux5Xwpcw5+YPtWNd37tp0dZ7Z12NfBLy8BpjpS0DJfedx5nVDi7uzu9m+vp6mDpxBrF7m/M22PMe5B6weQvc0zxs+KAjKdDaz83ot9ZveDF5ztG4STHEfeQ7TXcb7WnsVhg3wmARi/DwnaMWkZZj3PQL5wSgfReG9hB9WeGpp4bXBhzy/W/s4tfTY6+uPL+DM3OfLlBduxCNh3CiEjmk55nOFLy+8VgioDuClivP4HOFv52u0vm211XKGBDBGdBTCHmgR5L1cVaXA+cMYX55TzSkEwZeqiYiddvZ6OO8fr/mPFh9VpNGMGWbIjf1+QfcpdUjvHr19pLFyNhLxWt2436KnmY57rztvjfO2O9LvVgWAba7IFTfiLrO51TbLk44XMB9EzRUVoImbYhVQU1P64/ocz/EQbpsPQIJPWoBUwD9AoNqnRgyIgJHxnOhGib7AmVRAvFKOBy7bcDm/OR9fajvcNne/pXXAfeDDihvV4JQ3GM5jhQm+FGghiOPLSmOE6/BDAIX/6qbGzen94PZpiSPQ4vzGCofDvgiOaGEn8KtLT3ybJnmzq22RsoUPK/ZlF46RL0raQsD+aRHkMWE/rs4DvX88xmzDFwBa7Xnu8FyiLuoT9sFjwu1ymvvK39pNTIDTGkJLLd1PlKLAgeI94VVljeS5QFe884OnNcbQmD758CRIZcUF6od6LiihFRC9QGcE63T9Uu/8EJixnY63asy2OkJbWvB5jvP8pr5o6Wf8ZDdYUnnu8SWAVnECDNJ20DvD66oQ9wsSrROI8Pyhy5LnOS3rtLBz/okivDyhAocwdo+hLTsO56uXTl6LDRHuP+lMtNvW3Tq857w7P0mdu/ROjGIVMB6ARohOqCNHIV9yeSyM1NbALwsAzp0gkrG89h6aX0YDRgNGAy2kgcrIcbJz8I+q8tBgPFT44Ce1TXsVd94UAkAmg9C1zYxCdxbi9rpfrT0uvoARxNGaTUsprb/kvyO3JY83ATOBH8E2wY+26Nc1Lh6L3UcK0I/14kvwyHACesl4LNpKGFdHKNXcY05vFD0ADOOiPmgpZFID95PeAQJc5yoyBICnjoxRFTeoP3egji94r849pKzHl0zu3O5estrqWLX2dlxHpbf2Vk3/RgNGA0YDJ6AGGKe8AG5UGjwKEeISDSLw9ix2YMKH9BYk+DBW01XFmPa8H609Nlr26EakkYmAmOC+O7Lo6f7XFnkCJm311uMhgAGeapDwWPSLr8mw1StpsmUeH4InuuMp9DYlI1GHYQ4tJQxFOQtEwRwyyYRJvUQAaxeCX1r0GXbhvEy3o1Wc41yPRC2GUJ0MeiqyDjgLATLPNcaoMwafIRxz1qSpZmNRtpWxhvRAOAvDm7htgshVu8h5561yAgjEGadIEMt9MW5dZ8017rexADZOX6a10YDRQAfWQFHIGDk0ch4eZlbWNDMS3Vkx2kJNdHvbswL5wMV/FbDPJB+d+EF3MB/AdAcbqa0BxvKRXikKFi3GvtKKxUo37YEgmCPlMdyL2Dsm6dRXkYQWRX4IjAigCCLtrn0CXFqtCd50ch4tnVyH4JNJTiSZZxbt3qNFalrH+fJcI1BmUgaBMeONl4P/k5m2BGM6iay2do/9xYTMzUgSPYiYQrICkArKlfCcZVwzx8H46b641nQiB3lMyYhw/oS4WmTVrvox89xrwABA97oxS4wGjAaMBmppoDR8nBwe+bNyCTJzUtdHrtWojX4wK/InPAQZL8UHOB/2tBa5s9q00bBOmM1QZ4xhZrJiWKCP4n1kkgKP6/EE9XUpkMecvJ103TPjnlZDZ2EyChMn6EZlHCLplJj0qIWJHp0iLMoXxjI6W+BIxaRis4EWmUR0vGJcGcP3+o+H1QsNj8mZY2L1LijXOwEgE7E0E4FjoZlosAaOtb02eNUTp+FRrxHHZbCVlRWSl3lUwqLjj8v27RvNTjss4RwHXwHbWIoLctUN1S/QetMrwu+jh/aIn3+AdO7eT8pLQQlUUiRlZchgxdPL2wc3Zl9Uk/D1Fy/vpgfu5qQntZruSzHepH3ba2mSDw0fjL13796SmZkhPXv2xPL6kzl4Cz98OE0iIvBmHRSEmzoSTnC/DoG3KDsHSRVW/gGWW5tLgwclNsaa3n/ggMTGdpOsLLhEOjMBQyQrO0vS0tIlIyNDIqLxhhyNBfVIQV6WpCbtRx+dpUf37rVal5ahDnD1YUhBOfDs7APSq1eClJWWSGFRoRQWgoAVGQbl5d7WPgSjPrKfn+TnW2MPcgqR4/4dRcJpQvVlUVyC0N2MZOnUqRPe8N1zXGXn5GBb5RIeHiWBx3qbao25DPH1qRhrfBckxSD54Qi2FxaGqkJYj1nrTIigpSwzUyQ62tIbO8jJRbvQ6q5cxBPT9UTXIAP62QcTk7RVotYAWvEHrXysHMOyezx3KAR/RhqnAXLGUXhMh/YIEJY5JXNBWwqPZWPAJi17TKLgZ/LASPkIJPB2SjO6Y4cgZpEvBT+gOhCzZLWQcPisMZ3gToVbG8DOndCS11Brnrs+mjufpSeX78hS12h38IaS39cu1BktjzyG3B+C2sbo0d5XR57+xQNAgr/PQz8/Lsd46devSJ9h0yQ2tO9x2b7eaFrSbtm7a4mM632NntWm3/PmPisTzvyV+AMAVpSXySvP3Aiw0FkGjJwKEuOba42FN8TczCOSeminpCfvkdwMPLlxsRO8Rsf3lqi4HhIa1RmgyD1QYIfs5/svHpNTr3qwVv8t8eO1v94sqxd/d0xX/v5+MmvWafLRXR9ILwAgSjHuv/yEh6ufLv/kZIt8su1t8S0ZLL/+9UjxBLAIwPPc2x/gBGssX271kZ4ucsEFAB1HAFSCRD79VGTe4kdl7NjbAW4i5arTrO4jq0F+r37D5K6nPmkYiAboefXNGyU/46Bs37as1jjLCgpk665dsmrVdklK2o7vDRIYGIt9HS1DhgyRQYMGSUhIiPz3vyJXXl6z6tK5AjAs0qdPzTxOvfe2yOVXY6L67rNx5Q5ZceBn+c11t9ZqCPwqX38tcv75AMN4d/AtLJbrrrhPPvvs2VrtXP14+zXE6CGuPjyVgBWZh4kiEyeK/PstwZhFPvpIZMQIkeuvB/irPpXKARp9gQm2HwDAhrHBZ94ECSmB8m2is8AJtEmR0dbWEcZALQX42364wDYqM9kUDTC7l+5HZoi2NYjX4yVQ24ZjSZcq4+5IWMxvV5n0eh39TetfOFzVBIAEsfxNFz/pfK6c0UXOREk0FkBg3Kq/D7nz/NodbRFfoA6AhJ7cpky44UvVkq1wPyMxJhLW2L4AuiNASUPXs7PQculsvXRuY37XrYHqW3DdjczSxmsgF5a/4sI8ie16fMEfR7591fcydMrsxu9EC6xBK2hJUb4Cf+yuqDBfNqycp3q+/S/vHrMFvsWFRXVRn8Th09Vy9pGTlqQA4fbVPwAgHoWlsFL8g0IlEoAwIrarhMckSFBolOMtsLggB8vDjum/qTMIKJd+/4F8/vrjkp+X7ehmwYIF8tVXX8nf//53efDBBwHEOinrl27gDxDHT11CcDhkSLxs27ZHXn99pLJUEYzAmChDh4qMH2+tPReA6o03rOmSEpHrriPIiQIQy5SDByPlXagTWE26dRuE31vk+vtebBj4qx6ct4+vevDMxYZ2794t+/fvl9LSUoC9QGXVHDhwAADoLOzrDoC+fXLFFTa0V90H1ES8rmTMGJGPPz4WAMbEiKxdKwCuVrtVq37EOtPUD87fts3qg9a6K6+s6W/1an9YVUNg3UyTGHbiJMnJIl26WKCReuP22deAATUNf/MbEWBZef554E/c/Wgl5JhhfJTcXMH+ivTvL7J+PcBjhmWFrVnbshSS641xU61lceC5RgtIZ1Rq0byR2w4VqIpH2/FAJ8VLSwjdnQzm7wnaElqKyFVHXfBhSzBBaxhpgJi8QMsS25OSgzVh6WrWROctMZa27oP7PQ5JCCQUPl7gj/vM+M0RiD9knB/1ypg66pxEyUx8oAs2JNBLxe3RascXANL2MK6P5wjpmCYOYAyev4rrI1ct902fmwNB1dKehbqn5ZX7zPOJL1gRcM2fiuQQcskaaV0NGADYSvpd+/OHMnLGJa3Ue8O7LS0ukCKAIYKq4yHpSXskJr6PY9NBIeFqOiTU+nYsqGOC1r6ITt3UJ9HWrig/WzJTDkpWygHZv3WFFOTiiY0nmK9/oAI+FWWlsCTukJCITgoM6puirYsGTRYXFcjXbz8lP33xRq3206ZPlylTpsjUqVPlqaeeAmhYLxs3blRtkpLgfoyv1bzOH+npE+DG/bdcglNm506Rrl1FoqJgLXtPlOuX06eeanVRBisVwSElMjJSuZtPOqlGx4GBD8tVV10suzctl6iTLrAaVv+trEBiQE665GWlKOsq3eR5Wam48ZaLZ0URQFCu2oezzz5bubDpyqXs2wfuPoBObA5gcJBs3fp1dY81X3RVE0BoAAjcqNyvNS2sqdNPF1m9WuTll0ESHLwO61TJ4MGDZc0ay2pHmoyrr3ZeywJs48efJD/99JNceumljgZz5sDFe8TaNofL7Y4cKULATBcvP5MmOZora6D+RUufFu6bluHDAaaxz1Kk51jfeP4qDkdWKeLDt6XAAy1B6SDz5gOe4Iqk7rTmMHGDlRh0wH7t0TT9F0Ef6U3Iw0hhNuZ3yM5kPBXJizkGPpiZhUkXG1vp64fuOMaJrQPnHYFjGsZ9IgkB0vQhkQpk2bOkG7MPjE9bsxshCQgFYMwlz3kmk/RGPe+mkIMT7NGlyWSUd+YlKWoYd+OhtY/H7sJJcQok2tsxpu9EE75M8cPzzUjbasAAwFbQN0EPrSnhMY1AAK0wDna5e8NCSYQb+njJ4d3rJb7PcMfm+RB55D/zlHXUMbOJEwHB4RLPT++htXooAWDbuOgzqfArlaQ9GxXYKcrPUW08EWNGS6H6hPE7WoLwHRgSgWN27A2oEmjkkRumSE52htxwww3yyiuvyAHE3XUFQvNyilcrAULy9fVV20EoX53CGD+6cK+5xgJJ5eWBWBfu79zaYIXL33/fAkQaWO3YIQBMFuAJCYlUsX7cGIFUDuLksrNTJDQ0FNYFb1nz0/sKGDPukuIJlBYcFgNQHCshkXHSpdcQNe3p5S3lAMzP3nO+/Pvf/5azzroLlkwvtQ7/9OiBOLM066enZyhiFPOELmnGz2mh5WzVKtTkHGfN4b7Q9bpsmciECbqV9T16tAg/Tz31IyyZ1ymw++OPcG3jMNHNTd3Q9WsXupNzcyfInDn31AKA06dbsX1sS3D84ouWixe4HJZCkRUrBJZVyw1Pa6DdImjv33laHcqi2nOZwZgFK8sAlKek+4qAra54qtprH/uLx2w3OOBocSOgspMDs5JEa8lBlNoj4KQLjTWYGVt2GvjZdOyXfhi7q+rCdlad1QKVjdla42zJfulmJcDtD+oeViaqxr6N3gStVXSzErTbhcCS1uFpg6Pssxs1zSQPjosuURJOs+43s3B3g7onC5Y/Cs8ZukcJGo0YDTRHA+YMao723Ky7bv7HMvHsG90sbbvZvFHs37ZCTmuFOLiG7kXa4Z0yfCqe6DbplNDL9qvlJ/0CgmB5qpB+o09R7mH7FhiDWJifJQU5GeqTlrRL9m1dJkVw65aXlypLB17oVYxhAFzMZfDF+vt5iz98hDNnzoTlarUEAd0dOnQIrl1/5R71RzKLh4ePcpdqAFhXzB/Hw/i2bt2skR0+bE0fOeIBq1sl3LrFUlRUjMSQImyrCECsABa9POnePR/byIWbNw9AJxduyyzZu/cw5uXLDz/8oAhmIyPD4OLcpcbF5I+gMAvg+gfWz6TPl5YLbv6TPHX3+bACfgKgdLGKXyQoo4uUYG/RIpRjS2FCRTgsllkAgREAxFbMHK1uMIQqCybzSAjA+vZFneIt1n46/6WrOQqmzWh0TNcvk1xOOQVJLFkiZ57p3NqKgwwK8kUcYqTcc89RgOc4BYTpKtbCeEsC5csu03MEVlqRyZMtndMlnZBgxRTWtHA95ePm7rgd1Q/4YKb1hxYkBqA352HMGtFfrIBFFta2thKoSCWQ5KDMJfVFiyBBR0OE9xVaQFfDAkY35Ikg5LZjOT9aztyB2obuB62jzuCP1CnkwiPIbI6EA9ixwga5GikEg6zd3A+g1QfuUoJ2fkjCbMRooLkacHOLa263HXd9WrzCY614tOOthZSD2+F+TUSQ+/E5zLTEMZOXVre2FsYJhsLC5SzMKg4Jh/ULn7qEQJExnC/96RoArgJl7fsNAsgIVkaMmIjYsWQkCkQCxPUFcCwEWCuH5S0dgK0CIAkoqQFCN/HnnyOpA899AsLCwj2SjEA2AssAoBp+OB0cHCznnhsMqx4eXqFdVcJFWVmIbNgQiZi3NLhnvwLwugOWO5GLLhK59dYLkWV7VDp1H4jYy+AGjKSmSRdkZVMWP/uMXHLRhdi+Jz6WtZHgjrF1GA6SWgbL229vhqt1imzaBPdXqAXg7rnH6mvrVkFspMi6dcda8tiiEjGcdJlfDV8vAcXIkYQkluhsZ/1bf3MbBKF33nmS/Ahz4bvvXimXX24ldeg2TBahu9wu6F4JY/4IZjn+OgWxj8o/PbXCZbMUEAUv3polU1BPlyX9mgP+CCJZW7WtiZlZ5i8fFiYCDL9wT+VypvWJJLvO8Y2sgJEHqhTyChLwHUovUu5pl8ppRzMZt0g3OsuWTR8SpdzWzRkez1PG3v20ARdrtdA9PgzceYO6BatzQc9vzjctq/zoOD/GBTImcDTqdvObHyNGAy2hgeODDFpi5O2wDyYmbFr8hcy85HftYnQ71vx4XOMQk/dukvheQAzHQRjr1hwKGa4bgCSS3ds2AvQMBe1JL4C1zxFPlgkL1061R3FxcQBs78GCYoGXb775FkAQADPkFBX7xtkEdxdfXOOitKtCZc1eiTAzuBmrqorlpZf+LXfddZe9SZ3TzGJds6ZSVq7MUFa4X/8a9CZ4WH/yySdqvX3b1yHTekqdfTgv9PWzzGkV5Ezh4OEHJYB64QWRa6+1LIGMBfzTnwYjSWQBklemwF1sxdzRzcrEFO73wIGCcVmxjN9/b7ms7duaN28eLHlJALBdYPU7Rb5no3qEwJCfsrJxyOL9CEDwSsQDWsOkLijM+AVeryUE2h9+KMK4PoJAxlUy3o9ueI6dMYO1hAGWSOiRxfNrzbb/SAYXGx/Q/RKC7bMbNU3iXWZ7smD98RLGr7EUGT8UHDqJg3WT8WwEN6zIsBeu6JaOQVQba+KfqirUBMf1XYW41SpY+vGjeroS01iGT5CvhyR2DUKMI05h/Nm2LV38kF0bCGt+KnTOUAh+GMbhjZNCf0jjxA8t+byuCfoyQTWyHcCX5MN0yxJYUj+DugcryhW+BLSG0A2vXfGt0b/p02jAAMAWPAf2blkq8YnDhS7I4y20XpUWF6r4ruM1lqQ962XYlPPafPMEf/XRxDRkUB54QERGxSp3LEFVEZAagUdWVh5coHHIgj3HAf7YXxli6Pr3D5Jp02p6pztz+3aLcqRmrjWlLVN0YWZkFGD9MmyjFJY/X+embn+PHBmKseQpgEYLXUZGmmp76sW/lv4jJrtdz90CWmt79BkgRxnEqILgLNcr3bl0A1OYaPGnPyXK73//qnKn7tlj7R+tg7QG8ptCwEhhXCDx3axZ1m9aOR944AHlTuccuq8ZP6kTTqxW7v/yAc0sYH//ZGyji/z8M2h0PhEAUmuMpHaxC12+d95pZf7+rvrdjDyEBH7VWBkudtsaDcjeIXCah5JwB5EEMRlJEY0pSUXgRzciEyjW7slpV9Y07JYcQfmxIwKU38pCcFVVUSqVZUX4gEuytFA8ysBtWJYn5UU5UlleDFNxBeL2mIRSqT7leCkpRZ1ZQDPQ8MD66s9SbFxWJam5VSAwtgbdrzu47g5iGQBgdlGVLNtTiQVVEgKL9pieXspaV1HpIQczKuVQBvoD2OsU7o2qEr5ShvklAL7p4FYsKWN5NiRd+eKk90SpOE8f8QoOkNAYxMEejJCtBTGw+gcrqzwt9TyH9QthK6vPdG800GwNGADYbBVaHRB0kG6lNXjnmjLEXevmSd8RM5qyaousw5s7s0uZgdvWkpuZggSH5m+XN/KBY2bK4u8+kHvvvVdRvTBhgRYl4iO6Ru1CyhQdA6jna6uV/m3/prVKC2PhunQZI//4xz8ALC+Fa7mbXlTnN8cInKoSJkhvkpgYYwEpWEea+iAidTXBqBYCVFrP7EIQVoEEmfHjKwG8POWZZywrZy0ghRUYJ3j66Yly8skvynPPvYmEjJWw0mWDBNxPzrjsN8hIzpR5X72NzOI+8sQTj6vklaeffkYiI8IBal+QeFohmYHiJLQaEjhegywZZkeDtUZRvpA2xpUwCoHuY3IDEvjBeKuSQ/ibMY2PPmrFH9LNDFrDBgutY7QIkR6FiRGM06pPGDcYAgsSy1zpl4D61jkRl9M6V4H41IrifKkszoDyU8VXiqUEBOJlIH9nglWQH9y0peUKcPWMQBIVSDC3p6M6hW+FJEYVy7ojQQDXFTK2a77sy/KTnXkB0je6SKljJ9p1CiyS/rFlsvJwsFRUecilY0Tm70TowcFKuWo84SxeMLaAJD2sSmb0hSV4dZVsSy6TK8fi+O9DvOpRD8y32s3bWSkzwktkXE+R/66AhbigSkZ1KZSd6f4owVYqY+OxL2i6JgnbykUYRGeRLxchHjbQQ3qDsiQ5u1Jx8oUCIHp6ASjCi9AJJ1p0bLxEREYhbCIcL2thxySPqUGaP0YDx0EDBgC2kNJ3rPlJkT4zkP54C8HXoZ1r5bSr/3jchsIYvDAQNh8PsSqAdGmRTa9e8IXqh2THWmggoo7pMGO1DVKYPPzwwypWzxkA6nVcfZOa5JtvahIeLrpopjz9dC/Etr0vd9zxG5XI4Wo9V/OY2fr227TWeUjXbj3l0O6Nrpo1aF7KkYNyyYXnHNuWrm9aBQHISK2SkNANfIMH4R7vIXfffWzz5WCw5oc6+vDDi9WDb/CoKdIVoPXCWx+TKDwYKYPGnCTzPnsZnH8Weuuc0ENCkHX9+3795AUE9UX85z8i59Qez2ikEL8L4kMCQArJpum1rUtmzxZ56y2LQoe0NsS4f/ub5Tb+05/oTrdc1f/7n5WJ7FFXZ9XLeBqQo4/xcWeOjm3AGlYTZhPT/VuhzqMGr9buGvI6oPWuvAhgtjBdKgtTpLQQFRwqoFwAwCC/KokLQraxT4mkoVLMgWzrrcnbs0rGJeRLeECFkFpn5aFg2ZVhLYvwL1eAj+7b8d75sgLgbu6ucLXvBH+JUSUOPRAE8uPrVSWXja2SbpEi8eEe8u7KKnltiXUEEyKqFOCD91eBwneWe8jjc60uCP6mJuruqmTeTg98cI6gv3EJBWp84QH5anxLD4WohpEB5XL1eC9B9TjpgZeKd5YDTO4uVMus/spUgs3P2xFFsCoF8zdIgA9AYmc/KavykfIqbwBeJlJFSJeE7tI5vquyaDO5rKkvbXoPzLfRQGM0YABgY7Tlpm053mj3wf172tUPuWnRtrOPHtgqnbr1Py7JF3pPk0j/0nuY/tmq3xWwvm5a8ZMMGTtTvXXnoKxYtI17sKkb37VxGcLgyuFmvBZZpZep7FpaxpiYMQJBZ+T+W7x4sUq4YELDGDAPZ2T4KU46lh+j8cqpqlqtoTBr9rXXLKsUcRUtivff3wOgpAfiAZcC85x8TBUNdsB+CV5ovQKGUA+N0NAKxN95qcoZ3boOll37NtTaVmN+RKJ83FZmcTgLU3qrhTF0Q4YMQobvFuDBHnq245t6m2DjfuneZ6Bc/tsnpVufIY42emLQ6OkycNQ0WTX/C/n45YfBW5knR/LzZBca3ImdHH3ffRYbto20jzFbjMFkNjYpeRoiTBC55RZR1kow+qgsbFpPWW2EWcN6uHv3iiLVPtsPD+mGdIw2yXCbfo5M3uEobs+sXvZLwl5NqOzcDeuz0hV8Ignj7sqKMqWyIEUq85OlND8TIXdlEgI9dQoskTDfYmSdV8qW4gBJLQI6gszoma3i8DgdFVjuAICcJvijEOj1jS5WQI+/Oc15FLZh25R8qz9aCbVwmuCP0j2qSjqHVsFly8xZWvs85Z0VVkta/gj+KAnhyHiOrpIdKRY4pLVPC6cJ/iidcT25G9+A2BIAOm7Xw21/7H1yHwDAPewN51pkpVwwhJZLfkT2pMHKuBLl/HbsldE9QcEk/lJQhkF6+kpAcKjEd+slCV27I9EsVsUnqpXMH6OBFtZA9WXRwr12sO62rPhWBow59bgCLrvKd6z+UUaffLl9VptPH9m3WabMvq3Vt0uS5reevF3Wr/hZLrnlYZl+zvWSk54svYdObfa23372LnDjlcmbb76pPs4d3nzzzY5ZL4PVmMkiSUm+ih+PZYBZiaI+IYCje5JUMMRR/B0cnCqzZ09QsW3OZdTo5kU+igIYBGEbNjAjN1zx/5EUmlmxBw6MlEWPfKlcbE3JwO4/YorM++l/itaGgfIEW66Els/3QVJ4pp2zBch3K4IeSY6t5W9vr0Apvzj90+U3LR/7QOZN8Mdsa4I7chpWsJQHU4uZJm0DgOxkFoIK6Qa+3jnoz+UWLDcxORUZm6gxI2MAOVRVtrl6PeqXn6IvMAOAoqHCeryLtmTKwi3Mcq5SlCDRqKZBkuXo6hJfTCJgMsFBVN1oz0L3bTkseWU5h6Qy75CUl+SJD9yzsUFlcOMWya5MZKn7IPbOE5nVheDWiyxSgGkXXoBSC+D6DAaZdaG3spzRfUuhlY+WPw3o2JbWvOwiL1mTHAQgaQHCNcmBcnLfYvGSUtmV7qfAX139dQmvlF2pXrJ0T6UCXSl5HnD1ekhsiKVhTtMdTPC3ENcPwV+/TlWyL90DIAzVZsZa7TiNwhzVANFbYhHT1zW0QFLzPNX4QjE+QvYVh+B6Di+TvnFw4+/zPKa/i0dWqlrRn29AHCJCAjqFVKKNF7ZtWRsPZ4Onck3N+DYeLMf48tT4FuyEC3trqqSDnmrRPGTg+/nAUojsf1gL4+J7SrcevRQo5HVpxGiguRpwfWdvbq8daH1SnTDbdejVs9vFXjP5o7ysRILDY47beBgPSVJhVuRoLSGNyAf//IOsmPeFlJYUq80MHD1TfRfmZSli5+Zue8Y5N8jHr/y5VjeM4SEwoRWwmKRzkJEw5bEUHKuATJniq4Ackwz+9S8BmLHAWq1ObD9I28KkCgKSw0CBX3zxBfotUjGAxF30EBIUamHsIQEjP+TfY2zekiVRKjuZAJBCS2QZ4hEP7N4kPfuhQSNl08qfFNEzA9oZm/f1118huaW/cnvbXVTx8IUfOnQYmdBWCTZy2hx+/HEZCq5ExgcOGT1Fbvrj64oU3d0QynCubluzUN76+53Y70I5/Ywz5Nlnn61pTjZpBua5EFph34JP1x0AZHUQ8HYrSx8zl5ltff/9lu50d7Si2sGfns/vAH/8KbDPqX+62EYOTOJefpjsQS43UqwwI5UZpe3N+FdZjri8vBQpy9wpFYUZcOGW4FMhvSMLJT6mTA7m+CprW5BXuRwsRBIEwJAd2NFNq4GddtMS2HH+0oMWEisqA3l0tduX4I/Wu5xibwUUQxDzV9NfkPy4MwD9+SjwV19/vWKhUyRvLNztI0fzwH0KYBcLa6Ad2NHt2wOWv50Af9rtezi7Cu5bD3l9qXVcs3Eu1ABFuoO9JTc2FEARpyD2d3LPIlgYKxSQ/XKTj0Tvq5CjuV4yulu5DOlcKt3hev55l5+8spj9eYne38igCqzvj/78ZX9GpSRle7ocn7ZM1oyvEuNDqEBVhuRkpsvmbbukf7y/JOX4yG/uvLv+k9G0MBqoRwMnJAAkYeqRTAQT42ZLnicGVZcDEAxFMAmepW0qm5Z8IUMm1c4GbdMBOG1s9/r5KhbRaXab/kw9vKvVayAn7dsmi7770LFfdz35scR26eH4bQcqjpmNnOg/0rJiLVq0CETCk49Z+xb4E+fM+Q6xY2vUMpJER0aSBsYiGqZbkSCQ4WvuXMFsSyGgWws25E5ItT0fJTAIqoYMEYBKkWHDamrastatFt0ngR/j7PpUmwvHjZsBC6GnLPjyDYm+6SEJQaWTxkhK8kFH8z17doMQeoD6zbi7VUzprRbq2AdsyTEACLt27ZffIVFmGEyU/cCT+Kv7XwaNjmvgptfn95O/PUMOH9itZj399NPyq1/9Sk0T+BLAdekSCkukZSGlVc4utEzS/bsf6b+u3NBM9PjjHy0ATQMicST1bBeCa4LAY6hg7I2aOc3avbuSC9WnmV212OqViNErzTkiFVk7xKM0R/w8SiTOH7ydXmWyuch6cSNYiw5CvAGEljqCNe2KJVjTblpOM0aPy2ip0zF6dKGO6lLgcO1q8OeuPxSuUcB4bNeCRvbnKeN7Vkk23scI8CgEf9rty2nG/HFZX1j+dMwfLYKXjAYIXGGtc9U4y0rI9dkmCUkdO1M9+VPGQBfAw2qf9f4ezYV1D/ubEIwM5kpvSYxlSbNK+WyD9Vg9Z3ApXMk+EhoUICN7eUk5ElB2pFj9uRqftky6Hp8H9qlK1h7xkrPOPleNyfwxGmiuBqyzsbm9tNH6jKdZtj1L3luQrCgYloIgk2z0zKZbsztXUSu00VDUZgpRizbjyL42i3Wrb98YkH1w5xrp1m9UfU1bdbmK/7OVf2uNja1f8nWtbhMH4y4PYe1jXz/rAVarQRN+aPfpESCRi2CqY7ybXV5EzbH9+/c5ZqWnMwu45hWEHsvbb7cSPWjI4gOEVih3MgSIjwTOBG8EeqRTIcUJDY11lS+z6gFnOrqtrIRVYvQYWEc/l3svGyl3nNdXDu7e7Fhun1i76GtZ8t17Qle6lj+/vkiu/O3jcv29z+lZ6psAl9nKXzNorlq6A4X+EShr1KhRMi81TVIefFlu+/O7DQJ/7CI7M031RAsqORBZwo5C8EdeQZaRY4bxO+9YJM5qoe3PySefrEihbbMckwR32npKcmgkLjuk2nireABffVWgd8eiX+QE7w1lBRlSnLRS8rZ8LDkb3pO8PT9KUeYhGRKeLOM6p0r3sAJJyvV17D+zX5mgQaE1jy5dLczI1WKfZhu2pXBd9qGlrv6S8wIB2LAegH9j+yNPX3IOLOIA+VqY4UvJRdm2r9eXWD/wd386XiayrZ9MxNAxf5zDafBdI0EDYQzJ5cpFbLWsPSb7+DKpE+8A6RkbKCGBvrLqoLXvXG9tko9EIEAyEH5lbpMuZy16fPxtn2Ybd+Obs9VbBow+RXrCKm/EaKAlNFBzRbdEb63Yx9aDeQB6Ocrq14qbaVTX6xf8T4ZPuxAPmZoLu1EdtHBjVv6ITeiLWMTje1jTUAt5xIyLW3jvane3ZO6HjhmTZ13kmGb8XyhKoLWExMR1U8f2YjI5Q1i1wp4NrI87+efINVdVBbdZla+K5yNwY6IGkw1uuskqkcZMWdbTdcfw0hO+SHIN5ufnq4xinlY0iCG8UH77W8aV1Viw0ERVtCD9iY9PFCyG29UY+YcczosWLVRA7U4Q4DFR4j9/vkEu+80TKtlCjzsP5fBe+dttar3P33xCHnlloQSFhEk09jtwcpi8/Mi1allUbBfJQOUTComwzz77bLnwwgtVNY+lS5eq77iufeSMK++W/sOnqHYN+UNQMnLSabJ28bfYl7tl8+YawmgCYFAFKg7B3/8ewL7UAoHVBkJH98PhA3/jjTccvxs6Qasfk25Yso8E2kzGsYV0NrSbdt2ORMmlOclSnr4FCRuoUuNbLiFeJXK4wE9RqTCJgnF5K0FrQkudojsp9ZJJ3fLUftF9y+VMylAxetVuWgIgnXzBhpymm1b3x/Xc9bfmSLCMjC+HVdBPIoMq5doJHgoALdjlC28OY+y8G9WfY3y7vCUisEIuhUVvw2FPgDlUN0GmdTFctvbxrT8aCreqp7L8EfCl5nrIDZOAOiF0BzN7eEy3Svlqk7dot7Sr/R0YWyyT+njKZxuReLXZG2UBS2RLip+kIf7Q3t9/0Z9FP1PjlibgY7axQrv4y2m6fRX9zEprHLRM2se3NQW1i6OHy+Chw7GGEaOBltHA8UUKDdiHIhTXXrcnV7YAAFbgAdheJC87FfVjs5Bt26+9DEmsyh8WWDleg2IMImP/WoKIua59uPmh1+XJ/ztXNZl8xtWOpswADo+Od/xuzsSc955VcW/sgxYqAh/y2j0IvpF/s+4ahN8TJ94q336Lh0lqGYiifVUCAfnw6BlGcrCK0yOAYzyaJkNWK7v4ExHRFyXU5iMr9Sy1lC7iGTO4HbikkixXJUuZgSEF/HqWW7NHj0iAp8xavZGOhq7kiRPPB8nyAZk+fYb886Fr5PSLb5Fzrr1PtX367tmOdfJzs2Xjiu9l1JSzYEENkKOH98jOrevU8lsefl3mf/GaLPn+Y+naq58c2rtD/geulODQcBk+bqbEdIqTWZcDpdmkIC9bPnn5Idm/cwMAIol74WpFgkds5+4SA1f9/p3rJT31iIpVTExMhI62yp49A1X1ECayEJwRAI8da3VKFy5jJVnlg3GQWljJoS43sG7n/F0dLqlmE3gixFEJkrpVTGADuKCdu2wXv0m/UpK5T0rTtqhkjbjAAukSXihJ4KUjEMpCkIyOqeOA6c5kjB5BG4XgT2e/0mW7pHoZEzS021e7eDUIbGh/E7sXyMJ9wfL9DhAuwz189XgPRY8yPKEMlUY8ZA2SKygEVzrbtzHjG9k5T/YeQfgFjHB9o/1k4xGrv/7ob3TXSniIcC3G5cqaIwCBKyznF8EaXcEUxv+ROuZwFsI4qve3K/rphCQTZu/a93coQGwl3L7jEoqxT0HYJ5ywEFf9MRuZCSna7Wu5eC3KGa6jY/44zTaMSdRuafZXUuEphX495NxZZ7CJEaOBFtNAuwWAjO8jS/7Wg/lgd7fe0Fpsr1ugo3XzPpYR0y9ugZ5apouSonzl/jwexMv2PWBCTJdeQ+yzWmU6qlOCo9/ufYc6pnPSj0j3/mMcv5sz8c0H/1KrM8ngbpjvUsAYzOxUu8wAOiN4YJze5s2Io4rzVQmr//ynxSW3cCHnC8idrYQO8ueRxoUJHjr2jBnAtCBSunfvivq5m6wf1X/pCqZVj0TGXJdgSMfD0c3s6xupLHO1VsIPJj7MnYs4p0u6y969e+S8886Tbz57Tbr0GCCjp8+WwGB0Wi29B46St5/5nSz++k255x/fSK/+I+Vvby9HMlEUxuojl8N6eM61f5AsWAIfv/NstdZf3lwGQudAmfvOX3Q3KiFn29qFsvCbt2Xr2kWKI5F0MEzaYW1jxhAe3b9Jpk4ar5Jn6L5OSkoGeO6LeseWi/yDD6zuqCOSUBPokiaH+0xdjhvn2JyaOOkkqzawjh+svbT+X7SsMuaSbmFWNaH7mZ7oU+tftV20YMZuafZBKU/bLKUFmaCeqVAZuuO75zni9NrDQAnotZAD0Rux25RwJHuE4jhraWl6nNhQP1T4KFUkzQwyLC2r0pty/13dxKragosOcFoLXdV9u/irl5pIZHcvOaCXtPx3QQlcxEei5LJrLlbeiJbfgumxI2sAt9j2J/mI2/hyRaqK32h/o0N1g9RDqgZlZFz3djO83RsWHvfkDyqD8X/Dp1/YJnoJgQXqopsfqbUtWgBDo7vUmtfUH5279pIjh/bKB0AkLPNEqhe75KGYrIdHMDjzrBi9o0erZOZMlI+LROxRriCjF1aFqyyeOdK1aJBHYEPJSCmXQHCA0dqlpbDwENbvpFyfdhoZJil89x1ACVDJjz9aQIml2aZOZVWLUJWZrPvQ34xroxuaiQ90+/71r39VxM2vP3WnRMQmyD3PfiVHD+1W1TgSeg+S1fM/k7iuffXqtahbGA8ZGh4twSER8utH3hACRoI/ig9iLnMzU2X1gs9lxxdvyOkAicnhETIbgPN9FN5lxrQ72QDFeHmtg4vXUgrCH9U+du5srcFqKYwFpCWUrnOSZzuENfaAvpkNTKqeuoRuehd0hWoV8jHSNc/j2Lu3IKGl2soIvZ0IkrdzjoRUHkXlCk+Vrdo3znLZ0j1KC5p2YdJSR9GWLO2y1dmqdAHTEkjLH4XTJGXWLuDm9xek+hvSpVSWHwhQPH1XjbNi4OgGndS7EnV3S2VbaoCiW2nu+Cb1qkRSi8iCXZ4Axd7SKchTFu8LkEJkI0/vXSS7M/2V21dXDKELuHNopQyKK5X5u/2U+3usHKu/TUcDJHqX5bJ9fzWsc6WgmUECCV227MPeH0motQv4vystC592AdPyR9HuYO0CVtnI7G8H4oe3+Mi1v7pM1SdWjc0fo4EW1ED1o6gFe2xGV2UMvj2UD8tfbruK9XPepXXzPz7uPHv2Mankj+2rUIbuAfvsNp/mOPJz0iUkPLbVt00w8sT76495Ky4rKVIuzJYYwK//9LY8dMMUWOoK5fnnn3d0yYzTQCAyT89gZO5aGaorVlg0dUz0oNCCpC0edF3SqoR8Bbh3ayxYXd/5q8hDDynLngYojAHs3z9KlTZj4oK29KH0rQKVdP8yO5ikxenpVoJJZKQnXNXWdu1/mSU8Ivkb2b95miSOCJaBAwfKTz+tBE3MAPnmnSflt3/7SDp3S3SsMuUMoNV6hECQhNt2CY2KlzefuEV2bFkvL0ZHyWnYp7898sgxx4YubGfXampqKnQVoqyV7JPgWGdG8zdj9JhI41IYaAkASDdwAtD1AfDiMCnFlWjwh8050wmq5tQlwfSXX1qk0AqzznXVU/ubF9z7ZMnZ/iWsfrkONy1BHAFcfRU07BU5dMULun0p9oocLdlfaICXzEwslp9Ai/L4XMsKODURLA5dyhBLh8oilUWyA+5qAtWmjm9wXImcPMDXOlgghl6wk2g+BFyGVXLWIFjqQz1lbO8qeW8V4j+rK4ZEgnB6eFyBIpIeB7e0O/3FgM5nHvoj4CNvoKaOiQ8nuXPzKpDY+9uT5S8x/U/GC2GktR/mr9FAC2vAs4X7a1J3BH4b9uXK2z8nIcs3GzcAF0+zJvXc8iulgeLELyBYQiPjWr7zJvaYdninRHfpfdyTP3Izj7Ro+bcc1PRd9sNHitDYlWp0MoNeRgDqQF16ZjO+wyJjHDGAupsHkJmwF6UiNm3apKhD6JalhY0gj4kZ/HAYdL+So++zz6was7Qw/fe/orJOdV8IKMS5bmW6MvYsF2ZDghgSSl9yiWVBdLTFxPjxILJdaLkrYXxUwJGV0OgSZTKIqwxjjs1z1w5HN8XFZZiuAq8YkFALCI/RnI/+LZmph1HH+Fm5CW7ybqirZj82OuOWZe+cZTN8unQRg1pRZeJyvAS5DRJkb7A6HcU5G5iAmhY9utedxRksE7Sz/BszjWk11dnC7Snm2Hkf7L89ffwlbNCFeOvoIXuyQ9X5xxg78vJp0TF1/G2fZhsd80daF1r7tLiqyKGX2fuwT9fV3/CEUtCkeKoSeKFISNEUM+xzYi8PiQKXX9cofzllkLfejNqHpoyva2iRpOeWqn66h9XsEyuG9O/iI0eyiiUjt0QGw9qnJTGyWIE//nanP77U9Y2x6RXcgjqGkLQztPZp4bSmomEb8vxpca5AouezDdsezPKQQp9uMnzEaL3IfBsNtLgGjjsAZIzF9+tAcnkgTxVI7xTuKyNRWL29yvoFn6jM3/Y0vu1rfpR+o08+7kNK2r2hxShxSCQ9D4kHbz97j/zxuonyxuO3CBML6pLCvExksUbU1aRRy9YtmXNMe7qB9yBQTDPxM/6Prlpy/jG+D6VxFZjQSRsEeAQjjBFkvJ7dusXUXsb0Ma4tKelnJHq8KKeccoqiQqEr1PnFn1QwZKIBV7Laxvz51vDYL12XH3+MjXEQ9PsyqA3IpmjmmVIc09VCQ2j+yCN3KpB5GcqyNVey04/KX28/VZHUMjvaXQwegR+wrornc94mS8Z1QcovS7QRhPFDK9wTT1i1jen2diXcRZYIJvCm0A28bt06NQ1sruhjuF26ye1CXfEhzuOihcVGWCOY1scLLrDUx2UEpSeKeOCECex5kqT6DpP1aRGwntVU0KAVje5bvGerD6c5jxx25O4jKTPFXpGDSRDM/NWULmyjef4a21+YfwWSIKpkyb5ACccF0D8hSLlfj+T5SLeIcmWVe3NZVTUFi8jnG73VvE6oIdzU8S0/GCwZ+RWqzx92+GF/K+HeLZPdaZ7y7cYKxTe4O6VCftxhJXww41fvL6+9Q7kBatsJ4RVKV9RZp4gA6dEpSOZu91GWP1YTIXcfq4tQSN+iK5Aw6YPTmtLFXoGEVj66g0lDww+nOU/3R9fv/H2hcupZ56t+zR+jgdbSAG55x1dI4nzmGNyVIaR62Z9aJKvA60cZkximrIH7MI9cT1q6RPqpC/hoVome5fY7PztNSn0LW6QqxZH9WyQ0qrMEhUa63V5bLyhF9YTigtx2YZE8sm8Lyr/d2mwVVJSXyV9vO0UyATAo/F65cI5ccPOf6+zbooDpUmebxixMT957TPMCpKE6u2TodSRNCb+ZrECAxkzVl16yqEVIBk33Iq2A69cnA6zEA6Asg0VvvKCcqnKLZmevBbi7A9Ynf2H8Gz90GzuqbGAk3AatVQSU110nQv666dOtIYaHh8LqmCcI9BO59FLLFAlT2tChofLi434yIPlpuR9+5P8QNUF6DRhtrdjIv6WoUpKFRJtOCb2UFTE3OwuWzf/KCvjAmeThSmhVY7iejuuzt6ms9FCZ1REREUJrJmMnmRzD6nK0BlJ3zgI6QmXd427S1U4Q/c47XnAXx6sYxw0busmVV1pgkjqklZZAkf1RaAEk4KMOKTxmLAlHrm8mzdB6S7k6Dn+K1eQJ8YdW14D40VKQGiiph1ZIn6gi6RdtlVqjO7PxFTmClRu0KRU+CByzUA84KqhKZg9FXd1gUqwA7IB0mVa4Xak+Kht5OLJpk7JQJg7je20JrNXYB8bAXT2hSiIDPeWr9UWyPc1dxZC6x/ftVj/x3w1gi1J1l46uEH9UMVmyuwLZwf5SWO4tBzI9kIACsurO+eLvg1JyBwNlFShxekQhTjLVQ2XnTkn0kJ1HK+RTlHX7eov1uDy2YogHeAit0nKuKpAcW+Gj7goky/Z5yLmzZ9UZO3tCnJBmkO1eA3jXaT+SEB0gYxPDZVC3EJkxJFJGwRI4pm+4nDuuk3pr5Ju7n4+neoPvDBDYEPELQFmh95+UnevmIXGjsiGruGxD9+LGRZ/J0CmzXS4/XjP3bFokvYdMOV6bd2y3EsikvKwYQBvIp5mybf0SOXJ4v5RU+w5ve/RNeeGLXRIaEVNnzwSAYVFd6mzTmIV9hwO1QUhOPHv2bHDFvabKrN1zzz0KzOm+1HlZDTAYm6dpSuiypQuY1j+CIHQhWZ+8BKYzkMQiTo4C3AP37Rq4kwNAL+OvsoWZQczYQlrFCFQI+igEKrfdZlnGCGJQilclmnBZJLIlClEd5eXI++TttYPljX3T5d2vQpUlLKJHiHwB8uZ/0KwG6dSlm8OCqWY08A8zef/xh4vkkZtmyIsPXy3+QSFqTcbxRQNlpRHh2oRWOgI4sOcIrWxImD5GAgJGIy7yKzWf1lHGCIIVxgHWnFdYvtwC0qBkVOCPy2m5I3isqqpNCs2YS26X1DEa1LE9j5cGf/zdt6/1m9/kbSQvID/U94ko/rEDJaTnNMkqDVHUWXRnkpcvr8RLfTit3aqkdNGWwHKAcU31QncwpzlPW/40/UtD+kst8JUyrHvdRA+JC/cRf29WssBLDM7lXQBXumJIQQnAIcY3EmNKz/dA3V2rOgfdoP6410/qjfO12lJZ1/hYo7hfTCmSPjxlYII3YgxLJBf7mwpevotHVUnvGE+Jj/SXi8b6KUsbLYFlFRgfeAgHdg2S4T2DQeHiifEB8GF8tMaRrsUD//rFecklo0DzhLHZx8dzg2205Y77pqle6PrV++uuwoer/vrGVUnXhHjpP3DQiXjqmTGfYBpoVwAwNNBbWDx90sAI6ZcQ7FAlQZ+aF88LNUTOHttJRvQMxaVZvzBD8bSrH1QUKaSrSD20s/6VXLRI2rNBojr3QoWDMBdLj9+sA9tWSvcBuLMeZ0lP3o04xD7HjKII1snvPnhe3nzydgCZcsdygonDACy09jnLpmVzas0qKy2ps56sbtySHIDsMycDqA0yb95mAK+7AQ5uQAzeQmSJ7lbgw/l9Qmf3qpXwhzGAtGZNmWK5E1NTquTljz8WamELUQ6EYKS8PAnccz1Rys2qG8xsYQIXJizQKkWvLgEfLV20fjExhL8JMMlKQxLjA1UjYJ3Olb6bP5VLRuxUAIfUM3Qbcxsvw6o1Rm0Rljhb4kf1rHq/tqyaJ7ed1VP27dykLKAbVy2QeZ//B5nAAUJAzBrJzpVSyIGIAiEqe5cWULp3KeClVtZMWjdjYqYCHFt6tpZaf7mvtKCC4cUh8+dbuiAtjLPQbXfzzSPgPl7nAIZMIGHWMGP6GlXqjUAWiNEX652o4hvZSyo6T5OVR6OVm7GhFTnsVS7s002t8LFwZ6VDhfaKF7q/ECSE9IgLlsP5QY52TK6ga5TWwAoPP8koAJqqFvuY7NPZKFMXGxkqQ3oES2SIv2xN9dOryPxdVn+ckZRduyLH6gPInA6w+rePr66KHHp87K8lKnzo/nBJy3c7guXs8y5h10aMBlpdAzVXVqtvqnkb8MGbHR9kYUHWXVlxAxIB8qqpR1gZY/CEs6T30Cmy5qcPZPvqH5DFe5kEhkTWs6a1mNa/TUu+lJkX392g9m3ViGXoaPHy9vFtq0263Y6K/+szzLF8x4alsuibt2T98h8B8nA3h1x0618Qoxeupj9+8UGZ/827sPR4Sx9Qiow7+SJVPqwS1QvCGbNWLQk9+8nQcSfrn3V+52WlSEhEbJ1tGrNw//bVABNhqORxnqPe71gwE8+fP09xxhGMEWAwLo9ZwAQ2tN7R0kdLFs9XJoVQCIBWIyaoM3kpIPv2Ad1VS9euw5FU8hVIm611br3Vqv5BEDhzZk3cIAEmY9ocGcYAk+NAnpeY6AsrYqzsy8HyK28UvzG6Z2sc11/viRjF/Yhvu0BQvFh69BtR06CBU34BgY6WrAZCoUU9MqYLqHL2KAC4FVkX06dPV8voymVso7a0EdwSV7FoB5M8kCsCAmeRiy/2RPKIl6KxIYjUQoDLAiw6DpKuWS6u7l43q/XdrZs3iKM7w8WOAyHWOcRtMS6TYLDB8v77LELMpNETWvzCu0lJ1VRZvH+eMNGuNSt8MEZO08XoChqpRUGydB/i5Xyq1Ms66U6mg/qkT3SpfLLWS7mXyysLZN5uT8kqdFdBwxMWxCpY06rkh63lDrJoHhhmCY/qWianDPRWcXSkYLlkNGlV8PKU666/5lXk4Ha5nZaq8GHvr2e0l3TvMwRxwif4icedMnJCaACPlBNDCMJC8KYW5G89QEtxQ+NDojFC693kc24WxnYt+vzfqOIxQAZPPAsAyq/Obg6CYqVzj4HI/g2qs11bL9yx9ifpN+rktt6sy+2lJu2WYVPPV8tIBPz8g1epaQb4J8PU07v/UAf4oyWQdWrHIHuCxMA7Nq1QH+eOYzt3lZsfek2BROdlrn7TDd2SZfAY75abmyPrwVXXPXGIHNi1ScXuMQGE4W50GVKQ/6A+TD4gePvb3yz3LWlcPDwYV1YFDjoPAJ8qqWA2BGTOnP8JawmzpNp553XBOkWgaBFlBSTlC+PVWAWD8wgotTBbmGCS25iwu1gOF/vCncvs4kgA0P0q/pDXBZKJFegh8NmJVNlLETC3adNmqxsPrNBI6TN4nLz47QF555n/k6U/foqYugBZOOcDRy88jn4ItMtB5sSePbi+Fg2HRQ47bxO6x/lxFoLGt99+W37zm984FtFqp8EfZ+7b17BSbTob+DqNPLGuu9J7jo05T7BsC2Xu09b3CfzXL6K7VFVMkqDUpcJkDJ6PLV3hw1V/4UFeMqKXJ2LsaipeDOlcImFexXIkswruZbw0HaqpQMKKF6RR4S1dV+TQFTSuwHVQUFImCSFFkhft6+AxHA4+wTOGeMNS6LqCBt3IFOf+tJuW7ltu0eLhk3orcrR2f/llvnLbxe3jfk7NGPnla6DxT4LjpJNdyYWyErWAf1qfAVLPKgkP8pYEUAY0RaK79JJZVz4gYSAMnvvOY3XGB9LKsWX5tzJo/JlN2VSrrVNehhgXxLxFxfVotW00tGNy79GSp8HXip8/VasyM5Pgj3LV3c+rb5YGu+fiIVJUWIBA/SsB4qtUhQ3y37HSRgbKXJBmhTJq6tkS3QlPigZIJUBlS5efO/Oqe+SK3/4NFsrRCvxxGBdddBGsbbuVC5OJBbQuaaG7l8YxghcmHvBhe9VVhXLOOQHI7u2BcnKPyYvQx3X3/EN6Jg5EnNmvkRkcK8888wzaB6k4NW0EI3BjfKDmzWMCyMaNVrwbM2Pvuw8PrItjACDxPYOZq1FwVWfKp1A9490IChnD9g1SYUfBD0u6lVsfflWeeHe1zLro13rIDf7OzkiRD198qBr8+SO5ZIhj3Z79hqmSeNuR6TFmzFhsbyT08qdaBNeOxi4mOD5vmDfnzZtnLSUTsw58rG7PeD6W0qNVsS4ZCVbntQyghNBFz6opFFocGyM0Wh852pg12m9b/+hEqYgaJZvSw9tskPlFFbLjcL6k5eDErRZWdyoH64P22tgLPOUUlKFSRxkshYSAtaWsvEoKixFjbF8BTWgMoJv4lyDIQZHpM09W18EvYX/MPpwYGsBj4sSQTaCJoZTA8sdrnhlvvTsHNnnwXL/noAmID/yjlJUUypy3H5XDqGLhLHu3LJWufUei2kGA86Lj+nv/1hXSA+NvD8Ls6LgeMINVS3B1lrSm5TjtopulU3xPtfTHj/8J92kR3Ko3gbvtTPWQJghitQh+EwReg4h+Hp8xM87TXdb7zdrMLen+5QaZdNIb4G/HxuWO7X8KhEWAQfBHV6y2LhWhek1oqLeaR+CmZeXKQwCLJbDOHZCvv/6jdOreW0ZPO1fufW4OKmtEqmaMnYuB2Y9gbsECa00CPpIRA0OrRBAYyFRGMEmgGfdHUmU57TRVuoyA8NNPI6CzTEU2/fjjVu3gN974Xi4FP02X7v3kr++skoGjpqt9om4bK1++8ZjM/+otVRFly5bN8u67/4UVNFCiYrvIVXc+LUNGT0Fm7lZYHverrjMyrG/GepLfsD7pDz6d5czwoDCLhijWJnQh45QRWkDrEgJJlus7DAJAgmBmARPMsaKIU46K227ItcjqI7Tg/lLEr9NgyfHrJ1vSrMxZkjzTcscqIJoihlQvdKuyYgg/nOY83HJVG10xhOsyq5iZvvxw2lV/W1J8ZXOKVXvYXX9nDCwRVsv4chO4+bI9ZE8qM2QRyhBSKVyWVcDfVbAalsnRwiA1JlbQ4GfJXi9FwaKpVHQFDfZHNy3j8/jhNOexWgfbaAoWUrPQ+qf74zTntXV/b2N8keEhMnT4yF/K6Wb24wTRgPcJMk4Vw8Kx8i2Q1DGUHrEBstTLo1m1gr1Q55TWvcTh02XDws9k28rvZOSMS5Dw0VMREO9AvOCsK+9X22tPf/ZuXiLTL7yzXQyJCTL9R58K0uYPJS8rVVb+/IkaF4HGtb97VsZMn60sfWsXfS1rlnyvltH9SVcqa6+Sw64UiOfRRx8F/9sTEhYRJTc/+BKSFfo2eP9yM44oip4Gr9DAhkcO7lYtFwN50GJJN+XFDE5zkqNHS2H581HAUOMrAp8ZM/qrlgOGT5Ih406S8Yh11ByCiYNGS07KXrh6xyLZ4SRlsaPlkPGEDEEjyTEtgayRq2PYaFClZUtbCpkJzM/Ro+FggEmTqeMGyAZY4lgdowJWtL6DRsmvHnxFgkMjnEbcuJ/MiF728xfy1FNPyZNPPgkKmlclIipW/vD8t6rvXz/6X9m6ci4yt4vkm3f/AYtkmXz//fcK1NHKy0zqPkBxw5EZ05XBf06yGgGVtzHFmcKddxJaVmndZGaxK6H1VSd6UJc/o0rI1UgVJnAkxQtpZeqoSOfokhnDixaJgO8bLmDH7F/EhH/CBEnZkYGM3BRHtm9LVvhg5nDD+6uU0wDwwsE3OLFbufy0y08+WgfTOYRgcnhcvnhUIAwC5NEEmN/uDFXLCNYs1y1/Wu5bxvyRR6+1KnK0dIUP5/6iQZFz0qwz1Uuv2knzx2igjTRwwgBAug+cJcDPSwZ3D5F1e3OdFzX6N+lLxsy6UsgbyFJvJCKOiO2qrGz1xQg2emPNXCE386j4B4a2WMmzZg5HctKSJDg8BqTN96quCHBOPu8GGXvShbJ2wRdSkJslW9cukDdQg1bLNmQ4kDyYGa10T86adSqsf0flpHOvk7OvuVd8fP110wZ9kwImolO3BrVtTCOdYEML3T4GolULPZSaV46z8vNLVQwcpwlGCHruuOMO/pSLb35IZpx7g5q2/4np3EP2b19TA3ywkByCn39uZe8yFtBuTeS6xEaMAXSOE4+L8waYPCpXA/zdjXYEf5TfPv6Rcs+rH834Ex1n6fZWBjlCRk8+VWZdckctYNkZVuAda36QnOwMlKlLV1a4e++9F8DWV1HELFmyRN5DbeDBg8cAkM1U/dDqR90SMNJa6E4YD3jtta4BIGMeCQ7J/UfJyBiNusnvKQBI0MfldIc7Z2lbrWv/JYi0xx7WXnpi/+ILWUjf0yV/22ewchWIt29ldcWLMsmF+9XXs1QSI4qhMCgNbVnhg1ZAiqsKHwRmFFcVQ0gdQ7FXCandX4VUgTYqqxrQ94mskoxCq79RAIThgV5CN3IMLIHkDdyTZr30O1fQIPhT23FRkYMxhBRXFTlIzUJpD/0F4eWsT2JfNR7zx2igLTXg2ZYba+q2svLLpKjUejjEReBODmHlEJaOIxk0aWJaSghkpsz+tQybcp5sXva1pB/erUBhS/XfEv3sWMPkj5Naoqtm91GQmymBcPkSKI0/6XyAUn+Zcvqlsh1cfn+9/XT57uOX5Nv3npa57/8DlCYz4ApNV4kfrEtLobXs4YcfhqsuWW7/8zty/o0PNRr8sR9SwLQkByD7pPQbNlFCQsOV1U/HM9IKpcubWa2YnWtZAPl7zJgqxP1dJW+++aacfsmtMv2c63WzWt+MQc2Gb5LVMLRQHxMmWKDFGfzpNsxspUuY5d8ouXOXyeGfdkgk0OFNqBH3J5RiowwcPr5FwB/76jN4rFz9f3/npLJU3HD/f6Rr70Hqt/4Tjv0hEC+F+7YbfOPXX3+9cu3zhaAT0pcnTDgf1s87QIa9DVbEf8tzzz0nG5BgQ0shayuzyoodZOt+9TcBnBuuaWUV1e3OPNNb+vWLctDL0FrKqh4EgvUJYwz79auv1Ym73MPTWwL7nC6rU6JhSi4Wj/xNcnHUi3Jv76fkzp7PyWh5WQZXvSnRletk/WHvNqwYEiisPsLPfFgDg4OCVUUochnuAWcfufZo5dPuW+2m5TzNw0f3LYVu35aoyNEW/UUEecq4STPUNaUGb/4YDbShBtq9BZCWlC2oEGIXuoHX7slF4fAK9an2CNubNHs65eB2GQuLILn/ls95A9U/omTYtAskMDi82X03pwNmurIe8eiTL29ONy22bjLcv116DZHDe7fK8p8+lfhuvSVx6GRZ8M17ytXJB3tGSpIkg9jZCz6dmJgoSUiIcmw/HzwpX4OkmJKavE9KigoAuiYoShhHowZMFORkqGPUgKaNauLnHyg3PfgfeeWxm1Xljvnz58Oa1Av7ULsburCZBUt5+unHsE/vyhW3PyaTz7iydkPbr0gkuNBSxxjAYWSLrhbG+PHjTmjtYvk5Wk8pIen7ZMW3O1BrjhUvglEbeLKaf8rFv1XfLfUn4+h+1dWZl93uskuWIyOi79qzr6wiR45NgPOUS/uWW/xhvbxNXnhhq6LQGTnSehFgU8YQ/g9kgTPBfcPEkIYKQTNdxAwbrD4Eqg8mlVyGGEjGadJ4C6+wqrHsql+6icmSwxjLOgyRv4gHtRfOkV7xPjK08jXxCag2wdmU4luVI91lgVzfZalsLj9HKv27qlhAWgNzwLdHDj9N9cLVGENIa2BTKoYUIvM1tQBUL6Ei5w+3kkQ+2+CBuD1PVTt3R4qnIzv3cHbdFTQYw9eSFTlau79LR4Mbc0uY9B9Q+0XKdijMpNFAq2oAd+z2KxUAej8g63fzgXzHINNzyyQ5s1gBPz2TiWUtKXT/Msauz7DpKhbw5MvulV5DJsuSL1+S5d++Lqw5e7zk0K61KimlKYH8rTHm5H2bpUvvYbJ19U+q+5jO3SVxyDiJjolT+XwEeJlpyWrZ38Bdoh/QeiyvI9qe4Inywb8elJf/cpM8cPU4+cvN0+X1x2+VBV+9KRtX/CgklK5L+KKgAEhdjZq4jBQodzz+sRQUlcgAWC5nnoQ4OyIam3AfGAPIjN7PPntIucDrAn9cNTA4TPVwww2/svVU/yTVxRrExFsUjysulyOnXqtKsWVlFcK1PlbNT9q7RX27+0MSbvIxvvKXXwGIlrtr5ph/0gW3IJP4demHeMAX7r9Els39wLFMT4THJMjYmefLBrBAHyIxYrWsWSMqyUW7rq+7biAAWQ34YzNahZkMcoSZGy6kLmBG9zBoER0ybtw4VZ6OM0jTM3RoDSejo5Ftgnkq1V7zOpNFEHJ8wktC2QI5V34v3h7lxOvqY98pvlBzvo9HmYzw/VRCq/ZLa1UMOZzjJaXlHnLBiApwvHrB5est14z3UBVDGlNBo6UrcrRFfztSvWXoyPG/iJcK+/ljpk8cDbRbAFgJVLdoa6bsPVpYS5sxqBTCMnDxUZa1pdbCFvpBomi6WD1tQV6duvWTUy7/A4DgJFn69auy9JtXpSAnvYW22PBudq9fIH2GT2v4Cq3YkqCrKB8lyAryJGnPJrWlQWNOQnZrtNz19OcOn9vhfbBOQVyB1vPPP18lfxAckktuFyhAbrnlZpk6ebzkHN0tH//nUXnxTzfI03fPVkk5qiOnP6TEYTJPa0qX7onyx5fmSY++w2XXzu0qmUFnOVMPC5C++xbqtt19990yaRa4/W54sN7h9Bk0RqafeQUyepPqbasbMJuVLk0+oG2eYwVeWKO4tDTTkTAS4qZ0HmPtFnz9ttx+Th/5+at3ZO3SHxpUJrEE1D0bl34rT997kWxdv1ze/dcDsnrhl3po6jsmvg+SQ2LUsdaWXQI3O6ZjXeB33rGqhNRaGT+K4Vt3R4RLdhc7yLOvS7e8PcaPcYfsh7GIlHXrLGoe+zr26VNOEXnsMYE72iLbti+zTzPu+EQW38ocOTX/FrULnh5Vde4KzzFcxNK76hvE45Upy59ewV6Fwz6tK3ywHbOHG1qBZM6mMtmIWO7UnBJZvk9vxaraQZcuhW5fHfPH35zmPArbsHqHFntVD/v08ajwwTE5j2/5XoQxISN7yLCReshuv3l/KauolGyEQiVlFLtt19QF9KhxG0Y6nga82+suM7Fj++GCY4YXhnJxOQXlql4wE0NoEWxJIZg4uH2lnHbNQy67je3aT2gRpBuWrmH/oFDUBz5PQsJjXbZvyZm0PNLK1V7K0eWkJ0l4dLwc2b9Dtm1YLuddd69MOv0KtcvZcBcGBAYrcKh1QJJgZ0mAL/WPf/xjrdm0omkhPyC57Mi/dwhuZhIyOwuTYkKjOjvPbvHf/tif2dffJ0/+32zVNznnYmJi4XosVq7cuM7xcu3dT8s4JL80VOKQ6bxwzvvyww8/gCsQKATCEnBgxHEp8+db5eH+/nfE/sFqRTJqWgJJWVJVFQlXaCYyq/eodd1ZTT9//S/yw6evOfq/82/v1VtNpiAvWx69ZSaAYgVc3E+rsngXXXSxvPb4b2T9oq/kavA8+qIsHAHgkX2bEArQS3788Ue0u1Wef17kVzByElD8+9+We5t1ji2AYVnmyPzC3wEI8mO5PcYQsjyeXbifdpBnX8YoAtYHpvBZxr5mzJghdNmTbJtxlUhcdit06T+ES576ZWk9hC+Ck+5YKWYsss+x80+UOf1KP0Et6iLsW8Me+NSBZ1WZlOTtgds3QmUPE/Dp5BDuN6dJ88IkD+0OZr1hgr+8Uq9GVSDZnlYlOwDkmO3LBA3G/FkVPpjxe2JW+GASiopJDGVFE2T5A+DSvTxsWHdJySmXuAgvB7OFPo/4bDsCT1dGXpnsTy1SLBhkvbCXSNVtm/LNyjDpuaXKu7YvpVAC8WITFeqr+BbPHhcrvkzpNvKL10C7BIAp2SWyZneOS+XztvXj+nTJBgiMDG75O/G2Vd9Lv9Gn4KHq5XL7emZMQqKcdOk9qqrIqu//qyxQQyadI5GduusmLf69C9Y/0tW0F0nasxHu36HSrd9oeeztVSoBRI9t/tdvKfCX0KOvigH0D/BT8Vh6eUO/CQg0QXBVFR6+LiQn/UirJIC42JT0RBm15z/fIXu2rpYDO9ZKbmaq4ojsFN9DggKD8DIw29VqbucRLH759t+RFXumsn6Vl3uCCPtYAEgQNW2alWEMijtFEM1iF3auus8/twAgCZkpIyadccx2044clJ+/eFORUP8baGzG2Vch5nLSMe2cZ6ya96mieDmAEiME7ZS5c7+DJe8dgLsb5aMXH5Ar/+8ZlQ2emXJQUo8mwQI3W5V+s4/zkktqj5leYsY0Mk7vvPNECKpJYUO+RWZRk9dPC2lxyJXoSljzeAcMzWyOqAP0IyitN1Huv/9+BQDp3tWA09X6et706VYcIbmoEzHTQy+o/qYl5kQUr6piiSzfLiOKX8DweRdtuLD1uLAVIM7vh6QQD+UO5toaBBL80UVMGds1X5YerKnwwfJz4QFQPsRVxRDiDL2u7q9fdLEM7OQhft6+CjC9vhQgcIV1JFgxJCFcdXfCVPjQFU10BZKRXctl9SF/SfUeIAfTipDgiIxoKJkAzwcKWYf49o37cx2Jj9zbMBQ+6N81GAUQmvfMo6WPiZPzN2WCeLvcUiT+5oNoOx8UTs7nu6OBmfhFaqDm7tpOdu8A3nZ+2pAuruL6GJtyCBdMHugBKJkwibeklJUWy6Edq+X0ax5ucLesKjLz4rtU9uOmJV9IcWGeqjvcqfsAPHBa7nLihct6uwSZ7UWOggA6ccQMNRxm/2rJzUqT829+VAYASL/1zF1q9k8//QjXZLhu0uDvL7/4QlWZOO/ae+F+HeZyvVxkAFPfbSWkqOk/fLL66G0yNjMvM0X/dPvN+NI1C7+S/iOmSFgkCLBhVbzyzqfkzcduke9ueV1OeuFXsAzUXp2AZvJkEeI6AhtaqegGtoM/rkEXMF2eOqGEx4Fk1nb56q2/4jhEyF/+8hel15guPe2L3U6vBgDs33+yAn+MQbSscR6KauXgwSOwnt0nvQePR7bwOElGtZehyOKcPfuBWmXs2Ll9zKzSweQL0irqkEqWDuSHll9yDd5CU2G1MHFc40FaSUmToy8xhPwhsxi0I9gdJnJQSC6ekuIPMJmFJJAIR11ia6n7vyzB98EHpDdx36bdLsF9IqgqRaIqtkpU+TZ887NVwir3iac0DbzyvhvukwXLYTF2O6DVdx0OSYCTCgkPIdjBxltcqhz9EnyB0KnFt+CuQz7fDoP7psI7Riq9AmXDvjxV0WpE71Dxrg4wDYWXqxTVT0JR+pSFD2gNnDY4stngbwuYM/amFLl0I3PbPvjEo7qWHoe7fTDzfzkawPtX+xACnFW7smXOmjR18rsaFU/MM8fEyvh+4a4WN3seSaAHjDm1SckEpPSYfO6tMvGsX8nBnWtQYu4vwmodlXCZtYSkHtohtDrWZ5lsiW01pA9mI9Nd7utUIYWWot9fMVqev+8yB/i79NKrQMmRpYiU80BTosUdqa9eznNiLeqy9uk9QE6po3xZTiuRQOtxNOS7EgF5dcUhlkFXG1f8JHddOEjefPou2bj8e0e38T36C7CN9Hv3/1SSjJ3qhOCPsX5QhdDKxeQPYiJ601mtgkBFCwEgXcDkV6TlbPPKH/Uix3dJUaFyrUZUc8z89OnLjmV1TeTDBZyYmKg4ClnOuLqksVrl97+/Cxm9k8EDeY88dMNUicDgXg0JktlnBrvtEpSA4OoTEGtb3IbOpdoYG8rjT4JoLUzk0DJ3rmUN1bGFBIK0DjKTl3qicIwDB04D1c4CYXlfqOcYIfAE1lRud8YlUmCARBaxNd2e/3pWlQDkbZG+Jf+TCYWPyll5l8k1OSPkqpxxckb+dTKu+EnpU/aVRFTuaTL4s+//pmQfFdfX0hVDXPW3Pc1PSsuqlAu45St8eMik7gWKcPp/a71k1b4S2Z1S0eoVQ2gJzCqokA1Hg8U3drhDtYcR10ePF43LPOcZ5z60R4gM6BYsDHk6Z2ysdIn0d7RvykQKrH6Lt2XVAn+05hLc9+gUIDeckiDXnJQgM4ZGNaV7s84JqgHv9jBuZvsu3pYp2w4V1DkcvhXloeTW8F6hEoK3o6U4oQtABUMhOOQJLU3EW6xne3jXelj/HqpzDPUtDAyJBH3MVVJaXCjbV38v3731Z+k+YAwsZTOPAUv19WVfvnPtzyrW0D7veE6nJ++R6C59jhlCUFiU9Oo/XPZuX6+W0QpaUpIv559/hvr9wgsvKEBDAKOrWRzTSfWM//73v/InFNu97ZHX67SmMhHleMdFlpeXImmIFotjhWD533+8UrZvXOlYOHEWfKHVEosyeSGnXixD5n4kRxHY5+GB8zvEWkjOPwp4sx1Ex/yNkEiVWEEAw8QF8hJGR1sAkHQ0/OSDGuevt82S0y+7Q0ZMPpOrSWRsgrAiyyKWu4DMnH2T+q7vD7n8IiIqAAIRggFcecUVNWsw+3nRooWgedmJeM5VKOUXKbsBNIdhvl2YDMJKG7TeEXTZ+wBbkPz0kyBuz7Iucj2CQBJHjx492t6NmqZLl3GD/GhhRRm7MN7w1lsno0LKw8jQnm1f5Jgm3Q7oGtFOYD21xkYrJYmj25P4V6ZLdLU1z7LqbZPwit2wXZW32TCzSgJk7i5L4Xa3LwdA9y0/3p6I3UOJObp9wwPyVUzgEriEKazwQRcx3b71VQxZfTBAVh9sXoWP4QmWbqpgu2TMHWMIyRt4xbhKSUVpubFdy9T4vt1qgauEcCtGzw9PRVYVYezh43jRoDS3Asm5Q8vlsw1e8kV2CM5Fb4mI7G51XP03NbtUdiUXyNZDtesnc/E3q9OkU7ivjMBzrwssdLoSVq0O6vjB5+sSPCv5EmkX1mUekxgmEQilIvj0hm4a27e9PzN94mnguANAvvEw29dVwoezOgN8QSgb7qdmsw5w91h/VWw8K79ckhAwK7nOazT899YVc2TguNOaZP1ztRVf8McNnTwb7uCzZf+2FfLzh09LeEw8ys6dgZq1nVyt4nYeXdOFeVmIc+vstk1bL0jey/i/IcdsduDIaRIeFSd/vnWWWsbj+9lnn6npt8FeHBYWgTqylpWFD3FaWyiXX25967/kxrvt9ttl6JhpMnjsSXq22++WdLe73UgdCypBqeKuYsyS795V4O8LuLMZ33bWWWfJkUO7QZhcpDKmWWVjxJRzZBEA4PXX/1rV2bVvisCJVkAtvJETpPDDMnDJyYIavSSHjgQozFTEygVAWoHgrjyEDOwtq392AMBucKPP/+ZdVBOZKt169pMJsy7W3br9PoqxHk06qErWkVIFhwbVNmq7c7lyX2SkXHZZX5A6p8maNS8ra5y9U4JU0gCRv9AZrBHQktiaoA2HXUkhSqqQRujDDz+ENS9Lpk+fLt9++y0SRYLwED0d1vUExSHJpBcCVJaAG0yFVMt99xFMBimdsywfy9E5C/ipWVJZEWtPmWLtE7ExcnLkvlHQq/MKrfzbowpVMCr3HuPCDapKa/aW+fyvBBjyBGj0aERvXK9EwiTQ30fy8q0V3Vf4wPirY/4I9FglRFcMGRhXosAfe2AbzRvI3+7669nECh9dQ4tlZ1IJu5YQdZMJUdPsr1uEh0TgHEpKL6k1vsEYn5eXL9qhdnA4xoS2LVUxJMAb1tpAX2GFFN+QTnjJg3JsQjC2YHOmbU7NZAWWJWeW4JMmUXCLnzw8WoG2mhZ1T3nBOHLu+E7y4cIjkgsDil1W7cqRk4ZFGbevXSkdaLrNAGABgkxzUG7IbspOyymVlTuz5VA6ngx1CA17veICVSCsPTvJ28sTlDD++MCyAD4AvsU0RfggTt67qVUsbKSS6TV4ovqkInN4zU8fgM6kXPqPmSWdew7GjaD+W/G+LcukJ/poT5J6aCfiEc91OaQFX75Wa34AkiNOPmkmYr2uVLFjV11llfSixYUPYDzTBYY+lQjAFZktfPLJp6DMWKRcddc/avXl/IOW1saWjXPuoyV+k1PPN+BYuJCbnS5fvPUkEhzOQ3UQgLxqy9vy79+Xn754S+K795EHX/wJMYGTkWAyTBYv/gnWJz5yrfOCZeX4sRNDs1oF49wIBOkiRsickptv9ocbtAQ6Dle/N1W7gAeOmmE1wN+xMy9wlOy74YH/NIhw+5OXH5LO2Mg111yj+iHYJCh1JbNns5ZxDABgDWBJSclArN92ufHGSQBurtayYvkY3wcMp+pD9+xZCcqXj5HsMh4rWG5tJoacfvqVsnHjHgDCH5FgUoVxVKpxMWaQJNLMGJ80aRJiJierc41bmwJkx8xiAm9XwrhBe8IxrZSs4le58NjW0RVbZEjx67LD9wIp9Qw7tkEj5pCSJZqxejbLXkTFLkA0C7g0oqtjmpYCumZ49ZcMJBpkeA3EZ4BkevWTASUfyMSiR9EeJ08jZEvhaIAXX+kUbNHBMNuX1jwKp2n504COLl0mdmQXecma5CCJDATsBAhZdShILh9bKayFu3iPB/pDubmoSlCkeMjGlFA5e0g53L6V8t12X2Wp0wBs4S6r/i+pVHSFjwoc9/dXecgp/Uqkc2ilyjgmaXR8aBn69ZavNvtgfJYeVx5AcgXG1ysGiUIoAWf1542XJm9ZuwkAEdVHKD/u9JOikkLp08lTtqf6oq2XqjJC6hhmIzOJg8JpWhLrGh/bcay0JPJ4rtzvqcBfMF6AfDvjzaKJwqzgT5YeVdZAlkFtaBUsWvbCsL/OAJDDoHUwLsJPedWaOCyz2gmqAdxyW1+SEeOwaGuW5CHrqBusdpHBvioTibEPDREGyA7qFqLM03QB0/1LYZo8T15SMzCLqSufiE2Qrcu/gfXv9AaBsSZ071glFjF8sRfegdq4GXAP/yDrF3wi3frDPTx8uvjhjdSd7Nu8VGZecre7xW0+v7y0RFlK3cW8nferh6X/yBmSkrRX9iFbdvuGJXL22dfIE0/8TR544D68ZSPgGECgc2dr6GdOL5Cn7twiVREfS+mmTfIa/J05sNj84flvJTgM6L4Oyc080iYUMHUMQS2qqChTMYD5OZny1VuPy4Gd6yUFGbeVeCsJCPBH5YsXVDtas/xAlxKHc8HH108uvf1xNZ8vAuegBvJz91+hQIwGKwyZZLIDE0BgtFMVLXSSA98dWP1Cu4upU1rXfv/7fiCkFtm/Y4Pqe+Co6eqbfypsgZe6vq9joZuJQrjYx8ANy6ouFMbikVdv1izXKzAho1MnX7nzzmKMpwhg7VVY/jzl2Wc9EJM3UdHXsNyac7EPOwj74YefAP7i4SY+xbGR6OgpwtjBxMRIWD2XwyXdRa7C2wStfxRmDTMGkiX4CAAZZsB4Slo7f//7v0r37mc5EkQcnTpNMMGFfINIyoZi8cmo3QC0xQpAjS16SuYGvySHfabVbuDil0dVhYRWHqgF9JigEVKV7KJ142flenZ1gLx0AD0CvjzPBKBqSy/2HglcOXYvJHQ0JCmksspDKqq85YcjoxXViwZ2tOox25dSVIZyZtVuXx3PpyuGhPtXynWTPVAFiMCpSt5bqSt8eFS7VT0URx4rf3y+0Vf1p2L+AJxohSNYc67IccmoKtCX5Crg+cMOv2rg6Xns+A7A3YoN5+GYTuyWL4mol905zP+Y/obG5qmkQwLZJQcCAf7KJaXAS0bEl8qpg70kLd9TuYOZjUypb3x2oPjOcri+Awj+fAGKi+RISbR4B0ZaHTXxL3n7aLlj3OCoPmHq05Cu+nYJQhLlsc9cPj8/XnxEusUEyDjE1+vna0P6NG1ObA20KgAsRQYTLXx07/Kkpew9WiR7wUPVUPH1hjkecQ+M9yMfEvvpjnT5/glBKpWdGVLNEVqQjuzfKsOmXtCcbhq1LsvKjZp5qbIEHti+ShZ8+ryKYRsw9lTE1fWu1Rdr3AaGRLQLK5ce2NGD26RTt/76Z61vxrvlweq1e+NSkAy/jYezl0qEuemmC1U7Zoy++qoFhvSKHqAfeOm1cXIUM2LxOYDPg/+aK7FdemCqbmECSHtwjdMCSLfOi49cLUcP7YXVrsAx8D17dks84uPKQDD3DuIax804RyafeZX6OBphgnQsPRMHyR/+cJ+ihSEopIWUQtcrsI2jBjHfdZhEcfrp1nL7X8bi2YWZxlrI1ff7Z78Qxh1q4KSXuftmxZK0tHTHYlocP/kkFUD+MKyVBbDeHlSuWlrhWNeYbv+SkjS4+x8G+IuF5W0WEjP6gV/vNbiPl2K7VbJ/vy+ydM/FfvVw9MuJVAQIpiAjhCTb5H786COB69ayEBPokk+Qjtlp0+7jxDFy4EAw4gzLUVfYSvqg9XTYsFAcm1IksBQBAAIRuhECRhgQEXvopgFmA8dAqhSAOiP/Wvk2+M1aINCnKt8Ceo4M3G0SWbEd1IENv+epTbj4Uyb+sOLBqqdAHoCeNy17/aXMwwJiLlY5ZhatlgSuHHslIGBdINC6YyPR6MglEo5khMQo65ym+5Y8f9q1q8EfN0aASPBHVydlVDzeYKqCYanyUhY0xtS5q/ChqV6uGldD9cKKHCzvpl2xFpWKhwThhYIWyLm7wtW2aJnUdDLO42PCB618R7MqJBZxiIkxwY7+rhqHl6LKYEXHMh79zWF/BT7K0tkluFA24WYUh7Cji0f7y3+rqWjqH5/a9er9paXTspxGBwJY+nZ1aWhg5i/PrTI83wha7RQtVm/H/iVTBoFg3/igBoG2RABAGlBW7sSJ7iSMr2fRhfH9w1UsYlSIr0SqLGynhubnL0oDrQoAl2/PVkGtzdEYT0zGP/BmFASySl4YTKXnpyVky7KvVVxeQ1yxLbE9ex+eXt7Sc9AE9clOS1JJI6t/eFe6DxwnvVF6ztc/SHaunSd9R55kX+24T9NdzvE5SymA3D2XDUNsW4ljkXMW9Guv/RPWqRfUQz0fppZFqP5x2k03yTtAMx/ecIO8gKoYPBbRnbs5+qhrIhcAsEuvoXU1aZNlBIDrl86RfTs3K9flpZdeqsDQwIGDLN48WLN2w4+b+/DDMnTCGS7HxP0++5o/yPMPXiX3IYDt8ccfd7RLg0d12jRx1CCm9Y+xa4yrY4iTdq0yxpAVVbSMm3G2nnR89+g33DHdkInouO6ya+Mi1ZRxeXTNlpWly7JlMXA/+8HK1xVA0BsxiVHSj6Y9yOLFi+UwCAu7dbsUlkOUvcPn6qt/A9cwEk9miqr48s03n6NdgHLhkrJlCcx7ixYtUfWiR4wYAYtdd+XeZqjAqadabmLVeR1/hg3zVn3Gx3/tcPk+9xxjASciRpEmHNfXEjOAGZ948skWB6N2JvCh7EoInFB8UE7Lv1E2+l1fHbe3DXQrB101b/S8fI/O1e5by6JHy16uZw+p8sDBbqbQakngyoogHgCmvLd6qr9Wx5WY6wEFlAO2fpB8iewt7KNcvHTpElzhvV65XPUwSPjMhA/G/LENq4FoIWn00B7Wr2MrclhAz1WFD7qJmYxBt6+9wsfi3VXSI7xIUaO4qkDianxbU/xUwgfHl8T+MrjH1pHlmKYmekn/+GBYGzG7WnRFE/Z3OKNE1h31xRJL90wmcTc+qz+rE/v+ZhR6SZVnqPjYXpz9EdM+BG7cfgBwwdVeLa5JkuZdRwrlMCjPaPQg0HMnIQFeuF+6W3rs/JG9w6BXT+WRc17K7Wzan6eoabqg2tZZYNzwZPyVkV+sBmquVDe7mAG2cJ4EzBRqjNAKUFhS0ZhV3LbdgzcTXiRMiV8LksyWkpKiAkk5iLJe0y9qqS6b3A8TRMaffh2oVUrlACqRLPjkBfGBtSYr9ZCMOumyJvfbGitmosrHmJOvOKbrtYu/rgX+4kECnbQfd0snWbfqJ5mGYK/lsFStAafJw/h0QmBZDAPaICQn9kMSTUOEAHDAWCCh4ywEgHu3rFLcc/fcc48CfxxSXl71+Yq7NK8JSl3u/gEjp8rpl/xa5jzxhJzXo4eMq+bBAxZCMoSV9EFLFRNjGYtHFzGwkwMAhiG1+l//+pfaDv/0RAZ6cyUmoY9KUCHH4BtvvAEr2hDleq2q8pTlywEGcIiZe1GN/dTmBoCL5Sek9fJdQFfooHVNh+HFxyfK9Ol3IpnkJ3kOCC06OgbWvxQZN+4GGT8+FpZDKxuYFjxaAe+8s569ILIEz4sn/Mi33XabPPXUUw4AyHi+9PTp8hzKDV5y/tQaZdm6ZAwq4yyZ/MGEJJbcK0zGgx6g0J2wmgbju0aWvOiuSb3zK8QXVr1EhwtXW/dKPCPqXbc5DQgC3wlbLn1LP5UhJW8AuB5wdJfn2U3WVZ4nq/f5A+hUyanx2crdSotfUyp8LNhZjpd3q/pFkyp8hFTJjD7FsvaQJ2IH/SQ1GkhOrGok7iuQICmoT4FEh/rJJ+u91PiZkMKYxBDfCgDCXDmQTXewPwAWbKG4Pulqnt63SoZ2qZD3Eb9n398CuLlJQk1hdjDd2fYKH5eNQaatclcjLxteEMans78JPWFxjC6XOdtgA67wkwumgMoL26Ilrifi2gMYTOgkJIMeCNLn/njmVeKeQbdtGp7D2QVl6jnM9XNhCOka4w/y6MBGJ3AMAug8AlqY3QCZzkIrYCCsqzS6MCnF0MI4a+iX9dstAOTDavOBfBVjx12+aFKcKhXTkN3PRNAFT54UpLa3hEwfEimxYQzQrVBmalYBaQlR1r8JZ7k0ybdE/03pw9vHV1nXaGEj9UsR+Ne+e+tRlTDSZ/jUNik5V9e4SXRNyyRL0uWBZoRWv6hOCWqVfsMmO1YdOHwC6sUuU7+ZCDNiwizZuPIn+dNDD8lkcm4gsO0kPKSfh6XnBrj7ljLbs3rtdUvmwEp2OlyiEx39uZsoLsoHmXKIu8VtNp9l1/bs2AjAU4I4vX1qu+Hg2vsNie6qhQkLlOyMo1IEPfojacSV5fnMK+6SV0AW/eWvfy3+qGFGYmeWMmOWLPnvGH+HssNKGB9oF24jmWnB1RLfc6CebPJ3fK9BqtQdyaNvgJWWAFAL8i2QdGGVWaObujpMUFkDM5AqzJhE5F/AGmjhLp2I+/PPCAfZSxqXk9BmJMb8PkDkOJk+PVZZNNjPxo1MKLG4AvHMqyXURVBQTRypPaCwFIF89goiXDE6Ohqxh7lShvuaD37TcsrDQV3SgvrAA7W6R3whAGgw5pXVnt+cX4UeMTXuW1j00uHCzfHsJZUeHFHbC93Bm/2vk81+14pfVbb4wn1d6hEsJR7hyh5Y6fc/WNuSlGWvORU+mIRBsVOp0JXb0Aof03sXS2ZeCcZCFykTPqz+7FQ0zuOb3CNfxvQOUNauM3A+fLnZTwE6uoLZltbA3pHFyrq2YBfeoGzjK6vwkLMGlatEEu3mvnhEGWISrcclEzteW+KB6iTIGkeCy8UjkbiUnCeITEIcoq8s2mONj+CvVwRjLT1lFChpDnv1QDhTgIqBVhus5w8NL56wVBIo8tOSMmNIlHIbbwY5NN3OWvonAOQjrjC/uNwlONXtzPcvQwNuASBj9ZhgQWGaOOsEMkOLiRt0w3YCWSUzh+wm4gwAv1WILziUXtTkjFxntdICDYeEms1C7OQAZBmb5kppcYGQXHnEjIub21WrrX9493qZdsFvVXxgMuqrrv35QykG0Og+YCzcxhPrtCS19KBomfz67SclPWmnHNi9RT5+8znHJv7w3NeqRm9ETGfhdGbqYcmES1sDQMYFHj24E1YqH7kdjLxeZ5+tCq564An8JYh+C8Dm2xcluwbD7NIbmaZ/haXmufsvl4tufFBmzP6VYzvteYJVN7SFj+O86667VM1c+5j79OkjPYGIXnv8djV7wsxz5erfPW9voqaZXBM0aIz89cghOfLcamTGDlOAheCJibj33mtZx8ilRyBTzems1k2Dr5h6ZjwepTNqDTdXevUfAYobC6TYwZ+9X1rPaMDVAJDLWMbPz68QIC5Qua+ZHELyanLssdYxyZmZk5KdHQHqmhjEDIKiBA9mWt9YHo5UMTfeaG1lGd4lCIK1kDi6uiKdnlXrm0B8M9KlB6J8iI51HAMf+iqcbywRN3++lYHOWsorV9Za1fGDCSHVtx7HvIZMwP4j2Z69a7lwadkr8oxpyOpt3wbousQjArZMoN5q4R3Xr8s42Z31gwyIytWzG/3dXF65Mtw70nJr6GOsJ4E1DB9Y2dxJFfyZrPJBd2c5QKN7qQE/ZKWoqPJBciEoV7JKUYWj5vHI8mndohiGVDOPfZK+ZWdSIRIUMQ0gpbhoqzfmj7jHPp3xlgLZneMvY3ACMwGuPQi9auv2HntcWReYGdvDeoa2h2GaMTRTAzxvaUW2s6/Yu6x9NtuWkHuIwhgD1iFctj1LxQdUz1b3RZqgzxiNO3m1MC6PMQstKXp7uk/sS4vIlmXfyKAJZ7q0wLTIBprZCYFeFaqIMAGEEt97mPqQE/Dg9lWy8LN/qqxTWgoTEkeo6WZuss7V//vsXbJi/lcyBCmg9moeXOnxO86Sq+96Wkpg1Ro0ZibA4OnyyK8mq/68AWbK4R7tPXisLPz2fbjYflAEv/D71WwvPF5GvfCWzKi+55x7LoDR1dcCZD4pI6eeo0qm1TSumaIL39evZd+Ma3pv3FRJETIJAWjpJn3//feRvXrFMR0wzm0tXJXkRWQd3m3rFh3ThjP2InN66Y+fSjym//GPi1S8JOeTf+/rr0UQXqiyW5nhWl6ehwSNYmGN3q1btyLGbo1Ex8bhBQwPI1iTg0LCuGqzhDQ78d16I3Fjv8t+vvrKckMT1NmF8YD7EQJw773DVQWR//zHorSxu3OJK2nF9Pf3BChbiLjCgwB+VyqSaMbkaSH1jQaAvAfQNYzdRZygblHzTT2TRHo+UB7pX34NSyplxowZKkM4IWGiskiSW5E4mbsFikbBaaeESSjfISZ1avE+iWmgcXmb78Vy1HusMFYvCy7dSg/b4K1uW/UvEwfslpyW2JhveFc5khQsvcJyZQ2+dbYvY/5oGWPyB4XTJHnWLlZNEcMYPbalW5Wwhy5RJtCM62lRqegKH4ypo1uVljUKpxMiqrAeElBA9aL725/lLzvQ39DOpSpObgvK/NEiSA5BtnEeX/dOAI/5FfL9dv86xhegsoe53c0pARKwuUxmDgiQr7bA41Sd3cx9WHqQfJKFKJXmKR+t8VLjowv4g9VeshQWzjHQhd7fAbHFCijO28nHq7W/20E/M6OuNxYOoI2ExNDJ5M11Iem5ZXCblyn90hVt5MTTAF98yLjC+8H8TRkg+w53uxM8Q+sUf8QozF2T7qi4oRvzUu0c4a+sHtqNxQBTZjP9vCFDmdZ12+Z8E2SyNA6FGb/aKtmcPpn5e7SdxP652489mxZJ76FTjlnMhzHn80N6jr2blsgP7z2hgCITSrr0GtKiYJCxbXTdEvz97ne/Uy7OaAT7z5s3r9bY3n7mbgtMv/wnOeuK30pIWBSsgEflgpsekj2bliIzOBM3ULiC4fK1C5MbgJdU/BXJhUkxUlbmhezQ5wEaPlOUKlf+3zP2VRzTrAHcHjKAOSCeUwS7ERFRIDK2LHyOgVZPVGFH73rkEXkPYI3Xz9AxM5ybCAH+t+9Z+zseCM9OXkwX66FDCGRPIvVLiZx62mjZQmRkkxCkyo6bfpZc/8Dt0He9l7dtzbonuycORYIGY/pKYNWrDW5o0HUltL59/DFQqwxXNYHpcgUXuEsZM2YMEkNS4A7upEq6sRFjHXXSCF3A8OAqMPzPf1o1kVmVxJ30R828OJgl/4nGJBVneTzSyhw9elTmzKmQm26ygucZQ0lgHRqaDmvjPNzPlqJdKJJOTpUeeT1AAwNTYwNkecD90tpxe3UNwxn8+fvA8Qj3Ce+Z5IprSjw27+s+sUPl570FqmSYzvZtTIWPcT3KZXIfT9DA4ADirCcI1BU5CPhI9cKECsbU0a1KIfijixh5RXLGoDL5douvyvblMrp9u4aWcBLWOljf6qhA8t4q6/xvTAWSVahAsuogqmJAd877O29PEHy9HK81PhT0kAuGl8uniDFkNjKF4+sbXQqLIEmlg7CvrEKCWNyuYQ5LtGp4HP8cQHKJu8ILPExc1hnevX5wBxs58TSwdncustdxY2uAWFdIHQ1pFnclgXDHJnYJVCiTVC1aaPLmOixy3Ryhe5mxhOP7hqtueCMjAaamk2lO31uWf9smvH/NGePBHWtk1hX31dlFYHA4Ko2cqT552alCwugt4DRkOTqSTxMMMtO4qUKX5lP/d7Yc2LNN6L687rrrEJD/kQquX79+PVx4v1WZmw8hrm/LlqGw2vko+pLFc96Tv7y5QkoBZvwD8OYMv967LzygHsY97WRvGBjBDPESXX+07OzYYVmTpk6NAND4kwKdE0+7QnoNGHXMbrSHGsB6UCT35gOuCpxvOltQL9PfRX//uwxBxgQfX5NOPl8uvOXPepH63rZ2gbzx5G8lLzdbRmDOjSxNwWA36F7LhLKFsvLVo3Lzp48g1nCb9B0yTmace4MKB+jSva/sWLdAPCpQdaA6LlOv19zvCaddKQu/+0geeeQR+Rtc9A0RgrDU1G8cTcmvZyvU4ZhPy+k7SMP18BiCTN1pjvmMz9Mxg9dea70oXHml5SJm3KFdyJNIi6jdIrhyZTjqJt8K+plXAcwjkFHcBS8Yw2Dx24BtjcRLTDpoX37GObcMcY3BsKzOgHX7bxIe7g83MXqfW3Nfs2/LPs2MWSZNMG6uPUkx7pe0CtIS3BTwp/fFP7qfFCetlnDfIrcVPmj508YiZs1qQmj2Ee6DuMLyEAnwAaDqSSug1TNJlAn+KPSq0prGmDoKpzmP1Z0qSllBwyJR5jJ3FUO4TW6bwrHYK5DUNb4hnSvEBzXQArHBsCACStUFtslSdq776weQV16BqihFlRIT7CHdIr1kN15kKRyfJ+igaD1j3yv2I6wBp9HQEWOsBu3gr4/tee08HN6DKe3FVW2NxvxtjAaG9CBnMu6TsALuTymqc1W36ICWvAsnxsnR7BJFucIbih0M8qZCQEauP3IGnTuuk+OkGQfQlo6spSSkz1N4ATi7cl2NirEHmuolH1lSl07tggvTSzXlMmZONVdY9ePo/i0yfNoFze2q1dbPQJZteHR8oyx5IeGxMhSVOfjJyyIYXCqbQXETAJDYvf9YSegzXLxBPOxKCPTI3RcaEVNrMecTwFHS4Np89NFHlRWlE8jp/vSnP6lsSx1fxUxQxn+dccYZoOFYorKZue6qBV8q8Hc5UiuZneksw4fXzOHbJzCDQ/7v//4PwfkPyu5Ny10CQGYAd+070tH+eE4wEaUYAXnbQGJtL0dmH9N7sCrdA1TTOb679B81HckrwcqC/tGLD8iuzSuRMb1LuiNz+vSTZ0oGguA+RODbNIAWf3TCGzP1EzptuPz+zlmSfGS/zDznGjnlottQeq+TYzODx50iq3981/G7pSaKCvJUV6SmaSgA9PEJh8UwV63HWD8COh3Tp8dF3sAPPvhAgbMzzjhHUbHoZUjqVa5e/maVEMYYMi4Pp5hKgqEL9+KLaQ1FQfsegkogtQEgcmdQSzgK7uALlVue/eTkeAAAvoSs4kDwKoaAkmYmrJN/QyKLv9Iv9fzKKyLTp7N1/YJDIpv8rrMOTv3N27SFK6ugNx7++UUWsGnIYJjs5RfdR1KPbBPnCh+6ggYza7W1jG3IAWivGNI/oUo9AxpeQQNE3INKpRL1tV31xyQOCt2+dVUgqWt8CWEVGKcn3NdBytrIWL7XFiF6s46KJuyPmd8L9wZI1+hK6RHlLd9vrQT485C4kDJJB3n0KrjD6Q4uLqtCZRF/VTEkHAwafRL7NUTdbdKmCzx3g7qhUgyqijBGzJWUl+NCMHJCaoDYbXz/CJU1TgDI54Y7cQsAaYGjRIX6SHiQj2Tll9UCgFxWBAZxSrC/l2RiuXbV0vUwFiDws2UpanlDwB8bktAyFYBzAsgoyVrOpA8t9Gnz5txc2baCNX9bv+pHc8a5a908SRwxo8ldhEQADKIOMT8FOemglVkl8z5+VmXudus3Srr2G60SS/QG3nziNlm58BuVPBAeGSOjppwtpyMT1dfPX8657n556u7zJQeR+dthZumBJy0BDsttafDHfviAplxwwQWouvB7WTznHRl70kXy+hO/UfNffPFF9d2YP+w/CKmexYUWiHBelxbAQVFdnGcfl9+a75A0LK6EcWjUQWg46vUe3i+vPfFbVZ/3wM6NMv/rGsD26MP3yRAUS/4zOtmJmmQPAzg/gZjBpCTERSWg+g1Q0Lq9K+Sau5+R8Scd+xJDIFpSDdZcjaOp8w7t3uRYdePGcljS3N46HO0Yr9ijRyCImQtACROkwJpjYfUEa/vSAsiKHnTHVueaqKXI14DVuWYN0sngvUP++lerigi93ygDLHyJ4Lr2ZBiuRRLt88/Hg/jHUnUebdiwARbJDJyrHnAzPwsLapCqRkOjtL5J8pvAsiFCIuUKwPOdvuc3pPlxb8OXeK+GYz/HeP3jRkhV9m5Yx0BQDJJncuRZVCr5qg2BGOMAteVPZ+eSE5Dz31oOO6kHqzV5yrQ+hTKiu6+sPuAFa6CHInkmz19saJVcDioVenjeWlaFDFxfh+XPub+lB5E9jy0XIVRkRp8i8fcCUEz3k+1pAVJY5iMpeeQrrFRl4qLx/PpsvaesBNCLDamUpBxv6RtVDGqWYsVZuAJjf2UxiL3xzMor9aoFZOledre/76/yku54QdmV5qXcvhYBtpcsR39LUYGEAywq85BT+xfLpix4MwLwdlwtjFvMQf16lmZzTmSxPFyImcSJyPKpfJi3tNC6N2UQBg8h799qVBTRBRWoB+qM54qRE1sDrOhyxugY6QQic3fi9uyi64AWv+/XpdfrQiDA0+BPb6iu7C+6jEnwbBeCyGEwXYYFWSemfRmnV+Ekba6UwfrXWjV/mzs2vT5diVkpByWqc089q1nfQWHRCvAS9DJp4vCutbL8m9fB11eAah4DpArFzzetWaC2cSbqXzFz8/33X5bv/veyRHfqIukpycja9AUVyQgV31ZYeB7A35ha4I8r6wpjO0BC7A2kvuyHj2UM6s5qYVwcXcXMzGRN3D14crMyBK1mTBage5nB+85yCWZsR3KJK2Emd12ceq7Waa15tCwzxpFxZs5S8eWXysrF+df87jl5/7nfCalV7r9ytOTmZCmKEiaPUM4GAZ4/0lJpCN09epr4z5mjGKATAALxOqaADLN805J2s/kxwsorVeA1a2n57I3HHV2+9NIdSKiYrsqt0RqcBD8+KVYYZ2cXqiJlXrls+OJ7Oefy8+yLHNNMuGCpNtK2OAM4UsjYBe8CcBHXWEPt7mQmkiCZXAkzoFcDPZJY+hCCJktK+iNcYRri/m4CeHwJ5+ASJOL8Ba7ecCSDTJZNmybhxaWmFjXdv4xVPN0L9zUP+whqpgn+KHODX252TeCaXlt/Ctij0eLpA+toQLREexxS1j12oKlU9HRDKnLQSujnUQ7PUKVMSQyU/fhmvV3KoOgc2XJATcponDf2/oZ2KZOoYH/pBeLkuCh4ntZZjy1W5OgVHYBMXH+wQ3jIR6tZMcRa9qvJsFx6B6gOrxyHRLW5ngB/nsoySfBHoYt3VLy9okmBw+3rXNHE1f7uSkMdbiRM6AokYehvNPojCKRwf/OLK6XcJ0re+jFJJg2MUDXtdyUXyGKURmVs5kiUOR2K5x4BH1k05q5NV2AsAPs6HVQtrQEA1eCq/9BdOKh7sOSAWo0enzAYe+p6dtvXNdPtWwM8jizvV5e4BYBMhf9+XdoxQM1VZySVJHu5PWuIrly+Tbuy2mnwx0DbUGQYZ8IUPXFAhDr5nPuvBLokGCVAbK5sXfkdSINPVRdbc/tqrfUP7VonCXBr6sSaltwOwZJOIGFyRwpocN58/BaJ7xwHAFcmDMRnXF+/fiNk/fqlcJUdUADwZdTVIv0HyXVHjBinjumGDeB6XDBfbr55JgL9vVUSB8ca8cgjikziMLI/CWZpUczOTFMxXozzUm3wpM8i069N8mHZIoFyLQFR3IMgUp6dW7ttrTbt5EcFaHJosVyBrNMJ06fXGtUdYEDm/vbsO0ReevQG3GC94aZPAQi3HkSMp2TljCPg7yt+7z2ZBzBVgB6yUpNkCjMnoHcQ6ykuPlpE6WZf8vNncvbVv6+1Hf2j9quVntv07z3ISrbL5MmTVEzd/+BzLSoqBoindaMQMXWbkXF7kePlYOxYgLIXPeX5jzIlbrxVp9jRz803K1Mek1yOALnpCiJ6OcvekVqG9xC7wIuODGoBABVQvFhL+ODas2c/gNwS0O+sVdsfDd6/yy67TFUTIWcik4soI0ZcD7LpcbBmL8c5fTYSW97DdwmyfmcCIFptaFEkBU3xl9Zv+19Lt4itg+WP4O+wz1T74l/stHfsCMnZddSxf8x41cCnoRU5dMUQgo31B8rkUJZvvf1lFSE2Dz7+uHAkAZYj43i/YxUVT2hV5LDqCdsrhrivyAGKHlgmCf7wyFJZyrpHPT7GELqqaOJqf1Pzbf3BurojzV93p/qOC6uSyqheYHSoUty45MfVQqvbMlTLIhcfp/lcxCNRhUsxUzeykcUXdL+N/SaxdGMLPTR2G6b98dMALc7OlmY9GrcAkDF+Gqjpxu6+6a7V4I83Y7KUk2fIGfzx5KbpOSHaX4G6EH+L94um7iAAPII9zStIQJmP+dsP5ysUuxGm6uYIsyuT9mxQMXLN6ae1192zAQDizBtaezMqvrBLz8Fy3QNvyKO3nKzcv58i7iwTT97s7HLUmD1dAUK654bjifgVuD5o3QoI+BbA7wwkfbwMy0qZ/OUvJXhwni1du2LIOODjFi2S1Gp24rQjB+Wupz6VLSt/kMShkyRp31bJSjuMsmLLZNIZY+Xrd/8Bd/IQ9PFnlDU77dh9BhjqAmBalH7kmGUkpPYDkXJ7kcjYBInvkSivAZl8cvfd8nckfFBoHfsX+U/gE9q3c5P8AVbWEWBzvm7nFpl5+W9lzvsvKGB3ySWXqPZ/QzzcXzE19txrJTrlkDwGIL0OoHIjslm/AFcJLaYE6xNmzlbtS5B93NCqKWqFRvwhyfeRg7vk77+7QK118vk3yo+fvqLq/jKm82TWTYPwOmf93VdeeR1l/uYjg3YmrIEW398p/7pPPr7paUUIrRrrPwCAJbD2cz1n0mY2YfwfPxRiYFr3aFHs3FkQSyrI5M0CpctqWERXwq2bLEwuCgubiBeYC2FRxUN46VJHQCAMs0pIRr13rz8SQ0ZAl2+ApPs2nPfXy/z5byKOMBz7wRcvqy1pYS6PxnTN81otYOUOZvzu9LsApMmhVuMO8NcnpJN4evvJrJ4psj/bqsKhd5uuUrppNR0L3b51VQwZHFciK3b7SafQKpnSs1C2wwq4PhkULGCcYNziTrhzJ/euRPYwK25YtDCXjGYGMWpF53rUWZGD2cMEf5pyhmPkNEmoB3Yul/dQz7e+8Wk6G+3mtuhdaiwpx+wvLH6zBqAU5BFvKYDb94yBRVKAOMslBwKlOMtbguNjqu3FWmM13zzfGGLF+vYEgRv25arnLjOc+TFiNNAcDexBtRca0Bhe50rcAkBXjV3N4/0yAKVj0uEuJgfgQaSY80Qu4euVTeginjY4EvEFvrjRIukAF8iG/bnqou+Bk58Wr1W7spVZnDeCbYfyASrxZpderCqSNPda2LZqrgwYPUvFwdmG1a4mFfcf3HdM3GgriencXemeoIIccosA4Ohi3LJlKyw6K0HiuwUA5QPMOyJ33PFb5VrbufOvcJ8FI+P3NDyI5yDWqhTDxds8juHq6ioYHD9JiMlDNx1ZqqwaEhl7MmIPQbFxyW/ljSd+jQd2OCxfi/Ad5np3zztPKh96SIKP4sntJLmZRyU0CmignQgTbH73zFfy3vO/l2XPPCN//vOflTs9BmCY5zbP+WeffVbuhPWzZPJkKcN+5QDYcj4tYN26dVN7MuaxxyT/lFNAxuotIyadIT8cPSD3gSQ7NDRcxsGlzpKBJXB9z5x9o3zzzlPy9fv/lNGTT5NLbvubBIdZiIn8f+XInnSX9NMQleVkpshfbztVuah1e4K/WJD9jaVpzyZ8iAUjnika7rguXUJxvog8+aTIH/4g6hhv3ZqrYvSYrEFh3N7SLSOlarOgAkgKkocGWwvc/OUptW9fIT5rVZ3jvbAM0307btwoWKmvlYcfBjKEABursnGq9JxK47U6JGicP9+ie7EKs3jihaWrrF17AOc34r8QE+Xr24enr0M4zRdWZ0n3GqSqZzjP/6X/5jnsF50oWcWZDssfgRBFx+hxmq7SpQdDFMji70nd8hxuVbpEl2DZImTGxuJcuGocs30DpF8XeA6CCfBwD4FYFUMs5RPQNbRiCNv64Yk2NZG9WJQzur+JvatQ+qwY46uod3wEiPaKIdryV9f+frvVGvvUHnnIwq+QYPwcC3fwmtQoAGdrGcfiLKTH6dkpUJFWk7pDG134vCuDRTDA/arOXZnfRgPHaCC3sExC6ogjdQsAyb+nzdHH9GqbwXcUUr6s3pVTK9NXZ++y6bCeISiB469iCRfCBF4IokLWOWSQIi2F/ROCqrOGi12Xj2sm+uPD8DBcq6df/ZBt5O1v0h33X2uNNGn/Dnny/85RIITb2LJlO7Is8SaO+/pQ+My2bx8qL7xAC0whsiZvBknvMlhQ9sLi4g3y3m6w1gLogxeOZLuMtwpEGvC9LFMBufXhVx0kxJtX/Sz/fuR66d57gPz++Tlq+b7t6xCgf5578MdWSC3+5OGHlVs5ad92ie/ZX63LP8wADo2Mc/xuDxPk3YsD6CWoo8uX8ZT8JqAODA6FLl+Qy2CZYtycz5//IodB4xIUHILat+Nh2eqsCKIvJcszpAeqb4yYfBYSaS4EoCqHrhlSURuR7Nu+VrVdvfg78QE339V3P69+BwSFodRcDgL1Y9VvV39o2c1KS1aLXFHGHN67TYE/0v7MAh1NCABuClzWBLTFSATYtMkCVAR1wKuqugcJwhMTYwFmrWUkWbbOpUCcWwXYTyR5pQrcrZYV70vERu7DvWPv3m8QqxepQJkeazaSjpi0Qff43C+3IyZyr4y94hIVP9oLwYFaFyhN7BCGkFJFtBjCG++Qk06ySr098ohjFmIJpyMGdT6s26UA1xNwvofWLMRUM285tfr6pfzwjRko+/ftkNigtBNul7bBk1RSnbTYmoO3x1gWl3uId4D1UuZum8w+Xrgl85jFtNi0dvzfMRs1M35xGhgBbmY+j9yJWwBIK1wiXLs7khiNVLdEhaD0FC4uZgproQuZmcSjUVeQxaXpwmWh6TNROSQI1UUywDiemQ+rIdKU1+7JVYWp7evrflrie9vq70G7cUq7tv5xPxvC/dcS+tB9rFnwhSMO7Zln/gHA14+hZgBl1oO02iuJB/RRGT16BCyAd6hVC1GGYRMQwLp1i0FTtxsxgB8Lg/kZx9dv6BgFRCJj8FoP2b1llfzr4evUNMmStcT36CeLFi/WPx3ftR7eSBY5AwOaCGvaWXecKQNvfkSmnHmVaksLICugtBchNPvhk5dk6Zx31ZC0VZOJB6xN2xVl8g7u3SEJsDwNQvBaYWGBHNi1WW66/0XJSk+Wj//zZ1DePCCsn0vZsOx71EM+DdYpb/VRM53+jJ91KcrybZZ8xElGxnR1LCUALM4HAAQ1kF0I+nZtXoExviNb1iyUgvw8x+I7H38fx26i4zdrG1OmAPylbALIX50uud0GK4DFChwXXcQMW3hI8ez6/HOLjiUKx4qhAowlLS4eK0jwlenTBfF9feEK3wlL54jqtpny4Yc/oIJJmirVxiomOWB9ZoLQOnDFkKyZ+mMNZCYm3eIbJEf/sVsK+81GbF7tBypCIlU1DwJNCmMDETkg5Au0C2P6mGH8HhYehi+4sLBCDh5cim2cjeotk5V7Wbenq5hWQynXc8w3NeCF41BQhWdCGu7XmTUVNLRlTLuA7RU0aE2j5Y8hPiuTAh0VND5cbbl37S5bWv4o2n3b0Ioh5A2sr79JvYNlQGwZEki8alX40OPjdjntvqJJ4/aX/W04GijBPRM52SjhS8wIlDw1YjTQEhrQL8uu+nILANl4BDKUGgIAmcRhTxun5ZAZTn06Byp3MGP+pgwE/QWSRQgM+cZDDiItq2A9dCfoCsb8ZgjQ7yGQKp9+zUPN6KT1V20K919zRzUWNCJzPvyX6iY5OUkFvtM9R/oMu6xCZi8f6lpo6WMgPT+33HKLykz19Q+QaWdchkxeP1k553VVmSS2a1+Aov+o1WgFu+yOJ3UXMn7WZfLSn29SxNJ0KZJehrJxo8DqY1lwhgxB5RBkCLMcxFCQD7/9rweFlVDGn3KRsgCGjT9DrdNe/nz62t8cQ6HlasKECUpvtHTt2bHJsezg4aOO6TeeukOGjp0hPRIHwR25wjF/xbwv5KTzb5Kuvd27R0dPO1eGTTxN0o8ckE7xQDjV4k8LYEHta2rrmvny/gv3STri5TqDW/CmG3+lYvgIsCj/+MNl8jgCrsIiO8GCVikLv34D3GWJqpoGkzH6nkLLWiW49tJl5MhUAL80lKXLArDLBtjLl8ceg8vZGzQjXj5qP4qLFyC+bzQsgzMQ/zcAwHArSreNkAcfFHn11U+U2zsaiRorkfFMK/I3SJQhvdC1YHymNZQ3LbqS4U3HvD7S/dZfYT2Agw0W3yS86Iofm8NH2KSDLoZUOegO20bdVoBDLZqmiDGZffvei3M8G23yMI7zETdYQzjN9jDaWgTUmXpt882sVMYSFUX0kT0Hsmq5fakdgkB+yKNHwMckC6tiSJBy+7KNrvBBNy2rgLDk2+NzuQTAHeDPct3yV+MqhjSsP09ZsscP1UWq5PQBpeIH70XXqBL5eaefY3wNrRjCOPXtqe72N9jRX4AvKqmE8k2icdILLmGTlNE4nZnWTdNAnQAwFC7acX3DZMXO2g8T503ZwR+XkbSZFsH1CGjtjjTk3gCCZHVn9tdc0Mo0RpoF/rAhPgj7jpzR7q1/zeX+a4xOddu4hN5y/z+/lX/+8SrEpz0Dy8sRGTBgNoDL+eoBrNvRKqOBgp5n/+7evYeEduolZ17zgGN2QW6mpB3eKf2GjIXF1w/xf/GSum+jVJbkg+KmlwwaNV264u1YJz+wju2AAQMUp5smh379dVaO6CRBQKRv4SmfAQvjp6/9RYZPPgOUNqCUaEdJIM7n6YIFC1Rm7zBk9hLY0Lql6yJnVZcXCwoJlQJY7zavng/uuXIAHiAeyCQA3GnnXAfwN0j9LsjLkR0blsiwCbOOsQb6+PipWEvVsPoPAWBxNQA8CP6+xd++I4u++xBW3HHywXsfgPx4suP4LoZb+nUExi0YOEqCQyNhjTwi3777jOzaslZ+9atfOZJZdP8lJdhe5yC4FcJUJvD+/Ymw/HYGr14kwKAnAJUFxmgNfgWMyps3+wNsFcHF+w3ar5PLL0+Cxa4IbuNTFJfk9ddfj7g+f7iIQRmTYlWGAT5VwuQN5NPIf/8rqDIjGI/lmqWFhKWkWSWEQA/hqwq0aRoZkkOrJI7L9agttzCBIb0hu3f/CPLnkwFgT4IFcgHGdUFNQ0yRaubDD0XGOL0I1WrUwX4wrpviF9UXlUHWNLgix6Q+VfL1ZktZusIHf7EKCKuB7EjBwYTQ2qelsRVDuF6D+4tCGcEevliDH4QoIGxAVyDpF+O+ogmtm6Qv6xkXKEN6eDuAa/eoKokOAtUL1ONcgcQL1yatpo2VfgiJMmI00BYacAsAyxHMkAWyypgwP5VBsrMBrmA9YB3IyuzeXrhgmNFL9+/xEAKFXoNhLmjH0tLcf43Z1a7ko3vhO/n73bPxoMWTVv4LoPKEI5aPVh+6fIODg912S2tNZTV40Y2CACaCBo6XHvhQGIdA6pOM5L2yFzxs2amHZejICRLo7ytZGWlCNyBj4yJ16ifWQWgcLEQARJNUF/Kvf/1LlaT75p2/SzBeTtqT8DHWFZauQ4idIx8gSbNfeuklSUMc4//gOj/33NmSBDD4++d+lk2orfzV26DUgfVu8dyPEK8G6wr05w8r6mW3PYa4v9qA5F8PXib7dm2R0VPOkCvu/LujOou7/Q8IDpPczCOyZfU85X4PDQ2T++67D1a6xxzAT687ESm1H8EtOhzxnQ9eM06yszLU+P8KtmVWYrFzMyIcUAEoAiyCMAoKaSghgA0OPoj4vj2IddwDwLdbWflIbxMSEo19TMfxHQrKlYEAc1fXyvxl+T8YkpUwPpDAnwbhadOs6h903WrR22V4AsMVeNrRuvfFPw9Jr/gSGXFRH1UZhHWCceo6YgHJ88fx33jjb+Q//3kblUTegmXyIoD0h+DmvkBZF8FFrUrJsdRxXl655AcXi/uzXo+oY3zD+KeEmcCevsGy/GCZjO+Wr+a5q8hRWO4jS3b7qoQPNqSbVtf/XbgLlCkAf/06VQnpW5jtS3cwhdOIQHIAxIW7LOvg4WyrDyaQUFq6vzVJQTK22nrpqgIJM5F9cbLVHp+ndIsIlTHdEVKQRf5CLySQkFOPVEG2E9casuMvL59qlTrmcSIE4VHxiJc3YjTQFhpw+xT1RjE5Zu7yzW9nknWhN3ZAfNveejBfkpEheLwAoH9gKOrh4m7SjuXw7vUqnq0uX31rDn/ftjXg+0tCgH8sHp7BMn36dMfmdu3ahcB+PE3rENJ4kGanLuG+MWmDn56oU0xZv/Q72fHFezL5nHMRh5WukiRIQ0NARMoZuoU3rE2QxB5dJQZmoe4o9HrXXXfJ008/LSefCRTSTkQH2f7u75/J+mXfSfL+beA9fFmBrgHV5sxZs05R+5eblSYzYN3jZ/3ibyQf2dF5mBeIbOkJsy5H4scZaq8YO5kJHkBaTgn+SMa9etG3MgSl3sbOPL/OPec5n5+dJl+99GeZgGzYBfPn1wJc9pV5XJ4GP+OKJ56QTkBarPBCSh47EGd7eLGVy3XIkDKA9SQF2PchPZeE3kz+4DFLgP916tTesOZNlFtvvRoZwR7yBPrtHHcN6u3+G7Qrv1HhAvbt09JGbj8tmg3o4EERJnjw26l8tGpKtzRFg8MLbo6Wt18qlMFl1jxbxIJqx2QVJqWkgafNz+9qZB8/izhDT+jVA8A1H/Wtg1WmMhtzv/LyPpLcoByVzak6MH8cGvCLHST5B5aqbFrO1DF/dPsSONEVzAoa5PBjhQ87sKPbV1v+tNv3cLblDma2LyW70HIR06pH8OdcMaTV+luBF07EAXYKrZDD2agYAmobZgDriiYfranCdeThZnxeCsjGYX+vGOcl+9MRbyt9JbJ7iMP7RRc6wd1gEC/HgA2Dv5lAmZpTosiXmTjJClqGiFmdBuZPG2jALQDktvlg251c4Dozt4GDY5YvT2xtFWzgai3WjKWx2rvs2bBIxp1+7XEZJt2Ln73+mNp2UtJhlbFqHwgrKowePVrNQrIvqj/UWFU4sxxP7Ds3bZQvr77bvlqDpg/sXA/rcLk8c9ml0h0JH6gXpsw+Ffv3SzKCAfeD6iPEZ4M8fecrUhJvHUdWdiA4ZLWLowe2CcveBQZHHFcXPy24nkjWYBxkdFw3+fTVP6v9Z3UMLW+++ZaaZFm9noj3O/XSO+TDlx5WJNlDRk2WXz/6X91UNiIB5KW/3KSuPz1z0qQpoOX5SZbO/aBOAHjk4E5Z8MWrcmTPelX55R2UtHDFs6f75bc3MiQmgauw2tCqYvJokU2GxZIJEweBwlasSIbeK1VfBHqkUSE/5PnIBCGZs11YwYOl2WhJ60LgnoFkoaQAJHjsxPkzQjWlde799wUvF7CcdrWvbU0zk5guX1eCdxIBlaKguEyNIAtk3BkByl1sLx9X08ByTcMQijhEf1hn4xHH+DMobSapDHYSnL/xxv9Ag1SmElJYmq7L5s9FMvbZuzDT0IBvZC8JTl+DcmZA2xAd88dpAiaCP9YDplw5tkpRs1jTrMhRY/nTMX8EerSuvQOOPgorfHAehW2Sc2pcxQR/jPmjcLpF+xvH/kgq7a0sk+cN95UjmbTTlaJiSL6sOGTdg+ocH/rg+DKKA2TwqEF4eYlQY6UhJQeUHAR+9hf9qaBGa2upxHOdRNOau7ett2+21340UH0pHTsgkjIfAKcfXW2ByOAiQScTOBorzP6iK/i4CSwc7Vnooq6oKFNJE205ziIQKb/xxO2yadV8tVnSfZC8+MILL6xl8SMVx3ng46Ow8gIMOkhsECQQCB6UCLiHVed7PI279MRCF/I1uOr2bl0l19zzPBIMqs021e2SNyyWaTg+kQwAY+AVN4AEEy8kfHSFO7orMkEH3P6IHB50tgx+4EzlD/wAVTGWgkolIrarpAAA7lo/XwrzspRvkjfWwNAo8OFFi3JBq+8ozItUySMuhtcis1hVxcvbeuCtX/y15MCNSrHz5RFcH0bpu4+Bot/ZtFUlwLBNbOcEOenCX3NSyW5k6b7x1G/lJHCXMGOVrth//OMfCvyxAZztVkPbX9LErIM1cf7nryLZZKOEQm8jAM7ee+9duDmBxmxClz4pVlLBx8IsXH4zg5tgjzV7KUzYYSKGp2dnJIEkIE5zAmIU4+DC9ZZrrrHc8uTco4WfmL369HBshRm51ZXtVKLJZyhjd/btp8IFux3MPiPQjwAMWkkadusfO+A5hSRgZA6r3B8knNS4m/UGYAhG3J7+VfPNdZBwjVABQTwp4sISkLnqZVX1YCtaC2dXfALwdwHO4Smybds30PPlSDR5ptpdHIhY18kq8YUWV9lc07eZqtEA3cAlldCPWACwrgoa7ipy0O1Lyx+BHit8kORZC6etCh+CNrDIoq2Wlu5v2V6EmuAS4RiW7cEJjSuMsicNhNH7PSXEP0jyJUT2YKyBvlaN3jnbvCQG9VUrKj0UV192UZlEhnrievGQdzf6iT/OHT+8DI4hc3m1MCkyFuFUrqSuSg2u2jdnXnpuqRxKK5YC7DCZPliKzg5Im9O3WffE04BbAMiTmQSVFILB79enN2nvjiv4a9KI23alfZuXOlyibbnlNQu+coA/bvdiBnZB7gfpMN2xpPRgXBozNLdvD1QPYiRtggpGFL0H2/Lh6olM4I8wfSNAkLOUozzatx/8S1my7r96glx151MSBQsZb45Z6SByRmbsW1zp+edFli+3Ivr59EafCiEAGEYHFkrlf5+Vaa/fLd0O7ZWH0DwK/r98gJXpF5xfa5OVlRVSiOSTgtwMfJBpfnQ/qHVWq3nlZSWOtj6+AeIPXj7SpTBhQn8zqcQ3IAjjC3IAOsdKdUwQwGsAOPP8W+QIxsnEDloANR1MCHyQA+68Ux7C50GAsA+Q1HLjjTdJ98Qh0m/YJFn58yfyNeICu6cekf4DByHb9n9qXYITP5jSnnzySaXH7ZtWyVN3nSu3/4Wxmj7y8+evIWP3TRBtZ8kQcDcSMJLDkTFuzLCdC3CekZEFYFSugFVcnAdc/eGK0JmcfiR2ZpIKrarOcZ6sQHf22VbWLcuksSzxm28K4visw4WEWlWV4/vvRWbNshSEcFGAVQGQsn7Tjc/ydQWglYmI2K6SOYA/1XJaAYFxVfY5EqaVwPAIsnELAJJrkJbA6sIyVgP8JTbjuq6EY+OHVC4wFtcCgFypFAT0rDjo5dUT7mtfRVvDhJVdu47AWhnvIOR21beZV6MBn4je0iNohUQFlCv6FMYB2itoTOheKPkVIQ5KF66pK3Joehe6gxta4ePyMR6ybK/lDi4sZZUMnCcHPGRoPOoBx9BVDPC10kMGJfjIgXTct3A7GtDVX8oA0lLBPvHKcsTmBfpKHqpURYR7oQQpKm+Uw2WdWyVHd+Oa50kV5CWTxodIQGAwzg8f9e0HcslQvDn0xnK+FNg/tKw3FzzRDbzlQD5qGYc6lFtQXA7aHLePZke7xk7QCrlmd47sA/WaFvIQjoPb2UjH1EC9ZxndwOTw49u+kZbXwIHtK+WkS/FEagPhsdy+bpHs275G1i76Rm1xBEws27dtU5mZnHEqTDIEHJQdiM6Pju6nsizVDPxhwD2zKSnMC9mx44CySYVG4C7sJB6ICyPYKy4CiMPD961n7q7V4hX8SsUnlmRy9OnxJEMygvLt0UxEUPrIIxILa+C34Mi7BG3/gU85xvfdx/+Rs67+A37VCMmSg8Nj1Kdmbu0p6qAc8YrMDmembBH48jidlXpQuUxLQGlSWlSg6hjXXhNgF25eb2T2+fj54xsfkCPzN4FuDoipt6/+AQ8Ob+ndf6gwrpMATOvS/qDg9JtAUr6+PpKN0njvPXuHbF27SHHiTZ05TXoCDZFbkeCbGbNVVcFwh94OQJmqKrFIWZ786/fnqtjWKuh10IB+im6G1j5WyGA8Hql6ZiJDIwKmMm/vcNTP9UVtXEEZPytxgpm29LrXJUzEQA6LysymxY28f2SqYUTAiBGWZQ6bUlXXdD8YtqJkqT6F1GxmerOeNEmxef7wRYLCdcnX9+67lgGYSR3ArsoKSAshkzJQAU+dBoqXD+swU5inBpM/gJFhsbbAIEGlLX9IWf9oAawl2OCuERfLdA+CzNXK4knrZ1ZWHiqK7EEdYwzGyDEaII9rYUllrfm+UYmSc2iLDA7PknEeqPBxwKr+EexbIRN6FoP9AZZ8HN/CMgu0ceVBnatAbuwhG5K9pU+cJ2IHy+XT9bCq4V/3uABZfNATxQQ8JD4W5wA4Yr/d4SmREV54QQuUL3d7wYLrK0P6e0ghrnMmTE3vHiyBQSF4I/CXk/v6O8DZaAA2O1CjRdt+/dXakeP8g/F+pUiSTMkukU6wKhajSAKTL1sDANIKyUpcdgC4Cc920rVFhQAAG+lwGsDtuG4hYXNGXmndjVwsDQ/yVrV8y/mqZsSlBggaAkMiFYhw2aCFZ676+VN54+m7HL3SOrUWHHvuZNmy1aD4GC2jRtW0AF0b6gRbv2khvPnmWyQYdCbxPQfUNKqeKi4sAEVJH9kHt+T06dNRsuthFS/GrOJ7YIb5J6x+u9D21EcflZk33mhxd4AWRIkuKQfrFDg7JAxo5Tugio9BBrcafuimljnjg8DHL0B9GltJhK5eWhIJIMtQXYbf/J2L7Gb/AFgOYE3ctPIH2bJqPoCgFyhPLkfM22SV9UrgaZfTBg5GDFq2lGL9zasXqDhLWl/54OIDi1VEmIHri4fbY4+B+3B8AACTH+hJfOzdyFSkyi6YP7/WPP74Hma5vnCr6wffr38toD2xMmtZJY18iyj9rEDdMStXz2AIo6bk4SxW2mBmLsWeV0V3sBZSsrBvJm9c0G0VgwAlDNZFWhhJ9cNaxvbMYq7H4ie0NtLwi9NEuXGpLm6D1jwSTXMbwLbCsRNAgi4QFWgEGb0WEGXMIfKD6pVhw0qxrX8qd/A18GfT0v3884cBOt8COK33dlhv/7/EBjASKTDHwgAs9UmKL29/UBhVhcuCwyxjVokXnXIcCE/x9oMFrrKXHM3CixLP5VgvmdzFF+dzEGJ1Q8QXL0/B1Za0flMtixrPd33e8+Wlo8mwnqGqklYkCiochHu2G6pwtZYM7RGiDDqa1ofP5zXg4Z01Mqa1Nmn6bccaqPOOdwgX+3dr01W2UmP2gW9+uTC188ZhxL0Gdq9fIInDp7tv0MJLIqqrc+huH3nkET3p8vv77zciXupiZbXRDeyWlreRYLBmzWphFQk//0DdRH1ng+vuvqvGOuZdAB4OgkAtLCtXBSDoQV+eppi5+Wa92EIbfCCjCgieDhaiwMP6IgDFV2BmqjhwEMArTVxZHms6adkpunkJ5Ogq3r5+sSTt3aKyn4EpYY3zkeiEvjLnnktUGw34Pgd6OQco5jpYMJV1U+sAqa13/eMZNUBm0dL9qsGafdQotALrnUWNQmzs5fW2ApS6zUKa9FwI+zt8uAAJFsFqKd2ppNNhRQwKLW2c504IuOxEygjjQzwhyjoOO3YNeFDBI2llCdOYy4xbDuuciQfEh+Y6yMknnyk//vgjXK27AOqA6mxCoMfQArDmKPdv//6C2DyrAYyYDqoZxvfxfYVxqEwcYSzq1KlWO7qh6fJ1lVBi2xQylOdA1z3huj7PMTsiIgF8hcnKSt0RAYhDEW4mGALkiZOcliMCB5bu3I5zK6jfOeoenxDsI1MHRUgUrEu+JMMz0igN0DLHogvfrk5TTpCl27Nk9vhOEh5U+2WvUZ26aczED1bnWrIty9FiL47rApRo7Q7g2T02wOV9yNHYTPyiNOD2amWW0BqUaGOMQmOF9RCbsFpjN3NCt6frLuXgNunUDU+7NhACki/felxtiXFfTPi46KI73cZSkdfN27scWZX+qFFrWWC4Mi081neZomNJHDC8VgkxaylcdYf3qElfuEkpb4NqxFk84KZ0gD8iBiaDaKHZEWNQ3COcBxciU0uZqEAAUQ5r3Na1C3XrVvnOyUxBbF2GHDm4SzavmiefvvIn+c25ifLte8/Jc/dfIV+89ZT8+MnL+PxHlv/4P/nzradIAI7rcoJb6JsuT8qzALG7mT1BkjuatijwoTLhgRICf6cr8MdlffpY7k6CKgqzUxmz9sc//hFxmSPlMqZluxC6gktLre1zMWlTdGKGbk43KsGbK6Grl5Y2Arqff6arv+ZQ2NvPmyegjRFwBjLpRVR8HQHcFVfAwuhxoXy4rJuic/n++3C4pSOQoLER3HsIsrdOD0dXTBxhH4zPmz7dMbvWBN8DGCsIQyl4FWu7nmk9RMEaS79/+EOt9ew/MjJ2IPbyTMcs6oRAd/jwQcpC6VhgJhwaIIMDkwC11Yjgj6Lv8RP6h0vnSFirDfhz6KyxE2TKCEHC5FHEKxbDojpvYwbuzdX3isZ2Vk/7IbAC8pjZZduhfGXsWbYdlX3ghrYLscD+lEJhxS8jvywNeLvbncMZxepkdLfc3fxO4b7Noo1x1+8vbX7Kwe0AfwPajL6kvLxUdm9br9RI9+Lvfvc7lFxbD766Y4EZG9FdN3XqAOVqKyioQCyWF7DLSoCCQGSRJqhYwS0AbHf+7X3Vp/OffsMmyrP/2wJrWZA8f9/FUmL3Ezo35m9ahejHoxBl0vRF4TfTO0FiTElCUBqTFwiYstOS1LyW/LNz4zJ59g+Xuuyye++BEh4VK/O+eF2VwaMVk+NgCbfZcFPnZKYKcInkkqcEiIQgjGXgLqD7GoR3t5MuhUiO1kC7OBHdMc6NoISxloyLg4cMVTYsPEyjKJMqLkNAX2/0dQ2zHVwIY/8KCrKwpKtaSnBEUGYXJl4z45Yg0y4Mx6S7l5nexN1M6CDOJABzFrp6Z8yw5lYb+9QPAjKdwKE9qxkZ3RBrtxag8grFybdokQUEkRej9lP3rcGu/u3qm6pkwgmFemLlD1YLUVmcdksyZ1ULazLTNU93oxbqlUC3X79pMn/+fJUQo5eZ7/o1QKJ/lvo00nwN9EsIlp3J1kmdkl2KClzZAGoRze/YRQ90OzML+GcATbsw3n9ncoHQ3R+HmMS8onLFU5ieU4akmUq59qR4ty+r9n7MdPvQAA14TMQNDfR2OSC3FkD9tudyLTczGSyclgM/jZF6NUD6kj7Dp9XbrqUasGTYDX/4p+qOHG8UUoA4C910rP3LIHkCrVtvvR4PSB9wpwWgOsg4uf76IUhWGKQSHAaPnoYM1onOXTh++yObjgBpx6bVKhnBscA+QYsYzUGM4Ce/B4VBZC++aHF52B7WXMTEClYEYRA4y5Z998Hzsnf72nqJqLluffLKX26sBf44dn7i4jorWpRwuLp6/z97ZwEexfW18ZOQhACB4O7u7lKspU4LbakrdXfvv/3q7u7u1J22uLQUKO7uAQKEBEmQ7/3dzYTJshuSkEAoOc+z2d2ZO3fu3JnsvPOec94j+Zy4zRuVHDE30w8hsimYcIjVwDeZbicqjXaNaLRBqgwitG2iXb1VyvJN/xjkt+SQAYCAP0xDcOyal3zDskYCxWvFkO5SggUgJtgQcvYYSNYRWkU/GP2Qa6OwPNtwzT0BZKnla+ckuooYJHx4sX64YHVJyEW6h7x0negPp85jhL1l/nemxAN/PyuFOFDuLtUlnxx1VCCO7//+L6AHSGgBUwQJzPHQd6jjYrlUgJwxNoztMqndpAPqdAI20Eh/ycrOFOcn1Fg9dp0qgXCpNZEszCzXFmZ0X88rGZ0exh96tShr/dqoyot3YR3Gc5EXh161bFEJRRfN6GqqRKJXiRHML6ui/QEMagjAx8oN7RkMJMkhQ6X8MX7ORhVx2Go1K8Y6Bnh9IQvoTdMh8b4pRTkckv4JZ6FhYbjW+1genCm2j+aH7WoSB5ApiS8XAA0HaiKi092x4fZH1ik1WrHWiv5HAxBX5pEDBrtsu7+Hf2tVatS3zRsTrHJktB058JJwXWUsX7lknvrYZQ2gm0IZNw/u4PgAYfmI8gc59Oqlop1tTQPKtBUAFR27CGXbjvpZsYdKDPn2/ac0vjg7+rQr7KjTrsoEzDJtnMWXaX8NtUljf7NSpctZ6679bOxvXwr03mXXXnttJvC6QWmrFytt9VuBCTKbiRkjGea2W2+1gRLEmzhpkgNn/l3BxqmTAJOJ1t7QoXsdV+b2/m+Bz4AUv7HfCCHFHUrJLbnNvybwGfbRA4AwZcT7KZnaGTF3JHeg4WenP2Ad+BXQuLb8Od4uuuw4BxZdQ/1BqBlAtH59QP7Hk3eh5i+l1cgG3pd9//33TlD6elF9t8s9CxPnsXAAU5JAhg8PuKlhO3E343bGPc04PYkYYgBJ+qCsG4ZsJMazgx/sSd7QuZmJCdTpc4bOYXlRfZyr+WKV60N7yo9cLrBa10yg+sykScs0lhpO27BO+rrCt71nIE7uyoZiiQot72aAh80ezcraZ6NWuQcgPevYWMXqndChohEnmNeGRm8JuZ57CsiPmrHBliRsDbmLbk3KOKA4XXI13/21xiqXCQBHspYZF+5rgKQXAsA9g2PZIKHwaFVOiVZSQLKYxI0pO1z7QsY45DTny0IAe1aVZfjpD2uREYrvaVfBNunE+YNGvQ2i1AAdoULL2QwsmT3BajXpkLON8qB1q8797Kr/e1f1YS9wveHCJKYMZgbGj6oPGP+81IK+4OanrV7TjlauUnW3/NizbnDv+/rDD8DKxXNs5sRhLkauhnyBzz/3nNtszJhAIoGX9+EWgiq4q5OWii+PumMAv8GDA4yZxuN+EXVHr6csBoSpf/31d/vis0+c0PBEZQYgM/Leu09IcibZ+p9/+76GuNf699MlashaHvnTJ/LS3uWyloMblhFb976yFd6QPIuXMACgKaqAvmiBv86gEXyt0u1zFFtwB1B7+Fb302CzADMAqSCS1PUM6KSkGcaU3n13gFV0C9L/AJpEqDq2K1bjqnXFcf7VGZ+J6YN5ox+AGcwbDBn4PBiYZmyU/oFri3AC6grDvgG8KB8H4+YZLlh50DMZ/RMP6NUIJhyUS+iKK/aEjbIBMYqMi+oftHnjjVUSuH5bEQVtpSZ0tNjsiQKDo9UyQsznNlVmqCP2c1wAAGbaIwklR4gBHaFs4nPEjqsEXdD6wq97ZgAQgFZsoeXtDJD40ViuYGLyMDxqVNNqmp7MlZd7g7ntrFjAoordjCqy97lk2RECpA2rlTAEpDHiQclUxgCEngEy4qX8we8EOoa4HskFwLhMPJhQTpnORyvjOJxLMrBF4d+8mIGZSzfb6JkbrFcL7zF3716j9l60Z0lXIf+aFYrZeMlVeMbJJHYgRVVBCsGfNys5e0f8ucfJV+Zsozxq3bTtEXb+jU/pZplqk0d+a8NGjnH6dvFlKlnvk/pZg5bdRFaVs1WLplmb3gNztFeqUfwz7CtbumC6rUtY7eKtjpVmzKsCTMQdYpBfsDp7GYrDKA0T3a/KFw5AgU4AfxjZwkpjTRRQfO2196QBF2HHHRdY1UUUURe1q6FMhweVItqu5wCrVrtRYGU2/iLvAmjFyOx9U1Izxx57kZjGgPSIW+H9UZWSNQsXWlEC5dItTX7QaETnoKrI7MAvijsRH2so844p1LpsLnv77bcz2NrgTdj9qFFlbdKkRDGkgbBDcGewQbYSeom4s+QfM2ruMhWqxufc0MoXcsaQAWnEEjp83kei21uKBFZm8RctSeLu1otCxE3eWGhythhfPwD0NkcihvCE2bMXiH3eoOswRnqIEWLuyjr9v9Kl1yuPJsKVnwN8L1++RYLaCwQshylGdZemXTqNUSnSBhygS+lnJTpNczWN+/U7RfutqWWzBYqH7jVvOp0ShEbwuoNiE79Qn+c4fULb6I2s8N0/A0h8UbO20PJnBtrXL2VLxcZxj8VmLNlsuIfzIysYFg+wtjV9X7iCKRUXJdauc6PSDvwxBoAbeoHzV8mdEMLoI1ySiAf+2AxGasT09XZix0oheilclBczwLn4ZdJaW7V+ewbwDtdvWAAIxV+5bHG33fxVKRnbczK9CzNjYeGHbM/AluSNDnAhJXIwLFI3485Hnup23f2Ys0IOYfLwL61KneYh14VbOHHk9/bmo1crFqueHXv0US5JoVevXhnAj+3AcGAiWBuAiRcf5vpE2I0oftALWh+krWLQOsQIkgiiO/XOm26VGzDCqEyRycR43ar00J8EAFcsmpUjADhHiR8pyUmOpbxQWiteRQyRfCHtT9FgHXxxfn6XpgvswzcqGzYsIEsSnGQRstP0hcwNXuKgsMA9m+C3ldsX5g8R42DDmw7hdfLJZbR+o7QIg1tk/k7CBTkTFGDxausC9gijg4VDC9Bf6pfDhlgsdsPl1kzjsDrnBkqFZO424xtAb5X8xZ+o8G9n6T42lJr0e57Go1qhCQlDN3nyVDGaxFyWFPBW/eBa9XTKU4WjSdyQe2pJhNzNejBZtVQ6fk+4/gGMxYqVUxJKT4Hd2hJ//tuFBzSVb7hq1boCj6vVrrYTsxY5q+0bi71s7GIgvQGSiMKc4SqOiIjRJVZMQHWjroHStkXnP/AL6LUufC8WE+kkSmJFAhRa/swAItCNJLUzSSocGKAJt3BvMTmwcXltsHfHtq/gqqSUlSA0AIKHQD8riFeod8tyAqKxtjJxmxOu3qyqOrmxFQImw6ett3pKIKpaLjZLF2Vu+s+LbTw3dl70dSD72KiYP6q9UO4vOxYeAKoGMBQxQYTJuTzR2RnA4dZm4bTRVq9F9wJ92GtXzLOW3U/K0RgRV8aoP9usWTN30w8W/CXeCzBElQfIPjCdl2zgNqYByBBqCiMDWOBv98ZNtrtBI/v16q9sxbooRw6SpZrJ1FmC2qZqYbHiQjU5sBl/D7XBiiG8WnRYhM83DWmJTAjJGIAi3JlJUh8uIz92W0+wWvuBASQzN9iEf01SiS5pgaoW9LEvQ+yYzFslabvsX9ce5Aw4ppQHiTLKHrn44osNFvCdd96R+/PCjG7BzXyNjCyhpOpkB3aY0qyMcXHYb7yhuqidA7sA9DHH/nlWIrPqAgvz1diB0rSZahs7N30WncPUHSmXN6/n5MOtL//xasV6JgrpMnasWLGaumYuUeJ0vBOr5lmAMFDiDDl0NAvJC4KlxIhtpLQe5fLS0gZJmzDSPS9UqnSUW8/N64MPYjW02pSWdkYco4hdF1/o9cMKMpWJb/TODcLdu3aNth9/PMH66/jTNw90UvjXmtUsqVq3heAvvy+F6CCXLNf06JnS6pNOX37EAxKnB/jDwsWMsbxpzTj3AiD9MGGtrZBaSG4MKSHYxAFdKrkqJPSHR5FxHGyDAYXNpGpKQTWSdIOvA87FjxMS9sn6+Y8p7GwD/NKU9j1SwaGFlnczsHzuJKveoE3edZjHPXnuUK+2bXa7r1mvuSv7NmDAQJXqquSqUHTr1j0jrtDrB8kQSpDB4HFTz8p2i038IaGjXfbHIPvg1mlWfnB7O6LMBovdvDbkZs/KdTxP2cENWnQKuT7cwrWqxHF8pcoWgVKyzyAfcXeKvJJL0uRS/MJeHK3awn2Ozoj/o3kmBtC3PaAC4AeQIQGYxOZ9HTMYGAA0ZIivI/knd4O+TjjBVAqE9G3HAF6uADkYNJJ1PEO/T2WGBXS0cxml2YYP1wfoPBA3K0MYYYtgWhInIFyDDVaSlzMC5GD/iOMDoWXTqPiAjiMu4aGKBYAdvOmmmySXc5oOLd7V/CUJBPCHKSzVuagBaAyfmyAWKG8XZbVrnyFwqAmTeRI0JIognK0w0Qzwx/qffgq4sAk19WF8RzATg+gZAHDs2DGGbCPnotD2zADhP80EAAot/2egea2Se8018Xdk5xYEgxE8sjWMYNFcD4cqJEPGrLYf/k4QI5iY637yekN+Oal+NlkMLDI4Bc0Ay1MXJ7liG/+oisuvcvd+MXqVfa95xEObEwv7E0d5n98mr8s1ws/JIA6XttR9LVm2kuUUXB3I+Vm3coFVqCaaLodWunxlu+Gxz7VtPTvi+HPt9Cv+T8H2Y+0Y+TLHUdA1yABXiYnrAokKiqtTiYhMLXDNvfhShHWb8KyrEHHuGWkCASusumIKHVLwt5avFnbu44/lZux9kiE/k11bPHeK9V25xPovWmiLz7wjELtH/J6QGi5qQJGntVy3bjGxVZI6WlsnA4ywn3AA0GOdLjppvZ3Xb7Vddso6x0A5FR5iBf2pq74BA4CIwRsxIsDKzY1rawm1O7oWCV+NstkjExxrxYLyYtJifRQf7BY4ETkVABu1dolxS91ZJIBAibUMYQAv4TIXV0lmL554QCuZw++9F4iRoy9nFBIGoaINEyoDJUT/LIIpJTEFAAhohRX0GzGXHpGKJCQ4E0aTawGR6eDpAiAGVyZRvomreOKvAzx8eGCYHkj075PKKJ7kJMspj4hrmYz4knH+loWfSQgspozPQsv/GaBiBxnBwYLNJOcVFCMXoE6l4vs1HDKIu6uKDO5lP/s3QRqIEFAHwrZK+BqgR6Yy7wvETOJCnbIoyb0OxBj8+wh3jhEGh/mbtUzsqfQivx632v6Ru5cKPbmV59EtLrwtW6fH7kLLsxmYP2Wk1W/VM8/6y4+OVi2arvi/ZrnqulaDlnbF/UIMsm1bku3HD58Wlb7JfrjmGluuu+9p0sDbKaA2S37Rx4dPE8B4VmW9ijkWK3iHkHGICcfE/F9g1aIFtkxUUL0QuiPTBGrOXpMggJBoXY/1UEpwj3t/375ti/34xDX2pwBJpJis5FrNbMWP/1q18tvNyH7A9yjDTcirVauTbZX8iB9uGGu/fNfGjq06xdUjSxNtFu3FLPp2A6AaNEhV7AY9bKXm/WhF33hRsXlH2mdvp1itvmv3CP35tvE+4moFhJFX8vXXNez0G86WT/gCKxtfzpbXbW5kUwPaysgVOkEIqRGpuumGviCJ1YQi8rTYqVOETZkZbR3kfvUbWoC4fD33p38drm9c4Kee6l8a9FkbAq5w44fqI6i1yMJdLt4vIiJK8jINHItJG+IQAbzIvtSuzRJAdUB+hs9gTBJQeI6gZJxnyMCgUQiOhB1E6gaNQOoe+43lugT3GBNLI0qKKNiRfTJXSDRyHMR3ooXZPezj8Z6uDpdPMZLzQC+u0A7sDCC1M0EsD2wZllSAwrGQeZkwb6MbV27/JEuk+Ce5kk/sVNFKKuzMs0T1TTlZygvmlwGoiJcjy5qwBgAn+6TqjWcJEuQ+UJaq/c9xrvEUIzknVvG2CHZvkDt6icryzlqerNrxu9y1kFOmL9wxZOsnDuq/0PZvBij9lrBsrlWs0Wj/OsrnrROWzxOL12C/9wIL98RnU+3uHxbZD+162EWSdLlVuh4fK8jtXn0eJvBXR3v54Ycf9t7Xxx9bZNLGPeQSqacCf8tE71QHVaUbYsyfySXaUokR06ZPsyv+94bVrN/CW53l+9aUJHv7vvPt5ZVLrYKougjtMzGmssWmJQW281KM9Y28C2L51q3daasU+1anTg3bvHBtRjHdVLFwMQQ2YrCHBDim+yuJ6Wv546M2cuCzDqlEb060E+9tE0BXaAN6pqosLq4u/TtJGEgnAn4Agw6wqA5y1KCBzpOLNxfXcj9p663Q/mFA/QYpuHNnnOIJU1xOjQ8fZjQjnPCFFwLC0BkL0z/Alm35YIhtfPTV4FUZ35XT4WIM/eAPdhPWkPA+5Fn8huQQUjDnnXeJiwH01jE2joVjBpQydWj5ea5gj50kgYh2noFncVmznx9/NFddxJON8drAJHIOMhmokYBA1WnGevUKeLSpRcw0IgczAvq10DJmgPivlYl6MCq0AzoDMK7VlCjhGXFeMFUH25Il9fLN+DVOFmZ/x5Kk40FfcLkIJ0rh/S4Balit/BTBZsywaZS7RZ+Q/cKi+cEfbZDhSdiY/9c953W4qrIgt0cVGCqy8M6cfCWmj4cAcjEIA8gr8Mfx7YHcfCu0fJuBNcvmuLq/xE4UVNu1c4djjKKi9/+pa9608fb7ly+LpYqxkuUqKfM5xp559jmL1B2WZ6qTdDd/X0VkSwWxUm5u8Ov579pIriiBYI38epURnpOOzC+6iSMxgzGnF9/xorXodJT7np0/74v5e3baBOsB2iDjQXRSw1I7bOvYpYEgPIk9O6SlrJW+fUs7YPDkk+9Y0S7H2XXKZP3xx0jbWKGrlRZ4TBOSiqYgLugBvyk6N77zvDsq2hLaaj2mtNqNx51tiduqZNaZw0+LWzgbhlwiAJB4SmzHjmgBqg0qSVfBPA8vu+/SpbSYwA3KKI4LNAz6iydXuSRuyLxjuI6Vw+Pi387rOt/s6afV6NRAvTStx61MXCTvtPMnVEhr2eFfACugDZxFQne7dq5rJ8RM/F5ycoKAm5BbuqH2wza43GEdn3km4Pol5wWDGSTUUNPuQhgh8IjPI0GFWD9c7eSjSIt7LwMcenOSsZLrBiTpadxoBZVEAMRkPVfXdUbmsq4MqQcWGjNASBAB5mccUbVQw+0AXxLo7XoGaKFCR4+mZa18/P7/Tnv95uSd+DPACd6FvDIyin/Q9eU3Hjry02DV9mUc4S+T1ikDu6zVkCRefhjM44jpiY599PcP+KtVYQ/496/Lq8/6yd235SXi3Pfe/pst5k8ZYS269i/QB7d2heL/qtbbrzGmpW6zCcO+sW/ffdSKFysqFqeqTZ8xwZI2bbTS0hfcLJdwF7nYPhs2zFXxCLkzkAVaJlBDVAchk0E+yd3ybRaRwPJaqRoXEWiroY1jm7WzC297ycqUrxKyq+CFG9evse/ef8z+/Xu4JeA7pJgtNccEOCu3rKkguLaBTYRgdt97ry0VDbdMmQOltb5o0c2KEWusJINI1YwVWNm8xuz+TyxV44oB8dx3XwCJiJn0G2CM+DZ+LyNEay1v3NfKbg/8uFH1ApDSvv1A6S4q7k3fAXdZGUCF6h4Aoe3JWwWA0oRlKrjkBmLgcI1igC2ybWuE1ZQJJErgAiUEk6ofTH2GkY2CNkx6YJ5IUgf8SJAIFfoHoOTl2ZG159v4+eUVLlg6o3oHNYxfVzmPzaLmcAl/8kmkgGEAxJEkgy4h3z3QBrHqedeZP7+sDXNAxjTe3Iz4RG/neseNDHj0P0tkrPY6zVhgEhnfg9tJUNm6dXRhFrBvfgqFn32TcQA/4gr0G+BryNjVEvgtK7mYOP+qA/J55tJkx5rl987yIwuXDF/GD7M3Z0VKtg5hizQSR8xIdBI4AMG8JHFcIozOJa5nv5UvFe3qQOMWP6FDtH2nBI/8sMxXVog9kI6ez0A8xF7/W4vIrE3euNbiy/vujgXwEAPxf0I2+2Hfvv2QffDcbU68l+oikyZNFAhZ74R5zzrzdLtLcVdkgFLCLUsjyxRQ1a+f8zOK5AmwMeozRgDrS71vUzm4ky+6K9vgb1Nign3x6v9s3NAhbtfnK3ZuN4jpwQcDwWO4mlEEJlVXqGGp0kWHCDwhZjxKbduJyrrg/H529YUp1quXFGv6dDe74w5Lk8hcDP5QEMkvvwT8kkEHh34eenNkWiQnplmTxkIzMgCKV+qMah0wUbBQsGIYiQ+4VNOLtLhl8lA6ULTh+1G2+MpHtSzCganeApDedjQso0SGjZonspg916rrQH9Wrw4kV5DLQVilK5bhrfTe8QOngz9crABLeaFDgj9vk0zvctsTYwjRhmoMBpA+XwiSbGASQsju5RhxsxNLCLD2Z9/ynbFCyFIZxJ8IgsQLSTq45/3AE1/w7hUrHStIxnl2DeDteeVxA1NtpdD2zECEPvrPzZ41hZ/ycwZCCUDz6zFKVR48Aef83L+/b1i/A1X7eZX0BvPaJszd5KpjZBf8efvH/QoQzK32oddP8PsauZdxQfstrlgRO6lzJef6p2LKxAWb/Kvz9HNUVr2h/h2vAUCVxggI4n8utJzPwLK5E61Gw7Y53/AAb7FW8X/Nu56Y670umj3Jxv3xlbvBv0t5iXRDC+4YuUh5Zds8ETrcdcOH2xqpFVcSI7hL2Q8pvXrZv0rdXCuX63N3nilAUtSOOuVS6zfomiy7//CZG6zCxNFWUq0261VcAGnN119bZdAJmQKgrP/9L4DK5JKNff55i5KmyGD5OXeVLmsT7vnO/n3lL6s68TtbXq+XVa1f3Dao3M6qDSk2Jq2bbWt3uu3+ZZl1mfue1XtHyMVngCAH4ppE2VEP97Z33gu4NWG7ACmwhGSjgnmjI3bY4o//VjJCVwdIkGiR5J9jxTyvJeTo7obd7fPPulmJle/JJT1W67s7IARghEErIxZrg6jHM08O6N+h8wdo0mG7+Dr6IAEDmRWWZWWMz4vJy6pdpnVk8cjw2pNkAQsKG4dMUGu5yZHteUFBiOybcDyOnflAhgb2DpaRZV5cH+GfuIj9RsKLX6uQdTt2F7FHzphu8adV3Sth3L9tVp/r129mq8cK0Gt+Ci0wA8RHLVTAfMvapQqn5ADOAOLPCZu227yVuh59BntEYkDbevonOAA2bvYGJ0NzoDyCxAbmpcH8TV6Y+4e6REnDjJ+zwfq1qZBnwyILGoLNP6ckpxDysityt855ipRY9vHjvB+jicpqW0rBEYC6TWnSSMIU9CBgzWOBtAUSf+56wiUFcmzeoIj/27V7l+Um/g+G8+dPnrOfP3vZabs9+uijXrc5et9FMobQSISHcryt5Zdc/tRTVk1+ykiBh6pi6X5WzV3KfRFLdodYuIWzJnqtM73v1HFNGferTfjhPZs/9S/jp1IYwwHAOnq/V37HptJNKSKmsYWC2HpSbFZ1a0EilYSWSgpxLFXQW00hpU7vXx8o0aGU1crzRmtrgaIjelpc0ybW4Yh4xY6ZPf98DVt3+d1Wz63d84fiFyR1YLAoPu3mwEL9hf0b9d0G6yFNvGN3/yTB667SyQvExuGNRd9O+TO2/bV3beHf66zI0UdaYlIza7tho42aPFZJFDVFmNZ0oYh4zZs0Ka3s2sWuf9itrFzL6AdmZdT9BSNDCubGqKoCWPOsjWjHaXQogwx2iS7pK9HqIzkFgEouDuATAwziMgcIwgx6xo+l36KKx9g9o/o5JpXnEFhLvxHnSAgijCbnzM9q4WYGiI8cGWlH+1f4OziMPwezFYfxVBywQ0fwt49kUsgMpbar39CqI1M4zpdB61+fF5+pLkEmKrV//UAlL/rOqo8NyTuyWp3tdVQ2GavkCgDg/tiW7bv0ALTVsa55JYdUJi7a+neq5BJqvLGxn/f/XG5UhAl2DXtt8updt6LwxuAwUqSDlcnDb3Xw1ui3u8DZ9q3JRgZwsRK+u1+BG6VC7KT/V17ls3JqW5I32cv/O9d+/OQFiR6f41y+lYPiqz4UJdVWCKJcufLyKMbZGYoD25Se8EA5szXyjaK7dpkYozeEMF5R4sF2fIM+W644PYLznSkxo6wAIPWFqYaBNW5zhHv3/gBKx/zysT1+UVdb//CVdtfSOda3Vy9Lk6CcsJBV0Otevc4SJdVFmjMNBTzHikpaIRDqgpsJRtN5O0sxiBtw7UoMj+trQ7L+KcvXtXXVWtqmSg1s6dYKNmt1nMYf7YDEGWfsre6iMDxngAvvc2BJ4K8HYAhJjHv4Dpv4wliLnj/TBh2TBPnpDNCDqDQJxtOanWGNXr/JUrfvtnadomzm2r4acz9lVP/i2pKgAbNHDCBVMzIZgwhh5MGQvxKOCfTYu4xNvUFnLNj3Bw/I0bKPkn+2ChXiXg82sn2V3Ozc3LiuPaNMNIkmzIl/9xxrqPwZjonEkmCjLBx5OoByLh/vJS+/kzfEZU7CSYmSpYM3Pey/UyK00A78DBB3hgh3lTJFM+0cVpZ4wPwSLAb8fTpylf0qAgggdSANF/BOHd/+GAUtfpm41mYI/O1fT3tGsTZJ7gmfId+yP1apdIzVrVwsUxfIPeY3+GOHIX4e94zDH/tXr0oJuYIz35T3tCz8FG4GFk0XM9Osa7jVBWb5qkUzrErtZtkez5wpY+3f0T/Y5DE/C4hsc648JD7uVIwfP1YAPgL+F8ifR8xXvcatpUM3UCApSkkP79k3cr22UrbvDAWt3am9vq8XUOBjvY4S7fWEMoZbtGmtGLlkAYHKStQtZVdddZXqus6VLt7Xiu96W4kLc9VvK7vi3rcEALvbsG/eslmThlmRhOVWas1KixOaGdCuvV38/LPWXIxeR1FwccruXHHbbZYmf2ZbqmKorq8LktPy5gIks5X0MEuAr5rcy40Uq7hI2iQtSDHVeoioUpVLWJHeR1jaeYMtOibC4gUUa954k7JnY4zsXACgv/bvsmeH2IjkdnbaLbXdetyowqEZRnwbbBfsIDFwdY6oaZNVezt1/CSrM/krG7brgoy2uE9hx/RI5pa1uqCNy8i96rWWygDepfDD39xyclqIZQsJAIcPN2VhBI7ZtQ78AVwBomAZIUCDDZxGPF+G3X+/GUGLQQgLgEvmL2DWD/jI1MU1zXEi6kxVkJ1aGC4WFMALSwfz6BkuYRLEybHxk3NoHhIHGMz0kSQT9CziugID4zbGHe5lP7OCME7iMT3tw42RQpb6If4vWQVljq7XDcy7l1Pv1dOY29dxcj9oJHdkoR2cGeB3FXdwsDwKDOH4ORvtqNbl82RgAA9cj+j8HQgQEm7QXKPoAXLN5sYQVP589Oo8Ba78psHEegYoHq0EkV5iaHMbG8l5PbJVefvd1jmG0ev7QLyHBYCkYKNGjiE+OEOxToWW8xlYMnuC9T395pxveIC3SFg+15p10Z00G7Z21RJ79o4zXcsqQjTNmzWxa6+91n2PL13GNkqQGZsnl+10VYsoVryEXf3QJxZTNABcWnc/3r575yFbtynZRFbZY2XKW7XajVQkeIxt0fdv9WpStrLNmLPIorXNrDkLXAWCtwTEqCYRJVmVWvWbWLvux9g51z9lRQQmnrrxJCu/cLbVFSA7qXwZS23byuYLiT3xxBOBkhLS56sJtaRMgrLQWUI0O8tWsJ3b0yz6qqstYtlSqypkUFUu4PVCWr8LZBaT/3C1gGNjMoXTrcj0KVIjvtqiq1fyoYvdEiqOdMnEsFEAMDJ7AXSz09rY2bdVt4joQClfrx/eSQAhLu+BBwK6d7grK0adZkdf3cBmLLnRuoBgBIRQl8nAWZ7GoHyjUVG7JGKcqp5iBah4hxnbJddmpAOVXbuWdNm2boX3p1evzKjKW653XLSZRJRJiJF7HCTHlGVy/957b2aEl96PiFnnygbUwlh6SRVe6WSAIMkVryl9l3q+cf66bL6x8BHACQOICDeG+DXgDy+93wCnZEYHGy7jdKUgQ5+QbUU4u7kkIQcQSHIJ68iApuKLP86xdLx+/9YH93pofyf7EQM0ICkSo9/4HZyUbBg3YtxShXbwZqCi2KJgwy3Pq3uTnftVqYU4w+FTEx3oCt7HwfrOw0pOASAenH8XSUdP2n55zVpWFvgL/N9EGEzguNkbbZX0McuojnKbuqVyPU1k2B8pAD9pfpKr7pHrjkJsWCwoi9zfJOx/M5QkyJTJ/EYijRRHLrSczQCZv7ElSlmUkhQKshF7RwxgVHT2xhmtdhUqVZWbVmKdYsbWy3166iV3W9ejz7TYYiXU107JwDxi9wISZGdddX8G+OM7Ys1XP/QpH9XHFq0LXGvDv3vHJvz5pR1z5vV7afp9/+bd1rZPDYsvV9ladj46U38Thn9jSxbMso+FELp27er6pTzbMxKU453gsRglkbhivIjFEZAmH2MRlekoIjbQ3nzDlnQaZDuiYq3eeedZOVFAPcQMrhL4awRgomIE/lFoJgxEEkQtAUKQLIGlA2iIrFQ1CTXtVdeBP7dd0J8p/6TZoPg/xWYd7cAVmayDrm/gpE0ueO1a+SB3WtyQgERKBgDErwlFJU2WMaLJhg0bJmAUL9DVUr1vVdzg46o+Mkjxf3WlmRfhQGam3fII6wvGQ7eakr6eZUrO5thpL0OkecSIAKh1C9KXu89Bf5BTAaS99FKAYfNjPJi9T+Rj5TzVEmqbLSRG/d1gIwKApBnCQYnJI7uZGEl/7CQAGgDH6fCAXnA/fAfgCc+7ZJtgZhJXMAAbt/mXXwZiLEP18V9bxk0My4n7yl+p4b82H4fK8RCWVVbJmbCx65Iy35P3R6aH+/xslRiDcStINmXxZqtftbhFFdHDWDZsrqRdlippdb7KueWHkbX72+S1jgVkH97/0dKErfsFABkrDGL7BvESo96lEnSb82z4UelEXqgOwwJA6Fd5B1zm74FONQ810OwsA7AWJCP5o16LvW9uBWmMjCVx9WIrW7lOtodF3d/73xlnyUkb7NfPnrPmHY60Rq33HGek7vIDBt9tdZt2VN3jKK3vE7bvorHFM9b16n+h8Qo2fpwAiX0HCsSFsCVzJrvMUg/80QRdPkp6wQCeIN9sBaGHqvj3vJRREAW6KZhc1Ysv+dDWJUZavcUtbS2IQVZN4LEMQshQc1Bg+B0JPhPocvI0NEo3SBTcqNSvRbmGpplcpl7D9HcURhaviLZiyfpHkwlDuwxXdgOgAeetW1fENuoHrej7HweC0sqVCxS6VSDcaqGiacpeLi4/JrV1J08eLZxbRlUseivj9nMBtjpyRbdwwsluByH+EAsHI+YHgJmaQWemG21UdMWxmt6yrN5h3wDBuJTB3t60jxFIx/XbTXGX1AN2JdfSASBzCEDEKOlGOTpAIKeNZBDANeWHUenhNPACEIbSJHSdpP8hdJRScF7f/nV8BlyDiWE4qUBSoUJwi//Wd8ADP5UV4ovqwT41WwcHY9ixYelstS1slH8zAEjo16a8kfzhB4CIRZOsyXnKiRHjt0KCw3Pl8kVfsKAZbuilCj2rW7l4toZGJQ0PlGVrgxw2Ahcx7/65p4tNQTp+Oew2U/NOjUq7hFuPrc+0MhdfUsimDood9boJCwBRoaYESrv68VZVmcAUSC7oBlAoSLZywdQCL/7MfK1arPi/XNT/jStVxk655L6wU96qS7+w63KyYtuWJMekhttmjUrs1a1bL/NqsY99+va1XqKjIoV0vr/0UqsKNZde39c1Ji1Wbtad3XvakmWRKlGmpavOsjhRQX+p3RhpEV6gwLBqd90VQBtcXwKLpoxku+++QPpq+l498WXA2803B2IBhT/DmnJKHDCKiTnGtQHUwHABQgCDoJslgx+0i246UnXVhIZI/5VNVIAdL5Jo+ur4iLWkDBxMbExMDcc+XnppNQeu/vpruMDWfA33KQcULxMSQ5LHMxKEwzJnVF+BTQXJiRZctNA0P0INOTA21bQ74pUavjt2pLpawFek+3BjYhrYH79/7LKAmdp27fYIUXsFYljuf66DofSLQYcdDuiQoD4dQzjgF7wtIBcm978OADlu5pXyV9m1+lXIiE9H59ndqLBdvswAuoC9FXNGUohXOmyHkMky3bPjtW5fhhgyABJJH8qfFXQjg7e66lATrrAvQzQ7PwFguP2jEQiYDqXZGG6bcMsB+Q30/5ZXABDQGs7CAkBcA1vlJuDHFz3AWhXKqRzQTlsiqnObygJt0MHyI1JQzH+T8I+JDNyDYYlrllh8hWoqgVbwfzTXLJ1tjdofdTCmKVv73Jy42kqVETIKY2tWLLaOxweAVEYTWCVp+kWOHGm7JaQ3V9kHL6nu8AlqUAuERXYsaO3hh62IAtfO3KkVZDAILBWTX7TXffdZG23zslDMxXqv4KECuVidSF0mX2nGXm3aT8vswlPibfTEUmIg9ywP/gQ75mGx4cPN0KOmwgZGPNqKL8ZYdM3K9ltyVzvuna7OlQ2zt1EaJqeJJqwg13UkJTxkJN941T4CcXplRW72dq85c2Y5oPjTTz8pNnGXElGowDFBDGMzAa8qGcyc68j7I/Foh7JwleO/VbJHR2i0TgO9Fu6dfy0qcZB8AYsWytDtIxZQkopS1vlS8i3NXUIPbZs0KW4V1v5j556UFKA8Q3QQ/H/N3GTLiJ+ERs2B4cInoeS/blndEMIdO1mUdSoVdzficG0Klx/YGaioeLRj2lawr1WTl2QNkkOa1yoZdhBkxAISaXcoEDregSRv22mLVRuYBJh92cFUKwEbla4Tva8hZmt9TZWdG6v4wvy2yKx2wPM+TxiLpH2zWmwgF07XxmUCT+QFCPwhTRAOjCYlrrK/fnnXkjety+pQ83zdgqmjrX7LHnneb153CEDekZbqXKx53Xde9ZckAFhSSSGhbOWSebZWGb8lSgT9OOCHpbyEXhFiyG5SANtZKnvxi6i3uXIJp+I3pAwGYsUqgxH9wdsBHyNC0JS9EHqLl18wRu3GwyR5hiozfkf0UvBZphtJBXiK+dOs5FLntkRmJJx54I/1JIvII+rcpXwniSS+Wklr+cAgVcHYoTi5pU40OUKBcZf9+69V0pgAf8S17csAhpPEgBK3OX36LmXgrlMSxhgxiJ+ocMnrUrd51yVkZOoHOhIfNQAQoAxgRsSbgaGZgk6KjGM47tjdNv+udzJt7n0BIOJiJsaubNktisVbnlG/2WsTp/lP9k+Gt2J/3wHofrHAbPRH3GGw0HQ2NjtsmixO2KKC9DuM2qWFVjBmAD2607pVdokSJCP4jQSIRWL5Zi1LtmFT19sXY1Y7HcFDCfx5x7NY4Co7Viqf9BA9SbysxjBlUVJGTC1hc2Rm55bFi8mhKz+rcWW1LiwABFBtUmYRgG+94kQQUVy5fptNW7LZBaFqdYExnhDCWXz5apJh6WITfv3Ahn/5nNO7C9c2r5bjiqaqRoXqDfOqy3zrZ0PCMitTsUa+9Z9Vx8xT4tqVLmkkq3ZJiWusVNlKmZqQPIIEzUv3nKVkgtqq43rf3hp70FL4EpF7USxfpMBgBSGtSXq9iDuY+meklqrsl6spBhAJYo1wm4bSqqO/nRdf6nAg2nS//26GWHPLpy+wiEoVnVwJiRPZMVgukhHIZMXzGhm5y+bHtbS3BFBXr35aVTI+VTZtP6s7drd9NOBbe6/V0/aOMBdJzS5QLoudRESUEcbtpBq7LZVI8api6lJdzOCl8s0iw0NNXqR2MgzmTEypk8d5882AC/ioowKaKRQMFpPoT5WdOi3CilwsQBzCmF4wOPF8O3d+J3d1i0wuaDZpKHYVaZ8DYc61nsWOyOuB/Cy00DOA/AWCw546ROhWhUsP9AxwPk7oUNHKxEXZMiVAANB5/0H1Y9HvGzE90dW9za7cD9JAvAqSrd6wTdJF+0YdWSU87M/xxJeI2ufmVEojGQQDk/yrqiPEMJLUkVMjlrOEwH1+W9ijYgDLBfgmzt+k1P8iYv0ibLNo5koKJpykZQNUqw6X8C+T1uX3GPe7/4o1GhkvmKTp436wiX9+Zk069LMaDdpaRD6wDwnL5mh/Dd2c7ffg87mD3Mb/5WZYAL6pfw21ek3aW1x8WZs86kd749GrlDlcTMCgiDWVlt/gO1/bq+vNG9ZYifgKNnX8bzbmp/dtzYpFtm6t9J1ELbVu3UZuzSHy5pZ1oIiyYyErXkgSJl49D5TCL1Ipjz32mKtzmyoX7xdKJT1evr/SZBmkG23+VqLIcPlnu3jFer2VvKv6yMxh62zmNwHhZ8kHBowEElJrg0Xp0ldn9UY1DJImkpIeF+uXquNoaNeVibKRS2pbuT6treMlra1LcAdPvx8IWiPgDhFCv2m+d+4sraSQDUoKOUpMXILA7LeKy7tU12acYu46CctVET7+1F588UUHBLvJh9xVGdBFTj45wPyhgehl6fbqlVnEUPtCx5Cyc6EMdy1JG5dfvkvJOEvkCr5pr2YeACSWTif3twAA/pVJREFUMb8NRjIrI0NYhWEcGA/n0s5q+//6OrIra1csVggAC+CJ5n6NO/iDYSv2u2Qr5V9r6TzPXp7i6t8WhMOlOgbgqrbCEMIZSTAeAAvXJjfLgcKUZ9uXIbeSmi5cvS1tp2v+p5hXmxrQz+zcuLQVU1GN7BjkW4pYxLywrMB8WADooe2JChaNiYpwWTjLdUMZo1I0uFz/EQjs26pcXozvgPVRSm7ErsdfbFTnmD3hN5s+9ger1aSDNWjd22J82aj7O6AFU0dZk47H7m83B2T7NUtmWf1WPQ/IvpYvmGGv3n+JHTXgIht4yb22Yd0Kt99rhJ4+Egib/s8IJzsUnM2dlJhgj1xzrK0X6GsodNf/hGNVJqyxJOpOULxcgwygjajvz1+m2LKX/7TlbU4kv8PlfODlJTuXpFZcfOvXbxEw2umYvdGiqZYr1ZRKJH77QrXU0DEk9q8nPtoQ1qJ3eWuh5c5DrNrBzieLzAxIA1rPrzIcYvtQiwgZjYlppfH8rbCFATZh8Z+KR+y5l2tSxJ07Hrdz6r6hshxsot7aNy1q2yI3pse2ne2GRTPYMDy5ERE15d29XMzjPKu7IcE63zfQIlK321yB4Ya4faEks7CsXKYkLRNWiaBzOGuk8zlUgtsHwrwwzqz2BQtLJrBfDzCr9ofTOmrREmBfWSRAs5olc5xxejjN1YE+VmL2p0kyBRYquwYwaKc6wnAg6Nl5RmJIQUwOGSnBZeIeqZ8byshk3pYubxRqfW6XxSn5KTuC2Gmae8AiFly3GWFtJHZOFnGGxvK+LC8ru3ArCmdhASAH4xmxBD2bl3WBmMNFJ5Nx1Fqih3MkUQEYzMoF6/VRkN6LFouzVkcMtBbd+tviWX/bsC+esZJlKlrTTsda6QrV92uo6OltWr9KbtX962e/BpHNjWHkUrdJZkTafQfCyletJfA32PoMuNTWr1lmtRoFWJ/TTjtNem8VpdF8i82aPMoat+qWKXkmYcUC27Zls4vFw52ZlR17qo7l1BNdEx2evfpqIA4NfCbFFJfTsHt3cYGslqqcMVLl5crKi7pOZeqEVtJt0aJE1dBdIrfycWLjJniLQ75vo14lQnWqV2wEkfHfhi8REbxQdCTpv162R1CPjJHE25o1j7I335yjzOdvbGuv0zOBP8LyFMLowg+pUBfT9Ek78f2LrGi/3jZvYiCTNqNbubpLy6eJ1l7wjwCHCz5ljn79tZRyPtqp7rfGP6qNLb7xRpumTOhiqtdbQxkcZBn/pWLBSLcEGyAbIwt5nFSbNypBBfYUGRra33xzrFi1SKf5N1IJOZSA8xvzjo7k/hqYm5BMiND9sQb1d9uWz36QTmTgGtqfvv6L2yZIKiRF7q0GVUsUAsACdILJkG1br5STI0ELL9hwYVYrG+u8eWSqFi8a6bx5ZJxOV1jXoWCwgJMWbLLuTcuGHC5SOPlh4Bt+J/dlgHCygXmfL8DnNwhE4gEJoyOUIlyMH/dkZG9GzUz0b57rz4hoZ1VOLywA9O+xRNEox/iVEjXMRYYoNAGPXHQc8KFqkUWirG7zru61ftUimzb2e9um2rYN2/W1Gg3bOrdkTo9thaRfqtVrmdPNDkr7TWLgyFQ+UFaseEkxf/+zL16+3f784RPrfcI5AjfFRV59aDcKdNyvkhgv3H2uxZcpq0ofLax974HWpG1P2yDmr39Kih0jzZLFyqwgOcPp8vlctqGOAdCDWw+QQjLCHq+sHnmtf8Ymrwol8rpAQXxUpvjpp+kCTJWVpdpWpdbG2ZNPviMdubOVNRuTsY334Z8bPrLddesre/jYgPAdFNI33wRiCxGx8/zRMIygEx/4W3zjc1bxpvOseLUyrjuaIKJcTHFWaWnXKufiSQHVtbZwYQVl0ArsFdlpI+/700669ygHZANjqClZwpqWODIQvih96AzNPNZTDm7KlI1O7sWHcQObCrBFSKzwmGO8H85YV2i3tiZurY7jfQlfEwP5sTolTnD9+kSxrse7OD4A32/SIUxM3Cx3ek2BvhlyKbdzMX38iAE6X1A5kLOk2XLOOdV0jispCWSu9erVy20fGEDgL1nMVHihPFxOjR9mwjhhROvXX6Ns6vGuwkio/WSn7wYNNRcNBf5AlNCXhZZpBmBYeH0xepUN6lFFBEBUpvWFXw7eDOA56dGsjBOJBmwg3UM26XYBEkBHOOYpWh6+Q8UQX+7cqEzIGMXsikXn9FgBzMTyZccIkZgnAB7OY/yz6hJ3UV4Fsjb+xBIYRlg/cizIeM4ra1YjTjHf4c9vtv57kzQwKM3eLcoK/G11TxH427nIypdSbUkBwrwuuZJXE5DdfspVqWM9TrrCMU1zJ/1hM8b9aFXrtrCGbftY8ZJlstuNLZT4c/sjz8p2+4PZcPXimVa5VrMDPgTi+bAiKunWvH1PJd3+ZM8995wlCKVNlhbHu8qkHSP35crHr7OPpSAMSyRvpbUVq4TwsTPi3ajOkYVfb+PSJPv551KuHJmKY4S1yy+/3LGLxMHBRg4e3FHjGWctm6ZaywYX2INPvSAQtVoZtDUz9QHOK3/OGRb9w/SATt+jjwZUiylYSwaqQGuGif1yGbW+gVR+4GqbfMVr1uX9K10zT5AZMFOlyha5pneq6EcFoyIbzF/xTQnWpESCD/wFevf0rPlG8u4vvwTeUXCJiyst8LbBTZWwXCY20RX/1U0jkynDGPf3MvltKyke8BUFxcXEVFF85JUKbXxTy19RzN+JrppHly49BAprCCtNkvh1fwHAPddSC5XkG6tzSN3mLaIqqciC23348GliATU/Pqsn1LtIwJ54wJwaw+/adZeL1fz883HK4WmhB4RVTgAc8FtWEj8dVXx4pTJ1WkrbMeP62deO8ItR1279vhoenutxNf44Ya31aFrG6cQenrNQ8I46ukik9WpRLkcDy8uqEznacS4aI0GHfmGwJMxUEVJ/zd0kkCtPgJ7d8tKyC/4A4DwckTsRzgCGE8ViTpi3UV7VcgqtK6Zcil1ywUttJQ+BH/tvULW4Tda84OYPZ9kCgGzMbQLGDxcALmAmhScKhKKHT8vbX0l3S9Kf7NCu4Q4st8tjxVK17H6yE3BesWCKjf/pbdcVrGA1ldvKKmkkLXWbbVN8YYn48rnd/QHdbrXi/zode8F+7XPjutX297CvbP2qxbZZUjuUk6vduJ0tmjnBZkwcadECFEccf64r71ZEjCt23Nk3uRefX/7fOc79y+dYgT0SLlzShcDTBikzPyEGjUSFayjl4LNdpUrbknGrrU7/AJj0rXIu2eSKdW30ea9b3Hk3u3gu4tCQI+FFVirqJgT6461FMaazmLDq0rojFhHA2UCu052Sg1m6YIEAZJwtWFBTQGLPXshupbpFu4677Kdfo11pNhfs5vlECebzZxSTSRtksYkrxTS6qz3TGjyitWsXF6tVUoko41VhpHP6+ip6PztTW6plwA56xi49jAmjOGdOvEDPJlc9juOWdvQeI8YvyEaMGOHA3znnXC8mLVLMXJLcu6WcYs6VV14qYPyApGPek8ZgXwHUri7zuWzZGkG9BL5SmYUXrmEYwf79+4vN3PvmBPAj0zqnABBQCUDlHbB3ndSmY2LiXB3k66/HbT3WAfsZ0k6sLdkcACnXEuAUPUK0F7kOOnQg7jLkIRQuzGIGuAf8PmW9DexSyWUHZ9G0cFUBnQEyVEnuPJSMmsV+AAj5NFNSN/ySAn5HS7oOoJiXRt/Cblkang80kxHjLl0izdVnDrWBNzbc8gBCWD8Kb+SVMdZWdUraErmSSSbJygJ35KxapK+j1MkPExLcJHAAFcT8NZUSOSiTAEcEJvPK3ETva7bzamdh+gHoVW/Qxr22bE60uZOG2dRR34gVbC5WsG9IVnDp7H+sVmPdTQ4B42LdlrLJipWIz/VoieO7//K+hpZgNYGncmUVz5WwwSaO/kU32qrKNr3ExYS9//6LVkIsaq+TBu+1rw2SgWnRrdNeyyXsZ2Ukg9JSGarcvIPtr2s/cqXBgpdv2bzTZl3zrs0+50E79ftrrWjJQKYqUi1K6nVGUi/AD5O2spI9cB+aA4DU0U0WBbdQ0iTfKNhuPlouxdIE9raotdhHsViJU5fb/Hk17bLjl9um5dsEHoQe0rUCt06ZY6mbAuGAAVFmt5uQf3YPG26N/3xJ7kZRc75sdEjNiRMjnfv0TUmxtFdFEtykoQyvKewgGoRU3QB3Yt99F3B7d+umH5ldO3VsAXnDPsXk9u2qCQhhsH5kPvfocZW82JEO4KamlnLe0Ntvp79Iu/baa5WgEi8GEHAYYBSZW1hLz9vt7xpP6ixlRVOWD2CN4gtAlFhHzwB+X1KIN4yp8IlLzHB4VZqG0pMRcNvgmOIkUZ4k6nDecN9jyPG8/nqUXXnlEVL4OULj3+XczgBAEn5+FLBvqtItycmRGlMgGYZ5BIsLo3LpFVo2Z4AQILJF29UvFfJhJpvdFDY7SDNARZC09MzVgzSEHO8WHUOIJzJq1yel2rd/rXHJLwCqenJ7k9yS1+ok2YEjxNvFakydVcqtrGo2uwzgLI6Oef9SoRQb9gHSsuhir1WAP7KN0X7cmI1+Q99V9upWNxZRqyjBd1HniEN3bVImozQL8QV5CQBD7P6gLipesqy17nmKteoxwFYsnGrjf37HgZ76rY4IxAqmM1uLZ46zbv0vP6hjze7OkzeutTglvuyPzfl3jKWKZuotH+QdkkU5KgTLRf8kBnz51sO2cvFsI6GjSq3GlqJYy3pNO1jKZoHQLFJJV0h8OFTyQYfORZxkSuOmyryaJ1QhoLbwzjet4luPWOtBJ1o7R5TFuMMD7HmAL/h4lUjsZO8I19NhuOQF2rR45BGz++93YnvfkxL6rbKWl1axMpP/tNIJa63XHe/I/VzX0kTBRYO6FBMHpRiZuM4lAyclbLOrrytikUWFLIIM1zGsY/F+R9nuOx8PIDVf2ikqMpSFw30JU/W0NAdh0rp7ciy+/giHVKie2LNALgogDCyK9xIwg24zAE0kmatVnNTiHIv/4i09KvcK9ILPGJSmeMr5SmapWLGKGLviAnoBMElei1fHNzDEMo41g0kU6ebmjjHwUsiftayXYj2PCyAoklQCWtIbXBIIOxTR6uR6/AAQsWrAZygDMJKVy7lxRrFk2WsqQcJ1wQvQyndKzAECAXWwoPLou4eEtLRIV0nPqxX9srR2AIJNmtR054rTx3gA7ABpajpXrep2U/gnGzOwQi4vAGChHVozQMzZVGUOH2qGy/RXyc91V/jBJAFYL/O5snAIHhWkYmpWiHXJFHl1bDwckmOSlXuZfZPkQenc2pWKORBI5m84+04VXHaHW5nL5ZTC+2fepmyD+sjs7ueo1uXdQaHIjQSAvy4fsgC5sYNZtiU343WsYP3W1mfQjdb1hIsNfbpfP3zYuYnR04NVw4V8KNjqJcT/Ndmvobbs3M9tP2zYMAGafq5GbagOn3jiCbtOc/PXsG+sYpkSNvzHj2zCiB/s01cEqgSY3pLW3NKlS0Nt6rJLK4dAbxBiuGTnz9O/EDIiQnJ1n7rK4jYutyLfDBGvPk1qnMkh+/QvJKQQsLDX7gEkiNgJOR2r5JOaU4Zb/EM326JVybZd1TNKVU9xyChVzF00VSeoDyz/clEd3wXn77ZTTky1xeff699Vxmfq7wIC3/m5sg259a+9NEdIakAYGjvuuOMEXga7LNwJEyYEFgb9RT+QEsdkEYOPAIAeVrzoogCwQfIFRZdXr5lp2zr32tMDFKhYzZnyhwKkEhL6GmXqRo2SEPymPeAPV7O84/bGG4GkC/T/JBfoQCBgluTsa67YYTXvOsclQ7MD5nblymkCkLHyhpdyIR3ICoqUy2TUJ+Z/h5ffcNfjaudcE+7JvscV66MxrlVCTlExlT0cs4f7vnv3Hkq8fsuxffQBmOM40Chkfwh1e+a53ZEFov7zKaeYYhADeuGwqFxOEJLbtntbFL5nNQNUiCJzsdAOrRkYPk2KHocY++fNMHWsv1RlE+IBPUOuxbMODUp7H/PkPfDTJASYhVFqDy/pqkR5hRQuV8I3nlCbZf61C9Ui58twh+eE0dVP674NYUhoflg+doB/GbqTH2yycrIrbhi8p0M5caSYguubdz3Rvcgg/uvX923r5g3SFvze6rXsYawvyEb8X5tep+3XEHfuVPHrchVt4/oE1w8xdKEMrb7rROXcJ1ddSd11E5VdSW3a0mKdcA+iwUfCQShDgoTsUP4BeQrzG3ho8GA9w0hH0NFcnp4con8gIArQ+rJu/dsGf8btB3jKSCzG7SxGCeoQ92s10Wlzb77ZZn/ylX2lsRN3VleIi2Nw7lmBYOd/vfdeN9BSi6da1G/vib66Ya9EFfCikmNdkum6dUJJPoOpq7lzkVjNtACtp3W4Ti9RCvPbovOWSGj61FNP9W1hAkOBXSxejOv4LbnfI8WyKRi8V0/lodSWi7qInX32DjfOM84o6sAdZO0EiWEvE62XLJfoaiG64sUvVJW7ii4eDtYPDAyzxzzDxJ15ZiZPtRvDSy/tUJvJYunWWilN4ow+7S3xmUetTZvWchEfo9jJdRahEnBvvLFF+y/uKsqFukyqinKD7fWuIRJfYC7Rh8ZFj2QNLOGQIT8JzCUp7vEocGuGy7tLl87C69NcnJ/HlAIcYUJ5Abh5YOB4qlatbp999pnmp5fG2cZlXcMwctlQ25jTDvO54XNh8+hMU134JcwMDJ28zuorHKi9XHNUCym0gj0Dy9ZtNZjb/5IhT+QZ+KS0XMLZcYN62+zrvZQA3Raxj2hhhjKYSQx28hSV52uqDNw1AqoeQxlqm7xcxv0RF3QqT87ZtGz9p0J9Ug7OA2we4EOXZ3S6MHQ295epmbDkf8LIIKbWat/BDxjAauyPbzoXce2mnRQT2FEMUbECd5wpStiI289klTE/f5QB/sj2DAfiOPia+DTTDdfmOeec474h5hxssC+AmhNOkHtXVzXgDz0/Jeu6G7PnMSZ4X/H9Lohfd/IAVcTFj08PMOjP2gjeSdB33H5U4cD1yT+SM/yV6XFl5e+5x8pr4dBVp9pN1xfROLa55AZYuSlTptg2oZVYarOhlSfqrOi7r9namq2tmj9DI71b780DJ9533gkn7Fg/UezjkgAAVBIK2jAwaMTfkan85JNPCtCd7RIa/NuKKLRnnklUzGRbZQ6XEGD6XlOxVezWSm0zSecnWUzhv/reRK7OUpamY2gkuZfqmtDTTz9D8ZAx7nBJjCDU7sorJWI/1Ux5IdLzC+zp55/NScrwjXabNr2ic6AHQoH75XKDJ1fta7dc116E6Eti42ZbdMQ2a7Vxtc1NfUds5skqX6c5CmHEASK8DQAkZi8pKdKVXGY+ypdfo1rIn7hrAVDbWvQoCi1KHHdgzbseThcVipwPjKLn7vV2df31puzmgLc7IuJEJcN0FeP5haFNeNNNN7lmkqK0AQMC7WCFi1bSYu2n0PY9AyQGeiTBEc0k4yQ5jPwwNM2oQLVZN/uiki+JLx6tazwiP3b1n+7zL9Wp/a/ZOsUDekbN6rwUU6ZfwGTGvcHbUYh3MoHRK+T/4IIjqzug/fM/a8NKw4ToIleLWtQqaQ2lz4mG4Bol62bH9gkAy5eKtnVJaZn64uCwqmWL6h8wyhIkB3M425bkjVYkOsaKyv1bq0lH96LayGJpkg378lllwsZKa7CbSyhB+uRg21aNN7Z4qf0expGnXmlrli+wCSN/NOK4YPYAd/tjuB1JKODG/88/6yUzUt7FjJEAwD8fen6483CRKpnT3dQBgtJvCaAWuZvdxtKky4mRBIAbE9YpA6OQSQEiSEcYME7F4oq4bnFr9m7f3irITbxIQCqCWDplutrw4a6jGJUdrDZFA4WFVHZqTqxaf8aePn4NaEuVeo4Fa9UqkIRBrB5s4FFHnSpA1ygjRu+dd17T/Jd2btwLL1QmWCsBWNldd92lv3/KI15JjOnZKoE8WmzZ3zq0AU4axTXSH3AzrJ/k/RzjBvBjmarnZRjzJKUeh7dnzEgV2NomkvUad24AZeBu3Kn1618lYL5SotbSCJQ7PlJuW/Qe0XDsqwBCqn8gCwMgRAiaONGFYlQBgSR47NoVITHs4zXGsjrH79nJKk1H9RfPuMxg6nApQwBjgOSr9YXMYFzE6BJ6xvUkzOwMTC1eVQ8Ul7uSgGgcegkkxDny8KGkZGuk663QcjYDsDC/TlorNrCE06RDlmR/DC8T4JIqF7OXpRiSZH4j8P/EjhUL9Qj9k7KPzyROBN/T97HJIbGaYyL+DYaOqiBZxevl5oB2ayPICGxfcjNcq7UrFncPQjXKF3Oamd8o5s/LAA70knd/yyr7mOSTSLF1LWqXtG2ah31lALP3sADQi88LdaFAaY7XEwT1B8PRoXl3aAW/p8UzxlmdZl0zDZRqI43aHeleZBEvnD7Whn78qJUoVc65iCvXbqqTpbvrQbDVS2Yb+99fiykaayeef5tNGvOry1SFrUMj7tlnn81Ipgi3j1Urd9vKax+1Gf3vcCXNyKGA4SMIH+YJoPHFF8vFLFUz4tg8wzOLO1CFKeyhh8zwuGYYiRv4Vr/9NpD6m4HkAi0AjuyH2DQSJNhHelKpawDhl8nwe3rJIFrBP7/3A0C7nXIFr3j1NaveorkVBYkAFAnwI4gvXQNwzfI0q5Sp0+x/wR08KrWHzVTXe0SsAVf1BcyKKAbvG7mEe8kNneQSOGAlb7jhhsyubO2uiQQGAU9kE2OnKOhtgVAQ+nueMVyGP/yPnWLeqP0dYFc5F34rV26X5jBS2yYJoL8trN3MVaErsWG5bY6vLmY3ELc3cGCU+qjpNo0UUi82lgSQrsqwne6Epdk3VV0Wy29NRi7ZvHM13yxDpmWNkD5u2vff367x9xdIDIA/3NGAVEC/njl0XIFrAfCOofOHu5ykkAT5dInfzGS6AOpN+8uEKN1i9vWuMq17yAfMZ9jDPn0ChVxuaqFrJNPGAof6zSu0rGcAzw7VKIiJOq59xbBzliaBYtqSSUx5L+453MAwvE1LFG8O2RDqHuSNgJsc7uf+nbJXYsvb7nB9p6YtJdX+q0aJ2gNhTeTepTDG9CXJTh8GVtofe6fLWmBvZ8ZQEJMe2KWyff/3GjGTe5ZnNNiPD5B0RypHw/vfqV+lhCvdy//gxH3MR1gA6D+YcGMrBH+BmVk2d6L1PePWcNMkyRhlc3Y5wb2SxAwtmDpakjJfW4nSFQQcu1jVOs1V+izsqQjbb25XrFECSOMO/XK7eabtyleuafe8+rtKuy23lYtm2m9fvOwAynmKrr9X6CyUhAsd/Dl0p53x1jXWtlS6yLFAGe5csjEBZljx4iv0qurkRrxlgTUBts676XvL3Ltu4uvKNrSZvyy1IwZnWuOqgrAElhF3L9KCeI7DGq5B0oPTjZgyQhUBgRHPPmNr3vrM5jVuarWPPnpP1gZt5Q5Nev8bG3ffL9alc2Vv82y/A/ykfuPmgWpyfu0+qm+QrEFcJNIn6PZt21bEZWK7CinaS0YcY/oeiVOEYfMHzcGsuOxrMoAFemDtAFTFnrvWEo95zjYmR2UkongDnzp1kVzLn2i7aLmGd2o+j8wAlYmnP2iPVX3eipwf4zKc3TZkUf/vf+4j53XChFiNN1mAv5LYyXOcNE39+tRyDuwBDcZWiGjL0Ou77rrrBRYDsZJkAhPjSMU9plskpnNNk4lMtjHkq0cQwgTeJAD5gk5YipAt7OE//yhDW9itY/mtgQ3x+WvHxwgkbtXF8LlWUu7uUmWBkBxC7OG6KYusSjU3nIw//JC3rl3K/l2YlLGs8EPoGcAN9eWYVdZJzES9ysU13REqI7fDxY0j5bFRANGLjwL3lSsZ47I3ufcgY5GdexB7Rpt2q0AksYcARy4n/Ys6FyDnq9D2zABZs9l1D+7ZqvBT8Awwh11V0aOlfgswmO+vpUvrL4uLsHOj6nEZmwIYSU7ZlzxMxgb7+FBE/zRtVJKXiiLB1/lSPTzxP8a4+N0LZ3mGOhBALIgFpMMdeF4tR04lVlp6UXIBZ8dKla2s5ItTXVPAIG7i6WN/kGsx3oHBavVauQoZ2ekrt202UgKufNCdLbedabuKVWu7V5M23a37cefYkNf+J+bmA2WNfiw33htOZNkv8guAAmAUiQ/8c8DIYdzMyS71jKSA2jsqW+r6zRZdWXdln0mnOUMbzgMQ3upxk5QhekoD72vmd/kv47XDk05q5JgrskDDGkjAK8+R3gjmENvdrbuN/3eFRXepbzHpcYIsFymocTW0WktHWa8TS1nRU/qxOIBS8Cv6EScMIzGCPre5sJ0DN7CewUCObqiYMVA+WeaT5BNq7oZEyDRONwAgSR7SkwlkQwg0klgyVanBrVGL1s5EwjkZl0s+fcQ+/SnKVAJYenm4kbeJiR0m1/gSJTlvEvgaKJdzdZWf2ynwF+/twsp+9qqdMMoUD8k26YtvvTVjPa7dUaO+F3jeLdf1FU6Qm/7BpTC6WAklkWyW/59EIYzz6rltIVjJRCZbG/c/IBADFOJ2Vm6Mk/qhPxI9yqgqy1Va/53c+M8884xjRkePjrKRy+vaEfruWaQOtISqylwoUcPHXn7VW2z9equ60fiEjO/eBw3JOjaMt1ICG6j5e4Hf3vrC98wzANvx+7/rbXzsRqtYOsaxeqFcczCBa+Wa5JVT06Yu+5IyXMRpIRTMcw0ix4O6q1ydzhU3y8PdSEiYvHDT4T4NeXL8VEEb+u8669OqnJhrZfzGFnGyNH79QULjeCDxX3slBQKzMjQMuVS9B6NwbWMU/3p2r2oh2XVc/OybJB/+r/hfCGdZYMNwm+xZzr8UA8HyMtvGdXiI/Fk4fYzVbdEtV6MFDFJ15Jjz7rZ2fc80AOHvnzxuw754VizhKNu+NSVX/Wa1Ueq2LYpJLOaexrNql9t1RWOL21nXPWkPvDPaKlWrpfiw8yUQ3Ehxe7+7C5HqCyR0IB0SbOAo2ByYQG74f/yxwiJ2VBRTGp2pKe5KgAZskMK9FMhvyiTe00RJxy5rdc8S3ycAmMATyjIAFbJDc2PvTO9gC5pXsRqKcfNq2JJFSiggice97ulhRU8/OXPX0Fl+e+cd0nYDS3RQiR/86AhHlUXeC/xNkq/6KUnNAKBw53rC0Ekrk21tx+Nt2Sej/T1n+kyVDOLq3L6Qx9Hk9es3wJK1/524q2U8JTLuH0eVcnF/MK6E0D355Cva5xaxjUfa3XffIhdtY3m44+z66+Mz7YMvsJXMKdp/kH+b02JdG5I6vpKoNmX2br75JsUdFnc4mGRm4u088xJBvO/+dwAxsX7E6Mlj68A/6wkJQOaF8SITA55WqKFt2xHl5giwDEj+VmEBvXoF2F+yijOMIEfFc+4S+KxZs7qbY6dJqA6TisZkNPN/iBQyRQQfN1ChZW8GYEYWrt6a53FZ3t65//y7SHVUxXyQnEggfoX4omJl1mSSCvHaH27vVG2hDm0o8H24zUVeHS8M308T1opRDdx80B88tl0FxaPqN0VGaINfpoZl27QsKwMAwhRmZQDEY8OEVsCEw/LyAvzty7Le0z62pn8PqXoZwvvY5D+3esWCqc61u78HRkau5yYmqWTZnIk2+ttXxJSkqgRdC6upCiMAxv21hGVzrFLNRvvbzT63L1uhqt3x4m/2xSt3O90/RKKvumqIY5AI3g9luPm4kaNBJ++ismyT7LxHOilSNcJJdEBiubg4rQcQwPTQV/LAcy3683fVZeAfDxaIODHctUpy3dt0A0fmBLAC2AxlAFGSUegj2FbNT1Hs2xK5p2Md+AOUYcOHB1gr9yX4DzTnbbdlXgrSk7tYAXwuiaWMgNnx3/ysNkdnavfKK0PkylyhChfnC+CUz1jnagRvjrWT//zafvk21s7NWJP5AwzgJvze2lfqX6q1PKqeq3axtNupNnPtdNuudNoLlUJcunScA7Cey6BcuR0Wl5Sg/d5gEaNGBsqlqOtQzCRToGl1JmLSVQUp+dV7RlDgh3LtAlpJFAo2tiHru1cv1a4UcicOsK38r/SnxHIXSolrl5g/sBrvuGdxkZO1y/nhQQAi9IEHAu2JlwRrIzfDgwYuYFhAgN2uXTWcHmKJEslq86q+73LnkPhJ7zx6Y1wmZ2IZ70uIdwKvC63gzsAOoR2A4HSV2mqgpJTD1Zw+3d8Jbi4O1znIr+NGAxNgfVq3Ko4FJPu9cpkqNmzqevcwMmK6VBkkCu0lQ8UExRAD+IjL9MAaSSK8AHneMm/sJJ7wUNNSSR5VwmgvF5UQ9La0rEGm1x/v+wUAQw2SQF5+GA+HOINN61ZaSVXTyOv4veLSEGzUrq977UjbbqsWTbepo791wtNIztRs1N4qVm+o/eqOmENbtXim1WnaOYdb5a45AfWnX/Ww5qiCff/hs7ohzxegHaubeivn7gvuFeDx3ZepKt8WowoYAer65Zf1RFQq4CXlhg4wA/QB4DAARMm7rhNy3DMXJHOI5HMgADFgD5gEtsj8F9AJYPSDGmEBFyPouR8zbyG348djbUfNBGsv+mmdGLUYxR1iuCWzlGDygTe3gQAZ9HxSyRpWYsAgW7+9tFWO1QEF2dq1C+UKPTMT+MObjHbhiSdGSfsuyho3C9oo/StZzTExpV0M4M7FS+2V76vb4CsDJfBKlk+zzotL2rCk5nL/viR8KICoGK16P/5ib82oaxtEk/bYkCAYJDRGuREyMBQXSTZ0sDEegBrAjQQdwLmVq+ZQG+5nZH/IviUb148D2Y55FkGo66KhknL+dILWnPPjjw8Au+B9cdmzDYwf5w22GFCIe54scUAhDwiwxIDLU0+NchVVJsv9f9RRNdyyd975XtVW6gh7z7Qz5AKGUeUFwOa6RZg8hQshC+PHPko/gmSpFlrBmwEveYQEk8PVEiXf9oNYKtioQsvbGaAABnkQsKtjJL3Sr20FtwMSxXq3LOdiAmGm/1S9bGoUs5xqJYQqLF271QG8cELcwT8pjaqVsJ7Ny+q3ae/7g/+o8E50b1rWhoxdnS2R7/0CgMGDRIm7jIJukw6x4tL+CczJ5wXTRlu9Fj1yskmO20ZJX7BGw3buBUOxftVCxw5OGfmVRcUUFTvY0qo1aG0lS1fMVt+Jqxdbuz5nZKttXjVq0KKLxRZ7TeXibsvocoKC3dpTt4w7fboBDG6dfq7VHv+ZE4f+7rtop8vnrQ/7np7d6l9PWB0VMnARk13ssVr+NnzGrUgb3j0DpAAycDfuZZIsWR9VSf2ttijFqqVpRyWgLWUO9Oy1wb4XrFhX1EaUv8NOH3UH6iQZBpjBcztgwEDFU35q99xzswOzJDwQ8+YJKlMFBDYQGRYvNs7rBIazdu3iYgBT7NsqV9jR/VfZD/c8Z9sadLcNG5NsRPtBVq5MGyHe1VbziGSrcf4RVv70AdZPKdYRZMngo5XuoENZAFixlk2aRLivsKswtRjgD/vhh8C8IYdoEUfKjb9AoDBGsjWRzl1LFjaAPF0G0rF2bMf2v/xSXhVJ1uk6CRy3LzSSJnuZlxkNK6gyv066hXlhPjAYXgA5XvZmogmJB4SI5Vo45phGkrv5SwzxPQ6Qeg8JCI9PE6i/++677f4eseplm+sr1B+e6imJOVo//sG/haHaFy47ODMQF7tft7mDM+j93CvAhAxq5HMKr839nMwwm1ONBAOTEXqAzEvvFmUtXhgIsHdCh4ouKWT28mT7fNQq696sjAN/lNMlw31fBnO4WG5mDJH1fYE/rz9c0PvAiV5T009heKOTilLUDmXEv9TRAP3WTMtAxVWkD/hfN8AY5dQqqa7tgTKy6MpXrWdteg+yo8+9y7r3v8JpD/47/Ev7+b37bdxPb9myeZNsR2rgwgwe184dabqIdHHkgjkM7isn3xu06GwPvvtXpk3WcPeGOQMRpBuuQ8AftkrLqQ6B4b2cfd+ntn7YVPc9u3/wriLoS6JAOGMqYI78zB0AwZfXkXlTZSL0eGGQrV2z2ppJaDpNNFyMECOuRDJ0qWySE2Nf5JlQmYNkBs+oNLJDMhmA4hYt6lnFdctsxOOj3Wpcn8RSSg3GGWOlSgeeZBhFvwHQZs2KcDFzPR46Rgkmf1iiKLwSJbbodZyyXlu4fRzx4lnW79HLNJYmjgmMkPC1U92mM0riYYBB+cXB24hOkzlMvJ/fAKGspwofsXoLF860RsXL2Gn9tzt3PMcJ5ld+z162cmWE5j1SDOMOf17MXu28BeRyePsnyxjtw+DjB8TD8GJI52DMebt2bfWepIIxOyQ9tFKyMUOUFX67E4WmSg1aiUWLaaD7MGIB0d8qtIIzA/6ge4B9s1r6BzmMjJi0L0avsimKiSwEf/l/4nHjEv8HIEQezzOSj8BDHRuWdtfg70oaoUoIZRNLal1W1qRGCTtGjOLF/arrvbzrJ6v2/nXRKkPnYhH3UYqObcKOAoHnvq3KS0+mmNOtIX2fLF9i/WKFbtkJ+kt+I9CXWIvh09b7F/8nPyeuWWJlK9Z0gOpgHWDRYiVc5jBSMgDSjWuX2/L5/9rsCb/ZLt3kK1Srb1UVP1ihegOXWbx2xXwrX63eQRluiZLx1rJjH5s1eZTcuFtszYrderrYERCfCzEiMoC9qhG4HEs3q2aTl5W3VR8E1EwAbftiiOgW0irY8xq8O+VxZBj7Ir7MDwgzVurDGyMbWfdXv7MaXz9suxVTBlDbKhQyZMhXAmUzxDZNFBv3vctkJeaNWr64FLMyVpO4gusUUWLcj7BVgEqkWniPbdTQxm9eZL2su4uTFBHp6uMCcMkchi1kzIBlsqn9RnwcQAi3eULCYCta6yOrGl9Z89fG9UHiyo03Rvg3ERNZbs93NiQt+MEHMzG2sHjTB/7POrx8ofPV4uIFxAPC0HOkru5jj82yBitK2x+xyVa9VVE3VvZHjCaufG9qYO5I5KklWpHjr+urHOMNhBhQWFb0CjFAKNU9wHWQyQBPxsT5k1fX2YgRgVq/y5bx8BM4D5s2rRdTOd6dq2XLrheAr6IEkM4C1Dfr9Zedro2LK7O/dLmy6iMh0FGYv3g7ZkiypNAKzgz449G5qp34bomCM778HMki1cb9Q/Fn4VyL+bnvw7Vv8iAoPUfW7TKBO/QtwUeeEYLQuHqckzn6e+5Gl4lNBZtgUXOvPe+1KgR+5KLkZQBc5sSI+Vwo5rBa2VibIy3ArEw/16EtVsGEv09Z52hkWvBPBQNVs0KshDlTbZEyunQLz2SUXpm5dHPI1ORMDf8DXxZJ2Dm32b/5cficmzIVa7hXC9Uo3iUWZe2KBbZy4TTFD37j/G67xADWVKUSwOGBZgE55hWLZqi82wku1koJwrJo/oQ0PwB0QO+0HlY5vSUgTfjIsUx8hulD79cDEyE7zGohgWuaP9gr4soALsEgis3HKGM2KWmzRfSobdWEdpYpw/QP+R8rVqhklYpVsipRRews+ZLXgc7S2z+hyiRkCXN+OHYSHT744AMXk0d2LsLZMTHxcqlOUd+/2+uvq7yVUE5zBUEeo/InCCKPGzfOCT1HR5dyAA8QBPgBMKkrJTnsccW6Hfv+wNIBuDDUVRo3/knVNlZp2SmOhQNA+vSgAw35S7bNkCEBapHqKqIZn3s+wnr1CrhYdTgOiHV4Q5MlwW3C5X79NTB3SlZ2LN9HH6lOuJ5Ce72mNunmVeeDKCWkEDAH8IXpxFX/888NXSJIKAAI0ANYAhwxmERPxgegR/YvMaLERgIMyTImY3zLlo2OmUUzcbrYzCJFygisb3fJIWchHJ5urdu0tSn/TrZa9ZrYtY98ZpG7ztcPn7d273c0tuavSrE6iumZsTT7unV791S4JC9mAGICNsavxYb7l2WHgy1as8V+E8vEz1mhHdgZ8JfWmySN0Hb1JA3nu+4AgZUkg0RsIMSZlzkcbpSrpTOYU+Dn9fXX3E2Zso9LZsEEhgWABNAGFKt3ugPxnigIeAxlxQQY8Xuji0UCCBkrpJzXEmAsL3T870Lpe2kgZSVauEQo2f+UFqq/grwMti1h+Vwn3VJQx0liCtm+XsbvjrRU+/nd/7OUjets6CePKbBfzJjcyZVqNVFCSYMDUq+4XKXqyrqd4Rgtj40JN38AwI7paAF2izA7j/EDCFChzTPYI4p/+Jd56/b5jq+SNFJlDHz4YWm75ZbQQJKKFX/88YfYxEoCKbNskJBXNQXh1X7wLWvxy1hrP+9nq75xmkUIEMalB+Ihgk2t4ETF0zV++GH7SKgEKRSODXkcAMnrr78uGb9IFxd34YVnOQFk/5hhQU8VkiEubefOagKD5srCkfyAC5hKHYCxcMacAcwoXUema1TUDoHABtJBjFVcXhjwR2dMOPOCpevyATyJSQQbFl2tSScIUHNA/J2G5+QIJS3o1qPt9+23vwicNwz0EfSXaUe+p0uXgA6gdwxIweCCBfwGG0CfGL5Q1rNnYCn/m0OHrlZc5xQllEwR07hC8ZLxLrOY6iP33HOfA+OPPfaME89mK44JwL9YaLm8rtGbn/4uoOuZDpxD7S9VT/l/6AGZkmdk5NUUCEyW5t242RsKtQFDTdgBWEbGrwXdnkrHKbGnVMwB2PvB3cXyddscsCgEfwfvPPAAQl3qyZJg2S3CrLOEov0WG6Ma8rpGeVUvH+tcxp6Kir8dn0neya1RB9lvWbmbo/wN/Z9Bq8WLCsXJ6krFvaLSj3F3LBfN6QU/+tsTdApg9MqfeHpDKxO3uzsUwZEgWveEpgGuVpwCAqHoCBI0iZo1pUsOBVu/apGVq1zH3UgOhfEyxiIChNFFi1mHfvKRyYgH5DhWL50ll/Gvlpa6TeLQVa1yTQHCmo1Vsk7IIY/tuLNvtmfvOFMlzP50VSSy6p4YQKpBYLhwkczzBIODtwOHACZyZdBjQo9rlIGL1zEci4ibl1i/K6+8zD1hk2E6bLRC4pTl1eLDe2zC8LK2YPpI27qmrR2l/z9coRiyJqWVzlpLSstHCvV8LH0SatRybGSfIpBcRlnfMS++LUZLlFa6UYBE0+RwGD/qu3a1cMwWmbG9e2fWz/O22etd9Gjp0kVcosYjjyAGvVGgsb4A7M+unrIXQ7jXdiwAkXnZFOkNAEnIKBaNEi1GYKUmHhaS2MPLLktvpDdi7qi0kpa2RJm8x+1Z4ftEljfJG8EGaAZseyZ9ZscQEvMIs8ex+42kDeZwik7I1KlTnQu9srKXTzutlT6frfjJaqoOqGORpaRs05z+LrBXWue5lDsHgFkEpjm2Rx55WOf3SputMIXmHfv6d7PXZ9yKBFvX1A85sT4YHhB+KxsqY48H5qkKwF+Wnu23VweFC/J9Bri3kH35XzeEf3+bvLYw3u8gn2iAXbnYaFd9A03KavptoA6w34oJBNbQcnBUOPBHewA9OAschvcoO7ZLN4qNIuj8Fdoo0BHjc0cH95N+mwpeLI+PftSOVhAiacWlVXCbmneU7olMH0sJUZopvtRygk2JGwxm9ijnw1P5FtXFQ+/GhJDpu55+PP8uvsmBShArfnMMgMgELdMEeKzj3qM7uEv2R/z5YI2c+MAyFatn7L5IVLRVrNHQvVjIOULWhsSWiX9+YluSNkgwuqhjCYkhLK94whgByP2xhi27WPmKVcSy3aJKEsMETkqH7S5Nd/6iJB0IxBC8TxybNtkLAPg7ACh5/yvoGyMHA1uYpSnRZPjcqrZ06p64seD2ABJi8i6StggMF25F4s1E5gk8pDmX9u4yZa3c4JOdkDNC12QS44KcL3RErVsMRhMWiiocnuESdvbgrXsGrwVDhy5VxY/qcgdHek1z/v7ee44mbHDEEXIpl5a7eJb6mKA5qeakUgA9IibtzjsDXQO28PrCtPnLz3k7prSyi8NrpElNp9wAgH36eC0C75zWFi1GKZFCAsu7GrmF9J2eLO2+e3F8gS32/EWKZSd+fZkIV1f5g4zi7t0D1+hK6doMHTrTMcmcF34cmcOWLVsJbB6fUUWE7clIJmPas7p1a4kVnCTg2UH7SHMucJjIzZvX2XPPfeQyz0k8Gv7tG2EBoC4xW6w4K0JkuklugRqg/O+s0oMu0g6UZvIAYbVysXJH7nCMAD/om/QAXWgHbga4wU5ZlGSdFISf3QzKAze6vNkT91S05rICE3mzp8JesjMDJMAC8gB4MIHV9RvgB3B4SanbS43eCfM2uSRbHhyDKwqxzS/SFzyhY8VsM9iUf4NU88tSIR8TrD3oP44o/5fgz5WkWQOaROgQJg/sxw8gIBANLGIBER7kxw+wFhxwWEHUOzsn64UXbZooGNIbIKrVGAdPKRX0cdrUKyXUW9QBQuJqeIouSBpG/NivW7nAOhx1jhv7ofIHpq+S2L1wxgVXukI192rc/ijXLG37Vh3rQsUSzrNZYgl3iCUsJrYK13G5KnWtbOVaAomx4brcazn7OO/GZ+zV+we7G/Z3332rsl6t92rHHGeYRIqRHgGQoOkGKACgkDnrBxQI/kpvOENehCprTooko6PQH0hYWLgwoBsXqsUPQhHEjZ100ln22WcVxU4FMna9YQNUYQZJagBQEYvoN+L5yAz+VJkJMH4kdSzUDv0xbpR3myNBvHWiopijJUtWiD3bqszdwQKA1f3d5ewz8W0gLxns2aJFXynWrrayq8+2f/8NsIjE/xH7SDweZdZOOWWPq91t6PsDs+dPmGEVpKWPuMxovWzZYgHwBg5kIcPCuQI8wjqyP/bD+WSIHlvKxp9/brZ+fRl79tn1knHZJXA3R8B/hlzl83QoaS4zHEmX/soCImHEy+xF+BmQ6DeFXDr3LjiY5JCGuyQXs2q1AOQf8m4fL/C7Q2EDo5QM8reLxSxZsqlzy0+bMcffTabP+umzOmL5POOJe41oxA16OG6ruJ/gH1ti0Ho0K+tcOmhzeZ4Rb/vC9/ydgXkrt7jzUtRjLvJ3dwe0d+6LJFxS9qvQCsYMQJShDYp3AMzEuQHPBFu9KsVt3soUa1c/3uEowKDfINJ45QT7UHXEw1ZeX3hXs7KwAJCbME+txO/xA/blGH68Ajdm3mamZ76FEkIlDZ//t8RkauHt2T3FicmUQUKGH8b2DeIVM7PRNcDFfISEDj0ji6a1nqZbSPUahMx2jAe9HT8+8NofqPd1yqStULV+JlR/oPa9P/tZs2S2dTr2ghx1gcu4Sp1m7uVtuGVzogOFKxdOVQ3j721H2ja5lovLJV7bylWt694BieGsgVjAW5/9wV6+91y5E9sIFJ0pVk13b59RtQLg5Mzn94VREwEkgBBwCZOs4Rniv8ijAPwQgQZowALuCwTi8kU0OJzNlO/x/PNvthdfjHIuaLT3iDmkSgUxh2QBAwARnEZUGvLKzzpef/31LubxZflE35Efe70Gjzu5mwYGI7hAySTIx1AuDyYLkJOaeore3xfYnK3j0A5za4r72yKEO1Zl+Ii9pCQasYBNm05yMXF0y7Egp8L4gzUEg3cLqwnjt5fhR2VlupG1DFMHI+fFbbKKLGVAJPMD0CNBhf9l3Lhk/uIuX7Vqjo5/pk2efKNcuA1czePuQnYXSuOFeQ5nuHFDGcnLgHbJ+tnR2xLs7EEn2QeqarJgwe96kPjRxo/f5four9rYnDsY2r8mTAzVVchllRT/hxHfHAz+/Bvwe0ZheGS1iMmZpuoUPEATN4jXg99Mv+vGv23h59zPADfQ3xR0f5xKdBGf9V8xatGOmbUhZDjWf+UYD9XjAITpOd79XwPskHPxJ4RwXLCER4kJBCQSNgK+4TMEGNqNnveTSiM10zOC9zUfkAd+w30MA5mVhQWADADmb2DXyo6CbCa9K9i4vUz7PEIAEZAG3d6qTikXA8MPGv98ZMpRNBnjMwdYTwcM68cAcYukimXsJkHVUEY/pYVieTWrGQCDswQ+EVIkISUdk4baNF+W4f6t1/KIfOk7PzvdtiXJiknaYn+teMmyqkTCq31GV6nbUmy9BKaJKaSG8baUTXJnRlqpMpWsTKWaGdnJMbEl3DaVqte1u1/5wx664ijbOGN6Rj/eB5IkPA3AYHoJaUBexODB3vlj9qgGQUYpAJC6tBSvYFk4d6O3v1DvgJhP5O/FXVu2bJQpjyPDAJeSiXPAYubMNNUTjnYqKYwrlJHwQmwZ2bxxyqb98ccfJceSIFD5ogOHgBtiAiHr7rrLnJu7b98LxII9K8auhgOG+0qa8fYLmCJZBVZxu9AaiR+NdAzVhVxxubeQ9iL7R+8PNpL4SUqoZceQefGyeDPaU1iXtFyBTIwxMwbAbFk/+tO6yMhdAnerHQMaGblQ3xepNnCiY/Fg8wDBZEV7wJjqIWFtxIhAyY90BWqYV5JaQoF5SgsiO1n3u8WiKxvYrbfe5OaFcQKIvxQVuWrVGukAXudcyNu2bgm723ArSmRDbJjfOH7PMNzDPGTjuvPqqVMrF5mIQldxuFnO3XJurj/+k+CEef8rruBZy5MLwV/uLocDshX5EMTfQVrxP434sx+g4QouGh1j5eQl/Xrcatuq+tUONOr3we8Bm54eR8yDMuElEHJzlqc4b2kxheHx4Em/5F6QBe43kp/29dAT5d/A/5knVnaQKO0/DoQkDQYYzL4BFNfqSRbKEzDGIGZICoYfNn7qoDopDUc/BEnOWpbiqoVMVqo0LpPuTcu4OEP/vrP6zNMzwoq8SEpB7Rzq80DEQHBiADodjz4/qyEWuHUpm9ZZ8XxI6vAOFGBXpbaYQr0827Vrpytdt2HNMknRTLeZf/2sMmMpuoYiLaZ4KRs39AtR5butjEACYMsPcGCPAIAkQgCq/CDP658bPhU8/FpyuHIBf57p3p7Jvegtz877h9IUgXECnIXaP8wSiSkVK6aJCYx2+naAznDG8cFqwnThtsQdzHFj3rHjxgQABsjPGIlYD1Ic20+Ky/vOuVABbIA4YiNJGAE0Vq9eS8Ax3sX00d/bQkG0o/YyAKyEfL8xAnxzNDjiLn8XUCuprN7n5FqnPi+uVG//4cbOcnJlcCMzpwCnOfffbyvEYq6U7zu2Vy9bJqkY9k/WMpnOy3Xyhg8fruzgJYqD1ImxjW4/JGjg/iYuErCHFE6wsexXUpd9Boun/JAMS+vaU8ypysU1DizCjUxoJa54AL+n/aiQP4FRgb+6anfddRlxlgA/bMqUuRLRPtN9XrEi0V566WmrUqOe+56Xf0Jl4vHDXTSaX8mA8VtZQ6oJiMnOVPhLoeXdDMCuoI93ZKty7oaZdz0f+J4gUmYVXh8HfuJzuEd0kzGIM3CS38PpdYVXFTbXI7KCXcHkUHglDYn15DsGfsJO61bZ5VeQMAKrmKrfZs9mCyiiNXh8+4reor3ewwJAWpKY8af+aXhaBQCCQCcpsDHYYOQ8o/adZwx1vty+flupp7HvVJgadwfrOjaMt6oSLARk+sUT/duE+1xKSSdkebWXH324Jidi76GF2zRXyxOWzXU1eP1IPlcdHeCNVsv9S3bvgTQqjsSXq+petZt2ytg1GoQrl8yyX7543QGZuckRYsducjdtgA2M1xL5JVu0aCuAt1IxghUFKPa+TLnZo2FHHBnvVISA/fM04tghBBQuY1iunBoA5hQFqqHZB6DqqaSHSviZ0w03Jt7pW25JFWCLscqV54lVquEYJa/NZ5995piwttCQMrJvS5SooBtQ4Hj8wOunn5ycXjr4C/RQtWptuSWvdPspX36XYuhWO2CVJDSGJmFMTBmtlwtR0i5RynjEfQyT5te2cz3JVx0tdAwA7CEgeLW0CgFx74siJTZxr/aB3Wf6y+8KLmJAHuC4vBjMTUJXEULoc7VsuoIIYUvJ3iYjF8axePGaSphpbrff3l9gdW+gl2kHvi8AwA1os/gMfT8AH7GeGLIzHsjjO0lCuPyJZSSxA7BKbCKAUIo7AeMJNsji43WRpNtTT91vHY44zk4efI+36IC/k7HXQw/F1FSnkkOh5d0MEILEvFJT9VD7DffPwrTFkhnxLyj8XOBngJC5YlJVQR/Qz0KTueuBv30dhAf+/O1+/Cd8nWcHLiXJl5XtfWdNb71TSFO/684mzNvomL94ZQPvr3Hh+mNd/pZooeoXODcIVURIBEEjJyf/oGTdHd++gm1cFqkgrP0dYfjtF8n927Bt3/ANCuiaNUoAadblhAIxOgSoq9dt7mIFF86ZojisCnJ5PuOYuyZNpKSuOzZuxIkTN4gp+1CxYmt0Yw+cVIABrBfsYEREBTFYFQW6dN43xrmyYyLrMjF+XbvstrEvSdj31gAAy+4EAI526vXVV185uRpi02CkzvNUh30dAcCQtRk/frxzXXr6dQAl4vtwxcLEjZRODQCtWrWeSoKo4/6f/HgERtP/nV2QxcoxBZIsIt1xc+xPSWm5r7JiiI3DcH22bbtLCRob93K7Mg5A3mJRaDCQgD+MbNsLLrhAAtRvOTbwXFGansuWbQBgaxXUCOjkhVv+b5UcSVEKNOwZLt6qcmfzOlaDP0KZxv/8849jFal+snt3pP12+Vd27L3tbPjwQOygTp0DcMHH6QYU9AeWlPPAODHAvK9qoJOjgQEmwTpdpjAjAYj2MJbEBVJ6LisrVUq/GbIy5SvbFfe9YzXqqsODbPz2UV6O+B0euAmlwXvi/908yEM8ZHcPK8I9Jrciuwf7wGF6FsjjdSAtVJz/gdz/f2VfE+cn2cr120VaBeoFc1zM7f7YvpJEqFCSlYVFdMi2OB+utkbYmTgVGDfGm13EGmrHHHC0+iIGkDp5a3RBAwpx4ZL1y4ugyL6i6r14mVD9BC/jRxO/eha124M3ydH33dwUE5a5mLYcbVgAGietX2WlylYuACPZM4TmHXobADBGrN/pp5s9/TSsTayC8BsoTixGGaSX6YYe6USPiT075hhpHCmDAPfw119TyWKBgM14bZOgGLwtrkytMIpzb1ZUNghgplTJ0jY/ScBobpxzNQIgPUDhRgI9RAmKICNZ4/hvvrGFGhiSIQCesagdYyrz5ugmhOxkm1Ubd/Lkya4dgMkzsnoBXDBhlIajsgdgcMaMWXqwqqMYwEAIm2sv+jICv2WQwXoFZ9juUhwhiSeALWLlcFMT9/bWW5FWfuZ0S+3c3tZsLu7K96pQiZM4gVG97bbbjIQUmE3mEYDHi/kA3OHqxjWMi5k+mSvAOXMJkGWbTp06KXv2ajGBoX9UAKSA91mzluu8XG6larfTOAMZv+Rv6PAFNgMJJ/4Mbg5b3TuAR3Y3BpPJuEnKwCBf5cnOMEAkcX1I7lx9+Q6LmPJvQJsnvQXzFjx3GRv7PniJJUXEWBcE8OcNjd+zGgr+5oUhPP3R8JWFINCboP14JwHnUAWAwXFe+zEN2d40OLM02xsWNsyYATSVtyjOj6SOHyYk2DFKSopWtYwd/izZjNZ59wGvKg+ODhuF6DYsAETaBa0rstS86h8AQYwf3+BYwBB9h1zkgT9W8pSL1g1Pt34jpq9upWJOZd+/fF+fi8sHnl+2Ztkcyag0zhEzmV9jyUm/xN2RpZsTRjUn/ee2bacjB9l3Hz5rk+VGpCLG1Vf3FOtn+hxgbooVC1THIKYP5ojxA0p4IQOC4epDFob1rVqRiLrbAbIEuTsT33zTvos71ipUSXZJEYnSHgHEwCo5A3FoWXEBM4CP/0V83YwbbnAJE7MlJEcyBa5NXhXkg4xCnzDdqGsMK3e0/KMkdbyhWnJ8RjewSJFzxJhJWqd0ANxUk5Zip06VHNDxeZMDFB5puOmmZw2xj67IhlsCIwfoI6Fjq+rxdrz2Whsqd+6/0nIho5j6wZGRm+3VRz+xDd16WmQUgHizjRqV6lzryM4A/tAkhA0E5DGPvAO0YC2XLNmguZ8pl/ICaRy2UcxhtJtLspZphxubsnSLFsW4cnm4v/kd8Btg8lKlZj/77JtOpqfdgFru3HhtcNMSOwmQo3wdRuYt7m/haFfGzQOAVARB4NkDgOyLKiC4+j2sDIhUorH99t4q6zf+NVt+b3u54jPLAwX2Ev4vrCzWtN0R4RsVgDW4hvGM4MYstP2bgdUbUlXXPtURGtyEDyXbpBArKkoEqnQdSiM/vMcK+POMc/f9XwkO90CskQdBEi3XIsk9sHrh8BWkmKfG4vWX1TtYCsYbcfpQFhYA0phg01AWbnCh2gYv8wQPSYtGBoEn21A2QUKJaA3mNC4wVF95sYzs3yYdjs6Lrg5oHy5uUSXhCpqN++2TjCHhzgSYURasUyfFk00PiCh7DTwXn/fde5f3Ufp8gW+4Qfv3j1BcWCkrpRW7Jbuy67XLrPMlLbzmmd+FNHcrKWDrPffYZqGGzQJXsHnea8OGZAewHOgS6iBr9zq1BxzCnDFe2CNAIeLCvDBcrd99971ASgnV7V3tXJT+HcuL6kCMwgH3GKhGgNMzeVwFupRwsW2jipSUduCX+EiYyFgpUKfJbRsjOm2mQFK8gFxKSpzAXW0b8PZDOv44B2bJNmYbSsihZXijMihu1xhvRsDwyCO9XWW841rv3LmpOx7c2YBOQDHJGrCg2GOPPaZhSoppcawpB8QRoSTIwLwKkzpgxvwQkzh16u+qfbz3fojdRMZH0+3K2kGkEiKJyDR1jT3DxUzMpOdSJ+v6xKNTbeLjo6z7vX29Zi65Y+vWGvZpkReswpyAWHiwtmBG4xAfPvvsB7f0uLP3zH+IZgViEVVHCgHg/p8KbqB4nsqVFC19iFnj6iWk/Zd4iI26cLjBMwDpBfhrXD3OmkphhYIbGNJ4gLbRMzc4bETyCEQZRThIZCLxFRMOzPDE+j+7lTn4E5VVWzpOTzrJqtle60KhVOplJmzanqELyIFxkOGM9RT1LhMX/gmNrNwDwWzh/qVKRpmKNcINt8AuX7N0ttVo1L7AjW/C8G+cThySJMTRefFeuFErVaoQcryQd4j6UiYWwOA3kjphk5xJp+X3W4faURcLXYQzgb0IJSsUF7gp/u67Vik9UwCRYvqCXURwmv9L3LlfS/gP3UJAGO5cXLsIRMP0PYOQXrptEiv3r4BiYueeVn5pJavbta5VO62rW0vJNBJVzj7bax3iXYzUlJnRVvyai6zcurlWZsaYDKYNBu6mm26yqnItV1ZnU7SvZ55/3h038XBkuhIr59nnEtvDjXq6XNlFyYqQUvZuKTn/9GNAsDpUdjNAcECYosqAuy9Uz5h4wXvv9fYSYO4A7eBESrZVrHi9nmDfc4CRpJ5Womc91patwJ8vvWR2+eWBZA2WwXpmnD99h5kETHvGQ8CU8Vut6ds32Qe1J1m9BpF6WAhoCkIIN4teGggAPVKTkAOrpTi7U9V+25YU8+WD5KCHA9c0lKDsgdv7f2tPZFpz8/UH5B8KR4jruoyySvHQ/ZcNYjafvaMHffoIeyNDGEHo07pXURYvXq8IFwJHGBz4hsQPEpdYzncUV5CWwa1LPCvvkGm5VUHRNIe37JwAysShEcggAIyYR1GWUnIGRuxguVLR2T6hteX+PbtXVbctfzjwUAaKHisxTIQ+87PmJu5fyqYdirZO2nzlq9QpUENfv2a5rVm5zI477gIXZ8bgYNUwTwLGffH94RKQd9UxfsHgj2ZgFoSgPUs7oq+tXpN+QXoL/e9izlzmCbor1HZLt5LFFXA/4i/XV/pDmeINk+R+LK6Ys0sc+AEIBpJXenubqXjjcufKjRcl2VMJHwPuvtl6vH6upT3xrGP3dn/9jb32WhbgDz+okifIkmhVZLo1ePxSi61ZyV58dofAsck9PtGxYR8JxD0rFHyTXNgtX3jBPlNZPeVLuOzn115712naeYOCvURyhde8pEoW2ai1rSxRzTFuaP/5Qha9TbJ879Wrlzs/gF7czk4VWjIyxXduduCPcQ4dajZ4cIybKxhTACDJNDCKngnbCcjuAX8sHzEis+sWF3SGu17rcfHPXBFvZRZOsnPPV7xjeeIeA/KDFF53JUWkcejSgL0dee8gSzG1vKV7fL011kMJLL8JCc/458+MZQX1Aw/FBcm83/uCNKbsjoUbJkUFDjUja9Qrm3qojT0n480O9shJfwW5LV7R9/9cYW8PXW4jZySqRNxGlfdb71QAcAd7JBfvFMyILx7tCmlQKAPLLfhj2wBC41OQlZXsS9cmpW3xmq0SGVQMkly1xKCk6R8HGhJBwmXrtjoXLa7c+tKwApESN0h7DA0aDJRKiZTsGjWFp0jnhnrAbIsruIOoUW8iED1EG2fywk1S0A48CUGbDlRchw8DZHd3+2y3aMZYa9zuqH22K2gNkFwRerbIImFP80EZ8oIZ8oPKTjutlzJEe9k3YpXe1t38tttvdwADLTmM5A9yLzgMXpKNyyT94Rql//HiwrxlVAD55RdzCSbeMveOOjTJH3RGMV/F1Dn6Kb1RdIySlARQ33yzk4tfI8YMFyjxdn+JviMRIqSJEZQPOrMOjRrWnvAF5Xdty/tf2l3Vn5b/s34gEA6qDl8ooAWqESFlxiVGz1GQAqi7Nq60O2+MtmtvDGgFlilXwa5/+GOrUK2OPX/7aTZ01XJrL1cvQsbECBYpslbu2E1KqHnaae4R31a5cg0TTnTsYGJivEDoRsUslpAYsrm6xsyT9JezZbB4JIwgaA07dy0UHuxnuo8eTWhhY/2fBrqDLQUo8wAHsIc1DWe9e5uSR0zZ1nsqkpBEQ9wmMYgYSc9/TYh0NZ6JDeUlctbeejvCmne6ztpHv2ZRApxgTcaQkLBLcYQTbVfiKussajLp4tudlMyppwaqt9AnrvJyco+vWqydF3BLlPB9QbL9SQYsCMdBxQWYlkPJcBUSl19o/70ZgO0L1v+EqcZ7igwf2KqEtJlJ0MUbALEGFqqlRLE/VRKwqSqskWVcXJrMyOqBnUiqhUEMZ2GRAYAP8WZ2niIUilghAM+zNEH0EzpUdNkl81akZAA8D/x57XhnIDmxYP0rBBVhgPCP89RJRgsH7wkken3zdJTXhvt3Y8LyQzL7N3HNYtXrrZ3XU7Lf/c2bOsZpxlWoUN7eU/bpLDFEKbpBK4fCZs9eKcHfri5LFoxE0kBuTNjBMWd7bUvAGcK/CMl5ysKeLxQmUK7SL3cOcG5aeaczDMHkt99+x8mcAEycqVJIptpo0F+URYNdTGc0F3Q+y+oNam+jkrraMV2TAsATBWnSnvFn046KFzCAKEmDdKWzt00U1xQBzq3pIzj+rGvt6NOvEciLstn/jrE1An+R8iXvFoCBnRylpJdGAlmt5FutIYoNBg1JnenTW9pllwUqta1cWVol6DYprq+aYvSWKZ5xmeobS8tPN5VevTrqe4xLeCGZI0Ys5gydgE1iEStWrCSgVML69OnjMp4BwV0I2CS1Nz1Ll2E2Lr3aJv9dzmYumWpNz23nRl5bcwwARIAa2RnPSC4Zqvki1q9du0BbEkDIGk4/DQJ4gUQQLwaR9dR77tzZ6yUAXgGwmzada1/8dK6l/ADLt0Os7VAd1zQ9MJS3OM3Fm0rkSXnnCcVf7rQnn9zlliPrA0glBEFPSns6LaCf5spVVGh5NwOIbh+KVlEVtJau3XYoDr1wzLmYATKHeQUbwI6HMMgvksQg4toJI63duN3FC+KJxWuQVZhDWACIsCwdB9OL7PRo1barWraooyspS3IgfjpRvv5XpebAsihebxXyPRBPoAnLJf58CLp/t6Yk2d+/f2ZFYorZL58+Zx16n2LlKoVnYIIvrvz8Pvq3L133yKLUEU3XFsCkBIP2pc0ef3ylhI8DmbP7OwZyK8Bj4JQMI+sAAzWwMt1Qd4l75WWr0Lqa1ekzSAkNkdK/CyQrgNF++KGcgEwgRsOlq0IzASTJ6sBgFkltxaVMuurw4Y7JW1qqj5WLLmpbWnSyRVGLrY6SUxxAPOKIQPbDt99CQwWoSpapDjKBgotEPXZXtxfc9Iy16nq0xSqpxLN6TdvpmIqqTnB9FxNIAspbos7KChxu7tnTXhUwLV36dLFjVRwTxvF/q/2g44cMzM033yLpnI/FDtaSa7WtGMFYiTdPFfijHNEOMWipFiHQ1FJpu6mLK8rdu0QJ00sFFnU9yd9Mdi5ZxMFsaMSdd9hZapN8/lVC7gJ1An6xelGVBBf2k08+6WRnOgvBoYtIJRISVMiy7tq1qzs86j0D8po03Gn15dMnc9kDgDTgnIYyMDmng/bEa+J6Pvnkqx049rfnIQMpxJ8EuKnPjGu6uOjjRFWsKcg2XdIlxP4UWt7NgCKr8q6zA9hT/SolCgHgAZzvgrorTxg6kBG+0xF2lJP0jCQTNAdhA8NZWAAYp9qWlFsLTtSoqqBpyr79MWX9ARek9Ag+GMUDAf6YtEUzxlnDNn3CzV+BXP77ly/bV+88LoKrtis9BsPx3QfP2OmX32c9T7zgoI55584dGfvfBNh55BETMnABYMW0BpdfBsOW0TJ3HwAEkGzoxe1lYvq2RMbp/AbizyC0mp5Zy5JHTZY78USl866Xvl5tuUkXK1ZuqLBMovUUqC5FEWKCDfFHKns5Q+cEJWdEiyWDIkVmIZgmLp6v+9gJ9uvUKlarpmKO1la2P3ZdZP2EjWqW04hAZhJ1diiNi5vBDhtmqv1mUXK11laT5QunWae+AzMNPzom1mo3aCZ35lC77777XIxdilqkpM8tZeYef3ynXK5nOVDExrhuybYmceXpp58V+Oom93jvjH47dGjrYiwHD8bdHFgsLOdcus2bN3Iu5tcUxAhYa9mypWL2RuwFAO3uux2LGYcrnDRfgh41J10lcQPAw01NljVxjIC6dVJqxq0MIPQMVz4SM78+Pduqpyy2ebuFwn3Wq5cJuIltbKwa5MLLTLln84XivxKTfJaY0XDuZi+jHLFqXhigcchX33rdFLj3pWu37vU7XOAGeQgOCEa1Vd2SGRmYh8oh1FAoVgWx9SQEFFrhDISbAci7P4XTjpenlmIZoSz0UrXkadMDf15cHxfdel10n45aFaqvA7JMt0nn4/bSofNzp078ec3SAu3+XTJ3qurqfmKzJ4+yxq272y6BgFG/fiFcUsVVsUCYl5vuVboJD3nzQStVpoLKwjVUYkhNuQmL5uf0hex70ezJbvn77w9XmbfWIdt4sZ4hV+ZgIYmvgBlYo+AYQbrZcsOdlvLMdy6BQl5QuTOPsaKnCbwAxgTEiss9XavWQs3fVgGpi6wCHZLuKp0/V2YCpWbP8FsK0O6uVNkiKOqL6rGydqMlo3LCqNtE4R9l7dZNs16vvGp//JImliraruusweF+BMUwAFykuIEVDNdAbtFHBDIv+Plja9GpnzVs2cXbk3tHR/GD525XNu1LrjJIppX68s47DwugnWUwaiLznJtzw4ayisVrKoDVX4AsLtMmo0YhwbMH/LESgtQjTJG8ueaaa9w2lHqDAdzLcAf7XMKu9q6vEX1QLu5aNGNkMMDoElLWjhJ1fjv6xmYCek1t/Zzr/YvFepp7KblZjGQgfJLycDw4RN58sw2Wq7lcFrGGTDWnl+kGFFMZ5RuJfteq2yjTfgrKl9kqITV29oaCMpz/1DjQt52/cktYjbSCerDFFAc2oGsl+3jEysJ4wIJ6krI5rvzOdtZPndMVDDec9Gf9cKsDy724Pp44kGbJiVVUsgjJI5SRI+CW7+EMynJfxoQN6l7ZBUPuq+3+rl+7Yp5VqN5AN4t9j2t/95Wb7ZFSefT6E+2f4d9ax3atbeaEP2zh9LEO+CFKjJQG8WHUsH1XUift2rW31x++0u6//Ei7fkATe+L64+3zl++0P795U7Vch7nYsnAZ17kZX6htpo//VR7PkgImYtCCjKxPXIzBhrfVY3/961gmjOWSGcBloYw6wa+/HmKNNih/5emqphEAA66FZE5cAgZoUeAP69WrlwDkVsec7UIfhg1IoSWVldg9WeL/PW+Ltla2SU8PtzHPTwwgJ7FwTucEmkrnosoJ7Rw7GCGAfuQbp9vlTUcG+vJTWGjQgLrSY+Jq/u9/tl1M2g/vP+724//Tpd8Z1qpjLwdgYHhr1G7oVperWM29p6Wl2kMPuXDCjM2WL4+SyPOmvcAfDUjAELGXyTJlzAJo0xeMElrsTdbGfloduZgrVGgkb/kIiUc/6+R2/F02bx4hxjEyPUbPvyYw/cjpcA2MH5/sru/Viq0sJ9dvKKOdQiQzZT4PFt35+x9/Wpc+J6n+r9jLAmaE4FDjPDgMp4AN85AezgrVpj8kTddzalBsPbepQzkz+5A8D/s56J279rOD/dxcz8P5Z1yQlZREgg+amr/8oFGIu0XtCCfbskgZxpSZKaoAxuwWRa5SNlaSM6qLWq6o9HO25N/g1TPu3/qteubrPvan858+etq51oinCgZO1K5Ff80zsh3Hjh2jWK8pIqo2OeHib7/9zub9O9JG/fJZhuRG83bdrWf/wY5NjIqO8TbPs/eZE4cLVPUUI7c30KPmbGWJMoMzYHeIvQNzYYTV4VWE0QMjckOHPFMRDhd699tvgZs7eMuPIXH5KZdhb1N9371ThPduFqkdkrzwiYurK+20AMlM+XdbY2vRtYql/fi7DS/bx+oN+8fq3XWGxQ9526zL0ZmZMBgpj5WCZhNzWLRRbRMFaq6Om+RSiDeMmrPKyidqXHIfA8SPOeUUN6A23Y/fa2A8lJxxzeO2+/lbrGWXYyxCpcw+ePZW25qy2bVdtmypXOkpyqQu4b4jqPzBBx/pGthiV165V3cZ8+xfgxdbnl5TWKEpliDg+hadiLwM8Yf7a3PnbpM6y2IbqJp1U1TKjXJ7jRSbSVxeYuIWaT3G6rxXdy5artl//52m879H+xPgixxNiqojdOrUzf0vhBuTPNcuwURT7di/BGWeN1ASSlEl1xx71g3hNjtoy/k9/HvuxoO2/8Nlx8XFph2Kxr2V30C/cR+l0lZhlRD/rBR+zmoG8hUAcoHOUhpym3qlrFuTMm4cJI9AYTeQFAU3OWh4Mlh4EuOm9ufU9VmN11rU0h1d1qpOKUffB/0PZLltTlYytvWrF1vHo8/PyWYHtG1sbHHbpjtbKNYOoHcmQXA+Y349t2tP3dVvSK8+8cEHyQKLG5QYO1I1Y+VWvPdCVZgoZ/3Pv8069h5geQUEkzastWWL59n//e8O36j2fKSqBq5rAJy0i53rcs/aPZ+8Hz6qQyC/B5YDpCifwGnDcbNHWQUSDvOqhQS+6S8dkHVLsdxsGG5LYt9gUz2bWrSD2Ssf2O75y+zk26Mtskx9s8pxgZ2p9FpIbRUoKJhFElCQoZk61ZweixI+vhpSyWrXrG7r0ppZP4HBkiV3Otd9h14nWa+TBnu7zfReulwlu+L/3nfLtm1NcQCwUctONnncUDdeBKtff32qpPFKKuaugbDmpXK/XqnQvMkKVWzjgJDXoTzV9uefpkzfwBLANlNEBrEzhwIDH5mHV1WEd5DoVWouhzXpJ7oEF+RuKAHiBRemb/D997/KY1xZcYBNde6+d309/vjjakayTREHBDdvXuD2RdxhWlpHxTFGu+V0wUMPyR5FVeoQjcisjAcJQhM9myzq+HMBzRv6Zf4f8dYfzHf+n2dINmujgG2h5d8MkNDYoOqe/+n821Pe98xvOWoYaTwFpxu6uDt2BpbvVPZnuBq+aPe2kYbcsMKKIt7UHbbvUfl95Ee2Lhe28DYXcdn0cjxkNv34T8I+h+Np2pRXPGI1uZbzKzNu7Yr50lur70DpPgd1kBocd85N9vL/XawbW3+X1egfBtme4QLh/e34fOaZcXLBxYndOlvSIWc5lvBWCcXBKH3z9sPW7ejTrcfx51vZDPfidt18BXqCbujB/QZ/nzDsa3fTPhHwE8KIyaKuLt1m1bUuG+f6hSEE5CEdAnghLwPtP+Epp3vn7QLPbibDnUlwnJIt5MsMSRGKpHMyMmyLhEmJEjWF1xq50D/cpVSz+HPHyVY2cq5FNhGgSzcqbUTgHg5l0JVo52HDh+/Zr1yqp7yjaiRP3GwpfU60P3/fJVdlpJ0SV97WCWzxf7IvI0v42a9maX6jbO7UsfbCPec7rb5zzqkvjDlM57SpmLKqAsaVRUCOFghsg+Z0xjypwpzL2fAAIPqLhCR6xKV//1eKQiSrl7rHx2uyAZohTSybUGJAHZo6b+jq+E7s7t2pDvCz7UlC6dRV5gHFu67IzG7adIZA/miRohc6Zpjkj1DmJXeEWudfxgMD18r8hNbGr01K8iYrXb6yv8lB/UyC2xiJ2y9YlXJQx/Ff3znVqqi+gJzYoWg8JATKpO4BgBwHoM8DfrCbCAkHGzq7jarH2RIlF/mzRoPbFX7/78+AbrX5Z5Xl/s1u+aLv/l5jCRtTsxwMMYIVJYDoWZkS0d7HPH9fpFi6Os265nm/ednh5k3rXXfEZJFh6VmKEhJgabIDHNiGMDQqM5C8+uKLEarx2loZpr+5uLcBJ/e3Yd+9Z3dd0NVuGdTCva47uZHdekYru/2sNvbb5y+GZCC9sfjfqf9L7BjabORM+B5eXTMYQABgKFMei1NaoeYvsW2K27cju8MaB0qQQeYh6we+UmjZ3kblCo86xF+s5AMnwizGKZRp+qSLF1hDTdy4uB2u2ghE1lkpr1vtamkCU2lyVca4Rriv75P/+TS5SN9VsshDKpa7ACXrcIa4sY5Xmiq2s1df2x2hf0X5vkt89YGdeFlVu2jDUzZYDzlL0pNmwnXjX15UjDBsbdN2veysqx90q6hhfPPNZNouk0uYYyqm3WwVuNvmpBDJV/HOgxJyXX1eNoTwQ5QZljWUcY2V0HFSr9czyiGPuO4r++vnxMAiUopBZhTn5aQFAdn4+HYuFAGXL5IwbaXRCPjTkB2TS7J13771bKEYVaYyKE/E262AbiDn5uGH9xyLt5J/C641jHhRQgsk/6frvYVbtnTeFPdeUP7MV2bq3BUp2a6aVFDGfaiNo2PD+EMW/DHX/LZH7SPgLxT4o8pWB6l7YI2qxbn3wj+H7wzo1r9/Rgk43LKNqpWwGcpYQ10dY/kRzco4d+++9rBDkZAkmnRS0WOefsMZKuhFfJC1fHy0K6iM2KEefPLMAu7fRXL/6k5RgK1kvNCIjDgo6sTiDsNmzJiRqfaqWxjiD8kVlO/iHReZNHkdeIJ5obQaEh3vSZrkBZWS4EaPWxmRYNx+c+V3BfR8/e4TNmnU91atbjNL3rjW2vUcYG17nLCX23jp/Om2YulCe/iBp5ShGtgv2am82D8ALlwZOIYOjuDGncmeey2gGUJ2rs+CcEZgDfIsqjTiMh3EXrnKG4hCB3eKQDTgzJdM0ELVOkYLCY0c+acTQ7aoPm7gHTqkSoIlWgU9JBmjBJslm5KszmmX26srF9k/AoB333uvXK2XugSHYsFpyAxS8Y7YO28qjnHUMJU50RdKWxD7p1jBFLnou6vU25rlC61S9bqubXb+zJv+t33x+gPuJsG1TP3gBg0quoxevP7IruDCvVxoecuWWCVQBM69coVcJTVYNpJ8iRWEJFWIqZNc8e+bDF6Am5cZzDqm7vxHj7U5i4s6RRj68Vz5f25sa310yJ6BxVNT6wpEVxAj96dLXMLtDGBDXxutvkAsZ6xiVrc59s/b1v8u/Wt3zdZfNszK1aK2awf/aqe0A1OsYikuAYQHHWzy5MnufUPCMvdeUP7k5e9YQTmmgjiOOqqpe6gbFR8sKftHwT25b6tyqgwR6TaCoCm0w3sG9gsAEj8B+PNYua6NSzvl6bWbtrtsYf3GZ8sod7JJ5eWyAn90BNCjT+8+gtu4dsXizg1M7by8svWrFkompa67geZVn/nRT4tOR1mn3ifbX8O+EYCLzdjFVMWWdSRbNQv7/PPATV5ybA6QEesF6wUbCPjDvCSMUqLCTtednFewAQxvveVW6z90iH3QoKG98+QNRnLKaVc8YDXqt7ANCSsNlmWqtAlPLFFKjM/xjsnBheoV1CBmjxv5Mj1AwLaFtWA9F9y3wcAq3MaoC3uG0Bw7JCNg2DD8jN6aAAL544+A/zN9KccP0CERhBg1rHjxSoqz6ys2s4g91radjVSSwk1PfWNVajZw60/dlGhjfv1Y1UOeFZP2m30+6DRrLfQRA8ryGWRkr16+EnfEB0raRRkP1l+gvoMYsePvO9/OeexLI+YvO1Zc85yWqklNt9flqr3nnnsUK1fULUFyBWD4vMrOkeBSp05Fw1tLGbfzzw/IEYJNkckDiyKejFQfsoWe9ex5rsIOXnWJG1QIwQBsiVuLWf2GgeScE04w1y8An4cLv+kZxfXXrt1AYfG3BB5niJ08R4CwnMPkAfAX2GLz5mICr1v1pZi/C3fqUJ2BHTzixl7WoGFEBsnIPrmuYIq5piEhedjAAK4XiZ2sVrOeS3gKLC0Yf6mwVGj5OwPFVFKrZIgktPzda973jh7gkhzUM65XWR4CH2uIRw1QWNBqTOf9TBX2GG4GAo8C4dZmsbySytE0q7kH/NEUWrp1HUl8dKtiZx5RVf9k+uXNhtEP/e3TIuTF8/0+EsdBIGw91SHOSzp70YzxVrup7niHgAH+mGW/u3f27NnKM2gs92ToA9i1crVFJK5XhYYA2UVeAkDE8KGlm7zKqh6hsnvCDMTwh6vAcKwEkKdOm2o3qibs9CuvcMxKhXLx9uL/LrDbzmrnZGo+efkeiywea//7/Cf7v/+LdvslwUChdc7Yh2QKM1x13hgyvas6hjJV9MTre+RFt8QXU5apvfcFqgkfIO+qN+yEp8WqOUqRNj7g7KhIDjRE/Tlc6siGoBt3NDqAtllAOdWW/fubLVLJtSvvfz8D/NFtXHxZO3rQ1Xb78z8KGMXax088Yb9Xq25/+FJwJV3nsn9DJtQqFi5G26zXPoesXm5fX9bHfvzwSUvdvo3us7RqdRrbRbc8m9Fms+asUeOmcu/+JbxczMnakARE7CjyQJ07b3H1ggFMAK+LLgoQpYRKYpCkIgwdOxdYEmBrN2yIEmM4y1vkHhyQ3KEPzikvgBdqOSQ/e7bozDtt05NvKMkFEBinGNTrxAD2EUP3hoDibMc+chqI7cTlX79+XZ0moTyfcb0SzwdeBtg1bLQH/NEMJpGQQ65xSj574E90uS3u1NXWya187Fk3WomSpX29HvyPsfo9K7T8nQHcoP7fy/zdW/71vjKbEjYAPVzeRzQrm+m4edaor3tnoR2+M5A9hBZifro3LWsVQmj6xafH5QHMsmsUOqauMIWLKYactHVHyE2JJyyiJ5ZQRmZTXhjMCPp/7fuemRfd5Wsf/4z41kS22AlilYjHwmA30nT3jH7uOfuxyi3OxStyygX0Q6598sRyO/6Zvnbc6QPNllzuBNWQXSm2KyUgS+J6CcRbeTFX330XSHrAK6qQNYeZfB5S96MSTcaAmLLWAmS4iilPhksXdzEJKUuk3Lu5WGoG60eC8rhxAZBJli4xjJGRWZxDyj9wxyeWzwvOSx9ryDcllDgUwIBh+wgAIwv3jjsk09LFHOIBEILCCIIDSPKdGEQhGBikvbClgtN2aW6/EgtYXXGM9ysBIkWTG33+zVa3SbuQw6hWu5Hd8uKvtmLRbPu/j56wc195xWorVrCe3OfxpcvYeW+8rqyEBqaU7ADADepliurhpsqVfL6Y1m8+fdmeGPOzXXLPW1axau2glpm/dlD2dpmKNWzL5kRLTtpof371ql3UtbO17tTZNghtA2iJu0NAGc3IRo3OkMu/ptOvJoaS2EDwNgnNFDxJ125219ejjz7qZIOo41urVjeFB5hRCIU5QzoG4/pYvz5V0xmlecz8W1Dn7Xusjmi5DsLkPATg+o2NbSHwN1ff5wmbNzYY6l69AmB02LAGTgrGn2zCGAGsZHsTu+iZnn1cf8Qj4mVnbJnwvOSQPutxpm3+5y9776kbrKgeAJp3PNLb/KC/lyoefdDHcCAGABF1sNzdTZQAcagb1WGQUcvKqNiF2gaAN1Qs/qgZibZ+c2pWXRSu+4/PQBZ33L2PHOq8rDT9alYoZlQHyUsjo6m1UtOb1YwzXMKAQejqUgJ2iZuFUGTlS4X/cWRceWEbFRNUpkIN6arl7fHlxdiC+xj1w3u2TDewRoo3o0wXIKqLwE1tUUqRusmfGxPYAswkyTNHhLU4trqVuX1Opq7weB5f+l+BopcCfr9MawPgkWpt11+/tysvoylxc+nGDb89aaU+I84LYAjz5AECcBgZtQTmd+kiQBRf2bdF0Ee5ME2MmCvDFrQq5FcC0uTTXPzgg1ZUKa1jq9ewk/78w6JADujFgG4kOeNoK/om2G3CBIf6mC/cnRkuTyVr7ND4tyueb7HQSoSQzk/a6aKmraxat2PsqNOuDDkE/0JYuXNve8WePlWVQe6403Z36WzShLaNVs7KK85y21c/2aqj5Y794nH/Znahqls4kyh0V7mFT5Bf9fGrtc8zrrYjjj/PisndG87qN9tzDjr3PcV+++IlGzX0Y7tXgLK8gHEdHWgTndiTVcP4668/Eairp8zgfnIJ6/+wWQALg491ebkKd7iF165dK7y801XuAOQXKzZJFTVqOoJV2CojVjA+fr7w9CcCgJWVqX22QF3xPcNMd9tzeaZXY5MrOUmZxfOVl3Odw+DEIBKiiaE5SB1iSFxe/GviUgbgkQCiSm7uHdYQQhcMD4tJW0o0g+/9LuU7nr7OrrrvQp36Afb6Q5fbeTc9be2P6O/2dbD/HC435IMF/ji/h6r2n3dtIp1GiS9d3iENt+5JnSq5+2VWTOf2HbtsXVJayD4KFx4eM6Cf0uwZ8QZcVKjSN60Rl233bvZ639MKINi9aRk7tav0wRTUvVmxgRgXdcvaJfc0DPpEQGuxmCJBS3P+dfFMuX+bdc75hgd4C5i+uTMm2lYBEpIULtIdj8oKv0gHBc20PeglIMVGXB+uOHBPsJEIUvKYbgGfWfBKfedGS/ZrhhstRBt3l4Vdw/cWwmCaEPNFOiTJ58aFMeKmPXbsShF7unOHM4GABZsrqmxYUAMPFXiLCS4TrbT1ww9taLuu9qt82V2q1bGHlyy22l172MkD7rd/a3SwyQKGW1WHdzc00l13BagrEITmFSATE62fVxhBHc92geudopEu1/or+g6wlCeHWO+vZtvJVz9qtRq2dgyot/us3snQLVqpmu1OWG+LlkTaLGtiOy+5wnbPnGWx115qqWsSbfeUqQG2EloWxtJnSKSQ4PNQm9bW/r0n7b2r+2XLJUwXkUJAR516hRWLixe79rl9uGCJPTN9hktqaaKTMGz4cJ3fFPv7b4Fj2bGtVtqaN75z8ZpMDw8Qy5dvcC5j2EMyudGRJHN7587XFB85S4zcNue+ZfuIiEQB+oqaznL2zDMvKFlGHYQxHg5GjXpFjF9XgdFYi9yZZv3eOM22Dr7aobhq1aqJeV7h3ND+rGTCKUmk5tpG+od33L3dugV2xHVLHOJXX2XeMRVniOv8UT5i3PlvPXqNKuH8kbnRQfq2eoOux0LL1xkIyKfk6y7ypXPKn/67MMm+HLPa0PwLZzUrqFawvHNZgb8UVfRaV1hLONwUHjbLo7J7pJ2V4FFartqjWpdP1x/K7pY5b8eFW14XMK7huFjpmkkWoVH1ElZCn8MZ27isKN3D98fWLJ1trXqesj9dHJBt161eas21pxPlS4X1w+aJ1QFopQk8JCoA0BPppXKDP0nENfb9wXW3LyOQPkuDYnnkkdBNBC4G6u5MxQeqlpCBisv6MmWekFWMQO+1166UO7GqkwBB/iOUEfBPzkbXrgFQmrpVYskC67Me/dbmSeOudOQm6/Tpk1b1l3dtuGiiG1XruPnFd9qtJ19i86aNtzE/v28//Pigrfz2PjtOO3hNr1sFZuoi+keSCIgB/RN0/ACWStpIFkP25Lr1NkLot8U9b1i3dr0yhrZTQCVSuns5sbhaDe3z5L/tphHvumN328I+an7KN0+0YS/OsGrbv7dGV/YNpK6SqOLzt8crc+Y6BcDNUxBlOYkg/ihW73jpQWbHikRFW/8L7hDTl2q7I2OlFXhuYDNdAL9J82WtXNy9JEnz4Yd9JZOoc9FZJ0bGqcWNOmTIn06nLxADGdiUc/ivmMlffhmppJLvXSWXI5XhQ1UPSg+u/2a3XfDgcfb4ky8p43iNYgLPymCAAz0EMnKJrwRUOtM4qpbdZj9XOdOO0zkh+3/dul3KWt5TBYR2hDTIm56l8eACxscAq4Bf9Ab532B//O+MHz/eJg3/2pp30JwfZMvqxn6Qh/af2D2u55yEJxWEg06Umxav2NK127I1nHb14vfZDvCXrN/PQju8ZyDbdy+eGMrpB/dACmcS79dCrB+vbJnu2ftjSYmrLa5MRd2gdMcr4FZG4rXzNMYFRNLjpxOgggn8R5HzSMK8qbg3NPUAfjNnzhQbE+9ueEcpKr5iOISVxTF7WnGZ/HBZtM+0ivhEmEFlBRyhOzavb5VhAhCsW7eu4s8aCZSsUnGMFnIDBuLJMm3v+0IywX33BZJGfvihiB0/9m+rlRZh3WtoFx/9ZruGfmhXqP2MIwfa4AvvcskYbN6oVVf3OiUxwaaO/82WyXU6ffT3dvTEUfajwGJDgaAdYlGjCHwUeMGPuOnrr220wMyXlatb/yfftZr1gdx7bJd8uDkFgL0HXm4fjPnNqt52m50rBtIZiFbgpNxpfaz7wCL2zYfJ1qhj8UDmBKDUMzJzYHd1LhtIYPlL+Tc3DXndtp1yuSEEnR0rpqSHTetW2rqExZmaE/uKS5fXscfO0HX0oD34YJuMNlxT8+VrBdz5DXc++n2zZ7cVmNqlinGj3LXH8o0bu1ta3QT76JNYq1rlemWVv2yvKAYS4IWANOUJMR4GkNLJAIBi/CJUGaTEiIAkDPGi8ZI8GjlyvfB5Okj0D2Ifn1NSkgReh7rxI0LeVFnfgD5iUxE8n6660JRFXLNikVUSW3ywbMGqLVbIAObv7ON6BlB5BQjyd2/73ztA7ZtxazLEnbPTY6pcu/syBMcLrXAGsuUCRt6FuL+CbriJ98eo/XuoZP9u3qgsXh3sHVRhIGBLvlGAFTe386XlceONN0rYuaa7yV6v4D3KdtURWMQF6xeNZr4gu/ZlZHQ6wzVJhkAoI0mDDFsBzkwmrZndMUWNWEMSP0RIusoPJUq0cvFkn38+RMzfv2JmkuWSC/wwPacklnckGEjMmd+EcV2MFxI1eGwrVY7IIMjGVa9oHQTK1on1O+v6pzLAn3/7+LIVrcdx51iHnv3twrvesPOUoHFG+Up2kxqlCNysF/DbqCohrysu7k0FqD0q1uzsRz/fC/zR5065EqmIkhMjWSSmbTfJk3yzZzNiEQFDOhEkO4+aHGe7LNKVddrTSJ8Ap552jr6ef8UVdq7crn/98WWmZll9iS1W0rZtSbJu/c6wUy++y8pV1L6D7Oeff7Lnnmsrt+zPGWtwPaMz2a5dO3cOidv0G+zs6tXrnV4iDxjI5sDORVSqaL177rLzkl5WpvdVRk1iEoIAX551VwmXn0gLDzLIWO/BA0HoJUsWSJcyqFE2viYlfaVrZYcbE/8fGFqIp+o8w0Cjcwn4fOaWgfbv2F+y7VbPxq5z1GS+qn9k538xR50WNt5rBoarBFpaNkDSXhse4AXEvv/8z9ocgT+GuDwb2cE5kY85wIdduLsDOAP7BIAkXjST1t+hYPsH/0TCLJpuVesIUB0Ctn1bipXWOONgiAiEkmttusTcvExJbmwAQm64xDtRY7erAESMMhtY5zfk9ELeeAB76lsEiXPNEivoYgsJJgxl1A1DYw9Gkg7XrctoJTzngBouOUR58bgWLdpDrB+MzMWKFVsvYDHOnhIrhtYedV4bKgMWEPi+mC7cd57Ja+uGQaJAhsnP99OVV1lKzbrWWy7f7FqFqrXsknfGmT3+ufUuX9HOEhN1m0DnSxuS7dueJ1rv5360MuX3Bkn0vy8XMG76bQK1wVa3zRH23dKlmRfrWHViHMb73/8CCc9vvLIjUN8OHzlid0FWVSza26JEpw37KmhN+K9Fi5e07Vs2O6HuvgMvtToNW4VtfJwAMNqPG4S2a9duqHOQ4NryMECihWewdwsXDhF7W8KdNwSmYZwlM+iSPOrUU5H6G69xrt96IEUZ5xajpBwuZK7LUMZlBMnNdkWKzHeyMqHahVpGrN8X+p/YsWOdrrETXeZzqHbUev7rr/FWr24de+3By+yGU5rYA5f1snWrFodqnm/L/GRvvu2ksGNL2JRqkxVLV5Bt6qIk+3z0KksJUcptX+Netg9X8Vb1uWjNln11U7j+MJiBzEjAd8AllELetUlpI2Uevb3/uiVvWqcA+dI5dukdrHnZtXOXgX/qkp7LXVIAaapSInudfXb4IYkpjFGCBLIfCAADDImPogRcSJPbdt41z9vIPo+4YHoyKrlPE3wP+BIZ5MLmMm2LMBsGYFHyxDtNHnfbwAal3/Mz3gMNiTErKwKspipPXOkWcePGAKrEaFGFA+YSZon4s3PPrSOQGHADu4aSVEGH5Np5c2141357xZi5Nln8IX60QfNO1uDdvwTqdtjGdausdcXqWQZR0x0u4CJRoYHLFtWYvffinlZOtXfvB2D6LHX7VoGSHcqqvl4JEs/stR+kTbArrtG/5zWjTdRoQJ2ZDAcvTo4GOueDpaHzs7I0kiU8jfbgvixWAHCbAKBn59/ygnXoO8pii5ewqrUa2c8S8f7ze53odPtSaB12DvYOoLRUwLVt25qKEwyUMoZ8HjLkKw1lpc5hgos/HSM2ulmzbs5bDVj3GzGghCXgCiYWDzfwdl2EiFST2ORliHvbUN4PtvHkk+u78oRIGvmnwGsX6h0WmXlOk7trypRfNO6BoZq5ZZWV4vzxx/9oLFMVZzrChg8fZWnbvgvbPq9XrNm4PdsxXnm978Oxv6mqWNVcxEZBywgmFGPkjA02S6L4uTWSRbIyagDnNgsbLLAztxtnNajCdXk+A6C2OAmeZ6XYojtMaKtWLtZ4HS62eOZfh4z7l3PCzV6wxyJh6Uh71M15rmK0LoGaIe2R2moh7DolFXyqOri/Kui/RYvTXPWPcADw699KWP17H7ErWwQ6QrCYhBG8stRrffbZgEYcYWl7GUyPXJQnxQeAwl7rfQv69UuVMkt0hp6cn6EEEMBkAiqilYhBEP8NF19udRUXWqJEZKAX/IQSe66om/3WzRt9Pef8YxEldZSrVCNbG+7ckWYxRYMQTvqWlG8D0Kxds1Ku4jQBxWibOWmEff3mg7Z88Vyr27i13KzPCSg1s0su2QdjCYqiVAuT7ze5UU+W2/ruu++23b9+Yv0GXeVfG/JzVEys7UiVDz7dyExu2amv99VVcDnxgttt1qSRqjxSWddZORvy2t322GOPWXUxvMQBPqmHjnPOKWnf3zzC4qvOsU07N7mwAxKQYPZwqRIzuGRJfwHDKKe2QyLSOjHCnEfOaW/Rzv5qNUOUCEO/uJlPE9D1rgGy1rnWAJ8wjXoLaXqucawkLnQYQx5Qtm6VMkCxHhLwbi3X8QsOvBIWgWwMItOYV9wGwWmiKWrVqijWvJ+d1KKZ1fj3F7XQE9IBsEkLkgorMhyAefZ2QfWLf+ZvcuLI3rKC8k496P2xuvsQd56vWNPcWu2KxWzVhm22ZXvQb1FuOyzcLk9nAC9CtELhKK4RTv/Rv8OwANDf6HD4vGLBFOt7+s2HzKEuWzDdGmu0yaLh4sSQOdZM8XdR//d/AbHjEEeyUKq+w4cPdxnCyMZwkwzldoJQ/Pv0p6z5oCOtQQvdgX2me7djAGEBuWHi7Q1rkqUpG3blnhXUFG7QoHLYyiW0BFhwjACDsZdeZDvE+H3/fSUHJDYIXKQoznC6Dqbq1L+yzYbtGUHuPoVKAtkg9nD4t2/Zb0PesMrq1sGH9EkeoeWAP6x9z5OsdNkKrlYwYAkQl6Ux8bz8pmMur+89Fcv2w+cvqQ5z/32C16ykIbyuSShp0+1Y76tdft/7LnHmjYevsNdV6oMMX2pEzy2lLN+i061nh55yEdfOaH/aaVepIsxvAmCviJy+Si7/r0QIL1Ds5zY7QQkv7YhlRPvHZ126nCKAtkWu5C+dPMtJqIPLcDej6a0r1b22bNm1B/izWPb33wFmmmsR2RcYQqZ80aLjHXtZtmx7xzCOGbNACkE1XfUQTZn2ZwKdgRKIxx6brHMxQHGqv5sep6y9XrfdJ6lITmI+20QBkcKYrHye5BDdz5O6RPv68QWKBeT/s32DeBs3e2OIEe97EXHwnRqWDtuQ5I8V2YgR9DooXjTS6qqE3PQlyW7RgtW5B49en4XveTsDnPPypWKse5MyVgY9ZN2/wxXMCN5z0B0lePXh8X1L8kYxOcVcXNShcsSTRnxjDSWoW4JsCBk3WARzlboZKI/gHQiBWGKOcOWReVukSAvFZ93oZDDScYnXMuN9wZwdVidpijUYIISXhbE9IDLDSP4QSMupUTGEjOVggsvfzykqStunz+mOados93U1uZph2HAlvqcavQsUA7lLoslnaP+jf/7Qv2m+fQ64gPUPl25/fvOG3XV+Fxv61ZsuwaCtsls7at3GdatdizOvfcIuufNlO2XwnQ6sXawklKMGDnZ1ejk/npEwTRygZ/O/mW6LepxnOzeH/vFlDo4VUvr0zjNt4/o13mZ5+t6ycz974bsFdvHtL9ja9RtV2q2TJe38ypasS5L0S9tM+6pTJ06u9IFibHfbn39+7HQfb9HDyUUX3m6bn5ti7z6zIdNlgrSPpADlEi9upUufIXHw2S5znU4BgJDZVKOpVq2qls+RXvcEd95/+mmGq2NNqCkhBiRT4z6fP3+eXNQfuvg/YmI/UsBpXFxZ7bOnE4iGMCcMVgno6vMre+75RooxLOlCDc69/jHr9PgXFvnop7a9pv6fDoBNkzuy0A78DKSJBRwzM/D7eeD3Hn6PtcSy5daOblM+S5mbZXL/8oCfXYPpW5qwLbvNC9sd4BmgdGQrld89sWNFJ52Hiz674I+h6mew0JbOkpRIY27Vh4atXbXUEsf8amXr1bWI9LTIaap84RJA/EFX+k9PVUzgc0qsqKA7I+5f3G8UvPDKd4U64io1ouy3y963AUVCrc1iGQxVkZxuRPboamUmV8koIxZqD/LwuqoOkuZziSOZ2qQjx4+lJbdeK1YumpVpdX59wbXrycAkJqywr99+TFUvznAxlujMcVy1lXxTa/40MXPV5VKtZG27H59pOCdLqmboV285t+dDDz0krbvLHTin+gaGd3vOzvrW9bv37bvbf7cTH+lqUSWEigCMvXo5OpZ9PfLB+zZCtNZD1xxj5zz8qVGCLpzl4Pd/ry7aqWJGqy7H2HtPXKsKIee5OMZx48aLleue4Z7lwQCG7dtvazjh6m5CXFx3v/5W1C767mZrtckE4ALVRQB2AF4vr+jss2Okv91ArN8Kl9HOAMgtmj9/l6p9pEmI+iVl8HZy68aN+0lrv5druYg0MGPEIjcQeJzl6h23ku+YBCiX3as4y8jIi1THWdenzxLkWz7nnFOtbqOWdtZVD1qDll2sco09oC82qaROgG+DPP6IG3Ke3H28F9rBmQEYrTrKvq5fpcTBGUCIvZZWOdV4VcDalLIjxNrwi9A3rK6CDVnZrOX6Ic2hhSvNmsNuCpvn4QxwrhH87tyodJb6yPvaZeZfxH21/o+uXzZvklVv2PaQObqPnrnB+haNsXYIQKcH8E2TH6yFXImZTHfiSGVj4lYg6YObMCbPoavqQSZuKMKOZWGSMjN1v9cX1ZYN6VNWQ1ie0b+JwRJb51CNb2MYwPXrq2SU/vKtyvhITVpYngxT5qjz/bFA1U8k6GYrlVTwvb6edNFdLM13cwxguhD0r5+/qLlMU7zZ4AwB7jKiR7drFP6ki+BB7RZfX7t+E7f4f/fe61hcSuZ5Bp4+/pRYx7T2ubeHvfh2cduUrIXQVz43agOVcDt2zhy7JWK3PXnDiTZWMYEElIcydC4Br7k14gYvuuMVa9S8vYv3e/DBK+Rq/SBTd1xqVHwBgMEWYgxXYXzuWEgWp7wzBDY6f55RUbBWrV0uKxiXMXp9xAdOmPCULvUier6op6bnyg2N2/kWZQVfKOWhW5zMEUklCE2TTATo9HQFa9aso88j9no2oRIIc3Tezc9bj+PPzQT+vPHk5fsu7YsA+uRtO/QvsFvivhtsxPTEHMt85OWYCvsyK4gMbNWyWQO5UOcN/b80VeoKZ9tSd+bI/Ruun8LlB38GKpeOsZ7Ny+4X+OMoAojg4B/PQRtB6rYtwiyRzgV80AaRgx0vmvOvzZn+j3XV3TMWEAB9ItugyPeyAoG7Ejc6nTYVBXHmBdMHvu35i56vwuhcNq0XEO+thVALgx28Jtl+R6tP93Cn/df9SP2oSfzZqNPrMyReKAOHWy6cEW+IhuDuBx+SkmuiaLE5gWh/NsB/KOazh5AtGJEM3ANhZAx7DKDt1qTJPHFjPpPZyvxvlRBxOCPp5Lbnf7FXflpiD74z1mJLxNugU061NJ1XgLirmkfBWwWsxVcsKobQlAij+LZlmixKYWDUMtZ+qulh4AIl+Jytk7vjudvtpbvPsoWzJgXa6C+gL2HlYtu2NcWWzp8SFiBmbJDFBx4qLr/vPTt20OWWLDcR2pPLli3LtIWLZ1JNaErHYTyvzJ0baEI5YIqc8MxCHB7RA1x3uPUBjgiakyQzZ848AcYyduGFF4rBu1pMY4KrSkLVQSWEK0O4krbZLQD6j7QFN0nO5S9dXtPc9n/r/4G40WXLFqs2daPAjtP/okN42223W/N23a1i1dqWtHGdjf9jiM2b/rfTAVw0e7KLJc20US6/APymL9lsHw1faR+nv974bVlGXFUuuy3cLI9mIEblRwua5UankN/sSVnI26wqLDNY0E5zrsezQ795UUX2/7rN4pab67EdUhsumzvJahxC7N+vnzwjl1gN52q022+3nZWq2trVG3UTLm/vdX5AFRQCyRkjRphcYkoSSU52DGCokyLPoSlszgEK3aczDI1eqqFlx8Am3N+Di4twMyd7E+kYeeLktqM3XbAMLMg2C7zWVNYSZXybxWvnVOKQcLXfcCv2a7XGdh33mBW57NIAdYkOjdjD3UJEP6lW2YQ777JvK1a1wdVhifLfAkkg0W5HrbsdZyN//tTVYvYYL3QNASAllUmbHcNFfMGtL9rU6060gR062oPvf21xO8pYqXefIqPBhIAsVpVcLrmkiI0/c6RtfeIF2/Ha29YSJMWDgABncTGBb+r1nSR4RsiP/MRNAyy+dFmxv0Vsk8TDAVjU1v3zx8/sZMXk9TzxwuwMLWSb2OJxdvy5t1qdZp3shbvPcy5vsng92yr077GQaIfD9imUM8M4pyStn3de4JmA0stt2/4rlnCDJGSaCwg2EtavrUSfPcRyCrEAMq7rzz77UMfTXAnSn6n6yIsZ/fo/AB6RsCktapFYSTQlK+hiHa9zsz11h508+H+u+fO3n2Yrli50n4sVK64Eli128n1m9fU/lFvbLPHpmUuTLTE5rTDJI7eTeAC2y07ljAMwjEy7yO2YtqftzNSP/8viNXoaL7T/xAyQ5ZsXFpUXnRTkPnaDRLKwpbMnWOfjL8qiRcFZxc107vQJ1rXLifblu1ut69BZ9nWNSCmgTBfAai4WJsAYoQLDZ4yAeeQ7wtkHH+yRwvDaEFQPeMyOkXFJHJc8b5kMtm74cIG2foHqZZlWhvhCO8bS7JxqmVGC11ZBi40FHjeXKG8lcSOL9dqluMa/xHqVEwgc+PDD1qJ9TzvvlufF5sZ6W+XrO0LQRdJpy50K1qurvTV46SUzuXKxG264QaxcXSNuLrtWs34LS3ngffvgmRute/eWNllyPQoqDGxO4ObEiaaCvNbpw2ts+PtLbZMwS8uWOglB1l+yMcfLz/r999+rooekVxYlWO2+HcWmNVYXP7ls3pWLZgZtlbuvE1VHF43G1hqX3wBdsHkY8i2TJxPvGWCDSRpWpT0X37dmzXKBvlkCqVHKwp2k+L62YveE+mQc7rvvBtoJ+zopIFzDRxzRU/1Ncm34c/IFN1vnI0937F3ShgTH6G8Xu//+k9cqL4qydg9mtPV/eOKG/ta7//kZ4I91l+kBo0aNc6x+pSv0bYK/ebY+83+Kztxfqt+qB/VCK+AzgG4ervmConfLeBCrzo1tSN7hHrpg3/0GoCTetND+GzOQVyV5I/8b0xH+KKjvO/zL52zFgqliCzI/He1ISxVxstWKye12KNjI79+1rVtSJFdxip0+OM7KKhP42mtN7MY0VZBo6dy2MHK4AiSZ52yefMEEx4cyyBTwcXpJ1owmePIyMKNuts5UvsvdvdNb4Z5E6xnWhpJdwYZg76WXBm76WWHwNOkYou+HqfBEgOoJlUhC6qZitkquXRTwHQpYTBQr9uzwEXZe57520/M/2sX3v28lVOv2QJk/BrBesw4mLGZX63i8UnuLNWdN2vWUm7hIjobUpO0RdtfLf1hliTb/I9STKsZOvk9b0fYESznqJNtxyukWsTnJep9b3bqtHhK2b6qpnKySdk8de7Q9UbqIY8L69WvldCArVa1px51zc9htc7Jis9yn6OtFo0mpeD3PuO4Wc0HKcNeiUEQTMC3vCtlTcsdLLsYPRi8ubr2u5YGScunttuEPJK+8vwLDyMGscIwquomAv+5Hn57Rrm2P/kaZvwpV9EAgEW/OTY16zZyEzTGnXabSd4My2nofmJtWrVraiB/etzZt2kra5n0lhezW/9IzenBpp/+jnJ03+gVI/DhhrZPxKAR/3kwX7PetqbsOOkNLTOhCJaT8/u86+3TkStumMeXGqCXt1/njYWRTSpqNl6xM4fWYmxktmNvMWLo5TwYWlSe9FOBO4stXtXZHnmnz/x1pU0Z9ZeWr1LX6rXta2Uq1bOXCqVatbosCPPo9Q1u2cKZ9+eZDLtZq0KBT3YoS8YHTN23aXGVCXuJYFhI8uGFiuLwAI175LZbBwADacKtB2HAjxrhP43kFrEm+b49BvzzwQKDw7m+/BXQ2BCxIQkULUHKCGaFo3kYASIWsOZcfumzc8Ik3DGVo4MEeYXuJ/JIxQHUQuTN3SNYjUoCPJ5adel2q16Jjz7QjB11tvStU1bcDb/4YwGICa0cNuMiGfv22pusBx/5RQi2uVLlcDaxEyXg7XzWIH77xJItVzOPRAsBVJ42xrX9Ps89Glbea06KtR8tNVuGIJvvun4BPXkouWS7kjhu1Yatuqv5Rct/bZqNFvead7cePnrXtui6K+ny8MIJ/qAD0dNUSJEOdUAGuT+IAud6Sksa6GElctJ5RYYSHB+UuZbJt2zYoLKGWKzHHigEX3mprVwC5A5aStEHgr5ZjPx5XEsyG9QnWpsuRduk9b9mxZ95gd57X0WtqAwYMcPGFfnc1K8m4Zt+ERhBzmjhdC3NwHyZu66uxq21DDrM3MwZW+OGgzQAJEgfL1iWl2i8T1yo5KG/G8MeU9fbPvE3WsFoJByrXq6Zwof13ZqBYTKSSebZb4uZUK1syZr8OLGq/tj5ENi5ZuqK16XWqtd59iq1bMd9m/zPUNq1baamqp9vluIsL/FGkqXLDO49crhtgTeVQvJoxXlxqo0btlPtstz30UJTLrvRWEuu1SXczAuf9iQkkEMgz6fIwYPGIy8KjSj6JSBgxIoEbIMkbBOq7O6JcrAokDIAxVffYfb4yihcttN5n1Avs7ocfAgq86TsnDEz3WAfo8JBSpSGcIZVCneJgS5B/ME5+7FjFB8795hubJyC7SI0W6/WPslAbXP+4DeqtnRxE26UJpMKHZ23EQgEAEUrGcAt3PmoPS+W1y+57+co17bQnv7H7bzrJoiT2XUtounnX1na2Yv7GKAP2w+/jrUrMDuv967MWecP1Gd1SqQXC1h/X6VZKB7Kl0nP79DnSUseOtO/PaGXbe55o3U+40GrWbx42VjSj4zAfylSorgeJNJVRS3OJLzxEkAVM1jnZ52/piQMwDCPI+9atYxV3ukHXVxHh0gtcqTceSLjeIHqHf7vJ+s99wra36mSr2p/ogNn69bEOLLKfE8+62nqcdLlLZqlWp6mVEeNXu1FrNzpcXwMvvtt+/ewFqytg+voDFxnnJSU5KWP0VMIJVXtYl5nLSCasAStbRn/Wu4/Z+pOiG3gh+MvWVBW4RgcTJCVsTM0z8OdN7Ca5kScIBBbaf28GXOx02aKudGQhAMzB+eXmUKF6A/fakbbdvn/jTpsx/gebMnK71W7WxWo36WjREoQuSEbG5gdPXW9rE1baJAVEUUfVM/T8jjtukViPOpnAH+u5+RKDRe3W2rWbOgkMaqpyg4WJSVfmMJWRdawfZJuKbbgyWbNny7370XiLL6davPiYCc4jQ0Mr1lVrZT89sMiOO1Lo0TOyPIIMdhCD6fEViXDL/H+QgAkGgKMUqJ8gOZWPBbCWla9kkXKvkmhQsWodp6d3mhI9oqOL+rs5KJ+JAczIAtYIACH9z7nefv7sZSUm/2mtO/Vxbsn9GVyFqrVswFPf2j0CMmtFu/YXW3qimLDNCV/LbdnMViyPtpvHX2FP+3aCGDJxmZznpk19K/73P4vUOXxKTw5fq/ZtP/n+i/z5jb09dIi9XUaSAhJ7btX9RGskPbycuK1xvWIPP7xSajwN5UoNMHiww+hP9lDlD4TKhw8fLta4kjWWXNCgQa21RZwygCNVBSUQD0glDxKbv/zqC/v624fsOY2vDgGpSm6pX7+YKxV3ra7H8UM/s0XzZln/C+6wXicNVj+ZjSorMJy3ndXOrVi5ZF5Gg3feeSck+KMBD0Ae+MvYIAcftqnKQqEdmjOwQOXRujctk+uHoP056iq6mRda4QxkdwYQ50YHsHXdUtndJGw78TOHp60VE1i7SSdr03uQYwIXzRhnw758VtVAilqdpp2VGdzOomIO7j9mstxaD17ex5I3b3LZiy1atMg4WTB0MC2417zlxEiReVlXdB7ALylps1xwjV2mJfF+xPURU0XsFS5a5OZgAYkZhKnbvj3wTshZ5/Nq2oevJlsXHjfSNWV2a8MNtzxkp3/wsBVt2ShjLG7jPd8yfaLuKu409kF2sS9J1LVDAoZav87EUH2r7JEPVHd2jsR5L7j/gwMa05dp4Nn4EsgC3vMvxAPGsWfdYC2VEfzGA5dIXLydztEuB8az0V3YJoDAy175w5YtmGGv/d+F9kq6anIVbXGGXr9UqqOE8PFWUWBp1Y4K9vuUCq5es/SP7Y03grpVvGUpFXFOFhBqLkC4U3GVV6nRE5r7ub99YUOUyfxapWrW57onrFHrbkEbh/6alLjGrTj//Dhdb4HQAkpBo/PHQ8WKFd0k9yJQGfmUE/H2AP+kSQHGDc3J0yuPMOvRwMaJuvz620tMl6pdK7D4uFAhIQJcJ1SyIaaJh5txAq68nv5immJ49/wQpuh/ZdXS2Tb9r9+tQdM27oHuqEHX2HN3nKlQiPqSkDk39EFoaXqCcdj1+1pRIraIRUmJH4mGQju0ZgDwvi4pzSrE62I8wJawST+8hVY4AzmYAUrzkQm8v8kge+5eOdj5f6Hpkpl/WcO2fd2hxMSWsEbtjnSvrSoLt1jr/vj8KWUSFhfz1MWqN2hzUMrETftLruqNiRJRHma9evXKNO26H7pYv8cem2pXyC2LfQbFJ8P1yI2yb98zlCEamZEQElhnjqHBPagYeMgVB/wAgsozcFhvzBiYu6o24DZtUVQ3M4T8lIE6/8e5VudsVaLwgz86zcJgAmEUJcnmZGEoA6sqbhnmdwFv1429ttxz/2pt4zY9CjT44wCYY3T2fnj/cbvqwQ8dK7kpMcE+f+lOW7NyiX373hM2Z/IIu+ahT3PEqNF3KCOp4eZnvpeG31Sr07it3qfbhk2JFvnKPfZEp952co9rrMtHV9ugAYNsdxuBz6ObKHazd7ovP71HAax4xep52blFjj/eauslHRVroKydW8Uw196ZaoPvPMvaHz3Iep50cZZVReh1wfTxTlqmSZOqmaq5kASEK5rww927I+2RR0orVnWdHkCqCIwFYkhHjrTANumZRLuhjGUVux1tn/z9p33oSgTqScdnPEzUbtjSFs+darOnjLU2XQMM9G9fvGRfv/N4RsuXf1zsGB1AIfZ//3efmPAiGev9H5Qs7dhx/7Kcfi6s6JHTGStY7UfPTLT+nSod8GzgpWu3FayJKBxNgZ8Bks1WJW4TAIzbr7EelgCQG3diwlIrU6nmXpNXLK60Nel4tHtt2Zxoi2aMtz8+fcIFzNdp3tWq1WuVKe5rrw7yaAFj/OGDJ5Ss0VtZtj336pWYPYwbKm42rLtSJRHQpRJCOOP+l44XM5oAAnlhwmBOQgbiL2D60KaNrY6saotLKo7rysbeipDvJJngeiyVTsoAKqnuIAzr2Efu734AuFEMT7wi/tHLu0YVHcYIMSzTYPo1bB2y/4K28K2HL7eNG9bZdmVnb4/YYi/dc7bBiKE3hwDyqaqJ9sVr99jpVz6cJ0NHK7B0uaNcX82UYYwRz5b6sKpfLA48CBQd8omyLVqpuK4QWO1vMgcD9unj6j/uJODNbxpnhILwiqie9CDFXda47z57dNQP9vWvn1ty3UZ2wnm3WvOOQnIhjIeHjRuT7bHHNin2M96xfjSDVQboYW+99ZWusW3WrFkzd42xDD1wACJMNuwb7l+ue+x4ZSifde3j9s+Ib+3Tl//nlkXHxEoge5vT6GvesbtdI9DtT2TZkbrdteNP5Wq1Mtx5JNSULV9R8bKj7PTTT3fSOM+IHk1OTlF86lA9AFEnOBD/mtFBLj4sX7etkP3LxbwVlE3WKBaPZIyjVE/3QIlDb1XyCddNoRXOQE5nYOKCJKtbubhF74eQuW73h5+tX7XIylWuk3GDCDcDxUuWtWadj7Ojz73L2h95liWtX2W/f/K4Dfv8GVswdbRcx1vCbbrfy2dNGmmJ6xIkd3ePk8nAvcgLds8zBJRLgLDSrWPHji7D0/uem3du2HvA354eilStZH2vyhr8/fF1ktN5Hjo0sB1uZoAq8nUqkWtTpwbkQPb0GvjEcb2qrJHNSg/tcONT9uTn06yl4tEKvAmsRMjlh4zNpy/cao+e39nWr1nhGFtcjaekZ8ROGP59BrDJj2Nirj6KK2U/qPNf9RKest1SXt4NChd4z5aB0lU3GjquiGLvuiv7+2v18a5ovHbKOnvtgUtt9M8fhTyONkccq+tukxjeB9y5/umnvd2piYnzlXx0lXPfeuMhdPS22wKhCL7L2K1OTkp0DHDPE863Hsec7pYB/rAIiVqXVMxi8bj4TP11OfpMa9f9GKsoKZj+F9zu2np/+L/5QLGs9QVwBw4c6MAgUjKETBCm0L+/1zLn74DWv+dutDGzNuR848ItCtQMLBMYG6nyfAfCYHC+HrfGthfGjh6I6f7P7QO9yDkr9OS8H3ZYMoBLZv1ttZTwkRMrEV9eGZgnuhdu4iWzJ9iIr15wXVBJpGbjDrohlc5Jl1m2/e2z5+wkBfuXlwTIDaed5tr263edvLFFFFNl1quX2cKFM8S2NMvUD/FRCOX6k0UyNcjll3SSMezWlObd/fcEO/3BXuYVXRXh4hgg4VKxVAHJGb/EB/Fx2G/K9n1WmcStLrrNeh55qlt2KPxh/BvWr3VDbbNsjl3Zt4+doNg6T9aGFSQdDB58sdyVU6xOeqZqXh/bGw8OtvXKcn2wz8lizH6wU6WBV12xoacKmFRRfGWtL74IlNzYx44nKsnouhNPtNckzVNdmdnxyohor6zdT++80zbdeKO9/cKd9uq4X+ziu98w2DjPUgTWsPHjx9lTT8FK75EDhFnr33+by+Dl2gw2HjbIPPdWdZBOTM2atZW9e6lc5x9arQYtbdAVD1qtRm1s/tSx1rHvqVapWm3JOo0I7srKlK9iF9/52l7LWVCuYjVbOGeqYhET7PQr/s++ffdR66QLk6ooxLzuj81bucUm6Wm80P4bM4COXrv6aVYmLjrfDghtvh//WWuFYQP5NsWHRcezlydb81pyneTS9v5FzmVHh9Jma5fPtYo1GuZ6yLiJG7c/yo46S4Bl4DUu0Pyvn9+xXz94yKaN+c5JzOS68/QNiwhcnCL/2Cq55pZq2YUXXqUyY8+akjdd7B7B9i+9NF0SMC1cTB/B/pCDVP34UGJqHrja33Fkd3sA4JGP9HXgDzfv66+bklMCycMtWwZ6oeQXijHIzuwY+7etk1zKBh3j9XKXVhfLc+QpARdmdvd5sNvBXBJThtTJG7Nn2UUSQfaDP8YHE1hSvs1/hg3Jt+EOuvIRu1bu0PNvetZadepln2lPE/qdZoObtbWLlfG7BZ98CPPcraxCL3LAgIG2OLq4DajX1L7RU8YTYpivVwzexUq+KKcMoevVT6nJY5SVfkOm3tr3PNnV1EX+pn37DjZ8+Jc67t2uxFunTnOcdNGuXVXto48CoQCZNtYXD/yxfPXqGEkXTbBaNavbs7cPsg3rVrn4225i986/5QVr0ranstOr2qb1K4O7Cft93tRxliQ3PbZt21b75p1HLU6C4X8rjX4yWkrBRrxCUF3j4CZ8R7+Np/C/520Mtbpw2SE8A3NXpuTb6Pm/Gz1zQyH4y7cZPnw63l/2+LADgJtVJgo2j9qoeWExscWtXovu1vu0G+zIM2+10tJEmzH+R/v53f+zcT+9Zcvn/2s7d6TleFcX3fuuCS857btLpOXxzDMPOdcsLlrYtDPPVJxT5Tm6WTZyMXsiblzJrNPEFhLgT3LFgTR/bD3FQyg+AvBD3w0mEGPceBmp+DHqzTn2x+CrLVVZv+UFVgZd/ahzcQdaHhp/I4RcTj7/Fs37uzaUzBmfRI93BADEXr162lwlK+SXlRW71aRtDzd/l9z9lr3y0xI7U/FzA6942H6Xi/MXSdIEWzHF++H+9Oyj55+3tcuW2vm3vmhXPvKZfSc29t2SFe1niY1+M268fSW3cLSyOd6Ti3jCqJ8EqNZ6mzo37BX3vW8X3fKsJSZtMa7BRx991K3/9tshKhPYXyzoGe7cE2tKAlM4Q8OwX7/y0lIc42IbP3n+VoVa7Bkn26G9uMsXChGuL2/5kNfvtXWSUfJsu/pbl7BK8YRpqqt8SaZ5cG0AfwQkZmFUbvhDVRumLk6y5K07s2hZuOpQnIEZSzbb1u35c15x2+FqLrTCGdjfGdis356NqjWeWzsgABCFfLJWCoLhusVdmx/GjQl3cNcTLrFjzv+fWMJ+lrh6sf2uJJI/Pn3S5kz83UgsyY5R0qxuw+Z2uRo/PnOmC573gzqeIreLlfFcvTCDZ565SyzhLw4IVGbBATSkZebMCexQMm/OTc03qoog9yGCKcOo8rB9UAW7et0yWy7NubOuf9KBiIwGefABgLBtS3K+M6F9T7ncylWopGIlr4UcNUkuI4WAq9QUIj7AtiV5k9vjD6Jd/WCPhSTeIBSOcS1Nk/RO0zZdrUbdpkqsiLOjTr3SrhEQvOGJr+3Su9+0obRVquw6ndwIbQP49Ru6gR0kzH2ZHlzqN21n90hiBikiLyShTJlA665dTbqPgcQP//Z8RqT8r78CckWM7w3RyDPFON53cXdbsTj94krfCBd06vbMwDC4P+97yy7HeB8zvVepXlu1hieq9NwJmZY76lIxkeF+sfgtGzZtvZUrFWMzlyZn3rbw239iBlJ37LZRYun8LHleHNjStVtt1IwNedFVYR+FM+BmYLzij3NrmX/Fc9tL+nb8s1CeZNxsxQ2pnuHbQ5fZG78us7d/X24fDV9ps5cl2zL9AxxMMLhywRRl8oqaymfDPVimYg1r2f1kO/qcO637SVcobqqYTRj6kf3y/gM24bcPVYpuWpbsYM8TL7KOPY93I0Xj77LLrs4YNd+JX/LbO++8YomKGaS0Vqh4K9oitvvSSwHXLN4vYrTywpD8QNLDM1hAXQ4Co9J4O91M0nOmSm7OEhISBFbPtKo16krI9xJvk1y9r121xH77/CV74c4zbc6/ozP6eOaWAXbDqc3s/y7uZqN/+iBjeZ5+0AFynlt1OVrJDz+H7JrKLTCyAy65N+T6/FxYt0lb63n8Wa7GbY0aqv0r6vVEUcUzJOrtB4BzhNyfUeBep/4XhRxOvabtbXrvk6yGQF8XiVFTR7hkfLm92gK6H7nmWJs/c6Ku6x2OXSP5gjrBGIRjOuZ05QiDO0BuEobYKwlIybbzFR+6IXGdPXrt8crcXyHZnYn2z8jvbbQ0C5GfyY4dd/aNjhW9/uGP7YSzrrFjT7/C7n3tD+sz8DK3OSXruF6/unW8zRq/SecrUBZxxXJdwCFsjeqtJqq8FuLBBeS5NsQoCxft7wxQm3dJgi7aPLIpi5LsJ8X9Hcz7Xx4dSmE3BWgGFq/Z6kJRcjOkqNxs5G1DIOuURZttvUBfdJFISxQVuSUMbc7y4enZVVFFIqx6+Vjr1bysxcYU8brLeMe9UkRt8tq2b02W+yjGiT3ndd/76q9osRJWt0U399qt+L71qxfZivlTbPrY7x2bUrlWU6tWv5VAY00HKuivY99T3GvFoj6WsGqp6qje4MSUEXT26qt6+0UoF0bwnHSRYG857wAvr74vyZ4qsuHcxcJhLgMyPcfEv0mOPyMiTd+e+YGlwsgEShWXNsEUH2aSSDndxb/gtixVtpK3SY7eYbe+eetBBwRwsyIjk7x5o9389DdOj29Liu7isoTVK+2jF+82WKBSZSrkaB/ZbcyDT5QygUMZEj05cVeG6iO3y2Ckz7jqEesz4DL75eOnbf7iJUpaWW09e/Wyp558MoMBHKLYxWj55xu37hF2V6df97j9KAma7SO/sy79Tg/ZDlawQqXqtmnDerf+N9WOhon2ShFS6o0XxoNBsJER/P/tnQd8FOXWxg+EdEICCaGG3qtUQQQVpdgrFlRULjY+u2JvF7nXK3ZsqKCiAjYUUFGQpoL03lvoEEhCQhopgN/zvOuETdnNJuwmk3DeH8vOzk555z+zmWfOewrSQBpf1p49Wcv6cfnkk0/MYsfhRjFj4uuyEFVL2FjlJjUpzkzHblwm2yAGL8RxVvEPMPMK+4+Jrfk6sHurbFu3WNb+9YtZrEGDZxFpD9/a68Nla1KOuUYx0i11kyAAjxbcEv3D+LdOW8Un4I36vCfx92Hl9hRZvr2Qi6niI9QjLAUChf099WS3JRKAh5OzZGVsiuyG8iz8Gdn9rhn5RNV6OCZbYiAEaUWxGp0aN+xJlc5Nw61ZXnvfu3WFGaL12gZLuCHeKKPqNjUvboL5y+J2b5StK+dK8uG9wiCTurBS1m3cDnwrSwJSizz++ONImdHLBFdQTFEA0tfKanTAb+mcYM/6Au+W+LNm0VXtnnscn556SpAw2lH/1/q+uO/YNSxKeVN/XHyxoxIEgjqFUcBM83H++YJ6xhkydOh8uWn4S5J5dL+EhFUv7u5k1cIZMvmdp0xOuFGjRsHHbDCOsbHs2bFRXv6//vLch/NNwuTFs76RqRNewVBhllm22DvycIU1i2ZKtIswaUa1Gsv4oX0mStXDTXp1sei6jWTIY2PMNmkxfWHYecjBtw4VYqDM0XbiCaFaeA2IwEDzubD/OOR61dBnzKuw7zmPv+P7//u1PDKoHUScw7TMgKRnUeuNdYCdG90EGAxEX1Y+iKDYh8kbyOcX1qdmKbvOnTs7ryJH4g/AonmzbIc/5cW3PCI56Q6hOW/aOFn+568y69uPkEJobZ6/J9YGeNx7tq6Syv5BMuXDFyQxPg6J3vFDQBv1UA15Fe8p6FAn5CvqZObiv9jK1lTuO603W08z9ULuxnTC1gSiqvlL65iqp9VHBgnNh7vAgSNZp7UdXVkJuCMQhNJwJWlu1+KNK+dEXv89+vPNW3fECLiSiD/nTtIc7pzHhuJv8Rb6XTgv5b3pPVtWSIOWXb23QS9tiSXnWG2kx8V3GN/Bbv1xF0RbMfdrmfLuwxjqrWvKvcXGxhnrCL+jf5U1tMbP58C5aivy6HnamHj3++8defpq1PB0rYLL0aGfL1b64NDd+PG4oY4SWbBATH1iBJDKO+8IfOQcw8/16/ub4em//z5phFFJgnG+/eB5SU1JNgmwL0CUSSMUG2ZN4ZpQEamojMHrNjgkTC646l/y38+XydPv/IwawjEFO++lOazQsR3J5BbwoPM1nic2X+4/3y7dfqxZpyFKpHWWOQgMsXwAmayaguj5O3rI9x//W45lpLrdhrsvA4KC5cWP5+UuEhIaBiHXBUmiX8mdxwnkLDe1dzlN8Wc1RrezljCF4BX5kvNtW79MkhMOyAOjv5NOvS5Fwu04s1rfq+4277T65jglg7a2yfdXH75Cxr3yoHw06m4JDHbc1LOzMs0ilJGH8KrWo4f5zP84DJzAL/I1Wv502DcflAr6kaXhOGxb3JaEa+Qg3ASWbEmWbxYcVPFXXIC6vMcEKPy6NQ8vcTLoKq72tBP+DxyytcKMWXOO07y50kHWW+3PDUekUXSwpGeekOlLD5uhoWvPqS0UmqeT4Tp//xiJmwOn8SCnuqH5l7HLZyagbn7W+ea1a8cWY9FgKpEvvvgYyZQPI89apPH1O4R8bVawB+ur0gLzFcbQrr/+epc+gDzGebg/09/qyisd5bhO57iRKk769RMM8wmqKjj8/miYzG+MZNAmb+wREf5SvUYdiduzRSLCw0q060th/fkKIpCi7x6YMhciApfDmPEwJd3z3Ed5jp1VIPjyZbOqUTD/Yv62G2lueF7CqgOUTRp9SyeOGWGqxlD8DURG5p9RE5jXztffTJQVqADy0P++E9YgLkmLqt3A+NwZy+fhfTJj0puoVfykSblyMUzD9EGkZTQ9fZDxC7SGhbkvWqP5evChh2TM22/n2T2H+dcsmSdrBneR6Nr1pHataBn74hAZ+tRH8srE5aYqiGXVy7MiPnTuNVB+R51jNpbrYzMVVBCd9P0PP+C3cKU5T7ikBB/xcHFcLgnKQN4Ys2juf+q/lYvijJhgtG5kWIA0qOkYqeL5532Q96vVEIcn8TkHI1r+cFli3kBW9UiGa5Q375FnBGg9yBIRwK1FmtYJcbkuI4RTjx2XmJrBhS7jUgDyorbEH9ekKdtXjT412/ZnmP01qhUsW/alywkIzbNbRHhtlwd2rpM6Tdp5bXultSH6cR2HeqIDP18cHnv00T9wg0qHtW08EtseMnnmWOGANzQ69BfVYmNFGLThjUbXN8v9rX9/11uEm57QwEKh2KZ1UwTAbJRaPfu6XgHf0BKVAb++GtH1zc3ZWrjXwMHSs98NMv/HT+S7j/9jcu8xj1233hebgAxrOV++U9ygU2YXaUcTTT7Aviizlr/RAhhWLRzfu/yp5V/F55879b5U5v0wVn5EdPB//vMf03fr+ho5ciRK9nWVXye/Ibc+mleAFbdjFL60fN768BtI6NxRJqOkm1WvOhD5YHbtukZGjPAzFuJ/UObuoi5DhZ1aMHxoT8JqzBQuXbp0QYLxpvCH3Yeo4QUY0n3epL1xWrzAZNe+g3IFoDXUzWuGja4UPHfMoXnyZBP4KSaY0ojndU6VqrhutZ25BA5i6PbgkXhphptsWHAVWYf0MK6SN++EW5M2JVCaBI5ln0TA7UHp2DgMr2oSEuj4g8W4jN8xUnv4aLb07RDpsktlflfCCLP8tSnZdJDBIX/jiYq5tbo1j5A4mNGjIwKkcv67g8vDcf3F7k3LpH2vK1wvYMNvKDLWL5snl14yMLd3TKfRocMBJNy90tT+5RcbkSbmI6TMYPJnBoI8gqoN9LnqiBIL7ZGNmRGfzs2dUHNezt00LYjM7xcT47AAulvW+g7pDE27447bTaRyo+ZtjEWZQiF/+/Wrt2X29x9LelqqXH37COl//X15FmHakb5X3YmScQNkxpevIf9iPRl4wwN5lvHlh5PwcbOGr7dvWIEyZw/nsTxa+6ZIqRbh+gdoLVea7+Q9AJGxP41/0aRBYQlBq3E4vXPnTrI3bq81yyvvnftcITMmj0GASILZHgNRfv/dL1/d6VO7egIRIXyx3OGaNWsgEt+By8IPCOKqIvFI3dIQArE6fgxMg7Rp1Z8uryNrizVRHq5mrbq4nlLkgf9OliOH9si21b9jlMFP9u1YKwfiDhkLZZMmbXFdz4JFxw/RSj8g6aC1BX0/kwmwOog2JWBXAgzG5asKSpMGYFjYVTBu/v6XuQB07lATWP9Y3Pg4ROAyZNdnhPDFXWqedkkeRt2mwl8oPDKvVcF533acTsBNOBkRlSxg79wSEzdIu3YOUbgLZTd+RH42ij7LJ5BDZfRJ442TeQGZhoQisDVCG9tAhTmCRQo3CTvvx9X01KmOam9DhzqGfF0t52o+K2dMgQPi4oUz5fjffjIIpb6cW0LcHpn2+Ru5s2gFddU43GgFOLhaxhfzKQD9/E71K9LKXYKdcYizGurwcng+NnanhJcw0tkX/ba22bJDL5kJizGHfp0FIL/ng8PCv8YieCYzN1DCWq+k73/89JkRfxRwVUOryrsQdAgShvXNkSOSScLZ6Jvq54cHn/UrhOlZ6PpwLhwG+Zo5czlE4/eyYvRomQ7rZVVEAlMAxh86AHH5ttSs00jad+8rwfncPFiqLvnQLrli8H2SgOj7NfO/Ng8MHREZfiThkOzfuwt+gVUk9NhJOXR4NyyT/iaRuUlYmLjb0TH9XwkoASVgcwLUTsddZGIprOu2EoBbUVOTL6tlQ8jMRrb9QeeennBLOLBDouo1tTZbbt5//Oy/GDINk969e+fpM533mQaDbRqiLOjHZYk/zquCm2wrhFnyZYlHJiTevHmzsfhMmjTJWAopWigI+bKGkLm+u8aIX6ah6drVsRS0tbEEstoYa7qy0kNRjVbK+shhyCG4vTvWF1g8CE76TNJ7cN8u5GwbjjQmdxVYpqxnMMq1MjjTShsQFJhbUiwepSzatWtnusegFPolXn7zg2Xd3QL75zBoWLXqyAn5HsoM3mECafjAwGhzpm9hHsnszAyvCcCdyN/H1rJdN4nbux0VbO6TJk0Gw7IXiAeTG3Gt7jHD0UxYnZWVjaTQX0utWrVQ9vAqGT58OK6rQDn//PYyYEBX2YE8Rt8ga/TPeBLZgwikxMRE+enLN832e154lTRq3l5C8btJOrQb+QizEWlew/z+G7XpIZ0uuN5UEuF547U3bvRNZj3rv8aN25gk5vmClq2v9V0JKAElUGEI2EoAFkY1xwsBJ6z+0bBV98I2b9t5G1fMR8mtX+T99983VhCroxRyzkO6OTk5xh/K+t7VOwVjDzjh8WW1BCT/5fDxH8jg/OmnnxpBRssVLYQcQm7RogVurtVNdQa6vLExYpil3NiYSJovVAgzzvzQlSbyF/fsQlsSHBife+455AH83BxDK+RkGzT8vwWWrYqUJFfc/rR8OOou+eXr9+W8y++AFS26wHJlOcMaAt6KOrOpEOQUJC+99JJJqcJ+Dbzh/yRh/w5YnQ/K2fBXtGOrB7GzeuUy45d3EU4irWxhYH/hlbdJC1gIeR681Vp0PFc2rFwAsRwsTMz85ZinsGmYANEaNnxKdu/eZaat/2rWjpF6TVrJlxMn5VZZYTLrjRs3wII3X4bjWhqI1DuDYd1uf1ZXoZWPojUudo1sX7sQlsR0GTVhSQFrIIPBZn83VqZ88rJ063OptGrfXRIRqBJdv4kkxR9EcBVKxOWk47oPlUirM/quBJSAEqiABGwvAFMQwbICCTS7NAsvMf6E/dulS98bS7x+Waw48e3HzW5pKXn00UflRuQno6WGN7m2bdueVpcYSMJSwa1bR0mfPn3My9ogBeY2OPgxpcxXX81AkEkyRsKqmDx7tBLS+T4rqwFytwWaVC/332+t6Yj8Rdo34YtDe87WQFb/eBeCciYiZbui9m9okD/80J4SpsAprDVr2026nHsxkigfl6qwVNmtmSFgDE0zBUwIhjTpu0qLKy1Vtes1kMtveVTop2jXxpx6e7atMRZMf0TxMPgjDL6KT7/3mwQh4MKbLS0lSb6H4GJbvXguBOAIadflfDm0bxuGb/fnir9rr70Ww6+7YaVeLvFwf0hE/d6GTVvJntjNCMwIRrUORwBIKMzOP2NbtRs2xO/BT2o1aC3nIrJ5HwKLDsRukBl4aGCb+un/pNfAm6RBs/bmM/+bgYTYM75yfN+224VyNpKtW425Ap//Vx9YHaPl1ltvlfeuPKEugBYcfVcCSqDCEbC9ACTxZduOmvD6VjGhUjWoitRAuH3wP9EudHZcuCnJRMEUZiPijTo0PKpA7VK7n8lrhj0rB3dvMTnLkuL3I1XFNGOlo3/WU8jezAoJE2Edoa8ffQA7dOggYUjo2wopYIYMGZL38N59V+Teex2Oe/iGgSQzZzqseRhly9NoKWSKDr5YlouNVsYJE3YiB+E2MzxIv8Pk5Bz4ufmjLw1hOWqM4bwmZhjxlluChXWBv/hCZNiwU+vzhjovPUOeHTtbmJh45pf/dSn+uBatT8OeHuvYgA3/N0PAiOwNqRour361VhKR6HnFH9MkIy3ZVN6ws/gjzu8/egERtRkybtw4Uz2GqXRCkbPP2+KP+1q/bA7fcltGWpL830sTZPfWtfK/hy4386+FGwP9AnltrV692iSq3rt3r8l3GYNIIw4N85WeeVx2xe2TVPh+CpIGnkAC8K2o6hEd01xSkxPl8tuekGbte8rYl4bJHzMmmlf/a++UcwYMllqw8jEaO7Jmbblh+Chpf3a/3D5xgjkS7/v3p/LN2BeM1fGZbvUlJjjPIvpBCSgBJVBhCJQLAUjaTKzJl9WYLqZWeICsQkUS5lxiuP61EIP5bRcs/2bH5M/Wcbh674KoSed23d0jZcuahTLri/+YOrr0YWrUrDWGrppLwtE0+WzC59IoNUXGo95aHgGIKFR54w2Ra65Bbau6uZtEmVWhLoQuy5OIN3cBpwlaiHr04HBwC1PSzfrqhx+yEHm8F2lgYs0w8gQk+uNNmlbKnKRg+eDjpZLZ7BLZCAfB3377TQbd+awRf9b65fndDAH/k9qFYo858wbe+EC5OSQm4mYABS3LtFrSbzQd5fV80ao7BV+xbN/Ked9K5ZM5MhepaGhVZm5AXjNMa8SKLnzIoe8ffQAZ2U5B+CaKSU+EaXnoUx8KaxxX8YcF+pcvZe5370okxOCk9543Xb948MPSsEVHTFeClbG37ILInDXlYyPMb37wNVgfHzWv/MfJ3IAsEecfFGrKLvJ7RnBDV2pTAkpACVRIAuVGAOanz1JyfFmNlkAmPMwvAOnIzrJq5b3xBtnqrHNl55oe0v/WZ6VOg+YSgdqsVuONcu4PH8n68S+bqgtMoWEagi1gTnHUYrMWxjuHZzG6LLivCnLu5hmudVosd5JxDTAWyXnnMcpVZOVKQYWSQORPa4Zl+DrV2Je4/Qdl/TuhktItRiaiCkSbtu0kO/WQsfyFovxbWtJhiV23UKpWj0Y0Z034aoXnyfV3amv2nDJDwDbK7ecppbh9O1BDN0EO798lDevXMtVAXn75ZePDOACWstNt9LHLSD0Ca1y8pOHF6PsU1B++6qa7JCnhIPa701gZd6B+79aNa1CX+l/y9NNjEDFd+J4pGCkEJ3z2mcyZPUfef+F2adyivdz1/CfS+5JbpUZkFELRBdbMLNm+eY1MRoLrK4c+ayKYI1GXuP+g+2TnpqVSq2EriT+w22Vy6wW/TJSfJr4lXXsPNB3h0HJIVf41SSm8YzpXCSgBJVDOCZRbAUjulfCiJbCoBJysY1oRWtrReJPKpnWncwscDgXiRdfeg1JZB80QMa07V8PMZ6KDWYi3kEYRyLrCyAWMSGLIOOg4RvM6N8Q2oLKIYw5SxBn/PgaC0HLoqrEvdWPqSd3Rz5ghxhXI2/Z/L34i7bpfCIvOCTm0Z7NkIsnzcURo7tu2ygiFY+mwPsGqyRx1wRCIYRCFHLoPrRZp6gUzktM/MNg2ItEaAnbFwC7zc7IzkVA7zQivT0ffj3q6B83vhvWor7v6MuM+wGTQl9w4XC679XG33WY6pWMZKXIsNQlBF4nmvKUdTTDv3A8bhVNoeKQR9VXDa0rD1mdLtRq1EfwRIgt+nSS///ajbNq43ixbu24DE4XMAJT8Zd/MAvhvKWoMnn02toFk2q1atYQ/am0EHi2XiW89Knc+Ow6BIu1ly4rZcitqHbPG8VaUi+Ow/AsfzTWBQ0vnfGesiGNH3mnyAI78dJH5zOvMOf9kj4sGGQHImsJsUcgZmJG210zrf0pACSiBikigXAtAPPgb8cfkh8x/U1gLwJBORWnx+7ZLzXrux6SuufMFmTPtM1j1HjIvDhW7a6zMMWIEOO50lGrDvdbU9I07cFI2LTwinfpF5a7OaN+iGsuzvfrqq6jzmmYCRqwasE3adDWrUiBQSNRq0EpadLqgwOb4HX3EaD2iuEiM2yV7t640VqVslPIzDccUEBgiIdVqGHHI8n58BYeEm3dOc4jQl815CNiX+3He9vb1i/GxkkTVbig/jPu3ZGLI9qIbH5Tm7XDS8jVa4mZ9+578PPkdpEI5Lo3w/cMwsz2H9154DURqlSZIAP3CCy9Ki7adpQ+saYf3boUwh8CDH2MGRB5fx3AuaNFlo2AKCkG2eQh0sg+D9bZOo7YSCrEeAHFeVOvS+zL548dPZe/OrWbR2x5/Vz5/7QFThm3AgIEyffo0U83GeTt0P2A7KZWNGOR0tfDq0q2vI3ijGsoK0sJIv9KuvS+RFQt+kb9mfS3d+16NIJNYlAx8kauYlno0yfg9PnRNa6kRVUteghi0fDVpLYxGsujDB/cYC2W7bn2xzoR/1tQ3JaAElEDFI1CuBaB1Onq0ipCGqCdcaRYOJ92a63gP9HJEY96tl+6neERNFiaanHtB65u/fwACN7KRvmWJ81cup5FrF0EkgqohqMrylyAqE5bVbXOk+0vXSaVHk7FeJZfrWl8wp98DDzwg4xGc4o/o2DDcpJNQQikH88OqRchx9MdqFHcc9i2s0TJFqx9ftQpb4J95FIMZSP3B4UZaDykCDu+hgDkqmekpsC7m5K7N3vNBgFYo5/dAzPPHPL4H4Drxh6j0h3CkeGQ/3DUzBOwmQbW7dUvy3dK5U+TT1x4xqzJ/X42cTHkdwu7lldfLrC69pOM5F8v6RTMlHaKN1wAjaOnnd+UVV5gAHfpm7kUwT5PZsyUZkdeT5s4Vf5Ry8fOrjDJtrWXTspmmli4FXnDVCPjVNTJCj9OVvTTUzQTNj7/1s6xGP9vDGhwI9s99OF+Wz58qE954VB588EH54IMP8uDp1KkTak33RwLo3+Uy5FPMhk/vpbeMwHl0CE4KOFqV2c7qdQkCS1bL7CkfyIyJb8ijr081AR+1Y5ohUGSp9BpwvTx7W0+zbA0IPq67a+salKurj+s1Us677BZcNyeMJZ1it0HSCiy73iyv/ykBJaAEKhqBCiEAt+5Pl9YxVcUvyK+AAPTWzcsOJz45fp+Eo+RZUa1Zm05ycuNKqf9PdQpkXoHDf1Fr0cID6xDNQ2x9+sHhDzdAznRu8+Y5Pl1wQe5cRglzGO+vRYtk4KB75MJr7jb512h9ZKQprUMUJVajZS+meSfrY4neuc0AsGAJuKIarYoUjNlZ6RAQeKFP2Znp6Fu6EUycNq+sDDmenQWxmuW+xAmYMLiISYYTD8QagUQxwWutcmW8zPup43X0z4mjNQnjLMULX38jWt2aPonazxSY5jPe2Z+NK/8wkdlkSjHHerh/oLpLI1hcmctx4Y/jTG7FerUjsd5JOefsztKzZ0+TMqgqzLx0CWC935N+QXLZ8NHyC8rnBfhXkehGteXKO0flGQ4tiufpfF8FDydd+1yeuwkKrW4XXC2rF/5s8hHmF4Bc8IcfvoeIbSo7YAG9/79fF+grUwnl4Px2wXb5+mz0/8nOzatMWhvmAvzP8AsRwX5czrtymOzC/Ijs2vLwK9+ZIJKJ7zxj+vLBjN0meju3Y5gwFWgc2tJ5tk4rASWgBCoEgQohAFnweAOKdJf/UA/X1xRFARuHUItq/a5/QCKeuVkOIVKjLvL2UcNBo8G6VfiaGyZPlqXI0xeFVC51UGO1HgJHWMasEp0C8zcn4Wd99fbbbyMn4AK5b+Rn0qbL+dZsc6MuLK0IfRk5bFhajdY8WoKNNTji9PdKQblr4xJYHpOlaYfeRlxQwFFkULjxnf6MVss7DH9qPr+vhPPpEI0UkP9Mo78OEekQlWsWzZJpX40z+RkZNZu/UYAzqTfPHRsyuhh/TucUP9/CmTM2NlaeGvOTyYt3z4sTMOS7BXnz1hUQVPm3XxqfN69ZJNdcfZXZ1fr165FwvAaC1uuaz6HwYf3ww7HGp3Xt4pnCEm7OLSKqPnxf90t2znEZNXwAKoG0lec++h2RzY4LnlZNiuL0o0fksTd/zF3V8gEcdPfzufN0QgkoASVwphCoEAKQJ+tQcjaDAT0YrCyfp5bWv+rRMR51PqZJG/kvlmyKMlm0szHYw2r0zfsL47y8yTJ33ybUCsbdVT7CArushfAehSoLlyA9BxNFs6oCK4h07tzZWPKYKLo6IoujETlyEPt48d//lh4XXJlH/DltqsAkfdcY9Vtem2N4+G8TlBKIsnW+blYQE0u1FSYA6SdniT/2BYY/lAh01NWl9ffaa/6WZsgd2RDD8s5JkQODw4wl09f992T74UhCvXHTJvn2228RdHQ9BGCkzJs31+S3TE1NNddeF9Qf/GXSmwUFYDQEIH4fqxfNNrvatW1Dnr8Dj7z6PYaEX5c/f/4Uibtfc1j2sGSvgTdL9wuvM8P+nvRRl1ECSkAJVCQCFUYA7ojLkO5IElt+ZYX7yyoe1UxqIuefJ41JlKMwDPzsa68jN92NyPMXbVajcOt5zjmSCGsRh2RpFWmO9ybXDpNHbh2B4IujwnxoiYf3y9ZVv8sPU6ebsm3WsmFh1SAMo+QQLEmXYYtrW7VG6awj5oZ61b+e9aRrZhkj1PMPLXu8tj0WLM0o4Hbd+0r7rr1RXWWQREXVRERsNUR6P4nUjtcgqXf1AkBwSmEtc8ym5Xfim/HSFUmV6/TKazmjeOVQth3aDff9T8bAak3xx0Zr3jm4Vplb8pZbbjVVQHr37i17EFFOi6plveOy1WvGyI61f0qfK4ZKvabtjUA0w7f8Eo3Lzps+AXkOU6T/9Q+ahNCOb2gVd3o6smbquxJQAkrgDCBQYQQgz9Wx7BMVWABuk7P6OCIfPbkur7jjGXnn2ZuRQqOHLF68yFQMYa3X6Nr15Nn3Z5k8gikQe7RmWXV2w2sEYbqWsRJ1OmegMPk0gyk4lLZ721pZOudbSTlyCJGnI4zPVey7T8HJvo48/soUqVbdsyFdc/P25ABsvgyHegP8Q0qllxQw97wwQRb+OlEOw+dwDwIXhqHMCivCsAoM06S4ahz2731ttPT/T5hUQyk1in7LH5OBL3YRgC07niM3/d9LYvnkjfxkgYx+6DKkJ7oOgSp+JvffnwhaYVu1cIZ0PvfS3EMOj6orRxMPSK16Tcwr9wuniXue/xj+f6slul5jp7muJ4/gIei4XzZ8Llwvo98oASWgBMozgQolAMvziSiq72nJCSYvXlHLWd+zlu5TY2bIGyOuNUO9GazPhnb7E+9LvUYtzXREVG3z7uo/WlEsS0qT1l1QgaFLnkU7QiQyktPZGpNngUI+UHAEhoQV8k35mkUB6C7AiD6bOzYul5V/TEXN3bXSoEUnOR8WqiikGmE5suI2+gf2vnRI7moJcXvkw3/fYYbme/Y8R8aO/cAMl+Yu4DQBN1Dpfkl/1Hb+StYuniVn4byxWSl5nBYt08lzL74FVTw6mYcLRgyfM+Am1BD+n9Rr2FwefnWKfPLyvaglPEd+/Ox/eQQgr1GmvXHXmrXrIXx50viQ8szt50i/Uf5S3zO96MlmdRkloASUgK0I6POtrU5H4Z1hFChvcsURWryJsT7tVf96RhpDuNWu10g69xog9A/0VmOAR3H6xP2aFDBI8GzXdiT+gKxbOgfBHKfCP48haXXiob1m6NHqt6sh4GxY2aagzu6TN3eSN564XtYi5Uns1vUy/6cv5MW7LpCRd54nqUcTrc2U+D0K5c+efHemDB3xlsTu2iNMl8JIbL5oGaTfpnN7/fXXjeXv9+njnWfbbjqmaVuxckYytQ1bzToxZqiWZd3YzrvyX+bd+T+KcedUQ87fFXfaOj/OqYSKuw1dXgkoASVgdwLFN0XY/YgqYP8SD+6C5ah4pojVGCab+t/hcjd4fPEPkziU/+q/awvyvrUvM0rpSAHDCh+n23ZuWS2r//wRQ9iVkK+uhrC83K7Ny2XVX7Ow6b8ltCoSFptXuFRF0uKqyPPWHtGjLKfnqm1YNk/e//e/MEx6Qjp0P18uuOouadq2q7z33K2yY9MqCa8eKX0uvRXlxf7PRPv6+WF81akd3LNNxr98t8Qf3Cd33HG73HbbbWZ49umnnzbl+W655RZUUvnSVGth3jm21X/9InOmjEXqnHuQx84heJw26XaSlkSmUOmE4dC5P3wsa/6aIUyJ8jt8P7/66mtZvnwZkno79sNI4SDkzrOGf91u2CZfMrnz+z/vyn3IqPJPGPuWlfPl/Mtvz9PLiKh6ZhiY+QtPt2Wicoo2JaAElEBFJ6ACsBycYQaARNVv5nFPc2Ax/GH8KKnfqbM88NOPcg/WfPbZZ+WPH6aVqfjjATAHYHikI12J8wGxRu3mlb/Dv201kkdniX9AgEnIzLxxlSpVxrxMY+GpgYjP3dvWyP4VC+Q9CIL28GlLhLVzN96PBwbJWXcOM4ERh5HWhqlR+EpM3IN6sMtl7o9fSOdz+sltI95FbsIg5P47JishImNRl3bvjnWya/sm6Y7qGDfffLOMQnm0L54eLOehk4f/6ehllwyUryeNkV3L50jdVmfJ0nnTUPHkKPzoMkzwzJHEeKTPqYOKFUukY8eOuYfHWrvkn5iYKJMmTpTl836ARRdCbdrH8ufMb4xlMXDGhAICkMdsklIXETBDRv2v/z/z4k4P7N4mrz92lQkSYV69phgDZnUW+nve8cQHuf0qDxPOFuYhj7wps75+W8699LYCXY/4JxLYGwKQwrMaAqlEjhTYj85QAhWRgB8epE+4qKZVEY9Xj8lBQAVgObgSEiAAmyHfnKdt9rfvS2J8nMydPVOi/sml9i8U8j2QfES2b1gqzdp293RTXl+OFsC6TRwZGzlEzQTAaxf9Kls3rDTO/o0aNZaqVUMlLStbWF2Er5OoaBEEwValip9sWD5PIpDYePrdd8s5TzwhlWFlQ64aybnrLvHDsQ6tUvglzSHxL774Qu688055A+KoYfMOsvzPn1E1JE2eRiTtLpRCef7pETJ48GCkzQmU+++/XxYjt2EK8ufdiXQ4vRBAY6JvwTHnlVfkEgpZJGJmzkQ/v+qSEhkmIz4aKwMGDBDmrXNuFDFMxlwVibITse0rvh8nr/06WfA311RPYR7FvbGbnVfBeVomH7wwRHpedJ1cd89Leb4r6kNd+MwNefg1Gf/K/SYRtLV8VHQdWEIpbE41P4hHuhj4unTeqT2WfKp5+x7CV2EtomZ92QMLcElaCvxrs5AgvGadhrmrj/x0oTQ4xojkdbnzdEIJlBWBoIDKkpl90me7V/HnM7S23nDhd0tbd/nM61wmfNBY39aTlpRwUH795gMjdNq1a5e7Sk9YoHZOnCQbELn7+Ns/w8IWlPtdaU7QApgOq9k3Hzwra5bON6KP+QXHjx8vN910kwQHBxfdHaQGMdmOObyJkmZQhpJ3MLbgJijChgwZYgJibr/9dlgb58vNg2+SJ5980szLvwaX74m0I8KXU2s7apT8DZaPjx0rl156qRGAY8aMkWuvvVaaN2/utGQhk6je4R8SIoOQnG9rWFUM0S6Xt956C/5t/nLfqIl5VqjJYJEqAc75pPN8X9QH+s+99s162QSrKlP7pCYdkvrwr8vfrFyA5UEA5u+79Xnq+JekGYThTiTnXvL7zzLksTEY9q9uEnIf3h9rfGGjESFMSzKrv/CBI3bDErnx/tGSmpwoox+5SqpF1JBXJq2yNmmCm/yy8efxRO4snVACZUbAl+KvzA5Kd1zmBFQAlvkpcN8Bli3zh/XL0/YthFVISLDxOXNeh75fX375BUq99ZLPX39Ihj75Qa5vlfNyvp4+ijQy/3voCuObRvEzdOhQYx3L3e/774u0QaAKrHpQhQJVKFgg92szQasfXyVoTIWzffv2Eqx5apVKKKtGgciSbO+++y40Yu+ixR9XR3WLUAxJD0Y+xmExMRIfHy/vYP3zLxuCBMV5xRnT8Yz+as2pnZZgisPcHXsOcLsmq6NkweeNtZfLY5vy0Ysye+qnMnPKOJMkm+f26SFnyzVDn5Rfv3pHjsLqnb9RcNMn8rmhp8R9SiHL5V9PPysBJaAEKhIBFYA2P5sJB2MxjNvUo15uXr1QVqEawrhxjrqw+Vfq1q2b+Y7BCZnpt8ig4f8R+jv5omVnZcrGFfORBmWaxK/4A8O2YVIXAQt74L/XpnVr+MktNfVpC+wb9WoF4gjRCgIzZoGvS2XG0aMimzcLIjhc7u74cZZ8O4E8icelEYaFPW4QjpEtWqBSxzQz3MxI6oE3Pejx6t5e0CSDzkzz9mZLbXsUf2wcst+5c6ccxbmjsP7mw5FyCSy0jz7yiDRu3FiWLFlifEM5PE9LbS3nOnlYv0W7LmY7+p8SUAKlRyCgSiXJPv536e1Q95SHgArAPDjs94H+fzXrNSuyY8yD9vV7TyH44CxjVXO1AodBeRMcNuxOeWHYedKoWWuTly4VdVJDQsOML1i3vtdKj4vg/wSx8tPno2Xtklny9HuzTeCEq+1a8zncOOPL12TxvKlyYVaWTIC1ZSFSkzRHXeKxUz+REFj3pkyZUrj440aKI6asnXr7HQEoEhHhdqu0ILFWbQzE6v79+81QsNsVnL7cvXu3qerRssPZcttj7yBaOdzp29KdNEPA5TjqlddvoN9JI/72Hzgg9evHwDKbaazgxzKOydSpU2UUhu1ZYWQdyhd+8sknMnnyV7mQm7RoJw3gD3rRdf+XO08nlIASKB0CHRuzTjdSlqXlSNqx45KQklM6O9a9GAIqAG1+ISSg8kOrrv2K7OX340bK4YN75efp3xc5tEt/tYsR2MC6qxMRlcqghzp1esihQ4dky5YtMvn95+WrD14w+6yE4AkOIh7YvUUatejoth+bVy+Qj0YhGAPWuwdgkRkGS2PLVauk9Q03iEBUtYyLk88++6x4FjO3e/TRl/RDbNnS7cZp+eNQIq1NV1t119yucerLefPmmSFIDsMz4bG320+fjpSVi+bKQ6O/g29blNvNmyFgm5SDc9tRF1/2G3SfTIZfa0bWSYmuVRtLVZa2Xc8zeTP3HtgFF9ExppwcU+YcOZIIYRgqZ/XsLzddOAgBJWebhx8Xm9bZSkAJ+JjA4aPZEhLoJznHT8qRVBV/PsZdYPMqAAsgsdcM+gAGBIW67dTi2d/K3Omfy+jRo4UBFZ60EAQjcCiYr/xtM4Y/58+fb0RKfyQY3gF/vFsh7Ppddw9KaTVBYunOEuxUzSN20wr5acL/ZMv65aYyxfTp03Pzz4lTIEocBGDt2rxJl/9GCyAFIIeBGeFbnGYNP9Ja6gsBuHHNEjm4b5c8MbiL3P/SBGnT5XyX3aMFMAUBIuW1de59mfDFFrdroxzas1k69rkm93C+ef9p2bZuibRAqbk23S6Slh16wsoNC682JaAEypzA7sPHyrwPZ3IHVADa+Owz+pc+Wu4aa/ROeucpUzP1sccec7eox9+1atVK+DJt3z7ZiBQr9ZDC5JsP/21y1jGgpFGzNlK7QXNT5mzf7h3INddM3njjDbn33nth7Cv8BksLoyV+PO6MTRekAMxENG8VF2ln3HWbQSNdIcB/wVD57T4Ixnn8rZ9lxI0dJS0lWeb98FERArCqCQJx19/y8l14zXqyZeWcPN29fvh/83zWD0pACSgBJeAgoALQxleCw//PdQAI85eNRT1YOrUzxx0jU73e6teXq5Hy5GpsmKKHjvavIA/esmXL5GDsGunaqYOMfvkl42Plh3q17hoFoHNqGnfL2v07suAwcEkqa9Bi+B8km9758cfyfux5cvnTH6LmbGuvHvKLH/8hW9f+Jc3bne12u+V9CNj54IJDwxHclOI8S6eVgBJQAkrABQEVgC7A2GF2/P4dUqdx20K7kpIUL188dYNUz8mWmTNnug6qKHTtks3kkGcLRLB++OGHJv1JByRP7tu3r8cbowC88MILPV7ezgtS/HE4OwuBLpwuriWwPypzLIOVddbjj8vg+y+Vnu/87FURGBoWLp08KC3nyAOYamfUxe4bk3775GGo2D3RFZSAElAC9iVQ2b5d054lIgVMpFMN4JMod7Z761okUX5Gpv+rt0xAbd+fPp+AyMf6pQqLYmf48OGyCgEefHnaWJ4tOjra08VtvxxFBkUxq5UUu6GKSLeHH5YARARvP3nClKor9ja8sAIrgZzAQ0RFaSGoCZ2RmlRRDkePQwkoASXgMwJqAfQZ2tPfcBaiM3duXiX7YjfIzvWLJXn1ItmOlB0tkMZlQoMYqff661LrMocD/OnvrXhboJ8fo4cpgDxtVuSsp8uXh+UoyksyDGyODQKyOkrJ3Y5SdPOQH1Hk1lI/5IpmKWNJuKMJ+5HYukaps9QdKgEl4F0CEaFVJDn9uHc3qlvLJaACMBdF2U9wWHfRb1/LpuVz5TBSWFRDubBZ302Q79G1HvCvmzZwoDQdMULOOeecooUXhiWR+EwEUbymsapGNaQcGTTIawdKX7aDBw9WGL++koBhLeDFixfL+eefX5LVzTqb+/WT5T/+JNfePdKUICvxhnRFiUAgSHL8PtSbbq80lIASKOcEVPz59gSqAPQtX4+2TivSz1+8Kn7fjhVm/Es/p5f07Hq51KxZU1i3thX8xCrD127o3XcLsjh7tE2URHBUs7AEYP/+RSY39mzDp5ai9chT3zcOk3q67Kk92H8qMTHxVMR0CbpLLstXrJDIWnUh6gNLsAVdxZkALYB7t650nlUup1khoX5UsFSHBWRvQqYwX5o2JaAElIA3CagA9CbNEmwrC3n+Pv3fvVJ56XwZgsjQW8aMkftRM/ZjRIiejVJkbVgXF1G4KDvhKI/m6T4iIx11dK3lWV7Ny41Dn57mwKP/X0VJAWNhZBoY1gM+66yzrFnFfmct4Z2xsfLk2z9K5SKiqIu9cU9XgJD/Gw8hlVh+r5y3quE1JS05vpwfhZjyWLFxGeY4WtUPlXgIwL/L/VHpASgBJWAnAuX/L76daBazL6yVO+revrJ5zSJ55rvv5KEvv5TqEH9sW7duNRG35gODPGx4c6agO4DyW540JoGuaAKQJd3CEcxR0paAEnIf//vf0qXXADmBIfvVC6bhPaekmyvxegGBIZKd5RAbJd6ITVakiGUUcEVqm/elq/irSCdUj0UJ2ISAWgDL4EQkJx6Sb1C3d9XiOdK1azf5fN4cad06bx44phcJCgoqg955vsu0tDQJCwvzaIWKlATaOmDmRIykpbUEjcP+k5ASp0bOcel/2xPy4p0XmK2M+rQzhoO9b61110UmG2fAUVFJx91tw07fGUFrKuiE2Klb2hcloASUgK0IqAWwDE7HRyPvkK3rFpvC9EuXLikg/hISEkosLErzcPbDguVpYueKJgDpu7dmzRq56KKLio2c4n7w4MHyEOoud3jsTalWvaZ06H6+3DHizVIXf+x8QHCoZB9LL/Zx2HWF8Ki6JhLYrv3TfikBJaAE7EBALYClfBaOxB+Qnds2yLhx4+SOO+4odO+sxZtbiq3QJewxk0LG02HdiiIAjeVu0iTZu3evPPTQQwisRmR1Mdr69evl6muuMX5/tz48Wjr2HGjWvvfFCcXYincXZTLozGMVJxk0S8IlJxyQmvWbexeUbk0JKAElUIEIqAWwlE/mopmTTa3cQW7SsWzatMkR/FHKfSvu7uj/tnHjRo9Wo1UzKirKo2XtvNDChQslIyMDtY+bmhJ8xenrL7/8Il26dJHU9Ex5/M1p0rPfDcVZ3WfLshxcRbIARkTVUwugz64W3bASUAIVhYAKwFI8k/t3bpbfvv9IbrrpJreWIwaAsL6v3RstgJ5GAZ84caLcp4GZNWuWyfl3ww3FF26sHTx48M3SpOVZ8vS7v0mDZvbJU2d8ADPT7H65edy/8EgdAs4Py69ypfyz9LMSUAJnOAEVgKV0AaxdNEtefeRKiUFE75tvvul2r8UKAEEqEkktm+E7WsIaNWrk9lisL8t7xQkO+a5DYu0HH3zQRP4W93iYBic5OUl6X36HBAQFW1hs8R4QFCpZqDBTUVqVgEA5XoHK23njvJw4WbEio73BRLehBM50AioAS+EKmD1lrIwddZf06dPb1M6tjtJfrlqxA0DgjyaLFrnanE/nUwTRJ66oxnx5LB1XnhsDXurUqWOOoyRpRrjuO4iYXjlrci6G2E0r5PPXHpBFMyciDQuEfBk1+gBmZVacIBBiZDqYk6ixrE0JKAEloAQKJ6ACsHAuXpu7aeXvMmX8y3LvvffKr7/+WuSQKQNA8qeEcdsZBpKwykcZNFYqWbp0aZF7pvUrOjq6yOXsvEBwcLDQMsvG4Wy/YiZtZtLsmrAeHlr+h/CBgMJ59rfvye6506TK20/LN+8+WWaHTx/ALBsGgRw9clhSkhNk97Z1svDXSfLXzK8kbu92jziFRURXiITQHh2sLqQElIASKAEBjQIuATRPVzmWkSoTXn8YFT16yDvvvINczkXrbQZV9OzZ09NdwNRRdr49tGrFxxdddaEiVAGhKJ85c6YRbseRtLkkZe2uHzlSfkfpuA8+eFlmTHobVUQyzHn+BP9fXqeR5+fcy0vSB9BOQSC0sE79ZJTMmjIu90hpbbYsrzWj60hEVG2p06CFNO94rrTr1leCQqrmLssJEwmMmsDVatTOM7+0PwT6V5YqfpUkPVOtkaXNXvenBJSAewJFKxL36+u3bgisWTRTjiYlyldfTfZI/EFdyLY//pDmzZq52ap9vqqL8nQHDx4sskMVIQUMh7AZxbwCdXspAP39/Ys87vwLUMS8//77Mn/+fHnggfvzfD1j8hhJPZqYZ15pffCr4i8nTxwvrd253M/eHevl958+k49GDjXi73HUwP72229N4A2Tjqenp8s333wjV1x+iTSuX1O2r10g41+5X957bnCBbToigQ8UmF/aM7JyTqr4K23ouj8loAQ8IlDhLYCZ6Ucl0y9FgkKLl6/NI3pFLLR+0a8o59bS40AJRAlIFoaAg3CjEww52r21bdtW5syZI3PnzpW+ffu67C4tgJ07d3b5fXn5ok+fPsJI4GYQ6CWxAFrHed555wlfXbt2NYKGyaTvuece+ePHz+TSWx61Fjtj3rMzj8mUj1+QP3752jwoNWjQ0Ahluk3kb0yf5JxCafz48TJs2DBhfs0aNVEv+58WjlQwO9YtsD7quxJQAkpACeQjUOEFYKVKleWvn8fJ8exMqd+iszRs1V1Cq9XIh8H7HzlctWXdEvnXUPjoediOYLnql14qMDV5uEbZLsYhbQqXDz/80PjF9evXr9AOVQQLIA+Mwm/KlCnC4ymJBTA/nOuuu074Yhs1apT8NGmMbFnzl1w97DlpjHQxpdnKKkZ0z/Z1Mv7leyQp4ZC8+uqrsIw+UKyAIT6EsH3/8Uhp0+V8OcYHPrheVPbzl+zUQ+Y7/hZT4Uu4ccXvErdns/gHBEnXC66VWvUam+/1PyWgBJTAmUigwgvAwJAw6Xv9I5IDAbhv2ypZ/tuX5iZRq0ErIwar12oANzrv+9ElxO2RtNQUxGd4HqCxBaXBykMFEOcfCusVU8R8/vnn4koA0k+wIiSB5nFfcsklMnnyZGFUcEl9AZ35WdMUlgMHXiz7YjfI6IevlLoxjaV5+x5y8eBHJLxG+Q6gsY4x//u6Jb/JuJeHS+PGjWX+nDXFC376Z2Nnn322vPjii0Y8rljwC4R5gASHBCOqOkvqI+XSi8POlRS4YVj+lpF4uMpIz8AQ80fy2OtTJaZJmzzdYuDJCQyHV8aD44nKGBb3/p+GPPvTD0pACSiBsiJQ4QWgBZZP/Y3b9jSvk4jiPARLwNZVcyXp0B6JiK5vxGDthq1hOfAOkqVzvjWRoj169LC6UOQ7BWDHjh2LXM7XC9Cvj0O7jHal9YTlzpiYumXLlgWsMxze/eKLL+Syyy5z2S1GvJ7OkKnLDZfBF+3btzeR3KNHj5ZJSMEzZMgQr/SiW7dukpiYINOmTTM+bzt27JAZv/woK2dPkd7XDJN+g+6TIETrWi09NVnWwsd056ZlUrNeU+ne99rTEoomyALnielTSqNtWvmHjH3pLrngggtk+vTpEhISUqLdst8vvPCCPPPMM+ZatSyzrNXMc8PPrNrCmtW9evUyqXzoT9gBv7PPXhkuT4z5FRbBQNmwbJ7M/Oot2b55TW4/zntRpF7z3I86oQSUgBKoUARcqp2KnDi+MlJ41Gnc1rwocJIRLbhn8zJZt3CaMCdaTMsuUr/ZWZjOG1lYnDO/cflcc+Nxl/Mv//YoAJ39m/J/X1qf6WjfoUMHYd95g6UFb9myZcb/jWKON+vatWsbyw350bpHYXSmNApjDj1yKJhiwtNqKJ7wSUVS72tQK5iCMCkpSRbDgnzLdx/Jgh8+kaZ16ktOtUipBGt28y3r5Jq/T0ofXMuv4Rw89ekrElE9UqrAAla/SWtp0bG3dDr3EojCWp7sVgICQ2A1yzita96jHWGh+IN7YPm710S7MzWSNx4O8m+DQTv0rezevbu5lp37xvP16SefmO/fevxakwPxwN6dKL/YVj777DNzbfM6b5XyMHL+bHFeVaeVgBJQAuWKgLtnepcC8EwpHUSBUz06xrw6yjWSkZoke7eukIXTP8Sw8TGJjmkpMc07S2SdxsWyjpx7yRD5/K0n5M8//0QC6D4eXTCsrBEaesrK49FKp7EQAxq2bdtmbnjcDIUeBQhr/NIyU1jjjXHfvn2yfft2UxmDiavdWS2ZO8+yyhS2vfI4z4oCZhqcBQsWYOh2oNcOg+LS4kUBfjGE98rdu2Xqa69J8xkzJCBupxytUkUCbr9N+qNmdCAsry8iWKLj1Kmydu1aI0gXLVos3338kvzw6csy6K4X5JwBNxUZhW7KwR1L87kA5APDlFfvk1Egdhssf/mFm9dAYkOsUrMb7Pgwk7/RwkqrIYfemzVuLl98Ns5c8/x7kNtmjhQpm8Ds3C7ohBJQAkrgdAi403IuBSBzV52JLSSsurTscpF5MTXG4b1bZefGRbJ89kQJrhoh9Zt3knqwDgbBt9Bd69HvBpn35euy7YknpI8HlToovNxaknAjkwYNvJr3b/Xq1XLjjTcaMcdj6dSpE3bRwO1NmYEfXIYvTxpFZXlPAp3/OC3fP/L67bff8n99Wp9pXY2Li8uzjYYNG8qDyCOJZJJ55lsfqmNi6NCh1kfzTuvh3XffLaveeVoOfDRSYuvESFTdRhJdvyms2x3lrHMG5hGFARheLo1cgHu2r5eLMMx6b0SEBOXpsfc/kBsfcvI3PsCQz/PPPy8vwn9QmxJQAkrA2wQ4ikrxlXPCEWIXhJyg/JyedcLbu3K7PXdazqUADKhSOr5Abnvugy+Za60K8p4Fe5AWhv6AtRu1MS92JSP1iAkk+eunjyUbpbOi67eQuk074L15ob6DJ7Cf3lu3CjzURUaMcBwNhnkFlhx5+OE8R8fhX/rYuWxXXSWClBfIp+JykeJ+QWuHR2IuJ0cw3inwqi/uLswwaUUTgDngQSsd2aWkpBh/yQsvvLDYbApb4eKLL0ai6A9O26pI6yGH8pcgefVR+Ct+jM/bYLV97Pt5Mh95DL+84EoZMmJMbheMBTAzLfezrya2rlkgSbBgVkFdZalRw1e7MduNiYmRPXv2FNgHA3hq1aqVRwAXWEhnKIEzjADFSaB/JQkJ9EPy8spy/MRJYR7L1GOlK1jshj00yK9EuTzrRQUJddT+hEz8rakk3E5m9gkEmIkUtzQ3RRzXD8W5CQqoLIkpOXI0A0FqHrQAnEtXzaUADMROimq8UOrUCJS0Y8flUHJ2gcVrVw+UZnVCTIePQwX7oyP+VSpJWHAVs8663alSs1qA1AwPkPiUbElKzZHAAD9JSsvBAWYLC5gXF1SBTmDGsfQUmQFr3O5ta2TbxlXSvE0neeS1qYUt6nZeSFgNadH5QvNiIMnhfVvlQOw6WfPH90YAUizWbdJeakQ3kNjNK+VA3H6J/fFHaYHI0dxGyxnyluVvLAHnNgJ45UqvWv9Yn5fDcR41+JnJASTVLYEArAhl4PIzsiyAHL58EOXdxo0bZ4YaGXRwOkOa9LOcN2+eV/0pzx4wQASv3Fh05JjcCv+3RUi30h1W6lZn9TKHFxjEcnDIP+njdjQxTjZGwlexBNdScbvGCHWrfJ/zuvTf5NC9NiVwphOIqRkk9WoESaNawRIeUqXQjBi8v6/fkyaHk7PkwJGsco2MHh6e3vZ4oLTaUbQ5N86jVY/6pEZVf1Pp5/DRbKkajPskWhoEM5fhfvj9hR0jIfqw438a77sU1dQ5RuukZksaKgWlY14KWOdv57apLm0aVC2wjQ04J5v3pUly+nGIddf3cndazqUADIYQYwuAYIuOCJT6kUHmACneIkL9cQDHzQXj/4+lMDYuQ9btSpVMPDEQWC2s0++sKETCnjpw5wOrDjAxNYNzZzWqFZI77TzBEkrJ6TnmAI3pFPD2JWZBGP5t9r/n8DEDzzKzOq9rTX/9/jOyZN5066PUqt8sd7qkEwwkYdQwX2xMMxO3e6NsX/27JByIlR0blxlB15ZRvc5emC4SPNMCePnll7vujtMF5Hohz7/hMCP9zY4cOQJDTA33K7L/cKYvSWOghDsfwZJss6zXsSyA7AeDDYYPHy4/Qui/+eabZkidlqfiNEZd01oXGBhohnJ9mjIHPqZ333efPPX8C7J1zZ+5AjAAAU/H0pKL0+0SLVsb5dvmTp9gfE3DwsJKtI3irEQrN69z59rNdLWgUKcfK3M7alMCZwoBf9yPm9QOkWO4Rx/AfbRBVLC0b+T+d0jLE4VMCu7DNNbw/l4erYK0vLE0YySMTrRsUqRRz9QI8zcWOn5PIUWrXUTVKhIZFmCGbCn0BP+O4/0Yhm/DQ6sYw1TO8ZPGqEWNcxLf0cqXjXnZ2DaZ5fEndrrAOL8axDZfDaNPaSAuQrFNMZkIUch9UiPViggosC1uoy1EYQN8vyf+mCzYmATLbWUjEtkH9iUz+yS0WhUJ+UfLOXUhd7IS1Ch2U7BxtoHkZuWCa5X+nH0wr85aFW9gnn/wconKXlGgE8t2VjE52/iFP27YdRq2xA3BpfYtsH5xZhzPyZZD+3bIieM5xgk9B5+zs3PMDYcBHnxRNOSXxTt37ZLGcFovjUbxzKuLQSepqWlSBxG9vmoHDh6QqMioAuljfLW/0tguh31pBcwvnDMR8JKIWr+cHwzrkyftCHzRMlEJIyKiuoS4eDjwZDvFXWb1mjUmWTJ9Atlyso6ZoCdauX3ZcrKzkOtwo0krFAVLoK/bfliuayJKnb8553YMzI8ePSq1a7m59hMXO69ipuP8OsnUalMLzNcZSsCOBIIxkte5abgZeVsIkcC//G1iqkr3FuFGLFDbuPMR4zFRAGVA+FAsWY0icNuBDBh8ThiBQQvWUQhEGmKsZQMgsGjAScs8bsQI9URpNordMIgsCr12DcOkHoxYFIDUNq7EWWn273T2xWPYvC8dx4G6ERC0PDc8NudGMXsIVtu6GKV1dbwuBaDzhuw8nYChYqpc+izIzJ6I2iv4R9vO/de+KQElUH4IqAAsP+fqTOopxU5jWPZCIPhCg6pAFPibUThagpwbR+6qYF4w3LdKu9FKRoFIAwQtacdgoaLfIQXolL/iijU069x3HmJdDGNH4pg5OsmhbI4wlsUxOverPEyfkvTlobeF9JHqV5sSUAJKQAkogfJIgEN39Jdn23XomEd+77TsRWE4tjGGEDmkWR3Chxa3opqzFa+oZb39PcVoINUamuVixmkOe0ZAtCXBl624jda9/p2jjAAs7rq6PKy/CkEJKAEloASUgBIoGwKt6nNINkKOwO+rfmQwAi5SMY3MCy4aR7wGnVvHWM9cLFJuZtMXcU98ZrHEHyVk3chAqY04AwZH0OKprWQElFzJuOlaSkAJKAElUIEI0KrWsl6obNybBmf+Ql3jfXK0uxHI2K15OIIRAsyrSe1g2YV5Jocc+nE0I8f4cG1BxCeDC/p2iCz34o8BFAx2oJ/anxuOFMqVxsIYpFKhH99RWAfpr1gHltKOjcPg01i0tbPQjerMPAQqlgCMaJfn4HzxgX8WGGXD0Gu4Lpi0NVl4imGEkBXqTQdNX//54L4cwRy+OErdphIoGwK8rq2oOvoMOf+O6OdbBa5LfA/EDYC+Q7QgZGQ5ot3o2+SucVv0gWJ0HJ2n82/f3brWd0l+bnJ1Wgvpu1sCYUiXwXPgnLmBEZGRiMbciSHQwhpFUWyc4zs6tVM80OmdedE4bTWKOPp/8TtuvznSkB1Buo0dyFLB9Bxs9Jfr0izciIndiKDkNcdEBxQjTEtG3zGKMgYzMBKUw7MLNyVZu8DwpSOoYNuBdHMf4HVIYbIXAYls3DcF3arYlDz546IxZMu0aVVhsQpAvr0gfz/TV/JwdtIPQuAlrYL5W5em1YwIyu/sn385u38m59Vgk4jzwvNHfs7XAhnF45xe3KWmCdyw+/GU5/6V+yCQsoK/N+GYHEROpK74ofO2wwgn+mBYwiwHT258yqFQ3J+YKat3ppTYybWwY2R6ntJ8Si2sDzpPCXiTQEPkJKM/k5WEng9azHXF+C7Oo2hoghs6/Z7YrDRStCAwGOzqnm4iev/pKFNK8cbN3y4j5JDrVpsPCNCvjUKH54WWG57DHi2rG6HF/LE7Ici2IorUahRtLeqGmBt/bCEikCKBqUiYsoN+bMwny+1XhUUsBC8mu+U8ZyFlbdt6p/inJYn7oiXN00YhuAZ/v9l4HTZGzjxa6zhMeyQt2wRbsE/rkdeW1xSvUx5ztRA/8x37zeAET3z0PO1TRVmOQvvXlfF57o1nI0K5NSKVKYS1+ZaACkDf8s3dOrOq8w/GPojBQ0lZ5g8VzfwlbSoAS0pO17M7AVpKaOVgklo23jzp7M0cZIXd4LfsT8MwUpLc2KeOEQXujo+/w/3If/YXLDqeZtJ3tz397hQBWqiqQgjRItepSTWTmosO/rPXJMK6dlIGdK5pxJt1DmiF5cOzlfCf55iRoelIG0KBxXPEa6BF3VAj/Ao796f2rlPliQBTxsxdm1iggAR/49f0rFXo77w8HV956asKwDI4U7QIbsDTYmFPup52RwWgp6TOzOX4h5TDWRxao9O4lXKhHpynmc2f1hDL0sYM/8zpxSFSOzQmna8P3x/2nRZAulSw0hCH2SgIGPnPYTn6SNHyzhsJLQm0Bg0+r65JgurqODi0RCsN37fs933lE1f9qGjzmRyX1jUK98u7R5tzVNGOUY/HOwSYQ/CbBXGwlKJiBqx8tLDS+tsMQp+/e46iaSsdAhXLB7B0mJVoL/Q3Yrk73rBYNeV0xF+JOqArnREEKII4TBYHKzNFjtUoligEtx30M1YyXo+cx8as/hw+C4eljeUY6c9qNS5Cf6btBzOQnR4JzTGDIowVfziM6u3G/XFY7cCRTDOMxu3zpsDEtXSr4M3CGr5l8tltEHH0H6JfVu+2NdyKP26LwpjCEpoSx5SuQ8CE4mHjQyeHMS1fOn6mdZb3a4p2sqU4pxVQmxJwRWD1zlTzO+7RMsJUueDwuV4zrmj5dr5aAL3MlwkuWXuPTzEc8k1BBBeHRFJQuJl/PDPxPZ2FnZ1eS9IFtQCWhFrJ16GzMvNuUTnQGkUBZJdG53la9OgTSnHTs1WE+Uxna8vKx+SofNqmNY1DbnSMp/BLxjvH4VguiPOz4HfHZa31GGTBckO8ZlshQpI+emx8iKFI4wMN/VzZBzLZDf+tU/IxL6Gm9N+D/xRzgLF8EUtHOmlNs3BXOOe3a1jV3CB+X3/EWJXoC8ioP8vfiwEgFKz0JQuDHxjPC/2s8ie9zbt3xydaHZhBn2KYAnnlDvjmFragziuUQAOI/2Z1Qo2lj+eetd494V7oxnTmGUcgEUaQNfjd829MZ7gM6LB+2V4CKgC9zH/ljqNmi7ROMKkn/V2cgzUo3CgOT1dAqAD08okrYnMUgPVgiWJaAjqQ89zSMZ3RhRk4180hjjjkSrFCIUVxtRW+aW0ahEksrGemjjX2wXUoPhJSHHm+aLmi7xNFlLeECC1mvFFTKHG/tHYx8pHz6QDvyz+6rIPJ0k/0r2MZKFrsKE7Jr1vziDy1wfmwRGsjj5++sXSNoDXARHGi70nwE4piagxk+PfWsBAj52kdXQMrBIeNtZ0iwIcHCnSyKaxxePdsWG0otin+eD1ZVuTCltd5SkAJ2JuACkAvnB/e4Hijs5yY6ZNEi58vmwpA79GlJYk3Nw6dHoRVi2lFnBv9zShgKPasRosXLVLQe0a4cFi0cXQIPsMilnYc4s/hX1YFgp9DY1yWQ5i8yfLhgOKIw7C921Y3Du8MZJi39ojZPPvDXF8UUvSBcx7KtfbvyTuFZt+OkUYAsr+mXKInK1bgZciSkanM9VZSrhURD/+e8LprWa+qLNmanOcQ+dtgVCaH//mAwyHftniw4bWsTQkogfJLQAXgaZ47DoXNQZRbIPI64d5/2pY9T7ujAtA9Kd60yIhDh0zLQMsbh0Ytn6UkDH1StPv/kz6Clgxar2i9Y8AEm7HOYbgyGCktOCTK85sDiy6X5U2Qn3lDpIWNn80L61FocYiS67AfRVlJuN9l245iiNZhDWQeMlpZ6He3cS/9ZRz9MZ0q5D8+eHAYF/+Mm4HJb4c+0crsGAauJB0aVTOBExSCZ1qNTD6MLd9+FFZEnq+/zfB1IRh1ViEEaEnuA99K9dEqBI7OUgLlnIAKwBKcQN5UaUVgioOluHHzHbqhVNuZJgCZGoQ3cooaWtOiUQaIopsCLhEllOiY3gyRZCwKbkWIluoJ8fLOKOIoKHlZUdjx3TG8esJhhcFnCkzemCkyC2sUuMxXyeVoveE7/VA5xHomNLpfxCVlyyZUUOBwL3+32k4RoFuAuSbwsMKheP6WIjHcTh9NsqJFsC38MZ3rtp5aW6eUgBIo7wRUAJ7mGTwAv6XpSw+f5laKv3pFFYC8KdGpn07C9BFjsAyH2JlElkNO9L/jjUmbEmBACx8I+GDAF4fVGeSRgusl4SiDXLznV1neaPOhwfqtMEULK1qYBMj47XA+rc2+9AUtb7y0v0rgTCSgThynedb5BK3t9AhwaI71HtNhxattSiX5mehPDq3St85UVYE1JwrWCb1pnR5rO65NayfLZnGoniW5OLROqyaH4B1D2xzKd1irKPporTqMSGwOkdPKqY3WYJQjg/W7Hn4//A1R8BXleqDclIASOLMJqAXwNM8/b0B0Jmc5Kjr3O7dGiKjj0BtD3zmex9JwVlSm83IlmbarBZD+aL3aVDepb2jNo9WBQs6y1jBZLIfjWOWVkZ0caqI1ggKQrCgCqsNPjeuQLetkcnlG2PbrFKUCsCQXSzlYh+eaaWGYHob+meaaKQf9Losu0o+T+fYYtMRh21oRjml9OCqLs6H7VALll4AKQC+dO1YXWAlH893xjoLg3Gyr+qEm+IApQWjlYnBB/FHv1B+1qwBk0fa+HaLMcXuClsKQKUPikFSYQ3e8sXH4l8EafhCQ2sonAQbTOFug+PDDfJh8WDK+Z3hQoPWc07T2mQAY+J5Z6/C64DaYc3HxluRyEbFLiyWvW7oq8HjYmC6FQ9FJiAw/HWslH44a47fFsmhWDeTyeWVor5WAErALARWAJTwTvKGxMcrUakyMm4j8bhyqZJ1fyhdWT2DAiBVZai17uu92FYA8Lt7EaZ2g6OXN0HrVqe4o73W6x67r259AAoTekm3JEoMKERyaZFQzBT2FHX8L9Nljmhs+HO06lGGEHo+KIopBBwzXYE1Y5xyahR01fwe0MluBLdsOlH51D+bD69AozCTMLqyPnMfjpmXz52XxuTkhXS2bfz5L4DGdD3MkalMCSkAJeIuACsBikuQfclolKOp4s2H5LEZn0nrFAtdwVcttvDnRiuE8L/fL05wobQHIYSbmAquF6FumPmHJMApe1pXNP/TtfGi8MdeFT5IpEQXnc1ZJCcCwFdUxh6/okK6t4hHg74TWvoNIukzL3yG809rHoX5WjuBvhr6dTMxMC7AnEbp8oKLYqoPrqTp+d6xKQgsbBeQeVCopi7x+DaOD5eIuNd2eQAYzsQwkDtX8jaBFE38WPG787bVpUBV5Rv2Mrx8jv1m5hYL6BFwoWL2FD6R8GNUAKY+x6oJK4IwnoAKwGJcAb2p7MMQ7e3XCaZdyK8ZuC120tAUghVy9yMDcIa5quAlRvDG/Hq05LBW2Go787sRg/gPhuhSGTPHCYV/mp6MPYQi2S2uHNRyYfz39XP4I8EFo/e5Uc755bpmihY2iiFqI7xwqnbUqwcwv7D8GBHVpGm6uOQrGJRBSFJgUhKxgcQz5ElnizvLLLWwb1jym2OH15YnwtNbJ/85h2W6oUdyxcbX8X7n9zN8JRaAnzbKis68UzhTBtCQyOt4IarDksVBE8/O5bWqYgBkuz98X+0ihyHd+5jTif02wjfoMenIGdBklUHEJqAD04NzyJsE/unzR2hCLMmBl3UpbALo6Xt50eGPhDZ6cCrNssK9MjswbFa0hhS3Dahl8+WEhLteuoVYacMW8vM/ngxSHgSn4aAmkqqE1kH60rHxSUlEGjWOuG/oUMvcfc0MW1ro1d4g2XrdrdqbIos3JhS2WZx42LbT2WTWIea2yRrInWQCYPJzBTXzxGCmEWfrPW40PZ1URLMVAKYpfWkUtwUgmFI58N/Pw42KkdWhgFfNAxxEMbUpACZyZBFQAenDeOeTJP6y8CfDJ+zdYABnNWpbNLgLQWwxoUWQSWvoOcpiZaSx0eNhbdMvPdvg7o4WdLhWsZczPfLigyKGVmNZD/ARl457UQv0DKXRMEBGW5zocEk2GawbdDZrUDjHXFH87FEMUofNQtpHWa3eNgvIi+ODRl5UPLxy2Zqoax7vDxYMuIYzwZx5CS+wd4zTEWHEELftPyxyP2Wr0mKgHX0r+LvjAxWTeZMMyg/SX5LGwb3zXpgSUgBLwlIAKQE9J/bMcc5b9vv6IqfV66k90MTfihcXLQgDSl483VDLgzZM3PHdVUFiRg/5LVYNODRcbKwRuVLypcZov52EqM0RFE6A2JeCGAMVXFq5B6qT0rOPwMcw2ojEVQ6EUj7wu3QWQ8Aory98vD41irmmdEDMszt8V07tQ4PLypxWP7hSsQa1Jm91cCPqVElACJSagArCE6DiUSX+jfagEwnrApW0RLAsBaKHiDcox9OsY1mUFBjaKOebto9WmsJsvHdl7tozIEzltbVPflYC3CPB6ZO5IWv4ooigG2WhVY1S+NxofWijMaI2j24Lxt4NFjrktef3TEsjhYbqNUKQ6Nwo9BlQ1hUXyTKvL7MxBp5WAEihbAioAS8ifEb/8Q2+ltOATO//O475gIv6Y147Dxb5qZSkAizomd9YVpsjp2ixcGtUKKWoz+r0SKBEB/hZ3wlfX8gEMDsRwKaxtDFY6AgHI3yx/u/zsqvH3RQs2LXPR4YHGNYHTfPihsOP3RQVRcPuOYA9HXV1a9+jiUB/DuUWt66pfOl8JKAEl4C0CKgC9RTLfdjhExeEopn/YhaARfo6N817wSHEEoOUfxBxrvAHxRkSne94E+aLFhMNmvHHyBkcRyxsUnfWdU9jQt6ouIoExWw5C4DLysLBGAUh/Pt4w6XvFGzBzAEZUdeQE5DxtSqC0CfD63rI/zaSL2XYgI8/u+XtiUAdf0XBb4LWuIi0PIv2gBJRABSOgArAUTiiHg5IQNMKcXcZ3CTci5u3iMOlhRAVmwCLB71KR+JYO5J604gjAwrbH9elfxCEo43+ECEJaJijcKOA4bEUBSKHIoTQKRApHDn1xGI2i0SEWubRINpQiv+O2+IpAAXqNMDRo9D+bEWC+QF7T9GXldc5gEaYiYrSsNiWgBJTAmUJABaDNzjT9lHhjYoAF/QqZQoKpMrJy/kZEoSPFA0UiU2jQAsdbFoWYqxQs3jg8+vVx2LYZylDRz0+bElACSkAJKAElUL4JqAAs3+cvt/e0LFI8cniWApEpKDjUSnHI+XlesDZSMNJHkZZI845pWiopKmmNxGaMEOW7lessBEO5nKajO5WnlQOQ+2F+NOudIpHpKaoiobM6ueeeIp1QAkpACSgBJWAbAioAbXMqyldHLP9AWig5TOwY0nYMa1uiktGO0chdpk0JKAEloASUgBKwFwEVgPY6H9obJaAElIASUAJKQAn4nICGY/ocse5ACSgBJaAElIASUAL2IqAC0F7nQ3ujBJSAElACSkAJKAGfE1AB6HPEugMloASUgBJQAkpACdiLgApAe50P7Y0SUAJKQAkoASWgBHxOQAWgzxHrDpSAElACSkAJKAElYC8CKgDtdT60N0pACSgBJaAElIAS8DkBFYA+R6w7UAJKQAkoASWgBJSAvQioALTX+dDeKAEloASUgBJQAkrA5wRUAPocse5ACSgBJaAElIASUAL2IqAC0F7nQ3ujBJSAElACSkAJKAGfE1AB6HPEugMloASUgBJQAkpACdiLgApAe50P7Y0SUAJKQAkoASWgBHxOQAWgzxHrDpSAElACSkAJKAElYC8CKgDtdT60N0pACSgBJaAElIAS8DkBFYA+R6w7UAJKQAkoASWgBJSAvQioALTX+dDeKAEloASUgBJQAkrA5wRUAPocse5ACSgBJaAElIASUAL2IqAC0F7nQ3ujBJSAElACSkAJKAGfE1AB6HPEugMloASUgBJQAkpACdiLgApAe50P7Y0SUAJKQAkoASWgBHxOQAWgzxHrDpSAElACSkAJKAElYC8CKgDtdT60N0pACSgBJaAElIAS8DkBFYA+R6w7UAJKQAkoASWgBJSAvQioALTX+dDeKAEloASUgBJQAkrA5wRUAPocse5ACSgBJaAElIASUAL2IqAC0F7nQ3ujBJSAElACSkAJKAGfE1AB6HPEugMloASUgBJQAkpACdiLgApAe50P7Y0SUAJKQAkoASWgBHxOQAWgzxHrDpSAElACSkAJKAElYC8CKgDtdT60N0pACSgBJaAElIAS8DkBFYA+R6w7UAJKQAkoASWgBJSAvQioALTX+dDeKAEloASUgBJQAkrA5wRUAPocse5ACSgBJaAElIASUAL2IqAC0F7nQ3ujBJSAElACSkAJKAGfE1AB6HPEugMloASUgBJQAkpACdiLgApAe50P7Y0SUAJKQAkoASWgBHxOQAWgzxHrDpSAElACSkAJKAElYC8CKgDtdT60N0pACSgBJaAElIAS8DkBFYA+R6w7UAJKQAkoASWgBJSAvQioALTX+dDeKAEloASUgBJQAkrA5wRUAPocse5ACSgBJaAElIASUAL2IqAC0F7nQ3ujBJSAElACSkAJKAGfE1AB6HPEugMloASUgBJQAkpACdiLgApAe50P7Y0SUAJKQAkoASWgBHxOQAWgzxHrDpSAElACSkAJKAElYC8CKgDtdT60N0pACSgBJaAElIAS8DkBFYA+R6w7UAJKQAkoASWgBJSAvQioALTX+dDeKAEloASUgBJQAkrA5wRUAPocse5ACSgBJaAElIASUAL2IqAC0F7nQ3ujBJSAElACSkAJKAGfE1AB6HPEugMloASUgBJQAkpACdiLgApAe50P7Y0SUAJKQAkoASWgBHxOQAWgzxHrDpSAElACSkAJKAElYC8CKgDtdT60N0pACSgBJaAElIAS8DkBFYA+R6w7UAJKQAkoASWgBJSAvQioALTX+dDeKAEloASUgBJQAkrA5wRUAPocse5ACSgBJaAElIASUAL2IqAC0F7nQ3ujBJSAElACSkAJKAGfE1AB6HPEugMloASUgBJQAkpACdiLgApAe50P7Y0SUAJKQAkoASWgBHxOQAWgzxHrDpSAElACSkAJKAElYC8CKgDtdT60N0pACSgBJaAElIAS8DkBFYA+R6w7UAJKQAkoASWgBJSAvQioALTX+dDeKAEloASUgBJQAkrA5wRUAPocse5ACSgBJaAElIASUAL2IqAC0F7nQ3ujBJSAElACSkAJKAGfE1AB6HPEugMloASUgBJQAkpACdiLgApAe50P7Y0SUAJKQAkoASWgBHxOQAWgzxHrDpSAElACSkAJKAElYC8CKgDtdT60N0pACSgBJaAElIAS8DkBFYA+R6w7UAJKQAkoASWgBJSAvQioALTX+dDeKAEloASUgBJQAkrA5wRUAPocse5ACSgBJaAElIASUAL2IqAC0F7nQ3ujBJSAElACSkAJKAGfE1AB6HPEugMloASUgBJQAkpACdiLgApAe50P7Y0SUAJKQAkoASWgBHxOQAWgzxHrDpSAElACSkAJKAElYC8CKgDtdT60N0pACSgBJaAElIAS8DkBFYA+R6w7UAJKQAkoASWgBJSAvQioALTX+dDeKAEloASUgBJQAkrA5wRUAPocse5ACSgBJaAElIASUAL2IqAC0F7nQ3ujBJSAElACSkAJKAGfE1AB6HPEugMloASUgBJQAkpACdiLgApAe50P7Y0SUAJKQAkoASWgBHxOQAWgzxHrDpSAElACSkAJKAElYC8CKgDtdT60N0pACSgBJaAElIAS8DkBFYA+R6w7UAJKQAkoASWgBJSAvQioALTX+dDeKAEloASUgBJQAkrA5wRUAPocse5ACSgBJaAElIASUAL2IqAC0F7nQ3ujBJSAElACSkAJKAGfE/h/EeBQM5e6mGcAAAAASUVORK5CYII=" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAFeCAYAAABZ12FcAAEAAElEQVR4AeydBYAd1fX/z7pmLe4uxD2BkJCQ4O7eFih1av+6/6rUjVKHUqA4RYoHSICEBIgLcZeNbLKbdf9/P3d2Nm9fdjcrb2PMSd4+m7lz57yZe7/3yPdEVUsskEADgQYCDQQaCDQQaCDQQKCBiGkgOmItBQ0FGgg0EGgg0ECggUADgQYCDTgNBAAruBACDQQaCDQQaCDQQKCBQAMR1kAAsCKs0KC5QAOBBgINBBoINBBoINBAALCCayDQQKCBQAOBBgINBBoINBBhDQQAK8IKDZoLNBBoINBAoIFAA4EGAg0EACu4BgINBBoINBBoINBAoIFAAxHWQACwIqzQoLlAA4EGAg0EGgg0EGgg0EAAsIJrINBAoIFAA4EGAg0EGgg0EGENBAArwgoNmgs0EGgg0ECggUADgQYCDQQAK7gGAg0EGgg0EGgg0ECggUADEdZAALAirNCguUADgQYCDQQaCDQQaCDQQACwgmsg0ECggUADgQYCDQQaCDQQYQ0EACvCCg2aCzQQaCDQQKCBQAOBBgINBAAruAYCDQQaCDQQaCDQQKCBQAMR1kAAsCKs0KC5QAOBBgINBBoINBBoINBAALCCayDQQKCBQAOBBgINBBoINBBhDQQAK8IKDZoLNBBoINBAoIFAA4EGAg0EACu4BgINBBoINBBoINBAoIFAAxHWQACwIqzQoLlAA4EGAg0EGgg0EGgg0EAAsIJrINBAoIFAA4EGAg0EGgg0EGENBAArwgoNmgs0EGgg0ECggUADgQYCDQQAK7gGAg0EGgg0EGgg0ECggUADEdZAALAirNCguUADgQYCDQQaCDQQaCDQQACwgmsg0ECggUADgQYCDQQaCDQQYQ0EACvCCg2aCzQQaCDQQKCBQAOBBgINBAAruAYCDQQaCDQQaCDQQKCBQAMR1kAAsCKs0KC5QAOBBgINBBoINBBoINBA7ImugurqassrrLD9+WV2sKDcDhVVWEFxpRWVVlppeZWVV1aZ/gcSaCDQQKCBQAOBBgINnCIaiJH5J05/EuKiLTkhxlKTYiwtOdYyU+OsQ7t4S0+JtaioqBP6bKMEYKpPpB7SnVwBqm37im1nTollHyy1sooTqosnkrqCvgQaCDQQaCDQQKCBD50G4mOjrEtmgnVvn2i9OiZZxgkIuE4YgJVbWG7rdxbahuwiZ7H60F0twQkHGgg0EGgg0ECggUADLdIAFq0BXZJtYPcUga24FrUR6Z2OK8Cqqqq2TXuKbNXWAtstS1UggQYCDQQaCDQQaCDQQKCB1migqyxbw3qnWr/OyRYdffzciMcFYFUKWK3dUWBLNh2yfMVTBRJoINBAoIFAA4EGAg0EGoikBtopbmtMvzQb3CPVYo4D0DqmAIv4qo27i2zhutwAWEXyKgraCjQQaCDQQKCBQAOBBurVAEBr0qAM6981+ZgGxh8zgHVAWYBvrjrogtbr1UDwYaCBQAOBBgINBBoINBBooI00QFD8tGGZlqUsxGMhbQ6wcAcu2XjIFm/MM70MJNBAoIFAA4EGAg0EGgg0cFw0gKdwbP90G9M/rc3dhm0KsPKUGTh7WY7tyys7LooMDhpoINBAoIFAA4EGAg0EGgjXQKf0eJs5qr34tNou47DNANYWZQe+vjwn4LAK/1WD94EGAg0EGgg0EGgg0MBx1wBcWmePbG99lG3YFhJxgEUg+9JN+S6QvS06HLQZaCDQQKCB46EBXAvxsdFWogoSsTFR1iEt3giepZJEckK0RYtVGmJpspXKRY4MAzXbIS46Qn+qND6WVVS5KhSFqkZRoe2oRkFViuKyKquoDOIojsdvGxzzw60BAuBH92sX8QD4iAIsBo+3Vx+01dsKPty/VnD2gQZOIQ0kxXvlKgAM7ZJiHWgATAAUdMtbSmKMgkbj3GsAwt68Urdd54wEfVbtylqxH3w0+Sp1Va5tissqlUlcIXCi16UeYAGMAEyQPbmlbrtjoUaAE33lPDvpmbIcnBMPJFcluuh716wEV7qD8z6kahMFJRXWu1PSUQdlti8sqXR681PF0VNFTZkv+ACdqB8AtL25ZS6sgnJg6AfwRYkw9BZIoIFAA22jgaG9Uu3MoZluoRSpI0QMYDFIvLEix9bvKopU34J2Ag0EGmgDDcQKLABmQi0xPTskulpfRQICWFZ25pQKdMTbaT1TXQ9gRgZg1SeAB+qGJcZ7gKS+bcI/A3ghDdUSA1QQuwnA2KxwgzU7CmubAISkCATRn3g94nQutANAAhwBaDZlF1tHxVhwnD0CLLQzqm87a6/sISxGgDqqR5TIatRNwClWlqkEPfiOdvu2kcuAkwAsATAZM/XfPdM/HdpZuPgcLFWpP+ihpLzS9h8qr5OBnag+8vsFEmgg0EDkNDCwW7LNGNE+YuSkESn2jOUqAFeR+5GDlgINREoDmSofkSlQQUAnpSQAERkqlgooAeLwTK1PgAWgpT7AA0hhGywqiQIxWK984Tvf0uN/1pRnjsO+xWpzr4AUlp3C0oraYu5YhyjyXiDwhpBa3Sk9QcDDB2YmQKX+6jtAVThbc4/2Ra4wLOnYHAdCY/rP+WJtCz9PQNn+Q2VWWljl6pu5g7bRHyxmqbKOAQ4Bu/SFMbRKeAmgBQADVHJ+o+S2oOAt5/CaEoY2qZRYZ6WaAwq37Suxg7KuYQ0DDGNNS030hnS253PcjoA56rtS15X2Azn5NMA1QzA2CyNeA7z5TUOFz7EUc3ty7wS/dKh2mvbaNxDNUFxW6DjXtL2P3KrVFixu5LcCt+CRmg0+CTRwDDXQQxYoLDgUPk3TIMvkzeS7cmu+s+Aw+HbXNqP7pjngodvWTbZYQfbJHUeVemKKADqAlfqsVVhU1u4qtDLtA1hjMqfAapxAW3OESR6wg4uQB4DiQH65e6QqpilF7WLFoYArwAe34XCVvajvOA5IaFtAyKko/IboB8AJ4AJYhVsK0afvevR1wD64arEuAmD3CFz5YNXfJng+thoATFfot0K4H7l/0nT/7NX9xwImVADg/VRXD5BMnB/XvnaxBN3juJC37y8RiCqX1TnW0nXvcj/l6TcnRpB7kvuX+2fXgZI28yp1SNNCRf8cyK85r9BzaMprzilTCz6u30MaCwCOLJjgq2Ixl6Tz6KDFIWCHc9myp9iNGS08XFO65LYZVuMuDF+INbmBmg1bDbDguIKZPZBAA4EGjr0GcBVNG57lBiWsMwzY4WCDyXbr3mIHVrCAtJcFh9Uwr4nrYTBhAGPQLxWgwTLCZDBIRVNZMWNdYaBnMMT6hcWKyT58Um/s7AFlxFXR/mYNkrs1WBbJTUdcEwVaGWRx6dUHohpr91T/DqAZbp0DVAKMmUz93wD9rhCY3plTYgVY62S14jc7lYRz9S04WPFKZZ3LEYE158mk3E2Liw1aAHCNlus6w/3b3Li1UBDUWt3R1yz1pb0WLliH6SMLGVzT/u9aIFAB8N2i+5Njc17cr7zmN8Qixf0K2ADMANCIYwQ8j+jdzrmYGQMOCIgDurAIc39y3lwTJ5MbGR3BtM4ikZCF+q77bIHLt1cd0O9e3tqf56j7E/gOV1ZrpFUACyqGlxbvb83xg30DDQQaaIIGGGSxUuHyWbfzcDzSkB4psmokegBLKce4AhtbdWHtYJUIWFqnyQiwM3lwhtuflTL7EnzNKtlZjzRQc2wsYg25EEO7j8WEY2CZAgDQBq6ptYqhYoUaLkwGTDy4LunUVAWZMgk1dg7hbXzY3r+9+oDt0GTK9cAEvFbXAxbAk034nQEgAHh+b65L3JksFABNAEUWD1xDgCXcpsQEYt3hmgGMA8xLtA8WIK5fXXq1oBMgSjzh7gOl9v76PGfhqU9HwjLuWlUX3LGIhWsL4Tj8XpwnwAf3PefNcX3AACjDUhwKjbFQcf8BxgCZADI+Y1t/v7bob2ib0Bnwm6DfthAAJeCKRRbACh0wjrAAwxrHefMZemBsYSFByABjyjLVNMZ61xZy/tgOraJwaDHAwjz55Pxsd2G3xYkFbQYa+LBogEmmZ0cFmctlEC2cAUghqJsB1AcsjemCAQh3QiVxVBrAAUIajzQBJ1mS6APCLVq0xeDFwM6gBQDapUlo+/5iAZwsy5Lpv759/D6w+maQZ39eE4zORKb5zLV1UGMD/W7MgsIEiUsTEIYk6f24AWkuCN0/TvBcvwYAHIs25Nmyzfn1b3CSfArAOn1Ihps8AYtcL7gye8q1xXW1dPMhZ80gw5PrlWsKV9gSTaiAJ8A5wAuQAkjrrMkZyyr6waJDe1iGGrsOTxJVHfdu4oHHde+D2bbuEMCZcQxA7VvwfAumv/jiN9+lZJwX3t/rgB+LTfZjPCQ0gu1ZKLYGEwIsrzqji7P4t+ScWwSwuNifXrAnYGhvicaDfU55DbDCJkaJwZ6AasAEQafrZTFqKA6GlZtvpepfE3vBCp3gcwaRQsXgvLMm15n++yiYmcGkSJMLNT7JMGPiwbXAsQd0w6qV4KxZfrwOExYgiBU0q781OwrcYJSeHOdAGG4GRJu5YyRoYAH8EPNRH9gCmEVpF1yLTGhYVIj1WbO9oNYtQTwVFjUGZgYqjoUu2gvAoZtAmqeB3QIfAKuDslaRWdhWlpbm9arlW3eVOyxW1wWZnUPkjsa1h3BNb5T7ureAFqCqowL4Q62nXOfb9hW7awlrBgAfF3hD7kDuCe47QALXHfMXViSu9UBOLg0wfvjWOwCWs8ZrDDpdVnhcxAifAbIQXKY7FY4we2mOe9+SP4xhl03u7ABbc/dvEcDC3Pq+bvRAAg0EGvA0gCmb4NLNogcgmwvrE4CJ1TMDP5MAk0Jjg7rv4sD6xEDCagwA00kTDDEJ2QfL7C3FHzCA9JDFa6RiMLD8EG8CwPFW9jWkluoWFgIAVULcYVcCQApABuAZ0y/NuRwxrzOIkImGtQATPe4ILAT+ajH8d8YllVdU7lyNWBG2yfrFuYfOWYM1aWJZ4zxw+8TpmLGnaDB6uH4i/R4uLjK1uX7wHnSVW3infvMY6ZXfv7HrKtJ9iXR7xBdxDWHJ7dY+wVlyuX/8BQqWCK5lZLmsWgvW5rrz5RoerWuYWCSAGAsIYoIBnyxoGgJcke5/0N7x0wDB8APkWmS8wmrJogPrJmMk8WrQzvjXARZzFos4YMkqbo6MH5Bu4wemN2cXt22zARariyfmZZ/UN3SztRTs8KHXAKAH8JEs0MFrgBOuDO4HYqKIAXFxArqpARaszkEf8C0x4K8S+W59rgraovAoEwpmbd/CpY9dYCuDQ337+T8I+3E8ji0s5gBZtoLJiTvxZawCNQFaK7bku0GIz/t2TnLmd1wzTEa7ZNXCgsBxiXMA4DEgkSHE5MdnGreci4DBa5UsVaHH8I8V+uxbrQhExhrGsbDUIaxCsdBhwmfyJP4ikIY1gM4BqVixsEDi1uW6wHLpXzMN733yfMP9ME6TGVZcrlkAJMIChfuDeLNQ4ZrKpJacNuOec5bi3YWOHPZkBp2h53iqvuZ6ZjHHtd0U8cfXhrZl7UY8KotRnzCY8ZFxivg9knq4JlhkNjf4n+vy6ild5JHwxq+G+hD+ebMAFsjwmYV73c0d3tCJ8p5BHfNgcxHqidL/oB8njgYALGS04JJjlYS7jQwgypvg5oI+4C0FHMOdwjXHCpyVdH3B3ARx9lMbpQrI3aosvfoECxiDDYHsvvhABxcfLkFAj89JRZvwJEGKCfghlZ/Mqh2agMnYw1rEYMLKnpRqJuQBXVMcHQMuTM6P/Ri4fMEa4mfyMXkTfO5PcmwDV1SOHpsUHI9bpinCwEcsBdYwXJft5DLEfei7L5vSxod5GzIuAdoENAN4+bX4/SB/hRsLl9epJozjZLFiDU6Mi9G8s6fRhcapdv6RPB+C6Rl7slLjtXCKdmPMiq0FDqhH8jht1RbDE4swxlvGMsY9n+7CPybXy7VTuzrrp/8Zz4xnvkuYcXP3wRJbLCsnCzwspIxthDsAxNjWTxqob9GCteyySZ0atOqHHtd/3SyARQrsbN3QbSEojdUt7gQGESYIxg0Uy2CSLRTqm/paenwQc2vbaOmxg/1OHg3gLsP1QNwH1wvuPywGWGJwQTDwk+HEe8BNH1mDuE4h/sNtA3CBs4WVE9cwA8TIPu2U8pvuJsc5cvUAUAA/AA32A/wA5EgLJqYJqgTM24MVa5Ujl15yohfIDiDCGkQsznty1SMAM25+QB7tAPCgPhiofgIGAYXER2H5cAOI2iC2CjAHcKM9P/6F9G8SwjGjM6Bx/gzKQ3vKDSMiUEBbaJxVc39VAOJQgS3S0QGPtI8VsKy82sWC4QpT91ymEAMgfWOfdtIvlgpoKHCbftgEriR+QyYBMj9xh3C9bNgdVM74sF0L/vmyMOqSCWiCHy3Ru581QLBwSdY9g7XdhRnofs6vIe5lgdSUcAX/GMfjGbBEv7n3eQB+eGDthmiY8wYrZGhM4Fy7y62MhZ2xztFZNDA+YCBifMRqFrqoDD1HtiFkYqkSKRi/w7MTZ41q72JcQ/dp7HWTARYo8JE3d0XUMoRrY6viUuDrOG9sR7da8TtLtgIr8e66cIgzWbDmoBuUIUPE30p2CG4XJghMgrlSSrwGfyYB+HUCCTQQCQ0AgrhfASO4I3oqM2/1tnyXrQeISRFAYoDDesUKCQHo+DfqB3Kl8Tkgi22G9EgV6PK2w0yNG8QHS6w0sV4xqBCLQruALbbxguDjXdscA6AH7xFxWwwytE2sFp8zESNUiQcM+oJ1bdHGPGeVIh2eQQbwRXdoH0DpBjb1n/sKgOMAUIGyBLUvwfZ+hqDf5rF+ZiEG8SDnBVD7sIk/STwrTwIxcIDN5ro7Pmw6OxXOlzGI+5GFFPMm8ZKMM36MJMCBBR8LFEABcyReHJIA6rPGtIVOGIOwovvjYGPHcOOhYlQZc3C7cS4AKxJiyHzGasn4B7BCwB/sg/jnzGuSgBgTQj/j89YIFi3GxX0Co3NWHKjTFOPt9dO6NQjQ6mysN00GWEwqb646GL5/RN6jRFwwTD78SExAuB8AVsR/4KpA2QQJo2SUSVAv5kKsUrgdOooTg8mBwFymLyYIANoqTUJN+cEjciJBIx8aDXQU0Oe6BdQAvgBiXLMjZKlikIBugRsfywslUJgMIQh0Jm4tBPiO6xyL0kbFjAB2AA3hNedQKOPKcLXLPgiDykZZLgBjLC6wtmHyhtWZCdh349MX0uAZfAFtCH31QZv7oJ4/LG64xxj0fMFyslwxXKzsAF3HW9AEdcN6d0pWIP3RCy4f7/625vhcJ4yD/C7vymqJJY94JOLWcOduVmzJsZpEW3Mewb4t0wBEwCSLEK4QKowD22Xp5lqAZuV4C8OTpt16BSs0Lm3Y5fEIkADkhyLUu8Nx+hBjD5Z+Mg8J/WC8DBfKdg3t1S7843rfNwlgAVYejrD1it4AhlgZh0vNPOIsBmQrBYNHuIaC95HWAIAJVx+gAiCDqZkBgOuPlQwrQ1ZnDBKAIVLFw83HWKC6yOIKxQEgxM9siXQ8IOAC879/79Bn7lH666/4WJQArOgroAsXJtsB6ABjuAR9a4i+djENPLM9q16OgTsOXXD/sarDLXWiibrn4rvOGJJZJ1bsROtna/rDtYflEGJFJlVoGlbLMgpz94dNuD7Jiv0weCkwHhDwDyWLH6/IPQuYelfVUwilOdGMB/QZaxuLSuKksErRRwDVMGV7DqxZFJwo1y36JBwDCh1ckPG6tkb2SXOZumRl1wcYsWLdICsWrsajSZMA1gatsOGRINYDVwIuC35k/LkMygzqsD/rf7OE4FdMgazq6xOsWsS40D5IEovUJq3cwwPc6ts3+CzQQHM0wKAwa1SHRrPZMFMzwPuCGZkbkyzCloAoOLLIfMK6xD1AlgugKFS4mbkHuO8AbYAj7j/cAdClAJgAg1AuDNcA5vePgcOV3NC9c7CgwqX4+4CMQY+VJBZf3A6cEuBpNZmOOkdi0Ih7BJARh4U7nkEeTpli3YcxUhbbeaCz/ns39ByOxetRfbHWZR6LQ7XpMVhBA9yZPAnw5jdg7AP0cm1wvREaEcipqwHux0nidRokPju8OL4Qq/iWvEhkkkZSvPm77rgT2j4xmACmhlzRjCe4+Xj2xx/a5DVjG0CEmDDKZBFofzwtziwUie+mDBHjLeCKWEYshNRw3aRsQzwDAMLFCqfw40CJlQXrcA8SXjFhYIYzAIXqqb7XTQJYMKUygWCSJ6XcFwZxPscSxUVBUBhxIQRhtlZwCQLaQO5MMgkCYqBjgodbMpm1tj/B/qe2BigXg6vtaOJf83ARsbrhPQsLbkBc2MRAUXuMAHV/4cDChG0BPIjPWM7NygQKmCGQneB33/3m3N26B3LlWsS6Rt+giUCwqm3ZW+RckgAs7j9WVOFC31YqW4haoT5wg7KBQHqfPBRL11wdl1UmPC8eD5ZH9+C3B7s2i5uBGvCxhNEuwIsBFEqIdxQfiWvzeMvEQeluUsJVerKIfz0BrBI1keFGZiLDWgWIxjWIexkQjyVRqg/kFNYAiyWssYwJzIEI9ygWKz9pJlKnT/zTkJ4pDvSQ3BJeGYDqEtC3eONc3aPST0DITsVlDpULkxJXjcVBYf0nI/l4uQVZDJMohw2IsZnxGm+EizkVMAzvO4tpEpsIPwr/rq4mGn/XJIDVeBPet6yyAEQMAq8s2V/rvmjKvuHbsFr3Y1xG9fWyqhh0GIx8BMnFxjFBm6z2GOxxZ2BC57NAAg00VQNYf1gxNibELUFwCEiaICCClSf0xuPaZLDBxMzkiLDiJCW4h2InyAYkW5BkDeEqu3hCp9rDcR0/PHdXnRUimTHD5OdnkIWgE7brcGEltkDs7gwE54/zkkQYSF5etI9ARRcY6oM69uU8JwiEhGbhQQFAzBaxWlhMsI75q1D/ePRv3gcH3bmzSqVNsiIJNmdliyWbSQCOIt9K5u97rJ6x7KFjYjg5D0Avq+iTRQBYrIzJhiIGBD4nmKldTKoG+3+/vtPFlp4s5xP0s/ka4Hq99syubhHj7029XwKtG7Ie+ds19xljyQwlwYSOBcyde0Rm/L/39tY2x2IMkE+yDotBLNmAfMYAxqa1OwvcYu2cMR1cFQkWYKHjYm1Dx/GFWxBq0PXjUJvSFXTB2MY5t0YittSjI5ixCbgMH6DpYC+hYQYOBr6jCWVBQqnvRaNYZxdOnjIKTGiAqxkjstxF6f+wrPy4IFi9BxJooDENsIIhIH27rE+Q09V3Q72n1eMiASUmO4AMKz//WvPb5j1ZhqGC2XzW6A61H3GsmXJDPvVOtjNPY5ZGOCYD1MuL99XGVHBt80Cw4AK2yJpjAgbMEFTPfeYyyfTMvbdf2YNYkA9qcq5PCKIPHVDZhqwk7k2sYH4Qffi+DFBe5hKrOfFt6Vh+QD20DWQ0MQFg/SKcgH7jTjyWxhbcaugRcIVALAiZqtamLkugvjEp/DyP53t+Vx4IXGXonLGNkjFQNBxLXR5PPXxYj33RhI7OmkI90lAh1izS4Arr2JmqORo+FnD/c/8iADAMHWRNz1663yWhMb6xgGLM8APup5yW6azsq2p4tdiGcc1Pugk9l+P1mrGZhWFzxFn468KO5uxeu23ELFh+i1iYlmzyCpH6bgmyIKYOy6qtCwQZYpbcHu014TBwQFyI5QsEzw/HipiVNGi4pYI1bY+C1gBboO21Kp7ru1/8NnU9uUGNCwtUTlwJq/XjLcSmkVFJ7A3uJSYHVrdYCMLNuMejr1hXoMtAv47DSO6iU0G4/qbpOiU2isUAfDFYrkIXBgCMsbIEAZaIj8BHDzipD5g1pBMmz3CAxrZvqgwOcVANCTXVcNNhsfLjMBjQTnPXSpKLdaBtfpdXNSiGW5Mw+fdV1h0WMQBaF5m/GWTJTqM94io5/5YK9xkp1hyXex8dARKIZSDrt60Dcoln45jcw0xK/C7dyVjStcpY0pwVbEt10JL9sF4BmuEqYlGIxZMJzg9sxlJJ7FVbLBgZX7CsnopC5hruLa4Hpleu+7a+BluqR34Hxh3GVe5J4ikZj7if+d3fW5/bqr5z/rjyiL1kzKhvwcE4h6Wa+ZCFoR8OsGjDIc2h5S7Oij5yf7Pgqi/Im4LxVIwg5KK5rOct1d2JvF/EAZZ/sqR171d8CKtdgtXrm1D8bdv6mYuUIF7IIYnjYqXY0ICLdYwsHS423DtMqMf6pgRgYQ3gQgYU0gf8xscaxnCDY7XhxkQAE6x+8F2jU+Ju+B4QyyAG4CCIcInqhTGhMqGR3Ya/nu9PBNctQIjzCgcfTb0GWQlhSWIgZNR2A5V+GH4nQDCDI9cWEz2Wp+Zc9+homXTnA1dfX0wUAL36rL/UYcNl6Vs//POAFJjYq/B4ReKUAGQsJnyWdhYa9JPf9Gj9BTBhwQs/nn/c0GfOh9+ffdAPoItxgYw4Yor88wvdJxKvcWuwQONahHSVeDmY5LFuha/aI3G8lrRBjAcLSQJtmfBwR3BdQoNBdiALTawDgES243p9fXlOSw7V4D7cl/wm/kK4wQ1Pgi+wonJd6nTcfUesMLQiXNNIusYsMtiwRHfRtiwouC7hduNeOJGEMRUqA6xZWNf98ZNxAXoWhHGHa6ipwriFBRvLVWNCjDMca4yTl07s5BYn4dtzXzMecW2G30/0jzAF+jZxUEb4rh+6920GsE52TcI988ibu531qznnQlAcA6UP6HhPvA5lTrAUsMoH+TPRMGFyAzEGtHTCb07fmrJtb1k54PjgBmO1ork3YoGJbpWu8/fpDbAyoifOHXCGVYXBHnBL8HZrBFDKQEWGSL7axxqF65mJdpwG3w92FCg4O9cdAtDN5OuzYgM4kMbGL5d2LODp99sHHAR/+xNWRqq4qcJM/l7LR/8LMEEHDHgQkYaCfPrHNcRxAL9MxOErUq5fAu7hyKkPyNB/2uBUsZRyHQKg/VU/+mMbfhv2BzySZYOgNwZ9svYA3OHHdhvV/GGCY0DGGsMz7WCBY2Cmj/O1Yg49t9B9W/Iayw9xmwzwxDExebIix7LGM0WSTyShn1io6JteujgWrG/0ncBgBwJkWWTcCETUIboGu3dIcIsQYoAA0b5bCrc0vHOAa8ZXkkGoGBAq3DOMQ4wH6J0MWXTLouhk0TH35bThWc4QsF4uPYCXP+aEnmv4a+Imz9BY0ZhgKcNiRVYuVqijLbjC2+J+J8mNBUJzrPrh7Zwq7wOA1cgvyeRCdgWpnEzW+KS5aDQWOsDEDc0AyaTBCpSLChC1RqtzBkZucIICp2rVEFrPrb5DcnOzDw8GVoL4Wwsy6jtOY5+R3Ub66YkgTMa++xGwAT0AVg8y2kLXbZjWMXtjUSLuBusavxMDDgMwqym+x5rERB560wPk1ghoUVgWi+Hbmuz5ncm0Y2BhkIYVnVUZQJDfm9+J43MNYMaHOytZ4MG3ZrGKrs90Xp9OAU9MBjxCBesfMVXEQwDYsGAw+SJYNy8Y18nFPTE50DesrgAWzo1B1M+iA8gAYmiPFTuTNiC2vpiOSVptYvnheubYTFwrRS68dW+Ju6axyLFiZTB3RXWlBwAy4IzJCR0CNo8mDMDcV+jT53daI/e9Po6IUHOR+5AUd4Ah9xMZWMRjTdA5hus6IgeNYCP8XvDxcC3z2xI68WEV7jHAO4+RmvC5NrlPudexoPD7ci22RNhfzes+p4C5XuvFPo31WL2wthLGUqFBnXGIhXCkhOOxyOM+ZIz3Xf0taR/6BOKdyDrk9mHMY8wCQHLdk+G7KbvYnQPtQ0rMAgrLkj9GhB8XCzoLKD+rmvsVPeONwHAQSPM0EACso+iLCwyA5QfPHmVz9zX7EOhLhgWT/GitqJsy+YS3zU0CCGCi9CuBh2/T0veYoLtpcAIMYI1goDoZfOaAWSYg3D4AJuLBCLr0V1qwqaNzQFZbiH98QAiDL1YfJkVWw5s1mMGeHpqRyKQAWGFAZ7Lkt2Q/9mFgB5wApJlMiLHiOsGaAcUDAyYDPttg4gdEEUdFRiGWUT9Gh+xGV75H1jKABO6R0MEQ0P/oW7td36B7gP153mplBeocfGHwnaJUawBqqACCnn13rxu0+Ry90leAFsMtljtiLH1dDO9NKSARoTYAtgDLgFSA73wN5IQQsH1bCBMQvw8LnWHq13iRNvo6a4vjtbRNfmeuJxYPEIj6pY5a2t7Jvh9AHsBOlQTuZ64XADMurrZO8weghB6D+5fkEWhK6MvRfhvuDe69hqyyWMspYQUnFGM6ix//+ue7vjpvMuiJWwTYIIAirhFuE+ahLoSPaHxYqbGB+3GyMoABnvUJcxEeA8YdHljpGe+JI62PjZz5hgUJYxKB6lQLAOBiicfYgD6wgoW7Bus7dvCZALx+gDYa3k4N9TIRMpH4E/jxOitWJVg8uCG5CcJja5rTL6wgrKIImOZmbqrFpTnH+DBty6CMFYYVI1YHrGUMRN6K0hsY0QcDVabchmP6pbsBFiDFZ4BdflcAObF2WOsAX/UJgzDszgApgAPWrWUaaJmUKH5KQWniUcKvV/rVq1OiS6lmP4JZuY6wsALkrzi9yxGHI7Ca1SzXni9YyTgvzg/BBYuLBqEvtI3bkImAbLiGhGEHUEZgPcfh/GmRtiMhXONQYdBfJkUAJCWMjofgpsVigfuKxQGAAasjweUAKyx6gXhccm7BomsLENBf1w9WYyZ5Pg+1Ph8vfeFa5L6hhi6LDx8EhfYHq/q5ygr2Ey64P5fVwwrO91jAGYOxyuG5YLF4QLGtWKcZG1gYYD3yp2n/vua64b7FOt8c4Z6j/4258LCekjnIQu6ySZ1rvS/04X/v7VMcV6Y7t+Yc98O6bQCwTsJfngudVQmpsdBRtCZIk9URZmZW9y2xsp2E6ot4l5kEWPER44V7AfDB4MgkwcSA25EVq1tBqr4VAi1DQxMGFi9qYWEt00/t3FqsigFdTMwMyKxEHbu6Pnt24R67bmrXJgMIrGlw67CCxtpGoHyoxctXENcZ9bgAYwzM4UI8zA1ndXVgjoXI8+LP8YO1GcSJ0cKidzShP+gLoMGkweodC1lrBBcHyTXgQPoGcMM6V995tuY4je3LZExxbShAIulmauyYJ/N3/Db8TroUXIwR2ZRYQk/UBSALK4DW68tyaq1Q6B/LzzVndtGCo9xZoBkXGB84N2IEWZBAf9CQlfd4/oZY6bCIcx9y/xDrFZp9Cy8X8wT3fjBfHP2XCgDW0XV0Qm8xd+UBtwrGosHqGB8/K2Mm8+aIW03J6tBeMSyEPh/PcgbN6ffJti2T/bJN+RqcIO3zsjNbcw6AMCZyTPgkJTRHWIFTkxABTHHdALh9N5pvmWPA9S1W4e3jvkQAmYBLX7C04bog49JfdfvfNfbMMQFzrNDXCdxhPWbQ91nxG9s39DtW2bhR6R+94po+luCK+48KGA25ikL7Grw+rAFc/iQpsCg5luCK6xfOMSyyWIObc82+tmy/W4gADAH0uPoB+FiXCEKHZoFxmTF25qi65J6Hz/zYvgLsAfy41wk/wBJH6S1c1Ny7hBJgKQ+kdRoIAFbr9NfmezOx4XZhsOHGDxdWGrhXmMj8QHomSwZ4apZhauZmChcmGyYgVlKAKigpaAfBr+8mRr3G1ROsVJxaIvaH34cBLVIrWN9i1pIOcp0wsWA1wyKGOw1LEsCNbKD6LFeNHYdrlHZIAMB6V58Qh4XVikB3LLDE18BazgTF8XyAx3nB/QZ5cXMLGxMLxgTBeXGt+23W15+Wfkbb8P5wjzAh4/oDGOLy5NFaqxVWPdxNxNdgbQxPTuB7BNDOpEiiwhZZVHAzYzE5mQSXLtcMSRrHy5XL9cbv5iVdUKBYrjuNhdTRS9C1TAKFX2IKQEZIALx1jJtUEQBA4U7nmj1Llh8SQE5U4VyJ+cMTAj8YcwxB9wArLGz+tXWi9v9k6VcAsE7wX4oVBeVVLlI8CQMtkx/jKu6n8FUWAy1cX0xyBBFv0QQJHQGfIcQGMZmxsiKAFPHbAIRx0/FM+wGocuo56f/we5aWK8tVGJsBFHdy3xrQDNADRAHCM+U+c3xmAj5MHi2tLQhoZPVOQHJjQuDwBoEG4pPoI6v+sQJEg+RCgR0e9nJA6FurD9Rev421F/4d1/CVZ3Tx3LMCbUwitNtaARgCAiEHXS83LQCIgF+CoJloQ+PVWnMsJvPJgzOdGxkLA+5kEhV66t6Fz4l7HNCI7rCOhGZHYpnArUt8W0OxfK3pW6T3BRySuTtc4MoHMM05BtcxrmzGRsZAfnvIZbuLksNfdDanPbYlYzmcd0zNuqQOf5wkro8ED+KmQgE8wJvf5ER1bTZXF8H2LddAALBarruI7ckgyU3LQBF6o5JhBXM75U/cDaub1l8Vk012ocq2+ACJzrD/Um2/UC6dhgQaARi8z1QmSGMgyhuoGFICOZU0QCA6VhZW51ivmEQuHN/RrVpZ0eKKI2t2o1wb/rVW3/kD1gmoJ6OJjM79IptlomGiJz6jqZMLHF+Qa+JeBEiQfEFG61b1AetWa8Xn8/HPpaVuQu5PinkDWODuCnWHtraP9e0PoEIfgEJikTgPQLLvkq1vn/DP6gMJ4dscz/cAIc6TQG/cgsQuhY5nTekbVCEEXnMthwoLUNzEjSVahG4f/nr5lkP6nXMdkGXBgTsfi6t/HEZG3H0DtGANJNBAQxoIAFZDmjkGnxOwTFAwYAbrAoM/FismKVb4pP4zqDYkpKETe0OWDWZdGOhZudaX2RLeBgSVHTTJMhAx4QLyyHQi7R5uKCakWRpAGuJLCW8veH9yaYCJYrZiR5g8bp3V0117oWeAhQaOHj9lO/Q7XlM4GncCIACrDdsCQriOAW/E8DXF1cOiwFmERLnxpuIJsQRFUogpw5IFRQb2KwBKYwuLho5NP2njv+/siZiVqqFj8bnvHsTiSIbZRLH1w0Z+NKGfxH0tFZ/RKi3MTuQYMOJGobAJJwM92jmGfk+ZtSfnZ9cZJ4mjIjgb8NZSVxdj8zML9ji3L6APMl+s/lQ/AGgxNrO4IAO4uaAwtP/B61NbAwHAOsF+X1wQ2+Syma3MlJYK1i6Nsy5AuBF8dtTmL5/c2VkljrphsMEJowEmWOKocNUBePz0driwAN+8BxDhGsQ1A4EjsS9+phBgf5GCXWG/Jx6G98T5bdX2m/TwBW8b1xjusfqyWAHuE+TyA/yHWmXZH0DFYgILhj850W9cbH7coH+cSDyTdUnWJsdr6YIBtxuZmz77fyT61ZQ2oPIg8Jt4HviZmNBDY/f4fSCQZZFESAAp9k1ZYDXl2JHeBrDDb8Dz9BFZbmwhsQLLZ0sEl/YrS/a782d/kjzgd+Ka86+rlrQbug/30CoR7pJAxPVObJVftSF0u+B1oIH6NBAArPq0cpw/wzX4vlwnBFu2RCh3wwBD8Dos41gFsFg0NPAyMDHw5RZUuNIruGiYALvLKhYQyrXkFzj++/iWDIAV1qW3VEgaq2SoYH3iOgHwXDSho2ONx/0Vyh6OBQgLCm1g5US4NgBfTOhYCfiuIQEMXDapk7Mc+ZMesTIUhCcoHC42YgLpC4HZlPch6D7SAg0JlQr8PjSnfax5FGJ+Qa6o5mYzNuc4TdkWwMX9iiUOUIzL92jkl01ptyXbcI1ZlYhiK8utmkcVD1U6qBK9iB7uO72PqlYgdVSVpSdBlJukxIMqW758mQ0fMULcYIArAa8YZbPFJ1hMrEovxcRarJ55xMUpsFyPhIQEfR9vxRXRuj5E6isgCTjjuklPjnOxUASat+T3bcm5B/sEGmiKBgKA1RQthWzDZIR5GCsAQATywEiAENolHZ3Bk8BZYjyemJftAjdDDt/sl6wWWYU1JJBSXqyingzcSDBANaSpk+tzXBzwpJHsALhmMmqqAJ4APVhT4fipz0JFWxCKAj5CgTtuZvYLveS4tigyDRcYXFR+8XesQmRhsZDA4gX5IfxZbZUBR9bseWM7OlDYFF0AINAbLnNiIU914XyrK+TqLS+yqrJiPVQsuSTHqkrzraq8WOMcJZkUwF1daWVl5QJWFKBXBqOsmZkpURYfo/Iy+mx3XrQD84w6PdIrbHg3MfsrKH9ddpSt3O2NM8KGNus0ZeophKlMl+br68xyCrzv+GxCX5FrRomFvzDKPtgp4CYQhrUuRqZTgJdeuTESt2+71ERLTUm2Dh06WHpGlqWkZVq7dmmWmppqaWlpDqCd6r9dcH4npgYCgFXP7wLY8V0goWUT2JSMPgLJIXYk0BcA01JQgusF4jayfZhY/EkJrINlIHTiqqebrf6IifR0cRW1tP+t7kDQQJtoAKsG8UwttWzgYiETChJFjBQI7kRimQhKx1UGQSlxWAiLDWJhAFBYVVh44O6DZLO+bESAGQXQsW4Rr4U1BpJSRAa1No0bom9c86TfN2VhxOLk/td2tGmf3Ikfoz9VAKiSQ1ZRkmdRAk/VpblWXqzX1SLCLFfR4xTRwcSKDy2mzBKiVSUg2wvi7phSbhO6F7rfh67uL4y1hTs8HrdJPQqsQ8phAP/+zhTbU+DFi315ZpW1S/SAU6k2uetl7/XgztV2/fjDJ71pv9kDC73vbplUbf06HP7ukffN1u7xvjtvYK4Wg953utzs5fUZ7k3/DtV2zlCzglLxO5XG2Pa8GPtgl1djsENGssXLAhYdo2stI8NS09pbpy7dLSsryzIzMx1gO3y04FWggchpIABY0iVuFAg7CdBlPgFgsRIno4mJhJUd7hAC0JlMAF3EJzVXaIeJh3Y4VjivTXPba832pHlfoXPgua0AFpM01gwsIKTht9VxWqOHU23fXQLqb6zIUUyOR80RyfMjFogamwgLgOu1yGgsYJzrHXff7KVNiyckMB5AhuuwLYWYHzJwmxJLgyvq5cWa/U8iQe9VskJVFB2w6iKx6+tRVpSroLlKZ32qknWzd0aJAZqyC2Jt0wHVt0tVJmiRCo/HV9rEnl725rvbUy2/TCA4WXUSBZgGdSi2ge1lDS2OceAqKc7zOReXRxsgKyOp0tbnJNi6/UnWv0OVbT8YbZ3amd040dvuP+9F2d5DqrcnMARgmjGo2qYNNNuhrj2wQJxfyZ6Sc+UhvmVytfXIMHtzvdkb66KsSzv1T6Cuvv71bm+2cd/R2+uSVm2vfaBF8hYtAtIBY0rqiY+1zLRki45VIeSUdtatZ1/r2q2HdeqkMksCZYEEGmiNBj70AIsyFqSq12ctguMEV4mfSYWro6smmcki9INnpalC7MqWvXD+FNSm+TZ137bcDhAJGSOremJMyL4BBJH63BrOINxGi5V6jyWOLMdu0hn0ELh+Nij9H0sdFhFKtADwkAB8tf6XBvw/9U52i3ijmnN0Pw4otE5ZY/vjCsTVhmWNeECKTR9v4dqkaC2uSRYC+m+Dxd3F5/61CFD5nyxrPqg83n2u7/jV1VXOIlWen22VeVtUzLHQFGAgPpdSB7LTEiotXxYdgMmkXq0HTk0CYu1L7LwR0XaoJMYefi9aMVLSqTqfWxR1BHDCkrV5f5R1Evi5eaJ3hg++a0cAsawEjZ15dgSwm9yr0GYMS7a310c5INbU9sKBnX5qAcdqO2uQVBclBva9JktYtXMxdunazfoOGGLdunWX61GIMZBAA03UwIcWYEGDQFZVYwG6vg5xF44foJptfVId8GBAJh4A9wHuEoJ+mXSIJSGzhc+xck0VD4vjzZFb8VikS+NyARw1diyoHSiiCrHk6u35DgCNEckfLhsmFlyWBLe3hPAPfVG2hdIRuH7I3ELQFQNYviwTWFegpsBKWCICTJjksSQMF5gFbGHVA3xhGfHr2tEGk50/8fE+kCM1QIFWrsdjJefp9+2rOpZNEa4Bfs/H3t7tLFTEQ3GthPJJAfgpbrtow6GmNBnxbdor/nGiFk9UMuB6Y0G0RAuFE0mIhSrL32PV+dusqni/RVWIm6vU0+PIzkWKeSrXfeL1ONRV15BrrbMsV+Pl+vOlMdffst2ptuNQrNv0aO1hJUSfWw9E2aOLvEVUY66/b5xXLQoErxf1uRK5fkgweH9zub25ybvmJvXMt06pldpPLOvpcfba2gRbL0sW8rmz5PKsqLQi8ZYVFFfZUytT3eddZQm7crRc2brWoMPZLONkU1yT5w6Lsb1FiVZQrqD7hBTr0Lm7zZh1fjAmOa0GfxrSQM0l3dDXJ97nzvytyZqVprCEAzcE9AII/ImcYHFWyqRnEzBOmjhlDHyh3tl8gR6C1Y8muC0mDMyo3Z9J4RkV16XcB4GbsKQDbLAehEqZbu6X5Frgdld3j4mE96G+gxaVVtkmTcIZqbEuWwyXDLE2sBIDBjm/scq24pybI5RWgZUbckiOMV68PYAoXFbLVU3e1zW/Bczi/HaInzG2VoHEUmmtoDfKp8BoTTkHeICyBNrCJQBehzVCTF9bCb8HrNh+JiH3Xyg4Oupx9duy8MC1iBB3GC4zRraXxTjRXQdkEx5rwcL64qJ9rh4jdBZcd8dbKssKrTxvu5XnrFPclHSirLzuaaXWo12JJbWrsvcUB1VeyTAepbgj8TKllZsS65wbL0cuP182H0xw7j3e89oXtsHlh3uPmKZ1+xP9r9zrjKQCF/PENtkFHlBig6O11zlTC6qSKpu38fC4+8Y6s+4Zci+rW7gFATe+LNysAs9yFyK89gXr1o5c3IWQripQfv/hPqzbl2QZiRo3lLG4Ypvay2F84EqVW3GNaEa6Vbj5Yd2+w33ADZqvcalHiurvlVc7q5fbgX2O6J/XFt+XKz7tsqEFbtP/rThoK1Qsfer0WUEAvdNI8KchDZwUFizIEBeuy3WuBawe/uTMSbFSYvJmQMR6w8oEoMBEwCRAICukmgTSYiGhppcfQE45joZiVXAdXKA4DcrT+AJggJwRFxjHPVUziyhzMm1YltMrljl0x+QIACKWijR+PgsVANIyASlqWhH4D18PxYRDU/5Dt2/ua9KxsXYRF+dIVdU2li51yVnHwvvT3PZP9u0Bms8u3Nski2xrz5VrAh6j5rJYc/9sUK03yjdxnYQCati8zxnVwYE4tlsuokysR6HbtLbfJ8P+UB6U5e6w8v2rFe1/SPQGZQJ6ldY3s1QxUCXmx0WN61boABAxUsQ/IQSd4wpku0W7UmrjlQBDxEURQ4X4r2nzaO2lJ1bZ0E4l9s625Ga1d0bvYluzX2NAUYxzC3Jc4qxwBU7uW2XPLpMFSe7LmyaZrdgZ44AOMVkIMVe8ntTXzHcXXjmm0l5fay6rcFKPQrddnfNVYH16UpVdOKzMtuUm2ly5DBtr77rxgCvPFUm8F+L3b8Ygs0ffP+y2BPD5fcK6tnpvkt3+yc+6LEW3Y/An0EADGjihARaWqRWatEk3P5b8MzAMnz4ksw6IIN0dZl9itXyQ0YBOT/qPOT8EUMX5Am6wJsEUjzv0fAHP0NpnTO5UYockspfiuCidskfEfG0lpPlTuoJ4LmLkyJYbIFcV2WnhWZ9t1YcTsV3ulzKtyrGZUreuMVdxa/rP9UDsHjFL4SSijbVLwgOLHuL7KKpLiRwWMJCdkn2IJdgXFlVYmakxd6pLhbL4ynLWWnXBDhPTk3WW1Yj7bstBz5rkB5ejB6xM87e1c3FVvJ/SK99Zn3iNlWmevkMAL2foOz/jzg8+57ujtdcjS7X8ZC3eVxBtjy/xrD8tbe/miZXWv2M0h5W7sNr+9Y732m8Pzj5iQP1gdrbzg995XSyj7N/frrKDAmpIQ+fbPqXKLhhC5YtKd00t2RFrcwTUkND2AEj3zlewfb77ym6f4gXT8w6r2j/nefsQnH/bGYfdln7/GPc+evsnrX37Dl4Dwd9AA41ooK4ZopENj/VXMBNTU+9YxZT0FjAAWDHgh7oT/fNmcoDxmpgtMgFPZQm3OjFRk0WJUBPNB1e4JLE0OFbwmkmXSXKu4rjaUrgmeFALjN8KawhxJ8TMYK303VBt2YcTsW3c5HE1GGVMv3Rn9W2LfnI9wGgOqIZXCotiU8Rni8dFT0JFP4FirJ31CdtOHZrlSE6PNXt6ff2J5GcsSCqKxC+2/wMrObhNyX1lAkKVDjz4cUgAomMnngWH48XHRem3SVQWtWKOdF/50sDP5H/d4DNZmEVFAOso8WPxW9cEieuQvNt9sMSFccgBXW8bHFfUWrXCIkppCS6er/ZDvWAxuO+Qyo0Jv7HIiLLU0K9b/Vo/mUibo+2yq64LwFWrtfnhaeCEs2ARy0P8BQSEDREcRvrnIfD7komd6wVWocdiVf3QnF3HrF+hx27Ja4LzQ92pLWnD34eJkHpcA7sppVmvF4vjiN9J45rjQ2Ky5LdbLo4wBs1IHdc/fn3PDNDEi5GpCNgD+E4WrUZHkac2heOovjZPlc/Qx//e3evY/Cm+THwRXGvNipsKUwYglokmVGj7xundQj+K2GuACGVgCA8AxJ/M4kBVsZJdspdadfFeS4stVqZctXO7De4YOZdey1yE0TaxR7GtP5Aol160feR0T9OhLjO4qFLjPAqHlrsc5cZLrLaJvSvttXXxlhpfYRPk3txxKMlW7Umo36W30Cz7kBku0Y0HZR0vpq91XaLnK2PxycXR1j61ysZ1LbQd+Qm2dGd8/e2967kFm+sinL8pyqZOm2ZTps44mS/DoO/HWAMnFMDadaDEXlKQaVu5NurTLebpC8d3bJJrCTchAAIeq5NFWAEyJ4ZPjE3tPxXuKWdCsD+/C64dtypVILsvWIxwGzUUz+Zv11bPZGviJuS3ZCULGIQs88PsLmRCD8+65DOskyQi4M4l1qk5wm9MwWGC6f1gd/b/5Pk9jzhWc9ptaFsHsBRoTpIEC66TWfLXPGvtog5YkXxe+WWe4yAzUckb4pzC6uJzS1VUsWyo68YLde/FRis2qYZzCnchMVQHSyLTnqJWbbEyBbMPqUOSHpnVdtNELEIVtmhTiVyTqVpctrx/ndpV2tVjquR+jLVtOVX20MJoq6j22hvRpcwuH6eSXTqu746jD1hkp/UV03+Mrrl6zvcqxWZ1z4qv5dLSGs9JqFswtD2F6tZSReAuJMZrx0GvD5wvVBF+ED4A02uv2oYM6GPX3vjRNrnOvR4Hf09FDXh30nE+Mwb697RKhc35WIIrThu3X1MmYugLXlVhUVyXJ5NgYWouuMqUGR5XWw/FXV2iMjq4TreKu4gAfyZmsgQRgp0Rfr/jBa44PnQb22W92qAEBj8gf+3OQrkOPcoMMj4/bBIOrjh/PsO9CxXB1VO6uPptZNp6v+LRNURNQugVSC7wZaiSDuo7lv99a55pl9I6gwTwibsj/u9klcTuk6yoQkWbFVjuC8HogCuELD4IPX0J3S70NduwLcK+tOFLa9tLjBOQ6Hi4f9MVaK4CNe7+7pqhuKxW9u+MftXWUeCKUyYGq0O7w+c7XlYtADUysONh12T7pHIHrvi8vvMVT6gTSEkhMPWFAHlfQl+zDdsiACkC2n3hte+iDW0vIzXJLr/6hja7zv3jB8+nngaOqwXLzxYi+wyBX+rwLXJslH2T3Bt+TFFjR3xyfrajMAjfBozBJHCgDVPkw4/ZVu/JnGTCxBIEfQLxVOtksSoRoDpW7trWnBvB+QBD3JUEUBMIj3UN1xZZph/W2Kyj6ZSYqBWi2NgllnZADPGGJJXAqN4QOE9VmagJCnQn47StAFZ4v8kq3KjEBsB8c61v4W0dj/eVZUWGJSumskBWVgK4j2RAh5cK6oT6GMtbwqjelPaGdS61YZ3L7ICC5OdsSBIpsGhvZK08JHecz6g+d725oPGmtOcH0ftWuVrG97Jou1kZe1nJlTZvQ5Qt3BprfdtX2s5cEaEKcJEByHj6v5WiZilpGoP8eQpsH9/3cJB8S4lGuR7qY5DvmBZrF191s/Xq1ft4XDLBMU9yDRw3gMWg/oqIEYvksiCmB74qLCPEiRxLueL0znWoGMKPzUCO24mCr++uy7OzCr9umZVr62xGcDHb+AIf18kixCoxWTJJEmOGtScUTLnJU+dzspwRVjVAAj8HvwnACuqO+JPY+nEsriV+X81tdaRI/pHQsjV8n6x4twRNvlh9w7evs3N9bzKGm036e33fHPUz37rB/cjthZseOhbcnaHX61EbOs4bVFdWWOHGl61v4nYHLFpaiqZVQKcG2GWlVNn+khR7Z3OsDeqkRJacKMtMrrLTxY6OJfilD+LtoEBW3w6idlBpm6n9K62jMhz3yIUIRUItcGoiUISzi/Pt016hBnu1mBP9w7ielbZPBZ1nr0u0ZJXeqZbLsLgi2utDQkVt6Z1emRVyXXpAbHz3AseJN3ejSiuJsaFve69Woe8WbErpnaYAsZHdzdJ6jrWZ511ynK+a4PAnqwaOG8AKVRjM38TNwITej0w+WVDgmgrlwaGwcidl+G1U9lgkZVwjpJpYQd5TplQoeLr80OXWpXJJJLsQtBVo4MOhgfaTzc57p9XnCg0IjP8E8i8W6/s+leA5mYTyNkWb37BuURvNJ8EEMDWVUb21DO3ENI3qFecWU5liW398UVRtMeWbxxeLjkW8gkr8yRcDul9MGUBCcWaAOLGyK7aLm1CACWms2HNDjO8DBeguGlbuCGdZ4OE+feR9BUhJpvQptD5Z1eItjNXiT4XAV8bU9u//zSIjscotnMrkYWxt8eiGGOQHdNRCMy7Lbrr1M0ExaPerBH9aooGaCICW7Bq5fc5UOvYAlW+ZIfLCicoCG9VXTOKKE7lwfCdZl+J1M0U7K1NvcR5FWhqjXFinOJ5QcBXpYwftBRoINNB0DUAo/N76XGexgk6lb+dkxZOl22WTOrkkjKa3dHy3jIoS51ffs22XDdLCEshizi2ISw0hmDucUZ3PELYJZ2j3vvHY1f3XPkM778PbW7UnUVbdWEeBAXUCbOm+vLvFe6W49loeLj7xGNW979JTEmyDMg59oa8N9W9XQZKsTXGuPBfWMl+2ylqWXxZnp8mN3yk9yd7eeHgq2qxswZ4dU1yoAq7C0P4t3hYlugRZ3NXQkYzvXusEr0Mi6guv+QzxGOQPn29oG6GvsZZNP+eSAFx5agv+tlADNSGCLdw7QrsRG1Mflw6fFZW2c+zrs0Z3cEGQBDRHMv4iR6ViAFE+H49XRifXKLcDM3wggQYCDZwYGgBU8QiVnjWLLsIMNmWfPFQOuN6T+5xF5oF1rlqvGM5qZxEKZWiHVBPBUkS2YEMM7b4+whna2a+h9v69oMpmDam2J5fIM5DmZc8t2EyclbeIJexhrZjYCXSf3NfLtiOrzqM3EDgqjbHLRpS6WD3itkL7R4Hpq5QtuH5/nNpLUDC7svwOmS3aHuWoE3yG9sPtedQJkH4iDyyIVnZftQtAr49R3bOjHWZXP3p7Uc1qr7dcou/s7WG9++jEAwk00AoNnBAuwsb6D7Fnth5j+qWp7l+FPTR3V4OBt42109h3ZyrNn2xChFXyf9/Z0+DmgYuwQdUEXwQaaFwDEXIR1ncQamiSiHKyCbFlJdvesi7Va0TEKbecgAvSEGO5z4DuZx+GUjj4weXsj0WpIcb30up4xTwls5nBWP7R0xVjKTbP3CIVUlYwO0ANmdKv0mad5lmWGmJAz9OY/N6GkjoM8jdNEJu6ii8joRQJfowUnzfUHt81hVGd7dqivakDzf6zJM0uvf4Oa9fOmxM4ViCBBlqigRPCgtVYx7erEDHAioGILLcEjSzEX0RS9tfEcOToec7ynBY1nR0zpkX7NbZT/sE9lpSaYbFxdVftje3T3O+KDh2w2Hi5DBK9Abe5+ze2fXFBrkXHKCg6KdW2b1ih6vYqVNv3NItPOOxeYP/qqioVUy2xijIeKneh99HR0TrveHfuMTr/mFhvwGb7Qzm7LC2rq1v98745kp+73/Znbz9il5SUZBs06DRLTPCOw1r6sCPh8OZ8vnPnLktO7qYHma9miTodGSLs4EHV4tWlGacmihQqWFi4xVJS+rj3eXk7bN++HdYuo7116NLrcINhr9DFlnXLrHfv3mo/yUpKSqy0FJ3Iyqpit8XKoMvMbGcd2mc6HRWXeH1IlfdFm9jevarP2flwo9laK3TWewri7t69x7p37+b6VixjD31N0KWVnqaFxd4SKys7aD17SK81wrkiOrwVFIgPqcw714wMTeByuXC+6CApyW2m/lEU1zv/qJwF3odt+JcxAVqX7fuLXWxmfUXX2/DwEWkaS1Zir6m2a3OZfo+tEWnzaI3AZ+YLFvtVWwp0/epicKILokZIJiBhx1HnyK0ZKlwbe/JKa5KSPFDI9/BWkVV9ssqaPTHWc8CIAFydrD/gCdbvE9qCheXqadX/Q66YrGw/Bb9TPofg90gJrkECOqmr5jOTN9Z2fRYswNXTaU83tluzv8vVZLx07pM2/eovNHvfpu7ApPvS/T+yCz76PYsSoIm0vPbIL23q5Z914O2rN4yxgrwD9qf/bXbA4GjHKisttty92+xA9lY7oOeC3H0OiAE29+/eZKOnXWXtsjpbWmZnS07LUpuHB/n62s47sNd+/83rbff2jbVfT58+3V555RVbvny5PfTQQ/bLX/7SDin2IjOzdpMjXhw4YPbnP/9ZAOhsfTdYoMxs9myzL37RAxuAkJ07ldnU1+yrX/2q/exnP3NxHMuW7bPRozvZrMs+Zld98v+sskKFsHVOgOj8g3vt0IHdAo7Z7vPVi+eqD5n2ve99zwYMGGB9+vSx7dsTrEcPs1/9aoHeb7Cbb77Z9W2Pbo9ly8zOPdcDPX/8o9cXAB+yYYPZq68CfP5pPXv200Jlhtv+u98Vr1DI8urBB6tt/vzP2t133+1+H6nE3nnHA2EAsSlTvOMI99n06a7pRv+UPHu6JRaEgawIWbDIbHxr1QFHLgvwhKsNhnp49ACZJ6MQ+H7og2esT9Ju25Mf57Lt2rKI89EY32N0AX2wL9Em9amwaQOj7OH3o8U8H2XXjq+W289z6V06osxVCHh7c7KRkXj2kCgxqlMk2RxhZ2iRZH4Tv2Cy79KjveYyqvtttFV7Xdqn2G2f/IIWRScvSDwZr/9Ttc8hQ+yJd4pbZb3yhUwThJqBkQJYlMghuJ66douUjXQiyeLXH7Xx59zUpl3auWGZde8/sk3AFQCiQg/fMvZ/f59je3c2DVxx0vEJSdap52D3CFVCaUmhvfrgz9Ruiu3fucE2r5xnhXk5tTQScbLGpQhwYflLTEnXsx56fuJv/2d7d22xb3zjG/aFL3xBVqdEy8AUIxk3bpw9+OCDzkKUkuI+OuLPvfeaXXKJ4kgWmfXvL1CXvMMuvXSws+oAsu65RwzRt1TaihUFAjD5ds45uZafX2KPPPKIwE25bdu2zfr162dVpXn28oM/dYCwXYaKZgskthNI7Np3mHvGUtep3xj7+88+K0tTnA0ePNhZhbSre05LG2ZLljxrN+nSAPhwCus04Y0dKyLI9ro/BIC2bjWBMO8UhM/U11328MO5AkYzbNUqsxtvNFu8WCWOxnjWJrYkhikzc6T98Y8r7M47R9nIkeYefPejH3kWuo98xANZ6AKLFhgvK4stjhQsY6ZtmiJYScgIrJA1ypkN9QQNBMWrExWfSUFpOPJ4z73KIssv+QO4ItPMX4g15Xgn4jYEvqcNvti2r3vWxnTeodIxybVut1DGd0AXsVV+dl+oW5Dzwr3HI5TxPUPUCsRI+YWgj9bemO5y8Wkx2357lYLPY23hFv0eCsY/s1+h5R2qsGEi6ywsTrUnlsbriPGO8f3miXgXYEknhipK2X30pq4bj9gpABJB5/pJazm2umcQ41VdW2g5lFEdHq5j1d6egijrftqEAFy5Xy74EwkN6JY4ccVnCqeHBLanJMrdoazCrmKT3n2gtFUdZ4GPCRyCRZ5PJNm7fa0lChikZXVp026tW/yanXHxHW1yjL071lnnnkIeNZKs8+kzeLT/tsXPpUX5ltW1j/UdppG8HsHyhduzuDDXigvyLP/AHtv6wXt2QFavnj172uOPP25z5swVoIiVRaibdenSVa4z1TvLXiUr1Jc0uMY6ixMuSgQXDrJpk0rMfFBhO3ZUCFTtELBJUzvPO9c11w+Wqy98QdmunVOdC++eezKcNaywUAVIosfY8OEZtnnzZlkLv2vDJ5zt2mzoz5gzL9JXn7WHfvN9u+aac52Lbt8+s5c1aW3b1s7y8grsvvs8sHfppWaTpYoFC0wuSA+EhV/PnPPQoUPV52obNgwgdeSRAUof+9g5spr9V66/UYaFC5cf0rWrB7ZQxahRJkucyeKnjLbcBgDW6tUWhQ+yCbJ6W76Y+HNrs3Vhie8rolgEOoACuURJgqkvsWVIjxTrrmoDq9TGCMVQvqtqEFUCYg1t34TuHNdNomLiLKn/+bZs/bM2KGu/LdqV6vpTH0P7ngLPwhLK8s5rP36qPsZ3n1ahsfb6q43KqmhH6JriboEM14csGORV2odCysR/jehWZm9u8qaP+hjQ14o3CwllUee1n91XH6P6AwvdLi64PZxRva3bq9RNU1SdZpNOP9PrRPA30EAENHBCAyw/NopbFU4UaqBBndBeab+tBVhYxI5neZeGfjviSpbMecKmXfHZhjaJyOcFefsVH6UBXZaetpAd65da36H1g6DWHC9v/07L6NC9wSawfMV37G4Zeviy8PWn5GLb7r+1jRs3utfTp0+XZecRASCzT3/6SzZx4m8EZijZUS7m5mo7XcG/CL/Ja6/FCsiIlyc1RuDmHrvyyiusW7du7vuG/vz610/IutRFbsLR9qUv/cO1k7117VEBFqAuNS3dDoKYJACb//7X1AZADyCXZXv25MiC1N5ZrbKzzS6+WAHFb3pAi2dclMgG+Qgfe+wxuf/ma/8v2W9+8xvvi7C/55/PB/1lkdosS12l/eQnMfbtb5t0RSyZ1we2wP355JOe9QxQ98Ybprgus6lTdY+msIUkVcCAwKwi7234X/RJli4JLNzP3dsn1FZTICyAz6gocMaQTBV7LrdFKioeLlifSXxBhvVqJ9LRSld5QIY4AcMox+S/q5WLsPBjHov3MfEpFttzuq3Y8LIrhsxvv2hXsp3ZY59lJpbY+oOptqcg1nyiUSxT1DNEeI3lymd8JwB+YPtSR+2waFeKY0tnO1779QzZBrDmt7egvvZUrmZPQbztKUy1sb0qbVeu3M4bZGltR2tmZPr5jO8EtQOGfCJPav1R3w/hNZYrwBXbvLm+Wu5HL6jdZQsex/ZWZqsk07Cxzort9Tb4G2ig9Ro4YQEWwZc+RxWswgRmzlmRq0LD3sq4NatUylSciOCKn3P7ukXWsfuANgM+/iWzdtFsGzx+lv824s85shiNn3lDxNvN3b/Lsjr3ala7fQaNdttfeeWV9ve//93ee+89gZY0mzlzogNXfEmg+o03ajYzbolYBZd7n/EdMnOm2UsvmV19tVnHjh0EWv5nn/rUR5yr0dviyL9jxmQpiPyAsy4VFxfJOhZvM6/61JEb1vNJnwHDrCrFMyERK/Xxj3sgp39/LE3DFYS70t599ywHsAg0R6ZNA1htt9tu+5nA3HR7+un/2Btz5tihvDz3/W9/+1u78MIL5W6rtPfff98+8YlP6Fw6uu/8P6NlnoqKWiYQN9a5Bgla/8EP/G9VALiHaT8P8OFqRP70JxMANbvjDs81Gd9Lv88H3nehf4GrpQJCr6qCQ6oWTAO6icdqYIYDRP52AKUH3tjpmNobKqqeopJI04ZlucLT/n64ESnwjWDtwsUIOfGJep/7/a7vOT6tq1V0HmY9yhfYxPT3LKN8uWXEHcTDZiMzFG/XLsMOxo6yTSXDbd6ODi5bkHbqK72TVxJbb+kdrFk+EPPdjH5pG7IPhVGtSAztV42usJS4Clu6U1mJm+PVVrTjpfKoHfhFD1M4+MDJz+7bkeu59+6d7zYLK0XjuQt35VWHtOdtBxDDLXis2vvnPCWKRMfZpy8+w+tA8DfQQIQ0IKhx4gmr1mcW7qmNs8hTUOtO1UnzwRU9rs9l0NQzUSjHCSlkkK185382fMqlbdq/Kk2we7ausa59hrXJcUoKD7nMwbYInMeCld6IBau+E9qfvc19vEiBRwSPT5t2nmKbejuL0gUXXGBf+9rXjtgNwBUqWGd27fI+ue666xSD1EPB7n8P3eSI11nyu6WmHpD1iFip4YqhKrOS4oIjtqvvg4P7s5UN2Nl9RTxTWpperl/v3vftO1yWpVX2uc+ZYXkSbnTyjqLSewnczJ79Z7v11uvsuf/9zzI7dLPv//U1u/NH91vXHn0UG3aO9jnffvid79g1nTrZ9hkzvDRErwn3/auKik9PN/vWt0wxa4fjtGo28YxTRV7cGVa14cPNZs3yguv/8Aezt97yt6z7DN/cAsVPzRjR3maMbG89OyQ5cFVQUmEr5apftvmQPTV/j1xUdfcLfwelSk9x5IVKKCEwViys3CzCTlYZ1LHQLk/7g/WunmvpgKsQSY3JtZ76fGrC3+y8HisdtQP0DnBe+YWgsVxhlcI6VVEV5axcuPZ4YPHiM99yxbYI+9IGbeWK4PNKcVkN7qqsOv1Ol4xSPKDY3LE8CQM7qxRuPB5YqPjMt1xhlUJ6ZJgLYt+br6B4PQho5zOEbU6U9ii3M2TosIBU1Ptpgr8R1MAJNwJRD+/59/fZfhGA+sJA2UVBlxQhPpVlkwK2ew0a5wK82/I8t69fbD0GjZGlQjNRG8jOTctd8Hykmn79v3+3e+/6jANEhYqvSmmX1aym337+Prf9CCEBAs2HDeunIPDuLpj1JZmlyB6U10oxVko93+NRLIQfAFV16SJ3xg4vdu+b37zQBbHfd19Z+KYuAByahoqKDpaTk+MsPn37jnfbHdi764jt6/sgo30XuQM31f1qoDdzjRo1QFhrvcCJWYcO3iYE0Z9xxuEV+NUf/5b94el19vU/vGhdeg6woeOm23f+8oYNGe1tQ6/f1yNl3jyxS87xGtHfPoqOpy2sXPHxJktZ7Vd1Xtx6qxd3Bggbr1NT2JX9+99mX/mK5x3ct7/O5u4N5a+myvJEUHqoYM0inooi3SXlmqlDBMs1ge6hsmVPkT329m579M1d9oyyjFmMPa73sLwv33LIXtD4MaJPOxvbXyjxJJQe5XPtwsJbLTaqXPeoLJdh58B7HkoDsLHxT1n/5A1ui8YY1TcfPDx2hr5ujPH95ZXV4rgqUGJBoW3aX1WHUT2U9Tz0dSjjeyQY1Y9Fe1x/U6aeHabl+t8C5KENCgX09W8ZfBpowPOHnDB6IDbj2XeVsi6LVaikJMSIi6VKA2aazV+T62KxQr8/2mtWtPFaukWaP+tox23O91UqAovb7tybv92c3Vq07folb9iZl36qRfs2ZSeyE8edfV1TNm10m+ztG+wfP/2U7dy63topJglaCZBQcy1jW9avcsf5nyw69QkZhVVa0b/+uhdHNGGC4nqGHbmlEvpc1l5RUZWsUq/JPagVeY94Z9nyw7EUx+7inwgA79s3y556Ksdl2t1003D7/OeV4bduiXXvo4aOItAPLF62WICwv/3jH3+3GbI0+YA4Vj5DuMIOHqxSXE6prfjJT2zsz3/uWhw16Wz7xHf+ofg6oa8QKRfH2CN//IZtW7/cTjvtNOcqLZUftBz/IggpRMYqJXGxrH0TUESIvPCCx7NFQPzKlZ5LEA8jAe+f/vRhl6prLkc78giRJN3HUdyM9Uis/PZxMSrOrW26ZcXZFsVoIY6DSb6xPqpRSibh9v0lIgMGHtZIYYVq0wkICrQRowmbO9ar5Vvy5Y48iinMb+MEeo6vyrPzCrx7MxqfYCOCJinDfn23R+3tsk84d2EoozpUDFirAFR+8DvN8Rq3IEHxbN8Y4/uCreKH61Bii3cpgSPdY3z36Recz1Lt+dQJPv1CwwztzWNUPxbtZeeZDRzQ2wrKYyxRY0t02KIzX2AKfsQ9IrIlbjBd4SpknpPN3hphrsMzg+UWz0xWapyLISQ2eILc5oGcGhqou5Q8zuf07rq8esFTrAIC5q0+aBuzi1xdq6Z0k0E3UxdtTn6548Y5kcEV57NWGX39R05z5JpNOb+WblOo4PaY2HhRGKS1tIlG92PgKDqUYynpHRrdrilf/uuXdzpwxbZf/NmjViXaB2gYmitTzr/env/PHxWT9LQDF1iVEuR3mzRpkugObrJ//etfLgD8s5/1WlbSnSxPXkxT6LHIoEN27twtuoZFdu211zt32cKFZmed5YEzP7gcl150dLKIQT2gkJSUZb3EofDiw3+wxOR0GzB8gqVlNKyjPTs2umNt3rxJ8V8z3euPfexjooO4R8dMcq7A/fs32S13fs7GKL2we/8hdtEtX1cA/WEg5nbSH/jH4CFDCMyHOmL48JEK/FdWbm9ZsmTKCsVYuBGhrQgHWHBhcV7wY2G58gV3IqSjZBs2JgCCxoQ4KqoqbNGEM6pvOzfpLN2crzJWZhMGpLuKDiS+FIcBJ2FRN1kxYSHc8zxORhlc9qQiAItlodJJNUEY56JkyeqXuNIqeox3VAwAJhjfAVe4BH0XoA+y/JgrmmcbYq78DMNQBnkC4aF28Nub0K1Ix0qWe0+Nqn8AK8SPueI17kJirh5Y6H1H+RvfLUgg/D/nRek7j0GebXExei7F49Nel/QoO5g03AHz/KJKd631UY1LyqTNWXHAzTka0pwwD43XdYiltTXCQmDuygPuevbbKSypdC/rKxnnbxM8n3wa4E457sJqnRqD9fFbMbgCjjbLLYAcaGTgZPFBQDyDDgVGuZBPBqkoV3zZynds4Ojpbd7dtYtft8HjvAm7LQ6Wu09Zfh17tLrpnZvX2NYNq2vb6SYG+DwxuKcrpqi5kpTsgcnLL79cVAcvKzvwdPFGjZUrD7qD+xwNAkHtCC5C4QtRLHj8UjXx4d6XNX+7CklA49CnTy8HKvLzzfbvl5U0/vBmZCbKy1YrBKrffttttn/PTvu7rHJ3f/sGKxKNhC/zXn7YPn1hb3tSfF1Yp77y22ft5s//XCAsy9/EAUEY3omR+kD+zOnTz7LndT6rbvuGfeU3z9mIiWfXWrlqd9ILGPF9WSfSrJEiuSJ4XXjTBagTI0ZGoC/Ece1SwBnM+6ECkOIeC/FEyk1qdt55Zvff73FjhW7f1NeAclwu3OPFpVWubBWTGFatM07LsNHKFoROZUdOyRHgqqnHOCm2kx6Gl/6rRV3tVL1U+zUNlLXoANqpSIFWPCIt9Lo4pN22PYu6vc+vSLHqhCyXdYortJ3mDwQCauYRCktjtcJV7bux67bQ9Hckbb2yeJ899tbuOuCKFlKVuJGZEmv9ZKkN5NTRgHc1HcfzIVj9xUX7jrjg/C7hFhmleIoMWaPYrkJugvoEt0C6LtDt+0qcxSo0hqu+7U+kz1YvfNFOm3DuEW6dSPcRF1v2ltU2Zvo1kW66tr2dG5da9wGja9+39EVW5+61u55/zSfd67z9uy2tffMB1tZ1S2vbmj59ulxu/1DG2x0CR13tgQfeEzFnd1c+RgTtcsl5cVbCQvb733uWKSXWOWDhNwK4Sk/vomDyd8SgPkUEo2ZK0HPWHTAJ8Vdk/cGv5QvE0DCz33DDDfbrX//B7r33b/btj06yz//kYevae5A9+PtvuE1nP32v9VCpjnFTL7ataxdZft5B69X/NNu28QP3/T5RN5wr2nbcmiPHTLJrP/8bGzzydPfd3Of+ZSsXviJgVGaVQlBpmR0tRuBq97Z17vuzzz7P/vrXFNFRmJ15JnQP7mNHw/Doox6flveJR76Km3AiGzciMDIAuuDigvAUji3chvr4qAKwWrer0NEysHAapGoKVFRgcuuUHi/rRoVBNoxFixqhWKpOVUmoyrUeFQpob0G5HKnfEi3Plu/SJC2uKr8otE/h4LsIsVwhviXLdxH62YfEcGGtCmWQD29veO8om7ueotBRznJFe54lq9pxXpEBmKvr/5ZJWKS8bEAsVwiuQ0hE4c2CloFtsWJRZHrBlljntiQeas46BebLgnTmAG+b5rbnuzCxrCHh/TtYVG0zB5bqmHEW016dqRFcdejy3LEdDYtSdyVSxAjk52qh3rNjop0u2pCWCu3NXZlTJ6uV6xyS3eGiGZkiy20gp54GjivAItbqZSH6xsz5ACriryAUvOqMLs5VCAGhrktXmxBLFTEZuA1y8r0B5GT6mcrETL5z43I7/yPfbfNu79wA+BlVr5UjUgffvXmVLGSzWt1cUnI769arv+3attFOP+9G1x4WrB4DxzS77ffefN7t85bS2775zW/a889773cLAU2Y0E6uwgqVzIl1PE6UiJkxw+xvfzORfJrjliKQHOBAJiG1/kju69y5p+KQdrkSNTSOe3HuXNX1S/e+JzicB/FSWIJ4Rjp0GCh33B+Vnff/nCXpnh981D7z/fvdbwLgSExKsTce/71LdLjgpi9bDzHtTz7nGtsl/qwdm1bbQ3/4htv2J/9+19586o8OXK1dOs/efuF+e//tl90xZpHSJ9m0aaO2jbbJ48fYpHGjdNxL7ctfNjHBmyMqpUv0cfp0zyWKxc0P3aKNBx544KgAC3CFcD9izcJdivXvS8Nk0fO+OuLvmh0F4reqcHFWucoYpizLlWd0ltU53vFeva56oIdUeLhI1qxTUqoVO1e1wbpULLLO7qHs1qqNrT7VzIRiO61buXMLtg3je4r9ena062eoW9B3FwKoZPCp5cQKZ2jvnlFtZw8otY7ikrtlcmwdhvahnUpcTJjywwW0EsQgn6RH4+21jPFdQFCuz8ToSotLSLO4DqfV0Xu25pK3Vx+w1dsK6gB6ONv4jAxWFgHt0xq6uus0V/tmZz3WV6y24wakWS9laeLFoZpCIKeWBrxR/zicE9mCL8kideAobjwG8P4KKkSIqbpYpTGwevkrgr26IbguKbVxMsryt5+xEWdc4ibNtu7/uiVv2BkXfbzNDkN5HKxkLYmTqq9Ts664ww7m7LZO3fq4r6FoGDb5ovo2bfSz3opP2rpxjcgwp9bZLicnT+62NMUPFQs8xRulYMgSXLvWC2YHMBCsTmxR1dr1VtW7h6wzSQ5MVFTkCEx1EKeW4oMmeO5BSDjBNoAzwAqB7xmqZXNQAUo+3xQxTNV5h1y2HkH31157nT359+/ZH55Zb7u2rJF7tZttXbPUhow9U1mOCTbt4ltcn/sMGmW9B450j669Bjq3H7r+6WfPsUmb19klWe1t1O23i7vqR84yV+dE9Qb+r6qq8e5jzocyOciWLWbPPGPu3H1wBXtoT6FMAGgoOHQ76A/xVuFs8IBSLICAUDhGa/Ckv4t7xr300vxsV0Mw9IsqubYYB7A6z1eoQGPxktzrmotOKomvPmSdKpYKTC12oKpT5VJL0GeRll6yDhFzhUC54PNc8b4hxvcOKRU2sHOMFZSyVV2Gdsf4LsCE55H2uqRW2o5D3gEaYmjv3b7aAFYI8VVYq3yG9t5phQoYJ2hcCxG53fp2SHHUDmx74ah4O5hf7a6NUEb6Xu21uM7Qjy4Jb68lDPKAvPTESl1jUVYZl6k26wIl5pGVWwvc8cL/cN2RPIG7esLAdEd06yeehG8b/h7rLAaF9zfk1fmKEm1JQqWUJgrk1NNAze3YdicGkGLQJBsDwRq1eGOePSI/9NHAFYGuU07LdHFVoT2EjJC6ZNA3VOiq9zKNQrc4OV4XF+RaTvaWiLjUjnbG0BtER8W0KYHpHpX46az6gS2Rt57/t6w06wReDs+ep593g11445drmysrKRK/lge2az9swoupF99aZ6vbBUSeEarYuzfNWV3KFQOXmhpvFHLGOrVihdlFwnEKb3IZgICFeBGcRu/a4TieZs+ukltxq2K1+juLjd+4YuadxQveqs98xisrs2FDe7nOcvxNnIWo3+LH3fspU6YpnmmqbV630gHsXnINpqW3txGTZjpwVbtTzQsG8579xdcjt9+eHZvs/bdetJw9O+zcv/zFvp2927k+cXtStkfGp1ohpuuATq59+/6u+DN0E75Qs/CjH/XO2/9sX58JLi5tjFDYEsxdkjVrvDgzahACrohNC62GQ/YkZKMkB+AyrW8xzgSzV9lY4cLENXtpjmG5agxcsd8JD650/aZXbrTBpY/ZtMJv2DV559qtuSPt4oJbbELJb61nxZsRB1foJLc80xbsau9Y29FTKEM77O64CzX0ugev+ayfwEu2CktvzUuyYWLOT2+XamQNwtDeqZ0qSuxOtU5ZaS7hILe8ncCVx4WFlQr3HjQMPHjNZz0yKmz93ih77F1Ze7YX2PLtZfbIe7KSJlS4oPt3d6S4/hGf+P72mFreLPZ9RC7DjumJsgwl1DLSw+O1YW+0PbtUhdE1j+zI9VyLXv+813yGhDLIN9S/fu0rbXNOtNPN9vwUi24/zNu5mX8ZokjIelKLBaoOYH1qikCQW58wH26TKzx07Ktvu+Czk08DmjraRrhYiJ1YqPpguXIHgPwzFCPFINuU65HaYhkpcY4DhxpjA8TSjAsBrpsTrTCzM2m0QI3L3nzKRk+78thYrxTcPmjc2S3oZdN3gZ6hz1ChjGYI18mcZ/9pj/31R26vrt1723f/NvcInbRm8Fn85jN1egSTO3FYiMoTykpVZi++GG+wOJBZpxAnIyYJ6+kVV1Tr9WN22bRpitfoYstfrpAF51c2UNYkgsEptkzcFSBsyBBzVA+KoXcuOLiizj8/U1ayAzYlabFHpCX0tXTs7XbG0y/bY3nZKoHzuE274EYBr6bfilgKf/nlyywpMV5g5ha745OfdOfi/wFchVqQCOaPUxDY1VfH2z//qTInr3pgiXPnUZOk6HbHRfree6ligyf+bJYY6x+SHia4eDL2g9wUwRVaKqsHwf24UCkiTVwXn7/xhopPHxQ49TY9pf/GVhc661QXWaecu69yidL9c1t0zhWWYIXRnS2tapvp0muycJ3mxo20dvFVLobKt1z52YKhDO006sdcDekWa70VekGMUv2M6tX20MLoJjOqH8grtGRZhNbsS7KDxTH1Msi/tzPVurSrsm25MTa4Y7Gdd1qsFZZ77kKP8T1BRKeqYajsRqxmAMWlO5Nsd265HShWfJ+A30cU74cA7JrD+F5QWCxusRgXg5aYEGdpvXXxt0KwuLIo+EBg8rLJnY/aElYsABnuxlDBFQ53GxQNN0/vHvpV8Pok10DTR/VmnCiIfvay/S71NXQ3gFZThOC/g4rNgPvmrVUHHEBbrHpkEI0S7HqiSa5cV9v3LLaeg8Y2uWvQJVAPsHMvzcptLDDE79680oG5tjwU5XHGzby+WYdYs/TtWnCVmJhkfU8bfwS4okGsfS2tm7hn55Y6fSpXAPj27fsELjrWxFWVKUjbcxGSXSeDkHMLAj7uFz3El39wgxXK9XbL178jLP2Wgtm7KcvuQoMXSgl5DrT4GAeOKNyKBH/jbmwvf1lVzkZb/kYXWyY2d1FQqSSP2eNX3G13LPyf69eQsdPq9K+hN/Ne+o+98vg9dt51n5P1qNCuv+4akZ92qbM5IAgrXE0ZQ/ddmvySxcXVAkP77fbbhYZChHP1AZZKFrrzloHPydy5vWS52ilXZ6WsXDGibvBi0AhixwqBS9FPNCSTEAse2ZgE+SfrYQUhB9LLOFKCT2bRYgDwA5DqUkn81GLLqlwjwk+Zhlog+dHdbU/MWMuOHWd7YsdaTsxpFltdbLfkTbYYK2lSu9U6rgoD2cGo0xzlwsvrMxpkaPepGIhBArxUVavk0EBVKFC5GljYEZ86wX9918sNM7T7VAwEtHcW8DmYF+UoISjP4xej9qkiaI/X9A9whXVqQFapikqXWlZanF07LkmAiesjym5We2lKySUUJCGu3ELbG9EpV67kBOuelej62tT+QRVxUC73gbpvDhTFWlFshzp8emQJ9pL7nzmG2CiMADn5HvfV0TwkACYMB2SwNybMa+eP6ygwtbcul1vNTunJcY4Xa61A2PkKtG/I4tXYMYLvTiwNtMmIVyhzLoR/LRUu8AO6uBfJX81F7wsXMhf+iSZQB2RvXW2zH/6FoxJoSv+WvvmkAM9VTdm01dvsErjq2ndYnQGl1Y2GNVBSlK/A7GRNvJp1Jfl5OfbaU3+13371Sjuo7D8Ed9b8lx+xYm3ryzt678uIiTPsli//xn9b57mlFA00MmDoOBdk/pWvfMe1CcXBli1bZdr3YqWKi8uci5AvyfajlB7hWqK6sg3vP+xqFq8TauK7goI1dsEFk1zdPYoqAzQoq0O8FpaEceM8d9oVl1MgWkHfy7pZ3qGDtnbBQbv5tnhLyYx3Fp4HVQxb+M1Jx5oYs5q39T7dL06wB//wTdu7e7s98Luv65hJAnb/dHFS/g6AKmgmVG7QPQN+cHeq3rMsbaN13Df8Td2zKLV0LpqgpQfA09Ch3nn7G2HFyswco2D5Je4jJUA6KgrOGcFK5uM7dAPwApQOTs+2xARvm9C/uPNPJgHsdC1faKNL/izyzzvsI3nj7cZD02xm0ZdsWOmD1qFydZNAEOcsXnzLFphalvBxeyXlHnsgfaE9lD7fZqfebSsTb7V9saOsKireyqLT7eVUoV5JlVpvTFBndXWUbYy62CqjEh2hqL99YwztPuM71Ai42GBL9yWUlT30dWOM6i+vqnIFuQFEWMs4ti+hrPGbD+pGqZHQ/u2VderFlboIa2TOOuh24l1iU3V0guUU1m0vt0AXtqSp/SP4HlcmWeZJScmWVxpr3QaMt65ZFBmPsTEisL7xrG42a3QHGybPyci+aY4aZOaoDnbrrB4u3goPCgXGEdzffhkm4oKnD886KrhyO+oP+xFHDCVDuOxW8hbxXfvkRp+zIuekjSsOP68P8/sjf+UQbcBLRVkKqtVj3myKEGP1/vq8pmza6DYwM09XzTKEVO6SMHLBRnc+xl+SqTXhnJvt0IFse+/VBy01o5ONOetqi09Mrrcn+Qf3WGlRgXXo3r/e7yP94Tq5Byeee3Okm63THhaybv1GuDiCh377ZZs3+6na7w/u26WaeF3t7z++3QWbP/D7r1tySjvr3K2nwBamDsBJlM26+rO1+4S/yFMMVHr7ruEfN+n9nh0bXLD2r371Y7c9JJrjxo13GYFwV736aplcXPGOkVxUWS6Im24RpK56t04WLlomIFKlOCaRhb64TvX/Btsll0A6ata9u5eNx4ZQFcAT9daP5ljayGkajTtYsUgfx33/WgfAsGDxKC7+gagcPu6AUseuvd0xGvvTXTxg9saztZv4HFW4TgsLCzVxpDiQ9MUvekAPmghK1wCAAD+XXjpY7r5H3TlAM4EAoACHuEZhYxg0yH1c58+XvjTLHn74YX023lmsagPh62wV9gYgp4DrcGmNmze8rYi/lx5Tq3Za50ovEB3rVHsBqBjzJvPmHq8wqrMsU2OdZWqPLFT7YoYLQNWDOutpeEfcWfZC6r8co3uUSEfRZCire5WsPFH6sLI61h7ZfZ3FJusClDSHoZ04rFHdlVSwXJQYaS1jaJ81EN6ySueWpD2fHqJhBvlEWcxUkaNntd0/v9rtR+1DAF9+WYxBcgrT/8JtKS4w/uzBZs+vSrAu6dV26chye3OdarVmJylspNRUmta5NslmPMz4rsxfLXBeWS2gp6LUMwcUygoUay9+EC/y0yobkFli7+5Idq71y2eNsZQk3fxHEcalcSIXRbh+C0S3QFC642fUnJQYH12vxb2xZrHknjOmg72jqiRwY/l3CoCZWDiyCcs1j0LhEMjJrYEGAdZrcvGt31Wkiym6Fp3j+iMIFVOnj+D90yfwHCC0RK68cKZlf5vmPHcUD45vcj1bhWHxUZ/okpbVxWZe9xXRLiyz2Y/8wvqcNsmGjD9H/FZ11bxkzhNtykUVqicsS5XiRYoEs3pou+GvOedRU6+QlWp7HXDVZ8Aw6zN4jD34my85cAUreZmisHvK1AHLObxO2XLhnX/Np6zXgOHhzda+z1M2YUsD6E8be5Zt2fBBbVsAEqwvBIMDQGbM0Au5WaBgSEkho67aRo2aJQqDVFv/znPOATRnzmwBjBgVUb5VYOQaR3WAW+yJJ7AOeU0Tj6Smbc4ckYqOrrB9o2Nsxqz2KiatBANhGopFx8RU2de/fpuIOe+3vgOH2+BRZ1hCA0Dca9X722vw2NC3VlZa4vqzQAyhM5W6uHrVWgXlv6PBXrOShLgoANRh6aHPOhi1Fy+kQrQCqBJJ95OQ2Ug2JBxgobFbfAex6Q75OqlNWK5yImwbSufANkeITF0FT/6hSVxYR+x7jD6IqS6RBWqlc/P52X0p1boAWiCV4l7PiRkqMDXOA1WyVBXI/ecQdQvaYxdA1gPpC2xQ2VM2ovS+OvxY+dG9bEXcR2zp1hjLSiqu5bXyY67YvykM7XM2xrqAdt8t2BxG9XMGFVl8VJmSTuQaDmF8J0PPdwuGM8gP61yqrMJ4KxQwaax/E2va8xnfJ/QotF37KwXOEsWPVWLLd2tVsFv3rcCV12ezG1RI+q9vKmbs3RidvQfW0hKqFMxfZTdNjLN/vROjgtMp1iFF7szu3ZoErtBjqAC2WPj7QlmnlgogioxFnvHY+BIjtvi+nbGWtbxtv63g+dhogLClzhkJ9R7s8NUS9jXgCqFgKiyzmCypD4YlCdA1pIcI6QZnuG348/Li/UcE79V+2YIX+LR9wQx7Mkn3/qPkkhtuG5bOsZf+/SMbOukC6y2wxQ2au2+HVSu9PrNzr2NyShuWzbUBo85q82PlH9zrLHe7Vyyoc6zbvvln27l5tQNdPXr0sP/7v5/blCnj3DaAg9uEAgjAPuvSOmigThu8yZd1sJ0AbEvk0o9909Yue9s2rV3pdv+izDwQjXbv7rlGCgvLBBzia5nXZ8+eL46r12sP9bXfPG2zn/qbLX77BbkWt6igcW/HfI71h0UmbkFi5rHuQH9Adl27K8+xVVLFY4+lWnZ2gQDMPrnoDtiatd+xN15/wi668fN24Q1fbBK5LCvnv/7w9tq+Q++wQX6/86/7rC189RG34MnPP6gizUtVAqhQQKjclbnxLVX+iYwWYyr7XohfEDSIP09CcDoZlIDF66/3tz78zH5Lly6VC3Gco3Ugg5DYM13ORwj6IMj+4qMbB47Yty0/SKnK9oLQFT8FoOpYuUrTMMC6+VIU1aHGMqX4qZhxtj92hFVEeWC1odbQFeoKmUsb2rT2c9yFuA9XJnxMmYe5Fl9dYGVRqVYaleGUX5H2rhXmL6nd/li+KJIlJ94/5ZDroLHzQwdV6iTWmaZKtTjD4DrMPiDSWc0/VdWHJzIPmHgHZ9Efx2xWerhlYqdSEqNdcWY5t90XFXKpDho66vBGx+kVhNj18T++p+xEyFZbW+vwOJ3Wh+awXHtcc/CbPaf6yZ+6oFe9594gwGLrOKHpnfILk0YaapXiNf52Bn5AAzJDViYyKrLDMiTcly34g1vSl/ci4HL02zpWz8QiDRo70/oNP9NWzH/O1rw/20ZNu8LWvPeqjT372mPSDX6f7WIDP++Wb7fp8XCNpqZ3tO/derod2L/HHQurzK1f/Z0rB3PXF+RLk3xaFYEnTpS7ZF+hrDqfc1ac7iIT/fxPH7b0rE5um4b+kDkXWvKloe0a+jxX/briiivcNfvrX//aXbcAIoQswtRUxXrkAI6U2XSeEIdkxqUfs9PPudZRI5xx7nUOYFEPcIjSBbnsVcLQuQexYBEYzmerV3sUD+wPu/nkyVF21aUb7fvXdrIP+FBy050/sTMvuNl704S/3GNZHbtaUeF6+93vfuf2+NR3/2ajTj/PZl35CXv14V/aC0/e72KsoI+A1JR4q0zxKWBxi5cfFKsh9RMvAFzR0RpwRWMEplN/kXqKoSJMZcJWNmDATBGxPiEgOc4BSwhYaaI+gWQUnqysIfpW+jweEl1d5uKjAFLeY5G1q97Voq4QB3UgZogXiC7LFFaqQ7IgNaiABo4C8NT/OoKbSc4+S9CC1a9FV2cD/42UXRqVKeyQ6X/inuM7j7J9ez6Qa05mU0lzGNo7pFTaucOi7IlF0S4bDyvW0RjQfUb119dqW1EuTJJlKV59X7g9uUkM8rj3ohaXWrfUYkfF4GczNsYgv3h3ij23MtbGdFGsWE3Rap+R/s0NSiARAPMZ3w+VKMxgsOarbbG1/SsQhp6/Na6WQf6Z5XE2YOBgp6/j9QfjAdnw9Qn0Q8yjH5vZXZdYAzdZfTsGnx1TDTzx9m6HiY5GK9MowCqv9KgWwnsO8IKjKlRw550/toM98ubuo3LZhO4X+pp24xUESGVxH8ET6L5xtzeAhG57sryOjU+QO/BqKyk8ZAte+pft2fqBwed0LGTfzg3WvmvfI1yUkT72LjHRwxCPH4w4pZ79h9r2javtLz/6hPWRG4zA0lmzZopJfLyLB/rNb37s6uqde9UddunHviHLT6OXodqsbPVgg/vxTUWlAzz6yReGlanGQyZAUuZASN++pXb6GTPcse745j025swLa1WVIYoGpH///jrNaBdHBUkndQtDhUBxAsu3bZNla1SFbX9tnbVX9HfPESPsA76QNAdc+W1f+6kf22++cZ17+4O/vWGde/RzrxPFeE8RbARL06c+9Sn3Oje3Sla11+2uu36vWLIsgdq9zs2HSxauLB6+JCcDfv13h5/pLgBrwoS+Ku2zxf22iVgECjw6hsNbHn6Vne0FyztTxeGP2/RVUtU+B6QcM7piqDpWLJfTrrRFxyyRdYiMPj+7b6+CzyuiUlrU1tF2wg1UUFzZOLhqpJHo2ARLSO9unVJWO/JMNgVk8YDnys8WzEgqcICGws0I5W/GdSuwJAWQ3zI5sQ6jeqjbDUgIhUMoQ3vX9Gqb2L3Q5pQkuULQfnu+W5Bjkq1ItiAS6rbk/YrdSbZCdBTh/XtP+/j9y0qusFmDSlUHMNp6d6ywp5bF1ttevFhV394I6zvGgGq7anSlaCfiRANRZs+vjKttr5MIUq8fR+WPKGsvXq9kLvjjKMRWNZSZKHwly8hhw8Vx7GZw6EY0MESxcnCXkZDQ0G/J7lpD1S8jVf9v1uj21kM8KbjoQjOsAV64BB+au8tVBcdSgiQq+O88gSwfeMuC1iQhRZYHZreeqv90gVJZfcG/yUV3sktiSprqw5XZjOu+bOsWv2avP/prRzLalue1dtHsiJStOVofd23STBwTb/uzdwpQDXPgyt9ny/qV1qNHdxUWftbV0CM4+6677nJfQ9HwzH0/tZXvvWGHDu7zdzniuVAZiakZh6+JIzZowgdXfepHFpeYalPkD7v77vuU9Xegdq9qWTxwU/70pzfbqpWL7Qs/+U8dcMWGaVne8e++++7a/TAGhQsZee++a+LJ0jdy1W157F3jt//H8wvcphOmXRS+S+377RtXOQtb7QchLzp27+veDR19hhWINNa/5/gwNaODkgZSnduQ94DHf/87WtQKs2SNu1EWqiGK+/q6fec73xEgPMeBWz9Inu0bEixRxJQRl3bGGSPkNl3pAuHffltEluvr7kXG4rPPeoHyM2bU/S6S76KqK6x9xUobVnK/nV34Bbsx70z7qLL7zi/8hI0u/at1rXivyeBK05jlRA+21fE32hvJv7KH0163f6UvtRdT77PFSXfarrgz2gxcoZN8gatQqxYuBzLdmiMJ3Sfa+txMt0soWztcWFAxILC7E4Dui2No12eUIYO+oG+Hw70IZ2j392GbrORK23WgVBNKZb3tsS3H5Ni+hPYp9HV4/8b2PLzPRSNiVD4mwU1ehUWFDbbXM/0wiO7XQfGUaVW2XovxYqUMDlW8ly8DsooFYitER6EM4T4D/I+P2zMs9pTbqS+TkE4xhoTe38eto8GBG9TAKGWaXjKxs6ikGgfrDQKsM8SgPkAlamaMzLJJg9IFgOpuCgs7q6/Scq3AFKznS1fxk/Tv4h1UeKlJMlTuwPYiESVrcNqwLBf4x44ArpO1BE74ie/bsV48TukuUHvKJZ+0Ccrqo8jza4/+yvbv2hS+eavfl5cWW5EmYigk2lLg2CorLbJNqxe5wwwccbqdd/Un6hzy6quvxrjl5JB8SP4KMlXWkDeff8j+9P2P2ddvGm9fvnqoPXf/z+vsyxsoGlpS5Dm0oQ6qHfilXzxp3XsPtjvvvE1cUe0dGzvbrJZf77vf/a4sXE/YTZ//mQ0WiAmXlNQMuem6OCtY+Heh72E8x+pDMDgmsq0zPiZXXYYC5susU6fOlpScGrq5e73pg8Xu3H9654W2ZslbR3zPB7hQb/niLy17x0b71Veushcf/l3tIAyX2tBRk0Ra+l+3L2SpUE1Am1BZ2V0u0Cla9Hg/wNixY50LMTw+C9BEbFWoXHWV2Zw53idnn322aCdec1QOm3S5wvMVKgTHU2KIdgB49UkHxT2NKLnX4qvCDlTfxjWfJVYdsF5lr9nE4l/YJfnX2W25I+ya/ItsavH3FAD+tHipdLJNlNKoNNsWe5a9l/gl+1/qg3ZfxnJ7PP0VezPlZ7Y24RrLi+nfbNdfEw/dpM0Y73AfRTVpa2+j2MQ0K7Q0K1LpF5+hHY4peKgg6USgTli0K8WxqbdTRiuv+Yx4WljS4cDqnlbhrEAPvutRGoQytA/s5PFkPbtE7SoEpN72SmIsVqvwbXnJ7tidUqiJqKodu9tZmspQtRPH0/u7Ui1O1pmBnarcNtsOJbvFOO3N2SDKBPUtQ0HysLrvzvO00BgjPazzWMJ6Z1a6c3hrg1ypOqdsXV4LtydZmtqDRR4G+fV7VAJnd4L16Heapzj9BcTsP1RWb0xYWU0IDBVI+F0iKbj+CKm5blo3RwGB58aXRHlwOijBKzQG2f8ueD7xNDBKhqhLRLvRkGhYrF+gW3hz5QHbsLtxd1ZCXIwLygttJTbkggn9nAsJ61eowEUyTjwkcWEAjm0wwcGWeyrIUrG2n3Hxx2tPpV1mZ5t62actP3evLXvzv3Ih5rksvI49MH20XjatnK/4ryOBQutbrttCTvZmy+rcW2Vbnre+g4bbrKs+ZVXlxfbyE3+r3TCH4KYayRITJyALVyJWoyLxIewRedNCVQm+7777tN9f7bzrvyBOrUR/F3MUDaJ5aK2kZXa0z9/1uH324r5ucO2jOjHt23sW1+iYOPvc//3Lhk2YUe9hohWwdfZlt9lT997lQNa0adMc9xXFkkNl8WKVGdH9pprSNnx4Ddlo+yxlEO5SluIeG1h5eKXOfu++/pTd96svuSYAX4NGnh7aXO3rlwSonn3wd3KzTrCxo0fYc3q9ceVCu+O7/7SO3QdYhy497P35r4kY9KBoJzIFIj3CVFyWMly5VTEcWWRNliqDkGD3Sy+9tLZ9hWfZsGG1b90LJRyaQs5c8P9AmeTWy2zFpHTuuVHOghXiZXTbQxHx4ote0euL49xHdf4QVH5G8Q8Fln7puJ7IlAuVqGolf1Std8HoHjP6YsuoEpproRyM7u/cfR6R5zg7GD1AAKruQrGFTbfZbjXOgGa1H9txpErc7NfYGlXrFgSY4CqEpBPOKZ86gYYBYrjxNihwHCDmu/GKKuRW25Ji/3i7yo3ThWXRak8VOGSViqpKsLVqL7emPcDLRcPLle0Wa8+uiDJcfH07eKSkuBnP6B9j2Yei5H6MttfWJ7vzyS9Rhu7pWM2iVNoG92O8MvtkRaynf48qNqx9ckqd/gHE6Pf8GlenH8NF/5LkLl0kUNU5NaXe9uaoeDTcbNvXRtnW/P02cZBcwfKOUKIJ78kYJXONVtgL3pJN2UX2pgiuSe7C2nSuSD/bSqCAGN0vzRU/Z96ElyuIvWorbUe+3aMV/W4QYFFniYr3RxPI0Rh0Qy+KhhhofV4PLqJ0lcHZLXPzWbJY1QeuWDmA5k8F2asafakqDJyS1v6I02knzqwzL/2kY3VfocLPS+Y8bkMnX2hkIobq9Igdj/LBltXviDLiq0fZqvVf4x7sPmC0DZl0oTiVUsT9lWRznvmHCj7HW4VcZFwbX/va1+ocCLoDHgjWrL59+2ri7yIr0vcsJTWtzra8OSSKhuaw5B/RQMgH6PTXj6+wle++Zvt2bXYM8SnygQ2bMKvBY5SVFLvzmjTrWnvm37+yr371mwIS85zFxwdYs2d7hJ4+5cFnP6vabD28Az/4YKYDkbzrGMJ9VqpYvP/+88dOF9AgfPaH91tM7JHIBDA69/kHRSB6qYDR0+66eO6551T65hp75t4f2xW3f9eyt6ySlSxLtRJTauOpAEdkOiIPPeSRoVIjEYvi888/b4uFBrFoIdA6hBdwxgpGoDskqtOnR9ngwafZsmUfyBU51GUeuh1D/ggvC7R5pKXVHQngrivee2XfiKX8woKP2avJf7KK6OTa+CkKIseH07/XbaLBdyIisb2xo2uz+4ihKo3OaHD7U+mL+MzeVrQ13sZ2za11C0KREMqA7sdIcd68ro/xPTm23GYMLLWX13iWLz+Gi33C27vtzGhLifcuro9ONrvr5ShZkUQy29mnTohy7sfrRJ8QyviOSxKBXmHjvkrbdlAXjSS0f5N7F9mLa9MErqId47tP9wCQgjcrnJGe/fuLFf5gceMM8pUicoVDjAx5P0uefYmhWbg2VxRDee411yn0CVQe6Smia1y3bSm0T6ZkICenBsAqofQdoWfRIMBqCriioeFivmXSwqRaKqsXQV9Q/YcK1+eZQ7NscI8UN+hy8SI+MINDi/gtBJMtKaxseDIHt7uTqfmDhWrKpZ8I/eiI1wCw0y+63QXD4zoEbJGF2HfY6U1K5Q9tEIsPYI4A+7aWPVvXOBqKWJWhQP779x/Y4nkvWTkkU5LJk6fYk08+KVDyVXedsELX5XKE/FuZfZUb1tvn7n6xjvWKDbHykaUYKUlSYPiE6ZfXNrf87acFCGuQSO2noi4QQer/HviVvTP7SbvjW/fY2DMvsjNmXWXnv/CwHVi0wAaco5lFIiOco2qgNA5FouHlVDKfLHVewHf79u0ddQJZfbn7dtYeYdeWtZZ7MMd+85vf2Je//GXbsWGF9R86vvZ7/8WhA3st7+B+BdjfJmJTTVwCbpeI5fRb3/qm/eAHP7B35zxrp3ftYnd/55s25Y54fzcHrmSscrQJ4CiFULnSNmRBdpT/8O9//7syBAfInZlm113n7Ub5H7IJcfmJXsv++MfDfFplZTPtnnteF7XGUGcJ8w+EaxGgOXeuxwSPJaxak209P7PbhdIy2LHPK/q030Szn/Oi+9QQearMjMDUgZjBVq06cx9Gwf0bn9HTVmvcnJJc4GKusPaEM6r7QCWUXd1nVAe8EJO2Kvvw9bNZRaCHdpfLMqrKduUqO1QAxpdFW6NqOaiOZFT3YrtwMxIg7wuvu2eIzVzNwCCffejw70Wf/P5tzDkMNkL7B7sDGYe+8JoAfpwf4edLceox6nteUbksW95xYtJqVjx+AyHPeFdG9kmzzqq0QA3dVdsK3LcQqQYSaKAhDRDC9N93su0jZ9d/bR2+Y8JaqM+dF7aJKxmAK3HFlnytCAqF+MvdJr5FChzVTUHyk8WXReFmfP5780rd6oEAv1EyjWKenffBQbUV5QZdLGJsF+5KDD/2yfI+W1mD7bI6W7KsC00RAqLHnn2dAEqJC4Z/6d8/tB4Dx7hg9YSk1KY0of1U2FngrK0F6gR4anxwxfFyc2T5zD1Qe+gFC+YptX+estu+JLZ0pUvrOsS1xATuywGRMH3tV7+yQVPOs579hvof1z4T54WLrq2E5INwy9GenZvtrs9fYCU1AUV9hwihSGZe9Rn7pQDWoj//2u6f8rgscFjhoHrwKBsodowVZ/NmccO97FuAMlUEeYssRFm2fuW79v3bpthXf/uc4bJEfvvb37rnXoNHu+fwP5U1bsURI8RK/aK5Mj1s873vfc9RJ/zsZ8+J20eBzDfUoCR9R9A5AeqAHmof0kesVL/8pdmXvqQaiQJ9WK9eVievEe9CtOJlKnQv79kT67YlCB5C0c9/3vuh4Mnq1u00ndfdqjkIPDoMnzh3Su3ABE89Q+gpqrO1SSNyeO9GNqr5qtwSVUpmdC2JJ1l+JdHtj77jh2iLhK7jLP/gFuf+OzqjepJzCxJ07rsLsQxtUfzUwaIou30Kvy+FlGPs1XXRIvRUEfP1PuO7rD26tsku1K/stuN1XUb1KMNyBaDaeyi0vShRQlS79h59X3GKNdmMPv2Ca0x/cG3itgzvXyjjO9tiyWqIQX7hFhWchqNB9lLaay+C0arM/uxWrxBnVShE+N66Ys1R7OdJW1uv/OMEzyenBrgL+tXEnNd3BiHTXN2vzxyWaW8sPzxR1v3We0fs37siRguXaAUeIpCRwvgOQdwb2TmuI9R0Imh+zooDNm6gAjPX5dYx14a3dbK/xzpypmKtmitYVIZNvshOm3i+47KaAzO2rFx8ltGxe4PNVWlW3Ldrg40/56YGt4nUF3vk+uzUc3Cd5i76yDfs3TeFAkKEUivbt8c5iwqp/3Au3XyzF6sEKebMmbPkTqwwMv3CBRDXluCK4wFgokNcc1hWH73765aelm4PijUTl9pj93zHsrevt6/9/nkrS8uwJ/77hD0cLxSjnDUEIKPNnOCWmzLFewgbKmuvvVxrC1TTb6O3gf5WVpa78kF8sF1R6WddeKP1FeN9fTL32X+6wPRLLx3vABZtkjSA5fjiiy8W2/rFolF4wpau2WzniN+qWCbrWC3r09OjHdjz28TlB18XiZD/7//h0tzgCkD/5Cc/cW5KuNsqKzvZU0+l2saNG52FubMqR09SFefTVN/nppuiFEc20O1HTJYvInt35w53KVYvGcbsUumgi6caf7MmPx+K7lFLkwDvFDxUVVGHrRpNbuhDtGFsYjuL0wLsoPy5AA8Cxn23m28ZAmggfswVr9lm/jYvJov3gCvfjXfL5Gr75zzFUS3UvSoLZUsY3xtqr31ylU3uVSTSZc/9yLEb7l+7Wrcg5XSwtiGhDPJHO9+9pRkWn9LB7VffH+ayD7ZrRRIiGAgmaK4KJNBAQxqAzR/vXEPS4BDYv0uK0Hyeq73U0M58PrBbsthMS+tk+8Urm2Tm+PbOf41/8sVF+2y8gvngfVkoQEX2IauEpxTn1VAQu67tmvVRY0c/sb/brbiY9PbdLFkZaC0VJr3ep010j5zdm235vKedG3Hg6BnWe8iEI8DHjg1LnMWLybetBf4r+hAqSaoxOGj4BNu7a4sVFuQpsyhGVpEDzgWFRYQ6fGfPqLbvfma2bd7wQ7kKcm356g/sSz9/1DLadw5tyr2GIZ6EgLYUSglB+Pjcv39uKxbOdnQTxcWFAoKPC1DsdYdeumC2e4bs9HM/fMDu+uIl9swzz9hVSrXDugNv55IlSnnv62UQ4gp1hJu69y69NFPWJuV6pWXKbXjQtZMuqybSqWsPFXDeYecrsL8hWSs6i4vkewTsEKQO1xR1En0RxZYoGYaKZuJNBbn3UX8eEGDqIkvSR+W+jNa+0XrvbY2F7StfIeNvrcBUpX3uc192ha5feOEDlcQZoX1/ooD8DOeyJNNwrpAj5zlkyGnOFTpjxgy5HF9XvNxAx2nm90FdU/880lJ4srr01jc5/reNP2dHyzoVN7E2fqooum1/78Z7c/J+G5s1WP7093QCTbz3tVmXzARLzI6x/NJje94xmiMGd0+1vbnFRkZ6Wwr3IsWwozSWNkfgOoJVPZBAAy3VQINXDxkNp+kCOxqLemiwIJ1IU62mElE3UFaHopiknLZXAN9SFY6GrTiU0qEhcEU7uidOelmuOKppV3w2YucBaei0yz9rpcUFtn4pZXh+qIlsqA0eP6s2gH7D0rk2WbFcx0Kgl8Cd6QvWpjf/d7/t2rZBXE0H3ccMnV/84mfFxUQNvs95rkHx6Dz2r3MdFWSevr/pC3fZgGF1gZrf5qEDu0XR0NV/2ybP9PuVx/9kc198tLZ9YqKulpts0t1/soFDx9jnfvKIix2LU6xZ70EjbcBpo+0b3/imi4XKyop3Qd+4yQAZ0CNAWTBY8x2SIar3xMQcBYvnuvedusqUVCMf/cofrFyBUhkdhJwaEEBrAahFMmxYrixiLwtoySUvcApDO8ztuPRKSt4RQCpWuZvr7f33F4i5/feyQlWovE1nZQNe6WKtiotz7bnnZjsL1bhxp4ufLFXb4N4cJbAFQPqqI131aRymT5+hwPl37U9/KtAxUwXURiqW6x/OYoe1KlSIQXvqqRpL3geh3zT++rXUuy0/Rgg1kBZpAEsLRM8HsgZa0u7FNrLTIUfFgPsMC5XvgsNyhThLkUrGzBwaLZb0OMUpRdktcvvi0ntggV7LcoXwuoeKduMifFTUCVA4NIfx/WjtPbooSu0l29bcavUp2ib3rXTcXO9vS3LH912EfrbgkYzvKbKsVdrU/tX23IpYnXOqI1Ct73zbdcx0bTbnD1yQgQQaaI0GYhvauUCWp0EiQ+PmXViPG7Ch/Q5pP4RnSPOIywoHYQ3teyp9TnZdZqeelpSSHvHTIhZr+OkXO3fh7s0r7d2XH5CLrdR6DR5vuAhbYzFramfLSgpdYDgWNl/mClz976Hf+2/rPP/sZ99zAOv/RBL162XL7FoFY23QjDxXW/UeNKbOtqFvKPKc1cZ1G0sEWOe9+mToYe3aa6+VD2KSbfjs52zCjCuPCLy/XJl7vxWz+qeVqvfP//zH7Qv/FJYsgt4BV7t3+/Fmsc4ShusROUdUFr70O22c/7LB5w5de9tmFdOeN2+eeKbelhVwnKxMw0QH0d2mTy9RXJsHQL/whS+I4PSL6kOUXIj95SI0ZR5Wib9qrv35z39WmaKJclUuUyxWb5XMuVI0Ev1tnSZViETpN5Lopx3yRi7EKJnkzj9/hr3zzj/lBvyCgFW0rHTddX46WavZydtUx/BchLR18B1lJdJGE4T6er5geK1Rk/9R8HwUDeDeIuMtOi7RYpIyxOp+wLnPcBU2xKgOyFr3lir0xZgDVLgFCUAnRgq3IAK48t2CgC4A110vu69czJVfaJnlcDjje/Pa82K4pg2U31vSLpH2js5I3yND/ZukUkOaxTIUY0XMmH++w7uUWu8aItLckjgrTevtdbyJfzukxbm44SZuHmwWaKBeDXhXdD1fpcoSxUDnZ/zVs0mDH3F7Vij1dZ8yAtfuqOvXbnCnU+gLJtIV8561kVMua9Ozwg3Yrd8Im3HNF23q5Z+xbWvfFyN6ti148T7DndiWsnvzKusg/qUt65bZuhWaTSVYdxqSn44ZZfbxjwtN9bZLtVGuwNXbNRtvWbdE15outnrkkCMZ9QBEPV9H5KM8BeaHH5/sOoQJH3LPTWsW19mGbL9Lbv6iZSq+7Jc//bm7V3DfwT/1hz943QrliaJItC89+g/zXzbpuWvvISq9s9WBqzt1gCuumGWf/exwsbRnyrp0WDdQXeTk7BEPlseqft55JstXtFjdZ+g+vk0lfFarn9Ha7wq5/AaKzyva1U70wRWdEaZytAyuYwRtybc4VGRauBMRMgyvuWaGvUFlaAnuUU4NtyW0EKqG5HSWksy3jQsp83nRvb3ixTWbNnAZNN5Q8G2tBmKyBll2YYKLU2oKozoM7X7MFUAFa5UvvOYzhG2ayvgeyfbCGd9DGelnDA7vn+uq+3PRqHjrrqogvUSzAA1Ll249Dn9Z86qTvCuUfBuhTHhihX0hwWuKiLYDCTTQWg3U3D71NwNfVYripporTJW7xfhL0Uqqrn/YBKsS5JtkBB4rwapVoczDyz75Czu4d6utX/KGLFv/tm795c4aOdVSFCAfCSlWTcW7v32DlRXlqr7dPkdaSbuf+PafbczUiy0uIck2rlpob7/8mDtcvKgiAC83YuV56y37vmbonL/+1V78/vdtuOgBVird7sHff8PFlc288pNHdLGAMjlpken7EY3XfHBIoASuKYSC1GT1JSR4YJEA97+qv8sWvm63fuW3NvHsK2v2kuUnNdN+rXdnvbLKuvX2MvUwfImDlCo5LpOPeoclqqZ8kICsGunSc4D/sknPg0ZNcS5Aii37LPjsSFA5NAy+EIj+3nurFeTexRQqZT/7GbUTzf75T6xCHVXCZ6LchvNltdovYNXBUUtMn+5lOwLGEFja4fJy/F7iMkNwF3IOxKQRc0ZNyf/o97xJt/af/uSBSkhJa8ogun0KCkssy71q+I+wq61IuNVDZA1vFnzTDA3EZ/aznRsWK0wjz5F0wuoO1YHvLqQpSEGxXAGYYHGH9BNrFNQJuAIJaEd4jeUKwPTmeo9EFJ6rzfsPuwvZDtdh27UXZwVVaTa6R4Wt3Q0LfaIL4Mez8uj7MQ327yH16eaJ3j1cUBptn57R38UT50ADtL/E+ivZqpuqjvgybkCaK10Uo4aZ9/xMeP/74DnQQEs00CDAKlDtpg0iZIPVNklFN4tFndBcidXFivn6wyYr5j9nZ13xuWN62vt3bbSsLn1ENxBrHbr1dw/chbs2Lbf3Z/9HdAMF1mvQOOszdJJK9mS0qG8Qbt7788/Z5vWrjNIpOwi6qZG//eTT7lXv/kMUeB/nXlPEOS2jve3fu8tyiTMCfUgWviByv0l/tXOHiDJAxpzdu2+0Fx7+g00+53pLaZfutqn9I3AWRcpcG0p5eYkNHjLCXnzhGQWPd3MxSO5wOvaZYp5/JD1DpKK5upYP3wOl0sVDd3/bxmvDT33ifLv+Ro/xHOvVyJFQKNxp/xOZZ3FRsYL8sx2Z6uSZl6ttBRXXUy6nsdPrpvI+/K7z589Xlt6s2k3BPx/5SO1bZ2l65ZVX7Uc/OtteecVzT9500+HvBw3qZa+//qLoMt4V1cOFjqcLigUlDDpASNzYBx94dBOw0fsCqPuiaNr/KFKsRaJ8nzBhgignMu0vf9lrp5/eyVmvICP9yU92CpzNVqD9u/btCQc06/otHPks4g0T+52tiz8MWI/cKvikuRqgAHSBGNlzDnlUB2QQ1seAft24ChvQKaaGUT1Kdfo84NQpzXMLclyAE25BH4j5haB3KGaKz++d7/Uut+iwm9FjaI90e9G2MzfOth6ItwxlH07qXWGpSXH22ppq+9c7HiDcX1Btg5S22jE9TqTA4qHbV2p/nY9xIMo6dGwvqyrASYz2etRXPw4eRp+L0TurtvkLHQTcWoC89nJDdkr3QGDbHC1o9XhroEGARfYEFP6Qgz63cG+LABZxAR82IXMws2OPY2q9QsdYrE6bUGOGqFE69AZwaPGAV2vHusX2zgv3OksX8Vq9AVtNjBEDrP3wk9MtZ1+2MgKvk6evtybr1511qpNm43PO+Yx4lbor/f8Om3XF7XbO1Z8RkGhnf/zuLfaJT3zCKEuDYNnBlXbhhV7W3RtvmCxEv1K40zP27H0/sRs+/wu3HX8IPg/np6r9MoIv4NlKTIiu7aPfdLV8X4N+/nPL0/fjp15g46ZdYljwtsoteu/PP+s266q/59VQtpOpd2bZa3brZffYM2895cDi+KkX2plKTti/fZVd+NFvifuqs998k5/RQaWC2L8vq983VYOHEkMI1qlQ6devn1yEG2Vx8r4LDadiOyxQUVFYt6Y7Nx5ePgpWA9IITqeiEfUHfdcm5XNgY8CiVV6eLOB4i37zBxwAPUuWyP/+d66C/E+3H/5wtqgmFqkgdBfFn820G264yboVLlaD2zjsEQK4Ql5O/auVRYcB6iO2Dj5orgZiM/qqxNDSWuLOcAb06QOKrF8nz3qD5QpwhSUL8WOu/NfEXPHdYYZ2z11YH0N7pRYkE/uqFM2BKu3j/ca0v+2AFlSVWnj0iLZXV1fblpwo65oZY4XVCfbsB9H6Tu87VIpiQpQsWpR365Rkb26PtaidMRpfoqxX90qrVKxnv74JlqWEkQKV0SrTY+LUJF2LiZagC517Il4rjvAHCSCAq6NJuTjgtomoFcsWQtUR1lMxchdGSrDkk+y1aENereHh3DEdGuVRitSxg3aOjwYaBFh+dyjuiTUrkKZpAAZ24qGOpQBEKCeT2UgwOLxafVWbkAdga/vaRbbg+XtdoWbiuKCCSMsS8qmRF/7zW9suZvGuvQba2LMut+59hrjXAKxXZB4599xzRVr5S7F63+asGcuXe+Bp8OBf217xReFK++mdF9lQ0Xr/CT9SjYANaqqz2Jgx5h4iHXCWmZVrVvqbuedDB/a0OUUDB4pPTLa1q9fXOTZvvnXPPXZXjeswITHVDh3YZ9+7fZrciZotJNdoQN+uLL7fqcjyD6ZOcxahDT32OnA15dxr7JKPfFVFmj1AteSNx6xU4Ew/ktu3pX/eeGOOdH9OvbsXFnI7V8qiVC0C0SiXFehv+IIo2sk4vPPOzzh+LD7HAkZ5HNyYJCmefrop+9BjfBfxvnM/Ur8QgEXAfFZWN2UxflTlev4pK9hqWTB32y9+sU4B8jPtrrtuVvB8rNtH1GF2Zk//yIefq93LKGe5AlztiJt2+MvgVYs0gEsrvBhxfIchlr93pRVVxllyTLkJOyhLzwNUHGT9viQb09vzzG4/ILfw/sOHfk738YDOqsxRGatSNtWWFCc4LKy0Oz/a/rM0ybmLK6soI1Om8i5yH4tuYfamWEvNVkkZrTCiZbWOTa+2EZ1kqVXZrF26b5KVBRuv0IFUWW+vU2wUICgcEPG+KUDocE8j+wqX4O6DJda9vfotaxbVRHoohivSQranjFi18vbqgzqmQGJIDFjtl8GLk14DjQKsUpW/2al6gdRqao5kpsaJRVemig+ZwNqe3qFbi11wLVXXtjXvWa8wPqrG2gJs9RsxxT0AZ2Q8Ln/rv2KC3usC1+OS0l0xYdpYr4LCLz72F0tLF4dT3kHXLHxMvXuPECP4l9yAy4dk0MlzpCD7A7Z77RrrP3yy21ZLUFEBPO2sQ5CKPiaqb+J5vvvd7zp3nLeRWR8NzquKCv237tkLcD8M+up8GcE35WWl1qVz3eMcePddu0vs8r5skFvtO7dO8d/aN0Xw+XnRqg/VSrr/739vlfILpt96q+3YtcPp5IrbvyMLVkbt9omp6bJ+5dW+b84LALEvv//93eKtSnFxUBSQxn2HBRGRWq2rJrXC/RsVBD/A38U9r1692nFbVVVF85M4kffTgSveCCeL/sFMp2CXX84nnqsQt2GvXqWubuFbiqF7551tsoANkjvyDAXDvywKimoFwGeLXDRW5ZAUdJzg4uJtf46Y471mav9Wyme4IOlbti7hKiuLEmoLpNUaIHwD6pssjbkYaqC+gXQ0Oi7ZFsgKhAWnXBWM+c27dEy25ERV1BBj+TPrE6xdaqqz1IwZnayYu3RVZIiXNSjZ1d1MFQjqoodvEfIBEc8+hUerO3+CNTCsVzv7QElZY+S5QaeA10gKABKi7SUbD9Vyf1FqZYmsWlQ7CeTU00CDAAtz5hsKUofPqjkCf5ZfMqc5+50K27aUtb21575xxdstYovnuLifKKTMA1cZsVyP/PErrkYdmWO/+MUvlH7/DwW071YW2kH729/+5ogn+/S5Q4HbJZpYHxd4Ol/Wm8523qwKu1bEnL9XuxU15V2Y2CnFEi7wOj2AqaNGbl6zxhYfyvXfuudDB7IN7q+2lmpZpEp27bS35s61qXJ9ce1fqmrNjkFer1OkF79czc/lMlyqCsgjREl/t/TTW4+R6mCZIttfkZWIsj8EzK9e9KbqHV5a23VcscUiXm2J3PeLL9TulqTYE1jW589/R8HsyTpWnk2V+/Lss0cJaMn6EJdkP/nlJrv3/hqARbVm+f6YFNE5dQcRXLXEivnC5Czvi6ujeMUVpt97uyxV8xQY/7699FKVjRWovlau4S6K88OluHx5kSxiqXqfLj6u9QJqD2i7m8QsH+1A2v7/+C0fft4fM8xWJt56+IPgVas1QKkyYl0BBNSDhfgZWpzMkdc5S0nnjHibOChDsUkCSxTtC6RBDWAYyBOt0FurDrjqI5RtO3ukF7/V4E7N/AKQNVHs8C8tPmw2XKlSc2A5Sq50SJNZOZBTRgMNAiyC8JoLrtBKRWXN8viUUVHTTmTPtjXOxXYsOKhCe1SUf0CmeZWhUbxTa4Vg8o49BtpN/+8e+/bHznCr39mzZ8t1NFlB3jl22WVXy0LRycVfHThwn8qzMBiUaTKeLdfTTXoda8umTzebM0ehpSrH8ssnRICaaXnK0tspWoe3XvyP7d25xR555BGxmx8GHyyvOwuUpOcfcjxefmkcOLBwaba1QINQtne/XaXUu/kihuop3oJ5+MokXz7vPJsi7qmr9ux076nhRwbdner/3aqePO7MC+1Hb79g31QhPj8TMTOrowBHsv3nt1+0KRfd5ohJEwWwKMLdHNm6brk98Zdv24Y1y2t3w2J1yy231L7HVffss2+JF2uUo0iYeucN9uK3XtH357ptNqeOsIWKcykoWKx09dTa/XDV+vQMCqUT2NqvPr+vIPZ3BbL2yRrZw6ZPP0NWsctkqZRrSMz2EGYRM0ch6zfeSNbnV8o1+GNRN3xXrsXf6jooUvupjrqBeDT5AgNpYw343gW/dqvPOei7oSjjAbgKpGka6ClaB8i1C5T9ji67K9MQRvdICkH2M0e1dwYMfqcK/VksqxbxWVOHZdmgbim1sV/Egu1T1RMsXX0Um3Y83aiR1MGHpa0GARbWq+YIpmpWSHlFFc3ZrcnbMmGfyNAN69WUSz7Z5POJ1IYblr1pA0ZPi1RzsmyU2vfvOMu1Bzv4Jz/5JcVJDRbBZLXibrbKRXSvLCeFtn79Rm2bJj6lcxTz86Z95jOfsZ07dwpbzXH7nnP1p23f7q32u69dLQqDgfaFux63Oc/80wXIOxLP0B5rVVcgl1vJr39tHyx504aNn+G+LTyUIzeb/FhtLPFy813whV/ZL//fFcqi+0CxRB0UIxKv8yuzEhFtlspygw8tMTlFVF4ft6dVOmbR+4tcr2Zd9Qk7/bzrLXvrGhs06kzr1L2vsxbd/Z2bbN3K9+2tV/9rv3p0mUsmqM9FiLVsn8oK7dyyxsW5sb8vbzz9V9uyYbV97o5PWNcuPaxK99h1131Gv4XHP6UwOFmPDsqCmKbAchPgxb3XT4Hmm1wTcFq9/XaMLFuvCsMWydr4d1EpeNfoHgVXLVFtnxdfWGI5KxfZgNMH23gFYd155ycVO9NZwewmy5ijLXOgaubMFNcmhaMVZ294Tw8dqlQcVrmoHV4QOBuqWoXeRAR56ehEbS5MFsjx0QDurRFiIg/AVfP0j94GCuDkrM11O76lGKlOsgJmtYssSOUYibqfn39vX20HAVtzVx6wlVvzdcwEZRjG2+Y9RS7BDJB15emd3ee1OwQvTggNYOnsGkL5EdqpBgFWc2kZuDjaClzR4RMZXME/lZrR0ZLbZYbqts1fMznv2LBUrO6XROxYB0WpUIH/SPLnPz8uN+Bg9/qss6JkqeijTLYo+/znf+0C2zeJNGnx4iX20EMrxau02gVRj58y0867/kuy5lTYDz81y+3bHuuHpEuP/mISP2yNEX5zsVtYUgaq4PD3//4Pu+b7t1r27d80x4ml82trigb6heUJcOULrOeAK+Sev/zFPXgdFxtv3U4bbP977jneOnnv9Sftmk//2IaN80Cp//nUiz4i0LROMSwJjgU+Vq7YEoLca6SstMTefO4+m//KI7Z7xxb/Y+ey/f1/12gFG2sH9+92sVb/7xM/sRWrou1gVJYrpCzvpbL7ypQVmC0weFC8VuvsvvvuU3meiwS4OskNWCE3ZrXoElRhMep+lbbZ4xjaoYv43ve+p21yXdzWiBGj7fabr7XEn+fZprHfskFDU1ypHzqTl+d1Ca5RsU3IBekFRRNjNXy4qdzOM/rN18qimW+bN79n/fr9zAXNsxfAblJHvQgAlqfE4/B3liwkfeVyCqT5GhjeO9VWbct3vFgkEMxZccAuF7iJxo8eQclMiXOcW1i01u0sNGKekRxlU/L4YLt3sNN6pjg+yc0K18GF2BLyb6+l4G+kNcBvtmpbQfMBlt+RdGU9NAU4+ReHv9+H6blQbrqRZ15+zE+ZeKn2Xft5sUIROnrHbn2sZ/+htn3jagGsH6muXbxcRRc7qwyAjhgj3GQIbOc8yhQkjtvqzh/9S6uyeNFBvG9L5z7uvisuLraLb/qiAuj32JkXfdT+8qNPuDgg3IQXiqtBPKNiFIcaIMHOztlvl4jo895777KBsgYdC4oGziNXTO6+PCxm9pmqnpwqJFEQyuKpDfJVX5FHqCQkeZYd2N7JlMrq2M19Pf6sy2zsVAFf6QyXJ7qjvBBgbuV7r9uTf/uB5QjMTp9+jv3pD79xweq/Pf98e5mM0IP7bPmCl2UBW+QoLt5Y8ZysUkUCRuLOaV+tRAG1VRatjL1kcYhlyoI1XbUEy1WO518CN1MVS5Viv/71AwJLy51FbpDclzyqqs5QwPpwV3waIlEyBxWfb99+8i7bPVfp9Ns80tHJk03gzCtWTZbhzJkGR6wjUOXkmGd2qw5QVNQEJSt8zL72tXvs5z8/vFYj60ynaTGhigpeHzMNQJTZu3PSMTveqXagWGVGnjEk015est+d2n6Rk74vtyGxbJEUqqWQQThZ7e5USE59cyhg73T15V9KniE4fpWsW+kCZlgmE5V5iBWsi6xdZCcCBg8VU8+xSrFkFa7UT75K1uFe5IH7MZDIaoBrozF8dHhUrOe4ZwzJsOEqI/DPV3cckQqsa1Cf1bPTh/Cj6OjY2mLLx/L06+O+au3x8fF/8w8v2H/v/Ym9+uTfFcx8mQK8f2Tf+c53ZG3a7uKTwo9BMWOEWKbMDl1ddiLvz5WVJm//Dju4Z6srHUSW4qixEwQsdqucy6ua7HvZ5Mn9ZB1JdmzjZDxB6QClwH//+h2bFBIkTnttJX78WlRUtOLBD1hvFRL89te/bt+WVW3Q8IlWVCDW+t3bRBp62CTTs+9gu/MnD1s7Eanu2bHJ/u8TZ4vZvZ197kcPWp/Bo11XQ7Ot0CtW2Mfu+ZbNfeFh6y9g+oa4LShD48vjl19hlz/9X/vebVPF3F7uqCsArulwJFh76ayDffSjKp4ufCvGBRGY5goUKSnhkY0CVhv0fouA0Jv6vaBV2Cwr4whlBv5LxadhcVeEnO52eTxVOgfKBdVEPKeGsV2tK7bfCZ+Tjfjtb5s985uNNv2GrgJnyQJv3vf8hcesZ8/rlR16r9zGZKgd0PEr5B6OdWzus2ZV2Z4XCqxbZL0qhzsQvGpUA10yEyJubWn0gKfgl30EUHHR7ZVrDu/Mul2FNn5gesT1Om5AuukOUqb+kZPpBB1vbP80F3fVXparbFEmEXOHu5BHc4QgejJNh2k+D6T1GiAzl9/gVYHwkhrLY32tNgiwQNb48HeJpiGUZyVZpXNAwwG4OqzOlDTNSsdYmsJ91ZourXz3Nbc7hJKXXXaZe/2+Ar8pk8IELqNMrcTLvKE537m1aj/UC2KbOqpeIY9BY2e6r+659QyLj6q0czW7LxAz+UMPPaSYrmJZZ2Js0/sJNmbmWGcNI17ooHinjoXA0/P13z1nD9/9TXF8vWz33PMnG6eA92/+8Ie2Ztk7dtXt37J4Ba0/fPd3rFuv/jZy8jl23nWftw8WzbXnH/iFTDqeMgoL8u3xv/7Avvqbp4/odr6SBIi1mjfnZZWw+ZkKX3/dDZyhG/7lkYftZXGLTRISukAMoCOV5kcm565du2Vp2iT+sDlyEW4TkPJK+wBsIRe99tr+isuaJsLWzvbTn/7U4nYPtvgB2WJf/5xrnpI6ACxci1ifeAagPflkSN3Bmo5QU5DYLuT6b/Sx3/4uyr76dfFanel9xl9is37zmwwBuCvkinxc7soxomxYori1wXJT7rYXRV9xfVbx4R2CV8dMA/0EDKaP4G4MpDUaYEE0QxmEzyzY4ybQAlmGXtFkerroFLAgRUpglmeyhr4Bt2CG2iawnc+pk0g/kOkjsuy5d/daYQtLzwESFyiuDLcxc3ggrdPAmu2F9s6agw58N9ZSgwDLR87b9tUdKAFXgdTVAOR6x1q2i5W95+BxET8s7qs/KQ4KuViB559SgbkRcpkhixcvtq985SuyWpisJiarFgWelQUzZ471TU0TS3lHtx1/CvIO2NP3/tgmzrjCBo3WjCwpUSxWjrLxbho9xi4QB4+ovz0GS1FBVIiA6eHVHV0NwGK5IbG6FOdl28sP/tQNMilp7UU62snVVOQ1D2LeWutGhJoC1FFeWmzbNqx0/SSLEM4uyFQLXnnFnvznT93n/Ok7aJRd+tFv2Crp6b5fft4BnNCSQdk7NtRui1tw4+pF9sZ//2LL3n3D+oj9Hp1+9atfrR044QTbK/MQD2o7ZotGvVz8Vlie2J9izYMHd1NMVG9xFfVXdt/Zsnp1kusv2tUbrBl/XbkbXg9XgFRJ+j575LVNSkDQb1Nhsgiasv08cEXnAFFiXXAuP4LjQwU+M19iNRCfc56JmsOzcGG5gh2en+76Kdvtvpd7iUg13i66aISsV2/I8jVH7t4MAcGx1qVY14JY5QM5dhrAZQQoIFA7kNZrICMlto5lacueYtuXW2bXTe1q8REkBo2TO2iy3ICNCcDrprO6ORC2J7fUFgos+Zmjje0X+h3bPzRnp/Xu5GUxnijXCZiCa/dkiC07pCQ+dL9RJQSbIo0iA8yWG3c3raGmHCzYJnIa2LjiLTvj4jsi16BaIj7IB1c0/L///c89li1b5kBWTs4hWU8yHH8SQdC4jeBeellBO1s2bq7TF4DavFefdI8hoyZbr/7D7ZWn/mE/0lZfW7/Om/EFOJQW5+KUYpVBeMZABchf+k/7mraZL5ATnZRl5938LfVLMQSHDjgi1IK8/bZHhK5kGBbqM59VnYPHJySL5DXdZexR/DqeR2Ky8ZoHBKuxPOISagEO/FYElPfsP0xZfINcYLpPqvjyyy87hLJcAfyjRo3iEHbW5XfYdz822XqK0X7sqNH2xjvzBViyVepnstyL+xVnVWw/uH2KzbziDnv3tcdcnFX79h3sRiGZQ4cOydoz0IFUavdR/7lv30SBnY6KQevkQOXEiRMdAWsWvjqT9eir5h6AWlFwKSbOHEP7nXcSaG6Kp1KR3h2KJy903XOWL4pVd+tWKtb1arkFo5wrUAbB2jI4c+dCHuoxtlMaxx1Ku/uWSUAZ7kRk9GgvqF3YWsHyXmkdPt/wdrZ9/GOdVOduqvivXtJ3qwToRqnGYc01KdUFcmw1QDhHUKQ4cjrHekS231oFoPsC39gKxUHh2jvWAgAh9opHktjmX126v9ldwPNEfWFCfE7roeoUitEa2PUwLUSzG4zADnjIoMWAQ/NEsq7tzIHZP9HFxsHtSVzbss2HHMht6mk3CLCg8O/VMdGdeFMbC7Y7NhooKdLsLOtGU+sIHq1XgIw/fONaW7dqUe2mFHMmkJlA9L4K3NmiunwlJb2tpuyeyzJT3LQyxyqUxv+GGOxl3giR9l00g9cIJXd2i4YAaa/HAlltphFIhO9q+nRMZaYKxdb/rnPsP0n77JZnn7UUBcvPff4/dvlt39HKJsZlaZKp2ZBg7cEKBRVCsWKmSlXcukyP3PyD7rm0pEDfl7g6jBWioqiuaQiS0QPZW+2Nx35jWemplqgCf9PVpzGq4+Ob53HTDRIwqhQAffS3n7OuAkSnTZ9qHWXS+da3vuWAyfjxN2h7pVivnOvceq8/9Wf3/OUvf1mWomkuMeBJ+eSuF0Ii4FyGMVl9VCSomwdsqOGMhShUdEqyXnmfqOKQiiubguG9Oo58Ci0DQjvgGtx+8ZoUAGnQTcTF7VGbXqNi0VCxZs9oSM1tABf8r3/9q3eM007z6hfymyr0zJUzkudW7kcPbKlJtesO5/50uGCCzV/0sqg5lriM0urqdtLZ2MMbBK+OqQYgyRzaK/WYHvPDcDAsgsS0QT6Kmw3BknU8AJZ3dO8vNROLyzKNebolQvxQ+3Zl1lcuZb/eImPoPgVtt3UBaoLwGVsxtBLYzzgHBxiWuatUz/REsGTRr/WKu/MfANOWSIMAi1I3mMMCOfE0sEnM7f1GnBmxjpUoeDsUXGGROE8Em6Hy0EMvyXI1Hq5JJ2Aj3Ex//OOfBSpW2ud//EDt5rn7s+03X9PsLaGMCxYebigY0J//05+sAr+UAFytYH4hylqz+cQZM2yp/I8TJqg2osrzNFVoH2sVj/T2XRvcrUhs6mUCYutXLLCdm1Y69vqk9A6WczDXVixb7PaDKX2N4sP2YDai2rFk/WPP2gdJ0fbee+/ap5Xp2A1kVCPy7Cmzzysx06OHRo0aSVAmIskBvrz33nuyWhW5t+DLK680Rw6KlxJS+49+1N/Se16wwGzKFO8134fwi7oPIfy8/35zmZh/+IPAWu5qu/HiQwJ0Zzky11Xqvw+wyOz73OdMhZlNxKTescgQBHiRPSgs7SxiGBV1eg40AgLpG/uGS1zcaoHu1cpyvFXXQWfFia0Q2Hpbm50Tvmnw/hhoYKICok+k1f8xOOVjdojTeqY6qw/k24jKQB+zYzd0IOK01uwoaOjro36eK2sMsV9kH/qCdW7Z5nyx18e3mZuZrDsoKai9CMHqNlFPAGawYCFY1HCHtqUAJHNUUmqn+Kt6i7wVF21KYowV6/w3CzzvzSu13Yo9byw7sKn9O6zdevYIDW6v5+vgo+OkgW1r37dzbvxGxI6+6M2na9u65JJLZL2YUfvef7Fhw2JZq77lMtCuuqpKLqkoF3xNwPawMafbkDFT/U0tV0WafSG2iHgmapqNlr9pNKYT5LXXPHRBhhwgRu4zoTCDsyFOxfCGDj1NPE+Pu1iu1PQsb59m/t2fvc1eevRuKy3Ks8SkNPtg6duycB1S3Fa85StGLCurvSgUoi1JgUVkSE4QwegDYm0fouClFPnJFikGaxwBSHruqUD/HhpXL+3V0zM7hfRF4WIuLkm7y4pU5sANhbBn1oAzf1OC0gtkXUNiYg4DFwBMGCOEi51SoqUDRXSBgsyhMmeO5y7s3t2Lg+P7P/1pqD24QV7NNZS96Wf/+MebIoSdqWxEzzpG7NT//Z93LPisECrnKGzLibCtQJIpW9FEGupZsSANHbL4P2YwjIbIggVz5d292IEr0WrJHTnM5s37a8gWwctjqQFunUDaTgOALB9g5RZ41AfHC9BWCZi88P4+V3eyNWe8aMMhl6wGOCcTDivSAQGgtgrhA8A8MS+70S5vzi62Mf3bDmAdUCIBRK6rtxe4fryzJtcumdhJ7P25AqyFjfatJV/WszY9spm2UviRRwo+OZoGcvftcMHerQ3uDj1OO1lwfHlOgT1vvvmc/1Z8SGsc+CgszBWI+KMsVpMVbB2niT9a3EvdnRvx6k/9pHZ7XvRRIPifX9hqZ1/2Ufe572qrsxHkSoArOAGImFeck5OrrxYoWO9oB3j//txnLXv7Bhfw7W3QtL/P/fsX9pPPnGvzXn7U3n/rJXv7FS8eqqiwwGIErpD9+/fZXCEVVjTILpnlBssnB+fUZr3fooBz1YBx3wFICPB2QUnuE22/63DsEwY4VRWSWy7OZUHepvP4tQKkOD1fiKvKqzk2xrGa3AHn2kssz7eDC9a4TYmpuucesy98wXP7YWkKD0aXkc1w6wGQfPBFduDNN4OFZObvFCt34g4x8es8tnjtEdzOqZKYgPhkot476g/CR+a1R3yYjHguUN4HVzVqcpsXyuo4YEB/Z+Iqmr9UMWji45E7Ejb/QI69Bt4QGSYxI4G0jQawuPiC5WW24p+Kyyr9j47ZMxYgyurgyouEAKoeeGOnPajHyq0FjlzVd4VGov3QNpqSAfn+hjwX9+2PyaH7t/Y1BqOXF++rBVd+e7tkyQL8tYXENqXRtlJ4U44dbFNXA+uXzrWBo6fX/bCV70ZMOqdOCwAiyuQQ3A4tQ5JmcMhFyZYbcNpoTdLyG9XI6MkzrXOPfv7b2mdoJN584T+WIXRAe0zOtavsefMUjNVeREvPmKLHzaXDhfi/nnjiCXcsGnv0L993bXbp1stu/cY91mvAiNpjNPRi69ol9sIjf7JosacjxCR96Utfcu7KZCGeRRddZHfq8/0CVFjWbpF1Bg6ui0SNgHC+dW5wgb+oEL4qt5H+hHgJRfYpYKmHL7ECU3tk+UrROOiAmb7IlC4AjwiWoQcfdC/dn83bYuzQ2b0sU7663QvLlb3ZS33zMCikoLj2CHjnNczqWMAaErjEsBZulQ8RnWPBAs8++qgH2LCY8XsAooixIkwLwKfKOQ6g4boknquG3kzf5dmCBe2UMRmtupQlztWLNW7OnDny9J5t3c7Tb6L+QOnx7LNvinbjBvvSMEL068qJkrVUt1enxjvcLJBKBtI2GggFWBwB+qKH5uyyc8d0UKxyUtsctJ5Wl6swNC62SEpo1ZaOKgsU6ft0l4D/AYUcvbsu96jdBgTNWZFjO3JSbMppmS7w/ag7NWEDaiQ/9+6eI9x+FNhOT46zbip1A0kroVGRlKMCLCL7P6wFnCOp6Ei0BaXAvp3rbfysGyPRXG0bsaq79+VfPF4bN3WVUss8UKRZWJIq31L/YZPsI1//q/XoN8x9V7tzyItDuftdbNOqha+opuDbrnDzQ0IRgBd5+1xQtducwCJcTmJNd9HWRHJjwRKnEzP9AJllzjnnXIGsfPFk/cnRQ3zta1+3P3zrBvvOPbMtIyygPqQL7uXT9/3MPVcreH+0Aq/nzZuvPtQgElleJqkzOToOVBCArN6ypH1SweguCArzzqRJdZusB1zV3aDuO5IDsPAQmxQavwTA2rgx18VNwSsF0acvzz6bbK8vwDWXbBOu8j/1nkXwbtOnm8rheAHuYrGwj32s7jb+O+LcUhQoN1OIap6ALOdHbUWAFhmIvuTmFoknK1YxWKofmherRIU8xVMxUcS7Ys3/+McOGzcuR5a0SrXxosBhuix2meLj2iHXakfF1e12QfwALNAerPD7909QRuFTit+7wQG0BP9gNc+QJQ5WxhKBo8GiLUw5EXhLHEkgbaMBeKlYMHgjoncM5sXXluXYjaJPCAdgbdMLDMahPYj8UfKULUdsFnFJkZAdilt7Zck+R5Da1Pagk9isTMfhStpgzIiEUC9wjyg2QmVIjxQ7a3iWm8/oZ6TBFcdqFGBBfkawV2xMtZWUHbZahHYyeH3sNLB7yyqxpQ9tEOC0picDxVh+14PvGQHqG1YuUJxSrHXo2texki984Z829fLPuADyho6BG+//PjnTfd1NrsMrLr9UNQs/7ywpiu12QIMSh757yu6+2+MYIGpecV9O4C4QuNqVkyOr009VULiXc1n1kKlomtLnBgmRLF/4qk276JaGuuEsT/t2b3Hf//jHP5Yr86uyqMQ4y4/7UMf7QICpI/4wCTFT8fjFMDP97ncm1EUYWG1ZGLdRPX+ImSIA3HfP1W6igP8lihoHvIUyueNumzcv05UaIr7Jp0Hw94NuAZcdwfK4+bAwQYOBFQtLEt0TJZkLXbsh8b8q4jgeOnV/99pnrG/UGnxCNQcHytyFi/dMobk8Nf7SS6/KXbhVMXFVcl3GWv/+1SqpU6n3UeIfixZ4qnQWvdzcQ3IvJtrChR303XYB46uVyLBW/YkVuPqq4sWiFaC/QwAyzR2XAHnRdgn0JYpJPkH7HDri/NiQCWrioHSbLLLG597ba8RDZIpriKwh3AfEgRCO0MZzCF05JWWtYkh6djh21pRTUokNnBQAasrQTEcuGZpRhuUQixKk3G0p8FG+qULQfjB4Wx2rqLTKBZ1HAmABWJoLrvzzIoj/9eU5dvWULhGZ7+Jjo48AyBiPkIKSCheD5R87ks8NAizKBMwa3cGxuK9WMcN5HxyM5HGDtlqggQ3L37TR08LMGy1op6Fd0rM6iTiyk/UeNLJ2E6xm5SpmTXZeY1JQU6PvE5/4hCunAxM5bipEjAfKvvMy3gioptadI18KNaksXGj7d5ba9o5jbeGiffbTX2Y5cOUakBmoUo0IY4jDShamRmTf7q2WtG+PvSWugTNFoYAA7HB/0Y8lS9bYxr//ySbcdmvNd+Uubsq9AWhJcL/94hce/oOssz6BMwryToLGnesTNk/S8eQmO18mp3vFoUAB5ltFoIoQCP+VryQrrqrIueZ4L+Isz1XqtvDcgbjmoGPAyOfHaPE1BKAicLdZI/cKWF3vKTNUfzVtEEP2ta99zf6hZIJ2sjxC10D2IlJcPETd+6yC2BNVQ9BktfIC2TmP3/zGxMK+1qOYeH2NXIdXukB73KDob/bsoQ74wZlFcytX9nAhdLQLbxZ6Qn0zZkyRJWuei+fqEja6ED/y5Bu73GqfiQnBRJ8higEWcmt3FjhgyefoVP8DsIUymijw9ATSdhqAZ6yz6v79T4sD//rlaMQN9euSpEy0sAs+Al0hNohyPQRhtzW48rvLdZTaynMBdM4XZqC0T0uE/WC235lTaj06JLakiTr7dBbVxrljOygGa3/t58ScbVJQPXyfbeWla9AO6Kdv4o/1X9f2LHhxzDUAd1OxOJ3Ssroc02Mf3LvdMjv3OuoxiY3q3ru/WL//psn7uy526yaZaiAvxVoDHcDtt5usKOVWTYXnEMpwedPsqf/F20Nrxtmh99Za957VNiDjUJ1j3i2LV7ZcmeHxYnU20ptl81+w72lq7pCsGR9kIIHPadMmL+bpueeesQ+6jhJ4Gem+w4IFnUKojBvnxTrhiiPYPKSrtZvBR+UXRabt/f95xfEbFN/6GYtWmx//+McdOzuxbAihV3/5ixjj1SU8ozl79Dl+PjoXIrfd5tExEGuFFWvOHI9WARcrHFVO/vznuqRUNR+HPiXLUpepOLf5Mp0RXE8MWu/eFyhDNFEZf6Zz9ugdsMTx++DiA5xRG7G6+kpHIOvHmGFspF+AKzAhYBV+WJ8Tjc9rTlNldKbqXN9ygDK0P7z2s5JDJ6dFCtjFzUJWD5YBB1a1Lefu8+EESTbhmqz/fbvkmPq/CD6NmAYg+RwZZq3ien5yvkrqtEHQO/fGi1pw7hetwLES3GUtlTLpgpI8WJ8aq9HX1PZz8svqbNqaSjLEyvUMA2u011bgio5H1+l9yBtMar5gzQoGOV8bx+d525r3rdeQCcf84Lu3rLRufTUjH0WoO/jV3/7Pvvrrp+z7f33NbR37n//Y5+X+I2B84X//q8n3Qll84u1BvQ6NEFfYkE2/vb994euJduaEIs/vVjO7A9DuF23Dz0VjPnz8VGuX3r7BnuDe3PnI3XYbkRJz3rXCvz7o2DjJtIOxHNfb1edMs5TCzfbsEzqOTEJlcp3FhYEcXHV93/q3jfn9x+yOj1fbG7MrPRrzsCOLg9XV+CN87LXpP7Lqq662DZd8ye5/NNHF73eTj28zYFLCtrj4ACiAzedeFKqBir3GxyhPXq3gNSVgnhwA+j5tmhkhYrx2yEdoZ0NVvzoZirU717ygBM8777zjYrCIqUMAUXBrEWKmRElHDQF4JKj9qadqdtQT32FJ40EXiReD4gEBHAo7egK1hnakv6hQxjK5MzNcFmZUlH6DFkio+4WBj3HHB1otaO6k2yVF5YkoGxIvBn4kthkD79Ce7U668z0ZOwy7e7jE6fd6b70GjlYK3JOrRCPwtGogPjU/W8HeLQc7Le1KOKhpTjuLNuY5uofm7NPYtt0VfO4LQJYA+DoJSP6XTXjGWHT+uI6OQL0Jm0dkk8MoKqy5LKXiI6DyphQ1DNs9eBthDWxaOc/6Djsjwq0evbnsLR9Y516nHX1DbZEgN2K/08ZZx2597DPfv9c2nX+93SPX2VSRjf5Us3j+vBeNls4D6eCHQ+bMsSkj8y2rj9CDKBH2CWl0YuKWvKB94Vf6mJAGcTk3fP6X7vP6/gCu/vOVy+1hlaqpUPbe3hEzRShapYOd58whuNcg5Vy28KBliNG9PEfoQfFS5TKfxRNEBJ8CaXYCgxCozvjr9fb6xG+o9Ei1nfezs6x62PDDhyVWq0YgB4WI/rqPqzDrE4/biG9f6qw3AJchcuG9+io1+ryNsc7gWrz//upaAlG/HaxlqkzkhNgu9iHmP+N7d1pG4U5/M/csb6pinQ5nJ6q2souBUrUhB47YCFAFZcTIkaOd24/PwHK48uC5Wr7cA3H6aVwsGT8HxKUIXk1chjDF49KdUIPrsVKxXW3gPvVzMG+pwx/5CC5Gz7pF5mmh6DAiIfzuVJT4sAhkj6z8fddKkmLjmipdsxKaummwXSs00C4pxgFg39pKU7jVNuzWyqQVQo27/8zdZW+JnT37YKlzDbaiuRbvikvStzY3tZHtihGjGPUKZTlGSlhkEHBPX3A5PizdbNtX0iq+Kh9kjeufFqluutJFDTXW4N2Lvxmh7tK6Xa27cBo6ePB50zRQInLMKM1qicnHdoXqxV8VHzX+KvQs8kQyer+KIN/zf7fZ2y894rJu5imT7VltNESxSe8vWuToEmr3wTzDSIX549//th0y1fRcscLWKgjqk6JTIEh76KhJ9uP75jdovcrZs8P+eden7cb9e6yPAFKCMtsG3zDWkm++ykzEoQSvV62YLS6pMtuQv8RKBn7BipI7OauLYJbFqzixWDk9ls2aUVOh71bUS2hEen/3M/c76w8WIDL5ys48O9yzV3s6vCB+HitVXFyS40/F6uMTiQ4dmqr4pgKfIL52P+peE9COJQs3It0YOVIga0Yf9warkirtONCDe7ImtAs86Mra4G389Keq7d5/Vjt+rnRlRsJTVlJS5GKr4OgiRkqqdcegfRkGXfImPFskdQK6oI54+mmPdwtWd1VJqhUR/DswWfvB9Olmr79ei7gAmnB4URqIuouRkmPpHolUnyPVTr5Sx5siHZVtFen0+qYc98O4DRnWo/ulqaSMbtgQaQ3xKPGJJ0rdXxLaqLnXFKHszeNv73ZufnjYWBBFSlhkANpo/w1ZrnyXY2v53qL1+40XuSpJfJGQ0kYSAGMbOgAZAFww3LSYrVlZnWjiW88j+aOeaOdIf7Be9Rt+5jHvmou/6tSryceF++pnd15geQdz5Ar8P5e9Bhv762+8YWdp0v2zYodifMuV3yrmEGZlzEbyR+1QcFD3DRus89e/btO1zRNJKXblJ39kye0y/D3qPO/ett7u+f5Hbf+enfZNffMJFWjOEorovHG+WX4nx8a5XC7Jl4RwqmQh69evj102M8ui26mW477+Vq7vUsXEWV1QaBXnX2Se3daLwfIxQvzOzYpZ6i+KBS8O6UfPjLQhstZA1E68Fm4/LEokQwKSZMCxB3+02ZJ2Pm2Z4waZOEeduw/OqUzd3Mvm77CcktMUDO/FQtGuKMdc3UEyGOsE1v+//+fO95F7PXCDxSlUAEqoDknO3WWfPa/I7vnvQEdMeou4xaiVOFvoqrp6ousXPKBQj9FvX7CIEeOlxEMnWNCwhsG75USmq+1Lc0Qq27kuwKr52n8ilstLCO1lm0rLdHL+N617LhC/U7IsOWQ4fVgkMT7a2inQmCKzpK03JqmyqJw9qn1jmwTfRVgDxGFRs2+huJ2o64cUKhsNj0+iCjEfTXBzsXDYvKfIMcT7bRxtv2P1/QeKiRwhI8vRiocfFKs9wehtJcztlPUJFfje0B9At6XCvmcqK5TC163FD5T3aUg0u9UvL4qKHzNlV/lAo7RVJCL56z9Syz9l9d5a5bT86Mduz21rF1nPQWOP3QFrjkT8VdcmxF+xeWF+nv39J3c4cDVnzhxN1t9zJJSAqrUyyxD8fgS48s8IREGktADQDs3Q3eXzel/B0o/p+5LiQvuxGNnnPPNPf+va5727ttgPPzXLZglccat10eN5uaz2icWzkgxCKMwF7iqEFHoLLX1DdOgjnt5k0aJA33/Gpbb+hu/Ztqfm2/zCifaP7t+3/96bqxYOC2AJmfbDWc69CDkodApKFDQsTp13L7X//HaP6zqcVjLAOTmt/V678Ws9rPLsr9i+HWtkySpxQeW4ADNlEmrXpczFVeGRxGKEaw4iUFgqGhozAC/h4Mo7WshfWayiBg0Un5VHRgpNxKcU+LVQCOrb3zYxr3vgD0vTQw95+3E+WL9CGR/AvGrKuTPZqtJi7J5fF7tz8PZq/C+Wvvj4xMY3asa33OOxdOpDJFgRYOs+GrhCJYWycrUm+PdDpNaInWqseKKYE688vbNNEu0IgsWFOfNoQmbg4yoZ86RirBwrew1AO9p+x/J7LKeLxfJ+NDke3Gt7xWcVCdoogDD4pi2lwVGrpJz00FKH8Ib3ameDFNg3Y2SWi4dI0urqeAscFhp3T3nJy9ltKQrshgz0WEv21g+sS+/TjnrYbRtW2Pdum2Jrly9wdfhg9EZgfv+ogpQmTZqsIO8LnbuPuoTrBLj47qsiwPy80EA+yAIRgtgpWvGe8o3Nkilng2gPJtWQfialpHnb6O+mDxbbX755nT398bNsot4/okcPPc7U4x3Vg7lP7fxcKKKUmV6mpbHyqQ0U0ILUdPgzP7bE/L3WffUr1m39HNvXob9NmZHsQrXKps1SC4cFYxsgntilO+4wUzlCB4Dg1nznqwrurs63i/p94JjVCUAnVunBf1XYm//3hj3x7SWWv3qfxeX2EJ/XvW5fLGKQjR4UhTpuOeKWCEejPaoGkZWI9QggFy7NwRcE3eNeRPooWp7V3haBzf79vc/h1cL1J5qw2vgwANbvf+9lO7If7O6UAkJiFAvxs4f7uNgrP1uQz/GqEteG25Ri1DIeiuXd7BvfwALYjk0iJvDiBFK/BtDMAtVUQ5obO+N2Cv60WAPOXdi3neN3w9tDjFB9QoA2NfAemrPTHlIsERxwJ7pACHw0wYsUadd0Q4tMvy9c7xtlefKFsYHsxZZIx7S4luzW5H1iG9oSorHB3VMdlwUkZ1RHGakLCZNhKLV+Q/u39ee+e7Ctj3O829+47E0bMGraMe8Gk3J5KfFXKQ0ee+2yefbMvT+1rRs/EDCodCVpKNNyv2ZdeKCulm9s2fIVNmj4eHtv0RLVzvPA2sVqcake2XpMFOjpo1qEaQJbyUnJSi7sKqvOg67Q86uKxk5MTLJzr7rDDuzbab/4xFnWa69Y0stKra9A1Ec0k/ebPt1ylRq3S4DsBsUDVSkyPHrGDFsllPGaguQLlY04SaalTFID1beodqmWP3qqldz+OUsb1dd6vf2GMuvinYvuzjvVIUnZrv32wHfX2cQvnuEsPbj2sGYRW6VkRsdPNXlUhb32yD6buetB2/eR6W4/XG+jRumW+th1jg0dctEbpt8mTq1fuO/Bkd26ZTgiUPcBf0A5X/lKbcQ6dAiUZiQzDyuSL2T01QpIhuD9GuHUqD5EpiICFoFKgeehQ8tEwxDrCE4BW74Q+oaBj9gwSEylMrcPhkREBkQX70UtQ18AXVjSfIGSDKCGi5KkT+FhR45K3Hv58zoB9SsSwoDrx1/gOovE6jUS/TqR2shIjTUy0FoTB3Qinc/J1BdA1tj+6W5xRF07X7BUwR9JJiAA4GTzthTIioV7PlUs9g0JViBc1JHkYOumZA34rxqTxcpWpAA34O5tJQVQjuf6aRqEmimNnVszm6p38wY1R8wVfth4ilxqoIaMi0wBPoe1lountVkT9faoiR/6WTZN3Pyk3AyQk73tAxsz/Zpj3n+KSmd07NHocR/907ds944ttdts2yl3WYeuMhq96AKsoVj4+DfutnHTLpELMddefuQPtnPzant9wyrrN2SM7Xh/rgmD2AQBnsTkFCsqyBPn1Fa5uD5hvfoOsjPPvcYmzrzGNqyYby8/+Dv7iLIDR19ygS1R5t8vZW7JIGAJxk5QglBG+bSZVvncq1Yyf7X1Tku2YbddK6/j+7ZVZpUBWFSEWqL0Pq1LiqWdP9a5Javeni2sEu/ADCDFcXJWZtrV359sPXrVJfu85/flwkNxLhj86fUXWMezkywprsJqMuo9PUBpLjSWO/l0FT5+Xe6/s+UaLbZXXpHFrNu5shhhwdpcqzP7zndqX2O9ArSElGX0TEIibPWNfG7jEHDFe6xfAB15YR2FAvyuPND/7353t/ivesv6pPs4TNiP4Hm+Es51XFeUiMTwB5MGbYQKNQ0RrFWoHJcjVjGAGgHwtPO5z7lNtBATKgoTf2XK4qg5kw1A0eeqCcBVmFJr3qKXVJXK+TBRWtSvieP36bgBaZa0PdqeFxEp1yt0By2ZpwAOfubc8Tsb78hYikb1TWuwG7imAfaRlFCKqIbaJVCd6g9wdBZRBULX/6sqwJ2u9+MGpDfZqhaJgt1HjnSHe90gwIKmYUmND5ZsiTwp0a2QdBMDrggQO54A6/ApnLqv9u/cIMqDAS6D8FifpSvL02dYo4e96Qu/stWL5tiC2Y/ZxTd/xSafc60LPDy4f7f9+5d3urqFY6de7NpIUZD6lXd8r05761cstNR0Mbb3Gug+LynKt3ee/4fd/oOH62QMPv3P/7MZigj/G3wEktdlqSK263LVlRkk61DMT39q9tnPWtyvfmVx779jpR+9xR6Nv8lu3/1by1LWIsSfqVjP/Kh10TP4NOS4LFevjiP8y4GFL36RI8Twp45AJjpq32xZey5wmXfX3NbOgbHEq6+1fAEve3eJR/6pGLJyWdReffUV1evLtiee+LdrZ7ksed26HZBrtIuC5Q/WZgH6B5GxzYGkGiOf/3EtyiGjDxoEcYHWK+xHjBYs8PBtAXaeV1Vo6hBOkO+SItMw6wNWADpkE3JO5BcAqlTVyAXqE7APZQRZhT73VegB2V61s+v0A0sbzPM1IW/O5Rm6j//aZ4fGvQ+YrGgiyiJduyUTlX/cD8PzdpFDQu44pEeqSxs/VrXxPgy6beo5AoqKlYjBb9FUIY6LBUeoaxHDxokiS4UBqLZALcb6BEsSY0okpSntYbnC7UptRoAsFm4/C3O34uAuFN/V0QL06XMkLG/JjdQArV9rOnCoj3ioii6eLap5iM+KhBQnDEx2mROYo4PgykheWnXbojTO4LGz6n54jN7tEf/V6Rd/vNGj9R82QUWgJ9glH/lqne0yZcX6ws+fqPNZfW8GjphU5+NDB7ItvX23OuCKDfbu2m7XXXWpt61A0tniK5gki9Q+IYXFihAfp9k6mlkek8s119hbwz9jt12bYjbnQiuUq/AV1Zy5XKahdkR0E1gEeRUIQ9vD5H7mmfEuyPtnP5OltsxMhrI6AhjA3Xfd3Rc4N5jPUTVnjrL/Pv0Xu/H60x3de5XSBx8SUtqrPg3QMW8XdT2lauLiBonWoVyuwfdkoVskftO37Wc/K1Vc12cEwtIdQzuB7r6Lr/bgRKJTL0cIqFt6hjIgdU41glsQC1SoAJTIWARkXX31QXfsL4v2Yu3aA/avu/8nq9M1ctN6GYQ0C1jD5ecbt3ABnq5TwWV4hCizk6KIPXp0OOIr/wNAIEbFhoRBkdpijC2wPVdooVafhAMqwBX7MphGeCyv7/An7Wekr5ONdtnkziftOZzMHRdjgfXulGTLtxyqd0GA0SJBITYdZLDgGqduZOeMeFdqJxRgnUg6IBwIN+f5YzvW2622CBdqCrkquAOv2uY9xRZOZULZLbIDAYaNgayte4tti/ZvrTA2NSQaXo8uoHI6MnVYlnMTgtB3qdEAXHm6K8o/YKVxBZaQlHp0ZTZxC2KacvfusKwumrWOseCaLC3OP+a8W/kCWO3CSgHBcVVQoFUUrJsI0eRyIaaoHE+leBJWya/3koLmz5aVJvG3vzUTuefFnd5Vbu9oB3pGiDEzQ0Hu1AX8jrgJoolEnzvX4ypQc1iwDh2Ks8fuK7TzC160dzdf7cq+hMYaAUAIRkegVCD4nXisxPJ8G3DRIPvjvBF2zXXJ9qQCtM4T+eaNSgncOuIyB15GgGScJOjvDJs+fbo4sja44z7/fJLw3i8FHGIU4D5NbsQDAnc16O5dnQO+QpZzAmoTf/ADRTDrwPsPOkIrLG5dy7ba0AvqXh9YsQBZf//7E8pMnObir4YO7WipCbtrz8HrjxdX5r/m+QjrWeiXvv5DPwt7DQVEaDZi2NeOoTxRfE0d9CDUYN2OAmsnkz4uAVwRjFMYtZikEuNitCqttD0H/397VwEe1dVEJyHE3UMgOMHdXYpDgSoV6t7+dXd3d3eHUqDFiru7W4LGnXgC/OfczQubsJtslCTc+Vh298l9981u9p03c+ZMrniBX5RnY4VW8WNeSO95sePj7zUxMqlPsOZjVfOHz6ghW+mM6BKAaGKCsNKwfWN3pcbv7VZfGvhZunPB3yG+/zXZCER4rbfE76vsSCmBJ9PcBiXAml+cwMUkOF0I+RhLtgZFH5xzq1C3Ij0imVZk5Iu9HQnOKmoEzeSMWTObANZ6aH2wFDUPiJGIMBdy1NT84AnGomTyQjeH+k6y9K8PxdMnSNr3HSceeK6oRUeiRU0z4+Jc0dHKtj8jSZ5+IWXbycatY49HSEoixvfxl8AGTVGhVr9wzzSIlPKcT+P7lYLXh/dtlXm/vgvqlDsAyZDC7ZSQE9TdPRGN6gek8R1Qzzbku6754gsJI9eKoRmiIJbpwUIRgnID/+oQtmtJ8Sqy0bF/6kl7cKRyIazpKI897CwO+8OlSykuJxk8LEwE2Umk0nJlbeNTCAG9DVL+KWl5MlyOdBwvO+1biMNaiIT6pxX0tzk79dxcVL+ecUIkqAnSdj8qvNiuXQu83ojIVqwS6XQEh8uehLCPPoIQ2DRTrxw2/mPujxWakJtgJeDJaNezA+MVuVNs3Ozvn4DTTwVo663Wk4Rrj/AW+yKS8F4uM8JcBcdhZSVdbG4k5jMSZ4t1gVAjH4Z1RMXy0bhs9ZvCtAnnnIBozMLUBHEFkTYhW//OGL4q7Zl39P9tSZCB7XzE18OxtM31+kr2AL+/1w3F36uNtgtNh2uy8R6PaUtym8yNIMVIy5kvr8hrExUAByzFCMB4M3YY4M+SMWXIZs7boCw/CIGhxkEuQkHQhdsSVGN5S/uUdRnVFNj8e/fRdFCmfC3ubvOvrQ863jN0Rxl9giueYM9W3uq9LTlTi0cvttC4gy22uMa/ZaXdyGuflIQTh2TTIqiX44LetvcYCWzUSl0oynMCh7avkC6DryjPrhXeJ+bwLgkuhX9VloNERe6SRdO/QKubt+XLl26SqGORaveufS6SW5/5pnAoEusPH9wtaxdNl7TUZLW8RYuWkLJajLL/5vL1F6dk8mXgAuY4gR+EJuRIC3rj8QC2ZNXiUUSj9qBHTSTyVNR/oqWkpCCa85UCFiR7Fxo0FyLX5YgDIkX33ecoDts3m5jer7xiIs4XbnjuCxK7SQ4/ffpjWbveTsbGBMmephfLFa8XA6WPv2qKQBH1ADDQ7CHCevKkHcDJddCV+g68K4C6LhcD+J2GXtXPqDh8S/yTU+Tyv6ZKfVQ9ejNnR0IUjbm/AmOG8/rrA4y36pkK70xfhoYuQfqwY5F1rCA8DJJUCzLTK2g8Dlx9DsCi9ATxG6luZ6GTbQejaCMf5sZUypUDQtSdKFOKVSloaH7cuvCaekzzNiconSZbhC/rwjnXxnNgdSGFM2u6Fdf3MslOpIsnuFlNmrhUSh/GsviABR31weX0QwSJUSmjyth8DEMcndEu0jyoTh+D9GFlGPuFsttNaf0nbQJYAIrqjognRbK7j5uD9A73kpYNXBWyrawfPiLS2mz+oc1l8GX3ycmUONmzbp5sXvKHNO84ACrs/cqkY5WflyNZ6SmIhAWeF3fEHN4tPUZMqbRj79qwSPZsXS3pqUmqX6EBdI5F7FHLSHSnHYag6vrVy5HKuhaZvsmqD6G5tECDgNOy7Pdo1UQP/HEl8Mmef+BxQx7ADem2lfhDyoVsQFDh3H/99TcsOwMQ0wXFfY6Fy/micy8ncf0FzZ7ZvXjRIkF5H+TQgR6YaiwARKpk0BCVKtibf6yU51qzpg2ARozkX3+zXNvL9KdEDhcFRGm9E3yk5aAGkp5hV0gYZ2/DgIAzigaGhjdqO463Zg0iw7nXgRZ2WrotfU3yELFaDQX28U88IVgt8eiXGMJeNwXGgBKnGIHIHSNzFHHtiHlOmuQPzlVrqMsjAmZm4Yjq7YfAVmUALB4bgvsWrXEYFKpXHxBPE560uE1ZFjKS5YR0IVXc2fjYVmJ8WY5RV7dlUdKBqExV9V1Xz7G2nxcv0LXhskd+H7u7MNBCsPVvQaWkX1B9FdlixwF+16rLyF/jb8Pl/UNUSjy7hEwaweCfK6MrrdqRlYvUBS0NXNEXNgEspJKVwCjbMTDsRgl9VgLRQpFXriyApQasA/95eAdKz5HXCYHSoe0rZcEvrwnBV5ueo1A1BzRQih2jcnt491K2qrrVBHeuHj6VdoDhV9wLblWQPHFdL8gzdAYYikcrnefl0Ucflcen9JCGjVtI1wEXSxIU2TvgqL4QYxo7dixRU5E5ePrVl7F3N1HLSDpnGzwKgBJPnTlzpbpLSQWI+/TTT1HhtwFimT3AlUpBROcG0K5+ABjykeHDOxWOGRN9RmIPJEr9YfA1U3HUOWApHEOyRC88fkHfmtOpJ2X3Dxuk/b1DBa0VFbgbN+4ymTXrK7Q7XAke+mBJTgRX8fe1Mv65vgqAHO/9mPy4BkrbP1FgVHBOEOAEGszNdQEZPAvpQBc1F3s7NH923Sr9buuC9/hjG/eE5MbcKAegB/YlGgOeQso0CaV9o1BJ2Q08shlYFht7VF56yRWgMRkZ0XCcWx6EP78GQOsMwNkZmlaJAJxJqFz0VcfgNjORFqXgqy3G/tdHj57GGP+icXOaantkDnatjdF/AEBQTnPoNlTejy2pCSO6+Cvph4P4EWc0S/M/rX0CRZdHJ2drgFXUJTXmXRKq33YdPVlj5lPSRBj8mLspXvq09lYNnQ2OVIMCJfS+rX1UurCygiSMTpXUxYDtadi/kXxO9hWcvSHe6vTnI5JbmcYb9o0HU20a0iaA1aWZl6o0Yq6Rd5EGuOIRmIMEG8SmgxkbFa8SMpbXtWdys8K7DZNWXYdK7NG9snHBLwp08X3Dll3g03oWTzli12rpN+42i+uqemF6Sry4eRdNPZV2zJzsTDlyYDsid4ni6u6l7ix2rf9PfAJCpf+Y68TRyVmCGraUlm27oOqwt0Ts3YqeduPQ9PgKNDD+S7b+NV1if3pHziCNtR+hkfcpmY4c3BkIcNoZ/WeMSQBIbJ4WIUsOtpSJk5ADB7iigeeucFF4uK/8D4qh33zzDbBRvBLBGxGwXtbkeCIYdaQQYCFzKH9OtROv8ECxB2hRfWFQgagiWAbfiA2oqcgJs/fykOOH86U9XpNIzscvv6ABt3O2DB7spXBZsN8p6TcpUPGjuA+1qUj5opEfNWuWKbWWl+eNyFMKuFwuCK9jJcGcGTucEauvIEQVhIgVgdWpU/4AVJdAa+pr1fbGHfoJ9vZTsMsB+LAjpuyKPUi8jweQXIbqwa/UkLt3RxYCrDAQx47YSJBKx2RXrZqnomNeXgEAhC1l+vTpAFoZKlJGPtsll1yCNKQXOGSe6tjGfzyV+ixbhmisVBLGckG1smEkrYb6OcnMdXGVdkdqjF0Xn1mcRJIyCwe01SwPrNiVXCY9uPM9e0ZEi4MVXstp/BulPua2yJOVMs3SOhIcxXea1YJsVeSCCHd10ovKop1lE8AiUjTIZK2QFsR9uCqRZB8lnlhZrSZr2lQF+GMoky1n+MjKSJUDW5fKzjX/SnBYG2kFAGYe1cpB7z2SvJ3NWsOU1b8V2T4a6cHgxm1tHuJYxG5579HLJCszo8g+vPCm44K8Z/MyufulX6Rp667y4NszwK/6S23XCICCQIEyAgK58F3QppqHSNBDBc2NGY6a0eZJmWQ2ak72GVnx6FzJbtVROnWxV8rjbM0CdymgQpzBdi+33+6FSr27lKJ8MOQF1kCqYS8Ahl/gMDXamZRUADAvufeaRHn0DSxaskQtzz0SLdlhrRTxXC0oaPmjXuMgXee8LPIWxihgdxNMXH75FVBe/wXn0Qmgpz42baE25384faVdRZDFCFb//iaQ1bmzN1KWybJ6DgDWTc4mXQTmOQvsF8gzuLh4A1xdoyJlzFySUhYf3x/jxQH4jEeloCsic34qamfsFwDRVarnv/XWW8qP33xjT/1VJefAFCKFR1khyu+jYeRs0Ye9u+YqAlcSiPDUGOO2HIvq+9Tf2ratP6oSE2U9OGsNINvOOXLMq656BNWPJnBL/1MD1VCDN45R2c9uaIIcDqC1Bb8/OmVYsneNyENDZBoGdfC1qmdU8ih6bWV7gDIC1Guq7Ub+k2GMZlUWwELATFVkWmuCzehWHn6T522OVxWzPcAHj4RPyRGvSmPTef7+WJtX8WPbBLDyKPBRYORCsPcPf6J5QubrjG1q83NVgz8XNy/p2G+CdECzYYp5MqqVl5stzTv0l7DWPeTInrXSFFGe82UxR3ZLl0GX2Xz4PRuXFIIrpsq8Ud6WA5nvTqjUY8ub29FJ+P5LWgMwuEoKCN6GMUpCgKUMEZEUXNgZZSk0RJEaDW+t9Kf62qMVzqZoqffmqzLg7mvF6Z6LCzcr/oIBFfbIu+8+ZwCt2+U0xs1HHjEaYGnZnx/KoStcpFnmPplw0e1S36mfafcCmfQF35+Qo74BcueTQENm9s8/Iu3b15OMFn3FPy5B7ENMYTOCk9DQEESqmipQw4gcXxtGwEH5qMhIQcTHlIVkK5xnn/UBGTxFOni5yOHbvpMmP75o2gV8qjQArWMgltnZParEPzF9RRyHi1AFOAR6WqYqxl27lAoFSPwo8449Jpc/2EiNERmZBKBnrx6seEQrRkQLTcOTm8ZKxWAKXhUYhedJ2k+NzhQvhwz5GsCpLzpZMzo1CyG3wMAgpCB9FT3tjz/8ABpHCxXd+fm+//77KD5IRUrSS6VNqeTAhtYMCLYzDlBFzx1xt8yozHz8wBbXwamiQ9bqYVmg9BcaDFNqp1mwib9SGSdEgnYibsBJKE7HxZapHfJjKFegzboHKOBZFywKUaR2oAyR51SZ6U6yNGwBMYyqbUfUrEtzT+mMVn6rIc+wCz0fKytVaf4Z8bs9EnpgFF1lo25zcGm+nflre/M3xV97oMcQBzXvC8Q/1KkrooVfEN49EnBpK7sHGEVo0LS9IsUPnHQ3dKfSZeFvb4AYPxX8Jz8VaSj7qBXfIwNl8e5lSBH2uujywoP+AXZ3u3btpGvXriq6QbL6HbhYDxk8SEYMH1a4HV/MZz89MzsBEaVQioWaGbEK1capfBn8+fMSdHSjOL35kqnaj3+BFgxUI6XSQA4RjV9wR6TaGiMS0w7Rw8w9/8lPYc1kfu5uOQaQp6I5lCGHEOnYR9tJr1OrJfmVT9W+xn/kTpGa9Xev1+V0gAlcMTrlkJ+tUnGXXnqpIub/Ce2Gbdu2GbuptjcsAExIOI3I2koooG9RKcWxY73hnxTZn9dUPm/woto+EhG8w9iXqU0Hh95oOeMgv/1mUnlgWxoWELJHIbRMIfFgAm6DBmWCl5Uo/jt+BLF+OkRLcRH9a4l4ezSkCgWI8ybelzEhg+jO96SXvfOOSQuLQPHflQ7y5i+rAcwc0ZdwiPoMhw8fgyjgT2p3Kj4gKKja6RDA0hjB2gSlfOq3EjiyspDip9TDiok1bVNV/1MuhvyLUVBsHts9QEkSXNwzUPjoAU6GvsCf63lWWrGdyAJoBxkcmnO3Kn0JOXH7T2TIsp1JaF4cpaoVme5iRHH9/lRFOj5eBjXz0o9Yt7aIRr/Cqo60VJfHqF9H3bUfFx8vokZfmcen/paRiiw+LgMiFHal8be8Xxsf1WXGrviGFXzPTB25XqREUZ5hADrZNIX0Q2lmh5SBxSvVdwuPK1Ra2gAX2vqJaRMl+NSWIqcdU6+LzPCcUWRZed6QXL5s+sfiF9xE4qMOSgikEliF6FlMfLM8Y9uyD4+/bt4PCvTZsj23mfndazJvKq7+sGTkshjBsmZMO/GPIAthGIM3hKCXSnNt3PiuTJx4qezc2RigwTQCU38EFTdenm5CCpQJJ1eJz2aNi4sfj/uB5w4uVsEaIhSWveGrfmh3BqQVoiS8QxqaPK9VQO9HLPehyuaTT8rxcbeL663Xiu8NQA0lGI9x4u3fJIzRNPDF2BORfKkvQZRvCAR0NZCV0f9vwwZchOZ9i3MPRDozBYArHnIKHuBntcFzBgjyPuIUsVxOAx02atQV0b7uSCGK/PqrCLAbUnYiTz1l4plRaYJSX2++OR2zOwjA5gxZBCeM5QseWqR45p8U18QkaTLhKqTr+hc5g50AcWuAum688UaZOzcVUSg/uCUbfQd/hnREMkTjOwIkDcGcHCmIr4yAj8e4CtpbxvkQuDFteOpUHB6zcN4JqmCB66GzqvomDsjsA0mKtUWOL369kUPEzlVsJKFSrJAtNMgZ4V2utqIeYHHSMHz+5uKRvBTwws/IAXu7UejVDRc3RqR8PesjUpWnFLJ3QxOJEYuSjOXzVO1XNzAFGxZPT5e0f11dR1kGRj9Yja/NNg+QltQHJHq25mP2jFEz8goNI/i6ZnAoqo3tjUUoxjupmkAXLqjACwaZWmAOg9r7FRmFvyvUB9uBY90yolGRdcYbqwDr87lHjW1KfSaiqwrJ/FIPfB42qEqAtXvdXHFxBzJGipBK7jFH9qAKcYUwqtSwRWdp1qEfolu+VXbWkbvWSk5mmrTuMcLmY6SlJMird41QFV6UVrgXTe2UmKeVETITAa78XHBRNvW6g3yV6gbz3nuPoMruFURDHAEwBMKdqjMLqthE7rwTgzEsghScIvgwZ1dg7J1HTjo5TubGC33btgVtX9idmPsCZC1YYGpSzOjYaby5EmGcz5Gq9IPSOxvz5V9+laRn2ot3BAaw1Y4elXm7wwpa7JyWLyB4mpGRBSBzrwIwrGps1qwLXg8XtCpUFY5Ulu/TZzh8FaJAHn3HCBNTf8SDy5aZzpuFjUwvMmrF6kX2LLziimx5440PEGV6ALqjjqgqNHGgunY9LOGNfSX+RLRMX7gEc0gBGPMADysVx3ZSlYYElX2grWVnxzSiH55TwLPqhOrCYYVnS24/5S8oKk9Q/CMKDShQag4auTFTn6SO/fjjJyqtSCkMGt19pU8fcUw7PwBLTaLgv+xc8jQSVGm5+XL9GhFYXDio5dMixBUdOrJlz/F0q2CUQMvQFbLVd6O6QkwYd/wEbLwYJaHMvznal1CI80K1lbuTVCX+hXr+5TlvRo9GI1LdKAAXBhhB1ow1sUWigCPxXWsa5Fo4fD5oTV//d7zwfXlfkLjfFYLI5oU2HIsk/CXo/Wn0Y75jdJjFQzhYXFqGhTz5qsh3lmEKdWbTY/s3ybDJj6jzYYUhU4h8nMrPk+MHtyK69KPk5mRKI1QgNmnbq9LBViz4V2UBV5yop7e/XP/Qe/LXl8/Jd9//qCQSWGH2OsQ1m5PcY2b//pUjrnu2SFQTcJlwYWaaii1oSMX68MM8XKQdVeNh7sJ2gcAtKpKjhmD6EKgjddVOyYs/I/4B+OLByFEC71ptS+F2ilxyU2Qpzxr1o4hcsJARIKb7mubtl2P3PiJOrRqLH4RIVVgIyO70LbfKsW9WiTf+iIE+zo5h4RX5UFR3OHMmTPGOCPQWL16KisF0pAfrQ+D0XQX+2HD5ssuGF45AnhbToVOmTFLLliMiZ/iKhX5+udHSzytRFi5sL1deaZKh4IY//vg7gFIWfBUPlfae0qUtfmiu+l0GfDxZgdJgqKFDt0FC24RL4PZwkOKnogLwBAjvD2OOp1Uk6r777pNHHjF9x/77bwkU5FsgqjUQ3CwT14tpPgYhqTPGoF6jRvYQxL9O5j/3nAKO7K+4bZujdGubJU0/flrlGS9D3nI7BFrfB4ufAq/DhjnL8RlZ0gzjnG+jyCZTiCt2J6u01vmeT006PtOEpHrYwgcqK7jieRLYFre4lBwl89O6kXvxVXX+PaMdlDnSVjYPEF9QImJIRz9pjpsBe/wuk0v435az/EveIJgDrJw87FSCsU8hOeQlbdUMKUDKUvB45nYKfzecjy09EysEsBg6I5u/tHCx+eT0a8seSEeUyhkEeEo7FDe2k2kMAjwf+bk5cuzAFlk//yfVLzC0eSeArd5l4k0VH994n5IQJV7+QCdltDbdBsnTXywF+MuW//78WGYgZUiCNCv5qHVlCGQej3eSO57uWzg6OPAKXDF14OtzWqKXH0AUp6VaT3xDrSsKehYaoih/7OssN/QpXKJkGsY32SEp/drJ99/by913n11X+Iqs7AJr1coknZC5JEnWdOsKoOepwl/sMbhieWMJjWkt/f653ASuDhwQlMwJ+uwwlGMCaQW9BdnJBvQjtkUEcDENzlY0G9G6hy1qSBR3YB6Rf5zFBE6ZRqXCvLz8MtnzSurgKCJpzUBk6goS5aIFQZKfDAG/njxGNnho/2L7YxjGBeCnM4j0g5H+a6oO2vH5SxVgJKFdHPxUhWMaUGZ8/I+IYGWjcOAe8LMclfoEexQyNZuJlCYLDC66aJhSoWC0kICK6UgKvQMfqkIB8N2VP3ftspfRAGZzoS32HkRYr7zyf/LZ965y19vvqGKXIJzDcHTKjlu/AZpg6zDuIElBn8SaYuRrNUCzevKGtJ0/DzCV4woJj9V7k1U0wo1yHheIsaXMcnDWtJXPAwRZi7YlCvsgDwXQIseSXR4o9snKRaatWfRiyJGYS0kZRzQPBrGKsyRjG0DqfhYHV9wnMo7ViriZtcEcbNjG4ia8bhQXAuMfEENnZkWHFvfVC8/1QMSOlUrx/dw1RZc4ODqpFCLTiIxsnTi0TSnGZ4JDE9iwlapE9Atpius6PqAyWG52ptR3NPWAK8NuRTal3tW4KQ/LgLFT5LPnblBVZqw0++STrYikdJKhQ4tsTkoUuEnk8yRLcpKP9Lg4pHADZgEpoA6FBdmzOFrG3GxaRypVMbyicoxeGIvRHhLDr7mmcBiLL+iar3c2lfyu7cWOuTAY1dcfe4wtbIad3YehNaifqzAaJdqZdwRCO/Xhx5Jwaozc+3ibwm3//nsxNt0A7a3Wqp8gSfDzX98oXpnR0v+dSYXb8QXTbQRjHC/DL0w8PC+RXfPvkAiAuaGYvIcXmh8n+BN74Xz+AqCyA1i9HtlRX4BIQTrv7HCde9RXb9gbsXGot/TqWw9RtWkqTTuSmgkFxrQd8R7TtwdR2khBUhZPUnGC0UJ+FiTGs4k0gRhlIZg1heIDSO9ITa73l9GjR6tU48KFvyI1eQsiaoKUbjJ4cztVKjIrKxP6WUsBen3F19FBvI2D14DnhgEFKLgGzOVCnQIJyYw00JjmuVDsYHSGAgcXzhlX/icbCEDFKCpvkqiDFx6KJtpQQCc3i/e+5EFtP3wS7bZAMUE6m8GfYNxUMWJKcEbAVbywwxxwccbEL70xHps3e0Gt3do1tEWIm0QAMEfY0CwaSY3yWfG/D/YkCkOO1BLiK98RLqy9og5tl9DmQBRlMEa2wsK7y8BJ98gI9EJsgP0J1Ob9+JKsnPWFMOVINXlbLO7YPgkKC7dl01K38YJq+6MfzJZhE29S23711R1Ioa1SgMl855TkM6iaI+coCqCikUyd664u6h9+aOJUkUPFCr4xzosLd2NrPgZ+yCs3N4Imin+Sp2RulA2gzpO5Ze6MkDOZc6U/o1MFX2RynAg2ihhTiwW8IhWmAhLJ3bxTTn7yo4xI+LVw02yU4W3fvgbSEPfJBIqkwkDDkoue7i07WxYFV1xH/hktrWkn+VGuQxouUI43CpPjK/ejsu99RRx32vmKfAF00ypmiXRp01Z80ZeQOVVkHosY06w0jtnjzHo5Da4apRjI72IkyjByz9gBKCamFThSBxQ4YnqT9QJ0Af03caJJV/XVV008KgJi+oUAi9WZLBwYOHCoKmbw88sWVmp++um3SIsuxjjLkQ61V8CN2lkJGZnGoWvEszu0a9pcgGmpGuF8C5Ng27W6blkABMt3JclCVG0Wv17W9XOv7PNj8QULL+oBFbFSlZIQRn0e03h8UPVgzsZ4VDNm4bfITkW68NOmrDi44kICL/YUpHg6jVpxbRq6ibdbfavgSm2I/5ohVWmLOZS0EVn5rHowJmlsy/Acq0/Mmfx923grwhf3oQCYNts9kJoYJe7oO2hfr8SPo8QBydkyxEy5YWpitBzdt1H2bliAz++Mqkikerx3QEOLXx4KjDZFqrGyjBfbiy69Q5bM+h4AZy0uzP1lDFTRZ3/0kSk0hQP1Or1Grn44UDYkHwfRPRQREitHNwtJMcVHbVLSpkh+Lx7NIjGbYGL4cNNYrHYzdKCM0U+sOy72bqfEw8+vkGdF/pYtts2hm2x5cptKDXJ7Ar3ISGdEcILk79+Xy1U3jFB8MHLMGG1jyo0pOKMqj/swWkYB0JleY8U58jHZlBIoaX6+AFrPonTwJ8mDInzX6/pLG+QhPb76Uuw5wLNYhwrKpq1uAL/NdO6URCConD3bVChgh7TkV18two9LQyivs7ehSU2evmA0igDyvfdaIT24DClMk/4VgZW5EXOimFJpb7EVEalrTJ+STjdliolzRk5ZdPRugK+uAGyOwJ4T5YYbOiGTegoRx90AwC/LBJea9xvQH6XV/FHeezzD/JT162rwgHm0gKR6a9GBaphKtRyCKcFlOxMhyF386lkth6+TB2F2jLiD0SnKgriAX0kuFcFUp6aeQvkQpgtXgW+5xyNdFXD4ondiSa38hnX2U4AqFqKvbApt6/eSlbWUaYgsJYpl9YrOP4KeUEflDxKbPCagRJdhXaK+MFSBzAHJyzD+Rien56tqFKJHbWXzQAT6FTaD0GhlmpdfCMRMx6sHeVvRR3bJvo0LJDn+uLh5+YE830EaNGtfSJRPijks3YZOrswpiLdfkLz4zXJ5+kbTuQ2p52jSGihontzzflzlYSe+WSY9evRgEZ/EPfq2HLz4QWnXwR6aWpanQwFP9iBkaLi4kZhtaH1yPUnbhpo5t6Xm09HZO8ShTbQ0u+1asUeOct26daqSj0RzptDYNJnSBJaMU2fWkGOnp6chhQepBgikurrmSxr8KwBYS5ee1a/i9sSUDGwZYBCKB+BW2Uvba9vJssXLxcHJQUL8HlbE/x7vTVFVlerYAKT4izelJsnOx2B9uwr0tER+eC1Kbn7QS/HDSNpnv2pG/nJy9kqHow6SFGoCVKz0YySL2U6aNzTODh+OU8DPtMT0P8+HJH2CMqrhs0iAx6EvKVZKgMX5cxsaSfx26KHYsGGA7NgxFTpYf0B+I1369QtRKu/jbsSANcwYUWCjWm3V7wFeNwyzxI8x1tX2Z14vt0aclHX7U2r7qdTI+fNvuFsLHwWwWMFHgGUYuZZdUPHHhtSsiKUIcYAX7nIFFwELxugVo1YEVRQPLYtFQQ+UfK9YNJkuqS+q1VGdgeYWbUtQoU0iRDLng3zwCwujWJ15yI1/OznQTNl7IkeF8JB0UNvp/2zzAOUYOg261LaNy7EVeVuNWnZVD+5OQn10xA7ZABX5LHC33NGcmhpYudBkquwWPa4e3uoL/BSEnB5+6SWLs4+CFgPbrzDq0/DXh6UNMDr1Osnx4YWfF/cBA4ruSpBlzZydoOcTZ6f4SuRlMdJDo+TA3LkLJWlsL2n12+MyByGZCCCwBf/8K14uzgpU7UVTQ6a8XFBRSIkDqrP/h14wJKVTQNXHpz0iVtPATTqq7pxI4D8JMhM1sE4H+6Lfn6n6jtWMTH9S3Rxi9oXgivMg16lhQ09UEuZIelauOJ3uAyK7q8pGkndVaMx3MkQGRfr0R16QP2Y6CzCZioyN7xGD3w1XAEOqqos8/zyPdRpzSZfRHz4idvVMaUPKXKCtoZINY7/Gbt3skM60x9/zKUS0sFGBLVtmqh5kRpRFhqSmoU2kMqYf2Q6H4LRNmyiAygNKaiIhoR4+23iQ4y9BMcNIALxvoNf1kPj6BaL3ZAvsu6dg9PP/xB9m/iCTl0Hl99J6nZ3/GdeNGTCCQHkGc+MFkNePugi0Nh1Ms7kRsLlP9GvbPEBksRLRK9oxBHPYbigEf9OG1UN0i8DHy81B1qCYgqKu1owccuqRMSVYFqMExCJINBgYiJpv1swqwNqHMDonAB6ZusjxxBIg3AeAfo4Z+fQ4oDnqYXEf5kqpscI0IhEeT/ooCI4lob1zBr4AFiTHHhUvNEW21vi5KlzA3octuwxRD95xRe5aI5npybJ27neSnXlS3Dx9Jaigd6KHT5ACSOWdhyOI8+4eXiCy77M6RCLErPyQrqNUAIEJe/ehEE89uBOJ8Gw5w3RbqbZwoSqJm5p6rQIK5ikwNjsmV8rX1098UPUW7NxKvB57TIb/elBaesWK75an1PDkMC1Go2kvaFN9gHAO053Dhg0DOJsLcvo8gJWWINI/rJbz74E8qObNExHJiZFFi0yRI3b9IVHciPiYz5u9+g4c8AZgSUEq7rTcf38vIUkdQbyixupFho2AEN1wHMpWZMWni1NevASO6qpEWFn9x7QeQWR4+BpElvB58Q8QxuPw+HQJOO0q6sflS5c2Uu14mhSItTLCR5kxaKUWGvVcp0wBKIHjFy3aJu++ux1RujQoyQcDHDZEu51QgLXRiG7NVCCUemTHju1V+9/2zDdoQ/QsWPWFw53XF0wdLN6RqCLsIb7u0qqBm0obrNqTfF7ndSEcvDi4ssNJNwZXty6Cq+2RGlxVx3caP4ViAPd/1sXKpRC09fMwBX94fH63vAGweCPFGyqmCC0pHfAmKwXgv6wAixIQBrji8UrqGmEVYFEWfg36+hAk8Y6DXCwSzQxhLQ5sGFswHFWtEXjqFOHiA5PPyJcmAFYU66IeDfsWJuFkZ8EpBGAM3/ECYFSWGONdSM8RO1fbVD1YVT5heDQ9JU7a9xmHlGEHdRgKm8Yc3Ss7V/8jaUmxqC50Ev8GzSWgYUv17OjsavN0SMQffPENMuOPT8DlOQQggnCUBeM80CpPqZdTgR2FdoUGbKP0pgyARTBQrKtO4bbMa01f6CltQwvpVWodo1eMRHXq1BkRoAmydQexS6I07xMq+6/6XA7mZEnihyaQEx29So5BjuEqMOxPIATUDc31GL3qyZwZ0QhLG/HF5ZivvHIahHIHABw/iIj6Fep4nZ1QsVeQrh8/qhfkDLwQoduJlafQBicdx/BUQI2cKkaKCNTGjj3rZwJFAk/vEBfc8TRU2zDiBwyojMD0/ffXg+s2qMgBqWl1//1FFqEQshXSnPsxRhOkR00Yjjyt+vWTMK/d4F0hnQxAzChXCzidFYdDh47APL0VP4vnTZ2zmJgt8EErBYqjo2NVapUyEKvn/ST33VD0mOfzHW/6vF3rq3QAG7XSeOdK8UJf3H0ybbjraLpOH1bDh9QZPeO8cT2pa0ZNJfbB01Y9HiBwZ7UfVd3ZreGqgSFFAgHEFyxq2YtUoSVwZcyS2mRsueVuY4qQuKa4xAPFc62Z2WWs6CZsphoMFV5/ENo5CQIrapjQeGJU5uXEieT4YOsFc50ZVhUeTwCb3w6q3coZJKfZq14+nvixI6+L6NET5ZDMhQZCd4J5UB6nJIcUnaX1dxyTwK8mG6NHsbjr7zrkivM6zbhj+6VNz1GFc3BDhIvNp/mg5QF8JERHSPzxA7Jnw3z13sXdW4EtSkL4orWPoxMu/Fas/5gpsnbBn0iBdYFkwyeq7QqlCmiUK1CvC5jp5LOTS8RUFVsEMoDDyjnKHvBBQM7KN/KYLFlkoieiK6JI3MZ66j59BVa8l5cv+EcTlG7UM8+Qn5WHXnuOSq5gxAgXFSFjlCgtzUO18/kXJYhsEUPiNo3AYgVKEtmMOQfLTpyIAljzgO7T/Wq9Tf+xLA/n3qrVKaTZ/gXHaSAiTSZwRdktcqWYFTQnxRvjqowe/8PDGT4xk/eCn7LxyAFI64om2yYcSHV7AjZMW6ABqrSwWH+yf39LRNv+RTTKBxpcexHV2w2x0QykP31UL8l+cDzb6Sxc6FhEEoIFBO++K+iTaC8hiVCk3rkLfpqEyN4CpE03A4AOhLREezkRSX9hgufZ+PdF8MQf296oMmJTYkblGVUnYA0LcFM/yvzdaYmoVixKuhm55++d6VbxPJ9AHTw8G/GGh5oqterK6WWhWwCFbLVVrwfYEYBZM2IR4gb+DRvGG3bysdiBYDHSefzOnQBvig3JDWOgn4Gh1Yhkj4D+YGnG35NliITvj8IPdIGRdG8ozBvLzJ+tAiwVUUB4jRoeZOWrH5xURAWwN4ELCe9EfjH4UeLKHdCgMDdPhOjSEkwnzh+2boiIcTtHAB9OlEZdC/74haM0sle4t5J4ILGeP3D7ozIUADMnR5qPb/7aH32yON8EHKdgaDVHjl2TuRZJsUfEN6ix2BE1nCc7g6tvfl6u0sCyNoX6AE/si8iHYZknkyQxOlKiI3fJrrWzAbqykRZyRh9FAq7G4hPYSNy9AtS5Ue390Q/myDev3qZUwQl4bgeviBaDHFcQQ1cMU8EICBjBYrqQxXNGASEr2Nibj3wmpqOoos6WOsWNpGyD5G6s27JlC/hUngAyUxRwIX+dLWjGjcvD96a+qkYkqKExtRcWNhxViMMUGGTzZoLADRDZDEAOLT4+XkWy9u93xHihAH3fqFY0XgbRyzSMxf+ZekwASlyL/kBsktwIebjTp49AvysX4MhRSTtQusrT0+LuCigVruEXfft2RcDiHNkCh6k7dgSicTVb7uzdmy///HMcSw6B53VARRFzsCIu7hAAZxB0u9rIpEmTlPCo2pE5R1ZXAtWSzE+hV76lUX+Lvn35xdNyc2AHmeeNm6SUeUh35kIPazw+u2ZKB2whiPsQ2lD7nM//+JsQ4osPu8D4Y8j0AUP6DcyWG+vZyJU6OqmZ0JdLzFHVSsW1/oxt9XP5PMCqOv6+98bvPT+f2m5JoM2w4EtTX6r/k6RcA8Vq8wGa2HvQHGAZs2EGjUR2U5QKzenBkTOMmTYagz22WvEeksQeJZlVgEVyGMNv3Vp4qV5SLH+kERoxzUfL5C94gfFPpQEEwBzB5OePGJGlYXkq15mPkJ2bAlFUSP1nHRrFYvmQjr5FfgQp89AZyJMPcicoR8+7St51mmCZMerZZ1Y4WjKSz3h3QUfmYizzvKml7at7WaRKD/at7sMWOR7V273BASursSciH41adSvclWKlrEZMijsqx6E2fzI5ToFpF3cv8fABdyesseTs21akQu84SgcbNAhF1NJekbc5GCNWDPTw60WCNblEhsAof5ORuVMq6ozKlGabIea5GpLwbPdCHGcY9bS+/z4XUShHWbJEzhFBJe/qbsjCr0RKbxXkEgYOHIiozw6Icl4PUOGueiRSkHPHjmFInX2OOePiHIjea0CI7PtH8ntgYBhAoDPWnVZgjREwKqh3w3N7jLMC5XkZAFxURx8HLYnbb29nTO+cZ0btKCKfDSR4YOlSiYNznDG3zeBRkWRP9XgWCsyevQgRukicVwQiYZmI+KFSBs7MymougwcPVpEpzo+aXdeyTxGMgqOGnUKl58Fd+RLeuT4iXKZ+gww2Gvhx9mwQ6l9EH8MjA+X2AiS7Z89e9H1so0AiJRwcnNyN4WrUM9MAvLkriTPBCyBEqgAAlMtJREFUCTdDTzMKGJLncQipH0a2+JvHH3Pe8DEdxGdt5fMAryUEuyytr83GiMh/WxIqJeNSm/1wPueeAXBFnhUj1eTAdSz2nSLpfVQ3f4kHRsgHBuC2JKm3beShNMo492RQmShIyr9v3pjyd4JFfdzX3IgfSHsyNwaGSjKrAIsDcfI09vgxAJb5YARDlKs/jjAbm1gyTcj0HlOBzEvGgrO15VAaKqVOQS8iE2DNU4E1NgAlyCIYM7/DNB+br1l2yWPzcTIrXw5Dc4IyEJTLt8XIGaNRgIwIlk1Ha0pEiz/0TLl1G3aVLadSZdvEHt0DgdE2lTI+uVnBTdqqh/mArFCMRRry7+9eF2dEgX75ZQFEzLfgC2yvQAAYVUj7LZUHHggFGAgpjKYAgwC8mDSfKIppVNgxAmUOCsyPVfw1BTB50f8TLHKqrA8n2QhG0rezcx4I3w6QJpgHKYP+6rgRERGKzH4rdCCoUL5ixUrM0wngpoN6UPaBzZXZkodgr0uX7gBh3ZGuSwFY2qcicmyXw7TcmTNOOMYZjJ+j+Enj2em5wBaBZMWoGCN5nNfPyOsxskSulyVr2PAMwNIReeXVr9GIOkLiEP2KRjQtBXlFAiu2x/Hzawipi0bgZfUGEJxc6EdL43kiTMYm0Iy8UcqB1DJWaq4/CDRbYCTdo4OPopzxXOlzpi5VwNUsTBgXl6b2yIXGw2lEBC+/6xW8f9UYpkY9M2pCHR1rRtzUuqF74Y8r74qL3xmnZuSpMnFbepFZO86Fvpz8Xt6ItwvzqLWuIG+vMugstdYBNWTiCbiuI1kla/elKODewixVyCwW826MNP2yNEqJlfJ7t+lQapHZT0fzaBrpT4xuHwHOYICG9AHSpYhFSHVi0MfciCm4DbGMJbMKsDgvcqoaIc/JCsDWSOMR3GTmnD0Av1xTV0Yr1MfQL8Nv5gDG1ensQRlaYxpxEwBXs2A0UQz3UelCS5OytIwnQbJ8+8buSpNrMxxUmsiXMQ4VYDNzclUEbTf+KGrC3SfTa77laGljnFNlPcdCIqLHyOsqaziL45Cv1aRNT3F295Xjh/ejuu8iRKVuABDIlxdeeBOcpta4uKdA1mAXoj/RKqrDNGBaGjh7QX6oxgsEOR3d1KF4fvAgiMkIaeVui0KL9fZFj8fbDyKBAlMRHIIRgIkbkHf8DmqbCmBRgwAAhRwspteYugsGcYtkbso0UHLhQxDBspCHtLOj+NxDuPsxEe8ZXbvnHuMIptYyTJ21QmobCTXZBtDESNf/cDwnJy+V9rv2knQJae4OBXSTFMLvv/+meFzUzxo6dKhKQTJN9xP62cyZM0eR0JOxMdORnAubR8ehVJFzadWqpbQCL2wQImTcn1V+y5YtQ9pytET9c0pC2rfFMhfMwaS+PmjQ2bmavyJ5nfuSwE+sRBkGGiN7FHGlnhgJ8hQdpREw0hS4Mr0s/N8LaTVaWIv28th7syCYWw8fXuHqWvVCdaLA9EsyL5R1j+0RIJvxW8ZeaNrK5wGW2zOSZd6kt3wjVf9e5P0wkqnt/Hsg3+yCvhD9CikYSiFQc2P0iTiAxtf5JKNaMGbt+KARPNH4m8CbKUpRmR1KrVu6I0lxyJsgCGTJrAIs3ulx4ieQKiRXiqWM5srtxmCs0DHMHFxxmTkY40kZVRZ7jmXI0bhs8QOqZHsdlk2Tm2WLcV4M8Q/v4i8Ho1C5AYJaaWR2ktB6tfKSbcV4YrYcr6q2idi5CtWDfatqeJvHzcpIFVcAoOqwbgMvBsB6G1GpN3ERvx6RLAfwfNLRuHgkhCrdFCgo6KWsIipubvkAKFBDzo1HBR1aIICBvglk+MijaRKbfUaWPnD2u0cOkycq/tyR16J+FSM0FMNMBYjqDMXSBGhKMWLD6rggpOUYSeN7trm55JJLVNSKESSCI0/PW0AIR+WZ9ymAvG0KXBAzKENaTjHG8YaAacWK0+Bw5eB1tgJkLhCPSkYk5y88s2IyLOykvDN5tqQDyNjbpyNlmAYV9L0YExW1AE8PPPAAoiX1FMGckaj9+yMRVVuJiFdbFfViJR9BH9N8jRrdgv0boFqxYC54YkqS0dCFC1eJa+jdcvuVZzlcjLRRQoK8NlYZktMGzCaPP27qSXgA0S8CLLirSEQQPafli8/PyO3xL0v8Hc+oogFLwMqYBSsHab2GTjKBK2NFHX7m7xDpEwQI/A3SXK2yf9i4HZIFSLFN7BME7ptT2Qc4T3vw740ZG86/qq2m84ir+vzLM/5ctMshx48BGf6d0s7edpd9xNJEY41jWBrZKsAySHs7j5i6VLcLc1eRKkuD2LrM+LIwOkbQlhF/SmljkUTPKBlbWdhaLklU2QqVARsOpABggfAM1EqwR38ykMFjMOrFysdB7X1lHcKH7LhtGKsc05B2PB/GP9CEqEPSY/i15+PwhcckUZ3Rpeqyw3s3qkPt2bMHfJ2NSGP1QJosS4ErrjDAFT8/fo6sLrz77iCAkSDVB09FjlDZt2n1Guk2j2mos0ZwdBIyCunIc50EyEpDPovcpGb9h0lyXpbiUVEs9Nlnn1U7cXtGqAjCvgXpnGCLkSAnxR+KEQqn04DFkMZcrNrzqAXMEQI88Y+KqbWm7gnyyvNB4gyUQnHSXMzZDiBsN8ATq/JWrECV4QvXA2i5q5Qd57BggYsMwLZ/IGJF/lVxy8jIBC9ssUoZErzcdtttSm0+MvJvVPndLR9/bOrVyIpHSjB06dIDY67AMebCZ4MwnAnwEIjh1BT3jGKkLBhgmx4apRqYpqSR3xWavFNiFooEX9QegE9k0iV28teix8Rzq0kewoq6htp/wX+Lhfiz90WXq/cX0n8sBWfLDAoe8oq7Br8zjG5os80DjAjw939Sn2DbdqgBW1FXiRkZNgeu6lY4xYMWNeD0a/QUWBlIbMBgDqNOI1EdSNxRPPJUmSdhLnRafFyrAIvNFA1j5IrhMkaKcN0rF3KnMjwvnPzCDGznCwckF345sVgO4xgkpE/sXTZhy8kDGigiKqsOyRmjrk133FlS/JQktZP4Q5iHKo/iLTI4n9aNvFTjSOM8q+s5EZIH/iHNCtF1dR23+HFij7LBc+vii6vkfR6aTu/ZugYAoT10lnaq1jRsj8OUm7kRv7CpMLk+RjUdoycG/+rM2HGyN2qIdDPfCa+dMJATUn3+7FTM6jrsfGJnsoSO8lHpvfz8bJUKvAFliKzeY0pwIRQ4mX67hGx58KaSAWRyWoVLfnyaNETq8rRfgHw8LVjuvbfYwah8ihzmsYHY9uU3ZOelr8vIMacUeHvjjTekJTZvCWL8iFGj5OGHJ0FJfS1I4O4QKG0ib7/9tpIy6DF8lPyxazeiUwKulwgJ84a5ubkq0rvxns8joJHwGsRRvbz2IUUZLkCmkjO2PX5NXKAR5giwei9A2CxFpqdo600IQxEokUdF/TDKP5BnRcBI4zaM6tFI+/prc6i4bt8v80+YUoMXXyxyxZ4XTHnGUdep7Qr/MxBwwYL27VtLF7yOjz4qjVt2KNzsQnlBjT8jzcWbNvKLtNnuAQIWVppTsodcl5pulATgn0BVg6ua7oeaOD8WtJ0qQCgUNp+zkcV0FD7HzSMI7uzowGizEUCydA7EOLzBtxWU/b0mRq4c2MDSUGIVYBn5SmMvY0IEQ+Ux8/GYI7U0efb1Ieosnj8t6XgEUYxktWzgKsyH7gNvjI02SWpzgFeLAytjLBLgm+DOswuE76jNUp1/LJE710jTGpAejIWYaHi34YZLqvT56IEdiuz9DASorpl8pfyBPjh33/2QqihkOvyffwTVeaZeeGy8TA0ncxs82PSOX/xMOzfzVaaeLlQeZRdoVMfhQGp96JnjMuPHeuIa7AmA4qzkIMi7YiqOxggZI1hKIArimj5UMOWD1nGeRLcdLle3bynSdpIJpSAipsJsDKUhdNRocIjEdPWRZyc5yMWmvaRr35GyfcMSCYb0xUz0xIkDeSs+/hBU151UdSGjZvHxQfLlV3Zy8LgT0qSmCsb33xdU9eWDkG/5T5JzZTrv999/V8/jQE53ghQK5aYInJo2RTFI08lILy5V0TqmIFlBSDK/YQSsPHXiz44d7dR6piDd3XEz4u8jvSb3kn4YkhQ1tvnpFN1QOp3cLvmXmfhnmzbtkCRUh/bEuPNluAwalAvB11Dpg87Rm/DBtDqw9YIEWIZ/+UxtHm1l84BRneWHQqTaYMHQbDxhY6FVbTifujxHyq0wgkUu+fieAepUqShAQL98Z5KqIORC6mUR4DOQRGoUAbStxipEa2b51xxbE+VhXhaBkLXBuLz4PhT8pGaWOYBhJ2z+UVkydrpnNaIim1rawMqyaatiinTNtibdYL47CapMFTLd076xG4BW1QsMqurBqIPSfTjyNefROI+kmCMCcI8v05kqj6ZtXDpDne2oAf1lH6r6dnfqgjY0UeAuhaiWLxSxBC3KJnMDvuIfAMGWMipuUkcAqUegGDkD5fld/x6WvAbtpWEbRIh2mTYbNeoyCIt+BgpVf7UgF3yr+uGIBjGswwdbx6CdTlLrvlL/3jtk7amL5NKtzwi0DSD+9LKJ8c1SO06AITUAui8QzTpkGl4ef3+WNG7VSV67+yI5mJ0uN6Bi8VeUQfqsWSOnL71UXnvzfQSeEhFJa4cIXSyAUDwI/2k4/yVIZ0Yg+pQJsOMJvOeI9GCW+CAiFwdCPwGol5e7qoakFhfb9iAfaTpqdLQMjl8p+993k1b3j1GAh7pd8zAvNq5m2vIP5AXdMGemGidOtFcRQhLYGcmjaCoja3gJbhiXmR5sHp0++U754288/7ATfLH5OL67NETk708UDiSl/46KyTzFHyPZnn9DebnZBZ64cJ/Y9aI2iBzXtE9oxa4kaYrip7L+7p+P8yChmdGReFyk65rxN5W/rXXJTgMwMaVLQDUQdCFDvWAi0tLp2fmK/E5FBCoNsGMNVQqiwamlGgI125i5K+/ftFWARQdbijKZO579fii5cABRI34w3J4PToYVhvycGCEi/8ncjGiY+TK+7gEx0hYhriiFPAMn8AJqXEHPbskySaYDuQ2jViSZcrvBHfxUONCcdH92L8uv+EWi490h48CKSXU4LONdqK1SEJZHtr6U1YMU47R0btb3qtw129bMk2lfPC+e7i7yz9TvJDSsudz10s/iG2CK7FTu0UyjLf33J/ViOVJx4998U5qjC7M3xDZjYxsUSY/ZcuwhQ0SplVN8VFmBSNOZ0WMkNsbUVqd3xGqxz10s3d+4UlJS3QBeNgLEbJUmEERViAWNp/PBb3JhBItsdZDNhQOD9G63K0qmH+8hfr2D5ffcF2XEG1+JryfuUoYONeXaqMA5fboCXF8izdi0az+58+VfC6feussgWbvwT0Wep9wDo0lkmB+DaO+VV8yGsCj7K85XwPbdd98DSPEAUf46VR15/PgJmTUrDcR/U0p9+fI2qHw8jQzm1EJF+b/Rvfnqq682HQ9f4rbbfxfkHtEFdaW0xLEeeughjDFLpWHJ+WqGjtMsEDCiWnfeCW4WwFwIosWsJCTAoubV11+bTtHgwjGt6O02HanEI3LLLdeqCKBxkj/8INAWY4/IA5CGOK5SrrFHDxirL9jnmgIQ+FtWmy6UvIgdBU3EWjVWTftCZeDCzLQT0091yWrTd8ZWvxOHUEyUj2PoLsObIEqvEEzZISIUhIik0cuQxXbNgUEY5TKyXAz6lFZIZ20uVgEWGfjMVxJoMMLBqBKdT54U+3lRfI/XDQp0cR1TcfyjJseKk+NJUW+CUaLSgBonx23JnzqAysD4VIT18H5Qez9wa/AthnFMOmg7KgGZAqRR94KhvzHdA1Rl4WTkQX9acqJIdMyWP4JMcLe8EB4MwXkQsVIRnuTVfehj5I5zrUwyPBsrV3d6MHLvFvnvzw/lwM4NEtq4pezftVldzMeMuVRVur344ovy2bNTpMeQS6DW3kZadewtTtC0qizj98cRKu+dOnaXsRDUNGr9TyAd19hgk5fhYFAoUCKk7NlHTSzDjr/wtey8+CmAASxPR0iM5XHLlslFCI9t3LgQUg+dZHTLwYJGegJ9CMmFBpUXdQmQfsuKShZHgPZ6iM74NA2WazMBLGaiT9Wzd8useVnqOKM75pjCO5Q3p7YB/gBenzhRbgaTfMvK2dKl/1g1lc4DxsuCv79RgESBq4IJrlo5R5o2iYKEQwMlEeHm1gJE+0HIanZCdMhHbbV5cyNEmUxCq0z98VybN8cfffMrlZzDbCh9suqw0JjzA+leGcNPWOeOP0QDgPH4LCo4fPiweqaeF/9Ob7zLVV58cZKkHoR/EAFkUI7ZVQjCq1ZF7HEYeWCVeANJ3QdAx3SjuUG6C+DKxOW6ARG+KFRwhncFWL3ALRu/jzVBG6k2Xih3gKpRWwAWr2l1DVxdCH+6bADNByOQ5kaQRY4Wr/fkZ/M3siWAFovuiEG80N6P30+KDxNsES9wG+IgQy/UfDzjtVWAxR8JSjPwAMxXEkAZ0SE351MyEjIJrNIj54ky9eZaFAagspYGNA5u/sxt2bTR3NKz4hR44glSHJDHK86pIgDceDBVEdu5XR/0HGPloyF/b/5Dw4hbcSVWHo/zZSQrIydDnECyZDqTQIvjUZ3+dOIZJZZqPrfyvCbQSDiB9OBFBdGH8gxSxn1yoK7+6XPXiSsUxa++arKSKegPAjSBDdXDKWxJsvl1110vs399H/SlXHUETy8fcUN7ma79x8mQSbfjtVcZj3x286gj+yUXkaNHH326yIU6GjmpPgA47M7C7B6lBDKQqWNTYxS5oa2LiQBOIE88M2jQ2TEZBUIRniBAZDKoljca3QGPgvfO/qYXzD3CBiC1R+V09sprBA5VzrE4ye3eQQ7/vVOiWrQVv32rZPAIJwE7XKUZ6008I0EAW5KcIJN+v0MBMskoABn8Us2fL4IQWgTSY3kYf9+W5YUAq2l4Zxl68fWyaOb30gSk78Pgnxl29dWpqOxroCoKc3NTAKY8wYvyMVYrHhpV7GnkTJEPpQykeQf0CKS0wl133VWwsNgTgGJxIzBq3bodiPD/oNJwAXoOrlGpQuKlVq2aQvD1OwXc2IibRu7bwIHZ4GBF4LPaL7dCO6w4uCKwgkA+iPUinz33mmwFKht71T3Sf8x1xQ9/wb1XBOgL7qwr54Rrk1QDgwFVleWoHG/qUcriAfK/+ShuVCcgHqDKO+lEBF8MPh1AFo1Bn9y8M4VBoOL78v25v8gFWzFvSeBS3IZ29FMhtJUorSUIqUpjiO6HRScUUmR1CaNjlkAbBU7dnBykLUrhqQzMiBpLf7kt0aYBtlJLIKMRZJl4YngB4x9QJziSar10LNXoK2psI+MTZOKrVHQsW/dPT02U9JNp8uorLyvxS2O/hx9+GJVtbdVbNvc9dOigilTuR/qLrWGmTt2CqM1xmfnHpzJv6ufSc9B4GX3NQxIQEmYMYfPzznX/qTYq48YNKrIPAVZwcIgsXmwKDHE6bItDsLV0qek1ueusglu/XpQ8AbJ6SnGcIGzgQLPhuAE7RFsxniN7EjJV1givp/b/QGKm3SEN2vaRK7sDXEwZwrydqScPx+DtCbUJmAsDiVs1QQTaSVy2U76f4S2Nml8lo08y8/e3OuLwK+8tcuRJtzwj7XoOl6DQZvLUDX04IB5nAEoGQ4cqAsNdjnPaLD/+OA1E9K6FlCpSq8iFYuSK4ApFjibDnA2jnMTo0aONt2efCfxI2OIDXDTDPv98ieJwUbSVnKt3IM/Ov2+Kp+7du6dAKsILul+cI1sV1Zfw8ECQ8e/D5+FsDFP4zM+DD9oJKNC36tJPxk15xLTgAv6ffenW70+5gD1QsVPnn1xtMaaRLHU3qS3z1/O0zQNGUInSK3wcTxSFCYy9SWniw5o5WFvBnUjiMwclRHNk2i/amiARaFtTHUa4o64bVsCVMYflIEkSSPm4O6gca3fwuUzVgaimwh8uARTHstXYe4xjsgSbxzddHm3d2/J2TA9Wt7ioX1AjNZl7oTVwObQPKE/AtBEjVc7m+TVsRV5YOEjffJA3TqHKhx+OgibTt/LGG2/K2iUzpW3n3tK53zj0m3OWzJMp6DEYKK079xMPLz/LJ42lJLj3RwSp+PFY0efk5AiwcHZXFuqRa06gRZoTI1WUMaBYJqSrVBSLmTAa+emFRlEqajwwBMb8VYEx+oXgFiwdETII3B7tJ1u3mpoYb2jcU0ZM7iKnEdWaBwX1k9CuGoW8XJHGzQzT0MgKh8S529xpcs3M+eL432xZ88V26ZTvI/XCWohfIJCgmdWr5yBtuvRXS57+ZD6+f6fk1XvGALTEgSPljudd4J+NQRbzD2C4REQR/VAdCP2pSSZ+GQNpwFEq3Wk2LFTt7wCom6rkGNgrsYgx4gbBVVU1QFBYAMpyctKgzN5cKdUzXdgX65zw+X32GRXbE3Hcu3HOrur45uOh0NP03eeXv5gx6sjKzzleDcWpNl0Zi51HZb0lr3Qu5GDMi3kqa+wLZRxyayneyqqvmm7k7LQCB3g/KC3aLlwPMGJNDTxrqW17a66Zh3QdwRW/60zPkUzuArAxY21stYEr87kxP1qaMUe6HBWKM9FIeibmybQlQRfBVXmMOXbmV0msZ/PpivzdMz3I3oMBDVuVZyoV2sc/EOEQ2Ny5c9Uz+ThNzXrJqYXF/kPmCxEvNltugKq7pwEGYlB99qmcykqRXz95Wn545yGZ+uVL8u0b/0PV3EiZ89sH8t+0TyXuBICOmR2P3CPHjxyUa6+5W/UV5EUbXGwVZDHbrPAlARYyWWobtqAJStqDqjkTsGJvYgNcqR0oqYC0n0IBH3wAoZNgk1S5MRoI3kyFkaxNwU47u9PgqcfKXb03S/eQE6Ar5YGgbS9XIPf4FlQ5pwO8NEJH6EtR8UeV9SKGddSemh18s9R/+H7xXTtHRnw7WcaM7Sr1jx6S9NRi25vtHNq0tTRoHC49h0wqXJqf/x2iWF4Akj6IGM0gt16JglKqAhJVSAWatMBIPCen3jA2i2YUjvIKNGT8ZOazm+SHL3NkVUxzOdOwkZx56GGJa97H2AXYcACkGbajSjNAteZJTXVGBacorlerVs0AoCOKgCt+Bt9/jwjakoPy6dtFLyAEq8wmUl6C2DM42E2ikQK+kI2l3fxdJLdDW/k9wCxBVWdFyj+7onsSBA7t5K/61RVdo9/VRA9U5Npd2vmUxMGyCrCMQQlODGEuNju01bzAd+oCUMLegdSkYi9Din8WN5LQS2q+amxPNfaGSP3Zapx3REzWOeCK86ICry1mbMfz3xKRds5YtoxhbJMcd1S8AxuqKJGxrLqeJ978jDqUcVHmxbZjx47nHJ4pI/ahY3SCTZbtEPOjGjiVCRwcXBEBuwPpu92qQTP7/GUgWsSx2rdrLRk/vStLv31Dnr9tiPz83oOyY90imf/7hzLttTulu6snojHjFFAiSGLa75130nF8t3Pm0MA3Wy695Az6FCINFYxtGD60ZtR1QIWcMuasKFdurvUAzSjDyCOaMGECUnI/yvvLl8kH02YjipQvs95+QBYjJdrqqc+ky4/rpP/Em1SFX0uM9zdY36zCM2znbnvxC3MTv8nDRYj+0MdwPMhir+Kv95fX7pDsrAxj03OeT58+JeuX/F24nGm4Fi28VasbtvnZuvUTTD8fESoTwMKUFM+JbW3AazekvdT+HTpARoLVjzDytLyGdpPQZk7g15kymt//YCenzpz90961yxfH6qxSgV98sUP1HaR4KvnxQUEtcY4H1FjGf/wO8DNq1t1X7n7YRS1mYBD4UlUaQslC9WPct28HVOCXS7seQ4xdL7hnktr/2xKv1dsr6ZMnF7a2GG+a2ZHE3Jjl0VbzPFDeIEtFz6TKvg1nTiP6AU4CSenUpCLiv7RvsAzv7K+EQVkqGRbgLGycal8KvGTvQRLcqZNSUWNUztYwPjlflRWuPrxrrTQF3+d82Pa184VxMzY1prHBcYhjqIqM7N6tFkkOevsdfflHGVp/hQoEkeMUDQVykoBYtMZCNdJ6eJFlqi821gXZKFfobnZQF9kfIb9wHKjsdVTobV41Vz594SaZ/duHkgMK+As/TZUvv6yPSjaRP/80EdYnTIhCyg9X+OL20ENgTn9mWsrQUwFPrPhmSlqBJCVO7OmnBWEdU+kdUSKN60DeNzdyzihhQFJ/RkaC5KUvlGOrV8i4e1+TLv3GiLd/sFx8/ePyzOeLpXGz9vIHGj5/g4jWdpwbLXpztAzqYRbRAcjxRCViFMDW9ajQ/OqabrJi9k/AhOeCwvr1neTO574pnA5V2R+/+16A2Rhw5aco/ar1679CQ2o0kY0spHypqj5WRRrNmDfgA9i/fxd6DCapPoNos6g+E4JgRusgVK9ku8jhOgVy5s5Jz6CPISORI6V371sApuYgCrhVgbEvvmDArwXeHyycFz8f7sts41V3+zJvrNYxoMfvATVWhw7Fd8ERHM2rp6hz7dR3TOH+F9oLyrvoyFXlfeoekMypLUZKhSMjBGZmXC+Mm3OzVUVesoBKW933gENVnSIFvNo3MZHOSX7ijz+/kCQH8mEYiWMkhjKXac1YQkmjdsUWdLBPR9quOsxUhnvuxbI8x449tk86D76sPLtWaJ9T+XmInMyUnhD3ZMPgOeAaJaJFShu3LFkMDMKUD/HDoUN2MtapgfQc31Ydj1GKodv+EBkcrt5fdZVpGsQt/CzJFzK3UC7A41EsZAPjeHQVZsNlilwei49U1CDobipQx/RTE8gVeHo2MB/C9JrEKqIFa0bwAjL6bpCr3aD1ZH/FFdLoURyVvV0IID/6yNSMmWJOiNLx/EiMp+VAr2kboljrwUM6AEX1Q8g3egyZKH1HFpycaTMFtG6DLlhKQox8f+9oaYOwW0eAssEJKXLmpnmy95InpfVPT4kd+GO09s89J6cA8o5C+uE9pE/3bV0hE256CgUBjQtGND117HWRvP4zECpig1tW/CMHvn9D9hyNFA9M0hu+ckPU7PPPP0D6D+eChjtszMwIFaslb74ZXeABHvn5MXrVpk1LtOARAb5TkUGC3+joqagWtFP6W4zY1UOktv3fL0n7glnMn++FSJgDWhX5KsF68rzq1WsA0BlVsIWJA4ZaAFVNyIgYXzOIRwoaQRcLFVXwE3/LHs+9LW2fu08+ff5Gue2pz6V9z4sKx6nrL6iDRC0+ytBoqxwPsB9tm4bulTNYNY3CqrK0rLMH47WJIIsFVszMMPtR3Agi2XvxjxXRNULSo/j89PvK80CVAaxmwa7SsQmuDqUY+xxGxOAqWII1KKhkogJrWIBLkabNJexWY1alJkaDDB4EYFKv2ucUXSD+6AoiNxW32eDXHfpQdl27yLBzZnP2AskMlN2bbxSpRuPmjG4YIuLn7I5GzDJ2rAIARjuaEOzAqMt0MNYpC9GqlSMEP8EbmhkNYnWzc4Zg4z+S64nzGDFRG5OMzwkhBJYCztW6Z16AJskhwewkBFV+HnvjZEhTL7l+6VJpAVRix3mQyAVA4gr9EobNUqGkmQ/y+3tYdqjPMGnTa6Q0SToufcbceO4cCpYwouXcvqc4bVoluxv7SXbzQdLm/YnitCpCYr6cKSGXAwgCHHUnuATg6AXw0wGyBusgo7B47SIZ8PE8cK9aFhnfyzdQvR884SZxdvOQlTM/k3cRsQsBQX8n1rCq8pprEhDZek76eEWIR2AjSFl4gD8n4It9rtr7XAvAxz6Kyckfyr//dkZBQk/s6YzT3YfoVwOIzr8NtYmrFaA2Ds6ei7t2fYmMajDGD5PIZ7+TuGfRNeG1exCkPA3tqzNo1QMtOl8TgGYlIz9nFjsAmysj7YtFlQRYLJRo08b02Y6GwOunL9wij7w7QyhRcSEYI1ebcbNn6QJ6IZx/ZZ8jMxrDO/up9maVPXZ1j8fMB83OQiSbkS3KH5HT3A0i3GxKrK3uegCxiPIbriniALQeHupWhADO8Cc5U6UZUym70VQ6CGrwJRkl7A2rTSFkY86HKS7arrfxtlqfD+/fphrx3oPcTmsAjBSEI9jk99dff1VcKkaYmDLMJsvazNRvg1mpv7GKn7lVA4AyUkpqG0SMxkDq4KmnnlKpJDY6jkAYpEOHXERQooCZQi0OxSpCcsAoyTX3ntny2xdp8utXGbJ/4MWyGzmwF2JPyPpbn5LHftsiza65X3buXiWLwLq+HqT3mdwJopdnOADL3BCCSUGkazMiYz1Q2dfgtd/lpqe/kT7DrxAHgDZ7LCvJGrfuKs9DH83u/dul66e3iEvrxtL066dk3+lWsuaVxSY0wlAPDVGxGyFv/nZcnLT3cJfZXzxtWm7l/94XXS5tuw6UtsMuVeCKm8XERIOA/jb6NN4kC040ET9IhTB6NHhwCobPUr4kUGYz5z59RiDVdwLbf6CkF9zdfdBPsSeA1SXgmv2E5s/rVDNrjpsGkTEKlF5zzTV8K03RVP2fU2MUuT4vLwCctwQFrriOqu6UwGCG1QBXXE7AyyJFfoZvvfUWyPFLAMw+hOr8CKxzkM3LZnKzC8KogaTBVeV91J2aetRKcMWbfmtmyoAUXduhsYeM6hagFoYhYqetbnug5KtLCefO9jJNA12lZ7gXQqH2ilc1d2O8qtyjCrotXdEpQW9Luo/q8ZSHoDUPcVN/iAfRdsSSMFgJUz5vq6IP75IO/S4+L8d38/AWQA4ZioiHD6rs2BaFveyoQfU5QIgfStY2glE9H/mmSbj4sn8djfIGloxpIhLQFQGI+TeiIcOYogNYQ2dl05ICxcydWwVdaC7FBfuo/PbbNIwNXl7CPkS0LleRkB8QFiE/qhcV0mHkqpNaheu3NHhwsozG+zhwlR77337Z0r6HXPvkF+Lu6aO2HTX5XhlxxT2SlXFSEmOPyWMfPSqHDuyS3lBX91i9WjYhJJO8Zq38DGX6mz+aI4ZsBXc+jWhWPYf6ahxr/w0ce718/+cn8uWzz8p7kEdgSMcOoM29Xxf5L6OT9GlitidBKsZkhHAoAG0W+hfGHo+QoIbNzDYq+tKhvqN07N1fVsz7vXAFU4HTp/+mHldffQSfURjShD8pmQUKfBLkUvJr0KDWCOqhwCDjUwWcr776UgTumohLTKRMBkJaiM9iMUTGnnjiCUWmJ0BLNWQowBsb1NSk3N63b3NojB0CFyxAibwWTsTCi+joaYgwHlOSH2zBw2IHcvKo5M4qUw9vP+kx9FIgMQs716FFBtemDp3SeT0VI0txXidRjoOzuv04Wk7ZauFIgRrfHfKKtdVtD5TrEyYnvWdLbwWqDPdQ3POighAv+VeMTpXWb4/b8S6wpG7UHJ89gwwj0KKSaluAuL/XxigCvbGuJj6np8SLq4dPqZGSqpp7VkaatMPg3mRJQ338BFJ4JKZ3wRV6DCvhaIhu/ITUVhwiLwbAojRCcTuzazfwU1ulSXXRRYHFV5vCHWxPQ3VMjJXm3wyK4CadTqoppKWFAWQ9iEhJGsjbN4BKNR2pwhylas4o2kroNwwZMkQBiT597GXpUpFXXzUdZh54VssQer/ric8LwZUxAfKNqDTPx73vzJSdG5fIL58/K2FAI0nOLpLRoaeMnvJoEXDFfU+dYrPion8CibHHZe2C32XYJXeIs6u7avFjjzThL8uWyTtAnUrVHL7rjv3Bf1cVfmO3vGyqXqRuQYG22Bhwsu5ElKfH0uky9tqHjame82xnZy9tuw+RR9+bKW8+MOGc9VTcp95Vly498Tdl4kMZUaU5cxaD05aNqFICxEsfQ39GJ6Up1rAhkJM0lR5urio9uxl+4IO6Y0b1IQ9EHVVyrBo1aoFU6j4Q7Xufc3xjAVOCv6MqMzPzIOhu9yHV6KVWUf6Cxigao6Dffvu2/P39WzLspXoSbB1Xqn1q838qwlubT6AGzZ2/6bUxM0EXniHB2AYjH2sEup8YgQLuQqAVAoBGHSVtddMDRa8uNp7jMOh/NEIFYHEjSbE0UGW+Tw+AtBAfZ9UMuqTO5GwoXdzYq5B5e1Yo1mQ7vGedNGlr/cJV1XN3QPXaSBzEDqGnfDKUkUJzoJCRuUonmNTtQCyfDwDm5+cP7k04WukUnRmDVX99lSV3PWDSsCLxmpEUin8y66RwBXNI7O2HhWmrdshsh2YgXMs5YyUkeGLfxiBu36/aBRpHosr4dwB680Biv/fexxEVMfWEIqn9OhzwOzd3cffyNTa3+MyIVKfeI9QjLxeNmwFgGCWyZJROsCvGi1s26xv0EfxWfAIaClN4axdOlQO7N0taSiII5bdDxuKrwqGoyaV0ucYiFUiCEksse5s+ayf4+GaE4n5aMkPGQAHf2t+FowuajqKdEblLL327AgEw6LZhrJfuHK6OE9q4hYoMBQRMVRpWH33UBZE9fzmzbpVsjV8HYHQGPvRWfjtz5jq8NgEeRsH4eRJUUcG+BQj0jF79hdAgI5jkyDHdx0hlw4bNkU6coz7PwpPDC54SH7t2CdbvBWY+jH0a4PjfAvA9oAAfI5r0AdOPQ4Z8LQ8++AKKJhZJcNqDGCHRfLg69VpdKOvu6VXrZ9WyATXq8GNSy4y9evchC1OSOYMuwyjXgHa+qt2K+bZ7j5vasZkv06/rlgdsBliMWrEhc9MgV/VsKfdcnj+ShmjWHOoXpBo4UzmdEgr8UuZA3JN3idTOslbSSm4Wm0PXZDtxaLu06UGIc34sLSlG/HDoXEQfIgCqWoCIDbZ0EYDFNM9hEMj5+bkiakO9TnOLjcyUDS/Plys+nVTYgcWQn2KwihWH5niNG3lOmSBXmQ9i9trJ6SRSgu6KuI0iwEIjId4FzGpGiRY8dJc49e+Pi3sXRfyJBbM6EJpb0Uf3S0hYq8J9SnpR3/Hcm4Ai25tFWRm5WjLza1k04zvh6WdnnkRz7HXy0wePqV3adh0ADaivVTrsI1YqFjeCywJwZdqhrQxF+O1VpBRXzftV+o8GCrVgTi7ukoNjObt6iH9wWOEWn82BUwvs6MGd8su796oIEqN8H300TTZHbJfWPcJVxSA3Y6/B/fs/AviZAmA6Q/Hsmvr4yoQp14onSVyw3r0HYt+liCr+iMbOd6kqTzZ59gJoTUxMKlK8QJI7o48E2hSdvfnmtuB5/St33nk50okfg+yej++Lg4qCgcYHIHcCgcsvIBHxurQFqBv5PA5YMhbGBrXX2IKrLhp/5ws42tV2eqVxcKttImU4EFtN/YeOJtYoLqx879rcC/xiR3X9snRtZIHXYTy01V0P2ASwGN5kD8KtkWmqlYF5mLMyXMMvXwtIMPhD7yoSFYXsdG2ETZkOtGaUbWCj6ZqqQ5OZnoIUk2upPB9r51cZy7es/FfCoCfliHzWDsiDd2D7FEMGAfoMu3Ex/Bf5u5CQNrjA3ovIBgB0sW/Fxr+OyIi7W+Jczp0Rhj4LrgCAkH80hbbO3bRwCflf3t4hRaJXXOmAAz/88CNCba6ojgskAGBrBeZGQdOmUNwcc/XV8s3fX8rV971dOFaFXhTcNRNcvXTnRYgc5YNidZE4gK8WHxUpg8bfIFPue0OS4o7j9Y2y5r/fAS7exNy95cUXXwT4Q0WQtylVuPiJBeLb3Ed63Nm9cEqMFN2AEF4SpBvWO7lIz6GXFK4zXhBYEcx5GQssPIe1aC+Pf7JINq/4V+b++h74TwPkiiumyKU9HlIRRNYijBw5HlpX9TCn71T6t1+/G2T/J8sBvDzlxptNjbS//dYeAGkozsEV4Ok7yGncp9TcP/kEgDI7BwDyW0hDxAJEtkOkKgBVhaFI53oraYj33z+Gz8sNHLrfxM2tJ9KEaEnlY5rs99/fifG+ULSAQWOuluYd+sjJBm9LkJwFiRZOq9YuIv0hqgy8m9p0otUNrugb+1oUveJnzx657MVLBX9rRq4VMzrWjDIO1sCZtX308trnAXtbpkzSelPILgxq71ckh2zLvmXZhuWrXYD62UcwEGCrga+T8NjWjKWu7VGVUVPt6J710rhNz/M2vbUL/pQ2UNtOoeDR4MGyY9Mm6UjiDSJEylAuNnPpUlysrwDBeTxan7jK+++bKFTmk05t0Ebqd2lvvsjya9bvF/uxBDdddqxMValJYycSohMSQmTUKGPJ2WemHskxGg7RrP4InbD33kOY55nkZMEq8UbqrrLth7fvhdBqlhL9XAB5hxREogiqmG7sO3IyGhk/rMjbvVF5SHsZ5PVWCNk5Ox9Ees3UArHf88PljK8fGmOfNBH9SW6CfQFA0h6RuENQjJ/53WsQ/8xTy43/nACwcrKwTynGm5BuA8eDxD9X2nTug36EPyFd+TAij4fUnqS+dezoi5TeKTx3lB07XGXMe6PkohH2UHA3cdmomUVAfNNNnZEaPKUKDPbv34e08FSkD1NQ2ekG8HQbtkkB2N6DIsyZ8gXUSP3xgfwPfZPIBatXzxHbexWCK1YnfvfdVzJg1GSV4px8z2vSY9DF4Mn5lnJGtXc1QUhdjWCdj0+Fv+M13Rix4s38L0uj5O81sSWCK/LJ2qBzSUlGEe6SAFpJ++p1tccDNgEsVvHRfD3qV8uZkTB/SV+oavcKQlubkqdoLX1YLRMt5SDHDmyWRi27lLJV1awmj2f2r+9KPkjjfSluBEtJTBSXFetQWWbi1XAZSc+sLKQxGsP+g1T4Jp3IMKZqy2PAc6phc3v3w4J6/sIhGMHy9AwpjsXUegbYIn5YYWp4Z7S6gQRDI0S3hmOL0GbtCsep8IuCEztxeL8aymjyzH5/2Vnp5wzv6RMArae/5Y5nvpLklDS5GqKlOeCbsY2M+4l90vPKptKorYd8O6+BnPbyEaBIcYRUwstLl8rVIMBnTvtCXrtnJIRfp8uR/dtly+p5ECVdpURHc8DDssWoCH/Dox9L515Doe6OtO0VlxbuxgbebNRNQVmCVwTiVHqP+Fpx6P4CKypRoJ91BHNOlzfffBPfhWVIEbqhqfbl6A0diFSgHzK810Gv7CrZu/cYeiIelPXr16s2O9+iMvMkGnx36+YOKl+ukoC49dZbVUp3+OV3yfpF02T61y/KhqUzJTnuROG8jBfl/BoZu9eY500HccOgrdI8kJRuPRJUaQepwECMWi3clqCiVrZEnRidspQSNJ+Crd1EzPfRr2ufB4olg849gQDwnGzRtDp3z+pZ0gycsKU7kqrnYGU4Sm42tJNAsK6P1ND5sN2bl0lCbLQ8+vM0yUQq8PtPoX+VESL/1L9UqP+KIBIuxqZqT/P5Md10+eWIOu0wX3pOYKrISopgqvYp2JdGIVHQdHDBFtVbz86+k0hnPAqMAKtdu37ov4fFqctMnZwL1jW3ixCZAYQ36TklcpqE0v8U6FndCfn3U2haPaVd5UcEuw0cJ0fn/iYHcNIBYGyvQQflrv3HGtMt8twMulg0N8hELHz8SqUt9u97X4nfk/eKPcRc2wGE+F7mJjMu+1xCP3tGevXtq35sb8f8O6HnzT33PyDfvfVA4Zje3j5Ix9WXM/b1ZeJNTxcuL+mFq7uX3PTkl5L19FWSkRpbuClTqbwYkBPH7kEGpkUWGCR3QRNrQcsitIrK/Vf6Yl6nT3dEVWigUuWPj9+pznvr1k3Y7yMAstNIOZ4QV4ih5qJYoJ59PaQRsxDhcoO46WxwvYDSC8wZRP1V83+XeX98YiySO17GT4tf4Vv1glGAekUX1cp3+04AUWurNA+shdhmMAqZ3GugbEEuuMAbodbPvra2WlYu/nZO5pUYkDgcZ9sNla3H1NvVTA/YlzQtioj2betTowXgHEGIH9cjUFqYtd8p6ZzKsq5YtsvqrmmJMXLi0DaVdjE2OrYf0atW3Yy31f68Zv5vuHA7SnJUC1l4BsrlbXbIpEkd8BCU86uMoRIY9TGINGYzRNGe6mVsLGKlmTIjlGXWABkZIkQ6TELrxvaUw4KmqVJrMLKRxjo+E2CNHh2EdBPeDBpkvkoE2lUNt8+R052Rxrr/fvkSelJTkB70GXON3PDpQiXFUHSHCrwr+IB9/RsIMmcyD0COJHIClZHQ1yrJWrTrIeM/nCPpmdky7UYgUqCavMXLJW7CLRK8f7mMXvm01D8eaVLnLBioN1KFGzdukEiU3sVAkJR9CC+6aJiKIjZuZQJuJR2z+LpjkXsRqUKoqiAd2Q6NCSkiS2I6W+tMm6aUOVA5eBpRqS9AcH8DIOk9RKzCVEXiiBGBFM6HWOkZpaM1F0j5sccek5TUNES6jsv4ax+Ut//cIS9+vUIeeHOa3PH0lyptag6uOCc2uTbAVbt2g+Ttt/ehUKJ78emKoXB9zopatIAAVlvleoBRoTX7Uip30EoYLRNVgn+tjpHth0+WebSj8dYB2SlEuNgJQFvd94BVgNU73FsmDwpROh013Q2sRLwITaQv6uSnpBvsKmnCtv6Wunv7S9yxAzLvh5dk3fwfJSnmiBzdu1HCWp97kamkqZU4DKUFNq/+T1V7XXpdoIx/vB0EKHegKXMHKHyLPPMM1bj3YdkC6drVdGEnZnruOQGhmYRnU8Rq9mwTGCvst0w2dNOmInxGrgnC6UpxnZERezFQmKgUJOUbCLQs+ZDSAc7OTooPr04ECC4fTaL3ImW1CxErp4xkScjKlgHQsFp//SNy2S+b5LLbX1C6VCWeeDlXDppwo+zCvi9/8CEA0EYlOeBZ0NKmpCFDm7aWu1/+VaYjHfsL0KJ9bpbk3nyXfLpniKREZ0mXzrgYMzdXzJrAh0EQVw2C9tcW6FM5OTkrnbRTINmXxYIaNAFI3o4wYGe1G1ODTFlS82rwYBFk73A+6dAfmwlOlbMCT4899gi2vVyl9bgTI5ZOTptR9zBAtqNIoXWn3ioKxnX1C+QtvnrlFnnt3rESdWSP3ILImblRUoM8LEb9WI16551LoQLfqpCjZb5t/vlgUJtPoBJe82KbUU29UCthurVmiEPRmRKXgh+NGmKJabkKXKVmlO1v0pg+q+Ct2YmkbFUtb229teXsK+3qhP+01RgPsEq0pOAO4viWrXMzT8sravBSViKyV+HPS0+U6wtc3lNju5UuaOTcedClknDioOzZMF+OI6J1YCt643UcAKFR3/IOXeb92Hvwj0+fQXXYRFxgcYWFQe8SYOeAfPbZbYhqmYbMzkZlId4QYDGFxJJ8RjPYf44P0J7UtowysRNMTnya9CWJnd2eIT9wZshQWT7LVR56uSPSPqfAmYpEf+KWavDbbjMdg5EyRr9UpMq06Jz/T0AyYil6svghmrMKa7cjqpTg7StZUD+/+H9vSDBEMKvaXEA0795/lGxcOU8R2HsOYj/FgnxnKQcPhobUxLf+lo8fniS/IZX2/qNXy5iPPpGl6/tJ/v48ad89RbqMdVWjIHuoNMMIapSB6zX9ssvkzRkzJfClW+UHT4ilDhgrnfqNk5YQNy1NZZ4g8PixEwoNUyph3Dh71ULnEwBggmfy6+rVQ6rC1x94eApI8abPNiYmR37qcZF0dHWUsBmLAHabq+kwOtOl/zi5/M6XJe5EhLSDACrtyrtfl6WQsJj103tQqccXpcCOHj0KDaxG6l1vFAaAbqYCksiUiiThAaBubpV142M+ZnW+zgYXdWtEWnUe8oI6Frlto7sH1ohz5r1AZjmBNIFQa7SPs2YHozKsrSpxubuzQ4GsKX5UtVWrB/iZsvWRj5uD6lJDaZFW+Iz9PeuXyLezCrCqdfaVeDCmDPu28TkvvCwSGwMatkTbllTx8A0Wb6Se1s37QfJysqRReDdp2rYPGvx6VuLZFh1q98Yl8tmLt0pow1D5HpwfGlN4AQGnwLk6A8DkoEQnQ0NDIYWwG1EMP7RgEegnCUr2TcWFO3eKikwRZFHjCtkyCW8Ftf1pyyTxgT7ih3M8g5YrO+74WIb8+x1AAC+b+BoVgCt1ULP/mCJERlA1ieZipt8M9e8okNivvuoqicHyTrc9I83b9pQRzdqUCizMhq/wS4IKfm7XP/KRBIS+L4tnfitNWvco07ghYS1lwif/ybJZ30r4X0Axl0wUD4zQBw/vKx6S3zo+IJsO+wHkOEMnStAHsmB4iLJ2hOhYQFKSXPnM0zIS7Xhc5/0hc2f/Kt96ekuXO1+U7oMmWJ2LndjhM8xRwAkfKVTU+TH4oFjhcVQFskfgUKWKD2qZknPoFp4uSXti5aofH5FXN66UsUC+r8fvB2cuTh2D0a+/vnoREcxs+eTfSBXlSk6Ixs3CTklPTVTb+Ac3lvSTO9CvsHshuDImyO8R8KJVQ2akVtvcTfFCfo22qvHAEcjzxELVPAjCnOfbAlDFTjFtSgaV1ah/5YWKeEt2Gr83PE9brXsLL1W9yKrV1MzyRdNsPZbezroHKCUyoIOP6rtcWgGD+Si4MtY9I7IkMdGWio+qOPsjkGfojIiWh3eghIV3FyqKH9u3SVb/+5Uq0w/DBbxJ215CkcnKtAVTPwG/xlO2gpNjVMQRJPXpE4mLaDNVlj8LjY+9US5IMc9LLrlVVZkZc0A7QnC1TFEWAjOW9LMScPt2O+ly63jxa44/cIQpdj/zu7S8Y4S4hBWEw4wBij3Hx5uqCCG/JQ89ZOJpkX9FQVEqjS995RXJxD6O3QfK0Im3FNu76t/mgrR919gm8uyn88TByQ2q7X8quYY/v3heNS8fdDHQkI3mG9BAJt38tLTvMQyq7wmICubIwR1rxeXPd2TxoaMyKHKZdJ04QbJ698Kt0A1nw3qRkcrRba+9ViA8JWcQ9msLZ3UB+Ln5jXtl+T/fQaT0OukyYIwUF049dmi3dOvSV6UCOU2mY0lwHwFphpdfdgfIIpcKhHw3EQLn7t3dxa+nO1J5cao/5TykJv82U4hlr0IKvRJgsbejs4urPHld70IPfDzroBzctUHef+IqCI3+oJpPL0SpYh8ARXt7fwXiCMytGaF4bTUCcV1WX/WfHsWmWUFu9Our+iNaP0JjZEPKCrCoEdm1ufWb6OikHMkpg0jtRl2xav0DqoY1FD2nnlkXfKaUkSqrIb5Q94xosxuQf2d0aKeDqtOoL5SRlqjAlXFcXhibdegnQ698SAZddp+K0Kyc+Zks+PUN2btxgVCQtKJGhfO9OzaoFFdgYCAiCZepIdERBdGq7ar/IEEVeTpsqkxdo7Aw5yKHJQGe5HS4DwDNhAGQvRMUv6lKM6VAipRi7L2viMv4i4rsyzfUGf3sM5PCAtOOJFoT4FHXCjQlZSR2E2C9CdmCD3HVz+7aVy6+4XHTymr+PxXFCbT50z6Tdx6aIM6o5iMPiSDj98+fV4C0rFNq2bGP0qvqPewyuea+t2RHSJi02DRV7JLjJWfdanGb9ZspVMiB6WiIkZqbHUCWI0JOIzGPn9B/8ZbUOJn1zgPyLlKQqUmmSJOx/SnkX2fP/k1eeCETYMo0HBU3NmzYCBmMHPCq+kOzyqTTBZer7C73ZV/Btl36yOu/bJYOPYYYwynA1KBhY6GKPPs6MkUZEBSq1jdv01m99w9upN5fDdHXgIAACI5eDN7VnUqVn60YSzJ2gqiNFoOoytRVMdWucF4bfVXROSei+m5zDQEVYar1W9nOiFJGJUU4dh/FD6K2WuEBguWB7X1lcAffcoErnqRDrTjTckzSEChlr8KydDsvx6GK7BJ3dJ8ENQovssz8jSNkG1p0GqgeuUgdHke14bq536MfXYY0aNZBRbY8fILMd7Hp9cKpn6qmzj/hYgdsA6BwTBiR4gV3y5YdEBK9W0U4yJlhFMlWIwYobkNHnovkKc2w9eedcueb7dXm5F8hIKJSYp9/LohYmUbhsQ8g6jEdebJGNzwsI6/4X/Hhq+U9IxJ5ednqWCGr5klLVDO+ApJSGMRNGZ2h+OrerSukbddB5Z5P1OF9YufmLJ2R7nNJS5EH0NSv85494v/kk9L1tdcsjkuh0ElAtJeh2qAfUNEgIN5LR46UA6hOePK2QTL0hR+FFYw0f4Cf+Jhj4NGtRd/Bocrf5LzZ2e2DDEMvFaXkdgxSUV/W+CwHDRosb7zxuqye/6vc8sRn8s3rd8ih3ZtkFConc9OKfjee/nyxUpp3Q79DmhFFY3Nud0hVIOkL7tc4xS1TG5TwHztC1AY7GJ2hiOzpWadwT2Enx1ARxrJ7bdXjgZPl5D5V9uzc0KaN39gzZRg4BhEq9ih0sSCeyt8cEty11Q4P8IawGQTWK2J1FmAZTmnX2F2i8KWurgImNndu2WWIcfgSnwm2GNnigwrfURE7ZOvy6ZKeEg8+UAsl8xDQsAUulPVKHIcrffyDpSOenfBYjccezIPVgLgOQtMqEUR1f0F2EECrB7g6n4OTFaUa/mLTSjGoG8jIh0zgCl1kBAEOaCWx/Y0JZKHHsLTaPUPWrf1EFiPN6HrRJTLi8nsq5djlGeQMIo31HU19D+8HmBlEIa8CuxxCYGFhjWX9wj8qBLDIzRp25YPStHUX+eqlW+Q76EXlIH3oBHC5G4UCxp0uiw3If3IC+53NpP+BXMTedt2k865NshdFAIcxr32ISj4J8HXjizfJKz9uQNsiZ5DPX5P3HrsMUaRhIJcPgj7VvwDVM6HuHouxJ6gmzTfcYAJW/BwMa936ZZk8OV5++/wFadi8vdz5/A/GKpn/0yuFr/mCx+HDsDk/v228lPS0ZFVp+M4776ALwPWFy1WpatDZt8Yr43yN9zXpmeKQKRl5ilpwBICK6VZt58cDlDGoCZYGzlNZrxvkSkUBZDW3IBvEm/1szeGrCR+tTXNgr+OKmn1FB6jp+7M59SV9gs/pZF4V8+YdSnLsUfENalzm4ZmOaQQtpAET7pRRU55W3K3jUIL/Dxe8pdM+kEPbV6KlSrrVccde95h8ibXL8CCJnC1UyL3p2DEdvCo3GT9ehNV9Bw9C7LGksj6rRyh5BYekbAONOkwUtsQ0FMjjPCD7JLsbpst/qDzzHDxRrr7/nUKAYdrLtv/p45TEWMnNqdidICURggGAgkPBwSIiNDPyw+o51EPqNtVsadlf2sMpXfqNFm+/YHnk/X/lvtf+kKad+spe+GAvxcMKzNPTU0kd8NwWQ0OjY89B8uBb06X5B/9K14fekZZ9R8h66FsNARDLPpkmSfEmRweh0vKl79fIpbc8JatWrZLb0QvnyJFIueuuGwF4PFWfQeMYxvPatVTYsIcW2hcQe20vHz8zRdhSyTB+D/PBH7NmTEWbW15eLgD8DrnqqqvPLobCvSWzs7SwBizbfZQtUE6osnw239Xg6vx+KBT3rAlWXt02Etkt2b4T1n+/LW2vl51fD7S0AJLLOqM6D7DoEDaRHt01AIKpduJmIXRbVqdZ2z4l7ph4BzYsF3AwH9MOXKnARq2k27CrZNT1z0qPEVNw0cuWlTM/R4ThZdmy5E/obu1Dc+JThbsxOjBw7DWyFUuoR3TzzXerdbuQlqIAJe3MmVRoYX0B2s+wc6JXTC0xlQcZKIhOqs3L9N+IEYV6l5AFMGlgEdR98AFAH1DfMcg73Pv4neLgGyBX/u/1wvRVSQchV2jNgj/khVsHyat3D1eClltXzZUnpvSU+yaFy0Jwp8prjBg6QIqhS/8xsmL5cvjm7I/iEoTeKAY6ZNId5R3e6n49hlwqvv6B0h5aBg2RrmVzaXK+UkGi2oLihGkAUoMnAAnDGrfsIORyXfvAO3Kfu4e0R3q1HqJJgQ2aFo5POYmlM79RRQO/IjJ2AiiXkTB+nlBpUJ8nspKFxjZJKNxU/n8GlYs5CHP+8N4jsmj6V/LdG/+TNYv+ln1blqvtzX1iDHDniz/LlXe+JO279ZeWiLJdevNTalV2dq7M/ipKZr2xR/5b5yVR0cYeNfeZsgv/bY6X5buSVXWg2Veg5k76ApjZCTTSTs/KP29nysjVlkOp8u/6uHLNYVtkGv7+zv6ecBCKlh6MyizXeHqn8+OBYwnZFT7wBQGw6CWCrGEd/cQVefWqsiN70dy5dc9KH94NjXPDu10kwyY/LMOvflxCwNWiUvx/v7wmi/54W+lupSXFIGX0qgyfdJM6/qRJHwgL1HaCSM6LOY2ikJ0hStmtWzf1nv9BIUAZ5RQoIQD1BnnpJfarMy0vy//OzqatKQ5PoIbADMQtBareaNNy2f8AaBxVSsqWVNHRgzvkzXtHy4/vPSoxJw7Lscj98u3rd4oXokGG/f39m8bLMj+fRgSL+mUpkCHgfMznxEIAWvHGzGU+iIUdmoR3lue/WSlX3PasNGvXB4B3OQoz1ymAxc/HAaioVYdeRfZ0gbTHLYiANR9+qUy88bFzwGnH3sMLt//5518UiZ2fJ6tA+YDuqAJc5MQ9/rjp/UcfCXhYZ/23Yu7Psn7ZLFVBmIvm00shOcEKy/VLZhSOzRdsi9Ol3yi55v53xQlCsH9984paf2DTUYnb9YlcdGdL6dRJpAFI9TXZUpEOpOxCRCycoq1GeYDY5OR5AFj8TvyzPlZ+XRYl6/anlluSg6lAFkXsgCgtFdv/wutf0SRaNwivUV+zEifDYAw/u4oCfTNmRonHqxMrG6HsdunOAkRRBWcUA6Xrjv0nVcHIZ4ckKAhu3EY9uDQHbUrI3dq+cqakJUVL5I4VaHMzBqDKQ+lbMRV1zTXXqAEYKWGTXnMr6AOtFlEAc+BAU/TJfJvSXoP6o+QBeAFno2gS2qmfBS475mHqbZifHythzdsWkqRLG/ODJyZLJhoSM8Lz/vvvq5YwOzYsk8vveEk++HufLPzrs3OARmljmq8nwKoHX6alJCpAsgdhnjZt2qhNDLDl6OxqvkulvWbUyZCAYNSEACsJSJcEe6rcf/D45TLqqvulbbfBhcf0Dw5DJOvdwvfmL+iTbWsWSFJCDKKXGdKzZ0+0yZmmgDVPacUKU+EiATCJ7ixIaNLkFMjpYxE1A/qCxQLE9h91lfQbcZnEHtmtei1y+S8fPiY9h0zkS2WJscfk6Rv7G28Ln08e2yDJPx0S1/dRYeqB6lF8/u6Fa2vei9iUXOFDW830ADWfQnyrd257jqXLicScSjlocnqerNpTjrvUSjm6HqSiHmBBDjvE7D2eId1bepV7uAsKYBGVUpG1KiwjLUlc3LwQFalXFcNbHdMJEYWm7XqrR1ZGmsyd/pOSaPjnnx+QljsBoHMIFWbzEVXopFKD7777rpJJ4EW4uFENnCDr4YfPVpwV38bSe3RZwcVaZOlSk6go5R54MQdvGyBGBHJX4uzUXI5FrRV3r6GWhjhnWb+RV8qC6d8ApC0EX+hniYeoVq/B4yUgpLHadszVD5yzT1kWkINFsOob2EDtxrSqYUyz0Xz8Q4xFVfY8cPyN8un6BTJjxgz0CvxInee3334nHz1zvVzzv1eggXVtqccmIHz5h7UASRGSEHUEYqHPSw/oa3h4eCi1/jvvnI1ih04qssTBIPKPyOKDaOr8YZGxV877TTVtbtasmQQ36ywPvjlVyPMyNw8vf4zpBKCeI0xln2EuEuYI0t1YIO2dO7Nk6tQjcnvTBHF3NN+zZr3OQMpGW831QERMprRuWL0QvaG/i2yNxN2HtgveAxQUphYb9a8qYlUENyoypard18e9fpUc4Oi+DYqYXiWD2zhoMiIYJGj369cPUZ8noE/0JJS9e4Ls7oaL3lQVyWKvPRKi2a+OgpLmRr0qXnwZ5bDVyK+ioCht8GATv8dIFRKssXrtKdB0pkzpJ2nQgioeQeN+W5bPkpfvGCJzfnmHb5Vdcsuz8vYf26QDREhfR59Cb79AtHABUqskM1KEyYjIMCVonjY1AJaXT2AlHc36MI2at1NtceawCSTsAUjqb9++Tdh6ZtPSv63vWGwNQRbb9rTvOVQeRTqRny1BKc8lI2OZamNj7MLP5xZIQUwAGb0pe0vCjKhd/YIbhFUL/hIvtOLxRJ9Nc3NEWrANxE1pwaFNxdvHF1pb/or3N3bsWFSP9kUfwoXiUYPBFefu6YIvprYa6wEKcuZVM9k9Hv0HtWkPGB5givBkBdXzL7hfmWaoKqysMLDxQfD5+IGtMujSe80XVfvrHev+U/3nhg8fro59+vROqHp3l6GQICDZ/TaUEfI12+RQUPO3335T8gDBIEm1RUdnkuHz85sCFJX+tWA68OuvqRpuEhIt6WQ53A3QC/jkk09l3tTPJaRFZ/CM+qhdjhzYIV++/j/12nnTUhlzzUOFQ1F76a4Xf0LVXJR4+QQoocvClRV8QX5VvXr1ldSA0fB67ty5KlXHlJ2Lq5sQTFSHde4/Xub89DqiTNukS5cu6pCMPu3YuU4VMpQ1KsoqS3Nr2PA2gfKEqo4jeGb69gDk9V8C2a5Dhw5C8dd773tIts2YJmlIIZPcTsD1xYs3S7+Rk2UIVPb5ntWFbGTee8jF4oNuAB7U93L3wngZsn3dYjkRFYNChEP4TtwsHsd+QbniQfNp1KjX5a0Qq1EnUYcnkwephrX7UmRAO99qO0vqnWnTHjA8QC4gNTS9KxCUKf1KahytjjyH+uH2vZLtzJmCNAl0rc6XZZxMBS/pS/SfG6mqyDgPEtwnIV/HqBUv2ORm0QgoDFDBiykvsARgJFlHoHqO1XvkA4VDobIlegwyZcTGwYaRxsW+d1Rq5+LZs00XbRwCnCmTPIOxLZ8ZTfkdfQepcs8IVlZ6WuFqAidW1aUkJ8qEG58uXG7+gm1oKttMEax6qqXN0qVLFdA0/MNjtenYs7IPaXW8FiC1OwPM3X77HfDTbzICn+GhgwcVgLG6UwkrGCmk+fgFSTLA1n33ecqbb4ahVU5P+euv34rs2axZc4Cs9uq78cH7b8v3SCFPhWgZ+XopCVGy5O/PZfuKv5CaDUO6sIX4BjeBRltzGX/z80pZfv3i6TLvz6+KjBkdXU/aFllSs94QXFFMVFvN9sAuqJ7zhqAfessaEdaqmjE5U1Ts16Y9YO6BzagmbdnATZzK2RHmggNYCVUQBs7NzpSGiMqcT/vry2fRhDdVEaZvvfVW9Ke7FcTzI9CkagxNrMOq/6Cl+fGHi61r+OjR4yLFnapf/7QchVbTfnTvJQcqEuWI2dl5kpDgBXmHVqgKbIVUYjNs6wdSu51ceqkIdDAB1EQoKcW+g+iioozK7Y8C0P2MlR06d5OboRxuTt72hkBqeKd+Sh7g+KEd0rJYBZ2lOVfGMkVyh+bTscgDargWFO6CTbn/TdU7sl2Poep9dfyXnpaKHJ0pqjRlyhRJTkmTO575Upq17V4uTt+RfVvUtAmu2nbuI7u3rsF34ZB6FD+fiIhDcvz4MSHIfO2FF+Qi5A+90SepCUTM6ju7A6Ch0u7QQdm3dw98M1za9x2vhEf3bF4uHz49RQ03+a6XJCM1QbwCQuXn9x+VBx/qLcufyhGv4gerAe+psTR7Q5wmuNeAz8KWKew8ki5+yDcbnTls2aes2xyMyoBUR1KZRUXLehy9fe3zQGbOadVsm633ymN2iGAgEHbh2FKomrMyoLw2MW2iBJ8yXcCMMfanhsg/Pv+KGwjA58tWzftVNoKz4+zqjoa8GwG20lTPQQKHefPmqzvA4AB/8Uk7Kb+uXaN4R2quiCzJlVcq4hVTR+jIInfcYZmHlQKBrL1796Pv3H6kESMBqJIQkTqDaEcAjtVERbpCwcuZNStQbr3pjNjXt5P+/XGBR+rr3ndmyJ7VM2T4NU9YvBtlQ2zqUlX1narx+Zw4tF2S445KUOMOsnX1HNm/dYU0b99LRl55b7XNwZjLh09cIWdyUuVR9B588623xDOwmdz42KfG6jI/3zmmceE+T300RzYsmyn/TftCcfHee+89AKrjSnMrEZ2gY2Mh2sqoInK+FEh0z8lFWhIK1tDa8GvQAiCvhxpr5o8mfpxfQLBce//bkoBU4S8fPSVX3fWiDBx3feHxZv3whsz941NZ/TyajLcsXGx64dcbcv9rii2s3rfLUEXMajFttccDXm4OMnlASJX8XSaezJVpkFG4sK6CteezrwkzDfZxkom9g8o1FYdy7VVLdyKWPF4J4mHFT5+Cn+cTXHE+/UZdrR58zQq5VbN/kLX//SIHIw4LozHsIbcaxGV7yDq8ijYtn35acAFnxRzL/RC5oOI6OVVQRZD77z8XZHmDd9O7d08Q5HsinWVqHjxjxhkZPjwRPJwIlV5cBtb7sWOxck//TRLr31CRrAdOuE7qySmVjmPVmV29epxmETN63BVZWIVvDJJ7QIPGMvyyO9WjCg9ndWhWfuYgAurv5amKE6JAcifAKo+RV8Y2S0PHTpYd6xfhI3WWZdM/lPiow1D074hCg+tVg2ZWGD744INo6O2l+lKy1Q0fvYZMkIk3PSWL/vpUog9tlh0bl8vB3Zvl1qc+Vylikuhjjh9C38L1MubqB4tUOPLYz90yAJWXlZ/OLY8viu9DUOUODbx9xzW4Ku6bmv4+NSNfpe9CfJ0rdaq8oVi6I0mDq0r1at0bLCM7v9wndUEBrNz8M5JeBY1E65v1aiv3J1GJO1LfKTCkkVxx12uqebQx9GXQS/r3p7fks88+VhfWr8FS92M+z8zYFJiVhGiJp6QXGphdL9cg+NCnj6l5MJs54/qMlix2qBrzxwj+Sn/JGIo8rtat20g99Pvr0GsE5AMi5CTEUBf98ZbiePFXzcnFXdy9A9TDzQsisB6+0F/yU8urOpKlUoTwU3UbgUjUkX2SGHscGlOPK5I95xA+ejQAVn9EID3ARXvqnGkRmGZlpknWyWTJSEtUQOokwFQGHnkFrW34udOf7XoMEZ+gMPnn5/eVgn59CLyyZe2oUSMKRWeNA9x0002ygaqwsHVLZkoMmpU//tF81TEg57SjioamJsVJV4iLhncdrFTe//3lQ6FcQ9eBF0OyAb0KwR+j5EViXLR6GGPXlGc23z2ANBC5VySuaqt9HlizN0Um9gkSe5KyKsm2HEqT+NTcShpND1NXPXASTd/ZXaA8/O1Kv8KkgCyYgLBrDpta4m8hF80vqWdiqbt4dX8gsSlVQ2J0AlelplnciQPSbehV50xr7LUPy+zfPla6S0FBQWiP8/k527ByH9100GNOQLqGKjdAlgcq/PzH9sK2LmrdOTthAbleTz/9NNTJVyjO14ED+6X/iMulSZueILanSEr8MRk46R61K6OJudkog02OM4GFpFiJObxHMk8mSXbmycLhHcCTcoa+mDPUzKkz5uzqqV7zPV8TpLF/XlnN0MEq637Wtuf5LJnxtcQBSCbGHBVXRH5ch10i46Y8CjJ4rOprmBR3Qhb8+ZEcP3JQ8ZM64WKxHlUCPcF3SktLAwQ6I2OuuANisctldwaUpOEzAlUaASfP2dXdR4FQD58gCWnaHrpi/lLfQnFFg+ax8te3b6p9++Iz2LJqjlLx/+677xDJMnGnuJI8vUS05zEsvFN/9bKeg6NMQYuej568Uub++p5ccefL8vmLt6DKNE+tP7Rrvfz26bOK4/W/V39X8xt52W0yf9qXan0lXgeNqZXrWXGuNsYpYJV00jT3cg2kdzqvHogDECIgKi8XxnzyjFxtgFL7log088X6tfaAVQ+sBcC/pG9QmdPUFQJY7D5PnQh7CHLFQRX5aEKWUL+kuFG8jfpTDXydFAosDxIsPmZ53q/fn1Ke3UrdxwHCizXNMtOScSH2PWdaitTesIlEHz8s5ONYM0ay+KDiA8TFxSl5j6DcDJu7mHYBCR5ELpNEOJb8888/SuDUEdG8Tmjdkg7h1ZbtukpP9NKjpYME7e4VoF7zP86D4IgP/wbWU2KUBshGGo2PrMxU9ZwYDdI9lyGiQ5DGqBAGNOkQFByBAIGfC1OP9cDtono635PnxZY98ScOqqhLfUTYKIPACIx62Nmbxiqc6dkXrBZlOvj06XwlsKm4SgXvSfresHSmUpe3hwBn49bhchiq+p88vkqdqxGR8/Vyk0FQ1mdV5vr166UpytEj0lLEC3yoFm26SGjzDgo4Uv7AJFxbvj9Rb1QQvj99j6r0C2zQRC697Tn54oWb5HYQ7CZPnqyOzzP7EaS7vn37SgC2ufHRj6Rh0zbqhL0DGoq9nJYBY6bI7g2LZNpnT8mVdzwnK+b+BimGkwCSkWq73sMnCzlfzcI7gjf2iTRp3VU69RklTcBVlNNb1Tbn8z/eVGWBqKqFRc/np1A5x96NqsKKAiz2CGQ3D2ocadMesNUD1Eg7hXtdh3q27mHarsy/3kT/LGfdheqOiNhMm/LXOYhicR8+NuMu5EoQFosLflJUjk02/TyZzqhcy4Nn1uxJEfaIuhCMhPH6JYC+viOvkcboIUeCc1BQE6Xezt51hjFq8uuzz8pugIcwVCFSjLL31Vcrzo6xjdoJUReEqpSgJS/aLdt1l1uf+QY96lwLNzNepKcAYBUTrTTWlfRMQGSkEUvaznwdo0mn8nOh24QHfJEH1fFTAGp5aJidj9dczm0QMEKroXQTqRugiVEtQ5lcjcdtzIzK5fb2JjBmek1Qhvf2DnJw51oA0uYQd70TPRg9VbSIDZwpT0HOU7Nm4ajG9IdsRpAa8Sv0FPrhhx/kqY/nIQLlLNuX/yW9R1+vIlJmh6zQS34OBFc0Akz2DnRDtIyRxrVr18q1114L6Ybu6E/4ONT2X1HAU22M/7xREZgSf1zWAzSeOHxAVVf2HXEFCOwfQ5csRp75DJprAK+52VlqF1Yssp0PH8qqOITFyDjNsZTy6Z3oB6fBlXJVrf8vvKFbhc6BfeUWbU+0GASo0MB65zrvAWdH+3J1gSkzwNqGsCobYVbE5m6Ml1HdoH/kcTa1s2J3srSp4B+QtTmtg2Dd7guocigRaSr/Bgg/WTGqfb8DgNULEZQrrmiitmKrFka0YuPiJDgrW7yOHJblbh6SmpmuwEg9AIlmABCu0EcaNGiQknXIQ2sUd2g0UD+LWOT6Rz+2CK54gPTUePEFL6g6jNEiU6QKkUVwmixZNqJh5HuFhXe3tLrMyxycUL0J7aoEpNuoIUZ5DM6DLYoMA+dcfvpJoHqOXoBQp28Gnlxo09ZqtRciTrkoQJAqrET1BWjauWm5tGrVSh1z5syZSs5j3759KhW5ZPrnctW9b6l13gGNJHLXGoCr/ep9i3Y91PMzny6SBy5vJwunfiLXPfyhWvbK96vRhNsEHNWCaviPzYDNfz+KH5IAmjpKR+Kzi6/S72upByixw8/ViAbbehr5uMFm5TgzGOThatMeKIsH2DKHAaGyfu94DKsAaxUAD3/E8hFSZVsJPuM4lRJaTcO4i7cnyKV9g3EBx+ttiQi92UmgFy6IlWwZILXvq4AsQyVPp1qGI//KP7SF1WMFN2ohga06IIIxRck1/Pfff/ICNJAaN28DMcnmkngyRbrc8ZqM7tRXpd9IyN66Zq4c279NRX++Qa+8jPST0qJBmBxENRrttic/A/HZz+oxqZMU1qqb1fXVvcKoIqys4xKYfPnSTdAAe0gNyajfrFmzipDKWwNL8QH9V3kxLUs88RkYxlQpo2lVaeOuf0x2b1kuUUcjlJbVXxAU5cOwtUtmyZX3vKHSnN7+oZKWGCUET+5INRuq9k5QuPcPDEFj6VhjN/RzDC18zReMgObmILJl9delyOblekNuFUnr/N2wZNsRuSIxWlvd8cAxVICTgtKgmFg0036H0LvwFNLt/F6Q7+voYC9xqTlKkiMPoIrK8Nq0B8rjAW/IhEzoZf0G8jAyeU3QIcaSWf0J3HHkpKXtK21Zcnq+StktRsiWKrpdmnnKwm0JMhCtESqTEL/pYOoF98eVcPygtO52UYmf1R0v/CCfPTtFSQNww4DgUHkEPexYiWZuJJAHQttqxGV3FS5m1VpOViYuvD6ya9NS8fYNLozEFG5U7AUBFisFa4oxHchWOebG89qzeYVsXjZDdmxYKvY498l3viid+40+xy/m+/E1U2NPfrJQgYvd8Mm0z59V0gjj0AX7gw8+UKR/H2hL0dq3F9kbGig71i6UE5F7le+cXDyKkPvVhpX8H1OGD709Q/V87D/mOgDCW8DFi5RJNz0hf3/7GkBRthyGSGmzNt0UX438t+LgiXdxL32/tsSZzf3tA+nScq+EtSxxswqtZCRi7qZ4dSFt39gDYpT11d85FZf3IlpdVXzLCk1a71whDzBKPhsFC82CXZXwKDlZiShcIAUlUzfvrpBv9c7WPcDv2G/LomRIRz+hJpZhJspTqpJ+um2U5exM0aupsWc1PPPuc/rqGHUkht+y8UdyJC5L8lqDPwPdCXfnik+N+hWRQJcXmjF64OhcMl9h1/qF4oaWNb5e3pKUmiKNW3YsFUQYfiSfhw9au26D1XNp/7H6jGm7slgiGjEnxUeLK6rn2GZny8p/5TS4VQRqJMy7e/mqiJvBMzIf+8ThfTL10yfQ1qUZtJ2ekeSEEzLzm5elKYQzB4y9DuOgOMNMj+vw/q3y1cu3IjITh6heI8nMMN1gfP36PXLZLU/JsEtuk5OpibJ9zX/SdcBYENA9zQ9X+JoE9/bQHQtH9G/1f3/Ivz+/owRYuQH7QE6bNg2yFj7yxx9/qP6PG5dOB8B6EmR/tyqPYHEOriDPX3b7i3wJGY+X5J/vX5e2XQcqgMVl3v4hfFJGbhkLCMpapXl47yaRKgRXnFzjQBcUzDgpHaN/1seZJoz/Gc/SsYpCd9S5FyQaH4jKVI86d3L6hGqsB5hpm7E2Vih664oIKcE+AVZpVnEUU9oRSlhv/BDyx5IigF5u9WXmulhpH+YhXZpbvoCVMNw5q9aDK5ZFuYgLyLJQ3k8tpZIsMz1V/vr6Fent4iTdRo2U33Gxd0DVXZUav5EFRh7FATQy3r91JYjUJxS5mhV+jJ4RHJI8TXCVvXqB3IB9UvDIxWMD+F927h5K0iAH0RbD+g6bBO7Qm0oKYcOS6XIEYGnH+iVo75Ml+3Zukl0QWPVE2uoIdti1ZbUsm/mtdOs3HGnP+VAwz0alXYxqmdOmTVtZsmiBaoC8YsUKWb16tbzx5psSsXsDqFze8u+Pb0oSWsdkpidDmNQU0WMkjHN2KeZznsMgKJz3HDJJdiMqlgFwNuP712T8+PHy4YcfqqiWo6OjdBs8UZ0GI1hpmEd1WuvOA6T1+wMUr8UXCu3pqckKzBpz8IRoKOfkE9jIWGTTc6tO/bDdCpu2rchGDvVIPC2aIjz7LavIyHpf7QHtAe2Bcz1A0Vs+bLXzCrCMSW4tpkeyDmTEIG/Hc3Ltxva2PPMiTnGwC80Sog6VyL+iP2b98Lrqt/f9nl0SGhoqIWj0/D1SQ6a0WeV/JRgFoQRC7PEIWTrzK9m5YbEkxMWIm7u7hASHSB7W56FdSz6qFp1RUce2La0BiN5CZWI7zC8TaanjiP68NHiwOANk0XKgPs9WL1OnTpWHH35Y9m1frRpGE1qOg3BXtxuul2dRCcnvwd/Qfso4cEDC0fi6d69esqRLF3lm+xqxB1hzcXEWT1dHBXhuueUWpX7O8QcOHKgeoyHG+uTq/+RHPAICArlKYo8dVM/87637RqtU6T2v/lm4zPwFI13dEPGise/i16/dLd26dVPvQ8OaQRahrXpdHRwsdSAL/zHt9zLSfkp8tUBTLBuEe2ptnYjYKa4Uf0V6sbhRhT4LRRBsxk0NsEYtOkgLtBsaMuFmCYqnPyKK71Lp71m2T65olAV5mEo/mB5Qe0B7QHugDB6o/KtpGQ5e0qbMq1fEqkq1vSJzqo59yb9q0LyT1UMdj9wDLaPf5bnnnlPgihte8u238gaAxwyk0C697Xmr+5Z3BZXHY44dkr9vHwoJAy8ZO3aM3HjjjTKsf3+xQ1881SkaDaVRcnf2EGzhw3K7lqZcU9Oza9QrJycnCKA2kPvuu0+6ADC9j/4+lBy4AzpPvr6+Rba++6mniryfjAbU0aiY7ANZ+qVLl6pKOj8/vyLbGG984Kc+AGqdIVOxHFGtM3b15HKIbhrWY+hlCpgY70t67th7hLz95w6J2LMRfKsMCQhpXLh5daUICw9Y7AVBlpEKZCr00au6iiskHSg5EYNG3bc+8Yms+Pd79CA8qvTVqAVmNMoOhq5aDHTVuvQepgAWdcaYikR3pCo3dxc0YQLdQJv2gPaA9kBN80CNBVir9iZLgJejuKOC0ZLxR7V4eoDaOIkgzLMstyp6DlqaR01blhhzWDr0m2BxWozm/PHxY9IAUSFqHxlGnSbqID355JOSBe7R6KvvV61QsiHi6YYLpXHhZSSKffPUxdPY2cIzL8Kbls+Sbatmi3dSvEiLthJ1eK888cQT8swzzxRGiSQqyqRiiot4EXDFMTFHW82INlncHhIEEh5+zqpTiJZt3rxZgTFr4Io7hUH1/OHLL0f7oEmyEgDr1sc/KRLNGXbJ7eeMXdICCrG27tz/nE2YIqzqKsJzDmplwbqF09Sa7Oxs6KQFqddfIfJGyYmJE8arnpP+/v6KJ7lnzx4FrriRX3DZUolq4Ar+t3pPssRC5Fib9oD2gPZATfOAZfRSA2aZjv4/f6yIlob+ztIQZbkEWnxNUBWdlC3rD6RK73BvpBJNxGk2cV0JaYkLvRyXIprWlOXXLpwqB/dskzlz5qCHXFHOFQEXlxEArVpgusAaX4Pw9t2FvJp/fmE1nJ+89utmY1WRZ0Y+fv/wUdmydpGMB9n7XVyck0JD5Ie4ozJy5Eh5+eWXi2qJsAcPH1VpEEK1ZPkguQ8ZMkQoUVGavf3227Jw4QK55bGP0H9vXGmbW1zPz4VK790HX1xYIGC+YT1EfbhNTTC/Ar0yqs2TtG/YoUMR0rVrVxmMVO2fSM0SXNEaNGomrTr2kRFX3mtsWuXPrBpjFdlOCB5r0x7QHtAeqIkeqLEAi84iWIqMzVIPvneBmioB1WFUG9L+WRcnrULd0MA5X45qQUE0AU4CX8ZH+ab4f8cidsvvnzwlE9DJeTQaCxc3poio4cQUGwUoCUDcwZHasGGD6lu4BMRwxif6pSTKwr++UKmgRs3bqegWgcHKOT+p5VSR//jjj9EE+npxo7ImKvXOfPONUjPnMardCiIwxY+bh/4/VDQ3IjTF15u/53a+/kHSbdDF5ovL9Doqcof8/MGj4Cp9KXc8/4PiLZkPcF58Yz4Bs9cde18k467+n1qSHn9YBkz6nwLGS2d9I+xl6IiChJbtusmNj7yn2uJY4meZDVehl/tOpIsDQB47SFCJOxkEUwpO6r6CFXKr3ll7QHugGjxQowFW8fNnRSDBFcskeQdL8VNzhXZev/E7fMFaAvrrBVgQGM2AcOgXL9wAdfEm8usvv5ToHzc3N7kafCPDLrnkEnnttdfU2+Rt2+S2SZfIX9+8qt47Id3VqGm40lKirAFlCNg8ukWLFsbu6pkcHluATJGdqvgNAVY0uFitqfxZihGQLgZIXLfoL+k59JKiUbhS9jVWBzduJw3CWoC3tF9xmSbc+KSxqsY9MyXMpuC01f9+JW279FWE9859RkrUkX0S2qyNxShcVZwIhYLX70+qiqH1mNoD2gPaA1XqgbPx/yo9TOUOzkiWJWMq0dO1VmFGS6dR7mVsYFwcYFE88ssXb0LPuEykw+Yr4nJ5D+ADDs7UiEOSnJysetkNHDhA/L1d5NZbbpLt27cjjbbwHHDFY7Haj5ydmmQEWEyJkmdUmk1C9eFjLVqKyzsPyvcv3ayqLUvbp/h6cq8efHu63PncNzLqqvuLr66x79n0mT0JaVRzbxLeudrAFY95QDflpRu0aQ9oD9RCD1hGKjX8RKis2izIRRoFIAVVYI4OqIICPyv/Am6JkBx7FJpFYcojqUlxsmLOz/Ll3cPl+j1b5O+//5YmTZoY7qrQszd4Tb1QdUixTIKPu+++u0hLmOKDk1zPXoY1yZgC7dChg0oTljYv8pBu279PBt1+u+SCXxaxe1Npu1hcT62sjr0uKkKSN9/Q3g6pMAiq1iQzASxUdFaDsaMDi1OMqkA2gEe4sBqOrA+hPaA9oD1Q+R6oteGeIEjWd2rqqXgZ5GpRDZ5GdfgLrW1CelqyHD24U+LQ5Pmnd++XnP3bJSvqqOzHxelTNB7u/eef0nnYMOvfHuZVy3EhoyI5wRYbHBdPC1o/WM1YQ4BF4MS+ebYYOVKTIBD6+ZdfSiSUylt26GXLbmXaxhFq7ow0liYUW6ZBK7ixF3oSHtq+ooKj2LY7AdZ/WxIU15JFLSl4f6EXrdjmOb2V9oD2QE30QK2MYNGR7DGYBvl6/hAb4CoP8gzkZV0oFnsiUr56+mr59aou8gXSgMci9knffZtkEaJXL6HyjdynO0DQ7nzppee6ZPduyJrvMi2HJpQgZVYeI8A6Qc0qK5YJLStnkt1roLEhM9OdthqjcMsBtPZsWmLrLmXazgntjWqKVIMxcVcPH8k8WT0cKDZVRRAa0U47iU/N1eDK+BD0s/aA9kCt9ECtjWBRSDQKSu2eru7K8UxDMb1woVQXsaHwj6/eKZOd0G4FYpguzZsLCeqTID0gqalyeePGJX8h27Y9u/7BB8++LuOrXCiwlxS9io2NleDg4DKOWj2bL1q0SNq0aWPzwb6GqjsjXmMKCOA272jjho4u7pKblW7j1tWzWXVWN5I/yapgRqZnou8X+5Nq0x7QHtAeqK0eqLURLDqcLXXiUnOU77dFnpQth9Jq6+dg87yZDvzh7Xvlo2eulw7dusrrUEC/FQArFaCqLUETdZ9KA1c2H630DUlej4+HmKgVI8CqaRWExlQZ4WvXrp3xtsTnhLg4mfHII9KmU2+Z/cNrqCicWuL25Vl5PtvllDRfZzcvCNCmlrRJpazjTRMrhal/p8FVpbhUD6I9oD1wHj1QqwEWf4xnrY2TX5dFybp9BFu559GVVX/olIQYef6WgbJ97QJ59913ZenSpYoDxSMfPHhQmiOKVd1G/lVAQIDVw9ZEiQZOllWEKSkphe2CrJ4AVpw8eVLGjBkjMUhBN27dVfbt2oL2OJVPRje1y8koaSrnZZ03eFhGJWFVTmADxIOPFGjcVeVx9NjaA9oD2gPV4YFamyI0nEPOFblYF4KtXzJd2ISXYMq8IpDpUbZ+cXCo/o+TIKVxCREzRrBaFvQTrCmf0Qq0vDly5IjcdNNN5yjaF5/j6tWr5dJLL5NknOc9L/4ojcM7ydCJt6CVkF/xTSv8nhGskynWo4EVPkA5ByDRPTUhSkKa2BbtK89hWP1LUrs27QHtAe2BuuKBWh3Bqisfgi3nkZeXI6vm/iLDUA1oDq64LwUz2fj4fBibAROsWLOaliKkKjtBU7NmzVTbF2vz5vL169fLoMGDxdndW578eB7U63sqDaiqAFc8HgFWTeNgcV7eAVUXwcqFFMN+aF2t2JUk0cmmdD+PqU17QHtAe6C2e0ADrFrwCaanJskHj10uSUgRvvnmm+fMmD3hSlUkL2eV4DkHK7aAIqLhFpopG5uxSs/X19d4e16fCfao3XXVVVcV6bFnbVJfffUVhFnd5cF3ZkpggybWNqu05Y7O7qgirHkpQk/fYDmZHFtp52kMRJ2rGWtiZfH2RNmnBUUNt+hn7QHtgTriAQ2wavgHSd7V6/eOkviow8Kqt05QUy9uBFglVsNR5+rXX4vvVinvmZ40bwhsadDS1lvapyqWRURESBh0wfiwxXq3aiUDU5Ph+yOSGHtc3r9vtPz74cOSllw1aTwTB6tmVRHST/b1HMA5q/w0PNteJem0oC1fRb1NHfdAPX0lrpOfcPWTduqkG6vmpCgJ8P1b98gZXNy2b99mlet06NAh1aTZ6iwoIormy1VhTFeuW7dORowYURXDV+qYjKRtQz9FW+3qe+6RD957X5Y/foUEN2ohEQd2ixMeGxqGy7BLbrV1GJu3q84qwmOHdsms718VNuqOPR6BHp5npFXH3tKweXtp0KStNG/XQ5whfGqYfb36cio/TzX3NpZV9LlFiKuw1+CuoyfV8wUkYVdR1+n9z4MHnOrbS04VSYegfkZbHfSABlg1+EM9sHOd7NuxQWbOnGkVXJ1B6u8UqtzOB8GdrgsMDLTabiY9Pb1CvQ8r+6Mh2Z6+tKX/II/t4uIi8zdtlJtvvkXmzp2jprMd/9ttX1klAIuRojNV2CqHIGrXxqVyaMcaWY42ShSJbd68mQwbcKUCWHPmzpVtaxdKTk6OuLq5y1OfLhDfABO3z8svRNISo8UnyLbon3JWKf9RY6tzM0/12HwoFU2dU0vZQ6/WHjh/HqgqcHX+zkgfuao9oAOTleDh9NQEYaNlXsAq03aunS9eXt4ybtw4q8PGHjggIRnnj7fTu3dvRbJfu3btOXOkPhYBWE0xpioZcSPJ3VYLCQmROXNmq8rNCRMmKCmMbeuXyur5v1f6523rnMqzHXl8X7xwo3zy3A2yduEfKJYYCiH/nbJ8+XL5+OOP5ZNPPpFIpFCzsrJk586dkpmRLmv++10Jq2ZnpoubV4CkJJwoPHRWRhq0sdIK31fkBaNYuqlzRTyo99Ue0B6oiR7QEaxK+FTYO+7w5rWyccEv4oWKq8ate6Kkva3irlRk+APbV8uAAf1L5DjthQBm6yuuqMhhKrQvI2ds9vwh+vRR0Z3Co4bVtApCzouA8LfffpOkpCRjmjY9U2NsxowZShOLlZM/ffCYLJr+mXQdMF76jZ4i3n5BNo1zPjY6FrFbPnnmWjmFdCDPffLkyVanwagSxVfbt28v//7ygXpwY3d3d2neqp3YO30l0UcPSsyJI2qMPkMnypSH3kcrS6ShYbnZWZKfn4tIXOk5DzZ13gjtqx2HT15QLa6Uo/R/2gPn0QP+nvUlNSNft6Oq4s9AA6xKcLBDfSfpMfxaFdFIxV3+kT3rZefqWeKI3nJh4T2kYcsuKME/y2ex5ZBJcSfk2OGDcv//7ihx871798rAgQNL3KaiK1etWiX79u1Tw3h5eUkrkL9ZOejo6KiWcb2Tk9M56cCaCLBIcL/tttuUBtacOXOUgGhZ/OPhATANqYcPPvhAFi9eLIv+/lqW/fm59J14owwYe514+gRIQswx2bx8phw7sE1adOwnbboOFlcPL4Cw4EIgUpZjVmTb6KMH5L1HLpVGYY1kMYokQkNDbRpu48aN8vvvvwt7STKVGImOAVOnThXJzpVB/XvLqFHPqx6UTz/9tIS17CjNO/SR+b+/L1tWL1BRrz7Pi4S0LPlQWyPSZAse2rQHtAeq1wPNg93EDyDrBNrN7TueoTsnVJH7NcCqRMfyLt47oKF6dJJLJDM9RY6h+fLKmZ8qgnBI0/YAW12VrpBxx2/t8GzkfBp8nNLazFB09MYbb7Q2TJmXk1h//PhxpavFi+v+/ftl5cqVMnbsWAUOqMy+YcMG+e+//9SFlI2cybUaOXLkOQArDtG1kvoUlnlylbQDQRJ1sJgKo0J7WY3Cqt26dVORIILN31BAcN+Mb8Vj2pfCOI4rHvcjHekBDteETSvlr29eU4fw8fWXTn1HysSbnhYnZ251rtlhP6rE26OxdEWN0aTfn7tOAqG0vx6FCATHthoB8/XFCiMImAkszW3evHnyxxcvqkUBSAe//PLLSli2Ze6TWHbAfNPC11m5p9Tdc0RMZuEy/UJ7QHug+jywLTIN0avT4lS/ngZXVeh2DbCq0LmuEKgM7zZMPfIhFBp9eJfs3TBfcVk8fIKkESJbDZp1kPpOLufMIrxTX2ncrLXMevsdpdt0zgYFC9hsmRfDIsY2LuW8QBM47dixQ4GpehiDlXcTJ04s1Loq3ruPF11GdDp27FhkCnxDgFUaQDxnp2pYkJ+fr6JvbI599OhRm2Ubik+Nvmd0504Q5y8D32zrkiVyEpEe56ZNpT+Al5Ofn+wBmNu9e7fQTwQjP/zwgxxZMVs8wztLUMPmEhTWSjr1GSVuHt5qeEY9c7MzxNnNs/jhyvx+xZwf5ZXYKOkG7a+ygCtrB+JNAXmGxs0Bo6f8bhCIcXy+rl+/vmn3+e+IJFoGWMt3JklkbJa1w+jl2gPaA1XsAaPXZ2ZO5bf8quKp16rhNcCqpI/rFKQUjkfskcN7N0v/0VefU87ONGIjRK/4oKUlxcjxA1tk2fSP0OYmX4LDWkuD5h3FL6QpOFf1FO/KJyBExu7fKtAWEAhgiSBtIwAFEL1SY7APoB8u4ufYW28JUFm5mj4zgsX038UXX3zOsGoBVdupI1XAuSGAsgaiKEJaU0RGzU+GAIvcsQ4dOsi0adNQJXhzmQEIdcfWrFkj/fv3V0OzH+NwC1w4b6zt27ev2mbSpEny0EMPycz//U/WnoiSQ0u2yRAIsb7/2wfy8GeLVFTLCQArJzu9UgDW7o1LZHV4a7ns8svV8Sv6n4+Pj+KuGd85AixytRi9tNXIu4opp2I7y+TzcdftANEgh3p2koWLg5Z2sNXzejvtAe2B6vaABliV4PG83By5/9rWIPfmqdEaNm8nzdt2L3FkqmO37TVaPahFFHdsnxzevU42L/5dHBydxc07SA7sXC8HH37YBK44WveiY/ICZ1HB/fHHSzx2SSuPHTtmUcy0cB9EbAxwVbjMygtGO2qKyKj5FAmwGGkhd41RrM8//1ylCgm4SjNKPJCLxFTp+PHjS9v8nPVMKT4yf37hcka3nkb0b83832TwhJvFEe1yKkvNPS8nS3Y0amjz51U4KSsvmBplWyQDYBFczce5lAVgncZ3ojn0r3YeSbdyFMuLPVzqSY+W3uqr5+pUTwjUyN+KTsqxvINeqj2gPaA9cJ49YIeLoEVtgc/nHj3PU6uZh5+YNlGCT205Z3JrCrIhTs4uEGpsfc76sizgBTYh+jCyfPWEFWsEA25urgoMODo6KZ4Px4tFCo7VXW6ulvk8ZTkmtz0FzldGRqaqlAuthN6Gh48cliaNm5R1GlW+fR6AcGxsnDQsIHznAXBRUoK6Vz4EkFYsHXIYqamp6rOgfAb5VpVhmzZvEidUovoHN5Ys8PbqOTiiQKLin2kS1OfT05KAy7uLfUHEsSLzTU1LU9FWXx/fwmGi0AeTlaOORmrQWJO41nhV+Jzv00sOdlgo8am5ciAqQ3LzLf70FG5v/sLF0V6lJh0d7BDFOiNMbejolbmH9GvtAe2B8+WBO0Yjq2PBNMCy4JSSFlkDWCXto9dpD2gPoADRE82yx6xVUSj2IIwD0NKmPaA9ULM8UB/pd5WCzz1dsyZWg2djDWDZ1+A566lpD2gP1CEPUAmb/CtG0y7q7C9ebg516Oz0qWgP1A0P5CFCnKXBVaV8mBpgVYob9SDaA9oDpXmAWUp7e1OKz9PVQS7rGyy9w72FnKraar4e9aV1QzdhX0Vt2gPaA9oD5h7Qt5Dm3ih4XQ8XAZJotWkPaA9UngeYdsCflqRk5CkOlbdbfQnydpQx3QIkMi5TSTfkIspFjpVRRl55R6+akZJO5gkfgV6OQrDF19q0B7QHtAfoAQ2wLHwPSgJXyfXCLeyhF2kPaA+U5AEWBKTkNkd3AjQmB9CipWXmK8FRgqmS/ubUxjX8P80nq+EfkJ6e9sB58IAGWGV0+jK3N8q4h95ce0B7oNAD0WfV21kRmIdKQh0rLvSOfqE9oD1QhzygAVYd+jD1qWgP1CYPlEWmoTadl56r9oD2gPYAPaBJ7vp7oD2gPaA9oD2gPaA9oD1QyR7QAKuSHaqH0x7QHtAe0B7QHtAe0B7QAEt/B7QHtAe0B86zByhhYaL+n+eJ6MNrD2gPVJoHNAer0lypB9Ie0B7QHiifByw3LCvfWHov7QHtgZrhAR3Bqhmfg56F9oD2gPaA9oD2gPZAHfKABlh16MPUp6I9oD1Qfg+wobQ27QHtAe2ByvKA/kWpLE/qcbQHtAfOqwfYcofaWuXlMlGTi0rz2rQHtAe0ByrDA5qDVRle1GNoD2gPnHcPZOacUnMgSCoPpylft8c675+hnoD2QF3ygI5g1aVPU5+L9kAd90B9tNlhKq9ZsKv4uFm+P9Q4qY5/CfTpaQ/UEg9Y/oWqJZPX09Qe0B6oux5wYNN1hKIYjWIjZWbvEtFMOQ/NoCNizrbcUb0NsY2OQNXd74I+M+2B2ugBDbBq46em56w9cAF4wBwwJQFYGUaeVZCPkwR6OQrb7RyLz5IWIW4SlZSNR46xmX7WHtAe0B6ocg+URNu0CrDqIXl46nSVz00fQHtAe0B74BwP8EerPoCUr4ejxCTnSONAF2ng6yTebvXFz7O+7DqSLp4uDrL3eIakZOTLxoOp54yhF2gPaA9oD1S1B+xLIFpZBVj1gbBOndYIq6o/HD2+9oD2QFEPhIe6SQjA1L4TGeKH1GBrvG8Y4Cw7Dp+Uo4hW0aIRqXKsb69AVtG99TvtAe0B7YHq8wCxkjWzCrCc8OOVnacBljXH6eXaA9oDVeMBto1xcawnF/cMVJyrdftSZPXeZJUOND9idu5pyc7NNV+kX2sPaA9cgB4gRzMtM1/ywc9kFbGXq4MkI7JdHeZUgn6eVYBFTZlUTLgyTacdK9ObeiztgbrhAf4gklOVkX1KmiAV2KWZp7jg94d2ODYLICtXfNzrS2yKBlN14xPXZ1HcA6yM9UL6m/xCN+d6qrCDxRwncQ2OS71wvvcsWMHPgSpkKe4j+oYVwgRR5sZ93PB7wf34u0FfnsI29R3s5WRWvmThRswW8wQo4+8Mx3JxspdUADQW05RWleyKm0FrZhVgubtgp+Siu/GH0BsTyMQPYaC3ozTyd5E0nMCuIyeLTMIdX5C+bXxUeJ+T44kT5TnhhPml2XMsXa3jyfDLQ/0ajs0f0KzcU+pONQk/qiSw1iTjB8e75po1q5rkIT0X7QHbPMAoFSUXTuEHwgNcKqYCxyNiZY8V0SCrL9yWIGEBLhIRmym82SP40qY9UBc8YB5o6N7CSxoh/c2CDTv+UViwuJQcORidKQeiMmwGCxaGOW+LCIAIiurhIs+/d0vmDckVd2cHxbtMx9868cDJrFPqd4Hb8++f25AWQOBDMMSIVW7+aUUnIB8zvKG7MPNmbmdQgsxMXHJ6nrBQhuOkZuRJDHyamXMWeLVt5C4D2vmc8xnQ9/vh96jEHEnCGJZMYSVLK7DMDhOweMYEQeQ78ERIMCW51BkAgz+AxY1gKBJ3mgRHHK19Yw+FBItvV9b3nBqdwGeCr5y8UwrlH0vIVqCOYK26zfiy8Lh0hWXvVfes9PG0B2qPBxjOH9nFX9Yi9cdQfqC3k9K1ysOP5bzN8erHWEeras/nqWdasgd4xeS1k5EUvm4KDTcCqvi0XAnzd1bAoKQR4hGEILjitec0AAr3IwfRClYpaahqXRfg6ajkVQhAGJfi/BlU4YPXTvqC50DfOCL4Up1GTEGARjDH3yB3ADRLFpWYrWgKDALR7wR5RgRNBYAwDjX5WjRws7S7dYBlcesasnB7ZJo6aX98gAR1+0GGpaOq0/jlYDjSUI+uzmPrY2kP1GYP9GjppdJ+OXlnpKGfk3RGSpB3tt8uOF7jLxq12e967tXnAUZgGvg6iwcu3sE+jtIKF+DNh9LUdcoVgKI7/gasRaxsmWVGdr6wtRMzQwooINrDG5RclP57udbH35EJQBDUZeMamYMoDoMBvF5yGaNJjCBXRvqR43gBeBA4EagwZcaoHIMytd3oZ0bNrBHZ6WdLQSfjvK1GsIwNasMzvzQrdiZJDr5wjHLxy8OTNuJbLPM2t1D8qNeGOwDzOevX2gN10QPtG7tL/7a+CmAxorUTlYK8aPBHOx0XDeNvuC6euz6nuuEBpqUYlaWMSNMgV1WgQQ6PpQuvkTCqCLiqLK8RPExdFaNoL2Uds3mIq7Ru6Ca+AFVM4deE8ynrOVTH9pbjYtVx5Eo8BiuORnQNsDhiLpB7LPKo9fCDTf4Uc7Yt8OVg6nEnuGMEWszPmosaWhxIL9Qe0B4oswfCcCcbhBQg/0ZJGD2OkLu5BYPcTuNNEfkoTYNcVMh+5e5kcDCyVBqBIIsE15rGyVQT1//VGQ90be4pzZHuORyXpa4NpZGjGYklqGKBhiUwZckxNQmIMA3Pa2JZjJG5LvBTl2ZeKuVXln0vxG3rRASrMj445lUZ/eKPeWJaniQg37oPIoYk8WvTHtAeKN0DvJNnKoLGH2Le5ZJbMaCdr1rGVMWGA6kQB02Xge19FagKRRrFqBhUGxX8x5ThIRB703GXvWF/qo5kmTvnAnnN7xAr6kh2rg5r6Ocs41BoQeP3bxVAPq8DBP+sZCWHyCBGt2zgKsM6+VfHtKrkGORNz9+SoAjjlg5A35MfRWM0uWNTD1XUxuI2W8Gkae8L+38NsEr4/JnbZpSLAoe8leYfO9MW2rQHtAeKeoCRp4Yg7G4+mCYZIIQaxupAyi4w+kQFdqYU5myMl2Dc+fe0gYeydEeiqqAiudf4wTfG1s9V7wFGDlnubqmKk2kxZgjM+a/O5Ktgn+KgyLhge4DwTJ4OMwfmRvJwKAAOC5i4LS/iJEcz5bbGTAMtBNGiZFSBmUdeyP9JQ2WZpXQytyc3aDeKtsyN8yQ/ipXtTEn7gC9EiRB/kM8tGVN7jD6RcJ6Unqs4VTUpGmVpzsWX8Ry2RZ6U3UfTxRXXsuLUGX7WPKeRXf1V1JmcLlX9B4DFCLS2sntAAywbfEZSfRR4XCNQ+RSHsGoK/sBJ4ONdDvlf+bh48KLCMs5IG3QzbDik3kR7oNZ4gGk+SrME4OLECx/v9o/Gn00FkqPRp7W3Sv1xG/7d/L0mVlpBob1TU88SzzMFf1NbItIUkZd/X0aErMSd9MoSPWAeaeSGTHORyMtqKjbv2IGbSsO4jnI8exB15A2nJSNYYWUcL8gEYwRLjHo4QI+Ax+Ln7+PugM/dFA2xB4JKR2aAfSMZSXFDeX67MHfhckumfmfx+0p6B1snLYKERwKyDDwGydRMLR9BWi8ClewESQT1i7cnKuoHgT3nwHNjqppgjM/+APu1DSBZ8k1ZlxFk4Z8Cxb8vjypy0zKsk58Coywe01Y5HtAAy0Y/2kpOJJ8rFmCMgOwE+CYMK1O3Q5v2QF31AKVceKfL6yPvdHmxDkYqgVEqNycHFfk1Lup8pm1C70DKwEzsHVTihY5/d0zZL0EkK9Gs4XNd9WVVnBc/l67NvSQBYOYMwG0faBQy3MPI0BEA4d7h3qqS04hwEMgQ6pCXSnDEKE8sIjeMIlIah79rJDgz4kQwQ4BUU41zRlCmxO9YTZ17VcyLf6f826MMk3mnFt7sDO3oVxWHvKDH1ACrCj9+8kd2IRy7BeW52rQHyuIBXuCaIO1G8T3edfNCwbQLORCMEsWn5qgIAdMifM07+vNpFE+kuDAju4zqMv1wAuJ8TPO0DHFD1MBRnQuLTXguC7cmqIiDUUVobe6MmhxPyJJojHcgKtPaZnq5FQ8YoJegicKtQxGlIKeIxhJzRocc8N7WaI6xj7WydSvT0ItrgAcIoJmeZxqWUUd+J0jQbwOBzqbBLogImm5+asBU68wUau6tRy12MVOIWQhp8wKzDekNbdoDZfEA0xkEIhTvpfFySDE+ckn4o8h0HNXPuYJclaxcB8UNVJo4xbgolCRhBILpExojDkzFkEtSmYbrtLDyj+kHGufbqYmHioIwtce0IVuB8O+Cd8/k7TA6QvBVkjE6RoVmAoDImCxd7VuCs/j9YASdxvQZo4n8HvE7wLQPSdwGuOI2/O7YY31ZrDz7lGV8vW3VeYC/JwRXHfB3GYw0Kf+2mLLXVnUe0BGsCviWFwtWQPGOnGFzhlwpCcEwLFODLEs3qk4qcBi9ayV7gCkDVq/Z44aN7RPMSbqVfCibhyMnhHMhUGGFEsvFqRzMCyIfituCH0TiF37fUgCk2GeLhN96OCECGgoP8px4YeX3j99DghhebAlQWoa6qmgFuS+s0GNVn2pHgWMz/WYNdJEozHQQo1D8nu84kq4iH8bJ8dh9W/tAzdhVVu9JVuOwBJxzMPX1qgfxQXv1nn8vBIdUeSah2PyCb4xn/syeYvtOpBcSo8nH0mbZAwTPrQFGqcFE7lFrpH2s8Zosj6CX1lUP8Fq1AalBRit7tfJWwLuunmtNOi8NsCrwaczdFK90e7ajMoPgylzVnRdxXtwsVd9U4JB610rwAO/ZScrlBYmE1+hkVi7ZySECYkRW2oBwyygSAQtTKOwUoBqwYr/juAOkEbQwYsAyboIiVkeRX2SAJLVRBf7rgHZTHq7gMyH6xB9HEoZZtcX5ErhUhfH7y/NnxImRMkZi6Zc26NPFczWMwIzgjefLXoGqNxhAE7fJwX6MYpH4bvCtjP3K82xwsLYfTkNPsAs3RUhfhoDTRsDJKIQl64RSeqYBWQhA/TF+Z7RpD2gPnD8PaIBVRt/zDp6GGwHVZmAd1Kd5gdVWczzAptyMkjBaQiK1kbbiDFmK3ASl36w6MirSjO0JphjJoeSAH6qV8lD2dAwkYKZdOJYJ4DgigmQSxszHeooRcr9eIAozdcc0GXl3tLYAauFokcF2FKsQ2SmPkaPE1A5L2y+k6h4CKxojdYeR2jiCz7F4WXl5/Flb9+HvDQEs0zpG6pjnwuVM+bA9Sj6+mAS+bMtirbdabT1/PW/tgdroAQ2wbPjUeCFmCTJLlTdB54eRKfNolQ1D6E0q4AGCIpKneRfPVBkRE4ENe9ixjJwRnVSQoRkt5GuSNXnhYcUTQVIOtnXAGC7166n0CcdhyowXI2yG1yZRPX7GvKyblrHdkqj9bCUBs6jhKIAbwRh5T9TZYYSL0h0JAG4cl3NilMjoHMBjMDrGCycbonIu1BFiSTsJxScQrSCAbwSNKRLcGcHia1tJyRVw+3nblZGzXUhDRiI6xnOOAPdK27keIH+G8hfseadNe0B7oOZ5QAOsUj4TXuRO4uLN1AerAXk3bbq3LmVHvbpUDxBUEDwRwDI6Y6SVCJAITBgZYiUdQUVpXJ1SD1aDNmB0hgCLgIqcKabhrBkr8ijmSGBppNzqki+M82bqi3wypliZsj2RkHNBdlFg6pmAW8ld4G+Dnzsf/Fvg50/uGr8u/MZ4orrU9N7698fwr37WHtAeqH4PaIBVBp8fQ5piNspctZXNA4zSkD9CfgijRrxYkKDN940hDEiekba67wHerCQgXco0LOUX+GAkmCCSr/G1uCCMAIn8P6b8qCHF1DLTz0xLGyD6gnCEPkntgTruAS3TUIYPmL//rqjQuVArA3lhIFhi+oqvebdNwGTtwsjoVDOQyZm6Y9SF5fl8TV0nXkiYAmoGPpS22ukBEuHZr+0YdKoYU+F3gnw2AmZgKfWZ83PmckbskgGsmMq90IznH4h0XmE1JgoA9E3FhfYt0Od7IXpAR7DK+KmT0/Pv+jjIMZzVEWIF2YReQYrczAsJ0x3syF7XeFq9WnmhpYWHZCLiwDSGIUzHiBRbX7A9Cv3DlBeBF8+fUhWMXDAFyMo48pMoM8CIBVNCVJjWd+1l/BKeh82Z1rTG+6K8w3HKlOB7wQIAAi++pkr4hWgEmey/yNQ2I1PkBVrz3YXoH33O2gMXigc0wCrHJ01AsWJXkqouI5gggCB5mREdc+BVjqFr9C4kVzOlR+4UIxQ0Rqaog2Stws3gGxlgzLSX/r8meyAOWm7O0NLi58zvNvsBsoIvB7IV5IORM8cHvwIEE+QLEXATKJvkHfIVsd+WaBXBB8F4dRp5fexZx8IJpucMjhOjq6kA/dQfo2p8WW+QGKVi2xkS87VEQnV+ovpY2gM10wMaYNnwufBishcVhCRh8zWjL6x0opgfwRaXMSpDAcfaamxpQjkAnIbpIoOoBF9bM15Y2yMiRUkDlohTMVpb3fAARUh3HT2pwBJ5QuQGsYEvQQMjlARZ/G7sRsrXmjhpcU/w++KNsfwxlh+ETQm4ycOjXAbb4FSH8Ts+rkegAlaWjsebAQUkcX6UQtgH/TNbjdSB0d0Cwasy+cnW/fR22gPaA3XXAxpglfDZ8kKyDJEqVg7ieqAAVQmb19pVntBYGtDOp4B0W0+lMyhZwIsNQSPTnUYLDksnyYsnIx7kXDGix5YtYf4u6k6eY1N2QKdILHmuZi/jTQNFR6mezu9DoJcTok2myBVnzigmH2yDY+3mgt+NsQA1JHXzO8Able2HT0LZvR76oDmCl5dR5khReb1GIc4+UJy31ahxZ6tyPCNhbAXEvwGeJ8EaVdSNvwnelDHKzZuY7i29bJ2C3k57QHugFntAAywrHx4vJHuPZ8ha/MhWdwrDypSqZTFTfuSUsbqJd+VGCocgkxcIcyPoZCSC21DJ3pKfmDal6CHHYgSwGzhXun2HuRdrz2uCBkZr09F0mrIlNKYE9+HvhCDcmrGxrCMe5CZmgJdnGFOKTDuzmpR8PGtN0dmmp01DNwXiCdAOIsJWmlG7jFFVatYR3DVFMQXT2/yu2mLkkBFcbUOXhooYpqHmHYy0IfmZPH5cAX+TRHfefNA3fG162Klt2GKoAc6baUxt2gPaA7XTAxpgFfvceBHh3TjTFySZUFy0LvOqip1+pb9thX5o1OphHztyekxVZbZd5Cp9MnrAKvEAo1uMSm04kHrO+EzLeQCsE1iwzVBRiG7anN8Nptp9kUJkGpEgjkKyjQG8+H0hOGeqkrZsZ5K68THtafn/No3cpEdLbwWujC3IJSMBnzdOCWl5KmqWnXcKZHwS8k2k/Cwc13jNGwbsUiYjmOJNhAEoFYDCebOwgzcV5GiRr6iaMHNjbdoD2gN12gMaYJXw8TJFshwpQkay6roR/DCdwygULzKsFLR2gWHag1EHtqPhhZMXD0azGP0yf3Ad3xvRBL7mcfisre55gMCI3wN+b0gQV2KZAEiG8aaF3EWirDS8Jn+Ly5g+Y8Pt4t83ZNrUd7IwSorvpXkEzBi3+LP6TmJf/PkqbiSfK2rUcSMAZDSWETF+j/m3wvkTHPJvwYcpQrPzregx9f7aA9oDtdsDGmDZ8PmRf8SLAfsQUruJ5Pa6ZsQ8jBaoixkAFEEQBSCZDqIRVHH9yYL3XEaYxDtytupgyw7d/4xe0VZWDzBqnIio0lHoabFiMQ3fMUaaaOxFaCn1XNZjMFXNakHztDYBHdsb8Zl/0QSI5sZIVDhSk4zCkuivTXtAe0B7oCwe0ADLBm9R44l32AQcbJvDu28CEHKSYkEEpzL1hWAEYdaiAdT76Yims+G4GGlC+4Xwbajcc4yFNEQ0UvP8GyOwIRjKw41MXGqOioYxZchIlzVjCtELUSUffA+ZkibpnBwsRk9dKcVAZFWC7UCKk43BecPAwgxGpJqHuKp5lLCbXqU9oD2gPWDVAxpgWXWN7StI9CXwYlk374IprlmcEG77aGXfktElknmZGmEag9VMTK+oVB9SNdT34cXJ1P/OpMJOEGRITPCIHKMRKv84RhyiddaqBrldAKrJyIshx8QPFzN/XNR4TEa4tGkPVJYHmKI/AtBD7tauo+lFhqVsBLWsSIBn02NWsWrTHtAe0B6oSR7QAKsSPw2mOphCo1YQCbUk/xJwEWzxTpx34VzGtBsJtkx9VGW6kXfjrEYi+PLHRYgl4uSO8MLFlAirugjEOGduQ4BEIJaamafkFriOxkiCY32AOFzEGA1gZZPmUZl8o/+veg8wgsxUIYnqTOcxWsoIkzbtAe0B7YGa7AENsM7zp8PoUg7AFoEWwZjxYJk4LyrkiFBbisZIGUEZLzTcjxcbAh1VIUXEVA4jqKJYaK9W3qraqRxD6F20B7QHtAe0B7QHtAeKeUADrGIOqS1vCaoIuwy+E6Nn5AUz7ccHgRgjaYw+Gc8EbUb7EkbYTmEfRrOMiBZTfkZkyohe0R8EcsRvXEcqi6+7IzSFnJFO1ClB+keb9oD2gPaA9oD2QHEP6Dh7cY/UkvdGVMuYLoGWA2go5FBVhZkAnCmlyTQnQZc27QHtAe0B7QHtAe0Byx7QESzLftFLtQe0B7QHtAe0B7QHtAfK7QGd4ym36/SO2gPaA9oD2gPaA9oD2gOWPaABlmW/6KXaA9oD2gPaA9oD2gPaA+X2gAZY5Xad3lF7QHtAe0B7QHtAe0B7wLIHNMCy7Be9VHtAe0B7QHtAe0B7QHug3B7QAKvcrtM7ag9oD2gPaA9oD2gPaA9Y9oAGWJb9opdqD2gPaA9oD2gPaA9oD5TbAxpgldt1ekftAe0B7QHtAe0B7QHtAcse0ADLsl/0Uu0B7QHtAe0B7QHtAe2BcntAA6xyu07vqD2gPaA9oD2gPaA9oD1g2QMaYFn2i16qPaA9oD2gPaA9oD2gPVBuD2iAVW7X6R21B7QHtAe0B7QHtAe0Byx7QAMsy37RS7UHtAe0B7QHtAe0B7QHyu0BDbDK7Tq9o/aA9oD2gPaA9oD2gPaAZQ9ogGXZL3qp9oD2gPaA9oD2gPaA9kC5PaABVrldp3fUHtAe0B7QHtAe0B7QHrDsAQ2wLPtFL9Ue0B7QHtAe0B7QHtAeKLcHNMAqt+v0jtoD2gPaA9oD2gPaA9oDlj2gAZZlv+il2gPaA9oD2gPaA9oD2gPl9oAGWOV2nd5Re0B7QHtAe0B7QHtAe8CyBzTAsuwXvVR7QHtAe0B7QHtAe0B7oNwe0ACr3K7TO2oPaA9oD2gPaA9oD2gPWPaABliW/aKXag9oD2gPaA9oD2gPaA+U2wMaYJXbdXpH7QHtAe0B7QHtAe0B7QHLHtAAy7Jf9FLtAe0B7QHtAe0B7QHtgXJ7QAOscrtO76g9oD2gPaA9oD2gPaA9YNkDGmBZ9oteqj2gPaA9oD2gPaA9oD1Qbg9ogFVu1+kdtQe0B7QHtAe0B7QHtAcse0ADLMt+0Uu1B7QHtAe0B7QHtAe0B8rtAQ2wyu06vaP2gPaA9oD2gPaA9oD2gGUPaIBl2S96qfaA9oD2gPaA9oD2gPZAuT2gAVa5Xad31B7QHtAe0B7QHtAe0B6w7AENsCz7RS/VHtAe0B7QHtAe0B7QHii3BzTAKrfr9I7aA9oD2gPaA9oD2gPaA5Y9oAGWZb/opdoD2gPaA9oD2gPaA9oD5fbA/wHNoLlmEonUogAAAABJRU5ErkJggg==" }, "metadata": {}, "output_type": "display_data" @@ -159,7 +162,7 @@ ], "source": [ "from eomaps import Maps\n", - "m = Maps(Maps.CRS.PlateCarree(central_longitude=-60))\n", + "m = Maps(Maps.CRS.PlateCarree(central_longitude=-60), figsize=(6, 3.5))\n", "m.add_feature.preset.ocean()\n", "m.set_frame(ec=\"none\", rounded=0.3)\n", "\n", @@ -191,7 +194,7 @@ "tags": [] }, "source": [ - "# Zoomed in views on datasets\n", + "## Zoomed in views on datasets\n", "\n", "To create a \"zoomed-in\" view of a dataset, the data must be plotted on the inset-map with the same classification as the initial plot.\n", "\n", @@ -243,7 +246,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 13, "id": "3a96a635-3c2b-49d0-a25b-f58c555f85bd", "metadata": { "editable": true, @@ -279,7 +282,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 14, "id": "b5bfc055-ec33-4672-9a6b-570defce9f9e", "metadata": { "editable": true, @@ -299,13 +302,13 @@ "\n", "m_i.inherit_data(m) # inherit the data from \"m\"\n", "m_i.inherit_classification(m) # inherit the classification from \"m\"\n", - "m_i.set_shape.rectangles()\n", + "m_i.set_shape.rectangles() # switch to a different shape for plotting\n", "m_i.plot_map(ec=\"k\", lw=0.5)" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 15, "id": "11d46e5c-4769-412a-a74a-b5a1dd38dc0d", "metadata": { "editable": true, From 58330c2b6b6077608424073a9d40b5bbd9733c5b Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sat, 9 Dec 2023 01:11:32 +0100 Subject: [PATCH 016/240] update docs --- docs/notebooks/inset_maps.ipynb | 9 ++++----- 1 file changed, 4 insertions(+), 5 deletions(-) diff --git a/docs/notebooks/inset_maps.ipynb b/docs/notebooks/inset_maps.ipynb index 713e89a3f..6e8c2e13e 100644 --- a/docs/notebooks/inset_maps.ipynb +++ b/docs/notebooks/inset_maps.ipynb @@ -45,26 +45,25 @@ }, "source": [ "## How to create inset maps\n", + "```{eval-rst}\n", + ".. currentmodule:: eomaps\n", + "```\n", "\n", "Inset maps are used to show **zoomed-in regions of a map** and can be created with {py:meth}`Maps.new_inset_map`.\n", "\n", "```{eval-rst}\n", - ".. currentmodule:: eomaps\n", - "\n", ".. autosummary::\n", " :nosignatures:\n", "\n", " Maps.new_inset_map\n", "```\n", "\n", - "\n", "An inset-map is defined by providing a **center-position** and a **radius**.\n", "\n", "The shape of the inset boundary can be one of the following options:\n", "- projected \"ellipses\" or \"rectangles\" (with dimensions defined in a given coordinate-system)\n", "- \"geodesic_circles\" (with a radius defined in meters).\n", "\n", - "\n", ":::{note}\n", "[`InsetMaps`](eomaps.inset_maps.InsetMaps) can be used just like any other [`Maps`](eomaps.Maps) object!\n", "\n", @@ -134,7 +133,7 @@ "There are many ways to customize the appearance of an inset-map. \n", "\n", ":::{tip}\n", - "The [`InsetMaps`](eomaps.inset_maps.InsetMaps) can be in a different projection than the parent map!\n", + "Inset-maps can have a different projection than the parent map!\n", "\n", "You can also specify the position and radius of an inset-map in a coordinate system of your choice.\n", ":::" From 2be67ce28bff1ae72f47cae053ea2c28e4c21239 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sat, 9 Dec 2023 11:44:21 +0100 Subject: [PATCH 017/240] add unittest to test all Jupyter Notebook code-cells in the docs --- tests/test_doc_notebooks.py | 47 +++++++++++++++++++++++++++++++++++++ 1 file changed, 47 insertions(+) create mode 100644 tests/test_doc_notebooks.py diff --git a/tests/test_doc_notebooks.py b/tests/test_doc_notebooks.py new file mode 100644 index 000000000..71e9ca604 --- /dev/null +++ b/tests/test_doc_notebooks.py @@ -0,0 +1,47 @@ +""" +Test all Jupyter Notebook code-cells from the docs. + +NOTE: +All cod cells of a notebook are concatenated as if they have been writtin as a +singe pyhton-script that is executed in one go! + +This is done to avoid issues with cells that are not "standalone" +(e.g. that require previous cells to be executed) +""" + +from pathlib import Path + +import pytest +import nbformat +import matplotlib.pyplot as plt + +plt.ion() # use interactive mode to avoid blocking images + +basepath = Path(__file__).parent.parent / "docs" / "notebooks" + + +class TestDocNotebooks: + @pytest.mark.parametrize( + "notebook", + filter(lambda x: x.suffix == ".ipynb", basepath.iterdir()), + ids=lambda x: x.stem, + ) + def test_doc_notebook(self, notebook): + with open(notebook, encoding="utf-8") as f: + nb = nbformat.read(f, as_version=4) + # parse all code-cells from notebook + code_cells = [i["source"] for i in nb["cells"] if i["cell_type"] == "code"] + code = "" + + for c in code_cells: + for l in c.split("\n"): + # exclude lines that use magic commands (e.g. starting with %) + if not l.startswith("%"): + code += f"{l}\n" + + # run code (use a shared dict for locals and globals to avoid issues + # with undefined variables) + d = dict() + exec(code, d, d) + + plt.close("all") From 759d9b25a4c78aafc9263f8d709250b09c23aad3 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sat, 9 Dec 2023 19:20:01 +0100 Subject: [PATCH 018/240] add basic info on how to use VSCode/VSCodium --- docs/FAQ.rst | 46 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 46 insertions(+) diff --git a/docs/FAQ.rst b/docs/FAQ.rst index 587dc1ec3..d581e7099 100644 --- a/docs/FAQ.rst +++ b/docs/FAQ.rst @@ -25,6 +25,52 @@ the plot-settings must be adjusted to ensure that ``matplotlib`` plots remain in .. image:: _static/spyder_preferences.png +.. _config_vscode: + +VSCode / VSCodium +----------------- + +.. currentmodule:: eomaps + +In general, EOmaps works "out of the box" with `VSCode `_ or the open-source variant `VSCodium `_ (together with the standard `Python `_ extension). + +However, there are some tipps that might help with your mapping workflow: + +- In a normal python-terminal, the default matplotlib backend will be ``QtAgg`` in a **non-interactive mode**. + This means that you must call `m.show()` at the end of the script to actually show the figure. + Once the figure is shown, **the terminal is blocked until the figure is closed**. + +- To **avoid blocking the terminal** while a figure is running, you can **activate matplotlib's interactive-mode** using + + .. code-block:: python + + from eomaps import Maps + Maps.config(use_interactive_mode=True) + + Once activated, figures are immediately shown as soon as a new :py:class:`Maps` object is created and the terminal is **not blocked** (e.g. you can continue to execute commands that update the figure). + +.. note:: + + If you run a whole script using the **interactive mode**, the script will run until the end and then usually terminate the associated kernel... and in turn also closing the figure! If you want to keep the figure open, either make sure that the terminal is kept alive by entering debug-mode, or avoid activating the interactive mode and block the terminal with `m.show()`. + +Interactive IPython (e.g. Jupyter) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +If you enjoy interactive coding in a Jupyter-Notebook style, make sure to have a look at the nice `Jupyter `_ extension! + +It allows you to work with an interactive IPython terminal and execute code-blocks (separated by the ``# %%`` indicator). + +- With IPython, the default behavior is to create static (inline) figures (same as with Jupyter Notebooks)! + To print a snapshot of the current state of a figure to the IPython terminal, call :py:meth:`Maps.show` or :py:meth:`Maps.snapshot`. + +- Same as with Jupyter Notebooks, you can use *"magic"* commands to set the used matpltolib backend. + + - For interactive (popup) figures, switch to the default Qt backend using ``%matplotlib qt`` + - For interactive (inline) figures, you'll need to install `ipympl `_ and then activate the ``widget`` with ``%matplotlib widget``. + + - For more details, see the associated section for :ref:`config_jupyter_notebook` + + .. _config_pycharm: PyCharm IDE From de6ca1248076090272701f17d4f054aac02e3692 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sat, 9 Dec 2023 19:21:22 +0100 Subject: [PATCH 019/240] minor --- docs/FAQ.rst | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/docs/FAQ.rst b/docs/FAQ.rst index d581e7099..647477c5a 100644 --- a/docs/FAQ.rst +++ b/docs/FAQ.rst @@ -30,7 +30,7 @@ the plot-settings must be adjusted to ensure that ``matplotlib`` plots remain in VSCode / VSCodium ----------------- -.. currentmodule:: eomaps +.. currentmodule:: eomaps.eomaps In general, EOmaps works "out of the box" with `VSCode `_ or the open-source variant `VSCodium `_ (together with the standard `Python `_ extension). @@ -96,7 +96,6 @@ To my knowledge there are 2 possibilities to force ``pycharm`` to use the origin .. image:: _static/pycharm_preferences.png - In addition, if you use a **commercial version** of PyCharm, make sure to **disable** *"Show plots in tool window"* in the **Python Scientific** preferences since it forces plots to be rendered as static images. From d0c8dcbe79539f423f1b67ef6be7be63397a042d Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sat, 9 Dec 2023 19:22:04 +0100 Subject: [PATCH 020/240] minor --- docs/FAQ.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/FAQ.rst b/docs/FAQ.rst index 647477c5a..9d62793e7 100644 --- a/docs/FAQ.rst +++ b/docs/FAQ.rst @@ -37,7 +37,7 @@ In general, EOmaps works "out of the box" with `VSCode Date: Sun, 10 Dec 2023 11:21:37 +0100 Subject: [PATCH 021/240] update test env --- tests/test_env.yml | 11 +++-------- 1 file changed, 3 insertions(+), 8 deletions(-) diff --git a/tests/test_env.yml b/tests/test_env.yml index 805b76630..a3e273b18 100644 --- a/tests/test_env.yml +++ b/tests/test_env.yml @@ -30,12 +30,7 @@ dependencies: - coveralls - pytest - pytest-cov - # --------------to support multiple Qt versions - - qtpy - # --------------for building the docs - - sphinx-copybutton - - sphinx + # --------------for testing the docs - docutils - - pip - - pip: - - sphinx_rtd_theme + - jupyter + - nbformat From 5577d34af00560098e35c86013da1c9564d2eb93 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sun, 10 Dec 2023 14:31:00 +0100 Subject: [PATCH 022/240] update docs --- docs/FAQ.rst | 393 +++++++++--------- docs/conf.py | 1 - docs/installation.rst | 7 +- ...{introduction.rst => quickstart_quide.rst} | 0 4 files changed, 207 insertions(+), 194 deletions(-) rename docs/{introduction.rst => quickstart_quide.rst} (100%) diff --git a/docs/FAQ.rst b/docs/FAQ.rst index 9d62793e7..df9067218 100644 --- a/docs/FAQ.rst +++ b/docs/FAQ.rst @@ -5,153 +5,175 @@ :local: :depth: 1 -.. include:: introduction.rst + +Need some help to setup python for EOmaps? +****************************************** + +.. toctree:: + :hidden: + :maxdepth: 1 + + quickstart_quide + + +Have a look at the :ref:`quickstart_guide` to learn how to setup a python environment that can be +used to create EOmaps maps! + .. _configuring_the_editor: Configuring the editor (IDE) **************************** +EOmaps can be used with whatever editor you like... however, some editors have special settings that can be +adjusted to improve your mapping experience with **EOmaps**: + .. _config_spyder: -Spyder IDE ----------- +.. dropdown:: Spyder + + .. currentmodule:: eomaps.eomaps + + To use the whole potential of EOmaps with the awesome `Spyder IDE `_ , + the plot-settings must be adjusted to ensure that ``matplotlib`` plots are created as interactive Qt widgets. + + - By default, figures are rendered as static images into the `plots-pane `_. To avoid this and **create interactive (popup) figures** instead, go to the preferences and set the "Graphics Backend" to "Automatic" : -To use the whole potential of EOmaps with the awesome `Spyder IDE `_ , -the plot-settings must be adjusted to ensure that ``matplotlib`` plots remain interactive. + .. image:: _static/spyder_preferences.png -- By default, plots are rendered as static images into the "plots-pane"... to avoid this and create - interactive ``matplotlib`` widgets instead, go to the preferences and set the "Graphics backend" to "Automatic" : + .. raw:: html + +

+ + .. note:: + + If the gaphics-backend is set to *"Automatic"*, you can still plot static snapshots of a figure to the "plots-pane" with :py:meth:`Maps.snapshot`! -.. image:: _static/spyder_preferences.png .. _config_vscode: -VSCode / VSCodium ------------------ -.. currentmodule:: eomaps.eomaps +.. dropdown:: VSCode / VSCodium -In general, EOmaps works "out of the box" with `VSCode `_ or the open-source variant `VSCodium `_ (together with the standard `Python `_ extension). + .. currentmodule:: eomaps.eomaps -However, there are some tipps that might help with your mapping workflow: + In general, EOmaps works "out of the box" with `VSCode `_ or the open-source variant `VSCodium `_ (together with the standard `Python `_ extension). -- In a normal python-terminal, the default matplotlib backend will be ``QtAgg`` in a **non-interactive mode**. - This means that you must call :py:meth:`Maps.show` at the end of the script to actually show the figure. - Once the figure is shown, **the terminal is blocked until the figure is closed**. + However, there are some tipps that might help with your mapping workflow: -- To **avoid blocking the terminal** while a figure is running, you can **activate matplotlib's interactive-mode** using + - In a normal python-terminal, the default matplotlib backend will be ``QtAgg`` in a **non-interactive mode**. + This means that you must call :py:meth:`Maps.show` at the end of the script to actually show the figure. + Once the figure is shown, **the terminal is blocked until the figure is closed**. - .. code-block:: python + - To **avoid blocking the terminal** while a figure is running, you can **activate matplotlib's interactive-mode** using - from eomaps import Maps - Maps.config(use_interactive_mode=True) + .. code-block:: python - Once activated, figures are immediately shown as soon as a new :py:class:`Maps` object is created and the terminal is **not blocked** (e.g. you can continue to execute commands that update the figure). + from eomaps import Maps + Maps.config(use_interactive_mode=True) -.. note:: + Once activated, figures are immediately shown as soon as a new :py:class:`Maps` object is created and the terminal is **not blocked** (e.g. you can continue to execute commands that update the figure). - If you run a whole script using the **interactive mode**, the script will run until the end and then usually terminate the associated kernel... and in turn also closing the figure! If you want to keep the figure open, either make sure that the terminal is kept alive by entering debug-mode, or avoid activating the interactive mode and block the terminal with `m.show()`. + .. note:: -Interactive IPython (e.g. Jupyter) -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + If you run a whole script using the **interactive mode**, the script will run until the end and then usually terminate the associated kernel... and in turn also closing the figure! If you want to keep the figure open, either make sure that the terminal is kept alive by entering debug-mode, or avoid activating the interactive mode and block the terminal with `m.show()`. -If you enjoy interactive coding in a Jupyter-Notebook style, make sure to have a look at the nice `Jupyter `_ extension! + Interactive IPython (e.g. Jupyter) + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -It allows you to work with an interactive IPython terminal and execute code-blocks (separated by the ``# %%`` indicator). + If you enjoy interactive coding in a Jupyter-Notebook style, make sure to have a look at the nice `Jupyter `_ extension! -- With IPython, the default behavior is to create static (inline) figures (same as with Jupyter Notebooks)! - To print a snapshot of the current state of a figure to the IPython terminal, call :py:meth:`Maps.show` or :py:meth:`Maps.snapshot`. + It allows you to work with an interactive IPython terminal and execute code-blocks (separated by the ``# %%`` indicator). -- Same as with Jupyter Notebooks, you can use *"magic"* commands to set the used matpltolib backend. + - With IPython, the default behavior is to create static (inline) figures (same as with Jupyter Notebooks)! + To print a snapshot of the current state of a figure to the IPython terminal, call :py:meth:`Maps.show` or :py:meth:`Maps.snapshot`. - - For interactive (popup) figures, switch to the default Qt backend using ``%matplotlib qt`` - - For interactive (inline) figures, you'll need to install `ipympl `_ and then activate the ``widget`` with ``%matplotlib widget``. + - Same as with Jupyter Notebooks, you can use *"magic"* commands to set the used matpltolib backend. - - For more details, see the associated section for :ref:`config_jupyter_notebook` + - For interactive (popup) figures, switch to the default Qt backend using ``%matplotlib qt`` + - For interactive (inline) figures, you'll need to install `ipympl `_ and then activate the ``widget`` with ``%matplotlib widget``. + - For more details, see the associated section for :ref:`config_jupyter_notebook` -.. _config_pycharm: -PyCharm IDE ------------ +.. _config_pycharm: -The `PyCharm IDE `_ automatically registers its own matplotlib backend -which (for some unknown reason) freezes on interactive plots. +.. dropdown:: PyCharm -To my knowledge there are 2 possibilities to force ``pycharm`` to use the original ``matplotlib`` backends: + The `PyCharm IDE `_ automatically registers its own matplotlib backend + which (for some unknown reason) freezes on interactive plots. -- | 🚲 The "manual" way: - | Add the following lines to the start of each script: - | (for more info and alternative backends see `matplotlib docs `_) + To my knowledge there are 2 possibilities to force ``pycharm`` to use the original ``matplotlib`` backends: - .. code-block:: python + - | 🚲 The "manual" way: + | Add the following lines to the start of each script: + | (for more info and alternative backends see `matplotlib docs `_) - import matplotlib - matplotlib.use("Qt5Agg") + .. code-block:: python -- | 🚗 The "automatic" way: - | Go to the preferences and add the aforementioned lines to the *"Starting script"* - | (to ensure that the ``matplotlib`` backend is always set prior to running a script) + import matplotlib + matplotlib.use("Qt5Agg") - .. image:: _static/pycharm_preferences.png + - | 🚗 The "automatic" way: + | Go to the preferences and add the aforementioned lines to the *"Starting script"* + | (to ensure that the ``matplotlib`` backend is always set prior to running a script) -In addition, if you use a **commercial version** of PyCharm, make sure to **disable** *"Show plots in tool window"* -in the **Python Scientific** preferences since it forces plots to be rendered as static images. + .. image:: _static/pycharm_preferences.png -.. image:: _static/pycharm_preferences_2.png + In addition, if you use a **commercial version** of PyCharm, make sure to **disable** *"Show plots in tool window"* + in the **Python Scientific** preferences since it forces plots to be rendered as static images. -.. _config_jupyter_notebook: + .. image:: _static/pycharm_preferences_2.png -Jupyter Notebooks ------------------ -To get the most out of EOmaps in Jupyter Notebooks, use `jupyter lab `_ together with the `ipympl `_ (``widget``) backend. +.. _config_jupyter_notebook: -- To install, use ``conda install -c conda-forge ipympl`` +.. dropdown:: Jupyter Notebooks -Once it's installed, use the command ``%matplotlib widget`` at the start of the code to activate the backend. + To get the most out of EOmaps in Jupyter Notebooks, use `jupyter lab `_ together with the `ipympl `_ (``widget``) backend. -Using the Companion Widget -~~~~~~~~~~~~~~~~~~~~~~~~~~ -To use the :ref:`companion_widget` in backends other than ``Qt`` the Qt event-loop must be integrated. -This can be done with the ``%gui qt`` command. + - To install, use ``conda install -c conda-forge ipympl`` -.. code-block:: python + Once it's installed, use the command ``%matplotlib widget`` at the start of the code to activate the backend. - %matplotlib widget - %gui qt + Using the Companion Widget + ~~~~~~~~~~~~~~~~~~~~~~~~~~ + To use the :ref:`companion_widget` in backends other than ``Qt`` the Qt event-loop must be integrated. + This can be done with the ``%gui qt`` command. - from eomaps import Maps - m = Maps() - m.add_feature.preset("coastline", "ocean") + .. code-block:: python + %matplotlib widget + %gui qt -Alternative backends: -~~~~~~~~~~~~~~~~~~~~~ -For classical notebooks, there's also the ``nbagg`` backend provided by matplotlib + from eomaps import Maps + m = Maps() + m.add_feature.preset("coastline", "ocean") -- To use it, simply execute the magic ``%matplotlib notebook`` before starting to plot. + Alternative backends: + ~~~~~~~~~~~~~~~~~~~~~ + For classical notebooks, there's also the ``nbagg`` backend provided by matplotlib -And you can also use the magic ``%matplotlib qt`` to use the default ``qt5agg`` backend. + - To use it, simply execute the magic ``%matplotlib notebook`` before starting to plot. -- This way the plots will NOT be embedded in the notebook, they show up as popups. + And you can also use the magic ``%matplotlib qt`` to use the default ``qt5agg`` backend. + - This way the plots will NOT be embedded in the notebook, they show up as popups. -.. note:: + .. note:: - It is possible to plot **static snapshots** of the current state of a map to a Jupyter Notebook - irrespective of the used backend by using `m.snapshot()`, e.g.: + It is possible to plot **static snapshots** of the current state of a map to a Jupyter Notebook + irrespective of the used backend by using `m.snapshot()`, e.g.: - .. code-block:: python + .. code-block:: python - m = Maps() - m.add_feature.preset.coastline() - m.snapshot() + m = Maps() + m.add_feature.preset.coastline() + m.snapshot() -Checkout the `matplotlib doc `_ -for more info! + Checkout the `matplotlib doc `_ + for more info! Record interactive maps to create animations ******************************************** @@ -164,162 +186,159 @@ All animated gifs in this documentation have been created with this awesome piec Important changes between major versions **************************************** -⚙ From EOmaps v3.x to v4.x ---------------------------- +.. dropdown:: ⚙ From EOmaps v3.x to v4.x -Changes between **EOmaps v3.x** and **EOmaps v4.0**: + Changes between **EOmaps v3.x** and **EOmaps v4.0**: -- the following properties and functions have been removed: + - the following properties and functions have been removed: - - ❌ ``m.plot_specs.`` - - ❌ ``m.set_plot_specs()`` - - | arguments are now directly passed to relevant functions: - | ``m.plot_map()``, ``m.add_colorbar()`` and ``m.set_data()`` + - ❌ ``m.plot_specs.`` + - ❌ ``m.set_plot_specs()`` + - | arguments are now directly passed to relevant functions: + | ``m.plot_map()``, ``m.add_colorbar()`` and ``m.set_data()`` -- 🔶 ``m.set_shape.voroni_diagram()`` is renamed to ``m.set_shape.voronoi_diagram()`` -- | 🔷 custom callbacks are no longer bound to the Maps-object - | the call-signature of custom callbacks has changed to: - | ``def cb(self, *args, **kwargs)`` >> ``def cb(*args, **kwargs)`` + - 🔶 ``m.set_shape.voroni_diagram()`` is renamed to ``m.set_shape.voronoi_diagram()`` + - | 🔷 custom callbacks are no longer bound to the Maps-object + | the call-signature of custom callbacks has changed to: + | ``def cb(self, *args, **kwargs)`` >> ``def cb(*args, **kwargs)`` -Porting a script from v3.x to v4.x is quick and easy and involves the following steps: + Porting a script from v3.x to v4.x is quick and easy and involves the following steps: -1. Search your script for all occurrences of the words ``.plot_specs`` and ``.set_plot_specs(``, - move the affected arguments to the correct functions (and remove the calls once you're done): + 1. Search your script for all occurrences of the words ``.plot_specs`` and ``.set_plot_specs(``, + move the affected arguments to the correct functions (and remove the calls once you're done): - - | ``vmin``, ``vmax`` ``alpha`` and ``cmap`` are now set in - | ``m.plot_map(vmin=..., vmax=..., alpha=..., cmap=...)`` - - | ``histbins``, ``label``, ``tick_precision`` and ``density`` are now set in - | ``m.add_colorbar(histbins=..., label=..., tick_precision=..., density=...)`` - - | ``cpos`` and ``cpos_radius`` are now (optionally) set in - | ``m.set_data(data, x, y, cpos=..., cpos_radius=...)`` + - | ``vmin``, ``vmax`` ``alpha`` and ``cmap`` are now set in + | ``m.plot_map(vmin=..., vmax=..., alpha=..., cmap=...)`` + - | ``histbins``, ``label``, ``tick_precision`` and ``density`` are now set in + | ``m.add_colorbar(histbins=..., label=..., tick_precision=..., density=...)`` + - | ``cpos`` and ``cpos_radius`` are now (optionally) set in + | ``m.set_data(data, x, y, cpos=..., cpos_radius=...)`` -2. Search your script for all occurrences of the words ``xcoord`` and ``ycoord`` and replace them with ``x`` and ``y`` + 2. Search your script for all occurrences of the words ``xcoord`` and ``ycoord`` and replace them with ``x`` and ``y`` -3. **ONLY** if you used **voronoi diagrams**: + 3. **ONLY** if you used **voronoi diagrams**: - - search in your script for all occurrences of the word ``voroni_diagram`` and replace it with ``voronoi_diagram`` + - search in your script for all occurrences of the word ``voroni_diagram`` and replace it with ``voronoi_diagram`` -4. **ONLY** if you used **custom callback functions**: + 4. **ONLY** if you used **custom callback functions**: - - the first argument of custom callbacks is no longer identified as the ``Maps`` object. - - if you really need access to the ``Maps`` object within the callback, pass it as an explicit argument! + - the first argument of custom callbacks is no longer identified as the ``Maps`` object. + - if you really need access to the ``Maps`` object within the callback, pass it as an explicit argument! -**EOmaps v3.x:** + **EOmaps v3.x:** -.. code-block:: python + .. code-block:: python - m = Maps() - m.set_data(data=..., xcoord=..., ycoord=...) - m.set_plot_specs(vmin=1, vmax=20, cmap="viridis", histbins=100, cpos="ul", cpos_radius=1) - m.set_shape.voroni_diagram() - m.add_colorbar() - m.plot_map() + m = Maps() + m.set_data(data=..., xcoord=..., ycoord=...) + m.set_plot_specs(vmin=1, vmax=20, cmap="viridis", histbins=100, cpos="ul", cpos_radius=1) + m.set_shape.voroni_diagram() + m.add_colorbar() + m.plot_map() - # ---------------------------- custom callback signature: - def custom_cb(m, asdf=1): - print(asdf) + # ---------------------------- custom callback signature: + def custom_cb(m, asdf=1): + print(asdf) - m.cb.click.attach(custom_cb) + m.cb.click.attach(custom_cb) -**EOmaps v4.x:** + **EOmaps v4.x:** -.. code-block:: python + .. code-block:: python - m = Maps() - m.set_data(data=..., x=..., y=..., cpos="ul", cpos_radius=1) - m.plot_map(vmin=1, vmax=20, cmap="viridis") - m.set_shape.voronoi_diagram() - m.add_colorbar(histbins=100) + m = Maps() + m.set_data(data=..., x=..., y=..., cpos="ul", cpos_radius=1) + m.plot_map(vmin=1, vmax=20, cmap="viridis") + m.set_shape.voronoi_diagram() + m.add_colorbar(histbins=100) - # ---------------------------- custom callback signature: - def custom_cb(**kwargs, asdf=None): - print(asdf) + # ---------------------------- custom callback signature: + def custom_cb(**kwargs, asdf=None): + print(asdf) - m.cb.click.attach(custom_cb, asdf=1) + m.cb.click.attach(custom_cb, asdf=1) -Note: if you really need access to the maps-object within custom callbacks, -simply provide it as an explicit argument! + Note: if you really need access to the maps-object within custom callbacks, + simply provide it as an explicit argument! -.. code-block:: python + .. code-block:: python - def custom_cb(**kwargs, m=None, asdf=None): - ... + def custom_cb(**kwargs, m=None, asdf=None): + ... - m.cb.click.attach(custom_cb, m=m, asdf=1) + m.cb.click.attach(custom_cb, m=m, asdf=1) -⚙ From EOmaps v5.x to v6.x ---------------------------- +.. dropdown:: ⚙ From EOmaps v5.x to v6.x -General changes in behavior -~~~~~~~~~~~~~~~~~~~~~~~~~~~ + General changes in behavior + ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- | 🔶 Starting with EOmaps v6.0 multiple calls to ``m.plot_map()`` - | **on the same Maps-object completely remove (and replace)** the previous dataset! - | (use a new Maps-object on the same layer for datasets that should be visible at the same time!) -- | 🔶 WebMap services are no longer re-fetched by default when exporting images with ``m.savefig()`` - | To force a re-fetch of WebMap services prior to saving the image at the desired dpi, use ``m.savefig(refetch_wms=True)`` - | (see ``m.refetch_wms_on_size_change()`` for more details) -- | 🔷 ``m.add_gdf`` now uses only valid geometries - | (to revert to the old behavior, use: ``m.add_gdf(..., only_valid=False)``) -- 🔷 the order at which multi-layers are combined now determines the stacking of the artists + - | 🔶 Starting with EOmaps v6.0 multiple calls to ``m.plot_map()`` + | **on the same Maps-object completely remove (and replace)** the previous dataset! + | (use a new Maps-object on the same layer for datasets that should be visible at the same time!) + - | 🔶 WebMap services are no longer re-fetched by default when exporting images with ``m.savefig()`` + | To force a re-fetch of WebMap services prior to saving the image at the desired dpi, use ``m.savefig(refetch_wms=True)`` + | (see ``m.refetch_wms_on_size_change()`` for more details) + - | 🔷 ``m.add_gdf`` now uses only valid geometries + | (to revert to the old behavior, use: ``m.add_gdf(..., only_valid=False)``) + - 🔷 the order at which multi-layers are combined now determines the stacking of the artists - - ``m.show_layer("A|B")`` plots all artists of the layer ``"A"`` **on top of** the layer ``"B"`` - - the ordering of artists inside a layer is determined by their ``zorder`` (e.g. ``m.plot_map(zorder=123)``) + - ``m.show_layer("A|B")`` plots all artists of the layer ``"A"`` **on top of** the layer ``"B"`` + - the ordering of artists inside a layer is determined by their ``zorder`` (e.g. ``m.plot_map(zorder=123)``) -Removed (previously depreciated) functionalities -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + Removed (previously depreciated) functionalities + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- ❌ the ``m.figure`` accessor has been removed! + - ❌ the ``m.figure`` accessor has been removed! - - Use ``m.ax``, ``m.f``, ``m.colorbar.ax_cb``, ``m.colorbar.ax_cb_plot`` instead + - Use ``m.ax``, ``m.f``, ``m.colorbar.ax_cb``, ``m.colorbar.ax_cb_plot`` instead -- ❌ kwargs for ``m.plot_map(...)`` + - ❌ kwargs for ``m.plot_map(...)`` - - ``"coastlines"`` use ``m.add_feature.preset.coastline()`` instead + - ``"coastlines"`` use ``m.add_feature.preset.coastline()`` instead -- ❌ kwargs for ``m.set_data(...)`` + - ❌ kwargs for ``m.set_data(...)`` - - ``"in_crs"`` use ``"crs"`` instead - - ``"xcoord"`` use ``"x"`` instead - - ``"ycoord"`` use ``"y"`` instead + - ``"in_crs"`` use ``"crs"`` instead + - ``"xcoord"`` use ``"x"`` instead + - ``"ycoord"`` use ``"y"`` instead -- ❌ kwargs for ``Maps(...)`` + - ❌ kwargs for ``Maps(...)`` - - ``"parent"`` ... no longer needed - - ``"gs_ax"`` use ``"ax"`` instead + - ``"parent"`` ... no longer needed + - ``"gs_ax"`` use ``"ax"`` instead -- ❌ kwargs for ``m.new_inset_maps(...)`` + - ❌ kwargs for ``m.new_inset_maps(...)`` - - ``"edgecolor"`` and ``"facecolor"`` use ``boundary=dict(ec=..., fc=...)`` instead + - ``"edgecolor"`` and ``"facecolor"`` use ``boundary=dict(ec=..., fc=...)`` instead -- ❌ kwargs for ``m.add_colorbar(...)`` + - ❌ kwargs for ``m.add_colorbar(...)`` - - ``"histbins"`` use ``"hist_bins"`` instead - - ``"histogram_size"`` use ``"hist_size"`` instead - - ``"density"`` use ``"hist_kwargs=dict(density=...)"`` instead - - ``"top", "bottom", "left", "right"`` use ``margin=dict(top=..., bottom=..., left=..., right=...)`` instead - - ``"add_extend_arrows"`` + - ``"histbins"`` use ``"hist_bins"`` instead + - ``"histogram_size"`` use ``"hist_size"`` instead + - ``"density"`` use ``"hist_kwargs=dict(density=...)"`` instead + - ``"top", "bottom", "left", "right"`` use ``margin=dict(top=..., bottom=..., left=..., right=...)`` instead + - ``"add_extend_arrows"`` -- ❌ ``m.indicate_masked_points()`` has been removed, use ``m.plot_map(indicate_masked_points=True)`` instead -- ❌ ``m.shape.get_transformer`` is now a private (e.g. ``m.shape._get_transformer``) -- ❌ ``m.shape.radius_estimation_range`` is now a private (e.g. ``m.shape._radius_estimation_range``) + - ❌ ``m.indicate_masked_points()`` has been removed, use ``m.plot_map(indicate_masked_points=True)`` instead + - ❌ ``m.shape.get_transformer`` is now a private (e.g. ``m.shape._get_transformer``) + - ❌ ``m.shape.radius_estimation_range`` is now a private (e.g. ``m.shape._radius_estimation_range``) -⚙ From EOmaps v6.x to v7.x ---------------------------- +.. dropdown:: ⚙ From EOmaps v6.x to v7.x -- ⚠️ A lot of internal functions and classes have been re-named to better follow PEP8 naming conventions. - While this should not interfere with the public API, more extensive customizations might need to be - adjusted with respect to the new names. + - ⚠️ A lot of internal functions and classes have been re-named to better follow PEP8 naming conventions. + While this should not interfere with the public API, more extensive customizations might need to be + adjusted with respect to the new names. - If you encounter any problems, feel free to open an `issue `_ , and I'll see what I can do! + If you encounter any problems, feel free to open an `issue `_ , and I'll see what I can do! - - For example: the module `_shapes.py` is now called `shapes.py` and the class `shapes` is now called `Shapes` + - For example: the module `_shapes.py` is now called `shapes.py` and the class `shapes` is now called `Shapes` -- ⚠️ The use of ``m.set_data_specs(...)`` is depreciated. Use ``m.set_data(...)`` instead! + - ⚠️ The use of ``m.set_data_specs(...)`` is depreciated. Use ``m.set_data(...)`` instead! -- Figure export routines have been completely re-worked (but should result in the exact same output as in v6.x) + - Figure export routines have been completely re-worked (but should result in the exact same output as in v6.x) diff --git a/docs/conf.py b/docs/conf.py index fb88f677c..ba190908f 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -74,7 +74,6 @@ def setup(app): # handle compiler warnings for duplicate labels due to documents # included via the ..include:: directive exclude_patterns = [ - "introduction.rst", "build", "jupyter_execute/*", ".jupyter_cache/*", diff --git a/docs/installation.rst b/docs/installation.rst index d6808084e..e51ade5bc 100644 --- a/docs/installation.rst +++ b/docs/installation.rst @@ -43,12 +43,7 @@ This should make sure all required dependencies are correctly installed. A quick tutorial on how to **get started from scratch** is available here: :ref:`quickstart_guide` More details on how to **configure your favorite IDE** to work with EOmaps can be found in the FAQ section -:ref:`configuring_the_editor`: - -- :ref:`config_spyder` -- :ref:`config_pycharm` -- :ref:`config_jupyter_notebook` - +:ref:`configuring_the_editor`. Alternative way (via ``pip``) ----------------------------- diff --git a/docs/introduction.rst b/docs/quickstart_quide.rst similarity index 100% rename from docs/introduction.rst rename to docs/quickstart_quide.rst From c902eac682199e46a1ce23fdb5f9352be7db3298 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sun, 10 Dec 2023 15:14:07 +0100 Subject: [PATCH 023/240] update docs --- docs/FAQ.rst | 64 ++++++++++++++++++++++++++++------------------------ 1 file changed, 34 insertions(+), 30 deletions(-) diff --git a/docs/FAQ.rst b/docs/FAQ.rst index df9067218..0434cd4e9 100644 --- a/docs/FAQ.rst +++ b/docs/FAQ.rst @@ -25,10 +25,9 @@ used to create EOmaps maps! Configuring the editor (IDE) **************************** -EOmaps can be used with whatever editor you like... however, some editors have special settings that can be -adjusted to improve your mapping experience with **EOmaps**: +EOmaps can be used with whatever editor you like! -.. _config_spyder: +However, for some editors there are special settings that can be adjusted to improve your mapping experience with **EOmaps**: .. dropdown:: Spyder @@ -49,15 +48,11 @@ adjusted to improve your mapping experience with **EOmaps**: If the gaphics-backend is set to *"Automatic"*, you can still plot static snapshots of a figure to the "plots-pane" with :py:meth:`Maps.snapshot`! - -.. _config_vscode: - - .. dropdown:: VSCode / VSCodium .. currentmodule:: eomaps.eomaps - In general, EOmaps works "out of the box" with `VSCode `_ or the open-source variant `VSCodium `_ (together with the standard `Python `_ extension). + In general, EOmaps should work "out of the box" with `VSCode `_ or the open-source variant `VSCodium `_ (together with the standard `Python `_ extension). However, there are some tipps that might help with your mapping workflow: @@ -78,8 +73,9 @@ adjusted to improve your mapping experience with **EOmaps**: If you run a whole script using the **interactive mode**, the script will run until the end and then usually terminate the associated kernel... and in turn also closing the figure! If you want to keep the figure open, either make sure that the terminal is kept alive by entering debug-mode, or avoid activating the interactive mode and block the terminal with `m.show()`. - Interactive IPython (e.g. Jupyter) - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + .. raw:: html + + Interactive IPython (e.g. Jupyter)

If you enjoy interactive coding in a Jupyter-Notebook style, make sure to have a look at the nice `Jupyter `_ extension! @@ -95,9 +91,6 @@ adjusted to improve your mapping experience with **EOmaps**: - For more details, see the associated section for :ref:`config_jupyter_notebook` - -.. _config_pycharm: - .. dropdown:: PyCharm The `PyCharm IDE `_ automatically registers its own matplotlib backend @@ -125,19 +118,23 @@ adjusted to improve your mapping experience with **EOmaps**: .. image:: _static/pycharm_preferences_2.png +.. dropdown:: Jupyter Notebooks + + .. currentmodule:: eomaps.eomaps -.. _config_jupyter_notebook: + When working with Jupyter Notebooks, we recommend to use `Jupyter Lab `_. -.. dropdown:: Jupyter Notebooks + - By default, EOmaps will use the ``inline`` backend and put a **static snapshot** of the current state of the figure to the Jupyter Notebook cell whenever you call :py:meth:`Maps.show` or :py:meth:`Maps.snapshot`. - To get the most out of EOmaps in Jupyter Notebooks, use `jupyter lab `_ together with the `ipympl `_ (``widget``) backend. + - To get **interactive inline figures** in Jupyter Notebooks, you have to switch to the `ipympl `_ (``widget``) backend. - - To install, use ``conda install -c conda-forge ipympl`` + - To install, use ``conda install -c conda-forge ipympl`` + - Once it's installed, you can use the *"magic command"* ``%matplotlib widget`` at the start of the code to activate the backend. - Once it's installed, use the command ``%matplotlib widget`` at the start of the code to activate the backend. + .. raw:: html + + Using the Companion Widget

- Using the Companion Widget - ~~~~~~~~~~~~~~~~~~~~~~~~~~ To use the :ref:`companion_widget` in backends other than ``Qt`` the Qt event-loop must be integrated. This can be done with the ``%gui qt`` command. @@ -150,26 +147,33 @@ adjusted to improve your mapping experience with **EOmaps**: m = Maps() m.add_feature.preset("coastline", "ocean") - Alternative backends: - ~~~~~~~~~~~~~~~~~~~~~ - For classical notebooks, there's also the ``nbagg`` backend provided by matplotlib + .. raw:: html - - To use it, simply execute the magic ``%matplotlib notebook`` before starting to plot. + Alternative backends

- And you can also use the magic ``%matplotlib qt`` to use the default ``qt5agg`` backend. + - For classical notebooks, there's also the ``nbagg`` backend provided by matplotlib - - This way the plots will NOT be embedded in the notebook, they show up as popups. + - To use it, simply execute the magic ``%matplotlib notebook`` before starting to plot. + + - You can also use the magic ``%matplotlib qt`` to use the default ``qt5agg`` backend. + + - This way the plots will NOT be embedded in the notebook, they show up as **interactive popup figures**! .. note:: - It is possible to plot **static snapshots** of the current state of a map to a Jupyter Notebook - irrespective of the used backend by using `m.snapshot()`, e.g.: + .. currentmodule:: eomaps.eomaps + + Irrespective of the used backend, you can always plot a **static snapshots** of the current state of a map to a Jupyter Notebook + with :py:meth:`Maps.snapshot`! .. code-block:: python + %matplotlib qt # Create figures as interactive popup widgets + + from eomaps import Maps m = Maps() - m.add_feature.preset.coastline() - m.snapshot() + m.add_feature.preset("coastline", "ocean") + m.snapshot() # Print a snapshot of the current state of the figure to the Jupyter Notebook Checkout the `matplotlib doc `_ From ed57e316c456ddd667c8837cbb93aa6eda6eace3 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Mon, 11 Dec 2023 14:18:39 +0100 Subject: [PATCH 024/240] minor --- docs/FAQ.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/FAQ.rst b/docs/FAQ.rst index 0434cd4e9..bca3cbbd7 100644 --- a/docs/FAQ.rst +++ b/docs/FAQ.rst @@ -89,7 +89,7 @@ However, for some editors there are special settings that can be adjusted to imp - For interactive (popup) figures, switch to the default Qt backend using ``%matplotlib qt`` - For interactive (inline) figures, you'll need to install `ipympl `_ and then activate the ``widget`` with ``%matplotlib widget``. - - For more details, see the associated section for :ref:`config_jupyter_notebook` + - For more details, see details on Jupyter Notebooks below! .. dropdown:: PyCharm From e4b8cafd325207c51fd4faf792a63ac0dc9a2998 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Mon, 11 Dec 2023 15:40:56 +0100 Subject: [PATCH 025/240] minor --- docs/FAQ.rst | 3 ++- eomaps/callbacks.py | 5 ++--- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/docs/FAQ.rst b/docs/FAQ.rst index bca3cbbd7..41ef4572d 100644 --- a/docs/FAQ.rst +++ b/docs/FAQ.rst @@ -82,9 +82,10 @@ However, for some editors there are special settings that can be adjusted to imp It allows you to work with an interactive IPython terminal and execute code-blocks (separated by the ``# %%`` indicator). - With IPython, the default behavior is to create static (inline) figures (same as with Jupyter Notebooks)! + To print a snapshot of the current state of a figure to the IPython terminal, call :py:meth:`Maps.show` or :py:meth:`Maps.snapshot`. - - Same as with Jupyter Notebooks, you can use *"magic"* commands to set the used matpltolib backend. + - Similar to Jupyter Notebooks, you can use *"magic"* commands to set the used matpltolib backend. - For interactive (popup) figures, switch to the default Qt backend using ``%matplotlib qt`` - For interactive (inline) figures, you'll need to install `ipympl `_ and then activate the ``widget`` with ``%matplotlib widget``. diff --git a/eomaps/callbacks.py b/eomaps/callbacks.py index 95334ace6..251452355 100644 --- a/eomaps/callbacks.py +++ b/eomaps/callbacks.py @@ -1293,9 +1293,8 @@ def overlay_layer(self, layer, key="x"): """ Toggle displaying a layer on top of the currently visible layers. - - If the layer is not part of the currently visible layers, it will be - added on top. - - If the layer is part of the currently visible layers, it will be removed. + This callback is useful to quickly show/hide a data-layer on top + of a basemap by pressing a key on the keyboard. Parameters ---------- From 42dfc2e24fa67e2d8255c194876631ae299b434f Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Mon, 11 Dec 2023 22:05:07 +0100 Subject: [PATCH 026/240] allow overriding the layer at which a colorbar is plotted --- eomaps/colorbar.py | 37 +++++++++++++++++++++++++------------ 1 file changed, 25 insertions(+), 12 deletions(-) diff --git a/eomaps/colorbar.py b/eomaps/colorbar.py index 17af04bd4..a6e8194db 100644 --- a/eomaps/colorbar.py +++ b/eomaps/colorbar.py @@ -220,6 +220,11 @@ def __init__( The default is None. ylabel : str, optional The label used for the y-axis of the colorbar. The default is None + layer : str + The layer at which the colorbar will be drawn. + NOTE: In most cases you should NOT need to adjust the layer! + The layer is automatically assigned to the layer at which the + data was plotted and Colorbars are only visible on the assigned layer! kwargs : All additional kwargs are passed to the creation of the colorbar (e.g. `plt.colorbar()`) @@ -248,6 +253,10 @@ def __init__( """ self._m = m + + # allow overriding the layer on which to draw the colorbar + self._layer = kwargs.pop("layer", self._m.layer) + self._pos = pos self._margin = margin self._orientation = orientation @@ -316,6 +325,10 @@ def __init__( if ylabel is not None: self.ax_cb_plot.set_ylabel(ylabel) + @property + def layer(self): + return self._layer + def set_visible(self, vis): """ Set the visibility of the colorbar. @@ -420,7 +433,7 @@ def set_labels(self, cb_label=None, hist_label=None, **kwargs): if not self._dynamic_shade_indicator: # no need to redraw the background for dynamically updated artists - self._m.redraw(self._m.layer) + self._m.redraw(self.layer) else: self._m.BM.update() @@ -530,7 +543,7 @@ def set_hist_size(self, size=None): self.set_labels(**self._label_kwargs) # tag layer for refetch - self._m.redraw(self._m.layer) + self._m.redraw(self.layer) def _identify_parent_cb(self): parent_cb = None @@ -745,12 +758,12 @@ def _setup_axes(self): a.set_navigate(False) if a is not None: if self._dynamic_shade_indicator is True: - self._m.BM.add_artist(a, self._m.layer) + self._m.BM.add_artist(a, self.layer) else: - self._m.BM.add_bg_artist(a, self._m.layer) + self._m.BM.add_bg_artist(a, self.layer) # we need to re-draw since the background axis size has changed! - self._m.BM._refetch_layer(self._m.layer) + self._m.BM._refetch_layer(self.layer) self._m.BM._refetch_layer("__SPINES__") self._m.redraw("__SPINES__") @@ -819,7 +832,7 @@ def _set_data(self): try: z_data = self._coll.get_ds_data().values except: - self._m.redraw(self._m.layer) + self._m.redraw(self.layer) z_data = self._coll.get_ds_data().values if "count" in aggname: @@ -861,7 +874,7 @@ def check_data_updated(*args, **kwargs): self._m.BM.on_layer( lambda *args, **kwargs: self._redraw_colorbar, - layer=self._m.layer, + layer=self.layer, persistent=True, ) @@ -870,7 +883,7 @@ def check_data_updated(*args, **kwargs): # TODO colorbar not properly updated on layer change after zoom? self._m.BM.on_layer( self._redraw_colorbar, - layer=self._m.layer, + layer=self.layer, persistent=True, m=self._m, ) @@ -1127,7 +1140,7 @@ def _plot_histogram(self): def _redraw_colorbar(self, *args, **kwargs): # only re-draw if the corresponding layer is visible - if self._m.layer not in self._m.BM.bg_layer.split("|"): + if self.layer not in self._m.BM.bg_layer.split("|"): return self._set_data() @@ -1292,7 +1305,7 @@ def set_bin_labels(self, bins, names, tick_lines="center", show_values=False): left=False, top=False, labelleft=False, labeltop=False, which="both" ) - self._m.BM._refetch_layer(self._m.layer) + self._m.BM._refetch_layer(self.layer) def remove(self): """ @@ -1328,7 +1341,7 @@ def tick_params(self, what="colorbar", **kwargs): elif what == "histogram": self.ax_cb_plot.tick_params(**kwargs) - self._m.redraw(self._m.layer) + self._m.redraw(self.layer) tick_params.__doc__ = ( "Set the appearance of the colorbar (or histogram) ticks.\n\n" @@ -1549,4 +1562,4 @@ def indicate_contours( for level, label in zip(used_levels, label_names): self.ax_cb_plot.annotate(xy=(level, y), text=label, **label_kwargs) - self._m.redraw(self._m.layer) + self._m.redraw(self.layer) From b3f926ef059d1a62ef57dd4b47761aaf9f6401ab Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Mon, 11 Dec 2023 23:57:40 +0100 Subject: [PATCH 027/240] fix forcing colorbar position inheritance --- eomaps/colorbar.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/eomaps/colorbar.py b/eomaps/colorbar.py index a6e8194db..66c22612f 100644 --- a/eomaps/colorbar.py +++ b/eomaps/colorbar.py @@ -264,8 +264,6 @@ def __init__( self._init_extend = extend self._extend_frac = extend_frac - self._parent_cb = self._identify_parent_cb() - if inherit_position is None: if not self._m.colorbar: inherit_position = True @@ -274,6 +272,8 @@ def __init__( self._inherit_position = inherit_position + self._parent_cb = self._identify_parent_cb() + if hist_size is None: self._hist_size = 0 else: @@ -551,7 +551,7 @@ def _identify_parent_cb(self): # the same plot-axis. # If yes, use the position of this colorbar to creat a new one - if self._m.colorbar is not None: + if self._m.colorbar is not None and not self._inherit_position: parent_cb = None # self._m.colorbar else: # check if self is actually just another layer of an existing Maps object From 3533ef4db9f50f1e1080c158fb7a34a38ec7790e Mon Sep 17 00:00:00 2001 From: Raphael Date: Wed, 13 Dec 2023 22:16:42 +0100 Subject: [PATCH 028/240] fix treatment of histogram style kwargs for colorbars (lw, ec, fc, ...) --- eomaps/colorbar.py | 42 +++++++++++++++++++++++++++++++++++++++--- 1 file changed, 39 insertions(+), 3 deletions(-) diff --git a/eomaps/colorbar.py b/eomaps/colorbar.py index 66c22612f..d2551afd9 100644 --- a/eomaps/colorbar.py +++ b/eomaps/colorbar.py @@ -1064,6 +1064,26 @@ def _plot_histogram(self): maxval, ] + args = dict( + edgecolor=self._hist_kwargs.get( + "edgecolor", self._hist_kwargs.get("ec", None) + ), + linewidth=self._hist_kwargs.get( + "linewidth", self._hist_kwargs.get("lw", None) + ), + linestyle=self._hist_kwargs.get( + "linestyle", self._hist_kwargs.get("ls", None) + ), + alpha=self._hist_kwargs.get("alpha", None), + hatch=self._hist_kwargs.get("hatch", None), + ) + # drop all unset values to avoi overriding defaults + args = {key: val for key, val in args.items() if val is not None} + # handle facecolors explicitly + facecolor = self._hist_kwargs.get( + "facecolor", self._hist_kwargs.get("fc", None) + ) + if len(splitbins) > 2: patch.remove() # add in-between patches @@ -1073,19 +1093,35 @@ def _plot_histogram(self): (b0, 0), (b1 - b0), height, - facecolor=self._cmap(self._norm((b0 + b1) / 2)), + facecolor=( + facecolor + if facecolor + else self._cmap(self._norm((b0 + b1) / 2)) + ), + **args, ) else: pi = mpl.patches.Rectangle( (0, b0), width, (b1 - b0), - facecolor=self._cmap(self._norm((b0 + b1) / 2)), + facecolor=( + facecolor + if facecolor + else self._cmap(self._norm((b0 + b1) / 2)) + ), + **args, ) self.ax_cb_plot.add_patch(pi) else: - patch.set_facecolor(self._cmap(self._norm((minval + maxval) / 2))) + patch.set_facecolor( + facecolor + if facecolor + else self._cmap(self._norm((minval + maxval) / 2)) + ) + for key, val in args.items(): + getattr(patch, f"set_{key}")(self._hist_kwargs[key]) # setup appearance of histogram if horizontal: From 4d6b313352f3e645033306f44f534338e15f566d Mon Sep 17 00:00:00 2001 From: Raphael Date: Wed, 13 Dec 2023 23:08:35 +0100 Subject: [PATCH 029/240] address numpy binary incompatibility warning when reading NetCDFs --- eomaps/__init__.py | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/eomaps/__init__.py b/eomaps/__init__.py index 694620546..959c260aa 100644 --- a/eomaps/__init__.py +++ b/eomaps/__init__.py @@ -1,3 +1,9 @@ +from .helpers import register_modules as _register_modules + +# address numpy runtime warning concerning binary incompatibility when +# reading NetCDF files (see https://github.com/pydata/xarray/issues/7259) +_register_modules("netCDF4", raise_exception=False) + from .eomaps import Maps from .mapsgrid import MapsGrid from ._version import __version__ From da22b42bec1b8f9a4016aa2867351147a6789e51 Mon Sep 17 00:00:00 2001 From: Raphael Date: Fri, 15 Dec 2023 17:03:37 +0100 Subject: [PATCH 030/240] fix linewidths of colorbar patches after layout editor exit --- eomaps/colorbar.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/eomaps/colorbar.py b/eomaps/colorbar.py index d2551afd9..bb20b7ea3 100644 --- a/eomaps/colorbar.py +++ b/eomaps/colorbar.py @@ -1069,7 +1069,7 @@ def _plot_histogram(self): "edgecolor", self._hist_kwargs.get("ec", None) ), linewidth=self._hist_kwargs.get( - "linewidth", self._hist_kwargs.get("lw", None) + "linewidth", self._hist_kwargs.get("lw", 0) ), linestyle=self._hist_kwargs.get( "linestyle", self._hist_kwargs.get("ls", None) @@ -1121,7 +1121,7 @@ def _plot_histogram(self): else self._cmap(self._norm((minval + maxval) / 2)) ) for key, val in args.items(): - getattr(patch, f"set_{key}")(self._hist_kwargs[key]) + getattr(patch, f"set_{key}")(val) # setup appearance of histogram if horizontal: From 7d18dbc629413c40fcb2d7d0823398e96d4f337e Mon Sep 17 00:00:00 2001 From: Raphael Date: Fri, 15 Dec 2023 17:03:55 +0100 Subject: [PATCH 031/240] fix identifying colorbar position from another colorbar instance --- eomaps/colorbar.py | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/eomaps/colorbar.py b/eomaps/colorbar.py index bb20b7ea3..811298e82 100644 --- a/eomaps/colorbar.py +++ b/eomaps/colorbar.py @@ -272,7 +272,10 @@ def __init__( self._inherit_position = inherit_position - self._parent_cb = self._identify_parent_cb() + if isinstance(self._inherit_position, ColorBar): + self._parent_cb = self._inherit_position + else: + self._parent_cb = self._identify_parent_cb() if hist_size is None: self._hist_size = 0 From 62ce4a8d46a8c74adaaf971f489af6e02e8e64b3 Mon Sep 17 00:00:00 2001 From: Raphael Date: Thu, 21 Dec 2023 10:06:46 +0100 Subject: [PATCH 032/240] fix issues with contour-plot unittest --- eomaps/helpers.py | 14 ++++++++++++-- tests/test_plot_shapes.py | 11 ++++++++--- 2 files changed, 20 insertions(+), 5 deletions(-) diff --git a/eomaps/helpers.py b/eomaps/helpers.py index c46a6b60c..11556f9d7 100644 --- a/eomaps/helpers.py +++ b/eomaps/helpers.py @@ -2121,8 +2121,18 @@ def _do_fetch_bg(self, layer, bbox=None): if renderer: for art in allartists: if art not in self._hidden_artists: - art.draw(renderer) - art.stale = False + try: + art.draw(renderer) + art.stale = False + except Exception: + if _log.getEffectiveLevel() <= logging.DEBUG: + _log.error( + "Unable to draw artist:" + f"{art} (" + f"figure={getattr(art, 'figure', '??')}, " + f"axes={getattr(art, 'axes', '??')})" + ) + self._bg_layers[layer] = renderer.copy_from_bbox(bbox) def fetch_bg(self, layer=None, bbox=None): diff --git a/tests/test_plot_shapes.py b/tests/test_plot_shapes.py index 96338eed5..79affcb5c 100644 --- a/tests/test_plot_shapes.py +++ b/tests/test_plot_shapes.py @@ -76,9 +76,14 @@ def test_contour(self): ), ) - arts = m3_1.ax.clabel(m3_1.coll.contour_set) - for a in arts: - m3_1.BM.add_bg_artist(a, layer=m3_1.layer) + # TODO using 'clabel' causes collections to be re-drawn + # which puts the new contours on the default layer and leaves + # the old contours as "artists without a figure" in the blit-manager! + # see https://github.com/raphaelquast/EOmaps/issues/218 + + # arts = m3_1.ax.clabel(m3_1.coll.contour_set) + # for a in arts: + # m3_1.BM.add_bg_artist(a, layer=m3_1.layer) m.show_layer("base", "contours") plt.close("all") From 2aeb6a3f6dda9289a6e605543d5124aa5567a7bb Mon Sep 17 00:00:00 2001 From: Raphael Date: Thu, 21 Dec 2023 19:04:37 +0100 Subject: [PATCH 033/240] minor - fix unexpected indent in docstring --- eomaps/annotation_editor.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/eomaps/annotation_editor.py b/eomaps/annotation_editor.py index a8d1b4eaa..5f7af62a2 100644 --- a/eomaps/annotation_editor.py +++ b/eomaps/annotation_editor.py @@ -615,7 +615,7 @@ def print_code( use_ids : bool, optional If True, ID values are used to identify the annotation-positions. (NOTE: this can cause problems because the Maps-object must have - the correct data assigned to identify the annotation!) + the correct data assigned to identify the annotation!) If False, always use the current position of the annotation as input-argument for the returned code. From 53e97f4226ceda31d05b13d1f56a24b43f64e8c1 Mon Sep 17 00:00:00 2001 From: Raphael Date: Tue, 19 Dec 2023 15:27:00 +0100 Subject: [PATCH 034/240] switch from setup.py to pyproject.toml for install - single-source version number to pyproject.toml - implement optional dependency groups --- eomaps/__init__.py | 3 +- eomaps/_version.py | 1 - eomaps/eomaps.py | 3 +- pyproject.toml | 69 ++++++++++++++++++++++++++++++++++++++++++++ setup.py | 72 ---------------------------------------------- 5 files changed, 73 insertions(+), 75 deletions(-) delete mode 100644 eomaps/_version.py create mode 100644 pyproject.toml delete mode 100644 setup.py diff --git a/eomaps/__init__.py b/eomaps/__init__.py index 959c260aa..bc2a416c9 100644 --- a/eomaps/__init__.py +++ b/eomaps/__init__.py @@ -1,3 +1,4 @@ +import importlib.metadata from .helpers import register_modules as _register_modules # address numpy runtime warning concerning binary incompatibility when @@ -6,8 +7,8 @@ from .eomaps import Maps from .mapsgrid import MapsGrid -from ._version import __version__ +__version__ = importlib.metadata.version("eomaps") __author__ = "Raphael Quast" # Follow conventions used by cartopy to setup cache directory diff --git a/eomaps/_version.py b/eomaps/_version.py deleted file mode 100644 index 40d114c5b..000000000 --- a/eomaps/_version.py +++ /dev/null @@ -1 +0,0 @@ -__version__ = "7.3.3" diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index d9b3cbedd..98ca1b986 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -13,6 +13,7 @@ import gc from textwrap import fill from contextlib import contextmanager, ExitStack +import importlib.metadata import numpy as np @@ -71,7 +72,7 @@ from ._data_manager import DataManager -from ._version import __version__ +__version__ = importlib.metadata.version("eomaps") def _handle_backends(): diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 000000000..3489937aa --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,69 @@ +[build-system] +requires = ["setuptools>=61.0"] +build-backend = "setuptools.build_meta" + +[tool.setuptools.packages.find] +include = ["eomaps"] + +[project] +name = "eomaps" +version = "7.4" +description = "A library to create interactive maps of geographical datasets." +requires-python = ">=3.8" + +authors = [ + { name="Raphael Quast", email="raphael.quast@geo.tuwien.ac.at" }, +] + +keywords = ["Visualization", "Plotting", "Maps", "Geographical Data"] + +classifiers = [ + "Programming Language :: Python :: 3", + "License :: OSI Approved :: GNU General Public License v3 or later (GPLv3+)", + "Operating System :: OS Independent", +] + +dependencies = [ + "numpy", + "scipy", + "matplotlib>=3.4", + "cartopy>=0.20.0", + "descartes", + "pyproj", + "packaging", + "click" +] + +[project.optional-dependencies] + +all = ["eomaps[io, classify, wms, shade, gui]"] + +all_nogui = ["eomaps[io, classify, wms, shade]"] + +io = [ + "pandas", + "geopandas", + "xarray", + "netcdf4", + "rioxarray" +] + +classify = ["mapclassify"] + +wms = [ + "owslib", + "requests", + "cairosvg", +] + +shade = ["datashader"] + +gui = [ + "PyQt5", + "qtpy" + ] + + +[project.urls] +Documentation = "https://eomaps.readthedocs.io/" +Repository = "https://github.com/raphaelquast/eomaps" diff --git a/setup.py b/setup.py deleted file mode 100644 index a1cbf5775..000000000 --- a/setup.py +++ /dev/null @@ -1,72 +0,0 @@ -# -*- coding: UTF-8 -*- - -""" -This file is part of EOmaps. -For COPYING and LICENSE details, please refer to the LICENSE file -""" -from setuptools import setup, find_packages -from pathlib import Path -import re - -# add the README as long-description -this_directory = Path(__file__).parent -try: - long_description = (this_directory / "README.md").read_text() -except Exception: - long_description = "A library to create interactive maps of geographical datasets." - -# get version-number from _version.py -try: - with open(this_directory / "eomaps" / "_version.py") as file: - (version,) = re.findall('__version__ = "(.*)"', file.read()) -except Exception: - version = "undefined" - -setup( - name="EOmaps", - version=version, - description="A library to create interactive maps of geographical datasets.", - packages=find_packages(), - package_dir={"eomaps": "eomaps"}, - package_data={"eomaps": ["logo.png", "NE_features.json", "qtcompanion/icons/*"]}, - # include_package_data=True, - author="Raphael Quast", - author_email="raphael.quast@geo.tuwien.ac.at", - maintainer="Raphael Quast", - maintainer_email="raphael.quast@geo.tuwien.ac.at", - license="GNU General Public License v3 or later (GPLv3+)", - url="https://github.com/raphaelquast/maps", - long_description=long_description, - long_description_content_type="text/markdown", - install_requires=[ - "numpy", - "scipy", - "pandas", - "matplotlib>=3.4", - "cartopy>=0.20.0", - "descartes", - "mapclassify", - "pyproj", - "pyepsg", - "geopandas", - "owslib", - "requests", - "xmltodict", - "cairosvg", - "packaging", - "click", - "qtpy", - ], - entry_points={"console_scripts": ["eomaps = eomaps.scripts.open:cli"]}, - keywords=["visualization", "plotting", "maps", "geographical data"], - # See https://pypi.python.org/pypi?%3Aaction=list_classifiers - classifiers=[ - "Intended Audience :: Science/Research", - "Topic :: Scientific/Engineering :: Visualization", - "License :: OSI Approved :: GNU General Public License v3 or later (GPLv3+)", - # Pick your license as you wish (should match "license" above) - # ~ 'License :: OSI Approved :: MIT License', - "Programming Language :: Python :: 3.7", - ], - license_files=("LICENSE",), -) From f5ca61f493193b3e2c82e4e9ded50f2b084057af Mon Sep 17 00:00:00 2001 From: Raphael Date: Tue, 19 Dec 2023 16:14:05 +0100 Subject: [PATCH 035/240] make sure package is installed in unittests --- .github/workflows/testMaps.yml | 1 + 1 file changed, 1 insertion(+) diff --git a/.github/workflows/testMaps.yml b/.github/workflows/testMaps.yml index f783dc134..959ba4333 100644 --- a/.github/workflows/testMaps.yml +++ b/.github/workflows/testMaps.yml @@ -46,6 +46,7 @@ jobs: # do this to ensure proper activation of conda environment shell: bash -l {0} run: | + pip install -e .[all] python -m pytest --cov=eomaps --cov-report=xml - name: Upload coverage to Codecov uses: codecov/codecov-action@v3 From 64eb25846d669ae7ad865f0d5a65ce11d6fbde84 Mon Sep 17 00:00:00 2001 From: Raphael Date: Fri, 22 Dec 2023 08:37:29 +0100 Subject: [PATCH 036/240] add entry point to pyproject.toml --- pyproject.toml | 2 ++ 1 file changed, 2 insertions(+) diff --git a/pyproject.toml b/pyproject.toml index 3489937aa..47a74acdc 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -63,6 +63,8 @@ gui = [ "qtpy" ] +[project.scripts] +eomaps = "eomaps.scripts.open:cli" [project.urls] Documentation = "https://eomaps.readthedocs.io/" From c39819862770e1823736add57d48b7a6d6c265d7 Mon Sep 17 00:00:00 2001 From: Raphael Date: Fri, 22 Dec 2023 08:58:19 +0100 Subject: [PATCH 037/240] update version to v8.0 --- pyproject.toml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pyproject.toml b/pyproject.toml index 47a74acdc..8607913ba 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -7,7 +7,7 @@ include = ["eomaps"] [project] name = "eomaps" -version = "7.4" +version = "8.0" description = "A library to create interactive maps of geographical datasets." requires-python = ">=3.8" From 2ffa9c37c756282a5f0be06ae054f7983a84e4a0 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sat, 30 Dec 2023 12:49:18 +0100 Subject: [PATCH 038/240] run unittests on python 3.11 and 3.12 --- .github/workflows/testMaps.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/testMaps.yml b/.github/workflows/testMaps.yml index 959ba4333..620b31bf8 100644 --- a/.github/workflows/testMaps.yml +++ b/.github/workflows/testMaps.yml @@ -13,7 +13,7 @@ jobs: # set operating systems to test os: [ubuntu-latest] # set python versions to test - python-version: ["3.8", "3.9", "3.10"] + python-version: ["3.8", "3.9", "3.10", "3.11", "3.12"] name: test_Maps ${{ matrix.os }} ${{ matrix.python-version }} steps: From 89f06b2655474e12e65551a0193988320b8fceb3 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sat, 30 Dec 2023 13:34:27 +0100 Subject: [PATCH 039/240] run unittests also on windows --- .github/workflows/testMaps.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/testMaps.yml b/.github/workflows/testMaps.yml index 620b31bf8..3af00a87f 100644 --- a/.github/workflows/testMaps.yml +++ b/.github/workflows/testMaps.yml @@ -11,7 +11,7 @@ jobs: strategy: matrix: # set operating systems to test - os: [ubuntu-latest] + os: [windows-latest, ubuntu-latest] # set python versions to test python-version: ["3.8", "3.9", "3.10", "3.11", "3.12"] From 781efa97bc146515ac2f0a508fa324db48f13afb Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sat, 30 Dec 2023 21:00:45 +0100 Subject: [PATCH 040/240] avoid calling m.show in tested code-blocks - required to avoid blocking the terminal on windows --- docs/api_data_visualization.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/api_data_visualization.rst b/docs/api_data_visualization.rst index 82cfe62ae..7823c98b6 100644 --- a/docs/api_data_visualization.rst +++ b/docs/api_data_visualization.rst @@ -849,7 +849,7 @@ Once a dataset has been plotted, a colorbar with a colored histogram on top can | cbB.tick_params(labelcolor="darkblue", labelsize=9) | | | | | | m.subplots_adjust(bottom=0.1) | | - | mA.show() | | + | m.show_layer(mA.layer) | | +-----------------------------------------------------------------+------------------------------------------+ .. autosummary:: From 2938914a681ffed027b21815f61570b335ce51f0 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sat, 30 Dec 2023 21:01:39 +0100 Subject: [PATCH 041/240] test python 3.8, 3.9 and 3.10 --- .github/workflows/testMaps.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/testMaps.yml b/.github/workflows/testMaps.yml index 3af00a87f..404a98a39 100644 --- a/.github/workflows/testMaps.yml +++ b/.github/workflows/testMaps.yml @@ -13,7 +13,7 @@ jobs: # set operating systems to test os: [windows-latest, ubuntu-latest] # set python versions to test - python-version: ["3.8", "3.9", "3.10", "3.11", "3.12"] + python-version: ["3.8", "3.9", "3.10"] name: test_Maps ${{ matrix.os }} ${{ matrix.python-version }} steps: From 0c8a55b2a808b8b72781b234b580171146ada3f2 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sat, 30 Dec 2023 21:03:12 +0100 Subject: [PATCH 042/240] add more descriptive name for doc-unittests --- tests/test_doc_codeblocks.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/tests/test_doc_codeblocks.py b/tests/test_doc_codeblocks.py index 45027d320..22dd683fe 100644 --- a/tests/test_doc_codeblocks.py +++ b/tests/test_doc_codeblocks.py @@ -58,7 +58,7 @@ def __new__(mcs, name, bases, tests): source_code = node.astext() name = node.attributes["names"][0] - test_name = f"test_{i}" + test_name = f"test_{p.stem}_{i}" tests[test_name] = gen_test(i, name, source_code) os.chdir(cwd) From b6abc3291e5f67ade6c7b60de1e79d9a9b4a31ad Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sat, 30 Dec 2023 21:03:54 +0100 Subject: [PATCH 043/240] run pytest with -v (e.g. verbose) flag --- .github/workflows/testMaps.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/testMaps.yml b/.github/workflows/testMaps.yml index 404a98a39..466073ddb 100644 --- a/.github/workflows/testMaps.yml +++ b/.github/workflows/testMaps.yml @@ -47,7 +47,7 @@ jobs: shell: bash -l {0} run: | pip install -e .[all] - python -m pytest --cov=eomaps --cov-report=xml + python -m pytest -v --cov=eomaps --cov-report=xml - name: Upload coverage to Codecov uses: codecov/codecov-action@v3 with: From 439b7246cfa628747e462254742880b1fa0cb28f Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sat, 30 Dec 2023 21:56:58 +0100 Subject: [PATCH 044/240] make sure notebook-tests don't block the terminal --- tests/test_doc_notebooks.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/tests/test_doc_notebooks.py b/tests/test_doc_notebooks.py index 71e9ca604..072ab2a1f 100644 --- a/tests/test_doc_notebooks.py +++ b/tests/test_doc_notebooks.py @@ -31,7 +31,8 @@ def test_doc_notebook(self, notebook): nb = nbformat.read(f, as_version=4) # parse all code-cells from notebook code_cells = [i["source"] for i in nb["cells"] if i["cell_type"] == "code"] - code = "" + # make sure plt.ion() is called before each test! + code = "import matplotlib.pyplot as plt\n" "plt.ion()\n" "\n" for c in code_cells: for l in c.split("\n"): From b8fe3b2747f85bfda2124060ef64f22e083a8d19 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sun, 31 Dec 2023 01:11:00 +0100 Subject: [PATCH 045/240] switch to micromamba to setup (and cache) test environments --- .github/workflows/testMaps.yml | 35 +++++++++++----------------------- 1 file changed, 11 insertions(+), 24 deletions(-) diff --git a/.github/workflows/testMaps.yml b/.github/workflows/testMaps.yml index 466073ddb..37139204c 100644 --- a/.github/workflows/testMaps.yml +++ b/.github/workflows/testMaps.yml @@ -11,39 +11,26 @@ jobs: strategy: matrix: # set operating systems to test - os: [windows-latest, ubuntu-latest] + os: [ubuntu-latest] # set python versions to test - python-version: ["3.8", "3.9", "3.10"] + python-version: ["3.8", "3.9", "3.10", "3.11"] name: test_Maps ${{ matrix.os }} ${{ matrix.python-version }} steps: # checkout repository - uses: actions/checkout@v3 # install miniconda environment - - uses: conda-incubator/setup-miniconda@v2 + + - uses: mamba-org/setup-micromamba@v1 with: environment-file: tests/test_env.yml - - # use mamba to speed up installation - #mamba-version: "*" - #channels: conda-forge - #channel-priority: true - - miniforge-variant: Mambaforge - miniforge-version: latest - - activate-environment: eomaps - - show-channel-urls: true - use-only-tar-bz2: true - - python-version: ${{ matrix.python-version }} - - auto-activate-base: false - auto-update-conda: true - # run pytest - - name: test Maps - # do this to ensure proper activation of conda environment + init-shell: >- + bash + cache-environment: true + post-cleanup: 'all' + create-args: >- + python=${{ matrix.python-version }} + - name: Test Maps shell: bash -l {0} run: | pip install -e .[all] From bd88c28d0af14173222a5a26fdd3bb96c46b27a7 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Tue, 2 Jan 2024 18:47:16 +0100 Subject: [PATCH 046/240] add info on optional dependency groups to the docs --- docs/installation.rst | 65 ++++++++++++++++++++++++++++++++----------- 1 file changed, 48 insertions(+), 17 deletions(-) diff --git a/docs/installation.rst b/docs/installation.rst index e51ade5bc..e447a37db 100644 --- a/docs/installation.rst +++ b/docs/installation.rst @@ -8,6 +8,7 @@ :local: :depth: 1 + Recommended way (via ``conda`` and ``mamba``) --------------------------------------------- @@ -17,27 +18,35 @@ EOmaps is available via the ``conda-forge`` channel and can be installed via: conda install -c conda-forge eomaps -This should make sure all required dependencies are correctly installed. + +This will install all required and optional dependencies. + .. admonition:: Greatly speed up the installation! - Since the dependencies of EOmaps can be demanding to solve for the classic ``conda`` solver, it is **highly recommended** - that you use `mamba `_ to install EOmaps! + Since the dependencies of EOmaps can be demanding to solve for the classic ``conda`` solver, it is **highly recommended** + that you use `mamba `_ to install EOmaps! - To install ``mamba``, simply use: + ``mamba`` is a reimplementation of the conda package manager in C++, capable of solving environments a lot faster. - .. code-block:: console + The best way to get started is to use `miniforge `_. - conda install -c conda-forge mamba + However, you can also install ``mamba`` into an existing ``conda`` environment with: - Once ``mamba`` is installed, you just need to replace the term ``conda`` with ``mamba`` and you're good to go! + .. code-block:: console + + conda install -c conda-forge mamba - .. code-block:: console - mamba install -c conda-forge eomaps + Once ``mamba`` is installed, you just need to replace the term ``conda`` with ``mamba`` and you're good to go! - Alternatively you can also configure ``conda`` to use the ``libmamba`` solver by default. - (More info here: `A Faster Solver for Conda: Libmamba `_ ) + .. code-block:: console + + mamba install -c conda-forge eomaps + + + Alternatively you can also configure ``conda`` to use the ``libmamba`` solver by default. + (More info here: `A Faster Solver for Conda: Libmamba `_ ) A quick tutorial on how to **get started from scratch** is available here: :ref:`quickstart_guide` @@ -45,18 +54,40 @@ A quick tutorial on how to **get started from scratch** is available here: :ref: More details on how to **configure your favorite IDE** to work with EOmaps can be found in the FAQ section :ref:`configuring_the_editor`. + + Alternative way (via ``pip``) ----------------------------- -EOmaps is also available on ``pip`` and can be installed via + +EOmaps is also available on ``pip``. + +To install EOmaps with a **minimal set of dependencies**, use: .. code-block:: console pip install eomaps -However, it is **not guaranteed that all dependencies are correctly resolved** and some manual -tweaking of the environment might be required to ensure that all packages work as expected. -Especially dependencies on C/C++ libraries such as ``geos`` or ``pyproj`` have to be configured -carefully to set up everying correctly. If you are not sure what you're doing, use ``conda + mamba``! +Optional features (WebMap services, CompanionWidget, etc.) require additional dependencies. +You can install them by installing ``eomaps`` with the required dependency-groups. + +To get all features of EOmaps, you can use one of: + +.. code-block:: console + + pip install eomaps[all] # ALL optional dependencies + pip install eomaps[all_nogui] # All optional dependencies (except ``Qt`` GUI framework) + + +In addition, you can also select only specific dependency-groups to activate only selected features: + +.. code-block:: console + + pip install eomaps[wms] # dependencies required for WebMap services + pip install eomaps[gui] # dependencies for ``Qt`` GUI framework and the CompanionWidget + pip install eomaps[io] # add support for ``pandas``, ``xarray``, ``geopandas`` and ``rioxarray`` + pip install eomaps[shade] # add capabilities to visualize extremely large datasets (via ``datashader``) + pip install eomaps[classify] # add support for ``mapclassify`` to classify datasets + -A list of all required dependencies can be found in :ref:`setup_a_dev_env` +A list of all associated packages can be found in :ref:`setup_a_dev_env` or in the ``pyproject.toml`` file. From 5aeee73519b575b6ec8f69b6eea5825e1be07e88 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Tue, 2 Jan 2024 19:11:57 +0100 Subject: [PATCH 047/240] update docs --- docs/installation.rst | 13 +++++++++---- 1 file changed, 9 insertions(+), 4 deletions(-) diff --git a/docs/installation.rst b/docs/installation.rst index e447a37db..16fdcc550 100644 --- a/docs/installation.rst +++ b/docs/installation.rst @@ -24,7 +24,7 @@ This will install all required and optional dependencies. .. admonition:: Greatly speed up the installation! - Since the dependencies of EOmaps can be demanding to solve for the classic ``conda`` solver, it is **highly recommended** + Since the dependencies of EOmaps can be demanding to solve for ``conda``, it is **highly recommended** that you use `mamba `_ to install EOmaps! ``mamba`` is a reimplementation of the conda package manager in C++, capable of solving environments a lot faster. @@ -68,8 +68,11 @@ To install EOmaps with a **minimal set of dependencies**, use: pip install eomaps -Optional features (WebMap services, CompanionWidget, etc.) require additional dependencies. -You can install them by installing ``eomaps`` with the required dependency-groups. +Optional dependencies +~~~~~~~~~~~~~~~~~~~~~ + +Some features (:ref:`webmap_layers`, :ref:`companion_widget`, etc.) require additional dependencies. +To use them you have to install the required dependency-groups: To get all features of EOmaps, you can use one of: @@ -79,7 +82,7 @@ To get all features of EOmaps, you can use one of: pip install eomaps[all_nogui] # All optional dependencies (except ``Qt`` GUI framework) -In addition, you can also select only specific dependency-groups to activate only selected features: +In addition, you can use the following dependency-groups to activate only selected features: .. code-block:: console @@ -90,4 +93,6 @@ In addition, you can also select only specific dependency-groups to activate onl pip install eomaps[classify] # add support for ``mapclassify`` to classify datasets +(It is also possible to combine dependency-groups, e.g.: ``pip install eomaps[wms, gui]``) + A list of all associated packages can be found in :ref:`setup_a_dev_env` or in the ``pyproject.toml`` file. From e2905e7bb91067b3cc8f3182d63da68457f5bfe0 Mon Sep 17 00:00:00 2001 From: Bane Sullivan Date: Sun, 17 Dec 2023 13:07:59 -0800 Subject: [PATCH 048/240] Draft improvements to contributing guide --- CONTRIBUTING.md | 87 ++++++++++++++++++++++++++++++++++++++++++++++--- 1 file changed, 83 insertions(+), 4 deletions(-) diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index 545850a56..89acfb0b5 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -1,5 +1,3 @@ -# - # Contributing to EOmaps Interested in contributing to EOmaps? Awesome! Any contributions are welcome! @@ -17,8 +15,6 @@ A detailed introduction on how to setup a development environment to contribute If you got some questions or need help to get started, don't hesitate to get in touch by opening a new [issue](https://github.com/raphaelquast/EOmaps/issues), or [discussion](https://github.com/raphaelquast/EOmaps/discussions) on GitHub! - - ## General infos - All of the `EOmaps` codebase is hosted on [GitHub](https://github.com/) @@ -32,3 +28,86 @@ If you got some questions or need help to get started, don't hesitate to get in - The documentation is generated with [sphinx](https://www.sphinx-doc.org/en/master/) and hosted on [ReadTheDocs](https://docs.readthedocs.io) - Releases are hosted on [pypi](https://pypi.org/project/EOmaps/) and [conda-forge](https://anaconda.org/conda-forge/eomaps) + +## Development Practices + +This section provides a guide to how we conduct development in the EOmaps repository. Please follow the practices outlined here when contributing directly to this repository. + +### Testing + +After making changes, please test changes locally before creating a pull request. The following tests will be executed after any commit or pull request, so we ask that you perform the following sequence locally to track down any new issues from your changes. + +To run our comprehensive suite of unit tests, install all the dependencies listed in `tests/test_env.yml`: + +```bash +# Install dependencies (to be filled in) +``` + +Then, if you have everything installed, you can run the various test suites. + +#### Unit Testing + +Run the primary test suite and generate coverage report: + +.. code:: bash + + python -m pytest -v --cov eomaps + +Unit testing can take some time, if you wish to speed it up, set the +number of processors with the ``-n`` flag. This uses ``pytest-xdist`` to +leverage multiple processes. Example usage: + +.. code:: bash + + python -m pytest -n --cov eomaps + +#### Style Checking + +To ensure your code meets minimum code styling standards, run:: + + pip install pre-commit + pre-commit run --all-files + +If you have issues related to ``setuptools`` when installing ``pre-commit``, see +`pre-commit Issue #2178 comment `_ +for a potential resolution. + +You can also install this as a pre-commit hook by running:: + + pre-commit install + +This way, it's not possible for you to push code that fails the style +checks. For example, each commit automatically checks that you meet the style +requirements:: + + $ pre-commit install + $ git commit -m "added my cool feature" + check python ast.........................................................Passed + check for merge conflicts................................................Passed + fix end of files.........................................................Passed + trim trailing whitespace.................................................Passed + mixed line ending........................................................Passed + black....................................................................Passed + +The actual installation of the environment happens before the first commit +following ``pre-commit install``. This will take a bit longer, but subsequent +commits will only trigger the actual style checks. + +### Building the Documentation + +Build the documentation on Linux or Mac OS with: + +.. code:: bash + + make -C doc html + +Build the documentation on Windows with: + +.. code:: winbatch + + cd doc + python -msphinx -M html source build + python -msphinx -M html . build + +The generated documentation can be found in the ``doc/build/html`` +directory. From 6b0717fbcba34fd13914106a21b5134ef5aa5508 Mon Sep 17 00:00:00 2001 From: Raphael Date: Thu, 21 Dec 2023 15:28:27 +0100 Subject: [PATCH 049/240] update contribution guides - add more comprehensive quick-info to CONTRIBUTING.md - update contribution guide in the docs to include testing etc. - rename `contribute_env.yml` to `environment.yml` and move to main dir --- CONTRIBUTING.md | 83 ++++-------- docs/contribute.rst | 149 ++++++++++++++++----- docs/contribute_env.yml => environment.yml | 7 +- 3 files changed, 145 insertions(+), 94 deletions(-) rename docs/contribute_env.yml => environment.yml (85%) diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index 89acfb0b5..b67211de8 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -11,8 +11,6 @@ We greatly appreciate any ideas how we can improve the code and documentation. EOmaps aims to be a feature-rich, performant and user-friendly tool for geographic data visualization and analysis. We highly welcome pull-requests for bug-fixes, improvements or entirely new features to improve the package! -A detailed introduction on how to setup a development environment to contribute code to EOmaps is provided in the [Contribution Guide](https://eomaps.readthedocs.io/en/latest/contribute.html) of the documentation. - If you got some questions or need help to get started, don't hesitate to get in touch by opening a new [issue](https://github.com/raphaelquast/EOmaps/issues), or [discussion](https://github.com/raphaelquast/EOmaps/discussions) on GitHub! ## General infos @@ -31,83 +29,54 @@ If you got some questions or need help to get started, don't hesitate to get in ## Development Practices -This section provides a guide to how we conduct development in the EOmaps repository. Please follow the practices outlined here when contributing directly to this repository. +This section provides a **quick overview** how we conduct development in the EOmaps repository. + +**More detailed instructions** on how to setup a development environment and contribute code to EOmaps are provided in the [Contribution Guide](https://eomaps.readthedocs.io/en/latest/contribute.html) of the documentation! + ### Testing After making changes, please test changes locally before creating a pull request. The following tests will be executed after any commit or pull request, so we ask that you perform the following sequence locally to track down any new issues from your changes. -To run our comprehensive suite of unit tests, install all the dependencies listed in `tests/test_env.yml`: +Run the primary test suite and generate coverage report: ```bash -# Install dependencies (to be filled in) +python -m pytest -v --cov eomaps ``` -Then, if you have everything installed, you can run the various test suites. - -#### Unit Testing - -Run the primary test suite and generate coverage report: - -.. code:: bash - - python -m pytest -v --cov eomaps - Unit testing can take some time, if you wish to speed it up, set the -number of processors with the ``-n`` flag. This uses ``pytest-xdist`` to -leverage multiple processes. Example usage: +number of processors with the ``-n`` flag. This uses [pytest-xdist](https://github.com/pytest-dev/pytest-xdist) to leverage multiple processes. Example usage: -.. code:: bash - - python -m pytest -n --cov eomaps +```bash +python -m pytest -n --cov eomaps +``` -#### Style Checking +> NOTE: During the tests, a lot of figures will be created and destroyed! -To ensure your code meets minimum code styling standards, run:: +### Style Checking - pip install pre-commit - pre-commit run --all-files +To ensure your code meets minimum code styling standards, run: -If you have issues related to ``setuptools`` when installing ``pre-commit``, see -`pre-commit Issue #2178 comment `_ -for a potential resolution. +```bash +pip install pre-commit +pre-commit run --all-files +``` You can also install this as a pre-commit hook by running:: - pre-commit install - -This way, it's not possible for you to push code that fails the style -checks. For example, each commit automatically checks that you meet the style -requirements:: - - $ pre-commit install - $ git commit -m "added my cool feature" - check python ast.........................................................Passed - check for merge conflicts................................................Passed - fix end of files.........................................................Passed - trim trailing whitespace.................................................Passed - mixed line ending........................................................Passed - black....................................................................Passed - -The actual installation of the environment happens before the first commit -following ``pre-commit install``. This will take a bit longer, but subsequent -commits will only trigger the actual style checks. - -### Building the Documentation - -Build the documentation on Linux or Mac OS with: - -.. code:: bash +```bash +pre-commit install +``` - make -C doc html +This way, pre-commits will run automatically before each commit to ensure that you do not push code that fails the style checks. -Build the documentation on Windows with: +## Building the Documentation -.. code:: winbatch +Build the documentation, navigate to the `eomaps/docs` directory (containing the `make.bat`) file and then run: - cd doc - python -msphinx -M html source build - python -msphinx -M html . build +```bash +make html +``` The generated documentation can be found in the ``doc/build/html`` directory. diff --git a/docs/contribute.rst b/docs/contribute.rst index dd3472ad5..bf8538c8d 100644 --- a/docs/contribute.rst +++ b/docs/contribute.rst @@ -22,8 +22,8 @@ Any contributions are welcome! - ... -🛞Getting started ------------------- +Getting started +--------------- The source code of EOmaps is managed on `GitHub `_. @@ -53,41 +53,102 @@ Once you're done or in case you want/need some feedback, open a `pull request `_ to set up ``python`` with the following steps: -- Download the latest `miniconda `_ installer and install -- Open `anaconda prompt `_ (or normal terminal on ``linux``) -- | Install `mamba `_ with - | ``conda install -c conda-forge mamba`` -- | Create a development environment from the ``eomaps.yml`` file with - | ``mamba env create -f < path to eomaps.yml >`` +I recommend using `miniforge `__, a minimalistic installer that contains the package-managers `conda `_ and `mamba `_ already pre-configured to use the `conda-forge `_ channel by default. + + +You can set up ``python`` with the following steps: + +- Download the latest `miniforge `__ installer and install +- On Windows, miniforge is not added to the system path by default. To use `conda/mamba`, open `Miniforge Prompt `__! For `Linux` and `OS X` you should be able to use the normal command prompt. +- | Create a new development environment from the ``eomaps/environment.yml`` file with + | ``mamba env create -f < path to environment.yml >`` + +Content of ``environment.yml``: + +.. literalinclude:: ../environment.yml + -Content of ``eomaps.yml``: -.. literalinclude:: ../docs/contribute_env.yml +.. tip:: + + As editor, I recommend using the awesome, free and open-source `Spyder IDE `_. + You can install it directly into your environment via: + + .. code-block:: console + + mamba install -c conda-forge spyder + + + +Development Practices +--------------------- -As editor, I recommend using the awesome, free and open-source `Spyder IDE `_. -You can install it directly into your environment via: +This section provides a guide to how we conduct development in the EOmaps repository. Please follow the practices outlined here when contributing directly to this repository. + +Testing +~~~~~~~ + +After making changes, please test changes locally before creating a pull request. The following tests will be executed after any commit or pull request, so we ask that you perform the following sequence locally to track down any new issues from your changes. + +The `environment.yml` file already contains the packages required to run the tests locally, e.g.: + +- `pytest `__ to run the tests +- `pytest-cov `__ and `coveralls `__ to track lines covered by the tests + + +To run the primary test suite and generate coverage report, navigate to the parent `eomaps` directory and run: .. code-block:: console - mamba install -c conda-forge spyder + python -m pytest -v --cov eomaps + +.. note:: + + During the tests, a lot of figures will be created and destroyed! + + +.. tip:: + + You can run only a subset of the tests by using the ``-k`` flag! (This will select only tests whose names contain the provided keyword) + + .. code-block:: console + python -m pytest -k -Pre-commit hooks -~~~~~~~~~~~~~~~~ + (see `pytest command-line-flags `_ for more details) -To ensure uniform code formatting, EOmaps uses `pre-commit hooks `_ to automatically check (and fix) code-style issues such as: -- Trailing spaces in `.py` files +.. tip:: + + Unit testing can take some time, if you wish to speed it up, you can install `pytest-xdist `_ to leverage multiple processes with the ``-n`` flag. + + .. code-block:: console + + python -m pytest -n --cov eomaps + +Style Checking +~~~~~~~~~~~~~~ + +To ensure uniform code style, EOmaps uses `pre-commit hooks `_ to automatically check (and fix) code-style issues such as: + +- Removal of trailing whitespaces in `.py` files +- Making sure that files end with a newline - Compliance to the used `black `_ code formatting standards -To initialize pre-commit hooks in your current environment, navigate to the directory where you cloned the EOmaps repository and run the following command: -(e.g. the parent directory containing the file ``.pre-commit-config.yaml``) + +To initialize pre-commit hooks in your current environment, first install `pre-commit hooks `_ with + +.. code-block:: console + + mamba install -c conda-forge pre-commit + + +Then navigate to the directory where you cloned the EOmaps repository and run the following command: (e.g. the directory that contains the ``.pre-commit-config.yaml`` file) .. code-block:: console @@ -98,21 +159,43 @@ This will install the required pre-commit hooks in your current environment so t (The first time pre-commit is run, the necessary packages will have to be installed which might take a short moment) +.. code-block:: console + + git commit -m "added my cool feature" + + check python ast.........................................................Passed + check for merge conflicts................................................Passed + fix end of files.........................................................Passed + trim trailing whitespace.................................................Passed + mixed line ending........................................................Passed + black....................................................................Passed + + .. note:: - This means that all files will be auto-formatted prior to each commit to comply with the used code-formatting standards and - only commits that comply with all pre-commit hooks can be pushed to GitHub. + This means that all files will be **auto-formatted** prior to each commit to comply with the used code-formatting standards and only commits that comply with all pre-commit hooks can be pushed to GitHub. -- To run the pre-commit hooks manually on selected files, simply **add the files you want to commit** with ``git add < filename >`` and then run ``pre-commit`` -- If you want to run the hooks on all files, use ``pre-commit run --all-files`` + ⚠ After running the pre-commit hooks, some files might have new changes that must be staged for commit again! -Note: after running the pre-commit hooks, some files might have new changes that must be staged for commit again! +.. tip:: + - To run the pre-commit hooks manually on selected files, simply **add the files you want to commit** with ``git add < filename >`` and then run ``pre-commit`` + - If you want to run the hooks on all files, use ``pre-commit run --all-files`` + +.. tip:: + + If you have issues related to ``setuptools`` when installing ``pre-commit``, see + `pre-commit Issue #2178 comment `_ + for a potential resolution. -📖 Building the docs ---------------------- + + + + +Building the Documentation +-------------------------- The documentation of EOmaps is written with `Sphinx `_ using the markup language `ReStructuredText `_. @@ -148,7 +231,11 @@ The first time the documentation is built, all auto-generated files parsed from This will trigger a first build of the documentation and start a http server that hosts the local documentation (and live reloads it as soon as the build process finished) + The url of the http-server will be printed to the console (the default is: ``127.0.0.1:8000``). + + +.. tip:: + As editor for the docs I recommend the nice minimalistic free and open-source editor `retext `_. -As editor for the docs I recommend the nice free and open-source editor `retext `_. -It provides syntax-highlighting for ReStructuredText and a useful table-edit mode. + It provides syntax-highlighting and live-preview for both Markdown and ReStructuredText. diff --git a/docs/contribute_env.yml b/environment.yml similarity index 85% rename from docs/contribute_env.yml rename to environment.yml index 2f037a0ff..e8c42e781 100644 --- a/docs/contribute_env.yml +++ b/environment.yml @@ -3,7 +3,7 @@ channels: - conda-forge dependencies: - - python = 3.10 + - python = 3.11 - numpy - scipy - pandas @@ -13,7 +13,6 @@ dependencies: - descartes - mapclassify - pyproj - - pyepsg # --------------for data-shading - datashader # --------------for GeoTIFF and NetCDF files @@ -23,7 +22,6 @@ dependencies: # --------------for WebMaps - owslib - requests - - xmltodict - cairosvg # --------------to support multiple Qt versions - qtpy @@ -31,9 +29,6 @@ dependencies: - coveralls - pytest - pytest-cov - # --------------for version control - - git - - pre-commit # --------------for building the docs - sphinx-copybutton - sphinx From c6d58793f765388f2d1d1a508735ce10d77dddb1 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Tue, 2 Jan 2024 23:00:37 +0100 Subject: [PATCH 050/240] rename "utilities" class to "Utilities" --- docs/api_utils.rst | 2 +- eomaps/eomaps.py | 6 +++--- eomaps/utilities.py | 4 ++-- 3 files changed, 6 insertions(+), 6 deletions(-) diff --git a/docs/api_utils.rst b/docs/api_utils.rst index 140bb55ef..7b9ebae00 100644 --- a/docs/api_utils.rst +++ b/docs/api_utils.rst @@ -31,7 +31,7 @@ By default, the widgets will show all available layers (except the "all" layer) - To exclude certain layers from the widget, use ``exclude_layers=[...layer-names to exclude...]`` - To remove a previously created widget ``s`` from the map, simply use ``s.remove()`` -.. currentmodule:: eomaps.utilities.utilities +.. currentmodule:: eomaps.utilities.Utilities .. autosummary:: :nosignatures: diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index 98ca1b986..ab164e999 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -66,7 +66,7 @@ from .reader import read_file, from_file, new_layer_from_file from .grid import GridFactory -from .utilities import utilities +from .utilities import Utilities from .draw import ShapeDrawer from .annotation_editor import AnnotationEditor @@ -666,11 +666,11 @@ def cb(self): return self._cb @property - @wraps(utilities) + @wraps(Utilities) def util(self): """Add utilities to the map.""" if self.parent._util is None: - self.parent._util = utilities(self.parent) + self.parent._util = Utilities(self.parent) return self.parent._util @property diff --git a/eomaps/utilities.py b/eomaps/utilities.py index 987f80adc..489eadc73 100644 --- a/eomaps/utilities.py +++ b/eomaps/utilities.py @@ -231,7 +231,7 @@ def __init__( See Also -------- - utilities.layer_slider : A slider widget to switch between layers. + Utilities.layer_slider : A slider widget to switch between layers. Maps.show_layer: Set the currently visible layer. """ @@ -573,7 +573,7 @@ def remove(self): self._m.BM.update() -class utilities: +class Utilities: """ A collection of utility tools that can be added to EOmaps plots. From e5aaa37327d61f7a01aabf4093d792f47e84ee6d Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Tue, 2 Jan 2024 23:02:01 +0100 Subject: [PATCH 051/240] update docs - remove obsolete files - fix missing links - update references --- docs/FAQ.rst | 6 +- docs/api.rst | 99 ---------------- docs/api_inset_maps.rst | 129 --------------------- docs/api_naturalearth_features.rst | 89 -------------- docs/index.rst | 4 +- docs/notebooks/inset_maps.ipynb | 1 + docs/notebooks/naturalearth_features.ipynb | 1 + eomaps/callbacks.py | 2 +- 8 files changed, 7 insertions(+), 324 deletions(-) delete mode 100644 docs/api.rst delete mode 100644 docs/api_inset_maps.rst delete mode 100644 docs/api_naturalearth_features.rst diff --git a/docs/FAQ.rst b/docs/FAQ.rst index 41ef4572d..40865eaab 100644 --- a/docs/FAQ.rst +++ b/docs/FAQ.rst @@ -279,8 +279,7 @@ Important changes between major versions .. dropdown:: ⚙ From EOmaps v5.x to v6.x - General changes in behavior - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ + **General changes in behavior** - | 🔶 Starting with EOmaps v6.0 multiple calls to ``m.plot_map()`` | **on the same Maps-object completely remove (and replace)** the previous dataset! @@ -295,8 +294,7 @@ Important changes between major versions - ``m.show_layer("A|B")`` plots all artists of the layer ``"A"`` **on top of** the layer ``"B"`` - the ordering of artists inside a layer is determined by their ``zorder`` (e.g. ``m.plot_map(zorder=123)``) - Removed (previously depreciated) functionalities - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + **Removed (previously depreciated) functionalities** - ❌ the ``m.figure`` accessor has been removed! diff --git a/docs/api.rst b/docs/api.rst deleted file mode 100644 index a5c2f606e..000000000 --- a/docs/api.rst +++ /dev/null @@ -1,99 +0,0 @@ -🌍 Users Guide -=============== - -The following chapters provide comprehensive overview on the capabilities of EOmaps. - -| :doc:`api_basics` -| The basic concepts how to create beautiful interactive maps. - -| :doc:`api_data_visualization` -| How to visualize datasets (plot-shapes, classification, colorbars etc.). - -.. raw:: html - -


- -| :doc:`api_companion_widget` -| The graphical user interface that ships with EOmaps! - -| :doc:`api_layout_editor` -| Interactively re-arrange and re-size axes of a figure. - -.. raw:: html - -
- -| :doc:`api_inset_maps` -| Create zoomed-in views on specific regions of a map. - -| :doc:`api_callbacks` -| Turn your maps into interactive data-analysis widgets. - -.. raw:: html - -
- -| :doc:`api_naturalearth_features` -| Add basic map features (coastlines, ocean-coloring etc. ) to the map. - -| :doc:`api_webmaps` -| Add imagery provided by WebMap services (ts, wms, wmts, xyz) to the map. - -| :doc:`api_vector_data` -| Add vector geometries to the map. - -| :doc:`api_annotations_markers_etc` -| Add markers, annotations, lines, logos etc. to the map. - -| :doc:`api_scalebar` -| Add a scalebar to the map. - -| :doc:`api_compass` -| Add a compass (or North Arrow) to the map. - -| :doc:`api_gridlines` -| Add grid-lines (and optionally grid-labels) to the map. - -.. raw:: html - -
- -| :doc:`api_draw` -| Interactively draw geometries on a map and export them as shapefiles. - -| :doc:`api_utils` -| A collection of utility widgets (layer-sliders, layer-selectors) - -| :doc:`api_read_data` -| Read data from NetCDF, GeoTIFF or CSV files. - -| :doc:`api_misc` -| Additional functions and properties that might come in handy. - - -.. toctree:: - :hidden: - :maxdepth: 3 - - api_basics - api_data_visualization - - api_companion_widget - api_layout_editor - - api_inset_maps - api_callbacks - - api_naturalearth_features - api_webmaps - api_vector_data - - api_annotations_markers_etc - api_scalebar - api_compass - api_gridlines - - api_draw - api_utils - api_read_data - api_misc diff --git a/docs/api_inset_maps.rst b/docs/api_inset_maps.rst deleted file mode 100644 index 764aa5c8a..000000000 --- a/docs/api_inset_maps.rst +++ /dev/null @@ -1,129 +0,0 @@ - -🔬 Inset Maps --------------- - -.. contents:: Contents: - :local: - :depth: 1 - -How to create inset maps -~~~~~~~~~~~~~~~~~~~~~~~~ - -.. currentmodule:: eomaps.eomaps - -Inset maps are used to show zoomed-in regions of a map and can be created with :py:meth:`Maps.new_inset_map`. - -.. code-block:: python - :name: test_inset_maps_01 - - from eomaps import Maps - m = Maps() # the "parent" Maps-object (e.g. the "big" map) - m.add_feature.preset.coastline() - m_i = m.new_inset_map(xy=(125, 40), radius=10) # a new Maps-object that represents the inset-map - m_i.add_feature.preset.ocean() # it can be used just like any other Maps-objects! - m_i.add_indicator_line() - -- An inset-map is defined by it's center-position and a radius -- The used boundary-shape can be one of: - - - "ellipses" (e.g. projected ellipses with a radius defined in a given crs) - - "rectangles" (e.g. projected rectangles with a radius defined in a given crs) - - "geod_circles" (e.g. geodesic circles with a radius defined in meters) - - -For convenience, inset-map objects have the following special methods defined: - -.. currentmodule:: eomaps.inset_maps - -.. autosummary:: - :nosignatures: - - InsetMaps.set_inset_position - InsetMaps.add_extent_indicator - InsetMaps.add_indicator_line - - -Checkout the associated example on how to use inset-maps: :ref:`ex_11` - -To quickly re-position (and re-size) inset-maps, have a look at the :ref:`layout_editor`! - -.. table:: - :widths: 60 40 - :align: center - - +-----------------------------------------------------------------+--------------------------------------------+ - | .. code-block:: python | .. image:: _static/minigifs/inset_maps.png | - | :name: test_inset_maps_02 | :align: center | - | | | - | from eomaps import Maps | |img_minsize| | - | m = Maps(Maps.CRS.PlateCarree(central_longitude=-60)) | | - | m.add_feature.preset.ocean() | | - | | | - | m_i = m.new_inset_map(xy=(5, 45), radius=10, | | - | plot_position=(.3, .5), plot_size=.7, | | - | boundary=dict(ec="r", lw=4), | | - | indicate_extent=dict(fc=(1,0,0,.5), | | - | ec="r", lw=1) | | - | ) | | - | m_i.add_indicator_line(m, c="r") | | - | | | - | m_i.add_feature.preset.coastline() | | - | m_i.add_feature.preset.countries() | | - | m_i.add_feature.preset.ocean() | | - | m_i.add_feature.cultural.urban_areas(fc="r", scale=10) | | - | m_i.add_feature.physical.rivers_europe(ec="b", lw=0.25, | | - | fc="none", scale=10) | | - | m_i.add_feature.physical.lakes_europe(fc="b", scale=10) | | - | | | - +-----------------------------------------------------------------+--------------------------------------------+ - -.. currentmodule:: eomaps.eomaps.Maps - -.. autosummary:: - :nosignatures: - - new_inset_map - - -.. _zoomed_in_views_on_datasets: - -Zoomed in views on datasets -~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -.. currentmodule:: eomaps.eomaps - -To simplify the creation of "zoomed-in" views on datasets, both the data and the classification -of the data must be the same. - -For this purpose, EOmaps provides 2 convenience-functions: - -- :py:meth:`Maps.inherit_data` : Use the same dataset as another :py:class:`Maps` object -- :py:meth:`Maps.inherit_classification`: Use the same classification as another :py:class:`Maps` object - - - Note that this means that the classification specs as well as ``vmin``, ``vmax`` and the used ``colormap`` will be the same! - - -.. code-block:: python - :name: test_zoomed_in_data_maps - - from eomaps import Maps - import numpy as np - - x, y = np.meshgrid(np.linspace(-20, 20, 50), np.linspace(-50, 60, 100)) - data = x + y - - m = Maps(ax=131) - m.set_data(data, x, y) - m.set_shape.raster() - m.set_classify.Quantiles(k=10) - m.plot_map(cmap="tab10", vmin=-10, vmax=40) - - # Create a new inset-map that shows a zoomed-in view on a given dataset - m_inset = m.new_inset_map(xy=(5, 20), radius=8, plot_position=(0.75, .5)) - - # inherit both the data and the classification specs from "m" - m_inset.inherit_data(m) - m_inset.inherit_classification(m) - - m_inset.set_shape.rectangles() - m_inset.plot_map(ec="k", lw=0.25) diff --git a/docs/api_naturalearth_features.rst b/docs/api_naturalearth_features.rst deleted file mode 100644 index a439bda00..000000000 --- a/docs/api_naturalearth_features.rst +++ /dev/null @@ -1,89 +0,0 @@ - -.. _ne_features: - -🌵 NaturalEarth features ------------------------- - -.. currentmodule:: eomaps.eomaps - -Feature-layers provided by `NaturalEarth `_ can be directly added to the map via :py:meth:`Maps.add_feature`. - -.. autosummary:: - :nosignatures: - - Maps.add_feature - - -The call-signature is: ``m.add_feature.< CATEGORY >.< FEATURE >(...)``: - -``< CATEGORY >`` specifies the general category of the feature, e.g.: - -- ``cultural``: **cultural** features (e.g. countries, states etc.) -- ``physical``: **physical** features (e.g. coastlines, land, ocean etc.) -- ``preset``: a set of pre-defined layers for convenience (see below) - -``< FEATURE >`` is the name of the NaturalEarth feature, e.g. ``"coastlines", "admin_0_countries"`` etc.. - -.. table:: - - +-------------------------------------------------------------------------+-------------------------------------------------+ - | .. code-block:: python | .. image:: _static/minigifs/add_feature.gif | - | :name: test_add_features | :align: center | - | | | - | from eomaps import Maps | |img_minsize| | - | m = Maps() | | - | m.add_feature.preset.coastline() | | - | m.add_feature.preset.ocean() | | - | m.add_feature.preset.land() | | - | m.add_feature.preset.countries() | | - | | | - | m.add_feature.physical.lakes(scale=110, ec="b") | | - | m.add_feature.cultural.admin_0_pacific_groupings(fc="none", ec="m") | | - | | | - | # (only if geopandas is installed) | | - | places = m.add_feature.cultural.populated_places.get_gdf(scale=110) | | - | m.add_gdf(places, markersize=places.NATSCALE/10, fc="r") | | - | | | - +-------------------------------------------------------------------------+-------------------------------------------------+ - - -`NaturalEarth `_ provides features in 3 different scales: 1:10m, 1:50m, 1:110m. -By default EOmaps uses features at 1:50m scale. To set the scale manually, simply use the ``scale`` argument -when calling the feature. - -- It is also possible to automatically update the scale based on the map-extent by using ``scale="auto"``. - (Note that if you zoom into a new scale the data might need to be downloaded and reprojected so the map might be irresponsive for a couple of seconds until everything is properly cached.) - -For convenience, multiple preset-features can also be added in one go via: - -.. code-block:: python - :name: test_add_multi_preset_features - - from eomaps import Maps - m = Maps() - m.add_feature.preset("coastline", "ocean", "land", scale=50) - -If you want to get a ``geopandas.GeoDataFrame`` containing all shapes and metadata of a feature, use: -(Have a look at :ref:`vector_data` on how to add the obtained ``GeoDataFrame`` to the map) - -.. code-block:: python - :name: test_get_gdf - - from eomaps import Maps - m = Maps() - gdf = m.add_feature.physical.coastline.get_gdf(scale=10) - -The most commonly used features are accessible with pre-defined colors via the ``preset`` category: - -.. currentmodule:: eomaps.ne_features.NaturalEarth_presets - -.. autosummary:: - :nosignatures: - - coastline - ocean - land - countries - urban_areas - lakes - rivers_lake_centerlines diff --git a/docs/index.rst b/docs/index.rst index 0a70f4780..ca5eb6d26 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -88,9 +88,9 @@ EOmaps provides many useful tools to customize your maps. :width: 100% :widths: 50 50 - * - | :doc:`api_inset_maps` + * - | :doc:`notebooks/inset_maps` | Create zoomed-in views on specific regions of a map. - - | :doc:`api_naturalearth_features` + - | :doc:`notebooks/naturalearth_features` | Add basic map features (coastlines, ocean-coloring etc. ) to the map. * - | :doc:`api_webmaps` diff --git a/docs/notebooks/inset_maps.ipynb b/docs/notebooks/inset_maps.ipynb index 6e8c2e13e..0fdd9b1af 100644 --- a/docs/notebooks/inset_maps.ipynb +++ b/docs/notebooks/inset_maps.ipynb @@ -193,6 +193,7 @@ "tags": [] }, "source": [ + "(zoomed_in_views_on_datasets)=\n", "## Zoomed in views on datasets\n", "\n", "To create a \"zoomed-in\" view of a dataset, the data must be plotted on the inset-map with the same classification as the initial plot.\n", diff --git a/docs/notebooks/naturalearth_features.ipynb b/docs/notebooks/naturalearth_features.ipynb index 009c1d5a3..54b4b1117 100644 --- a/docs/notebooks/naturalearth_features.ipynb +++ b/docs/notebooks/naturalearth_features.ipynb @@ -30,6 +30,7 @@ "tags": [] }, "source": [ + "(ne_features)=\n", "# 🌵 NaturalEarth features\n", "
\n", "\n", diff --git a/eomaps/callbacks.py b/eomaps/callbacks.py index 251452355..17b783143 100644 --- a/eomaps/callbacks.py +++ b/eomaps/callbacks.py @@ -1316,7 +1316,7 @@ def overlay_layer(self, layer, key="x"): If the visible layer changes **while the overlay-layer is active**, triggering the callback again might not properly remove the previous overlay! (e.g. the overlay is only removed if the top-layer corresponds exactly to - the overlay-layer specifications) + the overlay-layer specifications) Examples -------- From e61ab45c11330fd86f12723d152eeb8b307446a0 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Tue, 2 Jan 2024 23:33:34 +0100 Subject: [PATCH 052/240] avoid executing notebooks when compiling docs --- docs/conf.py | 2 +- docs/notebooks/inset_maps.ipynb | 12 +- docs/notebooks/naturalearth_features.ipynb | 3062 ++++++++++---------- 3 files changed, 1538 insertions(+), 1538 deletions(-) diff --git a/docs/conf.py b/docs/conf.py index ba190908f..1666f5ab3 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -68,7 +68,7 @@ def setup(app): myst_enable_extensions = ["dollarmath", "colon_fence"] myst_title_to_header = True -nb_execution_mode = "cache" +nb_execution_mode = "off" nb_execution_timeout = 120 # handle compiler warnings for duplicate labels due to documents diff --git a/docs/notebooks/inset_maps.ipynb b/docs/notebooks/inset_maps.ipynb index 0fdd9b1af..54f57c4ee 100644 --- a/docs/notebooks/inset_maps.ipynb +++ b/docs/notebooks/inset_maps.ipynb @@ -90,7 +90,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 2, "id": "052d389f-a7f0-4a35-83fc-57d0bfa992f1", "metadata": { "editable": true, @@ -141,7 +141,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 3, "id": "35d0a654-5a34-40d2-8053-a53f77c2ab35", "metadata": { "editable": true, @@ -214,7 +214,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "id": "2a2560d1-dfaf-4995-bd9b-cd905710d6c2", "metadata": { "editable": true, @@ -246,7 +246,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 5, "id": "3a96a635-3c2b-49d0-a25b-f58c555f85bd", "metadata": { "editable": true, @@ -282,7 +282,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 6, "id": "b5bfc055-ec33-4672-9a6b-570defce9f9e", "metadata": { "editable": true, @@ -308,7 +308,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 7, "id": "11d46e5c-4769-412a-a74a-b5a1dd38dc0d", "metadata": { "editable": true, diff --git a/docs/notebooks/naturalearth_features.ipynb b/docs/notebooks/naturalearth_features.ipynb index 54b4b1117..02aa78872 100644 --- a/docs/notebooks/naturalearth_features.ipynb +++ b/docs/notebooks/naturalearth_features.ipynb @@ -377,1564 +377,1564 @@ "data": { "text/html": [ "
\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 SCALERANKNATSCALELABELRANKFEATURECLANAMENAMEPARNAMEALTNAMEASCIIADM0CAPCAPINWORLDCITYMEGACITYSOV0NAMESOV_A3ADM0NAMEADM0_A3ADM1NAMEISO_A2NOTELATITUDELONGITUDEPOP_MAXPOP_MINPOP_OTHERRANK_MAXRANK_MINMEGANAMELS_NAMEMAX_POP10MAX_POP20MAX_POP50MAX_POP300MAX_POP310MAX_NATSCAMIN_AREAKMMAX_AREAKMMIN_AREAMIMAX_AREAMIMIN_PERKMMAX_PERKMMIN_PERMIMAX_PERMIMIN_BBXMINMAX_BBXMINMIN_BBXMAXMAX_BBXMAXMIN_BBYMINMAX_BBYMINMIN_BBYMAXMAX_BBYMAXMEAN_BBXCMEAN_BBYCTIMEZONEUN_FIDPOP1950POP1955POP1960POP1965POP1970POP1975POP1980POP1985POP1990POP1995POP2000POP2005POP2010POP2015POP2020POP2025POP2050MIN_ZOOMWIKIDATAIDWOF_IDCAPALTNAME_ENNAME_DENAME_ESNAME_FRNAME_PTNAME_RUNAME_ZHLABELNAME_ARNAME_BNNAME_ELNAME_HINAME_HUNAME_IDNAME_ITNAME_JANAME_KONAME_NLNAME_PLNAME_SVNAME_TRNAME_VINE_IDNAME_FANAME_HENAME_UKNAME_URNAME_ZHTGEONAMESIDFCLASS_ISOFCLASS_USFCLASS_FRFCLASS_RUFCLASS_ESFCLASS_CNFCLASS_TWFCLASS_INFCLASS_NPFCLASS_PKFCLASS_DEFCLASS_GBFCLASS_BRFCLASS_ILFCLASS_PSFCLASS_SAFCLASS_EGFCLASS_MAFCLASS_PTFCLASS_ARFCLASS_JPFCLASS_KOFCLASS_VNFCLASS_TRFCLASS_IDFCLASS_PLFCLASS_GRFCLASS_ITFCLASS_NLFCLASS_SEFCLASS_BDFCLASS_UAFCLASS_TLCgeometrySCALERANKNATSCALELABELRANKFEATURECLANAMENAMEPARNAMEALTNAMEASCIIADM0CAPCAPINWORLDCITYMEGACITYSOV0NAMESOV_A3ADM0NAMEADM0_A3ADM1NAMEISO_A2NOTELATITUDELONGITUDEPOP_MAXPOP_MINPOP_OTHERRANK_MAXRANK_MINMEGANAMELS_NAMEMAX_POP10MAX_POP20MAX_POP50MAX_POP300MAX_POP310MAX_NATSCAMIN_AREAKMMAX_AREAKMMIN_AREAMIMAX_AREAMIMIN_PERKMMAX_PERKMMIN_PERMIMAX_PERMIMIN_BBXMINMAX_BBXMINMIN_BBXMAXMAX_BBXMAXMIN_BBYMINMAX_BBYMINMIN_BBYMAXMAX_BBYMAXMEAN_BBXCMEAN_BBYCTIMEZONEUN_FIDPOP1950POP1955POP1960POP1965POP1970POP1975POP1980POP1985POP1990POP1995POP2000POP2005POP2010POP2015POP2020POP2025POP2050MIN_ZOOMWIKIDATAIDWOF_IDCAPALTNAME_ENNAME_DENAME_ESNAME_FRNAME_PTNAME_RUNAME_ZHLABELNAME_ARNAME_BNNAME_ELNAME_HINAME_HUNAME_IDNAME_ITNAME_JANAME_KONAME_NLNAME_PLNAME_SVNAME_TRNAME_VINE_IDNAME_FANAME_HENAME_UKNAME_URNAME_ZHTGEONAMESIDFCLASS_ISOFCLASS_USFCLASS_FRFCLASS_RUFCLASS_ESFCLASS_CNFCLASS_TWFCLASS_INFCLASS_NPFCLASS_PKFCLASS_DEFCLASS_GBFCLASS_BRFCLASS_ILFCLASS_PSFCLASS_SAFCLASS_EGFCLASS_MAFCLASS_PTFCLASS_ARFCLASS_JPFCLASS_KOFCLASS_VNFCLASS_TRFCLASS_IDFCLASS_PLFCLASS_GRFCLASS_ITFCLASS_NLFCLASS_SEFCLASS_BDFCLASS_UAFCLASS_TLCgeometry
08103Admin-0 capitalVatican CitynannanVatican City1nan10VaticanVATVaticanVATLazioVAnan41.90328212.45338783283256243022nanVatican City636762636762000201771776868160160999912.33333312.33333312.48100912.48100941.76666741.76666742.05000042.05000012.41990741.903477Europe/Vatican0000000000000000007.000000Q2371019141850Vatican CityVatikanstadtCiudad del VaticanoCité du VaticanVaticanoВатикан梵蒂冈nanالفاتيكانভ্যাটিকান সিটিΒατικανόवैटिकन नगरVatikánVatikanCittà del Vaticanoバチカン바티칸 시국VaticaanstadWatykanVatikanstatenVatikanThành Vatican1159127243واتیکانקריית הוותיקןВатиканویٹیکن سٹی梵蒂岡6691831nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (12.4533865 41.9032822)08103Admin-0 capitalVatican CitynannanVatican City1nan10VaticanVATVaticanVATLazioVAnan41.90328212.45338783283256243022nanVatican City636762636762000201771776868160160999912.33333312.33333312.48100912.48100941.76666741.76666742.05000042.05000012.41990741.903477Europe/Vatican0000000000000000007.000000Q2371019141850Vatican CityVatikanstadtCiudad del VaticanoCité du VaticanVaticanoВатикан梵蒂冈nanالفاتيكانভ্যাটিকান সিটিΒατικανόवैटिकन नगरVatikánVatikanCittà del Vaticanoバチカン바티칸 시국VaticaanstadWatykanVatikanstatenVatikanThành Vatican1159127243واتیکانקריית הוותיקןВатиканویٹیکن سٹی梵蒂岡6691831nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (12.4533865 41.9032822)
17200Admin-0 capitalSan MarinonannanSan Marino1nan00San MarinoSMRSan MarinoSMRnanSMnan43.93609612.4417702957929000077nanSan Marino290882957900020303011116363393912.39166712.39166712.54166712.54166743.90000043.90000044.00000044.00000012.46215343.953472Europe/San_Marino0000000000000000006.100000Q18481018373810San MarinoSan MarinoSan MarinoSaint-MarinSan MarinoСан-Марино圣马力诺nanمدينة سان مارينوসান মারিনোΆγιος Μαρίνοςसैन मारिनो नगरSan MarinoSan MarinoCittà di San Marinoサンマリノ市산마리노San MarinoSan MarinoSan MarinoSan MarinoThành phố San Marino1159146051سن مارینوסן מרינוСан-Мариноسان مارینو شہر聖馬力諾3168070nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (12.4417702 43.9360958)17200Admin-0 capitalSan MarinonannanSan Marino1nan00San MarinoSMRSan MarinoSMRnanSMnan43.93609612.4417702957929000077nanSan Marino290882957900020303011116363393912.39166712.39166712.54166712.54166743.90000043.90000044.00000044.00000012.46215343.953472Europe/San_Marino0000000000000000006.100000Q18481018373810San MarinoSan MarinoSan MarinoSaint-MarinSan MarinoСан-Марино圣马力诺nanمدينة سان مارينوসান মারিনোΆγιος Μαρίνοςसैन मारिनो नगरSan MarinoSan MarinoCittà di San Marinoサンマリノ市산마리노San MarinoSan MarinoSan MarinoSan MarinoThành phố San Marino1159146051سن مارینوסן מרינוСан-Мариноسان مارینو شہر聖馬力諾3168070nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (12.4417702 43.9360958)
27200Admin-0 capitalVaduznannanVaduz1nan00LiechtensteinLIELiechtensteinLIEnanLInan47.1337249.5166703628153423300975nanVaduz45442454420002045451717909056569.4333339.4333339.5583339.55833347.09166747.09166747.23333347.2333339.50373447.167478Europe/Vaduz0000000000000000006.700000Q18441018286030VaduzVaduzVaduzVaduzVaduzВадуц瓦都兹nanفادوتسফাডুৎসΒαντούζवादुज़VaduzVaduzVaduzファドゥーツ파두츠VaduzVaduzVaduzVaduzVaduz1159146061فادوتسואדוץВадуцواڈوز華杜茲3042030nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (9.5166695 47.1337238)27200Admin-0 capitalVaduznannanVaduz1nan00LiechtensteinLIELiechtensteinLIEnanLInan47.1337249.5166703628153423300975nanVaduz45442454420002045451717909056569.4333339.4333339.5583339.55833347.09166747.09166747.23333347.2333339.50373447.167478Europe/Vaduz0000000000000000006.700000Q18441018286030VaduzVaduzVaduzVaduzVaduzВадуц瓦都兹nanفادوتسফাডুৎসΒαντούζवादुज़VaduzVaduzVaduzファドゥーツ파두츠VaduzVaduzVaduzVaduzVaduz1159146061فادوتسואדוץВадуцواڈوز華杜茲3042030nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (9.5166695 47.1337238)
36308Admin-0 capital altLobambanannanLobamba0Legislative and00eSwatiniSWZeSwatiniSWZManziniSZnan-26.46666831.19999797824557054nanLobamba97829782978200501818773232202031.18333331.18333331.23333331.233333-26.458333-26.458333-26.391667-26.39166731.201993-26.430254Africa/Mbabane0000000000000000006.000000Q1014184211997831LobambaLobambaLobambaLobambaLobambaЛобамба洛班巴nanلوبامباলোবাম্বাΛομπάμπαलोबम्बाLobambaLobambaLobambaロバンバ로밤바LobambaLobambaLobambaLobambaLobamba1159146343لوبامباלובמבהЛобамбаلوبامبا洛班巴935048nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (31.1999971 -26.4666675)36308Admin-0 capital altLobambanannanLobamba0Legislative and00eSwatiniSWZeSwatiniSWZManziniSZnan-26.46666831.19999797824557054nanLobamba97829782978200501818773232202031.18333331.18333331.23333331.233333-26.458333-26.458333-26.391667-26.39166731.201993-26.430254Africa/Mbabane0000000000000000006.000000Q1014184211997831LobambaLobambaLobambaLobambaLobambaЛобамба洛班巴nanلوبامباলোবাম্বাΛομπάμπαलोबम्बाLobambaLobambaLobambaロバンバ로밤바LobambaLobambaLobambaLobambaLobamba1159146343لوبامباלובמבהЛобамбаلوبامبا洛班巴935048nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (31.1999971 -26.4666675)
46308Admin-0 capitalLuxembourgnannanLuxembourg1nan00LuxembourgLUXLuxembourgLUXLuxembourgLUnan49.6116606.1300031072607668410621998nanLuxembourg107260107260107260005060602323717144446.0416676.0416676.1833336.18333349.55833349.55833349.70833349.7083336.12527349.620833Europe/Luxembourg0000000000000000006.000000Q18421017517650LuxembourgLuxemburgLuxemburgoLuxembourgLuxemburgoЛюксембург卢森堡nanمدينة لوكسمبورغলুক্সেমবুর্গ শহরΛουξεμβούργοलक्ज़मबर्ग नगरLuxembourgLuksemburgLussemburgoルクセンブルク市룩셈부르크LuxemburgLuksemburgLuxemburgLüksemburgLuxembourg1159146437لوکزامبورگלוקסמבורגЛюксембургلکسمبرگ盧森堡市2960316nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (6.1300028 49.6116604)46308Admin-0 capitalLuxembourgnannanLuxembourg1nan00LuxembourgLUXLuxembourgLUXLuxembourgLUnan49.6116606.1300031072607668410621998nanLuxembourg107260107260107260005060602323717144446.0416676.0416676.1833336.18333349.55833349.55833349.70833349.7083336.12527349.620833Europe/Luxembourg0000000000000000006.000000Q18421017517650LuxembourgLuxemburgLuxemburgoLuxembourgLuxemburgoЛюксембург卢森堡nanمدينة لوكسمبورغলুক্সেমবুর্গ শহরΛουξεμβούργοलक्ज़मबर्ग नगरLuxembourgLuksemburgLussemburgoルクセンブルク市룩셈부르크LuxemburgLuksemburgLuxemburgLüksemburgLuxembourg1159146437لوکزامبورگלוקסמבורגЛюксембургلکسمبرگ盧森堡市2960316nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (6.1300028 49.6116604)
56300Admin-0 capitalPalikirnannanPalikir1nan00Federated States of MicronesiaFSMFederated States of MicronesiaFSMnanFMnan6.916644158.14997446454645044nanPalikir412412412412010011004422158.158333158.158333158.166667158.1666676.9083336.9083336.9166676.916667158.1625006.912500Pacific/Ponape0000000000000000006.000000Q4275111419091410PalikirPalikirPalikirPalikirPalikirПаликир帕利基尔nanباليكيرপালিকিরΠαλικίρपेलिकियरPalikirPalikirPalikirパリキール팔리키르PalikirPalikirPalikirPalikirPalikir1159149061پالیکیرפליקירПалікірپالیکیر帕利基尔2081986nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (158.1499743 6.9166437)56300Admin-0 capitalPalikirnannanPalikir1nan00Federated States of MicronesiaFSMFederated States of MicronesiaFSMnanFMnan6.916644158.14997446454645044nanPalikir412412412412010011004422158.158333158.158333158.166667158.1666676.9083336.9083336.9166676.916667158.1625006.912500Pacific/Ponape0000000000000000006.000000Q4275111419091410PalikirPalikirPalikirPalikirPalikirПаликир帕利基尔nanباليكيرপালিকিরΠαλικίρपेलिकियरPalikirPalikirPalikirパリキール팔리키르PalikirPalikirPalikirPalikirPalikir1159149061پالیکیرפליקירПалікірپالیکیر帕利基尔2081986nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (158.1499743 6.9166437)
66300Admin-0 capitalMajuronannanMajuro1nan00Marshall IslandsMHLMarshall IslandsMHLnanMHnan7.103004171.3800002540020500077nanMajuro2084208420842084010033117755171.366667171.366667171.375000171.3750007.0916677.0916677.1166677.116667171.3708337.104167Pacific/Majuro0000000000000000006.000000Q129198904514630MajuroMajuroMajuroMajuroMajuroМаджуро马朱罗nanماجوروমাজুরোΜατζούροमाजुरोMajuroMajuroMajuroマジュロ마주로MajuroMajuroMajuroMajuroMajuro1159149063ماجوروמג'ורוМаджуроماجورو馬久羅2113779nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (171.3800002 7.1030043)66300Admin-0 capitalMajuronannanMajuro1nan00Marshall IslandsMHLMarshall IslandsMHLnanMHnan7.103004171.3800002540020500077nanMajuro2084208420842084010033117755171.366667171.366667171.375000171.3750007.0916677.0916677.1166677.116667171.3708337.104167Pacific/Majuro0000000000000000006.000000Q129198904514630MajuroMajuroMajuroMajuroMajuroМаджуро马朱罗nanماجوروমাজুরোΜατζούροमाजुरोMajuroMajuroMajuroマジュロ마주로MajuroMajuroMajuroMajuroMajuro1159149063ماجوروמג'ורוМаджуроماجورو馬久羅2113779nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (171.3800002 7.1030043)
76300Admin-0 capitalFunafutinannanFunafuti1nan00TuvaluTUVTuvaluTUVnanTVnan-8.516652179.21664747494749044nanFunafuti000000000000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000Pacific/Funafuti0000000000000000006.000000Q3412611419091430FunafutiFunafutiFunafutiFunafutiFunafutiФунафути富纳富提nanفونافوتيফুনাফুতিΦουναφούτιफुनाफुतिFunafutiFunafutiFunafutiフナフティ島푸나푸티FunafutiFunafutiFunafutiFunafutiFunafuti1159149071فونافوتیפנאפוטיФунафутіفونافوتی富纳富提2110394nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (179.2166471 -8.516652)76300Admin-0 capitalFunafutinannanFunafuti1nan00TuvaluTUVTuvaluTUVnanTVnan-8.516652179.21664747494749044nanFunafuti000000000000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000Pacific/Funafuti0000000000000000006.000000Q3412611419091430FunafutiFunafutiFunafutiFunafutiFunafutiФунафути富纳富提nanفونافوتيফুনাফুতিΦουναφούτιफुनाफुतिFunafutiFunafutiFunafutiフナフティ島푸나푸티FunafutiFunafutiFunafutiFunafutiFunafuti1159149071فونافوتیפנאפוטיФунафутіفونافوتی富纳富提2110394nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (179.2166471 -8.516652)
86300Admin-0 capitalMelekeoknannanMelekeok1nan00PalauPLWPalauPLWnanPWnan7.487396134.62654970267026055nanMelekeok000702601006622151599134.466667134.466667134.500000134.5000007.3250007.3250007.3500007.350000134.4815487.339881Pacific/Palau0000000000000000006.000000Q1540028904438830MelekeokMelekeokMelekeokMelekeokMelequeoqueМелекеок梅莱凯奥克nanميلكيوكমেলেকেওকΜελεκέοκमेलेकियोकMelekeokMelekeokMelekeokマルキョク州멜레케오크MelekeokMelekeokMelekeokMelekeokMelekeok1159149073ملکئوکמלקאוקМелекеокمیلیکوک梅萊凱奧克1559804nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (134.6265485 7.4873962)86300Admin-0 capitalMelekeoknannanMelekeok1nan00PalauPLWPalauPLWnanPWnan7.487396134.62654970267026055nanMelekeok000702601006622151599134.466667134.466667134.500000134.5000007.3250007.3250007.3500007.350000134.4815487.339881Pacific/Palau0000000000000000006.000000Q1540028904438830MelekeokMelekeokMelekeokMelekeokMelequeoqueМелекеок梅莱凯奥克nanميلكيوكমেলেকেওকΜελεκέοκमेलेकियोकMelekeokMelekeokMelekeokマルキョク州멜레케오크MelekeokMelekeokMelekeokMelekeokMelekeok1159149073ملکئوکמלקאוקМелекеокمیلیکوک梅萊凱奧克1559804nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (134.6265485 7.4873962)
96300Admin-0 capital altBir LehlounannanBir Lehlou0Claimed as inte00Western SaharaSAHWestern SaharaSAHnanEHnan26.119167-9.652522500200021nannan000000000000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000nan0000000000000000006.000000Q61475411419091451Bir LehlouBir LehluBir LehluBir LehlouBir LehlouБир-Лелу比鄂-雷楼nanبئر لحلوবির লেহলোউΜπιρ Λελούबीर लहलूBir LehlouBir LehlouBir Lehluビル・ラルフー비르레흘루Bir LehlouAl-Bir al-HilwBir LehlouBir LehluBir Lehlou1159149075بئر لحلوביר להלוБір-Лелуبر لیہلو比鄂-雷楼-1nannanPopulated placePopulated placenannannanPopulated placenannannannannannanPopulated placePopulated placenanPopulated placenannannannannanPopulated placePopulated placePopulated placenannanPopulated placenannannannanPOINT (-9.6525222 26.1191667)96300Admin-0 capital altBir LehlounannanBir Lehlou0Claimed as inte00Western SaharaSAHWestern SaharaSAHnanEHnan26.119167-9.652522500200021nannan000000000000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000nan0000000000000000006.000000Q61475411419091451Bir LehlouBir LehluBir LehluBir LehlouBir LehlouБир-Лелу比鄂-雷楼nanبئر لحلوবির লেহলোউΜπιρ Λελούबीर लहलूBir LehlouBir LehlouBir Lehluビル・ラルフー비르레흘루Bir LehlouAl-Bir al-HilwBir LehlouBir LehluBir Lehlou1159149075بئر لحلوביר להלוБір-Лелуبر لیہلو比鄂-雷楼-1nannanPopulated placePopulated placenannannanPopulated placenannannannannannanPopulated placePopulated placenanPopulated placenannannannannanPopulated placePopulated placePopulated placenannanPopulated placenannannannanPOINT (-9.6525222 26.1191667)
\n", @@ -1992,7 +1992,7 @@ { "data": { "text/plain": [ - "[]" + "[]" ] }, "execution_count": 10, From b9f568ac0eeba35753ea82db7996df95db14c42b Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Wed, 3 Jan 2024 18:12:03 +0100 Subject: [PATCH 053/240] minor - fix spelling mistakes --- README.md | 2 +- docs/EOmaps_examples.rst | 4 ++-- docs/api_basics.rst | 2 +- docs/api_command_line_interface.rst | 2 +- docs/api_compass.rst | 2 +- docs/api_scalebar.rst | 2 +- docs/notebooks/naturalearth_features.ipynb | 8 ++++---- eomaps/__init__.py | 2 +- eomaps/_data_manager.py | 2 +- eomaps/annotation_editor.py | 2 +- eomaps/callbacks.py | 2 +- eomaps/colorbar.py | 2 +- eomaps/draw.py | 2 +- eomaps/eomaps.py | 12 +++++------ eomaps/grid.py | 2 +- eomaps/helpers.py | 10 ++++----- eomaps/mapsgrid.py | 2 +- eomaps/qtcompanion/app.py | 2 +- eomaps/qtcompanion/widgets/annotate.py | 2 +- eomaps/qtcompanion/widgets/save.py | 14 ++++++------- eomaps/qtcompanion/widgets/wms.py | 2 +- eomaps/scalebar.py | 4 ++-- eomaps/scripts/open.py | 2 +- eomaps/shapes.py | 2 +- eomaps/webmap_containers.py | 24 +++++++++++----------- tests/example5.py | 2 +- tests/test_doc_notebooks.py | 4 ++-- 27 files changed, 59 insertions(+), 59 deletions(-) diff --git a/README.md b/README.md index 2a6520cea..5c9b3c39c 100644 --- a/README.md +++ b/README.md @@ -40,7 +40,7 @@ It is built on top of [matplotlib](https://matplotlib.org/) and [cartopy](https: - Use [🛸 Callbacks](https://eomaps.readthedocs.io/en/latest/api_callbacks.html) to interact with the figure - Interactively re-arrange multiple maps in a figure with the [🏗️ LayoutEditor](https://eomaps.readthedocs.io/en/latest/api_layout_editor.html) - [🗺 Export](https://eomaps.readthedocs.io/en/latest/api_basics.html#image-export-jpeg-png-svg-etc) publication ready high resolution images (png, jpeg, tiff, ...) -or export figures as vektor graphics (svg, eps, pdf ...) +or export figures as vector graphics (svg, eps, pdf ...) - . . . and much more! Checkout the [🌱 Basics](https://eomaps.readthedocs.io/en/latest/api_basics.html) in the documentation to get started! diff --git a/docs/EOmaps_examples.rst b/docs/EOmaps_examples.rst index ae116c208..76c53508a 100644 --- a/docs/EOmaps_examples.rst +++ b/docs/EOmaps_examples.rst @@ -100,7 +100,7 @@ Callbacks - turn your maps into interactive widgets - **Callback functions** can easily be attached to the plot to turn it into an interactive plot-widget! - - | there’s a nice list of (customizeable) pre-defined callbacks accessible via: + - | there’s a nice list of (customizable) pre-defined callbacks accessible via: | ``m.cb.click``, ``m.cb.pick``, ``m.cb.keypress`` and ``m.cb.dynamic`` - use ``annotate`` (and ``clear_annotations``) to create text-annotations @@ -169,7 +169,7 @@ The data displayed in the above gif is taken from: .. _ex_7: -Vektor data - interactive geometries +Vector data - interactive geometries ------------------------------------- EOmaps can be used to assign callbacks to vektor-data (e.g. ``geopandas.GeoDataFrames``). diff --git a/docs/api_basics.rst b/docs/api_basics.rst index f9a111fd5..7526b7417 100644 --- a/docs/api_basics.rst +++ b/docs/api_basics.rst @@ -506,7 +506,7 @@ To set the absolute position of the map, provide a list of 4 floats representing Using already existing figures / axes ************************************* -It is also possible to insert an EOmaps map into an existing figure or re-use an existing axes. +It is also possible to insert an EOmaps map into an existing figure or reuse an existing axes. - To put a map on an existing figure, provide the figure-instance via ``m = Maps(f= )`` - To use an existing axes, provide the axes-instance via ``m = Maps(ax= )`` diff --git a/docs/api_command_line_interface.rst b/docs/api_command_line_interface.rst index 292184241..4bf073d1f 100644 --- a/docs/api_command_line_interface.rst +++ b/docs/api_command_line_interface.rst @@ -9,7 +9,7 @@ To start a new EOmaps map from the command-line, simply type ``eomaps`` and hit In addition, the following optional parameters can be provided: -- ``--help`` get additionnal help on how to use the ``eomaps`` command +- ``--help`` get additional help on how to use the ``eomaps`` command - ``--crs`` set the coordinate reference system of the map - ``--location`` query the location via the OpenStreetMap Nominatim service and set the map-extent - ``--file`` a path to a file that should be opened for plotting diff --git a/docs/api_compass.rst b/docs/api_compass.rst index 7889c4f66..b06b57c5b 100644 --- a/docs/api_compass.rst +++ b/docs/api_compass.rst @@ -19,7 +19,7 @@ A compass can be added to the map via :py:meth:`Maps.add_compass`: While a compass is picked (and the LEFT mouse button is pressed), the following additional interactions are available: - - press ``delte`` on the keyboard: remove the compass from the plot + - press ``delete`` on the keyboard: remove the compass from the plot - rotate the ``mouse wheel``: scale the size of the compass .. autosummary:: diff --git a/docs/api_scalebar.rst b/docs/api_scalebar.rst index 3e99882ff..16146a1ee 100644 --- a/docs/api_scalebar.rst +++ b/docs/api_scalebar.rst @@ -52,7 +52,7 @@ In addition, many style properties of the scalebar can be adjusted to get the lo - use the ``scroll-wheel`` to adjust the auto-scale of the scalebar (hold down ``shift`` for larger steps) - use ``control`` + ``scroll-wheel`` to adjust the size of the labels - - press ``delte`` to remove the scalebar from the plot + - press ``delete`` to remove the scalebar from the plot - press ``+`` or ``-`` to rotate the scalebar - press ``up/down/left/right`` to increase the size of the frame - press ``alt + up/down/left/right``: decrease the size of the frame diff --git a/docs/notebooks/naturalearth_features.ipynb b/docs/notebooks/naturalearth_features.ipynb index 02aa78872..6bcf02040 100644 --- a/docs/notebooks/naturalearth_features.ipynb +++ b/docs/notebooks/naturalearth_features.ipynb @@ -34,7 +34,7 @@ "# 🌵 NaturalEarth features\n", "
\n", "\n", - "EOmaps provies access to a large amount of basic map features provided by [NaturalEarth](https://www.naturalearthdata.com/) via [`Maps.add_feature`](eomaps.Maps.add_feature).\n", + "EOmaps provides access to a large amount of basic map features provided by [NaturalEarth](https://www.naturalearthdata.com/) via [`Maps.add_feature`](eomaps.Maps.add_feature).\n", "\n", ":::{note}\n", "The first time a feature is added to a map, the corresponding dataset is downloaded and stored locally for subsequent use.\n", @@ -220,7 +220,7 @@ "\n", "[NaturalEarth](https://www.naturalearthdata.com/) provides features in 2 categories: **physical** and **cultural**. \n", "\n", - "You can access all available featues of a corresponding category with:\n", + "You can access all available features of a corresponding category with:\n", "```python\n", "m.add_feature.cultural.(**STYLE-KWARGS)\n", "```\n", @@ -229,7 +229,7 @@ "```\n", "\n", ":::{note}\n", - "NaturalEarth provies features in 3 different scales: 1/10, 1/50 and 1/110. \n", + "NaturalEarth provides features in 3 different scales: 1/10, 1/50 and 1/110. \n", "By default, an appropriate scale is selected based on the visible extent. \n", "You can manually select the scale to use with the ``scale`` argument (e.g. ``m.add_feature.physical.coastline(scale=10)``)\n", ":::" @@ -354,7 +354,7 @@ "tags": [] }, "source": [ - "This will load the corresponding NaturalEarth dataset of the feature, containing the gometries and all associated metadata. \n", + "This will load the corresponding NaturalEarth dataset of the feature, containing the geometries and all associated metadata. \n", "\n", "For example, the first 10 rows of the `places` GeoDataFrame look like this:" ] diff --git a/eomaps/__init__.py b/eomaps/__init__.py index bc2a416c9..df9883218 100644 --- a/eomaps/__init__.py +++ b/eomaps/__init__.py @@ -24,7 +24,7 @@ # ----------------------------------------------------------------------------------- -# The following loggin config is adapted from matplotlibs way of dealing with logging +# The following login config is adapted from matplotlibs way of dealing with logging # (see https://github.com/matplotlib/matplotlib/blob/main/lib/matplotlib/__init__.py) import logging diff --git a/eomaps/_data_manager.py b/eomaps/_data_manager.py index 61b32fd29..eea7372fd 100644 --- a/eomaps/_data_manager.py +++ b/eomaps/_data_manager.py @@ -894,7 +894,7 @@ def get_props(self, *args, **kwargs): # (qs = [<2d mask>, <1d x mask>, <1d y mask>] qs = self._get_q() - # estimate slices (and optional blocksize if requred) for 2D data + # estimate slices (and optional blocksize if required) for 2D data if len(self.z_data.shape) == 2 and all(i is not None for i in qs[1:]): slices, blocksize = self._estimate_slice_blocksize(*qs[1:]) else: diff --git a/eomaps/annotation_editor.py b/eomaps/annotation_editor.py index 5f7af62a2..587ab9e22 100644 --- a/eomaps/annotation_editor.py +++ b/eomaps/annotation_editor.py @@ -187,7 +187,7 @@ def update_offset(self, dx, dy): return # don't allow moving the annotation anchor outside the axis bounds - # (otherwhise it would disappear if "annotation_clip=True") + # (otherwise it would disappear if "annotation_clip=True") ann.xy = ann.axes.transData.inverted().transform( ( np.clip(self.x + dx, self._ax_bbox.x0 + 1, self._ax_bbox.x1 - 1), diff --git a/eomaps/callbacks.py b/eomaps/callbacks.py index 17b783143..eff6c6a3d 100644 --- a/eomaps/callbacks.py +++ b/eomaps/callbacks.py @@ -810,7 +810,7 @@ def peek_layer( of the currently visible layer if you click on the map. You can show a rectangular or circular area of the "peek-layer" centered at - the mouse-position or swipe beween layers (e.g. from left/right/top or bottom). + the mouse-position or swipe between layers (e.g. from left/right/top or bottom). Parameters diff --git a/eomaps/colorbar.py b/eomaps/colorbar.py index 811298e82..51265c45d 100644 --- a/eomaps/colorbar.py +++ b/eomaps/colorbar.py @@ -102,7 +102,7 @@ def __init__( pos : float or 4-tuple, optional - float: fraction of the axis size that is used to create the colorbar. - The axes of the Maps-object will be shrinked accordingly to make space + The axes of the Maps-object will be shrunk accordingly to make space for the colorbar. - 4-tuple (x0, y0, width, height): Absolute position of the colorbar in relative figure-units (0-1). diff --git a/eomaps/draw.py b/eomaps/draw.py index 807e65b9e..5439fdcd8 100644 --- a/eomaps/draw.py +++ b/eomaps/draw.py @@ -610,7 +610,7 @@ def handler(event): def polygon(self, smooth=False, draw_on_drag=True, **kwargs): """ - Draw arbitarary polygons + Draw arbitrary polygons - RIGHT click to add points (or drag while holding RIGHT mouse button) diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index ab164e999..71217b334 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -332,7 +332,7 @@ class Maps(metaclass=_MapsMeta): CRS = ccrs - # the keybord shortcut to activate the companion-widget + # the keyboard shortcut to activate the companion-widget _companion_widget_key = "w" # max. number of layers to show all layers as tabs in the widget # (otherwise only recently active layers are shown as tabs) @@ -2514,10 +2514,10 @@ def add_line( Returns ------- out_d_int : list - Only relevant for `connect="geod"`! (An empty ist is returned otherwise.) + Only relevant for `connect="geod"`! (An empty list is returned otherwise.) A list of the subdivision distances of the line-segments (in meters). out_d_tot : list - Only relevant for `connect="geod"` (An empty ist is returned otherwise.) + Only relevant for `connect="geod"` (An empty list is returned otherwise.) A list of total distances of the line-segments (in meters). """ @@ -2809,7 +2809,7 @@ def set_extent(self, extents, crs=None): """ # just a wrapper to make sure that previously set extents are not - # resetted when plotting data! + # reset when plotting data! # ( e.g. once .set_extent is called .plot_map does NOT set the extent!) if crs is not None: @@ -3576,7 +3576,7 @@ def savefig(self, *args, refetch_wms=False, rasterize_data=True, **kwargs): for a in cb._axes: stack.enter_context(a._cm_set(animated=False)) - # set if data should be rasterized on vektor export + # set if data should be rasterized on vector export if m.coll is not None: stack.enter_context(m.coll._cm_set(rasterized=rasterize_data)) @@ -4848,7 +4848,7 @@ def _handle_explicit_colors(self, color): def _get_coll(self, props, **kwargs): # handle selection of explicitly provided facecolors - # (e.g. for rgb composits) + # (e.g. for rgb composites) # allow only one of the synonyms "color", "fc" and "facecolor" if ( diff --git a/eomaps/grid.py b/eomaps/grid.py index 15af1902a..459e2bc99 100644 --- a/eomaps/grid.py +++ b/eomaps/grid.py @@ -122,7 +122,7 @@ def set_d(self, d): - If `int` or `float`, the provided number is used as grid-spacing. - If a `list` or `numpy.array` is provided, it is used to draw gridlines at the provided coordinates. - - If a `tuple` of lengh 2 is provided, it represents separate assignments of + - If a `2-tuple` is provided, it represents separate assignments of the aforementioned types for longitude/latitude , e.g.: `(d_lon, d_lat)`. - If `None`, gridlines are automatically determined based on the "auto_n" parameter. diff --git a/eomaps/helpers.py b/eomaps/helpers.py index 11556f9d7..967f384bb 100644 --- a/eomaps/helpers.py +++ b/eomaps/helpers.py @@ -1133,7 +1133,7 @@ def _snap(self): return snap def _make_draggable(self, filepath=None): - # Uncheck avtive pan/zoom actions of the matplotlib toolbar. + # Uncheck active pan/zoom actions of the matplotlib toolbar. # use a try-except block to avoid issues with ipympl in jupyter notebooks # (see https://github.com/matplotlib/ipympl/issues/530#issue-1780919042) try: @@ -1225,7 +1225,7 @@ def _make_draggable(self, filepath=None): child.set_alpha(0.75) # for overlapping axes else: - # make all other childs invisible (to avoid drawing them) + # make all other children invisible (to avoid drawing them) child.set_visible(False) child.set_animated(True) @@ -1421,7 +1421,7 @@ def get_layout(self, filepath=None, override=False, precision=5): Returns ------- layout : dict or None - A dict of the positons of all axes, e.g.: {1:(x0, y0, width height), ...} + A dict of the positions of all axes, e.g.: {1:(x0, y0, width height), ...} """ figsize = [*self.f.get_size_inches()] @@ -1598,7 +1598,7 @@ def __init__(self, m): self._mpl_backend_force_full = False self._mpl_backend_blit_fix = False - # True = persistant, False = execute only once + # True = persistent, False = execute only once self._on_layer_change = {True: list(), False: list()} self._on_layer_activation = {True: dict(), False: dict()} @@ -1626,7 +1626,7 @@ def _get_renderer(self): # in this case the normal draw-routines are used (see m.savefig) so there is # no need to trigger updates (also `canvas.get_renderer` is undefined for # pdf/svg exports since those canvas do not expose the renderer) - # ... this is required to support vektor format outputs! + # ... this is required to support vector format outputs! if self.canvas.is_saving(): return None diff --git a/eomaps/mapsgrid.py b/eomaps/mapsgrid.py index d208b0797..b1f4be9b2 100644 --- a/eomaps/mapsgrid.py +++ b/eomaps/mapsgrid.py @@ -314,7 +314,7 @@ def create_axes(self, ax_init, name=None): Parameters ---------- ax_init : set - The GridSpec speciffications for the axis. + The GridSpec specifications for the axis. use `ax_inits = (, )` to get an axis in a given grid-cell use `slice(, )` for `` or `` to get an axis that spans over multiple rows/columns. diff --git a/eomaps/qtcompanion/app.py b/eomaps/qtcompanion/app.py index 8080c7661..ca0591173 100644 --- a/eomaps/qtcompanion/app.py +++ b/eomaps/qtcompanion/app.py @@ -183,7 +183,7 @@ def __init__(self, *args, m=None, **kwargs): # self.resize(int(sh.width() * 1.35), sh.height()) # clear the colormaps-dropdown pixmap cache if the colormaps have changed - # (the Signal is emmited by Maps-objects if a new colormap is registered) + # (the Signal is emitted by Maps-objects if a new colormap is registered) self.m._connect_signal("cmapsChanged", self.clear_pixmap_cache) def show(self): diff --git a/eomaps/qtcompanion/widgets/annotate.py b/eomaps/qtcompanion/widgets/annotate.py index 21b050caf..f7e8116a7 100644 --- a/eomaps/qtcompanion/widgets/annotate.py +++ b/eomaps/qtcompanion/widgets/annotate.py @@ -169,7 +169,7 @@ def __init__(self, *args, m=None, **kwargs): self.text_inp.textChanged.connect(self.update_selected_text) self.text_inp.setPlaceholderText( - "Enter annotation text (or edit text of existing annoation)\n\n" + "Enter annotation text (or edit text of existing annotation)\n\n" "Press < SHIFT + ENTER > and click on the map to draw the annotation!" ) self.text_inp.setSizePolicy( diff --git a/eomaps/qtcompanion/widgets/save.py b/eomaps/qtcompanion/widgets/save.py index bab0a6322..385c5f4cf 100644 --- a/eomaps/qtcompanion/widgets/save.py +++ b/eomaps/qtcompanion/widgets/save.py @@ -98,12 +98,12 @@ def enterEvent(self, e): if self.window().showhelp is True: QtWidgets.QToolTip.showText( e.globalPos(), - "

Rasterize datasets on vektor export

" - "Toggle if data is rasterized (True) or treated as vektor (False) " - "when exporting the figure to vektor-formats (svg, pdf, eps)." + "

Rasterize datasets on vector export

" + "Toggle if data is rasterized (True) or treated as vector (False) " + "when exporting the figure to vector-formats (svg, pdf, eps)." "

" "If checked, datasets will appear as rasterized images in the exported " - "vektor file (to avoid creating very large files for big datasets)." + "vector file (to avoid creating very large files for big datasets)." "

" "NOTE: The current value is also used for clipboard-export!" " (ctrl+c)", @@ -157,8 +157,8 @@ def __init__(self, *args, m=None, **kwargs): # transparent self.transp_cb = TransparentCheckBox() - transp_label = QtWidgets.QLabel("Tranparent\nBackground") - width = transp_label.fontMetrics().boundingRect("Tranparent").width() + transp_label = QtWidgets.QLabel("Transparent\nBackground") + width = transp_label.fontMetrics().boundingRect("Transparent").width() transp_label.setFixedWidth(width + 5) self.transp_cb.stateChanged.connect(self.update_clipboard_kwargs) @@ -314,7 +314,7 @@ def update_clipboard_kwargs(self, *args, **kwargs): @Slot() def set_export_props(self, *args, **kwargs): - # callback that is triggerd on Maps.set_clipboard_kwargs + # callback that is triggered on Maps.set_clipboard_kwargs clipboard_kwargs = self.m.__class__._clipboard_kwargs diff --git a/eomaps/qtcompanion/widgets/wms.py b/eomaps/qtcompanion/widgets/wms.py index d9dac08e6..08f152a60 100644 --- a/eomaps/qtcompanion/widgets/wms.py +++ b/eomaps/qtcompanion/widgets/wms.py @@ -870,7 +870,7 @@ def wms_cb(): self.window().statusBar().showMessage( f"Adding WebMap service: {wmsname} - {wmslayer} . . ." ) - # trigger an immediate repaint of the statusbar to show the messge + # trigger an immediate repaint of the statusbar to show the message # before fetching the service self.window().statusBar().repaint() diff --git a/eomaps/scalebar.py b/eomaps/scalebar.py index 632dd9118..016190631 100644 --- a/eomaps/scalebar.py +++ b/eomaps/scalebar.py @@ -197,7 +197,7 @@ def __init__( self._scale_factor_base = 1000 # multipliers for changing the label size self._size_factor_base = 50 - # inverval for adjusting the text-offset + # interval for adjusting the text-offset self._cb_offset_interval = 0.05 # interval for rotating the scalebar self._cb_rotate_interval = 1 @@ -1027,7 +1027,7 @@ def _get_d(self): def _get_patch_verts(self, pts, lon, lat, ang, d): offsets = self._patch_offsets - # top bottom left right referrs to a horizontally oriented colorbar! + # top bottom left right refers to a horizontally oriented colorbar! ot = d * offsets[0] ob = self._maxw + d * (self._label_props["offset"] + offsets[1]) o_l = d * offsets[2] diff --git a/eomaps/scripts/open.py b/eomaps/scripts/open.py index c18d02ecf..f901ecb62 100644 --- a/eomaps/scripts/open.py +++ b/eomaps/scripts/open.py @@ -18,7 +18,7 @@ def _identify_crs(crs): if crs == "web": crs = "google_mercator" - # if crs can be idenified as integer, return it + # if crs can be identified as integer, return it try: return int(crs) except ValueError: diff --git a/eomaps/shapes.py b/eomaps/shapes.py index bfe5640df..c18dbee6f 100644 --- a/eomaps/shapes.py +++ b/eomaps/shapes.py @@ -423,7 +423,7 @@ def _selected_radius(self): if not self._m._data_manager._current_data: return self.radius - # check if mutiple individual x-y radius was provided + # check if multiple individual x-y radius was provided q1 = isinstance(self.radius, tuple) and isinstance( self.radius[0], np.ndarray ) diff --git a/eomaps/webmap_containers.py b/eomaps/webmap_containers.py index 112970c4d..3aaabaa9d 100644 --- a/eomaps/webmap_containers.py +++ b/eomaps/webmap_containers.py @@ -449,7 +449,7 @@ class _OpenStreetMap: - default: standard OSM layer - default_german: standard OSM layer in german - - CyclOSM: a bycicle oriented style + - CyclOSM: a bicycle oriented style - OEPNV_public_transport: a layer indicating global public transportation - OpenRiverboatMap: a style to navigate waterways - OpenTopoMap: SRTM + OSM for nice topography @@ -1254,7 +1254,7 @@ def OSM_landuse(self): Technology (https://heigit.org) - For more details, plese visit: + For more details, please visit: https://osmlanduse.org """ WMS._EOmaps_source_code = ( @@ -1294,7 +1294,7 @@ def EEA_DiscoMap(self): check: https://discomap.eea.europa.eu/ - EEA standard re-use policy: Unless otherwise indicated, reuse of + EEA standard reuse policy: Unless otherwise indicated, reuse of content on the EEA website for commercial or non-commercial purposes is permitted free of charge, provided that the source is acknowledged. @@ -1336,7 +1336,7 @@ def Image(self): ... make sure to check the link above... - EEA standard re-use policy: Unless otherwise indicated, reuse of + EEA standard reuse policy: Unless otherwise indicated, reuse of content on the EEA website for commercial or non-commercial purposes is permitted free of charge, provided that the source is acknowledged. @@ -1369,7 +1369,7 @@ def Land(self): ... make sure to check the link above... - EEA standard re-use policy: Unless otherwise indicated, reuse of + EEA standard reuse policy: Unless otherwise indicated, reuse of content on the EEA website for commercial or non-commercial purposes is permitted free of charge, provided that the source is acknowledged. @@ -1402,7 +1402,7 @@ def Climate(self): ... make sure to check the link above... - EEA standard re-use policy: Unless otherwise indicated, reuse of + EEA standard reuse policy: Unless otherwise indicated, reuse of content on the EEA website for commercial or non-commercial purposes is permitted free of charge, provided that the source is acknowledged. @@ -1435,7 +1435,7 @@ def Bio(self): ... make sure to check the link above... - EEA standard re-use policy: Unless otherwise indicated, reuse of + EEA standard reuse policy: Unless otherwise indicated, reuse of content on the EEA website for commercial or non-commercial purposes is permitted free of charge, provided that the source is acknowledged. @@ -1468,7 +1468,7 @@ def Copernicus(self): ... make sure to check the link above... - EEA standard re-use policy: Unless otherwise indicated, reuse of + EEA standard reuse policy: Unless otherwise indicated, reuse of content on the EEA website for commercial or non-commercial purposes is permitted free of charge, provided that the source is acknowledged. @@ -1501,7 +1501,7 @@ def Water(self): ... make sure to check the link above... - EEA standard re-use policy: Unless otherwise indicated, reuse of + EEA standard reuse policy: Unless otherwise indicated, reuse of content on the EEA website for commercial or non-commercial purposes is permitted free of charge, provided that the source is acknowledged. @@ -1534,7 +1534,7 @@ def SOER(self): ... make sure to check the link above... - EEA standard re-use policy: Unless otherwise indicated, reuse of + EEA standard reuse policy: Unless otherwise indicated, reuse of content on the EEA website for commercial or non-commercial purposes is permitted free of charge, provided that the source is acknowledged. @@ -1567,7 +1567,7 @@ def MARATLAS(self): ... make sure to check the link above... - EEA standard re-use policy: Unless otherwise indicated, reuse of + EEA standard reuse policy: Unless otherwise indicated, reuse of content on the EEA website for commercial or non-commercial purposes is permitted free of charge, provided that the source is acknowledged. @@ -1600,7 +1600,7 @@ def MARINE(self): ... make sure to check the link above... - EEA standard re-use policy: Unless otherwise indicated, reuse of + EEA standard reuse policy: Unless otherwise indicated, reuse of content on the EEA website for commercial or non-commercial purposes is permitted free of charge, provided that the source is acknowledged. diff --git a/tests/example5.py b/tests/example5.py index e2d7d68ee..2ee68eeaf 100644 --- a/tests/example5.py +++ b/tests/example5.py @@ -93,7 +93,7 @@ def callback(m, **kwargs): fc=(1, 0, 0, 0.1), ec="r", buffer=buffer * 5, - n=100, # use 100 points to represet the ellipses + n=100, # use 100 points to represent the ellipses ) m.add_marker( ID=mark_id, shape="rectangles", radius="pixel", fc="g", ec="y", buffer=3, alpha=0.5 diff --git a/tests/test_doc_notebooks.py b/tests/test_doc_notebooks.py index 072ab2a1f..a9a7a2c9f 100644 --- a/tests/test_doc_notebooks.py +++ b/tests/test_doc_notebooks.py @@ -2,8 +2,8 @@ Test all Jupyter Notebook code-cells from the docs. NOTE: -All cod cells of a notebook are concatenated as if they have been writtin as a -singe pyhton-script that is executed in one go! +All code cells of a notebook are concatenated as if they have been written as a +single pyhton-script that is executed in one go! This is done to avoid issues with cells that are not "standalone" (e.g. that require previous cells to be executed) From 2dfac767fc596087dbe330837c39d43b3b37e058 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Wed, 3 Jan 2024 18:23:59 +0100 Subject: [PATCH 054/240] add info of major changes between v7.x and v8.x --- docs/FAQ.rst | 14 ++++++++++++++ 1 file changed, 14 insertions(+) diff --git a/docs/FAQ.rst b/docs/FAQ.rst index 40865eaab..b59a49efd 100644 --- a/docs/FAQ.rst +++ b/docs/FAQ.rst @@ -345,3 +345,17 @@ Important changes between major versions - ⚠️ The use of ``m.set_data_specs(...)`` is depreciated. Use ``m.set_data(...)`` instead! - Figure export routines have been completely re-worked (but should result in the exact same output as in v6.x) + + +.. dropdown:: ⚙ From EOmaps v7.x to v8.x + + - ⚠️ Some functions and classes have been re-named to better follow PEP8 naming conventions. + While this should not interfere with the public API, more extensive customizations might need to be + adjusted with respect to the new names. + + If you encounter any problems, feel free to open an `issue `_ , and I'll see what I can do! + + - ⚠️ ``pip`` install has been updated to implement optional dependency groups + Have a look at the :ref:`installation` instructions for more details! + + - ``setup.py`` and ``_version.py`` have been removed in favor of using a ``pyproject.toml`` file From 4672d1da049fea142b97745cec89cfb7d9520ca5 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Wed, 3 Jan 2024 18:28:12 +0100 Subject: [PATCH 055/240] update pyproject.toml with more metadata --- pyproject.toml | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/pyproject.toml b/pyproject.toml index 8607913ba..88795d6df 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -9,6 +9,9 @@ include = ["eomaps"] name = "eomaps" version = "8.0" description = "A library to create interactive maps of geographical datasets." +readme = "README.md" +license = {file = "LICENSE"} + requires-python = ">=3.8" authors = [ @@ -21,6 +24,10 @@ classifiers = [ "Programming Language :: Python :: 3", "License :: OSI Approved :: GNU General Public License v3 or later (GPLv3+)", "Operating System :: OS Independent", + "Framework :: Matplotlib", + "Topic :: Scientific/Engineering", + "Topic :: Scientific/Engineering :: GIS", + "Topic :: Scientific/Engineering :: Visualization", ] dependencies = [ From c6945c4370a0180dc54fbebd7bb5c1a017440008 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Wed, 3 Jan 2024 18:51:29 +0100 Subject: [PATCH 056/240] fix usage of deprecated kwarg in docs --- docs/api_callbacks.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/api_callbacks.rst b/docs/api_callbacks.rst index c8a42ced2..7f0e8df20 100644 --- a/docs/api_callbacks.rst +++ b/docs/api_callbacks.rst @@ -83,7 +83,7 @@ The ``< EVENT CATEGORY >`` hereby specifies the event that will trigger the call | m.set_data(data=x+y**2, x=x, y=y, crs=4326) | | | m.plot_map() | | | | | - | m2 = m.new_layer(copy_data_specs=True, layer="second_layer") | | + | m2 = m.new_layer(inherit_data=True, layer="second_layer") | | | m2.plot_map(cmap="tab10") | | | | | | # get an annotation if you RIGHT-click anywhere on the map | | From 83228f620c82abd3d3aa62785969ea19c9050fcf Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Wed, 3 Jan 2024 21:57:07 +0100 Subject: [PATCH 057/240] make deprecation of m.set_data_specs final --- docs/EOmaps_examples.rst | 2 +- docs/FAQ.rst | 2 ++ eomaps/eomaps.py | 17 ----------------- 3 files changed, 3 insertions(+), 18 deletions(-) diff --git a/docs/EOmaps_examples.rst b/docs/EOmaps_examples.rst index 76c53508a..3330b4dda 100644 --- a/docs/EOmaps_examples.rst +++ b/docs/EOmaps_examples.rst @@ -33,7 +33,7 @@ Basic data visualization There are 3 basic steps required to visualize your data: 1. Initialize a Maps-object with ``m = Maps()`` -2. Set the data and its specifications via ``m.set_data`` (or ``m.set_data_specs``) +2. Set the data and its specifications via ``m.set_data`` 3. Call ``m.plot_map()`` to generate the map! |toggleStart| diff --git a/docs/FAQ.rst b/docs/FAQ.rst index b59a49efd..4bcc129a4 100644 --- a/docs/FAQ.rst +++ b/docs/FAQ.rst @@ -359,3 +359,5 @@ Important changes between major versions Have a look at the :ref:`installation` instructions for more details! - ``setup.py`` and ``_version.py`` have been removed in favor of using a ``pyproject.toml`` file + + - deprecated method ``m.set_data_specs(...)`` is now removed. Use ``m.set_data(...)`` instead! diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index 71217b334..6101f4c66 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -1393,23 +1393,6 @@ def set_data( if parameter is not None: self.data_specs.parameter = parameter - @wraps(set_data) - def set_data_specs(self, *args, **kwargs): - from warnings import warn - - warn( - "EOmaps: `m.set_data_specs(...)` is depreciated and will raise an " - "error in future versions! Use `m.set_data(...)` instead!", - FutureWarning, - stacklevel=2, - ) - self.set_data(*args, **kwargs) - - set_data_specs.__doc__ = ( - "WARNING: `m.set_data_specs(...)` is depreciated! " - "Use `m.set_data(...)` instead!\n\n" - ) + set_data_specs.__doc__ - @property def set_classify(self): """ From fbc0fbe8362162b2999db24809cc805ebaebc2d1 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Wed, 3 Jan 2024 22:01:52 +0100 Subject: [PATCH 058/240] make deprecation of InsetMaps.indicate_inset_extent final --- eomaps/inset_maps.py | 5 ----- 1 file changed, 5 deletions(-) diff --git a/eomaps/inset_maps.py b/eomaps/inset_maps.py index 4cd7eaa6b..f1f26d850 100644 --- a/eomaps/inset_maps.py +++ b/eomaps/inset_maps.py @@ -5,7 +5,6 @@ from matplotlib.path import Path from . import Maps -from .helpers import _deprecated from .grid import _intersect, _get_intersect @@ -215,10 +214,6 @@ def plot_map(self, *args, **kwargs): set_extent = kwargs.pop("set_extent", False) super().plot_map(*args, **kwargs, set_extent=set_extent) - @_deprecated("Use `add_extent_indicator` instead!") - def indicate_inset_extent(self, *args, **kwargs): - return self.add_extent_indicator(*args, **kwargs) - # a convenience-method to add a boundary-polygon to a map def add_extent_indicator(self, m=None, n=100, **kwargs): """ From 218a564efd82d8c940fde24ed0ce4e7b8bdd2f58 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Wed, 3 Jan 2024 22:05:02 +0100 Subject: [PATCH 059/240] make deprecation of m.add_wms.DLR_basemaps final --- eomaps/scripts/open.py | 4 ++-- eomaps/webmap_containers.py | 21 --------------------- 2 files changed, 2 insertions(+), 23 deletions(-) diff --git a/eomaps/scripts/open.py b/eomaps/scripts/open.py index f901ecb62..cc3e08a5e 100644 --- a/eomaps/scripts/open.py +++ b/eomaps/scripts/open.py @@ -207,9 +207,9 @@ def cli(crs=None, file=None, ne=None, wms=None, location=None, loglevel=None): elif wms in ["terrain_light"]: m.add_wms.S2_cloudless.add_layer.terrain_light_3857() elif wms in ["basemap"]: - m.add_wms.DLR_basemaps.add_layer.basemap() + m.add_wms.DLR.basemap.add_layer.basemap() elif wms in ["basemap_light"]: - m.add_wms.DLR_basemaps.add_layer.litemap() + m.add_wms.DLR.basemap.add_layer.litemap() elif wms in ["s1_vv"]: m.add_wms.S1GBM.add_layer.vv() diff --git a/eomaps/webmap_containers.py b/eomaps/webmap_containers.py index 3aaabaa9d..3e8f0788b 100644 --- a/eomaps/webmap_containers.py +++ b/eomaps/webmap_containers.py @@ -2289,27 +2289,6 @@ def DLR(self): WMS.__doc__ = self._DLR.__doc__ return WMS - @property - @lru_cache() - def DLR_basemaps(self): - class _DepreciatedWebServiceCollection(_WebServiceCollection): - def __init__(self, *args, **kwargs): - print( - "EOmaps: The WebMap service 'DLR_basemaps' is depreciated and will " - "be removed in the next minor version!\n" - "Use `m.add_wms.DLR.basemaps...` instead!", - ) - super().__init__(*args, **kwargs) - - WMS = _DepreciatedWebServiceCollection( - m=self._m, - service_type="wms", - url="https://geoservice.dlr.de/eoc/basemap/wms?SERVICE=WMS&REQUEST=GetCapabilities", - ) - - WMS.__doc__ = type(self).DLR.__doc__ - return WMS - @property @lru_cache() def ESRI_ArcGIS(self): From 6c80db21e8e9bef4772e2d5da92b4977603a19d7 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Wed, 3 Jan 2024 22:09:35 +0100 Subject: [PATCH 060/240] add info on removed (previously deprecated) methods to docs --- docs/FAQ.rst | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) diff --git a/docs/FAQ.rst b/docs/FAQ.rst index 4bcc129a4..0613e8f98 100644 --- a/docs/FAQ.rst +++ b/docs/FAQ.rst @@ -360,4 +360,9 @@ Important changes between major versions - ``setup.py`` and ``_version.py`` have been removed in favor of using a ``pyproject.toml`` file - - deprecated method ``m.set_data_specs(...)`` is now removed. Use ``m.set_data(...)`` instead! + + The following (previously deprecated) methods are now **removed**: + + - `m.set_data_specs` -> use ``m.set_data`` instead + - `m.add_wms.DLR_basemaps...` -> use ``m.add_wms.DLR.basemap...`` instead + - `m_inset.indicate_inset_extent` -> use ``m_inset.add_extent_indicator`` instead From 20d56f2f71a68cd00d3fa18246dc0c82ff744797 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Fri, 5 Jan 2024 13:30:17 +0100 Subject: [PATCH 061/240] update docs env - use more recent versions of docs-build dependencies - install only minimal eomaps dependencies required for import --- docs/docs_env.yml | 40 ++++++++++++---------------------------- 1 file changed, 12 insertions(+), 28 deletions(-) diff --git a/docs/docs_env.yml b/docs/docs_env.yml index 3bbd51341..503958ea3 100644 --- a/docs/docs_env.yml +++ b/docs/docs_env.yml @@ -4,33 +4,17 @@ channels: dependencies: - - numpy - - scipy - - pandas - - geopandas - - matplotlib >=3.4 - - cartopy >=0.20.0 - - descartes - - mapclassify - - pyproj - - pyepsg - # --------------for data-shading - - datashader - # --------------for GeoTIFF and NetCDF files - - netcdf4 - - xarray - - rioxarray - # --------------for WebMaps - - owslib - - requests - - xmltodict - - cairosvg + - python =3.11 - - pip # --------------for building the docs - - docutils<0.19 - - sphinx=7.2.6 - - sphinx-copybutton=0.5.2 - - myst-nb=1.0.0 - - sphinx-design=0.5.0 - - sphinx_rtd_theme=1.3 + - docutils =0.20.1 + - sphinx =7.2.6 + - sphinx-copybutton =0.5.2 + - myst-nb =1.0.0 + - sphinx-design =0.5.0 + - sphinx_rtd_theme =2.0.0 + + # install minimal dependencies to import eomaps + - pip + - pip: + - ../. From 75a386ebdd650f5a49e44507b9ad901fb4ddf8c3 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sun, 7 Jan 2024 23:06:09 +0100 Subject: [PATCH 062/240] fix docstring for DLR webmap service --- eomaps/webmap_containers.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/eomaps/webmap_containers.py b/eomaps/webmap_containers.py index 3e8f0788b..8de45ff3b 100644 --- a/eomaps/webmap_containers.py +++ b/eomaps/webmap_containers.py @@ -2289,6 +2289,8 @@ def DLR(self): WMS.__doc__ = self._DLR.__doc__ return WMS + DLR.__doc__ = _DLR.__doc__ + @property @lru_cache() def ESRI_ArcGIS(self): From 674f359cf9b2794fa024cb8cb4f013011797c704 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sun, 7 Jan 2024 23:44:09 +0100 Subject: [PATCH 063/240] update NaturalEarth feature implementation - apply better naming conventions - make namespaces accessible to sphinx --- docs/notebooks/naturalearth_features.ipynb | 2 +- eomaps/eomaps.py | 16 +- eomaps/mapsgrid.py | 4 +- eomaps/ne_features.py | 892 +++++++++++---------- 4 files changed, 478 insertions(+), 436 deletions(-) diff --git a/docs/notebooks/naturalearth_features.ipynb b/docs/notebooks/naturalearth_features.ipynb index 6bcf02040..cb89be0f5 100644 --- a/docs/notebooks/naturalearth_features.ipynb +++ b/docs/notebooks/naturalearth_features.ipynb @@ -67,7 +67,7 @@ "\n", "\n", "```{eval-rst}\n", - ".. currentmodule:: eomaps.ne_features.NaturalEarth_presets\n", + ".. currentmodule:: eomaps.ne_features.NaturalEarthPresets\n", "\n", ".. autosummary::\n", " :nosignatures:\n", diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index 6101f4c66..5c26f6356 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -57,7 +57,7 @@ _cx_refetch_wms_on_size_change = None WebMapContainer = None -from .ne_features import NaturalEarth_features +from .ne_features import NaturalEarthFeatures from .cb_container import CallbackContainer, GeoDataFramePicker from .scalebar import ScaleBar @@ -344,6 +344,9 @@ class Maps(metaclass=_MapsMeta): # arguments passed to m.savefig when using "ctrl+c" to export figure to clipboard _clipboard_kwargs = dict() + # to make namespace accessible for sphinx + add_feature = NaturalEarthFeatures + def __init__( self, crs=None, @@ -502,6 +505,8 @@ def __init__( if Maps._always_on_top: self._set_always_on_top(True) + self.add_feature = self.add_feature(weakref.proxy(self)) + def _handle_spines(self): spine = self.ax.spines["geo"] if spine not in self.BM._bg_artists.get("__SPINES__", []): @@ -1712,15 +1717,6 @@ def edit_layout(self, filepath=None): def edit_annotations(self, b=True, **kwargs): self._edit_annotations(b, **kwargs) - @property - @wraps(NaturalEarth_features) - def add_feature(self): - """Add features from NaturalEarth.""" - # lazily initialize NaturalEarth features - if not hasattr(self, "_add_feature"): - self._add_feature = NaturalEarth_features(self) - return self._add_feature - @contextmanager def _disable_autoscale(self, set_extent): if set_extent is False: diff --git a/eomaps/mapsgrid.py b/eomaps/mapsgrid.py index b1f4be9b2..13ed7f2b8 100644 --- a/eomaps/mapsgrid.py +++ b/eomaps/mapsgrid.py @@ -9,7 +9,7 @@ from .shapes import Shapes from .eomaps import Maps -from .ne_features import NaturalEarth_features +from .ne_features import NaturalEarthFeatures try: from .webmap_containers import WebMapContainer @@ -421,7 +421,7 @@ def add_wms(self): @property @wraps(Maps.add_feature) def add_feature(self): - x = NaturalEarth_features(self) + x = NaturalEarthFeatures(self) return x @wraps(Maps.add_gdf) diff --git a/eomaps/ne_features.py b/eomaps/ne_features.py index f6986d485..cccb54e8a 100644 --- a/eomaps/ne_features.py +++ b/eomaps/ne_features.py @@ -12,12 +12,457 @@ _log = logging.getLogger(__name__) -def combdoc(*args): +# ------ Load available features from NE_features.json file. + +_NE_features_path = Path(__file__).parent / "NE_features.json" + +try: + with open(_NE_features_path, "r") as file: + _NE_features = json.load(file) + + _NE_features_all = dict() + for scale, scale_items in _NE_features.items(): + for category, category_items in scale_items.items(): + _NE_features_all.setdefault(category, set()).update(category_items) + + +except Exception: + _log.error( + "EOmaps: Could not load available NaturalEarth features from\n" + f"{_NE_features_path}", + exc_info=_log.getEffectiveLevel() <= logging.DEBUG, + ) + _NE_features = dict() + _NE_features_all = dict() + +# --------------------- + + +def _combdoc(*args): """Dedent and combine strings.""" return "\n".join(dedent(str(i)) for i in args) -class NaturalEarth_presets: +class _Category: + """ + Interface to features provided by NaturalEarth. + + (see https://www.naturalearthdata.com) + + The features are grouped into the categories "cultural" and "physical" + and available at 3 different scales: + + - 10 : Large-scale data (1:10m) + - 50 : Medium-scale data (1:50m) + - 110 : Small-scale data (1:110m) + + If you use scale="auto", the appropriate scale of the feature will be determined + based on the map-extent. + + >>> m.add_feature.< category >.< feature-name >(scale=10, ... style-kwargs ...) + + Examples + -------- + - add black (coarse resolution) coastlines + + >>> from eomaps import Maps + >>> m = Maps() + >>> m.add_feature.physical.coastline(scale=110, fc="none", ec="k") + + - color all land red with 50% transparency and automatically determine the + appropriate scale if you zoom the map + + >>> from eomaps import Maps + >>> m = Maps() + >>> m.add_feature.physical.land(scale="auto", fc="r", alpha=0.5) + + - fetch features as geopandas.GeoDataFrame + (to color all countries with respect to the area) + + >>> from eomaps import Maps + >>> m = Maps() + >>> countries = m.add_feature.cultural.admin_0_countries.get_gdf(scale=10) + >>> countries["area_rank"] = countries.area.rank() + >>> m.add_gdf(countries, column="area_rank") + + """ + + _category = "???" + + def __repr__(self): + return f"EOmaps interface for {self._category} " + "NaturalEarth features" + + @classmethod + def _setup(cls, category): + # this is used to setup the namespace so that it is accessible for sphinx + + for i in _NE_features_all[category]: + # we need to init new classes to avoid issues with immutuable attributes + setattr(cls, i, type(i, (_Feature,), {})) # (category, i)) + + cls.__doc__ = _combdoc( + f"NaturalEarth feature interface for: **{category}**.\n", + _Category.__doc__, + ) + + def _set_map(self, m): + for feature_name in filter(lambda x: not x.startswith("_"), dir(self)): + try: + feature = _Feature(self._category, feature_name) + feature._set_map(m) + setattr(self, feature_name, feature) + except Exception: + _log.error(f"EOmaps: unable to set map for feature {feature}") + + +class _Feature: + """ + Natural Earth Feature. + + Call this class like a function to add the feature to the map. + + By default, the scale of the feature is automatically adjusted based on the + map-extent. Use `scale=...` to use a fixed scale. + + Common style-keywords can be used to customize the appearance + of the added features. + + - "facecolor" (or "fc") + - "edgecolor" (or "ec") + - "linewidth" (or "lw") + - "linestyle" (or "ls") + - "alpha", "hatch", "dashes", ... + - "zoder" + + Parameters + ---------- + scale : (10, 50, 110 or 'auto'), optional + The (preferred) scale of the NaturalEarth feature. + + If the scale is not available for the selected feature, the next available + scale will be used (and a warning is issued)! + + If 'auto' the scale is automatically adjusted based on the map-extent. + + layer : str or None, optional + The name of the layer at which map-features are plotted. + + - If "all": the corresponding feature will be added to ALL layers + - If None, the layer of the parent object is used. + + The default is None. + + Methods + ------- + get_gdf : Get a GeoDataFrame of the feature-geometries + + + Note + ---- + Some shapes consist of point-geometries which cannot be + properly added without `geopandas`! + + To use those features, first fetch the GeoDataFrame using `.get_gdf()` + and then plot the shapes with `m.add_gdf()` (see example below). + + + Examples + -------- + >>> m = Maps() + >>> feature = m.add_feature.physical.coastline + >>> feature(scale=10, + >>> fc="none", + >>> ec="k", + >>> lw=.5, + >>> ls="--", + >>> ) + + For more advanced plotting, fetch the data first and use geopandas + to plot the features! + + >>> m = Maps() + >>> m.add_feature.preset.coastline() + >>> # get the data for a feature that consists of point-geometries + >>> m.add_feature.cultural.populated_places.get_gdf() + >>> # plot the features with geopandas + >>> m.add_gdf(gdf, column="SOV0NAME", markersize=gdf.SCALERANK) + """ + + def __init__(self, category, name, scale=None): + self._category = category + self._name = name + self._scale = scale + self._cartopy_feature = None + + self.__doc__ = ( + "NaturalEarth feature: " + f"{self._category} | {self._name}\n\n" + "----------------------------------------\n\n" + ) + self.__doc__ + + def _set_map(self, m): + self._m = m + + def __call__(self, layer=None, scale="auto", **kwargs): + assert hasattr( + self, "_m" + ), "EOmaps: This feature is not associated to a map and cannot be added!" + _log.debug(f"EOmaps: Adding feature: {self._category}: {self._name}") + + self._set_scale(scale) + + from . import MapsGrid # do this here to avoid circular imports! + + for m in self._m if isinstance(self._m, MapsGrid) else [self._m]: + if layer is None: + uselayer = m.layer + else: + uselayer = layer + + feature = self._get_cartopy_feature(self._scale) + feature._kwargs.update(kwargs) + art = m.ax.add_feature(feature) + art.set_label( + f"NaturalEarth feature: {feature.category} | {feature.name}" + ) + + try: + str_kwargs = json.dumps(feature._kwargs) + except Exception: + str_kwargs = "" + _log.debug( + "There was something wrong while trying to convert " + f"the following kwargs to a string: {kwargs}" + ) + + source_code = ( + f"feature_kwargs = {str_kwargs}\n\n" + f"m.add_feature.{feature.category}.{feature.name}(**feature_kwargs)" + ) + + # try to auto-format code in case black is installed + try: + import black + + source_code = black.format_str(source_code, mode=black.Mode()) + except Exception: + pass + + art._EOmaps_info = f""" + NaturalEarth feature: {feature.category} | {feature.name} + + https://www.naturalearthdata.com/ + + """ + art._EOmaps_source_code = source_code + + m.BM.add_bg_artist(art, layer=uselayer) + + def _set_scale(self, scale): + if scale == "auto": + self._scale = "auto" + return + + if isinstance(scale, int): + scale = f"{scale}m" + + assert scale in [ + "10m", + "50m", + "110m", + "auto", + ], "scale must be one of [10, 50, 110, 'auto']" + + self._scale = self._get_available_scale(scale) + + if self._scale != scale: + _log.warning( + f"EOmaps: The NaturalEarth feature '{self._name}' is not " + f"available at 1:{scale} scale... using 1:{self._scale} instead!" + ) + + def _get_validated_scaler(self, *args, **kwargs): + from cartopy.feature import AdaptiveScaler + + class AdaptiveValidatedScaler(AdaptiveScaler): + # subclass of the AdaptiveScaler to make sure the dataset exists + def __init__(self, default_scale, limits, validator=None): + super().__init__(default_scale, limits) + + self.validator = validator + + def scale_from_extent(self, extent): + scale = super().scale_from_extent(extent) + + if self.validator is not None: + scale = self.validator(scale) + + self._scale = scale + return self._scale + + return AdaptiveValidatedScaler(*args, **kwargs) + + def _get_cartopy_feature(self, scale): + from cartopy.feature import NaturalEarthFeature + + self._set_scale(scale) + + if ( + self._cartopy_feature is not None + and self._scale == self._cartopy_feature.scale + ): + + return self._cartopy_feature + + if self._scale == "auto": + usescale = self._get_validated_scaler( + "110m", + (("50m", 50), ("10m", 15)), + validator=self._get_available_scale, + ) + else: + usescale = self._scale + + # get an instance of the corresponding cartopy-feature + self._cartopy_feature = NaturalEarthFeature( + category=self._category, name=self._name, scale=usescale + ) + + return self._cartopy_feature + + def _get_available_scale(self, scale): + # return the optimal scale for the selected feature + scaleorder = ["110m", "50m", "10m"] + while True: + if self._name in _NE_features[scale][self._category]: + break + + scale = scaleorder[(scaleorder.index(scale) + 1) % len(scaleorder)] + + return scale + + def get_gdf(self, scale=50, what="full"): + """ + Get a geopandas.GeoDataFrame for the selected NaturalEarth feature. + + Parameters + ---------- + scale : (10, 50, 110), optional + The scale to use when fetching the data for the NaturalEarth feature. + + If the scale is not available for the selected feature, the next + available scale will be used (and a warning is issued)! + what: str, optional + Set what information is included in the returned GeoDataFrame. + + - "full": return all geometries AND metadata + - "geoms" : return only geometries (NO metadata) + - "geoms_intersecting": return only geometries that intersect with the + current axis-extent (NO metadata) + + The default is False + + Returns + ------- + gdf : geopandas.GeoDataFrame + A GeoDataFrame with all geometries of the feature + """ + if what == "geoms_intersecting": + assert hasattr(self, "_m"), ( + "EOmaps: If the feature is not called form a Maps-instance, you can " + "only use 'what=full' or 'what=geoms'!" + ) + + (gpd,) = register_modules("geopandas") + + self._set_scale(scale) + + if what == "full": + from cartopy.io import shapereader + + gdf = gpd.read_file( + shapereader.natural_earth( + resolution=self._scale, category=self._category, name=self._name + ) + ) + elif what.startswith("geoms"): + feature = self._get_cartopy_feature(self._scale) + + if what == "geoms_intersecting": + extent = self._m.get_extent(feature.crs) + geoms = list(feature.intersecting_geometries(extent)) + elif what == "geoms": + geoms = list(feature.geometries()) + else: + raise TypeError("EOmaps: what='{what}' is not a valid input!") + + gdf = gpd.GeoDataFrame(geometry=geoms, crs=feature.crs) + + else: + raise TypeError( + "EOmaps: what='{what}' is not a valid input!" + "Use one of: ['full' ,'geoms', 'geoms_intersecting']" + ) + + if gdf.crs is None: + # make sure the CRS is properly set + # (NE-features come in epsg=4326 projection) + gdf.set_crs(ccrs.PlateCarree(), inplace=True, allow_override=True) + + return gdf + + +class _PresetFeature: + def __init__(self, m, category, name, **kwargs): + self._m = m + self.category = category + self.name = name + self.kwargs = kwargs + + self.feature = _Feature(category=self.category, name=self.name) + self.feature._set_map(self._m) + + add_params = """ + Other Parameters + ---------------- + scale : int or str + Set the scale of the feature preset (10, 50, 110 or "auto") + The default is "auto" + """ + + self.__doc__ = _combdoc( + f"PRESET using {kwargs} \n", self.feature.__doc__, add_params + ) + + def _handle_synonyms(self, kwargs): + # make sure to replace shortcuts with long names + # (since "facecolor=..." will override "fc=..." if both are specified) + subst = dict(fc="facecolor", ec="edgecolor", lw="linewidth", ls="linestyle") + return {subst.get(key, key): val for key, val in kwargs.items()} + + def __call__(self, scale=50, layer=None, **kwargs): + k = dict(**self.kwargs) + k.update(kwargs) + + self.__doc__ = self.feature.__doc__ + return self.feature(scale=scale, layer=layer, **self._handle_synonyms(k)) + + +# to make namespace accessible for autocompletion and sphinx-autodoc +class _Physical(_Category): + _category = "physical" + + +_Physical._setup("physical") + + +class _Cultural(_Category): + _category = "cultural" + +_Cultural._setup("cultural") + + +class NaturalEarthPresets: """ Feature presets. @@ -82,7 +527,8 @@ def coastline(self): - fc="none", ec="k", zorder=100 """ - return self._Feature( + + return _PresetFeature( self._m, "physical", "coastline", @@ -105,7 +551,7 @@ def ocean(self): # convert color to hex to avoid issues with geopandas color = "#97b6e1" # rgb2hex(cfeature.COLORS["water"]) - return self._Feature( + return _PresetFeature( self._m, "physical", "ocean", facecolor=color, edgecolor="none", zorder=-2 ) @@ -124,7 +570,7 @@ def land(self): # convert color to hex to avoid issues with geopandas color = "#efefdb" # rgb2hex(cfeature.COLORS["land"]) - return self._Feature( + return _PresetFeature( self._m, "physical", "land", facecolor=color, edgecolor="none", zorder=-1 ) @@ -140,7 +586,7 @@ def countries(self): - fc="none", ec=".5", lw=0.5, zorder=99 """ - return self._Feature( + return _PresetFeature( self._m, "cultural", "admin_0_countries", @@ -162,7 +608,7 @@ def urban_areas(self): - fc="r", lw=0., zorder=100 """ - return self._Feature( + return _PresetFeature( self._m, "cultural", "urban_areas", @@ -183,7 +629,7 @@ def lakes(self): - fc="b", ec="none", lw=0., zorder=98 """ - return self._Feature( + return _PresetFeature( self._m, "physical", "lakes", @@ -204,7 +650,7 @@ def rivers_lake_centerlines(self): - fc="none", ec="b", lw=0.75, zorder=97 """ - return self._Feature( + return _PresetFeature( self._m, "physical", "rivers_lake_centerlines", @@ -214,72 +660,10 @@ def rivers_lake_centerlines(self): zorder=97, ) - class _Feature: - def __init__(self, m, category, name, **kwargs): - self._m = m - self.category = category - self.name = name - self.kwargs = kwargs - - self.feature = self._m.add_feature._get_feature( - category=self.category, name=self.name - ) - - add_params = """ - Other Parameters - ---------------- - scale : int or str - Set the scale of the feature preset (10, 50, 110 or "auto") - The default is "auto" - """ - - self.__doc__ = combdoc( - f"PRESET using {kwargs} \n", self.feature.__doc__, add_params - ) - - def _handle_synonyms(self, kwargs): - # make sure to replace shortcuts with long names - # (since "facecolor=..." will override "fc=..." if both are specified) - subst = dict(fc="facecolor", ec="edgecolor", lw="linewidth", ls="linestyle") - return {subst.get(key, key): val for key, val in kwargs.items()} - - def __call__(self, scale=50, layer=None, **kwargs): - k = dict(**self.kwargs) - k.update(kwargs) - - if scale != "auto": - self.feature = self._m.add_feature._get_feature( - category=self.category, name=self.name - ) - self.__doc__ = self.feature.__doc__ - return self.feature(scale=scale, layer=layer, **self._handle_synonyms(k)) - - -_NE_features_path = Path(__file__).parent / "NE_features.json" - -try: - with open(_NE_features_path, "r") as file: - _NE_features = json.load(file) - - _NE_features_all = dict() - for scale, scale_items in _NE_features.items(): - for category, category_items in scale_items.items(): - _NE_features_all.setdefault(category, set()).update(category_items) - -except Exception: - _log.error( - "EOmaps: Could not load available NaturalEarth features from\n" - f"{_NE_features_path}", - exc_info=_log.getEffectiveLevel() <= logging.DEBUG, - ) - _NE_features = dict() - _NE_features_all = dict() - - -class NaturalEarth_features(object): +class NaturalEarthFeatures: """ - Interface to the feature-layers provided by NaturalEarth. + Interface to features provided by NaturalEarth. (see https://www.naturalearthdata.com) @@ -324,16 +708,21 @@ class NaturalEarth_features(object): """ + preset = NaturalEarthPresets + cultural = _Cultural + physical = _Physical + def __init__(self, m): self._m = m - for category, names in _NE_features_all.items(): - func = lambda name: self._Feature(self._m, category, name) - ns = dict(zip(names, map(func, names))) - c = self._Category(scale, category, **ns) - setattr(self, category, c) + self.preset = self.preset(self._m) + self.cultural = _Cultural() + self.cultural._set_map(m) + + self.physical = _Physical() + self.physical._set_map(m) - def __call__(self, category, scale, name, **kwargs): + def __call__(self, category, name, **kwargs): feature = self._get_feature(category, name) return feature(**kwargs) @@ -357,347 +746,4 @@ def _get_feature(self, category, name): + (f"did you mean one of {matches}?" if matches else "") ) - return self._Feature(self._m, category, name) - - @property - def preset(self): - """ - Access to commonly used NaturalEarth features with pre-defined styles. - - - "coastline" - black coastlines - - "ocean" - blue ocean coloring - - "land" - beige land coloring - - "countries" - gray country boarder lines - """ - return NaturalEarth_presets(self._m) - - class _Category: - def __init__(self, scale, category, **kwargs): - - self._s = scale - self._c = category - - for key, val in kwargs.items(): - setattr(self, key, val) - - if scale == "auto": - header = ( - f"Auto-scaled feature interface for: {category}\n" - "------------------------------------------------" - "\n" - "Note\n" - "----\n" - "Features will be added to the map using cartopy's Feature " - "interface and the scale (10m, 50m or 110m) is automatically " - "adjusted based on the extent of the map." - "\n\n" - "--------------------------------------------------------------" - "\n\n" - ) - else: - header = ( - f"Feature interface for: {category} - {scale}\n" - "----------------------------------------------" - ) - - self.__doc__ = combdoc(header, NaturalEarth_features.__doc__) - - def __repr__(self): - return ( - f"EOmaps interface for {self._s} {self._c} " + "NaturalEarth features" - ) - - class _Feature: - """ - Natural Earth Feature. - - Call this class like a function to add the feature to the map. - - By default, the scale of the feature is automatically adjusted based on the - map-extent. Use `scale=...` to use a fixed scale. - - Common style-keywords can be used to customize the appearance - of the added features. - - - "facecolor" (or "fc") - - "edgecolor" (or "ec") - - "linewidth" (or "lw") - - "linestyle" (or "ls") - - "alpha", "hatch", "dashes", ... - - "zoder" - - Parameters - ---------- - scale : (10, 50, 110 or 'auto'), optional - The (preferred) scale of the NaturalEarth feature. - - If the scale is not available for the selected feature, the next available - scale will be used (and a warning is issued)! - - If 'auto' the scale is automatically adjusted based on the map-extent. - - layer : str or None, optional - The name of the layer at which map-features are plotted. - - - If "all": the corresponding feature will be added to ALL layers - - If None, the layer of the parent object is used. - - The default is None. - - Methods - ------- - get_gdf : Get a GeoDataFrame of the feature-geometries - - - Note - ---- - Some shapes consist of point-geometries which cannot be - properly added without `geopandas`! - - To use those features, first fetch the GeoDataFrame using `.get_gdf()` - and then plot the shapes with `m.add_gdf()` (see example below). - - - Examples - -------- - >>> m = Maps() - >>> feature = m.add_feature.physical.coastline - >>> feature(scale=10, - >>> fc="none", - >>> ec="k", - >>> lw=.5, - >>> ls="--", - >>> ) - - For more advanced plotting, fetch the data first and use geopandas - to plot the features! - - >>> m = Maps() - >>> m.add_feature.preset.coastline() - >>> # get the data for a feature that consists of point-geometries - >>> m.add_feature.cultural.populated_places.get_gdf() - >>> # plot the features with geopandas - >>> m.add_gdf(gdf, column="SOV0NAME", markersize=gdf.SCALERANK) - """ - - def __init__(self, m, category, name, scale=None): - self._m = m - - self._category = category - self._name = name - self._scale = scale - self._cartopy_feature = None - - self.__doc__ = ( - "NaturalEarth feature: " - f"{self._category} | {self._name}\n\n" - "----------------------------------------\n\n" - ) + self.__doc__ - - def __call__(self, layer=None, scale="auto", **kwargs): - _log.debug(f"EOmaps: Adding feature: {self._category}: {self._name}") - - self._set_scale(scale) - - from . import MapsGrid # do this here to avoid circular imports! - - for m in self._m if isinstance(self._m, MapsGrid) else [self._m]: - if layer is None: - uselayer = m.layer - else: - uselayer = layer - - feature = self._get_cartopy_feature(self._scale) - feature._kwargs.update(kwargs) - art = m.ax.add_feature(feature) - art.set_label( - f"NaturalEarth feature: {feature.category} | {feature.name}" - ) - - try: - str_kwargs = json.dumps(feature._kwargs) - except Exception: - str_kwargs = "" - _log.debug( - "There was something wrong while trying to convert " - f"the following kwargs to a string: {kwargs}" - ) - - source_code = ( - f"feature_kwargs = {str_kwargs}\n\n" - f"m.add_feature.{feature.category}.{feature.name}(**feature_kwargs)" - ) - - # try to auto-format code in case black is installed - try: - import black - - source_code = black.format_str(source_code, mode=black.Mode()) - except Exception: - pass - - art._EOmaps_info = f""" - NaturalEarth feature: {feature.category} | {feature.name} - - https://www.naturalearthdata.com/ - - """ - art._EOmaps_source_code = source_code - - m.BM.add_bg_artist(art, layer=uselayer) - - def _set_scale(self, scale): - if scale == "auto": - self._scale = "auto" - return - - if isinstance(scale, int): - scale = f"{scale}m" - - assert scale in [ - "10m", - "50m", - "110m", - "auto", - ], "scale must be one of [10, 50, 110, 'auto']" - - self._scale = self._get_available_scale(scale) - - if self._scale != scale: - _log.warning( - f"EOmaps: The NaturalEarth feature '{self._name}' is not " - f"available at 1:{scale} scale... using 1:{self._scale} instead!" - ) - - def get_validated_scaler(self, *args, **kwargs): - from cartopy.feature import AdaptiveScaler - - class AdaptiveValidatedScaler(AdaptiveScaler): - # subclass of the AdaptiveScaler to make sure the dataset exists - def __init__(self, default_scale, limits, validator=None): - super().__init__(default_scale, limits) - - self.validator = validator - - def scale_from_extent(self, extent): - scale = super().scale_from_extent(extent) - - if self.validator is not None: - scale = self.validator(scale) - - self._scale = scale - return self._scale - - return AdaptiveValidatedScaler(*args, **kwargs) - - def _get_cartopy_feature(self, scale): - from cartopy.feature import NaturalEarthFeature - - self._set_scale(scale) - - if ( - self._cartopy_feature is not None - and self._scale == self._cartopy_feature.scale - ): - - return self._cartopy_feature - - if self._scale == "auto": - usescale = self.get_validated_scaler( - "110m", - (("50m", 50), ("10m", 15)), - validator=self._get_available_scale, - ) - else: - usescale = self._scale - - # get an instance of the corresponding cartopy-feature - self._cartopy_feature = NaturalEarthFeature( - category=self._category, name=self._name, scale=usescale - ) - - return self._cartopy_feature - - def _get_available_scale(self, scale): - # return the optimal scale for the selected feature - scaleorder = ["110m", "50m", "10m"] - while True: - if self._name in _NE_features[scale][self._category]: - break - - scale = scaleorder[(scaleorder.index(scale) + 1) % len(scaleorder)] - - return scale - - def get_gdf(self, scale=50, what="full"): - """ - Get a geopandas.GeoDataFrame for the selected NaturalEarth feature. - - Parameters - ---------- - scale : (10, 50, 110), optional - The scale to use when fetching the data for the NaturalEarth feature. - - If the scale is not available for the selected feature, the next - available scale will be used (and a warning is issued)! - what: str, optional - Set what information is included in the returned GeoDataFrame. - - - "full": return all geometries AND metadata - - "geoms" : return only geometries (NO metadata) - - "geoms_intersecting": return only geometries that intersect with the - current axis-extent (NO metadata) - - The default is False - - Returns - ------- - gdf : geopandas.GeoDataFrame - A GeoDataFrame with all geometries of the feature - """ - (gpd,) = register_modules("geopandas") - - self._set_scale(scale) - - if what == "full": - from cartopy.io import shapereader - - gdf = gpd.read_file( - shapereader.natural_earth( - resolution=self._scale, category=self._category, name=self._name - ) - ) - elif what.startswith("geoms"): - feature = self._get_cartopy_feature(self._scale) - - if what == "geoms_intersecting": - try: - extent = self._m.get_extent(feature.crs) - feature.scaler.scale_from_extent(extent) - except: - _log.error("EOmaps: unable to determine extent") - pass - geoms = list(feature.geometries()) - elif what == "geoms": - try: - extent = self._m.get_extent(feature.crs) - geoms = list(feature.intersecting_geometries(extent)) - except ValueError: - geoms = list(feature.geometries()) - else: - raise TypeError("EOmaps: what='{what}' is not a valid input!") - - gdf = gpd.GeoDataFrame(geometry=geoms, crs=feature.crs) - - else: - raise TypeError( - "EOmaps: what='{what}' is not a valid input!" - "Use one of: ['full' ,'geoms', 'geoms_intersecting']" - ) - - if gdf.crs is None: - # make sure the CRS is properly set - # (NE-features come in epsg=4326 projection) - gdf.set_crs(ccrs.PlateCarree(), inplace=True, allow_override=True) - - return gdf + return _Feature(category, name) From 13c82c2fc55bfbc3e1cd095f4bdf32181ff67c37 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sun, 7 Jan 2024 23:45:41 +0100 Subject: [PATCH 064/240] make namespaces accessible to sphinx --- eomaps/eomaps.py | 32 ++++++++++---------------------- 1 file changed, 10 insertions(+), 22 deletions(-) diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index 5c26f6356..a197f5c4e 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -345,8 +345,13 @@ class Maps(metaclass=_MapsMeta): _clipboard_kwargs = dict() # to make namespace accessible for sphinx + set_shape = Shapes + draw = ShapeDrawer add_feature = NaturalEarthFeatures + if WebMapContainer is not None: + add_wms = WebMapContainer + def __init__( self, crs=None, @@ -457,11 +462,13 @@ def __init__( self._cb = CallbackContainer(weakref.proxy(self)) # accessor for the callbacks self._init_figure(ax=ax, plot_crs=crs, **kwargs) + if WebMapContainer is not None: - self._wms_container = WebMapContainer(weakref.proxy(self)) + self.add_wms = self.add_wms(weakref.proxy(self)) + self._new_layer_from_file = new_layer_from_file(weakref.proxy(self)) - self._shapes = Shapes(weakref.proxy(self)) + self.set_shape = self.set_shape(weakref.proxy(self)) self._shape = None # the radius is estimated when plot_map is called @@ -506,6 +513,7 @@ def __init__( self._set_always_on_top(True) self.add_feature = self.add_feature(weakref.proxy(self)) + self.draw = self.draw(weakref.proxy(self)) def _handle_spines(self): spine = self.ax.spines["geo"] @@ -678,12 +686,6 @@ def util(self): self.parent._util = Utilities(self.parent) return self.parent._util - @property - @wraps(ShapeDrawer) - def draw(self): - """Draw simple shapes on the map.""" - return self._shape_drawer - @property def BM(self): """The Blit-Manager used to dynamically update the plots.""" @@ -1242,12 +1244,6 @@ def _set_always_on_top(self, q): except Exception: pass - @property - @wraps(Shapes) - def set_shape(self): - """Set the plot-shape.""" - return self._shapes - def set_data( self, data=None, @@ -2397,14 +2393,6 @@ def add_scalebar( return s - if WebMapContainer is not None: - - @property - @wraps(WebMapContainer) - def add_wms(self): - """Accessor to attach WebMap services to the map.""" - return self._wms_container - def add_line( self, xy, From ba664b519260aada0e4f3ec65676d65690415893 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sun, 7 Jan 2024 23:50:02 +0100 Subject: [PATCH 065/240] update API docs --- .gitignore | 3 + .../_templates/obj_with_attributes_no_toc.rst | 21 ++ docs/api/api_Maps.rst | 213 ++++++++++++++++++ docs/api/reference.rst | 5 + docs/conf.py | 68 +++++- docs/index.rst | 2 +- docs/reference.rst | 9 - 7 files changed, 304 insertions(+), 17 deletions(-) create mode 100644 docs/_templates/obj_with_attributes_no_toc.rst create mode 100644 docs/api/api_Maps.rst create mode 100644 docs/api/reference.rst delete mode 100644 docs/reference.rst diff --git a/.gitignore b/.gitignore index 3f2defa0b..78e65f794 100644 --- a/.gitignore +++ b/.gitignore @@ -8,6 +8,9 @@ docs/_build docs/debug.log docs/.vscode docs/generated +docs/api/generated +docs/api/autodoc_props.rst + docs/_tables docs/_static/example_gifs_very_old diff --git a/docs/_templates/obj_with_attributes_no_toc.rst b/docs/_templates/obj_with_attributes_no_toc.rst new file mode 100644 index 000000000..9af90afb0 --- /dev/null +++ b/docs/_templates/obj_with_attributes_no_toc.rst @@ -0,0 +1,21 @@ +{{ name | escape | underline}} + +.. currentmodule:: {{ module }} + +.. auto{{ objtype }}:: {{ fullname }} + +{% block members %} +{% if members %} +.. rubric:: {{ _('Members') }} + +.. autosummary:: + :nosignatures: + :template: only_names_in_toc.rst +{% for item in members %} + {% if not item.startswith('_') %} + ~{{ name }}.{{ item }} + {% endif %} +{%- endfor %} +{% endif %} +{% endblock %} + diff --git a/docs/api/api_Maps.rst b/docs/api/api_Maps.rst new file mode 100644 index 000000000..4c4b22edb --- /dev/null +++ b/docs/api/api_Maps.rst @@ -0,0 +1,213 @@ +The :py:class:`Maps` object +=========================== + +.. currentmodule:: eomaps + +.. autosummary:: + :toctree: generated + :template: custom-class-template.rst + + Maps + + +Class Methods +------------- + +.. autosummary:: + :toctree: generated + :template: obj_with_attributes_no_toc.rst + + Maps.config + +.. autosummary:: + :toctree: generated + :template: obj_with_attributes_no_toc.rst + + Maps.from_file.GeoTIFF + Maps.from_file.NetCDF + Maps.from_file.CSV + +General Properties +------------------ + +.. autosummary:: + :toctree: generated + :nosignatures: + :template: obj_with_attributes_no_toc.rst + + Maps.f + Maps.ax + Maps.layer + Maps.crs_plot + +.. autosummary:: + :toctree: generated + :nosignatures: + :template: obj_with_attributes_no_toc.rst + + Maps.data + Maps.colorbar + +New Maps and Layers +------------------- + +.. autosummary:: + :toctree: generated + :template: obj_with_attributes_no_toc.rst + + Maps.new_layer + Maps.new_layer_from_file + +.. autosummary:: + :toctree: generated + :template: obj_with_attributes_no_toc.rst + + Maps.new_map + Maps.new_inset_map + + +Map Features +------------ + +.. autosummary:: + :toctree: generated + :template: obj_with_attributes_no_toc.rst + + Maps.add_feature + Maps.add_wms + +.. autosummary:: + :toctree: generated + :template: obj_with_attributes_no_toc.rst + + Maps.add_gdf + Maps.add_annotation + Maps.add_marker + Maps.add_line + Maps.add_logo + Maps.add_title + Maps.indicate_extent + + +.. autosummary:: + :toctree: generated + :template: obj_with_attributes_no_toc.rst + + Maps.add_compass + Maps.add_gridlines + Maps.add_scalebar + + + +Data visualization +------------------ + +.. autosummary:: + :toctree: generated + :template: obj_with_attributes_no_toc.rst + + Maps.set_data + Maps.set_shape + Maps.set_classify + Maps.set_classify_specs + +.. autosummary:: + :toctree: generated + :template: obj_with_attributes_no_toc.rst + + Maps.inherit_data + Maps.inherit_classification + +.. autosummary:: + :toctree: generated + :template: obj_with_attributes_no_toc.rst + + Maps.plot_map + Maps.add_colorbar + Maps.make_dataset_pickable + + +Layer management +---------------- + +.. autosummary:: + :toctree: generated + :template: obj_with_attributes_no_toc.rst + + Maps.show_layer + Maps.fetch_layers + Maps.on_layer_activation + + +Figure Layout and Export +------------------------ + +.. autosummary:: + :toctree: generated + :template: obj_with_attributes_no_toc.rst + + Maps.set_frame + Maps.savefig + Maps.snapshot + +.. autosummary:: + :toctree: generated + :template: obj_with_attributes_no_toc.rst + + Maps.subplots_adjust + Maps.edit_layout + Maps.get_layout + Maps.apply_layout + + +Map Extent +---------- + +.. autosummary:: + :toctree: generated + :template: obj_with_attributes_no_toc.rst + + Maps.set_extent + Maps.get_extent + Maps.set_extent_to_location + Maps.join_limits + + +Interactive Editing +------------------- + +.. autosummary:: + :toctree: generated + :template: obj_with_attributes_no_toc.rst + + Maps.edit_annotations + Maps.draw + + +Miscellaneous +------------- + +.. autosummary:: + :toctree: generated + :template: obj_with_attributes_no_toc.rst + + Maps.fetch_companion_wms_layers + Maps.refetch_wms_on_size_change + Maps.cleanup + Maps.get_crs + +.. autosummary:: + :toctree: generated + :template: obj_with_attributes_no_toc.rst + + Maps.read_file.GeoTIFF + Maps.read_file.NetCDF + Maps.read_file.CSV + +.. autosummary:: + :toctree: generated + :template: obj_with_attributes_no_toc.rst + + Maps.show + Maps.redraw + Maps.copy \ No newline at end of file diff --git a/docs/api/reference.rst b/docs/api/reference.rst new file mode 100644 index 000000000..272ff56ed --- /dev/null +++ b/docs/api/reference.rst @@ -0,0 +1,5 @@ + +.. toctree:: + :maxdepth: 1 + + api_Maps \ No newline at end of file diff --git a/docs/conf.py b/docs/conf.py index 1666f5ab3..68de69465 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -1,15 +1,67 @@ # Configuration file for the Sphinx documentation builder. import sys, os +from pathlib import Path -sys.path.insert(0, os.path.abspath(".." + os.sep + "..")) +sys.path.insert(0, os.path.abspath(os.path.join("..", ".."))) sys.path.insert(0, os.path.abspath("..")) +from eomaps import Maps + + +def make_feature_toctree_file(): + preset = (f for f in dir(Maps.add_feature.preset) if not f.startswith("_")) + physical = (f for f in dir(Maps.add_feature.physical) if not f.startswith("_")) + cultural = (f for f in dir(Maps.add_feature.cultural) if not f.startswith("_")) + shapes = (f for f in dir(Maps.set_shape) if not f.startswith("_")) + draw = (f for f in dir(Maps.draw) if not f.startswith("_")) + wms = (f for f in dir(Maps.add_wms) if not f.startswith("_")) + + s = ( + ":orphan:\n" + ".. currentmodule:: eomaps\n" + ".. autosummary::\n" + " :toctree: generated\n" + " :nosignatures:\n" + " :template: obj_with_attributes_no_toc.rst\n\n" + + "\n".join( + [ + "\n".join([f" Maps.add_feature.preset.{f}" for f in preset]), + "\n".join([f" Maps.add_feature.physical.{f}" for f in physical]), + "\n".join( + [f" Maps.add_feature.physical.{f}.get_gdf" for f in physical] + ), + "\n".join([f" Maps.add_feature.cultural.{f}" for f in cultural]), + "\n".join( + [f" Maps.add_feature.cultural.{f}.get_gdf" for f in cultural] + ), + "\n".join([f" Maps.set_shape.{f}" for f in shapes]), + "\n".join([f" Maps.draw.{f}" for f in draw]), + "\n".join([f" Maps.add_wms.{f}" for f in wms]), + ] + ) + ) + + with open(Path("api") / "autodoc_props.rst", "w") as file: + file.write(s) + + +make_feature_toctree_file() + def setup(app): app.add_css_file("custom_css.css") + # need to assign the names here, otherwise autodoc won't document these classes, + # and will instead just say 'alias of ...' + # see https://stackoverflow.com/a/58982001/9703451 + Maps.add_feature.__name__ = "add_feature" + Maps.add_feature.preset.__name__ = "preset" + Maps.add_feature.cultural.__name__ = "cultural" + Maps.add_feature.physical.__name__ = "physical" + Maps.set_shape.__name__ = "set_shape" + Maps.draw.__name__ = "draw" + Maps.add_wms.__name__ = "add_wms" -from eomaps import Maps # to run __init__.py # -- Project information @@ -41,11 +93,13 @@ def setup(app): html_theme = "sphinx_rtd_theme" -autosummary_generate = ["reference.rst"] -# autodoc_default_options = { -# "member-order": "groupwise", -# "inherited-members": True, -# } +autosummary_generate = [ + str(i) for i in Path("api").iterdir() if i.is_file() and i.suffix == ".rst" +] + +autodoc_default_options = { + "member-order": "alphabetical", +} # Napoleon settings napoleon_numpy_docstring = True diff --git a/docs/index.rst b/docs/index.rst index ca5eb6d26..5d3db9e6e 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -241,4 +241,4 @@ Make sure to check out the :doc:`EOmaps_examples` for an overview of the capabil :maxdepth: 1 :caption: API Reference - reference + api/reference diff --git a/docs/reference.rst b/docs/reference.rst deleted file mode 100644 index b89e7ac6d..000000000 --- a/docs/reference.rst +++ /dev/null @@ -1,9 +0,0 @@ -.. rubric:: 🐍 API Reference - -.. autosummary:: - :toctree: generated - :nosignatures: - :template: custom-module-template.rst - :recursive: - - eomaps From 763f3e73399abba6ef7c6e5c670fe376909084fa Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sun, 7 Jan 2024 23:57:48 +0100 Subject: [PATCH 066/240] make pre-commit happy --- docs/_templates/obj_with_attributes_no_toc.rst | 1 - docs/api/api_Maps.rst | 4 ++-- docs/api/reference.rst | 2 +- eomaps/ne_features.py | 1 + 4 files changed, 4 insertions(+), 4 deletions(-) diff --git a/docs/_templates/obj_with_attributes_no_toc.rst b/docs/_templates/obj_with_attributes_no_toc.rst index 9af90afb0..150a7262c 100644 --- a/docs/_templates/obj_with_attributes_no_toc.rst +++ b/docs/_templates/obj_with_attributes_no_toc.rst @@ -18,4 +18,3 @@ {%- endfor %} {% endif %} {% endblock %} - diff --git a/docs/api/api_Maps.rst b/docs/api/api_Maps.rst index 4c4b22edb..571f0866d 100644 --- a/docs/api/api_Maps.rst +++ b/docs/api/api_Maps.rst @@ -69,7 +69,7 @@ New Maps and Layers Map Features ------------ -.. autosummary:: +.. autosummary:: :toctree: generated :template: obj_with_attributes_no_toc.rst @@ -210,4 +210,4 @@ Miscellaneous Maps.show Maps.redraw - Maps.copy \ No newline at end of file + Maps.copy diff --git a/docs/api/reference.rst b/docs/api/reference.rst index 272ff56ed..72f7641f8 100644 --- a/docs/api/reference.rst +++ b/docs/api/reference.rst @@ -2,4 +2,4 @@ .. toctree:: :maxdepth: 1 - api_Maps \ No newline at end of file + api_Maps diff --git a/eomaps/ne_features.py b/eomaps/ne_features.py index cccb54e8a..d7553ff75 100644 --- a/eomaps/ne_features.py +++ b/eomaps/ne_features.py @@ -459,6 +459,7 @@ class _Physical(_Category): class _Cultural(_Category): _category = "cultural" + _Cultural._setup("cultural") From 1939e661df0dcf4f718b8c136bf0b5e90ca9b2cc Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Mon, 8 Jan 2024 00:12:35 +0100 Subject: [PATCH 067/240] fix generation of stub-files for documents other than the api-docs --- docs/conf.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/docs/conf.py b/docs/conf.py index 68de69465..426e8c62d 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -93,10 +93,10 @@ def setup(app): html_theme = "sphinx_rtd_theme" -autosummary_generate = [ - str(i) for i in Path("api").iterdir() if i.is_file() and i.suffix == ".rst" -] - +# autosummary_generate = [ +# str(i) for i in Path("api").iterdir() if i.is_file() and i.suffix == ".rst" +# ] +autosummary_generate = True autodoc_default_options = { "member-order": "alphabetical", } From 7e00d4d2acc554488b1dee9078f6150c12ca0dac Mon Sep 17 00:00:00 2001 From: Raphael Date: Mon, 8 Jan 2024 11:14:28 +0100 Subject: [PATCH 068/240] fix issues for move-callbacks shared between multiple Maps - avoid calling update on callbacks directly (update only from parent) - remove "update_on_trigger" arg and simply check if move-callbacks are attached before triggering an update --- eomaps/callbacks.py | 11 ----------- eomaps/cb_container.py | 16 ++++++---------- 2 files changed, 6 insertions(+), 21 deletions(-) diff --git a/eomaps/callbacks.py b/eomaps/callbacks.py index eff6c6a3d..4cacad20d 100644 --- a/eomaps/callbacks.py +++ b/eomaps/callbacks.py @@ -1222,20 +1222,9 @@ class MoveCallbacks(_ClickCallbacks): "peek_layer", ] - def _decorate(self, f): - def inner(*args, **kwargs): - f(*args, **kwargs) - self.m.BM.update() - - return inner - def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) - for cb in self._cb_list: - if cb not in ["print_to_console"]: - setattr(self, cb, self._decorate(getattr(super(), cb))) - class KeypressCallbacks: """Collection of callbacks that are executed if you press a key on the keyboard.""" diff --git a/eomaps/cb_container.py b/eomaps/cb_container.py index 394e57646..f35ce0228 100644 --- a/eomaps/cb_container.py +++ b/eomaps/cb_container.py @@ -1152,7 +1152,7 @@ class MoveContainer(ClickContainer): # this is just a copy of ClickContainer to manage motion-sensitive callbacks - def __init__(self, button_down=False, update_on_trigger=True, *args, **kwargs): + def __init__(self, button_down=False, *args, **kwargs): super().__init__(*args, **kwargs) @@ -1160,8 +1160,6 @@ def __init__(self, button_down=False, update_on_trigger=True, *args, **kwargs): self._button_down = button_down - self._update_on_trigger = update_on_trigger - def _init_cbs(self): if self._m.parent is self._m: self._add_move_callback() @@ -1203,12 +1201,12 @@ def movecb(event): # execute onclick on the maps object that belongs to the clicked axis # and forward the event to all forwarded maps-objects - update = False + call_update = False for obj in self._objs: - # check if there is a reason to update - if update is False: + # check if there is a reason to update (e.g. an attached callback) + if call_update is False: if len(obj.get.attached_callbacks) > 0: - update = True + call_update = True # clear temporary artists before executing new callbacks to avoid # having old artists around when callbacks are triggered again @@ -1221,7 +1219,7 @@ def movecb(event): # only update if a callback is attached # (to avoid lag in webagg backed due to slow updates) - if self._update_on_trigger and update: + if call_update: if self._button_down: if event.button: self._m.parent.BM.update(clear=self._method) @@ -1995,7 +1993,6 @@ def __init__(self, m): method="_click_move", parent_container=self._click, button_down=True, - update_on_trigger=True, # automatically trigger updates for click+move! ) self._move = MoveContainer( @@ -2004,7 +2001,6 @@ def __init__(self, m): method="move", button_down=False, default_button=None, - update_on_trigger=False, # dont trigger updates for move! ) self._pick = PickContainer( From 5ca9a2021f194ce226482d51619f15adac07a87d Mon Sep 17 00:00:00 2001 From: Raphael Date: Mon, 8 Jan 2024 12:04:03 +0100 Subject: [PATCH 069/240] update autodocs... unify toctree for generated docs --- .gitignore | 3 +-- docs/api/api_Maps.rst | 44 ++++++++++++++++++++--------------------- docs/conf.py | 22 +++++++++++++++------ docs/full_reference.rst | 9 +++++++++ 4 files changed, 48 insertions(+), 30 deletions(-) create mode 100644 docs/full_reference.rst diff --git a/.gitignore b/.gitignore index 78e65f794..9169d69e8 100644 --- a/.gitignore +++ b/.gitignore @@ -8,8 +8,7 @@ docs/_build docs/debug.log docs/.vscode docs/generated -docs/api/generated -docs/api/autodoc_props.rst +docs/autodoc_additional_props.rst docs/_tables docs/_static/example_gifs_very_old diff --git a/docs/api/api_Maps.rst b/docs/api/api_Maps.rst index 571f0866d..a23615243 100644 --- a/docs/api/api_Maps.rst +++ b/docs/api/api_Maps.rst @@ -1,10 +1,10 @@ The :py:class:`Maps` object =========================== -.. currentmodule:: eomaps +.. currentmodule:: eomaps.eomaps .. autosummary:: - :toctree: generated + :toctree: ../generated :template: custom-class-template.rst Maps @@ -14,13 +14,13 @@ Class Methods ------------- .. autosummary:: - :toctree: generated + :toctree: ../generated :template: obj_with_attributes_no_toc.rst Maps.config .. autosummary:: - :toctree: generated + :toctree: ../generated :template: obj_with_attributes_no_toc.rst Maps.from_file.GeoTIFF @@ -31,7 +31,7 @@ General Properties ------------------ .. autosummary:: - :toctree: generated + :toctree: ../generated :nosignatures: :template: obj_with_attributes_no_toc.rst @@ -41,7 +41,7 @@ General Properties Maps.crs_plot .. autosummary:: - :toctree: generated + :toctree: ../generated :nosignatures: :template: obj_with_attributes_no_toc.rst @@ -52,14 +52,14 @@ New Maps and Layers ------------------- .. autosummary:: - :toctree: generated + :toctree: ../generated :template: obj_with_attributes_no_toc.rst Maps.new_layer Maps.new_layer_from_file .. autosummary:: - :toctree: generated + :toctree: ../generated :template: obj_with_attributes_no_toc.rst Maps.new_map @@ -70,14 +70,14 @@ Map Features ------------ .. autosummary:: - :toctree: generated + :toctree: ../generated :template: obj_with_attributes_no_toc.rst Maps.add_feature Maps.add_wms .. autosummary:: - :toctree: generated + :toctree: ../generated :template: obj_with_attributes_no_toc.rst Maps.add_gdf @@ -90,7 +90,7 @@ Map Features .. autosummary:: - :toctree: generated + :toctree: ../generated :template: obj_with_attributes_no_toc.rst Maps.add_compass @@ -103,7 +103,7 @@ Data visualization ------------------ .. autosummary:: - :toctree: generated + :toctree: ../generated :template: obj_with_attributes_no_toc.rst Maps.set_data @@ -112,14 +112,14 @@ Data visualization Maps.set_classify_specs .. autosummary:: - :toctree: generated + :toctree: ../generated :template: obj_with_attributes_no_toc.rst Maps.inherit_data Maps.inherit_classification .. autosummary:: - :toctree: generated + :toctree: ../generated :template: obj_with_attributes_no_toc.rst Maps.plot_map @@ -131,7 +131,7 @@ Layer management ---------------- .. autosummary:: - :toctree: generated + :toctree: ../generated :template: obj_with_attributes_no_toc.rst Maps.show_layer @@ -143,7 +143,7 @@ Figure Layout and Export ------------------------ .. autosummary:: - :toctree: generated + :toctree: ../generated :template: obj_with_attributes_no_toc.rst Maps.set_frame @@ -151,7 +151,7 @@ Figure Layout and Export Maps.snapshot .. autosummary:: - :toctree: generated + :toctree: ../generated :template: obj_with_attributes_no_toc.rst Maps.subplots_adjust @@ -164,7 +164,7 @@ Map Extent ---------- .. autosummary:: - :toctree: generated + :toctree: ../generated :template: obj_with_attributes_no_toc.rst Maps.set_extent @@ -177,7 +177,7 @@ Interactive Editing ------------------- .. autosummary:: - :toctree: generated + :toctree: ../generated :template: obj_with_attributes_no_toc.rst Maps.edit_annotations @@ -188,7 +188,7 @@ Miscellaneous ------------- .. autosummary:: - :toctree: generated + :toctree: ../generated :template: obj_with_attributes_no_toc.rst Maps.fetch_companion_wms_layers @@ -197,7 +197,7 @@ Miscellaneous Maps.get_crs .. autosummary:: - :toctree: generated + :toctree: ../generated :template: obj_with_attributes_no_toc.rst Maps.read_file.GeoTIFF @@ -205,7 +205,7 @@ Miscellaneous Maps.read_file.CSV .. autosummary:: - :toctree: generated + :toctree: ../generated :template: obj_with_attributes_no_toc.rst Maps.show diff --git a/docs/conf.py b/docs/conf.py index 426e8c62d..f22656aac 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -15,14 +15,24 @@ def make_feature_toctree_file(): shapes = (f for f in dir(Maps.set_shape) if not f.startswith("_")) draw = (f for f in dir(Maps.draw) if not f.startswith("_")) wms = (f for f in dir(Maps.add_wms) if not f.startswith("_")) + files = (f for f in dir(Maps.from_file) if not f.startswith("_")) + read_files = (f for f in dir(Maps.read_file) if not f.startswith("_")) s = ( ":orphan:\n" - ".. currentmodule:: eomaps\n" + ".. currentmodule:: eomaps.eomaps\n" ".. autosummary::\n" " :toctree: generated\n" " :nosignatures:\n" " :template: obj_with_attributes_no_toc.rst\n\n" + " Maps.add_wms\n" + " Maps.set_shape\n" + " Maps.config\n" + " Maps.draw\n" + " Maps.add_feature\n" + " Maps.add_feature.preset\n" + " Maps.add_feature.physical\n" + " Maps.add_feature.cultural\n" + "\n".join( [ "\n".join([f" Maps.add_feature.preset.{f}" for f in preset]), @@ -37,11 +47,13 @@ def make_feature_toctree_file(): "\n".join([f" Maps.set_shape.{f}" for f in shapes]), "\n".join([f" Maps.draw.{f}" for f in draw]), "\n".join([f" Maps.add_wms.{f}" for f in wms]), + "\n".join([f" Maps.from_file.{f}" for f in files]), + "\n".join([f" Maps.read_file.{f}" for f in read_files]), ] ) ) - with open(Path("api") / "autodoc_props.rst", "w") as file: + with open("autodoc_additional_props.rst", "w") as file: file.write(s) @@ -93,10 +105,8 @@ def setup(app): html_theme = "sphinx_rtd_theme" -# autosummary_generate = [ -# str(i) for i in Path("api").iterdir() if i.is_file() and i.suffix == ".rst" -# ] -autosummary_generate = True +autosummary_generate = ["full_reference.rst", "autodoc_additional_props.rst"] + autodoc_default_options = { "member-order": "alphabetical", } diff --git a/docs/full_reference.rst b/docs/full_reference.rst new file mode 100644 index 000000000..ec10cbce9 --- /dev/null +++ b/docs/full_reference.rst @@ -0,0 +1,9 @@ +:orphan: + +.. autosummary:: + :toctree: generated + :nosignatures: + :template: custom-module-template.rst + :recursive: + + eomaps From 029552543b76e463471fa875b081e2190453df8b Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Thu, 11 Jan 2024 22:09:58 +0100 Subject: [PATCH 070/240] improve implementation of cb accessor --- eomaps/cb_container.py | 37 +++++++++---------------------------- eomaps/eomaps.py | 9 ++------- 2 files changed, 11 insertions(+), 35 deletions(-) diff --git a/eomaps/cb_container.py b/eomaps/cb_container.py index f35ce0228..2af187127 100644 --- a/eomaps/cb_container.py +++ b/eomaps/cb_container.py @@ -1960,6 +1960,11 @@ class CallbackContainer: """ + pick = PickContainer + click = ClickContainer + move = MoveContainer + keypress = KeypressContainer + def __init__(self, m): self._m = m @@ -1972,7 +1977,7 @@ def __init__(self, m): "_always_active", } - self._click = ClickContainer( + self.click = self.click( m=self._m, cb_cls=ClickCallbacks, method="click", @@ -1995,7 +2000,7 @@ def __init__(self, m): button_down=True, ) - self._move = MoveContainer( + self.move = self.move( m=self._m, cb_cls=MoveCallbacks, method="move", @@ -2003,13 +2008,13 @@ def __init__(self, m): default_button=None, ) - self._pick = PickContainer( + self.pick = self.pick( m=self._m, cb_cls=PickCallbacks, method="pick", ) - self._keypress = KeypressContainer( + self.keypress = self.keypress( m=self._m, cb_cls=KeypressCallbacks, method="keypress", @@ -2038,30 +2043,6 @@ def execute_callbacks(self, val): """ self._m.parent._execute_callbacks = val - @property - @wraps(ClickContainer) - def click(self): - """Attach click callbacks.""" - return self._click - - @property - @wraps(MoveContainer) - def move(self): - """Attach move callbacks.""" - return self._move - - @property - @wraps(PickContainer) - def pick(self): - """Attach pick callbacks.""" - return self._pick - - @property - @wraps(KeypressContainer) - def keypress(self): - """Attach keypress callbacks.""" - return self._keypress - def add_picker(self, name, artist, picker): """ Attach a custom picker to an artist. diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index a197f5c4e..d1928a8da 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -348,6 +348,7 @@ class Maps(metaclass=_MapsMeta): set_shape = Shapes draw = ShapeDrawer add_feature = NaturalEarthFeatures + cb = CallbackContainer if WebMapContainer is not None: add_wms = WebMapContainer @@ -459,7 +460,7 @@ def __init__( self._layout_editor = None - self._cb = CallbackContainer(weakref.proxy(self)) # accessor for the callbacks + self.cb = self.cb(weakref.proxy(self)) # accessor for the callbacks self._init_figure(ax=ax, plot_crs=crs, **kwargs) @@ -672,12 +673,6 @@ def shape(self): return self._shape - @property - @wraps(CallbackContainer) - def cb(self): - """Accessor to attach callbacks to the map.""" - return self._cb - @property @wraps(Utilities) def util(self): From 7974d60bef23ada0b506f616f5c4df0e1ee046c2 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Thu, 11 Jan 2024 22:10:23 +0100 Subject: [PATCH 071/240] improve implementation of util container --- eomaps/eomaps.py | 14 ++++++-------- 1 file changed, 6 insertions(+), 8 deletions(-) diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index d1928a8da..4c582b9fc 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -348,6 +348,7 @@ class Maps(metaclass=_MapsMeta): set_shape = Shapes draw = ShapeDrawer add_feature = NaturalEarthFeatures + util = Utilities cb = CallbackContainer if WebMapContainer is not None: @@ -516,6 +517,11 @@ def __init__( self.add_feature = self.add_feature(weakref.proxy(self)) self.draw = self.draw(weakref.proxy(self)) + if self.parent == self: + self.util = Utilities(self) + else: + self.util = self.parent.util + def _handle_spines(self): spine = self.ax.spines["geo"] if spine not in self.BM._bg_artists.get("__SPINES__", []): @@ -673,14 +679,6 @@ def shape(self): return self._shape - @property - @wraps(Utilities) - def util(self): - """Add utilities to the map.""" - if self.parent._util is None: - self.parent._util = Utilities(self.parent) - return self.parent._util - @property def BM(self): """The Blit-Manager used to dynamically update the plots.""" From 79e0e1fbbd42d9a623209f87026ca348c49df32b Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Thu, 11 Jan 2024 22:10:32 +0100 Subject: [PATCH 072/240] minor --- eomaps/eomaps.py | 9 ++++----- 1 file changed, 4 insertions(+), 5 deletions(-) diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index 4c582b9fc..62dda37e9 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -315,13 +315,12 @@ class Maps(metaclass=_MapsMeta): >>> m.add_feature.preset.coastline() >>> m.savefig(...) - Attributes - ---------- - CRS : Accessor for available projections (Supercharged version of cartopy.crs) + Note + ---- - CLASSIFIERS : Accessor for available classifiers (provided by mapclassify) + You can access possible crs via the `CRS` accessor (alias of `cartopy.crs`): - _companion_widget_key : Keyboard shortcut assigned to show/hide the companion-widget + >>> m = Maps(crs=Maps.CRS.Orthographic()) """ From 53e3baefa2e3e2964d35936a34fe76d77cc2623e Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Thu, 11 Jan 2024 22:11:11 +0100 Subject: [PATCH 073/240] update API docs --- .gitignore | 2 +- docs/api/api_Maps.rst | 111 ++++++++++++++++++++++------------- docs/api/reference.rst | 116 ++++++++++++++++++++++++++++++++++++- docs/conf.py | 65 ++++----------------- docs/gen_autodoc_file.py | 121 +++++++++++++++++++++++++++++++++++++++ 5 files changed, 317 insertions(+), 98 deletions(-) create mode 100644 docs/gen_autodoc_file.py diff --git a/.gitignore b/.gitignore index 9169d69e8..bcdd6463d 100644 --- a/.gitignore +++ b/.gitignore @@ -8,7 +8,7 @@ docs/_build docs/debug.log docs/.vscode docs/generated -docs/autodoc_additional_props.rst +docs/api/autodoc_additional_props.rst docs/_tables docs/_static/example_gifs_very_old diff --git a/docs/api/api_Maps.rst b/docs/api/api_Maps.rst index a23615243..21f05e27c 100644 --- a/docs/api/api_Maps.rst +++ b/docs/api/api_Maps.rst @@ -1,14 +1,15 @@ -The :py:class:`Maps` object -=========================== +:orphan: -.. currentmodule:: eomaps.eomaps +.. + NOTE: this file is copied to ../generated/eomaps.eomaps.Maps.rst before the docs are generated (see conf.py) + to serve as the auto-generated file for Maps-objects! -.. autosummary:: - :toctree: ../generated - :template: custom-class-template.rst +:py:class:`Maps` +================ - Maps +.. currentmodule:: eomaps.eomaps +.. autoclass:: Maps Class Methods ------------- @@ -16,24 +17,24 @@ Class Methods .. autosummary:: :toctree: ../generated :template: obj_with_attributes_no_toc.rst + :nosignatures: Maps.config .. autosummary:: :toctree: ../generated :template: obj_with_attributes_no_toc.rst + :nosignatures: - Maps.from_file.GeoTIFF - Maps.from_file.NetCDF - Maps.from_file.CSV + Maps.from_file -General Properties ------------------- +Properties +---------- .. autosummary:: :toctree: ../generated - :nosignatures: :template: obj_with_attributes_no_toc.rst + :nosignatures: Maps.f Maps.ax @@ -42,18 +43,29 @@ General Properties .. autosummary:: :toctree: ../generated - :nosignatures: :template: obj_with_attributes_no_toc.rst + :nosignatures: Maps.data Maps.colorbar -New Maps and Layers -------------------- + + +Layers and Maps +--------------- + +.. autosummary:: + :toctree: ../generated + :template: obj_with_attributes_no_toc.rst + :nosignatures: + + Maps.new_map + Maps.new_inset_map .. autosummary:: :toctree: ../generated :template: obj_with_attributes_no_toc.rst + :nosignatures: Maps.new_layer Maps.new_layer_from_file @@ -61,9 +73,11 @@ New Maps and Layers .. autosummary:: :toctree: ../generated :template: obj_with_attributes_no_toc.rst + :nosignatures: - Maps.new_map - Maps.new_inset_map + Maps.show_layer + Maps.fetch_layers + Maps.on_layer_activation Map Features @@ -72,6 +86,7 @@ Map Features .. autosummary:: :toctree: ../generated :template: obj_with_attributes_no_toc.rst + :nosignatures: Maps.add_feature Maps.add_wms @@ -79,6 +94,7 @@ Map Features .. autosummary:: :toctree: ../generated :template: obj_with_attributes_no_toc.rst + :nosignatures: Maps.add_gdf Maps.add_annotation @@ -92,11 +108,21 @@ Map Features .. autosummary:: :toctree: ../generated :template: obj_with_attributes_no_toc.rst + :nosignatures: Maps.add_compass Maps.add_gridlines Maps.add_scalebar +Callbacks +--------- + +.. autosummary:: + :toctree: ../generated + :template: obj_with_attributes_no_toc.rst + :nosignatures: + + Maps.cb Data visualization @@ -105,6 +131,7 @@ Data visualization .. autosummary:: :toctree: ../generated :template: obj_with_attributes_no_toc.rst + :nosignatures: Maps.set_data Maps.set_shape @@ -114,6 +141,7 @@ Data visualization .. autosummary:: :toctree: ../generated :template: obj_with_attributes_no_toc.rst + :nosignatures: Maps.inherit_data Maps.inherit_classification @@ -121,67 +149,67 @@ Data visualization .. autosummary:: :toctree: ../generated :template: obj_with_attributes_no_toc.rst + :nosignatures: Maps.plot_map Maps.add_colorbar Maps.make_dataset_pickable -Layer management ----------------- +Map Extent +---------- .. autosummary:: :toctree: ../generated :template: obj_with_attributes_no_toc.rst + :nosignatures: - Maps.show_layer - Maps.fetch_layers - Maps.on_layer_activation + Maps.set_extent + Maps.get_extent + Maps.set_extent_to_location + Maps.join_limits -Figure Layout and Export ------------------------- +Layout and Export +----------------- .. autosummary:: :toctree: ../generated :template: obj_with_attributes_no_toc.rst + :nosignatures: - Maps.set_frame Maps.savefig Maps.snapshot .. autosummary:: :toctree: ../generated :template: obj_with_attributes_no_toc.rst + :nosignatures: + Maps.set_frame Maps.subplots_adjust - Maps.edit_layout - Maps.get_layout - Maps.apply_layout - - -Map Extent ----------- .. autosummary:: :toctree: ../generated :template: obj_with_attributes_no_toc.rst + :nosignatures: - Maps.set_extent - Maps.get_extent - Maps.set_extent_to_location - Maps.join_limits + Maps.edit_layout + Maps.get_layout + Maps.apply_layout -Interactive Editing -------------------- +Utilities +--------- .. autosummary:: :toctree: ../generated :template: obj_with_attributes_no_toc.rst + :nosignatures: - Maps.edit_annotations + Maps.util Maps.draw + Maps.edit_annotations Miscellaneous @@ -190,6 +218,7 @@ Miscellaneous .. autosummary:: :toctree: ../generated :template: obj_with_attributes_no_toc.rst + :nosignatures: Maps.fetch_companion_wms_layers Maps.refetch_wms_on_size_change @@ -199,6 +228,7 @@ Miscellaneous .. autosummary:: :toctree: ../generated :template: obj_with_attributes_no_toc.rst + :nosignatures: Maps.read_file.GeoTIFF Maps.read_file.NetCDF @@ -207,6 +237,7 @@ Miscellaneous .. autosummary:: :toctree: ../generated :template: obj_with_attributes_no_toc.rst + :nosignatures: Maps.show Maps.redraw diff --git a/docs/api/reference.rst b/docs/api/reference.rst index 72f7641f8..4c9f93c05 100644 --- a/docs/api/reference.rst +++ b/docs/api/reference.rst @@ -1,5 +1,115 @@ +====== +eomaps +====== -.. toctree:: - :maxdepth: 1 +.. currentmodule:: eomaps.eomaps - api_Maps +.. card:: The Maps object + :link: ../generated/eomaps.eomaps.Maps + :link-type: doc + + :py:class:`Maps` objects are used as the primary access point to create, edit and interact with maps. + + .. autosummary:: + :toctree: ../generated + :template: custom-class-template.rst + :nosignatures: + + Maps + + +Feature objects +=============== + +.. card:: + :shadow: none + + .. card:: ColorBar + :link: ../generated/eomaps.colorbar.ColorBar + :link-type: doc + :margin: 0 + + .. currentmodule:: eomaps.colorbar + + .. autosummary:: + :toctree: ../generated + :template: custom-class-template.rst + :nosignatures: + + ColorBar + + +++ + + .. currentmodule:: eomaps.eomaps + + See :py:meth:`Maps.add_colorbar` on how to add a colorbar to a map! + +.. card:: + :shadow: none + + .. card:: GridLines + :link: ../generated/eomaps.grid.GridLines + :link-type: doc + :margin: 0 + + .. currentmodule:: eomaps.grid + + .. autosummary:: + :toctree: ../generated + :template: custom-class-template.rst + :nosignatures: + + GridLines + + +++ + + .. currentmodule:: eomaps.eomaps + + See :py:meth:`Maps.add_gridlines` on how to add grid-lines to a map! + + +.. card:: + :shadow: none + + .. card:: Compass + :link: ../generated/eomaps.compass.Compass + :link-type: doc + :margin: 0 + + .. currentmodule:: eomaps.compass + + .. autosummary:: + :toctree: ../generated + :template: custom-class-template.rst + :nosignatures: + + Compass + + +++ + + .. currentmodule:: eomaps.eomaps + + See :py:meth:`Maps.add_compass` on how to add a compass (or North-arrow) to a map! + +.. card:: + :shadow: none + + .. card:: ScaleBar + :link: ../generated/eomaps.scalebar.ScaleBar + :link-type: doc + :margin: 0 + + .. currentmodule:: eomaps.scalebar + + .. autosummary:: + :toctree: ../generated + :template: custom-class-template.rst + :nosignatures: + + ScaleBar + + +++ + + .. currentmodule:: eomaps.eomaps + + See :py:meth:`Maps.add_scalebar` on how to add a scalebar to a map! diff --git a/docs/conf.py b/docs/conf.py index f22656aac..c20c7c5a7 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -1,66 +1,18 @@ # Configuration file for the Sphinx documentation builder. import sys, os -from pathlib import Path +from eomaps import Maps sys.path.insert(0, os.path.abspath(os.path.join("..", ".."))) sys.path.insert(0, os.path.abspath("..")) +sys.path.insert(0, os.path.abspath(".")) -from eomaps import Maps - - -def make_feature_toctree_file(): - preset = (f for f in dir(Maps.add_feature.preset) if not f.startswith("_")) - physical = (f for f in dir(Maps.add_feature.physical) if not f.startswith("_")) - cultural = (f for f in dir(Maps.add_feature.cultural) if not f.startswith("_")) - shapes = (f for f in dir(Maps.set_shape) if not f.startswith("_")) - draw = (f for f in dir(Maps.draw) if not f.startswith("_")) - wms = (f for f in dir(Maps.add_wms) if not f.startswith("_")) - files = (f for f in dir(Maps.from_file) if not f.startswith("_")) - read_files = (f for f in dir(Maps.read_file) if not f.startswith("_")) - - s = ( - ":orphan:\n" - ".. currentmodule:: eomaps.eomaps\n" - ".. autosummary::\n" - " :toctree: generated\n" - " :nosignatures:\n" - " :template: obj_with_attributes_no_toc.rst\n\n" - " Maps.add_wms\n" - " Maps.set_shape\n" - " Maps.config\n" - " Maps.draw\n" - " Maps.add_feature\n" - " Maps.add_feature.preset\n" - " Maps.add_feature.physical\n" - " Maps.add_feature.cultural\n" - + "\n".join( - [ - "\n".join([f" Maps.add_feature.preset.{f}" for f in preset]), - "\n".join([f" Maps.add_feature.physical.{f}" for f in physical]), - "\n".join( - [f" Maps.add_feature.physical.{f}.get_gdf" for f in physical] - ), - "\n".join([f" Maps.add_feature.cultural.{f}" for f in cultural]), - "\n".join( - [f" Maps.add_feature.cultural.{f}.get_gdf" for f in cultural] - ), - "\n".join([f" Maps.set_shape.{f}" for f in shapes]), - "\n".join([f" Maps.draw.{f}" for f in draw]), - "\n".join([f" Maps.add_wms.{f}" for f in wms]), - "\n".join([f" Maps.from_file.{f}" for f in files]), - "\n".join([f" Maps.read_file.{f}" for f in read_files]), - ] - ) - ) - - with open("autodoc_additional_props.rst", "w") as file: - file.write(s) - +from gen_autodoc_file import make_feature_toctree_file make_feature_toctree_file() def setup(app): + app.add_css_file("custom_css.css") # need to assign the names here, otherwise autodoc won't document these classes, @@ -73,6 +25,12 @@ def setup(app): Maps.set_shape.__name__ = "set_shape" Maps.draw.__name__ = "draw" Maps.add_wms.__name__ = "add_wms" + Maps.util.__name__ = "util" + Maps.cb.__name__ = "cb" + Maps.cb.click.__name__ = "click" + Maps.cb.pick.__name__ = "pick" + Maps.cb.keypress.__name__ = "keypress" + Maps.cb.move.__name__ = "move" # -- Project information @@ -94,7 +52,6 @@ def setup(app): "sphinx_design", ] - # -- Options for EPUB output epub_show_urls = "footnote" @@ -105,7 +62,7 @@ def setup(app): html_theme = "sphinx_rtd_theme" -autosummary_generate = ["full_reference.rst", "autodoc_additional_props.rst"] +autosummary_generate = ["api/autodoc_additional_props.rst"] # "full_reference.rst", autodoc_default_options = { "member-order": "alphabetical", diff --git a/docs/gen_autodoc_file.py b/docs/gen_autodoc_file.py new file mode 100644 index 000000000..bfe185711 --- /dev/null +++ b/docs/gen_autodoc_file.py @@ -0,0 +1,121 @@ +from pathlib import Path +from operator import attrgetter +from itertools import chain + +from eomaps import Maps +from eomaps.colorbar import ColorBar + + +def get_members( + obj, key="", with_sublevel=False, prefix="", names_only=False, exclude=[] +): + """get a list of attributes of a given object""" + # use attrgetter to allow also nested attributes (Maps.x.y) + if len(key) == 0: + startstr = f"{prefix}{obj.__name__}" + members = filter(lambda x: not x.startswith("_") and not x in exclude, dir(obj)) + else: + startstr = f"{prefix}{obj.__name__}.{key}" + members = filter( + lambda x: not x.startswith("_") and not x in exclude, + dir(attrgetter(key)(obj)), + ) + + if names_only: + return members + + if with_sublevel: + return chain( + *( + ( + f"{startstr}.{m}", + *( + f"{startstr}.{m}.{f}" + for f in get_members( + obj, f"{key}.{m}" if key else m, names_only=True + ) + ), + ) + for m in members + ) + ) + else: + return (f"{startstr}.{f}" for f in members) + + +def make_feature_toctree_file(): + s = ( + ":orphan:\n" + ".. currentmodule:: eomaps.eomaps\n\n" + ".. autosummary::\n" + " :toctree: ../generated\n" + " :nosignatures:\n" + " :template: obj_with_attributes_no_toc.rst\n\n" + # " Maps\n" + " ColorBar\n" + " Maps.config\n" + ) + + s += ( + "\n".join(get_members(Maps, "", False, " ", exclude=["CRS", "CLASSIFIERS"])) + + "\n" + ) + + for key in ("set_shape", "draw", "from_file", "read_file", "util", "add_wms"): + s += "\n".join(get_members(Maps, key, False, " ")) + "\n" + + for key in ("add_feature", "cb"): + s += "\n".join(get_members(Maps, key, True, " ")) + "\n" + + s += "\n\n" + s += ( + ".. currentmodule:: eomaps.colorbar\n" + ".. autosummary::\n" + " :toctree: ../generated\n" + " :nosignatures:\n" + " :template: custom-class-template.rst\n\n" + " ColorBar\n" + ) + + s += "\n\n" + s += ( + ".. currentmodule:: eomaps.grid\n" + ".. autosummary::\n" + " :toctree: ../generated\n" + " :nosignatures:\n" + " :template: custom-class-template.rst\n\n" + " GridLines\n" + " GridLabels\n" + ) + + s += "\n\n" + s += ( + ".. currentmodule:: eomaps.compass\n" + ".. autosummary::\n" + " :toctree: ../generated\n" + " :nosignatures:\n" + " :template: custom-class-template.rst\n\n" + " Compass\n" + ) + + s += "\n\n" + s += ( + ".. currentmodule:: eomaps.scalebar\n" + ".. autosummary::\n" + " :toctree: ../generated\n" + " :nosignatures:\n" + " :template: custom-class-template.rst\n\n" + " ScaleBar\n" + ) + + with open( + Path(__file__).parent / "api" / "autodoc_additional_props.rst", "w" + ) as file: + file.write(s) + + src = Path(__file__).parent / "api" / "api_Maps.rst" + + (Path(__file__).parent / "generated").mkdir(exist_ok=True) + dest = Path(__file__).parent / "generated" / "eomaps.eomaps.Maps.rst" + + dest.write_text(src.read_text()) # for text files From 579565aab35078412d3f12d5280453f2c9c5fc2c Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Thu, 11 Jan 2024 22:15:26 +0100 Subject: [PATCH 074/240] fix typo --- eomaps/cb_container.py | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/eomaps/cb_container.py b/eomaps/cb_container.py index 2af187127..c70e01284 100644 --- a/eomaps/cb_container.py +++ b/eomaps/cb_container.py @@ -1977,7 +1977,7 @@ def __init__(self, m): "_always_active", } - self.click = self.click( + self.click = ClickContainer( m=self._m, cb_cls=ClickCallbacks, method="click", @@ -1996,11 +1996,11 @@ def __init__(self, m): m=self._m, cb_cls=ClickCallbacks, method="_click_move", - parent_container=self._click, + parent_container=self.click, button_down=True, ) - self.move = self.move( + self.move = MoveContainer( m=self._m, cb_cls=MoveCallbacks, method="move", @@ -2008,13 +2008,13 @@ def __init__(self, m): default_button=None, ) - self.pick = self.pick( + self.pick = PickContainer( m=self._m, cb_cls=PickCallbacks, method="pick", ) - self.keypress = self.keypress( + self.keypress = KeypressContainer( m=self._m, cb_cls=KeypressCallbacks, method="keypress", From 6529fe73bc14aa3d32ec9fc78ab040d9e036cc78 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Thu, 11 Jan 2024 22:35:18 +0100 Subject: [PATCH 075/240] include package data in pyproject.toml --- pyproject.toml | 3 +++ 1 file changed, 3 insertions(+) diff --git a/pyproject.toml b/pyproject.toml index 88795d6df..86603e60d 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -5,6 +5,9 @@ build-backend = "setuptools.build_meta" [tool.setuptools.packages.find] include = ["eomaps"] +[tool.setuptools.package-data] +mypkg = ["NE_features.json", "logo.png"] + [project] name = "eomaps" version = "8.0" From 81bcbfe854127078ad1622bd6f105b8a3ce2c557 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Thu, 11 Jan 2024 22:39:52 +0100 Subject: [PATCH 076/240] fix including package data in pyproject.toml --- pyproject.toml | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/pyproject.toml b/pyproject.toml index 86603e60d..90031c311 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -6,7 +6,8 @@ build-backend = "setuptools.build_meta" include = ["eomaps"] [tool.setuptools.package-data] -mypkg = ["NE_features.json", "logo.png"] +eomaps = ["logo.png", "NE_features.json", "qtcompanion/icons/*"] + [project] name = "eomaps" From 7d40ab30f91eea5a688788f1ff33b95551fcd04e Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Thu, 11 Jan 2024 22:41:16 +0100 Subject: [PATCH 077/240] update pip-workflow to use pyproject.toml --- .github/workflows/Publish_to_PyPi.yml | 9 +++------ 1 file changed, 3 insertions(+), 6 deletions(-) diff --git a/.github/workflows/Publish_to_PyPi.yml b/.github/workflows/Publish_to_PyPi.yml index 340801dfe..d828baafb 100644 --- a/.github/workflows/Publish_to_PyPi.yml +++ b/.github/workflows/Publish_to_PyPi.yml @@ -16,19 +16,16 @@ jobs: # Sets up python3 - uses: actions/setup-python@v4 with: - python-version: 3.7 + python-version: 3.11 - name: Upgrade pip, install setuptools, wheel and twine run: | - # Upgrade pip - python -m pip install --upgrade pip - # Install build dependencies + python -m pip install --upgrade pip build python -m pip install setuptools wheel twine - # Upload to TestPyPI - name: Build and Upload to PyPI run: | - python setup.py sdist bdist_wheel + python -m build python -m twine upload dist/* env: TWINE_USERNAME: __token__ From 019f8c08934d28840a1b78404afe01d859762839 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Fri, 12 Jan 2024 00:36:58 +0100 Subject: [PATCH 078/240] update cross-references for ne-features --- docs/notebooks/naturalearth_features.ipynb | 3086 ++++++++++---------- 1 file changed, 1546 insertions(+), 1540 deletions(-) diff --git a/docs/notebooks/naturalearth_features.ipynb b/docs/notebooks/naturalearth_features.ipynb index cb89be0f5..498d61255 100644 --- a/docs/notebooks/naturalearth_features.ipynb +++ b/docs/notebooks/naturalearth_features.ipynb @@ -65,20 +65,19 @@ "## Preset Features\n", "For the most commonly used features, style-presets are available:\n", "\n", - "\n", "```{eval-rst}\n", - ".. currentmodule:: eomaps.ne_features.NaturalEarthPresets\n", + ".. currentmodule:: eomaps.eomaps.Maps\n", "\n", ".. autosummary::\n", " :nosignatures:\n", "\n", - " coastline\n", - " ocean\n", - " land\n", - " countries\n", - " urban_areas\n", - " lakes\n", - " rivers_lake_centerlines\n", + " add_feature.preset.coastline\n", + " add_feature.preset.ocean\n", + " add_feature.preset.land\n", + " add_feature.preset.countries\n", + " add_feature.preset.urban_areas\n", + " add_feature.preset.lakes\n", + " add_feature.preset.rivers_lake_centerlines\n", "\n", "```\n", "\n", @@ -377,1564 +376,1564 @@ "data": { "text/html": [ "

\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 SCALERANKNATSCALELABELRANKFEATURECLANAMENAMEPARNAMEALTNAMEASCIIADM0CAPCAPINWORLDCITYMEGACITYSOV0NAMESOV_A3ADM0NAMEADM0_A3ADM1NAMEISO_A2NOTELATITUDELONGITUDEPOP_MAXPOP_MINPOP_OTHERRANK_MAXRANK_MINMEGANAMELS_NAMEMAX_POP10MAX_POP20MAX_POP50MAX_POP300MAX_POP310MAX_NATSCAMIN_AREAKMMAX_AREAKMMIN_AREAMIMAX_AREAMIMIN_PERKMMAX_PERKMMIN_PERMIMAX_PERMIMIN_BBXMINMAX_BBXMINMIN_BBXMAXMAX_BBXMAXMIN_BBYMINMAX_BBYMINMIN_BBYMAXMAX_BBYMAXMEAN_BBXCMEAN_BBYCTIMEZONEUN_FIDPOP1950POP1955POP1960POP1965POP1970POP1975POP1980POP1985POP1990POP1995POP2000POP2005POP2010POP2015POP2020POP2025POP2050MIN_ZOOMWIKIDATAIDWOF_IDCAPALTNAME_ENNAME_DENAME_ESNAME_FRNAME_PTNAME_RUNAME_ZHLABELNAME_ARNAME_BNNAME_ELNAME_HINAME_HUNAME_IDNAME_ITNAME_JANAME_KONAME_NLNAME_PLNAME_SVNAME_TRNAME_VINE_IDNAME_FANAME_HENAME_UKNAME_URNAME_ZHTGEONAMESIDFCLASS_ISOFCLASS_USFCLASS_FRFCLASS_RUFCLASS_ESFCLASS_CNFCLASS_TWFCLASS_INFCLASS_NPFCLASS_PKFCLASS_DEFCLASS_GBFCLASS_BRFCLASS_ILFCLASS_PSFCLASS_SAFCLASS_EGFCLASS_MAFCLASS_PTFCLASS_ARFCLASS_JPFCLASS_KOFCLASS_VNFCLASS_TRFCLASS_IDFCLASS_PLFCLASS_GRFCLASS_ITFCLASS_NLFCLASS_SEFCLASS_BDFCLASS_UAFCLASS_TLCgeometrySCALERANKNATSCALELABELRANKFEATURECLANAMENAMEPARNAMEALTNAMEASCIIADM0CAPCAPINWORLDCITYMEGACITYSOV0NAMESOV_A3ADM0NAMEADM0_A3ADM1NAMEISO_A2NOTELATITUDELONGITUDEPOP_MAXPOP_MINPOP_OTHERRANK_MAXRANK_MINMEGANAMELS_NAMEMAX_POP10MAX_POP20MAX_POP50MAX_POP300MAX_POP310MAX_NATSCAMIN_AREAKMMAX_AREAKMMIN_AREAMIMAX_AREAMIMIN_PERKMMAX_PERKMMIN_PERMIMAX_PERMIMIN_BBXMINMAX_BBXMINMIN_BBXMAXMAX_BBXMAXMIN_BBYMINMAX_BBYMINMIN_BBYMAXMAX_BBYMAXMEAN_BBXCMEAN_BBYCTIMEZONEUN_FIDPOP1950POP1955POP1960POP1965POP1970POP1975POP1980POP1985POP1990POP1995POP2000POP2005POP2010POP2015POP2020POP2025POP2050MIN_ZOOMWIKIDATAIDWOF_IDCAPALTNAME_ENNAME_DENAME_ESNAME_FRNAME_PTNAME_RUNAME_ZHLABELNAME_ARNAME_BNNAME_ELNAME_HINAME_HUNAME_IDNAME_ITNAME_JANAME_KONAME_NLNAME_PLNAME_SVNAME_TRNAME_VINE_IDNAME_FANAME_HENAME_UKNAME_URNAME_ZHTGEONAMESIDFCLASS_ISOFCLASS_USFCLASS_FRFCLASS_RUFCLASS_ESFCLASS_CNFCLASS_TWFCLASS_INFCLASS_NPFCLASS_PKFCLASS_DEFCLASS_GBFCLASS_BRFCLASS_ILFCLASS_PSFCLASS_SAFCLASS_EGFCLASS_MAFCLASS_PTFCLASS_ARFCLASS_JPFCLASS_KOFCLASS_VNFCLASS_TRFCLASS_IDFCLASS_PLFCLASS_GRFCLASS_ITFCLASS_NLFCLASS_SEFCLASS_BDFCLASS_UAFCLASS_TLCgeometry
08103Admin-0 capitalVatican CitynannanVatican City1nan10VaticanVATVaticanVATLazioVAnan41.90328212.45338783283256243022nanVatican City636762636762000201771776868160160999912.33333312.33333312.48100912.48100941.76666741.76666742.05000042.05000012.41990741.903477Europe/Vatican0000000000000000007.000000Q2371019141850Vatican CityVatikanstadtCiudad del VaticanoCité du VaticanVaticanoВатикан梵蒂冈nanالفاتيكانভ্যাটিকান সিটিΒατικανόवैटिकन नगरVatikánVatikanCittà del Vaticanoバチカン바티칸 시국VaticaanstadWatykanVatikanstatenVatikanThành Vatican1159127243واتیکانקריית הוותיקןВатиканویٹیکن سٹی梵蒂岡6691831nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (12.4533865 41.9032822)08103Admin-0 capitalVatican CitynannanVatican City1nan10VaticanVATVaticanVATLazioVAnan41.90328212.45338783283256243022nanVatican City636762636762000201771776868160160999912.33333312.33333312.48100912.48100941.76666741.76666742.05000042.05000012.41990741.903477Europe/Vatican0000000000000000007.000000Q2371019141850Vatican CityVatikanstadtCiudad del VaticanoCité du VaticanVaticanoВатикан梵蒂冈nanالفاتيكانভ্যাটিকান সিটিΒατικανόवैटिकन नगरVatikánVatikanCittà del Vaticanoバチカン바티칸 시국VaticaanstadWatykanVatikanstatenVatikanThành Vatican1159127243واتیکانקריית הוותיקןВатиканویٹیکن سٹی梵蒂岡6691831nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (12.4533865 41.9032822)
17200Admin-0 capitalSan MarinonannanSan Marino1nan00San MarinoSMRSan MarinoSMRnanSMnan43.93609612.4417702957929000077nanSan Marino290882957900020303011116363393912.39166712.39166712.54166712.54166743.90000043.90000044.00000044.00000012.46215343.953472Europe/San_Marino0000000000000000006.100000Q18481018373810San MarinoSan MarinoSan MarinoSaint-MarinSan MarinoСан-Марино圣马力诺nanمدينة سان مارينوসান মারিনোΆγιος Μαρίνοςसैन मारिनो नगरSan MarinoSan MarinoCittà di San Marinoサンマリノ市산마리노San MarinoSan MarinoSan MarinoSan MarinoThành phố San Marino1159146051سن مارینوסן מרינוСан-Мариноسان مارینو شہر聖馬力諾3168070nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (12.4417702 43.9360958)17200Admin-0 capitalSan MarinonannanSan Marino1nan00San MarinoSMRSan MarinoSMRnanSMnan43.93609612.4417702957929000077nanSan Marino290882957900020303011116363393912.39166712.39166712.54166712.54166743.90000043.90000044.00000044.00000012.46215343.953472Europe/San_Marino0000000000000000006.100000Q18481018373810San MarinoSan MarinoSan MarinoSaint-MarinSan MarinoСан-Марино圣马力诺nanمدينة سان مارينوসান মারিনোΆγιος Μαρίνοςसैन मारिनो नगरSan MarinoSan MarinoCittà di San Marinoサンマリノ市산마리노San MarinoSan MarinoSan MarinoSan MarinoThành phố San Marino1159146051سن مارینوסן מרינוСан-Мариноسان مارینو شہر聖馬力諾3168070nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (12.4417702 43.9360958)
27200Admin-0 capitalVaduznannanVaduz1nan00LiechtensteinLIELiechtensteinLIEnanLInan47.1337249.5166703628153423300975nanVaduz45442454420002045451717909056569.4333339.4333339.5583339.55833347.09166747.09166747.23333347.2333339.50373447.167478Europe/Vaduz0000000000000000006.700000Q18441018286030VaduzVaduzVaduzVaduzVaduzВадуц瓦都兹nanفادوتسফাডুৎসΒαντούζवादुज़VaduzVaduzVaduzファドゥーツ파두츠VaduzVaduzVaduzVaduzVaduz1159146061فادوتسואדוץВадуцواڈوز華杜茲3042030nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (9.5166695 47.1337238)27200Admin-0 capitalVaduznannanVaduz1nan00LiechtensteinLIELiechtensteinLIEnanLInan47.1337249.5166703628153423300975nanVaduz45442454420002045451717909056569.4333339.4333339.5583339.55833347.09166747.09166747.23333347.2333339.50373447.167478Europe/Vaduz0000000000000000006.700000Q18441018286030VaduzVaduzVaduzVaduzVaduzВадуц瓦都兹nanفادوتسফাডুৎসΒαντούζवादुज़VaduzVaduzVaduzファドゥーツ파두츠VaduzVaduzVaduzVaduzVaduz1159146061فادوتسואדוץВадуцواڈوز華杜茲3042030nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (9.5166695 47.1337238)
36308Admin-0 capital altLobambanannanLobamba0Legislative and00eSwatiniSWZeSwatiniSWZManziniSZnan-26.46666831.19999797824557054nanLobamba97829782978200501818773232202031.18333331.18333331.23333331.233333-26.458333-26.458333-26.391667-26.39166731.201993-26.430254Africa/Mbabane0000000000000000006.000000Q1014184211997831LobambaLobambaLobambaLobambaLobambaЛобамба洛班巴nanلوبامباলোবাম্বাΛομπάμπαलोबम्बाLobambaLobambaLobambaロバンバ로밤바LobambaLobambaLobambaLobambaLobamba1159146343لوبامباלובמבהЛобамбаلوبامبا洛班巴935048nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (31.1999971 -26.4666675)36308Admin-0 capital altLobambanannanLobamba0Legislative and00eSwatiniSWZeSwatiniSWZManziniSZnan-26.46666831.19999797824557054nanLobamba97829782978200501818773232202031.18333331.18333331.23333331.233333-26.458333-26.458333-26.391667-26.39166731.201993-26.430254Africa/Mbabane0000000000000000006.000000Q1014184211997831LobambaLobambaLobambaLobambaLobambaЛобамба洛班巴nanلوبامباলোবাম্বাΛομπάμπαलोबम्बाLobambaLobambaLobambaロバンバ로밤바LobambaLobambaLobambaLobambaLobamba1159146343لوبامباלובמבהЛобамбаلوبامبا洛班巴935048nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (31.1999971 -26.4666675)
46308Admin-0 capitalLuxembourgnannanLuxembourg1nan00LuxembourgLUXLuxembourgLUXLuxembourgLUnan49.6116606.1300031072607668410621998nanLuxembourg107260107260107260005060602323717144446.0416676.0416676.1833336.18333349.55833349.55833349.70833349.7083336.12527349.620833Europe/Luxembourg0000000000000000006.000000Q18421017517650LuxembourgLuxemburgLuxemburgoLuxembourgLuxemburgoЛюксембург卢森堡nanمدينة لوكسمبورغলুক্সেমবুর্গ শহরΛουξεμβούργοलक्ज़मबर्ग नगरLuxembourgLuksemburgLussemburgoルクセンブルク市룩셈부르크LuxemburgLuksemburgLuxemburgLüksemburgLuxembourg1159146437لوکزامبورگלוקסמבורגЛюксембургلکسمبرگ盧森堡市2960316nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (6.1300028 49.6116604)46308Admin-0 capitalLuxembourgnannanLuxembourg1nan00LuxembourgLUXLuxembourgLUXLuxembourgLUnan49.6116606.1300031072607668410621998nanLuxembourg107260107260107260005060602323717144446.0416676.0416676.1833336.18333349.55833349.55833349.70833349.7083336.12527349.620833Europe/Luxembourg0000000000000000006.000000Q18421017517650LuxembourgLuxemburgLuxemburgoLuxembourgLuxemburgoЛюксембург卢森堡nanمدينة لوكسمبورغলুক্সেমবুর্গ শহরΛουξεμβούργοलक्ज़मबर्ग नगरLuxembourgLuksemburgLussemburgoルクセンブルク市룩셈부르크LuxemburgLuksemburgLuxemburgLüksemburgLuxembourg1159146437لوکزامبورگלוקסמבורגЛюксембургلکسمبرگ盧森堡市2960316nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (6.1300028 49.6116604)
56300Admin-0 capitalPalikirnannanPalikir1nan00Federated States of MicronesiaFSMFederated States of MicronesiaFSMnanFMnan6.916644158.14997446454645044nanPalikir412412412412010011004422158.158333158.158333158.166667158.1666676.9083336.9083336.9166676.916667158.1625006.912500Pacific/Ponape0000000000000000006.000000Q4275111419091410PalikirPalikirPalikirPalikirPalikirПаликир帕利基尔nanباليكيرপালিকিরΠαλικίρपेलिकियरPalikirPalikirPalikirパリキール팔리키르PalikirPalikirPalikirPalikirPalikir1159149061پالیکیرפליקירПалікірپالیکیر帕利基尔2081986nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (158.1499743 6.9166437)56300Admin-0 capitalPalikirnannanPalikir1nan00Federated States of MicronesiaFSMFederated States of MicronesiaFSMnanFMnan6.916644158.14997446454645044nanPalikir412412412412010011004422158.158333158.158333158.166667158.1666676.9083336.9083336.9166676.916667158.1625006.912500Pacific/Ponape0000000000000000006.000000Q4275111419091410PalikirPalikirPalikirPalikirPalikirПаликир帕利基尔nanباليكيرপালিকিরΠαλικίρपेलिकियरPalikirPalikirPalikirパリキール팔리키르PalikirPalikirPalikirPalikirPalikir1159149061پالیکیرפליקירПалікірپالیکیر帕利基尔2081986nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (158.1499743 6.9166437)
66300Admin-0 capitalMajuronannanMajuro1nan00Marshall IslandsMHLMarshall IslandsMHLnanMHnan7.103004171.3800002540020500077nanMajuro2084208420842084010033117755171.366667171.366667171.375000171.3750007.0916677.0916677.1166677.116667171.3708337.104167Pacific/Majuro0000000000000000006.000000Q129198904514630MajuroMajuroMajuroMajuroMajuroМаджуро马朱罗nanماجوروমাজুরোΜατζούροमाजुरोMajuroMajuroMajuroマジュロ마주로MajuroMajuroMajuroMajuroMajuro1159149063ماجوروמג'ורוМаджуроماجورو馬久羅2113779nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (171.3800002 7.1030043)66300Admin-0 capitalMajuronannanMajuro1nan00Marshall IslandsMHLMarshall IslandsMHLnanMHnan7.103004171.3800002540020500077nanMajuro2084208420842084010033117755171.366667171.366667171.375000171.3750007.0916677.0916677.1166677.116667171.3708337.104167Pacific/Majuro0000000000000000006.000000Q129198904514630MajuroMajuroMajuroMajuroMajuroМаджуро马朱罗nanماجوروমাজুরোΜατζούροमाजुरोMajuroMajuroMajuroマジュロ마주로MajuroMajuroMajuroMajuroMajuro1159149063ماجوروמג'ורוМаджуроماجورو馬久羅2113779nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (171.3800002 7.1030043)
76300Admin-0 capitalFunafutinannanFunafuti1nan00TuvaluTUVTuvaluTUVnanTVnan-8.516652179.21664747494749044nanFunafuti000000000000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000Pacific/Funafuti0000000000000000006.000000Q3412611419091430FunafutiFunafutiFunafutiFunafutiFunafutiФунафути富纳富提nanفونافوتيফুনাফুতিΦουναφούτιफुनाफुतिFunafutiFunafutiFunafutiフナフティ島푸나푸티FunafutiFunafutiFunafutiFunafutiFunafuti1159149071فونافوتیפנאפוטיФунафутіفونافوتی富纳富提2110394nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (179.2166471 -8.516652)76300Admin-0 capitalFunafutinannanFunafuti1nan00TuvaluTUVTuvaluTUVnanTVnan-8.516652179.21664747494749044nanFunafuti000000000000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000Pacific/Funafuti0000000000000000006.000000Q3412611419091430FunafutiFunafutiFunafutiFunafutiFunafutiФунафути富纳富提nanفونافوتيফুনাফুতিΦουναφούτιफुनाफुतिFunafutiFunafutiFunafutiフナフティ島푸나푸티FunafutiFunafutiFunafutiFunafutiFunafuti1159149071فونافوتیפנאפוטיФунафутіفونافوتی富纳富提2110394nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (179.2166471 -8.516652)
86300Admin-0 capitalMelekeoknannanMelekeok1nan00PalauPLWPalauPLWnanPWnan7.487396134.62654970267026055nanMelekeok000702601006622151599134.466667134.466667134.500000134.5000007.3250007.3250007.3500007.350000134.4815487.339881Pacific/Palau0000000000000000006.000000Q1540028904438830MelekeokMelekeokMelekeokMelekeokMelequeoqueМелекеок梅莱凯奥克nanميلكيوكমেলেকেওকΜελεκέοκमेलेकियोकMelekeokMelekeokMelekeokマルキョク州멜레케오크MelekeokMelekeokMelekeokMelekeokMelekeok1159149073ملکئوکמלקאוקМелекеокمیلیکوک梅萊凱奧克1559804nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (134.6265485 7.4873962)86300Admin-0 capitalMelekeoknannanMelekeok1nan00PalauPLWPalauPLWnanPWnan7.487396134.62654970267026055nanMelekeok000702601006622151599134.466667134.466667134.500000134.5000007.3250007.3250007.3500007.350000134.4815487.339881Pacific/Palau0000000000000000006.000000Q1540028904438830MelekeokMelekeokMelekeokMelekeokMelequeoqueМелекеок梅莱凯奥克nanميلكيوكমেলেকেওকΜελεκέοκमेलेकियोकMelekeokMelekeokMelekeokマルキョク州멜레케오크MelekeokMelekeokMelekeokMelekeokMelekeok1159149073ملکئوکמלקאוקМелекеокمیلیکوک梅萊凱奧克1559804nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanPOINT (134.6265485 7.4873962)
96300Admin-0 capital altBir LehlounannanBir Lehlou0Claimed as inte00Western SaharaSAHWestern SaharaSAHnanEHnan26.119167-9.652522500200021nannan000000000000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000nan0000000000000000006.000000Q61475411419091451Bir LehlouBir LehluBir LehluBir LehlouBir LehlouБир-Лелу比鄂-雷楼nanبئر لحلوবির লেহলোউΜπιρ Λελούबीर लहलूBir LehlouBir LehlouBir Lehluビル・ラルフー비르레흘루Bir LehlouAl-Bir al-HilwBir LehlouBir LehluBir Lehlou1159149075بئر لحلوביר להלוБір-Лелуبر لیہلو比鄂-雷楼-1nannanPopulated placePopulated placenannannanPopulated placenannannannannannanPopulated placePopulated placenanPopulated placenannannannannanPopulated placePopulated placePopulated placenannanPopulated placenannannannanPOINT (-9.6525222 26.1191667)96300Admin-0 capital altBir LehlounannanBir Lehlou0Claimed as inte00Western SaharaSAHWestern SaharaSAHnanEHnan26.119167-9.652522500200021nannan000000000000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000nan0000000000000000006.000000Q61475411419091451Bir LehlouBir LehluBir LehluBir LehlouBir LehlouБир-Лелу比鄂-雷楼nanبئر لحلوবির লেহলোউΜπιρ Λελούबीर लहलूBir LehlouBir LehlouBir Lehluビル・ラルフー비르레흘루Bir LehlouAl-Bir al-HilwBir LehlouBir LehluBir Lehlou1159149075بئر لحلوביר להלוБір-Лелуبر لیہلو比鄂-雷楼-1nannanPopulated placePopulated placenannannanPopulated placenannannannannannanPopulated placePopulated placenanPopulated placenannannannannanPopulated placePopulated placePopulated placenannanPopulated placenannannannanPOINT (-9.6525222 26.1191667)
\n", @@ -1992,7 +1991,7 @@ { "data": { "text/plain": [ - "[]" + "[]" ] }, "execution_count": 10, @@ -2055,6 +2054,13 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.5" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": {}, + "version_major": 2, + "version_minor": 0 + } } }, "nbformat": 4, From b54ac4fafadfff749235bf9289238a23ad74ac50 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Fri, 12 Jan 2024 00:44:20 +0100 Subject: [PATCH 079/240] update cross-references in docs --- docs/api_draw.rst | 14 +++++++------- docs/api_utils.rst | 2 +- docs/api_webmaps.rst | 4 ++-- 3 files changed, 10 insertions(+), 10 deletions(-) diff --git a/docs/api_draw.rst b/docs/api_draw.rst index f3ce6d803..69f6cea03 100644 --- a/docs/api_draw.rst +++ b/docs/api_draw.rst @@ -40,14 +40,14 @@ Starting with EOmaps v5.0 it is possible to draw simple shapes on the map using -.. currentmodule:: eomaps.draw +.. currentmodule:: eomaps.eomaps.Maps.draw .. autosummary:: :nosignatures: - ShapeDrawer.new_drawer - ShapeDrawer.rectangle - ShapeDrawer.circle - ShapeDrawer.polygon - ShapeDrawer.save_shapes - ShapeDrawer.remove_last_shape + new_drawer + rectangle + circle + polygon + save_shapes + remove_last_shape diff --git a/docs/api_utils.rst b/docs/api_utils.rst index 7b9ebae00..63f4d47af 100644 --- a/docs/api_utils.rst +++ b/docs/api_utils.rst @@ -31,7 +31,7 @@ By default, the widgets will show all available layers (except the "all" layer) - To exclude certain layers from the widget, use ``exclude_layers=[...layer-names to exclude...]`` - To remove a previously created widget ``s`` from the map, simply use ``s.remove()`` -.. currentmodule:: eomaps.utilities.Utilities +.. currentmodule:: eomaps.eomaps.Maps.util .. autosummary:: :nosignatures: diff --git a/docs/api_webmaps.rst b/docs/api_webmaps.rst index 815369d84..b1de53220 100644 --- a/docs/api_webmaps.rst +++ b/docs/api_webmaps.rst @@ -74,7 +74,7 @@ Pre-defined WebMap services **Global:** -.. currentmodule:: eomaps.webmap_containers.WebMapContainer +.. currentmodule:: eomaps.eomaps.Maps.add_wms .. autosummary:: :nosignatures: @@ -124,7 +124,7 @@ Pre-defined WebMap services Using custom WebMap services ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.. currentmodule:: eomaps.webmap_containers.WebMapContainer +.. currentmodule:: eomaps.eomaps.Maps.add_wms It is also possible to use custom WMS/WMTS/XYZ services. (see docstring of :py:meth:`get_service` for more details and examples) From d1728d6f5a3b8313e10d8efdbd3d6cfcc12d4a94 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sat, 13 Jan 2024 21:05:06 +0100 Subject: [PATCH 080/240] update docs --- docs/EOmaps_examples.rst | 16 +- .../{api_Maps.rst => eomaps.eomaps.Maps.rst} | 0 docs/api/eomaps.inset_maps.InsetMaps.rst | 42 +++ docs/api/reference.rst | 25 ++ docs/api_data_visualization.rst | 17 +- docs/conf.py | 3 + docs/example_galery.rst | 87 ++++++ docs/full_reference.rst | 9 - docs/gen_autodoc_file.py | 129 ++++----- docs/index.rst | 273 ++++++++++++------ 10 files changed, 410 insertions(+), 191 deletions(-) rename docs/api/{api_Maps.rst => eomaps.eomaps.Maps.rst} (100%) create mode 100644 docs/api/eomaps.inset_maps.InsetMaps.rst create mode 100644 docs/example_galery.rst delete mode 100644 docs/full_reference.rst diff --git a/docs/EOmaps_examples.rst b/docs/EOmaps_examples.rst index 3330b4dda..c8a22982a 100644 --- a/docs/EOmaps_examples.rst +++ b/docs/EOmaps_examples.rst @@ -8,21 +8,7 @@ ... a collection of examples that show how to create beautiful interactive maps. -.. table:: - :width: 100% - - +-----------+-----------+-----------+-----------+-----------+ - | |eximg01| | |eximg02| | |eximg03| | |eximg04| | |eximg05| | - +-----------+-----------+-----------+-----------+-----------+ - | |eximg06| | |eximg07| | |eximg08| | |eximg09| | |eximg10| | - +-----------+-----------+-----------+-----------+-----------+ - | |eximg11| | |eximg12| | |eximg13| | |eximg14| | |eximg15| | - +-----------+-----------+-----------+-----------+-----------+ - - -.. contents:: Contents: - :local: - :depth: 1 +.. include:: example_galery.rst .. _ex_1: diff --git a/docs/api/api_Maps.rst b/docs/api/eomaps.eomaps.Maps.rst similarity index 100% rename from docs/api/api_Maps.rst rename to docs/api/eomaps.eomaps.Maps.rst diff --git a/docs/api/eomaps.inset_maps.InsetMaps.rst b/docs/api/eomaps.inset_maps.InsetMaps.rst new file mode 100644 index 000000000..80edee062 --- /dev/null +++ b/docs/api/eomaps.inset_maps.InsetMaps.rst @@ -0,0 +1,42 @@ +:orphan: + +.. + NOTE: this file is copied to ../generated/eomaps.inset_maps.InsetMaps.rst before the docs are generated (see conf.py) + to serve as the auto-generated file for InsetMaps-objects! + +:py:class:`InsetMaps` +===================== + +.. currentmodule:: eomaps.inset_maps + +.. autoclass:: InsetMaps + + +.. card:: InsetMaps are Maps-objects! + :link: eomaps.eomaps.Maps + :link-type: doc + + .. currentmodule:: eomaps.eomaps + + You can use :py:class:`InsetMaps` objects just like ordinary :py:class:`Maps` objects! + + Checkout the docs for :py:class:`Maps` objects for all available methods! + + +++ + + To create a new inset-map, have a look at :py:meth:`Maps.new_inset_map`. + + +.. currentmodule:: eomaps.inset_maps + +Special InsetMaps Methods +------------------------- + +.. autosummary:: + :toctree: ../generated + :template: obj_with_attributes_no_toc.rst + :nosignatures: + + InsetMaps.set_inset_position + InsetMaps.add_extent_indicator + InsetMaps.add_indicator_line diff --git a/docs/api/reference.rst b/docs/api/reference.rst index 4c9f93c05..7630d9d48 100644 --- a/docs/api/reference.rst +++ b/docs/api/reference.rst @@ -21,6 +21,31 @@ eomaps Feature objects =============== + +.. card:: + :shadow: none + + .. card:: InsetMaps + :link: ../generated/eomaps.inset_maps.InsetMaps + :link-type: doc + :margin: 0 + + .. currentmodule:: eomaps.inset_maps + + .. autosummary:: + :toctree: ../generated + :template: custom-class-template.rst + :nosignatures: + + InsetMaps + + +++ + + .. currentmodule:: eomaps.eomaps + + See :py:meth:`Maps.add_inset_map` on how to add a colorbar to a map! + + .. card:: :shadow: none diff --git a/docs/api_data_visualization.rst b/docs/api_data_visualization.rst index 7823c98b6..932847c60 100644 --- a/docs/api_data_visualization.rst +++ b/docs/api_data_visualization.rst @@ -225,6 +225,8 @@ Available shapes (see bleow for details on each plot-shape!): | ... and ``m.set_shape.shade_points()`` is attempted to be used for the rest. +.. _shp_ellipses: + Ellipses ******** @@ -251,6 +253,8 @@ Ellipses n=50 # number of calculated points on the ellipse ) +.. _shp_rectangles: + Rectangles ********** @@ -279,6 +283,7 @@ Rectangles ) +.. _shp_geod_circles: Geodesic Circles **************** @@ -306,6 +311,7 @@ Geodesic Circles n=50 # number of calculated points on the circle ) +.. _shp_voronoi: Voronoi Diagram *************** @@ -335,8 +341,7 @@ Voronoi Diagram ) - - +.. _shp_delaunay: Delaunay Triangulation ********************** @@ -368,6 +373,8 @@ Delaunay Triangulation mask_crs="in", # projection of the mask dimension ) +.. _shp_contour: + Contour plots ************* @@ -395,6 +402,7 @@ Contour plots m.set_shape.contour(filled=True) # filled contour polygons (True) or contour lines (False) +.. _shp_scatter: Scatter Points ************** @@ -422,6 +430,7 @@ Scatter Points marker="*", # the marker shape to use ) +.. _shp_raster: Raster ****** @@ -450,6 +459,8 @@ Raster valid_fraction=0.5, # % of masked values in aggregation bin for masked result interp_order=0, # spline interpolation order for "spline" aggregator +.. _shp_shade_raster: + Shade Raster ************ @@ -479,6 +490,8 @@ Shade Raster agg_hook=None, # datashader aggregation hook callback ) +.. _shp_shade_points: + Shade Points ************ diff --git a/docs/conf.py b/docs/conf.py index c20c7c5a7..adfa0ee65 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -99,6 +99,9 @@ def setup(app): "jupyter_execute/*", ".jupyter_cache/*", ".virtual_documents/*", + # files starting with eomaps. are copied to the generated folder + # (check "make_feature_toctree_file()" for more details. + "api/eomaps.*", ] source_suffix = { diff --git a/docs/example_galery.rst b/docs/example_galery.rst new file mode 100644 index 000000000..06a5ee0aa --- /dev/null +++ b/docs/example_galery.rst @@ -0,0 +1,87 @@ +.. grid:: 2 3 4 5 + :gutter: 1 + + .. grid-item-card:: + :img-background: _static/fig1.gif + :img-alt: Example 1 - Basic data visualization + :link: ex_1 + :link-type: ref + + .. grid-item-card:: + :img-background: _static/fig2.png + :img-alt: Example 2 - Customize the appearance of the map + :link: ex_2 + :link-type: ref + + .. grid-item-card:: + :img-background: _static/fig3.gif + :img-alt: Example 3 - Data-classification and multiple Maps in a figure + :link: ex_3 + :link-type: ref + + .. grid-item-card:: + :img-background: _static/fig4.gif + :img-alt: Example 4 - Callbacks - turn your maps into interactive widgets + :link: ex_4 + :link-type: ref + + .. grid-item-card:: + :img-background: _static/fig5.gif + :img-alt: Example 5 - Overlays, markers and annotations + :link: ex_5 + :link-type: ref + + .. grid-item-card:: + :img-background: _static/fig6.gif + :img-alt: Example 6 - WebMap services and layer-switching + :link: ex_6 + :link-type: ref + + .. grid-item-card:: + :img-background: _static/fig7.gif + :img-alt: Example 7 - Vector data - interactive geometries + :link: ex_7 + :link-type: ref + + .. grid-item-card:: + :img-background: _static/fig8.gif + :img-alt: Example 8 - Using Scalebars + :link: ex_8 + :link-type: ref + + .. grid-item-card:: + :img-background: _static/fig9.gif + :img-alt: Example 9 - Data analysis widgets - Timeseries and histograms + :link: ex_9 + :link-type: ref + + .. grid-item-card:: + :img-background: _static/example_row_col_selector.gif + :img-alt: Example 10 - Data analysis widgets - Select 1D slices of a 2D dataset + :link: ex_10 + :link-type: ref + + .. grid-item-card:: + :img-background: _static/example_inset_maps.png + :img-alt: Example 11 - Inset-maps - get a zoomed-in view on selected areas + :link: ex_11 + :link-type: ref + + .. grid-item-card:: + :img-background: _static/example_lines.png + :img-alt: Example 12 - Lines and Annotations + :text-align: center + :link: ex_12 + :link-type: ref + + .. grid-item-card:: + :img-background: _static/example_gridlines.png + :img-alt: Example 13 - Gridlines and Grid Labels + :link: ex_13 + :link-type: ref + + .. grid-item-card:: + :img-background: _static/example_contour.png + :img-alt: Example 14 - Contour plots and Contour Levels + :link: ex_14 + :link-type: ref diff --git a/docs/full_reference.rst b/docs/full_reference.rst deleted file mode 100644 index ec10cbce9..000000000 --- a/docs/full_reference.rst +++ /dev/null @@ -1,9 +0,0 @@ -:orphan: - -.. autosummary:: - :toctree: generated - :nosignatures: - :template: custom-module-template.rst - :recursive: - - eomaps diff --git a/docs/gen_autodoc_file.py b/docs/gen_autodoc_file.py index bfe185711..6cafda795 100644 --- a/docs/gen_autodoc_file.py +++ b/docs/gen_autodoc_file.py @@ -3,19 +3,32 @@ from itertools import chain from eomaps import Maps -from eomaps.colorbar import ColorBar -def get_members( - obj, key="", with_sublevel=False, prefix="", names_only=False, exclude=[] +def get_autosummary( + currentmodule="eomaps.eomaps", + members=[], + template="obj_with_attributes_no_toc", ): + return ( + f".. currentmodule:: {currentmodule}\n" + ".. autosummary::\n" + " :toctree: ../generated\n" + " :nosignatures:\n" + f" :template: {template}.rst\n\n" + + "\n".join(f" {m}" for m in members) + + "\n\n" + ) + + +def get_members(obj, key="", with_sublevel=False, names_only=False, exclude=[]): """get a list of attributes of a given object""" # use attrgetter to allow also nested attributes (Maps.x.y) if len(key) == 0: - startstr = f"{prefix}{obj.__name__}" + startstr = f"{obj.__name__}" members = filter(lambda x: not x.startswith("_") and not x in exclude, dir(obj)) else: - startstr = f"{prefix}{obj.__name__}.{key}" + startstr = f"{obj.__name__}.{key}" members = filter( lambda x: not x.startswith("_") and not x in exclude, dir(attrgetter(key)(obj)), @@ -44,78 +57,56 @@ def get_members( def make_feature_toctree_file(): - s = ( - ":orphan:\n" - ".. currentmodule:: eomaps.eomaps\n\n" - ".. autosummary::\n" - " :toctree: ../generated\n" - " :nosignatures:\n" - " :template: obj_with_attributes_no_toc.rst\n\n" - # " Maps\n" - " ColorBar\n" - " Maps.config\n" - ) - - s += ( - "\n".join(get_members(Maps, "", False, " ", exclude=["CRS", "CLASSIFIERS"])) - + "\n" - ) - - for key in ("set_shape", "draw", "from_file", "read_file", "util", "add_wms"): - s += "\n".join(get_members(Maps, key, False, " ")) + "\n" - + # Fetch all members of the Maps object that should get a auto-generated docs-file + members = list(get_members(Maps, "", False, exclude=["CRS", "CLASSIFIERS"])) + for key in ( + "set_shape", + "draw", + "from_file", + "read_file", + "util", + "add_wms", + ): + members.extend(get_members(Maps, key, False)) for key in ("add_feature", "cb"): - s += "\n".join(get_members(Maps, key, True, " ")) + "\n" + members.extend(get_members(Maps, key, True)) - s += "\n\n" - s += ( - ".. currentmodule:: eomaps.colorbar\n" - ".. autosummary::\n" - " :toctree: ../generated\n" - " :nosignatures:\n" - " :template: custom-class-template.rst\n\n" - " ColorBar\n" + # create a page that will be used for sphinx-autodoc to create stub-files + s = ":orphan:\n\n" + s += get_autosummary( + "eomaps.eomaps", ["Maps.config", *members], "obj_with_attributes_no_toc" ) - - s += "\n\n" - s += ( - ".. currentmodule:: eomaps.grid\n" - ".. autosummary::\n" - " :toctree: ../generated\n" - " :nosignatures:\n" - " :template: custom-class-template.rst\n\n" - " GridLines\n" - " GridLabels\n" + s += get_autosummary("eomaps.colorbar", ["ColorBar"], "custom-class-template") + s += get_autosummary( + "eomaps.grid", ["GridLines", "GridLabels"], "custom-class-template" ) - - s += "\n\n" - s += ( - ".. currentmodule:: eomaps.compass\n" - ".. autosummary::\n" - " :toctree: ../generated\n" - " :nosignatures:\n" - " :template: custom-class-template.rst\n\n" - " Compass\n" + s += get_autosummary("eomaps.compass", ["Compass"], "custom-class-template") + s += get_autosummary("eomaps.scalebar", ["ScaleBar"], "custom-class-template") + s += get_autosummary( + "eomaps.inset_maps", + [ + "InsetMaps.set_inset_position", + "InsetMaps.add_extent_indicator", + "InsetMaps.add_indicator_line", + ], + "obj_with_attributes_no_toc", ) - s += "\n\n" - s += ( - ".. currentmodule:: eomaps.scalebar\n" - ".. autosummary::\n" - " :toctree: ../generated\n" - " :nosignatures:\n" - " :template: custom-class-template.rst\n\n" - " ScaleBar\n" - ) + basepath = Path(__file__).parent - with open( - Path(__file__).parent / "api" / "autodoc_additional_props.rst", "w" - ) as file: + with open(basepath / "api" / "autodoc_additional_props.rst", "w") as file: file.write(s) - src = Path(__file__).parent / "api" / "api_Maps.rst" + # Copy the custom api files to the "generated" docs folder so that they serve + # as the autodoc-files for the associated objects. + # This is done to redirect links for :py:class:`` to the custom file + # to get a more customized page for the API docs of the objects. - (Path(__file__).parent / "generated").mkdir(exist_ok=True) - dest = Path(__file__).parent / "generated" / "eomaps.eomaps.Maps.rst" + src_basepath = basepath / "api" + dest_basepath = basepath / "generated" - dest.write_text(src.read_text()) # for text files + (basepath / "generated").mkdir(exist_ok=True) + # copy all files starting with "eomaps." (e.g. "eomaps.eomaps.Maps.rst") + # Note: original source-files are ignored in conf.py to avoid duplication warnings! + for file in filter(lambda x: x.stem.startswith("eomaps."), src_basepath.iterdir()): + (dest_basepath / file.name).write_text(file.read_text()) diff --git a/docs/index.rst b/docs/index.rst index 5d3db9e6e..7644c39c3 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -12,7 +12,7 @@

-Here you can find detailed explanations on all the functionalities of EOmaps. +Here you can find detailed explanations on all the features and functionalities of EOmaps. .. admonition:: Interested in contributing to EOmaps? @@ -37,44 +37,58 @@ Want to visualize some data? Have a look at the :doc:`api_data_visualization` se EOmaps provides a variety of plot-shapes so you can select a shape that suits the structure, size and spatial representativeness of your data: -.. raw:: html +.. grid:: 2 2 5 5 + :gutter: 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
EllipsesRectanglesGeodesic CirclesRasterScatter Points
ContourVoronoi DiagramDelaunay TriangulationShade RasterShade Points
+ .. grid-item-card:: Ellipses + :img-bottom: _static/shape_imgs/ellipses.png + :link: shp_ellipses + :link-type: ref + .. grid-item-card:: Rectangles + :img-bottom: _static/shape_imgs/rectangles.png + :link: shp_rectangles + :link-type: ref -.. raw:: html + .. grid-item-card:: Geodesic Circles + :img-bottom: _static/shape_imgs/geod_circles.png + :link: shp_geod_circles + :link-type: ref + + .. grid-item-card:: raster + :img-bottom: _static/shape_imgs/raster.png + :link: shp_raster + :link-type: ref + + .. grid-item-card:: Scatter Points + :img-bottom: _static/shape_imgs/scatter_points.png + :link: shp_scatter + :link-type: ref + + .. grid-item-card:: Contour + :img-bottom: _static/shape_imgs/contour.png + :link: shp_contour + :link-type: ref + + .. grid-item-card:: Voronoi Diagram + :img-bottom: _static/shape_imgs/voronoi_diagram.png + :link: shp_voronoi + :link-type: ref + + .. grid-item-card:: Delaunay Triangulation + :img-bottom: _static/shape_imgs/delaunay_triangulation.png + :link: shp_delaunay + :link-type: ref -

+ .. grid-item-card:: Shade Raster + :img-bottom: _static/shape_imgs/shade_raster.png + :link: shp_shade_raster + :link-type: ref + .. grid-item-card:: Shade Points + :img-bottom: _static/shape_imgs/shade_points.png + :link: shp_shade_points + :link-type: ref Map Features @@ -84,29 +98,65 @@ Map Features EOmaps provides many useful tools to customize your maps. -.. list-table:: - :width: 100% - :widths: 50 50 - * - | :doc:`notebooks/inset_maps` - | Create zoomed-in views on specific regions of a map. - - | :doc:`notebooks/naturalearth_features` - | Add basic map features (coastlines, ocean-coloring etc. ) to the map. +.. grid:: 1 1 2 2 + :gutter: 1 + + .. grid-item-card:: :doc:`notebooks/naturalearth_features` + :link: notebooks/naturalearth_features + :link-type: doc + :shadow: none + + Add basic map features (coastlines, ocean-coloring etc. ) to the map. + + .. grid-item-card:: :doc:`api_webmaps` + :link: api_webmaps + :link-type: doc + :shadow: none + + Add imagery provided by WebMap services to the map. + + .. grid-item-card:: :doc:`notebooks/inset_maps` + :link: notebooks/inset_maps + :link-type: doc + :shadow: none + + Create zoomed-in views on specific regions of a map. - * - | :doc:`api_webmaps` - | Add imagery provided by WebMap services (ts, wms, wmts, xyz) to the map. - - | :doc:`api_vector_data` - | Add vector geometries to the map. + .. grid-item-card:: :doc:`api_vector_data` + :link: api_vector_data + :link-type: doc + :shadow: none - * - | :doc:`api_annotations_markers_etc` - | Add markers, annotations, lines, logos etc. to the map. - - | :doc:`api_scalebar` - | Add a scalebar to the map. + Add vector geometries to the map. - * - | :doc:`api_compass` - | Add a compass (or North Arrow) to the map. - - | :doc:`api_gridlines` - | Add grid-lines (and optionally grid-labels) to the map. + .. grid-item-card:: :doc:`api_annotations_markers_etc` + :link: api_annotations_markers_etc + :link-type: doc + :shadow: none + + Add markers, annotations, lines, logos etc. to the map. + + .. grid-item-card:: :doc:`api_scalebar` + :link: api_scalebar + :link-type: doc + :shadow: none + + Add a scalebar to the map. + + .. grid-item-card:: :doc:`api_compass` + :link: api_compass + :link-type: doc + :shadow: none + + Add a compass (or North Arrow) to the map. + + .. grid-item-card:: :doc:`api_gridlines` + :link: api_gridlines + :link-type: doc + :shadow: none + + Add grid-lines (and optionally grid-labels) to the map. Interactivity @@ -114,56 +164,88 @@ Interactivity With a few lines of code, you can turn your maps into interactive data-analysis widgets! -.. list-table:: - :width: 100% - :widths: 50 50 - - * - | :doc:`api_companion_widget` - | A graphical user-interface to interact with the map. - - | :doc:`api_callbacks` - | Turn your maps into interactive data-analysis widgets. - * - | :doc:`api_layout_editor` - | Interactively re-arrange and re-size axes of a figure. - - | :doc:`api_draw` - | Interactively draw geometries on a map and export them as shapefiles. - * - | :doc:`api_utils` - | A collection of utility widgets (layer-sliders, layer-selectors) - - + +.. grid:: 1 1 2 2 + :gutter: 1 + + .. grid-item-card:: :doc:`api_companion_widget` + :link: api_companion_widget + :link-type: doc + :shadow: none + + A graphical user-interface to interact with the map. + + .. grid-item-card:: :doc:`api_callbacks` + :link: api_callbacks + :link-type: doc + :shadow: none + + Turn your maps into interactive data-analysis widgets. + + .. grid-item-card:: :doc:`api_layout_editor` + :link: api_layout_editor + :link-type: doc + :shadow: none + + Interactively re-arrange and re-size axes of a figure. + + .. grid-item-card:: :doc:`api_draw` + :link: api_draw + :link-type: doc + :shadow: none + + Interactively draw geometries on a map and export them as shapefiles. + + .. grid-item-card:: :doc:`api_utils` + :link: api_utils + :link-type: doc + :shadow: none + + A collection of utility widgets (layer-sliders, layer-selectors) + Miscellaneous ~~~~~~~~~~~~~ -.. list-table:: - :width: 100% - :widths: 50 50 +.. grid:: 1 1 2 2 + :gutter: 1 - * - | :doc:`api_logging` - | Details on logging. - - | :doc:`api_command_line_interface` - | How to use the command-line interface `eomaps`. - * - | :doc:`api_read_data` - | Read data from NetCDF, GeoTIFF or CSV files. - - | :doc:`api_misc` - | Additional functions and properties that might come in handy. + .. grid-item-card:: :doc:`api_logging` + :link: api_logging + :link-type: doc + :shadow: none + Details on logging. + .. grid-item-card:: :doc:`api_command_line_interface` + :link: api_command_line_interface + :link-type: doc + :shadow: none + + How to use the ``eomaps`` command-line interface. + + .. grid-item-card:: :doc:`api_read_data` + :link: api_companion_widget + :link-type: doc + :shadow: none + + Read data from NetCDF, GeoTIFF or CSV files. + + .. grid-item-card:: :doc:`api_misc` + :link: api_misc + :link-type: doc + :shadow: none + + Additional functions and properties that might come in handy. Examples -------- -Make sure to check out the :doc:`EOmaps_examples` for an overview of the capabilities (incl. source code)! +Make sure to check out the :doc:`Examples ` for an overview of the capabilities (incl. source code)! -.. table:: - :width: 100% - +-----------+-----------+-----------+-----------+-----------+ - | |eximg01| | |eximg02| | |eximg03| | |eximg04| | |eximg05| | - +-----------+-----------+-----------+-----------+-----------+ - | |eximg06| | |eximg07| | |eximg08| | |eximg09| | |eximg10| | - +-----------+-----------+-----------+-----------+-----------+ - | |eximg11| | |eximg12| | |eximg13| | |eximg14| | |eximg15| | - +-----------+-----------+-----------+-----------+-----------+ +.. include:: example_galery.rst .. toctree:: @@ -174,6 +256,12 @@ Make sure to check out the :doc:`EOmaps_examples` for an overview of the capabil installation FAQ +.. toctree:: + :hidden: + :maxdepth: 2 + :caption: Contribute + + contribute .. toctree:: :hidden: @@ -229,13 +317,6 @@ Make sure to check out the :doc:`EOmaps_examples` for an overview of the capabil EOmaps_examples -.. toctree:: - :hidden: - :maxdepth: 2 - :caption: Contribute - - contribute - .. toctree:: :hidden: :maxdepth: 1 From c6e147ba56ea7ff0ed09d53a3730fda39a96b2d4 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sat, 13 Jan 2024 21:05:42 +0100 Subject: [PATCH 081/240] minor --- docs/notebooks/inset_maps.ipynb | 2 +- eomaps/eomaps.py | 6 +++--- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/docs/notebooks/inset_maps.ipynb b/docs/notebooks/inset_maps.ipynb index 54f57c4ee..3453bbb57 100644 --- a/docs/notebooks/inset_maps.ipynb +++ b/docs/notebooks/inset_maps.ipynb @@ -46,7 +46,7 @@ "source": [ "## How to create inset maps\n", "```{eval-rst}\n", - ".. currentmodule:: eomaps\n", + ".. currentmodule:: eomaps.eomaps\n", "```\n", "\n", "Inset maps are used to show **zoomed-in regions of a map** and can be created with {py:meth}`Maps.new_inset_map`.\n", diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index 62dda37e9..016af91ca 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -1094,9 +1094,9 @@ def new_inset_map( Returns ------- - m : eomaps.Maps - A eomaps.Maps-object of the inset-map. - (use it just like any other Maps-object) + m : eomaps.inset_maps.InsetMaps + A InsetMaps-object of the inset-map. + (you can use it just like any other Maps-object!) See Also -------- From 902e841e518959847251acb8f300a05d05ae08ed Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sat, 13 Jan 2024 22:45:32 +0100 Subject: [PATCH 082/240] address final docs-warnings - implement custom rc role to address warnings from inherited docstrings - link to matplotlib docs via intersphinx to resolve external labels --- docs/conf.py | 32 ++++++++++++++++++++++++++++++-- 1 file changed, 30 insertions(+), 2 deletions(-) diff --git a/docs/conf.py b/docs/conf.py index adfa0ee65..3914f2116 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -1,5 +1,7 @@ # Configuration file for the Sphinx documentation builder. import sys, os +from docutils.nodes import reference + from eomaps import Maps sys.path.insert(0, os.path.abspath(os.path.join("..", ".."))) @@ -11,12 +13,31 @@ make_feature_toctree_file() +def mpl_rc_role_subst(name, rawtext, text, lineno, inliner, options={}, content=[]): + """ + A custom role to avoid 'undefined role' warnings when processing inherited + docstrings from matplotlib that use the 'rc' role. + + Each :rc: role is just turned into a link to the matplotlib rcparams file where you + can find the actual default value. + """ + + node = reference( + "", + f"matpltolib rcParams['{text}']", + refuri=r"https://matplotlib.org/stable/users/explain/customizing.html#matplotlibrc-sample", + ) + return [node], [] + + def setup(app): + # add rc role to avoid undefined role warnings from inherited docstrings. + app.add_role("rc", mpl_rc_role_subst) app.add_css_file("custom_css.css") - # need to assign the names here, otherwise autodoc won't document these classes, - # and will instead just say 'alias of ...' + # By default, autodoc will print 'alias of ...' for aliases. + # This can be avoided by explicitly setting the __name__ property. # see https://stackoverflow.com/a/58982001/9703451 Maps.add_feature.__name__ = "add_feature" Maps.add_feature.preset.__name__ = "preset" @@ -46,12 +67,19 @@ def setup(app): "sphinx.ext.autodoc", "sphinx.ext.autosummary", "sphinx.ext.napoleon", + "sphinx.ext.intersphinx", "sphinx_copybutton", "sphinx_rtd_theme", "myst_nb", "sphinx_design", ] + +# add mapping for matplotlib-docs to resolve warning about undefined labels +# in inherited docstrings +intersphinx_mapping = {"mpl": ("https://matplotlib.org/stable", None)} + + # -- Options for EPUB output epub_show_urls = "footnote" From 4dd71b1c9638a3e71ecfdcf29c519f7a821e8708 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sat, 13 Jan 2024 22:45:39 +0100 Subject: [PATCH 083/240] update docs --- docs/FAQ.rst | 10 +++++++--- 1 file changed, 7 insertions(+), 3 deletions(-) diff --git a/docs/FAQ.rst b/docs/FAQ.rst index 0613e8f98..804275d74 100644 --- a/docs/FAQ.rst +++ b/docs/FAQ.rst @@ -349,14 +349,18 @@ Important changes between major versions .. dropdown:: ⚙ From EOmaps v7.x to v8.x + - ❗ Starting with `v8.x` eomaps is licensed under a "BSD 3 clause" license! + - ⚠️ Some functions and classes have been re-named to better follow PEP8 naming conventions. While this should not interfere with the public API, more extensive customizations might need to be adjusted with respect to the new names. - If you encounter any problems, feel free to open an `issue `_ , and I'll see what I can do! + - If you encounter any problems, feel free to open an `issue `_ , and I'll see what I can do! + + - ⚠️ ``pip`` install has been updated to implement optional dependency groups. - - ⚠️ ``pip`` install has been updated to implement optional dependency groups - Have a look at the :ref:`installation` instructions for more details! + - ❗ ``pip install eomaps`` now only installs minimal dependencies required for eomaps + - Have a look at the :ref:`installation` instructions for more details! - ``setup.py`` and ``_version.py`` have been removed in favor of using a ``pyproject.toml`` file From 65b142142efae7eddd85df15f2a188a64a49fcbc Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Wed, 3 Jan 2024 18:40:51 +0100 Subject: [PATCH 084/240] switch from GPL to BSD-3 license --- LICENSE | 702 ++----------------------------------------------- pyproject.toml | 2 +- 2 files changed, 29 insertions(+), 675 deletions(-) diff --git a/LICENSE b/LICENSE index f288702d2..4b2b24e5f 100644 --- a/LICENSE +++ b/LICENSE @@ -1,674 +1,28 @@ - GNU GENERAL PUBLIC LICENSE - Version 3, 29 June 2007 - - Copyright (C) 2007 Free Software Foundation, Inc. - Everyone is permitted to copy and distribute verbatim copies - of this license document, but changing it is not allowed. - - Preamble - - The GNU General Public License is a free, copyleft license for -software and other kinds of works. - - The licenses for most software and other practical works are designed -to take away your freedom to share and change the works. By contrast, -the GNU General Public License is intended to guarantee your freedom to -share and change all versions of a program--to make sure it remains free -software for all its users. We, the Free Software Foundation, use the -GNU General Public License for most of our software; it applies also to -any other work released this way by its authors. You can apply it to -your programs, too. - - When we speak of free software, we are referring to freedom, not -price. Our General Public Licenses are designed to make sure that you -have the freedom to distribute copies of free software (and charge for -them if you wish), that you receive source code or can get it if you -want it, that you can change the software or use pieces of it in new -free programs, and that you know you can do these things. - - To protect your rights, we need to prevent others from denying you -these rights or asking you to surrender the rights. Therefore, you have -certain responsibilities if you distribute copies of the software, or if -you modify it: responsibilities to respect the freedom of others. - - For example, if you distribute copies of such a program, whether -gratis or for a fee, you must pass on to the recipients the same -freedoms that you received. You must make sure that they, too, receive -or can get the source code. And you must show them these terms so they -know their rights. - - Developers that use the GNU GPL protect your rights with two steps: -(1) assert copyright on the software, and (2) offer you this License -giving you legal permission to copy, distribute and/or modify it. - - For the developers' and authors' protection, the GPL clearly explains -that there is no warranty for this free software. For both users' and -authors' sake, the GPL requires that modified versions be marked as -changed, so that their problems will not be attributed erroneously to -authors of previous versions. - - Some devices are designed to deny users access to install or run -modified versions of the software inside them, although the manufacturer -can do so. This is fundamentally incompatible with the aim of -protecting users' freedom to change the software. The systematic -pattern of such abuse occurs in the area of products for individuals to -use, which is precisely where it is most unacceptable. Therefore, we -have designed this version of the GPL to prohibit the practice for those -products. If such problems arise substantially in other domains, we -stand ready to extend this provision to those domains in future versions -of the GPL, as needed to protect the freedom of users. - - Finally, every program is threatened constantly by software patents. -States should not allow patents to restrict development and use of -software on general-purpose computers, but in those that do, we wish to -avoid the special danger that patents applied to a free program could -make it effectively proprietary. To prevent this, the GPL assures that -patents cannot be used to render the program non-free. - - The precise terms and conditions for copying, distribution and -modification follow. - - TERMS AND CONDITIONS - - 0. Definitions. - - "This License" refers to version 3 of the GNU General Public License. - - "Copyright" also means copyright-like laws that apply to other kinds of -works, such as semiconductor masks. - - "The Program" refers to any copyrightable work licensed under this -License. Each licensee is addressed as "you". "Licensees" and -"recipients" may be individuals or organizations. - - To "modify" a work means to copy from or adapt all or part of the work -in a fashion requiring copyright permission, other than the making of an -exact copy. The resulting work is called a "modified version" of the -earlier work or a work "based on" the earlier work. - - A "covered work" means either the unmodified Program or a work based -on the Program. - - To "propagate" a work means to do anything with it that, without -permission, would make you directly or secondarily liable for -infringement under applicable copyright law, except executing it on a -computer or modifying a private copy. Propagation includes copying, -distribution (with or without modification), making available to the -public, and in some countries other activities as well. - - To "convey" a work means any kind of propagation that enables other -parties to make or receive copies. Mere interaction with a user through -a computer network, with no transfer of a copy, is not conveying. - - An interactive user interface displays "Appropriate Legal Notices" -to the extent that it includes a convenient and prominently visible -feature that (1) displays an appropriate copyright notice, and (2) -tells the user that there is no warranty for the work (except to the -extent that warranties are provided), that licensees may convey the -work under this License, and how to view a copy of this License. If -the interface presents a list of user commands or options, such as a -menu, a prominent item in the list meets this criterion. - - 1. Source Code. - - The "source code" for a work means the preferred form of the work -for making modifications to it. "Object code" means any non-source -form of a work. - - A "Standard Interface" means an interface that either is an official -standard defined by a recognized standards body, or, in the case of -interfaces specified for a particular programming language, one that -is widely used among developers working in that language. - - The "System Libraries" of an executable work include anything, other -than the work as a whole, that (a) is included in the normal form of -packaging a Major Component, but which is not part of that Major -Component, and (b) serves only to enable use of the work with that -Major Component, or to implement a Standard Interface for which an -implementation is available to the public in source code form. A -"Major Component", in this context, means a major essential component -(kernel, window system, and so on) of the specific operating system -(if any) on which the executable work runs, or a compiler used to -produce the work, or an object code interpreter used to run it. - - The "Corresponding Source" for a work in object code form means all -the source code needed to generate, install, and (for an executable -work) run the object code and to modify the work, including scripts to -control those activities. However, it does not include the work's -System Libraries, or general-purpose tools or generally available free -programs which are used unmodified in performing those activities but -which are not part of the work. For example, Corresponding Source -includes interface definition files associated with source files for -the work, and the source code for shared libraries and dynamically -linked subprograms that the work is specifically designed to require, -such as by intimate data communication or control flow between those -subprograms and other parts of the work. - - The Corresponding Source need not include anything that users -can regenerate automatically from other parts of the Corresponding -Source. - - The Corresponding Source for a work in source code form is that -same work. - - 2. Basic Permissions. - - All rights granted under this License are granted for the term of -copyright on the Program, and are irrevocable provided the stated -conditions are met. This License explicitly affirms your unlimited -permission to run the unmodified Program. The output from running a -covered work is covered by this License only if the output, given its -content, constitutes a covered work. This License acknowledges your -rights of fair use or other equivalent, as provided by copyright law. - - You may make, run and propagate covered works that you do not -convey, without conditions so long as your license otherwise remains -in force. You may convey covered works to others for the sole purpose -of having them make modifications exclusively for you, or provide you -with facilities for running those works, provided that you comply with -the terms of this License in conveying all material for which you do -not control copyright. Those thus making or running the covered works -for you must do so exclusively on your behalf, under your direction -and control, on terms that prohibit them from making any copies of -your copyrighted material outside their relationship with you. - - Conveying under any other circumstances is permitted solely under -the conditions stated below. Sublicensing is not allowed; section 10 -makes it unnecessary. - - 3. Protecting Users' Legal Rights From Anti-Circumvention Law. - - No covered work shall be deemed part of an effective technological -measure under any applicable law fulfilling obligations under article -11 of the WIPO copyright treaty adopted on 20 December 1996, or -similar laws prohibiting or restricting circumvention of such -measures. - - When you convey a covered work, you waive any legal power to forbid -circumvention of technological measures to the extent such circumvention -is effected by exercising rights under this License with respect to -the covered work, and you disclaim any intention to limit operation or -modification of the work as a means of enforcing, against the work's -users, your or third parties' legal rights to forbid circumvention of -technological measures. - - 4. Conveying Verbatim Copies. - - You may convey verbatim copies of the Program's source code as you -receive it, in any medium, provided that you conspicuously and -appropriately publish on each copy an appropriate copyright notice; -keep intact all notices stating that this License and any -non-permissive terms added in accord with section 7 apply to the code; -keep intact all notices of the absence of any warranty; and give all -recipients a copy of this License along with the Program. - - You may charge any price or no price for each copy that you convey, -and you may offer support or warranty protection for a fee. - - 5. Conveying Modified Source Versions. - - You may convey a work based on the Program, or the modifications to -produce it from the Program, in the form of source code under the -terms of section 4, provided that you also meet all of these conditions: - - a) The work must carry prominent notices stating that you modified - it, and giving a relevant date. - - b) The work must carry prominent notices stating that it is - released under this License and any conditions added under section - 7. This requirement modifies the requirement in section 4 to - "keep intact all notices". - - c) You must license the entire work, as a whole, under this - License to anyone who comes into possession of a copy. This - License will therefore apply, along with any applicable section 7 - additional terms, to the whole of the work, and all its parts, - regardless of how they are packaged. This License gives no - permission to license the work in any other way, but it does not - invalidate such permission if you have separately received it. - - d) If the work has interactive user interfaces, each must display - Appropriate Legal Notices; however, if the Program has interactive - interfaces that do not display Appropriate Legal Notices, your - work need not make them do so. - - A compilation of a covered work with other separate and independent -works, which are not by their nature extensions of the covered work, -and which are not combined with it such as to form a larger program, -in or on a volume of a storage or distribution medium, is called an -"aggregate" if the compilation and its resulting copyright are not -used to limit the access or legal rights of the compilation's users -beyond what the individual works permit. Inclusion of a covered work -in an aggregate does not cause this License to apply to the other -parts of the aggregate. - - 6. Conveying Non-Source Forms. - - You may convey a covered work in object code form under the terms -of sections 4 and 5, provided that you also convey the -machine-readable Corresponding Source under the terms of this License, -in one of these ways: - - a) Convey the object code in, or embodied in, a physical product - (including a physical distribution medium), accompanied by the - Corresponding Source fixed on a durable physical medium - customarily used for software interchange. - - b) Convey the object code in, or embodied in, a physical product - (including a physical distribution medium), accompanied by a - written offer, valid for at least three years and valid for as - long as you offer spare parts or customer support for that product - model, to give anyone who possesses the object code either (1) a - copy of the Corresponding Source for all the software in the - product that is covered by this License, on a durable physical - medium customarily used for software interchange, for a price no - more than your reasonable cost of physically performing this - conveying of source, or (2) access to copy the - Corresponding Source from a network server at no charge. - - c) Convey individual copies of the object code with a copy of the - written offer to provide the Corresponding Source. This - alternative is allowed only occasionally and noncommercially, and - only if you received the object code with such an offer, in accord - with subsection 6b. - - d) Convey the object code by offering access from a designated - place (gratis or for a charge), and offer equivalent access to the - Corresponding Source in the same way through the same place at no - further charge. You need not require recipients to copy the - Corresponding Source along with the object code. If the place to - copy the object code is a network server, the Corresponding Source - may be on a different server (operated by you or a third party) - that supports equivalent copying facilities, provided you maintain - clear directions next to the object code saying where to find the - Corresponding Source. Regardless of what server hosts the - Corresponding Source, you remain obligated to ensure that it is - available for as long as needed to satisfy these requirements. - - e) Convey the object code using peer-to-peer transmission, provided - you inform other peers where the object code and Corresponding - Source of the work are being offered to the general public at no - charge under subsection 6d. - - A separable portion of the object code, whose source code is excluded -from the Corresponding Source as a System Library, need not be -included in conveying the object code work. - - A "User Product" is either (1) a "consumer product", which means any -tangible personal property which is normally used for personal, family, -or household purposes, or (2) anything designed or sold for incorporation -into a dwelling. In determining whether a product is a consumer product, -doubtful cases shall be resolved in favor of coverage. For a particular -product received by a particular user, "normally used" refers to a -typical or common use of that class of product, regardless of the status -of the particular user or of the way in which the particular user -actually uses, or expects or is expected to use, the product. A product -is a consumer product regardless of whether the product has substantial -commercial, industrial or non-consumer uses, unless such uses represent -the only significant mode of use of the product. - - "Installation Information" for a User Product means any methods, -procedures, authorization keys, or other information required to install -and execute modified versions of a covered work in that User Product from -a modified version of its Corresponding Source. The information must -suffice to ensure that the continued functioning of the modified object -code is in no case prevented or interfered with solely because -modification has been made. - - If you convey an object code work under this section in, or with, or -specifically for use in, a User Product, and the conveying occurs as -part of a transaction in which the right of possession and use of the -User Product is transferred to the recipient in perpetuity or for a -fixed term (regardless of how the transaction is characterized), the -Corresponding Source conveyed under this section must be accompanied -by the Installation Information. But this requirement does not apply -if neither you nor any third party retains the ability to install -modified object code on the User Product (for example, the work has -been installed in ROM). - - The requirement to provide Installation Information does not include a -requirement to continue to provide support service, warranty, or updates -for a work that has been modified or installed by the recipient, or for -the User Product in which it has been modified or installed. Access to a -network may be denied when the modification itself materially and -adversely affects the operation of the network or violates the rules and -protocols for communication across the network. - - Corresponding Source conveyed, and Installation Information provided, -in accord with this section must be in a format that is publicly -documented (and with an implementation available to the public in -source code form), and must require no special password or key for -unpacking, reading or copying. - - 7. Additional Terms. - - "Additional permissions" are terms that supplement the terms of this -License by making exceptions from one or more of its conditions. -Additional permissions that are applicable to the entire Program shall -be treated as though they were included in this License, to the extent -that they are valid under applicable law. If additional permissions -apply only to part of the Program, that part may be used separately -under those permissions, but the entire Program remains governed by -this License without regard to the additional permissions. - - When you convey a copy of a covered work, you may at your option -remove any additional permissions from that copy, or from any part of -it. (Additional permissions may be written to require their own -removal in certain cases when you modify the work.) You may place -additional permissions on material, added by you to a covered work, -for which you have or can give appropriate copyright permission. - - Notwithstanding any other provision of this License, for material you -add to a covered work, you may (if authorized by the copyright holders of -that material) supplement the terms of this License with terms: - - a) Disclaiming warranty or limiting liability differently from the - terms of sections 15 and 16 of this License; or - - b) Requiring preservation of specified reasonable legal notices or - author attributions in that material or in the Appropriate Legal - Notices displayed by works containing it; or - - c) Prohibiting misrepresentation of the origin of that material, or - requiring that modified versions of such material be marked in - reasonable ways as different from the original version; or - - d) Limiting the use for publicity purposes of names of licensors or - authors of the material; or - - e) Declining to grant rights under trademark law for use of some - trade names, trademarks, or service marks; or - - f) Requiring indemnification of licensors and authors of that - material by anyone who conveys the material (or modified versions of - it) with contractual assumptions of liability to the recipient, for - any liability that these contractual assumptions directly impose on - those licensors and authors. - - All other non-permissive additional terms are considered "further -restrictions" within the meaning of section 10. If the Program as you -received it, or any part of it, contains a notice stating that it is -governed by this License along with a term that is a further -restriction, you may remove that term. If a license document contains -a further restriction but permits relicensing or conveying under this -License, you may add to a covered work material governed by the terms -of that license document, provided that the further restriction does -not survive such relicensing or conveying. - - If you add terms to a covered work in accord with this section, you -must place, in the relevant source files, a statement of the -additional terms that apply to those files, or a notice indicating -where to find the applicable terms. - - Additional terms, permissive or non-permissive, may be stated in the -form of a separately written license, or stated as exceptions; -the above requirements apply either way. - - 8. Termination. - - You may not propagate or modify a covered work except as expressly -provided under this License. Any attempt otherwise to propagate or -modify it is void, and will automatically terminate your rights under -this License (including any patent licenses granted under the third -paragraph of section 11). - - However, if you cease all violation of this License, then your -license from a particular copyright holder is reinstated (a) -provisionally, unless and until the copyright holder explicitly and -finally terminates your license, and (b) permanently, if the copyright -holder fails to notify you of the violation by some reasonable means -prior to 60 days after the cessation. - - Moreover, your license from a particular copyright holder is -reinstated permanently if the copyright holder notifies you of the -violation by some reasonable means, this is the first time you have -received notice of violation of this License (for any work) from that -copyright holder, and you cure the violation prior to 30 days after -your receipt of the notice. - - Termination of your rights under this section does not terminate the -licenses of parties who have received copies or rights from you under -this License. If your rights have been terminated and not permanently -reinstated, you do not qualify to receive new licenses for the same -material under section 10. - - 9. Acceptance Not Required for Having Copies. - - You are not required to accept this License in order to receive or -run a copy of the Program. Ancillary propagation of a covered work -occurring solely as a consequence of using peer-to-peer transmission -to receive a copy likewise does not require acceptance. However, -nothing other than this License grants you permission to propagate or -modify any covered work. These actions infringe copyright if you do -not accept this License. Therefore, by modifying or propagating a -covered work, you indicate your acceptance of this License to do so. - - 10. Automatic Licensing of Downstream Recipients. - - Each time you convey a covered work, the recipient automatically -receives a license from the original licensors, to run, modify and -propagate that work, subject to this License. You are not responsible -for enforcing compliance by third parties with this License. - - An "entity transaction" is a transaction transferring control of an -organization, or substantially all assets of one, or subdividing an -organization, or merging organizations. If propagation of a covered -work results from an entity transaction, each party to that -transaction who receives a copy of the work also receives whatever -licenses to the work the party's predecessor in interest had or could -give under the previous paragraph, plus a right to possession of the -Corresponding Source of the work from the predecessor in interest, if -the predecessor has it or can get it with reasonable efforts. - - You may not impose any further restrictions on the exercise of the -rights granted or affirmed under this License. For example, you may -not impose a license fee, royalty, or other charge for exercise of -rights granted under this License, and you may not initiate litigation -(including a cross-claim or counterclaim in a lawsuit) alleging that -any patent claim is infringed by making, using, selling, offering for -sale, or importing the Program or any portion of it. - - 11. Patents. - - A "contributor" is a copyright holder who authorizes use under this -License of the Program or a work on which the Program is based. The -work thus licensed is called the contributor's "contributor version". - - A contributor's "essential patent claims" are all patent claims -owned or controlled by the contributor, whether already acquired or -hereafter acquired, that would be infringed by some manner, permitted -by this License, of making, using, or selling its contributor version, -but do not include claims that would be infringed only as a -consequence of further modification of the contributor version. For -purposes of this definition, "control" includes the right to grant -patent sublicenses in a manner consistent with the requirements of -this License. - - Each contributor grants you a non-exclusive, worldwide, royalty-free -patent license under the contributor's essential patent claims, to -make, use, sell, offer for sale, import and otherwise run, modify and -propagate the contents of its contributor version. - - In the following three paragraphs, a "patent license" is any express -agreement or commitment, however denominated, not to enforce a patent -(such as an express permission to practice a patent or covenant not to -sue for patent infringement). To "grant" such a patent license to a -party means to make such an agreement or commitment not to enforce a -patent against the party. - - If you convey a covered work, knowingly relying on a patent license, -and the Corresponding Source of the work is not available for anyone -to copy, free of charge and under the terms of this License, through a -publicly available network server or other readily accessible means, -then you must either (1) cause the Corresponding Source to be so -available, or (2) arrange to deprive yourself of the benefit of the -patent license for this particular work, or (3) arrange, in a manner -consistent with the requirements of this License, to extend the patent -license to downstream recipients. "Knowingly relying" means you have -actual knowledge that, but for the patent license, your conveying the -covered work in a country, or your recipient's use of the covered work -in a country, would infringe one or more identifiable patents in that -country that you have reason to believe are valid. - - If, pursuant to or in connection with a single transaction or -arrangement, you convey, or propagate by procuring conveyance of, a -covered work, and grant a patent license to some of the parties -receiving the covered work authorizing them to use, propagate, modify -or convey a specific copy of the covered work, then the patent license -you grant is automatically extended to all recipients of the covered -work and works based on it. - - A patent license is "discriminatory" if it does not include within -the scope of its coverage, prohibits the exercise of, or is -conditioned on the non-exercise of one or more of the rights that are -specifically granted under this License. You may not convey a covered -work if you are a party to an arrangement with a third party that is -in the business of distributing software, under which you make payment -to the third party based on the extent of your activity of conveying -the work, and under which the third party grants, to any of the -parties who would receive the covered work from you, a discriminatory -patent license (a) in connection with copies of the covered work -conveyed by you (or copies made from those copies), or (b) primarily -for and in connection with specific products or compilations that -contain the covered work, unless you entered into that arrangement, -or that patent license was granted, prior to 28 March 2007. - - Nothing in this License shall be construed as excluding or limiting -any implied license or other defenses to infringement that may -otherwise be available to you under applicable patent law. - - 12. No Surrender of Others' Freedom. - - If conditions are imposed on you (whether by court order, agreement or -otherwise) that contradict the conditions of this License, they do not -excuse you from the conditions of this License. If you cannot convey a -covered work so as to satisfy simultaneously your obligations under this -License and any other pertinent obligations, then as a consequence you may -not convey it at all. For example, if you agree to terms that obligate you -to collect a royalty for further conveying from those to whom you convey -the Program, the only way you could satisfy both those terms and this -License would be to refrain entirely from conveying the Program. - - 13. Use with the GNU Affero General Public License. - - Notwithstanding any other provision of this License, you have -permission to link or combine any covered work with a work licensed -under version 3 of the GNU Affero General Public License into a single -combined work, and to convey the resulting work. The terms of this -License will continue to apply to the part which is the covered work, -but the special requirements of the GNU Affero General Public License, -section 13, concerning interaction through a network will apply to the -combination as such. - - 14. Revised Versions of this License. - - The Free Software Foundation may publish revised and/or new versions of -the GNU General Public License from time to time. Such new versions will -be similar in spirit to the present version, but may differ in detail to -address new problems or concerns. - - Each version is given a distinguishing version number. If the -Program specifies that a certain numbered version of the GNU General -Public License "or any later version" applies to it, you have the -option of following the terms and conditions either of that numbered -version or of any later version published by the Free Software -Foundation. If the Program does not specify a version number of the -GNU General Public License, you may choose any version ever published -by the Free Software Foundation. - - If the Program specifies that a proxy can decide which future -versions of the GNU General Public License can be used, that proxy's -public statement of acceptance of a version permanently authorizes you -to choose that version for the Program. - - Later license versions may give you additional or different -permissions. However, no additional obligations are imposed on any -author or copyright holder as a result of your choosing to follow a -later version. - - 15. Disclaimer of Warranty. - - THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY -APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT -HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY -OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, -THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR -PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM -IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF -ALL NECESSARY SERVICING, REPAIR OR CORRECTION. - - 16. Limitation of Liability. - - IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING -WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS -THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY -GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE -USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF -DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD -PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), -EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF -SUCH DAMAGES. - - 17. Interpretation of Sections 15 and 16. - - If the disclaimer of warranty and limitation of liability provided -above cannot be given local legal effect according to their terms, -reviewing courts shall apply local law that most closely approximates -an absolute waiver of all civil liability in connection with the -Program, unless a warranty or assumption of liability accompanies a -copy of the Program in return for a fee. - - END OF TERMS AND CONDITIONS - - How to Apply These Terms to Your New Programs - - If you develop a new program, and you want it to be of the greatest -possible use to the public, the best way to achieve this is to make it -free software which everyone can redistribute and change under these terms. - - To do so, attach the following notices to the program. It is safest -to attach them to the start of each source file to most effectively -state the exclusion of warranty; and each file should have at least -the "copyright" line and a pointer to where the full notice is found. - - - Copyright (C) - - This program is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program. If not, see . - -Also add information on how to contact you by electronic and paper mail. - - If the program does terminal interaction, make it output a short -notice like this when it starts in an interactive mode: - - Copyright (C) - This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. - This is free software, and you are welcome to redistribute it - under certain conditions; type `show c' for details. - -The hypothetical commands `show w' and `show c' should show the appropriate -parts of the General Public License. Of course, your program's commands -might be different; for a GUI interface, you would use an "about box". - - You should also get your employer (if you work as a programmer) or school, -if any, to sign a "copyright disclaimer" for the program, if necessary. -For more information on this, and how to apply and follow the GNU GPL, see -. - - The GNU General Public License does not permit incorporating your program -into proprietary programs. If your program is a subroutine library, you -may consider it more useful to permit linking proprietary applications with -the library. If this is what you want to do, use the GNU Lesser General -Public License instead of this License. But first, please read -. +BSD 3-Clause License + +Copyright (c) 2021, The EOmaps authors. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +1. Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +3. Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/pyproject.toml b/pyproject.toml index 90031c311..9c86e44ea 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -26,7 +26,7 @@ keywords = ["Visualization", "Plotting", "Maps", "Geographical Data"] classifiers = [ "Programming Language :: Python :: 3", - "License :: OSI Approved :: GNU General Public License v3 or later (GPLv3+)", + "License :: OSI Approved :: BSD License", "Operating System :: OS Independent", "Framework :: Matplotlib", "Topic :: Scientific/Engineering", From 82a6f9b79ef7eab390fb84713e08b7c449c0b1db Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Wed, 3 Jan 2024 18:54:29 +0100 Subject: [PATCH 085/240] add license info to all source files --- eomaps/__init__.py | 5 +++++ eomaps/_containers.py | 5 +++++ eomaps/_data_manager.py | 5 +++++ eomaps/_webmap.py | 5 +++++ eomaps/annotation_editor.py | 5 +++++ eomaps/callbacks.py | 5 +++++ eomaps/cb_container.py | 5 +++++ eomaps/colorbar.py | 5 +++++ eomaps/compass.py | 5 +++++ eomaps/draw.py | 5 +++++ eomaps/eomaps.py | 5 +++++ eomaps/grid.py | 5 +++++ eomaps/helpers.py | 5 +++++ eomaps/inset_maps.py | 5 +++++ eomaps/mapsgrid.py | 5 +++++ eomaps/ne_features.py | 5 +++++ eomaps/projections.py | 5 +++++ eomaps/qtcompanion/app.py | 5 +++++ eomaps/qtcompanion/base.py | 5 +++++ eomaps/qtcompanion/common.py | 5 +++++ eomaps/qtcompanion/signal_container.py | 5 +++++ eomaps/qtcompanion/widgets/annotate.py | 5 +++++ eomaps/qtcompanion/widgets/click_callbacks.py | 5 +++++ eomaps/qtcompanion/widgets/draw.py | 5 +++++ eomaps/qtcompanion/widgets/editor.py | 5 +++++ eomaps/qtcompanion/widgets/extent.py | 5 +++++ eomaps/qtcompanion/widgets/files.py | 5 +++++ eomaps/qtcompanion/widgets/layer.py | 5 +++++ eomaps/qtcompanion/widgets/peek.py | 5 +++++ eomaps/qtcompanion/widgets/save.py | 5 +++++ eomaps/qtcompanion/widgets/utils.py | 5 +++++ eomaps/qtcompanion/widgets/wms.py | 5 +++++ eomaps/reader.py | 5 +++++ eomaps/scalebar.py | 5 +++++ eomaps/scripts/open.py | 5 +++++ eomaps/shapes.py | 5 +++++ eomaps/utilities.py | 5 +++++ eomaps/webmap_containers.py | 5 +++++ 38 files changed, 190 insertions(+) diff --git a/eomaps/__init__.py b/eomaps/__init__.py index df9883218..04751f4f1 100644 --- a/eomaps/__init__.py +++ b/eomaps/__init__.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + import importlib.metadata from .helpers import register_modules as _register_modules diff --git a/eomaps/_containers.py b/eomaps/_containers.py index b4dcdeb9a..0b965fa77 100644 --- a/eomaps/_containers.py +++ b/eomaps/_containers.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + import logging from textwrap import dedent, indent, fill from operator import attrgetter diff --git a/eomaps/_data_manager.py b/eomaps/_data_manager.py index eea7372fd..c1c248e42 100644 --- a/eomaps/_data_manager.py +++ b/eomaps/_data_manager.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + import logging import numpy as np diff --git a/eomaps/_webmap.py b/eomaps/_webmap.py index 3d7dccebe..0933adde4 100644 --- a/eomaps/_webmap.py +++ b/eomaps/_webmap.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + import logging import requests diff --git a/eomaps/annotation_editor.py b/eomaps/annotation_editor.py index 587ab9e22..4498ef9bd 100644 --- a/eomaps/annotation_editor.py +++ b/eomaps/annotation_editor.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + """Functionalities for editable annotations.""" import logging from types import SimpleNamespace diff --git a/eomaps/callbacks.py b/eomaps/callbacks.py index 4cacad20d..2468978a2 100644 --- a/eomaps/callbacks.py +++ b/eomaps/callbacks.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + """Collection of pre-defined click/pick/move/keypress callbacks.""" import numpy as np diff --git a/eomaps/cb_container.py b/eomaps/cb_container.py index c70e01284..14a442cdf 100644 --- a/eomaps/cb_container.py +++ b/eomaps/cb_container.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + """Container classes for callback management""" import logging diff --git a/eomaps/colorbar.py b/eomaps/colorbar.py index 51265c45d..4cf15a436 100644 --- a/eomaps/colorbar.py +++ b/eomaps/colorbar.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + """Interactive Colorbar.""" import logging diff --git a/eomaps/compass.py b/eomaps/compass.py index 7f6ff49b7..72a8b45af 100644 --- a/eomaps/compass.py +++ b/eomaps/compass.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + """Interactive Compass (or North Arrow).""" import logging diff --git a/eomaps/draw.py b/eomaps/draw.py index 5439fdcd8..76b87c6ba 100644 --- a/eomaps/draw.py +++ b/eomaps/draw.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + """ Functionalities to draw shapes on maps created with EOmaps. diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index 016af91ca..4b264e9e1 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + """General definition of Maps objects.""" import logging diff --git a/eomaps/grid.py b/eomaps/grid.py index 459e2bc99..f9589f625 100644 --- a/eomaps/grid.py +++ b/eomaps/grid.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + """Grid lines and grid labels.""" import logging diff --git a/eomaps/helpers.py b/eomaps/helpers.py index 967f384bb..5cc21f4de 100644 --- a/eomaps/helpers.py +++ b/eomaps/helpers.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + """a collection of useful helper-functions.""" import logging diff --git a/eomaps/inset_maps.py b/eomaps/inset_maps.py index f1f26d850..2748364a2 100644 --- a/eomaps/inset_maps.py +++ b/eomaps/inset_maps.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + """Inset maps class definitions.""" import numpy as np diff --git a/eomaps/mapsgrid.py b/eomaps/mapsgrid.py index 13ed7f2b8..cd3dc4947 100644 --- a/eomaps/mapsgrid.py +++ b/eomaps/mapsgrid.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + """Mapsgrid class definition (helper for initialization of regular Maps-grids).""" from functools import wraps, lru_cache diff --git a/eomaps/ne_features.py b/eomaps/ne_features.py index d7553ff75..365fdeb6c 100644 --- a/eomaps/ne_features.py +++ b/eomaps/ne_features.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + """Classes to fetch and draw NaturalEarth features.""" import logging diff --git a/eomaps/projections.py b/eomaps/projections.py index ddd6236b8..cbc8938f2 100644 --- a/eomaps/projections.py +++ b/eomaps/projections.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + """Projection definitions.""" from cartopy import crs as ccrs diff --git a/eomaps/qtcompanion/app.py b/eomaps/qtcompanion/app.py index ca0591173..2337e1845 100644 --- a/eomaps/qtcompanion/app.py +++ b/eomaps/qtcompanion/app.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + from qtpy import QtWidgets from qtpy.QtCore import Qt, Signal, Slot, QSize, QObject from qtpy.QtGui import QKeySequence diff --git a/eomaps/qtcompanion/base.py b/eomaps/qtcompanion/base.py index 6adf924ed..803c74c3f 100644 --- a/eomaps/qtcompanion/base.py +++ b/eomaps/qtcompanion/base.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + import logging from weakref import WeakSet diff --git a/eomaps/qtcompanion/common.py b/eomaps/qtcompanion/common.py index 0bd49af8b..78d703dbb 100644 --- a/eomaps/qtcompanion/common.py +++ b/eomaps/qtcompanion/common.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + from pathlib import Path iconpath = Path(__file__).parent / "icons" diff --git a/eomaps/qtcompanion/signal_container.py b/eomaps/qtcompanion/signal_container.py index c8cf6131c..6b63dbe7e 100644 --- a/eomaps/qtcompanion/signal_container.py +++ b/eomaps/qtcompanion/signal_container.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + """A container class for signals sent to the CompanionWidget""" diff --git a/eomaps/qtcompanion/widgets/annotate.py b/eomaps/qtcompanion/widgets/annotate.py index f7e8116a7..ccd481a07 100644 --- a/eomaps/qtcompanion/widgets/annotate.py +++ b/eomaps/qtcompanion/widgets/annotate.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + from qtpy import QtWidgets from qtpy.QtCore import Qt, Slot, Signal from .utils import GetColorWidget diff --git a/eomaps/qtcompanion/widgets/click_callbacks.py b/eomaps/qtcompanion/widgets/click_callbacks.py index 7cc354ff6..ed95891f9 100644 --- a/eomaps/qtcompanion/widgets/click_callbacks.py +++ b/eomaps/qtcompanion/widgets/click_callbacks.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + from qtpy import QtWidgets, QtGui from qtpy.QtCore import Qt, Signal, Slot diff --git a/eomaps/qtcompanion/widgets/draw.py b/eomaps/qtcompanion/widgets/draw.py index 586c1d987..a3ad76d02 100644 --- a/eomaps/qtcompanion/widgets/draw.py +++ b/eomaps/qtcompanion/widgets/draw.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + import logging from qtpy import QtWidgets diff --git a/eomaps/qtcompanion/widgets/editor.py b/eomaps/qtcompanion/widgets/editor.py index 5734bce76..9669436e8 100644 --- a/eomaps/qtcompanion/widgets/editor.py +++ b/eomaps/qtcompanion/widgets/editor.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + import logging from textwrap import dedent diff --git a/eomaps/qtcompanion/widgets/extent.py b/eomaps/qtcompanion/widgets/extent.py index 1bdaed73e..96d819cb8 100644 --- a/eomaps/qtcompanion/widgets/extent.py +++ b/eomaps/qtcompanion/widgets/extent.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + import logging from datetime import datetime diff --git a/eomaps/qtcompanion/widgets/files.py b/eomaps/qtcompanion/widgets/files.py index 116d7b6a0..db5a23fd2 100644 --- a/eomaps/qtcompanion/widgets/files.py +++ b/eomaps/qtcompanion/widgets/files.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + import logging from qtpy import QtWidgets, QtGui diff --git a/eomaps/qtcompanion/widgets/layer.py b/eomaps/qtcompanion/widgets/layer.py index 170c42365..74c6da6f1 100644 --- a/eomaps/qtcompanion/widgets/layer.py +++ b/eomaps/qtcompanion/widgets/layer.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + from qtpy import QtWidgets from qtpy.QtCore import Qt, Slot from ..common import iconpath diff --git a/eomaps/qtcompanion/widgets/peek.py b/eomaps/qtcompanion/widgets/peek.py index b71a8eb7c..527cbf1f5 100644 --- a/eomaps/qtcompanion/widgets/peek.py +++ b/eomaps/qtcompanion/widgets/peek.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + from qtpy import QtWidgets, QtGui from qtpy.QtCore import Qt, Signal, QSize, Slot diff --git a/eomaps/qtcompanion/widgets/save.py b/eomaps/qtcompanion/widgets/save.py index 385c5f4cf..8373a97c5 100644 --- a/eomaps/qtcompanion/widgets/save.py +++ b/eomaps/qtcompanion/widgets/save.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + from qtpy import QtWidgets, QtGui from qtpy.QtCore import Qt, Slot diff --git a/eomaps/qtcompanion/widgets/utils.py b/eomaps/qtcompanion/widgets/utils.py index 13479937b..f82ffb96a 100644 --- a/eomaps/qtcompanion/widgets/utils.py +++ b/eomaps/qtcompanion/widgets/utils.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + from qtpy import QtWidgets, QtGui from qtpy.QtCore import Qt, QRectF, QSize, Slot, Signal from eomaps import Maps diff --git a/eomaps/qtcompanion/widgets/wms.py b/eomaps/qtcompanion/widgets/wms.py index 08f152a60..b5e781318 100644 --- a/eomaps/qtcompanion/widgets/wms.py +++ b/eomaps/qtcompanion/widgets/wms.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + import logging from qtpy import QtWidgets diff --git a/eomaps/reader.py b/eomaps/reader.py index 64a65f178..daf350b55 100644 --- a/eomaps/reader.py +++ b/eomaps/reader.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + """Classes to read files (NetCDF, GeoTIFF, CSV etc.)""" import logging diff --git a/eomaps/scalebar.py b/eomaps/scalebar.py index 016190631..dbbb9b9b4 100644 --- a/eomaps/scalebar.py +++ b/eomaps/scalebar.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + """Interactive scalebar.""" import logging diff --git a/eomaps/scripts/open.py b/eomaps/scripts/open.py index cc3e08a5e..4f2abe48a 100644 --- a/eomaps/scripts/open.py +++ b/eomaps/scripts/open.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + import sys import os import click diff --git a/eomaps/shapes.py b/eomaps/shapes.py index c18dbee6f..56866d6d5 100644 --- a/eomaps/shapes.py +++ b/eomaps/shapes.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + """Plot shape classes (for data visualization).""" import logging diff --git a/eomaps/utilities.py b/eomaps/utilities.py index 489eadc73..bc4d1564c 100644 --- a/eomaps/utilities.py +++ b/eomaps/utilities.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + """Collection of utility classes (layer sliders, layer selectors etc.)""" from matplotlib.legend import DraggableLegend diff --git a/eomaps/webmap_containers.py b/eomaps/webmap_containers.py index 8de45ff3b..564b9191f 100644 --- a/eomaps/webmap_containers.py +++ b/eomaps/webmap_containers.py @@ -1,3 +1,8 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + """Collection of WebMap services.""" import logging From 9f4cf859747048df38d5f59bbd8729fd7de27b03 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sun, 14 Jan 2024 00:00:05 +0100 Subject: [PATCH 086/240] update docs --- docs/FAQ.rst | 29 ++++++++++++++++++++++++++++- 1 file changed, 28 insertions(+), 1 deletion(-) diff --git a/docs/FAQ.rst b/docs/FAQ.rst index 804275d74..2ae5b4526 100644 --- a/docs/FAQ.rst +++ b/docs/FAQ.rst @@ -16,10 +16,17 @@ Need some help to setup python for EOmaps? quickstart_quide -Have a look at the :ref:`quickstart_guide` to learn how to setup a python environment that can be +Have a look at the :ref:`Quickstart Guide ` to learn how to setup a python environment that can be used to create EOmaps maps! +Interested in contributing to EOmaps? +************************************* + +Have a look at the :ref:`Contribution Guide ` on how to setup a development environment to start contributing to EOmaps! +Any contributions are welcome! + + .. _configuring_the_editor: Configuring the editor (IDE) @@ -188,6 +195,26 @@ free and open source `ScreenToGif `_ software. All animated gifs in this documentation have been created with this awesome piece of software. + +LICENSING and redistribution +**************************** + +Information is provided WITHOUT WARRANTY FOR CORRECTNESS! + +Since v8.0, the source-code of EOmaps is licensed under a `BSD 3-clause license `_. + +However, it must be notet that EOmaps has a number of required and optional dependencies whose licenses must be taken into account when packaging +and redistributing works that build on top of EOmaps. While most dependencies are either **BSD** or **MIT** licensed, there are some dependencies +that might require additional considerations. + +Most notably (start of 2024), the **required dependency** `cartopy `_ is licensed under **LGPLv3+** (however they are in the process of `re-licensing to BSD-3-clause `_) and the **optional** `Qt `_ GUI framework is available via commertial and open-source (**LGPLv3+**) licenses and the used python-bindings (`PyQt5 `_) are licensed under **GPL v3**. + + +.. tip:: + + If you want to get a quick overview of the licenses of an existing pyhton environment, I recommend having a look at the `pip-licenses `_ package! + + Important changes between major versions **************************************** From 8fb741306c0c46942c3c578c27d952d5ea808293 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sun, 14 Jan 2024 00:01:18 +0100 Subject: [PATCH 087/240] make pre-commit happy --- docs/FAQ.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/FAQ.rst b/docs/FAQ.rst index 2ae5b4526..1a46cf6af 100644 --- a/docs/FAQ.rst +++ b/docs/FAQ.rst @@ -204,7 +204,7 @@ Information is provided WITHOUT WARRANTY FOR CORRECTNESS! Since v8.0, the source-code of EOmaps is licensed under a `BSD 3-clause license `_. However, it must be notet that EOmaps has a number of required and optional dependencies whose licenses must be taken into account when packaging -and redistributing works that build on top of EOmaps. While most dependencies are either **BSD** or **MIT** licensed, there are some dependencies +and redistributing works that build on top of EOmaps. While most dependencies are either **BSD** or **MIT** licensed, there are some dependencies that might require additional considerations. Most notably (start of 2024), the **required dependency** `cartopy `_ is licensed under **LGPLv3+** (however they are in the process of `re-licensing to BSD-3-clause `_) and the **optional** `Qt `_ GUI framework is available via commertial and open-source (**LGPLv3+**) licenses and the used python-bindings (`PyQt5 `_) are licensed under **GPL v3**. From 6d1aae2ebabfe0ffdeeba478ff9830ae1cb230ca Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sun, 14 Jan 2024 00:38:13 +0100 Subject: [PATCH 088/240] update docs --- docs/installation.rst | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/docs/installation.rst b/docs/installation.rst index 16fdcc550..f04040b94 100644 --- a/docs/installation.rst +++ b/docs/installation.rst @@ -9,8 +9,8 @@ :depth: 1 -Recommended way (via ``conda`` and ``mamba``) ---------------------------------------------- +Via ``conda`` and ``mamba`` +--------------------------- EOmaps is available via the ``conda-forge`` channel and can be installed via: @@ -56,8 +56,8 @@ More details on how to **configure your favorite IDE** to work with EOmaps can b -Alternative way (via ``pip``) ------------------------------ +Via ``pip`` +----------- EOmaps is also available on ``pip``. From 28845022759afd72f0f97520f345440dfabdcb96 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sun, 14 Jan 2024 18:01:20 +0100 Subject: [PATCH 089/240] remove cairosvg as dependency (allow usage for legends if installed) --- eomaps/_webmap.py | 12 ++++++++---- eomaps/qtcompanion/widgets/wms.py | 2 +- pyproject.toml | 1 - 3 files changed, 9 insertions(+), 6 deletions(-) diff --git a/eomaps/_webmap.py b/eomaps/_webmap.py index 0933adde4..3814acb96 100644 --- a/eomaps/_webmap.py +++ b/eomaps/_webmap.py @@ -84,7 +84,7 @@ def info(self): print(f"\n LEGEND available: {legQ}\n\n" + txt) - def fetch_legend(self, style=None, silent=True): + def fetch_legend(self, style=None): if style is None: style = self._style try: @@ -98,15 +98,19 @@ def fetch_legend(self, style=None, silent=True): img = cairosvg.svg2png(legend.content) except ImportError: - warn("EOmaps: the legend is '.svg'... please install 'cairosvg'") + _log.warning( + "EOmaps: The legend image is provided as a '.svg' graphic. " + "To add svg graphics to a map, you must install the optional " + "dependency 'cairosvg'! (see: https://cairosvg.org/)", + exc_info=_log.getEffectiveLevel() <= logging.DEBUG) return None else: img = legend.content img = Image.open(BytesIO(img)) except Exception: - if not silent: - warn("EOmaps: could not fetch the legend") + if _log.getEffectiveLevel() <= logging.DEBUG: + _log.warning("EOmaps: could not fetch the wms legend", exc_info=True) return None return img diff --git a/eomaps/qtcompanion/widgets/wms.py b/eomaps/qtcompanion/widgets/wms.py index b5e781318..bf21932b8 100644 --- a/eomaps/qtcompanion/widgets/wms.py +++ b/eomaps/qtcompanion/widgets/wms.py @@ -41,7 +41,7 @@ def __init__(self): def ask_for_legend(self, wms, wmslayer): if hasattr(wms, "add_legend"): try: - img = wms.fetch_legend(silent=True) + img = wms.fetch_legend() if img is not None: self._ask_for_legend(wms, wmslayer, img) except: diff --git a/pyproject.toml b/pyproject.toml index 9c86e44ea..d90eaf0dc 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -64,7 +64,6 @@ classify = ["mapclassify"] wms = [ "owslib", "requests", - "cairosvg", ] shade = ["datashader"] From e553a1a0dbf3cd76bc24783ea5c6fa4430afd4fd Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sun, 14 Jan 2024 18:02:07 +0100 Subject: [PATCH 090/240] remove obsolete dependencies from test-env --- tests/test_env.yml | 3 --- 1 file changed, 3 deletions(-) diff --git a/tests/test_env.yml b/tests/test_env.yml index a3e273b18..3bd1897a8 100644 --- a/tests/test_env.yml +++ b/tests/test_env.yml @@ -3,7 +3,6 @@ channels: - conda-forge dependencies: - - rtree - numpy - scipy - pandas @@ -23,8 +22,6 @@ dependencies: # --------------for WebMaps - owslib - requests - - xmltodict - - cairosvg # --------------for testing - nbformat # to parse Jupyter Notebooks - coveralls From a748f561c10a85437d40b4f98fdc8e6a311dcef3 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sun, 14 Jan 2024 18:05:44 +0100 Subject: [PATCH 091/240] make pre-commit happy --- eomaps/_webmap.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/eomaps/_webmap.py b/eomaps/_webmap.py index 3814acb96..3309cb26f 100644 --- a/eomaps/_webmap.py +++ b/eomaps/_webmap.py @@ -102,7 +102,8 @@ def fetch_legend(self, style=None): "EOmaps: The legend image is provided as a '.svg' graphic. " "To add svg graphics to a map, you must install the optional " "dependency 'cairosvg'! (see: https://cairosvg.org/)", - exc_info=_log.getEffectiveLevel() <= logging.DEBUG) + exc_info=_log.getEffectiveLevel() <= logging.DEBUG, + ) return None else: img = legend.content From a40eee482a9764acc93d176beb42324d14df7405 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sun, 14 Jan 2024 19:16:20 +0100 Subject: [PATCH 092/240] update docs --- docs/api_data_visualization.rst | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/docs/api_data_visualization.rst b/docs/api_data_visualization.rst index 932847c60..8cc1fb36c 100644 --- a/docs/api_data_visualization.rst +++ b/docs/api_data_visualization.rst @@ -84,7 +84,7 @@ A dataset is fully specified by setting the following properties: .. note:: - Make sure to use a individual :py:class:`Maps` object (e.g. with ``m2 = m.new_layer()`` for each dataset! + Make sure to use a individual :py:class:`Maps` object (e.g. with ``m2 = m.new_layer()``) for each dataset! Calling :py:meth:`Maps.plot_map` multiple times on the same :py:class:`Maps` object will remove and override the previously plotted dataset! @@ -96,6 +96,7 @@ A dataset is fully specified by setting the following properties: - Plotting data in its native crs will omit the reprojection step and is therefore a lot faster! - If your dataset is 2D (e.g. a raster), it is best (for speed and memory) to provide the coordinates as 1D vectors! + - 1D coordinate vectors will be broadcasted using matrix-indexing! (e.g. ``x[nx], y[ny] -> data[nx, ny]``) - Note that reprojecting 1D coordinate vectors to a different crs will result in (possibly very large) 2D coordinate arrays! @@ -788,7 +789,7 @@ You can fix individual color channels by passing a list with 1 element, e.g.: import numpy as np x, y = np.meshgrid(np.linspace(-20, 40, 100), - np.linspace(50, 70, 50)) + np.linspace(50, 70, 50)) # values must be between 0 and 1 r = np.random.randint(0, 100, x.shape) / 100 From 983283c6ec8df0ba39dca93eaf1588e78023ac88 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sun, 14 Jan 2024 19:59:30 +0100 Subject: [PATCH 093/240] updates for examples galery - examples are now located in "docs/examples" - unittests now automatically test all example-files - naming-convention is improved (avoid numbering and use descriptive names) --- docs/EOmaps_examples.rst | 85 ++++++------ .../example_basics.gif} | Bin .../example_callbacks.gif} | Bin .../{ => example_images}/example_contour.png | Bin .../example_customization.png} | Bin .../example_gridlines.png | Bin .../example_inset_maps.png | Bin .../{ => example_images}/example_lines.png | Bin .../example_multiple_maps.gif} | Bin .../example_overlays.gif} | Bin .../example_row_col_selector.gif | Bin .../example_scalebars.gif} | Bin .../example_timeseries.gif} | Bin .../example_vector_data.gif} | Bin .../example_webmaps.gif} | Bin docs/_static/fig4.png | Bin 634582 -> 0 bytes docs/_static/fig5.png | Bin 966253 -> 0 bytes docs/example_galery.rst | 56 ++++---- .../examples/example_basics.py | 0 .../examples/example_callbacks.py | 4 +- {tests => docs/examples}/example_contour.py | 2 +- .../examples/example_customization.py | 2 +- {tests => docs/examples}/example_gridlines.py | 2 +- .../examples}/example_inset_maps.py | 2 + {tests => docs/examples}/example_lines.py | 2 +- .../examples/example_multiple_maps.py | 2 +- .../examples/example_overlays.py | 2 +- .../examples}/example_row_col_selector.py | 2 + .../examples/example_scalebars.py | 2 +- .../examples/example_timeseries.py | 2 +- .../examples/example_vector_data.py | 2 +- .../examples/example_webmaps.py | 2 +- docs/make2.bat | 38 ++++++ docs/notebooks/inset_maps.ipynb | 2 +- docs/substitutions.rst | 124 ------------------ tests/test_examples.py | 61 ++++----- 36 files changed, 153 insertions(+), 241 deletions(-) rename docs/_static/{fig1.gif => example_images/example_basics.gif} (100%) rename docs/_static/{fig4.gif => example_images/example_callbacks.gif} (100%) rename docs/_static/{ => example_images}/example_contour.png (100%) rename docs/_static/{fig2.png => example_images/example_customization.png} (100%) rename docs/_static/{ => example_images}/example_gridlines.png (100%) rename docs/_static/{ => example_images}/example_inset_maps.png (100%) rename docs/_static/{ => example_images}/example_lines.png (100%) rename docs/_static/{fig3.gif => example_images/example_multiple_maps.gif} (100%) rename docs/_static/{fig5.gif => example_images/example_overlays.gif} (100%) rename docs/_static/{ => example_images}/example_row_col_selector.gif (100%) rename docs/_static/{fig8.gif => example_images/example_scalebars.gif} (100%) rename docs/_static/{fig9.gif => example_images/example_timeseries.gif} (100%) rename docs/_static/{fig7.gif => example_images/example_vector_data.gif} (100%) rename docs/_static/{fig6.gif => example_images/example_webmaps.gif} (100%) delete mode 100644 docs/_static/fig4.png delete mode 100644 docs/_static/fig5.png rename tests/example1.py => docs/examples/example_basics.py (100%) rename tests/example4.py => docs/examples/example_callbacks.py (98%) rename {tests => docs/examples}/example_contour.py (96%) rename tests/example2.py => docs/examples/example_customization.py (96%) rename {tests => docs/examples}/example_gridlines.py (98%) rename {tests => docs/examples}/example_inset_maps.py (98%) rename {tests => docs/examples}/example_lines.py (98%) rename tests/example3.py => docs/examples/example_multiple_maps.py (98%) rename tests/example5.py => docs/examples/example_overlays.py (98%) rename {tests => docs/examples}/example_row_col_selector.py (98%) rename tests/example8.py => docs/examples/example_scalebars.py (95%) rename tests/example9.py => docs/examples/example_timeseries.py (97%) rename tests/example7.py => docs/examples/example_vector_data.py (97%) rename tests/example6.py => docs/examples/example_webmaps.py (97%) create mode 100644 docs/make2.bat diff --git a/docs/EOmaps_examples.rst b/docs/EOmaps_examples.rst index c8a22982a..64881c3bd 100644 --- a/docs/EOmaps_examples.rst +++ b/docs/EOmaps_examples.rst @@ -11,7 +11,7 @@ .. include:: example_galery.rst -.. _ex_1: +.. _example_basics: Basic data visualization ------------------------- @@ -24,14 +24,15 @@ There are 3 basic steps required to visualize your data: |toggleStart| -.. literalinclude:: ../tests/example1.py +.. literalinclude:: examples/example_basics.py |toggleEnd| -.. image:: _static/fig1.gif +.. image:: _static/example_images/example_basics.gif :width: 75% -.. _ex_2: + +.. _example_customization: Customize the appearance of the plot ------------------------------------ @@ -46,15 +47,15 @@ Customize the appearance of the plot |toggleStart| -.. literalinclude:: ../tests/example2.py +.. literalinclude:: examples/example_customization.py |toggleEnd| -.. image:: _static/fig2.png +.. image:: _static/example_images/example_customization.png :width: 75% -.. _ex_3: +.. _example_multiple_maps: Data-classification and multiple Maps in a figure ------------------------------------------------- @@ -70,15 +71,15 @@ Data-classification and multiple Maps in a figure |toggleStart| -.. literalinclude:: ../tests/example3.py +.. literalinclude:: examples/example_multiple_maps.py |toggleEnd| -.. image:: _static/fig3.gif +.. image:: _static/example_images/example_multiple_maps.gif :width: 75% -.. _ex_4: +.. _example_callbacks: Callbacks - turn your maps into interactive widgets --------------------------------------------------- @@ -99,15 +100,15 @@ Callbacks - turn your maps into interactive widgets |toggleStart| -.. literalinclude:: ../tests/example4.py +.. literalinclude:: examples/example_callbacks.py |toggleEnd| -.. image:: _static/fig4.gif +.. image:: _static/example_images/example_callbacks.gif :width: 75% -.. _ex_5: +.. _example_overlays: Overlays, markers and annotations --------------------------------- @@ -120,18 +121,18 @@ Overlays, markers and annotations |toggleStart| -.. literalinclude:: ../tests/example5.py +.. literalinclude:: examples/example_overlays.py |toggleEnd| -.. image:: _static/fig5.gif +.. image:: _static/example_images/example_overlays.gif :width: 75% The data displayed in the above gif is taken from: - NaturalEarth (https://www.naturalearthdata.com/) -.. _ex_6: +.. _example_webmaps: WebMap services and layer-switching ----------------------------------- @@ -141,11 +142,11 @@ WebMap services and layer-switching |toggleStart| -.. literalinclude:: ../tests/example6.py +.. literalinclude:: examples/example_webmaps.py |toggleEnd| -.. image:: _static/fig6.gif +.. image:: _static/example_images/example_webmaps.gif :width: 75% The data displayed in the above gif is taken from: @@ -153,7 +154,7 @@ The data displayed in the above gif is taken from: - OpenStreetMap hosted by Mundialis (https://www.mundialis.de/en/ows-mundialis/) -.. _ex_7: +.. _example_vector_data: Vector data - interactive geometries ------------------------------------- @@ -178,11 +179,11 @@ EOmaps can be used to assign callbacks to vektor-data (e.g. ``geopandas.GeoDataF |toggleStart| -.. literalinclude:: ../tests/example7.py +.. literalinclude:: examples/example_vector_data.py |toggleEnd| -.. image:: _static/fig7.gif +.. image:: _static/example_images/example_vector_data.gif :width: 75% @@ -190,7 +191,7 @@ The data displayed in the above gif is taken from: - NaturalEarth (https://www.naturalearthdata.com/) -.. _ex_8: +.. _example_scalebars: Using Scalebars --------------- @@ -219,11 +220,11 @@ EOmaps has a nice customizable scalebar feature! |toggleStart| -.. literalinclude:: ../tests/example8.py +.. literalinclude:: examples/example_scalebars.py |toggleEnd| -.. image:: _static/fig8.gif +.. image:: _static/example_images/example_scalebars.gif :width: 75% The data displayed in the above gif is taken from: @@ -231,7 +232,7 @@ The data displayed in the above gif is taken from: -.. _ex_9: +.. _example_timeseries: Data analysis widgets - Timeseries and histograms ------------------------------------------------- @@ -245,16 +246,16 @@ This example shows how to use EOmaps to analyze a database that is associated wi |toggleStart| -.. literalinclude:: ../tests/example9.py +.. literalinclude:: examples/example_timeseries.py |toggleEnd| -.. image:: _static/fig9.gif +.. image:: _static/example_images/example_timeseries.gif :width: 75% -.. _ex_10: +.. _example_row_col_selector: Data analysis widgets - Select 1D slices of a 2D dataset -------------------------------------------------------- @@ -268,16 +269,16 @@ Use custom callback functions to perform arbitrary tasks on the data when clicki |toggleStart| -.. literalinclude:: ../tests/example_row_col_selector.py +.. literalinclude:: examples/example_row_col_selector.py |toggleEnd| -.. image:: _static/example_row_col_selector.gif +.. image:: _static/example_images/example_row_col_selector.gif :width: 75% -.. _ex_11: +.. _example_inset_maps: Inset-maps - get a zoomed-in view on selected areas --------------------------------------------------- @@ -294,16 +295,16 @@ Quickly create nice inset-maps to show details for specific regions. |toggleStart| -.. literalinclude:: ../tests/example_inset_maps.py +.. literalinclude:: examples/example_inset_maps.py |toggleEnd| -.. image:: _static/example_inset_maps.png +.. image:: _static/example_images/example_inset_maps.png :width: 75% -.. _ex_12: +.. _example_lines: Lines and Annotations --------------------- @@ -321,16 +322,16 @@ Connect the anchor-points via: |toggleStart| -.. literalinclude:: ../tests/example_lines.py +.. literalinclude:: examples/example_lines.py |toggleEnd| -.. image:: _static/example_lines.png +.. image:: _static/example_images/example_lines.png :width: 75% -.. _ex_13: +.. _example_gridlines: Gridlines and Grid Labels ------------------------- @@ -341,15 +342,15 @@ Draw custom grids and add grid labels. |toggleStart| -.. literalinclude:: ../tests/example_gridlines.py +.. literalinclude:: examples/example_gridlines.py |toggleEnd| -.. image:: _static/example_gridlines.png +.. image:: _static/example_images/example_gridlines.png :width: 75% -.. _ex_14: +.. _example_contour: Contour plots and Contour Levels -------------------------------- @@ -361,10 +362,10 @@ or to indicate contour-levels on top of other plots. |toggleStart| -.. literalinclude:: ../tests/example_contour.py +.. literalinclude:: examples/example_contour.py |toggleEnd| -.. image:: _static/example_contour.png +.. image:: _static/example_images/example_contour.png :width: 75% diff --git a/docs/_static/fig1.gif b/docs/_static/example_images/example_basics.gif similarity index 100% rename from docs/_static/fig1.gif rename to docs/_static/example_images/example_basics.gif diff --git a/docs/_static/fig4.gif b/docs/_static/example_images/example_callbacks.gif similarity index 100% rename from docs/_static/fig4.gif rename to docs/_static/example_images/example_callbacks.gif diff --git a/docs/_static/example_contour.png b/docs/_static/example_images/example_contour.png similarity index 100% rename from docs/_static/example_contour.png rename to docs/_static/example_images/example_contour.png diff --git a/docs/_static/fig2.png b/docs/_static/example_images/example_customization.png similarity index 100% rename from docs/_static/fig2.png rename to docs/_static/example_images/example_customization.png diff --git a/docs/_static/example_gridlines.png b/docs/_static/example_images/example_gridlines.png similarity index 100% rename from docs/_static/example_gridlines.png rename to docs/_static/example_images/example_gridlines.png diff --git a/docs/_static/example_inset_maps.png b/docs/_static/example_images/example_inset_maps.png similarity index 100% rename from docs/_static/example_inset_maps.png rename to docs/_static/example_images/example_inset_maps.png diff --git a/docs/_static/example_lines.png b/docs/_static/example_images/example_lines.png similarity index 100% rename from docs/_static/example_lines.png rename to docs/_static/example_images/example_lines.png diff --git a/docs/_static/fig3.gif b/docs/_static/example_images/example_multiple_maps.gif similarity index 100% rename from docs/_static/fig3.gif rename to docs/_static/example_images/example_multiple_maps.gif diff --git a/docs/_static/fig5.gif b/docs/_static/example_images/example_overlays.gif similarity index 100% rename from docs/_static/fig5.gif rename to docs/_static/example_images/example_overlays.gif diff --git a/docs/_static/example_row_col_selector.gif b/docs/_static/example_images/example_row_col_selector.gif similarity index 100% rename from docs/_static/example_row_col_selector.gif rename to docs/_static/example_images/example_row_col_selector.gif diff --git a/docs/_static/fig8.gif b/docs/_static/example_images/example_scalebars.gif similarity index 100% rename from docs/_static/fig8.gif rename to docs/_static/example_images/example_scalebars.gif diff --git a/docs/_static/fig9.gif b/docs/_static/example_images/example_timeseries.gif similarity index 100% rename from docs/_static/fig9.gif rename to docs/_static/example_images/example_timeseries.gif diff --git a/docs/_static/fig7.gif b/docs/_static/example_images/example_vector_data.gif similarity index 100% rename from docs/_static/fig7.gif rename to docs/_static/example_images/example_vector_data.gif diff --git a/docs/_static/fig6.gif b/docs/_static/example_images/example_webmaps.gif similarity index 100% rename from docs/_static/fig6.gif rename to docs/_static/example_images/example_webmaps.gif diff --git a/docs/_static/fig4.png b/docs/_static/fig4.png deleted file mode 100644 index f900444127539559c2d12fa3d4a3f473a0d216b3..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 634582 zcmeFZ^;?ut7dAR{x0IBEf=YLT2ofToARrA=QbTtP3eq7c-BKdm-6<(Kba!{doQ=Nk zciz9?oL|1V80LbDd1mhw_qx};_Cw$sMHxKo``8c&1W!&@N*Mydz=S|hi!jl_Z}t{x zQNW9!!^`&$D%K_r&IWeI5CsDV8%t{kOS2CToQ&=4&8(r^Y&>k-EDt_9IM~<=v9nwK zpFd!;wlih#O_mw}7s0ZT)v$*^$cgWsNTw-6$`B+7L{3WLolD~OjI#^%%4o;JT<`X; zGm~om5G&l+4{mt84zfS7JRYIGc;Nfy1r}DC@4Z);kJ5a}Uai;1{As43DhhRPuKyi5 zI#m&OaZ6!lHSvtOZ?YtRt$~d#Z)U=|zaXS+n|rO!Z>xrl{(m1sOtJMk-U0vnuoT3` zd@1!mk4r){-~W9Ny=MUO3!?vdM2JZtrTy*Bbw?Edm1muQmSvvqr>DOPW7zkO9TC%Tnk}O(9b> zn-2Ji!moKKQ~q0t3B4a4m7f8H$mM!^{o#3jpf1keG>=GD`40k!s_Ez`XliPTuxM4; z7+A+VDp7Dh9+as*=%BhdUka}kIqjgb4nb5h{l$wRn*YE+MrX3epq zPWD>~Q1)~6Zh~O9M=2tw!D-=4AFCj2rszrw%dX&-j=o+M=78nI+oy z3tB`fAm(Yrm2*)AJaG%_{)78TXLKA0|e)XVL9&`xek&9rdD%g=8=B*$bxfevipaj_C} zaJ4#+GO$xQ*H0uv-3$yPr=-Nh#N7=g*2-p%_`n)_SSyQ$6@??f zhsnudb<(<9wj}v)jpZ*L_OP3_1rTLqW)3#OV2Z*!JXwlK*o1Reg{5y(3+oQC?-quF zj{D&8<1g3O9{6JC`n!z?uOEXS6AbA*kKf|9&VN%9Lz>S@fCiO3Fb{dIc{>pkp)5fvq*eHh{lb^x36IO?kdQJ1Gv8|`&-dE#<&HtQbFJs|RJbJHAx z{0Rbf#-ddbV%!sbFzdeeR#UV4H&e>?RW)SVZ7W~fdB*X8kb{*qRG*{kGaAnOB7LL* zu`8C*(b46V6~}5dM@L?!L>puhCPkyJuMg|4c56c@xf#6>z(Rc`#yt>rqwc=G%!-QW zjp1x=&r1hdun)2Gc@*hz+L;Z((@6_<;6tTXudqSryi-#<+{`UJyxb~0n)e~Fn{{1t zymG8s@S{3kqC-#+Y;tjN1xTm&#&Y^la+~aTF@*20CRmq%&t$4wHSnkD5Ivi2?WBW+ zY}HWs5j9$Oe}Bru$A_%@fZu-gwbP6v{QPF{W(b6&lm_X2e z)u!vA|GWS`Fq1*uFzZ_oM&!U4+#uMlSJ+_&eet}&HA5pKZE!tU-<|K`c`XDE+DObk zew1~Y8Qbma?tay9b2`O$<_Tcan>-oG<9xy2YBxp1l`AwfG$SjkWX|jAu}A;WfOv}8 za8^WoeD}@SoRX)fD2PoKotp0;RpRszm+*J*-j!XAf8^=T$xiMDo_zZ3*sCr}J_N9~k@vtZY$GjqZJyq3XJ>UuK-9 zSiN8p5=fvPJQ@%=dM(nn*_EeJIu1kJ#BrPAW6*hUqL<@u?R$r3 zk&(#HL1KXm3jmNu0=aLvIg;aXd$C57oD00PmI6x#I2HQ5i3*q7Y5V=G*OirY=>3;0 zWJ@3emChaCS3+qTuV(fDy2a>u#aR^AM-L4tH*IN7*$;@ip3OK2ZC~ zndmsCalj!Apov6DBtl8-!ne2gwXW+5X_it-@}DE~0l%5pe}!r$?LR!d#`s{d{qDU0 z9_E~jMmMrk6y4l}j#m4Yg4r9^PbYE6*+MW3@2chRzCMLleKf8MU&wzJ7BW%b+5uQN z6|lLuJ{k~QPxW~Zwk>|%OyIIte@1*?rluH#1is+%*YkK9!Fg|#Nj%x%;o<7dU%3z$ z@J8a<>;r(R82~`ANEjU`>d=vq`h~VwAhRGxeaEaug=igGAsp2B+-5_M06tVN1~JRZ z$t?^kiMLnmoO9;W_{~tVU-ohjKsa3X^}Q~KQ=oQ@#u`a}*>@&{+ywy!jl&*oL@Ih}+QE}Gm!80~8f_#mOn^@xgi#r+C%KxD&Glu|8=WE!& zMF?B{@GR{06crUc^qTHS$dpB;Ur@BMZ7*l%IVvF`% z$cWA0OY#F?n{V;)lN*M!E=zd*0!z5kArulOCX9XtZHPN~fB>r*`-h8f7q!;Z4cI37 zc7{~=MUb>{33LDYK!uhNQnlb38_v)tKZ&{4pAE{XTBT2Bc-!KM0{DeWfeq8PW z(Dc)8V>FdHUK+pi*MAM-RLUtLT=t(WXu_8E#|^`g62i!>9Km7_kB60xwo3=>;5yC` zQBhI*m&V4%kb9)0RuKh1$Byu5gvvTCv~Al-A=Ds$r``AJlW4aD@J&-Z`IN+O9Ih*# zKX~rt<>fK`(aMT7?M*;OM+ZK9<0rS((iK2U5;y!@^+NR2>gu@F)m66ey^kWMGItf9 zrRPUOLvmr`Z9E7K{#lyw`?R!9;|3n56Q*|vxD9~Y1JnrLRs&EC$HAu&i>Ytf?{4$H zl9x{}D*9S(0f*Y@ZO!`bg!)^J4o-rK=eRY7G<(Jwf#1K|5KZ-8my2fN|Lbq%#%uQ) zsP-&{5!Xjk4h`kEM>l&gI&VKeKNo&&XRD3+(d)!LUL zWd4c0ogJ{WsP~DXv=*Y?;Q9FM4FPxd%XgcWpy2FR|4B zCa}_fTJT5P3;uMwV+S)d+>=79r9XcB7{;$LG85HvMk&O*IS7X>0|@JM)M0Bl{{VcM zj2~__L$?Rwa}AKE51_a<@l4%XYgnionhH^g*DQEGe*9Rc0PT&YCU#SA95;zj0}~%E zgo=tPj>{MuaNvV^n>o+3$D*Q1fIbihN-ZK8ICliMT&_(|Slq++&&kWPJZo57{Gjit zZtSj>uQ|HA0|?DQ5!AjRIzLQc5mOr;8vcRwZ-tQi{vTmMPWI(Xw8Hw+`w;fJedLpq z6PjCYC(h%Xiij zJv?mhEj$YJB>u<84wh4^F^$*832)=5?5X|ZW~M!Vya{SPME~M&<=}>kzo7BtY9x7#sPL}p0^U2ld}|}nOXEB} zxUh6rIZ%r9n~|Z7H>ZjgR+g5Jhy%;2S(%tHQe_H@|55cH|IvVCUugO?d{Y#9nkKq% z*9<^tVb=%vwdIrcptOFAj_v?ibyrL73JCBJgol@x)Ai8E>mXQf9|XqPyhd46LPC#K z3~=dD3~qB8^cRy>gwu8fEe3>X6f-gwcB0i#-&2o4KoDL31g2Pwfrk?z`%V( z0ID9?04^BP!`_%U1+5KjX=(A@yai277Y=(JA;J&%am-5TZw_J6`U8hI=8_&8R_Y2r(B z>iA?|OiWBCut2kMj7|sW^?`k#KWGB#P&eQxePCxPe=dQYUdM5Lxr@Yyl758v{!gDg znfE18)CW}m?sI0`kuLGZ<|ZNB*YlbjU(%SY%- zKHbGFXdFWB*bit`n{dz@FIK4(1r|{6Bm*FS0Ciw@<<&pk-c6c8`acRj-+ni9p-uPG z?6$`Kfq`rQQ(-cr4y+lgulI{ql>P!^0Ul%ueXB|UNAIU?+FI`GSKO@V~{-+Q|6k+vN zU_?sw;u(ai)Sg1b29h=5^rZKYH234r!cdr%2GY-#-2H{Oh5re9;bt>%|w`^*QS!F~N;DI-V$ac%kp3UrI`fF1+D>nzM25 zl&Valf31e?q&$jeO!Zr2yrS0unDG@0j9nB8aaXYIw~>-242@&z1!MZidWGzGWel$6*YOE ziw&KB6qwLF7oqND-yHa(wfy75TWMyV;Z*696_aSp(z(lF3^(WIORJr-q zsTozivM!zhRG1n2Q?NRTjd>crt?Je^MrGw;PFx=}ZbnowvpkNuRK(m|za155bES~x!ns_$YcMM_x;Hg%PX{oj ze0_xX94Scf1r195eIPkzx@T`dVC-J*XjHMnDoqArYbFL*=@U}6{8BF-Pj~n?>kgjw zufGd;?Kk4-o-F_}VuJqIEHxmY%L%INVp3ZPufeOMi*F%cu%2Kr#;wf^VVsejX&DU+ zkd+CtSNUlXL=+|jc`dMvIt$y7P-BVfL_u6LL*n8nwa>qCL%RC<7k_ObTBr)^TW&F^ zdo#&z^=h}09eU5so5TCpGP7xe=Az@Ho7a=h9xyNje>pNy)@Z6-O{W=k5QHoUzIS=)KZ>iRfwxY7lWK2oGW z1w}z=flm})QMI#^cQ*L1LSR&DQnia76B~rN)DfCq^Y9l@I(>=GdrIcDjVxypA-;fi zwx{W_U%8^Sxh=TW8R_YDCahfeNFCp*sroHes;cI#4)Y^=n5;z5y#NY_kt~NeGlYqYj&X2TvDC8hwbHN2F1u0Af=l1`P;9m}V(j*9 z*V=?-E6Zv&u?sE^P$BX0k{Q_>ALt{jBB-=JO&vesX@o%SV>(f0V+X&B@>?6w(`!B7 z3V0jZM{Xuhb2r7DDh{i`m?CL6F*l+eraz*jp=i;~S$a~A&2Q*PPd^m5A-_50u_J)* z#L^K^>|UhbLCzA#A38EpMw@>#Tng(twk|Z*SrMW=htpWKNW9?~pIYrr!e~--r)|Mn z)1JsJ_c#e8e@-5a`-u1Pcy4)s>{<1o28ecvb(*G)SwpJb_9rebNB4k<=<5~lTDC4H z^U(UR%+pP%cz?UGt|jHshaL*c6T`jlNtCqf;RX~5X|E!7EzEyr7B@t{Q4tlqXs;hr zWhlw4D(E>PnC@+JPKK7!B^gj8y7y0rYI3vket{vD*ndBJ8~L&Mhq1`f@iz!AZMA*j z7_m8Y8DufqJX~FuYHm+issdWDH80KhVhLqd_p>PJ1unl32}70qVGs!sQAEDqT`v}~ zGZHhiPP^TO?an%y=B6A1AyMuqQL#alkhG@DID36N|CsjbDyk~X8LiF??R2# zp(<7*c!5p38V6vuz@#OkgG?TGUQV;C4chy_>{&QG$MPYx6kpqgohNRfWq5+Mis3E| zdtNKO$fTbs{cvEZ-Pw$dDmT#eBds7_X0Ix7`kGieY$`a0?m*~Aa>JUlw&xmiy;hzq zaoZ1~S+7%Ch!>($xcYWeUUo3Hb4QtnY$?zm@nvZoBH$EK*D|~H6$;H;0{h39@3!z# z(lmcnI7&~SWWR$wot2%s@zf?4K1Vc-_ha~mmG&0GFGS8DFg7RjZ|xq0cNYH>v!EfT z!6cQ@2k(Q%%0qLD&3UFY&kJXMy)ElAmMj;Rm`_*lCD!BgfM+Ap6 z;?`2kbt&-NHaCX#!F@cC;x8ku`VP_Bei(q-R=rW9$4osPrjaEF^?I8yrN*xFM}D-4 z9O0gv<)?{`Hx<#tCRPdGB#a2F9;_DNh0m)|V~3uV;b9;p#xEykAKYf-F@SYyk^iMF zmZr~kG*>&LFLblpSW>6W#35z2v7|a}dF%9k?{CJrjae9wQ8@8*+#mfuIoJw6-1g*u z!)1fI5jSy6$A#@(Zk&sSj$C(ic|>j7``d$iLo&Jg?ChZPO9EBgb+bJ6`Aw-?u0sS= zqxd6VZgf8bbGCQKr8x_87s$#tD%E7(Wyg8C1#kHHhj}#0^x1I8S&au~Iu>f!ju&qm zOB*jSy-WLVpEi4o2@y_cRu$kagxe<2`gFx4(OI&8X;LIiSlY`-bG9)I=0Ik+$^W}A z()u29fZ+WelyZt^slf?-Z{Xm-l|zGgY<0oD;&X~Q%Kf5;@ae|O{ z(S?iE>a#1objQ2N4v``~YIzI4*K`*S^^#@WG@n5%dYCUxqTntI55DTXo3uE|*V(w4 z7ClbAanDC5(im{OpL+3fI*X}EcQ#3eacR2>@62#{CfT;ER4o`)6rNP z)-zYVa>*<^(3@6WT+p}VH0`M8B>r3?$a2O!x7&4}oxJqpsX7p&!-SPmbJCLQKEH^+ zPxZb;UoD|=iu~p}8~2IlH=nb)Qu5qrql@MZag$AuO~12K?5=G)-+qnh8Gt$QDd0KA zX0;cKU-D-9IIovq(l3}m?CeYLHi^Vvfm*rI_~)9qDs)Eg0UvoDkv{vWy6igM^mri$ zvgGwYf8n)S)$_cSf>3~A&nVv8TN}g`m;(pMR@P661X2#}dHg5&`{DPWqEb*lF|M2s z!zI9NT5snxE7=M1jlZ~Y#ZcBOEtq*=BZ=Z4zJeiM8%EQy6S^gok!5Vz{OTp~@Efi6 zW4S%9lcUO5aZma%!*3uKd=RdYbSYjh5)3WOw=SCF#23x_Cq1G zX>=G4dWYn;7UD~0N?4qGFv3wvs-nntsqRd*)N}ywd#MVx$tOUSH4=Vn%Fo5TdDN}{ zV5;kw1|RwRdo-4y{N?sl0@tbo)dsAA$J^2#h0LDvuQY`k>kh>4ea8**_o39-an9Pk zssA=%7VaY_r=TM6L@S9j*u?hCQG7L?PHFx(OuJ_~CuLE9PdH>I^i2HL@|z9e19tv| z#u+!9EVFj&-27*2{-()3R#RFf9uv4;wiA1k^*6^j*6SxWgsG`643zf&=#jeABtTuJdJCrOmbqe>3I=8l zcu%Fja%GovZsC>%X&9@Y7clk6W;a_w?X|u_gwbS*+`Gf>XFy9abVY+wHLW! zN$V;4bwSpOR5GL?%XnbPFyOZJ{%H3qNxD8G+SY-_-SG{hf`Pm5nJy<%YQ2PZ14zczr#%@HQ?aavpL^%mUz*e|I%JAV>`fs7?R|VOBy3&Sn6wc43E92xM zD6eZ5jCIW}V>63KKO)ySfC8b@neMDD&G9(2u0>h#VxzoXCsMZdMPKOk*={b9z`=3K zek)1%arvwP#$I2BoSyRg5-++O*E!ac@~qZZ2;#~`_dhNK0y7jF*6gUv%{GPHgVp*DB}%0l>u5d&ID>^vJNhNE!zxvZ zp$Ipyw+!{Cccb@-4o{LenX=%p`X`)flPf&62I!jY%aj@k)GFqr#1A)Xlkb(98q(@$ zlXa-=dkkZUjGnWpw3M3Jy=d5q*imYaUx7$5JiKq7OCgYFN~1xaFy&t;@_J=5>RvSN za>UhMi!F6lUu=)MifM5{N!D;@bYbplsI$01N8%SNC>^)Cz|m^&YEx^tY1_IErI^dS zi3fT~_09P-&LYffaZml^!{Z$)I5DBu$;DNo%cRoJf}E|DAgK!00+laQ=N!<{aNArM z_5uP)bo-i*-xD$GiAMbl4s`RRGdv5n4p*+&Aw>g7{)aKby9U_@S4ExYN#pJVI_qVZ{5CCwu9Cr?j0IZi^wxkjr5+&^yy_`0E!~;4 zP;w%C8L$V~;5WUI;HWa|Kl{ZVh!A;*%gvY0ao20w?}bO=R?m&xS8Ldy%gl-K%(guQ zE%}X686MYUH)Oq$1>sw-EV0U<;sBh{{7&txzkfuYLT%#}{j|k%Uide{Ll-uO`6Bp$ ziX!7E`CWV(;dQ5?3}v#na$m5B%)swoNaJ6a@X2qFR-LKZsoUHYF=F=Ljw%CG+W`rfRECAw))H$3~*7&RH3+!gv{BL=pxbpce3M~@eud<`VTlDPpT5;+Ik12Z$jW?fdr(?fDx0@WW z4uFYzY}3}i50$;jdybvyBh%41>o~_CcrcxNKAcWceRL6beeHav@?NNFm=|a#6ao(S z{OO$5O$yZbD%rDMo3`Bg+YhcZnvTZX_1|2q9Pg>OZJT|=L{+(H9w?YHZ6 z(^)dMGbVF)rC4@v+zml+C!-1RG91$M6%6El{iIy#&6SPqEiEhs36@a9Dpy1~fs$W^ zTULdsuGhK~rsf2%87*<}SA4H7&RkBI*e0fK?{6kDiWj{ulB$q%r}YrQG4c9cXO?o% zdIX!BT9KtwuXaLX7de*!RXM;|V`MZhy|`cpjpQg>DI={S=raD5-%b^CtMp!fAAx5# z4#90ixUMIvcWbyPm{nbHW~X@IZkTO;pG}@VgbSaW4Ef*n4!ez8N(WQ+I9ImEX5??* zh@_I|%J&wy(=}U!&-8~Bif89M%{ZtS%C0^Y`shVjdEr_V!+4q+eKvK=^Fkk4s!{R! zp$V)A{e{En<*pZQ5^wyq1(Cu8`5I zJ7Y1U)Y!J2w*?eBob5sdPCz`-`y+zT`Fi!8`LiCr>OzMWIllDOmIUc77G)}yb?_Ro;I_)C6s z4831^w`h6q$!GFM6|`G2zXnSy8S&Y044L0kXf^BS`hHTw63*U!-VnD_%QzwQJzu+x z#90TgiQW2=0Elky+0`E{#_?Ox^F|pjlYQThncAgiXOEFUk*5^2ht=a8mPGDQQ1zgtW5G&dT}_{Ss;ZTTh{qBPAwy!!j zgw;dx-s)dXcTQ;F^s!5H#NCeFaTnHqnhjrv6HS)yw_#C=wpZ&_=9S6d%R%`mkA04V z#Z(A?d9f!vQt`fV1>)z*$Q(9!whe9F#^8`@Itg=!@mFk4sA@McII+nd(M z@k8)niL1o!{K8dycH6Nh+IjJJHpfX%c&yj~4b){`^0occmP5GjSUAnVK;K6DD=9v4 zxY_4@;VK1o35OtOLmOuVj*O|BJETUeGqfh6LXYZ#a2)BwoP>k<;ughkO44mUF~~;t zhvWSZ;$ZU|G*h#PC;$}4w)W}rKOJwvk9s+|YG+R1uVbSW1t0RaKym|+x&1vDn9_(c zbbvK%YVJpke0lddZ)RRFzX*Qlw2rfz3yW}$XDa4W3){LB_CF58>*SDb>8rb3-vJ1T z2}CW1%A25HL8`}eBA@m24soFMS4jN=XY`EQFafm(U2mC^1D7l(9r0|&o87sc$KDm( zw(1G4Xq|}G+2+%kM zXJ%*GZ7IMlPbV|aR#r^xZ`;-P2ZW)E6IZv-rA_dGs7=($;Z|GbYju9+uC?ubZzI5> z&~H`UHbD>BU4uzR`XLAH54|g414~YQiEt(x)H==|MlX(!lG%s5w=qtir38CV*@$N( z1*FwCf#FgG<)smLF`_!uv3#r=hIqiLu_Q7qXZWR*41-_HtE@Xe{WqSYMUrx90B^t0 z+{uWrf)1_9(#Vmki%^PxHh0@INJq;h%& zQ=GG&r?j&kmvjd=aBsdV3_jj6g#CrJ^PJ2ZgNm}MtugVt^8~Y=J7%=iJIajp2;|1P z4e|G56(`O{TG+fVg%*WE32*73M?HiW#KiSoeYy$0-_&2&h)6Z=%r5mJ7fHXcB$CQT zigr#|ve!0qkhbeco(#5?q|?u!+pwkq4xaen0BAu#7hj8`4&xWouck(vO)MR$Yjl4| zH3Y}Y#7_%^vGY$1CA2!j`D!0tCcL~C=ZaNG!Z3Csq4R|6s7BPyv0A4?D=lzZ3xRCS zt7K&65Gwr@nu*)0pVF!r2-8u~7z-Yi)qAVj5F}i1{jd;mrbsO;ZSecKqTrTkqTA_! zut$giMF=%_GD75nnEZOqOshz9Vlpo4H}in#eT3UVVqu_Pt+RxJHFj3UhgimfEju8h z?$~$~bd7a8(j@LbN{r9dk`BxGUO^| z@I%F)amCFGAvj^FUEN1IF^>k2WKw=_DP7}v*ZmmMEs(zaY`R;YoQae5Eh4H_0d^~_ zetpOkn-#bua4o_VlTC-0S69eecw1qa;eR!lRtLL=d0+ z_7-V~tHiA~!`Iko#co@pakY;L(JzUpiR$iltUDf&tk;Q_jhSA5G5v@6&$ZC|$GV+~ zbkfAqBU4As_a_fzRTyZHg+Gf7>WfG#3MQfp<`xdaS&B4{Q<95H(&5UrG@qCH=}}jP)vw1<4=iX93@SR>n=_1AQYPGw zxe|y=y^}t-Qc_V%N5?I=dmb=Vruy2m)h4Oa)rQ)VG{C1;x||B^cCbx6Z-^j>t9g>s zIrqwQ&n&aUKcbZf;CZ6#SdxF~vS_5;X#iBIkeQ{_S+?w{FvNlJ@+$e!aed?3N;ci< z?{7+ro!KdWri=qETgu@t))l5#;ScysZ)i;3b`rdL=Rig=F@Ncf2+}Asd;Ssc^b|Fu z|I<1@7K<`QvnYv31vehyc+b|G?VyM)M_%c*@>;s|JMf_XVcT{WSCGF4pr*V@Pc_x1 zcKmG(e&m()6mw91jDEAm_hznnv=RMHlCLN((*5aG-|$dk!_1{GkuObXpGtdk)doQr zEv!*tBgAQ#-Q+%_z+BQ2Cn~6fO@fk;D4;umT(lqXG-#<@Nh=H$2EiJBnL%WU}!3I9;hpyR*mf zCWE$XduF1;G?9^U)|rzAeU&1L?`$hx{a8t%zObQZ7OC)0lu1JeLW4PkamYDWkFweBaK`c< zxkPEe9oRmkpz>E`eW(p94ZwW+ENPOj^SCld825f{dRy<@qu25yHPN;|HZnMxo|)vU zC`eXzP+I+(JvejOKULX&V&q_}VG>i^%eDl27##6QA_NcL&_(|NQtP27lxV~A+brx8 z6T+4i=qE>r1|sj4NFSWES>=zO#XOpR4B%m-_}_67Qzrq)GHqsj%f2Woec z5l|$K-xg4P+GncjE0jEEsG%+2aJ$-h>8YD)Qh0La0^uH@Vz{4#J-8vN*QtT@$yWD# z!@stFO5Uc`HVra{ultqqiY$>gkag6B?%!xBKY3yb?XK@wQ|o;8-Xz9xi_;>}@tsil zy}0V{@mpst=5{aSa(*`8N(-wE*YR4IIqMf)EAMO3r0t9Q!C(oAVYFcgc1yw$|Z zlCqEo)>41MzOQ&h&Jvp6Y&%u`N(WRaYY|%}Czi?83V&MHkQpb+VR_Qur#~(8&#pYQ z2r!4aO9U^n;mG^@H?ZuyX+*4bgj6*YmtTY^`&4N9@W#f%3v0ny)`d>Yy&OTGNJ=hZq2#X&EIv1lr$S1YpQyroSzjp;Xa;ojmz^rU|pt1kkfJl!RxclID zC(Yng=5HsHiJ^7~&{(!tUR_UJ{rPq=hl4NyBtqM9rcdPH&kXRVWv4d$(>l-eD*wYn zxwB3iXqU!{WBbJ11#@@T>+AQWsCj9GTDZlORu*#7XL^Ao%g1Tct_qcWDV$<-chFMWLvTN?l?uIxx2 zWeTIHufzSSlkI9^e7Dl>nz7%fM5mN&B{})Y5cc&`ZSV-e>&gQwT1%HNN-tEvkz6-A zhrlj1(~B3@De$Duz1g0quG50F{wvRK-_%EXq8@ejlQhVfD2nxkI!=2cmVicUi2;Ow z(Eg5`MjGdtg{r9R7sCu&Krlefe(mr~h+Ouh787+6tFae}a2h9sI-q~OMwo+-q}NN# z0_g{Ly}gq^Z|{`zpB$fc_2)EgtF8tHU?hW3?EX8ibp3nqY~q#blw)r=t9-X+4wYk9 zbyZ#k^G~PECwxa!+bZLf>|c-Et9h3-Ca~zHK%3ws=m=#1NRHC`frSOKnZ!6(eq4$j zK)iL?q-gY&j4r08ShMoe(})R?*>f@i-n#DWw4A*1+`fLkV(u>6dko+ zjEk=E7*#m-ITWI*n6&5i8u!_DJgulxl1i(2HZqCNf(eYJ6`>UuyCuHQQbb&bkAs4MGFp^X@vteZJ?Gb7mpa^ z^stSrNcvG)Kyv7mH8YwrJ~}dC687nJGAl{aUjB-@B`3`;qmj`Io6qokiUcetrpBoc z+)dkijkMI$9T<^CVRvm0{-n>Hkk9;XjfYFP=FwA&6-^DEaUJJL-ak@4Gyeo5M@0rl zsNwbPtqD=CFxGt%Rddqf$%6fI>F*Q<9{?;YQ%)GgZRC|&U=nSN329_Fk6*xPLPaSY zRhP!@7!L>qFcSf?((gadVd(GMCrjTL;an`%o4Q^mZ^`v^wG`Ly2L1}-eW&X3N#^AQ z_UgcOP%ZQZ<<2&x1A;Mn*V~=JP5sDkCs0B+9gybO+CZP-#lIUROeVWfZP$zhPlv}0I*isZp zBmj;G%5vrWv)eHkfP@XypFoCW(|QZG#|%G=A4DYI^di6NMTWeP@`R%h+TDcH$v^DU z>~z=Vg^Duo*tJMK<;4MCoU$zXJ=`R8j*|=brTIp~8Wq15Q5h&3F)H!a_juy5A2zQ3 zW(m%3cDg~(5JsGSiNEi%sn^IrhBy3X>SW-zD|goZRj$|XCL|Pr)n&S)ZY{cb0V@Pm zxm5yt!)0{iw5vFQ*zGmrS@5=VQ!}LZ@-khw;E^D5^Sz)~^@9O%6V>CF!t7MGGf$xB zIEgh>w#@h)`9dW3_t4;`7cyHkl z8}oV?hSTS!epUvhM)VrNcyXat97)e$AjBv7f~lv}qlpm-@E-$8qRbrPi-pX+*P~ zlL?bO<`xdeKpZ_v@w!C|Thgy^*dGHo%XS|r{duo9ylM+Fa*?mTey5iYIU1;DTxmv2DDon7)judvQtFd=M-XtP6tYJ|ubo553&8k|>jmNM9>b zGaI2s|bqc3nKfe3TNJma8fez6U=>(fJ9)+zte7vAbe&y_E5`uv4-ll1x8oxZ}V|DMHsJK zm1jiF(Iss4%~>Zw&*?^aOo}PcwmfQ^t?23wIkIoA3F_5UN^mKJ?t4qLIz3|Mu8+yx zpn_g+iC0~PiI>hb%h+`4S({|jd@G_$Q340pz+n%`J;`P6b@S_*sXl1MX4PUCwG8#&_(}(JZ)2_V`S?{H%L9s^N5~9g6TZ@G)CcfK<&ax#Rl$ zt;of`cuw6C8MJY0uI{osxT-+j%?*8HVu58Kb;oEs2WRZhvIE~FGm;N96p6Fs0SDQKx$+xYeo-t9@{2-{&{B~v{vIV% zqu=Z}XXL8vv&v8BLV1r{@(M69v)A*#wr@=yT15WICvVD_-u1vW{VPkLqoefF)3;6H z&6raou5Qq<-mE%^^s~RMR#WpBXk_8)DlPeGU&GHg+Lqc@eXcUNRV4nGlJX^>(CPjJ*?R5?=1s(L`xT|0y)6s#8V>(p2GeB0@| z{vsbIwn73qy_|houdQ%M=_m2KX(3Nr#6PZdjrqa!>xNjaB>Vo$hs7Ub53XqXHX5rU z1m`?jfC=kwlv;^~lvN_Vbm3Nh`{Y#%1P`w{1!k|9fL1FeELRoFDnx+!!kI0D8{;!? z6Hdbi)+;ZJGw+`R9ISj(I4n218RS}uwV$;0Wvp-3d)rRYLi!&+U6M%R!VL3YuhgNl zAoJnH{ZTrZKWOD~j|=wM;3GA-C#h@f`QMZD6~x^1IA%^$dq#lD;H+i6Z%x@{v0u(_ezYIq>Pv#6edC8#{JF2lId`G!@%ILT64D}_ghG1z8j*f9wW+P2PFqhokDi*XNk-9ghd;~ad+In^ zt03y89jZ0(td^QQ=93BMQ|W<@&rp_#-QNX(A<~4A=9^Cx7ER!(d|2gfV%fDRd{HTE z7%lYXVps~s#+IyMTjyexT@}3?xc%qt z3PvmUitIL!`wH)SCykUt0a9TKY*N?GlAGMJLuJ``p(^7 zA3)UVfAFXA|6%K^gQ9HPcuDX^?J^F6n0J?pkV> z^XPl#oAbxnS(b%ihMB$Vx_)&#{1xeT(+)UKV&eh=f7t_BU+p=8+hb9(prd{#TBD5_ zaD3gV*UD#U=Oc%(a|Q`Hvve~fa4SK|)=D zY-ABX0*Eu#*8D4%)giUH6=qcj59wiZI!M8jS!Ppt>`-5-*kv{uJDE1C0i^cv;Hb{C$}CoD!WTq7<{nz{Q98W5Irz9H{v zI_$23eMG~j6g^6x@+t!Lf#)sf7n5Lk^9<6PH~xRE1RG1OMtcueIOc1yOrtv0={X)s zJ(06CWQ@$CX8SlIHEtVryULH*{y5J--pW_EkAGV681W|~VF8N`V+nz`EQVf}uaDCO zN{s=;lH7l(?>L}~D?Jst3lLm)&rGaEMUG3O+@8&OleZ$!UXnQ6X`lt-hK@ zctyK>^j?js(SgmuN1Y*32CY{bHX4^7VUi0}lwxHXg~n@)6z!!6pbMvp=-7ls5P7$4 zD2rh#n^~0WuZB;R0IrhXI3j0=T|*_={hw!TeVb_(DNn>qjNs;2jTS~y>f;J;AASm3dkW(2)(4tPuu zSOg?rTfi3JBg_A3<$=5znGTNJZP4VeK=gh+c}QmYUd+oN1iU`;Okugoq~?t0u$uS! z`r|~8^Go|A} zLH=n4e18JjBxnr$(WBWyzan-I-h|BOdhj7QY;`&tJTIdFpLdk_zci2o3ry3IWc)+E z7c`*X)iopla=yo}zIST}Zq}!bamiZ^{ey43XpdO_uN0d-tuP4R@!*?Oxz#{7u9>?v zQjN|yE4$)&AFJho+y|lr;CWuxXuOk2u@K~sILaPB2I}EnW!(d6ypB1>UoJZKRb~|$ zeM|BLMzWy9_h0gZVStL%Slbv*sCYs&LZ-oGAlIGAbK)r}+_kv&YP|LQw)NTUxxF8N zi)$&+BcGsc;3ci{i;xh>&?EvYyJZ}aC&pB^%-&YV&OU);F*{fAVJ!xG%e9SR;DxjP zK)!jGn#$W9tU0a9tvDi>BI|Crt|jzRmE3P-F(8wtnE5C_INgRy*Rsz`fC5jKoLj zZ)GCS;bM@+(K|$Zk9bg6(_i_!I~vug2=toYqY<&3l_y8HwcAq}S}yf*nIdpqV`nb- z1UU$?!W1a9hdpjpk1YwSnbCb)kg&>*LR-GP^Le_lt6%~E(^2vs8T?ZWyT4LM#B>E> zlu1J>b70k&j_Ba&;Yj3Xj8sbmM(7|Clkdy@`J*SlDE4&L7szw5YN^xe0?pL~G)GF= z*YyZe3O}>Ss|xl#%*VIb`Jmc%riN7 za@6K_WM)Yl-P<<9-P+sRK2HM^B&M~(psN0%y?LiUH!D$pM$67uUF`_Gh6My-d#w-GG705Cc>hXZ3fllc%Gg!l=6vA9=(38-!BZXu1H>;2`4#=DYk z@c_75>Qlv1D`KWDVw&nEPK_0dqTUYI3kssS*8ETw~UNd~rBF!yd&^7#e+k>1Cl(^=A zw?u(*NBO}9F2!U1FW9dsYjYprt(}hb>pd|kqXn?6=s;q{`K33tC+K{9=a;mB-R|w_ zZ$)`fgN&XInJe#hRQVt8DF$8>)&Ut(9{$yKS1`Y;Gq3yRfgct6BRv^L+@MB8-`2uH z9ZpwnfanN%O}psXQ`v5yQuTN|a+5z1fJ#O1?CP#eL1c8R_ZKhv6>G=dv0)MsyAu^&aTM`Ibyhd4b#IFzb~*QQzX276Z5h&Pr=MAR_|GB?D+mgypSz{Dj1wcMV^+T z{bKU$Tuk?p%Ww`>dF8~xi4ptO5y{F8APOh~1^v@IzddYLAdDpQ>h(#y*2GEC#(`N5` zr7W(rESR6jSqIGT$v3e7odA~&k>lBPd#5LcZ{XQ0JCO)$kJY%eoZ8IbMGca#qAA~I z2iLP346MSD32|2!6I@lscE6X6WOOnPpFn;=4a99^zKA%mZr;(>Y0vW}eUE*Y{k)~m z-qDb~XK24ZiaGD}NcH)y+gS&Ta$)uz*3A&fNV9Vj(Zb~N5qkrYDf;QEb=rLye9#X8 z{`!&Aj!GLHjBfwnF9Ml$?G8OarG^C%U{QyPNC;c6AG97l|0lH3-BWzG=R>P*5O`*h zUlhZ6qvrksz!0aA&|88hjJy#}Y|e5*#sp>v|x=h;9&d58#6in~(1thzWhn9%6fchIym!+$&t!=1d_+k=gCY z!M6U*U*z83!OiTAwOlqcTI|i-;ZKd~UcQfBk0cF^c}9(Mr3d$BW9p8boeS#JD3b>; z8+gvT)_M1Z#0Ar??_;KOXq>L?IKA;by~@09Z>8#6ziYI+tKVLBrUIphTh>2n-!Q4X z9Tom(&TnZJI3fW`6~avKLSp#gf0Wm!KSOE;lAhj&O>Tz++FH_Z))l{7*$bQi~x;rxE zGESbapR+dyU5kKZ+gVltHEo1;5f=JaZoxkZZnU%WLhq93_{JV3L}pg%VsLy8^BD}+ zuW;9*0{!Po2OKA_6wgRH_X7N$PDg+fYHGRYjTWFSfn#R*sL@fGne_e1u+nNI{b@|8 z^8Vz8)u8Rm^n`FE7^uKftuMNypRHZ>SqV*!DN$W#N;{1Q3?RL{BDhf+6~Yge{v$!h z2UvrdDv}SiI0<8ldJ$W?>9UV!k?I=Cm3QyecmuM7jq5{ERT z+a5o>d|AS)A>{ZbSOV3+u%<63x4;Y@Ef$`3mQ2g0IFzR`(zc#62G{{_X*jkOy(T(% z(c*7}4^6MStkInd;@14bo@SHJz5cK_rQofM>2Wmi2#y(Z?CabS>y6W!n5mA~G*J~u z{3|*f|AkmgVFII*x>S~2I|o-6H7h37KAc)sIITcCCjWX>{>16Y>ig&Nw!&DZ6H9`A z2)*5Gi=`P{3@{uo1m3?R`s8DoMKZGllWU=){W?-tt8JY&koV~eToDK!hy5r!GfZki ziiZQ{e^jbZo2=VdbA%}J!F<=VITBQ)p;)9b^6N)qf^tp9#1{$ize9)d^-FP=nva5w z4?SG|t}OY$!KL)0%-gG}<+i6o+Z9*|neg#@zsn(ptw6EoBwNPOi5q{zMSd(Qv5z%MWAD?+4+4fE*7A5g^1o)Mj)|S(4p9L>(3#$&L#Y_}Vv2>G`aU6n3 z;)ie6c;wjWcm{Aa*zDxz4_hF4C1BYqDFLeP9tuClY3#r)J^0!&B^&!dcoSV* z*{>f3XEkMh0`&>pF&?o@Wk#QI8CB?v38S6_FDYnfrBo^JnljiJV`EpA(*Mw6T;wsb zV=hO`mC_P=t_?>%uyM}-Yaiko%jX1C`#w)cw(Ok?^FkKO+%_{faODQgKhjtfIw%It z#-J1(ty~ZdK;#( z%)X#<$03YVE>=hNo?v5N8V^%n@cJ(2F<=d?T#jg?l(#mraS9H;1#9 zKDDnD<%cpSU!BZ}zp&S5bA;@aW%TiHKFk#6f4UWu6c09yf~!I5I0Tl+dNx{KUmBf! z0*Rj)2p-E91%L2Qx2Fdmpj^!}6c*-xBt*TVE!XDF$`^@OeJ`+bdw38CjUS?F3)@-%45+|T zB61mXWH)vEkB zm>G-Sv0#XNd5|Z(vV$c0LGb$r%dx`1Ii>e?Ahq<4fZyd?nZL7Ng?yY~5GX{&_nmOx z!6xu~*m;Qgq4e?rg30+KFem`(LbAXi<2qQ>(qG&#p5HQ8+|r+4JihS-I!(gg6a$eY z^IXm-GR8(Ifj_>FcAs2S>>`JYpI{=B#lIEzD5I{fo8Pc9_sTara&?~bfZlz)rKyex zS-tqN@cU4wwIesI@K@}M3i!v?h7J4LTi#!3513|gSZJ|VEn-=@U1N7IWQ}F;G5#9E zWk@QI9e`^HgY#y(p5I+Pht6M?hbLTz|8*EZ zl9!gsyLsGw8D>eE-+t}%2ZfWzuBthJ8t#%ERtZqZ7u8OHCnGnb-N64xE-S}dC!W8| z5!@p=Ogg}2C#PM1a&E|(Jiv9=E0e74+Zrbu#^*{t-H++r32w-KC%wZQ90nk+rP^5=8;r!{tWb&=mytkv^?!`>SKj<$luBV+ zT+>NTDt{P3Bqe8lqvDd?_Zs4Ei6C6@oF4Q63I&akiR7|Vzl;}V9t;BR1VtGksuq^MvHXFf z#njJxNgd*gkV^FJh8GX>6nl~hc1VpF6rv7Ux(_L6!pfU~339-QVk$SFZYnFJO zOoQt`bY?N+Fk5z4X8H8x%h$v2TghLB0%z%s%1d|jW9&3ba|XI7M1a*1#;)vP;|n2z zBPBlZ*s(}V{F=$CG;AN3lgN*gqQdsU4&cQ93>OVy-&j#~2Y}!K_9A>?-%c3D`vD-r z`8-4cvT{nHplg&qVobP%e&clfV>qa?%AW=PvcfL&@BaNB!64)BpH4n_{m3;b3rI|HLA1gZp`+W zsyX)m^Fs5J7B^&hD5sLo@*(XlY~7&H(mYvD?Qa@vwb=(TpFKL@tBC#Rb6*k~N5@U7 zz(*bcpuZ;jlZS{)-mQw`8~qwNke*h1y50SR7hFFZf$C0*r;@$d{=8t@$crQXqkY`3 zk*?a>k*a;XP|8@2Q=Pg2$Zvu9t8ipBXp3+Ff9x044d?p z`26f{TGtNelwe6wxkZXROS1}i z<9}*ldts`p^76YMs^Ski$mI>tKr5g|su?c*25`&kqkP;${5%3A%ZnN2v3i4i+@&f# zkg`P3KlGqS$PwIwz}owLskDSCu_jN!y6fusr(GMB8BOL2-hb{ANnvZ5XmuL`Za@+F zO=}dcEFEk5IkI9o!z&CVc9<`F=d2}h@vkl=N7K* z+i6U~+TmR0nDPy;z|B+V$&_TT_d~|sjOc<~EM+Up-!Yt>@;+{Oo&-Py^|&PqDv-*3 zP!+xE;fXqb%u7|#G*3f+3~I5DZlgb5iTM?YLotSfbCuELao?C}`t1>6jOpzoYqXwC zEi!H)1y*H+8)G91Ak-k^Wi?BZEJjyMlK7HnBX%3^IOd#Ujo6&D)BysMg~t*tv#soZF%%(t7TayuKZD;govRK0ie4xTd!~9T*({!G|Sxf?ZvcH)e z)9h`D)_I-p>}PeE=e%go2}kd0M+OK}v5W_D`d{LNr(fLs_GpD&#=I9gkrOYX7S9s^ zd!=N6mFzq#UKDul{5YeU&?$KiLWHcgs~*qO=N^-DNR(D7jGvuXgl`D~)fEvO;pi&w zj|D;qo!crgppmLPc0GL>C}_Jne8Yo#VD5M+8rw6%mJ`O{*uX4z!}5WriYFt6qXNwpZ;S^~CV^ z(aJXwt2^?4POaRY;-cMx`BdltvLQs}3qY~C=O8&44DoS`oMbEc<&?7zM1OQ}$^~{x zI6@#lBC8!GMy~}AYUA|e`H_AqU*}{_!`_!Fq9{=+I0exw-#GmT1bT7*Ku9d4*$nGx z_v1<9&U@`Cmv0oOp&F+_MYTuv`}+*@_rMWx#B!S2(OcPa`*!_#i_;lZ9pOM>T92jV zpO>>I5ut!z5J6h*WD1kOflO(7yE-{w*n|Q4)z|TD0#LCDZmq;{Dkqm3DHnHCqKshR zp`q-HJE3iPE{FO{*H~v?vm~6 z2R4Umy(mA$a&MGQ7}N!Jr9`n&P1I%(_zpfTJ8eKTVWt{FX-)3zgkpOL^~c3VwCM@m zCrY2+;+sOi))c_acUYxyXfFHQ?xAQl6Ga`9_Rbqtj{<{4L)L(*Pvl6mGP27mY77!m z-zDD_v~OD7NxRWlJxBcvpAQ~D#IrqsJ%XUhvM5OXL1YmNE5C&iPx_)0{v5mIAg|e) zRUI#G#p$2jFO;<dZ;0y2`A=o6OhmO(c>oaHD&;UZWBwOs*3OS7A7~+s~IKIA1{m$1M9? z2j(-H0&zD`-$h ze^?5w>$d+sRcR*c23-In@RSrySAPiry{7vpCRyMKW|xy1YrFkT;dg#1ZSUY{r%ly% zRtwp9I`=!7pEjsThwym2#*4DD8&c7XK7nW&?9FtB?weVbi?4ra#)}+a<$50*c6gmN zpU_Z`a_E8$$Q&Gyu#UBPJB*BMbWs4QpGN0XRC)GWmA5x`l}*=x6OrE`W@fKt3@>Ld zJa{q#F9-b=f7ACA8DjSmr=@blY+}|GT48t&sp=%Wig_OC<6HuF2?*HpZD`Y%2IoE- zjwoG-mv+T#UfrUuA)AvNph%;j5HE;#1-zUR+WTeaLEJI=3@qAI-ly!h6fIfT#Nq_YUkx)<~I|8&Qt=AGVV7-;t5=Zk5PA<1v}G-L9EQKZH$5laORJKuKn)inegL-%!t0CsW ziP8}nvV(DI2QwabPwHsbf`0ZXlBDjHok5)7(F-WVb8Am~XXeAsOrKmbDKX%#1H|I{ zmIUfHglcW!(!FVv_dI!R7lLpiXEow=#Q~DKvixQqB0&d6ZHN*dp7Zs}b59iRna>{I z`V3I;FAL!;2CDYQgCm>4D)h80sLLL&@GwfU-4G_;dT^Ab-T2jZ%@w*0;%sjdX?$9J z5b1kdTyp$_2E=gaU(8#2Z#MuP!A2u5kn4OMc)D@$ywc0=OWEZuE|Qm*<4Q_$V6C0n z_nnUA-eHJ4{;gXlWjLgg%my9Na-$#QYw)S&Y~N3;nCPLrBI@FTXzcBiCL5LCq5BUi zUm4kw4db$hF?wsOnXEF$E8Z#UmOsmR zxYSKVGX5SkEn0XB-q1|ZkEq=j6tQc()YUJICG9-seK9kUhtSc?czmiI3*mzey5fRF zCzjLjsT*PokxGMrbUkwzRYc;UFB@&kjH zoN6@9Roc`=8p`1>PO!gVLSn3I#o20W$7o;TQJ@8n<^v?uq=7j7)afo|90iwxikw<6 z3N34|jLt0n51^_5_WrMo1S-lUCMLOwCuP$WTAq+9JJre*1%K2ny|R^-yM;g0@IWQY z+FLkoZTHfNFx|TYf-_oIYgG${3cTQaie$w$Kx(Wo1F>Y=fZh?o8(L{w?M_WF8-LSL z3QkdsPU&3iPv)Pgc&--2Lqou``DwZT!(bDB(l%S)K`w5bH^U$&kT=JW3KvX%o~2NVk} zL1sGehqm+2Ym5|ah_;{DO?L%eHa}%W>jzw@3g}!lv{G&UR1BOu@HQxcH+6L`h-v3! z<_Gq+GT%;)-m$XgqYh@6mnFg2>obVAZf3XgCjytniK`YMw82zGw{d(ix5eo>3=xQ! z7TWx!RbFwPdnCXk^>jOh5CWg<^gACwi2}vjswYU--BJ1pC0T>bwtae$aG%8aO`STTyBq5mIf@zR82S)yGSu=iVQi^f9$hz)>5O>9@n5S5aN-N z7)DuFU5E6=HSgf9RP1e83v6pjTq%B;ykK+$X2iw61o}bHb`y?K`0{=A_eiOn*kHTW z5>EM`f5{QjkvX>Tti$$s1$nwaT-618s|+8|bX)wD)xHP*`PX#d_1>I>1l_-S zC4+~(C0d)er!jfWVs1v^Vi_EG|GL%%^FY7}3Ghu%&I>)zO#k9kdO7dxbiA#f{wHxm z8pR205P0|?aljM8W)j%c{9>Sit1+~4>MReY_>m)L;#agI50Ls1y9%YQb-4tR$5X04 zKR4U;0T~bRMBdkqpQ;_kYCY!l>OlSyJ1vz02)x2XrdLh{uIyao$}r=67BSAx)r6 z8N(^Kg?Ei3x^@>hzFOP>vR1{2Ghp*Jo@bqND&5zqYSl4J6t~UxSDdT0K^+)1&su&u-jA7M2%Tk!{sXA2I38aEA#UwnD!I zkjio-`2G#e%ROi;|LXzc*Wx;}(}ol0~5%~`KfqD(B<0;|~iLk)-oviijH`2n}6#gDH@TGkmz zCv`}ER?bT8o2Y~m)o6zqJ547B`I38)YlsK(z;1XThF}N5^rTdkH#4KKR=$lHD2eG+ zTVlS0@&Lmb%h_n4_qDU5h&dkhZNIiMZ!`QgRDjKE{XNNggJ5S#%*6OD}bsT?xnvKX>itW zsdSI0)4>p>OaTYuQBXP094BW?7q-N;V%|-4_tDlTS|obAhm}oQRZDuYkQu{cY%T)_Ol+7b$*a$WYoCAKmjZ3!Caq0 zWi#J`hPkw$w5W^|JV-w+U(!?hdPQO0+&A-LUT5wn!)uEuc|R;`3`xKm7`Dn7=fKmD z0M*6^pH!Q@1F_rsoi3)?nyVl2Pwn#$3?ya}18S^763NUJPAwIK653C7aZ2F8=gTpD zaNrq&LKA6w8P0Ezz^F@W><-y+fw{4o@vfTrE&%w^4~zn32*bqS;kop|N=N`45GA@b zg*jm|SFZE+whP?;c&X?op3uR}COVCYcJvBwIJJH{p0?=`Hqi96d6j-MD|fNn3B44} zB(=Gpqzg2i%&zi23x6zSHtIv}Y)?xH?)9zN{7oD&=^%*av^4Q7p}a#%IFWr3s6!89f6FO@#HBG8uCOTc4)_cy2ZR#*B|^LNt-8ime`^Dv8Qq16>YoH z30>Xm?H(H10ZhW2_l^@1zD&f(LGL^VHXL*(0P6gtC5HQj2T<;#bUPbo=Ja!(K>vxG$GBV?_T}81uK~YEJ>>*A6rN%+BMc;ko zw&GN1QLm?3ua^)kS*jDZJcYcdbB<()ci32m)fV55kq2%?`#?@Uoc$g_8_=C}1-W}D zOZmz)aC0SHLb;R9+kse((p4*5=@N^)j*sxHz_}kH8$>VgYY0L+FnCUZS4;|nIAbyh zI@Hr16y8`lejrK%0-1oPY@^WH34lES{)@q3z=cs{bLmFtcP;)MJMIFvPk+7$$dr0~ zzW9_Ia4bf%f#*x%lT@`gnO0;0>TTg;)oD3EJ$UxN|jyW#L7{Lh9-c=i+olwb^*WkYQndM;@m)}t-s|)bvJx!WmFBQV(hE+ z>j+$Q7ue3)#1KaZ#>GKdDCbyQ2twl&W>Sk+-gXOna!EuJM7;hl8#^_>HgV3QGG1(C z0%4c6QT;uB-7YKLWG}JbL|?xV%qw?=u06J0!d^n{&jc6PBAoJREodHWYkoh>D2;-Q zj$}nLa=<{1lym`O=ckenKGom1F!wScm2m5rZzf#9Ja0~`)7x;T?%#dX8!$YMLp`~? zsn=~eQ{q@yY2ulvxa<#YXiP9_q_cI@LsiEKADmyy%?K4&}8c`ikKYh27s!Y`6I={vl|KtQK+`jX9x}>i9?E|7P7EE7% zSXb7zIQe~kiekaEk~^v|BIy58^Tlso2O<2hC*dIN1u2hQadH8@CLSj%^U0D5Bn63) z>&ic&2kD2)(^ItadVHM3WTVjqQJhOHX(N6>bf!~h z2d^rA!%GC)j=ekae7bs3*>Y_O*Y>co#mhfqVvp+kduVR&t^juf_=*mMuJ$1NUG<^* zJw2GgVUdafaZkHE_M3Wt1E)94JXC$KWA>DH*2pFbN;@KW*kQEqpeWOU`|+<{;qK1~ zqwp`5+77B3s2FBKR0Ec{FQ-zIO)IG2eY(QeCKXeOobRdh4Fek!cXw~jl2a?L118ex zu_(yR`wnk9J?Z@^HpM4qF6yXu9CU+(s(XVt@twV4H$Jd?HEbhgM-dC-^B}mi+&npl zLuT^%-@HC+CwZp#fq5We{@MI)-hoRr;>6T>XXJb9EEF~~*&?UGfCE47(hP>&sy)v% z-?JkhVVC;2ebcTkFjgoaHocJQ7$^3|Bc80K0=Fp-BrTOK`D#K)bcS>WSWg7+Y9m5) zuxj2Jh&xgx(=A1fUEcB>AAF7K8b6wM#t7QBi(8L#SC*2HXLi`9!20hP3jeSF0Gw;% z$NQ!LThyr~AHE9xkWn$EP&9fgKw7I+nMeY@s^a@SM4znBk_^zxXwj$~$RHe+Q=iC0rpB*b2r9uKq(4u$xi|hnYzMQy_%j}Np5B+5zkOmk-IfF zInUb{$MW_Jj~b+@%`h!4Wt7ziMVin@=SdW8`#| z=TrBapCdZ<{9XDthQjZ*o9yj<57}|uK;_eYeBfo?<7pI?>+c$IH6X)vbWGqWm@1n$ zx;)!&{PCXd>87|$=s2C~a>%#J=`3!~d53~SP1wp@ed7MGps^3a>%W@|M#MuabQ+$h z-123BnJ3o-mZnO`LUf)ESU`EUeoaj0+ei$vRyoj%#^) zt54CmqC&Z8YK=?mk&M{UKJ!m8D?}xC| z%^Y#M+H@PjO_owrZIs{k$1W*CXYmb!ATP8x!Fe8igd6VK4M={nVo0(fb>n4RlkGTW zb?s0z|5Gk(9BtYbB0N%^HL>7ZW)9+&YI@r*jgUN}Nyqm2{*#SYShNF253%e)e@2=T zHMjtEm{A%4j{f>Dc$p`i`~qevA`=D}-Qkr0c6&zfhS%+C_*9BTfHL+zWp+Gj(1*0N zk?e2S3BmMAZG!%%pDWwP%UZ@eZjbl>#FvIZoC9kYuac7i*!S4`sGh=eNka$Z)7C$3 zCpgSoWl<&X$RW-VTc#wXo#F7SlR?w-RmS~=Q*()KXtR$cG_o5wAV>ApVu=CJ71`tkVwc{Ei$3yx z-)Nx7_dWF_=6HJp@N5kJlQnV_N*ZRO#mxb2TbQcAy28;O-Mr_y8#o)^74U3ZI63VY z*Q{LSjr!b2^Y;0S?Ec}%bMfqQ#QMD_;94tnIkd9d6CJIMnl=#>^#7Qiwq|EMC7|qg zmjMAUWL^?Oz-zd@oK0tQ`0-+91Xo1w(2=O;E(_cf4BEkZ%43G6>1npyKq=*DDYtNP zzC#|MCcKxO+IzqNLNp#AjSi;(lxj9dc80!{q)xML$dNURr#{?$GFFXP_iz%?H9pz2?s;ojrfSIG~%GLqMcEn z#E8bw=!(-DtKVdfi(61Y6X)I0I7s_Ialtu8y2y>;!L~5c&2)4)Nj9T?EKXf020(X} zO#`Qqg)I*);@T>ybEo3Bp5YXm;x+RaanKmmZHoCHfpf9q3iiciGCMQ!xx~`H}7&Z`BL<|G-HxOm^S1%(apr8Ou z;ejj$*L?9(DQ%mirL7Ns%T~*D%|fDZ-XkLj==0qHq?Au9*b-wbd1_aO zCFX&SxYhRR5jO**x>zSq$-z-0V2 z*|MBe7jVNcSE>7Zv)R7&(>Sz`VCAtoMBZeLyQ%%$A?qVW+QqaK=(m0S-K!l5KK?;nu9ce#c0Ag>OAwX(xgi_e<_Dy+_y zao;nyeb~Xu)jYn6NFcV6AHik?B+KgvO8-EhbIkcR9GVcAl~P6vsO&D(UVLl%v)P!o zdv)dNqM&-_XCz9CPD>?SbIflPX_he)f%?K#U7`LE;2b4Q`ZrbPtzrr3$?@2AH=zN? zpV}t-sAOd~-+BIqe2sdA_9X6mMgf-hu5vWen4$CZJ*jW38Tq)-!!N9Oh9?}1XM=zq z9JVcof%hJb2~{3V2oGNv9S;rf{r+oK){!2<28iLYyW`>1S4cvl#Ylsl0+08QkYy$G zt}gYh&$ZI*eskUG*isvNH?bFTMA;iV}6%S&Vm>CBK@Y77w5OB83l^SEk0ENg8+?S zar#*raGNdgP$t!*{#EnukzRD+E)8p!(=L0Z_yRA&%|a`NU`7vb3tf#aW#@RtcDhv( zl?cbC5Tm8uDT3Pcox!^x=9U?2Qz$9qac)vqs!fy?QqpDemBQ4Uf}} z-<_a(u1$SJ5{44(GKNa!(9_cV5ZWwwpH0icB>F6v6lWhMri0z0a&E)|$0&Bg*%BGW zNP$I>!!D|nMha?NlF#{=;;ej*PWfI&yw5ZUzgx9tUsd#Wi>NI%dhb~wtW{Vo#ZX`$ zKDqb`xR1PUJxa*Pw93woo5bML80xcM-b+>CaR1hZb8w?kJT;n9jz3n~^SS`i=MmI4 z*?D&8@?S^$4 zXQQgzfGdGnd8{6>;jIOoZ3UCau!A}B9^tHGH*7RKNcr&Lzf`=Kyr#EZ$u*vFI*t*< zFHDS(7tjnlf-|L_7z5u6Fs}B)sD@3LR1tZ5qlHFyWO1L-^S2ubuSbBpM}bE%>i_20 z7o3W$F`;pkQ|IOsGc`PFNcI9nP7Y(f5L;zMtl29 ziLr;JC3?TcWXo8wkESP6h-)M!O9eB&PwI%;<1qjFQRK_T`gfUYT6BD_Ri~}p!)mt; z&J!35zJGCJ>Ce46@YGcTqD0K^D8EEf^VBy#cgN^$)PJ0TBPsVxpwxRoVe%5!A6W00 z2>oA02fWwV`tz~L491N;o{Rxfa|G!0P~aA0O3>Kr?*uyqnN@Y{QAyeMl82%FYv zO6E?Kzw8&m^xmnTU#xdUT^4ZsW-5cNDtf`_3R0DmKx~7vHaiW(-KSfYgxRBy~B537Oh4|@Jz96;B>Q3LvoCZr3ZqgTtSI7b973u+Q zjjw0W5y-^`#;8s!Oh*~F+T4VZ$KMXgDb&a?mY+v5v}$(>NjfJEDo#)i?O(2HYRSJs zzD&@-Y08Xd3D9?O$n*S3KTS|YTa2`Sj8@}t;=yYnq#_heO?m zf2;gvI&;p#sQXKtuo;pP$HZ0l8xJ!jP8QlPr3Nw8+-WejN!1mX*W(r}CUbw8a?{*M z;7ew3PZ{#I->=i|zX#m^=I+;`3vBNJB9B8!;Tvkom9L8Le*K{Mt)OoIf$eQqQiBiD z*oRFtTISjypU?izTS^0=nRK$Zi?{wq1RtaNnvjVqY#6xk5mU$dHc~Oef5+TfG7_1# zt||Mz54v72R>JspNNTT3q`-~p_bAT(gF~H~t%>k`vzob}#@Mwq+Mj$>h3|N?K9J@h ziDtDhIk$rR$)fPO&)syUUDwVGI%)%sf;BB1x-<%I(r4d(JfDX$U8dmkHB(CG2tYqf z?$3m{;VVs?R}rw3s$!F4q9Gx1z)#A3IDC!;BXdx8-%xExJ&l|NjJ8-jzZWN@%Sa&N z*!d$gjcHTWTp!xm@q_~0jfaxQ=9A~dse$Hbv(WclHEjtYUwPcBMaB26lm_o0Oy09U z;rSss-DAh^)^6>6um8lKP z6P(};)U8}z;Szp`oGl7knD~;b|+K!{5Y=DI{YH7Z#&MG&n@)meY$&fOf7z* z!d8w~J0b(+TbRB8urf8ux6ilU+ zGR)Mh{g;DUBi30DuMVzITWWHmiSb4z)ijq{L<@gSdnKKfMXGubxN$Ka(%^3!#aBZPyaB#8=|S8Def4cT<8)i{Q`cKaJ*z&=ct^ za%6te>!)acPWNFqGWjLNJS24K#`qc8Xng$FoY;s~w8fzOFDr^SAI{ggwOXqqx$~nu zlBI~ZPo-k<3&iNw(9txbiv*ETCE29p6aLtA!=(}oe3x?zRrpk-di^IK$F1jZKjLno z#2?q;^E;|q>KF6LZZ;9s`_6iu11(1wM?MC74ZBB+g!CA znRn`i1au8gh)ZcD>7_pMmFVt*wq@K)3lvP2E<;_7E$8KM*?fL!2$i6upO}%a0C=f( zenPKegqg@WarYD;T^OHL(~mVXf4l+rZp! z-$}lo&dNp@%_3&b6}CJ6F(0RrYWh zbR#m86CyTX;3*#OUig4>Xk(r|zCo|A?Q~XR2fsqCMN0FPlKZ=KvhAhq00ty)4s8nl z8;(J*v-VeP>aQVdCcoo`lYJ;W?*$QN?Wt#r$z6(tkuHBD(1_AGDIps0$;ei`I8SyR z>(qa+AZS5~UzBBgUpHAanKlUpOMdwoVKn#e@a_j`+Xesm?=8*8H~cy@znQFLqNj`9 zKd_}1e4jFv+GcuzkcwsmH>>U~`(&&-^8=M=N1e++H_ABP-C*?dOHm{lDgzr>Vxnk0 z?mMKPeHd*aF{?HO2M?bOCv!X?8Tnr_1BHELpKL4C;6s9j*H3%&tv@M`+NdV}sl#M! zPO@cXAnvjLWrSr_vp$foIP+dh=7ty$^HE<+mrMVW!P=%<@p!JAFwUf2&lSc|7GPNN zaem1q6qH`I_3>SSBJN}n=`u%F-C{Ii=YBVX*EuF-TPfH-ge-5rKkH$YwkZ)KiqE~d z{dYn8JeIQ74=}iAzvVF7Fi-PUfZsrs_xW1uholVl(aXaRzxYo3He6iq1v*9!O0v7G z87R$|8)kOJ^9qZnC=>pWVnQC#C-E_-$uTGKu_wtfU%bb0J5}K*Gg0=1jSDcXzpG?t zSX|(jxF*AR{=gG$&rkCbIqfAIX~{+;ZazK!4}<>ZM7sld%&-j$GOLznAvl^50UDpx zSlHQf*J<~?(*|!I{j!_%5pY)wqN&l4^uwD``3$~` zh$UIoF5sb<@x5xk)z}ylJFuM@T+9EOx1v2P(D5-lUh-Wo{P1D++GB?Zi#O~{a?OiF zMx*X?W$(t-3VFanFnOSr2*D0L`O(nHEAp32UJ{vbAurwFzwYdk{~w;d0xFJZX&Ma{ z+}+(FxVyWA5Zv9}-QC??g9V4+?k>UI3GV;!-uJ&fXTqMdWOsI$?yjz?zSm1rWxMt~ zQo}}vs2?UKU7W0@g@um-BPdu-1vn^*cuuy6zyp8G_)SMXhvMi zI)6A31e1z3dUph6nCYOzJ8R~@QU zy`(K>ct!Htc8{X2+y--WO5RtJy;RqYxWA<7gfNUU=I^Tl%!4(uwhvhQ?ARVdL_|uJ zEQ_`1#6c|jVV#^b8)E_>Hs#@V#J~fl5;A|o`4HIoqdnhguI=ongD z^xANt8`IYn^!f)f@?{W_XAI5rRb|Bz+aUXxQ5FmPY#u-e0?-Jm;kHOT$8~&B;H&!= z9}q$?vc0GhHbuPR!q&a6B5g=0PN@c&DW6R$g))ew+Ea?M^JB3QZJdPqXj`sJAVg}n zq~9)jNlV@@Z*~PI?f78}!fMRVHkRTN1-x zdunMHj}7c_83)4NY@65a6|abdu&p3(AhGfN`jRX|*`SkdJDnThVQ&LRH$FN2fkTr_ zyuKWNsU`mSa50n@vQ`AqenH@jrTzX^$CX0C?&_+xGL31nrKD}2DPI)Q$JBCh$+At7 zi8;Wm{;M{o{m5Um))Q*`%i{jd)S#0=;z4X0_#aEoz403_f#JK^ojXK(1 zpES{_0LOp&jP8!`*Ofj%?DeFm(8P{)PeZjK?a0a}xR(3y$QIaK~# zxN?=*48HTd#csMxQ{}K$mTFWg%2FO)w#817R1Imi06Zw$3nC%E3}tLqUXbWok(vtM%yaGeu;UHtpkud0=bTAAk{I~1Vy5pRbpkTD z{Ns2>uY&o1EUYz0pp16=(185SXtmz{(@{uo<-ik0af;jq35D+wmzIO2E_)^7Uc-0TfBT+vb>!?d`z-sr?TgSYS#kIsr6_?8TOw#;1c z^`VBrz%arNpA)t&ceiP;s&LxCe&^?XfhA6t`ow48PH z_&z4aww+OpA?FG$(tU(~u~}P?46O3rs)GHADN~kmRL!zv#NSR~b16atK{bq-(OKn(5RGP#c-)7bXb1XQKHZSq*Q>qDdf5_WX=Reb-#z$I zqc}3ZpX?7Wb_>as@_@ay2Y&&3!ryMzwCup<_&guq8vYes?XA&n2e#$YdcMYYUGK?u z-S}bW3EaaUt;>h)6Cck1E7xRF+WKM!g~sQ}VeeJf2_Y)AFv$LzP$>y)_9lc%}A_Fg0VdqEMuokfdTX}urX*c`*ptfYR1Q#k@8uQL=lg6 zsO;Et$#R^-=#=%xQpgn}X{x1L!)uNCCo~3sA~C*Ay3U-7M)p7M6{oJS`R>K7iJ4m! zzQ;(g=HPN&B4NCqKy}=|>6Ya3T#XmHJB%rN)uYCq{h{T$8kXlx0FR~HO~Gp+-}Ox; z+f6Z=d)f7+0q$)T^qmS}SveG$H$pYE0*i#Q1fl|pa2lyzX_7Zz&UB&zGH6;DFa*rC zwx2NMs6k1b`9;@>r}^7x#T}46?~g`~OPmA!FP@0${ljau#E-E9L5ntG=dd%^&A!AQ z>u9+yZt~V{B{78;TNPCga4{zi;_GfRan?>1B!9zUBSP#h;X`F`Hpuy1k^*_&b)WnW z)h2{g8e;|}*)k}06GAb;8<3SougFfG1};~hPAi3eUtqaaJ90xJa4ipXx~eJyyC;1u zQ?=Ilib`iEVN3?XDVPHiK-j2WNTJ7Yo#8<%X(;s9xSlclKxeZrj=7L!I1w~diMDPC zk_&5=>IRJ14-&Q9Pu03VNs>z8OLd>d6tTs+i5T6;X-+5OOxa-F;f3MS##!C1Lg)0v z!scmo^xM{g;SZ*6evmYDH-fQN1h_#> zFz7V?NDz8MFbUo^w|R&5_4q>(n3=x-FX8@z6vq9}Be6=xhSI=44}381MUSoZxiG)f z5>!2ce7Jn+_^pcyk(}UQiP2HM-=!0G-iAzcFpMoI%xHd;76OVzu7a%zJ+v}3?T8eE zJFZ-w3+`noP7|5&q{o_j7L|y|<6lI|`E>iSWOybDiJAd61748apm_irNud<|NS+{k zNofeFV6ujE`(m^oaj%CM2MHJqpHwQwD76b~E>6gMp()B*JuVws@llaT^r0xDe&TiB z(<0&-z*fdFVLxSj!&Rc$)6JA|;UB zN+roI3`L&$&i6zDgWO0-6oYJ3i-1HLmFi^|`5+X+5czV^Wpp)zAj*N{Z zNopd!is=SBp&02}5J7lcp`Jz&@9VvsFFXGR*&`fGIIw;oaoix-vl>>QrdozcNvnIA z{Xib5sodg3yS-4gGV@1W?Wef`%Wp#uV(HU2ugHF1f(s=sE6xr$b+8&L@>>&OAwNr( zA>t4`!e0$e3;?@>kzR#D>>WMp=tM5oEJ>8{>=hN)#!dL-Hpr`k>Ds#x zL2I!ne!=dxL&w8OaV&#x~`4- z`--Ca4t!twa_klU^(1M4A0orC zavii160}8pM*+Vv*(yEO-ZxxESR@u)c{D#$DGWR(mPa519!L0$ez`hQYQ8Y#_E_eO4<~v>mdL1QV zSS7-{UoiHaHCs!0fC6+v%Acu3$dMaU-nE_nh_CCIZLl2!f%W-=bLsB zpL$=HB>c}l^eV)cAFJmkma=4PQLzJmpCr;KQMl=?X|}@#cZ`*~T-QQ_dTENuNxI*D zkeA|L7Ix50dGo49w`eIf8_pAt8*YY?3RQrrN?w3i^GN#KAg5uF3lPNy7LELF6esmj zvjZ2FM#Jl+PHW2ch#SO~msaT)%3*h_IzOdO{(goJ!wE*Er1rDi})Iv`EvaOtSkTyjvTaEtb;37Pz+N&C{IuGN-^ zQa4O+;?>!m7OXD|>TS13VB$filI01~bwM=)9Le9zHdB_<%`3U3x-%{&k2 zHQ%pbUwp2JuJP}J1hhq*?$jYdqqf-lL;t`yB5TXW5+sBWs#EFFgHkCuzJT{As>mAu}zW^e|`z96SEQEr}W)!WoOtYD4iDx$% zI77=8J7=aOI%CTvAv&v^vB00*y=t_K`iqpQ4$HHsEqZ^y*{pB{m}YugMN54(hO$)> z<=!E!fA18)WgkknJ7N$gtWTttxH!nj%zz12i{YIg8ug7isE3RAhY8h#RM+pXRQ8k~ z!0U4))(>kp4mLzgq>58lGJ+nb1$n$$g)t8Iy&0SBVBFxKjqx$cIk_}Y#|T<|M9nY! zC2*dMac(b}Xj{H|2yHqeT4OS2SSX0x#E!R$Tw>j3yZhXbFJgW`=;ix()t1Hm4 z#%${?mgN#0!v{yGVr5iq(|XkHeZH2RNUbACwIR9my^XMZhpXm&<9C#Cj6f|xxrybo zsbmuVtpG)Po7%;P2-HwcLu`erKqca8&vxnM{=IHN}Lwx{FeH{JX)mvHH#qG4IB3h^f6#BSp9YnrcMV+^!DFCk` zK@gMbplyxP){dK1`o8XXUUm*aVru;Rz2>;1Rc_;0|4bRK{f=C8~)kgCu zEM~CMx$wy-T83AA*U`7Ux76YbEZR+*zkmCq>>MygI0wLX{ zht5y%uc@iovK@k3R$1A%@4#%oBYM$(*#-IlY|YLv?sl%Cz&CKRP|5YM?nq5b+qZko z1YFGxkJIWZ@Ath#g_he{8EhUGI-6$P?#-zrYL%Av=hKxAu7(nuDfd~_513z`4;P?s zP_V0^flaxx6u|lS`Q1aUExjF|oa`)hzq5rB`fwT>8v|FYqN0NHxG2$WC!A7}0%{}n zz8mAHZPGB7Z}4oT;o6N?RaMpQxHxronrV7wV`ipD!S`9kWGY9_-kupDG_azArbHok z(l}Ln(D&oP7d6tGYqQwu{Xw4x+WJ3w3#{mp^KZ(BZ9xjD?a4p_i=xp+)`_n;+{pCe zr36J`0KK659g=IG33z9`&qk_@2{wW-9v;A4=1pI)V%N!EX%$= ziLc@b1K-3fm+`BOWXh79^%->`@V`+HuJ3bGd(!u7t)SzGl~aup26R)GQaQ95)1lQWhNoXVcOMU3>+-`E?H* z)^Wu6*4WXVSpgo8*HjWyqG*Kj|VH=I3v!-hA!}$hGO~oKEKw zb>m>)Nv&4e5?L87jn^i}t^dv!{CjTK*YV{Tk6uc;T5G4hFgW4~n=A(FEW+^;mq za=r7pXEX9iwJ=vPH&=Ojjl|mQt_e!m=?U@x<$Gte%Z;Bio#A^}?>leaj43hJX?QqW z>C55s1o_NREJnEDq5(jJGSYM3h6R3Ru@G-xS|zn)%bL~@AT3x3ex%U<9IQ7Ub9+86 zbwA8@1tM;2brPOq{ZFQCSGrG!Tt3Je=_m|5Cx9gp#B^Os$$HgC}#?V|K+1c52 z+HFb2GO7PU1z!C*HrxVN8X6S(J@(=y+_r-;zwp*p&r@9}bZx5SOavXn?nxd`Oelt5BjDH2S zI9;q>_qv&Y2o$<#JFTgz^*(P}YPnyvlp^!ETuKG57H~2nKsFkKq0EY_dqwoQ0{6Me z+%)3Fj2&8OG)K*3x8A86BG`@feKizfW2;^b4X$@N*PP_sjkjrxAS>0Yd(YV^;>1aiV>ox9*=@!<5Y5fa z^NWjvn=F_9rFOpt*Lv;KisWpvv$y__*MqDVDK|~5$Aw~XRz^S9Y^IioLciAGdlco! zwut+kw7l0N)~c$dNO)s^2md!la*T-$Jdx^nSy4a-Fpp?^nEmlH4&S3J%E08L8Bo@w zLlPJZA}O3SfW_w%iK4-jxq_B&YxF;zO@*!NPtee4u)**%=t*th`TY~oRMZaxj{h|P zQF~hQ6f+yHT(#iS9^ZlUvt5p&tr4=r1Qsm`)Za5=3E_zGQ64ly*amPVJF= zqaugbNsF_ef)tsf7;+sQe%CvuEtkW)Alksrr4_w`s1h?aPm*M-NVGcsGefmyArXV4(=zlX zB#xkpwB$hd%hGNe!@Fk)bYqlC0X#WpwcII~m0Z`oOF_C8-&xYFG?-y(Av;2{n-1HV zOrZ)$=Pf};pK}c&gnU0Q#nGo!$ht2@+=X8X+l;R~yfjHAp|E0jSdXg3--L}5TV06A zp&wA82P}5oook6>4ul<8xB6x0&FD((4~*fh)>b@`2pxV!o*<)GvXjjktOv$AJ8Xd> zba@-YB=4gf=3JO6bWZ+L>wLhLAUw%0&;qLqk|eXCYhX-QDrD`Httq;Q&-{r#`KSp_ z?`vV(?1asOA2_) z+x;4Ae-BXTO@QTwEG=neQgM)foi5cLcHB(vHcau4dHDW2$h1}d`EzW(T;)fjnbK3`R&61~thldBS3#^)&6kzyv{p+0NvTA;8y`Jm) zx=RQmo5tiHj!Ieb;?f7tQ3ToR{c?W|G|P5C5-rtzXzqTa2kf7w*<$YQ7Z?8oiT(t^ zpq7=D{n@>qo}KLl0$qrgKw`<+=eCg0{{88Y)ndL(NVnVV+5iNA4$)K*bUznyFFiNC zAM9@?ICdXipuEoktQj%3zmsMdqkp;4dA6*tWy>bFYbx;aBSi4=W%Gky1kZ^(dpuVl zSA%Zw-~QN)bG9f+58IMfAHX>cBTL}L*I+*b*K=mo!t3MCqch9nr2N?BU~(dBD`|=! zugY5p>FVVz%V}0B@V5Zgww;?FC#T6c7KL0!|7bF;xjFM71OLkzD?{h)?CqUClaAN5 zn1zK!8oM=)ObVS;X*TB1M00^4vF(}z^XqC zT#z)afwg0}baXsX2|OOK#V-|RM7$_4lq&W;{MbIg1A+~aBO86ld%dXT5Cg9S9@pf- z+)2SUnrTxX3U%!lsl=LMvfRV7hQ09X13K?{!Wi%DjC{&@h5)NJ&fdkQXg2Ecjye1(H!a{;uH`pOqW;K8%%<|#R4PxH0 zoi&#c<>A#jZ-+KE0T-mliBl~o$HfNOy^S#+5b}pBsnSkS7#pEo*lp+O;;a3YZR~>G z#c>F9oa{-Kk2xP7YDxvZ7ntw9wGZ!?F_~i;b}g88ep}mX z-(7Cz;r?p9b(RRFj37I646C$!AV#wE_w2_0yILo-m^CP@IO({JMUs~|aTKor&qqCK zW&Bq2;&G$^Edm`>QQ>e}-E6}9(7yQ=gKN`5{KmDqxR}CLj~q2Z_g&i=ow56sMbGP< z|M{p;%lmGjwe|t&c3$vji=Dps_z^%w2>h{M0R98Sb=2H=+|Pm z-AlZ52y}jX*F%H~Lj{vSOdgo*wjV_@b`5tvY{+P9<5zyKJph74s@rC^Na{0fs;a5w zo8x@f^>)_$>P`kg z!hP}12GUTX0>A!b7FWLk^TAZ^R0f+Rh{)H|AFg6bEiV`CbG44#*`L?N{Q4ZgjFP#O zz@KSJ+w~ggCyOmZ7&Lwn(Ic5wLQ+X7Z@k$3x;Oq|GGC_TzJTj>RyPFv>ERe!{DAL( z@FV5;=t!?80P^_!ACO$Hj!SbL9s%pX>Y|ba{s2Ht1}>c%k0g*|k9mI#M=P$LNN3pvgL`sZ&=c;fjL4hV+p)lP@ zD_;Y6m3MiZbO;(8PLp~@6G8+ep|kQr+}*#?Vgs3zY=5pHrOHLI&eec`UaUHt?k%?S zEMz1zB_6q^84>;f<5B_xfTU_)494VWG9V}IXTg(f)SS+h25{2wPueVBV*_M8&abCU z7&!Cly&h2@1me=k^U}#^h^$P9{X(TSI!M2TRWC*>2d4$IhJ$W<2jn5qwf(*{C3{=2 zMr-0`dqAVZ3+Pnzvz!#sSQOI$PhN$$@7O~7#y$MlCigUAW;$1>xTni*$T;y;wS5T; z-yaPJ`CVw)nsubE3K`A3U!8Z>9`3pXm#!x>M6c5&z_y&zB8wqp!!`BJO(lA~nW&XB z(4~63;Ds6(hTnIzh+9M*d%YcdDtk}eP_0`TZ(4Q}J`7Ll zq!ZPh1zIwhqyN}I71;yoGtL@Z6GE=iN#O*di#8iRV*Q6RFCXqz(6+;&#Em!sv%ywD z1GrmciJuo!*~=HqvBa?%)RkS^?^PN-?{A$2H=kWlG{;8T^^=;84!=>ykq9DRKkF24 z;z{N3Zmd9#8lKlldFiw>-uyBDM5WWBYIru#G5wdvRTLFwuyfL;A(rm9X z;?Lhk0=A{H>Aea*{}Q7Pv*dSg4tO@7+qe$?mZL~K_DC2@WmITC0{PFk zG~H19u07Bnjye~M$)J_ydd^#UuTOj{AbtsCs7AA&nwq0Pi?kcnjp!V;0kocOor6XZ zeF!{seei3px&Xo=e*66PpCHoxZsGf9YZX!Od14&hPjV5FaJ6q%hI5!}LS}}a4;7Hy z()GXhE&cVPL?RvgY@myOpc} z_ZeZ)yomsBMpI<}08yBV&cI}XEVM{aBO#K4q2uYcxn8GqEXiDjU}d_;8<)HLQpqdh z{xXbt#2MRX-rs^O2!n=PdWO6qF_u-KviCTW#adc?octn8hzovD;CnOz1_tKS z6G$cr*vz1@lya5$NJ$e<`A>LaykpWE+gM7nG1bF^PPUbx!SOKglbM?gt95x&qTsqj`3_(P(o_sMq9)^@O5vR4&+JbM8sU4&t?+eTCOIYRF3ujE{b+?dL#!+Tm>qau{o%mI#+HBFFGItLs@!{MDTMY$i4xyPLG&k(5+-D9tc+(TxM{JUnut z#;H0AVr7byEfhS?_&KHG;GKpoyc?JtAxL5RcnC4E+cuy{4}TKc@Pg!n2L@h}fUUqG zZMje8V=-%w2K|GGpv&6Cvml7+Gn_L$Avly0kqg_T^v44;sSdP$(&u73SM$yx2-;!k zMv~ArPhZb=gFw@925l9nfwYuH7d{`1A^q)qnI=#Fpeas68+s?j3!-?@bHN2^k-LcW zBJpTYI{7z^!MJ{BIN(C%>Uk_HD)p_g{v%bP&^gpTraJ%Vv9-l+3ze_Mjs%9JttL^F zykGztnYc`1TFtQDAG=Bt-|i<-*g5QyF?3Mn(vbW8zKxD2Wmb%iR=0WDX_|()JQ3Qf z_}3Cc8yXvj((NRb=EJ2J_Fv)_?||xN(9%DicYyS^f@%IWOfAnjpbb5NIyKdh{mmv6 zuCG3AhPQ-UvhZtjX&VQ6`)cSO#UFSIf!ruy68e{5TCF8L%7ndpCnO%L-oG^-K`VQFeF1ntjZon7x}T8Zfe?2 zDx7XlKPhscR;JagLG6*#e7qhCOd&zZ0Qv)mt&V2VX?Poc%~Wx5F?OsYI@OJPb@B@n zuKIbO@X=b%iu0IrW}6lR0NP1?K3+C&094ulFbIu)SkdC{mz@u8p9jFoah_H+IQaPD zW?KEPr_70iw*n`;0my- z?FxnNxkJ41&5MOWa*y&wPA4@_<;A7pqD_v!Ve_nr_&%6qE{aXXZ}-WCYXk)dS1tx; z7^~9j`H#W>p-zi*1@ALfH~Ur=Auc1GM~4|H6<4HjwTlUlDXSQ{*Oa3kMm0+m7<$h5 zo;dkkKs=7z;-UrT;jvAh+u$9pa)mn#3~Zaf*P8v17%RR^rzh~I9SPhZriR#edsu{C zi=-BqnZ>iFQF_j>gCAq{jDVBk+4mI{nGBgcD1<8JsWWkK>h__-nTe zvUYkw@J|-s95Uxb(mmZSezP`2sfiA0J@qQNih~!$J*P|*=)#ItN1iP^rE?e}r=X{! zRA2E^gk4;Y2$*Ky&@>53`GgksThE{{B9el1B-!e+1&iR}7GjMN;(hVXruGZV-S6F( zd8S{d_E9*u%@_rq<&USM_dM-nnuubUbV}K9!4foWp$$zGAFwWXI_I=_dWn=Oo(dKM zIZ+xz=-^tEYq*<{=PF8ko(s?ZEO${nG#N7&;tF0F#TuZ~!atNQW}tX9blUbiz5V$% z$}U)dv~-xJgurgis)KnY^UbyskCHa(JzXp^A+pP5Kuk=_UTG$7EUG$jxn-f{{bHl^ zSFJIQbFwEzxE;OlA zwT4-~EggOm7?rwj6~%8%BA%W+fISyGV0AD$JrVWfB+B#P6a4UY`@B6nRZ(NrMe-rg z`ppzdn0jx%gP9_F!6X2@OZbVsxHNiH+$g<0gCB8JdidT+BrYb;!WZsF zqJ3fHCS~Krmf`I(jIr>HD)hy`gg!lwPy!>M&C!TeqE1nyRol5ZT(3xwZiujYQlvmD z&ekxY!juVF7uPqKx11=a(#%FK*HnD797m6&DCmCf%7xi34n?s)63W+#Lz;_k)%FMj z)c5}i@NiH-&va6RtQu}CvRDOcd0@#n0A)W8DWHLn5t1W0`|oNjB-0LhyzK%cfC9fj zEP&&%=K%sX+k;74x2p6aKSVr>j0I&NV3U(zKpNoomW_%(=;xJ4b==nXTTBn4|nxWjrx@25aQsg!o<4IJ#zLz9+RY8}uV zX~gXn&DjdQ$=%4IdW^D)O0Gx16_9Mr`;@fh2Vxn?kE9OBhoK;9Tkn4T86a2~-(;mj z{Bm@n&h=E_;q#P7jNr4cO328oDL2;!?)H`*kH>7A#$7E!&H~LJR~lfLqa+jSNBo7N zTXG>+21fD(;g7M0cid2hE$LKHc$Fk6D`6z*A7;uXd?!-wZ>{TgnZ_cQAnwBV-G>p2 z(8?Fg&MQ)Wyj(Zb`O9|P(uvAV#HrXjTXq^wQh-kv;n~{;hax!pd+8YGZ@pO=R?BP9Qmh{;?sa2}OYurcB z)(9d6-74_A@un{ohlKbWyxI@pr(#I_DYINeU0DgNIrRb}>ywW40(evRyB=7Z_VeGj z_kSBq5o7sRaY1P#NC1ub8%SxEgY@9(MfZn~=Fe!$&k&yDR~uK`f6|+VUDegmq6S;85Uel1Y+ouW4$hg* ze8>L+lsZ*}{lw|n*b4qT4g4$SIWGz)G58MDPa)g=Fm6#{2oGsCr_ zeF;1JlivSVivQ`k8x)q~i0~a9eJej7mIUr?$*_`L-p+zdgoTbZ#5~b|sLJr$mDRD8 zztpS9M*nCAi|7ZVg8Yf(xm+IWy4wH<10yocMua)%?pg18DxLX6iL8u>6eVCAnk!@^ zZ?ao5DPaG|W~lFz&UB%@R($k+EOngcWM>Lldw#3g0|AKLN01OC9#Qi2VNt5T66+WP zxx~Cbg_*AFeSsgF!VfPp)cpI3tGS+t#f7*{tU;c$W)TW}c;&+qsZ!15=ye$cJ#wj1 zspeB$)p;d5G7XHUgW(c(+bDRFq0gs2Ih8d0<;1O2Io?jlWfjO_y>qT zQ^q&OjrRWDE=^3H^`sWwB+kE4SC8?cyLjQ2H2I=gF``M6qDgP@HutQzO|3q66eMHp zend<=P^m=dhnHA4&>5 zaLc*a?wdr6oDWZ=W*MUmI!q2-U3OVGuwkg{x6?r0yCvV5MSU*>uPgf`n9vJ@gKwA# zMpc%Mm7^<^FT>U+y;~0t31s#Ue_d~)ZM{g})?K?_w0&OIHd%~E(STrH2Am&2X=TCG zanoO1JeR5_;NLdq<2G+VHK`-_9t#~J^vx2B z#9#&rBLBzhO;np5p!xW$3UN9f$bJToj^{ZW2v92fi=-0MSWOXlTrZ4H7j?dy0i4OF z0RHb{Y`xX-N8@nVz}s2FR2qvhEO2IrzB28FZbu4{4@4B;=re3 z1E|uuF6W&98~vH(WHY{nC)0kPU0=rq_vwY9L{r^u6yR|=+X6IrU}^ALPc~q0r`$0eu4iv;vH1S;8M3>TD+Yacn&Xw#g+sopSE4{iR)WKn$WSo=%y3{}q{Xlq3o)Q< z#5X-vTXTWwZT{LGX$)*pQ9)sXO&TF&!%mjOz}N?_OfiVk!t2?CUdr;Qm)-s`%IOLQ zpJbS7~t3LVLqEXP) zY*WoNxGerX20fRwFq&ZYL=K6r&rknYv@T4~5Jhn8&n0T>UNr3Nzw9A`trV0Es_*e>ZCZHA3 zzG1S7aZ@mCMII>d2pFJQh(ZG$f>e>6YeE>J(%J+Ocs3pNsHJ4Zr|;z7lEV^+(xT=t z;O3H}W|E`oaIbi@f)awYeHZMKj34;F_?bRK;8Dl(T;BcK!a+vrD1i`0r$2S(_gfRg_c48HGc~!-2cpHynl9SzS$syu})fah#L%Hb+K1Wl)jVj{p z%_s1(GBvHtrt1nAL;&C0Ka0apAIPURoMBl5`t@*IiZZ(&ND;lm@uZ>dcUMWNsgA4W zrPqM$3-;-C0LV)aKrI&cXw`lHm->y3?RuPb3M8bj!uG47?!R&#Q%GlL=kavbP(T|= zrUw|zSL@fuYu?ALKybAO@S_~! z`MzG8FD)HRWPZ9y0*LGYDFPm;YTOQpB_`w1q$tS=IK~d9bKZ&MpSGRJpP!>QownCv zI+fGN^mvo|;pNxxZ|uNx^M&9u>K?j3`1Hbp02Ro7kOi=K0ah_LLAuMOu6s5DkE8rs z_f`N&+}^*eE_Dq8iAD}U^XHT(Fz@dV-KLEKXg=NlQIN9$E!sTZ?w92d@H_56l!sc; z>Y|D1ul=^R0*+~)AIE-8Pu;+B#uopfHxo%|Q8T49kz`gx$~ON1uywUA!J`mz zp`j~>8!Htr7;x3;=>Za)CU!u4aB{Nf zcL2r&i+D{BQ(?p)!{y$nkzZ5h;j55jB=e@rnpA4pQRhj4G|^;$PO5w{k~KX+i@?90 zQl-*sL{EzjuRXm|%08F(8)cpp7z-m$QKD2+B30iS+vYvx!X&l)J@Yh3+5h`oWXV~y zHWQh{c+u;a7U6y?lLy_F;LwphD=m@UN11eGmVosArtxyDrtXKN#7dxwLZ1pT%X`^R|Mtp4U9lq;d=VzQmLEZJuE-CQJ>l)yHF!P7 zV0zNK`{QcFt*di(>OPDR){e_m&z}^fx~DAg;RDwu4w1b;WFTHV$<(10nNWJzPAo%g z&6bl@u31HLybKPHRWJwi2=LvWXj&F%fzDg8;oOKZy5Y*D9~tdK6+Zo)qUE}WMg*KJ z^>kZz(6U&ETkCUg!1xvozo(_@hBaJ3uYe9`cx2a3X@#)Ca=*1b1m{5j1I|$VBCXq$ zK>x&Qtm#eV+9;PpPG-F_@{f=RmT>n5t@VF@mA!NTjqkE$7eO76Og_2#&zd)N`03;P z#JAk1be|J4S*xwjC&04QHSM#pu7E=WKnYncXX*P>zVEDnsf44vx_W}jyyH{?!oOlQom6covX@)K5zt;fk1|wZ!F)0mbM?NkKutr^xi_qaBFEG!?DR z*aj>i+ua{8-K|Fjk)LR0e}7*xA!zE*5U}lf9rA4IFI1=j33Mpop`i}hiM9)LdHI#` z)6?q|l(7CjEYN*c1I#18Ld8!fzB1oNYzNi(Asejtx%Kw|eZP_tYXJ*XAEg^~X7)&S zfiN9)S&DxAR-xqWOo?-GHaKXHWq6o61=>taW^8BB*(oKd5_w8N{#=1G!q38AfO{0K z&E!`_HZXmVl1vVRq{KFNkC4^}`} zN>q46BgB_r&%Yq0R^|HwznXIt{q^5OruafMCebhpPwnFm+uNcs{~T3hBbd$nIbcyF zJFQ)D&H7x+Vww}V-vBvb5^X(!j?8?%M;oM7>np;nT#+Y)zmdHyI2a8cx+REVWF+b& zW_V4$IjJ$Jt&)uK9Z3vqXkt)FMd&4WQ=V}b@2AKLIpuD)P5;w)CEmm=h9k2ASX#o; zfm)1#dE}3W@h!7(vO57EXze*{=Z|RUA77}emk~@xnhu7KHlKp%>fvP@)^$F*1@d}OA zAN`(kC~F}z7dBaWb|U8ukPm%-;K_Q<$XJJn5B^$aa~UDbdCS1@kK9SsaY?BB6uE5Gijj91@HtS7HS=4q8ymmD}8p(#Ll--Lb@FCqx~chLU}51$cu$Zu%O&@ zWlN^P=JPa4oT+bUfH;w>x8EyNcQi!JiDUq)&FBm5r==7%i%rtu#5aK$8P#%45)qRr zvh*{TBpFlXX`*&3+n%Vc#&le{ser%ehXlEv2Z=u>2Xdk_Qgs-UszVf)TmcsIu*WxV ztrN2_0uIeaSH9UDBEJ&kSJO*D$2)2X=C@V2Ymd(1f-tf$=m5d^GXt9es&Cp73v3B( z;=tIN1&zHLaSe^=0vWRycB4zR2oe&L!z(V9T7%>_HwH2y~D-__=ziVkjTby z*2E-RDaODAC@}b$V1!p-^a?%Lg#_vE*Ei5HI&)O+oo|K{KJOD&4h(%JD6)u)N}(tv z{1FVjfmZM*SSdy!}c_^7EmM^S<7BOWVI7s zltu9Omx%Iqct&SGjUD;3SvO0aHo1wPQ69T&v@-$c z$ES0o9&p!vnwSAuBE{z&0CO9uOVq#sW+qMJ@&?}tbCF{Y7{3lm+oc>%NJ z2y9_+P;APO_?k?7)3tj)YVD}J3R2}4I<6MVnpl-9{sad)ln2FO6gLQNOARZd)*(q3 zfe<@C_9#HI(YHy50k{Pk448@|Q=&qTIQk{n@o$GfeR(WcxW5rAypafYP|qS=BTB|~ zw#GRVXY0J4NPdF0&76Z877Bu}2dq$jmu&9P+-b!lsRqfxn0ko+-BH-`cf;QAO{8}x z`cbYS6_=HAv}^||2Qe678q-SOplEdY)x2=cWIenw6G-#gBNBspgaSRGsA}vwRU|R- z9ADU%_g9NcM*_@GH|*CHjzVzR8Jz^jahYl_bog?LSh zNepwSE-o9`aq8*{yD~jhTx*XXjiBOs!CKAvrZqWGN)U2HM|Z#~Jl^QJ28bzUhFff` zE9*jT#~yq2BwjZq#KR~kDC7l%&0C_=kOgE%vu(%HE`|Nky9dSAFuW?Tr$dwfkEgeQ zs;d3EzUdH!Lw7gQ-Q7w`mjcq=-Abn@rF0`9-Cfct-Q9?Ef7iL6_y3I{Ll_R>0DG^! zuDRy?t#Gx(@$B!V$@EF7_$VVYN7xS($mdkWn_T1Ak8dg9n_1H@k2BBAI#jggNB z;wr;MP1p!*zp-PY3aYFiur>sF95X1N23QEB>=9QA-{iik0c-M&2aZyF z^&YlzaL#>T9=hr(Wylq4tUAn5iEriXHKVrqt*f`V0&D(olVqkooa`*A7u);k zn-xK{okQ;6M*D^0%QSA6H+ODd5n7m)@hAw5EM#@7(cHWhk}fM^DL~Vjmf)^ukxlo) z8o(4yJMqEm-2QlR+7_qraash}mBKw{q(gsRyDRVD{TMziB&jrzfXytVRrGd0uGd%-D%*{5$T|*IncwTHoi;4r3^*0xbvr+pH_a1BbSUK z!ko)x6OH=k5}W@912BPJdA9C3ZwO{3-Nbq?WcWuly*GUC_@3w+JOOPg&hA@T4`RET zK%GRjb~{T0S(5xUt|fy57!vWPmipnAbSr(*hlPzDyKPv zAZ4&74ne!NHVf621F&j1po8B2;WD}otaH*y$HpGe%f|QU^|$|^Gb0d?VsbajqzyTT zAzR|s!$Dpss#SZf2@ES|QATNh+^H2S#AW5TrDlE&g}tbB6@ScjZ~g9GON<#rR0&6# zPFE(f+n`zf73C@T^E?^1D>zw3B9J?M0S7aF1mt7C1J)g>$sB&#>V&utC_QC+`8ttr9D#yUW3#MlGmfiZG?halUTE$Qc}u~^H>!Fgt>P_ClyyAjut}t!=)ZLK zPx7K#)4lL0E8<-|%7Gd{a(0dm2ky}pq&6cpA|~&5%1i{?S%1EvIq`ISJMb9 z=B|eIJquJA=432;YrBSdh9W|!CP1|6%Q)@^&D_Pm*MzehA_0EsNp6P_c+p4|0i5eR z4)}#LQjTLRN}4*_YDHo z&kYGQw>dPkzPp2juM7-F{VO0LQ5Ryy1;HG{gseYd^Aw zqKR-mu|O7}@65gIM9t4mC%U{Js9nQrJ$3DK%UDFQpCUM(n0_RUr(CvO=ByYzT3NWSVj@}oFH2JE zs2ux_-dR?uL-K5`il(5(fH|9SsBY%&58GErG1eO}3eWNWfnFwLXgczuvtH-#gjo<8 zhqZ)Xe=P1{_$8t5tmMQ?WaFDD9)_~?8w`=~jVW{$u}pD=+2+#3lF4=-r%n7;endjj z^puP&eKd^MCqf*jOG7+ujtr%9?M{g&z*(MSj$CJ|K=nFiK^}@ud#Jj(@=hc7`nfow)8>L*Y%XLESVHEzY1t+%NCU(z6=equo*45#08F zl&go+EwOw3;{U5T$-|R9-W}nor7C_L6_~HX6MyS}O@LTc7A291=WC=<^3thImbWrh zBA}+qma!DVK5}ON#!6sZt;^||I#i`X_!~vGP>bcszk zidE+?2uKL9CbCMSI;lpfjCow4{K_g9k#XkBy~ zPqyM~kB}$lAR;AF6)uAO5+3>!T#rCO z)0)2y2d4O*%W#7u1mf3#Ag71&(gw4u2MH|Lpj=pxo&BPM%A$)_5~`u~X*cU^`strH zme8SEw^}ecGku*CzEZnaY}0cSti*{(lJ}3!2oa_E6)O4_2ZTp)d^kFK^$6;>FFsW{ zbqVYgSWh0aOIJx=ICYxlkoy7V@)vV@p<)Vhl!0#{&$>ho(~i?b63aq0Z&XWbWGOVR z(c9nJzsjFs*?zztioTpki}Bx?(srxoaU<^x|NgCSR|o$cT)#vXeY9W@eC#^HZ!U^P zK!)sa4944V{Duxw`MXGS{jUw8L%UQQ%Cc`KyVeJfnDF>NZhtbZ zE4w%=(L!TC*eXY80)T0hOwHl4)QtFfczG963XE9)l{(?YVhXb!;C%&Bfv`yvcb z(a4-3oa9Zl>z{uD+^qIs*i6J4YMT;)LTRM0FY3geJOAKw7RGLI9PaTH53 zv&^D@^erU=;6cM|VTt`KRe%la{t)|7>UF{&eXbnGp*9c$wyDE3s!Ez;45LEw z&9Z|35!#LU2SJiV9wsrinR#Mq-YK6->d}uR7#tDJj5^d=N(`+fKGsYqui8-)JEa99 ze@zb!|CSj4+3hf&Cz!i4+=?e^k<~9}= zhO^T=qRbDUrhtw^e1D?#n{#g)WznY&l=6lml%9?3)5qQy-Pt8a?9%m=i_3$X7#c3U zGC?gfc8;JGOZ53s;tSb(QS=?@edZSDMUNuFE^|kCa0^tv3|MJ&p*QW1MO-T`%-8_A zkGIdq|4%$bEJub0^p~4sJl9QQ1$Lf&Ulsz63QuU$3Q*kWji3Hk8K2dY=t9X*tS1C5 z6(gu>)wh4uHU{HK(_N{uBwzRdjmAT8&UzrFflgt`0|Mi9pxn_1a3hZE!FC?RI9Mqbp)m&*j_BzYH!1b!;PaE3 ztk5#vMK4PVaS?Ji>OmT};HJP>G(4l|qkP^!ERx!9Fet3_xZ0T!@iKq+IoFM1unJ`k z^Av0>GObDEC`E$9#Us`VWtj_=OLDYIKo#z!{wOxnEnvVEN^Pr7aq%J~s_2#ib*G0W zaGbT9beE`4B*oUcaKHUY@(|nMBZGWCKAFk@V_2HA`yibR$IbOL1&)C%cb?5#C0W~( z_G*kT3YFYBDVc9`4sIj);GOg!#QN)Gdy*#-j=yn8`NAe$@KoI=B0SNFFaq&-M~61J zVx?0!`lfej#dU`K%l@LUg74irAL<_-%7;Je$%1n8T>+KK&JG2 zC)F=SPwQr14ILi>w|fKmj)`8f=zTlmo1G(qLqmtnT91{RzkWoXyY7CboBz_jX=hQ& zdOG`3oKUs}3!EKo`4RHrVgEqBei@2>_NmL~@A7?Lu`FjOI+|SomoVl`jz&0b10uad*{`OAZzfi< z(-zrZ<%CEDk!HAJbN=@UBAl9#Ov&2Tx^a z@8E7BR9WT{^uzX1j(GisqBP7!rVRS=@AS4D;cxxS8SVQ1<*YWK-+p>1&wZSjD8?Fc zq@YBBODo5m!bZ46Q4`5Xd@ZQ>l0LSDw7bpg-M+Vr(@tWE;{E$oc!eIJP4N!Mss7WA z2ZEY>v%#OW4jY3rt1#>bOIpj~F?uDbi!CuLODhY;DKr&3p7HN5)yfN#e(0D@D@t)@ zyz|)AiYgZm+l9$f!<(*+3KXWL{jhWY0(w z_as6}vyPC;qDkdXQg4#h*Jl1ZRb&Mji_Ij2MfWQ*3>DGU5wl%n{++)o5lG**)kCWt zkBTykI~phv=#qm}O{B9+e7Nq@@$niJI>QsbVUT%>qR50cYs{k$usJ)hJ*l{w2?4Uq z?_Ox?7wE{z{sy{MLE-kMrsn}kfKX*_@Xl9sHF*x4a*zJk9*j_2Op^_VF>qWJb9{uJ zV1m7AL?EI%EhgDGX#VeVRKrmyd4dDQV^odzQCucVBwiD!_WyEd?FwAW1qY3?urOTW z5@xK44uh8#@3+3fmsH$W$TcYKDd^Rf|B(Jrxb`bg%=`fHD*st@iYI1o;rLUs9Zi*q zse?u~!-m+y2Qd9SxfYd^=#BbrG7+ckIFXIKKOWpIi+_+NI|a`M(XFF={E=H8c|h(T zbAq{(ZcRlsI`QYL@Ah8J(1goh1W7a>r?}DSWE@#q@Le|_lH|~?y(nVo2x7b+}6@n2lbDxorv!9DnYeeseyww$i zs=@7)d+3eVpNEJpiB|Vn#XSwn&J=H&qsGLeA^)NL5VSnM@%ug@vXIa=I3nWqlZoY} zuu*Pc3wt8qS5Z*IM3!SsVSl~aC zW{G*D9X~fOKIM>MIt|nx1FWpWW7;0xi#}mwF~2Dm4i z^R8GrI>(>}smf8&Ma$v#ZFq2pRE-r$Y0F=PJ;S1Hz7rD9NOOLA6{LeUDX)51-Ji`Q#O_Q!{GO&j>EBs>{~+u*cRHYi{6?#| zQpWRkFs6~B_`y5SyGr(RU?od<3SvGo1DU=G;T~zai}B7pY~-Ju>l^60FAgJ@V|eO~ zA7a+|)uEAB1kOK7?^#>^N`kj8wq{~p-fk1Q=>I!oUr-mx%*8YN{*{r)HL}Up$9Tt* z#HCo0(;H0io9w~l30^-WJ2w~Q1$aOMi3LC%>|c=oKt&N9nyFS~Cap3zftmqq3c&xP z!vT|cvlv!a9UA$sc?XBO5&@L2Uaq?Xzi#zR5Y(ZgT&5xLk;atu65?{80?R{v|BecQ z^GCI}diEK<%EZl3A?lM0qqQ8Qb31P@?>5?d%}2v;7j8P9vZ1LjmPRuAQO~ByJUd)G zUneb=mh@=u$ou@A6v(hV3(~^RlA>=p^N9Repy(cJ)rwy$J@@BSEt{KR;l2mk_*p%M zD$ybY-Y8N%lSmJw-efPdE6k7 z7NB!ER4jr+kL^Q+fx%+ekdJ?;%;0M$8t< z+asfu4;0;3KPxeFZH*{2khstn*>7q{2n?3Bm;DS6o+yYJX&V%nl=87o-^iBH{} zr*(Z$Nq)sdGA;@n9=<9yAl@v-Z{jj){yUXTKWMjbvfkxzROo!*?z>s%v{&roc^ES6 zqX}4CnQ4(oV$JP-YxhOpJ2}{JJr?3i6!>pE;5Gk10o|i_-tf8R#~obe#AbQGW3<~-4($?B~BUb3-!_&hpNNR1k3Kka^|2Gx~-a^u< z$2O?lZqT#h4QnHUrl!k@oao_Skgs+I{vTBXgSQlrHLw)NVj@RIcX6)4iF);v~2>?$-;j-;Ne%q2wwgJ&LSYs3WNc| z#yefzi0<{QqN4EqslxN+Q~zXAA@{B6(?378T|kmcT}vypf72Lv6Iw23^uZDvkW6oU z_%|f576=dg5I2whP>cnLf-C#ncPM}WK_-ZMhbJlvMu3+BY?l3GKFpbZSGspRB2G!* z16x^rZ6hx;S^Z`Zlv@}hBO)S#rYr>>FQx>*%Y!1d)*V&V)w_V-xnVm=-_n|hK+{0J z-3RzKUUM4#JQR!*xgw~x80*_SQ&m&z1Pnh#sqVGeae$rxC!b;9sFstFK?LR~5JZJS z#mGF@V5t&@55G{L0Kf+8W@Gb76Pg4B>K-NLwUy6&2c<{IiQQq+|8Rr@Zp^~GJcO`r z30+-6D2S{5VVeyVDMX-t_4!9DP$|Qfbqop|*I37cNIXZL*l(wk7sUl{sp7)r)4 zimH9~ng*N=05K8=S$o#xD1hp42ELG2f(eemmucX=pTBQ91E^u%7nUHkCvV@hPX{iQ zR*BWAodCY~PdG;Zky*b#vnSE>rjZ4nWP_3fa-+Z+Dd#v*RGUWh){SZ^PY+*nfjYzO z(75RjI~5#t?+cvi7DEqUt<18H`9PcKV^{9pD#YTb8A%HkP1srEb6|y|fKg!5#Q>Wp za*WGxvUBA}9ln&{G)x73CY*Kb<(>=ag_!kz8wJvC=j?Fa3xAtIc=%GIjO%43!Qhk3W=ce;Kn5R_h*r_$$Y_w zO(-HWJq>#u?bh(X9jTJ0QdJq#$|oZ3xryE-c1nt3c|RnClg>?^-w2;yi`}^`&h(EG z(N|tZ6d@U&hd|;OJ*0s08$x{KqqJtarwg&74SsBix^EcSr#&|??yk1Fdt7A@wOaY5 z=BBXR@_N8lgyXkiQ8a`)=andoHW($W^}TL#+>mc>!!e{){!)ZT-8W7( zk#O|!IoDzQqMW1Skb#kEe#M8>BRP4Z+ygR==Fy6wtu26G+Tc#>hA07HxIa)hdY<2O zZEwd}U7rFEG$e_vlPBVYp{S{TGtYS>6aDMS%Rc(w-)I}?rq>mf4#rJU-?>SB|8q7S z4v(zt_R*vZ_9!CGTt*wwfv@SN)X;*x^6*%eyzm>&(r2R{MOBYfTN+Dg6Z9R=A>^`^ z@bPIP4(rnxKC0KXTB;sIwMWhpr|c%I-^zCG;EPixM0OSx?2$;su|ApP2I!4LDr$sf zRw%6zc4IWYi&jF2nyEEn$sgzTT}u z<-6POfEjb?ZaH7VZxPTMRG(R~{VDf6WsQLpI*zrfAx0;SzeBzOgY?nU0zlp2b%0A^0Ix^!rk>iMn$ zEYxWO06wVADuL#_HsT(-bL<>gt<6yopFsu|>IwNTJHCMd`*hPU<_r)z@o&uwXlz$n zQUOQieEOZr8E{$p$ro+|2HC*s^V491!EVISCkFVx!T0)S(j*b_fMhOx?#I7!buwE&!#0oY+jgVlOn zHI&4%2|TA;%O0!SpRkpG>pT^TJu-sy{TK`;NFDN&>Q;wB<74%!{@+8;1sM)~L_w^o z1W1r-;5QC-5yHjayytVtzh}|ikR0CINUKj+kXCx!hNmv%cS=O88D0DvFP=H zF#I#iBS?Kjd7bs*PsN#55{!vllf2d{{Qyi_4a=?AT+nc^RbhJHLT##3_wn&DvtCU& zu)ClArjCRD^f4gE&d~3haMuKbl#~?eZKHjY^cO%6fx%%T;LX-whk$#1`?lL1*xf;p zo}a5UMIIAAe+eZ%0;9Uk3@<<-^#MB=7s5=Le!Vl`3t_)R`pEx_Oq={)Gc8(KKuFmGRoj8zU(Zc;W@d2IKs ztTM_XrjN1S$%+Y8ma^{1rT;=`SiqMcjVwkKmrleTlPcTuHSPt=9K@>M7(ZYt z_|WRye`(cR$=VuvWZr}##cQcfADTu}v60iguZZGA&Kh78<>Eg|p`pOZrF$`fg%u(6 z;)|sbP$vJH(|QJX=w1m6jr(!orAkGbo?Kv^SbL1mKLVz5!9)&>S7I;-GbDUk;n7;* z{6vCkCeqa?;UA>&z0cP0()ke>SvaAFb3|7uZgy%My0`Wil(g#f#CoV~hAJiwT7b%hbKyZZ`9)Z~tDQ50KAFpYTZc=IrAT2C( z&)?)Glf8{mktGvt^L2752>dzE!G_R8fK#lrmVKX)jk<*2JOPn}5+;M>tC2xi+n3sB zYBquOM2JmDH0T)qZ`)V%vQX9o48z>3ocXDq?}FU z<&G*df&@%Irfiw4ndxA!7RA6T3eVDck3n~F$tfHoUy*Yi!N*Uc2^A)~gG#!q77;5h zKHWR~VmDShPicY^1L2AhV_H3)C*PLhrrKL@dO+-S=P%RMjK?q2dM9;DqK5}QJFB3- zz`QD*Lv;G^^ZLnhFi5%J?M2WYGK;j?0J^GSmSU*B3kt^-XhcB-*^JQqt(%$=U8R?P z@bdkgL0C?J%&f|QSNdI*|D!h;mJ8=htUPKP8I6LwBtkZ~R6kk&aTuA*GjP$NUE~pp z4HQ%ny`?cBJ2~^c8G8RD2~eK^oNWfuFSe`pKTZMc2H+}Orq$%sG&K=Bpyb#3w#%}M z-KMeK&0pQ<@GmK8$>OHw=LZCKe{_TTRQ&TN@rB5H?|oVrbiq9e**LOvw?%MgBj_dx z{QFG}kblPK=G3f0I4_(4{sucnHkI8NE>||j1PFHfAdNcPzEkkszUy=h=a*bGK__t2 zPfCsg1f)*AJt-IvpocZ?q}hO8OKK*9s-o?V2{c4Nj1Fz}xh^maODj05&U|E+qVT<# zkh{Gd3&`*{(9-H_@j6Ed>t;4;AyAqEy)QYGE&!Z*V|qR(pui9V7yIq`ZnbeY($y(n z&z&XrV1@tX>kO|QLeOpkOFuMW`yUN%b`)6mL2fpWeD~d|J;3}-&&;T+sRfmk*sivv zv*<^2#P95w+qay_LJ=UP6=V6U^PZqKf)3soSX80)&2cW}Zxat8<2P`Ya9E8s z=U;;Xdh1PBLe7^%8dDOQsWfRpP4kD21AQ&KP%i;gv38*d`5{tSmb1B38fVCp6_Hn*y1(gDne{w)nak(?N zy{rfTE(BVI4PfrgFD;D@4MhSxI)S3YKReGz|06L>g=t2N^ikBwd{vMk3^r0pm&Anb zt@wpUtPa^%Nj6vNp%wqE!I?KVryX647o$h7q<5bMfB(nCD|B<@rKURJE4*;;5j|v{ z9BHi2)|D?YBk;;{vmW(rja!Q5b;kJ>h-$Pz`Y*>@xZ7~9z-^nQrN{NW(tE;9$WnKX zUR_pg-~av{%$Iv)G9ak>Ndq=w&Y046?QULsQF0_~nzJjBbQ1B2)NYFPOwZz!eYt{I zTiSs#qJtf+0-#T?3QIVS;BA$t0}%diTo7$VtQE3-Kqe{lbT&zpJ*%9gCJ;}KbG1D+`>igyAy8c_ifIK!HF(l#)j*jMnzVk27wFYk;d%Y%mLdC_HP!E zU0WX++o%gHUY6@(a##liK?)J?Y1SMk?79@@z7ah5dPHKGv9kGxp=BQRP%4H82bS2- zXngziC5sC)TZAlM1kYT~^6z0*`Jrp;6GwUl5s%vI3ZbwLj=0n}%xK5)SyutO7?`MXFqYBxZ-rDz+Hxu}u@G4*>#LEFzFNAiNRUEB< z&;Ob$=Vu+~zv<1Q=l*->SZ0t_AT=j(mwJnx;{A~;*PwQ=w)O9BNZ{H(=g&WCWKZc|ldGZG?hTGXwvOvvC_&==_F-)ao8Ec4MSbLF_ zFRV#tN{OA~F@m=6yV(R0{)-+ST+;l3A?B+G+f`2+y{Bqvhg0_vz0%G;Rf$%Qnu_^9 zd(!*Gm_V_#KBw$Rb+fkNEKcxCFqo!Tv_I-4#I~%TVj-m)6 zKE+Nk{;lt~o~z|c#pLqt)JETmJv|i1+9N(J3Fc<~DSk79Y%Hob=@Z9ooi|JzKseC( z&U-m6GXS&uP{Hr_p0RxS@#Ag-pY4R{v}_Ee^BD^h*L6qIf`D1TEft zs}J7?6eVcMgqB;7O9&x<2!w_jU_Nyl1CCmTJ4Y;uz?T?eK2EQHTd>E^>lguRi>pt( zFn}Fv(jEHhE%9h~x`p^?gvHVcq@%=EuwgdVFwN($P+veaFM2LV_&w1)*9 zEIYON1&B=Tg7h^(&9d!q8c&pAv%48eln7KfQEc9avTB=}n;AhKvtf0f|DY%r8r%Bo z-3l$w;J`2ZSP$*5Ss-mscZY-~vmpI70L8P7?NZ}KIf0^l1`^=#zwDO>AYBm%*d-i(qAULQ$GV7;fgmXo57-B=fi@MbNn(%tDlpPi3DGY3 zZEYS^zsLNqxPTgy6zyizoDK!Refk42;WbcY&(%e<^)ac7mA6p&!KJ=0`V+P{?@P6)pGhr=^P&n(oP<^ z^n@eG-cTf8`&Uk5DG0vTO(9zLns&bBIIPU&(3U+xdS6Q0x@j)$$cFt{kIqQ&+2PG^={sJRhVFaHr z;uj*Ev5M+%VXFtRo1;6?iSbhiO;926KHHSY(NR_yzl z8Q)!hG$l555J|l9YmO*ikX)Q{_%gRBzs)x`;2E>JZct9YO-HUtjfaW8Lgu4^74us<=6w3BYD}veti%KpVZ_vM3;~d2D!`61WPls}WCmOH_;L zv#D}F@?zo&ew$FGwuZ^~zMrK-pJ3PE)XQUc#O&?&t&NduuG8WGCmXL&eiZiScz-vV z#GfvDnb9X!dZGGY6GyZhnHNoW<+gKU!%@{xRb8d|2vK?K)xt&KGnC_&8z(AQ#P8XQ ztG&hY@NpAVEBA$cdIc;Hu+r9}K#&@~8&L6=ba8Q!ZRLW}=JYUt{HHU_-@gj(%u={@ z#=;+8@Q{5LocWRZ0#$zSCxChhfhn9C0LSY|ILZzvlFs$$0AxnMNAY;MFfB%Gpf^2s z2>1?;zm-1M_Fe1jX}o{+TFr)%z~_U)TYx+X2dtJFeiTP22oUTVC?Ji~ueUerk0m8>?0|(|AmTEAIr~1q@9qqU14(!& zlrGd-Pd3R38OvAwZTD2Sn}Of}g@sCx$X()!I32f>}sYIpUhJV)LZ-9ZziDN}O;MNMy4|y@D@HKiD{)Pe1kD&-S zeBon%I#F*YQ80fUvcc?tEkgwgJD^R zK#W6(C43li4loFAOtXZM366751h!uOw?Zh02wij)aa58k6N3sk)CKH3_UoM@d8+$e zL2n#4ASC?p5JV2r#iHEYeL-}IE~nmJfWbf&NxfW(D_@n+Ejt%-qM|y z%cbFrEUuY19}CYm9o3IfRkyFGBdEZpwL{ryb9Eks_Fw;{$ha5!UDt_g)ptx9>a{d)iy7gOIcC9fygm3r;~O4Y{!c zLya-jE!U6W?-Y$pL&2!s3A5VV%s6J$;hNpoEGi}(>Ew^Lud54WQUn>V^}>9Jy~Uno zXT2F;d{nOC_jEp~ys1V%xNj5mf4{>ckTEXtH$<55lU>I+>o-RY71V6_#-|b!82955 z;n}#9L&COPM3mODva(N-t$wMZes_VML+g9`^^RZwquVR-bDu2~z^P%Ahh&89m(EX? zZGPB5MBBK=1Fw9xHfI^y6-(UD=Q#-plxC@%ky?a9^wgiv9;|?{8{C z?8M8<^QXo4QO1wgPGde-t6BgGI0*5%~uJ>e6(|#c)c36U%`6 z65IpON_W7JM^;l4Afr+!nV~%-l%1n*-}o7DsCL`cd7pFtmu4bWesFZThG$q{6LBlU=9CD3Au9ZdeK+H;-gxL6$Cr$dJ_VwQa4Fk60KSOz?@vQR zR*r6pa4vD*Xd98WEq8EbK^ql*g`mp)N@n)&kTOVpM-;!{;8BoPC_qd%sH95c!oN0( z>%h75#LckUBshC~18F@88nPk+eg)W<*B=5ZD<1w$fpeRb?U0elVO=70`?mM%W-W)$ z77`at#SI6;usknZ^y1*^K1+T5JBYsY1-_nUGclb+LobFo9Ax|`2r^xp>}}~~X5}rJ zP&FxY=uqjg5fVAN6uXK@3E(r2Obo*s3GZdl>luR}SzX(v0X4+=Wl>3Dt%|O-9P)=k zM;{``_~EW^IuAuJd+9yj&Wc|~k!_?k!YcCJ&MqIT?C#hB0yz>)Yyz%^ffwBgqiMwH zLY%2Ip?ZfS6+)~40uKr8%~-x`+byG>$H6&}ucbWL^@t??)lA)Pynh{jJU=#AFZ$bY z@GAc@f^TwBq{@~$y@EOKDtWcQc86gKZr$dU<1DN)LiNNL-XB?6M_A6^n-UDXR6Kv| zvPuW4Nzd{86!4=(9qfNbEfTi`ZeoegaAlPa?aI4kULoy+vC*QELKsF!}|qX&rn zyC5}aB>M~n=mMsGc=!5;>yu?dR`u6)-%@9<0s^Xc4Fe7i54jHHgDH(-3AvCIzWg`g zEUthCQ5X9D^ zmo-z=t0fQI`HD0+?QBaQy~cZi0v_}6h!MQCQB)JjMq*r^j`~=;s5ri*SAGG6sD@#J z#gV`8@^i&8HDCnmY~P5@B&Jd+xOR`ebo#aR1M#b&YgeHAVDCoF-cly8Hm3z#!{y}! z=N!7{Jr~rN*}v$Gsf-E^Y>nnz6F8Zq)LuwW1=ywvw6( zmP}483L0wROsHSd6tyMuU*lTwcWqi2_N$^7t~=?i?SN?GSiMQ%ca~GXw~L9-;!!;i z5>DLJhZjK-S8sTQgNMM*!mfv=m+o!bQXj!;o`-){FfCzkO?og`CFEcEH`0H60hm6y zCDxAV-c)b2k8`RQA<9j76?so--ioc;uKSd}{iKpd#e7!Jhd%t)ubotg(mBqgRG4~r zkKsB3E|{^JiR6#0a_(El)GW4kD9D}DHG&}6sJ})Hqz2uiDbwMo4e~iCw1Qb-VuLEP zy{_p4uKTiz7A2UGUt8-()nAsn0O$LWWu-*920{M*wRTVorfC9aMK-(LIoKg|C#-X2o6>f zZoid&_I~Axm#bZD$Nu!n{<`i}WRt^tuYr>h(fi?};p*zK-CN(bhuhc*+qvlu5H$;DxR&O_qcDU^*R9d51bg?U(dA{G!===!jPl{7e;jbGsV6 zshx)c6G^*EjnV%&T@IK|M`}{CmcI5~B2xShgiXCpWzg;~;@>VtkG~F7a(053zJG(X za_<4@;uS6~?!y+n*hFi42$VHrk?y9oaR!w5FFiF+Hxt=B`{gbF6akd(sb%H-{d)9K zVRQ5M<3;4Y^6F8+C;+(PpllF6>%k_p+1MTg;?oy0=;0|sFgBC!^NWwbBcbe!2sE8l zD3br(#u?a#oInG4Y9{nnwg;org@uK@{t&_=@1Y$XKOp8u5aEzx1k9YFrv zq}D8-KqV82a~qvg!X#w+YVPxTY@}}jTJ6KdME1pa_QjgE)btz8rqUj^WP>LD?=Va~ zU-I-miSmf&E-8z@dPkeYsaPsb)r|YuEci`*Q|NY%(5at>n$^1|t1m(**fM+A6SjyM z2)|5n6s!u>>;(yblBT4 zwXoUWCDMXhk1jo`TkAtcGI(b^>VMV!j8G9I)>)qKD2au4{Txzy zFisY*G~ba{E<5AKQ<>fTSxKbK_Ohn3d$E(%f&TtMgd0J)2BEbk?9o*w_(Hb((&=fZcQuvM&A9UX zbK211z95Z)FFmncOB_X-ap$RQYyJ$rmAY&9U$d)9?|vnZI>w6&r&YoID8XYbus9qg zL#@`h5m=};#wQK%N1`R@6E2RO@bIOlcY-+o+)qPSLr(T8cl+GEcs22FD9p0uN~PxU zj8QK@#4&x|Tty)~gf%zSidJ*DtaSHpq#zytPy#|wXkZv_fG5hBmJ$iK3W?Ho{g_lu zS|ys^L)PKet&VxDTuhH;s~_e)>n&}JSZmm5SQ12JJaRYlG)LA%-i(#0-HkQWx{NpN z2;-GY#_rJQ_}nnD8O_Vkbth9ROu3*lM|Lu}V11XlUeVASYlxfUi=yH4xV8iW;Qruepd zKUOq_Mx+7Iy2;~C7oIKP;DB&Rn&;B;@(36vvcLre`2lt%)J$fz_)D)0D#Th%70_lh z180L55Q4+(ngL>O1abBH6u2b@nops0EG4A{Nf8+}EGls^z@$Ooo?Ttr>xXVLVO;f? zEjNTBGM9i+!0TE;#iVlUyvw?luIGDsdAUk&KJ;_G(-lySdw}wt|=m0MR0hgfqSYsuZ6Cj1Mgtn|>X0aoYya)3JHT(bl00QJ@Yt zlw98LF;Ee^*qmVte^zfx?0Zhgum7sk!`Ku>eI-vDJ}d#PCYAvhohGV{)1$A0j63sJd1cjX?MrO= zcVQD$DGbkd``oJ++BomyXN1U!c}s)YL?6sc2ns+Ujgj z{t$<}@;Os#GV9w|Um^M{(E6x33OUH;3Sx+bATUJ7r}AY&r`MN4%! zq0EA$5vYzWt=*7>^R)+iJ}*hW%K zs|_fQKM=Qi-6Cf4jZPR(Q4}q^XM!SzC|v%yy%19_fA!R0+;~C-uF`eu#<5$Y%;>$X zP3EuE4AVHWp)i(m<`0wL&FIw+7`7p%R^8+#-wA&Yl#olwMsnJ#b zOJvV>MBgmYdDUkHSwyM)L*2ykdWcrhfU4EV?kL~}mCfg>-!WN!&JHf>DTOLWeFbUK zGalI*Kf^ybCU;j?r&4k8I&_EMMOn1tDAjy$2v}5NDt+EZTacG*$ESj23xSq2jCb5` zpuR=uB&EyvxD}7hXc*W+Q$>7u6XZXEVK^96gW;FV0x#Gur~}3wXn4$7`T2;NnvKB3 z$-u$_WdjT}s?3j%k3%=k_5cnY)bP{n{wmKOOrBVqkE(h$!F?M8dJ{Boy&{D`bygDJ zzn#!Xn<_&O5J|Cl(86BCJhK8E7a@TBa{a3k~#@qB0CU2<8B_JE4CVH|M3xJqaA3^1J01jP5JYrtBz1AG;xz^et*0`?CeV)f0e; zy>7RYof-{*$2ArRGSowyueHnHF4#}fq~rDA+{R@yK=2sV^W+nry|iR%$yb=hnQbOA z{+JNHP&AUv)MTH^eJ?HYB!OxCf@!3RcU_IC;a7zD!q!P?Zy`}-v{w3t%q#htfz-uF z%);W+2Ej^oDuFOmTR6D%D!F9;`AQrEw8~7ZfmjFC7R%%VrSKHmVE95y>LS^_QHmKN zjy*b}Ft?JB+>eklxKD`(5`w?fsOHr)apMl?=lHzv)l5?kesX9eVcFQyw}4D;TzyWT zS+I=?T$;~6=+y=MV9?$Uv(0STz0XJ<`B@3BqU`i^Q8ZlJVm?B z()0vV!%1Yi&`sTb!4-^+`W#kzQ&SvL9?+s_c^v!I?(OZJSC8^& z>&(iB4XdRZf!YK!KP((ZZ8D-%+;y%rQ^jJ|z7HRp?K&L2t{ z3qk$L>f1J+$k(mS@2(t|`8d5!!XllN*a|E7e5C?+PlS1lH`wm2XS6|af!c$JHDP@8 z7gJnvxIq={dl@#8h#HYC)fTEJ0U6%uuj)>>^CWsap>Bps)OG96j@0SbVqm)9QXM7} zABx;7O1z|8((VCUQbOh76LDnU^ZbMa_p^>7CFW~-09E-rp0K9uX@zNg>6$cHf=vc9 z)1X?WOq(w^66t}edmaBDQD+@iRTp)8R1lDEq`RdXq`SMjyIZ;&38g{0yHUE7ly2#6 zk*>SW``zzeA9?&k?|pYvrNVqw^>0j}DPf_EEN>17i7n(pp&1L6$_7J6SQhT6a;`e%J|p zLq`z|a-Sta@)R(1FJr5-Ic%{N1)ta<^B9bLAx%w4mYIf0rk%|$BwP}x(8DJDPF-(( z1%PG;XsK9bQyJx3@BVFr7{N`@3Mjge2VuXt?|y@#q_3atbsEbyz7G0|4Oqcj;a>eF z(1CE;;Tk0To38wlN)O5tECfWnc>(CWP~bdh#ih4S7K=!3C!-x*i`P8~W~xPZk?@=(P& zDyZQBbcWz`g+9@Qcp zblkX^MseLMOw(-n{DW_If}(g~Ial&Ss@?IeKb=yV___a#Eug#jQOm#a2vtkS`{i%U zM7Ngy*LwSw_5S4IwZ*JSve0}QJ<-Cb%1Ur$%0FaC(3FockF67A8E?PzYC=o8rSZ@8 ziC0AI=M|&U-A`yv>O7&I-9V<0ge(!05x?lK)XGq1TCyHlYm1R}~3ia%Y^dVSE0Y8{lFtwCO zx&0ol+NUvbtrL3Qu4Jobg8b7XT#^(hK4fk637?2$LVIhpKVs8BwTgWr>kty@rCh3e zMnyOj)r^L{`-{7CQT`v_;Ds^X_Cs{VfRjeY-e<0sJyWOpjvK2$U+BW2IM z)o=#2Y250(Kbt~oc=ymf{AV1SpMLj7A^do|olVl(s5KEBX*-!wcO{y`6=)nyMKpM0 zef4e!aY(7;K~^Y6U{;i*zhZVK`6k4emB!#?VTaNzoaeIfj)1)?U4EI}*>SlVccN=^ z55dwRzUAfA++lDI|8@+V`?t^r516d)-%&X{So2IUNI&Z<>#lNz(aZ)>ye5yiCU@SG z$6Bx_n_#$@{7qm9-7pSShtzkds-c0a^(;cD_+x$R7mi=$B5GcRqQ3L=2(borGm45N7nEj9n=icuG;}7bPfn4cnD+$j)MGVKD&pC z>h@?11@0gq;YM2bKt2f+LQWuF%4s*<(q&4T`e1271QNF$JZ7;4Ic0vj zztUpBhQPof7|`IJ^%64FV2w}bkks4Ghf~vmXe@S4PV^`-aCj}3!=Fx`z@G$h0)dW6 zr{(4mq`8iR3NSRn)Fo$YYpa6PVRySY;SbJzuz(!#Y_Zdi4_pIa_qaTqv`` z2Z^$plT|c^H##kRu4l#zhow+YdkzR=?7s)-L=R zfCBot!Xe_V;)g$vo}NWu2lw*Y0J&r0>q1WKGEeR1*Q~~0tKj8LeN7PAZ`mx2Y)_I#h;{m7t!rZ_fMjk)c&BB&ukF0{$MWQsmfVLjvrmr37&mOIvv!O| zh(V8oc{!GA#e3HFJ8jNxl*u)nY3HrS8sAF#qQgETuiatGgYGu z77j;8>T70DyYBa3%KLKvI(V|XRnkEORUDbF%2*XIqLlz{(&Z=wY~D;NEAmh0HA!(* z6&=37#mB~!g-_l6r1vs>3QS^4D1NLc!G6@Ao=AcjlVj^h^zIWd5&4KT`K$7;+F!kf zuqL9DJH>eYkeE2~PEPtlX&rXUJX}jryKLkWf_HUIIy1$_tlxy}sJERR!?geYeXnb2 zHqky2f?e8GBW(>1@gwbsOj@O$~ZM~AOuBfYBvo!%P77%j>02C*A z{Q&U=iUa9d;0;dpM56ngN=Lv-;2Y%kwXwL<+ zwos`E1(x)0QAus@5DEP-_B2LQWGTHciJv?1EPQy6WS}D)6gV;7UXR$*(4;Xdk$=HZ z--`141(RwtFHQjMBpXjLq}SXZN!Pz1wJARY6?;mT3AM_hk=4pEiyT!ELaE;bm5?Y#CZiUyl-W~cX!l;kTW*q;0SS{W_ z3G`I^rCom9XO%P|8Zt}<oWS7$#DK8l;%eiuwHTOyjZcFcnTs1?$@eZ?<6}B3Bu+vY5d|f_3b%BTIaq; z^~v!~?k*pLfe-Z|h$%(Rm6nR&e0?!GpIJ`x^ACxOCQ}f{@;QHnxK5h_Us8QdR;ZPW zNYJK1q?5*EPP$VhXRq}j>Kk;0$#`*Q(mbBLJ{im|Jc>dI^m*S7wJ+08v3XOgH^eHN zS@sCXo-bwP(JT1huDBA=SJ$G|Hoxss;}ijB{&6s+Wss7KwS&lF1y9e-!@npS!$sAe z#>1HaRWx`6j75B+3D}Q2{PSiOC4yI1ogCcpcbtUKB6V^&RpqtcRt5TXl;n-lUR~H{ zC~3i|bU-?J>WPeS5kq}pzW(Mb9&)6mt>D$KR-50{YGyM=6Ak~Y4j|OL)$&UD(ysG{ zs-XLMmqzw0Q8zIz_nyP8vi>_sOYD9wnHM?uYAM zro3T6q0bTr(_R0)EmgJ!WAlZyz{ZqJ{Mqu3yPeV$sWwk6YLcdf9IBx3orn#)vSlRz zw@9ZhkRr8g_cQI`AmNfFIk9R)nZwaVc`UM zZ&)M$E|&T$Xh)tcX1KEM7t%X*|?Dy z)Ne++I*sOPpMNUK7fe#W#=Q1JRedLzV@xQJY=pgOK=os?^S<(X=DxQxPc%~`UaGLN zk~s_|F4dnC`PlTQ6ay!+qCLi$dtuxvUVUR@L607t^CsIKv9kT%;4&s;ZOZb&b9!SD zvzsS^5z=;!`j+%&KAbm3xm@HIzLFGy(^iA{@MvHf*iqvv^iQZl!>}Qt{46`y`Iv~{ zCF{dQb*E3}PDTYA$jdCWZ?2Q2C8!$^EjB0|!#kMTQgBS^<2v zbbnLpj9!0bBC73QbhuYbeC9bm&ga|$wd*pN8~10a&Ig)*vjxjLVSpoDaon3)+k!6|(Q zUy?%<3D@3+w*18bkbE%3ivWn+1#341yp4_|$k^RroQQ>cp&tkmo_aGhrS(Uuh->l_ zxUGirmj&>`f^@_?Yy$rXyqbpRA*;4iHtGrHx43hubNaqO)tv5G(hUvImK5UY28TOcReTne?W|YUpVYOIy>#=^I_}_E zxx26u=I26;gM4PvIohSD{d4UdveGa(43+ShB+kiLEH=H!a8V57nPJd8@5c zMR}5x3Cm#W#zb75!KgH+aX$EC;P7uNLd5SQlr1 z>v~6W_O?zX_ddwwt+NtAQBQz z4qOGY-irtQ-*X7Xdd7Csex2Ypa4-r0UU{W-1x0jA+trQE0gEc+>c1I|_9WDl;L(cf z6rC#2WfMPJsfN$fjf%O)yQ4|=QZ6*0SG+~A1^f6+tM}NKI&|Cz%2&?Phwq0DrMFgM zQDvjaKH#is!LYsJNO57E%MZbj`;?oMB_KHAI+D~c{F^{?b>aj0)PllQLT7K9;3G{< z=f6^e%6uNu<{SQ7){PHKVi}t#XnGy)3%1~Yb;xgS(z}D$YSRB1h4c62jBfw(1DQ8U zy4(&{?hrTx$W*j1AWfrvY(R&~MXvsMvXp?TqM}F;1IG=6Z_yKr_9hsrzTE0{K028k zW&yI``^x-uqj#^^N;sKI^p!p%hz|Li+QS4-2BO1Z*q(N?x6_&82Wf32XZf_EZXKSV z;jMkQ1u$l;6d^c7bjp%Zrdz+M$+K3q*I^$%!yl2H9&9`#^cMgSYZg^IhpkS13|}*$ zKwR|5xPo?pI!e%Q607-YnB->ux-oM?TX!Sm;c*`HJ^yz;rehEfY5sWY?2YF;@IhG@bo$*45miqj`Z|K2>;tG};j|ceS*Bx?0W9`99uf!|raOTOY zXR>t~69=ybrK zRHJ<+-{=OL4XdJS(x!K8JeL9={zgHcXmq%ZWCUu^wzI%fwVR=MOv)rwCJ5n<_ZfeV zX6-2w7qJkY|E9jJ!H^=YfT>=jdVxw_Eo(*@NFl{z@0g<{Y37L`MW(*?gud(C1U-NH z?PyXHu5wAPvI^hS-9NdQS*eVs)t@@YQzL{#$@N4NjgXT}_d4&`W{~Fnfle0;52nOt zm7zZOFt%LDysC$NpIgd&*hXHlq-Ej7u#$Cd3(jB?C9;Ks*)3kwcezTQ2Q#To;j{Pe z%C7;4KvtwbPz(f734cbN>`%sZ7O@Hah9~ih?0HP;`t*le8jNZWvIsquh-iG26{|@) z=hxqZtD&5y<20yvFf1iM``z}HJsnFwW7!@QZZS;+l?PKOJ0EDL9ZqBNOb0#VWy>(f zmY36pRongE@)}fwDWE~4KX2uY!{(ptg`P-H&5Ch;b~CBczx{Iy2mR`@&__*MB5okc z(+AG~2hv(*1)4qfFcSe$w%zdG3^cSlcPePW~1e0k>OWkZqK#=qhEi;$!RQ^S>H9pxF~3 z#UhiNCV@4rQi>0SCWDdexO0g${s7Ko`}z2x=N(Ee9ho+Htp%QMnxZH!w|x-5oT3>L z|M3r;TYDy)w8`Jh+%w7KpglPArwlDGcN2W(g{oFf==RuG3lys)2-N3^&{Bm}#~5TC z)Q%QsT~83_K|Lp-XN7&tL3=(hg&9`%GI>h#UL13L}_NxFEHRFKHr?{|hW+#-9TvO?-C^0)*0 zx;0|VzU_iH=p6XwFdPKpwY!3KHrPmF?_%|v@a13vIFU^^>=)uJMon#*6RM=~&kp@; zIkHiHNSz6;_3`^-#=|ruJu||Sp`&~B1Zy*!U?N6ZoeI8BFU2D-lz_`?gL*nVx9!lV z6k@FP&m>Z?_)UZhyNpx)8cV}Gr&>e0hf0Qax;;OvkQ^%!{dj>n7s?~u>WJ0`Q%-nRO zDQ;A{Zl(OTMU^PUHWH0}a@1kI#^%3Rf4?zdyR(+Emi`Ii^@6#g?`jXCjdFZlXBV0g zW5GNQMY%w2!x^`dqgInEM057aI%zj!6uS?zyF6P`)E0NJC6N8?_M7{EiU*;;FO44R z1x~R3YcI)ONHL#fJN{D@VBVpKC}U|zw(Ktz>o*oY>BdZnmuv!I0gFzh*zjh>d}YXV zajxDWj0X)-#usEUXo;9FDN)tN%PF$em1Mp3c_MB{8ZC8tZqt=+Qxu-4lrl|PgH~m% zwy=Xn!-X3U*-Wp*bDuE86D5kWi3Vb@*a`||B&4ylTw?3pOvV;z>2N8^{heOz(wZv0 zHs)typ#HPbqot|(l}$0{*H6#_e`Mwb4aDI?BRzpSDIkIT0hX%nL)yOj z6SSryWqS=wk4^EvA6qInqL?hRnp;s}5M57s{M%-)rSl=OQJN}ak2{)OjTyE@^&n}2 z)1-fommg=OFfaRg4_|J{WhQtyr3s)>-BIhHe7+o0@PI~}AjV$Do7FR@zlP**W{aX3a@QKvxMqjhOcoa|nT^RRXR}IPZkxXy{#CH@{XRdp zN#n3Qsw2G>LeePSBnTB1w5tuya*oGb_8aVR|QRYrOXtZ~jrA-1&px@RlbZ+aCaI(2b3s28j z7PyA*pZ_Gqci~_1jB4jG9blF0Kua-ihaLPY;+9xD>vn=ujh~LidsgiEEUr1r}Ya)d~OO;HGsiL&^!< z#q;sEB1f>$h{8#Ke)@J)`w9g7cDkMO+(BWJ%gV*Sx*?s^4n znXAhD?xL#9b`PF1?1p+$!{K_ui-5>~Wn>~Cjo_lXoDPLQBR@76Z+zmU)QA0oYj!Ua zh5Q3I`rEh;8+N{VE4w#v4pq56BxfN%GmYL8J?KF+6u$YBG{ChZvm&|TdpWk^GVV{i7d9LJI`&QlI}HUH|5Hx!AS+iqQ(*K}0GrqN_f&8n#bq}pNKxWxR;^^PmAWG zM!Xu0g9s!SKoZB|2(|SMhRRr*_?29OI4l(Yqbc`XS%^@YOn>4bN1_6fs4rK4L+K9T zS{Ua}VV`r-Af(G!o<@)fmcX|x5pJ8>B@LxJrGFL_XOEK0p2~~`(mQSTYusyym z1_)?_ari?xo#$cwTf;Jbgz^6!=66Xr>pjgYVZ!}4>-zbE80W(G!R3{^WH<@g@1k8z zdL@{Qhb+G$$atVw{&bG2zzxg{4sg}*>rmCyHbt^Hi}2~Ohbc8>UeW265B$x_jynKL zaI%e1v1zT=!V7PKQK9aEyqwA=H-Yol8}<(eT6OO(_x4Q7YX(1X*F|B+ zN`a2IBf9IGmV$Iin##wO_Sa!;c2ESovm!Hn*=41_FkPnlY?NI9kUeeA-0|HlTaZVG8!=sLyi>1qUR z_0L#gkz^QALvX_^k9Bat<(qNh=h*8OvGipyZ+b|Ka|JP8_%hC!lhW{2{y8_;&N~^$ z5dXuK{d*u<*^&9Xoe&CFQXSpas=#gTU+}$gzfjbEH=|Z0DTZ3Fmzv>Hm;_Y#u!>3C z3H1C~Vd0rCtQDfyyF*#Qj~l%<1J{=}nK7nUTEwVp6|;vxvxU`&=jb9z)buylD6N|3 z{GE7-*ju5Pw8@NYhRxmnS-bh?jk;G4JT3(4c{TqmkM|I9Xy3h|qbBk1a%idykY|6aT zX=M*cL%D!-3OOyfQ!L=Fezv8V``_Ihn_bLFA0=Xf*l4OwnFx-he8ORo^yxPpngThu z4OF*M(l@PQPuH`7DX2Ljq1GwO2kK8L2-QDqo(|A*7ZQ|zI@WjUALL0pP!~#+Vy=SV z173AaXpBLM5>;V)to0Q*^kVJPZ`ud_vG5f}#Q+^I!7!9Iz{|2oEF(8A;lcUaYqdj4 z`AZI|h{t-t7>My`)U6#$SNLTuN!2o2Adif{q7(ZyR4QRp92Hv5w8=+Oo@+(&2On4B zkKxU4e5`-B%gf8b2!O0!*Oe}VDz;Zk_mvgnqD5OsT6vqdX}_~k0kD&Um(^kD%jx5I zKcV!U3ZGyhDJ$-dZ14R67j6u4(~wX}+SF@(rEjyBvFJmRkwmky-={=n4WFh!lgX(I zHJ{KabXR0aii`Bmw>~Pt@g8H$AEjfGnMHh%2Cg+0yPN@ea6vZxxZJ4tdw9r*4Ns*n zyDQycny&K151Es-m1rO2n$oRW(0b}=jL3O%aA;6t=BdB0$Td=#Yu@s$A`R)o;E!u=M^o1EHZjSKJX>5VH3z&6FD zyh_2My#izC;v93xSz*e#(zw1NnB`gpT$7#zf`l+d@lRkg0G5N}EBA(~mTaWe50wWt zChnGRDtM7=%eSC%-8k#3zo%E_a9-bjw??`x^PZZ=#@+4U-wrYJz#GnkzF{;=Wawk*sZn3 z;JN-w#LFd{9VPG&CB4$tn=K_z3b8MgEml9(fRW;0)Bnkmt#sS-ti+^5HGAZ!!*G3B zcY?e$McA%N!&dQwk#MTP&FTfA&T$DNjZxN{DK+`+7{4j%zdO!32x0RHa-VmeMD4G- zwO+bS$)u8n911&jL=C)}zB^_nPL#-YuJM{6^%^N{gd2LYI{z`S+wx%Xex_b=vBcSM z+BKb-{cyRO+oT$>PXzg!qlKr(jhc@%(eFZR6U(2EO~ha??)hGgcjbrGMVt-rdf=S? z`p&aCbG720n`p%R;wH|tt9om0Cs9hMUD!isi}$J({UZdGOT@b2S|n1Q=jw!PVr}bmb)Npo#&Z>KM?e@0U8yE zyJgNC1GF3GVcL>&z@OTg(O}2hfoMbulNIvo>(P^ci2+P&NtVky#gA8*<-CtL3lQj) zXXhm$HiK3-0EyKupQMdhNW|d{K$wIO5@Sk@F4!BGbPdJfOVVI&4&pnS0aJCF9Mw3W znZ-W&0o*}S{2JI$KsFkOo*qq{<-%XoR<*gM#T9%fkOIc_ZLEXbTWR0j zdIneUlB|GzFlxaD5etJWqQI8zd{I*W0vI&O2#l?P>1>uN;NSc*>)mi-1~yN|u1A-- z8sg4CQuQw2z8vA|yg&jH<~l6~2>S+P>$0EJEdgbbroKDYbg?`T0~$5yq;uNi2|jM1 zSlihVH2alLKvX_iAT~JV%NJwtw_J`yHNf08bp$PJ1iTc|6Hl8sT|e)1fX4apZ)(>z zP$8KEpqZM6h6y_!&)V?ndYanI(WBV1p%DjLdNCD@$-!E|HCIC8R0JyO%;cpS* zLxCu}!PAG3EvS;Cz`I~~B6q^RWmUq{(Hq*jeOL2_in_YGe@-mfa!wW-B8VT?VF}!R3v*{HFkmB?4#sXgUQX;) zwfvFsmJ2tK1bjD0bh=y?H(JBuD1b<|0kTh&L>KGn7uW%&Ww1U-{fiS|2wxbU^4a`NP6JSEb+R9Qq z_@yUeG~~rt+x)81-_Py?f`vdB zD9x(k=!tRWx;vnr-kMKF&#Ej=RZQ2f9_FP-nzq@%{#DBE=mUd^E{ZeLfUoH|w4@WU zPH{q?lCsE;hSct1c`(y@UY(ho1XbD83rp}7hZxCN8pCd_#*+8S#y|e=v0f#xFA?|{ zWK3qy$iv~S<*dKdHO}vdRbkp^4^j|_Emt%Kv%azP4}(*%ivESF*0A3$KKeZ@ftG?qJ=YmXL5O0|Ho zIR5cQ@3iy5!T&sjn8N-A#I`5LFt)>W3Eq7-KKs-02xQD#X8|vKG1wnAfw0?U>E;nY zYFj~I5*)O|^M|F$$sWMpNftW>h+HS2p}YVDvdbaCXBO$7D}Xl%VcJ+bI6xGQa{Npq ztn&t+PHL|KFBgL2dAL5|2Za*QDbtwz4rHw#8o&iXF6PIdAedahPTPdA!NJP#i!znM z9$?#UTmk0?1%u&X%@we7A=+(n-k*R)Hej4PaX4GSb5z;jb<#A?4ZOG0ot(tr*|lB_ z;zxWuyS#%C;qkc~wjs-A)4ahJIG?*$yMLO_eNHLK@u53t1NdFY^Wd~!5>r=K-}J7T zA6c}_9s9d8lH7db#b2q@6s=yNaRE_Uf^T&KK03>l7vR6G4+G{J`-RJnjt*Y{34wg^ z->!#1p0->%E9Krb+XZ-FF5nhW-%+leaj>&PoI2Brf@8pGEdLDFl)||9)8pf92v6X0 zH^@Z{7MWljqAiz~mxpjHqxQJ$m-+!vDO`W;X=|%oy#jKN5KiA7@xmp~CqEaXz7IV6pFh&t?iPtofK+Iwa4#X4FWBOl z$IT|idUT}U!XtRbpy()C9Ne)%61UEmUXzo1+Ef{&pZ9gUA1 z^BZnje!S{jHME2faTl~8naQ~K7-%ML^c~OwD{z5EtoahAX+!fSNpgrBF4`#B!A7j; zwuj%gI`?S4uTvnJSNE@N5eWt7PN z^VjElu99o$J!snG`b)?Y(E0mn-|fblN^$O^Eoa7jTI6s3S|6j32TUdxpltoDmZ0nM zW;8M1AXDRH>`5y}O~%4iF>SEDQ1O|!lVHXxyZ;sDwHg?|CfPPMonLi&?XWnOv-%w) zv7pW5x9|#vJGZeZZ)>1rG&PnO+FsP# z@RcD>;Dc+swhe7Q9$>X67z7e0Xo;vV07F?x2R(yo!138t>=WY_IM!5gS$Yi_2>~5n zGPFp6LfsT&vVcP4Ri{t9ClU^vdhBi5VDmcn*XHluoyy%zC4zhg)=Z}3+=RS^?7>=Z zqLD?6s}(e?$s)~3TCARwGTuI0q_Ly2>7e>Ej|SgL5H20!2uosniSz4SV&qRfB& zPSYp3UpV9ya=LNx4;Rd3Pukd6L5STDuDE%semE-)-S_6^ui6b3lfYT~^~0j%VR`v5Xgdce zoSi^ugB)ON*)KO!uIND^+CWx~zx$0H7f~)7^Z>)4!Il9K#7h0|*a<^#x?Lwe4gvey z7Y(Z;9E?>5E=Y7iq7-xi%Z=Grzz;{Sm>q@$BYq?_EjywOft5v z2Zy%Wu%>I(8odHdF(4a4je99dH z5Q4}7lS=)H5BZTpTUns}3l$*+5aF?Z2h-jFMT=oF0|{jSX$al77hB0o^z`(mkGB_U zYHCKT=~fO77OU;hbB%O@b+1}YE~tOO~F;Gr#uJI)+DqnX*FYT-w)ju>%f@?0;N0=9`%>kX#( z#+5b18f}C2GsHX{(pWT$WONW1S$7XA;7f<$juP|Z%j2_ z0n9n${Fidg4y)12C%ce!4KOePu9Nekz0P!q)p9(me=9GB3Se8_fAnDo{Dz-0pp(?i57}SI%4)Z{n4A3Q0Niv){saU! zsoFdpkTagf0!hBmsMJd2W+L|crwlP_QYmD?S(%=%yIP&Dv;hh-fYl9l`aOiVQNF0s zybJwLMYP>T)P-&)Yv&az-$kNHw%{Desk2jEY5FAgFV3YQMuY$Fc^bW-@S_VVT9C2| zB^pP@mrIuFA(>qP8R$<64kM_Ep-}tS1i&f08qI~qQYtxPB$H-|sXX(@*602ZKg2w@uY|I9Z5NZWgzQSThufI+6YGzJ*WwjS26=0_Ock zF^*LH{gZ&IeZ};^`>*`t$UM4M8$2+@YzpjYK?{@oaA)c_mov4gm7DQjad%h|@mltW zPEI@|HjKPlm*$b*|2K^<9Uu_Kc{)d?LK&sp)%yA}bP|Z)&QB#oGCeThB-_$F%Q0u24&AzjL$bZ82V z!E8b*36&g7358e6ip>&F0$)}R^%_O}clfsX1U1mST}xcGmB9C3mGRuUWX5diXOQe$ z;w=Z8dN&lLSZ0d(xN4bR$c1#rZP~%?e>NeRJs?LN^kjCa;(3Ex9B34BEAZLV_C+Oc ztHVmg&LR)dppizyisQcDue-BwjIpCOboum@iYNk>_>%R31WW{Mhjt20?PDt@m~sRN zG+NIRgC4|V#Mhrv4|&Xr-xpf1cxaA2r2NMxoc;8kWx`z z1+f%@mXd<#<{p z;wMVWhm|D>2f#uBCj@3G=Y1%acYk+)5RJ-N<)Tp|O~u*8zTAjFdBKBo;l%dk-g%ng6^xg^3onMB+ zu~|=10F>`j=%qd2+(C*cz!CEkp>#d0p0xtsv}$MWqMZfs@IcC^6Za_S&lf>L&o>^t zf=L=MdH|lPa1d5R9aROnC&+rR`WC#q(`(Yy$vVQ^!(Aakj<3#n7%kJlCwz=blV(wAIIZZpP+4aSxT6A{r|+B^Ow?Y%aPTI1{^{)1XA25xRzqdUdD$L%9KxV5z~ozj_=vE z7QNxX7Ij;Sq+5#foZUWHs3nO)2j!mDpyA(2n3ko&x1+Nf^u60Iy zvQ2cGxHerSkDWn1Z^~!pV(>soT04>ZtmP?qMFo{VCbvh@_&_;IW>k#xR=#HyNF zm}G8B+Gz~vB|RZl3yK!e%x)&89{y(R%fj{)WKk%#r3CKxVPM!j@!8v3G}p-rZA=QT zUoHI`-eAewWU6sjXM~bIDjl~d;rM;jqdV{?%*du?r+%NMdA z{;_|D8_bS*PXk^pAJbZk*SPK1t&^*N%-4fIAeo^Niu#oV*2@p`8n^h8>SVlA^W3xK zMC|w_S$IGjBNAyrp8ugKd8|4_hw%%WkElZ1NHxS3sCjC*hquVE7z@USm35iBOV zp*49IY#y^gR=F|KDtjnk&(4#>>GSZ9; zV0t*;dEL}#Z?{nUpA9hTtPKn(Qb3*tNf9?B>A@9z?X64zGK5BrLADn^n9l+XZ+zj6 z6E}gLQxA-G6PKElFQ^rF>mexU39$32F%kuk95nbkN6^MX@^K)A34G9}R#)XISbg)f zxlHUHVAJA z*f4?76h$DH$(-RF&@ZOmg$@z8A_Dvu_P2q~T%W@->7ha}UIEgY$v=N`wi&RXNl7cO zOxf`;^5;P@&(I)&%p@?z*)3P6pIb3dAU^(*&i-5Hi0tEU zAqZ5Y(R#YHrUt@K29tH!RKG_}mH$204&XrJ7;d-n;845Ic0?yD7@+gDImC0L%qKL= z3D%}7FRITXRl5pG?*l$&rL}KjowkniK?6<6VUK8GfwWd#La=DUHDHgqwvbARW zH17qgGVRv`Dozcl(@>~PB<0Ph8|>fxiWn07<%+5B`cUvJ1xHLr&40C5|D5HcLFYd- zl_KsH*0Iwqwb79%F}4F&wuy}%A8bji@l2KG)J3Z0Mc4Ouz?=c14C+5cCz6%gd=^E) z$=_r%Ly;X&j=+~%&i7Tf!D1eqB5NpI08qy3`g$&e$|#39 zgQo%6*i`69x3Mkc6!ej;HVDr*b47NVbgstfY6;#hguBx2X+sGTjcKeFcLU1%rxnXQ zxM)G>Jwae{dexRZB8DSCnbsm@hyB+T1(C8eBt#vhphlee09_StjIDTvy**mF#UN@g z%=3c3C3c;98SZ*uHyFE*Z+Bvzgr~vv{r0AS+7@dL<=G?{Ge?dr?8=n@o=3PE_T!Cl zy52 z{`(j32^5EA^>SvK$2o`we zAJo-9^xDp1`{a0qXvwa11XAq&)89m`@^Wo8tRKq}aWh276Mk*1mYBZIKz#9?2LH87 z?8P|i^?kjr(Kd4$?jA#*1@lH!=)%^KS%u_7HS%!N?dFH~IzLB;I_d|~_Nb|ybp!pGEcgxy3j<67=5qWsQEm=;DQZN`eU-86bz{RlFf z7-z@V{E(J9MC_aT)2VkjuaS%Mc;PHdcHMZqRSvOQmm5G#8#j$e5vxsMGajlx z-{3C&iDByG-n@oIw&M6@uDuHa(slq*V*HjU#C8>Fz>Jl}@z0M@!m)0pprHddR*O+w zkJFj)yYRPFUWGo+PXquDsJ)5IypfQ|D^r9nLmNp<#E9n~J1I%vt0b;T%1y(OES8=Wt8(cH6K9_${j^WR>|x8y zVe-C;w`~K;2a}jpMnsRzv{1wi;~?f_G)ymlm{nN{Iy0Ke|Jqc26ufCeXQYHTZHlzY zGgW6(hj^%Xo21bP@b^F2^%UPqOmTOreD~0fB#1VaQTCTDPqsL50s9Vc0 ztgMsQTIG*PlkgfTYg~EZt|SinAAcxtFd_s*jnsf=r?6?<7eJ*;BvSR+rni#gS-AD)i-Xa1JiBMpNOG|h{{k$ zE#=N<$s#8T#Db*3p3u!(lUpeEa?Jjrbp*S-v_@$A=diq?YrS+vq@v^#?G1kGJ#R{n z-gk|bin0M5GwIW(NR4P8q643)t4H7r)dr*BD$JtH(o{5>9uj0cJ+da~XWT(Kh?Pto z_$c%OU2femc9wX{ppKdUn#o_koIoEzwOb6SV2n8X%G&3q+^m*j3l&MZ zfaU08ZFiWwV7V#(Sb@-tz{Fc#p0R4F_sSfkh-XJuRhUwHl?+;Fkrc`Ajt%qolonj` zss&DHFje0Yn%aDH#O(XmRb}A&SBzxq029>#@^iX2nYMsi7~h2dEmZ>rSB~;e5**%! z`0PVAC}Z-|BlaD!$^*m`_b6>=?Zd$})6tvdW?K>nWAXYk58wiqm6eG=5J5qV!pDyv2d@D{Yu@}!x#ZpLQ;uS!=#vn3aY+e%mXmagsyn0nSN*&qh>&@wDb-)ZaUWL)s1@V{0iDJLSG$UOBr z7=V>ofw3moDFBxNUc-_c7)7e|my!=v#4lj^JgMzEQtgufco<9@ma&z~70L#uJ+Mhx z>h|+XR8@;BigUKbueWdWCP<=}Hvz4Hu+7v@a1{Rt1aH)93qbdQwc~$I6LY7#+1r4%wxjW%jl4TSbXm}PK&UrlS||IQ6r=|ZIO?Q7?4L? zAeFYq`#}Gad0^U@GY7{6HDM+;L}ge)1e1=JTGhBWp7sZRAWo1S7s3c4Az1~(FGzz) zff_R~c=F*ZD%gGL)bnHdVmiE*{fvnDeI11dM*wzX8Q$S2>Pzco4>bz%IVo?Q=Yhl0 z&WdmFf^dsVv%cSTtXOy|IQ_2HZ+b4S&NMicLR2vl-r|C{-YonvfFp^BGDBXgG_H@& zXEl7~W~)!rLZ>7a72f5nZ3fO{D{2Y=~fLS4CFxTh0fx%X4ro*M_qrxqorwFMl< ze?7a9YMH6LphDZQ%@;?Dw+veWt;7svp=Xu($y{7c15}HD%E~o1b|q`-a?0bK|1D8d z?%}RjlksQ#t<8z7sAybk(z0H$5aEyxes|jQwuWFhN9Y}HeWo)y2TKU(vyZx!A}EGYLX_hu#?zFCROk^mOs5*wPDA1Ek1h%6xCDat_!2i6m% z7+Mv=*FGCOh`Q_W`M4M}mvP1a*5~On5gQ@^#Gzojk;d}t77lQN?t9#_0qCZI#_`Sp zW3ybjRHOD=&D)$0tVxZhtP;q^#L|4b0Ac}bNy=&|zw^@OC-plzx?7y1tGTDw8KmdHT#_!T-)6BfYEHh`qnX>Jm+z?0^-VlYUMj7AM3H z256N>_@BK+Ww1gfDiQO(3zv^5__jls@~MwZ-zV-@J-Vt?-pBX)wtrijTz2y$Fs8Mr z>t0_SZN&d=Dh%s%T^Zkg4yisq6Fun>N-p_TS0_%yUzD>cd{X_3WtVTp29s#_8RuZk zIb}=qkvF+crNcl4gm9itxD<&X;Mf{P>|`qW0hEeted57AslPm2*t))Ra>N5RvsQjVXHRJCSIs+l;sts^UUFHf4K85DQXTuj z%AFX<6*J$lQ9)vZ4X{SWGLt40yEk$_VFnV|qJS3WfHgbC)(i!q8#5r4Hg&G6+PhiM zBT<~g3Zk%u?>TTR+Z}g)7%QiQyuQ%u`1^we&xKTY#M#ZQ!RPMVqBpFiX*22-{mEFa z`(^}fz@Lq=$t@r)d;rd!c=y%mX)xfI5g1pWT<-L6N@V%dvGKs}cRQ1d8+Qs$YqSAM zil7||7yg}v3rkq6CLr$(#U9cv%7Y_8T`pKt09@uA4Cx(!4hyh&(?+5Hi!bnWFy6`xQ)Z{>R8`_TVeokmGw6bGt;ZORD)A9LXZ2IEURO z2b4{?Y?=4o6A}?)7WdawcxMv$hYNKbbU~5f^03Mu{Z9X_4cwoM)b#QVkG+y|T0W~U@4%yhx@b++l$@i;O>`o{-Je9u_ z;Z{M1#1~);dZm8RvttakX;XmY)1U-ha!dovwBZm|~ zat50-@G1j-jxt>;XkBAw7UGi5oR&{oRWLPK9rneME%6F)M&v#!I9nE`1GbSQ0;Q)g z3YDv3ym(R#ka6V8YolIyx_D9l>ii*>Vdzv_H1P}hTO9w%_Gb>IY-)?wO%ktP_vy!s z8ExlH6O$t0-8~3;uP%MhsG-+!y02L|Jnbp&$Fd?a zIi%{6tQ_JdssqnDoP}VXwdIV&TSXH#qTN6(?7u?c)$`DA3Eww`aDFD%ww6`IGrq#- z-F-X6!D;J%RMWv5mhQlZG+6V|@Na{|Zm^KDt8n+-mhOe8D*E9N`HR2jM`4mL}QCDMXk`Pu%hlM_2oC~8kPuq8o_1G?1%)LtPsdb++( zWrcNSM(lzyw+^}QzhA~H>|jp~i~0PgT=P~NF!ahIkTO)yz@D0hoI*=)=h71hd{XsR zr;RfT@9$eGDqx;8#pRFwVE&s(_a0bC0tT4swEpf|H(=hA1J4?A5@LqmbMTy3z$Lcp zez=0#3J{eYgCZy(aXN0^fZEF>U@!63@&Yb|RiEp%RlwiNH7Ip5`@_loS&k@XSqm2f zDaoo~A0U6_Rpfrd_WH@Y`!)I|Rae(0TTArlBL&k23uV6j)UP_(V&%BqxCPvbVKE4mb~uS}AcQ-Nx?p%% z)vaM1&bY=4HAsC=$2%uUii(=x%Ih^`SbI>aIUj4?rWC0DcBarB^`Z^y!ciU0V?jhN z#85_3^fboB2%hadjKAo36GU=rRm_N% zL%1$K+p0#x38K(i^b4i7;_4w(aq6A+RRwpawFQGn^qW=4@_DxmhI3YWSic%xyyp8! zd4z{@4%*#uOPL5yAkRM$ja@*|@pz>iBd!)cCV!=gJNMM*53u#J^tgHsB1;E%iw9Py z@35k^=?V|)jHu<*-cu6&b&%$(W*g@+USEIB{BT$#aFzQfb&PMUs2jxD14g|Kug z`c>-MKbYIPX)b^<+&Ki{=-jQLxYpMwW-db5pp`>lU3>iYWR-qJrLMCh^la`qH-apS zv*&pFNS0=8tIA(b z);oy(z6wszKYq|+rQW#rM0H!MTx$sHWky%<&8ER>nVhNoVyAlhI2-rQas4G$j&{LX zcT3|ispI{#-{Z}n@|Xr=*DOgp&SEGvp2aXd>1iAP^h)c%^I5LrAKZR^m(IT;=J7eW zbm3cxEtRLhvWrvC5)}vgB(xVJ>woZJ5^Iu-tx?_^xQ34zOs|qaLFeF!4`+_gwgcAZ z>%PEEX8Zr+4i^W1X>>m`NoCjn0S+G#P-+14eJP>b3i!g)&B~xe81RU-ft>+#0RyEA z$SR_imQ27Btg!AwG79Sp{?BTr1+xs-gYN^n)~%71GX`kr2!={&sxox z{@zy@lr!%DlT=<|VNeVSGIaoG;{|3r1%WPr)^rENUQqH3L?>9G99zq3@Ahy~#L(8! za#NI`*HvDHmB!E?!vO$C_Bj1|4L8Qg<8$i_r2Ow0T-FxWGY+F<{lJPl2>PHxDk>0z zL}U3+c)%>jXfT%SJ>v@#;8a5`Eis@jrj-dVNDmM8-pdbL1ofc*Aq!tcZ@Rg-Z~+5^ z%ovdZ5UDs7qM1m&f z6`9)Hx0WiK-hNusf}Q;WSH~@WK7rqT{1d!tmL65(3IJ(^%oMr zp6>Khhr&kC;6+7gSsDA0!jiQ91RJ^F{`m_VGW`bH;TwQlKie95<9T60E3>&3C#+B* z%4a!U6u5C{C^IGcUvL!55{dmh+q?SQo+;yi%yG~VoP9{oTnO}|B| z0E=VG^!xIkMG95Dav#zX?Gfu(G%E(`I}0D$XAOvVT;Z+K(Wd0HwW>4U%=)L7z0zjH za*Q&)z$=omRBU})IZz+mG0F6y#ZiEyedkD`(LIiETh#7{sKduLKIIto;#uJKKk$1J zuc&!c*}QSU8^l}wk{SEhu9@h{&#Wci2)$1xVjBfKIsDAzYMB`s#kok+2& z6k5oaknJh~8yKLk#d~=}uRaKK63z8+n)M}qYAdFeOSYSPA2t1XTj-+Vnc0h~bS6T* zbVLM~X-edRz0oB>TajtHc~vlBNiTJ>WIXG7Z~(1wJkv<#?%HO!ncdla=vjtcXKqRES|$Wp zpJAf(q-A4(&-DHaCt=-UCaeu=(o?kv}fk}hq5t2T7x0`wyC+7n);42;!khPuLI{h;~1nH#K~A+w(`@dZD3xpfT%-S<<$yK2C}BA!W%=!3u)&~uP|3@2TcC-9B{lhK>xG;V?CG$g)#!3 zaf$5@BGCy)HC;DKGzYnT&_GZTDM(0mTgYFt9#wk<;a zBZm_B?R-Kw_XYOy%uFAUZN|U`?BBnwIK0iDMjsa>2=)7c2{p_82<+K*QZ!-t3RrYQ zip)igsw4dktkAfk;xCZ786tx6BpAmtxLD5Iua1@kfLtSURtLoLpI|ie8<<#4LFfV1 z;e4hhB@G>>*mGj&jJEpRxf*!v-~;a~K%x4cm3Qs}7eSBU^=i^57I>I?2lh#SerMX# z540Y*R3VB=wf3dN1<=;-hO zEajyCbhf9mYKv)W|IL~QX4T80q0{asp$VZoR@mPuix**iJu%$t>5XH+7V#bER1rN! z--!aU${*xlwgiysHLk;m{$;&TV-7?-na!WTEKuUL`jLak3_LkHfmr}1K{`8Q&?3NG zdVry-w{U&e_`g(wA6;ePzP0wY_~)OpEId~Wy-sMZvQU0oN4Gb=&bUKg*Myr#69 zF!Q*BLa9qCY7W^d%Gj*>RKvEP(+9){!3H=v*^y!35GKkc2WVq59Fug{u{`CxAo2T> zP4+i2!P3uE(tkVm!S7$vF^$iaFP7m|0$}p{{jrWv-OoR#vx>Agft+4|dE8ID!l9O; z;`$g7(S0*_M6Y{)T07KYB51`Zw&T_nUROd&H+j9aVQIRO^xo3%)*LR{MV;t}Uhuo4 z-Z~?KK*nhj^oBYHkAg4jAO$uTL5l(^VMza68!6I|{*JT^<}+@CkZtPWMkBE%9iY~% zDVTli3%9H9*`pd=37h2{O@ZKuSs^A_$$Iz@LF&*oMgvg`jYLF5BKxc`lxWtN1 zGaAte^jE)l&Z@lyE-r=&tK23_XS&PoJE8RjjZOV4)RJ2(40CoE8*D3pa9^kMMX~U2 zC0x$9$^iinjDop-Ykr-*wK|4jws2Zy-zg>-F)Zc%uZGs?8Nd&72X5D=Ak5?(Kls5P zMXXdfD8c}0iuQ_6MC%a2i2P~C!G2+H#5Sj z=N-fiFSo$*JJ0`=uP>Y!?DHrm3x2S-u~=kIcXe_#A1`Wa3&0j}U%wvyDe@9_BtN7d z>P)h59ySSZbE`JH}OYtIXr9I5ANrm`Fvg6xZ{LR3!B7Cnq@bmKJvDn zN$q$)f^y3416c%$PPGa7?&HmYV&8T_G%&LEK8|AdbyR1XiCs>+4XHbhZrqbdL?n2q z3#~O&8W4{g(r#;ynZH7D&@S#&GdY0bNlmmkp6t6~Wt&e41+iMI|Np}>S91Mnd#>?; z!b}qL9<%4ZE&4d7AK-_F=d1tY+|m9|$@U2?1VstBa+8@<6HVSpnZQ=0>s2QhJiXt9 zlR5zf=EfXJWqXgi^>^p*$g7VaYq|=E%P@%_1{40oBWG?-2lg}Duo%I-?cDtQUmz^~ z1^wIF=Ls!V=+?sbUmt}d*ge&I-#CipLqPun2S^*R?Pha#{yqjVJD9;1c7lY- z;)`ug48GkI9c$yDo-6&$M=Y3K7U=x*-Oj?2n@+iRq~JH%f`#JdD%8UZzQdeKU_d?r zbZ{8RT`1-H>p?{&&#z!S*mu-!ws{G5h%`hPn~rVi9LDfcqz;HMarVJ~2o9R#ObkE6OF zt%eVnf`WpJHqHI5=WD0FX@CFzHLiV_it`O-9fA2Kzy`PI#j)>IL$0#A`T)@2yqfJd zVn=pNU~d8VPx=lbe$V*Q1M#04mN|nt=+?c@<*!aR6a~mj!3LBjmM4&npPMGY=p`~#I}-X~cNSP@0t!yX4#uU}EeEACP3o39g8PhI^zO8Q>qBLp_PFAn zqtO5x@4m7(;w?09N(En@Zy-vC6NkPe3IQcg%o!Wcy0Tv-+9N!qN#!}42YCx1liKO8 zh9l9wn1#kj;J|p$G90){VmcSPsbIj^-rs*UG;S_-g=~3$MiKATbiVHT@2yqM4Re>< z!nDI_gUm{5mJ0@5DO=vJFt0KRT_X=|yY~DXDL)4rCxkysxLfU!+ZOkrIya$KsMLwxqOY z=_K338=5!o_7Qu5aTO65bYfr3bPEVdl&zr)Mx%sVzaV!-wfoFtO@zX5Ryo%qgW^=F zy4gDkEBqKH)+$f(q?jsf{mpRN>_yWZe*Q|2q=9FY`YWt|m$tIq)_;Mq_Zu@yRP7grp+y8$Prr0?gANzkcS{7rX&`6q@GK&Ja6s=G=nG+8G zFIX;Lknq@yQtALPT066<901TOR1^TPPno^VrPAD@FL8R9*WFPO4?V_tI0t8d04G2p zTQBQFwDW=UDDVtU7j*|_H2Q(hm#l)4x~JMkIM*C?g^*o_%2Z0q%_m^^caD;&Il1s_n zBec2s9D$mEHC+Oao)$`rD4J=PqW+oZwK7-gyBbbHL^5jL7$TL(jE5mT4&t)gp66i8 zBj&ioIj;^P^g6S9u?WF#@A85R)f7J~m{~m^RL1x4Gw?i$Gr(9!zHUQDwOtPK8}PiR zu-(t!u{`Z!_=sk0rS0 z5?wkxvz^$dB!^H;v!BT1X+Qa%OeOP#yrq}pyyi;C zcrpM$qVx1mdZ@I}U3)P~pr7_M?CZq$jg!?x^-^E5Y2eb!Y6kRb<~x`LF(v6Cf;)VWE3i=QvKPVga}_fOF@QysprF@2McMt~9)D}^Ll)Nj^f{MIxjI-L$dQd#VUh&q?U zn}YAbCd%G*C^;74^YPrpMlX)$2J`%h=t&r&)5H8p!4&v=ECPxof;nM!BsX~v^-I(d zPLr7Bhv>`r;aR=&xvb?B7b0CaIkDS1_Vq2ARs|;`-dI7Ke%FH|J68{>#}j;c$se!y z@X!A#H*Vaq_NeRb`Rs_Vezd-Hr|$oRGG9b=?8~VHrLB-WWAtUi7sHyo`THJj@q=QI z78fM{FiJwjmwTs=N9rYsSADI1Cf3&jh|nCR)dB={b(h0J)y657Lse^} zw+>X20yxUR*bPkG?W*B6pFg3x>JLmB#g31}ikcX=?F}-g|6vrmw_>DX-3!PGIBv@! z6s(9N*Y=7D7fIP0WKD-acqtE+bHk!H<%JXbWG`XOG`)@(DR$tc<~rlPTYWi8raZ7- zQr)<5{x-jfA5>CU)jSZFOr`K%mM$NBx5AyLh^wDVVm(=*rMbl7W-ol+(GxspU&Q&7 z%E14;u-{DHlT@!GsCh#;mN>#Vn~ReZCmZ!^mY;FcC*uirEj*VAG|{;CeZdKg89(tT zM9GG>NrJ7`vZa+#ckkZ%49w*c% za+X6B&D&0g-De!Tw84{Hnx&vsjgTpFl&ch#7p;Y5d`_;a!f5Gi--IZR{Ly8z5{%UM}vAjV?;o zY`l8FDS#W_!WvSl;Qdp<>WYOZ5bncuUNk*B-kE^1&(Zwty8`qn(j~7Vy)=55s7=@8 z2YVO6H;3(>vMD06Ye7W-Muzng(zit6PKlQP>|JXq`v#ctCO?$|NnC&Vn5JB9<4XG2`rZ1tSYVEl-bCDK=M>o{OSR;E%f;6l+}o1D zerC|dH;w*x{2q}{5c<`3TaYpaiC5}6ORFZr)G?}=;-RlHHtMSJx_n-dGI=n7M-mU| z(oue}8R3IS={7+*IoE|i;JKC0GRuF^s1ia5|I6kYic3d);cNd)^jh8IB}T-D(JQNsOa3-2`Pu!nO402-S{m>q!ID@MQHuO;&JOT47`jAedmk0o6{?iWH5vNbV1&WN>FSkUVo(H8W(KEo8TNUQtoMGl4yIGcJ3KDw=n2M`-ltXSIv%+UG-Sw+-{N}N{)49$?^vv(Nw#!A!!c+;&+AL zznvmaO&VoswLeDQR(8~q%&dVC24uetEb${k}C+7m@eRzPka_cY4U=ORvC(m2n`M{t0^d8WUj9;dP7tvi$q;7 zrxlA6Ep;{oC{lG**&z)hQVp76e4p%+%olk~Ku~SHm;%>&eB3yB%vxOqx_dE!*po##&6$TR;ju_ zRlB&mozVU1=O^lRc_$c&-C;JC{sQOpV)C)HR7Bl@+>d8o8!yZ@iRl@o?nN01$|uU7 z`Lkxl3>kMH_3hnMOL-&!WhjwC1$k#fCx+swMNa*Hl00_PfDJ=6&OFDJKUF zwYx7j)ZH&iI+6Q{l`gc4LU@?p2TWoN?&l3scF{FCv3IHCT_*Qhze4bV*9&!@$KmvM zNF~r@KApT${SshTOw>8tM0h?hsaeX^^*qo|ya}}VI1{dRQ0K}Mu(=sE?Z5$$(t>9u$HID#BQ(hS}Ot_8}?7u6IcN zqA~?n9}R~*C;y<%+w2Wb4J5@H>19qvRx*1%tQ}o4_{FLdAkV#H&={6hOW4P_v&3>& z4vnVk>KfLgBPw~oRt#h{&3u!6K;iweC*G%Dw`ReQ`A7>z>ECv}a%nE=lo*5EeiY3; zcSMTvCN#qOwAO0jPTJI9p3!K(wtbN>g_#Ud{n5>5vL_#tJa3?tprhz$6vF>GVh_dT*s;f$=p-{)_7W))X-t{ohwboZvL~@0+{DiE^z8zO*S-m(zD^Q=@eFx;ehfICw-u)M(_O z=|a??hcYS@A*@*Y!|AX8EkxOn|DW3!zhC_`*OYBv&S{)sqiMdH;}pHy$0~|B#S|@_ zF9;5d<%kWCsbC8&n$&!;`9ReYnQFaZjman+MIIJ1Er<6Cow9JJly0KMdnMuwAIbJu z=7~d|O?~(xJ{=mOG9?jBlpXmo9g>U|l&2U&G08xT`z?~L7>^Sg9RHdl-)cxKVjHT| zQ+TV2rWVqAiKMEntT+^?4QL7BM)4eKt>;!ljNwNMJxd6aFNm}ucG!28*bMx+as|-r zHTm-4NJcb7lc`|wvhyj;@Rn<%GH2DB<8wz`WK8LHl;C$$vLaJGJ_SjFY(+un-~5FZ zv{31K`{E2~r-_&wRS=V!C7@TtJ}?d)**Uh;xx!y)#O#`RNU@STkn> zlDs>v4P*oPuidesitgvYcqfsGI&Iq-tG@#+*a8f(^952{cT__6*AwCW*M|$-{;Z~Z zqI*u85jtOooQD{F{f|-`%pz9vzMdK-*!SBl-v;mcScWKa{d4jL*mqN6rAJeG!hFiqi|CQ-q_SyQo|_!f=|;J&CcPpddy@Eh zs#it$sh1UWmc1gH&u}V&m{LfCw@2|>9~LBp6{=ckk;^74Z-F1R>JYnxdi|L0i(?YO z3=JR9ED=Rwpb<^3##KxcZDS7O^?_@maQFly*}qn=*($ytonh(?r4aCw{emm0fqUFp zhE7MH>PO6JM=7G>j=y#t0engg^x6f>>HRAM_B?u1Vfa9H`2346qyn?x_MPtiH-l<#DXZJl(AF0H}= z`4a%~LfQO>!O^{(9sZXpCOmhn8|9wTZtB0T3qL#?qjU@u$V!SfW#qBgIp-mV(8wJZ zVZOoT4I(m%9UGGR{#3s_-B5e*Lm4>9)C|NN1ay)W@m0GTF(bBI@qWi#Y7?A$$1yq$ zg|23;=JTgvJwb5lneA%o!zdRT@1 zXuZ%dd8L4N+O?WCW(B#tRl%1yy$oRx2oaqIM4X(!diTXK>TV|a-ml<8ST}?LE%b%D zIXKF9tcrJv?8d4(?={yhq2()Yg5aw)8VV>IC3;SiBf9Ab)GmqHXJDh+xChxm#TX|X zjd(n-$$g!rh4=<*DpC=Zo);>Lhkeh&o&Qg~b>fCp#n3ssqQX5#UlJg=zP@r-c4di19}6yq?9pC__u}76()})FWB)7* z2DhAr?s2-*{DZ{QSZ3~|NpI8LY?K#Bf<+z-Yg_CU}NJm!l%up_u_>)Ow z4N5_{`7)2#p(|wh3rnF0iV@!EzlKjlQS7!D3OiUwZhV;s6<~;lV{KEq(~SJ`GKz&W zx$Sjx_FlKbf`7;_J2tAk%etD*P)qzvL=zkxF(H8|rR8>Sz<2~V*9kUI*I-nzwWzdB zuRA<%dq1&>#VM`W&mmiT;=m#a!m0fYX3y)8*dnKVPQ+}&GgrfL|$Q zETVuBOba@^^&3Ob@VA|BeU%ZHw}Z-Ygc&MnWT{+`q1 z!LxRTps*QbA<62klr9dnJF|K1nx}?0^*tBsdwc9-lKD3rW6lFd-aAQSMA?%3k=s%r zoDQ-ACwsNoMeGi#G8CD#{H65YMeelVe~X;E>kx@*r1$4NLO(FNjc0fN=QXHxj{%raQ%}j9ir(#6wkmAZ(9L|!E()ABD!)#66->8LIsqTK@zoNk|x%JvD zUDbFMpoASGz&ON#LVX6G-B_P-yV^AIS<+$+3y^`Nhb_?|(KJu2EoMv*Sp~K(wG%Sm zr|Bt%0@Ot4Sd(GlFRyNz^mSR${+f=qy;j{LqJc%5wGgZAiX&yUVm4LbzX!T@ zW{3;^<8Q#zunE1Vev};-KvUJn2jff>@6ME;kMx0enR~uRE})~TxK^^rh*R0|0A9A+ z*<0gy(D^p@2c4`g+#uhNvc|=TO0>I&HP|YLW>t;|RE7Cs#k+f&Qlsr&ueD3>aRzJJK}Y%3gzFvJzZl|Q4riDq4@iE8l%b{sqMEEA9iS0o4=ev64OskOYp9;>d)VLn zOcGM1lU%u)=ykDgw3#`B?s-FvX{QL+Cz>b8g={9&m(ht#edTL$6}0Ccq?J+Q9bAJ3qOgR)Kk<{)HD!C~GYU2n;3CT5Nj z#Bj0o{q0D`ce4R#+a5iX_K;^xrAH<%_N-uyuiyP@p_vswORG+ao-aWez*9Ur=)9aA zsoS3;lM9-37%f)pL5#&@iB2;s_efc>GNNb4vfrORzU!o@VrcYGq!z=bT%YeNGxTM# zU8A4W3j^6toTW7=csr*D+hoNM?RH&4Xb_2rz~2J}upya>&&5 z2@v`zhKyUbGaQYNeqj9)_2s+KxKS)M6Ov4k#dF<6I_;i%Hr?0-+|wrW{m9MY*FlUb z)J(tOB;yf90-;zP=teU(>DdC=P9f)ah3#H{<-)`v_kx$3+Kw%yx6Ur$nz$Li_8IFz zJgIKqGkMjSuv*$3lfp}FKKQvb|Kvl?=CE^$1iVeJ?}m9jpml{WrH~uvEmpD=8 zP`yM^ZpzGhWzK7O^=K1{rpYGKtZZukc3?pMs$5gZk#n|1gb}rlHty`}s*sSgP;Xb+ zwvXn+!?!y`e;KO*A}y$<6nKZY}-M~YkfsXQV82>B3Fi7 z$NJ&ii8gCTlP#IOGMn7EG7SXFS|;_y<^2GPTkyyTTT4o)k=%Pzlpt^H-HCW-Yl9)QcNI^dp+ zK%a0aL&s#I!(?Ty?C(n?6?n%*Pc5rg#@zlBj&8i$pCjdhsv1J@I9%-bI0Fz9N!Y zWM|y=Nct&LG{oL&0&0tAc&5%M44Pu?{HOLUr^S=%cW@S2xjog~Q)1R@E``5{K8|M> zUL1$P5#6;2zrRQ=)Q?&FaLGl_8VHq0r=%A{A>H@16VcA6Ct2y*eRmi$uM3~Ad+^AY zYRmX9hX5VVZ(vNW^AF?LXNjW$f&9X|yY`%kdD$X(e*aBwX zG9+y+o1sSIdaW25-Aa)E)9!`j-i9k3Wk*3K!F686<<{?9%Job*G$j%i-|64m z8IP3pml05xGFHqcTG4;(4Q8~#5lr!%K}RLefTKb&bVJFv9DO(&`sTtZ8Ajwe@}6lU4v5)eN?Y^u?)2Kj>IqbiX`CW_lU&Asq2d5)!&tU*HPrm z7Bzm9UbTEEDBz!b(Vnl%fNE7X`**QNAo3vh8hcqe1Z9o~rw`2}eC4a(VM0yR*K}khNADG)KBfyZ zj8df%598QLb+3hc0prjzVb13&xSfutv731!5PV~5>Tss$RJ_T76n1UxMPxBX6_3I;5K_+;8iP5Sn}4v&c8S2TQ~n;m%!RT`209< zO(?Q@wDgyc`JR#c>o0RSRq`z?3wl~6P|^mDwvAZRH?-$hd~2%DXeB8A!d|0B{n=K+ zWdJ2_#W6o1Q)Rw*?{J+vvoo^VB*=nO=}&>W33l z=B7pTd`X4k5%ab*4hrT|6X13Z>!}a16c3cyPKh%(XMe}ktZ9>1^!zGl*QD@gk~Y5( zx%DFRsr3B()b}C@{trGWA!eXxbs9LGL%#H$AYN`T+q26U4N-d`c9r-L2V_WmYje%k+wu<^L#fC0h^TO#N_HD|Bev z8ZuL>8C-(XX@cD(rKl?G;_yCzBkzzS?=i2cRE^?3YuMHyyIjzhfI$};6^cT>-thb5 z%`3mS!Oxb|+=dcI9t&<+9&3~&@>!{O3KWs{|2(9*1=1KHtEUoCp%U@oC^#?ZiCLo1 zt?Ytu)qhOiHDoB;O3Q3mib3b~?y>@}-2`7AdSW0CcUe@Fj(1h3hnFC^#)#SHsvl4E zhvVd#aPb(9JLF$}bmJMXqF%UPUyR2M_+#TB6G4go=cWyVn?moVh32(hea+U&`;MER zA#hICU4b_CpC5Zy8Kti5I%KXF*U((`DR;l_DQW*%4Lqq|&|k23{y>p^xKeO@pg?KE z|K}(wC&^*t*p=l4N`TPqN)OyQ-zRjVTD-g+f%GAP9wq$CTB_qH6!AIKy)D>vezA!j zECjoR>jWm<3m7!zxEFPyTV}d7*&L#;Jrm7aCg&<{qEpqFKUt!rX5BZhB$vBn*%s;$ zlf`(rd5lEZrrZ(Iy#C{^txdb)I1^*R)aw~vrMvnzwu*3?`q$T3G!9Nr*A$&aG8{rm zy3PJZj#U11aTl(aY~?nr)kEV2qZ3_`gR>Z8PH#pZe}$$0>ocVL^eO8%uRSj7)4u%- z&l~v*?S)TQze>y2pZY^NYutB97OxM|KIJE`TzIejh?!wArulL%$xlfZ*5G%;1ZVQ9 zs~qomVc{`6FLC|*aqw4Mb=i~ONqv08$~g42f$3rl;lr)(#PFipZLW?)YzlkFtn#kc z4%>+3l~>Errc^bzKODJXSaS~b-U)-{$8Vo4`hJAlc9Gt5MES>tNBCcT>?B|hv&ipR zTgYe8h5t3olvwM1RkDKE*z=Y327s(-5PIN{@_qgvv|HYaPiz;3(s^ZOPls? ziXX0Q^^ON#^yp^6)TKN_=Un^MZ|#LCv1iUyM5qJONWDaunH2Z6*edt8*l^PN4iK{H zSA=;?vvM@S5*A}k69!jZ!WYyKc(XudI(XxLrSs0_+p1~EQ51Fps$_!7YeN=JeYQ^m zEp6wv%^K8X(edh(N9B>;HN5Yn5(@>E#QXO(yie)}?a5k0@KR8P1e3N|8Yu5Z6&}OT ziMv}~g(^+;uo8+0@1c4GhQ#=F#$u#>rC&1>*zE`Ro$i_&(2 zZBbsc&E-c&Zbg~$uE3tAe}jvkEixzKApW{jJ^8w42OB~6Wn5I1FJi*KiO8W#*p}|h z!}H(SE5rZ$dOs**DPjn z&)HkGKdjNgr^_7_7WL~$^{}%Q7Nu3n%bwb**fS8UlFp37t80JMde2!Nhl`WnH5h5} zux9^8vT^pCLO~}h=P_#@Iwod}zD_8rPjK0uupK+?Y_`2_gp6*!gxJv|ws0H=W|m&W z@~~6U#-roKpC1mjf}R;*YnR1YyF2zciJf^x^1$rd8oAg{D}M~^ zzRP`KIm&J!#Fv9Zc#9Oxfyn5)CGXo1cDD~WtcpB2y;fn_}EjWXx?cZ-naQ%j!BN@4KiZz1tgVJdJp&e&V zhLqtbr#@}(M>xvk9E~QppjXjBTT1`Flkup$)?_)`p2jeIS`*&xUFb#^i}zkTpUU-X zwC~Yn^c1cps6HwdhZ^BG~Ll znaG5hb8lQ8*2o@V;w?`;U&4$je_3QsBlfI-n@lt+*u78qq1*drQVA#vk$N;PiTTsqTot6rlue$xYVIB z;;Qe;hkuut+Dj>+E1f7;Jt`M$5?PC>&YmsaQO?~dst7w^852i8{9ajTUC^L;8`D2x zM|W3OtK#$T#jvK}$2&nB{?qq=CJ}X5qjhVH^$m*t6rbV>GS%XbH3~17coDEXZExA zTKC#-`l`SB>|7v{9s8BNbKc!OImPp%Y((3RG(x}ZkAU4J?lB{oSZRXC6>lg0)3&@r zy;?!R`adVg67rJTHHeCGv9YZ!)>I1%@)--rYkvi`rHobKMQDgkv@Si7{gl- z>qTH~{6tbMUAPgD?v^fx`X3(kost24J4NyiNPlL3(VP)!aqF;gr0Vr!XDsK@i++pk zOBgmWK)lvad2aU%gM(aNPmcPIy|I3eirhDYsuLS37d%qgQcX&&ch!R9-$oOWP_yz< zd^YDU7JRQ&zjgQD1`y-l29Tt|!>9Q6>l8;1!W@XZtqMzwh$6p8&^4vUuatVIgn~7X zxhXWtZ@307hA)-vtBIyU?S%HgfF37RS4|$UsJxRGVny6537Kzj=b+u(E=VIIf59w( z>JQ-)utL;5xKgwO$<$NAcYkF(vS{4TMllg(c??ZA-5cgsHl%niIC}vO8f3A7jGLjzBGRgJ}(!;;}*-J7Bfik(`(FAN#LXeB(49P?R)UDb$c{VoA^nuz*k4=w|#;{sAga-6qr*bvJV>7 zH_?{QPMkO(4a4&avHXDwb9HiQ`SH}n1iYU`Z(BOknjg}}cR!WyF7cJ>)NeSt4w^qKwG-CUIpgK8ZJR5cT;qqxx>E?3Ipu$w2=}-! zNDkV$6jt?KEFUMCXEK%O%iT0;NCY}fix-DCdRPn7ue_B^<()djafk{L5`I-3idL}~ zAheBQ{*tnjA5|T>+eD<;?5r~ozV715ACC_c)NeXYIv?X$ui{Kj-LmyL)<5p6`ij{b z-A4v!5G0p+p-P8osw#6H#Znjmo9D#>nJGl%br6=Up zc^Un1wfZuz4=I@6-TKc*`CfU1OcNV5ZCxvmwOSD!M5`@Mx!Pp3DL$4&+2q0$NymrGeaC9VkZpXDd~2W-EKV=mh-q^x;wS3O(rbcYaxSQ)#dP+xmxk@NcC&89wUY z{rKtu`>z>qGIQLr@m~?lcMxATFeP63l{U@#Y-xV37~V7v#M5=g`fkTIxo0qU$*=I+ zPP^NPPfNdyPP1yRD{P$Y`!0m`0ao1*E*aflYA9{4Xvwn!LCcvO@IeCf>f z`5;@H1;>pS!$GLDA(vcYmgHWrQxVqjuC^ceSuHB8J5>;;If*6~T^J8;ab7Q2b!n&1 zzeQIiNBH3sn zY`c2Jt8AREx=&rcRGET#LYVnVM{Wr2t@h+c+Ha_vW(0G~u3dkhJ=@m=ca4`3K!(so z7sx1~iCy?gfC?9Kyk@#U$1oCX&h2Pmpj2~=(@Msq`2IaRM_6!hFzff?pKwU=cMPno zF&-kWYKz>}wsK`hDRUBGxNsNd`xJG_Xxm~phH#u>_wscUW0=UMejSYR)+g1rild+J zuNq54&!Kw_Q~2!zz1h!R+V@o4(Lbu07}hQsfXTWN0`f$}?EY|+L)n5AhLH>53x$rt zQLfN@CC-|l=gyOPzx3f|Qx1RFv$&O)r|iw3le)t!!;;d__1N5!2fO5o;qAjKML)vu zzpv%0$~#u+sVnUyTC=+*(eiwZV%VIV+t~JLnZA9YndNCS9U@tWH-dgm=Is&@IgwQH zXw+{Tc%;U5&1=GW$K-tKKiTI)^QM}8Ub50~gWr6EpMy($v?28yu1=};ePrz^?FV-u zgLQG?9_%vca3CS~X`Rv(Ixs6WS^B(6E<>~`>kH1f?a3|13I?wuhe>_sybb?S?Se0i zpUb-&5j^JWvUf*PzV7*0kJv0xt^88Zunb1E8VP23@9t-=Xv=11%{O0kQAmsoZjkO3 zvKkZCdG+3vbO_-s+&%isGwM8CPrct%7ED1A=pAIa>$M~QE4bbNFSvR9*2bq$=7uet zEh>4*D9%0Rtt$@SR(*1-ezp53SD~>Aiea1#P9#C>MFw2mqv62@1qH6Ms&N-N8s6vz zSmIVG<@`5{t<9SC-G=CW;-6C^OyRE`%_F9plrhh=4K5OMVvo$p_kM!&&wFiV1;&5V zpthqf5X-`+Ec)iP?%mS(R#GX#^_kUNkPly+OGY_YlQ_YQq`csDo?g?L&BP20`aT4{ zHnW16sE*Ih$MECPS;{Pye*a~NcN-d(4N8=q`3yPTaai zNU@9sDvQmgd>qsEa60SXz?nt|%G(ciP~DT0jbLG+DF{Q!CPlKR%l{k6YauG*p6U`I zUai(Q3w9=Nk_~DbO5i-$v(&JHnnaZ-+BlMKu@-PsRk`)p2Ega(rO128!p&bE^>t3~s3rRcWqpDlXsg zj<=Q^^8Mk7TN*Qech05@;(y;)ww50~9TX;*3w^XXyP3K1g;dNAdfu0-k|3}dO@FT* zFP_SwM;GKW5ovI%b;l!G3!6|#I4S(AS;mgX68$TjZ$9nzCpOaR=5A|(ASR8XBVXc= zUQ?-PB`c@%Phyy*M)&Nzg&kBS(NHMvW;o1M;L2XG^{KHyosjp^qK^4z79S(^J=aTI z0_q?jJlqyYyk3H>b#UI6lDIU8<11}dm5#@yh-ZAsF(*3XG5RO$Q)v5+MMTEdNj@B> zUSt($A^~sM$#lTows_!4!ku|E>*f&?n5how3qMyxv3tNO;@P(nu8{OPDc(Jr!u>LS zB2%t_H8V-wSsO3Rm>52#YR-5i|eHUY{oD?}e-;K&1(SbGSVN zL;3ly7n5CfTGu3^1@nGq^TmjRg7<}GCkb19dunyJe{zqHx=cr75fXMwe?f&cTiM_@ z9GNt;HXKbHgZ%M$1`0R)f>4*ff6dRGN1}JFERJNXpGARovxCTm6mL&ui?cHhL9kJG zCf9fUIz;a8EKVN%d=!h+^RMSqc^U}`*%)ViJ{Y<$fAG%e;WH4J=hrug=jvi;rFQN1 zgVPtZAl51z_AQjxEtDt5&$>EfT|-44?9xg5+1G`iqvgQUmNsGd%2fQPKmq}s6Vf1` zT?PxQt8nA20G~b!CteJbfKicx0?p_|3~Bd@OAsc}CWVA=#nHW-2dcrq&87Ca_g=nm z!(rJ%#3F|iNXa>1&!|e7qsiP6SHBJUx0De=NkIS6;t?K8zA^>EK4ln!B6}rb~?S+?r3WB6Y2F=CwEZ%Wbnf_26+a_GNv8Ms~iAK~;8yCVC z0ecZdtGhCZ!c$JGt4=dj_vUcP8?k|$4f@_xq&}C;S%iaXNbs!Fedvm@^V_MmVkChp zi{u!KS{x6$$1bVoJzputYftKmv(j?)GyZSz1nBm!X^fILl$}~r@aWEpQ-w!t-dN#y zBGFwD6euk_VCfjmOcqlT0J?&n+E?AiCJFXq*?CBs%swE~OU2te@o~tN3l=I@Oa7hJ zO!i6HWYN6#BIOWg%3ERygB?jQMEL4Eiyr^#WP9nYlBlXfk>Vokl&vfwmBe7J86MeJNUo(k z7Ut{{4Q4z783c3?5G6R_1c@t=YB(BoIQrD^qIQOggL*>i-Ldjl_}t(DIDTUTnVjA~ z%_RzR(;k?8Tr}{Mk)wjvQ3{6AX@C7Rl+uq_gkmF5S`lF?bLG=b8yY+|HKmXf9$cD3l z|IrN|dR>C@TURmh2Y22k_opQFOV>1oby{6d9Q?!()SKJX4@lhSEiIUwOmR=TU^>5LHTx`IZ(%`16Ox**}S4yW@&zUiL14=iWC$a(7Z zwQ%1tFkTY_nfyK{bI#C*=s_ne=FT2T^g8d`w-{R97Pst%e{M8hL4`?-noygK zk@ZUu8#xbQ_qWM!2wDs7U6vApB2A~?7g91 zAvMKSx1_yT5A4T2$}gt~x8dqs#t${4Z#fJetM+#xX&<6TSy@8GtJbaVW1utOwq{i? z6FC)C*OsVqw>bNZsDF&f;wB!q8fePrsW~&Djb8^u_H907wBZq5Uqu(aKboe8gPg&j zVX>}3B4->qoU8AYA83u6^Gsv?|)|$UbXh))*Folc@uYbJGaKl}w`mBUjq*-vc zj?Ira?uiw&z=Hm~Ni2AeLoJ!gXla+Q675t@05Q`8NfF4sE}8tg{gzh*=uLICB+c`S z?-`o(dcZ6QH88|@O&%U`@S(H*oz-<5gOE1|_8FS~D&jp)&->ngCgH+y~k z8;UZL-svZ|Au77-N!D_*wuWA5JTV&lXc1&S+Y#vz_$oJ+X-Vn7kOevJzxQZY=qNpM z?mq~Fc1WHnGsRphSatn%+z`m-cdjzCIXIQ~nuOYi(R)gV zb$xHKLk<0q6c$CqW{Z>FGA?3r2B#)U*L=(BCot{5Lbuel92|YMjFO6nQlmcFn>$pE zrMG;PX<&(Ni&oI!@uRh%;$GyanR(c_DReQy9qKG1f8{&pPpU8J;PPrw!ME`F@!pkb zwYlTI;|Xgc|NaH=UJp@?ycKdO4`Xf)dg9$_CD+C7Ya|L_P~H`(q`oeYUG?A0^`%|Y<-PQm zaZSgY`KV3zN18vJo$o2FJ+&-=say7j>*8Za&B3@Ip|y~_5VXlViVPK={dFD*$*R<7 zgHCaxj)Nw@{_)9uryN5ml)_+*c!ABm9;-yWsZ3`rbH8sT6BV|APfV3_WO1Z5mY6gL zy;)63H33$>&3t3f^Th1u(noD*`|Lc+pYY@AA+2&?+M_}~=6o{D`@A5PGj(g^h(7CH{sR`MU8U=P%yb@FxdByHyHgH8^YW`kX5Jk}=(v*H2hDXTSJIM}^3?7E4 zHhrFu3TY>|sKw>;YiMoy>FD}7@f9`JvsxeKe|7Z-xeG+ef8ZW#VT^_C>Rnq}^LoT4 zI3zg<^ zEbI>j6qP=Y_#dyQ@sCO{Xi(GHkF@HddwAIrdgR7=Mg^cyLLlmNhthSbvOh=?Mq47@ zq7}fsfzTF8i%Y7#c@75LEhz?UIDOsu26fKLE)Y0V;ti`1eV-NXwEh^*uvjG{=oPMN#~D4pUf7r z^?au71a9S-Z{|7iU^Pjq_jKGO21GS)2ETdjtbYRM4XwvN0sR2{xfj8{Jgf~Q!HAlb zOsPnVhp!a3Km96{e z#}bhP=jHlxpSwjelKT?OgXbr)0uRp`n#79r{LawqTCSHY)+bpk3e)ztRxN4t*(-M( zo?&w}8>-LSvzy-NbMAKP;sbTk?@44#JZ9SMT4CGEtH__w{{co*-4EINbbeBa*h)Xxomo&Xn2njpieW%CgVWFr1A+iuuN4c6UqN)DiY~H@2RHTtJ+Vw4Wk z*e`o{Q|N_EzJTA@urijWE2%;s?lkpcRz^$3IAD2#!TfSv(f$jH2ySW1KJg(UR3fs0RV*N70VN;rvA){V6|YDT4)TvWITS zrJ@{HJ{BCd;o_RoM&;*GEki&U9%fXMItY_tAD~m8@o*cJqwkW?ibtxsJBi}zjMHL> z_SOpQfAchYck^1~ zn&{Jxd@^~99|-x(GfWvwEY3}5@wbQ}X%bQrYz3kHnwLnJsot2vcoUI?7+qFqCRc4a z(ZTL08C)I(TTFKqOI-_3{!_CA-<%}u9UF5p4e>Wh;NnQ$p>OGR{=QC(GFe5R4GoQ5 zl6jkR{U-b=@Bc!0Aj1DAR4yV}LE-u1+GkVZ#m7K#dL%B^JR0c)U%sVU3c_9sBiHPW z&q+BoPE#Fim6Y)4N3Z3b>W|*E1AxzBZZZysn+QMMu;y!_nX!N^Jy@RpfudK8ovqa} zt>wKn#(sMNHBG66xGX=ExlhFkZ=}|(bw_k(_Wq}#~rbl5@hYO^x;Lb$W*<-A}%Ez2bcNQ$F=hQQkaqH?!T6hsu*zNcV zfCIJcQUqU|UWy_|z!{%V2|vXeO9t&l-IJ9?GxD{R>@PUQ`gAm?*-JbDn=g_2Me=Rfd#h;u`(U`) zhxOC)22fc@+a#qjE;2qh<4e@PZneMJYsr>3s$74%x_!rRknbxzn)N8KKUFP>Ef^f8d)6d}aDz;X;PxzUrD*YKnH!HRH_7WU8Q=4RJG?NLA4 z9L!w|6OqkF4FG2B#-7fITFo|c8T0QptGro4y{XwV@)+}IY-=BIN7qyN7AYb}5))7WQD>{!-Eey~uB^vD6zwZaL82`G#1W!r+AJ`&Hr@r|bRi6l$q}SmaQY zq%sa1X%3{i#2e`4mm8xQ4UX||uMzwhWAw{&`l!(#uZ9~)1|A?CvYtRWRFp$thXr@) z7i+~UF;40GOt@$xRK5wQ+p0KAjtNx_7WZk^Q>A-L8`>6er0-gtaptFQ2uP#C-Z|8U zyQR`r_Ox!_nkMu=+?c#}t2&Fucntxu9JndD!LV;{Gx<(KLNCx?u^A%)Zp^400}#^R z(lo7h_irr5`tw56&1lQ}x*sBfx~@OzA%!raFETkI@XD#9q782`MKBmFuHbZLgacuZ z3DLI^AZ2qD%L*W4)6>$LmdE~d)EbL0|4C{VuP=g z_`i~gEXV(+j!)9^gD;iBI=upZ^@5EaUdj^CpT`L zR#hbLap;vX^hjT_`i!toMBVWq)7xUy)_psi+1{D^*28%ztl(AOBz)V=Uj0gY-oQO3 z6<@|&uEaeWPXDiE1z;B-G%<#^7@7dzra}< z)_kk|(wt*$*1VAo8wtpaJr@Z3h$k01s3&6Baeqe?HWYQlbscsLp3obiHuUcCU1b75 z32R)B&E|@pcF#=7+Ob>pza}$_&|?iM=@&+S5OrZ1q74d{ z94B~lcZ5b`$MPRV`4MeE!_sq*j7QsLvLzy*-}|1d2V$O4zVbs%G4|JQfkCP9XKr}u zD2kIyyM9}95flWIM{lhyd2n^o#H&S6cfm&r`i zpr6J;*_F(C~3z9 z?lB4TVT0T6;Oe)m+d9^KXs-=sqht*XOb)~zZ$Aut`Av5nf#yOn^Yao&3QW~Z=Gz;V z4C^bF^RkU_mWPgsMTKeu;xa2m0tH zTj!wRQ?Wnz>7r*&sx#Q7iZ%(W)-C$Z6DhywN=_`#+-co#}?_+K`JW`Wp z7K40G#n8EPDGQ>ax1?V+!k)h~Ly{z{aNp7I?=9AvcKk$P_oyO0-s$cskr!!ik9MSPupPz0lq_vQB7w82I$V<5} zaEz$3D*`5`qHBa~lJyV18Ro1(UON(Hba%f_xmjLg-IQ(Z0sq!m>VBU*FKY61vYnsF z5?<|VXoZ>j^Z9E97Hh&UP8qAR)w#$L6A3g~Ufy-RW!@`!(XUA_|1xXc+Ti7NM15ma z_#T3X72lHs{qcZEqp7x;S);k=i&1j%a{(deqyM6c=KojhvZ|M#sa;+bUg;DeSK>$3 zNKTfRA(=x%(R8Wy&NeM6FDeffO_!wGn zCc6FDH^DK5g2fhuH@Q@C3W7Ox5%*+}SYFKq5#`!WD`#AiZ7oX8vm}2a!_Y|oO?RBO z*Y+j_C>1IBQh=lE@XNUU<6!{3@A>nsz0q~>v$7epQm*cv`mel?;j|+7cXxZ@6I=g8KXK<(TA`bhGT}G|4 zB-!m10!Y;Wz7MARFac4g2*dXMB@H*^isw3wr>WIx*??g zy^HVsr@79d=Emo2pqI%>N{`p8y>7~xZ!!DFlq>j}0W65xt6|RH7x#Rfp7D@>^Yc6V zz^3uL4;Rn3m3M9l3qTPYQs<6gY1`6!*nM2*Cos1?EE1+S-TuHd82C#c4uOsrAJju7 zCx^fR>w<|+`BpAW<-P{u56Ulx?~l(m^;Q!?h331WtjKY4ZGm?QsQB}j3&DtzT4PO7 zJ0yjL=FM$vFpwS6{iYPnOG=VCS~CQIu~5bYk~9})e8{B8>u%D9uQoIVS}ncT{rbCI zub~<`6+H`^SVeQcg?H0=Fljk6SV~==F%YTc`(OM?f1PPe_=&#&uG_OT9zg&fW|JN6hlBda{=Q;HjHEd($*@@oO% z=bj&D9jyD!kMF$2KH{Nl%%)GP__lFx*uU~ZkZD%_93^@~kl%6fbG>Ec`C_0%^!VF* z=iR8~3$BjQ)thJiPa8NyRcySyE)0<$D3;3Isxyqaf|oLW`Mpbex<;GMZjn1wV%wgG z%eSZ6J9dZz<{j?(0TEeqK+)ZwWWRQM(KtzSF{S@^>PSb$4!uSK$_Nx4JMRM#y;)^U zKN0|&If5ZS^=hb%qGm-uKmo32aN>O(5pM+) zeQieee!UB&ZoU6c`%tLLrl#Hg0mAh$C%)LZZN_q>W2teRbjoVw$C}9{--;o_l7h|S zyT==sgT^OVfAg?rpi9WSd*zXDMqvo1Ae_P^zvn=|Blqif7fx__jbsG?wrfgbZs2|_ z*nUr+4QFC@rbSbyMk2gX$(o*ZZ{QbWOsQH^l~dYzi)`d30RV(vQpEYT<*BsgVI-lv zSjo&hUA)E{2Qpi_)9+%J4yyffEzowCi5I>F1oezFa|~|H zn7?!IOJN)7e4Dp!_hco%XRK0s!~@XVe0_YKo(f_Ji(nmf$2|kG2afRM_mw{ZRT(`L8-$^L(OHQ&FTjioDYe__(j>Uc{FL$-FsG~83e5FihZbdZM z?ljaagBbF>u0PT*<^3P998Rb-_(q8}|gywSO5ZZj5XbXoHKP|Hb@pTQs4udUB_l z0i1{99pTpJOE#>OD+8{Dp!Qm7%nG{aoimPy%gR1P)&zG0hDy*7QI!}klnzIlg1~nz zX!~Qwtt?!^Ss?7!N~~(fZ@;DsI6o@+$8DTGXR+{d9LRnK@xUEI=w^kfOdgio8>J15C9|u$!j04V_{MFL-uRhYMllDRM-iV^(%-v(*^emZ zb1G@PG$>H`Dc2|0wt=`UddmW2YdwJjdICybnevzpANDM|cOL)~4T`5U5z?5YAb7r% zvH?+oYy`VnvwB}^vdd0|&u*X^1|b&VS=%!EV(;Ff#82_AX&eHE2@lc!zPwpTJ}QEw zJF^l-)gCfFrd8Qt9@j^Bhz_kLB2Q==$2cKF9P=EL0rMUJHLSj!Xi*)zK9Mm{(T#&c zwetrpnG;HGMfS2sh=&_6@m^IsI6IXa7-q7&=Vq8QlW5c71e)8DpOO7W=>EX}gF4av z&yO(fHJ#5M)TkAOhagrRzS^}vF<$~gu~G&){mL6#J*l93odT_17hl@R4Lmbf3~ zJ9*>qp3nw8N|U}{O?t$p1Z|S(`r)YB3Xg+cwi^F(noJ~GG(nuV?Is_Olkjn-al)Y9 zPlR1`xjAU-*kkW(_XjxDy94R#ann_Xd^8YeePOaax7xiLiY#!s;_u4Dv&q(CJN)Pt ze7Qrix0JVG0|VMdq06&-sC9b5J$cwYxuJWNJvC!6W^l}&Z*={X#_)H z;Zq5C80GCNP7UwwVEsRoWGA@Z07)0FpmS{?f}=NdBfJ=KX&4Pk`x_og1IDv zb>F`0S(QW;SLvHDUmBo%TS5(%k7>NgB7Z0GCGy9G7mbsgYI*kEwYjtwkHA@x!bPg5~m&!Fi zFZ)!Ui##mBxLC)JtKZ{SxXIj@&?oiJekxnk;S4(kE;-`qg?tSjgNcUFo{Tvjp_nk> zvP&T(L~DP+&C~mg$fp1UOXh1$IQ$zfntIMM*6@$F*z{_w#n2`hgX+3Fd#7? zAwdWMQ8L@!co-V1@ImtZsD}OoJt0~>@Am+m)9&*h^VL_dP67qumR*CAvn-O%k2@rU~1HL7OlG|f4FaWV4fq$ycjg)yV*J^1xgU+%{VzhdY&we|d z2S9LW{m*Y69;T&%)?&ibY+OXH=-H!^orKb?Gvq{`$Tyo*c3w?hL8_r4#;p6x$@%qF+&LqD#xxUeN`C05;EDxKI zAl=ucJ-!6D1+-J-tp>JUnm8+_itl!Q&u!iN$#S~$_IWen^ejKxS0sEk0{6lV1Fzqu6u?0D-={PEze*qW1L3f=wtKODq zIQFq3u@lb5%b`R$RU8=s&kQag?VVXw#Yag4$Hh=LD7!1+o5H}aMLviF_)fyk^`oSe z-go-RvR|RtKa#@NnekoVScs?qG6I6T5hJc6B+$2M9Dw)!&q?Fv_OK?o54=dc#chu< z-Nm6bwy2+psY?eW4Kyh&>)3TE)2noQ7^ToCbDv&=!Q;M)$XwfCD?^$vE<_~%Sto5 z_WlR&)4riZorlh%h4_WOKbKDXAb$*i$XuLuh)OfpaA&rQk*?MqP(NQ~Siqol`ZgrB z`qk^t;iFC5=SCfP@Q0WgEYRrSsS%eJd@kj*A|gNP@5N9kM)jzGgRE__N|K{KY~hj!A8WkIsj&Lwp*fTHSiDh;l$D`-R#@(xtTO z$Kb<5S~fBc>#luMNXf1e3Fnz6ciu_!aXGTK)6~uT2DIbLM}Zrt!DM@VmGXPJkmZdV zzDM!0R~Or3uGy&f-TpFS2zn&tvLX<7p;B_${wG|?VqNz2f5eY``2WwEGOo*lOP;UZ z>f;d3suS#wI6`9ManyEByS|23&xiR~Y~vH-dsT4vZAg=KD>aKX zT)(6IpoGwuh7Gnz7sLp@FC5~hFd1CnUzq4M>%SPo#pnXKIPVN#Uj{{aCTtnh*`KNxPI@ z4M5CWg%6Z`D$8<27FNG7Ej51gA1r_oj&{Otn9_}`Nmj-yYdsiZ26hWh>q_O$5hUmGb zOkm4RE0^`+9$*E|3xGsM_rZLF>~a*HMG7m-Gv3fbVfRE_LxY)uTkOc|2gX#zT%AmU zCp-or4x^NGzu-i2AXdNZ70dT(%H7`f8f(*9A>4Om`JRt zzCck^SoZ(|KjnxjPeXdZEZsd4K@|>paAO-3>p%@F{D&#vCP^>)g(m!EMNse3!}X2s z2vaA$b^q;Sfc%GFE=)NEZAKE_C>fWbp3k}}@Di#x)u$0D+D^dJw}X9ontWZxg1Kf^ zK96bSoFVSz(^h$fGF$uY@!(DA^6Z@sf*WnL3cw}2VtyH4%8yqvN8+~WiKp9 zgzD`Ath@%5Jm@`&BMgy`PqmlKXEKR#OJ24f2Tdrvfz>TqCj&@DNxOt-3)pfDimX?8{3%jChN}9 zmm!bjdWdp1*?5_4)co9TD5q^^m{xQ?<4^cl-)J^!33TxjJR$eqKz_)eq7Zn(cgDo8i_?lgfb0C_2?P1Tgzz06TsM;wwO z59|NU+WUL{R$Z1vvEyh4r^Ao!+AQl~?~LmCwl%zC+bZpwkJ{zp%OSy*#a`oQgTtU( z!d=mOPofve(?{8B8aLUfv*gsKM7>$wB8g{W%8!F+hOyW@z=ug?gydaDKcTam=zQc9 zH|HCmSpjAR0Q1|TsVWi*R@K63W|U1Y4ct5DLH^6vEdJdg;p?P*1L^dkk)Xq&{hH2A z`q7|Pe$vjRI%6vj-jwa1D$J&h);mf;Ywr?gDKoi8?IQvMLXSX8@)f3#c#7Ed8vqWx z@o>@Q+jX~8h4Yy=J!>ZxMJ928U#f{_w2oA;AYKW`!uuvDt6?r2x7NinOH1CCb8&W4 zG`Ve(S4=ZPd(ZoHut^r^ea1JrLTcb`sDXGXQ$_Zcn~b;><99#~Mq{1|`Qn49P;PW7 zE~v}hr~(fpJs(BpS=hBmV7i7;^NSMHL0TQbfA(Ktdh1_dnj@pWXt23WMXv6(M!~Tr z2Zx|Y7=~?i4u8W>adI0)v{vl0RN%-#;S>a!8N37*Bk3NNfTm=8gP{#&85l{i21C-1 z%7Pfb(Ix?CEY4yhY`n zVp?^PSc4vyNbY)qq$o1Y42Wew5`Ev|&NP}LvGS`P6B6@u zr(!;8o%*~LYif9H6eI$XMo_Zo$$NL^S`pAw#vhk{WG^uE`iC!evadORaMh&9? zHmhL?wq%Ei-6PB{bJjj@o!NZ&7n4B)adq=7G zIV}(O5kvaaL|O*wA>C1k0LzuJfoe~c+vGSifdzff9<9;o-?Ux((iq<|%LB_t01#^; zBkjZ^5FUX}2IqKEZ<$1-|j=gBkx6kPG`rP5X*f>D6~*+On=( z=!aTqo;)Ku95p&{7Aq@c!UL1`Lj>UqfIwocf4Y)#=sfDSV}8xQ(iBk!zjl1vjulGl zi*0Pg-+Mof#84+XWGvuEJ@@fcwILS$&(o@S>y`?v6A0)bWt`%_cZl?y!an!gFFtb` zDZY_iLz~4G8pu3_xswrjOWGWr<^Hq%MpT9VUxjbuNpu;=!kc>M3BKCLPOy-+OZ9#3Nl$UE>Z(6k7UH97LdztcSpD=CebP&?ij_;s~B;w>4 zOlXq8-BL*T-m+27TzqdL2fL^YMInB(ksM(_B1*a{8I7B5Bu|@3&WXCpXmC4$M-Ik!CBdUa z-;hq2wQZmxLZ;6P^FNGT#?;y?E+u%YMOB*nW738Ji-^Z#es^&XM;O>c>X)g~%?=ng z!~nfaeIMcc8JK2Ygs=MG?w)RRdD~!rSiNxjRL$M2^6q7kYOp5}3;_?2swIQ2h4!lx z$!L}0#Ea2LzlQN-7XVq2>6q+3qoJ4JfLR{H0jiIlJROHf$RtI9{n$o%{`7)#7;UuR zSu&xMM}LMGvXhGV(riS5^y<47F$OgV*&iY-;VNPglJ1h}g>=vP01q*Y0XqFkb`6$m znq6+gj}da}5!i+W3VfxinrY#MEm$B=N`CM-JI<$xDweUvjKs2)M82;BgO)SljHxCG zwZ)L%ZqZ#guWdi@r~IIZo39vlm5z!XdyU1q^v=wR@7XfQdr2NaI>y!dnsL>eZsdyY z>DNK*aCXca!+*3*iJwLruU6-e!i%d!D}(5)99 z=BZZF#{QLFkTir*F5*wxe|S2_;Jntq3nyvt#5Nk+wr$&J)7ZAn#%gS*vDw&GgT`#s z_}x9{J^xRcNhXt-C-=Vh4{KeEdts5io>w5+MAZBil4EscDG-}-K_lF(#k{FVb;L-R zYw1=503(W$O0QPidJ;5~M#yLe9<3iNguf*g*KU44o{n<&@t^FmsP22od)YhqfXmw! z9yf64&URaZ?P_OdTz!1QJ|k^S15hPsY@O^J=WkTe@c^}}|CTc{rO_)v<~%%5vs#@C zu5#*fA8k@$oV5lf)%p?v`@-T| zzYEH~4g#{iExD6ernT#CG(hke>WbJ0 znq<20$_^j}aASy+tX#SfCc9UGQ?>^HPUm1qv(pm!LPW2^Gk&qGFrNmM;Dd`l0~!cW z+lYq%{pQysN=^$aaioiUmtA%$BL5h8lzzZ>$?%2=`c`{XZh*Mh!it>f=wUb3&-xdy~C%COk6#Ja=>zD z_OCGF_CH?|KbgljN7cvljwW_z25bXOED^6nAKXp!9oM%qFu-t}@~`k=Alpx6=n zFDZX;D8yx>_kK3)AJjWG6Veq@q_~Jcuq!FCZKJ^i!%+3k%&M_Kpp&hPOH>_0;T?8H zGNUplPGXkM&8!-=HQK`0{M@v6gtm)JPT8LlPjO z>@pgvR1#gS;H!KnjO?U16>}r>p8|+)TngSv6bI9mNos?Ol(#?rn*1xuWXM@8wxM?>+NnYRi)&W zE8Gj5j#pK!NWnP$!vF9WmuPCEC+9F=Syf2CF0Btf73F`sL_X3b--NY=5vkErccsJQ z1I3<4%uYgzl0aS`ZVSIWa-qP6d_npdcMi>fb5+B33RJR`PI>L<)}PMB>nm>ReXAx% zS*%8;O%&r;pK7;R$ukJR42 zLFRaRqb;|N1UmNjmiT}Ng^T+c&se{7N#aN!?3J0j)VrrvI?xg4 ztkL=zYm>)b=zJvQoYKP}g!HadcI4kl^D)eSUgml=hjD%jI>wZ6g^tfwK&&m+3`)!? z*@7Nw)F#@QNs3R4%`fRDz^4!3K+%>93}CZ_;7}X$?0zgJ<^ZaH#)7ZrDM9pfu^W(= z1ga9E;w?GM)yk!FXm0F~g=;9_CaNxUSzAgel_h^-pZ|h1fkWkkUfA>dK%vE1RwD|q zrCogwPk)^DUu+Y2Y(Ff7(wy4%t@VcmI+gyk3zNsoo}j>~R~!gTr}-q`Zrn{2n3VtQ3KVT$|IQtWL@k+E>YviA5xbgdX^lWZ6OlJT z={1)hSGJA}f8`DA*9}N2kbnZVfpO{!`4y6%)hXF8*cGWv*)g}>_)@woyXI_M!=dlv zs@n|I_8V;ClRX}*F?z1WfM*jheUd*`e12e$%a6S;>;ljv+T2?$#GkEr0c2%P>kLrA0&C^RHRJ6-M$O-Vhyrf1Z<;}_ zT|b%NSf^+ssv3((UL5cjB&*v-t35&yO;28MFa5F-(YdAXbt!(O~;m9<1Me`FV>qyzSJ))H-H_A6M7Iul8GN|i6y>w%v%}Xe{ zEt<$hOaNAdJuPiBEUNLA#yU?D>ZXJlmU(E9nh012d##*B-=wYAhG>*2%sPT~c_1Hw z7Ccd*X$06ooTz>aLgXLl@Lgi^CTfY&j#nqWTCpr{l_XsZ_$-Q+fZ#nIQJBF@1JmPR zBS;#6KD(lsKDUP&=65n=2xBrM&dJ{rS;du4fx=r%8#|(?;{V&{(C=}2TVlVYa>fj` z=qun?x)(+A=84aZLFH!dmNeE^P=;r=W=P%}>YBs%3q zs_UVU_n8U6=w22#rD`|!lE_9x{B@GzL1?wJUvGr3N5YjT-_Qj{=F^)tJt9QYZcdOa zZga0kTe_`_q;DJ%Z!k~AgCDmq<|ZEI2}W@X^Dvf7>aU*# za>myXL zohjAGCOaIJd7?@|Zf)^ifjBJ$W&fR9_loD@M- z<~0;%;~R059*nfwVc2xv1Sr785Ie-EkrcFqRHjdUg`+ClkoN}~Y*sH0iGT@C`J%qXl1?YuVj5cniR%nh)D!(^=;Ctf3U!GdyfSBq%Y9-O zxve`hs=gn8Q29VPPALaNo}y9@wVq5%zy>{;fm9S+RO-IEEj}t@cI;KD?yA(#z9LsK z!DrFA^K~?(?Byq9{h`tJopuGJs9t-k0=zd%yp68qEVCDV3<##a1e@CL)NjmPC`#{o zD_)mf{FY}Kwd;|3{QXJ;AeQ^VrfNT%)Q*r2<~kb~J!4>rWWp6ly1ImY#{f6^1}H2C z`%4(JzFN4B3_;n-M)3|#M54~HZ#W@R>7CK2x(NWTdXi1$U2=MwC;GtZjt>Lvqunbg zfHoq`3?R;b&Nuv&-+jly@u}k3uS6Bn0B>d%NX}#*x{!uI>nWR5y z$-UGf%uOW2jH^(uO~Z_Y5qN}4RC%O z;0OmfTRDE`Z~Wi@nNyFk&gbxu){Gt;fgLNG2wp<7zWtJ^kODRmOcbufz?HN_xUNXs zL7$-;7_aJAt}_F$+b0xw?^x#bIO2oM?miKRL`%<{wl9}|5G7OxNBUP-vMdCY3d3)< zXgpP_*AgQMheQGZ$&Kk`RVzZ1HjW7%0D-!BfBu;89Xdaf|OikxS*XvRiqx5PER5V^~p2mqqx1h7#Mx$APEzAL8gz`x2fyS6Y;dd%DKI3Wfy0I+qSdj=b-xc$f<)w?JLyOt>be)C z9=mr3t-fEoWAwNR0iI`MXZlUxJax{IKr9>^iaRF~woH3Ltbrhy-q?$v^pM06VOQo# z{z@4|%)&?D;nY^q)iK4+sL?=+5-D~}y5INQzY`KP3CY5k-28@U^#5a$ZIifvnx}N| z*$7JbS0I(P$2Jvsgup{PB0Q9OL|NYlIu&chX6gGqqtlo5sk?TRqW9Ot8o8bE?b4?! zHGRV$^V(DHfIu(|+u9x-0+rp7&K0op=go0-jULY=`jP{!r&SqxMi6P;9uF?Lus9?v z2we;Z#NW386bvmQ8F=^Ymprd?gOt+7Bi4h8mf*=p-LSN3X@7B7xYOX#l@X zJae|@tqz28-N}(?9Uv5@#E~G?snTfG9=$ftZ@IL`l$#WV3mCEu`C-VTHI>9JhEcUO z*xHJ_uWX7#*avvUv z9|Wg<3;AGD=@tEc9Vrv?%7&(i=PMN+u`*fX_a z-&J^8ugTXy}{;f|=EY_|{~j zM6ke7!1a*=So495oKe_C06pHSl27vRv0O;pnb~rWH@4`!gF{O8IrfJr>vL~97KuPP|0!~s&BaRDGl-|Pe$a>4uCr7+o#w5P^TIu6?-}) za#sEZAJ27L7m`*|7I{__%Jnj*=GLZTUpNI<_&)ug%BJbz?kg>JKrhEaBx8f}q&e>< zI<-8eZ^;9YcjO(ve9IlXlV3I-?aDws5C0HH4&W?FK@H&dX0rFwg>VOx0NBz_+8rt8 zR0QWIPaX5%V(r=BtTWxlCC+Lc_AH%&f=HXi{GnNcJIm@9Jl`<3=j2J{EN};fqbtD?h?E6 z&>074lEG%sRc^&y_O{?e&e}#IHk`f!t4?j7_fr1+tGDDc&kN^e@lLpTVxL=KY^fiG zo?mi@dR`E~I*cAoZ|U-e3Lk1gFJe37$>@#+xXGV-O{W-H)z;hGE$PwJC{gT|gwp&* z#@k+2aA^Sr5l}8kciyHdT(l)7RSpx*#0Hn?wY#43v@&4t9ta_yijXHUlk}4Y&>$e> zw}=m5lGKxAEts3hxf@AC)?>h8R}8CskFY2`+Q5X_xt|Rbq7AJ3J%A3ZPypHSY*xJT z%dqdhkiXWch-(s1umkT9pLs@M1rWvI{>8dc?~wl+>k5)t&!ZazjGOzfY{O~di&+9aeKZ4+nfU}I?( zHX5u?6Tw06PqMVlv9U~6rj2T0oVeSfQ78I$2GYo9l8DT=y&2~?)0f6WOD4ZpK~;MX zk!`c`h%Vbky6huaVuE;b;Iy-_$2v9sy{3<4{bJ#-h4}^QxIxN}^cI93V1US;KQ%{# zbxCu%?C(OY-|?hoaU+=mw3a9$}#@IFXM(@nJ z{RobtiuZ5+1BbEb`OTEo-`%hD)QQasZ*tp(04-=kHnw-4`k)>^a?9!K7;;?l`|hRy zkBin`Ygf-FVDK172{Q6d02byDB+N+hdsWXH3lIlk5sQm}X!#76OuF~<6$6?QTErwN zL4~}!RjCuS4d9SX)Kb6Km^Ln#=G@DLwl`qFXdIdwxZ`-*!}8thBq<#0p?G%@saExq9V0rY(W>wtdMKD1K=BNv9G zHiW<5(!M}P0jQloYp@GRhzofN*MZAX@8o$AE@bM<%mc#Ab!ng{gY-H&>n5)73n*lQ zhq(s-n?1{iClMx1*A#RWO(9Ue7Txjo|Bpa0|5vy;tm>G%W*ep=HJCdOHoDr>*X z-6J#5@Kvk43TeTVQsZl96OCxfJ(8P=u||c9TT>h;=(uBgvn>q_GnR(Z9|8jh1CtRK zQBUJUkjC0LYfj!Od`f5lsb39todwW^{I$GqiOa7kqE&~nnDR#J+WmxmK?Tx1=&kV! z7uJ`nB;68k-meb17gKITktNdql;<5brwPKam8c%06K`_OubD(mP1B=WYgyV$#rcNd8ZE941dA>qC66e>A^uGIaKuE#mmRmLu`;u>I5GV;t-Iaury5Pn1tqVkwwc6NkiuW3kK5*l#E_-?7xZe28_8h46GqvJF8^|5) zq=DO#?E$RBRZ-gSp!iLu8%@M5ny`Zuq;``7~GT@~M-fERMu@A)%O zcr?tvJ|HaOBOR7F{XE7mDl~z(LwR-|!No%&DM(6M`spOFtu~^{i$l4-;?omS!tw%N zdpKtg1a%YfgsRo#kMw8R!K0{q#Fe9Ui|Q)toPBAObN{V)q}NJj&0c;!Q{J4}OvNG% zrk0*ADkUX_&QMzbdHGHr=fVdOPez!@aNXd`fJ_m|k0YNytHQ(Vrx6JQk|LciL5 zj}oXaVg*3O=xpA9+_Map?gqY5^zv?I(M@$BJYnVzC}S?sbkdA5cF*H!d9SaHaA9w( zt$YS2#9*xG^(*jhDRe|6*1N94Zr)Va6b$)q!~F5Xe;ekeWM{eT<_FBSeinZ2= zq=kaN^miQ!dFi$lT@?(om0_Byi8UB*(IZtXdKQM zLz}eKcZS*hLNt!J#IkU_(2!lTd$pwIZ5p*f)dSTF%-nJT4~S^GJX2)`0)AA;sAlJD zJG;UD-0fH^THl3wX1#%ms7%hM-cPIL%m(9oHc9I(blEGa#E{JH$Yuys^=WYIOq1w> z?f&Do8g5>i8*f7ki|L}9wI3=-{WTRR?So8lR*6CvCKDca9XZDReb=v^7lDS4T^|B~jsWLzu?1zS2y_G;h`l*ByN&lN?)}u4-v7`KCFmfOr~iR} zC^4^{(7s`zKc5J0H{ z33@Y$aFX!2q zK}B1gW_Z(oA5Q*kQ&o@OX2=eD3mxiDA|{S3)D)(q~4XJvv~ck_7NhnFBPM zGw7QmDY7Fbk77p9G?86bl4wj_PyxYSVa}?PJgm7<$(43HPhtt<%cH-R6~V$|Kzkj# zMPb2~Dk2)z%=Re}Zab`h9|0!JI_!qJSmCm<6#QQ0Wee)XNPv_msX4TYE&SJ)ij0X4}Xy zQ(%@b++ZqnTa`;?z|>-sJq%zz1HP3z1{BFyFd%0F$j3w-7<4lLB$e|i{Mch{xsaui zma37$)PVraGnbzJtkw2!o&w-(ynF4cgz7VG>|5PcU7pQ8l(WLlj14mbezK|?DKNW` zidqlQQTGzL+azNF-Vu>@=9XJ0)y)n01o05jM%p@y#uO`&47GE_@COy5vhJkMLl+O? zBJOpereNAi;NZ%)zK{WvSVA~b!az(H(h{d#pW!e8#@|U`mEtT44Kq@(FJ2YQGmbiG zrGLEiOJGIU|IY;B{=c;L)GZ%}j^~=b_kG7xDA|MpFvd@y6iua_^xRKtDr~cJlq3bd z9Y^})Yz%3}f4LU9l{3PZv|&xyZeKE{%*p|$t8p%@=#a6g4`?pQ)2yv_Wr|aVVGWg7 zgIQI!@yAp$C4`7yJw$a=`;K_#k#>Sr(Nxk8cSS-t2ScQ{=xvjO@ptj# zTgQXTmzQB%%6qoQVRti1)hwarbEhYHB;9f)aI%RVUm4)yr)cahXDiT}m?eRDcAw`L zlDo^NitK59mM)shL7wa64#z@F_FS&yYoV$Jxm;(uiE+<(e=Ri|PhEF7KkuUp(%*|i zSAZfWrHO`ijwM|^7&ET|c_SIFuK1aDF4xReM?`{jBupzR7ze0HXv;kPDxTgD^6Av@ zH6lB*&f|jDb+}2@p#R#qCLi0z)6F>v|JvdRrYC7uOF7{`cTImfRSx^|85|e_75BVj zfW2l%WVwsZ^8rnEhJHQm#EdZ@Ne;ZHfCo_A5|*Rm_@A149_oL!%5TdX1Wln|7pD%1`gV61aS0XuSuR#t&fJkR`x}ja>B&?9}#;Q%(%!;LF=RQ$8s=l6j_Uov7 zuuMh3?8+05C5Qqw6pRE_nbKz!u4d$?E3T$K2Sk2_FRL=wmo4=sB|e@XXQ2dh4X7o7 z^|3f}w%MPTpMSNpGkKB<8(-ppDcVUW(`-Hx*B=@v{mBg0i<!ex#Y1!rN|PvRMo=-o0f5GWl( zTK>MvbuqxO3_4r?UU*eTJLj4Z%6SSK8Gsh3Y_aVieY#TB28LqG_wGQH^N(taTU3FD#55At1xc9T9eX*(6cO4Pn3h-vOgXTezLtjvE znxs99l7mD{jw<*uv7-z)JTDO~fatvK1^YbIO^3`Jv)K!kl}~>x>RTW@Ph z0gb*r#>+ow)rG+8jWpSE|0xlau>V&ggpnB#Ss}H;xuCO?wC)4jr}u-LvtH7oI8Fzf zLuhjI>6CI#{Gz=trs&{UVr?~izd84$W--%g$T7o6h~fp=rMpik6rs7}zc zn|+(@qj$U;??`X-zI^9PGspS_L%Fj9Bi3RpNAmiMK3z)I*Rd@~t7=y-K5TkZs$KD9 z5(pJSR4i@q=n73KAYN9YMo7WrU0*|mzATdWvw~WpF^RHsHhT!`;j&_4!cx^CG?zOv zSyT0ck=o4s5hugn_1zk}8uue>!xp5$$i^>N+CH(pZ(n9kgeUzkIt*Y#mL>q##>P$e zw#l2)TO#maSy7crzb-`606V+8dA$de5vp|v3)mK2DyL0MaR4}U@=BHQycf@ME#zNZ zsck0L4$QK)cD?i;`y9bkYyH9dH{O;_6=vHO)VVY4XrDB?OQcs|Tt~|Nd?>z*tx*cAUz?dn(U0+yUOjPEY`$5UmaAW;S)5|5|%8#K(-YBA*548XCEYAOH{Yqm?&)~me z@>pul=iYvKc+dDdM#k81+K$U%5g3pk&o7HINHK9zuotb=tx)rAKsu6Fyy#cdo3LKZ zeGXyu618or2yt?Ijzp{6sbl`7pjkvpgSKZvTTeS~BN&)J7PfeNp#6V_?+RI5-0GDUit-H|*^A-|`i!`6UV(y?U zL`kM^rC`)_#-Exf)H0gvcdjk`{W>xV2<*<@;xAW!JDyUN@cJ*$!-l>8%0d~A>adm; z*QT%FkuvQAbB5x8*tt;8UVWK5%w!f=jLMOgSA9d@1XQy*B6F;zFpz~z^F>@YMllMF(8DmenK8t;-TJB@_d&DwVe4=*d$YtOKE;n?Ur76PKmQWoPLfe{I&kOgCtj+mG&YSK!i@ z(n(vlsRkHWw2|%lRcW|zAt^3+ywXS`^Y{b~5G(ljrsNm{DU4}!5(lRgSneoV18{}v z(-^7Em?z#8-|jd=EkLn!$zMKuuu7dkfMk&)?ncG?RFw<`>^)+j-k&w5I2-{ zL?@RQYj#W}3%tieQEti)zE#0|Fn6`0fA0R%&80{Vlv#^xLs3xA%L`S0I3R z)<#~AEdOw;XE^@b%$EL^Prt>NcF=r647rSa*r-I**Jg*h>e90cOns>nv9BkaN}7w6 z3MZdC%~B!}Q8x(-Fsc*u7AdqefwmfZ!OwT~OzT;;T%>p(=w2qM%j>BX>!#Y6{A(Kl zrs+ss>Te)p#W)7Z1c*{%WHJVjYSV@Vg5Hsjd_qcRKT(H`ZjfRueMWp8vk)7Qw-oO4 zFHO>x6hU7Ci8~D6)IPv|cs!Y^4Hd3yRkv{b@@qp@D(P%Bi<}pti83fb9J@?Pu@7}hW8NN*VL|&JGvqogXh63WkTa|gYse>u6e(*`}Fp+ z_Ae^`E>Z0-%xmuk0rz0)f>=Y=37fr6H%=WYc`V9J4;UU76nrE5ULPvP8X=<|jeCWD5Iq{ z=Q(x5FCfmI(_qV@Da~d$!E9*5^o3Ln{h_V;WKACn|A@ESIZ@LK{CNU}uU}xnAd9Vy ze1y}Zdob)a+R>fqb4llKwjWc{$giK$uSLVy9`Bz=@)X4)$3Y~_vqQE6wzTo=A)LZQq>%Y|f@NLd zWrEk{KvC}{i-ks98;NCE^uWV8&$sOSyKTOS|KGwOBXTsEerr>x(x)s70vJtA{_B|NInjk~NYFV9wT!;;dY z)yw9t-`_|eN4$~E;ghoenW$Iu`M&(HJQv4Ei&(uswnn5yTgSPcOj~bTVS$lEOdbX+ zU^Yk$Ru>&);QneMJ?`|QShjAApb(7%0+I|`S6PC!ZD=B+DNy|Z)2K(@3;X&&n;rfL+jH5C z(L+{arG`h@6Cc`wfP@5vfR75_VMy-#nalLw>024*6lmp#NmLI_YlM!Z5(wsJF-ozr zSBwn*5W2;<=Gs_Ia=ulKL5vG_gRR`%GMiw`@frxE7V865kQb5y6atdnUu{0Bmdi%! z*bhWPYBbDvF)TWUytx=MruI#FWp=DuG!EVAUwDGsJLl3+|BphOQzsXKakTBb1NXKKJ&Ag5#;^c=L;q=aPysOlv9c;Lqr z9fmo(b1^JI!BZ|`U>gXY+O2?6T|*H0Y0~unlf`vD{I@cc+G%U|c=#4JRyDttwx6v< z+JYj)ON*?0CA;7C9UD2QK}6EwZpgUVT?4?yNJ~$)%BjK6HB!jaH1qbeQD+qqIzr^{ z%b3rZ7T`ud(hm8gBwBv-Rb}cU$?^FnoO&_*k^UhG6-R3gKPqvfXx#$U+2QMt?n;{2 zyy0pMn%L>aQ}GbOj=dkSIJKoX)%VOFYq*|2(5dak`2L=z$rcp7ID*HRCZO=&C2p`o z>AC0hvh%V~yY0AY>&efRDF`b>*m(6SNHd!5o)wvzX#QBL^6Y!do+nXpDUw;K)1aX@OiFh8 z6pv*Dd_mcIbq)xlktCoMztz5y@RnIddcm6WZf$O_vFWM|MRg#gAKFV>jD{9v*3+!ZW4nmZVWpoJr$nL&Y2!7IU=&OceC@hT2OPr$1v zweh;piGNz)|8DX6b%(E3VooFJqb~}T-e9IozCEs`zrNH@@0eb*{DtA?pmNJI5LLtp zw8r{@Db2VG#k5QDHD07u2{Z0Gl$(SXH|-A^nz=*}Gg_3YyKQqQI$#9M@M$m$Hyy2S zB^7MVAFr#vKI7G*2y4G^*uYX`2C`KR#tP}+rl+D$5ntxnObngP2FB?T+CG05E;|F~ zfnK^sDiAPGeyEBe!VKJK>=veu4`S_LoT39@GIoRdoYj{)%UKaYUt>S(Ly z)Czk42%);y+QoKbU4{#O3vPmULSnjO8YB*43XjxJI}I>o+0iMi54P6jm$ghwat`8V zTR)VG0bLX(_h@LGxLo!hXyqy`YE3!}=h&hAZV#qD5#Y2-r{3oTNE(J??P=+WY#WPs zpiVnGp1LjwM^xKCd$Pjhnm*+-Da%bUzrL`2rQ_nP2@mg<`c*<$_|?jFYNFWKoX@vq zQ|k9WI)SjnLLG8nBJdQQ%2_%XL zPKqCQLt%uX^{fe&t=Qw*Y=uTgi-&wLb8^K&Y&EDo$99GMd)W%ubCK@VBzJ88~&_BfjO2e?<1n*fnF~cv~_??mNA&_T0S6SuVK5 zk&J{)Om$6PQUnCfA~eQ78SWor@8=)j?ZwY^P7DzZThiv(r11IR19~|+xU%zp@wR>+ zzEy?To8KG1a9_JQygl-sFK%k(#6I8#W1Srfs& z#nd;)0A5WPU8vg_`am73G(3reW6lm;vqjaxrkvD z0whBo1_|6~0sVig&f%8OqBizYT`sgY0ktJY46^~FLw>pruOQ@z zd@haXQb%0Kg2~5iUF}jZ%zewkjob%118VoY-H(8JL_qd-6>t`V2!)$#h} zp(czmWL%u4kKYAE#!fK6*|K)D*cB7hGFKLbw3**lXXoizCK#+3y$gLoh{ZpVZ_94*8g*u&(%Ggu!HJPZ*E?IU!Z zpbyQI5`2G$Pp)esZ+wf0w&{+T*p=l{#vrC;UgBKMrrrk2T0+>F-m>fjMvk!{sP+s4AM|R!2nLEEi{r(P_F$7W$*m?gm zkK^6!WNV%vma>>Qm*{ObxY8B6!Id{SiWT`bSbh4&V9hviZSNmGAr{Xx`5?DV1?ZoF za zKM|Fz4uVecft$Y{jW!1mZEv$|!HqMdto~aw1wIr3$Yf<~qPa(e?(c`}uM%F)gFlPA zb>wc83}1(~K^($`6Q}0GDs{e5NXuiS>(5oPtX{4oocg6E-PF8nA=MflC>(LD>bH6L z0=!z99ZU^G+R(dmHpV-ihd?1jc#RhtWlj--4<-&!ZEqVg$`8T5suLby>UgHPzIY41 z#zree@bwbe_i^V-%vZEVVo@(Aobe;F^PR7dRxIK2eH7q)a)-n+Dxw8mlyU! z!Kd(aF}=*?S?{N;_btAak$MZ%T-OoXx6ZrGcW8>V{fbk2VU7>kN}oWN?b%}!kd52# zyuYsJC)Z`*ecehZr>;K(!8?aT4D>u{F6SDbsnXx>v1ycI*`A*AbX|RAlBD(B`Ph*C zGa^3`}jr|>+pQ@$-J^Jz?m&5>F0n0hQe z{1m9P@W!}cW@=?(bx2rCG&IdgN-f<>4q`Jja+EoiAiT_SVqCP`gPk%Y*VO{rMH)2; zk*%in?;7T)s~PYMsPlOg@GkZ?P5A>;`}mA}5|WW&oCKw6F!>zGq|YfMU`O8DSrJ?A zYB#LY4K#v|32Q6tfpqR@oySh(Iwdc=GH~%9$?tn@)1RBczYPyq7QSjH-^jmCBePvu zU-o zARF6H9V|>E3Jr!m7+DQy>NqfrZtPt}OAJkns`Av@9yyq{36G1H5m;2loVwEwd>n5s z*~9`PlmoA(r!!y7djc0E(j0ZxrVBGF9|z`17{Bf;Kj``xi|ZTF%{V+qim$>SA;RSU z_@nCHFsrvB`+4V+w4?GvkSp5Q$6@$agrrW#ihzG-{#^gf{Kv;;Ggxev1Mwzu#z@BT z)|(%aVt$co8Y%vrlay5>X1T$obmpk zKb>7nitlkMQOgD+Y}-$G^YMZp=@54=$f~x^)}j8KSApzwL+|_wbUTmtS~d>H#NI2- zY~7TNS?rAWot7VjzJYxmM%%4DX$h@wNI-#CkZMDJbhqV$-IsX2@e=qx9GwRwOU+~R zya$KlX{C~f)p$cKPVleZP__LjMn+%tN9<$h_(A9wce0@h`4#Jw#BEXGcGK;no>w@J zkY7+VwqX0oC0!tj75Ch4-xvn*_3uILN5oaB*ZSBphHb(%t~gxHSh;nnI9%bKx`MvFzd1bJie?K(( zHc%M5{*iBFN$A;iKh$~iXOBPEXuMC($@NW<;59=LS6BC|3`2tdzNhNPcS^9pad%S+ zHh{@KY{21C6x#EJ$;M@+sn9WSa*&&XU~r`+Qh)m$f5pxlKXMsSy(39= zZ~RM|=#kGN6N8LzSgUCpc5F#UeOcnOwl)*WV=3@0LQJ`8PP?0diea^ z=jThsFS;&nLdmg#G&G`yB-&Wa z0=X}q2wh#L%m3A(eun)|hibRst{UqZ`9<${*h=bb!o$zs7>%ZUT2YA+pbgAP(rS9v z+xm_r2TQ|%pwy!J;S0vJ2)Hq1SR853(xB!8-3|MpdC251E&?;UuBSI<-oN~Yrj`(8 z=;rgPvQQ<-nE0pg)7Kx(zS$gpEBR+wEFH94M*YKVP zGoSy{qEy!(nE7RCs6HKp%T6eP4OxKPY^mv6zjm;~o$Hpl|9%*O zeaj$hhxV-wLZcu!cxSYbORHIf6~W4?FUGR8G&H(UHrK1UJgk6Qvo7Xr#IjV64-41S zF|bfbv|r-T#J2Q%r-2XhzjN>xnL6#IvdakA(Lfu0E~@vw{xqOf{O11=c2#(jQ|fZ6 zGy69(bty5w{5CxEwi?l)Xc2W}tp)P_p`y}DPXMk7_cExcBo3qH)XT63_aUIk@oMuG z(=IRi)aA}&br}Tw4w7#VI+uBediP1M2T6s3SB%MG!FiiL_P=HwW`rBHBzHj>9Xs?x zL#3o7&}1HcZ?4scJ9+so>(*s?AaAS=Clpj%@h^n=Iq*zOoSYm}`8)G9HC(uFaC#^~9N4fNWjGaQD0rQ#9(ifkmmW)X&5#PDh!o<^EGgz%-NJadGS z&kb@id7xN-?_@{J>06moHa)f|3{H%52$*`&5xa2|$d{aN!|X!o1si0o_rOa4TOb6W zbnER8eyOZJ45tPEQaE!PNa5D%2pNmHM983+6Ye1ViNDfSR)@PMToYT}*@1({-m$+V zDMSj_G|{Z=DwxZaudsL|bTgXsZF-7a+F0E2zaF3X|LFu~yEaaVzj={AVquMp@XPfY z+6$h9_b0P${+_&U#wtDv*BOUmA<25=$gf}+GrzDAohJT3{0%bh17*v>&b0Pi(hlA= zKCKQBv$2#^p+zJMbTJ_rD`6gK1uK0uiIM3FZ`seKtdWcX;CwY0E0c_2a`ma6s)d3C zJUj|z9z)q1L|w!w*LQXj2~pS`?oWr?Z@?S*+`q`&YRR~7B}L@iFlVgVn5ZqjXXl(Y z#jy~_8J5yrhk)>Tqt$f42AEBM8XBk<&LqZj_{C0+C8Y#jrLLVSYTk6ADOQ)Squvph zSrYKpSXyK-rPYr*9;?(A7k35Do?70&pPYdk_E7dCSfk&JyzE=x8L|52P(Tt8^6D*r z=G=Miwy1lq5u$A@#&rDA7=L?$Ra!P$pXI*bBnu&weCcJ{Q%4MTmDJ_mHm`nHM=a${ z!6Oc?%&p&wPmZr)fTwS|I#utG_=*q$EX|sxB=IHZRMy7`66n6wwIQ~dDh?H&sHnz( zk-ur=#o# zstx(~>h_?K_dnmcTZ-hFR~CeKfH%({5)Fznx_x}b#MdYEs}s(IXZzmlsrXkw1wqfW zLkfnlGC%=@1vRT^fhPuC_TP6eRwc~e&U0h#k~|h)$)x)Y?vbE0&P9mM^k(8{%3>xM zve#E0H=);B#n0zp_oNVf>(Qlc`D5+YL63RWP%)it-TQo8#AEUGxM)hSA4Gq%PAgI3 z;uanM4H{%U+4^#CbE2PxggR3lDn5#Pon3+W#Cy4e8IM8-l^JZ-B+ygg<&?QoAggC7 zaOo-U%syl+S5xnR;?XcURb-~K=DFmi2WY{<8aShk1FAfdt?E?k5>CCKL*%cj(t~&X zHkM0x3ia!^O{AWX`O9|>fspKS6SXrqA^3^dQ05C5<8aVM=JdwD@f7wC!mZ#QnKn%1 z#ZCNwe$-0j&dQKX!Zl(oojyv#p~ZN+`EWv>u**yOV{_-W{-1>^{%5TnCnNijT6TB#2aQJIQ*hf?GU`1f-t-B{|H)@Y2g>F|d zJc8nB|GV{5H}e1PF9wh7AzAE7@us~mlv2X{1Qd1arh`(It0YAr_QUXJr}kmP#vCpC zS4T?l?_c6+A>kh=8#$z?k_)<@qJ#zJ36>L=6w*sSfK~^M!)@EfpL>;7yR1~Zju?53O=}vh?rTzOiFa;B}+QJJi z68i5da(?I7F$Uad7VmfO`2*h4K)>|8<4!&t`Hzi*sWI&WJtj&`C37gl$oL+ToP~}% zy;bD+QhQpbg64;!ld4*eBOW5=wbQGOgD#VRKgC18vX4X+Zy*<|T7O#26TVN#JK6~o zpS9d^UU*zSONoJ+vn8u^%|J;78~M34!!{YQN{kCZDzrvsvuV)u;)!46qm?Kr5FKA3 z(^|>p$Z(ctG`*&?BY1a!uN}q*#|B+0j$eF8q{Oj*~ zo~J8j_J`;9M#d7RPhOai$q$KR8cC{4pWAo5vQNM8c%ebKveW{2%f~?(C?@z)*?xU!^k`g=6|D zY?U7irqlcE1Xg^1a)D^lMPPb=i!gtsN7J8jOM7pt=I}?;ZHnv0l@+m_vGqyS#EEEg z#Bkf;o;3@p%;R>X_!cd;QO>43?!>?z6ct9%O=9QC#77|z-Efs|N&!{Q{e5QH2TNYP zW@Ra!11p-1IC{s66gXLfQR&5{t|phM@^d$v>?{rqyh~QPRSk;2P$@pBANt z-Hv{Qy}lKhdi-x}H|qa)TD>lx2Xr&qbm{kbQ+8cl<_#^qKc-7%_fiUk1UWG$RTQ@C(Ei##34;TGDS z+djDbX%pEZ`Eie4(I<@L@>OlTX9i6|f1;oADnH#RWIUv3D3_VoR8|p1Ix%hZAbp~; zOQ`WzSC|UBH2HO4ik+A@YE$l-1XxRmeFdw1vGZg=*Wem$SpaxvFY2;1tiMj(ajxT#|-uxTNG_%|dTNo#cRnTYkc!tgtZI zKFR|ogjgn~)I&q&;duHXdx88f5ilQK&@YQ_<}knbzoY&v0~VhjhDCI2D|l@_Lu4;X z=-PphB2i+a4qGP~Vvsj)ZF{^CpxQd(;4>ug$Om$Y&;~ zC3<|^=Mg=X$}s1H^9jX&S!fDk6b2N;q)%BinFIX_(!T!p;$i6f-}XU$JZ)F>su0_@ z3C$_S0@1l=t8vB~oK()Eo#W&@r;p2M#P%^XQ&8hV3>cJ+lu}+jYNgF=$Aw!KpGIV!Xs(^|Q@=9~K`3UUc-R#JSj`U2y22Ctz{@` z*0xx1xDlB&)}u_yu}wgNM{pARIgeVsCOU+=+djyCn58UbKx{Sr2XL9#l$bcO+i1vr z$_|r+WyLHX zuCfE&Bk0dkf;1O52Okyv(~mFTzO4ntIj{0m)dYsbPVj&8y&f;dD=jIl;Vv`7b_DrT63FANE@(_1xErifY2HtEsvX7EHv)*yQ$Wx~j_!*@> z^%Eyn8C`6K);hmxs!m6trFJF}AxAVRF;%MMQl)KLwen=~^D_llwG?w8ZEN^r%8vpCd0a*e&~ zid|V+0XeJh4=%~xcJT=?**P@|P`pY82YCF*3q6xVE+u$tK0{&?PDX2HbQNA7av5)s z-SA&eQ$9!TAqW5Ga$)|zgd0VsZqabd+}wf2TJXL=2(*B2aG2{Lhoc^8)DbNSXE>5= zh}A%T>$n;L5`kQ6*@XQP-0L>?^_Z?RND3xjZlCai4UqtWI-WAZly=c^D2E2pB*BtQ ztTu+^>QTFe2VQjk2vNdOplMlW2|xoF8a|etsE!q8dnWHZCaGFbsW%s!_JNyy-B(Sj z29%J237_NmGW2T>zT0F40<1XFSYI!Uz5N57ol*1pnQ%)dxb)+;1vGY4$ATL##Zkqz zNvl_zA2%pxa+|Rdc?L2Fi49Q3ZDc8vP|zVTYb_ulML2 zJ6ez%e<4nE?7wbYDqQ`Uo>_?bVjtE@U8SKoEsGAJrtOrV{p)L@|GgSr*i@CHc*vW9 z7rhK{na|+YCTX3ykW#DUJ_Hp#2-p_JJ!I%hKTOUm&z>655f=2&I0}4YkWIFYDz$O| zaSe^=-b>?v3Q`W~cKXv>Pl57ialzV~LU(GnxU-TwdrYiWK-hsXG>Fv*%4oT^nW3?^ zua-o{Eo*Eyh`oM;Kpv=c&XgpO(w^WFGx#w_ETuyxd?*m!vAyB*ZU5^a5 zoFBYZioo{n!VY^Z&Qf&LJf`UM7l^2Jgh3=3ezf0YY-VEaODtuFe$v~D4(jlt&>NZ~ z9sI>iR<_z7^WRWJ(EoKID8!lk6h7lVt#aLL2s)U?tAXS2vm$QW@aGWM$CF()2BY~E zN@ydNkuvtc{$*`D+B+w9F(wb@I^Eo>+z-eVGHjv=q`Fg-TBF;IrBwanEG?XFTTLSK zC;VT2n(N3N5(UNti}`aaNO6^Ea>&?5s$d(u!W7jeP2{8qAxyb;JBI6dVkhPv4mq`M zI(8hfsDcsI5+dN`8*c}J&P}y;+=Fg5K`0pk?#Fv7DmKs`q{yo9J13J|KH>)IxHs^p z(v9fx$tNia1_I2NIQCh~CFCHRajd|YD>r9@SC1nLVKFlnD7TC|d(nkB^;G?r&dg|~ z%a7O6g#m67I|xl=Wz6!>vdWabMa(g8_%`umS=o#3`DS91MVeb@mARqfl?A7{PHu=h zIV2upnC_A94u2_=ElZ17$LZbj?}lm*e*r*&^ut{Rq{H`t&rFxpHu%o(oPmqyldnQ6jO;LutX}DTmOEQL@+~d>!y(V}xe!W6jI@VQ(Ne|F zqMOX^30tnuyrlTu$u8tO`r?MV#}WdW=XC_W+MhjsEDOGT(qD&?7KsQ`_BJUMU`^g2 zNNB6F=H(7rt|ikW8s;X^|3YLXpryBIq`LMI7D2o0WmcqpvasOFed%YX`zb6-=$Xtgw1NSuqA+WVamwXnZR$)Kh zG^A1|jE0)7@JM%yX#9pHW+}Y1#*UN3D(a#=J0!Nf#Tc$6i2Jj=dT<*&g@nWU8`r9H zy4F!2D^5(d63$pHm+MA|i%O{wfzoa4t`PG;pGjw0krfQhd`15_204Y$gq2u=UHz6F zZk@cN!yh$!^4534dMV;>B)*7~)B_}~9W4CS z@6}ZT3pSm@Hh#BP>qKZQ?cQAYmI%QeJv3$&5(DLkQJcY`4z!U!7$-ed^-5+d^giuM zUROk%M_?+LN?(i?6%7(ic1f%mdqaO{BYZ8LXU8rTP`)AQo10Qp@w(>Gta^H!^i?=AGheps%vb`XpH4(7h2Q%#81zED_2NLUY# zGB!D0F7R+gHo2#P?s{UX&zqnSq12-CSnn)G;9FxK_wo9nPcbY+CL(2v&~4T>soNk_ zr){^)NL`m>FS2F91}u+OKydDDpgTCO>z$NhW?j!U)ybSHA)qhRxFx@cxpQt6gw$6ZbF2`u!H;AB=h2*id|+_r2&rMf8va&SQ`sGI~>4(Df2VPn>t zCtc|SF8AnMuXW@m+2-6c$ou8VFeSGjV%XE^FI~A=(4N3BWSVRWq=xvd>IoeHhb#5D#lj8!DL@b{8f9v(DFxaB9|JY*h<2?Umwx^h$PN0VdB3&krHrpdR3@qK;P;{sgcl&9eM~sC` zm3VFWyP@2c$JO)--|3jEb%>}!0_7db4HkO3Dq}{}F>%XZEBAi(O|SUt%~yC+wZ3cq zOed3Vi>;JuarK7A19JuhRQ1oIPmdqJ5c5epoHB*#-!7yQOJyG#F`s#D`aP03lh;(=LpW*y5BTVC{TsB&k2e zoJKLa{(=&KSq^oL#V8Dw_q(V*?9C4^U%&@(sjJ(454VPQk*K2BX*J|Mr6 zyE50ud@8T;gffg1Uaf0DTAAO%>*j&3xXbs*wZUh`@S-gBffVT?bJP9jALM+r{-1v! zNl^5+k3|lRI6}6jL6j~v!|Lnl11;O(}jxjz_ zlwQN**WR{jvO4c`%btCYMp$Ifs*=IS<-)Xq_BSa@@f?#1sYn@*LqDVvv?M{#`0i;u z;zhHnczx#)+R_g|CQn{D!IJnCw?d&zUyJK^lPWgF$#JBN-n0ao%6tf7a2*vBUj4l0 zo;n6@2aW3oRyrb7<#pRD*N)7SGGqu#9k_VY^l3(octE=RS8f209F&F~DLO+2oD3*1 ziPmtc@JFn~w!tMCa5V6Qo`n*MwlRvW&?}o$;5+q0($! z8ItKnG`0upOHjL6aN@V&CNC~1qasILW~5A~?p)v%F8PqM$a?*p(=UBkModKEv#Mqr z$A}z_!Uc;M%!vj^$N{+?4l4t2&=aH^b*Px-V1V08oQ6&-k38g9`*xiIx^DO#$ZmD) zt0bb^?=@0Oz|uF4`1F&_FckQ6Q-zv5>$J^TFnW|!pC&M};n`F8RrdLpU7mBaMgxrt z@sBw~dSOJqWhLmdmEArox{G@qvj>@4<0|YYwKw;;LQ04L!ggft(ULeJYk@!}bMZ3C zd65P>tGb-~S`vbTaxQoC@DR1c<3~QO&RF^ZZsm@YE>fa{JiJd6g50==v8QHW;h9Yc zkLz6h`Ea83X!GbJts4E6ht>sYA!x|MxqXi!MWH_y@nCvscP{@)ntubB7#IbxQx+aPr|ZJL}ts*-%>!`@$a}%;t-L+ z%jq%C$#DwbH(3+vvJ&&F#yEs5gNi_Xda3Dzwi##Qf7yplTP~H_?1M{l(ieUYrmL*y z<=Yi^l~NpKucrhK-z3aMstj4jZDjv2z43y3G$ln2Qj;ceiwrQm)Q?z;dD=<&AmTGi z((h~-sP144C;+j|?k(#p%<+zXNa334GFxmF@mVfc)|b>oKBa=35K;pQbmF0bJ_@zT z-Fj;houFLvFYf&e@u!j9*OuN?bEuB$_J^0oKmDK3M5gL$&5169^w+J%7!8PWs2*qF zAraO+K0rJ*l8d2~6jVmJwatrO)-sj#8B)G<83BEHa zyu59GJIq79-`2u&V+-S8m9#TPyRIV%wrk1fQGZ=C6(v?R?QJrU-+RkoWnPU1OY7Zp zFzsx)5%(Nxp*q(7S&|)w40`e2K>Ake4C7m$Bf}e)ae1ao9x+=z1M63WJ_>1NcYi60 zgyicKZABwY8a|I(6^@=*m6BeGlSX5v<3{iK2_^%X(XGmM(2xuSSP`CY8Tv!G3v}da z7Lwe;QtUL#u0W3#vKJgbbguhZTr?5Wc`KEqHgLD7`ZC-a8dc2yAH7sWqi1!AaZWR z@)3it>fcj47038L!jB>vI>|ym)p7NF^sjDOS9};U%hGBX=TDZ($!g6#R2|`iU&aH} z5L#B7kh_q-LI$A}gxIBEC~(U6i0Ur((0TaA>wgDhO_C1KMHo2m3*Z3 z7^+z9thUCS=6&}d?l{w~gTGhi^^dGoe4!o8@JDkyxAx97?r5beZWbgSa@2$RA*{qc zjf1O|dd2^})s~A7T}RlS9nFnm4{yg%XFvt^jspn`L7b-?g4e^_lI^|8AnzdvI>yn( zc7Vr<;%5sA`}^VL6&=U;m^+65s=&k;mVHac?^#J8*mKxh{YE~cu_^O{S}hb2vPf!8 zCI0GDFh=)YDe+#if=_YP=nZ+)a!lCxI$#ex^LGP~HNV7v=e*znD&H5stA3<_X)TP! zXuSfImr*{A7sj$NV8OsqDTzQBK*JV#?GZOPCz*CVL6bgC{(`Yzi(ARbb!tvXHPr7c zDBwYygI6wGm`smq-ltpef%E1JN@4`Q1MPcCHqE`ELrIekLy1j-s$~@}={l9ar(QPA z?XLzEv*<#Xv8S1l5H==#1j&T(G>4@$z!(sYftlY2?TQu1#6 z8)a+6MiaR-!zA|Jq#8p{o@G%y=g~LQ_Mt7B;|^8v`3Fnm2rKbTQX=^Hl&eBJA-`kR z2yGC8Q|nVokh%U!mY5J9i=e-UrTez~Yt{%^e$*;ppN2S>abVxd)TfZBhh6)bi&)i9 z?~5|>KN%cm`+rKGNZLe+4xYhEo=%AllUgVaObkYZtr1%uG3@A#1(qCg$}pj_cV#R5 zVuA5|=^i06mOu|eXgP8euC7AUMUSi&DYN!ZjUR#Ln&=oDq7wwa-7s3dAx#rSHZpK8 zB(hKV!#7=$v(%d%_tIAlL79s8-11kg^9D1F=}MVN5sKEq}Is)usALiUGGTvJ-7j9|2X{BR@YfBn~|p}v>AWEAO2h(K@NfjG>kQfxrG z<=YQI*R+W07lCG`#NuDKS(l=yp|!Fxy9H_i7=*DMFIUiVq#i#6n!1prg;28A#m6(i z($VeP2CP@;AM@B;159$>iSjjcr~XuI1{k|F{V8VRXG%d07WxnokJ&wUBk@j-Rdx8q z{b$JPJpLdS^@;R)ss49EdLV?Q7+qT8O2bqcve)pgsWmITCspbxGS`GY^Zv%wbQUh_ z|FjBFJirSd&VN^67%NX%Do#@f9X&Y9O@Ih=*%O>Am#7aVWVF4m{Qs?;$J1d9*|^V z-W2|`(xDeo_B~&Qt^q9;-nTF=Ve=7UA73H<@#VhMAT96Vp{Hof9fd2T!3}d?29`7B zOJ&QalmZjgxEN&~&d?<74xZ6=ANZNYwNRf^y$ML@L}4X1Rxs*^4}d1_Q0m1Ish?h_ zvCguhnxblTNOW0rB4oUN+7L)ST}I6|s$yC~{zQyufh2SxL${ zFL}Qgj%nQPnQ-w(5KTbM0WT2Y+!8~64LhB&4hDMKEf3N|Bw8>yJFAPv)Q<^>Ml7b} zQU|Ul=zC3I;75HJMEW|I>Km#@%1#&gE2L1Vgr+-e5bk)>{o}_D?okV785_UBl}tgw zg1^<0Si{*%myR@igiv|>Fr(@<3NDv#&XWOkB{M2CSkEYSuPk+b4NH!`KERhB!xgN^ zf8ZbT_D`OKtF8pGcV9|VXczjqH&Dc*X9vo8#Iw1@D2~Y%$+SX5lKQz++!O^Ojvbz zk2&ix`CJ5PK62pc@Z%R)d<*d26f(WXtzb3?J?8~8du{}_3il)A4YM_9r?3M=cr#O; z-gj1)cO4cl_~t(Y=q6?=Qst36pH}|1_q8#Ja?1VmNd@rj9>$F1^?IS=x%C!VWXa{L z4Fk%@y*_Zx3)7WDqbK|8f~kWwdkgOZMyL#-E9-Tmuct4@%i-@|%kj<5zULR(+aRKS`vb8c zM<}hLbE4_;mr_QNi#O%QHmEs-t$`g|RWXzLetP!i?Z!G{&6}cN@uKMOZ(243ui%ws zX(V((+3jr$Wq7R8SHyPhEP$hH{}Iw?i^11X|G~0Fs4?5J?2_1SoLZ&(mrWt;_bMG* zgoV1VN`A-SCa4 zS8MGbi@=oX8d3b*S~^gG(F9W8ITqCgZ%++%a}H-y4Q#=1)Lh~ARY5A@CDzH?GB(=AeW(vF9!%ol?tU*sR3cSrIb~CLaZ&^ zD`6M${o@;yF1H&A1vhdy0~r98({4$rm3@-$Fk1|WwYJ7t%DOQTWFKXP(usKsbM^3jPVV_X>BtH@%MDwFYcG_9PL zx!?P{)c?&q9wE4l=kAAyp*{CP1JU)D6-W8d#>*m~D`E)zt_OFB{;Kwb9*quIj_IT0 zQ8jfwYNldmT{*6cxZ+`5&Nap1IceO{j5|p4G2^WK-LeG(zWJ82Vs3&BU)bzZ4B~a+ zOU8SpsiF_-jd7}B%IafnbicxK3V`%z2&nx+CL3uH|)_bZwO`e2k_AFO?7L-PUk#zoDV8?`7DdB%;{%B?S=*@vl-UTH3=zyDVH zTS%HGZ6au6at$i`koDdo2cGP;ENtoR{++~?EI{CUp4SWi#-D>;t^Fm<>&<`Fkk1ar zf!QkX5TXnH6*b87vWf2Wf29iKI-_=Y{ah|Nsr=9*o1D!TD)7B0TZdNx;MhP8x1_&w z9u=e=NFRQ~qWq4#Wr25|@67 ze{3~uy$rZS685TcM5R+_syC!B=i7Ks*xQp^sV`hjn4|ZXIRUmv+2;(R=)1zVS&U~& zajI4e>ImyQ>=rBhGs66Oo6D5DB_ObUEBNUkWsLoC#$V`h)IFl>mRc?govZ~3qe9CPwQP#c8qr3&E_u{QyA9DG6az6yPIg+rL$JkizRA>8Bip!b4y zZ^{mF`C89q_SsM86K1}=)fbjXzHi$ehnsAjBuIiNwF zXB!sMv$`;vN^9>AYLg28KoA24L6$jn?q^G+&zrc(j-w>$^a(U$j+tP|t5IV{8@8d9 zeL-8i{^1yz4_KAon~#K06srI~iW4%63a~;s(#vFNA z1vX!J@IEci5J{$*QT^sQK$hj(g#Iy_*8SFV-r+c?vYc9dsfyRy{S>x*H+f&#Jbw0Z za2n;P?sSmpAl>s}4B}?fgPJ+(^Vr;?puFb}F;IbB+P?o_)L28oQa$H=lqsX+T20Nk zFa{2hX&nC)a6&HWMxDW!W*|npo(Tn%y3<4dtn^FYl(U`^X@P6svo8S&iydvY2}=D` zq2ipp2EaJZ6)Io|-9PT4H6K&SRl?YJ%M&2P_POWqgZtgq!`1rNB(Z~#j9UwEV5)E$ zYbSMi>Tx9TI-k98M2FV8vUYSsSC&j=cO-xssei+P+O8!~Ag9Rb!A6A`Mktl`vtK*_ z0TgsyL;gI*$v*v;3Cg?lwa<5YV9>9OH9ew9AS*>u>3VIN$OyY=F8-i(f;Wo8E`Fko z>sx3)zz>!Nx%Bw~vT6R!O@bMeQJ=7?0BfvQq*{|uLl7&DDO6$v?XhKPjEPF%-zD(Aq`%PLuqk6^Zv$4hIIPZRxL$YN7%ViX z8gD;tYI z2MTl5HD@Tm171v=bxcUJt7BeKY*h!$+=heG6ESlo}wXOPC< zl$MIeR~23}i{qEOh!KI8r-c%6d1pwXIRQg~#e;M3bQN3^(qtJ2ll!019HGdU;&AEz zuskmWyZ`H5^pxFgVke_3y&vTq{*QQ1U-x$|m;WJg3l!^I9)ZEub5{~ciVx0Er z;KyVW#6@daC?aSYck@Ttm}3t6Ol z&S$9bfR+e=5F^GPw73X7&)X1eS10y@a>(8HJjVl+0f4)$@=6AZWc1XPpfPfvR}&e{ zTwZxmK*OpoaM^`|jwTT%G5FAvyDA7cN5oO(YC}o7CxOQJuF|-m9S9nzr^Fxitg06o zik$BxKn4L~u2Z5bCyBXf&o~JhuH(`-_wjly$3J@qJLbXEm8_?mxhp7r^BH`5J)4{@ zDEx%I*{fgsYB6{7x6iynO~X*)`lxE*54uAV5+WkK$tWn&qN3s{$>y0g zyDdOeh(9V)qp!F4D23K5W>J6t;Xi?++uEXgG)hvcm(kPkHCNxU*YLrr8QhMr;zSp{Mo z*i+Y1^MuA*>GEqvJQbr#WW93ViJb7t5Y{xIfKELmLYXOsKxWld*(?O`fq}}W1x--V z>l5!YTJeByYUJ^{D?BrGt|d*~IBG{h=J=!|n1ZU;i3|f15a-W$7w@8N9=NUQdQ+~1 z0bs(?JoGS;$Xzg%IO^0}GQ^$NkIxm?{?t~F?52>V#H#7K#6t4ng7?Q6{M5)xn=M6Y zcJnR*#4~a3wDv+N;)>dq+&5Rt-HKGfIQ%CwFb|Dk;(xEBs{gx=G&0jj>_<8pm&8lx z=_qPH*X={?qvDmpQ$)n-hGk%)2LH(NuuiB>9oCSgNgQ`5{9dj{{cA)dhHj*Hmn8r- zq;ub68t3(smKjT8?uBOILOAJ3H%tv}Wq(v-WCIyt;pkUWFkG)AjuyEJlgobY$)`89 zL{rdn6&3JwLez!jPb#3s;wxRcXo!}5VMA2HYMs8WS?xXo(FBv5m`icR zn@Z0N-G*ivpI8Fnz}5)R*qm)ttI4eM^}3w@sq?=k=ZfB53{{fvM*$U!UlTw`Xz6;{ z0`(kMmdpSFK*Dmk+xfQTpQISvMsF9g|ARA#ucEMN8t^!pV_@Pbe1XwU3KPRaYd`RkC4&{56#dPD13ZG}di>PAW-B1S9cE9}_4=`?n@+$UuI@GI- zSWpqLjwe=SLnXFWI>3T2x5eEhgP^4rsAXo~k4>t1hwIf6oJ624XoDyQbikB|aK3wzp@nikTddHXu_(!`u!b&u%@Oz^?Cz^n*U`CKJ z0z~=l>h3pRG~jM9!bqP`tZ3ve<=vY)()3DGGV<%GDm1Gm{-9PDdK`T~N;;(d{73=} zS2u7x7&t5~I#h-hj(*!teL}QOZN63*)?D9BYJPJAPI3{iZ$itZ;P4UAyPB*CEQd;( z5CPkG?6WL0Wobq)Cjw2KNS;zK-ogN`3yuqliYUA4CsE-UQ?R^(0k*{_gJ-**`|jFVVNo7qD%ZukppM+Y65zXS3d`V%n*6BRl%E_Wv|evt9mS2Rhj) zA!|`iJ_Xf^qSZBzYWxf(DhaCE7bRsS@CU>X(3Orh+Z?StwYB^itrp5!7*&i@cG4&p z2?h0zG*B`6BadB=Vdh+>fC6&-Sf=sI)-r8`sUOAUndKiYax-Tn6W1ZOY5#`vkJrw$ z!KB3eYW;KkkhIw82qm$~@s_!Ri1jlq0-~H%X=4ILZ6*Lt`>{t?m8#lArORYHhu|2g zmCy`VmblV}GnW|72M?At(sL8mjb2zX8%>bu&^uG*=+5*k9&C5f;=>^417jEfirah@ z!$vYtSwhtD?=2Fw^L2ZCrlzB(Dn9-*60_p?(ag9U`D&IOm zM{-P;d;HT1Dg6dy_d766} zg)}o=2P+F#%lJ}>x%Qj1qcF?QY6=27>Hf6gdS)1AB-ahfi@tbF3=js>jwO=leTVe0 zX01@XDXrps+3bCJ)0c;5L8Fra>U6KG5w%6%fv)Gvxn1aFt5fEkNqjNVu?qY`u(bKZ zyuHQQ<$Lnl%%Sv}13WMvEhDy&cIR^)*G~KZe@R!m!6) z?L$~tR9Mke!ruJiTuY=#DspSKIuJ)E$;h{z?Ge(}N_O!5whUVA97eDWArlL7TT$th zcsrhW#{{vC{=|tC8K6c($7FW}_`ll$I-2BTH*I|nX?}GlE(fXkp1=RMvduRPyFABe zk5u`)9_pGTt-@~sg>--_m#0&$3ydA;gCw4!yldrCg2yWS{3d_af^zNuC=O9y83gEx zk}>0lU17Dh;lJ5YC5^XE1b`G#C4FY#Ie*nOhLf7=Cuw0}VZ8?f*bmTI%4UWG^mW?@ z*A5O2{P0BZW53FjhkA;3<_VSazss43U096bQs`RQ`r$GI;~f6YylQ5$GKlWH?+V#! z@P-Vxq?%qoEbiyKEC8yvzs$sxK2M;7jY@gtmVKVjzQJc2{t!a%@EfB?Z+hdpp!gRW zmad2`Y;{)&(OL;Hn)nK}G#U#ajk<_q+!VZ{7ePHX;(q06#t6jX035YZ-w2q+(9gRI zkX09!A2BD$G^!mqbM`dd+}5uKqdx3-eLI62Aw6d?phv_NgKP}h%|HtNC%;9L0gffU ztX456#wl|rN(4o|iG+#7H)|}4XxzkTTy_ysMf4@yb4m{8i)(PVB$Lgq|GD;43+Q~8 zugv;!T?I0+VUqJ9leV|snVw=4JJ7rZ2-GE?Z$(4@73nf8nqgj=c>835Vigy#?AhP> z-&=|6|KCdRREqX~MR=Mxej=^X<0t{(N_s3;(WWY~Rp*S0c5w}(`KqJ~wm?fpvAY;Z z(+crV;zc&|N5})yI4P>MiXCHV6bV=P)2$S&28>*KN|0*Qq|sX*On{JZn7GvH)(Ykl ziIa;9J0y1gmqbNxH(MuNz~`zO16X!mhwX+0$?}l5GfNHY1QG@ zmN7Gu_foS5YFKF#ONkl!AfDMbX~}303bra$qwB@EL(hM(BOn&G*z-eXOCH5qANg-) z{HU#jfOKszY0^#5)ZfT!|-#7>va;+<|fKwtb3b#AYzi;l@!fH`64Z}Tl*ZCA`LcG)U`wI_DG1&u4kuHS;G*MG(J zL(&3`KRf42qmF~XXU^KF_d2~AAp|n?Kz@ijZcX?Q)YFuA(*N^5dHerog7Sj2Mp+YZ ze?|Ev00P{4V}e;kf+cf^ws;x@E^8nd_RfW&6)CL17e(Clq>)mNCOX5YE>O?2xI9T$ zlSRvi7;H$EC?o;=kOs!w!SQ$p@+NFa$6Xqy6I86PE`LhC(;J9hEFmXTPb%|!M+2w;5L*6P z8&{7j7Ww~}ddr|Xx~^-NAi>>(1~w9$;O-VAxU+Ey?k<7gF2UX1-6goYJHg!@zRr7| zyXtgpegPY)?zPq&bBt?7)JQ6P*DK2yteK0@_QAl&KvW&;HrIdl@!=fzL}Z@0ot?H| zdj6|W!h&fw)!V~Nr@+NF9mTqWJaxm5(Bo$GlJeKu7b|3xHk6OL| z^>4?WNLmPJ#e2sz#;Ezx{HwS`$jj5j)|BmXbA#-eg+Q+y$NG-n!np)Ha++~Wo9WvC ztir~-+?9y*KHsZsW9_MIBa~j@we~|}=R%bPlq5zs!5ya8Ci`lsb0x;b$6aERwL6^2 zQ%m0$m(0E)9Jmc{Ho)NsRnEhqCA=wr91@YSufW3sXlJ>%WK;MiBaL@ejXS17i}E~Q}>6kUR; z=wyAkAzq-mr_EoVEmDPz)xEoD0q?$MOT!}}I0aY24J1-$2~*>mxlr;8IXW-70Z#$o z^s=wWHSAYbW(Y&wZebXxVd2eeTWmW~HwpA7CMCaM*#v$hz`8Xg%4;s`>o610AKOff zwAndq4olt0Lgse|Z*w?XirfRVHhFv)H@q?>QjJacbvP{_j0x_5yi?5oOfvrsikLx% zrCL5Fwv2z1Oe@xoEr#hX6d;7v>ll&D2u4RcbA}rHeXWe^TrV+3s?R4_l6Fqx%vway z1JfhQR8vAV1+|9|(Fd&(ix0F$-5G`yD<~8|d9eP7{>G)PX7meMOIn+%Bi+ zB%YEFJ`S~e`*{rvzA%U?89x;zql z&4*sDS(H8wcq|``t*C0-t*% z)ceFadh`89jPob>Sy$IxG`=bE1-$~n^ZyG^cuakCpMQ-5r=A+gWslyxKQYZK{~1#9 z-hy6vyW)t!%0F$Ij&N;`as>n}?*|JkV(*Ga9;pR5aAVXYks4;p?XVLx4>OCBhvDi) z>iPcC#vA6 zCIZw3aSr=Z@GTpuVyn(QdZeq<%(>sbCIV}RaWdx8lG9o$G2lOI6lTQ|%0xf_Tw>{(K=}q|GP=JOn3#Dmkn02{V7zl~MuwgxV|J*RYMsaJ^ zt+>}fd5QTmwxnr#)=P<(eT&lnpC_`CT%YCjD;=RFrTTKl%8BVLcKo_L(nz&by!|ml zW(bb^Kj0G%l0);$%ZPe*}?Uey^K^y9RPv$Vt(3rZyMDvG*nrP%-(~D9C zov##S+9`;c?^@1n_iF4XNd)16$=G-nTv*5~aW>&D{K;FM_JFtqeQGbUTTTqBOC+ z38LYmoIkT^79*uQ6b-pk3k{Z#26EF3fZbTNP<(v7OHx`tAk7SQv*s-@R7ebV^QD{dIBx&Vn32!U_x){U0?lV9 z-D*OF-Koa~9Hvzs1E@+dk3ILmntmJTPBry{Q?JgoTgmQJo}|h<)Uj0UIM{^Ye6zIMRsSr7Z$F z7YQ~;5W^RM9>R`4v>`daXQRwZtxtxNph@& z3Y7CWD=D+6qyqv#ieWjLhHj+mR1tm-wJS4OtL0@ry4W%&3Mh*aOGHftVQxOxlFjWf zH*UWflgF*~CiDWRNb3Xm+7F}|i<4Gq!z zN#D-wDE3*aBAReX?s64=7}M}(bf8u_E2#YT(8VoB7lFCtRl*Aqx#SWznw+h8KI(Tbjx{a7%dVgqy zKX1mU^>H%FD?XAbYLcA)W8WKsG0q*?D2H|!i^Y{NQvkQ@vGPjY%@i;raj6}Y zL2wRYstfRK1rN+}2uPoGlVEt=(hv6cZ%?_4p0$R&{FzV?5RiS`{E>6N-gM>!q>Elc zEf(5j2qc*v&Nm`l>{EclO#tAj0h|B~$&B746PjNnOMmf2F!air?c2E=It9Aavtt__7 zL9_r&dDnI7uWLsSd>7gKX(2Gc=m-}F8dsx#wK2Y{-UA-oi0bt`Su!}Y*G3rDL`=FO zB$Ew|1Wk66{MoN0a9>D%YEVmMuasgOM=>?B8lA%TT!H~08lJn$h2_E6bRm?KZj7i% znMmXX`4eZIacfhXB+=|An{Qoj{|kMrE`JJz$Bz4DNd z7}(Dgs5rh-I)8=H_9ZCs^n9cEPxP|dYC;Jr9PgkrY^>2;c1|yFog)eTEOmu|3m|?W ziCDstQo21675I1EBd&yz40NdjX=q0iYmT{Xuzb_OVZD%B3B5!0Ma#D)s}}#<$vv}{ zh$1t<`Klh-;14%2Uo1|;RN>Dr?DXIIYaoL_TkRmn<|=CvLp%MLnR=^&jz|2f0kApP z1UC_9Zr1j9cBU%~7c z?O%LY)t^!uKf!c4_gy}j7gbPiM9xoZAqrQ=h?2@An?Zw4soD}usM|bP^yRBab)c=8 z8BOG|0-@(miSI;|E>CcAy3Zh<^=n#c6TQAuzkgtx-#-BeuDsDr@!+*%t5?apx?w#n zJ7CS)US5&Z_E-ts7yx`fkNcg!*b*s$MoBQxsUsSbh&8U;;y>Ciyrfwp!S#Jz!GGN7 z6uk@)$rHFH0sx*|W*E(d=u#ypw;1jB;vlQ*$}Bko^xV0)od}=7uTS$IZcas->baY3 z_yXd-FkLpoO37PE+iIaA`VJH~vLg=vPD0-j|$c_aE_#dH6lA;T8CBLc+kZF~E)fs2j z`cj4#2^|0X+p;EzS+J{zFzm=7{BANXg+Bp#OfC^b)d-+%PXC)U%lz*#_Bi%*+7J~` z0(=U7`%CszJ30EXJ**(7hGRLZxJaAMI9dI{hJ3mn0q_?0KxxT#HtzkU>(kql+}%*ThkXDkwZ;_Uq}pMb%yGwmDyw zB>gSe{;8^qA7xxLj6BQH#eWiJPpqeZkPy*008VQiYr+*hX6ez_W;j>`O~@lRc)a$l;Sjjb)phO5!fN$PeY z!X9ak9(DG7pEqa;nmEo^e%$JHulmg+@W^`gJPhhNsIF&=3~j`TT3h8@ON{P9)mOrM_R1fo$U zolo!;?~faTs%&%v1(tJ@*mhyOpVzRCrpw_x8PUFoBRa7ogeze0wk2W(tT(O=jBa?w z0J^EfW(ptPidyS;4j@Ii8c-oKaddWh&x@*NA7hjZn1RV1ud$V*q5w2SBq8exaV3$& zk3EM7>Un@`#-ZaE(zq`265;aoQTHw7DL~`f1Q8}Vn)^0%Pe~)FYQN(V1Z1}JIr_Ug zy(Fa1Nk*jRdKotFle71F+VYAIa-o11Q3Ups4B+?x;C)pED!tX?%gO5J|Nj*2abZ~EkEpET7GuRTQpNdiPWnYJ9 zvi+KtF*+yf4E7mvF=&}&kstC3t?5)^%Q~0`b)HksqWG4$|5FSs_q4W=RDrU8&94@k)R zOeTR-*zuPyZsR^jj74ML$&Wv3tv@;VyPVl*+l-7iyp7LiEYegL5j^z>nY0|R&_!^N zJ>eKK?D#S*eT&hyI($%|NOooNt1w@z5b01fUs^LMF>qn2+yy(Bs~{9cLR9VWb;{@& zc}N=~50L+b;Vi-#O3=b3sFw^cKlc*#veSvz%6<#jcrPvh^oM48~RtGWBlO# zrLSQC;J^|B{4b#dcLs5dXx9=hFEyX&NYr@Z_0Xp|Xe*>X0391~7bz zxz#8?E}8VMuV4u5_R;oy@SygYzemMFWFYnOk9yYxoBmgWLgzNKH>RTv0tMkH;1+}L{9?twLFD`to_8%5* z+xoc-h=L-DkDwi)M5dyR@p(~4?0~;>`1S~4A%&(&>1);}Ao(b(S`Ce0XOR2dhjlG@ z5Caeu#CE&Bq**?nI|K}%M!#Gvd=hA4IGo@Mw>-LepVo?j5|=h?atiw!)ZwRP4M(?R z!zXp-F~R)Q+8NG2y>OS7V7Rl1H9Yz@RangeQSjxl30vn4V1v0&YhQeNr^a zf@ElAB8}K09u%=w@fuAst;#amo*UR6;XP>N{S^PE;E}531dS( z35;G=%n^qq2JEDAoWVQ}?=z3^tVxFU^6V!0DN822Q}xBzpE^@u_XxCR_kfvZx3BfX zDPDf*z}AjItgm5XI5TKas3*$8sU}%|j74~~ZKoZzrKg-ESTus51`1>{igzrRF$b^i zaA}NJ3(QYQbu$bL@DlC3tyl|RPH(1Ra#T4%GC>Ft%>GU%9msxj%!N|u)EI5z=YJo4 z{3Y;8s@mS4prf`4x4L?;bIl0|gQjxe7H~s9ODnESWhH*alY(=JGNyq6 z_EXM^KazD(!sVhulj9CLbN=DAX@K=E#>z8$&M3ZH(l5oziD)CaGGy%%Nt(~oqMA2w zR@n)o8!o{xj%N3AUV~i;l>B>BrxTuKv~H7nRi;_caYJSFeKQqebdJa!^JD81=3vdJ zDEEM8_U%BcdDv;ca{RapLL$`!6fv;h2NEEjgTq4CbAGvS*|Eq7+R(Kn9J5``kr_*; zwUU`br}jMAuO1ml@KqhB+5m< zd6H|^rt@<`OxOX++A*!S8ka2sgyB7oFo&+(?JUgbNJB32O&O2e=}lh&XOR^?gj7!p zr}P;?)Xe)^V;x(ebn!yz=*t^bak_bL-x5nPc6=@XDb42)KPaHB!UfxWqpLGO0^lqF z;S>P9jlOLa9{RkeDj2MVseCGlW)Ln^FSyvHDoStpNyv)-5bx4JMBkEDHUB6cRAe$~ z5eNuufn^wTvH(Xk+iXEnWyI(RoAMhMrP+IX3+YAs;*~a_)fK>4O=Gy7RW_q&317-S zpJ*C)D5?h|L;xFjbhM<3bU5w|QJ-XJC?{AHdo_9OEHDn(@8@j^2OPK(zdQVkaY{oT zBzt1u!>eu9wy{i;E0glZB=;$^mK?XC(#H0_EkX#X>{xcx%XKFwW~*))Af_LuRs-h& z84j+P^xZCD{{wl_=>(-_pdIl>-c7CLXBW9|l3ez2seqr+^5i4Tq&38G-&vqSC8TB5 z_pY7+q{tLw%rH|wt1;V9s%hdHREy){IMhuYur2Ma8iqZTn#-TW##|}4L zRDoP_5ROT0(6J6ep}O~UP*-lOx|oMu39*{(H5;#njs^Hsn|4-*44?0mU=#kUX|pqn zIcphgaLQ-Vc#LpR$E%}rIZg0(CM`3V|8$-OiQ>+@|ZA=|2XMLnnTzZcr!hDIMfxh)}Lx4WdZ|Ixw$kcU1WN1@$X5@S4+1Uk7x$F$N1K8XdMPp z6bTQtK0Ml38F>z7Wn>_y4}u5MUOGW7R!Y_8vkU5N%DCHdVp)ie?4L>kb#Tdhf7JL< zNX}wz(G3IK`;(acFS@)zja5kuFh~ZKow@DJ)CiXx>r#h@xp*FpKyD4dTZ`QO%2rWC(+hSWxNKaHzyK3@6x$H>w%Jq7LS_S8-`B@|f*y^* zyz^I^ZhF-!6Gi3kI$6$7WIzBqeN=&`d6t6$Hql>k;(Aiz8Ggf^A~~$~ccy^c@Fd>D zoQo50r5KXbaZ%XhHSf`WK@lOJ#BHzJaL{;{Ft7Q92l!WqQ&p>5`89W_*~fO^cxR$V z^QmUm_Ee29OuPMCjV8!uZjcf4%KBu5Y}AX5ku#-w0uCM%?i!Lu2x z&@hh6nuIy}&Y-nb1|!?qE?LONVKamwXAL0~USAUe2Sc{K07X?-(1BwJY$Kow{B{q{tW#-_=du4^x+0jDqLI%K9T zKUWSdv|vxoZA}R53KJEdi8H*=rPh|`ZU8N!`8pfb2cuNgc;M~0d53C!_n)8oc=La* zYI-}fqm!0I`hKHNCH;C;L5^G-_L;LIpACd^XD$@)*9n`kk_q0$}Dp}4cE-O}7t2atsv zuD7*otFwkgaqaR|JE{d^n)Xz)(5IFwNZZl%$tM@(t1LfD#$#{$GPRV{(|;O1ZnDH; z5p*5!zM?{rPfzUy91NJRsgWFWCZGdxJWUUhO6*)a!l9PxZ-mOmyT<2x4!nuN_-NQv$Ysn1|ZKY)pokRH*v|a*4OLvMhh(3q$6e`?dnR`e>*Or10-}o zZw(&7?N6#8***tCK)?PBq~O$*q()0!l=z%G(D&h!)XvTxydm@W?~sQlh$NY}uA&4e9KOfD(P0>sno=)34&SE{rNr`}Cf zq*SD_$~0FPI%>ME?u7pmh>PVX|kAPv! zI0OMOWlAE3Mx+;G`HLHY>5KvP3YSnOHUN8Dn*xtBc&q+4a+Y`wKBP?6Os;(d1x?Rb zMc{KRJE+<816k-2kRhU@Ax*3(;0eVgFnftOAq-+UU7L_b$A@o`%;}RGttzP%;1`_w zKOOtzBV-nJe(&{XU|;vs|F)0X zFHS4li=&USm1?#01y@oaP#}5x?{b=ES?9>((1#{DGg0S?eMc?gUtDNXn{MEdiY~dG z2lgD57)OPh*cgC?altE@P;-1YYXt2i%1{U*EtqpAGC@QZ`XN$@o2@z$EsC@!cHfZ)I4 zzC*|`Vd>rHWP2Pjpu;W;VPFzn(xu*158iJ$E_2UN*7%GAr%(Ni0Q$bTL!HR35H6w^d+iZVt=cq^Yv;CP#`;BENc9U z^j58Nzf0qeLlBE^plN}hQI0qc&3+vZ_%wv&(ICC=XXd*bq;VkIyP}nvyIgZ zi2*`;&1t1Krj&}j6Xy40Pe2t9`SrK+8c7mk#pkpz znh_oL!*5$O;|+Fz^QDZE0RZ12neK6QyX1D^wCg>j2$g>q*d8X7H09HLGpZ-3A!60! z={Gl2`b*-Su)Py>VIHxNkyi{|u@dICgaU--w#Nx%;F(NuTz$~+9P{(WxI4m*=*D}`IM`30K(QfoLY*@ITVw%ZUYYUR5zvTMj0m4j; zl^uKHUn9hr6oMEW!dhKBOQ6|fUni@!p$U+WT64V?D}Eijk1figTY`q2fF_f@4pke? zkTx-iXuL5XsA%z{%En)xMBLf6$eM1O)Eyxu`~)T}3`znyIGgF>FPE>Q$h>H{bZC%+ zF(#}BEz~Q5XHdsz>J#2#eYagt4=)Z|N}2E6@28!wIEIBNra^P zvr2$E7}NhhHIRMx;pCx!PkrR_B88##O&$sKL-xbCveVX7>}2q0s*M6^iWXYQ|2fs- zivKP|@J8TuSMYpT=rNl)+}~z{VHcS?fEQD{#l8zL=n<_EBNMk(>TcA*$Tqv~5F{U- zk-x3rCU^RcRICq4q_S%NKPs2%l^KAQv*S zu)fDPYyI&Iru5Y#&grrM?hP+=KA25~Ej$2tT1e#vu5GnVyVK2-YLDp=E6MuA#j+L` zPuqSA=IT~vNZH@T`M_shFx}gjUT|#Gn!K1&0jxS8{k8VO<+{cXxp0zwaS&$2|IT!$ z9SDG}YUnn(5O@K|?1fehO9OV8d<+U;Lf z5+T;Wn8iN{@|FPv^;&=!4s`vwIxI87+Wi2Pk*Jl}ke(ZJWy_JjS)ar#3f<^?T@)}3 znml!^h_Ta2hT6I2xnN189#`PTSIfXSft6a%Wjt%<1ZmwifRH!$M~5!C6W`3uaP$^e{@#f6DaiXYFspxPT( zS5Ed@e`~sDOg{of$_}@gaUPWfE{;UN&_bA@u9+n1FVk>K31D~uG<34|@jaKy$(dUW z8o1Ap&l6cfv=Wg<6XZNYiDR zkdAy!uyS~bsWimBK4^yu=e-z59?+KSLOV9d7;9{tq#OFWwU!vibHy7F7o-N~e=Jt) zEG)>9GX4X-4#S}hoo&FJv&JIgy31tWQdTv^FNcPfI(9Xf3LKp1$cH-M035c0(euvK zXRSN}l&W>Gq*iwrUAR>BTxnxV*u*@49u57UTPD!^m2XYXMhB!p>AoQgI22P>e|?t+ z5TO^e6%_X8$b*5A>B9=He_=`_CeT|hzZ!A3W&#d>mUoW#pK6W&rmz7+7PUexkk(!C z0jrJBo7Q&*nI=142+{LSd@envf5GR;RIr3y(RF|qJUkS#&NLG!La4dW4vArPWB7&+ zbHm-gc_5?z3!|mA0+w(iSm;Kj@gGn|B9>EspR~Eo%*SCvRnGA+Rx=M&HL-NZ>mEV+ zMdu-S;A%$~E;-zA1jdVZ#C#k-sgmWzI~F$ip*X zV9}yM0)7DcY&-x%jT@HC<^i*^`*#Fw1%Zh$xWcspXU#7ZWXH)jR(ov~YSpET&9K;5 zqvIvBD*B-c*FXd}-Ivl#&6lO!xl@n8bvH`nf=?1sVB+E7rRciP=Yb|;zxul7__1%} ziS%;)j6381Z-_zW%FMvo{$$bgZTKK`7*K_@^Ql?6ZMfsQY?{{62ryO)Mu@ ziPO)LPm?@7jdIdq8%@v0Y$Ro14%N++XAxf5!V?H;ujbsi`1l6&r#p||F>VQPq zSr_Ggc8vN)Xao{4FT9vLB?q8#Qw_(4gQR59m#%qvC;r@OYft=fCbC=*Qc}i}0^fVi zpsa;Pm@|!@-M>m4CA*EP`)`|N{Im1#;?DD%hKRExW1Kfd_41r)T|PgF8v3g11oOmG z{5VBwK`zQ@>jJ`?#Jo{mx6gPlb1t9hd394iOJR5kJaYpoRou&DqMfwLB$h#CM|>BX zhwU*AxCVj()~V*3CgU_UZO@N9<0F; zvF`?uWn!N9;s9pf5*Fp0FZ9&24W<1Aa_XIkCM0eji(ktT&LKKATBs{BeQdd!e@jmS z&+3A3ypgyFGw`T{=E>U~$;3P4S;VuETxSdZb_0e;In0sS@d>I{P;5jo(UDLD8PomnSo87B0}Dv2AYZQ2|Q!fQC%b<5lqDH zNBA-h$kUw>w@)%G}{c|NgIbk-g zy`$(7-dz4b|DTAu6b+@*1iO%PwkWe3cN1hVSR*Vrr`FWpLSYi9d30?Nuv^h%b@`#B zL2RtVWlKUMV$%r`;v)k((X%i!s~CmKa6LA5Yg!dCDV6$U1Z)pIqJm0k|4olU7TFN6 z#{h$1N*b9gohi}gryY(%e?eH64+l*61Ycy(GQ)~b?zB^9!vTTGL1NDWw{~E)XL=3_ z(RF!lL1_rquVXEI7w~w;r<8KeFzs=1jf?5z%z{FOlb8yY{*Hh4 zO*=O}Au~_skeq@(g1THX20{|gFYALK9>zLa5`OsM;g9pu5w-lr82vj5Rbw?LQ9rE07As61aqb`nB z#KDhvm$@#VztCjwlMNyCFJg^%uP9)CX;bvQTEYZHbt2)d=QpCqyn-ouTV#R`#~ODQ z^?xpy%adezmE~#?>5IgvD2oZjV=HTj#~A0a;qCx=8BN@QJc4cOrakM~_`97~CQ>Ak z7gACYRgOBzKx$KaN?ysx40xx7k)e*wjm2d-9Mm-swFPf^kx!qE#i?CDy!@5J}G_^J9BOh0a>7RD9-lbxXwBHq8W;eFL&DBMJ zI^NkaY}~Pq&;CgAwfGQd-6#?H`)T3Qy!Fr+tI2f8qJo2acd?J}A4 zRb$1gqE#&yF>BG=*2nIfM};-hePG@vNRFfcvgzeaXzSOfdb}e;^{zvF&VKMbLU=tg z6rH)GixEv-J1CpxVr>uXKWv-}^PR#(Lg>m#H?{Rc_U&K$tQa^-2}4brL4$4xw)wH9 zQR$1-6T7OMDcx2>3g#Ijhdmgj7Ll#3GjUJ@A=Z6Na_`oIk}?B|tMN4t!`t~C=@l!N zF~=D1+k>COFJh~hX$klLT;E?cT!w|iY^*+h@WPmX<52{miMNSfcx7IjWzCxJO}R-to-bKP{{S}@t(3gDmJ_?w@uhyTL=g0JhmesE2hyO>C@5Z9SmPz)q}ptNFNWssVg(yz;p% z{E}(E9gy6(h8xj+MS3)Ss~|@Ub$mf4uxmz_<|u03;J3>sKtF6*b$x4qv?=n|d%X!z z0lCG^0E%;7{d;1}BzC+l`w*L8g34L>IZUzFsjg2d#bf^q1^m1d4}7ssc)WG|mGDod zw(7BE#s!xjc!6a;qKS#B55t|$R&XNQuqf4yZoh5WMdOtTE5-2q(|x=roy`&$b&c*= ze8j!H_YxKW!ot#XXJVgCli)KqL;EMW_-FMOz3zj~2iPK#SKffm2YU&^-$+DrOlI-J zbrp;;?~@zyuTSveK4+(Ru!Zi#>x?R2UdMJuU&b)&5c2D**|sa2Gka5YBl+1{{=hYo zX>yL>HB@=Kw{!*X%ze)3Y(-xP!i=d29BaZJP(XfR+Dt05ZP(PR2IF)0)E$QDTrkN@ zv|8sO+3{`M@%-qghgDhsQ~xb;N%M!Eka@bWlBH(fx7_{?b@MFZXe|Y20>W@pJT@Zx zu}{DZ3{Q*Qr*YKPK=c_L8Z^k0ko+fi0RX}oIm_vdW?ND+l$igtC6IHKR3SXxLM+&ZL=Z&Jt}U_a%CR2>HhjQG{13< zun}$%0!w1*S+I^yB`3TUK+XG*mI6s7Art^7VfUMU)2qI2AV0u`NqtpOAF*uQQ@Y|4Vqod zPAK7d%&hSS_1*FDFAY;E1RA(iSbxwy!N6Mdd@J@^Etbo<_Mnd;b6WU?CFdEJ9QFDk zwt(fffP~WR#n@lyr`ngCB=#%WXWLvRlE4qZ%}y79xdGC~3@Tkx}6y0lwsGYNq&RnsNG+v^_*MHA9|v=H7B4VN};(+=FUsOIj^RjJgV%J4Y^fSJxPG?95W>DermXc$icX}h$4X05YgcT88&^D z68w26jgR)u!H6oQ*|@^%;NC3$swf1@FzOZVG5^kUJ5a27q@M2{XyrVdWIB1P?tBR! zrFM5l;$!*tGH6%lYCmI$)y`dR$#E9?%wVxZW}eUtXMU45)XB6fCUFJitiomeiz!7Bt_+;pDO>+Hi{6P8@z~(cVUa&g+#2(`FoP{K!9a-k9Ld$wREF7T8@q1zw?84=KSuMuk)pQU!Zz2``K9W1 zk1_7-sllZn_mKW%Qh&AyHdv;1M(PXA#>2Vm_|pid1rhY`EJjt)7@19@tzjKz6CXG- zbR3rY=IrX}-=r_^prx%bq~u^j-xQ!P=}`a5$;UE(_)HyYpBosH4w1#~kj#X{E!Q2B z=z|-8c{(?(Kay{|Z5LXYna%DHlBFS`h-Cn4GeEcjr7viB_o@D|6reJ*F^>(>cI@K- zPsyxOc<0u$JBG_wyVRwgJqwxULq%}gEw{n(C(I#E_z}Sv;}l?sqM~WG`Wf7b?D@Q3 za#@Lt&wCW+NB&)h35C>V83(7BryeAsT%9`2x8Xu~O$K*oEElJc;eh?6`vVu7qkIlJ zdSB*@l&&U4Gu>ygsfnDQo!>>dIgO>rv}wn`eS0TcW~v(&tMJ@xys*H&8Kr*qxiOuJ zJsjU?O?Sy>nW(y0iuw@UcKo?t_gx^Xf18ItaalzBP}OV)zplO`7-EReuovvjG1uvF z)-Nt3xCJ~hZ>wVc-iH#C{nM%aaGx0ZzI(>^40H-FT9V}UXY&!h`f@0?`@A>g7*zh& zL^c9J3PF0yWUZ8ame2Z-RJGINo@muJKP)M;3|~_aQEcWaBv`Cs+M#KXuWcNlJq!I_xjL!w;zcm>WrD=5nx}@_}vi%ew2<40d zZo;%oI9 zHN#8W7*tQeqE^ru7YiuzCk|7a*{%uU`VIwEgG!}qYpEY>L0mnUBd>^2E7g-fE!J~S z)H)Zh4To3zByi96IL0klf0gsEfcP_gf;sY?x87Rc68$fILP4g^>+EFPJinFp87?C# z>&_8%ujlXEx@tp$AI8Zr;K<2Sz2 zP!QVNdZOwa=^%Lv`kV2_J)-+KTX0&cHnH&_6bt9o z=}}g?l4pO(dK*9>_IXZfQ{~%3J;GyQhxn7P+8H&*CoilA3+vL-XQdd50wt+w=D4OG zw(oCWh9fA$`Ve;eBfP#0A%v`)liNLeohHf;+C6%`S7REtK1EEpH0ZoNZP=d7*#I1( z7DzEpv8>v0MW>^UidQ6<{`gSQSWr*>!WXB*q2|=4=KOKy)^{R-ums5+4g!BLA{$O; zKCJ%ju$zg%+kl`X@Y{U7g;+t=_nwkt+C}P%SWY(fZp}4^J3%L8iGnAZ@)F%kjIG%I} z=MY%IYOXVoTD2{+9CCMmBOX8-&pUBXI{oNR7-q_)gI9rjC2lEZS$5RC{WY*`di67< zX1q}(rGy=8dY@*pg++DkT6B*Inc;rc^Sfd8Tg$Ts^<-_~31q6r;+ga4&<qOhvA zQMWFcsMyfkJ;75q??Bl(E7HyWkfeshlQasGMM6`@jlbK2)! zHrn{b{F!AsEy-kiJu#Q48Hzq5r^7b=-=Q%39JBKjOxf`a`?QQ|Pi>tEqaV!9*^oSm*-39!g9$yI#OV-) z_a}?0RT1)=ZU`xs$MqOM8C^*wuw@8Qp-B{m45>PDzdP@1tG(* z;18HejP{~gUi(nvpiLQ!{kGP$ib23dH*==-yg3MF_^rxGA=%5PqKPEJ z*J@8+yhe9>r8SdTOv~xC#l~s`_ZQH?4GeUZ)32OO1DrY!D`eq8WZb-Be4{c>?8f;J zo7ITsNKUD2^itVMu^;p)Gs;fW&Yp3#w(>|ShV?Yg0XNRV)}`8@cVJv3?>h)wJo)%K zdH_39~!<7s~)&WaNuujYb=&_44t)#C#SCQWg+QxRTnBNBAi?r zLxaaR`^N*Y+bR$YD->CxF;bFv@CfC4OEdC&yeo+7KH}Zo2m#Pr6bDC02gjW2Yn^9G zw>?cBgyXJOpAZX@H%3;qWf%bmPgHjkBn}sm*>vC@clc}izCa(g2e8CfLX^{%US#d^ zBlak9x5U3PhZ&;s_ZI!V?tS*b{pq!F>qWdxgZ-u+Rx!U*6%8`#?Of|r8mJ^-$j{FzAJfLu|nwA25_esoZ$K-^=-Uhu9hM~ z@7}QqHOMLoTyVz%T9MR>=LlU(unl534EAAG`BS+L`UguD!&Ob(4=R34S*zwX(?vDQ zWw)~nV^l`Va`s+>VhYDM)1~Dkp514LhLVN0^Hs@_`IE-+Ia(4iXf#Q`VMxdmY29K| zq!c!rakQRgR49@ShZG3M^s-gAHS3w8A2e-`38lhqg*Lr;m9#1IwXgyu7o%gE=-I?& z0M@wXF2RTzeq&m8e;Ym{QZqf*aHDFAga^uSJ@UQNOf^=Vb6Qw_yzErPujtva&!+Rp zArreKoAkvEf_P*xh`RmHrZzh+j5Pitp5CuPVKXn|r#XAgzIq{5ml~ks@>V8S(O$%n z4Zce{+OUNw$6u|)FBQ1%+`yu3Ckm|y#_e7uhrLJLR>cTbjO5*|4wYr>ux!-T``YiHj<>4twNCN<2}S}ZG_|`r!c`LqGt1S z?RpfCNT#dd0d+t$YQF1>s(qL6Nw~>gkq0G*xPH_~fd7NGV4(mA1jzEi^=z06xM~ph zo_1vZG)x!@!exRO(2!v-km)*KG2ERA`FH|bTY7B}bc1wvgLHRycXu~PcT1OmbW7)^ zL%O@Wn@#gA&pGeRH^U!hHu2+G&${lbZe7~S&%6{6Uk6xtk}^@5=f81B(3h_!=WGfo zW+l-ZFLK+@QiP!{b%t<=CN|S8#UgfSXm#|%v`h@!U?+d4bnTY2`cZapy&NGtIxnR| zSqaMxl0U!A%3i!`@%de6So2s==%Q=JhHSuoim>r$;Pl6?fz(te>p2sfZ-OUwhM|} zG3b#DBHekanoOHg6t`I=7N}AiP;k}i1Q7++bGrP@EJ5r1s zV-Oxnt-L=cHX++f@~e<-)b`S~IzP}mQ4D(T;1rJ~DaX<4_`6E+7W}t=hSv8AHTw*H z!tcZ0)&igr+`QPdbus5SEG9`#Ui;9~9h9lnSLZW~;O^86^cZof1@v9W2nGxxq}|wAidjdUvb}09VLM-_c=TJdXtiLhx3i zvdIw!q+Ej$o(Gr#ne~LytWClFk{7f(@6d4%g9H`llR!?;ZcU z@GSW4bEuWeS~Utvtf8S5PDTY3iXYbI6Wy_0l2~f9obHUkucKjfEM!{v=pj~>j*}At zG=8+j2?q&k^>IZ$ZzyXgf?Do#@oCokw=Vw8>rZ}B``0`y1lE{hq@rYwgTB!n_mvh` zyH#W2t|)zR>kUWl>7Vq5YnyxsCUSY@k5-*2i$t%-KgEA+zn6sKr`ED2{^jX%0klf+ z4KXk0C|>%!7=`?rC!|y@_1VLw*7poORyI$6Ik;H6t!Xxk$J`xKg#O%W+I@rw*Ws;V zCe?(+WXzcnKu-g0D6wX*Xfdx@ma1u|qG@M?F?_!$nMY4v7dAAl2lvC*Es+MDY2(q1 z8YVArso{G5Z?6mOa2mFF0;yUiTUCm47LD75Z2Ne!Q&n+}PsjF0zCo0NEE?PQ_E$z3 zep&H3t}HCUB=jnE`0Q`V1!mEqzZMW`Xf<4da2Lw570A;6Gimm;OkX$Vo97X+uYcQg zF-)kp`{IlLZwysN1!SI^M;PiHn%QJHTaMcgOT0V{-)U?{3nGxWGrGOy-dN>f-ISnS zmbP_Yg02i|)QPlx zqOHi%ERC!7z?jEzMzirkd>3+}q5ND6#xr>O9PgbP5>Q@clHVX z=tx&t2%mRbHF__9U}2I5*7J@+eU?m2^BUoHfak)w0npOJCr1Al0{1m`(%-8Uit9bI zKm?X)t#8srMN=@5)J2mFS9;Q-Wp;I7k~is?&XG7vf>jh)#OKvklV*qn5SV6fr--oH z^pC}$@l}0)Si0o?b#GYU*_azK=Uxfz6u;U{Ld*4!?B%~J2VQ_H(X`(*6DJcb{~&gl zJ#<6ka4v)(-HZqIedCh5%bfUtFMd6jSI z$Tb-Ey2uUZ6X#9f8{Gy>?C`vW;o%n&!~u-|sFr-;Ld~5XC-7Wyj9OBQ5vpinx|9i( z{SMBt*g!0cI$9es+Va=I7-F?N#k|Q9V2Nc?1T9-r?Qs7rO|0Fyl+BR_&)BvsOhM=Y za})VF@CspCBh|0IoqLuw*{F0?a?8@H1#{Iyfp(e!_uZ98D_!`!RQAJ+4efBEK^~_m zm-cx%FM!tn=}Lvp6H{p*G2=I_1A8rI;qBOG&U^UxPXQ~xROyXO27grQ#u7Og9u17O zR$AlXj2M(q!}njOASY=SgC2(UO4@=z2T}SD(16^P!8Zh8Cg}PC<4=X?9!*&c%EPpK zbrj7n5r~^=%hhXG*(S%8{GkchC(m5dOwtyJ;;P8Fy&7eR2dfEe*&X~3s5%b}@1X-P z2+1@D5%`?TU`{_Q1*>_3-aAifraz?@#f8`!8L>qc*1p7m?Avw6i$mwWVjV|4EVL6X z9MI7!(&iFEkAl7JO7C0i+X)3cO zWN1$Nwj}?IE>^!#()eG({q=w5oEyw7etNi(NC|MX_Wk+%5`M zP?+Wd-1n~BSGM0%jHV-JZh7fb)ZAQTp?C)iz`X$;S|tL9ANjy0Mrq`;>lK-)Fh0o2+2e{z1 z=Eqh*vvb$^VPO4nzcrjvl28&_@CT`+%G!6=CMuH<(9n>fr~$t)(#nFXf@e*-cD~O! zm%#R<{HuIg0V>`I`NRCq#xFi^bj=wBV>p%K*J@RIhgXJm@kJ*%-njmWSF$Ag7b3%I zV~S2&7$JXSewFm8+&8^b?>L2rK6OWi3Do&a)*O(`&f^H$+bR5ESP|n_nMMLaY1;tz zUTYTU$f>GdIXR7G2~0*Z8jgXC0?DR5HFR%tJgGi)<5qQlt?C*}3D(?haoiVaG+D@H zerq7TbSMS)T97bzcQ@-1*M|ZncaBgI&`hX|Oy#_(6xzn9sdE7ae{z5DdA3i_}hcOE|o}2jIn6Cg z|LG2#fSnB-WAy*;7(;A6@=Z+WpPw*ETX%d;DhjH^rA@ifRqu%#oWZY^ApJvHyBfsV za?S`ePhDwbM6Ud*@BMr#SislRtH7%EL}^w5Vh67JaP!OFAIVZ%DLrD-E+wBaSm?$K zRO1h^phlAKtpTfMH2$Eq)*KNB?B9ewCB;Z@7_e+$3#7m<$;~?0@4>ZFy zg;*ZvpHN8A37r_-0Y)l2V+0??F)FY4=naSVzj635AcFS10Wr7rq*j5pPOGKi2Wy4! zg_+vlZ9V(H>{PRTqYTfNCqw+Nu4Snc(;8W8x8J@*a{uUUp0`puAtsLPOZ++igk72# zT?(WaV#_FPiI5`*5w3)DQ!b`%b$|_hTtbLoEy?t4FSXtxoRyEi&n_>I)Q3Q zrmmq%TyYggL!l8y8rJV@39P;&X~P3TZHzW&OL1JwdO&q0##OI73ct?*-AbmhGTvjl z{?5xqy}IH-?%VhAg!7g2kHoGolbGtHRc?+P{oh)X7KPnWp7_r1OfxX6mA$uF8_Xwm z^fG!o>eVdnd~nRGjn*7%ZZvd%VRd9Pl941Z)1qWZ%FHmCxXM1jTZTZoP866U54|dBHNdV;3psVN_jX7XAn3Vm7vos=9*(X!ESXa}5zNeN%5`mn@dp?et z8X{tJUW+QzpNN*>I*yh~*^~hdRXAGLZ@T4JGU-OXPK)$cVm1AncoMqY0p|1hE7->` z;J4lVnZjy>p2%rOEgGs?7E1_Oj@DUa)8W8!QhPOcT zCxUh$e0^|`@Vk2jT|}f^!RKux?xu>s4_9!Lg}F8^_sJa8f13x&y=Xy3W>EVdaDnvP8svPQ|c7(d7Atr!n~h)Yo`AZ8V}gkC{-KHkyvW>1q9i*-2$y+W>2Q z=aVqy5$)8ww<(cfvsyH7k5d~Iwqrl~y3xb)!+w}k(Yo~~;;R6tW z?$+{H3T$E&w2b9a*$&n^g}=cQ)5@11C~S&OTqDk7oWSRte_mHH9!CF z=WDI3Tw+O!KT zYGXK%iFPmY2h{op_PO(h>z64#wjGrC99d?hE{E8Hm$%6S6tIb7rxjgMS|w%JYE;n0 z*(7k;4Y9UEAir!BEIUy(;GnI3Z!wF}A?OLGVtjLHVDgdgjiF3j#F}uVp_k#*E=jFL zlTAxL4n|lb2Vx%E+RjXPGHxY1nSziO)XQR5%UePvh#TKHDHflCo5Y`{ABv?cbdP z2e0r>Q{!)P$R#H7;(NVU?H@((TuVR%>tojjMt?a4J=mw=D*XTe{6~`iiKei<@#f|X zr|nx`>%EUE35l2zhNdmp-~tWQy&eU%FL8gmx@VD>M-Q^7ta(u^E4#?7eeVSlZFRN! zc?H_PD>-4h`%!-sZI;kM2v6BR>Xs^=G$+uG5t?#61WZUZ%qr`X%Pu{Y%arRFyv_Ja z?QL5^%z8uuaH6324=}Bz?RdwxqIpIIW?P|3hJ_eC^R~7p9$ae?@M;E<7;7pqC0X_E z0qD#uE^zBtt^Hg%CTxZ)+Ddm$r{bv_LM>EYS!M;nSz=it;9(fvK{UAF`cZ$Mqx;nR zE?{gJ`jD{G#KWgwo>aY-Heo_7hZKs3J(0-xCH|L&wF9sIv1hKWiTwBOeljNdPd}Q8 z8dGN$Yj;L@Z@y%dM{(P?e_%%W0=bYg?(yL>$(M<nwJ7dxM0w8i8Ay-X{@|p3a6Q)zX{k&7WiVKfHG|ca}U7d~Ax>60sB26a@i=Pb7UJYJr zCMV9q!`F7-pAg?e-d}THKkJoCGP4YD`(JH{Y#WFK6aMeb5O@+|YUr2$dt0B~rNox^Y?R$>=$ z!S|s7-_eT3sFmHJ{ZLJ&2n9dDfkY4%GsO-~383f?JyL#m)ERi#HcWzfgf`6YGW8({ z9Z%0?w@VJ+{19JH-v^SNDPVap0aB#wZ1vAr>x1b9SIv$`!4=j`2s0*zJspp1AxdhmM3j8HEnXEK2dH>AI7=}rg}YFQ(7kO`d_P)B84l=fQ|q($@ArBW@wyB@)*Br zQ^Pija_Vx6$Y|n*>`0V~h%h2UtVR-rpvJC47`~i~ou~C8QMhASV(HC>=IghO9(`x& z`p@Ma$;1_K!Fmm&J?8u$1pp5K)0?in@H$el$I31x;DP|<8e*X|%U1bax?9rfm|wx? z8ce)j8hhMPKid1E9}Hy=d1*sjWpYHub$qi$-MIOHmg9}r6F)Fb+cF4}xldTQdpPVy z@+5zNA`yd>Q4RWX5J*nLSr%Jrq46h_sQj>`WT+%BdRO}LPY^Wt$HB*XYRH&S@s9Jn z!_R(LN-nsI~4ti-Gnz#$yt=Y{lqsC zLtWQkq+WZ#K4U1i>HfFE5;)qb-S8h9Pi7hwk!V|8fx(tjbJ>R0DwYQbfvAg;muy*!%eac~|tYJvm*2+EaJp<$|3YPw2=jsFR8Glln z)vxQC4j{OJg6+ZBaHLWHw^zh#(929N34-vs*Wq0|IQQk_m5Cc*qZbjm75U#xdwIHg zdERXYY;w}^OisB#o{>#V>9s1P?91NADw@o(gm~0~qee zTBlmmAYjq2j@LhdWJZzBr=l*OLpg_d{%$*%&Jdvq*)BKj;)Vvx0lbT&aP5}s+@OT# zIJkIs2IimZ9kw%pW556K?Y{j?7r6g*o7&Qajj?mu_}Zd>aIP}oap5B=@{O;)wsr#y5#S$SFq~r!xzdSN=yY>7!~r$~R-QPskrSK-I!TmBL*}c+m6q$ycaf`I z)ZZ80KMSjUGM49VDqhw$jG`MRVq%OOs|Twqj_{s_-y@_!?-vjnFFpE-EiM_uO)r#Q z%q*9F%lBNO-(eS^g_ISUOwffDr^sM*)fCCFWt9{X6cyry;mCf*3&Huoeu(IThiiwZ zM&EAXtIY^VS+Hc~DZ9hy#8mop?6G@vftRyNAf`24wKhRr0zysHnTYbi50VLK}vPN+5|qm?^=0xu$~6dBDxz zqDN;`juWb*B=5K3^%q3(4p#oJ#&V~Y88T-c#VjN)>X0R-(aZ#WYhWK zVZ-k%7bTP^?7}BL_dWHU*QrxX1eW~2s7G%b4KU4{7kMA!n4?1(mG`q>utf z-O8?jy3-XDh~?rpHc3%th24(PNr;lJ4f01q)9<=Fq6;LtWCo*> zMAFQFpI^OLj^pFmdjmdG@2NCldwNWjoH&PM+Sk@HC0AVC0tvE~S9FR?p2*@HquV+A z^CK}K_5Q&TJze~Y=AE!i7-2Y0)(k^^cG2%_;kPDh`052C^t-eKeu{F)j*``Hk%8=q4g$}$v7gNsR zj_yf+00-)rHxSFc$ZLG;XB1(V2{a2*Gb}U@Xv58*y+7%sxP1Cmp5YL1Y1YFC_3?M+7VRKOxRW)H1wQR#P#Wp3DKDo6{^W7ey z^|=;iy$1M}TVFsbSbo?4d$ZZi`$J@P*7I`no6zz?2&2hZ9sx?IHAvh0>@<^9^&LCs zDe3*Qz}>MY{ma2SLEOtO|MuocBOd@%!edg$+(xavPwy{Q_@z;@Tl&5PeL|FT-*?*S zfFnYHn}?nwv;kAx_d;ygbAQ+N6Bq$sy+AAg@dN{%KM)b*lcc|N*9lJR9v1sxrALg$ zRjaWByIiEjS-dc^-SVj!m9V;$`tMjPyyzvzep6D$+N*Z;&`3`$qDm*u%G#*zcvxkH zc%{#o*&cp#U<;sU`;lcJcp*g=R%*ctO}i>>MgF{FDJJ_#Sgl1x55Eji*F5&aJ?rXM z;md=3avI?1Gn-PRm0~nE-rH*oR5UvT)DRr}1`KUEIKA*ta(kGKXy47PMFBzh12}gz zGF{5BWRLR)eJ(g1=U^%CLxp7$gH>zV`6QH8U=E`Z#aS@d($TyP~lOl z%bBvwb<}45pK;)>_Qv{!tF_GbaC0fZeW?&>K0AnO z(>DyJgCX~D$q8OgVCtf|^c^{uC=2{xod&roEeibd`090y2wt2xCY(4!TpU3pr3#KT zhM%P^+?cY!KB!VsIRkuGqY8RDw%_#mo+w z$CsN2+&Bi!fXvVCcP-YGMY7xX-c(s0J~JDqN5a|fh(Qp%yn#92EZ^}yX8ZZg(Hs!M zPR>=L;@3}TaE}u7 zphB!xEMtH}o|;hdZjMe8ldAc&T>Px8iDdqH1JK%|u}=8S1R*M`Yuy|k>iHQ`r*b#s zJ{Te3gPa#3k;|wHaOm?Tn4|8PS>~W9oNjpH*LwT^G^0fV<8p2i22P8o?hlVtHY2?7 zVoMmlgQyYO*^#VoT|_PT`S>{y=I~J~k+*tF@=I@NKy+|&f#`SyM`Y6w@;rH?lb=VEoI+Zd{xp2Ane8J6UWkDNJk?7 zzSH0FGJlqD)|wDsa}W8uulj6Y6B)T@$YdFOzrc{ajY{x<_|hdWHfSRf{68IQn=JaI zfwRHERDIxF6ivIb@!ihyBVd)R(mF1EXvh7^vB=lRN@`NO+G$z0u&-SKI5^K|V5&Md zB=}?72@y1P+8ou%0DUTy(IzScSC<2uySu%s=W9J!U9d)2HW}Ti0R_mc)Nh%6H|1K) zkUVbdB(Qd3xXFEF(dx&e@dr0m@I9Ks`Uv@-^ehiMMey2t7uR^k_Tw8uZGAs+%m8dO z^y-N^?kL%ym;qy%LO|IbP4d5y9QQqat?-T#(|;wO26w!qT!|3mO0Fz1WpG%uRPbGy zLX1Wn**3{86)A-2t+KL51VN1K9n)=7cZD0XWP}@@08tCJ1=HGkO`R;M{`BDp8YrMQ zrpNp}x@ONv_G~Z<&ra2ylGDy%@mn#jqDgH}@AXk}^JVwO+V#c$B56#>*jHG#gnS_J z)qemANs%cS*oF>>OZrymb_Rth&nsH4L~3EfXJ#^EbWC>v3@Ub3{|rF*JdJzKZR_(3 z*^CI9zS~imewZun!L7W)@gw}h{+S1;dBV;<#$jR77Rk2N&wkR65 zD6TQ7F)majO(IAIRyote;83mQ6H@LkQSAN#PH5bs^oD2z?m0O>0zlvYnJuZA-Sa-Q zQGE$)cANoh&*KXtGWSa>3Q)16Vv@KRBY^xw!=;wVG2Y-DLS~~{z%H^pGzKt0%vJ*$ z7#?z;x)OGW$T@xi!)yYMaDvG=8ipr1#{#%nePr94T!`DQ4inI-p0ij}r8~IPMf(HR zWvai9{j_tW<@&n^K&R*DnJ9&pSI(~!h}`|!rT#xBA5BR$ZCu<$f+?*UKIXoSAiDe6 zeQEJvCMMqgADOvLHhR=w-rPpoXz6>aTiTQ{8zoC>K%CGGnA01PuuwufXzY04hVC{^ z0^LB3TD7nJE~F^}$!uz6AyvpZC`#h6=#m4m_APO4J@7%X8YRP@jpafK5mu^+(6r-W zB(!2Lzqv1I>LG=ybUTntgm0%d_@$3w0&h>IA=`qKL;Sm#Euu$%%@IL8Tp!%cUL9 z-8{@OTk%NVZ!OrjotaPz=8=yhv!q8V>j8dfozhv2BVxG$mzW5XtY*{rdKo3AOreHx zp<0;{g7&oY{nW?N=XZj?b?O3%>A=nIs$&&2y)1@wfhjx{d>gMTj+v4Xv>)zpv2$VTq89>siRJZMiI(5AN(@7IgRZDZn2SSV4e^%oH&_SxB z`f|U7vy0Qn+1lB97^6t5WQqK$AH(!VL2F~$OGaOHQcXc;XliYaIEKj@>gz?Ac$ij8 znz^+TUk+Lz>58*M)jE+2dr(78BctUw9V$CtgI$X!Wf%0Q6`@ndt`fZYGy6BIN&TVN zeP1HbacTh%Ph9HWQj{4v(Crc0T%>%br9*YltTYTpb8lIsWHI}$+utkb_~8mn?R~l% z3uUOp!G$-00);7Ep2c8$W^x0^m4UUl1liYcws>IzG%G{MZU`rvoJ+(NNHUwlOACWd zbZmYCpILJw_|mh~bDctOsI1t+!X`N8%%!Yjl(+uuJM}m%HF3V<$EmGj_B~~Jy3mW2 zNl1rwEtc=%!N{{aaU=PK0}v{*yM<&bsc0y(c= zT-6m3{$&-6*c01Nm9kL#8a#8VLpUjVB58USFn$zOb5k-Zl4hflm0a-8?xilivARfk zd*32UWkLOaHiSSI$gy~!+~cOsfgV)--wlGW^C*_&8`lMW_usb9U%kIiW#>1yuWon~ zgc1Q+2`S(e-Ta7dvL;ZAuR;@=BE#}@Sbj+sv=rwL@#E=k1YjKkfpBcS2+qNfV+EVI z-hP03?NeVWA?#2K+iC;W)SWX8>2H~>YU0)NQCMCB{~_zhobzYaEY zwR;yHH#Rq~^4WjmX%0Iuv#U_cmEbhN!1?iA~O7IHL#SHc=zyNA()7}>mZULb~IDhoRD%q6&m z5h4Ax98sa;A0>4q4n5Y0L}FXVIIvbUQAj$1=W|j0FU+L)-8~SXY*D#umSUQ(G>}{@ z*U?4BE4fVUCo>aZ%2M-TdLU);RuY+Mfvt&(2D{|9=Mq0H+I;?)A!ttt1ZFG{FO)Fr zGq^vs^YXOD6*nHnu)`AL$3if5)B7rJjLo;GjRQm7l5x|_CpBDE!1yBEZ+ad<1~izZ zO0~$nD=WHa6E3;I#m2MK{wL^K?%OXK=|WXa@+Yp4dU!R#Dk@NuWx!cDGLR!_IV8ux zw0gKBy;Qd61W1PCjcxvm`>B262E*HBdow2q!xyZj)dM_)5CFt!SOhy2cV3XrH~jtO z4zhPFcNJcIO*Opv^X}w!bvZ*xh(kp+r8P^`rG1`AK)wG+!}czg$Z(GanM)=1-!Vz}d~1nW9THi*E1Q z9va(y(jZ%*iM3?eaKtE!=7I}kG$_vH0xU{x+~p`>%_@;pWU(Nr{bl zkYIDMx7z3_wk@rkopKIGM+;?zdvDSrL)!Oqu(bXYY5B&(ON#&dwASjT*goH5_xL-5 z{~ZhIg;)6O8X}Q34nVu$+^|&moYiq!2lk4kny%KsL1DR1Q$`BSI8)8iXy2EdhG-#* zTJp}F@2GWN@)XulNUXX|q^x)eb6&R+Y3a0h`oR}|hS&8%q5jhcq*(v5Gc~w%H}5wN zsaxy#y+Nz<-|EA5V2scDk^65BPHmTt8^4-;04WM5nwa#8FnKZb++F+KMy`jkv||Pu zTyg;XRF&^8NU6i8@rJuvODw9GaT*YcZhQf+nWvMy9}H;TPv2yX(DkCgMDO0}R;B3V z0gSggbM&|n!@B|gM*sQ-x(Hu`01%Zj8n>HtuKZ%RAZ$rv?=2XV%6OT;&RG$i;Fv)Z z#resel>p^v8Z`!ZZeh4-+%YfM(ttI6cJ#Sm4zin$XB>_m1njpY? z+ioe7Tn=$q(auT(@RhqYP(=J!L1U;&Y`4lxVGWrztVE7hWA%NrlaD@P1Z1d+s$>!dgww{)4C+@udXeLt% zE@h2nw4?8oZ2H^j%QPNcPrrX?Ho_^UU+Hy&_?_bkTF#iOvw3K3PQzgpUxvV-1m*XA z{_E`}T)5s2<(CPzwo#OABq$ ze*BJiU+N6^yra}nXT!8K3)4#;=$su%4y?JNw#$yx7Ee|6p##8&VWH9~j^KA#l3G$4 z)mq;(gPXEjwN2NokYgneJuBhdRm(S~H1l&fKi zIsZ*+*2}cHB0`i6`N-ibV%^0iGCh6eS9H{)g>qWIE7V;dg0uT)hp%g$RMh`rEN->X z7^yNpDZFYJI~b*Y61DXW!^ZDCowJmRS@4FXMLv5)lq{433DPC2sVpk=A*`xhdgs8yV)%NC;UXV_{wa^3H`C^PxCnqOM6@-SoMg$V7ZyvIJoz}wokaj zg^HnV*m&2Aw~N&0dDwYRV}yM|3DKv8He9)*u!2lF?1zN=SMJ{$*hx@f{2A@WSLlzJ zjWVdguLdm!0M9}kjA&nABHE@=E7+}R=l+f^NRKXj(w9(i>!%BZD1nU?!CXUiD$?pw zs;`>*wFdCifTN|6yGC=-Q!K z&_MqwlW0930-w%DB%V~jvljNldWgEIcmSv%a}L4H-xPBzC={sDJcylrP&l87N&Amc zCZkil*ZK~BxCNEs=H|C+RC^b!0d@rNR7j5Pjzpyf=cq%x->esgBk3Lf{FX9RM55zf1u-WzX8nIc(# zlbr$MdlFC+0JUJclk>OzR26U$#56@)Q{sGS3fQP9SpF(FQt0-|e7`P?ulSqKJ$bL% z7lQ*NHEES!EH3%Y|3}{$*fsk^t!G*+m8d@3SaJmDjpErTm@Sz){FA|J+3$7S!UaC! zx8(;FvD{~H*tcZoQIGETM{eD~)P{`oZ#%#f0}>{=L*@^Wdp3KsTEzgiFp0+(Ni)8; z!3qL`#C#;cs&Y&Wd;xad*xyz|K(22CSqaPwR754n0ZQl$@KQ%Hs<*njiH&?p2}B5mHhm-+1UHjpKKSf@nhT2v@o?cCUTc1q}fv z3PIm{sRQucqjlds!P$#V3H2T14)Y$pFFL3a*=LGF#dOoxoh8p8WKylKgF`hyv5RoM zJDKT}4n_!ALfM3;)EZKF3~VID^-$50Rl{NXY?n=wJO&>kBU(sA>F0yxSc_Z7R-4NO zT)aR66m3!59+b2%lgbxCwPs{b8&YTmcwwxQdFmRrW2+^RZKQKbF@o>Ap-a4jqOQD+ zsenn(71aN@&0IVWT>)5!BQo^DkXgu82%%xUn`^Wp2W(53V1)si+wC;uUkO2_)okcu z^;!*#$nkmt&Y%*j945y1@%c~UMV?9qKN$rCxRvfBlGF1B|Kc!xrC`>f-}7MS7{o8F z-J)0wG5=hH0%XE&9|YpSza{z9Jz(CiU80ls_ix@t;8UA*^!5yRXbg&wk+&cIE`a)% z4wj?z{m=DZ_y!4l*5JAG0P`5pe=7;DPT%X3@& zf*1kndcrR#WWo=@F48txHVXK?Cb!8=kwKGgcXUsca`J4NGmc-^8!d6It@xk)9ti9} z%IuRToi4r?7^#&7nSBWGqDmG|^!;Aw1!3!Hdr`%dxxA2xqi+PyT%)z6bWPdgq%D+; zPi&}lL#qAR7nUo;`nY!Oz@PaI7#mktnbr9oa+jWa`D54`K=?7w>I4u%N?^XfyP1Bl zl8IMkrpM0eRM}jDN2hhRsih0~F8kO((?|E;*gEjuM(=}gb@#NaR7?gV_>aZiApS2# z>?b~F|5u{O34iz>rz3hHT;C&#Y%oNQZ&-fH@qUpweNMgcr%LujuvK#OXZlu+D^w8E%R$`#(+BpJJ=MvMgbQ!Gm3gS zmsuH%S?emr?njq?J8?VAr{B2@w7^!*b=eJE)Qs+_T}r!6XL8UGi*GZ6wqcj<@Nj2V z1n*cw^R#OfH{dV^@J_SN`TF}G(#55=@$L9hj=>pJVAH2_3)eUOPDh?>dRpKkX)7Vm zzrgzZ1N=)XxdIwnoCH~*)D6z!&AL0NME>t!()VlAwF_ZlVm-?B%VqIeBe>%^l!!03 z(10VR@Ba`zQ-)p?3%t7fs-0z}LsH{5R@s0N7ij0Rns`&Nn5!MBVSj5Y4(7uC(IEyL zjTk@`9@{KO)}vE^a9>|soTVKb_Ss8Y#u^UXYg~eK8dhi8#j|FsPIvUwC^lpS7P;hp z(J>#F%{#gQ3Dp!DBlYdfGP%zA=V!8$k4MjXok#9=M1wEpe9MnZIJpDs{=tCKDI&kt zYUS3TWZvMkv$&Ef3-Hp4?%Fy!<5TUW9(2Q>?-$V;3b~?dsWPOUf!mX0ks|juyL0Kx zCpym;NFd;W6=_I(@-eZ<{^;<7LSqCKKCp^6Eb>ED^A~Ck(Kg905uPAYN!E@=i$i-# zl*chKZ9Eue#Ey^NR_~1y3HAL0)Ug!!K#s>rhYsRi}I*{rxuAtxpgrS%6gd zJvQD|$k5<@3(Pf|8{34p?^+Ea8Nh(!`kpzRX9iyAzM!1LEGXihBV&q5!(uiQRn@EAjBR7Yc+rehvc0IHf! zngDDsNDn9ny!b77j3I~x@ZGMUxj9izSas^hP9te=!HcQNH5%8A9Sx(O&V|~~6X}tE zxB6h2M9oVT_oc|>J3nom2wAE&&s+&vhWxbqLON?FI%n_5!!~{sBKk)xTKEb9ePYkX z(6MCQjre(@TG@&X2x?5t+!0r5<4MK>9cqrH?SJoVF}!mC_m^S6`>7;Qb5-W~b+At7 zwD&H3nhxN~(@N1i{4y6>C{k9@11`bz!!OgFycS#cgC5~MS?^A7Gljx0k2?0{?tE^0 z(C@eB3n-XAF|pxTAB7hrOvQk~R>hsFl$v% zQntwswnW5}ZN=|s-k*PdlkD=~3ED9JSq!ZHga6nQythi6<3gfe?Xt}*o{bhsTBk#2 zvy>@~tm6>ihL#?l6N)=HwCHHmD%xvtw+gDloKER|LE`;_8&#*{x8YBG%R4I)>C6AZ z!sGMa!Q*XPb#T~iT@F)Ki2yI}TJ}+^aT>ij0m4`C8;O)CbeBqqNAdaXw zIxMC2qK@h~fY_<_#|=r6{{v{VGdej3rSJFlOV8uEVN;Si{@zTBDy}lJ;_51Bnt5wm zG}4nH@x^Md(9C6w4utI8f+HNZiA;fsKSOONsb_l6Cgfk zo9KLkw(2F%3jveKz=ZC2E)5~>fL6U0gxg8*6k)zj`7t!Og1ro|s&jB5QB*chK8Doe z`{#QNcAs+|DT%eYR}f3$MaBXA3P4W67w*}HWSnvS9Qy1&g&%3|X{D-zw+|S9%9G2ttx)hqxD{F{e@gzY43 zv3ZpLN}4?oZ@$gSwxANB=u`2Hx|6-NpKN@f>W+9Sf4E~Q$U3~S_M3BlJlsQl>9a+I zPqP#W#(H}P-F+IJ&=FE~CBMgCdxQii7hlx>Q7=S+jJtiS{Q=+F){7MqOaSe^%+6Pt zrzm<>`Jz@3E6QBsR1xiSUY+e~O$08mF3jCs&wJbmCeih;uUHrqzWFa|8ks(p2f;3> zhRLh@vw0u!ER~7pCUvI<=9m=e$~jWQMb0AG0^rpc_FRqIyKXe$zh4k+9fAZG0fd}6 zs$LY+yKaD_*)$jwI2u$fsMhozxyylzCdVUp*q{;9Z%I3r;D3)Bj4RSUdItVgEY5X# zu3zMGuL%U~nV11!oInSYTL}aj12^-->6-=0X#kOiP@q=P(9|;YQU0AOS=wA6vH3!m zzjw+w3}6zJI=b(4YOSL;y2e!Q616y9m;NoH7 zfXMQ~4S*2wZD8hES1rp zsEs{=LxY`5jSo_AK&UK=be4+(PVKBfMLBnAIyV6LZL6sJ(**UvLmLWH~S;0Ys@aG^{B!pMnhBaIUzuP;G zkCLZ_l-LM~UN?L1{bj=+{YO*#iTY5q-C72KFN_@iYc$*@>ziBUDI9R%NcF>F1kD#a z%t}I`j3h%DU%ANho_-|4V#KHbf|7Rg^Ex3%Y~5!AV|x}nbUIi;TgK8IT^Fa)(sPo7 zD6?zi8TodRw`d^`(-JF3P3O_HY}P;L)en3*ZkTpVAIWEIiS&L8Cxk8kzD;w7h?V%I|)uuNiOAhr<~j6 zoX}a*VN93m$Br3PKo4nMG3r#<_R>4e4^q;t*wk?EKkrq8T?*4h|m+ z^VYuF3PacYwmS8Fme0o`2W$bW6z{>-z=evG-?uHpckhPMw8kKgHp7!7y=eYE)`v=wZA@{v|tf%4R%KFjy#M(G$AWgd;OG>jV%0lhjh&P zqjEx663Q~Jxhjt=067|hEkH2^;tujD-A=qV%vy(Er+j}HhaJ@|Fs*FoO0;8i5IzyIU}B*CgT?4S0mzL>R(FBSWx z>pU>OT|VKztdpfHbUk}kYHdoxV?I`u4wa%`^`JmQUOYzR=4sLY0T1c&+~2=nh2$uS z^Z^}D|Mi8yU7em9oOf4hTrgmA*tn<)C!_NOaGXIft(kac=Ad;htEN@oG05FT z79Q=w^ry`8rUK(5>0%O=DK(c+iy|t<3Ka<)W)1}H+9_->u4R43XmzCrAg51x;Akce z&q=YmQ(l@H59i_k1abuAj?e#g!3!mtB&IuNw8mDH0sbVzE&KN@K&6?j)?as|1%kmj zeBtVJB-Y=Lp7jM!yO_kXRm^kQU+2k@muC@_%n&3KOIS~ML2>zOev`2u&?AbhJQ_X& zF=C(?qJWQI7;ua`(9KV*yQf8P`0(#P)PSw)&JR&tErywv!pyLO0I*7J4z5u_*md z>H(Z9#i|yV2uXtkCfjWw#Qw-Hx8J#M-236amR(P4hA?QgqER8SL&HBArf#uHlILai zp?%PvXC(c?tD*pf&2zbiRE<4d;yqhN-~UItV=7-nphkV~W%Pc$Hs=6CXrLzKZb}>Z z#gnM@Aird&-*rFqp^Auv30)dcwkJ(OG7gy4X^g0kyO`3}99V@HH6Rw;3?a2D;<(Oh zlYqiGpurTVf|F_J8kOC62PQZCVaGhhl94fLZ{t$!9BVA$N zK3Ll(0w&unsI8Xm`STV*fJ$6Kl_vf$vA^FOzW8Y70u-)6RCZBVFXG8XGb#_mqi)FW zV*Pp%Sgh-eIghz271t{6Y)8GzsiT0+)n=Gv9(ydpV*6nHh|1SOS!QTi`n?cXe|DL& zavXP#8L`Q1#v%VfPK;q6=s5sQPJqAmLr2TK))ZE%U@8agl6VpY-6)mIJ=;$I&0e>q zK)OH$NLQ4U$nFkCw z57AYUCr_gZcgj=8a%MvTh5HL_h+UxQQ~Q^0mp^BPhDRjpdq1+J|8{S31oW@ z=bbhbajsN2HE>T4bG7FpLeP{neU5J@tf zMb#CC3*%HfwO5?B^!#JPNH>FhZ5~1QF(3ZQy`zlZlcQVIS++h1K1hAMPuY!*zZdOx z$hbT*l7eB#r9%T_@u+mS5x0>LyOqIpQCgH8NRu{;-a?WBv1zJx;E~NMm$M<)uj5!+ zI07p;cOz_FWZ=zrf!fnr+)e9P)f`8CQ=xt_G8;ZJ>yB+MA(aCqKkt+SMfyRMyYX$YQ=e8(T)f`!`Jw3If8Nt>L+#$kw=LMIFF_0Tzg8O5Q}nZNFqq9?bC`Cb$Aa z-L?@hG6aM19w6eL49xnKoPOII68SYYO32D3(2^*`{%XlYg}`vO>Mq59FDWqxJtd%$jIZUG=K0% zb|dPZ+`By)HsG+}s8yXR_Ij~Y1~5<}D4ot+0Dqc8|H|~+!I>Yo=F43pZ6<%W=}|}v z!V*8}V&CE!EBafZi0sE++3GN6bBaeN=LcnUGMrRByn*Fh;lS>YIq59pA5P76(e_^1 zJjvpLK93fL2AqQ)CI(4BEfj_60lcbc$5!SfEnO#d~OsSb>1A2Ei$(x}>*(`Yau`laBo2H{i`zZEq=e>zpy^@MTm?f%O1(Z*kYF{1_?!*2#?V2TmVFes3m zZQ=imH*J;?UG;bfRKbIl!gss+1j1y-^e-n4F9uSCzB>eK-RS{WIEL$Z65?%l|D^{d zLqsJFr%IgDlR%rnW_^bl(gzeT7se1^9vr<0_f|N~HLbHeFiK&efkhTmIS1EC`?@ zL05Vg1PM5BVzFOEpf0{3+J;l0Qd-Y}YUIBEh#fOZnOfq*hZQ%l{}x5~`y9${gsal* z84eaFN&UW!LJSyV9b&!Fs}fK9EBnPG6PIs_I3MZf%QX(mG`J$NFsi6CNsi`CO}K_u z;hhutF8eV2S(g3fmy$jPvJlk*2~M<^7-3ZbYA)qeovc@h<`}xLx8~Z`HQApliR{wX z;l1pEQN|oC*6630SH#4K!jHBg^MQHN@$yC2OrO4e0B~D-_s%4qZ;ECSop!+$zf)Si z<&;>4e<>KUw8=FY;%c@ygRY?<9kzonc0u{Z4c!?V%VL}DB7*Dw(#m8BV+1~`x!xnMp3n2qW59DWzb3SmoxhFC_gVj>otxKTn^%g(fglPQ z8k+!BQ+T;KUV)?oTk2u9nm^c`v&3ufZ@;Bb*`;(n5Ptpfj31vgc#@C@^2q*LdD+D^ z9C&doV^uA&^6{u0GdYppmTRj}8KaDOD0kh>ZCE^20sWb-cCLUW$6c{G_ zW^@DvYZ?UPt+ACv6Z?s%lSI)Q&U{@{xAehD=<%K1Aj#a*sC?j^-wT%$Z1)F$2Y?3m z>y{_ea6K&X#OD$j;A0RMKO49H^H;{GUg~7fGTC7)LYRAOWWjyPSKd0kq8L9xBlTf# zC;>;k+qb;V40Ryk-Ye(yH0tR-aqn)%$3V&%N8)#AsJ&jZbN%J(+1X4;)l zj=iWkDmua$t)}|t-Hpmc3Be?ZkL|Xou~rbf41Cm%Z(24@7PbU z_QDyexf3Yf)lRD6&0P*^9*y7(c?x3JA*mnFSuUX+O|WzEuu#hMWTX_R4^7jdx{pM- zb6*pnCV@E!1hBvGhFir6ywoTJRKg$QSsqxgLFF95HeH`q$2U~CMGK;9we-*YlN5+! za3eD@tsMR(`u=#U}elW=$RWR@)yLxeg+6$Vs*NHFV6B*^X`6{XPA*z57+ zZO&=q-M@+0AG;VhVtz7Xe*b5~r*YrAn1F0&qeRpv;n$4Yr=eG(YvRbzd9(i>I|<-) z72x)9n(IH~ESNy_-JKJUj?==BNYbWrSa}?uiquE1gou0}t^#TXe}y~w6js6&GEI8B zBLjfo=kEI)PIg40Juew_A_=gXg^|4}36e<^8YO+vKYk)aw?e@_D0V_XLO{rfi>QH! zh8caWz*gnD!MUMrtB8gI^VkMsXj0&+C(=(y-=lkx6nm%lA$XLv$N<+CgOhR=T2*}j z^-XvbUDWJNFs^z$?F~uUH>0kR>{rr6#PP2T34Z(a07yk-&EP-WP(XF#R%jRDt6=-n zHpe~h!vQQQdovk(^C*n2wlzNrJ1e4?>iN@W zR-Dd6qvWWV{tL~I0doYGivu4j#N5U-kd<#KzW@&=QdIODPqS%gTH895Jn6^!G?)YRFJxXO zC1aDlaG(nThcCZAfWYbTPH~Zb4?(V%^J`64Ru@Ep@0QEB8po-06nYRTAltkd2=X@i zZ8uom@xX8+%Kq1jgnv+VDKdSQF`7b3yDX8%Q0KtwxQU4?%_}pZ*-LT+mpUyWx4?HpP5<{*AyvV$CPlogsN{frz{_53AT6<|<+aqqfguUP0dx^Bc z$=V_Yk#=m&m7V@KVCLHXznQCZMcJ4thTgW8h3N;_*#{F_VD;{6MR2gQ7!Itthq}v# zVF$q2IEtdbr=ix8VB>H?G#OIBkvZgN^pF#8`2@M_4FP4dl3S@vHbB5mBrma%6W9KM zf6S%Xzz7U&jGH@QG>-HtvEtCu%~-9dK|PS`vlrYI=(&qs4KxMje_Y{uV(-1ffFRhn zqH%nmekbGabIK8K*iR1)pF2h0E*W-n-tQ|^d*Q?UeDdR1$&;q}XV{2K=nzsET9l!(VsHuMzb<(3lr4vTzLo|H#brSLZ8RP`F~;8Q{^ z{&Cc8L_ad46pG-wsffXA9f_vrSelx^TbEM>d&9`F2MwrK2#?E3EI0Y%R%wl~W5`We zHb)LDJ#T7o^B{&8aUaf-E9Sn-Y?*ecwAGTZv3g58ObYkLx&ESHYwcrQjyH_ESOONp zmjU^-v1rk~QQPCS`K)BwA$JgmG-q?Y{R4)DE$`=90L(u{isotu&b}Uwh#fA2ei{EK zHY|${mSvw>mEvlZX65gZ>3loiB68>=skeUGzSCF#`}A3M+N@YDN9|0Xg=wZ&q6$)N zW%Ns`rVUO$=J0zBWp`BU?9@rSSlkDafgHTabnATE5Q54ZhMb++Bl=2wd zAp=JwrvZcJm?H^hH9E!|C?j>pI-}xo%aNbvZ03DoHg8K9w%!T_n@53jkS`hBvW9V3 z;`}BXoGn#hbxv(CQ|jJ?Cpg5C64!;sXYSb>6l z%!!)8Qkn(~mB5h}PT+0HUosZg3s=J6k{`b%OSv|8WC^{RG@1E}6dorP&{*sjD#>{2xz=XP6ThA#kxNFp^z8&nG`N-cM?BX01R+*IXbuODy{;t@ z_G!5N$6N*>x;u*78jG-1#OF~!eK)_e2cAKjXHnz6FE&pTsBKZQR+sf$?0nZyqcmX2 zDDvMWW2km{Qd8Yxhq8)UaPc-=pLcM{=X4G^cCAInJa!~fSMgS0xHRiar9TyYh3##A zO7kzB_F=W+GdjICa#=2ej5s`}u#VBsWYIH_f zi|#E9@HD{vJ1gmH54eO*#|k~EaN@U{_)f<;Fg;Neb_ttlKjyA{!FIA~)(oc)Idd{d zY?*BWvzhTdmtNAadieF|oRP9(uiM4UXrG5eduK@ku4P+huFd27$`~6nHwBVNqNehr zH4`WadW6kLuVXA5WRPp3QVpriY67{fUp;r9&xF_=-!hnT zux=?i;H7TQsa2*<(}0iJcwnY!&l!w}4j5KyB$y{XBb-N(X{<>h(m^TF`Cudhp@FXs zqOoYZ$tHol3JXqb9VBnL+>tOR zo-4gZK)s!T<(ut8#w|5lrH!@z@qOdwaYVkSQ0D|XGq}KblL(2t!S#}P7i@S3Lzgd* zIw{yYP2M!hH*o6zo%?BB>HqE)<^Mf#j1@=p_n$g(?nbbd1aYZ0@xVs4g3GhJjRs^-t~?gZ2zAM468RFl5tVCr+ zw~|7G=|-A?jp~)`>-C=c{u*{oV4H!QtYPn>o|h@h3;VO-bCfW-Alp6E_`h34?7z2)v{jwn z7=wGKjF!id*)dOAZnfIjwSEvi5-F2?NbzCji~rGBb0m?JCTG$x%oAxilFTsrW>#Bj zkd?QCu?9YBSUI809p_ zrAi~4KHNNJ=cqQMMpi#4HvA-9Cs191Jb)|ISb5k`R8bcp9x}kDr`JMC0s3Q0Hc2XT zqeFZQ492y>MOW?OKkk@ll3T3UvfK!|`P1WQ97mReNVD6k9edVR{RNk1TCVCR+9YKL zys)2nJ78zrTkK8XqM;Kd5QDy$Rje;H!RJ_>t6X&?m`w^I_Zhrm6p+f3e2@K&&uS!L z{~4XVzXwHm5vUw{BR4GHwv?d-k-Cjj?g7+qqBbyv>OGFRaKOof6x4+_`~HwN5a`47WWyQ*>+?BE;G0Y#5-?DymP*SlZQj+SAP1(meC}$3$SA z2@S1yS}^p-|J)uDBLy%qy=(0M6-koq{OL&~l8APLHInBBnA{}#zAQo;6Ga`*@0)z7 zS{cooyNRtwm;Xo5bFNkN`kXF5X*|pqZM3%OYy)E;wf=w5cY8J3TT=J@6P|1RP@I!` zSfV;2WP;$lvdrF(oZ(TrdDe)n6WnY-Y=)pC7G<^i;Gc*;Gj>i&$_kJh^!V2rwS@-3 z-*Vvto^`{#z&Bh8nfI0ddLbtn#;nZRI~;fol3KfFkE9?J{Zy~AFDnFn-f zI@%BOPLND9^gzxs-sdp+B`Z?P$I+gxpXji6M?$Xag~v~6g-WZsI(l@ z!YP9hgEU*jt)o*>U^9^VG%{;JwPP%p(BcV8+qL1@z#Ql}q{srahpK}P1OvQQ)b0`_ z8F+t%Jou7KrxYCvs{W{dzXp~&!i_Mq>bTMgA^)>Md1talmn(bu8Q`iLo00WT*l)oC zTHtI0@1*RGXJvHNsL=f(3*kpRh*QsXPUgSzK#S=8e?bAg5wRplUiPQP<4c+=Z`B(o zPgPTZ6n(bA%`UiAD}#Z%!QWu+me23CrW!gew?^%hafqEjuBHXiUf}a4O3%kWyN}xM zra^$D+>Ca4qNR7a9r4`!#@SakdDElAZ$&@9?|ibMQg2)hJH%8Nen(urs4%f2E!{NO zTue`A#Sg+f)W9B$%wfn~iy;DQbgO_-kK}v)OZb*I-S9R+K+3&RKu}NEz`b>S&(&=^ zY^6qy_YPtHw35rkVX#7sw%=0(xQJj^pXDsiP1juH7mXuS!zoykagIFgTa07m%9RFm zeqE*xCVoDJ8F*g6Oppl)va9h03sdG15*xk{!xzC%T7Ps#J2oRYwT~IUPUS7}ApMH| z%HqC0&$ZQF=lvFC>*t!?lYaP=BG6K0K)f9OJU#aNTbeRBuzdjxZTfYdY zD%O;`fT0?Sv`*h(-2DKZ2dGJF-hq&&z6VG{J+`PkH6b`AR-sNGg@Bs*|VAvlrA5?qO4ujpBZCn6x=C>~$MDQr2 z1}H{=|7q&@^}MU6e(Y5hmsz2npz-BED}L`1QDCz0^HU(=+9q|h;FH~JCjBOV0twvR z?py~%7tw9!15B0z;4{ShccF>yZ043V1<^;q{FfhUSxZ0x4Z2ZWkFTZgf~o9JPy@eR z{eS^csSUR#$h3+wqv5t$YC&)_^ANgtNM--fp+Tk8D!p)eNeu*h>ucLBKqZ&4E{gDB z(b@h$n1?3VJD(ikR3X~WDDkYPeo?BiMNdeA`NP*hSY zeP7+mCo~)_u*&>+f;;zm;Ri(go68Qba!?+>cxvP??uM(VZd43Ya-26X%Z;Nil7$9s z0(ObxO1V=;Z_kAgD%O<>w)Dos1f!kRt9wpZ1lwD3XxJ|M5Wst~@QV?I%58gwF>Y6y zszxG~?aBvD4vu_)tAIa$Lp*nDS+}f+1aMes?ODvDi4twH@G|P)hO=+h@9eo%gge8d z(c$ocmxv6HVZe&mH&I$5V{-m@^|#+6yUspt)|POg3rXEniON#6c2}9U@%IkFpCiU3 z%Np_9@$kW4#^kty-2*i=8_q=8vF$gf;?Gcz2p2fIr^P}@3Y8o9rJ64h)x1(q^b?G17Ntow&gd;MTHkF(4Ccg3f{pb86} zmB#S7e;Qd5Su`uNwdzumzpAd`3x^fod`marnG(OHaPOX} z8zTv>E?6_RXB4Hip`OGH-Wl382o9(4@O~36Nz5Y28l;#ltgZoCevn3$XdQ?qz2Iam z;S}e8q?JZ1PqHjstbNAw4#cS24V=Hpp0T$2)F?MA;~p)hEL|tDXr$$_T#>+HhpBA@ z7$SzH>j-pA>d-iRSTd`VCoNbYh`AbMj17!P1rT>CztQebTO7Z$yUkf~$I&5MS!fUn zh#Ee7RAR{RjgNUg>y&?Z(PX)=(R6e?d%syAg7&RU%^GlU^j9Qv9~{aP!WKkfL?z<2 z7{c5rX48xjY{M&miVl4{5rH+0_lb$!7ou;5@epS^dkD| zaKncQPMhR3xgOF&9Q#Sd&Xk+TNJI$r5CwcO0cz?iak7_sglGn=lMc)$jjK{_Squus zgr8;@?5;=(5^+m=mcyvh+inGWQonJI{yfL>xqbS3<{0>iTy5svqo75O2FB^#Fn+_w zz^bM`4@-&oe~lcg@$YzXD@4{Rf_LtsMISu#-e&?6+vmS)h`lXIi;91y+d#RVOs9tre(=j@!) z|1W}@SMA+#=i!I*`U<#~juBO*!w5iS|3@&Hy>EwTe6&2&?lRL{tKbClvK|B6oF3-! zGm`2lpC39dl_a5zdMo}CydE?{^0{yH7Gy9LHc7aP=@7=lj|8Pdq zPT)aSke+TVN07C2&SvZSUxtQwZHj7#1$%A6k5uZG>W`###iAev`=QkK2)?2%v!g!3=L=m4Pv&^=bn_c2cw(^DL=fXu%Gw`o`6|EP^nSGgy0&A1%_;((DRvH4h zLZr37tX0cYLE=(OqG>~nX-Fp8GoEuhF!FH}n8?JpNJvZPXzwlRi0_lI=A==$M?*Sx z4Z^vZjn2rLBKeSzj%#p&LQ1Qo-#V{9|H7JDhr?vPXBTb)P5_LjU0SMWT=m+=i%x%< zJM*x9A$|+8BG2_+G@Q<5DaV_3s%Shn){dF#O=EjvLnLpUtJ``mp>EF>dTJb%aekco z0HEn^@yro`X-B4_SRlv=2>$#5@5t8qIS)_GeWSy>S$P-iW&Zu2<%znFBq+b;u$f&t znnotKizb}N4Ho~y{SAxhApShyzi(lq+J;2)%=phu zg+KA~nh>j%W!M`Al^fB8k+c@8Vru@e?P$1<_`?%hSvB?1JB@)Z($co6dkwc8;lyM@ z4Ou5pszc-SfJa`7_0X(Z16d5uKe#?gI)_pvGkb**dac*)7OhTiSLmENbM2nHc}B;- zYiEZrnfu9}?%*>8JAO<~F&luq8&|V^|2%uumvxIbfI)|L7|x(a!Z5S6XYvoIx*2kY zYb{V2;x})}$(;$i^bP|^@+8F6O-*GaMWIB$R58+w`93?q;k#X3!JU&2gk%{Chhpc8 zBL=O_g1Yh8hjdY7-WzgNS58$%i>e{V$O``oZ;jwyiq#T$xibAmBcU&e`4aTN#~pyKT0v8yra7 zWkyq`*1ZE1I7|=quLJzo7Xa3v&(LTz>|F7l(9PlwFgQfcOmHMKb zYk%ASa4fKg?{kQd-8?)p!hqPIq9K%SP@am7Lol#sm+4A1uz^R-=_oT`BHCNu z|3qBA(OtsTs9gsiKzXl_M>OzQ`^C z07Z8dAhDc;HJxIkhgk*^HefrYm&%R!U5I67kDd#HqEwRJm`rZ0;db=2?`WUr~Nlcd^bbRpNcdYO!AxqJN^b+pU7n`39CQX9@Gn{rsG>(#vF}c|~ZpQo?yKvhtmDU{g_|0sTO)FX+bFSg) zsHN^zZB#KI2$5z`CtoXbpod$H+!y*W@#wRPIvh2`n41nv5DJkPb4a_^`B|H$4h4%2 zy&f@?J};x z{ES&JAX9Cp*DGEzeDF%f2!MEbI&^tD6s%lJlz>KOX3X;4_42Zf`JaHZGS0=gqSklas&=a_sB?J+Mx${B2irDShknZt8Xh?w zKdDOJAXe;{my=`chs*ZcOOfo_n1Rq}CN%u;hQS5uaDN{d@RJL1<&Oe^<3{C|Jyz`6ZcIqi)G+fa?@l(2$kD11O`<5R!5W)z0 z7)vK7v2GD7;MiwJ6y#o z@Ji(J;Fs);{&7XC)Q3E#W8?HD!f!{xU^&4I3*6C2G)nqTmGLAwo+VxLt$lB+O>r%* zfh$J-y~06+>*Mt!FMKnsTyU0nPzCoLlqS-08CO$7Rqw@~km61=^Kx3c)%pCnm{yBy`HETbq_IS7 zLKWqFoQd@p69-M4<|muZ&uc{>eT$v=F01-m0;NpTSI15l^~)YBYi2)~&thvYV!s!= zCz~o7Z#~<8ob4~l=`BYU>wU}bAG?gsFHTACrBYD-h=r#fr%ZvTofJzsyQ#9^sibTM zI-+Qn@Y$f>9k>gx@7@KWi(uM^sv6;LggghFQN8VGCJJgDSBRqohf@_3Q(_g(O1=3N zm#!wLhH8H{8@Y88Y(Gm z6WjZi|3)&0RBOV4!7;FT)G)9|__Im2h%9c<9+VC7LJ{J-x z+Nx%XWHNa9k!shj>&>848F3QmyT8E}_vfwI^1a>Z7uPYw(7ulzuMjSCOvYMx{(mj} zg|J{%RaQT#1hP<4QtliD(I*CrLz6(L$7|#L-L!0XV6s>=b&W{Wurt)mBO4S83;XqP zY+HN9;ux2U4_aaLhpCyB7ZLu-S7t|#h+xd_j*2q<`KNii(BPA|?RJO{N7ebcGMhCY z6R>s<=?UWU@Kz`+%;EAvWeZuI)e63MN!YHAAnj}tLQ80*tkr3)?^8t^k;`D%jT7zP zEh_>`0Af&0T>w%EaF9i3les+oNvd2LINd&Uc)?gbBtr~%$mV^@6mC0j4}Ne&ydAx) zWP2T4Be$I8>M)llBD>8x+YT;u5pcFmns#|!xyREtX^17az>|&#aAXGVB?j&geg`IG zug9O~1e|Gmh7!yQQ@Yyg*W=Huac4O=)VvRV!eIt9F`OOcsiNaV7(P--H*~`ze#hK_ z{&kkSclvLlXm#q`+E>QUo{N5Oj6X-`Odm!u!O_J3!67rllZazg$I_jPrNq= zgRES~Jc}YWJ7E=lK5sXGwK52H+cq}>nA#YJ7>s6RIpgJzafyBXLt!_+qBpNn*@&nZ zLn2GwNuncn4(kUG|{O?f3zLb z392(uF)hTE67o{NI0k+s+G5WuF3K2EGX71csXG%T%=XNqK4~x9-Tjt;a1hfSE{Jz@ zUClop)UyQ*ziY+doR0`=YI|TrKi_<|f|X)}L0RBs;z;sp_OALUc*fPtEzH@l+c{&zbL4p1@@Pb}y^xTSiR|dY(u?QYjPw~+$@IrWpyQ8SiXj#p9U_sf9O3VKt zv>^5OQ^a67zy!R{8TU8LSHTflN1Ya&ftH2NRGobXb2lvn?GbDk35tercJBOQ&A0Jr z6A5TUoL)yxOBXG=y@FzszjaYcawjeYOYD!jP$nq&kbTIR9P#pLqkV5&d;I)}mKMHAiBqXmp#|4>~q|;U81Z+O`}X3{w`!`ktnS9`fDBr|*dK{SK}f4Tm$@ zLdc09CiQ*ZhxC2q1l-jeJXa51Vwe-EIiUv!_!X|*5#@r_=khmE)N+v&izgwLn)6M9 z-bRG)-jWJFY`K~mdVVjY!IZ(k|FwkNE7X`tsyFm?{UOj%gxMigZE@4UMSB{J4h_G0 zo)UUe--C0UvJ{V>uL)DexPM5Q%T8W`GSv7mYuLB2TcxqSl0d5Nu3_o~E~W~TChkoLR3V0nU|V}a%pT2Q(e><5_S*Pt_jtY!PQ&|-%_Mo6 z;e?n%FDIt2_YGzI(7xea(^^IUO8;d@hr>^Uy@{V&h8clJRiAJuzmecF)6`hfu#%b8 zjIXsLiAa5KwFlF!a`?V~XadR%V}S7k|CN{V=I@G_gKGIeEBaxZ8JH~ng_V^i;>?LX z#&=SZ7*4Po!WjWvSa7OucXyvKlsZpjyzO7x$Yd~f4ou2M3?bLaUoR}~k6yQ!bMjY` zXlWhb{#O!w$X_7|C1Y!8CjA*|njut2g1`;ke+oXxBPLZ06a4BrGbv;W&C3u5tPxkkKU_N=NCg=iQ#0Pn`dFpk99O3 zX4!(n8%h`uan{89`M=y{3CD$=?q3ZYlPoLZ_7#N-xHoQ?6HcRfBk>iGs*%*WRkQZj zP-{dMN8wGk6G^c*RkA3cNfgz{GhY?E@{hD4+q)l<_c^-5+=fCCHe8BIwA+-^*|??k z6nXOtb7Q$hm?)y_YZQACRdCQ}lro=POt(%;uk-ClLZ#m%`JDLWu^?;jsQE*IyvoT6 zr`qZDU5NDE?~vkiMpm%zZ*dBE1%q0TNovwW6xqF;H)+NzmjN5zUag|hhR`EiPl4p+ zLcF1l6iv44xepJ_zh{P?v_u!cJr}6hsl4!%28`Arvb9Zt<44z&6;WQ9_3P@HoFAvHTc0+lg?`2TV)s29@BA=sm%u3hcS7}SOK|Oe&T>}ct}o!u z1fuO>#Nuv*_z8dQ={aBvIm=CUh@0wv=dg?ZGMS4HqOew?jpYZOrHA?8nEgQ;LCB2z zYtMp;8@T?Muim+AD)0qYKknx8tm6KfLJD_J`nFV%`9Y2P165#FS4zh^m!{#uCWAmx zts@$T1UlQm$)9hbwbovz-&(DH>C@a2DW&)E4^#n-yUf*t%!hLJjA?SJ)s1aeSHyuT zK-7v}d&gwDEAR8OXnIt>-}nN9l@9{ zc5JDmv7E>h+C7M()^^E#k~WsCmc^`DwbZX&@0z$Pe_#zQU(W?Zr#?YPi188Mh}Av1 zK6;T~crV|5H5|xn{bsyK_!!t3oi>OfU?7QebXbQR^^IQf;~W;A(hpop9SCVC84Ln1 z>K3u_**>9x+?ejjPa;ZKPXZ+DEvK296pG)IB9Z90a<1!*-J>yC}<0#UQd?oa)t|nVP zX_&WTvon+8OS&2oh*7W~kkNel# zEpAWK;bMDRxd(dHt)SeN3~D2HX*m?FeOYU#9z82>Wj{zLCK>gzZM{P3^JNs)dxo)3 zrF=N}!yxptvaTd!NWr;-wJEfd*kgyvk>hK!hC|Ih*ZuFly*sIxfQZ;?)sC0Du+DRj z`<0ldB}PLV?vkh9Yxfoe1bl1PcEUY-!Y}9${;#k1YyXPL9b__aajK}O*t@iK?Tu{C zLdcTGDYw?ELI#kJZ8$Y2S0Sto{rTxk`Ez4m;x7juPsUd{>Y9wRSG1 zcmKOHmp>rNLg+$HI$U(OR}cWwpRZid2Bg!*dZ*XK56(S)q+pkh`$o@L2qAt>V|2XZ z_xGHu;M0%Owhh&1P@5x@v&lTo8tWXi{Z?aQLI6}Ug2F#$4{GKuPaVY+%#x*v4gxKU;6l@*u20R z8ZB5rg)fM1SkGqWMsW9S{*()EDx;Iv$WiTy9`QL}2?!rbr3cS$gUXXgRE3^%c(^l? z5$m_N+l575Oit^U^*c7A1F#rQs6tv9B9c97f5dl@o(IecO@AV5Zr#kCoay_gzMkgX zuEVYVjlH-Qsgv83zzkMPvRBCxg6cwj9vKJCLiXc)$e<}=KsUR*jEpw*|Bl@lgTYEY zwS&H?qiaIOLDh1}CTcUT5e@$EXj-V%>8JKi`<1>1p>fcOBsoI*8PU*M7|#ybHgQru zM33@(OLVs*=W@eDND>>x>J(d1yB35g96kTBBab3BQ|y-ZrmrwOTx=z}Je?ddXi58w z>HB^J1|@$)F}~}Y80$h(pryJan(6;s9WEACdIEfx@03Gx=k7`+u0uvr%qrU4t z+=L-ZylNvZW)jDzSE~?Yea^M*g)UBPHmc6HY%S3Ya=0a5Ot`e|>uw_%krx%{#{IK~ zE)6MkA~s8fUL`Q;#pVIw-AmBtR_yZ~&%z4R>41oVZqpgl=zl6x!f!MUzb4O~;g89w zL*9?8^%;z%eCflRRJ4((x=Vu2-J^M6#boRX6EYWXb(iQbhWb+?2qLHR@Z||mLfE_% z&HZ|43Wy%cS{Rc6J*Uw|k61){pRy`8fF|J`-C-G36|H<6Y=Fb8Y4Da}T&@wiI67kH z+e`a|#fI;ZZB!koC7+I8Is{S3^oD_3V27G!AA80ixeWq@e2>uYqIpQ>Hm8Y%3*skLlDWJ!vj~#|=!3#hTf!?S0m> zdTJ8Z(0+-tCoC6G|emynL7fv1gtl7HN~u;ZrfDw{w-gLXmN zRJ&l|XaYayP4Q`X=c@=*M4C}sYf=4z8Ju5ttEEM?+Sim&jmp--(t4i{0(SF97?3U9=MaL;^*=tHUoTY8 zRvIg7K1CS*DT`V_Y*;?FbwU#Ie?m)6e%y;K%VCcjjjc!GP$!Kx*{#&uVDG$A3Y`@f zZs!Q|+eX3PGoaGrf4SO(o?g3JF+FP|4(phw$C$LY{mg@q`grGn9zuE($ItVWLo7nz zG*?v;jupevy>;-Vk5M5>W_Lw_Fn2|_Wqq#~&2I$GKN{wwbNdGso$#g>T%Y?tsFNfTxF0r^H(K=wI&dg%O(PwH77|J(c{! zYp*HMRhK`wp6&9fYPc%}{;kT~axD0eKer)jViscJA$&TbU>oW{hNn&=n0OS?WN|dy zrkA>Q?l-x4WFF1m7YEbxh%k*S+llJbs#|sH;Z^4vigSy$+20*Qeo8BkeEcz^p@wi6 zlSf~7+lC(YbtGh5csOSHy0;^HP_=`V6*)8DlG#7Y=d>dNz@c8C)9n9#4Y+)b=osD| z3(4|+C1CmW{rh*f{|!KJ}D2zi0;k?WNm z)-t06PFoHB>zs!R@!Rrp)v@gcIIHvn&}pFU?PK%Oi{&l7*YcFL9uwht>KQX9WwbDN zM2Y~-w{w}BKs6I3guZeyLg?IbbhVs(1u+bRy^gq(YeHEnX}F1XCRO{JToWKwC94P{ zgO6+C{e)?Wq{gpMvW(HhsZHv@yI&%S8_dy4#OELLAjCAjd#~Ai4ogh6`jVDthB@7z z!575qgK2Yvd$aMbD3!sBUToCPNOA0w;@B~+%Qby=K@B#&_x_T9Y|k$xBF_L!i85)( zs*gAXhExvDJ{&&pN9~w;PMw22r#Fu$3x&JR8w1##a6fkX!!zoVxYsm^#IS__-Y@vO z<-A-mb<*o3zjd9w&$Rr3ivcCzHYSI+Ic`8T#Bl`ai)FQxdf)qy`1Qwh=v*SlT>dNZ z7;40h&W-okF_QT+SglqcM2)9@v+UiNa8pMidCl}lN}ZdD;_xZN$mYxC@79Em(>*%e zsrXLD{czjx%S_*jlR$%{W`kkk>~ovaw^5IaqeGO z3THi;4_(@)^}MEgDg5g$ri$!Mb0_c`h@9n!e?O}@whrG_aV~IB363N=R!3ld}uhaIcL+GnM?D2bJJ{<*JS{gUH;yC z*WvXl=A8Mp@3lMeveIccnE7wRZNM6VU_LmAc0ZwvWWi|NZbam?yIl)s9Ud6M}Q9-E3K`wLTLGdzC?!*Ee}IPqH!pG@Srv^8tTOOwt899YU` zhhS~PzoBG3iV-)7E_Ia|M*#})zgMpz`dd4qJe|GgRt9EpI!C5J`e4`9V}}ii6WWiX zFgFv$Jwj{(V;DW*d12Y1jEs%w?58vByXmz&za2sx;TPSa!uR_FB}vo|iZ%6H6KZbG z8s8%Ab7>HIS&axcf+6+S2zb5K>Porc#56iD@F0eip7X1FMfM}G$R?o?hjWR7a#y@$ zNDy)C`c^F_x58#^pV7H)j-}j?_FQO9lt;8ok^IC2ZhxV*7oe@G6>+wdt=IOPW;?v~ z^Lv|#3oXRx|Nppp%cv@&^^4a4rMtVOyF-vhTBM|;ySqhc1O%i*8l=0sHr)-I?(UAe zJpXgX9ru1v$54?EuKm92ne#X2L&Roitcf-&6YsxYY^K4wg$4YSsOlvVo)h@YUmTY? z8AJy6<%^aa`X(CaH@DgN7raMU_57Lpwk#&D=x|_wF40c>X;LL+0@<-k8m z&)g$Uq%6^VDu^EJ%n_RubY;vtDE;#vHRnn^&X~mO#=a!QH#`>h)Mf)5y;B+34)DwG zh2ISeYiG>m^qoqMT9evkpHmHJq;k9qpA|1&Et>>}zX%VhZ9tIs9MI;;I$p!U^z-l9 zgKNy6S(l{#+D}I&%RX>Ou$rsOB0GWJC_XM#wNkUR%ahEIRY*@QAcZGUr4i+nM@%-`c5~qnQF|&LO7z!tWjhbzs(sruT3U zeRzyCB!2Ig#)1K1o5F38+ngJDspNC_`1_B?NZYygT-IB=&;1dAu(fhQ)wSa2S0TD* z@J)4mKJ%qHaM@uVisEzGj#zMhT}s;B0Qp`h{*1@*nOH~pe)|TmgSTTD4P9tWK8;W{ z+V!xGI0(qJ(yqHS(V0qK55$I%@9tu0=O1b2`{)avIb^Wf9kG}~LwzD7T8S^b%1i4b zwhb-lq4MkW72;zxy$hi3=iN&mys=ZEy+e}1V(!=)Sz}zk)AIG8d>)Sum^(FSQ0A`; zZrWsg&;VMI?z1t}EB4-px^t^674nIz!EYo*%QRVxue-EK(E|*8Nl^ zg4fL!N@XwQ@;y`k-$YYXdNTiVxcISdR9i-z2-7)^(_0{~}mq@tv)M!be{oVoQV4!z$*55FjsI1=X;(x4|KPnmjZevf+)2F@t zwRT09$Q2<3&VN)9Rx>YO3+U%|8RZlk?vEFX?j^MrM9v6?k+El&Qh0$W!q@ySa*bQt zE5XHZF8se2M0t1Pr|7bBFc=q?f)&WgOyG(vJCsy*TB}0X30A(V!cELkC}Y{yp&QE( z)YqPn(WJhTHDomEDqC$(p-xP+3So`VFrUhI?qcD884|4VLLX}!(MFzTO)y2@ zXMv$8VksFx6yPD|>^oo?tT91iDf-CTGakAkcBaaG6km!#F%^b5mci?LB zoxkcu;8?y=r`;w(!FEV!_&9>9kzcD}Q&Vmd@yV;`*|9kmmVU%Hs;6*dt(dv|;a2hB zP9QAu{m^7%tMv+BQUQhbV5QS3X>$BqG`4l#+^7CZe<(_Y%~u7|rSqD5rfJ9`#_ctb zo{&_<)IU4@n^V_#X?}_V%?kI%>2XP^Lz^hzCY%6Nv_0G*TE@gG4W8n{*ED)UHVNey zKYr)&?8-Nb;==MeA~9NT(*=lPJ9pm#O-+emK0*a!1|0%&tyJE&vTNh#d1i)U6o%q< ziu~FvxFzwLhIyb8%zx+k$y6r~mN0mVz}&JP;Ii=<^AFDRA^pqmZ}B^;c@oomI=wFC zDB9tL%S;_5J6dFV`EELs^9OC$FV$h5D_2)!F{H&rrt|0(n>txTs}+VF9M`S>8~xt7 zyYV=Z_fe2-lW4U0^ka|D)QO&mDmxV&iSwCgrp6pQr*`HpGZ7v3?#&G#7<-ZVlpFRI zVZyAUqj1VS4L`loR+yQGzGFRV#yy7}BG#=57Bs~66X|K;yrY7&NihpTgxxp~qh#m$ zY#*OU9j{_dU$|Wyl6w6xjfsw~ApAcW(1CC*=w%*m2^=X8jY*5F>vqj+T>35^uWKJbU-opMHk+UUrd1aHn|3D3GWsvw8mrZ8Q6<8jXoA z`wxWe#OpzqO%|`KNbMYT`qGRN{__4fR4vZpm4Jz{%!5HgaWbQo!{~14$Fcs*UUutJ zfeOSj`?kzw+6#=GaQm4x@qJU>bjQnAy3Vkr4d0jZU$Wi~+qS3hR~4R9SrQO2Z`sME zlKs?R+N|f}>m*)&fDSgFsLszYuMO)^J1vNR_~yKW7i0TO!~X6V%H`w4ViM-g%n}w} z7;ab|R)VjyKmjA(B6S#RYNprxO|LW^kA`hUUHydcaYlVLsx|{}YsnGIuEgbWNs?$+ zoCeZQ(p(rqrLDdwGje!OAh2zq6XZsMg5RpY|%T zNIV>hZr|v$hs9;09Z5Ga@xyfwD_^)}$|qzwJswF-KX%D7W9*7!>cB-|xD$0jTXT{}!w@xe5t2kkHE4+q1amVRKArklvXg(YN5+E-2j z)*JtK28=2gZj(vDc!A1IzsNk`^i`@wG;BMRln**GG&Z&jPsafpuH@_WbK)Lw`yP%K zsobGPG;nS?^t!#WqKt3Ng5KLE^DAIMfcyh-$hR@ApV?|(Ln>9n^$-6mje#1A0-n=y z64*zqI@_+yt-Z_MCr}OeoZIZhmPOA!wTGet8qDY9=xBD5|D8bxm)*NGZx@Pu=LM%} zoY#y)>1M`%om?U>h~o5dZr>V1u{jd^ICimsV7#ejEmgXf4?YDB4EUy*x%q=r_hGMr zb!^M;^l++UZv0NT#?hwKJ{|?n)$wh1me$4~QuAouc*!xHo<>7du*j^Oh?66dw#TAVTZOdj+(4={xN2jiRNciR?;#k0SX{2jmsd0OR zr%_1v&vHZMv(i%gr1Q~zS}T$?CzP3|5Sf2zXS=Scxi*-ao>;MHmOpV|RQK=8(H57e z!q(H$>!#xDU2rx+|GN6_w-|;-yjI<4X2Ax}a-kI=@TM+c@iHHn>5xY`>jpwMiO++~ z;2BJ6nquKh*6LLtzpJO8hP`A}F4=r>oY6xqt+?%=TP36b#S^JNT6~z@4(av6C@Uwn zd=!tk3kw|lda&BRugiDV-m{5s5V-U7{~M-Lc6etX{Ntmv903X-7Oj zn0`*BOcc~CZhe_Oy+4ZVRZ?A`jfqw3Uag5uQVd!h(cf=5ln(vgMWXsn;u=bb(#}v! zuRim1(DO5PGZ3tjHWA&W!Za~a^iz^tJ9?nv8`_Y}>j`(UPQTxTpkHt11qf_E@UHni zAhAU3W(%(VPN*RI=dEZtdc5be|J;S;dh*5j!%oj@)oAy0UNJl=&gK#&eLIfO^y|?} zys@F?maz265!Od~mLCbs?lG0S81G@*OB8bd>;zI>fMY}QH8VQGr^eBJazB+s$=Gwm;y zP~L{|VgU=Z%rI z>O?f8+hP-Wh%KNv)wr!l-<&t7x}}x^byGxG6w+shN0VQCoI?WZJ^igizE1E3{ndUW zrm_o5UO2>kez_%5@{3AaEmHv55foZgI-g!d9GfZ%NnfP}ja9f0?o!fjwIfbs@ zl%}Rbn2w66<6*Xa3@rGtg6Sdj{+{6(_nps$Ev5CHj;0u-9LY+jbCMGPVNsjmv&CdT zPdb0;qNOt+@C~F-UHV%gpzkKUJza~-59p*qf4swd#0zC_?Thv|+}jBqOjV&qQk77_ z`n)+^P9TX6?q`?Y{Ar2-l2X^$vp}ffXy(W~XwaM#C;SrP$WH(zA|pKwe$@yFaN^%3vHfku$|frX6kV zLORj#hATFlA}=+~5RxvILyqR0I@+QFhH?VX2{joYz)gTpuV6Cn979srqM&SKs0|9w$LBq)bTPcNi`OCOsJOXTPFg7aV_er;^*v{C z`E&olb8Hm8f#Ctm*;2N4hZR`MWO?{apAwhRDH|58PwnjE;xX;4UU}VgR6ev3N77V~ z^KM>kl|J=Go}&6*fde_w8vhSFuoeBEh+ooZnF`GJxFoJj za%Qm4mdFua;v3E(qs?Pn?E;0Yfo?4`M`(o{c3Lx{T<@13Y|HqQI638~uszs(dk>O3n>Fk^Ok(^!XBH;fdp@WRID*eMG`s(+Rl^_mDB* zmq|sYXV4STZ_&+eC5eGt$#mxYoQD*YZ84~EL>a%n(2|Aoa{ATMhCmDceXq=|BBF8k*zAFNea^5$y8 zoTghzrbz!26HkdmAV3I2Pj zZBu2rcraOC4>4^TN(jB7PK?$EA@vyu*1wi8e+rqD-Z)x9{DzE?O-W;QbaSN=xR&L8 zqTyg%xDg)pe+WW*nVFl;@Kn72#j%c65zV-vYfX(m4Z~|4S$QoKNGb(`O|oope@kfq zkhXzTl0vME28|pJCd^|m7;X-rBhZZp-dxG?+LB-*6Ey`|VAo>opOr*%{#PKxp0UP= zyu2xD_-uJdwfJK{KO(i3QDVURId_Of8uyshbn_#9mF~5-U+HYL&1VAV**%&;10k0TgD;j z>;cra(Klfa1@*c{b^?-mF=(z_}jc3@*@cxW9$428V=X;z35uk!jh9yX43RVyk(Tl&ySxK&h$c zUi;GwsXIe;e2eJ$L!tIv^>YlEcVillm8-1umrs#YF^|ZIuDGzI$j|@W=vc7$Izz6F zIy3DaY%J7=k7(Z(HlI~9y;^0p@`=z9Zo7nFzRu*OF~v_P2>g2~K`9@5-x2k%QW0Z3 zNeTBFHk_2PV#?k<&8Ag5cKEYPag7=V)XEV_yh{2I8K4kTupM!5@e;Tz z@Ju0CAxfjB2s&zYlv*@-$!HKTVSr^BxagGcrv>A)5<5!15A)tcCCvN+TVYfGbbaEq zsj=iu8lH(Og~#_yP1<&FwQ->AP{9J|OUBwknzvt!Ng(DNM)g0@1tCn#Du2K{FyGu} zRn9u9LcfxKg=?qzmd;9byL#`zZ@9Bwh(Ae!Rd{9Ao4lrLZXRQ#6lLqTS9L>M)h5#A z15&3i@3R~|TJFKh&Z;@1K-hwLMT1-ToS|#$n94^m`-+1<%g)YTl&tb###Qgx_nD1s z+C;*3oJD*Y2fdEh{gs#l>GEZgxwU0~r0>q`T+KLfDdGEyOA}f4>XjMUR+DgyYkpO23l6rXs5+LD zyhM!gXTW}AW96`T&_(+*UJLBr`Q8nGkckGB_`ZT4i)3C{ihhIn}|Cc!7|DF-*{_G%U=dagYVbk3<v&$_ShqLh6g1J=rgAYX;a<@>LEc^wFI_B&z9^r3<4m@W`eQbHb zV8xXuF*A>Pt+?qH=WBI4-=nHnY-TiFi-@ECWcGWT1{*NS)pS`-1%w|D6-gY2<$i_p zVJpsH&>E39?%ay7N^F?f)HZZCl7a^Ge53&AgMfpvTKu(-yqp%wyA+I>FH;!?I<`)G zfPb)idI4FYUEGi}~snXS#e2Win|`@G)?A~$`6rkXpP7y>maHj2Pa zQ%dVPPBquC~l15{^*?;3+$Qr*(%QXP1cQk(4z}W_)q2|A;tyw^Vi1FJQ3Aw~XQHHPR?= zrAo+$V9!%hL!TebSQTlzWF0*tzxUQ^9?*pe<#!!z(F+?Mc`bSCNO#^pGVezv|6=k6 z=Ps|8EOz;whL0)+^2Yw@QbxvszL}Y?)@j6f$xMy)mjBOabz8t4LQHNae4cdYu|rLZ zV3~lea6#Gt&7z!J$4mhx5?-4obG9ZcbKi2ZKbYcNQoA!Xk zBjBt{cy8Y?s)6GZp|NdLGf1i&%{L9u)a)|-ZR$HRoLiT^0HaGcC z(X>{3l$m4Yib}K4egntj?lt|y;kcTM&hU=|j^^&n6;y073=@cgV4e{f%gGu&ULZWC zaMQ{E4-AXXa-nI>(@StAS(RtT*`CU=uM#7n3({j^HTF-ylKhmlpoPze%#T za&;bj5&XL#iayROd)zMtAGluD8e%|x@PE6hs*k~F1LlOu8&&0tHlWcdRiZ_uie-KMY~Bx8H8gFAomB7}7QN{42jRSUmEdDS3$ z4qAxyM@Z)yNyuE6vp9#FdaEO!w9ZhQU>)z!Zr`SnIUX=C-A1^clq5p4r5hqxR35pa)AZRunhOoAM>I9pIa)U6 zh85VB%~Z*1SR;uL9PU=<2qOef z{s2kxV8f%{xH_sjjuVaCUWO$mHpO^sz%5`oh1u*l7OSqCsV*iww+0+?z*Ij3rBL@=;su~r3*AwdvgpS{QZ;O zWul!Q1ZIf(HtNSp9Bq9aZl3%VvwPOf$O37FFmJ%z|^?|qO7p^$DY_k99Ka<(|q3oC$ zX@=jxBO~FcerRI|=@LeKyhQjxyU|ao)_H%M>dv4rXV2fBO72_4dhk@KS6~hR_q))) zWDG_fKd}|zvq32|WxbrXc^^%QN4CeAiGz|TIAR=W`M7IJ(9zegywnzm;|MxQF~R(O zOP&&AK@*nL_p0&wqI$SBP+doI05>RYAgxtJEs$UDZ7R;u16PW`QI`FdM5b>1-nrh3 zufS3^IZIvckToSka1maLZ@tJ9L-fyOe)=ToWb}83UJ3otM~2cPB9pW;jm1a*qm$`Z zypZMzaMzsX;!nHDS5_8BmrI1=jm|(bteup+LqG~DcPX^>_c##VhDAy*PICfa1bEu}ap`;cuoY*!4 zOMzqmfLQgGfV_>91!d#t6($K}RhmXPPK4K(pJ)V!haXlw{{D|^T8eb8-jS#wEPjY| z*&m1LVS7cJP_od#P&8tH@Cb|=C)dTGswxIm5vVw(tg5jrjM_N-SNuXRXEtgIPDS(s z_YdcB%I$L&wlH~yPjn!pME9=QUXQ<6erqN*eyn7^YW^qHc>QlaUfrw@6KJU+iTT@y z5Ojt)iMlhffGAbl6VbRBS+o7=kP|>Lb6$xGr3`XrA(*q}@Q;u|QMRlXxb4`SrkdnXR%0KsSi#QjG z4$w7|YKt>qIv(K~nRTmMMJyGFG1zI!TuNpIxEUiTzQm7=3tl6n62_mZUAxGF$C}O4 zs_(|u`&Jgu?MJZ@Hu&w3ops=$Z|K(%6ZvPtijGBQB)9R2I+>=&e;X)IDEB8>PBW`z zQu<`QPokF4NC`-eAH`>H~lmJQ+ zI_Q*H8Nt>IlSYN=ZHF&*FdI2r2*CCYSrReh1HlazB)9zy`y`+E^Gjo0=p;2SN^IKA zkm-wJ^!J9O6^bGKKdTMpBDi#5NbG(DV}q~$mtM9lvp3gUd1g1zmSAECBh~0N zJRCM>q<}=OT+l?dM4C?huueU^zM<_lm>$GjBI?n(ixmr z5Yk6C{5pIuS%6*`5K~eAHN=oLEYvj34i2NwvwqckJpY(>stG0y6yuw8$W7H~)m|F3 z5|_SH?tPe#C~w)xt(YuArv75p^VvC0s}IgPIg4dRf*U_%*D8uP5U9!<-MFfDO*{N= zyPegbTawFqOM}1I80UqqMaE=frpgVqT{}TcLdXxDZQzhUM!_#>p<^8BEbevJBtKJw zCvW^4a=;m|~)Lipfr=h^_$04)j%>N|?^zq^12S=c|KdvP01pzgcByrLQx^*KBd zP|J}`$69p_UoZtmBHXsy#+fOWc(FKWrmmLGFFJzvWBF$o1pY|LM&+E$r(&E^#k(;qZUfux0aK-cL+Y-`}fhhX`*b_ zYi*E1)!;Xa!C!}o^tWCwb6gN{Ni@YsRk=}pfr(#!xJy5AlN*cFhhQGF;zCvCFS`IT zD)4&YJE@dv99=g)$>6X7grFjC)G~;(KqxM5f%7q#M(f@kHFNzIiz99{cq+CVg$S3M z=*1<>`ycAAyE+Szoh}jP3}L`i^!N`)Z)xTH*5#F=o1QKjWHFfm(beS=#%kxE6=o#+ zt!qjxK(-j6CKnM`hJ{m&ZU={}9nubF#R!v8{;v~@_IbTkvBqQ8_SLFU4o&aRuzQ)MZ3IW0% zj{d!|)XT6Z4a*ktTpvtnZwE{zH+@OmZXZ9Wn~=NZ*Eet=_$JBp z@7=a!^*{Wi&E_9|a!k!QuZbjKSgr|G?~VRdQ#UAH8NYAw=(-o$U!{^c)i}k$LrX0% zpiP;mQxsQF`S^*EV#&=5SvAXQ+y2MWD1|!p%W~wqh(90J`S+n$J?CoxkKz#H*|F}L zvB~}22Onk+l^g3v*lk{npt;7i&}preAY({Csj*oLcpt0aC~LY*_E})<{w=bq6(jKh zaR9*tZpd7f51?Ay2f()E@2p?lSNY?gPbi&A(%y=cv!~n?3X7TSq45+NL~6m;X<{=( zm^g(`32A%YqhB@jf;;^oRtin!aLcPzpBw$I%a1?yV~Zo9nD0mB}!4Cs&1NIdAzM!Qt-o=xhhSHIKz_RUITgVgQS_6AfV zNYM(Nma7ae1qw3GUB2F51nC6DA;)G;T&Glg5HdaH+hZA9*PR9x_w zca}YV0~VY~G2=ff^-wH@y}MC=hEH8<>0Gcpfph`k2Ty z38dDlzC1d=(ZMAxO#OdtvojjVrDuv3LCY^MovI4XADOAf)jD~#vT_?vH3`AeuYZI@ z0*kATbijo~URlEid5d0-Lee1>>R&N*@#;@~wNC!NkXyLTeOpV1OkSHqA&o_nmf24{ z-?_6zeA42)@+AEH-k?bqZNAG*ZmRP%mP&02SM6|c0(`^rx! z%z%L&RlQIi6fAn#@pat|=?gNm?*{IvWg(eN!YxMRLz^PTFp+WYug&r3+4HUpgNWp* zH}-fdQw(lXst6ZGlbj=6S&u3c8VzV@9*WBw8OG;{PLCuu%|VPZgIoPhO~sGCGH_V?a>ij|d?RWCj{#9y zC8Dm1V+^+ZZ$tUB*o%T|>))0dnX-LO{g_u?NY)6Ar3`J>HtejJbI$9dpHLvlerkH% z{>VB7gQLkfgeOfKzUC&2nw?>WW%X7w+Wd-Nz+YF32Ll~0hCeVU2gHXgpLf;a2)L@e zLe_;Z^s;dKy@d<5IbxlA6W@d~PV8LOwS39ik90kPi{GxhA$_v-UZ+N?$0TU(nQ zSaKeE=jrR;_u=$~dXJ74r9!fkI>PU%LtTa1h>vekKDsU`VnM)$K$a78PiTft#Xh(t zfS#O^hh5)!D$$P{$G#~5lx|OXFF5H|aH!O9olz{>A*L9?S<7@zZm*mP#|9&&?2M8TynNJO=Y~lEow#Ic zi&W-nHu0+u!{MD24Vai@L2mEHLAHYlU`##sc_IoN@auRW-!`hT`m;@XkV@f0R^8(p z{f@x{G&s{kA^;(Lz_PE`oV($motfwA4;_!hKiHG zxn)9{@os#PQZ+qY3m9nWNA)STMXbU`uM~zH-(rwTtvVF;!{_zJ3XwztmXw3grhT=m z2AtBdGksmG16G~9${}R$MLKqUBexv>5uizjbJgGmcwLOkK3sS!Msg|i&%D*C^U*!l0(G4eM|?N*R%`De-?Ddi z0@yt=eyXL+-aPY00Ic}n8p>7hFKceDlE}E(S@`R9jEds)Cs4nhZ}FVOMW@6Id<&jCNPZl{C*aB)QLu(AH!Q zc?xscw*a-?&#Dj)uYA$ku~}!`>T&w~^gmpm5uIPS{9)UIx;B0+sDt5V2a!wZi|*!I z1w%7^a{)+drk!8es%wDL2C(&j)a#+&_Ro?i(%o+9s2Y`C{BJU@ex3=E^4DxpJ)t8~ zRKa#1n+R4+!3N%G+^L4BGdJ^0#6B=^X4A{im~qB9n$TlpI-W0$?h_cGXjkN{Wp>W* z2yy?c=N-8hp3olsUO+XLe?Y~s3(w2W{wei;c1BZ3{inn{@|#y!UyZGU&Z0V~B5W$g zZB_ydg!7G^VvJv&a_oOkrf2x~u=I{BSjdi6>WXBPVXW=CL73JF1};Sm6X+!3u~@?y z=bj)D#Ugm)U2I8Bv9wmeIHxH$mA-j+c(xd+e}@tDVY0z#Vc*7GPF{5#z+HG!lZ(?O zN2B`qGzd;gpEdCXb*t3$pZ=x7b4ahF`P@;Z-d|+VZVlt5_cJ&9@X#aMSnW>>d>T|4 zo(BX&SSIP@sh3=1QHMI}1czy3lVx^^{4@&dG4O%*tcS80&NRWbz zf&vM@l@<{(?BkOw*pbtkU_5NWw4H7IF5ww)Oe6T7EG46;Lu(|KxXYbW-zgCNYgeSr z+<#luC{$n_Z!)5V`4s4>hXb{oy?Tfmj=EPi4|^s$oPI5y3|HIe#=UO#1{8k~4Uq+l zsx9Ko2wXB5tk`_UnDuum)}hSWtAa&Tz+C8xRqorTd6$ZjRHU?9qj`Aw988^fZfD+w z*JB7Ch%Rv!;G{VQY^&8=&G8l7A2W7LWUmG}!NQ9eEz4+MW~veUCfl|C|e31Kk#Pw(@dg8H2x?-H5NT zWR?J6M|74;`MC-q)2{QSJFgz-=%B`6u~Ojg?9N0H#gk&>{CA4;D@6HXAgDi(GhDQZ zpdSb2=YVLR!?MWDUdN`b~O8Tftb2rpxQ}5tQFu!nXEV%5UZ((eFv33)pW#(fU3*Q?y?IC=rX)8Z|ru+QPb>%VIC^00j6@Guz zzT|PZHOqOGtK?~#C2JGG3D@QuV@%^c`Cx4m@t~FOu8np3`-3X8rl+;1RuMHagpelY z@Cg>y(+Je`_*{+Kj(2w3r5w*8%NfqMM4Nd}7zL^12QKi9#F=Tbv(6!cs9fvmTcIGn zoD?JV$px2;rt+#KY*~NC_>{v}dVkIQq65Yr3y_Sknp-D9K3Mmor>PUmQguJqgO|ny zb*-^ml{;-e!zVqqK1znCPZ>GpCuUnu2xZR(Za6p2?YmdXH&T{dzHqxu~9dc$yL}hLLJv>jNVIhlvKq)&432H(1ZArm9(w zLsR9Qt)>wYvdWB-F}}=qve4bzm#Jw|&_jrKNfm!l6~B|*lk$8a>cVKmxwZ3`T9F{;$>WVq>>5vNAWd&aPWc1 z1gtuS0rdcI@I$O*5=7jGQK+>Rtt}Tc~5CA*NZ4Yxm=pK25{#m-Y zzEyASdE0WFcYPZIZndpu|CK7`KUPm{cv#bwpXOCi<4nWUvPN)sM{X$@1>~57yZxm3 znGM6R!}5)Z8x&~DnacVr)5=-NidMaxUX$2&(=R*K&`SC+=CJc-Db8$MzfY5!X+-EI zurtDPp0nZYag(k4QP1%Vc5E~h*NZ;&%@Q+^s4~IFDv5)GvK}9`V|tKS#}7mU!xD5^ ziLE-Reu`S8;xxa6>7?3fIJ#MsJ6|j;dVkON-~rpJ86=Mwa5W~7@HpN2U3p%Jf4oq2 zbU_uTRHwa=d0kZvu9>-utwKL@d%y{|bV5rr`{Cj~@kw^M#qej2Nm!1_^C>7GN!EKp zdLfkt98i>0s?ZF=3o`)PzHNG9hbY=_hzSp0EkhmdCDfDPYbSbu@2h}gQ3d?t^@{uyLhh;Z^g~=SxNJt(^ec}rB9x&tH-`gjd z>SelL<#=z``cdhV*8f<1jErjB*8jXPcQbvJ*2NoPw_P$;Zy$2hArF{ev=WKZH^o|E zHn;aA3#vp1k>%(1Vc);?>~3p5&YRu|Mc&J+D~~xyR9wH8yJb3-95UL?r?(2-BCOJq zi=slnj{&!jeSSa}(X&T@PfXCs_g^K)6Gvb{;8NheBi16Dj|)#U8k|I!mdwT95J|Ad z{OY7Q13rSEaGUo{nREDmAYM6nG4)uk54x0al)!gicjs&rvN&WODyhxGYsHNn&%VUvQ*IdwcB6j(Dik&UmmyK_c2MpI4R#$*sAC zOR@_8!mY{6e_Oqqm!$UmHb7R}ro@3=>-|j+ou2EW``S*NuN1uG7GO7iO8)oGBjaw& z%y&)ptyYS2wEv4#S`Pm2BF4hhH&Ajze_;OTe}}qoYC?k>eu6Z)&p)7-ZxTA)J1n82 ztSMs_f0(WE)m%mV-Gz?Rz5>4#PoE~rp{}c$ef9pknDyhGAMpOk;58B;k1`k{hoUoO z?jpcBv*r-y;xb?@zPe*Vk*USnW;6e#R-(AEv9s)`#AM9!+eN*K@ylCwmKc|9fx2^cdIJMm(vc5Rry}fdQ zzUWx`so5>*=)t++JXyfP09=}$E{#aT-7hG@O0>bz*!R48f&)WBSq>yuIA0gaTK3B z5BOwIfN|}@l>sdiY|GES-7Ym>y4Y506Y8tMS+?{nBTTDC&?R^OXet+*|_-0su)B@jU?U3W>4-(0=FUmmZS>-Wgtv zy*F_&LGD)-yz#O;aOKX{R&0&~3GiM|qnN>WO!Hu^sgmg0uf%n2%d**<3Vn{kZF`Cz zWyC5vN9?Vm2IL17ZN($6Tn9H2#H`evKj5YWd=!55iF2Ttdm^rLtp-^W7P?laA|8Vs zH$(LO9{&4+j6uoh@iHb8n&|Rr-BF4_bf07I@We?2=!Xg4%ulYa1gW0tr4vFdK&Iw0 z27yAE?Q67BEkB4@j;1dDT0P0{iE3C7sdVh(jG>!Y6|d=d1o=&Hbpk}Gd6jcB2MH1N-A&l6|Mk`UtK>9({66kRF-pH%{qTUs$oh^g;PFXemx1sZRWBG`65T6^rlOn>90Lra7p&(AS z$hb4DDBMbp61Q~54Ai}O+~AbO66H(~p7p%cRBO2~y}9IisUF=+!tbX|n~D1l*e$eb zZ>U1bpk0OPqvzB~xVry*Rhx(H=QdEd(Y4XoVhlMBUQg&2ex`h3LgFn@5IcA0?egAc z)HTIKo=`_QWS2A^S+o77?V9!6?|7~b>V5p6Rx+ZOae5~^sVJ=IdirMifURG#*%ji= zB=~^kQz`j4W%@F|<-|Be;8=`JZhnTvdU04Mt@CBkoFUQe5$VEn`*PhMbf4yr>jwjz z3aujGpE#5)ooKn>AAjc)w7H(QQ$+|qM@$!efihb+bVYMnU@j_)goYHA)PErLIBQ$3 zuQ#b!< z@yC_uThIpRlbr3bQ&Bn|;v{zQb9p|K*IBZime>K;& zSa&AVqAb8>@@`4z0?mZcg+Tjw@~^6-Vqe{)2JwJ%H7*p!UrIH)ui%ZM0@0>q9vC>D zBjH>esY6%132r=TvRafv3vFxZeva|?U} zOa*0W+#Q>TquBUcPt@k1pK)^UO!|}KXNGmN8(q9z_cCe?=H__ZBmq0K@ZW?d54kCB z=^?=oErJ%$8<)S`Wvf^82`F(kpdjRst_SqNJBZ@qlsS`ou}nk5z#gVlCKRI8#7RSD z^745S?JmnJoBG2$1y0L>8E%y-qAkqX91B{4!tVi)OWIFjQ@^Ma`{YnG3rPk!S@k6K&>sG^#KJwR3V5GkQ}aZg-`Iqj^*L{L^3# zXe{zZ5zzWg)8uVE!&OCJ+fMu3S(MFp&lmwgY1xAIJ8kC@Ks{GN3fl|QGua&QmE69g zM)BQ|8m$NjU*OdBg}?4Grjp<80&1pp+x--xw?`x6FTRG5;^h3$k604GBstok6FOD+ zsCb~~Rf_wL_kmbg?sP1#{^^fT?9m!B^W&Z{B;~!_eLvqXW16L__eY+~*JbQR{wY*_ zK%~M1ePI87H1}hGsYprq{MFJPMy#yqw5{}2$y-|RPEB0T`}KQFI1a4rv?zVwNREO- z>icfu_}0b9`v!LVkS(7At$Bx39R2)qOz%92!jO=^CO5M*Bs?PHw0A6#t2W-B3W{Og z!AlWp@STKHasoT?G%LO z_L_YZ9#@MsHqsQ;)cUIH%e)SPgcR(7!%z;)i|;Q+Pm`vm$MP5op4vnS8?Y{!Smn=Z&VyK=vYbr8L}Oc| z4g8EXZYO?roB?MWY=Mk01ogG`3nrQ?DGPq_(x|JqccH)F1}magjcS5%15!#^&OaGP z1TJGUo23=A9OLWpGrz0c)Pe2jbV=(>BtlHZnVFx;ApQyDc<|rzr|nH!jqof@Z=(Yy zz=SxeyZwk$E@3Q4r`?MyM07d+9jrtEE4Ws%E5itWLn-4(8yxz83~(jU*4GEs?7 z_rjs}UV-ovGIC^Aw?a=VdxZ}tI+3Ja>%U7Go_3#~5WAGSgd$shjDL1uYXYB*tp5%F z>}$MRVB(2_mb?h1iX?ijC&|k1qX(FVmI37qovDMC!E1@NooOW-K4Apzt!NHwpq0&= zAJI!{Cbe6LmghgZjg2waa0?Wi<%;#N)(V16!>|&{gB#rZ^Z^l;raX6Vae0Jj_KAIj zmb1pqk-QJ$+3PdJXFrrXsQ?K!6)+p!bf&Zfz~79;Zuk(Hv_Rlt&uciV1=BHv(gNc3 zwNKAynh23iv2&d0`oymURehhizi_t!9NP9OQ0oj zX`IO3I8j8EEe|DYGt4j?`D;EwbK5(+g~8{(>w#)mDW=ku2l;wFFt>HUas|tyIer8yjqS}?#?ZhDSBqI z<~_`|c8uL=Jjt#WKD(PSf(KuCF?%pSBBSNwa(_H8I753h!V!8$p^GNrZ%JX*S~v+o zrD*UGL6fNS`L-W(wU-#wm4uy@OfbkCopD57wd8U2$me^y=w{DdF zl+&sKVgW?33*xFq9zJarg`Hl-GLM0f#QNetG1`_)Fo3hq%(A=XKwa!I4K^Q!HeaF%0|OerYfBQ+8peZ9^@CLzR}6-77(# z=d4zgHqX}mcS|dCfN?*N`0t?9mrz)0XTNFEsxmTIwpfCQ?U!2tCPB_e+OH)`tzVOR zH4mU z4L>bO(u1s}{RvG=_u@1X!0!Gk9iO;Bc?IAOMuz#mSsq$Y zJX#aKjJj=%ni%r4QJ-W|Fc}aR2b}~CB`v=9KZjf%IyBq%PIp_OtxL|Pc4&FWX z+H0*jpQ$n0%TkXGw5E+mB7y);ed)EMP`q=D(oxH65IITi@^mRUcV2T?2t95O^>^5` zE%3bPsqqOzpFp7FuV4!@XOC;Fy7k&meA6q_q z-g}}n{l>t2mdv`&!2GQo<=A>1fk-USBk*`(3nBz$GO;zjKc@_CVUG7w)!Q6~e+8_+ zXlBDuHRMYNzfcMI-1W>-#?O2r5y`U0m6hv-k^;&p2+tg*F~tjnlEggnDdy5=u^v;T z;QCOSgsI+AI=tJq*wF7PCcy3+uRx5fjO&=GdCsfN==+=_UbDQlG1-xBnp#->U=YSv z7pOOk+SHzKZR@}t;wSJG`sjyJOFEui6yQ^7sE6n^EN*;h;;4Q&_^F6?jMKDKLQIAV zE5NCI6B4XS9ts3e_KgFTiyQXEB2F+n+FL#XZ3^5vI#_7oa6osg+dEpZ%K;QGlvuK^ zwYBkT!@HG>+y9z=0hpW#35SFSMm0rWrz;htxx2`(b`;mRY8MS3xoddqB@Eg;(R?Hs z>ehL1ehh@GSQMR9GWG)BF$UDbnS1gJ0F|9g%3?k5dF$?BN5LfT{3CV#1Be>on`d3v z8M08FHpI_s(E@MV-`Kb!pQ8|@fcJ@a#s8EBAu3~A8-p{*_W%puZ763Feyhi&G`wvL zIDN`OI{nrF9VrO6d&{4fM#^&LOWMyIj~?>vGRNnxmzKMWGRy$HqYIiCvP!c;Eq!y1 zS+$VX7a(?khBWQ3;P^|+aX;yBK%7Yfh4wT%hSkrE_K{-|WfkgqZVdIj3d$6VN}l*3 zt50Dn95J)ul+o8`7FFE5*CK>%FSz90DSMLc8mAfV#_x-MJOZ1|blIO479bHhdrBxD{qsrOesK9`VfRV{G zY&bA?(AT9WQqi?eORxu7@K(QeC?KU>>ok z>51`r4p7t|v`?~`ZI~&wvzp2qC&u!&ehq*F$lr}!8%X8YGXT>JV00~%VK;V#BzLIk zoixbA$BzRc`97ryCz69k&|#S7^E{O}C79b0y|5;{+=fP$C3rtBntI@(S6X-DzyiM06RQS`(D;WCAv{@s?4`@ zC;65YZ~6Z3`KxQme~b11Z*spnJ)gH?pM_h9C{B#(Q{#q@?0>?3N;Li?-Hr+GeG(?A4t&hd(FZ3S%#)vn%w5S9o#03+RsgXcD)`e^M6^Md} ztV!>SvW{V6a|CPn&NQBEA14%X-l5JUUUPryCA6O8_m+dn_ylE=xl_a_^<8t5kz$aY z89xe&z39ylePYvdvG4!LLThlo0?j0rupNPv3fHr!H+q}4@MmRqs^Fi8&uP({B{jy; zdLze6B=kcYI_Pc?@L`Qb72_p`A^w4_To!ngLD?ijtP0c7^j5CNtveB7+8VK9<3;GM z{ND^OH*TR+O4qnPX~pcpIeK69VKAZG`vod6_;Rlxz3n8|1iE%$pyC6?w@xCBeK{MhQ6`MvMW=5-;Y26+`-*|G{ydO?CWQN zBKbJegMG`3-0Hq|rf980==ulsc}Q}-H+RbBQVFbEuSx#3Q>>5&D0ExEe}`^7YSb76 z@MV?6-_B1$lHs&;A_Sg`$@XEq-I-TOO0Y?zi69%`CwG5r_eVd6Rl=bL#^wRAb_(yd z8@4YNxJ0si7y27A?dz*88L#k9wRovym=Aqn{@8CzY7ZV(&{0`(y%pHq2`YnnJ{O0H zz1XoRA2lA>S#amNM-*OE;bByi6g20XE-`3Hra0o4Di6HVSNg8<6)rf= z8k$7G%~lml81D1~u$O3ee#^>IFadSY8_^E3<#UTPyHx5+D zph_#7J*=egme-1YkRolo{A{4ChOlkiXyA4IZ8zN6h)lHWz`nJ0cnDy1(ztj&-7HeK zF~OD++8z;;*~#nu^~+rOjP{RwRp=+n6@`}2j_N$9p>S01z_UmH0pNK$Ny0Hk+Qq{s z3&k${9S1{fzn{dLpTNZ!Nl6EA0Xr6{8{D%14j!F=d_qflQ#x#e3jMm%4euuR;zP>E z^@kPdb>5YRvliXl-VG+N_?3CDlWf;jSUFYfaty>9pQ}Ky_Oa1R8H)U!1$ngEe9Py3 z@$B+rV6`AKuGQ}A{V$u>YlHLHuy2Scd}Y%?Mcn*f$BxEWx`e;*YxAC8vke%uz#hK3 z-oTFAg$$qt1;AIuD?=j?55CVv8mMyUWL`c>IglQ zomMI&Dn|n4n2In+L2PAMx8MoNW;c_!$ya{SLGnJ`Yj;!mzNzMF@;UqDhth(6W==^V zFlfc8@nIg>E5+HOP)?%IB$97ayP+yLa*~rf$nf~-@V@UTv%+bioA`uD>44-q)IE(M z)Cmu71BUKnkw6o-w7ta~c(gIJu>vAW&DAv+j zcIBUDoRuA3Gt>(o) zrAv_5Z!tuIvk30_v;~GQ-oTlNFK>WE4REZ5Sjyc)U9O_N&33SJU^X)hWS*~1ga!E; z&bG>rSYPD55WTIT23V7BLr>aWXLB4yGJ!9AYd#@;gS;IKq(Bj-OWZfyW73HmrqvXVS&B zfbs%N_~cS6>x>RAdvj=kIU2lTAuXn^T3_%=J4qEhY*qEpw1h#f>L@XqHq$95p@C#w zzxunBWu%dnl@=SR`oJG;Fx=+I6qisDcM{&~!U=|yRTSj9HB-bn8lYzpACeNYt#UFL z+i8dQN7Tc;AJdqr4&4YzShY$^Y)^zx(dI^8RK{)B63^xndj&6UmnS2FR{7-pn3 zo!9Daf%J%y> zF!=zTRF#&&idCg;yGaKqa*BCflOZju?g|%6Vs7ZK^B97ETc-jVA{f(IdhQ94SfK#W z1iGEKNZS`ZL8L`)&sCTxAov@zI{G_gST@f+kfs zdSj!bXRjqRjfpA#889j~Lds`!gfP~L>5b{vfzu((Ws;)8uKTJREaLYVr# z0^>ybCyS$;%q4ch6Z6mCR|T~X5Nn#hIy9}mqM9|3c;!rr zXg#{Sbi=?Ami1%pZR=@Nm&zJ2 z^0^V;ES9G&Qy5np&HmrZ&HT&)e0 zC4lR6NjR1xrzc8m`FwX#@_gU-n%ZO4eIhT+G?GFCHS@49Y9E))`$e)g z#Q)XzFPI?u0Hh9q!nzICMs#l)xuDmRw+@=MHU6x0R+qCVuB1I~2)?*JKPqOf^(Htx zK9@b)@V1`R;(F}G5p79lK2lfp$=SVZo@{4Gu5|E6Hxn$&$hFG@$oBtcY_MNlkF!r% zW_wUT3#azZj~ai_h#jGZB{2S~RAjf$elWKCbCraQ%*5!%Oq`vd91O}rk#*euLSw&S zo=*`qPzcADSn8i;r}#uwEHf*m(ApHo`!)qv5>8XJXR`RA6C8Pg56C95JEKCR(^I%QsI)*vv!OdvumXhnZq;y?GtiA z;Sq%fMYQK%pmo89yi@%Tih2kH_xW*m(iVD_5t}40DJ6lCQpbJbRRZQ&qSl5-iO-pByc@T@@{Q3}b zlIjN$+x>?<6l`2NFyYO{dz)6ua2nxbvG{QeBp9;iqoZ&btN|MA?=6ln@-v{!<%)8x zX)FiQ$F8kjTD0-|1+zr&yPMbj-VeOg&s#S~2c70#&*J;uw@|MrUwUu!)A*`4Ie_sZ zidTG_7cpa=%-m5^zzQFSv44)nh7j(KKJ($wJaOn0Y_R|B_BX z^Vr-03^-NNT_!ikT~`aN!WgW3e`4m|3GyJt$*s4CjO(cp4gC#ZNn|F;dfOe2c_1hG z4pwn0c@#_C?6*rK6n?NB)O-u|!l=Y0^(F7^jFxwlbu1g(SG~X32XhuNRiz@>o=>6s z?<3}M7tM=!;*$ANiYBhy0pPO&yTu_-Hiu68r+oH~OyW-h&pZYE6WgW14;Ur%d3j{7 zt=AM>7B$=$>LOx%x+LU(917&5f-f(^dL7p52scG8N14iW`qejh^x@wr!@sYe`5Q?= zx`2IRXs(56rHqWuk}ZE`vr!gJ<)_z-p}C3^Epd&co3K~}$YEl5p^HMqGWt>3O~3T- z3BHmx!L&f~9E;`9utE*}nRaY=xmUd}Wfcswo$YS>SS(t#i1#sVNF(o)FN!W}Dk?1s zgp45@_$b1VvwE-^EQfaY!05cG5)*4k1~~bc(WwrI+fR%ahew~=xM$mwKJSU^kEJKl zdPx<-FF)Oq845@dJ|6bj$H4{s4bl?yS~!_(;sZ@{Eu%GLQ`5;uQ;? z{6JX#v3M{+tMuWxKf%>{E2w`D!jm(@6xa#Dxr15;8jB1KOhFqu-?7+(%T6CEswn%c z3Rc_bjUQkr@kb|pbA#!Tqnl;^hEHx!QlP#pX|l!EKf(JU6WoC}I-RZ$qIj!uKG4!t zVs^tIU`nOwNGvc}u>PL*rK{_NtT;RxQ_j`F?tG5K>xS&bdG@5`Dm3`k_vDTkUb^`4 z`s4{U^M2aocEdza%E&cC=kDc+q4jcLb-V4p!CRbC<2F3q5v2W~{8vfeUfgf|7So5G zO?HICTXr4#C3}{m5|p4qU=!_kAuOfu!h0F`w(CT}K?4Brf{H4ais0Q#$jS9s(wpq6 zT18L-fj}feku-u#<;zvpl1dXmODIW%h!X@niM5TiIHi;@Z~b{);FtnUC@Ridmka+1 z!*wbvL+Iy}+sm49ej+Vh{2_f&_J$k3`SGcroLK-joV?N-sGs&S&59L zz5{-PL~ zOJhIlg6W&4nFG>eAeaDFfDUQ$U10omzEJ2hmW8*|$0w)}Y#T!bEbI&X7`~@%^g;r^f0=LOpy~m*)A# z+Y1de>+J{!P3-!H)HDQ z?>_O7ngq# zkTnoi-q)kVe#|5@h2#dNSeu5mf0Af}?+b$Q2)*uRi&E50^bpwyh1rXYS}cE+L=Sc|Ujk35&D2WLNy$ z%J@H(#W$`f^ib^OVQa>ut6K%}*yND}yV-zxJr)ev0(V>9TI0_S8hE3O$|^}C342g0 zbENa}iXZ499POv(gfS}1DWl$nNzlY~A^XSlNU>$@62gZ5zSd!ozYjDY%?vZgds%(9SW+pe}{3WeB0 zEh#K0E|WMyWIC$0Tv$Kg<;F7>m`>f5GL3^~{v#UrH3t=TnH z4E}|E&1<}($4mBX6QqqxB-12@{B+G_45~7Ir2~62tx2JPqq?M?FGP zEN}nb=hM+x;h!*l?`!dE#N$t=!{c0G-A~k58Vy@kthPt^7d*l9uGKLYuZKGOi}QES zcVo}5UXBEx7~r-vS`r*o$Ig-kZ2@X;v0^&i#3q*=s_&G)tU{o2@E zE#s?6ZH4dR>4UA;PUBsPBZDM6@elN-Vbf{)yj#$Po2`lr?s6oIl#brY;SDfWjt*MF#A>fi?K%aySUFEsY9 z>qnKCL9hT`Vx)Qc-IusK*|Tvfs_>2IhuYg&1>Q^UL>gPGVXpC`VHfAY8&E|5F`$TeB^a@2=_LD;RT*#)b7rh2 zxOLZCmeJdo+eU?#gCea>$V%-%EPxc+(60rdaHXP>^2v{s+De4Xjn#hxNF7`jQiMC~ zZ9y+7%xPm(&@>PtoI-D$|J=xnc^`d|Pq;H{r4;g>v@vh1y`^kQ}Y$b|A6N`B(K-?-dQyHJewz z28vEggcbp&HIb+q(XM#}z8Dx*( zJsN|uivE#g0iiT~#d=cYCd@1{Fqs@>NER>V-~|8}d&2eU$!ja$(r%}>p0Ws{W9VS= z@|{_zhQTXG?r+a~pLl`q0|Ixks^VEWQb;%51coA!q(^3iP|KheA-XBGl)g7HlQ@3( zagu?~h|(wvT=(K#y%UbOUOFgzszgkU=k^Ae@1(vWulL-;6_KOE91<|S;{cJP$0Nnf z)ou${ZXP;OnoSEU~o?;hLPa2;T+KZ0!=IfIKl*Bw^yS z>-8_fSZvrLp=H_SK#Bi*a9CCIXM$#b=7RTyPb-;Ix6^FpwF-k?=U!Derkd)qHVe zv$=ow{qFST>gH}B^9d?(r*z!cCA=n6 z0MP=eqS|1_G5r>NzASVMXFKbGZs^L1u%vdRQRE$k$*_LR-Q!A+#MukSwp9yj z_vYyb#W_|Vq=}WkgB~S^b#Q<1!(V6d;K3UN*34Y-g{H zAuUs{tvpWqBGo^A+jT)oL`Y2lXxI^D+7={`R+h_eZ1QNWDOF(pT6baa7zO48WJRXF zE9EFAYnq6Scz3lK5_}$9E9P$vh;iKkG3&sqy337#{{E!ZIW*Aw8g-*45_*O#pZaMH znpuu;;p)1kUP@|IA+%N-@BQJrT-BSv;3+Kw)i-^W- z4Pw3W4NtCre4FlSkY6|iPg_=dt1_RMh6#Clh9{b8myGwejq;+G&fboIu*Yl4{~bi_ z^fnosApAku@!gt0rVsKwfrxs>N{KU!hxp5+CdO)3vwOd^etb!ZNfIg;fTJS|No{Fg z4dEL}MS8b!*_V<|-=8auS?x~Ke2Yo%XQpVkIMzBA6)gl}1 z`P<40pAF=pRaaT)*dQ?^?tNs{ib%AkwAU;S8~mIj;iMS-X|#L*2g`0LnuuTvfBdYQ zX>j`&{cjR|8|WUqDPioYszqB4Rf$A$dx^J-Q!z%##0Vf=FJ}$sx?ivf8*QMTmC5Ve z<<#Qo!sB|{U!)g<##%^FTcO&3CI{~gd;rTh02w3O>hpUz1_9ABehsCxt{HA)o^FBX z>yHUWO3D%mhVk#u%(Q&mh6cKxq%Nn(_u8Ji#q4Bo`ot7oUUH~OHPH(@O`lFo$(-MR zdC*8CXU}D_ZJw_dk=k#{BbOpI*ew88r!<~jN*I0Fllp_V)E9>}ss768mpby-XtB+C zWu^Rp!E<_hCi>Jz8wJ}HLL3F-7eXAi`-@wWU$Fbi(~mj(og4f7gDcS`H&IYTDZD3Q z!{0^iS6{9=8K+FHHHAWQ=56~b3eDkg{iFfj;om{t(Q)KSBPKN59C>+Y0jM=mLz*?d zkj?g@B~2DhWD1Z9kbQ>`I~w{q5ULW72;3GsNj3KUX!Oo0KpO7aU@wj0VZTvOKx3U{ zxBw=mK1(oi&mf{yvNQrx)3W54Htje1{bSpbm0c$dB`F4DnP*}vxN#@S>sN~GDjI12 z*vYdRJ93^i6Or(A!~%&*6|4RCHH!pSkdN?Q2;b_;MNoF>V*G?l?5@lU<-pfp92p*c zH**oek+R=@t1I&r@x^uU-#L&(3g;!%XkMIEMA$4k4D5999ycB_M8^p8fcnQ}Ww>7)R_a7mR;z zIMSeTMY$#5T@a|p_ByXxQT?+4DJuD7b|NsVy=!A<2dLnQ=4)?Te6vNHe81`;5Pv9` zwXK^q$eEp=q%kYx;idzT(e=KP%T`ARSf43eH*v5-bItukNA61`A;QJ7PYQ~hG|H`> zWF$x}7Cig1=mFPfnLqm@r-50ctuJ$q2Hr$d_O2$^$hoQjVtba&3kiS$a9=0Ymcm9~ z(am8E$yV%OD`I=Yvh9vOQwP=VOcAcxxovdoWi;74EEQUHXgF|`l1Z2J{JQRWZ}e+S zA;!q?XQZi|`j;2)!k5lamqxeEXY7Y;d=@*8p$eQnlnHD`_3){PjU?tUFd(NsUhPE& zVr~q=$UC4T3Q=j}+ZT^1KqaTsP3RP-el5JQiT& zRF372VNhTP%(FjkO@knW{83<*KOw-au1T0R^Q!2L<>kU5TFE63pe&wt?mwTPWAD=$ zDy2I^@CPgY?VvQHk>48z&IX4d6U37nNQ^0AbMP>pFv-{eGM*031-O6V75VBa>qJr8 zbxJ4s9iYfVliO~(3eW?6dv&6UWCq3ArHn{4*C~q)SDsNu#`q*3Eb{Gin%KXM*JBq$ zlyM&q$m`S6GAVC!j=pYlIun1Mc{&kM?UroK_jo#uehz*Kn$`A3@NV9g1@EV+-FcY|<&LA=qcP8OIl*AwV z45X(5;R3X+5)QmC@m|GeJW7lFjWcrv5WIg}{6VzO+#g9tnL^eLIGAHOFM!br|VdLi_ufA0$lb~DHEAt5)8u*Z@ghSM9kNh(sD zn3CP&nl3KDb3-~E?<^}D{|5+!wly;YU?rO4{t*Xy#Wm>!I+0ozmk9Uu(VdJp?aeRU zY8yX-2K_!~V>f{0EBmja@#zm1tHRS)y8^CZkuUeW_)jlST$Ay$h2iNuF5BCAQNhZ8 zgUhAaJ)@_Z;?)bUK|Xnn>TT2_VN%gkybb=!%j)x+vgSupCcY;sUawZ?r%u&ENgA3m zum5h);&%8U_tj=gSPUSYs;=r%8-v}%mQ|K{+`tmXh{AU(BCm?4+eErI2qlJI-=$Q3 zoehmZhNPh#{iRG6c+^rjWa}KHe^r^Gs$;l6u#8_k=U3dPR*W z6&OMplj#%4&?Qz5*jO?^A9dFCx<)%3aOz3Bv3?ygI1!Pjz$VQY43?@_@_knEFZ?OxkOUN z`IJ{X{<#$1NZbVJW zC|iF)DKj`M-$2bo#mIvFHZek=FNq?VbD~&XnUo?2WO7N9%1Kpe3MIyqmcPj%O>f+D za5^f}B~_I<8fD)qO2|+W00Exj?;A(BM*rvjNZ{Pcl}Tg{o7?5+OZmXKFc0jcH`&SG z@XFSmf>2`-s32vuc5GW^@=qvnHO%&cP<%hB#-%PTGg>kjhxfS)QCW+WC1imt9Hi>w@wFrK|M6nPt2Fe4azDC&i7jgVl z(oquB&Xz(7!O>{4rQ)z*{n0F4jii*1GBRa?KNgM@%$yoNTiF^dT8;8cJ2*BQ5_tcP zO8weRJIwg)xc6!c>%Pw_3zwpP4G<0&j!rLg(l|Wr$8_}BbZ{oAc+g&bQzLLt%h@ru z-8{pDZ2N!)`e$bk;Xch;MQzdf#XC<~Z^B*;{TnTW?Gnu~ElRI~*bRI>4!sTW9&YmN zGHrYzH9alGQh_{!`SNEp-5RHK&?fVLk#Dsfa;H#~WY{v^e<-}Ctu30sGdMd3>QeEc z^}7W)d6m+L-_KKcvtM&7dRqc}lJAqxug1D=R(n<-Bwz4eR$rbZ2s$lx3x>?D)`ZxBm)UaK(*}dp#ho9pCMUUtdm=x=^oJIHr%q;z1` z5OGgoeRg1sATwXS{;*W@-oH74Br3RX^{4gX5v1OE+`_9j!Zp@kw4<4$tV7?8?1HsM zRzK@ghfmP#yBS10f4?IbyLbr$uV->YS&P}$w=GEN@MS-+2b17~W3C1$v2So!8(Zsk zPHMYFJrzsvc#u7T#swu%5th;pfBhH36!!~jIy}=Rqt1#FJNd^lPx#e)QSXGE#QbpA z1$bp2Hu(Tu((YmgA$mBd5LeO#8QjCjFJnbOD<%!ua0o^%N z#1ggEK;^r;5=UcNt5k|w>r4=OsEg`{WqzC$wlNWHP7oANCXJ@L;8f~_r+L7^WsZHC z{paL?_KC5N4XV@;FSL%}@Pb~K1{a*B*P&G-PTB?XSO>0>r5?H?EoMoS#!7&G$HYiV zW>?hOXwzox5Y`FVY0-4pwc=nhe{0hwT`s^^##+`yG~c>DLpR86i7=CmJKMEFbAFoRE-&PLu zClLZy3&#pv<8pyz%$a`gf=~J&W~*%aJhx_1XTmOU$<<7dXJ%X_+PbT@m*!pr?T+2*-DP zCL)FlW*qO*MNAbGzD4GDkf88cWUGBZJr>se<0TXOWPX1{X^1HUZJ|hgVAUAol4{Kf z*@I5xcr4qc?Wy(bk37NcVt(O`ww?8t?Sb(=)nvRBy*dSQ8EapO#KB zGV38UII$?_18Z<4g`qm(Z$3xP=;i(sHd9WV>Qn$x_IG~Mrjq4;#xCr#!(zrrsCSlr zLgDa;^b<0@P$R@vDHI1+{Db&r*sjhIhd9Ij2Q*Z82yKQ3$?gi84SY1aKD2--8+j=| z``)}ibA|{6;)yVwFye_c3s_efLkZ?@(8gEIwXi{S5cEJ8m-=he;@@)TqjWx`*QJ8r zW4Mg5)jn1B^C#ao_SGCPFiH|II&5l7ENsCPaq?|PA|!ZKLLBC*V21t~`*nd{TRa5k zvbEiB`WCaUt4Gdiw!Yh<672`??I=6u@y&7$MPLQb=cqTfJ`hQENjPQSj6Ux=-=-iid zp3AZap{TNRUDK6~aSBsK)GE9|#%lv-q;c`JOO=XVt&HI14aRHnP;_R;YS|6r%PyZS z*%-Eef|9LQa~p<4WBR`;D63f8g~)!CX(n^7wcKH0$JCctWifkvm*(*hQe)3 zmJpLP^k+gDarWfI-5P_QDh4;DuG)e}1hTUvIk_Nj_4){+ODdsxOScGD0e|XBYe8}5 zf)_?T))XEk+$D95uo~BKv<1><{|^igL-X%qfR8P8v~D@auVH$D?Q1vJ9T3H8{pG@#wv0pKHXLuQ%gknfd*~u+MI`nyRQJshnVM?|gfSIX5mCWf$ zAPRQ+s~DL8H4GTkn%3)d$E;V$GQ+hP<9V+Vw7La|V7O+HapOL|v!H&p&yzxn-os+; zE!1_TX5%!sdud%*_x-)&0&Jf%1W@BNs7Y~L31j{Eqg}>1p$sLcN0qgN2S*qD3qN=o z-%Tf1i@^5jOL&b}=KDMi%dcWg?ud`=1DeT| zF-xE17D?(w z{)4iA!Lj~3-C}IpF|{q$YR|TGsKb1aZA(K4GRnC zUVp>~dANH`?u{FiBsM&X1R8c2lPw-mGecvf1FYdEw^0OkSxpSJrw4dK5!z`xqeM@A z2n(_cCOSVox1lzOg+?%etITlu$Mv+yJNBY#ZC7VbaIzoqihx(-6;`Gd*lr-kX11fF z#!!j$V~`|;?B<7j@sL7q{aBlu5-wY=wcY_gKrQQh&Otc9ckW=0(vnM@89T7 z0IaLhtZLgiWaI1VT))}7ZdBwy$RmG5mcq5U=1|!hb$Ng{QO#vhbAQ^zS%Yz&TMuG= zZ=0uOtc@8Bdgr;bss4niIokSAAreX35!cldx9vflCllNj(r}+1R|Nf^cKLB2%)M=P z3KZK_-fI_>Rq{zpj{af2}yiNgf zabAj-e}S5d`M=}0@g;{;sk!)OVcIP2y=7&Pcwk*sM*)p~;b%uFvnb$1di}MVubUL~$~c1=Au4 zoIudJj0VVwDo*LaIb_$h4ksW#E$zNspYisuzRc~uENk6oC3RuWXDtHoX0>I;q=8NL z{W^H~}Qft@1fL3MY*QnL}1guK7`PLXI*EvTyXo za9E;-RfW3?eC*^SgpwWwu`Sf0FyHU3W`EPazq;vefoUCq!PhU7_NZ zhx;vbw}fvPhAV>lR*gfSDI%X7CtV3uJ@rXZ`_AOTl``$imCGxx>t%1O&8F4vD^rhr zgC|Zw@e3D0-p6S2tWj*+);&Eq?`MWrX+CNykrWNZ)$@HdnY;1M-*vCHvi`w!A!57t%SI6k5E$t_B^_9&T;cT{y-Jq$u5Q{No8d(XXvsH_CPDYG6OX z_(Yz3CC86S<(G>)jk>v#wivIgUAC+`L7Pp6ei&@ljI7N>sA$8q*1s?$Ekd zM!dmUdye8-q4^ zo*tR&bGP$I2mX`{Q)f@%-B#agbyDN@z{vZN)8XHd54$JW}WuqIdeT#8VB7o zZZwn>;cP+O;}w5Bn7zS-p>Vq3__~P0CaZHpx?8IbniI4;PbDhJvl!0LUq=omD&23) zG{Y7lJN-j^&HHi}=3lO$hT1tCqY}@%LWIQMn&DvYAwsyd%2&&L)w&KGCB&4Q`RgmIDf{`UBcipndXvwQ>;Oj%j4357*;#UZQ0Z(EOUmD!6bI*7{aA6Nt(F+PH&pl0#=1{I>` z3jgreRb<=N~`8785dGBr~ z#ivk7Yqbstn#-b%;6O8o+uAp89B5KB+h_jpEdg_K$9nBT=nN(Q8ilH_w_C+5huvx94_iBtEwteHF6;mqNBch6^A$6&) zEoMgYIX?2`x~U+Se!GRrxjAoLUJz^O17G$0>UUg=CW&7&ko+fBXA=kc>PIzPhC2aX z0K<(ec-jgmWiR0syNY_zb zSdIM9H7dONf)4A&%|_PkTPMz4HI-gZQ42JF+;KUayJJd3a)#B#9#gU=7^}A8MX|$K zmZ8*9^Sd0BSiH*WOGb@?S!+$p1G^wWW2zVVjd{yV)XCQFOgC!$CK`+y0fPH1(cx_u z%nXAwOwiMc?}pCIF!_c^^E(A6L=%#T9Id{P5LPxw&#xJ1BByFdz zkT5Qgu`Aj0P>60syXVMBi`=cg&ux?Us}D?b&>PVsZB?l?O5pe5(`>7i*2OwK!n)BX z$Kf+ls?FMllO;d;Lah7k*|Nt;CX$!l1o^G?zJ?##9*IElWiI6L<*b^tu$vn_DtO5I z$m+7QGf==Y+lW|d4bE;5)Aln#drCHC2JOI-sv5|n(KahNQt$hOj)L6Q69~HJJ^Am8 zRTP5~L8>!l7Y)cSBxl6L*U(}F*ttntx1!M%e7UdGpM7m|y^nF9s#MjV2Xu6g%RHeQ z>ICKR`|6o8cJ6lRZE3{XdH;*IUJ&nd(P{YIN~XyiH7^uscFgcBt;Z~kkgQ% z(;Z3Z$DHsWV4mD!?nA6t(`u8rW}`aa^A{7%b!)Uvu4amqIVC6jE)i9wY@FsF@peNpTixQ(pTziiqd<^lus=V45L9gu1sDq ze4tk@TG-JrpnVl&Ok)jY{S#QyX7uo@CiW^=f}{)5SSFML)68O7*kxovYPX>}prv(E z>!SqKKaXe4;dYJu?2kpM%cT1;n#x4nd5-s6co%kVhyQhUId(wK{f`Hb0K;vuds=n5 z?g|EyvE-;$8Q3ej)U|cZS&L;ePKD8X_=M1X>|Cb8?LR|sQZ-*kt(OY^&`o7`8{kPx zfIYZ33*)ngqOFuEJE@wqTty?`&m18y-Jx)$x02isL$y%an{obr_%~j_4q>)QcBc8d zn^9E0oeR;nwZ@l}f~XEov|<|ZZQ5`GY<5W12prS<8Dr}k%PJ9VHZ!DHmuDT*XevLe z-%`^?32Y-*6=}Yp2!~1}S?4dD*y-r`e#bj7Xrlt&UjXa!|4Dy02RBie15F z$JuG+7R8g>ho*_aj8^*Pl1cGytWEePJb&)CVYSoqm|ia@@@CNJ)&ACMkJm$v;p#Qc zK6nz<9uJHe6!S1mC%RVJ8yyP7BWffG!JN|Vv<U4XT2;v$N5<){M40mlu|o zz11i3Hh{}TCiI-DGf28tZPK8j(Yg3nuo|ZOe>|OKRF+%YwE;m8knZkokVYD$LAtxU zL%O@WW7FLY(%s$NT@p9(T|Rri-w%h5fj<}PI@dhsJSKy3ifcaxMHI=1l@<5pAbD_{ zT@nZDa+^fq-10&mIe23gCvcOOavaWLSoPBghQ}DK3}9(%gt~noBhDt z{6++;wt*(;BwCm`f*MGSyKz{xm1krc^u<7whiCPpo+Xl`6IuM9Wfb7jYYFhqpPY!# zLRE>e*KoC1dUVNLOEv+9%?xMXLDx~4yH*KOzgSVQXq%ZkR~u-?YghDLhoY#$G^%)M zq@a6GTe(_yqzk^h6fS#AqM7On7Bh~Sy5|jD*IONrC5CB_XZ7%y4rEOZR8$z;;%tAa z-tXSfi#G{ukgdw`{j>3ewDrjn&IN))xIXQ`tPzyJ>_n&CC!b`!J0kD)7!WInHH#?3 z%b$A&x_^0}cZM87b}AAS$znx*lg2?t-6iRA#TqCH=WWb2FM(~!OPFz%*2c##4=zI* zWVRpw0eJ;Y44lEWNAp$!J|CvI_CNhvaT**ewOg})Tnv2ZXONH-;e}`D&4I$ur@euW zK2P?5(o%T;Sc@g&*3JFd!JfEiIIa*$o)ydcBn`u&Js(E)MJ=@-4I}#PIw@61k{J|%&%7(fh-c^Ooy|J2@1S)xoJ5VwUiOdtqjvUYOS0M;ljrviQdI(; zcqbGKuatI&yG-kiHa;|o-OX2sSadz|F~V$XXov5~~?yh&wO z?xMki>1K?N{c*qI5iHdJ-5cCeoKf02Pj)WOw-E_!jT@(`Bh5ss{c%piC@AHN_@3WV%9J49&C#!nE``(63eefq60Tsi~o3_mCTTZXmuHaHL zw=ZJ%wx%0r*F#HFx7I_K=(FCVOO*U~)$i2Ze|mI{yq;NfU*@l_C$|2)>0U4t{^L3E zU*O!|-R2pPbNo1?gE&_(GD&C+t47zOik1pboE40N3boR*uV&UM(8hU07op}0mPt%y z4ml(A$$q4j$&O6UJZ#{5Z5mM7gd-<`8JV{&M0#UIYAFLQuF-v%{Maa2Lo)Pqjayof zC@DDY#p(|;cIB-610?VV9XOxh7II;k?@jPTw%lx};b%_JZ*f#5qp;y*_1kFj=;*fF zb9QU2;#Z}0BqGCOwu}1G=@JGG!0tG?c`ga~x~bC!lv@1w0pAP2pX+Kpzf4^i(BX9z zHU(N3Go?iDR%#XgI)M)g(P=+BI=J$Q95v+^dc0Ln=D#KG2qJY0miQA5lCK!w*LA_o z<9Q{}=<4@ieZJs^NrSigGjE7Xa%U3s}}x1o~;9iKb1oN|Jz z$1}uW(SwO;1An~HajtZ-WV_T#t@so+b=0JHsvVCiLbH~$G&JMOgwWH=dGQ# zj^T9a>XS`0JdmR`3kNU!AoX4iI4(=pkAkhRw`IN`b<+C}VF5@3*lp%Xg6 zz@iglDFe6QJT*8xu3)j|nn3CcE(2%qYCCn!r8%&?xFAe?&FzRM{7YZTvDlQRU zvjX)}R)ZTEz2g_;-U-0Os)oawJ41pfH~rhO^WeAF0gS__^6HV!sv^-m9J#|IpU_z$ zGxM!s+fBG*7H^_|S%%6I*hZC3K65T`IC4Yt3la;Vo$&p5D4guSeJvpSIC?{s9QI{6r`r448@S* zK_h?T1cz;cBBP5OK%qQGVQi#C^#pQVU+Sd?Im~RIv|4BPM{~!}ZO$Kg&RL3A6I#ax z^*0>=56A>H3L%iQ8BfE;@k*($gq^zFJ-o~J1;Isx^@necub7Ccv7MIvALH@IyC)w>pn~}6IyMxxnUsS-*f_j7LqpgpmUwC{V!I9#opeMLeZ4Z6+H=jxp@vwY$YZzIW1Fg&Wnz z9$%Jf!}|2d5FqX~on=2R8E4NM0Zy$6n>w-ODrZb*TGW(J=Hv?I$j~Q^x~6iF(TV1! z_~BC)P(=s7Ww>|C^^$~+Gv(zs=%_0|n+P0qro$8_Oawzhp0M;0g5@cIx4z9`q4fO@ z+KHh<=%|;rVC#U;gI;`-Z%tAKxv@Y9yf=Y{k{=fLR8`E=9vb`-Ubgq=;HrYK6~ECJ zC*!e;lH6gGvJPsIQIv2xVhNTu5^xkNovkKFNq4D=b*&jvi3}TI^QQ!vuL+!8H@3Sw zpk|V)LYX+nGuImv9?g$vaB6}sk29_CurQ8|R80u&{%a_dX++XpPLfE2UNgm(h~N*x z@Iqp5ER=z5Xy}N-1gkmw8Niakfjm?~vaN-Jytay@v{aQ?iwYE0+rvuD+JOtMjOd-x z03C@gpb9n(B_6)A_IU$7F5O)r@|ES$sOVJg?R-h{BcZe3OL$EVbfxZzRYJ}S2dfSd z^#z68?FnB^9QQARV2)^iw;m4q-9)%g>>E`@2KEoQB*A6)Adrxn)wQEO0T00agTVgw z%5?wWe1{@+L4T2;9(r!Ssel1;9W*r7vN4*NLF?P%o;H+as6qaQa{0}O9G5(qny@wM5HXqS#gwq%PhQN-^L@&R=Oq`g6Nqjl ze3Nys_3=EN;#^xzT?x{hroWt=vTthbnOo4@2<`T~1QKF~TP)5X>Mgg9yNPN_)zpH8 z@-yiqfc~&)+ZEUG)JrnEB_;-^H7j7o5G4X_-uvB``~PzJ!rS@Eu$# zbN^S9j_8SFV>>ij$LT&r99EUK*uQc$1c#)ttSpTyNF z)TH;HJv?_%JD1k5LJh#u(nk_&(27Y44!<471?N;5bu3)X1yqd2;_p(R@jG}N<Z-n@Ry8!@TqLyvi%d1dm5ay=YU)8^s%g*@{s_ z`nx4WrV>eJ^b2HMr2@PT(k?zxELX5>G2@_278|y3afY3)==m>XgX~c6@M(LI%)5td z+JCCDLPHlW8o$cO7?;M9o2CIYIU*SId){PR`oBUfW$5RLwGr_Yh9%7~(Q}*PY&-2S z`d1UkHJ3C7+I5>0>VEbBvHpj0Ym3V7-)vy?XR*ZHt8sj@Jbf6+l~O<^LI#&(Nv`wr z32`l~9O6ASB|smhrSM+ok`@wl5r3SHi9bNNlK;%1PiBi!ftZDvze2@ z2JH2zk10~Poi)0|ePVEy?eS2p*pB($U>kLxvA_ndJa`7fZsMun<8k-M$Ph-1g@hIh zxUD_#lrhYL@kyFvG{*DM>H`~h@(2D5b+aW1z%bd$9`$xkP_vktxOKISCnR->E^W2k z^YY(Zuhl>$W&U`65mrFc`IxxcHY9vk&VC;cQ3O2X2Vnnq7EKqc39tyUkYhx0TY+O2 zKUDQdDHYE|xs0)<9gs9JRi~6?Kp{SNAx#Fe5g90=toL!01z~x?y&(ggP@uVA0Z(7e zQ;+)-q71?k*Jh!14UqUMY-Dvx;>Qh|Li_DLY!^VdDNU3n&fSIBiec-Tzzuww@eT8v zdST)Si4+TcHSIs_I0BpFbw7i@2`W&9`muGFHlJR;{`8_RdgB-s&=-%;ofD1OJ!>?DkT9}y*P%BH(dHn@}{b0%>(F?mH~+ zu+(d}S816OZ_y%?Yf)EoUAIh7Q|N3V{Z?_pkPb1F^&<-B+*;k1E@yFUPvLPs9EZn+ zxZFzK7|F4x6Wz=1h3IDnd?CC*|LcRZvLHE{9#%}c$oO%5(q3x9kpo7U2<}XE8=p^Ah*U(*rvV{o&JWh|>vPEiD72kdAdV!m|!b#Fy9214Yj( z{Fuqrg+yDT&AaT!>srJQnw+;`=n~~B#}7l>fvfiIjy4qcpFg`${+o%x0MyX)!5wO+ zsnj_xtU7y=OF+-}-6?-Xyf85mAako};nP!eXE~;PydOs%^x)!Upt{qch@}ZH;~#xB zdlRy&wgSw}IE^-zTV`XONa}0TvyonVYyq4Gm3-?qEGTfm5=^D!!De1(9cY0!dmP|R z#iTpJ(0A1MtibdV&2;{_vkp{I%AYk-Vu(KWF3J%1s`WUaI8qD>Y*;J05*K7Rc_B(I zjHF{Lspku=Pe}}=xHb?eD^-5USPMWeN;$=iu5s#s466MZ3sF`n` ze%2c2vN}gW<%Y}7>0m|8HPh6RZqd<05?xneuxnjSZTqUI*jlMYWQlzb4ZdVS&!AP! zx-}{<@x(Q72O(=DsdY?%*TY2(SCo({U`CAt7`U0x(E-u((pe4DF2}i-8WtI*+BE~O z)=`T;7hVKteP!hjAq?)ARa4$G>--hs_KG0Cle3ennRfO^rRH z3?wHm`rOfm8USLY?CJx?DoQTg-`gk}5Gsfs>8r)lx4Dm5w_~+TzNMcpZ#uwOKE=;*3rCVWIW%zv0N5J z2@a=e(;;hkek>bzlMl7lV;xP|AlhGHi%N6E;_jqeu;X%kv3oh5_U8wgO!^ObdVa+P z^)+^VQgDFqnP=f9nB!5+_rUF-;MMd^_=i)ep_-GIE!C{63pf9*$!AT%#ltkVy5(7T zz?f3v=y|rBtQ-~8>qe`Q@1#k2KP(6){lh#OL%uA;-RSV5gkHW?`X7g-pPxN5&gaf8b%2Cq>tBUBb$#nWD+Jsl-)uLv+=fys{8$WMBu#O$iWbi zN z=d=17QSOSPy0uG5L%Y)Ip7tlHXs@wle%b|Q{$D>uv=ybI`I-c%B6|^Iq~21A3j|Rft3?uz!f{5NO%T9}kF)<4mJfWT8v%8frcK%xHxw02t7tksdPeu|lka?ajd))OXK)1a>KI~?&5|Zp+_BZVMLzMaejV^u`VlbiL7)g zl3`eKwXr1)v}i2r@zQblrfiR@p435oAf3gh^?7*Y_O?O+T8C)6$$O~yA| zhhRRGRuLw1&l4Bb9W9C&8d~9yDS~>VwtQH}ZSce_i1Nw+N<;%aues79V2)g231H&9 zZeN150SPj_k!}C+#-xMRWIcIesGJC~)6FgE$XH|h0-IdlM~(YwVKeHgbcBYSCxUJa zSjLJVj1u3%ueZkXc#>@G4~+EB%|nW38G#>${QL7Bv?D1@Z}n^5be@ zIUtEhh3GuioG~Cj9$ZEwWtYP(S8!Ihcq*-hX~$^A_k0q&pduc6y^4(XrF{##CU&eQ zaVozQmcDr^$s(Y9fkL$$nxFI-!onUxgdT|*O;&^dA~ef%WO7Fw98*Jivhfdwxy@K| ziJXGzH4&ga4U-YJ!cK3fWV`_T^!O}80Q8xsowf3H;=L_wQsBx{RZ#!a^B^IW`vQ5qTive z$+Z5FMtSR5^--ULzkmZ73q^qpIP*9G8iKQ9*WagqJlTzbSJFXXb{4#0=Mn*^$g%*lKJ;yBG+FR%yCQ_QB}MgN|vItT;>c8qLXNV6cq)W`GuM! zNqJ_8S-e^AU;Qj194Pq9I;s5a!j*pmtNn)&01%rTz;kUI2Fe`U4_fe^NB>s48vM1H z)uEQFO?0#21P%pe%tba;&ujYABN40%C%p9rAeaJZj=8gK1Q(y-$uxF)L1%fJ@0$tv z-9xS`QAE);T*=bPl$NVzb&^O>4KI8helaQ6A~JYG_Y64&bJnQ+Gj@cMC_pu_^HWpW z>LkveWt$;-Kl!ngLAQr{R30&N@1c(ZER}TpQ*BJ!lrOs#d5V)J!|9)ci;xDU2_f0E zW1?Ih1&Za#a;tO~*#J?6p5wVKm?R%V)NEg?<=|ZTh9% zjr>d#r`EW>In5=}wnyiPNBNkCW!taxBHv{T-vvv2&TP;2uUi|$HtW(OHLVlWfOWiZ zZQG-IQi{`UIqSrD-Zuv+Tr=Pug#>)9Vx&1UhNrNakVyH6VR&J7Kbf9Uj#~` zS`~l0cFV09E*)Hr&dK?k%4R>(#O-jJyQ0v47>Cjz^g{6+@VWkEM9}S8^ln2*VIn)? z$hY3ge-|&T(o`DgtkT;Vbev)S{(j^Fu<)QLbAISP?$%`O#byB=GHu3$WIb29?qNQ+ z!#R0I%VEt~050)1>OZa++4xv_%3yR^W}-{Cc=46N*`Uemu~BrXy+r$zKyW zymIlZIg-eZU*oMwkNh|GKVg{o(5};j3v**Q?CO1+kscR$GDzC2)Z{!<7Ci1d4SVfI z@Ci{isDFX5TtETtq9u7Eoocu#X@Bk!~w_6S{7X8xp*9n=vK>5QBX@e=DGMw3h z>v%Ivk9r1ViF9>M-dG9q9N!DIL9sx&dW0>=5y&_czaSJ9^`$ySC%^<&<-De{VU%-@}G@BWV3#ArdugB3BjKEsjWR!1wZlum>9YjYd&db#dYXG>j zz`}ioEa>inhLK~*{U6UjbZ|H@(rp0eI|XB>454;vr^RD%#0B)wb*}9TwT}j2=hOnj zc?s`W>^Kxoq z>FXA&qIMyUvUpKuqcxoB_0Gh0fkl|f>pwIjcoS1|s5J&o5p`L(qV*I#$xJYPEdbx9 z_M7mqYbdg+lo4%u6(PKstb}^Jnq4?mo%DwFp3JuVS~RVh4|kh{X^h&qy}5fQzL4IG zLyZ%vvWmPhIkKM<4;Lw^2oYUsbS$@DdcK48Gep!;&OgpC?*6h7(-%G9_R3`meO&H@ z7VI%(w1C#Zjj2m~Y_<5Pq;$UL3a^Vd)UW^J>P55-Q)j0)Xl|d-!#}9G3wL5fW`0Y; zV&HjV;%S>1ve$ycy_VB9qa8L7dgk06#Ld_-?n^p=$2IqRzEL4D`3TX>-K#8XL{vmZ z;yWyZDeipx2+t4R59Oar^1cFpXl91Mm=T1K*X|d7G9nR~rU5@*WX?ET=lGTc3_x6; zTi< z8Xaj5e-RuGYc<%FmGmvpAh!3L{>jD?KY4Z-qxjGU%;WAh{!b%sYR+qP>Rc-8`vXnp zqEc9kV!UaztUw!xdBvTlHBg#oEI28yHw81T4vg<+b-h_DT$7C)DCnl`x^BoK zIX6@i(i85C`ST-P;zpwJyB00##{_kdz{5N($Hk|a5UgOq7ZxcOLVbykkw?Ssg zrNkrivU5+H52vD%`iUl#G@r9*(K2o=QmS%-Nctl9hig6!t=3xP4K=X&P%c=sq(qsa zA|=OQY{PxfrU0ThCSIDnrvKB`HoDpivNyc3!YL}=^%lp+>5w+1H!kE|dDPNnv4Q~f zT#?0g$S1&*!IUoZ4?40cwBCu>E`~i6J!$><-${hHCyu$hR1055f%D+W~ajg%ud%&Y#t0>1#fIM z_oab`t7C+C!adRXujnL5UEyd#$Ts50Yiua7PuqV6U;@?WerOSOxF=v(CHPy%F*`Xa zV@Kh?2@14t6>r*~+fe>yK6PaG0hS8!-4RVPUQ==&zdzd2LLl9dZNJ&XhIs z)w!DMNf`y-t~oa<F!PYobl?U?j~`uQA?~j{LVaMswRDO`Hh=sdMm`^mGob+DAbzqx9X6CaED7$r48fKknXddt_oVv!cFb}TLaQhwYHnZ9^l{U4nfSzR0%oSdfnaD+%lL~il zBI)9?zq=meQ7x0TbH>spF*y#9Z-AA^l*D{~R#uzNfnaEA1GHFNZOwrVzPD*u-lv6m zrDmFUNO;ISIo_} zcteKbkqqb#S{c13j|;zkq4 zVxU!w{V{zLA48wztpD34RE>@)EZ|Rh6b!RmKf4U~J5uf%rXzkTJAzVtuAcfnogvn9 zYpWSiw4s&u(PR*d%u>PP#muogDoHrpOO_$oVHQvKF#LI$4?5^=>@7TZ!&D6i*gT@b67uYhR8|*f)Li-e|YC z@ACz0j_t70d)xmDncnz=Gjc3G%?>W$cTbg!B=eiSPMX44($BX-tp3u8pijHsJsFbx z5+>^I=F^6w+=@{Zzy+ha|O#?jc)31joPW z70!q$?#JbFz+np?{a_YfWSdq_OSluQT1+qCmzZ`K;2fp3W_}b=t!}KrU|aXfluXXI zpJhnEPi=147HmcAG7ID7fT+%8dILg0HHPdu)K&25NpiAg|r3VyTBddcG2C z5g6@Tvhbs4@(&{WcgYlt$rVhi+Z~cF3t4}J_s%wZaoAI|t_lY*?MgO|99S5Ju$q3) z&}Y8VvpB8!Jj=5+VcLCf{#W*w>lV1&T*6y+nH-PwlD1kPRAN;(vi`6iLPOGoHlWa| z&nWLsD5{UyqyB86owAxb6YRc5W_r3$mk<(zFO+nUr`F3vvWO_;@vb+QcPzu^m(2{n zs&l*7!7u1^(ek4@zAZQ(X_rX4LzEdr@SFJ|%;MTST-s)C!txB~ZyP);OJ9(#AX*$S z%_liD@aC9IttsATKq@fsBO59!#)gvb;vjtrf#YIO#Wm~}j}N}0=3#Fu+x`jx7-(oN z7)(_{5E#@UL}kU?)+ZM8hVudF(qbH2xS};F*^A zc={GV1R4VaW-m15%#xSY#JXK$>j1ElRYwy0Z%B8f(bS;(>Anr{6A?hFA#V7+t%AUh zMfYOFKjSz`B6Hl94AA53^h|kD)W_rj2d`NtBJ)%B2w=e!XLXn5py5^A&;b|&oX@-it7rDHYhJU zz6XbcCOqzBMl@M3(aifG#ht;#hS5{hi@gjSPAzH$yOs zdV^|z)c?+4Dm_VUyBYxO?9EpIO8w%l`@H%trtNspq(eBPxf1D-KRxJJo`x=Dj2s6u z`PpIATK|Hlg%6U}UoF4p$r{>vtrK)!Xcw%RL+o`Ihf+{vo?}U@F;XBvL#!Gdj_2hr3IG~yg|&RJ z4%Ys>xCQuH6pK6On2l1(;_X<_ulx#X%hmXYM5OsEc%uP0iQtm2zx4$*5(Xsv>I+T%Pt7+lT1DTUrKONg+#A=+N$ ze~|;Dd+&b)7Of}1qLqr}fYAMs>a-1`dHAn=@p4U6$UqQC?bl-{w-U%wDA|ZO8 zClewr1}lK-+{>|^ej1`H&bZ9OCC0hcIE7M0yVrJ&j>1nBId2_&E9?VSY1wU2olJlG zZ>2m<4tRY)ezsz$sl5sRdyEMEcT4^bI=vm{GNHnOdnS3%;ZYD@qicL_QUpAHp8;gd z>WTvYQT>1dTPe&T@K@q7S$}^4j%#w6VuPcT*JCowto^R4Y2NpMVT=K0%ZttdA<`Xg z>@{kQXeQIb$_%!S$!MIw!U-Ip$2LPEHIppc83k`c@}AS&BP%YJ%k&6991S(Z0ZD_6 zZ=+5>oxZJT*l4&=!Fn`0m&tj3cD$hiN-(u}!;@*p*S&k1d(zht7ucFJdz@% zET9=PlKHeYUDJ@aC#h(JW=z%pBf~2+Ka?r_CIE~dJ|yP|`u-J{q=1l&5SrFt=Cxd$ z08Nomz8^U3S6`KZb+5GczK}{RXm&v!w~_wX4Pz_i)}k;;o?Y*Wk{>>vd+mi zI_Zm|=AeG}k9m8}okX=7JbWSQcJ&v7mY6E@C5 zgO1h;i>SnzT8gJliFewV(B~fm_OpAX6X^+r-QK~r{4QsYQozM4kroN~761Oj7c+%1 z^1bt5F~L{373Hl*&%`vN5;v?Jv@S^4%$13z;}lMH+w<+W331qv3&*v+W}kXoZ;@m9 zqU9b`m%KfbM99{J!H&P8NHRH_sBvs8$cBexy+ZRG<4t3&DU0rJG$(X7Rim2k&tn1- zW^4Ml1az3@xqEK-d^>SaQCR{jP;Tgtd2im56-Mda7xsN&hs za5)(D?0NC}3aBU|Nda48WH5_gU*{?aJ_t{}l%;YU`a1sCU)lvy1QYJwo-3EGv*?sivmCaWM3+Zwt#OB-J`cvv3xaV2VOLlauG&(=%tU7}=qL8F~kmV2$P=OtR*DjfA8) zM`mgqoshx9PeXC9y#I^oi+rh8fehq&&F371^IYV4&_|0>6o^AF+gMz7#(V@`{Q5J6 zWn@=KpIrNZC3Oqtmo>qLE7{eG5 zytxPdOV2x~?EnA_nZQXXw7fCC@%h6Qx4sX^F_~?qTHT(ZtMI?z&S$^lQF?C=$+ND6 zt>yH`aXbdQ&T_x;dOK&`eH?5>dRHBUC+dJOlqf@*yQF=*u)FL0w=A|7X|>*7#amyV zW1@AgDs>E>13uFFN7XYVxcKQTZ+}1Tb zJSJmtIq^ro2hY&uS)1|NgOIle|9MJAYW0fuET25Ru1+SemfoH2@lUeTHj9YKhTjz}AvI~2 zeeCstRlM%|96f!!A##z@0_f(P-@Q2%fOElyfFIT!07V@wG1~Jg{`lu&W7&Z!dMsH$ z?P;=k_9;p(+PjL7zhTcAmL=ILK7v&%Y_Wx1ANZXBd<#x&o)lZf8;l(=zIQLsF0UPc z^p%yfXHndfQ=w}xGD>X1H57}wGOGlU7YS5AlCRs}YYg`MqQnh7V-LY`K-%qQce<+P@%5)S*wcK8QmAl&M}S>3{yLXche)MPp{% zt3wwq8=(PGK;BG0l(0}+-|#o`51hlo#F-mWm{LXxsA(Q#LiX7bS>5%W$)(cPOS<>! zymGM0#AZhQ*(%JBt;=~#VI#Gy9|uIpR@#^s?NN}oNW4wHW<=@}gY#{zA?H|{2gio0 zb;?uRtv1)(o*%isb?RyxJ{Wcn%sjqd_gh!94eD~ypM4hpctv!)`FQ3J>jN|N4r}G; z2w3loA+in^d}Qfb*7JruWfbX)yu zx_N{6fiCGD*Jxt8Z^M;1MWHkHMF4fb->hw939kOZh}5e27#0aeiTwG3M#{hfX|PrV zi;~ui&*>bAF;Zda#?lXX0pgT@J|OFds1WkTB9{8Ody_@7uBNRU$wX!VkHoCv$CwU3x~hoo+_QQ-kJUkC?cN(J>_|No2g{5mgy?{F71O? zv?*ypJV#xdXw1`kQIW&0hldu%Ox(qdPbxkym|U-nAKZwH8-o!KCxiF-HumB+2preI zd7PYEu;lRu*0R7RGPQK;m%Y9JEq2_|96yH>vkAc1L-3OyF$PObfWwLxBd@4Ov9VKH z;pz1T>d_99AeQ<@EZoF&ayIXdz=o}010T^bn9-6jEysA(Te&?hm?;^_WL+a7Do>-J zBn|&6X6P8LvsE$l(I2TH3csEJx(=WQTc)BOZIwHq>XID8-;%I z$U#O702=~mj%{UmlCb3$8oO&o_NDOGL zwK0DN(4DOET%Q6PMF@qXq(aNE_BxSyy>mBziv#Krxi3}?354ZDD~7qLwQ9pA!&uzv zV?>5#^X&}f6MyLKljnf2ns@|P6**nUw_gMUkx9!B77^L}dZn>hW^q%TK#&uJFtzs# zp4IjLT@dxQDR%1y&8T%t+dXL$>V(bMbt9=OXgTS8S~@P z)>u+;NGZbmfiew0NHdlHp<8->5{Uk0DE`BD?N+Fcy%4z;RhIh_43^}b!sF-&XbV~` zbHAQR0*Ozxvh~((%(vV#3q~QLY9_?ymv6Ggs9cb%3FY45@#i&=0*9MMIQVWk$7~`} zaNFUoG1nf#AUh;V@7sCRc%5=vJlPVCVw3iiyn+~&tEBI-yX|k>y?67P^~tsB`N+x1 z4{*c&9cR=0>XR&?2R~hkA&Jx3!m0xd3_Uqy`ToFTmqV6kFKvGw?I6)!s`O!HvokRg zhW<_}jTP-Zn&$rH9ZNjAiGL28TsRj7fv`gSBc^pzCAQ&0afQvAx9C{UtPHo8D_P{_ zfM9n{&?J2RnT?g`AWeKEoy0f~6q|b9uY>{{jJjZYX`)Qgz^*jC497=1Zv=k4*l$*N z8;}yc`1j^*8)+7q#_$QzS3ljJ9-J7n3En*4C$@rRFx}`G(N{0soWU+bwl0A}hlzICITp$TW4V^YR zDH3dI3kETFm{7kxI&3HeR1KT5nw4QZ+b@GE-8$bsnotsA!^M9LEf?9;#<@6)qG`r} zkX!PaY2!-Krn5N78Y*S9-KobdvR`3jQi}kL@Z+yp2;$$K?5qhuqd3aY7*u$Z44QaF za~mCp2B1Y0GmvZQBIp$|n1JU5_A^(erV6-aC>r%R97BC#Xetw7Qbaq}(E?y@6{S!i zvw%OVQTGLgDYD%2WFTdG`n~pUhy^P7oDNqf2JYf?dF{%xeKa#oUwGP4N}(CiGs^V^ z_Uz-)7EF)NlX7C~Y5v%Cbwm6y66s>Pfb6JL)F9iLRv|0WXeMfie+w?V=bJ#2Om^Ey zrMnbJCj^MybTowcrb2=?5P@?i0uK;f9IQv5{TF}lJyv)0gJio*MhX75ul@7iw-&ym z##8^0y(zG#0w{Q=qsjUlFu@Iv1Jlp81U(;nR);@i=sLZW({(Q*AQs4{ILLu{6%_4j|VNz)UeWh&cSe-w>MLZ!5&^4IHY3g5hX~Hz!mMV_V|GX#1eUweOQB27usKB9y*LR z1Qw&bwhFK)!tKqrme%p!7Vn_7)=3@MERV;d`i0YoB9H%gv9ES&QuK(n^qN`4!>jCQ4@4a;(~#4Vn4x}rkAFFHq=Xo!u!=seYlR&s2u?@Sg|p< zm~YLT(l~;}4Y0RiNHuJ7q9%gy_vkKvaDR4!(~cEh!*Ht1npf!h*TF>tOTV;tE0z_J z#EogIp+RZT1M}OXy`Hp-O(OB~9#mztoM{&h2E1Vaz0f4;^@ppGv-?46xefATykMYnW*k9W}VAt8Sc4%DNK221}qs)wF^1Ie>{V2?S zzx_=6ari;(0^+1(yuBL-0|x_>5D`?0skeLd%KYdDiFY>>cDrspuEqDfqqCY8P???t zgJKGsjDE)7vGuZ}+hR3$E1x~)9uW%rMtJftE~-#rvo}s0VQDV7<=TZF=+M^QZGSq- zk^Q$B7yG}4TxxaOCG{(^BlDffy5+jDy3TII6k)QP?DEf_?5TaZ|-ewPjDR zDyP$S*$`*QFA|z;9to9~l}^FssKyco%$fiqjlC^On{pU7S-1}!6Q31JICnkfB0sJW z8;vf62o{K#a0Zi069FkKeBE*Hg?&w1nGV661#2OT$?L^V_MTE%GKvc$Y3%9wyCLB8)$PT7D|cEQjc3Dce$M-l5w^cLmb^ij0L{WO z=Sf@kb$ctltlN($WJ*B3J)s3+%`3;n_>r1OQBi!dFE5pvIcH+}*uA2eC(H_S2u(3# z4lzE)cQUOAVBz-PIM+XAqLDxf&4fWnkbIGc5smsp5)H0ksJ|$!Lv#*T((`2`N$i?BM9GeyR;MH~>fxg??v{gt&!Dxc zIn-^P)ot-TtKC~y1>yw)F}(gsMFnOs?X%wZozJ9J%6rl0ct!bjhfS@s){*_O8%Wqe zZe$74GF%ezsQ}5E83kr7$1VMQ>lIl^;t+7+1B;(pZG74`N4$0FF}29P@HOBWJ07HM z!85w)yV?yxs$CoE0C75goFO_M%kTvJudZEV4u8&1R`V#|gCvwLp~V z3R{rwHCIO-uaPb|GdX+PMygPw$K5>7Ast_rRm^RiDT_8#z#Y++|8sI5JFq93Q%RE} z=u2RF#d#<~7CPYi3R6n20MrD4fl=0p5x}GlPJ|?{X&JG(t%s>Kc6N!xFXe)v$a)O@ z{XyrKYVFc2yndCqaWB@SecC+KDb#lz)1$u5f(#>gT+!s40C1UR;pV2v1j5&)r>G4| z=UYTxcIO;Xk?b%l*UqHz=Zmipz{Ug&Z0qGs*vHj>2qqre@tVo^) zj7C6psYmw^kfdasR~@wZ)rYPM@muaXTX)2GT8?f<7stE#G~$SffV-C({BlSY=Zv#V zRy_8{H&YWAn83$FOgpxKsrTJ#pd`gV-c{`hv?T{()itr}Wbx2`4(WRPZE1@b9YP;?z}7VM z&*6fG;$#CLdDXN?qDiYB)58X~F9#WOe1bm;?rrohih*yRC*OZzeZ^_S&zb6SE(dE9 z07sUNBZT8E+9s}^#R}L7ep#$YE%M&gX#w!sj#Tm!#&s{{X|G6mNPzt%C z-*IYJCm&~Y$in3$+V}N^&ErC!E+Y;3@D{c4l&c_(wOydO-K$v*)Tv7l7Eo7&I>hW@ zkI=~`x0AON*Ln9|`dun{+k^DkP#8i5vVoT7bA4*94KfS|J7ue@aIzlrk^FF~T3a-Y zM4)}-8KT)eFFUukz73ggQN}Bz%TL3*iF@dgcKmOmk-rIHkVE@L1jC8lgQhXb+Daj! z!EK3(s)LhXTNj)LDELak$1@YKxxmmRNJ0&@wu)ySN*Z_!d1k=Eo6=eYmM=jx;Z5Pt<;D; z2Z0Zk3k6*sFS#Q5f3t;HuM10#>O8o1Xv=k|QvSWM29m*9?ZpFuFaWbxG5emD&{*Sa z?Akj1mx3vGX@UC+T_#g(>Wc8XZZ*OVkBEoZUYQ`)6MhNIY(E|J`@@QIx z-q1qRJepZ$L#>TWQHJ;C>a-~0N1p(XF^xK`6ZC?0`1=H0$9RU03;#?=zLh37%Kxta z3jcF2oU2NMc3cTvd^7gwU`m;MQR^qXHg#$+MoQEC9zI#S*FA#AF4N2kSRl`-cv3#D z{%~f3Z%B7>oq11zd~k4hz1F+KEhc}Jc)BY2JKX2Z5&xf?pz~xAf8Q;gsogI)bhu9q zUrX(|81xCwY<(ziAWHTYYkO`^j1&m+bDGzj^13B0p=*7!B4 zUJ)~;VdX%xLTV!G*ZZz1gG{>mUFuhCXV5O?wDmX|8LH-^(RnjXAn@j?_gD=VTM<^n zB;t26+f4+}h=dbG)p%7LV^DQaY*4b5q3CN=d{hHMF@4u6vIP5O18-M8;bz)RTw4#t z%C_C7~VX4oN-=SB!S#Ah-;wot|&-4kq=S+B56erMk6?9Q;<#7GcWCG~v zB8UI|oGnL)h&{m(PEnRORHh5oP0>W$4PIyK=4jvCbSh_A*uGsr zQ#2-giibr;Nl0v(lxCE+4+CIJnH3Dw%T(U@FiM|Tdfa@m|3fU!aIEUt%*2n07>n|Z z;b;d>Ty_5hH|%g0Uhrh)JiulZ{mZl|{FliQ1$iK|Xe1iJRIjlIfZM^_!PFd;r}ynQ zlNs4GP-QC5dr0XVyurZU!Vc_4IL;BJH&coIEjk+g6`2x1hzijiPa8a&DlV}Nww=GX z=)7cs6UohNtP*r7RM`s7$XeQRc5e`sY6P}*-Ej#SE6dop6`wW(KYE^AetQ0=Gc%|7 z--Yu3lA@?6075J#CR0m5WwG*dgq9~!|J2}-YEA87X}?=5|6IQOe4WJ2i70c{kkS#m zxs|8*`e^hNLutDS*?1p-F%CkFXT$3;YHns(7I&Q?%|jv7sh!`zZ}|tL9tnKbHQha4 zE!DymN1M~NFTZEk!DvV;JiFdOu8>PE4r8+e7pgG=fd+sD#pNKYvg9W!@4%t@Dm!` zK@A?@=m{?7M^$pKShv@(apvsoXgyJnp^)ZEYcr0W`o<^ntdVU52mB*LRGEDJ-pG>iKTisPm9 zN_O->26H=Cr6l4&0zkYua+_V|dy_^m#w0m2#s@UDiq36gsvOjxE&{%{cYx!uN)XU0 zBjdbjl~F~37OtFaIi2e-o*7)IPNh>HuRTCW%-HK5jT|uC?7Zt`=L^DPNDpU~*U#(ECmk4hUMPti_ub!L zdFS<>*mrf#bGjo(`n?{`6xW2o*H|tS_YnRS$$p5-;IQ55mp|uDO|vET^(*f-9j^wO zXP25$6&n!CpT2K)*k+#N=w{z{I4k_#;Guev#mRzh9&}?{5tev|k-=3UNNral#*xW_ zy^DS_<#O~jV}eg&uM@)PPg-MmMu%(-qWGF2SS-y7JTiws{D75}ZOq!!y|7h4xydB< z_3w}WMh-egQPv)M%V=Z&GnBCO`QK0?dT&1v^=&BhT>pPSG(?fAJJx%~@~ z-G2H9EFniq{okg0w=DsH)&_vo7zGrz-rXIK;VQNebJ$$vGpl4Ia-=682l*+k$-V=W z_v#v$QmN9+n3T!1v9d}E5vkt600*|a8Dd@e`T`58(lL5K;THvn2WAi3hmLd+w+wNq z_K{--{J^aJx+nSuC~a~V^6{3Vn5ZSN1_sbV+Go|`Heh?Ea6{S(#)OY#j|hM_vcc8? zNkpyM0c!!}pI@}D7Y)U{`}t_KBWT*yEzO~A7g|`+Ktw>2ANgj^Ke&RH%mBML_>u7Y zD3n>cAkt5%!3JbNFJJPqy{Te-*GEKiulgvr>6ZD4>oq!;u4hqjm+m zO^9H7!*s6gXfDf6_un;jw0nYv>hGHUZ7EyqMUn!DTx;3~4`cTO5qkH`6#{?(Y#i3h z;@WMAU2)j8d(5i#c8Pk5Q9J)1p-n%~&Fj~SOdg`nYqEL1eiyI$Nb~&AC_4+b=G^qz z&MC1VKqgm|nFZo;S5#D;r7AVn$hihwNAiHtZPAT{UOrGY$>m(fEvByzTKs!+wLko1 zD76C!q#${Wd~TdDSk z1`_t7MeX9;PX{)!GMH*%WiB@jTOLGxdJ2yReySw?YYZ|L)pRa>kXRwB#q4MI;D(KBWv5*!b_aQVC3-j9$y?C#$=7;kz@re~uHhx>97^MXp zM~PjlxHj|6WbT$yQ83HnfA9lxf{M~MW`bWn@ zD7OrbAlW`5jNYN&#TbHQNwh zf;}Mh;+Ge?IfFE)V#ojQPQdxU5Z$vHFGBE8}P0`x@Dc)(!Ek zb{nxD{qE=Gz@%0|eOKAgYvB|C(+o<;BQv^PomCXsH{}SRXev0W zYN|Ycyq#d%l?%#b>Idb>ZlVHJF~%Dydx#c#MMz1xO|HwNzodW5M2;_@}oOA>Pv%+UAVA*_|k}X)IGK~-K@mM)@)8>JP{l~fiMYc98!|oi6Uxrv8?u9F&wo^3bU4=HWrF&hQjjmV!y(_ z8BDx^N!RCIG+&xteE;j;Sq&@1A+Jwd5qBbLaaq{Gc>Onzi)RBk=mpDqgs zU-cjVgz5mNe~w|m5Z#?$-Z?~r1= z$xcsJ-mQ;-FQ>Q;P0c^&4pUkm)eVvCu@fri1MH^ximPo*g@FD|LcyhJ>-GDzD=nFe03x=;+ z8zG%w7nOPJLXF{ch+g#-y$M^Q*{NZ-nV~d@$|8ddkI6x(ffzjtCk&Mf&XG}gI))|5 zH(Gs{=zg<`9>$HPH|Z`#wHugW5u&`PphD zLJ^foWh}8+08@~g42)f1NdX@B0SX|i0+#kxW+a;msHD4irJ;0W$X9d9KO_|N9L2gK zV%Hjkd$j|1-g_66a2EPhSOPfl9NPaRkoI0MlewTmT?6gHM$y?rT|57nT++Fd{3upa z-IQcoRUCbOiodTF6(edxdk3oXerdMln4QP#0o1@Gm-gruE=(+&HfHS)8$w*Lrup4q zY745w-Vc5{Q4&O`7B*r55EQ)God=_eh5P(zM*MQ??e}Lejna?gjI#uylH0O^cN;k~Et|x}q9lrz5alTjI z5_=|)3*6+IxqxYexe7RM;y({kAVVN%(JTiWkQj=?cG;qbn#`r7KbJ8nc&WFnIpAJE!ttuH-u~hnS9KIWMmfY?0#R!ImB+X z)MgdW1}Wfn%p9H>0K}J~ou6Ia?s86 ztW~ES1IS~9Y9muecGBCDPKTa`(%WD));zioY)J=F=KS6+FPp237Y0D@Dm>oB&elys z)F02TxhofU<8)beG7>3PAJ>-5pEPD$uq@f8qlL5c6VII71l4U}Aruod6&jD|dHT=%T?QEmYzpza8)Q1A~vtg01k0 zY!LwzV*ez|H!Kk)Aj3sYRRIfr5wj7Hc!i5sYB)2KSmM)sgLg)ym^Vd3>nHg^f%VlX z1lJM}DsHD=`9=q52NtdzNRmpdvnv{f=z9HiE9((2;+Vg&=Rn4>0|1-tPo$;R+ZMts z#jY#6F3sMRG{6ctiQNK_)y^a(VVHaIs8w+cG2+z~6?1u_sFisiC z_?*Q4`U@0|fkF~V_IOY=^Du++j^_8lih>>9Hchwt9;@FTf+V`%9BtX#-s6`O+=)AH z&mgPxcz@d~#Vy929Hjjx4IH~%)Jm2O?d1GFmPh? z+=(LxO}efa7Q4chEahDU9N^L0D7 zpLdt*e<~AD|5HQGqK63#!GjLdfUU5hOSzMW^8(0F08vHed2x|!)%d2P{D|Oj{;v9Y zORuoATHI?#{46GWF8ksX$Bg$0dRE&ffWwRDEsZ1Axy7Y+-+?Znaj~L-^zT#;*Sg#8jRN}8c}Z#59c3PXx9`?X_G=z6V3t0{4L-{W+cyL zGT+vu?e<*k$2Wf)lZrV~n>0fSbsJEAvLVX>A`Tk+3O&bi+vEzKJV=~sV5VMfre$N+Paw|Jsx@{XBOT}Tg$ZP zuog74-6d2Y4?ddVv~k0w~l|7 zEkk?{t^mCPFkrL;DJU@i^EoCLl>J96#{9npc5>UFF}^1J^X#aVQvgZ_3|9fg`6AZb z_rI=n#2P&&hFWcAU3P!i{37K2gyKhyym5ljiW{KD`+mi^Qb&<}`Q?xX1%KlnmbQZv z*E>}~_`!B+7=YBBc_uk|IaQO%x@i3xm><)D?oL}ePp?zX@couPS<-sO7hpf|#~DTFe9C>bjn%Jn4f_4n z5Rl(dVd)Q&T{)?p{}n}8pUBeNq$xUk@xg!WcWChuHQ6JIV1}Z@ip*}asd?lK-3$Y_ zq7l5z%%n1&h@zqjo{l1oI`)+Yz6KG(j~+M`a|&Vfk7))JEab4elIavw>zH2}U#lGw zFzm&;ImsdypIzCW-LGyyqlY)3wmB2g(fI=;l)?%T3%YIV6K$f3`lLXzRH(rk-seUN zBJOb&b9L^bR#ul_@)N?)H*e+EC*6#qlWvPd%SW1uW|{y4YGo zZGlbc`f5v~hq3a;-nqMm$L(WOq8dAQ1poh{94Vxy0-{D5NS}=ai2j+SzkBhl_Hv1u>+(Q1$kV0ac@BW(!Ur3gMT_vsF2);3t5*-XU5{K(p(}qGeUi8#d>>5_{~LxP zSv*H~=LeKc!G^g`QQOWP5v#4b97hWqJ{1-K-#35%hI6Ab zGIup<(Y5lfm-3eFDUQhr0DQ2T8oA`WO{2?TJ6@6|1pc=bGyLBz*KqRau1Q%3@1$Ol z;D0>6Hw@(I&*2pIZ$9-$?`rnti&X#PMkQ}UITsbn6bvl24gtw+>&D6!?yPgjd$|uHbBAX;vdXey+vGN@ z7hf6FNZbb?^c|21MfZJsKw=*S3}TudEd`=HPLZ+KUk?7DY>3n84=iH4%XwBd^0bOa zVOxa(Jxh2AIqBBp$I^@~|FhddqlY;xu33~`PKfBN%xFp=YPFEEY`lP<5>@!NK4dhF zeaC7qdE`T`$yH*rsntN$x8cZk%k+Qc0C|j}!wS}S^+#^xQhLHO7nK41JCI=#O?+A< z642sD|8V+6uR~5%c=7=SuQ8q7ShT?8$Si?Xw>wFtGVJz9`OR=u3}L z@80X@y>6N%^1ALUzgh)Q-NRH9zcr5S$!ExzPAENedS$#k;BPqIG``|`K1IdUvM=Yb zLTb}|qbauZH1*%kZqQ3oC+CIf$8<}Tw*k_$9IIUsS!<-AIpIw&g0M9bCxWb6m|+V~h|uCUcXZlkr=E)d0F1 zNOO)fM$lesuyy62*vy%Jv#aj)e@>#740zbts|B)U=$D$8xYOQ@QAmRSy%dLcl_bb0 zt@+x7s76{N>jT%)a0M<%c8F(R~*hhw-SY`gzRzMFC0-7 zjhy(Q9BI~b!SLXsVFV;0Uz_#eQ&d3iIijes;Z&-gDl}fFNC6EGFBS`rfh})e$mi&x zpfQu;4&kBc*hl*Hd_=6|eq4K9nRzhH^x_UctwV1K1>k;MT93{9*B>AACAop;StON= z5-&9n@IL7%{sBrewlom7F5*K?+UA3c6ItA1*lJa#F_g^Rnr}W9P9x=v?PJRnk7qc4 zD;z&a@WOXHLGSnfLOk|xDpYMa^=Nujz3ia zm$AXvnC@3Aj+TxIAm!;_kM~stl03%(hUJs2N5uI+mH`ApOnUw#*&=@Qv@UkOvi_%t zTt3zqVBn^&t`M94(d={IL$_o115UY-Qqk4JLCMRuL@?w%m+^1d4IpR~A+YZTSmGlz zl-{c?0Jb~Uw+P4!5rR_|hH-h}j0J0(P{=9g31Opoxqd(gE7sSu+mUAu}T6`Ji^Rx&vNYTQi zL-ziu=Cs~+MWNq$l*4|nxfgit(-Iv3t_`IY zs6q`r&$?@$@BM62a+3bj9{rElKKvfYK`)t;`C319!N=VZ1Yl{#6OLAulVm^SoHKbp z$Yu`XGPVXTXwQ9KYKC+7f!T49VXJAFuwA@EELfUY*4U@`=?taMGu0pV3N zk;Ql1N?h1Bg=VG!A%&&srwp^VI|~YIxtzIXT*)m$1bqMra35DyZp!4m$Y2?$;C%5! zuO%<$sBf?s+&ekvODBNf%W@E1D+eIi!^xI2 zzZa|(EL|OzFC4;d9WF;xl*zG#CA5(kl|;*(YBpztvpj*Enxc(K53&bYZ>*z6@R8(o z^l7G4QIC4fCsaJ_Z|uYP;e%}Z1#FK=-XJ!jhN6ad<*?=ckTLrg!*xN%lg zfNb3;loh_?&I@?%ERV!u_Z_@3w=td3*Y994hJ*KmyddI7!9vF)poptYMUEPF?lZo- z+<1gZ_4?;(LHv9;`(cX{EouCOSn$ErE8yn!%I{unUj2nyV8qJnfa!qfmmOoOYk2Dj0j~K!L2v9?VBPG&zZ!aHyxNe^cZY@@HQ73+LONA{=;1 zD+xE-R>s$wT?xiE0a0`jJ96YcRPl8y(5+xtcNNsW^a#p5CfVh zwC&s#M|Z_n?9m%ONdWS(8v94hD|jJ?T7a;D;3!d$PcDK- zPC=PExD4m`a9)z2vXyXgKX48UNcPSCLhHwzz2``sy0~6-zLjs*Oct~O@h}3rCYN=- zT;0z(R=%#oM$3iuHG09`Rv0p$)kY* zvlwA*3+;X?y@9OREw6)$)M|;A`I+a0;mKzp;3eG{Fly^#&YV5{s%xEXIcLsv%F?Qy z6UUeG%}3dg-zZA1_NTv19x(wBb#db0eTF!|MxIzXb%N6L!}8CnS?zD74PX%<@=%UC zr5vw>@%JL4WW7j=)!AhK3l#f}O4LYFS{phzTq-?`a2)LXQ$FPBnd@EX#+5t**yBX~ z&L~FU=R+2RUZ{R3#tUL-7Dl;EV{o|;tYE2 zRs?ckWNT|gv_t)(=La(LfxH)zWnL5t5kRPjJD#TN2Min~>TMg7Ifn0@#en9abxNLK zM-RV+KB1iNrh#jwRDu0h=@Wg&h$YqcHsFr12BOxxA9@viJyl_RzV<43Teja(XDyn22Mo@z=5kaYTb6@xLL9Y|mf73n$*~nGdp!IB)=73k zLx#rh6)T2$8QR))#Y1|gNeL%XB&8iYB$yZNm}AxliFV+V=4H`d8YJS;$k{vpN>*8-}k@!%KQ=4pOhZyU2N`0At_8TMGCRz zglknz>E*^{kMGmx8hi|UQe1YF+|gu0s89f#Retb7g zFZ`-QZld434QSzjM(;vsoFAu@`bm^JVfdk5+Iecbwj=O>;b;*mYfz1Y zglDn+RN<6VQ`QtMYDDp>GHfsQh;X_||Ga`voPP{5{np2CHj0hpD}NdvW7DT=<3+oz ze2xHuk8~gZDJ&B zSP|})GNR_gU)SbBcI1OFUQhJ$Ay-*H{~a++L2f2c+kQv%bv}B~P+CqH-@Tk196sNg zzNcy5`=)-k=F_4erc<1gp}p#ykw4~MOCK6T0bg(&?GTjj$FlIU{vGUg#-Lvp>f5}S zZFgWru>oQ4u)8$7oBZyq_N9c|P$-U!E>%dbQN3Z5Xo}iIc*IEsBOA8%y+dfNUW$~jl~6%^`{jlp39dbDwUZW@OJ~=qO;+& zBqQP}LrvDj$RTBl6vI6j^TcYF^B9w*QID`%5*hR}P{#*d=?2JCdNG^%qOt7QPt2xf zCyhjhtHG(nC(MbD(jg~T=2?aI_Cp?WGKyx+GY;WPol+BpWnYa%$qve~sa z?My7sXpi;Yz4q!~VxKpLqL~y;-LZy~uPiUulLTS)n@G zZ;#b(F#mn;5x;S@sqAY^cb1zS&CJCyaK?Y8cMtXM2JA)r7y=1sFvlH;b7xVBZ7ymE zryb#4(bkoNlyZ`bu|BK4E`G{rYW;_>tr`?R;s^lfY{akGu1- z^&Okny`OUD8Gey2wN>+b!Md6h&TEW~p5s?85ZZ^q$bcVodCG*>H6m=E4R$(r3t-giD z=DBbXGoC6zL%@W? zk^VL>vHhGNgl>aS7Z)^8qp!ry;LDl&m55+yNRdV6>ka3)a8Kp5lj*CjAH_1(kfkMz zN-b2Z=m!3l_H$-_ z%#SG{8U&$zE_$629g=J4CZ+cVirZz`=c8#8`Zuw_v!clAz^3B!YZ{vS`nP7!5LBo+ zm13|RuVzcKrGN2GJ16>s(d5+TAvk*GzL}Q|Mmxv@S!epib+wY>{KJ%yTggO$G zAz#N6QhC2>8&1)H($)ouXtg_ejq-M;Ogy{T;4sD$uwASj!l+Lrjk z_kk%~9=NB5e|5$|knZ$5juF=lnNYR0NeNppKngJ>o+}(bo-&=!PMTK2{NoMn;^yk) zK8u&Xmc0t^L*qJU6h3w}j@Mapkh4e`x{hq)Wu8}F7&&vpYCY)K2zH*~TE3o=_nzp? zdmblM>$*oCJ9m79T(dkMFitYo@5TSl9D-P<*+CfU$4! z-l}nx1A@;V;2i%Xj%C|RnG5R{C~6GCFsEaj{^59BfWYS*%yWSBsOp?8nd^Y=Q9?&M z_JhwE$0$#EsPBCx&6kM>qI$aF7&-;Q^KNHnVM`jw6ta*EnKi z_uL*j{sH5#nbvk%3-<(R)YJ+-^~;W^@rW6>dTTS`FVlQR_{EJ<6{?6YW$;?fv62aA(gr%!SZp!)NmKU zK7t^D2HXC3c+WF=C8C@xTNasQ-!PQpa){up>yO!nZ_scTJA$(GTJ(Q!5O#Barld;G zRG0jc_f#-~ADC=@x+n7hzK64r=hiM{Ss5BWHTQh6zatrL?6f2U7!mdgcpRWQ%SM=S;aG{z-UMQF&#Q3+=)9 zUrko8taZ2-Rsv&!)vdtnQ*<1@C}QeeJ&kVhxpKlA0P!<%6K zI9y$ux@OwHtvA_*>hrEZ3V~o>c}QHRJh)Ln0&JKy;C{)w9(Ul}-rw>npX&AUaaBWS za|@5arN;P=ihpXPhmnrRkA$=F?m+FXej~m!JHDk&|C)EQRO{wpj&*(9^OoZ*k2};F zuSu@~TVR3kA77^KXEtiUrndqR%H`KP@Vm{no%f%KUrc6Au)J{|86sD(RQG=~>N3l$ zDq8=W{^=)iXKV678@Db7l?VQ~v+bGlwZ~(_pT8)r=B)@@W(bqe)6mc?23_GV_&ZH^ zz9 zm0ML=Vw2{Y*~7!VvmBS5vWIMp_3;JnH8_js`YNrWGp=+G?u5Nf<8Unbnr8jkRi)Oy z0B^8H6jcoI`NAjHu8;Pt)hp}%FUn6sp1yt@0g>(X`*gN{&9~KhxehBC#RU-9a8c1V zpQes#URdrt3gZF}qXLfJ`ENwc4v@r!c%+O#!yR1iz)CV1bo10LF&1)x?60@Tm^7k} zk0Ew)A*foHsrmor$ULB3;ra@4LIIyguVpB@zi39!w#YaaKF9|Zm|NjXaHHh^N-|}PEQU4M9van zjO_R}-Xm>VU}bxv!|i^J%5nj%W8*!@Q1_10weBe^yPtLHO$$6wzh0)&kGGBq!>I`@E(@XM;9Lgn7$Z@f2=rJf+ zcK)vDW|o{2Ur?3Nj&XE`_2X{{@e)Ogqv3eI=taX2mFft;Ie)d-k=!bi%~s@*#}nF7 zzZIW?XAId9g#&|vO$tjVZGR0X`V^QK*T_-{rROJ?4qs@dj4zJNMR1~%?3#zt=ldz( z>&NDPVO5N+8jNjJw>G1Vhz%$)=e6DE1ky{5bhq|y*h}d#KB3Ap=^pFz zXKx>{ePMOEpf$of7EUO)t|d`hl5}s?B`2*WQDdRV&_AA@5J!yDy7Q7!QRK*Dx-&>T zSTY}~K?H{+H9eMf%G_T%MpGod^aoX+w|kV{WjTJP*FaVi*BM7yNhdx(yZ>F;7?_6_ zzMqa+PH0(kokXp(QbJ6U)(W=DI;l`xU}%Ar9hUV&1z+GCd0yYaGgbKJ{<$~w3RN1b zmHcb5yl+wC{QOIH7~a+A#2v0K;f`1G_|d`hNGZJYAJh&LuTP7*h)!{g+xx9P{OVGm zUuT+!I8QwUeBTuC3R$=Low#L6l=}h!?{qiHA6PrG`MH0b&;@jhj{fbzE-anl{>#@ytaT9+N@3qN{WmJlgOK-ALFpf& z1_tCXic#-+IS>#x_t_}`bht()d@8ZV_$dqr+ANXQ9U+|uFJQf4#d;cS`W3nGi4b^a zON?W;lL!C$xM95c9p(d&C~d9Q&{t0q$^7jjl;hbqX=6>UTj_JnThiRqF<&5~3&alH z<0HVYAX|n@33%RVFs0V#q&Vq#?p_%XRq_nt0b>JjwbaFAMqK4{N1_xHDx1Aft&Fzr zkLlkboq)`4NK}2Ro>=Yb=IB6apI`Nys4gWpLRE>On1|-VaQF2e$omB=Am6l(FASdF zxp%1;9p0a?(#bPP!!V7m1RU0}Y-n)ZG+jvKkD1>$ZcxrD3E)tjMhZzq7w2ZxRA-fS z+jI1grq!a8;j`gG3GHRclQ_pRuG@Q}STtgRyQInpQ2!m|Qe;sFsY>8=IYFQAw23*w z8z!LX+|%hILxb(PfU{kRBHk^U&0A$vN^hU5o1<7$ybN=fuD(jzr6u4KeK1z>5K%a&t_Vr*wTZnV_zZ9{S%(yTVM~ocYSPTK%<>~y~zjL zall?QUbAOw#k;v(+|xJJHQ~&BRiO&*)w{-5gbSUp^1_)jQ~0N>GK-BDr*e0jB1l+Puh%UZs7zw@*y^>_ z^Omz7?7}m?LiBF){`EGmNzXO#mdPX3rJ|?5^OXSx=%1?|s!?WIEo~0=2@AL_CU#1S zvUcu*Q1X;zfDT%LwxDF5c(Y_2;oDj+HS>)bCUhIGnY~1T>wVZK1O$YRaT=&@U*Lz& z#qH+9N#1(HjG4#m7@tXzVySJrfLD%3Y(Y696$-!ONY^Z)X5PA!HkCJR7~fc0>3BaP zSrl=Q_Qt7DnFex$^&}B7fzW3nmdtBr6GGdyB``;XI_GuYsAy1#ORCy$^W@(0GgN7O zCp?uO#qgo+vzVYM&)U!$o=&BA5*$EgwI3rc zF@z+cMpR76lJ~;tS>m+xvAM}v{3v-~Mb?;?9d-yhtV$cC`rg#JN-Bz2&>>RK#_6*D zK_FC?YmY!KF?!7wm=C@0R1^e$Q5~|8R-&x7#Lu7W=_O!s(S@wCM}A&u40L6c|qtGMxtQ@$4x(@;a8e_S^xgch%+K>m?I2 zxRnrc%__Ylj({;+Pug=*rmb!jvvzuzXneY`7H}20px=36Z3Njo=W3N8Ku)IYi^R)6G-2w3)xbwxM*;D+jG%tJz5L8!CP_V@S#r|7e-raW?F*l<5 zJTeEP{zM_EYXLO;q+Zmew4-X)|WY{hJQ2=j2bozdY4&^#nATjt*~?l z7rUhtv@P*M-8N}@72=-evcOn#Ii$A}N&KSao!mt0?KXtXdf2M$q>i;I zTgRp%d6!vG;$qJ&{CM6g)r9j25QI#sBxYM^a3)5+g_O6*%t}tj(@4Q@<8lP!29b&| zH5qRQQWn!G#6W*>^;IrcRv=D>6TRsPS#Ag=sa{;oTTw`)7)}(DTBt@s5>c7L#1l(& z4nF%Lgt;S*M$VKEc148PYB|_&J6SVUGd$DqPdDoehzkW*ST;-e7UI#XNtfST3Ea)g zBt~2I=`XM=DRF630b@ZUDFXuk^4lN>9h-^45r)c}-ZeTkdKL^PM(0Q2TMmubK|sHl z$tQ(N4b1eK*YR!nimY~Fwy7AM)IOLIcyL9Q);F=NLK=ghLS{H%1ugitS$2lcfp6{ldl`EMZ1?O(cXP#6T(th?tJ`ys=t-hV$ z_q{v()apqTrR{sAcI0(>C0Qun;L51yvf_tJ?1J$~NFC__Zq1&(jUZhU2279(>1h_O zv86wN%O{Q3%*oM9KltnYb<)4A4)51%ek}UX@P=8z%0-HHvcYTJcmXp!6bO1TH0OIm^QaG&v?}&sTU82D)=bm52`lOtwah7AgC{q zhI5?J29|D#*E+LyQ;aJszmfEa*oBXQizX|2A zFe2PQd0~Kve_Sl7^4c~LQT*cc?yfQEGrcL6xFy;IpB>TNaem_jXEP<76kFWqg#^_O zy7rJXLOy8n8(`ZL>A1K8+J$}(#>f_J-dvidIA%E)oh#g^ z`YJ+Kjh+eKaNx*Frbj$I3F{ zFTG^)FyRI3-2VFUn%FZm;)Qm|mbV0jv%}k|JjAIj1n7j9(dGzsEm<#ucMm+Kt? zBGysVV4MS5UZ)LhBF>fsuV4D;Ry^nbx$yH3KXQ|=saJ}dcwuO2-a;#mQ?nBEDXje8e)Ki zIF^MM;8U1)|8+KX`g~H_G&t9$J;4Elr^h6&5j(g(C%t?VvV^8c+1Yq89c1OysQP*G z83m|A@%auqQ77&1L3Y<6$hk1wXCk?A`vnH6f-fKRm)O+NHu)L%>InPwdtHJgpZ})p z@Oru$m)_CFiVn?wu?h`)Y_KK&P9{bfT{CpkW^laf^@s~fMW_Cv&x=OjXQt#3p4)tz zB0Cv*D}79Y`HjVV-A_H1N?ut>iG>}SPp7?FFJ3MKD2H62V4LOM#@jI9f#A3c1L3mV zQVTnvx(A7G@B>#sV1OY&Vgt{85X{Y?4Amzdwv6mb*rO%A}t4;g&I%#9sfo;1JvCLC*A(33&NCx-WT)hWGP zmOcYPL7!BN$2J-5(Twx$ZiKTEGA9t?4hp(tCf@zb;0-faJM>YKpjE!ov+|Z_{~H@l z4zGg$dgL5jS(!IGLJz4&0jXJqv{>64uNu$cUkdAmH*t|>8Lqo;i@iJExU+uib>9&T z8C*ni?`whcW^^cZtqfOP5v0a!I2$r8V>c6wKrjY;5*o5497o9c<`x6%p&0!o{W!+Z={>a#TQu#lczACD% zu4@-sinTb!-QBIYyB06*Qrw*ucXutJxCe*g?(XgmMT2v8-~T%oJ69PQ86z`m&H32W zu#EPS(jF572s`{tRzf3m`$#(l?G!X>BIjj*T zEu2212rb@O5I`Kp8cenJpFFSfgMl5El1;ii9&r!pV-EieN|L(+9 z@-1FF>Zn~{|ER$2h7o;%GU_-%az|*0vD?Ps0#g7~h_AiN=A_sc&GLkA;CmhKTpBQ$?!|W+EkzcG;u@!zTqw#jmjXowD{Us{HBL`@{4TE%A~L^o*ME+!PyH9VQ6XqfpCR`X_?&#m2{R70hPlv z2~njqg9$-oa?;GtBeG5T$zmc-?TCrXhpz_-5V|?txSU5 zN7YM(gJ89!L#iJ(v0*CeDUBb#NW?dqaH@MAW{7ge8J58vU*?6^iM(ugOJ+(&8O-|Q8ubkXtzySx+ zod=DZMf~D9*4|NORM_*V5bb08FWBfPiYigZ4(pwQf`s_HDzh*&xhfa0;)tvfitNnr zgh0X#fSfJV&fn7dZPkB!9(TKCS*kw*rmUo|-dY5Nhn+W&_JySQrWx&DXsI~m!GC;e zM%b6u?Pj*j7n~o)z1?4YX0HHT2@0vCyWU0+&Hf%PmgVu3oJ8i&-o@+Z?E*9XWzxHH zFEQ&D38l%}gX=a|7j060Q8H;PYL5wdDm=~ej?lzmG9#=hS??%x6e+Os_dOl2w<{1G z->1ZUgdl(?aY~E}i>{LrYQB`8lWpZm=%dMe<%=`LJ!$8wK5q@&H@J6O4b3&Ve;D{n zrvnzUt)0bKQse5=bNYJKEy-i#{x=RJlE6PyT{kpcK{fd`7J0bwRG?FsAa{;&$bzH zAWz8sVu?kHds|}@$4BQn1c21z{+D_1=T2?#_XBC{?`6WSPuon_ z)M-vk8!wr6(E?1|SGH9WW8Z2B)OHAz`v+kP!%fWI@Q%yQKD{W!$=jJC0=Xi$C=ns zyHwQj^fWw3h1_Bjno5?bYY!gl_?;PWfON^ehAB*HLS|jKWctFOu!bc(!zi_mMlH7L z?i5~BMYvkafdXPGsg+Dsj4U1(SD0)TnQdl3=V&$;qSnthtxdHs z<@CM9auUEYW~;J;#V1{9WZ1`TO z{0GSOObEz&IDUZ8Pi*_`X@8@PY;C`IZ+hX)I4y`FH_q#dHHseFSarQOzt=p!r#UV( zEacJCIC{JOuRpGm_#eHONE7a9XWO1BpT>`Ai{L-@6|jhF5xd!Ysv$ZZp7BL(k%Bf9 zHH~_hOp18{LhqQUzGZLn^X~MrF>{fUWW!oy(Ld@hnI)zn+pCtO)Z038H|}W5kHGGN zIitLKS8Zs}(q2-FNYWx^!}Hs4NV1%}aa!-n#)4@x7v~sNgfS4`=w!d4ALfMe?xyX5 z_|Fc*n%k|N3YU#+OL#yO{$tbbX9t(}{{hSTE_Kf78kKnq*a)qR`mam=vPXBCc?%gZ zb9gT_lJgv<3Q}KP)rta~pUUFza4_wW^uG1zKs0q0v?^0d?09)WJb4!%K0T8_^g&af zwx<{f+=$Y#MKbyr161|HGLT8>!0clxb<*tciI@qP+)=T!I*_^E>Dlzvwi&YHG!M$Y z#(+)}tw|>dUwg9gwvfWFY#fTSF?l73jtSF{ck_>8ye9T^kYy1y23E&1vV7qaN_zL7 zz%Xc|w=?FRMHYoI4`)&dfo)cR8f0(3HD|I5({3mznKg}UJaKn8y9zrg6U#AeNSnP& z75r$*b8z0b$ogO%X{}XQ6$!+IO%tI{=gr~MAx1h8B4{bK@I#3GayZ~wFTS*vx&Jjs zcFrRDte#;X&|6j}S4^I(^t!SE)#6zho z_T3R>s1Wl_EQ#p(<7tN2?R)!z$DfVp`r0P<%>y_uQ#%yd&=YS5u^_)~b`Jl)FN^jq z7HpRYKpzl;LBTq4yAZo7@&FioH!oJ->==H2M){99ruhG*g{`AmbgYyaa_8Y>Vs`?| zSu4Mi-5aYR&j(p=&$L=jPKT+jxK%L=#z>~p$0S;|wXiBw{y8~SA+|s&zis=o;&&#- zg6XEhURV+;ef3ZR$IMke$I^L2QoNRvH4RvFfbbMoXN5t%0m6zFhI(!|J+?@26ck%E zrAATC&Iy)CjK`Wn2$8~qrZbn(%Gy`aO@6AGQ}^Vp{3SGRuC2+Uq@HJlii7*o+ZP?n zb5AP|AFxGK+iLMG1mv)i`%+f!_n805z$4+G8}$8?z!l%Y`QEPkD@g>ao=qCQr0(L@ zG|ybILp}Q!J1l}s^Ja0Gg*Xa81bEa!^gVD&m(@BuKJBNrLEL*$aW#U`1EMtR=73&& zm8tfcYUFNB#oppy3iLMkVawP-2pIt>^vA24QpV$E*E!zm66Vd@%8k@DbJ{7a$mGjC ztoY=qk@y0NoTb1FNG!ojXZ~W{7)vH6diRAEZm;QRF{?OvNxg-hgdGjn~C{8HPE(SzV;~vrk#ksc$pnCA(?MPwewLt6 zFxwhv|2`3JsKdV@!X>CCL5OdKa&n?q_22=4M)ZtL6g!0E9W4bU|)iM{a9znK}~csm7R>}NJc z53ggV9+EdG^)JA8svYu2?an?s22VyI1B65ux)W#Yp(>sJtyiBm+@IbzGuHkif0N}& zQL!*FF>S79hl5vBk3yjBc*2PVG^{}Mbnm;SvL3V8x3)Q!+&*jkV|%MviB4%V+yorA zF-Oq_NRl%?l~?u9rOSl@@+z}t$a)^ zP?F7p-vhUDR6rr6ldix<&i5kYy(C!dO;obFJk|_*?IWK*4^gumUnGkrv~}OrXf8W_ zAjI%&Eo)3G#Bd>MsSM4d^Uj&!0P6B6!zq6C70OXK|#suKceGXEnLcq*X4c`L;%)c7%c`qXWJ8Cx*Aar zrBQ5}Ja+PXnQvP1Y~|!b@r_}SsaDMC6Z9R(sX7Aq;8fGEy;)+Pj{4bUwZSFB$Rb$N zvfhnhDno|yPeT3#Kb9eXJ_3XG&k^M5poRI^Yg6}EoXJ3(erU*C?4^tQh26H<2#~PU zmBGC`T|5H7wG0YYFE>&M`hNm+*}mK*3I%z_PW-GD!J@R)zG+&|b@bwk;blRa$>JN}H<1My;TlRly z#?1d~2cZGd)lGtQUqQBi`B!wMB?p)H;Jnn@sva8KG$U)sH6U`ic|p4}KQKt3S{c!! zQFnfb3Ur8_R9S%Zuc*WUlCeB%msQf&7)wocEbj-^-Dh5(hDU7ZQuFWxI}wI)iD}H| z7ubrn?4oe&EkSNvp6Va6W1>QOq{Y%M=-Bp%)Y*gjl13W*Kf2b*a$v*-a*MgY5Sjjh zP8%35mg9;iXHOCJ+Va?N4yWmwosZH@tysXeYWGB^=k$A)%M?m3Zod;jckexXu1zE^ zKwy4Z@$W6Ucr~J{YWFXkU@6228vQZX6*kwk{&ZygPd*Ef01_!-3781LPdc6J2<3_= z?n)K&jy3SMoy3t8ox(CAf<6+a8DG4)Uz}uEgr@X@9kY%(>|15Ai7i1`c$Ym&pKfGn z%FtP)D;rgSVS;&+h_nTNcuxEBnR7kghCnpURw?=6A7p?FCVjUx=Vm{x*D^pWoouGa zUB)5HWtB387t^$i`}g_SWh$+*vr_n{yPaxl3_fKf`xu@y`T}p8Sg_TPWP!&N6g}dN z{HH@~C@qf>Z-~EM7C25_JGJ+w+5#c#YYI*QQJam&FB|}6Qi?;?tD6~_ZQnUlWi*($ z#Qo09VAgoAKErrk&cG7olXKCi)k-Te08mXk%z_^xy06|&CVu7W@;f~2sOe&|{0N;$ z(6tcA_UVvwBK#0sUpF>Kk$Vp)lOqG<6KV$;$erb_P#4kiQT#D1)_qa%JDz3w4SWzG zTL%ure#mE9iC5em=~sLkfU#TZ@sHHXf=6Xz|62WCmS5n%MoyFI|B!kpe#TA#4|cgd z-tRq3KlwaSxzw{m^zsgn9P@o(zo!o0o)r)COS`+ge#vCbAtP=uLf=c%j9ncso|7nw zprf~mf_3>Y@P`O1mY3PrUw*$&3k8KoopZ{rYMXZw5w^Ln@+hK-DMZ$M6R8OQCd`XS z#r_Ia4;CwxFbM;>J$oufDrl%8Fn^|ZWPHTWZk9aJtm*6sf{g&L5eie52(j!;pfe$2 zCTG+VPw7=g#DOsxE@T|7VJPikC%S2RE-`>Jd=S_WxgNWCM}l|PbQ7OTdMYozTh{TA z>v6mBxKR{?AMCTL>3vJM?(US{egGIBB9qZS&j@R(vyp_6J=zI>=g3(~-$~;oHyAa1 z=>)>%Bk&H9V7}OOcgxTMvA;?pBcJP;g93v7w0UJ*|6(4jKOI0YQ?=mP`7$=ChLw%3 zzS23#K|vB_0_!LIou%;NL0l$5$9_#w{EM5WmzbIamQ&6oOke7wV|R&U^2r)BHU4L; zEOhiqXJ3GG(zOKk8)hgupp#nK)d*s0hB_3?tXv<&6c{;de|+tEnfeCFJaCIaYp<5f4Gg(s${<%jZn!7O4M<@rzNr3~o5 zStr~yJpsr1km)_niiVL$*BlWwlWo zAp1X)V2eefy$7``-7JdNedAIa?6(GuP-fJ%@t5T zB&>u~t*9O!yVPVZ%12;S`Y2yhSIZI(i?!?5Nro8Xwrb%R;a-5ENj1U>EvH$W&2E(e z8~;J<-J^4F!?{#e1nvzJ-`o(1O4_D=oA7NrHz;M;au4so?}qwF@Jg!ub=`h@)sq;^ zm6>*i=+vLKY|7ONG>6NFXHP9Hwo^3Pz~X{ZI#X>))V@!DenfBKTu_k$oO>`lAf`cZ z*ODgzVzmq$bmJ0D&g$RTT%5fga|ptjt|R=3PdX+Oyy2BVTT=!5OG?d4RpX;O=| zU_%PYWY8V6SgwG9BewFywgn1eP|3PeZ}?4IkDYDPqn<$=r}cr?36laralVX!hbw}? zq!_WHD~$e3P;>dA;%O3vM}x6;dE#yT!P?@7$zc?XPil6}K#g^J`w7q<0*mtwqjdG{ zTs^Ojr}#cA&6lZu46-7adKe~#ntTp{kPxzk(;tdUp~EA&VC~?2H7IOl17Ukt)56P2 z&*rm{+rD{UaYQZN$95nI|GONoD`%qGZ#c3I?s+czV|-6i1%n+AXooL+F~+&uv6g0! zV2IoSe&4ZL1dH0#G0Fz-`i)JeBeC2`$v2&01b!z?YFQKFYnx(5u|~Sp_qpF7okG`g zAVbw(LxPD_`pUObIZpd49)^)wab*xFWOB7e?X>Mk!ETbWg+qtl76Rm0Nvid-$z ztxzH99k}&@Llj~Q!0UjfuWxdn9*X0)Pa36}n|F22ZM^P_<=V`uYH@6@=aZ1@vnjCn z?u73jF0YU9-+kV-Ai!K{K)T!$okX2tKFRwl(ax3w_kjkV%WMY3c|7q)vCzDl)#75U zjv?iHIZ|sKSFk*Q)6>jdf>^j0R(VkI+rFOB-{@zJau~1ywTth;8Gc)xJF;0;faiin zjY_ws1Bv7abIi@=DJ%Wq+aTFsGo|{RE>0>o=j3dE9?Ug(Afo>6xy-kTcL^mkLVRaV z{W+m;QQ8u&M>lw*bdSK}nJC!HhJbCrOAyQ=g1frN+#oJ?Esk4ahpx?%Lgv-w@dWLI zB^f}FoNOJqvvK#L`&892_&1n(C?SZQ_)*1hT4CDbFChn!&w%a-*5`#Uwqe=}x5%e- z085WFP-ugPQz|<&S-eDLhciX!?b3gqb7@yQ?NF|x8|TUTU1_c^>O(kbH<`+ZKG}8< zL6C$gH3<{A_97y4RJC?YcRV$LBmGdBSsREdT5Hf^NQK`{%OjoybcHW}2SwA1O(Ub@ zc|w)iOcBuF7a-vSf}bQ(c;?c2gN8E`r7Ih}0cNw&8)w7g?sxU;^4@=)Bu}mKPC5Z$ zVMwXNfN@}gm0>ZWfzJ`!gzm&f7w;KGB!hzX+e<83Y-sTw-ki6A|DiXqKxp5JF!yLe ziE~)ZC$uuEYHbiqiY=L^B9c&AJ^nYPH*UU+O&IcK;x_xT?*6qDb z8IW3u{>LTxZo)t7YK8dM^Evm|7XR?Bq7HFLel96)6JXDgc*xX`ec4acJGCAjosUDvD1@;g#PVacS8=n5d7m!}$TX{Vir;?8Y0Ii!gmERQ^*E z8bJ7O)x)qWbj<$H8jFYi9AR-#0SKLcQ@K3jBF8D)!jthT{u3G%>jGS2acZeH$TZER zzxCz(@i4Utq)hoJtm^0vm!W@3{)6O0@dcLAF1xBHdOAq_n9gO@RFh8kCtuubpOdj-S|Z(g~(BAz;quU;ribYDFA|?!0eIrJ|QQMi79P z&?sJi@~U%6j_kOp!fktInEDl}Q9@|d45$dPC{XwJ`0*aMnB2$kCvtYf>C0C9Qz^B8 zqji~zQcp^q3i&6Cj6+~t`^k)Jo0!QZ!3-uDss=;gPwIU<4lK+fn&CCdVG$nNgSj`1 zun&Fg5s{~uyEhnzq8P5D>g7EjL?u#+SFqGqdbwO&%(j2WBqllXd?BuvGFc{fe_DO& zuch|5-@aX4&`f%&6}V#IaNYMfv|3!&_ng6tp~Zdt*>d>Y||Z*`~r%W}D&6sl0wIi@Nh2&G}|j&Cu%J9iiW z>BB3T>m3DfKyFuJ5`}l!7r*ZGF2uR0>?)hMjc=NzaGxPns8y~w&*!PQ!1EBDnQ|a- z_YSa0kfh4v0akdr3%{NAlR{ZG_k|P|)8vE46aFdf<~>eqdoQfv>7*{|4(W@=w;#Vd z9XIdL)P$WxM-12UubIh! zjC`%9b8S5mcws(ybpkRZZ7C*vZS0*C&ulNRMGD`~8 zMgdU1s@F{0VPkGnpV2*_K>YuQ`G39hU)Qn6YAGdUgH=WIXli+IQnJEUg3W|%$?aO6DQ{(PzJOw~#u_M^VkXEuI8PYn#_j`Xd3@2vwb3#XO8J%Z6 zFWpIDpMU9^MbVD2Lx=>y@Z|7{U)t1)^dO}=^hg*>VOr@GWXJrqLwB+WH%(9G<@&jT z(ct6mVA3&^fO%nz%>*toTttxSJ-T^+zlBDogF=23iOUa*13}rquI1_5KvOD({+JL{ zbNY)xiy|hVit5HBl_bX|G(vlM?joJ~s1V9HxBb1zC6CDW;Hlt)Vxhk&klM-=s!eiF=zTex_Fu7Zy4_0VjLq6vPMUNj&USQU9bTS2o#B6M1HpYc@4Z zSlm~rSNhyognQXisPFVXb>tokgto#p#)S@3)cV6=!HyLp`lhchr}?>%^SWRqP?(Wc z)KXonVbct;{WCk@SSW1@zLF)BDg$Kb`ZQ(HJc0Gb19IucE7!9H6U%*D)u!Mhzcy-~ z20`h@6I1!ZYS$r3uHnstR5JOq7RyUD_uGB-WeIv5 z=gR5b=U)mbg>|nl_N)N6mFW7dRQ0VLqWl>0)DS%CNh5a$ggQj^f>$ZXO*jQ~O?Bk> z4lRSiyhCsc;4bhH*#>s0{IDh!;YMdd7UhuFC9T`!U%WRI{ykWIK%ry&aryk#M-RiS zPr81HrvHudPo3-q_ZyUJUc^hGH*MRI{%EVcSb`bTCqDiey@KNrpQ9~mkDD55&&Tv4 z1fN{@jwb=1dvBq^Ba9h7@qbcA{qX<&KRA^t{>Ud30-i}+*qpfY*5I$V(rW=azHTib zux{x^a}MWB-a%w!2#jS)=?ZAisN7z%5HCWqRxO=3z=gu_>EbunblQHV^eQUkGF;2! zkE!9Rwu$bzB_SD>hP+O3U^Pe55#iPgU%vE6=X43;^dATRF!7k;=elZ8B@_{nSHe9IcQHagDDf!$}Z3B zrD)Np%CHo*&dv5y{7>&g*-!z<}2-Bd%ReDo)sP0==MUaMm^wY-Nc5PgxVx z!9X5?vC3k+`N4&If{;v{RRwez@@vr4a2t%_aCW#)fJQIl0Mf`iTI7)9Y5`R*6HgL( zHoK0;1jOx?_Iwk1^9GHa5rHWXjp@pB%%=GZsP<*B) zm=cpga~R0W5-I8{h<)Y==MydC;&~D9hjxD0l^-Fh^i~d};*_nFn2b5BAApk#9S>lg zr$)hlA{kf$N{^wT)4T&qCvM#f2w6m|^@@7mzysr55?$yo%nB##~n! zXL{r&zn`E=J_aU7@Z!!Ne&~fii@MgO`8TD`7t3XsEw+&Al4KPXu}Xu^Tr1Nk33@;$ z$dD+ViVVuFOVHNw=?V=lTvKcnsbiBCPS`1Ulr7-)xqU|_b_1#sdGd$zK&fdYtVmzs z=U6BAu@Ya$+P$-kK%o&Rt%NOu^R7K2DA!J2pyV6=G9FUxoTcf;Z+nY@Wwt%{XNY3d z!3Wsz5aD;gAUq4HQDREa{cZ%^P-)1-CykWYn{t_yCbEk*+WZ#vE|oz>>t(j;y|VWv zqt?I#f#=ID0j%>K$mXz{3`RnNXgEPUt5CHW&FG3x!v&G1cHOd5}13d@-0o9Ft9rb!BlHK$Pb{iLNv76n2Gw3r@%b z6lLOvQe@=hvR?ye%rS#L>E;@tD*BF&fN_d)vBSR_2)kTn~^<_cR*3q7*&Y;$XAIdVVqtBiwsWE?mFzg)%kKqE9WK7 zm0g$GkjlY2DJE=gFMi*km~PeEQkI_%RdpZz&+s$_ADt=A;hm2tEM9Mvetjz_NiCtr zL-Gc#Y9AoA^pNh1F?I9nwddb%3jcJ_r;rgXNebJI%0?(mV5q&v?no?~(53J=qC3A3 z8lJiE>{-oqHd|bxL}mh1Ib)dQUN|o{@(Oe_BX-#|mU2``%}$0vha5raod?qjvI#P& zT@5{~q(%Z~Y|>ZWg$utQCVH$ZS#m!P8oHWoeXy4Sw**Wxf{bDfr!^9MFR2-O&zG-mMQ$GaJgvP=qtlOb9 z9U+;*2zi&4H>WH$OH>7a%>54DUEJE-D4>xXq-Gwv;!pzfIeT){A^b3u=?MBjRjLsu zn5YLkmuyi>qDGdX<0P=Tyq3nOK${5x1O6%C@!8zf@>8Hg>Bgnjm`FSYU4uv;2dgWR zs=D%LGiMThaz*xTo~~H3ev!e+kAIPmAZ)RV#IApxu7xT&)uC0!d#gl?lyhjn;tZV} zRMz;J86>P;5qsYV(t)<@o!>AL$q zOinCuHYNr;$%F~h(9LtpevMHl)IdR9;gHxjZId12QZd8jj?%*aWEIPwW3cx2$b#u| z2IUw)D-0aT@IeEmW_AYUGY&QYUkrFDZdL=ysVqcPdi$;oRu2;-N$GQ6Y1ZrIOdZ8J zj>R%S3)o+-w}^9P3CaOufH`_EsjYkU8n+*4I*b0!5pOk5DH#2|hdPW3;j2t&JPFZu>%Ly+VnE*rE{qfiT8$%oU>z#}?{8x@=*fFEcifXD(&RDRrmS=0S zt~Uor9noi8Lo+Ky({GIcW7JiPUjNAf_h$8+S@AI90G+}%1s3{6OJcuPuJh~OI>k=h zC5BFRFkZ4Z_F+2ON!O+@nyG%q&!2-0qoxNWzA0OJr(JzSybfSvLx7+wmbU55PhT@q zkQHw)CWZei`G9;SC%lM<)*#6d%WPP6Q>=y*h4FbiV^}&TtWZi|m_u{b(4QbOlk*fA zndo%sh-+084vP}Oq$X&&PMR=Tc>>1_x@VH|z0H~-rk6*VCRFk23)JwZ+HDlk-cDBe zECP^aZ11Pi@Z*8Rbn)+Q1A=RpH-Rb<3@WS&1gbr=oS)PsRH@>N&}|^UBxGb!2UheV z>`;kH#FViqK#|`nOKF0f`^R5p@&?)B-d?FrTlqluM#YE?dG;5ziN4x}#tH;YxEPm= zvI#@&1d>tD;hP5%mxWq_FOJL~kCCukV^H_N?|`8A@jfz;QKOcFED#Mbn9vIt>IzNr zfiR)0Nup-m3*@FI)~B`^*Pm@3`ZVY3WU+19DHL`(#Zxp(;xgUIim`LAaVF}a158!B ze-Rp|d3SRTX#kM33((8HCK@c=Ivp1dTK8Umx@`Ipw0T8mwJ{=t_WP3miZrWl3I?^x~ybPs@SGxv>A*0;Q^l7j>df7D2u8bd6~hSvh=_g>)d8? z%J=aLBmv5K*v>6sSB&1^o@n=A6X)MqY#K3=T*vHCMEP{XdGeP8jTOigO9Xoa9% z#U}4qI9Np`=D32JZC8ayn@!j4>1EhkDy0_Io;*BWY^m=E7u8L}ffn}&FQpJvmY61? zo}$vwi-9oBK|aKmKtU;w-p!Mz0WNM8)W_T+-Zswqpt7AzCjALLoQ$UQ>xd_C3P%)J z0d2C45gF!jL;y(sj$AvX!Tm4ANZ3pgjUxO`c=17S;`lg;BD}GE>wtaa!iHOb6tmt0 z5Xi1eT~O>Sp7gtW+!hqmI#1H!Ed{`a8f%#EK7SaP{W4SRRKdL%12-1vh*P7*gm5&V zhqkG;1`^2e)mdrjUkc`J$YZ?{W3qDrIGpFk#JQX%S~pEz-{Hcp$q56Jp@g*LP(hT= zONhVF{aW3pUDHC8dOrWG$ z9Q!K@ZDU402A#J1jTHWLyyF4X=HYzTXH@{O_@T4;37K@;@IQ6#nyIjOw-=cm`X0~N zg?2u}lA2kl+q4B|8!PlTNgv|e+;OhL>7+6o%ktm&y4hbz^yK);scd6t$9xT(Hv%uV z?O%zBw^CpCHVQVhr8F=xB_uR3O(iJ*_J3+&^xI~BhI)JHcoTfv!+t%JKhgWI-<9~k zepe5WM~twy2?n0QRRD*oGRHjk6X1`tPC4`<6EOHif6ORagdOVfGW4l8vla0Gfc(72 zdB+kTmGd`FPz834pc=Ew6S5nuSi2)*nZWaGiH=gb&qWk6pSY+-lmc-eM>1*$0i}i; zOC*+bb=#y{S%ksXRP4GZd-W}i%6i4qI=M~{+9B>GaH(F!od`MuJUZm1v@T%Qb0S5Z zW@fwoX4R@mz0W(-bByopi3h~+dYcaT9Q>{zyoQ8TB+M(~TsM~}QIzUz;f_+Hjs-ff zKYxX>j@0~Xk4fdeKF^U-E_HUai@5%Q`tdY6vwHm~Bz9|x)C}4#!OfmLcr+B|2uvKF zp7rf3$|s|XsIt@PhUxBN@Xcl?p^La6NmWZQztPQICs-*pJ#4-ED5uJL8-60EsSdOW ziDqgNlIxfR1!HfEH%AuQl7Q$otb~JHMpZT>q>@%#MmC9}S4I|RAZSQjEyF!m1@rQ~ zgD3d}?ip<2g`VnX7YRvCb>JgZF*zg(^}ztM6Ty%_h<;TVMlGX*^bK7*CEg6fh(|$n z8&FrOb}Ja!Z*OM8`@HV^Q|}Dx0`4R~Y_u@m{gC!19$u9LE)~D$$`hlBMTHVtwt?@T zj~jvu2ZLlp-A^4~s7U|bHWD6ye|gXRr@uIj5;$(4+|BSRSnE+vexJQXZEco9hYW1< zVkK~Ho;gTA35CE_B1_KNI9Gn}5wr1DmFGY+SZBS zEAtjH-h;Nk_i{?_4gWmY4JVAT@I8t{|A+bYmnd=LPbyJOK)IHPaxX+>uDR5bst@Jm zjzLCA$!p6wq`@+cn=H+)I^_knpEv@@#eWb<@||3)EHydn#SSSvGyKXPZ&VT@Y9D0% z?*9{Y^RCrk;_azOsQ#cs0+0zk_4$t%`M+4)*Bd;$Kj)&f|IB^H7ZO}(`41H5{67aq z6<;^ccJM8|b4N$(5y`64@fo(zH#YgaY%i#>ueY7>GZk=xVsilS@yXYHpGHZl5%>Px z4uCZ}?Ddbmjte#c8Na8xftE5RoH-lOjhmUD0D4CQ`}@tjJ)zp@cF?6W#)7t9e6_tj zD)W)e?^=Z1fkZYVvT@r&>&Mj#1pqNgAKHw1&p<$*pGC8^OpD(Y$Dx2z6~1yu1~(@6 zIn-ge>jT1HP1tHS&%wr@5hlNK84~9?bQufrV;Uh_edXd*#TdWU8jAEUv{hj4P$V+f zLT>x@a3qsS4zKSIgoch**4s~9kr42x>D3f@XwEAfDgDwTWRnVQY>_=f#l9}k76A86G)O-K2ryu8EsmWr5 z<`@xHrwHI#!cu93X{8tgtbi0_VTq>K6G=QW4TL#XDQM!X80;(OCj|^LSq4I@gzWUg zXfR`esP!n3y!*T+ju3p%xb4p$io=X4bmKV-aiwNpHCh!eBvb9~k0t=JSoVUJy3!{0 zbOZaY^&O+$D$B&>H|;RtG;@bS?VY~*A?N74k}TVK8XZ_aOy`1`126k&QXZ5dJawam zj{JU%i_mW+pfs-V3-n5Zomo9d{t#mRq{(Khx8iW-XFar;>yL2-xRF-bpFJNB<$)R= z1e9{-0%r~aYeE`qWact<)j8+wMAGxS{D}{>N^H^IV$ax2@0Gn~1k}tdlvHf+IMjga zf)(M!Dzt2ty+k2%9?OdupdXtlPGu>1A9rO>zWYJbn}kw@dRm#rBVQyS;d2T)&QKyej1WvoC$3 z4jld@8ULFacYvu;mlwMs%Zqzk%7ph^oFMMUoz|*NCu0DuL?KCzc)>f4GrEjYK*m&< z;VTH=8<8cK9@uE`Nik)seKsVOYt5s|dYg-4KJe9sDazHcb_-g~He$reX~&)R{Yc~7 zV2qB7>4k6+?hk=Ko*o=FuZQ85x2io1x*nFf!?P` zDd@}V#M{K5g%n0P#U#wyS|t&h4UOdT*Wz=1$ai7gYcAjEBKnv3)<>=l7XP* z1`hxhQ&;qI492Pw$537LJ{*pt#quIGGIJfRdoq_P3G^m!JeYwm)L2rL_8)OU))Wns zl6Y#!eq$Og1*ySxGeiq_sMB|18z$1%G{~ZmJPXnhmho&+z2YsiT1JzyTqRLnwM`hD zt?4*=m#>aHurm>Hh=?Ojf&ZKj10?CMk7pL!-_^g#xTl)9h*aj~kN<-&&{!uVu|0)5 zPNYX38c^Oi^*yd4`GNST`^iwDQPo(1AXTuF_5dI;dWZHuIG9kWLU+*BlW#}rdrDvd zZd})}vi#{5mRV0u35sK61D~U_6}a1}ARPb0lVsTZ*;RwdSIpaZN&AQeGskX^nG(11 z-zKYbhPxDX&w<3nS@IT(=m&=HamIKC$-CU-i#~9~B*!cA-P{6*!i;;o*?rk|`}?(7 zTm;l}C@_x%p;=vJg}r}@Dl@qZ+s?lz9i|Tw>Oo;KI^rVZD6QHJXEF6L+>W748F^c3 zglc-^h~)ikXj5o#z8E5v=s$#&`3sEFTT^^b@9~?Qj;@>RBI#2FC(aJqJxlkZyrFm2 z&wmy?8F*&|7x^9!5DpIz)|HCbbkjsyJrSMsT&~u{R^+9nZ-9W1j0ReH5`r;SRewBm z5l~(6qLd0#9VqZGET~t{QRSEM-IfZCop6J7IslictlZNa7;7hJl_y!IoGKh-2VqOP zNHPHibjOUV-MRW_4Yx!`96%-_N|3qcyFGPH5*2%1$CSxigwJUs)`JAHb>B4Z+q(4S zwTO)<{!ZK(tbr}38ha{gz>o^4j}r=Mu>se+olDKeGgH*a0mAZ$?sI|vSTi6AwHzmn zSow7Gj0U))50sCpv3oe}m3~%}YSPG1^~~m{A|1FLxk6CqO~0#>WbN<~`)YX9heo5`m7qXaJV8il5IT%~X9 zgbZuH1kNvxhiW+p9qW(eVG>Vjg-|JXP$4zyrkiSOqI{b97N?|@&?7&`Ec+E>v>mMX z(m!-(OS7OsX@(wlmShC`c_*vT7VM!|8t%mQ`F`B(#!XTmdqf>t|Ys+sGz^Vz(~ zZ5oxTkV=!N>%*3p8G82vv2TxaeuOK=<`s^ z&~d=$tot+svoQBEts4`@ja;H)-f1~=Sumvl=Q1tA1X{$&ZP8t##FWj1@Ro3A9)1Bb zz%Fx}p(5mu7`e$v@tr=nqlA9*Roy+MdjCxdwd^ipY!qLP&Fy7P*hHm-U9n98vOU!i z8KIjoe{sw z@JC|%XU~$!m?VN6IMIxEf8F1Vjky!Xa}@xE^1Ez~f&+bY(i^0zNnAjH&F(ME7Fb-woDZ-5`-ryA7dHUB_QNP-$u`mSkMBvuJ z{T}L4~*(#mDvBXs{v3;U$D;j)<7dStCZxJB4??d zJ)89RcalD)A$|tS&&ki2gfw)XO89nEehAr&611M9aUOs}c_N(WQSlRhKf z%C^+8b2%i3Ed{i6fOdL+xT#^li_ZM3fehQxIcgKw!AUX6Jd8u}k(|r#+yrX2{UqCR zB>K$%V=eyEqXzc|3*n3cT&tkFzN7~n@AK8K?3?&_t+*4K!SaGL0Y0?Y0Qfv-89Ng4 znv4cq%0%z;1XDJw*`4-2jIBt5+88R-cdL-i*8Ba77rEzisW(FZC;L|zd;gP6k23-H z{pyf^_LztNft}nzj=di%=(~jun!dAdN@C|dJ;U;&6k!wob~e+f?P5w@=VwTwvw=V4 zkss1p$rADUR+-3p(4&6VmY66%wjR2sB*Yz?ip zhL+$RlxCIB&$;A*eJuEu><7pt!`R&^A57Cr4o1)kTe2Bkz8zUACK*z{w)_CZGP>Vc z>LXFX!ZFFL*yAPO2T$*Qy!1iCAcrACz_a|k*N+ii%p;?6{f$ke)RCk(7vq;PUL6bp zIcWUz3waX}HB%=#=Suf9C#E)8gsP;7u=g&g1Tj@(KXQOCO!FJ$04q9y67UxQ$uC#W z$FTo5)|N8NKzu80ZkndgoeKmyCLLQ;_Ozil$c4wS7N8qaBlVNb#+l}+FW2=uA8yA- znZ(lMVLdh(?M-e`Uh!X-IeAfha|-Oe{E5ntg#B|%!#!z$7{h9?O|3T z7y?lx%dpp+x1te6I-N<|$wCoEQx=Sq5Z30b(;Y7C(d}gM!a;V@58qv|ZGwJPzxO=`otPY7egj;Pq5glytId-T>~ET3F*KuuvMFeKD>_Xd zb;vEFEe{dz);_w7T;{~5&HSR>&QjG`tO!~Up6~tOSt;TnZ^3z*X!=FsdK8zL7YX2S z&SvB}m&s$ToyjQY~0z#bkC}r`#Zk zvUCJ_92Bj>-l+kfoaBf#bL-0`dETyKVJpI=m4hkX*jQ@P1K!%rh1At%}OgwCy$I{Pgvzi4J%IVGI34Igzrf9 z$aSAGvE;@rEiSJKbR`$s$SRqAJOqgC`nn{dY9_C+cWiFId7G8^LH1pK^^RBqZA^Et z2Ar5W5Q6ZPS=+;?cccQDxnd7v$Dm#TYyELd_hsx&{9tQh#^<_KdDI6+i5amtgYxm! z=O6(9-o7IB=P7Lvvm(21xVz3vS`Mg__40?hgS*_63{%WJl>Wf{a6Bj}Sr>Y4t73V* zn)x-z@Va*)@l~B+=ohIb0yqwEIjcKy<@5ASDqQI`1ayN}NvMnk&RB=}6=@<#&QYO+ z`2v2;$I)vgbXhx9w_cW^4dJ0(+qhf~>IFeXlwRihLkuos-?}Oj& znVqyo{%h3!FW#yOKj)RMH z=p=b#7gsV#nIGQm?+=WYW?2l@43!m^{>I*s)Mh1LN^Q4X7?OdYZrn$IRWi;ib4L5M zD!KIj#4S?k@1U}SHL2ImuWf;F;oVBEoD21^(JYMo&IEm9Gn>ub(-QsAO*0@eMWN{C zdOL^pT^bw(qPwr0C&*3ru+up)FiZV z!FA@xiSjDg7QQ!3%is+?v9|eG&+NS4;67Tn8eG_8rYWDLPbxp4oetrW3~uqFg3SV=IbkORBwt)N(pIkIS~%;40n!Zc z`r@YNaQ{9*J|dciw8zbAtMu}SK_5Hea$f?W?lKF5ptO4bJ2Y$m8DfCjzUE=YF7nScj8ssPtzG+D`y&akdz!fH|Ylb~H zjjh*rCQ~H{^a&f=YG1oz?XsIw@6mP!7LfVkta z*}pr;gp+?Q4jwY#K&c_FAEPkkL5CiN*^v~UC7_t7CE6ffF?Cb&!mKiri99ykM%yC* zEM#Uf{q|i3(<*f{6hq=4kKX(s9OVTaloT3aS0nn}TwD3X!<}(Fr$v}o&r%&HLp3W7 zz)l@_3u`V5)wn(Cou06$fnirah`v&+Dd|Y0m6}YPPOsA=!aI$YXaEM*^CmzUF24 zUklM)Qrq!+F%aZ2ZAyJWVH{VNOOH}B%CnK!LViYBsU>=?7rc=^Zaqo4Y@+BAeJ}W~ zA;&RY5VI=&t8WMl;Ma-+VN2dDznrf8!^ZceA>~h3onV?=@0mMsAW^mn7-y^L zmjE}|%8&x_6kvPlSK&&cBsQX)mlt`k3*BWWR@l7{pR~}lhKS7YQk*zNR-Cx13zKs1nFE4FC-$7D6QBsRzZLf zTkidJ=^bh>c?_sn&t8@=m7BR3khwK_#Xs4|q>5L_-c!XSr~7TpI0t0@ zu4e~vf3G*=+_)^Qi9dFzE|n{r@CGq!J_*z zXf?b#60O%L2h`WUlE;>|p{`1Qe8BqdR-`td43;Vw`R(oyiIx-Eok^=kW?Q1KhHZ@b z56r^=I9!TEyt2E`eM2v{kbob9rbvaHMxJIv8RY#>CGg$zgd88}2}a~%QzSxai&*7H z%Yaw=3+>PsAOO#1b9}b4=XCp?V&G(Ch>`(WHl8UFuayD0!ULV7}9KdA<3@DyMMVf z>YFmv>M41|8~XlUIl zpN#lr`!8yk(y-KzH;Hj)4I2FDSiCWFg0xZlh|nY|6+?Rk*xxXHJxj*E>-Q6aj@ILD zAqOh>5b0&M!it(NRvNUyO$0wR`-FC^+ZMuedRHQy@MrYf*)~eckW!@JKr@IhkzZT# zOq9l3n=NSF{?c6ZA<8RN3pU$u01Zi9qi%X!=<1drsJ!( zekaou6CzK#RkcEq`>vj+F#c%0WkmODk^v?b(QeWTg0-b%+@JWtl-$ga&8xMbE?CZh zFRR5)C`t>cKa-G3#S6vBN<6Ga$q)~pgwKeWB~R2rT~~lXn6fmA=mNA26o%cOB?vWy@GC^zg8#n zU4))G;Xl6G*=43r>0=bSM5F+o6XIBOC*wP>rS2q@4qNs`KnXg#%YJH_kmb!rzMDS1 zGJnbU;Xj5H1NIez2_yc!)y0of@srgpSc*IkQ(aFE_ad+1AFgI84L5vA?@9d5x4Tp# z{#|J?Sx_@~9UFlsvW;X4Pbf1i%JUrB?$cLv5?|Oa24n6Uv}Xu?hS~+NjGfj{ z4zgl%>NOJ>`+Uf>65*HG9FLeHJ*zQfLY-fWRt!q2J)8SV=Ky!RhYFAbBh|B08AqBz zsb!POnEtBpC$WV7XIhYR(gUD87i3Y$LG#|#1Y4OTA84gm#4&YFn<6ux>Z^NK? zZ?8skf_dEWhwBy03c}1S`&34Ma4fh{hduS_?*&#wwBNETyd=P?gO-s^OpDFmz$HGdax4X&m##!sT5l*M6bn=v& zNH%ZMu!)F;2)e116%~wYc|7Tcp*PF7vf*{bsx&W5amAL0)6a~EROst-!k&V_gk=r3 zmUSzuyjZ^zqmn|wq&DcBUh%jX#^Ul7dxBNyv&T3Qyc;eR>u0AUctoB0oY_GWh1J1o zzJqY1_kkw{s54VwY6!#f@4u*cgObb`Q{`KuGIUYk)@JCWd6fV}i79|MstLACgNvGeyYFrY?I7w|W7K~}|bul+e=Wo^v>EH3B{2_-}}b~VEB=J)cR_rowO z@QyeH*uR(TKa|~-iXQAWc8E2{$~F# z_5#hKBJ2OX*Xd#Z-F;>5@6sA9UGH0=Zwt3Yz2`i)-eUe#^>7Vh=4OvB$mazC8E+u~ zFCSddy||4!_xHi;tyFCB4{Z?hilb3)PG4zmb#gYVwmf`@Q;561-cM?U6<>i>lj|fi zf=*(#VyrsllJ!I6)A``Y1B#^IsBWP2qf(_-VJ8#Rc9^~&&B@Gj436*pe+#-SC$wLY;mZFA@2+s;&aUZ>LtfZ6NF@KhVE zXRL|+RzmD02V*yux@#K)lNdKS840}xf@M+1<`Pigz!_RY5hW-rk(Wv7D)`e7pF#q? zoVMR$#-AtaJZ7Q(ym*vE+L0;EVmHRVXstXfrcZHwr)S3*>0@(cRLr`090CLk?X*f? zo_WQR0TBXd{Tlxa{q#EDpkC{A-#<5Nmx%S#?Y|+79^L}+i6UDoptX;i9|7F^nT*>Y zw&P%o>dkb#56*B%V8KX1>R7lHf2dhNn9S*MaU#oa0@RWExt)GC`;RJ?{7tNZ7d>7G zGxRVC9@mQYTxzjxT-s9e#7eKr*>uVc**+Rz(jFz~r-?&;_MGDQP%(*eOf!t?pIMdY zxXC{ld9>vFc`cy$v)GFG38UpuMWQXg3x#R>IUyO*)JWF>F6a^@Bf^H<$YrH>r?vn^ z@4(_(|9k2#JgbvBTK&t!Wqdfx9s@db$DZQ(9_?$l|Hk@jFX=vV*PGMYlifNXfZTDw zp#WIt-Ff)`tr58t-8<#?(FL93oiZg@-9i6Dd&8B4`RY z;tVJCUFj=!P=|7Lr7d6k)6d{n?K~-ef?6{V*N{jl?>xf)vPgRqBoP|yiGhicQOAUv z`Vj{kR61S7eu9GN?3NAOReTFjYAPzsdSrSDDZl*06`BauhFYuzZu#VzzqviRDGuzQL0sre3DE}2AOhC2Z# zluGVG|AV`9=m;L8rn%xOoT>gQ)nuLCbfZ#jnjp51 z7m-O<4?AH$8iQVr+Jqs{5x1Vxq-B$xA->glb3=?5t_&uu+DKDjG%8MGTA2x_U-=Jb zq*{v1P7JI3`{|H2s~=j-Y*)eM@KYAuS(I|FgkQww8#VKV>1=aAb|#vl{^=#7fmjHoZx!zb?v@@# z?{JSJ@j|k?$Jv#_tNJdy>L%=lxz_O?6mWmSt6oivSHd&GZ{e7#KNrWq@ft53ur`p}ZP^Xc(SGO>@h63Wz+ z!8sCiq$jHx+WM?x4b zSLZ-qak+|?IQ82=M`bH5MChLR^-ARa!}I7HWbl4lAb9R7i_`%vxYJIFTwZeyRT4e|qU2Fv6(ZfOH&Jk_+h}$V>8*G==J?gCse^vad ztaLPpLqL=0dylW3U3f#uts!6;Ce^4-iP9sqDkE(~rmP18>^5R;cu1BQ#u(blInLrQ zq@+p9Dmg2cRq`nuk9H-}L?VfDYzIHChO!r}T_}r5V;np};otTN+1mG;L$~y@ouSbN z*<gMysg6^nfZ_bEK)8cC%fPfcK8?DPtMmWF;AGU0XaO8D*lv@xWFiKsu-am+ z-+n*indOXrGKBQ%@xEEr=)FpC>wIpQ@*PQ3|?S(3n&6}HGIU0-Ucm?#|!m1SNfRbXf>%Ryx|{n65jp|n(yLO>l( zF;T^oKsz@C%3={Ukwp%WNv_46uV6NH0#_CrGIigUl{!STvHIrvBkX)Nzs58(o~?AK zIpOclw$jS}(4%iqZmQ!XxsT%=I6UUw8^Db=@+I+@KJz{`aI@DD-?m5BaFMH+7 z;k=IGh0E{Twdx62b*RpGT|Ik92-C-Womv6oQVvA_Rl+%*CK1led9 z{jp7bO;dCg4Bd_jtV^kr)wTYmM6R8Rxx6&_CNaU;wVve<7Ydkr zni;U(s}5t9Z}jw*>UB~pxoBh)1J1G4cmaCZxh4U1>{I%#_-6ymw$alI}G)~0;N zgx56?t1OUTmpRY(Z_gahH*a^8K3mQHp(C1a?=6&wM_ye1dGXPT&=CQf+As6SqV$mo zgY4tZf9#w3C{)H@UV)c|qmROuMc=293TU|pNf&tP*^Zthb@fBtxi8bW=6cqAU@UEn z;Y;1wSBR=2f+Av%lTXe0xJ#_xyC0A&mZ z;uwT&n10m;MkO*vb-5TgP(DEuU&F{bE0F(YKW-_nQQs?t^kTM|QH)?(C1HAW=c<$d zTjR4DNQ2LbYn7gVgx?!xZ#NgW&cx)J2kHkwM~j-{j$|rayu|s#s0R{t^_AZb9*hU+ z^Y+=uGbjM4bR$AZTUFhX7ncAttU`%MADE5)$-;=c>U&64gdL2r)ded|1AOQRcf zWC`_%t#7$JPO$d3u+Z67b0LWGK(X9iw}|d|4qP++exzQrw{zE?u^Z)*FS-D>Rhs)` z86`e(+tM_!(Vq(tCFc-nJ!F|U$j|-Ci&DPrbUG)7As`40uAZXhR=H)NyQriSs_L+H0W(JC`aXVDy z7{iOuO3>P${$-+$1x&rY*t1#KetA11zPrGl^)i8#v%!Y{=oJnSI9dtAp)Gu1Vl2`V zJ0VXFyggLfnP3iU2B2V!@6_FrzwUFE1BU0?l1+>w_-^p+djpx&SnXfLQ+MssHdB8z z;?UDVH<%(}AuyxeYu-@wD?nXND1_>2v$){kp+2u1ZSfyebP)WUDOFa{f=}lzH@H$YYmM8Pn;uD+^!w$r+Bcihovv{|!2VI50Oj&Np*}Jp z-=Xaz7vQw9M@)#~#HccrT>=Z+zqY!NFYZjBGzs((scxe-=cGrZYP%ihWz{Y}5||ce zAul{Q2;jCJTL>V8HorO?TTGYM(>T1+uiiK$fwwIL-m0|V9R$6dy$h!2!W~}Xviys+ zrBcm`b>B(|hR~o`#%YXgvx`GygT5)^0-Rl^^sPO7y!MTS`yek-5bFiBk#Sa;s#KC0 zryOpM)9XHfSPacl`QR8Q5H{}ox4<}qu0DjcA1qDs>E+)XzQzshS69sX4*wgjaIWIHq8bp(d zv58C6N`y!z2_eqfe(P9iR4}Z1E*6-GS!(pLb}NkmQ@;l-u2yBA6vPN_^oAEuFd$X= z9P16G)C8Qn4E9GeL+~g`o#)F!KDaweOg%=q;Cd*tq1?7*NBK!xS|N?;!<7q?z>D#L z&PinekrFe_b}WtU+>99MA>7tybK}y=cy7LSS1s~;H!XKZ)Bi!_`t$4NItce5j0I?v z7NY;xDDCdjPVBdJoZhRb_O>+3E~7*QM|5*t@^oIsG_-6Ri9Syv(M+~YQ^>-@$~v2-Z5wpFHem^R9eSOO;0zr*2#gn{X*e6& zCs6g&z=q{t=g?Wuivq(+?+4Q0$ov}VfJ`PSvXi*}NNA@dXTY*+P|wPh0(`FE$g8{4 zYmV7;^4>f}@pudRF|l!w5u!__jq3DzX0b^Gy_0hHT>w_&1EuYH7T^=Z9Vt0QJnk5R zB|48y>d!Do4Zvf{vJ~9$@`mHsul*ehJsdX1itfVrU?3TcM0|&gi8E-5a7WO%R$4*)Vdc+IDi?5#TZ zCnrqM{|k%w|Aj^I{Lz%bP}eaW*(L2|5zUXA3aq{n{#A7+ih@Fh@HPa91at?oe#^U& z(l96YWIy^stQAfH&XEYszH$7}#T=*3xgAKVY2-lN-j2nw{xtYJ@Jz0#eldqO&Qrhq z*Z#I)7Rp9>rkral@EJx~dePtduEO4r6k;Zz8F*n%1+We#T5zN@``!mDtHnB_UPAl45;jB7#?Lk#KD^cUTSAU%N~^am884RqijbA)h@n@yYoGAdGF3t*lfNj1FMyHoeVuDtoub-Q= zHU;=)RPrfk{Nzj#NX<;o1k_o7{*DKXF93Gzq_55$BabI_%`?i}j7HGp0o#kqz@}^G^B1Q^MtSSX10`&2CubdItjLC5-P#douTq@8KBmkSsYmFEZDb=@CP9*ue)H}sa$_MLxR3Ta;DgrBICfB_RG+4%SmIYD zhDm#))2ZL86J{46D)GId5@qk1*bP(qvMGRR2=lgtKdOTL1Pu`mglC_K7^igY5LLKB zARWaSnekU4hYpbd49^kyxztSQbS*nvd&Rb4OO046YnlAQCnyWvMP41D(lm%_Gv0UL zWlDi#a?sc5L*GNYs6)d3Yc3Ur6+c11Bxly`T*4*qS35wqr!j+#i#MXifcsdA)#obV z<(uaAv@wJk8zxanE!8*g>eQ1$d$3}xw26|JcJXfhNd^6IjxUPU3Efz?ppUF#m;vKw ztXQ@OWBv6g?hg7$rN0vkSWKMpw|Fb~t2?oR5AIX+9WTpEC4 zJiZgqysP(&a}sHyem$?dpo@vcLyhZylU9i&>dZmBrv7-rbZ#9N+~*Xi zDwMKM?01!!TJ_`b#&F_ee=NRI$8Fhlt2LuA+#(sFvs*$4kiltCYMJW%pB_^COs$$u z(baDwmFqmL-#hFmwJlsp26dAQ@k)zv{5*Z_7aCglD^?DyAwrR&N-fY$VS+ArQlX)ho(^+PEL=Xv2k?UI_;r}zn@`PoJ%K$mny;& zZhIUD>J;iQagdz9`AVtu+#Uac1kM7Zl(<(4;n|x6~&W zTr=L`LF1F*z-|yvv+KY5_h%&K0*=Qi)BpeF*LZf8-|UZAP$@ckmL>`*3nhijzeh3$;hzrc=;?2+RJn!97D*U+^t ztmd=VT9`gt9b@63MKkQ5YP-f=h1lM7Kkv7-9;7cPk+ zy;`zQ>}QjmAapG41?C}4iNKeX>6oG?t4w?8WcvbZ2Bk5vzg*K){U2LBC_ju0i4eLX zx9jxa>?r*tLU!O>f0uI(@wj}5ubc7;Yd5$h&gQ??*z(}$(d5$BDq|&?pxqmE8XmUJ zOZnRwkMrHud5}1IAvLb*50z8YG5pQrT4Iqj=#B;r-WXm&J&+lN1=od16E0Vt!pO<5 zRy0(3l0O<75p?=7_cy+!%HY?D+mJ{NPoHqbL4eQ-ocyU^Og1F|5I@G5lCs19Pz!wP zADGqU#9@2rWcf5)wS>M>Om*~G4VQblnm4ciWYi=EUZfG6@ZE~w8U~b?gv!&kL`rRt zQVh_Wfi!W9RNA6^j)(KAGy$q07WI2Poh)NO@QnQKX_mM}(-1x%{1~UZ_7SY}QyAg| zs8G;EUrs7Rt9TTMLKNG@mxY!tDdjOy+k6>oAl4as{xhyK4lMfQ73DiBSZ$Pa2SVpRsH3a- ziW|hRxYW8Gvw5lUAJ4zD={q3#3ZVT2+?1 zm_Zh?{3i~k3^bMKqy!AijHpB&-weuki}6t~iL?k1c#bed*>IT znCQM}rRbXD6MF@7%%z%GRab)eVb{&uW#cEZGrUB!?DBU}rONu1)q>*4W%l7A3p4V4|#&l#E^D^9cyUs%P5j zofSA4k!QGp+M|@COEjGd%DcVx-NoL=H^P7@cer=z4UWWsgiA0~@KcN5%Z>J71;dPO zi<%(v$SeS^U>qTcrFeV^us?qu!Yecut;_`(CWzAIu_Nl>1_G&Vhkp>dzmgiOFY-q+ zlpRLIQrae%yb$HecxwO)!=EqH*qc*7tIcGSkiUW=84qrou0RBBks!wMskBvaY|d&M52gi}4}?g0JcYRJK4d*43>%vt<)m1gO4lKigtHDGn( zm3_6=hvbSVp-lK%UGOqTw~e9dtre!aBc&nGD(8E@G-LUO(1%$DSno20#3Uq z2(KlETSBTgB0#wEv%1*Iu6a3I5g|jRT+R;}%l%Fhec!?&1*0uBBC`hK2?X&yr8y(Y z_65|oWOo(iKj_}XcPaN{({Md&Yq$dL>tab}zpho+)sE`Z7`5w72~(jrlc?qWG}#Vr z7MIcSXq`oUtDO$8I{-cNhxziRFA^HqZOb|3kNpGC***Y`kb>}b8Tc&UbFwu4nNIHM zWBi80;zc4|L<=KAwm`~RUy0Ua!$AU%45HT1<$Cn)1ZiIDjYltxCY@+?ST$-(aBvO0 z-fMC0diGIAsO_sX1-SpL{QOrPTfM-u91asUIDb}HTyY~mk4pX??}mI#9+O&9Ow#>n zjnQ^&(oqmkU32IWhW!QyCfw?e>1 zJ#B<59ylmAbBIwwVED@uva-LBMrsVcR)nt={(O8a(m%)YhLXeLA9v(psQA?EmvZOu zMjK`7YzJ_|pftKJ+gUYPuqu(LX?SwKW-Gj9Xec5`H%CmTyRm+?ajfI`!GlW~Mw%c= z@Cg)4Y~>ejh?92IBK`ws8!{L|geOq63QM8|R-CYyN}p11jbos<&7-U*h!B7fv1Zqs zd=WR+w@*r}cgaie#CT7iwu|e2eK=sbx2x17L3=!-Tv5Vw9g8RO;dgJm$jDL@+3_(D zL#f%lU&!?8O^41I?0-22&!ylzuPK*ZGt2L{QwpFjqKxEEUySQd$n|1jj(Cbd2JuO# zC$1#OXTb_9k3Ja1h3nym=@!4FCP|6;^H(aOwd)Y!8`}A}Bu>U=s`4O#5y+52nFh|H zu6arkGcwR$b$C4RGZQerS4B>_RxbAjHwz4Adz6}NsnM3)L?eY=54`&vtXqjF1b^ng zF8ghASxA_y&=SeMG05B!8zhDu67yJuOv|tX-5&=sK1OK>J2vQn@Id{kkEm`pgcVh1 znpRtRcj>trhL>mt*WTXCA%J40UHFBqT*Hn?T6%s~0?(K=?lPQwbL=31*--dLuRactn>ibf>Qo>9CJV!6< zmeThLbB8~Bd>ALo(6ul19UF-${PXVpk}Awzzl0eO?ZF7PkQbBX?Tk-09UXPPXY4w8 z_uNuE>%~t!cpf`%H|qgZ7|qR|FAlGby@Oh5q^7r7!m-yICgEKlL!e44uu6^ZAoi@1 znrd4oJHLu#*ii>1QgGlQpl~Jm^nuxGq}93>Z!8znAc18UK_Y9Dct?TKb>s-%C*jt4 zl1<^S?_&?LY0Ynbd(Mx9sezG<^17uf`PA_9V_Igh zN>Bbypyv!5p7RWprNIoYmRG zQ#aY|YXsu8SdS^IBCVHS@m>DgXLAf%as8IOnR1NT>dM(EAmQ^OmEw8|RYRM6IwZfh z+;^v3g8aH$ZNdzVNT&pk2o}4X&5KjMn7@B00)a{;i-mWHl9wUlq`FgAMX;py{jP6$GQH}QGPO|UxHVtz0Y zvuCa}erIe$EV=Ko8IM0PL zn4T)=CG&fjOU4lmPeNRHLhI_MS-?pRhP#^`@} zpH_Y-;>VeuN@(eHIq56q(a?GsI4`{FbNTM3JjfYMrj3ga{16WRnI`(T@F$vS5n z7GLtrtK|@mph%g4dLBT=3cS$$^#Dn&?*I}RV@67eXbTW}>s%|oPvZr=h(rTyUZ@|& zCJ${JzenA6MAUmjeF*7>319mmL`Eo$0t;E~e#Y=esF9FOwXES8iViwcg3L~}xlL4J+4J0h(QtFY#^g5fr+t>C}uyw0sF10B*6G$B9g$LRJe9-$D zyF5C?$T-OYg494&mqfD+M^52}_-U|0L7a)oGSTmH{u?(h7op}q$YD9%?=PpF?HK39 zHE^z|V35dP;-jVdyw=p24Iiw}?0q&D&KnqwYnh}j)YUWm3}ZwOJh?m9z{{Sj_#7={ z>}u*}M_eE08_QZ~CWPE^A|pStDSZhd1Hz9*ZyY39fFG#r&MEmmr0^THsybpCMiB&^ zuJ5RVfy!E~_`vd*kfL-dWN2$pc8vRy5o>;OiVIFXl^&@qoj<;oiy)42sVKk*KZVBh zFYNn}Rh5Vu2Jw)YoPw4iN!_5rKl6fVsmB+h4N~dFCuqO{3SkHP6ue&d);%`-=yDG_ zbe_XP0VM5PBDe9D0skM`Me0t#HCo+MVRvtsvpaK{r}V8Q_LVg@)ZIK^*Ee3kx!iJ=JynefeT z`j!S3J$)*qwa;_on_uWFy=g4^W8`G2hFwifo38KFgnTUuQmMc>(gMfiOL*v^NTh%vcpRGSIJ@ZRHA#@!t|F^t)z5ahwShJze z@$5P&FQVc|pPdH&$t@nHi6mcaTwB2$i5@K)rEy?GBp?Xy%EtnZdrHiw+Y@-8#?v9j zyBtij;H{-;E!1)G=KEKD^<;3 z8;|g(l8SQP+~B5lZNhN2qQK9oqde~_v%KgF?^7xbz3I@s{vzPtI3$*ChZ>7c6#cFE z(MUajVW+#RR4Ox*y(*Lke9851^y8gpKk~{3S^phyRkW3tp2soOF3l&Cr>*I8%-)En zG2VKCmLn@$o^=F^j(URBz~wdNJ+M8HEM2s|nuY=fpmS8nhnb!2Tk(3@lnqo)$~V_m zV}#M2XXV6EPfaWydL^Z%7t3bF55EbzEVw@R`*pO0v$lepjJA_!59^c*UFVrV@-(3A-dk3twbr(o))zne407eo#-pS&;qU}vC5i8O#ENp0*n91 zO!s4*hpDtex0eviGNyI>IRuVhNWna7ef2R1o>9&%g-KJgd_whukICLGgg6~_BOU_g zj#R>64V4SJoKx~W>Kt^ZsR78K^PJfSX?81%muc9h)hghg2aR$9#59d-XhW(=HX*W| z=V&)tv59rcik^#qF`#{M5sUs8W|vBosK=y;$7!8K>Ps+?!5$_C{#T44J+CF?=x?IO)HV?PuMpshB3Tayt znYt-8&vhJLWABaYIX>eWiwv{cGjfWe6bIn6_M?EE{jcbUj-kMNOvD2|`|r38x*sX07T+SD$+=Mx*pB+@oImi-2n#O{Vo3r%trXtrwR( z4NP7S37L8s?&?q;+o9{Q8#Z09A8~cY|5g5sJ^vSMHC;D%v++zWk@-v z<7%p_DRA)arJ$*Ay?=fe)%5h%^l%gkT1c<_Sq=O%*RfIv^qEs?kL{h){dnn;)=?Dr zuvA9kNyS<pAx-Jm| zTksz^i+s|EM059VAYMD3eg|OJW9Cvjl^wpKZc8Ibo~}!%n`0RDXCmGK?5EuY(!7Oc zD%qZDbyh}VS(QIY-&hepfUM~t9I+;(bPLPAZ~=5g?1XmPZO0{@15l;;z8L5grIO!y zWA=6}|HTy*UW*Kqe6JJDnPji>6d2GnB<{%WIOXC{$#P@h_D23Vh^H`>fD#)BRhxu_ z(M=(()uM?zePXiKrG)qSNplI!1e9+OZvy?YMG^42$KZI?(d)?3F}nDXs@HP-h+54hZ` zZcR1h%E^Egm*%-t2p62NLV#K7eh^Q#;1`Dz$KbU6p!$~}L|9jsI7UBKCSShp0Q%D| zi>8Dbs3tjyf?SbWhe=$!@KEfgJfu%!O?VG?Wn93rj4I;E9%`~QMj<6ZD=mwv_+(e8 zjiYIx3%{$Mb}W9hAu5~*F=YMm>6d50?!QsQ5CtP#4-iZp=R*zIA6X3Zj$09GsAky8 zXFuJzJyA^^*5HCv4^GFqvFu2!Ki#SlJ0XnI0(Ph)bs)oCX0I|uJ)U*ob?uY#lbUIl zdX~%P;@!BlV^fb#YpR)Trq4!SWU4P^c@Ku5_p$>L?P4c6|JvpYvV$oZ4Gaa!LLl>u z>RWoFx%Jb?e|bEGdf*E#Ere6T=(&PQVkCCKe9|ZF@}9V~SfEk*E0$^oSXmZ6j&put zsSj4wFqQIk3U;;eQEDlLw9Hz~)N;P(CV;B5eBBKY(>niAzCKx`9hg9>j)CrC2y=>fB0} zOh!)2?7YQjl3f}z6Iq5?VsYM8C`qR7hu6Ymi6jo5q+ZI-0lm4`oTcO1N zWGb5(Vemw;E>yrm9buxTO*4Z0D8}m^v!m@%+Pzk|Kdp+NG8^whxX+h`C%y9P`|$3$ zH!zyOnJ=);^ttbrzX?ug?}XBQF|t|>DdISD82(zs(ZVX{f?;BxNxn~hWbx~yA)f-%oY(Q(9j?%N&B3)}3uFl|$?+AY#q>q#NsE~aoICR56<;qz zxV$6%k<*Nad9DZeoHY-!XPD9x8)`W5j^wk$PEUNur$sG5Z9;u8;q$<<5R zm4sE;gcMy!a-Lg~HIbU<-sa)fp5-hX5x{NMc^GOZmd{oK_LR)x`%ZFMaML|GJM?UI zTTk03s32ANX`1-Lh*)|!dOq3QBS*V zL8SeXviyg_*(O1A64j4B4sJ+#V$hp~7$y4{ebD{Vfl8C6^R@lFVHNW5dsp3{^V0zJPbT&=qL!sHq+{NWKezg9s3f*?Kftj@_|7iPBLYt% zc!@Z0@tih2ZQSdN#}x9I4+MrJPEQ7$yQg`tMkH^@Z!DbiSzZsl7duXdT>3<-WaD3! zilEvd6APJv_GEV?)CwlnsR9kkWisrF%~6a)U@6}_DGNiUh}S#DtDuysaecE_r=V25 zUP%j<^Bjg6xR9Sagx;PGfm}j)*+H(Yespq5!7-zmD`b=wwC5WZc>WfBp;{2KY$i#d z_|s)Cjl<}SP+{9U1qTl{BAEN1{TLK^Yk&Lv?zJ!PRsLsYW9YmEFc*>EGowdm)~?_2 zow&vO9*@@TS>vRayzY>u+wz4mC68-&4@HL4Y}FE8pg-jCuLWAU)-2|D%3# zw4vxeiB9Re8ni@6vLkze5fNM6VmMj z#l=g#)W`^y*Bi~SKPmyk=Jrp?5__g@yNBOH1|Ma-G*_DkD`(@y;SnzO&7u+sj}y$;v! zJv=R`mTdN3HYp*4SItygJn<~jK8n$(j6w6G`nTY9*<^f0vvoUnTfXU6_cqQ4a}o5@ zh4@v*yJpqg&qPdd1x55oR;kJ6i;}a7w8r-7#Z=nkys`wehYA$e*8OG{bTTp+ymEGj z##`~hyxo(tk#sujLV*~I6gly|mk;YO0GPjAqq{)?ko_ug@V};y0e3LZHdgHWI+JMk zh)O=jlrNbdp8bWXXyOf@x!YK~4W#OZi6yL#Qq09WLGd}e3+w1$^GC?0bzJSG+TBcf z%rGvg^V(f_8#%HatS5~x*Tqp#ETYR7xjPI`&SQ^g_|~RgAb{&$Yka(?23=57#%UWL z6eQF&G49yLnLS?SUn8RnFJ~A!U^`JR$BeUBnuhuv^Ho81gKJ)xU?vuWsOrgJE^9Hc zIm_LNDq4m7jO0BTBhCCTcFbeB1QsYd$bU9&;P2r5B11eOOV2syxB z?Zow}Z3Q&`$4qS%czXsFvaI&50r-==R&PpQI$(vnXwrm^z>W_*V_z|J?HgY46k8MX0C{1>V4T}xJD z&K91s@4#-qE!^C)SXM68yblkB?$`W}Pk@C)S!3srpBWkPkupe?MhHJO@K6iTuOAO1 zDc!PMF23D&O&uHTxp{ZTb{VIz3a4j!wt7QwM_vJ*v=N_orTXcqZ55 zb_7sW+BbTy@F#t#r@MsHZ;PIGJmG*7-w%}5dIRnV+>VF@+iKC3x^7;nX&2aQPMU_Q z5EWJuX2CdNWd3K;SG03-tf!{wDV`j=8mjsBNX#{^h9J00Ja zLBM30B1>|OYc9*wibf%w@B<#{BriHQ4zRFl1rbsYQeanB9~Gq2A=PT<07lShUG7$> z>LwcT{rpuC^|G?+*@Lr)Qx!G5j6_4ns{Oj@3s$Dm$VBgWjNGgdf{#i6{#3kcAZap>gqu<4r-6Un4YD1HPxuG!=S1*AZ)Czp+}AK75ypWm#)VI>58#aG#dT*Ity;O`3V`jq zQRejRART7O9Sq6tmuhx(&ON~vXzxUCHebV~J&neA|jgDaRIXr%lU=e7tW>{%0^$TOp=J z@^+&&e@h!EK@vPD5oCIKtnVvju~$VUJ0NFZp({+FZc{j;W-SRCHCW5i#YaZ88dhIw zU3h6MnO)$;>{?8+IY=5%nxn54a7>TRa%`rUS5a9Qg~*h|uo=@@;bM2BcZ|&wkY*oU z8f{!-y)7HUY&^X!Xtr#i&?RRGK z0vvoQ?$OF_c>1a4;Ztc%`(HJQ!g5|)eXYz2($EFw*W2B%RSl~tE0JDS*Ea7oI4=#2 zr1g!W0n-&eI|dBXd{22BT}97b^#f%hv$%$7m|Y$8&dXU11xwufgMSk}O%*lIBgB=W zm34P5no<+y6+ipN(=hu7xiE!aZLlXY?s1hZAD>l>_IrYgWoP(SczH=1vgnBGk zw%FR=$r)U~&$U3tLL771%3U9!3L+w|XMBI0^v%?%Za#EF(vB@cAn{L7lWXQaa2J7F zqW1b{AGCl1b>LHY+5MOQ$XsEy%6V6Ed%Bk#8Fg?F1}8sIig}CuQSz5r{$QCmeR_Xj z9h{pl%daki} z6HWqg=WC|mZPWy_OwzZ`@Ggh~f;7+2Rkl5AF_r><_Gc6PsCE)q%Xs**dhtx;$1~Wu zPpH!r7OcRVNBKzI^}So`gd3VQj9-oRt-7F|VP1A=9K?)+Zwz26K&48wsx9^Pl~wSQ~v3Xt73 zEJBZ1_+dw5HH`N+ z26+T;Kl(sNPu|fbk!_Jb9k+jQYz6MODr3$6io`4RM@tKoG@W)XSl53akn$G_PFW8g z0jUm*&DsToXWDRs2JM~4G2@JTXV(BN;Z6=q0InqHgEWx|_kK`pDU|f+@J&DTV z(ZY!!6I;yUg{CEuDdiT^ge)3@n#WwEQJBA`Dh0!nj-}nMbJdcY@h35zWZhrvEEr?i zuo_0gQfl~r>r7x2qr6uvFJk95$J`}^0bti2DLkHE4%{HtAOFPG$KEBj~X9#aXvf?8m7>V<1qV}5X zX~+(mM8HA>R96T_H#b3BZoXi}{HE#YGyMeXJ`{hKK&f`-dXDMAh8rVm_qe%?As6|6^_Kw@e)w1a_>8 z8wS@GjZq%Ybm^Od&%epx*KD4T+a*dhv6^)MQzkL|uT0V^Yri{bK*)8V?5<+t4L>a5 zC@yFcH*5aN(qAyg7n548Sg3+NtM;!^rCq0?R~f%dA%hbxtEFVxv#dQ&QQ2Syv=cEv zLUZ9eSq=sD7SanM5$3t&z$$%STgCc>sxN-Kbhn`=alkO zEf%T$ae2h57H#s2ZG-?GYuUO(zoOw$Y_=B-@f&Pl{1q&gCzgmXO9mypNDO0{_SumO zRtRpi*vV{O86ej7!+vZR6Tg5gl{?j@9>%9wO*&d>cMB<*T(oqsJI?SWL4E%X*G)rb zn~FLPgSqgiK{k%PdD1o7zj>hoz+>jRC@k}Pcvdp-m6n%JCgbpkQcvxdiMPnrFcvDe z$wKP&3h10Rn|_{Vphv_-S=NM~ zVi`Mn{0*-(T ziCG|gCa>ukkpVl?$mzd+4FY+V!KE8G$hCS-i>!v{*}oN6`5hp z&sc7w?yrOXhS?Ak-^B$QshXyAiuW!$A0~A^QCeUB{4OXq_QkvrJ+hFTho~E5!c11p zOE7^V;@)}gaNJMU)^#HkzDJ=Lef(~t%?J4Yh{LyK#@iktJgwQnd8+1a@V<4+vVqWY zU4T`3TE{Uu&g`WFMhVdV@%n#o;eoSmc`$+bQ%grMQX7~kXd{1I6P|Tn#!6flT)2NX zku1!`qtt^M7m~6)i9>@MB*neE7D}TomT0_?Ex`NIdg#bo(XpR!!D9v%|5Feu_pOj+ zsNeDO!}8;XMStVmioj2n37HcCwW@+ayakP@=J}QB@@i;3%XkQ;R`rFddoWm_FQyd7 z=Mq8ZrStV{m*D26;pUF@X-@E-S7g@YUsYrJ|LVfv@vIG4t8i-hJuyD;ksM+^g&oY& zOdJ;y_V9xg^d0-sbu{8PrRxl>%#wQd=zg`$^NQ^TWqd~4jA$%!6YnLG6}2eSo2AoK z>A0&38}Jl6@aWM#R_BbvVE8X6GL#)4vwZ^_Z$88t0q6?Sw!i|UscaJ}c8!+vWR zNq+oHi`jytMBLiR!g20&wFl;qu9J>kxq6>2VeU2$6qv)IuPE&+6xhGrCo#Na zRH$Xf1ZPRagS)(4Hm+`!>P(UG5P3UczD|Tx&6n$dK$_NgDvIU^Ue2Q-TBKHiXM28h z?r$#p!pTHKxDC&ufok=H z!P(>f#n9{Wl|eNzZ9fvfm=W@$v~d>c#oo2U(J^)cJ^s z$<7nrjC|38xxqz@d^EXy4c}+G3!n5OLGdFv z%21X?N+c0fHqD<>7C}3V+8q*c^7FWD?1p=GE$gEUgYU$>hOVtu?dT%!rK~{d0u=^_ z#onXeTB%$*zO@ahhs<*29@&0#e619M85skk`#ZY;3-!BC^oR665{GBbwrS@g97l2Vdtz|#WMZJQ^Js<2o90E68?5D8*F&Aw{HbzMXF7^{%nDPbY$fb02 z0Qom5ijsejw%_m@I8SqEH#&ibXaH^j1_XXV$M#TTRS5->l`snakR}pfs_}L-doS_M z6+B!!hKCpxE6Q@*i~tQI(yiu5P^YQlM52l*Kyi|LPjXmPt&P&}Kz&-eOg&~_nJWx* z<-hu zEVD)D4B810-Stzc$74-+ybrQUq{TcrX+iCH$c@@)de=ryIZQjocMIqFQvJ#*#^R=j zVBICQ=iG}Liwl2rf;P9v``AJ?3_!2`hbaK$UqmY;oU#+%{dN^&-^pJID)6F^`rC*L zmlgB-;(uCy`js$|oH;7w%tLzH`IHXte`%+P0dT^RT0ezdAGk%;@PIDAm#xC-xgv>a z#2yfaC_>C1KQ?8bvw*i~it*Iu@YJ-{*oX8<)`^;;%cOti83B#qX_Q1QTLN7Kt;#Tn z3E5qE04f)?2ob7L=eyw9(?_T?WHZ~H(;Cxa@P^aK~CUm6$`W3X9IfUG8+e3jWy?Zg9gAVZeAo;w~gUnzFQI zEzqc^7e_29X}N9XSJHAgE60*S+js?}y%ymC=|RnwW~3)ux2d5}&kpgrZWX5p5c>VR z&yye+7e4*rgnUg8xHq+V5dJ}mY5#v~_Fv<#@|-u*52E*$Jh=N)4(}h|ymu!Zt_={S zajvI=`s<`w-f1lV_jOMu(UN%Fud>sNSN3=c9svJpsbsH4sZ}h`2@C?r=MnT zQBB|***m_DM4`kE3w2RiW9R45+V0(y+W=87iY0D$k4Y8`%b)4j(#vy7+Ox&tQh}Qi z&EPOm{a9Chs44^zd&p4adefvS_#!BoO+oi=s#y?Q=l$7XgSQ<#jAP%g2*r|lC zf_cwgD!EaE1ODG@h2u?s$IVjSE4>#=N$lCSO%G}H&Z$Z#mPcn*T&|$DibV{nE3 zyJ|-?*%&w1T&cv}0I4CG@V$2*x|t1&Pt!wyYT`yRmDhwoyo=;FOmSLRJ6+yE2QF@4 z%K>yccVzf|a4wl)nKW&o|nB1Kce*u`nw6}DE>^k3mYUFD-z%b$_l}wSL zMMpm1kA_(-P(fc~MX-pS$v@RQB); zdq@5Jiic=hExDY?*ZGuJO9+_!EMMMBTZ~C>H}R! zR!E;_T-HFKScGPoiYB>^jSuO6b<9L#U{tP5ly+ui%CnQ{;fNK>#qDTS)FcfAu8cW6 zc<{G~U#r*uMg(c3`hOa8*q{-3N(F|DWpg=FL;B_NX-OZ$We+z}lWgVQ9CfI8{scTB zDhN_BND}Moc9`)bCeFB1EJzX?+FB+MON6)G`Wr`aRIEK=Ept&cPUEPg$RXKr*4-MP zAr}Gj*1NJ7e7#jfbEC9n4xSuNrQXMBLdohpl=WEsNEq|6`ol0m{UbDM1>lDDgY zDyLCrb?BNFXmm&rTJ`-mLD^HfbOg|!Zx{-0S8xqc0|_1#3J*X<1aRIk_De*Vw}Yv7~3 z;vDnoSKe`EA#FFaJ^}pQIl)*>pf~v-N)rte<)D(LTmm3|?JLK83cZOx&zzb(4Ywt) zIm6oBA^DOfYP$mms1Zdu6>&}tzmtATZwdV_F0_wINX}HKi4TO`>FQi-y!*RhUl*v zP}6<6u6+k7VkQbF7$dw^caBCU(PSt&)k3FbK z>D>FC7E{gxJryB;gM{Y`HC8UQ*`Zch;JzlHzol)93QIC0=Gmi+EVR0j0k$RBaqWAU zSP(QMavJS)<&bfY!jZ%duJdn^PKuDLAl@vW3I(cPGDWi7QneKnVqv)WE~pR~e*?cU zg{aijL{A}{5T2!beco?_z96MR3b(4`ZX5gh6lcpXyIhRI9@9~k;gx`*(}SEX6DSzhA(6*!TaRAre)heS_56c^uY5G#Fwg)i)hP@w`3ez2SvqwyP0zE(co0@UxHNov^!27Ve8tUwroSCvdZOY&AOJ34%DQ0GU7EMhm(y4nI zSA82NA5}Cm_mwM^p}Ne*{rIfs-$b&oJnou01SDzMVret6t3QrAxuhuBVNp%wtGLgv zC2LiD@W>U1r1d3-us5>Qew#?3|6v~pEg2TCMYtFgFl~ccH#D{8Y!IA^Oy7aVV1077l0g)(B!iBlm0iG+~*6w zn;B8uL=aLr_x{%K6iK@v2p!)+?6V*5sOd2d6n=^$N~|vJ`r)?RA1Dj|A_wJu97NVg z!H(?0!79ImOx`Nt!b5L}VQMtx;i!#_(4NyCspZ}i%doxWS+LZ?ud^%;FiHPJC2+sR zQ{L`fWi!ZD`&=f9HZ?uL2C!;Eu{01r`ri$JqHe+$NeDj?x}EeXt7S1Hd>VKA221LO z3=1(%I0>rv2oIwwa8LRVtG=7n>u!Ic&34hHj{2AyoWA9I`ltl*XXNy`vSC?i=-gp? zL1FZHh)Q&qbxkSQBH$_G#(Dr8Q)<-x;hwgCw&3j&St6By_1(AbAsHXJ11 zfUBF~j%Zfl{i`>SK83+i1gsCS!MzyO4d%QlM@je4hsI>6YyPw-V8cmgd7 z**@~PVSls;BgH5)kY~UwsuJnGQ80E}{lwLF)>t_3i&;i=v}k`EV;IZVNi28Yb<3^u zq@e$%;%je3V0%;!v^&>6XVN**X3gEn`(*b8FR$aY;olAZIqd&W z=rZ)AYa(jdD?d%isZu-a=JTe|2=0(<9*tFY}gC0QA{iT47U%Yif+snSG12G3K z(wXFe|8=}lU8^wDoanig@q3H^eBxU z37}2Y2A~A^-#Gf6&9%=?P)lL|RYhB#CWz{~B=z*mK4Fv9ekCA@BA|zC^xRa@aj5nJ zQR00suBK|1*bH^$>A^+C8}6UpNI}Q2z+3R%HUrN{vQ?Cu$~u6S2gU`;2NkZ=1ly$# zkzOFF&SC+W4s*w+2EGG|@a$eHDap(CX|ld~VL086!u+Z*3xxhP2FaK~)o5kX*j$mJ zR)>I5Z3OqV_;s7fQ1A@#8sjz1L9c&Y*-~c_|4tdzX`@C3grt#}k$lvyk){MNL>k|j<*>!U ze{4xuARCHJaAL@ZK^-QCu!hyEXhA4)R6JpDAI4dnvH+zJy>XG0e(BZ~S7&Xvk^k)5 zVK-j{nD5b^++11XoCE?}_wbd& z32S@zHq|+7y?N550Z<6J?i)#ZLLQX*Lej*+xJNJk=|)da#F9;Ydap6$JDYmf+Jwce z|N84LHy_;yCg8SzWpdl?t(VrC5q>HtDy%6hkufB=g);nAjcAS7Hv;YS+8-AN1e=p! zE&nQ!x5|yo8gg`LQtGEnoS1jP%5!ky? z^oGLz(!s;+`Uir=jkMxjr-97m$3TK^`vsF(DEWj+xO$xMYlB| z5IHxTR8bmvpa&IxqyrwavRTr>Q(_4>kDPA`T-6lf2lcg@9Xy*YQoQa~#bV-2SRh|k z=~wPj$2`EIkf@>#L_Rk;mU}h`tfyelEj3(SZOTY-`3lrq#~5jGl7)e^TY<$9Pen-q zk5DWo21G?`3|^b#k@s0c1~#&qa!aLRQSWE&5r_>gu@qAB-U2U~HBj}+2MrfXtGvB` z720+2hSDde;@AA}5B5GA%Or@C<4{or;{kpf@DdM%9vHY+fu>fMgknEIP=9QBUS$p& zyUC^CgEXX*je)JPnAC5L$d*c^MiA6BjdN{_U z5BLn-Yel*%nQKBnR*(l+-kc!$%9qrm>sXoKAU(;!HE7Wnw7HtJVplv?mj7i|&{ zWz($B=qCN^?eiUFZu$*LHT)l`2&H2KJdUN@nY?``A~@f_NA$QwvPd*lsMdyLWpLhL z`0RWdWF@MTpvI(@?wvn+%(qZ?4f-122h8<<58nI5oBLvdR40jCrlDcv?&Qc{iZyU* z^DF9EjG1n4lUy%I^pHrJ>ePKJpt9|r@W0q|g%ypDc65T~uNKvfSJ&Ub!_(PE@ZN7Z zoP!YLo##e*SbKpZy-V#w_&VE$TJ>i^@8t~#x%$n2D%R)!c~>9(*rXb-7XZqL9}~`^ z*a;-XLlqFxb2{S9;#f&(HXAy}$5C$Sh^~u)Qf`^t4Mx+!KvuUDDf_@KT zX||yFXHSVIqer63H2`f`Eih~`xP2N^2IH+WN_Mkl2K>qa0?JofTpW&7b!28?F&D-@ zOU0^#wNiA}WB?gxt569lx(^$W{d2;5H~Vb%7+;p00M`D&)C16;UBXHjxvrJ zI?_>*|98THB9Rz85Lkv8H8Qm7d4&O{s5Tg;f&sdIc9*e|LtQRMASckge#Th4P}?~3 zEYyH4Ov{`nM+18dS1sLPB&@HTP*X!fRFtJyROK9-_zt3SOX=a zi+kl#e}5$S(tKsz#_dKrocVGkq4D})^VOLSp1B*z^&FTt*Bky^{Ul1`RhRQ&)N?hY2cq&C!Tw4Mi*Zt zG4MEv)0vk#v7A#4M$*5RIyqNkX!{2W#1Bj|i6IdlXMbun0&k?il*Lb!F@(HNn1F;Z zO^>g|NhoIYu#V^xbkfU(!%K*ju_ra2@^W4*23Kt}zDzIy{X*nZL)ew=P_`Byj-(M| zakSIQO0JZ|Pa@-d!RS(bPle!Uib;w8fktFzd&gjFpF-=&bM7^8Y~uA^4?%x>%p2oI zB7JMuruC2B<5|6a!jehLzehBsI&uI|UbyMm?nY>VU>_;;H!vNF8NVk^G*togy9DLH zpt4q>&YZt1+4s~c7Z*y)rfcLptI5@4=$yC&!j_mFo30}f)uBM69gwvu-TjeFV)q6# z1d*{(E2+pkIAB?~(R^z2At3z0LuFkmLX;1b#MJK^TLH+R;oZiP3&Lr&lSv@oSYh1{ z^B@3g!XPy?QTVRBV=pAv`qZR0^gz}S4K%uhnvoIf$#?vE1NUEz`+t=T&J?l+ORx}gB$DZqWtonJ-DclL8KD%cii*PD zP&maHla}8K#D|iQ0D1rlO^h~1GL8ljYP{PDRsSse(rMte;+yQ|N|NRzBv-Q@K0HH{BB#>xNM=H6d9{hk&i_KW^8wR6XkZ)0@q zl>jKW5js2`vbFE8FenGN`_Le`?qd!rjF5p)R3qQnTMx?ish=ui>wUU^Qg(q+Ho$LY zP=sJRzY~B?xLWrYNV?pst^$>fft(2VG0Tkb(Jqq_t$$0kSx^mO)2&Bi^dlXbf!r$B zu$yCT=OXWIqTUg?-esE2fhznr&XB2q8*>=3&gIT~^d>PxoXQPNVd3r@xgH=Lj*S#U zXJRj~J8&u5BO73`Mz>W{6IXT+YjdORZ(QW#Xd`V{8+c7I15lH#6uUvDH6r+xqrA|# z+0l1I47qaA!H$=mUEusTAL#6%%iJFYn7aOl?{DGe_WpWE_wc=ml5>wd6g(?cZrd-W zYL}<O-*)=P&WM8kM?IkYGafZx@Z?!k)>nSpi;6K0-PwLGg`32vPNV6T zuh-7obBa#Ql9r^orQy8ijD4&M$E@RUGB5~~CC9v646}WuO>ezzDYGgUipXyyAYB$S zdzOqG6~vJuT@zbb)NI*Nug{phq3Xv`6t;`!Zct5KLKdyr7PUB9$20j|E8obh@`Rl%%6_e;HJcTGKBL zHS#|Y1&eM*v!U&~P{U?sm1NO;Da{MpB-l%lPQwSFy=K;pOpDclnVlrW{19UbW@J;M7*S3I9r$5%Y?el}DOm#zp>lA;ZC4_as>k#7yTykfeSa{v8u3EJt4 zdbP@GwTi|o^V-m=Y`f8le%tfI6!s&N7{nD!d!qe?D;uQ@^@)bD6r=n^y+oOW43MSE@*?w+Eil{0RNN(ynX%?opSdZE8Acoq<2N>lkNTjFl2IG zkr2ts&{wg}psY@)pC8z9IZO+pN)QxXjxQ#N9aXLChdy7o(t4ou|9UUhc_!!`+Uj$4 z3FEr@QajzYOB~6+lfUBT{XgQb^S?ruN1AZ{YndagobKVunrjSxFw`Z%9lra^zNO0m zKFJbr8ed>fI;&|eHWb#rkj4Stkr!RPWR#1aRU{Hdf?P+Jz*E_@*Kqo`41H)^H=;)Jk&oQpKtt?Z?y!Oc zB$9x)=iu7&nB;{HjL6;y;D>Y94bfiWZdf+upOD5PS?y}#<{rxFS&PkIaPt-eE+ zDfTr`27J5pbgsv>BREmDR$=n5FYQC}uVJsmFp(%2f-NHTyjh&NbBg7>Z(-rPbk$P# zaAdF=xtZ4EWBy#)Die4JGI*?U^B{(4t&~1I zYzsV?BL6iQ8W$OaV~6Q_7xfCC_IM`YW+Cw>Cr3S_LO`yEH0}j{xizeUnmLg;V|zgf zB>=5IYk#33&zJIB&-XrklB(s~{m4FQcPhb~Gaw==KFdg`xURvwgctfE!vc+ctM)@h z6OULdaX-9o>4(c0ANuL(IUR9KWj)Ng7fv3;EAzPIGBI~wSr%U^b}v|I=Qtu?@D?dENl(x8{#Qly)1Q=_cCXkO;@$baC3?kPGUQgdfW6Q;v1*m2OIUf zt;2hPZ4B6T<0UL7GS=jR4yc_8kgv;i6{u*0p)|t;Z$B(Pe}GOTkD{)sPzF9OuOkAP z(r=+^xW23Zrs1V3n|&+$aWeoDR$CO7M|)?`Q`)*B1J0~pVUbcDP z8NQ}EtWiwkMKm2#4u8ou|3iUFKs^=qWs|Ls)#_blhul%@X3`;WrLrQ%Mz73K?;R_$ zSjIT@JNkdX-k?peS{5b$Q4*!PcXEGp6y|5rkMQ`+!mjO3{ks)kM9hHSD)v~!%tP`* zp|61PBn6M+!*=YFA!|C*-+bCeU}yv_=@xgsd3(u%b!Z<~`n16U48jP9?f5q(g#ic;Rbmc^V>CxdA}-IPVn!vgT(Xzvy{CxhtK%ehJjxqIKO#pG1^Ad;(II8A`GlR! z6eNKJb)S_fwAo;<_>Lf~F1Y8K%KQ}o>r8vhc6{QTV_8s7BJ1!v`VRX3!lfV;YfJtNv&`g!{(7v2 zB=~S%n670^Nc?(3jcDB_mPW-jo7Um6!M!ArF3wVl6NMoPam{QnvM1;@hsaRU^wn5v z(O=YN5p3A_=s@S4IF|>6vfo_HHA-B)>Ayb`tF*n5}Z=jCGq^B%R0!ZMgoXy={ zD4C@NtQnY}EU(^KVtCdeT>8A*1a1Fl)%oWO=l2CNNXaEp>|1l@C-<-mf>4gI_*@np`Aku6vig z@L9r&F@(eoWvydlD}TEH#tp0BQGC6v8~G>Hd)v2F;W+~tG&q^^iBzvl!#N)O7ydmU zF>x!^7*Z6#&G;PUiSn?W;Gnl_X45k8dhNfe+*Hu^@4T8+{WlUQ&GfMkAfW|x6HHT!Qg=jM=_s*VA#pVrR5XW;p1X=>a39m_h_EA8((5xpX~cO>9lT*^N57b&0ZiHfbm(ZR$plEiqf=9r znu^ya_*3H}(@nYS7dFlSCyj|1M!6bA5cuOdO=xaEk&Yf8fH&@ex8%gWFs2pm8<*ip z^J$$Wh;Lc3q-2jB1c>@|d@B4XMXIG;Vo_>ZT~ED}N+A_b6$_}J?>TK5rlB;G!Za0n za=0cuh{67YEDd!p25ci67k|rxFydXj_5>c-fb$u-zF7We`gz9ZJ`7d&{zB}->wB0t zFfdZ0!pg1Jp3m?>PLTmrP*PfpkmEN zW>zcO*~*fBg=&8k|2||(Qprogg8DH?BA~gv$vIFB{`&860&ca>drBiAm!NGQK_G+g z+oNGd>EX0h7{4GU_Q%DdIUs=TXK_Rkuq}LAnM|XwTGwg+!RTE?XvcV~N1UeAc}CzG zS(i6g*Q8_L;MMAEovA{tb`_tI&9vFBUx;Fi^$8rR)A=E@(qAA40XVAsM9e4T?E;f{ z=iO!N&Zx6HK5b#LM%umY#4IF1sN8N5NmPWzZkwX{hVz!YR)BYCbhREZ6EmvK4L`7Q zqhC@OpQgWPJ-uFShmm{!q%`8cL>v*k*V$7W#eaJ$k+?R?vAT1s<7Sw*`yZgT`G2!_ zkCghh3#xURoW>Q9)T9wC_?NO)ZKDTzwq4H&G_5I;J#eirIaoS3h81(~08>iM%#S z3(_i%KPciu1H*1@wW68pTF02o_k8}bpJO*v!Ac{`j7!={YyagdUnBuWfB((nrd)Sw zrC^$eo~l!=W9K=Iz0{)VmJRt$RO{K3;PyPmvz@9MdEP2MwKdiG;Ij>%+#EqV|9p3y z;{h7N>^wfENhoL#(Jxt-DPuL=Q?7~8I^B`vYqHQ@lVLVk%vm5Ph6`c+`=hi*{O7t> zE#ps+6k%qMxmHQQ1jq60W;>MJMvlLi3+%ciiGWC$Y`8tA{;YL%uAs;=THId# zH?}rhhPb_~jjNQtm1WEN;kkw3@Z4v$+>{RaxyMn3$voZM)bph(Ix~C#;E$LU09e?q z1T$KFNH2Qa!^%3$HO0=}DpvPch$|@pEQzm?Ibd@?Gd?`Df4^+SPz`7n)cZXXzS8jk|Nt*^#^=rFuG$#?VT^ z*mCDQIN@2rGMz@K9bW;+8M-RZ&8$k~7<55dSnTdboW4}>AYyy3F%|atXQHCf$3^aQ zPNY!wMqs0p^GfHKDPT0wbBkMUf2}r#zLCVnc=eUX@;Nq&#>dq_*AUo$J95$enpBMb z0B14K#4%;Te^R<;&cjs0c^6vWUi1Ht#s9V^{NI>S=h_$(Abw)KJX0U10zkPmw0jqj(Qeav_Ms~Q^> zmL`%{EC$H^1JomWDS-EMkTB@;+pG~KU(J5pXpnOtDr$mkHUjlz41RzxSEx&?KHI`M zNhV9PNu&JZvsUmcshHQlPW9{x;f2TPRac_5a&V+luCz19Q}ZsT^2;vZT1V?m)21QGCkSBd|QYtDD> z!_-|uJ3j8${U8LPnD}OXW7&SdehP3ExsN;FN@`{panB)q)Ydj|3Xg036BcMC!x$5H zDK;A;?a!}yk~r3{e=r=jn|(rtjO57$#wMIRg;yo;lv0JvN4U7$iSU&2Pv(?mNWUrp zYzEt~Eoy|*n8_^p1Zl*6BEc_#au^NofPG#2T>;inr!X91!|V z2`pmhn?&WBcc~iB%ewm+H%_3?=lM}+v z8Q6P%S;z2;%{a=MBe{t4%=^Ml^s)byw0rD{1LnXz?yul$E8k6J)WwbM%{DZUc93tj zp@#z9&B4}2@vhuT$BdQ0c2M_e?%#+W8|#0*1T(kY?Rxp1Y?6ioAa{APgn3SjPj|Ag z36;s#Y(yG2;OGQne0r8xL5K@Ekeeb(QOjz4K9&FBV^FT95fA(0amqWYr#;r{a3BFBo8;%;*_W#d9{Q+tx7FVP9H! zGd0B{{z;>&)MGD?1xvCkS)ZAQs^&*fL&3M74LJh?069nc_$vHL#p_`MTiyHoM`Zpy zmw7*KahbHLY2$o|jyPYSk6HN#doaX8pMdCJJZ*0#jvX^V1S6P12%3cYOW41Xto<3T z>p==gEJO)oN-zo4*6*)at7*7pllo$~@i}_j$?Re{i-uor%IoU;f2g1r9t`j9dK_&` zgp>y_2tAwz)yXkx+^t% z(dBj4s*-+H*$anVnLoZ5>XW*i0@uA0ke$stMi@wm)V08NxeZxZ%tZ{KXbV2;AXNJo z$N-YYSrAS?HgL0hNug}3A7MQPn5=J8fOma^P^|N@(n+a62odun?`&<~rx@Hx+=$B2 z_ZTO+!&`5xF{(ME{}ta(GKg5~OH4EX6~CSLJmmAf=V|si)r&oe!g5``sb%v% zQyRz{UF_z-;9<9Bpb?pM45Kb$SRpz(-@X|&LvF=5hHK5$@PbE(Z-WN0+%M9(MMSPhLWXj?|8ap$u=eN;laT2e8^l~qAR~t@a;G5gezlGPI*lthx z;1;VeSwTa3M8WyNn6 zh#fqnY8NR#tZJSZF)T;tQd?VT(`dE~(}b`YF1@sE?Dyh!<9AhlJ6MBwQ@*(pyW(Y> zswZZtF>UXu+D6TCK&AD7OV@%5Fs;m|+_RTWw{}aawl;ELA>P*6k-2+L{6*-w#{2;= zCg;(g2(?(v5#Sy&lgH+xdgLV|syAgFYsKlhWBj)%iC_K7@P zZq4ka5ey6DxQLSK(8PFgfuN>Yui*OC2eEh0yd-$=#eajx(W01-Fay0%tHn!S5EF(> zRvKRj`#Q;(y!Z8B70$~p&gGxnew3JdPZu{H3Kr!K+f+kS_MDcj;gCVeh zzh_xVJ93QQBZ1e23P%})^n?AkbZ^fWCsZ9EHX9jvl8qXIEuI~+&YXJiTm<-l(R?Qg zf`rcPs$_dYNFbDPyM~)BqTnDQ^LYj`&pqNsr%OS*$DQ(tAN*paFU*jV==cVm@V=hV zRCocgH3x8}1CZ;C_tUU_lQBxf`laVpZfRa@(vi`ppWGA(4=14!QaxLB|K;+s|2pLF zvtCX~i?0o>svc!=EJ_TuI7m)`!>*Pu73Eiv_Wuc1wxwbpTp?i=A-K9wh;6JDon|bSO6B z8_mbzcEwxuYhX^VU(9K2u||&U5oSA0YF0Dz@9!z_8ZF5n{9GMe@uP_=NGi3jMgp!b zI8J?eShu=nmMcOScMXW9Q%~)fAww%jL65Y?%EN-{b1A89uw8xiIiQ(xi-|T5=jR*o ztrPWd7-018Zch-~EsL5_l%lZ_Ie1?7%ck#%OKnWTZ?g+qZogy&J+iYW*t`&okUyYr zDUqz&pgG6H42(ge-7&;s@ANmnWP^4hIvG!yp++~O1!FcROKXR-WN9xE|A`fA?)m>i ze#q3yf9de>$QhDnvLQz(sHtZ`a`O(7GkF%t?TW5@sjnl!-yZ+w>OlHfff-NOrCp+Y zrfB()Zs{25*TNBU_zOu5b-I{WsjqTE1xc7bGdAT`ql#LIQT*eQSFat*bdAhX(>LAJ z2^}u@Q}NfelN~2r*B6O_szH{+hQk_7a{cEEiOS>Z{6dZtdE3Vs8{m}R+~^u`HFVp& zEWGwf2;S@}{2i3dus$eg>KjVH%d+dK;H0nZ#udWmBW4@v;nBgMV#)y$63wj}-{%=+ z7SXz;VZFoZ)Mxu^j5@{fjXQCQZL5^?g#jk1+&i^D{preh86KUUH}bRPJj`-hL+E=c zdwH(U$a~kY?n*6bMMKK`#QiMH3}~`S3O8cG^utoIsEgC)96CYW6<2bCvTHx9@KMdK)S3i@#zySd6{51r7U%jY*+~~0bNpvGw1jA z8_G!>a-Pe|?s`3wtI6^3O!4&B*1Rvltuv*B|Ys{q~menTM@Cu2JK7p24LwgPTuEcf2>8g^!ia-_?6=Xtx8+L%(ZxQtR&t4 z#(FMSRRZ~nAOz{ zI=u%2@t60UWv?D&9vi&Ap(xgK`{c+SRrH&+Mdo?piN<%!9|lRf_Q9hE4fJ8>3QOTe zQ(vNvKjyc!2?~6;kcth^a+I1UUa;ynSQ(=xh3P)0+7c*h)vfFX1z6Yr*P>b)hc*7ktz~*Z)HI?{h zqaqrLVTUZXkKs5^T);40RBC9{8?-Tu@0dO^+^{tWBM~|o4*AZE+M9~wq_R{IY;HHz zRIa8NtKX`bxxWBt!?8P#5^n%E=^q_mZvyh0wNN4Dmc2L2*i>sOGEjuyPV_n^T#>G3 z_1%lSaiOVdhku{jI9QgJ4h>HG2_-ym>_lqi#S59b==lSHjVgtN0fRkaoU%#!E^I;@ zPhWnDeXicg_{S-RlEb5Rt=TSWUl0L-nHr+|y?~K8qd$WDbuq_(rE--nuXl*L?Rf5# z>a;h5^=6(QJLdC(9g;%LC-vW_jbFYTO8eIg%ndf*&CfsPGyDRUhk4i1AV0kBaPB?b zF}+#yJg%;J`E#4WH4`}YcdNP_gZxs{HKj8QI)Y*(%CwPm(jv}8q{PaooBxlgb>r0d zFZ?oQclnoi3#AX-d42~jU(fu-0~9vvvOz_~S9Q%O?W1fmAA7Ex|Bt4#Y^&<~zCI!X z(%mg3-O}BSba!`mNp}g-9nu|#?(S{`q~p*X_x5}L{uk#3@L;dC<{Wd(&!9TV$K_s7 zO9sTUQhX)Wn}`erCc6%&aa8P>FK*u`S@&(HdhToh+pREaVS3)2KX$%882dxe+o2*X zt1f)=aiZu5v&5#XBooRDe|xd}VR&X}!AZdpUUG35`AGCrA8S_Z^?GWFr6kkpK&6gw z%2e0-Z#LetAZv*J8I%o9-{~7N9rvt~>^HxEZ$^vrbA5&W6Rh1HT3Hp5bJ)J8-wvxQ zFU(wH;Ezi`x}yfkL~^zts&nkUpPo6V`YJTA;etz)Fb2rgZac4k(v2-=1Lu7>GPtZ1 zIJyQs43l@8_z)FU{89O`(6X+&TB#~Hx zgDyJYS(HPRQ=d@*0BHXo4xUWLC^;KVJ_67@sAXXXFNG7T$p8_Mn|SZ5@t3WrpI_~? z)Pfpsk?R{DDeT&>%XzVw1W~5P@NuUDO1HzV1L>T|&SG(rsVMyYQ+wj*9t31_L+u#?X9lAB_ z=kI_ImjnUuknfUzG81SnqR4mJLldX+tK{{jKb@uag0fk5MZRR@=te}+f4 zv7=AM=WZ~-3Ybj_Mn>l`2oM)Hw!mK2Kqa@ZgY;Dvdi5$Oz7r0?4b^S_S*}13#}Hy6zBXxp8?`=5QgJI1VQzZy%0w z!!|W~ypQ`%eb3b?{iCQ3#FuI=WWx+`G9UHIQgDX$lvXoDqS>>;kK$s||L%-(c>i1L zcd?srTg*AGXS~Y16L@w<@Vj(|Q0Y23v3#ku7fHW*Ix3o^#GEi_A*L@Mfty-jWR@Ik zSIw_yn`C`knE3UOq~POfIrcBKBa!8QUNHq=sS!Mm%IJj(1DOTrdKv7Y9i(;(9ZPGJ z@vBx@o0B)fCTIhvXYh8(gN3x!U27dRA1hWXI%&aFL^(j77{d82of;lds40_$KEbV* zfZiNBUNRh&u|AmUW+?bM_Up!cDI4#V4H=yrt$})m>Na86(^p-%xy1g@Srgs`Pi_l6 zZni*<@$`Ap8M501nO~9RaF%w?-d*JuiJS=AgrV(gpHAx)vyS`g@@{KZGY$-4le_Bq zx(5-&Tm>0D3jUG}-v|JqIX!RhKdFABBYrx}$#3#H>NR$7(eJM?vj9*wWyNR`%zo}3 zEqv!grJyhd71ZTy)-FlDPi1=Ndj{DD|3u9L<3`mlIMC?ZHCD!{ly!7TrnobllQI@+Ewzu=o>H$o^fkSIaH5cKH%$QO>43cP~TdY&Xw4qI)JiffsbNhxbDzRl8yQ z4-kx<9)2Z-wnrMzJNZ@R7U@6AMyVrxQV|q^EM&cS(@&NhsCc?d21Tl*(P+Jnbr;W^ zk&-ZZ`R#Fp!4y#$$hyyzO&nda-e6U`msy2v-yP*)3Q(VklsGF}_KS#r%CGnBchQ!5 zp^J>J-lf;tcQmmSDx^-jy^^;{e~3Rb_K$jt+P@BC#Mim&GU+ZrFVF9sJrmy!J1#!i z0h>iz&jp5o0)H0q8I^gT*^4UfmCynq4H;2RemZ{|3>Yk3#_4Y?8>{4^3jPYPt;-}f z8kvA3OyD??W^C|lzmlqs{c#QC3v6Pj%E0{N)G>OJVRWuA%X^?zJ{i+7SN%~|ZZA(Q z3pi)7$^dMKbtr^?y5jP9!$}u3QZuw^|K{z*_<~i9nY+wzR1;Qc)e`5E3vA&KpvD8h zI74+s(@z3;tl^M9(1OX8*;7?DGDFy=EVzlzW?XVI$VS+*Xd>xmK8K#hFz|B>S;}sd zO%q0W6GI@b89O^TiK}K)uD_-E%Qm!y9DDITNW4uQEb^AV4c5~FnM)f6;lx?~ zzSxuixFjk+_da=Q&iCya*lJ14HxRg>{?)aMoRj*(LJN55*H#}BTKhv2KC zrc}Rcf5%tPxBgvXbUlUIfAh@x|Lv-0=eKR3a-$Fdc#Y>78NIm-&Grl!(+}!BfdLe> zEE8k&vz%PY4$^3s37P*QC&TgGpu?IY8yA3(%IU2$U1}FdXNii*Ud`I-64bEEJOdzk zFyqP9s)3SJG@huZT$TAh)9y? zs6fkvp-Rf=l*mMh108k%@82So7_EqrWp&omSE5E^!~^N8zm8zjhvJTFr_J5NmBfWb zk)3Gnxf1hI zz)^9)I-EI|X3B0WrI=EDF_&dxLNTsXdQvg2Vblt(iv|h=2R;&aX7dLpc=iL#J=6j3lK-lP9~McI&3T zOga&WU@wBqVNWklr?wMwLdr}b5A=zFOlhx$0RXA5Nh$rEyMS4{gVep%_uNIn|Lsn& zqTVvy`JAjJlye)Ka&qot;DytKapf@yY3%_FkX(j^MU{nC-BU+xa=+xCaQ@3bX-Bfz zh5PiwAHGLYla6(780BvkAod^Rg{*iryZ6$%{DPSgT`=tP*Y{s^XDqleukv%x?pH3& zySkd$L|Oz>vz)-ne*yc$)6i!-eF+X(qL)7Zl+{r@1sy9=zI)a7m&Gv~pT~L&1%IfC za@_~KEQ9bO+=n0}cmGR$CZF8_V}IiID++R{ovV`fLt!%2CiU*3x%VcrrD^h*tcnTo zrqu4LY-Yy>YPi9vE~$f@ceu+KIYkq-x0n0xkNsihelg}&);M*elgsAM80uze?TcI6 z1Lu^)Hab{O-2Z%5Eb#v`kAAI!cRxoEPapTFr$uTym|i> z{iqdJFkwopSS^r|yr%&C=(}Bi6bDT(em!y>K{$~01Hjni{QzZqA>!ML+0L%m!CCa! zZ1m(}M_Nu}GG1BL_WcVwb3B#=@fG`7seGS;C9S!H9Y6{z#+;dP^|49*{I#qO}1%Ua5dZ?oT|Bj2qwqf%I z-OUe03)zz4SiV#jv&h_kd$hlIG$|GIHTTrohBh_>+B%%7qk_<=c5Hq3&5ybs)*v+0 ziOp`&w_;Z`DDIw33`w?p&`j5JgbGT5e$V!{CTSaF%cS!YJrokai*Z6T;-K7@oD zl*9duTI%>8WQ;5I^?`eo6V;mzqT!XltRkMAxj@^V+2fTKVap?e?jivrr23up9r0I= zSIQEHyT{u;MnL?Y=iHw=J&XF-&s>?+6rL2w9Eg3 zp=ACmCg+{`iP0a``3!EN`my+NYwQl?B(W!Tgs<_x`JfQL(Kql!$NKZiNb7IvLK6&2 z>ADrl&PK8KE#K_J2`Q>v6Wof|J>u@S>4CL<2z6GE)~3-xi|(@KH8GO1`qq)mOy{WMYuZB>CnZFrJ3T zK-P9B6yQE#nGcj{ke@wH;m>fA;YqA}9*jY7PO`hX!B9u`7v0jN6kYZp^9urI@`7-A zchPEfd4z1+6ZqQ=-G1JU?71Co?t?IX`q1I?eiZ|ZTsp;{$qa|9v~ZG%5f|*V*5yQN zJUh_tVq{hu+O)(5yl>R@9hWCKW|cR4GNAs|Z~or^BM0evr^ta!SD+P_Xj{f`s1zW3 z@cP*7U78>9y?X+YhH+}8@_ryjJm}_X=iQ-q_gukRU8^ZMuP_t2Xu)Odb#&@k#FWpO z2&|Dw-#6j_-><5p10tbjN)2L6`7KSxD-c3Js{QIz{k~X+8Jd@By<7LG@%iW{lcv0? z36a&}?-fc-y&BdF&>H^L=mz1SV=s@nXmmm zW`m38MOLoFtW`2mRNw{}jE3HeDMn^ns3|Ho)1JaPP!UbT`_jn`sUXr#kc5kP<>^~3 z>ACZI#yFDwc4m>o>AdE?T&u2qKK?Zl=OdrKchT+s3SrwU_B^?`4aV&IyNdiuasF}| zhhk^%aGmqcS2pDnom~Bnb@MbDu|$29*|GJ4@Na^phyg5vsCOQO)hrT2bnCPUbK}*# zrsWtvtG}}k9-FRPE66s!l?oVufdt6QLBs|t!j8^f>3h=kFf9#aJtK8OG?O`BBA}!> zcl)g0CiUghvKVO1+~FB%L=8VyM?fY$^1d`q z`8nHO@RA|>^z(&ek<>1ulwvp1xrI zVTo?S0vuJ6p0~|zZ6X!Hda+Bex(H0cden5LI3{YZT#o- zt*0_(sm1g4+lL6?X;Zj5t=I39E*HiqS#RAi^vU@mv7~zw>TSfOItAU2;5Aa$E5ZLn zUs2^Bo^^&jTo0u=6K|SKeauR*K0s{8MC2acOVnlXdqzYgCMACYmd&JPXpL>L) zcl*J{doR^nB9Y?d%f~>8Pd=%fzU`r5cDVnrxp=I{3XH>2iT#oW?WucO(Y}uI>XpGg zf5~y@zzTSs>6KFN1}T^}cDIfMLCu@|{9L_EDr#DoG??ge%0OPJ63Seb5^u#4App?F z(Isf+Wo+%%(9%qiC)hGYQ$Q8rV|Fj!_1~6~f_$hsS z|ICi2q2`$?qT*;0Q+@^V{3<(Btz%;Bh*cA$%nyg!SAPRxa~PV%Jb2Fa8+>!Vp5+@N z$|i=d8GblGJ}Nz3AvFHC;R2Karwjgz1mmT|lw#J({?e~BuH`>y#vUApNeF6_Gr^fB z@UgPI8jPsJiL!H-K!2zCBgRkL0>NUUj7fg9jd5f*9Iz;|`0RcH%nTH9V7Z-X-MC}) zDMP+Dy2+q8(yt{$5hsn5OK%VQCMW7|6dl-|g6~CJ#qU?(T+iDP1=sg2y_h#zeXv2~X{+H_0))TB-B1(Tx-<}v}-g^BD zC8-XME;mLB&pW2%hze8))!t8tyS<(Y;hU)8u4YnQN@N}eD@Bx;+U&=TZXSO@#M>tM z5M+7IP-;RyC1Z|L5$8W0DdaBFnpZu42(7rXG0xIs+dngW9v>ZdhdwhF`ka4}6z=bS z!2b59@c^o8_TMO0cIbaos!(^m_P45bdD|jC!_xyH|7>8fbWt5Pw5Rma{U8sw)xjNG zHdANg%)8ooI*G&Lo-y_=<3sg%EtQ~3Py}nOuX~+M$?ZnCeIGf_G6CzZTM1ev|m zi$e&-@x(2Rlizpxy<+Q^m~~O_-DJR+dgs&lP@(0pgTpWRXT+xFPFW1Z!v=kU+uD?k z{27mE-YLn%fFI#ZI7V8C*&fGj%wXp_46&X+{LN+gUjdK>KoU0R0@hxX3!Td*)5vUb zQ-6FCK8oIq*F1FFgoLv(zwN){le>t@|H*@2lH>gkLS3PFDeEFf!AN--@~S7;wo7~x zQQl(oj3@#5jL2?!dFF?eZ9aPvv1V=**lS7ZFf5TcVC$^;r%p_Hzt!HJZ)$&o@q4Mx z2Ls;oyd#E~{hI`%IWp5v)QayH;GV8GyfFFTkSIzu2Z? zEkC6T#e&J(je#ACDWEZ9phJ0D(*Hz>4tM_E$*I7rYLeEfDx}WdOP-I8V1B-YU&5Si z$qGAgR#GAsFd0>P3}_ji*>gm<$XO95$>NsPj#yFhhvRd>m;1JZ?p5gPos)-)+89S2 zCwK*`xsQR!#=K8#`^nbI`aHwwlY8Ko568rBe5ZbQ>K9vnA%$C{NA7=GJ|juZfo^QK zroQ<BXTtV)lx4rzeau%xBNo<{<#tSMn24<*{0z2w}g{EL{f=~2o(J|FEZRD^)Sj4 zT)hQ2qWMyE;a^8-Ru?dDXv#;%XI4a^iIw%20D1K`Tf4(UAoxD zsC$t)b5g#{-yZz>FU)$A^?w5~Djc`a(+$io{2Ouk+59|UwpmV7d*eDipdkbFl9hAW zg#;B_RpcC6v}QF@f{nJXJf~7gxt*J$kgYs(mDiqykh+90D%z?~-oE0`K^VZ$n1iO@ za6DIca@l1zX?P9t~+3{9zUBy6X>e4QQoTyxGL)%VDi6p9AAiTe!el0J>1NsT9{jwK93)# zXwTdGCC)ce4-CDVD~A>rj-EqKgevy&sUssgh>zn(Qf*Jc3`f_i_BW5GGy$hWC!Q#} z5&7_~^t@d)LKWRFGAxk(qMUHdHZp+0VeHX?sLti`THM>7Y>^{l=u5ncYVk&z?V704 z=->uJCIO>R3Wb_FEie$Cn+N26Vvl2%0wvM5T~@qg9*>O^c#MZn;+CsTq$(ttHxm)0 z*vs~S)7(SJ=g2#)E;t6@d0yZ8izG(hQ6b8<++6^nH)vjFcb|l%Qat}WzhNBJ#1)qP zzLTQj6}(-EtG%}FlEjjolyWq8dR=;IwI^L~6>D(!sbM}!#uxC%Segei;>qs&s{%%7 z01Kt6#cH*`cLr-Iz@N$VNArnc-ON*l8OE3C-j@k>95}1fa-(%mM0*$gDmM~ zn<(V|ULr9ICbPz)-MS#eiBTOqAZHyZ8w5Db`VOxWZ$VpNEHxsy+9J4oGhPIn1=vu?XVlT6R+u+jmh0%3xH3dL~;(YHq z2XblW9oONL#~EL9+qUjYGPw2Xr7=XEZ)vSUDaR+=UtD9SbP$F}w+BUE*a*>q14kr5 zMW9))XuA;1!$XS*UXSe)dfwbZ+Eh=G7cH>dh)EU?nJiwe8muRCYRi&xnOH4~%RMPU zP9dU@bFS)gR-jvA3y~n!EmCVdbouy$1Z|OL@nnhvhfIp)_UX&~NnGZGc6zAGsy!2q zO)d>|x}EcFAnoZ{tjEEVISvws$M&QDXb`e*A}#VuHo9H&wPb$k`J``cMRBav?}nM!!-dSi*&ye-}5Her`T^&?WNpTZ614p$SCb^cfj9n=}I0*w^7$ z^9?(ppI?dvS5%!niZ141c<3ER_5QDc_t(Ntr{H6tY4vP$CT1wd+f*jbe=eGW{L}Rc z=b3KArsi>@@ZQ}1*7fFYA_09+&|w>D-zB_4o-cT&s5Yb)4{=)x2engs(ns(#e4gJ((d ztP_>9UVo*cY2O9z-dH6QZ<(eX+-0_J9u;{-v@0Ut$Baz9AUMCoC4NTzKR zsga)9oyN5JpU2=k?w)T>A6FH|OGaP-?n|M7Y^cwX@_w)NZr_D1tOCLdg$?*#Ww2h{eYqYFC=cfUza*`8OHz@`u8 zo!ijk7@ouUr2v!x%=8uVsIFUkSbq29KcF$$%(frsu#V3%{+~PJe6M(C+~>v<{A9>3^m_du-7gdqcKfB+fRk8kl$p+b;U2O-GqhcZ`8ODSPl$A&as0UU zggbf-glMB$uv)V0OCU7y=etSf-H7pTF%vQ;(u}L->qC@#Sd_k|X73`ALF8#5G9vD)IJV+h7-}F+95hpI) zFj9<(zlz$Km^nf!v*N) z<=0jdF-mS!5haY#kl6&I>H6?Yo^jBkoqLmv(i1wI7X2@YxI`TgZ{Ld#oUS^jyBon8 z2X*oZ9iw?D8P0KQ?=h)T(ra!RPcIti zqQuBHwt1o1MOXJmgKxH6%$S#H*JujDCCGf&BeWHW4yS$NdVWDq;c8ED#)Fv|^qUtM&6q~j!O)_+d zaE#IANVhnfRek5%X_Ig2VXMYcDG-~fJ}nA`la1nrqQ8Y&(C4W?nmkETVLIS>@BJ>Z zdWOepJ{c)vWpV3=@M%ha1qgn{J94cU;R@i}$>nnW@$`gtlJkPIIQ7c-Tg~9&Y$Js9 zf?J{?iGF`s#a&EB+$PDQyO$Z!MeKu5y6vy;9YO#&OvS$L=ZJgb={^deb zcpi0wwv*z}kqPIp2X#OdjS3$9;?)43(VvhJsK>GvjkD-K;Y&rbNFu5h4c-Eb4Ut@M z-?pF(uGaie#Liq`@yg`qY!k{;hE<{t%Q!Gf{uur}>BBb5*>9Og(q@I#MyfhUEX9zr z6AQchQG^R1iXm*v;ivEUjx(%P)QP|?P-}ayLoGx(B#!%#tk~IM5t^fAuBYrm&8V$G ze;ytD$R@R;!W5!wN)(*V58l-i{a*plfN#R=EB?>(t!3;6R31?Rs8k?RkdM&pwV)dH z>Cjqa_34$Dx;U*)xMC^W2Rf46k&8Rx1Y#9U=pxBw{&IxP z(azvGZLKun&(z5NxFku|Nz*D4Cpm>ZyIrM3K~g-qEN=Nu4Tg10xTKEEk5|}ph-*1= z%@H!sL3g8e{|ZY?jpc?bqV+YrOXz%w?-;b1?Yj{H#r)B%B#v2mS$UD+$rVcY15MbC z-5@&l@_LInw`T^cd6(^jsuwBIR*Ct1D^CL^0S zzi_1&qeO8*5e8|nb!(6XA3U<*(U0zNgM3^qF4M_2BFZS`Ng8Z*e+w=j8#^>>LmdYR z4@k@)&=NIn9P21sw#MXJP)Aa-foH)YvPhYnVO;DIz8$O=2hG_8Qzd>c*cuNp{+|VX zeLn}d74;v3-?^OyF6zVF1aAB8{xrdQIo=b76_xg9K?sd?&#Pca_0F>sh?Hnp$1^04 zsGo?Sr--@}L`EOo_@qXLJ5yKfM^e`Xdq4i#AKU*K=Q!Z=A{b4!L5LAbXp8FH+H0y=jHQW+RR0 zXk>Nt74dk9O@RI)HGNPrcPj_&l~} zqkQJ8&epD*U(#MlX6cAm+LSHtPDXLqRuQjJe>iFf6B?{UG|nZv`P*QDi2pAIS13*% z3*#`zze%9ZwhOu;G_0hR-wT!%F3?P5yGrDm0GMyvks)Xh(N4marcBs}J8;bkELv(; zU@_Y1j~l!TRfvUOqTTS_I9dbC|0^$;V=}k|NRAtIo!H@z}-v(i5qgPV$ zo{hR=Y^?EJqwWR^E4s0xBiLZ(p&xUQs%qK-LyE#aalIWRL8p`X&Q>zzM?1$_O*$rl zyp#T+zTCKd&a%bb|CdRG0eQF~E{RkF9z9LSRra+x2>}WX8-6j@#bwIIF)^iYb+F*)IRnvS>C}v4ZHUu$?kZ zl(SVhM!6__@EJcPo=enl^|K-9q7%zy?&BI_Qx-(7melrhr^C#={T%~}bY$-c@goeK z@6IpFJyx9EIi9Y1a|PCGK7k&fGallbDy8E$xNLr-r}8^IPz?P`j`6sNVYMOW2cHf- z6CgG{Kck8%mU6+H<5ezKIzyse_TAEr`*7Lx#{cmzoBPs$?5Py;p@jfZ?Uqz+0B4xd z+I4D7$bCz?jjk~V7NrGVRts1%tdH zR9u5o&rez(x2@4cUz+i&jyIZxyE~Ia_{}{fL8(!R)sn!Y)%|idv?Kw!4OB9n`~SPk zD37|55_WT z9Q1%~n@JOyDB>Ck4x$pRJDJ{>2h6)0fEgK$11nN_YtXcAr>-Y7*Wt0o<#-PhE;d?H$Z zN7wV6D$U*%4-!h6m^g<<%syxONuHV!g&MKkkj_wU%_Uv*`jM8tN68}Z&o*SCVQ^}e zw?Mr!cnb~Qz80uzXp-fK)}OyDs&$Tn;J3u++|H*>HF^ZMk|2DhN`BHRjh+F?@v$Me zHA*VDs>+vqIc2#*%BqCp1G9EO(k|AAaDfE@*y-O<&px&?C1i@f6O)4qg3B8BYYBaT zTRvhLiV%Hn-fi>1ZLMg=Lb+En;atO!!Yk5I=@# zXMO)jc7bEt%x9KQN+2>c&(0la|wTAYe0AVx(rl*MGG&|w9XX~9GbNM&k1-Nv`_PRW+j02TPG!ERCKnLI=*H^}} zn*uyO=Joi^XXiH)qJssJ-|sIArpUC=xEY$hSBVxZ=GN8`CgTaIVLD}Sy^!99Eeo}o zCp6&WEkMUunYU&A4zfGOX##y|kLa$6$pf7?Sn)&UGV8l^JyUC;y0a>SO!m?y?cRSzAYwS*#K3KPom$V~lcknIt z=iTR;_DoaH$B|kAE?i1fg$J@9OY6Q zr`Jk-N}P04w>#fxIh`}n{WD=MQBk~LEl?Ayl97#@kNJ)m$!RV=x1`H@=m5*vhXIT! z;!{o;yUp%y+r9`$s#182G}qKJfSt?j@DqTqbIffWHpryb(Ya5s_*UE6WSV*c!f{})EaZA9=O$U=l zSFWL!X~iy9R0q`MpWqBPA^5Tr$pc+38U=Sg5*N9=Q{MjF9C3`9hlYQ@eBb#S_a<_4 zXuuJz7PrJ%Mu*-cC!7*kd2(3xgKX@fQ(?@tlwJGhG2&G+UXeJuSV9Qb3UAK{enc+4 zED1rw5SVlIqmR7}I@3*Tx3wFkE2cG~S~HojxiRUc2B+VwSr-oEZmG~I7mfkn*2)1@ zA5zjb36La2m!dg=395B^;7c@GbunQhZdMcGGeQ#_Mo?soYP+LGC=HvQbsCT|C6^e9#uc1-zijr(`MvFUdv6W@_dTQi?|WwT*)o4y-0jTiB8;=-!U~j( z7iN(-iMRXdK;~ocw-7el?G%CsH7h+2T|U@--7|=!H~E2W!6@0PHuRuXbdZcXU79o* z%(H*X^kZf^mip@tvkocJtUg;1aN&E9g@T_kW*@(_VL#{jh{B9bFJ8{`FIqLZt%pF! z_xB)ZG-Lp5WIa)jWwe|)$K<2dzH4>AU~BtVmeRj+v!y(lytkzCS&xfV(DkmyEx$bll+e950&;WkyxfmoVqscF89|60-a2SyF;N1CD?IKb|f z8HUV1GC$symgb8%7Y&gmFP&fmezsfVtLd6UNY#jqDJ%2HmH>|J_X-#Knr6HpSJleu zj?dkH=iBZ8uL=pPV8xsxROa?=AYrg1RmN^AMkG6449AGcXU@0GznsuQL;X#zF2*vl zKe>HX&YEO8HuKeNzcVa_a67XHBH;!M#&Z)P3m^WuS*qseoNpNuG-&^Vl9H6QY#0az zsoQ_-!)7CwG6LGX002rsZ?*C_d#e#n6U%Q`-)TqU?ZbYR$E==Zqb`967}hT|w#eGT z$^1tESY*w$w0RZiA+H+o_Pmm0L94eUuEQ*0i|`L@h=I)A(-HibVs(n*DddJ^=B10T z-c>X#a|tN50U>3>^XayU11zQA_Y~E05AWYv7#f76euWBHeorBnrzGo#wZ%V(8}Qpt|LdS7dea+FVZYgWK^~$q?`WxX^`Je z`8P5bWT%S3tWWR6b#in;&$!5RK2-x(d zK8Sle9ecc*GzP4YY*^w-m}LXf>W+zOOw$Xy`L*@!4_6A#uV?Q8;5Ir2pA=>D&c^a3 zCA#n|OE4#;`+3#b%LbE*nYl3(B=oITRPw^9pssmq)yofm&z%tUn6Z6ORwr4(fbXXWBI&^@MulviZadSmK8xMn! zytP3~N{NmRP*szZ8NtuKWashHQ9Lk_(M}(KtM!Woth#}>-1nRcPBdoK<|xosoG7(` z1cLJxbiS=2Tki%f2Eaq5RVh`peptqe!5y?pR*FomMI0h|Ft_B|e~1DDWa~hFZ~m>q zoux-6rrAs?P6Ab9F7LRn-4(aibzlBa*|8;ZCLIy-ep8+HSVjEBPV3HA^# zCErLAE}b#Y1C5QZy;Y`du~^gUJN-PfmFuWlQeAG~SpeyIdTWlxtR9n!`xjaSWIlLB%~|`hndk5 zHLfw=3r37+#(Zdoe9BnA-X5=;=#Q}vm6X!0mvn-F_R;-t_n5x+S-@pW1c%Lrps)8< zr!ILX;WeVIv^gVK4u~_{v@4r{CS?_L6qG2e`kk80V*ftam9I3M3-u%OAumTFBXi(- z`_v=aJ>^?y!vc&l{;X?6*|1I~o=6J$c?E^1_vHwm;@qu=p_k5swWc<$XdxPmGu19<&U6{mWn?VWM2j!(jc@+mr zU;7%z@ffMhLhIW9-S3CV34)wJ=UI(={q5NunJDLzA2wu5|kz zgCKaeFV~5A4pjnEm6V@PynKdtdcYYa#aIA6@PcIN2l$aEKd;z2cxWdpyX#BvOo1YM zvT$qH!CkLV(9i6XgpKv|545gON~-ESsI|W1vHn5?_NLYv~d-@x(0pjQ6S3hGr< z`2-cqjQ8{hMHLNl`TE#5rI3AcQE;@;^i4{{& zcNo-bV6A>Q`bcGDNMz$i%*RRinT5zH-Za9cw)cBeO|!to*Jyr1zx}^-$sy14i@zc| zZ#qSYf0d_%dTnxr_fe_=jpaBJnG8#jSIGB*)%rPyi~u`;EAW9}<5-5Ifi39w-n0!n z=p7_rcwL{e8Z7?Zl(9}* zm}>rTU)#m!Z%d96i^IHQJ@`MRJXo!M;HpE+aE#GrB9)ykXxSw5)J&~KMlP|aQxCeW$OkQ8 zr1Te;|8`rO*XF5B^rNR^LLEfW)g>hOSSxm+kt)ZN$%2I)vxkihD1m9qHSuDC1eB>b zd3)qjFb4-2SvmaDq&<@sk{RnkmmCXLkudjf;X}v*Vn(N)!g*Xj@^CZ%U_@T^_iTGI zWG@X~YpIl5jt;2eO|Sr3`e*2z{`tl=L=#Q16imo%h`sfT$uFG;?wM=a=VuON!i^e7 zuwkSyeH`(apPJ8Rf3yEiDGO_j^W8FbmLbW^^xEql(kRwY_fWQoE*1twz1HiCwq3Mx zHDwRF`oe|ag%}6VVC$tC8#-2BR9V6`RT`&r7nkN+(xlTA*tw39xkB^$P7S&8t!g6; zn$^p7%;YQCE0s6b$Yz--XFiZflh|;Kt#{n3UV%7L2ql(+^wm*SL}GAUxmQe+ozS-K zFQD!|iTYsCuz?4%{GW~>!tD2bLi#zZuo)7q2L=kc2@eIYViQ#a#nZJXy-c}T1~lOM^Z zmZ)2GalQFwq|kDR&n-6Y61za9ldF{Zx z%fKUxaIwIoJD@u@Ttm)!SnFeAPfogo6&lN3w5d&`txI97O#ye}~Ps;&iiB)SyQC6rr*`>^yS{KD9NPOr3T zN8#&PTT$Jd3_r2>^pI4v_F~WI8ys+FlUNOOx6DT0{?`wntDQ6Qp)(gLSu0l0Td17$ zQ|@|HHA_I@QO;a0$JSTr)2tc&gsP3;SgDD z?WZ();2(~3`fGmR$p9bs4jF)6!atr?PyC5{CzhO$&jZJ$U))?8t)lAAFY}kQt8@|7 zB~Rk~5lgfR6Q$etmF%~*IIAE$#xUp zYL!ge-i(#I=&&vGEa6qIc1N~3u$^B~*%^Dl=ZHleIl26R2|Rx&Lr09~=b9|@;Y!{J zs*M)S)_Zw#qgX8ROjNCq?ZVJCK?HTPuQ2$|21>~lId`ZfvaoL~yMRV7E7Q^4j|hO+1-E7Ut;h#&kG!Q&k$mjRlmzjL@`jD?b7E$-tWRT ztX0)Ob=RZ~{Ilw2lr10{judC(`tc)Y=6za)O;+3p+Mcfs6{8#YxK(XI3TTy!t2#)s zPL<^14c`1Lft0lENxH`MdX#G@V7uyujF+QPLcfcfsNN;^e}caP>;D9Q!{y8TFo4$# zqF3K)@@S^l+f#lFLBJ$kiLES_36dA4xN zjGx!0$H^rORTR_+nit%#a~v?oZ51grDl&w%vdsv>GbB|fN|FbcP0%5I5wMSi%hYQQ zyt1V9=dVuM44nr_dM60EI8DG2{Q*`U{bjM3jgY8DE2Y!C>r}bK(*C&MFV~nZuH>@$ zy2_Y~-y^d0r49zcz>IQqbo5V72)J)l+HR_jV93CWCerpKQ$V2S$*c3^yh(4`HE9KO z5A+&(S0K-;$DyB*<-iXZ*RECu*{dLa5oO{GBBw1(Y^MH;efQG2QB`02Mw#hD`rAARD>qXvGBOJBCSeP%+Rf zJ0ftzRjK2KH<2753R0USOhkIy`vfv)MOG-%MWUPWP4%(y^cIxSSfodn(NIUOKPH%( zhzX|@#d=VyP)vty4DOOQ*JrqNS4N1vaPFq!@@tYXJ&T} z`L%URI6k2(D%@)><8jp-%((o>y4EFf9B!N?aBh0C)kM+2x3>5Q9?7Aw1aGaNX}G_w zKYDjFdu$({ZYE2eQm?c%Pu%n9#%3REd-7+W?0OMZo!Ejzbc@aPjV!li$di`1Jl{+& zeAiQ=*6`l^z^Sb@QnGDB6YLYk8|Sd7i!iVL*z1%y@G}}4ZB@3H(rP9wuvsI{Y6}DT6{1wTSv`7U?bzSZd7TOFTI28*p0XJR1($oAD&%ENSi{J_K6J`B zT@Owg>og02+T~AS18a!g^%+IK1m?j8!zeL))6kKgvuSdN_81xxiKh5594T6>VQ$O* z&B0zPZ+XR>LW&HJM}*A{`VgUt9XL#9Pii{9Bk8PpX7bw11(&QeS&rH)(t~V=m@9Gi zuDF}+U$8>fX}~(q>{ws4jTH>mF!B6jDsgL}X~S zpShvctH-}ra*XWJh+y8(m7_D$!YMoOmPuaDH@VdL4hp%7w9(6ZOuIOCSWd6pd3A_& zY`#Nu%pbZ!$`>0nNXOR}7C5$vcGDThMz2)VIGF`kb$~qTR zRt`BYU>-WwB>74H+1e`hs(@$yTS^=TEPUhJ?iRZysTGV8X0lU(c&(mcL8JaU8pZs% zcpERoGeJNuKnHl(l_n~`#o_UoBvaGn2naK-^muG&tq~G!TC|*gI1h$ z{XkJE^La%{I5gd4^Z@nzG4J|#JPjf^{ba^$Uy#%(6$*i{AotqGI9+1NsSx$sm-EdH zgh?6by*q=YQ}ZB4ve1EvQ|{`L`yq(u?li?rS?PAc2XU{o$M64-r*{nN^!>iSo7_~B zZA`9dvTfTwrjHO`|A7o-T&k0Nq%x(*SYszueEl_Oz*=b5+Q(1 zgpn})cmBsTTW+ma1ADTo8jCM=V#kt|X|Un*GN2!go2p})?Md5a$f!`^!gr?u%R5?5 z#7j2_aTCyZHr71<*zUOXJW~smZPX(SJ0~{4; zRvH))nlBN5?kzH;wl46dr1Cnh+Yoq1LiwM%>$;xUA}s%wwXb$Rhk~X4+p2dcE+(s} z+zV|RmnSQOx6S~xiC8xmDvCtWgmzLg4AJcYohW;bpZgxhP8e)#SGu4&NmT0!B2*Jv zNo+CLeprHb{LzT--1l$1@0iiqTZ1WnANI!W18}MeXoYffFjfwKkj12aup{`o#$gz@XRxH*%)1hRm z7vK2Cw#H__ERg5>VwNYtq{tmsWzNkTFzooYxSy2mk5;yh=|qpp1_9|D>Dew=`XkSM z!0K|De*SHjU%3OwRoV>3N`3lsU%&;@6Sk|5n?Q53&O6(wF=0Y+y|`#?&i*$Zk-9hr zjM)kg9nLBc)f*DYTR2#Oz~5EPwOv{_bq;3C6)7@g@%B@P!Sv1OX{E_YR*a<4Daos7 z+*m1`80Jb!800gry`9+V>+X(+@kwi+4=L``f334f8XZ8Px{ZRT1d$lj0F+=w7z`w@3WDQ~mPsk{e4$>>XX=RMyRSWBhO5cI#s8S6uRI zuVp4XGW5;w7I795=oF8gh)sN6WxEo)UDb7+Ca^ghPE zj+?6PPz$kap3R@ay>&Z0ZkJx1F8{P8Y}a#_sN$v8^0g!#cb2Qa^Ij89WWRq=QMKM* zs73JbR!A@&qSQ0~XjSNZllH&Cqr*bMsotNx5I(-}fStegy!UZ0_(q%72jye8*aqS) z_+?@Jc%sg)ebdVz2}c`%_mKlTB&^;46W92js$d*mn=8zsZ*WLcM?PiVNUd^gjX7#O zGFJr|kbE3(Z*6c{g*V95R`wSi{cEQposl^WqTrW~KVXM$g_z9j z0We2uUp!s}gXn5EwmP}mBHXHL-^_A)D%ImL#*=Eru zC34+E-pj)23bennG_nr&;;oh_s%p?NOi5qE-HD?pXwi=`K5O%@ET#)KHoj-hRwZk` zW$EQLwSm=*%{IRxPhsgDTj4bs@r6qMo#o_@&z-k)vf~}DoZD4c3kWr^=x>i%ITO{9 z*t-jlnfeJeNz7PQyCsN}2j}Dui>4OG{V2OGBSD-W7Xwk7;`$U+t^m zzI*+_i=LSNU&&L)*BydU!w8Xl(Zx2y){Y6=Y{9RVwDVX{foZ_3HRdmK{9;l^if66Vg(>5C4Kh$z0`m-B-4^1SL?TzT%U{gB6vM zNTN1XGJi;i<*k~xXVp05+1DH*;k+w1c(F%q^tL+BE+d7kEc7*c z_&m_MZmC(v2pl;)ud-wOPfp1xT|LW3>cb{Pj)zxBXfc^5Rx2U?urR&5yQ6g9d}GFM z-LP}qHB+^f5(Zm{T-|QE-uC=z(GXADvWyn4wK|+m7u>h@awu?lXEwOJ9VVicI!RcH zn)+*&--svkyMyx`7<6lBRJ{MeYX(6LZX$f=bog-6d zzsuB@TrW>-ZOo?m^w3?LG)aty>E!oZ4428ZaqVh70|bG~ea7aRlpV5Y;ytVS>S1*` zT+yUbI<4MqQq3c05>MVH$LfI#`rFEwl&fHK!I;L$BGjs$;@ZvQo=S3=4R$!Rbq|$Z zVgHp&vT<$u2g$HwVYiJm_NOiIt)v5TzKf;XQ18((C!zlu?DqfkJ@+EIRqqZm$HgtM zCZoialW+6a91#%fJXlR!4=lozY?yqrdHVwav+9Ffv$-=HZmU)_rd(Ku33MnKQ9I9k zkH%HSRpG#>lq8GDSh>BguF?m*>il_^jT>vd9~u6uWInMyvPnh(q%m0YUc#C?svCM# zFr!VPR^fbOSS5nP(7pizQ)UZ2#i6I!X8n};^=5Bk0I=Z!V2O;&w8>a5c)j$^X(l(X<}?+eMMBvJP^1?TlT4X6P^I7**PB@S zz-p0_3G{ER56t{P`I>62jP|fj72sv~94>y#lcLS;o9OLJDEi&~axaII{HVFzMjbuc zY0`)CazONK^@*cVE4g|7K~ygL3AuQ}8@}#kW2iC*Ez{8SuCt=bJB^#2f2jQY5sHqR z?dH~bMt%+ni{aG>CiwMt6aZUq+u7wphh)^2Y?)gpEB6721FhN#UYU;XPbak+y-6`Upm6$ z`rQ|M70|7P$;@%dBQX-dNo7S(Q`*xa#oHn*#yZ|KJ4_*rtRtBDujS)o!r_yDh7pJ; zqYq`mwpxbkR9-V%LuRet<=$Roq1EDprvvAaSe?H1#|Z<){Pq2MU~4p&G|}@{twDS( zj-ha(H;s!uu~GnaRfvZoI=Qk;kEYY+H*!W#HX70l?n( zY}2~@;_+V@WTVMOQJd8hJ6i1pbU@0#r7$LB2Rx`4&#=Jswlle0a|JkzLerXr0TINV zoB4tBUGRG}sbq`r*#!$mborFze7UIYKQ^$3hnL&`)IPHjKRmba581md_eW_h+xzZz zg;t3Iy^5UCOa>oeAL?>KBMlS;NDy{yzoV_u_|>7gtaGpdSTa z<$C`jsO!DJ0i|su->`ik4?XoIvG-(^*?$}Z+;iJ3eMajHvUa^*yk}j`z&9Vama8JY-I1>VUTN0TNOS2N{tC`ma^%R z%`eKx;`E0Mz-$1DyJO$yJqQqV;-YVxHFX{k(#CwUyI=YtGkc+>-mSJ)oi-#}JH$x3 z2O68-c)xYL%s_(g=pBzAeO6`lIDdY}(R;n>&RsjpBqNukK;@KWxHmsO|D3(B{nSVw z&*)gzoWwHNRw7iy;m@ef`+$#Ahp-(JZFF#Og!ZXM#V&zCooXS2&UH)60&y7889P5{ z&&FBQI_HRZqc&kSoInN=0@zX1x^B#>4G4y&^^0j?P8Oa~O1hadK3~;)rd2EhfPF#W zx~sH}YI*Dzt2@r2qRMxDP0V>sByhO6k$*)~dA@)%TT`-YY-M2`%DO#cVkQvYUp3BD zYbX2sLz_zneO0!M?v44A{n#1Ba+Z`xI5%5tqNZ)t9p599w?Jk+tm7!+VmjGxDJFFz z<=JKWGt7hvwNSUoWV`tm+>C9pruNBe4vI=*N^nKneRg-=&W?SzoF85iZ9hm1?&5N| zK4!BJ{|94_X>`=v>m#k4X-po7;BPp=#GIhJICY&?%phc4Xka(*eUT00iLo8%3^bp| zJB#nji4ay!v~%x${3ubY=gJi5=+4n#KNV3F>|O(> zPOGw!3=% z1`bBIZHP?1XB2c%kQ)*fGf%Z_Vdn2Cx@qfQ=CjwpSm)D%jXunf$7Ny8P(!}BtslRT z%r_O9wMdmc$DKbC^1A9_gZTKM0VWl4&AwajA=EF0j#)ZYQckdnBP$wBi*SUtIp5RQ z^tIbG{1s}n^VMOthMu%5syjbP=yW|9iMJ0tExM|*wgUZiIA!+!+uBBfj@C|e^&9O! zId6zW<#Voq(udnXx^kV?C!>zrq3!~;(Tn-x_vG?#ug2#>%P3*!o(RliUhD6%k5~Ke zoPa)h&-*#}>jdw879GzU%c<-B^P*FRj^DAm`=u`b%8b=Dt|63=Hqlw@kOIcG+|M`@ z{X<+c(C;kRzlNQHZ7O*hRtgn}40K7)VIJpDQ{cZ#%ol7db>;e$G18XIQ_XvXl5-WT zY7*#c(rN3`xnJ7cbuVt|obi3{z3e4!r79z>#>dq80~f6I<;IYC{Gb-+NJ=J=^wz`LXfQU^w^xC$ls6-uwKs9enxXZ6ukn=OWo(gjyBW51}KYL={+)ylFz)S!-}2f<0aP zZv)Zb?oPw5ef;FH^o)5T%1Y6hgMHR~VMP1B;Po?oX{kI%+PJ>wAfyM8BD(^=JnM)m zznPne=KAE?&p_{+3`pZp0z3}>1B-KPILR zgd|Xw)?f%gsS>0pR^lSO5n=`7eSPb_-!zj`)51~VR;VIm3a9m%H5V!MO_%~jlcf>{ zc4tQiw)Z{U-(#0nTPCii_a$xDiId%9!uz1eC!r;eTAIki9WAn~p9ou53n0jDNvD`~ zJhnhnEXO}t&kCJ?(%Pl&UiEX^v1Bmd;X&m(y~Tj=nU*@wyU`c{ryBSt2;K9ru7NUgyPS{CG#m^oEsCi-`4oSHgD4GIBzmr>t8-W z{|1~F$T69lXQvxqGg?90eP$ZKg#z4#fGGE!?~-(=O0FZ1Od)kHnz6d;F1F?Et{Nb` zoB*=--}D}lsrUAgLh`re?|3nC*Hv!sWa|$j-H=?h`PZ>;0Uw1N(5s(K>@@9&>A61^ zw`0PsY2iW6+uk`=)w)Ed8lkZ`%jgQnoA68)EV)v%;u?>#O5H+RJ(8~IZIQwZ&jjdl z4W=)iQ%#M^C*A3hLCOXmn!|$rI`GEo6b?x>{Z089S3MsNMOOzR4@VHHkq%YqrrVF{ zqO?+%GTs0t1ZMnK5Hg}e=1tnhTSiYkzKL;WVg! zm7D!n|x#b z2iO1l?|sygyBn_WXUzE9suOK9gs}P+*ea9TL9CRcsFdVL_9+6;mEbm4+v0FA1=oKsEx{>!{*!KWcm0Cq^ou_sV{8EfKlOsg&sd|V$g zGF=0m+}-j8iuyjcF7xVo{8t|7rbekK&b(m;kZ>GmV`E*-$G#0?aojj=M%XmKkg0b; z|L-a#axyLANKyd|u8i^u3JRjIu&N0lw69&2%w?#IAYMJv)R8KnfZ_T$Gq^@tM7Z#O zF5y`dTmWjbv#tf5=D|w5cbo+q)bQ-B-9tOBH%SQFc7q`It->7Aq>kaIWjw&WM2(>i zd;rgDqKJ`MT9y}4IFNd%JtY`6w+IXQG0e)@xf_p-ms|TcAN?+qSMz6e6(+`oj3{!` zMx8ZS-#$G>@A0|g^&b#J-G+F!@d}aM{@?=)v7fnPUDlu%)?e;3dEc7>>&JU7M98=l z8st$|1YI7rqxb_eqP4EDGCDcja+P@JT#Pz(E>eWW`f$~y;Y-cKws0+Sn?;AC$@!lm1ZXe%m0ito%~_4CM0a;oZX`C6glXM1v)nFC*z zgio8iaaGlG!guPFDmJ~mvJzL$gce+=O+Q1Nn>F&mY?Dh0C1i)8+I3$>c04!wMVWx^ zdE^!_)YP71cW!xd1_u!?jN=R}X@p46Ha++mQBTf)bTML=D`K#g&9W(uvUEBA0K-e4ZDQBYQ3^^gRFzZ#?;U%@|U< z2dwr0W?+}$fXHqFj0I|19kL7!!gcOQT2F)l=yC87ej~apU07r1E+VwKB=8`to=g45 zLpx8)z4%85o>cg)rtU@*)hH!3&5LO2V5w_@GoK)6L@o9Qxo0|1PNB0`z2bt^RRAV# z@c2K}wi{12xVNN580)Cc@2TE*C|KX#iPKGq+D<(4{QMcsaf4(7bE}L-Y0@c4ntQ6- z8%F6ZgP~2wiuXLNF-NR10hXMMaTj)`SP~MV;)Y7gRl0GB)G%Wg%H`LBmd$nyZ_OyB zb()M=0I>dV{~5iEKz&oIE6C=6XBD0DXffbL0W)uHy!6Oxw zb`_jQ?q3`^_RaC^v!_#_|Jt?V-!b&un!=3fc-Lnq8T1j$<8yR{`=x{}3H;IJ`9=Agl z;GS@_w%j{XSj)=ONIeNzTrh+lBS<;2ZCVTdi}SGNDnDQDGQxW&ft$?v*UWo+0LH`q zJr?YO2WxVLUxAMuZ+~iMx66+x==S!7@caINPNsB95#VO_t{OSgvei#nwUtpeGEzQy zEL=1C?O4s>Khfh?zE{`K;kSVpNZPfw8=^+_C@y-)L8L@Zx-lAR)FGBmFe4^r~DcrU!!WwNuv0)y*Zpj?txW z3HGfE^yZV0Uk;1M}leFon4{Ee2$ zb93JSl-`4FeuFe8Xa6XYKYT~#iBmHWYrM%*@7PhuSlEuTKfk~3WS+r4a*sLq&sg2~qZWr=j_zJnJKuh7wbLq#I; zPH=wuqW3!eK0G|LF>o{H^~G6F9o{ANluj?nq%T?W&)-^AL}fLud_BCEkWg)l87lUY zJ=|aQs;g>&m~m@QoUmq0jJs||-^xhYrbw-EZvO2ZM2j#I%Mh>r@NFgy&MO@g5el+F z(@ZE~%dp-Z-7RDN96FE`5p!S-*EJ8gi)vYtmXUSy>&P8Q2}#Zt8+5Uh=N9Rbm*~zq ztEtvIW4h;BQy#DMrpCzOc;A`QXHFmA;7~?MbWz;aG%ZzXSpv0U9l}vYd*@}+Z6jq0 z1+KyvdL8S<1lUVi2Jw-Cx$WxjhBv^8?~Y*Ho(N&~M0on#sRZgY45$;$3KafLH$0sE zSh(k8N7;XxzNiu_CKD_oBT>5^%+gT&2_TV?@^Ci&6zY`@228!3d`4oEvIB7G&~9q% zvC;OjEck?^KZv~*WSC7tHT-B87N-yxf#4l5;5*)vL_`t7NAz=arJ{2!3V08(EIn)#<^;6 zWP}O(t;ci9O_>utae)(kGyyJUQ;Wm!0~2hT`ugwSO@fv4#wM)dHa}zPOG{y|uMKx1 z>p5%d*JGJ!F+Q_?4t@n+1qw2aS)krown-7n8#1jEXzz3bTWbm-`r2Uj*tGa6(GV%? z94XN`YEH9od(R;q+u!6uih?JsK81)OtID-Kl$^V0+dg|tZ`p{MB$XxAc)ugl;7+6D z%?~)6CQSfolE?F+7;G%-MQl49zOShmi;jD!^?E}P0E^F70Zd0L#;e&cMScBx1JMG} z@cwB{D1lrOu#m)Kw~G`e7z5O#bw#&mX-glT-eZbR+e<&_j`wT`3t#!cnY^Y7=I?D_ zFuPRRs#Foq7sJ4w z$8ap4g}l@|?qh^RYT^Pf`{auD_x_unsxfe)@|%K-Mp(2MN|n;0h0;K!>!|p~y?Sbg zX7<%=Sg{DRKBmXGlxT|JA!4oTtB2aFXF5F0t`|XpJ%{^@l%^$iRZ68xNx&|-tZ z`+%g4Vh|jR!OHHcd*--MD<$Q1-z({r1>8AK6x$e7A2;|GHKo{ULu;Du{w+g+czfZh z<;6bj{lmI)KS~#n3h;fKQS5)->7W_AjspkxDsj_FW(}ekaRrvN5$3R8{&JIBP282* zG=ra$457#YGtz|*SA0BZ6_STme76bjlvrwsbfp<1{t`A~IUMe^QCcB^Ji_9#ni4-Y zj(0aCU#;p)BnB5STjTcGG!GZU^CCg3K@M1+7Q|)@h*j2#|8XG|9Q!HRzEqS-y~%sa zwa2#|n;wn2Q2k1?H;qf|aCF1&aCO5@w9K!8hW}b##$;vX6+0|e&^bBI#*FqA6A`Ga z4xPitjqhu}37Un~dcou#f6fRXh-l;s!ux4l*YK@NH9_B!NruC)z=~k&FQbZz>N+L< z7x*dCgfPDBwJ=Y;rc%Nglf`?-a#`Tsv7z6X+xZHI48wsL_Ekwx?6;_ z*nOe>9Yycy588+&Ab?|&|pcKjBIBVm#hR(mCTfO~{ zPoKubzr0p0M^j$7Cy~Qx#@7b2l@*bee~!o}9#-1t*?o5JitYZ|)2wZ?JdP=7>V9wa zo_gEJuHpWou0o6R_Eh~w;AZO`ADQB3FVAC5hnf4s5;or4>Jj=R2cCsRWQeBkGSLKD z6obQGM%5T_;t!%Jn@fqqj;WPZ>_@^x;Jy;K!PwBN4=7;Zf=`Ziwh;rb-67#Gz~WA7 zb3X3l?z$G2 zxL>p?rD2+sC1-R=dNe-M_&##$Js}Hft*ztyQ$#e{KaNmFcfVSQ!|0ryA*1l0oo{^P zC_dJ&4QP*I6L5?r`?wAHcE$S;J z>k!NK;a9_mV8?e5$idri>*;^g}8;Im5Ul$UjRML$C zpa`IqbWS^L+|5k2G~95G6gE~8RuWNQ`knm&RaZs4u9}$|(lHS7D|@@JHk)Y&2qpqA z|K!pS@K1A`aQW*zCbl9hBPY(%&QEkf8s3gxu#M2$Xz=6qw#$i}oE{fm3W`3F0s@d` z`Kc1koTM#gY%~q;7xkJR3a&eAWEd;<}qp z!0*Y5fFY}{kQ4)~K#4ni1o+b_TfnSmlP;U$Sr!5)}&}*KZ0)=&w ze9x)7|F~Ijj9`r8|V-8&V_F3Yt|t`Pz)W9OaR15-{dh;7zI|e0H4{ShlQ-; z6ce0^x_&#vf5q1s|y7~<*zDf$ssi4b>&Y>F@qD|4#Ud3=r2=#3o z>EH4oO}aQ}GgQ*&P1>|SbZw}2G}Dy>0)XM^nByYZ8PUKW5^_o`qYlMiYjk_}$`# zcU~dxR{5kw^S|qUZeACdccI{ag3$Fr+AZIP${bNcGFWtmJ)oek7A;c3w`{QJ;#<8| zFxmP<+kH>e;{>Pc9e+sgU{8T-$m(`8z^}c)!5>u3>sVy(hBQbt^;V(+;bNC2La-@8C^_*wE)|F}$jyVwh}*`!may%v^0ei~-J=Y1$p zyYyulkTwMtaoVJ(u6eH7W8k>)dun85iqXEW9Mmxvs~j|Z3{p-(5rNDzifRi3pM$pI z<`%BGNQV;BiV`5}nHBS=z`D*8tK!kr2_2+5Zsuap2@l@DFLArK6HY~WO z^zmKq*X2djfQiqb47)9&$VCKXzbK~oo1k{;z83_#_vV@0h>*TDZztHQopZKm~B0fi79cvCt7pp7423! zDW#dpiZ+{gJDQ|dTrAkN03Uk!5-ty)Ur#fD<;!KiF-|RN+O9vyS~eoM0eiBlJD!Qa z_0zWv8LajwLM-8(equo7M2-e1BTC(#HS-&0$OPeo7sUhtBPLSSvN#&mRDNS6UC*$! zO_=!ddDwI@`RW4ozNSV0mzye;v^4Xu%eX*tAg|1XI%|LZlc8v}$jMIi3ZORLT|Fy0 z2hQ<7$vWEkp=h#WzhAf!(4sc+q}1T#G8+3M_RJ#yI7lLmQb`K+?4Zv6yf&hc>CbKC zAL1@1*@YXACNHjd`>Q6VUC*HSrY>#D{$2>Ez91tfQk1-TbHE-re!KVf{MtljDr$5b zs^?T%HwHWwETaF`JtN$bpWVh}#RGxDYVp~VPIhnmh9gNV@EI>HJLqx8-JLzuS2B;& z80#r%6Wvp7XX2K{?m27toYHbfSQn(|ZTQCZzB>|{z4Qd2f|u;E|5L_c4IaAQ#~^|1 z(m(tzz1b^{hf6Wh1YZ;+u*_MZiIBr$KtO)X#-8$G#JY+~@Pl)JTK(!}I1ol-2jw#|jK48<>Lsz%B2)tNeYLjTC(u%`&Yk*k}ghtF) zo}t->F#-d0t_cZl^PN@(KsM~b)&$CwBrax^z}_^Y1(ZmrAo!quM~DZ$ii&?4OM6TW zHd$y+-<@^I(3>>0N0k|n^bSx6JlNO>^XY1Y6=%?=4-4)WWQt_|f#tCx|CJ;c;)wAl z9R;HA0Mf5i#Ui#`{uiEUhWC$?T&pf(+sCaqUX{>;nLiQo!1&70A=uFZaWul|XpFsp zsvm_U1c!dvvK3v6b&>Vo9>>2P5O8oCR-oq9HjGUkT`cE1_gN*?U_&Uv2mS#yJ_ChW zb-uNWgrvknLbp2l)oYAI>(_i6?g{V7ji=^`a}(9C$gZxw&Gh=UuMd@bo6ir<^IKlN zW~yBqi4yyeTxa!Syz=d90y9x^_(gOiwYPqnLd%}~7{}`Ts2Co8)6$DtNXe?=2(OXTrS~e+wNWXLx zHkQ4wT;A*&tT?~xg`WYzXIt~m6hP!q4ll9KyErV-mkfYUG+JyM3LHmhRtru1`^yK~ zCl@R>L6bp-q6Q(W-D)^HGp19aywRPHakx?G9HmemZC-}qDAAgy$u7chq& z^M~pyrrwj{t`cF^M-Ah6sEQ>Y<-Nze6JoEe3?!xXf}toI93eC_rot3zj*{~;X!^PD zIcvqK)9g=IzUaSWCf^3WQDCD)?a(IyuvSyftzPHD2y3;q#75!75j23nuBkgdWr=v_ zkp$H?n!7`cKK!6jVn@=VWT8}wkB^ce0U0j#q24XrmauE>I$|)TIr3v_%Ff#xv@j6Jg7Qaz5wg;-w($(mGNo9sjvjc%9WE^Zi9qZjC`Vpdg1X`= zGl|EKBG&b0TNT=lbIX6B*dzlkbA?xHzcIx%f~8fk?1a8dVOQ*jy_b66Jjd zCO3VN{ahZoJ%A&VNE(nC!A64OK#2vEeBx221xUESc16b{0kSo$Oou*`NbUtD9XkR- zFRjw17W~xRQ$gz0-`)fj;Xs9R7X#Uwn?i0tvx__NYS%dhmUnb#8OH@-5K)<2W z)d!gPiUn_@qu)I#8JvZwjNu$2ie>-;5w*U)mRIO!*+^706kISJg6`mT-VdvUN%di4 zFDxXZ@B2M~Z2|?I4mmwJ751-K!9etJw_IsUK$#Yxnor$;;aS-!(p1(pJpmR~@BW@+ z92I^3&yu(mdX6TC@I2lZlHMB-hobYxyZuVZEl|)}>wz$Gdt|w4Q2pf^ASv0pgFUl*El$rtNQb zu5JC!5LTy%R-y;5Kk0IdOq{%!fQg0B`gdz<-7wH57#J?FdGtEmn}Li(Y~V%XA4dxI zc5)brDYxVEy39g~u3m098cieHkEs*1(d3IsU*#nZgT36CIldkKT3Opjfl~=;A&`<-H~l$`cl_jn`}+L906$ox|7qJou;ZSIo`o?OH9?#kO;fU+W>Zy}-xMcO znzngB02lSEtwj+rR@7BQEKfqgePpkNV4;;jaM`wr`u8V3OrE;hbq#I{%eGJ8WJr6B{*90RdO5Gz~6AU zG27n&!c=+eqFYWak`AgjD?;zITxD=Kz1G(8*{rd@&$ z52^BUMOR#gO=-A&Lgbl~?IqxRb7%s%vsip;{hMHfv?=CK*VNP}@ zC453bEp3oody}&+QCO3EFG}d^QZU>WN8x>Pf_I_vVH4(apLHu z2E#Xt@N)A_0U^EPPg*hay@4ka9DC`G15DoEI_I*vbxQk(E>HoC-w1${d;+FY_Gd3{ zhA=~SJaX>aGxc*YaF7&#_6e0M@%fy(tRU^$XF~;Gv#Pd$sKPkx_OYjBybt+KjCXPx z06z3yY1H+esDZ;<&z8r zd;%88D3sS{4%au_&d{Hl#p!>?L%b(P1`qny8H5>A2jrUwku^^2=)GfQzD)TAak90Z z*Y24TNHdo--uV$K{yz#m-ny~-IYg*4AkUmd$KgJRzFKznb3*woTV8dVbnS!oJ7%-i zP-g00C;$6oY6dQ)UgfntbAMxDr%%8q|F!ZJ9vM?uP3XZ-v|O%E|D`2JVY&Z0kqP0> z;?Q6rWa~e|?PN^rVRJsiMt+Mqz+@ayK_D7;Cd*Xi$1_|AoHhJsn@KCJmkiBkf zpR$j0KPfs=;*ZmBjs^;g$*WDYjD{4+H=2$5n? zH!%4Mnl%=2ug(Cti|=5@NC)HGF{U#n1_tLr-~hXx9f1mq-LS%ND3fMfC&7b)&VU>d zWe~h|D?k`h-<5kUJ$TOYpw+BG5n3wkV(@8=alARhcPv(x!0 zXIl+}eO*LVIWK%r)ynqSX>8(Z$ETV()%!dMsKf%1Ut1T}7=1ry!egpbpwBt3preww zV+5bwoq2nPm5B_`2H4{yH%x%ny%Iz92mZ9xc>m6f;3bnOuqYfL$_^>a+;P_hDEiMo z)yk!;y>SO)4VQq*8!x9tii$Ty|%lj$N`I1Js7%nTuA44uh>W$Og`1&Jh@ioHnQcK94IEJh0>_WZ%>Tf!aYX9GHH z{Q?D38dPJRgWOUeQYUav#(=8R-=bHJ39Nkb+|}!eyx8x`&-f9oTLySQo^oEGm|CjyJH&GIUGy0EBTvJMLi!$SC;3`{5caSZq`fzUf}0;zr&X? zTP@E?7XZ(cHQj(?QBP-d0i|Nfv21n@;r`t+G6fNVFfE)0%=?5AOO=K)dWsg^584{3 z_w(xgUZ*DxJsXC*&ZvSGbR6*%Re%Ml)ug=yNjE>#I#t7JE&y%8o9TZ+2qZzl8S>kr z^>|sD_HyK57I?<&_3px%tZUfQC!MF+oT91{V^KD(E7_|9*vY`?4=s9nFIT8irvUKW z2X7lV3l{^1Jxf>izqk=05(^<4W*02I5@BMuo42#BgC$xqvc&kgil-A(twfiDYau4i za}F)qkVzP62O8?neukIGg%mDP|4rYd-FIucBRvGm?>*yh(ixON~{ zylf8rUaee#KfMyw>DM9!$JcuS})I|AM9_ z`}Lmul(ltpozDq`u=G|ReZ-MjfS_hw#o>jKT`NP1#L_@~d)?`y={$2QXoFD_mvaKG zV03gu8E*bnHj{(m^x~>;_?` z^1^DZs2SwC)%KL#_gp7v|F57j_+LR~cmO!;>N1{#f1YZ{k00FJ{<<#oZ$Agm11lr} zF}B&bf#R_Nj}cv<4wEz^=JMeTS_EXU^SR+blb0+YU?e(tZ&2op5OA8W+D5h;oSE@@ z4GKjHa7fgvopV{%r(zI&I}!=tjhqJ3*;ZU+I8b0_YR%^|(3u8(3c3^McoW}xZG%RN zC2fH4R^7}^mK26}JlQG^gGCNk@u;K!=&lPlj@c{mG+qj^q=M^}x__fGvU6$N4 zWbkoP;mcSMSw=$=TI&4Av0yx^N;`87NrTgT^;64+5e_)6aE zr2Jx5fehUQ+2=_gd(5Wz>y2zBg!+VNpeEQ&mDT-h`~C_b&O@Sa*{LzRa8yz2_1N$X zDVy=h1=x;)2^HnFQ8f*B4 z8t@2he=C}3wm>Z3Z*lrWxvjEREh_&?)*90rtslC$k9-{DabiYEE`Rh-W(FjT&qFO4 z@>ixG$zwW`RSw;8+pQOG!)_n0?(eYw=@-I49BprXLbC;{7B{$#HB-!r>vK$NgD_hX zgQvh#;V*in{G9`3m0*237H7dL3sR%0Y;Fv<9j`aJZ`q~?fHauiIK$UcL7`{r zv}0rYD+xpP|A5CW&lm**$Z3zJZ>5^^` zE<#D^4yC(0r9nERQ$V^wK)OM?ySuxkyZbwR-us)m27WNiFvD4U@3oEvIWOR`g2Fvm z?g?`eE*f7#H$3_!O}ce>i5-X;mBuI>9eTN~SoM)KGwg zBT)1156zkR!tizaN|zqQp9pd7p+&Bp1rO=Sj?L){Ef3OQdCN6*^0Do|uDN5v&~T5- z<*n_GcJ<8GvmcFbrhfj=NDl%mGTk=ZAia8W?~qw|FVQ-5rrAz{)!y%k-i*NotH>M> zH#5;Ck_b?qrSFw2q!kLHZ9g2DZ+sBnnaG4}`j8@>5FQRqaJbAwL(^$V z&Ao%#`yoUO0%^oFr0d79Ud&!GlV_am-zn05)7n^|fM3=hQq=U+!z51&u|F#L z9!Z4P%j~P>HPa7=o<*_81xX>Pu#Fhp0 z;e=(FI&9*jo;-ahYuafQkAG-nM{hpLn$R9ie{q^9(A@fnWNEEsXuq#5G?Trb%HDieBLP}~Nh_u(Ci0RetV&6frxV>aExFR=5F_<%4Ha?xt59$z2B*FwU|oNPE0 zbyOXY-<8}a>ehot2W%+M#5X>{*p!Os?#%?%gwfjo*9I{B5&8gRRj&~ezOnxB;{*^x zYhgR~R$w~<{>&LgS#`wMUzn;#bMmA2esIK@s22|C)B(go2TZ#a^%c(NcE94@lj5C) z3Aa2|X8iq!IzANnr^<*-2LJ{wRN9uWbnuY&C)(Ezw)U$$|AoMNn46nr|7jrvy;*Zt z8uIkiP4FnofNKB;Ue7i*4u*SvU^U052ONR%C2b|@lEEM^2bAL4>a zv$gFVt~q*+Hcq-#@^vcWWvxx1l=Q4WYRJ?mR9L37M(q~f4UDkfhesiOiz!KbysO=; zlBaWUXxLDI`6J*=D?v=zgEa#4jRMYCRAq`nO)#Y-7Rzf^VG2AX=Ou%BjA1e{$Thu) zxZw`eX%o&rT;ZzoCx`27cs_PCX4J=2bN=!~gK5;<0?)YosGn~hT0iq~E&d_Q~HXHb&r_kpYtUkaP*D$F3BKZQVj!O$m zA1cDfq~^Uu^(%hRabP>UmEP(L4PlKfA*Qfu6!trk3@`^%u~1mRz^K)(T^8%RZ|R-r z(5+&AQ3WRJpNYv{0l*~^s!vF`PBmz+OD;yrJmP@cngHShf>erpAw~K7D;FIFEUO(Q z1g(;d+Id$by#o`tE?2y*0?e$-7j7A1yjeDmj@yGgO)oSqI;P%EAkqsrm@m80o^QYXp6CLHKsGlx-U09(IMRQhlrr17} zufo_=rdgSpA@AX%7(+6c9mlH8##q7FKyRNe;B(rYQoQ>CyzW7PjOoYE#(QML9yq*} ztI{_4&5nE5er|1BzXX}t((BHot+r>0j z9)|q7kbaHAHn=}P*OoJBJN*~!qN!aOW{p%we1H8JCu&Ud72@@PUpVW&N<$BG9VkR5 z*sRN}&;Kfp=YbTNl-Fm_`dpfucY~Nqj6_G3sg*)QugRDCZHVzH+zuP|v7g-2O#-}79MuZ)!;K!9>`j=r%9mE>-~!)GC>l*{z5EXwX*6}cmM_A z7A#2?`^S>e;k>N4A|@37XHh~5bGNAhK&dW66i{eL0oDFJ7jmcEO^8h=H5#7RqjG`L z>SO?Jxg*c0sR`F-PJ>K3#4ES3Zw(^s9I*OQr*oprMsKhY3_k=ZeO{`t(&U=fu!;Eq z!d7M+BD|I}e~Loz1tzh-X^Td23mG(S%a?H!D5YQ_$`XcvQrj4~$eq&(`1*mtLX?)( zeT$1#k-!WikWvyL7S>J-&MrK*8lN+Y8CKds(%Ka?C}9*Kkjg)|>WsQi+@5951b06} z=;A&{0~a{L>J5NL*1HE99O)as~n{-T-6Jcvq^mEv(&BAs0|g*?3Kl& z{d8c8osWOZ7x*qqo=Luhvfgo%zoO>;lg{{etS=e4sU<$Td9Z|z)JNMzS@Px>V?>!m zjv>E>1KZj+%dLR7J?LsX#n!T?6Q!nf+@9Bdn+^~}Ze|r@VZ|%pN>-?2t_D7rdV_)- zWp|4ZG>*bU$~%=fgCSoi!;DobMXgJmaQk;t>%H0BlNSbf4nQhV>TT5b@-iUrz1(51 zzShgAhDd^$2Z-;on(Ch&EUvu{ZB6>e)-iJrTFt9Q{G{@{HVcKI?EzJfYR7s!Cj=`b ztmtY@9zj0HGbdrVkDp{n&4xOVZG@v9eH!@a`PGaLH?PO6k=S{L{q8)Q%C6>7JC;D2 zaa8J?rw5@3tDc<+q(`I0s=J{mHJl^*9_jx?)Qt(2*;k6bBEW4Jbn&hFmy zGXWclhyxyUM}98Pg;vkIW&C5Q$F%`1RR5A3+*Li1cOT(awEHmpiO&sZ;?t`eAI=r(ve zIHjh>L%lL2SD+G~^!-uymCM;Q$=}Bd62WLnp4m>T#y`mnprC5GwUnL>X!ygxEdqHq z`b9y=*A5g^5gBF$2@qA+JBF+mJ@VYt$)%!$KB1A8IKaTN3hc=>s|c- z!2KW41oXP*(-S@nU7Yz0;?}u{j@REla$Jloe(yTp*m?cN-+-b+N!w2wdL0~XTfi;8 zdV$A{maWkb%~xXLY>))8*sA>UxP9{S{nO2o^FKN%S+DF+4RAQTu|!|QphHXcrD2(I zYhrXnPAf1A{#D?Inj_{Ht`+jF{`0-}L7zhQ`=*^!_0&}p!}ZJtENt}+5gs9k-lUT@ zAgd!@iLJ^|0kqI_1j+VU*&~S(&T)+U0aBOFT_A7d`>C$RU-sI;&a#_$ID(x$SG<*R z$=F_3*x!fcp>$4K>OreU?vn!Reg6%8jVqJ9oibTgVGlx- zLlW;xt;nTPAMZXjSmoJ&&Di_kwt$Fyl_BKX@28|wjPNl_HH}qeP;>t@S!+NnB^7mz z&XOa1cA81PWfwb0;0@6K;-P-PNH;Tk;aQTc2}*DXe#RBsrD*085PN&^@72`@mG^>0pr@3l8ZtRWdaCJi$zC(rhlMGqLQBGkJN zICqz8zBEqfPFs!_a=_zn#l<$0hhV0XSkQ*WW|i^MoM6p221jgZ8Ck;oK98 zdoZ)U868U$8rh;ioN-||PQO9YxB3A;Vo}hTlFJuR+r4OL!WDvPzyjnB5guPFGZ5^E zqp1E@@zY;L+0qMlkQ{!F%aB(Yq)E_>-6Oe>3c@fSbd|mc5!cDNu-x6?VJw z^b&>9{FgV$#c0*S`IS-?Iyp=E^46C%-_104-mG5aL->B#Uc3#xv01B4*DBMj%KNwb z1V6Y#xRy88P4I;k%`f)|!@1dkC!{bO7+e*!G`ZB)(BH{7rTqFd_tbY6!YMeoCI7Lr zWV)04B-WHwet+F0_aJe6Pa?QL;%9FGGKZ?0Gf_kkG+-|mPcH(#b9A2AP`L|DZd-C2ujNc7)szw5hKoOp!6LUW1YzcUQb28uiO|NYoy@m71%Mat+au;R}?% z^7dLdQT#yp@y+AM-f`)G9K_$6VCpj)9q-U3k%-bkz_PqvvmAr!jmUc7rv9Ijh<<~b zI&uB+KhN-8$>Ae>dKwQ8@=lnM+(3ydXZzwkI>{S2hEBg(G4jg^c$2b&@;|Gdu2oTv zPhMa8nP1(w?$~47!*@keV+d|kyb8=*cO~AoPaBr5*tq*;SKUjt&}@a^B!I6i)#C!} z)qw1LSfbOG4f|pB#(ZkuGV-o_igW%76g$e&qAaXR+QQ1%MxtU1R9?5~tLQku5MhpNbPuNv7&yX_`OV-MXU9i z#H^YQ&&1#CP-}LO%l6K96f-N~J626vn_VubDJ1ibnb|JB%8ufCqF^7%A#=%tK9zyt zle9`apX}{^trz-$`NgZba#K=wNB%1 zLnjy)ZglmdD$tcG6dC7F+t(ez6`Ew4;}m{%elAnb50#{I4BP5)BQp$0PpDJ%A3TPUCw8z;a}rlqYH2(<8M|`U5DZBG;I_# z)ddu=D3yh0{xrX+vKdMDRud{9-O#Rhg*n~zUu6?ZqqRIDuG5!giEqF(qs(5^b7FHV zAiF2mt0jh%3+HMX^2Hquyt}ofU}ze|(qmYCaJ&w2`Ard#gQU%EMq+J}-hc3(BUvjc zY3(oBhwS)VdpoyO`{s7PVJY3R?g)h_01bQw336;f^1%GNplfdMZBRs2)BS}xOV=)vlL`}YSWxjSszCN0PrU^6j* zw>p&jMUh2x@yYq%kN{v6f@bXM7Vir7=`zjm)Z+?p=vfJ##9ud9@6?CdUrNoGe)zR) z?d*Kf(2~ANp#lfZ#WMLpN-@{{GGjza zykJ_B5(A|o-_N|zg*cYpQK0}MZeVRZw%b=NA!j#)dcd18b5m|QJ0W9`_g_m@U}NHf zKRE01@4#Nq_LOyXZR%jNr^;dk4GjjE*2hH|C;7AXEZx1}c0Y2_hk=BrTbzJLL@+7` zsC6B;*;Rdy4bfz6^K`MZpjv34kQNAJZq&(-?OW~Ub80aKYFB2 z$Zoz7js$TWU6cQRpSZRkw=eq}WD+@R7L705IRI)7#bpPD!VM z*6)rR=xQxp>*VDjK;4`Bj+4%Zudg-%>TRVahiEip9p-Egm{qb<>91Hx_iDHeBHezp zfvm6$u6Y|%t(*za4sL$JpPWSB00s`qsNr~Z-O=m=Is$?_GRwVnk!-+j)UT&xZ=uJk zRMQ@el1Y%vyJ@uVBnuPiXs>zulgl#z5ShQ_a>JKVj$au*h$``~v8S&IHfO_4@stfe zHGY592F%t70XzQIU&`vNYBxoAzuEiubj>{^;<=Mde@*_Eltbql1L)9iWzsds2$MSh zK%_dmYKW+*WexDTKr-s0b4y>EX2##i?-i9c1tDiUE zYu7IO=B8@m_sgBM#Br6k(g%F!N3CKYe)0=oqUh)Ey6uQ7ZbvxC#>pGKQ;+)j69M+y z%FVNL74!E9rE{{l1w(2Rz8?o}bw}4SL!~9cbMZ$;gxr2ud z-l<17Jfi@?sstw#L>oX~=)$Q%=Bie;Sb^8+m3~)^8gYkFPbcklo$L+J=mM5V(L8xz z?u2D+Qh0zQCln>Aa$$KYgRLooL7#~}=WH|BDrY6D@Rd^6SEH3@1+sFQnv}qrB0uvG zw#b7bJRPhChznUtMRFD#?}^B+?^eizS^k2x`>G$PwIjumjH)-Iu(ADD$iUZ9&Z*L|W&e_OWwE~K zt_zmUy7bYsYD$8}2+!4^oj)I1CbS3_?jtrZFaFCO4(#|pW>s6ARYFc962L_VIrdpK zZXhp`V!c%y!hSeTSv0{rZtt99kO|L7>;fUgRNdmaI8~kXP)x>Qu{H74M5gLPIL>gr z8p7$XzvEStVRv#I3=^HH#2aT}elQZvOrhU7n^66V~G)l8qlHanT%)~S#8z&+noJPMsAC}!!n2zoa6+2Z^gx68n(}rw$33 z^cUdlV8yqx(LEVRxm*cYBvFs6l~Pe|phc78;|zDVQ8p1V0-vrMuagJry6d6Qi?!#B ziiXFx@i?varyriN)=%G0Xxf~hb11O|^Z)EP$sqr9g&fuQZo$!P7WG)umz4B9MkS>) zVR*DZEh55VRAd&dlZd*Y0Gfb;QM5w=QKZ_=i#D!S!U&1=4u9{_^KwPnQN|}unG^m- zo6#E;lCB-uEP@Zo;XKm=T;p?hEg6lgg0zF=(Ujz0()g()4}rRPI9L^l3pPCn=e*IJ&6R zV(y$-rF!vC##sqem*xUj52A|oOxs$&{c(%nySIO{$XG?iFkY|dtQb+Lo{PvWLsZ{9 zTvmLeL-cK%>g5X{4c*eY`J$F(Fb$^7V;&QR`m**G%;&=+`K!rdHS`{NB*y^s-i~dy`y%$d z@Yd`a)?5$E=)Pzr%B;;|wYYwFEnZv=6W{9)h+%U>N4@1t39d|JAgo8lR$Z|DhS@s@ zQmIlNokyS1lEuj%{NG?cAL!fTBr)rE^cC}K5V%uL=-+li(FJ5Pb!cAUB)OSVn^|%N zZq^Aq_KGU_iP}Z@TB&cbSN8oQYsoY^dTebo`(v)djOT9ZIj0&^z7v$6Hgren^&w`? zkLzJt`V>)>hibn+#o8XsqJ+9hN{GA2g)&84rB&2TH@$Ja7B@C8izVG{nFRDXyf96& z6xm084cr&At+klWy1=vxmuzKqX2fAf^AfA%W{>a6M`K&Q8g zUp3UOMg_h3S$g1<4K=F!IPR0G>mI-9*qgriVoHZV4hDy?UN1_ju-_~(dn?SUKTlbh z?^lnod56IbowoNNbb0-PQE2o^*2VnC|EpI34Hk^0N%X zSmZ@}eL+#qBb@L`dCEJ0xVAgWRE%-ht z^Xr7bPM6@B{rsuX>g*Ll`xs%|IsW_*Xuz%V#&0(ghjBm2|HE9fEF}MgCx)#2_Lc4a(8JGe*uCLeT5J+Ux{~r$jK>~}7h?HXfH~p- zL~U5BS9Tz?(wz>Ci;>dL>tkGdD-D&r9vv3x1_yIZ;|RW046u%?)Gr)WxUXMA$|4KC z6yegKLnR}_@n9oN!f=&?#i9fe>M~v106R*3IHA7LuI`t<`?4w`9N}*}NqgGR97@j6jt3%NJEUFTz4c-(XTNc>%S0j`-vlRtp zJh}EKRs%Py?R2;gD>#DD@*VOWvaKSQ^*7`X(88^yR|ZKgZLiwAFey@pd`~?l;q_6x7d>q{4uGe@Iu6Z zo3$Gr!q}WfaB!dQK1=V5FjeXj~I_U-!DX6Rh+AN6tKzw-*C63$tVpYoW$WN1! z`Q=_Jb@KQh6cXgqLP;|Seyl#WKUJ1D1&N{PV8lc})l~IL9&o0OGDiJi;m1AVY`c~} zo8v{e#D2>`7qD^0aZf-X%FZ6T{QXOGTR{NcdO0ef++iJ9T4K2)0toisdKXi?64^T(lycW~@RceD zp2ztdH8kwI>lE6pz4|FD=@z})h{{-gEIVGiZKKUj=B~%k1Z^u@4Jh%`_zMhfc;P+Q z{`9MQ_3Ap2{gI3EO(c^Zm5)aI=5*U^6MN1*)M#!DEjRQKB;U5j0#xSOQ@$Z5knRy& z2sakKn>kux6;t-O{Ssrpr`Ma81;_k@v(#|h66eD(ei8kuk>`=}U)+`6f=Lpv0eY=f zsb&RQ^jx@H2+#I{5dD+MV-WA&5O6h+Z`Lsm*GRT3kZKoH>J*oI4K;_jh=?C@;;G&& z%ioIaJ{$*0<;cj*=Ch)DC4~642|=VFYr<#%&4w9x@lys_*;SasJ}m?w9|;AXm(0#@Rgof?g_u+7zMB0g@2js- z&!CZ{{f5vt_z;!!LAcL{w2~#9p12b+>VOc0Ct3jSiXc@| zq{1@gAw}K#3eBF__&mMW82V3-OB&V~pvcjfrQkTTe{8C-@b#H(ZsGoc-&sWeQPm`x zRVu8JAW3+%qPnKPy8gX&X*kDqHSP`jN80FM*RGrXxFpI#h@FE~*eo&X$(UBNt`9oB zOC)&?Jm(Iz%c+bHzuP9t%i%q|WMClfA&pcbvpzYR4ERbJZ_TvPz-Y2a**KFljFS>! zs5vv24Wa1oi^|gBuPa@2^u6=t^C08j*4pzfVonZqS`N~gls#D*Il!Tcx|K4}TqA^} z)1tjq;H6G?Bs_Eyak9%SXZZNWcgztdf*c1iYt3AI3#DBxf3dobWU;dUB>4@9`y4|K zSIKtVbwKG}JfqO#hGXK;Ku))EQngH(i)}Z`+Uvd`DbF4^i+N<(TypgSUtI3J1tNbrKC{hD(DwZw`W_!wOg!{6SC9B zHDUWNdWuC7Q4vFnki(5j(9|eJi&_q5u9#sW?rknD!H8sgRR&p3)^Q%PpmmSrJd;8z zGBw$HpY+u59GhLbd<>aoEcc?&xu}0wayj7N;G{;%#zc!lY>*sY5nK)qB>YSKFK8l440F!@U#sRH+$StmKP;wQtTgJ} z=c%cr^`f>))HijUPt2-mdIkh2lIX2p4)&d|@904VKX_OwH*p7vdBWl5VcsggR^RVh zSJAYpoW>8(sG3yoJ)KQqh>Y~nSft!%p`B`eU?k3|Ez&ii5InZ2P6`VMhWC*06)0FS z_@t`$Ue(CFYu`7{>Q%9pKwU6CGs(2~IgVw~)BTAY zfyhTX#u((FxjMLR-qMWQeNTr4Ynr8t~Zd8LQV9MIZ@4CtUG90AKwUGo)^+a1%Ods10|2M*$4UAzNBt*BaUR6M3 z91J_|fge!vD0im+5Cs<;up8u-BhzdjTr{>h-@<)~H5t)XL1e#p_9ls%fUwC)F-Oy}w6x2k&qjWKT2?i?#+2n>v#-(Szaah!X5e zza2unm>RHdviG={lLhkk$X;nI`uR?O4dZrBUwWm}#2i2wl3ysrs7pi}TB@6?Kvpxc za_M=*%#CSmXU?-skZVq&7GL@Us|56FN-Wkf)^~zv%+e_!JfTG{o2!Ez7A7zcI&(CSc)_lY<GgtD4ctIORv@hs&-G4aar5Y=oI)!aYvrQlyI^&VOhLI&PLo(p<>#u3 z8~2x)VGyTu^3sYCu1%WI+_@Q~`&(mK@9az$AR8HE((cfZ^7!V`#>z9wbHgdo0>6d- zUKN*68P|GKv8NX&{dJzJ`wG#1V%^K+QCpMyM^Vf%Z8TYH9_SZ-c%CHYKJ!ME zM`OlH>bA_J=yPL+8q2|ixnn*`lT$LUP6~&Obc{pkEO7BR8k1eD0f+A5!Mk|pH_?^r zG`7cxJ`Sp{8lHTIhm{G7hX3NeAh>hWx&0OQ3OrRDC8=*IUq9My(h02*S9w4_7w7|z$9IKCWlO!VO*t$H|W$u|hSID)2M5SuFfYE)i}Ro$Zs zmhh49adXz@%!0(tt{7$Y4JP&DY_|w$DyVYDwm2Nzvv6+|0q_%to;LZj2iHf1gml`_ zbWyKkJ8U?QTXL_j#JG7UwrWjg{D1ZtG_FQOT}bgoZr;USP%Q*?X|dC-^zwCh3mr3> zl0l0o$Q!92H$@o2RrfI9k@S@NS(Jz!NN(l70+?x0MK{C-u{QBd*sMs1!#CWYrOt5v zDZ?uqKLRt)ufyYxTVbB9f->pkAv1uE5J`A}DGSSsi{K|{1248FBLl`4sxCU$loxp=k(s~GqjzSbv9A8@{Ib>xt6n>6x7yt;B( zwLD6xihOtc*@~k{X{0d%Z6?BJ zT4;g$qVF@<2-Pn8b2}V7GAOV5VlAYC{49^d`qLrd#yiT~r1YNI`s~2Z@{V)N+@d&lkcU9mBhO zb;%Q&zZ5A89~^R<->`68>c`=XclfJu^#!+MhahBs`=)V>|nN*EcW6pN&+ghTcz8a0CE zMWNG-3YmT7s+=bEZ;7dw*rdaPW%G8|O-Vymyl^?B!i>hgn?=r9`!@7wvHI&ORuBbQ zRs-3cN3lbhiuLt6@$cZ&VZx;c6tlfsSg`{Tm!{}qy%{}qymgMZXo8d*;- zoZOxs*I$XX{VI<;8BAK+ZtM4Qf~#_B*k;WDjkYX}{4u=E;UZFG9Hs>(Zr@zWFI}dX zoblnm2d3y(kmP(MY+Zb8Ng74BYHpX!1Z`m{mBEx$dAxi48A+dkt##u^GzGCKZvJ#WjR!C>}R|>IJ7fh)u8lw4C zB+j@dFn-BhUb~>f&Mk3zopw6v8-n=JmK!!=q@NP7W8Yp^Sw#&_OPF4doJRIG<09NN zTJ%V>{=Ly6E&kE2ZKaN~_burgs_DU%DUMk+12j~)?VNa9S!Ur!U)r@fl<-{1l7%d} z;_wu6tz|5c^s z+6C3C{8{lZY1TzH;-wd!id*d5+%imLUb~W|#tZcsmDb^fa}JQgYqhu;EFVb}T608h zbu$5V3p458ffW0N9tbYN9Cr9WoO5AKFB%HSW6Qo4lKiA&xf@VSo7(vJ(Uhq*g`n(v zU|hGVy3Qlw-4X-XNah9=^iyB0wzhHR3H;ucqX_ZNdjB>JgC|A51g(^G|HYyN0Zt;6 zXv8~ts*qgc3NU^ym*V<~x)(n1#%rH{1NlBF!L&bhCZp?>cLWk8RXAD_fPg6cwGORhUXT-i)%B)c@ zbb4K_)Hf;w5dvnRc9r9~(k{V1rG1zi7?eRvR*^2#UjrDRI`q6jLQe8YcoK=e2J2%3Rj0jvjYDVdhY%|C`|%wvXI?sxLgsCYj^_qf6u+Md2JEsXCvMP{n1F1L{1^FK|>yP3J~|M54ZvH zYOBh5Zmh5{5pq)$?V4FeEYWzLaQtb<0F9E1XE2}XC`hPx-KnCU^+8ZlrqY5Rz z@BV`1R6Vow3tayG`@rGz367ssX-W0CL7|`dLN`pXqgPtQp&}^+df)S1cE}kSK>6X0 z3_+*$^;CO=3@dC4@NAVQ)^vJ6cvN=gyj0FbmDID2*6$47t8$Wl^G6N`%dLT2F`r#+ z2uCcG12RRxoBatj`~LPg{d-CPWGJ2Q+Vw-LjU{xZtTJatXr=@P{T&Tsd$4Tp`J6cl z(M`(ikf^X$YG`)<$H=PJ6T~Zd)V@zwU~$(Q{m9qNo34@hePXNiA-j_De997Wu%^B` zeedqwlDaJB6dRrNNw(?9$}ooO_^-KR&xmx6jv;mV z-`ikqueZujL$8BZN8pBC2GHQ?gLZZGNVgp2Jo@VS-eY>yZ#kYN&mXh?o9LC|u@)x? zaiO^wGXCQB9^v#lmz=D^s}v&lzFr<=Bv5(B=RV z?oqinu-{5`b=w@Zhias&%t5I8`#Ai>_;CF$=3)G#OKw8W-#!{F=vryBOv zt&-Un)sfT(PEgJT&rvkUM2pA*>C;AuK)$)XDyhHBP`kZiLwd{k1HFA?lY>&D`zQw7^(@Gw{+%8JQ()T4(p$q6fwkASHH)nAN($z(=?D$ z_QYj#yuk3(Zr-u3Xz0qzt;P_R&m@p}yzK0Ac*gc(Qs4^-r9fiveZ{g)diIM1G&;b4 z{d0J@LYzj?Fu|9Vx*#Xe5&?bB2qdJ6QvvH{!3v^;9U1A#Pj8XHz(@rtr-FMcxAUL* ztxALX;)*}-_L|<^tK~UhRByUaB;z|tmVKRzRRrFPC*wN`9A;V$4W79H`|MtKxnhn_ z*r-*h7sn3pJ=8`graNrbI7Q%^@PC`uOS5)3=w=(qh565UHvP?rkjB5n#Ea1*opb{Y%FO|6mf*lV#?g^aU`&>7g3tU{XVF2R z82xI7H5t&dtfSK%c1@0lG@;@CQ3AvcHJqga8PM<;%F!JV!sWS=PaKKIihQ0Qkv3{p z%GTL$iYMAhn`h^4C6Rv`d%6#~B;1EGj1;KLNSj3@;y8+Muhhs#zDx>dxUa555FmAt zGehIuZv*m$ii&wxl5{YLv7OU%qV~<|iyd%OQAL8e!6O#s{5D4P$$AUZHcy2TB#-?V{IsVwhPr^iFei%)f&&H14_UwGkNn_Yz!{9+}Sb-LKY7;ziS@vjdQ zt~|DUmXG?a!O;lBxesr$yxk?FO!=H6KO4hz20Jc$R`25so1njP^!94fINEKu(B|iS zzcmpjJ87-@ev9OEw>=|f#Um^)W&)f*rZXMHVsTo;f2+P2-15Hi_g`7e=K%_>Z+ z#E#UO|3eC%CV3#l0uXUKhelcxz$@Os@MxM>sMgr+La_I3r=pK-YK3dFtyW?PtQx@@ z7tddgL`3+r0>p>|g+dNB`dD=)6_6s__&%+TQh>?5&k5lHE^>h{H0`-9c=VUmV)5V4 z5?O5)VVjsFhbC!{&aE;I7U520e#%Amx>$Cvp{f3y3$(15PT(yezvo5$3*zz zW|-V#eh&fwWY0oWn~E#d4627CCUo~RV*@6SSCThGY9|IY-pgMNltUA@$xU)3xHH-z z*b<&wz48Of+HPe?z-e$m&ou#v@Y!K?MSWxR^eOFezCmdyq4|F2E`oT+`wBbmVHI+(jm(C zGbua+Tk7xhND8Y#bn;1F(@Y?Oh_c_{IaZN#;nJ{kPcv+f`^jSo{GerAp;Q2jq4qJj z9K25dd%Y*-EJpHbKS%g|MuSzjQ2dj;;^=fJ#&MY`(wNpKBaaa>N?9&-Ft_bO#MD4= z5X@Kmxn)VZE|QW0XbC=Ob^vNV`j0@f>1Jm)V6RR;S+?Fu16kM``ryfv_@0>S)D!F3 z);2O`lpfCRx;n+movTXd! zO=d_OzPkvKXcVU-og{Pqp<<-!CHK7neGYn1QB;@|o2=bn+L zvAlK!@`6FWdoS%kOuI?hDn+*;y4unDX-blNRCTp#{_Mn($Bwh>^_}j)Uix8>T?;=D znVQj6(oxuu^n%Fp#4liE5pkrKf@8Ayd)X3<=)%AH^&l);Zl?aK^2>c)@3C!Tcl;Qs zx5%*KaWiRJPzyh@4R*f)PcLQ)jNOiQw|&4p4(bDBnSMZo*Iqdb!Z*h*%nk83Qk z=(jB1p2LX5SYtJ3z^dKU&EnzRkuzEDLb^J33#IDE_vcB>xTD5ZD#Ip9IOZNVNDMfx zbqsIZO$~?A^!Ky*Lu{TQuaNkkEU;GH0uF0i{M83y?iO(SybiwLO(N|UsB0~DETO{! z9Fxk4r${)J+U=YyC;)oP=zb3>1C+eabpcV+50B+xFffW0$nVEU$i)QWHop===g8n7 zHme|uNy$+#{*<917k=Xm1>ncPf3vtXA{O|#xe_zvlwT_=CRJ3k;Mx5{CtYSu5!<>X zFUSdM1vqe0St{RORJ!=g>aMOy4=&cJ^g7lw&hq zmAJbOfr5ogQ#SB`LXx#Iarv)PFR|V1W}qN<2)E z=OQc0`8w-K8w?GaIiiZ@Q}{~GS8ws53?b0^)SfWC6{in*2(YHtk0Yk}#Wtw|zh#cs z4nViN7oe7k^AyOU`$>IC<@#pTR%tJ-=onlfyRYC0JvXU|QGXts=@5xm&t%=-uC~2ct#k3@Rl+(wn&9^qIYQyf2F0GLq<98bhsn>#AL-iyZf5TTz9PbE#d3Zcs zNKBPhFN52Rah^BhSi97_&|-0f;tc@SS_?;wyee+oRQOZDKu}~gVVwj&Qli6+)vVi6 zyD=rBwToiX*fTMqTH7t?BXUkRJ>WLW#>xF+J&=R_t2W;m4=GPqY#N%CKvYDY8iP9s zVh#dKZS>UNVs(Gty&fKF2~#_SE^EHGDVSyXH+VW*LTU}9b&6n;JnzwN@tc+JYKE1N zRB*k&XF6YSes0A=igdX=WvaJ5ixFmMo#mqoCNIn-Es_PluwUno_A1CaZ&jvDw-KRve1Ka+~DLJ=mxktB~7cE&&r`!)Hyx7m@D|XY&h^U@-Emg^(lg|5JB$%HGh$@ zpv^kVxFWEnVk7Exr4qzj|HAdPUOTe4-ip5hL)5I%W>mI#5tP7o$EernlPk|Uj;S() z)rK}Nd!%2vdJgw^S1Ei+F+7hwMM_&!&W||yy&lTIJSxA8=Xc9_`H5BI>E#8hR>Gp; zZk~H;zx#?Z5;9gh!ADjgGn=a!Y#x>xb(!iMllgUm_RFygw&H0wbZC2zvgW|nop+c3 z2EpQnodwo0Zs3j7H#wC0QCYaBR2dPq;kdd+*VE*0cq5ce4q{GA;qNQs=x#V1n#_ju zHEAYQpJ>Wf|B`sz=D^HG{%_WV^?#jBn5f0Rbcr8ZDAfi#)ZfGrqKrbiw4zN)1gkmI zQ_6^X-WfNzvpZ3~6OE=q+~bKjvg{3WJ7}0E!$Li=OTF?tXwVKyrw!>c+0dq0(a%z+ zxvt{e|9dT3!aCRHZ^(_sp23;Z5yBjrt3W?%MmWA|i}B#fjFa`z7ZlrRqh|2Rs&7Pu z5qz0z2>hk)sb48hjuNT;UDAquKy6B6IJhaYw7PQse?*;SR21I#^#MUbq)WOP5CQ4# zR2rm1>F$yg0Vx3i=?>`-kS;-B2q|fX4(X1e2A=Ep_h0LI%@TmlrmTN5_*%G1-)+U4lzK8#9l1AZ@lxWz<056%}2r=zA&r4{|G*(_z7 zGv;|vsxM6!VnP35v^W?k=93bK?l-Q-@6;wNMtkc6TNdS48Bx1UZchReO6?(0xDypx ztkndunTLMYRTH;jZpJA(1xofmgRM0PG^S#IDQPk?sxXUZ%(|<(8k5erimZh@nrHAQ z+nUu^221daQU#i*UE!mFPI|))4%whluXOls9^CA*1Jx6}0GKqZfD0H#e$W1bU(43+ zB1gwMK$p!mhwzLnKb!`ITk^#jCl`e`-``aqgTZC2=E+NMCj_!?HG=)$Z1s;X)f_t& zz2psowMz72VxjE>R>2++qiz#CsSP#e#OQ8_R@>R%(p1s<4^PxWFe{KxL1m3h$~)V(iDTbVXNjSTbMb8pu}hGe#2lcQ+quA^BRow z@R|fpYI1WjZe9{IeC#(x(++iCpVzh_mT4xRqZACZB{D=ZJr_ZnA~t_(I7BG z18#l((9mg7IKaH{WFwF3z43i_(G1d_re~D%)@4LQMHTL7(=6sS_&ATc`%gRx%?`j_ zEjG!m*x_P^yVOtpHR7J$X+Qg-0L6&siKnfL#{=sqfJ0%4vew;w_!sr?;sWe9(ej8l~N_z`{B5=uMZevc12P)z7PaSCZze+43(G6ExVS(+aHMRD| ztrFZ+^m9I&@v0-y=MT;f(!+sXEyR{`%>2X(Uzz?4tslAU_m+f6#~yrH-j1-ZWg}GW z0aGc>q9*Gv{F$HCXV1mCr$|rZ7M?U2W?qEfkx9`USow{1@T;yKLU?6N6Y7lt@o_)7_|+5E1%Z~$fBMJ9)tLr#$my_I-YEIJdXuWWB=CSQ${=-!g2re zQ_A!hW)XQgIbA$*xC)n%!n-9Qe-vz+-Esc}tUi6{oBo?YCZAciB@w%^>W8|%S2L;oOhp$c&Try1 zh%n{iBV_$W100=3Ln&rFU5!$n>soz3!1i_uh;MBS%29N9Y^=66i(@s^v(Lc&QYhur zV{Nu6ZWZw(W667Bz-~)qn9I!Q{cf=rW|%Wz3Q?sG)6ZmIqglKcv~GQKAwJJdjP-r8 zc#JWc9vGoDa$<}6^%`WF$Ia@r>2xdM9_`wyEAC^&N7XN^=%v8O7v?II@%ekgb5}NM zx-|h8%Hlm7N?qO!fA&8qts|bscCXHvl77hYyAQR zur4u~_OuNgm%LYrUJUI^8~k4>n6b$pbvCrxByRFn;jZWz$b;;Wh69gJPBFo2s-FFg{o;Hg8ZKy#96j z#2dI@Rs~7YN&1d*gpY517yZz?n&kQs95VVOY3W#mF;_M086HK-{30gB+#i;=0(iHS z7W&~)ev5hIT>2*BK7{NTTztgL1pH&XXi!(6w{6rC58nFX$Vg=s7;4BD8(ervzR_xL zpS-+%V^@D4+pc#|(X>V9G=~k^+?{M@oCe@FRe}gvT>O$GbKq-V%wRqjQE-2U#vL`qT z3%Zo4)8D_W!u;4Xd0q#mQW1R|xwc&lIUonv(LbdGq4hr^cwE%{p2n!lah=5@B|4TKXq6l~8F1bEGq>x?4 zKcy_5=(L{0Nwzdk!#QYBYIU4&NCOu~rPo#`0vxk!Zzt+N{`B;Fu8cig2no&Epuqi8 z;FM;{uQ?0o)R|fTYgirkZpJnKjb+LGZr~gZ=g}Eclkb7GVo{arS>I8@=;C_J%)Qu5 z&TW!;T$~B-nM%ZGTXS5x{RuknW9!n~oDWrWm?$bk`Rb0}HQ4IXIctPJ5V9WR)j6X> zFYf2NgMK5Hzbl8K07V&C&x-mh{=TNl>u1mytfqcZ)KVq0`R~l!aPkW1;M|#jjnXtX zFV~K)`}2ml4#wkzl!!E<(55@D%d_fj1&A{agOy!s74C%_?k)8}+?spE%nB;)1RTX{03bnqXjn z=KsJWWC-TPdCvUQ)o?ySUrG-%!RP?7X@@imT@i1fE)!{xusUp_yN&YQxV-(0h79Iv zRXEDXX-!bi!hV=zO>LbiCTwUYm09Fr=~_Z667gQy&tx@j7USN^zCmSvhS$!wIrgRPd0n+aW;9w2qfszr)X{_y72SrjiBNSfs$}Rb>3pAZh zs=X9D^EVxW3!_ZFUUdTHal7#-9n_WnnrO6rkH%$vcsbudf9pc`!MaM~q5KL_8cbq3 zUm@L-aaNz#uZ;ev$0Lh$bmZL}PLg~yz<-o374jC@|JH2Zd9S8ddf5JYoch-Z9yjmb zf_MJu(glt+I*^(-RkihtPp`Un^p)ePdt;*#D_<;HpG5~LK8Fc8W7aC4&%p`W{HX>o zXrGBQE`~#B#Ef)pumhhm(Bhq;X)uLVwmKhg+XpqUyqfghMLB`{hyHASjsauoOj8_l z4?fmlUXDqo6ae4#iAanW6Cl4A_f6nLaM$sOMb#u-mG(8g#;=u;PmPyD$(Coo?Rzs7KKuhU&gAhrc$`{q5R09EC?(&_3&OKDKu1E1%>ylr4 zYB=ji6M$Em1dct6mM?{!BUL_5nNdO-MfG_MVX`WGm>r;+z$9IRmq0&Z_oLsjqNe%e zv80;DJ173ZGN{HEB#MlsPSe|UZa+C2WMJ4ooS9xD4 zdi;DH3g;P(%IP8ws!3q4bxZEV4E-)A-c>cN? z_aD4K?YGop7LoR6T0q>nUuhL!`A-qNvHH*Y zoX5GFBy2d8k(C{)Ni6p!LIqkvQqC&|@uBuCDPDB&M(?2?z{qE(+GRUO3t(Z!JB(AD zk8uPyya>zz6&od|f!DUm)2Rjeg5(n+K9=E9>!kF_ zaqxxq6XLS4k>C2mV;Bw!@yTv-4(@_^Mtp5Y%#TV^(3gW8hL#vCBz%tFvzJTp21Z%u z1kmhJ_@RsCYjkd*yraiIW;}Ek_=rTY*K1Cb0&M;J^CVIq=H~v{k)-fSw1xBY=FFGz zP-oBewm(B3ZNx@AP@)HafWItlH4f=D3o)yKd#f;-;YB|_c8m^Bw$!R@=-&j~m+)39 zdVKH+tF+xGTqW}-A*bKgG#e$fi7d@dUS|ryWe}B;+dbxfkuxZHTaV>%QTvmUoL5@- zSNoq86_4QZ2}vi5EWb?NL`eE@a_@Mzd^{gK-BZ;3tnTyft+lR1ggN;S(a(W!Iweh? z-JQ7Kyc`6a+BTLk3{@xFJwkU=cD_fYDsTWpqy>8U;iE{*SVa=V| zE)0RO1N7)3ZCi*3v)udP&}Hw!e_0UCKnXg1nMS$LPmB1-0wVNp6Up19|9Xw!S(QFr zIxIu=bneW^D3aseW?6rixntK6%7`VF6$+d}cuxo~pEXszZZI(C)7`~lLR1&{Yzz0v zuF{|S%o=_osBe8ICGKwdF>o8*WM~8?R%y>_)R&>< zULVI(wN~G%1-n3B*ck9P3UHgdj{EXizaTz!XQN&P7x)b63^GuC!0AoHLT}UG`6q1T zrv8_2*^UOn2E6A(nq%GbpS?xvv&mu&K1%vY=&^gkQD#LLqOQc#Lw>DTYOg3!A)7a? zU3S_Oyk%Kk$6((|S?SkWx!>aJ8T12+a8Ey#b-duF6g``U`LCadIN}HZ-N1DZAegi6 zp9??w1?nXIB;0*ns4IbMdwO2nLS=K?6<-7Yk~E&|NX`S%9)%@JV9fP3Ss7d6kgls} ztimHjX6fuFp>=f{)1UB!jY+3xqAQLFNYRl0{>_(V5J%O>HM0BOp~0AjefU0;w8wnu zNoeiH34}$R?XvNRnu+=b!FHmD*J&!F!9)rDHfN*7#;01eevA?9MhQ7R$&qPZ*x^4# zFM7Y)8}ykSF7csa#{llXMcfc>i%QidCJ|#utL(h^7EF1O03S9lua{Hl&|`5w!h=Pr zPXFHk_~8Ebez9}+UW~}#t?#9=vWi4Bdt7lG)E<46mMZuot=sAv%lHKb{0Pt_>W{`8 zlK;h+Z zL{eGc_z8Curs`CFnzN=+^%z9AL^E%u(O$yut!FtFPk{4?dS;KeJNHJVq>T^`xbF-% z*}$LpIl=2K8)cq4XL8go=r`m z7f69B&<01W7_46Tiw`#2!Z_tYr!=LU60%>2*N*PFPP~Iqfr{4}JFJ-m@>rg$@8!M; z&4wnYDSnw#jPPw8ZXb479;r&)wbTmF6r{s&p(AFo*k-pnTaf5`lg8?|EP+L3y_}S0 zvFutTW&BT-a4YBysa%jmfra4r^h@avlfv)(nE$vw5uYVrdf`LXI5Tm@mo%T6i2y?- zNJ76zxgq)pU+ms#vw-s%uK3*_z5k4(G!FlhBw~C2NfP4X=kV(T$e5(y2Wl>e!=}RS z8752q#x#^BydL(3OcnfRo|QXl3g@Ll-}y#;sJd0fLo=Ir>4JupCfz98L0SvdP!rh> z%(6SVibgD&)Sn8A$bw;fozE1aPaF5TR8WrAcWpVqK@RI7#=Kd!tA) zu2HZh{K%>&u4 zboM$ONQ@k|=x3jwTg{Rsm#H4JgC3~pFOqk??w-E-cPH~X!1BhOH0-7!d~qFC^Eank zC1Nchxh0v`y+Khg#U#drw+h|?^;2O-w2XaR+(IImDL%SXP+Y~bUC*jO?_ELM?HIx# zYiwg>3iU`!Bk-|p?@lk5d)=h=8v%eELS`I z1sHRx7IM1PX>YD+TX))}GkXiv${gq--p=Ewjk5Td+cv?`gtvz5-C1il=WEOktW8^c zgU<3u#o}N&z{(Go_@8P3O<4Y|A(XH1F5Is4RXyogpF4jI43v8GGl%(xCXdpUgt2+7RPG~~C(;PmN*p zN>fR_FkD#IT#Vt|FE%;7FH$($nUqfr)32T^abC_;s+ENh%MdV?eQVcfTlKk;rOYn) zz3pur4vp(T{n@>ff*Zq#9geM|bBVKZgzfX#}&>gTmI=&hw z74p6(4B#{s57xgdg5nodK@m>tly0Rne*|Nj5pe8SbMA^uCdbyP4pRJr+KQ9z*AJoK zVy2Da-m3P;YyCFn^k#O!KXLeCrevx?&)|-`dBHfl<+ASTk(NyL=$q|?lG`=+wRGjy+ns&o+45m@;hB?C$qzBL-ph_5m++^*N>HrT zb<<)#VcM`IuRDl5dJWVJ;NlHOJfV;U%Cl(gaG81bC zzzq1u@fUi>%DQF1fmcDr9ZMgHl2SxKmfpSY5#0Jne)G_Zj#?Z)*o75l_@k4Hn5EEu z0XFDn?kRdw*@tNq!qL-RD2;5Pv67@vo?VTbD_-d5QjC6bSVcCz4$2#MbIZiNV$p_b zHQ>Cv&Hi7{Xs+LOZIcT%bS&SSj8^r$!M-_&o$$Yz&3|>9rwQ>!t5O#Y&9^0*C=jB> zE$~;qzM$QY_2EN#3{tTM-{jkk7>J%|jN~Zm_LMAYAIO*A3KOXSv21-7r&rlE?skOq zI4eSuECSVL3d)meXUHEm%yQcx*c2Ji=rO6vf!L3PuV zHiz-;bm;<^eh-)Y2nO=^u!>2{wp(6(o42rJ3g?sDN}&DO0;LK^N{WI%vXA-OmC+p& zLqI{{H;Nl6`$3jIq6loqWKL5K^Uv!v&(%CJ!RxnZBR-O*%K?>ob!`8lUh*%Umft!p z@M~=%v^7_Wyxd@?5=iZAB$s2_WZ4TwB@4?b*wUmI%}4sJ|G4)3{jCijC zWK(0KX4WE7+U)CB#Qrj*3vF0)Re<+BI zaorE^a38JUhO#!kDlzz?RcvatI*C3|xV(CpC9#WPy?iZT6m+Ny)|ueeb99;CrZ0x$ z1(5;p%F@LjiPeL~z-W+NfjQqjc0W7Xyz5o-qH0fuau^(o7aKsbAv;_8SIex^4>Y|6`#my4CFaKVF$#ZwVQ0a;D zd%hlzMPON~)0V<(^HfbiZ&Fo7^#|ia;HDV*G0Qfks9UxmCcj~u%EG1Z5gHm32yj~9 zR<#~GVx2Qfwb1G?pC0#MJmLHiC$K+7mP3t2 z!y^9HoIn&go#j{zl)zzCvD5 zAk%bw&oL|V*?9Ywi<~k;(w%Zu)<=!TPh&6pxH*1AF zDvA1{NbbtySgdnCAhnu&yE)c@Z-vctO0C>!W!|I(x$Fz;oHBiEk^d%ie>?PFl0bQ= zwzPgezYk@K8R<7)_uP?R>)>?Yb9?+t>js$iSQlw-t!ew`+RSJO630=p z;yw0EdOe{ujm6{?+tlg5TG@IxMDxHkkLl?QqUNi&i388ffYhr{d+$PA$9Ka%;#;rU zZUCI7;A?LX!#qX(GPOW3`|&0hX^P|gB2G{2-jD*TVGm`V@=c*I^7Cu%Sj!2g9}$K5 zinWvYv!YGnXGg=Z?_4`IM#cG75$vk!#%T8fkzPAbXVP#+%-_Ruk)Z*K2@wZ^ zV9BU$EG;lO@$Q}((TYY^eKs41%^kN?joGB~l7k5jY2+2g6(6s$6oH(P5wK<#j29V! zvUti5$Lh^3<(OC2h>+!5(llsJNCgBmy$nsAs_FiR)I+bc$eQMw;Vzd8xK9JvBl1Hb zY=W_omW}Giaqe2sk40fVzzTG-+xWmYY!wXFjV45=1i2lfy%!x3iC9N)F)D5T*;I>H zG};`gTrSoaJ?Zm)AXUw|#wZ>Q#MYk@BgSYKPsVMRCqV_S>wf6s=u8}%F1&-t^>fBR?1D~MmQZ$+8!oe#~BhhkS+%WgG+!Nyq)SGl>e z&yF1XiaD!pq1yu$`QGb@sKF_&9HjuwDSfT4FXgTxuTt#vHH}r z%MN<*Hl#+G!*I$NPo@X|o~V%{54ko8XHXipZ8`aub${DIeKD~H#w+L z6qFYMc!IQOt#D|{Ttp@029NOTCq`qCMi5VoAULB~FoLbs_ts~}J^KonJ-UaYYYN%T z9(N&tw{UFw;(rCdLaoo(_L6n)gX#gfg%Ip$uD0-LF(9t{{{zy#?)jT0l!Lz zm@RBjZ?P!Y=6kV?m{T_xJ_eMS9QOP|!N`|nB$m_Jh;MnxWP2r8^9@P`U)f)HU1GN~ z1|6vFpWodUn5}wJUjAOkyZ0q?qLgMS-bdQptPf{QBu{`(S5+mfB)0kWc!TluG?p>) z#h+f=!Oh33U!=I7^=wVJP=;$ZcY$YNR&O|vi}#2{^oN+&Q?QX_ZXGfmxGt2Tk~l1W z*$$@dcwEP~+C*~l3mnC-nPkAbQ&vy%O|!i?wPrn2XeV`G9rW+c?T0=D&pJ|0Fgc6n z@FD*9L@Cwxl_P%?^x7Eh1sw@tr#Hsp=>@W?`qTgXH(;^gL-16Rb9{P>s-Ti7su}s_!+nguS$p|BU_A=KLl%Ad z6>u+1TBJQePT~yw&&6|xC)bsyN1da^YFbT6-n*UZ_^NR!_hy^_Vl#X;rk(x{@Y|-~ zz8>$d>?5+O8hy)$Lp)*)fj2g;&NyXgU^cIl23*jIJdu#-xf9GVpb&w-*6U>WWjtHb z+ofbs8&!F~M!pco9&@y06fX<>()g&susz!)qd>Q|YLZt9Ue99_6?X1^s+vlDDCYs- zC`v^ezYUE-TTbwv0CfNyS1_Of+>x^3k(!qy0dC==9bWeTSKi!P#Sr{U+&B}(7=#SV z9XZ{5(Tlw?X3C79jp&ZV42`$=YF6|R%{k-wuW#M>zZhi2pKS(ymduDuz3P0wXs<=js8G-UGp!c9N-4joZd|l<@-If26x7sdjJoB5|x}-oM?axW=RK3Z#{8v8= zNy5y4bBA{<2Cfv!{eH24EE;Wg{?to-jOq+Yre-!*&;K;-F$($AZr8df-WbMXPyY_p ziqds(al7XrOTy7G`(weDal-u*L6RxfQ8_m z>!V=X4U-ZUGdAT55wFI%v=uA zI$r}_6MlI25Q<~&d*I%lh=~Hlp&m_V^n{p0O^N;UnjcRO9?~6CF5oO+NTjd z4L)y=&l+fdDhtYrzRexrc7!n-mey&opMgCCI7^(LUx$iD6=cd-HB0`@FzvDB!!&7< z2h|BizGA?|OE=ok7j(xxNSrd&5c}PT#XU z(dq}{QkI&gfr`&_iqcEs2236=y4TNJm3IE_`N>L2 zX`Bpabph$L>r8jN`0q_%Kr=EMJ{Ygh$zp4SZW_gdvOP(>cQ!FK;xUz!v-V3X4stVQ z0!CBEV@M*)jJboPSg<|S2WVQiVomc$q?F=Bva)W(@P52gPnzN}pnw3l+U5=_Ft2qk zXX2oz#f9k&l6)dajlN*kwboj=)XQ9Y$3X!0@VN&)Z&dhj@v*a`Q?W>s;n`hA3iC_g zuI_xM{9kH^a`4ZA+$cIa^87G=+7xfP8jCRTquF(`GZfoU>`R??B`ZH>4?%n>9m}Yl z?!1sMgP4mONYG0h1IOrnuhASU8&q?;`IxR&5}6Zq-Ia^#=ZZ%JvX*| zh5^koaCdEizk;@Wj|s(rfo#}#6thp-=F_Jse%8%FG4v}YeR5$A&z%!pq}1&9$i}!d z*R$%!$4=d@d1VB96mpc%&BH~O6VZH#%Z*2-OaD(^D*nb-L|DI~d)B=!FV+}uRAZyG zJd9`O*{JaPKq?btF9jzfSsfdcPp^NqUXVXM>iy&}VptTrg1-~W z!RD7fJw9r?pkXDUVTj@`Rtw4;tU{*JPXfCWCfUhEmS(!|GqYn_r)I{E-|L5l7nqR#rESAEEi7wboQR)CR4XX7JjL{Fhf z)A{;_JG^9uN7VO<)TrrdJpfwn8&Eobs(7BB-l59qmaYKGBrweVKbZ+YBd){XU@wSf zBTY4F)!vw0a*2Q&@80!+ggYjvZ^$vRCNRt{sFH-r&#FY2_hB=F%7^ z)i{QO7`s8r>G&W7g+su#dlRfCeG}&V5kfb}t=f9F$kLB>Gf8R3 z8*HyHc);w{8U}MRZ_E%pAgOXp6beE^44wfhrySYZErj~`CFxU;zw9*#>2(P9YYqK; zb3^bv=h}1Mii$6J?R*r$z=$|D_YMDT`hYg){6Jh)53j>E2}};_L<}tk8BTHcW-NcJ zY3OllmVD9bxgv!03i4`W4!$B0fNySvEJc1O?!%fP@ncIhS(c-44V5>^zjCBNIk-{h z6QS5Ci?)y^MXmUTKb!od^LLH?o&su?ua((jV(v9d8`5keA?I%oC!drGzRT$=Q0_SD z=$3zk36G8ilsAO+8SUj^QLxQCe>ONZqZ!MczXgPbri{<>QdzwiBF;ZZ(NY#>KL6ts>&<0=7g{59 z%6iv1E8eVIaNh*H zleo|f${#&URR#L3e8_Br46BxCL&z(lUP63POF8Q1t?vn(b#Z#MH}vPv62*$%@6kzZGJO)(6!MBH;_tVV z>I<`wSabKdLZi!js}}CiFUXJu zbq)vumD!1RcL}Q$Dx?|RE9bO$Wo%GMkWhH?+dU}9=6oR=s^|D*55rp7$4lK>hH1r2OQ{h~Q` z&2p;}UH8SSm4fdT%=Sah-y7~8m&Yyt9n_N89I!uWarVn3Y&L3icYF);W6|GlI&RN5 z7Kpr|C)!;KfNqx6w@c@)gCN`-BzcZacTTwQ)(&sb{PUH>XHDEjgUh5&dc>v#+Rs#p z=%7{6O+Nvftp=BQemAbq6T286V(R6{?V}Z{7~J=sHeEbU;FR1qreQp}rxEus1L;x_ z5QwoIGUCbA~mI8=PtTa)nYxV_pf5UIEucV0_({OE3-c3o;JcS%JJ>y!Zx zUs~t=6C}WlTkaNO^Im@ZlYPsTDg*rdzlhLah~dg%>j<&jqzffqvSbYN@o)}<&(2N< zWfF9?$%XmZo^S=p+B?lIq?m?*0*@+Z*BwEC#<)ut{_$ak6Su+5rdD<@HBuJ96K#cq znTJG2h++?FVQMX!Vl|2*5!Iao89*7-q?35w{O9LK`k%j)vw^%f@lwc%+R_a@Gait| z!0{EiT~kxo?6M-!C#dNYq(c+V83JsLp*aEp@7`gPY$Z2uW$3W0|K)|@-6^`MV0&#e(79HTj1e{utsorL#!@vGTP=W?#>8PYDO zl#lPqJG`ouWhYj^1JNP3(TEXsdeN`B{E#j^n~K|P^P_{FN$eOv6|l15EsF^j2?8zY zQ%SqsXZ{^MHF5BkI$T=3?d5N&qci~5FJAK$7={IN`Z6{c9+-fl~Zdb68G zk#tU$gR$oBH(ahf#%<$dVEdSve&Fd{q25 zx{AM<{-qzhTq!ArYHL&|hIn7XrWG%_q=-c0awxt3e5A$bF#}uKpAOk!^L+sq2}@#g zByEII+i7Vha)=b7QXiP7SFW=AnYrH{V6kSTtNcmFupxf2RLVthm zXpS=rLxtP|qtdhE)gSZbFYJXdjIXf4&Dvt@HLzrp^7$CU-W5Kq!CcpYdB z0ncXGEesT?0IO8!nWZGFCQHjcnQoM>s$Rk;m=*C|2jbot*FXNQLa%#tCK%I+{kVhaye( zUdsl*aNRt>I(Fp7X%UPEo)MnXxF{bWN} zmn0*29!p5<7dzw@t8?^pH#A0)18ZKi!n!cB^z`0nfgf8ORk{>ZwFpN9M6FvXkUeFg z|FNqAa0%j_xKLNf)@y~1oCe2)rTyRP*;#(0HG8iZQNrcbV+rj;eI$q6eA=oRUXow% z@cqMNvrRGY*`pDhd;kWebM0AoDL#_3BYeen+BEE%2A#K-o4I2zqEL7y-gUpDNoO|K z$4RnFRBll=M?#Ms-D;Paqkfm$NrQ^~ipd#W#lrH)JI$6~&-4}t07eTJclSp@K*}Aw zS@D~zOA{I$_N`4>kP{PIq=9Rqx%vWY)z`J5`4GjZP{`|lbK$70qtk;L|KQlz?G~Ka z^|jfNOYbVl*17K53WluD1zb+Ze}GA_`2?n?^C*XNU}69Lp~Q9&?Qd81!({{|5)f9H z@KUMwE}!-yr4QY8-$wLux@}Fy0pdBP24SwMTcx^}7T5kef{g|3R`+f$blgAGY-sVke!q?=Npq1eWv{O}2`b~hDue~63DbC!D?UbR^s;cKP9Km-yZ20`)|@;KjX_~Coc^EwPLsz4t_S%OQ0&g?O>rlzvfQ0V%jN{&8mtWn z1&VL5h?%k6I^CrYHd_$ANe0rC-ixn#oZ6Q?CB9+IIltS}f^_qH92olni|5<;+LBeW zK=L%SA=~%XqUA%1o1A9rWeA{qt>T4g~*BcRn z=6#-hO#^twDlBvCZ<<3sw-C@d0 z3}aZK>{AUbghT;oRO$=&l`0_(BGyp!u3 zrAt7k*Z>Z!-;F;dbYI@_f`PeEa}^9;c+yTrG&zav{ER|BB8hhn@~Djh$mX?wOw91w ztaq5rqsT~w@cHJ*P(dxt>n6`U0lQ(XMv{d@>x0e&Kt#n4>)^D_)b0oD zTP&_q_X3R6_&P-AouMZ%l~+{whs4zDwq}`^k#7J+l3VQTPI2$JRt@{cJ#a30aR;BW z+oj<4qAG(@*sP$UpNh1A-4m5sLl#d?79X!im9l8;eGu^RoWERK6Lx~`Y8a_XHhZlx-d`%$w zP!-faKiK&GYGss_g!*Ln`9u2N=!2c^tmeP)lRELUH%Vz}I1EEntEvgTBROW!ES3mq zg??CUci71FpeqPu^)^r`5B2eaooCTrFt9nowq7`hKZ7}+(Z@G%F$jY3Q4)+T9fn3N z8^2eK@I~Zb^))OkV&4eihFID7#qPX=r05`}W(C2KtuK^3_RB82;7WLJ*~n<~ZjTx0 z_>AVmNWRr$eN#>vdAMOIvtf^QjP~Q<2zCL^bJ^94&ZV=u-Cu^ zYHJ7ye@RNpPu~xr#a;w#78>+7hqx2{6NSolboKnMv_O?UFAGHwR(yE@q2q^4ic))(mhF9tFwk-Tb%yyJlVBO zgx`a;MbP)H%P)YR{WS;f zhDCI`;}vHkfhdlE>TS<==VFxm8BZM_2v1 z`=l!fE$<*%*5w<+i23#yc4U=ryHZ5^-?A{qW3Zh$oWEfBoV8Cyi%_I>z;RX zH1}Ve)%^3kvH1y(1aX=V1V{g8MYF;RXdb37wJ|l@5X9(}Su_!W{TQe`I!9as^x)(x zHKX?h1hL_*s;{eOcLY8&G5|P)w(&R35^PHIInGsCi+zpnx1}k2dPOR&|q(luNh z9GeT{POb0MdF!hKp&FRI(&15Kts-n_|KcUN+gMfwD$TTbSUE*T2KjnE%3QqO8@`2v z5jNP5J-PLrmw9Hw%xbzq(A6GGg6=VpBT6FIyutBL8t}c?2+W*fE<`-L8PD=qm(&RN zqv|zlFMi8BL_c5=;W8_!C2Xve&PIrN3-R6ldDeob;Uypx6ZKSf%89`lcZ@Q%$bP=@eA$GVTem!*f95NGj)Nw2pUYlGD1StCq|`>Azp~=84~fE0Pq_!U(5Pmz)cl#T(|ADf=ALy^FWj(EH{WKfUff zD8paJ(^y@eySE|cgYv%w{T^<7;5iCBl917m0b5+g$|sn~&jL|CmHGO?_AQm|@{S`6 z1p)kE-YnHXdeorO8%lXL%CCfiy!*%xTk&>dlK4npAJ2Ljck}I(yP`4Mm9&08v-x`rsX<|%*pRK#i;vgeI4{* zio>oji7lOyO?N(dcBN+glbuxWx?s65=>U7bkvj|V3P&#WcEGf|(*Okj^WW0n4|R6-g+a%n9s;J@#EkKVA%wuThtXPVW>ChOvIH(6gAw= zAoka0+Qw}Db2uT`+L9Onx^Gs#^aTTW$IOVAF^6(5bQ-y7-OFe=1*b{7Zt5RsH29V# zJkQo3AlfTXWfPd8mB9kh%GExzwpgX*)zUd4l;ir=xa+I>CoHui|FxQ2|GkPXAHHS8 zwRY!nZu}xW*HYXPi`+_hlP29Fcz#y?jcrPkSc81&%{Fn_5-e=0WV*HctsuTUNS*%_ z>i*nK*it2%zy!z>v1b<3CAwyLGp?B;s0_$%F(g()jE#hk=siN!_1_4OObu>7LUh?2 z%l6oQQ;YBSTo7{_lxL8s|C4r*nw~8*t-e!#h0Mi6n5TIXD8KpF%5}68*c-y*E|>Je zWgbsVyyG>_o8tofBh6>I=2e?DgimJOjeL6{@zw1qTiuqTo06I^d76a^X8~TN5E$n5IqPA+)cRGPIFzbx_^;_b9a2q-xbi82 z3R*|R2owlnVnJ2tCX*}K2u^8^lD*fT0fL81cld2ARIGw2vPAHSayJD z{A)iBL78tgHfRlLyPSco<^C*%2Vi?2V!P4ytOeZ&@CxWQ!>b>TY)bWi=tbS^7KkkZ z)5(=2G;H<=?t7ma>!X1OzT^Z?$R-V$L1_07m(DKq=~2N7V6x;dkcHIQ0rwCyLE*gJ z*;}3=!&}r!p2+Q4*{XuEK7VHzF&c#mi1oI_H`PMSAlxy8F3)3qsgFysfD0NVenF@) z&O=1rzfWA;^gZ*4ti>ce!a6A0a*job%Bx^lp+H^Dp`jBf`Ljj19rzbOl!k z`nKo9L9Mmv30lCFbYMk;9INiG5UoGuT13EOgc4vS3gne?I9{XHUY?iJ4w$vvL;Az(QEvdZqzKl z$llqnCnOO30o%QGq!L*(E_helGVfR9qAQBMT@n>~AP6|E;J4nrTr*`Sr%i!h-sMBq zsZiZ0qbp+s^iA%CFATOGo8rl8YR%{iBDlL&_Vs4asjM?+K9fV=Q<`|^BQs!PwvU~2 z{mY%Rmk$VZ-aq_ofTijLRTaf1{-_hn-)Jvr0<4w_CZ)|C>j&!UfURZq(h67jC5;Q1 zYI?Q8Ri$Yu;V;{BT-7>|^i2JdTD|Wvw$I}`u7W$&+BdRZTNxS8D$vD3ZVYwmD2l80 z#vgTh8%M|oK>G&z@&ofVBtGTQM$$V@6lppp484KqrYoqL2_1^qQSx#>#qep39gG;M z+HbsnV#OLq`T5H{F@+tUo#+kj16KLz#=Y4EZct)a&UN?|>4;}g(JL&v#c(#(*(#a( zDf~w~Q)`m2@miI;GS$k(o}e50ln2-YwUiE?uYXWetjf(^km{kKDay}Ok&u!SQ1N*- zu%^GghzpAD>l@5g{F6q5uoXXT3`{?AdV=YmbHnt<6u~nOmR{_58tja;H|CaHshKjm z+_QDL>uPkP!^aEs28qXr(xxwKAQ&#fAf|CV&Z|PggZ3Xd{baf|5G8R5X_D?J3+$UQ zV~hQNEL{aqm0i~rL|VF}yQI6jyE~-2yG5i+x#RU1u2ha}xkqiu|*oysvKPG4l9d^1l-;7|IT@he9Q`baAY`@zNO7lC&? zwWAqjFdh7oj^d?vj(+S=^Tsz_ZZ40RNf@!2&xOujVvU~|ZTnx92ea7yvtHbIa4hI> z&OZFzHV?@UNxZStGq_@p0WMIpul?loKfj5&Zg98CX1%wYq->pO&Il{aBZf5z4`5r| z?EJmg0xu3CE+B_~QkzAJ#ZOQnF~@=>n%c$FDil|YsJ*VI>icLVI zd=V}%>#2L`?Z!s1>a(wUGMgZAjynA|Og1Qb*?FOoRO<6{2Js?%iHb;Ir$!@*cK2iO_FtovW4*AuF9ym6jl&9G`;l zPpuRSDmf0@xa)_&n2$eSpUUcRp|9p(PVYI=%(LpJHMMl_u#Vk#+f&G+=kGjRo-g`Q z@crlx_j{##HoO^7vVZj;R_T2^T+E8k9iYn{_sv&ldxaH%)A&;WC%U-(~r;LzwTEwHv6=aA&oNnenv>~$CrQQ24zc;pNAD` zXmcn{zd3eK(s8S^7&GBI%Ga@r3xffhbT;|Eg2^o161D-;k6RC^QO-C8DsSZztm@m) z)evkjxmFxG(eNZ;8Tys|d{d4ZI}v|f^}k@{-S@<4_+IMjJ2?VV|MWjujl~Sh7Mm_F zX(=z;FJFUXE2h6M*vD5yQ?XNi|Dd0;equKt4WM?vlSZ0V|F@s#A{jRYebSOvA70#u z5`4CYmOByRqXgI`uY!?Lyza$uTTi@1!93==|Djwbc;P~H;SRBH$;$U~*V`T8CK5p} zC#Uasfte1S89bdi?@M$-ukAW{>Eb-?Z9oOqB_3EL01xcf6c{4(q?U{V=1##-ARqmkN1F5^|Los!n;-@bdt{YrcBl6dnS>9ku+u`&~WI)8MPcNC`N{KqB z-h673Ty*!ew~ydV;cNnG$s*dfZU{&+ZgMBTZCq5FDu*hruX6p;laJ5t8c!}FPXp}f z4qqb$kf8;&JYrsxkkWc}V`Kf~IQ`kyy0O8N?ch4{WR~BpgF9vt6UvW-sI)TgfYuIq z1MepP0}p0MtCKyajz04Y(S^y^$0>MB+|V#vD%9MDZsNRMg%?s+?{h%(sMk6!^O(TC z0!-~aWEg07+J$6!|I5K>>DNqx!=HG^qMLT=qP(b*ro^~Ec)klY)jZ<@m*%&Siu{)z z%F`>Vqc-&%9w+Wl-G^gzpKxd|F9|}8YP2le=mp)WM*2GT6d7?mZ1pI0DH4_+v<3a_ zuoh3alyIXtfc`y>l*I=XAoZ~$h@nw$8U8pWgu!U*64`z4tHlRF1flNn?;v?B6sXSb z*i5y1ob=L1I0~GD^eTChpFGth6ApP^;e3tcj+jl?4nubO;ny4^-di+)_>pd`WigRv zer_`NIpRW7{DsLBmET5WJw3XXR*DNEb5al-EDQsQ_ySRgfw6j0k$?IkXF%+Ay~6AU za9QsY2(*-)-`q4>VxEeO?L=%E9&HbOEe2r}KI~!1W9TCokDf~qGXy1y0L%cHN7%4O zJHJ+zh2?$zpAP5?M6~;&v0pwcVF7?5TTiIdldwd$^%_3*>v_I}TE2`^{p$wZAke+}myCD8;yfp8<>AHx z#}^?^N>|Q!$H#WHox^|$R2cE_=A3`;zF=3Kp9MS-wRB>W1B)SSW^=4@3x!-N3l#U| z{0a;tgM@)+;`Oqz_mAH0bK!{5_wUmS2UQxvB8O~Z+fkW;FP;1-Wj^1iC$Q??84~k@ z4!-|wqX;IclnB)GebbL_Sat6%-YQ5flNj1CbuRnuvQMsmGK5@r<@)7IC)csCrc9|= z$TG+NoY$W-VjmL$7-^505t8$C8lIUnQEg*lPtY(CI{d^(lYpaF7dIX#Aja6#m`3s8 z3i*+{8{J}4CwHpx?4HVDDgA%a$hmIhm8?y0!4D}+{P=!LtW5K8s?1GHnjENYv~8}o z`xZ!W;G*$G=NW-T&`5#2qrUN^lV1Nme3pR{-lx9JiJ=nZMXW#n^W-8#F&(0EWPM8z zSH<@k7;-sxATEx*7vn*#j+V*NDY+G|o(<~b#epy}U9SXT2IAb}>acyltxJf)@FZd) zQ0ns|9Af6afFE&SwT7(A>8J$+h(ZhvlNckoj6$kNmTvEuHL}EkN4Ruy70m^*$l7!w zX>w`GFH~ql^L&A+LE^I*AIOaP5048HKE-!x z)z&-kt7C*kiG2qviHN8#9xsmHN=BUgQ6Byd*PMu1CLi&JH)dpcF`$WlNfa0c0U?mI zyuKs`ZxB;0t;u^-Dn3{$)aGqBa-*uSCZ|pHwgP+CyzSck&{yl#h`YO6X5JS<)4Q{i zA_ACPVks)DH21%9V|>Wfvg8=Bp#h_p*WLu0iZa-s(qKq{ zpnZ=9g`;uiHL^&qYH~@ZyEGY99aAqwqk;7^LGv@==t~bH%2n_;ak!xxX~vZT{ez`Q zjiRx$n?IDZ00TxK?5dp^wynOy4)|P*H>F94=5^CfE_enf`la;5hUA5@&Dd7D<0j9JoFq~A})nf_Sc_q0!i3KZ6Pn{PR=M_N8+PRq zD%3Hd(KU7X>Q|uT;3$B(X|&+exSTKNADhqiy+kivTFK7c``x5T=2h#As3j5hmp7Ug zDg*HYBh&QH_s^t#a6QMTja`5PKvB3L2$5>^0jn>mx#-o0stI2ZqmWk9nY89TIa8COp zW{>AoyM)KSgp6qrD{gK%5YZ!TdX9)TYq4l&-|@7_6(bF9x04ov3%4$_Gm$XGR{!yl8zk(#FKQHy~e4#cpefO-nzj#k`0eKMS$Mn{3=*XMJD%rc`o!)=R@ z=6AWtr;hmjcO%7$J@Qo%`e$4H)i*0tph#zbE{lzRYmnppP*ZS8JL&qzw&(PLI|RY~ zk~fr|=HEc#mgoZ(2+Yc zw2o-j6aoA^VT;jX{D>5E^%;3c+IKcs?6kAa@8GvhEWnnGz$){0d>44*-4VTbL5{U$ zgqTbe3pB?vd%W)xd|rJve08uk)c11^SQxeV=J%BH5o`4s>Co^WVw2+Negxl?I#h(=r=}=Ahs1$K`&@K`XS=r@5L%R!m$uz+?@t z8^nRoFZgR)Hy29X5YKqi{-})e!^K_;2zD%s+dSQ~ed__yCy?|0s0=T02Toq0y)#KX zfkJ2TbQR>-h>iD~*Zi^0?K!}CS6zH+%CiGpC0`}MwO`*X>Bz>`D>`sy6wq3rP1N-5 zypBdxq;zJH;1(cw7mNVd3)#mm4}(|CzxA-hv(sfKm_WYpj>Li4)yiFr4$ygeyAvRY`?j>4}eYq4oemo09?sX#oBs^##KBwLUJ6x>BUAFLvy|AwgK$#=(QFavo zS`7NnKP^ae*Um?$>=(oGm>P=h)e-*MYc}1Do?cvC85)3)Vn&9tJimQTfwun;V zK?2Tlka18LY^4*HC)GMn*uo+-O9mxcr}oDtai|Oisw+VXi!1z;r}rUc!lf%Z=}@ox z0d11Jvg5M=dt?dTTyprLeLh8zQoi&8zn+f_m(0c!5!LO%tfd*}{G)M^B)T&Bd3LPP zFu_q2Uqs)%%57T-g@q%10-%!mZKGaK_y1GOg86RMz=V+$;^mkl6L39NU1~O^6)_bW zfInL^|F7$%c;jCV;lWD#f==#aHm2YsOc=YFogIoT5rNC2Nu}<~rHF?7C4ydlDSFT)# zRzHYd3io`|?=&xyGH`Nma!Bz#DnpG$u4d29l=9aOiN5F4CvBvmk1!UIRA>+z=Wo&r zKQ$cNOQxlm#8jX+N!!=A<^0zF;PSHRFQ)v-?szW{K|Jp4LEN@gq)t0eZ($?LqeHAd zQz8+=z;k~VHh7fK`y>H4)9ZNiNfj2;nh$L%e46zM9{&iljud<1kGbax&yXqLTj=3^ zXa^jp$ffx&oK_K_Vg*9?)3AR9FE;w;Tu*Dh;lqS$?>n9CbN6onepKh9x-a48WMhX_ z&$>H1tC6;kOluWoay-V)vBVL8m|I#l5V7R;+#C~Rwval)G2)G0H!X0n1o(RSGga`5 zSuP^6C(Wh(tEi4Ft8VUtiS0sG#yU_@D6@>?D%E}COHzaa_`%sRRyoC$OFDDeKagg@=~GR=LMurZ~rlqx9L?y zLUVIRVT9qgPbhhLDxQanY>nAHcfAI_A69Jxy37iiJ&cz?HoY7x1Ev_n`=-YEoN;## zR?)d}8esK-MfKt86cv_nj2xK2d1!F<`y&FgVc&<}@I*~)b3Ks&~TU@4HgM)t^U{7|0%EO0nIxY0Ld5J)$S4kG${!TujbI`khc+5T&g% z)7ETO6>ba$;QITT!PGp%YG9@GWdfz*9**tH+iT|vbmaOc?txM{F2X*yTyWY)obvWo zBpD(8kwK*M+tZfz%4m{fQ^XCZAxbCn#A%7Tvg1Gm7(yDAsjr_L3qrj{eFB;nwC)5B zi~%P{1jzDjeTfnC9hQ^)W*X>S!LPw7&Zt0|%$furM<@cYc-w{+Nu}#o1&y&cj|f+B z(3}_YWZK0XbY`scNOYvippT>l$>}k9j8xCqj0RkP4UoqJ=5qQ7h|Y+_e%5|Ljj|h?Se*T3=e}p2Zdh*+g6hpX-TJH(xky=|#HZb$p_VG4B&N{&si4 z9!mMl6mrNO>onl)XP`@7A6O6K0$$O;$``ZtjUSn=JT4OrRE0~?jJI(i|MkYo#0TytmP<3d3L3n%DHRwC5-gxj0XRNj> zWYm^eNJ{D3AyRz>^nCw2cn?mkwx72(zY%7s+n(RcaCSzbMSSzUlY~(q{^lC=uT@a) zahd3ZPW4jR>iu(ec!bQsHW9`BlFy*;)0ow6UC-(RGvsa+A(tez@o6qIy@0rjORzh0 z=;54c=XC+q7+k*;pocx#MULM+`-4R74_&YZ#sHwqpAv@YPDQfPJV z_|d0a)|mwB23!DO_d`7%ks@*j^imaw;UGbj`_c-g{(ik@Yldq0fEH92V1mtChFyyU z10h1-^B}NeQ9WlGqEbSy)u66JL8$v{fuqL#yhNS`~*ndD3b9QEj+xVCo47 zbpV-jh*cVRbDtpX5fdhYWYn4e4f>G(EzpD{F?4;_{K$J0GEKRFVhjUAeg9_EE1cU@ zZCrux2Qhq)IT}~8{CO&iJK3kqRH0&+Xnrs*9c+7R(!omvSqfyykLd~@>I0-tZOZ8zTS;?+?2T{xIFqRYe`6P{Zx;8ygcF2^)N+ZQVm7!vdOOmLy*7*COvMav~HQU%y z*Tc7Ms<&#Py?Ye9s)-)&y9P?5tSzY{zWf*nGu~|jWS1D=&B<}Bk>Q>{?eQ~f_UUu{ zhF?^5|2=UYxv|gEH3z#-G@w!f$!2et3F$-~4B@18GW8ZOdV8UT!I`U1NZ01X!Tvlp z;Bseh3Un_VG(z+-pk<4Z|0s;TozYYF1#11%grOBPkb~_!&zl$#OM^+|^0Kmg5auiKh-E(6h6t$%|`{_Z$~1?vX>fZV1RPL}LNR8fBZum-&Y=YU!D7K6KwM)6}a5 zUk^=9ACLAx3fRv~KZF#&LD9%0iYcQNd{8#OwH&Ry>CdhcGPS3qlylu4g{s3v^S>z^&W2)VOCBLA@O&{tG;`*zE!}7t{NBq3M z25Qd5@I{aYM-kC_1%G7d2J@vJ$6PauP3 zFhhAV!zalkqW(Rbk)y=mFn_7Po6dz3dQ&?hLAr#`=lHNZ#}=$cZYCWYTUutivEO0P z%_bM0G17!OlDmG@l0K1bXTEvO`>_R&Hh7fh$hkyMHtZUTe@-pfHqXUL9-}u`%n6c< zFQ#G94Q7(*7S<~JGfYOI>v3YD9n1Wdqq)P)2K3T$EZoRxxUptQl8tFXT0=~dLNbuM z6U2v0hUE=!mvw&j9I)N*u0DiccWf!!z4|g{V_`xjUZAo%X#&f{zump-@d=mmTr6Aa z$E_bLVWa<-FY+}8P;k(Ck`e`kGiliHJm(MkmZfqPM&Cv-!o_N*7BZ2)2&ZgA=B}QS z8`TKyUCzU>?CF+a(qL^S!aLPAyRqzJUNp8zfH!#4ekd|ccX6?4FNX8CwAXLeW+R?H_NOmQx1#K=et3hly){xw}H zzU!`j={^nV9wO(bk(Y$=Id+9HKgZZ&^zbDpIldKb*JX$O`>P%l9u*6PcDekCwcqVy z)j;zf(aW`oK8Av*-)BDg;Q!RptDyX*m*bzVi!cgY2m>>R|A(Ud-;a-Fbo3oEC8@@K z$Cxv-1|(eWG4pk&M$QLTh@w9hRDMDzoBvaL*4D`o?ldn=WkjIZTe*kY2kcfxNFCi5R|jH&xTh7sFq>nIP-x4Hj;!_}if`N05-e9%?JY?%M1EZZM(6fsJ{dnaGT&L!`t zk?nWsq{ffDhIUVSIoZA3w?9tZ{v4VQZwiS4B(OSp*padA78ff$FLD}kU56z|zef2d z7w&U)u_Q45#Jk*_QCGP`i#3t9znREr;9fh3>eh;)bSjq7{4$<6+xufozCp`eAbzbP zX*APZRbWgBs_U)-r<6{4-?6;kWR?pZ{#%ur=TFSjKh0@$TBjFFB;ErJ8E0H+=U!UU zKW>{i9@f{*@pD9}%zksl(#q;(6H@5{fnl;KclO4-YWF^3i22WxoYm~zB16knF9GA8 zutsFEK*ydi)bb@=+=W^w;W@Io<1n^b(#;&$Yy2ut9EQ$TOm%KpcLdJt?=admaWMs! zQ@C@>H`zW2tp)qAN6+R~jpMrnmn4H|X`c53fo6&Wt&)j#@%F(7!4Sa0_Fo1- z{z`KZT$o{Y1gu*DEUf!e3GQSvb9jfZscQMYOaxYUk8=W^4JLa-cxr5V>q#@+#S~M284d>UM3b(F0MPK`W@8?iC;3M5}b$ z^7cO$7n~*Pi&aI14>&n(VTE#Q=h7&Z7@%8gIhTTC{MoY`|CS>w*Jgxf?j{sg^0XP;AavpAh zljB*qdzwG3pD=#+6-^q=iAVj&9aFw8mzJfLj{R0Lx4E+3JIJ~~p++rVi8^6Sa{!yX zk7}iR?q91EC1Jf@@cAAec-59OGvDEZN?dbRy!}~$i{+8hbyHKK=-Qg&dca&@{9yCj ze-txo<9va>6Y0b3v1RR7!wDrD(rCFPUoJ&se%V3ln$>*LalY9!^ZZR|(@N2hM81?9 zirYP`c^J;PtoBxz+)kGjqg08Y`mtxEyWrN=fPtMHU))~o9;XY$vmZf@jV>r_e_;gs zrY9#8OWkJT_ha;(x=W?_F|Xds5pzdLajYJ|@O?N#apumb$(`sCYJF^|^%7wS-5!-n zFz;N+y3Rj!8;!a<=XP!Q>oudAW|HN0T&$J(w_3E`$kEOFall?SwA9g`RH|8HcisG_ zMdPwDotgBm5wAuyp1Tdzqucd3l{gfkMOs~w7Tymgmn__ zoomOjzjBpklgI8Pjs!u#8s8-A>5JP$)Nyou|Ymuf|YWdcV{t1sKNmuDl0rP%ecOHva)j+ zo?LqUPrc#R)IO29)%sX?|7l&@KXtU4hkuV2)LV@x;&>*Tvmvzt`m9he>oHoq+}DtV zV>G03x;=Rw;OA15JJOUp;kL^lWG+Wi8DGEC-|v?+UOf4RWAR@4dr%_OEC!8PWttZ0 z`ewG0UL1(l^*l*3cDhGpN({3|ZXra$Mu2h=`F?Mw%p(JaU!+(zYa;GtI#a z2^x{OvL2KOHXJnL`en{>Q&qJp)n$N&`n;m)B$(4Vo zRK&?)!B*hfuEdNFs;h&)WAfB0#^In;vEz9^-x)L}=y7!U<6_LSoK7bTX^jz~=dI_&Xh~wgr{=or-DrJSfU%6^S_D54NaP;9k>zN_sw&e)_PQ`Y#$8&s}Z^W?&;^06|ELxm199Y zga@kTmg;|vrICB+HguQp>!`W>2^S)!{BMFYeB50x{8IfxS;qs6e4}r3QJWXdIbz?; z5fWR%+K!Ti-9?XMjxoehU&LI-$T%A?*O zx+RlByHiV+Dfz38zkkb{q!R3159Yqi5*rWR>eeHi_d&KSvdk%4GtsLQIjcS9E{^9H zW7kXD%C$<4tG~??Zn&UYd)bUk$a?$w5@xFxF$;@)_gX}nRZLu1qy1n{-pJQ!pR~NC zcE#abLN1&?BDTHtZ!_Qx{9H#vi~w0+9Bf)D#4^7u6l1CURjX5tmiyIHsWwerXboh3 zn^^Bqke58IoiJreEW^7m=M}>j=$yW-jrKNKMD_m%6~5+L%&u(42`)dXwo(yMO))2Ow z@wS{tAPxZiK4Qe2=-}R0u!fg*_5{|+`y?nc`+>MuBuZ+FvTP_onB_c-v*Wg^+4mUT zv%OBg-QP}^30oXOUvr!tFM>9I&eS&IE1k4dJa9}hw@2`$yatU0#4xGkt5vGdX_RQ- znbuL%&QqzG7EB{M~7VhX~r{4Y?1!kRTZ~Nc+EiZUr?YU#hB^Z~; zkj7DEG1S&NpS8sm08$liIn8GD>W97QSCtPdiO!Bh!tCemH?AWNKFOtf0ESjT`% zQK8g(PZm?%5T*$z;#$AeLzlf_Xum1k_k?zRF|KRZA_XgJe@(+4GG-L0-)b!r>MGl@ zU{ij1!v`zbT+_mRW`;>Sll_*GkHOs6UIWc)2JJ)gM*AwOd$$PrL|vp?*QW8p?v4}N z?+T=R_g*9I=*GK^YnaC;u5$J|$$KHWabsQMF-&6C&(f z#{COyU`(j`OTZ$ZR(%Mj-7M0)1@r>vl+97W6Uik)$I+tlDlwF>dTb-y1J8p~{hNOTyUD*^*Yg zd?O_q_3vZz3tjF@c{@{aKX#Z6Le zyhKZ=KC;Q93*&Ya)5Ai(j!M@f=V#9r;L2mq+r7$s<+h(nf_QX-ID_z|nx2+Z&?VF- z`8vC(-i1ZLJ^j-jMhJ;g z*>s7<;pcF2xc|{Fd*j1Dv@5LaL$_9T1%@=6YZ?(dW(%$Hg(y>H>5vn)D)PDK$WVy# z`R8~(3Lv98`k2E)GomBvcb(uY)~zH#G||PFpv+G3o|i;RJeXKD?nW4J9i@w^n~In) zEHMzwQz}<|*t(#|o1hys^+<5war##@IkePyX;nInAF*K_{uQZTOL9o6(rjJsVbv?g zA7+rVBY58OlRZLfe7AW1H!`17`r6wS5%;Fl=kv}OlbfZuAtxL6_}<@or)tKEOA_05 zDft^0EKeKAWcp1q%bQf0RtBAS2A;@il8ri$c|YdQ1+G=bhB)N7KAhEla+((IjG*gNS+d`>j6nW94TFEsfJ+V_0f-`nUnMR!{KnF|OZG>l*MoEsbj;f> zF8-tgxMluW_UdQJUO~j^XI(*c*cpnSo&G^wRXuh8S57UJy1(6U zKlH(;)`&a!`yN)QWJ+7thNyeWS$Gc~f@lwtY5`4=}>q0=ufmsCV+S((&Mk8Q=p2gqKKgajkcK6 z;xV=D?Qgg+-qC(LVdt^A$Tz8rHD#^t4?C;!Od0+E2rN3S(m$oAQl@&s$v>IYrZFkZ za^(>>7<4cBGo<<$*o<)=RtGIsVq&;INzUDczUgYnFTC!UL)FXZT)ev*6-tn=M@>aM z@u{GSWF4VeG#)!R_U;U^vh^@Xm-pCf@LZgGeu)VhXB#p9)7A0g9RxObJRy5}zSN14 zHF|C{`iDMv7?33C^{^rP=a5VH?g|DCvCC7|iO^o-WY}65A8-R?V<6pAJF>FVBj37z z^*J&xO3;xI%-g#Rk5G4yl;K*c#KUHs1LiZ}rRDo*0X`=4U4dV7|5U-fZG!2W-GxvB z!;LDumdn2Zb@rcG8HE)8BWO=$57LC)sF{O6hN(?!Dpn0#r0M!dx1y z(qHuo+r3o~lr1OyoBSgnL2R#usK}-?-wZ?5tgR)~)#~)e@X{jzN5@qT5<{bgcrCB) z7v1)6CfA+MSXBNy4x5>+o_o$}%>m54`P|hXaW@4o>bNoujBi&(zM1mP8uYl`u-Gq) zSJvJ>vpno6*ytzy;!+j7LD28bZ_r0xzCY~tE%+0)+U;Fi$3~!ymWFWWbVxg|65Kxl zb;|?7XXMQtt>C#MtNe_cAvX!B;vjB@Xci}O)8)EZcPn4+zET?tt3rXs?u15Wk{HP7%iv@E;THh#i`9TA zs4i5pmA>*NA2i06O{vB3f#Dw3DQK=s1e}4-<^^iGf1NSCQ7K9)%9K0~w&G{T*p}9d zD@7-nbiZVS8`zUQZ7)kR;j)b=j-a*jG9j_m6kf&cI2yu8p(8J>vb>8Wj2J`N9R0XP z#CGzKTB4Zmra!qfY0lvFGQplBZwM(0k6$H-O2}B}1Sc(4=WVvZDn6jVkd_|gfov`v zZ#1)fYBY7VLUfu?LmDk_NC{a=1e{>O&}17UIza^4@_fTR1`EVWN;g~kpBX-X?~2ova#et(!fHBD2noT@k$ zMXzo+#35$FwB>$SRHjuAFMpx4HE61|0VQA)|IY>&xpSpP|VwqeDNmi{wBL@*cl$Hr@K;o#n%B5?6i3|m67EAkKIN(h>YIaP5MG5xh z7B6TfdBJ9-ExI+sykOhfg_Hj0^6OveQn~JbA=QrRvgRoKnEb*!glnwDSg% zs;a$um%CX8HG^7t5z|aZo(<-XU(?X^KvFP<_*(Gm3{F=)gV4Y>ml|=RSl}dyph2rd zhn^Wt^45fgL;t=i#Og0Hu0`f;w_AD?=qz^y=yo;h_gJJ(Ck@&TWt)Q@T8idAF%?U( zq_TRch$Qfk0IPsm$}SEXNyK_rjU(HDSz;!=buonl zkfDbR<_2iCLgo53zJnR{QAH^2@FHZ`RKq6!fLFl$oWuOTw*qB{>Kn)FUt>eTEZZW@ z``#JwD)j2!Sheo?2M53Ix83Kw_{CMvpxQ8;74tB&2xrIft38`8p z6&R9^x!~1N-m&;e^tndl(U>lVm4`+K?`QiM;S*}Ee$gw!ZxFY$K;^|`?)bN8j&22qmgnQvj;y+wLN+2$_NUo~*8@UJ znG|_Bc0>_nI~@bT>YXy^W_n8xT%n>y&Rvnq04rt>>#ghAJf7ti{Aw@Mx_qy_m-{`^ zEppS00I2|T9y@v`Oaj?oQC#_x?{M^DetroD%6FZTgpuShs*8S!9@+>o29HN4bF1?* zdMBmnHooiORomVPg3wYMHJKU0q4Efm75S=VndNaSJx{?Y7<|0893$JJd_*} zU$jX!*x*XX?GnT1=crKJE;!}A>M?l~sBHfe2jEnv{-*$gO0gX|C%}HpL~fEe1tCF( z?%PnXQ*#k)2t(XZh!<#7JtiK_J`aK}+Y5}O5kak4_K3NiYVr4rf@&k(SHnYcV{LNn z21b6@m>QZL;sV$^GuMh}um)?r9xulb700NDxn=x{ebh;4iL%mA!d<%#InilDNywNp z?k088P;V8M>T# zpOj6tO^h$N0UA>9ZFOVkT9L)&V)<)dB_Z$KFR~N2TlGmrO7_ghf2-mRyn#C&W%%>o ze|E^x=aAf7(yARtxR>d{mdRjXZ>F`r0^eSe0VNh3WabBiwR#(|x_27rRvZ0cW<#Pavmu3VD>Va^fN`E; z2+BLprVoODYi_ubdu(Q5tFBRZ4*zu?j#8g%{y%*jPdf6=(0rIhYRRe@i9n6QH$HR-(ZQJ(vGnZ#HDTf zzQf5&TIWXwYP(3WvS%4k-MLzDZUeCJS}Vi4``F_xcT|6>-xMZp6hrelw_1DmZwb`+Qj8203%RE zu>8uNi*6ClRU%0nP8dmo`FPw-k&8gMGu@z*VFRf?(GOu&lojFC1UET)kD95`4#;cY;FgUKr_Po${%gJU* z^UcUi?3XMbhgLtC9Ji8hAm8oeJaslX?r;8kYXQ?x{zR>F3Zm58A=$F>YkmJ+e;zyi zWb-j-v10R<+mTC+T>Hla6E$YpkH6xe@nqaYQCH4q)J&_dtMg&v_6rNn(CWfvX8ykXS?f?LDx=5;gE=8hWEu* z^zU)S<66P$lcwCuKSq-r?r7q$J#?yZDup*FzWp%s|2B#S1nqg;@Ot^;ssiE$kza-b zw@ruSAwG5Dq<+MvQ5(W29dU7>&&aF3PxWR9+C4z%F}QP)S>O3FC$r(1lF?$Axr9{! z?bU`{o#=vq39^;Cd`q-;V^EBBI)#P#u3zJ1#3ELs zv$<|w&KT&xv4@u~l**9oxwA#yYaK1A>(pg+c%m!+iD7GZM8rq(3QeuysItXZObZf?*1Q7se5t;HoXpyFMQ#{tBpTFRM_T+P@ZLLfHBGQ96V%b2? z*`vaYDNnWo@9?s{xq5(dMO6 ztrkbZCE$n+>74q{HtywRoSlazrg{>$6X|Dt&4F#1@(L>66Q-lDCDKHf2s4rx?{&6@ zcZcZcj`%4R6um&Th3XgRIDC`aLdI;k&$X<%d=oM$x$AhfN}ni$DMf%5Tw2PK%gkxt z7*jfs3aM7+c5w$kD3+~qH|Vr67Ym;$(QHe>yu``DtHFxT%2$ zr6Kk}8xiEPE7-R+g|O8AltY7+x77Ab#Krv}ntaXv$NIE?!8n)uZe$-HMrhXd-&=)D z1x)ccRJmfcL(BANwNfDt-CDXotvPVASK6{6~ea_d4lJ=^i4*ghnkxu6M)5p3l(q@1b$sNc+>i5^Fk(K42orUo8h>yT0BT z1Y*d)iLDQWS%JlsJ)h7r6KGAF=CP-CS`!U#bnvis>NFh@wK1BAVvyv@hu<3+|5Lcy z4{}V*YoBo^`uW9RDF~t{Ym$U0mQ32d(yg(|_qoF7|BK_lHUsj$g;w#hrX}h&d-nZGP$G@1?Nluu;BoiHvAHPD?k14l!u!uy{vADS5)VQv6kmq? z#&8;QCQ_1bZr8oe#T*w9eP2I|=PBTbHI6%h=7UUhoHbo$#ZgGv&Xs9>$s5lA0FV>e z>L_HAcsHCH501#-dYOV4t5g_)1Ojlrs%9tfi5mt}Q#1MQ;GQ?B3=1?qR)b?Rn*C5? zl0x=gxD8LDd7DXZ*)8$`B9si}=BBM;IiapJ8ky3ftt@`tZGLs-Qso$l@*YL~c%lC$s z2uXxo$|JQdfVQVYSG!CXDn?D7#N?vIe)B!f7zuzSUFbo))=T$(9=vWL9{iW%b6c}m z_OpseIfD;^vqRMC@)NtHAlJ|5m=6F0bR7>>RUJtBNGF~!-01Wt>&&MaTcBg8f(W;8 zaQ=I2=vxdvWRtE*3|Rg2EFDV;j&HIz* zd8Y_=pDS0DiLKnYc%)btYU4qqf~A!-jb^nNJ=(_OQ3RE$X&B0bW5)1 zl1(J}YCll|Wl|VO%^g?NCO}bL5z23rwfg+bg1T&10`}xUnSN0RE8))%*HIkY` zRwtMxY5+n`Sqsk=@_o5h7s@8*<4JQGlgW&d>d5wW&du)MAC!{C3k!Wc+ufmZ=cRwvC*`W~__uOr z(WXUR_sQ(mKFT5p}&NW~}pKk$AI=3f-%C+>g?~oq?F($q3thyQ9x4?~)X}u$kMkB3yZ)yVFa3@Ob%r z7i##)_R)&6D7$|rnMd=u~w32wywqnyaf8{%17SSdbYuap;DK^+q&f{BF z&AI{?<}nB3(Dvk~Pl&$_bon;$J2nfaj$!gebN987Ll{sI_4737QDT>=aNFf+?@~q9 z2ZcKAky#!NJEiLK=Z&at~bmH)&iV+Z2A^3v0uUm!cyBmuFhVI3HVqHgisL-&5p z`V|WmgGI7pEc(cfSCf}qh$YO_`yj#Q>u-ksvvq!*GhwJ?&(_Rnu#!=pc(qI7ZF^2f zS9>5#&5=ip#?boupq_Bj5ty4*B%>qP?D2-v) zzMIMbmgBvirF*mb_ZFQ$mNa8Pg+`+| zk#XA_Sm%@R%w%XerQ}2b) z)!pwCOmjvRbRLKzW0v5zHV=4%Ke@o^eZ^;kJ`t@ z_K=6AFS*|{d{^!>9zB=twQIMLZfpE4@zJcT(xG3)J>mbJ-gZu2zo~N}>e=O8J;LNS z##TS3&7<4MLHxOdBhd|NS(!!?#=VUrgmguFHJBsJ^CW+-&xlP99Q!_dS^a`|@yWJO zK_guu5XD9dstJ&Z3O*81vAI{+x#kmxz0PkcCH-42MxYe%Q!0IZiEAeLS)-yRNUD8u z;>m+AvHde&Wz}GeVimYURM-_WtTLq25&U3+!_cc!@q6wcJKu`xS55CQ(Y-I|;I zEfd_2kxY|ESW_bCnU8m!Lw^G98Zk6>XxcB>{V$4MNI0*!?c44jz8c=a7k%Ar5nu?v zDb+l5gO5b2Wc2I=mWZV;rTk?s!ZZt0Si7Lfc&NOwqg zcXz|Ld7p2_8U90^Ip^$suXU|;yPU%`OL2y&QG|`JQzYXlz(8BMwwgr0PYb^_9GKj} zzb1!&U2I-WZ&n~*6^HA;@>`5$T4&jd?xT-qx`+SLmPhCKhbnWDfojdN`5cv!-#RYH z_0W(3kw!HtGrw~M&^@mI)pefMG(B6rTxD@wcjuyMl#q8)Ceey@ygtFT=$RSKSE@E% zLS0}m>*-Bkn2(^(Bk+?ERYA?o;%ei~Ai;7t2lar^DW{nq%cWbgH zzam4+b>W=NCmiBy06e68tC)wkEo6uic5GyK;IX74JD?JPq24fnt{RZlUnWPU3x5aH z>IBu1_0wUO1E<+koY-ihC-2!qr&-(sPNV>ja*=YC0+o_cZb_XwUQUc3f^Fy0eB#o- zb#@kJTax}2{QapTb7)^UocRb(G}1?&ZIt#4*C!ycpc2~dX-$z3AD<4MY3t}PaQsFeo@w>!;yIH82{*5zC&h_IkvmB;G z-GsalqDaXf0j1Is8z4c%&W;}gtJaY10k&#~5Ip+t&h@uW+p}3&yrUW&j|~h9Y298l zPd3l(5uZOsf^-51CE&joC&zE>ys0fGCm69fwj{t68AcBdV9}2`N&*);HaJ7)Q8dn6 z492PiZhrt0cwU}8RXVDlXj%zyiJS@m2Ywzqgc*whs?GEg6d)=;mL(6}yCX}Jqfvi_aN++Mg8ppKiy7Qr`lxO9*jaja}m|#q& zWjm#9v8)qxm0b3$7HA?Uqux1mfqkE;vBb$0=p!5wg%kZt$5PcwhW-138ea%uG#bga zMSUKSGs~@_FO8Gzcq2xZBya1!iP&-_7dp7`3s{n?CO$?E;j z63YJ15;84A92IcG;X`I|hNPEkl)G}&)Dz1z9@*x*z^JB|ti1K0dEdXm*X!;ICqU8u z_>srSe-TvVO5QBYPWh9pfOiXUdzyPQueR2c)CuDE$9J8TXI&<-s^1{Yx93|-+uiC+ zlyb11%F!E^6Vp-dOCZlI`OIG38wh4v9%{!ktRlO|8iyHH%+%8CpFy-mEf_rTzf}R_ zckUD#z~4sX{0#~*Zv2W~$tRn3G;)f!r}u=w(3qM^5DUYrMc2aqU@wLpp`PR-@mF_(t5_H!n{kJ!@)d%q}=to+s?!Ibbb{j!0CCy|2W8AhH^({RIN4CmZU8N};LUX^k54xPhIyQdg93l4~z5Nxtcqm+B znZf(s~{X7GB9AD8z1TS zTwm}hnS_BE=51w!TV0z4+0bWJqrPvxKn4?U>-bE(c$TSDF{#biV3Tsyn0nIib7GG{ z9HXbH{s-+aq8N!BqWOa;`kUb>IQyRnrD2#6RTL5TkzqytdVqu{cH|syYezG#p>Ji2&{iy2EU03`IlpR7?5;cQCC_unw{* zwBWy>>Vm2!$Zfm!^({5A_lQyw2VlXEQ6yilhN9V$%Z(dvKAnvweWF#DvZ4eR{G0Aa zsHBGXu67<7L+}km#p+p3Plugurfa)maHPR#=XC*#-oMSw(o8Mq!{epCkbQfbpGOy z{neOAB_M2OP!T1?ZcatbUskSNKjcD_ly)!0o<@$h=y`5kBP}QAcGBQ1uAHw{g08p` z6X|9hGH&4g(VTgQ|JPH1Bq~YcadWba^wHuibeplomI+m1*1jiC0BZBzB=03T%VMZ-Zdy|LrTz{8*v0#Ux##3RX?T`8N`Tq>qs@oVX0w@NknD&X|kH zyL<#jgPD&sjR&y6)bz?n)nzQw(z$UY)1H0>(C)NxGr@_;v+CI`;oHuQ^Bd@Gh|au- zVY4uIWLAgE{r5um)XaM{qLF8ocQGx2^Nz36%Q~*ap`}$~^M`e5noP-!R=Ir|b;Odo zD%RLcv^o#}*>kHq>55bViZApl=ejukBwmnLkX)U3qmB`IMy?v~1D>hZnnX9X9!2)N zG1~(bc-GbWzrO6g$nxFgQc}OJ+MgK7XA(gLQgxBrA>VVjlSN$l5EtOnSKHRn!~Sdz z(~k!#jY_ba9&(hdgLlk;eT3t1EgUc{M}XU6E&K|6LmFcQ%$gw~#-2BrT@nQufU%He zW*_LDLoyuW1N1ID3=^~GT>vnV><)MJ4Zt#;-tF{&`S3L|oTh(|_$>1L;hAciE00*CFB4%TK3qNb%G9q@KsT zlFs)FRN)Q7x*d+2JX1pV(om-UBHdy>8f&yfHeL3+bgms^b(K6){t6+RuSvg+)konroQmX-# zy`qP%?z=!v=?#D}D5JXl!d>sSFcY23pBBLML;c|)eiDh1mCIQEYeZMd`kV`|mD@HdYHy z8R2;7y8hNf8@Zm4RNQfoTY#~;Z?Nrt#;K^8$Ue(}YbmVWuLq7FCV|PE5UL!@gXM;dRu{Gs%qiU3TbPkF-^yT!Xvrc!;jd z@V%urT9(NRKUk?&`d9Q%GbR^7Q_SJuR zd*{acI($A)n-P`Bg>jjuaE2XTfh$kLGLbIGYE`oblFQxbb@{&WbjlW-)=G5l${b9I z4tVC>%hVX}{;V%PXMEW~_gj%*O~o>d;{*0x)XI`+8M+)2=Xq0~m_xKl4An2sP=gb&yaTzV>9k)QUvE{=Me+x;s2ie87tJ(${ zc%3XfG0b$b`5%zG?uBT-cY%VC;Z%E}(o;lNt}HnssSR1N-OdFA`h@k`0*)p7tsR^P zG;+y@73TkR3zkT?vBlp0zar5NE#f@-uU|bR_$AqKz$0LP|B_xP?VxR?>Wr1VEKjR1 zT5Czc6@tN3VvaCNWad3(d8vW8rx0jSu44JN{yxqMAd!36^~;NK!VUN!SlDp1;KLPO zq1^wTmVgvFBK|U93<_ECo@Pd`m$GJ~Zn=ae%&o^uiZj)rY60`tI1hNbBHsDJwgJcG zBQjBC`4c5LApUHdh24nl)&7fnZ9pcN0iQTjezCeA+nXT8uZ1EJmy&h0?qC62B+mMO zgqJsR3LbAmQ1pj?#0HOg7w*?(8S=afqKlA)vt`s}j8Yn%bil=wRYyO4P+HTgB}EMN zT)3LLVwF$$h$5&c_`Vy!^q0l@l9>0c6jM&+lh&44;kwpYVvr5)Pir;@HgKHke+y@S z%^FikOU8=B`o7S5ukU_0tABXs z{M64JC^GqYuhy&w3uCM`f6Z<0=@1q6l@rJpF+(T#VD%ZP!VnQ5ed$coy$$?pZUQ`H zh`-Gz&_u75^m&`KgS~hfUya^brhu-|>y3QETU+ej&p5<~E?+yr(h{K=D_&5pSNiAn z?pcAc{_j38W_21a#sj0JB}NY{O0yyOdzT27^vk(w7JAE{=(PS7Q-Uic9MS&i4ESJO zl4d}c*7EAbWD1Xl>Dua@V&zo5o z>8Wh)oOyTLL6F_vMqx9-jGi9&Tu{=N6(aAi9?@ z{6|Y12FZO)ui~J8xq^QD@7DR>>M3R?$L`mOQX>KnsThvw+MWCdy zBpQ)&RWro(VZXJ_FFuUO1C4EBXz;R>mN9Rk){TggKEZOW#1ACSUt!!nxR{y+a1-L? z(kRh=lBRq|i1Ogl&KyXf>+7J}jO&vLZd|YY2Bv-NzchoT_ha%s(xqdwP~x@Qz8I^kP3l0QX73CT0o zixlHfC+LwSED89@lHfFT4)(dOUuIEZp4BWF8QYs5AdIx$pt!BqK1Ug^k?vkNEC-x7 ze?k5$!W|hpwpb$0TGeKH;|v7&n+Hc7@4ZTls0HJ#PROa7Vl7d!%!lfWn^NO{vJ8w5 zv@V{ZqcfY(m1SQ!51RZ33heKk;3eW>Dc>rie_qa!Y^J?Rr03}0r0X(F^lA|Wd9&xOd*81{$MG+fYUvSIruQA!HauU*3sIkl;8ao~EvoG0TxBLUzUx<3ocAQlM8+0?t(L75t1mY0e0ec++oisik@=GG5|0Pmpn29%7C}Vr@*Rf7EN1n5#Px163IqA43g%V& zs>G@*A{X++t^(SP{wba8=te@hdw!f?=}|2M(lq1EpZ4EG7{)gV!i5_eZM{Um#1{=` zUxI*NJSYqye^huB=E}ihmrJNw_Y*+wsab!;-_&hrb>e@t8{3*^)8=EhPq*D2Fk>86 zTRW&k=FBzD1CGU{^=93?#!J(KT}e7mE0_;$4;lno=*1|-TU+$5TerzVx34Zp-zB_c z=57BUdT-xS!O@D-9y8WhC%lf^WByl_La#K4g(~jXW*qBL?(@5026nMnixKsRB%CZP ziW^9hxFWnnP_IL^(im#zrCbs<=FM1S&Pq zo8$7=nXZbcy!q3PnP7ini2gl-X?Fn!!Wv{DI-bIAPYtSGyJ(C#tjD2O%*2!Hd54?z;l5(Z3Iu zFvQW6G2beLq@)RS5c_WFL!sh1I$RCn+=|B4*1`pH9mUC&t+B<$Ayy|a2yH=F>%zsVI3{Cdl~&@suN zPW^+niUbMfn^#38 z>uOF8pl9#$*gI;l*_67BWZrIA7qICFS@a`>cCfE8xss$?POYH|1@G*|weNpN+t-gf z_@ST71Z<;FUhv1l?rI;!Q3E8GT*hzD!aqCGK*HEgzA(d03Pp zLDaX#fmw5$dE_2gaEeuZ5GLX{&C`}I(XjT(W*-V6fd`N92a!!?SeDa`iG%x>XIFfU zwDxoH_EDuC%bhw8-{;=3R&0qXT0z@)Zn+bfxf04&2><+{{C^P^(Ela~+qx1o?IezQ--SxjU{um-1GoXtEpNcCf7GclM{TZIP zc>XrIcSSPXh;O-U@HCdpeC=IFtJQ8w@%At z<2|F+K*6edIR4u^eJH9ddZv{OKK>SG&4lR#?}l$+U;@0~Bo)R0mZp6E{Sn$hvWRQz zp&4kq__t4{U-5&U)27Vka})o!o;Vl<_1y;YU++N+%!5Lvctu-$mk}Z#|6F9woG~4A z8Y(wft_(twAJ^bK&;~AHr%k&(_hb)(6m-jobk`TezuD1ECyS}>Ih;u{Wn{zW&KlcP zTA!v)AOEM{Q~mb?_WKznS?N&3P3DbM(R7&Uw3MU@4s_NeWgmL6c~j*yjcEjCjRcG` zcU|e|rmHrc>EZUTS7D22SuY(F13+0^T#w(uwmk{M`O3kU`K?h+b>m+KuR@ID5C821 z6Zc?j6FT?hubXw%NGjdgS zA7Ndr1_kWKst7mxzrc0Rt)BBDW5LIeVcR0>9eq?c0Un}FaxjA|J09$C~hC-(s4BR%uT%)`7TbOW%JZZ z$?&!}JkoV=+9~2ysHp1PEVU%(8)A&vLX}diRGw862SbDob{3?X*?n{N=agXS4(2o= zE;#~)#45>iGl*~NxmyP_bNymsaMcIXL%#A^LQ;a^w+Oc%)~Y<^6aw$0oJ1t@^X(2e)n>KG#ZywV4$kovaCD$RWVb$<>w8i-q zhaL1FRt(-@ylSuz4q=>jfhiI#4-+oh7W5zI5o^`}5@29%UCd#mqz&-MEFL|lU?a=kCG4zDswRUho%78`n$77QK}dJYaE2Ro_}a!& zrXohf60qaQrn8pP|qoLf4`Nlks(fq4vR@Dh+_E{b3L_Wk9#rHzrYJ}G3 z&#%Zh>euir0jVKxvKAzML$a=` z3s!ZY-#4LVs%aTAZuI2P<%d%y8D_dRS{H^mDrPYz!Oe-$fGXu4Xl}J2JKp&_=#z`E zK0k(aZn-ZugF<$vmxG$BO4?Convs;+EQMy>5B$-em)$k3adgrVFDd7ObdUiIVpVWH zl+{fxm(h_T-q@i*HL@EUQ=oajKNOKbsy08i=)Y(uL?BY%_Z>E)CAS|vxu{2aBZ7a9 z@=FVEt0+S{^@azmY{%T6%W?!-}GGY$c|40gtO4ROvyw4Na_RA$dNmJl)sFmO`Wk&tjG0nwAz{8&>ubvt2Xl)edVs|3GC@-7Aw(WAIyvZKZJ@jcgebWKITCA0izv=xn2 zq+14gDyXZ5O&AeltB1L&k+-&grtTmeJbv@zn8Ttu^uUVH&i&ij$@b@T?pads{pRZ9 zh&>Q|@J{AXg2f*UWC=3(&e0TxTPiP!hy-rC}PzidGq$C**YBs}MP#8#A=dfc@qqDRP9@ z!Cl*3iEelz=Eq*2jKe^ri&33al@5>~4y`>nL*;Trtzy(Xf!+oSi~1-zBNc4;XJgEW z*koa1o+}#YQ_DpM%ry4h8HNxe-$vt;kgh-7(HPv6cNMA^BPn$(GA4Ql0t_viP1ImK2v5cLoxZNF|ge-=~D zn6Yv}tWhZc{6mk4JiKm7&QtyT_0Y~xm+qq^STJqM7}!x9Hfpd#JQWd*iW$mY5e4;N&u)Mi!ZF%)Y{`>Z2V23ON7G>k~f%v6Lr<*$41c)>M`jsl=ZPjyz zI6nyX_&KWc$5Cf9)qLjHfx5WQNP_GJAtO@?KI3M2KTS8fue+YJESincVg51X#h{FOLW7)9=wJS2G&Gsk)+9$c7r}{dv6s?(gH~Bu9RB&V zNW0({wa?Y@3a{%Ms7c~nbfg52eXI%LpIFqqr>of#Nb=Q}i6ikXr@DAS{NqBm^r2@< z$D)l(V7%-29CNLfsZuuec|aMwS|Y@Zx|E+v0J8|#%%#X>HcY=?$u%8l! z(FmyoL}v3@MD(K>pFcH!Yc#IglvHPble`@DHO&}9Yp9;wti*9%nccnT6#@a@@MCoRTk^;_yxO zG7F~PsOkPT#Im|2Yhm3d!6Yt$`gMcA&}@CGT-?wQ`z&c^M08YR{rz*93C@^>!uBay zm-1Rp;Ve8%MuQGsxO_Lee19U|tXx>Zrn}9bOFp$y9)f85ET1b|ExK^E5Y+oQ?#@F# zsbH2_1MY#FCr8>Wpu$(Qp88hT-cprptzIm|5a8GI{(i=h#W%WTM75Vsg_qUPh1#yIG9E15N~08zbrJ2@MqnO?s-qZPyGW5m0omz*!RB zg;E2wi&Wp6H%)#Fg+HnZ*nhOMIY08bV((mQ3n>X*?mNm`(A9d$-KXr)!Fuld4`q*_HHIbGK|r% zFUS0}kbB%=`rRo4wOj*k-FGP#blrQz57@&spFlH*zN8Ar!$>p!?5g4VyH-VTY?VH5 zF59oIw+81QHDkZ!AxuID+^Z9_`?ue2Q^WD*ub{_hbO&c(i}6lb$S7#J!9^i~8aSQE z3LUb6ZzKS+_4+Lt^#joqubpJLe_LZ139`BYZPJ&PfzR=qZWiV?BUZ)jw_z(;H~otT z+(g75F%}M)hp%YZ=k0=|ukd8{^`Os(ODH`mHxKaR;Wr0EnF? z6yCe-rM8L`#2Y>R-45$IB69mP&d~)7;HY_l@v;5seb@+D7AHvidXF-N^vZ=5e6lR) zN~*3)%GasWgU4kL(A)L^eMcW&St|Na0eij5@>8J*YVT&hl}%wWqUM*&hQl(WX5kbW zZDJ$3YnI*DY1x(#ng#O>&gk2lPQ?9Id`C0i6!1ogb5=TT9ej+-|EvG*%0Zz-!=a49oA4W(nUKeh z@w?V%22kRJXYBT{k`6NdKh>()@jgPL7;5?}~@nWV!hjFy&v>xVI2O^axXMW}*wa zD$ygBW}lM386CY&Aim`hm!P~W7b3ks!A^mt_I*0GznXrAGpu~z0V@jSeO4IHa45#$L-B@CX1-Yt~WU$~&WDb3G zLHi2w>4P2b?0A=hHj6dq4*5=X0&S93C`AL$H}39#s1>a)z%xU^f;Um#co0XOq^iN$ zU%qvx+rbYPhF|%2r4X2M(FBmMw?);^$D&>YvY)XRL4XX9AU`<}k3#Z5Y&k1iz{`K& z2a6mxAJNWCfg9@z<<4(MCW6D+*_)vK>zi$%J23$PS5SK4%YpMY5SY_YMmVsgC`q0^ zK6y*#VVa<+vyUnvoFaxGaJQ(V{QVgum(DdK0{F2Q7fzH`F8H~Pb{hcfPF}0v?EYXc|Vwgq+`qmUDlomy~fZZpu!}Ge95VDw2Qn7Z? z$Sj|rL&nEGrdllx*C`F9?wrFXiV9u7jj1}$q(p0G&)oycU26>`A*6BUE!mPC#$Rvy zhKfkq`VwCKA>vE4s8OxRj?R)ZY zjiihTN}Vo0M*;1$QFFH!3u)+Fq1^ECwvso{#3`L%^c_;f`Zm-6`BB=y&eMYX+Jqcz7dSqvA*A1=v}VuHw^ac{G|ukPWM=)bP;;wY-0p|}P1v^(mgIz6sSIsPZBHLA zMAu!L>K?g+B#AhBw)O8N93bX$uh+`7?A9i9+v^EC702^3Ckg#;P7-PppCNvR>msNAXtA-Q>bxDg zrU3=2q&lZI4N!vt-SV^i(>?`f`umMsinVNb68P7RPB!NEp?oV<;-hasEJaO55r#-Q z9)39RCpP4m@c_1d#M>OMaL5z{Wt+iBJUZ<_fE-j_ewCf@wSCXRUp))nU|d!3!3QoX z`0tiRuv$sYD|jvJYo|x8pq{*hK20IMsbg0nJM0uHD;txUg?a(#SJZ!hV5nCqmrsRJ zJAk&9w+@q}@Z3hE*M81*{wiO8`A=)ylqYe!0YfyE?;g!5Bwh4w1<`VxJ= znFDKaaDA1N#p)K{BMOpawINEp5=1glZg zQk3sMpuxZEI*L}m^azT&Jbo?zUY{Dep;iV-1hWmw8UlUGyfy6eJ>*(w{@@wk7eW1; z;7(Khe8nzOl}22Ol6d`HbE)$|q7{0YF3^}_ty%qlvF+w56zJq+Fdc^V2_fiS+g~lj zIDmlU1_Das)10pHuFg}JQa_joBQU$#w&3KQt3b90Qlx6MjZ$=3g0C0x^sFhtSIXH)V$8Wt+X{+*z421b9bw2I z(Tkf6Cyg1pjZj9#M%aaKlV8oP9`t}pg+B!Ao#fmGDlU*YAuw3dK!ztmwStvzT;gUW zbBtvWN53KD1*{%ka9>_IPW=ZD-}5-}PxpFEGg$cVsl>ipI-iL)mPeE~R1MA%KXJw{ zh5@VkRL>J__UOQ}QK9^K#}s0?zGfVHQHOE;i)KZ$qAiu>xh*p`goRid)bfUIUJ*eD z{I9e-GKRQbV!NH$LxlBpq6}oL@j$D(&Ml3!xt5;`PW>L!1@q;=zZ}emyVg@FmLOVq zW`F`bd<-bwoV&J60utnH$2Fl=+}Hsx@EnG6{MuY1zh-`Jlxft&O-Ya+XYUsf7jYe6 zZo&*%r67(@8K1w^L=^{N;uPaGw5lCli&}Kf^d%o$X#Q<8wjnuV^-GfQ4hRxKaDW|7 z#Y8u%PI!<`c<+?_w`j;a2xapAkyir%MLe1#ZBT&Yws+$mUg(0^%+GVl4@#(dO*OPq zp4aRA8*_Va{* zc$+&Ir{t|SKPXYLHL#)VGJQ*&aZJF#nI?C04SS#M?i&>=F8f5|B zGI-44_pSnANRPB&X3;`U$G<~Y?LEYK#exTMHCDuc4O2($f$&J`og!t+*k~lliG&cf zH6#-HIsw8&&?qCJn%11$_*ZWbnf_>M*FJukgG9YlP5T}X3_#*FU_B=XYnYY(Yum$6 z&0nG|JT()h`?htI-zu)B-7#afLwmB}_Y^|2`0?2s{h}=C!9f3@#5+2HY!=b*ThTjljly5TCpi(N>RYErD!vBHaMPNvkbxJ zR9OP*-EQAi!)0s|)K*Lqr0J3q*(^gFsapSR3NGuFs*a?APbn063E_goqdK1haeo>T z;O0#vh{D}I;fDvD-1Bu$Y-UN0dw-XuJ!@nZd`=ZhVoAwS9A|&22!r}tHBj!iYryIYhIA4=J!v{VI{mp~(6{p1w+7LN4zN7ZR zog|(+XFIMNkoREixFgMUS~UC=>?ohH@93W|kIut}-Ihb!S^ZLqq+)$E&(_6C4NasG604L@ z_ruZyG*tBO+gwpfVw7LsJRD54B|GC>kyHI}2_QLux8&TaUjrST7V^jGa(Y7)T8{y~ zAA6S5S`9zil-XG!)GY4v!({=sI}6m=Yv^XA^WMuH3kH!WFHw^6bBb(!`% zpPR)ESu8znfgwpcK0Cj9Lj6WaTWi@=unQtCfZgqI|2NEhL)X(J?q9(XX89zJ3KM=y z=2uKoD>HP4BkkHYe$MJLqH!7g2j~KHX@X~xs$(47-R0ciKoPiT2G1G#s@uLjV{5ua z+mVkC$24>!na1R;REmciq1Avhn6GaL(K+5 ztP&tcy_hhoO7Ba*rh$|K6mujV_>|HnkAog9nF5MS58Rk*%qAidb{8z&>ss$jLK)re z7{ZS&N~^1R)HPpBv^IbQP^7xq9`v?-mAx^;xxL2+E=!$)FH++$_z|r@RaMXMbV0A4 zGIHf(jpNw_3epA#p9v0HUdL|jZ@oZFb0S%bN&X8Mp3E$W0UosqAbhFApjxUHcf!hct^i8GHZApUQT|*+ z`z}mvrj6LD6dQx$cD-d>9RFe6QqFZZCcRsp7v&3mw(0N9Mh(pCZMZtbaVyD~k9kvi zkSo?z;Ux7ekF8HYeRHqlv<1O>aw162!NR@!UQo8!WSmZ zNBhYV#Igt@*h!N?Q{$>3J4>uh7vLgV#}z0NOg^M8j(5~|OrbU%y3R;lx-RhW5w+!6 zGDs#Y2pLx|Aio=f5rim|XtuK>akkvh?lmG>*kvRTKXXtl`dt?%&py-$QFxzwQY_zS zjDQ@g+61l};Ss{$yKQp@31_z@EsruPx`cV0}$YPor+> z^?3A}*t71O!taGqpEUSSKj6m(Rl+Kc^pEpdEb+;Inb_sO#72ds?inj{E< z`0`6#qT1J_5H3kHjc*sK@ID2byDpS&P1t*6e2*|W(-qI*U5L(k8!@5g-Pg&c3pwKVLFwzY1h7(}JOoXgqOH(BJfDO{PBsNBtWfuCcJw^gNVnIsJ-3o7=U&9CQ3I`3pC2io(P zUV&xiPy@JGv5C+> z)@Q48O`*V%=GYdueWNLB?BOCa6>Qf6$1InEf9^VQ-GC2LoT{?#fNSadB>_;Dq7tO$hl$-ip%{Qsb@`ZUE_w?@h{MvW!KR0V;GL9;esyez!@5g6Pp={(gS52*c zC|3~a;?Gzf0(qfPjP{rDeRf7Yj?>kH&?fhnSA6KBS_S$#Nvyo_PiJOJ)$e@A z{`<*3S5Y!mq9)0xB4fy|RpGgvFW2n-(#n74?D~r1f6SYRab&a3v!Ps-`{OUXJEuLHfvI^jJ5ukv;fc!5XzCj9v+@px7ZO5YQDy1>Q|OVRF1Pq8cD6vWKU2X z<_a!q98CTs@zP8QBeqBrt2~kB$DL@~F4E|@V71WcTvZ=BuzsAHq$uJIyve)nBpuIY zQrUz8Dl%69GJ&?_7A2Y2-ZenH>?ltwotY^sH-12WG;`#lnT4Yg_Wsup&rj=P=&RK6 zjOQp{=?}>T%8dVL-m~;e;BBH;cLWK#qq}Pl{t9Ci?DA`-Bh4>Sn?k~?b5)H|@3rEj zK0hKz$cv!;?aED~P4G9fQZ4n=6Bb*`19Qnc)2f7lg$vyJW8keeOOX!_9Wzxsth%AAC~QNZMSnHNs5J0~a1YrM)yO-ADX4DUkpX`#x)O z3F+hIImcd<22;YovE(GC%9xsd0DacCZ`Izdd6x$yau3@OJ-$%9TFKG?v^Ih(NTrJL6A>&>0)>@1g%vci7D~b0SFo?z9 zVZ&2O8@L<=EHqx;f0u!SOQev_*E_bwojt$+I{9n{n`)Ubuui z{O4#u_WO^{B)Bz-=D6zu-7R_O?(V$X=l#u{VMhPJ!||}!cdxZRl?N9F%roQ26CXT;C;zZ$r93Z+nb*chdlQ2svv~?fBMfD zn)yEh9xmbk_7B1{I5VM*{1Tdc-ir!6EoKRb3Sq$bLZG3-RxHK1NsKow_qdEC933AG zSPVS8JB{i5a2bcc`nA@Va%I2I<)7bDrYNN%&C1uUN)^kcu^-+v9u5IveGyAmg(~HL z3<7W~CHZz0ma5ECL+2ygUxE0YTdK$KcySg@e%5j~u7&dXo3!nGJ^NM**8>aPKu78j z!OuhU^G>E*YmRA-+)MX$OXbW0)2{E6hDPcqef=w{2Pe9my+zQ&s+U+(J0kQ$jgR-Z z7L6?y!n(@WFL;!&QYE{Hlj$&{&1sSmxNvn3Op}_e@D@R|#eNM2;|)6)*B7syA`4I@ zh<|+#LpSvn|NGPU@4yb{0PyX{sdeO`O3m;uHf1SN8K`P}Jc1Q6G`N+8I$plz2eDHr zd>3&7%3+ZO><>M*81ajT3RvRM(9oEeQ_KKdiaxrX@~+`zKO40cmw|yl^Rx6X4{|)M zwMB<9&RgcETsRULxa@TkuqG}+DaNLr z$2_LDr~%2vsdV*vBD9IDJ)%j@G*T@FpS-s-Zyyn;kdJm2YTloRQ13o)LCM^}adXbhkB?EmeJcx^n>DS4h>+>=eW-HZG42MC zq^uSfX00C>KCll(8TPQJ^EtCShmFsv1Bk5#VH%pRkA0+9t3P@upG1aq+B#FMVq!Azi9aWk!IO@V+F?X<(O#w zY&aM41fXXIF?4lk*NxRP?L=EobH4i+K1VXyyzjZa32a@@HFU{Spy(0ICgpEdi|2`! zH~w6`p7D57r&}SydgQ`(?4)9Y+g<&Nla1$HS$3gR|It68RMPMt-bewM5<@yy*c4Hq^&*bDQNBQ}6#R46jhk=%*xE6L@C#0wF?LngecAAG{F(+v z>taID&ZErq5OtR@S?Et(stmM>@tyhJfLoKC;cWD~pfn{~*N*FT6= zRYoF#U`&qCwRu;0F7tYZb1{N=I@5cKCy7DHdSmbaL8R(9i6MKi=Ki(5KbJymf-Ad3 zvC-3N1Jy1GCefojlU*Us zG!Tu)Vl;f}5nEzEXNmh2oXh(qtLurSV15`cu79L}It95dgApqIbHu=K#3*TMWRK^; z2@n{55LW#%Vx|#pyF{LiTwUXpX+kpU!t@-Rq@~25*+lrm!!uohNkaJ>)_a*GV6~x) zg?{~-zrffCmr^nhtO_5eu<#C~C@I3l(4D%WGb=n6uT0XpdzT0jT5|1g-WhoMienDVM31X^6}{EKMdR@ZWR_0fG-Dz(n)E z#j?GuGA%F)f%bCqZxk?5%bTbzpY^9E{AZm>qq`x2a86$#-h zJ69)9HsI5fScC+b3tf6ET;Ac|KA|2$TH?2yqs3VjS+$Maj#htm4J8*C*ZI;Q6+*ocYpuzfcN_TlH(r@oS9%QE>+0Lq7A`VYlav$1R-n$!gSKur2R&;n<%1{2dv z);wvQW+;~y8fjW*#r}^1C>o%&H|2;kW=SG9nSh%E9*DiaW>2$QI&b^@&&H|uyAM`i zy4wBE>F>KEVhnsh>{aiM1w-oE#7x4$0tokzsj&GWx})rh*#dkw7#*5k;g}9&eHrf2 zGQp)e2FBIQCwAf~E0Hetq?Si8Ai;-4?SB<%^lQJ@1gejgr?khP%gY{`> zvyUFQoG|5S2jn%4^R-Bld3~W4F;Bm}|AtwH`OgH`PZ=xUw|Gk$5RItQM0t}4`{hff z1@M}Z^DJreMT==B_i001msu;7l*>Gv)Q8kD*0{lHGTIx~p+D?bzm#O$_0aD|nsk;* zpI0eQPa*#)mSe1NH&q&D+HkrJ64;);93jh(^h*3?ua z!l+A%H>4~;?$0)nhnuOuRQ*Rl$p?)5#&tyg!MrF^an`e;lP>jSkrbF{+S<<=LxI18 zZKqi9+)(no7|%Ty6k#lf%7=mhpc*FR7=u~39M$I&iAl90%UL}bUH2>i`o@TEv7nA9 zfi^T5TS=EB*{#+_#DB^v7O=pVm9Cn@FtIHO$}NVtkfmXg%K?f*+6xyR-)L_y;aO$6 z3{mIjZt5vpRO{Mw5uxyY5p_FW!4J_$Th4eOdJdm+>3ZS{SOa?~W88#$#*>qLB+dPM zxQZ!mtc!vp%-mtC!26r#oN;ZTy@;!5HoddP822wNhjrp|#p`_chahSejth*9gfaA3 zfgeh9xq2T-1^{K8Abmt62i@3Z!wpoMDt)i#^_`*6-#d?tA4wzSs-@d;?x8Ccjp(xM&vg{rW0L~{j16=pv{1RM%M;B(hlL|oN4RYAFMk?7&XSD z1S@NC*UUPD7a=G|UMk=N1QobSL7G0RTM=M={Uks{v@lJD0uu%a-2VF(y(oze_k)D3 zhx1{QW0L^y&V?=(@`&e1*LCu+HGHp+;faE_qD3VgXQY6ylz@Bm{AU~)jCr}8Ik}y1 zBByMQZ6_27;y;rloc}J(3nf56|AS4X$#_FRv_M1H<#Wv~$Geh((*{>Xy3|m!e|{5-{a88^Q*CaV_i7$w;B!F<2#Lc7M%6 zy*r(E12m`R=@8xD1jVAM$O$Bb_NdE})JQOz7QMxP_W>oay75WiVLkfcaVoYpHuRql zj-mYjYFjv^U|>IZOF#$`VXAh7$JiES%g;8>O*qe)Qa>j76akc9E;;*nz^&~w@^HZ$ zDsS_!4LuUR%A_D_;EV%BS!`KSs72w?&h{I3RH5Gixw7ejOyB>;U3|w#qQ-gPzT<)b zDU}}>SH}pXw(Oj81G50IADkDrAZ8muSQ7HYvOo|J?9mG}IUazDo7w;_Jh*PKG8#W7 z@i%!QQ>|X0rLwTO@duUQIJDnsuSgpoJ_s(jg$&Rzp*DT2(V)T`sl{&L?b(<>z5ZR3cAW?_c24Vpx)W8uMna zJr!9vpRp$T8P4zIL28f1%KRciYL*uj;R#KFVsk=Gq5}}_(!s&tc%OX3{}wmQ{Iy`H zM4l+ap;OViv`(Zv$%xz`N@9I9y8zZ!iap*A!@aO&%fNbcdHF3Fw2SWdpEPnNX}GoHgH@5UK54Gr5jE3o{|FUVPiZZ`tDD$E>Zl;q zcLC5Mb2ZU*Jv_>`?#9R6Gsmu`oQAT(=))SH3arvVBIfqr?C=ggRJAV4XDjxe=B1$D z6U>bm7a)I022V$@J~eI z2m};~J#gQ@mGJ;{`1xb?65?Zpy&}_dMcbRA_uhX-O~1gkX^d6 zm8G_auz#2RW{(GOB5(+ZR6A$+cU^wUdZ}s6__Fme8k6dAw=t-Mv(Bqniz3xpVHo`4 z-Hsk@q{@a|9{<65v<;uhY4m*V9ahgq;}sYx0UQH7xBi89u5G=ZL^-tid6Aa0%*Abd>6#`bVyLT;WL+V)iM?*aoJnV;z2=U~~r5Xc;7g$vx zu$UL(%7+b#1Zgd)s5@{Wk25(kgl9GM<*JO%?<97Px7Egno=(q#f@D>}c2>zORjYPh z%%i$~`po&-Fj!ZjK+B@{lmSwQa_>IU z_r&|~Vkd9RWI@1YD!?zAEb>s#DUAD*{9pxut3 zwH110{!^|HA^u<414dSuI|I-~gN&{qYV;Hol`^#l_tMuvMlxagjEQ8)gW%=}EH;w; zJAb$ITj^+@@a&LUu8X{38Xv!|m=kEmrk!i(IuwssDq3;$1T`Uc4O5s67q}xiabuS_ z`PQn5IXq-XjD3W0wqc?L!X#6V4Zr$59|_T4IS<&51vMl-1wYVOG_5@IJtc%H7pmDF zr;iCfV5Mza*a^r~dY<~7AaZN4aqNAFMCakyv!T<$mQ^PdiaEYZ?aO0hITo3+{XWFO zS;uNtow+0z6S4@{)rrt6j|9C=Eow{g(%WeDuN1Qop_oDR3*_5+k^eWVX8!>3TPj`pF&9k$3*Va3rD%9P(@K5yd zQ#A@CFMIn+iG`;fc6rs25fXsV_Tz^|4fF@K1S(=X!fy*qD zT!J0Wl6yv8gMgd)g9l$`LW;bxf2`>gvko$wJZAMo`)}emqemVdzDqN7V((Efy@`}= z?iK!7c4!;i;{o3zNoLpLvUbfEQn4^t|bLK5n8sml_?V{?yZrU0#G4=oxtT zqoot(ypWSEsr|!dgImehGMLyHjz?w zYX+{L$A30Xxv7s2Vr}|fvRhtaoGBEiF50Q^VU}U{94rhR_S35L)sK7@~GB$rUxJl?mgkt%h$J}h^ah{TYI+u+#@pW2Z3sJU6%8gX;eU%n)KeezbA*yKf+ zlJ%kh_M5P)Ch{1M`i+5^nK%^U%|pw|gMX|>$u-8bm5_?<5{5PO;&bSSvJ57UkXns1 zxR#$YsDx&2n1y`}6~gsk{z+JL!uJX`Pz%chLD!S*0m!BIXeFpuTK1zVG=Wy&5Dq?y zz7?_jWn)V(-F_lEWi8+FTcxrfIjYMz8h!7omT(A!o85%_cKnF4{2MhwsY)}er91X* z?1bQl?v;Oxv#)DZnarTUx^ppZ=s>Tey`kn$Y9#qHr5Y|m&6o%P&SfllE0wPu{zsZ zEYs*ddT(KLy3h(4ciWf~(B&9;Bdkt$ttZTfNVo1!baZy3u+;0M7*~0AQ`LA*yX71Y zel{+lm&F+C7TNJl<8nQbeZ+@MlWIs~nqC!AOEY|FNitQ|ebZv&-GkXw)X40{2M=7n zGkfxZ-b9$LYC7{GnEPAyFk6dQ|8|TZC3n^RhEc&WO1!GY z=dpN-Xy;$vOvJ4|#+lDZ%6+$mp|p1G#p<%*4=Wy9PA*un+0S+eZGC*5d)3)y-uofj zyi$Ex4o&?(^*;V?zBMt0obibxFuLrWGZ90svnQ+O?dqEu%_MTlXKA*hEc213KYlXR zOc&dt?ourNzIqG^kQ1zHzKd-C_j0a>UT`ABxV&P_uAyq@Bn~V0VuS(bTuMZ5Tl@+* zR9&}5z7r-dI3n_5rJCiC5Vy2Uwve{g*arR>5*ZB2x;eTg$@mI~*pTrv%G_eTxYk4r zfdK;%nz9qxp0NhUiWl#cW!D9h2}@hrOeba*r6EH;@ORQ!)g?}wl)0VNENc+`2A)u` zsToW71^;{5(qvg~oRmzy^pX|DR84?U{=Skz{C)1izN z$YHZG`C2*SL3vX_UJI0&h)dBIKb#on@M*I?BTO+5>@qiQ}Q#0eEiGy!QK3B0~K)p+eam6mt zb)|K!6{mXijpGCl36qQl1m6CN2^Pv&~Rpic8s1Oje+ny*EYolz-Z8ceJW$?KCV&jAMDq=0J zkjL*@HT>a{3zAzq&!mDb9x9bZg3&VkxX7iY?VSqF4HRd3`Z$X>x;sY466d=`&o7Mp zu-Hh^5g7@ELbVmEOAHJj7c+jdedR5%(wam&RsMx;*L0To$n3c2BA%q)+q=>?+{IK? zd*AyEV|?d0p@9B##E&OyT2i=b(-U92 z)=B=B$KZaZ&BE(ULQ*n2uV9vM-{V*R(G|ks7f}(L1A~*Z7-rsU{2^H;r=9D7^}!lL z3UvNydcBD&*5XYuapkr18bhmVo~65%*qD|Ng>)ZD+6Ko@RjDJZkDfTcW{$=D`-o6t zhtct3Z24f#QyUEm)u@lX2)P-{^g6dcfjFGH=DngzW!j!p@Nt5NNA-?iFmbqE^Q8;W zySEkSDV%MCfxk5N1&>h^t809~;+@wOlR+LcUXOrRxy?f>W~{zB>0zI-Y6{{*s-hV$ z2KIt6`);*3F@FhKj&6+;D<0^Mwm0@9hfSNS@8Fhla|JA)mO0;|qF-}sk8Nu!nDgyF zr7&`|QZZDHcJ4eAc$0(`EjXdXkTfiQPu?lsn#8g=R!(WC^AVzWKfg8aSCv9pqqo8K z&W;wA=pJQsLI&zw=XLD9EmDX#i{km!3DoJP;v-B)AanJZ+U%D((by>XSJ0zq63XOp zd~_^>>Y3)qQB|9qQReW?_L9MZguNI9SAQS(A!v6e{_A3MiLJlJ3&&z%p4b{drM=bo zlr&MADc?Bz$9n4Q9WG+f{BE8HuqTR-_{6(lP`Eke1+1KFW^lhP=({iaqxHxIIwvC# zM3#J$cdct{A1!$jX8%krW43O!?@f^G@nSh_U{no>*&?2sPwrZCU%zgcpj`-bDk%#O zU&xPnwMMDS@gaJNzT}j3_r{&+6+1s7 z-91{Un7u5VXkPI0=PhTkaSe5}Mh&V`^J{&DcnW-bs*Pxn zRvy;_wyUVR>JiC>%`nfvAv`C~bnL8y=)o%~IaaWMFkqi6CHsjoq!aIM5efAZB6Ogy ze@Nn%W;m)|2T=5WaSTo!d?FwoHToc6QHDf-3v+DBCH1YpSQ^G}Y^inPqSik+4m zL_b8+pPb3j>ZLc*bFNKr0TgxsIav5x%vKe zGg!nz>xhfoe6XU$S$+}ma8P82GcAD3GtFFxN&U2(ys>4<_%yxgj?3xAI|B!CM0ZEqmNO{mJ zjK;RC7{r_I@eJxIF%%6oib6FCDN%)7K4>21Zedj^+@1#8YV6YOTSh#I=7Mn+&)>{- zjV;JRWP|qF9&dI-@U1;RS7tv$=3tC}tf9_J zB5~Oww2Y4K@tXpK%8Re{mZsFuUU#ret|_yg9aE|c=*4ch6>T=+2E0MPYUF-M@~01y;Xm)h@Jf*#8 zSIu0a77|0Y(k1z8sfp3PmJ0)nf%Cx*%y0I;Ev zoBCl;!5LDhY4Dg$ot&UnijZ9wM2tV@Gqx4!e063haOvWJUAms?BhR&H%{d)iVBX;N zbn_nHKOUH{SIV|0{5&pF?lCbH{dx_&$da6p^rl7orM=IqOx)m?FGa4&qhuuC4`>;(R z7RrB{hNhQW46w`@^`9jSyv|;t3bt-XxnB67C>8v1D;&Ni<|jv#tw0fHdiVGCLco4t z3I!!wASq#G%gxwh{;haK+P10L-g}MYl{xhkmy75z7AMxx%>guz=FB{1`QZ5nrfTjN z0g(L&WP6UG@9~>Mt#2?;G9}Q(7qg6^W@eT*ySpEFSe^lv1z7YeM#j&4AR}Q2iW?s~ z%X9z4>E=j?68s0UAxj5z&Ubq;H*W0*7Tl{6P$u&*bg6n%*w@s`6_EIpVY80L?-^^K z!@fZxh}%U;UFefnjW_8Qvi$v8NY&|GNH;&Rr2ezNMET-W!ubxPxR#Ve*Zk=qK#Zdy z@bH@T899Jxe$W0{4jt|=j^r?I>4|N`J5xt6*kIU!VeS_8+mZp6gVC6~xQH-@1U$b8 zMhHsfLv+d`&>_wxJTw@07F&iNAorcXS|(61qDV}*Wt|P;jls;VYS`Ls^6}O7iZKyfl8_p@p zm&VDPdDl-b`+6lhhYWr+#SpHf@$3@BnwF$7{Ihvsn_sc+G`GhHTG+I>%IS|aYyF2E zG9)w@VEPr+tE}%>uxQ>Lm?GkH{^6!(=18AJ@ea}o4;Rb`kKhYHT~>7?H;$=E|2L@j zjr)@PwtSi0J~guJ`;e;!TV-ms6#t*RhU(_<2v42@Zzd>{nW|fpBy2jK2#^|q_Aa0B z+Ic~S6XK7C9+o$OEIUj0*IL4s^CoAAZvUCFE=>bccWRD2PigAGtEBcyCSKT*+xxO4 zMq}nW{CX)o4_=y*kiDk^M1c;C_p8cR7A?&Yi=d~k8&#s`sSH5j->1$W){<>}ZQ4jX zC=b3s2pNAxH@`dAl$zxos8iN|z8+On5{tQUV)v|f7!RpXv6nLx>b(A0YbNiLj;2;DnvXy7zMo(ao#1+*bM zgeAO3MW{7z#TX)uL|Y6B3#Nf5&91s%ER-jfdstLo_Wc`9le*OOC*G||_ey=*t8c)) zGE#aIp3ImCKk z1sKK8ExZA>0t_y6n@`AIP~HY0Kaj1RH{$s{LzVqf9)9PZp9Ga5aHFm8HQ-xv+l$cg ztsQi%!%J)P(hnU5$EWC(+)HW0d!QoWWJ73A>yPUt?Fm)zq8eyGC#13K>ACDSnm0-D%2a@%Kg&XRv~0qzFpSaD2zQrMJ@CmemF2A7ard-vu0RUF_f;zyYVykFcD-Wa-zlS zHq~sX#@L8%NQCt-buq}$Ay%h;>sm+jVW|+bqm2I>{9xz>w02W3hS`S;Aj3x6yy3uCb#pQYkGo8?DdXIlX_?v?3{XtZ)@kIv$Nr+An(tXQ+7en z$rLcg%&QBU#EWS1Q`%Z{2g?Mwr*Bc}m9QcrHOStMoj7SP5X|`6$MTZ+1QH9g&bOX2 z$RL$0#cB*F(Ne@>j^D?U4~Z2Ec) zAzqP5%tm6*H>d)m?W^iZ$p$9g`>(bwS_eU+I^zFj38T4|^3<-Rj_%+9PIg_0q5tL2 z`rKp_IeKU(&Np*D9SSi@0Yzd@=h-oR1xO&U(kun+0c~Jb=r=Q4Uft>rVAx-C?wzOWOJWR|b^@F#P3#(bA z#u|+{tCA7eQ7W8AOqXhl9p}Y|o=$~^LxgF?|CPxm>{XDTD9`__Zt$|DE z@0~2HRkj^xjGWegI6f#=HOQZ%kx1398Pz_qIW%#q`z~=OPGK!wT z7Y(XqhC3GQV-G{JH_K*U2o7uW)LFA z_2WR?f9ephc{^|@^dFh=Z&GQ~Uv(QdVlFY?PL|R5pWWFAEGc9Q`gtq<-wkNr6GbRN zqWa?-4LTueFaRsQ(^&A0F*qbXtxM<{+XTE4A?C*IX6MQih)r2M3wuiHEj;F$|KnoP zwdb~eSx>zs+jQ^cDq5IrP8A+6&6wK5{Pjqr3F=uIYMwGdai@vXi!3~dqLb?L)WO1q z0C-f-c7GW<=v;GBnLXHypO0CBikwWPRx3@6=sSU8_Sz?tVyq}}9ztyorp96~D5#}# zH`g|ECJpK{m722t^{ape>rYHB1)oSQ@eGP^B|!jRY$IC^Nj<7~OT8X#=mffk9cQX_ z81Pq#AG=y!dXMBKP0mZ_>&Po+nTWEbg7HFPf-}xn*8b&Vj$FQyh?7N5bxOA@K@2bNi{?XCV5Ivvu6C+5W!;*qr z^#l>~@|r-EI`7^@##ov2iGmnEFj<;nSHi;4%)WKwPoGE|4{vOB-23Epl^-BNStHH* z^lpdgh1*-b@H^eH_1g&=MgAv4qcllXPkx2A{)L4c3n<)^ap-C&&|4Qa4kO3ZBCb(PA8Prj=TUa$?h` zWy3hFavpBIEMxwlNFqz>ogDAnX-`Gf>HkqDI_%)JJ-t2O-vUz^HEq#@3Aa)9{a?P% z0e$1N+@Xq&$9Y1sI(%8550x`V2!m6d1LeG4yvQ(Nb(tfHWp;b`0W=b_`{4hm1rbDC zVy@@L5U9e*2hb}~Bxxj!ho(t0&r0gU=wQl3<+s?PzUYVn-HX0hWxGTi`^A(021CSg z9K?r9uP{(2-Wn`k=#2&rjcL9lL{;)61hU4sEfI12v<8>d|JF0hMOi8Yv{^rHl$@r5 zKynA1GI9Daexn?XX6|-k>E#L|ZM$9cW$TZwev-4_E4kC6^Wqy%4j)Fk^MxBMCAgb- z%+VaN$(Z9&ZuzDM8D;%6>8~vWzOBdQIKnPn62ru;Pa+6a@>6l zAC?6s(YP^&1ckBquPbEPhQ{{WrN7ErJNDSJiSZliPdse@9ssDaerDdTpYy#;JUTkF z9HuGTb+yh!k$vL}uUD%&0d2mo!;(_y#6ov7M4-O`IeY7JUJ+x(GaWR61zK7=+q!K- zHB>LCk*%Pi>n=2LTx9sApK)G1O&0YcDUeqU1qGiIFC8%`!Yx)f%s#Md0kUiBI zPMf5c7wSX->v^hSr?H1SIeMe5yDusiMVV-U3h_!OZ+r;-wQx#K?8~QLt*27t07AC* zgj(sL;`O4Fa-Q4hw;b>LF*YJcKV9Qek<5}8N$zZA_BmH$%b0#Zg>@(-XIX;rq;Djj z;~j=oZQT%Fp?wb^A+7pJ(T6B9y*)A*sz z6;}n>{<|;j?AKVgdV+f2V@b4Lv)ZyO|G~HFr%OMvJM3o9LmLhhW75WtF?uu`Hg@5(#)k)(Vmdmx z=Y(=ieC|ROX&p?6{N?B!mvnq|M-J7gr&Pn)wu375FQ<)>m9=$Kp|BwV$JG;p9m09q zv;xdiKA97jF)ozMo{*Ebu}k&_>8PZ&{@{t=w%j^hFBC?WjQidX2UY4@PFx}LFvgUs zAys-R_;Ps8GI7B~H6+GwktTLTl2Kun$86CME!}2`=CvPF8X`5J%5~<;;C*t^D~B#1 zeB_uP=AT`8v;($^L~9qZu;0ciz-}&IC1`p}GqCq+apS`)yxg;?v1c-kWW$~#LKr-l zr(J2NI!H{x9%z3edYnhrc`kxGvRVrn_+y?nU-bVvq?kuBBhz}%pka86Un>mPH?F07U>#Ci z0~blI0%^_$SMw+MF0)8;iw&A2)g=P4QL09w3!cLp*3BE{tMDnT)edj`>?wuXu$x7x zyH3Ced_oiYG=F`6xi{ta-$;031hOh8OajM0oO3*E9+`c5;ScDJrI!6^T5PJR^B~$< zfH-e=UX1TG_m%h!Abi1mi_}iWUWp8MM{gj=j$%5LQce_mU?@?jp<&b!X&8w}bIy@# z7{^_u<9y{X7iN{Vi7`+1fULpb93?{5c+IUwr>o9~ks$*uQ=4<9?MzhegYuvOxG35heo{dF_IyX!Z@~IuAy~wU9&U z7shmX(yU#-kg7gYA$HVXI%U=Me`aNlT^De}?;V@e(SN9w#LHpzxA)CbF2=eCscO+NiD8tA)R_It8weV!$)(g!p&!_zW>DJ7jil%>8N3%8R8tY8w{Es<5NQM;AWAx0No+0#%zR4l;$u!&5dcKD{ z9uhGN;3)-LO-kCJvwx^P1y;335p7*p@^PnEnlIQJ2}EYT>rdh9%K+BnO})fVOX?y@ zu`Ql8rGg78_j}bjzgJQ9=e9+^;th&^XOWoihQb9$-6z~+x{nPRNZ9&3|fJ^QTZ4n4(Qtd0yW=h21z1L^oT+U`na@0dr9OqYqc zdjK)O*%CYt0RMaE6?L#!?8Zg3%f|hQ5=~)h_5*yO!V7ogdaec?=;oEE*-eoBo?ip9 z)wG3>_UDL*DgKK~%zr8iT?;E7FH7&f-%}%!tv3>u>QUbHnwPv(WFi(^K2yWziY%~qm?Da3CmNv;=P$&|7CGa6pTli z5ed%_{r(By@Q=wt*N3rkI^x-aFH%4MTZ^Jn)+GHj5JdL8hO1_R2FT$cr3b$HX=pFTx4NUy~a2Td_;sOKd>IKA_l1gXgx3`bcb(;XB zET`a~>&38yCKLC&n6^q@vUcE0Xcr{A*h;0sfj7{ax8`Hw0?USoxr9jGO=p?%NekjU zg&%tQJ~+9KM*}aIf$hhHPD?446Pz0o=JPS++Bj^_)H8B;SN{lMq^!y%Y(|X>-^8WOZs3`B@EB;Q0m^-d~mNz8Ou6lBhAh+~F7axJ}4>@$T zP6Ntq?6P=c^DTAG83*Ok#M_zKy4e%wH>ZD_p4YN`M7bP!?cg32M2*ot3{owv0v``D|vo{h4&xL*pspCO#+sfXD!HtOeP?(N@<(yW7VSEsOpWQpx z-*N}NJOc({1jzA%xZAh|?f*%zBlEA;DL&qym8+xhbY(O6gAIDpslc6UAIJK`&4ut& zTLj>-qaoC&F+ab-g#LzjkhMX)z%-{AQ%`U#XCn2;D9xgJhvGA!*&VwpF<5P?@HCSU zSw-n(qsEr*2-rIh^a=~$j}Z&$b^6_5ojayP5`S|Lb1ma~)!9Y$MU3QzQPYr##$)wz z*kZ`68j|~)xP8tNs%<3%=v`D_%@DoiRtLEiEe19jZ|yZbLYhRC^L{H%-`{$MpPez= z*F};?TIxi*Hj494v=D{~v%yzm9>zcs8{u-4=%7v?Lp*rGh9+Fe+otB7CB86-^PLc#B4%o{ip=t^1V{ixaYhx{@uY zS^5|9q43bIp}RD*Py)U0WBv&U^N_oW26kt%Q%IVdm=Jz%-Gnu`8ve9vV4 z0Non}qhaacDqkZ2*9C(>|J$z|QB-WVdH}?*kjsY0|GCLvL)mYPF(^|l)hM>&u%6aY z{TnN}+>>z+BB_Fy0`?Sfvmc?rkZf$ccH7d|85aeRw$jDcJ0j`Af`Okqh;WL~Z@3)l z)>Y7YNT-69tWIv1P3j&%WUJ;}_|oR{QX6r4>Q2wevk=SI774}ppDGnLSWzq{2VA&# z{#6@(@8H6}w7|hAsHx}J67q0t287|^acE4co8GFEsnu_xPk7cZPt91 z3_zy?#gRZ2@HHpy6JRt@@;au%B0 zG!4XZn_O<1noSAL%r18`yS6?j2E6{<$MI(j^asA&PN?#j0I$IhF9I*k%#;SIDtX!WT zTCp$Yt3Y|DuT`>*wNNw3N;&R`!3Oe!2hW-N^#igvED%+DlPz(4`gaH-gzFQ^HbCr8 zJ2^W(WqN<@l2pF_!qL<$YKUCU`wJ_VqB(ukpkR`!0l5>ZAM|+QMrl|$Cb(O)4YS7_ zh8j=yi?NyFU*W0W!}o}Ff7Ex7Ga{fsm&`L5g6o{F8Lpf)PW$~Q!@|nzL1zc_rSDN! z9p}dX;Dy>peph8e313W@=!)O7tCapFIu_DVIS-;pS6OTvJJst+`jbKx!Wr2b(wiL)}c zi$K=WvRM^HzV7j%EzdhOKigl;E=J6S*vQp1(x5*JZ%8mWqw6@v z+TYB@n-!BB+C}>Or$Y;(CPh5tzWzX(ox`Qq#5p}fk6L6korJ-UDhBRPfC&C0${=5? zm^j|Pc5U&&^a@<1@qK=+GEf})`wwiozTG?0OQce7F~XZ=;7kkH(=v}9}<$7pKhjdpx1g$$BiE-klmN3;Q1LWQ@gqFP`iLCjpW4pIs5o-=}8b` zpi=g(;d$FZxx$7!!{7g~OQ@qvmkDO|B3pd?=~lqMod4P87h~JU;_pB7K7JcxxFD`O zQbP(ETXROMeA^_GpJB1RhEuG8JcosY2tzoANO-~=k&2bEx2J0jW;<62Y24SI?=QWI zW)6mXREK+}hL5QA^s5~84C_|?SCz~Z&_ZAHWWr^jT5x(B{$3c_QOMJvaM{3y3Q}yT zxNDS;f8F2<(9A~VlT_+kYK0yJiz%61T;7g$1R?oDz(PHQ7!se}ULe|SmX}s_->p$| zw2Zb)zgbR!5RiZrTW&7g?T-7iC^H=rZE6>9;_l10EP1*+<6TZ;lx(*KZ(e=^#NwWL)kbpd zQq;8aSiY^z2*GF&zn+V8dWcih!PHb`u-R1AMoNVVswa@p8Gc9OQ5@T&@GJ7tZIE?A z5HiX3igl%J`mv5|zt7DIBSTgyoIx|>xGir)K;9fKd!u&>|! z_!49vB!c7K1OuZs$T7J`8UZW*sY!p2n$e949BRORE*jG7be) zRZ07HAI%Ug_y%0uW=TqczQ0dx1zKNO_@1`5&%4M@);ITJbEuDa^n4gfrfu9%hD{}G zz{EX3NhXVtyNIq+i~lt`D_XP~Ez>G3B{aec_wT`*38$fXt=WUohNM3w`I)SSGTz8Y^VMe0xy#YH!yi zOnu_i2b5c>#1g5}q(#Y(aEpZ@155649*v=E2x$DzoFAi!77OBLRxuEpy~x6+;F@#i zj!yjzZ(yK=Bl-X;zOe(&CABkf63K?XjG*cF{8}SLreWqbFF=oK;YTSJO(kh4;Cmp~ ziWI#ql#oyD3|ghKOvZOr<8XPT)22Hg>w;bKecFI-`=5irdk<>eUq2W~ z2GCYl;WiDD4X{O#^83VEWl(4}t$O1BuqUtRnJFv_(0V`}{fa-FyyOP=QK&D@bEh!8 zKM)RmdyA9~@3!4>s;v87S2TWdBk>c!6^u1@7&xe;odC_8<;Hx_)-Iaka%Q;AIg;8s z*vQclDXQd&Lxi5p)2l95qD~7a`T8{zo&`-YSxxpWx3<%EFxx@sL)dx$F5z7~^%N9} zB?h)Vmh+K_@%Pd}1SFp%M#}=xB94WJh5^?9AMN_h$T#AfMWbS8RYUa)!v-XdwJEI} zMJz5}^suY?I9W`|ysM`Sx(Gy3Z?_f~3^73F3Kv6?icQK0JFL!|`T&-a5$DSknVR4P z`G~{aV){X7uQu+dU}G9ddW!-*fk?5@>22Q!oZoYo)&plx(fd#BWC|_&L}1h6jdt4X z)?$bl&FgIhX&2hT3Qae_n_RxHWMQtvgUj}#8*J|W8N5Tqx)>RX6hfM6!|*kjv!DQe zb+x}vvW8qTIA9t8fL)ld#Pz;J80A?X_YX0M zfztukn-D_EI-i`%w(Q6drA#37u3Qa2_iq-r4Y7%g)L-Uw%nbsrb(bBCUa5KFO8KbCY z$W6iXRyMtqOCvYk_t!QGsGuN6AodsI`H2kpSx|+?dHLk7j?$4+FVDK*75>u~Rv@B} zb&;;?`T8@ouSc>SA)sBFMutw4cxnsBZS=TKlvox+8u4zSgvgOl6b)8hLd5NWX1|el zuy7&c`uF#t71z0eFQfO|e+; zSl|8#8mjEHI;81sUjTo$4oAcQ>-F?i-Dl2FF$99r$iqYW8s7J3=%<|S6$vZ7?+r{S zhsehe@A*nx^yRJTc1YKp?OlxnIkwf1wT{lGk1zjsd(Haq66-%vgIhfQb~!2QqY=4k zeVT_4nK}u9j5A#$Ry{dHsZX*03 zUX%HU?OwJnaNIIokjjV~Z%9>jU0HQqHhKBY%CB`gHDP(g%+y-hFlCSHCz;sxKjCcK z$ySi#%8&J(4?Y5na#J>ct6d!L^JC>q)=uNxDBm(J$}7g>T2|r*+g~`3?K^)TylmB& zu~Cb{9GIn9tq2j#_C#lIvZ<&_F)?<&-rpWUS#_EL%c+J%nsAb=eWX*yWSW`{`kL7V zL?nTpKWDUnoI}ZbS>_vhS8($$r_pnq^$U27gV+PcS@ZJ3pR>WFypEO8b?rqHQj$Br z%&;;4xah+%1ddyjSD@=#{xc&|wc$S|P8^cjCHDi>#x$_T{3yi^URwgG!9%ctH%RToi4>@ZkrA4S;=$5O>_XDBsXJYI6(c0vwYueC^)zhtgj6S=#+M)6 z*yv|&U=w7JGB3bV@6)yLEsRZWM#DsjHy-mt;z)~(XfE~4ha~6f59xK6xYj%-M$&E6#b@E<@fvcbo$vfOIOu%{KgExJ@gAlUG9(vyUC7`&_#9McpS}DPO>4qp3b^BHkwp8f zJIaOMc*lU*_YjVyUue1_pRK62%L(1g2Q8j0A_d7R%&a~F zNyzrs3V4qYS-q13#+c%`)Bybt(bIoB1K7OD;jQsS`Z^ZHZKFI?Om`=#-JFYVQ-;kA zclM-s(IJS5fy#}&cfC6Q7|~9@kf4f_5@IEKERS~|ySk_l^TL6>F^!tK*4%T0Be(Te z5kf5+OtAz;#6ZPDX>KKw77;2w_q+99_*C_08<>}CeS*A{LSQHaGAyq0!jAMnsN z*BzO3n{CEyyCB34A$1AXQS%*FE*`arInPz{90HpG1eIyeS-OYUw)KoCv~*E47Hqau zblh)WwqucW#hht5zxU4^7n)ioa$GCr+K>0b@$4yqx(Y}|#x{#L*BJ1Y81SBAaX@rD zz3)4HE1y062LpZ|u(4|_GKv!VSe+>pe12rDQijwcw){<)QYBX>@!PzmR zk*zp=r%6bT%x|b1&6uH7pG?H>ui1Spu;-FD2>n-C;M0Qrax~4R#btes2^lI^+*c(b?X2&AT0-WTk&v1y{d({yOY_0WB9?B;})1wP@xmiw~*(Xb+iN>&+#?KB1rZtwNq);SWjfF}5mbb~Ux9aC~zX0C`eG57^HswX*xry+Fy0nY zp28@fc!qA$b~p1%)x_0K%8pF6psy#Pqtq(K_aq*74PK{~7t+UP6~{Fwh%zlAkHzEK zB(lZF5RRNuW@vQi3wVu{YT~o00Dg%&-5~=ZO}HrMM(?__o*HIv?-RA}nZz?6(6Y;0 zA4a&G@A^LAd%O}tEwEV3B>QWen6kFgh#=4tr{I%RdnxX9x^OTpMRt@m-J~mPc=ZRl z@wHTf$5J5bjyoNxpIMCNtW}4(7f$vJPVk4`jsOu3QIgU-5i}+Xf6j&Q`(`{zEY7tk zPcMRC;6PP&2zRnbU@_$vY?L`on}4740a3)3aQ#cpd^Yz4c#@)*G)1L4S6x6x?K^up zpL2_RZ3%?_hih)671QO4EqGY0=rnD49pweQ{F8SX9M3NLI6){vrtE%Hl6nUgtbSgU z`NQm*t zEOT{WJqHWgv(ZBucG&vman#ow>HbJe6{A*Cqe!yjR@^3@VRb1YO;!>};@~+LjaVcw zMDket#=S6eMiG$BSRKP%CvrlSFs}X^IbJKe_kxG3Br$b5%Yk{!?(;~mQeV`8*6tS?zEB*ZtVl}UYv)b&B*`v+k+py+I1xPZ1NZw28VDA3ThZ&60~d{#$63(Y0lP9>{e0=bMna85pg5jpfFM9i1W~0hp?1sO z%$27Azq($k*bOFTy}$2P&VMxGd2|y-P-dg?`cLZcbm#i}H<_G4sAn;BD(aEWrWHJ_ zJBHSaxDZ}XKbAvI^T0nCc}-p>O8Q zQC#S14B=dBHPUM@56TR8|E#z5J~sQx7dCW&Kg4-`0x2^d$luFHhM8q40 zDb;F(;n_aYkM1C0g=uvk)*0eR5iZ=zfNR7nJ+qs_sCs);@s{iA{qRNc#Q;k!2C?W* zC7~=|r_$fOtt8I?vX?pT{dF48mb-Zhg-WSCftt0z4&m39KGsr5b_r@$^X0c@BF&aC zmR&A<`CQ9aSzYftP0qpWBSmq99>)I$f7yDTCcN~mK_c;r-E8ITWFErkk#eERW$=yK z6u6*ZXnJ*nYwCWn?UBducBbICgYqA06GET&IXdeH$+|mFp0go3OLysi8Rbn$r*8gi zGTAKZkl^qRgWrBX^Qre@uw7>Op1|bZ$M@CZTB$f5s25~$8LO9SPvkK>hI9-q{R>0W zKyMI_#r2*Plj=Nl)UPfcPWs%%%H#5;E>I<=E;w(!)*aP4GMhEWgE#;AOMBn<;jka2 zab8IjcrsO@>y7Sbi-vtm%c@-O&(5#Tn6_Coh%*?_E}LfhF_h*G2 zHCuWaSB=Qp4<-1!PQPb{PK)uX8GTHio#x9+gfH=C_BZbkx$qR6Yi}5(N{A&*1wj;E6Kh7dU%J&8RN6nQu z1@MhY6K$!b>oIlG)k!jFQBPe6TNXgxZ~woOq3erR#pt9|VDHa5Kd>T{Ah{3c@A>8o zA%-d{?;jykS?Ofm%!2jpgppU-llNOh0HGeiuQodhNkB%>v}4;2fJ_@ zZ+Sg;u+6W8v(foJ6)0lP;X#0RvoSQQz{Gr|rM66@7gntRF)B$qsu8BDkXGi1zSa3k z(3h{jGc0wS9@^)$7$1%YW*t#T?-A!+#;8om4v+Cfsl9fX!Etn@P6n;b2xIK8?0sYK z@3zm!UjqF4$_YB%U*C|)c#f1;S>#7Xf{Jt4Hn5QPBP&iQq81J_%t+t`cRz3Y6oqb_ zGCZVIu2#tt0265XMcW+{q=4e``TsmD)F-9h(tz)Eoo6}z1O9Wkbo^I@GHQk{rOJj!5 zc4kbV*;erMok1|FU|}GrEP)Za6#5&mMpCoe!k(dL%oPG_y=fY->tV;e|+8$Y1z*GX1j*ThbFC#+G>>U(>(E4$eWmrO~#3M+jC1 zreT6`KP4mg7kB+peL~VVof1G?AxI?6;L;(cXXKHhRu-)XPj4kK)5ctLKp0C3qwxCX z!{1}O^_toDKa(#EmDv!rB@R}ZST?TlHHq<&Zg4IdlV>IEJ#SAc&DxFSxQDO??}uO` zLms~J${&?kolG$;1l;QnZ=e9adIW55(-2-2aY_oN>2*IR*R9XtYTB?RaNd z1@OC<7&dM5WBrmpa|zir)I~JSFD7UAC|#2f&Q6@wm0+91*kjD$<>WIF^7B{q4orr2 zv6d>Lhs2K^E@grgs|9k0%Sdt^Ze9~s%?gjClVFieLdGqAO`(Z0i(POWuk-o7x}2a= zX^zw?<2bIw+V?uqU@87(p4OK^3L|XWFK2LTSFi2E*Ad1U{@c}>QJ$yj> zm`5FXUmBUZp#t93jC!pZ33Hu@~MMZ`N%d1O?6f$&dj5=us~*4>Rq z2hGzm%pWZ8hA83|qbo7R!qCx=Nx9vEICSrqM`_g8@La(%uFA4eI?Kxp;=iX1A#lM+ z4WJ57N{TFKkd7DD=NY3))&BMQi=odI9uxq=FW@!XTycH@Ft2!eVIlTL*(*I>%CZ* z-VWVqouv5c zN8!e6qsEWl7uz1i!e@DbXKV(e@#T>K&%E&Jc^^Hl^#}9?AM9I043A!pBWAu!cbfR2 zvgvw$-*MK0NomBt0znB@oCU~^s6|!XM#O^c%A*{t1}L!@5&J{64FUu4yiZE}%vcSi zj(oVDgW3IsW~k93_=)Y5Ae>R4N)CLj< zn15!#M&)}dv-OOSt*l<_3BIQnu2a@GA?NdqghpinV0 zfeaxH1yLf%3GDyxV&3)N{XDRry!w|X)z!fQGV6j8ecM|QRN3=)t0l_#ndp@ou%Rlz z1wng<6jZqHQH`$;JKS-bFq#Y^Iau1HnykAB#M2gJt#{l| z?B(bq=-Z54KFqfU3PpXT-&#H~l#xR9+(%#>GrS^hK5#2b6UT*zluT1QcMMa#3JUs5 zU^l*yCyt4&^Y9f#+vQ{fs*$}XMY^tgXxf(j`O~bCJijyUNFnG~i;Nfb_tHPEOdZrD z?YtMQ$UgLRW0f>$Wc#QFrC80RSlzsC4}O}jqtn~ja66oMUIwqeb2A?Nz$!X4g^MRn zY%zb)s_XgF`*c1`5^^aqNSbo7J5Xl%UadmR$dO8G+UCzU2BKpJ=@g6Ozi8apoL^QB zn7SS80e>WNP1RJK<)V-`q&ZCG$d)!uRJEab<;I2$@&olHkpdz)dbYYLj|(C|{51i# zey~*PYaeBEm?d{=5hk`n^VM^hu1db38{K((>_|74ep8HoBaNM_T&@02FOg-5Uhq@meiG(cu@US zuiJcI!9dFmLW;2pm2uY}8)wUz9#3EygWSFT7&Koern7dwUc4qab5g-NuZ!T^Cai63NRmC6eD*#*cv?%e1H-HeF z4BD8dD`zMeF^ZcFuI?DP#_*~5B>BXV#n|y0yczPCGyZ^TNXd8a+rvX|+{m@xjPi@y zBx+Qy8zz_iXhF!7qbw!?@x$D!=e$vFqOc8nX2YcpIG07O#T=RM5OwiMopxdJM&z=; zkYkNhHl=V~)oBRrRlKUv78dbOfb9&VG7TT{eI~TCy$8d^&I6o3OBa<8L$-`D7sPDV zdWJftB4kGV7=iqikD3CE@Hi{DUNG@piUE^C`0&6^*miRh5`cY}EHjkDKh%^-YZ(c7mY_5#NpXs3W45a0EZZ_%!XLzqvQyB4!VY_WNVa*q0Hzi z@53&J`TlRd6mV=X(+)Cl=w`ls)iExcaR&!>Sx{$<;#Lz= zZN3wge}t$)TLgMNKIMgUZod~x_M-3YDjWe7==pOlQOS8iU_m^$r->tu)U%bXJk!o- z;l@h}6Oiv8jG%!URHulIp(5m5K*esHX=$GGtXry)^Mipc0w*v~NO8X<(=I;hU!X&= z!q(bDT|4<;vsfr#rvUX8iDnbAn6{jWdus81_UO^yu3yfIv~TZ^C5YKu)RKVK_YW`c z6@xPokfG3U;Up5}JkU2H3k6Zt$-Q5Supp>`h2`3mX%rls`C4i9sYQUY&gF$MNNJ`K z)pKi$j+kz2bfKO{)H;fxp)xtYQ>!r?C(SQ9O*^yrQ3j?{{+JE;yYe`3;4`-;cB9uF zIJ#3nt<@o(@2FN?8Hc!PD?+s6?YO|mKo*mgSloeD)QxcPrJ?hu<%s5~`==tPCVe{( z;)$wzYfAdb-T^aIF*J3lO|Z3A=lf;m#HVQ%F5uB9NnR(+_FhD$B!}F}lPY zjW-k!!?ycjqW(!)`JZGhdp0SXfNM3E^TRPYK)ifF`l$jOQ1d8I!Xlh3XETZjlm<{VHc)|<)i zl*2J;dV){35$E@42I#Fu) zyZc#=m+TtpHjdvk6R)&+p&2_Q#X|KUrxzmEcQN~qS|@!{SyxTqD4^q@;g*wX_uVD? zbAzgqDod|vCiO*)mW|t8E!f;HGnklX2nPD2!^ZKCrUe9K+{wPmW|{6IdNy62+YPB7 zW>C(&l7Ia+FX?JEY$^C7_FG)Pyq;+yE<1`aud=sIj`SRaO7ormpjgh|y=%{SGQ)XP z$r#Wl^^Y+uHyi_g@x#uomptGlF=N&6c%R4LV=*PvoHnXbCzH0S#Nlp;GRfnFqlB*Io9ckW?wRjWtft&F zZAp3Si&pkS+S8O17SuThWzKE#SI?@{D8kNC z4X!wImq!SaHt$>C$TZB29!E4+`;Ckm#0S0?-un)BF4TX(^}&^zbNM7M@IVspkfN0D ziyv}s<{Dh4_9g9^9(>I)m~UO0iJJNR7XRHSwf9Usa;U5OVERd3FehJtOmTpx>(keJ zS22KD@oGf}-zi7A%6;Z*oBDMB0_^<3U~|FN&-&hcBD@)t_-A&) z00d!nQE6gjtuhGeID|lCJvB2PNvi6!#r7Fx$0MjHK_pf|FXc_p12?j1#Rr8sYi{Rj zhEG0ix7S8%`~%&uK|m4U1G_FJ5WrxBks9&&24lat9;zZ&W@{MHt2q_=$oZouje%-FelF8f&0(Tr7N{O11cIs&9t$yGn*nDPHUhJ zuW<@?H9%F^fmLhj?YoA>Uo|6-ykzDd0FQ|Uec3yM z48iy>a&WRoxBk3LtJ^yN^Q1&Z{XyezaM$e1`R}gzu`#8hth|#VyvdbWjTYGBJfC5+ zp+R^SQ^qy-W7_=ju9VeA!b}~3kOn2XLe9(&ZDFl)KolSd)6lG}0(@c|IFRK{7Bz{U zxuue?A7}Re+)l>P;&tJWC-pRixR3(f&c+mazDA}JBF(O8cFW03mjVNW%6)?vba!-J z2m*f$nZjUpX8!g%=$}VO-#XejMt`>6I%}flU3&cP-yGTbjzXG+$FbC5--z&`jkx@i zG<;FlIdz#tN!KnFlavy^8VYtX+pJ>)jtcAEB=cM52!`bl>uOXARD7iO;NodW?6>-P zKxMx>7M3Rdib6%DnJqdnc7ZQZ13c)!SH)3$A}0zlx#;$MF&gMB!wo1NziFSe@Ncev z4z;Ki{FwMcA+g@SM(Ub5aCg3O$R;zm=Kh@SLMA2*vIq$II^{WP&K8q28tVJ*BhxmJ z{dRSL7#tSC-{v>M;U4J503tvDF@&xJfFd6IeGCBtO3pI$_SpUTnLyozl~U)=CdPU7 zGFhEZAoyh$&a&tGhO8x&(9DojAAxx;qI%I#15bN*75R-%!p<&fy7ig|m_%no7Y*!o zPBMgM4@l~5AE0YB)>}VG(TI>LtX-lgl_&nYM2qovOyhJ%8vkFHX=zkJ=tK>ThstsC zcePsLs1KY|m+Yv#U2C1!z_!-86L!5~cfg>B1myO!v1@9~xDvXyPJnV?ud_~}V`%+q zJ_V?NZci=G!~TCqJX(6eDGn6B>RWGUaP@q9w0zRv%<1{WGO^G0Lf3G<#RTyM{(8Xi z96B45`AV9|>3Nis#^p$uI4@2ImVR9QM$#J&&hYo5!>_5NEdjfs_~vy!D7F7SJj4R* zU-=_GvA}%&8H5p^k1|&;Bbit)Fv5qWsJsZJ>NsFJE&PS)2Q+OTC>jq)K;*D5^8rb@ zxjfgpUL;GTvV9kkBO--NDpzOvi>_zfWo>VDRUgMt?w~J1>Y8u@FZkAky&j<_&$itj z3YT}JqWeD?C{cfn2q5=fsujt2EB;F7jW;1pEp9a)HDTQ~_dgFAYDp9}tjpz}`RGrpe~v0RJl>j|DMzi+)HLJs z9n#jb1SmVty+eW-AglgCho+<5x_;Tsh!p2k@;;p`oCHvzM(tdWI3VW67jCKPGfb6}*@r?id#- zfCw~Mkmm1pqq!HoeV2-5E_2D=HqO_kTmEv91;^?})ja(qfV2RgRi%ljVL9bgB9`ti z4QpA%vho(OLL5pQ{z34-5by+BQ;IJ_p;rwI#S8+St4Ci1f?*^kj4B4BuPIxy?|fkq z3E&g950#j&a>!&7E{JQw*Fzyaoo~Q`G`d+Q72u&h-|(`}FX?;*7QH>{aK}XSckQci z4y$7$c6SGqKtllaA829x!Pg;VIuqf8-;9xkBb3c(|APFw0yDOE{LJ0umNQbjzS@Z! zKBqRjvWhsw2n+l892}X1O=YWRqRE_>{BN?S86#Ud6}(s=`Ut+PqmIz^213WIP>(p* zNrES2$3DxxfWW4%?E@?H1Bb|0fPJ#sk_+;q(d}~l_vu)hDagqKV_YCzapZo}EGI?L zBrh<>viFGi0d@tzN&$MK=mX*9oy!=AHb_%BVM)~~y_mOIlxfV3#5#8I$?#hRIUS(Q zLY=_KVRSYT{qYZO;{(a*CG}Q*n*#8~gBVnK+ny*!ympz1lp+{H!pBVoDkb_Ywj2NM z6OhMyjee6N1WaRKOfv;(j+ZqZee;AD^30w)bvU!U+K*$O%SJ`%gL3;G#y{66_{B-;WNO&bIm8Fg5=mt%q#P_~Ll{v`SHg)c8l7vmS%3U3D{5wzHV)pOLq`dQ2_*mHI zI;OgRA1z}9A=x;CrZ@$+9xvDI42d#cnY$%thwHMOo@t!hq2;|9Xm^Z2eg@N!&INUy zW9hGEv|suD8ovAbJ~{#jNR6W5^@-7h(?EHBX;>74ZKwGE`e)XE^95i-C=FqOe!StC zA)WQ;o7Bo|2?(`XiuVI6;b+A)Xb@%WuhuV#zw8 z3fBLwVJnNlo)+^_)=`u0hf&zU`&YIckcjxGY$jJlnN2C*90(sR6>~@52uY-P|MZ1+ z96wn1{T6$bMHBwRV{}AZQz6^h$CqM-i!We*2^$#K@kKFx{3b<%D| z^iPjEc8q$-f=P1t^mhn?7CwO!4_8LnB{bjo?BS0Gpe>Mj@Mf9ACRT-gW+)8Aie06! z!iF_j?1u8^7?M!^Hiozdk|nxLg!E2^Q2mueW;%78CdKu~?Z4QJ+s{yMI+z|sIZzM$ z`C|!&^nXr5Z~>xZ9$_HX(6Nsp+>CX<|#Or;+YIBc^p%kg)X_*6(v*ximw29iD};>`Tx*q z=B-x+`(V_S4 z5>Ru+-}{pda%x4sbIczXXWSu4qy@1T-0R@sd2MdCt`})jf8yk=y#3}J1F2Lb&VVYX z{Bmmo6JATJr!UG5@6tT09Oxn7gTJjc5fGNDVRGN=@`R~f{YPofDWK5!!^nQMSvKQ= z5d@qAh}pzC!51rvL55$(Xh~a+zTD6yMA?~uFuG2l4|easWCJ5+zY-18Z|cy%OOMfv z1S}N$&NMyno5EopDjm5QooqhgpI6|)A_1T!+q&Xs8a{(o?Uu62-xnm=WR80meXiC5 ziIy#rW9tO73)}Hqmf>q4W&QdqDRy%D6MQg)G*Mf48qe@6*dAsTWtemfwy&%kjaB~` zr2ey6`bs7_BKlEl@ZKH+InglsWdjH%j&T%Sv+$&+QB+exPwW?q+(3>R*@bi@2{rze z5WVjG=Ii=ZC$R>n%jyNMbH|s+i{u5P%UTmnCozZVQy1^QO>0iT$bzCkVWW&?UW{t7oh^Jgws6 z?p%@Jk8nINny!nd+xjl{Zn1zgj6^>X1yvG*xx0xB{)p^mM(NuJAO>Rdha`M4Jwkah z%|3o6>&RbTj-Qc^*4`Wv1c~$^SzfXJb+RS>`#AX>QJ6$g|A;Q6`jzxaq_x{AghiHI zc~24`@J+rwe}uB4TFK5 z^NN$cZl^Ya46Q{JoTM7g*FUuq2(*`{RDH{A3~(vHX0>kJ@$5}Y2zRxym^cJHxCCnf z4SdPgxD?_o@+~$$r=2b=a(rjx-^*1=jXqB03!sWZx;cAU0=hm3ClKs-tiOh+5Tzs- z126c?YJGgt4*%e{YHD7`+Jh_f$!#ys(iI9~M7FM&R26IR@5KJ9Zh2~H)UUx6w)0rm zVp4O?>5ND@)MwL09;8#%c_6!^d`-=N2GgR}04;jCV-*n{F#}ppZ^s^>1EsAV zxxtJP7K0Ku@(ENj6NBs93uii4C$*ILC{&&Sivy@F$jL+an`1}+MB1Nm!s7q-Nq4NM z{BBL`H^v4i+ZWgaLHRz_4}6^vJ{ZEYxQ2P3+oBo;t)L$tnWa~eIp|Xb5W_8~hn-G!UR}Cbe2SuxF~h>FE;T;; z7V^BseE#gPT;f~h%X%>}`x1Ne|Vu*aKvZnNOR=}xc4xPb{bF(2FQ`S$4Dq&IjI zApNiAz!eJNdMnje!MZ6~i=P9zKG2D7@-o~@2sLUkRe@G5)V2x!F$OA@E;gKiu4#4= zSq4^EmrU?3#^+6*IlH!dc+m<%NP%jRgm`IPP0ROk>b1+*CLPM!1mYBikBiBqHxsbm zLNjH{Myt&z#ZdcQQ6pz*UVZke5Iq&jfmdts2$r0Y;9H?kqdLY*oc<(Ad+%d2%#uuT z+w(;U2Gi)>@&;r0pnn4G=Pyx)xNo>vhDB_k8GFqgelZPk6XG&O7>EC$Uh9q&nITY5 z)Htp^nAO|afTGpjLrBt=iqW2Bs=$U3FaL(l$@7YzW9{rsHrW+#=MdhD^)^@{fK1in zI851!8Nv4N!99y@x5Ui?V_6nz_OuXej8m2{iAuK_ORQpo*x2sWNIn>)U6-HMhuv8H zfkF*VaWwc$o|@;Vy_#dRRu3VvI~;HnF@#Mz!w0b`hEZ!BQFV;YX4upx;yV*eT5@~H z*=jDw8JUk47Ob3bekO1ch0Ks+CFO;wa}?q^BQ6R~gNWEsk9@X5^Wnif3IvO(C|%dm zNPQF7PV50!^A)4}Sr-}FHQ=9|fd^2l=^>&S24|cVcs_6e5WdQ4TNH&d#4|`w17nan zj1L=*hp!hf_bRC+!@toDhE|1=NyCjTId(G28a2MhE}6y+@YF5`48dj^zj*jv6VYGp zegur*0n#W9T|C+b-MxFCwJNvn)##EQU@CYfqZGA~X~-IVk4N11l6@Ow;KrqK14X8( zFbwDze2C-*KZY|0b}2A3oeEhMVGE&xgcmYj-bUb#PBAoa__))}H!vX|R#6^qs+pV*8bE)>XdCEfDHEaS_>$I1(-U*HA$n!=kACAi8I9(dR5yHJu zIKFQzbRh!X_+yX5?i)|Y!K?A>R;j`UA$FFL?v0TCP1OPw1fV!ZhYg?*USQUKBZdow z19m87T38*Q(`#^9@=UwNXARY%+8Z0o-8aeTERe>bICSTIkn$P3jkRgaAc0rHT`5H)%5u^}yhakT9rT_mb z@$-LI2@&~H4MS%W_mTY`D}RGJfK&nhQ$Nmf%Pz;xC0-BfxGoZ-+lIbpZ$`46k>FCx zzUglzoM_8Z3msbx{FW1EM3*D_rk;ur5BUVZu*xgJDA0{&}bNbH50ki&JHgdCCiP2<*LcC_Vw(G4HYj+yk*s*#1=knQ8<>&DXPBJKdTQ9InBb~ zKg+VArR!I$(yv&Q+ok$vqR{Nli3xYn-@va0S{R^!B)OC24e$G+GF^B*BXy7IbZ{G$uC^$<$@xvyFgZG6cq!w>>GNVk3#fR0ikFc}z-k-W7yv+$rmpoh zAOOB#Ya0*Hp4ws9Q}KW;pa1D##Qt_yVb$&q_vpkSe)Be!Y)uJZ5&^kzvt#1QsC0PC z1OV!B2s}A%A6{IbXqs*QWr?Zpe|aty4~sahFaw+lXpE491|+n&d)H^gt{Lx7-$dz| zSRcrsnsoF@T~a{@6gcf&>Bvzv+ob55yL$$oZ(F^g1G8Ab+ee7^>dODss!wS4&}6<3 zmI~ntAhtffo*zFHMTG?wowu@4S~L>5%B!F#X#wLc zX3y+5U8JB9`>O|qn%eZhB;H4Qo3_h7kYMnpmYM$)8g%09{$Yn=HyP*5 zbX2lfZxlq;W5yw-;bLTGojNA#$DHQ;gO`*#D16~|e@}JQPn_FhP7}7+;}v9aor%N; z%sYEPhmN5$NsZ!`LX8oP>2DSYzzwfB3lhj?bWFSzc+mZDzuOi$ygbKph?QslStEtq z^B&0o#l}DxZ)C1&T47_6X!F34h+Jnc0~FsWjUotUe_!0h7*Z~w-B}7FhWna%&zP)P zp1obYLDU*~+_@g|^cTPi&D#5LqK~@v<=3OiLYol!! zIC-}81-$Fk$onLaP(tkslCq$Wx2kh1c}FdVN?qo{w02ry-I)GEBaO3Mt;i@ZF=m+H z)F%n%;Ppl=Ytw9!8^(Kxy<%QFE<#DA-!!6K?szf~96kBB^D@o8 zTaL_b4p1R|^0iu|b*Plp|88#!;<=CcCXik7JuZZ`ft|31;I(G?-hckQ&ZSE+udgGB ztGMta9_bTgVOqJtefxmSke2?$9Dxvt)3X}mYQMFRKVKA^Xgvk`YO#7YKVbFXUsgRI zVF|zOj5JS*H0x&fp+rT(PYNIo?Q}t5R~JU>vF-qM<}miICHn~{T_!0%%|V3ig(A$u zo}&^eUb1d7v{%PzgimtF#HzdJJi4LJvbRdk`*(v}Z@`80 zT4WjPQnt&g$<&o3TzKBVmC{M`00zLee_!_69_{7soqhw5HqHvyTpddcT>`9k?ii{) zts0odMK$i_FMNENh~?$;yT1jik0dgO@;up8Xii^o;^jg8-b-uFXK`9JH@D|v;Lda7 z&H0*x{f~wVR4pO51BeSJeh1(F*WT@o%c!->C15}M<@%S&o8jLIe~p8e#BX^LAJ=HVh9J31Mf!ZV z{Y&3IK=(1d=ss^=Pyp{AB!9d0!@5k^J&$y|jaMVQ_tD_1e}h-4nHmNYnKZ3P9X0-e z>%*B&e*1s92pr=XB`N}dm3ql7T0!1ou*(p z!mL3)&Kp7m{P=*hNXmSI0~iNU%bBBJ?c1U~@!m%J!$9}G_IYFc)+D?4t_7y&f!opA zhNd;CN8pH5=_tc3KN!zO?(n@oqZ)PgANZ7|+w&+YIGA)Dt5{hb+PG=yjoOx;Lg#Vf zjk8#~t&@zl;5CHGi|w`uEM3zr*JoeR<#YQ0g*NQ0Aj7!=3%bYKV~Cd9jF;SL2ps>d z&Z}sF5GvY!YtCI{;rHai^h6X}gb+K*+@j!y%D)HG&#$gGxH?B3XIclHBb2G9e|tw% zeLJqqmu!7N8nbN;y?&_W+pg#<0~SWnvJxf&nIqbEf?g-OFe*44EXsNvqXq#Z3T#5fF@A_)2QiNE<58C-48=GefgUAX)5g30uG=&Y=p2TrJ^u@@)Q z?MG94iQhXABX&yK1A0J6PP8H!cR`FHCKPx9QKbeX|B`eQ0nG|lh1X&nClasZ)C@sK zFhBIGKp_|y=F^L;%HY^;Kc zzgVY9LuUA?%0Ou=oS?f;`k9xZAQiAAmZuAW*U+?u+5N>57h*Y7vf+UxPeX{vulza3 ze4Q5pMS(oZ>JRNQJiJyGm8aN3q)W;-1Ruu(U(vh<-Rs z{*om3g_ICQUNniHxV7s0Cnj(2>mNY^d!*ciy+@y^v1z-v);D5H4=o)gv%jPxXJhgR zIXg|icmKZ6c#&}qgN+6wkG%5j4Jt2kQMP267HKj~wu-Zpwjo%&LjeXFYYt_`a&<<| zj*9B_)`i9~rW@4fh`hztfs4c$*{Y=W^Yb$g zAWll1>msF@{mXCR=~2X%VEuambxu~cPK`kieyd|ju==!ZSm3(~UPs4gM}oY@%k4Z# z(-gfVxwjeW985!Ut7SUN7#BkXWfPC)+s(T_)-N)xLToZw^33h7ueL{NK3Ekc0<<{@ zeFfNYN@v-fu*5FDw+a_a7e|@$z}Mm1iLE-Z!i)@zgDt z%l^#$FW;3unR*AS9FU8oD+7q(k+988j=2-TOanj{{^GVBFE+)wUbhIQlx!*%c6M>@ zmTUKRMkmFA5P(6C30=-rlycm@dj2bZzyz>W;gRd>;11#+taR4V(q?3RdAY@%Rz^jy z<}_^zMPd5aCm4`i(N1|}LF~)z0ePF@LAm;Ev49<#m_4Kz6R~_ya z&sx4{Hy9>hLj-&1C&o{3q6}(~U zO$#<3tzk>G^xZbhK|yAWv^;bLfVGPsV1eNZd}I)ox0AP@1}e3;d>pSUiQyREpPltd1(l52pta#j)iKbp=m zD9*0w)<7V*4-$fVaCdiy!68U+_uv}b-QC@t;I4rX+%34f!@2W5->IU)pVSmTX7BF3 zdiAwLjpW|01WkAC-eUh;(bd_#BB!m?YNs&q=5mT~7Ig{MknGH|%%4 zba;v3k23o1xNy}bV|LG%L5}(TiAgTNjl{|Ld#P4Ug4^TqK=(Tq#8Hvg6ilBb5Rp{{ z@xy8=&f~Q`G1+W%-G|^k$*gu118`2_7LRr&1!P%Q#nzYukn@wU(Gx7-DWnkSRfs@Q z&G@}*-S4YWz&mFlUP0Hp)pGu)3 zO$!tnQBebcqBf4wEX1~W(r*THtDWUVBT1stbLwQ|$~!_?KihbAtKptl%_S!%Wp@{l z2nzcx6zCzpq2Z>gYDEg)@_WU;Gfg{cLN?=rix%m{fL380Brsg1a9E;{Ri*nbslF15 z#vYEv!pO0TL%GS%8SLQ^S-vL0@Rf_@r(!+Ro%&I(89icG}+a$ZWr{Mz{iTjAni)kn#Uy$rYV-sqz1)-)l{V1swYv=hK z?4~^t9saqbDOvllI4=GT<|jlWr$qpnSvh4Bt9V+?n0A~@}iNtUGn0n*EiI<;ly6Njp(Sa5(GV3DhH)*&>6kiw$rYGYdxTB1CvwDfYKkmZev z!`KxPb{S!9-677?BqY#17QoB6`91RFP;DRH16Aidd2{bxF@I49cpm|oKfpc=;L|85 zuM(UgxS=BsXW1Ho>5D@Iyc5`aT|jKIt4o-7k|RR@?=RRKZuaktBm3$QKepn`fYnJ1 zAb3Z9{J;JE%cmiDXhrleJz|W`k)yGS3BDJMfBUB0Pu(m6k0c6_-KgM1I7x=u=BJN` zH#%RT41hcb^}of>oWTEAnR@wf*7eFQQ#9l>0(>6_pT=ym-Oq9wPkSPevMF(S0)V%V z+l>}r*s^)`sQ|G63pipTK&IyGqRS12*`#;4*bBq8(}qZeF))t?_#kb~3wF5909hni zEz&qDArAsP8l6^&(VkM67{R=;dk?)??Q)-9C4sjen?0_yK-2E=CQZ+E2Mz7dfLd-{ zP^vbfj*w`1S`uRZbhghqcx?89^DfKMqDOXDH3e8J2fCjrwl`ie!a4oCzZp-7cc(`K zLrQcT8Y-W&^KJaJMc1!`mM}3#D<@hwdnUaai z*R)_Adg_d^XN?;LtlD0(^0K1!l`Xq@x@U3jsYkyBdAqrL{4mZF8#z5WxPJzK&7S|8 zatICpR7%2%_gITm@&&vA;+Bo5wOwKYSuGAXTbPmsX_A@LKt^N4f6Gn6=BjC*B@{_B zo0}KtkDC5LcnY(Qlz@C>bCal-VzPSUqTl2~w#^N&oHslG&92w#o{8c|PZH}$g6Ll> zo}>@u=2`3k>#on1#LJ*7*{t1NM4`)Gj6v9_2kF6`0nbw;G2kU})O99eGx#%X(GqnH z#iLB*$zaD@GK>YCKZ2RORz1y(#62ajStgjg<`S79U6F-2lAx8LpKTisDV~*)z-CO?_5?!&G{;Jt0F+ ztVQkJ=~Kn}E(A2IDUG_-B|pWPUDi&_TyeGA?xFH3HQDfMrHC81acjrQEVXt7Xltpf zD+n%|RgSRX1J_Jxw;jE%0)Sn!9*4k$)viw}THL`vT#hE@l+9dIn=PMX7CJOO120EN zcs@0;f7xf%3ifSOTXvj`v?l?lnVO3M72lX~jdu=U)CV{<0Zi650MQuUQGETVVAk69 zB0OEGM!#`_<92y9RZtF#7*?fZOJX7#5Bi6i-5L=G+WLIe@BnxKBm}JT0Q;>RKlOys z$N^aLuC9MJAaE|ZzO&LKapfNjY%MnDM@I_CGJTH*%$DLb-2W(6{}Oy0Pc`gq5Q>4> z!8U1sX@cA;S%#Le{X-ak9}U~G2%y~3jUNEgZrN4jevbVQ*%Iw%t~3HD@Ov4A9PEY3ExyC1H1nmxt>%;AjA*%MJkH7D#-#Ts%$w=UD%OJrC@k zCrD4lE64*ROTpWQ_Yb>4e1i*)!!B^mA{JH9cLga{SfgiRE}qkf+>HZI4B)E5Q$b5- zY8s!A&;4xDSPk+m%MMaWjwAVjT|3$&aHKyfrnb2~(_UUP{+668>!ju<%c_i@3hp~3 zaR-E{ zP*Cq!Q=xSgH)L(P zae&rHp+$Ge4>2vv|3F#p022$0 zK_ArzZSTIC=-5tVDnDbbo>nm#ys18ceShP901dEo@{u$y~Z zsP?rW_Vy_2YCmXDauqrpj20jdWJ?z0-g+jH#C|Ax@3rOUyseu`IFvNd8j!Qe+oji7fUZ5rPrfWF!Ez8 zVCplz-iOMyTkpOT1=3^t4FJ0}_oi_9EF28qEK)+ax(%;syIQ%81h%WcbppMEVz{Fx z*qy*AZqY=%hP4+89l>YdMmVCGOp|#1jR|YHsb8J3QF4&{HWU<4CEzmbfR-L?G0I+* zvS13(wAU-Hl% zkUp0IpkL#|p1Bk|%${HIV@u=Z1R(IdNn&VGpvYCKVt|1gGsBaQ?SfTMAJ5NqG<~^- zXhWy-M}F!0EypMTgK)Q+K@bfAM0wDBuFC-6&sOzm?zSC|KxTOjlv35%dN-h^);2DN zPHX_|S#P4Z?k!|!G?Tc0c|MFJ;iO@6Yg1SL#DEW*vGymBp4+ftenUoQ3jstPv81`{ z`QGZ2(7NztqxYEuy0o1FTQ!X56}0;Cs8HiutnnGlT#N-yqV4w z@r#JZ(esH+9FcG?Z1}8DXHF{RIGX;6aROhy2O{$fbwNTH#HTz?M{ za;$a(gB~bXnP;^#KZ&jJ&-~ldzXgP-@52eKE-9S=zfwWwk@QUN$5_iopQ{1X$|L4q zOOKV#i)G=HdR`1X%$p!yCwns#Ou#uj^9w4Tu#Be@n-Kd$glhB(V8 zr?e~uR=9C_*!dI{o6$lUKJy7)Nm@YJU8lie$qT1p)gT*|ZoVW`mKN!8Xxcd|X_d~o z85R|RqYnww1Q*rEQnd^$ULt`Ug{M|-4#I~~-etck9BuIQ+dXUyn--uhm$QD`gw)^! zykOR(-6bvg{YGZ?Ea5Br07h(N$O-6uzk6jNL_q_@6&sf#v+bh-e9$j#a>-0JXy_sC zarj9?%-MMjV9Ahih#Kh92gApOt6IJF!T1~}{pg9IM5Fs3L&8ZSW|1)EEApHVEDv{` zy%6WBfo(Gxo4Y?pi96(^jR9ERpR3UF@Ls5;1Lwa5xqSt?jgp03r=fi!AY6(RaI)E( zd&Vn(QMx}`i!-Q?4QJ3bY1zxqj4cbivV9eGE-gjD(o#bchi58V_+GA^1SCi_)$4xG zFO?auEAx4WCMF)I0fuf3O!x8t;k@JJ^*v6zDsq7{xc^f=z{CU?Zjq;GaI}N3!_r|7 z{175}*EZc#uYei2l;cxX|M~DP-X@?z85+EORUNaaet%zjJ||wfdj5&|qT@UBe06)| zzEIOC%K1~+4_XQeS~#2(CRj|GoC2IVCsmQUglu8RNy*`27%RQpxepOxeLn98wok0iAutt59ygDYsf+w!aR=XM6)`!}C`&q?=V zPWQ7QeY=c)95~n&>~lE(f4UyDsAz}ht*eWcpKTcp444>%m@u_rQ)Pxrf$%wEap(+c zRLXIornOqMGn)cUidoM#og__!7s#SZgih8c8Z@k>8B7i zU&nc!hOC;H^v$4$+i~+9Ukq={TVT>|%hwzW?MT*rfuY|Q3GMUDzYvPHKOh7>(=o0O zG`DQ%i-Ac%c$QiFN^XJn#z=m7d8Lfdc}8uSGDB_c>lxf|70P{!nlR8%ysEAS>_TFw zq_P;}K~d2S&@ms10`6(S;IK^Z?M0hiOOyCsxS#o8i&^SVP0@6cs3Jx-VUO=u=XD6Y zHBmi_ithyeqa@+FH0bTZO4FgR{j+ibBAp^^wKjP)Bfs*oYZReLglIr~EW)L_f5Ykwj?|reaU5SCZ990oCv=*7!c;pL zSBSp(K}Lr_3Ul>92uz$Wngo{5$io z#ZfT6E}4%he!Hzwx>m2#Gbb0vlaNnyz*n11;|OCr_9$m4QF#9}u4)UF^sj@54g$qT z1vuTUQ$lJWvB@iPX2wDJ^};h%_r&(OCmkG7xq&HGbOG61&;X6ChU0PL#=AX@sEa{1 z9j$e(NB|y%BW$%3C^8ez^i9F{{Fz==_7v9c)-mAl*s1-Ea+DNvUoy-jKQv#eNz=&0 zG)nvMLVy}{xt}eiSg7go+t-l?gnZ_CHqVh1ARWw2%eUl`ra)3Y#^8w7Qi?;X9p=&gWrR47{FW2MKF74j8WlLj#wE4T{4}CsW*CeWXnha_ufk9&wQC zkd1!9m#OSs)Zqst1Zo;_Ab_rQ$%nI2&-|J4*0S>u>W{%?h>50D{VbS7iJWJ$qUIfS zq&}FM28758x{A>buko^7`KgoaYDTkC992oP$a__Wjng$gf^vT+ zD8g^oW5(IFNIpdx^2pQ9YCAl?r16djfi3Pxs^GDz&N?y;<6QjYg1fm2OH*<^1kivKr07kHsDcrejVFqH$aZBy!@pRfmtE5TEfKXj zb_~v_m`ym$&Lij`KmnElxQgdLTJg$G;e z_Tdos$R2|mT{sdN-8m_?`kOmpvBga3XK!~s86T4mPtf{TBrv|AQr&QUM5G?STLLb3 zmff;Lh~c~$E1ig@+IT6+%a%%7CwGDro^x2It`{|d*bJ_Yl#|19?>0s6bmClCc2!+b zbrX=7B!TH#u6p$?8;%a@kt***?7T~?91i0v{!C0);ErbD9~^t#3=yAn zOOv3465sDrKYzq3xF?)wf9>q;m#jxP(Gr%jkZ8!)EbJ~VM~ zz%O~azC(#eF|m1>EbQk~=fQ5%7g^JI$Bkmv>8KzXeuKlPzRT2^AaC-amd@Q&g#_&a+_7_BkUutFNF3 z(Ws7%13$CJ+#*}(7^5@K*{D<3sacOSk0;(YLYY844I3=s;bGuh$=DuGID}5RqDJ)F z=c!b?!&rB&cwd_QNK=e^jUvIr!_&Qu7K8!9Gr0974?zjZ>5#icw~dH0-QZ1G@Vqxmud6y|0WiECh0h z;xYC4z+Tr~bp~cmp=H5{z%PFr7ZZ^y+M)X!K0JB!S#jV=0WI9W2XjZ1t9rP-L6*8+ z?$?bS!#3;r`qqN)jmbO0=||jee$kix?AJ^{;UgcZ*=<*zzlEy%o_TWh@ll>s4D~=P zemXj|r63=No1{smDk%(Siagdh>_xlF=HoONezbse4<3Y~JiCN4c+Ljv=3gA^aftzJ zZzftv)>9(kVf!4BMQxu!{?N6GU7Pp?G7fuagC`fy>!=N0+JYYQ36(P**~k!_=imt{ z{ql_I8!c<$;dv(p4;vf|l>X)0tYFyqUY`Hy;7XH*Il7sX^8qRPFHl2p5 z7+#-Xfb(ku53J^?D`sXC+WWQ(Vo*TRV@k?X#qJmk*rR=i(MYc4ucgb7=s#HYnW*tx zVQh7Ir@b>7%vqIq2L-;d?ZA4C6W<&zONGzgdsZ!Ig)BvRLXgLsxxRV}=Fd12oUOkx z0-IqUgm|3zn$oGAH%h|d1F>h7*s-+YwC}pAcMLPIP1g#+cE3wGw0DvQq~c#>-dXFh zbc4t`Ha_})VbEX7+Tvt>9D6%8mydY$IwNVZeIeOo=6J&>QSfa&ZbtQAF33-mD%842 zm|81Q)*`_twD2xAN64p+C!E@J|Hh64*xCX1;Ih%aayN{dW6@*EpCy7el6ClMS>rn}yMZ zv61{ns)ibUDQL3F{T5(}Q*OO@F@B4zjQ8Go;9 zTsu*-zVV^k$f8-+4;0mrAdTboOA!ad&3#bOxRF{=p=(sQ&d> zKnR_xXJ^VRz})rD*AMXl>EgB5j~M@(ACb^Q8R2T*4z^{KN5Ihbo{(qjr|sBtlEeYiLnXoDaxYPk?|j|rvrq)Cz#|}0%^W;z`LRu=fF)3 zKa=%dGHG0;(!%)Xml&W&ep$0biV z|B=TCLD}LEmt=qHd{}mnytw*bO83?>2p4PE@mi)MWb2t?y=w5e$m707bvfOAF~QU| zbqY3|qy+k4=XrZR`Swo^;B=yA@5hev^#Y$YAj_`RL8j1|yFP?1AIPLqUFQwHuoV_Ss9`x$h)q5q`yCs_GKMaptHK#M;!Z*V8 z{YJ_EW8N53DpkZ7FXNhXycol5TCk4KNI%)#do;$|akDH)oYfXdJ|5^_;zG~M@`Qgl zVFH}K@B9u2om=kz(g}JUkoMW5xF16P$`*0j&Q(ds+?>x% z%`4elmp&Zxw$tW+|HT?m6{AquSw4Q;sY8kw4A}n&6+Us82Z9tgEmAcl(I9=+ysW_w zgWSYJ)|nAfy)Wm*`~i17*O&J^hbUz;Ta`sz9s*YZiPtP#t!}!+qmz|fkp!lInc+?+ zt*mPv*e>x!HS+!h9oO?9O@nIdPt9`K;ET%L>e*rH5(i0*K$>Qc1o`7u=EvOCdUrKYKIJJ@o>*m3!Yg_F zRYdtL^xZLZb*-%*XI0GIHi_Pnf+>-hEwQJZgL;xd6xPL_ch2%P*bylscUdNRd2A0t z0Th~zFN_S!EUPAiXyqBr9vk^6fmS{p%Xli3uuw`@30@K=wF-ml&4Z4oyS8K=)Yumk zPlH-`z-IIy5Q^$L~@?&4p2O9EX8Gs1Qe}Xn&>`_KQpSwB66F zDnDqQ3YwR#{8hc6Ao{3j+#KkAO?}2jJ@XCLd;uv6KGRD5SvO3P z;E%E3*eIMy8*i-+_zo?;CtN!Bld4S&{LP$NhLlhYY(h6fqF-u=D=5$K?6*2Z*7b1s zzEbTxsrvw}QliJ3EW(l0B}C)>L)jraX}1DGm1cbP=OrxP?F3^>a)K*}Ix13Nq0zCb zI{wqos|U)MAj=qQNEk3V25P}amW~NQ0KoVz4`E%=J9qv9nNs5wKa-LT6t{S}EV2~u z9zbK!X}#fGjvtTdHwS6yxA%^X@g~ata@ZLNyEppk3}O#F=Aol!#|i`bZu#nthlDCk zRP(*KJtx%vw44E^<_++zQ2ga(N?N8z);Fepp!FX5)8`79McAEtXl`DSfs(< z%TG05$^Eygu_Chf<2{cvD!p$RFY!Nr!KJ*MptbheABRACKcIq(&RK2HYt|M+ zr>OLvP0c5cMHxhciL-Y0-8Cv1nUjHI+n~(H$u>Q$$jRezB5H^gk0P3iD<&YUH05SZ zBu7W6jiq>S_<4hhMt!tdq{7_=By!%@V3$Rqw{I1?;Az+gV+aAWJP_ zT%|c6%j87tvQgdIxiL+5Iy?sdApV;v zm~?U{%M+)PqDg^k%-Xz)T#yqNov!S>#ET=8Ub!fwNoJ zrDteTG%_}JW=JU?as7A3HwGw`%5)RCmgvyJg?i&x2fh2!F>-md!&8ct>aL1DDdC9i zIExNZ##%dLD!%Q<9MwF%0{c9Z7^6?oBB9$STW9@w^337D7=Yrm>s7W} zi>a!ZUv41R;I4~zi+`()T`-@ktT*If-D6~P%MUHQJ)4G#2}ge4Xn;#GzhDbEAP5Kh z=whZ=C*{l7^cVB#=8B7pI^Q$4k=0u z->-=RMwOa<;5OX2o^X1kj1j3Gv{IVvE<$VOS;gfl*CR z<%TJ-!sDxwl`t(tN*I)~x@6CeT5uny6>loDa?9-v*hJ@;;L2$1$oWbmB;_iX?fFJ#z9{Vk|ja$B8 znV37iuP#d$JMGoqI}l-#UM-LCH#`-YDk9bq!Bepn+(oDQ^*!fE&OK0D$bQ6 zSQ@d69-CRG?HJY2tf0S;I34fcxY_}PR}nDQSQ|^ky#|V^G==02(1~E>RLYTs6@1~h z88)AHs+z6{>KIWvDL34R5I3J=Xf1_{G2{BTv%~a)bg8d_b?)_*PtQ zfHB%oS*168oxYOF^N4V$n)*#ibjBE@Cb9t9z9eoox^90z^v%4@wXb-U7W)AdePj=j{7Nr-?ig%%z!#YHGQqlQ0Rq+NbS z(`5rI{l^c1IQG*|5z_;Ndpqwa040ULu;w9o0lvCOKGa{jXwD-ACy5n>J}~UZGZ>y11{fPEk7pzQ|N0 ze(hdwEU;i*@Cg{8+-++|FkP=8T=!Zgt8%pt^SBBkiHl}R4W+G*IP9P`ZTgr$uvK#l z#!F}z+tO8D9J<<~{wMhM|JPL$b2az(1yKHoUCF#a9PT^Vf_R+MQKUL<&OM?Dy6uZw z*ho{uC6XZq3RlzW4}=IQQh$emqtXH)3}_i%Rb0J(OD(sLf0+9i_44y75>e}Xjz8W? zzE<_sUzs>&80V$KktsxB2(l_Tc(k1-)B;U#QZ|8G3e`&@}QoV7goxIk!M;r)Jkldv0|sJqMV1KSk;&E>Z$ujW1lni)+i&zq>ZooaO>ni3%4T-yP9ixnJP^MOYwv-6%EHBjI$p` z_$OByoozoftbfg?Zx=1oys2N!TYAs_ zyB$|$veJ7bY9PVesKRq!lC{oH1=GWzTDwx}x$8H7muf6;fe}89=ExNa`h)%*iw)Qn zRm5rtqLcuKthVJdF z4R5XPy={4qm1)!31R<1^s@JEQ7KvLM2QxYx-Nc|HL^Z@!3Awa0!hKY=bWQ;LzDjg- zq_mLP-fu(&<jl9r=tnURQDSSfTTJKq)q_hkiIN{uw+v+HRqCH!w`xWqZ=<)DkT{w zy+(9T*0`fGPajZ8$ko>KhyXqmXfevM|B)GhN@*jD7nVN&9Hguho`%?g? zrM#-hvIGFgO8>FX+`9&XO^bAMG}`f3v`n#P$}tewo!ZrtH!QqEAm}P&Ty_|M3C)St zy~E1ZH#RY1d?7UGNbLZ}yjABPCv6cqxjLCCy|3IaS?*E>3@amXPmeaQ6i z;iRGpperG5Uh|59lN>5dbd9l7W%n-^*Y?#1RzT;*5aJ7&1uj`2njEpj)uM0KkV7N^ zNL5Lz)3IPf>xC|*Vn;N!j2I~oCZ@Epw6Sy5z_NCjPIWjeR}I1X{^A@9aDI18IS6BY zZpn=G-r<2!&Df1@WD`aFRCjdpdd}kIMJQ|mKlp^;BP7tF*O{k>YZc6vf|;N0yR_Lq zi!~CP7`;0bTH#fCJx+b;Sm{W)$#WPIyp%ORG??#t<1TNwM+YU1c3+N5X+K9^&?_r} zpjD;MXuq^#?hf5K1WoBs0^LATNQ>s%Dv{$=%A3~0)SgNj^r%uS&~(@`oY7-+wbUyJ z#g#pOOXvM%K#)2YVz*k&#xsp8wzJ_Lk=QH1{II+F$)Yxl>Hpf zzeVIcyY_ueL(LoeAY%yh?Mh4!94JgZsA$P0DR-qNfE1Zz2&0uG9b;CSRIa;{f*)v3 zGc;sqN7;p#0UcOgA*SMBxl7Z;!AR#Lk7iB600+7w(fAcb+BU_mA5CU9G+mQfeDaem z`qCeiIB<&3LzH`n_j%#$LvA3HSc!zaT*UT`vOe8CR9Y*e@r-)5J~5^win%;;!yheK=G;6fjOub?YL;wr zj#2S+XQJri?N)hO)s@B=@$g6S0&bO~9%@#(VC>vNezCCT>*k_)a1s99A*+1IV*SREEQbbVG zv{ny}99-*oZ13N%rD(4WI2_3dT5IcO^Sq+7Rki#j_M7`4QiYj{>>JL7N5E5pABd?^ z)6n%q*tE>U8q@VJ#!r+%?~Qw2ePd_Ovs6U1AFu9slPJKBAOScT zWK7c1Bz=FCu@WsA5g?+)z)BbOK?nRY%#>IoO{s|grIwnrvC^XdlkFq^OSC@C|C^7y4^|7P#E*_BHYX+j|abkSofg=T)d2R?Q#dq9fEhC35#5@^lC=xJ z$)Or>z1^If6g0bg0r3&vZm4{+L*CDPi@Vq)&ra=tDUl?~ngk_=Aq|09k*28!|J2RX z+kMM!s}A1h?I$m@!J1B?IrDd<&x&H7qQu>5lXp7_&ti^y)AGnQ%se#6`LSb|@M0WY z-8)ZR#*qVRHnO(*6*Fxb?*1p0_xxY40qAy1_pB?8U&ZvisDBV6{B6%{v+5AmE+@xiFcsIQ=(UYcd2}QvyCss8*tukajl_aC7AiK__=;8$BaLj?Dn7{pC>#SU~~iJS!Dq1@cKL8sGrH^dF=tYzDW z$)SL=1y{SYAjoxv;X`8kc$BIAaFx)Vk%g@=B1c$8NV5S@$0h<417Yv=1yK_(GjSjL)T_uUwZnL`dp`E{6bSubeg5gQ+J^}bRi zhZU64RPQL!YFMa#1}z}6Sw_k8>gSc5a{=!%Ba_Fh&S9S|OgU>BSV+gVXL`q4cRCZ` z`DAy=2dg#T=JtpKyv;tQ31rt`B4({#jy+I5T15rDMN8jztt5=`oOe}O_EOX+);pE%PyxR6xvtYd zi+dLo^5PJv=26@J~AWm*W{o$a_YBuTn1KFs5kF|rTOIFb)N zD8AZ=P)#)@H-!K4R!mkonFTExe7@q>lXlmS&|456ULXvF(Ejx+aCH5KhhQ^= zoGKatetcpKRFzd~LJRwH7`E`?TAWkpL3u|7b>n!lPvk&{cV_-}Ao;_uWn8bZ!8!N) zErU*HMDCYD{hyJ%ndJJF-`SQ9=$;b7nqfS1q>bC>i9J0(LP%?bWo7g@>4dY6w@NnY zV+2N1x_bs)*kh30FGkeD7Nyy=i_w3g;7jjgw~=w84cT`&g$3uSx*#rv^sSVG0e|ye&w1;wYo}5;O8R*1 zx~!2x8Eix@xwGP;?VPYJ5oYhjn<6D9CehnxoE@UGnO1Q2MreK+3pfR_5se;lRcA?s zBgwo{eg@&sdXexAqEO+szz;#;Z&l>J4#>_D(FVtAIedS%p3N)bfH9__@T!lu7g219W}h;6r*lqy1b+{UqEnzt+hRE9 zlVgMjr59$kx@QgUIb#o;N|zI_v1H^tz-UsV_J?AY+dEDbdLt zUfw4VelvRI0G2R{R5SN$6F9hUA%Sxl_G`yNp%s8UqYg7qfB1rTYkIk8VA%sqFqRJO zpycDhAXKWbXauzdlnI?337%!`qJ%Cv zFqCmHLjxc!(#mRZ`(9!~h~@7@Dt5@_G4=D>y;1^KS<)B+XU)4nll+`6sXGwK=NoTs zo$u~?UmAlc9`Dx|$>K1BM zAg9mbwshYGrtarfVoKSN`hLa)O?*IN>gmEo3k0kHAN&VluXPof*lC>cl6d^7WAWsT z($qDUKE{cG3eHeT48O|57+X37l>A05xdn^AeLjcE1?C+3 zK2WT9g{_L>iF9y@gbes?owg*0G(~Ow^pu&w(q}FWhDxef@i+>8#Q*GchlYk^JnV87 zLxK@e3VQufI%VRd2=P)UCtUT_VEu7dlOVh_-24+9clt2ZXrt3(_e3)d^R=MuoxrUp zhM=wFzQzqSwX~z7>18~VaM+HP2z=WD<9cE_YQX_M8jc0@|3K3TZgAOh~clrhJO-4qaj(t@mIR~GOTh# zYa|xG$?X4|!^Ya9!V5JJ3O7cp0m0voIxI9kkUSjDF~M(@v{X!342?6aOde4>&@@`{ zn5yyZbc=+RMO$bX6C&nUx4_4kHD8;_pLVZ{4RrpnY^SvMTtyyV2hw1(Ywxe;b6k8W zYh9Q2)Hz~)eE`QPeb7E$Y`(KO-l)pShF!;IMy%eq#ca%uF!SW9jyPru)0(i#U_@QKO-i0~q+h;DKgjz9|yiiGL+IY>0BDdPdeQd-&u=Bh}|- zaDF5G(GtO0;bBGn!$oWo#17{9&g>!TdAiO$UrNv;Cj`J5Pg^?d9%}xas*WX&%)f4o z2pDpJk~=!f4LER~85R(!)3*_YOOMKdoBB_I02_#KZ&2gy3xK59>s@2q{K>)CbypFo z$R}A~iWd2Cl)>htu9DATTQrmF5;&+PgsbmJkE^1lW?g+_S1Wt~*@+6{)3K!>P17Ww z641(+0Yeg?4`Oyc3TT%)aC;$7$L?ne?|965CxS@F-r2?!RAgCFjQ}1lOc*Cx*1`Mk z)|DH!ueK}5z-6*ztH z_S(C);w$5wkeUN9usa?C5X0Nn{;kTylK!Z!nxwsnH+XQW){u8mIo87dOk{T`^kr5$NeZ|DDb#Ymg zQ>|)(`Z>~iYJ>Jp2il`Te)0Ia%)Rz3;DPCVV|TgP@@`hndXIaBG^Cil-8=U2+*w%j zG$h=>(Soi2boVWKn)K(;V;tM@E=`+d){5*KmWgLiSswXg+9a9uBytIy1q~;*y1UiS zXKKuTmxrsWke3Okly*H=Kgf><{Qvbze&6mOJg56N+X$BcDb$`Xk`O6Ye|!ty@QX#- zTUmInbT-!c)DAbpT>CX#xZKkmEms=Xqkw#CxeX;yM%z^>?g#fanYfZEZ%*8g%H>Rk zzwuMTfu4%U%>xd?46g3?Q1$I$b!JFg%F03HasRUz7PGZ@nC~Uwp%A+3$M{>OXhmo5 zD0|hu`r}Cr!=q5yBSrjK9s4mRO^??{J3NkV+zVzY7QDwsZtTK>Eqg{* z{3m64+rU^?91R+OrjKsH+*p=NSM!@|xe_k}`5KXk{QN5kAMjxmIrWex@Pd3@EAlt) z*&)DSwOO=ACa3Qbu&C3ezghjT8~(GmU0JjCcj$Hl_;&XL-^($=czeLd4j2qobX@O~ ztY)tPS8K=1k?#h_MwLeG1WgQ~PaMFugkoZTq)AYzDX?I!)=Ask`?bfqdaYxVXu~aHPaQ}zR3hwR4TgR-+%LQr5nr~m({g2#a!>}R=U)~6!Bd=~6-hpY%SH9Nw zPk6U{oYn6Pj2$doi6RpS1zc|B|O zIk3M#$NlL1ge1Q)c3sr}x5@r<5YTk|`BQpM5iSlU2cZ_gu+6JCZ-i9qKeIw8WIr*- zmm$*q`q$R&u53KyXwPSr-3;=tIO&Ew-wXWu(>FK2(HF-Y9GuN}SEn_9$L+EA=)1^M zZO^yb%%lm18rW7DShhaCS<2ZwJAL=xZ}Y4aYgwsisK4R3^@yG^^M%rilaAp`VLuMR z^gktrgEHD-Wahgxp7$u!DFAN!|7bevpenew>(eP6BAtS?bayM=NVjx% zOLuo4x+J6p1Vl*)U;{TE#|~9 znFd!+wo8HtzF-h^sXZ*!4cd~*TRMD~0v4TYl8gg~<)9Fu9tCgmWJAPfa}l&q3|GsD$jT-WBxw zrTAZULD3i9J^}qbt}S<-(=|>{hej|UytVnb()0U%puqm()t+r@oBvrtaM{E9_swb+ z+ukK!QE5ohPMqUo4=NI;dH82=uy-vT7ANmW=bJ0F=GcGYE?fwLYtud{WoJAvH;ODP zxVUX4o-*<-S-558_xb}AmfijI6N3V_aAKh$w2}P@so{FK<-wfQH^GM`hS}CWD#5V- zv&i7*VuYeG|3XBrFNN{NZ%`yS(I+`rV)fu54k|2K73Ay)=m@yja{IR*=pB$lz#i2n z#A}1g(f=s0NEPaQw_Waa`p;;Q_w2wqRlyw&HtklVy>H1rO6X#r&Gll;(qp6Z=-&5v z-PCNS$SJ9uIIdr2xFm)}yM()#Jkz<8%b<|kbIi%i2Hq()@AGc4tB8M`2|0A%eMDQngiiqrtF~U6T5H;1zHp4=7&Pa|sOp{e=!}oN47xtj{*-7EM`v0w6x; z*b@vqOS)hlY6&P1xDi*%yOA5*d7uRDEZ5x3TbQEbp}MmQ@*?ApZu{O6MO0eppE({g zh2L<+yg6LG;bd;QiBJ3aJ~6#uNi)`u6kt4nf(zEwQF{WJmWa~~CfOD*Ah91)oi;FU zrUdFNu=%fO!J1WSs*?$AAO8c|m%K=8acVu7(dJ<-1$)k`_>gQ1?8y+>*F+S9T84%A z(S@bqiIO;*PA~kua=#5BWUv`*tlzFWyD^fQGv*aqW-c2Tu32=x0UtO(=4}c*&&gci ze)e+63*9l&P(12}N_Kxv{yXiv`Wk_<1}PFrLL*iHgn{TMzAEpl9Yu|_+ZB~Bkwk@M z$^FP&8FH@urt-ohf&6wHp+G( zbz3XJ>Slp17h)+!4jV!nf}9q{%_vxBkuQ zxW=EmJzMc0^URoXIzPvrHH}MBm!y^5kZY8x)wi?B#9 z?P8o>Hp$9L&ojy8DsO)u@-u&L%ZmrYrVWQ7t%;>?qMt@0mJ1@+*Za9hrXji^0Zm`S z;@tcNH>ubZKG2jm?rF7}#c8zr>aJvEwn=dQ&2P3q@dO^iccw31VTZ2tAGvOOlY^g6 z4xk+p{kS|c{dnRFlA-VOy+rG5n;P$VV1S(9ax=nqm_5VAgIH9Z&k+J%y@xdCmI(^Et>W09y-{ z5L9}ax;B6^O#m9h_QaX~a*dYLEzHT>ZN8&!@A&WfOOK>a!!u#|NuMUZ{Ed~mT5OB_8||vSQUO8uZCXwEdl94%=7=GhoGBIPXCq1 zbTyS(&0??+F(sImZN?9x75g|ncS?yO_HWmq&FAGCQp%fddUi9aXxSmtDO-&D=}vJs zm&}a^MWa*}?));fT;0P_b9Zp`YBLbl&3>sB+BXvjzkToS{ps|pC~eWsIq#rxxyu`_ zB=Ka68K)qb?q$!$;|hL%+1>ytcYC_dy~oMvw;@>wA(Sdm!pd555&m;N;z7z+t#ak~ zG?9J1Xz;p8I$0+>BC!^x%%XZ`79BThN+lq8H>eJRcMylhhD@5ynFsGBiRRzR2?R=R z+NJHkg*RE}_2wDG%j936-6`M8hrE}ImYk)b-X9a-XVsr}Snbd0kyU=7zF71<;}fxu zP&Dpbk_MuX6EjJ*-XMcUeSC$+mEV`dOL&p7*()JmV9J-qCWjCeS9=6xqDZWbXT|Ka zgGTkinmR7d5_jQob?74+IBCzC7WwiWIENg-*cU@dLhkPX4Gp07&ejHtYrn<05?e_~W(VYjV-qbfLXXaq3?2fN! zPhiW}5@SKkRrQ==X!Op5RO)Eo9LY*U7R9i`;(KJ1{_;KhFg+cg-XxIU6a4#0Cs8zh z`ki`xoTW~3-GtTP5pmV`O7tyg%LPVGI#Tj~)&_f-W|LxkVw9v($+UJ$MTV7A6+8?z zFZD)=(hg2C_Vkw9FX)Ayrk;upF1c8yE{{6McV@B@zC7%MQ3OmM2L_{t-n%b-WiZJ@ zA(nRG#Z>1`_5Z%8*EMqa=7GFALO%l>9KBKi4AeEN;6cWgtVvl~`@onr{kLD>lAJZb zb)nfJg{k^A{c!WWe!n(?%;kD8SVKQ8|62Vmd7XvsP?`>-n^Fgm_$H7=WZW-df826_ z z@E$u?VCl>sMlLKwmKp^L-p6~yp6PQPY6zrIs4a;T~Y8FBMC(wn$fPt31=H@xU1vk?-{Ll$Z*FsB{jL~p~S z3s=dob;JEdD)d-~xYI!`Ti2md%{NW~tHw?sj65c>>!#wOlNbY+d^89qZ6GdRuNrCU zB>muH50#wh;7&t>YDq)ChYl(-YC>tE1|meGw6QIKlApSYW40NRVm7tSB%j0_ze7nT zh8v&%3IxxO_7yQhe8je;Jl^!skFw!oaJbk+8gm8xX-nl%sCoa{3&!S$r~rBG$&I9RI8|%} zAlf@*W|lI>Nwn8ew`f0HnHSjdE;hR9d9vTUn|hELW%o|Uf3fw7x!e{Pxz62@xxV98Kkjy2;UPUmBPu zXbOD4{kW}-N0n%QNAk;U8~5K&Jn+BWJUkHn)BZA`7UJ9K5fuHA9s#_E(Tfnd5X8T6 zFjtkLT`1(;QhD4I9kYYMp|NH0=R)e{xIMr9k{Es|;rc4(BId=?^(GS-F!H>7B3&Mh zIkrJowu$}89-sSXTKVI1C@}uY7Jb$fQ9d2hZ3#yzSWYN}aKgzhL!se)vqotLf1R#w z_sBs`0UQ_;oc~1`Q4$txtat_>2g$j?1-W#`GDLR^-R&of>%_IDnsf!RR+p4u+e{AR zzA@Eqw6hl$;85r-Pu?)?@?`9+wHi;y3uTVZ1rhWad`n(5ArR(4LDc!%r#S3tKy3RC zf6X_gZ>-gcWUL9FC`SU5+)$rr?mQnS6nGOb2b@lH*k0*6xBGX6I(r;v$a5_iu9;qGI#N zUW?$%CQI*bA?=~-M(-{8%Lw6>)*mL6s?nR5?szY6kr7(s?v%HE|H$ge{a1@dJP<`f z{8x&+7g26_`@7&a&zwR!YHQ$T6q8J(I~J1CrRI1Ws=K=O_~oS&b6~2_gO-h>NspEL z=Y~?317E>_BvR4$Xc83Ag(=hNLr37$&&~Ady2zqL$?ZIzrd8h=c37qY_!Evx(&#DO zfVyIYHm4J-S7iSA?d@!h-980AT{i(FF$JLggn&ab1B({FBg}Qk^Vv)=u)z#&#moD_ zD?e70KGvnd2Pe`21Kz)$M&N}z6BJ%knZr{LSGQ-J<1u~PG*_rvJN;L673{*e(ndv= z*Rt!}rLoaM#5mmJ{SINn?rF-D0_q_bn4LR|>%jQ3GaXQKYkbqxsfe>nS@(p zP1Z!WMxYiqm;T|}Woc+!DM4pc=7NxcCXUVj_JU^f3`-Rt=<=`4W%o3zZT0=n0wu96 z%D}=62ud{azA@EG@BM?KhOcN)O!pq-Fs$nnhK9J9p5^jNOqQm;=GMTR9iw}CsbVt& z3L^%>)l%a$%`9*{OGb1sVqEH^K2n5O18vY@?H&pPmWK(zVHHhV36%Ht8Cv9)8bx6! zO>*RZXRRU4YlI4?^P>ue$dYE1qVUj8jnZz7zOwh7yiAqGpOjCmFqXhZpW!k{s!0J6 z1~&^QU*zpb|15KBh9}hDt%|sYWxW36M@HrNa(`263{9$6bP<+c>fcf;0qO_EJFla< zV#;LHL2PUtfJAshArz>=y{ln$sG8#&RAG~Q9Tpgh`;N42+?gF@-AU1#I-r@7DRiuH z7$(1XfYVTyjp9k*>Tc!D^TCZivlbroMIUp%KcgSiJ=)NnM)x~h@x5P+Fg$G@0}u*h z-v4B2KZ<=JtACE%QLPzl{ZirjMN`wkbqJ}4qz-J0s36OC zy-ntIhUvm5w(qZO{G$&ay%RakWO~~x)!cI;MYW2Iq4`;Y_8uz@k~v+bt+Pia)i?v-(m3^5)zeUmr_eJwY0~EKD{3WEG0hEgMFC z)%K(5>#B!t&*=ipY4u<$rYl)SDRMQl@Gt*>;!5@`yjLMOWWps499`oh=X!%9VUS`E zIgzTp_T}HcH4QM|5c4h6_@>8%I=zo<#LJu58DK9%ls>Ze6 z0Sw}S$KyCX8eFBy3wi8et(cm0!PaADo~juN9s?!Qi~>oD)w_p%?$@{t!U*eN?Tlma zXZ+Mho3J?V_v)!YHnYk3v9KOK0=WLxy`5a0-JuVve^p@>d9VM!3C6GB?SDGYUF3#L zZ^m+T9*P|G7SCKx$d2m$xME=z?@ON(Q>aFmvueo%@`n}!!V>y$R3X=RH1Z1@_)h36 zmjoKFNNN*rXw68?*adXA zCAC&%gy$%O-l%ivK2I6}HeA_K?!_RWF+fa`jaV8*S|^(rr}j^KKOONOHvNEugVXkk zGBG)oJ3uKGHE$zCz09YyLzZ8DjSNfbnZWHRSOE;cT#=+RN%*B{G+TN+TD8HtmE27d zp89JLOIi=~!E#i$9{i*L-9U27yI)NADi+wcZp`RSj&S4+*Ka}$5~)}ETFBglzPAQ>VD{d%jCeoscV;>8>9CU7Yf!<_d zhZ~f~^u*jRg)MC~g547e=ZsqAOzQO%Fl~iO~y0} za9)_f?ehT!fkymX1x7yEi8Ml{R;gA4lFL?v$j#$N)HKV4L94r~(@Tt*P~YtVx#%=W z1x%ThbV@%`WSr^ZwxtcQK3+dfQ}#$*VgT$rDFkV4XZs9=$`G>!^G;GTSkO<1INuye zKMslrB0T+DG>vgE6ZX|4@3e^E+p4+wHZ_nf;!5x(-Uwv6O7E*31|{`B)-xf!O*$>{m^kstQk$Ygb-Z#Ma#D1WgQO zynV<0a|*M$o)(w?Z7ebB`U21F?0pf!M}JOaS_PLi3$5~pc2OB6OP#hI_4I$1!|gl0 zyFUf0IXe?nC(UJ)FmV)R6KRutW+_|0^1`36BS2tB+8>bp!so3mFby}`X;MBpi6Lnu zP~BYH)6 zK9AjRVr-d>SN@)7lwKKtlN9ic?bO5Kp8!lhjq*h^*(m)*?Z+?lhwq!7JJezL0@v{d zTezEj^@r$(ajWWzY|y6CHV)V);c(6}TcaClio zI?Vuho}d6A|A{Diu|2}HeVLL-qjI)`iE`N7)bF^zXT<1n;VC9<%ahM_U3Owt)n<#B zyWn6KrYcR7R@XM^y2v`xC4#3^y<8;JVpdP9P>f0Ye8K~3h=qdOKfHN%k5B0=pvUcI z=ZX%wxloCLSRz#_wnH2YdDp*u{UQDD|K&LuluN?_le}4H4UNIPiNoby&fV>P-NmlO zlZN!g7Vd~S%IM1B6Ta%}(r{D_#N1M}xLI66I-f~b>B%>Tjsk1yn|l#!pFq+Y?FY6{ zgl*5==QnoA#$#A?sn)sYcLAx_>TDDW+hkI5*rEx&@qYjlh?Giuoq>I^ z0{N<6NwY{Km-2qYf{}Wrvm%+`UtX6rJvL0cJ`Hd@iYLh#=Jqv{p(POBZ41AyLMvTJ z>wmeAZP_k!xy?19Q7-*DqP{B5k|f96#C}W}UXy`>6FNDRriVuH?3H{ai!H5iW~-C7 z0^fKn6&{^%lVq6S>S0L)CrZ!8r1#3Z%H!_;p<_YiaqUz6elH=$C51*_B&_r-TFGhMFsw{r}Tr&vi z?0h0e*#q7qJf%=<=_Hw1W3xB10i_cjf|U&j%~OvlLRjs=pA=IO%m7x2fqcn|0-r!^ zdT|<=q3Bx@N?-i%U{$+qVg*=?ouFYCRrLvKs?Eain(D~tWsT)F^16fHnS>r)!J3s6 zJ{UEUhn>r%^yXwgBB3T>O2rJrmg(SGLD zlMaQ}!1=STI?J6d#7K2;zyS`!xLHp12-#7gP)xGZ<*yG9uyw>iXppnI2 zvM_!vczwYBu4VYK{R?1GDo}g3K-}%8Ut?o_>AJ#=n*Mrw+hY#o8V&9lHCm9)q$L-h zeNJa;RZUfJXTQooF4U``9L808iKq*l%>#`#;Gb!||Gf^{NCNU_t_%v+%JJs4YLb&0 zMm4^Ol%=802pNe~{d#$~`Z&;P4|9@5megc;A1q!k7!YPAM^X2xah)*_lcJ1{nAe!q zM6U_FdxwA66+tQg!vFXWZGHenNU;Zj_S>%fHQv|mf8y9e_OQX4eIn|Qs4R>^!a{kO zgesRjl@ZfbDE{*7+(X$2ugf+^@p3_>y{a{?T_b~&@5i|6rguV|+>044m;DcE80PZd z4~zNi`G_q!Uj3Q$ITQmS${|f)tZd`U7Eh7_KoZQSbDGb$#Dg3l6>ax_w+ZTkVAG6N zBg>ZB=1;!cX{%w)J%g@I&rdPe)jVn6YCQU7X==zh%$Ul4F=BS<%3T2Oe_PX@-%lee_+ZcYN#9zMpWv;ukT#AK* zf(%e*VCy~(!gKI~(hP)$e2w4T$t=ry;Jz)miZ;`Wp42mccVda=-VntY$inL*^yO*#k-Sf04P@$)h zqqd76;2lLyl}QX`F%qKFzP})p<8^*hI*pua85on zP&wwG3I!U;u+rP7*X-4$9G>Z|JN~O#1{>`u576ZQB)5%-y;|=e*hi+md+pDMw_TS` zNsIl`B~C$`w#us0npMIrW>G}jMVG}9;xN&UtHHcSg>(?9)hh&U%~ek$i-Odo+6Q%7 z1x{c2iPw{tDAtzah|_Pu>jFAu~fUH9>$_=;~L>9-{fI62HMI|L&mc-P2dhY|PtBqw; zA*({u3;De7qbRsIW<>CrUssi2R6pQCNNdIP-#X*0X;Z=^+#^}WNoLnvGH<{A>W?KW zIB6-Vi|o)M1>+PxyW|LQYAJb2G+%jHmcrx@tmkfPS2UP|<1aXY15J)GwuV6`T-q7( zeQ{sls>TzR$TGRj>FYkLswQUZ>^{!2i1~8MCnJAo!| zt))V(rN6dFCT0{CMxRZHc#0YJ8**yrbHX@!jgfTIR5b{6)1JeGggNQvERE29cLUPV zA3XN&r|lkVNHPVxJ8i_4E_{0mE27y_9$CW73fB2V7RGpf#?P8YPB$j|~-}-Jjq~0Y}H5>6<;WvutoyF=Ob43BGi1BXiY&jk3M=EbHnOqPSSH zCeZTjj~)pvc@H^6uUMWl!bR+ojP3#R99{8kC6eXyiUrMYZs<7o`jw5c0eQp!sL zC|X70I#KEkw@aK+A##lP(l{0pRZ0!2rEQYVR`b>Zxk-bMMn5j-!;JW{$84V zF5bv3IVzMdDY{9Ik@Fd72k}4I?n=Yp((OBLP@cq6k&CAuJ$q4CMt7HjCsy)AuXVV-VO5tf z1!Y>?A8wAdr#1Rf%T{aO;5U>Dq(ykeyY+1`z9C?Zcs?|}M2svT71S7ORd0VK$Q@3q z@9hwZohyTztAZPuF#fZ3?jFQq|%yYmB^ zAZuhw#%M;awYeJJt=n&j57{qMo4g<`Yo8w3j!C8zLqW&;goNa7 z$E>eUJY&6|Vn$7sa?C;dih3BEsu=LKCp5Be1mF1!r?dPjo95AWR@5o{hLlWsHg!`# z%@EO0g|SN_U1M{F_c~bPOL^#(_;Gc@>FCK1HWwqzU3*lC&be=O+#NaJUS<>4xTwg^ z;Y&4V3BHb`4q*=2;~thCT=*j1?EC_+)5LV1xa$p4()aEPilyF*DD3MZHSAk4Y@|;g zlPk|Q8?V{|ucn`&QdeVDBP}Z}-&a%%8E|_GqwARd0{Yd+P;@AB)EKJ2{I?bZkXmUZ zB@Q2G?V0qmM38)C*Cc;W<}0c(0KDy5_YGl(mB{O`f3G@+l)%p{qdl6)A{AkQss91e z)lon;*8PyEnK`W@LkV>>b+`$qAn#a4&++HCW7~J`wb_4^pEjTR&p^br;qQ%PO8`4a zzfr!6aa3a*2QoH&)?%PF~c`?#JT^p7X1t)(+X?Ykw5T$$P?=*IMd@{DSUi&F# zojkSfg&?gd2R0MhyE7x)XoFq_qJC=vN1wm~?wR-j+-%3kk2~_^YxCE1rwc2BxDxnuUh)kPD~t_ zJselOHH36VsnOsLx33JefvW;T)qzMzXRPs8#L=isgm+kkI6gw%`xj=5n4anLSj+R^ zVMP9P`iDa5vhtf1utop+@xNyh{9N72AYTbFm>eBf!dee;0ieR?hJ$XY*P7J+H+iZQ zBbgqI2RbZ6&mGLF|AdBE_bIImZIDi->Lq`w;l9gM5#LI#F^+lEW*DAVo$UG~wPD0= zkl~UeIe0@cj2+ay;2h;{Y|S<=!bQW*BL2Z`4>Dw4gSl=5_?2dRLxz+bZ>7Au7xHcO zI)_$|b&!N#^)hR|8T)(@%5^opAtIDr*68NMU8-A^#5C3tFu#G*2YG{C*pgn}J;|S? zYj6^g8@#F~4;CI%B$jF3bGp<@DU|v-OUCvNpU%CK;|55debFYdUazBfyf?LDYJ~I- zd>ZFYNMG!N@{-EC^F$esH_-6bKH)l5$byx!bAFRhyH)+67v^h>7sNTDdpVmX@F@ax zr#hK-^*@mmLzL);N<7o2*AHG0LC@H&VaSPt^OYU6V|@oH)&(txq}(` z*w22RbQ>Q5nLml$?-Hd_3*$?w<*K4fh9g0_nIyr$*irEO&&)+}u8#B-S`tNc^QgrD zalx+dWsJ5#6z`vxPku*nfdGC1{Lm!8^S6)zVy=|rj#WFFnlhRe_|g(dbhPqP_@He` z3`So_f6x}!ujSLnMWS$Nh>3djE1h)72Ay&pJ5l~TrHF-JzYcdsw&-3!LKzsplaFEx zV%}39N(~oy+(#dC**r?WVOV@bqzz%fjYXJr!%!vketYS8GiCHB3Va`Jx0mH@UN?@1 zKII_iZVT?v|D_$aR#$oo4VQkee}cLmF3&Vvs!vnL#tTCM)) z_PVo}(|!B<_bfJ6M3%2Hk6^BXCq6f@{p&R$2yeZCftazm03R8p0>`=z3JZ}Kb~a&s znnadbOQc0+_ofjXk-@fb0$3-Nh8?NZ)~T_w0e=ecx$whqWYP0^p5R&QeL3hzV_j>7 zTYpW3LY^kk&a_oxCK&n$hf!ok8T3tz1V;a9aLJc+Wwn>QF4M?O*0)!i>qAaHCal0$&>}chioevDN z7_70D^<)t`Vxp%3o}aSf;2Bm|jtC-I#!iCFoOjFg$UusuKtrW!jozoJpS@M10ZWb|@xP*Q(6Fu+-`e$7%?;ac z<0-(#UAN2Y4;Jxt#rlTAI-h?>8Gv8h3FO*&cBX5N@x1>zv z6_WHFv`ye9Nuu@*n&6Lg4)F@VqT|bz;tOSeVZJdlk3P7t5>EyE9J8yIaG0FEjAzUo zV{eXd8z*vw(4^dW2zfRA<45~e=m-xTu;RZ2jr`3rp^jpYKS(whX%OhFT?CnOT>cS! z2K7Rzd}0eBA<(d97|O0H@jWwA$+^=d&OLicdy*fj9*c57Z$>9hEfxt=)KcJ^FPjC& zKR47M6YNer(*||7tXrk~XHlVEs_-ge+f!4D`fpei$cu#|ywWfUyc=e5ne4T(r+NQE z^%wc~Z7sCUxd!1FTfZ12ZZ5c7bH}-O&DvIN95lroLt%26DeiCmA2W#t&>H6?PyfN7 zM7wPs1-2fKzE;P6sMJry53Eb7AzzK(X;XZ+XogSl@q~RNV^uMqI)K?&f4<)% zyGnS;gMEy}6k0aP-f*zZ5hn4p=GZ)VJH1uf3IjkAG|^oor1GH==<-j)qg!F3_SL|0@a_Nz#jPM+k>+~j*SHd)Dx{b$| zOqgdmt`!LTg^`;I;T&XB3W+AaE*x6c(b=ly;VF(-Z<;^)UmQZj_*wi9f&$*mfMbv6 zmo)o```7J6!o0zko3BorWn@2LnJrS>b>uOuez0Z~q)h@>d0YIu^-0sU)6-&gn$FXG z5P({=esg+mo_eg4?b9OV?#-%LgQ5SKa^6I50iI#=m!;c)s|+9Rcz8rPXkF`8;z zx}Y$3NhF}Z`V4ceL;?pji|K19t=oysUy!M=vz;a(Rl*@vDwOG$tAg|T<&Fo@0gvu0 zJ1H_bP@h2H(^%X8J0q>qsNJ<#**s_lR{R%wWYyH>%zJbuE0f6rd1*S*@7286+ywG# zwB!Ws(jw8(v6Q2V)N0AtAa(BWcrMjYiHj|b4J&S*l4pY(B9T&J=K%|6sA6k5#Qo%W zw+53R(R#-D_2BdDw&>T|ExjH)Fg*X_Zg0LgI^g#!x{&;(Z+u5%GKghz7ASFcRSRv= z!f$zE*xzIWxn(q0aCU0~RpVL8XiD5FTsa}9N0 zU>y2iG5wMu6Hg|({XHn(eSF(p(nYOMBJmbxjtOy&aU~&xpz;YS%bf-LZKy73sa(g2 zk$@f#<87zv?^T5(7aa6vq@8f}Wut?H577)LApInPi|D{wcY1kFJ*?u0^2ecmb={Sv zf)V_VX|smNrT61h9P)jF=$Vap;2}r@)%7q`@+B@(7AvX^F*UBs=>p0z5mDfhGZ?$b{RX6?dvM_X~-i#W=K&lI?w{8p`K+F6;~$7zn%M3Vq{U`XjLIpA^q|;!djQjpTHK|kJu0! zq3kRA^0xhU+hB<&l4>G~OeX~q*!p${958`jhSA{KPz%>^i*+*($;_5vXy2Sq=NWFp zC5YxaM^cd7exZ$meo&hp4=(nEvYx55bH|ArEBe;C54zcvh>UH`Gj;T7SmnneP^_A&&tF3{(BZ%mZo z7v$o@%&<1aSm^e*?CE#jItG^kTK^0(rU9_(79nw|LEZoo+l7n05w{7OO7%6b5?)X! z{$d8@awRVF4AbVG#pwkkA?UREwC+7W%yTB`T7EZ%^XJp>krM#MeUQ4a9_UbljNkG; zMQ@C?I`591J)>Z58bgAuUAN!GR$vmxPwSpK~&p70Q^rTR! zXwLX~F+yP0tYgCS!I-gH+=bAdouoCMCqH=PtT8RK19nlpO#;) zeFyqhp126Fe4W1iqOm>oO#QL!RXqmxa()db8bPcgQ~KXw)zl!F^-0|LN!{jE@xQIa zH66L79m{@HF}Xyqxss_peSfsdn+X%xi!Q9v2@RGy1*+H5ik;68DX2g?zBI&OYtZzj zmzGmRDq&tp!P=zTZt|q1z$6Wue9=K^(znHp%7K5|TmFL7x{BbTo^z#qv zxzz0Avy{xn%cA6~-@f*FcU4vCI5CHat8F;vy^mGGmpxs_FhPAp+!3!{Jnd zew1yn;zx3Fxgc?qeskBCk~jY|=eC9q{eUeM>_w-f@#{k~8SVQ-_I@tp(=w|>t2|9Y z9kXC}!i5_Q#l&?~L#db951)6uHQpqd#mO$4_UmjLtQrrI{GsA)U`NH>)-|N3bQ9$d z0L!`uH+>u18~-~ymRHg-VM*|e#S9yZm|D%jstiZ}9JerMVFtq}qaJm$^d2h>?}LoI z%~mY2DcZ?;?1<Sx%MCNgGEe`g;I-BunNiTRF(9ncmANv{rbN;IdVdD~jv1T1uNNzUV*{h2 z2~|8XN$*{+M1~rF07?Mjq8pHGo8(HbWq*^j+fl|}nxpxRL#F^~8i4GLVkiRznl!4AyfbMMB5&eV74 z<{ZjyGUIn8srEdx1|N3V9xzrrFDbyz*2z5fT}B|e?&>>_P&}OT!uY*54K$0YQpRLz z)e&-sq6PGsQFqXbwvHE7GaE!^v}Mj7T~{%~^2x8(&u+?&o)k()5SzSWBFl&ZhgWdj zDRi6gWJGKm!yK@Um3h6;<4M`O>alde$l3EmLbNwlflrri{uiFY;%{Zf+g$sd%EBr< ztWb9Qm^hoLEw!V_@TaC=!cGex{?u$|gz^je)z|8O!|{L7 zqTe(%HhEh|E4!mDh=qO+RQiFDxLA1p7xGon?`zc{Cqq3i+F3LNE9@3WuJE|SW=d0Z z-2Y7c?0LW@RXPt9+QZ*!*Gvrx*R8}88uqWWPl`@{D%J4xu!iPf%9yjGmA~n`Ub+rd3<{DZn+_ zobG}zhG`Qz$T8Frty`sLs4v=b@e!hUslY~whFkvi9k4iS=^CdYhIW#_=U$& zdmbMXts`W31+1akl$#vx27&`Fj*FU5t_l%9{>H3bS+^OVy3jQPZ7*ve)F*|CM2p2T!f@~edGi;h=@UTeYM9anSu`^H0DzeW~( zpd?f5} zyfxv)>{2h~FH#&-L6Oh8sQ&OSU$1?r`39eKx6Kqluu7 zecW85_S>coVZgzXsr-Os!Xma}m-tz`;v(r=%x+OPZs-q}rr-STr=$aVpY)p#t2-Pj zRlxhw;%(rUyUlyK?7}h^(0|}*DHsE<_w%CX_qB6PM$Qq5*$D$sr98Fg+Ic*`@OLVm zGz(5^5F?os{Bb}c`W*=UzvGp@+BP{Iwe?{9l5tby4v9Pw44q$9g0g8ZY2j<}zz?^< z8>oK2jl~w?l(PhlJmV;dL6S*tY!3oevYfLAqENy{|7%z#IqImh6qFD#6Cc#pK|IQU zWx?kdE&AB*`ERG>^R#KjEd#7n|A^kIOQRhdZIaEypH#^1`+AU%BssArye|}*nEb14 zGWBmQp!xCJ~!T}m!ACONw5yG1P(op42d~=#K%u7cKIE(x9?Y^Xj2`&YgpD1rj zh|h*OG*kVlh5V_t9zq?jByv0u#Frt7pdrp{eJgNe_f&B6EP)|yyK(gK5n3&aJ~gJ)cqz zurYupJm;uZTT{<|W&dn;Ti7QQ_iAXaVNd|ernQ|#!5+!ljvs&q}9bQ_!!LJRODXdX+ zWN55KN`8M=kW^U-S4m1m1F#mss#IX)?YVw}9EZX}xo2^J$da@?ZFV#uD8(t{o!Z6s z$)QZ2lt&gBU{Z-WZQw&hPtckDFR>N?{|}_yaiQId9;DMcMz8NyKC5*2W6)(&KI}%k zS##90u`+y;r{2l8enTaVphcpo0N}D(WS_5~`11Jj5gWg~f3hmU|1J$b3A$q<87huE zNQvYACMPsSAkK%6;Y>|nMWrpIrnRO}`D{+e!U){%GMA?%obX=XByt>MKCtCpw9Rbk z&u|ppw93C*Z(IaLu@vV2Njt|lT`ez#U%*kOSJ^G+NyZ^WDaEN63}4Wp+tZ($Zw}3+ zUc^b*KADyeCUU3sL8Nmfk@~tTn|N??h>NbRJxeoo+BT24>8qp_sl1)h=AFUX)IF_o zmatgt~#k!24l_4!An$NpCdHCcE>^YBIO(u zF5+0)wzl_rde8ahg-#gCTYG~p2fO-M@jMu+{0)Ndtf@@F?@a^ypl2Q{ydNfTap3+D zHI{AY@POn|(m_MbtyvOkB7XRF(D6xkD};`^J4ru*38_}$L99^=&H8T?iULDW2_uR` z({-N%kX{*O8m2rrlrI}XW|{9SEOrZ`2eGcpG|pq%?us<9ZzZukT;rrvP2KJh0Z$U9 z5YYAjzXqc9VdvoJ0V$*4UK)IQAIv|9{Q9;VjPM^WYPtJlFt_s>m8+JQzrAixc~b1N zraQ8@)@8xrM2LW%7^txPKIZ$Qfec`HRcp<1cnF#}xxbp-RYbo)ikHHMi!A=Ra7ICs z&o^-Jp#TnxqhEWG)i#T;vBuSO7ydb>3%Ufjh{OILN!J_|dHeROt<7$0v(3%6ZEe`> z+U(lRwrzW}u^E$XTN5|E-{<$9Gk?sf)11znx#zyF4;746NYdBsK1xo$0YMZ?t?yGk zrFsVYs|)_)gX2BI12jO|6A;m083na9dU|K@qRV$Hfz_3me0l01Hf?0#fhny`TtB;=dUi!`*Q!Ht) z0VUkFHs@gUZjCbugbdF_gxaxH<_oD7BPoKy%g!*m|0!kEIo-;YUvM(>EBt>paVPGG zqLZ+Sm@=3;Sx>z2HN|h{e%V012kG~UZ4VYvVa@NdBYC^Ec$J<$9nRRXfQeE%bQdV* zkSy-C<_SG&o7c(!GySfog*Z)_9GpRNPkD=!rge*xs0QklrP$^fBRj_Ns|cM9NC;6L zvPlTSCB7<&d$y(={Od{PHt+J=(W>{TSX4sy))qZ#DQ1T7;9W%sEl&s?~Yt)2BL-K zFg~JoL;^y)Z{r)33)Bibs)S#nhZ(<5swSUTn8G;I5_xyy*bk0?G$4}NFJU#C?2N%N+QDhcJHk=%D&wb{K*t z4YyM*--#F4k^43;Gp$oZ#1U0FUp+yM`k^i~%~v;s(2&1fXhIldY}F&GG~6(a%>^TE z*wIX37};k3d5@IZ-ZBDIBL?az)~ZhnldW#prh)ERIpvXTxzHYu4ptkxV9>>X`ZbH< z){UuE$gOn0ooLuU`<1R3`M<9001WVh=zorxUTOv(@W1%5{5=xxEX&G(RkF=_%dq3{ zotz4Uz=3e8-_v5}jU)?dD*c646_q@vXD|?Cm|~_5lXs1i1Ipj8I<3cRZ~@_3Kaevm z**rRhG72d~y`FD%-=1q$X`{V=Wv5Ax05ziq5a8LX-!91qk8p$v1IGjkl~;;$5MwQ- zG103sL_GbPOvab4JxZ?V05I~AJ2Nky@uJ}+847RbhFw-zY*w8@;o|${n&L=A{}+Qp z{cedEj>~Hl8wQ{P5mFy+*OQ2T;))EG!$s1v_VxNxjg^YE^ToX>mcSP=K>wma3V3^( zQ?Aa~L{Y4LDVyCyxrOUzY}juFi0axmbG(U2d=FeAxp7R(%SDl3GnalQio5(L%rs81 z`C2>{KjOuM^2bN4H#)%!(B=X=-G z>p7Qp+6yN+(0I>t4|ElxO{;S}K|a=Zn_500WW1mKXPq2irw7WbaC3bAT@iHmhz=$@JD0Z)R6JV0!1_tI&*fOR!U?;732$! zcsepB5NC2n_02v*1NgXae}Fb~2c?^-53`rA&gIV0+blE}yEob&AExX%N2zEd5+t!L zig2wcq9ut=`f~a@kyw5iJqs3=OZhp9pb8s*-4CPr zCPE?&LBl$1=-0=FES8{Q(YA5WYAjWM7m9IYx z+QQrX&gM-@ILN>KMiWl{jI$4umo%0y&AOnNIH35pzV`3J!&|w*Gspz9!VNQ`mw)R1 z*|sNA7__abF@jnK-ObC9lEbP6xxmY}FU%&gI(Mlf#uJR)>n{a3*K80G3@t zA)hhBkAFBA-w&g3g(fGU`*GPYjOlkgR9ZVzL3VC2Z3sYveE4eQMg1;I=?094&o-yG zD?Ftg+A}<2En@KRf={4+oA18VIT;+IdOClvc-c9bun{kUvV^3N*4@8KP-jISs=_-n zg{}cQ^C?IeW%s}D%_?Xb&p~4L$}xOrK<=2k3C!Sp{Tbux_amX46a`A`0rJe%`3~++ zPL3`sB_TDoI8=~A=* z(c|QJwHGB@`qtvR533z|AKBte>PGsQ9aa%V0w-=Hz5VY=AHQWmfbw(9t^r{(g_j}e z<+*G?P-DhlJ(GTD@n7~W^3U7op`oZJji^9c*z>C^HntE+Y7g)4CW4rv%|aQt_=YO* z=8J#eU@`OU;eCtMJlFEZGie8(kg5Hp;FA5T&i2?7Js-p-?$N>T54WwOB3{3z`=Dlgag6$|n6oVV>6slplPUu zpu!npOK=YCOywsU!$}a9^&{P?C+9$Z9Utz)IW=pgYv&a0U6n(FN0RBr*pt&Y`l*t| zBEDhaoma*VTyd#LuR&y~c2~C-DoJK{&t|{;a(}Fy%rw+W*7#DkBR1Da9dK#4{$@)f4Y7Vs%g$qB;xCBoS z`&!L$3TnalUc<31&-ZI++@se}CUd`rX-1$bnj%1dUW?NzqxKO^14aacc2l1kf&7%Y zx%6_L{ZI-AE_RQzLtQX(P?Ry1tgHFgQoWK}|NT3sb?Kfo+%(>|hNcd!{59ve3f#nr zRVX90X`e24`>gD;vG4~}b4?t}DBLBy=e}?hSxUP&gKViJigws0OvSNY1^ZscF1>GIVP|LGF4u~+JZ2yS^zydQO33l=!m^jm7U6v$ z|AqpuAIO#UAB#qE4E6T2&{!32rQ*OCz2bF)A7ny8cygsK29y4!1ZvnLZP=8TBs!l^ zHBH*Ixfnz3OoM27FGK|~RfNY&RM35LR=^6)=ZEq!@NakB{p9@UdqKOf)yC&o^fsG8b8#V2K& zt13!}prvK@fYx7q@$Q#8J>TrcLSt!Cg-Z4OpEgfG-9|}h62UBY zKhHm_U`4-mei9N!8w}5piYy2-w+7lui$#BoR+Ju{J;z;+*@NLc)*!>=hhz zM69_U6xjwL&4n+}A{5EGMH>LT^-i!o-+l1c7YUioj;xZk*fQqee(k)|PrSobnCg#c zM z7f%&18B!u=`~7n$3VQk9gVcP^qioXAZBa@DyTOIL>qB>&Hb0xe9c!ms>aB%<)=rZd zg;?>sk2i@_y1@h$-5tb!4Wo*8yUe`|foFMp&sygGrCceWhpTM$vDNp8`CHHR`+QEWcZl3DOXRx$HLw8A z^?()+-QmP?`5xa3>z70pu(ISHh#SZXAIJpFBx1;!VMwB~v3_6ebqK~B+>wzpGAI(A z9cmtxUuX^ME{R-Yx=2*CkHPJ&i|tV?yL;@L`dz*COdaLEF*oYo1gS2a-31AM($OG+ z0^J`sx3{Ku}-Ag^oEuV)V(t z#UwWYvc=t&O7v~?@mhc{h32;h&bgdM2ojr7WJ=x`F{`#961c|9>~I$q1M#tV8Eb2M zXsoCS_;`lm)BPxRgKaf?u4M-W#jyMSUj^y;s|r&_sa&(#IdeELHkz4ZX`-cD&S+!h zbNwpr5t!Td6F9U*NIAsn9<6T=|IP!OBm_5PYgG3&+J=0n26rHq^ePx`Hpig!m-bE! zJWX-7&7r;(;_4q<-tvE6_?&Auyoc0tKdSaV#q48dJ)ZT=L~`PPw*w?+>|mts0k39T zOxak{W=F`}aTJ!j2kxOy&Se_TW^_)X0;em2`=X<@!Ybd9MR}>#Ar*Eg7fpeS6U3xV zkLy8tB+SG!)WybaxnQ|Uyi4*S^xr>`+?TvFw(HNto1%Dbq$gcoYU?_0 zo5F>bghruu(97qcPz9er+6JCu;G>TK#j`k&;M)t9TuWQSJ9r?`RlUa#9!PEkwU6J!n8hTr=i^YY3&ku&&_c5;L8-;J3Da7s)yMA+E-Sx&Da z3s}gIpnO2X&RyNdN3mx~(lqv*GT#&u64Jv=sK1UA!=QV~Quq9fyXxOq=l*BH_(bE3OFfWN(nV5@evRO4rt!!ElSxA6Tqb|h2)+!O z62fVqU6k{5vt~3P(&Uj7NTHrb=0iFwehr4&Sy0VslaDCv2=%!$e_UTf9%wX{teyNq zQ-VZfe{nOQwMPB^fKM!x4j;s3PSN|{hu>tZu^AN<^#xf!cdQT@g7qwtrbO}Lc~Se# ze;AhvxGG+2Hr&~ZmawOtXz`fc6~hT+9!4NZ&>jJ(*1c!(%4FQ&yXZG$Jp2w5|KsCh^ z|NTvdS_&?&M8Q-|ij$o}BZjXxCOjga7^9Ww_r>lSioq}ujec)S0&ZTeTc<~Ek=NZ6 zI(|m9LXOZ2GTwdk`xS*uF}r*0bMPZ=$|cFTg%ktvxxd%0g$`%y$963`G)l9+g*Ui^ zTQQJ2_XCr4g@ZLcIb494qz|M2gtutDm^GUxV*+QKjq@08mK(gCT z4Qq&8IC7uq9}_%?8nXGghT{{mxY#4}r)}_kQ^~TaSx4sss)3B0o;87iGy>|4wTFfb zj;z0T80_OSJkX@?vovs(9lC$$#6AYUyp4fzCon957A)Qlmx$3jz>?MaNfBspj0(3u z1>P(y36JK;tLJ4x{0^?)a><%)u4l&7B-8GAP|&{zEOOs{E0SxSUM_1%WllZmzr`Q1 z!rkH$rm20`RC>Y^k9QG_Hn()lkX$QRJ5|mVwv%|i24f1j^TO^UE)DywM;nSBr zHViT(knL%sR9h#WZjMq=u$fR%q3LEK2L*_-50WTqB%~*@9Z$yn95<&<)blCaQ*zi% zfk^Vo4rsEElr5E6YyKH9%Jk=ogkOvVsUR#fl2VY6RTRu^rEoAcOJFy=b7Bx2C|5yf zK(vS!B!1}hXti28+^Cu{wsF97N*I|M%3+{&im87{VIpZJv;Vdru^KZDenY@N`12T? zYj*{1*V{YQ3#fPlw&CFaZNnuKi!DO!cbrl;j@CmI-md8nQ#;yTh!?ckCu&&%nuPjmR}O3tv-)MK^Y?`f#v;)5?$ph`ZMJ3BTR0h-+Q~?r^KlP zfl{-!j`7T6cn%axWwZ3k^&Lbp)K#qlU)}l91Zp{S9qtqB=RzkmNtM5uOIwErV1F3# zu!8>n-OveU{ygPQ4rPYp{@s`J%h$XQXQrO1_1Cv|kk+Dqj?io12Yt;N83Oecip*(~ z9D+zvn;#g|(0T{M$<;Hk^Iqz)dGnV03n&v+2{P00yu1DwK0Mnx+6?TGwx5mX=zSAZskAcd}iwgU@UgFk(-`g;9x;~9O$$E}~~D5!Hq|#vVzz4~Yv*@8F@>i`VVb&nbyLo`{O>1TC{}RN|B`g4D;O0aV@XhbpO~#^@zVE9ELHLM-90Le z{lGQ1&gsX>4vIO*E4}OX;72N;NMJON=YUyqveLw#XF`|7%*6UEZZE7tuk1+mVt=5X z=u<|1&Zmvf5l|)uD~u7>W4x`j)9Q`AVE;)ciK>|&@^_m$icUhA>-SP#nC#w6k1DI5 z^CD@yjA&3J*yBPaFEVzUniAvZVlhkYhybnaM{fDrv7&~0gHkQ z8E^-!Yo^`~;E)LKJS20Ao+3T&n92Y5W6`D3)w5JKYy@CyQS-k2Ox<^DOex^=p^g>g z3!7(ajdiKl*P@44`?BLw(k;FX%Wimq#OOst?QP~* zWM{vBP|cVXMnoB*7}o7YD`#CVzU|p)a20#es1_1Fm<91kLL+1b-ccVY^^-nzwbjjh z`P5Zf9xUnvl~19l*C`O$?msgAP-^jB{W66X8PbQaqPTNO)rz6cwAH< zPpL1^k{QQR&|xS5PRlo!k5WZhnHR=_Cqyk>>7!c;pF%%MaQX2WUShZ$m+jl{pSs`r z4E7s9R2(Si@uQlYaAf!}Utp>q^)EgcP>z2_bZ(0?JamLr$a_fouc9}UlLBEdHA6KL z2i49u((OT(m`e;iiZBR+L_{ z!xKe7<`c-(YH7{4k0V=dF6Z{%G2bK5`T#zmD1M4zuFT>3bg(D?df~&VVw{7m{P!l8 z3f3sr9{`9u@?ft-J{5C`{}k>M5}SyEHPkg5FA>he5jcZ>ZNPO?!7=626cCn>VZNo< z+oe$ZI6d)mxhD4YYXJ#s>KIuB#)4wtz|>$Y$BDMuM?jd$ujqlk>^Aq*Luo5IrN=QJ z){rxn)Sq^;-^{Lek|}e}lRewr{g9`Nbf%)Q+5Q2`PXW#K%Hq55M)>e^bSyF0@ckC_ zTApdiX);7i{XY~;t*EV@F9V-GVD*nj-gw%0qAuO+@-iX!u5H3i!6(M6ypR-y9rm?- zhgyL9y2n{NLLpIdYTMg(&-R{=;?Tz{gZ_|O5jF>=rK_{32#cM zQSEG!oX1=ZA+$}A%A)0`YjAW!T1A)A_d|2HK5(cZ!^g{hqg#x_Nr5m5AoMLLncgIP zHx)qW$0RE!k=w6fE-YfgMjCV{6j7t-;+OKa`Ij4voC8ruqh}=0zVTuwF8nJrGBhxv zPt_+}tHaRKB2l5lOAzpao%diF(@8_tAgqU(s| z2eTvXvRD$plCSSDcv&Cx6Eh+sp=tjC$dW#7S3$(Vfq}vO0t2Jc`qUIt5QZ0eUe^ct zJ*ZQF>PnN7sk0Vq^e8O!=4#$V$mXkM{|cs?sXia2b(TlBK5P%)rtpRRU5GCyI-1UW zOj)%3py5QwA8sL5{+|^|` zP#Z8z_-4O?x`&Tq-*JE$^mT{$)qmLw9P!=#eODMX$}+E(Tm0Yrih?R6hDHJWfBuS0 zErO?VZo5sgP#*zr{YCMZyh67a=X_Wc=;UU3#dq&uM1JDZvuQi`6Lw(lX$|=bO>Q@f z=fu*g97b)Pgi3sK<^S;!aMm18ksMsioaGHrE)r;i;t2%2CKQC0AtC7s_rY_Df1Jre z?)6tEALetHR+Dr0uD8)Ahiv$nv5kNZSlvlG)|C?lTOJ3|-!u`XvN~Az)g;R_OT)UF z9h;J>6j02#soC0K61LYj)(R0)*0?dI#Y(*REwi{k8Uu=#ueieKp@umOvPr5s(9mPq zpJBz|qMC(tR5q{L(9OW-T;+>Rt=|lz_&$NQSM`3kMU4&_MN?y9EV-3TPd+j=&^Y;< z<{(k zKcuE#AGbZV|A$GCgkxRlN0SRMhuvnGcOH96hhXzvla&cYZdf?#ozAKolR-`liuM@( z#NfWiR=nCD)1xz*IygSpsE^T~uxxWFfXdIB4K*5WrU3WE)}Sy_KQDUuthK3<1o3H)P_P6RuB~zp}>!#Uj?B%m)bm!tg zEcEl}rpG^T z2gKDw@eEiYH}&c&>ZX8;PU!6lEmB&5u=?W_8gkRtCpDD#L#*KVLfE7D78h0U6%274 z64I)Cyd{Xet0?ro#u4#vD@K!ZSGqBBS9*94Bm@UP05C<$?8z)}aIYkrsGfrI9x-t= zGGeZ4<+>rLJx}icRO&Mw{BnJE{)MM4fu~*5hw6DK0kD5%?G2se`W@%pS=RYc(&KX} z?xL#@U5&tC_ldjo*cU5T>Z_lus-H8;ANjygLcLAdtphbCMwHtXs`oq8h^Ee3+C2|) zohwiJdR&4g^U=G-DkJ7YMTx?A3fr*9w0o*r8P=9X4YU+G0H|0ciL=%a8tEQQlB_h7 zv&$1nBg??hsr2V2!@hL(CELkwYcJ?Js}PeVPLJJg>j>y8|+uk{haw6&)dU8$4a$->6MphWJHw0DJ)#MqfBPa3S?Pk0z!I zbDIod{SSnZ52uM(Cdl*uxjl^7-+i5^n=S^jDC=1l{8FDH-g(>s&{FqH7h&8?97JUx z0J)efva~&qnYVJqK72KW>ECmCq3>Iy!{{(%txlC>|HX%`%Eb9_ny_#Kq_7+;wjDa4h()Hqbjfa8*t~O3K7}x$;{B zLVARuehOh}MD(bZ>MihttGYqj`%9b@;C1FOp4KGpuE(Eajs( zR_}Q(y2j2Y?Udr)&?!)VkM96cVJ;3*01>WsqvyT%$FGPMKAdgqOMg&~`$99`FC*K^;jFrq}f#=V2c@$>ra>C)G0r z^4aSVSzv0eu)Oj~;oS0p{dI4%Wo$3HOESH6B#*xZ#&nLPr1X+B3aY4V70U{QF9?h0 zoc40eLyOdkIr!1keiZR5f>$3F9PUb>@}tZ14D_e)|4%8 zp1dXJTVnl>6S!nwwoyFvD*j=<><}%ac(Ay8k4}LrBjk@^T5P8xjk})4ta_#0$z9dJ zb?`Q>>eu)*`A6D@&OPO@+?COQP;;d!M==M!KWr_s_;<%E)!;2IXiojhW%Y!bm8+*< zFw@Z1>l6IPWbR9w&ctyPu9`6w+Em&%O5oJUE0mp`C!L%p0U-XY_mU&tg&%|YEDFo^ z?8=-J6SqhT&1Q$}@$l$XCQ27yv4p5IH9_nu4EN#U93t?&p!zQI_$E*(a@;3U@z zbWG%bOdQ%jnQ#|iO7uwLGWaWm7-yg_%v=Po7yFM=W>CS)50KoO_Sk z!J=Ay)&> zk4)d@GDqn^I^-!KDK%wp`|%d(fWLHHPtJyKs86X|&ldbgq~AO98olZ=rmE|qB5sGKPb$sf(te-eaDh@$#D zB8i90>zJCC(02~!k*TmQ8y)VQR~S~1V7?_&Lq}Cxx&q#H&W|#Wn^9ZN5o=oOzoojm z#iqXdX4w-(O`fi04-f((^ws6-1{sBC+;A-4VAn|4hu1^lpw3ybe0Ygfa@`~8TILA=;=h}s9wY7_GD3z*gz*^mDPOW$;$ly&lc4Q5r1s2 zTRDG($vvwU_KciPMVDe%5gOJ>QRWF0nb0vG^4?SrOgrp?nmx17E#NCvA&pVJnBLaB z6ZzPcmC0n^ikiOQ{+yot><1zSfYXOB&@x3g))vP(JtFDm1mcdBqHhjWk_Su;y!2UYD=%OB&yt9)od`6CmYz z%;U_FQ^YF4!1oCv_T)dpgs1@%HE^xl?!ahzjt$S#?um0|{H#x$vvd0wU~%%!aW4C5 zWnP96TSb)@KtJboT~I1mhDcUAqIUUlzc@_9wERZzB{Es8QnTC5`ePT75uh?rP@*8N zA;QUlr8aP;t-Ww4U9&>IQ!W#&3DRFIig~=O0~KmB_`E2cMutj#2)%Q0M;s%;!FzqY zzJE|s$j^Q)`X*zN&^K&W_*_JMl1>U@6wISw$kDypBioE85oFkehFxLr+onQo#oO4y z&28AgL|mJHmbj@!ee=jJlZYPZCRr|-aaSNBC1C;4ovo8e0m;@(1T0!G*&Ox_Lkd|V zr;))#OnAI>ym-8LpLrroX$`pZycJqQam_qN9?Kg5fsOlm)Mn`j5Yx?pQeLMN?AwlX zgg3)NQ$NyWLyTcNjT4esK*7*Jv~h?G^7tG3B&p8dM0`&k%i3}NMVY7^r7t>yW{ltC!{K`1>SL>1GpFw6w584KA{A}$4`^`T z1S;Qd_-HaBLvqQPymmk*$S(jYzl4GuErxU-C7^2Lm=u=61#eS1=psmt+WIfzd$^^!xJJLvh2+$v!E`q9M@(tJC_vO75sLrtlVH!|i+L zoVu^))$|1HfIz%Tk-z4i-*0bk_ zxP}wcQSP9&R@Ix=XMN#js^`C%aTPd0uv<m1yf3UpT8B4`nTJE0>e*8EsyLn^ z(%=Qf&dCMcGMz*~mdJ zJdEeMh#%VG+VmBVF>D>JpC%z=;k=Ev#B&h)R#2K*+)DZA+X{OSNfVsG2iQ2n6bmSJ0hUUp`ec8q0K z!B9k5t@;`Lsd;4&xux)NnCQ`#lT*e*6KzmVPZEBz1a;U2r*t-Qz4IQ&1JJV8-Q2c# zzMZ;%Qv(B3$q&bq$h1QO2!L8AIJ4tD{etL|Npj6};fnuxOKB>foN~YDaR|%8R6~-> z1X4L+5At;y^@aea!)A|%=wg#&a{ZM5fP$((BCiKC9(ZS=`D!-475t`@Aj^(cg9{@A z(jE03W~>@PQHLpD$2isg*t$NB)$JCn$VSB{-rP zQd8cAn~lysn*JrRNK@Bq;x|DBTG{6z!+1^wug7dslkX23JP3!0`V($Zy7*San*3I0 zWsh*L0RWchR6dh%8_92}mO%VsT&cG*Z10Jy=}3v>!>KBP(myYUf-bj&{2AGiQP{lH zhUKm&{gxF0^x_PIbTMXgKp%3L>D&K}0CG4rwMf`QvvfbW#ecY*G86A4+0#^i(C&Mq zI|^vSqU;$;76e>z396s`Rk9{|Z~k1rYp}zz+wIBIf75bg%APMjUV5K4RU=AhjVhO)aTw^L z@-%KDL_$H~(kk(e#ODjA@LS!&3B*%V{AD<1x2evN_PAqy_rIG0Nfm?#1qDSdzvKo5 zg+&Dg#Y&~RT~$h?azYAT)%t#MrjJY$PAXc++5Dv?qrG1_!+eAJ{;TBs0qiS^VT9lB z#-HtS^RYf|D?bvCTs%97=^KPY_^q6ZM&rqxcg_lMt&QWohhr~v@_RwzJ^i1RV%lKH zUF2mMR88Z_5Xsvhf`$6~P*vhQ(0rq>ZXAH?Efm|Tp*4O|O)y*tr%2~VG>qon)3m!_ z;$+#7SohWoE!lA!l2rb}`r*R3zgY1rw9Yq=>vw<2dYA6rOw-jA3ON&r=o*7(^Y!oV zhp0cZK4(7=0S|m;|4iElgo2`JYkP1<&qbUpvkJ}n@#B|}{8%#$=~8O0Og{px{W^*- z)Sl^RMWsMv3*f<`kRgjGScW|ISk_0}y0_|>yP6^ZFlh;)Kv^ zvWmi=rsocUtxpAGG{uP~B4FWvLiNr$t`ir#sK(#P(?x>bmErBiyPp%+Q0WWAza@)7 z&}CB{OpSu1CE2WaM%7y&iquUQezQ0c78oGNnHz;GaXm71zD2$vG|=o)f6cuxjKd&D zfOuhNk9(VKXHZ=Ovk}F_K)q*Opo42wvjL+wDF{HaYp7U)_ ziSPgKx48chku=0-wfLk-z|oxuFnkV%eHo3F%2<|NZBIqEU&)wbNH_{xZQIE%!IMpf zB7WrHC?&@_IQX(v@7FXu!)U+wdE8GiiB#^c&qsJ&^-cQF0ruQg)#;G8(B@O}FlvNO7iY$ro;g5-%+{(FnW6Ji2r=lo?HxUJ$Y zwM&0DXbCcR=PwdVbvBdnCI*RF3iLFy%egi^XIbZgSTMlQtMZ3d6jb_0>x7T7^uQVb z0H}S$#sBitCk0U+YD!_kX|)c0jfLM`KlUWZszpqFYaxr-(%n8i%5RG`>O;_A;|4Kh*PdD=hYDEMzr%JAtLHO|4`zxMx}DbGmH z5`Mb0bx~kx9mj#JD`X-i{ag-zPM^r1kTrA~TwZRORs^}c4NnTGgWwY_{Uf1vjk3pZ5A@Oz`aC#ZZNU83zDxT@M8 zbJ$+Fw#V52io7EEh&?lt+TNRji0G(OdRFBI!$ku=k*=s6LSso8Ia!^FumfmS_uB$H zGQf72JoZqDB-nr9>9d9as0JeNx<49}5I1R&OoKRGrszTwcURv{h+Av6)YqV|R+u*Z z0vkt0<`aLR`}aD`7pA3;W&!z@4G+7G0^Y&DzbOkfO=y&~GsmwgGB~Wjo_F=kK8}2f zBag)2KT!feUg2aBP8nT!f{O!b5t5tId%=PSZh>!$&xx9B8S!Pp$I&Ey2*R|@_}88r(^~B8o-X~e&9sv|35A){~HHc@`>x-vSTp~Yuc3gDX$53 z+zH17w2aJs(K*bN{p&Y~tB8`9X5pX&t(yt_kx zM;X24b9dHQ1~&1_t(ELyzZ2fA8!3sZArpHoszyimt;$>Y2YzyyJ5V${)~S38pZ7%t707xv9F zEHn>a5+SK1zs{`kpJXh^@u(ugm?}^LsEKzAze?s1h=-Sq;80Ndw#R8LF#VS>TZfC*k4j_)xF7@s-&?} zZi^6Uqmnj>ZDS1VNnlGx%Bq(xTfH#hgo~s~l%ot_VVcA4{(91;A#oZ(37tXl{u>Uz)aJkA zcn?oJQyd-Am--B&ZqzyY>12ZS2F>VorJ?;x`vzWRg8X`ui)eUP}sVmul&yO`LV z1|X3h4_j6dcsWeJ6N4oDQTfKX%Hy;vL!YykLvEf@L zjI^(mbB-8=_L5bSCrR3m1c}*oC>Fn_wLL#hH_lM^mLTGq>XbC{OSNqDS?j2m^53v$ zE6rt1^W2#&i**`ilqXJ=l15lAtTozHqX%7@q7H>H#x#y}#t*5xw$~_ZSkK*m_67w) z$EHFYC<6ME>w)pXuC^Q+?X%{8Q&P3=uO>j&04`%2d=x}8@%0ba_-ft2?}(HY7fiKd z9GsPNFHwyIsW0PTpKiX*B4vemz!ma4<>2}?uRl}vt$(c+i!~fE=;PlG+dC@2MbN+( zqfMmU%=Q0IZPHKRcbf(5EKO5XGie(X13yqb8oaTRX;0{iVV4|FFXEwzAaru4MpH=O ze9(LYiNSUZyszV_A92h*uh_J-1F%~@v5oINhs3Y@S2N)m0P3~ZbzF%R{0A2BAqpHa z$N{>O;qHnRtaSQF5B*4BXG-rEcJl=g5PC@6?*n$9E-pT;uHBrsw6^?=0Vp{8bCmsa zN4!x<4jpoX#%_EmYbI=#qg&`4B^&Uze7q6p8DEW1=WvW(Z; zfjy&ts6Pmn>=MTf#g@QFn}RZqa#^zw$rWbWI&bOkp!RqRqnl5F87pn; zs7tA$rr;DWqJ%^iBLGgk-s8kuu;yS}8%1%6XgR*v(wYn^--J39BB4sn%?a}tyV$@; zTD_W3#810a#X^Oah2phS))rnRj(o7Cj*R^;o_1lh6Bm@Hcj9+|fgjt;{%VASDvxD_kj_wSp^_1`yd#RVhd z<;RRs0V$1?)*gN(reg5(l%UY+a`&quX8+ecy{CUZzeUHkZ>DyH-@>H`niI3rP=>utAbWuH;C1IU-1}m5Jjpd1H+N;azel566@|G+O{z3 z7B3ynG+5!)x=p#7Wet|~?~;5Kji?px8Hs)7)L(u5}z zlS$}s&4>P9Q@ur5Zm_}F%u1$SYS!Ah^7A>RaA$NCW{$dYiG(jR^Q#ef&xApu_e$Xz&<;mel$3BGHFXiDBv9%7O6uQbkk-Hx2yU9k_C} z>Vk^zA%>zZ4&T1g2@NZm?UhM#yRyTP$$y5Z1O-KjO&;N|>eseLp~T zKM-j#2ek3nGl{jwT_T2;XN|rH`J;kv>Q_0lB}2`NqmSel*NeD;?2pMq^b+3Zl zsIqC}fgMmxu+Wklb+?a%f;n+~5S-^YXv!qF-1&yf2mE7JP9;OXV zE^K$HpN$;&na7el>!2Pp4Xb%Wav3}@B90OQpD`Y$a{*0}rtj!ZU#Tf;B}1(rvItt; z6naHJ%QiUlqweERMOJPUa7WB21ct#?n#|a_lx3qQ;(jJA*W<0v8Kih@L+e4g55)UF zmd-LLtG4aJfFPxG=S`=yNOyOagp`1EcXvp4-E@a^cXxL;NO!}xeco@z8OL9!v#-6c zbDe7)D~CFk=BJ_~W{deu2|E=7gL4|8ijJ(&G_+6Mnt+aU#*%Q+2rUe&FiwyP*Kd2# zdi@I_uwP8}PYS9Wnr%t_cB7wDMhPX3fVrNa1HG~^9dFgRMb)x8S+<71Z@iUT+CGmh z!NlE|Z+$g4nI*_F88_{B&j^`)lwk?Nz1n_pJ+Nk)clo;e3aOiPOuxr+BI|nP%xr99 zm^~Qok3ejFb_KZXGyhWwlK(qD(7^8Il-~o+XXbE|P1lcFp|NG%SzXqD)&TYR58u`6 z%J<+}P7xJjsr$+;$5UxCMAqYQ&u`nclQ40>G3u3n@LXnd=`yj12mcv%)GB`pU8(S} z0iOx}K7-JK>WS8(m7{mM(Al;m$1{a^U$Tzu~lR zw6H_O-SSjF!C2EQaJsbbip*>~O$V&L3Ynf+!w8$i3w!)XV_K^G6o*k8bx($6e(awW zoee5ZBBUTbBeguwp&MA7u%wGKfAtv1ZBggkdVx9=`=Wb|;lu4wb$+45mg2v#BP*ow z1CX+2Id%=(dlqu|?JJlr&)j6=e)tG}tTdeB$kh`cOUAM1G@9}G=kjO{zO@e&-jK5T zGi^!E8m=;yzgWb-4Fldr;qM6F79J2xQ5sOj37EaZrxLlieJ*W%e7V_$BFl~YV$8() zQANWn3%|ww5hwtq#ID;V4zC2V)oe3IpA+YHwLy~b0h0Z& znZdNCtJ@zc#Lr1cb(`g$Ev9oK14bRsz_#I+k)b)%dbCJF)x0(aLQnv4M-{?M;Gii_ zqDV{rM%hS25gHYaBti&kV!(N)f`8*0keTPJcC_k~Gk$sO+Qzzpeb5QrW_l$r9?o=7 zGTgM_ZvHH<#RTfUM=bkGJ;H-MZthV;Q;<7uoM|wu(jT7R*2Q_;9*{Yg2Y4Pft*ie$ zY~_zMOBCIB!b&QQpK^I(uUP%5xz)LI^7h+l<*k>l?%$rqK4j+#iFMhoArK{*0KXw> zm7k(F1V1>+0v@;Oh=bcz-&^)mNba)R_{?O1McE4iuJ5A;d7neFG|gmc zX6-*PpaBSZ9`|QeC z6&Y7x*`s5_sUvD8UgNIEb3QgLR{=h#-My_{%2YkEIzwCgf5#v^$<@6|L`wOe z$W3e=p@&_oHYz6zYOP@lt{C*FubV*DYg?0lTM3?cpHe`}14|J2_D{ zrq?Ww^6*9GhVG=MFYzumNEui|_$<;?4`L=Zc5f9jqCoqOCcw;Egw5~2r5y9pcLikN zAJ~#({q3XACRT8>;XR}GXd9_51iLDypRV#ylA1qqgsI3KNtDED$cHCSmR$}ax&=7FZ%XCVv_B+H)Ywsf4p zU`?nEsSSwIm-m2w@lYY%%Lj+_`lpegNb}zh@zHJb+bODz(za8#mz{$>ejd-r-w!Un| zR=l7$V|ET;A}vb8j8&`3@!GAkOUx>?U$IKf^{C*qn=^!g!KfY+%!=R_0FvTx@^4!s zMh&WJq#5CAC$|1jzRw;mZQI~Pn^fRr(>cFStW?>SH@EtCLvC)mQ4U`fn|b=9+Ddnw zIR7_UyV%gVvmDdmUUcNFgH#z@XfKJ<`7BLKQYo}s)K$4$QaL7rdltZ=WLOHfq{Pqe z5PvwSZ}WO|9{wMLLFyla0fbQO5CjHo&+if4>+n8TF!X4k@~=7>fhgAEg7Jl~}Hgoe)zuI>@@R(Q}Ul-Pi$g4?w&CmBWqG-t9< z#T;6_zj^6w#rbFn;+0RAl~T*(E$#oyqM*q(N@y#PYo*ON`Vno-eg{m4M{};-Oyu6? zpCy%nl}zFOG_(yBc^0yiJ5@W{Maww+xBS$vl8h51gJ?kBiqvXhRw?u;eD{gAjrF5t zP+tYx)A_xAt#FDCw8&d`(mMi0n}l&g|64!F()6QkR!(8zH9> zu%XY`A*cKUoc0q^zM~Zh(h?oVCq62dN1}Wker~& zlh~7~jSu>1I#?Y73PtIwpqRJ?tmG|#aaF?sZ_QW7!J8JQn|1Yz@>bNk00)M6MkOuR z@haanyCiSE2w?!cEGgVe*Zl%eyj_F<%oRibvRG0B1X+qAIAX7I{2RA67O)$)7dpsf zhDy?#JR5{0KkZbyp`V|211Jk14`~c@2+jOJKa6A?lmT2o4s~yh4p%vnqJ%+rA<$9a zCD76)p4%>n(z>RG_j}=GSNxq(M6tX6uR}|r_$F^<&;Bw058KCZ(`B;*Hxw5O%QttY z`i@}B3~#=(W=mb3=g+!)@8!M*UiOdXWjc?P`AzN??QiUrx^FA(5I8}Q->ut63i+P~ zT-H~5VN|8Bx3J$4k?#2R#*VFLe$7@b?|`k{(bFS%;EuGPMjL1JnOP}+vWsE_)Z(48 z>co}1v5fDKiG}tOek8Mu9?pm70lPItwyhW??Gkh+$N>>~cuL-JpH6MsV0uZFmNE3p z?2%%6Lg$AA)ANBi@!Q9Q?6Z4^jtEL=4zfG})3DLkJ=awbFtT)Yw)q8*89hHj)R$Q6 z87iVQcCbW|hyDAgMCr;FLhS*GU?qmJ_2kICI)lhQi_{5NkKf+cafSa0WAH5hogI|+ z(?8E`;vd%7&)&n`533i{qg7LuufOD=ZuJ0rttUfm>SNo*q&7@j>thzh&3S8)6imDlNL znINsnMOVXmPo4Ii9 z|6);qg#r`m^lX_i5Pr}hSy(gh3j1#M?yQKR#OE=3ZSr1y4yA(OZ*hhfq$uz$3`Y!g zjXKMWa~KwU>9*qxl!t?|j$KD*34#FfsYo{yC=3b(8VidL$fC`?zYN-WM51lQf+wzF zJFYkE8}B)E_3Sh2Zmna-%HyQI0HF`yoUMEZUvt9+>rYZoOER0XUAEvHX`qmY0cl}} z?`zUz(jOQ>8S+$j1mEZOMebGoK+zc^*+sN!rNV_voFoVXya8sbpcMPbkdT~|G>O7& z>X6a=>X00fx|z*C_IHMnv|?Prm%Emh`W(KKh(bhV3|C8cKhSe26gSVNd4Slw%YjeS z`X@cin`R{wlC*7*V75)=)P7GLg^K9EFV;jol{Gm>_?&?ixvv72==yh^&PxvDWPL&GdVNhBzt}~cJY(+ewiK8x<@~7L<=TD& z`CzwquBBr->Sn3eJ||MenBu*r7@cp~JBonH5c1ptB#|4-&+-YwVq-6cf`N6)?$~7-)S)mtWx3*HG8m5Y{r&)L7W;j>7?Xzk5prYyS_C zpO)>|&nchW`0OhL9vH+Uhu=KIHAnkM{U9=4mjw)@l~5Z|29TWZsjv^OQ>io@CYc)V zif<{J}lpMF*afae&w2SZ{0Jv zARu+oEi@)mL41B?oIj53=zr0BaJKs@bEAaSH;XC~(|HNR{hRmto6ymXEZqzoaRNR1 zkwf583`5`N+`UsK-Zn316P?q|#BGRTzWk&aagMEC=iqV1TQdJ8fGGm} z9r#V|0Ak`;=?lNH_c_&~6R#KFe}TsYy*Ji($S7hkudTW3Z7Ds2H~fHERtYZo(e`zp zgO-UaXRv(FLvWpL+ z7Jp@`obf(2d$UXfzMe3+L$+m&(=!RuhD;VTOhMMb6OF2Z)a)1rqtI@qGr86*QXvQ_ zsj#)pmlYX2Q36j>4J-<&VtSCm5gP}NfN7ay8XTO6uu0TF19tw_f;v9Pa(iDWrq%3X zJF7c4$5cY!!_!MfCL0RDyXTCrp&IGe)irI)^Ljvore19qx{2)hOMj!3IFGR{%Ggs}_l$%i zsZP`8Ojv0s`!#X~tWX=g^7n3s`&KFP#tyzzyRgRD?MFT9mdD-5UMG@ z(HxrtpvZUHqm4iQd7y$yT>{BJw8D2!!Sia~ED3np8I5ee>!hYV3p=vV?%xoK4d52S z_E)gWhiqywOP5gLI3XXKIDMvU`u(@>1o)cJ{rw|If3dpX!`iZQrw1k|D<)=>Yl1tN z4;!sa06wg8xg+Z%ADYXr85Jt*!R)d?sFF{S9;rDDUW_D?EA6>8Qy7|Q z{|a!D$6|RWepu-FPXx*VOj-^e7|-yI>|uC|Dni z_CHCOGW6u-mN0JX*rIF~^{UkgmvXK90LUsFGs3l5g|C5tcraK(5Y8GF;6OeISB1~$ z^t~^~5CxeX=MXdhp`LQJRZDc?`s@|=4=G(1(bpL^eT4Ahr+ zyd%H2pf|)BXC%y3+TT7gl8xZy*j(0yQcK~8UCy4%DjU1f$kXO;JwopFPzLX@Ph|Ej z=nFDMfkGOs(lSoZKU{3Sz9(<51{V^Qt}W-!aGrdzwi9*`8b z<8|IcV52SUUn%SCYqoNg{Zr{Sc;1^OQ8wSM{+D;;3ogIBmj$vFGyhYo|7XyF zs5Gy+@0p;w{((B1*@sk023h*}6S=|F?GJk!Td#*dTQs*YphIVZw$PaP0zK@7;d z=`ERs2NH0p>7CDKG6%LU!&CtQ7|A9vb;{n13~5G@0}n5IKz)5RoWQmXZR3t&ASyvP5vM;B$L!LU|LZ5ep!ex^$I`Q5)a zK+~h3sTtWPuz^gizDz*C=6ZSc655=axcBDY(SNMoA&ui!R{l;9I1QUO1I4{!edsh& zo4PXli}A2_2R^6TAbKdBkC6zIBs)?CV!>%j`C|^b!A}`rf>%BVavK^+B0-UU89vt! z9B&Zd<3)<(P;@Wavm*g@_(AI(%#FdR#NQ_^r?_om{7Nv#iV!t(9O`M2%67^D__ z0`rlUT<&iC2zcx6Q40oUqw-(=k1}DmN||;oBgb~XfzrWWXql(~k!GNy5c}f0ZUaf5 zZ`mg%lIdF&EA(jRW&P_6&PI**Wi!5qQ?S$h4sB$Kx;~|&8 z!M)+RNNkf#?g=Rkfb?3V{*f%&Fo)CON1JgIXQv-Cg4bSYfnRXZ9d$vV&{;i;sI`Qo zmU@xfO9yV`74G0#XM-(PcgxUOA=FCCEee+|Ub*<6U?#39nq*Bqk+FiqGj(~+Nfz^K zs&uy*F}Wkdd&no9wB@*lsyOlPiiIk(_9gBmZgPZB$2LLwMki!S?5;eqSuQh-4r;R8|t z;cz#D)r}K=EObgvbI7TandsNMMWZM{az(@Af+CeIsV(~Or`r)L&}GtMvAtDsXzZZ> zZ#%(9Rrv~eHX7J;t6!m_wQ@Zv`|gnKCR4ooR%jx=)FhWiUUj`&`xgT;f+4vuqKXiL zA>LT)s7z6%wgX4Jb-5u6UY~x-uabw^d`JRAcgXwGl9H-7jeI>Lg<Sl}IaUUXJ?k*@Jk% z?(hz}vqq#d4_XaJ29$zPae70g6|iNx;z3!{t?sqoLHWrak*ewRbOBW~n=ztr22Wbr zRYth)`U7nO7A$NzVqfRAhQK2UU z5p^>nZL!+OBm(O)U^}RSul{8}4W1e1tPn@iR-u25;J?)&q(7ve3`%l*;#5AkGk_P4 zajn-&3GqK=0a|VVXhoEG#1xNEqR9GpO%NOzk>$B^8@bR8PnA{bEH~A}<2l1vb}0*T z!(Abk>)$8Hj_XHhuT$xJ#*WJfTvi67|Dq0%^M+_i1phK|kJZ5zzC?KLkMMB0;j0n%pBt_SovHPpejc!$QSO0dloVlctuG_qdYf@kRVC z99S-~z<|XvsI$P*(C~<6bQ(qIC!YFajb%M#p!@@GK&{G_kcB@|ob7knE zl9tFi&%=>e5bWt|I%)GwQHOrZ3+Ltxpx={xKgCwzaE1JmYZJ`)XH*rmeuf`B#BsnH zsA2$>O-o8A>O;4715pah^3j$ z^avvhAsG{QbR;{8$uKme-AsjN;-*M`8ldR-1%T4kpC}7K^`4QA%_^!;WLltzK2!wH z*#7yF2CU>w28AP6WUWY}GdA;bt!jj6+u#IhIM>?IL-cl5CS(h*@;UXN!(RViGo=G`TJ+7ZLf*Bxw(Kwykx&JP9O)5}U`acx#7Dk-frrfTTm+wRj(D9z`wPr-2ijU|5K0tXv4|ON`}wtntm3@UQT2!R6S*Q7w@6D zF^ikq6FX0)1o}l64So=hDR4&-oz?60ivptPXJuq?lP-1AOk0|@DRhXQs4iN7B zgKp54EUIE;_e~9Ou24)%Vh$k50g<2Q%T|bMy;lF!ukboxz>w@mGr^Qlw@V;kqg8g_ zatH6Lq+(nRP{(LKY}lDv5=Oq@9p?YNxl z7_olc1lJ59HrKk23+rCsO7A<)@1_~y;X*@0d1zY@SZJrOJEuW_F>t4MC1OOyx^jf$ zXgQ^Dx>p{Q%9D9f@!g4Ti@Hrbz?_LqbRM>O2UHTIPC}@)e&luv?mhUKfE|m(`ksoG z3$cu40s&@!;)DwQ7sCAmn)zy8HxUUWDk>?O`b}C{MMX4C-qa^dP31q|*-zbq|LR(n zAbll^GYU2Xa4;DPH+HcVgLzyXyU;M*q2kc;K7}4K8B+2DFM<5^+aMomDl!x?-DnN@ z`1r}*3UY06Ye}YYhef2SY+}7Gi6iRNurk^JF98(j#zg8 zMl5t?+8wf`u`;Ov=TA6h_PcOek}-oA)qq9#xUu%v7@{F-oZU4c2^EtWK*z4`(|aoZc>GLYo~v_5ncZ zs&VbG4E?d+8O2T&#ufAmuC>fpug_2kpy-aaAP_)Gwa{A}N@#12Plj+4Ir}?Zd^iSB z8+m_wQEsFxH&7x3E~o3G z48`u^SMd|CXQ3Negl--PH$Kl|fktA>OPUQBzzPopAOU)WA%ipNnLQrB)=JT-4@ja) z_og)4*VOk_t;T>|@5m3NH>;-dKI#Of^t%xLnuYa_?*5(zbjXMZIoo0ZF6%oOnuW_l z_U2h6yjt_z0azONus7eNbi=|KiJw2DrwX}gb~yxv4)llPVS>13f*^Oi&C-j zC%<2}oB(7&yyOQrkfP@->^N=daq*#&gK)Yt)g`y6*SEYJdy& zVSj%kSED(Qyp0zu!NiOPIDDHYICi1TNKoK!J!M zfJrCik)p-t**&zdRyw&>3K~Sqe_pttH=)hZVk*Y%Q=E0?8Y+<6I&&ikbrCZvNzIfS z-4KOK`qUXvvEckH86{%^<^1%g|gqs(ZlAy!To7#L&aBk80PuOh~F#VV<=x!`JAxEd^{MnovpHc2>k z$f4x6_%nj9ee#x79}p1~873z+5i7YDZ5;UPAX@7lg6;%mlMIxVv-RWJuzhUqkl~tM zd2+&g9f)b*XI2duxe4x^O&!4p0DnGsNyhqmvAr}PT?Tm9jRxf{r~PC2IJswkEm<^- z^RJr~Na@oMbE7z7DxzJ!LX;X$mDCrX%}qFhDR7@tR2V_g8jPE@Yg_~HuK@%BQq@zd z-sy`b;UOUe6k**V%y#hOfoSM%m81)RKeqMc#X*Vu2qaT|evz{i3xYeOAyi$6#^m%W z?+NL=|F=g3l2m7%NX6v$-X+--lqe-ZiOB#Pjs+MK`~FcCfo0vq_}#tyn%Fl4fq>)M zoeDuoF${7MML`U}^CHG`Nr4K@P`-~;v67?Y^{LbAyn5Nu>o>4j&~4PMU&{iptk3Sm zGZwA9Cg`Fm)2qB#NkF{kj3LM6j(yV736+AT%2KcOM@P(XKCl8;#F?_}<4xLW)c(K^ zN|2tBq~2~W~gy)mdl?Q|WfpdH} z_8u~YArSlogLf(0kako)xiusx+sYTxhpp;l3dfKGoEz81uNr^j$tkfdJw@g@xSihT zg+j}UFD;xK;id#_3Nf&~{>O>4c&?3p^ymAGH+Zih57-EG-j}H(4j*vO2@X-y~8Vc4_QoWFr>q)1DSnwAE1`{?yt@H3A z?_~*hZ&{xtbHpUN2GZQRIYS!PlDTw1r1;L7(q9giTU3c z0!Et~WT%VIkYL!%)09;V_<;5$&&l z7N_j*!H6qJHYE7YZ>7h@zWGo&f6BxV#{{}(O z0=T}4Hw#NHx95jWNX(<8`GNSOV;dB4?P2u5YdS2)baO~jaC6GSV)~S5``Fs@c(9A=6Pb2z!Q!*`wLv2lR| z{mh-%VIbczL^UOxyr8tp``M|*;TwJ->452f5a&fOb~&(Bv2Y$u#zUwd|? z)zw|v)%R;ox0HR^hlg&|h)fQWH+jI4wvG%Fa^*wU{ztzdd6#(8HPU~LPd3$Q7*tL* zPr}37SXM+g3Oux7r>QLKNF8lerU2<))ax1d1a8BA=*8!*0|_Y>LaG5=@?pUB`WpsK zGS9_1qx0IVm4Md(6oslX?E8Aah;-#UEbZCEqma6S;ZZ- zOlld_(jH*l!p82j=?6!V8!xR5BA6XpSmw#9!v(t>=hGMGb9#(qKe{kU3Qr*rUl@g|jQ{ppsROb( z(9NOnS22a^1==T#r?Iw%R#^tQZ9SJ%iWJs*{GC3;Pa^20GwOhyXEkUb4x1685#KW= zT_LX`fz!s>=0hoCe0#W0C#kx|0Xy#1OY}yzU;^*D&2M*M-b%AAF(l$kShi4py6`gF zV8*LCcfIWy|B3gI1uKVN&!2xi7v^rBd7V<;`cnc;q}ro#GzHAlZag@2y=Tg$hBFn8 zMW^53`jd;(;!RB`sZn%ywUXH+IWuDk2;`My@S%e>IHvk>Ib~Q3*s@O<@wV}@)I7Vy z`QL~kP@qGfk>BuuXA8$eA3p3XEHy&lFtX{BAck8Nn6{esKCp@U)1@}?g43TC_Q<_W zE~L7)UDzO#Pr)(F%t{}tNtJ=+|Idygz|m(IoaOSy=aRe&C8

VXZ*D4grer7>1p& zS;IPYI@t!&@QUR;xr!U0ut?$!nChmlfOXwS|5BLki+evBgV@}J6S^!KuW|HnDxA_P z*<#68GlDb>jxVtlW0T5H`Tz1$M$(!XvVCdTC@v7{;0A5l+=i?u6}Y@&-x(Dw_TJ~uDz?0w5V1ZtgyH^ zrDyeqOP%o1D}I2Wz~#EC5P#O2-Lp`(CEDTR=pfXVZEL;gp5jS_$~5KDt>}M=KKH+z z5y#_riHd~bPWhoap?xHh>O<>VKtCzK?sQ2SZLCL+G{QCi@ik0N>Ds#oo6%F>MiZT7;UY-{dpo>3tREd^ zsLQZq#Ko@#!g6%eHnHe}I`21LdlDEb-EU*bq~j>OM!XH+TE#a854sAu*^Yp^OU->;eVMr9Msa)td}La5K>xj8#D+gDN;-<;@wD1jZV<~eu609GaZGF0gcd5 z38CQ5+}SL(4c|ph13a3$FrL`i|CJ$iTh^LcekP`3hC9RH;%RldkJrHAVEC=x0)l6o zIMhw2bhGssF!<48O_&emIgp`hmhNV;B-8Fa$(6ne@BO3YbzCN-Wet$_;NTqYN`Z^C zlQ9c+hCfKcASWYXU;9l&JXhHo9KwM`9`hf0Nc0fa0ofo)9|gvvyJMh_QZ(`YVOanj z7^a%iAnXvAiV*?^m}LkH8SIn~bs7T%TJB*^?)k`$(uca|T*DM23&9>T!bPBb2R{-r zYN|P6gvm&}mjM3GE}@>ykrybMt<#7{E7qoa`r#|&`M;EC9? zCRCsyPmR1AZO!*bd+w1p>g2@lYOxf+1FME5S&`z?daX)%KcCaMZ z#2d-r|FmHBN>DdUmqRTQs{$x}7~u^xiB^Wm_UIY(+!fsF^0>)BLllNBeXvux=(V3Y zDw!oEmhn1}0_}70Q$Zt;MPgF=_>%$Cxnf~OIaD6zus#lb9HK0vKZQ4d^NZ;E0?M6b z*@ELs(OBLcSCc}npxs2xvLz`zsXhjC(lCj%k{$++++qJSq9Xpgc0Hc}=|YhQDpv7oGkk!RC?|t|rV$$u z|MCF%DRk$jhqyl{;))%}a{u|>CYLG=2OgUIsV*Os}t^F6b{kL6Qv==M7Z|2MOpnpP)FO)b|vy z9Ekt4%v_$?eS)p?z%v)B5do~uPDMn|+J*C2lhrgg28nm$Bxmt`u|OEFoW{CvAf`5a zM?V*ocl#5(L!|gMXCk;YDqln_de5WqBfV76fN_j$K~V1Gz%*N7SDqXo$Qg z=`m0_Bjnb97y9ZaXUce{i)NfNpSa?xyKC#Soqk(ySK3S*`%S!9eRBV3+TqWW98Nrk z>oo{qFT&PRTT0km-o?;u{FM_{n?vN&ZDXSo3zCqeoE%7I){hfH97;cUm+yQBM7}GA zT-F7PTdDo(3N*+l6!Y}mTLMnZFG$Gv1VnrWCcs{)>DfGff82SQiUtpvENG-8qNEtW z3zHM0zvhH6!NIpKULGtW`4Ufh9yA&o$&}H^OuA#6gxvqqUWJDB%doN=`CH%edVi;* zqSH5+OxB`5-?h&2nFrOb7KMADdj;Q5Qvua^cSLe$bykdS)$|c8kcOO8{B;l<+aww z8nW#Uvu(8!8S~G1B?H`!N6Nw&&{D+&1v%9VWwwjOVE2_=Bq2rI4wKhDufT|ksZ<4m zeIfQfAj)jj)>qntS2>ca08E2o|Hv)pSb%wGq|VZ8nyOnVkB31=lit$o*GDR&cBk z@Z)3vWdQI8OSKYTu+TNfQNywodH4Uyeo2}P*95ecI>!+HEkud0X%>%n)P$vse~D|l zOdwi`y*|&)X*9LT=#xkX2v}D3pN;q{e~{_R=b3AJB3E+<#YU78)PGk*f!@zmbz0g~ zZbv*l&#C)dVHZp>uc!b>XB5UiMh_Ha2%&vDo#6bV_d^B{0LrP~#Nys=`=4G? z)(Bm6F*|D&eh(F5{v#JA1CheAdeOqEf@$e;8hR|M_SSHTJ*7~%fPb-NlV~L49Cd~m zZa0TRCXPycxbtx3v_f(ODEnf9SZYPU5N5HUIh1JQH&QVYIdA&1;|{&5L49?ZHZ?HM z(mZ^c&$(RRGt-6un}qX$bQ5riMfGd!Qy=~v()X4H5}MUMdu}{SbTtdfFLiS}Yr=Lx za)wao_Gk2C`qaS2k-?e$ZT^3`e#QUkd;$kqT*=WGVy`QNp&tQEH#C_pkMTm1SR^)K zz<%i>BuyG#;EK8pJ|RHutgVl;zq!FRK*{4rVE|S*+K_@-mv+H6iw(AHqdCqSAuPa3+vLiWz(*)3 zcQ;AdvGeEnL`|-@tUw)m^4iQ}AivI$>FS_EzS}c+%|5;FKrtK%0H{H%?thT#MpJ}d znQ&V2y1Vm}U{zJK{t`Ew<`Oy4mBwOE7YO8z$TO^m;n2TS*aovZS~R;fa%cb^=gcc+ zQZy~2tUAZqdcjCiibN*KIKVTIR|+_G;%h^xL!m38W=stejzvs3T3!YX{RdjNa7ivV z5Jzh|@es?h;7!6c^7o+J@pta)k%aU~2di27WPoiXpYNjl24d0K9OLVYQ8+Hw zZ-#$+y*$Z186Y(CtEjD!A2P=!YxW*Wd!_G;!y!#)`Swgf(OUA>6F$f1959|e&d{R_ z`*j;Q{KG+oO*}$vyyWWUBccWbkc#p0k0TLXy~ge>ekKwn(R*C>9=n^rUj#V1@_g@9 z0D9@M`*vmoPYHw}0x7Djr~;!I6Kw>5M1itVNMEL~kZzw&Fas<6!|Abh;Oi2L_#i@2+4t+eOC-rlfXf-nEt zp@GLS=1Stz>*ev5E|^S4b!&Z?CwL4=KKRh`<#3FFyN;4B@MP~>CbMBb{C}5lvOfUc z4A~P*HU+eyNS*5p6gLE&86&0}F_^wq2=CQsgwXRgBKZlhF7`b8SU#5JXY z#E$Ope0LPR>sX_Urk7=YMnA)S0T2ArdzRt;j#H`$+AW>k!f$jiyqHoAEyaO<@IZdm}-vz7!~ zdpvX08Eq8f|82;TGjduy9fu;!fZb?}%2RQ%(>xJVvM6JVuuwW)<_YFpv}BFLyoyzR1Tzn%{lq z*Nc|GKArn3s{FUFWlk&~T4o3^Jd()M#e3{B03L3Tu#>5%Ba4t%(KFR!daNA^f)Bm) zgRqsV8}`^5nNi?;!ectw7Q*p93o@UWwbCMaUyYQ|I3V{F68EAE=Qu!fQ5FrC0Z z6M0RnVFSHhdq4wQijiI(HO03^@a~)1+#FysRaF;9g99cBd0c9(bSabvKDmYLmA{i_ zPU9Xjnv!Q^YghQb2x4ZL)?;JpRH^!87}C_anilevI;`rFP5EZZT_~2!?!8A$ z?A#Eve3i(M5WAKxuj7|c7}=KaY*UT(#{s%3DwH5}G&nsXHQ3Y*fO6!VbTEaH@~?@j zy2<&HkYV%D3q}*;5?u;<5D)L$zO;zFBKSlD%1DQef3UItz3w~j;DD~Q?44U3pOjnC_;|tB$N7A#Z%eaOM2uW;exQH;VDgyl zHOFoc5cP5|VJKLw+w%hN6hS8n?@fJ#_|JlmS~$ho(DJ3Fog);@>pQ|Nj}2%?Oq&hwma2=2Hqbf^n zcHn&#N>&?dZ;BJf)beVf<4r7_(79_GZ`Z{|cPPZa4oLZ*^XxvHdN_^B%pp*G`x`r3 z(UcSJ9x#G9RzCA*Ts*H`;piP{9ZCjPbs;&lwa0``x@U&+0-rQmxhBTLcloZ%|GLz4 zQ3wKZOqrcO=*sqw?H`*zRfh^YK6u6!&8ej$lzGhYQ1Xd}_c z4ENXoYB&jllU4LwI1-sl?6=YPOt8mG)Z+4UfYrCRGNW79vnO>_J}=*ezbITpkSGw{ zzm1m{)X`k!Lc^Niy((fI=!T{2Fh5VjJe0f zZyV&R?$xAm!vNzKP+9%}8cn@px2vXBs#pAxtJzVGZ?cT7_(a$1G?m8aBbE%6(2_4| z?Dwyl*``0?yM20q?B)FCar(DuY{Y=Jvo1+axU|Hcu|QHrq;cJWG(^#>g7Fc5JTQ1> z>l;1L)3|=c6Xjf3I2-EM`I_KLuDDxs>giQmHKtx!DQD?=aOrR#9Z@meY}AoEjCNj5 zKWVF-d8+QBTpU%my7BVAjS#|rw|x?`^Tgr|GM7&yinF<~EY#~d04^`reLU3m?(cM9 zhQ~}!2cMus9hHjNBO5?oMqF?vz_73O@3g8x4^Q`D22<5( zQSzQ2(ZPnc1A<|)89;bNfPqmkW*k$Zu#f3Ap?tyJ(>WK2HC8g*K-Ya}g*5r~Q*FPf zW06Q-R-CMj=UXNSSClIA9zHnxbb6hym!F*@Rx9&Z9FoeH=SMKmr{*ypWvVDHxQF;c zAItPYBWC%2Q?}GIh7f%2@aKz;URGnecr3YA9XmJUoo)HnM_#+@CE$AGKQ;uv5DPMl z?ccQoNC9W4B79$ws-y_n=_Zb*3*-WyVC;R2F%amPCRn7mxV9q)b2ADHt<<$>qV)## z3wA1m2kguU*in0TKRWF}ljX%?oW`p7#fH5?%fW}XAJ0%X^q}>gwS^2u)~W-WL#x(h&90xYY+AyEG<-&$M|E$L`*}4SX@U2{~Rp@cA-) zatVYq2|YRfbjBSj272e4N8;Y>W3=3m!wZJ>9q*ibo-A_Pox+3!f1Pzp z`*V!qVEGa$dgv0+Y5aYT_w3Iw6dw^O8ZLL#{nIJm^Fs|>tkl(y2acIb38e^`ahUYo zHz>$a3xu)BC(@#Gx5c%^?D>iYeIZM)9ue6n>4vWv7@^mbGM1*k3b7PQO>89)+RON+vRP^7IC;=8<~|M#_S;`Mh;aXEA&vdAH&CqeC5|39G00{jVF?`V^ef1r z;Z4dCC|w8ko_4+|XEL$rs}Mgripdh#{0^@SeTz+Zf3sO_Dg(@N%gBA+)|1u)Y6G?# z%7Z-mJUKP$GOTL)0~U)pyaR;bo!I#TR(RXGXk$+B)}CO(#CkE@vK*7|VF)O!u}OjJ z+qeVJaZLf<8(KFaljmPqH>uG&kYeVq8c1i}DfIo%*&ZE%#^{EtJMb4#1EBg#gbAHK z?uTX;QE%DVLf99J+(*F46t16fZvbO#ky%`SX$HDbKS!H;^RM&bH^&um7}@X zth~NoQYwmfBL2pH0EL+npoc|@*KUA)p?{&UPs?twhRZ6;Mn{;`L}Jyhlb|c#K-Br@N3B# z0#L3N?0f5_AMSM9USHs#=r=U-{=^H%<}I2%7@T)QzAJJ;isv`R{~t@&7#&yJwcFTs zW7|#|+qP|+jT+lF8l$nT#*J;;{?60)TWd0FW-^nNAA9bz_oXdgq^*cza-dvFxLMg8^>K+4#p8YIes>R%Af}LZ!1Ah>Phkf5xlYIYNer=$TtRL(^eSPj4 z%E4~^t2aNdJAb+!0Q;lo2iPc)Aj+4}JqOZ>l60ntw9%nE##pa-{5ystQP%VWQAC`? zQ4z=5cu)|`p7mF^%?<0C$~6{a#MrC#d!%&5^ki)jlY!$^%xf0uia%w4t~7Yp-m@-! zHqD8sW_#GYkdnFHxI5mr+(SR5f}pe|6CfacB)RiHO*J8wrLW~&Wnh}sA#41z;)b9# zfjcHiti)hs;1Sr&lHw+XUgG?Z4Vp!eT?yervBn`hN09uHU8M(UYB9NQk|}jMr^Qfd zg1EzAodFGPK%|pwUFa392sgqU>7a`Y5mVNe2%j#f!ZH}U8BrFOde;8SXOF525#Q|2 zl+el%3Z3f)V%Y(`*y9vI&sHF|xgVidlY2{M6^$CH95agKCYkrA<<6ro_dR=~^rU^* z#mJwXq=%8ea{OB}cISVFyXMav8g&eOBUbT4j*@p{sK+}zi>0tAe7YKk z52E-Q{O@id-#9*d-OZdfoe$pXnK7Xb|6nKHU-~l6z4D_uAQ&@sp5quc`^&(ggmfx! zsuJ>!<-;n?qK!S;$AMjM)yZ+j?^mi^nNcF)7q_>HyE`M&nHN%_Bsbg5c-FBv744Wh z)TkZni4ppQ6c!|O>h$VSBC)m)i;P(EurLVK!Et|^3!gfwJcrYD%V0U8Pa+MUJis?R z-8YfgoA~JD8LFhPY1qa4S-yIPGZLj-e7`?fL&TIAK#Pr?VXMSrQ3 zQjThC{k(v}z?b{yJ>9hS-Xye&Vi+%AytzCnH4;D)7fY=q2~)vrYWRovR9~|z>2g$ zimjOcO~XWzJFJYiBbSrNkZ?9S1Ij@YW21}CMlp$YWI6s0)R4*R8VwHz({cG| z*AaMm~#!7wVZ@Z?Q7w?peAkL5X1|Cpe^L%5}T%4rPgBFK-_!@^U5&#W3ud{Pk1RL1=zoYWe_+()E3nF7N=XNM&*|`|;~@loZ@!hrNvB?P zdL+NP#@H(BJ=!4aVvtz()6^3O+~igPPV>p9Kj3{_&O><(brd%B+ZMD3vm6_QXAhQq zT9|EPZn)~Y7-ao?T!l#_?xv0fP)Zd_NaRTP3GG_G*qhXX*OSx{hSOe6qP&IkUS>1d zPx<1(9+@i!a^6$5)>mi|X(`ARSo9-{Dl~`SW zA09HE?jPz7E$PteFe3>C{kz#3m-Oe^kMz-ElRSL}5JyKewjmZhY!+2LUU0ktpVc{ zvjIzx?k|&Trq%KBH-X~6Eo)P4W+gt%H}+OlidnpFz#dk@MU)2Nevt{xsT4Ro>|~Ef z9%=O4V%u5wP1cS!xxU;oUCaY9{t^W_uF+D7@yqClOUjL*uHRmf-W z5XUu4(}7Z$7oOnk@58*?<@z;?pAx#7nXR%7-s3&Ccm9Hrahn_(;}Q_7Sufl?$8&B? zuWOmY5zyaaBmS{?qNGEce?r~0Sh{*P`R1HPvmf$+RKoKe!wz#=CE2V-x^R~xS@m#w)|Muku?)Iq`kNpB)Lj+s)Us967a6VWQm_Hn?ICx1tzi>haWv zT`<(Jlg5pxky!e_GjEdhxgvCGDSf-(K>gXrI`;4t-i|gY*w%S6tA^V-z+p0rN#ipT zu`B8P=Q>|Bq%{_J=vpILn>O1UHY}i=9T=1r1&o4DjM_?1{ z8sxG{5jDD^Osp@jvR*uMmm|C)&Xwsd4mlw?4cGFTrfZw__^3B`9YO6%f=a4^YUW4* z+`UDWohn?-myDxEe0w$FP@~E__?uX*p(m^+nlcR27h2IPWfNikr$9`I{ zponip@5Rbpfic5vTay$rN8hOv4OYVS1B{TVhO1gEA|aW$aud zYi-{|bI~sAcu1@$g!5w&twCYHMaFPS+JvK6p$kN7CBh{L-EPa&mT!Cbx8;@dM~3yX z_1Zq3$?^Q-0nJqrxq#Zh{mQQlVi7{L!Z8`6Xf_hvC!z+r(za6>(!Q1J*1=g^p-q0_Of#YA!KRrj< zZnU=X&Yfou5`4UU{XF0NNMTph*IB)S6~DvdxI@_l2vX0(;$ELvc47P(=#2-zSb}Od z=W{pPXpwTuIgVaWTHMej%sMySdz#53^|Bx<4GJGoUf}m7ku(R!vd`NM%hH2k(z*tq!>9Sp8XD+hh5ldA5k7hvp?e!O&JB4=^^!ZZKtSOg1b0}GqwN7&Ks6u z9i&3=VxaEAHTBw3wA5^j{?EqfxKU`4H!URA`Ec%CD+Ze2Jw zMo71fE_P1H%9`vw4qMc7nAwim2AX@e5Kk7alBe)wQ7YEUERPOjD!H?9LYzT+dwg(Q za8Lxae-k2vDyHeL>g5BHW9FIdXTSCFg$Zmf4S}e00Z9HH0)N(jEnVopYi8K*MK=rn zTwlG13N-sFg-@gNf%7WyAPKPV_KDqHQO(Mw{DW9Y9%Ji*nptpzzxw?|yEpRNpPlA) zFIM8qA(EaIjNPV+{5s2`mq`ix9M@eS2@jp_{!CwDB7e6O!z??zA&Q1^ zI}Fx0ch&jBoPgjnOKLW6vG%u$z&xAJl(~PWnDL5=&tj3T9it`k^71%Rs(`~eOE1=@O!J6Nw+$4GK`JM0 zxn2x%B%G9%-9q9>R2h+>4*&T9R?P&@>_KWyTkNF}Q z2Z}F%+(I`oJs{#_26eh1HFvjWI~oyqoObjxru>&gy+}q0siM#{zc7(sY!>s}*xmW3(O` zyer7S*W9|!MW&;pRiR*Kg?G8?_IN0&+@j>HK%aiEMQifbqjXZ-yyHMH>uR!bpXJkE zjdy9|@Y*h#XFg*3d@}u3)s!A-GM$C^)c<)qwP70;!oaYdas8Xvt3K*th<=?!_e_i{R+)~7idk@+XHNCR{JY=K&KMi!nYGeJ_u@(DCb zko~a>rhqHrgr^qJYu2>{VMnG|-P##=ctDU_045o~?AavlTroZZ#sS`-+ z)8_O@QuR@mnVg=Xw9=t{b|@4gf+Ew1VS#aatA!k7`LZ0Yh9LRGSMMlPQBOJiQS#qi zz;Q~xq5$uz*^MS!(F>MHwL=rZYT{}f_CxlY0#LcN{+4Oh!o`an?>X=Hm;@aoJ|mPJ z=pE7Qz{vfT0l-SNfI}15xQdjS0vbmnzaUIG${Z2`QeFaZazFJk<89owS4d-BoF=uP zoIUZIg_9Kn#P~h$Z0w&`=FE0O$17e2%3JXLtrS2n@ zK*?*D+Y)PzyEN50LjrQ$z0m2Yg>|^V$3Eo45B4%k)!sb5yX%fQ!fD6@kVa;{=8b7+ zrUQrC?;IOF>ON=OH|e1=azBaphC-w5`2dZlJDWO(47n*q#t8b2ha=GN!fKwuzoVP2 zfu!RudS^(k;+Z2D=hY3VV|PQiw8e%lG6R2a5iU-E^9-0RmI^&F<{Y$Q`dg;#aRa?F zw??R~=NlDhvqPHgQ6Y)eqkSJbFn#_YLSHe}K5=&k(4d#pzYo%w=7VhiepTow8BSDg zTQ6V4)bOze3GS^Q^{!>aI4H=QVFqoC4gas|R9Qb(A4iJ6O9lKYCV zF$3hEcjaEM<0ph@M8zHk*^~nmSXkGL5LA_+ zU%r-C%c5a&Lj!F^sEZiZVrERZvI9|&T|>~~iQF4!A>qI%k5G2rZVNM;FophTVlj5r zJNd-=^`?t|X{0NSJb#XC$FZeL(A?oS6n}?yvt^(27Z}8*$LA-Mf-Oa}^>KGJVdd8D zdWozOm-ipJyz4Dbu_Yo2rX5Wxt&DE>tkub|D!26iec)=)!~fI38&Nhs987n$3pn`l zf4yCcBR*YzOxD0GA7pXqyB>gSXK|5C`*q14O28F2DD~3rTk>rXrW-E%Za*X<+%1 z==mQ_kL&6Sx!Y#ME{dPv1u>MCwL18w9|Q$K0bXIB&jW!T&w8!~XtM8@)4I8OaArH9 zHJq?D2u2dIoUjv4IU8V@hpD}q)iP^LX;0gXTIkR>94Rx-?Ce3pKqO+7G4PD|sCRZ1gDno9#dJqj+{20mH)|E~<4|8+{v?iHs>>g670YB6k zF`sy(yQL3B?X8Ak=Flk;zOX(HcBHghzpAK7`#c1N_OG%En;x4b3z3BujNJkJP&9Y+ z`GHDPE5mdZ7OV@69y_}gF5GMJT($1$bagiWwh1@H;2^KuOmD5LiYn1K#N?N5%xPN> z*2k67He)#HtP1%e3kujML9|wKu5l5uC_h(lA$UCK@Tep{e0F-mhkN0@CNN^?4lzt@ zP2ZF_@^K(|I1f+6Z!98;R1%nZQHFs5X8Ja~&|`1uyQ;xi{>YPNd}r~Ti)cnn`2GrI zxloEJ*!vH?@o$`5hyckt7(-oXTaYzjq(eug+lPtcE%o}jD4dQgpj>kWo8j$MB~SPva4>p7KO40 zJ=bs8?WU!j>QxzG=Vc@orvHUSXcf0u?1 z*aXfFIZ?69shxDQNgW8XiUrD!aoTqf0|#jy#D|g z@b6Nsgh#bylj=DtC2$IIzzg}i%=Fa4(JqS3&j*RJ263uy-ZG%sh|qIiYvCu*Li6Yq zr-oV2%i@)862?gKW?j^mN?;c}BRoFI4b8coe-dwmmCmOvoB ziWLj>qPtXz8EKg2!46xurA(u*HY6gdyKG!KXSY~HJZv1Q3BwNg7AcA|RoY&I{{X|c zUU9p8FsdiGiuBgUe00!0GT~mTRbr6t)6_ctI#rsOQ!;Usv7^=6W3;i~5RJFt?>8I$ zEKcw}?caRbqeGa*atKmSYy8f@$9ew=G)@nr%3p4p)f8QmhYDTmE#Wpy!zWkng4+fV zfBC+^eerG$Y*fg*^~tbQ&L&T{XRdtr=hl*K zc?rNVZlmGSx+A4i(7>2rJEEc93BTz2W5siyw8|(Agu4-wV2Vb_36Y3(_kj=zq*KE` zSkzB7f(BfrvKgtA31LN|LJhxTotE%9yc|yHyF8u9c--#BtFu!&XGvb!`KC-x7M9(+qP{S>+Pf z;5C~jn3$j#X9hTlW{CBG_iFL(If}dCZ-?OsFd2=gnh9h#`)>gT-#zFk!e_IR{Iqpg z_lX7vnHisSWN`4f5oRLU*V2#4zbKf7l&1{a6qy(fD8D~(l3YX9+*gA2S%M?d9^l&1 zqAgpxGMu67?oi=QsRH3iG^%fu2fYs; zt&>CiFVCPKkKMPr`NoM{&Rr4zx;Of~dlToP>beKP&)gjM5qo- zn=^nL=0__jd{&{|%#f3e%c_9lUj8c)g0T>P!REc9D!67!FqFKIt}h5hjOfKT{e1)> z11uVxtD85n8!ppShyAEdy7--tGGB#+I8w_aIVF|-C6Ujb<5aj9CPR@WM5uR%8$0fJ zuj-yh>7ojTGsuw$Co1t3POK(LN!6b-c>oFw;BsCce|heO0%}O$3Wh|XgV)s#RfY?) z8|ribx(w>|E3nGp0S#m1XCR5nt|i0IWYU{`+@GdMAx!65kqaNvjyhFRs{PgT0zU8?RD1WytZwN4 zRi(i@13&KRV}BFJ(Pv_w%Oj3vitOHqvgiPO(Xzr{Y!Od-!7)2$|bah+`@|`BGre@S&ww279)a9u^s8jS8*lE*e3*)Du-yU9sj7QI0UG zs~{r+K3yPpnYJo7wcMg!5m)kC{|x{1CKKX9YG1>Bt5VT+SLD+OM{F3(7nnPAs|s+q z1uLY@jW3m?-59OpjeKi@0YBLQd;Tj=99OL zVUu!6YuJwA$3Q5njNi#H=~xb{2Uge2m#I(W=#ibc5e}5xk+-6kUWvRLaDtb5!st57(CP;S78EA<2aBs zN)BTM*Ri|x#D%9pBi}_+6iK1Eq#+%P4dDbOW?>~d`5aeCtX#sh@Ru)rVCAR1$#2-u zsP5!X(lXJ;*{-$b+R0PU!Ff2s22)JZX(gfGkZRV+r00y+-5QE0T2^&Tim0&BFd`*@ zm|dy?!>Glx+0#3-+4dz{w-B*1x6D*bE$3q1pT-FyOy^#aZs#`nf33YC7rS>7DAod{ zeaCWLRToFpZzLpKaLz#;J+3-JhDZq%`U=Kf4k+M6jTJ}p&&BU@|ArgKs&7^mVJb0U zlz}tU*e8Aj1Wji|2i2kmuj!UwIhg;h%gm=<)7B&%t(O*cq(|4;1~DupxT?}t_h?f; zoP&4V<+ASMyW>y?0v!e@PI*WoYs8-uWAP{dqrB)1{+n@~5j0b>j|gzzWAm>akTA{F zU|ML=`txV(If8~(u z4?CEfaK_W|vSY_gIn2*(C}5HXFlI#ZSF-TFb5)h`y!I|}hj8@D0uo?-W^sex8!^k- z-Oua<3DC#V3oU^ClDJrlj8myAWi~h67IL@W2_43OC~FeDkV0RchQi72y~TH&ozSD6 zS;hX&P5uX@?KeW#iU;H;c@11An#!2UuUe51Q(DVfe?3pzkm%4kIzN7?=6N1+sEyAH z-LY}eat@3cxMaQdsfArUFP4*L)K-{I4Z18GaBi9%N^%5ab^_am=c7H4uraIfStsOi zCZG}ZTP*EbFREL|_112!rvXA7qbkuwYv`(JC~%pyY;Xo3b#qHav-N__$~Z+KSJ{|s zK!K!8*Ly-C1!8ICSyD0tV-S8J7L|y3-cC3F^1eGuDA#*vS0uki5;1t%FE4jTrn)wx z;PFBkJ&W?eSX8If8K%S(RL@TMqABsCakDmrccM&S$d>$s=isDzv1Pl+Z0#m~B4AOs zl1V@QBK9IRl!+BR;lqSI64;F+LiT0k`Ra2-hl2^tF)`U%FJSw^X}$!q?%~{)E>!RRpyl4p&Xh7mZx^K zDk1cUbSkuF3iM+%Ao7rF`~?7gE{|PipzwGOmAQF4`+no?)9C?5RK3zt{is(a#p2 zh1-0R>))w5ng8rzjAiMG{iX%my#OLw;&Tb%h&1cx^#JDcaWEzwnkB&M?oc<+z0_o5 zp>nZFdIHJf&6{C7lcTg~v=b^!Bn9l0t!6-WeJ$k%f0rKUmKz%pvPhZnx^V*6x_Chm z+W>?DvF8wHb`j^!z*&j!eMT|D*~EY?ifQf|Kr4A%d5$E{c!dZq`US5*b7;vQ^)WC% z4qhBgSeK-u$Iv1LwiG7V5o3F%MB1AY%Imj0Cn#ckoCB4DVK}oinx;UC9D+sU{F@AT zpSmJj@{3#I3k~u7?1U&a4H=qh{@f9;@xq+iC_dVSYeu7#qdYuO1e;$A+$p)fr1WoZ8!Z;@fWCb$20GpHL@A9;5N!I%ZuM) z7uhO}nXK-skef71p0Gf**x;=*PrHDNa)r?*{jiyCO&x+(#3F!-CK6=mc?5Z@_BUfa z$-kls)W{Q{^a_~zUFSeqFOcX9Ak{uBuXOo=LgcltbUgOmabzlU0&J{k!s1MOb6!6A@wUMn&L64XIH?o4cMiksLaJVD{AGDJPcSEXx-yLVF9ufIEdTz(EW7 zS48<1nvRPyg|zaEUanrd_-(RPunrY}@_BTG;kSRoQQag46j`_qQ>fuLaj;&5Z0V?Z zwq8r3#EaDO>I4SNIFoR@LT|#M*sBhfkyK}jheA!1>c;Kp>yM#%I_h5`zxU_7HwX>> zgspuipl0xw@q$DyWH})OTe{5Y%H7Z{k86g*zg%FTQ|lb-KgaPL&--4uyLvhf%lUK2 zJk$H_ENuLmn8^i$)yr2;UvI1TVL5VOQ$w%kFDu{1QjXT%aio{^zlsL`Uqu@l|M8fC zl~g*(<%fjm^j;7OSV){ejgQPA`7nW>_9i1IhbOjz49slQ7|^7iTVKj7Z%Jua!|NiS zBR#t-^JR9R!sF(AZDikA;1lc3r(tX+fVdc%49*VCZp1^-cXW6C+K@#s>U&tJQbOzy z8)O#S{F~9j4H}`)oHYDx!qjDP$lgWFE7n9eGXmBTcZbSFw2K;xIz{jTKw5vH{{G%} z>dinAN_JJxj+Y^XD-jK$=QPDFuJSIQ~V>^yPWWeTF5y0OSkunfyLqSMxC9I zWZ*oHbW%zL(3`ezn4VrgXk3tL#xLulHg_+zO4BxG|9Dw2sVENe8+i$u6W!KX&ac-R zqFMspjyB-(ZQYrIs8qK43bm@*1o(c z%!~s9XW<3bhzu#5!J?Uf7R+D~KLHG~f$#oS*C*jUOC2q{f}`m5Rg_3i9eo;QuVVio zb5hBcV%)ZT5}F{p9!jX|PCyVLSKNOQ=LkMHUI2|!@wFp{!ws&qlCotGl!N`Qr ze6eo3hoLO70wH8@y9Md<{sXBb4ma2?Wr;Gs3zVF_xANupjvqied;v9yuKb=97u+!M zO;CWegV14FNu+ieB$7J_j99vwLl^3A3r;lQAe;5V?)iaI=nh`n7-9da@FojnJldyg zcgUR-J*~8@4YA#2zr+ONnX4C_8nj;rxO#uJNrq$Ogdo=RXm5L0?l6w%fvHU;qLM?) zJi_tY#Bny_5RrL~j?Fm^w|ymT{oKXXAlJ^e=~H1Y|36?LtN$M`00(hhpo{?(JH1*x zvsz7L2?O*G;hi6~xz+7NYF9r33_SG^4g6~)KMj(#0C7!y^^6a%*WqS5)Db&2Hzzjl z)Z0ComOMx3l=#0E7%X4%*zN)myiRzVh1W&0>qaYMKhPn7vEvVzM9Pfc!|eI5L%g+$ z$T%~X1@~|{M}vcE+F37d&5h3@5AC^6AM*Dt4boqg)>t&2?12<-PuIC~J1%u9!vkdg zgb)}GBfAOW@#OrS?l?wx>E5S>ojIBinX&FmK5t4E{;I5Jth`M*HmG-Un2r@37)yS{ z)#ieGU{T2|$A3#dH(XEfvtLF>zclYD==@REqcUtIuct5vbN50GP3aM3 z2^s8AXf`@bC|Ksa1Bc0N2$PErOrt#Nqp8unA0lp_qR_u1k%SW!U!PWh2ev{evYAd# zl}UgOr_vgxaRb~rq+*Kps_$TZEP)JO&?I_^nNH8GJC${;NQbREM*z@Hu>734hHJbNBM)frlv zNBJ)3==Q58{8D6#iR5Z9LiVRA6zaK(Z5ynWitL~Z9gtU+f?iKch5*@FCy6_Uo|J&{ zLR4M?1j_@b;RuH})&eFHPh6BwL!-{4Q3_2Y2%*>OTM4CF zx0HAu&rO`pv5R=F*%81{#^rf$MRi00uQ4K>218I5LD0#?Kx0Jlwsr}1ERe6&AZEfa ze20-@ruK@l?Uwv&hthaLD5+7wLGL|fUa$1$dgz8Y*6mTVf(^KtH&qqN6c#QkpkLIe zLGPqZu|LwEovd29wP;b-ZXm7tKlyy_-_Kf0qw5GC&H<5lt>9BTvHV^=pWBz8FEY(c z=9B8_|A1C(R)VTs=p&Gk0u!vr<4XFiN?L`_yW?knR#0HlYXxStj9AFPsQ-bje=`B` zM#|5EGD@#iwm*Tw{x#v=jS-p-$2J$pe>@oJrU*~=%C3GL+BhwilN!prE-x4;DP5fa zBlS_Wyu1(eD*nB^zTVP7wJH+~ymWi=x!!1XFCbre(OCx<{MDs9pm> zu@W14#ZfxtzfuzL*q!$I(!0YzKU=29h1D{LU<^gE%{qf*@a&d+;{+|5e4X*VDfa>x zbEwo{g~0m+@{B9$wangO9gRG@cjo}<#v0H2`#2yqqan-ch%TTaRg?kD94&-DLDy(5>jc2`e4J;kud=Q zWi(618EWZ~vEJ_bD4(nL*?a@HJ8uY(BLx8-2Mq-CbA%mTd7oS+&QIJoUL=87zg)o# z_-+EI0#HR(9wd`khQOGf zQhS}Meud!`64u*eK-3g3o&YN)qXT#4$vgu5SKid(qA74n>GC44m4uC)*nO2_vbuL5~goS8wLEEx&c`NoeY)2Subv zKrl@tORV4O1UVCI*jXazMAghZ|E3lcjBea9;~sH*01E?7nc{XNyFbkH<-J@B1JufinU540LB5P`cZOKfrAQUL{>_$jfZ2Z+q4B`Dxr{Wc)XL?wXS)pji<2HldJjS@aAHv(hib z^HN9n2&dp=(A8_&#Tpa9K?Y869gZQmp1775}#B$5x(a6rlv(Ltu!dDqYE*~Y;q;GOkV=NV z5Ovzc))L74O{Od_yhNHn!gR)h!kWTL3CMO=m=8!?bE11$=c{7k*`ny31OWa%Qn?cH zyyKD>?LR~`%zjg)t4Gs5gNoVl+bK?cYgLR$H2`>)Vw`V5y}v)!L&PO|{X|>OO46-> zRBzvxw>Wb$x|VWtm&+;UMG z=i;ASX!;)J2c}p@UHu5Ac42gX#dAPetDgP!6-s;-y!_hzOSV;dhv^NVvVG??tD;u} zM1p^gvbdb(0NnrpD?psiT@c_R+n37W3<=i_YyL7wxdrf2*{be6)u=#cOQIVKFw2hx z>Wp7=KJ}6)S>LA>yMwC--|qJXaSv(W@ZwO=>}m=!AkG`lm5u3!2P^kNMCE()c$jZM zxEb685&$?~v=P4J{AJpa6V@f*@-VO89)56I@(rn7t51tI;V091W47~S`?$kzVPh>) z%|GTHQ|#7X$}B1!f>iBpDmI^0`JOAL^iFgTk;@{>MSb}5bmNU0EmOM z@b#?QK*XjIgCA%nUtD>mYF0B(y6g|}WQIlJ(RV2OP64H4uYyTcrOJ`KAucC1@uUBj zIVK8}>9dZYeS~WLmu&n_Ir}2~@BPdGuh|gwtj-$Z)B2-;`flaB7hWtQ6y$m@h-k6q zqmx#3h_XX?f7*dw(8>z^vr~?Wfw@iX;-F`hfd9JyVF!DwKw2~0g$m7Ge;7m4gU4r- z#JC*N&5Dv}Svx$$cb~)m2u!t#yTCYxrpM*%z%L&j&2r0iWm6KAyk{6|*6#nsis*D) zlZ6F+@xPh**Id&6Bi2jff{{D%98udtTPk4t{aS?qesg0XzPj%t*fHnO_E9Q1kF8T< zP8c&C!0|8F38RfN(SuKTfO$VTx0#i6V za+Gl@WqBeNre5B%x=Un1p~EZIwlN+?j8djw|JquJ$T3fdA+|+95TqOHYuW*EV!q>Sh{|sv}vU`w$BzR`o)}x8D{cN zI-vxiixb9rN}7eZW_-xdWVjPjpSm`o&MpyNMwvxN@1p)kXwP9%cod0@l3@Yf4=Zeu zK(+UZ3?ag!8@m-<-$NqZdOYbAQ<-60m>(lSw+^_X07IL1ILCt|?E|&U6jN zRSITB^ks?5+D6fJ3De?;P!Nb!%GC9;z0?ViF;QWcDGjp0-9s+0C(|TW#~Cm!aRlJI z)+<+@+b)qI!7m?4vGD*f*3S<8{zI)wbT_%RfK)EHoz#50Wit5|t0`df{+OMILd2<` zU0{nf9jxW+lXuWF-07GHNWS&anyy|?tP!B~**BjOm*$~f*}<&0XOqvNAcelDQejdF znPM0Bf7^9%&S!NExVqm5x6$Qk&~|8_-}fq}tlYhhyBEtOj9}{8Lkr+?_Crqhr#|?@ z1+Ew$Rb!NLO99p=9OH(*B5is$NL*#UDzZK<-#0;xLj`aA-}v4`*|t}$cD$(Nq0M$? zC0SN+f#jbxdqZ3J{InG)7EjgX283W+@~;x(lk`!%qL4pNdiiV|@NM++nW5>f(L|C8 zvYydpVTtCnZFwLA>Txuv*m$$wF=0pLwtxjeR1Mv$9sUJXtZw9|n0rKLQB~z+=o=dm z9}f5Bjjq(}PTgj!447H_Lb0y*GE)II_2Q-eFdY|IXWWGNs!QfDtuPJz1S#@$UwXx!Sa0`XviU(4OhoqegGm$5j_A^GkP2+6#}WlO6hgx&Q?G zIkph!;1Xk~NJ~|fbdjwOBCmQ6t>E-2R6g)6*Ny(T0r`47VygODYsSIpp*Hr8zfCf_ zz%>*K?cBt1RjT3k5qAAA!12f~#?1%BC6H4&V!`X0g@SB}hQ+-9mDL4OV5w0a;shDC zmZv71&I4!^R3#G8Hc#hH@5m#3&Kf%fKMV7W>&iT4gypoa3b1hi*r0$~L{Or1BV9|U zgyG2<$ahs#G2IarNwMDD!<%Kr8~C}f>JTt(zhb1DaIW<_8>wufSyHPZqKMvhj{qzy zpX35DAf5j15%xGJJi`3j2%Jv6GF!_$l&5mcH%MR8t*%`^yD_z%abqH6j-yXa9B-6Ha8L*T#)eZh5CeElMv$cD;}~&k zh3XC=X_nLPNzWtC(2JMg>u^b_+nE51y#IJ3VYTG=0il_`^rDg9`Z~DS-gn>Q;iG5I zRZT?m8|tJvOB9m2)r#NGOk7TBv0Y~wE}mKOE8+dwX~46JnJp8hbvM6xCQRt+W@!!Y zxIF~QKQmELA$V@=F4mGgE?t(jjV&Y|yT*wL{+Wwih*@v)sgN>l1d{-W@g>d7j(!6j zQfRlF@K+n!b&ZasQ(Jf2+;w$5f^jy@w$?Chm$)BtbH<0y`0p{XcHyqZ>}~_1jaW^b zhnWRq#>44dCjvg`6ADyxsUyj_aH|5U=(DV3N1=d4F}pc9Opds4nN@l1qfC2;`xl_- zCr7gSDTWf6zLkXjOmj-;GbyZua+9R7Jrw?lNwqRsE|n0L?t)2$RL&BU%o8D?d@n=t zHMZac2Z)+1PXX8`=mx-TU?jxf_xKX*$H~@9eg-LoR}w*O7cq>Pg-=WqbXa0V?Y4pa zfEDT&wsp?aKR-ef>xlKXvZl9U>L5kVaf>cd|F;Sx;K1Y8`W*(|k&o zKg{x@a|*(D=i=a!6n0SUn|J?Q; zB4aBW|nN7-n(C?YMs9yI9NtlV={$2hV%i$)Jh>#pPNKvZ<$ zcu;VOu02=ma0U)Ji|@->>511!KtZgh>>N=@wL>s}N8r=)r3xh}h35eDOeJ&&M zW?6{$N@nWPOtIykl1hCb1VT(Vw$&Ai6BB*a^|TM3ODVE#=1g9XFBDj57%)c@lG-;r ze5a*njdy3*{oL6T`GMvSm`hhC^GrRM zVT6>OP)9rCy3UE=5T#gY0f^?AeCs$9%noXNN2rdkZ-`!dtl?==Ie1n=q~-BQxlD@L ze}dTcQe7VXU|i_1g3G>cphp}Mucn*(3buS^U ziHmLfgjfW+>Wko1?yn<~Q53n2-dY(_O`#cJgUP_-+b^!w$^P2G!NwBHh-`QAh)Y~> zz`Pg9r6NoQZOlD^V3|5cliDJ(2+qD+OB>K$g?2MrM_O zg$2OzU_kE#PjR>}+qinrUp0b<%_VW9mcP9X9z}Ly>SSg{k}W)Fqw?S`p4zHKda}!h zt7VhZ4B~$7@Lb*y_`cdwS5I_*@P8t*tZx81O4Wbu-k|}8^V(~ye<;Vt@}}A8aPH01 z<{NtZ)5;X^`21fAc3C0K9;N{f`!cCdrWJ zAj<9?IHtW|k+kIF-J$h4r;aF@)mtUM@reqg(INbc7_rMBY;GHh0Q#7rISCj^C!>kc z8?8Q&8nT9SXTLPGcS%3?>{C%OhiKDS#E33E993Szt4rvq^~5xU0d0IcoZ5o!A-%ij z9 z_1-ePN$BaxtI}u{o+`Q|H^RV$_d)M3J)VA}gK1Otj~e3oP&#$DQhKBu@k7D~_M;FR z{?#Do2Sv?zDz)1^Df$xYf@A7>-lGB7mu&?JAGWbar1*8uLKk>h*!Y=W83Gi^BZp+O zy4?s&S_2wBr(q z!JJXhK}g+)s1Klh$kmdC0ycoEVJ8b z`l@e$K4REWNh!0Ml>v-ec(jW`M$@GLi*C_Xzs03K2J8FXHDG=G%XPel1K`Ad_ev2w z3I!I%WGGkj05aqfW7*EnE8d->yX#-H<7gN#Kn6|oGPa*AsP0x;`KJA}6(49%>oYg7 zvZ%2bypJ4pBUgd!?H z;!)2Z;=E!-#laGAwRo|y#s572_*CWHtN<1hbnxf7{C^(juafba@AJ+7{T$nzUEd*g zPc`trBhR4m{ng2Qi#C1JI(2a`Af3_6)C=A&0}L?P4s<1gBIkL=ic>tm zQ)JfmxyZvLFcDw;Xrg2?z#E-x<}kK;b9$bSMRAH#++Hz~A?5Czo45Q` zvVg_Xd{%wlhgEBj(#HObU36^8Tg!)RKJCwAeuH;!f~!6M59^auz&AGboZj-Mz%F)$0+d7H z;{_!H@X*x@IuW`6QnzU@;scOVN=#XV5Zl=ISjgB_J!(USl&hxGI|k(DIAC9#co9~H z+3!X7ksSMYGAbbTPC+(%@`ZjIuF%Rvw~$5XbE~MxP-J&oT0N<~Ev!K)zk4z7-AH{& zB$CwPhV@!F196cF6Xxlaj&*UUvmP*C-dO`K)I-D$FU?ejryn>$k(RKb%}?y2mfL-{ zkx@}#P_Kou9iHd-h@1Xi|3}kVHdNWQ-C7Ar=|;L`(MU_zq7e{~k`j<^kdl%Vq>+?P zN$I-jZt3ps&h<`w_Wl9zg_C*BInFVTv0t5&90n}oJ*U6eY|ch61I4@Z=aLByl4=<_ zYCeuzhhOqX`XyelDUk;`s~PWXQrA_46&4~q{OB6miI9j&wS6|IXYUmhDvG26z;uqb zw`iEFjD|j0-s0TNx3{Q!m=UF(E@2opGp)Tk+qu4lOtR6E(X^6c;ZIZrUoQKUUWceA zK9DM;zQT;c5RV$RB+1t9>%I?;4dB!u(0+RX4*8c%F$Jb`^Xtwg7S+RQ*>^I3ol%1E zwTT_=zZdrq+r z`98G|o-il~=YG|D)_58}EpWcs5Z6it9l<7)pKCETb;mRbgosAf?FG#j#Je{Nx<~gq zv~GZbd|wGLi!YRA@>$+B2LzNVVL8~EMh(}z2y3?1TLW=Hmf@`v{nU$Ft1fTl%U$5w zyc9@Crtr9$<%FG-Hun2mACe}*5w3&FV}Hke442tZ0OPl=?@Kp4yxv=L+!Uo}*Gr!1 zgs?}iXq44w^KpoN#9Jp60*I!1Irp22(cZzY`8L;n*msO9Dj74jt=mAd8VJC~x()4p zVsmJeE0&HwI&i&7$QbVR_P1@e4dR0}9nh&Mve+E(z&7L$d89sumv()!2hql>gDNua zDQed$RMD+Yj8SwX-?eiqC3ugF;Fcxo-OGqNgYTJPmAYclbYB_VF#Uu_KXgCpXX)l?gnc6-FEMWbBZr5|MS36o_YvXz1m< zfyX`|d|tCZBuOb0W^=YKJZAmHOgg$bbcblYkJV+U%`RN5qkvk1C($I_4;iE(EUyAe zW)tx3aY?E5yb47}m9l#TUZx$RkR_RKH+I%2J7XT2>D;GK{J2EI4dr3&*G=A8i$)MQ zkgUHAP!dI=dOsvRp{}ki{$ib$3^_@o{MLYYnur$u0?7<(f;H^1>=1-5m25+W zhjFuK>$bnkjxVhRNIlvR66P;@Q$17Lr_`ev|EJu%op}X~P5l(Gm(SR>Q<64WnGg{* zU-eqLwR5gue92P(OY&?2eib2?3x;2F)jr9h5U^HFUs zWs#B%W6k)%LwpA$AEl$zy%{pK}BL-5Wal`%3n z@;>8%;;A+1XK1l})Oul&v{EH>$-7I_KrEBd_|8c4*E9*L1IpKFKDDnlYYtme6_SDct)*oC&pCK$+R_o;1NTk zdn&>qP-t5)Epo`0=Y};h_02NZ=3ca|m`b7EYgiKo)lFCbv=!AsZ!|C zjX2rQXEva#uT7n@zpDI<#{~Yw1&_B-rTfj3`12-?FKIEeNtY>TM+?M)0JYqD?>bT1 zB=3T1JXEpTk;i3`ZvXBNxRLd9N5H2EJ>otqS-NL2(WWB|R@NkX12;aVzNn@B%7y0f z9B1`I1I6*|yFeL1qfJ2qM-1NAQUc!p5zei4^#?iKpAhUmIXT(9H}oD)rjBB`T3)rc zgAafBzYl+I@TS)MjZ91H!P0~C=k&L0I~3mOfT<(ch$q zKAvLEjoaFMw}*D_>Uw`g2AA@r28c?4tlJ<%vPqsUrDe(6804w2W0`IK?Z#;`VIH#_ zKMkhksW~TJh6cVn&VZ3ai-ic{?n}$8?bTw|A9PIM_+6DRo^~mPpgKe0Xgb?o{2cDC zqNva#MK%_AafIK}U)p?Q*%RF{H2c`omuvuf&!UM=l#BC z_XIrI41r&`s+RxZwL-74(^t@P z#UUbeSs5r16_!=a7B)St%yIPdGqG%_AGrA#<@Y2B*s;Cl#DO=HiO+rVJxF(W%l5}g@#Quob+R{Xl=M7$& zl(YiI2FTqh^G%RUnpcY5Ng<+nz>-N7RA`wE6)#;|@esDhQ(Gda!5ZroOguhy$J^5qsO@5kXgOx6+s9vsFS2UWg{yQu1$q(^|)d{{l=_OBa*8?8SaSnjo zssDXgkX}kS4D(~(|M$`H zFej^(>VkS1KUC`d$uB~^(ku+HA28GLkU(1cE*G^`wW(0^@EQainP%w+9ZQs*G*(1B zx11kuTo+gNc;5%Q6b*v|Ht^p8i~fT)B#_s({CJaP@xj(Ratn6ZE%cB@k+PfFr>B>B zxihYIXj+}P@oHf(A#zK_PSx5Uknybz$US$>5ue_9xoRlWlc-|tKU7~E;z5KwD07un z$+!6@h8C4qb3_-dWt4bMk8z%^pvP?sxf(o=hK$M2P&oYYYc=cI$ri;ecRVj2klL46 zO7XOtHKd|VT&6CkJ?w9Vae|CA{buV<*3?)fO8Bru_jD9@bq0-LpcuQS?K6s$#x~De z9tvCBb5>q4rgzuRgFVY1LaPSP8aV1-9;p+8DFEvl6|Dhd0VF*hz4R`A>S)8Thx?HI z2z3N$giW~!6<@ot#dL_E2aG?==#2;-QflM(jU=KHUz^Xs%vQ+MbL#t_taLm%A+dxA z_||%|{aV_=l`*5h47?-@4KKP!l?>0-?qj$oN+&14usvQZXdyJ?7{!LokY4g?ALvmq z+1ynidy%mv7DuZiPH?Lzl1XVsIlt6ad%-FUB@ZQs_hq9A!;NO7e`&l*NqHCq?^{ao zLwZzpN`IV^U>gEA;;aay^)YSQ57{acm3i(!Px_;%t|$@x;;oa|aNg9;O4Zv&jzFm> zH1}s?*k5jQd%0Kr@fBNH)<@6}mOm6Jm#&QpQ!KFnod+T&e5iVN>B#;b$CPp0Ss=1mK`hRTfv?= zz+B<>n|0w+kj>eCH_0{2WSS4=SHaQ;coTO!p*gRyk1HQS9@H}3%zA%!j;Y+o&_3y* z@>6cLO~c)LmC%lvhIMZr0@p%Q)aqXU-(JF=_U}e?2L#&?#lOx?oEAjo@)FA3pB*)} zANi~)hT?WK0nmV%(?7|HtE)$_@lhEDfB4vHTMipFPP<>Znz`PK{HDYk#q1clnr^R3 za0T}{9UVd5qaeIVE4#AU10rqzF8rNME-s1vaNgw%*R%6RiNjeO)$Rt}#nFITX0(Ja zgZCdSw?#qL8)){??3ouclxZEjHtky2I7^*A>VrW;o2csOrJI0%j0&pf3oO0 zoP8`flw0_#)mSZBvj2;i#3BWlfkqYW6Cx_8$7gY`K7?*t3Uu^^k*zD?;DbPnh^>A@ z&{Xq0EeHW8mIRuTZdZS^*#jt*m605toy@55o(lBw@=uFR zF0zbTR%Du5@6-`N7&BQwI|=ZI8moEji#Ln0nNpr#%S8ApwYEA~jX|%S`|@M4T0}s znydLj?)Q1w7LplmF`c_QY)81YJDb46!ya5UphK_hvgg_S<_=L{_=*&=nG#Zeqo1=n zJFg2VAKyQ9ySkUkc_U`uS2`xLTA_*mv*m75@3FJAvAxDtFSP-2YXH0BX=^Tn6-`@y zeP{`3z9SJU>aX;oXh-qP>K;TpfoIh)OhY$a=D8$ldh_YGzr4Y;y zXl?tP?#87SVfkPx!C-0v ze6H@y%IyOPv4q>0TM5nMaQ@_0T3_bg=IJKgw-T8#z3V+;oXg700BF7&6C@bA%=-p< zo-eMp5BIH8+`zD=b`U8?&UA&PuAoyc;kRtpoTf&*+0(MSukbAF1L?#VHkM zAfW^Pyi{CNoG%e=KaSGq%EFQ-?$>bi3L2YIcva4~b`tbZagscV49*DSF+REw+*L-Z z5S&%F<0A|49Eb`naRQ|OIySwm9gUWDaYK_yE{@B`0N9b&li7TPCH}+!-Z%ethgz(m zNE(1X&HNfZb<(>p49xg+$U5i7%7%dnUirNb)cA(OHvsTiOklMciQ5Ho zV9T6MU%a`dR`|zYg=KUjtc+AO^$)b7l@vj_?*xh6@ljBD$FTQLkU zkEQplE|<6N=!7bR$$w&KIk2a7`u~1=Sju{exzy18bY}OJusGd0ZVvq8W_dCZAtvxX zW-V=Ah+MN=3V#_G7rAZa&|E3D*X+jI<@}cFQ)sPH@9{l<4uD#m2`cw_gwU=&#~t1t zs$f+W(d~Z@dGyA$^>B%~u5^&2_rB(2)d0MU#smVig!!_9L+&WJ zsrM#;`Nln$*+5mT%qeL0--OAr@X`uP3DlLf>9^8C`xP8H#rbm(Rxc_oH4=D{`p@{0 zCwxek5n3Xswp}Ku$X&dsm0j^pazf*lEd9W&!HJZ-!E!ZisqOR62Q+GtypWCH z)bnlUTaZ=;wt2!D^KX4^aj12nVTQXV+R`Iv78A37c}R@ws!umkRD8>hLLBML;Rv0k z-R1NB+0PMO;`NN4cN%6N=Bt+4dS5vUzr`Vbt4NE2rzkanr>@c3myB10Xre8!?GgLU zD2GjkE>Ew@aP;7qL=lhM zJgcfS8mbd!dDvHtz02h*3yjDb@Au;1D@MnhLii>0~ z?O>mK`f)8L$l7gX2#95`W}8@i+xP&2Btw=#dJ#z(Yk05J6=~#gZqt-YxxCDlYq3km zr_(ZDt106GFFz%6(hDeF)BdQX6C-PUfIf2yp`}2~0UcA_yEI00do=zr?i@W^JvqMS zU?qvhuNxl1-%NinZ$UGGyXov*rrGe^S{5cuhBB-EocyM(3b&>5YDRdzzQe!yYf-1r z6n@a;mg1#PMSGV2+|m7mDfv_f{XGJ1_>F-Mh>nDF(MZay+={Cvin?tR+;1%r*CP6i z;&Ou(gXyQI9qbt$buZ_{)!{p@BUW%gpZQ$Ha5bRjK^;QSPHPF#7p&e_1*ox%F3fhf zP*zKf;e8nHY@i#=ly`l|2_BiV9ud?U+$>fvdo9(NO7g%IU)fNE<}|!hoJ<020KWv^ z^=r$9cC^ja>>L4vwMYtrN1eEB*IbClV>$lKO)_&LUBWab2s!--pZ2gL{$jRIYELi< zW;sDCW%hEPX4L;7Vz@nBnE0`H_jS!;U4)Lq$=merNILB$rBLm@4nn-=5|_N6x$Ni3-s!R;<0I2aS!rrp9^D&z;dNNOodGIeFCuL; zcd#T2=!zwSm(mE%A}XE8DjyfX9{jv9P#}C6#y6P3!)zio|4i$TDA9Qf3EWEU0Ou-W z{|k&s2|~*Z!qIvBtw-WO{mB($Z|?BF-eE_}hqHfX$oIUt=kN%0n7HHRmYW$@XSW!W ztdVh%>3msnN(u32`?2S7G3D|Y8wleFM`}}R% zqNka1svz_AI&+{HsxNhA+ZTl1TL-ws)Tu)%RA1b&&KA2Oz6_r;-j+8esvBhU%CzSZdKCi2uT-!uCWqEL=I{oRrFT0?BT+Dkq5l7!+ zjp#Jx2T}G|yq_Q<$~~8&?OB{wGdxe>GDAz(+0{uUQe`duI77H$Pjq&kwTAsk^RPta z11ng~%qhECgfle*3>Gb>qtR>4K5-gFXNk2i3K3zKWSz1n>xf<%G&6QnKkOi{K`n%o z3sFWUt)@kRR4UHmP)XP~)>LKADuro;Bwh)y+Q4NtS)i_>zv*Z`XYM@TmiH5@L)9gs zOAWH_fDOM<;N&j`8>0^14rM;R zhrF~Oa-NK!VIq_+x|JMk99L+mH6;3s8xj-99LA>ibz$)rq4SHQyrr`!6N}|_{IA=! z?=_N#xZ`P|fRfwJ6J-*@7YtmQ%~K+qmk^fJMHXRZNH@-Ftli1$bo+4*`%~6v2)Jz4 z4<7#Xaw?5R-d9E3cD?gAA13yk1lAEC0U~nz{@{2`6012Bv6zM*Z#gIpm`tc~a7h`X zmhONiZ6~-9*O!y^t|660*bQcYEkz#DFfi48Vvw(#Gm(uQU@WOl0aNy;}vSm;xS1Hc2Nr#CY*z99uF*{Dhv!h}x z40_$8yjSaLUe;*%TKwwh+4j+!pc2`^@*X_{ki(rFu7>9RF%rNPB7U|^M(phlY+w#uSf*b$eHZbt_Q9DHvnIm1Gfp!UvXD<6%+CTM z!f26`{FrKGT87gMHB;6X+um+ME=m)4?~jVX!=9#}Q@^2msPb*bf^`hLP5PQ?esTP? zUh+cb*IyLmwU|gEEoU`{XE%}L7_cP=MG#6(iT1ZKm#t7(4{|#Y9$X+uy;Y@ZCYMkC^{a3oO>j6T&x7%~pVqZy_dfD>NJ+vnh$iq~3aY5vZn*gUHfEm@!D z!;jb|TPDg_u_mw=L}^Y49mmtqWSbBvN*4HLow-92N*%+&*DNC@xwMBJgq`XSodg4^ zWXH2Z@QqPynJy(wSzY- z5t^%#j~7K7;_}=1Q*4Q+bm?)v(<~{t!TLzOy0CXF@;ums>2NRbU)e^de#{*Ac(Y|U z*M}=~HhtYou1pkeAzfEAsC;GDvNwjmFU0#dp_}}FIpW;c;3C+5H_SVH)87jn3kO_5 z;3jcH!8SVqbYIy1ob6d;vv;~5ot9}TSV;B!lU2Qa0SBw}A*Q7>)#siR@J^S(_x< zyIZv0SN9V&p!D=}&^z#pPPX@33qR!}0f%$@m};z8o)Ta|{%zoP`Cz7mu+?9p;>(VM zwd5G=(q(T&Ad7?W*0)Ip5E1YFC?&aYV89N*>`AVr~d1=5Gp zuM(_gi*eVc5&pTB;in^Ue4njP;V{|R!bgWb&Ue;G38-AgnWUf`gPiY_G6Y~o{yVxg z=6@#Du>a4Vcloy5Z@BIuDjE=X*{$HUqoA1q`rS0!h};atv5C3IoT%EbZLqOZ@Z2;M z=`{N?c1fNfNKV`2o{I23-y)hTRk$}+4FteztXC7Yr$V80Z`ATi8b|t}IdVhmynCCh z36g+Mr`X-WvI*kSlio46$i@$gbgMeagJz!RtuTMS%igWhlfx;PJomxs8f>%M!`xsz zSeh@FwI0KDAFj2Ml~iPAjmh8svNi!pJITIAYt>B9Xv-Z$Bj@w+w0rpf0W3G6yep6& zZ0^rZ_efyJO}y7;OWr{>rL2PsegNW&_%93Ti3pU@Q_?A>7W>qz$K)k|N)lP$p?FwM zB;s5p8}(*A%%r#S_$%!0SNTqigBw8F70rxoUk{b2{>U2{oY3~T`SP-}%`qkLhP1z1 z*P5C=^sr3xgc=}uokw(#{hK8#Qy9$Mow~4ieh04BWv)ZY2;~V~^vE~NmuRCU|ApGA z&TpM2U8EgErOliU_t{l`pv9Kw>_|D4%LQo`&a-+CWLYJDw!U*?+H zo$;k5Fo1%i(IqYQV5CRW0gu3u&mC=$h;MI|5is8}*>mgW2v!eqnP{1JO=65kQ$WO4@+z`G>MATekxEFAzzPyJEPOqd?>^KZ7WGW+6S@wu` z`XY`X4vl9AAn~J*0-MMDz($TI1vWTk6eCX}4AdlyrhFlaTF)FBi;VAizqou0h+AM` zURVIH`B8+Zi$aO(v+5s9O_KyRbcB( z?UQ+cw`jv8Ih0ZGrJyYuJ~EiIxXNyUPa6Q0I``iZhLKUXbKvFdTl6_vqBT#vKyqbr z7)mm!$O}%?K+?v$3mBXR*`OW)5=W^<{I%89IbiFlm5E+A_TSP;wrZAtGC1NhX|1X& zS24<4prTvL8|Gns%wjq<&-+F#PixF7c{_W7|2R{#v~twsNZ5^){E^daD5am{Da3UX zn(^TUFYM5@_QthE!oxb*%;%IQ4c3s374bt*zqU?%uR!Yr^}j;AY1nmd*-@#T2mZug zi?<8)DWs=xxeM@a3J{@is)bn*`VSU)9mGQwW_NDK8S7R^F z&az~G7rObX)Q2x8n}T`bi_HZ@R69q+3C^JdHX%z20TMO=MM>vCYvEZ#5QZsoji2^x zlqlIRb1)+w=iIIq;vu&g>_DVtKCN3Fgn-YbH--7Du413^-dnWgZp-ANTSqfCC% zDm_J~XR_+1>d&_%vV-Xz9G3ci8X=1NdYMv3#j(jyhF1n-UNa{l=?MY(UvE(ih`uKG zrg~DWV}q!_KGci)s?2*3RMnS#sXJtq(g5yDJq;DwA8QErKmLr<*f=3yB_nvSv_WWY z%wW&oh@lZmg$XA(e+>__Nan)z#8YhToXLebA?|E}cl# z4$97aUE2v-Sa4-H^ewT2>@|8HU8zi*5KzUhuAx!J zJFwOi-{++IZIxeXe`msch+H8OC}m?C!K4APKw}tX=v6Xr>2c;{{c>rZJTG!xO-0X^ z4q@b+d_?Dw*P7zvPR-(~l7{CMU{^Zk{x8POtnhftdGt613#fse`SeUi3UAD$-v=LD ziHLAH$l~um^3m>-8}Pesm&K?Df|Cwd05;dY7r4ywGsk66@}os`{?IQn!qaU`z3mWR zFio5^(V0F}g`LkV3r9*uT>`=J%Ak(%0q6BW?v9Wm;LBh$LmpjcuQ0 z>4V8x6d$3ZdyX5##(9z`qBRCnS)hTiB$lZZkHgxZPtJTwU|(pd#c3d0EwK^F3TIVT zcRh|)%u;jy<8}V^%)F(+wo{b@ePE!FQft@$16Gb^09@eQ{^(NEzPq5}FxhvSn8 z5D=zJuJQfS_vi`R@)2uzn<#3ZLZ{zy<$)((LqBU``@6sIb40Rq#N#+dvdGNV4pFLK z%*f(J?TLQe*7u$7%IeyikDu|Oe#1PjH#1C4eq;u^HCL)BjuAT*v?rvcOY7<0do132 zi`Gu9VX|8TKe@dA?OR$9dXoC$415xpTOL^-9tehE3z6=Zc_IQ-Hg0nXY@6hS6C4($ zsf)yMohTRn5u)JszobRKd-EsVI`#H$?c;k?E_~$3G52!$txncLYidh>#)(CJ|HX(z z8+KdQ+oQcA)$Gf6#2)3c>lYRxOBpQ;C0FR89M1Jzo+4Q`FfD@|)xH%luLO>6b5(|# z#z{GzL&MLsHt6fQ^}3ga&UP9WhSnf5TJfJ4Zm;M42Ky}gwIZM`b7p5J82XltKYz9v z>6eLWfp^>{p@UW0SX2#&82YSTZ>dNB`eGb)`i^|?Z%BK9%kROVvxg`>)tJiyh0vbF z?A3QsT`p?Vmt7N(TQZnd!j?9ld-A+rSWFF|4M{y=aT&vrZ>jW)WNKFQ1W>PpB$aUX z;-~pCMhKbvf>-;okXx4FXaA0l+>o@0iM<{+5j4603xW64(}S-o2-%ZQI3yh*=P7}o zlNrB#i*@bs3ofSk;Uu&wonTiA{dbmMI*!wL(yV34lzNQh-m1z3QCy$g_qlS)SSF1M?M zZWm^n7W10o4Mz-pV2+np!WpVQ3P~9H@KPML&Redv4i^nQr`KzV8yj#FpVK}x`CnuS zE7$v%SLQdlN;$d>Z6LNyB@o)ZObrrzBm6<6!GLUe#pQd7#mGq~E3LP^TvdOSgYQ4@ zWs_}V?>oaUZ~^45}2pa5bwWu?AqrA zCC0%uf9(lbR7zbO5?wA!=qExXv@Dl&HBL|wO-b=EJxTn?Z|Nr;RJ*5kw@>_R(g@q5 zykpBlB)4HsTw)8uR@pfjAafOcBbbQTHp}LAQ@3Sw>+57qtHL4je=Y^BglC0oS`_i8 zgWx~b8PWJuanM^;qJw2$`CTa2nF=3718qBA35UVyGnvceC5k}^gFJ%FY}Hj~N7?iB zr#FDz`$O5%1;G=3o!WQ8R7A{$3eC~&EH7`%oFpXPoA$hjWC4UqvUD53WIl@iz9Ndf zbN|<=JpDxWmndIYehn8k1Pd6_tT<}ldqf%}|Kvmd+5!@rE{kYmzOCF+l+tg);OC z?yRGWr$8FRK1MhqMY~_K2-bkvk2HX1t;-Cf?LYrO-eiNhbXHKzih6fXwi@q%+rmJI z-Tge0{2un?@-6)QPOq+effq(zH?Q%*WALZd88--M$6Jo>xmj612K*kpvZ$Hl`+`$l z%!xKpQ|t1;%N~BOb>(v*7vj)qYFpYq`99|0p!H_u@j*lQPQl7csc|9*Wy(yy2v4i8 zL1@YL^rOdlT?Trs9?RLv>;~azWV=mXKgjhrxg@k)4ei~x@-D6F)Rf$hNq0UuEdIyv zWn+5U-3^fuEY-Dpzz!(NF4`mAPi>n;@PxdhPWG(t{fUUpoSzq^ZH!^Ie|MA7Fi?m9S!3o**X_%_ED?)!@(|HPV za#H&kmH+cmKc;EnjqoPhbGOoaz2=iij}Fzgu67mywQaegMcqdBNxNCyYD~K)=Fc5q zrjpv~(`nj6*TNqLZ#kYrwo%fG-wS3#^#dgkfd9jpFPy$CYhd*Ub7asEa>i;-o(Nhi9@`7sZTppqJ!*cDBp zRT04gFKdg8drq>-2~SVvohdDpx}S55kLqPs#x|kLmw5!N&*UW8@1va35j^q*F|BnIJBw?En91@cTOagb=COw=J4g+xXT@Wf`Vqobv)4! z>~r|~L68#kKq%cXcS7t6BRASgEkF*aFIXdR>#be<4-)0zQ-NUVIMg6IcdD5F0>pY8r*|VcjE1}J*hL*5o9jc+(`+Wvj z==;5%S7MK^(ZXyiYOm?5)yU+v>fMcfJr|8E8+vc0{V%@9P#0weAGyunnqZzK(?156 zi~wB3_dse7>&UID++)_({^KfA=KFpF_k@;*O-sIS(*ZyD9XEsj1^Ul;pAGWVJ>$$pvE?2C7CZg5fcoVsFPnc&orsh0rY$6^j^JQRP;#ro1SA{AJ+D{a z&7~sPZtdp}gUj2a*pk1hlYJ=!=L+t_aLv$u_$!oFe+{B@T=ETeBYaUu>(i-1AR}#c z9+u;;Bv9cr&Z==ZH_|+y-^~z!1{oY9)L5p!gxA+>A{39X-Bh|h<{WvHZ@C|_|5SX) ztma?9|7{<8d_R6+TvLabyfG)Q#g7Y(W_*v4R145|Hm?m%q%6- zKc>b$lqcTOX!=D`2ACUJAgMitV1j=Uj#*wE&pzNrOsM|o4o++UX@Va6#_^An9APrV z424G(wAu>(t^D_>G0xAw2abfR+E2-9ryw6BBs)>4I=y^yMZ$NEL^rQXU=}Tlp$06f73j_y!L*o~ zMewqp+RG4mdi=p9@uTuew0&qlH;XQf;EQv( zFUUB+m;64IZThnCo)8eE5$Kr}#(x%olx*wDc;w@obf5De(Qk$XDEFIDOMPyq%fs3} zm%^n@kCFMTOh|P`+=G5ir0PQAe>G6?kWc9q zjC`pFrs?97A3^u8zEa~aZcHhm|KXuHD!aMP@o@MjrL3WRqxMjIMo^+2fGiA9&@v(( zp{X_7RY)-you7SkNYRMm#lX#RulG=)qpFF}NQ9!aOL_=r;jj5227!AD9YI08+{K5$ zdvT0GqK>#Pijhqhv&T(Darfd%U?Sv=7*z9C;K=a@u}IZ6Jst~G^9TV&&t|lB=x1UC zXiU$q2gQ-H=qVD=6hP69qFA|tb5fI<(4cBdH6*=G6Gh69m8lSY$wEyFyzp&?jnk!2 ztU^pwJm=?l5`y-M0%(BjH>tj#!&z8BW4XJ`BSqf)pLTRKeJ|w@7jnoQu zx|JQ6eT5%!Ck;F)dVbIbLga%p$@eUM5Jl@w1#IVG@CucDV_u&N+YaW!@{`)mw%(A7 z5Zjh~^l6cB<`^znMo80ztrK-lz5x(G%5Yrp_TI=F&ei!ob^@=jQ+RA{c5AGor*S=Z zb##2Ul>a!TSrY0ZwK=_7*__ zg{Rnhs2)NcXeLNC@~w)_>FHsyVttN~`uF&m zHW~R|*Qa=R@;xdbY)}T=H@`3uu`ZQVlzjjjc@P*w4@}LnGT=OP)J2!KQkMk);9+6% zR|ZK9zj0aHfW4QXL}SG1ACWaCwOpz=3y;9z4}!}k@c!CJq!`<;$lW9|dXd-@rDK(1 z_QsKcEgzpdl6F+^eIj@zEq;0UD=RnZ6%q9x3Wro&V6$r`O;qEgNlX&>fm`jjk-Jrh ztL)Mf8elsc$Hf65TllN$j1L?-8#JQ=#tNgd<0{grPp)a>9TO8AQ!K zBa^_(SV~JP1ayTDzl2Lq*+v$ZYSE%pM<<)$R8f4XJ+5-@Tg%YP*>ifl0l?wh(4do4 zco_rHzi6^+0TAf7g^@~Wr_lByD1IfamD3Ls=yY>*_G*f}T{Wq}dlSf1R~fpA6zHc| zrOZ9LcwzJ3tw{+(f7LO9lt!0fI7m#U1gH|})pIFNyaCU=Cp)kMW$oqgetxARhP7{0 zKFBc%vjKf70+24f4Z((R32DbuMmiZy2p8ivZj}j(QYbWg@ z+4?>mgE}pP4M&dz4IW#OO%VC5$w9;l^faM`jWDDH9R+U z_FGRl(O%}`XxgFHeri$w{UfkgQ8Zq?K$PF-vmF9Pc(;EWo6TQaR)_b8rS@B{KHo2A zF`fhf?Yqi!eE~nGzeE4^|L8;kRg3>o5;&X;P6dAv_Rdm_4^AFP{szzWlA6Q-Jq;~X z0XXE<)$%Hv<=y1eGpkf^Sh4B>9%jlzH`C@w%QfSPvgU-+;5BPGXD0odq_fe^w`|Jt zOxQ;(rq$&L^z+pT+DrCd#^_Z?7Kaw=8+<(ZfXF$mJ;$Jk1B}2HLg!IGrMJ5IYCF$p z8bP9h;g#EjB|aG2eB9t~XqwC*M+l}qgIcX*zYP&?#og%%4!9Fp)A%m?k9vm#QhAw} zNQVoHx*`<;UO(-as*Y9dG$*-6^*u775TRQ&Rkw%y3eWbtn@?w~A z^tR}{;P#gM{SR6qPrXZY2&bX&OKMsv0vB+A7&APtw^&BQ5ySNjGoaN5VIw(t(^&tZ zKECi{kH`PC7k8EP2F4Z1lt1pK?`VlEn9`<7b!K7njg+H=->jC}&)t$CD_^9`3v5v(}0E)z`z;aD^NV z?drH*aDT#Ex~N&oc}MT|K|q_wZLxXD#Ot7R+U>-vQ2xm7pvyM8|96_(02Jr+{G?^0 zbJl>9uie)o-fiuXLZxJ$>~V4L%G>tZ%ela=P*e*ttK0CQ>x$-S>c@w9@{S8Jg3W&T zIg^J{SALuUA}Te7mDSl9;kbN%eeeQPho|Nl2JCw8>gGv&Nd0Vz8u|HY?jir1`&TqR zULmfJ{XQLYuo)4PtM(uvn5)RAwNepkGDlHMJVz(q&QO66is(+1!JxhT2fyuL{^4%Hrw&FuZ={PH_Fh3&QpPBhKe+ux*1=ga_bp`b0rygOMfG0ONB{S&{1I%uB7 zDqgz1;0?|S0RIuFVeXJA$#_#xZD}yRnnAh zboV@3f3mhtOvOilLa`MUyT6KLikhk~UuvkS{B2Dr?gL3oC&p*ckM%EH9)(TdshpO- z4#jm*VoOURhu&;kD?uwJqYU%MYaNQpPd`eMDnxH0o=btE6qrF^yV6I#d_J`js{ zBN|IuyZ@r*rKA8f{>M5EOb$nOtV~&%gZod7Ej&E0VZ5n{g}}8iRKLqkn!_UYM*s&D zFY3i;t2M`3Pw$YNl(}kmuol4Otgp=jf?S`JYoT*Rj9EGK;pdX~0 zJotUIq_v}gmWfp<3)thmm_pkFv9&AMJxrj{dSiC#S=m14R7s2c6k03%Tyyuq)FIi; z9A3*(Ht0@-W~$Ui6gIzFqJ{QcPAWgI{c_OIK1b#nLTY=Tw{MF+W--Q{JL4u^bc6m( zds22hIQ0N?X6Et7yBpRi+k5()Q|k&yRy7PUlKe3_!x-!t-o|S-i)FZ>N%7xtCA{Ky zVPnJ3XWg)J-UP${o~qh?~NWROM@sK1V{|Mlte=TS3p$}hS3=h!xi{XNr$Ed~{X zg{dKIje!ux0iQR+_dq|sT81oi>G?SwBa`Z)Q4#p+qqfGqc^?Xhv1U35{K@y8By0VvOd!*6~4~;4Fbp zc%o1HX*;fQ3zM~F{a=-@~?U;n)ZCwf9Su>!}HYe(OATdFtD^6 z9HDoaP5(v<1teoo>;c6A5hwlrc0t*0?Z$Vhv(?g6+enEKfg+!Hw`i}uV}jCQJ~K-& zE4Sp#ZEj2dK1A)woz$39N+@T%UROnb-XrXBF|XrfIq`IVr^VQHi{@Eoe$WMbca>$! zcMF0j(>T|~hoxi9rMs3NrcAa?XXzh_5GT`Mh#n0TqxmA)sy@M)+dUQ1crO=8+Zm6$ z9+vVd?2i5(Q1}%4pTQcAbdAkw1}~Mu4pL_f`aSe}F81&zCv#i)wkCf|>2`m#{@s<; zU8*a;AELO*zy2kMuR`=1G&Ed49r#NgcdR8A1J@vy%C%KA^kk4S8wxb9?)}{YW1hdg zYw@emGd>tz+`56C;x;-Hi1F3>UlCV8D*3_Ict`*{YRL#n z{-O=M$xqM~Na?L#0LbgVw{(mJ-*$_YqZ^itEDrt0WP#_1KoM4Yhua6iE&AyR^T^wwpAWg4cpt?4@;0l^y%b(=FXk_uvSW_<6;o5K^A$4kHV(y!y8V}+DqhI)SpmeZNip7ZJ6CMGMF_JeG<-vA zJ2xV;fKrSkCqPWLWlk_yHcf#sDYw!G52tmlMO(&501;`t`iIF+K44?RTRIEu{N>>% zd6UKGzV&WMMoO(G?$o?q8ZY3_p7re3--wQ=>0!aIsg-80v2rciybrvDVb=yRv<&G> z?QD;4{*!H+b0?BE+Hl@VJ>TCe8;rbCSyBx_WSc|*r=VUb-VK96%dp7ftrsY~ z@gtuA+g@+te}0t#Vl=b5wg=eyk;9R}BgVyW+Q~im?A)gNh&ruP>%3bR%S-u)${TO- zmS1FC_z67*&k&|M6r-a@Y3`AS8kU8Fvfn4rQMkTiJ@sPM?2ec{7zSAYUFS^xi*1)q zSwaq)1OU#HzU!qQ(4-F7Wf4uKNtQ7ncu5O&sAY5_6(`<4DjX{ev&)q5sZ0#LB_JFmf*zhpn<&53bpz^R<7TleZ@Rw{00yv^t0 zd3|b4hbUU}sRn??NtKh)(HRN2qWYaQ9h}`oN5kjE_Hk`x2IFwmC{6rLWNMAw=};?z zuBc^;qE`{Wv;8JxG&Rpq`P9#c!V3u}wc=}HrBP=)>|H#XQW+|2MsHLWL&0T%(#l@0 z%ju4O0ls%O*)4OX{*l+MA#?b6fG#hg@rABJec2J0OoQnir2>L-p)!}zBQ>>{*ViCf zE`lmr?Y0U9Cq1b_(LrrVdvQEz1aNRtELS!C3>JGxt37)uN~!fD<-Kw$XsJVV#ac=e zTSh_}8c0y$eYSwpxJ@6P6O|Xa`_RD9r-KrgDx5Y- zS_gI__UiI-jzqgaT%vA@-o#}~QUe1t+&~UaLVr{XP{^(^^!Tm8#@9gCm>3Sf=Y(Nl?w>vhFn_aouk$Jl z-OgRgN2f06vdTgaaa!+pL@}e1vfeXP7SRbs0ztl~ksn z{&I_T<+H^5!*d76G5rBYp3Q)so&QgUPZ}fl@S@Qw$;|(;^vzM3_s`$i*lcc_ZEeO@ zn_XA7ZQHfg=G|;=wON~O+cvM<^SQsj=bZlObgENl-ZS&U%uvS7M@wmP272&H)hlfz z6DcjIN8i5S;elg1`bCP?IfwPS^!Sc)hly1J$aUv$&ao3ZwPa~J`36A(e^5h}-sSvqz`>1a z1dLr&4(+AhQrR;)oTi=@E!E*nCq@Fhqlj+ok3DS`bjS2p+U?<~cO}BbfX2LIfxJF_ z-36v%NJ~{FIQAcDQeHRt6R9Tjp=R`+=E~qMRs!+zRxT_8dKkjMYx5hkntX4q9pOA& z5h%=-J%Btdbat1t!9#T-iU-I-1CZg%k77jvXuUFa1}GC0_d@XF-4SdkTN)VYW(Ai`qF4|nz|y?xOhxV z5;*wZd0Q_8uGmEc>gEo~1`f$Ku3o3Epx2tOg=NON`c-ytAmHF8+1MYJQfCvX2x=TY zUEDO+Y3+3V)`Z^vI?Y0Evjewd{fCxkHkds{>HeU{(C)V2#>oT zcN=m}K1TI3G{`{Vwi7GjaR|D^^I(s{HR$k2$nUvb;FwJE`R>@o5L@2tZrCMO$SYo| zR_vxo?)%3vvMKWs*7iL zpjaST$FNmL5L4}=aePfoeDDyOD1Q$nDXeA3uO1rTJ+hMKWLcLD?8JSsE_y)qRWJ>*_NGgFU(tIa9r22K#=d;b-jAjHo)v(#c$T_ok&#G&xb&P9oc{s|Ur zf}uYc70Olp+e)Ghlg zS<3f3#7yt1C_&`D9s&rE@s8odRyU@eaV(A-UM!h^U7VDXAH4Rd&{?TTAh$wYvQOKG z1$mk$vig2w2+o`smWo`@VhAeH4evC{sOI9M8}}<#Y)EL}7-7`97r_Z&cN5q{i!Umf z5%kyPZuBv$vvEigj%sHvQ@R-nMD1M|C}4no8aJZ?hp~5gn>*~SgC+C_H~jtWG;{IR zSv6`9Gu5JTPEuBacD}3&p;v`B+fYj8auDSD4>kf|ojWD?HuZv5 z&u@Xz7`YbAB&zeW^FS&Yn0!c1@e*|hl_BgQCW{uY-C4#lKaAClV;z;9qiZl5=PPF> zHFdwFva8TlP#4hpK5nYk;PE=2iTClxa;jrzh)3)+uM^72!D2=UMoDxQOfrwfTtYi! zau3G$xA^-V`aBLt(RQmVJK8h5Y-!EhxMGOGXZB_D3G(=M*{#O_ya#jbzFZ3=sJ}EcG4nD{D6r1s1F~B{k#zt1B_$um- zb0~ohRE>xFf%o5oo~_L)cV-ZYNyJk3-Lb9UdvXftetNf~T}lC)D`I>=CGqunO@%u% z*9oY(&8{aIlqp4Vvuz_pb7ea{y@(eUcT23unjZ0G=iE98&(CusZuaf`9osF_1>zFn zy-STDW;%rr+H5VFp;EVyol_e3H9iF@mF#Z^YsH7~)W)F^Vn@tz8Xc1MEh6M6c=SuK z@K9ohhq%Nt43{Q9I(}9ujo7mw0nP_c)==S{-gB2cOC(;q!7TGqnEdznXGYSWB7IF| z2Iedn1Su$4FJ%vy)64?(5nugzC^Uq%23f*9hrBX1pP*pt+DGs_|9M@;zj^BZ4Wmz4 zJ!IETy5cE+=j~AdXvBPX~m@IBJ%zhVyq+4^WNyVXt}Ls zqt${m?wbAVj9YJ3cRTe#is8iw`Il5+*lsmnLtd5s%b!Z>+HSV7;_y)%DP`}=KWy#H zRFVVxPQbeOhgOC^E6I-@dWOOZhJ#{*_Pf_Uj$V4re)cCR{QIvPJ7VA%ON_ZjyH_LO zBE5LF&L8M$i*aT;*c`A($8kN5LOkPZV}}q|-tYv3UXfXgA3QcRPTCrX;naN2cj7SO zCZ*+dG-<1%GSs7jH%nkQ&dI>d{yqup(YlNbd6(URcO>)C6u5!{BV0V6uJyGjpDfCR zvSIw7z?goC?Bx~|*D_5CksGPhqn932`VOZ2?C7wktEXh37Sj+UgnIMW0Qt`MX$B7g zxa&I0;oHlm@Yc}PGkp0d>%4fF@p4wd==3RSypB3DQbm;*vsJWV)gbC6k+5C+|MaB{sN9Pz&XJQDPzdEnC`1!=B z3elD`yKfcaDKL%xm0>Y&ay^xjro`s>0?@#m_*9>+cW($!p*5M+F|P5?b&rH zu(W=8RJF;qMtV{UvqtykwU65Bb*Xvgr_T%)-jn8V9ZQwrGbq+6S7B1WmWI;vK)jHs zplIBJTv?r2hss+$?8ds<;pN^3MLBnV_lmdV`sx}(nNnX!(y3k&C}QqsMB`9erx>jmOqF{&LL=1&I~k(a`* zwDFU`J&tsf;)wn~n2tkuXHg>f_g+Awxa+(3N;eUU`tX7TtT8D$yo2olg7l6U_=Utd z!NXB<_A#@5!Eq;7AQc1UN@()UJ>YVevW|yR}?O zTG@Mjjh>5yxk8n!)uj$w{&F@CsXWf0@dIMYZ{355OYZzV47Fr}$QLrOJ|y9KFOf#O zJ+Tj$_yy+2uZ#9WGadwqx6==U3H9cOkt)=h1Y#0OcI=*75_Y*3XqFr*ImXFIx18u$ zN07<8HB_~|?*!i6r<}-b)J7B8iXuXWTLRhT5FC!kSa0a-ug`?R@STe=w)JL-`a?+@ zMLDMAC!asv?;Axs-4I=D8ci(d zYstkutJ12>qmce#%v_msm}bT{Qtt#66L3~ksYEsoiMy$(RoH3f@2Acvf`RoiPmf7X_u=^;+A<# z`RC%nh6@ORbVLCvDzzgpZ1tBHFfuq++fQI1!^X1+nZ&C*^`Fl^8Sy zE((@yQ-{rJpjp}O@1DIT&e3+=Bbr`gFG<%Fef*lRAYAqKr_@mNG-ar67?}^eDfgmW zWuS)YLaQqT9sPrkGdO2wcP<1Pe8JWA>#YOuie%fphl3+ud;%g+ znzk;V_3lb0oKz@E+u_e$kK}<6n0~ZIe_hj{ol6$kSTa?rGuES2(uhCk0=z{=)@RL0 z_nqZl5UDs#IVa9Gap1%-x{xk3K0Xhh@BwmR+@H;d^Jt$JEzK(oSKb#UiY393&J8ti zy9{zd$Sp~u*LYhe_=fa(={(}m^JmJ_h2(G7;P#m2pUsI>PP^{kD`>XN_lC$xyCS?B zx@W5PzaoOfRiPQzF;^Ga>Zuw(`rU&~Ta=1k7Y@>AMCPP@8N*jMNoh-QZ7LaEnTa!@ zd=5k}%NLspeqrrF<*wV*)k)(yu&EZOFMH|9V8WQZyBC&i#%<34$Jjjn#g$iZmZOe5 zAr;xSlms^pb$Z!%=>lE|_6XIaW*S&3FlG++meXN{)*dbgC{H29irL}i{lzO7)?S%X zIuvs45#RJ|L!(0={)&=0vDDrPD$nlWp}hc~AE>|wZUy*+Qd81nc54)`^H!UkB@yzcPOp^?TM?{%=d~+HUKAf!CAO6|$>!Bn8nG@YB5hThXtcMqS{u90&Za z0Q{T)n4AFoCV@KUyWjkLV@0EggmF-1`%PN<-f_-eQLfMI$9DrJkyOLYYZN`xh&|IX zP(f^xZ$J3MTq+&-jrOTrdac>bDPuliD6^=p>e+8Fd7U$!t;+mB84 z6tiqW?%{~ZoV~Y_gso{Gve7l5DHPJ3{$HVXnN-q)+np2~dgMT#q5Y}-I?9vrvQ}Zr ztZ@0hEpU~9u9AtzAoA~gDBHYD_CUoaLp>qp-`=NqE9G?U6Yu+02iL%xe0;V!EA4Yn z1#K}6Y(a5l!CLYv+21>$8scb4AGKL+mLp2A!|3A)NgS{cKJkNW&m66 z^u&bqX9-4xD}V?oCJ-PT_$N8W&5B#bN?p=F|B_1U6QF@GmDg4jKjH#L)Nz73rXFsI zto89SCqquylw7MwR@+Y=>gBQOHwx9uW*OCM3FWOBi;w&whC%HOw1G4+L4D< zZ@npR-5i6W_kMGkPZ6!qf>qUg!2d>CbZK8wD; z2#c3Jv~uJp)^YV9hgW$1>Fo)()k;b-bnH%Y@abd%Dai^|D3iW{@wImwdOlV6<1hvQ zgyVFQpDJSJWZ{W^PPtx}Y}-p@ZjkiSGO+K`NFfYB^P=q~0f&l;9Esu8uRMs;BWu7~ z*uWNC)5as4CNkM&q@pu(wuy5OHdfMJqMLkL_Ea+tUIGg;d-j-gh-a7ymo1f zGjdPpV26<={5H$EOiunt?y!eW+{ou^Ag14#T}|w!I!GX!sc9ER+(w?Fm85gt?Qs#@ zYN57QQ6*I}ww8(yD->SV9E^5&6<)jthm&?5*gO+;sWNsk4&R6-TJnFWtEY=Z8m5&| zUcFj#XIcvJWG=?F5}wmloOtgw*y(67VO1;?s#i_ZYFMhD{H1?sQ^2$nRA1kLv29zB znB~%uXB+&fK;mHMbhTTtv$c%6L;iQ&Umz-^ju9gP9sy?Umw-UL-SSTcRFyKyd7U3Y zK_vwE&2Rpzjh5V_b2i$tMUt}p4+agbVnx3SRTS8T!LZnphigw=qO`u2rMVQMiRDJ56AN_8ZS*1T0$s{yacxakLYnc-FeIB`g3g&Z8G z6Qa`i&ED(9hQVM;(cjErv3Y(3seU#GmK?Z`$m`s^JDEC)8XghM_@%9_vxfq`paA3h ztg$=lp6SnJ?ONEf?H^4HK#yDGbfiQ)n0Fr7-r51pzFe?z*@lsZVt@9|t$;H4 zboEB_IQ2$@j|l7C2?Bb8<9fXRqb)bwJ>hzOJ*J{N?&u1MI57{u*4J=+oK>i$Hg^88 zOYM`AfoL|Nus(i`zpN!j<0L!%i-0N3Iz#UsDzsnp{&)n($G>t_(gIQ4<(NGqg*E zQQod?VWT4&NNM9VT}TX0jjX)e?|)Gjy=|TnWX4YGlsR)@BwDTeLs;dOmZR-3MZaj7 z(hq8iyznYT5b`Hr21Xbxb-7#RHWzRfY=3IW`bHh==5#wT?m%1cxosM(lcQ}!tyXb- z0`K0oD5+DzyJb-<MA{n6Efz)J^04-s6V zO6uw-4bRoVTkDo2eSG}!y(&9qxCc2U`lCkLO--jk-Ss~D2bOaIhCxcHUy7+s9(|eF zm)T=t_?!hKY~Y|tMJh$Kgn@Ns|1OPy}-dvfv&A%B7!2;lD|CBr?g6Y zxErvrrau|Dd?0onykij)L?Y=`|A(2Dk^hfHa=Z}$nG3?T0SQi`y}?{CYc^1f$pnJOi^NN9Il&H1#|EG`P(;<~km01969 z7k3RGLzAY6)x@2hV5q$B846=$}epSlN@ya^F2nRw{YH4 zxrTEkB)vS?EILZB9%xa59Wpiup2?G_wmrnKhyL`OLkgk`#XFKQ5BEA964zWyYG~~g z?jktA)2fiWGCC!OBvBT$q6$K9Hx89lMf*m_Qpugm4>i`x6SbKcb7lTLk=IEfbT5$n z4_K}BI*IZ%w^^_(1;>B3`4+uo11}G3Dr?r`w01jb5S+J;w*Ip2exj~|jqC#CbWcJu z-ri%5033DosQ%YbaZ(gKQ%1S_wr|0T!z;a7XA zGc!}pSSy{ear0)b^`|$`8|j_UFM}cSQI$b3acyZrVj}Cl^Y7yf9A*$`Y0(!Rt{*ux zN{-=?6s)X&jwpzKb)EO3c$Mce*y7-NweetlF$*-gXvfH*K1sNIW)4WEE)}Y-e$=|kAr$$3gg$6|W|Bdt(iC9$p3hlV;?^@H8=B=- ze@f3dKyjMqoU%!=w`z9j@Re}>z|*8$MzA7Yk_0$S4A^UdtJuI2 zXQ15}t*iZRGvB=gycLxi?o!PY5**ufy^HHMtbAnj4VhmD6e^6A1-W^+e z<<;mo3>L4T&Hv0rupE_|=3*4B=8Mt$~p0?9&M-Q1c!ey}Qe;^#N28&k0MpQfcE4FsP& z4I4H#3^V%(3%vG_aOw`Fj&Su_KwZf`9KDL%fbDb-lSrEoWNasjxI z%ova-pNT^|MV9^}9u`^FNIsGn~%4 zNQQVuZg!!2%W+6Y^`pfPFF*--AjwbcFk z;8J1X8C~i!8ZRzR;u}q?@T7nbJ`@TGAvrf;cO$WD8a+Ucp4a0|`4eOkY9$P;#f!B{ zY*%OPD+&JlXNuBmGF8bXGhWn$UDKF93wA@EPINvI`ncS5>^u?$uK&gHsUt4&|pH^n; zrp3`~rM9$HPMm{NOKR&~CX!?1xzF)XlGq#pRX-&I6)z)y_$@@pS`uSZzo5AI!d#=AqD_ofQa(8y zpu*HhyU>S+pST0sVZ5D5md0wwBIl~p?>K6Wj-Yu=R$>}Rtxa+5#BX5{AhG=2d=*3lgG|x9Fj|+}D<|w%& zs{az@F_7GxZ|?12#fWS3MG97)?*DFE2|%l>_j9fq8x}0&)(+aOoq|=cm%vJDFc-f) zLxk3Z(37Z?tJKPH=}mp+oS|~H9d;gCdG3#G8?4)(o`Hin>Q~R<&6j5$m6xC4zhp3O z-4gs91sMG;k-(sCh`83_Gf*ZGPir!#Y8fX10b=5}y*Bm^1w`1dW9t}p^fHb>ADXk+ zKcf=g5A@7D89*MDL6Bj%dP2$ezC_IS+N2}(HN=$s!_f{90e-DA2IOY|a1tQYR>t?e zf(b#--U=dnG*2~X8vt6-+Pj_pY*gmQ0XSNgJE_tN3#2*CT~)4}h<}d|jb;E1(6d(T z@r}hP3>qF6;j+)Z(O$Z$jy@7i>W_T#j4x9C!ap8Nz#bb=ODV9;JJA}#>aE#s=}WnS z6?A2vG+X9Yva?*GfI$?+%8DbMN~M9z!RSD-;+mZDbWT#<@el9e{M1FaWfMwSI7HR1 z#HfCQ>i1A$XGKX~c|}(CDc5}d5^3oR4ljS6wnO6oSgi*aiyVGQA@x4T)4qZH#~yu@ zv~WAVIeNF7GN|Pu-$fYI#M;EE_X*0fv#HO;tIcordBI*h>*?{c7ac9CEaQov#i{J6 z!JK;9iEM)W;d0V0R+izd%>3o$!TBTKqGKrmquaMS6kdGNkfU$d#PF-`j>HyvKR_?_ z-z(0eZ5!70%}4v#R};olmvNb4rN=t;B00pOB~vp>*2X+uTev6`G;mDa=7U;K{wDu? zXiZxDRaUp=zB$aE^tbh^EM|1xZaiF&`u4n$-ai+O#q~_NNqg<3DqQn=lHubeZu6?? z>w8n4=<yg|1^(3oGv~_XmGw-v>KwFl=;6i3Gl7qcDZR`FfA$Jq9KX^~SLkpxcI`0pEj;@kjO2%l)sT!= zl_HtfOBSgWDOX*}D6OH5&y#4Hm(0Onb9zDRgM`p|(Na`k2i=DlqdGL5;01|b#8w-d zuMP&wG&EUb$-%-`JZ!P&F@_JlN8i#b7L%IS`IE7fIpvM$v<>;xO~o%|)AtjT8hlE#2ne~q#5R>Tdz_v{5%wmmn5KLhF~jYAgp*^@@3D4O1i6Iy ze#Jt#ECl=;ErQU2wwB+bzu(Iii+-i}#k{fQ(EmG_7Ld}d5j?0Oxu&h#zO-q* zYf?$aP$SWca&sdJmonH0t3|8NM4iDI&5&KQd%Gfx7pZE|)j8Ug*#s+*pI{w8=@w*N z)AxUmGB)4+SIDzv1iVGXe}Klx8{a#hW^c<8w(&y`6Z^6;`iPX%21=)3VQnkC14~^M z;JyHH0NLr-bE;XOT{QnV z{Lp2G@jb~hCZi%4pSJ=kFhoM2-1+|4UHxsvxsqF~^(}pVaN^ly(CQ;$w^GPn(XPQj z`z5ULXyJnCsPe6iKEL`+U@6w=Z6#~&3@O0-c9Cz}C$jf~qXHw-BiaqO(QG^2T{o7C ziIu4m+LA74m?FB~2P+92^92NfduE7-54m1Gw}K`k8b7O{UTHE-uhD&Z@%UCpx%<$} zss`KdoU1W7l4iwhQN~g^Wt~w;g2A8=71Ivv8@V4Q-}QYg>l*$$`}B$?Tea}DySnz| zn+M>J?zCvLoXDn-35Dx99W<$5&i9p`{6{*jLK~+;vR*WMrV><6CG*(h4-o%$D?gFH z(Dx&y2zcia21_b6|MrJCcUfv+_=xenppMRWxp)P;suTY-i;B9Yoi0r%E5om^x2guM zKd-c|Ml$|GhFSX_E6plTB$*oOH^?PMp{NNfmL|7*4JO|AQ_R_`l}0x~uxFY6k7cDi z`mY0RmvbVHIQ)3UdJXtEFLCmD#dfBf`1+6{__lqy^SBINJMBN^i_T+v-s6+X5sc7w z_~HA6glypXdygTl7Hz3i_l_JY(1TU%;^e&3ANYT|c14`Xc3L?7f=D49XtnKeqMe{h zq{^6CV=o_+H1vg#Q7&b)a6pcFp{gfj0dCnpRi7NITx@+se;Apm8n0z5vJGQkSqBB! zHm`>CZ3ISG*N*hue>q8cvkQR6a*EbFI{$-L-oFv84Tz;#4rA5ALigDww3$7Ri4?C! zWZ#rV)U{e0*08pR&t2@IrO&y-n4Xayl4OlML`QA487C`kPXkf=p+n(e^fr54z<^_Sk_!e_+?34=o=$k93COW$J-*h&X4NF#yQ(saJ{?wu+gz& zn{QhiuP$yz3GNB@nsrKSD7ci}L1~nAH@g-d-lmv3F$?HAn${lC>S#N%rChkoVypF0 zlwaASa%iqmeQFhCM$r?8E-a2xtu{7C;>08%JQj2_q#+n{BF1g*ciZS25R=>m>?Kt4 zhWmt{Fljy=v>m0U?Kg@K*6A!YHoQM75H<{W3wPNUlp<~9qOTW)K#zNeICr98imls& zdx9V>A$@*sC~&2G6fFUiUEpJ;Kjn z!iFb(Pd?4A#>#qdCW`BmOR8X#1wuQEZM+S`<9)d$pZ4V>wXhjqk7vj;*w0(*j^b_> zT08&! zJe3aJLKx{x>sF}>Bl{B{S{YVO92!Alsd?;^eK-c>V`u?-6BCSsnntgL=7(I+<(=|LmEQ z3=58&Z{LCG(P#-T9QyhuANK?O^O5*H{x@c5@l?Ryrc*}TAd#7BRlAP+cU5D}(HgXa z!(O5Mi~+|x-rG!t4)L^%9V({x!rYcPoT{u&Fe~^7z;ZDNwGkP8@9i``-#vyX^k2)^ zDJKtJwEJl8dKS&7|6%Fkoh9xD+1~(!af+do)Hb|^6ltKk@HRu0zigix0&H-Ip1>v< z?*;`vP0Fsirk|+wW;@qDrAXLkqyPDi5_LNNjS~eR{j1$2qsA3zsX6u%maO4$M;&#?VimuKCA>;rDb zyAW`y=QRv&)U{UMWDmw)jlC$`EEPyU=Nkg`x3lv9=QXc=D5g6 z9PLDjqkA*r9}=Ih)^rlKy*34d;i1uj5VeVp(ooy$yl9Ldd0WR+iEwcg1vJ37(6SE| zMI@)Y;TT;lh$itS*8gd#6FzQN#MwM-PYKY3FyeDHFh(e{QxGSxyQy=uaq_U+}Y zw%H)RVA{`)=cRw2%lqP}o+&Hk2?dbiQJOks?v&LsjvVm=<`PD2fO71>(HF8Vsxoy==3P-M8$GCAP0<)q^h?io1p8|30bJ}oQ`jKKdtqix! zd-z6ZBb19S_zi#=*ERx+O~iajFBoLXa=Eju$_wz!(B);TWRe*OL%4M_DvQtCxn}E{i%eL(kMzFHO@f&USIp(ZpB?& z2^XEeeUG+ti^{=y1Ch4`5k4rAw1Sa0uL8VuQIiNCn$u)q} z-rQ56p2W{6Xu^SmSgY>*FF=p(&UI6d)fiXwlj@a%EPOD`PCzZj>?FloGhcsQs20$4 zSGD$9T(<)t&ziHTh3yv~bq=A#&&Ic%4lHvv@ol5P=k$@YOpM{M9cBEVzIN3pkW+ z_vQYBJ%@TDM|(2n)g2R0w}(?|DP1>XSg(7+FEZ~ZJbsajIUgLIw-Npi`YbzNrQL{P zyDlLIHo^bkEVdPl^Qb)o@gTJG=Zq%B>s4rc%-r8xx_duc+T*3DJv25i&;|SGiL|wP z3j{erqhTM~3-FogefD(4pPwo_lsjearO99b$opXAN`U(O7e$D39oK1BDyN#ZK{j)SYVt)v2rfi1_ zAPUtNCCj^Bju?)ysFBB_gne7XK1@eLgW>TL2AoUd7T?aNv>{IrxLp}gc3vTYvu5E9av(HB9~m)#w6sIECafMj^v z!WJyVnSiXl_=DnFXLi!w=TpZqEoo^ zwQQD8v5W}S5rs0I#{|%L>0uyzkukR2K@687HTA!U8JqM^bf)VrLhfoiw8B9?*RN}` z_s^`oroqqgWXZf(zv+lKnYH{`sy;hcPT<_4Ys#U?HhwPoM~6u~k9BnI43F38gouF9 z-*9rY8H@De{j)GwykNy1C-;~Tu-8edvSl&Jw#+;mG+}s;!JRY^*K|A^{5i)>JaURB z{TQlVR0PTtr4h@$cg%8&tF+kidZ-xbHq^F%{5JG8M2I+K`8@UPECZ;uy~*dmXFC<< z%DeH>;@H`$B7ZBYQ}sVrrk}?DNXmA(3|{xt44azUnbDem;15&?vF!)c0=uY7qbqld zkorFxhEH;u+K)R#j2*6sr}0F!Qt)rht#SX6lxsq8$954tRjYW{+1;$!TIm`MQcms! zgBvY3?X8-kwaB~+?{M>H<}t5vtF=jh&>X-SUP!B^%7?3242ke*!*$k!C4bHPc*I(b zXCO&TAe9sU9*Zdchs=Q%Ci$}`P^e`w3lGppt*mvqqliYS>}_A;+9_BAXTvo``3g+O(eQbm7!WkH3x(GbTLTn6WdY(WRxO|9&DyzMW)a^+W?q<&x878XR-w8I81BqsFUQU^e+%%$OWXT;ZVd z4X59LSAl_nDowxWN6z+5|7L-T_QB9}&Bca8Zj5#W(0Bq4&)p?p`!rDWJs{Y8SpM>V zyF12hunu1|c*DQ-Q!awbKm7fiW>Yyw?Kio zDuZOwFjN`zov;JvcR(B(8;iCRNbEY*Up-&&nl!OfzDkUE`TAd4oISMvpDKB&LY?p% zdaH^@A9@8kO!yI67(v9;@GhHaQ2=t@jP?H`m3hnB*AsQ1oXcx$v`*J1*JQ1&2RL@A zrMal3X%>9@DkTuDmP$Kb!j0;E1bMkZ60xo|z`X9;I5Lm=hCC{TNXW|VnVyTaw8c3} z)wg!FF+B5k2{5Tqx?HzZoF=UM;}uB%C(i(uVN9N6Jv=5!&FFza6CepR6(rR-GIZ67 z7@qYZ)J`KLZhs0N{Aaz4J>wHYw~m}oVw4Xn)7$3Pa4BlJpbJ2fKVt((mmG@OAdhc^ z_P?hLKN(DgY;!58ME5xRki-1lz~q zhdp>CQz4Qy=_wQt8~0^Uj$_t?J}YKYxlpzEk%IX|0ab@B9Q;>EqDDY_F&CN5=eHqZ zJlbZ}pUPF@$887=n&Bl}+f++i!gB9r9Q(%ZbQ?E8*kT$>CNynFhF4i5)acyVMwf+Wu- zc=L&4HlTZ~>Z5mUtUk0SB1+1`K$v7YB)KaDV}_9W-)x4~QT7jR4n=8z;8ff}ilx^05YU>GKSOF6@e6l9eCko7X3v z(2=I)`{OX@O?CTC@_&JOF7p2icBY8u?nstaYJUn52dHZf7rE<}>~*XI^w$F$0MR#( z1X85JA@jD0-n(#7UB1bEF?g1^{U{2gg$Y}Yvz6T32$t_rqOpnD7OfBvRf{qbqH2L@ z-qj?N$3*c-Own#~gcM}=whs2G&T)+hU3g_OM!@R9Kne{8d!Mq|Ea9J-@?9|#+e zfO_mD`fb>t@|&o}ju?jMS2Pw;6!|b_SPEqfPZIozgW5=R93CnvoDcmcdr9iVB8~E7 z{WV_lFT$oN&B=1fF0+T-aj$k7P7h+^KOwpnft5-uUx>9fS$1H1 zJZi+6*V&YksCHsMS%d~Bn`L;7V3#QsipH_SZfx=O^zj}1`a&+rpOv@eR)P?l%?%57 z$0V_8o%PS%q0hc@RCf?W-VZ!^O-n8&=O?7mQCM7D7e+>V#;aRbtvM7c+YnjGE% z)yuElA?V-pJ+@lk_6?pK)>@ybo2q+ggx?qqKJviGS~LF%=w3embKH5Qv2!|Mk2@;Y zqnf6H{P~Yx+RJxD0BHf(=%KD5TC1n6{|=SJ6q?U!kx0y>IInLC zyNj7700Tq@O^Z)_XnU$*OfSkCQB-n(8RV6M1qk2qDJ5*c2--h97!N4rrF#t6>|Zj! z5^p)o0f4iCl$7UE>eShF-5voC0al#VJz?s^OLR2+o3I65om4Y|I< z;p(Qoqt80PPp2h2IPTwEn&>hC-cq5*6k!Se_55kp7B5v>m8mJEZ|NdO&Q{;$2N1&6 zfL;?9*O`$qQf4|MYciMiJh)Z=Q{1EHW%8icN!jjNfIXBMx?h3a>H&}cc~`aY`~BwY z`Tt3fEOP(9%417@!6q^O!q%(!vBq+im6 z4s=c6tTXeDet^?PorE><4@W~aY(_0FB8(!EDK8p_X1l(oWw_1oW4ZMIL{frJfaY+C zy$S~aoHdYsLIX%#!xZ?APlO2h1oRrC`RR0tnQ{(}sOFd*s~?SG5(b?DR$P5ZNgbFX zB&!r%Ao8wuC#Bn=r!x6BQPczl@{>WLtF4=p($V61sK}xsbt{ln*v^AJbHfJhM%3%a3_u)vx3# zmm6~F%n^E7R~SJ6ppwYj3QX7rKfNU|S#xVryvy6(AEQQ_zq=z8BR?)eTTp{ITSWfRuhvUl zulxOvi2Xex36l~6V*bVJza)dy9nN7b%NBIF2kzd7txIcB2bJZ_YV%=r&ozvjeg<{d zrDa6tN6Ldi&Q^)$1w%lLkBtk(2(u1c4T+hZ zb#Yl=(ZTq_Lu}rg$c#@An~D^yTE(4_t-U=m|7Bo+au2o*mk2c(sHeqkT7vwX*n4H* z?5#2|>ET`3v>!P7eaYcX(Y)FK6wv+)bh1GC-xSECK=gl)V6rV;qu?v=qjb)r8$>uw z!fndtjmPCSW`_W$&;vL2rzFJVUK)>qxKQN)?+=3rIh>HNdnQ8ZsWjXz;q*h6woC zYAIFT8Sq|s-+D*KN&N?>-~@rtl&u{Z5evT&lGyA}`4)4YP?xf_CU>GouXSZ$rQ|ad-yRz^5C%TP(UyP^I=Js$|FdMjAx_bBlJ+Kb8%Zw~~%qW#MX!_LcJh zK2c6t^)YJ_mz;hi4Lw_`;?llYu7?@1+>Q>G&jn|4#4tmXCEK2tuwprrl7bh5r(9E9 zVa_e0+?o`>nH%)v?j{=c?jz-sm&U&kpeV3<9TAw92#?N>b|p;mL@x3)?^@WdntC0( z9heI%Hmu;PnQEI^K8g-dXYY;q4K{Oi^laslza_V!g`&DxbNF(;;nFm@X#(&C6-Rh12R z-*g$9GeK?5>HX&mWr*>m5AdM2E-Sp^Vq?MkJ*WRf{&->nUdLAPj_Ey`_iJg$NR-$_ zc_yW*$c`L9>Q~HZ`ad_H2V0QiFJJ1Y%2MBTkAR=xfVWLC9yEWa1q&Zw&91BIS^ ziD%!?y)^qOJdHl@&46R()^~A4UqKjoqs=7AfBX5EY8l{ zDd#>wX-MI8*_%YCpAt{-k59Hq}u!2e&%^3nCx=+vG}Z z58S$a?Ad6{J#sN>b_1*^8m2$~HLfuCYZORU0n_M}%EOwh;O%@TFO)o}Jj$ggCY@>@ z9sz{5>vbrVbogH-Lv>?r8~NXZPTTthdH8mI8AV=yMJHZ~mo!($22lhJ4?t0p;L#JR z%U1p{41=L344L2+kHsPnrljkcK(#4l_A`LWE2OssT>q zKCFfQv7wyn4~bE*sa!5HVJ_W~Pt{~iZ%=a}$0Xw-L~}v}_zRktF1eZ_S$!yD0+CF(JFU}Y;uZglyi%M7nifQHT%F=W%K(~9i#h)uJ-a9ztzc)3zaXvg@E1z^BbfV?dMPnF0*S+>P|h=eYS81F*7G zLj$M77t5y}4s%exiI{(#CM|vVaddj$;e1sN{ zRS^7Uy9INfBvqwTs0K3Rd*UA*UJQD;^xB!@;b8SNpA}3VeS&^dcrh}fh$*K3%Wui? zhr}+;Fi@xJ9JAfq?r_I+FsQbcb+IOkxAF|xIgBsQ-)SYl(_6t{e| z%cxKJ>qEi-`dQ-|5~A1r<~Vd%V&11^Q~$}?zf3+MhP1<&SS3=315ljS^0?L1jc#K1 zI+d%@LqC?XBO1+A>C~EEd+zTKImOLh_Yi_2$yV!zsc)%DRP|25SfogatN)Lvw~VT? zYumO3M7mR2LOMjcQ(B}uq`Nz%OF%$CT0mO5Te`bhba!`tlk0xo@%`}c8e`!+&vnc_ zwxg$k55Blz_Q@u_ktkwQ+gL{U6BvbZ*Iv@tiBT^~yUKWkhV{0~oXU5Ad(z*EvivzK<70x&gF(p zRg@9RX;#kwkH4~EpG9L9dMA!`eC~1ZvjNaju88)3{MU&ykSZv%juxVNP z?BC>^dXLCMlfOeNaN6F^`nD|2w$-!$;fHY;$iXn_85-yGo;lpxQa90tm7PI=^t`>*;9pUT)2KK zT$v|dkttqPMT_1pFy`8No9Il&85c9Y^2jO@(SJR&_uQ!cH8`X_WeY)HL(Zz`8`#K$ z9ZQK@8uM8vPg&Msvpw&dy!9<{a4_jwZ+Ypb8E>tY^pTlRu_mL+wJ4Z`O_mQhCLXzt z7>kGFzf!+vnj?ng6zljmuFe@QUwQciU-TQlf1mMb=6YKsJxwON@T>$Dv5@Zk->uZk z6P51vfIqe~yWmGHzlJ=jxP@jD0^Y`b-FAw%2QyDP$*j^&!Bk?ZI za28KXVg(*%%gTd}0c9VBWC=8V83iyPi9&9iQHLz9?ilLYzBUIpEURtk#kqZJmpRT~ z-}4aR0w`|qjgt3MN%)>>#{yZQNaOW+fP=^Ar0|J*i6-~+q9&k{;j zcaWsj7{{e*ysH<_K&xFA_hJZV-VmQs20dq5wRZr_LTLd7X zi$kzg#%v>xb7k)O+7i@oEaYZ81U9+%yR9_Lg2REic+^j3n;sHTRvNg3>ooIYrdr1aeq{q|d6ZJ$S-O6I>?Y#;wMqA$@$64u zoQcip-BpHod%frbyWNL>_%Pow$!l_cZO8c&trJP4RT@df7)7y3X|mD8W~o zMWZFCaWB`e8^0*Oov5NoB>bZ$jV)`>ett-h~YeT^V9 zR8r(b+#)nyzcd*GvUYavhGDVBc*Xhv(qP97Urwoai;jU|M<`WtgC(XHt4fo-BB|() z8dKcJV%AjQDi?0U5jC!0*J!Wk>j11qpAkR5Z(sb-{~a$k8@Ju42ZHCiUfa}!V<^4| zj*xVAKp<^sX{C6^7Y4#Xn~1sa{BL=|QI=7t(i}8?Qg?TUuBl0)hYh1iR$sDeJJ}(p z?p>6+{P%c=K0i%K+y#Rh`AxnQUHw-+_j3O~Lc%u5Z}-LjGZbH`4j64l5>o0m{ToNZ zn-S+&oM|R8O(S<6s5axp&b3``+JQoA8H0M&A3>Yk70Frag6H{msgEY4FBT}#wr520 zTzZi*77;NGGW&geP`D+G<#vZx*Q7jbLRM`4;8o2^gh>}j^ha;a=Zmtt=*ErL^! zxB>N9rR~sl>~F0kb%jVEqi-j*Q|pO@mk6wgZ!d5Voo+iDIFy^cWyUOiVH2cy#smD~ zNYE;~UA;4#8l)@V3}A4sH}eXiHHZ31(+xXj9CFE#xI>x|CIDhE-^tS} zK&f8(GIbpiFDSwZ$0(!P$4YH;sYqLwM-jdLtvqNro+XYIhs$wj-PYFjZ)l~E2A{IQ z{GX-*4svwV(fHURLBkksvkC|rM`h;AQ$Pio#E5;xkZ?AePF|@(;y|n>>O130@`%M9 zx^x@gAL3L1j3QWn=G8ssFl385S`xdATx2Xom|G&n<>W zWxPulpsK^0F&Im0V1-6xv_B~M31XP8>g z>w5%^1TObAWRelr^PrJOg82S!w;mz8)Udv5jEIbR6)&mxNW|Rb4N}cA1#e?1t#@$h zh(Q2Ne{^W>qv4+ks)ShBaJ3q|F1Deel~MOMA;YDDrjYlse-6xB$9NgK_umgqo6J}O zz?K(-KMVttQIg){KJNK>QdCW*gLzo3?(>i{6mMd4+reO^Eb+V^RKv3Gy$>V7>1iic zkK0+8VQQ-{v<}`qM6bam;&zu_vSM&IWJ#i6RN&3DGs8+a%d$bfRb( zMmwuXlRCFa>_Oy)Qm)Ly+e(zTf_uo%JyqS`S z+o?T3e^aEC0Jq5r5@p;uUk2_pa_+RXlgBut#Iu*kh8zlrQzVH+_W7f7cQi6a=uH_hO>P9kq9!h`aUDQvu_Og@^}G?XPMMvz zQRr8tSyW*6KH8la)U%d=hszQm@AwLQ%ffjV5>-T%ioS<*0~y!$MPXQH&eNc#KU z708N^wrY;D9fSt%`$<|WNSg)@r8T6R!VFPOa)Xy5ByndQO|G)j#iG_4vUu^}$yW*#P6!(1G`5yTm zdpn|#+_|jz{BbLGgnSUk#^g)fOADBRD$veX=G}Wo=Lo)XlY37M_qRl- z?y_>)7>e3GtHHSLKjN|6v4a?<#AgH+Ind0W%OUELO}eFzc)jcx%ej57^MnhjTy8PE z?_#sgQXqXBLyP80Jg%%_;>IP$vLYOtsrJ<^rvJW}M^ zK5=J`VrQOY@{i1{kKGO*yQNZR@C~0DiXIw;d3I7it;oOP@;Vc4dO|NYX++P_r8k7s zocQFv+yxv<|JNkiJ?9XKH72Ki9|~y6zkeoz}<=`>>XyIBs7Zz=nP{?pq(v?-x zwOamJ2Snds5%J)~OM7^0TMcrXtp5}aSfUe$twg(xp`buq^3@2iRl|)E9A=3d z;Mm$!APxFZLnrVqix;EsnsNI1i8gkzdt6*_NNU$74SVVy)~*!d)3Wl<3eROhe^S{< z+#*6h{Cm?KUMTFZ$@yV8_v(yPN~xmf8Xf$7@>~X};WslSX^%yBf;kQ42FYa2(ooaoMTS19MDgA@S4!Xyl<_9pfaO?UI z5yCg>M%)8K*+x$vDBA*lRje3R8^ANUu)HSaof>M*+x@lhhmn|+KTL(XalA++EjktU~69NGZjo3 z_pR;9!Aj>-LmD>cmD@J~0PpivK(A}tQQ@flDw~FN-4Fv>m=knYg1Y!*WDZ+->+j3q zf&FDEwZm@;o&&zEJY8D_hN(LDN+bjU&);!o6QH!Y01RJsRhVekZ=i4o?$6ufLCc#l z*AFboHRpAH3^Je=J&Yw!^b#&McA{J;?h<54a=Kp-WEsch(K&Ll74NB`RVjS^*u3xk zQY{j&mH1z&_^v7P6s3pj3Ps-WfG|B*qcGNMlQj&Fsp27ro6l4_2=vKnb#TQb z;tD<^3!VMUIVf+({6)O1NK#cyO%v$|VK#>((7LS%p^<1fL=(5qygVQ%3!jIL?4q$* z=bjtfLPKfZWg+v%X|GTf{&b5U`M8<7!IBrlyK_#7fV*wn#=j{>IzZWW-bl#5Vyw_0 z`%$kaFXW~_L@-dpT0t_gm$Kq7gAppW{ZcQsFfMh&*0~CsTqYIEW!qvlbdufdfY3tp z>NxN@S?4edl*6=Y6|oVU<=pEC<*-`QP*L90m81EM?vK4Cj#y!3>)+%#N767cah12r zpH4N<^E7Amh3Do!@B+0uw2x*yFQapQjz&F2tGO(NJ0hR->4`a73)(i0f#9(c_SLSJG22&rmJFU_&(0-6%@DWpxjCA;K_yV(3;WG3cPanKp(~Bk4}M!xHpsU=tg!ZdrJdrTsggL0I3jjsEkO5q7~o_8RLgzwuui*H zcxMNHNHJcsMyUA920$4XeaF@U(+XEXqSLv>YhR{2?>f-TGpCa%shCLh(zIR?xc zqU~YBAcdbcevB&R3Z-qWONrNBjnFN+&O!;C)g5~RED^_MFAK>T3M?e~72kH?w z7cPRgv8#y{2)^GdUkxPH@XWEcbl+#$`N3Mv&-rilwe;h@&|PGz=smQ3>mgHe)PQx^R%dbqA{0#(g+!8wO>vop-t zBhDdHr}MG7&;5f>_#cPlkT9MA?NxRQWe^F|UPqxc;)}xL6yPI#dLUfWU5*TWa)HDA zX^cRz(*f_Mu=u8;aAg)%HCw7uJ3F0zoI#b7((rX&Fzw(%3)9e#&i2lr5U5XRXDT(6 zym4TQ$sNqg4@UOVZM7{J(Cx^+L5ja>px%na8?lb88GxeRFa_WGhgPsnAr6Oh(Zbq( zX-YY0tegd^H3j5}X=A9X6%RB=L@r6VJg&7U$p$dj*A@JsIO8n>=H}RDc)_|WX}2Tx zDT}zVv6CpstzwqWUlz8DR}~Aocw;*V&}|6eLEKhMr$x`lzQz`GS2eT-yFc~qri9g- zb-tU`HG?A6nYbUn?0-ocYmxsBL^OJGBu}vkOsSw-Dc+_|2*6tA1tWY$aXf>x_S4X7O0lzv$RnsVZW3@z4#6n2>f!_~r=5TdYyAmSFOT z3T}}DF2~+rm_=p~2#@{Pc4Z)S*lwa$?Ql9`$DQsxcJdix?BC+0u-4c<+StBr$WO$n zb&JMlFD7g`(O6@v31DlPW7AJMQV|sSrj65BGuUb7E;_n@8%sy7(~^t(GAgI5Pnr9U z%YavJR+}xi08vy_7#fN*oLr%(TCy0M7TW^5(a!tmJgoV%Or8vWuyppj5_Fb~QcOg5 zd=kVgbHpyiw4fk{j~|;G^9tdadSQAud2OvfumNNAe1es6Ym0Tz1wE|+2XG&db#lt1 zf2IbYBY3)E!$$KdqbtL7V!nDLA~Wr86U9-+BWf`Mw| z1cVtf%36^YvMZAOmw@UL>i>v3PT%J&&d#=xn_ZoNv@F{b*=Tzu zZ9gAeyMg+NNVcxA*#k|_FkkoB$7s8YK|`@M3h36hM7U3*JsWVOU(W)f^=oCv@odX4 z&WvAFzYijl7<}JQRtO`NnnX_^^d{B9NAnMNh7=neyhJd+V+XD9|HQ<^{IIiAud5D? znoWn7sr4W>i3VX?)x{Xx?@8$ zT_O!t1_@fjT}O0l|BNPm*?`53ko7 zu{x%J4GXDJaE=G9&<$|)#%Pq1Ir$w;Rkn;3iYMghP6YAr$r68GzAR6<)#$b8+)-aD zNoPo8^1TC$Q)zT6(#o_-IkMJ|%ZLevikXr@L)%nn0!Oat|L9>+n`AAy{A=YD?me^~ z&a>Q6vhvX0^^|SBYVwzMh*^lYufoOjzH&M?!QQmO-ALS*(+n+^z5<$a- zt%A~it&=6VWZXhy;~Xb;0Co$nVIu15fIDK;5-dIeGAr*)V-}xy%v(YfEaZj{av(Jp zqge3C2Mu~&SYv;TI<~9ppvLmxhWS;{ zTJwI)(#tq{{h!q?Ps&i)g(vvfxKMY3nMdlC+|#m_Qrk3kyJ7oG?t2yX-1KyF?t2E2 zCE@Ma$yE9-o2GAc_PPVBheZoT*ZnGv?|D0eEPmGPQF3^hjN3PW`QbPk=44Uu?40jZ zt);kD?_>a9L+LG-Z>ryUPyO?;7k^F{4meovZ_lVynHJjX4Oeo;a|D7tg|A)I{xmj% zFcn!KFG)8CBc|hwT_GwaYef!xTX1n=J4S-D^|G*IX?56G6EnnGdf*i6E%-#kJP zehR$_K5CA-cd|0&e}kp}U(*S;qxd5iP7mqnJ9?3940O z=7_kIfNCb(}Ae#x`-=8CDk5@$Elm;+HAth0h33eUGHQZV5goVn}(>; z-!y2-eat5%8SZTC9(e2-36uV8gg~((dff;q&qxlZl$uS5RIvrsnfz@43(L^3w5p3b zV2?7+zFhzZPLu6}c_ZX8(1SxhdgV#K*`Yp2l*GVZ&?Yg;81hrvIku0lZxcFd9sW?q zmDvOO?s2g>Bs{Pg85MR+*?p1Nt@ahS0PZf>t;h*}gkIW3;aqLq_WDk2gM+dJt;=1r zX0KJ^rE= zcH)QTP2qce?8S_>ttmjlXcVu8Mg_}5dhzYzC!%*4RF z{2flcuI7WtgjF)3cJL^!ba3vQQRH}smiDzv${}w=#p^789*DSKC6@mO!Gbv)g6gdV z8!6j=qF$`w%q!xtR3Hbn8#MUdbWN9LvvVoGFnM;ML!V*vqn{mbxa;3&5b`@4MC5h% zqADP6o{#$IoJmMf!Cfn#Pphb22%Zh|tFE9Z5x1*eyndL+|Ms#AL<&(LNJd(9R3euJK0pGUkhsfj2TV}5} zts|f_k0!=7=`uZ2WK7f}980O4&hB@zn1=n5o%la=;w@|5FD(r`xQvH?A?`2gm-X{goC-_7PGpIewIF$LB?=rq>eo|4?+7 z76CxBo1|~Hzcp)^j@vyF%Y&%+)R!Io@vlK=^|1PNBJ>Ilhyy+2#ghqHJ&Tj5T<}$D zY@$?^qD@B3v&E$PIqErQ(_2vVw!H)Y-2P)N%7AeGc*I;3QAkqf)uXV7F!g>ziW{^6 zafDxfw1J6jfP2(Ll<=apw-jdJ8k83XX*&Bm1%>%XObPPIA{4qVx*V${%>vhZnPzeq zJ*(+1#8^hKWPC1Ywzru~a}qO*qR#iv6!yJVIFJ+e^9p6&pz+9`gZwd7m$B|9fYZSp zS(;wC>8UNgd1=MjXA5^DqtXELjw87HLe{Ww4vBKeDSFX7yl{q zk%_J)Px@nowx}zo5Lm_4A0g_4(U9U*t}g{_)Az4&ukge6SUYuHOaBZ&x)ra&J&G&O ze^a)d*o8{Y!eN5T9cCC&ZEmeCZ#l6v+MU5s@U&=85hUk>07lp5c<*-M;E-vZ2YcVH z5(V$o);?@RSksT&-ipp$rR=8datgkyov)~*B(rBtC$pla+}=<8+8&RvKHGv%uLVy^ zeY_`{H#xnJ1vk5c66bix zTo!&&fS3jUm+S-{8(qR&`#MsI;EdH|{ngfa;5xqw$b)6m5ZbLtH+QD(m;)U z<9xtQX^V3}>oeLD0kgn8_5QKFCk)@ohT8egeQONXwP5+Su}|KF)#UA>-mPiVL%rbI z>|DqYNqky_zjCxnOSbVA49xROWDP?5SNhr|ImFTCES{o#@=hOVkG!+(vCJ5r&pSE_n%G|ue zy7p^>yb@>hH+Illeusc4X}^dG@S}`{|H?S%lec{37BAB~{To}#lD5qEWA~~N|5xZL zl1B_q63BWoB~ds3>ar&iIsJB$9wOJKG8im#AOu$0E>;T7(ni66vRtrpZvI(<_b7NW z@R3$@A~~j^!XJG3{+;8qD6{jhuLHg(6Dlgl>41=vD`6>eBpA)Z?w_A z?2k9&SEa>att%|pq=}UG11g8*Ol-W!UTqWyC~cz1t>FG#|(jU0m>{D)uP{qxr1RI_zErU5m&6D<<@7lm<+8BK^uuou0uLI;o(^DSc9)vN=T_H!D>B2-a*}lv=j<@*0}3P zjL^G+#Qi}%xdX`8U#WAzG8L8@b}Ak7ZXREmCafe(M-qDk7ngr0JCg$_;d7V+{;j5D zdxi>j()P7Fx!}OfMWmc3gIth4`S55al;$OFu}OqMu9yYWgrohRrl22lGL+(fBQ%|& z#eF+lbI!}ASOCUe%5}v*{?C<@*H<)~Ql!P=?0jk7t;w1XTDZj?5nv((;Ac&2Li2h0 z>r0nV+;Z{mPtdc+25^}>PvKcJX=a?(*%jvx$bCZ?+X5x0Z)V&h>OO`u9X=B*6mpIQ z=z^-}lrh=1` zxbVr)?bcm(CkYu7;$T^mSd&O_gsEVA?qC?G&hMZ84uID&N!#H#Ew1I@a8A9CVV=+} z2R%KNmq37n#zD0l!`5-QP~8@$*F{VR-`&pFD3Z5gOA?fa9oxt2+djL3=UC4>A-`Jf z{q*j7eBlwaQnY12%N%THQaLT-o09BJODRjtTpRB5_=|Z zfopSSKEe5f8kfr*)OZ2JCbjz0kSiu>y1xA#t6J&etn>WxV{J=@Hjfk;(KhwdLaE~2zrZ;hsiFHSZcX+1%A~Y`OV7+PJ7A6p@O--2!KZG03}BN{Q7qN7 zY(&y)mgaA4C48$;(ig5oUOBIGuxc0`)AI9p$FauP7Tso=I9Ne263h*jVNu#V7P_omm$ncBU5`bbGzP?FQ^y zc)jk!#P4d|VF|i=t8HXVrAPq3kYEAKUgEBJ7yta@x?r<5A=iDd*aO7_waJFa^jx5p z7<5J|&DRj>PJ{Ts77XC(gV>BTq}~w10doCwW&r&NK0`U8+8fE+x$U$)%ab8IDiXU{ zK2+?&6|4CunYjDOIl=<&bM1$yANs+puv>NA3d7J~M+sZ49~c$z3Bq&9izB=bci3O} zikkcW85-95oN{!q_F+)TGgQiCKb^}(DJ_pAnGe&|sm}P*^lUh$*!@_D&d?F+PG~S4 ziiP=A$OO|Uy&aSOte0&K@!Yz$NawrNXfZeI{w{2eXn$?j==|xE2oUNSCk%{p0%r{E z9`BC))oSyVlf|-I(h+`WDKK${c6t4oXdIbXAA3t0p^rb`AZpjzI?`+R%W{UZ5y`X9 zN34lG3xgC*&?~fugnyx2rVQ(;l=LRW>wLzWUGM?T*I(XejnjSoR{nfi<~gMFZu)rJ zvh_Y&GPZLv?EE24?~cOfN}@GN*&qSU_p$b59PfD~xc#)2f+@O|5q)|dGMyYyrhO#w z9mM0e2crK=$Mc4o3Y_tK-C?yt|Ks%9Mq9h4X}V~4)b`#te&xT~tY!f#^5JRk`q>hU zEDuUHI@S?UE&4yNeJ*Q1Ii{r14t&@fTpuHh}p+n-PL~4WuA(fhIXlaTy)OR16CeEqZ@~=&a&)!qc$xZvizjP z=lvk!Mh28YgVVe5gyEvuS$=eQ35xdnX?GZs+~rirg$`Wanpj8&O|l5L+B^G?bJaW3 zs!9h!e+!G+ebtO3pz;p2O_@rCUjkrj;uCB@rgSJ7>^G<}gz7nTMTpL`Ld5mN&Z!M> zb6r0Rcg}WuB(cchnKG~*`79zH4+Ggc|mlS zCU(sUMJx9E%DfAzi%gN~oe|4l#$>T7zhpN3c<;?9T>d2|j#XI2PS)`~MGN)sxh}($ z|9AEJl_36J>8pGFzo8Vu3E|+7s|2D+6a#-)k#BB;tsoL}{`Pz1r%~r1tCIe9k%S^G zvEU=HNW7^oe#nK%s;F>q?&CV&*~vQ+?+ccY+%|jr1jarN`2K{k+k0a~thLVcYZoOX7B5F7TAn+I?F|?O7qa_;39( zPKLTb4FX9RXx<___z(5@|4#~*E$bn57kib1%T2xK8IOj;f)8A3%N_uIc@stYU_LBR z)B3AFPvBw(KZ&dRVru3sK7Xe-S~HsX;$7BFdFjn3fyXet)gaU7pEJu16`SJA7ux>5 z4`ZaSSBhFL@43Cs+Ppy*I%e<;I^(IiCiMQ==cea&mGlNeB*JcwZ-n_XDnk7_o_j~92 zO;TZe1Uz|e`Ihb2RmA)NkPmPse+4-mjDGY=zAiGZaI#GDDhxFVZEbU^?~=H&ag}M{ ztE`~)aM~Gt1=`TzSzm_L0Hvvk**=r3PD0X)p?{pwK7RgRLi2u2wyrsgZ_kw*HE?Hv zFAMNwe5=A8Vsb!qvO0D)eE0EcV1d)$vt`fUlc53i3%gAcN05`b{Jkm- z$!}eAP<37U4fm4m`Y@_PkX({!VeN;3U^ma?S!7&osE}eEQ~p90Wy_D>ZwxnVkijDP zK&M&e$$3qNy+|-vb8smjnzds@7?1N7e8zy~@5alTy4r?T8coP9SYkb!(A?6>wr@QH zP@Z{;`QUR{_)riVFA9sf4*j-0n#C&ZSzP1yFg+tP%?zS5vl{(NFP+&aIc<7mA`xL( z#oq4C@pTAazw!GrfxV_c3RN3y1L4XcsNN)+OOe^YtF-bq9^+2*YOG8o zABit&-W6Y}gZoe&5k_Q__{loOJvu7T{bp74zcbGz7^Y=M-VH|FkpaC2N1p>~pJct8 z-HerM-^;w0ne;n}MKoL_2~XekQ`~cJ>C*w4!|o-X+d&N6ZF$BG=fghfGsbF{d)mrX z)kMW!^%eKnx-HVt+~D*&-b*y)+~&X4BIl?guJyNmzL)zC57FLO17U9k9wk141efb` z@5uQLTV>W@y_NWR+S59RCI#qQgUR2c;&FA&|rmdjDh|Irkm zr8)0Y2DU-7Q(wJdLcauEDNEjmH=bXq$EaDc$pL@&5D=5xPbIv5vKoV3PVYp%n`O>e zggIkdZ$ckZ1+PF+cvtHs8uI>h#Oa6o?lOUVi5jCI;cA}W&_KsVm!Ir!&1-$wX*0L#_ z&zx-echXQ*M`9!{(kv^ubm&ZZh>awz{3L0sndrKue#Ub~6~?h?;eJ|QFcv7#(D(X@ zh~Uwq@9i6v*X#wsFzn#|!Qfm`(W_Pb8$jA}s-|V>Mz_JB$({k?q8m8JpaOl=$GSMw z`pEelxSjDVlYW1Ychj-_;QsW~dNXx7Gc0h2^H8aG%hq~1@EmGsD=;Ged``L^=X(R^ z^-$}RR+$&I)RD6!o3p_5*S;Pivbv(qOKZ8+9q(Bq`*MaIOaF(H>VW_B251C#oVTum zS3}AJuut95kC@SX=a(Xhs{zY5u5}kVrnei%zNwpf4{zVB9}3|5KJ1#_LYD72)pb*a zRh(P4vs-VXTzU@Ul?{UN1kMGaZW5o@GR{YQ?-Jd2yAsVf2={%}m|M!1WX`;S(sAuz zAGAUkwMOXU-=TN@y2d=FnL}c43b6Mpu}uka#oZ6uIEw*BP0U&Lv*a=QWd8PY8#zAN!G>^4Ni(yC+*rqJ1a$bFnrx zdu;{N`>vjBkTARyfE z%=4%=!F=++Y}z97X#c;GhnG}-3{u|$DP@5Ezs_YXJYG>=%o`+yG*DHpX>zYO(XRdY z?1EiXpBJhquEGM_a~k$ZVUyomLPZUdwNOYl^Hkfs^mA$(TSWtJ&q!QEb>1IfOK1u! z_Mn~1i1QBnE7fMQt81R-_lu|4%%`;22pN;BYkC(JvU`c%qQ>c9;z=w@>4CYqtg9{B zx8nU3K1HGFB|*Z9x@M)K#Iy=fjYDaqwrI*)_X(qy<(xoZc}JLC*=hi669aUFJ}Qtw zdcXQUm7R^rd-d#Y+v5>w+f>QUDXYhEE|jS*@sIgDawp6m)y1Z^-zk26uSjY?SDMER z|5VqYwLe$2NThZCY=O6J$J}e=sWeG7fSFD4Rpcw0$-w*apN4=$%B|9Q?5coCg%b0BNX2x^FfCI4w?)JB@ z4AvD^p}!i@R0;oWgmi755de^1+o7WZ5%)qrXTfuRY0)iU&>Ala}jr zfWixGdh(8U`2f;3;I&CTh zY&r1>6_A!~R+?1A`Ke;BIHf|=Q{NH)CKiNcAARoyi`MY|?X_A)6AM9yp`h6?ckW%) zy>H-x@Ga>F*{f$H1XK!W^gt1rURoderd|1}!m8L=5%$T@f-SQ-CmdW{8qJOZT+G1+?b+R@R@RLQ7O8`20a?ig9#lK4ZO+QXh}Ts zi3#@vg=Cu~N!(A6^&T&mhx49R)*nu7pD_g=CP}5|O^Eja|7-)LSQPG4Vb01h4do z?KH{%a4p2)Go~GO?XAUOi~1u|oV+vp5Xu-fji~Quzlmh+bmC@cB-1N1g*Pi&^XGGcZ z=`gD6l6tlgK?R&86LiOqxjd_b4q=H<_y+zHd`$v%SqLR=AvFWm)SP-iPwOt4*pH^t zFaQ<0Ot&AZ6O`PGM}~EHz=iu&&(*ptzJym^9*UkvDCCnP>66o2pC@m>*;NC7d{qy^ zh2NMrx@xS$lUQYH6VTXxH{sy4@jDr0$HsBT%|JBa7A!MYdX9ajVzkJf#k!pcZ z4aVtSM!adb{l~8vc7Aq4WAx!Rwjqu01`HNClJygV-_Q0HxzLi=C}j?8vR_TbU8V(s zM6WI`bvsS6y0B#{`IXPE5h%id0{!CC(!}R)YFI(O-s;c4D%D1?kSrgkM zfv)2)=Cr4-gmRSO1>aLs5Wf#LR03z_vNb>-F-oD!KJ-%)<+YofCwigI0dGriE-lE3 zA-q`tyDxGU^l6hoz=*P1abuz0zC;HP(!-5=j)Vgb75pY(@SxmUgl6Nb8%)a%ud&Y%6>1svdufOm25xw_GMPK!rqhGl^VydS{r&E{DObeT156=|mdCymA$i`o5)k+^_e zbW`&YknCE4CLP4*Lu zpd*@zT}N8STS``ZpP+zCKDyR_?VYcS7e4KRT*Q>7$|%jRWz=NzPZ)-TIA&bq>f836{%FU)Z=|&{J#5wh>(ghHetXLRiC>*d;F?(@IAZGYa`m^x zOH83`1FUbm*$89EA4RJ1UCdh;_@pcfL#Tco8ly3`p!*}j%~d$G)0F@vB3_=Gn(ru! zXlSYYQe@cKzvMsq?qi0?3)F4i8)<9>EMIuPdU)#b3D>)u%hh zi{NEp^JXeozTE3))dP|AnksgkJBmTCcNNX^1K%59;nx668NevVJUD#Sd*p@rAn4v! zUd-KOjj%-e)p0~RTEf(c?R!tLQgIFV)-QM{mr}faVG6nH4g>Pq zch-$qlrQvxja9fjw-rCy;q#X)O0QL= z)}iR96SR}nQjg#-qs(UJoU9*baN#@3Gf_tNnK)k+=iZ!u{_lwVk9*_2SpH;u-#2u(YIL+7gc77ubp8T9r_=&EGdk0V z%krZN{Y?Go{9y3*rzm7h62#hjfyDqnf5p#MMil@0AD#?oBa&FV8W+rK7lVbBo z{uC*FEwmHa^FSz8s6Hvdw%5VJCObi%SbFwsdpx|JU3l~y-AWBHs<0LMR>u5wS)2n3 zR!kTcr?{pjU&V4NL$zwJR-k4zmg|{F@aN^4GqW%PEr3$fn))KhH6leE@zqcm*D^?okoS>Be(;|e=^wDR#j zMernQ8;wUffnDz>q(tZbTQtHe|FGBZzH#Kx*tX(6K52ib*dy~{UW96z-%F}x*B^`MeOdU!w@RwBY*q3gR8>d$eZA7)St9YC&^XmSn zcfIfGwTMvk`JCC)IZ^P1bfqXqiRZni4(5fjIak{zXJkw`T72Qnmx37%Rjr?~Jd|`y z1-DF{p`mu-J>mnnc!wXuX6Ktn<1Qt>-qVhz&w&Tw`TM- z9`!4?pzf48Oim#G7;<`T_ll4j! zRy8zJ(;Peh+6)et(n{~{y4M>jkBs6IrfFztxBev1@?+5UmD?b+S5>*8kWQ;m1iQ|h zd|jMu@fH#4nN0Xj$gAo56i~IFf>Kyon1u z$0U@^zqZl_6T6UzUrb|}js>Zu7KSIQ`a$-3^!=o=8jaGl$B{>+R#2<&0LnST_4Dm4>q|i2&B&1%AlI0?bT)OUWmS?$qK&pRuO&C*K5L z^2TPVFxtcTaRCY%LnNGT{N~4YQO)WL9I0{nlII{@FPE0AEb_EVI2YpaT%6^dqA9J* z%R)w|)(-L5c~==Eb^nuI0SN7LBlJ{(Zez>By5dZ^DO`?=Y%BvV4k^=A<^f;E27=Jj!5_o455v?lst@Nn02;oGB0IJ2Ddj+BWl^_<&=*Tuw zaM>&7Y=RwLT$pq+zNqH`ECyQX55&rU`3@&gFB6ZcR{6?j;M@uX8x;bF3cHiBv|7e6 zN#0v3re>`fV3QE%l!e0gktcP(XP=%f%IxRAP2~CA7+!N|*+u4M`PVs;aU3(}tBL

+Fc3I%v3W7*PS5~K3N-)}f?pM)9^P3Z!{+(2!$%uGJY{W3H1o+=q zQFN2EZ9Vy2(sZj3RBgAww)5SQ&0<{q&R|IK|7-8PqoT^bZc%J$Lz}ZGp_Kvz1Oy}} zBTz)i85+qTAUT6Mk(vTUvg9Nb8Oa!+1SIEJk~2jrip*Wx-%tDd?j84yd*8T!y!XDx zu;~J-PMx#Q-fPV@=UltCW}cnTGpb`Ar>tHRa-4XFp)g6Z%S33TU=>M6n--|9Wd;37 zebmvd$YXg!gi~GZb}ELIHUIH;(JI5azKX(E(eAnjV%(JQrK?hO4c7WrHg)6a2@#KZ z8zlNDM(wJv(|4M9^B3b2Uu_a=Mof0ruHiz29BB>CDqQeT2_A5t)6dxW&Vg;gGk7T< z*_k@SX?^*$FVDKOvLsQVcz(Rqq_8*NMK+*ZKVQuNKaf^$Rq*>r<^?OcY0kZ)fg#J7 zQIDbsQkTd`oKeP9n}}ZaOYSth#hn3{HI`++vXSM42Q07e4(+aRR2){?AJ_88KCp%u z5`dMN4T+mLn?57&tQMlmCXsw6pJi1pJU&$L5Ve&bDcxJ~=^_Po7e z%!@xXT&>G2mt<8-r{BF=8LMlpeHWnkm&)zG)I9~mIhf}g0~N3VVzJbQ%F2E%A{aI{ zwi{|{PQv%IzO1zliK`6#7X9bJw%pC3q4(#66Vjg@noTqOT%0OJalT-;(C|`PL8hs- zvFu$szEpEs+*Q_X@5)qCK^Xbs^eA`a-vJKMfV$YRjD*q2!9|y;% zV+)xiMI6n~{4?)jyjKO()I!qq2${tTZ+iJiV==-Eno;4ADZ~MvWN!!3>^VN0SLN%T z{_clpPt9|`IXyZ#>EV;`s^tcGLPR=UVmlDJYr>~%*_IoK2BDZkbRIU9gwrzH>&yMM z>#NpUpFS=3{_fKzR=D%NO5D)UaEdRX#Qo4@rmRgwYElyO?Ap4BSH5L>xqjJgqUT~p zTAj|03~@c2%D|9|wRURf%y>_lFnUsG4$Q`UQinoN$3C^!>eGL%44w|wQP=r?BKD*7 zCymfT&#Ih4CN32bCiX-ldxxPW8&xgk)JI#l#Y4UP6$*mY%BOblaazHceqNC;p*=bkFY6 zzIRoNTMAvjd%M+E9$0?aLGpMs?@GF_P>`pB!>Xme%2P40$f9x3HL`gxp6#o@d5Y#t ze2QSi#k=qSD3oNoEUG)$A>FNfqFt4k@@z_*PgPxjYeP#nvuCJd#|QJbEQ^e?o`uQM ztPWvDu)XE_WKue0;8F9?J?Z4*PabYdR200|-oMbyMp^Jt_2ZD4RWUlnK*K3(9W}Km zt5&-4_p6nW$p;C$33;}YdOBVoZsk-*&NKzeY90+x+QLTOmXb{&B|O^-}~W|W!meWSl@P;&dff~$A7hEz*r-J@5UjghhA?Y0qnsi zk$G@@{`~njZ;IACB3`LL8h_>hdd+1~xi?pQFQ1lODl)|K)bEU+EwLy+kyJxJAKXr0 zY>FX3Ftk*(do*PJ(7W;0t!E|uFW0?JOq|`lb#9M4r&v(qU%}z3>1gc$nsCtqjpZBb% zM|ifeUQNX)zD3yC%I@V#+AHPuc2)Kauf0swzdN4_7Td5tdF)tX*AwH=10QQ;5180m zDoc(#hAxS%Zg-V=6uML9GBR`u_jp{o7IEXzQNillXY>+gW@g@;|BdQjUp=MzW$qS} zEr}oL_cSE|T>JO$si3&&tYrPRKrCu6UX=aMr+Q%gLW!Oxw=RP6mr@_M_p=^WJig+0d-;E;If1HZ~;W zWK~s_#qvb6`)q!v!fnA{qj~L)mLE5B*W-C+c6M1_({FbyEK>IzJPZ5J?n#Y{gHP$R zRRoX6yqvWm*<*RKIRpv1# zMJPDEW`z%{ea`C_OzSJ^TSez~WWWR^xY%MEQa1 znh@y&=tS6rg|(j_VNiE;%xhf9&(D{UfuyGwwL&7|{rnDwuEPM|I>DmQmVgb;b0=Gx zt)U0bv)WsuTt3Ze8hWEG$>rtxFJHcFSjfA&hpLj&D%47UWaTJTrToAptE}f#RGc3k z|Lb~gQF~BDd#+C=r=_R2wxz0^qM=Ex@;zhKU+iRQZhoi2d&_ZcG&KF@^TQ1*y@j?K za2h@NR^xAILlTZLN=oDSZ3kwQ=T`fbeDYFKE*&~|RocLF;i>aXS8VLf=LM!O&`taC zb?r`G4fSA0h7J=S7ul^t%Z!zsy)JQkXPdOMT+5FCF(WXeBO}r{0t{hQbu}9+E0&3g zDJ>=Cj;CiS+#WS;?WtS?Ny%sBt3wCing0%YmA?8uK3BVLQc($XOMDPO58l;V2Jiob z!yU)AOyes!)7#TR4ZO9^=s5(j{PfV#%j1t+n4!ixPyO0L-r{P=15sA&FaekZfHPaX} zgXjFioZQ^94$4%!?0A$*bffiADc&K$M}h%=2AC2H1??$jZq~ugChr@)PM(^(BQKxb z=^nvxJJljgyl~KJ2N#0tk>cjI(4S6EKcJ?YS2xc8BA&*M_ByRpQ5Xj$DRqaLaQdTIWn=pmr2O*#a3vpK#3ypcJ3aXw=FL?;J}eHFJ^9NC#fcs(Jlvu1Vi!{8(*tKL z8zP0$@c7QnwIwEO0O6AM<bZK~y6;2tFn@4xFuY~j;-dZd z@pzc-xCB_zOc=}ua?$FLFL|znWCdD?9f>P#BY!-Ygg&%L1)Ef$xMFu=9tTWMgGA;1x4)zs8dAy8ql z*jIspp%{28!4ppg)`e>6diVaiAO#m|p6h~elGysji_4CWjg*v@98L@k4PmfhVPQGi z8Els>&A**-=u;Ck{(3ZY5f(~u8$(8H>~)=jdqM4%YNkn~@#9a}X+!`R%-IeGO%rmb0ba;qOt4om zN?5J1-#H@Md)?yDd49RpBzYAtud+8>2An1RnQ&G&A*XR}NJ9dPyX}i&lNHRg@T(TM zmX?;~1p-4lN+bjB=}B^7$0wS0{XC5aD%E#I#YXV{S-rDx?%N5W`tDc}=b68&?lw2Y z-gJUIGDVQs&L)WC%h%JQy;iimHf9T7`T4cI>@ zysCi#etTXAPX zv;{BFw`c!;L`5}_-);6!R-iKX!tDF!8jb=M{CPoC`!4)f|C42n?zmKyWJ^Fq+U1@_%nFeyfL&bS0~l(K%SQ?-p^*RV zAWa<1d_`CwE$tcx8E#8s`OcSq9+T=?Q{?IWp8(%X&41jhUE-Ya>GNl&dcMw-goH1N2&H5ejh*A;ILjn9QC1v7RaYE-_%D7{1IP z;{4vGbU_kQo&_u+PA`4;Nhb6|$9t{f5u9w~D4nol(~q#ND7tXV>ghirgIX;@@u>K6 z)6Lq3hK{913H;Zu()d|RE35pwRexYxB843Krszya6+7j!YdI!$r7K}V4oPwG@np0t z3kp`A82vg`s-9Q;QGfQ8y5*kc)J?I2 z2fWF)68_ zt2`%18F%u;iQ#;CzyUI{vT9mdsjI85W()>fca4nn3Vhws@M z4Bo4;jn;jhOZDQ@606^Lo0yq-WRTj^LmNa$qA|UI2YzPga$CERxyHpF=J-0zn2k$p zeGuU9;>r9vuasMPylg&qZZokmZbdgL&vbxI&O_D20pl&L}-GT`$2e z@_TN%ePdx77we)n!|TYj57Ap*Hu0-`UjBtV)te8G{NC% zbj6uxJrr$&pBUw+RPJA2np@sB3-^rBJ=vg;I=v|U$=G1#$*FYwN_rr-B+fWnQ~TcV ztc%b3uRBMT%4x6BWI&bJ$u4D6LxP*4Y;2DlJ_8Xh136Em|6LfIjI|NXsVe8`upql8qRo+ukS z_2~fDy{b#QsFEK$B#EIy;z2~IQpaCMc2ViJ9Zo;|0~fCxnL7jzsLXSFMvlkVz2Q(% zR>pa6FU6FEbar&eSbEccAE^nBvK}59`UekKtN#yp;1V~tl8K2)ZGCO-=7ObPB#&=Ckp(QgV%&gp;1?okrJ`&dT^$>}Pdvu4cVR^Q8K0pac{> zuiGLII)(t2#^O*}CNxfqZ5gWa?JtAs2koj3JT)0juqeKt5 zjnkRAd3%?m(ld1S=V?(NW{w<>gf=aUpeN6b_`pxl*%U{58DqoKW_RPDze- zm-+ncP-||Zc=~8vC_4|2G9V!M^p5`I{U?}RXB;LILoH`}^4&**r1A_u?`iMsO!wK@ zE?ygpK;f5K@SpSj-j;pVNG@ydEUmFUKOX<;OO{x2{}T*HhQcf zDjk-UIZVuRV(xhWH#1+JV6m*hG0{`<|F6@1)YP3{Z~Wjv&X3t*_a5Pp^ZfUkfcD4) z7DBM@2%T_37_XTn0NUckT6Qv^M&W7oOx;wp-T(?{X=ych!?$ozw;WidD|7wnBO}IU zF;K;lCz@|UOj#d?HhWplqFcC-&`>my%_(#J+C}z>4dNR!RJQ{x3`2iM^D@q&_A3f* zeIx!kKPGCNv!>GzNSfnw-xfW%7SYa3`g5~J(K}9Jdm)gs<~nw&D?1)#GHijW3QdVz6*GompKr=TaoJRaHaw96FcK)1y5LSEpw5&w_k33I`M4 zT5iQ9An>McwUn!2Z*PyOF#>u9@;ab}1Q>WVRaI%+Pv#*ezAxMB*CD<;o;fzNi#E__ zXM^YtRS4ouh?`>q4U4t4GFW9fIlsJ8h!Zdlz_iEOz%DPEXOoLSL|Npq~y90G(8A#-Xn>puX5 zsG%$pp7K9K7mO}GZyMJ_+QeVI#4c$Y=;@^l#p#I`0&(zSc;ArVkmHN^@`P)zJv{NQ zK|J=48rN&Zh-u{sU#+}U?bC+bS13jPLtLF}?*pg9Qd35p^`~E=mpu{;k2-93b)=o$ z)STgVQnI_P!w2bhgN(x}M6(OnH`l>}+g~+iT$7UYSLZeHp-x zyRPI_NQ~;~YQO*fJAJTMK*=A^57G=N&uJ#Lwdy@Tbm&k|j*0Jk^>iLyF9`v}YyRs? zP%p2W+7OneX?=JiSNZA<0J5Drwq=R)^Y;U-t^Xrj0BnCo_x?lKwQpg(Wh+_*_rd`B z^O@A11ko%;_43anQeD$&hUhCV|0B*pjlve?)S=}L;rHaJQ=_?!|0hrcaqqE@^bc4X z#W&u+xvX^&3&6ZpUZ8&@yB~%$(b=xq>jfZhZ4mP0f&Fi_(1Z?AkD=I1P1R?g5XQAhBJ z|6bQSI2SUBXdpoJ%!MK^yyL(hzsApe_vPxdCuXiw9d7-^c>tl)+pQr%Kc-d9c@uGI+~DBXV@rZV;V|0-1gBl+{K^Y}Lg%YVGlK3O87-WB@( zKMPz|B_I#Ee}A~QtB;`~hPuZ&KW@r*h)JoqufkDrf7yocys zAI>MMSM1o#jxUV^4*Zgch)CDXfAlx)-vQxQY|Yx{gSvvG01=nDHsa2<3*zmxKirS~ zWP!L~RwiY0&eAZXSPYvn3%glOUzc(0jcJ^M%D z$_xKn@o1(_p+aI}BD9xpyU$ZA0IE z>q&0=f4s>0?f9Issb7$ubH%!V?dP~FzSG1(*Xlp9g9N|p_JL&8z>iDBoEj2`>$%Sh z+Z?^0rrmOk{_Znq{Hrusw8}1rl-jYT-;=o2mMV=%_kegmVpUMq;0n5$>9-ji}KHGVVGxm+|Yjvb0rDk1$ zw}lU?hU+1v2K$I9u8Xy^;m2#rleGuQqBWF|laWG0nn{C#W4$1f6Sg^Kox`e!UBwth zOQZe$c~*v96>mqs;-)1Mc`ny}rft3t$Gm?8Z>AC~*J@W99YjC&VjZ6I^l8oULBjyS z?ut>$pji7k{5ZBeIYHf3OlMH+R7z)VL4jMOlG5p?Pm2O#%Ll&BQQ*8Y2=p4~+B-L3 zn-89rxcU2?+*hxj<>Onc@SiZJkeZyFwkd%xvMycxFY#BmXCW>uQ3utL7) zPiadHXZ%zeIUMNcr@G4R;0?1sJYaa0Us$+jlrlz9jUsL_Uc7kH?we=t>BVz`PB(zt z($ZqZzIyp`L6hP9`RSIqTm5zfI*_A6JJ$!wJlL6-s@68dD1F0=58=ncxevpKWA>Lf z$4iOqh~4YDQXehWo4Bp$vmU%n#{0O<00DnC8y6RaJz%cC zWEzMI=Trk=<;EIgNclUa)~b&JHtAa0Z)eNgw+PP2NK;Miw7zvohTGEnjd4O;o0^yI z)cN*z9P8h#e6TsJ3PF|%Hc6~{FJ+ukB@##>c-@#@LE!-Xa}(+n@&+kN1Hp+>grF4F z#2Rvb%AJ=h<`G0YM>U4=3c8gE9krA%c)`1`-#I$jrKYPth2K;RPbAFcuy!PFXW54& zZ+TZ4s^#&t)g@-?JN2a7sxcB{l%!~9+qD*C>{Hp>E{w8v;srmQ%AA`TS2hdP+sM-! zWm{nnFwR$b)l<^;I_=Jy@OKy5{&vMddolAayk6R!Fax_U?AY1%?!-)GliJQ*6~kZe zaA}RYf494{p_*!6F_gus9@W;LSgPJGoZ^+Ho@ij_8qT=rbWM#72JCE=TO^}>p6sDC z4SzNhep@oV)QvNV31qdqcQry6aYOxVT)p_IsT+L!9j<|lpOW6by-J?oYtP^`Bc8)5 zySW{RIiiyWoY(8{H%9rhiM?7m-8jA4rNcfMJ>kbIhNP_ou0`=SII^bW@$m5n zjgi9^tO1$*ENtTC!Ln{jgU)K|w2SNkU0o|v{VqumwFV|U#kO9?TNPqu6ecH?)z#Od zWMo%X>7*)lg%&ftwx{^8ZR{v$7oL=|)Rr)Dq?uM$*K*T*y4JfH5Knv{l%qYYS9_Rl zQ<>~^%Dd{=iB<(K9#HLNtH?7x#xZKI*#`0k5~J{f zalJ0ei%qx%x8polbwN(0{U%x0OcfrdFy<#abUak9(7PCy$*c9hX`QuvOIv8P}jSJf`$& zwnIm$CbdCu#wnj|opi3SU|=XKDT$qpwTdYqjpUrRUg-jFL$rE;Df(hJ<58Q6exhwwrp?y#NM|+p7adwpjH(Uw$xLGFTx-_Xihm|baT5^bR_KVXCnSMzDvdjL z_*AO>mT6(Zq36EFc>5TajIxqTqT-VO)=@F3_Wh=OCqMWQQ|p{}IM0~+sykNL-~zrh ztLi5%j>eSalTS;jb~@fpU@rcmRA%vfYK3l*{jjX-hkG}}D}qIat{n1b^Rms*@v*hL zm6XhuV-zk+o8McZQeRN!O)xy)*Bf@!{)^If3^}K>B!+hRq|_~$xVU1t7NwZrVnfQfH5fB3$1ei?t4EXnsqef5--rmkPy2JPB*xS*HcxdU~o*{1OXZr4|zd*X9H z1rO;CrL22KOdUD7dg?h7n{vTJsesA5&sLN)J^gC8%eK2R^@m@~^yvr92GTOHC@{o_ zb9ATmkFIrnRH5bm97uaWXlQ;VdJ)d0#Q3%eyvsSzoWt4D)S%d_7=A(Dq+-~?_+$KB zBNT;d9IAi#wvz0r{Sqg^HY#gs9Kpho!TQDk1uqWaN8lu zODUvD-O_fP!*ni%23PmwxrR|lL_&3QvRT6VvZI*5)jxSeb$@R8^pmbLFPycl^dm2Jj|EnYT4(brG^^6hmiK)@v|s(9Xn6P^A$uFFR0aL|fvL{^5frY_Fh1Eceoza-Qo0_s_-9(uXVog2?Ps zNKKSt@Jg`hFJ3z(1yJ(YVY;*k+w$)5?Iz*N)jM^J6`@E4E?aJqEhd$3EJqMGt24Yi zGxer=3-RkKvq;yWHheYzc1hZ?b!AoYt)0Q3&XG9zD=2#xo6#zhyDEgh)b$LscSZ7^3eg#ebw{Y zr}kg_c_KH??7t=W#PiV=Ha3~UK6_u-$VjQ*zK&ykB0dllD|W2=&`Xv)wPd0Y?QoyhvZH6FVMg$!a1fd%Asn(0z9i*kBXzA-0)>J1rr`F4=1 z+kh~C7Z61KCl$5S|Fo8z318Mm?BIo$)I*aGsRwu3+S(?v3G}US4^y``DC|N)T8KpT zUWy>5fEOd#6F%B~*E{Qr*Y~~SK;JUJf%oGPmGz1JUkV;l8$N(xdeC|T)Nboz=-Z*6 zj|9bnt{wEt`s>KgD*{sTJMtpM-YwdiJ>7dh6gZQAeXW)c%~cjWrZzl(_r*O@t^ftWewv3W$V_Xd5>2m$A13u0T*Tm2K>`e$zKO}Kw`o9%s-{R z;Cb=o&zkC5?~TPHEWXqi6wWo?{y7o8j|8pWe5d)t{ziqd_+I%Cmw=p^ZWyX2KezqY zbiVXazsoSx|E=jXx44XvPIuxZV!69!oqzBlU|9hs8}NB@9cPIgxCEEFZM$2n6Jui#ppZ@R9QWNPXk`G)8`IRaE3f=SSmO0O+BIA-$}Fak=(#tFxdAHNFLmaVl$pEvzB6sz;d zX5bLron`pAv4CCuebY>LZhP#_y;>RSPIG-)V5V$pNt6w=g17ds31$(IXpHt22gx{e z<%sy|yT%ntpF<#V!^Yga358Z2o1)u{QUR(Uhrr0LQ%HDV>s5g96W{2abuI(bQ}`9b zN1%P19)l3obG$bAo?|k5v)8eMR_{Kj;Tl>`S^G*I|qk6a9ftd@*kE_pRH*FmeL(iU;BM_ zw$5EO{~M9#5Cg#(ItdDgI&j}Q8^EOZgZ4JniI0J^hJSkw)24v6EqlS8^Y zT$kgVQA+|=JIAh>zXf*nh&#Q! zU*-tj9ZQhi31ZJ6flSn}#I&8#(2b22^AM)EtHTmqkO;eWPXRuyh zfNmwk(dci0hi#H!XZ879>5>8>Dqs2gzXnf`KUj_WjH)RSRcDPJiS45{0BajG>mfD< z-8WpG)3o|*Uy+KEl9D^jT_>PpOP0exNs9Jd#CG4~kMfu+O3TP-e|3u8*sr8TQX9)})VCrlMVO3Gp)J(~@>O_{$boGpuFtg~%4$={y)yIgvynX8ylB8hb zqQsyI){f*DZ*636lHCAn*CZ(0s_yQ^Ac!R|FFS&2VGgn>3WL!OQ{xbWxGtnh?LwO-wIH~xVEyo%OU}x=18G7-Nh!#W+kGaR z5HNjb~}8BJ^pzz#ATYXaS5 zFye0Zj2AmiJI)o2rzIsx?%sR24fJ$XUETM{{7NR1*FVDcx=X%sm<;WFnej-60AQ*7 zxIzDK0mGJPLD_h;$8rgAO95^Wx@zRPg@c$6SNj(ay7Ob@(y>ZYbiIz&)8^;`#^B9RUjC7<`EE8r|En5!@*_+|KS zDlI+JzCfVb93*gUSZ1(%P_$y@V&y1GSMijucKU1e%0IGSmAO_5a^xqFZq zMoB5wy0?H8tzk9fQZ<n; z!PSO3NCL|rF6L42hC?R_LL(X}c$PL8$}KG|!6^t3!-boT$lZxJfXD(Dy zRlkLB7Y5eJ!bKDYC2^B&slgU7rQhH+vp-4mq^72t!l*PXg1#I9!7=#lTXUEUTLU}b zhrEXg0|ECfz&Vk+GhF)cBXnMb0s9#$4*tO_$BrGVw#*NQSC)h%Cnbfyc(E@uo5tuH z1j~9DmcA7Ob#+rPBi_Y?fgh!pWVc(;DZoX)7-F?Q#-Wa*@I%P>=qP%NvshD*B3Q1z zfjb%oXW{Vqkic0i9K1N+!rc4{#K#6R+P{He4D%qBbxOm=FbhfV-c^p5qqKH{ zj?NnWpRq=CrOSxrswq`+2Z6!o9!6;VDJ;Ig+3@i2Z?Hc6Fb?3-D5h&PHZv;}BZzUHQ%~HaPjN6aY@~QRMj^|Ptdhrs5%n?da;?Cn_E#Bq|zYcxr!a{ zP;r0&_Z#H9ySp0}0sVzTuw|^d2Zx5+xi0`|z%Zu(S}a92Kp3ls&5A%Iu+r`6=;#Pf z$Cvj=^XQd0^Fh?|CXFYC>hmDi?Hb7W79cvy725RsVM2`}jF3~Y&#_g0?6rnIH+X@$ z(PZ_S`~AS_)v~}{yZ68(15<;I6EedG86(HAvNuR)G}y6%UK@w$ zC2(>Jp7?zmrG+KT*#`ynt)(I1;g*;pUE}Zb;95L~9fR{;vm@2n6h?pt;Vp>p5rCQS z`#-%YXvP~zFxHepaMSPgT5gt-#JPdPCX$5&ZAaFMPEPrg{UwDoSN?j?UF4A5NF6(T zF+~=7BN8Y&N=k6TV89POaEuluKE|5OIhTs1Vt<3JDUIs8*>550e+g5a5Bc*lD=Rn5 zd1i6(0q{i6ClC&QZ`*JBs44XE-XrI*lDO_d+ZfrX;YY2!4T7JCJ;!S3T>9YHunPJz z8tnW`bGx-oW~daRhpATpMmV(e7K25}53|(g(74t=-dVAo5BD6H!J8@4c9 zk~kq4Y`t0!@{|cC43Ghs4ZvG8EhqS!d9U~CX9gG*Fi$L`d%O;Jb+CQx=%sCK|-$E%{C!iA&{ z%U>S4Rd~%BmOVTI#t*umdu)WI^&$LOMA-jsc5&G)Ups?iMHY({n)50HZ#%kI;G&$c zbKB#idHM8si~imt^vhjIkT#Kv8=*vl?Zr@*JO-+V3lNi8MMQKOC3ZZ0>rPj|%W>hM zt0G#E_+h;SSKVFcZs^r5G^vA4BPbP};9Bh+;t{khBfo*}TSvHrG$TR)i>N78Y&tx! z?97b9P=*-@eXg)9*)M;qXgyvYK&D+9dPzII%iIg_$2z#GW50a41-Q+LrL1gN%)qFy z7ooA5yV(-}o+%y@gpH`2_wVIkb-}rKh`))Sd3;3t4#-EuVXC8=08-o`SYc{R+#C$R zP1+869d@8`3G95}*`%`Wg%*!Y0DdWeTv1VwFh&lao|a)e9L{i=8Mv?A?T!sDX#!z(ZMy6hgyLE;AsEil6T?62t8gM%eFoFDOg>u@fRX`{QgpZvgNU&>UhF}n| zgW&Z8^Fq>O2Rt+$<5Nx;k5hn=L!g@s5k$*jyurz))uwPd_BlNc14U(Fd-aj;U%dWT zT9Lf1t(L~>*P-ys1Pih}>~Mn@hw`!&Iw`K+|9%YtbY#IrE-o-tkf9+5{7R|NJ~7x~ z+mmO3@QF92gg6PY(VqDrxGD1f`uH0*b4d=e&k`}3li3M#!phPT@KD3B@Z9dBf~3-= z0EGUbsRJ6%n(*R)d)7hR$GAx}?v6bD$m;-O&l_mziYRgz4~IU6w*bI|W0uI!@Fv(R z7`=4`UWo6-%E<8G9ZlI1UFV3Pn+S(ADp?Egy2E&*&CJZcJ_+C0N5(F8e&MI{c zUEO<7dRd|WAgT}QhTjLDc2aS1aTWLOeY8GfOh)0M+4gOeneJAwWe_5Lw%3>eJUUKy z)L+&qnE62Qs$mK}o8E2-Em?z?TlZh)UWWqdES8y#t#(-1D}vve2M`R*zD&C}*b+4(g%N&3r zxZ-d?OMP-t!tJ+i-wuOZ^FgeUFo;T-AY*-xSw6EcJd-3{-9;|VtjZ$ChGq$v9Rfu~ zMFc))s^n+Gxt=qMP(Z^r$IttFL;|=)w{!uMCqa}{t0sSC41~-z|NSH9C^W`7dxv^J zeSva#uOPxZfsIS3_6jlv{9F$>z>KqGhNm@Mg9`y7luruBOMlxJfRezPUo*JbioL3h z;Hi*cj|6&!a_U*40Y;HL9ObmEtSd(O+JRPDBWSt;G69$DH|RVPZ3t8pBZufzzyjrk z)jICdfT}uOfcVUOeC>I*#DP+9l5oz#x4PoWnD-WE4osQHR)S_2#-+)~# zvmw|G)y9~0zz0jjL+)=5^d8ABkB$B4cDH}9RZ)TuCkHUL%*JJNbwLuR1=C!oA39X} z4<8->7G|`#xTsCb^`LUmOyB;}<;z#WiRd7*OTuMNH`lB&dbo!K_|ys$wwKjiwSj z9V~VAAgsz?zy8n-!k9eNi$TWGFf)hG5#aarDB3DG_B;1lGfPMiGq&IqCI(O>=3mHY^`^7DFrE0_b^*&>DC)a(#BZm%za&Sn(NT;Ee=A9+=3{^v3B# z^xnv*>sy5=-i3}85)$$j+91&?z!T)FuS(bsG$4)o{GTLE@8 zQMq&HFSJtRmZf0k<14m%GDx=GOXouyU7&??4cd)HC`&T_++%CwF)niw7cYML79&9f z_|gO%Ql;qj>TrY5NY`4;+c7iw9Y`SdB4&=wx6gz@D^hJn8RM=gi-zLCXXhig0A|Zq z5RUwL|1h1fF*J+F!z3eOiy?=NFVrr0hl-rue}nq`{u{2U%F1^;GWD#I6rv!&KnK?s zt?>^x?xG&14VS658WMo7+LrXp;##A!Wa>evwEZx_&~f2Z0tNC?_@9o@CdJIcLO|1* z8EP%q1O6kT(>MZXu6GFS64VzGWDHF>)>BhceLa_TKQu}6_@3slXNAp&@;HQq zgis7ar9@(%#-sbd5HkXA59g@6f`xZ1wk=hS2Kq4Tz3SWMc&g<(TzNY!;W6*paow7haqBvs03b`BFJhEK!7VuCPc1JWK=>E%grN zP7V>^*uKvv+VspVJQVh$kOw(P9tOSpgI&B117TN8@`>f>K2S3tM1hm8e=30Gx+|QY z@QJ;I=)VN2-$HXoSXY-O3ZaE=K#w;S=-&VMJ4#9SdJF1*+;ga(8iG}#k6Qrz1N;xc zA9Ny)fY=Woy4>t*TNk5uNIP2+g(nPs&v5bMz5%6RRk%`q{E3+R^1R#79Do=B+_y5y zK<^Ncn~e~+{4lwIU@Ce<6vBzXRkGw&KpW6FB@3wOZ^LvF2=zJGctW@mgCKimso5cU zxa+G*3pXr+FV)rIz-|=!VyLJGZXOXc#)QF02Fj8U^=xCOmJ;9ZKAj z^n#;bzI88DF)&yqezuDvHBbrxP1q02M$FE#yWwYK{hYh!Oe-bCslNmFW(&evrTzPW zMF>)PT?H`wuw?q(hUKh8lU`9@c*G(1;0R!J#CrW{TJNa3v`gx-Hg?l8m~k2by!#`LYu%od6Rb?b&VcNgtTrB2?L>KWFPAohhYoF zWayXm;Jr$Bwl`h{1azP{CLb-@Jt~ERTOCyaFYg`ZN9o@Z*b2m_BbWtovXCG6OJzV% zFe9BndMcS2hlaS<7(|740L$hCL%fDkeKjotw4{gmK@`=`X}odVqK*A_=@mbx_zyqK`X zlSvU*-4=~G^h>+C8@ZhohsBErVxT&Y24+PX2l3KTriUQ|YN9jxuCb`k2r;zlkVn$8 zu257CM+rMAgK-T*a`1!CU=kYR@>%o!mqUHF#Bnl?+o(DPTEU>Vy~+-DfS$IeWl2a* zuCvT{&!A8Qhk(VyVPLj-5b}L$mPChBY%MJjQHHVD+1^5(d!STsmd@WO6o(!rT)QRG zO_ z&!#~s=X2BPWj;U#Z_4hYnuG?~fCImQ>>*m<5_0CunT@hQAW$;2a;uG^xU03srKxFW zk%$Nr9=50RK;~G0H48;}D0Ps5nSL7LWI8YxV0^A2W$zZ`12b<~!vSb}Y$&d-mc-Vd zVTD#a*aqP1@FtXw;LBx$PnPzzvfE+d?L_p>w6lP94+hI=@Cu+|CJ?4>Q37-{u+6Qx=f-2z-RdSHofm zjKJ*u-?XohVk;(+pqv9>LqWZnYg zaR=fkxmk+AE?^Jwd>_yRLJH2Pc=@NpyYBVa;eeb2oF6LjvlQqGL3BG%4#>~8R#pb> zCGK>eL2K~RHTpXNL>VMQgOG({VhO{8N)cy$drzU>Y@_E;%lGx{fP4P+h&xj%7u<$m z3;k!kvr;%DsZpROt7sW*jqx7QFG#3(&fuK_1R{O|vH4|l<50%_-4=Q8YV`zcdO@}V zLgkQcj2a)n*X{o8ru8gWSqFry`9AOo&w$oqxe%5Fi(zy%{k#-yR zHqs5YWVlM_AE7k_J!$EX10SBfc=T+t<1UrR(+I0=uM}4N;FT9)yq2CzY<_(5^eIh5 zy(y4{kxq4?kkJtMM%-DhCy0}Xc7`T_LNf_Z2)E3C#$sl^QLG_$B^pJs-7sM+{TUr}oUP}X4e&jofqR2*$_u?8eb|4K|m zgq3MSqy;7nO}5UM1J|f%Nu?k_8TAy}+G4_DHb+=E8-oPze}6y&GB3f*1VCYFP@vgS zsCasrFJJx!q-z*z*D8}&blr2|zWY4+;0+_c?qa9({YQ=np#Hu_>H4}lUPehjC~iRb znQ0;P_Bq1VE>LCe0yat@AFK6*rEqy@fs0J-Gdjw5AZ)3J*%p`GG zMMc=vO^uUW9uP*`C@~BAWKClu#i|eT4fBNyA5j?_D8ByHgciZ1AY&Mi$ri%G!5r9x zCD({>*vt*E>>5-dFic>2DWa2r8WX7wz!wht@#;nswt)b63*E;+io&o|za1NnLq!S9 znZj95;FXdf&_baGCK1^ve9XhIhY3CQk{ zRwP0CLfg`yE-(mx)4(~Xg83Xt%4k^uD9>0T{C@w2g0cP&VHP?@Q?s*`qC{Le00bck z73egW1Lk0bN2gK8!(TqeWDAHJPN>&`1<*@-qU;%H3AF;cK_CAtO3cIA*Q!^x1@2DD zb9#5_K(Up#P{Pw!RPXt79_a66P|+^I>YG;n*eJT>XH!O22X!Ag|G~nrzTBz^d&r?i z0dt7uoQ>8id;(&idli#AbWHs0#9i`%Y=h8;G&tCjX&Dp`){AkYEc*omd_iitYWnSL z;W|jIpqnVbyqqFdRG_Vwpsuxq#SBtC!un9=xqJFtp~|SW`_`6iB!#wrnw*?OUC6NW zO)4a0v|kd?bB_9xb8mAYTensC_&7o55h!LofCiv34@%wy(3CBJJK)?{;O9bcreQc7 zZU^#C&=cGsI(+D7ErV`IJ>dwqoLh~iaHebfI?b5OkN!b3Fkmy0x>#@{gSTF7I_^K z(B;XmeXzgDRm-+ZfLv12(qw?Mbfh=v_uiOo5Lu+vUKe+P#c2tX8v!HWNKE{iK_dsU zjx7op2ZV}F(bLb}+kq)*0aAL}`}eA#ZZ(K5$zkhd^Us_*l?q}Nx=VUv!i289&@Tvp z@sg;hF4_kGB5zxnhYKj{4}wku5fDlOM0MD&<$Ng&}91MUUyE__$s2tP}A&*GiS_T2b*so%zp#jaXfn#K>RmQ2drQ+ z{sr2${H+_LZIj_8 zyM$v|wBH*$%o+E_8}0v7vGSSjN#$g0qR2iv@y+?0ywER)^jKJ(NI7zwh<)BS*TS7N zT4d3lre+E>H{vI5-MaM_av|7h&LSlz41i+=VW5Q$THqZfnl3Em#%z5P!aDAHcy;5VFa

rn-09N&sQ*rWkm*s|fhq9Uge}VM`<4KF!@#`IaF9W~@5`4jZ_zykN6`}G<&r$4wJwb} z3c!V4fi1dtfqQ_HYK1xKP<2YfHR|T(nm7gY!Y~M{VNkOg<#vCArCAT;;4Il@7_vzO zkOl+GKo`U7&|kq-@eTD%6ez#pt_B_>3^osGK6v&@fkwQ9&>o zG7AZHOD}$Ci3HqhF*y#iYoV*LwQr=6Uo1+%GPMzqT;IB2IcaTu*T1$H`mOHcf|kyqw(aYeUa+_nHxF&y>sMRL`(&T|2Lt0U^UU+y_gdGwu4}Ew_gWfC!~`@17#JAD&y}BPV_@LnV_@8( z!N&!!=)dOt0Dg&iDHwR^xY~I6T6nz1P`B`Mb8_`^vbSXNdF|n8@9HAJEyyjv$zo2Q!{huvZ{T+Iu;uxk^=ud%@D%V8S0lXMOfer=;dU}2Zisj;0x{r2cm z{N@l!MH^K)6CICZGs1H$e!Z=Uw-t2bXGz*nEoHHzL^Sq zB+K^yc(Ets8P=Qs+lRp$ww3<(jsGs^|1Qt}gw_8B#edV}e}m%xx1hLu&#qIDV^8Bd z=M8JC=+7RSEH`S}`1WCA4k~j01CILGyAL0*b8>Pp)W=2yV$_AvyOjd?gumfa>gLvD_-{^cuFPme0FS4$Ht zE-dA^zO}Wrl_KfS4{1H2f!8}TKYSQ5KCY{+qjTy#@#btSVEH|3BRC6#X0Oe*3Y978 z^S|V~%?NJrJ0aL4i5pG}y9_-LxVMAiX*j6oZrShBh^+qSWI|aAf=w{dXY($Lf|hpR z=V#_uwRU#|Y={0v(YoLpRyeQ8$;n~j;NZyNMa;U0c&`1%G~XI84*b@?96I}vT7d1z zlZVpMSz?}RyyhKY!6uI%U|pQDOZY@D2rSXra*Fe`2&wr)Lo{CKoI zG&JCJcg_ONnjO@IfV21PND=e28S%J=aozu*#`h$`!Nmoa z>B$oZM%c6eDWwl3?=n&RbBLjEJcf6_{-(3#?&y9C0o$EhR`&54b?Ld5YU^WIv4dFY zi{InToGwsLZ(NSy_&Ge>=h8q4MnJ)zPn^ zp#^!rH}Dp>5ji}Z3RPocI&gr++-L>@ z>q^|QKYzON;-&k0-jlzNkMDC5PRPjkog)|7xEMirw%<)Ep9SCaI{e8T&l_~+_K=zR zeQfONCwY>kbl0{`trPH5ZcOmEjR3sCmDGP0n^claeJsLe)yHPC>{YlUUS-g^$B;OJ zlb@fz623!3C;CZ=F_@wOPCsRPvOS#vF7JC`p;gT^6~8t94Qem+g$j<8lE1$gq~(wR z1T8-{9?2tN;rq}zjfJ-0ROw*x(wF61wISC+#USjSCTdHb&U${N6^WagGO)C?6kQC% z_Cu66bcM7-#lgak3dYj9wp4Z3fBEvIqmEj@Mr{OjdAb*0VBd1s&#_~Ax(9o;prxbJ ztu8Y6%+!=YI6e0G*bD5U;C&ubx|gklgoI6hzo`D~@9%P``;wIOLxIwyr#F_CosA7Y zqdg~wY2%t9J{o2k7;8UPfOC=f_pdbwsa}b_ma(OpmVe=@tLrHSck{+KpVQ2C)CM}~ z(+U6>6_u7EDpAz~+=O&{A9&g}Dua7JQro3XS~w_$q6*Yf@A?fc)SHE(ymPF~?ra@x z_Dj)JR2jGx4R5#3NV{rtas@p9!>lXWf;c&U3m|#S^9a zc;)c^Bo4ioFJI=A4ch38j*f=68*I**B=g%T zs~OVPC=}SZzPUbahffFy3%^VqT zpoBz`GBU6g+NZ^Q_@Kj*z`k$jpc zOG7pcp%;8{{35LRbUsj`l^b0U>Cg#jVK$s9V2gWlxm60mf(Z!=*PB4aj(!UyX{)pX zMC-Q`e4;+4>*VAFb@UnFYPcoU2P(=)g|V8N8WeGFYyN02uoH*!)-Lvq)JS~@rHR+) z!+=(ccGq@*d1{yre}8_auWvnHOW&DMR##Vt?)>=iBYX#XVs#C(9m<$qYBZ{Mx?PJW z`-<~xN2^7Z!FXYI2#v=LD0;OB=(bN_4*idwo+5D0Jl1d?E-vEQ&U(~Scspb0)j|J~ z+pQD-zn_(K!NTP%ynp}R-ghCtpdiY-Rf<7#(e(0oOjE+?G?WKp3&a_s5?uZ!f!2C< zXb2Rx*K(wRQxr)mExJFmJzXPzau2}s&Ti7~eBRQAL;L6iVy<55Jbv!v`seT8x}cyr zH)!e)-ziZS77{8R(~u}Pp`Afq`k(DDnKautUly3OUTl?yJDyA$x#F~qSz1}agGERf zBn^ZF1#d}R5Ad|lR)8fet2W>y(89(g(u$Y4_A5mBSDs8xHY|jcF0ZV>gKu^&=#LKi z7#rY)5-4kZ_}T7N);?_S>S$QMFe|_z8f6xY)XPuQR!!!1KAn$Mw2HpIh#=&~516}J z$M+e0i%y|ywSR@-JDGeV*H$53-VGlp+*ty3Ja#WF)6=3h!1^3G!%4wz8=2A zn&I}8>D`i>=r~BuJNW!)>ejtp2d#I8|C64`UFcrP^73*A(#6hB3(|H`(*N`4h9Ev! zTzz<+`7zd;XnLQNfYl^@T?>m`k0xUk_WZQ;^a)Uwz5_x9!SDuI=smSJAGoI%rlPE@ z#Tasy>)`CHr*b}H;qG1)uo5dW4)AQoLgoe|Bq*q*AB049(BX4)GM}B9x^Q8td-w7k z93A01myl4DD&`YbR#rE9UvCr=#vw~g&HsJO@xB^d?hGJ|cQ3VV5hxG&iF<7a3u9pc z`<-}6(@rnZFpb?gwzcKpz4Vq6cV@rY8zG*tQUTr7ZkY2)zW_Wz4^6cK%8i?}Gd+jI z2($q90nBRbZo3|yW~^)h8KP%mlBumye0b>LjhxWO+dBQ5py{*O%8@?~h!vJMq@={5 zVQ@j|Jkl3RvT?I;gEA|OoX*72nRRKP0d+Em3w@CAlLm*0C*F(Uc=d#jwwpsi&gMV{ z1_$+IP{%qiHQ_A zMUIfx`tHla2CGos9Ems(^5CV4rh+*H*ndag)<~Sh!^6XfEE(MnMF?aco*Ae+yn8|$ z0K5DsFr=j^g-o1jbhl!vM1Y+qmAT3RWtj4;MZVRw)$Yk@>Q|$25D1Cd zZFqDsF)`yH?DM(XuMR);E$E42cD;Lt|GLg_;&^jx0w|Fr?Kbn(F-;lzvsSmuod(~j z(1Yb4;fwG@cAaq`InW15wE3Nq3xWyj)IuNojp|p<+qbrHNg2x8K!VFk0Ho0-q~z8W znRSc2Sc+zx*@2OxzMIl6WG;|jdp=W8U^mxVE9ma~=1B z6|C1J#0&!d{sIYj7G8PwEqrv^R<(b^$o(gM6WcC#p&b}wSLa7?XH|7|Jy~-%M6AfX zR+u<|teGSzsB>7FU6*(-lC-w~L(>i00yNBA7FrGn-!0rL27re?@GH#w0R3N<8H`#i zTwDYsB_!lwc>m_>tAz`PUSD+t27t7RY;z68;A3ZhURPUN3tuB8!`cGSyH)Ax=;+8~ z-~-r19sH%PE`^_F!+e0_i037?yiHA$Jj)^=iWE5{fOq9!b_`2ja%wf4E`-W#9GoV; zC8Wf~mGo`3S(=)|uwYYAQ0RB41JwholfOMLPFw|Z3y}1UKYXaj{g9?*2UZG!>fwfN>J|oQv<` z_3fn9sZ^^tv4XK+xXr{Z+6{e`V$WeI5wf672P060o;-LUhq(nl?9?!Lqt!|8JDZDv zgtcGS&7FMUZdS(J>LTRXcAFiFUkthx5$ZL*#0v+CfF_IDpbHNdo>$k#l%- z1f^3Zd7Kf#uS>fyw?OWExvaGy-~%=01oR^o^1Wpq33@it{ocMT1Vh`gJ z;L{)zBir@@_gX2#`ukPdZmutLUV~HkJzlIM(c)5Pm@4c{vuJcvUJf#ztN|W7XtM(J zPvFSPybs*jp!}sVHzi}xzT6^mbs)JW0O^3?(vI@^2#R5Fyu_|3fCxOV7MsAC6h15E z=g)JCi{Iy~ChtyoB7Xh;Z4JsbTYidwtp?QD-Q7LRHMn{ApA+UamyL!cBqX3k+ej5X zkkp?2?1dQnAU?dNPJvYVR$YA;IydCMo(U@tz?}6M;F5y@T+<8#Xj9kilQ;U)BAWhw z?e3E3T8b6M*-pcPIG0reJhFlu-wo6`3@sCrxlI&|8stLoCk#34Xz6$@Psd4&8Z!;wO`31uk$bF!#-ECt9>V!d)CRG;QQ5`}dpkBO-jomrq6DQY@q3#FF#f}4b z7X#eTvazFW4WrYW`VSvJZXdRx`90Z<>i@8mckkZGcG#npBMcRKLaL2*ygQc;{2&13 zQ?>Tw7#f8M06VeT{$;sGSy1L^l>ys;{P)j77ko@D^)^rSrKK;a$P8TiVz0yfxss?wsTr^lR^ z3JZ1t{(b9dLnNP7uU7!+-}Uu`q$C_K2>s<{T0N%hO*X06Uouct(S92c&IHDn5fNAf z1O#CfIQS@}BfQ=FWwwb}rpC*1LmaZhtStW5DkCsj8XBzNB@ne5hK7cPH|0hRB>Olj zfioky^3PRNw#YDMg=FzNWfCfk_jWgSrD*y=m0kk;jz@ImqrlI>!N>gk)h3}QfIwje z7C?|P&)jF-`;cc!vgLDRR`Go-j#zlt$P*gM>k^Q zZO*5zP*j|2n;f_~xT82?@W3hu2F=D=Y#3crZMd>4SlGYWVC%n1B-q7_7r0QaxQ52a6-O zTD)uY)!Y?w%VjP*-kBtl6ZHMl6pXKmL0Ske^qlP$R#p>T@4sXa;b9$$(J@5WVqe zNP?Z4d)LeCHW|97W*Pe6KbEEaIi4#mEiJZY4zSaPW&6sKO$w=zH|@?WmcBUYPxz)B zJL|o@7j_d7F>_+4Z6&APFq1y8hRSMcf0Oi0bH9Io^Y!cfCr_TRadG9>)(VpS-M5Y2 zNeRLDV73B9nTw|6!7a2o1DMHTQC{3bZtge$l!w0s zhI!GU(|R%^rR^Gee@T_6m7)j+OrLk!F%RUUyc|_pq@01tZ5+5$=htfbkNw1HAnWMJ zAtWRe?uY{JAa*WX&UePvR<5#s%rL^$;aMo|cNr!j&owo$AIG*(+_D)PDj%iB;1@>D z5X~Z#1T^k?@nJ`c|B;r;=Cv=dTQ*w~cBh5p-C&5+gar9)>0pBf7kWS=Y*%_?o#6H5 zb8R<{C%Wwi0F?x+dWk+NG6O3G4^W#Gi!^d^k^^L4;m)H8AZ4UqbN>O7$yGv51v+^M!A%!|=eSLk{|21j< zLw64fh3x-)m+hSaR=z=NfY9pd>fhB>Z@-73Frue7H>7}D%HmSihFVIE9~)jf1BZim zB=OTHGOCe7QeM06nTDMv_%0Ocvp#zr%<<$2FilNne0`gYxuq{Qm^+g1 zxsNJPe*XG(vf^Xk%H{$4N!O|w-fo=4?jjJO`M!Je^tkeLcmogMxEw%U-_z66 z`<*F~Os*+;Ck&X8UjV@^>q7(szD$1SPA72s&VX;`2Ayj;nQ`pcwI$tU2V?{jID+BW zc!z-E+{(<-*fWg0t_`>@ORNw60j@9txAjUVvVKB153O}6?%m_F{`sjRxXMws6gus6 zeerfIe&-1vAKyr_^Fmwe7)k<=@d&IkgQ}+u6@g!5$QmuWaX~eVz%_=OdfuFbpe{CT zWKo}Y-iLHAWUFUOX97)--WGi6lR_eq5m*Mj3J$Ei+=?%9X1wzxool>)2-vOIZF_SS z))z=!P@CtkxjZ{C@%915IDoshzW|&L>|sB^dSLJ`0Z`xN)e}COsnm9WK;CnryU|q* z&%?CPbvx7$*rm70Suon&}cjrTwnlhP2M9wAf)3LC#WUkMw3fHfJ zLc*Yu4)SB_u&Xivex$+FB@GcSz_5FMbL|Ynzf%RU$BuR!&?>sK$E1*FmfjhLRZ?0? zXjo8RUq3hV6uOJ>fnrlJY|VeBhX2q z6>%ZD^uvt|2WJR~E8_^%*A)XzFy|l}+`y6%LzLBE_yK*5g}5`b<1++eltIQ!bKeZH z)E({H997s(993;M`jCc(Cc*^{l&85Cd|?+_;>_y++f={=ps4`t$7#Sy7D8`=nebuL z0il`p@NBPwo!T_#SDg2OOeCr`Tk+Pd>??BW;NNlyQ~uB9 zIb6%lPS@Dt;Yv!-Dxcz!+#n&LqksPVaS3e))&z)c+z#e=$-7=AWx%LB09%K3D}pTq zZ7DAXs)VlgC()lcJ30LYf52Vb$cuLoX-x`USYEa?4cN@j*;@jMg%N}xq4$}xkQ?yo zV=v5z_+|aAt}ZE>A%M*;6_3FWBf2|$+G#CON8@&jw9{0jEbk(ayN)8QIScw`!S|>{ z=aFeUaVaS&vWoN7uLs1Pe4%q!N7*;qRY%@QH%G)TMZ(%a#~^c;_6hBnogi+t^l^a& zqJpEM5i3kn`ux#|%`hM&9W&~og4d3%mOo;0BEdSLynmV}o2jZ2#!H_>-3`#fwGiAAHJqzJ=(|)ze6Sik@yOk+7lpa=pg~*whoQ#?kp}R($gF2w4t=+Z1 z)csspd82ZUQP%0wQ2*FE6Iu#IDT;c-5W~Bzr}G+-h@~v%L{;vlTVZ;oFAo4=@Ig=o z>VU3|5}o@kjCkn_yAeFSkh3K`AkxNGtxk8~$&n=D_+g<}D~#hXSajXO?n%N@P!urV z9~!$fK*#WkF@SlxI2^bop^eVm<L)L)Q;=#G@;Tt3J*{!*MXtu z$aJ(1jxx{e%_tQh2)Y)%n_jpP(CeIG#?Lo~5W~8d(u(FMWM04;S_V>XeOyQLF(2QH zQ_-rbs#y>)l4pyN;pR%OUq6N!dlEz1uf-P$XT49a2Zo19)xsr1uY=I)ReFGt_t@-o z_g1Nf*lMC|)FH^9u4u*(D*SoC;i7fUl3P8+e=;W?=}B04u<$-#d|~L?$?zq1r+km#W&yx;PKBfGc#j{kN?w(cR{V8U9~r7 z*?H(X_TajQjwHGoz5}{MTVsWqg|A`dMwD!LML^*b`t`cIkts+2tW*U!^A-xNH}?l(rtmOCC%tF=Pf!r^Lq_69VF9x@>M^GDyfr| zc$xW%EMQLTR4jpttOuU`Y__$v^));lLR(G>ii-8nHgp>caoS7kTC~0Ggi{2zwr-%W z9dvIga=1YgHwO;dM|VX}0SBLP=3ryfLiaYLho`2dIu;oH7Q;1UL_#w$fiVU6o8zf8 zrZ+}AV1Fsc=Z7-mCaNwos;a8+ z)_7ntL&mJm2YzRW)pXYbl~W9Qb#+jYtDRxXsv@*-{(IeieNhTH4?*I4;NMS_Vj`vGk2?{j{kn}l; z+QTw8LC_NhAV!Mzz!ApLJGv?Mv`!>H@d9*Q;K79{gEsdV85edhg02qwc21@s2d{_y;-gGZ9@$kfhCRGNgJ~#z?a6Km{PQc)pdD^e|0lq#E7f%DeKA;Ms ztBE@3v5cSgn7+|JESKhd7gmA4`WLNz`1n3YMd5-i5kr>+fS7*3AHjCy-bHuctN;dQ zfZp-(*2IUkHJfc8^gzQRXm;6lM&JOe@zxxyz2aM_`mYKq0J4PlITt~au(Gq?hQL(4 zyadrD1kA@QwHys04*3FAe0+q_nD<4M`*w?O`e1KW9|PK$94K#?pV@2!iA(}eK?F@a zfLq+T>9y?9^mAxv4YU;&fuj5izIP!HDFeJpY@Np4G_FgfW6-z*4z4Dz(-d#nOAbKj zbLFEC7b8je15cbl8?{S(2>3*PpqoW4=JCj-A^qo1WfqN$pP(Vt3Ch#_=8Vab1N?M5 zZ4mcUS{hACz5ZCO%j=qO*PRLAKYD;x5WpM8MC~ajVYH|MWxN}l1f$0dHi>8$z%5U- zRQdcl9KOQ>G$g>-6kuo74qOp_#Ysv`>;VwlfhOt2g;^>P(^jB#fNB3JHT4&;P<{YP zsSYNIqJv4rH<;S44pm7cws`^HW#{0?11=*#bQcrg_c>vJXaFqCJeuEGCVJP}DZ+K< zhgrz^ThL%n07f;KgTnHjH$vq2G%Vn+2lV~;!Dl-}2Q;i9D6U`z2q-%+q|gPH;i-lg z?XKAIvuDrt0U12}L22d&I%weZ<$!>F@!|y$t?);59R*WDgiB_Xt&2RN=Y;4%md2Gh z<_8Zjqr2t62BIYw*ys(x50d}T93VUwvv00gnU&&z-Uc%&Pc<}1K>n_PqPjQIw+(zn zmw&wN0Db|1bHI@r!5mf!uLaiT=BA*quqA&gm7pD&zKQoeQ1`cw8@{3uzvud?&K7C? z)8>Eb0GTt8U!wrkfz}0zLyU@+Llq!kT3k6;PTv3d zqrD5N8~Ooe?0}Km+uJK!IbvD052ghEK+M{MjdjqNgr=6zFaP$g-jF@y1eZr~|GuRl z&E{AkDW$33gPXHHnG^529%+y5sy^)(FFJuB219G#fuCM8t>)sw4Sb$eAjgvybN;iE zS910$>~#>1{~rFo*YRdb!kYM>;Xd@2{`b`r=6}6~|ML~#3dubD*A@Ez_(m|c7mn%# z>QYfh2W)ZF|9sg$U(#HpnJs;cfVqM-e8-T_oX z`)Dd)!_I;~eU$&p>8=>`AwT9IO)E?jzFpB*Y}mzFK5G5j0@KCjg@Qm9J*4Z=T~QT# zgH|}E9p75DLCqm^x!^J}orR#Vh878(I=skf?(+793l8m;kfr+P?|z48?zu@3)tLhC z`xLv1b&RHL4CG7uCeFiWX36pu?uedr1X3qj{#a(Wo%~`}?C3z$l9llFNA3!V?c|oC zb_`9I#3UKv3d`n#r+REmQ2_x8`^npeZzS^R!}S8h-nifByqi}`qz-zMi)N4NrN&w)s9Pa zl~~n`euUlmR=%_NKE5Eo#k3)Vk3B8wE(+oNk#}s0V&2J+HZ$Wg{f`(xxT^ zr8u{;zGhQnpAgbCK28DVY`g}5o(JSpWplx3bd*m}aHHY<@iC{03JE3))*jYohjC7h zNfYQ(0BhZ6j-EMYOp6ZxH->}f5!;-x@?%>pGmOr?_aUf5Z-|Aq_Cw$ev&6=#gAp{N z2LmU2uy|tHhFc3oclZ5n-jD9{qAq?^+FM!ddqC-2#|oUAR}U}Ov@4sQH5g}aOH;T` zxZb4xve(@_X11w$Po+aqJ~;Gg)sp<7`=nSW?S=HO->Nw_j^!?MM9;Z6d5oUP>tLI% z+BXb-PZi_6=H*l*d@*|8Znq`gGjJ|Q2gyvL*~brPrCPQ${i>cFZtT~4dRM1#eThU> zUL|+a$#4v|gwM+9lzGf&$Rf|WeVc>34jEi_VL!~Du`9Ufa;_t(!=|kjsRfB#NL9vo zAEj48g9Knfw5h*s&4NZZ13{ndds9WF zm}!Sz26{PNr$_G3s~#1we)*aiF>1Y>93N^m7BjeWB0xp_sIbTVtkO6tae}O>HEp?D zQCsFa>8lqSoV|yu9j1OD)h?yQZa)YJGT5K9k&2U!|mv?H{H&?OZ-c2sk{a|c0N3B z)6=QbYGQKF?-flQu-$dzGPuRHbe*10`&;-oUS`;X$Bx69%tRWjLDx-tAr0^ctat&) zh^eVo<2&(vuz0F#Dh_Uc$^BjE2!!z?4Klj;YsJ_5jR@|>6GLUqg`@SOfTcc03sk_y z9BrI5%|}HP>iRh5Lv9(7V%+xVUSEZs^IJe`M21gO={)eCDd4bg9LUOJ_xyM(X==|N zbR(sfN$^T)%2`OHdrb54A`_c*d%mjGln2ad@ht=$fkBOM&`wK6Ta_6Z8Cj)8WS3#L z@J}N^r%`8YV>xa;WD2Ht$Flviam{Dub*W0F;VMV-7d6yXajHrJ+pCN={;ea+mNTv2 zb^Y2&eG82ZAk-f}@ew&Ehi-aZ`dPHC>6!K$iRAiFhwW{n0%FC~M5xZ9;v#2n8=R#E z-8CWPrTKFPeN6`W!>4Q^zarvFkpy4Y*_*k%F=TfRPZFZhVJ2DKhHKwG*$LTQa=~Tf zPvDA`!wvAYA2H?O%*>8BJP8VH^Go?q$^hltsE_7u&ooQ!`%?Mvqd9|H=j$puNj(`^ zgZe>*0M&4pru&7Mm%=Dazp%7&7fbqy=GA(!YGrnW^?rM-w&VT!!KCKZ7J`1nw*x=P zk2gq}9mDgpvw2B@tHjLpxWO)C?fk&sTfd2n(~*!S4&j)YLz_7d451Tz$-0ZzbFDf> zMi54G{!@*dAo+c{fqKE3@R`Yd+?m?>`z0Ta<5PK=QoFnn#{)3_Gz7SW#E8R=?0Q9`ijyQpkV=EkK3 zub2fx#VHcLrqL*#t^o=PpG9LqZjJPQ()_~e&$gomW1Id*M@Q3@?w*Bkp!RQp?wU3b zdQDp;>GsaV^w!F%s(B^Vm=F=aecfU&<6X^-ByYMpAud13%m(7HkH>-zrSzE$!#u2o zl#k)ZG7aI_N7K#RejQEae0g{^E}ug>4i?=}2GW{0ZL|Up;)w}AV1@4OaQBtkk2`!8 zbU5jt47kB$PjtOKN7=`sV1C-@UUwEjd~ft|Q02Kg4Xv-VEFX&vR$sgrDZ&R8GL=UE z?O}7OHLW2d$4_XA54?7n0H0~a_ zyAY937DNnPIKCAUi8O+}ci5@8tb6C6j=JVo4-{C9$ArUq%^|1B{f)?i&Dp?V`v(KMx@@~G#lQt0ie`N> z_KGT2C|%nW?01`IS2|n~nWh)X(8h-h ztuaOBLq7xs}%yWl9w41V(mHypt*-oi5)xUWPTKvZ(9mlX(=AxTa` zXq@q+th_)m1K$QP$=mwqyzdOIKM>7GSIu4j|3^zF@gLX7Yl)Ok8H$huLQ z&;Aq+&r5|$xHRw_(pTADcHKN)UETl5+-80XZWoZT+4Si296sNTwavn;XxR^&O5aKNBg1oqEg(97*&d*OH>qk{D&5bd>2K?PS=H>OWN zja1&l&wMbIkosm#?tO}O^T~=^1Hz^um$)C^q?v-*-pV3=k1J$PrhI0*B5x?4(QRMA zuIkE?q2Jqq{>K>>&2s}WrGdqu<)3cc&z3sEGG9-!8y8Ph-Ci(P;8fJm{%jnVdi+)F zHxK;W9_f`MoH$We+4{=LYn<#Q_g0^y8QgB_PWrFsZ;#@gSVFb<+9!F45Ps^!ER)=t z<2+NulyPwu^UK3$e_^h6Gk1P&rcb9I#f#H6NM*lWaAj>WkUUi>*TUmwfFRI6X?Jj^xYe@lCe{pKV^`H3Sk(m_4$?v~Lc_C9Eq=CMme zMxQ9K^C&U+TQiaO<)rSHWbQFPd6IU0ZuP3BAg7zJ?<0MGi~mJ0}8uMP(w&8xlfjD1(YQB$l6Ut-lR{L@9IJ#uZ8POx|XRj1rrU z6BEMH%#8dlfZI_P>vSDV%t$%(_yqQPM%{w_8DL)kAY@{F$6 z#(2Xrui%?LI8F#kP5B6^zwXV;Dc8@x)3gK~BemB!xxVL5yq&iGn+nxfn{!UGCN1i) zn`wPOUL(gReEXpf(bIYVli;#fi-9RU4EEitUQ6zQ-Zi|D)Rv7|E3LQ3ZC;b@l`Wqo zB!AAHeCKQJnh{Oxpnp; zynN>M8+85r4il{lOw5-zN>`eV*DJJK3VD<_ZfAPWn&hwEkvyHm$EXnXWiS5K8M;zb z{e;a?mR9`sw+~^|c3G=ol&{D|!CN+GZCq^JYDoaWTcJW7M>y39j5hC;jS>a5eJu{M>pb$ z#5SnDWg2|1KrK8$b9dhFH}L8DfIT||yy_G%eTQ}&vGcj!-N@Z#nk58-K0Wh7AwL|C zIWF@1;@0;b$)ikp9~o4UsBVsKs&rQ~2Wp9#jLc${XI`mjYCID-*$#Safm2tl7-lnz zkQ=D}I_S4KGp>Zo6@hET5SzyHlQ!4zJ<_SWbOujfu&g%a;)UzGZo+45cvV?X6B|Bq zA#GyP%jDu1j74E1H(c~38QQ$16q2S3vgQR+S;nenL=3cPYx%EAts<=igyQzGBrqPs zA5OIi(d3P)K1(DFd_&8nOzt5{H2%^jILF0Kk%D>bV~U^%Zsg}`mRPa3T)IMHzf4}l zwX(Mi?=1|olGBzh)PG3U8y%=%WaB8U|72L>*pbT|uP+a$FePjLE}i;jW(UwmLyz~< z-^?ne?>-N13KwbMSzSQb;+o!AUj6tEhuglSP{_A>0-2Dq(X(OM9lQu<@>P2zbZ_bP z`oxcCD+E?E+O8S|LXJpCKD$_2%tI6>3x;jk`>z_f)9@H7D$N6N)b>#0_N{v7iEI}g z_P5;z(X2f=&3!Am-`s^&*aZhWNM(YC{cTYRKb2`?%Mons2d~Xz8HBSAuNV?r^kGgY4EAE9qpkFq^MM+LBZ)KI|f=hQ+@SKy|MWVcv-VTQX@7Yw-CQ|=h zt>JUi*0ib@o3kvBzTOcO7jI*}mJ~ z+sd-rYi6zco^U%|hl@@qSMj~S%p1z-qUu{*qINQ)Z6>XmQUBia%5MHK?<@7kt`t(y z1FM85^k80_&eWT1H)=$OR&lk^e4&JrOsnTKuJh%*|A_8DOsAh4_vccAsxlrq!UKq> z>w-1^6M31QWj>m!wUl=bbE))((-QH6D+OdmhR<#m+K{bZQ`HMbPg4Vk6rDucDZEa? zbx5fCFJX+aU`KOW;-c~tc? ze-MRX@a^Hd=jxB7q(~Be{j4_o3dSV)sEAvj%l8sr+g?O~Q!q!q6y{#|`Bm?&lX3m~ zm}M2ibi+toGS9)6!cBnIosLHDUl%a5(~GAtLtJ0~$-TEzuo!qPBQNIWz!w=+kCL+f zUe6b8_@%Npl3wKYu8?2SkgH<8-=$Hkh3AoEyi)6?V!7ziW7(Nh6jPM-%?w}i?hUtK87P45!a^I3lrUlx2N-wBJ=w= z{uRv*rx7pamJd2+>e?`JI~UXYwD}1zr>cJ>qih>4XP!fc3#zIT{FNmR{erTO5RmS| z>(yw+_~WZ-1K27oR03HH-TFtcu%co^2h>HfY!zW zGjmm^Q*_9T{iB7d4Qu4F7t=8RLuxDI;W8;I4cR|t8XuXm^rk|AHYAtF%+Lwv$*iP;y{s$NR<7 z2;;shqn|*;gG_O&hc0RzrRG%=;^qMr`EX{5LLz85`5I$_BbCf3AnT)pA4CgpsJPWPVYyD9#fVj7Lq1h- z3X$s-$=oYu?otd^_v?huq)^S?yFmPG3V1wL%l^^6?wgaYUQ`1^A}f2unl{SQ$djBM zsO{s*M^nWmw>`HY)(Y}^>yh~+&K&6jL7lb0&WH|2MSH-ce5(VHLuI@*d@%wVZ85{` zf!t-q5}=1c^~smbh(LJkt~IJw6p}7J_-@8sfRyITz~Sn}EBw4(BAd>L$IYuAo`F^F zc_HR=<|CDcgM!g#Lx;4yOxbmgk$7Df{w985>bL^n24>6at4!~fQN7_kTtXQd=bj&Z zhimDYM-A=Q328IsY8j%b;Qr(cY60oBauJy=H{*s&x5NO9giR`<`@KKv=(rjUA`uga5&{M?%8a$)lKpFa!2-ntOF|GHzR z?lN0J?}*L8(t@1m4;;*{X9!gI~6>F?pyb+Zs9ugPK3~T6r&Q!;Ld>ZqoBh8t) zg#CDZBqc+++S!)YKJH^4XQ_-meA3)?ep+PmTac#JLUL!%=Y!bZayN{xkdK2%qi z3vG2&d4VU{+JS>Gv&#rsebXk0LsKUbps|^8^Imf=t0r$DB=|`t!r_-F)C&B;=#$MR+$*~H)Me$?~sgJ zxOfk|K0cbYS3<#wZr6Y6?5x0L?&d0$``KZhW9*>q*GG8NlZI=@;&At}sd1y0wgCJ{qPtzJ2?u z{l4Z#PMFNdhD=uX)Q6;A-K>|0^H^`erH2HBg{dA*rm>Gkk%0z%o`Ja*jAc^zT6rRf zFYR}t?s=b}MlD|$cvWL!&~Zs!>O4L2<9ka@cgrnWjO9yKi3R@_={ssk1~pui2RGzS z!hKUI=iQgTHy{?@*?HMfi|K!eQhdrZeJukRSPS-2Y(#&idE>@YTD_~=##+V57jUKz zd%;eWwLjlr!<*xO49S0iX_2T?&W(RGt5|b;b&{vlU)NwYV}i@CThjO0GYaq5nRsuw z?nqqTR*$S1607S@^Kj85%nrIB5%!eE?dETpA0Y-e(tV!bApAL?X*HM@mm1ebHab)f z1`XYJ#f2=%geH)pnHOWt;BEnG=$x8WUdZHHM>xu$+B(&xX=*A(W4Kk3{d&`RnOgo9 z=zZ+;#}28jP5ph=Pc&L)+M4yMX00;c949uGxaH;=s+JwXXBtmg*nQ{khgH>NF!A_Ms`C9y?Se)!xqk z9X_JG(U|*>z};!XqV`EMV{M9bkuAIqtGiB(!W*YjqrZIWo&O9=s{f414RY+0wf$O1 z!$Sj)J@BJ*!6iiuUijxS{w(5jG5`Bl+R3moR#B6PE6Xmeb+lzVh#33f{ZF<=albYT z%=N_N`>ZR2UvD6)Ek<7kAY<}FppXz0@!Oul)7327tlQRPPx9Z<)5dx#aF&ZZ@(8Ez z^lV=3=9GMnYAf!cjLxbbH`019AQba1YJ?O=Q0UdWvGa;|96Wj7%!H}S+t}l+(o5c% zz}!uSi*_FS@o)bXbYAOc?mfJoO-do6AwT@nxVrJ;BO(EpYt_k>Mp@Cz`KM>^B*k*v z?+%--78m&o_5y~SgE`G5oT37T?Ct>pnbn4dmlnKse~~KdiR^gpiaye2JS7%-v%7_N zboFPH2c3HDwyq?2$HVMYP4aj|@pCAQ)~|*JqD{stKH9wRd`Ad@zkg~W=mg}bmiSj>Yg%{wjEb(;uP~6?!-MzTGySw{$-O2a7 z$xJfI{JN5voxS&Ytaa>vhx%xLQsjA~iL%gTPxXVX+}Zsa_OSQ_fdJEQRp>cj!HB%+ z#|{z?E8U9Gxd0VkU{kT+v}v)wq7@*&r-@=^_J?Hhiq*6yg#VK$Kz>Vmb$NpwgII<4 z=3}1MZ+}E$vY3!w!W*7befcEr&cOHB4SV@=VY>!CU8z6n0rEo~^~+@{O{WaHmwC0798^we>#aNFTm&j7UDSv)sBq zvr1|W2pL|>iNBmDxNQ%!J6!2MzFTxPX{tqJj?Afgc3Z@H9w(I4hw|=2Vn)PnAuFbfXw!nSe^|BwU z54Uxh^Yq2oIaDosJ>{ZR_G@0$J%KEAQQBwL^Ey`BeCy$D(Qf5Cda4}{ zUt~(yVI2gx<_Pg7RJHl?3qhD-4X(tAWLzQA7N^w+0{Q3|k)ODJwLzjlIdxR+GHOF- z#@yqb*#@%v$s#sdc>dCmDl0w1rdY>25vV8%teIb98?s&{E%lPkt8YH=^=}X%cm3U~ zX+ooA%-D8$ap~K*mzpXr>|HWe(;}wuyC>Cty15=FcN)3F3Tzasl+)>@9l%Wh(s!A0 zwPMUOC|=Nots-q_^{4MI`rRXA)r8|e6w(xW%Sg`M9$UOol$l-_m$N)H&UAtj?ulBg zUYQALc|st2w0~Jch(BeGAMuQA)Q2c#xY9DdA`(^_SdO?62p%8DMt~VDP$Q;VN{Z-s zazl+ZIEqajPGf(bNkhb2&-~eWQVB9)NR~@M3liiNV>9UcBeO7Raqx5$vn#5Rh3HF&kVo=LL z8+z5_y;B?*em`ynQ2|>G?m?P6ab@TI4q`UG^&U0Q-u2DJ?MgpphH-@GEBy=@|3gl{^!3(jnT~H&1O{skUndc z8^@4r7gt*I3hUQ2W^^{Z{zJR(WnZC>qKM!a8M%8-b3}{xizlug~;l4%g!HtLdzj#OF~EY21vN985}{0G0!k5=`_R&_QAsh{Ep{e!ZF`A z_Nm-Y2CZQrt=yYu@g(am`e+r|& zeenO`4$&}jE*iGXc-AXR+4P{pcBh2RB-Z(QUQ`)0Nb~^B1jL4s(Nd3Q2O>I((eUs* zaRR(eTVH$cr$o29VLfLUWm4*pPcZs?p)V&&&DmPd*=gE-p`JbN+{?^1oiPb(Ha-(~ z_6DA-9Lp*cd_S^78S>^jXP76t8dAT26|7QOSG?NYEGz9BJcxK)-+b3GM*2+j z#hKOi=(a&_Z?QmgymKr|J=um}Jb69S)GAgxmLDD2JePe^J7NrPohin`qD-m5$&)8_ z4e|Rg=*~EwkycnuC33|1ohdaATK2~Q>(FvjG7CkkC<5f~B#7so)NPQZ%hJq!7SG*{ zXUfrrvxl%>w1@pwiik*|7Uxrh4VvG(Y|RWY6R5WcYQ=tntfzI|Ye>2ASWaMPwZ5^K zTlCKlni=ClcQMnVKi{jOiR z8zDoGDzMc))SG-xd2lNGu^0^=?7>A6eaQ+LGTa_Gu{nr8=sc;K_$C^05Hk|F(<$3F z(YWy*JcaFM%f&*IQgVD*;rhYPUZ&Bk(zv<{HE?-COTZZC6rY(n@_hIFfW+tFfzQlb z56n-(35Ie4IxH`;hsV$cR0!F2DXg3O8yBa5oZ9la+s7A=O5y9~?qN5p11Kbt_%Jsx z6(W71qVC5RB+%u=RZiH%ZeDC;j{!Y^c*9t?ZN2}!W5h4VI<0Uq(ZxZ{Vb zf>oEbi%*SnQc|IKsU(hxaL3-6($A~i-V%Q zeDvQNGN;|4lv0)%-QFXQrPb;HBav66wu1uQN$(`*(*ra1)ToNoH+r>gg{s24A0-pE z1}~BQ*t_EIk9n8?FgpZub~@o0;a&q5^0}im@-@sMq50LyVlNvmOukJkKb1f+-P#GH~S&0 zZWEs@S&)s#M0}ay1*?Qhd*yYY8rvW$19fJl*i*ACq5Q8dm7Sk_{rlwLUGK$lt!lWjEP;_%YJhM9o!uOZsjz7LCqK8f#Fg zKTz#Fb67XE8NU0E=f>~6FyBzWbz2u3b;hmkU0Aq7szRsTW9Al#2+1U4DYx*8*}bL9 ziP88lkBn?JtavO9 zk%-*>`?0cA_x1fncf$`6OJ}kENPW$k^*?eHNGx*#iAgQHevH=>-4Eh|QpzNOQ|SLq zJ~CL%$666+9-S^=4#RO9LU2sU-n>6QIJWovGHLAY(yF8L@&L2b6(*a8kL8aa4@98F zGJHF#Mw^if=~jkT@10_T%9`4&SKO)S&(@$bGtNP<>%)^yVtUIGR#oN63Js$#laQ{TM`$2b&#$zBt&vPy#NsWa3Hc)q(WAeX~3Myc<%9#qfWa8`RJQ*0LbXu&%*F2TEH zq=K~c1W|0{WnQDEri#h)A3~^=wkDWgXyM{I!-!Driy`qEz_G5okU%u*e&D9EVoW=W zq2E)Gtgy5el^tTY-MerZKHO9p^iOx8hXCXRkU8hndRPdeSVZMw`_2n_#*xk1Y)hvwA-H;Oyu~%3^|EPTgHAQ9dkPXTKR9NiMQfY;%37|2FfQ2}aFS z6Sd2-ASh(RyvcP!32Te37FM1_HOZ?V8cNxxbfKRfZ27x&j>yDTOA$_|&)k5LiXM{P zKQhqb0n^OFAp9nfPni%94P|CKD8D}}!hZTna%5&-I$txqo@pS-u|jRugh)WNu5P6< z%!QJdkZ@Uth#aD$Y%;m8DUz*rbn9;2o6Mo2@v zn#sUEV0_hTT;^w~u=m(r;JbQWgTM9fv3XNV92Kfxx9p9Dx8x*bw{ayhqii+y!8MNW zbc5UFLrm;r9z40>!wlppFt9}N|A2YpkZf&7|JnM}n>CZU9-UrPO%@J%K`o#Nc>RnN!YlB-zd3$UhYK#G>LjAcSNsf+3unI$b(u!ibCkm&ioEO`#%!`!?^h=rUaW||Gv;e=(Y0Rs<{up+Bso<&wwwh%+>JW(g2>$=+)n>! zN=t8`D}azYHnT)$+hIlv$Hu{#eYZIIQ^E5q33cazQ|}n-?|EAD&Gbrx;Lzouc=gWp z#1yC3E8ElRmnvcoOxnN}jx<>O9_Njx`L~mhzCrhj(*2uE;-_cP-{SA_wyV~rX22Fa z&6>6C()S|Uzw@L0L@_H6v?btjBaO|CJI>u`apwLXg$U5i0MwIQRz{WK{q7nGaNQY| zc_^*?|I66aQdN-2WVk{ZN4=w)u01|@6^6IxRPXlR{bPR+Vz+0QLfyHIT1YSB9`j#_ z37s(zR)h=7B^=uu373l&$40H~E!K}x7?w0UA?r!;raJ`%I$Lq+P?*=CSX==w$CjuS z_?uzkqoMHDvAe3~DQ7Okh;{j^K26j~y2;H7eMv!#jB|vHQ$5C%BZ6qYJWjZ%Zoz<( z?7SsbIR!0jaWnaeclh5q74g9$SaZeEE`pyoK*M-P_39>Tg#<`EeZ$p-11DYygtSRv zy(8FG6wat;U)otP_`*i~^NHIwRYCP%H7zdx_^%k~-^`Lgh&|t{j_z$C;;JwU>wf`F z)-4l8l}sTAw?>E@YxcZg$qNdRW^lZLS}avkj_>?xAR;i~&qdxk*6~1v#S*-Ki{f(B zT|MQ!xUX1nOYc_Fri^p4g?Yb2U7iex+OcWSr&>wjy|L1?yTZ|5IpH2_xb9VF+Fhtc zIb45xl1f@m+`zIl=srbcBe0e-j?l&IkTp{uG&7SXLt|Wj|Kq&=7*Z0t36_zG$~J8E z+9Y9T&WMSzEznoSj@X0)=}*?(qBqzqOsI|h6Dwc~w^s>+wkh?4Iv!5K$sG8a3u}A0 z73;DOP(vr_&Kz;9K*9zGtTd^o=J{r8enR#)RvY1XBAO(0KpT^87HQSW^I%;XE|7kz{E*XWGb<@;Ol4R zC^AFa9{fdlWP17sL=plG>M7Wz4aQs(Boeu<;*I&}CvnBi9fGqcXN74FYDY9$*rF;F+0h9t{YS$Wr*R?y(y7YhlAF;g-Q zlH@o@&)|un+p&kGz;07wGLnGDG^!j%MLOISUJoTjxxSZ!mzoWGB;4L_587DQ9#drf zi-upW@s(_UcqJ7qYVWp|Om3g*A-&7ZW+dHv?bV>OP|NBsL)Qy!^1J@7#yRUtQS5aS ztCsZA__PBnkVkNwDre&jPh#+cq{3p*&ONK;tAcMhu?1P%JyqOPaQ6~iq{3no&M^m% zR35rVwJF;MHNkKMxrelqgbO38WBedgr8iwneQHcIsHYSgQNOGjKhZz?0dOSs=Mo`p z*9X9ED#O&|470PHIJXT4tKwkCw1w={dUqS&{h9JVI~Jwezmp1_YjXv1(;Y`V4|`0R zz?yZ7TBd!Xsaj^U;i;O)%UOxF?$XQJey}@a+w=8wMQ@d6zWfHdT-RNhzGD}S?fH-Z zemkVyXpIA#Z4!`LoHw)J{rdI&2W0qKW`Wy_(*|xpak1^tPZX@i*7~!<#tjeP-j?@H z8aZvjjyW?6Pyo|*JQB06IievVBBlZAzyJ6lQs|sKfm6-@+bJ?T-Dx6FyjIVgxf^oG z#s*q>z@$7Or*NCHbpQ1-)emQLG^^rcR7{+VVz9umh}cjBQFQ%@*2%C#a3&P@cv29< z3pNf}Ji7sdQF7;I_#znFq{=gJzaJgD7hBTTG_bTmm-KSqPyZ@%Gz}L!jM5(2dGQrX zP))IO&GPmQnt5hbSZoU}mwxs;<&;G-&W#@0-?G#-J6NIBSZbMzm^0VgCWRMGGc|6o z`!S-rTvU8IK>V5edvTG^tPD(%GkCmz3g1oWz-qcOdtK79*-Pa+pRkXgVU(9`e%sH4 zyqe2Mbw%r+CG{+aEYM8-KfkGK3P)20HGO&;{qd)!MGb-Qjeja9jz!StTAFcYVkU@PC`D(a%ipw??2Qj+TKd9TmbD^`C*^edjXt>iyK`$Hib~CT3>g2z z!WjS|i|<=FYbuF&RaBP&0yi2ChZ&H??_O=@ zoG7OZfSca>`Lkb9{@eN=i_Z7vGTp`<9mP=CoV45Gjq&QpbeuXBhhIpE7w!0-eK@Zy z?nZ@!j2b#UCy$baZYLjh7XEsfNIWecZV!Qj#r%XGCcg#@7i_GW*h*O#+UojQ-PTm(565@! z&u7oJaE^aXG^8914*R9bU~SZ$$6j5Ed3}1quJDq=Eboak(;5t7?HGJrv?HyHyYltq zt__{vzH;+jXY>LY1lrnNC_;*HwP96gz}~@+(3|w5X=ZO^CfUb^(9U;`543$ol@w@% z%J(U6j86)jJnLlU2z`8nky@XGY`q@UVu*O|j4p9Ih_(DekW|Jxh!&0ECr&OVk3Sc6 zTX%1S#CvRPJg$Lh&+BL0Rc2MGOQ2G1J3jT2la&A+YV=;xW!<)|iv-nWN8OX1F|pJxx{sWv`ecp2~9f31YvRK}GI zy?(R=;DK){+tY1nyxZh%x?tvlY&1W@g}rO&Ro~HRyvw7)4oY%rOx@GHNX~n&KbNJI z9(IAf$Q#K=H!l~!fPxM*uwFj${;zXjjdg<$%nbORGlq_jBN6d7X|Y<9^fZUp#=Z4i zUzq=mt}e_iUm)Ngj!1ayCui{9Cs1E*hsh~J&lL79R&#qtPAhDn59H_DuDf=;lcn7$ zhlPeV0g>A$Ktd!gBeM?xuG;`UdGQ2m?te)973CZ_4Wk=Ogji5)CoMVaFGe5~+n(aa zG42f*oUdJ}o_7pmp32cMVo;aw%!sw(VV6qa42U-1nay$_F-Tu(jrAROn2O`*6O@wA zuUoWw*Mm5bY%UAkALcH~wI|xM=Oxr77ZxZ_!&SQ{^8aG3g(>Hwxqy`~?-GphHHSxQ zGFu!^{mMw1&lFgpp$Tez7#K%aKfHBx9?Q{1EwIS8FZh%3EP_iBY~U78Y$Of;p}e`N zB)E#1O=eagW?4IMSDPOIr`s6wb9WmgX&Gc%9lOuf@*UB!XVP|g%8pvHR7ruTRn4~> zGb$jOtAOX^NC|!;X_u(8^AHGqX%UVL>Sul>St-)`_$_Jn)tG1@2ke{+p3grseQ&871kOY75uw5JVeS-;?8w(DCWwpO;lKnqS-r z-4D|EmH-FL4d8mKvEP$0H}_qb`;%O@D2T)Dg%XB&EbF@DEyn^d9+lFtf739>?&)d} z$)#`yPB$=*6He08W%#$o`6Mb9y4hsmFOqgR;?81I`}d_a!BOl_f9OZwtqvUXyq%RV zL+As^On#I)8zKpd7EVrXx)X`$rLjkV_dl<;dWcgP6;?li?Q7lzq@@oaYg6C7zU`1B z>Bo)gS^WP2mm61M5)G?Mg@ zCzD+>(=PpX?KYixdhMOXgeNK63jJ34XgBH@Dlen z9Or*4!vsq<=obTA%bkdtSPc`%K5#tHDQ_TlZ~EfoiSuH<7)IWbi_hV#~Q)ik0% z!@9RD)~boSf(R!hyR(uDyI6MOpdj_Vx3to8o`%hW2{$CTYI^y&Z|7cbhG{^P*rm&I zAeq5;DAn6oX5NtJ$eTDmdPu22SRrBN#=;!-`1neW{)Ob%fp=tSHfrVgZN*m8VW;e- zw!>%XIn05`6d+pW_?*i_t1(sR&RAL>s|RMJ>i}22pTCvsVIPdY!yVjyz_%H9_kfOJ zWPog$_3}-;{1~$w&U&w!+v-;+%BW{n8mog|8r*NBO*Y*f>puEtzA_KxX5pI=>amm* zvfD{hBW#X~$AlkLI!`VL<^4!BxYx@6?B|OQ^xICX>wMEa{c!2wE)ZF_)h_8vI(GaZ z_Qvem8jek+L}*#LSK(Lk%+4ABn4b+_ulA`RPD&=w>&?T5^}`T@5Sf$=7=WI=yPs8L zdfyvWA>w@6@V>xn;(gG1JY{@5(S49onc|VxIhWK=VKS@CnBViov;Gr~pu1@_imiJ& zu>+|n54pQr_ghzGKlL84*l$e=KA0=}UAyV8uuvqo26(TX?Dxlj#NVG0v3b38RjoQ} z>~d{9C+&7TlG|IO*%piY!#qd0GQ4>Z@b)#Kn9Ix*xCzx-W?5;gWyp1Ok^Nv_3Rv5( zC7L!rZMee;Q}zQj0lgdV_pE@o|37o2E8r6t`uD{KUpkok|IW06aod;BQGZq1oem^V zbvCKX-l#<^cV?!-^$icsj6GYF$4&jSpMcYDd_I=cZ>fnLk`Y~wwu}>Qe?QGaw1aZd zu+=B*+jY2c*Z82C`Fs8(?)c(GZHaE*>n~b5f~^aHE)6WBrdCYP#1mD?625gpea7p6 z*ks`E=R^5hUA|UQB}xXAVn8?+fyJ?;GtI+iT5HDjDu%k}sd{xs%Z+t z#T9Iw-0~r*L9~IE!1XV9%=KH+^vlb?0}3LZ2WPj5izwl3a8(2^KAW>15zQoglk9J} ztU(=9m!GwSPv@6gZ3!-qWQTZt+>uQpD0gwEY~;pz^dcMEH*q-$RzYerwWK41 z`pf#=uLjKgm?|4|QA40>Yo>0;l*r<2YBH3eL1X?*7-g&{(ubZhQ$x?xYRl=_ttIU$ zem$#TAeG&dEbL#MAtH-!ZNXqPmRweG;Q_~$nw<=L+ITZjKyI3Cf&5n+P=(?1Zj0fn zDjST1WP>e8m}^7n$%MZxs09@`w3;S=B~?C#Ra3TRD9(T0U|oL|QYaNjyfMe!75=t@ z%W+dl|10BA2&>@xOlgC1N{pGiaK|%?(kCF>!m;r1G|UbOnDrtuDv$cSok-(sRqj%|y@`rtO0VFiecw*VlKbL%!TX zD$4TEVq-wJyT2%ew_G9TKiznO0c-ij1_9Dz=f@2+!^c$=uX;_=LhB&ri-mPyu(q{! zAsVo<0X*>rQ)C$C69e?gu?JDS^PL6_Z+YnI4O!z#Wy^A+m9iW}!d@s;OyHz}}vAc>o|KS~nd4ySnj6;|EzqajnAbYz!Pq(bh9l0|Iu@cbsz zp91~gb|T3uiZLuC=?#$tXX@Gs(<~h4CO6O7D6-B_Ar;q>yow5s)h_6&xJLD)n-12M zkTr2VFYGO+<(O>9n9Eht2*s*eLu#277wb~S5c4TM>c24JS}~_2>EVljs?(PV=%brR zgT)dyiyF=$x9t3jvSq_Nkv7RolC;N>!e)zsUl;!%;3)E>M(XT!qjCZ6yknsPGplU}^< z%zI?=?K0kc8|YT~1uSh76b!sRHFw#CxT}k=P#6_+5P;1oHi3+sdW;4&hNSuWx>UWk z0+cmoO1E?6rYAZH+U^VC0%}kAqdtb*Yo89&bp_{tw5#H4!r!gDE{6CeF}hb>xRnf-B^{pg^Ps$>)Y z(?-#V|3Wi(jvFI+Py=)qji|qHiMooEw{Ca0l{@5Na#f@RcD;+Onz0iHGt&=Xq)eGW z471zHEM*1Kt9tM78)`L^F)?=YIG0VHR)bk>yKW~GOnsZvPCQx$OxXXVq;gxzeAH~< zkJjDHnedz&JY$`wdoc{@}1TBd211o=6&T#;h5OlZeF}`Zc0%`77ig zDG#{_JXo7!$AmG?WPf%-2{x8Hkq{EpXL$=!c|atH#K0pM(HF%Z09r3*f7rSLZ5Z}F z*@ODxRq~I!3Ms7T__I;Rss2`}ULR=51d>8#hkOCk-#NwvgtV>x*;}{9_a%u?RZJqw zGv$#*>(5Wv(oBq#D;~)@XvVH33YAMY)QlkN(gZG9O!bWBVG0DV#bhEEro${~?ciA< z3tE-aY90drV!xXl_xZ{ohw-a&5|`_tjw}f&1j}^<-uEwwI=CL41!Rv8o!yrAMi%F| zmz2~2k{{O(l)J-@cdEvVYB4(7=ytu5%RWdBupOG+kcajqJ zM|7!_HGi;{h8kqg`J612I~O+fqz3#s0hDD5Oz%rjJa>~jKNpE9jGPtBCWvv;VC6lB z5n`Tz*?H2*>Td?pca~;zTbI-jrhX9pB4_*gT?Jgq>XtO;;tY6I%S7MZ!9}*?!c8i5 zDsV_|V9Rdv`rISNRg*-CGuxT8Pu=6i6r0WzhRfV!h04rV8GNRJY&ZX96ov#GiHUEu zKm#}ZeJqfGpXy?q|6{<7u|Ghbw2&DsbNBET*MU&zoq<;0L>AVf21SM{-RMw@&SY6;05=N+T6nUFm6#!{O0`m*xw@&-#w8g~^Vf zzsY#wU@$@H0!?=H6jm^kDH*Ck?NKK9^Vi~bGb?L@_0U99(_3gJUcmgjz2oWg?0Xka zl~y0HFG60vo=|m+^UW%!f}i)$tUkre{3|V+Iq=-`t``vU^xtL|g6yQAVf=b(cYOYg z7HHr~s~ndRVDW{9MC5f?o9vsm8CZ_JQl%SoJEzv=PIq6R$TynlIR6O*9?!RMhwHHP?n5E&LSAb$aqpVV+=kx+=V z^QXL1o-kQ}UyF!ka9>_MGZ+8@!>dy^;9=#L{&ww$>bSItFpY&NboijP=0m4034hF% z?~*1&<7*3g2tkPm4to2hjKXl7XrD&HXo9>z~3ZU~;^!-FN6DF+d0&3#gDDww4%YvBPWmpO+cnWrJ0 z6rM%!5O_dH@#vNlShrE*@UPJwET{I-mtB&J2bGruy?T6jY?FzfYRLCLqY0dL#`y-q zY5{N;{btMGkasd@7x8~Secaxp%MSDkCcfO>jVgN2e2PL{_6jJ*| zAmU{oS_j|R?hrvE7UuK3AJ?lb+j*1cjk1C=bP)b_Y9Pz#W9_2f@iEYm=W*3kTCofY zsfLV*xZF?esMx=q@#MGl=4;LGUqEyXYlt;2z8@=1joBWd3J<#x?s7(de|Klw{<7f( zOYpgI9d4%JX~1ZIJOE4Q@+W~z#womjGmEi;s_G!nZ!-FyJ9EwY01)5q08;pFiq6_T z9b(9yc0Qox_qHt?j|bE@AbSsH<}e~m`a=mu=0e3v^_lnnvS{8_^|ek!u6Z)XPlF47 z`_y!ao6)(MS1cb30^V{0JJh&lvV^!uu3pK7RX&?VuS=*v|8sI6mqGpIeE5kuK`*uH zl*S*;v-cJTz<^#O!HHOL>Ak6rfN5YLqL}luYThV&*@ATBP`|1fT5-l6mtdv0qPK-( zaXv3vFT~K_lW7hJ;!xB~?oJ-Y9v8?OGnQ(HQGorixXwZgV9+cQ$qijM%Zf9s z_B1I=i@($S3S14>DoMBVX!-S8oJf33aI0R<%dD@uW}lu6>H3^(8I<-;>y_Gx8l?(E z)B6Sn?3c|79p=?dsO)FvvwcWKKP~iap$tH%mgDkNgYN3GwZ09z-ws zUSK_0Mt7FaP(W|?hIeE#)88itmBR!{X-PeIahEgDze_F^D$S_DoxZiUP!}7ty?Oi` zOLYK}z-9dVGtA@U*MO@w{!YoJne&fw&UrM+5FUu!sbFI|gX+a9bqr{uT2re#Z&qoD z5}!LCP>Pgs8zGdjASsI^9DPG%cgshc2lI$mr$9-V`YH0uFiS7&XasRyXv*M-j;4(cYLKA)m zKsRdPpKA>mE^t^!EH|?h6qp&_No@MxUD#)CxnVZq`w5g*b&$-2yqYaj-r}=3v_6r^h*X({-j3_?LVM!x2 z$KI3k{IReSjkeLoD|~<67$}-NkYx|bQ$Qvmwika{K!=d{cxN15>d<94$VX|H<~^BT zWsUATdp?0RZ?+><2|RznfGd|}s+P_!WOLH6RAZ1{bY z`5g$AGcq^Oj1NX4AXsMRjxb)U6zf)45BY^20o}M`@5P<~0Hg2V+XBkky%wl1N+@V<;L3}8`Rj#(qn=|QA9qH1}GAhyGbzC7mu3*o22E>WVV3=rD^zOLuT zlPqwvPM-c*mV57|IWFzAHIe5L!g$QLcHB2x(35_k=zHxl&;=9=*m&ar>nc4!1n77@ z83mrQWumyp{BOTgORQ1CzLn^$ckP6)wZi;l);N!QYRpbO9S)W3irFRZpF2nGo8;+&&-!Rtu`I=V@?Z#TCg{UYdIxLQIxL22M@gxyaRMLlOq6&VvV+-4f5jw)mj8{PGrg;BaYNS8@& zIeAIeg#-Zp?DgKqk(sHw^JxzR+|j1|K%&$Rq^rQ53NKEKe5VHM(5>xiJFbT-v@(iA zw)%C-SY#6J1DAcwK%JR>+KRT2(J}7Egs=_4ha_?FF9hG)_TF*0o>#H>8-<00s2EN`F+>vx||CNJPm5h=-SbG+l_6ePvhgs3*O`yQV%};RI3%&s1=N=U-V#KD zrNsQspp1kWT4s{Sv;ODIgC=poBwiC7X6i6g@F~KiId*W>J@G&W6rYmPXKLzl7cQL& zGipO&x6d|KS4L*b)Hr>@yRi3T$EmVc17j{+glWret0h360_GZ(UTn93+v%)RCHK?x zT$xrw06F1BP_p{sSO-M0s=BFNgh;QTzY%{HFz@SCZ;|s(nUV*=RGDw7q-BscFs=KJ zq?WbHYBqnPjnz|^%H>R@Q2ash?<98Up8DC!;nd$_etaWPoBi-&eH^l)9)Dk}dn1R| zpw!NUJ5ctxH}Gl2sZEyzF+->gn||}hfEwW=%`qoe`Ze>j&*QF+9oxvsZOm4F2!)V^L_bDU6IF|1NsJJtaX z%^h)YMIElDU#Lu5-*RebwpLTDfd#m_NBZ1qKrBYD0=o70;>)4@8I5pDL|lBFE=~5l zfo#t`eie7=p{{|1EI*e;|WdXPlu=H2`d?ylc#s(LSskT z;0}CNl3!VUi*bZax|p;dDDuj4*Im-0l$ON)(N|b#)Ywl@0;FOknu5 z`=7q`Kdo!RTMZPN`v{@TG6qn7&1$~p&hO_pN$)kK&PB4yCh9z#>|nr=zFpILHv>UU z4nO8VPT=d8B(DWMwg-IJ;`vmw5)~@+1OqQQH=otb4=;bqDh;K<`FZ<(7xc?&V($0| zo8mIlUG_883SsSlzQKYl^Xy9`gXoQ!gW=?+UL2$W;&@hfx8B9zSpZC;NFa4|qlt*) z7o<;pLVu=ahrSnlFs-$TP)m38e^6;SOm2SXv-dzn9KW2;f~sopPsCVIwxfRryIk+t zeDWszn>wVQ`vUX64m@jr<9jM25`oB+sP`cA4Nr&HV<4X`%3)o#YulDdA}-gK_V3F1 z8^svY^-JDDnzhya%VYDyo~MX;I?RmEaU`S7Vvw;w@E=0e&ugE!D=WB{&FU3|kL|9# z*(px18oSJe185WQKHmJ%BDn(`#+&{eWV(L~DrHB(|J-yDIoNdm_yO8$Gf2z8Y+(B6 zn|@Y(v|P`{cbDgpZS&@l^>qC4-y4>IJFE984E~qrl8=6H1pLL+m9O;klCqb&`j*j; z`1r?98ph?Gf26kZhvdc7*KAz4WN`6PL&S=5>&~&>*ELYSAf=2MZ|6SO^BzVvS^+bs zdc-}Tb7<$~qVph_a>fJZi~A8fMyOrQTAUPJ=qIl@vI|2#GQ@pO9$*% z;JQ|qu>?qa)`1K>K6p>*bX%#4>t70R%1cQYXA&pX)S4tw&<+ zG4vfh=O9n1(q#G78`7NxzN&Svj)Jj)erwEVdhccrL2yJ~?-4ph)ZBAtBY7!9nx!4ftJ zbJg$rKvm)DECbQg&`+UavFktl{r|4lwvS#!K^3R2iGS&7@AP~vGj!fyKNuZNu4O!6 zpSbxXmy5f!tJ~xDq1rU3VX1)W85jF60XCNEcd(ZKnV?D0i;{BwXnK(DoXls_Voi$` z7F8Td=cAQ+X@%2hD)>CQiEqNv5YurGb@(L5q~J0yN@Nl;)K}QfflQn zeRNgSiyQ>Zwf^h`avY{8kHtK9R=sfOb>bF~*y!K|wU2lGb%ZCG)*k(E|Dox8KrD&+ z)_Q9^+9hvU%5t;fWc4%#QPZG=s+e!}QBV8}PRI2Zmw3LR_TuTA1@c?!Nx_&Y2DvyY zS*}m~Ol7vL)Z=s5Y6xkfsiHl`0x7B{nohE+k(3b4q?4BOk{gOLiVlBKiQM+AF<31< zT1Kysq|DQC_UgAsjTZ;X&39xT1lOfkI1R0=31%<;;OaafNBQ zj`R_x;QRRH3zMEHmdabZyrMfpD{1v_S`TlI)5~=#UCi}uCE=g+Ln5x~7&Nj!l_M`P z3#6x7PfX2AQ_u!rYH>1Gf|h+9=a0|}R#}pp*nTgp*|O_YV*RC~pm%u{Xy&py&K-3F z)AM95-p{GCRv#|Zmuai_T}V!lcVFXjG|T57+#>Z9t%OpAc#%mmgnSiOVm`X5Kc|md zw6UDBCo=o`B;>B!n-!;c#uKv^X|Y^?LFS5l6&Rm~>)nkOEX+_)Q@o8DuD~o{!PTN+Wn3YeQr>1LFJw00bWDL?ZM?3 zzDH9>bTF0Pwf%85!c%vCB-|B@05QS+hR^%@3RR-pzd%Y`*{!E{x>)^RJ6N0N+iwrW z+tNjq7}txU!M`U0D>fwzeSN8uK||Ta!>D%R3Vscvv9@j5FQJw235f_ZJAW*YciFwwHh~2p(I9j@71owCG-jSZhza*h=V1y6i3p=K-n@qK4za4V7Y7LvE75mgBp zdlV%#zc}K|C*ketkwD3%N7I@hxJ4Nw0bTUlBt^G{Mu9v%Do9Kyer&T*affmc@6x;i zPY-B=<DU7;*b4TDtA zxjgDD|L#WtonP)lD6wP5cst+~{M+=-0pEgBQX6uxF*1#Tx2$|Vl^eNROIhe2QR<9C zry9^$@wrMBXR@{T;Koq`^A%$`VMFDY-9P4Ku^PBUmN5CkpKwtF3@5k7pCT_m*Kgzv z>Qq`~uF4y)&TU1-hK6eIEJIQb2zjE!P-DNs;MmX&S;JGPK!L&K-V5);?x``j*)7V3 zINt8FseDe?bdiT>9T)v%niSOV8xK;(BzKXxbqJ{9lq?bwOls8{;j=5f9|fGNP7Ql+ z!mh%E@0dcS5(>x?!zm+>w{9eulAmZ)sfULA#6mB`>5|In*-lo-jNrn&v+{%}h~2@Q zf#=Ck^rA;e_Jcwyv?F^57b>}cSH6SsJCqL-H$_UYQL;7*K8Dh?&tzzZy`vy%O?b$`T+6u9VF72{Fnb z?ugo_V5qu+h<+9S-qRdxEYqlmYiwnXc2eu?1qL4E{Jz5&7iJ|{J2?8i z_!jF!`ti;A@kTZprY0YH`+d7{V{?QyK!A$A`mD)pMz7~HzZ~J0xcKf+4C05h-XC%P z#l=9ckneY`Ix#klfx)l|#6XlmgCSJ4Hnm4N5e_9aB^9`u$4Jh)r55WIvS&eq961;w zs>in;23AHzDu%yY)@n^CfygF;@?23oa0^-_N+VW3cy({vkB>zhU^;boPuun|fl58H z&%6JRrE`v|^#9&|GugIn+nQ|KoNVip?WW1LYqBQ0Cfl~H-`)3l{%Ez*S?9FQ{l53U z_O-8PU!)f?_&KC6v+`23D~w^0F*G6Fj!X51$Z~B)jMx4 zXa1=>OXNNiSv$HaIGwx?JM5J$LW1Zyh-f5-Ax`lGLsii6+6qI31Vt@r-_1&t0estG5jE+mN%&px{j$I^DmpF zkzh^J` zl<(dZtX#UgNG!|k{j4wENZhW2l*2T7(#N=cOz&pF7cYUJt1)DrW2T~!8mc1FRa0-? zXm`|=`Ukq@*kY>1$$z%Z9M;1u5@?B`t3x+)aC3aNt?#2Ki3yRtsM1}QtoJD^$<-HU zXql^xRctlv=~vdZ;PYnWib=ToDNsaagDNG$J*831N;>miB>qPCvgM!yfZxVEwk31A zY`;V45XkgrPhPkn5xQdLloJdW7~D*NV^01HwwiEa*u;D55nR!Qg`p%htmZZIMVm7$=4@h= z+_RL5N_o|{TxZIK!%nj2c#3HL4tDkA6Ide05~j*cJqcHGVx~4jYg@Ir|81fvq~N^! zu4L?nNpo{rN0k>rp_L#dRj;gnBE}ffbpe5wAh)r(jk$Bj&yw+mUWML3pD@pv_JY5S zKD_V)7NR60U~$UXjCEOUMR&xK1xrd+-WY)Pt$CeRsrt9Uzbfb1v73q|IS3o5+6P1` zaO|$@#nA}cBx3t6eH5Ui5QG%5thE#w57(opVB68DC$x#9>R@{1fF=glM8Rj!x^(If zfB;6o?>$nzkO%a;*O#Am&ac70sWw_1zgvv!2mfhMCEJV8jD{HK3bD^CRx6gz8U?5# z9!Gg$zj<6w1m{@Jk7kNsK>(Idmiob0QYHWe6M4K?U#{+%t@D1o*gH7*0tz|;9HH4F z8BDkH74(~y55_N=PqkkA_q^ACpVq2s>?_b-ow>8-#5LgE?+`iu3{a)clgN>+P&joq zX-IqU1azt@6KKKZG~o$K1w6@{4v%&Tt5phwKSjy`9 z6ws{7ht>D*bm-uJJwqxy$mZ`=xT)TT=&`L?`5@YAt`@#CK=&M>?4@xT#{%msp#uAE-2ICI9V4GZ=c!&=n#k;u zEq@cyzT?}#Kpp01mFLC5WcxJi zYsO!)mxAfko4x$;A#D3kyI37ewe(h`gE>-op>FLlDJF~FV}`T=rPc0F%H~)gSuj+n zgRSMvGX4XQB=E2OJxd;tBPfFn+AJHjOKa@c1wS*L84D(TJC-fd%C0+HK8wUT!v4WUgnf2&N-4 zr#?Ls3GJ?kWk0cPCKdi}kM*NN*(zM96_j1UL%^r{xA}2D2%-4R2k0~!DW#*%?>~Fq zU8GK4EOc12g1vo1X{We8o$NBjT}&#awY+sN6%W$JG<@9*Su&R8vKBS42hWf`W+zIk zugZgNcyWSc_Ko3dc7On9k9qV5VBdIoa0i8ZbyzCnU{>Gf>?;SlDyLr-R1_tqRVMsj z$oU1=)(1TQ$lhhm4Lw= z1ceX!WU@5bypbk!J1U+6|$C>lHC$s65 z6*v6aMa+wj8Zh;#p0=H*LJo5SOm5hVyJX?XkH?ZAP$oEEL}GF@eTyI2MCW zr=*+DBr9GDc&r|03tRX-o!cqz8%!QoDwttuJM0;H3RE`gvDsA-kF2cFwE6}#SxetE@BU6_ zqtgLbg(ou>eaAuUCX@QTQ{aHc`T5S0F|l-R+<2tztFZ(Z!XFFrqf4kFaTsY|cd0pD zC(t0L+-_+D1GA{?gTED>Dl*!j@0!I*YXdeJLnGn0aY4tAATwj6_N_C!h-kdksMbv% z`H6#r3LG+T3~4Np<;z(P`8kaRV;QO3;zC=IS!2om(j|vi>r&U`oyBJ*v=ICZ=?vtc z*IL&;yB!qc^nFY?80dV|9cJ`jwPhdjbMiiPtYhe=*qBL|1foqB?lX5)DaM0Xwh_S_ z&$e)4lXh6-yizYsDgNL(qet9CA^G%qDNg#$Imt#Nd-V2M4Yg`Eu-yMm=nPO7ZPxOZ zQQqiTI9>X07(KV`do;1fMgS1VX2Lhb_Dwre!FBS$jx}~?e&%V4y_bKBb%Nb+3SM-f zHz)Cq%1Z36+|)n9Mk0zBEAsNKA)t$F84W?1Qq`4aSTmB#{|ybQYl}$5(J7zhrTmr} z;H5s@h#~WLNK{iovlBF;YR-1Ra$VMoNEyIlv)J}x@OYtBMIW`o`|1%9giB@}0q*lH zKt#R)68?k9pah?`KtTY&;`hDI#rL=8+sA`|7@|N>SSggGXVI|UhjU|*&2tPsg&O_9 z(~0Mc>Fj5T$i}n?H#bqovgXnut{a2dxk2}*rcQW7u*SmS8umE zo1!@$`5y02q-#E`aClUbzd@^>Dr+!*{EMK33Hhm&MilQ2;a-gyPnMut-4LG&S)m>= ziYSN&gr)_RQiVq#4_y{0xcG3DIHIbdFO;^n21AKa*$&v*Vf^y^t=hH6M4(b~ylqh6Tgf_reX?5)&D;QYVxqtx z(24>eC)OXu9*(A;z14&*kO%qAx!eI$FzCcGGaj}GUupG;7foc~xXm*49x{XVg2}OL zQP{_1J!@YU)y7yS>U*8s4``HGl8j@E^nYg+SllTQO+(y*7tr}=VFzs)3z+40se&GU z74Ot4w0wTh?KRgw>l-HH7TnY?vsl-EPVH`+;P-QQhAW$5tqx3u9jew9yFL4{nO}Ab z#~%Ji1O;CWDvCr=984+TAVtRS~9@d&+k9A98e22 z4WmU0Xl67#-A&L9Zq!h#pfTgA7`QVKmgG?6LZoSn1c8bR)*1KET>Qg0DgSvix`T+S zo?^#(G-%47X!xGFRDtE@Gl6X{>^O|!Om#2rQu0fziX>^rScyVMMBCURmOcy9>0D;{ zQ8=lBTXQnnH06@f+Jb%ae|j%p(hIC~q?p3N)L)(Fy{hW zZTn1%#f(JNS$Y}L)7UsuQwT%m0t{Y3kB=RrLt^$fp4aW;wC}$^$8&lR9}J#~_i(!y zp3~iFF`S5b2r4&+TTW|?uhR!SzQ+tPkaMI#wr|WuQ^4T9qTU|D5>awL7xCqvII8 zNFCg1jx*mQ37TL&T$JrQKBxF)ZQa~`D6lH`TpD)iFAb{BbYrAl`5H(#e%^NgM^dHSe z*TzpT*1|}@NZQ}^uTdjRFqK&xcYb`)?Oz_w$G)_!x{BCb(eSl<2|&3E5zeC&^lR6ihooBZB zjpi|u%#HUUH{Ji>yrJo4Y8al8#p4`LDX@PeAyyQ&I`cJQm<=nubuWlTj`DP;q6n&$cFejzF) zlkLi%&?#g1&LiUtq0~PGf#}mP0&%Iq(WY{BlWkiV(Q@0>togGM*Ok2u)HXhPF&q_V z`RnK|r%57@rJUi)ZpMjGqJ!?NzJpgsWq|T#`Oq4i`r}=iCHj_|#g0Z4rORCQF6oZL zKS&9oOLB1cA#V)pZ++Ws>75yePj$KC7C|rLJZD26f7`Zmj@93iPzsRd54~{uB3m&p zU!qX4`I0(61rF?>8L9i^E6-!+aoX2#V+CUL4dqDwc4~*i`o7kPnAmx`(qvN zH}Z-T^}6x8v`tz!Bb!P`oP zZs$QQLe?1q-^0qwJ6Ui3T!UHhsKO`hj(a{IOkx9Q`w(S%Mz@Lm_TVx6Y#8L5rgt<9Y@o20b z{>L>@U*D^`BI;0hT=C5=Uus6iLjWHOhjR-sZx!|RCjq`M7N3Vh#XDSRM+e{6=0Tgw zap1Hi88vl8!z52sqxE7_WEKG5P9$S?JyE^6y=?^`&63j6y*3=IK2Ht+N`BEQ0~{8E zND3uY--|jWB?U-X{-mI%hcB2O1|Izjp&Qh6x@zCO54@TZ`^~QY{(dCjsROu4PoV2} zY;XLekZ`y%s)O3uJ1*JoeC!8%A5FPB%z2P@wAaLE zgSzN8Kni<)CfQs^Re(w{5`I#h4g-_tl|#y&5?J+!MWBE{!~k=XiP|BJMFQximty`^ z(Dt=6a1fy58I%m7odmIh1P4=?n`Wk_SMwSMUpQJ*t%F`z#=SqY@&#Mn`()w{!$ii+ zIDqVlHxs{LYkrIAy;LY7#w>(B?$xT6NssJ>04LakD{?kxbi|U+p1Pd&jQDNthNiR% zvqtfVm?DFR6*2E%skFu1HNzB=0$V67{ZQ9~1>|-7)JI&I_N%Rf@sT&9gZ{Alzyo+4`O!<(MDx^I8r|1 zJS$j232;wFhNAm_tX&V>ZR0mB5KJ7TZw=86bf713qbBY2(4-k%>fY8qdG2X0829`q z3sPc}zZlPQvv`8s-O#fQfAnlOuauej{Ehe2yWsa78J5hl*=5hBT2(}zM+K-(C47c% zjDhlsDwV~(Z2uO#-DzimF-XdXtn^9ywn1x5R5a}s?<%)UJ*Ie20tMmNlmG_=Ia!5g@3HDVemTe49DX9(;5 z#@3Og6Vl|Pm@foO3;MFI;y4)WY>xQ5G$j-Q;7NPis{^>))+dye2(4mZuTeroe?1Sg zh5$`WT2>Ygs13N(D^kAL(?j^~SHJ1runRmrv$Yn-s;05Av0Y%`Fl5RCz*w-PrKN#1ap)upxt%ZT zNieFsWuu&{D?0%BB4cM~2k7O2FE3sg^xFOC8oI(nNL!<{H8vRj1Lzut&8x?o-GZQy z2!%~ezs$ydId1wsGW&n{_`MvLm_Iv{K3)Dt){~+E<2}aMg(Tes_?MQdPVk<5dfWb) z2d&y;=HPoK#*kvZ^*=mf+zyXc9KTMm>bAZ6ecToYx(@hU2v}3q_$EXO=v>hA+vcnUt}hy93WNe!Ek7I;PaD|FQR% z_f}T;W<1M#i(Wp1m_Ei=Hn&KJ2GKvYcW~OfLa>J;}9yIbhrXHC-Ir-J& zW`5k^0ZjY2sNOI>IyqGDlmM#qrvInTk~aa}?^VqpbCw9d%v4Gz#%$-Arnm~n4MwYm4+zr6aW}DSbbkys@qP=b03j_!WtzJXF8j} z;qG!Xr`(GXvFl^3$4(j;3%e5|3Hjgl4fFO=dJ1@v6q;XtW*K@re;ef>9n4!%g*hkw z;3>!qU%N@3c0(;BI9CMO|5)a)cUR8Jg)m0Tc zXEX7L{IRPD(Ys&aOibV!bl}4Em)q(~W8rm!>ZKtS-5JGIorxVWQ5taj<GihFON$9n%7Uh$?gr3!GHfyC++m(O9?(b|A_k6>JWz<6!3L9vxaOOO zFxZxpCTx&BQ}TrNvlMePwDX$;f`12|$~s$Q6i9ygYZshG40JQ9=0-$8g}r=ob|B9C3;p!Mn3>%2tk=$`5r8ghp|Q~wN+_HE&GIibE!@|_ zx?(K1Zh3^u&C9fFf5l*s}ojjmBMy^Dr;l=+hng_>Hk8juMA6IAY7(d z_=T!q=6A&B4l+H$aU$KApisu&K(*RNX|r~-!g*a5n1%ndlX&mPrIEyg;d)|6t=S4n zzJq#e=|gc{r5{X>lTGol#?0ayb{PJ0h_%0Gcvx%P;~S@8vK9B_16m@OMau`ty1@v9 z9*52=p4>iz?dyiKAx%4Hit@Qk{_t#!WosZfJ7#VZQ@RqFV8n|^D9*QOq>k#%%GRP8jfHKmxN1b2vJd~`qnU&~ip|$@pIYdr2&QsD z`Xe-Yi{T)nPrW6*B#L;J$YwQm<+{?p_#_v0CakT)ob8s~-i6yw9q6cH%<=0c}({9b;3C9lT{et4KqWv|Ec4%;<51L6{^{RW@D=RSIM_s2`9El@o6 z0&^QlSy|JbKycs!?AFrz+O1(VAKwC0sDs8ueQTm?fKJT?Xr-EMF4O>7S5C3MntCu6 ze+ zMFtjDT(zdxhlXQEAcwTb{c=N9RrP8+jL>O8D<%rt?|C0no_ilHF)?v?Vq(A$3HH)_ zB7MLtRS)7XJm=b9fan`$XHQa!Y2cIab(|E$@N4@h(&aC zIUi1%%@j(RT39q#YusAj0ppt;Apg-m9K5umVmA<$VGDSG?REFfeS^;zjRxDBo13GR zMp~pc#P@D-HT3>VH5c#BbD2F?klgZKs~MZnkM|I(qi&A#)bgFT9d81CHxvcF`91f| zOU&r$A;P|CiCYsp1;3l<0hVVnj*oMa)63R1ey49hxDr~#6#~&h4JOUdNRpAys&&KF zbMWZNWp~K>?uUpPxKz{6BqBOnZ+p%Tec?ht-A;~1^|Cu`lR3kZfJ4yR`WCnfk0=Ot zy3i9w2$N!B@z*XajWxvgP|Je7P>`>1`yQtLpB?7musLk^L=TWnt?P=O=@eNDcYf5C zaAGAKZNEw}Jm_2I*Zq3I`_(bHU2aS;58?FzuU~2^K7y4roJa)egESl|7&wcWhXp_X z`v^&^60nzwFEZ_6F0m%%(zPe0?sd`vb1nl-A^5Ep?^N zyEQ9{f(09^hm|#M$wR)^htAp4z6pr&Yc$zuCGV9wnvw1+xi!X=JqooE+mG!BHVt*E z$UtGj5Mj&^d5b~QT4OeGz>A4$D@VfW31#kVlW`wMK<&I=w4)2p`$3>yGbNTtX4Tvs zHZY?Lu3bMXMnj(dFqU8tBnH1}VCAFq<8ryGY`j;9LMmh>Jo5o5m^{|w4hO1t=jtq>(5}h|a73q3Oivt1t-pJJH>T0Oqzkce$P}wN=l1^1&?{7=<}W4A6&_ zrns`9%e{>B#X4{64EwMj<;;-;p;CodZA~i-)($kQ>JhgqQyFo{gcWyHL#CZdJr@s1 zP{ICmN30|n_hUD`gWp_mGe>{1=e?eC3^68q;qn&_#tM9Ud}&IhrM#Cb@o3;!#dEen zn>@K9b5(9;qhXKlYTO{<;1WPz{p~$7MntjX3XyguaJ^S;OP1FDC`0OR;z2T7b0T@h z@%wTSFHA-b?EBf+cj8@gX$In(OR=HtCf$Q6{@WH#B&&p0UsH2?c>i}+^jB&E!Qma& z@B0P_xFA~X&0>mA*FEb4S9;PC_Aj=JBPZL2sr)wbTt+DWHP`jT+6x4Q$chnWvPDa- zICIczFUmHeU-5Ft@#J(rSuiAQhq)B5-C`&wtMd%prbwnyv&rbDE~Hpue0v$GkESvR zoHF1eWd;3#>myXi8)J)|9LiUK@aIo}&Ti-A>?|c~<5#1vtSkaF@tt1xR_0l)aa2i5{&xy?ogwl6An;?yB2H+LFPv!0xu;z|zqf*Ap& zI)Bds5`$h_@cQTZYV&M^g#v{__Bil(8)xnO-VgB!3IFNW zEbhr)eWHY63AZ46de)kRDYkaLGLVtsong4*HLp`ZML{(FUZuyX-7)^n2L19-w3Aii zd0F?Jp^Z1G5H=R`Ov{O-un_O+p{#t1CY27^tu!n|GV1NDfyp?S=pKO#1}3=iryf2Z zE5DFDW*X&1S>9B5P@nYqGHH14X*KFYURFpO&(n>JW}QeWs{)^rranPA6;;5Qjc`Zf zHiYl+)|B9Omivz!0)8GFkBqBVG49hvfL0QD+5%MLUkrF`R&zs^G>^RmiI(Ss3|x%i zA4tM7KfJ^N`;voY@4oos#-VVx)h|KCz#e)(SBRmr6NVCFJ=Kg=ke0?#k^heNH08jI_AgjW zvrrb=*u--}<)^oAU#Xn!NE==a);uq5JKR5|8T?zW%}rOh0s5y2^2kV?YD$ys=aGhM zWxavK`-yMsp3fb}gh|vXoY(Iza=B0U2E0IC4zz@XgasZtRfG#oUA~__lXSu zx{al}(l4h_h?vzyg=(hcUtdE~fQ-4=9Fkw8wedSe6>-0gL>*iCcj3X)`L>$1~C5f`N+v2T&HqQK;P zMC|#gKsF!};wc zA}0^Y=J&4md-uwer#!&uGDD@5w`rW{4S~J(>dbVRk*XRN4(JJjM8(ISxY-};yO^pq z>U#nhKP@|vv@O7N9gE3OXvy|}Bb4z#aM-UOr6UIu`dobj!PIj}D0cGuc(wqckV{9q zdu28myaEoaTA$||h(HHIppaaR#shO?Tm~F?>eaeZVq)Mw=}|o42?aXPxuO15XfOgT zzl4&K5^bQvYLl%G;Ks4p?80wfmnTB9B;sziU0o=z{M~s%OK&v}g+T9eJoDsr#ymV4 zcv^!fnhm%GwPuOU*}cc;Ng&rH2+!aDS_U(lc2e7XfmB+ z$1m2e#zATB^(i0ujm^8kbp{6Vr*WXO?p!?f(LFA>^YT0HX5K6P8G+W=;1eZqX45aI zOhqiIx>J45vy_+?_7@{&u$CQz%W8My2_#y9c+b^#zCSR^$#fJS8dX9w`tQswO5lt0 z>Fml@)A>RJNGSvw`kv(OYmSi42jfNu<7sdwvJl*XpV)xk_{)+MAIx&9QaE~2>$naf zWMh20j9T?3rQ`V8lHjnHS>0Zx{R}}vQ(jIY6@R|mOVamjlY)1qep+ix6h-BviZ8Ws4)$nlmM8@~uL9m2HV!-xE&10Z}EizK^$9=VK zY`YeT|0CN%jdu9Zx>w*lR)*wCght)rP?|@%OoA!4)=xRCGMdtFw!u^6ou+n6q{*Vd zpx(fZQ$AGPdrM9MQ8tO-FW8ZD#ZuE4G;Tij+Ua+>eQRN#j`14*%EM@xVwFpz9|K3o zok0X9o#KK22tn|BM$Udg{o&Kda|qxgQH{Y@Rc=HLuE((qazezYe8-Zc;J2!R2xOA| zXf>}Buswtkn*MpZnn-38-mqm8M6?!0r^4uD^Ip5kpX_;~b@&t_-K_|v{sQ})_kwO} zI+G06rY)bF!5Or>X8knJ6fcC!z575cz^#octf{ORGH;&WMe)Y${0DjWZn1vwL*S#c zzh&C;;3=92A}%7he`zbAiJb;OZdn7V?rAG$>)d<8^?l0_CGy~?AqFgZa*S|lzd+uPOP zq+Y0}sPjMtcXx7nCYeoRUIeGL7B~5NgJc_WPOt1*TCDGb;ceMU>}V`oVcfKRRgD7va;pxypE-l0b(|Fe{DoBL_<87g(a1Kv7$Yd{YXVoqKwVHx4U=q%ID|{x-J(qYo|E=jR@NIXSp-gzHv- zNr^3<|Ai^G>sI>VOy20;`Ek1p0~H|Gdb7Bgo{s!`!NJ#A7@A#B+j)E~TkS&0DG0q! zi5V)-&ksCF{5~$FCEU!qXie$(=kM-gt;_wY&)vFHhaBCWQ~j*xW2eP3YA_`9(RVI2 znWg&oQYs2tY1TNh?b!Jyw3*$1N{KUKCY2E|zE>v8C=6lP&5V4nM@go-N-HnTm9x92 z<@7lf!Zm%Xawe6=L`YTV|1IIg$Fn)4`(;HpmT>SE1t^8B>F88Wl@8$*R8=WSlD*6x zjUjuy$#?0pX3>OU4Sffrx=U5k$S#zWQWxFC%u`|hn)&pxT#^>HJEKN~8qq)f|Q}R-$*ql*}MT5#6W$7u#^^QH3{yWQ&#v5Yo z@P2N5Up!x0K6+ZyJ^6IKd;BnCw*>+6Nx8Oq$t_+O1Tjx-Tpf^LS@z!tn< zo|aicolh6aR4v|H#B>Xt(o?<8RHhWg)lcjUACv)Vy@cMXCxlv3tJ#=YPqsI+e|j&2FVSykwZI4t=9*X7&uVNU-5xI6XFh~K}lfO*a^;IVlE ze869Q*fa1M@KXRBX(d+fCi~Axfma*4Urm=afym+bBLf@Rwm@;y2VCqD=H?WP9arDK z1~Gt`2)~dgUQj2u!$d(rkx%qSD70BI=rCFg?(;DyRPCJ$-#rajLQUfMnYc+;K&1jP z^@Zr^cM*)&-Hv`Iqve&i-AE_go@aXp$DD*CzpA-vf_<;` zU>+u*TpaR^aJk@yr}^u83MPeZ^Hg3Lj6Ow2#NZFVtdT7=y3|F|Qv`9kohJ&O^9m3= zFWO9??y>Ji$8Ap9mXSjbw${rUeq5?ZJz5EyVKT3S z(!XDGHmX17opFK-T<80}s0SsRPL{cr<1HV5KgBnDRJo@Adjd!uW3s{W;bKgG<}Ax( z+eZFH$DL78-4+P^LxQIOCwCgF1&foxPA}BQCaDOL_?I~c&*joL7EMtKn?2dj!XTh0 zE3%CgXQU`7>6~k~`F3bs<#>8CYMP9g+}!ZU9l@y;d|^3Z)VGwIVy@0y*S{O05j{P{ zLwkfz4>QBVQuZtaZ4>=WOtB8zM_%#>wvJ!1`SZJL>hYnndD1)9PXLf@Z9Zj_ai?bIRp5dFnJI(sE?8{#X(0cCxYSNJX|Yxq0LA zb{5gXxZEcQU>b;}Y><^-rWOtyh`Gw9;lzy>Z=*cF34~5WDwN))%tT3Th{-?iioRX z&wXinY@0IsG!tgJSX%C!`e7)ZBxEWBT#<@0>11RP<5Yn(PhJP1mqp?`g@nhdc=JYd zr?QSjrL^R?7;ccUSypCX#YW>uK_>3s&sBc;Doz z2sc_Jm^g>&I#1wc64X1$OvyhaE@$MSR(c<9GpZ3nP{EKgx%K=T#%&%$5f}yo2AUp? z9N!2d=PMKQ@z?=Hw63^ey`=C>)Q^@|<0`T?+P)QLNYjW?GVI&M9%nSpkP2@SDfVsW zQT2W|@;-DwI!5R_B0Wq2OrwY?AuHKk#FC+13ETW9zsroxC!dd;OfD;;obnCO9NO1U z>W8vf2skVxW#6R)7Qj(I1{_PxoBPKuJn~%IU|$~~Uv`_b`Y{00W$-nm_AJMzDFr6Z zfaT|a$@{?u2-qFrV}|WRs_Nb=s#7FG$`n-eXjXjZ!8he8f0jqLv zlgD2WVH~$Rk8Br|Oqay$7+j+<^OQ8!uxBG z8*7pvQs!`s*`XFAl~?yoPtD}%iSG3iL{5n2aUwKYv3HAoRlBU>!p#wif7(<|?Sz_p zB-h=DM=+}f_%N7+IU$`Np+Tz68jWF+a0Fg{&Q<&iApjtAX>E-n>p_` z6E0cKf}mD;tJ=9~&LXrT{8LW5Y9Ki0(F@d8<$eL_icu(PPdhX1)SJs(Wt|UU;Fa%2 z!hPPI)5Av@IJXxzPdk(!KG&V0YBLl`5x^UzRvud5`ogKnmv$x@&jwmdiEB5S^@;d* zP+qyQgZrBiWbTI6h`m3*jGC=83YmaFDC9+ZJZ^Ocnv-|8!Tb+|?@w9hcGqL=v*a25yd3)Ey*si5^@ML+S?IDSKi*_UB ztc?QIk@^2Ny~y6HB)%&itxRs-cPs5P_7Psy#WAggout!zH7*;Tt{fjcY5EsNWHOy> z_snqx=b32>9;9LKypdCanG)M=I5dlA#gprj=2DVmL#C`te8^d=E1Kq2u+GM8lQ#<( zHuT%&aDsN1K?2el-$&KX|Nb)W(?<~)%CFF-qf1cbr*7Lod*J{sb1^eB^76ibhRLzT z*+rI}Xa=~f_<eV3X(SR`mzoM1_4E^I$ zjn2I)MiP43SQ>awQtP)K%zK+W#0t9i>FvI-?2bmULbHBFl{L-cl~7+>)kuy&CVxF- zW(-h$i6dYCkFI0g=RH?db+xZBJ7xWf$r4 zx=NNTN(iN@X(&v*y^p&>MX3QO0`7))7b3dU=CU9Ez}%Fl5v-h8YQf7z2aD$RlnCaN zeu%C0VZ*`5WOoOeTzVmf>FBPym1Hm;)EMG3ah+xV_=o)E9$d2F@OwSyw6eD59WZtR zd@EFuy_}mqeRs#RN<7?CKwHY;zV3?oRe_x@Q~?%1%4`pkk&%%~&APx==ff}V0x(hK z0x&-8sg7%oLtnm>u9uSv(O9B2i5oNUw2}9{B!!RTgC7p@Th{^0GqJkMkl51Q8y%n6 zYrdSBKJ`c$`1O)9s5MPjvkLK9@V+l#@7g6nV+^Re%TbJxkN8_S?8F=x<`du5Vh$!a zw|7uwJZ}?>ArSETv-w4q*?oC*{aS|$e*dO=iDlO|zNwlRYP#&kJQ+&I5gyiaLAJ#C zaN+TI(7JA(T6AORlYh#>;!*7YvJvMsLX2lk1EUxP9ELP$6BD;CN_MDd`G37Kt_*4^ z2u>`8%;tvJKIR1z@b{PLG{S6n$=ogC^AhF38?gZU{*g`A4q*v?@4$XR1gd=S@$7wn z|JqQ!S<>@kcg+?sOfkGzYwZ9E(P+X=uRKGrPyegU+cEU7OoB^MwdqcF$N?L&&M}X* z1`{1Q2O0Hv`BBR0X6PX3yNDr@&AK*hZmRFZ4hn=Ft*|;8v+DQ6=?gBATB#o8`tE%eX?2n}uwW_-Whdl{O5vubEkmNE(8eX~LExd3Itf7_6gzb< z#(!75daJ8gMCXgdw3hVQ=x0$K@~w)=dAdJ%YSwr@H@}tp8`#XgynicwY}E7DQ~C+Y zO*O_MZhe|!X0F3FS&p;8d#=5~^&*1NePsvAT{?T}X*0Px&Z*X*1|#3mg4aW+4&(3H zynXq#&PcoQd#aYw@23a6=bePWu0tSq1Wgx+Q?3b2Z`%vY!DM$BqhDJqHaC|2nE4Gf zW3BaTiP4BKhyt&&^^<63&@W3u;idl&^2t?6Rp_m2&#l94hfdVEbKlc#5z82G{|FL| zsoSdOT2+a%zLxW>3R76+O0vrGbJ1VZRP)?;PAYWeIHO$HKKKH~eH`BnR6DIR^^Ki{ z(E#2I1;EWMM+%sE+p-GFs!s8#zh$;-Kj-++Z4J=NR)gQmB^$Y8i!~BCTZcDN6GHvcQ3|yyK9Y`_Bm*d$4>Ce zH!X}zMipbFjMiRvLUDhLY_+9aD@{Kx=ge>A%<`7wSMY>=8nC*S+8hvkrYUEpo&rXx z_bOgx-cSZ9AQeAT4%1XQ$ntKrdcM?XhX?@=RyDLu-lbr*#5GjiX1+LkjhQ`TZj)OI zqu}I02|7}vY%zP_u~p+>h4UHxTr?*U#yG32Ci>IHVlf$u>;>ea)leMwteI_nf)l3u%8W29EQ8$F-| zPwSeCi$i?bdI6z)7w~T&q(@x>&A}cp0E5+8xSbMIkdm@idqxy|0|A@*4-1ATD;7YF zA_f3U@ZW)@9$rK}ouma};I6+IpPbzPC2Ilrh}qHlS-a-j4e!f3Z+8zfJBxzF4If+k zj%)D-w|77v1CWWG6X!6nu*b6{h`uXC>?BW@J(XG_Vy@?nknQB>LCbKA9Yp<}?wjx% zO^X5eE8#IAvkGAaaiO-WD{!n>!P+%?{c37zPZmY!wEaD_Q~~_nAlGFIn#{+sZnnoU1cZWse^xl)?dYbeUC>%S-SSu;(ArV*+BX9EV99pQ}{Je=!b zi+Ysd&7$a{VUf&c`_e}IFGmH!P9cFuuUcA0^SMe&Os?gM7?YXHsWOc3S;w;m`G5W- z@5b`Re(gz|oSaN4@{0OCjifm zC|!jSt~NF(&U1K3?&(5Aw|7BfUGU=cKQ>n+wiOrY71wxqktd&B4_g|oir;u4ZmweC z&5t~#Gs|m_@VXM(dxQPfAXiTAHM$icR`(_e;JNoH}aui=or*fde3|q0&=Nx0Ihz zMgGTSO`>+cugV3hsrbNA({)4RRS>v%E&*S<WkheiDZNUFa(J+1?dqW%#H-Qub5_QVCEBw}U}{q{GGF7$`+ezM-3gx` z3+2|mB7};dB(6HBez{XQh~HcvJ&`UiRC7(K%Mj6bf?so-1%#vHh4=qxI>+d|qIHeN zwvEQNZQG6Qq)8gvw%yoj)P`+rG`4L!xjW~a`y&~n9qBi|w9VRUz3X}Agtb40pwLS) z$d0Q20cO~Qn@e{4q-Ara?mkXZOU?d7QlU&YXoUDPp_1aeMDt_e_d~FPx}#q~J~luS z@k%{BMy`BWp`wOw_Ni?82kz86&k~6DH?KwCh#xz@ zfXu?uFDEi$-&@p9?}z>RUL-O;zU=F3XCNoB^xK6BND1>ExrPmd^|$wB^n*nGyxeyn(Q8noEK zI?53IEr^AL-)x-R9Ay%z8|U9i2qKTn@e786jUEEJnuh+E5c5JlG_C|>l7IHc>&@X) z(nKfowpyp7+ISPkE^FJD6-{ukp+BCG_565J2XjP*6O#{JmJ+4Kpj@__*R(zD1h@`7rpf#Fi`{lkVfKvA`=MSb1L;R*7|W)?{hBz2){DWJCv zjm3vd#>S*j^n*6$jP7buI{M|w=JVP>A_=Ou;?A}Q6-hK0qH=|c5X6(q25rYl>a-RQ ziz5@%P8`>hh2YjsV%_~Dncx7tZyig*tOdu1^B(7>U)r~s?(2a|jiG4Gpl8~4Gj+s( zhVu0~x`!%%^$)sI&OnE!78{@<1hCS42Hs~J!0qnr(F-c@xAfmKH38n`)0DuCBsl2( z$z5xr?+6RIKEpX}Ws76U=AF>DR1G!<=bex;%VGb^Sc0JQThbpmu(Q}Z8#gq^J@d(2 zUn5$-Imw1$a{NFmzd?C);8cAE*(Ie4E)=V&Ag?#4J2t!^9mJh3Y0;DlsS;W}Q|x`P z#V#1ID6rsoEsazFnJAuB)P4 z&sb;~5livbMZm^nRM|S^$qhD$v=$-(el9>KbDdT3xtr4(Zz1G=md-(O-T?Fa*8UY8 zDwU6m{k3KR-^0@ymQg4BCzNn&I?4BJjAIjpU-WH1p!+W#)NV)Vow+^&CO7mtQ!zGz z8>CjFmZm%ib!%A7%|UmWTT(0GQoVByW~8Z}r&Q{!8cAbN#zr!639j?7*;?FZ#l&D3ieydX`Q`)O4qU-9NFo~@!S zuBUMbC4_@rD~h3*t<+bB16Ty%$W#bwg+evVg|=?E&{R~g=p0({^Ec!a6c7!WGS@ml zgaWi-3CY)N=%}OO)}2goaNNOogJUMqg;|fTvU+tbp;iUQV3+;)T)lGlwQZwfpOY>% z(+$ef%h~Zkl{}ucH0Hvd2OsP9p%)rGd>vZsH+uSH%93((dlN{5dG>y>4Sjn$%04uY zm!V&kDNg9Vk0E2}{2l6KpBmhB4(q{z@+XX102X(-cImvAt#>&F%8g1mIwA3>>M-jF z{A)Z9F1T97NL^p4sDm*M&0ZAUvm$fx^v9xuTeLaYQn z=WuLd+S4+vuCM6oj1Yy<(ap51H;_@^EKx6%V4ex=%Mw2KbO6va8k0^F5W>R&D;;o- z+e(sSv{qiT4(&JD0v6Kk&(!MM!-nPAax=YtTgvXPS)2RCgaX%EA24huZpleE^vfjn zdkjpa)4B$}4!lS32G}wl%^G;^PSVaQnX8n*%p$x5snQsHB!n!KSx|)784I zalj%S=h*$0X6XNhDWL)gq7Hzml==1U@a@S$-P+zclh@sGKac|XeNx;0nFt2Hj^lI1 z7Xnr`EqzywYzSkBkGIEdcowIR{p@hc-%~^YMgm!Y{C@AS$at2zAcp^bF?fwNHldi4 zL9(J2OEWw2Z_TjS7e0IgKb~7Lw}*3Pb2yL_;@1${x@4SoJHB*Whn-8ZJ3F`d{jo%W z48G2c^oeIeN<#^A3ZS(WH9m~mk|W}@<~qI(5GEK}VJ7~agaY$+2)%s4Z$~9TS|=z; z$y>e1x^u1FhcjhQ)=s=^o=26gv+_&_uT)TM-;5$++1R#LT|x=2x?VzF*%Y&H#B?)Q zA+Z>Oo^G}V@cS+0(xXhD7Yu_)J}$+6Z9xIg2V=i`}_*!^F$kYVZl>DP3e! zCGHZ}Uc!h!@Z>#Q7SIw}Xu+Q(o zW5br3EiUWhI6&w`1{LfUB!m-2OzHAAw>%I~D3EZ@07DFOO2d|PK0EIiU1=&^fn2u= zN?j98)>SL52Hc(TtK8ctG+?^29Qtf&s2JpeddId%gNmI&)6wga3@`4jZ0m27al0vQVM114dS@p=0dx% zypSe~jWn$0R+RS8m#m2YT?)>mOb$nGBpAWe3d^75il4;|>@-!np>%7-70xD)C1h|c z`l@_y-DRbGXKF)KEV47bxiYu)#qOfz2}DoELM^NNTgiPmrxee}^w^+ff?y`Z9~H1N z$)Q$j{^FKs>3M(X&GK6;hHxpe4=a>-1&lXy(F(JZ%_slbO^&jH{BiO4)|=Xy_s}BN z{FXRhMNccXJ900XT*gl5hJHJHXj%Y@tdtzHh^b?wnU^YC-0|^UCucePyZ$3fC3Pvj zb;IAf*6PUkYkTYFA(6+MNfRuZ|A3kDKV$rZ(cPWvZZziau&aK2uXWemZtco}HD4if z6DaRCx8sF2vurmzZZ-pj7i#M4hVZzjR`^?ea} z(pa}o++drx3@}|KAXmSm^S?EbeDFpA;Onzid_tX5`bp5C_Ce^~LJIQ%`kzb~40tl@#9Mq)$42D!LoVEV_$6y7` zRw(EN*(IX*5kI-u| z50iDwNH#AEzr}XV`R>Et1rp>3-k5GcP$I^S@o-inp=HLCH*{~RLej^(zBu!jtJw%*!h2cm_(7ZSVg+gSJU zQ^PlCzSaTOMH9;{I(JnS6`7je_%Ea6gSa&Gb`JU28~*J2Oj)J&QV%8`N#Yf16x}jv zjfI=(-c%}vOoFo~W4A|cU&LM%9kiATnD41G7wKEXm9lj4Gqv^1 zDVAy(kd>_U>91V-vrI-$VYN?sbq_#O__hJ$rIHu4dbz9B=*a28d{90R{YXp)j)(g*Yw7n_SsuIU$2Bo%uBHzW2M!YNQ zMSl?8c=BTx-GehYycM?0HZ1$`=r%|JOvSe4n3NH|UDofhS`-SJ?B-%TU6p z>V;_XI5s^G$-=GVN%tW_dF#|{u+9w5f0X|GD7qYar(gY*w&Pc)n^Nr*NwjQePuYgPFtrz6b8kR{{=be<5jj^d9CelzJHHF z==?~kvO0vdHA6KSUx4dL2;z}rH>~XlGt$SmNrB7V@I7(a}hhb%#ItVua&PJF+p8NULkfmSzJl zQYV&9So8bbXtC}sG7?S}$t}e0WGp=A$DLF^@$9qy`&4qM!j1-JN87pHB$S`lLsQgv zs?B0VE&@g|XLZ}x!kX7$<4KKVq@P0fwbp+m9z)_90T-+BIj~G-o2XJo3)2Ae{@~R%C{lN*j@7?bA0X9s4dQD zUB&b;6cHhG{v7qASoW`k1u3a~U&JsT-=(R-1dj@PyO|54qPZ8bk!t0jup)!;y>phgm}PM0TzPXw+bOLqES|4cXId!}C9 zM!vHhF6MSOg#0R|b{=gU;xG%X-Y}?&y}fOFD@K%|a+LUXT{V?4;^}m8Z83)kU1{lSYi4(laA@=l<-J;B+Y0wN>v(zoWLgVxGR>p;6bN5; zhnR0BQOITau9qnhe-F&ygcX%Z{ibaS(DyLZw_{lg+(XanyxNl)DyH?`?hxPz?;yHR z-ZtNv`-!vD2FQBDTE9Sp+CjEEnTeZTL2ShPM%2)haJTSPtWQPDBKUFjGtwQEUM}Q) z)qozZ;oF%}Q#5{9?f#+Y?J)5ll+%Y&c`epc2a>1rw>93s20%6OT;ZbIFyV_5KdHmh z&!6J7zb53b9^(JnVX4-q9jylJIdD7X!@F;NsG`1$v-8}1*{W)s$QuygZBHJX zjL1s-wnnqm0W8d(F$uW}`HZ_|j$N>n=)GaE@7LkPM*VOZ{J(di>I1?1PlAy{3NJ_K zdT*!0iNku4(9s4U;g^+A@M1-4J&r4S${NAtmky`DJ#Ga_zrA|{IrsrrP-wW7R`~0e zC_1B4?ZltmtsWqzkzx8Iv5&?EnB(kCKgq2v7pmDsKR z4EaD~n`2TNzG2)}rFB~d#~~PmVD&KUx_gnS`nuXWE0;W< z2R}P2@~GrTc=7Xzx?x$J*}mDOJC7*|Eh~MAI^>l7dx(pbM)!17@kz!=1KaTfbjPE* zJ$ltkOS%S^Z^^vh0~}hbY%mV$8FiV}h3PeSZld!f``UsDby-g~awUV>$NS zt&H_LqyL{#V!3W|QVlu*3?demWyc2cW{%-0tX;RhmauDbQHD9`k%+ zjh*1giIQBBloj-o`E@OFB|ej26h-?M5eMi@D;wxcoR#M`M5sCZKPd!WB4dKwayE&G z%M*3&s@dDce=pt zw_C>~NgPzJ$gGZ9f^OExqmh03@6ri?Y2X2x)s;Sq?~m4Sr_B&S1Z70?+I9@*PDx`}faoefztc2IS-qMMvj?E#7mo*EgThKl%k>-E=$ z!4L`CkiLUbt8U&P(SQlKU0VzB`WX!Lo?BLow#5q~ypL(hVe>^hdJmV>c5mBv(Nql8 z4A^O_GZ33TxD|1p1*ff4jJILlUaQaflSgSIQiZtFKt)F90OKM2uV}== zr{DZB?LEx+8^3JK)t{9Js9+IfaIcn8;@5zch?dY02Wb^2=$dz4N1nSbx1lMN!I7Gi z5k`tY6Q4)rNJ&z)RGFItGRP*KZO})sORdNuA?kv{WR34hc(>Y*;G0P7g2jjWk{J0x zbR!LhxpuaQyDLD8sJJlQINyVY_J`Pkmgi}R++~|?GG!zWF2Td>SzmFhKq74gS}(l- zi#oZoVa1QdOKK$7NBaJ6cLbbUsx}0E$|8=l#!Xp|_U;r< zb4YrMp%ZPDCKSlo7VCfW?D6pg*>Ga?e4ceZ1jZesWocXL1^h|fEOGt1v5QE}QQ~``@;IjD0nE*lG760bxG#ayS$gMV?AFhhy zmfY=#DAg>Vvufa{Gde6|Y)e5iOW&OBNpDFUdEv=&%Yl8=7em@KUVA0C5>>D;FZ*3( z8cqx?k0e8l0zC92rq>x);iU2#D>5Q*NddR^7OH#U7)Wo4#~d#Z@}+w0P_5sf)R|Ya z7ysOdZuOJPS8B)GW@pJL$_dSwGuo-FTfjLi28<_>h0ZGjCM*U3r$sZ+k@FxppP~!A z|3b?rX!e$xC-A!Wh!Ji`@G<*{5T{ZLqw65QAb#xLVlTs6cFF?w7)Tx$EflX+B{)zM zKY&$#({9b|p9QT#CB?Bq*{Fm@q1(Kab5EGs8&|UI99wF>Qci34;>F)^tc9jOr(JWI zZcL)f(Akr=WGhY?>L1>^$1aImPfaUm`6#o-7;dT3KaaYKO*VpG1BI-1D0H z`(k!=Ozp(Xa=@;f&m(~_pfVpuuz5~37YNo~apSf>#)dI+4W;!J#}MUYE@f-Ayp1o9 zd?}`8^FOoZr&0@x*-8vt>zS_s>&nqK(c7v^{&z}L{L-T0&1`U_SOsyNEuzhdao)BdrGLjg%otK7!WrMQ#CyJ4`e&sFu|9cL}UmMk93 z%If5Hm{f{@HuvMB`QodJ0g_r79GYhzjELkBN9~fD#+L9`4M-`%X8-%zO4?INp(hAM z9*GXoJSGi$hcoYldY7_I<>;u*Sgy^xh0x`?M!m3`>%Im+W|Wn=>XD`+s%%OofqTyq~HgL*L@$;QHFqSi~`rjYS(?MxB-!T?$^N_o`-Gc z&L}{HvD{R#3gm4Lkyu6#V0hzTL>`fW1~9M+e3RyLE9iEzS)}oo2~vB9Ogo$~Piji? z__|X}EikY}6AO{c0%g)DYzfi|PU|lGXQ7sL1v5K0ET#C2@?03jWqCA(#D!UvFGV6( zS19GTo3$p28+*4Q^&?nmqc~yDZCG>|gPG&I=d+{pQ7Tbyra=(T_%^lR#d6xzIRBO6lV(7|9`*d`K;lVHQMC zCBDHOsjoYK)$_*1)yS?Ocm9`!>>R2)+;ydktlNsm&5|Ne*dtm%Ck+9tY9O zz<1Y6k%)``@ZlVePqLe{T~et8x>HHFx?NJ@Vh-!1e6DDwJgUkiYuZ|GPyZxV^xCTN zyc$tE!DrdzM4c>2Y31L!mqyv}S5*xS0#FHbmJ%qiU+VUal(cA!vF9a~iak5iZuoV_ zm>mwWkobrmxy!RDN&OL8rVc_&HhsEfHSsi9WPS|!Rq<}g`yhS;suzB6+X(Djv+9Y%K8_Rb8yiNAArnGNVP z1+bJZ`{68opXfvHg8q2#W(@1`JzrY%A=*$S&?k!+3b`zX;pg-U8EHYRJw(t$?eiH{1p~*^EyNjeQT`hK~JP0elepFS4P#l)! zM{RB1ukeLa(^I1y>;jdc`o=~TJ%nto-UY*GpKxMdhy^`xpcV=;7`>|Jv{qJZ)CwQ; z&ng7p0Ypu$k*yVni17D!%LFZZ82p81CIUgh+uTt>v@;{>hkM_;3;cLS3OF=x67zeo1IluPpxr7F zj#9B}+;T|1A10P%Eou_gg_g>WtvmLQZVJR5AfZ>#6@1FF>GmTU81nHB~ z53-l$f`8(ve79?kQWFdDjs6zEHFZ=I zG%$r|E3q`Kgq#Lo$sS)z=yZJzG&afOY!uAZF{}EXnrOyoX=D4^nrPBSY9HN=tYO9R2(?Fvi-ttUIm*zkQ3OpYn9W#9GA|*2kM>I(q(j% zDBme*URYuY=c?OVWh3B+T*4B%i|z2^pO$E6H&py_A9mk9`sP^9N#sMA(tDveu1ao! zMohPdkcs6|i-lWCiEv2+T^*&qJV}JUSzY4Nsa~l9ZpJ!8-gU?2f};FSOr=oHREGyt z9gLb;O@E6zh)TDV=`st%Y}4>2Tfj|*9^ZdI zBnlbew~PrdkZ;5HR-L~}g0nzrRrMp5eLTV9pNJC^p=XcrN##haZY`Cs;N4tLj8E>3 zP<%n&DXy;V;5o(tIc?EKyTg>mW9)gZJ?d)*go@iKL}t`mFMhEsd57Y_*dR!$n|4Qf zl=AC_*(=YRaWO+X+2{XP@o$$?DI~XE_}YO0#Raiw5WM@<`CDXMwnNZXZz$gmDP$`? zAgnj;MY7_kguB`Q+Y{R3dh>iD@!oDe3gLv;7kbkTEofLKGp|`2ax)RE)3~f82?`0eNtq=|4Wg<`?qnz!awydM*jzmCneptYl)XS zB0HHOSI$K0OpF+*Vp4NN30ABxd)-7Ggud(I`VV3Ut!$)N6>^f7tPf%g<>tC|hT%*< zjOL;9ryMjSMYW2{H)RL?dz@#Fs!Eot#s!%$kjNvKzPESF7G752ow=^4Om<7HiAz|! zTuUc~e3{tjv-*f@y(lV`Iw@-_Bu>A4Q>)`5gLn|JWZhn|{jg%r{&hQ;nW3J^J~yN| zEThB`CBZaqvW{)YVP_g~63=z^&*BM-0@h-ZJCTX5C8?c4b0zLfqKSwIkCJjNnvgbs z7fSnmJ^9pt=)F~&X|%7u6peT#K5uCd&2kjuOa(kfpqWeQ^#HoX;St^E_m4Ia87MI& zWxI~2F-V_}BO8bA4X~u>XI|(#H!8(4==QbHwXL45Z#&=HWE3I~c45g53lA?B={&Y$ zi9L6l9bry2xI3>7OY}VF%Ps7y7|N-j>_g-g8i=!%bhm>63QdWtQ{TKb8BFx+(PCv2 zszCc4kM?L&sxCot;BR$ZZ@KLm7A#wGS#-52OzY?xMS0PG(r(;I+bYpbx$s&h1n=9x zRahPbewV6!TCrd@WPaGIUnN{1HJKmch_D7&cl8e&5*qVHA|;p-eKj1kBBxaAlY{-! zkb2E3-BUUpJwB%Ixk<3`v=P%cNseUAO30@x%}Y;TSxubIDvRbT?aa1z=~wh8Bcl^YOkj75TR*Ibfp~1Hw1ANmg%^L+ z6dV2c!$<&xQ^#UFLG6;#ydXNZr?L*r(KORKzcYUFf@<2zWTyBAPq6MRP0_~w@kTv2 zLGmZyRXa?_;Kv=-2H(P_J(W3DXk&R@)HE3*q0q^>QR+4nxzJrVVt&;^2~jIkGzY>( z9YAhU&+DiJx}B%yTY2k+kysKrK))Iq9pzh8unzll9|J|z^bNn4*aqlT;#&LD<>qK0 zqZzq3nw|`J7(6|BfEcDhrJL#t5(#ALIszW(@Zh1wI4V4`7Uq~zd8l}V;# z0rF5lsfnYtpt3Rw$N^*lFVSef!Z~uk-spO^oT{cIkO~Ag8+G!u0|3M;v%~7IdUK_0 z&RA$-pZc1pV6>2z%P}^Sf4=v2(lXN>d@rG?bjF8MlEwx;9Yg7E>z-Nt+#ihqR>j?* zvVYUvX%u~U)j67^Adaur9)C~_PC{baf?GhpW1~yIo>oUESG8je32?MspOuusgK;1b zyZupCBYVE?2@PWJcrYkXe{~GlKnCcwa_Ml2POpz|`BGlHsEO&9edqQ(As)JG$_S53Cvf+oH)4^7U-$ z+MrzckmyYdpQz1;6#=dYKZOoxMSI<*Oh&VUWasP9CmxPGrg zxO|989dEf)x8JO62pt!kIl;i_3|X0DF+aVK05#A%usp8?;X+bA#3b}7)Ga%Vj33{v z_d9Ujs&I6Aw{GM{Ur{SO}IQB}fNf6H-RV~_>2r|nSJz$DVVdD0CZKKD^^iT>7wc9o@ z)9z_=uZvLxDHM=JCOxG}KfSUD1eXh!QG)152ShZ=qWvGAdF*}CMB|3ClpK6$1;GVWa#-xy0 z`Drq?5iY4_Csxd;Wjw#(t$`8h|fN zaPJ@t#NdiKI50kJ_zRIq#TB=;wavL86T0E8Fwe6D3QYraYVNGc!!X$EvfQqt3JZfBH$K^KbKnN97hqJqL6kSBtD{>)3_ zZO1Jm<4&Em_Kq?|58r1ype0{qsp!JD_tK5(nrsRu5A<4LeSXh@$DgK_37o}ULg3xR9YeQpXzj`+XYrjdagK95Q&V?lQ^}} zBtLp>8=Qeh!Az7RwjC$;y>yXRIhpLx_! zYOBz%55L5!i>twYo@05tWr$$t-bAUW7NM8w@}0w?twG{`ZY*>%XNJ;}zqd!*s0EEH zPR~b|{n&+st*c*PdgJuMlOT`<*h6CR(^(x>(E-6_GJv1?1~_0;4eQ2@se;7d|BDWI z93*9Wg!i<3Ox^baza^aa8mOw_srStffANLCfAdSNNLTsSS6pV}UTC2Y873|aC5C1* zVqN}b`Q!Pe_k1pE1-DXQ9K~GnXOn-0mXsqzknjBbL5)$Q*s(BD$i$aRb&dWrM+KC3 zbTdOK<((rOmeM^BLf?BF!R2elRsnBxnu_uC6#$21?rzw_5w9DDpz9jZ*(;Wh^u1ka}k5n&vR=6 z0fjUQR<)wv$FHD1j{~r;4EBS2cHK2{x!C*Xsxj#VN@4bKc zEM5L#5?|HLZ0rQ7SvnuH#IyZ4prMvMlsQk0hRYDxG0bt>2H7@Y82TwL>&$+T=Y&Jt z=?Cl2L@S*3*T_z)%s%O4%A)ad_AI%7uyO>P$$yPreLBI>hIrR4A@c0^(6ZFCb@%!T zW>wRUs2%hbb#u|`eT=y(-!ci^@@T5-8MRiOFMnd}ave{uqzQ~LF}~g!z=nkwFtgvy zIKDEKMLdsgYCCtI=Sz!VP2}b|7d=1uU`{U;{1ZCt?qacxNI>Wg6;)`O;EJH>OAm7Q zZevl?K`c{truU13n(blhw(CQZ3ck?7^9)Ro-Z!ugp160%v2%)&kxo-B)79Kf)yp&n8e_K!J{s6hQO4rp_ImVQ}G z`XYjtpu7ES(gU?g;-Se&%h$)N&$Z<97JbgGb=4UjsDYRQ$vwNJ zpP`@4Lf}t10P(dJ$Bl`a*7eHYh&nntpB1s6KUqJK#sFx3taZb06aaz(1<>fFPH!$? ziw~eNp8;%pwN7JD7hs|Z3UiL<+0S_674&@pI%qIK=jBD4i%zr$dGJ8NBVLd;2cD22 zjQ!y!$Es8Mm_9m}^9QO>!%MFOHyka%Z!;cTxSoG(zt}9x@7sU^2W&Lbz@kM>$G0mn z4~-c0MLGf70L9E0fLMM5UG*p;DMjK*Qcf}&Lh-ng7#c&sUsu721+MqL`0w1GU0(L$ zaeZ$O!?yKg4Yk4GkiH@fOQ8gRHYYtZ)c0XO}9)}tVW1T{9Xw|qHIzOUxuJ>yr1wf1Pv z@mzTSw>h3OTvlgSV7`bAf^M*>5V! z-o~OAXX?^MR=BAUn-(+9M+iX#CN;HV&8!bQ%cLEyaYfD&;6oJ!&1{)ZPT;xOVY&sR zQAdX7NsD90C8%h0I0!|q(|-4kjL;?WjmO@2>LN8;AM@t65ijbm>MkdMv>y>xsvr~- z&W0N?fTgVCOe!i}59%+l_jD^^0+q7|W+ANla09ZjdtcF~wXC9RS|~`;Z5ykq<6|Wl z7TnhOc1$i)ZKCf61~=!dGLPb;2h>VyR)sq--G8^-Q1(l0{nM_^L5bBh^-dK(YiR4U z(!*m=i5+I)mTT(AOEUe|9Kqm9w``S2ZqElk9`pG4>s%Gcsi)*hI;n~YI)l+|Ykae}S4728MOjc|} z!5+;>#T+b$nD$~-DY2W@!se&58?hRx^$YU65yd@cm(#aebVd zY!IkRnEN)Q9TV2*#Xrly&sXIO?1H`n=N8jAo_&8=1<&%YG4EVPSKIwDxNKp7@FEAm zsB`!j=;_G=wYI22Wo2byS@aKu))fU!O)S7%fq{j^`BFBwjOnL5guB6KDXf3U^A-nB|v$o=)ICy7bO5N34UPgnjrIAh5F-7`__wBx3) z@8j>!=vT*}6$S&_g`To}(TjD_=_ZFc7*ZIP3LF9^@K zfuP{LC2J%p6*v2lwyr}ci7Ryi18fQ`{$0QBh9@u7QLWhk-^OWF@R~_#N`wSVZ+Nut z-nZUF0`0{fa30hk0?$d$4r91mR5CW*A4yx{dxQazZQXNQTKaOK&`2>^hlJgRo#k`82)pPCx3K)ezUvf zpOd?vk29XtAJ(W+`JQ+*2gHLmzp--3cU&V}l2MrQ&W|Jan5$xiX7C(QM!61HF9Ht$ zSOevL0D{LN>5|UAz27N#SKQjuyj^UOmnm8%dP@<`TgsH4Ktow}tjSy$Q;tS)Ws>r& zbU-<1>NvjaQU~cHL_}|`^Fr*h^O1z^R>^_<=`GAU2< zN?03#pL|F@43x4y%Faxw_SNI}zNbo#eqIc^tE3iw8@J9_kM0&3idHm*n1P%~KV1yU zc20N(nt_m71N>oCOAeIs1y03Z^t>I-%hK%mDu9BQfzt@2L=&H;h!(W?Ypg66Wcf4} z9UX~vjK(dRm0j>eb#GaNo>&uVv&?TIpxo=;y?XiHFlq z381&-SGvy;u4D-pXV?jc*V9jyVMO-?r?U9IchZxq&VAzfy`PJJ`K3Ng+0c){!dIcU zbFs`6nacZtvGRfOue&F|9plEBhbeDrg}$`QxsARd{9z6ni<7}FvwKQI;981Kdoq1E z{(%pMoEMsj*astbE>X)tq-|f}0>@~bNBz|8d$YMT{`9yqv9Ym{mXkBx?u+EV`~yx-(M$v`YP{7G%6~g0 z2JFGW0Q=6g6ft4at9GXs2hiOh1(3f~LPGg~zJisNmHVhT`Paw$i;R+E)AE`W>v>h# zk<;(pB)JSg^#cMxMEE{Ikkf?{7#J9v&cBC-hm8UD`R59lbu-}$fa8Fntxk^j`EMUU z;Ui*N+kVb#F_!Tc-?8JbhL--^xi4I(PNRj>l6m_7BjhzV;tBcELgBHY&cK0X`g0+D z1@P$@n3$;O=)Ir#@L*)Yp&uf_>~qNW=rh3Kl>gHaVIc>LvwaCe>Gm^zOq4rb?Ti7edMd%oZwr0si#zrAPKw8_Yb4W z`vd~pta;aE6e~%iRQB1ggan~LECEI2kLsNNF7vNUV}N= zD@6!dmiOH4Dc@?3UWcw^N8X^s3(MGv@qSl_g3qbJnKe#m_$N7=&PP(WzCpho&UMMq z9~OT^BzW`nCKS>Fys}E7OR{DxlROd(NNRhZquN=0yaP$jZ*O-&q-PKWZW$hdBnyDi zCGqhSTD{ri)uW+&GtXOGC>O|_nVIVTdUHz@avi}iwqL%*DJzC?HPg>kmI4%W z5%3Tp8g=x&FBj2*jY9C~-+7(jfNwz85tFl+DsS=K838JDsj+USG+S}&w6V^7zFNoU zHmYWn;T3Y&Wd#XshKzhfKcA{&QBR!e64)`IU$plcKm~cBDrshwT#d9cxe)`=`x? z%1uSh*?Q2HFd>t>a8DW0V*b(3!g=)K%GT-l-XrK{nfO!xfhz=FZ_!4N_(3rp9o+ox zch2iFe^%k2EQ$iCGFWN;B_$N{dHk8#b^OtTlkM@^mh8^Sd?$s4UuprgMc6|#158Z- zu}|0iT4a@9oQdjW_$|^n6Q%#nIY(| z+v2l~#@%wfQz{|*a(ZRzoivpF3CtU&8+kJ4sH~wUVUpyFs-t!6K7aiA_OZpwz27t) z#QpsTO9NGcoz>WZW*ZrMq>1JjV)*TYy0FZuj|P zkh8y2)uWLzX6D%Vny2rGyoJyc%QRMElT|8Rxtf4(;et))X zgzP^HE}fPtRW*VDf)e}ThN_Xs8b`@T;UC|9RfY)SZ`@#-W_85=f!sYOv@sV{S8A$fS6YN!LzL$^Ybv-@Z8R!nXtSvyqXB{!d+qoZ%Cx* zi_6ZBu9!)bGq&`Ut@NIUGb<^~{-_rIgs@{gg(8zmvV2*`Lvo#m&UgLZ4IcdmC5>4f z!1pZ&L^t_BfD^7sBfo{F?M+t)(0Y@MBNzr!SU5s{`~ZO53|QAb{V{hZ3$3&-pA#?O z%xkgU;R!U>f&mjK;9~Q9+Dqrzjv%9^g>%$zNB(p_0Eb~f)0Y5Xi(PtPsp{R%zQ%EH z!vJSrqVL(j2{{Sqxgm9LOdd`b@c?CGpj!+O!kGa>+WqO$3<@7`(Hthz0{AN|293uA zWzfHUI*ow-oG~*F_x++NF7VEpo16LXW&xopo1}~14`B9=nLR!Ln2QL%eA7b_!EJSGZOHkQpCP}z#Rg1SAt?t@789+AQ8AxPsskmq3wJ%=w^Ly5W3Ba z;0E@Bibv-<6j-Y{{&Ej6B@6^4ONUbhKyud5MZY`8jkrI0-mN%ud1~80y$qc;H;3RV zb(lOw;~+f`!oQLo^Ba4LMvcCY9|Ga1du}^U|)8VFK5+)7I`3Y=#gPC zB)Bt=??fXW2Jl5W+>T172C`x%Bo=B(_e{v7dg$u@Y=y(~E$TG(5fG9{_XEa_6zqu{ z-1V}ba@bpttBqwI8?AK-2VVSNo{UMRDyY0>sg3PlHiNe>l!P!fYl+UR2O6}+aogSD z<)#4q=--b9_xUXiy|aZb%l%({0-!c;;JfE@XpoNl zu(W&wOLYso#Lm|pP!$yqoCT9CP}XB(Xp0jtt0~Gur%Xw-cz49=+j8%qV@(#)z(he+ zUTQz4{18XIZ;z%gFG}yAPZ~bvEZOb`xp;2R>5kYu>4$&wAog7VQL*@(GUxaHNb1^T zyq1dca-*C5al4gA0hjI<4ExqX5a8Lr3dp;JM^E@sBJ2skQn5HY1!7VXAe`I&K617X~&+4CYzRP;lOWUjRrHMd4)DK z(G7m{AIZ9MV(!1}x4OptFj2MfJ%ox^LJIjqvPEgltJ?9m%`YIyECwTqoS9+}CEJ7< z3)ZEwVL2!XDUIE97snXUR+7IGZ@(x=tD>UO{M6!P`0%koVR<&A{tchii?V4+FGuFp z0Q2dZg@W_rEXVK(-MEt?(XLrrMvhr>9|9hjSS~(~E2ee-N`qIc6R&Is?OMHK(FhzE z#-HmSm@NirGkcw3>}qFe&tKmDnuIuyO|PdPu!QNmjTEqez6DJQHfw|0K5C4+g&?Z^C4b~(6K^XIpu3C<#-loy4 zfJ8CC5m&Hecd9eHigu-s440kBHm9F^t&1X^LA+dQBp z7!ORv8W({JL0~_!Fw^Pno<^_J1JrH)0!!B?R~I0v69dYKy(}-GI_mO@imk$EMj)Ok z2)L*BC-Wx(vD?t|-3bq{0|e$=4`dGR!xZWDE(eOh3OxX4e=-UVX@7X?o)43rB%0IQI^O0 zT^_KQ2l@_xEi?Qtb9F$)zH4pvD7 zJh?3l3A0b+ZO3w3+&B^FY4>c`!xMtbpjFlYxsRmr|D)*~gX@g8Fr2ipd1BjY>@;p{ z+iYyxcGB3k8>?|+H)_(@#{F{d+&`Vpbf%LzbF%kZ`^DqW`>-j&ylkfgG~PdKLjz^T z!u_X>aSA;i2aHC0{a6|NYcu=HzLIEMg$Lo{u^8mGTR;2HSea_aq$M`oM(4}xEE3va z3k==p=7W%|RD^3Z(dS681BOUd90Xs8M_;|p0sxT4uilrJ4wlWf`UR=`MDlqrs+@TZ zwz|TE6pACNO{cgzWcE)|Xhl2M(*QgJE><~ zv0oV+x{I0nB?E~3&|*_E(jq@0M?R`0P-!(T^&lLyV-Ps=<#s;jN*CrpGJ z#N~)v7m&pwv(t|bu&3)Sm&m>iqn9E+f2E2Tl{#R%oy+KD{guMJQ zDwkYa7`f$1q*3_(OFRvDZoQX`I>nXwEvbqz#r-^cy6$k|^f2y{B2PMT zvU7}~*!V1K=k+erIN0cfq{%|pVv;KhruNcpI!16kzdp~%z3aVo3BzCk+?S9TefYor zTg=r~S5LDPY>5GJ_?k<7rePdbz|lS^SDB~qRhN#n9!-MM5;CztK%n!MlP#$geXlj-taW6m2h!!`&c#JIZOTR z9F)3|iwUYuLA}?+r7xhR7w~s+o)}~7$Bda4D_w~&Z}rUitQ_jlc5O02Ljz$|fL!+% z-taV4hFbn)q=t*jEf?Oy>!0;uZ`9-aep9s5zki3a|61S%I0`!#F^rnCU>^(guQ6?# zORdvynMpKtK6eN&l;WyLVW*0X{XQJ~+kiM^awF59gvGz2@Usxj38LLMve+SU@&55! zdLjp$z0Rk_Oz}_jc^pLW&1X+_pcLh-l;}#nj@LT1l`@b(r-Yy0Cb^1*Ta899l04%5 zJwYV-c-j6!^p9r(Jn1a`&r&U^_lb>l>E8=rlNMX7R<>)4HO?eb7dsg2_}BNv%F0X1 zrr(MTSj66b7Ol~e)d-#+Cak|Ul!a((XaumVK5qpDA@PK3+qD<3GysN)B%p#l6zIw0 z(0&^wi_5dbt?jy!W?Pd2+UWsvM+Wd91jugOz*)o)KDq%2hzQc(zGd)vumW*@@d3xA zvB5c@i4Ms1gA_yD4)Ym~&3-jZ=(=qT0nJdq4F<5`V|k9sK;u@Rxjh{e;#(f+PUKshi**7MQJp2{g;(bI2~xzXSLzks=GebgD;- z#0R@E|I30N<1-PRSZjroLd&=V8jV*jIqIGn?yjeq?SDMn7fJQE&*mlBKPxJenc<38 zjy?E+B~igAeqa5<^W%7=jg12UT-)@Vh_)Ib>lju?&>2_l9n)%PcOo3X-w zZZj5776o#<;iyo!w2UAn06BbEe>%8a&+JyC!2k5xPssLDpt^t>sB;hz!-k9aIS8i- zYAMVK2bgRrRN>l(5n+KR50?Dp0p3%1*X%*L-J;8-B}HG9)iY&8^3_$y&+h-tg+N+J zkn-!!fAM*BF|_vHaM=NI1_J!`opYeebpJ9x3{K=al8$&_nXd-;O|6$tFE@G4(hyLFzWrehg|ni1nUixx%+}q ziP@y==jItp^-vs_WY~3 z#nLXnYh0BhI1orHey0PkPIY&JqWO#en<0WLWf;PieowRFY}@u9>f%v|jTx_S;9k6# ze8XWBIu&8$LT38f>7iCIrpvGPsS1bmpD}(aT*{#)p5Yda+LGWG!fV?^FNbWU`uoJ((h{6i;FmJFmEIScB=mWX37d z*SymmOyGstbm^ndFi1`PrK?92ozSA!f7A1UpUD4Q^sfKEKpyF^Pl1{#I_<%kQC7 zu@rs8!q{+SdkAA@OATFR^_U*2CbzQrd?G$Qdj>S0E7a?mABja8LUb$P!ksi>TUhLF z%V;?=EmD~&+WWwS4;gAmyfiqPt+R;Ibn9oR1d?P`Ax|#S91c3<+o!#84Wo*M5%E`L zg|jUxrkf<)O?kzeYFi?$etDWC>7-8c58N3mi6fOxzoV)yd6-^X{Y?d3Tn2!iJpyZ1)ULRO)fdZ7owl*$6_et+|lo4n4YDtd=Oy*RgI({?4(3cZz(?ExUUuzaI zKD#t^;Cb6Fk_;s}K;`XU43*vbm?&ko+o^z8PT?gNXI&~Lrnr?x^N+SL0GmDxY|2X$ za!tNUde#(#ccMe6HOi~NvnVsrdHPW%7K%jh3s}x^Z}lDlOp$_W3Rx^yV6>}Q&48XT zn%u*UT?awCe&?zMRF6J08^AylB{an!A%x%Zp&C?17Nl3<&-MO2=2{r}>3GSFC;!S` zSSzzE>i+rs`#6J$t=ruSfj;^aGb@`I>n}5FPHqikV7;9Fj12S1d6Td2daOa%5k>T} z0}@_zc32J{BkdbXbEj+H>-|@&3St{*gfe(+_KL|<#O>BCgO>;X&Hw~*$MyZS_WNzZ z@9IR}OWjj=wZZQ9b8a)9x2FBDm)V>?`onQybMjcC7FwAoxB#aCntZFn!ej{hM+3Ns!Z}*vg+#r3vzR+&)3f2E26hxc)nvAJ_*E4I&lk*alrykOqymt-jp z0#F)EMbkew5MqKBEc2JJjq78%@EoKPN+{jPauvT+qa8-J7A#^nE;QfE2wmgUohK1H zIU_rNZY09Uir7Ql(58R47(JD7Kj5(Xqz6*5*_m#my^}u8y}iYWHZCQH<)`a~DZSCD{td3h?w%wk za8GX(YV;v*C1w)sHFV~c%J)f;K`Jr7aE+BK3fEvlhG ze8>W@$OJiB-NPz%7B)3CH!g=ib$D)cwsy&_X}x`5Yk^(3seGrRygVX8#_OoOv<)Ej zAg)-Xrlva1$#OPp_|A%9IRIxG$v7);>hQ=5Jdy*eH_OLnD)d#iA9#T2f#hDq88N{C z%sQV9dR|v4W1_R?7MUG(L_Y$lKnWpEEU>`SgW$=;qk+dhq+MVKU8k#nkxD#Vtj5Cv zj4}X$*BIE$4}gQ(e5Jt@F*vWY=6lM>T*DwVOd^(r;s_fE=$m)^MN`TQFwQ>?K)_lI zv^5%M*|sd{IlGnp1apdgM-F>`pw2+Qv*fR9Yb!3^KC9E(KCa#Vn*}L_O*UbsSa~r@ zCdN?bbB9{AouVFTn)4}a_Z`o%jxdq@q1Is+*u#N%?qGTM+moN9Bu-TD#5oq0H1jes zJbcKY1CRzj-wZT=d37U^UT=}rNe!I^7d52^Fl|&nP>N>N_4}fj`pZk$rX4yB>N~fghIk^GmmjIjGGlham|ODJ2I}6WpsaGY~I;Ffme4`+y_z zBYn8{BE5uM)V8wllrF2!MuHXR9t_oXTqU@A58AbE@tThJGaZW*2#TAMb zD+Ig3x&oR7GY(fsXYqs+Y8>t&~A8CYHrkOHCkjxa)iRBTKYqm6{mlz z)XBXw51yQws-&$NHEFlMYF=w&!IlSysYOoRF-Vi?j`!ws;Q8icSEwYB zNIvyu#B(?3-ZJ%ycLdY#={WPZ&gp#P{yXqCv|C&0nUkF(WmzlA@vYe1m6r;3Oc*Uu zo3hP2MeWVk1^aXCrpPLB!o{3X)vP&2$@dXD7*+PsB|pCPi+AouLK3!WTU8y+a=A#G zlc$?7@{^x%1Fx5(zS&B95Wml;6LpHLIuVBcj;)wHwBSWD)VWgC|5~m(rPW50E@vrD ztofRT)9_^lf@Ll}NYxbKbs5;mH?{+uvzP;Jh&&0Z?=3uz&HCr>yLF zl~Py|CDh3kz&}@T=|XQ<33H0TflC*lS9e`{YHM~U%0~&<0?cP-I_rMOL zd+g8!mdV}+Q+Dam_*nfPKiF=AE4i8Forwz~f!jZh| z95~SDArku+Y|89BkaH}g{QJf69Q5Oye}5}HCn8=ZizuRXKsEPxN$%#n=04qg}NIPR5FzT4B6bin-W@3%y1d3Tct~m|Qe)YJ& z=2l#L;3Qpr_TWFlw6$yHtw^krh&x2rEhuj$HGIB11;FH(x=Vl#Y0d@oDUVG}+0{jU z2;h$&A!Q{`28}v@K!i?scyRxKk|S~Np#W-k-J5(6BU%Z4M~^+$p3?{si^iX_9dW-=6{0Tw=Is0qru^v+mXiOk*q_2xvm;w<S21&;he;U7Bqg{NZPjES8*sE z$A||I(3qe8>=b@%$J%Naqp3``OdIw!I%I20XR+j%*%}1#DG<#59O1q%NK9Lv4_vtf z#?0RBL?FLRU+{1Vc|RDvZGLzAcdelRPC!wdEjKt&!|)rMrXTn-qV_$+%>K49jPh;`8BEPy;cQ~$gyXuFZW;GgwIs5r+2M|vF`pKRi zzZ3ocuvC$>=FES==~i;1hbW*U^t_3CDoe!7I&80%u%m>!N^{sAYgf!bn`0>(~?sA~!(f?2lk}N}Y|%OU~LExdW~z%a5%8 zzy!QbC^vmCUPGIY)oOO5kL7m<>Edi>^=$D1;V^Ty_E<#@ZQj}+T`G@x#<$)xUu$`? z&Wt5?!rgYOD}>cBLgn!#yft=O*6ge$5fJgY0N1K}08x<nKJ}|$KlvgJG z&|<0TK7%}`6BQW(9Y2&m$NHuDiwi$G?$55VS-CimIO;W`kF;#m2v}C6T)A|$maOPo z^0h|WAWI<(D>0pjJ&g#28i$$lg;@lq>gQ#XgMmmP4IiOV`?NndYzrD&n(0xK+)RWe0C&*0>&(7#u3`9Wl z4>-7^aFa&5C%Pp9qmK+R`Buo@Vp0c{8_xb_NXKm}^i70uEqPLw-~P|P(`i(tuQr!< z`*(t82dQ@I9K6GlGb%ZQo8=gcF?!#Y^iM}}`IGl6pRctav8P6#Qokl*iA6K4DT#>N zkv4nGMwBKthb*6hR6Ykg$VSX=Il|Jg5R#$28PnbyN?$83kR_$1`EAiN z_AMsT*ZoaF32!w<6m5M+e9F>?W{iStK5JJJBtb9;1C?Y|a^f`4TC)se9-vEeNHili zmkGlSz?x)47PMq&H6zwCAcn2qu}zmikJdKCr_5h1W7RCOG-)gSv7y?%z*52 z*VbKCMK6S6l2B(XF@C%ah%RK<2#!Fgz!5lCS~Pl0zm1#geVNFn`BC~2j|6b7dW|ju zxpDm)eEmT2bz!0l;FLlB42@(0q(MHs*@J_kzAu*&tZZx_MBY+@q~e-U4QuJa9A0gK z10YML(c{bSw&`Ks*pZkM@b>!b1f;}(b+h%){c{FD8~?!N0D&?~wyR@cX^xZZZwV=Z zs79S%8l|V9u_T5GLncD%O{7TZ89GjLo9ALb{c7zFoMzx3rlM8y@5TW~@E6JiQt1vC z7k}v{&D@U}5;Wh>{X!g%0e?yh|L=24Xv`KTo)9JTO+J8UD{R95kf(szFK7|<=!X&n z4Zm640@Cx8`rZ#b>4j(UyUPFm@^C59S9EiN!~c^(Cgalx0o4)aqRYvG`u1GMqXW?3 z#8p+T4M0D6R(`ag6H67CZT>a&J?kuiGmpcl=?3X+8cE85wqz0^Oih7zfC7!p0BAT@ zhx<@DLETY%fF91Nz|UcW0(mDM`$a8VJ~5c~Ax<#3qxaARMib=N&NgksE~@xvRw88M zh$3y!ZUYA%3IWBc|NR9zmRo#zrUk3pE2?GFTbU1yjrC778w7VZ=e9Esz}GD0KCV*c z-i?k*=di`i^}d4rpd7GOo-m&9JL7c!clhHw4Y6dY;DG@@czyVKh#dN(yEj9qVlBn&IzA&5PMN{+~1h+*Z*TXM* zB<>aQ)gp|@7R<}HXCucTDOMKtXHvUk?wCvNurD^xa|=CnPZ2H??G}VijF}@xON-kK zcl9sr3(2+RgW7*~?OnjmOS7jA#;7j7-6_)7jG0b}U8j3(d~)?&D~lvJw6I&jWaJbe zq0q5wf+8xztR5N8*lFXx=U6wpoKifa+pUQ~Cb9R++7nun7U&sCPeeB`^kq!h=Bjdx zPq?&R4NtBs8pg3wMhuQPHlJ`R_mtp{)f+C+Q?FtWa%kzI+&|q%lqQvs(M~Z-SBZ;xIed3cOIz@3+f()2P0eaeOfvbX7Y&pBhqDQOka$WvV2Ou9ykn2*(WMZstGdRRay-8=KN6`DR znEIE?5GL?57A&u2PpM1A;X!k5Qn$s^)%XLTM(Qe7vzM6=>_3iuvYdT1rM(TNf%=im zVZ8t*E z5s0GEg5}!jPRRdUr2zWjRx{;<>{V8EQg?MW2XL)6sB_qcyYts8=^~4uePsW57(+=Z`;ZD>Pcm2S~M%#_iFGPE6FS3)*5VC zDd~a3hxVsw)?{)%puRc5n)#NL*Po85PVXa@NX(tj!XYh?_wVU0UI$g*h(V5Ad3?}& zjj795e273kw7C61IFKf6ZZ6kQdexQ-Lw}G%%X-PeM&UYNf|!P9RlKR1MVY+}aV*p* ziT9{cFx=E50_Iq(@C-WulKzpbEeY!nN9K%${9CNeLK%>o?${ap}{*Vguh!z zZD)K)9owJQEyo5;OB@H$TjS>|J(Q?5IUDWnUd+aaW%-h~Tjln>ii2GmN++|Z_mnlR z?oeDALn zs;v1#m$6UmjV)CB9=Ng=3}pBhjq2$l#4xcxTU%e@G~Pid@c9mi7Lx}g8)V-koeYot z*1$*{jBi@9_6}ZPuHEbTU3ZdQ<%GRQ2q83`I?PKQ34Z&QgYRFOm zSEHYU1<;4Om#XA+0ES1JuB&F0I|?mB!Lp#RQLf+Dlaep zaAS7?I4}knMZn4Z0Y9oZEkX6Z9Kxd4m~q@W01V$Ww6y)Fu1V=Ymh=k{HGx#CvXJuK zKR9p#c3dT8>xvgiU_CH;NG+ycHp{BI}mnW^vt(yhY-nU0RHVwWOR7E2qHULR1;qB{ysmwNk?Q1r!J?lKEj7VhPs7 z6}ZDa4VRi}k0{!OZ<5FcsWxr0t~<%hGajJ4&F`kA%^MiDF&PTT(xZv7<5fGX)=jB# zh!qNZjd{lkdhNkUHjmkVPlD9ZApE}~=Xta$>Xjw+Gk8 z(+Sxx`ikS+KbZPjS#7%X`<7m(6URC`N8sh!}_~< zlkeGpAuNNqwrn9YwCE>Bi-gM#28e3uN~&2s^g-Q?t7W>d$@H=LVAPzcF%3P$R^Iv4e)n$c2|}`tVurAPX~ir7$hNzk~hNViGT;fW6^@ zR`PK6k_Q{JTDY`SCM8kLjjTYAktej+dp5#ML5g~aH^1t1ISQTWPv^`%eVJBxiM6{+ z%1Aff*r;C`GC`0=@=xso)v$+klP=TQ>9IG5s0>w4X0!58J*0$-_-5wM<5-OXmPGxI zyG`i&#c_56tmPVWo`_1a9QE|pXqpRn4zAz&8`(NeZN@Tn$=gnYtqZ0>HB*&B2}Pil zpHFKX{=dRHaU+6%)R4Cf;Vfzwsoa|*$BG8^?*RE zJnShC8&&_39ho#pzck?4kO+!N6EzIX79&{}YhRj_>_jUuX^M|1)9rHfQkemGNSs5d zz=e@FD#2hi38c4!U&fMemN*!yE$y$d1iT+xplYX-kx0HmrHP)UB@Mviuvdd;!u^m3 z&N|Np?0{wE121b}{t*gJ%+9uH%PINrPy-<{dcc530OT%=m+K5~PS>yi=kwj^+6Old z5IO*#3agd2gM&lY)i1hi&!h5e*Huft`*kPh^UWL}0-~g()URotvyc~DGXk95BY*mW zG@C3?eV%R%fk-{@_40k(#}bdm?hAk>93|>R1%aYMK2%kpVLB6lY_d7-NdoeP@ks1G zpiq3M6u_{ay9bcWOZ?v7fXOrz5RyOmmLCjV5Tnj=1)`PqA)x4f_4^=60JjP0s(nHm{!U4j-41{p+RY0>+KK;)1TLC0Bpd|g&YMqTNtv)fXH9bh)y2YhQ30ICYe;DrH_wCm~W5O8V4 zmRPO>mK*{-iGP46ar+ltt;tND@CQf=xOJv-c!B$aB|yj@aF<^L|JJm8mSO(G5LoBE z?^et|4)xhWiAK*`tB)pz^Udy$?p|#hWxxOl7%6EO7;Ia-r?R=b0IBE$zmoqoZ09@I zM}T`Qkpc*60vMc0AUU*NarMxBzxf%WzN_=9sSxGv;nDE7Y_!+2tEW6Rd3Z3}G=_;Z z|Izb--40w)g@~HdhD%^|c~<<4VmhDZ3%D@S57*2;VyX0~v_{^=1OeSsbtw%cv4CysL%C@T|M= z@VmpO+dsca6SHGhR1UGf*|!Nuf5UNeri8ZT36+oa%{rEtHh#|U)a zquiAs3&4aC!U6q{=BH9@Q_YN^B%BICn?i&vXP! zaAdxO4Losz@L4s=o`H6~|DM$oW$_NHheHNfl?&?T-EF>*p4ATP3SFtTCGQN-})h`>2#+k8F zvMf|o!em9~pidqT;Mzmh*6%9sP?U}Hhf*Lrn2rAU9kutFEuI1H@$vDc`_Anz<`>Gu zD4!v|w-GYL_uR(a(onzWWH_C_cI1@lms-)cE2aT$l=a5wBNwW(_hlWwYI>od+MYS8 zlA2J|8tYw){fWY6*XyREjPf?-8sq*nZ7V<6O=7*MJV95~C>=6whxZckp>CzABta&D z3I<6qT(wLY7{4B9?p`JIC^U|LMIej_!~>8O1(a|M?OU5dIs&*inYS1VTO6*$JPywa>wCgI7O7q@9%oP4PCJ@7;tprbOU*1OS{avFh+fOd}8;=_<7f9g&4^!L*xPk<| zF!H2hM-1b9?dGUU`ZuE>oSX}|FrfH{V)Wb)%EuhmuXCOLq`|oQyrYQ6;0^&}^$2jl zeLNoEo|K*eW-wRuU@(B=gb9uR9ZX*E^$YOOun!o2K4#veqyf`3-Qi>!WrS82fN#zQ zFwM`}4+ud_dJ{(rl{lPs_yERLl1m!WjeLcx(Vs7pPfYCmFV;xlJ zGt+K(GsH!F;B=jjt z5DWn@_bnk4SMsCjjX+5F2cY8t@W_(@uoZx;l?!}!835rOTN{GiRazPjxH33DCi#zG z51aWEIX{0+WlcvU@F}Mi6{QvvYYhPArQo@LCT}l~6S;!9zkW&UFk*cTMc7_8j@t)r z5&-DkaKwcIb784l-wasRJAHx-P&_5~@8JoDZs(GU^u6orWAKsME<`R%lN?U!1EIN3 zm;qW~@i#Hux^!YG5#i?Zp9KkwO_34kLl1IUl+yC9X4P#_=`w*cxV#{NN6}?-t!f2D zaF-*aPTlYBSsZ=CG0e{o|JFS=MTdR%w%APbD&UM*QBW2;Y*!vVy8}m0)>?1VV}-a7 zv|CAUPsS{J^e0&a-=>BUd)Rus@pHXN0rZx60*`5Aytlwz`r&hJ58Rk-tKE*-<1te{ z1~#kcdM#xV@r~e%f<|>L9+g$>+gC}s(A(qf{4l`o5WHY(PRgPPRBrg`z|b&t&$q=F zFdz`p56;_nQ&V%SMZ74Z6Fw-PVe$52hdwhW31(QD^u3Z}>U&waa3~hQyOD()p%bLHKG`Q}&ff_f;@#ll7UJ=w8TM-HyC?ob3@;`QMMHSlc-Mmg<&4v#anH0>smM@*d1zd3F358h80w(A6i z#^OXM(aZ}W*k!W!WDv|dU}aB29%M&BW)SV8c`NM|S(s*|Odg}Hdh886_Vmf{>ab&_WF;N!hvEbk#Jf&X_?3cMnm%FP|j^JORM56KLd%Uo~ zQQ@1P43ri~lZ+X6VT%};bE^eCwe(A4{qr?m)Pc0(`B!YarG9%MjWiK5jNt@Ev5m3L zKD!_V#=H9zZ!sfR^@RrB+E?>Nh?qX>;wjoMMwPtCkjA!LE($vc0GM0z=(Jo;|KRxEh%nJ01$sd?DSHXV(?VxOI_>s0lsYv(CG zz`9X>55<~~zk;)l0U#w#ospXiZ!=WHu9nms4;Ht>q=@yrnQja~L%puE}Ww*Q^6dQr~?@1PlGVF#Xx?vwETZUO)9> z^52^d#tZ9Q-D-oKaNQ+xtljRHBx(`r4we35RjNRgVD6A^q7_KN$f`e3F%;KtxLI7t zxSff=G&R{F<+)ThnkHo*S`PL%a%05OaYf#GZG!OsQ-jPR+kt2~>6*@ucVyM+@?mP} z*Ao*H`x^ShfF#Um5n|xV%jLajTy(}+$L58_=B(S64IBlX0Ig4?41RivhjL&mBpe26 zyZwL|1Fb7@<4yh^#>zTm=VUKwyES8f)LPAPx;R8cjA~qjg2&VOKV&lgeE1_{rIOK;>!h39HXNfSbv>GgxmXdy{O=yGrF!7(vW5CRZyMDgwOYOId)|w8oDPit4S)Do zCmxcJL(!gqU)qNkP9MVlq<@G5ig3ZTI;+H@`i{6M?&NrMDR<+ZX$4~sgLf}h__v?P zDr&xegFSi~uTcG$G8k>^R?RiVr{8q~6#24_C_F!FHVKD#3YPvYCka$7eJOc}%TN6~ zCXbmCx6sP<%NYSy>sT=2c5vm4qiUffAiLzf4_Axw??GKo?bu(Vv4|20xt$>qPjM01 zGGkSz*{3UD5xc%RtwlwOFgah(xOTVfI}TQ5^EiJU%wV%GDCshFR8BShJCQMGqgg^} z#$8$QYd>ytvLyG-LKvn^hp|RbVq)*M@OSDk1Ipn#@{vj!X0<0fa@Vy=l#6w%{dU8M z{h#(M{q41(7$1ZRVS)F5p-_%>`e&kdM80~R&j$6lg5t7Kr~Qd!^P4u9EbO-4gqc#D zdILy8Y$|Lr#Hr5{7#ua^9F~SEl>m0k25-a4+svB&K=ksFg~!ve8hOJ?3=UgaKpIw# zSrWyF#aHfxYyv@(Jy^9;jh!AS3-37HXj`wxx6KGQQqyRj25tJD+k!bhIhVfw8(6v6 z!lVX4vSVv1u8eEST-5nE{2kssTT}XH(7JZ{=xxKW8fu&O*-tn}l&6T)l%n9ARp{bK zNbA#y#oH&7^S_k7Z5OQ-n!571Qt@c!>BRF%>(r`xXD2>5=ciARTjQyD;PMC4dzQqg zT&*Wep~zjZ>aNINA@a$k25%)xCcuQtLfEsr*~)ZUs)srhFOMJFZO9E}4P9gz4_uxT z44+GsI(eQvZZTDpSefy*h7Zy4Dwg(><{1*c*8_3C*IUEgUz9Cv2QF)2xvsdaO7m7R z<=-)73)d5k!il46Y4gcR!c_d6F%3m53G*@N%(_p#l*J2&&HGH_bSd^fCA;AbST zIB1~3$|`5gZtih=B?g~kYMfg>y4UO-Ygxn<>gOX=MMZG*@BP)v;IbjoqgLB>nENfJ zp96EhfoyAL=j54eo6g17JKU^}_cVD;mo<^3tr5KEUP7SM8NFnp0{2^x8C2IEePY9LDSu z_kg7ZhD-u(VGGZ`capP}eruV~!~}+O_kI(-mscqhhN4Zod_sv*56Y^ zWam_GC@{rM(n#V~oRs8LCu56VM0de*wm-FMZH18*jjQ+qHkCl&F4mQ6t>TOj6!2>i z+1|2!eW)e{{}_^z5@1FaXK*9R{{4YH?T)LUs&!B8F?-#x$)F!sImSK5_h2FMJB}om zo%_fEai6wSYGN{>)pd+aXG`cC9^1o{(T3<)j%7d2&UsUxvpTaue9kdvfkRPZM_W&@ zO#&N6B9u*#5P^kPqB1=-=WDz?4#lW9D^QAxqDxQ#wwSdSz!$;l}O?xD)k9XSHVJNESx>m0ST|MB1e@! zx7I#uFEQ9=p#gcH1=0N~PDK%_b|K}37Hs&8aLur9FPlW2MwMGX#91Nva zeQ;r=!)+!I&i|slEJ4C;f~qT)uGSo5rOn}x7@(Dw!fw!8AgEY7czzf$ZdkZ@d@#i6 z_vi8lLA>FS$j5uKA50%DfVp#pmzeMf-1FgC5oZzS!tb|InaEEjUeCfr_8V`q_MG#| zqX&c*M~03TaFNJ&u?_2TTs1v}PzYt(G*Xkt=5KfkI`rwMUgxK698Qk$PL5pWO?7{PO^N=^6OU1_ zSnkzpFM*)7wmW!kiuJNDh}Xl?(~YrPP z^0$&h4kcye>JL=>>dp(nSjMQ?Zhznp#+P>p(_y#t%}ns#aA-S9@^gu?O!p?{Hdc|M z8#>{8JEO_n>0LV3)NJSBz6A4cqmDKZdgg24;=!bbyu|QhjwcSGsP)o>)4XzE;jTQ3LH?i@wGD~YAkXi<(ATP=>;Qh9LJ#*{X6Ic=%jpP!j% zI5G$_WKU+=9?v?*_;Po1natV>JMqj!bA(Di(s`7rxh60FGBB6v-X{#}gfmaxe<@ zV7LKsEs}hVWNNNs&(YJBIZ@~p?;9@3y1-a%vQar~RceYfUSc4&+ifJUIe8nmxg2f6 zDMh(Xi8Y#-oOSV7be-tEM@SWu@2RZLv-_A)xXd{d+jdu6 z@yi)Nd>af0RemMu%SFPYRI$hj6^jzB=Oz=V>|lf{FL$0eIChR(lotqK&;~5>JT9C$ zu`7*YG^5vYHKr35KDA@2@bKFS5`QiRcw_Y!z5wZO0H3}6!txA+Z>|@FVJE{nayv%pv1K?4qHE4-Rd~ARQRyL;iB2@yjSYw<{L(tn zG>-}{9MoctI)h_USl)@JJpC~I^B1M$5p1mcj7k}8VCHbfc8-YA-ME+i&7Ns1Sk|x1FTL>E` z?Ck4Yi(#vuzToxw4XT+*~eIURhaD~v5Uu&VBDuM__!26}&Gi9xD_wen#*v5b- z%(@)xg*r`vu{noc_tFh6-{3&LQI$MGs(DRAyDK4Q9ILLdEdHp$$XOl}T-TZd3CuY3 z$5^kPMAL6A8?I{^ys!5$Y#4YKWy@Vqm`473IsqmMc>9$L^+5DW4a{#jxOmlFw@)D? z)+C36-0n-YI3!t|;mafgaF2c3m*^R{B9 zhm?I_AF+C_2O{3D#nyIPWrXSFuyQg+yB3-H41^@#hJnC6Hdg`~Il9DF51aDRWQvgS z(b_R{;WrU5)>FHde>~&EdZLz#f67jI&~1Y&qBS+S(N4=2s?j|RWyM8C&;jowNh{7; z7qZ%y!g?u?r=T}vW(^y2BecET&tzi(pI{|>cDcqB)ilA;jUMkYUb><4@yMw22w?RM zTBy#)uH#diq_p8MzIPhk@3mub_5FN#xtwx%Uy5WQbxB=4|JOD$ZzX_Yc9|SEmn|WH zOpX{Eu3j<`yZE>tbaq&XXuI{1GJ_|G>=4o5xd5TBz8X?!PvYO-N0B4_Td99NruV)< zZLE3BtbN*;P~=4TGm37jD{4q(G=?Vpckf_8QKAp^^wm2m56vc&$k)HCYq6R&AdV?x zpd!%Z%-tRkQsf#mbQ+<4z7u-h1_FIwymx?ou&O?`Y>RHjWz)+BD0!5E1<&rVEjxJ&nW+cC)Rfs) z>j23fOStWR=6?+c`2%_0Z^nSZF3(e0U?GdNQX~3BfO{i;Q&%KWXo?_$`@mxF7Z~` zkXjaXJjY+BYJXw3(;C&YLB>17I!Sf~SSO12ZVw&Y%}`OLQBm^$Cf&?P7@oJ+H`*XO zZ!kDJ2YcWnWDTM{_ZA3R%k@nEjks2}yeion3kY}yfjNdt*&*Lpu7A(=i_93+e{>}! zWMoKnr(bKgr(4l@7N{xn+U0eo?XkGN>fbP~4wpU?jd$4Oca`h3#^_Qm2eT{{P!rrMrllT}@{eP~YBhZ$-7wSXu6X7fg*p|27vW$fC!-~!hNXz7$5EaD zpZ^7S7ti8Itp86q(>^SJ*-;zr?nrvzl{!VaehIr#hhFkDqLRFWf>_Abn=~1lOdY%e z|1uphkwTSwMFSoVap-9-DZdvxpo#=lNLVQbwKZS@WACNqJmHKzCP|}0{Y(_Rgirme~)bpOvHDRCsym5$h-iN z@(oQ%=6|?)2jeM-ZVb@-B zt~KVE*MRFja}k)uO9bqNR53w zZ01>c8w>_8sQ;swjI9DY%2xJNDLG2qINaMf1YHc|U z#)MNwryU&mz(rbA6DBNUH>dY6SJ1aB%W{7D@XAZS^zRqn0Zy*y;{ToCV+D|TLLW`b z02D#_?sQT=pNyBUO`Zz3Y~ar7aoy*$`5kbD{xG*$_jO(f-zkcy=E?Z98*|nrzhzzJ zydSAg!vHp16`Bd1R3bumJ8O|xj-7k}Dhf&~zAmN{^zfXnDAW3vbq-y!tsn%u%MZ_RX5KDMdj4o(`37QM zZAO+x%7~$s7HiB*{8+M9!Y*Eic_Qw^L_)QeUayRQuWhsQBI`Tdj!`xNSch@$TEofiT}jTNdp@Bd04cXF;k$19x?XiC_1Sxeq)@tj>UoTqM#(M7qs9!DVLcg7K>7*&Uf*a zIUgqEiBf)LH4jC(|Wg0a_ky?>qjNW?vpXhXA0UTU`9Hu}p zQLNcwbQi$+rn!?!e7&(b_!yV@XsCd1`#=YP070TTE+m)-Mp`kvHl_t-Qf+=wfmDJbe}WRXdK;vaLX5O8t69| z^+Wl5A1E)ClJ(-t|4q;{D2mO`<4L;SI^vBVh7Z=<9Jl}slHFxk|8cUe!3Uq?iyILE z+=hZ++zR=Y`#+HiVm#_P&YK>M`jU9>Y@dK(lz_+x*OPAC$x`xOyS`i|A&;d2tg87_ zLc66jrLY8`k-6?1YFsY{a5P@8XJ*5PuV1j;o6IrfYpGFy^i4i)$r07GOTSrGq=r8P zrN$$a786?0+F#NSUhst6&B<32D`J;i!HvRRM^|em-s1Ui1nb;3`J_CwgIu9x9$+H|C~OsvFF1Uu{AUnNwH73SZt+gce5NWC!$vW zMm4YcXuUoWgpLXMXG2DMd}rRD#(Y5t;Qj0C!8Veqj4YD zKio>%3B%alU0VR{1Oru&IO>f7{Ygp?YG}9oiPYN`d9DRy#Kk4OG2$4SiY*OvE&x$6 zqv(T@;Z-y_<$^C~Ra@&CkVe|2&~^I0wGA*$nriV_Yb{15eYasgL6 z-s#o}T<5|a0k9>aV8v{Oy+r5*tI&m74M16`X|Irq`s-90X~^NGJN)xApBH`w(gHmu z-S5<{pdVHn<5L*Jb_WWt%Yd^Mpfd$-XsACE**;c|)RtS7llfPiOSC(ms^svwr-xhe z?Z99r*IjF=!?Acgna{%ye80a$%IdYDVT7oJNd)9W;h+f+68ejoq_L||XcUS~jmY0V z!1w-!tt_s(sG9~PcWX`v`oOijmtkXHwp;(+(9Jk)pxfAFu*-R{%%00K?BOP!oim)< zGJf`njr&QyFc+s!2a$+IbztjO;6=$_$4}0^tDj>?(6Tvy%?aYjBxUxS=7SGUIk$U9 zeu_A<=(-cvm!E!F78N(^rmVPbRe&al>OMm}twM9ypcbjhV)LqhXm#;)C_6G5et(K_ zkF47U?Z==kryE`LNeLcd_mv7hXA$+(c6V&bu?H>E#E_$)*vMyhmK(#`sfG%vtkP##q!mOePYRF)KwWjch2)O>fqXVLZ!4vBl5(3(_ zyXq>vPE7ycD=k^yoeuSPl!rITe^Z0!@nZ>w(947mIv108?jXeu)TTfE2&DCXP!u*U+niQl6I0zeyZ%JLuca=LHFIL`}OJXlH(Sx(gIHJTB zpEd3A~|g}&?6C>0E)Mo zu~WNCi&nHM$Or3N$Ed1-a_PKF!cRalcX?tHac7bLk~J|SbPJMg{p0@ zcR?6VfJmtN6s4zcaEICg;jI=??j~T zHaBWc@}4n2M!j%5M(?c{T*&7QQkZ~bT1ZeOWs;8PKIlM*_76uUCc6s*_)J9Gze-d^ zz=m|yg(V%C>FsBcL8ZGgX5YCR#kx~o8l3h$gcb7J^z!Q7$C*G{CiDB-?-hcrZ__Q( z)9un15{IwN#ZhtIZ~~KApVb^rOPA8P7sSZq{hx%_^F!Lyo@Wj(7EP2|1{3fFsP8UR zW=k&BR_wa#2d@X$|6hCeLYR-dCJE`kRNiUEv~v@wB{sIPIF%TU)eX^20S!UrB70as z>8MQG$-w%jfpzgJ)C5-OT2!KYTij4eGsqtyhXIG6w>%^xuW7@7YsW!M9RYlpOVFN( z{sc&x?T>A}b(d&@=`P_ASG{sw(_d+>6aJ(_jZG(I+t{PSK64)R@4j4L5u z1191ycgjIjIaUT)JXJDJEwJEWHRo4k5YzIO@h&qzkfs<)MZ^;&0cSLh2sSdP!E_u| zph0BX2%ORE78^BazZ!M&<}|CShV$gB9#L6z;zfpA{#6g-n3H3((Mcy)`jjEzCA3}! zr%5TpoYUy=zY0HWY71tf7*uSxNjErJQzwuV;+18WLG_n)z3*w?;uS{v_F+^Njjl$Q zT5;U{etZjUv(xwbtO|)QjyoRR&^Un*LzUXMve1aX>(O$WLJMiB`U1oW-dLO zdQOCnqDmW>tCC8>$dEiu7QTE^E+AILBXW?$T(mBr-D|1~ZB*b`q-|-&p|qswU@*B% z5pP3O(|5ep9-o5>tS}juGB?@cNKwbwTNEiuyTDIbE5-TI)*?>kD%VMkGk+l;GkG!e z45@>gx{99$?3`!~l8iQ;Js=#pVF^w6bCm_lBvG|=#Z@{KW8Ei9Rn+9`DTw7Iyb;?hPR}L$jA+e20_v8TT6n1S!nE9PD;qKcKK*CV;EUssuj* zv&>=q>;9(@<~YmWuMQN=EuU7!9}HSxwcRuTiD-o79t`HQgShrWS!QCTLq~A+FFQ_x!1in;A$|?;T438$(_ILheep!X>z5D%^~}d z@{QbU{A0vxoVx$7$rswMe-c9Hw2}}L8(w%z#HSx zP0GK_E@?0&&mb9Esfu)!K-eMUO$wVcb4cD4m686T4h}$LtHTT$hv6i;m+m#;S!~Eu?75g z5gO8>68+^GC`%FL&)quO#v^F9e0~g#c%AeZavY=~e5&s+^<_OKSW5DnkY#RwVX5z@ixMml%j8#kW1K7B36If}k z!5aN{F{A~T3wg8wLBF)%1{(kYQ~cn#jp>!PLfMtd7=QyUA`ct5`r*(HZNC-QNWxK_ zUpR{0@|j!>7t!a`R^o{l`*DZ~_{X*@ zK9C09%?6BUGrRYqvBuiLMgQirlWwgWQY+=#%mFnI3B{}xETge z2dJCOr25Z?Y#LwSzi+}qnYe(#j%mvM^HX7y5?7FBGo{b&p`FYh$%$0fnfUBg4Z~|) zeqrtU-yMDpezPj?Nt(RPPT>J!x0@(=seqEVyv9FQFw78*G_flDeQ$bdD6uuD|8)X( z8P`kV;<(1>VFcNTfCC1T0o^x-;4-@1w@cA*+c7fVUJmVG&0k+A6!4wGc!)+l3ZMAB zPlJ?pQSwX1WD1FMvm>B%MI_c>Yj1pVCcgU<>cUkOBgY*Kb=Yy<4&{plj*v<=b8e%vkIVC`-KfKQRMwsA4R~icDiBF*a|cXdl*2exQd2v>A#Hho)u#Ui0fM zaiL1H@87Xh+Lr{|v~&x+%r>?;*6Ln7)CF>h@XeGsoGtWfpe-K!5$uUfcNq4W_7FrX zTDgI37>Cw(f!RSwH8F(=Q9`jzWf#8}s45jqrq;E=L~Rb^3XXPcR6o)B7yh9@WH%;W zgJ}{7$|u#6o!H{KJjj(+E_sFAd!4k@p2`Our9T|PP=5#)4!&-X)Wm)*38j%9$#lFJ zl>?EJET%8J)Iwfj@kACn66>Uju$Gn%oBF$wUz8ta5G5TFhZbjIzRoJm>y31@bV_vN zapTVG^NkwJ@5we1BnqnYkH>pmkZF%^%Ztr9AdYZ#KF4h2r;N@;?Yi$ky5~^whTj$j z;snFTK@SxUlvFo`q(M{k7^C0Nu}Q4?0ONIiSy9{pJmGLWPJ2O1k!9A)vs;wbJv1Xg za}=wyRzp^@A&_oDk^;UQI$QRL*c|svW}940Gq7HD7<`C~b$9eDNge9->0J)6tsgRF zX1p+pfRwqAIAsmD+SC$k62swe7d|Y2qJ|+W_Ai<7aYYS4L7QbqwS?BPN5{V98o(L< zu$CQaJaJ&UCll4GS5=azsAfvlGP;=kqBp#FdT2$Wp38h!%tVj1JgpaMEMmrLRC}xO z7!gHx@j4t+&q0sjk?LT)vTt92E!*^wi#N{^?a!wF=c6S!hS3#A+sJIUzZy zqBxe8y}bvgTF0_)D6L0tQwlmK{*>oF=4whW`?n_;PQq-E%X(#Er9taJ2B!@itH9Y75ChXq{e6nORHeUUl25zQZc9h6_^ z=>aZY_trC|P#$IzvMH)|;`4a0M6j@xrv2LoZkER0KWnaiz#O)W!6V7B8@7(;vklcM{_v^OY!EK;qPOJFc7QUv@BBAWY&H-uFv*XQ${D>M`(RvpyP;MF z2j3;AQl4U%sCSS7o$&igKG3+24o4#k9I&~2P94CHAJN&0~>QKA(q@<%SwzMyvwN{(RJVsmRYUIGO!|^nz!cKaJINy zrn}j)oUQWA%p_y}ry0ibTwMq?2FJuuln2Xgn_gF)l{LiYxXod2+rO;-uOX;x`rI3& zlI~Oe8CWEB&Ehy`Rb#Cw(kWMh`{qj!R#`P21fkID5a? z5rJBZyg<62jV%>6x+#E(YIrwSQHntyVFDAXjpXhH+qD0p<=#tAl*Eo$K)_~+ed>> zx%RIz6@>|q{0W?9{=bDA&e9z8h_-~dIUaqT;C;gtV@WTuJO`~^U3xFtPx<~d8v(oh z*g(KbM$2N86MXf@Yax|!=Mq=Z4`?C`14JtsUgk{~CeNWCiggVlZ|h*~tCC}|mzy0X zh7Cl&5p7&tB+4*bp{6#p+_W*tI3R>ryk3cfhD8 zg{d9;FTEO0kJE?tP$?Z+*uLa{4*6*-!Dm%a>nb-zIo2|hkf>Ymd?w7zUfUoL;Q z5$(Xmsp{7YEuRy=e`r*$SYO%J_UN@xa->DTXuuc=2h`RXBdV08b2-G9P7tx^OLjni z{HMpoYL8YYM}ykV!#82ySx*bAW#I7b2+lnMY^C89S>P-l$39iG@^-Q1dbcTy6%d+N zov`naBHAijB>}n`3LDHK0W~db5{&dKo*P~xr2Zvg!FJ_7iW1k_l#(Lo(VC{gsqUId z8~{b&+P^rAR>qEFndXLrXXodNd-S&jZC!^Sa--?V1!TjPGq>wTAjhBuO>^n#F@fzb zFZqOPU`^uLs!%jLP7n7Tuh?9k?D#S^UM!g(F|^$qh;y7va&E%AqwFml2;qevb9;UNA%&9L(GC z1H-mxT!sT-qaEXG7eVDbH&lG``$0V~Ub5@PLb(qL$y`8Ml!9(+ zW+c=mPa0s!56q8R1U-t4S*19j&uQ>teT-}4i=cr*kIi5vKsD6+;I)DpX+fFrPN^8O zK9erW`M3S#O;DOMfWRCFtXAVq)ac&}TdM z)UVt%0ay?Ot|L^O#^$1iFpHjuby!^G(2E|(=S?rRDkV>)3dlR=1Af9Qd%|Io^ME$F z@@H{8%BkDEVfr(hJnaJ+0cHbM$bKIS-6R}h+_utA1C5it_p~HNhG#lc>1>wlUJ{HhnmZs(RkdF)f5K^ zDSfIvdVg-6uatl#9d-jyL*k^5UnRDeU11nG3PHBk&X`BekAG~fW*t8pGi->im{1Z| zqiP7#i>=SYLd%s^1kzcrYzoYEV3^d8i1&+$6p+Jb?(HFO4mhmUgIHj|z8JK@jWj`X zsb)+D&2>E_2l@{S+fjd0^E8VA_b3?;nt~%onZ$f^rzaZs9>+E5c-q?o>mJMH33YGa z47#{d3QG-UQO*o(o?AiOebNazPa}Z$6Az8il-c zCp8^!o1HZO63+1Hs|XH$m!9qo$i!2x7PCInV!OYp(p66P_Tf%w=bcQlviS@rU5|>U;JJWqc}SmD)4MmZ!{yL3_K`!eqKR z+@ihtkI4=smC}W~X>*3JFCD6g^JpbqrE$&gkH$9g_h&42@qN;sr=|$4#^5*iUJ&L! zqLeJH|9{b*FJvs3)U)8)%E=k+*60!)lZlT+9Flub?6XE_@Z0Q%?_?LIo4eyDnK2H| zG9BQdV{eIulK+LY0lGUX#l!z7@Zj=$$Fkiwc0?$}aK#_fwam+hqk@-!+F?e2NBg`{ z^J*vg4*9j}Z1vAN1(hXVB6p%}qXVA2U0Xy&+-;F>(U%zBaZgnuSNsxMs9?O9^x+Jk ztSLUl6$EY5p($mHM?;0H)Q}nDE5+yP&%GXAAS5|zc}Iv;Mq4SCR5BpxFW}1q)afd^ z3R_B2x~SnVm{tn+cVw#8-3uOF_Op3pn~?-z{}DOut%hnV5f11EPC5SViX7R|uq#0_ z`bxQ0{$4%Ls^?5Sx>Y^(3jmh-f#+KZy)wuqS3u};>F~s6AzWor9kBX2%J%@+dylcw z%|AzYt0X!yUo@gb+Px^R#?l9pJpQ#6GnqW!J3Pcg!S*wyMVb)9(3^%tlP`l;z*>hp zKn^na!Qm{fBMf~)30G>X2dEfaK_^<>w4f{4`CEbp(SVhrl3VS#rS8Szqj;5DEVq{3s7ac#c zivPgmJ@l?RVO-8q-SVk$qX^sB##3t)gOVl^<6P&XlY}X$e>VMn3s&HWuAK zjVEopcB!RXN)30|#Di&M0J!nuD|a&sOwL2lr-DU~_qFA?GTZ5639aS@);!?;ZUJwO z`ewoHpXJvA^1`ve97Y!l7T_I%rM`fuQAK+9E*ku1P8XL{=4Pv}c+%a2*XMnS$+LiY zZ&y*rX|QZXHS}VeyV7?;>BGou zkQrZUPt@z^bzRmAcUQ8$H$#s|%t5Jc^PTO`xwpnW6i5e6<7G1*?DC+~LI|z9{mbJZ z?UYo%T;|2YWvifqU~{~oVoBX>;A+(mxG}PW;FYv5Chn2HO9ggV+&v{4Vn1HiBqCa& zJvBpIbchUfZ#y_q*0jaky=Z5&?LgM6*ez`F`oh8E?`eM}#94im`OF7v*D*j^YBxsS z_{%bBmK3t11D0R+B|_>I1cQ$!c3;#v{k~nIA9tm`(iR!J*Xt$=!cK%>@x}m8N=X8? zREa%a*o}>ku)g0AG_<=ZwALP9ALN=8(cAk^&IH|lrNLr;=LpUyn8t4xj6LL zg+`x2T{h+N)3-7RRZl-M>!fmNFNpAHq3}*Pg;HG`S&NC$D7T!+blBy&fdXMPPkQZK z+Ca#c#izwhX6aG2wC8rzVf9OCr&d<;M>m3iuN;6zIQ^aHc5^_+#3vKe%Z z>hG8;`jRSVht4-62r&UoEn?#HxPasyzYj=>?<-X-^xJ(K1+k5z7_Y0nfA2p<)zli^ zo{!3)?GBn%f^Ev^CM;awgrpMwJa`&6Yr~2vDrb9K-L^4UaR>3Cy4tw0?1UA62p9^+ zXg;yN%J}Uy(@#XDK(C8Prfr0iA>hh9nY`4pWc4QK{)p0FXG;Ew6epiu-7h%xJSw>BsJ6y{l}?vWnFEiI zK>9KKkpXbVp<+=l5U88roxK#sH%dMSYy9B0o1 zh;<|f2Y`P8u%8i-8gE+uz6rQvQov0RS*#$)syiVDF)e~>Pz0+P=MN1p9{{Z@Zto*1 zXP`#Ca%bH=+x(-iCo<}EXq#f(z0s6neUInoCYuly8l(Qqr(v2- z2}L+^;`2nA-<#I4xl9_gARIL48%xJB5ydY^x$&9Z&)W;7)GH;ghLVCYxFh?xIOCYN{`p1&45@N@8-4y_j1TW`XSkFIw_AAs zWB(G5E!8}9rga+x?nC>~99Q&~Hta2HcI-cq`JVVJidAc`9W2>1G>$hW!tpynuo#n@ zj|Akb(1|Ihzc*lYc-g3P64;W!YJ(=DJ@9#a6@#Wsa8Z9QCy7jXzfnTWvcXEt>0Iz) zGbOe%Kx-J&OQj#GqLV8trTyWphpHs~MP)Ipaw@t^4y@XkUMP|De@Lez=ftaJ8v&H7 z2|>`j6I92rmkvj#JwI~%Q2MT8`-?KUMmR#CYuBZWjni-!r{8)R2;Wb2Fui#aCegP0 z7Twr&etKoR)*{<-;MlKo;I(e7WnvjZdzSjd#rQ`6BVfNZ5T$@%Fn4?oWmN z+GT-}XobF_I{ES^f?ecq^s>=L0(-jf`nBvLd`_zfPbz3$bf*p2t`U`S4J;`n=Lz;? zsv?2xKT${1Zh$Yh1&h@^B;BCJpr-{5G^!hsx4PIUx?cvQ6EExjQf|Ff^@*1bkk z7fYQalUpCM)6n}}R$V1Un*OpF1dKm?t9L3bqtw)p>0(tf(H^BgPK|RiJ+~G8W^=vpf4|0R z#`AiL@_FyP#{nwK+vw0*wVs9eOxvCH&G0~`UYdjGx&izv=``q>78GU{obdSqaMR(&ZQjjw8r5YD1aulY>8MIe%lg~kax zuv8-{r2EYx79Bq_kQ+^jm88hjm`xJ#&~n7z@-1*G% zDD^6Par7hQ<9Z?qAXMw8ja>I7@nu8C!_SVXKp^f?uN>1b!y9<>d6Wae}e<3Rb>9EIq{1z=cu>8yG<{H9BCh zP8ZfPDeu^Na_`vh6*(En-A(~_F4>N~k&3WQu1A-!^e1XR;%pCdNk@& z+&!O_-`4h~ORm=y9% z;wVrehS4EJboFrwnpA*g5lAmx*^#WbG~rR_~dApFyEwf4TG4pnH$~OHR-ii|tMaf`4f1qX^?U+JE%d6ATwz6tg&lbACl)Y|<<@u-3PK ztDXsLQfsa8^pTz7CX~!od-C72%)c66)`C=3Y(+@in*b@&)-ME#=Fr}&e3o21kH4p59+b$gmUGuIrli=M>QWBwrqD}}t)B+&20|6w%ZlPfdC8r)S|2dZ zg7PYim2i`dzaC6cC!+P-`na&90`5)%evO(9+1%z~D~5*2ngOnu%-B0vD2vjVDaSMy zP6mBvP5ZJehO5Nvmd#y_<=Bj@7UA=LsHKSRA*O6bmt*F)^Jx|N*JDTQLyes)Al1K-6!4B`&tKPc^^IAYO{@}QdeBZulxeIY_LO3S zkg8G-!S-v!&H+_c&M3?e5u;CfZ&I;=Dp3udh3m0Ej7$SlX`VL{IH9DTc49VEWscA) zweQT#+EQynjmlPNoRRjnWJyr#uHb)-ZMD&RUR9 zTiM@iKO5(J+H9?s@>8#1OSkHR>(P&drKNU+vt11%yc5~go_&t0i-h!asjkDbp~M87 z45=6p2<1i@tI7$-yRhjAr#Kh!{JtAX^dsk-YHRMOIfc+jE=XREFE+wx&x5Ph*$k4N zS8`1Xpfmb%V$J{8o|bwoTJeC2n;fZoNxH!b*?}b#b}w!c(Qd%oNk>@FeHmdxrFvHmNQ^RhIui$^wV#g_z+~)P%um{xEyv%x}RY z^ihp7C5S$=a{uxuD?^DWA&n_(I{2b{b=6))wT(=lgPi`j?7~+n@sM4W?x;D_w{dbM^$lvJ} zc0XgMmD5~!dp~otYTkdyxmG$P_4r0X1u!Yqe{0OujTD+d2Kxynm z+y1M{zP%qmTRK=VxZ6APOI#^i`a2S>)CNk!52{35QEE>{=W?bGlFOGalTiC3f5Mw7 z*Ts{)f+ok|7O}P2AV2@WsgHBZK=MQ9u|#&Ml7xe;(KnnTBBD-nK_pj|SDS(o)~*v1 z+@l-QyzGJ*MRFzsc>3qLk;ZP{VGH^^ILW>Xe8$}W;oW0u@ZB2af8GG^ZO>JpWZ;fJ zMixNxH;Ltq0Y*(?Rx=n~IkvX}6U$HhdZ|ne;?QDIn=RtV0I;^RY#)n+rdmgXvv`M`JU(#75p`4j<&qaF?)^Vv8@ENd2aSeNqOjTcqH(itxl6ovbG z%OEYqj+nZV0xGy%`L@(&j?Yo^^}%}pFuz!r#TRT#;VxrJ{ZH+RxbdrcLIr1{D%~Hx z)Wzvi=*{uH2DuOO)ptZIVR%$dWbSws3Vd;k0axeMUFp5vGj2oa zN`4tcbFy}YbZ=x;=#7qE)az4z=)Q;Nq*T;|1u1BuB^4|Ooq$PmbCW7ojkd{hIU{K} zSuFEiJq>#{P~|$7QnmUMc?65 zS0NLez*?74xVA;lf%LU_2_Pcjih-PCN#g9{=cC!@TZezzzf( z)El8GxpgjJ#@{L6&EOH%O<#U{0EuP64>sG^A#Pr@$mDUwL4BCink55u7|lSW_f%v) zuc~+Kug2Wi>liBxU=p?f9$g1U}Ux2*%EH z`U!hmR+DY?ax4%Y&`1+AccC{cjXFnW86|yh9FtH4yjzICMQBC8$#?p=xb+jGbxAY{ z;7F>F)AbRqOr}6Zb{CKkTR3(OxrYp(s+1s@9gO0Z$WrI~`PoJKV4-VjwoDGiOK^M% zSmW}2I&;1~KRZq`55v}*jp(SrVO&yPXb%)%oIYHri#ZxkJcIjaFr#C)0_-C64q=1) z;rO+QLAuIK+RiUw@j01ezgB;rgy@VhiPg52g|UA`!uOR1mXKnp7W}3RtSJOg3&})^ z+=b23!#TEN&5!fRy7Y{6(B=OoCrVu`Fr!4hN{(2g#kjxArt-iD_9_KFGxDs0q0I_L zR&VK7hB}(fIF=|1^L~V-N>%MJzSWCZ(E(wX1Dde=@dXMI$)@Rj%egYT*8(S2e;N*H zSH52H!44N6xPJ46dAn0KG`LmArP2i~>j$0Ae|M>8{HwFctXuQ`xIF@LRE6gaZ;gQt z6(P(Rn2({c-B^b$pG0>>?}vE9#SEmq#+eA=s6z2RpXa`9KlpMJN)kqexMK5c$oK1Q zSAbHyy{nu|kU_@H>Og4tn)C19!tq>YQGZ||c80JZ!vXbwaN`6&{>!_?FgBZDY5o2d zUJe0k>#XNn5DfRY2L?d9IC{6aShRR~6S05#?_9O#@_AccB z@i?Bg7WErHdT_Dz7;&O03_r^4Nco6xe2N%rLN)!3&CpJTlTh|Nq;n6M4^-$S&6E{3 zeE(%Ib1>{sz2Ype8a3*5&&xOV7t#^ZMZorPslCob(M7U??y&y=vhi<7?{}wt(R4TY z4%D!L0ArT?(19w=_5_*Q_K5VKzLSfb`U+=heWvFeuF?V}JrA-2uBCnt=nm;qr4kun zLP(w$IJ%3?!E$gVb<)c9lD~jS5~kw^3f<6#Upqb?w{`G}3rr()=~JmDF$XiZ!Di?PZWeAXo{{O<0~Y<)BUp7dkFrOC#EJdq zo{_Tz({ArK0cmxh`_p;|?}F|lQwn+mzrO3K7ssy8mX!lqHo^GJ3$GU+>=q~oh+PRL+V8XVID^}7f6@P%OU z2HW+wskGr}k+CG0s`4M>7*fO99g!Q=J^sdfg9o6KbUG3?y(8A^W)2=}Tml3x>{vD4 z*%5hRL_EkfZ&}-LDfi050xy@a5CGU0w(vaLe)Xmx?XK7QQx7}`vbFLjG4-}nZS2b0 z1Uu^`PP%vd2lUWk^Iu8UOD1w;-Tj&ko#K(K-hLr`t^?22+Ile}%_-Wzl?O6Wl6}#RV?dagillu0qDSW2s=??niyX6SZ z*(N51s@LE`Kpj`mwMsiUoHR%W($#bJ+_zi*GJ^yy8dG{6*y&fHrQn(OSl_SjJL2H6j&X=FUdj?>WgA8F!CHbvBOFeJ76W(;7_7dF7ga4JkOzT5}R#4o$v}#_x4JzcPJHezy{H zVomcR*L1+;_-e=L5JbN@I++aru{$i5dESr5DTLY33a1_m+?Qc3r&W(Pt08-S_{8am zg`L0d8MxW)-=Dq4g4na`aiL*NNF;S1^STNUiyTaA3SChBm%Lc%Ora1ufRso@h2mX8 z2Y-83Af~7bL~p_=-&D66ez>o+DcNU-gcNx12O&osAGIGxxav@0f4|89;^Jm4N4{zU z$zUDpzK-6oem=K32%mVKgxc_C3yCiJzR6)|mkc}3u3TGPGVg4{8iGdpXZhE+z1*6G#+yx~QE#)PyE-G1 zV%W<#18tVkYA8v2GWdgDmR{MK`|n(z@yK%rPR8*^spXZ1sOmUSkH*Fa6cbkL^)l|c zyQa#!Jj!T9>u-WTm}5tuTXcq{aJMtNhcR_TL@l?qYk8}c-KshZR(scm7pCXU>Kd2a zh*HH9dyIT-s74G5L#W^Q-tE2hK$|a}o7>EJr1PpH_Olmj?>B51Z>R9Ko4u)f)f5b- z+saKemm$tGAS$-ghr$&8&f4NZArJ&R82;Ed!xyTjOmv9A!$}rL&2qU24?h3U1gOiu zH++7!8ozA3;y-Tac)PwSq1SBrHxmD{v89;Te^2vxzmyu@Q$9k-8jXC<4J5@cVwhSt z@+lWag_tHJ*#D47s0`2PyyMn?rwDYI#_#@q6k4F?P@^c!CVlF}s$_>m&LB(kC{E=c zK9@m72`|&cd#HRGrzN{n^+`zuxg7@)fA|rH@z1#d9M5_A5?Nbn-cnH0W|X2!I+va1 zS8|+8$F%RQj!#cM2Udy1f&=rsEY$ohvW^AZItCYQH zB7AoCwg3EL?eN3tQUb)=cZZ;iXL|7;V_4{7GFN{y0@Zi?t53{YOSQ)0PgQp)6y|0s z3ma}*VGQ4@e;@;#zI_zil3DTEOXe{YwslHqi1xR0$A19k@UJufjt$izJn`1w*t44t zV9!YDA&#sIYkG}V?!1#Biomeoml*fU$$u*Uv=&7XC6ns^e*o-26Tg5&BoQT{Y6I+e zcRz0Fe;fdzvj%e9KTZRnU%!5oZ7d}e)B57M5$DnG(USluIO`TXwHx@e&*2Q-@D)|* z0|{s3;;7rqgf*Yjh(?xtJ^rd~?fbA|K2LA_9(l`Hb6Z*#NA^CDW=GbxGUl)!bF7I* zR{^$QH6e#~-kwp#g#KLH;qOr$4syuv&jWDRpeY=cH@L&{05OLhcg){uIRHfzF{Obi zrsqCTiRYw|)~s(_2;^nsYu0za)a4bC713uUT%FaM?1a90t9*UP7WI*()#<&-G<81K zs6az{F&<0jBz-~^iFxy|nmZ?W>g!dmy|9wEzqpL%u-3-~W*7S%{6wewCPTz#VC}Gs zlqOT>jkj^ZQ|BPJV<)?3|1r!s@N!=My``T7MWIjChBm6ghGlcv^xgv`!p*pV7lC6s zIkq3T7I>a59Hig@*S%mr2SF6M?S>HMQNOb;re};-8S4XglE<|eGvKN5At)lvt^i?2 zb5gb6*7E69nKXI)#4QmNz#6h)4cZZ9iJ+Qb;qN|5*EtD?3@D0#=nP}cYa}f_!jSP* z*j+JRyloF=T(c0XLwk1jPK%Oj?_80p2l1$Z4NHs3D5xRL*N7;ps0#S2-2`e~sET$S z^cubalV~GN%qJ8AhZEv)fjjRkBHa_^@WU%;Yyw$^mtN}2lV)|_zs>MKjTyF@+Q4Ip& z*O#-PDHj)EY(#Jp;b;0Yodv`(pdj!$qjilb=JYi7dgd`IK5o4#ZghcfN)_{Nyp!B1 zqZt4AMcwbhvjvYlqU9d^;tOpN{eKnFC=?aJ^5u}eb3*Z5LMQ|^H5!?=b}cMj3UV}o z8VF#Qn>f__3#0yhDNLWPd4YPn_MLD?Boa`NudwpZIIhfg7@t|Qz-~twJC3U_jS`=? znEOmOW4+)k&1-fG>gqIQ*=L_=ibSVV%k_BFQEji6Kme}1Qd1@t7b)26B1J`T^2uBH zv8JZZ8KnPfkY$Z!4Fohces?iqJAslC?b5vba?KG}4;mV@YatTRF6mD`(Z_!`G{6NH zXgLtGvN|o^Wr##HVsgq9P5HVbdK84a4?POP9`v9GDZ$Wzda$dNZ|#+p4A6H(*VmhB zSwmj(iBu}8K0WBDtnPELn7f1=gyip9L6e-695i61KpqFC%_+THX#|;t<)KfLl7soi z(Rd^ew4*xeh`bX7Xi_EKQQk~?{F9{9NLN)FmE;R-sVD$b#g6*~<83`!I;-1eurpgu z9(FcJP%tD~^00&iOS|MC-+a(6IS8PND$`Coa2r8*;K@@s?WR*OZL!}BB_I}#@x{w; zwA#;LGLndC3r?$+u7IU0So-dl6znmK=!3U#fa1eXoOq)~&Wa`@vaDI~CBvVSM)T)h znzdlWW~DC2M@4ZypPhabiYl<^r;IIa7Ks{lhU29Gqd}l4lzg#B5+x+bh$x52%N)uH z2R+TFb8a9QswWn2=AExEVZz8W=~py)m)ap2Qc+o_dU2*!Ug>BxbC+s{gs6WiYfw{L z+>{Oa>o&(zT&$Dy_lYGGBrF(p=PVRb2!b{RLxhbMq`1z$k@WvU27eQAqX{wIF*%&E zo%%0S--uQ0oY)SP)`BPyw0K#SyZ5&5-Oc6Hr1d6ZZ2gS3WV#4d_;EK^kY)^$G11QY zBhNzkr3_(VC7&;w*NPkj=$)01xwid&d1=_i%v}B~mCbeJIkQ^GK|su~2)m=n30CZ#e%vg3rH0hJP(} zu3ik-^d0eXEA~h|PXMO_vLbWRqGx$(@C?#T4vx$j!$C!3IAZRD$g<4+!5R)J%0{Y+ zFnH-Z)cg98S+x{nEX1;5$K$J6Nwp{vw)u$Ec9f?}L#EY%CgF~~Ctge@_>aZe9PZ!wt02{H`LwxYvrG&zbltu%5_SGd! zKj`t!D`*FnPy%;N7=NaIsm!c(D)*j#3)jAKdz;+HzpkFoL1UKUvh*Sl(e67{6kCyl zs-jT-?JHEydL4jqz<+_x0@%L<&H=X3#J1DHbw5ZNp{}ZM>)ke9du<5oL_GwdzzV<0 z_zV!+8D14rg1Vea91U*l0T=dwi-a*w%n~8uXhtz87{g|aQ4?`<3|pfURZxjKTGVvm zv>@TMmLRu5h1Cq|q*X`HT*|-i8pG6+*3f5o9UB@=xXlS{hFy;>H<}aV^)I8g)JN@R zAKtt=q9HTUkQrZoEvh15vS{ORObHPc>v3&Kz$uwk?!IdSKmO?A(MS7n{PES~7X%1} zRDS(cOAD8ur>`B71lM1`iCMGUTyjZ2ZoYW~nVI_M34$P?dV6X42zBH#O$DF6{663R zT*&Q@O+c1K{(0?>EywJg4=dM0w2O`z@uOB1K;|t7HUESybEOPVH8Uoif|_*?>he-P z{GpgjUp$$EMlNOA=s#P%dx&-;rlDTK3+ws!vV&P)pM#+(i0ZK;prWWEVmQpc@(&zw z)EZ2|X2yMWHT7{9&vPz**-dZOaeCD&n9SczD*O@bGbCT+GrGN zRyL6D4pI^;;;O6Qt+!zMbSD>I45QQ5V6}_gnp^X414+_I!B0Ph=4Ope`8TQ@kD+5-G4vaatq9up{W>m2P8>T!(Ma|tXkE1 z`5ts1dK84a0X+)B9{gW{uyhrsYui^^?Jo2k2BY`=Yt8sYml^XY{TZNlhoZ34W8`Ha zWNXn;U9EWAT3^^v$QoBU3k@$4M_Y(63@hRYZ)^v0z&QXAd5 zJR@D**9&T_gc4H9b!TQw=3iv;LBhyZ{YAC_=NZH7FIQ1h`|~zy)iiSsRkl62y}`-4 zE$bu_Fl7E${5j)b01QTLg*35c;oodE6AibhkREvd9*Tyy`1}7+1J50GIe{&9pPpX% zjM{f1-~apVq-~yj(@cg=-G>AUFCTI)(PnM2OEMTZ^p*=4G_W`I*%?XqZx6Ak$dY-f z?XxpDpr0L&u$HGkewIzu+5(}`U}Vyeah!SZIefB8q+w+PdF%Y!_L;ljS=N>QyzR5e zXlK9imyzY&xx5&c-RNWZ2z_D4;V{_z`W1l{l@hs%{_^3<5LTVGp;a*tnSTBETXn>P zuUTJPn#44$DOhurnTyG+($^MMg;3CpsOqy)tw=A%wOM~3)|=C@G<8nY05oLgVky&~ zQ!?Q8VX4!X-z}J#fuTZwAL_|NSRV^=@WMOoF9UVqWHq&N>e@Bp8G{`t1DX;wRD?Qs;7!$sS^i^wrPubz*~U}IAHAS_Y~ ziTRtko|PpFIVo>4rmevX0$f`5DjUm6TiPp#q z<-UC2z?qD_{&;#l|2*}3?#YnrZp0L7xfTNUY!(}=+!Qsl!3Jwy~q&sUC*`NUigfitCm#2pI(I9(z)_dRsftkd~Ll zNjKlXzWrzL-aBc0@vVWaj>;p4C|rBTW@bg_>OPm=PL2rwS@Tx1Xp(zjbsngo6g=&&p%n5-%28oCA+p%k({}yL4U~4qB)w%^(pqP%x+z zqq+Ti)@v@nB(`SU6$RdXH-q`}olKqDz@B?HuyB#K?rSt^M4=vA!*%N{Jo;z>p^(T6 zFQmRYsm4N3wNjf1bOWxqb21O#{6p(whNG}@oz@Avh;Y=%z3)#aZg3NGWFsf48Pod% zCJz3JKKbh)Vk|T0X)f zkAySM(0=oS_YN|)e+YKk$p8(w)uvnd@o5KcM?CQoi%cI{f|(`V<;_iqVR)zp(|I-|4xVyG%S{j^4U zpLu3#`^Mv`DUlTgo_kIs?Jm1)_vEp>;|`4goiL&8wjKrH?n4hjxEs(z5cc5z1XLB% z=~qCVf45k8wg*9gBhCS%S@_G^0AL=Sh2S*(Set7QV_O!;@<(d_Mw+xgwS$GIv}`a~wzVUs*lCm##MCH~V8kw(a7b}r=OSoZ z&QTEd5$Y7EhTOdpQ# zJEPs>PCjxUE_m>~R^L7O?Dx!h@Ff7UhYeu*<2UlslrvDbTi7`6)%&pf+`MwwOjKFH z?6h?Sr0?!(kKKcglulSTXNK}Trx8!1_~dpvH^ zZ6+r7vEZ>JGH=EdySXJHz#IiOL$C27!|j;T&x-3hY^ zIix>dW!US*P}?yu2|+Rs{?Nz;0L zv$8{{w4-n~BP;RVCRr zFGF0t_@j0Oja$^Ck|6Qao>!1zbpw#-<=~{3FK?x88shE6(+6IbG$-QreKJqkOo1<( zf`lDr9c959>?!1tv1bFYuCaodzdZ}Ul8h{d z)@bUzhMYmH9d`lwWO;Bm>&$VOnL&C~-@P92WRk8^o!IEez-`n= zJO*q&+*Y0AhsB30O<$ii7=5^PKK82PZrt9^$vstt5B?iq?yN9^0Iz&_+O};DyN{y} zcv#;7cR*FXliK{$t(|kZHwbDwyh)FY~ZEGhcjw)4M!fiez(5^NrC~N zxflVV!?{W*tl95{!E>Px8Qe@LByr`Hr8pciZg<<~ zo2sgih(KcpYUg+qV(q6Q*cC*h5~p2p2yZ?0N!xY>nqbYQcJ|Vbnt+pW*WAMO$9&3p z2hP^&wP&%kc|5QC9E4VGWa8zYei)Iv@Tt zg5PJHhau7W-Ar0rgS57q#E5(hD=QJp{HP8ya%uJgG{l;w)`Of;O)!$)mKnap)oyO0KZ>T z@+@8q!-scCm47*!o8jJjH9~5@066#D?#W5Gv-tUE`0&G)oPE0sPd%mOmpk=Ttxu+n ztl;IQV-WK5H6rkiJ2ZwBG$~*~L5KD2DpVC-eN{_Mc-C1OVd!vZ`6P!7fjjTi965XN z*WulFVZ#Q^HnzK;!wn6ZqHxF%jnMASq1v(T#kCfKiLQ4N-`ehT z_qdQigGMTNGTls^z9+|DdJI-a>j>|d0%r_8lSC|zXf$xncdzj2rFT=lu(ciS*|T0n zk|e&q?jbh(ya0pI$XVb0yH%Mb?|i{8PreSSiU{2G>>X?v+y`HIHT9Y4D4keB*4LU@ zzskLusO+ z9&ZI{5Buf8o%zk%RR+-D)i+(ONbJQuzsJ>nw&zM zrTXetRS27G7$W-e76x*2vFgZKxbH6yBg-vgxgZD(&d%dj^2q2lx!rx7LyHJ3(W&qR zOkO9kx*(z)r%VZP+Pr7BT?v99aPjmRyz|W`G{l>UDsi1xNo$xy1D}q)Y@32A5DWA4 z#_#yPb~(zH8s9kfCi<0ZCTw;i8#=Z*w&r_Dl()X71SLW7hB*Y%3K+BUBf{IYG|ghC zG1B^88=98GOCz=Xg|aL&;ity{_!^iBl=q%Qled_NLsJKODp$~u*}oMLXwLQ^)aoPR zXVt7@<|0jzDF8nla0*2hN7C}af*dkx^xebtd3ogMR2Vn9efVU3q+i5j#hR8t>L_Sw z3uHkek)DQC(Kjy$X6KQn>LWE9(hKm2ddn8!F?Bw!szAV1fXmu>FjYc^>uv~BSEph! zN$fSXA8`c|2?c{e#AY$DX>Bbl{%k$|zxvT>tv-9*y_ml5?YhpR)$t{P)uXad4choM zJlD$j!WiK#d1g&U7lEjgZ&rnAjOY(k*oxq$<*fbBtt5gCWB?xk9X(ltz%{^DA&)aB zgMF_*pWKn18FcO(ye5@VJDCc}SDHh}(M-s*bNTR$g2IsWFb-44Bi~n_74gTfS)dAJ zWrr9(ss;pzgeCUavxh) z+u)jO`f&dFW%TLOIVrC;*F*hANP+O(RV-MV$%}6dBR4C^hRrT+z4T}DbJ`M+>gGzQ z(x*I5hX2kT$AKf3k?w3ep2)Jm`@fCh_mVzXjB%z6Uq-*2D(-#%P#!q_zgSFL?!&rf z@Y;#S4VVmZV$17LYFfW@iKX=zHq;UyoQs-f#kjZ>xyXwU2q71GF|4gYtO{s^ArK#u zi{G8aGl8@5*BS{&O_)6bnUM;P%m0!BPc3qvOoBo9?p=ZCj<0yCiUFBS0+b8w=av&x zg<@*(5M&cRY6X2c!1sFj8v31nP|Fv7e~YK%E<*YEQ?5I^hTcUCjE`mYLes$wUEid4HdnY*1JR9D5M`I2rb>I76 zG6Vuz?mAi4Y%1@(Q&Y7rS)%=ZH{9^IPTQ99gaSFo4Lr}8ee~{sXAw-9zVR( z$NTIvc;Eprb)E%cr*Z%N+PyGzXzTBL2*TZm9)fT;pobvr!T&r|72~!4L|j&qya?Sx zhHYPV>ha*o{A*{)hT=4g#rj?zx*9u8A{ON$_&g}iV&cwf!p28XX}!>AQclF?pMub| z0RYA5A?Pb)o$=p-_m32wEoa1|ge4`3m7D#L27QXd=$S3tr5K~*;6h%Z%&bXa} zJX5fWIu--AoR_MqR7KWqvo-AsbeF<#`?^&Xey_F>S5inurnBx;@ydhm@Y%B;0Wjg> z85Ha}lDAK}3IKbikLGIa8u0YWXT&LovH6!ptoiO20M489dYk%Y-Te$DUum{oAKrEq zpYK0PcU!6}tdy?nUMmr^L1gA6Gf#YeE5EP#qt!N#-OatHJjPe6y+jsOW4JpA)}{IK9xVzC{R2M7!@+Bv=NG{$;ba-*2D z+=MIr?bc^VL`X>HR)dyvXc2|)KTe`o76Vt#Cm7TgTPF@1#s`gIayPGUMN)!h-RCtq z*f)IuXB29FO*gN6mnDsxPykUBIdHGNNLLhIpR0{a1HA=2)xWg`*&2H@=YRX;w$IOJ z4rgfoL?V`!`Gh1#Q4vw3?ZekqY#C1CJM^I;9;UQm1IMlY6o3hy-rPIzNMgP6`1t3K zcyhxWK;WRv0o>Z}pjMWT%Ys$#3(Ovsx&lKqV3U-E0&8UW53JeFH}k4aiK=<|^gtVp_jd&CV!EVcv& zxves+EmT5TUfdyl*J^Ek5!qpVcBhpYeaKDdyB{k(y~#D{3mmAl6_9PyNAOgca>+{9 z=b%t2WRsPp@0I_@pA}wuDZpvfz z(Po~MpFNWO$6ulAnA@X1%SJ^nHy)djL;7vvidQdcwY|t!$R&qdOI@@NU#--i`?YT2 zcWiwBLDWQ?;lRg0Q3vJc0A~X0wtOCZTMr?9R@_~IifTJg|7RqZ zoi(2?XZPa7!&V|mZSP@KRbfLJ)a!Er*cF7MM!sJC5JE|JAZ@NkO|uf;qnAcPrrW3r zd-%`NgNQ2zF6s9=o`uWt_bcR^Z|!YK!ft{ficEg{7K)GVh9q683P1hC5211V^oNNX zZ|tDl-<3TKhvA!VVEXi=jLXX}YouH(2I=W=(u584VJ%FVlG?Ep1s;7Au1NiPvm=_D z;jX(hg5uz4~gn?>_B!Q&o*zbEYo-|6Admci`D);huY7 z{P@4RHJxD9DxP>Foj&6;c3W=GwQDs3?}{rl6>xVTkP6l>>LQx9nIR^etWm;#OP%{dJdxedIK**ImA`*@7dcuPt?k3|v*6tKYV@#ac{8wO%zN zgrXK*Inn^C(+hBx>+hGEv|OAu`bde8BMs57f1$lTw*W_}J`z_JL=vimpwmLKu{fXA zl=8@r@33j(#x^QGQ4kpI?ac%Ik405MO0$w^++j>t6?&EaL`CNCRs@`DL@}oCzrr#$ zoni02PBa=t5ClH^>@ys)%z?)pM^p7Aft9A z#ic*;=in2Fn$xy?w*ps=gN<@ttFnS3vue%PoK?LP0J~)3$m|guKWr*Fq2vU3LWGGw zXau3hX5+)b`{8mX&u8PP-$>M!PQ+;A2Wt~wF8P_|_2tw?L#PPY%@%w%2Yrk##<;T? z>B?qS%?6%cuLVb#Bm;{NJat6p`~Dl~cuNV9ZKD9Q?4 ze?yqj`wZc2SVyXECy@^1-*)(A3;^d^%*G+wpmN={lEfZ53e6 z@JyUO8++z1=8ku7YPZ~p6Hg&GX9ly^blg{}qEPRKG&W{{@9^O_UKv|1eFPykm{?3w@e$W>hknIC)z?~NO}a1jy#kdA`}CgiTXM- zi(X8y=Diq|eK+!r|VbVsfrAhD>bXp-GmqZJB*^dMyBrFv1(dX6j-%^ZAmb92bv;aGl7&m z5K&DiL>E<~20ISu5Sk*0HBHF9Gc<>g+8~CN6~sprpr%<7{2?$%sE*dZ`KHE9o>+7& z!|ba#X7C)MO)-A>01_P>&aB2z5Qz)B?yw>n4IJ>v-Q*oOc9-i)hHt*n985=#)(ERs zc;ywCHVrZ}cm4o=zjlBlj`&MGKWl5@rI(<5U4+Z8w@}nk^hSHAuh-bBF2Xn8Xk^i~ z*J^~`7hh($yC@!KO`rKNXvzXgLZWdPpNM>+0Z%C*YW4pu8L&ctGWXF~9MT2m1a`OAD7R z(=1g}zW#PM8X92bN*=s$J%di)gXx!cobS6U5RFC&1j0P=go~j=1x`4j`;K+#r5aId z-?Eg|LlEvhbiMaj4|>pp|65R146lEfbaQvbt?gLvzz+P*Q)xqcWs~i{jT{7sD+24Ii<8!Ude%SjwiA8Z5u!@lm+h^D zS$B|wT~&8;y!8wF+xNcDoX>wmFbIs=cLb;3G^3TGq$BJ~TRwc|6BJonKt164nJjqz z-EHJx@BPMO_qjRh`8)ai%KK=pX`R!lXzYkqpBpx8=Djm-K;2T`QCIzg|4tf~QhVaD z?tkNIimDX(ijoq9dkxr&iY5`UokiCjF|^|Q*3*@L!zQJ%sTTXZbN6@zuQ3&AZl}9X!7eSZ;Yqb7R9XpJT1W{B9Z}7*4Ou9 z3W{n;RS3B~nCt!e$~T7@Q6=&3yc1!RgRcfQ^ZM(rvw8Do%_3G+nOD1($Bf@_X|JhR zbJJ;R+(ES|h^#Mc8`U4JZNl#z2PsEr0`mSenL_6M(*{lT6&19-gO^mhCA_o9|@ry&$#-+5YIB@qFeWWZ~( z)7zd-q1DaeKn3f=ewq>yly>7uRbr744UrHfRP$w3YnKT@5STUj_)f?{0D&fZx^99{ z26Wna{r3#M4h6!ev){ML66#kRcpS@WY%KsR4jo-|uj1Y!hF`%$%_k6lH%Kq2D{?|yrB0|juK6tw?FFiYy{K6(K zzG_j*Rja5p#47Qb3p-5r@a323eEDTMy?cjQwaSLeC3EpbWtdD6)~$yD{Zl)xAWEpd z-cYr2w^@yzeZms%e|8-HMl;7vZ+}jywM|6rQvfU1K|FQq-JOE7^T9+gh?s|E5M5A( zG*25762saCx~WbJ^49tU0mWfPaagc?x|r}WV^JMu3@a;149RWv94t($=7D{lX6c4p z9+-73s@q1eNM*ws6TQ?G^ko_8LhC>&GYN{QCZ-x$CA1E_Nfk;w!S_es%7I_qN7kh7 z2_Tp{Rr@>VoOTGpu*u7SC8 zE!=aDW3z@a2~qdI!pVU znW^P#{Qi4*`)&C1Pl3-Ka`VJd-*fS&2Wj~d{|7O6Fns*6Mi9@K@%PG;*$N&HOqhUs zV3-ZFH^FWo2m^rt%a<=_$`n|>ydM`|oWZ4+hUncp4N>em$12bis@Ghj+1hrerD+e^ zqDMiv8_=U5?7{ysgau16-TV-+du&A8gWCrOo+#+9x4Vcq)5r`Ycj_~RuI{&#&aZa? zf+r0GBXZ_oBE~m~OLI{PBa($to`Na94^l%lLaZf{HtHHgouiCO!EYVtoJdOAXDP~Hd>-nzn zQK}QGkOTvnhJlQ?pF&^rD13%EY+J0B*c27{yy0aQ1ivIGH{dd4GTMG1`?`*$(B!}( zwOA+VQO4Cr%ZMual{J4CY-%#HDX2x-Mk6s!9eP%)?V==d+$BeI%!Nnp(s4TL!@Ewt zk3WB3(&l@k(a33Ey@+IJXECdt3*5h{f_F~48dcGzEPW4{$o{unm~wkdmbq#4cOG@V zD-eK_#@K0UTF8fgyvdr%b%=tra`>3C`94PI-LH_t-L;(bp?UOT13&n zjKf~)mNsW)3fy~73KpZ40(t0HDb!WUc+qFg6_$-y8}zAo0Lr62viny(BSZ5_4{>|ZB9?e zSfk(0%%7WwZL_}fOc)F(vF#}3VcBrvNC1AF`4qRU{*b7mEr5PL{&KQL55T`j-|w#i z28WeIP$OGUUH$?Ufm#IM?@N#feFjsE#(%l!y{jG;u%gHA-}HD_4x&4 z2lVAFtj;bXH?HpyWg#_8wYd8^XSuw;>!$L=4^g;y+M)L4B=_Z?xA z+_+5bE2n17ax-U+n_F+)&}N$~!|#7UPBs)5r+!?uxen^u*4v$U{lh^tHkp`tYVsgR z0JS-!DGC2(%X>;NM(oE;NUN$y3@^|ZOcj?gE-FQJm`M!EN$GeSSE;=5^&mOx#u*Z?bK7dw(b;g)m55m?=Rpe+eIh@4?YObJfpSE=hNIwT`s7ofRYmJcH4Vz zIQCeLEZeFE^mt&8Jz()-EoYzI4za2R{$YL@;mWplsER@ z+*!W*?}DeF)|8U(yrZMAszNmSm#~Sl49`EW*}qEJ0 z9bxiOkdZ6sR=Kp{7Ys%)Ss>Il2bONKO%kw7%tdLABUgt}0v)_K3t%3RfzW~N%C10v zn?)Et5MjF)G1Z)nYV~RrBqE6621wK=**}ehEeqLbMNr}x!i|X0O13Hscg1>AF?tEx z(vc+tk{rhtZbXP}QAwobfGcOa$Y6M z5QG+zPj9YBke7BfapPx-dc_Rad6masbXYkM^|7OnT zKhn`-UKB-o59`G#*Pg_XaRZZ@|$uvHnQ1W<*e%TY)OIU5F}Q zQpM#*U)8D&27`e!Uws%yaSowGeA_~L%ZbwJ0&lFS=B<;i)GU;MF=rpknA49++SZP+ zYKezvM8caH#^sJ8h}uH7&0wTC-nuQ(h{*cYZgw`@z-u=#GS5PGnu4N2SwLc8X){ex z?Yb>kS%#`qVxEk%lOicGS4-K~X>q1a;RPiW#v6{V9|;VTtIhUsXvo>AwQPq77q{{*~~c z=)}~lPbq||5=j`*E3k~1ZHPg=gbResHVhqDQ*IAM5Reo4?~AC-f!LgawXyl39-fa75pU+;Qkx!~#0|5HO_Kh&O8G7gcWHye~An%_4UWPaJRs zN56j^2}OIxy>!&|40X42zbOj#x>6Em8!@{ZbxY1bliNnzA7Xy_TK@6XV*rfHAHr?p zwvZ}Dpu%_uCyHuF>QxosJ zt&It3E(?7IW#IAJFc>5@Z){-YpOq+z${$N!XT`d&w(UB6;6a2VVM;d40l@3^a@HxY zlZZ<+)>aaWsWiJx)Z{u)JD4ZSqCm`Q*f#O$n_*{Qrhvx=!6?itl__m#|96cxR8jKc zHAL&m$OJwFCL}pd6u1I-ddugm;X{~o^(9!-T{taKF1hA@p1<{CLTPr?E{>A#2o_0Y zVy1p!x-o3VRogN~Xjidz9V?PdV|oJ#9Tu}1REDL8Ni!+kHm8lpMc#g`KkL`JIOF_f zmZ3chMG_yyc6n1S?SQmG#OSe zR$25TL{uwF*%vbc7xNVJ+=B=<#&(HBHK}nFL=r;FSSnhK9I@~@+ye@Cy53}%I~Qio zgkOIJ`-*v*yzY)WAgAl!2mWeQRcSfMPCi*v)pZfqu*-`THhLgvTFG?Kttcj&bSBFQKs!jz2!N%DWkfgqD{u7=+VL*EsCIYl=)gSi4pu zggX^Os;WlZOOhr#+>P^ut*EbuJMYv;>PeHj?>H-0uB5WEb-<_7Ig%%zG%#$KpRr@t z<953!EG)$Bb^{O&hgq;-0r7a8qM{;-i;Fu{|8I}SABXI0xc&AXf^c`ChalVy=phJu z@V|*}{%RVk{UqA6EE2$E)E05gHWSx8b2$U{XdTh2DzIdu!0#V^P36YT4CphM1JAvY zCdH0FCgL?Kcr9V7LnW;AZ)kHP1gmO!^Tf-y*^2H8IS3#pK$O5Jij1-JLu#TgS(l!>EJU*9y@-I(h2FSu4^7USN$S$FwHs~byDU%xbY zeORjX|EB(&JRD^eNw@F&(^E7jVx$?&%$jl;awMU9vClrdH;s$elU2Tms@##BH1B0L zgzFJSk+}z4!^-MX&RV49J{1tSZs;K#?nxdzu|1r_iU}>%)QsciXvE`KUolS)KDt%8 zr`ONr-=)8A``p*=!ygY5Q4^Su@NKdA9PP?yTGl`Ytet}~-O0wxJzCWhmSeoQaUQe$ z8!2tBCzfa#r@d|uv-dm=A<;Rb+*FW@w_M*n6t&w(OCdNQl;guwpIklK>%;#LYA0b- zhSkbtLk4rjGq4Wammd@44vH~|;T1`!rOuEm;o(B|DQQJg) zLo*(?4Y$KeBCIg;;>pO0c3y%YaPst*kR*xE=iE+h!&+c8dri8RzI}3NY;xcnxRRw# zL+6twRn;c5DOfiHgsV4F^5V6`8*3>Bz5$ZydNu&Z0rR$e9(n2!j6L%h#4U=!L<0J+ zSdAqdVddx{DJcmZ{ziH)Tf?7|I>?dG35p#mebZ9gM@)#Ih$w~xhPV-Dy$3_WNZc61 zpRHf5XA%>P&WP-q)u;~C)mnJv`N8<>Ey#+%*)x~WyRW`6MnuAADMAtqtXyg1=39C( zWNE`mVMXy!w~K{&%rtiKgs5=_E~Z`WMJRRaH}}&X@s7rp{f0Kp?=v zg$t1+38&M^$dMxfjko^&cbT)!s$kQmO{Arz(YtqVWLakZd@a3@!{NYeHq)f`T4`aCe}GAlwb;Aqac$KM7UEc=bJqE0QPo*d3OmBlm*-BU76d8U{_k zsH7p@cQ*ufP(ONoBp$ez=q z7u%k*sE)-NxD+waK@yjpY3I%oW`YR$BM<~5&T8e)F)dsck2m*)Pf%-(vo(Z@CVe z>-@ZV>?J6&wvah?#*vIZ@3>uVqd^dvYTAPvu3N*3)olrs!>46&#Q9df+Ps0aE8V+% zyj?+-znZ6Bx|Y3~YAK6^5fC}`h<|taadPtv+|`W)VNHcfrlddGK2hn%kR%7{j;M{h z@HOfuw#wpJ&PfS>oe z1bbmN(arkEA4{)nn%7mKqViU>gvWmW1OThW!gqUKj36t#UbB!VSAM^3pHW5qIcxIa zjHxgngp(6IMxPUSFiZEQ=OV1 z2rSMk#OvxyO=e4S8pUB|!WWMaZHHXzmzK$Mhh9i#wZ1+HyIr`N^b@$zY!7MmI!UqI zJhJMNli>O9|C_j?;4~O97z{K-S_l3Jz#zAqS10dF-yOoZ{kb`0?3jNt397S-$kiF} z(`5DFw&)8YQxJ*y(y^)f?)#ebA~FPheO-~(ha8(4XP^M12X4~ige0(OVDq}V|IbqsUc(dJX zs2+}Lk&!Gi23s7dxSsV&lvo#}b!#qL&6=04ClLxT2#p*}mSyZy;548CFsC`#@5Y%F zP8hlCjp#xMsEo@1=T5H6n}ar-4Q`^g5Y1_gD8|$}Inx@ae>Ylfo3JW%ypfA0!D`@T27Ez04JD}L&E#K^1DW^ZpP5AyilQ=k-)omEXUGjjLeq2X05WXD{9e z%cO}Chnc`MHja4wCKf*bIMshF?UG}<1{QM2oJX@zs+H0{tk-lKmNe)&jHDAoEtlfUHiG&tNaO$ZrrekxG zor0>WtXQ#v>gs9$h7KKy&)4#t{pu_2p1Ahf1f`{=Y~H*Xhr@xvV4$w9j^V?HQ(s?C zMMVX9d3h8T7Gg*ip|c(O_aB1M*h3KR4(xvYYY%$RgZ~K#ihO~c_WOWGc42%&A;tkidB?kc-1E8k$Csv^nA$TL=Z$8WD_s=k8hV81o$)ZA<><9ge7a&*2(?$ z+hel+h5nAvUfp^ybPt!_fY(+6<%@9FK5g8(m=m`Pl{Q*fkR1GXEdgNc)gZQItwwr$(CF>xlI*tRpV z?TIt7-O1nYU*E31YoGLCS3L*4dObI;yRBJ4>*lj!71WlEBoeBT9TN!(NU+QEX|4u6 z!`}m@N)$Xha+P|e3r4-0M_G*3pLZAO60VrxDe*#Xug+m=j=wRwB;}o9ae#DSFeD=* z9T=N=Ne_vM>EZy2@ELaMwNFBIs>k-rd?r#=%^wwT-oN-0Xm#pgQX}9jn)m|4qhZRG*Go~g&CXJl^F(Fcg zWWQAJe%vhQS>DfNrZN}iE7!jP!+yP)%P1EI%rg1Pb2Mgt=t#4*ZW$t!5e#+O)*jsq zicaZjfU6sI?9RR<3OYR6fh+C5Ia(;%^EfLT=5r5yTgq;9OT$#QQhH>9s-n@l;K{ai z8@+ikNgFove>N*sk*2P!yU0tWH#3tisHC1iijTIpkwAjD;Cl+u$oD<5{gXGZh5i^U zzohrP=ZXzAxclHbh>G+`?p|v!+FoL7udaH&(g@9t6a6?Gk9* z{j5ItZR|=nxlPNgw%b^6y<>XI;}U8my`5V7h!S@>uWC6>BjBAT$C8j>AY7Ai{{^SY z`?z99&)Xj9c}rD%I!WNhoDT3RSbnY*ZpA)WAfluPg_*`22+n?u^8Ih>opa23P47M3 z?`|~iaP4{IXfwnzUDPfG!m#m01Y>O6ef7snWR(+=Po)_aKpQp1~`4-FRME7w*^oQVJ}7{U+#{D^&MdH`!Ug&Z;;HS9ZZc z@3T;ApYLsc8TrVg_{B$L7aB`T!X2OZ2Z7M7DIILcyHj0t5?*iCFAu8InC^b7TQ+=& z*S)g641Bt#C3vl_Jrz}pT6Hr{Th2GHCx6`r{|@Mgj>o{uqjlvNFQj%+_uRyCtIA>FG~k%5iTS;X*<5lTcjO|D$D@zkGg=*Z6J__s%5#wK0lyHHn7 z3bd`$tKQ+mgrp2wDUCGR0TTXXJLIUt`_=5aY{&V9FZjzIkSNP#%M46ZcjpN2Kpyda zSbKBr^PB%pKlO59`uRf{Up@u?l0oge;%1}(Q+9H7m5QW4|5!9$lJ zb@WD`V8q$cIMsZY4OwJ*h7r_${~+e|e4Uj`1|ik58(f9KLIqkF9Af6Yr8>oLDU=vd z8#?;N^1w=Z00e64H(j;e!3=4IX-aLWhD(+zf+__(C0k};2$5$d3Yv-|v>2X?%$$do zk$p#D)G+(A(Q6wG*Au2$C#Or1u|h14SYkk&D`rUwB^DaIOku{gp{+6?FIOm??CpAh z7ny!dZxB7dSDL6Q!}d+#C_LMn9ST=zJ`dsX7A0Sk>E!Q>>z033i z4GOJtBB@Z!>n%pt>oNhB$7Uz+)bZX~?UR}EW5YRc z{>b9-0@bKrvDSYrNszHq>|+Gp;3}kMiQTzqdmWVeAeZQu!sQRIyo~PFvA{*IK zPQBfNDZa%?e>*d7UyNV2q9g9nB#3ED3SGwUSpcz4K|0R^o{Ga*JfALx`zsMup(DA{ zil~wPQ(-bYoZDO;%Vql)lZcPFy-?#I8IbN>~sT~)`$mKN%A^2f8 zqcsx>*#7vGs^>g6d1Nyd_7xVqY7bQG2z&P4QsYX0G^ z2|ik!90>-A^y|-D@vHx{N)toHpnP~S4*v(U6Q#~VBsow>my6YIN zMpD?(YuTviFlwk~(oNXv;@YEWS%?s}5Eha-qT3D}odTrtiJ&+(tR zzI*vw0YE4uArA(Lo@@YnCJu9Z@MNt%AZS)EO1T+KyI)R!6ctLI=k#7=99OFWE#e#G zeR_L1qFBiN_Vu0dB13g_;I7Rsktj0TFk2d_B_+GM=ia(wWGTR}3qN7W&gR}V#Ex3N zxV_-ML5CSz=^blu;&D^z&sD@JvoY=kMJsuWL=({Ors67iox9LtkdtNl)-rf!&>j-_M$*`+0 zV}xzG%KKhb9Q{4_Amt(xOJ%M#-0guo@jyMvL-+>U!F|4DVeqvTH_hm@qOHR?Iw3P1 ze$V8zA2x)v`1vi|=+jT0p?x{Esa@-xj%l@9#rJW6Uxh;YzULPwgY<7J9uZd;qX`VJ zGn)2)l-wUqUY8tRM`?$ZBa9K$Hd}`vP6F6lk zC`qGz?rJ}e$C~b&G25CmOsL?*ldlMWRh*ci@g>lLjkxvE)5PAqBjMWbCp;6$1UwJc zM*4%v+dI%r5nKr^D1KV!Bz_iO+O<1qR>s~AAd^XfeE=#BI3&G|(FW)|kTp4YhX_k> z+?KcU+B);_T&7xjR@h$}C-D$@>T??UX^f_r%a_w45?Y<~hjwSei+*4kjF-A2Rnk4s z*Ln&hygr&%>SZC)>Q2Az_Eh@AcK4aTJHrYFFK@U%NkB`$I0Op!jaZpyi6)fqCNwsx z5dT&cGDvtLd8U z0=GfdJ+$n(3|#m_1w*98_Xf8v{8Wqa{=`&9Yjw($tc03U;5nBdc?RT{E3CY{d{oic z`*qJ~7%WlYRs(D~ZE9a&j4)};w8g>pkG!L~z}%gPFbovzzcYs;dy#vb6q@;A-T&Hw zZ`bou9=x?a{;~VP7j~?88+}NcFlSkU=WHRDTE8K%TayaF5-)i2*kGGyTy=9a#TA5i zfjCa)e=#4{YiR+){tkAHf|ye7l8%j-{?8U2O__SBy)0EbnIfH8hV5l_5UVShe>_bs=Wo}Nb5Ry3`w3~+q32Z`N)izM*<4FfMhYkfQ zSrz#Ugb%WHy->q!@lRMsOma+0s?-PJz&NMIsa&tY_}rEpV)4qjLUVtHPoudwM2qcg9zBC-7S@M59cLZnkEjkgq*l~p0psRr+kepP*`ssFC7j{AnkIaj60Srvme3&4@+~dO{q6f^C!~MGz^Omf_V83fN!FS#waNf-68hLOo)TwG zh*bG@Bh7%3xYVp<{hAWqxe|~eR^Fr(bCK9FCo+47(-Vi@0(+~>oez;vtx1qFV-9;@I+GMfFj4EHk{4aCv^>WLLCHvp`mQp^<1pgyUx7t-|Z<`+9BAJXSl)kRSubw<^#&KyL_$HEN{ zvQH}SM`NcVM7VyQ{WQ@uEe3$AOR$C%s9G1T#c8=2oK%8I7Kh9QFEz2?ANLye?sc_PS;aN??20R!EvIp{ zz6u)uWX9X)Wx!QaD}xK2$u(x_`W9PqogI%iomumC1ucQnZ~Z%Uul4s8`*+D-u>+{K zxE4*lF_X5?*&+6Usf~B=d45kk8r53iF)`FJ)Qv&8D9Y;LQq?s+<0djgW-dvoESbuX zi9^i|morKCoC7*kBSt%f(Ge@dQkH-*d?6IT*8hz-2t^v8zGpGkq;q_co8$CS~5>H-4vxH%)uiI zEFtbB$U0!KaBbW2Q)i3Ail1s&CE(?aOR4+W0`WMZj;pvJ#X8&|A>pK))CgshiHuTw zfv(Z|?j@SH^ABMk$NxTgs(m@ z@LoG=BW<)HdYtbGRJ-c6VZ<>2y3)G4QmFkyF0ly)o3Trho702jUE0|2E+5uhCev(H z6~q`}cZ6(^1`5mAFY8#v6l}=z^=xb}72I8Rp(KVFB}w54CS_zZ{%x#4u=@1o{3g3% zEG$6X>~HvyOYEpy$T|3hYr*BZRYWPJxbj`J4jJ>#Omv z6_P>Y8dW{}PzNh3t8J0rzjXrm1;{nI#MJl7I%plYJ9EiKf3hCc0#(QsdfyeA?x*IB zqmvNhGnv4A4k;$bgqu(uNQ#7wTw9^B^os{H%w8^`L}H#in>D zQ;IJtXQ?cH!$7=zY^fAIdb8VChFmPolMxex;J@jTFLlR~=0pQC7@PLJ&>v$~)nuE7@wR+jgM0le4|rTcZ=~myv{Ga6z`Hw~ z%+=UNbLDh~Q_8BU%lcVCm>KRKpkCEwVWS?!YPn(uq>^D8vHs0DBa|7uB2-*ZAB>}xUoVY@TA*j7B;#BY_r)G( z4e~7{niPxAL`le5CqGqDN1JD;*S9f^wzf`yAeCB~2tgTV`A>EoRnI-joggN(#i>-8dyBg7CXlP>68h^p9vlme2CY@-?X_I19Rq^kGJ zQ0WvvSr^aE!8_cr4%6RW{x|F`Nwy!rmCrR}6bXeff(dot(_phcQg5uL|8%tq!}Y$Z zqQD49=W`07pTu|S2Peooe`*h0GfSYu&UEu77W!_OCWtVTITG{hxa6svZ!kaOhec0s zC(z^jq)f*BPN)2bvc95dP#_U=bYb4pJvpbj#Xj7*s*uL3Pcr(dXMALwhn+QTkpigg zNrjwPc^yFQ`AD)_G&@~1ktC+kDOl8~++aG}{4e`nya<$-6lwiFJo9$RB13m_&a3eQ zMFKL#3QB~cmmoQJwTg*r_Z1syex&=FmIk%3vCX$EK^b@-`7_{-9PB$pqF7f}#n-po zSS-%tX}td1?^`2th5m4Oh<@Fb>DBwZ{JrV7!s^EVx*)A;Ta6WBP2458t3S!^axv-s zOqeN6FyxtvKgJ*?-Z81{4Uf=>e)k=dQi;3#P~V$!_@lqHcHB1JP>DF-&|XuntAYYB zvXvUbvb&rvje>vVNxSqE{oYSM5jO)MizYTIm}=(A2Pn%dVM~N0J6DDa+JsFFqhYkz zp5#K13c8|3DBMLk=&x+xgfOE7g~vkSBc(M+V?7^KMt^f*kliOLEKnhjr_eo9jL3}O zQG;~skm&HG#;YRT(IY)9Yo%D1&6?m(M#3rh9_i{1jmAZ$snBc zLRd^cJyKb=-k*Dcp0H)Uu;yaPB{x3=4T%WTm_syT?Yqm`BhjRUr%#$1+N{Sm^(G{@_Nkn0*VQ~nDa+Ve)+RPfzMLr zwl+prdfaE_OV9dkNHH-f&;K-j{RxO6Y zXs|EAhj;VB2<{o9(e4IjQGhS*Q@+O+OR^O^9;bhjdI9N&^O{`_Sv06qxI+;4eO7iS z=HoJ)=sAqTI(-;HnG})BJCwa#ThUtz1`UvCZEV#lP=3UJVy= zq%xbQN77epJdEf3QzkYYz3c#b&2PCCxg$C<8+Hr@QOLtwW6Eb0iT~PWWFvlD19M@o z-k{W%NuM-9Ys=FWecO{6cBQp65p%ZOU^~<6!}89!Y@U=hUMDC>5j?($S>*d0{`+ox zUN^D6w`T2|41JGW@gpWv*nU`Gz^DBFUtGH~;z}Es~qiu=3Va1w+rZaq4){#-8 zf~9&9uyQ{&;Xe-Uo};<^V;7fWEzSd#)c95nQ3pC!744$bP!V8WKPO;m^gBx9eWXyJ z=>IY1Y8zzBR#_{gFv+7(yyZVLd(ywhMOQmr7@1WmmAUt7wug(8Xv8j>(NLI`H2}CwPs9f!9ENZUHs283A=>v?N(qPkoR{;9yaH%*bH*bOZn-G$qlU}_kj3JjuuZ`oi>Yw7aF7-64+^aS}--5`JZV0qb46MU_vR< zb}@R)wz5IGJ-<`IO8eQ=Kr75&n3QC`4~HY6&hr|SESJxmWaJ~LP~7WVwxA|lDr>lo zEEsn?PQ`HF*w)*gWF?2kHbqGVGagqtL0wrybFTbvxr>R;HX_I@{Dv3sRdGa4J|7(l zm9&f3cqiSo*#Vq#g>!7aiKazsDrp61@m2q~FbLCzS*Q2g@DUmeM;B|d)#sa$u+QD;9FQOqx_RDCvesL<{q>c_8-i573HBC(OpD-Q zu|qbA+F{CT{Hzp2%6XYin!d@MCXZo_5T{`$jtblggN8e$#U1MA-WgczQs??3n8s{c z5RoqY^{M@6Pa41b+UE~a)mACi7U6CC*k=AWVGOlFR7fg<2DB=PKt?0=bmI};s5A15 z3vB?f81T8`fK};E&s`_1&xssD0IOT!9DW)?yX0iU6T2zFov=11H+EF`iYz3_6Jx#0 zPaknOfWEMS8>aMgEy+*je68T-{sgoy1@47cx3{s5#>L%F7h(kcUh()6 zPL%aEOQnn%UT(7|QENwU!Hzl)j>Uv*Ki@=Cw;Bq;SBgNLZrF4p(l4xf-2yXt-RR>LF= z#Gja8w+Q4i1^P_exV^c_KXz6L)fG_>o3Nanol(=!7!OCGdZqAlqr-U}M?>|R3pp(a z47CjR5rEQfGP1Jk&DQ9^#-?$o2tsG5|5yu1Al3p1`U_=@{HaMyuO0ob^W81unvr5l zFjCCJcr%-iH_tnNktNqTo)YK?JHeod63rxLFD0)}R^r`o!GZ7m^h+8ZFa|3mYqIkL zJNEGe>O7{`whbu<(^%vF5LkOk2VUObI6AjEzK#t8#}vn-lIMQ7l#_ z>rKn(UFFaR+GNd^ukS{+XC(WxMIaC?5B2>3&lRxX!8G~WV!qVwCmz53B3WMP z=d(L*2CIXG4hy!KzAdR>gC70zhXd3D#p5FysfG2GX9f8+Ah-hv@c;ufb#%uxJDb9U zL8(qSn5)nNMOamY`#K8^9{<*^%GwEsljK)-e(Rjf$U+#eT<$B-qO;hySz6^{C5?_M z*F9SPJ27lfBUDhp+k~x{^@$(p{*Q;d>QNuIk(jiKbf`C=da)6!I9eiOOVMqf7o#q8 ztzU0{1ZRv9FJ>B%5)xpf(~Gm|IXPzV#ikI*bDtN0OTt)OqK%3>wDmLw+$=Jd028tL zZP1Jx_t82FJ#3bR@b!_jyD?s6nSwZcm>w=FjgqV$F8JgoxaA6yBN|ZpRdj^u|M9}c z?bbr%e%<5!{?63lyKEN%=WqJS(gC@S@38+I!O9>dgTj&}Z>EjU&v6R&#=~(w^e2Sh z5A$t|O&#n)Qcl@FELeysU+&jxEp5nNR`OzbqE#Y}T&6vIio*HaS+z;y zrgB=_CXyv#7N!5JCn#XQ86LiJsK#{&b1LW_IEt&TWR@ zg}+VD3s9wPIJ zUVKR(HOW$Xg=#)f*M}A#-oW#1i4Gnv16j}haxlO9f;Qk)%-lTT)35I_aK;1}_yt!v zc+@Y}{0rena8po?&bD76y|SizTRZ~U^NZWA`K>6JV!7Cza7v_ zl3N%|(LH6o2<1+vU3~|^clytl89!^q<>MtI4ELeq z{|}=l_%;F-t&cWd?LbG2Y8Nk2V_1U*aYvhWqz|@*M^wY($ev z`K5$gs4xfHY1W&wijz^5Xdm+N7wFr_KWX^;;Rd-$8(M}jfT(NHVN>oI zJ>&0=pOR*gxq4W!;qQcei8QK|d*cpL-gm8~e?(3ENn*$ko|g+VJBe*PEei&FsD!3M zgs{Mz_8{5TpUV?^438OV{(ctMuBV(Ll@bK98}>Y-#^jO?&|vebv%JLI9L5ud zS<7PBEjM!bvEQ%Qn~TT(0zVOmV>qds9APnDzRrC+;H$oSqN?k}RV@9*BO{P8{jN=C z0sc;1Lp$Ts_X;Xn?ks+4G)Gu$yO-gmG>v_h_|B!xAR;&qMS ztnj#a1hLd?Op$tZfSkX~(@7g`I8PZ3jcJB8tMY%|#}e92ztOuDOCpFWfw-2uj*Ql6 zG$?)R675{)j=sg4qlAua^uxU5WYaGA#*^rCmhMVDBOz@W+e2Nxx!u#*u0O&ezc2W$ zS%I)MT;=)U!qU_j2G9-0>$O}U zXhfbxQJ`f~M8ihn55`yZlGHk&wRP;LRi4tM-^ z4F~K{d{esZ0%tDp=5mw6Rp&jCdpZRFP&EabeRkT=;%38*n3UX= zZs$S2CODO?b05_^Zv`H)Xw_Vz2QQ~X_$m08%m(hp+&!*t_+LBHpB!kff-_ftCCA~q zx#isLAmSY$(H~ZJ?G{!S)%-p?I+2s8WK+?{8UEME{Myd%;B`wQBeS{lUZ$8MX>5hP zyG~KmI)iTWs`)Y4x#}RMZZ-p%_xsYX9f=z)Gq&`F$Yno`-({w-`^6jX3us}V!&@id zDTIX}=>n5(%I@)D3fCCIgGOTF*uaUXv0iR?J!mGIB%qhCBDi3+U-n~E<;|9nZRZOt zRHD={TV@_hIUy;@`~G%bPS6K54~~)|vMu>CjtXb)%tE3X<{0?&x2}O0M=e6W+Uzt; zMuTC@=;^&@{r<0fTvj8Gb!V%%T!~9+Xt$ufy&_+TwhHzoLLs)x>oRvxmJQ7#AJo6- zeiII4#}7*&=6T5f&D>n%g`XeM5u-)KAzs!Am}@kdSeTo@5k=OKN}d}P&;L>7i9?{# zZI5e&r^}(st^S~vdw6#@VoT;JM*eQt17pe;v)CvDySmlHR3}u+RCh5W`p7k?^UD<@ z6xw(g9L1M_qLQWpcS!h^?2>&RwTW&12o4I?$dGR3IC1FpF@X ztW`(7t)so-+_t2Fe(pHIn7?2L{i+D1algf(TTn5OMUkfN_J;2lKVLQX8V|7-PJ4oO z>dGo_Mu~3zm1X0d9#89ZELV|WhoLJ3HO*c%pM5QsSIobZG?;Q!tuW3mWJ={YBO#2>S`x}@?apNH*L^~qIW_;YgFPWZk`mzulab|eC`d!%-6N(x&3Lnup~sG+ z@uc5B5hAvu7n5%)R=^M4=u6UCC;j;t>sdJs_GdiO$Y}zQV?j2Yt#r9w-f^Hj>}KNH zD?%LP?RBQO=0IW;i7d>F+sPp;tu7(jYrLexsY=5@%m~#$lVvtu>^$PPh9`q^n4V#= zo~h8nm7^YUUGX!W%!F8zP&Bz4cEV`tC2iiA@x} zs$m2la?#wv_c|7&3w~*h!i|^sG{1rXsSce8#T%Aznz-+hY+wkIgKCm1V3oCk&+kKV z|9lztoX*1yl`%R%#xc*soY+6UPN?xD{sj$bVKH^yVBGH>o@_9x_<=2v;!|LN^719D zQ%!#Nh}Yc{79+WDNEs^@>d-W3L&`c5re7=CW#-z)^Rjtndlw_aqzor7{Z!9N?Bxe= zhcZG_`EBWmpU$>9_V0SWjIXAVtj~KHG&y~UJgtz?Bmj)>m@F>4Unv~}Y!Qx{gp&Y*|My9tu zw$khXwl+5*! z0O#+;p?7uVnj9RxZMupkbLDcsKB~iE%J2L}9xQT<*k%#opS?04V? zgt9iCB9zGASs>F+tN+^v*V>_@e@{$^aKrY{tAr^Jd)ea))Q#*m<&6G|a@C_cs#Mz= z4u`Sgr#3&hrMBwnmJ_lyT;IOu8!Sf9obW8+Of^(BfN!5^p;R^w>>V+YG$4 zs;;ZlnR?~?^HSsGvtyVWj!^3S{U~E-Q;)}v#%P{fyAnri%<9H@yKaozo zkk;BQ1Z@pE;5blEF#cj1jXDK!^pgm~5og&ykMm|sxQ_^Cz; zU^bRxig`b|T?m2qTPKNmJ0&{rf@rDYpYk_Dj(OggdI>#YbBGF$Ysta+7=HgKzJ-&_ zUmP0_8G(vz)cHdL?PuO0elZQT2zfapU^{95vrg9ZifZJ-_0T6m;dH}WB!NMaND~ni zkK@l?H5$F20^4Ntp6DTwD6i>(Z1T_A{6uUhbU|0;Hm&%Hm}8^4zpE}eJin6Ce$&9W zB?>5Gu;qk6$fvhd%lS#ftB7VN$uCkp*9Qcr28?hVuCJzMY>OK^pkJk=)mx#G>Q(Oj%sMx<7Hi-u{gj`s@6!Np=^r{AgJzIRw*xhdC@4UujkN!V-!j z%tippy$KAHj(1lmo4BDd-7EAHtid9%ZQrcddafZ~*N zaIY6*uPdIldHmnMFSFhA=gal0>bi@x*{}NgECf2cq8j?>j%SutuJwJapFszJgnNtR ziiW0`Lc(zroY6VC{IMa7_6lRso6qHb$IE`LqEZ_jAhM%p*A`#xiPZN7c43lf5XaK( zl4ald+0)Ac||ZJau_UOP=ZRNECB>+7G{pF`yB(?^8w!|0#=~&!L}_#poa4b* z;>U#Da@_l>Jv0e_ki)%w7a<04Jfd8OVdE{~Ri~$W#A2xxe^+NE9%Bi!!n7-Uvuy&9 z=qSq@V9ZDTj1sQSCP?$CF?t}yBLKihMN3NAwPj`rp@}TzH+NiyMB!++6qM6SDno}{ z*p=ICc1rY1YpK_Rk_jYhXbc2tVoReBbS9KYJ+a@;btmu;Nq-P_edqeR*K2ItE_kES z?n&4UU^E^{VNGY)jtlAsD&~sj2W-&WEMEh`!DGq9>CGh7q3IKt^QvJuxw25?;qJPp z*Z9VwAyH%i^wll%^O#tPF}W;fUXoY33I^AbD~!@*&BN1$R1AAt%Gatb&-M1^_d@S! zv7fIn2(+7;Re+HG`7iDi^jbTiTi`Xv9CqZ!GT!T9N>@}QJ9NUh-F}>-frGk6!id)M z06iKVr}J=Oq%yY+;9uqo8AF16a|*G7_pqX>A74>%XwJXI*sFpMMTY0Ic2@CT1GvV01>C2R36Dhw6n(8euRhx^Dd`+u2G5(tV!R6T}XDU+OeU%J#rib%i2?1*;#V!pC zPy*90?%_zca4J-W*rX zKtx@RBdK*oRSa*po2$8#iGqnbZ^MbjV?cqwFXNC>PsrMI=&F&=>bZwiE|b(UC|y^E z?{|&NpIizM<8|n)B$WbD6jWioPDh!%ZFV#_qXttWuZAQ{`Pu*o0M?9vI}G0RRJgQ=1uEcYO9miWzwQ77`+8qRvvrA&)@Z&4I3eOB}6`*4OpY5~-=BQsT%d#@y8IHx$|GDM{6ipH8M1iOl@H z!-D#bxMH&@a2FZWPWVv8g9qL4UK!co>uWj1)fbUW7m*-qc(6zum>1fup(&X3W6=^_ zFm5>OO>bUZjNp~vGPkrJ1P&bRv`6^s%ZBkVNq*uB6#>>)*cakGPzp%VKp_C$F=I<< z*e0uj{;LskY-^CX;BPf=V}9lkUhWi`CVwa$F7cUr z!*MfY+odT2cRfd`a*pPX@s)^r`1?%G)Erz|+*Vn)YD+;-%yhxrF2R7ssh{3=C@pTL zP^q=CHGzG4gOu1!oYLL?$8zcFFV)cD6C$M1e;R9!ebeMiFv0_j-cGpw+v$lY#3W+& z-{^JBEL1CSnzTuWzEfc|g5YunF|lMIIO+Hl2KOPe(0xD~8H)L_97AHAP8(`=DlB7- z!O7lAB-MPICZxBv$d!+YV!->U`(5LsZb2I?M{>{~3$41ZZE-F+B&Va$0l+6Kpe)J2 zSQT=N*5}faZGGB?!sPmsW@7f7qIIKkqE6g$L@E)8_itN+t<>)c?T(P9G*DTV#38 ze&+HtnK261BpV~=K525n&EaR~`(s(md~CXF%P6T|^1nSTFV*sqqD6yd%==POQ^j_B z{b`t({tNTxOiMaAFbd{7mL+b3f~>=SHzNL5wPF!g*KQyS;s28?^^B~yAtj3adPyal-TEO)z*9DDBf!WW`{}kCul^Cv1uV*LHz9FN@;ywa4Kv9tY@(%K-WS|9D z@QHe?Mn3&dMRjN9=XVV5v z_XvLmsmNggWu(=^JEMkW0{P%hJ*hp9PY(bbE%bH<4}TRe{D&hr{nL0nX{hq~1vz(mtw?ihW)jTttBc@fuX>dFjku z%}QjT0r_0bULWwU1ilzj4@=Hagr~B=+n*k;QkS%U6dRpBe_v9OIU-}`V7kQ9l%LU3 zxJUrO>Czr88kaFJBEiuOv;%8i%5SkrqInl;pMn!`0EPbq-|z_D|w+;K2KN+td5tD8o8I zTv-|C@a}dXFOp0eP4VZ{NufH!tBE5HcQl*NxAOuIW@Kv0P8+eZOReSAQDeog)G&He zt}JcVqp6wAyu9EhgWaaRoQX&NW@i>#yvii^?(~j@g_pDBvgr4%s9UI+v~%e%vR7Hx zVlIS4!@ka${M6Vs2R36v-eLov^tU9*E8koN+-w~T4GZOx#L4Lj|M#1(HNNu~-b((9 zK+EIKVg1c!d3_p=m=@vW{Z4NB*0uea#`Z1-1bT-NecAYQta9I+R_n!fDy~(_nfK9> zcq&)2@Mr&fKS7|d#Y`@b=ke4O&&jL6>@^Wt1YTtqsX*+~hM$&?>QS^eU~t&6g8HFWpbZ8NB&ns{O(muGf^D(x$3w zE2MNpiJ27>anTHdGSUsK_UGNRT!5UQ#MSW9f4gWo%cIS=vQmn)r1P2z9`b^^`;jV+_Bmix zlmiNTMxnbg9x%oUK^cL9o;;SzKT!d&JZLY7R`$#tFx-gLuopBuh#fa1Qx5vcUh@Ey zc|nbF{mo&IRe!S4bP>IO+=5>#((3V|8j?|vWpB~5N!8xoaX>qC zSxD7(k{9Yno{EpVvv_+1u1bKqYUbHtqk^<(P^Ai=VJ|Dbr(F>GS3_^=E;TmcIn~a} zBcBey>wI|+3KAX?cDZps(M(h%%htglcxc_#*H_x5VJBs9XfyDrEiiX@d^fP4{tv6% za0)&x`5*jP^?!KY3jRHV{?F!QlPE+)q%`ZXMdd%!vy)4hM+r113-E#4$|@$tdxKVu zjSzBK3rnM6a|Lc}P<$Heu%WCeP|za|y)Vuvnuhg7qvR1N5S%Asq0a7Ky&-c@11(2Z z%kjbB0`*-Tw&S}Uz8h6N3$+D?H}_OZt3bCqu=el_7K}TJvc`x)ujI@zh?J7n8MxLG z?1a}NoFbSqPo0x!s!`u_fd4r>Z4i>{9SY4Hs=7Hi|ks|^|@ za`fR0L#ftof|QLgwN(8J!rfKbLl zpJ&Y5K=uj8D&DPK%b2!fd*-2wdvf}oLx(v7zMorgTJ*|eOgmkgz*YQ>7UccSPQ>m% z3=wi!4pX5fh;0Y6W9Ms(`=&`SCB>bM<*_scGTz`D+SIYgU#XdBu;ss)svpJ{*m*H& zcx!TCpIvlG#og-xfmFjHzV^!M@h4xZ{dkTuh5U6v^?kN2^R9IU{nD0lJMV36JCgG& zZcFuqV)-1TL|t^Ox<&er79QTbgv${StVDgxF^YMPI%ZtDY6*R20%iJ5trFV0)*P_; z@5DrxwSOa&GKW#u@%=VP4g+6d5i}k8afsyIwK+rq_>8c1b#IQbwq#IKOyKIx-C7F7 z#EafMoVPjmr|*Kd>!*8bFP=ul)a&4zmC2ibDO*0{YI9p>$4}Nq2NBaRkxqzcso9X~ zvnp6&Xs%0R{;8pxJi{jsk4KMLCd6YQIiUNo!;6z+W9Q5m7oukSv0lSA`nS4*MXz@% zOTn(<)>ajtFDT690Ls|fkMouS^-$c6>TfNJ?++)TclC@kaXf zmeNmjv*<*GR@cc8#b*aaPjQyOw|@jrzUN~DP%GzxN-4OKQfO`k5P2=9kgYxs(RWY9 zjOUG)+2kY`(7#iIqR$EvA6t$t?v`DLUqYoTX)Gnw;gIb>5!elv!EBl4^*=vfFw{tH zB8K$%tq@_U%#}0JBU0>&{r-@ngpm9n00=?%zE8i~Nm~G`1#`$)KdVkogRE$Z_8-S# zjow3MvzZ@$_<`@g|DJ~*ez=Y5(QUP|?bK5`%mKLv^-;0JX~xOsdkg>#0gxrI zTOe&H1loBYt<8sRB`|w`_-rYg3o01(?t;A}^29L%aoDXaT($|b+06f5yq`0VNZot5 zCcqn$j?)0y1MtEV6b{>5+iwiF- zX6n?obDy#@*uDd%Om3%=RuJKUZoz3#HQief!4PcR4qXK7{TUD;jlhahgf9%iFs6;g zU@@V&t!Np>Q%(GP$%XuT+W&g3UEX@Z+>gL#-0Y%#2*GG}F_c0YaPbiTWHUohP#Mk& zhO=_-+{ZOAm17n^gCnK$-~HBGuzo$9Z~{!3V!SC&JfY98uDtU9ZW5z6P+F?139r8% zayu7pMvSx1*6mDNgmAf{AZXl%3qVPAw!3{#`&zf7H+ZXFAsJ(JG9%zNQ>8rD@wucR zNbUc|=I9Y2XNzukb9afpz90wNYl{$qpxV9-;-2#DwZ&x4WX&}Wimy3S-=L~wKc7d! z%39Va<%IGpk$)*bYqWHG>ys-OGvW|7|E7DzNU}g^60)L^lwC?}a!t2>lQ-P)qKc>1 z!hPq>VEeize;TVJ#AOdGW7;t-7r9(JiaFr2C&@eKa0U%b<(;&6JOfjaG>O06^A_Q- zN}#lfT=9Cm1cSjAIhVqsEjb9_lQevLEV?4SuLjCng^U)~7jA~1aCo=KK>#(}2b~V^ zTkIs&mUGsk54rc`8z_%X07+ta;Z`(BLKcFn-0|3Ep3B@(2QuK}$N03O08e=#TBC(# zAn0XF{#>@?&t+upO!gaoUXR-qX=qu*HeeB!7m^&2qp&7LMwEu+$ofUVWH(F@no#kY z>{tz2syf1v<;b#yBU2F=Rcq}s+Qs}MYik-{&PtLS<>(}a<$RtZ$1qtgGP&oax7Qe}- z203W{yHqwC8=SH9b5sQX8a9p5F-h&#EekEJ+;hO^xocXd&l}kD3Z+S znM3*LfaANoHbT{iS+f;$T?4@wcc*1#0W~p+#Fy(tZu6WX?ZI7HM#=1e##Qm z)o3_VI&Q`u>?$bb=6n9$NDcz%xd&sTsyOD5Z>Xz}A||Sn-_rpkAhEFCxQehDf;FXV z`QOcief3NRzN9TV_!}?_r~w=q!*p`c-ZHv(=7fvMB-1Qu#OFZ`}*S#^D-~@dU^1l1FlbqcCx6ouVp5IL}SrPHs zP_ez|ZHxet#f-?wfGzp^^t?tOnPn`a6LgYLm?&@#ByGuW*n=MY$BjcvG8Sy-4pt#* zd`L0I#}u8x;g*;_TQKhv2=~MtSCUvuHfu!|Ln-1;9_9;a5@Dh66c4hS90rN?WU&>` zj$(d1>K2Zg{{)ukj#WA5oTKw9k39yHCmSDjU3Z1zIR+pzD>#*FEFfhRt`L%Hm!r|SPa9(en0UBMR! z=%m(p=jpj0_a$<2;F)LOh8y(sh!ZDvdB|T9$;moFcl+&n&d%Y(CF0}bsi>$RD=Ukf zoSZ&8_h+BMtXX;xLoaiW{pcq83BrE#(NyJLG5!vZMW3Vt0vBBk1uxP-Jks8tbysWE|TPPW5nH-cbLM zOg(yMo8OlB+a?zO=UO}iTaL_yB(OVe)YrCEbX0DuCUtmIw7svhHQ+w%2UcVxNkRxg z*}ARWt|#2dwd^T=&7H`atPxbY8)x=H@Yu0e@JG%#%xaJ-S1ciuzKFT*?0+)^$l6$m zR9wi44Iffix{6RE`Luq^T#Cw8a^{JTP+!&kuuHA2*tl~<%nwSDr4Ws<{zwTzRgP@9 z98w~?wtkD#FhOV%Dh(C~woYuzn!^#SMME;2C(s^WhI&<`0(L4ib{#zo=@edVO)Ii#aw*x#mt;BW3TPydAUYxmL)uvXu||yY*i8d z7zehHvHtEC#-F`}x+1*saX7S=l9BaAm5hJjuvRrYzJ#6pDIVa z3n6K`#i&8VA8O%>Epzzfx&uf!RN>$gcc8SBYjD}hM4p*5h~xx6lBB;s0)B;qX6$D6 ziG7!LpgB}g&k?~SJ}}?T<?_C)GnNqv6#N?Ils_Ke z=$u7_N`q*t9gH2YlcNSK#bNH4d=>)A%be722@*BYrbk2c0%8*-rX49*^i|}6aBUz- zY$lz}=&Rl)N#%NR6O|;B#|V}(1B(cevuXp%33qYiw+~{nSqO)961p`eOwjE@mn?w; z4lv$~VZ-#r|66W>8*kL}js5=$vsrhry#9J!-Pc=4NPw@t(sK^3TGg~&RpFF7R!C7Z@Tt?HnPQqww6*Y3i5&FON>vaWTYuN2@^wGNfEHxDlI;iFTneB{Y zd%@$?<52&)-Y#rTypu`YlHH0s1XQ z`|($Ww7mfHRsV{3{k^wsGShS5fTJU?G17LJhEKvApMkV=o}PO!Iu0>*3R-e1q4mF_ z6>WWDH!(8u0X=qZ5 z8CCS{DQBp>GY%Luu2})8TZ5FoupMm()lwIMO<{{;$>4+|ZfE`Cwl+_aBoQ6s z;Nr_p;pijI#}U;)@_>?vatw9^O@r#vSOQ)vyA&T`Yv0-)oi*|TLV?g;5)MF?W#(*r z8%=3iuq^e$+M392&~Go#VdLj>3D!5@jB<1K2hXB8B9D7|@6>-%U#csU#-4EulP^Cr z;yUuTx~VMdn_M{E!GQG@IP05;o64GeepvkAUZPNvBo3YO4>FP>@G5GC36pGGd4us# zklWBQg6I`iAW}~ zuF!D#N;!#`dgF`2wQ4jDpE2T3MIsb5p=ie54L++Av&Xpdz9uFKcct-#((pykn*DNn7*!#CENytcqTdTdA zL6IZ|yJER$%)y)-)z)?p;H+g|@M~4aeSE_)7vhjQm#H))B@kU{?71oqYs~!led>J1 z152W8cIy24JLB-f59dGQCKI)5Hw63$RMhA=Qr~!KZ+W-b%+;eta$^@OVGXWmVlbGa z4=76+Kx%!yp|U~6g4r!&62`ulB?*H_Q(NAD=RaS;->6*t`$41m?-`A&u~r9?%LH1h zy8R(|a~>Qy9?RAH~{nFo8{hYevh|*u1Qe>#zw48w!_7r(Ex;`J(w8|~-dL#vtVThQryqcu|Of>E7(W=(zzG35zVC6}RDA{Za48YZuw z4O_GL?I+#3JQPrHMF$x?wvyTk8!H#2asA`JFeTH|Tii>xA!Db~lEr4Jjvu7etYa66 zB8q=-6r+RXNTPuRTQ-W+{kV4_;JWJubHx>f3?AHdu#V3MH8oIG4OLZ;l?9m@0;wbG z-97mTLy@`E^b|q}*uEQTy3W7(XCS=0o(JDQis|XAnVg~rqyAPhoS$~>Pf#_Z3K@sV z&(OGCY^ly95VjC+uVs5}8pq`<=FqGaU7VqN*uFvV$IpFIbqlCMW-Fsv#td#f?hgh% zb|)8Hs4!uI&h<=cCdjX=(@BUcuhdh;MT)XAUCDOWUA@=-|6B3mi#nNe?zvraW|5$z zM7Mz5xl>m|J^U~nb{KsAxlSBSo7P9c&jkfKvvbl(aPrCRms!3XQc`+XrnPOG&Va66 ztIH_cW48AZ8n%~`x4f2xCAnm0>$a8q5`Mq_d_MPFFWlqLK7#=RTIPe?M^IHb?KF7d z1#md(*|cdBR;!g^!-lnRe(G)H<-wCr>fNY4g?_)q=)OZgLAVdlPZ0LwuL{#m51_2? zzG|j3L_&fcaR$UB^vw*kO*>3x=mM^wA@w`sc*pC%y$*kuVx^3X9UDIGrwvlZ|QtU=?6V*&xN28@^Y2W6}Q#HCENzQ1F&mB*t z&%?Z(o2c@2-M1HAd?)TMl&E2=#ZW(3R%VIuVzlMfj%f5BhL5FhH)ajkJNjOZHg)wp_ zY%*gp8z(@*4hI&D^>+h&{0j@+P4@H=DoIuuCnf~?^Qt0P zC)KkZFG0Cy%OZ!p|249vvGlxCNw!5{l1)?w>nZCbKtq-!2D%b)TcQbReu^3@sSbJp z!Q=#Rckmi8`OU24uoP8Cel*U6nv= zqK~wkdSpc~!0ji))x2&AMNY&o#b73cqLrfxOFG5J*-|V*u1jqa=n3FB8Oi&oPQj@ zgYVOB;<3jhUVa%WDs+xu%ov@3cIYTZ}0xL8jL_!miZ z`OGuAQ1Sfp_w9M-%+VEaM<2a!&)Zw@`Fwo*aTyOi6vG!^_}R5<Iaw0RhA&z!7KsxdYYK zz6Hk6d&cGzH zvXa=cJH!WXe#>va{f?*JgV4m@1vcGsR97-evP^8Oi#I;Lig6S4sJvbI6| zkeU`v&X5#Fjm>1r0fQNklf-M!ujlrgo^7m4;`jAWke1zXUk-n@B~ zrx)o-v6^9XEfh3#-67Oqkhf2|ia=xTFq73nI2ZyUutm8z_p6t>sG)t-6_@e;8Q1Og z6q@<(s~9xHxVmo3x)|zfBcB-A%ra+;cj5KyVBYGv6jT=Bu-KR|XgpJfAIQAzGV4ns zk2oK=wj4)8`->;LikCD0w`bTxjJq9495>?uln8AxBf*663RhlfJWot%rHNEgVz_)s zt%DTRxZ<$H<0i#l&~?E^6bIr-^%_?M7OKgl*5w;6UnHlKT5H_4tfrep`q2n+9hS&TDyXY(+be1Aao$@r2@9<`}e$7=rfeQWEEXM&5D9@zaWx z960I#;u@{8KP|}P*)6Nc^VFh7FvWUo_Q{O(sF+<22AR!RI>`~Z2Of7UQQpqq-SbNd zIc>p@d#}q8haAGKcijb=#(064UK_2>B$KcJkpMuJRu#_2<$d927%w;_cbn?PV*KvgFuGGTcEHE>CriS zTkqvIS!SIO&HCNN!29SXoUI`tNeV)w08cP{*es?@ETO()9S*DU;E703lVER=i_j#2 zN!~*k>VFq5`I0ps>fUd2fKyx5@e?{Z=m!Rmoy6JK-;Kj+X{<+TQ{UeIZ?-**piT-i zSE?WjJ1N4-0PJYMFH#j6P$KtTZoTGknk-CDnZcV|qsXf_5oHz}nBr$_Tmu!pt?cw{ zXL4dY<7Ew^s$#MD>@-BxVfE?X*P5hqkil)wVz*;FulpR-3Yi>5QQc+(Sb-*gZTlRld%u^z^ggjp$ta0`heuyP0z1H<`P)b0hGR+&ferd-H( zA`deP2a?4s1~6C);tc1}WV+uuqRq)TOzr11H-cMk$>E`gx|b_3Shkz(1vaXD(Tq>s zgw3EDxHlopu>_NxG?@MegfM9%u!Rpq@w<^r*29L)ZT#Vd03jqk|9w2WE8@87n0>!i zB{V^Bbs64D!7ac1gQpI8W}mmAJqRIK_9N`tvTx2;B@$W8;Uv%4pXYxZgDgXJwJy^7 z;}6~CF)K?~uHJutH%_2w6y5wZ&()mG11~3bUH<9Z2)OV< zcb-aLV6chFz%KlR`dFh$X-}Pp* ziBO|`nJml9ojaGIlQwsHOgJo)zh)q6Si$P>GhkFpdqhoxvQh^rscltG4Rv;QZ^}Ye zREF%A2f)sH3k4nv@w-!zg-m&RVXvqN*Z#Vm*Y0@}PqhbMgP(w}X_4)yQ)Y3&gXgr{ zSyxp;MWFMJ@$T@{gVQR@Fxia5)dB*^f z%Z-;Wb`Kz_%y@f>qq9jYGyZ$aV={=VFiz;!x)O2MwokH@Yhgxx@@9v}9y4Pm|BV{h z;eN^KL^QM{L@eb+Sj%?f88Q}OY5AQuWv8QU+JdF36z7ihsCGAXBPXHR+FA^+tSaN4 zZEIOwQb3?_JmEB3m=c%FEyE`g&{SqG`~rZq*f@Sa_#|pl(?}>cO3n%bE+_VO6p1_P zYdLYjj}$gE?YrfcTbMO#79-yM0JFDiMeI9yTe)i4uU(dNnM`=XEyqg@SDfAHFxDzdRs- zys=3g<|3@yx}2@A-3mhEKH&CN`~LtA1w26X@TugSc_*?d^1znlv<5N;wtQwx8XPB5 zurv-F!U%TbXNTmalwhB@EC5VM7|Jv2_hUm%+kMAng*a<)F}ppB$h3o_-i@k+QB5kY znrO@+{kIDQsws@D$w-<^z~Mz6JeFDYZO6+t2_B7VAlJ8sT5soM*ueMaVfJ__z4UNK zCj~J{aol4a&vUeG?D4|MJwhQdxB#Ps-X1Ko4Ch4N1Hc?q8MCI66%!H}FJ(J=>nUIi4v}U8ok&ndyo_#i*{r9hD%9P0MIEAJ`=|*;z#Zul7%h=S-n3cY@@NW&x zJ&5YKCs5hcV!KQ_QNe#>+FpRPp<_$Vt6w>b8&CL_%mickVS5uIs1jIS%7<$YB(El& zoA!Sfxg)#Q?jRV(vTQrS19KxfOjQL7KZkPT!`^4*q*$s11w$)|NEbAtDDu@r@W8w;fMOOdd_J9XlQ`AuEhj@CR9~r)v979 zPR!uun>TX*{kbTLf)E0~-;d2^Ly{z_s;bzyaU*GIX$&0L@tmrsc==`Uc;MP=TW;?s z2=^WO3BrAVeuA(ce>s#_V!7yMq;StBFFhr}Yz{c)JgLW#J-tcB*=C=C^4et`?$=Jd zlfbsESci6R0@@rMwYyJMhl4VaV%jE%?r6*%>GnQF(hww@@wV%*@MYC6yiwM^_2lv^ zT;$K|IFj1pGGQ7W#*_r6L{OYCwc#+Vbpa}>E2*w(VD*Zf?IyFg+02AODyrJ~Vo6@f z8#vs?>;;RqrQoS{k(gNyNLU?y9Bw~fe>RZE@86Hx?_I{sBb$g1O@oTv2~?NF1A?KG z^ibH1)ix^qChT=CoV8JS-Szk#K9B^OxqI)0wM*7>@3{}QyDuRnffs&xs>6G=vm{zO%IC0bnrR~~-`Spx^~?^Pj!{>XAK$P%1BvYH$IcSnb1 z4ji#R6UJP_FWYM(s(aAtGHkxCZLWU){XTXVHHAmJ9Z4KE^=90z-ix~nH zl{E^95#;x*^w@|G8dn@v_?;wpBFOm{jv~I^_zF>l7DrsI@%k&2MB;0VmoK-Z5Laou ze5oUygmUBMOWau`mKi5dOJW9)P#Qtb#e@MQmb4`lHIoS;NhqO~-Sze2n{i&R!*%BuP9v;|TV< zL;ntrc;|i0zOKJHa(pZs3$`=!n;-B7+7D7VJ!c>-_F1sk%aSqMf2aZ6oS^WjopY;?=1B2F?NA zpyj80D{uf%4!8%6XYl#=cZ(bZkR-vV{VK3n+rP&q4aSHlvan-oWCqI#vPi1xu?1;s zB-x^oq(ixPRr@)N_fJr{eE53Yfi1*WCD7c&xGt^=S4|9xrqB>oi`VVJUhl$L7X@|` z_hwCHUanskF%G#v>hX@OwYl4{2QbTp_L8W;N z$M7Y)B%O3$HuYoDioJ|pc^YbLG(U3|>A~fO>axfV;;r2af>c#_=9vuY>P*~qSAN9D zi=Y=#yotQZOe($6q(_yJ?5^B*mZOq|VCn#B%$KsqdbQb3qC-z(S+NBQ^V>bV+T-Ar zpAJUVWNtd)8{}T@>s>*s4-!~e#;TG*yt&~>Vr}(IPg~2unJarv7HR_X(ruWwmZ7G{ zAXhcuKXxqGyMBiR{DPl9g8G`CH6ap6ip~=k^-1N?!*V|&r5?Hf_ zrJ1KP`RMq4zwYw?0M@O8x88z#@7;Iyt{;2=OPA`zWK7JyIcImEX&Re0ZKABK3`sKa z?z^cB8Di#!8=BZuA#}piZhQ*gBPa?iTLu$bWrye|2=^WSyiB6~=tn>PG$V zA#8gHn~nyZk#6q^Iwkrf39ON|U5847x#NV~1;4ah98na7k5|3P{Ye+&SG=^IWS?fe zh|BC3U{#CoG^zq>YkeGZ(4%b6(+LEp)5<45T+irnEyLBeZZ2ld+rRSDck9@>qXLA? z@h2YIB{|sqy2K_`Ff@5UMBWa!vjPP*cF zk_YHvsvVKdzSf*%vxlT=d%<3E(BiZ+EI#E zm^PLZU%Z>oue=*g)d$Y!A9*}k(oC;NZ)?Qr$7EcKvM}jY?!=$ zoLkr69WV@GZn;Vz$Hy2a2*WC->~z9AjS;SDNg0yMiQ;LgQe0b8!KuG|jn=r}f9|m- zKz6}ZjH+q0_Y@qSn!#HK9I6wO|9Jz;$RVf($Uy+D zvYJuDhEft6!-B$Mu3Ws7ot~B?-KY6G`R?uAgfxw?096Ry*^tM=@>;Gt<20+Gb&RatxCOBrzd9 zfdg`q88~?g(&As>{a;|-8aQNB$Bil31#UBF2Hqn=1#>Kf4Jw?giy+Ddoe`9KeoNSk zkW#@e5I3CGX8+v}4`bHMCIa?^6CB)k-!|^Q=U^Utav4jP76JwQo#j+v=TkqxPj?e)mYXr;sUh$6+fn@uOb1@3+uHx=!2 zFf=|wHnj1ANhRTYORWCj_0ZV%?51&hzd zzs&jMn6mhv*V5+Q@P^O9Bi0mrVPiz_jyfxG)&_}r+gbE_1jP>v-g z!fOy8+Q65VlenE<`HBrZc=H5K{$xAZJL_2;Yh|TWMLH(hl3r~Q)Vwr=YjBz(ZG}D` zz2=(TJpFVA_uZGx?YHlYXs#n!91xem5NQ_)J~zeniR2fg5ofO>)m=`ky{>N;_(c$N zSsAg3uTp2e4`uFpg44~qY!pGg`C(#n??$dJ0dLzeM6AopjVFA|?|B2c>CMwHD=HyX zVcM`fPMo~F&&dhdZNWS&j&WKZq|K096JXd7|kJv=+2Yb*#_&GG>NZ25A*GZW&FN9o@0)Ifdl`90PX*a zF=`Z?eYS2j`qE2a?sV z>C^N1^wS{(0!`^8B?-R&UcZim2ls8e^78b+c1Qd1QvKLR=vNT#1N18h`|+1TRSlL4 zZbS-)BO(TSTh*p0aO?$Ou}O{UE77hBYY+D1eKU$Z?TxhE%CHGoa&nM1%tfl&jj*{9 zgC-*q2NT@58ZB=PwrOcdX5}xDUofKI85@O^(>K21E!xzb{DNJTw?!c(4e3^Ue435z z{wjW{`;>hDIxMn{A-4S(V?C7p5>F)DN(tg{*!kyU7a`8BV3)QH2W}>sr!mPqja)ef zr|hFLP(V;?xyZWy4?CeyE#s#4UWnRL507Wd##ml>{pWV~2Yn{;*9}An2}u@cnuOG< zN4R3@NY8CroYVv?DRI)G$7o;*nTRP%B5V#(lTzMdpR+a^O;-8%?N6Bd<si>Er2 z$(qN>-?gsA_H&Q#*t#(i3>qYJ`)$TY{52khIKOcPVST`iyP+*{&=I_0GmaYL<^7r& zTdhG$K_DbdC^g1O_Am-cy>U`5jDl2eoP-QZCM1t>k~64SP&^%5)V7At?7-|X-hPig z8hd@)>l3zG&`b)JhL&~JMkU~`Hg0=XmNtM@1EM(Rx@!P<{`u#bwQe`|;`Z;kW!PYX zoATP-*B-1nnFO}Cukw3!+YElM8qD>>zF>%3SGAgR2NK%Slr!?2-+$ugW-5+kcQn5r zbtX#Vd(Iydh09aZrfvavvQoKv)vtW>bNkYLT-KIP#(OmWdg1H?)S1|hsLA>2jYxzuyS=N zH4A^^(9&i6I{P0SHgfm%gKT~ECOrA;$N`oC3C+sZ z0tW$W084Z_j`VL)?D3?|+<`T=C#&^>5#uVcJ9UzGNAg&|{S#7xj zDI`HwAyez5)uj4Y)o?Z z$KuPDMe+9A$vpDNHtcre_gM%5<=ent3qVjcQR<1Oq&@+E*n-RABhFq+jJ+P4DS*{v z{5xwL3R?7F!VTqU-+zkltT0&2IKro6sR%)R5p3LUC~`{(`02M?K3hGR+fM$H^!S=S zXm3k|w$~8erH>ChK^wRH@(&(6=s9dk5M@g#BHE6Y(*0bMrcK3I=58b~b2yT!5gyqT zL@Ho!8iUrTEP(}|8;c9+Em&e*9KGmiVn+<dLLz;f1 z@FWEVx>vA4d8816^73*vY}kM-%jD+fl9H0LcmK9+`lI#LS1oVRk|nTZi+=t3@;SQe zF1^2>+A0Bczk+bzp`Re!2k0jV`|($T^3>1Qs4qs_xzSL>wUKsXG9#zu zAVtL@f_}8Z?a-h{8p{cGEFHH>_Au&z^s6(A^FQeYf^3W z3DMVG#APG7nlBqEsKQB5sK`iIWff>zRBpd5E`pkbBFXp~s?oGCpMO!t%9Se_Jt~0< z|K61GCOJ8tf}%w<2o);|cG-iT`9>dHmH6{8M!ob5&p$DS)HE+Aozd~)wWfi;!G^Ei zj-qIoZ9!_vWAJgU}`o|y8EpAS-)&!`v*!AWB+yx zlP~*Q*C*-5gJ?!Vy!06_&-sL~s$#NP8FkuGOgQH_^1fNbf+zk5z^$)5&JX2dB0ND$ zxU41yCpvIjC43>+T-rc=pcSDL!9~s3QiW=gsYr9RP-=99p??%31;Tv%?IrkCeZfkS zB%XZuC$umW7t~Q&6q%~DIkK`9F1S1%v)x$erWz8MyvFkYX{tbJl}E1A@|r+yrG)Af z0))qB{0<9&>Ior7@QzS@Dslwhu&`f5SYC>(d{8l7UI;>JB;`TXWW&Ue0EB8>H6SF3 zuuvHHjBek1+@u4z?t!}*wP1Psw%%qFQpgyADpytF`sgh@r=O1&9n)@^RmI5+imS$L zZCreJ*!C(mZdp8!mw*0lZ`rfQP2;8mX0#nAxq{&V<$?0Z5 zd;%#>7n#w~3{6aAti{aupMS(%U5#({v4kc!*^~)DHW^nLV=<$M_DO_i{`WR7?8qk+ z8;e6$a3gTr?d-0uVn=2Bgs$6e=kf!la_RJG`fs&cG1ECovAMX6=jZ*x(j7agsBb{) zpzUTwAw4#V>BDlk>WFFVHzpU!C;=h_M7xlLK_cC11xo}k-FKmS<9+ix_z`x25|q^7%(B$@KEdWv^<{@xuh zD2})k2U=L8y4=sM9aRXS_bb1{L|JAOo>&9Q(8llCt}mXW{MXNj29^TDnicT_M*<4~ zlPeZy<~KwSjiD|tmh2NZVRH1$x-llsPtLH~y`R<0%{y?_dDyuBXnfUHOjZ?h>vL!@ zTO?sc=2NKzt;e~m1WpqSjfOZYD3U_lt`v|ZY`O6?_>1w?HV{@qgzUkNhXG+3bI6Pm zG7)t6&`d4g#TMC$+Y*hW*ipmvR0q0~XHGCC-ba+Bscw@Liz-JU2@SLgG$K={S--RToMoR9iZlV#XBmAqC4o^ngS(#UM;N z;VlKrp)s&g)YQQ?gI3n73TY@4T(jn8UbyCc%%)ys$RrsOa&?Coe;risM1=hW*Oa4G z>)*hgb;&%n;xrD={+*)-F4dKU-BA%XKW()aG!+r=-n*@#POxbOY-<)L7cc6_pprFY zQ%4MLDf0Z3oucu9wu=BhseR?P*=^^fO>f{x?K>~fojaQ>H~;1mV6zKS8(;&`%Kd<1d5y1}qoc zfaL34kBk;;?~+9B-%llR;!GO0C(@7?P1pyHj3Ds`6tVWP2dQ3XJW?MZa|leGC4sD9 z9)BzfIY_^hBCjk1e+V%w9_@@=0-N4Nlo`*1)EzR;GAaQjp=+g5cNL6%0YRhsa_lf9 zMMjw8(Be`Enbr|f7NJSy$RY}hdL(B5aHNX$e;NCVy^A3!!*%-}%#?*;XJ{R3d|y+k zZpSRy7;2r#SlcnAnG__c#ueu6H{mW9@p3saMv5O z0R@T&jbOq<|Hkk4lbV#ooY!7w_*-*2EHByZ2qV^;nuc}Pc2v8QaI&%0CMhuiQLZb0 z-pfwms)rxiyU!xasG2~fDPN%5W@n_^#fjMiI4dWI`ic87Pm;Lu=9~8hXhfUMEIa-L zlI?cPBXZHUZf<$b`g)KRgtM)5O&L50ZHMu3n35C=9VuvAF&0uxEK;zVBR^ll{LLNP z7b=p(kvVBRa_(8=%5D42q8%mN^8IpF6ju@MK&famo5)Ry;mmOZx#Ga#*js-OY))jG zFdjUXJq+rM=YJ$60|K?i%En~^#@`1bF$)a7KZGj{6fam?{{EG#+&&g|MAj8_FiM_1#DYCC4E z+!n*iH%BtzymiFow7kbA4Nep(loDW}Vq96?5r#zzG8%c{7}F@WRwXdBCXXE=iXW__ zIWpDDKu0z8{yzvrXfNH{uqhf761_y|0{*AKZA!ppjsu`nweW@iJAMv)fsD*p^ArxU z9>E|}Dv7e6jspJX&W&a3Ry&tnW;_Qmfbi8qx&Dp~+LG8BALKXFo2UdyQAaXVJ(QUG zIEuDv)CcUOy35H)sGurkIP1*s;+HCLYUyOEQ-}?v;;zm|3LAXa7;R%=DU=w?cM7nj zD4A!zKAejWU%=P_5xgfmfi&`1*!DJ3!!Cp~15ytKTPoU)(wNJ!ARvE1Cw>-)=M zcL}f_sS#xpQpQ-o%(h@X|Eu~Ne$jTKY?a(xo$xg&ruK=f+FB1WvBw!Y z|Adzkk&bV<_&!h>#tX5p_CM-M z^u96W-~$M_sMMt#R@Q zArMtH5iMH!Dt*``wb@c?D4sI^o!CT*bYXA~K?Y{h6jT8Jmn4Xl( zm(8N*<&c7F(@W0b9C0nVHHzCJp3_@i}^4#je_tlM9sw`;FBJPT4r2 zm_8J|5fBGSX%O~yT@Da2Ss)uE2vrUF{3j5n9*nr?m=^oK{~?YI8(ds_P17})|D%sL zU#>CSY=8rg9KgNrz0Izow(qo@tYjX!`a-_?rhv5rjamN%s*2e7%w?znFE;}ZHQOhE z%Ygp^l44@Wg%9D*8Q0=?Az=I4qe+-tNOW#@)NndnQ9*`|ZcFlodHoqN7$apmcuTV%-f*e|Q z2msM$cz%36@yb%_gN@%tO^aAX(HqEc1sUKrpv+Y@l>7>W(@MkT4 z2_zD&S(s!iD?$xiQhjWj5;@9n{uT8sBTY6Wsr}#d;v+G*QmmZuw=&FTw^CQSNo98E0g_97tjkX%Gv3Fpp-b2$f7ha%f|W7hOUbNH#9G%$U`KTW zl+{CSvY`o=5CXRDgnHxSxoVGt`#wC5$1ix_@G+f18hQ}Y;wxKjRBVXR*P@98{2zP_ zVZn_HFX!Ch-!VGTSkBBYp=y{ml@QKJ0DIGXsJ2ot_hSe*>k4)eU>y0B5KWK-p5`*5 zsOC_<=vAUnNS!~+X@^bVu&*9KvGo4)bK{M0!3BDLzW*2TuYbW6SLjZRe?`>S>-XTR zuk`!yuYc*5sMlPh??3opxbHrg9{KbxGWh*^(!3jQ?0tz{R|`Q^Rj_)sp1dzoR8{Fo zCJo~I?{)I)`s*VNnXOg~T1^eyf4_bYk3YV5PPcaLS}H3mNls2iRaGh~ z+7I{`G-wcZyPfsx*CT|$Y&J7$)F`5(J0GvT`>t*)dh4xyrx@%ALg?iAC6~bH(ftJB zzQn#CRraGF{rGd>51@ShW2Z%0f41AT;_Br1L1!J;F*yjBU7-3qUhrtI?wCYKNR=>+ znT34M%J#`Y0EY#njulQFwY#gSUh`{UN_O@NIoRE(3?uiaLp0`8QDaqp}GUVP}}4l>?^$W>IedUh0i`5)T{M+L!Es3Wm=951O$WnOgSbo znxoH~#dVKe&3mifDez_+$KMb5Q1mk{gOc=BPT=EaAa>iQ=}qDNg^a7ONtO8vPG7V6q#BzEJs$q z8e#cJm7*fTg=7)&OFOdS5q}4}sNWY1a^I>|e6nj7zF-g`!N(J(?(NgRl@u}VtB*+f z;0@B|yh-*)Z!_leIoz}A4}z+SWY?8X*1XLq2J#)s(e30Z>jX-25|*9Yaj#j$(Z}>Ik^2C*4uZLa@hmVGh=!x zj@qt+F0^ov?eE@)8t`%eaBr*q_o9=7ATjWa+xC)!zOp7YtR%sJQ#bU890c&xS*WdU zd!5a8wL@|cV2MP9ZDp3R1EfQ~*gmws|K$?v_(6_*dDvND2kMoc=G?YQfT zIW*ihxm!KOyl1|U-N_O;2^ADpTNx5M3Wb&`T$KPTP0z3~YBga;C#oq`z@-XZI{A_oDA zepgvVsPjVpKUbjKXE^8}c<;SGyA>V7?S}vSN6-JJsxWY%P7v(Fi6wvmvKz~sr3vD@v0LLpYJ zT#2WPR2yfWsavuhez+cwv@an^dcMPNzS+0u?MFXB*pGhve*@*a1xR(qb1t(Nf5I~aiw(F0$F6@4BUj|X&Y_d710;z_K0B97d{ohEw>;3Cn0lU z)Z-*6ZSB;WqrB`>g!VH+`-8Xnpt`CWe`y#`UXbb)0k+=iXFP+lI(zHEM(@YfMVyZ`ZJhj4%rm8KJ03k(TdU0x!~c zt0F~q6U-gto$Ii?(Ohqhu!JLfk6J?=lT^N7kbxh6#N%t%@b?AtN&Db^hCg)=6F#3q zl&R$co+boAO`{qSa6PK2qu3&7U3wfY`t6-|pHFU@Wl@;+zI9A1C@b!z;b_ZNrN z!T}?Pa?|WXIDPv5O*=wCNHA_KMo~VPBUn^!M=jqWf(_t|;JQ~8VRY&(2@RwOf?+IP z$Z7w&Jp5oD&p+Qp?wL$5V^(BVUu*v;=DZ`0;D~AC+TCAKRflXABo=i&&)EIVfAJP> zAs%=ST7+tR3f$HB|7Yh;M76n{cA2VVFHwz8gEof?HeBCoFFXG*Hq-|dz~ zTam&VQn2Y=DTOu6Yj^i~8}}e2{4|8CNK*XV7yUHH+0JcKCV-!>{BwZz=MQf?F59U z_(bP(&)&kew|->B?XUKFy(W{c)_Jw}tNu&iu*38r+s>{`A_4(DkK&&Mt5vtYT(JV0 zi@PqkK(~DCQ%s+(6Lc{#9hWI9>szL1AEXW0gI8YBZ7h2gsi|=C$uM+iheb{~1unf5 zo_GR2`J`v3%gxQj)EMAVU#|-=CQqKskRd}zNJwDHlqpP|I+baS?6S>fW8%b#kNA#$2d{t{%`^XD~y~Y;>EjBpz0trO{VRvGm zdIj=lyO5R@fdDZ)0dZIcT7s9riub_Ry-*+{*F=fwV_zUhoJ;wk*l|Yh;ZSvuaPzy$z(wYnF`g+djEV@`9H<0RpFEq z8Eu8y;GkxCZ#3u+`=ae9T%ystWm6}gsQ;4eFA@Z>J2u0 zq7!D9e)kH((X?1zQEFpnUe^mUiM16x^3K2c_bE5AGbwBDc9+k?%ykRNPt0Q0>Yq7q z(^9-v2S1EHgbU`sOIXnd|NlAseEvS~9oA(GO~McV2%h$QemcRfZl=fg{;fgD+;Hi`*;z`OJ1XafEW~D*H zkt%i=EG$7%qE7x9K|&U&5%j&(ArLTjEri7dE(=D((L{U>DD4w;*Ib*+Q%`Q$`*(u} zuDQ54;^2)52c#35VdmHM8(F$`GYwup*=b4qZPvl;Tv5-Cyc)KTO2F@Gf1$6lyn`En z$$$q)nsySy4nLRd^4)C6Y$C<0*Ct_4smGQWxs$`mOTS=1c>#|fdqtal19NMLOEhjd zy$89PlL;b<#Zol|a%4ddvIaI}yp7+vM4Mo294L}PoP8{%!BoB}ak8SuOjv`-aX~H^ zP(``tXGFI{6nhVYqy3~fI-W0>f6c@G@p6R4gi=_Iva1p;+JW!9Y4}gvZy&Z)BEg!4 zS+?TU9PCi*`6IZLp95b~D=NuShH$0pc5+QBO+NcgSijD}7dMx1YwCaDl^fbt-vvZ{ z8B`Y_6c^R8S(I3c*r0q*rMw+84h{%k%8;@kYj-6O@2DX?s)9hwP-?6i1-`A+2C7lr zg{0YY8C*9Ud!2E6Xv1wRE{CEBY~6u*YlpFNM>f|T_kGVB5S4+HJ_@|MpztRoZ!y9> z00y0lw*D(Z8!8Ex`M7841)M$ndj`csmJ>2k2q9Rp5Vo!Dx@?Ka;9E}TT%L?5uXS?_ z6@_di70sX`eadrJGyL*i@+oYF$&=ydpL-`&++Ph}e4!I?tqd4iLREFv=9E+VW&#@_ zPCHG{nFnypF)(I~u0H#djC5eh5_tZ3c>C?XzdnHg{PGLToY`lmm^l+Z`%G7G{u#LT zTK#?|8qdJd2Ekwuuh&aSNeN|TWyHnBF?8tA4s#3cfu?CxRaFri8*9jsqoxLKzg@RS zJ>rP&x3@d^&wt>adqxr)+ix+tFVIgA?gR7_g#GxlA%FG*rkCF{ObPUa0Fz{yxbcID z8#4-_32HZOqH<*(TH``sBz2FR3?nAe!tzqi7>pb@2$0a~cB2(;g;1bd?T)0pc|<%) zqTR5?Xq&q2vEWVxvl)CIsLltWc3eKv`a8p*Oo(tLtths96XJ6^mrTEc=0`sQ>P?=kX^#<-rHvqN=K<-7*OYF_f2mLRbq? z72J(YcHuBZqjaGv@~IwbL&kGMb=1CVE;)oV&)>x41A11MCn&M1(m|w8_#LO+&6X8g zktB%^w!YPA*}m>S3rirVH637<6|!A%I20!#EkLoahMHir#luz)iz3NnxngnQLY2al z1#7ABcdmNa@ad2I^5p9PSfgBwIPq}y|NALOsz&0not*UY2dtPrktOFIhAe|A7(xk$ z8M=BSaU~Tb7nTxRR>^NOr}E>7gV?n#x<#Wbp&%wL%*!ub%h2Mk3Fx(%!$_*F;MEyt zQyQJX{qH}3E8wLtHicXNb_Wx7tic)%vN?4y&VZN0R{q2@#oMTqWj2pIkof2X?pQd7 zf`%Ga0^1u~^SCvJwWH49_Pj5tuGPt~^t1t7_4og>VNLh@p2aG0+$k=D?@xgckUJ2Z z(Z-V=gzJ2mh4Fkafrc>F2-LsG`>KG{dB31ES{w@?EKDfvFd9Q2 z(+P*MscHOh$whp^)%p|zR{ zT`^@k4;*tea!CoMEt?4s9g3Em()a^3P*qHuHX?Ww^49LdnuB-|1`)XgiO_}q_5DuBPliZp$ z)C?PjstFeU^aRC9Zhns+ho7GnXOait7QG>>D((Nx2 zAEn?4NNg%?z!PZd?^;;Gvptr&yf|dDiqK^IHTH}!Act9qs zR#F>mKgZCY0h1)yFR1}@v)7%38A(n;l`NP=17WR#y`-Bjs9QSvL%o)VP{xE+aS&xn zG%&u9nw7B-&|G*?upr@-8-R|#*VkP?oSV;HPQthp6v<0RX&S&xSlAH=%u*Qe>6VaX zTOhD!oT;E$Qwchf5t59}TY(hVO@3tp1$Fv&#%2oQ3t6#S!r1I4>KbIsvWCl2kJIEK z-dTgo(tGI+gb=VLA3Vl`tN?C&<8;nFWHF<&dr1{)c0k-fusHSWRlXU7icmEI%S)-R zF>%YH%ei^d+hn>UBQzt0rU~YM3Kh*#LuZRJRAhEbE!{fSiTwy+VZ8J!-GN;M2x2ns zJR!j$AN-4frySg^^L2zxn{>6%v(JL9m)uY2V=*= z)~#^ig}S=%x##qph1XsS+1YHBlN@B)k**Ju8!@4l@OmmqWGk-b-E zT^&Rjbo{Ta)${wEc_vJq3I?6?J47fHA}=owRaF@^YE;iEYX?HW2Oq%7l{#5y^mq0K zva&|vcJ~v6`vUz0;XXh=LD-K!6{?2$vfGf0O1mujS5U_7fh56EXM-!+K%#Z}xZN_? zrllj9x{mB?)0UJGNNE`m+yD*Bku(p&k^xaiA&N?%ctc;cx(Q>3BAL6k$Lniir(19( zAjS3V2>7|@Kjo^co^7$sY&H=W7e#h<68lda%A=27g57T1Vh!{Ow?>k#au-ip*)xyv3m( zf6tPm4x%V0lewoIwf8qvl-bzTN^yAeXHRp)n)y__Vz7jQq|}xn8yKE#O&Q43M_t0I z0i)P&`)bZzIES@a!P@D=Wk2^AYg-35G(1LLtK8Fq#?$Nk&2^i)28SWh7ZbmLxKx+dlU=ZhLUlGnoNAU;nO&o`4HcNJV_7%P(X0}in?`_ZEL1^2JtMHTo z1JQOi5i`rn2Xf9&SF_=7*S23iD;-f{ywAxA(NJ&jdA3-Q71gj`u#}X7)X?(zD);y} z<^2UL-Bs3xlx@*2Ng~;8BN*1G^y>Gz{Gp48Z6->S1`dUCgQ`G4N=X5q!QUE{07S6( zULqh|4WkEiSyTWdr9-$C88L4)954bbEr}E1N&$y)RmxLOcv!Q#EqPH>7tN|o<9IUq zTD&GZKMrb=QKZ%vQQ=4+q_kE2)p^|fvV1x@S=$&kP=A)<6P-+*oys@!f2MBJMk-R$ zm^5rSV+IbQYFC)$zZ8-;Hj$v+jLYZYdL<7}{t7Pn=36|a)l38C(_}5G0>=U00M7Vi z?)vXzEXezT;+kUOT?rg8>`*cihO=mg!n$JpzLfu#2AV|S4}*|oLHevb680}{)q25* z@s-#eUH94U=F0}iGAA>>AqKl#&*LBLhmaf`e4vlnKiz?4(_$Wd=o-TnyG(+~iGK<4 ziXkM~gXG5OWO`UmX1RGJFNta@2s0EbM@ue7Y9Ug>tI>qDG66^PxjI>auT{Ich8e zY-32V*f7gY?+LGFWqoihzxm!opfSKanOw^uq?l51Yjsev9<(q>X3COBu+;npwQ?cR zS|)?l1IhTI0@vmU5CPWF*Ub{}~p7Q53M5G(wUI#b)8ipC2b_ z%7|V)&9-eiFZ0ktdQ9{GD|qA)UH#Od`(r@?EL*0l2meC&^iy3)7!Jb;C%{J^!RF1n zkZuV2x{GsO*+y?}t@HBAGG0T{A z{s@k`Af;F8yy+&m>n`IeTvgRoqVwm&`RBuwDLp%XC=_Dx;>8RfKAhy_$eeqOqM!io zxktBXP4C>WsMj!Zq#j7xPZ0J!`U%2)fPR9oAAcs~MZaTy=!LEe8bn``an0*a&4vSy z?YkLrSHGkAekI9{WrXqEUVAa@P$YF8QsqbOpCkJT#F{@q?L1Pwbz388J1z&((1C`V z{Fg&Q4w56bPfwASb}GdsIx&=;mBbG}JW6hEW*0{pLsg)VfYv?h+h9=Qp4+DKw{tf! za!fB|vj%q7TPW~!&*T5J!Dj<-@|7oW`Ze93K=p)3R5h4aB4L&lW+WWWC7;Jp*$ziy zHNl%F*RY`SJHm~MrX!s*xbD_u@^`mAxg^004|v#~{3Er&_7{dfyXX$ew&)Aejwlze zoqGavPdke2P1`y9(N{?>DCVxW9-%rp0h`Cm$lunmd`8QW{=oHH`7LG?yYgdNY#*Dy zmMg!1mGSxOD2Yy_))CdIlCZ`R#TOHg#2gOs#=)mk5v9MMl4{F&;Jy2hHI3B+M)BR) z83c0%vHP7rSi1bS4(n?dlF~xuoILsf?z-uAwl45dS>D^3-P_`kCu2y6An$zn?jT8) z8pGv_D{Z7n##NCe4N;^7jT3~`VHdI9t^;%SASg_j>x^4U0{FdhL@LN?HJTW|aRo}L zl15@(`@eZfK^aSSmy#9jV$|7}P?Om5otd(2El1t=1o`>-hR@d#OtQo~H($rFw1Es< zy9}w-)MXDr_}qb0IB(eCz1yWhxo8FmLVyB~hy6eP25+e4_xPz1!??_5MVQSGd-tJApP;!T&ZQZQ@mg*Wps=}Rl zm+;_}_u4N%Y#3s@aobR3Xf7h(czfgl1NEGKM$4xpKz;k)t}PX{e7H8Bh54myuB@Zn z7a|z!cq|m}a!`8DnN1r~vXDH+pI>RfaNW7VC{nYb!Qivv5%B9;IC&Z<1_H?v2Z7ou z7$v_HwiUz7aV^UNBxi##Mp)+M!2|c!wAiL;5)1!0kV#{HCs`^bv#x**iNg_(fi`8GX`24&$kpzp2EZTUP8!bOc6gkT9E#Kjm4i}bexZ9t4671I^!v5Q^JA5 zGg2lq!UfpW?Y-Utrzw^wb7UTE8$)6KUeVSkEkha19Wl={((FQ!0)U-QOXu)I)sv_} zGm9U3ngj2=99fb$EdHMy5_>vvX8qYL4of^yb!eM96P2Ny7WE97Aq}}=9avKMCV2tt z<(6|p1uF-KZ(w-+U>tRNAW3=3P=2xgt4*D0fx}7IeH2oC86|abxUCJ0PB9*Q(h-Em z3tM&=6+{D2S`)>SU(UjA33A0zb4iHmeIj@d)M`J$)#V5Q?{7W~fWHmv+x4~j8o}HT zA!s1BszhW^LI&&DpJaBE!48J77E^>dpgY1qQHmck#gaZawkAX~d&#pz4es4l`VAZ4 z>8EvN)4{zfQvB1fVuk+iqKi5y6bf~Z71cD|n|0>QK8fyl^G%%y1YNmx-+kcsgV(F` zX`Na=ZrP$Ind~Xyws|uQ7yu`mQ!C2=^U&A(WsW{piPE7DAwW*nVc$?nVX} zGl=VX-GfI*c5FxI>}Y$}Ml?-OQX(6m2mn_SlCrr&a!`i`o!GJMX?yFoM$&d-_o4p3 zFJNn5LKJCeOY8ErwH~%?DQE7_n<*`8QpoJwRmRX^=aG?lMx-rm=bVC21dI2raoFTj znQ{28ULywqyy5PD_7#)veevy^KlG>#M(0lLMfCd{AD0|=GB5oW-7Yx@5D3FB`8Hy# zdVa82i-V<0qT3}0_nhmkIW976?FRzPz2%9$aS?IXv>hUHp3F zfec@+4_y5&M;mewAZ7r*i{wpJwM>H(wqZrn^Zr46PiHiZQvrg6t4Yn27h0r4+6X7{N(A{3 z0j!d7`$hmWAwp7QGeVy!vTsws6qyQIRoW`gUtGQk>qBpG=sVwY`+`-R^TjXBpYtx+ zn|>pC{VK-H`Hv?>Ztvx!)%g(Rngte7Zk>-||&Ro@V5= z$GD<2)8(S{x+^$)NXtc(Yc_1cxpEB`?%GY+mOSk97hzkp1cD*d#Q43IqvrJ+Asog( z

BwbiP~-sRe!yo#X^wx1Re{psg;D?_}u^?-KEi~7h2W)X<2kJ669tW!jF99Wf` z5Y6p}j^+Ccjv)VrQ)syJZ~XkjcieTuKbbx-8Mm$Fxhg$ge3oX3cS;JtW;_v(h#>za z08#|M)g{4sCmJFL0jMdY%@lkHchs{U5H7X)< z5TLL$jhu`owPrXda69cFNxT-Dv6mbKnETsG9-8wuM~qIu90*hG4H77>hn@Pf_$DpM z!B5c1L4fR&u4hPQ4i;0}Yp)577k_w>!m{remTbq7UXRHcMv}mu+(6=_#++nAB7S@c zvQ<|>)l^#XdfIo;XdP(KU1$~$sflpIvtx*M1$p|~)c~B5@gZlYy~SqxG}59{4cE7= zzNHg!?Aq;EEB1|YKXORq)!EPlM5z_bq;39IFDe&_d_Gq)kfh!Z_-hDPM?BU}QrwI+ zw|$T9R`a-`@)*{HYSEujALF8qLB@n)2{CZyr{vE&4uRmu%BOg}@Fr?P`ZzOMwlU6n zYMVOC)y@2;dN%nc4O}S@EMsi=1SDGe$*BbR*>pb(qrS!O)SXkD0TVGIw@sZz)*sn2 z=s^+&ClS)j*h~=)m^y&uazI*Ss*_}Q4G*3AE>|A?6L-FM5*v3L@9U95iM3%G6oVw` z#NgVB97?@0eRe(ocZ|feqjU@6u8<<_W}LK?v!!R*k3|Hq^EUrvotPN$ytO^-kdpV3 zg8+ewT7EeCR{Z5PJ+HhOMvTxEYP)v9%P;q8)qfi1&xc7}@ju;VWn@_=#I_g@xQYbl zo~tVdoldy_em!rV&8G8nM;t-tiz2zXy`#pHW!-}|I~z_twIw+Sy6xyc{-H}yzy2Ch zQgq+ULk~6VJOSu)vq_WoT_Vg&F5&8F%X$CJAaym}%OTnv85z1G>XT1KcATQ*XyU~$Df3L1>rtGzk;wI ze-@+_>#*GU_@CX3h~bQaqtB6Atl$1=_NNvF+tkz+xh)K}C2kN>LLO4Z$L;PGaVH?8 zgJJ99UTbQ*7@dn`F+SjJt?v3$^ATDcNGZd6t$rb3?{cQY1?LgH+ zlm(1ipfyJzATxQynan<6JNG@lq(|*&j^*VJeBC4o|9i)){Pg}j0IvDh)l56L=aF{p zp|g8j6@V3$5{Wh!R^Q?L>*w|fk0>j=esU$>m;Qi2V3K5}1&`+JtJ){b6$M^@qMqf> z@9>6OE}C1zf@f#w>Pf59&d0M4Wz@jZ`yb7NC;YR^&K%uP%f)lw;*4KE>$Kb- zIb#`Gl!ra&%P$-@g}YC=ky@v|n3ub}gy^kv z`DDX8l!ZE8XuAEe|3P5_1>0*nZBK9DuKQxhjzGv;QmBz?Hm;5 zv0mefB~=5(6PePo)?*<`H9jjWRTCq!F)dOuNUbyWPEu8sGRFXtt9DYIkb%`#kE5X$ z_apBRY&F^3aLMruii@JckwRQeG52jM;{I>+_h*XJM&3myqO_M>BPIc@wDWuR%&HCC zx_HIjzh@82Wp4g1d>!OpTn`L5_6W3;B!ndEiyC2rmT3a8Iau@SZydaGHEKIkq&Tyg za+3lAeMc{-k3_ zOKpeTlR$Rc!Duc^iy7G@Ks9)M+|kH^W^MQSk=JemryXrn+XW~oH3O-x$XMNgZ}1qF zCy!%b;R-U!H>0X5FE8E1vp=oF8G9}BFRQ>|X?#C<{78N?3@}c5OBvZvZ;&W7+reRO z6DZLk5(hv8cH$y=FocY~uY_WT_ylw_&aSa&QHa-GY5DHix^pm2djn}n#@~5+5bdjG zeCaCY575<7PM3ulr)Trer=FvztgS7#qR6~;>m9r^ub9GAGx;xELQPo-R{+m7E4Ln) zjGp-|^}tg|JNhy%UhySEhgvzQ_%o^-YTDF2IAtK`%zTzF)){|>qGJOL9?`b0-hxdr zbBOs6ZoVrXg?gU7eiiGsM{(^_V*#1CXn6Yh%`EaPH(cicmtb(?aK%zpkB}uoF~$k; zeT{5)fJ|42YV$PyCHeT6w$DNgCYFg<+@U{u{ro1$N`f`ZaGrR8!myo}>L2GPf7?LL zv6ksP75gMsxgJ$m+2*U^)!i3TQYu*b#KX*Z;DWtnug?0I;ZB|StWm8j^1jbP-?MG% z%rNc8rP0r0E&UA*JB5jfd}+Cf2HL)p&hr0{w9;*WL_@+j*4w_KP?_JR+z9nTOl#Aq z^f<{)*h#dlzUNk>Lcq2Hs5KaH5(vYRd^ltfMb)t!c>8T^c;+^&X5&_+k+v_iu?n@! z%hu|2o?dY}7mxXZv57rbPjcZ^M}C|Tuz~~F%4lRX1QJ=~F`0SD9pw#<5Q$TU zbL3BtVRH0-;=udwhhf9uV1lwBeBUt-4&_}kxL`Eq#T37weXr=Q^B zi*^6hh6WfvUT1I4Ij8+`Xh{jU-Qdsz8~WVOdi{DBH0ZCL)KXO`dhQec^}_+&`9fN+ z*y>kZw0e0`+O)wawzP=twlE}!&ps=tIkH7wA_I?mP4og!=&f1Ytk^ESPV40D1k^h>zP>HliJ2>;W)z zeBaZ7M%rS^a%0Yk=|=4m(&$+bT7p#bErcq;9E)&I1NRY#vP#&!s@rWgbdMZ%q~ZFa z-JeSIbr(^|NHH0`R$X~HTy^zJeDJ{sZT7j{c9Iffh>eRv(==Xu;Tk4Q8s1JV#^F=z zsR>5D7`F#&R>pJsv9lRHrjqk7UC*r9`6x>FKiQgqUrU^b9z5N9Y(`H%el{mR-gA{@ zq$u{n`Wn6cBcldmQHSx)Di^CuWkM=s$H1{eeN4)(VOiA@>O)PQKv~u#a(okc_d_?o zu2k@NAt@ea9uVZ{S@oRsxntl(jKj&^1jA&m8)EqIM8vgUj4Gb>L@3QO{`_1CM zldeOPo5+}ouhY3jdx(O}G&ZH@l2KWN$L3&7)<{I7(rM@)C78k*F>!X{94mO@g@>qX zHas+$%$$3{WsDejENhk-C&_w(TkncyNRIKoT3jedGaJw0S5{{yIc)s-^n@(9JjMw~ z0DpZLn=qd9uiO_!LeRJ^X^}`JwP9!1^?H2F&nsqiwS?VUMNm~qa@ja{>>ymtlv)SB z`aMhXo9?d!EI9ud)bnltVB)-YIq}V}_<3gunh?ZCxtV{)407Z2m29ucfz8`M#(zJh z($j!RQK-D~G%W3rgXrHep_(DwxsvU-@>*uj`4Ww$98w)kU+y(2+&FO@q0##LTS`es zD~=#9U*Uz{;rnO%_F&exE z7n*H$Rt=v?Sh29*#xI*Rc6r4VF8A|@`8JLlwUU{+oAg0PWf&>jVSMnBH594VST0ro zGIF8LVBe8s-D@dqOvxmoQov+f^&}DpgJg^p3x_4HxvB=Qx9J(tgoJOAjo4{51Wggx zeRTkv&BXL$vZ)AG@X3OOtj)_O7z&e{oz7LKoXECc8z?BK=ZD=NQ1<&*3!p&$xFgkMtR~&f*Z?7;>*$|0h zN-%6p6;5~G5Eh{4IG*Gfi?1+^rAt)Knz@GUg-)LOXaYA~(ZIIYg_N~3zUT-tf@w)$ z>pFe-Ujj0M35i~8CP7dc%yv^29|;d%QA-H{Qm}Hrl+GccbtqbdYF>kInc{JqBXc;Y z*X-;F*D%-j1&ab-Q>m7aprmnq^kYo5q#{XszTYM)LuT@Qn|R>K2FU!Gw5i`R)Oir6 zrTmK|OVf8gsM#o0eXI|B&+5RZ)Tp~~$Z;I&euy!a!AQX>DBT2-h1$5mlvqnxWBQU} zX(bvVvbE{V@SaC>WmAs&pmPBAZa2G4%P3Zs5}*=0DNGDrOKkBfO6#M^uTDpj1aXcU zGNQ_`D4~d*5B5NW!+Ji#U}P%ud25GJRu{$T2lQ=jK%r^`R+b?=AyiG~)pfJkUYo|% z<3A+L)qXDV-oVO*f~{+MUe6XWiq%ZvROywTSJsHE6As|e5AQH-!sqb zyj-u~n{RYkQZF-k4?d`i*?OAe?XQ64%i)SEbk6Pl_aSBb53pn%O%kS^f&}dg1ol1ZN*yzC2sr(8 zm@_BxWADEoE;=tnaz@XSfC?cfDJh|%qJqlGN^CY8iHV667Z)>l@L*C>dMEcH=)%$Y z^Wolmd!G;PCkXc)`U%2)fPR9oAAbg@tjCUdje?JnfRbTF9_ z)n$n4mXpiABs9&#LKaxgdkXf(TMkUkun0w5}74lXAlCu z{`wD&J?@Ak(Aa@E$A_Ya52}nMQ#BK^2s@p9O z;3==--IK2ZU?^ZT!7tMR8%X05eJ%PuLyK?W} z^*dtl6}!khsEEv12T?W?b^b6rDjHg-qlW!fjG{IDothEF?&`&S_|Y>2nUF2fuxERCb{q;fYs&U0$AOO~Y@#j<1KyHXk5g7J{F$v>~(*A&qEo4yr z1^6@zwm?&xR_)l$*DKbue8+C`N-C-HG>{PGqN1+joIo#Lcp9_E4CRx}1^n~H*W2v> z*U^Vzw_4a(QpV28YN~yH0;)z(RS9Vtp-_lKmy_4dIhAC$lb~c}$Zh{d2*LEBL-^^+ zv)etd^7YTCvkpR-on0pP*_NEmsI$&*v;F={FJ^|_#6i!zM5s~K_|l~PIp^q^;As4I zIGl(`l$=f%v?^a(SI@kyJD9V24VNDQQk)3aw2(+mzNv72)C_6o72{i+%9PLzT8?C$CGoX^4#fPw_Ane zb|LwVw?~S0L9lDZ{vI?$C9o=b2sYKvgsQbVNmyBn^zCA9UU?y_ZToY}S*tjBL;(na z3IUXaVU-9TC5F8Z?QZ z5GWG3C2cR^C~69!t}z%#G7+|=;IldrvVz@LhuPObzGHI&0Y^NV$%Y*AWA*HWMtfBu zpg!QFtRarVI^8BTBf5kHM>Wy5F0Q-m0CNn8Fodc=g!O!cnI&b%v^ zA-R4067~C`t`3rtB0H|CN>{5LcwoD`pL-4tI6xQJ{l9{R3w2&l(;z3hf+^asL@6F* zH4JJP#bTm%_E{vS$_(B;kHo{r5tkFog75uIt^JPNv-acASNb;nwlC8I_Mx|gYyL=*uGs)Mfvc<5Z!iI*KPC@g!>Nt1mQkFKS9`! zKLe)wo<;d}Mb`!Q0gRGb0vIq1CLgAkR&u9fj-QUST_COYfKNk=a3UsI39Nn@Q4@I- zY9wuuph>Q0pu8#5g=J88@@q&iXn&-5Cx|T&UaxO6j{`9rv34=|yJ1HDf7m%UP zn*`eT`^$Y@T)@tmGiUtFb3ga}49!58d!H%Z8Cu97#X@~pCUwR-Ds-EvQ;IRF!9=U0 z2x|((Qn?P00g^`o5=SBWaMI#%z)2@R%z_22)}cC`f~rcSl!S$a@cnlWGG$7D1u#27 zg>yG9)&F3>FWi3J6t2B>4e<$m6IAi{97qXuF4(f!jWf(f__`c^Teg#jp8o)V53}FK zXxhI%EnEKD!c*72Om$gByL-}LG7=OK#>umvY;R*2Xy(9P?HjAA`Ral@sIP2)?>z+E z-GlMBg-d7Po#|&FkbE%pR2og46X9l8BahF1kSSYNcG_lFL;_BOiARsWp7jHUp!0fp z@8zqw#Pkl2&isr&kDSPwU8^XsEhE|M4_{$FE7MS^&f|C!^CIz3@cfvF)qmG$U_|Aaw# zwTVdSzv{5i6-m5vx8LnomFYR=-j^t;=~>_xz+yDu@_6v7z5g7zWPB!fo_!9f*J+B| zTP6?X;X}rBy;4F3GPi4|g9f1^;)(Y=s0It3xQp=OU7Y;QLVnEAlwOO^ID&C;ZED{o z4@Bnp@1!6S1|WBL6WDaQwCwisDwOhC);f}S&v`bnRtJ|PeMenT1aGcC7%zGfZIv9I zx|)RG<|Ksh2ypm+oeFy>G&uZjuV3^xN?8T&(`Wj(LTCh{zSR!!k;Suk@b?oK5wn}K zM=as$@xP*o*5fXsViEQJD|JQOfaaQeezs4}q@lWu)hUM&+*HM=Eprfee!%XgSe`T7 zOjBeu2aGD@%vqYMQVbXjl>r2?6VkzN+fxBi(ct#;{t5~Mlef93?Ls(n8t6L@?8t~T zzg2+%GCUFJW-L34prVF4kBQ44w^39UOJ#K!Znu%NgdIdi^j%HkuHg1G@%_TPsB0+W za^RIV%iabq0)$S_petU$n$WSvTHiyGHKGEmtrtmaeqzkRNah^)dvX%%_(tb&dtg6y;*IjA6_~O=p zeu&oTSy7N<&Wm8ZPU1Q{6{3&`d+Q-Y?93T z4C?)Vbo+!`8mJ?L&5U9d2XZdYVi(qkx)%#i+3hT7uYtbXJzYPRMx z;h8HLdVL@JfqFcAHtuo4PB@rD@AK^z@UOt8O)%KE`%hsZeE6Y8+WcQZLj!#G9X#-W zRvvH<6a_9iY&V0#ODQy`Q|1n(u1@3hh7HqfAm{$1AXD=;8eGx@8+To?gJE5nnN6-U~hMXVWH4uzBgFfv;Qn z-uK*bej)e9zeU39_rcLe_jnv_QC(fl-+%v&5CSPBW5fl6py?Te^UsdU6)V#E8gkVyfsM^Ga1nXzEDa@Nz)D_J=iubu>;)|L;DB!8 z>fObxcuPEO=C3;l`@?AJ8kVu@bBLPeK;DBZ+VFpCCN= zu^(8pzH9Q!0Np?$zhcmH|M8RgX!%yQ7M0WF@zT?ozfK7Bia=2WIw4SmK&J?*8e5eX z5y4g}niY6PMd9WVX*>`UjyifE=zJu6BxNFVwsgDg>P8pW&tJiJIYkIX$Mr|e;LhX_ z1TZJ3fD^va>Z6ujeJa6it*OGJkfr_;T9_@+(ET|U)wPI{3ef9N9JP3cXOiC(&Fn1) zA}Xu7Y}yL!#zuD5MDu;lSc>XH8DJ}CSmbUB)p)!OPR7LSBrCjovPwh-NGb-~pvixA ztcZ-%g2ByLv@46(SIuB$VH!W4`2+*Q+uPpib`~S!>=5opP(jflY!-0&X{TwjAoMDg zmS{F4PG$J+-w0dr7yq3*m4oBgFnINkC?*{|c!u`!35!N}0*KVcra^rG*53((pgsV( zNX!6mRcVra07Dz*U}uT;|3rGg%{%9k3~T`QTq)auQD}7s6OOoq*lDNjw=vm5oMaAj?DOsDU2arG zpz8JLRX9vWVMEUXQBIi>m}O(AQ8K~iMl}UyHKvO=ijyijCM*un!waDf^fiA_@A8i< zHYh4%qZ-inUA|tAp%cNpY^>k`(S9B;5M0G9E>owFDl4(-dy=dfI99I?=9O0xc=+KQ zVqyY2x6<9Dk%V&J-kT-0;q0!CWla1g6s6ciK0E1@}C8$x~2=ds|ia4Sk^AZRVb(7xVPA|L&7-lv;;m-sj-%=5g#V z95S45IFA!}mk`nQJ`cX)M1~%AKB}Y5b)yG0rjCNYmh#seRk+_d*sZ6_!%*ZNFP*O=F_WBX?3{tZ~X824G{b5F(f zob=Kmj6Z*9kGs11YR%C#JUsAq>)!o>`!3FBx_3UuzH}s9d1a5s(H2ETMdan>F=WUP zf`fziNkUD2zGmzD?6ZC27Tiw|?mzSsg!=*g1Ytk+H}ucFg>J6@q(W!J)4sIs^o6h} zIP^4ue)tg>XD1*Qbskvtemsn(WsmRE@dUE}!lK7KF)r|aGN&Mn&m&x&6KFEzZRE;@ zfsHdZ5|I$&yL}(l7p#dM#S+WCsGZtsDNJv8gy6Ej1M5E|9ud;X@$BXJ=g$3$S6=;r zZQJtMx^*|ME^2IS+V~?`S%GK9c~lo=&fI|4+k^FMBKY|IERLSFlPS~sz{|!@=(ZN4 zl+_Y?)raV}wGRs0%x3DEnlP9Qe7@onT-JS)`MfubjV6puW@b$}5x2{Y$!6tvJ$!a;9-~zdan6w8S^*prqRc9&Y)8W4>FMz9m2?j z2y8|pD|e5=YBY1~&|DHjA!FcBlA5|!L1q_}bI8j-&{?=SNU!IIZ@xiTt%R5CWYGGB zt?#UuWMsboR%Fs@hw6^!;LN$}*j0ZjOOJ1F0xSU(Q@1vzZ6U&6PdfU{cqVj5K`hD)-e%C$ryyp?VfaP8E^U^$ZOyK+TvvF<_1zjJDz(*H6d32 zjXcP|>=}`o3B_${IXddKXk&zL-zAZh1{J$mn>dX+b2zbo{?7CBX7Ix4pFvqQnzFBT zT@f1(dsL8%H-gOqqf&kLjZP0XD|r31d<>2NeE{~5k*VPAPoo#s|4b3klpNweO*@&NP4{M8_o9#N93q-5JTv zlkX%`??tclzJ8NGsHxF$#g&=N{;>N*$h{%!%AhiUx~Ts4E1}L6gwtyvyJR2$@wQS1 zMt0nm3>$>kd^d=V9hM;nqjNq6zkQ>z5?x_yDdNXXkniA&Ay<)nppNl_dSNpvCGO3Y zcuRUlGA=F{!IFXz+%e(99*?0b6z546e@~ASuJ%TQwDL6mW?|Y(uN95Q?EgP`cCj=c_u*p&q$p5A5eGq zL8b5j(AC)WDRvAg?aj9RAsEG|!w?M@fX~l(khY7FC7F;PU=6ygG=z2ETRv393}dPJ zo=%q!@m#`yax*$-fHp5NgAk_RUXHGNY}s1ExN#RzSJ(Ohs@LoAG~YkbQDF=ol1y!F zBlUHS)HgV3YI5OnxpBL_7z}!%!$UdHZ04eu9%1x^NUT<9^wi*R2WDTm2iv!X@WGoy zxbLw){4FEZ=P)kXLc~$e0^ke_##B{Dh7jzK5`)3O>`m|Z)lXk23`0wzFu05ye)!?I zTrR@Xk~sO@$J(`7^vJ7hnX|Z8+c8=#7=kRg8X9rewR+2qsc!ffNE}~tVCvHu`F{zkMbE?VL$Djrf7#+HMGsmp@g;SP)-}2kK zq``bK>A05v|1$Cryoy3fSsuG0lSqxSGGpmmJp0RVwoG~gAtjG)tYv(an)MAn`{GazIn4iOSXqT2TKG>8N>!p% z`rlsLhMp+J|A2d8eJJs6{}q8%UOQn8B|ewk{NW;=`MINQ_@8&3&iJJEY6-8`%c0Nz z$fB(s$;OD_AkG?-%72a;i^ZR`&X^2jZa0-Ty(+qAzv86YM!xQ3?s4LYCvw~QXR^LD znYypHaK)%!0g#qpsPSLzCM94BhKBZa70ViIe6(o_*NvUiai!=aWTF4(L8SP$CDm=& zi8moet0UO9eMS~?yN_e!_F(*e0Wv%kQB#NOkcnDN!Sqbz&aKqC%sjp77^H+NM$RSH z>f2sSNli!YZl45!l;CoM536U9lmbP${_ZX!VE~l+AEXvZDTs;yj%Q*zRI~{cJL;jn z2@)cFw@)4j<+*rJ_#^W~K6)dX$0xpx-Q0-^aX=QLGS~0%keCV8{*Ry70npUReZMXj z{@enW9HzbO6a$3Xv|3(%KnBNv+5h>vv?sy5g>Zy#3B;yNK`dVp!ujWED#<&qFQvG! z=idWC?s}%@{>J9WEONrSx4HCqoP7V=UDVc>axw5mn`QR_4+1)~l_A%?jxluqN0@^{ zTnrl4GgVTrpu%A?k`N61EJ~^KqqgOUC99b7(;_~2_!=f8=mWCu3^IgJYd?q!EA2G; zc(qS6tK6?Fp{&8*`#>@}vJtCc|0+>^!L39w&*raGrg3dw>ay63TY;tc*k#sBv2PyRelU8XCPFtFaM_!B?V;Kt>Kj zH9UnBzjauu$eR$m5@5X_WlK~Ezvr;&3pf9*x{#X>{EF0*tPtHZ3p?pmajq^!)(1}N zdsKyKpS{GA)2`4S%_TMHa>{T|4$Q8%D{NgWS<|~uk9H`K8RRpFgZLV!=zM-=&rIT= zm+!_@5sPft>jsZ@k^SIJl-kmUAkP zf13q{o+S~eDtz=2q@=)@F<>&miWTtduh7^C9*;I1c>Hm{%R%=DQfhSwi;5sK6V|NJ zwy)R2+i%0tr5&9?JHr=Wz=qW>?t3N#;c;snoO2G8m1#`R(4p;_NPv0sV8#s1cHh*6 zyO z{R`k9LDf^0U|*{X4JJ7D0)bu+N^Cl&=yOo+*Z}3tfqJU}d3ZeP>5;g0eu0|bn(4Sd zZA3eRX+kVYkpC~#mND335W|Nds_zANbAV15kmiYCIS-j%3HciW8?(`X7`{Jhx`5jf zPf56rP5O6nqA3jodLrc*GTg^tcT{0$3{U|l6s`W?e)KSLxm;9NyU5G*0H0kn<1%hGyBg z>dIuCiKT38%4gV9zwyDulLI0MGm3I}>VtcUbClxJ8?m^X@Ct>wBc}2Fn8R6~IS!$! z9Fo15`NOBRte548Cd8b}Pel*&-*4A)XsMGGVMY$Dbg}ZBGkNXMt5{ReNY;uXbbi*L zD=6K-{6C)1`cFTY3BxY%dp`ofDd*TY@>u_q1S+ZokuosC&t2-k=%<s!f`7`uh@Cued0 z(c>}1q`~%$VAA^+xrjvtW&@($iEHX;UR|+~ zce8hqU+(a1fr! zqfq0bAtDN@TCbzx`Vc68RSH7Wx#EK}c=Y(M80z(* zZ~?GKAY=f?Co&nF0jP)L20~*O2|u-s5NvLJ>BVM%pGi>?AUYXT|5P$kZ-q{*?0=pU z!OuTOa_>DkL`G`IdeQtQ-g~WggxJX9HQ1fiEFLhe+qNq=%x2S$Ur0o=7TpuWT85?` zRDsmf?;?EU!Mz$&Z;&~xvQJfnmfCtkE2=0;>4uO};fQ9EaHVjNqrhTXU?p*Vhx$V0(Tg1*IOuRejL~p_-|Mp;nnkK@c4h<*o|IBMC>2uh;AY5O7uwC{kVS8l~E{}nsF*)6@07zRZSe>ZKdq@_e zX?_(H`65cGiY(X(1%4)bdQ_bMUCGspZ{jU3MxHzZc}6$&h&zGW;KsSS1U!L{|K!s?!Pc!%QUX(_ z`q$p$(U_i_Z|2pe^B5XZz|_yL)ru3Icb?yyUB6x{%Xi_0+ADwMN{t^IKOPP{3~V;- z{&Tzg##*r*%FAK(YHdS%Vb6DWWu?Z)sj4;>yB!7&go6(1IG*|QwXq+1sCF(NyrqWY zo}bAmcXQ4A!a~iS^p;y7D+@mTv}YgpIXRlNaoDiH*Zr5^x8F1e)|+qcc^~uV!#Ce( z;!J-p+r3d-40qoRx8DvKT~`wF3tq36va&K78yl&stHa@N5E~myK|ujAF)^g2rD5ud z{Oty6Nf}q4Qo>8W4Mp^#Kyg1oxc|^k5bg)`6NLTPZ>X)uc;>YT)&C67eQ6^aNZ-RJ zLDpE&GVc)f2n<7xMu>1gB1Hq9qLrvS*Yv3WKoO9=XowNhsOX*(T81D<9fPo%0TsLo zvb;pAP0{?p7|_0k+953wY8${&4NcwH0!4&Ect}9wZ$|*>tTfqD@fa;gBs#AfQ$rQH z#(ehpp9Dl01%)FbJFy4zXFNS<-|Pa1!=e4ZzP_5{X5B`1b}nA87rkDGUa!Mo(BpJ! zA8c;72e-Q;x!`s!pwgX#w-Z%pS7XZ03+CG|(y1u3aLkE0jGYjm^0E)Htk{YwTMv@g z>*b6=+DFuc!^Uy*%hz{Ur!Vbm_eS2fVs1X_=605#dx~s#fPjejC9mbYx%vB-xb>|2IAp_OE?D#l04|+@ThF?WC0P^6EZV`= z_|`9mqWLKdJhX@-)4d%2-Fu9B{~c6C$LeWEaLb`rQ!BKjhCwTfkUD`Q!a}{>*zHOA z^V!pIx$03Ag|m-+H{gBo2U8ERF#T{F{yq65wUurXqE$oy>AIe(S`5Pf`?Ri35Ul!7 zWHq`CSehJuw?|57aMAW6FR7~K;5%NSthokILSzUZ+;kShQ?;z{2A7c_ck7sLc=vlg zT&!6-r$mLZ=E*CuwYg5^?rM~WUPT@>8hP>|-4Dqa1U1c(r)_yCe{MkJ7300^L=Xbq zWA7rWwe3r*1$Dwul=VBHp%L|%X{ZN|Vd=0#8M5;)!s@GVdlfGI=tS;5Vgcz=bFG)o1-oSyGyP2Avi;`c2_o$hu#sD&6 zgRD^Jf8bo|^$3su*O8PGVKQg|tG%$cFpdvajU_9(l(WXHro7&YqtU{Mfi=+Nztx(s z*`UFHWhNmZhvM2@H?KS>fWokacpfl7(MEWwZH1jI3fTIjkjx0^wUF-yNQjk1~t*Nf+JQ)*3^sq@Q^h(Gy0X z)9b0)lEa!u-a|H@r{DoGoVfX2bUxe$0!3pZ9D6MM^wT~dzj}fTFVqSOUVgcM?Hvxd z{Bq={pK>1$FlxBUiC4vG?A{pv2<$iCgwdn-VadJ5MlhQ@{|-}CZ4e8E2% zPXeHz03LV%9(xQzL!qt?s;eP8TRUgdr^AUSYTc|}tqB0fB$hH~u8znU9l!nxKm8qt znI^DU;QjaE2Qkglk=Y2@2IkNueKM)kueS2T1tkf)I|NOJ( z(>|{`T@l))hr^?L*N$9#=m>xc|^k5bg)` z6NLTPU(kK_1N!&A{HKS}BSqhlXM#OE0D>yOZS1RlC1A`5MW5(juw!4V9b4M#b>N51 ztOUfMR79|Uvy{CF9glSY4Z&g5>#C?%iV;%5rp6QOvJq6d5vjTYCyc@p5qAHqr}{#v zR#*gEw`!f}^^)PkI$Ae)y^J#$RRrRpUu+tsPJb=$1K|m$6iKVbv^blJ8!OhxySwY^t}B!cQwyl^&Dy^0gA}@ z2(Etm3Wki&!mGmX#o+COCq+bIDHZYB#5Q@$PKr_zaCh;st#f-&RMlsjRm-A520kXU ztC2(3En@tRHPo4dIQ7r(T9(~(&I2qOGNoO6#qGiTo|#i#HlQeF6jkg*x zgTlHn=4`4%m7sHZ@fsBWPKuPQf8a!1PK|sxch>s>@5{bGRJ6k5PX?AHU0v8fsL_AY zrLfXWg5ui()E6AiAVOV%)j6!MR7zv(Ip^8$+Lg&%^7y$NFsRiss>l^doLdV3 zF4~yK!T-_b0O7$F%3tdkG?DfMDA>{AcT@=l6%ZfZj?j=gBh>CimU+C;eiG zYaucu2(e)o>Y39}e%}n$HF(dSK~?5pvIif^q?I3|S3PVmkLJq_5rvno&qgh72HqNV}ah58wq=~=z8 z)4GMqmOPY=JMo;*Mo|?N2W3V6?E@eNWWe6Gp>43PB#BQpPR62lV>dOh(K(dCmW^CH z;TOMDBqFV2UBNEfrw)Rm?f$n<8VIHSDN|b7SLFKLo}^5KBab{KiJLw@nc1hjgi-Ax z*(qTlI0C5Ul`shE{I3s6bSg9kpbE@yK>X)DJOd*O?*Awr9<5QT*(D7JgZd z)m@LxS&J$ZhURYIoX`(QoLbmt>izB@f!x6nG=!Lts>+sEucLnVCe8*vXw&Wj;9bBN z8qLwC-N`dwJ1XL`CjPpF zaSNBX{C2|+uhC%dUZIqvnwTKN@aR0$$9MgX2;Nyl^s;QWo<0M;F7T5p5X9(*vdxmn zR$UMwLXx65iIvqf)~=)8-7%3MZT36{zw#Y_J#sN62aRa?-K2OK6V=%Aim20%WW6qy zHF&Tf7=%KqbQ0^%1{pY^)7LO7Ho{E4>zVV&Z20fj8j-*IQ?OeD>wNJ#YDbJDCpU=b zXg7DMF3A9*9mirz`6xfX#$2u)Sk5l6jwjvk{Pzk>rv>DN7klxd>dn=aG6o=1Q_y z!&sJ}h~AN#>1WSm>U+2Mi8Igj*Tb{V_MJ;iuTWg97351z^`E$sQu7CGYU0}m*Ro*Z z9o+p=98po-uex$2yz+|XzS$`%DzyHcPR&o!9AF|!MFp%{TO zSvM*H4nCo8XPW!Xc2t0Qay-K5f9C0aBMJS1PJxkGJyH)gM2=;v`DcoC9SblR31>p% z%>&BY&(|7+hf7AZvB@teC?hNDeCp~ul6JwtK@1v{ z#KF@?^5~EwrslSWwhQ&lM>-_{(3& zo;Zrqr0!?qXFmNlHDMwAaG_R_e9)?F!b{89J~Wd#yGQkS7}GW`<=_oVIAZO5^s36| z6OSc3DU06+Po^fQH3(tf&_KlZjoe!EB=??B!W>h__rd|0Q#kjKdwJsz|5XH4*^9~j z^fAH*nX!~`f85(^Yr?opFIs~ffAi{=Nxea;v7-alF$k)gwkD_P! zxYI~1SV#7J!NRSXT;Y6?v;z!~&^*4_bY!moWR|prBUW!f#zla+6QbTxhg$1m#oBN_ zSv!e?O-neyvzXWf59-)KK8eM4h)F^gbwW6)Dm1#l+WK)UQU@V-24Z762zL3u&m^X@ z=5Lj^{+`YyV-`?c7s}>}cupJg2Qk4N?{5(q2aW*h;MzkGt^gE=W-CHE@t4%nY(qVM z2cX4Ie?yQSx2ofO|N5gcA`QF&)I^O; zL(|&%(N@B3H`g$D)o%7>b33G30t2-#OiI7959U9feG!FC0Jdg+FdBZ z%6rBGxJ|UbFN_GTCxr9VCc<3H@cS9Dj}T^z$E@pww5@N1w|<5zXK9I*fna?O*I$)F z_{=mM4m~SY+Bo9yO76bfzxn^(kg8X+8uhx^SeiynQ!tZ~*L7&;^cdJtnTXS4q|OzD zPN=w50~UP~ilS2Q3L@HC!Jw#Izb#1tmN$k8jj{ z=P~-eb9>#-Pd{nOw4Mg~_a_PpATF*8?odjq9D>Il(>TWS&u`D?&7BKhf2}1AyIe46 zkS1E})>^fx3I6+ENKfw_lhhfcgr!T7=bguuo)>wu@TivBgZ`}Q^|op2c5Af(7c9`! zm<7#=Qv(OWOD}2uqkFJphju`FLK;e`S(YXwbl>)03@J66&>cH84z(x3b1C7HOEiKu zu9N(g?od;sIln&i5JdM}n5Q|J_;KM#DRH@6)YjHgSy@R*NeSuc>BPr(Q{&X_ZmIQo z@4ax+NicF`;KS@E2=^cUN$2Q(^rIhr2xY;tPRYTZl3#7t3AB&S+WP7zeQ4+X?60x+ z^xIqsH3viv_GDZ8w7orWy8t1;Wy@r}9e6`;jb=7q|fBj3WUA(^Kx0_$NfeD9p^m=jk zp_@?r&V0r#TuyOvyk7+2M>k#A?*Avh{1Hjpa#>`YM#=dKf2WSlYI z$1*Nw4YAc_oU;6TPFemvO?o32T=^o~?CIqHo`F5Y!5Md~V%_I?td@=7!<=u~)}K#7satB>}*EI33X2pgTSqZkZ2Fz8`$5*YOmr;SM-GXb_1AfnP* z4wGK>V5=*mB0PnZuvNGiM%u}-&}QGHGeA{9O(iljrOO(4y5HAg*t(koBSM(U2P}0? z;bksIEirP}+Sf6KSdp<^*ne5Ncn>K`J8}^4zuw;-)H(udUsA}ZcsGxQf6UjL#}gS; z%ZXVlcyH}NR6Dh?RyGFn$RVE)UbG$QbRi-mpwZ6+fEowH#6Y#5s-LEMh)aS>KWhv( zH9%qtRQjjdlQV|lE>(HE;4q?Xja`$2pxK?qBte~@w%pYv5S;){KW$PS1rQPnUO$7= zHN{{x;`aliu^#+%!WIG!nPK9y@`G4B;GmY@$HlJ(!0plFs0n4$j={J*2Ey%CM23|U zqc7s&CHLSkgisz7#j6vp^lyV*z+TZvVT_)FId1@P7p>%AIj~2=96SAVf>X52t1Srw zd%fMx@W}xuFn9R0F3CZFx*8)j4kPx^-p#wDPGQv{lX|r7Hc?Nqv=CAlLrqMXX6d*O zph`CtgNHEd&F|X%UMJy>+8}0`Gr8L4rmD78=~Xp6jjG{kKKm=IHxLu##;SJ{?PG4? zLh=L-ei0^S8z&R)TGqEa6daL55Tli*Xbd3H zq7%f2IeOj4-Vj1y91=m(UnSt`{(ZZ-B%Zey9n5EGm*BQ%uQxH!*#S5Q*O7_}`9CJ(rKmFAGArfLQKFDBz3od{uQ{dHC;k)lNg7b_s z+LMC-0|scMz;KkkB?`= zh7B||HIbT{+IcMTmtV9S=%9nR_F5}vpAB>7_-@*de+T*r!hZDQ{{p-!y01Ea+V;hi zc<(-Xs%qPN9g_tT(mU^IUyMCabhWR#n2tfjf0aV8yY?X+XB7T?ve`xa=S>E05$b=7q|c+R8bZfu{KeaIpfkhU!E+I|dEq_hZITy7do&JQ9xp*IxEyv7rexTV9C3WcmOr!gV%$ks8GX0vd`vv|Cn2U`_Ihe2<^t9p^D#Apb@ z8Wc@*_&`z;CJ`CdgAdL&aJgD*iTVrGSHQ3f=yZ}mN{cFrpb--m{Lgsz3M~?G-XX(z zXa4$j%bvO5U@~IEIOgHcS-5T&jjpzX(E%3%udrl`j`G@jh_ZJi-h|hUG+Q--r@jfi zD%iV8$}l!ZfmDfDmy5_NMNS=xj0x2U!nXZy*oBz40q?QnAUYHPYkd`EktvLcDa2xM zYxhxG8PNwp!I zSMz7Fa$_80hn4csklA#{4{H4fXyv63_Mae>Dj36{(LWW6a5o?gG2r%7kyBp+L5U#! z3(ikF*vyw-H2UPF4SEkz;pIeymm?)q)r3)26^X0Zz$4B(@VNBMvmMIN#*J7l{#z{j zf+C^v=MQk#R+0|f&}P}KKm}llO(lLt@0BZlK?o}B{?+{|+HLJMLD(CVDQ><~OE^M} zBD5?5M_gdf5PwnCkk5^gWo&ZCu+2yE*SAeZ&IwJ1TK}vdC4!u46T>2!IKW%XdAcy( z6CD#z)(R&}iQqVlNdCFwtm2{8T}Ft}ztRPP;G&BPIr)@feDV2)o|Z6d2Vu6M21jF1 zJmgj-;8yhv2r256@Y5?^^hWI=U^n;7+O%ccih@i_giSeq*BR^#DbeL@E{J19O6TwB zo7pST2tEXbYW0*A+gQ^SY3n|l7I}`_g0BX83M;R$)-O1teeOpp5{^RZArK2 zIhI`X6xQSzVh!~gyYa>wnrbWn2%*_5KKUfvbI*RV8Z{WS4Ms+45g;!nGv4-NPQQ99>)#~=y?L96_x_{8jR2fbZKK~rD0u|@qdMjjR zYMrcF)w!%qukV~3tf8_#6qr5FqbW^a0@&$idqweiA@FSF#k_8I5~lL1?3Fs>#S zO$|=G9xoCJ65^BMcy7UylsjQfW$&L>dZ!D7z+>!qJOY7O>LPDZEa4eD*%g^YqpADU z+lZP9rf&X|!`Cjvr8lrSVIUVR{0M+b!g!Kf2*p8?Za4L@M$RnzjFWGChq91JbV6{& zfmVM1{t;e$>N|dnH*onlGgT%9o5jY>$KFY;I*Ntcdb@dxts12sipCyQCZ_KQejkq}hb2ekuY1EH+RA zAR??`pbx-;(-sBzPpHYzB>c4v1(0E>p!5G(@ybi}tXvVeg=mnwo*H3i<%V&@MHP`4 zQ-EIIGb_N_`Vzifa0jaD;agx&wZ-3oJrz0!UH$^W1BUdd|9y>tL#zH#k`N$F)pNLv z!Vz7D$Fy%OVFe12;S*RU<9Mzg?p%D zgJ}Cb06)oSMmT@LKZbwbBEp!2QP=m9rxhz~%$^;?bI)z>6S71~6^b`eS0~s}nS?48 zhQ@5is0$!FsW;m%uYz5ED#JTLURgM={dzF}IqS`)3`iwx@C7 z^o4kaC+?H6>&s z4a+p&;`|<6(yXrbq@eh1FKM=EcAl;VaMpphn_!788WErp%U^_q1XEqD z*|V)%w;AZ3AXHVgQ*yAVFo*|kpTxYMQ#jzDLO%Fv&cBiz1gLg(Bxhc|^G!zFd^78c(-p2=T*##6^$PD4^EQVHYNEnbSMI}dgjhs998;FWeY!_=l) z92*ytVjcy+x-H+bW^-!*C^O{{lH$e@Zc9XG45FdFoa)*_ipsO8aOC3gHlo*=kVp5u2)#`LbyiXQurEMiavALWV^_U3-O@vThsF z9*j(h>(HMFk482IpvW?q0@?@Za&_BY2ZWfsgxDNBm;5mw{4s*t=bwo|=OHVqh-0$W z5n}FGPZvN|mLkkn@c4Lmh8RE=Y1h=A2X;*rghfDupQKh(16b^uV$@=S<(pyh;10FF zP7V2mA8Hb5k~(BaJfhA|Qr^|1*@o8pYm-_B(TULH@UMNn1Hz)f@E3O^N)ZO~w_qQ}dmk;^Hsie&w^;ph}ES!tUCu37lkhL2HI4~GKB zHvi_L)mk)i!qI+{gE5X04qy8l-;O(iYHMKiWZOe~XW2qs*g{-g&OP1ke?Ev=rFdxc zs@N*RsfsJvCr*eGm9ok|8L7AOY4Bibb)ht1K#xj3x4f2u6$;L4AEaYu2nG zAt3?1UQbk16j4!8NGTCQkeZrGb#*lsf4qjRR?fcO%G|j_$LV@r|bCHt|yASK>CkK0)r_)tHM2hhel!;d8FKx#yaO)B%)afY}wN!+|^3`#?x#TYn8eD*)`cPhoaEcA_ z6bcu0c+jH|B~2uI8!>rz5>NrO9zsg+sO?YO!{xi4NtJAi1 zpBY%Ya{?zF^a;VG4U}3U3HMgF|X(O??v_R7ya&QkMuq5Bf z660hzeKM4w{h{*!x6bRqtJ9{3F(=$c;qG13lL(q+P+^Ro^dU{G`z6de!EUWB{Z*5&oEyv@cXIAshFJs#E@%`$-T=V|%q(oN{W^H6_dOp8zOhrn;DF>`4Bhv_m z0B#V`2uA=V*ysR2DhTaH6Wh)$p<6C%4i!n7FHvqMnI4Wfe$s4 z$A$Q94Pxz1IBWz`)+0;-1fE@$V7F)_l@DAyWe(|2Kf{Ul{-xQV0>p%YXD?M_RxHZu z?Z|(tWS`A^xb}REL z$8kVt3F!f-d@%=sJAlBnDF|c$fpBY>MppX)0m$G;Q2mP%3nVfq5`=%xi_Fmw8(&Xx zVaM?Vx#}@{8mSEGq!uaK`*)8OX?3lg>}^8{u~n0n)KU5p5@uo25pmRcYjJtq=!K4* zn>Vrh+tujM^vio*=T8Bf0KGMogd;BYYhM6LLStB&K8ncN%3cwKLBVbYq}LJ@tR0uZ zmN=psBdDozBas9J>oJ5%Hh6YX>2wBcO}#JhizwrGZw!{&U>fcIzc2Q{ZjQ%m8A`co zLINSeMTo4XzHU8@-qvScgQuPbheihK(C*{_?yh!ldKF3<^u$>`NZgpb8%g$VB)NzE zwL^mo)9+hw9x=QxdIP{CUDSIV1RKKotWN-rp2Sfn*5zH|rTH*56GkL8Z&M(X@-ffz@PN4RQ{C`i4PFE}@Xiq(**&Y5bV9lC7;Tivx5JFQAzWOR; zXT!%I!&ztT=Rug;d?OhQJtqe%E8(xdH2cfF{b2uPuv+1X2O7EdRx^!_f@`jUhaQ4c zPi<{uvA}J&?VIfj0XN;GsTT9{Gz;J!*^TZ6tJO+)csLam6Oqt;!q3@E6UZcL#3nLGG+WQ z#PuiR`m@!-%sBZNbY*2IkKY3I?E^u|q#1}qj>7%tPk~u@>J^l5v-ZD1haj5PBQ{+J z-o1j&amOMD90a?T?{iC0f6%UdNZ;1`>n(%;+}#K3TU2Ly6GGShYs{B@Wwpo5vf5>Q zT=pOhYHM(F)jg2=6)o{kn=OdkowErK?-;BqF0SOz!){^7kU_lv{;imd;8r!FMqr}A zl)~-eb>@j?d(4$n;fcANGin}p$xArjJs7jMwVqM6VJPn?J9(D3aJLPR3z()G$bWS+ zh;Xgzc7J;dj|ys=tLn#he{LZMjTR#>E_eo`W#3NLjg4l?wss6#84L!-%^1shcb`dk zZ2KbTmyElLYDYD7jyg(rm*TcZ@6$2%1T#PXnOSds&i(H{&Yyoz;Lle^F>vNi!ZWH{ zuFomooLGhoM z3bf9lsaYNH$`4u)H^^k*;-j=Wo8LarF;U^5;k!BzgpDpE?=EOh%9@RCe!cHaGU6(L zgn-6Gg9E>61WE~cWl&Lzs1cN(cnVR=ml0;sGT)cxq_d+SjP!_7I=s207lOJ7QdvyM z<0c}Ho2dQ2x~#bvp`XO15D*###lFd}WqAX+e8T)zauC4R`^6rFoIb+$HtGXZb5#^; zDnhrPfnJXXqLQI3fVxh>;ZR+UQSW6$Tt1Q3T3j9-#?CAyMPQ$X(%IDhOy(3ry%UD} zP=NyIJaGGoph{$Z1%$UrG4gof<0V8LJdEe=SVOVl2xm#5PmOWI7AE+q>O90P}dItpZcy4M8sQrwiY|MVMm4FOu ztVE}JsWI8PaLwB&QsudcH{jBD9RLoo)i8R<8aC%-vNJ!0)WqC&%cq@`!1+%+KwU%g z98IdQQFDs88rY)|+yOk){O`o0FGp|bSm(McY)TvyP zrG&?Rgz;%G(}$Y(su|j|x9vC$24s3NY|YjFKWq>ps14I#2J9ms>3Zb$a@gIme&r>H zF5>mM(|Kji!CY}f&k}I~M06Zt&6RC_Q6Odpy0K?rGB3xu;BQbR#!(Z{&AznVZWk2J zBjS!zaIIN^x^q*H$IugmMhXr*O0xKe-X$!Wgp+6G$-KZr+{4v zdyiGM_OIUMA$1$KUUetWziz=~`G+$t{J_kany9V18bW#_RR5Rao_jQ6u)12axBQ<) zc(~@pIck))L)}?e{=*Qz%;CY{tt_m*iIYy!bJ}V9dHX_BF|Jz&*Io-xJOROd5ax@C ziDC2R&BVpUVKDTr)XLDIP*W3FNuz%3fBgHO;{E7HKRSijU4(A=nogJdQuGCCQ`uM8 zdv0v8LR?DcTk32sts68M!{TC;Tb}Dc4g!dk8&Ev0AAb6=Gtn>n3FY-iI*@|^;?Mag z%>j%+j*TwLf=~pcPeByDg~)liBRL3&qVEyb;DGz@u6>|t%?|C2285+^C5*3+nSYBS zt7TGQ>U!qW*50%&+|tZ1jvsleKKA|j6F*yHYE(eHl)P-;x(Fy;DIa`5#tV97W*;a9wPc~HE{Zhh-S%cD!= zeq}XJFt0s1*o;MD8*@c53W2GYdVeIi}(Md)x6Ui^t`?5RYD^}_xTuHCMU;S zc?81`7)DA~GNY%Blg8ugBnVF=Y2<5-N+R4ze?G z+g~&q%-r$KbHq4G2=5CYBcRD(=F&@^X5E1HN)Ii8o+0XaP?tRaS5Og4}{XyIi-iAuua5(Su9Gr3Uzc zqy+XxHS4r&{4$3YKpdSB3u^O2$=h-Njz3^CH=q7D3#VVrpMy_ka+vQVf)gfYbKu}+ za%@K)yuT2BTIJW6gjB&A0;)uO_#0GpqHqxc@%>7a*MCK9*iP!bj}g4JwNBvF^lc`xR%7TuDDH|qQ(G~Je4IH;TH%Z0#w19 z{I{S4z|&scar&s`ytnGW&f8Z7Q1cImj&v zzq7gz{^Gau*Rfzl5re;57zdneD6vV|xWsW0Q`mY9msDqh>GL*`_K`0*KNy zmID4iV-B1i)XsIb#$@Nj&0pctoA^HSI5tOSp-BIqi&<$~(J5Y5Wsk<&JQpw+b?hoF zXe9>$%8H<=fe7Hf=AR@QS=a>F(nk|MYKGt2?OOHCB+ z8EmHJ$y2*;79#C!bu#<4w;&>jQE0H5Q{P=q8Yq=c~v*_76W zQ(PC}-@wwM;r?$rCnohBCqu$!h1g~VvPWU>%nQLfgy}*=))pAp(Ir9%xa_dsD6O`$ zHa9T)%JwkRK4hsPO6DR~Ux+Rv0pqj@07$n-Q+T)8{y?#u(pT@q6lX&}ViNlsu>%Cd zC-=S|GYurtM@0?WV8@5^So`pYJ?~)PKw{p0lv_U>&ZFbL)auav58#FyG?m@|Ma0L$ zH{WOqvj2H2$BYck5BB4a|LKu*k0XyH%v;WhDXV$((SL3jBSyfz_iBp5HlJTThSh4t z<#OS2^}befP>@!h@|IhmsSAhge*ClOR}l82AOFM9eLbhk<^F^vd!;}N0DG^KI;3k$ zpU$?SkH|!M|A9`|lfwt1Dy{Z;dRsVR+1$?C4;zmfXx2ZVi`G8wgxP?o>b!P`3>}Hw z2XDb%t2;w{XLWZ~6VBIffo1{qY1WXr>&*1dwo~s_Sm4l1;kUj6+0S<@5%lm|*KyYc zC(zac&*gIQ-uu6D&pq!@vRD1P`uawG_~8$J_~8!*W)9@(HBVAmC7>=5zCIip%<$l| zE$!{t2$8LUnUSGnr4k8C3(4dG^xF3v>kaiau+8u{?fImZUv81N5zgXBBSeZE;TTJ z_CYj8g%UACBbv{8`W?p4{{zMA<>MR9r#!yBic#-!bK!qpA#KApDq|v9J#9Sc$LC|n z)N|DP-(ab0;K%b%pvfA9g9yI7@=V@~IR;heNG;7{!j9F%R~2*D>35vSu5ydovr8vheD3RM>q7oOE6t!X^?^;Gnc>JGVt- z_4uYXyBpC-FTt)_?9LjtMGV5=b>Y?-Nsb*&@=>plSNu1>Eq@M>{QlP~B*l(Fr}KRs zI-3GJ=RI+qa!EZ_{I~WJehBZ{!l0;BH%PqAftHh}4uQoR;j<-hKo*=et+jEJn-H_g z6H{ixeecmUcpyi(mheYaM}?ck*yi5(dlMu_!QjLW?OL#KJq$^Ln9$}9Y*1YRA=Zx8 zntLFnX7`;Qi+bsal;}e!N*zVw^4U;Ofo|vklH9p`^LaGKpP^ZIidEY+%kMElQ|$R; zpXqcX=B$Fufgl@@osDO2bkVmEFf1mYGe5nG4cFbF{a9H7LebPx{vtdEN&@iEF$S3Q z(cowOyJpC;LWH8U1n$x!%J^w>7n#_#RS+2iwLUDceZlL2&;d}s3rZZ2m4J*1g$Aca zXiFeI94hNzb3P)sL`&`&(@DU1FGAg{I++@k$J8U2P$FV@WbToy%Q>5C4qCtf(V3Fc z_vfvu3Z~co%-xedAV@KwAo+7sBA4!MBirph3p^gdH}g{XD?1WJNK8hRh9*5>b|*D; ztps0vqk#ht@{*BOLRLmC=JHZV?85dFkRBuG{i_9NGQ+q@7XJ8MBk#P5p4Z1-2Edlc zEVe`j9wAJQ-%VIZ6)V<{=SSxuu#gX9NIZA)RGPU1MCUOe-6w6gicTL ztn2!`)>|N`t}@b4uV=Hah+D24!@1Y}in?b`P?HHwF(AAwn_tJsln}Of(kb5-it1H} zNUtJkQX#h3z*Jtnh5}_?7g5f@=2;D%dJeT!@}VJ~JRd6h6-_$+aK|x3XU6I6`|pwR zCOy?oHz9#oKKlV_?;B@?z2R1ysP{Oq>O=QQ|FdS5bLy$3oO#v|&ON7?BaUeQd=Ww* zBT}Gf6FpUR>J*hGkC8f85a7qN`m_l!Yc!YxOmK>ihT3}M`qePuWrX1>*lQjxbZ^0c zN09m9(Ae==de_O{bMMC|A|;GU?MT*l2f6ca81Xb>{VgEdzQa{S_TA{myn%P~Mx2Z1 zpq%;~$|u)Aqc$hMYviLmu;w17lr3Y{%~SE@gmkDYyst56G&ss2ue&@ZDN&FMkQ$C`Zxvl*Uz5^8&1yS1+n8w<}r5BJ>%haT$xZRZPm zy&kL8N?~Ck85tS9p4Uy70MXHK{q@=y|1aN%|EuUH2>a2G|5a30qs(8{^532kef!!* z)Mp<8(tNm_bcH?Rm1+YrGX>FXd(r|$L7sUO-V?^*`u&5}_Cg@zk`YCF1?+S>)ML-a zJANwe1)m0H?P=7Zgf_p?R0A?73DL0kM~^@zo&@1X!NxiJjfnLdoe+e9zW4oY-xcxL zRr@Z{je@WgEFG$8IEVTr?&F}_aWL6gzJ}O z0}z!E#qcRZJ6mPH!`Jn+asHMTGIPS=k9_0*~Io?nS6HLxgaH5Vlx22k7Ezx$FYZ@s9vUS`jdx0eH4pZ z3-%4m-^?+qe&yxEF7#{PPG9;J3x^&^NoX`reQ+-mwy)-s15PBgp_+H5pFvSrM^)3L zZ7YebE+ach3pi(0Y(l51z4~}JdR?5e{sR(f3ov-y)R=6nNSMek=|{A*Nsb-O^oiH= z+wx}t$=WSnF=oi=KKlz)L8#M1caDX7!y^M@74Is&NxP<7Qtb|puyF3ah$Q~ zU~NNQ8BL(qA&(v3p=oZ!P)h9s@CqF~cN|8K6BHdTp~p~Bg;=&3tY)Mt`BXWBUr%_Z zWnDRT&v+%+BQ%9scQELY(}uy&F))82B>QP6+>O%KW^CfZgl`br3y~S|8W9o^t672i z3zG%0atmU6A?h)cz}8KWJ5ZHkc>x#=;PH<@!sCL7cqqyRvympZ!FTN{DPdb7M2A93 znEwPJXe27Yj1lnmJgvUq$BQ+Ru&NF+6ClzCOE*EV1^MLFhyX}-stVK|L0J!c)Vo{}mn=Nz$t<4nL4V7T`KWcKsaiJ{) zVPC;!tz*K7mDK)aXHCH;oJyT>DcJyq~JMcpn)(#bp#k?1FARp96^G>y~1MOr| z_T@K)Ag9K}sL00u8QZX0cR6NVFuDLOl{?_QUtnMYq{cyJ+CPzgrue^m^!D0V1H^U2TBgoOlGDg!p0rQ6$*@*4VIS? z{MNpqVKLaI`y>eUI+b&$FX5%1XY%4DJy5IF6(M)2F#0XXdkazid;8^%zcGx=KwZ3n z#yMYMKIH|J%|9bnevZvh$5Z2PAcpA4J^0R>HVxLT=57HTY4 zAEBm3D{GgR2lavFTK!MKY}SaEty|%eOEhxul~?}hQS}mv0vBHln>Tmg_Me0;FkAI~ z1+!V>RX_OzuD)7R6sD#I-j7bFW5kFNWM^lya^*@A5)udt3nM6~XDWDrloUAQ446F| zF7z*K(U1KIA?3ftH17W{h7KJ{Rh^rAU!C_)52YXfhoFDtC3H*w+Gj*kPx|$Doz%fF zeun57X{I+|oNyAlIz8kTYaJv+qK27q7yXTzv$lPEg9+n-v(PzRP?V=dgd^ingM)GJ zScAGVJK*u_(?c*M*|qkH0g*W!bdAusTMLvKV?Y;zEZzy_t@{3bO%nRuUQu9F)<2rv z-5LB=80w6OgurW)9DK-){Px?LfY<8^iXsRPw=-;b3Wv`c%-I)C#h^3N)D*=wyN+#2 z5oJ`7NDKpHB&pI$sHYh4;#6A$22zBv+mOUIQOj4J0`=Iem{eB^h!4|%_@=PKM%Xl;T1Pa3ATiRKijokg!)1;T=5?@tJkV_*8&$#wA zw#B6fysx)@`y$7!nuEEy4%)8BM4mbNa+YSb+A$g3E?jMV>|%F1h%cxl*i}P8L_98& zuIrPpO6=9`34w|Ef1+1Ctcn}UNt?eUq{+eJ%np{(rR8)To4b0<&i=DG|gP{a?q?Xd=|vRaB@W4!HPb{@jp*P7$~d90K9N zaM4UKw!fawe_|Hz&mT=}cs<3HU8e`fhgWm#_)VNWX$4ESq)=EJO^DvXIR~sDC8`R& zu4{5thNnP5#}s%K!ID9zU~<(FUS9-2gV6>;!6i(@Rcs}pqIJE~-@TLpkRBK<7hXgsN}%ZdQyTR2%0)ZhW^M)=lNwv@cse+!D!P%SaSkOQYP#Uz^5m6 z0Lq)6p)B8w=lT;M!rpazp=j@9f0UDZ5T632{_nSvQ;nGYBkEnJv7Un_N)iMkI$olM6BXcjS;nn3#$9bSYxdhSp7tO$Un+oE|uK z5*VbWE(BP;L$lHyljhrAA|^p2&YIDnSlH~$;Jsf*Q1|^7h9s3>7?DVRRVaEzWy1I- z28QR56jg)S=;6&dW6&uommamM!=q|Jm#L%j*`k37$$JSsSkPI&W75y?I1ylz}$wSLuqK*ZM?3>Ui-@z8qEq%wSWi|s zAh!SzFkl2CF%ry`APPZ-K|>ny&tJ4!!flXK9K~eUj0q@-j{nulepkO2&}GF!InfrwME)mc^p` ztZcn4h@*agmWYwQlg#`!Bv?7t*FdsFMXyt*3f_P}m5Rn_e1ds+7kw0q^N zui&%KVA3RTx!{T`v?2Xp#bb}b9e2R+;c(eyaMe}+^oaWLPobd!uDcGNeYWRy38j>j zl$20jUXH`zAS)}2$jHv!FuKDVZ@{>5FnY9q?S~H4k{7bGv%6{8kKUr6Alwh=CkXq| z=V)?bJmVUK%g+q*0I{!$tZB0#CaH&CW5J;q1|5iEj6`^KNF7L7gDZP3)H=Fe*A}Wx zI2&qvRZ!0~E(Rso$Ctawu6-Q28tBwEMsJ415r~iwP~0E|(xX7`dZ-Jq_D?ecK3^d= zl#JvaZOiX%wEf^#%rw~s&}h`-5iSHe%pL>Qnq3G_&qyyB6oC?%67ZM|#zXP?s(NaWB%$8zPBvj_>%W?QQCQtxqK(b>=|ZLg0#wL9Fjy)L9wDQ@x=3|CMv zB9X{IR2F@Nl_eG$+;G)F*HhVSrTW?S&a-}d5?t9A*0dEn99(gDtF=vZd@RR*@^rg4 z9;XhS!P_Co=XEPMYm6v*mAYapo4(Ir#A%xeN$QzZ$nsZ5GV$`Y?S7l`!$Qt|;>~W? z{rI}`Sa#GwxGZKOa|${8&e!>7!cqJ-WC};Go{JRl)2Nwvbb3zy^Lxte;jB*{LQYId zkH!k{=Bw8+YF9RElZUV^E{zWkI< z9fils;J-@RJ*W0qiTaBr^KK!hz63?larUwA_-qpzu3)qIAHg*k;PPv1=uQ3yAZn_- zged-}9(z1s2(Z3h>LJ%sU0Y97NH8S>V&LWLz|bbpSzHM*VQk3@W8wuTQd8f#+UVTm zpBa0Uo-0n?h~Cu%x4#YsJ!O|)$)<`(=KPsN#qv@vzPXO^gNn7joo+~oY*&{^8iRc* z@X8J0Y_w?~ZUz_-qS+6dD=rPdy=*2Qm9sgwVmC z%{JMYiO}doWaoD5S`i3UB9A^0j-LdZc4^9+FdJ+yfCD>8{0WT$cgOok1-{MBV z@bbm;NQ!Pwy0J!p3_zV36b_32HCCj>21ftqk`Q09BPLb+!A(VW7#Z!x0@sWo$47^WUdv z!3PWl)}hUAwgZFFgwpW?U*qDu0>*~?#iGL|vLtH~-kx|l_hg*q7Mzt9q({N!FynRV z7=G$T24uFs4s=4nsyE_NJv8}2%u5M{t7FJnm`ujZT;fIrmhiDRVpS6d$#5i4KqCdh zNdb+tF>fH!EE(0y(!M602`MG6y*>2z5%fZ3d~`#n4%FSDQ8$oMot-8m!BQby))C~{ z8Sp&VtOR2}X>}MuvET?xp-$I` zKoI0LW3Q`1=j^Cr_nIQ9wZ~D@=w#=5?Hx2>Kn@nA&HHM34(zIcQ#&gE1A&whw(Wx2 zHgg}LfH4?6P2lZ#jcqH8;hv9A*zM7(et<|3_40b%43MJ*Nz2q&C6oEWGV?eCGG*1ygDtYONdUPqhsXf^@XlT$xh-aJuNlBVJ<-agLy3g_b_i)^CS{=f5>-vOe{pV3y zs!8KIV|Ks&7BVwo@L=u#4hMvU{Qq&nyFp>0MjDSA1;-u>Q2~_R-Wyd_Rb*#pla`i7 zTwGkhf`iIRc<@1Z?m7S0=_d&HANnmu`_Yg8K`8T<_(cx(RlUHzL{Kn9CG=nmLSUSD zGP)ui%0oZFjyBot(c$QxxrC<8pCPNeu*K?*K=fxA7QJtB5Wwl1>}oj=DPs{)MyPrN zQPCQl6N(i%=r-i;P$&(&qOiY5v&B}n6MNAP?R$|`yJx*7`#=hVYgl7=j#^q34+er6 zZ@Gq)sss!T{#)#{SWBAx`*>-)4?@6?KRn9Kx4l7eSt%7I)$K}4DSC*A3L`Qsl&DA> z3GtDnro}O4bOy&BJGtBXdy3FuGx#!wQh|;i&u-aS&_+e&pQ+v~B{X>?R~&dfjxq-T z86$kF(gL-OZHs+jO&gkGYxWh^{%?v3>(Hhu*G~3VnM}BBEkWVhF)rI2&X%9j2u-d* z^(a`vo0xpfD)hamr=xmwc$`X0AHu70(02>`T6g-_b6I?xRtuykA%TI#Io$Eh^JEt8 z;JdMhlbt-crR`fY&hECqgElVXx}RR-wL{P6*O3SNY;)hKw_$6nV@q5HvYF5ru`8P+ z)+}J!#--eO#$7GsAV5>Fk*3a`gTA0B9iCHxkb?mFplGNsL3U9O&QYo2sPzB52?60@ z0!8>wGBwsIga)AOQB{e~8<_oHO`WDF7+>E2n|Hy6P4LZfIA=N}MZtHAps0#Lx1Gp6 z=Pl)ympj&uQ52Qa#{R|Y#TQ|WI1t=}wfp0NQ(^H&qLLvhWDTXIUQRfD18*&uz^4l* zW6R6ow(P4hA36vwoYB&sP`yysQ8A@A0X7(3vIL!TujRIQsB0fg&$N|s|Dj*AY-unD z9$wO(Kr>mO)_+x&0HiJm0wG|ncBpP26x>xA&aIyx#o0sVBC7Z5OR7-Q$(Sk}n%$?a z>B7P~n0IWB2>Avly{#GxD}eTgT+6gV1hLd<}Z2X>M;&VP^r@>70zLEkguZpthDM z;o-;JB*c(z#uhUGDw?g+yPFK0G!~Mx>1)4P00961NklnSe}A~v}JlezWydZkK@+y6P15Rfpogt$?q ztbAhx!Lju{u1{!FbxfDx6wt(CQ3ajcvgJ*J3a2EZ7xj6Z-u;_k=8+1ywMNoI0w*ME z^~1SLrG~+1j6Tx8DwrKMr@_{ZEgm4-ggxB_*8`ghw6;-+c#( ziJH}?qG;^s$S&$`|9^t`czEFjjYFL|Q>#t*&_iJ9L8;%curNlB9LdIw8_CVhB`PY4 z0Rskf8Yio$(74_DdhO4PFTzVN^>T;$vCq&?5cZ=V|7-B7=)eBOucm(2)axa>>U-~P zrw-{lp}w=R8YiED{@F!{6`MLPEUiSj^F8zr&cMCu`!2`YTXm!^x@-G7U;PV!0b>x> z6^NqGJFcYGBTDXt#J7<>APD_M%eX?i4nFo(y}%}08q4i-$klaJPrIpOnf_5i?9UJ# zK%AvzJLbUm!R_|)@S~rxVO@KhJe^L*=@%b|^@^`SRB>DS$D{@Iz}qQ6c+~x`4(twf zO>Qopa5J?I?c+KrGm%HWdcbGf{gIFt$TfKX>Hleo1!s)TN()LRef4xXvnN>Z1`djqt4QvSLTLBYD4|=vI#G(Ky7|Vsw(V^PG(0; z3a`yPk4jrd(z81xR2K2ZjC1)Tb6lrw+FF?I!MXuM$%{y!C@h+_DS_MhA|>f1JJ}JN zhU|lDrQR8U!pcub2~HBESn@Q3Oq@0kh(t;(t?4QA;h&3#5eM10W?v+wKcL zz)i=)+0&u65s6^^j`nGwgX4-g<&e#sG-V^hQ%k{h0o1h#hMSFW=qRw5Db2GIX{$%4 zNG_eZ9DtmXaIXI3SDriabJ{&+o2s>J{JjX;FlRXycP;Cqr=XJ_^r{=Hs|LO5!Vwh9 zp!KZf z^ixv~Wp!E+FMIR*zo-%_Yf+YM2EBqDo`M{m4mt%Cf%3&~sOL?Gpl+i3VK#^hgN8l9 zOo{kA2V5SgZ$ch5PCH+FqoNp0My2>Tp z@F-F|J79e-96qY``1(RkDMZCWQ^%liy~l#Z?8Sgv+tWU$8zUoL}_ z4rr&21wi$HDIA*oQcsGi?{-vvM(q2v(?wUXE0Sj~sC*Yoz9$FT7GjWjmw8&?ql zgqPHlv+XOq&IU#RCpIrz34Gf8?}Q_?ii8zO;cz;5sy)-j5fFTW}&C@HX#oZd4x zfVNO{l2K=EK!!@(Tgnqe*(n~2I7L;1Q`N5 z#|~lSH`*r)?!dvtaxsHtI3F1&5##z3e@H@AdZ_bMU^o1`4&KEV7qM%Xi6@^-COFv3 z_1EVU9P9;K3^Y`MtAPe;TF60rp5*MK>xkO)8M`Nc!S>V5&dq2^o1t`?ODZNt#km zfT~j1)kDW$z3^~4ukgD(f^~8NBZO8{u|B^9Om0A%Ge~L01nY*rc+LRf+fGV7Irt76;fvkratIJr~A6K`_59j`xx$j5kZ)r zTg|<oVXb1kSEr*oJcRJFO4d&r z#oPB>iPR|!*qp=hFMYzm;++gE-pTr;A$&UJ1OOsxE2%XHx2p@-8C0Q=QkKWu5!1VD zXKkt{tz;KPVbPS^wYmb1;7~p|=(H}^1F$#LP!rUi0M)4~$E=>q^G96A4H| zGhs4K-Q3FnUayye8coe)5ANHKyT-=A2tt1xBlm_=HTq2u&bsdPmVX~VAycbi_xP9a zdp5$WBF}jih9tq$7vgm3&^6Z%JR@-~_uC(1VBrcFdn%+he?%MgS`EWLwm@k$yOTyU zuY5c?6-gYD@)rjW+tF_OX)%>Nc+LWD|N0dEd(k&-mPiN+f%?4y+duxrxTB%U98Ik; zj0Qt6b;dAMVMid@88ZrV(;rx(LRwa_7~LE;E{BJIJd!6)ZhiLB-~fFy@#Qa!-JHCF z3XQ1SQ&Vs+d(q!_3}jGL33ngbh3}WaikPzmdBS9^$T*f1qA;IMg+Q z$XIaJiak&`)mXcOkmI}y#~ zpfu_cuJ#c+dFUu~XUzh`W^lTE6QN!eN*oYr*REq@NC$$jsm9Bb&t&n$-SaWy+UupW z*UhTe!D+thgaKN%Kp<$W-4l!TvwaO%&B%l(l(Qc}xV2-V$Ac(!pxT09?G6~F)qpzm z@L=ZuT0wGB=gB1v4Q}qZYaw^uIDy6U+ACo~njEA$c9QDYNs419;f<9@Ay83Jh4x1Z z(em%Mf22^_v=dZHFDI3(0pJ0&BP)U1nzwbhErN4b{enlQ$14<6MZqg{sEUHBQ}6^S z?ASSwwSSH!$W+J3gw@!C97vrGr!-L27=dC?F`FC6&L2rZZ6Xz6;kXP2q!c(SEa-#W zNUs9J-OR{dz&$xnaNX30S(-8lFM4)GCXrIQ3#Y+EQCRDHqP)~XTv9y-WA80kO*S`^ zuUgIWS4R^&tc=)^r3gh56w!pv&~^W2RUsN9%Y=V5Y-`+t(nd*i4>J7!DM$o4H715d z1m=Pf>n-6*{ZL+(9p`47L?vgcfAXDvFjkL$bGLd=6&9TxgVGBL=03oH0Ztx!EQfjT zdwKC1JvY88FqxWb{1$H_xwloeySJE(}WqlmFjg!e&LrMnZ9` z0$oKxptj8Ke$O7n{il6He7K_rN2vD@RSlRo<)Iv z?bTz{xiRV7oHO_r;(~jxy4(Y4H6ffHjDPIFdE{_}5R5%oQd0?4z2GG$vw&YYn@Msp z4Z=j_n(dSo{Y^yVI4E!P&Q?KeurciPbEw&oNBOEPc!iD}I-g5#eBmoXvXaTV{Ma6i z&2ESP{6|x+>Gc{pmAr2&o3z8WZSef_S_#9jFzs)jIOGsmxw4am|2J^SCGhpv8fm+2 zn|40_zs0xT!igvTA7Dy*kI9o^-aOd4RdZ$S34{>XY&Np8vM4GlV(r?sq@<(}A0Lm> z=41JudtlHY2o2S4xqke+(O-jbKcK$`VL$p3hMOKn+1wh?>y9|u*F<0-h)aQ~$Mm3g zixo@!@hI27;&ZV){y;pZ4ac=?cJBt*4TRNzd3<2O=@#N}+);>RoG0z~^ zEbd^L(&y(dHWHDrf6{iUqek#!&~3Qsm}RZQ$P~|AB$YYQyV`$%cY&9jx@zjOdsR^@#5TtF`MpKZPU4yl2Tc|2&i#MXKtfR~x$;yn;G?=sm zg$F-v;H+M~JAa;+yeD z^6j`I*_1fQuYJ9E{s-)eN@VT`-xj6-gO?Ygw3%^cm2ITj97>U`qk3^~ELrs$Ir&Qg zIP#!-i3-c`Yh3=|p(nygi1WXFS(Tn>5m;2Gq7)(x-K*nv>@H*AF`8oc;DK>0*jChO z+nT8pdB%G^|5<(tLiJJ?os6-h1OORjheyuVNU;U$;g8MKRx12#I{`;hI#~xBnKY^n zqhq(vzR!5>EUr9!8B+)EY`-8VMzfuqvszOFnvI&Ov8E9&I}FCQe=bXVEZc~p*q+MN z9bdIuR@Y=A;g(0Jdj4hAS+Y4cMil(-c67&{uYSQ()-ki==r~FNPNSpJc%J%jA5;GxxYs)gRY$Ia9Iz&yY z{9P&nGU7G$pUsMT?)27&R7EWy5xFJEu>*aNGdvC|i~N6pCS^jA|JG;~x+HS*^*py= z2B(Z!#jKI*S{Hh~8uPu^c0X8mFyrGklNDFedB-&ktlt)a*)GVmRKe=Cu(Je?9S=Dr z5Mt4;mEGmAbTgcC0BkRYRXbqfC^)Q>;{ovYe8il;k$0X1qf#L>4!nEaN3$34>AXQy zg(Ps_i?m z9`VR*8oyr6leT-g_x7#GYfkL2&I9*UBlMxfq(pGjE%Pup)p8=6_?AIbpjoYF4T|9Q z^U^8%Zb1tfnCjR`c$0rbls~uwcnlZ~tU{Y-&H;`@<4CsvDSq} zdAKlAOe`~*$5fV}3c;4R3|6L(;;;14{GBqKs+tI@)<+XnQo+=nfADMA`eu98!@ZFhQTSfxf88^yUNR}_f3Jknkg!I=&4Jm<*6XwQRPl1ZT!qJn zQg8(`NOZ6AyFY_sCepMYS&0DPZSt^i(ihBkOvG^9cy52J5{tV4stc(N&17}ZpDb2h zM8$*7DM|lTC1It?rU%Dyp5qowbvr@msfifQD$8f&DVl}7zA=)h?8|73SjV8Gfn*hW zKz8yyv#T7+YGGU|03KDr?KNQ5JG;Ezq^iP}ozT#PLm$gJ+o33UF{uqG(#r?$CvoP9 z+ekFz5$oJWfq5{c#x&f*gwqP|9wK&6JwhRv_~qPU19cy&?y}D^JB!%92@w~wLx7SJn;ks1!+#6lP2x^=h=o0 z@cZv@<(2z(I~~x_pzY|t48_Ho@b13*G_s~2{Qy|91ePy{n{Mix{%UJ$*}8Qrs;ZKi znMp`UYhtL!qbXXSe!6FU_tzlYf9NL&_XGL~!hZA>#M(_5?|kB)9!3ZFOJYr%1u;n- zl_dW3Zy0(A24@`N%RdqMrC_(BP91_gAQMkjHl9t3+qK^pb5DI*2!>?;YyvwVI0`Xj zA~bx9Xj%&hq%j?WW`Z*Wxp|pp#}y#>PjmR9<`a zDk7s!!r`bvr&G9V^>94K8tnR5Mu!|jmUS`-W-~gm?>`Ksl$11WNBUbIsRwAN)lpMh zLu`E4^%^}MF9X7^Mm8%4V-jO{@wcbZa=|rpc3z}xZMDCN!QEST^W+uJQM{`)c>T~P z_b_POAa>Tmj@o}dq9!H$_4qI*+_Da-(}IUqM=jRcdMtJI9Psn+RK!K`>lw$iThCTm zP15#VD5Xy3dqG!o!5h2_2M*W8T?r*iqQQ(_Rcy!j_dsT-q<_8lrVQNLt(A^ZAIF@h2MFa)~vE1Ym9G{+S@GCa}BU#*+}|PNlTk%92Gf>@U$W zyX8B|LIyJ?sf3L0K7gnoxb+l1{~?(SQxVxeFN9Za0F40}yC)E?c=3GhIb#_^;t!d~ z4oZZ|Hd1QkE(i&LtavD_hSE9+G(mL}j2jG#HY1W_*mLr^)LP@2Qt(xm?QAYe;Qdci zN!q`T+XDU#Ph5iZ(_Z-DSH$V#AtDeduL5!Mn1j+y>D}c>YjP3Oh9Dw?5U0=Ve;9sf zJQU~Q_-rc=4e*nt?C3PEl6&ZuOlD(u`wV++#O{YV@4K~pO@-6(%N z3qq|>Z-eCc_I!AywP>FE3Xzq7a`ilQS#2}Y)_kO#VnkXD;?lFBp?ku%`+bOk<_^T2 z%cH6#Q@aK+)wWo;@0+ujH)200T9y!$=H~=fTpCmr^jWN^E|joHO#AoNmjnT<+$rH(Cgb2w>c_RBStPv3&9#nua>cj8U9mttF#*KLIu6 zUFs@GR0Tv)9F$0LU?R0OsBtWg*?wid1S_)UA{FHNLkYa|I1%Q0Bp zT$gMhKcI=7a{q|RA;E&!-`$+E`sUZuJD*XbFf!cHDbB(#NTHPK(%3)?pNJBQu@NSj zxSMPydP~tNmHlciNEd}!8`O8f-vVt4@ohT;`SQyMwr;iX(nH@76IzQ;A5Lv>1f`li z3+37zN;JPBmkc4GU>4aUWx^Z%Csa3<4WZR- zMk{-fB?W`lO_;fnaC0MOowL)qRva$!io&TdWH6|89TDzATyg-4q~YO@&ftWDG#qZFmc|A?ho; zFE2^RNttM3laS0-guMlC!A?YFyM>o=ax9YG|D@erkBnZPk0BUE)}r;g(YUHWX(!=2Z$m;cL}NEuQDhAopBJ;e0m;*0 zLOy0FlCIr0$mjEM-uaL5_1CNM_Lyj(E25(#*<1WIMp=tab^`sdwL3z16&E$Gq9bZU z#)w-Jja{|?GG@hwF=qq%l{wh2o57IyKhfCO#O2q{;IB_z%4^TBX7#eYNZJO{GNQTU zs%c~liN)vh@!gkOxZ$$b54Jse!XUm~dUv0FXmv|$sWa1`JICRSsg8BFuin9ncfUqs zP2<7!vPR~P=Wk)+d{r^9vjHj`zmLg)&F^HBc}hN0x39n%U}D$!;Rn}+Rn%Zb!35{O(nBJ`azbrG^ovgat4(S|ZR0nr0jG9=ea%f<4q&L%Ha-*YIh2_o&Gz z+sES{Jjy#WF5s(iCjngv!jMoCX+y)Xgy;|g8Y-Ra*)s^3>e2*I)KL zV!=g2K&X~=|O{WmPaxsA#J5>{B;W1e_xBL}I zih&uU)QigLfo_5nTyB{g?;Flva<3+Fek}4$XR7KuNe7M&YAK%&G##Fa)eUgdQ!pqF zCJjeS9LlD+@n{;G7^$yN+vtcbdytlF;OFLvEb`6e`WtIWOLnW<@cNM6{SJ{D4=1#L zWJ)i5gtSD>mnbwc%Hy}d;C`w^v_?EFPF6j(m!-woJbL367(1lr^0KTZ1nmw!pQk6OLQEN{F4r5u-FD7}K>BGdVs3}f`TP>(C;yAoq>=^7#it+^%;@KSXgGNO3d)d* zD-j2dm7*Z6*^U^U#r>bn=DK;?NwL(zcPk)13Z{mKhB@o3ZiSDDjjC-dwm=(w@i4bi$9&ejaYLl7|bB~uVfN>1L*vJ z&qJg2&rbG0`?3bi?URz_liEAQO+lKZy=#oRRyLt7ZPRbo+PO< zM^X}$KyhFqC4mW)TH|qR+xs@L^jBu@|CxnDFJga4_bvk=onNG5jcFmW zAQpop6MyLzs&S$C`8{OR2qr~>riWJ=eS;05k?{l`<;m`DVAlGGGe!|OQD1TNshoSnbG4$pSKm$>p#fn!(d3cvAuz}?0UD)W?SB1r7^_wW@Zgo-6KHKy{mDkWhDh969eSS^t)skq zCmH}vAYMZ#E_9TZX{l~9V$!-u46Y>7(svL;d2#gc`I;EZ4wM&&udA+LT!*eD@t#EIm~20Rsf# z@xuT?cpNZ55Dws|prRW6wSPkL&}^gyYaFNk%tz9$K9R>F4i}c5H;^ zMu><;IsF2BanZPc{kl^X?dTb3qhpY_Ek@e64s5kx4M!Qj03~4*&PDGdTlE;n_-D=8 zUsd06J71weNGV;T5WB+xLgu(A4clP1BvEBm*sA@S5_ugiY?ufo(>I?{?)ijP??#do zh#!e0NeBUDCsfLCvSI%{~Hs6KY#uVCvIKJKTf}e zdrJ z7d+5sH#9ykQ}(Q9d*TopEx`b!Z>mJ+QP3N-%sMNX+{*oYx@-l-6*XuyGFd4JoIiUO zfl4qdzb`s?p1)jjFU_qLXtg@dy8J~}uG>pPQ!A0-flQx}&Z#qpvwM9tg?av~cskUvhW&At2?mab8A>}CSHOnMlX0Xz1qO2O19q}`>6 zbEm3#;<6H8>>)O*FZ=}CcEc?vLs1RP9u7;k!JHBB!78|DdV84q!7*rt);5CG?t=T? zgTXOy%gIz$8M*9szrT|w&RNW;@rNihg;3QN9v}R)O;wbAxen4| z;F1}L@HlAfhBQ$WSg{il!og}%Z9}*2M=ELNfvuOJO^@V`3pW!K=%%tckkS$(>GmB2 zjqm1JZwgd%$n^xT4_5D1m2zGM;?qFeP5H_Oq@TAT2E{ML%-4g~dU0KU6-k zgQ2+}%1N6JYRX_(S4D$TTuW;cyzM-n(h3Vtp8gf+%&N_(pA*mmAUL8^5L2HBiwDJj zRhS5h2dVv?W%cSH9(z2Q%t1E(eClGt_U(X8dyqEoh26#7zW3Lf!YBz;$-v^EL`tpk z>~Bq>swoPS-a%4$5sD&HZHuI_H5h?}yG2iO{eBv)A=Czhg8)Uy7#XB*0+li7~GI)_&n7}&D)PKeU7e2t6^l>P1J29lyDhwN2!}RZ$ zvVGDhn#28nwptpS(Yie}MjpZbDG;_YoBg|kQG7C5osZZ-%_L7LrPkn}vKP`YBT$gg z!-SeOznsWlce4My6Hp9CkD%=iAqFqmp-0JOLkP4vWq61A@m(SW!B@SBFT#rL@8|Vv zGbT+S!FrV;Xc7iK5UY4m{EKE9i6x%Xqy?NT%_9Q~X6f*VLYHD-ZNmn>ulWZKUn9Y~ zc*X=RU_{_tVhsW4<-U)Z&j+u*8poTjhw;|mzhP)b|C|aAh1;j4xG{!$dl18-_hHiY zojPG-=@6o=b;Jj?tEh#5W>)}qw+WNZiPLMK*%d%yP&tO80%+=N7n)xg!53@CaMu|> z^tvsFY++BpG@Kd>QLcRAoVz*^iAM{H!;5QE6?he-&}fX~ryzg&sG37IHUnkc0+f(= z+-sI}3L-vU5JIr-Cn(-~GckQ&`L(X}90?(yuy&5!YOWWYZ&QC42@aPFD^2 zpZ>`1SHB`==1Ar(dJEkgTaOkFm~)A1>A1X>3)~W z(qn-aUVz(fQc6Ncuv%gGa2V1{oZJBZcaf6=ix$D%eaD6S1)I&rrcIle zHftKK{$Y;0nKagqy75-<`|MBIQdct z2t39wVUmPl?qz7+coAva`fiIT*ZvWwy9!aKDi8H@&PBWBE2OPIc3WPIKLck#GO{Q_ zmtZ}r-97I4AyeXzLW7T_g)TUB&hl_cAX{)6KU+R!m!_)?9YCOn=Q7*V1lmiHqSS24 z1^eOJYaeCl(xnH>84NlC0*rV(K72kOUax|pDENE|0Rbi+e)u+0QwNihlE}yr{ZI)U zW!OA*w0QfkeA=)kkEi~zhP69$P@0|K@Til~em==%SwfN|e7^1{e50bGxc8wmx#04V zezjNLs-vK}clE^KjEU-!YTkJ0ZF1J_!sF^1EiKD36XuWO=BKakL<}ClmO7|&{XRbW zBKB9X@2Mnaoxh4L)5jgO8to2&wGD*SHXKwGHq;s@*c06EZ5rH8T>73#ui-^Ix!~6? zc=5!mNvJJjSjlc21{0AFT*$Sro{z)bd6MjlRjrhmWo#E-LQ(oPY%1|D=T=7y-du&= z?c>A?264~puTWOi{p8n#VVPVv>ugqhtLDFZ_vgbx>ZYE`Q)XxON`g{2HW0!IUhxa2n*6 zs;aZJwxo-?Fla1Qe|LIR@+~q5Ca8JgJYJcHUYX3}SNxm2%Q|Kt(EmJ#U zEP;U%Lsl$Q_sM!lFu|%_u(KHEkA~z(TAulthj(8?Ud9ama{3}hC$;s>>w{%GRI>BH z&7`(jZO@=Xgr`7N4|xcy8ev-@(wA$&phw(rB1A_c@{4(D&!sf!LXi+e1=@%+*RZc9 z3Y#wgpCV&1y10GjQUXm*h)jm+!anz%Ed@wFZULhaamOiL*V`OOPkf5hsE$=JC>l!Z z5OYVu`SZZm!*k(>%}6c}V!?#=WpRVM?zh{E^!+Aibt0|U$#Q0}H*5^ooW2!ijYD$x z^BRdtfTp%d(~1VrYay(cccJJ(P*>=G`$3W5>xX*7qrl!O7@yj8o!19fzCfuxg2!T? z=9L$=sLR6=!Rh~Gy9iGOcRy@vgA+mWe;TAT#l{W10{r{d}E+Uy0j)kcgaACe^a=)DXab}gAh>d|Nf<>dji z+Vl(`RYP5^iL9Y@#3#0()Ab{00SGfBpqEYL3Jp`0?v>iNNOy2f{Y4B7_mk}ZVLc2_ zh1hUv+$R3AXDSL^)ynh2?_^f^xrF$c*UsU9fBwx#a6k)}p0x{0Ko5#RKOh7YHpEfZ z97&L|g^Y;(=ruh%t?aLl!{OC4Byzuh?R&hiEAOCP>Va+E@#aO`bH?|?g*EnGA865p zQEtqnUKdYB%PK;>hZj8A8+bq%l}Hs zc_%RG<-P+){l%k?LVi9x@(3gzqg0`*SHr@EDjD%VrI>TO)g8Oy3css7`lza=jE#k| zGId!)15{V51YvYE{c`yl!2cF*xB<>MZ8jU#)zy@gl#rdBO+-XQmooeIsn_KB z=fkX7{_A@F+B2e%vED z2&ivALO}p>R3e(nT|JV604N@iCA4AwsigV?fA{;qKKHkL7Xm@y~P*r-Nr{#Jp5 zUZw9y-UAQ{6y!>rIOBHgcK@Sm^?DsiNy+5r=Mxt**L+SE(JJgVDfg%CXY!goAz z>)F)&(Eo|i*5-a%JWCQTp9Zt+e?3{#l}vQI-6T%GmzsJt`aZ&Bpk%=WQgCA)+<%U$COmhtS}!KF zv(2ZbgWANXgVQ>PSnIS3Eu~JpJIc^bP6M|MB)LaLS*bCRQu83(vH@+Fhha_Yv3i3c zBB(1l2rxMl#tb@W(P+7H0#E<_uO#l-NoH^f2M3K-19L}quG=AJV6Ta;qJm*YHo{^= z`fLppRYQ6#(%20CG<;<@6?Po_t*Y6|lV8t5&Mo1-X+ID!s|Ty!)w|Sug~O6m@+>?M zB7p+D`REH{HKP0ft3<|EV3U?4{e{i@PZ4c1;%$X*}hmcZ70 zq;2^~8}`7yawK=>=Uh0@Y7Ajz#uY@3vam0B6vm7Q43TEu`*$sNn;W-JPeW}8c~xl) zj@pML31mrOM&=51Z4>_%V=Iw?{t=uSSwSPK*K=xYBjHi&ko6mBX*dsS_`k6?s56Oo zqK;-8@OWF@v}xxaS8_0}u7b-}e#D}Yvw8ZoTabl<)!E9Jf~`~pM=@vn3g$K}VVJay zm!w;WbCq+$uGg5k>lXm(EWvC^8$reFH0&00zoM6NCXM3muUU#Rrm^zwl~?n=Sis<92hmB*RF_!T@kd6pr_I718A*7A zgT_V!(`T09uxnYlEDpWC^YQa~B@6~1I=zCuRm;U!<`Nv@Wb39#^m-rZnTa zurb!=T)$3y>|LV8L)*I&H7 zOF2aWuOg$B6=WIQUJW_bgK2T8Oo${2bg~z{#zTLjL|EcoeT z@c93E*ezs9VH)bZMuEuSYc64dcn6Kt^D*7^(q|-{b^<0Trqe5n)T$xKkiqN^ALYl> z?;QqQdf_v{(RZE)RE-v`!La*yvDJUpF2tjywI0i%a0px=R!z-`A z2Op@U^@9&W4@C#?8(=^|cpNaGARNGvLi6eOX#e|3r)9rK8_}LH`6P%RbnJVp8+Ri5 z|GW&Ph25?fLq_1c=2l!wKL9|JF&abFR-_$2ci&)WEWV5Xj(hog7)C~RZj0WJ|8H@A zdfjG#3F(k%>EmG^>en_T9XT;3zSjM*$0D=5_c69M4sB2{l2M%)ZfJn5+p2iv;eS$7 zTSIemD;|%B`g$9lZYD7`8kvHE&xnc)La+aAT}7&$`|MQHQC@f^;$;j}I`6}@3qCAbcgT=N(6-}{QH_!zdFFuvDvKDW%e*G4k= z*3F%kOFo6UAAQH-i%#pYZcU|$;{0|Z2U!`Q@Bc5SWdu}n{xdujj|UJ=}{I?a_1f{gx?_4PI_ zq26`{(?{Q~M<`?w=;EcNo4cL4n3ZMf|e zF#16z2*HXqDg0;oDDJ;tB}2m6Y)C5_R1!0!L!e8Y4T8*w@OY?e3yH33RQGdeBIvY8 zU$2K>av?5MZ6h-d>@LJj7l6k`_4u0A^h!$NOXHMMEYq_Q6!+7_HVfdUrVzdn;#M(%V zwqdjDSidux6Ev$xtJ_Ro)=Yk_%|@qH$V#p!J*ko0!Vo4-bz?Q!2oG_h)A{kK9F_=5 zv+5I=SFVzQTk~OCKI|w&a&{$bM6d-$3_=V`MGPMV!&C7!yZGW?f|?1_$h|yL!+Z63vwBoJ`@Z916Cwl@r}$mgcTZ?YSi{+3XoLgodbNV~=_$!YXP=+p&jr^QLxME-Mg*j=%;h zOaGEUKuZ;|4ZA2AorESt;G1sd{FAEC_M-BruQc)Db0awAid>R18;^S5ovm7yf0l}9 z(qU~Q`xHgO6u`Zo?4-2OhVF!A=w>cOimXP` zsQdG2{c^I=5E0S-jxGc^oicj8!uzjS+4SfxlA3mL#WgjAK6fE#G}L*Fd{gx@YZ~6` zwy*aN`hirl|Ae||C+WPX*z@z800M z0ZJYB_nmWj;*w91{d8Lpzz*wNjJ_5I+t(cRZ)l+iTwAI@7lvWliD=%tx7+8l?}q>2 z{H~`g(8m@PMS@k|9NjjTi&OZX3;DZrNsndbh;6h4#}N6}>zD$EBV31^Gm~KVcOQ`R z&ySe<{S(B^J=CxB_l<4a;FC|_Z-4v$z)^JVT9`Bmn>ChyjC>#KX(w>fNsyinvu8tY zF1-4xN(T82n@v?M1_Y?@od3VTIXC@>>v2w+8Bq#fqNAg%g5eik#yk5)f z*;UTMcYfj56?@pdvkb+jKB~{ZWD0+Iv|Ci>{yfU7>`FTq7d$te?i40-h#k2cO3LbzEu(SfiF~0JQt#$&MTBwVS z?6Yj{x2XiiwGcb1Z+pg$s4h2AvcH`mjBKi*)*9L=uTpo=dELY|RPm4Z9wN26m}Ntz zaQCIEZJoj6!svE($xRsGY+*u>m*inGFa7uwyGnBpt_v~;aoO}M$w-{fTkBf=b+qk- zLEEY^I=ol|4V-Xx5-S(J#q}GPBF9H_Re2R#o9skK$5LIe6MJjBnkXtfliP24p0Fe% z&%C~vz4`4EI#!F38!nl_(8PFt{$}4{^a`fVGIP~U{R^S3D|ZoY_TOf;)uAE4Sx0q) zmyFqW(%jNcGR+2hdpi_n15C<#tBhkK(sMbAEc!e9ocy;IxLm+KJIh9IrjiL|GUXibkr+lc2VDa?R<{^1{Cc zQB|tJbHYRdsbN%NDQAz}=Envk)ql#3R2}_3hY@_SGq78y=14>@yq5YN^>RR5?xH6UXRZwvAZyo+`>=>#W%9KG#h)1 zgW3io9*>OKa%*WdwRF~X1}$WBINCm}`-gR}_0 z$Dgek9=@xRj$iFMpBs;+JHkN_>}({lsfdK;QWBerNoX!6z^k4^1yGPtBpD$|2Y(7A zghqqLpu_3&lGSRZigF$U?gv~zDo_qQ9uUe|fg$(~)|XLa8J{Gh$Pz-*wEZrl94K>e zz526b9iJ>yX9?w(%<+_mM0W~o2z0d2Z0^6szt1a^yJQrZv$tZDoMe>eF|sI!Q6)KK zl;xrIcD948ijQW`s3Ghbt^Tux^xsvXFC_2E=i+DH;HUFXVg0-*J(dgc=-Bu2L?)hD zKwe_m!R09y!Jxn%s{!EkNPPF-EF$7snS4qwIb-{Yy_>_?_;Wln&&?+(wTUqic6xD4 z|IHu-RFnr06WiJ;m%4;ZgfSV7q@`Mz*+c=)E6=l$bqDK?XEOhmpC(@FBLK+lq41Wk zd28nhIHru{*4xU7k9X1PHB#cN<;R*A$Zc7A&~h}!Foc_u{!OI8e`Tjo6sX(7$sK+vrP>7_7NQ0BWe?CLR@L?FdVF-u%z>y3RMcaR3?VZn~54LdX+7}5* zPdIv=^anm4Y~Bpx#vNAmPd`=Fxub7?zHt?_J^3WgGn@5)X%X>{v(9h0`1ufkWd)pkNS2tadwkdl?8X z=q(VH-sOd3>C!Ena_R#(o$ceoXw;LLnZTu&&g1sm&N?ij=~%((ZKc6e)@AvkueWmh zb#K#R>wY43>IqqV{9RlA2RWR2O+1Z~I@xCxGNDQXI$trgO-LN+`S1t7Rs^827`9C+*v3`M7NS+WJaqM=jLwcEHqeFF=RlUUc!il? z_6rK?`k#C70Ma*AqVuTz53p#Mdu9~Dp&Bl_=t3$hyG|ZyG@g!Lj3-aQ51oz*+q1;|MwI{0lC%2kcrn& z+tLDDgN&6|c!le5qWtAbq#gMn$%y1=UQ`JcbufGoczjS^tF}9Qkh;F96>fPBsb00JbPP)4zcZdA zuO=LwR>5rW5V~tKV{$&hK4S{SL#9(y6U3|$B}^H-AGy^I0Y<2-M|$^1D5?OX0WoU~ z(yl_#Y7lpx2PKV2e|`z(Peh!3f?vs3N}3{gZP8Fl>H>ND=AJFF52821ue2Iz`4+^? z(Gb^`qr>9`qX~Tdm=p~R?N-s*1uhTRorus-TpqyewxpqKOBzZ|P~XZvNfHPkG|Wj*i2LAsOnq4} zyH;con^8gPn8JhQgEXzA=H)XeXD?|x_7b08jI4B?5-CfGCwFu<+U=v0vB^S-2 z6&*U_u@WlT@jJ1%5VRDv@Wg+HW3l*Hu%MRAOb1>9Xz;kPD=o;#1Zx8c(mA15>r5l6 zx3L@Ag8zim2GwdR1-Dz~_D5!M&N-!MgDnIaS{N0Z+hc2fbR9T)bJL>L4!NC`hjq39 zKK^Aqh1KCae(|Shy0Ke76dp;>-hj!ty{uI`>C4u6N*pZcERQq;OT)Y76KY-j@)XrBQ}U>2xP`fD*%-c6jIOcJcjTf zGOszEuo3BKbb9PnHLSb)MZ9fkF7zQ5&dGZZLrDJvHx3&%8!T9$T4%ocYQGg-iUQ9( z1C^C<(n&CJqRP$uFXFrJpsr38zIDNiFT#EI!7smn(+L?FDs$Ku+-|kb0k6{jqNzz$ zHx?Gc_1E`Vyierhz>p#Tw-YB87OLc9Z0v8{lTL8C;OeVk#tgXjTL0@UU%niGz`#I; z4wh*or&F~Xoi`8W&h5H>fFL}67$69b0|p4f0US1jKzHX~k@pq;);&2Q7);>u zV_rs*VD>o>8l@&K(+-=5)|7=*>PFgCkI+akGz=xdi)-Cm2)FZ?tNG+$Ll=9|qq&{q zqDa(fk%o7pJn3m0ze9zg5FiCcB89X^EY{Y#nK|oDa&mSbToxK)<-h;Ehtp5*IWqeI zKKf`WKQGdOCv3w^*FsQ_B2AN8bc!Pq8Bw@{>z2HON2_De$l3fja(1^>PujAC7GnUbvUt> z^y|;@3KQF-Mi3sQ=d=q|HSbwxoIyiV)4_5&t)7(lX-ph(dC&Xs8{_h8EXZ!=5P% z`04&iTEb!(eOWNsNj2CtW(Jq7gMWR);^_1Erg1h8RNq7N8A&)SAxLMAQ-fx04pn(4 z1wxo|FmE70Ggg{4LHN*6DMjJdni=C|p-=M>-rLIQL`qdVKvV%wnYak}r#?N`<`DL>e%lge+ll(Pt zno8Azba)a}G(uz$42g#!ZO;%>F#NPewIrQ641(Jy|9e8UHj78z%x2}DG`2qSB$~dg z)6Bu`cujU{TXN1H?a7aQ7h`x+hSd(KtaEh18&rGxU_ z;fBrmFr|lND4|K<>V3a+mbr76A! zUVIG;_==(IMCi4U9uGqj5u-;ShDJkbEdEHVmMnJh{WtwkW&#$sjritL5}S%hY%U?8 zxtL&AbC+^HBq{@63w=xY_=w4vpp%B#(=JqnX)X%7+R0c(Dj=1 zx;3nLcM`L&Ufq6tyrAjun4IKE!1{9@x?k3jR5zo=ooOA#9yCj_UX* zW`FVn6vz*L5cOyb3+qj4D2f+>H@zSrLoJ zEpx?#n?V6tk&%5eibg@vD&UpTd30z!Iy4?F+P2>Tgrp#e_6-QB%|cn~Oq)r7EF|@( zMnR+VqSbrR>e_N)2De}h?Mk2nNRov@-B^C2h5filK+hOVqzM;c-km7o@Pm>1LYO`Q zz2+$8l~)uv<3U(3m5NO^7RO!4+R`*`xuulsZ2$H_5qioMH#8w zu*?WZ=^+s5a3KUd@`%c=#PyyM;%MWw*VOp<8*l98yIxV$m1Sk>f#{E#@JLZ#523xh zKl+PBi{Q;S;qk}Sq;>;1st^M1xko)!_uc1TotBmsa&mI8TCJp~r=!(s{SLl8fCnE` zZBB;_>AZY^AUu8;APA2G1_;6d94@4td(q$X#Bbe=;|5DGoP3D{dLzbZw;(^e18HSp z*Mc!Yc%L7MYt_H~BFv72gwv&mpp8AYA!f&7A37l{7%91bFR1hsq)@5WQle_!PqucQY8;rRg zLt!O{28n7k8t(n`r33^z`1rlG?ATh2(iXWcNfPH>JdvwzoXN0}i3jWaUd~5Hw0LB; z)|&e)_rjI0v8sb5$tN2=M1=S^NpK{PkccqN;g&Vw-czz_O!Aq(A z=pVeW{3^EnDT7Bc9>(DI&=?+!-s$G;`>w~Q^FOk#C#2@=qcAfCr9+h7&dp&s9X+=_ zZTA}HZCge{T{%%rHC%nebCie1AS*sDTlo>2Q%0~osk7~)q$u3^{i`g`noMnAIK>h1 zUD`ExTwJ{RQ{J3;ai`@PpO2dszlqy!#^m&{WbnLByg}?B8&5uaGXSB%iJUs)(Ze|u z#}#LvXX2F8{GVX-`FvO+&cfsMVKSMhU;Gq?=RX0TLQ$!i#k!N(zgvT`p_T}07)lO0 zJS<}-EwPDc)1#PviI$0@Y6viQxONl;*6xAqL|C{S&YTYcZIfP~uYuFY<5-c$pWmE; zK0N|`j0L5#5pQrX2nDfbAHD!HCpx|%F>f88Pr0Aq@sYg!aT;e_-Ne}Gb~GA6#Mbr1 zFZ_s>C$7iR&_bnT!E6=OXrgGAgV5L4llb8W*i({em_L)Du5FlcK&w+#^O>Tdp&J`a zhYMWZuH>B71SMs#qZr1esbr+0z^dIaqr=$r`c!fefKYh)zbvy&htSE__tRiirVfALv;=LlT1Sv|JrOjd9DI(_&1QPZRnu!EvIKOABQL#?Xx z*q9&BON*y6BB_iPrvZmYhcP#wx(XTBxNNREVLhew;e7K|D2-tWoLuof$@aatvQo)D z%}i37yZh%(L;~3Svy}rNJO$RQQOVCy9Xy8eE1|AgB~d#umJkC~30)N=_kaEzgQ^R8@x-gy znluz4cOD=TaNbD4!yiA`rEZAEz}<2)@ zRxBOU762P&P2|&?FQzf#C`@z$>4Ad8Lq0V$PA$(|H=94a{xgan#7cdoiBDb_#+X@U zOwDp)@pZ593}3w(M@$T@g9afafshpxS;1j#!4=SfH1Wz9Tn03rw)>TkklI+n16Q6o zz)6(Ji_2la?bP9Q>+t#1_bs1Ci>y&F2eqQr_>eRTk|dBd3hu~3OfwZ>r!yHGik@es zK}`2mV)XT3&wPZ?N_xT#N&TL<>=pn17K*Fjj&pDa2J^>1rt#c!`}`6))hi~Rv(3gs zXF@SVPT?%m^CUgmwr2UOa;jS5M@< zJ6`mRT%*#^=y-}ljZ^Y|WS*=Sig}^@ilaC^{ZiSCNg2x^^Mk2J&K2s%& zzy5mEn{H}?f`aZ3?S~(#`Qyg^-%1mCc=-BjRe?8u{%_rr-r@Da>#sw0w)!qUbt)`g z3?oNEc=+#91?h08L-(VP)NbC?!)1Obyk0MPd3jV{vwK$o^G_N|X-O?VF5W;vK?Qbu@3}^6U%o~fi_5S~K zTIKWkc>LkFx>gCZvU2l7goSrKU%!|0(GgBx?;AYOuhXtLnYHWI;&H3z>)pRCKd0)T9vVf9I|FieECvQx@9Ux@1+>q=O2;0B0+$ zMwOfyTv0%3RWV)Gr|1JasMnZkpypTi$scOL7QpieB$+MDL2y4HF#||pxrK>)p#c9A|bYaqa zD1K%uAuXFR%{hw?ie?iT*uqseLb!exT1^^oFsT8kOCowg$!ebYAcxRRR zr?92D3Wg^`{UO$*@nKNV4bkXzKu{YAS=9(Jp|ErttldN7RcBKg97&qKq@5fD{Qm6q z_~7TQNDKdow4vR?PYjMjoG_dWO(Nd(XvjQ-40P0iE*R*8%o#Np>D`~O8ayPYYT2Lf z#o%?S%D`qdUtnTWF%gcsE>#tv))Y>;HTEDOSZRsItvPyzpBu~9ArQ<(B?krYWZSxN zu@f+8)oqy@U1(w~__Xa~b7szJ3Zjx3R9(p3-@U@ib1r9aWdYxgK9QP0l}yuXWa^u{ zCyyI^F7Ds|J(th9jOwXpQ&rhOW_cdjrF$4sx`*VtGE!!fpaIldK|r8~@zX1?R7PV9Zp3SFf%ToE#|hMAPFHP6h(qE8&}4fvB^GMvcMw?s`U!LhPt^z z-p!vhN!%b3&?~*?S3Mkfg_~Ay0~X!UA$I||?$m?7>JeOUK{e-`JCx5q%jxso+#tz> z%V|_7+dD09Q1*<_rdYKVnS!k=bv1MB*&pfu~cS#O{8ssQa;$U|^1yzxJeAi2a z2X?TI4GTa#G!Gp91qn((gu93kPdTlcV5;9evajiii~oJ^!> zWH1%{BK4rq_Y*sx`;3rbsSLid8-gY&3I6gI$jnre|Mdi|R<*gj`fB*(lOyU+e=u^S zYNh!1zr&yYbPP6d_SxNgB_0I?1;LgrYI^9jw9f0w%VAOvCNIA`D9VwMW2c{f^!jov zq1CGPxK&l^_0ZkmKN`BS93z;vxvOJ-&!k&%%U6%}DNo7u5r2L^+Ipr9avgM$eR3q$VVyz6wT`1bS9 z;i;!o731&C)$D&A0}8_9fB^;J01gY4HR!Ls7wM3k7{4Xa*WJ3KRbG@91e+2P@LcU%1( z<=;DONRpbTr~}+?4-SX_>W@QVFz7HC^vCqYLkK~0vl{6t%Q8Bh4wtL*q@pZK7>zo# zy8m0}NfDq3{|}zsrXB}Lk}z4?KNcmWy$#X9=FaVMYyt7d>Rc}pBJU=+R`dMJQ^(m(D}URd|qUsAdv8Cw77IV zPx^OkyREw@Zl{{p#V<(cv__69OMHx=)q>v8-cLyatHsQq)EG{kKbCbH_pxPb9(4^i zWLZa3lMSy|oe9bYr*<_^o?3qOE+DLSkj&D{Z^L6bkZaQZx z!@>(;c@8G6ho+fRc;d;y820Vwj8p4~XxNQq*KVp_x}O>;l2rDSKsmTQ@aQM-$c5M( z20mOmg#E42Tzq{)C+oL)aBQw98tT*Tuiq zJ&nuf;yd7EU@>qapp$jnI^hqPb?u7Zx@a?vk?mtF(B8t!Z{E{oU+T?4{OzniP!+7c zQ=c)+#M?{%L3u+r*Epb&WbQfZ8NS@nSt(?7w2)c0kL=PtWS8wBuA!>adao=~lAcW7 zuypc=rBggO8Ly%9wd!{0_~pa#44JWqsMK2YvWD@_aol=i9Uf2j&+IF&2qfs_J=8i| zi7hDMjQ@O0@*Y)IN+}{JwVxxdW_22qL~VqugyEZ%IljULELa#x-(w7E&^5lHOcN;$&!->ik~4d2jSF&nCsn*5bY*fgkRw+%inS znIYKV(ukTTdS%dIR-FCE1$p-}f1tpwoFk9dGi%*5`o^6YW&vRW|4;>6>rFtKhewioK{JfeT2btJmj+ONyzghYgo^~-GvvsqC>Cr4aRRcyDyr5^+6bN2f>5HZYNM~U zu#8=;z=s1g+Ep$ma&q!Ac`g02zpAkRjH9#hTkjQCy6{2~Ra7Wr39H^nLcO$3_9!`MK{BlBbOl%O8yH>;V+{MZF^_wC_jXi;SJY8)ATy@H`7x(jzRzD{KGi;k z9Nk;k;h+cxAmG@&AV_`5w_=)ieR-O1a{NM7(ImWceHY~^2-8;L>yq?xriiM?&9z@u zlzO%L!+|_Q@`O4+_I25)#6gV-Z zkpU#Y{5U+Tf7a-SROxt9M!7r-bN36GY`ghb+$5}d-{wo;Q`Gq(t`zp%oX>nhDWn${ zjt|jX-#tzsoCCdN7uMpZKKz)~LV#fDM#swWtsTY385!)HxaQm(@-N^x-m%M8sIvzh z(^k|<Va`ibr2)R3dvT(x)Mzt^7tMJr;orDp_78BVPS=_r5wqyCJ zKyq*)wWbW>c__W<r2;g9Q45VrzUu7=;Hy)Ug16L>C8rFVK=^2(CZrQW?jtd+wkQ=U8Rav|4GV?^WG zGM>Lv*}wHtd5l{lT)naCJkE`h#Y9~sDG`lDm(>2!pKQu9xBf}EsPCdR)XbC%u4;g+ z)G7T#&6e_Eh;x95Cx4nxj$ReIwx{HzQOffAfjELI623IyFs-ELwKTP4`)jmxI1k|u zvmu>Zo-C(aWPiHpIrr;kO)YyRT=}Cj_B z*wdJ9v|fQxu`j$d{&npc$9?WWaS^oV(!xYT=6~}*_kM=Fn<~m9y!RslVr*ZYl5bA3 z8l)r34ij;#X9&-5ozj)!>#PGu*%XO;HGrt#cD-@`W;28=_{0n@*050=Pxj`_2pAhd zk7=jt>H!T?Xp$M=G9@{r^V=Lr72UAg$|@@%uo#bje|88^*KJq3cO2pUz92F?+9jW1 zV{S-5xBQNflY@y6xLm-C_Hs19 zSy-x%uwx`}3Zhr`P1Y-(!!)L#xQv#gcNouDsQS&=gl4d*b*v1?w|T0fpcg03V@AmW z2xA=s0f8}iT&S3sl2%q$d57?DJEK&FhhsMEnLr?yhr#~^a?RMYug~Z^K_^asr=4#1 zqdr&|E%5*dHOjJ5zS1#;)*vD6x59fN~naCQYL+*AvBssszc5}V& z!==%s&z~!hSBf3fTrn*|dwdINA2;CsZo`u$0j<_1Lj$&@Wu~&$yHT#v<4%BELjVd4 zayC37u4cRTq)4j`H2t`;S|qB&CVzVJ?Bnmu{`_*duluAm16zo`VnCb+q+Nmn)umV(;e%Z^Ia!JoUmQCqSbLoWttA6LW?151zw|D~N9nsGur zGS3^rLhH*tpL>Z~AS@(Tp7kssB`m~Ly%1`STsbqA`h7s`H7+8sCW~0Wd046L+09A< zrw^7=hVORBGQka$1JQ>0%cKth`Ii|l7LBK)LRX9g{v;e=!Oi=(yY#k418_kpJvEtuAVoQB#zF8s4J}q-b;V`OGc}x2QI5 z_l7@(^dvvVG_bwm&&8Jne{Yx{A>vJ+te&;e6v|xbID>_$GiH7p;iN>J!B;SD3ayYO z0yWDBR*i`46$RR!e>Iz1)j99=+o!jBaMY7JWJdcqFRs!HcyAf5#u8SLy4WZjJYuo7 zJqpR?L)TvqKSQZ#pn$+A`S&Jr4g+q z!YVky4v0mcc0*Sr8_D@~GIn2NS>A%0q#oOMB5Ke3k-b##=E2?{U07EBHzv{Q7Un$M-{a#(8Ev{TErmB#b5)a3ya_|@?rIUfz9<9IM8W-KIE8# z!!_W1adN5dLpxriwk_qKB$=aHn??OVo5`Fk{UXMWvgW5Xn9wD*!XPnGmQPUxY?-OF zCJBQb8UrDllMHyXHcrfZ2-8F$6AhRQs(3nXo686?1devcrJSNgHP**N9qzKr1PO%X z20}^Ta%+~3XU6UYcWZmPgL=YZRaLnVjCA-;G=Y6S@&^Gkj^AFU_0E#cr?U$`qsNzL z3iWyTbx#Oz6>(87UcAL~QJpdd86hH#I%|pjFe{%8E3QWjGLuSX5jL zA)$=TY61f_Fxy}y1X6?5{qYmy?Uygd$MGm{308Lz<>Ps+z;yeM6(iQ040`d#jI^f4 zGBKdg$QNoV6H=w*!_8zDL!-cqp^D^kLk`#j6rr^P zm>YMt9wGMtd<6r6v(auVChQ`H(t21h057ucHQ7#`RH6-YTX_)K20X*(f>G=UPBt`| zCj<9JRNp1vl^nb3wj*3U@5?68pAP@~Pz?1O5ZH0m9%Y{AyA(GUP)sf`*jAbs3ql!V zZO|uUJKbvQDb4kXHdcW$o~IF!8;XAlp6J$WQz+UG0L1{kV4@{$wH+Po+6!5A`Or0@rIp7))f(f4T%w*3#a_dUz zF)eUql3GimY#xlpfEnE%j^!DO{-ebg9jNpa@1DV72BMhB%YA4XV!GT5oPEGS-XEP_ zE71zofx{5;z8iGv3Q4OA{s<=0Kw=swOJlp^LrH;72#7V{<;@VsJOZMo0_MZe6`x9h#+r(z0#`{_Pqu%Kx-l%? zvYe#;57cQ=-p;@uY1>z%5IuNxw!IRzodej~O6jKOE`!uJR%=*DuM?GDY(C9kmaCX6 zI?=-nb!je3%n`FTX6#w3COKp8sn$3gt)WqhbiorQ;V^91R}GG?u*#zzo1>1B7?z zci@S0B7BJXMiQNsOYgTF8yvR%c;|7@*h`a$xi5$xL7+=JFd8 zk{(kH+=hTk7Qv*SRfKlO8#Y05Gk}Av)_-UCYw?RiJb;s5YmG)~XyX@^E}LOd?3r z@5lLm4KMBr0ZINdc;A>CMti-d@~Gr|9ag2CtZM&T`$E2JyAHp zxAW7Ebe4<`N2nz^zCxN^k72Ulu@yXaBCvrEn}ZUpU+QNm$1XU1Byv;-j?TVawjh<5 z=tVGYoIC}kvFMJ-L*lTCa=wK*t6dmx6n37LsBk{`5In}annXTDE2MS$<&L8&x3~TesJCL z{vU}?Tw5alZ!ePc%k`j_={%w9x}|H_!uD7UA&A?)iU@x1L+EtGuslp7CKY9@a5D>TLrOevJXDy47Nc3d8yePKjQ82^%s5os-{-}KAm|)Yx7*n& zGb4giKlCNdEHs8{>?YbQ#KAm7(tW6NN%=ecjkeoU3GYz|ZG++P;80^UUt;Mza=pWg zHkX<)z&j$0!;*b8FR5}lQnd2;H%eW1t|3E0DtJ#7{m;}opVs%5bkwGmYOpXFgW(ws zwjxj|(RBTIvR#+#H~aR3*4DJ|?(b1VcU*WQVq%7DIQJjDZoRrrTzD%gDgdGeP1-o@ z7D`n8H65Z&n?IOx7C?$UnP|w=LZw@s=z#dbqpV%8N0lcP``d=KcM4UJz~mm0I7$71VTbW zVqsxn$ALRME{=+r7(^@e^+|`!`^n;UT)#1$4}#px99c7(km-Nya&M4%fnRGvBx;Kf z9adv)&LiDt{11pI;s3Bl}B5V?V_UODa*X`qHAj}Mx$OTZT= zyces}!2P(UzIOmukLeq1;$ESi|D20h0^C!|uQ_zzAE&GF!Tp@woZJ{jBvGoi6QiS+ zvUk4?Tn}Ho`B^)0ag{FHyUnDr=(lYj2wz&>1_yd(TWf@s&5ITM{Td8XEB<@(+a1mj zNy@6c4`^;){8!-9VhR(N+Y=sK`>#5L>!|V-)4uDkd(&1yyelyc@f*u3VZz!c=a~+1 zBc5p{d1bD4w;rWUj-AJo^@={?b2e;Jsf#+qQ{YD=fY8exX?n9e`X--~w0@|dg72EY z>o{_kW@hb&9&a2L=S5JanI?0AZyODI?LgG_+{|C9gTEy4p5a}ofD7#_;;SeoSnaN- ze7>-7ILT}l9EB{90MLrOqkxD4HJ@QitiBJwb&$VI4tb2 z2^kPtG8LcYJGSp_@Zc1qA8bNz~uyes>Yd4fFN_ZbeZPCpRib1;TN zjuA@PYjWrM|2=I!H=|lt5-+JsW>-b8q&kVV*SV^Jv=obx!3qoC9*a11+A6xW7QNx>pbruK?M)hl!WeAYM_D(2-`cVqk1=air zVUwb|(c+E~UUCzJg=-xc7?s;)>U6;&u9RQskY{IVAyUc-K#PZr+Fdk$fp*+E3;7_#>d*IJeYb8n3OLfn0nZQaneVc?A%2XA|hz>&xQ zr2v7k!Fg}Zo+(y>e{YqrwI1B+%nOmxZr=#5o0x$s#ya%Rkesg>b$=}?SQyur_2;ZB z@!A!1A`}Wg5sD9E%Qnie3J$V62@J9*j13{%^+l#))bNCDkzil3fDdZJs_oHy7u)K5 z{K(0OKsK8P50I#$FwxuU4KGNLYu9;|?W|hN;6X$>>E{|nj zGz^(RaET>d^7Ll$qKK#~66IOn2i@Dt#N(8Lnnsx^sa!?v=b^9-wyF4NK1oPP(-xd1p613VZ-W5qa_+hJv~scGGD5A z%?@2k4L3PC35=^s8XCjtEXGI`^SX>!=Sx+_7b|t?lfSCg@o;fh8qASFK|xK-%-nu9 zJ;ITcRiv)eg5KS!-c6VUX4!|nd8N!hwv=x*gW`7%FE8|decn8+J52FZAfDa^PM03F z$t#3f*9hDV$8Oq{mX*QOEJyvv-xGYgn7v)pFzkHN28h`9#QjnAKa=L)L3gunP=ZffUvl%3?A#t?x*3qqJqv6>7C?>_G^BvB|PO%3) zxM3>b1{-JpLa3n441D3iU^W3e_}w0pAJ2QbYbGgBS%Dx@q*Uaq)!a19>HMBs-8TpT zHj4iHcEWj^Nu21>Ez0+0H_Y=OLCWK#Aj|{! z-g~oj8*J2e*Ciw*WY~9IL)Q_~zUPy3Je6TT7)^ouYMrRJZU~ylr*~daX!2^a!;u@G zoPy$$a^D67oLk-FqHfsZrVsj^zBGaSUkGIVMVQnqRrwjTiA@j`tO+iy#tVKvhR2qsbD>t}m1>K9brQH}rwhsc%FrlS z)6jFKOn>KT!%E!{xDQ{N>t?oKT5#zM*gM`>RE)Cz5Y7!)EzEbxS~H>c&G zp(EY32}x8F_?$|z*mz8UZd?yAj|nSZ{W=U?&{ER^O7f$)NPKG%ET!JlQ8I4BRjB&H zRl{M`YQ(I$H_MT_^dgY`@F$)+m2x{xH~VDnue&V_$9b`WBqi@B;49lNL)BVauahmn zo{v#9yYskpa0;sbF&?7lPhrcN3bUuAT2#<0t7ehij`9ARjNXkv#%#vI1cL?i57*D( zclHk}_Tul5?9>PwiIb*Hbb@H1NJs7*6HuuvVvlIT?0sn#nwQvSnGD~;RQExcu5jxT1+n*xrd5)ZI0XP?U zDUe#Yk`wET);a`+^-WH|E{@u|GKoWa46uj8L(gYjt>0Y4tHs=8%qR-k?eD|-`ign= zId69nBv)3+db{W!%6xc0Dp|rex&k86alhfi~GBB2J+(r-T!^zB=_3 zBF@3eJ|HUBkSgHax2t3yp&f%Owfk7%U;0PH2cJ8q)=$jas#cgT8u!mvmoFbXr-%(g z@iVEO(C=v>Wb=VgVR}p=u1!@*Y3XadBt|Y>S2bG3v``_vo`{IkcLR5xjYpPFH=e;~ zVR3uf;5_#M3>D&jF9-GIs~Mx2_x42hPjT0(jHDXwsNz;LQL*en@n%+gZ4#B?6p~K8 zm6RGNPnTfeDvD7~adq-&xd(3@&L7zCV3dXVB$cidsk{4Xfj59w0jO$UPnzf4rr6>i zM3p?Qab!!$=J$QMJi1&L)}e^E1~$6CKPHYC4+o1iJKd@3PL__#=&tn%r^y0zPP7JJ zVaUyHG5Xj6GH5AtyN5~wFfv9@Y5o+BU#*<)_XEGtp=J zz&2<9`+Xn&TE~4!c3ec<7^tLCacynw7ONftJ~w=Fm@0KTL`1}er6tnfd|&}UA{Gij zopa58_Yu6iyR)#cAm-!4t85bZ{0%6aZw7Kh3FDymk%gE)11vW_O|Vl^DrgrkL+2I4 zEaziK4NqpMfXWqDO$3}mq=bDA1YkXYET{xot@X(!djmh7s&@Br9|%ntkHg2ASRfV# z_Ful}{r<`^0Revzf|}G2a_#73TA!Mb!+MZKk~NE18nY{`|FqBto2zMy6!<=+AgP7m zjY9mBcaYDaIVnI*g(%_I(rNAl0H_$>EI#8m`4|v+t#vcnV&4f>pEe1R65s3uN4O0_ zuds$Yr{ePb)&Bi>66yjSk_kJ5s2P{13B!ZdVvTukIF zi1W0*Zo!_2!DrZit5fVNoaOIWsTlvT)EY|`kSqT;(9;&1iIOT)RkTY$WK#kSBHvsuuFYr?Riy^vuWL_{)Pk16;DiD@rU(LfRi zzH^ts>}=tkaUk7l7AuR&i`R<}q9=3#ALBLU_jB699rn4KGwOzz52_33GO!^Z^cuMZ zfHhx*CD6?1!b%3os`hjsl*>;RQA#3I-K*#IAb+m|CLF_fpt2OC4BKkC< zcIyT$6h5i3oRsGZ293Q^?a9Pa2_KVg*iz}P^F=@id(zAm+TO@O>-?;OGK*Eh2+zo& zYM~H*Ij|eWtx|V5rSWdN+s#1N(3Xx+S;ylVoe0&(4-Tt1UZ&qL3HPc`;SCMft}i3Q z!Sh*cn)DK5P61V>#lZ&rP!mSC`|&IoR`o;hr*RPtwS7ZM5;=sDrTsrTA94^jP^KF% zot%fiGVJL=$jvN9W7qGCLbKNbf$ z)SQi`WYP1f`Ezq_GtmDa87|c>5W@D)WlE}7Zz{;I8TjO)vI_vTK}6|PIH?2bMPNU? z&Jft`m>eO8iZ7;)D@^ST?A-d{TB}bup4t+_v-CoEMk2O$2W?rOR;mYZd()QlrvI&? z@$3r`CAHRs-|P9r(QGq3kGm}tNhdeEjYv=rj6Q$Mj;BKCc{wt(9cK~OrLLgk;TT&x zKCG?H1}MH@pE(*W;_%VHARB~{dyJv?{;E3lNX|KlO{$BWz4*5xb`!wT8^hB3!_<(S zFwINo!LzX#f$8Gs(vc$oAAMkjrPjMe76IwhA@lA|%{6=x38&~|E9A#3d-$b9^T}PmzeYi4XZCxkPc%O%QjOw2i<{kh8S2R3 zVLIpSALlUer#%9;t~nX=M+f&a1lH|;lNzk0@7kGpPT=7^Gb5~OSO?C z5iGSu(`*I^zEKvBrSYZApX>6wFVb}OoZ7-YZw-YM5V=}^dj4gmaicOWa`GfQR>eG$ zbi6bLH9ZjpO;S|<21UoJTwaOcG9$(4L2PTY zV(*<5HZG!7`?z3}=7p;m+#N8S#KjiCb-UQf{w=YQ@CZ+W+zprKTY(y^@9XL^GP%tH zwD(RuU9PiaP5y^mH8eC_SX@+ARt}gxE~>9jtf-&`&I(vqSb#M|kmLS8L*4@qOLkmV zR#s{zCUanM0o1DiaBxPueK~ZUWSGr!SNjh}fkOsfJ+INJ{t%gL?<l!XTr%Y%EC$%a6g@64eA zWHH&u%)HtftIxiPj9C*C_S@y2HK6Wt+|u&as189%V;CG<$`hD22t>x1B)1aQKidV* z#xir6%xQ#oV37QLdx8IqkW(x0mpp z6=(&>_x8D;OL=NHEDEJP~&-Od*Sw#DeCd2P!Fqum7xI%GXh(2R6*fz}XP)Bnq;(}U%>=F#fI33L!OFYhR(^`qtWe;x;}f`}!lJ}$y!M81Iz4?pTnihf?;3qc47;q+4wc%9RK??3a5dY<=K>SWf2ZJ^zBpOvqe( z68FKD9|tQU+|ohFZPd+Tik6k za#FMgr(JJ|N#ull+!^G4S)j)KYUp$(k+JedNfCbO#RoN)4_+k$q#yzeg2$k+Hw_aV ze=zdjLjqwxpRHO=Pd*1mFHQ{nH%LEq05LE~zm@3b*fh{gSqvX(l6iG3Z!<=%*_Dmp z%~VxAxrSAGn?I%Vssl0j;@1|aNa+ENZ{pmhV8IWp;QMxSw$N=*nK@U^SrD&n* zP4o0fTnUSRCagAOF0%9+7JkYqiBW8JxoQ|l$|_PVqeugb2(?sc-OSw43bBNarqHOP z3De!gyfqoo{7wl9BPOv!jvk0H&?1)K3&j_Vmlo`L(V+vSB@=egGEJrkjMMw)b@!_{ zX?;_z2-xsuX+eD{kS3}JNqWk{HYyx6O@E3PQu~)EUIf$9F|tNTTOuAoQEa%vb`#fY zVnRzWjW}>+&!U5++^>wE+AqbE)$2blJb%3%%v;k;$^YSIOL=rIVLopl!fEnC^JnS| zW7^j5oyI#xF=X0}F01kUuC9FF7@lh+*Ynzoi+=ZHpz3xMe7-pcAPs<*~VK@wKp+Hs=>g9 ziMeEb({MtaSs7jna_Es21tmJHyIENLjyF(4Y_&wwWDxX;jB%ctJdWW)b7*Uv;46q; zlVxc5hgn}unH(POR;ZM^`*D9^!TuVZ;Y#RvzD4O}M5KS4G{3XXr}-6&5=D{x{&gdV zwP@g5lprL)5ff2F+j{b_i5;_9xr&>G(D{4_z*k^sRu@o63r$rQz)%DIczl(K#!(+? z-Axe>ZGqO87Eu@XfLY*lSvT`10d=g_#dWDmZk;H`MTozF`MJ8E-^gY|vLtDj;SRpY z1_WLr=Z=6~vr0-H5u^ydfam-hMkMR*-(9>vD>bjTc#yZlYX%>H&N=of{^g48D~2ru zt?uu>(GD$)>Pc@3%83%Lb|y8oqqkGH`g%Jmk^R&^eiBD!I7cuyzgv>EgY2(#|2Uaj z#i)3Jy_}Tn;u78oJ~9!k@2A{F9EaJcokA`zH;|7d&o>(QaHQU}&D4WHaCiAxBU-bZ zl%76P{i{P-Uj9P#hCtZHh8~z7fZFpq`)xsB5g`_aB%zG{AMg%PIQ$^&{UmH*L0=>V zt*oTf%g}OCUft|8$)OfafHwk7oLsH}~5TyEgkvfs2Ud6DqjL)n2>h@#{4t-KMvu4kywrILJ zDY`kYp+)(A*|%CO3Rzhp*7Kx@&*3|NIl@aB!0)Xa{%>Uk=tpe+>&5#(b%*(`2145b zn9CyxH78^vaoF#5UB$_20-M$=3ZLrgGeQ4Fzc!|>e>c#^G+OA2D%Eej4dfz&E4&B= zAs0SxJT{P*N%UWUxI~CiTa?W1Po5V{c@ZRnfDcbl)fUlk6cz@g!w1dIF@?@b{l|uu zFq_iLQttuO1Mh9|w^xdgGfgy(M% z1~mgX%LX`W!Vv-B7srQ^m0KJ=1a|bcTd9BrN8LccaS)(T(Fw2_$S6u}oo~Nwr!8dOih}95C|(gEx5h7^RJ=jIFIhf?d4BBX$!W3M$pdwx z31rqHtOClzIwO;dsR#9{9eb{SQ8$P|VGt-Qw{2J>?EPz~q`mwqoEh{k1!!KHEqT4` znIeI+i<+J6*V*3R3MnO(35*DeN@s5kKiNTQE=*;%puYFVW5`j1N=KYosi1}Nmc9GK zR*_m=KKo@`)P@NLwlk;<+<2`#n~xgxUP;1+M0;jKQe?o_e=qb4MQAQu`Msb;bG3w-gbk&M!`U&mco zrb-r!aXsK+m}@Nyn-9ALDIi-Eruny&T6-pk-5fYAK;(Ai@`p`L#L&@_@nQ=Kt^ybR zR^Y>`RdFZMb)%RHFl7YLe61$R>hT3S42Cqss~`7r^^ksfbr?Pf&<~?6c9*|sb z$3LZ!!K$?_qi`A%d;bAA@dq4OilPL~r#qinIB{vrY%KVvApb6eSz@Buk9K6c#m@d{ zCkw0cd|lvKjMyDtAM09rVq>#K$g~3koa2(>WVVgg*oHQ8&H(`8!%SdF>q9Fa4CITc zwJs+v+R>L|njL+E|B)D)P?AJqG3V&+aC8$Cy(9z^7!U_jupAK`e%LZHk~ahCaj5t~ zz9%qq$Fau)8_JGz|K{;!WJe5Se1CC8f1helGJb`iRB|<~#!iWyn(?+yU7--9`LEC>cZ{nC2S#2R=^VDn`(WhipEIwR3?ifD6fXX$suMa^p zXy`sN6*|XCO$|~Cjv#4a1req~N-GBaL}{Mp!Oq4{aVu-%O> zKTnK!+*46h&^OSI>l*0tK;86lTH4lne6_jpaE#`86!525{2@WkU5VVDGk2nMH)K;g zG8Br>^RX^(rJFAhm{)SjZqykCtg&uc&hA|%ORxpM7=vaEs7fbjiFpfCc7(CalCWwt zM2k=w*IaF;BK9_!LY4GPNjNJ) z0vA1nfgvSHprOHVSM=5W{dPF#_WpbzUnH=My06odkQyCMG8SEv9+)++DQ%(AF@M(i z@K`2MIiD@i04-P%;o+@i=OH2@^-5`Z$V5KG>!*Z5NbZ}E4Q5Ra@mX0HNr=oQ;XXk+ z^$wy)x8`g+ejWKv_9FDi zeyxmWT0g08@Cd@b%luA0`OD=;_a`L^t3u$w7R~Z+(TMtC;^eOaVi|7Q@!HZ{VRQ}*u5%>V2+7qdzQiaz?8;O3Yk!^$ z{r>+JNX>|v?%Y?2PzM|A_J{aTie6S3n=paHy8o@yJeU=SW*m9F)+l8jErEmEXQgL;0D8m1Y+rV1bn_f zlgXeO|BK$OYS}8(sL`8ju5&t+{qHLv;dB4)Ga#m?k3O&Nh^5N&sbB2okdl;yvhRMS z1Xj0XY;0)e=H`V(MHvF#oN@ej(nTjtv9UGeGQnYCz)e&AeAk@=8v4ExUS7O@etsJs z`!Ss_dr_`vI}AF_jW1e!9e&$wPh>PS5zG4iIYj;+2@4CVz(@73-gJBozi4mINYDS% zHI+d}66otwP*6Z1;7yhy@=YF1Ixl+YdB5Vb>-l^#TYq_4w{N>_USH$a!20!3<8U%V z0)>dXaP^5+RCx1rPhmf20&`n>{OEg_rR-`9FP?<)cXUq&@lh+`(xz(QTA3F=D%y8;NHSM z^&2fX#s?vyKZ3kh+XZg!p~{$l&myED2U!k~FhKW%5i?*>A{VKlXU3XC(yAI<3vbeg zz*QjJEIN%a1-w^>60cIOTBtj*4~13DrR?c(N$8?A7|4!e^yNJd1>IFI1Qi)4Ixj^gTE{ISi)1uV^ zjUd@tk@2291uOpfGWGsUZDdR3F?O!9&>$&19sciKPFBmu#M}nfAX{!k0{r^aPDZ;>8X& zh-8{{hL4g-O6M~^hiZaz6rhReXp{2@+hXQFz1UYZiU84fN&93|M>Q>ByF{u#He!Z( zUB0G71HcqZg~_{!;6mWS{si8Qss82Y5$fiJuOq}H?;vO?O;fsEYPz)FxavKeY)UVA z>f_A+Y&zuycW)B%`lAy?YRK^C&(77Bm)6SKXDr3YBdmacDR|b`=ej;sMWN{EN0{-; zbc5x~YX-N2lAcc$24#ptEznT^JqF_TRS$?6gMy=ypAuP7wNmAz<28m|ksX$7+b=f3=&psF2sT z>$0H|2*NYB&Z?r-`?96H|94H!N!@eRgq9)VbHA+V6?)(>zp~lN$K|isQbf9F33y$j z_IqQ96s93Cm*WXYP{5{euXl1mH^<9Zwdd=;O5uNfRQurll0ly|>D8kT{!OI#V=uUz zN!wj0`xi%YT846RE@(%JOu>8EhG$@8e@V~1T_G;uq;^-5LwO|Q}Lobn$`d_QbE5+C%U8FrQ{ZS!mZH9d*_-3Q;1yiuG4qb3D@7>g1)%6-fxyXQ8UZW zg)WDIcYV+|Hv>+aZ9(q@C)r>Bem@F*L)hDEX|}_dn42f%<|=%DeL9{MZx3Jw`)&n`<#_e{TPANQVgiZ4aN#$47eekp#Zqe5+)1P z2tN)GNy|d|e!HUWYQ#!hUj&I-^g$&`_M0#q9dOC<+@8)MMVJs^ELuGa*|St5hUy`q z2&}n>%AMjuF>MW$qYgl#!4M!p1B0#rFo5FO+1VlButH#AVF8O(IXykX|EBwN8r3%F z3958}E$3+gpZCj_Xgn??dwY9&OnA98#vub{X4^IPX8Y~fxH#k>Xk^I(rCRT2J6Soo zw&yMH*NcXKIGK~M!Ic^{W=9hl(usp*%0)16aD_lLZ*ejCPZgE*zciYvs)PG+z*W=! zUow7vg3iZNw&ZKR&ztVTUBWLXMRCCAPXxfil4`Nrn5WBs--QDR60-~|lEM|zC?KUHwopXgJYi-v#&8D(tJUw}UU0Vb~ ze(a#WULYGdQ}?_r+P;dJ%jd;Gy-Irscm+o{H?#Mr%jC2)=lLI8br!RvAPPCWL+3R; zQ`bG;v3&+Wfw_H^_3-d;Sj)EGd*>SpF0QPuF8+G6t?@>yBR3!4{^jLlASAptLD9v9 z&A(WJ@eDR|7#S=T0-4u}E9ujO(K7z&ed!4TQ;#_|Er>#B9n*O)xbHY;S_95k}cE)Oya z$kM)`TYeW9HCK-QO~~Plp?qZ$H5?EUb52`+gn{;fxg6=N*xsxCo!vl>Bgs}X`onuc zlGmjU=FpJ6YgL)Q=07mCeQ1wPnD6HBTTM)NR+sT4oG_!SJS{d8Lea}o&szu-!w3tM z?0Rq34Y%ItV*>)p5eQX6?8}1R3`qHT@%G?*^%2(|$#uOa(@h zdYrqhIAAyD2BV!a+h^O5@X|N?J+4bo>By`RJU-qhdod@w+w5!x7I1eN54VO1TS8l* z!4lIDosQZc`u~IKJHOAoz|6z!EwlxHIk({Qdzm)#@^q=y%X0S^e*2@eDDT5dO#CX| zF9lCh3ZY;|f-$nsV3z^H6%E>e@%0X0d`OnEv>cAP939v<8?OPC^cK`jiMwuQpJ{kZ zh*0t-%-Zp5Z^zpF#p{Q^Plt7@w;$o|ClEY@l*+ex#P=16S@ zA?-(YyfkU;q&nd|yAgQPBahL*rk#VM%A z1y_>s*$^d~KA1bGB6tnBz=mj>+XAAh2hS+yM`AEI zq#NYQrEK$MMt`s}Lro@Rt0nfac5gtC^~xc2$}#Si2*M>NF4i%?tz@m7*;P1Q2;Mv< zvRs*Pux35RdCzf=_Ws0pVt8>$Go0(pwb(U|yi1DRva669?t!ngz?HV9@C*$xlFjXE zk52a&otE>x4Nz(sdmNWtsc9}d(0yBYafcXQvml8Z-0qB3b0e- z9$GlRio?$XZYxiDMleJ~vbs zYK{E*YNhAL6G&1*5Z(IYNAo0JmtOwzxTxWpC7$AEDOc3i8@Pr!N5+@mg{r?W$Lq;0 zNxxty^|~}BKT&8_d$`oKmHv@EgINP=%)c!w(hO>vq@Z~1UW2(>hjHpTcwZ%&Gk-J= zD?YS61?CbBr-osQ4c2CNQnoOB%f>wL2-XlGWt#vzA9l2Ik0JD6PCp>Z9Ha6`&O*nhI_w#g zb?MC+A)&>zx-;^XD4qq13q=yKO-<_oP7f!L=l>*(CvnpSe<^&>(k7l~eA#m2JGHNA zX=P!-kwBCx%`v9bl?I;W<;(Hr8E-v@6YFD0u?&I+sjL> z>3C{8o+Se?D-gkB(i?1bdiuPbmbw<|8XA(YnN1j6Z*~3EZi+meFKzL<+#ilJ2gc)z z?VcVPw~21w_mkBIs_M(KXk9vpCUWW}xc`bCi6~6R0YokkgO>HStM+rvdK1|1*J*!` z+o3n;K7Iesl>dqyP;jVPm(#g+H=ytXng0ev-{%%GPUwrywUw;g9$86)>vb zZFyg__n2ZR%saeh$2~_0r$+b9*Z*+8`*z|56`Niioz^3*G(X zYj^7GD)@P_RE4M0Y(v7$-8y+&Zu&18=fB_Ld4F{KxU9cy+I$7<0Mn?H7;t9&SJe5w zKUMLS7y^+7xBGZa%fREn?KgZASV7uW3ex~p9jh6XV$VU`lp5^ySL}Q0FV!KJfyvR( z^SDY!;@iaYO8J_P91;BB(}BY^Q;pa}>ocD^ZOo~E4*?7O*h^^Ldhjg@i45oodGm5{ zY05wUh<~3;(sm3RA>9o7e?rj~b?j#6$b6+cx_s}cWY-YUnp^(CBBnU%Q)w`LpY4iJ z()tnWjqvMGzcR+FE1ExJ2;*A#>w)h@s06SDTol^;V*t_ zsRx7*=#qg{ac(C#GlURkB9AL7EzLW}5FN%KU`GmC8HTzH>=`Ls&`YuGWGArAoEyE= z?IQh?=jKfG#wkQgYX~~ogj%-t+beJ7sB_Sr`BmAwSM+5{`K-RwX!Xj*H8c}e2_bffJ$R3AKH4`yM7tn zLotbG$yQc>HzCzlB1+`%5nhtKLT!@BGc))e-*^Bvfp$EVa+=4km7GW|lD<^KSakM@ zNpfNg?ErovQv=p_zaNfDlna#TCI7nldO%B8HOzxO^l`nFf^Stf*Id}mR@W`4crZsn zYnh+n5YW9CTa`GmE?}rv=yg|E{9({k@CEVp3K%GILGf5t^9b~l*lqf~%wm<%gKDT; zGJ+akp*$T|_g?Lo%AVen#Kz#fdzCKpSKovT%ir7D$aaPGMQ_mp`#wEiEpz ze)AjYv(nA1&MZy(r;u-jcDygBb(>gw521+2L+wW}2<#j0g7 zDZZQXy}OU)2Ej5D_BEitkHw-4R5V6aL~F6T?lNPEo477Cy-igu^ZS5u&da6A@y<8@ zY3i_7mGf>-SCV$HUH?&h8_q7^@O^{$wyhvIHKdrRTRAqS6}jM{xd%O~3imr+^ugnXbkRV1TJO3kn!yKw zsHge|MW@h2>6ke`lo$r!1rW4kB?QjjR);ih;J2l5OcJIX8l)>0+5JXfJy9dAeGXBa zH~nq`>Uv0qV^cmw$icgx#HU)^+)|R(c6Pp!pEC}We(KtHAmcD4HYKk%oZW~3dv*av zEo*KL^k;nhc(zDp{Y58&*G2llorEuuzABZ^rT2SSU5|a&*+#n=E8c%16L(fju8_|H zumuN;Eo1BbvCk}sPJQoEu>&bf#Prf0<_E3=mStpz; ze5m2CFtc%ze-3_A`DvHr2T>Wa3#oZGNDD+-KifOxkh5FbW|jkqg*+rt@w~l8y#Hk^ zIttslNs`&3B14O3O-h@XkbP?cF3?k3yMLEf=tM;FuC5%-%*}tq#nt(AY4LiW*0g%Q zU5^kFtE;N2;&!>-?2S=(pUcFNlmMXGL^@jtz^wgRSv2bMPRPnqus(jq&UB~~^#pK) z+W}M&&K0eWD`ERJ-WJocms%Z2>$)BYfY(`j82>)n0Tn%X(CZYK zOd38WvH4Lm+sjjR9x1Uh{n^9u1IOEsep9l@eYc!L@qs4&O1>O7G zeL3s5$&jK_pexifoMF@>S&*VCrk5(Kr88d~h)^f{t{*^(nBgXy81}q|Y17cRkMS!>Cb9XZ)VXPWxWF20| z6Q~F6B$SYA-OlVtH1ZT5(e`svsRcd;LHLy>^i|v)o^cr&Rmowaj;R7k%P#D-wAp13 z+oZ{jF?xy#?2q%xMjbhGUwkrHxBa9KSng0^&AYC<3E1?6ZbU~CyzwKw!Tsb?Q0*G( zEVy%wh@}H->aRMHX08t3!hEV4^TnM#n1%1WIf$Ef!H2a;rx4t>9*1%|ZP0W@Xy|8% zE)iq*2=^;5r=QkY231$F<5{@_lyE<#l#F3x^R5r#dI~)cN^@kJ5eKKb9nW~*8j%-> z#VacW=+<&fR!q``HE=ixQG#SlcB==9=$t2e$hmHV?tF{C2y9P7%1V2k0dC18*aXfy z=ZTOY{F)-eI-Kju# z=BbT~ZZb-fPmlXqDd-y$#(8LDrD4@TpCT)sj|Kq^AxGyqW46t(MQwt9#o$Pc23HJO z!-QC8LC>u*VWP?4!xe|mdt5u{wIr!UODT7YJhahw^fGHo^45Mp<~77*2|3y0g>@_k zf5#*uH+qZ|{I^kc^@Jn+Ciw07_8{ZyP|JBlv(3Be3z9%=RR{Rkfyt3^2VRF6rd|_t z1XM?9jKw-K2de&BP~_SWbJ2cD0LazYqT-EQbJQ0N72C3 zal-1!cdFsv@cnv@?3#G<)&3r=M%~oXQ$jK8O*d;{;^cVOy%E{%?t;&|FFEFvF~{c? zgX%sP?u`Ms!Yi!*5Y{)>W2kwF9Jc})L_UtxQqwjx7u9g1q!d!9RY5bnYE;dneC7A96{O z8Y&A=F8)(oq;16wt0J={TKHN2{WmI1Q-229UneT^a@AKeRqsNKZ%aEw-agV1QykYscx_C37FcOtY z*}lBK;{0K01n@&U9=&mTCrW~eyDd1=x#yT@mvmB&M;6h;(^)#ds{M!6?UJ<2Iv*`n zupWQV=-p4~r|w&?rz!>%xpkQy$oRN_c8Wy&_ zy&a_N5!*AZtJ{eB&6z!KvpMgxyLylGGoC}01xp+bV3uX&hN(@(Z(-DUT8t>>TR9 zK0rphd4&0Q8=x`18)z;R2xZK=4xJM%3jQsCXf0*NOGfEj};Angw&UN;^ zf{8yTD@*@TPfQH_zhl92I#+2>3=GhV0HFv_rLo7x#wIWR#>Wuu2gdqbcC}6l=T1LW z&Yw_I;ByAV;5L#bQn3MZ5%)aAJw~xWhT68mAG~m^4jY0SevgKL^tExpjmvDXR3Pj+ zJ5&<8=eXs{o4e+(9vP*<>WxMF>5H9~Y+L*oAo1diy_1oJ&SN;0I3Cwzaw+m7pW3F{ z1Byr(d6@l(B=~LvW61}B&4FUBjKS0dY3G>GWE%bm2Z?WpwGkKe74DC5ZtwDdF3v3; z6HBjO2Z^={w3vht?O46zZ~&Hj49-M;%hJ_SM_yOY$W^2_)8osB*w=dG^&L{VTw!AM zEyv+@qM&TEV#6{tN`h!1ieB}pyO%@ktFiAS&0XWIYs!Lt8GZ7F71Py;jNF3-9B9X= z*VfM7iWy=!BGaV-DsZQ=Iq0xQLixXQ`UyncbYWNO#7Y9e;@mI&Z`&vh{G|ALY7u(P z)EoK8GjSbsR9t&?--%|sj2tWV zbWGF@f}#1pfAM=3Gj(EE&7t-&UU=iBTpB#4j?rcq$$UdPe%)?fuN;#1Eg z`Dc1lIhP38{NN1O2=3$!`~|~(cIetFkjLpe2$ZS+EC*+ykk9{v#JW(9q?15X4-fR{ za$H_lFx&N}Ea6u{(!)*e50|K%PQ3n$%TC$3PgZbdZH^zE>rK(jas&j8NTudfb{9JV&svt0aVLtqKr_euw9Uuq@x_oG$;O+@ z$^4m!nsj>{i5#ygTu>+@d#!+Q$k=+C3+ROgA)-jyH~Eu+{A!WmdUn6@iz%f%_{TS~ zI%ff=eQw|CnVvP2)5Tjn6OBr_>o_Vp+Ni-^`>#IGJ67gj9!-p}c_#7uWi}lK=ERi- zBxst{BJRIhlCu0tixV|%Mo&+WumbVFyAxBB(d4aeyd_c=!Q3pa(c!J@p`<-NuoUoa zB5Hd;ikFyNCeIR)uB6HJR2Mu3K}pvwOK%!R==z-!p~Mk`cs6Jv9`^TUx@A#hnzV{D z*wB67UUre*ZE)3bYsfgigaim(QFN5XnjVYTlNoMHM>f529Jg`=HIkUNl^&`Ivf@N+ z{P{)mnAl30y}5B2VPt7}Q$wQ`p4`muK1m^W=Jn}MC383wTc&Asb$4!}w4@N|Y(p-* zQi@*?z=HsdM65S9Q;-4&9)Z$+wed>MXhbCYhK`C-^OT7v!DzwU#8+YfBP!+$^@;;* z54a>Lk!?(>V;IK%GSl8)Q>;bV524pgU>6KjkI!!S&`y=2dL&9kwyf(TVQ z8;Ibk*h{N;EA85w{m^l!xk0dGd+y2*Lnr!4N>(Qttr`x5jueg%OLQksE+f7l1_-W% z<>F4_h{y_R3K%rypSC!Z(^<+ofQlm9__r?>_WAJkfnMOnDF8^j@4(DMk|7cZ}^fFR7_ zFLD&DtZ2r@#y}fD$HGEGNeS7p9=mJ{7&o%x0qye(u7T{^yXk}N^W~j2U)9Xl#2(8o zpMiO82}(crC00Cstl1jEx_3u>mbVg`g_3%&`R-_iT;`zqXy%V^#p-ml82e#OiI`>A zNawNr-V565(BIVhGrkb=zO0~5Mrjdack=6#osKe1j$yxvXOdidJXDmpWM9_&ZYec# z>AdPkRD$YX@eZ(AthI9~R0VsD?6Ngrv zI$T&Qxn%luBa+j9+`aS9apXL`1%VCrD4TQGv;m?ZNe9gF_xxKidzlw6#5oZWFjAg!&i;K!^sfE{t#he~JeVH42tu32HBI?8Q^BKVs6o;% zS23Gt4r?fVA3CX|`FE1g9<@I49pZDe(Re7NYZ5{Ce2vcQ#}C^wjl@scx%nCtg%I)X zq-jm7(CKpSY>13k+R$34g3>t=n;+T)G5Mp7_xM7# z=s1H&O@Z5Sx~LV$*hsp7YTD?Ucd4$+k!!F%^{7@zQv|W)#_J;bnPE`VRR3ygt#pm^ z=%ocQM7CdkCvi`K+Q*Ht1^GR8`f5-WiNXGvpm!cuK>f=0!;c%`W~7(|=)OqWw)gpi zbw);R+0j5Xp;Kdy`LE^7n+%8p?-Zxpau^etiDO9TPW}O!S0?kANIPVd%TkIu8QGe6 zCzJvH`U5(kyc;bG$-5ZQ-{-`|YXtfrcs!!$bYZL)=}{W@YbYP+%zlc0?Ovh*nK{q8 z=k;79Ls3GqKknVgr4(7sUK|HUHzpC%^m52J4de=~sOf8=sfauY6|Q*pc8pV0R4tfW z({U41aHk>!C84Z;n(+8zZPDzj9qlL-Br(F_@IG@_S}qYN@C=zZu3m#PLn=dNeXkY% zGZdos4y&qlAZm!LRYD*GnK#aKtxjA0U>R^MOJBLJMt=t7d4P77W8`rnNcM*z9=^%D z{$<7)L*aJm0Ft9oiRcQ%wp6_BY=NdsSJ9@YIJi%Ro|Xh9nj$UZEQ%!uK1&5HopgFU zzI+)yYi6#mg?)RO-kX|JwiF=PF?*<1qQP2hjF$x(Pj9xy97}ppJ-AeIcg0(tH6_9q zNLQZd`!D^fqQ$ zMvLc{jpw1Yt3L5?+qI#ajyg(_>TYIr8#jb7P~XN_5g&J_$X}c~lhNVzpKmS#?;b>7 zhjO%&T*f8E*HW+^FQv~~ZJd-Qi|E%#n_30RiJ*R}>{m8a=){I!-@F%jZ7+(T>*;6Z z1yR4NR`JjK&Y7r#OfbI?96{S5)Uy?j$l=seI-2)1ARdZmj8FthubeP@t0VhA^(i1T3SFhUK?M`$l`os zb6sn6rm+MsnS__>3%@=eNSr!0(VNh~(1LA@vQEOfY0GFvZ1oy3PonImKF*)jp4#g#NLuWR>%nzbKO9xL8VFa#BJTav6hMUy%6ElzF z?EN*1q~0_nyY^o~?`{Yz{_$lW&vY+lp44A6kS^kM#bFH9*s*2+CVh&*h5d%0Zqf4@ z$5CjbZ-Bti(9quA-qyi^R;x4!_-f?_V*in&_JUx^Xb$@kLz~Mr=sUZ*t{-aau=Ui` z#6TbnAYcR-e`4a{EgjofA4Z`;s7zzz`b=SliK}5IL&OO}Y;VITXVaR!xFSQsSY6$K z5`?V?hMN%(N;n0B&8`F(eiTH1A_G@;=HE|QYJP8i>z|~)2MX0G(!s;X(x=S^w=W&L$0`98+u}s=?iOd-2z2w7t{!-z?gGxTqH1yV{SY;p>p!-ka?6& z8d&-%Viz>qMPACCFBxoP8gB%Zh@mu1=5B$yEo;p)yrczc+>)ECDy*m%Kv#7q+6>mf zg0F~N)3|brFxrkB1@k=SF6S0ih8MhUHV~Q8MCAzYd+N5@(CgpF54eU=X^hNjPpVTh z5BdA7sssH&VuzXwEU^iRW02PziJSEaZic*XRD_w~ZD#4H!>MYhH5MkpS?Iok{8okW z&h-i0n2TsXkB3TIis$eQlk#3ojT&5pe>MMhu=*1v^^?GiF|BCefHR2+WEYOAoo~<`aT-`9^hw6% z%BjCI(m+;(TdT2?22!lE_hvp#LRb&Z6sq~kLD~3|*MB3>dAHA7AB3C3n5#lKcgJDb z6ja<>5Kr6wo!>qiyIx%*_LnnH^?I}hGs{ne5(u_Z7N8tQS__E(mQg{*x1MBKl;^!- zO$8JV%6xj%00|O*P3R*l`f{j*F+xFQYILG+V4EH5ic#H!N$-nAS~_a7=f>9_vW{(~ z7YB->@NWi9cA{3iaT8q$g$O^Ms^za13V$IGt-Sbn1zK`0aND4lOc~7PV(qvojTWZ~lxPj$Aj2aj|DMkImg1%&vN39FJ{}L;h?OFTDBt zgISickrfj+`Uf~Z4PHFCK6$EjjvPu9H5+T@UcMEAVJDba`|?ETn(c2?RI{^mTE%&8 zA}vCM5{#~@Ow1IEBR?fuQVxQgh_!&$9p}!Q=&>IN2X!`O&c0Tp%=(QaJ!|5npY_=v ztElw{2N`=ZoF7Q1*%L?|XJCY>$|g5!leAd(yEzM0gn2zzWCM%mU++#PT?PCzBS`&X zh&ib1w^yun?#{E!H9Okt_wsle9d=|7e4i1?=`svH`@|cy9LTTtS84Hy#>Zgw>W#Gn zOO0V#KP5&~KJmxyRfwTjBs!*i$mQz(Z51_fm9-m*)5hn$oiv@$S4$lwGY1yB*ue{A zbos15-D`V=`P{f^U%d+iSCvv@nyT(zK2Yt02lHUOurI$5D5IbXGW-$CE;7-#2&U(N zYUAn9O{9|4A=ALy^BMXQjzMVu;Qa_WyN>wx!=Qd_(_%4^vGDO-?9WUUoNxp5V<*-G zvk`5Lbhd&E%jilVMG@3?p_nHZwg{&@VSzBV74^V^#krMYBCp(`WjFI7PVE81T5+R0 zsd*|V5l+GrNDTU(8I4BRAZku`d`tV{yKir?9P#B+zL=tih*B$@fQqo$_Iezbfth^_ zE>Q`F{~J06=C<)?a3V%J8zf1CnsZqAYnl|I)HQn4~t4d#mszBI8VD&djkZ5&>28%xY`Z(O;U7VyXbGx&?K$g8pyn&L_!)S~g&S6oG|> zl|O6c=;AUkJzY0>BWwuRVgMN(sCOVxcrrCEu#XnOdp!Ufyy&IC%|omJM2_XI3OASP zP{dzW{$mT9%|mcjTSe^hI0jT8A&XKyi~vflr8(}1U4*JAp~T#BK|lA+G+wn%ip?&f zd^MK;_iX|=g_<+{JelocNkwu2mgcc@RlPz(F;}o%IdXh-bPM1rE&rA(b$+~@0+(vS zL%-NqkWUN{kdni0UrZkOf>%%$($y9<_L8k{u#QEQH_6-QdY7P{?o!;^#6i> z4m?6Y5J*rKtxN6es-urNQ|)XVS&pZDcNbJ z(ESdwQNrtUb6FLCWHzyzO7TzHrBtx2xW=dHGG43G=(N)0r?2HlmxH3yoCetQS0C$< zBB+5)%2OEGTtpO*y|u70V9gL09T3OQr0Bb^y-OSQx4c&SBR}sI4_G1F@>J5NVega$ zgFGGZJNIOUDfXDKR^R+@fNET$pti;RV+BGt$Jx%(VQE_iECo|zAm znxQ3Ns}fk!p-QAs#n7ikOdvjMu}eoJh{U2o806DZK*tyce!s|amXiNBNx+hupd=*J z7Tz+4xbB~%#(3*)<0ozN@2o3VDMkFybbmh2=Fi*tuDaZw1;U0^Xp#f=x5^v%YILag z%9~k4nHLk_oW<`=ithVJa%>z`gem4vvJYe?hk;Nk|-X${rmx4dfk8JYYMoYOt-Mr3RHE z%`>4Tbc#BDF2@yeTv?rOd?TDp4@;JCxGj?#LE7;fRg9bnD&+t@Cr?_#pWif0*E1a% zNiN1xw$i|-V`e$zZq)I{CoBPzNIat@lRdC$acNx?MOWRlb!@X1!NKF#yflp6%D@G~ zZ~`v+gbM1We2-xS{>Py^pq{ti?n4u`+2ZMcQ|aH)V7YjP#oeiA;C15+H-bzg$oW&C z)o}X9iHLL~O-`h)U?d^wr~U`-dkd+_{<#Yux3g#mME{ShKjq)DnfvrY6A_mQ z9570d6w|Nzl1#Rh^5>CaeUVz&4gMJgc(7!Z04whf^I)C!$`QA>spsbI@Q~=a&(6m* z)sw_@X47a2VK2IwBg0fAulp%GrY?&uq@NDOpZ31N*$6LzKvn2s-SH^_{)fNeWc9vO z(t6m+S-91;<7OAU#*&U53H&(A-JQXgXZ3{IHgXJKG8AcDTjJY+bCprkVp>df*naF2 zk)+^Pj(2{TzK}BG7imadZCCRRmTvr)LcM^<5yFSu%j|8EMzD!n^@aGD6FFAa^Awlj z;Afwuv8u2vhg5~U_vvHw>ucvS0ljXEZSmjJIpa6`Q@li1 z7afiFM|lDLQga#nDS?4tK(ycNu`APWEH@YgXxmll0Hf|#<&U#BV!*WU_WpkT_(%hc z7@wXz3kwTR7IeX?wHN>}KYj8W@JD^u{1aMnIC^?|UgteHgfNJR0WpA*{P_52Yi~y< zB>WGV1kg?jPR?IbPT$vfnTCeC96dzFI=zIh?(PPyIGda;@MmW?o}R;0H8esezfl5% z*og^6;AF^5mOj~;17@aYh0#6e`zuVqHWnPr{w0UpzIh?6v6Zb6BXDn05$VobyZ|G< zyc1i#6Q$kl{wIgr5h-l&q3>3zrHWy&PK(n6ItKCwe{yn+Y_4qiGbazvQEM-7wSIT# z+(WZKNrWTyt*_@yX7Q-2sm;=%OJY(hidJYeexIk`0OqL5Ea60eQy@u2cnpB=0n}2b zBX-tmk3f)H|8NNHATJGy6U|Rsg18^Paa~WJigFn1O{-0ycZ+#kG2A?bYJoolMToz-d` za{@i&eoZ(|?@+R1;Mz3B!JyEH|9mwY_sKt3bz!xU zq#0Kz5XC(F;8LjD?%5^NSwPa{kbD#Bom2XPeGnHCD}D%U?^12{NNe7@#S{rz%<&4Fg%mrm%7Tp+|fkioubePvQ;tO2E29&b{*pDsbYs=i=OY9{&VwT zUD{*M@8J}(4m`o^{l^*{Lk@@nX=v@3@=uRAwCCyXA!~x|D5gGW5Wv@2Ef|e^c3shCP9mzD+rOl&$NR~KneGLN@rTz&Fa{YW3_=gN74j;5!J>;_fElN7B z-{w*nqQzD^&(Psi4;%Z3-3^+-$nfYrp5}Qr9|HJwg%#=-XLEUek}$6$VkNr)CR*Bs zSJf@XMI=T*HP<)=2mPH_f;FjVZ&m1ZycD`Q6*p7ZhRRN!m*g#LU2YEEA)^18(gv0W z3E%4^TA_+TNVIwvh*BJ24Q#XShi98{-9xjO5`NC7)w2vY?nnBQfVZ9d9E3sRne&bY36AtkgI=3bcit z6yu2#{ckRw6DFl^zYyvQK?hy8$Z~|go6d4==n%f=V02jIW5Kedck?_(DrathepQUY)uweA z6gNkA3peAB{%rlC4kwfyv)B+;lG!aDL-B<>TEz@Ec<}ct%5nJYR|tDnk#$ zGGvKYohF$6etzbgpzL8_z1K_)A=7IK_W)DtKftI>ZizZP-2bnl5&F0!8+@H8kqR9f zd#J&DEFgh=fbYo-V?qWR)U=%TliIo7p1%Mq%v2^ue=m3Kia2%iz^A7^DiKFw0tl={= zGk4k&XAK~#qnb7s7&PI>bZ}te^h9R4NSZsK*fI`qXwRgX%YI|nOWWdYMl-M>Nkx)A!i~XO zM717AAB@~kH3&CbZ~+7v$;eL8FWGLq3q3)2E0D(nB52bap`N?;M0pc3oh~dC)L70@ z@u-R^sgXm`h5Dw6Yl&c9G3c5*)Qhi%HfS&gy0i|pm&d!M?mwjewYWjs#=Joj;*K3IzPh>DACi<5L^b){tM-lCG# zba-$~zp5%j+B60jLi5Df_L=@SS^4h7Qv-No;H0nBMG5T$R8Py=Py)KX$6+(tsq`cwCj=5nBU)Ffqx_rj!$GS7A zzuk9?wneAkOAxj1^t!$6?S!_sNChvf5BvFqM4&ep-SkcJIIR9y=avg*p1#e2-u9#I z{?x&91GWw-3?5;;ZyM766YMw(xsjK*8#VNG%)J!(`Y|vrFSNa=z=yTdNnm}GWb$uX zjr3kh!{e-{{|jGa;2f6lKaoGN@SjwdHD#mim+m(M-XQDQd^O&q3vKDoe6zEU4I-Z_ zc#r}?Sw;$QUv(JAff44+8y$+CwLB!_q-WfP1>LRreHC)V#aDy00N!(E%CDYjQxWDHLd#g(sd+vIlZ)?{J8>l14IHkVaz;Y5 z^IlvGC@taQ7(eee#tIt67^gF&oHcpQ#O);x%&DObA%M>j9nWg+P0lCS?KX{yUKBB|4^{wAyU5H*Cl9u8gBz}AJlcO0#J z=NcRDsZ$Lr>tWSq+rDs=ewWNHg|+%OF>A_7%n(vDfJFnue>$a-(;Tne7AzRmEkV(QNkPftqwQb@-#b2 zxvK?zI>BpC>i<%#Jx%4`rODy+x>D0eL9sNgJ%i#^G&T}W@l^2rkf#A0ESkQC@!jhY z4`K7Xe(lKj7s=EevZAf)J!XIT69nG~s#g$u+TNw!6n8qOIlYw%;_9DdUGfT3uBaAT8$}N-*!4) zxA)-GXwdX@ZNiL&rR|jY=}O}2F7)|!d)HlAlRu21HgKbB`u*v&?lPTs2?8kXN<3o} z)}Y%4#xzdA=>*XIj$6IpfCI_NKy-YE&^~^o{DjC1kp+sGnfX5(6u^f7lSE$sH{S2f znE*XFZ}E5!&?aHxeE?4`tE5x{$UI|unm+Y2*qf@6D}V{bfZr!yN&7q7Cxb?^}nOW??t20R8WlS8+bPnzkl@j-!~)TCi+x zb6VT{fcXj}GF@$cexw0)Jr}S67hJeS4D%9vKNY_xG>9ps|}9mo|_olEvdNJU^fE@&1a5g(V5}LS-s>)If*xe0zBN z@p{?HPfbEXqM@ZVS7$6@W@d&ajz&tVVrE7mEG&Gs+!S$ibfmQkrt{mC4lsZX0V3O2 z63y-fGs`dE`+04!HTP9JU%(GwyV03(y*t9g2YA5y2L?`U8Ew37#%R0%oKuZH1qqKe zaCB4_=+I2YAqZ;CwxG4EPW6 z+y5lyz7H`fr*$1$ z0;Vrji5a+`2%AtMVx#(8(NT{9Q5q|6NsXSaD6WX1GTq5iQ{k)G&CXhxS~1DXoTA_+ z=seeii;k2c&gaEc>D+K2=k4$YrdP4!_kzNh`e&sPlXp|kF6uC?sEaD!nXQ6()Q>zX^9e@(3F6t6t7&`JYnV%AYrE z&-?ZF>1zvin5OgOkt$-1OK7#;y1YaLh|`RrW00mdfy3uVf@C7vBqPW&CSxeYgD);o zOJskT300ip{Ie%eznY74CTwH>yhw@_6)$UOh&I%C9&a4}HCaSP zyht4BG>C~k6dTrncFuDrJ`)uNDu@cIFl5I>;;!ZU8gdC$itC}(JlMy%XM%8SDY%qS zka}-i@4YC`7E+_Cr(aT6mYK}dw_in~v{*ot02TrfVCaG;r(-?J9=(I79utYu_;ge} zd7<@))*N_|Xi8^4Lj70i;*sd+-hgqUDKF~HEmpA%Rc5iP`Oni-kd8ULripoE>v%<+ zVX~-x1@D)Ih{Weg*vhw&()j;+4uM*tIJE-HNfq^U=SgYT^ZKj12^P~oDh$V|WR~lx zPu>jxZ_mf~%RDTu*6@llgy*dP?6^OCpT!*MyFitk^*={nH=bCMtG>T~`^y>ToGx+@ z5#nv#mscJs;P?>aSeIG}Vj9gARH7y@G>(UKq(^>rxxhA*2S3NX$fU|KWUgOCF`U{V z9*5)CG+H$5f(q(Ym2{rq7;%0uF)VWY_VBCUD`JT$GoBW=?|ONXI*p@c4*7+1fu4pC zrYT#c+WEkT4|rS$f;| zrr5WzZ`WFY^+27PcNikhi#OuLe!czcpZjqnBRb#?2I!kDie|>fM}JRdiA}ozvg7uv zy(GZ-dlk^IBc+TokwLjgXFGB;@kIuxcz_EPsOm3|mjQhzOUT4}4wK$=K-~C$<$#9= zH%40huyfy$7f3=K1~5k8Ru4F0fh_E&=Vx?c;&pr6iq1|!z*Y(!s9a|LbhT|qV$PoN zA8SvY1YZLB(Ptu>NCg22`6I?|IH<6%nMl|duggdU=sb*!jL!W&yUHKo8bn%*jQ}n3@k9yK-hIH0y3-p3NyO_2MoLNwRN40X1^xDq zmj}k}f4h5ogD>}|&p<(c-i{yzHd9yv&MP;}A3&9N89=sM!~p7E+|%u}2%qN_89?tq z?|J+EXPAl;ezEE}oiuct*X#tG!M@M?Y1Ibp7%objZZ)Ewwg1f(6f@YvfS0DPcX+tm z9jOTl3Bkj|1DiT?k7nAG(piImLVh(&=umIJ&JWbtaGW^U9_M`^2gQH^yx>BR6$X^#HXH<)>n27JC{u!xRf^E|GWVM@y+#9_>TO1 zITi!8l{6aA;xl13tK*r>kg0XiYW(VO?1J`v$eD?(%M5T;IZcsNbG zHp#zKe9u{4M-5UN3^sm9tSmF271m-hk03%2hO8>qJ4k~#bXN6o88U5~V<_H7uqjKl#d*W2%p1{OSUNk$RztJW>vl85>wfWG=l)x$IEC*riZeAz|H+0IMEac7aIJ%_&jA`n zhUWLebpb8RS@e^z^`!>$mFVHrNtd~rP`Z$3*=zir>cdlcdb$K84ITMwHQssX0HeyM z7d?FT;>7b+p|*8}oaq_(eV3%@y`smaoy$vRd2Q6JhlmZo38K18qS}SVUDXhsP z#}=>V+?oCNrl80H8$J$CYWTEGg}C$R8LhN=yR@iEvA6VE1<*9^kLFB2qeHmf^l|np<`zLZ@3KTO`&LaXUmwt*1MtvV6ggM)Ipt5mui)M9wC^U z8|vgY4nPjE(#`{RgTBAq7XfNcb~X|4gWt=Y^x*donSm}cLDzU)g1lBD1iqWaBpFOy$-i*!4 zzc6~!Rq_T|yum>2B&O)Jt{Co?nAASPW!E5jKRu4|7Hq>oBZMYjbVQ zzNdkzUW(A5Lv#}_3h$s9-!a#ZJ{RvjFuyt`pbCL6(CpJJGMNKoPwB(T%4vXyCM!rj zYpYa*(ki{3d35o-PY8MP(p+p!(T)7|9o1Ga_-i8W#JL{Rmk=1!OxE=L?jX^ScSQO8 ze4?Ebn<(8gM{4c3`BG79&K#^!d9y^_3nw3S(JgqH zs#nTY#O~;58Y^qmkhQ<~ltS19jRblGb&IhX@K~{vslvsFijqSm#@9%Fi4Y|}g#EMX znD01xnIz6D3YUxmi;>?Oq-}xE)=uX-E-;|Dz#e|CXu_ea@i)n{(Ki^t+{xxyvK24M zhz`^7x3=wu$IHZ|ftLSuhmBuA?c{W-9M{g9kje>9n<`A>X*#?*S%7f zqf{EXBVn|IvQb#(TDqENP$K_^~m?&BoF|!~w^FRUB`9QE&MtE)X$ua%R z9O(DTUvjQ&dHW4d*r5C40FdY#8%-W;b)Rj(i_ney@l%rihqn$~$acgD;rD zL(#H@{W61tA+ocxBcr2j(vI9}J3oa(BgXO5(%1n%Do{=TQ&^O91%ITa;Wjih0OMOC z6j)$Xo1B`8K|-QzVq%h|>kYgTNMGH)yj1b@e3EL10i+E;JgBIw6fc@Z1El#f%kjrW zpd?1iq=|Z>A7Q|C@Dk1^)fFgOnGll8LH#^exY{$N)sX+AT$0e`FEYP8sqcCW*>(Ir z!vz&f5D2R3)6o%s^NAjNKUG~9CdM9}+Ss(TVu4^GjT;`pCE}KkBl==~ENweaTtDa>D^C+rtwe5e6n5`R1aqqP`! zD+f_B-Rk&k@D9waQed+HRXN(#D>ZKp{4Dv^U+)$gsB7ZZYtFh^r5uYdmFqZLwg_Bo`pwTh-AHbcgNVGx%q#^r(p8POIggK%*$9)3&0|s zk6y8CSLC^d(0E)|{+rQKRq^wk!dWDEOB31Y;a9j>ogXttVybYFF2RWTZ=Nr0zqMH3=N#l8=s_FWg5sbMC7tFrGf>bH=b>^&_F`*E3AXKG0<3 zwB?`zEjaI|3?ScQv4iM~rebCQbO6%^6C#;U968f!uxt6oH+86IiqfBf4ezJIHsT=B zkT4qSzB*d&vw`d0=9`BCzh0?0Haghxn;cIf!JqvUaVbhg1=SA5^1vK@@5Ct0LPOWS z-?S=Vx*7+TCQkQA*Ed*k5lxYvc%bpIfyNWhUFyAk-W{=fUg}Bf5Yr$dtfL)b8t41h z)QTLNP*I>*c4M7()wiTa(chZ=Appe;`J${rhk`HnDoK>iGLTiq@RaV-5(P(gy86p@ zW#PI31Fa*Zi`3zVYU+|q&OFtrr-+0dQnB0!ky!U{Hgwp*Ge=RWi-N>xK6g+OJZI7l zshdsa60eQsFP;-q#8vmj?E3h>ooGT@&Lrr1i$N|vd*UyGnW04?84?@qVT!t)iRJ2z zZJxGstf1VEcBNL8!wCoj6-$mi-S*OlT#rjimxIv-RC*_~&$$btwZqBxy34)|RkAav zY)yBHHAc_x=WUy}#J{m+Xmww}77`|54YJ?=x`-uo(yBk3CQxxg2%cGNjlvSqsurl7 zIBLHZ#U}^GI%{Zbi^hbKy61m98p6$b>4r*kRIeZ}{=B>@=m#OEKs$FWH!ZdBgkCR> z+0zxlST?*r<~i|h{eHE)nbfy&a%*>7NM|BPh$3$iBa0D7R)dTeTo((ZWez{1YWKg| z{5fDX&?!>4KjF7Wr|Koj)94c`WvnLoukV2A`|6~waU`z$=2TILf1i^2`VRTLX7Ig8 zPzkcOYf3%31hX8J8*h~=>6X-52v5QNUHF{Y(s5ki6^Hqsc^zSF~ zbKlpMq&|mOqMdpCI{&jp6x@K8lFVy`^|lE=>GkArfQ2ez#;rO3@QwpWj+}4mA7v{} zIa(xdijdL4*VXH9a01j33>S|}4nTOu@%8UX@xcW9{U)9n!euZ;R*UO958{LgQ@hKR z$w({_JBRiYoHdc&iNbOttd3iuqNIQhV|;u(W12L8j0y-01lQ8i3JnV@#R1d=KY-)S z?`hHihY=MCX{Johj2ZhMLIjwf1LNaod0GKT{9f+cl%0=kxa!z$|j z>kj>!geK+^gjUhp;j|y^_Z&^ZQ6y`0ftq{W!zJ@^$A9oTCxxXCzM)~z^z}o0wm zCjd7w?U}JTEy$XvhsdvnZDSEd5*`cw*VPhICI!}S#0d-JCBl*kbGKKqa-jLLJ*QXL z%Y!z?l)mA0(sbFvk>2Vlx2k^hHE?Xb2r5x!^jp0C0b z@n^Qg{G|hW3V(Yj6rYQR$0=2;gvL_n?!kMuu>wP2BhTqf=dyxkJQOG(p@|r_&l+us z;blzom$L&CV>Oz)7q%iYPd7>324igy3CY*_%~F%gByldYEHbo{_Ki|!xTxeQ$z<@W z1}x0qmMb0AZYt^firc<)p9;Rg1-Yt?r7u{IEli=Ebx=9q7O5Tm3`@YoC~QjO(JUIU z*sdKY6z8Xp1&@T7hoRWS;)2RA7YkV}7cs0iP%N>f)W}jFHboT9SGt{!6XWQz;gLBx z8BozUwyxQBSFw*1s62?Y!J_(z%eaBfpV>%XG`Zjf5nW%cshY=@hTCX~z`vCHC1ARyHEk5mO9(_r_!G4DL?u5Erq+>1zjraS5rnQwI+a!$4v>G8%qag^{;5 z@z1afq)0$_#H1h3C&5a}^{gJ-!83=4lxEL0_7B}7h|Dk6-ZqjN1cH_dcIJ1@ozR9H zXj#^FuN1Jaf43b{^5xhW$-81SF7$>!^txV38LoJnzcIu(z&`M(1|r2~&_j8DnY%XM zeujw;6{8RS7E-egen1qO-;S-R{RzKpUtUAr^lR8c)m%K)717%i0V%elc!Q5bL7k;6 z&q;`DE7Q^oj<}yKdU@M-nBN>3mc{@rXV`;pBX2XVj;h+8gjMETGkp zo!Re|)_A85hc)7$1n0gD&7gYt8`SJLHO+u0G2mX^*$q6{oSg`vX$ z@{BuAudgH$3iSqOz|IQTGrhB+l`~^UWpFqI$H$`ptGes!YyR?uyjimuGiE1@B7j#C zRQx}@5@zA&zmiIPw7;CP4+m(PQ{{$yZa_~x3ET`8;6$fs7p1#DGhP=jqRZvQ*7?V< zn@yT&8fP3{Oc37B77&_wcBrr6Exb-WsbB*dOFZ1aZ!f@WgX&{yJI;z=(#;|J$(_{L zEsT;aqfs{n#TZ%*vC6#M4dghJ|KW)|%6~+0ABA6dFB(MKeF6s{Lu+ow=N{-PK2ZT^L-uJP(80^L#O(p!f>=>>VQL+%p!OIS%k1C zi(;WpXbE2q4`-s*27CCkVzlg}CqHfoU1Q|Z0y*VNi3RUWS%u`d6s*|aDK8(E&24;0 z50~CB=@tW|V+-OtnyA=#sCSZd)>(rm(aWCRvjgVj=;D^jze7)upvBGKvx_ac=O@#)E%yXI z$oS((ACd29_(A=>+2=B(@9cC;pNBOmvrI^=7Qdw*HOX9zrrw6Yz?(W_6C$qc(VeM8 z$L^oR{N zLe~0ncNJ_n$A64Gw0i}wqzv<;Oo&5cG5ebU%^5<>X(0upTFBroe_^5=B?OtrT$ln{ z{`h2XAt7S%+^)${K@v5dv4*UqQ`UYPxI*6JP{nB~)-tXSIz=6&3qigwUe9|^aSwmW zrgWpO)YG;inwulHdxwt(C`Ewb_i`4xOA>IkUjgcFYQ6l~rt(y$gUfmenak9${j+at{7 zpcuO3Y}n#jUg_cH9wpDlmYwuc4&qE&MY$cD(X1J^2Bs1 z8ak}87WRci;_&uR^rXBVam-lcsQj(f&)Z&>Z<_Q-+lQBBB6z_V@2`K>Yaa?M?@IN#ADb zvRf6vc&e?m39V#&9h?JBnjJS4_qNDMC3A4lrMHGv{;Q|}BTllWE5(343*GZ<=`u%|Q_9uh$=Vr0Goig}yo@5fXxgAML685MdR@*g;PQ zi>hz!QU#XPw9d;^$WIw57OWt_)SrJGB+A;4C5(l?$Ev%|!&?uC)pAVbOm<~jC z`s@rxQaxDg{DRCDF9IU%2R2ej=r#iztk?_$bqDyW6ZsTRAQBmtN0W*%Y7%B|TZOy; zh+Tgu){06q9&{l-GruIl-06n+S`3l;L4|Ve0wMibOzI4Q=P9O@%M~NCj~YfjE2eZ# z%G%dArzk!Li}s+dV5660(j10goS$rEPN{G2wUEz>r@P~ET0El0Yl73Q*8(pl(Ml#a zoY(9~&}g8|@a-r;%wZX~azl=<<@cgf0bPFXtoSR_!GD^OFS;W2QnY_Qq|MpTK4`J% zsFwy}8Y63E1U%5rc8On!mid5Fee7hwg!fh~BB7b^7u#fWMHpcYT=4YuRKCtGpD+6f z8HUukjEP&VCIk5ds~0_HCL67QL6QEE#pmMvpt`toVySW|C^cW zEJb|DTlBZ?J<^s1b#C+_Y3iy<=y8~63}Y*RXQI7-IHkRxPZ5-0 zQq25oJVJxGtBB=0Y!jo%c_~8c7jV{8`i84y@lf*`*Sxx+vwS`azW#_s;CUgflRI#g zJs*=I$4<#^7Z~O6F=;IIDfM(do9Rvm|NWmtZ)eShA#dSkYapKNdOM(Q@;CtTW24jj zTf*o-7SBCPOJ_$1kb!b_b9<-rUzp0YC*K)oVAHL;DM}}#M*z|@%opiDw2*+@4F^D0 z188dCkdX1ee@g<~PN0uqPFw~<#E1n4^qeInCD|Pg;Q;gkI22U=tl4tA3j=_<{6&hb z0|R7rfJF#_Bd7MigSw}!61i0o%+KtcWrvpjUA+sE+Nr^MWjnd2-{K!mPUXKE0>NGH zqw=neXlCnC1}13;&3j!cv+`TrR9vl?7@7nuy}Du@S{JK?c5;OjoZhXR|4lB(Sq|L$ ztB~qkUjdHSuN4#et0ydGmILIn`5mq*8U`sMOqJNt#k~Yv8ow0X_fgri{O>*#Dl8Ek z?7RJcqAuNRv#Hj3Ol(ZJ_Q#|&pSsda64;$f4O}83eYUn%dFNa|CNiB(zM<+9=DJug0Jy_6+&kbs!-b1s?XQ@&?sFlp^X9^CsnW=ZD4!9~ z8Cw@r{6J#59e{3o%^dhltZs#L3Dw^QcBIEr{Al*Fx?9Qk7yYR*?QzUHp6N%8H6$6P?}na~O^@x;K;()c_No=dfO4|9c7$j|Q8^cIKZhNYRYsB`juxn0w$6-n{UFEU zE7;g2bmp3S0He%$Lpd;nm9ygXH)|9fgCP(A+GwiB#sLndZFHJ%e89CK&I%4^m|^4SR_f7G?ecrF5WW|Z z-RzU&Un|}0wIF^QmTikFep7miSwhn)8Sn?#4Sy$zee;Gcaq)j$B)2`+JI-beJkEnZ-$7FX#}SdM z?Xr1aulk*jA*+hez^Iwq~QUXI1m7F$k{!sw(!-0i)b;zEEWG*;_S z&6B8H7`Nfgh1{R7NV)lO2Sh=>=qxh5QGbMSO-)+!kr^ixFe>WP1-6J&zP?&+H)2W@ zf;=uV{e1TqU8b?!94j*;)ygpCAga4$KC;^|AA|E z>E%RN`U$}U$yR>>N(j#iKbHtTw0~ zV-LQ+1`f_JW8Au{X4B95gs9*)nF)BD3EN4?P1?V3IPCeGZGa6ef>>=uiU7I{gXa1K z*VE}?*1k5b)&zD2C<5$N(Xm-Pn}v6c!aIK2Q(m7eq}Qb7FMFTiBvLe4SG)6?HQIi@ z+fMV?o~v;o)@dB9dbR(CY}6W?$b>DH>3z7E>E=7%`gD0LaRb(<0P8CkU`GNZcOc8| z9})tUn|tx;=|r9{I%@dX0~Wh7AvS9j?DMI)$eND zZVu3Q8tsZF-PzssmnjCiz@Y*Gkhx0K{|?`VExMpnezQYw@9zg*D$qkee}4Pl-K>Q? z-#uiwp}pNvv`Me_$Jv=Hr8|*yRCisxOy8-x;9T`M$MZA6(K=gHF--vPQ)s^~#2$Nj zWQb-<<}!_g_{W_WjLWb~%Y`{xKzWE~<0mX@9$jwqjWGJTVD|HP+YjjWf2)QzvpCUj zfeBmX9vjVVu@;S}k|CKenOylyO%9LxZoTw>SORrDbVG#V<<@?+sFks!vB&BdcD794 zQtXEB=rxbCEWL>Ir)gdPjU8-0C$4BuSixh3?ay+IHWE>=Rx;p-6|Fv2$Os9x?LT)c zI2Xg0w>$hir+{WQ^3 ziKF#=X%kBGTiQGu9Z7Q@f-hUqvD7`lU2a*_z1Wk|DYXh($#^5@Us1-dJfVd-!!g;X=n zyAGqYV94J=N!Ha2vW3HM5OTp}1;fcGrmaXC0o^>B((yU%sq>X(io!@h6fP{tM+f9` zO0N+(jT7*MQ2?72kS6eNaU(`cA@QokpyK`M-6;zWOH*y4xMKU(2`9eO<@!|iv~*5q zAMCqAt=qq{QfjPxy`*0N9}+uu(55N~`n>?kVE4;0#=1qgAJTQdi!xTZ#nB;x;24v{ zcy!;m*3cv^WRB9_7*#cX#!ci`i*E_vC_fI@=fB!jy3Tjyv1W%ddi2iG$S+M3Z5f$N zL(Sy`8;XC@URPCt-N_S06-j5NI&)n2FQUtLGGLe6^!5Zd2&Ne`p_Inlf;qY?Z5R5M z-fjAe5++ISxS+y0v!0_*Ya+1K*&1W#nK+k36=yue>Iljl=K*rIi8|2=Ll)&1Z*&MJ zQfJv-c4jw_(%8@ZVhQ{0&@zamHo zjMbFalsgGuY5T7l1X?ha?SopquQJ${JQf>7+=#i3&_kBXA{^>TlFEvB`4y?2`H`fJ z`fpr>B3`2&sL3mYJG9Rokp}sHOs|XZuTxeGZ`fg-F6A=Ep-_Cf$K3HXHF@nq3TrWC zb;V4Rw3CM7d7$IUCbu{=rLlK&$3Nhi0EC;}S(*$Q7oW)0#(-!9ydDETu1jCGt-u`T z7EVPSgsV;p*r2INC_JsPf`T3Z5GD-%_Et}us1ptZB>%m@BKfzpw3wV7Xw#OJAG9S^ zcfoAJ?|y@W^#Jm;e?rwvql606&mN#jf`(EtM9JDB6)M1eztmLw8iIl-=e#o z!HWDHwB<_pLNui*c@DQi3eng$F|v5Kz1IOHV8T)w$Ky2P6w6uZA~#9caiYsri~37#m!D?BAd zqxFY`EVyqKjyco$I`IU(h zRs6(gBJ^Pw`D588aABspge$s$gtY6oD5OK0B}7jj zj`&%B+qpikKL-;tkV}>hlqC&kjGPTmrQ^W%p&-q(rc##hHr+-pO?tUeV*oEfKKhs* z){S1~dMxJl)q7mn?ac)@B!^HqhskUnFbfO+NJX+B+YSE8*j4Q*7*R>D=`^~z*^I_|7@xDfnSj@eI}p2Lik5_|@eg?T{-Gl8|b=%Hx>C zs88e_<2QqbZ)#L__;<0r4^-aS%-$;YTfv!MIc82tU*POS3KjGk*(t~BW3%S!-mQc( zzVFJbhsrwHWfC5rn{moEgQ=i(gasV=ar7wY5!zy@K~I#gG=s}-?tXQ*4cAn2opP|? ziaom&3)f|*@{8MVeK633=H>LvJYT+m9Gk;E-&{*ymdBX4e%@DVkeyfIIERzv z1P%lX%D#Yn`63}Kpme$6|UdvUB(;7wIX!pO;9nYneDG<=U3mqf zftM^rAB~IhNk2Cq{Jb%L6Vo4yAo|dcMR`d=3bC^`FoU^v>?w!4Nlv(*ndz}glDHpH z_4XPX)v@8gUUz)xM^~4Mt%lnd8-kWNG01o62C<*9iKF3p1EKkvj9BHThuBc8uv7C@ z*-|5qxWnq*E`mrhL@TcP39DBVIf&PJ)BVlc7#Kksd;UnEhQpI=6&I1GgUonO|Q*xO9E9%sKfL;6u35K70RpD1e?1=WwMl9h5C$VOP9`o~?*CVsF`J%RycL*y78SfZ|2 z<&h~Ma6b2o(WMhc7-BI334siYhI7$8m%ohK=J9e6l5W_c^Y}6@rn^2D>?kgl*5o(s zyyk^o6Tc|Yuqw7%?MMmy{Rw@+!fVeK z*mqO3mSZEFRgH7^f?-~M$?8%&tlfVhOmG$(u%nWu+ktwouoL;oj8=%Zqx{?ngyp`5 zj6q7pvteOj2ts-sUo0dV22RUN`L`oj;YYcF$pj68@<`9fafBS+Sl=d5ZpOUB1{XF2 zH#ogwb2y2G+JRQmndy5<3z0pD`&4$*j(6t$A{1yMSnat7iV>WsDvTNFZe@k3R_6xYo60hXAy`vEjWSc zGvc-qFL+yk$C2jjN_eCiss>_K*20>!HPRWehyNjEu39I;6{s+Q5(YCIJbKUB3gQli>b# z7|jpe)EFDnepcOe{LBE(c^v(E#k)%jxO7e*d2I!1q|9w9T=xTLNM09;l8mQ24?1rM zF|4AMv7JFKWL7Sr&9;=5;i_NlxqHJ0eYR(de%(GHFE!pgq-3K_`JV(9G?NPQAPMBX z%BsByvO1{_z_bE%LZwwzL!+Z%)*Ed*>wXhbfW-o6*>h$_RCfhCRd||KFB41+w|4wPOWY~hP8vxA?2`tB(1$>sTU6Z7k9u1Rf)OX}Ma5=AEM zX%fzUkZ2T*+A7heHXEdKwtsVSpDAL1>f|~(x%h`Ayd@ds{PuB=e{F3fLO0(b%+MVh zW04Q5AisVossIuYNp`jV8V zgF8VJv#R zn(Tlv7~yWkpl}HGaJNnTpY`AUhrR(}l&rY?l4E%fQ*s6OgtP5jrrgA}G)6eHaWC3% zkIR!Mr&zp`EirBaTRVlNm^*(^%4f~VK>Hn^AV(jHzlll89inajqAh!->786ufeS$WQf$_mr6wRTdQIzC*`7+vE&Y z)A+HYvjYU|sdzn62eLoNPmB{`P?5=TrZ)CMFL->x)J-Z_?1o@6lL@7$v%{=F{lVD^ zg~A}UDz@o+Mon@}y{Y$$f4tlYjIp>|!Jwn~1F`KzxR$s7jMefP7i+wx+Qc|6m?$W? z{#-#YBB!DoNp0A_;Ux%X9v%<4qj4on z4&%}?@!YD8+OAj;gpeB-!dsyv8q2ic-`Gu9-~YyZe?KPYF1Jj(zrRW(g*!^~@16g8 zfyc+ILrvex?r)J|KUR6s&DF?@Pn*paax7&2)?~nX$_ZPpI7OtM-h;7bG{FjQz(!}E zZYo1gSd7%2_v6s>7IllqRWZeQoc71VhSzsgf)9e1JW0sTTRacluF~NhPYA%d=xTMwRp6>FogoR+W50Zv0s8+4P z%C7vDb%mb-&#aye_a*xq?M)n>8*;xS`#sx0b15aQsoY$6agJV9ZRo^EmPjzs=EFHJ z?YPHGSecg?-fstEFpU_P(!e_cryTk-l{@-!DO>YfSjq5Nxx-s*QTLTmx`?8#)~!vt z-qAO+Z^&-fVI&CG)4^Ok!7vdM?AtdvAeixlh}c|R<15_DocutIEa-ZFk6)W(hqj$U zZ`i5B`1@j^gNoI!Rv$;RQ!0P4qi7-6b0>#!g3U*7kVME-jDL(+i+Aqb^iAwapZxMfRi?0lB8KhbqG z#u2O7Rz9u8a0X?N>ZU+Z19ZUDn9jaKa6DzMu>(q1ZYa$T0qz+kIcwd-M0<&p*>1y>fimb9A4hKzf+f z#N}~EE3Dg#a3Q#Oroby^+wueotk>2ypJO!D{~V~IG5C|G3*|B0(4FrOYur!U0smy& z6i(z1vmBoVfAhG^ob2Ptv5>$KjT}h68KcTm7PQL?WoDB27{$sL^^vRY#*UWGyw*tY z#o-C$*NiByH(il~}tym1SwSZ`7{A#_BQ)jCn!LZ71b8XUSd~jWp_= zWz8sSm5Y#v8ZEY<=2RAlU0uNZ67#biw7#AZ3PqI0{o*@IYPzteTjMJKMPDp>m#-ya zWjIC~6miOYQlezuMV1hp5)h}C2y4~BTH|g7WP&h5no(Z~fN+^{_sj=eUoVQvo%XB- z68ct~qIP9v2I@)C1ZJKf9fNIlZ4Xc_P!*YgSW1QO@8aNwhIO7Cq+;jqF=7-XtFrsj&dg5*>E6eK+1DeWXTJG4S{dMDpatEq zk5{*f+@%h+7A5NC5aw*t$E-9$ErN$$asJ>_&YmSvV=(;!0fP>uvI55z zfIa?oosu2tAcfoT9w^+?8TC3_&zKq5=NSDg5|4rPv&sbt^GahVF4pxy1kUzjg;Ru( zj5Il~Mz6@kn&@HV`&+`}HF?OB4pTJzY2aSAtXp9aBH!rVZyJAF*aiht76th|36Vy& zLG+JA)mOcylCSBh{d)`5gqI-$ouk5Jrm?J)(eX9>3JGnO>Dq9XaDfu&vF#VM=xS@d_gE%2aFk*OM}~r5lw4Q#Rzn&kEAD4CPPA{| zGoeSX+IG9_Z>EWxu?Wy*?QPKC-f&x9`XdlagADH{m$_wE*v-Z5lzZpm{?&qy?NU2q z%B%I$IQkOn&q#p&j>5<+-ASyAe?dOeyk8vmvua{{AaZpJ)Xx?CHl`bq8FS?K z&fEfzsgC;SNx$n^)`18}!BnVlTi^g)bbqZbR+&XV4a-AeR!5%&x%-Aj(m*VM#S_7~ zF#HK#H_yBbgx|V3kC`pkyrj=*Er$8ntCZn^*znFc@Iu$GZ(X?3hq>)H%KYRk;k-Q! zBEoYPNx-JwM?7hj>p7#n$oHZiLSYd)`n2scyxQwHkrPk;Fkn44esLe-eb$6Um?Y|(x7UDBoqE8xsTlVM_2 zdC|=G>l381*@?#ELF_I2b3#c+N5;;c3TWi~0|Kb1sSN<>8<1W=#>bDAak<4!pd;S- z2YvxYH&8#P{2;%7$dB2+8Qy6<>Ul)VXZrLJ5%ecT>iXmba;ul7haXE~SN{#);WSaS zI0oG-PxMT#Rd;F=C$fzD9%Gj?>vlP%K!?0m5u= z^x`w^>qziv1@K}%F6rNBo|^F~$`{4}6%kYq6oKcAb@DzKB6p9fuGb*IW&9V50FaBX z?QPH12V2fM%N4|19Sj^LphEM~(^_BCAk-4EiBY(}Q8vfgFB~MYP_H!9p=kbnN*5vO z4D;bWNBHs^yLV%z_T$^1a!LlpTK6c5qfE^Oo#oilo=rtRxuAsaJ8y~B%UhSCcb1O-r3dHrbEW@?qy+8+#Or7o+Yc<={ zs@>2BE%cr6+h27v_8?*ATSdzJ`Fm+XaJhDutQ0_WFow)-On3+Dk7PrITfPb=%>!*} zQ3_R=zE9eEMB-|PU-$XuZzGSMM<~Z`i4nDw5fjq{qB<)ssYq$xJ4N_Nt5k;ynfwQ4 zCn*~lra(Z?&VX2pRcFl2{9>QU3K>fEQb4U9k*J)b;CT5XluZY`%w$JjPx$CnPAB5} z=0_m&Nqb6Bq-n7yE*rOrLG&7mjyr3lEW&B)ed$m%ac(Cv8g_I9;WrUz%SXaMI1AW_6}PB5Yk0BF1#uuR0|>on)oPsgSNawM!*xdEWcZt~c~`myq3OO6AKJ1MqjHmf__4%M z<=nPGd?Q8O|w#xEGACQG;`GN~_YXsck4 z#}1Fchb?qnkj=X74I12|2c1NAHLy#5K*Qt-!ZH<|F) zey5yN4NrXVAOo7Bei4o~m`0#w?6S123nP+e1z`-U30L`j7R2n&4E_n9_H8;UIx+TQ z8TjYXObb=a*Quj-n^UO;ID%kW?OXS&5^OiV%@Q>UC1X~|2)`kK0;f%%f z$AFiM%ZV%ZO9^RNH2#L+&xcRGBAKM!l}%R?Ezj>-P77Nb`Mho01gU~;F}xo(M7Z4H z6*u0$Y`1GTgp6nlfgN>qmiw8P`|n6#6Qf41mZ55&t!0lJ+gU{RA;MR z?myE#Y@crr{yhf|3=i)e9tP`Fn*w;Kj@vPs)JYy$VFWo<)nTv44KYBHjU5#Xuz~;4 z3Hv1|HBGISYd{2$T7U&+W>q)v6&bwO{CE^7<6F01uma!|`SOLQrzhJ{vJ~6nnOwzH zOw;{?13SQBjf#pIAe!F`ygd{Ykm|S{phpfpFr4`lI@;zR?C%pogC>yw%&V%32F8CZ zz}ZTaB>Q_b%~$BmxhIW}m@pbBnomTWx7Twqk;e4zXKqdbFCl0!5Kc~&Oo*%a#Yb5l zm#&#OY}Ud^fqQ(JnWz9r003D<*3>Z0Td)Aslz$MbjFb6sKsudUR1^$A>x1FG&FR0B zrD%cn%oR$tD{lqE_HpgZRw6pOau^OgVWP7merlfd3gy(Qd~E$4xCHDKu+cd zAkYIK%RmDIxI~Pu*Lnc|QP!^Z@2j)y_jHYFJCSFT(;qYv4q*lvc*3pD6d8Km7XiQEnz^{HOD6Z%Vj3i)KCONR^{d zal;StxF#I<-m5Y%6*6T~z8Y?y{$>80?vDl*kQs<0GmMpBd^iXJdn3CQ@LxI~pm@`XKi7t$8w(Z#C;VwP3?LN@!Am?%*p9y2L&^G)8Oj$hgD?p@`At)4exu@S&KIpaFN8_csZ-O3okPnpsD~bVV^( z>Mfa43K&dHW=D2*H8Qzmsstk-SHd4K*wZ$%n73lra0tWEeqV(cBjJXt>_0lKENta; z3_t`3Nfjd6o}brue0RB-PQtCS z=hd<}=#W3!D@%HirC-LfctZ1;VA-d*TA?PJn1z(|DX0`_mV70zZV@w{>=9@P2f(2rBf82h;10}9$v>78n4DbH}id~Qndf1-VjEIEqzh-N(5rR{RH z!-8k2Bo6)ApkJ~+Oo8A5wbL9F;P0DrOW3`0E?Z&M;j(H6kYYT0bMOI#)4cjP2u(uR zHtGuIvF)Y3I#m^Dn{DGO)^;@nqX%xsJ(F|>;sVcv`WigAz?bQnDK_?<6;-6|2TO$A z6YJesRf?IJ<@=+;3Mq=Z8^N~=rp&5pR0M-47(bTL%EyU>dv)@F8hSz3Pwf%o;lW-E zBYNt6R6!51##L-aKyAo0~>lI>- z!%c6Tp-2$Kn5=9BfE)l237uWDEdaI4cLQ)h|B=b%q97+{JNM|2CM~L^g$v}7&o|ne zmo{hJ!+QzC0@Kp2mkmGT|L$FxTxvZXU{ZzcQALwH*gYIO04FfR-$c8N7R;CI$ooRG zTC`oplddHCU2hN^9YpoCF8r6lNBA?h`B^FxIoAZ5w(jYB^;OU);F8}I|H3*eiyk`M zUPFB@wVV{Cn^{?r5)t`tj3^j!vuF zwO$Iy)>wb74glXNsjLL3?(r-2rhk@~#U&+SWO<)SRkfXzoBI{9qeKBzmN+1mMWv82 z0&ZmhSL;rL%k;$+=o5=ZiT(S}1Mzax zzlW3m*kr&b;&#Jj>wX_8<8D1LOP6ia=hN%5^$368o&)&%2iDfo8!eZ9SjwD2v$&m=Q2E+)8oM;{WQ%QL@qtenTpj|{GBHt`jJ+-1r z(46ba*O8F1FxBUWSX`+C#PJ;9!-&xm+hR5M`>OiA3yj>ZM;&mW;bWu6GgXUrOX-aV zlNsN*(`{WYf*DtSF!CA`;*R*w+Qmb+(%@O76LKK#cu2Tns$K=G|0rP+tOB{icKypH zVFr5}sA<|$YcN6?+|FReh7@&xCi=CaSZ+vyzHJWp;8ZD|{ zAjT@|#O->93;HBpjaY^t{CzQv5V3H!NPtewjxc}dFkI9`lx$g`3dE8QO}RHgmt9C6e{KGWjcKWe&V zCirB)(l@14S|J+by5TtBHw&ja8Y;!vle%wNhFiAE)JqHy2e^f9vO;l}PQj zlu*BILwaJ%V)V+|WJV>|-9F?C#(}S3-`ui}9fw-95d3ms?3rZYrfE>*bR#1w5iIrx z5HE@vM9ZBKrPHeqG#TjFN!BLFx!HPME^S26qad^El zbk@fUp&^AjQrhl3JOE?vO8tFq)&K*Z=G&_%U|97nX*5~{jO(x7ZA}_8b8>vVLty+V z4CsP~nx%SAPYLN=mB2h^vp0hIfeN{*B^K#p{>+xBx;)4I56T69nZm)!Eyf8=mpU$c z#w2TeX|9g2o-zZYywIQIM~?-6zgEzi%-3$9xk8YjUOX+RFvA9EN>H+omGvr8{&38+ ztf&?6Yfs@Pi%O*sF~DCZ=&wT$Og3R0uFDomK5@lTvEOl`pFe?Vcl-$!`onKO4s0|! zX1C+&qo+PE_=K-&J0_j}l3Ujphjl6|*vFcPw=ii!rzMo&vK!wB^ylRiMQ|cE5kF0= z{WR`+UBpb164TS5&C2@=9mOa8TCW_s`0D%LZ+FM}SkWd-`$0AZ+`&9O6eV%x1iU?L z)$lw1ICIb!s$l$?wSm67QMC8?Q{;uPx?}tMY+GQ&NUr06WQZOtL0h6G0{vdy8QD4L zA^jKSkMR;8XXoMv#QJ>X`p&PJxQF4jcPW)dl`Ub@gF*W&A$U>5!5%^FzEf9g!}3%+ zm0a6Vnz@_Hm46SEkml(_-5Jarcd@ooXj(Uih8i@vAJ^eT5vUGxQz(91<)ID1(Qua1 zh-y2fG8)qIUREmehKqxmYzdKVUYvydEkr_2WHyYS^d7P?^G(6Tg$1g0&3I+wujwl%*S66FQfjw>j z?)R%X#cAVFc-zHuDuvLRE~qrP_g6IkrveKoCS+t}Kuj(#D+6fV2ATcSP;nBXz&)+J zriO~2Kc}}>#Ms1Sty8B-90dX>(Fe2$Vt|qL@1HkN0L(M*^Yi*9nbiF7uoq2H$e1)c zKmYdOCSYcsZ0#TjHEyZ7mGWtee!j{}{>w7OJK_R6*vP`rWVVhVV-KUu0Fg2()7 z`1(Y6s0=3X@0e_o`w0K;-{QBr`}=!fsZh-MaMgkK~Zw_5&s{FMt{V{x{y9xSK7e2tOsDU`Tk+^SYt7G~&)MG{}Jn zLhs1ZJpWAKcUxZ*U^fGS@VFsfukSExpL_xkFRjmqS+EEQrW2X$K%w$A1(3?RkjrF? zy1TpE%liO++z2A)dN+Z`y0E%B#@SMhpg#dMa90JoN}yt{OA!>VE-$;!XQ=w7cZquB}=>XzR*l#_Hm$ z?;FUHu6|Tc)t59G@CI8d#{r7CbM9ZeaYU3X#zO2alPAWQbuiSfjz%!}QW1Ah*qG1; zzR|UujT=9MSD+%Cr5>>d^D3!!w-V*EnX`rQMc7(GJgCXzE;|V1ku4l!NXvBFH!sE1 zym`>f#8KUe9`@JncRFsz1>((HuloZczT|wH+K&i{JhMoJYOk*f5+`k{*_ylz7^< z2p!cv8HRWPK3kArE|4ND5@RmzW@b%gJwSU}?TGvKQVpXh+bJ3;O}h(REz}Qj{OC}3 zR$)dFr*xC?@PFt^6G_l2nRF*K9RM@nUzi!GTrCe#_&EhvQUC zj=wO`nlu7Ct!#0>HGT-EsHgFFji@c^QK#@+)O4c$C5RLeSf?DnIUrFo($lt!jUSRb z&^aG@VTqXZ9U-^;IkY1!$u@%-X}#SssIg!~e(GP$Pgb8DQqsA4><%wvXv+BG`fT|s z!-0+!-RH|CF@g!x^Jsb79PYZ?3-L0Rpmc??9?5Fr6Ck+1;AUX1x+b zj~qSov*VeDv0vT7^+LKwS@?F$Ng*oe5k(G5QSnA|G|CG7VogpFu zE9ww3Xnr5@qMbvtyH!1w1h8l#iW}9NZ0Uh1=uU{_p#E|ft67}-HeaDsjA??0J!^I! zT{HkA0l!#aGz-=azRxl*-`H>eQNGa>-{H4@;>24+)ETkV^(CqGPE@F0qaJd`e1KPo z*#C#rXzqhuD&GS?!yNSP%lH7By>!WGid$q{)g)m%u|+FaEU`DIW`S-I>H7mW_AaUA zFrCrGji)K}1DYi0f(F)uz&#DL{(EL(M$t*Yqc}uZXsv?h@x$;-n;gbhxa{;%wWU9saD^h299F-UZFa zb^5Y7XxQ*EwW5=wDm!{0x2VTNxf zR6wIvy1{pd1%ZE0&Ho8rIAVXS(L^|*mvlmbgX@SlZTx-sSheezzfAMF$7;9)Jk;OZ z<{L#9?C8K=*$~HYbMFVru&^*WfcLVhO*1vV+3Camx8s(}^;juE3?#At2bzqNG5xy-J25l{Z6FF5u(tTffl+8B zpfyckMzWUU7P(&Gz|k@r5sw2OD@=PaM~?WMh9x653?8eA_b42hXcBnzA>cR)tjLPZ zt65A&V1U1Z6-Wz`0GI67S6@s<{c&Jf?Ps0h3jxZhfitf`I}0M>tnJO@mzw4d{6^cO z*yb(&tj}?~ysQO)6hx&WZ-pUSbti$zyQ+Zy=V8_6a~~ZBn41|ExmKLg#7s%n)ORX-%aTL|o}3BVzhl@PA!mt1BJzu9Oi z(ixCNoU&ZAW6r==)6~9(S4m-;>5lKR&bDv%D2?jmE$QjxzI~PE-yU1~>oYsWi-iU5 zdn=6Cgf=cqCQ+HeRfTsM-bBr2SYFU3+_QtvxzCbhG?RR+qE|!SJ|DK6j~gFx34xND z&Bk2EDuz;}(H*oxYO;UcO5U$Fw_I%au-`WXt=EtCAYBWKkU(Q5Ws2+Zhb_p6c?jlO za6}-Q^p`^T{MRQtyzwkBZ#q5>Xa)di8*7TA(!$2;JWWkg{;;e69uqjsko*)x*DBl< zw;Zk_RUR0rfG=l_%=AFKL=?DK>6c+AS)x>WODXC~Riw{Tqu_$|{ut5Y*^=pXdzm&o zj`Ss1#`9&{6K}3{DM6u+pgA>t^<3Wld58wIkTo#Pjhlf_Re``V~QiL`R+qS_t~PL}-F0@vlv) zG(Io_jBTfM$ zShdTCe{4mbNZQ1j3FC|cH--{O?ko+~?-&4Vr{DCBgB+}A|HP{$B6yA`UKs5h%C>6f z1aDIsrZpoOmfKMxXpk|hpNMH#6xu!f_>oAml==LU9#i#U3OP$d^dTMA<;LFRMh2B1={m0%OXPU}@H*#(ASP zQsbxcdtFIKZ-yTbOXfGyZS$1eB@lalC9nT{>4R1}y_A)c#=I_Bi5=z_F}8=JAoSn& zf-b7dWUgQ%hUv#DHd3?V#zYZTFUe&eNg1Y%GjyL-S$AEb7PV`kTwu1{vOo7BVWW?U zsdruxq>0)`4MAz=&L~`+ipe>OHCeBih}C((3QHnMjo^a4U59ENkjNN?Eri_QBm z-A!iS9}HJU!SnaUOPdKb&}V*rD^^|sBlEN>5MYUH$YRX@hzLOWm?2W5l2GEOt`Nnu zS0@}kceeH&6NWk<+mmj;=Gzs}>8Z8&lm9aSyYbp+V|55K+C`T+3w^%?2PV2gyxQ_j zgku%g@)!54)k-oYhOjpt?m$Lo-Xn}~Hy>Hu*o18%PEjXejtFjS4f>AGH7BO_ha{r< z)9#e(3Z(AWt{?uvy!IlGqRn{>815Kjc>0HB&x%6*iZgkrnKqHialIajP_J!}mxOb5 z`La|&MrqFbsJXfr8NKQ*bHj|z2UCcs9Uu27gk3IFLH?5)m%$|njV0qJZMnq52ayFq z0I+k_EyoE0G(#hZbTsfnYv`r+xI#GhTfAPW03pvj>TVQSaZE=_Aq*0#Pc3xC#0hmX zK6opFxI5%x56QA99|h+-Y)hG(XRFr8H^IOkikaPC3uW*lcB9GhMPsBLpNY)G)z#30 zO0^Ubz44K75b2O-8{V+>AIFKGey^3iZsBG&6%%6dUj%3K`D){-43pP=QJ}YkV7mTY zdi{VKxlBzQ3L}=|0xF?O6CwDN^lGM4;vQ%2oAS>DCf>A{iDHW(%4k!R5%r%EjX`Hp z-_8UE`T7GicuiYaEj0x^rWDxD>$An?LaCa}%oi%f@7ZqR;#ae>`Nx-$Z8DImKc&9^ zCJG28lv9J;Ueqa(hT<1zNH-2!T$G8r3rCJn6fm0T(eVsetF0b;3~gZJa)n{&Lw?C=VyAO4AMWU||U9Q8s<70_&X z9TB+y-Sis`US4gq0d2WxT2m;0je>xHVDj}G@@4CsnOxx_1OWz{aFs^$*mILn9~1%< zc)G4LY)?-Q!QzN1OKE|KVjAF}0k(VIuMXc9H`XB;JFY|`ZWQ^hA%Idgi@{hNzL)dg z>i|~tBDtj5SCNM|ul>uPT;Ch%Pq`Dg2#=1Y(Oq9(pSZ38k5gDwv__vYV)}_1($~Md z^TEQPK%{+O3lOz9GS_MI*|3D=^jR@WcPlFbqM-nuDHPa2@5=)C&6aD8UV&Mt>vPe_ zcR#O+KqP>_lF{Pi7BsML`1sR$GGkBFHNdYF%m|*r-kGl>_4VO*^i1EP^YaDCyhap3 zzi?p1sOm@zmAdP%X~+^0Q&-(H5G}h~Y@-P3Z-wHc6jTpFwkRNBgtqr(>PRxQ4Sb$+ zsD}mt`}-k$GFY`)iDTlJeD!JV1~^k>oaa;w^*`U-7ZBOb8O)c`8;c1RnSx~`loFnL zSVBGgCFd(g$U=!)gPRjClX~+VA;J(C2%x*xP@0I0n4oET5_FmYQ0-d4LECM7x7nUh z^Xn2$t=@XQOY;=wb zI>ObE+3=y_2Mp^z13^ebwE@{_?*)5Q|ho?`S+mU76&qu`9&%NszPswQm` zk3~+R&sSaayN>?5H+B{bBnHgix9~(&xInI-g1csDI=5Qk&2X)S5p*JI#Kjm)xf60m z{HPNJV8Y%S=xDvD7UaT-Y<1*fb|u9Po!dVXS28YJlkainT1sE_W=Z$T(pr<1abq;q zF{+Kp(w>|Hca}}TtlIp4{L)^JZ44cADJy> zwBifiO|>q9BixcCU8O5qHJGE_7^EG?8=z4VT>jljNOm^F5({~8Fir$Tyule2k`xxo z%JxYq3_L+krnFAgK@{LiENC5D>uEWHtN#aks>ZIe zwy?b#j8VpO_TvT7tK-ML7W-rsxW2gA=bzCdpzAJYZ(&A;i$4CC9{S&)!RNI?7iF;( zNTEZ_|J0yL7ywS z9lZKG&O2{dDMaTXjACjU)!1QV<45_mAhL!a@1}82l_5p14?LO|7Nafi?0Oz`xcR3` z|Le;&g?LlQ>!u?LB<`VAF0u7Ah?)$&mJhM^U=!RrNznbe_X5c&UTVkFrsWr7+E#OW zxEoe%28}C6(L2YGQ+qj%)f{Mf4Q#BL&X;iE~5a+ngJz}I~k&sV^a1rbCeWJsvm#R>w&W46ER6q^Q+wYldu@2U0oG&PiI5c$JA zZbXa~O{Xe{Zc0*Js5ziuLLu`J-#2=FEjZ{@E1F5n%~eoQQ7Ij8;~@YHlAqFIc6RKD zDJdV{`U!8NMkRl)J{fTP9UPPZ){l?x9^8TLf5Rzcx5M!auXkBlF;^vtEHVXxY7+z| zQR)d^P^{bhhxs?Ae{|B6XDi^@HN&29F$8F5kGuv`i9@kWDVXcL_Z`zW$5BV~-A#*r z)vC>(<2gG!%VGE%Tg!CxJ8ffq9Vn2RpPvVW(g+_$#pcnG5m3YZ;Uub!>OyYLsq(}; z#tC;jR6T|C$(z-C30{jm&%jhwVj7w#AWNE(k|JtpNevibjCw<1hfP^NnLxV(F+gcD z8yj02coJWIc9=sxvsp( zjF8H2_o=C6Qv8_x#|5}*+T3TFsk|G1ex9QDy1{Zdk2U=GYmG|qSJ-~+ zBK5rc`KE=8Re!@zXY&}oS8`7!tv3#N$@@)}H#4sl-M|J1v4xZaF4CF1hOY%{6f_G@SsZT?KygrEBNNCyEo`3$1__2g9=dwH0E#nW$Nw_ zhR25RA-%X!NLGS0W!1uA#9UKJOB}FCA|%e2%Y3@`8ke5#_|55^gNZqUvRMNW-F;Z1 ziJB4k-|dt~@cZeU%U_Ne*EQ|Iy0Ni^4sw=?VrESeJ)HdNR!}kR!o{;t#ZdV5P#pw` zc6quc8!lrIH7Lk@+rfH_CFd(pkL1Hh>?mbT(WOJG=}C=RK!-#%dwNV@vXD@{rAFJy z!HkOq5n{q5SX&wu9$*lGYA~N6&;Vq0L}_K-r}AyM%=nWTZroN8T`?|h?3u(;B+`ve zA_`nVu>Aost@w|kd28*wl3#@(UsLWFSiX4v@$&i=A$YHSg1dC{Q^huT#vkmBpSVkzyoS&if%w>z zD^MuE_c(tRLUhc-$zbMXoZuDwPrP%uDG_CL2YY(j7suwzAK8CmW=`6Hgk{k%D@diT zwAeSoHIs5jAGK^1E80v^D9yUzPZzsC zB)P;*-W>T&cMYFm>^HX@*{V zV=OziRcl9O?_GwLeBqF&_@&T1f-M!pi6g&*%BMW1B&B{)!eiGsL^J~kfxdyaO*5dL z_GT8mbRoGiCXJJDtG}r;i0^8b904ei20zVUr$-aaqjZK}f4Un2UA|zsVmit&?+4jJS0A?M zL6t7X#9ilPz)bPx!vbz*--^8MDIETp9C~NwA)ew7UxF-I95L_2Q!X+bV?V>@Tj}t~ zugxlldlnE7gdEAMqSy;YR46XaG_WJOSfe)G@SOUu#j)3bZCNlD{EI z{2&$@2h|hLky*90H!%`-(|0RJI0TZR{rr3%244Vwcb9xfs~JKhQLN|fr9>$&0Lz)1 zoZNAY_iCosnXrQoFC5_{r;Qy~t4&R2+Y<~R?Ez`32Az~%V8CFrn8E<9to^nefOB(> zA;AwmnE3OIy4@45^xp|=c<`Pf+k3weDJ(K(2!~v8PRO0p{5GH1ts5dNs;*W~T|9BkX&d0# z15Sgx7tLFgKxDyV(<@@8NOBKo7*i?lH?GUqsPtjKGjLcqa7=C)+kCz9J1I$b$Gt>t z!yIoDb!a7G&rE@zEuEWO;UoMs?g0K4Kt~J$1WkYn;KG->Uo4&SblLv7PC~1ztLq&S z@nK9#L?-?Cf&Fm4GS?HeMCy%!j?P8DRKK19K(hk^Kt8=izo!Jo00mKDHKO|AH)lfM z$mB$>K4+Wrw+G6}YDD5r-)e)d+$x>sde;*b4%_8!prlr-)0@2pDEtB#v6t*SUA)J7 z7`mP%f^cDheI&C=7Nu?LBI2!Sfrjis1-PlSK^?m6j9u6hKSpVtc|FmL5~$dWt7#8-;KDuj|M)G3u_{tcY`4Ng^a2qNOgucSi?UN zL(5Hee7HINUil$Km=xLh2JGUIqo^=Kl%UCoLS(~9|GYq-D@fvFBDzTQ-CajEWA${y zv^Ze4J*GQtP;7pkQryjUU@%4J^}OEH%hzmnA6%TTuJKWQ^L*?<1d$_38&f5U7cXgG zEjGXtUYa#0X7A4$$C=CU7-C=}gu5hKR3_)lL?=Ij{B5sEP4saZUpYDYO82;TXuQ*5 zGqsc6E&!b!D%9wjz0A63#wgmnF+i90SR0Shp@-M{nkK~7c1UJxcdB&ARStPII@N+D zgCx4vN=BW-n{J%}s*@9ISO+C&M+F`so(2Q|o!C?g4YHpZ9Hk})fv55IVohZ!5P;By zihfgBc|z&8nL7EgL^luZUJ~3)*K%BZRm8#FTYz91!BSTshH%yGbkAM&j4J=r{Xr`S z3V{%eec>Wc72zlDKXt+bsJ)}IEOjF?IA??%Q*W`^GH3Ca>lV>Eq8pfY|Jjv|NSK6 zK>&)be6TBQoYqNp4&=T}60HHaj7{Z&wp~53C^;ST_uyfraNAW;S8Ggn!+|u`a+s^Z zUl-)jksxssUhqp({1Nb7?>RuU4ZUA1k*6adVuGFrQE5Qj>FZYGtd=D7I+TE(vwaK>+!D}#mvV(Cp+c>Ata|$9 z-}+J%mKe(een?Fkim(=Jw^~*?7VTUX~^k z7mt9|A5}rTvn7=EznQudqGH?lQ!Kv9ocaS@m9~O>e>3C#odamGe&xS5Ze9D_%S7A1 zr6x!G894iMd)48G`w;Cd2ko5XbE^D=(}re#YvOLKB7JT4xsY^?Rvc~SW}~Oq z>5?~~x)sX4UH*$rZa^;U;O+pEr4lkctO)XMaxQmaQNi+|sAw#5X9`XuPKF#@kvAA+ z%1HU}5)P1K04)4~S+N(ubpt%?!HtcLllCHAhM}RMqbKt9t`y}WVlwbeA4Qp$Wl5qB z%J+9VRU*GvBC%n5F?X(ur;k#yc(?Qb8N8fU=qU;Ro@&c>c@Nzv=b8XXPvyjHk%0GS zDnOEAl#ItG0qmTBes$*=_yVY3;M;x3f~JS#4wr@wz-5nTw0UX2X#3s~_CZ-uS%MNk#RCe>-bLen7-;kD@|+d$ApyJS zfLtzL1~5~B)cqu&GOlE82$0>~wV`5TOL=?qw6?bP_xHPMZLP5P;gmYtSqh^-494Mk z@O9XEd2s{c9+BYd75L}9QxH%Yn_rxGeBbmzjb^mLL>JiDxs)m(JKoeF!fYZV=ZrXb zxW3PJ7i`=Y7l$RKRSn73986am^ZBL9F3sqjci^Y;jVhkTJ zQTIM~>jakKq=-xShkXxOu}6rq&P^q?xs`D`d2)|$oLu&s?q1$8o1cGC`g4ZIw@$D3 z9rOsP@5JOLFJe)Q9dAzv9FmcsjIEuTsmty3#1> zSCvlV{8IGOxh*VzZ*&GP#0tFP+M+lK25N2T?o?BOWejkWx_&^>{ljP^I{8X$HOxAewVN;dXHdOr9bc+)g~d9&t&uR44wE}vvY(G z9WwC=L%X95VDRWaZxNg7Brp{^LcS}$L-*Slu5Ld-(%n*10=^S z5{GFq0fyFWigt8eW||VW05x34hG$({q$huH-`|8iB&6Og-8opqMA!=0jiGS&#q-dr zN)Gv(#U!gm6Wa~cy_s(?c{L(TYbfm2(%AUy`92QCFRUn-?@>w)BB}6^SaA{3A>H3{ zEz`aXB3ix)mZGm5Richoq6UQ!nv}PnY3nxF8Q=0`K%k;m6#rZeCgy>u8Y?vrrwtlh z%+^_u(PZH(8gW4!pcH&oST_Mr_9Ckv|UINLiFeB2T}HY*cDtKhtvl^-NYD&!=TZmDQq7GbgJ!rTyNo*k7o&Gov)t z6KpiU=$T)qJu@dpXe3v*-v5?Hv`aNb73MD|wKDlW95ipE-Dg0Hj|5g3-J?T3$l9nU zsL29}a-x|!(9)38@=cyR)zny{Vi{Wyvq(FR8jfwg((#c^6?I)e(oovdCekoQp>Gmr zFLCWc41dgQJUZ@c>jewVHxsPXFvxm`UdM2U)xLfMO=Wycsj7s6y>MsHm=1M_8kifi zy>lzM7dLiQtg1p{p6o)YqZ#DrtnTSwRP3SuQk>Vq5Ip~K{-f88r?Dlzzt*4k;YH?M z7qRoj9(mLo@8%3J?#>caWoL?xPO5r#$GDeY)@|6xRNg(bGGC;Zw5rgoeJI5~t(=De zBaf%)p(;bIiow9*gojIWrT@xG3-g@b1|yC?uS4ggIg-H;V_N4-gS>K>Lg6mgoG)}z z9FE4744%#hpDrKXe92WJP;N>oVMVz|_YpO4e_QU7jeVou9|RLlY*_(X=dmth-I((u z5;wQS#v;PaBs|@5;TQU!k0L>=O}6xn0N=4~h@%-qh3It93hRPDc#{qJ_7b@>w5UW} ztbcKw4G11cf|f^h^18%waPL>awV)wQ5-vqz=Q#rE%)q`&JC(i5h}ZHmO%enfy5v9G z5sBaxOmi?{d-+q;S3r#)HUE)ZMtTe9`W195F=>82hq+0|nlG_WLYo9CQXVdhhMtPG zQdW8D-Idw&(`Y>}ZmIJKwdoF3tQ}mKLDYWQh$mI@n%^K0BonltY!|GKXk7fVqQ`8I z7;LjOeszGC>2g$ztw}&I5(zp$@Aj*7&4&2&mGW?<-fHRZYV|MPo0d2JTjQHlf+gj( z*-vW>B1gMx{=CZZkJDUYSviR5UERO@h>AK-X<^{^DnewR6n8H8UYW)-A*-uZu$34Y zJ+FG)dq}*)Vi>=lc0L(jos&-N3nsn%jnLFj@}ER6q*l?@l>_Ltz-f#>6Td=@7Kh7` zSX^AZxVU)x@bEL15se0+0Te5lnVHo{7V)S9WAOdOK)U$PUxDMT=RF-@Ru%ncAVnbl z*ne^V$g{_uxtz{%rmr!xU`a5zqd7$ikObyd;)~m5{XZ%e^YPD}$3@$%A(C*im-Y44 zW$6;h0*C_CyI*Jn@rFhFXJo-w5CAB4YE(xd?dI*>Huovbp*0j9K8se7=#f@7V<29$?)s9WdBr6+nqt5P9>}C1k-HKd4%NYA%%h z@Vs_4m#f}iO7O$xQN&7$rF;&6+ELTul*7tVB+GVF-4veKi5C-H*+anlW@pKZ^5i4@C&C9J?DHtgfnez+u{F6nfuT3Ymyi5NkA(W8#W0sSnRA&#Yo|H@Usiew`WuV zLMm>e`O9fj((d-CCBhYY`pRDsoY24yiH#4tNhQ~z+!`_iA#dLD*CaIAy5G=2%MsqX z9XVZnp;qvBXJqhfBRjH@Fh$1$Yp?PMBz=5*NLFcxY~?XUB+|bZoDu4jIYXO0m|s?6 zPg_7&{OqIJIaa9WT$nmGXXD0UUH-%^tYm?ynkpF(H5F3`(t$bPaX6ia8jo(eBt^v<8-X4Z=U$(?BYcGa zyNhx#9D2B3bBHVS1x9B*q=13Y5?wDLITIjL4Y`l=o}rj3eT$(a3o$rPXHDNi0jVLA zEJK1Rq~yZ>Shb#{;pxArMOACZUM?pbfb0tx5TA*Z^g}$-_)swRr?rki%pe#vzbw@~ zlPHM^+Mo6WT#}Y5CuIxmyE;1Yqt=vU#PxcDrooXS7sP@*sRkmiQZk#8y8f7=w+UZ# zG6%ksm`KG$_L!IYC|HBK%j3mqI&p`udP~$SkN<2{ZRb+}fgVJrVrmcUe*H4}_TYiJ z;fIK1wxke6Rs@ZfoFv;NYBm0LEQu-LgJteFG!k{sVObwk{j8$K=Z2k2(+W|wCixoh zKJ<`~2i4}jeK?5|bF}j{So6aC&hPK=$M6ooz@^IQp*Gi$#82Cb3s?Go6Cv8m=2|ru{qF&?BEKF~ZPg z`)c0g(M{Cp7rGde9@AAzEwvga$*CIkr)CcZ`L{vcL8j> z2W_;8yM%m1qo8c_U^PnCSGA4@-b1oy>_;<`8aokN+gk$69#?AQxq?M$Kew@m9Ts-f zM_I|8mww$}Vd`x5as>}Z1j$-u8i}R9O18VLN&U#Ku8<{YT1c?awf5PIyY7#!+v49H zV7a?&O^@L@_t>eSs(R2`wc|?aa@R{#7;b+S%4jI~MSgn`ln`+LT3=`4br<>u6iLs{ zk~0IQ$DBz>9y47%iuC2Z1X=E5D1_s-alxp3;t|kROH|zo9fmMLzteJkyCT4c54iK8 zknooeLLDt&f`ycnP~P9)fsLaMFvEolSp&&ihKgK+8Oj8U&t|};R8(A3zG6`=U z%B0lq1UuqBDa*^tdm{5Mf4c&7Th=dA+Zg7z8j5fp_g6fHg7)Fd>4g^{vEA|fK6k@Pj# zq)*of;NO?aU@4i)cGGjZo#4F9`*@8gkxjn=f^sfPdLE57Ccs$`V8&lHSTy`6jy2>j zSmOYZIGtwul7@y<99HuNSzH09T`^30?a&2lv#af%jZwkli;Fmwa&lHywDyh7A|{H` z-gp9DCfqn67*M|91ZZ$OnKso0b#+PKew({-X#f_P_P>9!fUrQu=huZwO`@rnN5InJ zay(4}>{UaNDdeS(_xEN1N#QeF0BBwWK#3OMr*t)UZ@@Y}aoY>Wv)_*6+}u8^={f`+ z+vxS_8U%<500+!J3Vp#mdur8)AVhw5sI2DW#H6H!8#jUZC5$s z>t!5-`t32U5!H5fDXHih)h$ORe(w<39&6;Nl&Op;Q&eQ9o@^2QqFv62l@&uN62;&D zE~K21Ig1P0$pca~I)fiQ@5`rcV#43SqG+m=oN?vy)_RsC_T?Yv^*@)B?PL9|_&pR< zGXVkuRLwkiZ~oo;qoC>uwo4^&J|9-FiaoITv#hL^qmcx!B{wqb9HHUTM$U$z8?@e>)WnJox zMXh>Mwd&qMy4{kHq8DOo>DKWG>f*$SczwQ^@~qCyMdInZrWG&2G=+LHq3h+1L6yT4 z%YnLn_{KEjrCX(48LnOVg%JzhQrAcmu6Hd4#TpOwfTe$ovd@cbjrU_;+Yxit?@d2+ ztC=`eCIzM6pCr;_0x}Ft`2=iNTDKIVaaiC5oTLZ^WGIljpKcPeGg_>I+HTZnRr2;* zz|;rNclJz__vP55Nit7%gZNnLk%vg)KGrWqB3pIi(uq;-U}rIr)sx**^VVBs8f}St zgbD>V#O~iLY7W2%VWa-;67p_n^{+%1=ZZazFjuY3 zJNc4mpcQ(lp#Gck>i84(*^k7g6yl7q!S^?2cth1u)HjK322JC#CKZzgQZzB$4f4i1b#CFe!>fSbdvI8Pk8>t+RcgCD}H3D@snEUdyhQEg)gHNNM zi^}U#D{oZ;j`{6o`ix{)@UoZ-eF3VH)t+rwDxMW>8ctdmkH-A(AGhK}7HrEE%w?}2 z(EcK5{=vC3a*)rEQV%~R+R&kOu(PP&vN<^T_JLne#_CugSY#W0S%HT>>6MK0>B8Ee zuO5iHEck_Q-Kxl$n~kbg>>U2S0W{zi>q6E)sm_|hbG6Hq<8Xlx-RPRuh6oy}NT={7 z2oimimL~)Q)~SzfC{wP&Pb6I8IeT?>eaEm^SbybvUYX&HhldT=h{U?*}> zKl|+`?~DYU`;lqHxVdcA{O>*_f-reqm&l)59DT`BXc1nN9~?@mcMn;xyEkn666yYa zTKs$D<;)x(XleIBdf!=1-zfwc^|#n)I=#goM(zHr%2aDPUa! z3SF0NIe=6$zu6TmFya_cG# z7%k69hW$p}Woj>Xvg$h|7;9O-=A9Q(|8eWtSZp7-G3;XiE($O2E> zG-15>?AGW&XdY0EfGB$KfUyy<3$d}YJ58`Jx$-LR0uk>a;4OO?7-Qq1uxO4>PDV@B zdO({wv(4hy_ouxC_cb3+&#N_uuFr4ScU(*42E2QHK|=$YQ$DLwfU0xA;keQj@IeD_ zoSU2b`g%Jxp39%*bJ-g4sfHQ#h0n~-iveM{m6a6$ACcE2w2XI=9k)009k>YAxt(dq zQL0AZhtPY$6uj(+tJ7it)hG;~77L)^1%ZGEJxyi+P`_Gt!toT^yQlyz*(eZY1M=D+ zKr;Y9kyTYv>IPB@fEfg6_Pqk~2R!sIz%jB8*a@5L)+FTQ5I(bYoSf-EYryWoXJ5JR zjMnanGsG_=tqAD2uTK|~()@bq()zESKM;vz)z8r7BoWK-jY=Rq{@3vF$iRGUB%qeuyq0C{j~34~ISeA&OKf61SbC zv-B9I#^hhl(eFo3=w0lij?nCKy;|VcRMB^%Q1rb=s!p*7(*ZYYmlrE>=&!R!j^!T_ zO%nm!37HtfcEf%QBQNsAnztq?Y+$-vE_>_)99^S3hF|_myeYnH?}o);o5E@ ziqM0NSt9k(fg}4$8BVgvi|4!EGvmaxei&G&4Nm-}f=1NSfua{~WQQ8ci)51-O~en> z=EYqMZ(8CUjo@m?J(P%3W>PRC&~pVMbRNvoHqZo;$r@sKH5A4!q?Qb0XN^5Mzg&%2 zpAFN=Q&7oLIPo7pIakE{`v7salB79veT^pRyws6wPGu0f9{RI=4;K%{b#_rxM&z$a z%6dvPtcW}Q2Jivx0B645vUyK;pDV@!zA)3g&=h-CmF762(IeE^A5%<8 zzr3=>=wi5P{(PzP^3J73b0j8)n-H7`;6=&z%1|yTSl*T_Z|6*_&i#e$ja2d+1aa69 z?r5J_i2@lk-)#v;_QLEk_vOpz?~xl=a134idx9+sy&<#knj~0K(ppw;YGw*<{99zI z0^*$7%rCp~m!)iPFtU6h!;3N`9SbrP(y(=6kluA&EwE{$GYa^&1+?Aih%TjQZq#ut zZzB*GsoO6TUy@UxlK7mJnnl7jAfBDbtw6v%2+YTC5K|#vW(*zqtup#AUZn9dyMMw{ zF`HalOW3Z;``dDPIiXU~LmSRieB*ZDNdNPJc>SV^{l_2L=chZq@K;XJdgA`;Yb(oVI6D&n<94I{=k*$*7fMN2K|fS07ipKCfZlCcBYxy4y1+n{8RouJ z)rG-2B;LaT6C8MqfuwBSVg>fvf~KO;qmwQxV#JuTT$3D`h`aARL=zP<1bZD3F2R&3 zd=`XaCyr8+zBrO7!Tcg0QI>^*Odw#EUW~#ELh=E%8WsC*hv^lmf1Qt7{-VKF2OX4w z%X)lS)`tcYLwfr$%XS!EL{%_?MgAL#8WQ?nUJ!-;P_~8@`ZMi)GEH z7j~m`8X8XAt0hg6#fBOlCvvrPQEB_Xu8pi>DfcaXO1vz%Z~G8pztf_dzZC*i3S0G0D8s7U`?zFrR=QrOCQHX83Q7=mc@dncsrDeeW&i&xsJB4fBqz!uzbeH?rt|=uOQu8Mm%Yd)Q3!cai9e_VVA%EXH zTWfc-VZ#MdX43NVpW8!eT7W(Z1Yed(D-;wIU_}TSG5seQ9b$KVmnss!>B}l67HII- z!29L6Nb~H5ww{$(lH7*S8(VS?ZWsCsL(KSaF_z9~0qiKl2hN`@ z>fA1r067x%O_7!9b$=v<+i@G@^KHITqsn+BnF1Jes2CUnRn42xU0nf7Y1t+2lY`fm z1>(!r&oBLMlkb<&K)UQ^S`@j?d;<5+$GgwDJ125&fIspDcsM5_p2Pn^a1>Auh|4u7Elh(k$3<3z`SGQmC==)xamlkm4?EGgz z8~~gio;zV!O4R6lZ+CN@ty!JD<+_}om0Q5h`}vFk17y#_LfXk(>Fpq%!_|I@;zQY+ zYAeTQdi(Pg0|s0@&@b~96CTjyK5hMczztDM(&Ga6xjk|0yv3W-(PYj7pBJUi!Qe>6 z;f8{DDZS@f5}S1)WLk>84%Yj$q8&+R_51rwci)UG-3dR?|b72Yie9S>s| zrd9e7T!dAS}DA3nr>5k$T)fyZ5#daSGD8#nzzz>CKX^WXj>g!Vc7ojD`MwJn~T$_-x?Yn^Iv-THeR5B;LRu zhk8lVElpVQl|82heA;Hab8TnxL)v(AKj>=2I5dxg1P+YP4HAHc%ev1gghEd2ZqExx zdQ9319tdz_={8Oj5~*S9S=Q6SFer+?_iDm~C3n**5QTd_hd%6RuNm7|625*ZD1_Px z5hQ0uL4icUC+$tZb6R&MY&j7w7ke_|-d&&y4YXw;^KC|2QJ^_5z&?&L*>pX@4op>4 zhT?VZ&A1(@;^T7D%M##1(YO%N>XiIKv2o9J7+)lOCVBbKe!tH;B%(a|M+HLg8GO72 z1#2Pk5`V0&C^e<{R37tO$G^rG1Ikq=_9YXhr5*cg13a@)sT(zk3h$1*#~Gp_MQ=A_+Nim z(hLBZkJobzd%7v3=EWRAesC)=4kD?+Aw$FSX<_{Grou&@smep8VJ;4~+}>jpD7zI| zA!Y6m51AdS6iHr>&fMW7<&f(s`rhV-B`(?PfO3rYmk z24>pL{|7HY(7rR^?M1|Vxtgj0QIwDB`Wdc1DiDjS7FE3wx2z&+<65r;#y~H!FYku? z@f0XGDG0Gy(EU?$5o(kOMho(s3hc2RpQ-Dt6?m(=_xyIs6qJM60=+2C3K~~Ly(bJ3 zV9*)vKd|+e?|Ao%VLbNQc<#SxFMd8f7tI7gKnx3n)a>So9oZdj$%42V6>w7ipmJJAPciPyz_>G`-Ll4YN3a%D;`8Wi3|EiCQEx;U?1kuXU_O$MIjxwQ@3%-Z zkAN`BsT5sl5S-sXH_dyMS^GZ5C8TqOYuq^Lr-k}@DXQjk&%up1!qAS7w>?5GhuBz1 zNRZ~gowlYI7Y8$Eg4ujV1ww#f!yqq@UKa=f!otF+tgNJQkD z@4O?09BpWj@;;v7kF<|IdW;~7|AOG&|8f!%5~yyl^2|qT|L(5zafT66Gf_S0JPh3F z2yoryY_!oC-hnXXBIm82j>z}7pq8T@-SNe|g#q_1A*G;(_3PI&dGeWgiSDD1KKkh6 z-^;#z`xrKC7&?t7m&|zQjJ1=T5s%rT#$?uFuv9ZxdjRtQ4T1o}$GMX@%oVv@$~U7_ z!hl2(eOKev4kaarN)TWBk;2<=U>Io#iQ$syWU)eSsq}YX`{~x!dOHgj1+i{}KQWQ@ zc-m?h8=cMA%TMwKEV_cF!udLz9TZMN3Cq2pv8aokI02Oxg0T$VSpsVh@IvM-Ok*v> z*@NoIxp2-9IQMDrc8AaIlLRk?9-2cm0?=fFmw$$ruWj9DtBmj8b7Au2NV9G}VlRBt>~4ctDj8=>me?qGEuLiaeIuaWu_;)C$eX8?$I&xA|I zcU^x*5#05ml4&d|q3S^>)-Q5M@w(}ve z8+l>W2H3O<;j=%bHdPA5%O}F{Sja2_1nAd(U`f=tf!OS>I97=4ljR82_0rLg4g`}0 z$31h~gZ7R9hP9wz0<7l`$haz9d0C%Fc5%cT7n7=<`<6lj##Z1Be~^<74rlZkeM z>k5dj&cLTR_a8u&(v@sO1Vyd^ID}IRjV+0RjTp=|xS4A(m}+sg*5fQ-mk~MjYFD1L zyR*=i%Voek;6fl&uI8tZSS)fSvK9}aD1s;=6Ga3>91a;pwjee)O~UBVa;@uU_*km& ztu3R<62N=h!*KR+72jh8s&(!dRa(63tJoKwNM>M^8BhdhVYVO&a_lPUGt$@8bMALb(O7Nlo-l#~6FcT(bcWnwXZGid z@G7q+J2ss3!Tk_r3Q~uk-2I6NGr#p>K;gl-^sN;i>xoR=(&q40%hB`J7*9(RqT5Xg)y9m)N-GG&%4Xe=kGo{a{ zc+T6f0J*AX;VkWT_~;|Z%98R4o{pQaq5^KZ30{5~5_|V+d`79LfKNVwC!RPn^*1y$ zuz&x4h7KKiJoU!^uN*oApMMUoz1F)qG5@cUkRUxjB_}8U%{}?QPoHMpM<2b&$=rjT ziCw)Rg#8m7hGDUtm+8&?g1vdXIz#T&@lO4>3YLBJ(MKPB^x=er=%dH~7DdP|i=^;y z5MG8#?3;41nJvt{+7qn?Qqu(X?-vLR6bTLnRc8~!1uOpjbfnFnhpo&)U3xz5am~U^ zT0Ziz_aX*)Bi=I?T(yXE$AgQOz3J|J`$ITOzuknFTZ@{~#jA$wB!bD7WGJeHt4^GV za|#2T_U1t|nG7Mbmt5?gw{q7N@7ZD$2>^ibzqY2@opAfbklKL6phj{%ANw5Xz*NNLvluORPrP~me@06T>20f0e zrb(Zn-QG?dG+LG1`O{^TzxoIsIwOc8!tQj0MSmR+wJ6RSgE+8N2vsP+*H=zSk#onI z#%3g{I+MuiY;?^z5p6(`K7edPIQ1%5ly*yx#6cHJ1D?hz+|0EYOf|S#>v8sVH6o)y z!!KP85u-TZW`jW`{92#p?xY#ZDHPu3sH1Iz%b03lA`4o5tP~zc7E(Y@ACJ|Xv zf>)CXwO+%5kze!Fo(l-p=b=-ycNV4Aiwqqzmfw$NamZxg-0ETi>{c$XE@Wt96~B81 zQ(9F;aD+eAO$uDyy08)pkd+vXXK6X1Ifab+b2BTio{8Pb;IXc*k)*ZT**t3sX1#_+ zgDZO{k7DfVEezeXo5ILo%0s%2)L>W1S$FXa=6w1y5$QSP$AqzO^2jdBA;6l;&d2BN zFYqd_=KQah@cS*7w|n_;h)~u9-c}`zZgtp{(m9!S)A@KL=ipLMj_>vq3eN93$x&TY zAYKPDa8Jwca@*eIY`X|;HUYU@?6ovr_0|g1GW}_V$vY`N2I;4l5fmy!H-D(@;pCdr zz~FA?)kil|RiojHMTr!b>2c9nnKS(ugA>ZTS4ogB)YKvF+YU)zBFJtBv7^u^$lgQ@ zdl-)G=vgPzw!q*=5oPZpH16(LZ`u10_9>z>fw0~LhfAQO4uaevDHOSv7P-G3dr8k+ z=N*s<&c#7Mo?Q-VCH62cKFPkFXmcU|nfQK>#6f_-aDnInA{i%WqX&fuibYSNDI$Ps zitswsz33hym{VHAu-gi%uoYC%xcMl)PhX7xTk|M?={Ia8H66r3nTrNTlUcer0_8i7 zvgeUc82Qd!J?es74tL!JPd*9%`Hz&752Qzk!-pX_7`(ioxEKNg+DAGqD+3>&)@6qe z!|vVxE^!bfQMA5?`g%`rad9CmER59DRE7*0f~+?ZK>kY^I1ui?AMU;zuDechwVvTr zlYR8jE&2q)KKke_>Kl-4-qqt`E%$=n2=Un!XDVE$Oa{SDqOqNc``qaqukH$#ZNrP6 z4e_;)KKkgRkN=yRB#QRV7edB2ZWa z0|$sWOXG3G~6;Ty^T27 ztzLJ&YSKWcaN;-+Pa)^ivW-yJ1ovEss8w<8+u!gU&k{-=1CAa+Jdg$dxe4*BwNO+A zMhj?Fpmc2?&NHMN)5;aP9tng1a;1XlV|rnre%Wp)t(L^GFV`ZZ79eg;mc*~oad7V? z;OL@nMhiUl1wwf(VxTADn|FfJi6|=wkQgrgEs6;5FGV<{G9P0d62Xaz!*Y+a_;ii#0Byq6GjPUbc$o5NN&%{t492ZY)6+GJz6sn@6sBJ7Z5ier}(N&oQHxwTK zdNc_ta@<47a}UF;klbGyn~|`({0<>PPec$M1T>ZsR+Eiy8wX+wtzw`X^(t2yR4z0s z^_`9?r8l30Nx-Ac%N`WBb13Ul#%s1>@~R=jFC3eq^AK|W>JqLC`;-c^HzlS(65I|^ zA$U>Y=Y>aO4gNJ{SQScqYb)@rt3d0p5nNYJa9ug%fKjHP(BQ|Rummz1)X*R@)?eVc z;mg@t(orBXS{)n^+&Fh!5^34Fe3`E$slJkl^%cZejNDgpj52>WR@5|MlPkLx2mu5* zFn%~*B^4NI>lwUhFMFqT6wpk19bTmsj9syTO|zz8Q>(~{k0c-`pUCuFCjGXCCAVFU zRo!*Sy;>g+cFY*ZgcX|@yL=;sQK6KE26S1@tk>}8yjfiO{&x)6b(oyEC=O0&?_Bh6 zbVn5IShTH9Du+r*<)A2B3d(WKF6p#>yItVO{vhmj8SX(bM6e0N(e62;dJlp8`mS>k z3JoUYc~#gVeL&MQH&9!O3-x^VzX5prHgVxaS%gKL-Uzr&w9sU)MXxZNRy}_UZhp{M z0k*T7H__8z;=xlcLUDp{EXd`Ep#hMY zkGO3s4EY%Jn-Rn>fmRVtBpytigeyN8q62aNGKjqn0xm(Q{4ZEq#VV9Oh_+6iX?Eu$ z`(SHpRincZADVH->iMZ|4tN#QO&>#!V$nwvd(7 zBHA3_u0?e1+L|oJ4K8QUjQmd|BqW5&%1ZL`@(2$P|GT^Mw-OcxZ@mTU*GrDm&p-dWd(=lC zeF9-0ee@dguNF%)w@(oPkg1dy`iJ2f5s0~}ma0QpSgKEdDo;;EuD0S^cgh4ufm+jZ z3GMI7FL+X90y2-*2kJgyu#Z0a=%bHQMRpd$d9}sEt(xjO1FQZ@Bk zJwbA-Ddgm2$go#5alP+$koP2siyRau35VzJY@H00Jsh~wxFVXB2y2hR_ZtDYm;drI zPx2NIL0TznNkv#GP4p5yJmHoLL8j~ZgMeHmh0E*_vYwX_=~yN<3cmjW;=>_d%Ks;r ztcd+W;Q3n+1wiR4?NW1?vUb=-c==<5V?~H=I(YU*&}*gGh9~2PbqJe}APOMfcL^j! zqEjkJ)HIP+q9v!=oftn;yYz)v?FfrEz|yUf^Uup2@ury&(Vg5|B5XT|?5FjT_^DPR zUOE|ZNZd(FdFf5eO4v)|!9sM4S0k@$L3*?cW*0 zk7f~lFqMsSrm^+>2~1eAi5WjEqcAFzilFACP!8}El@#mhP}Ba>)YzPN%Qd^WLtl(d zN^-NjSpR1~lE&tsQrq}8?;?IDo{$4YG#&6Fv|ml9c^!M3a+88^y9Jf3b7!A=#bFG$ ze1Y+*QPh5Tt@Dk#K}c8w&%M5#(qbJe{)iy!m^=LkRC3`(S-7~K+IxG0wGy4&{kV&; zu~9}^nvNfS@I$3?V71D);)+s+4m}0I>I@OFGI~q}hJ%{{Qzb%~Dh)TX*@Fz)w+l$rm{=3SPd?B|K)Q1@Jt4lkE3#X)&a1&AW{2%mP#16(S(Xz&3Z zJ^VaA`dUWnHZe}Q5&eq8*aik+>*wD-Z}15y6apisi>&!cibC;s5J)v4Vg);im2xDv z#UWDj$kNOnb9X4+y2~l_i+=X5n()V0<2(P3}f1s>X(^US@Ve zI3Drc2yfm7Z*M6yXig4n+XgSZ04Juob2uO^4XUbO^k~Uh=<3?BuIg&ZO_-Gh7K@bM zaQ}W-ycjOO93FWD-hTU^6=KpT1y(p?ZZ<&>h>MG3@7}$5d3oXL?7;nhgu6S;oh#*i zy!T$1HxGsn?{gFO@%Pb}gYYcSmxJ*C14I$!Esr59E<2^-T7OSQymBXohzL}219CKo zGCLM~HKhj+vi-gVh@yB(V%3=rjVS`7&VjIg-EZYo`*b$Ke9FAFs1r}_5a`Q6*he3I z^wG!3I9oXgPe#iV{+=Vl8QAX-YE^sJz;*Wqg9w65dTFn(wb9gQM`blJ~lH{Xh4;amHA)=5E)U^!tBb=4l2 zaguyr4MwOjgO3I(>m+BO(E|ND2}9X(FftnumaKx$S0gk@?v>BEfiQBJ%KCPjJ6^j1 zE*cAJUj$?4jvS|`Ji$`c^>%HMX~5C5@L&K43J_0lH<&E2{V3e`F@i-}Cq8^JjO`B| zu81lZgtxv2y#{gK6lmj!65jhA;pfeWN;%^5^T5juwxz(i$X*44H zb}hmIX^>lt3c_*KR4{Zs6@PDjFd6IWxZ?0@$bedfmR*5KRB5}Ha44iUk0B-d&|=35 z6zYS>F+@8ValPFjyU&Dm=GYHYjzP*YD6kc zB5_rDj5xL*l|{Oi?d_LH?)a07!fi?1et_8I42&8T%jeC(tnc2)tXE+v(-*Bm2CSQV z4q1s#!lpPuWi)fiCyUV6)pIyzA`6E;j+@R-zYr@yzDCN(qu5m0zEE?hyx9vE5s{w5 z-toiv^SU|B>);&Gn|i^9!?&hgF^}YIMm+f$O#z;)Tl~BvylfBS$o?QyDjQL8<@6s= zjGIBa&d8h0oHzYpvc+%~zVQJ^GeeOp9r%Sbkble_h0=lE&BFQDr=n2y{&10>#zKro z7fv>lRhq;g@7+*zM~`^&)u;W5jIJd-s*Z6J3(@I&;(P~Jg*PrrPXJc0_Ta}K{doKB z3=9Sv4hQ`2e?b%$sxg~oXfzJ|{47kGR82^T84nNJ-!=d&iXxPzfBoo&t>bX2H&sGro;YKF(NCglo8&G7HVNHr`w_Gt`I?6I1WGjzQt9E5m;8<3b zM_?<<#jp4vcTW8im*$CKSnbk4ij&;VM|O&&bd0ci)^HV@u%N^&bnO;a1bd<#6ow_I z9CLC303J6^LK)^m*|Up|Z|5;6ikaKqL!s@SGxKb-YZt6o0Z%<8ISf1F;6X{_-MCQ- z0Xkv?Oq+IQ`m}H%j2$bv9M2?$g@qIr7BYPJ@c*wvjkcw!34ZxS5|v+mS;`yljFl^; z-xDT)uJb7I|EK87L3sA)69~@&eFEYCeT0KYQ9bcSm)kiLxI!)%!?4G0Ls{=BB`rA- zS3Ajzzb55_U(c98b~;WzxdLY0By@Tc`!~>b|CRkbPz0QOkf~1~?4yr9`sm|i{1XJi z7Rsx8G9F3 zIErhji;qK*5Q17IQdJ|PqC&+dpG5NLqp2w6A|9?*A_AIF9m_>n@GIgwcY@BzAdM&@ z*c=?sE4bq*!lMfjH@?;B{s>8TgCIlv@lk~D|3Y|wsgyfz{#>~2eCLD778}CEM-e~2 z4`JC(gb$WU%>w}xvz4(#k=5F*i31Qnxfj%)2qzBUcZHw?@f4gXaxK`6U2oSGwI`TQ z5F;H981o=PP5T^3qK6*dy&W+w5lj^w2Pc2qitO#*q$(b`2*xLX%?{;tuq^{&_YuVV z=0Ip02SaK;!egH!*c^y6h9O=xseRuZ(%`Z~gw$eJ)N+w1RVl(#Um#T1BWl%%S5Jl^ zlHejL+`(~@+)Zh@$Ua|%P}d}dBb`1R@tm&Ee}s-^MEtvpqDKkqP~9M=#I_zl4- z?>eB4(r#mL>0To1rNPKbl{{%I<~Y3Q>1=J|XE(tD5HbM4&ooagy% z-$sy6J5QNmR@NkhfjO8leFhR_3Swi0z~R;uY!PM{5uvcMP{nuDOhsR#hf&!X*t4|z zb;ayylqbb>(EAz`e}EZZ{X|$z9fwj9Sb6q|o&EqCwq_f{H|)S=G_c^h3vt;)2q@4; z4I&ghrFbdFgKYBn(W@}FIG922{0%+uOuxHW8hi4Q{U;9hF=1#q+njqjTCp`?%N|af zzmVMYWInwAx+B{|R2`FL7!^Sdl+Z@3$p2o6@i1*;w4%YP8;i zdEs{a!xHfijz8u)%%iVGclGU+>auW!^gt%RtV*CmFvTe977zd{2 z?>#9cE53n}ZaSTZNe6xu>coGBu`u?HA$H#7ls~_S`jvZ+Z0~>F8BBTOkN=T2bp{`Q z469dbG3YM1pmn0~iYs8|OpPSG^ip{Jbxn!*^wXO1tS3=drxBJfz0|Yi9t|laJ9g~A zYPFJu0x;jFV@%NCeB7w))2v#$MLMlV5l{LpJL+KXQF z0Ce9kYj=NZwwMyICPg#$!JE)m*xSzR&=E0GvnFcq8@8wHIy+m=;WTk6ZLe_YE{^3` zx|64AzNYa9+sf06Ui6|Dz39b%3rt22IRz;#2*S)g^#%4&?1*BB|SHZo}t=pVdTvu@me z5Jns|5g-Hz6a4KXxNR6Z184aAaTPg-6BvQ5$27DFPD0T;vs-aQ*E|ELC;LD4Ry=HdX!w z+^rAh0)E8Tt5KF{3RM{qf_l*jkQmhoGFBos?nQjDl2D(Y%k}fQE`9-%jbCEbwXKfn zQ*($YR~gy1WF{7DAT;1Y1@_z0*dNia^_WR*!0dN1s(33Qo;rfiCW`|=u{nx7TOu_k zdkezW?<<_SXkt@i|GW zJVwzsE@LodFkZ~(Evi00K7)(JF;6_#29;vH(9h+xOWafe;B;^z^JR=ML z(BV|!qXZ98n6RNo0SfR?r!=nI+&OUsF^39?DK6*C1;3DU`DJ(j6FOW3NF$hZf>9e3 zfXd-7j2I}IGJ`&=mvdX@E9?y&L_x4-Z@P4cf!wla=Far9yZ%74wpK-H_gh49bDP3C zCBUJ8izJs7mrmfeXwM8^NH89og~c_ek)#}A&Yip4?1v*|rNv{-FT=JskJ8CQ2@dfS z9MTx0G_hYT*FLt9%PpZ_fes@9nx6*` zH7qvV$2i+{j8lhWs?YCwJ*tAhggmNjKjq{a9w08_cI*|==-dtcGAW((S~q#S({Uz5 z^Reys{9)5QsOVX>F_DuuUdPlSv$*~A@0m7eKmFoMIQZJV-1p%HJiFiwo?UPT(+BV6 zmnWX-cHi_QTD2MtHsLvA1XAD1`$I}}2g?W~*tHnQoq!CIU?>1zFc8*Q&Oeuv^viCZ zefa`hOJ8Ai{$TDqa35;4#IPp7kf>ZH#bz-4;4*xplMx0T<4=sw-Hj3Dij&RIhrZ(MpQTyhDl zT?-F90D%B_Jn+aPjpX0G_rkZ|!hH?Fgm1l7i--8fKf;-3!ujX-Tzf)7v}dE=-@dBx zSRsU9z<>d4+O&zt$VhCh21Nh=iT?fJ)mOFi`^zty?dah+n4q1XZ@$rNa5rs&E3ed) zhjAT;IqpR-Iz%r)*o$5qE2?Tx)@*J!No#W*0vLAZ#prA8?dDZOTx7rYOPl+9IwoIN z%Smcu#Y#`d7wo9Ko;ZFHVni5QUomcxXLoarLa*YiI2qJEPJStVM+=Xa5;_ z%2S%~=ahX@IB z=5RP~YRh_jP8dIsBg>?m9>ilGBWmiAeIk)J&Cy8UW_jwtXg<A1epQ|Jeu8VQ`^*{N|blLLlkH+@YL}GkY`NP;$H#;yr2uFRT~bs z8}aFKlpPIrq)AbXJ|~f<^gnXtdzW!>_##l0ZRdA|8F))@LSz0i#}z*WdiO`uUvrgdj&BOxdp8 z^wFD1tlUG4vzQRC6N~inP(#{5z*h}_pXjY6-P=h13?!QcT+G0_9L%)r1DDWIVvC~8 z7D;hvB#s~}An@c@aI(k7_xcLdHZ1ajg&w;Z4%JEW9MC`7ggMyCav|6oVqjKzJu!Yb zyUa~it(WrX9Kz$0Q1vY*fdIOi1>V{tnfymkv^GiP8Sn7y>4 zKn3c^9=j>_%M;v}AuQ)Tw?B;v}GeR0L~JoyHj-FTz?- zK6Td3y>#%^3xP!Ille14W!8P^l-WbF1OFFiO z^w>1Dk8NN33bFJN6{L@7R8ntS9>@IWMsm>~x1$_`TC2>ZC&}t1=s%<)Yzjpu82Z^T zM(i(v!d&)P?QGc)&FAyA1uH^GiV7?||Jn)+2JQV=Sz#h~=TJtC=sL-1xBGed0y@W|I})-jrzApvb|1Hy`ZbhWR2CiB$)0Y zU;kvQ`-}815oDi7aB%}cXbXZ1#v!JpWBtc3+|X|W(;s=8$6lYwS3mZ{=hLxjS30Y9 z-GUG*Cl1@q=)Sr9>HM#`>V%a%^2zV`Y5P!OuKqiBpS_rS<}U71dw&h+!p-R7ECh-g zpG(r(`g316y%@ISV)|hx{vq*rrw`~b{;zk}LX^jELV4gRz)sVd3UR0m<eknPw2OLSW{Dhuoi2`h zdJyg%hbZ{{8${fC3PUd)%>GQ3ishNCx#0yOM)$)$upJxv{~&~b$&qadAIY_h>wZ7 z|B=QtiWyWFdOh?{bh0ncN>PQ0ekrlY>(4-W;d21Q%U>aHI|uRHXK=wB7&`#*^ESlK z+W?RQ`yl5`K-~5!qPPmVdKaA2gt!u2oKOy^aN-E$o#!IG9QC2v=4$rTIF9 zT}6)XkG$~=lxya}_nY9)mw+X#b%Ib;;j@*{KcOW-*d4M@?V{COK!wfQVQ`!_Td*Pn z9-j|@y!vD~wL$%O-}%T#KGI?}P96mKK{09dRn#Evdl%vIA_w(xeBw1-53wq@#n@NKk?rV^}R%gKpg(qyXPFXW$5pVs8;Nj_@R*K|Z1) zj2I7-eS30HUi(HN>W}P-KAkx*}4mvkCV#-fNYH z5b{D2DX~T)J8^v!A96Bl+%SIGn1R>t$E2!62RwvIAJIM!)7|BSHHq67>#1t!ML4V- zOKb9Xv^k1HLWe*ikoXM>=kpOaxnCwtIlu+FPl)xDQg1X9USC6y43JV?OiHyDgR@R= zq%<^=5?d6y@FXVJN>)+Ttj$(KFlmvg*i1G867m{O{lPLH69-OW-M)2{;NY`_5Jpye z7+d3|uSX?*<$5wx^2i-9lj8c$#e(ze4E!`;B6GGc#h#VLfutzH`VPjf>Zw**mSI)( zBx1sdf^+CFs`3sIR#JxbhefQr;0(+{haZWrL4jyh^`sHRNNlL8#6f_{P$Q+YW|HvZ z5)xOeW=r2_%KF5D1f4H{#{h+*`Lkl5C!0Zi2lGMHh1^!~EV_acKHJuZ+5L;SdGbN( z{W=`}XcWCbZSqCvGaIN4wGvwEAiSiU!oGc)m3u&`$0`KTbynO#n)0?FwlB_|76O%> z`z{SCtp>opw`;zFBWDz0k9P6R+k=>UL&r+RwxOvA`~Qbjge@QhfdR2FAeR2P=s&Lg zxOU+Y9^y~fPnfZL(hVWtjyv+HuGVw!J*oWRrhG<>?xKpkn-Gc)X-_~@=F-0^9$na9 z`APpcep=RFsvICm2?e!lv(Um{Luf@XeZn81!0;SuE98+!DJ1ylSh@*e@Z>oF48p-D zuP&md*2tR839Q_hzz<6j*?J(6pLPu8ryWCicEK6M+N*K6HR7$jHiY{>ynvk2Nba5c z9m&yMvQX%B9T-1; z4c+Y@LwR#Gs@R@`PRzuIcD=<|v}bmzt%y`x5iY+GpQ`7VL!-HC`7PWqd;zJ0^T_VT zZ5p z&N=k!*AJV`hRI|iIXRgtue`EbKKfT(brnJgmMvS>V{QCzMqB-HyzY}@MVPCSn>W6~ z+4~lt5B$1uhz6(aWz3K*?8zEPae2ok+rVuGx6jd*I_=z|-VBDGEG(8SKc`+ICn?2%vV3Y=dZOLrAz6Lu}@$L_Z zO$U$$9rC^lkT;zP69%@P=kS1P!(NonR%n|poPlX*JOkot=@VX0tgW83=sIFT-8fu& zatbA06)3JmdE;A+988Nt{o}c9kb{6!oBb`mTZ{7A*BUu!F{564I&#_w5CRz<3iTdF z_jhu2%)2b9K7~qu*pcjsb$Oh8a0xN)N<6^k$YE@b9n~pvFw|4W)I+NnQ?`R}UmboR zKPZMZv18d7KaS#%xK5FS03MH@s(s~LV1eu0#oXx3;~aM>Q@u6xSKWj)bgmb03ImxT z$!v=l!h+~g)S!Lj`_O1pJKzpWBP%?OgW>69hWBHCWIrnV+Bkdgzex+<&tuBtyl=XS zZK=cgZp4W!OCQUwn7)(*+3*4(elKa2g-p)gPTy^t7+C1w5?>7CL>Qq)E2j@Uk(2w+ zq>nuTzoM|Uyzy89QnI7SgtOdc?v2wMbO!_0h=U?JC}!wd|~DP-dEg+$hNelov2 zG=hvo?b;i;h zvz05iW@f}z0%cG%jj7`!blVZGAFE>8xNPS&oUpsEVC z<=gn{FGG0x=fQZ?AfiPPF=|VKp}Iju7+zG~VjsZPfDUDH4Kk>G;X>rNR|jXBuQqIU)&kKx0q)TPJe|E+yJb{_6P9X_=i zo{UXk5AksIi96VR^N+A_4YX!0{A<7x0mfjA^@R*9kzDM0ld1kY2_fM~k_b6~6#v*R zlY@t$xQhrasUgkv46*({U}#ddNv0DVNNr9I*1F(eX^V1fpo^I7)v zvy4m6LJ`_^TU>3&;cgx#h+nAwz}`2n5);aU;8T@20l4w&TqI zPoUSslTSiyEd1p!u=qbOjPAw%FnSe)z39a;Ky2Cp71~Oy?tI#KYn&`T+B57(P5;Va~h$k=?I}G;HxKZ@%NOh+IA#O+OXz% zL{tL0)YDLmiJ*d%)%bJ1K^A4TXjgZRr8{{#ozJKsEZWEWfA42%FM837wvdyPLuzU& zGiJ;16ou;S3w5Jur9e+QkPSe84B4e8PeS3pnkx(~e79dhwruIatr^ z^V7-OSIfSgWk=#u0q9jf=~bCbDBOS^l>?XELR?Y^eyO4p3UyT;c5W)7uC`~?6$ZVZ z{wW9eY3+&38vhHCVU=yBb<{}?#~vw6f2!qYA ze>oc&%lz;g`6%K6&EfCl@yJK7hijjNgec@I_k!L8`bb2n8@Z(fP8`>~{0XBFbDx4k zMR4KCT7I1og1ezA5xSPPp=}`;xFQLPs}VQ8im3M>#|%RL`6f;6*%U3pE9((|`2w-8 z02yjQKJ^FC8?=08>(Plde7gp+@)3*H10Zic9|m>M_dVdfM-Bd|i6 zG}B~)5G&*q3vv!Bq`kiooyUhvjzzupJWZw1c156Apu7s@p9>NBn*FRyjzyg|1`?ZC ziw)A0j)rO%M!lc&BLB@-73W|PPOkI3!4&5PKvVo}i5-R0*hYUegCw~+m%$agF#;}h zH{4fRrEv6)u&c zS~pu$hLTWGNR+FVsFkZIn>`yTBr&QH8wOmc6yU;$LMa|xibf{aTZ74%Jeu({Oc8#kTw-Yd!KuB~R5Bj?8%@cp00S|u#i*AR3eUY|4 zpp$?O+#W=I5ds&}POW8KzbA0IjV#zOntyzMB5U`hw_5*)%cf9J5yqnzeZ}MfnLT@* zDFV(I-1@#67x+|&w4h72;W>8%)c#6~!Rl-Au6`eaL($(k5naeEkPxUZ!oT*zHnYu0 z+{XT@Bp#XcE;^y2Q&d1OVYa09vurYnqDpk;9e8Xg5D`?!kR#9co`8GDAy6fjlZR2a zU=s)4|DMQ+0~vVznLSee@j!5}_Uj10`~s()rdf}U9<7l`v9T~}RQKu~GX_5U3#yghB#*&Ym`7DhjO7m9BX>iu@q;)cR(V7O)q>X;??Hoy6+ zSdaEp9$iFG_do1<(Tn4RJ$v?GFdUox%Kr!aR{H7dufJx@m@zHvQvUIee{l27H*@W^ z*K+94q29O)J&fPV`3I=1t>xtmqqzL?+3a6eL)Jcxm@BhH^Zdknm>$T)JbN+= zH*R6&D+i8{i2eG;aLol%i4C>0;=4=&fn(RV+d^uXIc_<7b`4_6#MLP6d!IQh z;+^l1r;dl>62yC7qW=AMn|yxx(rex5t(_&`~vvrzoBm&4DJizEtt9XVTy$8 zy&6#$ZSOdJoeOd0^N5m4WJ(P3FP8!}nslrkh}V8VEZ?H30RMC`#2lW0Q9*5E<#u!s z;^kFZstcyWgjA3ns2t`3&%A{gE35EYEyycpqc{3# zHO64mW7?FB_-qNn7eJZ}sAo@sVSO9+wj?U-5eiY!dekBZw}!sRfc$;T3*5^94&btx z*&ERxDLPi2nEYObmux5Atz8!-rZ9F#4#BH$+j8z`NWkiKVD&mlsLLlrZESCu(MGW) zmRhq7pJG6-`iQ8hpu}n=L063*?SnqCz7*<9`MROrLBQ6AGE#%u@(F7`?i~}kkzHa4 zD=TI(C^Ul#YdDpbaHOJ877|HWNF;j!o!>*Gvzn-y3KA;|uvArHTJ{U&@%_n5=+|z) zc>*eV)d3=cBM4Nw*kew>A7W?!h;SxlZX&*}l4*O_vuMo8s6rvwpfDuT%!Z7ElvHZh zrcO~viVbIYY63L@!ODRXIdkiegcTIx-G6`~1NxyLs3SlqI_!ire1kMU-u(Va#N-!{ zoK?WY#Vh#!(z6Jd+JAS1mQ`b|tz*aJ(M+ASuiUrb zp%#H4RvFG@})?? zWxEJC(AVs1e*$vWAh@^?DqP6uWCF_dKq(-=I0(ghHNrO#A+nJ6YAn@tTsnOnmrh^D z)~qC6`gS%SEuVyx&7VO(XAI`&jKQ2ZJcCc~dYv$9D~ia2^8&JR6HUv>H7o)YszQ{$mGk%SH^1%w}MCE@ z*R#}p0{6(faU7%dXJ_CRoquO`3IY^+Fs^lt&IlX-_&TxEhGQSph8w|uDU3$=`fIrP zX7KxA-8z^y4N6NjOUifN=^F1U1U&sTJoq4(%`kN6uh(|JUu*Z~%`k7Ck!jOXNK8y5 zJ3E`rn>RCJ#0V^wZa!Q82l3EDFmE2LSp#?6p(zY|(Tko!@8#5sUUV0g)hO$>c9`sF zCEM|!pgNh8ITO3T}$>WHfIuc9OHWUR!WFL$ve<5&H z3@t(n)POoK6y@PrDE6{(Zxx;Ui9KWfPn+suyN}}GyGQiY08u-t!}^R zrki--g%`-o%w*rbeGDGl#_Ho78#aoDD`9gnc8 zGC)|raOC(w5D|*{!}Hoirj$_Q#PiVaiN3XzJ+8ha99BlQG59ct2chiQi%?a(x4+E5 z`g#Jk5CZcb#+aN$d7+JTA*i_JBT65=jfg~}rZ5nYT^vlkSBD~?q}q%Sl4(OgK6D-U zI$=jRqA&8BC$ztHc5pXLW=|S|J3Eq~f4_@Zv=Y%^uPL@{&{+?=yMGdE}U zJp0-BQEz+!vbRkOJ2oMX>x7=={C!IkFU&;HBrJ?2bv0>SU-!jp{{I*alylVUd zl*hGK8-p{qS;u~s?g7Q3m!>WUPXzxULn|0fRc<)^3$X<4da{S|W(3k5>Jn<)vdEYI zq3qM~k={Fj8VlE=2Mz49u%#f8FJL08>Pe(g#DiJ#8TTp;EMuS^()IslsaryaXgq|6 zQe!)iMu59;@(d0(z4kkLf+qzJ^tURU2KPXtXu_7UV#bgBVQewWK&Pr2Nw=Y(EDnnI z7CrErX^%~77Sc;>SxpfgbNw$wZ&Ttw4sy)uh%8uenDu5qDs_Z@N7s6KV=D7qljMrY zo(t>DTf`EY)u2NotmK4b(1El9q zT4CZV2n#P`?Fz_Xf^<=RtVN8lNb4R>bv+~)nC_Ro0WMiGlt zucX?G#Htn(H0@4$griseqoBsj&~gzte+4t7|2fvGI&G46&xgYK4gd3J##Qz5lR&hf z57{gk`?tw9<{;xHbEFTaVE=!w zvPAN4t#NF>aw6QU5pE-ecW(M)-geJPhO10?8}0dM?%{$#4cuHCB%g_VwRxRL1PO4* z)B6ls-X$>cGoyv}&Mi&EwmfvJ+Y^2scGv!l)_o5@FhT0~8FcbmHGY;Yi?O;}ZhtxK zqx`hoLvevrE60qP0UFKb2mq?hndW@Ex)ih>OdPO=|B)m-X?+f^6fO?v^fUnEQ_SED z9mxNtm*=bX1c4l+RiJQbe<(_Hdprg5S$9$~K zKpUWmr_3ewa+w@rUDI?mjYmtC^|V(o{!Lldp@#Z>(FC63oAgJ6FJAD5_)f6eNN*7p zv;WI8ik*(GZy8KtjqaO&|1%J>+6n}wVzZec0|BxcbeIy6*Z{@MA2dAw5c4!G@D^#m zKZJsgE(XNesq1;OQ&3P;4k20MLRSF+x$T#25rC@{=>K)yu$QcNaCC5J0m71`q@{a} zSpEw)azDxfN)UP1tYl5^*sMdw5BGp%SxRnhoP<#^phjbw?@lga^!;})&^Pj5-qP`M zHIYeuT4*TDPz=%Ze|Isy*mB#}xMHDmQa`mcPuMnpmF2g7F$C-a)6>@sw==mNkwus+ zmntyd0H1xhZnZ6D_0F-62jG&ANo@CeaR@|~^Z|Hg)d-fDVQ#?+TsB;-s??9Y2u6U- ze~ilU8&@cQ!FLEJpTOJVNM*noJH@lT11I^Q1knBHFrwUJWf#($$kQ?x~nFZtaZ z%U4otjrDY4+7W|xzER!BxH36QQHaJ{#-ef%)hH?E?Oa%#m-UZTB=Mpsc*z-u`Jdc8 zMaKrPj0I=%K)jq1;bM4+_;*ExZC8+*8RCua7#+xRlIFBR4K@7kZZ)E%n>H)-7C6A5 z>`g;k6GWs&iSY{5Xhk#U0DjYS^WG5B=!wE;me75gRNNQ2OK?QZs zH?L$Q6r|HyHi5q@K71ZNEab9eJE>ocm!9EsOvon3TMA&;yZ> z#qK&bd#wO6^u;(-p}}qE^x3auIdh5HAr_aCnl^={&JUjsCOnUrB2I*&t3TBu9G`|F_$Ky+34h0t- zR^~CHV#p)g*grVnFUQGfLP#@R?wUysH0j`w)_(pvsz|7Ck4&pnQdP65*OsNmy~w5e zVLM4$+vV+Q?a!!?y9j)=;sx$E7xx)YUQTmeyducQx)jxB-6k-MKFR1&VI4PwMrlog zfAPwZ4B!TZae-<;o{jmiCPsMUTrg)#cG)qDwi@)mS7N?e&95LM=e-Z0($|vwueF|T z@ti9piGi+<>pTNPyDcqQG1l$wd_iforB0a2>D)fz`x8&=^IvH7+zUv~$(@_N6x!%_ zK;kw$eE0i#KF7gx!(@?;Sk+u7PJ{NF`>-=+PUgIsAa^v@3jU=&NNx6~NGA zUV7GQc>T1&^p2OE_K1|7{m64?@{vXPk738@VUY1|EVX#)}@**Aa597Z#@wC zdeim#yq?Jb?0m&O@Q#v%#BXLs@%A?Q;^V#-I-UQ>pm6UC?B9eRZFS(&)|*1}U#u_L zDXz-T){(UszhI0~UdV9>*lf z3_4>mf}bnqvI9W&XdLfV2U?c=@I)GGSY)ITkU&SL)fBngzn-1y)T#~e5CIz-+5jKX zdpuhJ`|TTVo$q3qYNq`V4sari(FpPs&lw#Y9NaUI8U6yqYX65ETCvibqx%mY07t~p z?s8!Wgl@y*vV|Uwr#J$Mb3fJ9hZ7V8R)eyw324y$i7dKo-L|)gRZ;uxR zzF(jB7wcX@cfj_s@4wJJ`C_2N9!E?<;&xs^kQqoY2as>pBu$5(bF-6kT~u;e-!+?l z^CBj@2Ut<20vK-7oN=>1%=!|SC|4iam{Md{esX_*W z@L;G)FknMtxHyEIj|SyWi+CL%fCc|TAAa-te(VG%pf~+PWwoMlVKD^R$fdchn`;}q zfgBlpAL`Cy&PrF{3B#%NrlkH8j#bivHz^q$tk#X+u-9T?jIX5>HBv%;StgU zt!5@e8SLEEtQYWfi}RXmI?{pZk_L;%gP>Sd2xwz+5@F2_)>624HHXPz&lC8}i zu>+iab`cdAdJ|o(j;9lAji(oUoJt`Yu$L8MCNJb?p43bMjlk!5Xc$#e zQ-ly%d1&7sZ|+_K1883&i7J){Cz~mLc`xi#TOWjKS70QuD0xg=uwB|w8tu^3LR(x| z`R4>g^L`=&?@;+yf0dX>5%^={v4xV>8Wn$0Q(I8k}S?!`~in0)4#z_O?~JioxJC+qnWxFd(ddPNVY! z1WJ{HZKptH`@OY+w>@-q-tZTv6MnrqJxNWdhb z#*JP$4EavAm>=ha-{W&3#ZzN#z$peTtV6^K zn&m%rH9RQ{Bi*yZL5h6b`CZ7c1YU9xG8PWv9`qE=5N5MGC$=IUF$Of3;YU42;}w4s ztj1dv{%iLg0dy5lP}#0I{p0X=UaqeucmYpyF6sc%Pc$>E? zHI#G=%V82)ISIGlB==##_TaDx2u$wE2#npCJrik*fq@Xf|K)e{8!uU#4VHw`G;9&? zsH1hRW>W+7!@fz_Q?)kgErf(5j)7`xrj1u}H9~W4lc7plbwvUBF=@pj+>GOX9A>PK z9R!I;l~6d6rt}VF?nVg1g*z2JsQTSeqi*r-{o&WY+K8?`qw9UUG%gL)$?F5YGJMP` z_lKwR=@?*;PK+l2Wtr;ETIPiKJvz1D*O7yxq7w3KgJfuo=`bpAkS40HJsiF<)e~z% zsdy4B&p`LAAY5G%xB^M3K>OV*4HK?dKDaJa7Kcn7beavJ z02HOtR<-2!JJi+HwOn<*F#)ONya`Co?Z8vlRc+;K@sL7O(VP1V4V zaW^eUlrlcp{q2}!!vZh|94V!Nqt)aG@FRUT7&udc6ZK*l(mBu z(6#hmQH1;5KYIX)emA->xOrN_<&~Au0B7(4MeM1ZwuC_Apl5wp5C*Lp8=1zMsOSIT zPcu?`ep?0*-3maKJ`lVunW+0;*98Dvz_z%?a+zVNQtLkq1^t2Xy^!zrs)@<j_8iOxd27+%6Yu|Ltn0v-!{08Y7;c-GErtm^q_IN=nKQpqm0O zVRQh9{q{X*IXyc|<8@_-z-%NeZz@0fr*S#?IJ3nLqvPA;)GX)$=lk`xZQrWxbu)#idbxvDI3@6HK%pa@>O?z7^u#enwe9~H(H=@tV6T5Zwl75RcR_~J^cGf z%+L&*JpS073GsBstj}-w?*}+&!~*%NCf>A`N+SL$Lr>M91|-ch3a$Nt`BLavHGVfseIo=WPRSW zQ+XiJ(Pj{ZHFP6d-mHH>aL#D+uah4xBvVI4Ik&2(sdf4`R%gA2BC*PqDv-P}C*k}% zu`97L>1Qfl-5<@LKWVh$H8Q4m>ark6?DJxAI8$esy`>XSbJX+8;^#ydt6o8xnD_;9 z2F}!O-YC?n1M&)aYuL517$6FJYte%Tc4u9;jr*~$^&gf{_MCTU$_tmSEUEPRVW_#8 z9e-xL=m<4ZMBdKW`IK;H$v(%91R93V(g|DAaZGF_FFSZp1*SFH2hxzVtL@Eaj7Z^1 z`H10@Ik=*oJ~5FwqOCq^EIr}P8^{e~1h7Sn%UEL1uKRwU(~%tOs!WVd?`fF*_*KuJ zAVh1CeO!Zl>P>UFvcl^DL&kAobRC?PNItM1YPPN0$W)2MQynuv2m0m+hUs-l%*t-cT=o{n#5P!-A6WW3JppCBh{!K#9LUeKNGy0BPgM7#&TcZIH8+t-vv zAm~YffMS5S?G@L}Fp{XwexnN@+dkjKoA@_L!j%PQY%Eb%H*tTmpI0O?U1NY))mr3u z!w@6Uu(w~9>s!0P8WY)bME|%v4)+%sIT_~g7kQGJz0U&gyO~=gP23`Br^1Z`Usrq( z8J2ivcmtw1MhvK=;PN+N+dl_fD;b*>INt*veVU-$vE%aNb_~=gmvcHIn|;&e7xaVD z&}fOhz%#+wTWNB9*dm(MqKd286C%#1k(0E-pJ~8XMIrK-sIcEcb~j(v>u{~Vc>~qA zi0Fqxp(TeRFFcmqVb*en_~Y(z-M7fi@ielb#qsp_gA};irOGf(b6Caj`_`AHaF#7u z>Z!y}3Bss0k?Eve(8w+quz^!JKQ^D%OT6|e!IG?FAeT0{Vn%8|Y9DM%MLzWWb&>SE z3*!Rbo?LZMu+bspi!l}61^se!i8n57B8xM6jQrm&=h4G`KWHJq6n_>BT2z$1UNxTZ z?Lq*~LMpnz=jdhjhkPu8{1oDIamF^#4`@BMH&@fG`b`Ry7;%H;MK7%!kKo!EL4R6S zoZ%|PSpDz^eFCNE<;Iw(m``wZdx`?ag*oW=_%U_`wA;&0Dp^z%tpH(Ymd&WlUw*?i z0b`K1c{~JSl>T$%ZWFd)Ui0G34R)`#qQb(U^`_HBMG`;3t+qPS=H+>#2zXr@6sep8 zTOE&@RxnXf`vBb1XfQ+315m3Nrq6ZT8>@PG9H@Gji7a8unC!Tplcm$`z-}bS*aAT4 zs#3nE`|YwF9SiHO2ONowOaw%p=Y-s*>&4{1Ty3BR$;n8$o7Wu#U3?d)W)~1a2aP1) zP5$q~K%94-`Fs)LXzAmB&3sB~YC`~lrMcnn zfR%{h{oS^+DoZs#BK8*W6*OEKU61*#=) zAmXx>{4_pB;E{m896m4*P31AdZeLPSjMYLAiq_FWX!o(kOv&c?bH<1_G#2%?+VY#- zdC@))YU<#9Q_#^t8=;zUWt$ax5rPC08ZFpX|EafkfxD7?kX@ZYExEbr7P^e)0UO@> zz8x7tg^Z^#g6K}fZ}m5i{4#o3!~qr2sFJn9@f-Bm*Qfje5 zS3Htxc$Y&`1#D0kWTdVb{8SkA%!QZzxn@yhn~j*3CmoQ3p!wYnC`c#IX20=>mMa1= zb9NR1eD^O%+`H3iTVJNfQI>%^f^@j+rh4|1Ro9F8Z2o*TY<@I%&{IEvpRsX*qt+fQ2Y`S2?x^GxBjg)P(!No&;Z@1Qs+ z608$(TSGj;!4^h+cuUU=)6ob-_+|53Nns=XA=xoCTSbh|T!ZiqVor=KAxSL|si9W< zc{+&xci0G(yck+Z{eq0G!yqrR3^g+;$~(ox_*6u)iatnLmb~nEuee2}w!IwoVaf1; z2j+$cCO>XO&`L8E9^c0h9s>?hJR}yCM3@+F#2`!v6#|00oQao$`~Jv5U_iZa`20y3 z7gfG<)qj1)fh22?ipo*iA^m!ey0BGjG0BmbAxaNQ!2lpK=EfbQD;bIye2Lm$oi1BX zm{V6$c`{F+o0-^ri6ThRO2eXe6RF8cs$Ju>G~{(U@d9)uEkwvkniN@NPL&FG^hNXx zZzIC!8BEXXoau5rQR^^LVvAs~5dhQAo4`um4=SX!SU=8@kzNC9Xd8#Mia_;6ee+P! zW4PK_{stm6tZFlMZ|hWoKQrN{h=SK+o5&{quPb%{@IYXx+NIvsFK8-(@w`J3`6Lj9 zl+GIJ2$H9w6PM&Vh6{DGhrYJh`A5*yUW^xbc|HApUMi$iOv#=(6@UyAC(?i3v_oopmVMz$i-7<5*@8q|NrSTye@#qWaicg_oqhKZ5Nc(nBQ13$yz zs(GpJ&KFT|Ysm>AJRQ&G?}f)*kOphVQOQR~a-4K!{neQ~(IbQS?A!Z;{bo$62*-Aa zPJ4uyH?@K)+hQ-`lxzBvlEz>Ae3`L8V>QS>`o4z_^_0wS3T0*(PATQv1Iclp0MrMG z%Apo{D@?xPf}qe3l0MYPNVtHyGWn!mCpAot$GY-F^#R~P%nMrQ5S#;)jTE%nUy7Kq zgG1odneIDSh?wHc>sdL?ttAogB3Nj0xqo?&>hZ2$8&x^1dkzy98XRR3 z-b87Tl4Ws46?9ZavP} zI0;Re(Y(he6?E76ZK-4948AcuY49VfXFlP7{wz_adsq_jRqMN;a zChl#2LHL6CK&s+t)VA!PoBX83BJtsbR82sQiLN9bIOOLJ&V%?fC?KJG(@%e=QiNQa z^Z3gnh>8#HSDRcde;a-GVg`AXO7)(#y^Ertg9^-ZbV=(rrqgb@hT(R@mM>1I?s^Re zHYw%fhXh=9e}K6tdSXHjAoR-02-89Z?RJEU$296q5I~M{e0?Ikff}bsT=wuuYwX_P z!9ix1^A)ux`d|6pi477Qe@t**fZawNu(BZ&Q+2%s0aW=jKtB@Z36kxZ3VfZ*H9&QN z+VvxF;{W8H@yU4*1qDKci}+Cc$vCC!yU!f!rN zjy^44<>lq0BO^OE!$hY4Cerv`4ifn8XGA6E2%3~Tcl^I;CNk^yfJj8)4g#lWo}U3& zll&jnxFQfrsQ-^i>q}++tfgoa$SmNA`Nic7b{nJKe@c(MppCQ2;3O=RiuqJhfh!WwiwmFj5}Kha{`@}jt02x* zCyyE%G!Sv3a)21VBs4@<{CrX}7>X>X1C|tTjg;b8)K4ujf4nKzt7KJf%yPq8prxKb#Ha)N z(TdN`AIhLO^#LZM-SyBuxW9vu9+SV2H^dq#HC^3cwiEp794S$$cn!WcHNccvsL)y9 zn5O>QR|Z#E47`0;pGOvPkbid#t+6W$Mue=6&OHT@mpr2T2MY)x=4D8%BHNNeX<_pf~TgjPu z>D|6P`u#yteIN@Y6t6CrqKGq23Vj9HZkfs(BN#3GbPdbHwIHcgBU7W5!*n4>%KNTC z#yW?a7yxGXB7F6fYilNH;6}$iJ1V)>#F;1P+)ENU4kRGw%fXTDmBQI6b z{1UTJMVWu9+Q%C=x3Yhk{T6im3}JW=rYaIPFRNz1Pu{*>NcOvr%4+*l&P|nmm*P-m zz!jghd@Fwv5sLS;_N=0WY>L=q(t_IV~v2bWvBc+}M(Lm}4nQZzpV_10V zcB7`GPJlnt$o}BD-7ccJr^Flzh=LFq3@F`86r6*OkU|e~E<;D5cnzyG?^5m_i<1o! zsN-uND1@@%GYq#*I5o>V!8(gp|D65$74~kPd z-fY|SRnq{@uQYBaqUOv`H1pc1r^BKN^r507r`Hzv6Bn>U2CjERmUQOHcY?mFB@Kdr zv_Iovws$Ocjn=!XIN0jvl2NdOf^2y>5xHgYAM5%@Z9^@#At*Fwuzj*&HO;@OknO6y zU_g!H2GHKqdMile)bxupiMVo8~7$$Jt1a!T-_3|%ZIZZp{7gumvJ`(1e*xqqL{s50xjqPXncJ98aWB@(PTe5Itr@a7YKW?q^G;(M&wM1 zBxGo4Sbl=2CFj96j7fWFH*?X@z_3AXo!cpJ7Ut2m9-`y7YGnd!p(?an<1;hyfx|Q! zEimSb6(p6=|66SV5E>202X^iLBk};KT9hsyp4wgJJ925y0w%MYP1kK^^EvX*`(i<6 z&qu4FsCl(D!YKaQ(JSshn>rMU^XfjOCyl#}Oo%$U4nCf@q;CUU1p0KY3Yp53Puh`i5QTVI5 z9a)KRWop@8_oxHzF`}vzw+~vq$01zxO<&6N@_Fy)ps7y0`Oj2`eW`33jR?Ogl%26f%nUPt+9G&0 zfiducDmHlCmOTGq^bP|sv~-!|%Zqvd%5UvpgUaNZXz|Jui6r|?k+0gz-m6RsqHrWABS{wzBA#nI@(4U~a%OO2{pqbxEQdOOJpld#5&8@h~;uyud%yk-3!EW(hARt$S{ zU^*zlI_VOi`)#KQNTs7hD(ipgYI{MS74n9U5&Mg}yY{28zVOh<^IA4Y@i#~(SgvBz zKJ0y(bpp%02}X^hC;7Hl+)yG8q}4jUxXd=Lmo7mPh6zVy%x--7<7ZJ4YGaqfL>n@C z9(d&Y`TFojv}Np%Y~xxPqEGC1?EU+IP(^KPtffCAQbbzK!LeyLa`IJaGsuFD|5WTw zOV{=S@=3{LQ-YOrDvw^zzA@vjW1C8|e%)?~Ww(8faQO96ZDPpH>HUag#;1$hv0_Pn zN;2d_v>)LKyeHvm8;2~h4My&hh(XrNYjho%N=a}7g{|#OIcC_rqtHXUHLG9LVl=cKzcx!u*6#MT^NodEby!9OW3H?muZv2#${Bx6pLrADGOEe0}zc zy*5KN5mzmL`0oqmXf7~xJ8$GMTqd9GEX%< zJB(9%-qKc3B9Xl#73)jEOFDa8A0`_RCI@ym1n0L4_T^M>@}_;g`whGx#jg!;|MP{c zt-W5e+&p+lrVjvW?qp7NDl{@CBD=MV-5mvPASRB9t%Q(z&DacUHGsY+a-O#RAc1a* zf#HB&kQ^_ttFH22X;W$7rrE1^M!R8@BEN9nKcDQDb(q}jrjxfLz66gcU;qI|6(GRy z-fpv&vow1>M+!$c3Pj2oIFIyOf`Fh&NWX!BEP z0aM`P{--VwSOFB+x&up`G&XZoKs<&G57nW|_&uR?+~}{_Z}bISZWG7#0c+x1?}|*{ z&lia1efQZ!x)XUqv-S)AsO*yB{||M8kvOaxtqv4`NbNUZ1yoU2C#p>W_{8r-zVFOu zOO*w{ZtUj`bbI)|{S*QeIF_y(Nd~8_$!=eeBuroblbHJY%>1&eD;7R5p}8Eb&TW1k zBWl*GARr(d0x)UvaJmT0sIkW5$+b==%0BNmlAo{3-E|I!V+?VZ>yHEnb&@%TpTCi6 zk2}G$vX5X{+S8Z}`Q636SKRfPMBgrkFfqkCuWuG21e?-L_mj1&0J*Y&&jno93)B9{ zV_3a%>t|DSNtp!;2{rk#VELAb0WvzZv3XHzr5l@zC@@!;)AW?FY_`oO=j z?mjTanU_IMO}sYg4$eliigHQ5dqS>FyIc_W3v;_mw&$am63*(C6D zRrFeFF+3-Fl@fekkhi@NJMcehgSTPrcacrRCDwY*B;S1q_Y|pF1i)V2AM|ZZ+GKhN;D2#?EURldV}4lBQElkE93+Ru_e_2_#g3L1f`&TN%OdbSrp6fDRbOp?Zw3Ei&r1B%2=El=W+tMvY zi{5rdZ#86mGo+>lS*4wzW*=iTv6Wwgm9JtZ6C=iCjTZZ@PlxncUQRNj$_PP80FTR7{jDN>F2#}{aa6)KkG ze+1dB4k!jCg`HCd<9?5o29=#H*t6OL+35?EDsQ6Ej>%yg3<|z;n9^%@Faf!IEi}tGvC@fidb+dl(_mi$o9BMniYM3m z>)~WRq@#lmh}MW+?~qdpj9(d%ZYyvd;1l||IFCIAe^-{@)!D?D-(A58?rVf-KU;%Z%Ii>>EG-PZn&&lpKr7#2nRqh z19KDu?NHb2DJ{rw%HEZ zYYwi=bK&pTR8-t#p%M{I14ZPclatmD+1yUYiV@Z`4~}=1n;92*ywk~-kCK*5xQ(Wr z{j;xsEwqN|0`*T9N+r*&$HvB5J|5R!mb*U(fdbu;;vAo~6AqB)cOReCrljK)E}3wi z;vuLRY8qyy<`Pz10#^TqYmk&9GNeg*t5HMJuQ4A|{xrU!0BwSIQ06JpAx#d$ zS$5S{neb54R)g;;;@y%B^_hMM2Rk;NJnnhk={iKavmT`RawR@tvw!hP-X^;|f|D*t zH;OmcA^%Y!20w_aYJMG5Rlz9g`C)kGPtHGK-xHbR6 z_tMkq-ISJ2OtCm(ow=?*b`m>wf-kEy&E*s-S{@FbA$F1g&q*UPaG8*i8EZ!4F~jFh z5)dmSFEZHFF8%hZ5!nI-pI6b4*>Vo9!AA&nxfMQ2IG#Q5>GqHnfpa*Uv699XY9Hdl z{MSw}Xt(yBkuMYwantgo<=3om++hX}+B5O_HH?7`8QJc?#ZkIw}h1?t-Y;lZninIq3+e+QJ=3L%PHbv%6RFb zG=-n4)stUMes>k3fw|zVB%_G?Xw&3Qx;DI3$l|{+nPwyiUO$~Ge zQ59!pO{UrxYTIuzz(XbF_{#024G-A$!p-$y31w_^T-YY`pV1DU6bt=>Am2Ly{^Tbh!73@mQW9{Fd>ELOSu6 zmNKsNb0Ob~h~e|FGtlzKc7j<%$mw_Ts6@NXH>O%f?YDJ&*KZ_j7`vANn`&#$l>#l7 z2N>Gij_gQ2UJUJs6u0w_c`e=&HtuI|m^S#M%}CQ{c4h|WSi$XU0k&T*iSs@&w-*`o zXKS5MS?hi`iD%agdNcjQB-pO`2O%#zmYZz(KT1UM;*r%xg)=8OIA(|hdHC{^UXluU z@ zt4E0Mt6N&=-ya9>Iw1*HFKaufSNan=8D9*3kvY-F$^a3aU-)fTDa|WOtGlLlDq?R2 zP)5Jg$I^9W?Z&Ine+@^>e8qq1r-z89(Y6~gdUWJ{==b{T zu}|Oh?7DQmn2g8tZfo)nmm^UsWJk`L83Agz|0LrzHB1tbGb*GfCnu77$b`{?T;8wu z@=2bl#J6wlgrY~wK-kLK+h6K1-_*d@r|z#!(hmS9R-3G~%8i{LHr_R#OgxXL>I>UH zW^wm$_rd|uUiV;EczC$HR+5Cc_zlp?1Qr_?H|w*<5sQxYL&y3F-SH!ywY0oG|H}lS zJ7cAdz~<+`;Huq%yWL4ZjeEm0pSkzC;?D8XpHD6H2mCSGwN&D`_}fZ@^A+yIoKuB8 zk-OrJwi^uj@%QL7?(|Xv_g|baB4*?}Ya&r-fMcs?Tce9lPWdp!{Ir*Kh>Wuv>gY!R z6K&=zaSGoZufP9$hoCJPS(aAbU$}?3^4`OsRHg%PEa$1KBfE5NG<_AG^GVSzXWrXY zOO*ADgvP%80EJ`{+f;DK^f^TV51c>pqW86w5heuF=A%*2X? zL%bd}rNYeHy+c$X(;!3NwuMXLMSsfg>e>71Z>8+Jzs`^Hz0Nujdf9$Q>fFBeG=)d% z)!#fX$*_;+)cay`tdmiLpKnB7wOPh-2%XXOvC zaao1H&kLOdgq$pP`9yUrVlSFHJ+RyRFofX>;$nDVdHg`8lUD0jM!xq8bGj8~ux9m` z)NXVo#b`D>MMi!c_{s#E-Ptww+ZXc2aaXifQ!EfwwC~qD6SmldS;LY^>dME~Wm~AB z$VpU=)RyJNEOl<*;9@Pq$flDQ_Fh9HmqvtRwDz8)GZ6)uohc$2wG~>b5wZNU3_iG# zXS;s@hP8=LkN?c^otMbM&-Nr-Mqw0|J!YBxA;`>B!3&_he;=29s6YIr<&j8BZIN?S z(Ccd|B5^V}>+9vUKP8CWR}$H5ag^A)}(NJBcJ}-XGqTCeW}ABqyMT zpEc&tkSv3yHO9+1LX^M7P^=S1!2MOjV)dTZjQotw`3)aO8g24GYI14w%!FmbAf5Y(<~lL!+M}gkS__k;8yCi??6Nr)n(fhpqD5ek1>` z$K*_s?mx5Vl=qyWAQys_e#))&qSQ2iz|_X~_uSko8~r%o zTBG4NEW-kNez;z4cvDV&v_LvW279q1b3#^_5=11F(*uJ*>Dufi#4NN8t(v2HZ)6Mb#r;^_v_tDgx^qkGu zAlyF7rZwJ=uu3v~$=Y>2{y?5Y~sBsdoBw()8a*gJX+{pCH}<0IJ7sly+fbF04%EXD zy09g!?)^@CUT~(gV9f^+5nDah#gt~39%~HhmiV`ZFX-d#9oK6>EX`5>rUfuS)BI1` zDPwJ~r{&Dp@Eu>DZxz3Q;sKZD^+~{?I9pbzXZqjD9~tmt0+z}_&#TVmzT}w`r`uj= zqSzeZ)xbR(x~lV0la!3?SBo7b{^JO=U%5Gw08j!;+Da0awT8bGr_uII0dyqE){=Db8skCifN~`cHvI z~cLp7wuV+T4rp+r|Za0RxAE^=6yB%o7D1{M4 zTdRY{YY50-*p)RUP8^WpP}v^OauffSMmrKr5p!*=AR5_iIy}(uP`}r>m}5>0xWMfX zHxc^I;qDz)aOZV=NWf^h#8@=JY^!Mm8K(vKU3$Y4wI$SwHY2B(prF<}_!uaE;@*Q2 zVQeZPi#WE=Ea}(hGPre+FzA3Ai3)y~Ao<;|ShN+E>W<~rm|hq7xv}62dZhhpl&txp z-wdRd1^kqs$s0d&rEODf-K-;Ju+KSGHPYe5@%qH!AgMlXKRO-a{uz1N%im#E5AfL+ z*uP22qD*^7x4i!vu&y?T*qc>!x}K&89lepX^p~4*(msgUKCFUtNp@rr3 zN4S{fW^}z|TQd-1;hU*n=L5Dahy+1k5beswV&upsh>)~}?<0gEiU`whGaLoEuf)OV zdJSdX3{*X`ReOmMk%>h@hZD&{l0a`1dPaqNvoBN+Xj_ajrAsyCj@1+%|AX zt))~Cis~2rIz&ATcvpDp;L={tCw1#52SuHpFZoNo%Xuyn1;Z!=nDR}w=mC*uvC61e zC;{usZis=2@Kk&=`B`Q1(_Mi+6|y+;SyQ3xJHMrL$EBAFl<+ZsbdH9bu=7A*!J*hd zlQ}k_&ES=AHd;q`W7`Bss9=Ls=Q*B6^E6ogore?YSrkHU>sZzHj>r-4*8Cd7;vLNOTcq4pi zR`9>0%9#D5D;{S(j)*V4)`*q9$nB4uC8DEejq>AtX!;kr+Gs51Q%7*?cPs{5;%d*I3I@BC34P&Ul-cQ$hVcQ1vS^w==FN|t^%u}yhZRCI@5%EoS76&;g%Ere zW&iH&PVHp4&E4{lF!+0yN7e?|ZMe4BT>?(I@hVH2Pv z#Xw5Q*fMSVv`JKhA3V=T3McK|GU^RkgwNT4c*@!$yLeYc!Ge@5@5!&6kv~_?)E)4| z)4!{YLk=g!N!6G@OYs`)_1zffM&q290VgtzxhSgD5X&JvHoBb~~pKyxS zaEglu>>yN+SgA|MvW?difYieUf3P|1g8s<-c03$0VzWUkTwK(E;pZ3`A6HdX4PAQs zw+>0@s71$Q5hsE5+_J6><@IXZahiWbQVPHhV)@WZ0Ok}5B0tv^Q54my-Br9>kGDBd z749PmxZ%R}wOmh-+a0zv6IuOn{*H`d95r_TY-$GTQhrIEp4$j0n$y$ne#0L9c(4wd zE1$WBD$@t}`Qvdtj@o^^^3${t4iG>;Lpkdm!g`!~xglGWrb$&K3dKYE;VW|dL*3F; z_-;RH+j2Pidf7W|T{GZC0j(=63-;qJiBThAKmhOE~u|NPYKEu3uXZa zPgGQt5ny&e6$8jW$e$bvhfSpF=7|OL4F4%q|9MF3I!|y2d@q^*Gwe^A9nKetUT!o) zRxC{dj5X47a+en&MjR&&tJ{dhiI)I4LDc{=`H3iGQY?NSHi?pCYSnV5 zrxi^?RbSoV!BEIfz>)c%7ZzZC6%!LvGB8j8oHOF$;+ZoRyMaGn7BO7_rR;v1b%R-SWbWPdOe8^B)h>CFcyb&d9093degUI4@~Pt6hz z-UxX=Z)jSF77A%GHTS;pTXC*JdnbEloWbEZ#@(c*XjDRqp6B;WTAD0OtRB`3f&$E} zk=!`~jEX(oSNR)Q-x{vbLBEI7=uL$4Ln|s3T^%`ZJ4~wb_`tVvSU5zZ^(e&SB+XtO zR~|BGJ7J^UrkfSr=&Du?24$B&Fhto^(F9K95|UhLb%>H8eFcGD+{Vpd|DD_8(PGhV zyw|gBV?mKPczMTLyGMe0hS<=Q%Ua=xgHnl+ofgHwu(kX-q0TB-dJm3-SG%C zJX!rXq=BHzO*aw>;x2>ESap1Atji)%7>%;z;|d)sCA>($Gt+%ZS=3uU5n~oObaE7C zpHM^upi2wbKxmd2Xsxh*E>{te=Lf?!HWUyG6EYiSeT`&~k`!33;&-GmF$7jy74hP= zp|ylJZx5Wb9c@R&xi}5iY$k3&#R!F6Bf+rZ$iFY=PFfAnV*~m_i#+$G8>`MmhV6ab zlJM}VAC(v&VTMjB53yXWXpdceOO?AF$caZ~Dz>A_H%6MdNYX*)M)*Z#&1vY@QBVqB z%?!eRpuC)bCp?2d$*wLC=QB8nVChJARHMZ1 zi8JqOJgQ|6LsJ%_+6Plje@w&opYqsY+0P(@kgJkEK<@YuOy$Iuw-a!X1nksHp*HoPnFc(y1 zj2S#@P}VOmsZuM%A|jR+7h6s`Vgv@BRiYic;1RL0sf?Y!Rzz0H`kM3vN*fhtw%Cve z;C5_Vts90J8pbGzF`9_LAF=$~ygvqO4R4-&5N3&KLQO?kx~OotCj0vwSK{iiuhzhJ zRv>$ktD^yA^hlhYy>BW$2DxN5igJIjfjGQk}g) z$Yg{}bM!=DSJ$idwyBw%^pauehBPuZe?)WcL9a9uQd z4qGI5_%Tz%={)rh0bLYvh{2rs2b>h!~E3X9iz<`Qx;M~ zA71T^04Vy2g;b# z)S8O6Goe7RHlYzTc{S#BuGf?QYb%?yn}B)v<9A&$z4L}p2D@vb;@6x_rT6}^xa zSZlP-^y*?t_*mZz`{D;$@2|s^!=*^1{pa! z<+doY3n{P(v-kf-IXsZm$k_PxDfa1Q2S1VhwW_lP;k|(@BK4wR)Huw4HJsDaoc9Z2 zlYv{e?!Xf@Kl{qxXgmq_Ken#L2<^sF(Bk(Fiu-;aLQO&=W%zw=uB|+x++J4+)xLzb zr`kYMJl^aT#N%?h?D@Ym27LMSy`A9xXRgI{>=|@l(_bSGLD~o47buvS zlTY(~699b{0DSqUvLgQv>l`0|bgTy~BqoOI;dx~QfSLhFm;eAf<1N65bPw>+mMon| zB_;v}MBM*bNZ|gd(0U4HkI6;xVyHwmp8cO*gpeUnVU%=m(3Im6bKdq>figRMhXLPiuVD{ zrPSqL1 z@xQ;mT5mYFSSEYt(@RD{;qvvg20%l+wD^4M5EUBHDw0|D$M#-tGqkqzgJo^U;dWuS zkBdFe8ckDh4yVp={R`DD_%-y6!vEo_O1&h`>O9hAfe>9qv(cbp8@o|M$wz|KuWP=v zXs4!*+sk!Pg2nEH%TsojmoIQYWX%FAp1j;0vfkziwuL>*=x=drFuUT%bWei^0F&c= z66^^EiU>Lbp=lOMU?4~dU2TJvz8XRM^`O07TuC8=?eeU zCg2Goc^~0*I5C)AMSy}A3fi!cH5rG} zSy{h$H$d?j(2tpbjwI$NKOfsvyfvi~QS=;j{i#y^?u;_?<72&$zfcfNZs(XOT{jl3 z_zgw&72@)i_v4x?3c3G$5ryEM(q>OD49wZe!^)dFj$~=Yw`R~k0_fQAN}U!bR4lyu zix<(wyc96hc-|;8SUGH1nL&pa&Ih(Di0hH0)Q^7C6GK$deua72oEw(;6PiUn5;L}- zRvmI-ejkV*hy5z4Fh0mL87Sct=A1xw%@k`#0|E9z%!F75ZXJ+>x28~FO3KlbWH4G7 z7LKb){4HT`?(SW@A*)r2zN)oV)677XmfOI!SQUen)t-Z*OZKgChzz4n-qnWIn+DiN zK-N^331^S9DZ%bui|_4&$XJjI6IaX?m$bL1S4hm^>Q96!$jC13J6`s3_I~UDW@TdW zq|8~AAmPP&<3-es^AHw3Ls*3xGKxe+m(H)pk{dmHrvfXpdU2@RTbfv}QX;e=ujxXN zl`nzOzd&o7#+#e2PjB#E6_Y{5Rj*<<-t-JxQBK@F8g*o8Iw+kiwQOnWryvrhq>6_# z1wu;E75$~CC?E4{Fz|=6l{#=BdE4dkq*eD$X9f%3LBvJoH}*VaHFJc}EfGtPFxm(D zdnRb<1%H^bbge0-`}w9>hyM++8g^li2WCU8SW!iR0F-*w@<(2aLtGW{$RcE-Kawsw zXc<*$aSFz*k!Oaoc55n2dkp1t%tkGL1^P4^7G<+E)}+wr2~r#j?4tYA$ZH$1Ic_6< zV#o&G{%UtSaD$IGUudLyL!cwp%Pvpe1LMxz5aY+;3-#yUIn+$9vZy`%q{%ew@Y?h; ziSYfr6|Cy+h5-@xvgpKJ+>u&OM{ z6+%SUlQdRe4|J6(s3IT&6f`NNp)8Zk1P=7mk}oW>@q~3PKtYq`P~=ONb8bvt*OKQh z#dIhJ7ek#h+A%)Q%oxToBL-Vc2QshK%jtK9(uG>Y0ZULA`-2AZwtTKni0K9(E$}cP zex*&Fe#h#je2zdS z^wD+fVPT1+VHoaAkRpFeukc`S7Z88yq7bBX*04r16mfjkjY&=yJcNagbuy7Omrg%q zL}4&kN`G@^(n(dJsH9ysvOuz;{ z(4PTUIA?%#J5b`p=b{VoMAL~RVl{5R&$p*%)2XM!cGyN&!m*G1YYl^5_9#?=061Ma zo|x)izZM~+rDrA5^`F<7+wR*VQyGIA&VKT+0=s?_#fg$&dwhU+oN7J*&OFxYX4*2J z1vr3kn3jg7$AHPs&VCj!1$qmBfc_x++|1+;0{lu?tQK&CCr%dfuRt#3;t^aBh?}7# z348P14QvTGl2oDZfFyZUZ*{PZx5_yDuF9QTzbZ5}&2_5jcuB(Rioid>As`Ij8ZQWg zH#@+{MNyG^5&|yj9~YcJD`5E-3ayIVcMKD>;$P48N*CbgLY^02lFxg#UilRUv?95C zg)9v9)@rA~QAT0yuI|7|`f$8WM%UCz20&Au1A6r7l)&gRRYU?Jv5c>Cv8V-b^> z`dF_#j+2zvKKiP}3Aj;yPw5=$xb6y|fj;hh#2Abv_W@>`h>R$;^+E!^_;9l49mS$$ zQM!iW%f3lV5hOoO9^=)uYSCVIvLo-k6Gp5Tq8UOhz1|<3*P?VgFp)9Jh8@_`5)%^= zZy%aaLj1lgF7HtZTc`JhJ+I)!JrG$~;XX6x^zR}v>u=2k{dGKfF-c?+6`1=obz^D< z!Z?tbYyz0FGGGRYfBN!fC{;@i;leiI&YnPI&7q-bH4A~zMI-j*WXB1WwA=gAs%#K7 zVu4GPiwwKsC!kOr5)-;eC__Ey$7y=gaIP*B@Rp&`YsglUWcNovI4DHSfiqJ=Z)wM$ zbNydTF?l^8I}o`(TknZ(H3w|aw_P*9tIHbgY14N`I~oa5&Ft%#YN3XLGLjG$7Y3@l=~cYA-nrD_i)@uW zecmkS9abE;60%}KfLyKXLJj;>jZ217+;b(h-vB**!0q=&oQ$7gJF##+So#?GuH8RTl$1<>9V5$Iyi%oN3AF$ zq$CXgd)v<=F=AcOir5Xk zp#vPedi3vdWSNwR@P_K5gYz%Nu%7IGqIlOOv~mi}?<3O4ZSRxOx^*9zwZ_I6Spll8iuYW|XQt%~7SfAh*}(z;O}@ zd!0GC1Y1a^SFE;M%=cf}@MW%4{NwrF)he=h&#W;43#3W<5uRqCYK%htQWaU?&Q+iC zpATiTj-Rs~@%H@bj+>oIS%+^*qZypDvmn>GtC!Pf52sEeB7~b|)uJNcHV5$P)*qIy z;$~F93;(cO5VxG`j{5RNm0Fr0$)$zSDf~0|`s??x`f0;eJnP5V-Cv<$o~b zmqvGa_ytBm=XQ39V9jWAxuj)eq^6`S%62W@ zytt0zd(JN|4$W}x@yQ6qnV=PbNZiaQLM&t^uRfdAv3}(_txpSj7)r`97g@uEb4N-& z#qnh(f2`#F5RI8qU`tG9w#;Li?iKADaisp(-Q< z-V&6M<9~@92_d+lqB1njj|+jW>S#ZbLV;N5p${5J>Ul*eA#pdA@_hiGrwU^EeD-G% zEnt6Gr`%oU9fZ4|;{wJ-pfY{Bf0L&_J1~KdplU$_0tYh6Nd1 zE{GeC_!vu~PBh10?BpilSZ)z6ZC^-KR1`(HBpyrPP;5T)XxSCtqCHZ(@O+$*T$q(P zC0D^Nn}CuAsRgy<7ge~lG!`yy)(%Pu->^h06tenz3f70EqDcH$;zV*bE-q8#OjzEa z@T72%kOR)7FO4%n6{V5Wy-dT8XXY5!XFmmHq8wKNHeXyx7j`J4)HZh$p9w-}=-(l! zz^r}Q@MDzF=!(VD)U{jW1u^_5b%cPQDYcMxwxP1C-uq2Tvd?dD&Kv*g%>JKx;Ek?~ zOFcn~rHOme?$qL3cLUGk?<>RI!AI>Gy#RY^!LLC(G;x$fTC8{+3fGVm30ee8IC<3V zuNC^1RvoYNjYhAOVZNvKzayqFwwmS-Uxq!Bb=5$jEFFBi_U$Wo%>{q&7bG1p7_SFT zA-ij*f&zaNz_5O7;)X+s$Ml9Bu za-c}o(%eXoA$)glm5N;HHxi%MqQ|85!~w3LE;2aF0dZhgO0Ty>CeqLp8Od7elq~9k zil+D3Z$|Izng4WeIdHsr{U9R0m7~a|Z^K(KsbSKKm)rg=xn#ufd zh}vzE9P(n8pUkB>4+n?F?);a?AH$&rpD)MK|ep`KR*JxGRZ1?@t! z;-B;?3r*b^cB9dn(|U&1mo~u{of5MVIe_Pm%t})gg2ikMmdFZ=hpNsJa!vHhSD~WI zSi%woC1*>LpxmMoLr#&l3*W3&s?MMXD#ukv(0icg(7Ojc5%4wazsmSIa9dK|O3U@9qF86>#!QQLzj+8P zcl!q~j??jUdB<5GL|a{p3lmVnNXK9qdjBMwyFnW27AOx7N7cwj<2wC67KC1X{7hi7AC0ZsA z>S67Kt)e9N$3H&jbHff2UXd=!1h2oOX*mRv1|3MXl)_YON_4}NF#6AZTlXr)ve>x- zsBfz!N$0`#kjR2Q$O7vKm~=r|rfwlhSV9P*64!hGkb{|6HlV$CAbPCiiuyLj`ZY0> zJ`7Orn8DG|!8@N8dm9`Oi)SL;Huk5_A1wYiJs*8*KQI!m1 zwMGXniNfThQflW($$})_Q~aWs!x=2iZ9jqEU&eZH2!8Xc6gPWq0&{DK)K>2~bD_T{V^{Ndz|rF_>1couepWh!fEwTh+ypZOph;EX9P> z^SnS5+J4~Neh^b#c9cG%#ArG zayf`i)zo<)Q?8IsexS;vW%z_zpz!rZ+zc zp7b$_?K1Y3Sscz|uct81&9O3_w7{ybJy?_uRpmF&KXey@AI4> z9aW+C*v153w!pHv#x_;)V4xB(vOG?mCC4WpQX}XWwpUtL&KA=SB&@VtXGh{tT3#{v zdk@7^hy)u1vD9Fn5Gj1`dYAUB4`-nd&RnKuf5EtJhD0Tw^E3-_&%W+7QshEY>9QdV z-(=toyJ|D{J~_fyHCRvc)&?HWh3%&PP1FU%J{szUF7T%~ecyAGqvbt2B4<)FdBIdTzp68)_Cg?_q!foOfs0xlZBJ>8HX z$Wn^Is|ZkpqAI<~L@1E1f)8U{{O@vEIiU^N$+h~n2(ig6sqsPh?VJ-C0zSxP{6UY zKqHpuaJ0pXcF5D(G;e3|!Bc3H5FlDsDAJ(m(6Fdef87?(iKh2wnGmo|VAPkB<$leN z&(PxaFjlCDkpjFPiwTiH1*WY3j=7#=9L{~H(PSpe)9lbHjfsNQC7_}M(0WXu#~i$} z_tpt3j(cdO0{)E($W}nijNTjiPl&hs5j0zd9j}c8H)|`>Z~>LeFA3t~Hv|gS=t6q# z!5h@)|EsG*Xli~6>Ybi8P6_2_w#Cq%`W{03&u`cV-P*dGI_YTGmz9urbNDtCo*Pj9 z=W@d-vzwN7X^a1yjDN>S6m;7IciR;)*X7T|7b!qh;K+$DFQ;f~its>tca)HbV4%#A zij#>;FnPu5Rg++jAujamKtR5-ufbusGn<i#j$_x4+SuCoT&aNAnWOw=dMma% zi5*7t*&;P{u#62gWFhp}eoHu7$o2KO1X!QN1(^Cw0gn{*<<1x~vC;D}z1;?Ds<$dkcVXAuGP_Y0AIqE~HZ;A@|tEw_P{>n_$$&4KOm2v`M90TEQZOoyC{MUf-@9$dcfmfSg;R~& z8FWn3?A&f zn_jp^lj`rSo;#j5>WJqNjB3yGNZv9aH1uL%CU^pN%5-}XHcz4*j~2$<74==Yelx=o z%*K9*^R}X%`WHom2B@Z`2))vc7ND^h95E3RSk`1pMN)pM^@SY}5IX5%r_Dj|6r3UX`8A}JUSSyYJDAKPUd zSY%~+tC$#J^t5BG4NdH07Ppuk8x1X{jWS=-$A+QSRz)+pyN8ihu(~9~q-CF`#5C&{ zoZG*VQe@$S7@!rZ5n}MdtIx7_822pwa9|6lYD$7`VtNU=S0ir=I_2L7x!_>0<)+ z*bzl6K;1kh>D${mZj*1DqAfh z>m^h_R-up2UA-3jZ0-%Ugr_pboKkI30w zsXx7d;=8fttFmt)g3^C2##(f6a~eSm~gvh}gG=&LW`x zLT9K+=SnSaJABFUdRQU(gW%P1yBM15=JFNw?!aavIUx+B=n{7GXAb zyL<>>Zbzoa2{SL8gp+x;w-|~n#XmG=IxO{Hce%K@4EzlPRN2rq!*-I6Af-1rztb&k zm)NZ8`U|Yi!EdglJp8{gwC{-Y8!eNQzcl4f92IW{9d2}TxL61F;G&C8PZiNc2Dnw9 z5cLN=-?W_y50C6UpNKQlptB^ArM2to9H8S&`NcMIACWc)k_d2qX5uEsHlSl zf3j*$3r=(51tV(hTg26N0|^bh#T`|b+}u|uQxEz++*DldOr)e2qK6;}f~?Rm=of#< zMDq3k_DBJHqDYa$!NUiy)43UnpoZTp+dkC_Xmh!5)-M)l1>kWy-IB~PgGA&PTZGRW ze9LTZ>j}zVV>;#A-tZXY`ksHUpqnM6Y>mG7`-{z&zJIK&XOf3(BA2I=3FQM#Z=F%| zhRIPSOCS^BT~BBKcAn;cv~)Aa0IsN1al1JM0@LMGspFT%!?T@o1r4A%=3pvm<3R1z z_=W?)OV@-N-po<1OG3Ah_*&D(I*GrC&_pFofV;>&q&1hrE?F+Kuw#Sdjce8stI z>LXlFhTdQk>TC1o-;=|TL?|I4hn+U7tb}TILeW6DUE%gVhyA_@_sY*?D+aZjebFwH zo2M~D5Zi!><}Q6cFfj@tg*z+||1cUX{Osw$1ZpGLzMQ#ZD4z4w5zl5&7|UzsaUUTw z21HTSi+8`%F~K*4q@Xk^&-qi&-QYgSnRgVu3APp@LQ)`KqKszN6v|jtZF@-5E7dUc;hA zuSGWh@%MDROPu6Ahs2g6l@y30YYVVN6RDhF4B{qp&dLt-=|k z3k^e&7W3!G{#>$-k{dLyG1plj_huDt ztWq{Ht%{nU8EKkEoug77KD9M=_oR#{BQtDRPm1|>;Wcw}d`A5%oCE=8a)V1%f&)Sn_&HUwdYJHaXd1~`E7DqwO4}vfX z4Wfe}2;$6SSQXTqC`Ahs#B`Gk?K?u6>l}{D%$qwDz&|=@D1P3_pLYX*bug1Jey>Vj zK1+k+eSTsi@r`V(a=9*2-jddb#%SFHFx1hHss|v=6fW}JtkX?geZ$PAL7#Y+-zJ%u z+$g_!z>=AbfwV{sntNVa%=E|n_HGYB7suu+qWZ)RWW><`@-!B=(O>KXad~)pvt3-? zz29~{;UppdJgP^1z3tUw=y)W8eD=O=)9yHH3N0;-pT-`sTIRYb7WHq_yqO|iKNo_E zA4_9GfL&fb!%4De&IhGKTQ1?CkPq9`p`wm>tQ&tGMr40p&ykUr4-@=cn89?AI|_yb z+yjoVPG^t8%LkuBnQAk+UH!IS!+r9-NHSy@?E(B9BoXB#Y3_NQyYt5zE}~qI(sB6R zWYoRT;z>viQZD+2-%ui?$`Qjw6{Ag6K3CS#NHTA)P-^th4XSTsk!O*tSp$YiyIsGZT$nNvfH zJ=NCrv|~b;~m7Af#Yl)M!m8LjK2;^8)}YhxRaYwH`2 zh9G}u`EVD_@Jbh&5J@0Iu1i6OGx7tNixsQ~v$6`?M0oL5Xaqh`eb4N-UJ(p}aC(8g z1j<~F`F+0gLpz%Y{@@6tFPR;I`cWX{HAC8T#EG$x>vuUVM@Q7_sJQOqaph&HJAH zOZDN^b&JvK%5f%4|JT?Xt-AyLReGBLn=o`>O?~lnx4ZJVX!Ey2W8xL5E^+(m# z9!`u~W|OvzO-xBK4pVON2-?~$%OMqZ21>EQQ%Nc5InA5-tE)-u@CChD-Y+C_ZqWOw&=4A#dtHb0usU>g|co zA(9xF8jr8tm03L=f?(elY)(HUok>(E(aMDfog}#rET3|7@USfr>hLgNs^qx(m)bk5 zl#x-FH!k@BOZFC8&3OvAs|#?r7@f@IDq=$fv5~9t1r-?zK_;FWJd8p{R!xLTifO=* zkoG+noA_TPGdN1$UD72T$%fM46CG4#xQ=P`4m|W@%N}1dLFfL+^77Q*sM=&G7Iev6 z&a!ybtpR+*v0#Cd+Gz;sNI4X=){=lhe4iLLAJ#>o=RhnA%8`IA`u?ag-p! zAot*WySbDI5W2JU6F^%n-FPwG!m1j@F5a9MxrStLL|TiagT+UvUr(2S*ckFf9=VPm zc|cZv5BlW0C5~IlSI9G?#?f%KaCH{vwXMzov4z3Q9>J z4_z~mD(>1Gq+h!>z4xkT!2OgyC4n0^a;MJS_0=b9tqWjlJA3m5o+gl*T{vYczyx^; zT85rK3MYqNjCuUw&EEgpK4=`$JofLtcvuNX#T9SlALzsY)TQ78Q<0idp9^*c9elnfjLZ{v&M1p}_4(YB7fpB}`$SE+5c5ew`I!><}Yf2{DbV>OS1@jnzY z5Nz2kP@I6i-@-LXr72Sko7^_xO#!;tvB@OWVaJgH@nZ% zGx+pb^D+C#ry!R*Z%OgR;7*2MtTPXZNjrN;< zg9FG1|JCCHX}o+wH1jh~<`U*v#SY9Tp%9j_B-Wy5Q(~x`&BZK-b%C0u=&%rqMEi)D znHqBX&MaBR+~Lbf-G=N)%+BO3?U_RpLUP4?0WaY|sK0gN#2AtvZ~97^(9Wn6K!M&I zsHxgVmu2=7s`WwvS1wMQXM%xwz?BJnKP6GRMmre#`46{4L^z;JM#>>DQNg5QTRLjH zU(KQVewelwW)A%Ugy0(pNDl{BiTmek2V>3e&wrnO328nWW%Lx~-!zP8(h{lKz57^O zK$E#6|AM6q#yN7Dm8{%6XH~!#UN?-tkK}y1(Li1NCvMQF^;5?agk<8#-SoSiu5rEQ zbjwTxSPQL-^lAtch22CG8|eFxSxXKkrg%*`*gpqUZ4`FnFh^Q?C_lDK$-4p0B_}l^X)tGH@IW0gS>(h!jIT6Llv@ADX4j zT`-{`5h;ZK8DuCq7;ZLXT8~$mUijFE8{7UD(6U8FQd&+#BWuE9X|h%80Rpa*Z!z1N z2X5o^9TW3t*ebfbN&B*D%8QGq!%#ra3X8sOk}+oR8G3Hl8Ta-WQ7tp6aEW~4<-f-H z^azYGMW48fdtK|_eKD8Y8Pa&aUY7Pqkk1XmmX;+gT8Jw-j}8znj{GyJz@o6?$l@q+ z?~pJC`aI!%m-IU98DjXcJ4`ixuec(G82RZ_t5b8gm{#;6o>v)`kn5KglM@hglgCY_ zU@Zm<>$s^(uCvQsNx;(qe+jh0l2&F17<@`j##(4Br|N19UVAT1)-3#`+}c49c`n*Q z&NjP5&~J9!tC@V?+eme8b#E|)cT$2)S|M-L6ve6>__W8h8Xl&<7F@)T`}^y)49}`3 zHcWGMv^C6VYR@`{8B!uFT!chZ zaeN$EwOXVx3@sXGU`4#gAzI21dU2+;cgj@#Mlgjx(6;xSM_Rc;539jRe1ht_r!w>@ zpSkgM$QZHCnS`h}hCw}a25m%D2yIzvOOHlPOe)#K-RV#^C+FBwAie1p2k8gmIu&C( z!1KZF_w_FlP;dVLRn?9o(nG+1JoU#uoV!^z&KZn({AF+9c8;-BG?D(;=y^M>{5;R1 zLXFAkI9TM*oDmgMD3EFaFJwY5c4m5FGNfQz4}>DocinsKj0&*`J8ut)h?@&JGcgMd z`@&7AM+9d@$}$!^a|{wIp9>qm5%ED)>I%?WJS&uq#~GtQ-dgSN`DZkLcqNuDh&XVi zjr;lsk>T(l^*d^5*|d-I_eiX&;_qOxW}zfil1hFquTB)4iBf!UMrO4(RW_rIpoRt& z1rTB{{aIsRNU9=aOyXHHNcu%-SOyN&>740u%a8$)4KYZL9udPSG3Cj!Ulixpnlded zQbo4}OVsJ`)5l1@l>Q0xi`r<~hQy{G2=>*qna!V`K*v)Qn^?o3mJT8Y?9qGQ3ZqtG zhTkZCucN>&Z}uC-l)+Pz*cyRA9hWR$t|509*Bh%+-zNAV2-y$q~6EK)p$iZ~)d z0e#;;%a!x15WF4(oP9--{WG?9VL1+qq9lT!4b=$)7R|=Z8xxb0!ZOiwr^ElAQ~q0oI#TnRT!B350GvMATghdVo&<}!<5(@nq9K_V!f|0*& zh79*)pD*8j8}qttgqf|?TP$J)u8=R+u8aLU0VTcOtjIHTV#=gXO6Tv%CX}ojNCb`9 z3OgglPP?3c@LXPA_8a2I9tF(NVwC+b0H;MYVy5o|210};h29^L51U;_f%w&9G?s3c zTzJTejDA_`KU!7Wp;q@m)YA0Bn+0hN9$V6B$B4%8IA9j4X#izbrLi)In$;7z6^?#M zAHY8E`hkzig*y@M34o_@nRFZJ&MBI#MhzQ^N)G}pLzv~SfR4mBg1Yhcj#Cg&3IAGA z+5yWb015K?1V5fR#hZj(hm0Ob4rGT9_-QA}&YqFO`X?%*b=Na=wJV?NU?}nDlz zleh#c`Nx&{Fuj1NUVF0_zpx9tu}qFL=ZOrsB_L{IR5fYF;8;2p+3+Vc04wsZIHG7~ z*Z2rw#4OOCufX~EhRCN%wBU6=psc)N*$5lwydXZuZ)H<5EFejnGSDwfJ&d7S8&FN^$&S7YP2P1w9Ng6#6AHC~`6Vb^YjW!+K+ zuHc+M*67K4jB^BC$(ldfA~rfu>c4XR1Hg|c+CY&KX2)A5!}=UgTZh?*7Pj;6R8Yt;`qv<;g&CG$t#T!h(^?c47-tU};%obhe{Xe#DYaP$Ifqs^f zb8BRi8MKR2!*XC5EWW2?vz}I8p2Xb*2~b6#0MoO&dlwjhXQV<l^mqOU~@n5v>1v zw=Us=0mLxS0G(GJMXK*wdNkTicVfw)uwBlTHqwVmkNPs>L~;yV$>&L}bFl$uWNk{x zn=*K3h4QwmEn}$UYAR@K-p1*J4w}U|cYYOsX=+z;vllctI}ItoglEJs9v%+@W)-o} z-fQF&-9BVXNH9OImNWtVf2d(25{Q%_>M=n7ZNp+giS!jP4knRrnCY^pGTGWjqklFC*?{? z(^X;@#u%s72tQ*XkuVe719#hTmTJ{q4!*EnCmXJCEvr{wOLY=q>0q|=BcR|c1FNA5 zXQQhe_{oPdPmw1^M4#&4hj;CNB|}lJ_7FP9cob?b5W_sa*sEGHgUBBYN>P#3TQd7mK zW?!i$Q?wBU2L)U2!V5Zw_Lt$!dtj+FBZJ1_@PzE4TACOLrM=v(!@g|R)Px(CwLRy7 z9Kz8f*)0d{x+(BwG!wk&HZ8w#B1FTOXl7}|&a3Mm9mdkCFU;xLZ+`3qeIPIRYXQeE z9HXZi(PhQaGkMDJJT|hjBWMpJSV$|!<^y_}{n>b9tsEl}d1~D8#{`LHvEk#k3$k1i z@>wOyIzX>TCdS4c>BT1;zao`Y^3s~KP+1_Hbu5M+5|)-`j&TI{hP|b<8%czwQc~Io z5_BKuHv~+|;JNp~(c6{(dqYfD1IOBZhAY(A1On7#+H1^+tXvvwUM5YV%=589TNSHa zlG4qVBHlcfd7wrK^2$Q9z@xOv$!L{Kr)i1%rIS+{2+{%}zkO~MdjKtg#p9m=(DQ75 zhy@jO}W*EU(VyU0Z@Yx~3V{kh#a8xuV}luAmI zLLf&ABNsY(T_JYYjbf~cxo_zU>vJ)BJ@D-q_348VTWGZifkSJg6>RRh=W>^*!eUc* z9{CV-_-ccUjiA|$k`j~hf};K>HLPoDMxu^pKig;@QKPd7AV2ig{QF z1PL;Ldr5y-FqcqLJ19@$FkmzcA}ZS ze<#*?-36f_Nbe^?`Zdc#D@8Of7a$DSdE-z0Cvam7(>=k*9)H7^GDjF-=xnm-Y98E= zZU$lw^kzxu{yFRgnnCvt{=ysL_cytW@ADVCnI+geec(`%S!jhLe&(&TVgv?b7-`{? z<0e{K@Rd&Hi|=tZ6_{>f5$PA|0Eq_7jUgm$21#lh6E8SKXFcMu(izDDo)`j&Dtr=^ zT(H-Vm{WSmFT(s!+`jH>i2$d2RZ+qr=K(8}X>R$Z`&MBX=t1HxbD{rT<;|A5P<896 z8B_?nLQ4@El#AmjV%0=v$!lJhz_>D-A4IEKr-)60Dn%j-lfmuHQ?FqW;lU?Uni!Jh zAI>;S6Cno7$~94T4WfxTwNC-v>rp;&?`tE9*Z17^TfNERoX!MbV__8i_M-as>t=YZ zA7QVzIhZoNC#d5i&?hyt+hg#0$A_dt5y{@(XV2q$*}K)zPjpW7RXaHgO@y))fgo(9 zdgqh-k;||;yr)N)X4GVUd890(yxGl~rF}bPnzJu?u1cL2kVZpHPj8>}=f~5y`5f%- ze*oe@9lvR(>7V)Yhpsb<|2~WogrgY608rmqbBO9o)bbqm$a@8wdRTKQ+JL zP{{e1S-C!K33-%o`g|RQaO9}PNIkXreCyp zQ<*z;(}?;#5EAJs2dc)CQPW7cXlT--vqK{u?@BG$AN(Ou6|nZ6m)qLoy!@|1{`}jW zScV(OAw(CEHUvRfg;#e?=bFFW!hK7Zli>_e z`^YzNS-SfuO1pA?7o^i^Plb>6QdHQI3=j`tbg*+7uV_{iiM!(+Yr(9i_=SxJa`3-0UyE>9e9 zvyp(&PN&&PLK*%mdcdgbn+5zaUfU0uj@P(;+FR^wx|uEYU!)*uC6=^(Xvtv|wYS4T zTiawBgC(?@G zDan2>m1+54up)$DzoYkgF>8{dkZu&;Vpqs?8>wxN5;9p>GkzZKU`L;J^4e-~B%=5X zW-8M1(KJCctYWhCHm)}mc0UXA59nlH<=6stn!?z$7%3PrqL6`^hn&;m(rJ1OsFd7{Ow=Zx^kuM znXBirs;$jp&AR#6Y$1@4&=iD_sH(=Ilh$%+%Zp592ixY(BHraZvFy4F$+veu%9kwO z!^~)r9_PB7^k-Jh{%nGscE-&u?YEAifX%6&!)tHb%;&DO@%nR9 zc;bnCo_Qw9&wo~dXYllA!-mxg*IuhfnJt)KjXwacW$SqVuVL0@+|C6TPT;Jwn)v*6 zZ5$}o=gpK9NK4fT0E=aKPP;-iAl;eJUQ2c~8>ck~AN`G)0OzZjE8L#jsgpY~Gp4bFWXpVveI}g3}gOapuXD{i!1l57|ir_gx5NUM7@Q zBI}}1vIL=g*iXp>!h8qJ_zQB)vVq(3g~8d^;YwClL-x%G|DXESDb^5=yo)H6$kWCm z?_AWk%+dW;6^!FNM0X6K>>$LTgrm(EA(AlC8MWau1qUp5B9NIcD4rxK-!r`O389iB z+c3%mwW4>}S}iG@%wDcyHJw;V#m51e%?8GjP6ux@69Wm72$D@37qNjR+^m)p`n`z4 z7|ElBu{03Dz}s>r0W6H6p55e)=)yBk$RV<`ig;u9T$D_JQ`p0sayB2`{5ThF|2;R{ zpc743U#))t7G9Xj>Zht%ob@7Hd1d!b^Yis^!%q;aSHsg!!yo?$U4icW{`YX_oqBG< z&k{;X^v|W2!ViB4GiMGGoHcJ1%AZ6rjRqN)t=t^$B&j!^y4M|AA1?DN}y zdVayd${UQ3k=MJ#ry&V?LdU_Rq8w%1n3V6~lt~$^+|$VEr=QLr|M*AFJ@?$vM98BU z#VAJcUyN8R#(VF*$IUn2Odt@z3zJahib1LB_7M9nZNpy#q{H!W6(+1D`)ZvAc{v3Sc z36!($gX$*aH?K$De&Layo_oQ;qJ^!vU4tyX`h(~{S^|KEHpond^A{k`U(mf>4q(hy z)j%)dt^MqHpr63KR1G!dO&V+GbK) zcP7pCg(SMJchU8d;&dKj>XgSxb+i!+4y5TbvhBZFMAAHmkeqs(3c<_w_`swQzv8c`$=!m&sojnu>b^>1VIuA4aT;H zDOvU|H5Xru%jO_Tg2?`z2%tVE1Ap?s&&b12;t7iO>hhKeqXBnYJ9!ngob~L#dHv?g zh}wF4Dn#rSb}yLDg7??ckdr}6j-Jc$P(=Z!EM7xKMqgQJH4@ z+2wO#wZ^#a3u}4j$pT*bqn#qsh@MhFYrY?MvxV4!TpBu!#KH!4?#jR)72J7sfG3jd z%-Xkwc%y;)4Uh7XvWPS8uBS)~a$2^H`n?Uj_^YWnTv5)rx(r9s@y!jYQ6m=ZO?LQW zD(w-Kq+`fwR~+5K^QM`6UhXG+bQE(JnuKKR2=r?U-xM)vQYXLrT_F?32beRr z1$U3=+LUBHr`M2hrh~5;Pul@LpY|lr8UGirDDP8DBTk3XLZ&UoFCTuNwOg`ze@#At zppihxNHAm|5H#|@o$E7eUzZD3CB}M5sjEg5X3|yZq_r7{bUirh#LxYSnmon-|rjj%gtv=M$-g9<2 z=|nIP!i3i5W91ExarQfp>o&h07&F1Z^Yb1fYifexo`>vm!3{TzV5E;9ix%mh)Kqx% z(eCZq z0^xMR{{8T!FX=fc&+41rd=&r17$pctF^YbmEL+)U+ek>Kn)laIa^B}qL%luFgbBhl zbLh2q+5Xrw{nq_Y&M!Drovgxc$%4;He!-#IQZ+QqZq}1D>O}`qoaehYuD1&)&@Y5GnX?@`r2{jx)1_VJ*}jA zS}_`8)HddjpIv>-`+IlXnN*b(pm|kNJ^f2;1;aM1mJ{oRZgYm2F=2eC=eH{^D1sAqm|IZ)JH-s^+1TEvQN$SamW zQC6Q_{^{uqrcX{Vb6Q8QNDFb-FTr6&Y(9YYukV7r$9hgkP^`Uj{gobc@bjm};B>?Z zg;Z?T1ksp+#hgG&NOH$GRPEum8}^Z(+naC`&#nMKUc68b_lU-O%ZVyh(0W_r#Or$W zAg4?PYd@rt?8iv?_C|yRnVSk(edV_VAe|oM^{0an$O}(`728mM{i;qU6=WbM6`;Je z0cljxzI+)3LLiPhm$fa31}{>8oT{IXKdxWIFD`kZhka0@OSW|p4!#gn=#sXv5?zwi zWb8}!W@H+U5QN4=ob-@Rsx%E#UR05BQo=fM)N0iY(v3sZRkS#ss2)j>;cuYEHJG*) z#9|uWDlaAIM*3!ht=I1c)xh+LIdry#Az;KDG-8(myDNde+=E+LIq@Wt z{a(^T9YldZ$rz@%z-|zz!h})k_er8F%e&i}grzNny|M-YbYx}H=ITxMNCnE0jHD#H z*lh{{aio--vtK9sN~aD_7CN`A8fzqq&u*n^ToE%?ZX{$eQCpIS)?Wy;gfTnysI3C=!mA2w;=?Kg^85-3l&Rw zf()~rvA35}6VQ0`FXNF2PQS8@)a+xMBO0q5luYeA_tf}}$3zec+0LTqCRQ3}^Cay& zLnHAX9=emIopD1&h#!UMAn8E{!R0(>W*nlhP&=WLqlYnLj^x#U z>CPT5S2;iZ=@>#Gm4_dyx#z$N|erpxdd(Mk*dH1JG3s7S66?;q1CW_6yfvx`(q*soWjBx}1 zc3>?sYa$f<6+*v7gx1361pG?Eny%~4Gkkey0OOb>5^doDWkiQUzN>*kcRe>we)E{> zj}%6eV9wGZq(*xnEKD3A2Zs#dlp*Rx_xLA-N~KIYLJ$I&(4PY~q7>0gF0F(yv5s*> zFoF=wkmY2`cB)7tgLcMIPctrz#Hl5jx0!*`wg1=TT-@|tb0vgIiL9qX+6V{>abciU zIyr?stY!j-_L)(W9Td(>A%Fc!wor_b1Qw#W2-1#&h85e`_4xBl`^L4s_Pt;M6NCn}=&SaH`~@Z%qMr;`5hk9E@U#v6|@qW3=lS6!t?M&5q=$m-c_HpY$} z%ig_viO1tipFSOzt8c{r|8+PV@XRyt&wuI!>es&ZY4>Op|0x(H2uCrBqmf9UzW(lr ztMw$ewm$M_!Y%ELyYT`nZWmfY67A@qcEv_^{`grUZJmAU97{VNXPslg*lFGWf7;QE zC#sH`X+QFR&$>x=GjDzSOdfh}8!xS`px)cgTW`HJ!o81T6r&i$DE=?OY;lu3VIjFo zZ=lAWG-UbIIv?)V@Q`y;PDU-Im1Ehwdlu6tY{#JXHKrDgO(wU*h0SRs5=ziq8)W~^ zCgNR&r?TX+c;>dVw|pXXO<7DGx2unFARMt^Hl4T#!k!QUE{wg(^5(N>w|YoPY9%E} zCsd^bU%-jM5NH415EG|n)8C9OpL~$S*KUP_)!^xt6TE2RDt_>{8I;^&B0pER$cn$e zg?Qizgr=d5DM6O>)zbOG4Q)L2yKG+hcOhP{kstq{9II7BUUfcVXBpZ>XM!aK)ZT8& zQYZv{b{>ALi0!)^*lh{^`kTGDTz$`rl+fN`!0l>7Q52wuwP<%aV%tHaL4^y?gyen< z6~YXnhm|=JgST}FSb6rzp!SVULn>X{yT?$h>5A%`J*odX0Kx!jcOS$qU1m-$nT@>i z3@{nc+)3cD!uYXW`gH>6Hj0W(I?=*}La?}r#8nibFg2?c=;=6T)Y}8Zt}>mV%uFG< zD1}68oYpo$XD4K48ZfB(@!K5|y7G=?1RF2{ovH<&$MyHw=y#5r6l6klN8gMyLY`lx6hIGYQ~}XzXi(bk8^nv&Z7Bs=&cMLM9Wg z8B5vKpplS$iC}=06HfwQY`uOxg$fGDO|uZwz#o&uB`72?7&Hv1sKD+qIfN4tmK-bt zVAqtQ{sLUlj4Er-JLSmttV1~!8$%wh9^5Lu*v zAHa9iy_{O#g0(r!PsCSvdf&|?wRK=Nhmo3swTIO1VHhGY<}Y6jz|Ms;LFxNEYzl$P z)P0wyY%8PCU(R=(5A*iJKcJ#AgDEp>Nx5cQuV;N6I4`RWN2`-L@85wLFRQQp3s1Nj zpdHK;-L!P<#L@1?-r;7fqLFoLDQyvrcV8HTzsmBiOiho<$K?)!**=9LWKbHD=B|x0PvA zeeBo?d-uWkaYIOs+LEEY4iZt^ZTpz3IvMZ!6`jTiVG%|}B`NO0<2^Xyex|1eNl(?s z^^C<;{PvmY-1q8r%(!wY@BhtA`YSF{8{AxX@m{jhN1oSEm`up@6liFH(v8SNRw%p+ zatpv}00e{ta>uc!kO826FS4-|vM-19+rb?IxG=wV! z8IM9sHMEu^OkgN>5kJu0tGH4;8N>L=AOwl}S`wu@!QWSY`HNHk&Fb1I-1Fi8aND$h zF)_L7_>ONF$jlcMjF(jIAG$1nNyZ3cB+>OScF7>cG_Z#}8c4#21t)!AL7Bw{#vG9ojbfl38_D?ih>6UioFEo<3H>=95hj}GOZp#Jat+h3J`BMEc?>WS%^&*S_=e zbmFSD6~6s#m@)OMSeIh`w64!l{AXd5ARNUgj)JmjCn7q0 zZ^NU>t)wZ1%>UtCIMQ-3DQ;woL=|8$naMtNE@l6Chj3fxf2@q?u|icL=@`{P{*%W+ zu??(UkYqRWi(BUNvzz9zW`7e0>N@ENMhBIb{j?zgVKG74@wu~Ureq>!Go9)oLZX@k z5fqGAWfn<^Ntgp(L?ZCXhJ-3cglqURWAMpFtsYNXfp|NKqr9N^?ye;z#X)-Jz*1N} z+l(n`)CnW&Xrh7+!o+c4Vj{^bAdO_L5h)`d`*`^MVgB@+6?ohFHvpV*^-{9?iS)@? zwh^Ie)SUa-$*Nu23Gz5bQ~-sRJOVx!n@deJb_g^LoK~1x7^5U7OjWdkP~yZ$S-Dgz znej~aY)`QNKn%Yxfoc%s+YBqA=IR^r@+In0>Uy{KTUQ4Yk8F%8wLj9nEyuTttn-O+eQ_Jbo{q+wu+vGYVNV zewf#qfS5m(Sj$A_x0&&}Q)rLcu%-D1H+D)%*k&ZDwSU7%uOg$H0BVFm>FNxe-5VOLG_pdW@l|?k99H?wS@%3HgYp+*m+c8#^m_b0 z3F-g_T01Z~P5;pS44L?iSzJ5C%;P^z=hr{ejhFK7^ASIL1{nw=OHx4eHB74p6aVj4 zJttjdm6Zp-TSzP_SiI22<#!zxrVI6v6@BenKHh!Zz}NrU#DTMNm_Mf-n{9whSOStf zfRsp0>6Pj(kE6Scj zNI+gN7sNoap$3p$`-{a9>vjMj=a+yv4#bgX9FBepcdvJZjlU!)7{a{Dt92?n1G%i@cni4@#7@G;q72z8)GH;-qJS$q1Rb2FxZwBr3`B=}{|9 z_KZQ@;8TOG2hmszAp{na376f5Q8g0mjFFI%sM&CYG&0A+Wcu5>ciIn` zG#vP2ph-wdgh(N2v`1>;y>-}??TTQrhWdpk5_SJq;UC-B)UH0BL2KWpJ$ zT}rWR$~ZK`;2~eC22+Enq*c|T0grD#53MSVDU-9AK0SH%h*Xk&s&owti{mK#H-4WuCM4jdtB+ZwDSXZCphXn>|t=`%9kbL`G3 zLTeyhYao3XW#e&$kk5**O?Q-t1kGp(T_RdbC?sd~A7MWfB3h7yh;aUSg3OEq{Q8L; zF1}Adt(8lL1ZGiNs7^=eF+ z0xqXc5*#eo^Bhi@tV@^*A&{OtXz3yV6MkIY{q(+)`_Jb%Qr!Oe?MMk9tj*(>w^!rv z)KlN$4O+YqPe44RN7q}QLn!|Q;^3G7^DcwVbC5eXL12jd ze*-~_L(Mj14SM9?80(SgL^KEBhwmd77s28puoyw8h?(a>-D8OAJqUwKmn+RX57`;R zAXgKw3v`8YgJI#Bn3QtFny-P>Fl0~Vg`HZTSN9~M&Zb3U7K5XLZoJg^T7?=rpXJxXFHtP_bs zP)!=u=vwruOi)A=@{T(J(-*=mo6!_Jz;LsuX-~)L1 zW%$;&IH3*$i3C(s=(*)`bK&i`;oNikmb>mcc;N+j{q^o`XPyc3=R;fDXOAERxbHsr zpZ|e}9)gVFiAWqlYilb$pO49tCx1Mh`wZd12jQnb)vwWe?ipU*+EM)9#VA2IicuT| zW%=+t%ladoimp73nP0sHQ#1*pbP3+*g+*A!Mi%pbco)mgzjxUE`A^9&I21DSz+fEt z9!A>kCrOYBhY?{KS}s&k1dAtTuz2FgRwpNdoEq*vdX>vgM`ZPv;Ax0`bQzZ;?g>;n zH&d^^-StaPvM~zmU`F&2-1XaGfJOg_La&qtwq!)=@Vxs!Neq^gYPe_)R}h!o#)V~X zZ09@Q_$QteJFB*ShvbyO^QCker*Rj1d6x?4k$=n&Yy`HU^0sn4h3#vIMWeXfBa_G( zDeiqhCzn=zu#blyev5-U4-pOP$G86NP5g0F?-yJ{#6;qTb3tg#Fnl&7e5Hi<>W}Zl zFHKs=V}HwIyH|x&^bgPhd=!Vx_3)Q_+W9E_4w1z0^PcpF6qB8zs@dFjYZFHTI!t<` z!J&FM^ct*otfgeCgWukJ4bzHsnZ0q=45~hm{PIuRfK2GR6a&ESR@nUkeDi-Uz%e(> z-Zn3C%dzK~=@0g>pZovyOH7FvWA?A-fvdmC{+y9y9O{er&bk?c7ANBv$i~i42+HMjD;li_d|J81<|5Q&aRrUFVBW5h-$dT;^HNnh@+edcLBS4!qg*Iyn zPW((6yNin2LbmLgNoHyzIT>AqPot%8#dg0gK{>r-zz6DkAEq#IVh_WR5NKHR%384lJV&zLp%o4hcC)X8VDT#q

rGIZ!rHf-2HO-&7Evl&HE*p~eQkcEu^&E)!%GyNKZpwoW#dgPBb39= zeGC2k?I>C`+p1Pms?iX-a5YA!8`ZR7gt{}Sw3f23ypVmxc`W=mf_!ZqkCo4yJorGcW4ap874OE%VbAZE;fggjN}AH z_3Me+p<~6o9GuRse;@h`iX|x{jE&n5v2Aw&E|;6`sgaBtl7?EASg{}rr{nl;3I~rc zFm*-a}e=pni69a^%@fw?D`h9y`C6XEiwv{q~_w&Kj@mgH9nA# zVrJlkXtrc#v1W&7uI%4Eg@GB}pjN}`MF%_myE~W>MooBNxwCB*h2(tq9JZ2!$o6^^ z*^Nf4C9y{j`i&fcwa!X@b}j|Q)i`AZU3e@hGw()a@bp)_{CkR)eT%EEs?C0k<}m*I z?T=JD;EkOffB)_qAfZ>oQ=9y&t9MwjHIT-A29;s(BNwfuz(oFrSbERMYPW2A=qZ~R zq=c|iRM0~)5sRK5MUl^M{p272r01qxtUh%-TgMOcS|&v{&|eA0*g#j=kl89MlxXTn zFhQ;#YoF$D9W+z^cPf|Ozr}k28A3}V(KvL-LPik^k}LrV^})5&ht~MrS0f_V?xrp| z8mkwl+pdMei0C@B&3@WKgj1zXr&t)V->#`bM3<+Hmq-(XvHDi1+T$>F~p`e+KmjO)QG{3Kg4@ruBgY9!))Yd-(4ur=Q1HpT0+QRA9Ek zqX9)xsH>}^y1JUGsw%3htC3}yu&^*7X7d-wr#Kgc=S3z(~JLgYx z{^as=r&I6p*m1OaBTs&~40Cu>uE{5FJejZ{4Lf)4Jca}R{}U$&!ef9F1R<#3`W)3C zO8^-9^tGg4J`H_nsMoSiYdzau`idPdetQf@7&yA}BO8*Q#Q6IkL-n5&CJ9YN#0)$|NQ z9T$MxZ?iU#)QBOcf$alC-6HR0gU>~&84uYlbGH!`gBUyz;g|((Z!%OW6vL~?n-3vs zOIn^v8-z%&MW|-uJr`jZiuD7O<$r?ggg)sALtsY6V}&2*_2BAzPouW3rR=K^3Xk2n ziidAo-6nZ3G@pejWIpiEHVnnY8QLEKd zS65>+8tK`yC;Rs8}4*h=@w!ji`$l z6Ri?Ase-(E|K{WC z9($c(OFYpdIla2EY2pa}ywsCRAjuHT$T@kOv;Q(`U9G*EH7dC4qg}%=k{B(P)nXUxmb4c{Z17c39>qF<2#J%y%9Jn^+b*8YC~DuNGLDhg4Mq= zBzqglWqJHM{4}oEFdw(Q9!*Fj1OEL@m-d&wr3767Q94Ir)XB-L%h}GSzb^KAJ~c6# z7w)*4<-Z=Hy3&v2Qhs9igcP{8) zUOR6nD%TKe4s7g&6?)=A{a;_5Ir93OF4!3h+aVlld{RO`%a&0fNWot|92VIj#(pFF!m*W@pv zVoY=!ZQ}OlKEUn8S)pfIJhN}PoRxF(s3;G7eP11+Coe!JzRn`&>!&E+w#@JHDwT@9 z{ReXDO^>pqBFJY{-H~{Butbd$Ufa=rjox{CdFs38Skh-KUre|FLk|^+sqN=Ws>}(Y zct<3?&OG4fs9K|+97MWeLWgu%?Zt-7UQx>)sf$Pr8Mm-DZq>M-FAiUKGu zl>F@oMFyefKx{nUXs>BiR!0b@I-ek|Iv8VJ$7HFG8QG}-P6x`4{Rl+?y%{ks2BChi zby)_3^+A*k>!9xF=JRZ{$8^+g<~&e^>!5!dg+Ti_+BmRNVS^uA`L4jom+wR5jzd0z zkkrP@82T5o=HA(d0}Z+wf!=@j>63BY;>EML4QyC8hmW4Wt;I3D!NizJr}Fv7?~oAN zTK(gALQxcKHXCJSWfT+?pwVdP)vFgqW9wX-|0hvg?2#({_rKxECtIC%*lY|)NMUb< z$BrtgRJ`=vHVg)j{r3bxc-w{Nl7j#mgOQXOV|||g zryvmN(zc)t4PwH5Pa*D2^G*%|I6%CVNWZHuMy-K}SpRzW;%rgX=W>O zFwAUa?#Dmz=pDYv!B*0z>eh+j0VYiv%pZUJL7zV9Esi^#PS&k!xx#kHI#yOJ;Jd42T>APY%L_#4uuF&A41HHf{3E zi$jKZ@)>U5luPJk?-SMMAtI)|jHt15`>4|}XqxVIa%e2^J^I6#!7$?_xaK^#|5~{D z5;*@KO2el5TRzq<`L;jUUdwPS7D6Mx2aY3QJ+dZ(1`!bd@SN;QPJ(UWPxjtOQ zy|2TBv$DDNiS>+|kwf2sYW5FFWbt)cm=4@|L|eVU`Y^mH2l378C-c+Wec7}mfuG*$ z&sQ%ETFj;ka}#`I&=yLYkl>xbEU!*p_QzJMLc zr|^IeauA?ahRY6wpfP!5(mE28klQnj?{B_@%mF=l_o+KEmsgRPnS&$*Y4T9M{li7S z;`LtZI^FQXUq&8(&q-89OG!MJRm1#Q6WKRE4XY&cyYMWuPf?-!)`%)1(Q$zi$LUHm@pPSof*CbCilIEQlpi#Od?O0kEG(FixV^uM8~aE+J3`{g zVG<7ymKfVQ6-?Xh_bf*p?BLMc9+a(*!&Vkp6iY`CR$Iw~zr4z&D}SVSK_(`Ll}lFs z#88KaxNz1~ba|g{b>~+a;gLovnsvL|Eqmm;p-~p~#kc5A78b4CvnLa(yQOU*q7;1RS?ho z7uATHkY>FPxdjmD9HX>D4rUiZQOn<-+buZ#^m0(QZ7iCcvxF%J7NU}UzXKyDrgHoJ zbG?#-03{{0TyyhJBxHn>J#Z3#r%dGUl!;`8r&F&BqRbeDQ>CR(`ZVH=o)2fGt2naoqFLCtk@xfW6rTT>j917(G1!tv2xWk;&3E8k`&i;Fd)ia8YXt*Ve;RmELL4gyG! zCDn64)VG;qu6+pV+6XXnX`GG4It}xlgQR~tA7`)uQ(h@4zph~P9d9!2^anV7@?A{0 z{25F+MICRrjSW??_4v!YcLW8J!z(!muu<$~f|$ilZ7ecs?C!2}82;+3CI^#SZ+oNF zEj`+y3_^gA)QF&l&5X)Kj>>y(GdmW3)!fDEu+`KDr*^oXK*knG9ii1CA{sQ2P0^rP z>AftQ5r#_;Bl|#bwAV66;>gG0@8c0i{NG=wlY&9zU#*Vx(b?CkBlS~zL&!1mp-~%* z$X-6ljsgkGq69|2_%vbtedi7h6wOJ&jy_{)-cm$nPKW9Yn>d4eUiuMJaFh18&05Fe zc|VdE7mdMaV#?{~VYMDVr^DtDLSQf$NJ>g#`0(LGL`1N0<3_e`-%f6BF15AoI}sfT zm&=9SZbv>Mk7I3ZEjC-nQ{fy{L`K5gxv*>*EM3~_v{tWYPkAvj&c6}>+3n`>YbGA! zL7o5vnkoJSPM`x2d$JIf)fi&J=yCZesJ-a}wyp)V?}2hWJ%qYihGFO(HzS@+LTQJ4 zkW0W25l&PB?MfUr_UWr%?ZBx>_uSWJf?xph^AHBlhSi^B$(?;BEoDe0BvU6hS>^;_ zCBk{I{j%<24{_yc_^|dEj&MAP&%Aes;RLnEUF-0D&*+X&UD9rsf}Ic+hEk+Is&WI3 zo``{TQCw=|(mT#z@v7E_<3W9j`QhC;bW5&ovyE2$YP=JKS}k--)9~46@AJp+zw+4Q zuN^-3<{MYHC|l-m@@sKRPbA3+CJWRwh|qfPvn}k{VdBj<6L|5(EOffS zwiL1=qaY)MV91Cx=FQo{nl)<}H*Oq*2M^|(Z@yv2jy$UVdjnEICCCbLoS7)#^K)(? zNUNtucr1s4hBBEi+wE_cD56AYFh0^0%BNkv4<$s8J1N}nmtfwUH12z3J^AVhd@P!B z@=;m|N4YrlruX&maN7l0NAnYp6rDynk13@;AgCKCZYWmOe9@`Z5CpFWtp=6f#UPlO^h?lw2Mr zv)Q+!7AtwO6*C$}DWQx}!uU%rqgraZ9<>bNXz8XHaiMTfSSgVlNHWBsBOkk0moqgI zaba$(RXWzbGl=x5IqXZXVw>GY!H!6rG7O3UqZ;B&g0oU3^6Nd{BTYklE*Wxbd=s!? zeM<@LQ;NOJNKIBaC96!tPsv7Y>N?MTmD^2Xc|LZHj@LeWi0;KXt;$@lD69ieWE_?X zv|VToaH~7-&zG7J#>aonZMR%at(A@Y_7NIppsEX^2vgF+nY(C5yXETY94uV1m)Q6a ziV7_4mOmOOF9}>~QLhcWu1@WH4fgx*YdG)Xrw&Vf0%)~OYoh$+8*$Wlo|Du;-D{~K zH(zQ>EZI4&bJn&6SHqCiYIyOP>0Ehff6l*XHktc9j#T@z^64|+8eVwzdhWjaeB48N zfYkvhv3Ll=K=ig;c!c@9SigQ)hIG}lVALTmeT}-5ZoK+x66IwYKKghsI<1ox^L)4b z;gIV|u;ihV-MGExqXMB4R8_VAo0#?JeBOR>1`B@n9hEuxq!;=2_iJz|GF$fiKuY{@ z%)xO!%Lf7(8CyG~vCZz_p*KEf)&&={d|pmK{ivNXx_T#eW9QcDk^o5v^lC^7f}|k9 zf;=~EsVgT=IETEyfAXt+eP|T2q{dO}B^~i2yNd;B~n^lG0(Doc51dOGrzjp0e4D7DMCuySwh?N(0|7X7Eu90^NSx)4!G(eiHx^uM6E!|% z&6`7!p{|YmvvuLss9b77OCzy_SKu%OZtzU`X*u1$T15A+7NND&BRPv%^U5ul_Z=eR zW6#83YaaFN2Q*c+44VBVn;*LZS8(en5W8EV%B~_*_s`C!BrH~x5CcX<+vWz|iHozu zlPuRfh1Q*iPSyFymm6<-ov*+C>+s)y{IRap_N2Y-N@vn*v_Nn)N=*sEZ6!+S)@ISQ zs*i{W?#`h4U=&wP*Yw{GI((h6Q7C0qh`Lg64hQw`J_DgL0i<9Hyh8< zPUj;uD%45AxNDz5MtX6*h^jX#|{gwKfDgbQO zdKS<7k&uu%ELysn31f$LVuW1_Ns>rONg*aChRVuHEEWq}wrn9fI+`9mdbDc`R1}2+ z2M&;zmxm-tD2hTvLrljkt0||IFsi`q2eF7293Jxf@R&4}K1(-;BKo6L zl!L)HdDRv91p}?Wc5^J}-#ml7!jM+yt~_@KZ$G^dgFb-B3$<@&f%J5E{E07l;)$k3 z!S8dQMXwK{whn?!kY4~bCJV|Do0+72&}|DWxwPq+gc`ldM0@!#j>PiiW zJcQjv*|G;f-?lMt`H}=OdR1aDxTzIKEZBEvd;V_*w15?8m`eH%=#8wbN3RKDNaA2d z4!fPRGk=A}&p^!)9@@@&So%Edo(nfDK~KwATc=R_9hs-a_qH}NzRBD9l#BM!_pln^?q{CuT_P!K{KHeycuat`|k^dzf)Mw>sn^0+9<<61_ws8LgE z^EWbF!C;a(_4#Eidv+B27pAs2pSK~F0T=B?s1-KQY@YYB_i{;4j+1$EDQ76roTfxk z;dUaU5Q^q-lz<&io|1IM$U(Q2c=V_d*pVr5JJ2KH@?>X4LSV&BxK=RYx^2iV!Jgl{ zvwvXuZH0YflF3+dXr3zk7ptT=%ebY6&V6S%( zA0I+NJMX8(V#jK4ct(oC*?WH`E37-)VwzMYR4NsxkA8qTtDXVix1|qp)|3|rG6p7b z>kZC2g}CT23QO8vi|#*IgvQjl)w{`J?=(SZcf)gA-1G_+s03u!C~cC105PZCOw4IF z15kT#7bPoy!kW7Sdrc*Z+;Y8St16}Y6;EMI>P_}nPg0w`9Z;yPv9Ruo7to3q8Q*U> zQR6OWe_~H^qEcAYZvxjX`jTaR#;`C;p~k5&GgTrvNa3rjwg)F4URVgKD|F}++K;+Y z>)pim_br8cB&u){g_ixIhCS4xN20cYoICxqpHaEo{C3TGez)ffT8ER{?t7js8u}5TK51v2hCMF@uYRjC)NhQT&rKJy?ZrxqktBQ7qEw6ru~5~EnBu=Hk*+o3A^1+TwENnv9ZT4|KZ%Z@YGZA>8GI6K|}E#mW6?maeRJptf^#OMheZ72$=RUR2V+2NnH)slUPjSqd)W|=^U zL4WEU4Hb*_`fNNeOYLtUL=;$0-bcaG4MZn(zE5<1$XSMjAYXko?)_W*YqN{tO{43E&|J7F{rz-+o&~T>QC&hEC<& z^Ijq|Q(zQkw4&w4JhyL4auDFmn12(a?YQyk=bxka=%YQIA_oCv#YJIFB@Zn4igyYY z03L!+Q4|Ib9t=Rvfl}(%W)bw{9JDJk(X8H2$lYHPcHuinhdi=r3Fy$%{&n0f#uMvm zCL3&bqRK7D)h7YXj(kF9eUJItPf+diE~%8A6~f{_leqA54_O|s*a&S-IPT8z{J)Xk zYG}romPpT_3S4s2vki6C5kKfsxOELongtp!hLpjVGDeXw)wlGL&^b!!=Z9gar;v$o z`jOyF-YMKS@pF`W`tZ>cBXHPTE{E*4EUt)b-vd8Lg8sT1T(Xk}8#>k?BV+&Q znCw|2vTBOCaH4-wU>8oPBd4wml}2Xr!>br@QInA(BE6DRp8gw2-Ldypmf$y43F|}^ z;34@kMICcQG2f^P`B_!WFREhJi7JvYP>-9rq67yrVGTs05fwTl)Ce5N>=GW?6iKbn zXXbuJ-nf-v*KNhJFS3<%)O))Xp4udH-&&db8~%HFs~fu;?j9ha6)-IkuF4Qx(L)gA z#Wp3WWCHmj8SVAl^V?g@{`MIj{P{niC|C?3Ea^L*--b@(^9dJF5Za`HTB~dM9;*O- zL++gFJ!?ALe_N2dKw@;)))KBgdzxRH!jne~dw&HpPw9_V+rA-j+T`9G zJkT}$28zmxz~*`(3F_>D8B5hFsH$=E_Pf6_{-nDJk2wd8@zfUN;Ja_#K~2Rk+<)(d zgoKz7LU7~tGYH#}iQDB_KRTQp`xXc3Jae4c9Q6O#JL~wW>i>^F&$(Ue-WagK7>w=^ zkx)bl16#yIEEKy?K_zU(0=pFj0|X=l>Fyq}?ylSC{QkIOV{E&-yW2p2UtW)g581h& zI`ui9&-?X$zuu%IeuK4m3HH)IF&8Z+>FC$2S~?4J;U7$W=xUyrI=+e=1kkGL?kga` zm(?p?XT#dJQ7T>U!{2N65F9a{g443pjd0WvK3M{bH&q{ytLN(CVnxk4eGK9$`Y3!U*^hhbq4%` z;~5c@0DvSpShVsnvh$Cg-JI9hxh{h_58vM4JFiqKP@e52(?}SKnypk>>5S;3JE1oE(P7eCbbn|2BU5=pk&sPR9YP>Us&UjeCf#?Oo9af2P0}M}Xr=hgjnf%<_On&ZdbY*5P z`E@1QvPz;;gu`MPI~65tQWUXLkw zxIWnJPM&#oJ^%`Z$oTOWQ&GN@@z-{(vwU;fvfZ}j69zy){&B|J=Ax$l{lASeEDDz+ zh&QsR%~i+k`Gf}}1M;qQ$d(Vl&G`syfY7jp2T^C;#-lE&()!vFlp@M#&!v~W>4OG- zYbpdmpxeO4*K6#GRF-A7JTVjB5xLaI-`n#9{5vKzdMtHapT=CXhR#L##m`XMG&yXw zPRI54zQ`Lt?qT$;k5wIibLMlrIP1M8wcU~^Dk?&!)1h&rv{zA4fzfEBSFc|5=+UF9 ztX8X~b?esj>C=bu@^Z?`$|x=_rcIkR^zYvvKR-VV1_M!1QKY4%v3Kv@b0YI|jjh)lV~x9UEFI)Kk^iWB z0VMXaVY&4vYo2@#g`=FYcQ$<)qv$jc_0B}Z1wYpLyPVJ&>6z!SZ2kqxiq6YDQFjkU z;ivVgZZ!mieq#~xCxf%@{7|y*-N@FyaQH04z9AT)XIljGgVY`Vsz%n%Mm}YS^qP5m z|BP`>2L)<%myS#NlBqqt5&pb z-I|n?6xJw2hR8Bfkja(5HNPAw*o19xdt{TAvX^gVV|W*CmVd%RZ3#sIfk(KA`=u}p zj>M|tx*xXUclQ@H$~uEh6fAiJN9V{I$JhNG$*N_odH&TcsMS(syBZE_hHhBMbmW0-J%qV8pm#eEt3Pl-osi=eeF`g`mU~F_b5BGU@;43Rd-v<9PZnu;+W1 z##BHI7fs&8t5!4F*){WI2#5rQ4rihxgp_)WEZs#X?<#Z2$^N@mG-*RHCS|ex`yi6D zL%90sM9ksUy0jra{h6NKnl+_$@32Bt@I{*<9A&GqIxXzTgCbkgU)ls?EU8Dj^2V=q z=hIUuVAgFF*h98*s-osQxPL(h4lL}zxDQsK52{}LD{XchUJ&GNah6nRV_>t2?A;uS zpp-nC=k!W=zK4iI0<97Xte}$}v|suMrG9}V4;q5i37;O7$VxRJh!Wc1#=Y+bOBpL) zxsDROiG_Vf^T~+YYL&Tb^|wq|zkr=F-I#IhJLqcL+%-AvmM)`6z>ml-*7o`rdalD&S-Lfrx6@#pvRC_ zOnGi01%-7-(To|{nXyAUvwnq_k)O?kM_&r1b64+j0p}Jd2=;0Gx8k6Jb>~M` zC`3MZ?;-BK^NPAFZ#=-v5s&dg<)2ZJ!JIhsISPemginP{fzvKgRHC3&xaS0;QxXuA zBJP3~&1N$lyWT@un#*}Z6a{`=@Df*!z61mh38kZ{;BY`frIVN7OG&wfp_lYv?_MK= zE-K>p-w)vDS99!({|Llp6S;PLwd2Ub?~3?yq00#@s63ZZ$Ct9O<9P1d`5_xyT}02! zootQl$Igg8^$w?1TYuVh3uEfjf7UBE`utNvQCggwJeuF&>4lVKv*GYBY{}SKb!=ew zyJ^?D@m}+*qfh|TTr(_fBFMAVNcPLaf1S3Aakh5b-c9^9!wDV;;2-0tU(Ae-TLODY=qN}UJ@B2 zhf<0I6G~1|!8S$R_i%_a024}uGY0pU;*1o=WpO=Xm^<6dI%;&lLg{q^%qxOJGv zBW%q6*qgnyoP7+er6B6b32w)qnpemacGoIrBAkh(Z{t(Ya1P(|3Hf9y6qdO5-Mudc z;~WHP=U9{(ihO7+r0n&sA6zz?mWslYof4L5rGwVO#VfdG^rg+# zesiI$tc=~echkOodjbOkQ7V-Pf`H9tE$3Tr2f}BuOMCC6SSlLA!SC2n`KAchQ86#Gzv+=+~zYWhJh)L#IxiIC${jc^=jO ze_S94&jJ3I2}0$o?;~#7S@l5(AJ&6Db0%YI6M<5z1pyot7Robn$Xd6D?N80eS&z}m zQ#9p+em-*=0(8Fn7TUyLiehaTB&iU5K#nWN)-99tqZ`;a?^}>%+I5AV7kfX_GtX1m zWe6&DAi|O*2&YbhPKO-d5$TdkaLVP_cPs~~>5DP1uB`yt!BGfjTA)-qi0Fdg>yImk zjQ~z1az-K)Ce`1TN{`U}QV@?IlrIH)F0v{d^n-ye$VtZ_r-VNosb=QsVj1Ut9nm-Z5BY+KA?gX}BP~?xif0IjQ5uit>n&;XG z)Y=4zI_$=1tXd5cc0fSoRHG@)K(u*gKv=ZAJ>w^jt8wg-{we%0cL|}vO-xYl8wo!3 zFG`Y=&9rHIWxdr^fHf=tVc%y+fx)C%Y#b_E&#vM>ut=qt6d`o=xtxy1L4<2Gs6_8P zr5<{yJ@37j=(@IME9^fB-P?f&WJ{sBls7jo;GL}tDYu{1|2!ZQ7A#o6b=O_TRaafb z@4x@f+rZ>Y6DXfD0^6{Th-n2#0Y=cPF}}K(vZ*5x41uJn+Ow8Se&!G*STUhttPsag zIf^!pOhl<>WT1NO5lk=r4o(T>u`C3elfrNB!Fpx2ZZF+BRrl@wSM94f3PxKyH=u+kvRoA>hB<-^(0 zItpj@K`ehwGcr7Z{NiJr?O#}IDMo>kn8;xysiXMKspha#L@7WYg~XMjnLzU? z@{9I0nj8e^GUo?^KH0)$%2k;9sOWW50Ryh6_RbD8bfQ3P%hF;!Tguf4Kx?&=tNbg7 zQx#BDx($0}Hu&{fV3nHZ3ld`pCr0eT#{EV%9Mn=~0e=IG>Qg~{n^N}McaUSL+feAR zC{Svv=WL(6LMBgpmy`}|`SFp70O(805u6ehgAS+a+^fyotpfXY1k;$W!tHSaodZM` zCp-Bk6S^fGVD>Mw`R$=+Del;b-XX3H@XTFK3T!U!`D|s}hA?T>SA2Ex4OrdeD%Dxd z_?SzHPfsMYIG1%D2jE{`#Jo=)<2_$Lp2>B+dp_~~X+N>HJft@WNh&5NtGrp(CqW?w z`du2yiR=tkZrM#{ULh)_lEFPXaZ$GflJ}Qzc&}&CxQ&62ua^G9+mKsQ&gykXNj#N{ zLLt(-Yb%Bij-xQ6f?bWDy&LQo{*4bfw*=~JW3N@39F<;qiQ%jX3{;cuxQcWRe#?;aSWf% zuUks4VJOKjR?x3+0!c}(_w>jw3uzZ;gM{k5QL+s8PHM~B?<8X|xW>3)O+KH`&95rZ zC1)S;`A3lik+H}AU_+}xtZy}#Bf*{Aj=*TrFmQMbc_kM9{^tZo6Z6n&m2`>^;qu|_ zNlPr?=m8IM2AqMTr~YQ^zAvl(PG~opUJ2JXs*U=fH>emmvNfg7QdVr)MPf=Oq9~9M z+lng&^(A$G8OIKIE^ApIj`j$_p=qA)iLX}4r5*J6s>^XWZ74()X34;&BnQa_&678& zE|i`+z^NZ*U@xt9CRA%QJUVqMaRV;HCdqX06EQnvrtN54Xjr>W1^D>cYpkuJb%Df4 zQCLe|2Q@}0R26cdB9%c7U;I(?yCR!jP9Neh@`Iud#|;Utl!FlwSlrA6VN;=(M8?Ts ztP%3as?3Y1wAu07kjtt~m(cCmV+bM)3X#z&>Lzmn(!-DxPKrWuJ#tFgvA7Rm))EF3 z|3%^E0=_M|mI*)RQ!1Vx>1u=0L66|(i`Ebd%8>&M&DLIBaEjraQW;p!F%}7%DaTBl z9L0T%qO-jeh2)wq{MC_YM19?RIkOdluLi9ep1ct*>Wmx_#9_0BgoJAW2n`J+EAwYS zO@>3DP%1`3#z*uaL{y^_E2uy2NTAfAqtIT8RkEN}=s>Q9IiYcL4?@e2+<*+w<8F-fQ&2$L!m$N#sxG*PphRJ?CohKIF5TCx#}re z(jHh|BD3@xμ>9Zyx-AEkoMkK9UV?*T~pf!K322x3quvxsRmBOC;UNI>^?gkIDIducgEhf>Jfb_BW7uyMXg zy2hX-#;P=E3F;kBKx`bAq5=w!pQLc#$r^q39R_VXHDk|86=Lg-h^9bfhaI^%8!7F0 z)#~MZk*kGhRleRPK z$#p1|a?^7n21Fy6g58#T;K46guwWTVLFSg*hV$}_iI{xG;&eLc+a`>yiQl-cXB9M9 zB{dG&iAqqQ7Om8otEdrp^wD-a_+T0_F&5Z%82UfpA_rH#4uk8K!YQ>@@ZPpXys>!! zMV7ifp2ejC(l(h#AAOWJ-+Yr9GiLDOi!XAkTFLye-6?+OCS-s21^^Kq4n+tK6ew|^ zl=6|}hMz~@`@f;$_CeVDRvS}~9rok1kGe4No`ZDiQg@W?X$Yw4)!`{J(sJQWAR71x z$c8T#+{ef(yOD2EaJaB`1e`)p;;RcmP#O?q39BWS5?gV-3)l}g&u3f84#xF+f>WKJ zK&>{=Mgevi5}gnwICxN1L`B|uEKV0`ebJq-v1i%@%G!q4+2+|0tu`dJih^uCa~~f_ zLjP#-E8y|?)phT8rGLlNqN$x+DT0z^`KzstV$dXKMMj5Heg^e?AciA3*?n@e{(Glw78CmoFf`6EJ&l{ZHcE0uIRHod2x#yjo38jYea+%lPXw9ls0emxM5i$9D zktdI>QEc;OA2w|CJyE@UPeS|CK;x1PWiRvxA<#3 z9)?<@B)W|s0U-wLc8Q|Aa!wt0|NV4_%$$R)+B~PqJR23-onieS^}4;Yp;C#ojtRgo zSc@b>aju1viFwWT?xnZ!p(xC=Jg4r^Ay~sDZAy6Mrx!`dt(HpnH~Mkgu!$tZ4B>~} zR!S_*6O~mL3JpshhBww`HMU9QEaz#mzF z3R5X&-`eYHNrIF60}1f$&i8THx4qr zg38e~vxq}WL;u-2EVo~VLmiAA0gY?}DTgyPUDTqEKutZ-EJbC|_dYnD4x$K>ge(Ze z1_yB}$K`~yY}r>_c3CW2Z8^MDco(IzD^f&2pr86OZZSScM^zyDI-ESStQx*bdz6zE z)zQ~M>KLvFevD40UihobxX7>S{c4$0%j)tUSYQ5rl~bWk@MDl+5usu{kdj+sn#$3j_==hldP;P;^N{63=C|zVk2R<+c|LH0HP=o5)wjQULNJ;<)~CD3%?GV`n+-?7)&icg7bY(6p=>M z?JH$TI*mXm{|TXJZN24Xzv0O8Fi6=|eNd@I=s6Oha0)o;&bJ022hKn~TnOdo$@|vd z7a=C9$<0^-yK_YU6UAcvTHn4>7dn-UMO|EfBJ$I4I0UY{Z!9-ob(rg}Jl1q#@O0gf z_6S-Zx8-eiC@KP9A4p3Fa|Lwi>XM;({=utw`MoJEx+`-!Vd_*@1Yy;HUjGS-%VG9C zt_|;*qW$-hVsHgKQmy!05)yf#Nx$^89R0?9Xf=u zX4gv|jZgFEUi4pW1e=qJy9Q&uva2iKQEn+xi2G{`P>`=-(NFD3PchOawuBod97U^b zI9j-@)Iwa?Bd$N51k}JxK!WW@XA&6|Kvsp4P5CT#_SPX0yV zOP5fbuOYTeK6;bONZA;IaN?|al=&E0_`od<7j7mvZ6Zsb7)pMkKd%gWk>Tdm>>t>J zO;-##XJe=ui$h?~*2WQpry~gW=1Y8&SiN)|83p}AL`-UdW5p7=W>~N^1hd+PPiz5K z>Iw)rcz_#z{+KaOeuvxyFUjEIJeJMAks}f9*wv;htGisx-qr~OmlaZ^_r(<<@&=H~k^LZKA7e0*0XO#B^NJ+f4S054C!1baz2 zrxNq&J4namsooLE*@bFCO`Z{ixw%DzN8bRzzyS%YTm1<*yd;-IKR9uO^+!_~di`_& zc5j?Zmo9A^teRP@C*0RNMSzTAJrRwlo1T$JOv0Twoe}{7zT~7Y@Ty;wzCbh?=uyT)w`X80vM}!0ANg_`00 zpCByg{2Q$rLaCpIl=!9@u>|0OfeP+;`{sJf_#6FrXVQoKuvbBDS@YyRtPcenej<7K z=Sa@#`9q~t5!d4~wAW0nI;K~GR^gJrt`7=@M7Msq2m%CaP53O5IrOnBC-o+E2NG4) zDL97oRq^6OKICh3taP40l;9dU3=0zLg#toQ(?j;H3aI;wT;ebgjUJF$A>>gkwj6<4 z7ku)I=(}nY2l{m*DWENz-s?s8STo9E1ID{HAt+_?kNIK;8TA>pgS1A$tIg!Vn;Xs%U;#_!lZW--_ zZIoJ@kRrhgMCfhA__pk`iY%i@%*NS1w8{G-F|~leQEyTB-Mu)vxtCxK(zHe;x><7< zlt4i#>^s5QiE|iQ?jou#x~Mbj*S$xIL(OfuBd}3-l;t@6o!nu(hY*GNj4hvu@6zY7 zuHe%;>x8L0a8K(`h|C`fjD-lx&jC_qo^ zH>HkTZiXW+hdH6=aD5tbW;ynw-aFznC%mt<&($a=EWrEQ$t+p=KinPa~oWg3_}*Plt~{cD8`i>14!+5dcI*1@ZUl zj|ts$5Tn|Gxa%m~Fcf+>j}gsm7J2f?SSC+SCn3Qz1E?&^4Eo|BHmB8g3lwFz$q~Ur zci%&FNH`~tXLC`v7g4L#l$4ZEP*6ZbLr zF_CpKNn5k@+Y2CE_;X##?C9 zsgMoHN}NgwQw4j^^2$p0CkvT{%wcgVJFqF7pJ3qB?L{lt8?{NSF>( zA_#(jEXyoBP)6XQ?|EhIkFItFf$lFa_c$k9T`&|`XmjM>VG#K*p zN*`Bls#|Xw#+UONjy}sP(-LI#PX4Yj5rhC=eZP*oCcjqo_ZxF2@#nIwv~3g4t26E( zIM~m#hLnLo-A*{d6CXj>Somiz@|FFuM~0Ig(wWt({W-GP$u--b;g_fp6zb|Hflucr zv?{e2?B)EBa1$0)-8o^K9kNWnlPj2h;0JQfn3=)?J2HI0lTDgOS{hD;z>y~AA@tX) z=;6PU*B8C+wwzw0B~MLXVW4iN40dJCilaJWP=Zl%Fa{JX5puAIEf;BXHjG6jT>9fuwsq;xnv$WUu5HaHGmo68$|#Nw`` z*2jz50VRAJT8dA}N-WNnld3%%N>Qe7NV(gbtxbVYSWeL3Stw8CQT)zLRNT`v$1kDO zg8s90STBjk(LLI2S-rv+U$r}Sw-Tv24DWS6f9F-NWnyF7Fm2A0%s#fNe0VSEDUOuaox2ynqzLBGm_M32cqfDUmGA1|X&h_r6)TAZY%<qm{_ZgI-yrn^xeJW9C(?M*RMy+D5C7CE6CkC%`G{&WkWdS z;xO?G1BL3hu<%T%}-W6g!`Q$ z3YDM7?K`z9oM*{m6>XI*zB!O*zwIcIi5WBxg;K&jef!1;R{`vR(rB?PgjPr_d{72Y2rNjDBfb(At|oJO~0?V@EP| z;FG*W_1ZWq|1du+y@%xVZQi%t!caJ6wB_DEPXKnOj7it90z!q=%=RNIXyt!yh}+0f z_t4|zWwgKgAv9W7pOP$Bk%IusmM!D*R_@n6#RV<~?C3>389)9H9`?Nh3o3rlT~t-( z`TLEu3RCd%hh=>AeHtNUF4^G{(ZLc$4!;PQED$o;p(v(Ubkvj+72z)-7aI~|k^&VSevgv={9{Nq*OQ&(i z>m&yOvOIWgggSPMC50LS!YYt#dGye@nS)h;01xGvFq!I35zta_NCE}cmLvCNKYdl& z0L7`M=M$ApTFM`}tU+=R!0aqVayKWRMyn9!ZTtX}$y9ad#EB$sAAdiG5`4LMQ~h%6 zE6qQ1(4Gp2$TBFza{Bp?ciUa5GnYTI-@xLmcDM{wMAZ2Vora9W_l5V6?^HkoX)ykC z2y>l}oOA+Ny3uV>LGdg?*KTgh)LYlhZ_VLsE{FokHucNEH<#_roAYQ)-|f19!PIcM ze>3Vk-)6bb1w|-+T-?M~YU7bvKN1+~vKbvew40G*&v+Lukb|{gGMQ-Ct{quf^{cR5 z!2d5?usB>m%OJlH@yLmW%XxvuesIo5h-^!em?8BjeVh;Cv?E%`kDv z4L6W@Du8>Q8p*!H4M#9~IwrSJHZHPE6d^POVq+j7q1v#gQYneNe-NUt9_}5}wCKUa zG#K+NCp*pH$%+2F`syj7qZ@Cq9on`B!`k!!V2nA0JvYD0_m96%;Hv3ZuJ2P-P7nkx z8PN%F8I=Hr4jl@>#BGkw3m_$Bilad%EnK7({tIDs`y{#- zS@1Wxp0UEce{E4|*ASo^^*S$e{av@iY@+`NnTBE>jlPE5daCpfPs#P*pyZd{! zZ23Mu|8jZN-z%2Ra{WV)K=8nECab_Db6o>YT-I;s)WJ0mXJ>mRNvl^ou{r7=vn18; z3}n*Uan>={%Q9@*t!LYQ9Tr>l@4-R-waO~ac(!deJKJ^~<(liJqc&X5^*6nY(^-eX zU#fpiD8F?-(rc5E9~qDQ@uP5YwUIM0(7~j8QrW)0cfIui%GCzG?R*Qn!+P*;--r3L z{gw5W4X()L<^$hxamqgoN%@EScYeqf$Nyx?)_1t{#9wavsSkoIaofJHn5s50X~?Vi z>RoFyNpkSdj`#WVpJ_PH&X4skfuW>n<0`W{hzRb4QR_YjGr+;*eMB`Ba@Nf7={t_j zFD|Cb?Jv@{ZQB|i^~aAN=fj6@pg3`7z4eO^MA zeD7=89;~@v%024OhPQfCoMxi`1G|Z8UrY=xVkQF5?op1V=3JvM^g&l#ozqfjQDZFf z#jdHjjv8^}alW0?liac_9xxTr5Dix-L6Oif3EkYtsc69@gn~fPXLpeQ*JG65H?-yY zsRJ?+W~XP-@9o-$Qe5;qM~{3(pFSO`oC=GJis#; z(C!6o-9%hNm!Q7io6AO}2+<)JYQInCLS4*VAB`am6$*ha&8whUCtC7xt?zsra}V5& zPx1Q-gw*DD@}K_cdbB#%_i4rApLqPana$qE|0nqS`%_+Cj@9}f*2KL4k8#1`Z~-j> zar5pPfB%0Y=^8>yl9(a&*mBPYG3ZI3-YybF-|9_*Y*&EVy(gcniH3l?AoUE-SXsiw zVz}>3)(=B2Z&PRf!RC058my~SBB;Di0DRimt}$EiliYj7ifHI$e-v%O5$=2LQVNP( zp3r8Cifbp2qp0{C7+X}0&rK%?F!{b0Sh{p|<=+CkchBQUwvqjByw*VN+HgAIwb!C~ z=9w6td#)|dUMcbPpX2!TL|@)fKS5BC_g?UCkG!8PcYeShvwoyoyDm6e1t3M#HjG|! zsY@;P)agreQgXMzm65Fhco^7G&a892YZF<-M;4IABjBaxuj=v zLaB9f*(>XaA6?rhxNUxSBoA{ZHU*^t^?Up_1X+gsond@j{s1|x1IWJ2m(<$>h!}Z- z$g}>7y8HxJ`!6EaaRQqJtJ5V$Mv2Vqt02x-;HzU2Kb(;H@r2Cod?>KN_a|hY+b;3S zZi#XSJl|8~$!;Rg^bmQmmq_0b*S-Guu*_G-WWGt1DYU`P*zS~TT?Wj7N4F81b&@&X zyofqAjbu##U&O>zokP)q^%Si8!K?FkD*p?b3I9H%B^NPxKqMVHxX+8GREi89)QbGv zGGrNwi@jg9nr-gC$`g6br%ER za5yO|^DL6B%v!(Udea^~sabXZE(&$ml>vnaHoM5d#Om*T#)+@F_wFl*jt-}H&yK8H z`vKOnWmFU|X2y#XY1<|Yv2tFOB$-9OZ9r?flACUQwI)$0S5W85YVjt7S>HjK8BR-a z+U#JdHV|KbLn*NVCkQxRf0T_=RI)O5B=7W_%C7KU$U^pbZ`c@ZV z6IEmyBlx+~bp)EdlLb~v4s!Lu*c58aeytdH>09*cdV5vmOMX!@-!Hj`BW@xa&le0O zO*bGd*yrG#N$;akxnGZ7++{e&a=go**;J@I3?^XGCxkut741e&s5)MdpU3gfpJMk* zW60jPs8&6zS%Jl@Ktkq(=>%i%=tQVog0<2);L4#|GIC^AZ?1l3P5zBH*A$8lb_&I` zMNenRNN34Npw^dHKYf*_7QIhWC(j%w&W5B^@a+?Kb1I>x`heEQhAF&^j$=2}RJ1R~A=!N>dKw2%?Ow^xSY8)%d)l!h9!(kJ>UN03` z71&yGttAN9E^3d|%DWu8O+kgD$m6nt0C91x*tYc}?6wu$dB^2dzh(bvBjw^y)Kcxp zV5OkMaYm$KfXc$Xt>+W1>sfzaXPG*cf|cI7p)k_hULV2XL^=PvW@qIU3I#8Jz7bJ$trOpz`5fQ<;=Ntu|2q^41%7^h6ck)Yb@9J| z3pohS0sa?r5UQrWjCkzie=1Ml`50?s`}7Nf%WiDiD4TMg=kgk<+WVo5tkhmm84$XS zKuDbima~$Ei(2H+TS3_u`Ox1WRTDchAoxZg#K$7!KLyUSa@HsUk^QD17X`xc&DC|9 z`($+fpwhc?8IM!*s#y%cH?qR-P*op~{ z)bxt)**S|pKKqr3&=$_=;uDVG7twIJGhnrXuivN|-b*@_iVr{hkly`c>73wsTidpo z_~MIj?z=CYu3an7)$V}Te}XwbfY}PUzk+Y=jS;}Y!|O;c%I47l*Ll>R#Zg9~y>=dl z{Jb){ws`_smPt=fN2yd2S}AX_Klu#;gX-?TJ}3{S<1_UKioU)FDXe}nX4aI>Oj~dR zj#E#8&U2|(0K45uhp173cuiC{Pp{K zVwU{QZgC?Y$JHdcR0=iIFMXbNK{55T((;gG_&d`zbKLXddsy^3F8XsVO9zeSG5@#d ze(NFPEl0?RsV4;d96^?0$7fyH{dG;R>)|hLAa+P^ zP6t!}{Fs39B3{1cF(&@=BlAW~2+nNHjO9a7o< zH7FDUmyS!|pN(mJ`q^%r&YIufhzJvNW({NimSnOrTu~5DzZyzh2k)GAatc(0G?15X z+_lqLx@=RG&7(_~7xul6B!n;jLilDS((|{%@Ux7fqCZH5*lafRLDv8< zW7=&z`^5DPjybDXPnd7rL`zDh3Zq^kz_)JczWVYIN)jZctC4}&R&_^}<(Z8H`P3$q z)^FI)EfZ&vkx~7^sZ)ebQcu3WEg|BT$ZEnHR|!9Q=% zA3S&XMcTJMj-O8vfqwa@Rj#$8C^?Zt@4sDwEFsDgPSJa(uhZjDJ8d;`A5Px%CfAo| zkXBKxlws5dGiu0mbafbV&j*?#4c<_ze6$$U3e0vV8O84NbUJNjPW?EGk|SG?&-mUc1%ddULr`A*OjZ8K&|otry@YR6 z8Lc#d#F=Ax?X@I!?k(o~xBSV^*YeP-nW$6(FF)4-sapm~mfZTfMsf%oTiBWY*JPqL zS;@7OR_!u|I0FdA^&YAaupqHVC?QE~TK+wyAQGT8pcWP6TFS6G9c=x$8~rBl1>j<* zKjCQkN605jtbYFkB^85YfAp1ceg)Vupg>cZ?O6b1LB^&tQ|?=Ww$zBe%uq%2l=&26 z_N`ksI`x<@e|;Orghx&h*1jk2miV)zqUL+(S60Gnz9mFy4^U>SXFVaysEf+5`MdU@ zd;SUMz?LwA!pkWs&`?~UrDN}0E*hIutEzy2PN_#NswsDrV?Qg}xsAz6l(A_ty#H1N zsH4y*JjkD32ePsX=-BBFii%wCvo26gmmM|~m0J{};LF^=-|3*LxrmcxD6nhUTe^|o zvt|GSLF%?tI14GXr!gkO!BGZM^Eo%jvS(ASEX#1@Bve>HR3h{o3jTW#6dwR* zjz^7b{SJBUGWU|+?)t(zdy1#^WLd_#GaI?={Jc*>Kp3bs$i;bJu5CB*^gOcDWd8ZB zaedd-wy09#8y}6M!a`Y67P3=vTfVXFH#Zv7hyCgMkp}l^xL_lZoVcIa54-Yq3xdF& z14roEDbD)_tyXyHCD^kEZn_C>yRBKq`ENjadOAf#MOC=~&owUOAUt=tKoFh-{Lc}D zrRAt^dI-UbN9(^p(w)yf6Z%3zU++fyUm*rhL(?}5QGbRHs8S1U`yv>WKt<((RRfY9 zIrR_}RYwoi8n4bDp2~Ov!i3~*uYn;5NJJ?O_u;`6g#S$dJi9%MPcIwfUm!K?9CMQov!lk#9Us%17 z3kxpez{)QP@N;hjISo%YBXuIU9fGcL(L~2jK;ORCQdn5iczV<5VSM?^^Qb-KxxV=( zl#&u9lO|=LQq?g>6_h|?I`oaN^8|l5u$l?K&cZ26ygTwiru4g}!9L6E1(Z6fqZI^{ zl&E4kDLS}kz`dkxKgs8xf6g6u+(GBgojG{$AoIVyhtXH}^6aF}fO1a?j!qGvuHQJh z=%;pcIJJd@ryKvw?c1Hg4nkY5pfM^l~H7ZPl(1 zx*(v{nQ%A*$jP-*TIxU)1p))r1O*CM&6zbK)J(oA!drW1=(Jj7G%EMG2tS#(h#529 ztNJ@A$e*m#r64IlZot@8-^W*0R>`qz11`bgaMGz$JN{bsaf4&F*cE6S7<0XK9SXE{ zeM>#5>r|pu*Z)xO+U<)xTL?B?(+E;QC^XU z-BE#3p~0vRVthA#Yr-)MfLX8S{=&Xc|B37ENt6oz(2sjC70XiaY-46RY%FPR69m$C6RuzAK_@Q zBC%B{B15c6Y(yPTCOj#fBRv!9jQUpyB7=PUP@EUc-jfuI`0isnF%#F) zT{59ZBmgx!6r7-(3c-n=tRf061=!gv6jF|}N-9+=i3Fp@EZFH1;XrZL6sIZEV=DB+ zp|VpHl3T9^R(XkvWnXuoqEy8tm-*3kR1nDyC1y!LFWI?qP!}>Ep2VRm+hBEiw%<8< zz@M1THTNDH7PlrZ-N1;Oj$`z-x$@#k3COJ@*s4^LEeIq?673xh0?auS79PSOJJ2hf z^awULl|TPiLaQ+0uMYRRzSHTXW2ZYvOmr!2X!L5nJ@gvkA>p)AMi8w8sPFq|B-w1| zc==XR%zN-rh0;pfjVNslp&A*5;Cjw$em+IYBrOHbVv3!)IAj|J(Vq}yD1M6SXG6|9 z0=8-b$f^w`+t0))aT_HLHgnt+saTI}Dw3!26`HG6`sfB(vtZ#)8kQl%!Z zARk|26CAGo{u^$*5lTzp=uwDnIFIXp0cNwA9Xoa~XwaZ4rH^xo3k2c0!v%uy9N>SA zAQb=JgzC*t8daytYmk3`#NqiQ6bFxn@HUO>{l7$jR@D_iJ2(nKbSpf7_u{opsp|oP zS|fC8ji7xVs2w>5VaVn0Bd=cpP8+n1LTIG?UQ-CV8y_6af+g`ajxCz^8&{2N*Z|*@ zeyi$+#v^DN&M$K&Dk@<9{3T3%^sTC6kwEgefhc~NUM(l)27mwU$IhK5o_NALDax<* z{>7btypD8+H|0lHJi_GOW8Ky(wdYgjaBW~@!Iz`zNNy88A&oqEDG^>i&UM#a$ASe5 zm@;JwbLY-w;-t%%^>)MLqc@oL_&{d7zR9cm_|+%>@XRAWKn!pjunO1!*WWsTcjis3 zD%ZROVNJ-g%xBxbV#TqV-_#IeFt3b!3BN{?&&`3jxxdlv-Crp2^I`ssDI|99h|*@K z`}!Sp-m-`6R^j|M@>)_BMUZa^q*d1puFe0M{Udu)?tAXD)Sq12id8QRu5s+rSJu(? zV(%nS1z?1s3!ltC!isgtwSO1j)~h>m*|lM;FFT6D?x5GJfAL4pk>r^Iv8wBr9hMvd znXB6pIr5}eW2+C3{P{884jxaQPi><7uD`!U>2y$F^k-YUo+JmmkNi|PooF0ZDl~f3 zb{lsd|C@WhexvI5;Gj@Khuw^(NBz0X8baL8EL8Rj456pEi$T&VrVB1sa0AaLcVe*EyoW9W1`5d6UDrG$^*19n&4_Pr)^Dme$ePD4p* z!?LzHWqLx4-kooDxsgy`&kXHnBdf$fm|w#V6OTRf3GaUJJK!P-PaOD+$ky>dvHOYu z4yQ|E)L0pbCrJoDZH3fi>1d)Vxm(#P;jmnBkz#<1d8!#UUTcCRFD$wxRVs>>Q< zyVLH@+4SsJK=S%llx7*&`DGWJR*{7ZHcD8uMu`L ze3sjoj$j7cpC+`(in=1bR+}vWS(f3@324Eb=;z9=C(AO{T{+05p5?x6j`3(Nxdr6| z_kz79SuKya9O;$`ShoBMrS&L5)H9~yJed_gHf|iJ&qbkC)90aVs6Z) zJmoJAzyDR^8mHw*KX31WW5U%qZ**^O@fHg|dzDoS=L6v57f5ko{Sx#Zp|lj1FNZE& zAU?j~^8XQR+qR8}hzKGhBdhYqo-14+2+tk<+pCZZ_*X*Qvb*6zXF)jY{|({n4dS_A zxzEl;cdq*sL-nQNxbsK2G6oSwr2tj)%b(4btSqO%y z(6KT*wa)XLe5YMHy!kH6GW@f-IYfhBnO+?Z;iSQbncetHOaecTjlviRUW9ct@IyMGarpZ zYPp$55Crb%J%OH)J!%}!Da+;cf8Iip&OM2;@9xn||8h3Z{`@Y9-8%x{P^;K6d;niQ zcOT1cyNWQfc`fS+?(Y2sVxY`t+wXu4_2c|7Ou)7Jik&u#?5Sc-xcQ_4oH&zITmVauC3rWkes*{E;FH z`;Ep_hb$1lbzA=6p1;4Pf8q{GbTvImHFhf@#kq)5wU@Y4p`b$JBBN|7H3xmFiK&iL z<`MnacTFM(0i4PUOZLVfKihlRDX|F~U!|hq^@YLUdgcW|VAk}BE^-j4KRUt#oDq3A zd`LF{D$Jf40Cg(w`_(BuGtAWmjncDz-<)+1Q|@;eh8zwj?K_yP5e2&&;p> zTNIIRz0ySvCS}2z-E_O|8u|qv!EUd4-{t$pA-{276*&mdwte&DY4$T0^7O`8TzYa9 zR%PSboIYeauMB>P&wQhKv(*svT9;FdEK3|nT*?ni?j$i~WwVUa8|X{CeMV06f_hv^_i2lW9{*(30=VqN9`?O7mZV)N#12oP z`z?p*bJsquzB&Vce>-o#-JWGn4rS}d-LRIr%cKXf_E@G*&v!-qRBgZ{P!-}-rL$pM zGTT=;$^CXXTR!MP{&7D5Y@)H>aIWU)|@#czsieoH_U=~ox{g>;FWIJGDmWfsL z##h(I?O5C)qHQVHP1(H-Y+{RMRbqwa7sLyKG@W=2Lv0`ZNW0 zeN`KtLJ$Cr5h@)x9GYOZD(c7q4CD%j_*{7dM}s6B>cHx8iaN3s2Wydo0A_Mop?Zvi z0ZCX5o<|xrB}btk2;iY=kvDU0jc7YB>Nf_0AfRgNnNw(Uk(EMec`b4fKv=aL#Y6X^ z?KuX)KcrD(@(U7Z-Jy}=sQkY!JdldC+Rku}3OM$8D7KRE^nB&X#x+jkuT@Kug8+&J ze?qSJ5v}fU?Oo5&sn-wyN{aGn8`s72%D?;qhY#00W-`Hb*ZsdD2LU>E>_}Q#8r!#T zCp|s=yx3bVpyhGF+He8Q3#$!r=l+Jvd5N;AiH&msYoE zzcuQLN(2vb^PE|?OV_*k<{Ov6Mj;BUS@R}ym%k3Z;$YP-n70_pYg-hoHu&*JBac27 z$t}0EN2jwfbZAkd&*Q`GzjM!$H<8bJavtt?4eyVd(qMf_c5MnRidH-%{D8z63#z_; z;IE>nsEBRbwlQSL5ClOW`A7=6nayux`}4OL#$9*9>-xKPoIw!UfJ$z5z~E|v&?$q| z!n3kMRPe~)2Z#x1TXjq&suq|_$|9xg$`#6P0 z{~Eu&{L?I!&c2DIvv1;^FQ2W`QWIWM?TB#ry?Z(J%Nw=IG#1j?nrj!}7KQoVNoE2l zmENxsG|GlI%x}!T4**G$=+fstdJmq$o_!}g&tp^<du`iytx4W+yee4wMR0;}JeER7Qo_qQT2N%S%T{rBk_q=i~u61Oc5TPU_p9-H648=b9N^nO+l1TeYs!wZrXKiQp(s?0*g6w(9y0EKIOvICv$@1_pyQp_jCuM8BX2JdIH z$dCs3g4+FaUl*C<$({A4PGfL(d!oMv(YIkcN^`BCWrLeNTUi;3hweesdo(nV%lPc; z+qqwZRqF0CDGNh%{SocC+w>GC4yOHG4dmB-5)TmH#lxJ3W5$5HXQD1R9I$w?>;L~Dm`o=6_U%h-Y%DoBIc(j!mGty<9RIQN zxB&OKKoDL)vqIc+2*FFq0&f-_&CzCaqdEGl>pVlF>Nwa8Xo&Fg1kG)>6n*Mn=(i-f z*U-YoUEM0^N&rvZ0TtLq&}lsi({D;7|LM9<%o;*Qc1_u*w_jL8XmI^eb)NFhr`Jr%e=GY7amylZml9u47h=}FMGhFd*`eq2+I@( z4xSFVI}L>ZBU}cc<;#~75D-B3?%e^{xW4&i6dVo#t=2okc~N0GCyrGbJtJ`$TqFpO z@FTiSwKr-@Mh~6|ty0U=Lmwm95QIr%WZH;l7|^=kIqCasG-Tv96qhpWm%s4KFJ$En zSK`p9>ArafV-NjG$YBp7VVVgJwTidid6tl?i|}n#b5nVC6roe4#IAL{vziKXy+&VW zBLa}hP;9pX|r}F}W45BMC@zLi#cO4Q0 zk8;w90+idlGm?t}lv%y2s}$u%)qUr+d%5rK(SVC2j9%~$FWfPw?s-Y6K>TtUtlZ%m z=SP1a_MQxfk`Si74+oQB+(pPY4o6zGhrfQ+)3HBghRu zdm$A$l&g(AJn}t$jdw|rM~C&`rYq-hZ*W&mud*CY3;*nRpP!aJKu-R-%i*e!WOQXs zh=x6n@HN&?$eoD=Yk#L(gy#~*3Z0J5Pkckf@CjANwr}0bt5av8JaU4VQKwiQkiwc& z7&s`8ufN_#eqsQ-zwLy!yn@($N70qKh-rsKLH2+E zC+_^QH?93ExV=v@q5vb>=TK&Wlc_%Fl{Me(ZI=yV%JR?n_?1UE-nIU48K*3e-++p5 zg>M<90fnfnYJxJu@W}~8v{lcYdS^ayr{{427!M=>XW5r$7Z~x=w{zc_2QXL*iI?kM z`#StoFv$vYDkz<8Vah8xOnPP)Pfpvx6VLD9v6=gMXmK%*-Te=2Uskybt`Py;>s!SN#M!tw~rz<+<+f`w~ZqgS{m;kFh1M7o=Np5Vr>!Qc-H6$)z>y`48SFmjn?ikVdSv~i73 zwi9HJK!tnR<;}{sDDiLI;J(|NefimSJc%N#s~c~2cg?vYtczq41Oa6m?^8>Z`A4#6 z;LY51T;Ro>>6F^sf4l7I2aw0#RDS`R4e|YVQFa|%Z;`sr!{8&(uAaa(w_8kErsUX0 zOzrAl^X6{V6WHrY6dpLFHwEtOYmIrH>N{V>x@`ytnzom6hZpDljltvxz|jLci0#E{QGgi z+He8Q3UTwUTE{#kbeeks(cEpG?>R~YmH-<4>`rHS0AdUMhijJxbt1Ps(MZ-C|^p*!0OfWk#!~f zxTP~s_xg?rPY+<>!Vn4ylq4jSbKm52=6!senXhIs@-hp82wB+zTeiaPJq>hvG6R0w z$ebVEVd{zxYyJHE;9Hq9Vv@)D>!%4qy=0~x5w(6d4Rmd4moHxqP$e_E;hzH@weJ?P zjF?dfPKo4GCZgLk>>Xbp_UuS<{lgzHP%STdQTrO#LcRO|eg_(sUTqHe>HK(h*ps|G z@qieoQYr{fO5=w2zGljScR2Z3BqbT=E{d=?$e*q!hk+!|IcXZV8WL~)a8J@fQIh5Agk*z*KO7tE?Q}~)R=>0376`|oT znA2J}xuLU~F<9z1eiaz~_;QGw4SXd=>|4w7SvRuqtvk4P<(F>DsvNHKes9zy{^~xA zC;yns>)%c1hxhK~?XRcRDBC70iJvSLoH@H@uWOp;t5b1d$=(v zhDo_MX5K+g()V=l8dG)b>jitONItJ{Af4xKnMF~t>)n`q=j9$(H9NeQuCv&^aC<-9 zudQ+Y&V6e#lkU6%04FeW&vA67D|!6M`8CSPcU^(B;3c?vFh~;e;4Vlr?r=o}2Ka!< z9}Xvzs&7Y|pT6Mc#5ah0{wer<1El97_liRvT{{Yjub<(qYiE(_Q+rW)PQoGl{(dL|4dEtlV_C2_Ps#rVMuzc*!; z3Oo!Ttbyi7LZDZVK2 zm#Uv9jU>`n_M-qBe+jw#tjJ`QBAX!!v$o9a_Xf>G0kIJIdzYwKeML>24fob9R!7rWiTz(Ei4=hCe;%7toV?uq^a5%=GsBD?#@?)tWMf*^v?mH#rl zsDz=Cd!?Wp;Q$q9MCkeDA7_|-27(*YtDSNx6s`yVoJ55N`neV?jYM+{?aVgzoXThB zFMIiV?Q!-e<=3lv;7*=W;jcyX^G^PIX<|AAQ^)4h9l1`Qg7udgqA_UxgeqQWEPk_-6v;@>S~egXe2IGu=F ztMd<@p5V_10rmf_PlXZ!!>W5YpV!tKG)8k=&?pcz)l*Y*oa;FyinFW`I~YM&Uw;|L z1IWptP`m?Lxsxhs9+X$8xc8aMY8*2fY%x0P76ey`*iNl3!F6QNR-|)iP#kGE#amgJ_yLdt! zmFk8hOURYtLwZLFA1fwsx$p+|GjdUsUKa*a53^&(4svsI88&PfZ@u*v8`d60mgOcT zf>v)x#Q)}biQP7{P@=O4VNT3%HD={kHL{vKUI8@9arAl3jA zcAu6dzao8Wldk6)^~zyY;!xkN9O_$5&}X)Z;_va7Q|4!4+KN~CYT9kA>oJs8{W6K{ zopsLM%XTA@*!g8=N;9fGoA>?Dkyd?cMm1)&3gbP^%QYKl2jyI9!n|o}6RW+SY^&OsjQ#!ny@qv3n(x?|G9f|Ik{$m+DNE>fC#4 z16;9t6#&UWQMAiCMM!ZjIli@b*l`)hd2Gpt+<(_=h_b}2?_WWEMnur&_PuMAKNcR# zh7NtX=;$`o3I#T&6Kh`W^Jokt<$vXi|L;IkBt{hq0kc_wPVHSAX1mg(x&Z+`Pwz$eb|pOf3Br*SAk3{EsQp9fHf<5vf4)N6hP6lzCqLdemD~RK z7yyglL@5Zw3{0aS)rXaTj==eiYaQhqSw_sTWPBnj9b`1Q%>T4Ak4(vc)i;yOz182j4ADxy)5dT)h~K0v93to|iH!A%!m4tb3NtYuzQAJxuE2N5 z-F)|tYb{Vvq2UbPQ@S$$9A)8Xg^~2ALG}1Z)D$~o*rMLJgaM6 z<%zPk)o8|QG$YzYbY&(q6*>f~fN=N_OO=V-=HH+6N(okBjFT}F7V~lbef0TpJMja$ zVzV|qibIkm99bJ#6gG%EH6q#d&?r|p!Dh*$)T+Sh6wuU>vsQU99p5S6;bBN z{Ooiv1oKGD?|hs*feL3~ooyMF0d*et2*zOKl1x;VYjv!g2cbbjLMW8O%LdICWdkwXI^z2Wo#HR_%5Z*OwS$-t4c zBF4>H&55k~omK@v6a|zD0j)}bL8HXipeEQyOSqq&HlYUMqx|UF+MiC5ekj}cV%wAB z@i?4LCu4r!!@BgMTEE#Onf>XxT)(%R#eIEI+NwPkWWe^%Pw>z~D3-54T+}${KX=zl zqZ8=ZQ)d5`>b^X=zLMR+wuhgi?^`p-Sksw;y|ryEl1+(1t8G-fr_q$$fsJv__oN^3 zR4U@~e~_*m=H-aoL!nSG``aBnds{zB3Uf(5eu!3W<48SqtVR0s7`NZf>MP!4(LaGq zm;n3t!#Cf!f)Slg*Bo(O{C@h5k9JM8=MYMzlD2KzqEsr`v1134B;n`hM`UCq!NI{; ztyWYj)pk5`Cji?VG3 zqRs$mR2txRA1m%3-^kP+yER6v3b;w84 zAhU8~*10``o4jSsfk$7ygm*rxX~2H}Tp=X|PBVcG-?v zRACfERAM<@y57Zs1E)}{l|1{*E%^HNV(;G3l$9xY=%G|D9_*QydQJ`;KH~a!`}Pn~ z4=*drGB2$Cf>+kpPC`F>&_tdJyBHi2vej30^7o2^uADBtfZ2cp{@L{s?K_0I3P}<^ zL*K-(!bJ!RhSrWs#*ZQN<*-5zO7+r2Sg07L0o&dobBRy%yufLt-_mw9pEq6t!_?k3~ zy)=d~qua1sI8MIJW!T)aH5lhvxr2PPN-k>SL%31FkzIPSv()(Y%4TP3Ney#b=afT; zvdq5LF3(Oul87qEAT_9QTHLp+{{?`%|Ne$`9S88nmltWP+n0xu%3_7~4 zDq_$fDtP?X=^Tw{N3L&8xu%%xBo@4LH$h4j`3^fuqd(oB{s~zjqBh&nm)KA`Jio`L z0yFyZe@~u=fFL~`yN6-$Q6mTfmI^y359gDbRJUR7eBh%WqR?o(doK$M!QbFrq*Ydd ziZE0C(%q*qVA#`a-{FcB?-v`vrmHVP*l`jL9Y*)EIOAUmXypyEME;kbD>m6B=Q>rJ#%evX623D_J&O;BsPjPYe*cAfY78<~3kwHky z=78x8DaiCZgs0{qE?ft|{d~X&SA2sU9fEwv70@~q><+|E6A?Fq<5S6qpPU4hb3=TyLCKW#mPN$OtiNAB? z)GDmDv!l%f{C%S6+3`ApgFDswR@McBQB8dJV1gpGSZy{kQqwrR=M*PSBw?`>VRKmU z^J`7%$l<6BzUWJB=t^xK?*}Y8C1nA+8plKdx<~oYB@~o`gi{tdUI4q($|<)szqfk- z)<$}ST3Nh#8OyeBz~*o{ghT~}Fy-pI$gqU5{#5;udj_?Ffo*(=_ECT=QDzr7kZa{& zX0<_FXRwpsbi!qr>iw{Q6fg%D&0O4tIHD{WGgSzR@N0xV5J8 zhre1+Z@C-WSHm}7mywy}8mqw|a@SqH^cihoy=`}mI-BP9r1xF>Q0raa6j6e!e{ zvs#glQiAbvIE#gB%EjvM)WD_xkP{h-a?quOIlA!kdIL*$s<2l2%UrBG#S0xa(f`c{ zF%%R5kQ))goDW~3G@x-t%dY-1AvGTZl%fhhU3&yYfNM?QEXHC@rp$4c=br?c3LT~* zKLov=9noF*wAjE=8+7}6H@S)7jCt3e8w}~>71hkgd?rLh{Ee}QnqVYBf#4{`UXenv zt)R~GDp8GJP!D!%{rOZSa;TC#(gPEnBIC<)$7tmK1|V>mnF! zHUW@Xxncz~XUzs&(S>QLKbG?S)=Zy}oTM z`6lNlLAlG`;Z*sP=O4~qqa>gmX`164QZAwx zR|*XsK@6}zN_4&jg*CrwY|zN@HL{NEbi%%4$Wr4n$9ro-JD5_)xY?^YmF+(2xv3D& z_=kW1g5YvC7eJ6@1i&H7Rq8LI0CR`NbA9_T-rbkRE1O;Gs0d#pMKO<~dXAXpkO%9;=*-l+^fCAr8CDpI?F1yJZm_Cf`Cpx8Y>0jil(H64?Q2 zf9Q073Y+hL0DEb}Yt!?AGi`|s)U6)}_iSmg{u;vfPw%6|6v@5M2G(*Q02fL4?I&gqe6|(! zkp370wOoHav}?M8cB5c6n{hZCl$4Zk>eMMjQN-bJpj0Yp-@ZM;!EVA_-5?>swckH@ zu=&&PTtH1+APCO^{#OV>#k}uO{?YhzJlDkFzopN}A${q3-EHVMMZF{@rte5qwaPQ!tTEjw=RSH$_SIF_DCZq;!vuwZ~3dq z{i@pep^R!c^5frvdY>g-Ahb(B(5XR`ku5T0r9;*+PA{!xK&xboVc(C8gjVn&UVAB* zm?m>c{6vzH&h+jzuxZmGdi7MH_K;W2%!H%IAUFs*cBIyMJ0(zvE^_dxRr7g$^Vu6t zc+8CxjePtsr@)_sm z6!`Rm&PbBLq=)vSsKZ;?vvwr9w0@kT!V0(>kbuu2DA>f_Q?J#Ca&*pGNz^L~0m$nW z$If5g#U9p+?-W{=3s8hh-#iw9`<)KDTXM+D+kxBySz|XRZ{_Qq-|@nTX9@SIHs-GT zwJm8Ud=LZ}JoXe(?Q4gX`sw2-5Muc#%f$9l1r-t~1?X**m>gD4EAcq_0Z(3o02kCW3bvVTDb;zyrA>+7Bn3Czsp z-f8bJ=cDO3RdtI{L>v5RO(@tz1VB0dO=tmfIfq z5N928_@q@|amng$=!8oOQB-Rgb^EvI%IxUN8-HJ&0(klQHY-#rkzwOHa5O20FMixg zT6z((EE5=D;HoRSaOvQ9_H0NcBekJW?Uu*%w?YUH_f9M&w@@V5=$-RIR*{-8W5Y%m zQ`j}w?KPi;JAlstIVuQg(_B~7ng?(?ooK?Y1E5>yHf&q{W~0VjWLD#+^NtWLwW=^_ zyql}aY$^!tX8$tLc5@Er;Ys|lFkAb(CA{v5sTtasYsMC^Vy2a*Dr z%R|f)??b-x3Xo*v8-_xK6>;(#2-$_mLB2?<-+?w^P?^8y&;ctcH++Cusbg`6vGtBm zXRqMmtp-Q%zKC?}>>tKfL|>d5dQgPL2qtN3Nj*R0(A4`!Zh?SEa#Spsg{4Xk}YurwRlCvrxePvZDxv zh4lV=3mUVPokROl5Y~93V7N{u;SBq)NgYO!sxQ-1jC5K0GqdME&2!IwO4Q{8xy-j1 zyLkuY_M#eXs4F!1kq8oJv}=W@lk#-#+XnpGt2Z;Mjx zK$Zj~r-(x3M5%I-g#qCO=yVbx+L)@nfh23#L=jI(PjHOG07TP<`^%@$A+bA-GM9X6 zNHAn(xi(HZor^4VI$eMF>i{3NUe_Jt8GEwuPd89%wxSdTiXNyPsaC`GBZw&4cSjK# ziy#Xi3fPWqLC#9{dQ6A5%N*F+aJe(b!x>`|)heRL4JW8qF9f9ydr2OLKl}n~UU7{& zEg41FnDS?ry=?hwg!Su&AiE4UPKS-M^h}P-`-3AN|KU0|Y6y-8Z*Rni8V{$_$@8}l zq$uAt&;PxCD?=~p+oFBeh1^_t_g#496%Ptm8tMuQ;ma>wlFsADL)Wfw_ENZ|;cz&x zTCM1GItmL5IePRczP`Tr`T61N>x4YU(q49ahrjr5Q8=9M)g1tML;CYF7QR(L<*cqb=DJ65VCX%Pfvck>X=fg zz;0XVao>^z>()bfICQAvQlB^hsc8ZoJIYMo{1G4R{kc||_b-2#2l~3?$+9I4Kkk2z zmpj)a5r=19$>bA{aoxaSj8a_5%jRb=T5M=d#pDzhQC4U~R7mK3D$wYyAD9{sZ?ZVXY=c?zjD`IchR|9D^_fJ&g1hv6G$pbSGVD(g8EtLF#$HFh8!oaY_~@QVQ5MQPd+dmg~Q48FXvDg8dz^xOOb|cpLCddHVgeuxFRzC=rxiVF+YNe7r zTRtQ%zB&>|nEn;w>p!uW(d?i%(|M`7O_Lt^A_@B@et-JAd_Q+%@)6+I8%~FZ=U} zjx8Y|xQt(KeUgIoGs&jG7)^um>+lD@ts`jFw;K^Xda?O~o(y_;2cok2e)+0(gdOg} zV^7p=kQPOlF})S0Ub!5!xXS$f$^ZsFxC`wWY5_x?0r;WfS4B2R5Q~mpvL6d72}70D z#v@Z_^7;oawv6WC+2cm$;xJH(t|%bUIGSsZxYlr5tC`EUEoWPNUowItQ2?*EEvK{c z07d5GHQMpd3Px}$D2S{{=KV6aGZ$Zdijb(f=Xt-75sWd1)=Q*6tuZsgeu9GHy%)hWtl$P6UlBL&AS2J>1{uPLaI$>{`hqVQd3NH>zPYLWEq{i zHN00S%Jm`pR5+1wsTlq0cZBg%g`-ot9DWbT0+&f6u~FLz#ejjgrMbi$jiD&t^<4Mw zCsV10NMR8mgMX#TWZk-b47ubH0RCG38JAtww!tyi2XFSaa!w*xJR|a2N*=U1`;;9H zqc0JtNLB3yig17!S$idViY-g!uT-r5)U!T4NT{9>sohB9crxcJ`V8)VF zj>YW2F3ZRfk=QbJV3%)!jcB<9V7VZ&SsSdB$_IV@l9k|eFD0KFb=yA5KL zDPHA3YzpjlI~f@nl$V#2pP!GfuP-4XA(%`i3kX2y7I>+bOzeNQ3ztgXVKgw=y|E@XF`be?Bm>2g6_c4Antx@B-dP?$W!-iYgFB4 zAqD{yDuhT^9=2SEnh$bspxBx2wvDB?89BDrwRqQP)TE~TKya|qh`bhwqvvd5xz>WC?8 zPrI^sj1C`Gh5pIB_O7UnFU4;dEwrN4o=cgddc!TI7oy&fh+uPI9o`Ws!gVg0Cqubz z++&YzUjyg|mK56c0bO3$3>42DA5GU&id0 zeuoagO~8C01K#*>0yj?_RHN*v5;f`NYE+_{(um>Q=7E&jR9WV-tPPafn#YTERpJ`v zZ~d&svGzgjcyYwDsL##-4@gb{Q6Y15R}e)RK^!UU!k?SeFc|0o)DzVFUQ8LSoqut% z#KPfX_b-aJtb(A-9P%PUuo(1i%YutUJGiJl)=~{UZ##gp8SZ0qK#(M4FY^clr)A-{ zIG10NufZ|Q3zDaDjgOvrh_4S=usLfR)D%u9&;0fdi~3&4;m9~% zUNDQx_pZUB((u*AH}FgUF%%kW&K)|d8HMEJ*$kDdQf+hy8+t2|m)%api9-Byn;tQ6zR<2? z5Qnm}`Ek*%2Frf?;RM$FdJMb$+(_ltg}bK&Fz_Pp9F8*c)r9+aM-b+fY6#LbTvwK1 z%g$teU%Zy2q%3~<-Q^_l!MiUp`R2}z?pF~!9)OwCZsw^e*EG6*g)#=#u-!BexAlzV>3CToFfJu4_(KJFG;Pq;TB7-MP00Hxq2OGI9$}Qc#jY zaalU$<@s3b#mKS~r9y*3)Y0DHK+4VHpw6FCwEp5_IDLDm4aXMZ1Xi(2d#J0Mq!SQ6Y^`$V>K!9FNFTefF{?UCzY=~bVuTFZOkGIsH z)9PGcNUT2_SO3P=L&x2gyJ5sdgvRyZKuHemI=Z4dic&LK`P|zSCY@dvzYM$zxSUE< zS`EGKc!A>d>qxlz7y+@adcF1Sc>R6{i6`BETV9$Lh1~xHnbsmUz1NdYS101vs``43 zbB3Tti46%A0%jy+Wd2Z8N4*XFb1mC09fTx`NJ{UVFB*f+ellTt@Ye+LdC72o$aTM- ze7SW6y%ifMwVmOx><|gc48x(aQxuX*WqL&{6$-w3wHFhg-G$ard)_Mx8Oxn!_lh=m zsIA;=-A!THiAJ9rK$zZ6J74c*_7#GW_tl+vSx#|V?kAxGgKfJ(u1##^=V>{4+?QiV z{K-r=F!kwO4XTYC-xY(wubl9h`t#SRMIC_}m+^j;oXd^U4Q|_fTbRpbMcvVtKsO>BIn_)vrMqS<;<_j6FWcdI?9L82wydf3TilnM$S8H4 zhe4%a*RB1CG**XTwX|I_^|;LDKebwpk>_7Pceqn&Myxj$xd>1 z>}SQOr*L-Zfc@1cTKuK?=G~{*^q0%N`TUGGd3oBSE!yANc>HmA{q^QK&7vY#WMTTM zL-_Y;&&bg#dUSOnD#dd;`IMHHvUBH70s;akE-ofMKAzyj#v*TVK5_-NWS?EfPelBp0df$)38F$la71lM#QM+@<5hRR81cK= zp7md;(cX~PL4CgqMs)q+o8|-$0z5C$MVc5D2l9C}R3VL*h z4skM(kuc+$%lKr>W3GCF$d}`u;>z$V$j^sUNuV|g=!%VewQVuirA%aG<~TyE;cN_A z!-KtUsUimf4$6lB6_Q-j=-~6*BK+_C9KXq56ELRQlRmUfHbaLF1>naYe#;Zx(V8;Gfl%-pR2*DNw2UI$~sPBep|w-FQD;2=f)58RwS? z3e?)hk)ZByQJVp@^>1C{SYqCB-rM*QQXNsyVx=*pL(e>}yg|jDk!pAx2!d`;?cs)7 ze&p8gzNvn=EAe}Q9+S!+Pbd(JQBPX?HXf0K07{LMZZ{pF)3`)-echQ2Z}n!xTZ{2e zZuv-kckq@R1Q`C+GEV#u&C~5)Ll^AwJntB!VcF)L_13vN^ElBK7um9A+b&{)>h>~p zDir+IXB3hs5>k>&Sdq&>ptW1MYt46<%&s=>Ui}TNb5lWky`)cwiT= z`aQjw-nG}WdvrD`Y~CB~EDrCaTmh_h@81iHy>60X*&na+#8ekyDg#$P`XP7ETa4r8 z%SfI22w8XC&W--d=!0ubB;7cy#@u!$IVeX3BRz8qm~DtZtwDU`eI{-DfF7Byy^kb_ zT$#9pY3pauE2C*D8s`gYwUNlMu5^hT%|$)$W#r&z88>VWR}XuQsa)98Q z^~jnYH4iE!3PN*G+Eo~eeX9;@^-ivTcpu-s*5mA@9RNBSp2xqiX(%wnyYifQfjqO4 zMh0%xfK#p@j)vFS6XZlPRbA`+EilMJpZ?k0a{Cdk7<-E6A0Nb$Uu#C?Su0eW+TWT} z`&*NApfyg1l7@D~Hpz@bay`F+G`x3vRGvbnzpX)X5FjMP6+CT!M8=(KG=>~JUEWb{p)5JGjv6kAf`Z^43G|*b z332aX#4WpxR^bA_HgXjF_M$Lm*~BKrs2PB zsknfD4O((?ZtQ&693Q}zBqP-}KaU0}k1OZcpMMhKS$^^sgJ8FS%>zlapa>+JYZG7J z^=pWr6MY+AG@dVVuSL)Zg0MNDRLUrop1mPWB_!*F>hva7q*ThOr%*Mv&#nGpMMMn@bi_CWhgENwFxXQwr>YYCEV5H3O>BzVZOck z8E)%#8GZV=q)Geta?)k`^F%*+GkY|vxplxOZXYm~hkH%r({}HYt*g11?I6SfcARGs zg!W#oafbR}>lZ`uN4HfSFU<01=&(xwSiO2RIXO98eYGo^Y3U!0n_s_}m%w#5A8WS7 zWOR%`g@ugFW%K&e&OZXb=HtL33E4V2) znG}udca>7<_Vallx)U~~nqS_!i|)zQUWV_EnnX&l>tniLz&JXk9bwqP^~@V_8^89s zlKb!aKlaW$Jc_Dq-K$xdGMt}>p3Bce&*i=GHzKLj)Z`st=WEyV-R~dZI{d?Ef+Okk#E)3}jIO_>F`zZtel7fGF)PmNn2Wfcze2LIAy9xIfU1nwZA@pGHs zfkjelwZ8B5z@g@&I$DB94t!fE$$`Jy?HbEkm}6di?gqY@{b=o6`1x8p!O1RWj^4za zVe7fC=6NRT=c9}tf^y}VC=XrU@Y21ypoCbEzkdql>FdDlK?(AWMNYAaE!*7mH3ub!Ef7k0IF1`R_i-4U0bJ=B0DEW%*YOx%pCr!wx1@+HP=$dU@R){Cf;2#GEus!P-Qi}hjm zRsfKMg^PujBM21~{!|tLt?!NZ?)e<`;Rx30(?4V0ypEG7sO?WP(R_j+fTii^CV#Hk zk!Wt8*V6v4$$Qdj5JDU8=b-s0u&2M>g6Zqldh9IMc^9Cod{f!H7|8Om7 z?@r=@3;Xz`Kig5zbn(qmo{j5~2TX0TthoMFG{Z(UI<8Ww*f?bv*Y}PEe81h)C41;S zYZb+Z@3*Z#XIoZDf*{amMAPS5ip*=OPybDkg$l6l-gmK=H7`-1Qfr8xFdVf>kNT5u z!5z3WpuZS5`BnftZWnHMV0ztcMP44vn+G@Fd~B{C76zAJ4zIqh;_~}qczE%dD0kio z>sk=N^ahq?q(0nkH!hb8K@gB6iO|qc!o$PavSkaQp`i>JGKAdRTrx8=n{?_viDQeC z1mQ`vA0=go`!gCGIuTwfCoS&pB?trQuc9-y&K9XuNVmL% zdwt8=aIO6|V$ku?9{kt9czg-M6OP&lLN9Te)*~dG6?OluTY_3sbEhrubsVZZ>eHoXr5VCvutxFYoo08B<7fv7i$7#D3IX>&0@82^JT zHosu$Mh^y&0?3UB!kW9zq-f9clrDMz&(OMlm*$4kqjwPf2X#i4Wq$neM=reZLIBpU zK1fNC|HAbejf^C9-1NR?<$gRK39LXUa5%8y%(EN*hT`Eq9+8@;s>$UhrS*lR8n{z( zQ*LiLqSTnvw#d0qV+fC){vbw8L-OhOy??S`@4{y5)i@7ucdT!mjw{LKw^0*W*lj%b zJ^co9y$!BLfXl;eRJzNMj>DuE6l=%zc?d&4+eLE30h||0B;2-_`286OvP}H`j1IFt z_%smv^5x_UDc;*LQDCxHVDG-}{PE3XR!$tto-REASe0$(_KVMLvQECv$Qgal06{+He4mywbi3fpF-b9 zzD8?mIMB$df72Gd?bx*?pF6G_g<9SE_;T@i{W!G$#A*hBS>XZQ$2fA9!2V&Db` zt*Yg^mrNSPfnBo*G8lpTaq>Pd6+TE%$>R)Jb|dmP(~*CE4#p1wtGTwG(lr+Or)QCO zdvZwxEz`Mh=C@6L3o-)5PKaE+lhhk7W^V4hRw(yam9BV7nc6;BrLPz^Z?Fi2%z8AV-rsX-u zfs8+sRZrrT*SPVomuQs6^bGg zEI4>ryoUh{YO#DSxzNge0EC2?*|PbgTJyw(7folug2qPe_6)Brnm&x7AU5o$KW+W1 zGf+o|H)$t2y3202MDUcacM5D zLix~MypCv;?iV&+*j_i87fW0; z;e&f16cnTS<*yF!y2YLKlKnV@EFSEi{W51 zX|va?fxrK5S6ge=tYOWXH7JUL)oKNxd-v`P8#autUAtm3nHVr&0Hvj+Y}&Mm($dzo zaZjS-aFQTAiFQL=yS4V;Z6)bCa$9^n+iVXRnYn8z@;S{f4wN%%D8FL^%O86Vtsbo5 z?VlCe(_hc-4anC%)%>-iIw3tW3)lL^;A~#3+#iTRfv25l&+mFd%rl~h(2g`4&22=| zvx3>Nx8qVZb|}|Gm9#?Yt;^-ANYXnI}RT_tshJn z3SljYfwT}@?ea)&h~-Q6`2LXuc!9&ggyYWk zr7JSMy%@_QKN57`Hvo7JN0PW@7u_oNb59Gq=1|~U$%|C91_cFYjhauN9?aLT_Gk8s z1K7Ge2Gb{7IQ@*r7<9=SXe!&L36@}u=YiAiX_WHoi;Z8hA-n0cmUeFqgLP@#9_?aH z>Ig1-`g{I5XFRJmje^5`N0=JE?NNoN#^<$sEF%c(!(s8I*EEiF^PcAp;!1N^H={on zz56ZGZ+x7X%v^eGYF~c-EnoKH>&wn(>zq_PHCi^$?%k&Pf-E;0pk%MW+V=;LIysH% z2&=E$VbA>B3I{d1C?33O5@Hh(cC*sfuxQs(ei%1|zcN}+HTUGD4^tFW7v;95`w&Wk z8jgvx#$3se^sW5z`gPp?*XO+V*&{?%6p~Pq!?jDl;jiZ};q^IBa{i`;RG5N!`GUJx z-D4;&jgE`g{K}lP4LtbgC;YPMPb7OCd2i{GN}tDnB<`&1o9vtPU!G!Ak`y-nlf|cR zTuE4H^MdlX-#7|ym5jaS*n9Q1gz~b$Nj|+=#v=v3{%T9g&B#zMzt4T09zD9&9&>xV ztlPAoq2nIG>GtovaXNj^TOFV_m_`-2savlO{I@n~0@vWOXj}K>?%XMog1jF&`>Y>; z^(esYz>w>nLSC~A@$847tO})H-SZa?=Ar6&4Z@Pmh*!S=|7=FNbt0Gz$lpJO=hH{{ zCvhw`t%c9}-^kpalL2Z8!S!*&`DDP&*tB(|qgwK?J*po7iRFh-$ug=Yh>YWfZP5dm z*W-dl$K5I|7p48e#e09`!n9wweAl-;zVdk#1r~ju&WHEk&)B#Kz6y?EtG;nQzzfeF zhdsBD=^H;FBezalHa0Sqe%&wjyMIU0jBd$wpb9>P7jAq8y|!sGE!bq?(y>>wBj11H z>#@QgY2^$Ud@2uLb1|xB#{BM`VljtA;guCC%j@k0T3Ab{R4PW^e;u$2c%1U=I(d(c z&V8J7v%=$##-Ua>J#G!`Z^n>Nw@>RlBA3inbzZ1WB(%rbG~_nu`TLRyblR6eOlH$g zVucPU8j;G%w{Ar|J%}Gts)%W3`xK^z-iAu#X1*)CwVKkn0wlE;L$&YQjEJkDqS!!H zX~TC*QY31Mm++ImnA6lvJ0hro8`M>lIRiIfR=8BS+cDQDxasLy&0@MUf~NOFX4DK& zL}(>#s=Zpzp>0VxZ3YGmEaRD%){>QJ;e+>+dF{mk+<)WQEcmVu#W_}FNx?8@4MJJ- z>v9DdhvfSv6LIpH>RoOV?nG?jJrfYPOt=j2Z=Ii-n#fN-KI3agfpgD$l$T%rrr|Y@ zkzrjBMKCv9S9Vl-(2lO-F9f{~!PeEnfKCXp61iUSedlz<#ru4SajO|pnx5%h+a@}9M2!3}7W4_ILsTz7Fj2#OrRx~U(YLxGIJD|~MFq_Q`A3hv|q0ULk zU@+85B^ZrH1`HTLe0)6V>FL<*?XxkTg#Qo}ToL%xsU-K9HzW3=Hb?yN}&lCb) z;C9r#ib<(xyZ1-fxf(HZ7br4vLJCT+VaQ$y_v!_3SR*9hHnk%9Q(_wk(zXTdxz~W} zYBW9&Wxk*y~)%e&-52ii22f zA5!$E6R+t;xLW4%CqCqb7rv~mliW3defz#>y8rL|3|*pOVlz284&#mmZ}IuoKUr|) zi;U^gzl{$-AXhQ7k^THG|4Jqqh=`07PG_WWD*cGSD)=_TvMf{R@-O=1(2mY{-5N?t zi@12w6cj}vJ3E_Mvt}`U`gG11pURw{?`-iJUw_d9k6Xo*>-RL7N>&kLDNrYpk3h8` zpjQ+kfCQ-!jdYOa{Gd-8^fdeT7QiKd2KX9c;zHP%_5y~vn+du4W2DF+igx`6j9S(d zn2?U78CAer*_i{`sVv*2Co4|CI7A}BtT0aFrmv}-s3mrbDXWtj(FuAy&K8CA9oxMknCx4jICoNzp6 z7gJ?5_ucmb&$*@(lwH9nR?w?&8YMB2%zFH`fUmpttDdZ%*)XNsmnR(Z-asF^Y`zhPxjv0zblMEXuKXwZeR4MQ=?eMbrV_jHU_ zW{_1Rsas&qG+M2|`Im>H)&~}$;c>|UlV(n*;I|fGeMpkT`yb5Z#g}K+9<${y!Qi$- zStWFiXXV6uUM6KU?+egET8nvIA zk;|5CI z#@~md{{#VsoEA?|tcs2M_p<%KL8|Qzx+TPM*5D!RS$}}n-nt!G_B~^hF_<%kJ&H9b zwoU!02-TC@Eu?nbjt$mvZVxq;m6@#Fy^_qrEJ7?+hNcWBF@7N5Zg)}XII&I%_0cuV z$eD=-ii!(Zvu!7NC1pg1hA?tqUo4?9e6_U%@8L1FSN{?aAV1qwJC`I8SB6 zUA6|hr?Or5*e%#eq`})xLQBA*>WSr|Cs=UHMSOD30NkR$S%QTN6(jNPb;z`w#i*vz zKu%f$oqK1XH`P5uw^NNE%2bwEnEOpn()L;@D-syA`Wq%EETwGzWt1jGU_nEaVj#v_ z46<(xpb_pjC}w7QZB#Z*;?}K z^2^8a&DT%Vo|hFJd2TPo?gBiD8~_2#-cP@(e_=0wHe|g1rDGs0(tJ z^Kt(CE!1=NYYFKUcBcN5#=5);yho)!)T#tLlG4b}Ll8i(H{fv8y>9}r;>r>94?9Xe zr3oyXr%;&XSNCesR@>I`Eu^xEdq3M}e2pW&v_W}YcrZg>xs^`m zk3??bbAJeuTc?4d1 z>6kXr7>WYf*SYwTz*zsnaf&<6Y)NV*dZl}>{-H4$rK7aZlKRPN8F zCac~;5EwWby7fK&y>9MV3DKPqLnA>Dk;@8E3bUXCaziVCD%^lBwe68_CxjS0Qa3UT z;vyT6UVhb86p&?v06gtlTI|pKsxMO?Kdbid-rY->`_V5Xcd2N#u3u1VA-Z>My1yF5 zz&?393*FPHp`oUri3rZuzDYN+3mU1?3NrV|wVL&&?FNI~>VA3d`@F1|g@F4wX-hzUHNuy`slvg;l zQ>vd2Kp-0fv-zD*-5;~EX9W*$8;{$pVTZ5-y<*^9UST*UL|k}f55=xSeqGt^R8x>1 zgCNS>b=Nf3uinRNuf4|j@#9HNO+}+ovpwTgf~`$&BsQ*#V%@4}?zn$j6TQ|_q#e$y zRPhakNJnj5Mq=f4Vo7kXMxmkJXkKnPgS$WK`%oSP{suO}H8+jsjdS{9z40@|ay#zf zNtAtf9ouZZ_~Pdzsw?!UHNLUI8tI@*&vLr=c2b!a$DuS6_G%g9k1MFmQd2X$GgS%E z=#5@3ymc39P2*)rS-81E)R8(1eyF3 zEawv0xj7uA3GFex+rgs$T*7kUR2I1>kT`k|pPzkY?Rh~^4jXeC*R>inbdNM+P(!s# zCauUujl1b+fLj)Q!7YE!0l;q1b6fvN=0y9xk#E=MF{Z@MPkp)&^vDbJc=3I9nWM=G zjU}ltlPg#M+~RY1>HNFcl+>T372h*!=L(8k4ZRl)MiY@|-Awqf^IE)4eOSsIblP`p zy*d+4r3DN}? z4Or?h5oQYPSr$XE^Hn$SXnkdNIN)-$1u`lyiooJa$#x;_L82?9Jzk*}lmS zeea_XQB%YjhnBD{svmnIdNF!@GHbWx^2w}?4a!|6?`2|F&_4YPs}~(;*LP`gRZ*>L zI5{)HHcovfs+y`N?!YJDnT4`^d@PRITfTA5WxO z6`~tS6$^yuLQsoF6a;MUVw_Uz-;|})iq3ANET#ZiT{qTkSQJlnxsI`yHj`QnpVOI9 z6NDmaak@*fc{)Z*)TH(@AfoN#K~pe4KOg;~G%CKHjwc}+wOoRv_}|a0-3d5s2Gm*) zoqK22uI1~as>DKmdJLW_H*b9DMjlng!l_?@2pZH}#VGDlMiT2ffQ+4RU1v1n(N45# zyowPIphZF@_z^ky_huN|STB0pwu1~Bd>fMFTPqG2kj&;y9|0P+Ru}O`))YKS-Sahw z7S0a4lhGj)iPU-ksqJK%0w`Vt(f@1#0E(>y$}(&JE{z(%Z~6yuQ0G*oLPt+&5~;3n zSWEYVY!9e^0Yx>+Qj_+HTOa+AkH7JyaZQK~A#?VPaNBGstU~$jI&gH%``eN5Ryy%) zIm%g0qeV>UhG4RwR97Nr>UN1k2($WMw;cpsYXBiZ-oABn^3C)fcRkg%x(!&D z_)4}foQ28g>6mu)K?sq)m5NO<@Tcc(wn^VKUm3Vo_Y29Ql|WTGBuPT8@sS zpMNTpR>J3h!o*V`E&^_Q9S$4s02rDAYu|_0e}IQ(!r4P%{tEz%|MDUJO0P4dg&Tv( zzV|!y%|wyaMwv zFFszzqxXKpkRd}@w{9Ihdh}rb{{2k3`gzob3%Km6H2M#!+wlD7iD4vmt>p4+(oi)K zMUk%^!vxYPrg;NeFlv^NM67#xgX7=MUd{beXG0ut6YvI51(zh;P1o#btW=;Nkax}) zq#n`q?puPccLhPAts9A>mTehMvp^#IPFFq6xZd>PmVc-H_mzhht#}r+3Obh=cgnJv&~2zkqd6wjrAx) z&aQIEKLG?`?7=L0ZrVj&mpBgg=}ul&4Eq-)VhppBFf^Z#q{@K4{mozWX5*&~-`k77 z_?^(iIxl&*OJv8!#-4wAw}beMe1r@Y(hdXtPhH2Vl%W(_10;D`z-@nh&ShKw#8O^L znps1dS<9^hqDioOShzZe5RZ&g6c7~!Z5vm+7xX!er8}2Xb<{H15*bUv#gAb~NNIC_ zO_eUX>^bpT3TI#1lY3wIhQi|J2`r0Q&*w9)=l3snBOMQs&1Mi8t>&fo10Nr3p7xB3{D1v}8?NXFGE`;I=P+Os2W9>5GmKg|nB_N8( zzdqlP9F%2HshIbD6~BDj#;7Aj;reZ#F(P|4Klhx>?z5&)AxpgT;hIK8r%IdIB193c z@p9RR53p%jMu(I4&Ed;=*C8u1p}}1^Z_Kmpy4Jxy;W$l!r{n)$!UdfLetGR7HgEE! zN1r@-G9{->CALQymf-e9PAW32d}9dX?%2YGng}*3U}*xMe9#T$k?;7vZ=I&81q0tHcQU}8he1>mtc`4c z$KLn>E*}dqjbDbcG8>({T#n7=8|T8pf>^v}79V-ip)N!cai#?42}LBb5nw_&~EGYnrgHr};_b1xWxN+q&k!v+o>JjkR; zlK@z|dKu5ZwvtuLV)<)9=i2h3s4(UFy$#4gmrEpLhn^jqdvNEL8jAA;Sa6u2QGg5s zER3xE7%TDeo8UqvG)#8CY{}v1qOL#zPz5Sc$A50Adr_`@X{y|5?Ym zlhgeo2LTFC>&MpV*R-1)1W>6J#!NcIl!vx*)kE94;8`69uT{aXQ2kyIw@mw((;is~ z+J_p{JFumOw9J;h*5-fOldgSAneyOPu6=xSBXSS|rN7&cysn*Ca_QOZ8QK@OK~H#( za!$E(Gu_5zP_jRibszR;{l|T=m$hxIN}aq9t+^qgyk$<~NXz?wd!M&Hf0T&IlG_0gu z0XG6VVBU^p^~gbipsxMt^Tbbdzi)OxH_&fUldzJzK!s>CZ$4V{WOW)|aiI#sTYgLyZIFqX&?GdkOjRs~Rq% zR%}NcbPKH8O-iaS9LnUjq4WCYl+>c_JiO{fdKEV`fCM`$h_CXcb^E;kjodZiUH(Wu zhtA!?`TB>(Spxum6}$13XFkt3{^91k<}!S2+r8?8ofVv#wSqx;8!>unYWpiFEkAFy z#`pfYJ?$qXO_l%N$iU-`jB41j*_Q%SXS9$$;1+Bis4Q=Tyg@S%M7Z|S9Li=7qw^PE z5W9Rut982UKEN5@|IzNY{XwYxG6%MG3>&F-Y6&h1 z!%`ALaA7#1g^`35MiNvMhUiwKvl$604kbJ{mV(_~D9So)AQc3>-J?7wEHKCu5Z?G7y#=(Wc8ywJf!6DgDS{XO|!hM%C zNe%*phMK7;|CQuqpRQ(UX%z#yPvW~t1vs1W#VGUU@^Z!{J^&)QEeoQXikwn|^Y_qAlfv)8u;#xj`qKV87tt)_N3EZI7 z5znH{5QMgA4z{D2*6_`|6n_7^YlCCgU9y9-MmO#C*%DeLB-K8W!Kvt3?eQ;i*n^Yy zye$zCbsPBg3)X{P3(0Zt)}65NLnxaEA3xyp^gm}94D9C9X)>J++Hvsr7MT4P(kH+1 zz~Y8|jPI00UkTqeI&QElY)^9V(>X3ayTZ50%cl?#HLknPru6TJa9lC0 zP4^rg8N|pjJ_6#aufF2SD}AXMv$B>@QEuao`?s-qeI(y~*_|gJ9KnDgzEn`(&hEh{ z@1^qMJ*m8Zeh@p(-9qLw+gN)*hHv8`+W?RCf+u>ypHbix;qJb$IT(P0iVFeXJ1t29 zb3X0H!ru>TC?)}i9jeDpNFn5mcvMvmf+A&vH_yQ~{d@pC?J^K|42)_M>zsP905=2I z0v`eCz}#_=bqO3e3l`3R>{IyY9XnsW(x2Hc4CMFEd$46$ELr=45kKC`-pPenbTuTU zmbdsVHY3$`!e9({(tW}qhELr}-%Izhc~&Y_dHxgiTC<1Li_;n$JGi7X6zrSeZ0}?5UvyrBrr>tNJggSEa%ls<4b5AbjkP{od<8~=Hoq@kc z9y#!>ju>DR9)MmOII%hV-J5y!xv8}&xtFfmMdF}42ui$~2cMpeM{4*UEnB@4fT)OI ztY!tL)DDtQ3H%)ug}|SeR@L_J_6UsXz|xumbn9ZJFzY)mzvMK)w#}iBmOGa5}xDXO&|#wM~mNwmOenwtUQ_y+09OtxTznTo`@fm9>V-%Ce5x zix}gosjO7j^W3&Uf^1FP_p8Fz&Il)}J@tg)_+<19_ z?{TW)aY!ALj_ z*d9+YN#0Q{7WLv}h2{+$L0wyQ7Van%6jc&C`_Fe0y|9T0p5y3fgEpQur<|(_S{pT^&*=g2>t1AYdBW-8Yl#l20<0L z5$}W$od#VqdV0qf#ia)Bd3tPvW6=>dUVCC`K-X*WmJUY{`il6s6B($Qf~E!UNPp6< z`cksM=ANBEt%8eBt2_DSB6xQ$EPf3v2Ize~Z1$yELsHS90mJ(*Aj;g5n|PfU4wIck1Je$l945lzvmpB$82bchoaF1i;mM2MM61?P zl4qni*F@%?5GvA=NIm5sy{_Dc+?=c9Vf@<&!urq$yBRih3tQ%-VhnSTI@!O}S*aJN zvE%y`JodvzWkq1ioZg)N_*%gCUG6#@Nhf;d{hgD*sF3?}Zp+Xx>JxRzs6klQiObredAZ44jU z$*;0nts0>ngi%MKs!Bnx53C=u68JM$w}ap|YP`rEXrn}NEv~)lTrQi~kCEq1uZpUUcu2eCVR8~7_H`wWdzJMOtXB%iJwB%fImxIxFPb>oqA zXae}X3>q(Xw~jAAf0!Gt8_&5HPRHYs*mE?;#FxJYtGW3G^}e}8Z-DSf73<=Lvm>%EBePeM8Qh6Hb1Yk<2h3?Z0aw=kcg!0^=5KAns5#1MG8g zzk31Z{(ocB){T+tg#DDN^q4&b7}bZJtZWW2>H?o2TfvV%JWW|yCF9O|n9ZAgYu@5b zFn1Ja%+UE<82BKl4lnJOSIpsp$eW00p*w--`88KZ5JePo1XL9eVN>WDd=>{)O^@RM z#llW(dI3WVoK)%5!{Kkxrmeu}kG-z1-)h!Gk*abFaAWWZ&^4CuI^afu9 zA;6l0VD1G5{l8C(Fv5&*{ZQCk=vQ&ipf2d0_g<7qqy1JU+;9v?03efBIh@wbEMMW*?rBbN~4h|+EApx~o-5^z| zUau!SJe<6|JOEa&UQKj#G|9=yi1o(FyY7Pf@Av(eoZO+e*fc)-403Yd`R7R*y+@-Rhu14Hsz(CL_k7_yD9bS8dq~fRkLJUKp|EM6PZ#J2E<6>y61G)a z>3)YyzPfHj-7l&un{NIPl|T7900kX$*ukB`v=+;aRZiz!9w#0L<*q!Oa$uSfwrYhT zDGyUwQN_G@^T^1^;O@KcrceJ)EL`CWQw$)M9(x zU+cpJhlVRISwZJSpO^0w4}8aGAN<fYHD^Ac_K84!lf6RMUE)r4Etw10GyqK@D`5 z`ae6Hnod#dzy8=7l#U=gWDJ)V#!=MN{?3*T3w;r{i4lF7&~-ScCJsld3OrJ3V+mBa z|J|dm*Cq1zv!~MU%H2fu_D=_I{YU-S`enV;qN2>%uPh}f)`lV6&W=qH*mEruua71A zv`loN?K2E$J#Jq9>KQ&Cb2(#ot>T+gCsAl^S+{0f4>P;=e$9e)fAY)PT+S=>d1+Rv zMOK6vYX3fhABIh&+-&8RC39E`jHS-qK_AhH#48@h7}GE!yQ3gVGCemG9FuFe1;bA7 z%!0LB`Tg%5EtY%Ww(;nz^<<@=m^5cc@aRi1bn70NPh); z>jJan6jT|BHv8reNs^fU(sz9D`9i9y>x{;N;7eB~%f4i&)fr!6FlfoIHWOnC?4HXV zdO{3=eaBu|K&1+t%dvZP7`1_Esg=4dgqi~Tt%@CHA}qdpcDvmSA3crjI}bKl)+7kb zy!`?$pFA32>j8wPzCixuL7(H2-3e=U!5M@6YWIT~C2UyTJ`&)R)06mf`2l|YeNT(! zW_@@u|NOeA-BBhwuak-U<})^92`FIl+K~}>VBBkz8te39+>)EctDdK%yy4nIr!~{P z%bE1;egP^!Q+1`MhT|}w)FD*oZe!iMzBTBe=|6(eT6-=&v6`sZj!C0;ffPkWp@Fw& z$I#9baGJ~`eUL%z)&dIF;yO)cS(H)9DijpF z8V?nb#eU`O3fFqjlov3R#q8f#@)-I{W*=!=|iF0l`!CD12cLoAwt_R@47#GTt)JrP-`D8@ecK}L{lS-e&LXQS zipPe{X>fe#_nX;W=v!w8Y1OQ}YzRr#rXyN+Z&cX1wr%YmPo2TGVE7yNkT84{qO)no zA)6dF28=eqkyA z*G+wZ&)oBbi3VTXJ=DfT#VD{dk?KvEB*WTZ&Xf} zWwNre$j{G5tyVK+$PlzzZM`x+qVVFM@Pjx0iLPO(MAkWKUIS*Tnog|Zzzy~>$M{u%Ln{Z=SJ$6R3(j|xxWp`j5|hmHr7d$>XwM;tz* zZka0wuhN8Z*yTZ;R*1K6)0^Ltd<)a2jwLtuDR%Gvh;z<4hcCYPg4oztJRT2=*FHh7 zKK^f* z@9t*Xl3!dz+<$&z$NiVE_x8Gw&8QVS5ZxZ~&uBeuRYyQAsIi8OWqMf%s~n9tjG^hT z^H{e5q!=C8z3nGI))s-y+xW%SiYj7^!5CB;Y+e@y_A26c?Pv77C3H$V#P8Q$#FjBb z+ugpuu$SoB`c-d+-?14{-TLy+S)t?W%g)E^sM{z<_ba5^Ss4`W4#Q({U@tHeH!dBa zgB-zM`|>GrdktXQ>F1HFvvR1+j;j^%p}X~291wGv`1JD(Dff*Dr;biwT#=op_ckO$ zJt{RSS>jtoVM@K@G2^Z$cI*@ag#dI4H4#8fRY*m;fBE4^+-ZM zk$6X7^Xf2b10zL?9cCg-f%QAz9!zwA5jXkO7Ggpg*PZwK8eV<tL%M7Cl8NzX$(_Yst9&O&+gs@lVU&9m|CtoF}8Lq~VP=9PH$t>u)KHhg{> zjfy898H?zYNZa9G1chHv6g0AjUd6j`XpDr}OX**@gS$x^KWTYfg9u?l)C7Xm=hW<)0F*Oz*ni<0>ceNZzcr*kc&Sb@?*5Z=9 z_=uu+l&rSKD>6zG`mw_F z&mkca<(6~nwIL$3YmuquK!uB&?!JfBzwE(dYdptw=@QE`PhZ0|*PI13wO>`EC_Y<- zC^)H0Mo%;4!S^*7kQEK0-~k-e&%mRU9)g-O6a^f?$>f;JSfhCx$5HuelB98rsyYut zRp7Y=TiSo$KK*AtoU^9(Z?j3q@*k$szgH7ka0)8noHtj1cppLVS9 z`ci~d8OZmIhLO!{?aEayT$_DSUx@hZRIM2#ymBLvc}W(zbLFGlean<1*B1XKa_|Ux+%%D%H%vya9ColU2;c?9u25FKlSLOj+@L=L zre96+)n{Xhh-jG1N`M1DEM(O!KIa5!r5wF)vQc_Zbh`K|EVCGDC>7@W} zsspfdr?34huGobvmoswYNE{9a+1c5sR4VfF@{na2i^W2Ge0;0-dNk~IJNx(Vr=p?) zMNzo%#v9S=^(P6!wKB0(q|$Ut+?GXYH+CyE3L6i2t&Wzt#1pLsq~c^LNn zAt;iFKE4`#Vi9SxKc;Zy=63ftu@?*(d;D3a_B>xzoEc;Vb%F)a*fy^#MOF~}BoiCe zllUG=0GzkfIuxruhL`NP2F>b99qEZ^9RrM-5$`pw* zB@YJ`$cmR>AsVX~O&B6Vy~x4#+;e=wW#r}-69SaIdk@@jHuS#<_O=qBtT!*(yI9|n#Q?lWZ4(D|df+*62k}Z}|N+l9r zVhAVY*S%OhHay)eNZq4b?2~3)I;!k4oEHynbgs0}!jscRGkQz`gGMf7^q?mY1cCJQ zbRKx%0e<@FCvLg(44!`3KkdXL5CkjvnqFk1rr_{yCmMlxBw{>!L1{>!Zd{kn`D0)4 ziHJW4d-{e^6P<~oW`>D^?R;|GB-a}R9l1d3!mc16S} zLZslpA{SF$y&XyEm=rQA3cyuQe=*h&N>6=1vI>LPn69O!$j;4cUL^bB$2fKFi}ZiP z_x`>8>O<@r)~`eQ;4exKTFKiSMW0Lj^F&_zL4US?Q>UdRsAMkxdOm8ii@)C)fUC?v z#IRh9v4N2=M-Xb%GAY%7oR`L~J)7AlJDIwE2VK+#!fZ|+z3N%^Rr(BJf-IwmB7!W_ zJ7+JSeRvOcgBhLdMdNhf((74s!8!C_%|hM^WKeQ7i6K+=;+-wmE=x6*;T4#d3v33JY{_zs^jPU-y&k-gXl9n28YK@h0TsE zD_AWC%sM^W*W{C*)3F*Xf#TdrW=5PHm==@At)OYjQNvHj9?4%{r$%tO74)jW#u%qp zKrc3L_}#oUjj8v(OkREwLx&FL`!Am6NCsQ4ET9$wf62VEfI2|^MVF*Trw;6%U6KZ! zCa``xWi`409sXUi3SBD!YHqii88c?_(MLZt&Y4e>A@PLCnVUw z&J8(aXH;}ZJ551QWS(C36cIJWd^mV2+oKxKY2C8dvS;)A`~vt^s6&BlARj>x2np)M z&_34^8P+&wR%M8eobI6~(~JTKU%iZqvQiLLob%wE+6a3=Q0O-Gf?z`^=f-0&o zSK3%TVH96Hc3ayTk>M;QoKQ4;Qe4UA*{KY_eG6K1>(RZbhHjY4l3BjWL|(p{uuzHN zL!3l+s%EdSja-M%XdRQ0!xgX3qU+9m%zE@zHjHaNtzLaZ>J|Eg)V&G<0%6AC?5l}j zagl)vw~GE&7lT8bL}?4DaBjyV*Ny)ghYn-484jn;*1C1nSgLUAU3j(bT0$=@CkC(9 zja%;|cT)@pvJ4Ep+81%J@~SaaSx~!l$STPf9e4yC;3(D8>L9FMy4cDR3kB&hfPguq zimSmbzRiG`|?V8Y{yYoirQa>A%A3C8PIBdTP& z4Qf6!jV!|tpASK6fod3H6ILa> z^?kP_K?@NpZrMPg+eKPl8qePQ0qYmeIIT`OTJRYPVan*m3>4A-APi7BvR}`n4kb|6qgO9Fs;rO zAsVQ*CQ_|+P_3#!Q6wx%I3YD)tVa$8vZrpUj@K&@J@`MARn)EDue@LYU%qu^;|na> z1qX^?>gn+8JlJpu=HJt}ox&2x=|E?c)==X@_+%Z*MSY-C%gzSw1LcT1HL7^CUotU@ zN5;7}&nH;|WI5t_HT!XH>Hi0_{_Mib=l_bOZy#iX1^2qeC>0I04!yF-1IzCuR9}Tw z^pI@L<>Ky3n{Ds@1>5=PVBIx>bsAnAnanl4d}{_tl8B$Rj%s^fd<6BD2KAGJlbP9j zCWA-xp(d_?v?afC==Xno_rkFy2isF#7aGKbKi|M;jzXyhK_`IOOWukNtiI`Su5& zaMx`&27J9hAj>j)_Uxg!xEPg6MRIa7F)=YzR{Ej{XU{&a-D!Y~3^&uJ74g&l01mSVONrLb=;D3=I zRDClK^_O$oROiURemqIOjwFxNCOyMne~!xKJt<$^w0B6So69-y+jA7H-WFi1J`6e? zy7q2c&rfLdoe27o@ogsgPISazAlIm^)4yk%brah|k{w<5mPg0&$u|v+FrUx(gKIB7 zMiZwg6d^3Jg#yCi|2od{edL~p44ulxjcMovaC#QQ?Qi+giUQnx9^{w6seNG84*0EJ z-i?b#bJL&_K6UM`JtQiyZQL`YjyOsb{)tcFg|F)Vp7%V?v-?o)&TFBEA|Qb5A>`us z5$rB%?mY|Fgg$M)SBFi<(m#^<<)=ihyLm6CoZ;JuUv}P`toUayk3IGnr<`&M6DLk2 zEZoB8123V`v@LBz!+t|cztuC3{K(9A7DFFkIPftTfb4z=xc`2r+0-jp1qxZpzt7WO zK=7sFYsQPcy;xlccFFgF_O^7TJhu=3nP*f=ZqFXnccgw+Uh1}~$?v4(X$ z6OOylQv_R`PPuy{+tx?ov1uq-7e~w)83FexIo!Z$2{k4P6a~H4 ziBr=yjlQO!QVFQkD%`GP8(CBzSM2->x2WZ>uH%`s_h+oma*Q53xt2I8^;R~-4B^pL zFCe*9++lcz`LYFv>j5MhIwy&un&|MJ4DWY6=EEsVB~f7Skm!>HAz(fDH%mTw0f6zT zLn)c^LhZSv9uRldaB(;AVYX=ERx!bBFYGoh)PnU2uhP$yH%m(xJ?dZ8NQj( zpD7P*^}C<#L6BCWZ&<^KX0KPIJU@hxsPYEsMO_XJW%;4lt4w&^YE){8@PuNl5sk-S zS%#|8APNsfgWw~TH9B`~I#adQTT2GYlJ9w%L#r`cZJ2^(} zQfh-Q*Z9(k_KbxoGvVXwU~og*fFjGVbH8t%tB)!tEIkOPC;L)@{+Ga$QHeLBiZyw? zc_-rz=JdXXpxkv7x+0m8^#GmpS=^C43#L4V$E)Do_&1NOyaiEEuz3vJlscc(@Rnsh z>SJqB72|%`h@+mky-p=Cu2UElE-x$dDgYxQ|3Sy!2>gkihR@odGVl8X2XU7+;kHR9N6@umSvfOf&%vK+lL?soOar2ZEmYquU-g(aFQTA z4me2=9tZp{5`>z2pF!N8aiY7?ERLR_+D%Fd0;4{9oxD%_;woyPoCuxn-NNd-9%$3$ zkM7^uSAoUqUys{!uN_6!ia}a*0|WE!|F48ji;&vQ@8TUv3_4oZZZ-$TF{2IC(73Ei237`K7nS~G=4tHNfjm}Axr=d4svyf$)%)QeLoHZIg ze|HEuIVRjL5syctTlXriym1>Lk#!rz-+$T6%~L)iDk_Tf^mLMvk|-=Jy&fkgs|+p$GJ$n);rLYE|KWCMffzqfsiVN&@wyHFcC0J}rz8-nGZ9oV zj>o=lI>Pb@)GGM)t`ZiN|HX+~g!Nsy$@iU{IuJz$SCtNXnVyQwAgVVTu~b!YNK7Q< zyn`HC5zp?Qd(_qyH4>N1na_bk7V?*LA-Gow8jB0rqoUK^T)G+$u(8(w+?v*Pqg0~6 z?ZXV*@Y*zFSthm0&b2wkJaEXD_G?L45SI+>M!8na>sQ~)vaAsD-2yLu^Bl4uQf)BN zsU(*{hqkjF_zYMM90ICno(5MNOmx5XO$<>jIX<+EEBXcV{#VmU&u<*1SRbSM4&}7b zQ~4vUisY?@=$suBx%&SF!$<1500+Ys7YS!v_UiPPD#y=kq&<{*k9k!lsmZV&r_Qb0x^ zLapJ7kQB;Cw7!4PNNzkWXy%HtgzTrjaz{c?WUkvbiW# z&>og&p2q#U*LZ3CV+_k(NAji*xF6U}-x$o`8+KrhYTn2^S~!!dZf#jJ z__SeOZoKm#D{D5jSgs`;Ni!-6D$0~|xn)!HPH6)0&Hy_}+GW_>WrXL(QWjHytZw34 z_ljsd8UzK>b98L{Cmws17Pm`e#JQPtAJ8$;zO6%HaD*MbA8Fw0!|ha4oE?F!+=4l@ znwX?~+)gd!1tHW_nvgtdKtQ8+5f)pD*QKGl+=AI^!x~+VS}jvmYNn>rgxPAt5adAJ z)N?uvd$pFm+hW^OuhH+=pojff>eOrsfK7#z7eM!2S- zl-7`v635uF15l}g`N{njTcxj>X$ekI-_98I)fgQ4P|~(}1UhDqpEBkR_GRRu7X|F; zue4ra!fTLS4*xs^5te2<&}0h+uIMbo^{CeX3`Pr5&RvooXTeou;`J8ag|rMYWF)4X-E?$j$p(i zkD^pIeco%XX6LN0+4tFRZSIff;oFc$4{K9@Hm_X3CokS!OAbEv^vgW|)I)8$#<7Ck zZfEJzZT#{}6d!)rrA=u&I|A$0t;6khqu1-Hsi{E_1O^X2g&%*^vUMwT?hF@S46(6| z&0=Y3Y2@eU6Bidp*REaL)c4-KeOaka5`@PdCkevifd4syu(TZAHTNI0%QrXC_%i_= ztLVgT*Ib0gelt~@TK9PBbmv}HPrJjf>o(P2g9#@7m+23x6D(-DT2FL0jvqpT5Rwv( zX%o#Y{Ot}keaBx%dX}~Jn91m7=U=nv9ADL9-F6{73BeecfwsNK%`GNA!AFQr17`SB zNv&eSl`;#H>ZUl8M_~VLpA!?;sd4$Da-X+jTtw}mDo-&r_4Mf~%C!Vr-K{^{R(=4N zL(S9E#xh_~38#$CMyr(xi)rW;d;}hk#E>43QdC&Q_uqfd`t|FXF=Gbf&+EtM-%V}4 z4-PllH3xB@p3>%*VcX_R&K~t5Xn+TRw}Be?;>X(=cXr+UVrQR4jnM-VPA0Jkh~ zTIg_YeLo4CAAu}W$GQmX_7_FYz>Mj~5<0t+3qJXQl@msj*S#|}B?i8|{Cp&LozZ#t zT^sSlR$|XLV>@I;kwg#_MwG9m*Xn~*na!+uD796RuxGRdcj52+_Rj*I+@H&xnT437 zhTp>XF`+z{9LFo^1&oliRJ&y|%kp^v*aj4Hv>Hqk5Cqg(Jz8r7;Ugv!G4$NlYP5=L z`gpnL^=W>U{otXu_+$$t?I^}j6Br5d{}nw`wLJJ_GX_CF;HdOq&;}Mwm0zZ7QVY-@ zl-B48(*+&{=y5A(S|F{~Z#}>%6Q62utb5m3qN1X?`L=uM+$j#NN@hr>f;LS9?I8%u zoJK+ejJWj5A}Wm-@cN}j)??BJ_HC88g9tOVz2E0w`Wy@X+R)%wM1+;(uCY{A)lgPm zO?kNur_;YQw~^sp88`e1R4t^*J0pEDYZ6Yut}!)vept?0hUKp1pDttB5!LdXeXL+| z+ZdL+jy^@(IT(`6-@#+3*<|Je&s0pURcl${m~07@HnThq}gb(>)PQo~w@sZgpTjWhr^i!1OmG^a}k#eFR~i_dM?2+H&}> zD8PbK%cyevL0C=<4pR;Gke0`{kDeIH8J8U(DYfi`1g>_rxJd9LrE62DE;EsTFc#&o zcce-!VGODvB&r;p$<-EL#uo9%52?KUMsIGsc^~IpwiCVa*sg0tR7C2N5IkOANb0eI z+XELr#g}f0C->)Y=up$T(Spz*Xz8eP0&1;@)+!Mc57B)g@k~e_588S`;^%2zV~98$ zA%7!C4d)2A+s&etnJip!klksSbWaTD@w?6>E;_iQ?v#iDPf=QKCt9Z=FYSfaD_r{t z!m>1!>rREIFKm2%QwHqJMY&=q>^=bX*7CyLa}jbYQKBp;ubmHu|DL^~C!>;SbEfdh zLpd1dzXnB(odWY+(fn0*7T(^cF@E47Lh{x$aiumwQJA?doo6>^Q64y9jA=*>k* zk?i@foEPM$csb=~y6pcPluTZh2k`o?h-$S~Y9Uu<>E$j?5&4>O-3>%b0bs_N#ZJMN#( zyRSX#*S*vtGZPXL+T=Li7X0(iGCujF3%A{t#lV3BF`1fP3;K(#TesrzcAv*F5fKsW*|P^(mJtMjsHiAPOMQ+rr=IFd6MoGwv@7lFxSpr*#b=d?l)n)J}S3kyev zu`sA%I*Nz-U)YEo%*|4><Ur}&Bk0+yf{U-;-0IpM-2j7%k zflhL>JG>V=BU15-YGQ18lo%s8y)u)jrD;gO!}y}XkC^FX$%8FpJNrJm7X%S)NHh_{ zCK7S#q!!84|3z35`y!~dC|)<2hYr&H@Nut4MNPFDlcoKsW$mKOcDb6qiUqYSuuWgh zz-xB0VZ4~F7CEk=^QI-V29tF^Zig1N&f8)XV0$on{6QA|8PB9^w;U@wcmv2t zIAt3KZM}%m8VAf<4U!0Y>&Y1EHphy?e9BFRG&2=ECi1oMqzg)d%?S ztF@?90{0_Bwj(44bq&sg|&JwizhN<=6W z)N@$q69c)G;PgPi5*a53O0*SGR8Y1pMZV}h#F>o)C1P|1TpKeR%4Q?={~TvW5QKuj zt;4%=>+r7N_97Hip*UR7&6fo!YN(25*51!+8PD+6U=QNP&O9t;FioCM3U`o075U^7 zRAxkbzm`y~o+OunaU{@LXt-|ZsK~*#u9yYDSzJNc{=G!S538>M(Eyt2V1_(5l|RpG zI!LA2{uGs>`eh-~rROzq)`!BJbe_HSjE40Dfj2++oV#zm*1sF6kF{&zwb$V7x7%L# zD17u0?A;5epAO^4`(#!J4?d0Gf0xne3fZ)26IQF0s;VjkK_EIhn#9D!R-^M|StcVR zgQ}`3Dk>@f*s`Tg(=shB4M7m_dVT8&jYdOJQC%86gTX*bN(yebo7JmVvtq>xL{TIr zCWbrisEcfLI-#@_-gpCg_l7A`IujQc$H9XK$<56rJ3AY_UQa|s1W{2@WMpJeQsNso zv|25F`t-qK`S(fJ{4e8V1mSVO|5^m0`sp`OZRj|X@OWwx2HNH+Z@fnK+x=TD7js!T znalq}(dw-M_6!D}4oPj)A3V{}kBCLkHeBqTD1E`>g5*vJ!6$CA$}2Q+`{U!7w>X(o z2j{Tt`)>o@ocSGXm@oiAIKF8N>f^fWUgnG03xS^eKriCSVL0nRr-8GFLUu7!*kIcy zpjPqm&V}5&@O|tapRqE=9LD}TXJgVDP!!m)!^E69(S#KpV91>3`JPLOA)kuW0YqHZ zhq!nrHBu?D3FY)3T!dcl+pKNd9L`VQbjM)yA_xkKA|Ocu-W{bZTh@uS$>+cw!*E>R zSpUN77J1;-@tiq6mkAf|^n25ulU>H}UXLTo3TbI+Ty@n|Y}l}Yr(e35Tkblu=}HcF zlLTdJP!xrc{hs8|!D6@=*bi&~B|+N0gKKXd&5Lg~AzFVFww4&MdH#Dges0Ol-v^el zWdA>8R%8M2`gt!CZ*7~W#*#cx5EvfPhyQ%lhjc$O)6Tr1if!@&y!DN^$0Yo>V^C9U zz+P$~BE_c}C3yw5u4_7-SX4zJ>I{YLIRgm~DMC55X@jLok{DQ=&Kn=!kKW!;b4LO` z!WUJNMspE@0$QU9LufSm&V30TG#+D2;DYpR#mz&^+&klTobJ|H;SV2vpN}_tNJuLs zs5~&OwEwR#ngrhcJi7IQ&7i1QAkyr={z`+om3pF#fko3PvVtNhh=Rhh)w_7;*)O^K zmUEdhX{2BE3#$x785=qf{Pf#8roZ+h`_uDlQ=rAihOuDwgPeQK3`)zZu{#>RU%gVg z^7qd#6K-<&HM~^2wO9fq=>Y6r9Y#%HL|u_9n8*NAy5`jc6C2zLJJAgCYl4Wj21afc z+f77-1!jcL%#?ZN!9pa-&HSZLQe~^tJ-#S*7$Xx-Wm|Or26dvV^O?4G29fq+eosD! z<(*EWz}&hFrqJB*yPB9bkHm^YyglrmfbOS0JYF?B_ot%Q zI_Z&^hA6gda!9Dm;@PFs5$m~sxPj+@FYrYcHgyG+!Awy1p~Rna8`_}IcK7?g0Xv?b zjN4X;#vDT5$A73j9vyEZu5&BjkD_qt+jE$A)5SPVEvG~8CL0-~1hY%1W&YFCDqB^vqfiPXY3_gkiQ{RMr+3?GA5Y)a% znp)(S`qG%@m%<|-;jD7;*)^LnXWF>79zPMD2p9k6iwca>_Twt;4F33aAxoESW&8FF zGIR5=RXLD6?K8KkR05LJ^fgqXKy+j<=ZxvW<9D4wLTpHjQ-LH&6cpQ-KI2bj{kRc; zYc3wntQnKr)yJcuc)YMm4KX`e6Y=@%;Ex}e& zQU@~k$8U*?ZapHtSyWVj)f#wxe4oz455vnZ!@`BIdbMxdRjFXuFqkkwX8ZQ-*zI=0 z!^81(QeJMx&Aa`}bqB*@%se<)Vu&0!~H{9uJ%(2#*8)rwBr)3+?51`qDe_ zUqIv>g+Tk;XWGrUwq1<^(9p{Ps#iS&c1ytW}9zvx>i0czr-44R~^?MjL{0_j% z-z1XG05a*!v+8Hz$!p-2^B}U$AW%`EX8xaEKHId8rTHs(@U)5a(T`^5P7{hE(4&W) zE3YiX@WLnX{FgorB5N4B?e9apZ$Vh-Oh;B)_rw+|?1Z2GGEeTmo2%0!u|_tnFLrQe zG#|d*k5@lh*yQ<^aLvWWvv(Ye*FAyIfj`Es?KzA)v^` zm@!ibN*>VO+h`Y}ELzS>vT^6@4kcBd^j#tf?+5#bvj> z#gD(QZ%`&aHk|a;uh&IUdAvwJE@$eO%bC3^9nawncYJ(2OXt5wVp!{Br=ozQ2&h{j zbecnn(?Yl*K$6dHB{nFq->T4VCMqbfZ>!vCz-kFh8`R-dVF*wk&+CP$SLbv1XJX5q zpV_hRm)i3$86(*}u5sRk5!tJ_X4@CFI)7{9hGTNuNDE8hx9;bm2qMAG3MzHMAPAUU z)!1|v63f%Mamyzh2<^t)l#8g;TN_?jQ3!HXQKk1UDn(HsyC4Bs7Kw4?fd=}N?BGY^ z#kjp%QWE!KHrA2zgYq^KTb;-J9!*E;56xXmYSAtR)fYaz((Bg%inM;LCU zX{QlUt-%nJO!OI7W9>22uY34!#DRBiqB1W7QKMzRvkPjE8%!R0^>2AkaMsuJnf&3m zIE;E;ocSDuonu=p-&eMfqL}$vDd2-~m!U`^Rzo>24xG-o;)N`{b|TwG`E=&G84_^r z7|c_z8yZQ2A3^_K5_dkfi}kjqBM}=xhBK5fBGBSRK|(=?Z=G2cR!WdIk$pu5x_OIG z01J+)*_M6)Ic?Cr*q1(u?a_PO>2@0)qzA$AKan9KLaR(Xs z>$ewh#D@EIJwtveN#FfL+D+%;H8-ExAjasXYjD$!8isGyVS0Npo&lYxeDexuCKB;j zw6A@9jZ>-(huHOT9zXPNDK}sjM>D30;Q{!`B14sgHSOi5~p}%nwSBF1>TCAJD z?24YP(hC0YJdE1`2NuGi#Za_eq%vE;St-|M7S-uA1X+y4M1|5Lxf7#?_u$G2@q}3Q zwf8aS=S|G~Y8^Y$3a~qlyc@lN;lQVWk1(_b8Sr>z+#WApNk*0w#oo`nT#k;$XzIy65We^`-Hn@!oxXgJWeyxx6}U5*4LBR&~OKSMtYP|JLWn3YC@c z{r9kMpD$YQ?6YCqIREQ=ynDk|fcmPao83H71j(Lp2O{?%YX5 zMFn23mrk8Jk(AWfmQhjyKm6cJMcT6`+;mgjxg-1N`hCjE%Hq(WLtJ;=br_AtlLX;$ zz)6DeIN*PYAQXT98_oN3{wt#XIue3PiUSQmYaA_4qdj`gA-DK?o7u0>0;tcvcRF1Ea~O8MX`<4gAS?{<2)iDL04lSKdI* zy2!!y?Pi=#k>DT?qvpMg^_9!mZgUc*jv*o5OYhz_D1wnP1zgA&ep`j9xDx%4t`Hqm zOEM~oLVHWc7A;}%pF6l_@_U4ahO%?#P7)Inak*Uly5vEI4EHBuN{v_5nHn(!FIu!Xut)_U zH|)zx&&=cPR~A4DkP7?=v7N&CZR3lLh{&kde6nW2F3WC6aN*&6v8mW)b zNB7m1Z~1jso$$FyYhvc4chIW+Gx$m}{8LcZuTZUt!N!ryTpY~e-RcHuh&qSCy%TI0 z!w#^ia(AO^39^iGoCU{^K;v|A`rJiWi_06N7i|u$5rkn?rJT2A5x?x6Ow`0oj4lUT z6ZJMgz^p)CmHX@G#E3WD14J7f|IoK1L{ikrbxqyzU~i=6}kvZR;Bl zg)w0fOuOQ4ili8p9Pk+=ErINMPT8UXeOr9YKd%#3%&*d#&4A z%!qLf^3$gkD_wemb%EV?eoZhj=D?nJfg^}$OJLESl`b8@ zrohrGO0oc24Pt;(j9oNi)CEQ`KK*bpS%>QST~?XJZ%d!3{d@ed`-wU#iV)zuee=0w z&kv1`Z;TnlfskY_N}G#AZQxKy5~)Qy_`cVr{MB^=YRQ9FRCCUO-&xpo0+OgklqDWn z{Sr=i2a$#=ygtv`Wmj37;~>~oNr^F>*y=n6m#yK#?Z4Na&jKC+{-iDyX?+Nyh_%lcI$!ee|6Cf<%(-t; zvfj6D>Ho}pRJFop3VnwbqtP^P-VtP(sH}VpHFgg5N^W&sCCYGt5`_*CNfLPJ#hxr# z5(U87GyWlAXv1}6ygrPc-oecNI+#CKsPP;QCcdS7CKH0TqMdm!zlocvQ`Bl1NwR^V zij~De2_>TMVmeu2M2s(z0w6?}NTrm*>-(+jD)TbIP=FVKZ5}IAVrv)`TSl2@OAD>E z3|obkuU_rX758r=D9pE75nUbzKlTZ3tBGBAPsS76LD6f6p%G<HatcRzg>cE>)v(hYvsJpz+a z$Nr@c5*^ubx`y?kxZJSQzrA#;h)#isI0QjNu~kCu9&oi`o#FIAr4yo>&j9t$juhr^ z>`&*2Qmz@Zijbo+Pk1sa@n-m(ti?{htUlLedXJ2?5lc}(sgUtR9wN&<@xMaRZ$^1Ye~44 z&;<+k(GQE@zcW;8b~cCN;cs%;ND&1%aN*w?N{2{4!num>wZx@Aeet~f2uf-X06ux? z4mK^X+xwe?tW;M9ricrR_U$7tFOOcmdSNsgsj8}?y1E*-+fAoV zod^!@*zaAIWmc?ML48^&IXRj5`1ls*Aa?W_2!a_D8HE}O*R3Gy*Cj|U-*PcH z9J=*^kVpuLXj{)^IdDDO6ZM=lJwi~&w55QZdMk*sXJ5b^l9AMa2?@7}D}2-)!9uy5~K6GU?UZ=lPWmBpyEQeRmpv zmkgxyWl2<5tLfLzhQ?L}&&`47Zv;b~){axrlO|QOz%`eJ?w=`FiqW7YQI*0ChPxT0 z?n$KRGl+U6H^uG@|2ikj2$c?$5EHTt%a_EnYI!W>1tBPkfFOceC3C~n9RZPp0Fop# zy!R92W|#5lr=PNNmPqH@8qzph`1<&0-MmD5Y$th8iS7(J-E1ZWV$_ z_UuHIi;!iRVZEOuH>(6D;S1^72Nz8}pDU(a+UUv=Yj+d3a06SPyr$ldd~8Od&Oa}w z+vf}U`^Tq{J4$EdFbb**x%<~?4UXM8;x~HFi~-bDATwJgCSFbbxpU=; z%}k#B031HLV#TNQt*Ao1WCLQQ4WY^g6*ja>);E1!Kt>=ZD4qy=F$S-bg-PT2y3Z6k zRb-%+CC)swh))OHRI52?^weP2nCM%$jlE$hEov1WK}mTiMWs>nO5Q_Ebsm@P`j)>F z&*0|GAMs7e>>JOf${NHQZ#+s~*G^5e(inrKV7g-DJ5|H=^T05L(0Z?^ zN>E|dbwUz5WAkWG5D3z^ki7e;a_7-r*ebRB_E`!5V=p<_DCOv}K!o0dLlXT@-LF8w zp(1Mb?`FzX15m4vJu$v{RTn;Zs}EOPy`QlY_a5{11XM)nlUT802cLfWJ1bZ1BtO3l zjYdsWR0!R>#nY#6BJaNW6Ef%)e~9&zaX~L7jRz zqN*!64PbC170*Z7?@Q|}%L>2E0_Wjnnl>?<*e)^~qYbR8C?_L3i`*Uiu;IaZ6loWS ziD5)Cia3H>Am^I121ts;EcUXFV!SlJ)-xH5bnTqTWv8D{MRg^!=6_3ZW#ed6gP>uM z63!JQV-T9p?xg@q*Dh?hYzUvdat|I)-PkbV^t1Wr&tDp)#5@sr*?CHD@rQ4Jylb8_I5Paq}5 zmwL3hpP+Z|-oVKeqsId$3Bu!m{~3Z%meF2)A3}xyS}Z3z1?jO2gKw^Gj{(r{)c-;j zC_v~2MIi>5TB$ySJ`=$H4MJt}--*)cHIzMR;5hysKDF;gR5(I>^G5L|>;9J#gS7}r zK(I6)Dby4?`kt@7_C;pTSp+n(8M|d7e0X2o-?9v{0`)e=WwM^{T)*>y4By#_+`|1h<4|kHYx(?qsvj^hQMh-lq%adH1mP zpA}qk&KsZuZUNo{WO)6Lmx=GzHcdXiA;~@u-BuvDy;%2TQtn68O(1w~@k{I|sPo)S ziRjL=UBEB`Im~W+NI@{H|Oxedp<8`jao(Cnl}gy@pH4U2?A#YC3Y33Uh+H# z4jiaGmA~z~7PbEJ>{eop75=qz6iS>X!u5g8dy*_5=+ps6@>NJdSoMK9VECdJ1M7FL zJ(Sq603$AK7GfeAlZ#(|`4`t+`yv1;K_Kg`yNJE}?KWL|ez%Dfn4__4jN}BxQ)G&w zb43PEFMA3Rg@e{43e3?In4_83<3a#>lee+n9G>&pZLtVh(Icw-qn#LD>uWi#p(d@3`;*4+TRF+F-csy!ZqH|FeolA2Y zl=F%r^JJN+z|jfb%w77BeErL){so4>_G0_f6Y;nl1P2Gx>#?73AGXZ}hdN2_8TfeD z5{h<*adU!^jT=LF>Zw#rku^;D@mByOx5%ou1|x_H5h47^Q@=NvLGM*wE=9Qm@eW1V~QWDz*ImLs!ZR4GbBVL&~6HL{-O`(?U1z z$COt>W%qc>yTNGR480>Rse`o3{Vz5DCXXH-Z^OEQvx;llIgSjfeM@on&|#+wepLLeP;yFlW(; z1fgliR6%j@hbEmR-eO9X#$Tj}fDturK}J>-BG5CAcupaPmE`dk*%a3ku&{?|JAL!~ABuQe^rcK!Gb_78nJUpC~l$2wZO~K>wuy^lX3^u|^5m8I_9f6|2iWM+_J|ragq9>D*d=ickhX>Y^1mW?+iAh*~691JD z_8sz@96T~Hbi~xz9@5U=dL7ZksbY5BH(8%3JB)FwfJh=O+FQDA0t$+ZLz$N z`wU8#S76UE+<-LK_K|l=HyzTVH@Yzf z*~mK(M`FKpw7S5e66)is8%FW=tACP~mPSTK24lvIVd>JP%$m83$Dg~XwwzdOL;vem zw9ED(OEOcv72G`Yo+f`31-OF@2B>@S-JF+w2UCF^fDAo{^f)%;prVlU?cZps?4;c~ zvGw9wbt7^xdDfo@lFa@a&uMpe#&sLpfFRskypNoUT;i>*-+LSE6ekptM$M{o$6&6k zZjl@WP(+dUUV5PU^D@YiK-u<4^8Zdm5EXje?b`?xEbT&2w=zr#xlPuc_QOk@p0}UE zBL_qkJ*K{mIldkFRQ`(~tNuMkh2x3p%D~bu9)YX`o_bfSXR0qCZQHcsw9vwm2W|I!L2&YE{{x4Y?pamJxR-qAE zUNf`=gW5w=tMIF?I*Z)g5*~l-VE3rJ0ovjVK5_qi0QQ9UWahwI0Vp$sA|6h< z*R>*@t`+J0o_ua?owV?jw%vfBusy0D+oSq1ZOshkb)U$=kYwB{4TJJGu{f!rfX=$O zVQ3{cI?08r4eLvrHi#!LdK^bRr^Lw0V(wV@Dd%qSITud3^8+6E?LBr3`aky0J3NZ& zd*h#(?VC;S4G1Bj_bx~mv7so66~&5zD0VC$HpJc)Q9-baC@M-3kluRCZK+Qyw8*8NoH=F$;{k)&wI{$Mv?u~8|(rG`G-(moabue(-uQ-P(KH-^EH0nb>NOg8=z9kQ6xIQ>w||&gi?7 zaN0$7{T;>k?{q;?K$Zni1R`3NlGr_um^Q_YCJud%pXQ<)W^ygC9M>8h0gOIIZhHKB zF1@8@GAc`%g-0%Xiu}y{8t0M@q%or3OQ_W%PN$40io_>`@!%7eG4{s3UR{4}2n)Bc zYiH0od+q>Gi9B^Ay9POEH0p_s4aH)yk)KzB#cD^EUDx{HgX4JT?V2hpDwT?H#Q;S2k_}jR720s@Bz(3G-dYYxuYk_o zyet^>D1Ig=@iL-L?}s3*uKk=`f>1aaT0V~=w}#vkb+;o5(6ezwxk2Y(!mte}3hX-3 zl1`77^Y?}u*|k2AR|d>Mul|SbcQqK)c1rC&94(9?F)+R13P5x`1cpLkZsjp&b}`Ou zcjuBI!N3brFN(48uJ!IKV6{EI^?2%y?uJ%5ZRYc$t`4z)=?9PPz-C$YW2x z#A`23^QhlO!)61A1H6dbyZv@}=_S{Cv_}uP>Z-;yqbRP3ynF6Z(Wg%zoK7ccX=$XT zrLl42MmlupKuCyZ`;f*!qtVd0b7dM4qtS?uj}PVL<+N+p4x7z}N~Iz>IhmxSBoY!5 zD)J%<0t_1D`q{tL%!w=`-MfR258QGKTyqVSmNuOc*|)q&T{h|e z-mwjWzG2xVZ&97d`|9WRjGuZ1ty>h)twRn&FFM7f@q5l$|Ft5j6M_d)Q{KW8@=_38 zo4D(A8W!2AEy#^}4*d8K3)Clh`r=y%(7UgsG9*1?OD?5cX*g=<3hhnIGCe|>Bb8ET zUZbv~HYD$gM{lwalh|~5BY;<*|AqHnUq+ukeV8_F8e_(cAt2Dmjw7=$R+UV#IXIpX z$7fqtv%6b7`?}Ul6kQdcmxM4W<|3>X2TTAK0i`hI?FSfm)kV!R_NoZmu%B)(f6e;O zT_jZO(k&dl>+(if7TSLDE3Lo(n?KjQ)#ULwB`5d)JcVLwr4!8M?M87&uUi|eTjqc* zx&J@D`Dc-n6vUdB`%`?%6+Nr*x66hw8+rMQqI!l8oyvV zK03cj{-pnX1mu(xed63icl_J&;ny)33|{6D%vKTQ=beGc?hw#9y^rM1DmD<|<6YmM zEJ|b2gRbvfyZA_U{P7ZoTDsh&Y^Tl2hB@XDXpZq{}FI&#pPFZZ(|aL2Vj2LeG#L>x<%R=dLy15K`(QM1~#Q zP;ovbv;}dwr$`Tsz|T^KpS6sns03zRd_9X+&c{+vxfW9y{Ybp~b&QecMw#GTLL;D(TQ1~MDAw*| z*CkLP>|eBeP!z~cHF0!zC?}Hw@e8tY<(-F7Yd!NmkQ@#sbi4~|9o`CBy_TCEyPhlV zxD0?ze{AKwhd->4cGDa5T=T$H^c>QixlhjFSW;@8Y0v}#!XpDnXd6zat}PfetUUvV zv~`a#X+Y(}=@eP`QExu^D3RH(?_kJPNgiFNw`dzVmC_Om0YOGKZg`Il?dsm!)U~(t z)L~XpAUnH&_docVZQG7;#T5gXJn2d|+16Wbd6{p%t#n$}0JDIKqy=rFVd_}8|7wq} z4?ro)gMw6#%LAmQ`>|kg2cDZ!zoT^pip}ux-|*0gTBH6N4W|U}uY&uBg1+WFsFaq& z(Uab_Z45!^q(LZ|U2icZ;7gQk>p(vDq}}1|dglE#kmvi)^Q?j_qdt<2P*8@WU%W@k zIgQ2coCKa)KanL@KjkrTnRQBG-LH-BOHw5EP{3BQNL8CDlC3yA$YTi5(l3+;{Cg3a z-mnu`uu?(*nxpaAGY~wH7Q~dRpD|&e7P_LU%6xg{FzWNGAk9Lt|r%pkK4z8x#)#JzY z_17*!ZQ{hrW3nuB@Zdr6^Ydxft{o8(4M*@d2hKWcoJDeSGMSl~D2hVo&YcMi46H1i znF)gj!ykX(Y}JO+QrNHol9S=hH#_3*e<6bKeBc5>cpmV-LJ(>uPe)9tTXOGw<6O#@ zdfRqz1PmYB{G)a#Vt`#lx!Csud3!rgM+sQi|4eLFmZ)#_l?s#V-`&pn(tae~?J-OO!w4RR~HSv!R5Nb#uM z2j*_)qX(wD5^oFxegOYqKR#ObE*hQpQNndWWwwGKAQ^OoZ90J9kjNg~wMIF0nFXiG z0E)t(J7!ZJ70k|A_Yk=M1R>iGlXYR2|K_>G z4%_l-iO!T=P9y(|$k-Xq(y7BM{#KjpbbV$$KGt$HTLrRo;pqFh6Y@vrO{4T^We#J% zcKt}W{iX9Z=6?(P@+`zApMRO`e*S51V;dudi@nH7!7yAZL{MLtBC zJeSw6iY`N+;Nam(W1lDr#J3D1v2`R}+Q$+V9>|(aN$fe4O3JAmH)F0K2wX9|4?n&) zp=NHBG7BtR4N*aGb^qEs*M)&C2c^Wq#-DdFV%B^dXCm$e0XF{p5`8<>F8gYgROr1V z_y7uQJ_PB!BkE4uf{60sC{dC`GW?%FaC3=4XEd@;8{yuFAU9xYf{w{a(`i-AU$SsqvJV zO@svGqt{s}Dh;5_Yyt%YQAVwD5*v|@zpr=iMtx9A4z!XTv)0G$c$vSBj08VEpYt%m zr3K{q29xI(M2W$dk$cxrXbRwu?j!he@Qqxy`!60@`Y}4EgLUou^T_xYDN5SR$!}jm za#TJeKCL>FF#bhUhI5;zr#YchLFlFrSn|s+0KD+^3VuB$R>XCLMV1rW`rPHfa+=kQ z)C3SJYA8oyzfg)lYC>%WLN#h8PV7#4x{;tTD>uKhmUjLkdPGWaViROy6+QlFD8hjj z5d$g|6l};CQIUd$Ji$gWPV&UM--~dALg&CbPygdMeZrTO-zG5r>0KV}cb*>2vf^)pN~T+IDYIYrl?{I%p4vM1i z_s@{qJU+~%DW$9@lOvi^@+32&B4bc#@lmwIN=9xa(c@^rx?oZ)n9(77xWUdfI7#(& z(j`}iR&l++x)6WH9$SFc|KC67D++w{5rl<7TpX-j3pd{kk&*S+Teb|=tbv&`aa-3O zK75$$>}>k>?Tg;q1#c4}%QE}-@29Y^5R=J7baXV4XD`TNaYbMT1i00?ATfIWa6w}9 z0z5-bUbB*e%|Y&+%XkfM+pbMsv^fYmZ|a|qx}twATJw$VSF(fJGXuX8{uJz4SNplf z^yw}1`X-Ts^$}uq9p8J%Jwmffhe|Dob0z2LhDOLgd5Xr4`-2ZENt>?E-UioR46P#I zvL|8JF;@2Q;m8gRw@eu5=A{*l zj0(X`3ZynfqhsTjKf3zHox~EiblRWa?aPX2G_Agu+eYDRF`;d<^q{qzyqW*+Bp@imOvJeKwt3Bcj$S5RKX zARBYlB*HHm!~aM8f0Y;oC@Ge`CJ39F4lxxaaBleEHKx z6a@xfKa(AQeMYC~nubWdO2R6s(W|_Z$F@n{Z!uL(kT>;FS@Cu?s8>sv?Rt#b#z!Cs zK$%tTH9=^#*FWZ;7QaY*>zhbT&0^=7{#0jv)PPzL@KqG1QYCt&3O2?L#IDjJC^B}H zmV85S1wm-Cm0?lWG*~9Ibk7?V8q{=E1y7-tom`T#k|k}gA-*7)n36PXYCRjpi*Tyc z+&S@GB$XOLmQe(O0Y|nmYR_r{%Zu6DvJ+;Vk)QgFW>C@=1{~eS%WJms z5rk@^lhxGnJQzy3vOJ18b9MuqadKeJ%L3MStF zHWrJGQe5BR$AFeEd`U+Hy1)4Ym*}-z^!6mwU$2DMCqke0P*4KJ*0XJ$XOu96(IIYFzcIq1wHgvno3Ueoa$IG%&DHw_j| zsx|u0W5{xyn|nbJP$EL$xOcWhW#2~V^*%zu-9YX0vtZi;fk7xIz3QS-5Hu=QJv5yc z7meYC0iQKoL8rlXRkvmz$7|bf;o|7M+}eJ*SL;+k5a`@rVf9bVGoDz%mz(j0s-N$( zOQL4_MwbbVBUeK$YCrq=?F?(P6hTgO9ZJt4$LkI$#5efjHS1-@%jT+_3qijjrQ~iHQ^z7P4c<4*K-z<8nT1j5f3^yMEN(ukl4uq-)o%WMyTMk&(fXBS-M{ z^~Gc|fx+PVIg6Ye_}~Mt`?`R};{ri=0UklzwzpZ@Y0lh)=L3x;ox-Z{T>ligcNXWP zuIN`OY3TKs9cC0I26QbEY;{O#hz69{*(k@8!0GON)*ScQV>BZFU~OpZ;!ROt&mnj3 z$Zj2SnkBcP$7rIoXl?y9cHDoj-3Q=W#02|6dM-RaAN-6+2R`Sq)ia@r{WQW9#C<(0 z^V)@rHeNM-#sj6-VW)Njv5(-(hrU0MAgTZfNvYj9;XC6O>?1m28`-he^R+`Dvb6^u zh8|+#Lzl4d^YtuSwv1`hrs3=BOY)H{)~!ln$R(BIYT-D*$J)-^ThDGO5*=?HvNCS# zewUV046xF*X}IL3;dRzK*AN^|d@}L~+It*9R!{(QOep3U*ZZ*c>t~2wzMZmG%_or& z;TulZ;CAfIKU{HaRq`4)f^gr42o7wH0O1T-p$L@Q1uQ{jh-w*8rQjP;M(?}#q0-8v zZ;N2dhdoefC43{xi0+w%UzGP!hyNC+s^xT3B-cw_UkEei}exRG+5k*LBf9(B0C zciHQHB&6@?f4vd*T;TsZLFg?sP292ACGVd#mFWGrEf$wCtAEcnJaYGCJUi=q(y|J$ zI-C{xO9cT8f=GK==98{*^!WNI@H?}cZ%P=l7cGj%f!=;z@;f8TTc>T5SD$Yq~e(V5>LJ2N|^pn7)!1q+-ub9WUhd<*~NHlv|b)x5qy^PwkicM|%0I;!bA5ueODE9HE?df9#mliU4!Yq27 z*vn*_jW7THiqb-t^O$5VCUfOHGFQ&S5E4Vw<@XWLzK-bJe*wz#T?=1LV9ihhn^ld~ zqC#(ITJBeGuqDaBppI4+78fEbaB6cj9mX81ckM5Wu$3Z@`-nT3%+#r`aH3-Zs~0{^ zXdT} zz=#0CqQgi(QJG^bDn5!?Kh4Bos@-UwV^QO)JxeH7?!UVBXvt5@++7I@3d&f$;vier zALa1D)11yIq^Pjmm3jb3I&_p9Z@iJPurR*-ZaVSpd|CBZI4{1jfrcQp32(4WL%8|s z_bW)zdmbE)f{axv#h~`9aea+Nb2#yhA3u`u<45w`b6@b7#2Bg@;bV%7X~mC2ZAQ z#_U5I++{0wrNVQI;fc#&WECgOa6gnEA8_5Qf^t~62~Ol99LPW!IvZkx;p=-rQ*FJJ zUI=?mLEqL8VuByH!{D|M?n*O&B*Oy>;fCHYyo0O!H(Q`%6kKse9md}m^jffbA$@Ew zMcKCxIxj>hoeIuc_SC8n6sz}ZhsGjVNW|Z8?wl|@!Tnu-X4bab2sISZJ?yAg&v8hk zKx8Y0%#+PNyni(gy}Oup6R*NIu7Oaz|1jd>VES};<{7ZtVaO2Z)=i{WuU>55zMU;w zw$QCxH~en8$@LLjxDWyxSPRNBJpQ;V%I~9(nl!$MhzKGgBG|ZbBkAesw5v@wH7v}f zvHDXpvDg>TATCIZo(KFdNQ`Rkd>kP=@BEN3&4lwU%PFeh+WTDcQU5qh0cbk(Lp1m! z*zF*SC|WI!lzqr2n<+Hgpu*6%c4;b4;C7EiHA3f+;M|6g_YFwJuCuyWl)$l|?u2q= zGgyjhuiuou8-q42z|Xh&qJdPtIDBJpYC#qpfQVYsp()Env}Tc>X`)5{iEdSr*UhDM zi{jebs|Q|hoB~@Q_?|xrm+Ejhz~nm$yWLJ)bQoJMzl6{QKOnq61^TpOfpVPNm%Qp$ zXYQ4ca(55+$O>7}aa3~hwe@q>l>J1B)Z!-!KUob^o1v>bzKk#~w1 zMy}eALcxL+C%%f7P(_2EBLk%l;<3EQNczzj5_%nNOnSWrasTa~v1HK>ZoKhE!o$OP z_uY3HHnJmM{rsT&b&C-sYdZ3_Qpie*Fe4!V9WikqK@3yueDL^FeEjZmXbS`aTcF3# z?mRWOwm5{QA>cp?aX4>he}>{$4M&UqxJvizAxTF<&conBE}LsrXnjU$@8VO z$|2!jc>atS4M7kEI&_I3x^*B{n-fI=jatNRcCvfRDay;5FOSttcLg$Vgm*GlR=a>+ z_D-G(ps+|FQ14w%y>gr8Ok`T)AS)2iYAlMPaOEYvSTgU4+6$JLL90d>KMSHmP~NWM zE-dJQY_YDq$>HBL|_fzE;FRPK2~(RMH9po%z^xYVKJ3JwNril38OOMzWM~YRS74AKK(5JqjR*D*Re? zBznwa7(#09c{)WJ=-UFEQV}Q$8jXoOv!2yQt&~{nC)WqX`;r*q#AYu;6hyQdUrrQ? ztW7S(DK|W)?3^|NfS?|i5_kRMHO{w)FD5j?yJxvJbTGycZjHuV;(Bn60TOxITn?I3 zk*lniW0P7kFww!c!fA322eb0If%Lg=F9{=0HrrSLv=%F}N=2x@nvQ``>VPaWIIG+` zLs2RE(sBx8YdVt&K%zew@`|trnD9T6M%b1l6qQKE$X=MELmD+6KV2|tpNxaKfXCF0}fLwJiYP98dm(@{y}&RF;i9s9Sh(f*BX$JdDT14!(a zz)Oo})H)`$pwKtGyh#qF$B$)m@2#JbbReVRoG6O?@besg`EdlV%~{^~#v6$vhfXuJ z_X_~Dj0<7&0hd#YRx}W-i#_N4SA{40X+?oOdy={9&bK&x;21VZ@;ENuPZTKd^+i?e zlG9X1b%Ku3aPJV%o$-|VawEcwUjUe5x$bS9h;G_TFDGWkf|} zqLNzxr<&j}tJWj59{|Q|1lu=Y-3Q1hnzrEk0?LlHU~fj!?$0C$GD6>$HBLP?e;m*B znTI|nzxn#}5JGqy+Jq4ZW(B(<@ZI)EHg0$FV7vLW3CL))!KWxsVa0b1m-}BsaE}B= z@A%}O9>#frqQI_Quy`@_>Rlk9QEVpw(`Y{As2eW6D`y$uR*G8+D#*u?f zk2d^glBk^>_w*UxRuBrqdiEoyMLRTKyg=Z%-Vk&(3*Jp|tJf(kjtSjH)o4!?Y_wCu z%$X9;FVrGMM3Vc}^O!m$;4ex*r4dC@WU7*bg5XQ4HiEZ=A6P8>g|muwMl=!3QcY%{ zBM7}zbJHVune(b4OnT%}mMq%A4?q0CvSrJ7@4fd}z2YFpj%1P0w$czH%2_1Za`;4y zpimWq9Tg%1{&F5VX(u*EDT}_{>?+&|SnB$9I zBsL)73NCp>|Clnm+<2IM-?yXWw9kJ!l2Fvve6AHqKvJuD^UC}AHu+wb=8fjj;8!^j z-jbe6_i|H)fep6|=Fr9$$v6>%;#ke$kEhV(sc-**D`*GmMg*#Y2dzD*0qqw*rrrg&bts<~>t!KGR8-lsmjzRFwV6D?A2xha_b8wMl zz$kb}8i^_gdb#mrSD{6RPN&0awUTrs70h+y&ryT$;0Fks4x-#J$i19KK(IBz;HB{e zN6q>h7fi;~V={^YWAA&N{H^cQC{rZsG2$I5D~U43Ivi&jgaE}>AN(}l^<8Y&Vbpkc z&q`&r*UyP0Di|6db_{9=h{m?1-;`PUM{z}-R6&3N{R6r8p;&T)PH@!bdRBAWrr}h=7^8%LJhv5WZY8ow7gJJ-f1 zgtKbvbCi`?n0VV~tX^>tSsu*w*A%nh+f9vb*Be|n>aB|3e_K=OXk(KsIAsTFv2oIv zRiEL;!jn3J0NuN{VeV%SF>l@)Hf`QddU_TG1tmyQ{j0z-1@^xD3f-qZ4Bca4#X*E+ z2T&5iVN_>Vp%EQWlCxpqW|B$3p&X^g9hfz?@~ zw^~7~ZL;HXb3+hZ#9+^!@ZERt&_g1ZUfP|Ypl$3uc#wV%Kis$mn}Hn6$;lx(Ihp9_ z=z7V)3pl^{cRjfm@UMip=MaLo6L}-il=<~+-G7Rrt1bWFd4(XNyW}?1-+qPo$`kJ7 zAb`_}_~Sg(e=b4Y@uDVoC;HXQKiFiHX2Rh$DEn8S>|YMYH-WkNa-Mig3|7=_Bmq&^ zy4)Vxjg!6~aa#R$HF6L@ra<)*>Bc$iO6lNsrfd70Mz1%#B?c?%YMMp_H>GcfL*lj9 zJ_kUj)$-}`WpsM(IRYoY0{JD#Pv6XrtYdEVpBZ=yDzOeJxr|)I#j8=}6r$aiO!P0S z@E6OWnlY)Wyr?Lc*sRktNSw$I!ZJ5<5Fmpr#tYA~P;(ertZAe%`nuXKFZOB7ZD?$Y2G!Z#h@iop-lea3u`#%zubVfS;lvHZ{32(s)(4gzS4%SpLm2)1B9 z!q@NTSj>1l@YLJ75%zWY(tUz#hCXZL{ z1cxl}R@y|7a<3u;$D3FCd;=j2e5M{g~ z2f>vy?B4*DO5ozl6S;ljB9^THku{^syg_M+_iIT}6tFp) z;MdrM#i3p;;gB1@WeU*Sh=~jaAU&(7-m=O|PAO&BPP5uH}6G$0h~5P@ zx0$%}V|KM2O4e1^GwG3E-N-=zv)RG?uXb|##6@%;)QZsXnug07P!u9dPa`O@XNGDI zFm=nDbj&`8-t3+9Z9u-2Kf90M*IuJI9Tb7~46zqnTENslJ|RJ8WYpLv_ zR#iS6vfWC-&SmVGaTSMWk7LW0xqQ0nV>faTASEZ2#}`iKx6Lz|IKa0?e!R=t`|{qB zS*+Z<-tD`qC<qb_+2O{tljejN~<65U?Cqdw+d}^>YV*woi;aazh2j?YBCx4>gNZU{MewBWiCMxPvEWN?AdWwM^;t=4^RDoE?w^; zD0nn#%?Jc>7`=Mm&xarV!0z2i`Sbei|yc7@XKRx z=w+1mZgCNHX$A1=AMnL`n0XClv+qFNHq<>ENSPHrT;eZ-YJo`?2 z3Zcw~?$7-gzTb|RTUz71CgEbl>5JSS_QEpsZ!O{d0}oLmM)T~?xA5}T@%)+67sFqpqegTkG2Tt(t%Ee;F0mt@~Li?wBcj z!sY5uiMG2F+Gp4AlGFX!@p*GO)@yqp#d*I`n)Jv>)~r0pym|AOH*X%l{`xCFe6^V; zr;jEe&@)2vy9H;wf4cy?T)&REaTubi;SEKLUpG-66-+_5c#ry0G-@P`8p)_5uV*58 zJrW4nRY~yr9Y0N{w-*6W)V>96=l)K4Y#60+k;p0)hwr(9c5{~!a4?m%Up0v4whjka-{S3!WG7qurjB?Ft?!Q-!f&+AW(tG%$V5pEh% z^SERMK@D}}#cdE`-CMm6XWYyeKW)Hfck;-rADMK^Ft_u1m3O)Lz;*5APCfpjcadh2 z;{88NCwf0_liG?yGNSP!`dssr^C+gU=&Pr){CP^n&R2*MYQp6I9VDG$I>!ksGfnF&5ko+^By?=t~&cg&?;}@vQ=@(p2O=kc_yk|($} z=p7cU8kd3F-&#b8&aXmpbi~osoNRwRuZ)@MRwp6zIPKGqlIIu9wl+Q3(7qod_pagZ z%oEJI{C<8(-A~@O-;pe?Z(w;*K0iPI1uaG=a>|%ZZP;>bGqUm=SN45@Uk_A%J3|Z> z_ME6+ChPN+3wiKL1MR~5aX7o?^AuEN3s!o37ooi`t5HT#1WJo^1O(e?xAOpbkzwRT zh1J_{ZHRD0vV28NLv>Yr_(3s`>H}$UX$YrmdDul*K_0`TU`9r2SkmZT&kypgP#7Q0 z+OMBx&>gdh|LQNw651eXHK^v#3>ptVsSS|?PtP2Kxy;TNpRB=dbJDrx-X$bu+r8 zUD8ZZR-u8And>>5>n%#HkW~r^&6CE!;Z(8tNIXti#h#QF+&O$b0O}ZDoEc@{fh@Eq zPy&qDF71eBe@3m5mWtB>b=aeXvH-5PC3EeEy~#`Zo$V)LnX=|#Oj--ErW_`BTZB+h zj`~C%ijNj&hf3LO-#~#@?G#dyn&mS7GsxL=kkrNNX?0zFV(g8;wb#P2V-1)4hoMrz zrI$i*u$tFj@5nv(oT6pRno_#w5}~1?1)LjPh#;%f5p^R*VM04Lr{4ASJ9OF8@qh!-i=eR``g6f~~BN;ew3ilhU^xWZoOh%?asA)XUI2w&0DEI|ek&IIm%y(UkcFPH{d2h(< ze{mu`ddFe4TG_vUKV7{0z4v+m)K zb?=fo=HiA61L{&UgKvI`F{$Uy)}t>RQ-D`JkH!c>yI1dOrm>G0?RIzIA6vycCLLH?)Z#G3(uAwKNhd)lM2U;nU&R*At)?z5x` z5rhB^$$Mj$TGg~r8k_9hTzKn*$rVQ1x4u|O`$11qdZZCKcmx5|Mz8t?8jReUGxIh8 z98QVxkALQN&YQf8RbiF9j{;ORL5$Z|<-Po+AV8_zdxZ>dBM1QmrRFt{zVae=Z=b{R zrLWdW4g$1k>l*W_t+VUzLlDvFdiga5bfo4ta;Tcjp{X z6nbRtV#JA+yuJJ(MkW7AkR_i-e)||7Yo&9UAj@oR)00PTe~Gb=%)_p6-OCkShcfBT z*`&lIFs4lpu9^5Qou64m>nPW?D8Q*-j}n<#x760QSR7eMP}?aCr+n?B+1Bf$cB?n#o*M5BG&LhOc-rzU0{Sqe2)uv^&qwxSiy^ zb5Tl`;;^qIw`3{Xw|&g}?@!^z8;3MV4!SNbuy!Y(GsNHF<3ZeTWwo5<0Y-RW7#Plh z(o-`)P^nxb;kkyd9^so^E~2!F$SW~1jC1}* zw{)M2#Pt$Vd>Gbix+6!_oLiiyb|T->zwXKoC#t7^CHSIi7}{bN9}a(u*%yC|zpjku zH%wsKFSqf4x##yl_BG3_%XyZ81OH;5v%ZQDF;od@*l1hD~jt|+^68Q~ZbS*J5k)AQbWQdd+V6nXYRRob*iE-S3ROauLjCJjOz2GZuZ-hU;G z4HJZ(Y(6Bxvz#JjB_>jiyUSLbD}u1jan}<)*p$syLy#niEn8hKY;kdsY&^CQe%%BQ zyaS*A0mbDovL`#D-0Ss_cJ*|*ajQ`iq?iDALy)<|hp?8_q+taCCBTT~roJBCkGdcT0+SvY z$z3K)kx{>X(?%~um18ZryCL{%pE{`LsM>cAmOy4#)HtM<>3x`F8)29Ac zO1YE<`t$mSGa4+Xsx1ehQ>07kL99o%@olop2|^GAe0+TH_xGpU&@0L6czum}|3xVO z0|a4NiH-Qy!6Y4ScwVvDCA8Y6d!m;%F@jK1ydQ(E7FpcJ!09DH7###(fBiML-F6!e zhl8V8`Gkyqjy+3f(!Py{+VmX3itqR!)@BpSjiuaxwCWsvG;o+9S?( z?>)`M-D9BsU_J^BLHy9Mj;PsY!sW-7@^$B1k?~3fnuE?GMI8+*<%1#qxE##(y z-%_UW!Q?2XV|Eg=u6c;0n6_NCYdMeq`XPUH9>nacA4CyErY`-M&xYN~W50h$r&CFU zoY^Gr_TY9x%L#81Q_lEhMLdLvCRF1`3@$h)b%_bFVHZcU2irX z-d^u@$+C>aS^yYoJ>Tli*E#f#D;L<|1v8oc_FR_R;&4_WQHl$7Kq;r%dN1dFSUJIc z6FczE+YRg;6)4J9Aw*R=iJFmI`#KpnxAbo7wj)Y1M|yOi+`suG`hrjA(E3m^Lw{Pq z{HG^U7U0Y2!U&RnO+X)D#gcCzymKybgVGR0h0M4ZUYb9XAMT&UspK@bw${orwx9rX z1x0jz>qmCZyrb4Wt&)|2ni4b^YJR3wD&&o)(T*E{ea}{8N#fmyKV;heDDu2pi+zE=aq3_uj_tCM21sT;9%l} z4_LF}5K@)v>e0J3i&s2cF(=hF&WN}ya#N$&zTJRM2i?0V_*Q$QntQ$d!w+j2cjL^8 zzb8x>#oSLHb&KF^4hVvXVhV+lTAYd$g|4kn^UK=y3?JZGRO-J5VZo47&}`DvbwQco zSq{#9S^IfXpv zQpAWL$g0EkmsgB<+yVv@oQZnBt;2HHxn6euSlyn*MdKJ%EzOOOpFr!53d#GMeb~(k zgW{S?Ekg6CnUyAIaO9KU=rHBlW@*nWq@;i(L7V1D>ChNNN9$3m%bNZBbrvBZFk%FZ z9Sf0>Fnv0V8RN2@cj?lFW5nVE@3qoHfpuIFS77vMQA5QG;{FT`zo>pXWZ&12Px zqQ($M)ytg^g04P!(en~nsmLfk9&E6*TI7eG#j$E(llrYqUi7>Wq4m@~=kOqc&=Y9n z09=`0>Ng_g?0(4YZ?#&YL!10MN}nTWYF=}F@~O>*haUQ%;`d*dyyWu6x@Mq@&^we0 z?<|5gG3@Bz15^^Oy&@awp&sJz`l$x_j6qda%=A|}Ry<&#xiYU#E2PJ6J3o#!ax9^e zAe*M#MYOZ1Mq4_gjr@#Y0>f*bYYtp`Wmh_MissOP4ARolh>wrw`0?X>J#Pc|OdihG zjmHpGBE9>?W3xF}Fn1jzF6&HmY!F|4e#YaxJ@A+7*URr{`ev#&m{Kxn_0u|%ZySj< zJdphE353@{4g$n2T8FBNH(&J1okXwP$;w||#2OKVH6p0uoM>|(Yg8bLIE^~iE|`Wn z#&b!Ty&EIQIuJsyJL(=!b3#-rbi3uydFkt1p|%`^p?SHC-oA*j2P-2Pro1tai0D{$ zD&#Ew}ohZ&G zc<1y)GTY zDa`XeQnNYnb>~}=g__^wHCx|hVfHRi6x4tQ@O6|k6?ih^C_Pg4lj|4E=pD+d( zsfPaU67OODQEbhsT+ggMUdn@4P9Z7%K?=%>>b*9xjvS%@hVVFA-}VA07ETA?<;Ny6 z?xn9dLgo6$VOL=(S7WG$9BK$zwqk}}VWY?2I(F@@|D954lnQcClwp7pRI8#)xAi;d zwR#ILele?A3BtIf=MShlDK4h-ww3ZQG*Rww+@WMv+>N)0wq+JD&y(;m!h6&FfXEurJzzxMU&n zW4D8%u=THPsO)MaZR7qgw?26@w>)t(zkR-xzkggumw}zQ>4|aZboEDzl{!Q$P60!e zZ%b82Pm9IQOV2Fkr|-7m>+3^7elg?k9>k1S$JX2K4}Uz^sPV5^d5|f0e@T8`rK*a> zTt=@Bce|DI^E2}8Zx7PFSHr}%S}PHmkVc5M6@sEgrE=vXyyu>eSiJb>GlZjpTCFA` zB8ZDG?#yR%AHiTS)VL3|{aqU-OsI_14h-~V(gRo5|GoWt4kBBXowOAGK8ko*JaTe1TdqON-5?z1?`IXNFPMiR> z`X3<(i;7D5_S=@c^;Q-U5w+(uZYr+00!${@zaOr@9ugDbnP=d(+eF&7ZA(;C6gzkB z%RmS?)(MR3vuh7x=(s&Eb(TWeYWL)TE5iNx?vtVfuA!d3X;79 zWoXSD6ct6HS|GhK58L*o;A~nLz35+aBhq}*sf~NC&f5~w*gRfJ+M*1iosZ%^@~WE( zk#Og|oZRA`ORs&K0(82%NX2t>7pi1E_e4Imx$yZHe*)m|Z=zGDDw{(;AL!QszMGER zHin%c?)Rf-V+q1K;8ZH#j|7K>SCxkm5IEdk!|=btF*w?A!w;d9`iTe#Jfqyp9nLNw z*CcQSK|z+!-Axlkkw>4s3V;tj_<+0ax(k4h-&w)NwMQ5;@=eBF`3`2You$9*X2z30 zGN8+JzWQQ4xj7|Z0*V0%y7fz>O_y_{`!1_h6t!=O!_Os^XAkrxw|84g;-e^ukK*LD z?vi1uTBJUT+P5I^;7NKu{TZUwWrWofmosYQD9kO2AC~`3MZ~#f$!sv7N zURn=LYq&x)K&6o@3|0SC2qFm8a&%pEXb1NnTwme(5Ig!owm4&1l=8nt4#K&Y7*(s! z{qo#uagcf_mv>&f61~1|0_w`k+R-{Xfb7hs{}avSN^L1sJVt{N;`Klj1*}f*i8gP$ z76k}2+EJ<1Z2IA8UVQi(z%{3ioba|sl0HrHv3HtjXpPV*AsU_5b#Iog+39x9AvYmv zvkAEXRf0m9!+Xapr{w)Rq!YX+`TR6CoRW7Biy%OW#d}%SxOi7xyH(q0Pw*=S&qRAB zZ(l*~28Iu*+qfAL;=|3?cO&`mxy_61DP&RQ_JZaWrtr=0caxU2)0OWGR{*XVm&U_W zKo?(M`b-$ktUunPTk1h{PCMzrQMAiQ=J8u*@Wz!7VAdJFOn}{~}nc8D>R(|*-S>f}oX5O9nKE2x1 z?JYmD+YoZC^(#6AcDRV>QLc5LBuV@_?PjL^{0<43$1BR5l^Jac{3yZiU53b_(pA--(GqbNI03gLG&hjY(s%cVJJp59`O; ztA{hb-?x-T1<-%WPPa8zOrI=z-MJq}&UlK_?gLzMaB&H7y!-Q;6}ittL=o)8?0N1s z_C0kol26^=BeSEJu(A#O7*aw+9j~5n^=)W0u6NWw*dNKue7b@Fqwl_gx0cW5j^}P` zkQ_Wyi`;55qgCg$jxmoiZ_eM86r0IN&&6V~Gw1!kXdOI-L;EVD*Srn*`t_$Bw2yj( zTdsM(f*d?MpBEKX5*$&{fh=4+iNl$1(Y;q3iUNCgr84F2`P_5M9L8Vw0pqTGk7d8_ zsnLf;E@sf1i_}U5u$m(;uCv*LERZ=k& z7M9Yh_x*^fVfY7(X2$c2Nk3}EzWYo>5V#_}ZkXAy>|}9Sjhif}wO|YYVCm}CJhg8U zPZvGQGf^KhW|o@n7klfd@eiAU!)uviem{sX>8EoZSy&gWb~UT^wP*S6PJFTIVzwNO z=do*+)g%XnnlHJ!g&znY#f9MPR8QnUbHHxJy7e=pdE-$A)b3=abc{wR&a3qtzzY|B z#+J+uJh}dUzDc@-(`ByzhrvgnP3JnRH5$S>aHuR1jGPkO_xkZlCccXIPD{3eQue*_ zbyJ7tJ%$g5!JegfX>R=Vlbz?DJ4ir4z&Yzft%f(>gxhZiUtc(S)b;ySSHa1Xpw;@) zwrzXz^77ccc{2`2GfBQ)K%;RXg75}%;e)%->7j8LBSX-bj3}~yRGuLIc^CG{v2oOG-6k3<`)M9_F| zw5bZwo`-*a1p46l*i>0Kg?tq3h>9K!;bLw}HBq>mRr6Hg>61#hX<;%BWJwyIH_uOr@7y5lON8k9AvSIG| zk$OgXK@chm{Im}Ij4-4dXf-(HN)KtZoXf5DRt(dA&oLp33^5NYHheJ9f^g#HV8R?} zh;n+3rVFwHu$Jp-(LS}tx#q;EE4$LAdkgmMK1Ehm7SYksWMpJ;+jXu;OsmB~#;JT# zj#o+vKKtnRu3x$UXY9da?zxO}6_aa@4Z|E;`Jq(QDh@n0j)M=6C3x2{v_+*v{Jj@_ zK}nr$_$6o1WBNQqNhWCD3Cg2GC{B#Qcsd_JQ7Ek@73&F>ElgzWwC(IJfwF8PhnL3V z7g>fe*n+K0OZ>3^m~2lopuI7QaC;yn`A%$B8BrAQ2~eT(m)K!Df$fZ2sY)y1v{Y{V z)@=KzLae4!p8?!)`xqP!2YQ_zqmPM01u`2_YL_hkuR)OIW_?psDuM17MH3jUrNmNB zxz&nMug9b_P@XHZdt(N6d-LapIB_(euo4^dKfaE`$$9*-{0N!ZrKnUQ{d%`x)bIp~ zvddVztTI&p{Hqfe^ z+o%Qa+s<^dvP+4K@Z+*e66x9@oaH|q{HJWVZt%60 zVAdFs&gAKmB#9O4p2vBHRyXJa2@gudVlBdIFQd$ogCsfFUs}pr-0 zpePF2b_a_;m`q@3fJc3o+w;*BEaMyhUZe^kd~fmLs6&MV7@%`7!BEOIY84JU6y_E( z=h@HbKe8`ms3}$z(RWPG3MtKo;LZLj$D$$D+zQ~cRcQ6{YjqX!X z;F?QbXZz+#!dg@bTzf-bGE$4#yvdbLqI36_eEstzLPGs2>Inked&^vwF4&z-J-qDGO>xsiqjaXhAC*FiL*-log^jr_n@rq((t7 z=uvzOP+rAha%cid_j63H)q@ZJ9D$GCO53O``XroS!muj2T~%6y_`#r*yBx3722lH> zxv0+~S<|bM3XR zpP4h^kw@V7-(l%eShEJ+e;>a7I-G|d3M4pqJ6pGIrALn*7>!NH!F~Z=K~R)`!}9)r z8y!1#q_E7v^iTf!r-#xgh|AWZd4E0t8b2R~eEl3j?Gn*wd}@@HBpVqUx3X^h%m3~? za_0aMEnv{-#$WL{yH8p@s`$=`zQHI?2Xaw1a_Zsc(+be3F!YaVxSS`5Y=;mXfsp$O z*sDkH2q+=Zu%5DiNon?r-MTOBQnL-gy;&NBIVmG4;pBcbHQM5!XR<2yFTQV#CO^9OLZ0 zmBk=qrZyQMUKT#dxvAFSf$Cx66X zF!0br5Ao`&uezQ8`sWAPu=X$?zq7LPpbF>*Y=qWr!g%@Hr?H3zO#U^$@m@hu=st4+ z`yag?r*GX0JY!l8Bd(o+uCU<R%ErB;!+>}{<$?ymBcR}cBadXNp!n8siItQnlFkh5YV!2((-=^8d1eieMi3f z>KMN)KVIW}OoT5lKGlzmz)VhA3;6QN>#&uaHDu2P?gc=lGa&W3rbhjdeYG@ z{*+(VxFUHrEqIiET`Si+xpqH7wccNMxvckEqV%*qgeYT?S9OaW2K@BiM*^0Le)xJR zQJQHBBGS*ZeACsDW$`CG$UD#JVv7d_-9jGu@}2U(>82eQl*TN-{2j4NJc{TlbRvLK4| zczH#Y0}9>xxA1=2PW=9fo&)c7@B8okaskY;xu34 zhu7`oWz8#M!L^eBi0#*v*A_gEN`#HSZ|2>HT{5MjN@UpegSl(w9gT|06%h$AL?EaG z5Cj#H?KDNU0@9Mxd1Ta+b=HeXh~~jJ?@-Bx=iQf372!CN+oi~y@Pr2jd6VO$(l+>MGqm0uKX5Nb1yzU z^BN{UHmagOe|031)fc-RHgDd{m}{q3MCofZYW)3u$;)%irDMkq;@GhaPMRY{yeI4RFJPyr%29y`xj!B3 z*W;Ie48eK+9Ql;uQb_)HIAZ3Nn0RE~O)Pk5Zms8qc9+7Q=Ml=P*sBB;O57NT9gUK_ z4rf6gj_uj!e5|_P_o7b8L(!@+PZ$6?En;+Q#L%{&$jI48ku#4Ylv+_tI+tv#hmm}C zNzL}GcKo=xE2lH{M3PGw$BE-GYQb|`;=qL;a`@|beQOYr%rV;Zrn~R77Gy(5hNre(4|Wk01h5JcwWZ#{}~q|2rr;ch}&IWcUpfRE?xE} z{?T#O?cWtpsdPm2>rPPjHWchmuD#H|49yj}S6}|Y`s$vu2spbHDQSC+40p{%NQ%Bq zm#P6Eq8&nLDMH4~ItnNVd7nV|G!&n3C~y3NtJ&_gv3c?j%DOO$g3CFrt~*+wNcB5T zt;m6+m$)78)*+vwu=cFiJ%^Lp4Nql43LCXE7#uPk-<;h|AF#S{UhGZHPgq=BM(Qco zMsoPDp6(}4WxF;`ZC##CJM``b%U+Rfz3VhA5RQKhF`=MQBP*_46##-@VyzZ#6&^vU z!>jTSVIwEV;AhPv_&eOceSr~$q#ubT`(zm5t#WFu-&CZZ%IB5ozmR+|1C1bHu~^8< z%OgBIob2q%cgA9|SL(T+O@Y}3IFokoL~;%{^?n$YTE&}xzDkrA(RgPeIGnWjeKWzk zlZp9bD`hRiIW}Qbtz~_WpT_R*gSyN!kISuZ-cQW3?ZhnK&c-=YDQn}>cTT=z6r#;R z(C%cyH|!_%+CjCC%_%YT%IVA-GL1j&7jgByhY&-{*u5tZQSCm#`N#gdbTLJzgx+ky zVltwf18x2xh7L@9Vk2p%YrpRFtWqXCypoS!9Y$%m6_rLpP{}A91L;0jAwfXud3mk% zS8UzG-eW1udiZ`m-16^`rt=oEsySv;7Y2=P$z3nJOHoPf-}QY*PIBwhZ!!PHhgiSZ zhPnLQ$gY%@*x0kJrqfDwl$ACukD#*&l9gIb)B2Va@827P+5t`Qv#Opyao(&u7;@Vi z$cnTWCJiuIw~Y_ilnGed7Hz~q4Am^Y*G$Gl?`vD-~0^@>`o0@Z*mx_1zN;uxY#+7)YDs$ z6^XqE7Sk^7D$-Mnyc*B>z}|>%6~E^drc{uFCSynqau7feRNQpk^UVFqMbfMVVgMht zmdhLtGOv1&%?Z6}o0&|R&WDiFe0I0&MAuV?$ny>67- zxB*yv=2-F3?d*H;8oE6BEhe=ZbSki&eSH*xk|G^} zAznVuXW*;RleNpA#fx2X`bU%9+eX}<1Fr1Po^|_JyLdgaB=gsIYgqOD8rt=2%Of97!9TcW?(*u8ktwj8 z22NKTE6Ob4-6z?G${&dD&^)C6ju63YVEz+ZR9Jk(iag93lK~dn^OWv&@2O}Z_*nZ??R4Nt6k7YNC z91IEdTG!w;NRoubB4Du$BR~IVQc^sBNhdyV7lG49A~Z&l-k_^N z4$hq$$~j(`>Is4gx4-iJQpL@1RfEG{SR5L`M@Gk{Sa) z6BrF({^!yzI3*FYO^Z_!>C&>ER1H+CJlO4U z_uWub+09D8^xrz*1hBJse^-tGH4xYtf;Uveza(Y!euJf^>);cN9^FL<<;l{N` z_~pm#ZpT)xT*&VQ^WX6mctX;bnNs`eU&dB6;2QC7Pz+3L^NlpnLzsAcsME)Y*qE z&=*;wrp0fY5G9#`cfZNz_a>7$!bK*_S~Wfyxtt!}qs}%ImB_o@XHwifkvm52K&z9< zu|WLLQ>1NkJqKAuM>v%67Y@ma!)e8&4`xV*iH*J|&54oU{!WiITZv4~;I})+^4GZ9 zNjPs2s5P=IU>8Dn6+EB(LTHr zN!i{-*!&yNTsa8CB7E6)KUe2r4Cdfg(642?i*lc!Ye(*bGn-24OyBK)xrdldXpwfY4gAy~$ z`T=I$QGb6nCp`EGOuHUNMbuhEk|c)R{hn)hz|Lmx z;H7KXq}C#8bg1+`sD1p={_+lXhaGcK4pN7U(E5jx?H|g{xUP)czqUsED&Pk})E=N%yX~z-n={t$g=n(Fjc?Ug)bZfBv3Mg>@kOw`=ISXJev+&IuKk&;ZzwyDE zw=o5pnkCgko<&V-KO1!|VLEh5ybDy%kAztp>C@Eq;Cm!o!1T6CX{_UWs(<(2`@x85}u$ ziqzB`GP6oaOY4syEXQhfAW1Stqn?FZSjQZ=1CgnZfFe6F zXVjexx1t>X9&)d-W2#<8qlLgw&qmXn{d!XOT-~dN2ttppDWU@uFZ6IU;(3w8ulIg6 zKoEK)^`Z%-NaLw2h)hU`o#6vcF?@h))1Md79_-MP2`nuAeg)y)=W-Kg&?s0?X0`*rn!)s*w~2La~LQYd;`z%W?XzYRTV2 z8}>Xa6Wk?T&82$Ml3F0DWMbOZWj#} zs3X0meMU)}XbwC+u0}mstEMC&8buTkolXk6#uJc~is_U)p}OIdsaPU{DC!hP=CJMr z96U*G-}bcr;qMB95J4dIy4oWL&*GOk9kI7iam~nsXmzfMO;#YLPZrU=&ln1Ag(PQh zs;CoSY$i$NCg88@N0Hnqk=*ETN~^yc&43tvAYX0pY=f>V%xCZ;Z(;1&o_Sjipg7NL z0;AhOKd)^|d~hA|*&OXo zJCf6mWGTg7n1wn02pa*8Y=vLnuV`azOj{Or8pMbLm61qU{-LCVwIDMfoO$2RVpH4R zJeillv6Owtl9NMkj3;s8yO>&ZXtwKb_t0Dp&bl5)xl38&P_C8eYL8Dzp$=%8Dng0f zN}F~nme-;F-=~Lz7BMov&eaf;B@=dyFF6*^`_u>6=zITewtv=@#7k2M>yTfgj3~=! zEjB_eIXKR)X{#W8djvTLLm2c#!}-~|uHQjHTBY-8xyFQ~z*&KS;nxpg`1M0LzCVTc z9{GsOGtpzY8F{>V_Zz4+YI+Rq#-!=v>G9J#j^8w#e5b(sk9|y7i%>4Ux<74uSCZgW z4V<%oeTn1yPq604bsXP!qJ})>S(wW#+}-y9W_~xFwms^}T~`OH@3WkWK%q@Vu)cm{ zYfKC8oC5^GMZ*04>t7XrZ#h^=){h!E3yayEI2d_F7iPWf!JJkFz52H1RMCelS+t#( zp81)K^!f?tz`y{0`|ULbT-5k`c>K7YH{NK$#~)XB1FZ!Qe*o_-hG*Y|GKH+17)fo_L>}Vn1R-3Q(&&T+<2$(D(qXKvTbgqYlY+ z$qKt(MC>#L)rrMO&6$f(qe2NVB3m4u8}_tnEO!h*D6^qHl7$k~`1BzOUEtUruvIZ} z1PXZ!z?H5_4we&~lV==e)vbH1gt$`MmU!n%=z+Gi6F^kMrWzfWrZU2g5htK&w^_ z7Qf{d_~;|pyt(q2qQHg?BEyHr5*%#gLOR0pg9`-V1=I?0yGw2;sB1hr{{W9Xw#%|J zIrZD7I?sDTST#g0HN~`ZF4_%=tk*H3L7c1WIcIGPbxVvkijdSB5F8$oUH)U?NX>j$ z&5e4;ZKyq@y-|^Kf(psQ{6$8kD=Mq|!cxLhk8lB#90t@agW?&Xd2Yh^>$+#3ef9^^ znYIq=~xuHWw%g+Zgk&`jf%6ep?^xrjL>PW zC&RFm8Ic?+)LIAe=Q#hMUaw*8uIG8^p7|_Uv;(`{&RcK2Mc1xf2@4CW$eAKJCG`3; z*K&3bmI9nf+ZYsV;-L>7Cb5Tiy7TE(7SRW%R?2#{fB$DTzdr?SaT#4-`ikW7BPnkY zR$1?ge&`BI(PtO3u-EkD3Q`z_*%OHIHK8%?K6n1Py=FskhZ9YiEn%!)E_d%l8 z?54+z`5dVx#Zwm)1=cKTjbD(BVK=ycPoy)p=d;hGrW!f!keVT%XA>c-)tu;j?&MBN zWDD_e{%qaXfP9jo5T%r}=C!xE@xl9Wo_S|G^%+QNU?Qa+$OJ`&1W{)H=ZUVSKxrn4 z(X5OT`gCl|%8j0pgc`N?@|?|uvXUkegiZ0t6$GqK4JNI35mIWgX=As`8oVW(v|>%; z*O0z#NnY_1@s~UUz}(#8x(PznnK@1r!QkPBz4w{#xwH0f*oK`)0f-9q=b3wImw^Vb z%3A#J&Vr+9M9!M(PzeepPCb4a@9w$MgnzeD^!~fA5*3PUIs)|Gl6>C3BkCq7N5m&+ z2?~fIJ=-NwzjWOT4DItU0e;QvBvWW;zQ{y_!%Wxgz5KZEO8^7}`gFOifm$y3l-MW? z52E$Br+}xhmlTk({Bvws$C1n>IBn&~4m+~stPG8+g3|OOJR&-Iqw`=orXRs*w=i?; z<7{u^QZX2OXd}~peutm^LmAWia*l2P14U6d^6?bnZhnrS&UL=+je<(0qT{1qv+w0G z$dZ$+{hP>r;Tk$TG#9OZC;$$-3Uj#{qmTFRW45J);g_oTJABS}e}uY&;(?O^Bp&e+Q|#Po3|LyAI!cwzpl6bA>QRLQC3w5izfMQ4KI zin;jlhRMM;dk-_}>t9I+9<$g;xZ zM@BLA=}J`#QB=6$);_%V#;+&}96Ovt$1XAaws;2z_qjWwg@*Yv|Az;>9?R8Zdvo>J z-q`JSKKt-*>~<$1A$}yrwk0w$i0J4LA|iqsl|QmN-hDTg*I)P04l!{w>`8`oE;|~s z3|CHrN!LKD2x!;BMHW{32gx#Q*x=9Bt$yU^YbtC@YPG_1&z-C+XbSb7AOr%+1;W(5 z$q~2LS;j&RWm+qSI!iP!DxwI}8hKs$W`wubqC7JKVgfv>aw0p7F#i&K^mgL(4F@$; zg_61*dcA-+;r*XfTadpj}Uey>ifHDW1HVee~DCku#=d(k$2k^T$5Z?LH ztMQ!+7_bpaF*~08l;}%)AvWRL@n1ye&aup&Z(-If3sa}2@%rnL7#qvX*=(-8N`5|c z?hI?zK(G28ECc~&&xS#@_<7rGaQZX^1T=0K7vLQ(5QG;{6N-ZBO#Z>rluR7uWoUKv zM=V$^h3tN5K8myM1*f->a{p#{DlhuK0>MXvP)CwuPyTlm1aN)^O6+h1+voL{H+Dy{ zwgAhyCkX3=URy(I(<@0$M*)6PKZ?Z_^%fH`5^28&b?F|r<33Ik8l4FTW%br?FOA3V zjAT;vO=6?Q-G~T6PtZ``ug-SmqtIwnTzO^xx*Pg?54`nb<=+iR^EDQd;>6j#1-biQ zBvYG!QS}t14amAas9aA#x}D=GZ4gy5KK^BhDus~f^OI*yt5x&S{JZFXaU#z@`6J7g zEu%}9F3g`lzrrh75ClxVXSRE0U?Z>!kfC$87R>o(BI()|%|5oI2gkVjmle`3@9SpJ zISWH(0ZEguL9{uD{e3fj$r-Hr`9)eST1)nTPV{{43w%>D={NNw3OdKpbNYNvjv2_d z*C%?MyKu>z4z%uEK$ihEH=t5AyPrn&?;{A$HBOZkFy`v6eE<6qr0O@M3dR@jWS3{o68}~-R|H{Ufrb995(y6p zAUm(9-m;?xb|*LWpUcy77G-5kBiWjoKGQCFzggFK>M33aoQn5-8`QOvnsG59XfM>XeO}KH++Sd(6gO1WNGd4&4q(M_;VVgp<0azrB*94(T@ZJb+QroagMzkvL z+ORs*;3YvQ))DdP34AnGpk`#1CkP4>7|?4hNhg-!a5yL}&*IlLPodZOGoaf&L`QV- zdR*rUF(v7AIQkof4i|wP6WK6nKEM@F}^(ORTEon7w8a`2NC@Iu7i68_xs6W6v?{(q9 zNj2BETX(AI*v^$hGro<6Qlb9+N?i~{=y>f>*1p;oOOc+0ktf~G7lj48{cSg^`Dw!C zT=DiQ{GvSD6C`(S$LvpDpd>Q~*15=%!jtLb7@}(sgy7n{nEXvVGvAfF@~`h#^TRuf zDatJZTrQap`^(=ZJidOCprJipfmMZ5ZoE?Esgrr!ebZbH>`Qe!{`$+mvSIBpep+7X z-1+$QOL_lI7eRRY*pJz;`wgbv=e|BvsYEvJf4*^pr~_K9mItPetoS=n8--p~e-yDN zNK4ZZ9c{y8^6;D7t_6(0w2~kMkYra>;aU7J1ID^L2mJYGFvpMUx%S#z;^XU{GX=F4 z<*qN`t^wdhG^DQNC|z|ovE5KYk#MBWa#Agd2j>*Q0dP9EcF%*lkQj#q_h%4x*ObYvfNVuHX%T~T$OY$KruAGSzB3%z4OS0)#MFXB0tZRp zAX2$V^6$5BGW-Tgj_F7#6}Tc+W^aK=xf3)3TxOH$)4TP#zlcU4gCIl{q=P3({&EG0 zch;1#{$Gc|VBq=Z+i=f4seJqGaVAXYi0J9&t)v7ly%buugv?BEIw35q;d;Qu7sH)* z!WUmOVel8wWHfP`egXfB5Yn>{vRn)QvQs(aA3Ekrs8DNRFc)XB_tp8FTC$;@Mg{y5 zV+iaNhcPOo`3LMuVQ}Yj=-Lojg>7W{fV(9ETpa};zx?$WVbQ^Lw(Sj!X*sm}XbHj@!?QI!kb)iwn4@cc{|`Jq4#}Xy5ny8b zYxl8z_Pqd{96K0GWH1}%Jc>Cgm{V8wBXZq7w!U>g2Oqhf?29{-aao^w$00cdmMu&q zDBMyjIS36CgigsysNRIG870v?frvna!H;NT0RGx@>&vSEd&Luc`QAtZ{p)`BeI`#J zA~b};Gm(O(*tWE}=S|WIt(57)d3wSPsOoScF&Xr{`^delOm!g1O@CMaNi-Kh2(bF6 z6MQu7e!8`91weqG51kTQ&?&J6dYx;|9oDZ4cU*cYyEl6ld4Db;Ilj!KBjX9} za|NBB{2D>!B4V@Feb2BtQ~CJwC;0n?Yj|Vf42D=TcxSXMy@`nMD##tq}s%^&c^&QItwvR92 z>y?OquwSk1$6QTe;``qo z!esJ(Z7T{!)Ita%HRm?7vw57*-g_^GNs}@fS82j1*zpO>xE*?)`HuSgz;ol_qlckd z6sXfFuxwcnBS#iiAqUlf38-Z~E{pKwk6`sqPui5bi@xP|ktmHrsKvmiB@mOdX3qF? z2|=ZT&_?E=Qxvc|p`bSAN&r&?_(i+rMHdAHUqcht1$jqN%A6<{&jFv9n&(9gXkGhh z-R9$HS0{Pj*S`d6wLp6h)OD*vCCIcsw2-I)b|=U}_l-fFg)Ug6qB5J$)XI^5%EUEGvVeqGoTl zSs{udFTLc;-+%k@#v4a#%3yEa43}RHd#fqnq^HA{E%5#KP+AIBD}4B&$Nhfvk&9ov zfPW5xqBMg=^#bZe$BrE-EORjZlR8BE|7B2p_C4yKmsR|&_R-V-{f7zb-3gtaKcZTL z(`vz5R7hb`3fmt42umFXegAeX=<)2`m?9$4ihh8IBG|E73OMlT51jgCeMQ;k$W3@Y z>uR)c^<7jfj?Y)W|72Zl=Mcmoz1K;5-TD?a(C2ytO$k`{A=uMV5W%MpXcAD8_d>>= zy2l;U86heZR2iTo0~QcFgWL+`Xc82hs=IDu&>|8-0=>WHYEgWWF&3Mji4yg0tYQiZ zPJHA}_(<*1nL%BW42rYXx`;+ff)gp!oF-Gf6T47?j~q$3)P(>?2tI`;5u8PJ_T4B% zcd0Obc!S3F-LmB^oJw=a8-9P?WnBNmAPQ{Ml z%Z&(SRxFb)CtKTs17Z$8vx$76lmNwtE0jKTRbq&7%|*0GlAUb_KO_0%Hk2xJjwq^0XgP#l9dBupbYFAes)Ijree!Pr z1P8R@ioq{5P{SQ*Z2~C?)_b*1vE-fR(3`h&)}e34z-xJa!(vK8Lnzd#XqlevR{piI zkFqwt2P;0DjI*o|Q4kpL>N3ntaC!jnH)t5w(VxPC91b2&L6T&`e6%e2^lefOAFLQ3 zfFO!Qbn8y!HPcY(YA3B~gTco^+s;K5w@If`(?`<@N2ZBQYaN_8CUMJkdBjFLDfEeE zo3NKsN7L08vJZr?YUTiL{&5Kafm$OywEZ}q;>)o#4aK>Ty&EPyUr3tj5XZ|KkV&rv zpANnS6iB#qAVZ(IpI#vf{+h-;62E`(CktM2kB~D3n3%iu!-{ug(gMt99;={1lcB4H}$I8Kly&b1uB}8gRw4(=pIr~BJey!sT6o&)$ zA8QobEj;x*$O_8rD=S~vm<|Xn!$H~%SV3$L&RCT6H1ZCoF?Z!)rd`)WX9io`idGco3+%yWEj~|lLj}?0w`OI9L<*xZF@!l&K@W~_IU3eWx zPKLk#hP&@>)@IKMUVixqhYsnPH!regKEl3zAv+sVQYzoSjT_;YU*O9xA@__;tY=Ty zvBTp&?RI$UEf>dFUJh@(0e9cskWR^?xp3R!Key-p_cu%6j;vQ&*zc+^@{%-QKkSEG- z8{fh|O$;`r4PBoIL}N1;!F?kU+INHeml147Yo1pHphUcbvS%ZTt<-(IDjh=45x_zO z+po1WE~5BMLrL*P$voV218#f^gn-5yLK`H=)PX1}9~41_=qLcmB|npt9K?YmA$04I zLww7k+M_K59cY7*1r4HX0ee0)A@5ABH4087IUl7;a@LGv zk(3qsf}qf{Ln?Zo^SiOC4x1{T?@p?CcE)U^q7qp0mWxz<_)V}o2!8$n7KgPV(Y^si zDI?#iBB}6vWt?aP6ooFczM;5%3sSEh;8FOIED0p<3u4=f7Tog0?gkAYM~mT9xvP*- zt)ZK#19vR$RBaqNfNLZEP(Lf3W0N^}Vk0x|cnaU5Vvcu8R;`7 z^G!XDTBg^;1esZH7qUsSwpomCCl345W&KWW-tZIozCrA6)tSY8u0*ZV&?3l4s8NF^ zCyO56e8iNke^7A7(5MTJrq%U7V=FMAI7MWqh)+xjKC!Ovn6FMv>kuD|T9IOlljPiT z?9zWb?_gDkl1%&U-sgd-3PFHT*SF`Z-!`#yb?wqeqeph-=F9sr=iP;z&N+nDT8!0R zhTTz)Q?e827ei!7d)l-dc3uqj&%YK*ix%FIA7y3{U%A-pzE9`ti82;?UB9f%B_HVx z^2|PjstUaBJICxxn6{|K@ebF%%;A)57eTn?joK@#eZba)s0d>Ol+}zt?RM*1>^tg; zka**f>v-hGi)xfHOS&dSwPiU&h|qd>--?_j0(9Pca2Lq_1ZlmKIy~(NA=1>i9BOA_ zm(*x|ynh$-BKT5HiPTW38mAWLEzIVPELu4SfHA}0#Mjg~gL!d~p7ccTb0QWcZRYrb=KxTPB89Td z*%j#faYhzJ>q#@HSa8TjzdReC-})GDD1Ib=;gYHxeCrg-I(kp`=rtnu_Y7pxYadWt zRx^@jK_p$G{zbd`6^Ep<^S1nE-BTcRNzGR4abLzPz^NWr8AH&)AV2N0@%oOBJMG z|I7L!%Q9P+R}z4;e|?F#4z1kUu@>8S>gs1Pn=QPt_*ML3OignFMWJ_?8J)^AGvHgZ ze&>ysey_L8z#*OaVd2%W%#ZNS&lw?CudL6Ab5`qRr8xDeq;4FbEj>hL3N=iBuRJry7Gs2?1 zDEC%NJtE0)FbiSfPAIaVymT3a`+^}5p+^Kl*^@QeE^*$%qcdONh0Ep=?$bQ$cMx1r zih4hASfMb5sty@ap%weyf8KGpIgq?xVb|J*%hd}(AfSBV z;p7vBfPxwa0t#8gl1(%U0v3D-AfIs3`HfrY!ZsXe>BM%9&;m1{mmudDX4S3_xDIy;~Lob;ueQJV~0fBY--p#e?2_(~KNxgzDBe!AJ3 zJZJdz*JS3-HFDc+Wegn}L~w9WWn{bE4(r#$uwgYPBT0e}K7c2lfW$=Dy&KfttBG{% z=u#56KoFjLTp$R~1O8J4VYwOYO;Zp&+||`ZHuZgD3bCCAA(YoINm=f5ia$n8ZuBsl z6cN@;=sEz}c0WI(_@_xl0Mr78fwjmfG!}*+gw9p~#^2 zpsMiT^Aou1iOB%iZ9dLDX&o=z|4Wy&-8i=!%n0d2+B`p!@cU)#_QUZ9WCWnP`Ws?m zLX&)}OSduh^(z^clEav^evC=)&xIq7h!~k!;@*lH%A+9+C<^4Q&&KCA(`V!sx>%92 z2|^qnnZ|OX(1uhiU`F6CC58;&FO;|pY_07CiQWi6^!Vui+IQHBD=8Q{n4QN?!DyC| z3@Y{2CcJI~ju;=?*2J^oj|@anrPtspMouflVrzdc+fW0AuHf@?NXm3B{UVxb?_STJ zx(#T`lW_HT5692FmYCJ68S~peY#G*{$Dg}XSF~hLOA5tbPv*Jj+LpD8iGephE#fEN z@0#1%jcpraIOD?)xahYJ8jmgSIh3Dw1c*je((<6efn2GRT=zGWQ?F=CTH>aUrYGo?-0&1dm!DhiK6X)ws{VK!C)dT zss{&6xB-(%e-55dxcTlx1`gCle)#=h@@gYp0E(+Eq*=5RgjID$&4f{{*Fr2h$W2!) z>89r6@(Z8-%{32w2tZawDm&-2Vlhw!P;}%Ev!_FSOM{{;%UCDRBp@qfrlpYgb?B%L zzbawWnA5MwpG3O3?fIxR1XK}85;PC3#eqc4&r4+>ns~c*Vzfbw!eP=z)D`&>NsrN% zW4YWDMWV)R4jwODb$)59K^$9m&S&Ym5ApfK>sw4r3^OKNPn4y%whpy}Me847^Op61 zz`4i0)8X;~gUF^ask-`5^y_Sje|`%9y8xvsjmZGMN;PxBgm^5n%0GWp@XNDL@>^jN z-~RUu07hMOA3~p&q4zx66+&7RBVPoKnJ*PH-0SZoZu z{tZkqZIi3nz3WIy4U*R5)|!tLF~EL z>k;K8%hA#k&F%K_$h}{)acu!_d~`VuhZR+YrHi(5;}!3dyS)sf$w)$CH2nvrF=cu` zPB?We$&C(`LChHY1RK|HX;FXQ{;B-2{GJZ?-Tci8Y)|~oedil__=?u|D>rfqSNjKH zSIS7X^y+Xs0H1x9#Fi~qZo4h7{gWes>UvgQ^C!>$G#t}Qv#?JI?JSmKJdo3)XAvvZ zL*Z)JQ%&T)Zy+NME}GIceeMLPZV#;A)^xz_M|j|8)O!vCdC{Q=PoCY9-|PGUj^UV7IlC6{mEoy)G~h3<)}-30e=`t_4Hnks^VKwhEmtPPQ#Ia zBCGr`8=U(<3VBrp7Y<6uq6eEX2r{*597Xh?7aOq%%^hf~)FkF}1hG^yO$bJhCLb__ zgWrD`F%a6u=kZpv^6_`r`u2|uy!r$tJlk=5b!+(M8;FmG$&({iWv61xmO|cr*UgqK zCIkTvJIu{VC#4e=)iQuWQ50%wYOq?ZSglt0?mIa6U@&W!?1%jXVOOHN%$NJIk3w9z zJ}h!@H*pkd?VL1z5E-KpFh)aTkI2ZQDR0!Ioogy$s|l1P=LE+GeZZ`cF@R;_O`xI0}Y z3{vMt-R#+RBMkZ`@s74V>459;@AA5R^3h9LB?keP7H!5S`&nAFiKRuG=(TMr7mYkJ zBK=WRMKd`F!Qi&+L3wOj(TBpV8DtG;BX5OY#<0GKK>t**wEv7*XD`A(G?T!v_DT8z z;|OjM+K<-oqVl^Sat>AkdJNB<2#-r*-b1}e|0tNVL-@r+ZcTsuUJ+RqvDgAgMumV+ zB)eY?r{A~|gR!|$$XZmv$a~*q$EnjOK4?^nHg@NmNw>xD`__1>JtjZ^L512(SaBgZ zOt44VkQWwPIN;*{Qu5Zl{CL)}6!gi~Ev4GaGnhMGX#d@-t%YU3#}PZtN{vrnZiIxI zN)$olffH_E=GV_+P-I5su3=Pe&^YlWaN-{4Ck>lS_8Ip8Anr9bse%8YwAO-vB7hhH z7rUrrQ@i9KK)~5#XcGhhK@br|2~|;0RJk!CArSCUUcH6Se!79vj(E9KA`0tjWm->8 z-8PH{m4I8opz-FllHxLK=*eMdHTXc+P}y>fxb^9;g5L-NpFVa$8%0$x+96D0rUhDw zsF5UzK{+X`-cn3yMe8J=?AyHHi`Zw#-<3RfKIFOQxO|07bI%Q>LZQkSB+FHJxdoR(B zBo3Z<8xC7!^U&|i3p%A(EwP%)8v+VummjYVb(HiOXOZIE&dP;<;8Y>QBC#=>y2O!z*R-sR@zr(flsYp&#tKI8B;)R6!2 z1JrI?g{rCqJTBHfelEjq{{qR{`o6rb+C);Sn;6AF4mNh;rdseLqhdg03k`I}GGOc_ ztJyfGHw7yb*}mtNE)FOIyuhxdQ+~O?y{{&4-6g~MyKZGz^-sL!Y&L%L3x2PUWp8{& z?am^GJaZ)pVQz(XFa0jM?|jxT-AMlCf?daj#&=`qhCD8tcr`r-_TaWRZ|2oSFL2d? zH{f=<*|Ksgx1V@7DcQ-C=9S@bd-&#+?>P3dqgu43FKRGYcI&FGJbBG?c$^;8fQ+oj zpu#aHjppJjXK>~DZ?kPnFxvd=ZyckhwIus!x03&*x?k9d+#>20`{lYCaZvJ11+@v*R^#KeplHJbXV32{-3c>icF zb#CC%Z!*XsG(ouCKc6`bvp6y8W^DFEXlTm6N?s+b&i_{vgo4$A8ts6(U26@q0rjj= zU=X3C9@ZAa*lef_+J}U{ccS)5gw&|uUfS? z>k$MDJ)-fg(VmZWUx6qI3>u@d6LF8blr(W_l}(Lx0}`3JA}S{Gr0f$ zAo*8NP|DkHdpYmCTKe=UW9U$Y9z7IZe9=lwj7)81{OfKV%{J z*JD3HxF5|RE?L$7NwiHm4ZQS3r0Vdz)@8r`TtwZKe=s&l`wG1)A|NA8DvHr<@08lR zrpE7#^`L}n=xIJg2`PyP-rvG2D#Sye{dU?UQmvg!l!YSaR&8kR!8>A5=SowA+~65I zH;B+_Us<{|=nXVrKsMLkd`6pPmlkho_IXTtzlilqR<-7}YJw<&!Q{v5YWvxV zJ@0ieh}1rH25J}tp^{)HFgU!0X^~(c5T@sJsh}VT#tz9bt@tAyM~s)gBeX??gacKD zEh`iF{qx?Obj51M4cJ6|&s56C4P>OLW8Px{yOlLJorbACv|(M|b*th{vCJvh{ku7W zp-%JffP-%Z%c1P)rmm{s#lphl57uyXp;2FLVDB8@tzpdy6H^b5(oGPil^2s!wv&X0 zYQ7qK1bK;>^eNfF`iy=Qy6Sm;-rJ4mW*u`4$&-$2{45xncUJjdA_xIh6q+8M5NL2$ zv3B#f6qK&S?Wsl-4fOAM5MzckALD%f_K5&d5SmGsWh4(LF)oL`+0(FEV*!wrI@a%) z!`9p-)HhTTkiC5K+e}V4_%Ur4*aqrrbx3Xr0^WcDgGt+XtJi5p(MW6pm?Qe0X$g-X+JkWe)7q}UVAW0#wvoRuD>;tUTZ&QIa1ivW+MUEKqQ14hTQ+GX z2u(T|U85*d=XVfg)F$UF%i34^HXZlOBFWTy3^**>u05xZu~mX_H&PS(GqC^D7)=7h z#+g~W@gExM8>lSzvtx7cw<@dHOm5LXfJ$9MIbZ#96Q>^b5+;q#p`qa2l@zIGmUh(( zTb)lAK?pGY`dJk3JdV=B5^6mPCs{;pO*Law;fw+|Cl+~lw66oRqOxIOFqfMcf&0+l zhm53n3d`Ge3M;Fw!&zI7BnX%svGl$uC}q6;<434oIS(b^XYFIBGvvQtwCYq+S8L)V zITa%UD)6^dqr3m%qTk`$`TM<|q&6rNTgBk!EwIPm9!u_(TP2j*G!RyXUH=hJ&g9#x z??+Wtw$59~?FVn+xp|LbGKU`bS|iAw`2G>Do^}Ie1?3@$^V|(PxoqOq3?4U#H*?1pjxkwX1n3Ce_NGiMtK_Si5 zhu#OxZF2{=+WQ5QtQU|ImDHRdyka^ecU-o0pF>JQ6G1qC8@T*1C^ab4V>3Z+75vad z3<+PZMIDt1*>O;^5qh2u-j-?`8L35-R-}MZ1>#qbJP68KN?b-7V!Q>xVMJ}vZ)50g z^cVmemO(>ggT%WG)A*L3Ig$11Xws{4nX+X&X~W`M6&tgdgwuQu%LvsYgHD`m$>NMddvDy)dN+u3NVUt)ACnv6{tUV9Qy}zq(FtRnbxfc3}L1oQ8>-8QD3#~*DMyl=Ib@+Tf&OPrT z03=Cd`LdVVExWX+IYBr&Eph~*qQhfpW94&-!`HLftn9G=0WQ{d}!F`T00O0 zd7vsGtMvqw){Vca3SYl6h=w{7q5wHVD`}{S;?J*pk=dt~!4pc!=p7l&k>cDa)-6h5 z``UO0j49*7yO&@vs%$&^5Y2V^W9;~2?5%#ko8xH+IO&_03!q&)~ix37Vf>p!KibQNw-O^aw`S@yAE`;RRMLWkAbEYcukTdGQf&kh6~ zMhZ$-Qc${*l^egnXt2^JdkUilox#xFXEL<+nS4M0E-I>Xsdtw0+dt1Ref)KiyKr<8 zgn&bC_E(X(k9wLd$YyqlDidVB?NbHt#H@Uyqd5D-d-kIkZ76 zmQ@EOU)zc{l~wKUw?lNHs6yD1eS0IIYA1E=qP}t36)A&4?>n#WD!9HpP=%a(6tdUqCut4MZYt6(a}8dupMFv2C?^{89BHc zB^4$tsYX0bN+}+dGPalTI2(Sw)aBM{PH+AAM{@e z3R=$*w{G!z@|P6z;vdiQ*AEMLsr3^Sv@)y@w?|f(YVKRKW0L2UVQr^GPAVj`veFi`?$t*G@q~l53So1 zoVY0zoFvH&M5{8Q(6Kq>$RjJc@4lW)n9#L)im3)W2ia#b&-rkh=WX>bq__QOR7(_i zc1gC6?%DYr>!*CJwK@Buz&~pF%Z$Wf)6h|Bp6(l;Zx(ZHt8^(=;uf76N#A2~< z(n|x^Z2ze(sI1`fY1Y5O&m?u%l$!>W$6sjlm!@sBdMnwmY311TciY?nt*i zV&vt>a?tqo?mM>ywaVLoPxiCAbbGU7W77IZtUq!D2*ScmnTVo7RGh{rj|iZLT+JA@ z6>@tIyZ&*iodI$&pyF3T|G2Jt1MfUIiUDKGIs2BCoO$y~CLEs6l;d)_;I5^NIIxKI zi<5cdo-u4%u1z{D;1^i;0D&!MOFvD)V7r~&um|gE;Cc5|M*H=0sT2GLfu_imRa-I z8I6*JIftL$f*gdF5~E6BUv+)y94J!odaG*l_;TJYeEP$cY}xr6E>Bf6a?rd--i1(e z$cAO5{P&vnWs;L}PU3(AreHRk5rn4YyFcJ&!}gz;J?8>G`{@R@<^RQz2i}Lx7R(Ki zU$P9hJF@P+&IWx^d;vW&pGJM-v{sU8H++irNF$5X(pWuWKsEq1^=<|n{~)F@H}L1m zR`MR{nS@n8NTHp7Y8!%vVS};tYZCJhJxROlf6q3$rM`&#Tf<*V1u7k|YkAcq19fBLHx^YMH-Ep2K3QRTMIz_Tx)pJ^2Wf2pzAuBnD`Ai5Ty>XYiNT^jM{JeL zM~xwYGY&nl-E;f($fP6$3DoD@`>8IsqkPzAcL;YS?yC~Ql>8D z_Ger{Vz3t>$w7eB_(0g?;BHvsVmR-+S4kT_0Dyo$z^%vL!8fl5b5@1B2b3gsKX+wBTfRh^$=WN#P+4->3MGr@Xco9C&j42a-po!I!dLJ)*t6k%I9 zd;sdn!%?HnsHcx?{@s?pA#e$*vE{yH%9uZyx8PtP08-ak@5Cf4g6;oDTuydBh>Gp* zUg$%annpb3`11={aP1R#yseYB+Y0P_#xHNH^4&=!NU&+&pG4pYQ{csI>M1hfJdA2**=HcZiB}jgDqQv zH)9VN3&@G5r!nN{Brdu;f%)^dw^Gr5>}zB!s;@V6|Q|+t)+RV+bX;66yg_?c*W(del|F!rpn&wk?IRkAiv)$VDw1kWx^s z_n~enhw41d{cMCSXwV9or>_&Ra((lK{-8dUm`p*VLSx&87!*S+vO&V&b0hf6Ap*o! zGwhNW?ab?b{)I2uupt+K3F8NH=9vezT>w~DmWy|<4gaXLz7gwFK+$g`@_UWgV36%93hM zVuBvOiXvdK1@L(!0zQechvaj?T}!)$0N)G#J%*trHGgtV?7=*35|Jm*+T*O?Z|X3? zgNHQWGp?e%KC+(08$3HX^ul-?_8eY+!yHm>bn*cKZoI3KUwwbKS(hY;q}ig07orIW z0qPVN1W@4i<>DOaAAtiRnB%^F;1@W)5z5%W3U)dqjf!We--g8_@SgL%lwNP){_PB!N$sFiF~?81+h&26RZ2+9WS>KtvLn z`taWUXEF5DM`>^df5U(*Gws61`QxqsFnM^7y=u^D&@$RXN{x!U-UFcxBF-e}lgDx^ zX6-Veg1))ALAHb>XTyP{V|`_pym$h3ECy|Lcy)}aCXErg0BLCgCNuc-XMt$MK@)G} z(;u(J?X4j`gjl%YoSM+cL0ABn`}@JP>>y;<6*7fbsK|8V(&emWTW1@Zg&t(co@rbUfyOu~ZX< zqK1|t9eC9XYMBZb6>Y`;(=!+kZ5esKv{0gVay>)UDD1LHKwGD2zNBeuEp4)z7%-|o z8<%gQB(IG7@A{cHUjDK1`&CQZRzPX1-93*%Fycs2R2DCcT%?w&IvMIK;WyJm+{H)y zBrIuh&XMW_dhXiSxB|7<4Y3_=Co|K_jvW?y^@@}c--xVQ@hb`z3BW}tJ4lS^<#7AO z^fXT7oBCUE?e)%@1qVYdM*wcH#(-o3S^xfZpF&(T6qZ7368wUIdd5gNV`Rv$)fGR& zzzZOD8iM3GMT8~mPhrPt|5+GI2cV(hPL#NRs3@1 zolJSTq2&$g! z?fVfH1`i%gb%UR~Uf#Fkv5n{4fLK-2_&Mi{gBW<(30M;nFxz7h5RqjcuIe&2zxy2< zp8ulp+`Y-Jn1MYQ_rR6d6H+m#c2reH7CkttO4<6skL>vD*H+7R1l>{AV1(l@77#Vs zh`Q@~^*~IuVII(qH&+{I(eLOqgg(PTC<5PBP(5HC2to#GSq0>;0#y!ORx-ih$p{V? zs2e~j1+g~>JyGjSuw@x|BV@QAIS`=>C$39o9?BaZ4Qu>-&WY=I=gFW5h4l&$QscsLM75@XmAr9b2O@|Vlo+UIe%zV+H5yo zTRw+N=RDc?xleosTdsaDV*RS}6yjC2MgFQ2W+RGMz+EBn(1*pGd)z;WN|Su; zq7oZ{J&g7>1zG&`#Yo1^l9?|V*oi#C@aLN6P5ha!0Ln|>`n~Zqng?8doTu6rQU53mr0pA``B5P+4rK0b3Y;I`EcRD5e z3C?q!j$LD2G&q0hIIEjEE zoiEoqar=YMprguz03;RGV|9jaOqXSu`AeTAe-C*(fV89mOdfMBR#Wq+5L;Y1FTedC z01T3eGmm~fWW9;Wc1BOlq|WVT^~M66ZZC=PQ4HvnicvMPVD5H&zR*VS23G}3*1bVd z=|<$e^2iyDX3jYBwH9U0I6nr_pv?nBP*wU5b0A3C<_WJWfJF!C6Y%&k2-=9gKmZJi zcJjpQ7j^Yr_Nz#H=QLK1|7j=7nQ z+Y7K*%xwMnm5@ahRbTX_S2beRD9x&(B80IZ#vnlT!*J*z&9 zn9SPVF;x|IsbF;cM^pR()-J2ZXqGxWKB%h7x)mN)Eo*61_sKp!o^vTG3X*8#tYhBj zaNqXChu>d}-|r*Zk_ z5tN{0wj6HL10HN0`X_G(3C z=-3K!3`Qoa@odJ)a;a-&7y)bsBV+6%2-GFAafg|LG6TtRGQ<0M@kH%ld0p%4q;OHY zc{`t7eotfm->6sz&;0T@j+n^(W}%=pokK^;ZCbvSJ5Rl*-Scj|{b+9b@6jD!gIZV$B|4>y?a2rOhJ(2ll$C&=RU2mT z@@u0xYuFbYFrf1#Mt4J1R6L7{z^BhiZC`+*sC@gb#FF~aY-9uy0fw-IR0^p&F0j&v6>nI%*&|C3EGeb{l?t}tO%eRwgp7`P;}k-;~d zN{^!_V~&l*V6x!%IQjb3EqwS~5y$Wz7QurhDTdRFKhtj?tg8!ZkH*I8tLI;cZQF{u z;RcnVLmRm5whSDO_9fm24;~D_x^B8 z(%_*;YH0a}fa+xBQ*W{9wK;88D_PA%_su|dd2tq2AiE>zj@nH~?EwcK)3r3+Zjww3 zK^O^A(by*zLuQoDT0+2J0n0A$w}#SY9&qjUTadsK3uXtntH9fF36VBoHX#g&Ty$DE z7p|5@~2Ka@@&VNlBLZ zeO?x^aXwbBilVT3SK@BSLe)VeHS@ozmS`l(6sIc8uvea_XN$5;zQ0j``B!^>aJ z;-8JnLY|YAl*U6BKgQe3{nWVqBg2F; z>l>_I7aY4yMmt7>6_2+Lc~``;C`!aeWin;-mBd7)A&3IWDGm%q3AfAFXuu8^RSj!d zym~fe`>JC5{3ZAAFm)qbA5FZ4QR-IniJw*Dgk`u3R4 z#1R*0Y6IZ=ziy(UvJ9ia!Wl=s+Uz@%*}%c4_vE5`p2O*C`P@W1Y}|L%nRto}tY6;T zxGsnS$6nNjOP+j?s@j(1m(60~zvrBXtuC1r3yP_aF_Skiv=e2V%?O2SS@yw`)RyF< z>>}S{Vq%zf|K}8Rf*QRjK)l^VqTNh+gO^HY^WU-HhgT_`|4F;`SYneHeCvnJjwM;( z))5jiDheuI6uy<(U(a))PR@c z9=?t*ZhcO-szgT+D6Gf7rKZc;i!}VQ#Mj%Vu&TTdb=45NV;KWj*-RB9TugZN8P>kv zGGaQezmM!GJ6L|}y|{}b8|67r&1X2d7*P0|eryxcLY`+yj>DP~hpVsxZ&e+YYBF;< znf|O|w6K5!-@A?8XB`~TzWuMEw6v0U-YMblzhjv)rGcxj?uE(J+=)Zk_3n$JxSt^G zLhP3q-46i7LRBRP2Bfy2Tk2LYB9Z*KN^ zOnT(<4}$g_gg%b}RS`%?ufXc?F#GKRY+4sj?|wDdY<>a(k;G&-scBBOZi?lLkNYrc zOc@8xC?GM}gDeYdTo=dEe^SZI4HEGwsV>G&EaA|jc49KMTzF5MQo_V3B@`9f`17|6 zMvp5ayJtNWWb>YN7IrI72D~Dhf5_p0>zDG{??G}<5JY+; zjKXA2>{4bq>stTq{#sOx_g;l7?&-%O*QRFQt$*f{Mvu*2 zXWi2#IS3%`75Ukn5~IfqispsS9%kv5m93tWUtY{r&s@$ESHH^3i~J}Z7`W;hN}2oD zgSfpljmK=(cn+U@2M$}?xi{^`-awEb^!c6m{LL-GiXu~0yOSUPx`)$_cm-8aDJ|Ac z0>wLqaQLK$+da?iRDc^l9C^Fu3oLtlKsRkGFv>JAY&J zpwlt6GuO0+l;kWbD$DQ(JotPKnD&U?o-iYena{oxk{kr6YjAP>qpvgbqLb)5IFT*u zn#k+n<5GF%%MU}6g8(j%hyT9z3YQ*xJVVC~X64edRzqy7U4Dq`PtH}r$XwayLn>HF z=76D{LJmT(D-{hsDjGsR_oaV++W3E?)s8hG4b>V;!?qQuO4IY|sVPU6Lo8e_u&MZ3Fk8`v`ZwJF`>T(~FMm z$xgcNcuurnQ{(K9P5!Dt4u7AIL<(?1>5^6#$lt<#aRH!d* zs#}12PXCJMzB`y3j{T{Pa*>6UYR8{j*F3kyzW}l#^4gkX$gNA`#J+!ULZA7Fg3R0x zp-$t^qo}r!$E!D)sN30}(T_jMid%2PSx~N{=gncohXDm6GGp0Fu9}Q2wA@d4%Bt~{ zHAUPf2xXkfi!4(Q;5+pU9CyA&&yx>CGIx@F^nU;b1B@G2&gjt<%%7ja6;~AU&_mIr z?8-mtbUInObSbK;l97?o&At8K!hV8qKL8My2EG3KUU(!4eFwBj4(^6z{NEfDllJj3 zsx^WwoF#Ec5>WuLvk1Zv*k|%NS}ozV9icpZo3_W}^)(-ohY#_PYgyeUIk+1o!eZRk zvoSh#l9h(=2tqB_?eqD#_>w1r%@`zp{pE=cb*T-J zy`|ab^o;gBsFPFOB&Y7md8L4gfGDZNqz~pkOL*4%Hw{*9wkA>T{&!2;>?Q~W5iBuY z1Q90oJ%{aOizutzN`BQU24>9Y-cGiIXrqOV%YAKny}WLfZX^ifOx10YgS%1ZYG6z55>lc^5D?opY|66C?~9+Ju&gOE zQWOnL9C0DNvnGetx4u25k(w}=6`S9quw*?Bdkl&qlaoCWpGROv!JoK1wRnB*7RK1l zgwv@KAFpkqFdG%n5g4rZ5*2hjYl0BWhbL;xho>=@-EOF@4DgrT|86sa&L0RtED1s| zkDyPZq+cMk0oAmNAXM7np}ea0wV+kw{oW0~4pP`5=!+`yDj`DY!-Q4TPF#or)Oan# zTeaQ0*7C)N1G~`!X#2fwHi48h1Es~G*Hkmc-^};(?*?G*f(JQf`U9HU$x1qibsK^a zBc~nlQsek(iIT`IXg{*;kvBf)!$)pr>xN3yT`xdvvYFL$+n1hu^_#DFYvxca zD@CkMKkhL0N|MP0IpZkk#*|?Ovz34+_)f%)K7y>HE(c)yGZ#=@(mZF>=4URZ-xV(+ z?Fu&!D6pnlWoW#_N8KDb*cB*uL*Hna`T9*FcD~j!2G!Q7E;V#FgPlKV8ZwgA}Z47vy%`1oX{zCw+2BHF=Ry%*uHN%(5fnIsOrJzTc+U&m{EabTMc=2$(%R% zM=l@!^&V#ja}oaiV{5gw4T07@WMmJlek+R+58cUv^RA1S+~{(lH*3{waww&Uc;pW5 zB}NMiSg2ZAu_J-Ougqc4wI@cTU;7FQ3Lq~Jh7AKp=PGHlY11a6qN0#xnd#F@*s;UG zrI(tx^2#MR96kbp09LD&l#~>9?AU?Z?Z&EA_GUjig#85Jet@hXE?WaYk7Ex+B0OTm z?+R`%+9GHEZTSV;gTV-K$=#6!Fns7C*g};R>_!AViDx=YSh>Er z^hs8F9rnyvwn(k#0NWD+26j7{>*|w1-*vY|PEMVA1M)6|)%)+=)?q_}%t;dlut}YTJNpG%5@kUdfQ*U6&xeEd=(+zgH)jLT17Ug&KrlPOE=0RJF+{ zE*TZvH5U9X14FY8XK2>pc>MJgRIMd3s%N+Mvpv|2X0~q+--zsY3*Z1$aF_0&Y{BOM zh-NE&&ud*`a8C$(<<;uW2tp+gK3lape2ml!wiLN0CT}}lw5^V-aC7=kJBby{i-)6rxk}X{L6eFOG zbg_s&T}oc9^*qYjv?a4xES!J-`JqoVTC@{{{?G;)qj7fxVcP~!Mb-X}+eBY55240L zLP3Xt$SnGC$qsCiMpj!#+tH$nfMU@cvFZ(I9}mnra%DP%c@G(!ka83t$8#%b-+71zfstP~-6wg;*CGy~d+cod4V+}@zM<30y z+ArEX@8hDG+|>JBq751xT1<8@TEX9W`O&)rg4u)`8wE8HP9w7m1(k950}@7q_DKJZ z!jSGDu(PhoJ9Qtyyq#m1mp6v~ae3S{=0mK8;QC>CX+JXhmy=>|IhSVkhL{AX)nLvj z{cSFZL;Fy%CbR>V;)DDJIrKj7IJUk0RmU3$0hem$T`tB>&_Pr|L{w$Q^DCKQIO78d z!7R$GeBgchoPQXm==SsH{af(VQ!sTZ%$fx*SMdKshJeop{Ua#ar6>wMpO2iJ98yzL z$<58hXe{KSi+1qbb2(gpeGz^8W|Ebag(!+7BqX$}aIznf!+wHrKM=O;K&THI4Z
4)(V-*Cy7QVll^EO&TiZlgq!Y;R zO%RS4REDT3h+%qg50Fp7+7JQ4tQCpTa0$`YzMngHF^m4$0KlL@Jvr^Pjz?tmj!);; z+@`#6+p3E?T*sdH`R6$1&W*=lQ1J&8CQaRr;`Jg~+<06P9*+^XOF~rz&cAFe4u_A5 zGCPF@4n~ajkdjtURIC?^&4bydFRG+F;opNGbSU9RQJyM$sr{En52^&CCwF7id23nt z>}aOkyckhZu^6N1lQOaUIv6HueJ+L$bHIn~p9>Hb*L2MrU%aOA{{yaiG3++Qy$C`@ z?!H;jY>5l|+#xwbSzP65m1Oey8ue_-va?oar z#w2x}f!W!hMFhtauYuB&CvTYUv`2CXRoOG>~yXe?)EL|To z(AWQVU+WGulJ;me0`6e`=DlPu&ASQ0c8ZHSH? z8oz}&v&JY!t#YzJjO0X7?V*$}!$Q5wfYqe!zV{huVc{RG8>^>|y`7KdTmq>4vS?O| z9D?Cu?7%B!yyN%Ms{7G7oql=?J3JB2vm9uq}W1F%zAusGPB~b+Dy1zKK_`uL3>3y;Zt15 ziXTY~Zw_6v#?FETF}(1?X3hBr0ZgKkqmr*@P2G?9)Yj*LQr~83{Z66{9lzOvAfQGi zK~X z`srR=cU>J0M-2%H@i-g~Y_`ynwEGcx>?a8K193@{be5;02GVKMN}z}V3K#yv)_3Q& z_^!Ljz0NMXx4dX)6O#J^#OUS*%Pt}3+Cit^Z&5^upssj0L8DM;Q`t+pLDT8SXkvpJMynd6SXb5}hAOP9Q$sh-|(%@crXB?wg& zKL0$4HEZlV{`fXL9udLVKuLWGJ67e8HLw6%RA^bS8Ib+RIWy&X91iEa}5RO7C)U{Ct@c;dPOe$of1^y_VB^R~7V8(nl> z7A1}%@W6_vZ%6S3pY_yfr(;dZ3cJmHDS~iezQ})0zLqCGd$!H<(i2k1N*}=w`3=Oh zVm1F~?dy%?pd=cYIO1Y*vf7ti?I?V{2Il;6N8{&1Cj2+zZL|evgFcUGzbv7Z<8qwDo1a5Oo<+uRysG6uJU?Rn_x&E@A)wUe8A zWkUUm_AReN)R!#ID{H@Qi=bW0*B~m?cud4twf$}Zzjh+N@4&X5>`ao00XYY=ar@8s z10KGge=kQKcz1`}k!6(whTTR@^?#|X2@>r7fQP*NwY>G>S^z|&86{=_#O8#o zS^Z;E2!ziklfS~p%(Ktok@w$gv;CvSA3*NvYHamB1Vu&NM-^B0hBYaRp?7`F*4J*N zVP{JsGUXSW>)XL~LT+v@#~pVZBX66HY_t6D5QJ{X*~R_#AJd=XE`43Vo$K=k>&?v4MyATL%!;Ku zX=v~;Zv0Tp78S|Rapwt_Tt}1`UV4hbgPlD0oQc|6195RW7A!!zS>XDdFL`dqskoKU zY>0q}BpA>nF$!Rdhw8!>4nY5U*lj_l?N;*1>VYp{;GAg-B3^HMFl0Ii6x6q`>)r+U zvv3$c?wG(`6GG?7Y!4Y4qX<<+VafG(GycWL*!V>+JQbnWwu&6SJx*1@g@ZMWBac2v z$f$rDJJD1#lqJo`K>)MhWjb>j%kQ8+Uvn;^Dl?8h$P{)oJAW$Q@drn96d$to$xj(@ z<*`^(_AMt7E%16FD+>~K4Udup)20RgAV?s-@dkYKQE(5Ys&L?eaM)q(?8$cS1d9by zQkos^+qW-EmMlS06vSN>q@|^C?6D~%C2iuPk4!xDP=Hypav3|eXQVH8Kia^4f^a_& z=LfylRbcVVmpJsxo>I^5)M%%`S|)XuB!QVX=FnrJpQWB+w*9(@ znoU8c0&`p{8HZimp+4>%LD-!H;kptx2lXAt0~g%Q1G68&<7;VDpEzhNR~~;OFaHxX z_N%SQWl2rOm6)gu6eW0_TX+7&(sl3S^9P9vi`l`15topiI|TPkrmn~x`7%)7Z!(s9htlZlDyTB)*zT75>OKp45ITZ2(j2q>av*+so_P^!)q ziB|{FWtF@k?SCsa6@*uTj)*cK=mfMEL1;GZ+77leE!lMB(*u1Hr54eTN3jMaUNt~K z`+YNuGR}YvyFnXSrz+apj+UIriWNztoUhv}5~DF~OKTqV;UFzd#B34pdRp)IxS{7z zT(Oecx^gP2x3Of+Y{m{fOH+GCO?{9CcNMEPeo0Z;D%_r0c0bUH-wPG15UbZS^~f_B zGWtM@E2{YIpEVpabu2=y8K1BDOSxrjCH;qG@cJ#cbNAb?QCQY;PCaDYSo%iy<=2WG zh=8TRhr1QkmF_@htd)@&Mobbo{Q_%>ycE_py~C0u(f{&iC|md?`QJ8o+zSN!6#wxt zX;V*Q*j-<<@!3o9lZ7t2_(Xd64WmQz{LfXCx&;k*(T7t25Ep1={)u`$Xm*Ait6k06vJc=+M% z+;U5Ao_umEQBm5TbwTjc+h*hD-gB5+{v!X>w3PceGWk{#O(wL;p9`Xd>PUe4|6jR5 z1wlYfNrW9?u8}%`e(5Frx@J)OCmOAg+#jN1z*P^G`QU6hCxi>ZBq62Qkqg_;h2Git zVaEg>JmA{3=}Fl0>xM3lPi$lI5L90*1cj#F9qL&w|p*E#w7k{cL3>vrlZhEOoy z(Tv|V#enK<{XUCE1L=p1C2H76KKLz}t?QgP>htKuMkWZqcDO%+06AFsYY<&B#=+}6H^ojc)>Lt6jdV1UamYx*q9@Y7Fl z!wo^A@T8MkDfre~uyiTB|31XVHXhz>3#_fJB`&VXK~fY&4me;S2OI$F*B5ZhEhe6Q zwphoN?MFu;sQU$7I~{`u52m`o&s{Ii>+Y_!M0G8uv#)PvDv248&A3@t;>bwFV78$s z0RkR3wOjL8^TY>KF5A+0Zg&ws-I1SAGQbI!fGBBed0)(_*e)ai%j66Mjk}b6ff&?; zhHaQ(3by5w9<}1Km3RHFC0pM!bMInfjO%stu($g)$UDAx`c= zlpITRO&OA}N#=3yw*8hAN@JqgA}wTt_!BNFFcU=&bt0n!$B|T9jmfiX@ny6?>LBgE zcZlo0@WMxV>+N8)aY{-OMTH-0j{aC)yqVFjUEcUvK*00gA2Ed?xu&WxXHEih=f-ox z4f*u$-Q3Vw=P$zw@bgs$vg2B#nX zE^q$OE_z`k6Ruj(N{P;e-C$yzIE=j2X1@Q*!}^V0OeTRI*+xz|(?-ewHwywQ@hhzx zDhAs!No+`=qF848HaAhx1~M|t#HOok5_2i?1|`>CpK%^aAb=o<48QYhqz)4IwVUGE z`gRjJW{Pz)^wx#iE<8fWh%s|SedD9OH3m^I-NpSG(T;sYb1rED_mr4 zt!Yt5Z9^_!|8iHeV-|A^p1nww-5A{G2u2S+1GB}zw4-}dSXs?yKQ1G$pbAx08Q3?K zV-FfZQgjS|{;(a7+s}gKud^+GJ^(pc6PY~fiiqBaa4_RAD+iyDgrISzbh~7%8p#>} z+3Cd~XfwD4WH2b&$qSE9#G+~^yF392OW4_3TS5*fNPDq_y$`(-x7UZ!V8FYq4Nq>- z2p!0|*#aT*6rC~iWj>z!H-aEg_{%G86jp;dTQoYjcvKS>9eMG*g1OZQ%=X~Jh)IWA ztXD8$mb68Y_%LEJYhMlfL<=TK+q>cxtXQnt+E!E$tX54Ugx?$B{TEBwys7PbCd)FP z%)Jc1Klofs9dk83GRA3Wu_dZ%^H{a%D~iik5ePIrH-ccK$KYeR{L+gU(mRts=4_+1 zD71uKkDPdBoZ5rjvO@ApODQNTCnGtDzL}Y%L?!aaS9#=a4bG`WJ!7a&?f!g34zq#t z##mXtc|PASolAqqMM6|8GloxNOy5cTQy{SzY$LgFRy}0}R+p#*D)>B#| z0reowNBbv-0gqy%%-cYT zcPEv;JVe1jPup;^%!$|x`kZi7pBqZnN2H(o5>!=%)tiEgzX;>@_fO`bvp;M7gxCy( ze*F;YUjff{Fr}f|4h3l>>b4C~y;D=WipP)lpOS9(7rtx3#oTwm>usK67d&0q6yiy1>f@bQT;x?e;=H!NQH)j@>T0<3(hy(f<-tP_!Btnm(4oz~ zTD*8MvMe)kV(Y0~e*JYDFTZSJ&6-0IMUi#u+LwOc4}I8A5Ox9fWr9$g_ZP;e-U#`f zAc@#Blkn9v;H%Xquk-%_Nf|KxgsxrTcQ>gh#+osYNN)ecPH4M3(Ae*+RD|U4JPad= zKtN#A_IOrpNaFNkHijV5BoNI(i7~mk*IB5ISzT-&{;~bR-(t(?!`(Pad6?mqu^7A+ zV2wdYYTLUr6k6L9o`1n3yz|aa02qx%^7B3+B_*cA_3uWlr-5_6dYCj}08;5_lC4Qh z=$S)Sx{T4N^696^_NJ(kPPucWFv^d>kf%fPcQ z$MdVW5U<>};Z+huVog>&asYS0hqBji_v(ScNR5=Kr;~Yj$D#)Tlz@QZmk=cd!Jz0? zK8z#;AlhogYLuvU`S1o>8lCJl9(r!93RynCbPPm$;lQ!8%MFC0HPSBORY$T}_n#&h?;z>7X_a3kIScwyx?%lS6 z3i_V;1OWG5bSQV8H@)@31}k`Vc%8>&L2Z7sLzg}N6|a4_6akQbd!WtY)k+L;qBbi~ zjS@wys6CfZv6@1fLEG=>`Ne3T#r0?5PkA__Oymwuj7Y!r;F<#*{O9%SsI0FE`Tdy(p2)Z%C-UCX=I?R!`h{$N z@2(c-ryO`1X@_1&j9DW0iznIn_xAt{9zKEtp8NMlPK1LPqsrK%mdD)wUW%TSBNtsKLCNa0jrE5@2H-ooxa`ts6)RGD)jC|hvo8CT+`_K3St2y*M zCyY59q3k?DNvo*|*Q2`n!>0L~+V*X%L@v=MpRNarDsbChm-Fb9ms&r`Xu_IvFXGiL zqqx-mHk1cq@UDB7{KZ9@q6qhfAc@%06YnpEp;`ZB*CN_g_9{pb#e%ht5|ohmCd>@1B4IjF~^yswy} zlQY^sC(_U==c%>q-q<_;V7SoJ@9sd0du9#avru>2dtA7|pfb2$C1)NNiW~%xL2iMLS}yUTjiO8&w2`o4GDKA(?64!yaN95k7XloabD2LbTL zknzW-^eecXlZQ;=kU@PgiUyV~i{g(zV!7gqLTPMefzq&>#kfLdT2WjJ+z%? zpWVXIM~5Z{0c5o~*^-c6O%3;BA{vy=MqKm$lA+mjRe~bLC`lA?wyOT z#@S?aJZ;91whQ}RAheOAuswtzRxRdTIS9iju18+gAvB=JEmhB5Hwpoqvi7x|s3WhF zNes{s&@Mfx$Co!obfUDTryK@cUhVIBzk%Uhv%{9iv~kxqexCEk?Z^?Ddq+*l?tt59WWt$G<$y86%sA3d9YXMEXJJ zv^c+X{>QAm<1iN9aWwYvCt!{XlDF$ttz^?@KS#9x`zmVv;0-YZSRGdG`}i(i`{xCE z4(tJdA}ic>!kzs1uJ(Jgd#}>jk%u0;6TiueGo}s%sP~I_0v&5KoIZZ_%dL&-G@-~r zK@jLWAeA>ixtt>B%jDO+#O9Kx`D@jEy!G*wTz2ijWM;+lpDSlKmU;25D?8NB-SEf_ zC>w{fBPs-w{r>@panK1lUXLELl6kA!k{PWc^y))JsC)`R z{1^t!(A2geOGCI;1o6(gBRH|o?`@tVSfd~>^!p-gav_~nilxsDWR6ZJCIY_os;uD5 zFAHgZ_Nr#SRnO#8F5$W(Hgd;7KJK33Z6XH&6!5LElaz8OV;;C#e}}@r_78rca^==8 zX)BVbtAoCM^^=1DTCxXOEEcR*D_gg=eeW*5xDST?iSfD&`ej*2t=^DjP{8?&Fc;dhSm;mn)23;>hKL~+q4#K-F-2Z86G&*VS<$>%@+$!Erl8V)$1 zmV*we=G=2jx#W^!;^PBYEDBSm)G}&R14d)`PygNoAwY6=1!=v5c@Fo^x7Hd;486Hk z{U@w*Ut}w))U|oXLcy;z{gB1EQ3QM>+!L^ za2`LdejHz*Yoh0)jAqs^mT@Qv=D+4%oAzgyaNVL?t5=Z`)BK%CJNP_OCL9y8 zjNj{F!*iE2@cP#gcgc?a@$B2w761Rrc@`Q1?T{giotVSOF+CYIt{0=m z^knFWEN;2;7!E&bM5}cy{9_Xf{@4IO&t55v9H%wkql#PZScIL?sJ6AV+qYnig)mZY z{M#THBuLN^4&MqU58T4sl|u>0t*vcrZTHLh8-n2vNbc9+wne)UF;V-PNDuPsli69H z!uYfeZJwt#R73AJoYH&>;su3RMqJ6@ah+$)Q&sqq3z@_`F5^L*tCl0Bw7w<`>@<>? zGMVgSrgU1L_Qdi#-t3ZgB8hk3g$WZPQ&(C$=Bz*ZYFSB=NKEX0hx-2&>?a8ShaqgGjkX?&`F;@os;iG2|*A7l;MO74e183k_IcVQ%J^07QFumCAHf)E5;Yit{rPqIwlF%N!=U78X&ALy!Z#+0I>}MD zs=e$&Pcr7a_3qQZE&F{FwO1L{;udDMxz{%m=ykdK4$RgB*g`dtabGj z{PxdN?UZOA1|)2@5PO;UW5C{&_h!}d-&nbR9kFpu&u3+^n_+#!lZpK7_uuK+Cmvg! zJ|bB!@~T~o>o-2EbKm*pea2N0UB`%fzbC5yIQHHtsj`eeZw-Slp4E8l^Yd@h z)#rZ;%32`^jczkWj~T_Ma_l8XasNkmBJNsWE&Of~Hy&|oSpGEO>pq&(@!W%Z!X4+4y(crojfk|=-Rf%X~3{pd36 zCkX$CAuerQUKI2ZH(gye62xFzW#f_w8QL7~x_lqu0U8n3{W3`i=FTI^_E{OyR^&w^ zwFzr)Qx%bjLe+;w4R66|CWfTIF5`CxB}VteE3bUQ>eXuju-PoES^Wn2c^}cIk9Kmf zrpCYn5A@)bSJJup<~&Y3QG3p)wxFsC3ZY#?RYmB~Z_<%v{-r{11i7WAe^+DA2*QRs z6T>DK@xuJC88f4R&z>KO(m}bQu7;vOO@#$ly`k|vt*tck`xm`<_u-Muo;89G9v|NL zH|Na(^ch~sXU`2~`OjJ8{+Yq%xjotR-Vw0uGMMl*09gqUS~Z7(YOjl7qrx}RCuS%F zRDFi}#J)i}EN^*%u6q8h2q%KDJsdst5qe|{$7E{mT;XBER~v_HR;)>aZ{3q1}?CKLV6e~8f! z|4hy~_hIib7(tXUnk|^p`eEuhoTQ1z0pNFgc;n#n`SZ!QLXtcGUr_A@|6cDxRY?`s z9B~6D3^|3<2c5%t!!Kd=U+Z~&(TmukgX2ZPmO`$YdcEd*vwNx(10pdMi6j=LHl=5Gmm)zSq|R( zho3o%?4J4vFu&@-uY^zLj~rRg_unUUPn4$?IR1YUgo4EkF*+0!TEWPiJf6Dn13vqE zY|BW(Eq_D8{UEfn?o#qJ*-^w8Gh%G#D_8A?tccvd=zMM+_da%GcnUJUWDmjqJl z1CH=V9fr8k3>p`yo;HU`@NqgXF`KI?S5pC4@z^VvN4FgfEL0_sFskFxom#N$_Sbbu z!gn=x=eg|)q^GAN2m%I!fgwYNFlo{x#*G`tm@#7*HfmJR&|Xvoci#6Ou`LrD*CXA-U&y9UX@|W84m>-+M<7?o&Ae!#rOT_L3LvY$?#T zpncL-NeyISqU}Yrh>?@!XGy5e13^GAXg8QfMKu|LD#|}+$PjIwbi1*3t(`mW=*9Wx zmvHypxg;d$jM!)cavQlQ60^$jy3FKn3@=Yxx?Ii$wDdsS8^_Rt2}%Gp(zz!zAh0Vc zV%wTHzI<^A7u*??hdtuF%{=hwT;7{Csyn;aDvGv8@%96w`0()&EcmtuKh5sPM^6st zt5*i{$Co+e46f#!nJYN!mX(}&)2hb5ldoAz@1a$kf5%cB32tl&9&9~!;5p!Wn0^mf zgL&k#yO1FCDgomAHZW{x`F#63fdk&SglS6C=~O4!Cqmj7mEA zIRH`Tq^jur0e!0W`OYf(2mvehj;%Z9;p>z_Dx%!|yI`&?E+2{tTlYoXfC#<{;W*0mwe~ z8mvj#0LVT+8@`&y8`IC_t8;I|xiMGgRqT6E5vbVXRa*4b60VqX9R&qVPF8NGn@^wr zoQuX^L64kl5>kWVH06aA+;HeES{tTdSuu*Bq6oofOVAO`9M1F+P84A{7&qX*q}wlV z{JZJOrqmZPv33gTUt(v?3v4ZahS<2^*uG^`ldP{GK+)E8Hm)xLz-W><{**Bh>6=>) zKZ-Cr+slzhR&wvXJ#o22s;c(wgjj;X1l{a})@exY990`ZfUA!9h5ybziCJGB*+dj7 ze$;h~QBz+5u?@S5>IG5T!q|}Aby0-h?U=}sz5XUEsskj9y8-W(S5V%}09#vfqXL<| z>9i=qRH1;gc%DTZ#AoV7?EEK}&EI^0X>>!YMnb`3!I~V~IUU*yWeeAlKj-f*X)6-w z(+9R}>6*6UA~KK}t584TococPc3fe*YboE$f<2?MF!LCkX#nQC*9; zCAYhK(P4x#E7&p;>2tvejCk;7Mm%^ky-q&@W3+YyLMUY9G;hBvqa3>{c4xOY(>|Fa zupQ{?t0TCf?hazGy4K7$KlkRw`=>GbsB`#bL3Rgg5E}nYtSRIi`5mGNO>CvBqc~sw zh+Z{bkQCh;iKCBhl4{zrwf&qeZDHd^8_z$V!P8G~B{Q>igPyF&?5rt4Rn3 zV7K&`qJlRdQ126{_laTs)pZnOeE1U6o)bRj4BFjSdzpyuMgs^TY?1OQ5S6Ds7u##%(bhS ze!&K&p1XmVUNzMDq1G4r ^;4yqt|P$l(Izk#9Yx=jWf$D+!(DrcV-Phx_Bd+$qN+^IEe_7t{XVLM0}+y_Al8ac}U_#o_Z zMZe^*@x`%he10tDi_?*P|IVdkxDun`VCS}K9I~Bf9=d|)9;ZR_MF`Q8iHeTJU@%~H zq%wN?fB10ruPptob0VQT3YSiaQKO`6AFs55ZGr=~9Y{^s;aVK# zPMBQ6)EOn*eQzc&y`0WXH}&SW+j6+=wj5^8%;DQ_6L7iqq4n^dIj$vRP@3FiYyVH& zx5-bU>|p7fh`WKA#XNfMryMnUCD*)uHd~8#jrk4bs4EwvCcTClb!^Lmq64Hs;M113 zUW~IK*gOBeZ>`DT+ijDXl)kpZW!19nc(y!>JUbrssMwa@54WSJ`3Qo*ps^9?Y%4Gd zevT1lb10wjIT!Ky2Q@5vb{6I-Wk^Xa2Rb#Wit4rP=jDwQ7XRlZlz&Mi{YfXmn_ZYX z(PpzTY}hcWtE(w44xylBG{SGc!9fQ#KmPgWP^jPTu^-_VpF9z2-p20wSb zJg>XE(g^X#-!VS-PIq@h7oz)SGT?@5aMtyrXjwdUyViyFjaA?ajR8wQ%zyIyUlTU8NY;M`NI4B}NYE8uYmtSwhrwEj~ zj3^y^a~A)U!JGGu<>r^>(|c&^(so{t$l|$KY+9DglIOKa)U>OPhw(am@wTkrZZRW!B;>a55;%E0_-SVQl@!Op+#*mz5);wXxI#i5iZ643E0tOxOe?FgpS=Js^#PL%{@#Z__IVMCf-f&fpyg67xU}=FH*5_d*iury)rrR&4=1uTkMA2U}lOsme1ew@$H-j z8X6Q*Q;bZXVddzPOq9jsvCf^>;XX$SqM*_*8j4)-U=F2{HJkY3 zk=Llr4?Yv4jz5f5-~EE@4>e6FKGDu2CS!c6f0HBq}`}BQ7%RUV26Qx$yKi`0?8%0NnN9iPYA) z89%WP(+(L7z|TLd=B}GQ#pUv$sw&srayU;s^c^+TO(e^>iM{#k#~V>(3+JBvB=di5 zx)-yaKZ~<32u*;83%el}MO8W!O$ZQYOvhqqddC9+fdvaOAQwj;T|r7p z_c;rwstVQlV2eYrgdd@%`aMv*uKg3c5o&1#6qI&q8y=s5$G<*;c!!hA5BsgjsV#L7 zLV5;>RiKoE7z;`U>beEs?bvg)Cjvzc_%~Nart=|CP@lweD^KRm@o(WUX+YQYGZXLVSO}0E&XDs(kk@xY}0#)D2aIHH>2w6PRlHnWL^9L(1qe7^E1G zMXhUl*Ee+DsS+{QA9-IC@U_U|F1=tq}Lc?RPApO3mLuI;)=n7Rf{jkZT9CHt-w|tji~cFmn%is-exHHuD{~Mf z1zU`hw4CCwi9!$&2u53|=#w{V4GW9y9VP~MABqYXfq?Fah2e&_JT^51jrQ3Y@U9R^OX1D*@j9 z^D_K$(=#`9;HC6Wo2skcjv~vHNZhu8Tzge{t2v)~^)&L-E3wQCEI^I`Nw{oo1Ir!^ z8b-&ScrnV@)7w11=$Bp;&&z52EE;8o-To(%<=^2gxhDigWzgct=Kzh4GcahlgPKa2 zf?OY7k01ZuiHjnHyB<%aXHV@~pU!d@c9S*(ma3?T9_<8OgV#t@pySaiyHVz}lZ5}$57bTupQYG!}*Lls^EA$ z-O?Fm#;x!2`|8}V+E0kGa`4DrWF$uOU(NsH3vKvmE5bv15O72f^&JU}I<$51AZ zxVg=;k|YovW1+6rgDkf+qqrOt%1KBJb}+R%MG@q{Q&xmxCT_X^Z* zO@0AY|E%S+n}hlC3`PT|eew+UgxJRKU!8h3s4Bxpj-dBxhx5hEM*tW!dLWOz@+fAf z4M~xB{i|1*{Y=wd&tx%i;#J3S;uXhn?y!sTxSH0c_kVOJ{l~PQ#sKv1@3g`osEkW- zGG+K(?AR8ZCr&wQ0?)j9e&ac^EYl>yldFJxEDG3g#SC{2=R37osXE-o?eJp3b?Z2A_q87oW?6lV6Qor3NFItl)Kl+)?IapH!zkW6~=g?AoQHJF;( zV1Vjsc4VsgVQui>pkv8?g0SXnN0&iX5SND^ zTHYP9nr)Sh8`hVkBd%fPo2`?B0Gq#wrpM`R8#}{6Qkw26!bT+SS0o@<4ILr}|BW)F zAz?9hh#ZX6nq&6{ZrX(WX2%z=O2z34b8%s8FEO?P_}P8OA|;_J2yn=uO~#bJ{(M?< zU0;5gNS{9LR>?sCQ4r}B*Zig2THU#_14dJTUcHQL*A@w!C{MYi6Czw%PY0cTmzrhgx8(Fk3~A zJtKvjfp#)_nrW!_b{aVd;Bo7F0RoElZGa#OcxCP6q)F2E+!#A3v9>ovLEpVo1btg5 z7glyiImD_pREzPL@pA06V7^yHRT*&MbFDwqK3B+GH#MH%H5nw4!^ZTcZ)OsAoi&wh zZ(YOv=T0XfswuL+vfj{yc=CP~-ONCIW5Xr~LEHXr?;%RdkQGn`s=X4=y>UU~u}^0&BExYxLwnrBl^49u zu`?cPMh*fD8qynpyB|K8^@UH-cR+Bj=WOsWZOnbFTE3IZuREAe=G@$9O#bNIg&Z;E z;f{AwC;W2C7X;It@FD+5GzVn%j;v6a~&Z4{p90 zX3m7$Z-?7%3;uuBEbw-YiK}}3FP)X2@PILeNP8GP0|AM@mxswvw@VNP5$V1!Sg?kQilCR_IcFbETwM6FN`-~x z+-XKhV+hW{!(tMitvIr1We`t$=RiVKtoj&o0s-w^OC+4 zZcWo;che1j2lEOkvcT%UQh9&Y2v+}@#`$-2JQ1|Pq;U8-n|bZ7apZ5-m%DN|1O!%= zBvJMp@FHLat_DIpP5~9xxa~-SL?mo*d6ms`93@8e#Ac4wUvUS}J1U8f-VV?3y>XKd zxjaJhWhzAV36c`N`l>cbw%Sbz_-mVwGfCsSE+>Gmp@vltp2D)*4`t=uN3!#iN2%NJ zH@@l;YS#YA>U)nt?ug{2AfO{HS4eo>3e^>Uj0S;%TfVrh)n9Cb9 zRGADCKiq#7n_jzud(NIpuhcmHd&U&XKe?Hr**9|Zq`^cxnsTvOtyZo+c{+!U4lnPj zh`xL0MLW^upg~tIKv8Gpb-f%Shh3PkppV>i`nBITtB$q>0qQ*3rT2vp#=~$hbLLr% z(v%BVzM;AOaL_v|C{^eW_*k=fj;^{y6>Qy{hp@BZmf??LmAqZ%gxZ?s&!!|vobv9Y z!^>b#uMda_WHN5 z?UkBA-W44siXs^~={)z#lkN6LujAg{d&6+{ilN#pcN-Wrwik=mJwRN7qw&1TiUz*= zWGO3_<~BP&CdR?%KV9DVIXc?Pd+)!_=rJRLWfhg9r$34;%S@i$o8?;`#%2#bbE}r` z?a8S2O%!&cw*YFL~B#M z07w=SUS~3D7!Hu45rjZZyXUn>G$nN*LD&(r*Ka**6)`%zMPYYFI(7;vX>FTi>nvh$ zHyn09V~3SAJNEmctY&Su3Pal)iq7i$qmO>vSns><-V#=s^73j154n)ctkbyf{`c6r zwUGDTdySiK-WFE*oV_9lx7Tz&K?uRT?QyA<2%Aad$;t2z3jjTkga+l)A{n2YaO!X2j`%J#K!9WL+liv0Fj4j()=f)Ae<&c~0B z;qy1ma0bDM!AWhGuTw+}qLEe{_&bFBy$HgtjvfTCDi-qd!#ASJ-pDN9R0Mh)e_i9} zyf0ceK$S0Q?pbTgti_hm$q6QQp>W?)pYxv!U4gM>o?o9gXpAr#TK`>A;~ji+=Sft2ax2OYcj5f; zA&S4epJy)$KbMn9WB$S2kacW7B|+5{foRrA()m>F&uo<7MA7lsbTCM|8KNa8vJQ_3 zpI>`fyQJM&;`-}P0>B?|vuVfgn(Ju~qXwUXaaT0`$_<}(I3j&-*z3B%CBGX{R~>ra zcfaQticV~z@vL;K@CtF3 zw?Gc<(ERGlb@Zl3r(I7+Fy+Pzn0W0u04R#W*XP{Is~^5cN=izz^P;oT=rL^^A3XUf zPO$-3Og$b)P=-~KBwqUKS&Vy0(m7%re6;ypp89DPCTsh9^GHMub`+u7tnwHLD3IMV zk#%{G^Yy%&m~rS}qM}>QTcRYgHviEUxu{A?%2>8^W#eZ#pm5sJ&jOH~8pEdICy{ok z9lh}6ulg=R1Kfc+^k!-j1eiRzmRYm5aoTBR{QPq~-+!Ob9jb_X^-I|IqX>;gh>M() zz$ufK^60sraO&e%bJN?W;SaQ2N12Q=r%ztYQx|^78B-Q9uFrN9Rp7?A&fxt&CbDE} zFI{~QBoRYq`1vBkL4JKQKjuzgMpnlig7qS+FE}FON8BM~3)`5)Pke=T`Qd-)%XU)Q zJue^_$QP1m5Sou|?vg6jKli2P_QS!FCGgyHP*T!-9Cx{3#tgXWCRn{1o_Y#Kj_lN~ zXoe_?WM*dK_xtg9x|dMhk07+u>ihApg}8KecXvTE%<<9qoZ)TG`y5%r&W}HB_50m9 z>)KjNN5_NN+VYHjAxB_)?T7k4+%>dsA6 zz9*8iD}ai|&mN~4XKjR{xx$3kE3)XXG`4SzC9lvAaS$by*Z%pO@7^59rsYW-blO%-=I{uM*|SD6{p4*- zKY2S4j39K{Q}}B~csq$<78l-nk8Xmn!Ba`Kv!L0rti%!eD%F4zxteJ+GFZN{eM71! zLR4bpWIatWNl4ZxWOqGP%jc3f<}jjqHJ9)5R#~Xq(%d^TX+qaT56ZGk$uI9Ueva!i z9DBbBB#t=($?BkTiQ56Lu!ZPmxMFEe_$i8slYS8x_=#`3;b;vaW z_!I*+NgLTDiM#T$iQ0%li|7L#x6df(BPaz_1R#5tERiS(C?TwZ+Y2i==$3c+W!7GX zju77c#g##l(PU~r0>O!m80xXAo(@NsS%>u7UC@0emhCkPN+v2y?A^!ET)c+i;q5X8P7cP1%W_-#cSRs z+MYyOa%3d7_r?LEuj2QAoE&p_(gtj>zc0A@L|hIBm` zdh+3{|8gF+`NfnJ7Ew|dbX?3BJCypOa_WoAsLL;Ab$&6cf$v`bo{R52pM%es(O8Go zVdbrrukijOAF=w+HT>tf>xfH>ZMSW`xdyfD58G=~L7>WGAlViiH^xrv!~0)e)A;=_ zbJuX?`EOER=SGngvZAlTYBiD5Czaz)9>qmh&0y4&me11i#f=X}FuHhGG`Zj3^@O~F zj8}1Dks`AP%+B_5*=1eh@ER8EiBMBSWRuuL7|97x6}eoAQwMFrZt?Kcw}%*Yo#evV%FC#i#1UoFcpqbS(e1 zDu`@Bp9A=sSs&B?vSTpEc8;B>tPFfU_}~M`&j*VI{C;pa;Di(4(o4a-4+JE)hs4B0 z%w{ud)~sRd*e(n^-H(viPZ0jEp}qlO^LEX}yPFtu6;%+GS_8DLJDxhmgTeVT6^mO> zWE#$O>>WMWog|kYbg16~h>pk+gdM$Sk$lEF{Cl+%LD&_THX)x`FOP5hym(a_PL~n8 ztsTQqm=dF{LF>Y?x;hv^G;u=v2AfYm{k;V_7#A1CXP@59j2WZCZnFhJSkt~nd}qPy zwjk=vg%vI~u8ZT-5BecVDw7T@;;^H0QKNiptgzvA8*n!m*|I8uB|m2(8dQ893CW<+ zV?Z?rpSG3ggvf88O=g7?u2@IzhFD&jIT3?VCO*ZDstAmlUdVtkNw+tj~*GMb$)S^UHg z?R;WhcDq^g*cpwV`(65EGx9R;+ZQQc*pxdlb?Rvys$c1j9diVsmmpO25`;R-`*q0w z0C-g+X0(weX3gCIAvyB$5DKi~Ylv8jHefrMx)MV0mZwqhI4 zeYuEhPH2+r+k4W!=Ed*v`h(BIwWmyLxBZ~Zr?v=StKh|_8Zl`kNzHmA5OqYZ8U>jK zB^rmQjifWF`UYN?VkR1GZ98zHNBqa*mq6oEF&G7?{e7)-Nty^kfNQS0fTx~$4OLb6 z`R_;Rkv@*8W3MK;p_C|J9Xn!kQ1;5n8Re}bwV{|T3E}5#%T67M)f|i4Tf?T!YZyOJ zQ+ENdHU#q!s?z_8Sd&0)jfrGy>jd=3vyP+3#8G^8$(;oJew4lS`2`_FIGc*WcNPKb zf@VjD4lz@2tVQGS-zhlZm3w&m$jh1?D_pWB0B*OBb!+liw}|`VJW$86_9vk{y`8Uybvo!-N0- zeIx$C8Av-Tao%)zi}PK9x`+{k`x*qvfNGBe=f0a8Ot4!~9X4ptHmB~5zUifWbKBD# zcHd1b+|-v-pSY4aw?B>1(Dqt8Ii{ZEn0kiwEZ~gEi`Y_}!kV3#T=V+bJb%gih+_Dg zRlz7?NV5|t(B=eH)R4%rIe&6M##$6r(4B8vFM9Nc^-I9nHG(tEa4=u;Ay@H=dK;Gs z53`u*Ok!S#>PS(mabu=V=(xPRuezSKkAK4G2QKVz*>G^g5%AMb@XRxvQoSY=6hKiC zq@+N0c6f7zD2mu@HX0hVJ@fk!S?nhW|HmNywFE&?HIpy`-A@wcefSnb&bonhAH}zj z8Z|}1faA;YY?;HlS+jMwm5~$tR}V3$^?pU-K5OZ>U^gO2k^6-^T2sjLt?`i6AHg04 zf{I#K2gTdL8Jc|1^m~Z{f>}Q?y7#6_HOAw!ry)xwK*i{DVssUO99n*EcOF7n4jL8w z{$L)$gD2;;-l!lT7`i@Jz{el|+UWUvlE|l@+|3CmgfDBh z8+#Lk6|OoOd>$O8t|fTO@)GfTjr16t+u^c)zsS5Fvgy;WhQ2+@U=Qh_$_fjgyx$K& zfP)Ut!|w3&#YcURB$b)>EWv1OGOFyXH)6KRn5{C=@m^B0yJvCLb6^b@-nE4KYBQ-l z>p>M*_`w z&cO)>P2#*snUq#HaMA;xuzE+(Q6|b^=e83@(4Nh+KR^4^?Y5etzncl$db2|}OjV{`5|>?mAB zZEYozBw@8iVKc|$-Zi&cE!t&lA()5I+Th0(V@6O^jNSlZKnZ(a;xkLgrhk{2rmosd za+(`e4X#IgUXi_bVy46#uKN085|*yzsi&Tzy1E)kl2B9?Q4~qb>A}=yq>pKywaF&GaQ6F_qZF}l;j1Sxt9O7lCy_i$W@PD&eY>4huv03 z+uV&BuY_M|N~spA?2mulM(*}9UV8dxexJ9V;=&pNyK*nef#&0t$zx)3rF%kO%MW*93L@)5MbJnO`I}m2_ODB zk<#iI+&*Kw1mT_#1n8GuO270{a#G5<{>?L)He@3wj9(V^`y*vW5h!d3D|qwgonx7o zHwLTZMMc0U`nh#%&<5JwEzO%Vd_7C zfJ100>mLdpOt>-PR&7{?jz4GXp8S-7S09fpwe8>*Ef7UG@<@33Ww`wE_RsH3Y}^Qo z76o$}Zr&U`mXrjEiEzdC&<^}>)TiN>h zdo=7Qjz~MlT@+ekG#qp%k*cR{F~fnmZ^v_rMWXE%Wo?NF!^VPf8G`%?$UB2)Nja#} z=}-K8l70HwJ@*-}iH?=arXNla_u8 zvfQ-U+q&gFdiTy~wM<)Z`@Ps6KBC#NdFS21pybR}N<qJ!gM^3?zh1lF3Yvdq3Xi=~HrM@3Z%@E$dzDU3r{2W?Rtvx_hUC zSDx$5Ip=R?={IJEe)uZ=e#^wyzYS8tqxTNtmb+IVgyi=bt?+tOhM%~b)@^GqW;Yj` z$#q9yBtOJ(ISp)Do`|k1Ec&fEgU{H>iaF_+EPl?rZFSK56K8FW+t`l1ek*&uDi%f3 z(&QsqEu+%89M=IkY5vWH3a$DitsUuP*t_xl=4k%fZ6vP}3<|W1g)6%{X%>~sKlzKQ zr2J;CdXe3QE713On+)%K10B*DPg*w>1cDyc)!ESi4FR(_bVlKCrkP*7Zn!Jv@YHiZk%=#4cghR;^zqE#ir zsvb4%ZYTMlJ<0mbORCNv)uA7;ot|O$k0;dVXXc&%Vo7eg4S8Ky`p`*L15~G5-oT#T z4*$<@vU1+nRb^Dw$eAZhBHG^gd?`9jn~b}CW)iKs#Pjt}E1C7rCY(+W7K@QC9a9;1 zet)7&X6F351wE2PWCvj25Hn|Ak`%U6Pi2L~9)VnBMFrTy*f3YM?-JO@T3exCC%6%~QC zP`NO1h5b^#akfBJ6$T7w#<^oU6BlJ<<@9B|@Z*gFmP z3(j~3vzpdmx%yBZW5yL_A~D;E(#SEtG~U9V4oz=RJd{urNwZev6y{l}Y#<#-b307G z>lFO{;P0{!0()Ex&Y}_k;u4y1(*tv9*;>KTvXX_qHMq49#sDc9J@soAj2c2-i^f0C z_AAz7E3aVX(7phyoAxWKzxaiUiVAeUKj0)OC9;m^YcQys|I}TyY~2i7c?EmgX8_PY z-p`9yO=8`mfGm2;jxBh8`oxg>)R;Y+rfFQ%aa@gKszK$GweKAgLh@jAjB$}Xc%AvZCDEPUuR$H8$6%J_QNok4Q}ju0N){!VAM*J0cRIp+eInKYsw8$kgc@1u5YtE~696d5-6ZqmUE%j>QZofgDoV z!*G5gR)j`?|0&O+8;eL5jkhtkzGx)FKYa*Xu7K`maWVYoKQLfG!<8F=-w)Sc4^yW` ze5yuc$r8BxZpg}l!a^u1sa?iwhRjTO-~l-Ay!y{qSXjvF)vHNQPp3nN4mEzu%nT@% ztzBEUI^Z!h4UQ3nhXF?oK`14rad#mKOBz>=BSQ>^R96VBsquJAoM^75mCv(B!Rg}~ z-}|G9NDZfLV~02l>4#S?Bj|M}wMBG}MtJUrIt+kP?EsbIkt=?$`#hl{Ar_I*c)}{! zrpfDQ!=9KtHW@yqE)B9cy(>MO=VB?YP1rv$X=n|Z(INfzFz2f;>h6R!7LnApN%|ft zUYz_Dci;U601rPjjwhcS7qpz__Y)Iy1{JRA#r1^o;}}0ac==G#eDe8Zl~?BioO;&v zoZ8{=WnkX8r~?Im?PA8`K8|M&8SnR|-Feok`}xO=mdu}%j;iYP>YGn~o|U~>cKm*Y zsAwnh54{iurln-V5qTn)P+p)K_E0Y%0Ed$aiUgznddCbVJPKe<3 zyT~qH%dWze^lfu4Hq+6u(N~3n-C)A4`S9w&H@@pu#N*m$h#TG}4)5+fUj2A(o#*V_ zHkk)+J%v{m?5Wc+HIUP95;a{{qk#*6mx*fQqQkYz!?~nJLDMu=JTj`D5`yHE_MFu3 zKGY!j*bX~7X}6(<8C8(2rH~#Q z9;xirRg5u>m+0D$w_Y!2;d~D+uamESy$Jw?3()Dr!7Klaj98wVcmhRle1s@3DyPJ+s$ALzRolV6G@hg#<%fb z0_n_$qIy(}jsnP>0?3Ly?ZNOz9$@bJno;M!jeoX^)Z0@SNAra6=3iYGe6yer%eQ4P z;ezilHQ*?uJH2?8)PGHjays+Qs?oeMVlr04(M#e2Y+fZ61q0a}p)Q^9vW@ ztI}B45lHNm6HPH0Y@!Y8=)+w0(2h*8wAQ(FDVWXaoFIN~bUzf6k+GXT#L+SZCQX88 zpM{w-AxOSGzaOSegM|y>;fDiKoeklmj{^A!@42VZU5f~nl`wQDj2;~z2VZ)rcA4J2 zVQKB#Sts`H-OI*}8%a)1renvBRgNsj2*SgM|1Rx{V~7Z1XI7)hL5Pg7+F!RZ#7(2* zA*IB%x3E^-ra)qta`uP(nwuC0x2;4SK0|Ar*KLhQbdE!KZmGAv&^95Xwt~q4UT353 zU#;h34KIuD!J8P(lt^|=5t|Gj)?2SwSwo?11kFl}AZr>3hYi?MgCJbEB8^Iy0h@JS zq~yVyr$*)<++RPEP2Uqwd<=luY^qHTN(sL$fjO(_{K1SGOXK7B+ta7B&J&;hfH5@{-vCRE7wW`Qc5&h_g%lkY#?3wxVs*5 z5Mce*Jl_0ZHm996fax296C(*dM-tVlE8C{rOog*#-_bJQ9pD{&Wj%rCL%)zPp{gpK z&bgV5KfHkq5j_?Fpgfg36B3m!Hu!ckswp0q3`~2198&c`$SqDH_rH4g3 z%7{ryB{Ry8&D6Me!5l&4C4dM;`>GxUav+8W6MibOg&jR=k&(Hv`*Z{0zB+c{!mZn} zDB+D;iVQD$5I_}@BCnM=b9f}5L56RDG$|UTE+f&6ko-Fk?K_%SINw8NW-Gq>HE=A$ zvYId5bLh{t=m*4t@7PhoH8=di)VHtTomW5Qw;8t}_sP;a95Fb(t-&+^_BobF_NDaQ z_e#!~4=0W?kx~*xZuSvKoCK)4#On0nI*fa=!-2}ZTiH0}R&;;$yCj4{tBW6_S!*B7 zGMwbD-NK@`zMyc!HVj51$6bFB-Oo6k&Ay7THp;refX5J?$tx$L8Lv;g8;{k(x;g9W zEZ1>RUpCHP67)B}$4kM6ZT$YoODL*Jvp$)e{K$2*kBQ~EpP%N6p4Z`VdH8eM-z@rV zDc3)J4gF8*Q|mn8Om|Yk>6e|#j~~=DYJ1&Y?jQXK{ZH=8JyY(evwpa3?ypzwQ*iqQ z7DFR)umx#zhkycE$9V6slC$g%E~O0YjCQLgAO&26YRWPX2X8N_;j@ejqZdV*8lz0nzQSkTP zqZ#>V?Ww$d(lh@Rek5(W!1^WNKJ?-<4c5fYZmQ34`CcI}l2D z#~p#tx_u}vhS{?rCkNKAhjY$>#~+6Y6JW#$IP=Wvaj~KTe*G1G_yH0Uplw@t;|++5 zgPU#wTljuhjfTwzfBXUOzYn8ERTG3UF%TOYAPyVrQ%~JS$gEO`Wux4FO2ga3W6;u!hF}E^yNqrgZojVZABm)hc6nbuIm;Z zdm+5_lY>=||3J(L$lnlJaq1!^n`U9}ifO?{!}yTO=Bi6cH}yeyvT7U;o`*1<5rcLG zC-w}DGqg3uLb9|p;E8=oyJm3e{owMzz%FpsV3_mkO|Gkj=a=;C59mm@r z{25Z6`73sE@p%L5En|vHVbrxRVw@tG=2;1R1e5^aE?7a<^fzdB`i&9vJT%z*pF{8d z=b*Wq6s?<&x@#%!+#PsriNtj5kK7&^$=#Y`+5sWkkqEokFQNqmM7$Ldo_8SP7n{|i^8mgREW@cx;op!0^#Mx`E zjw;;>(P8?BweJ)l%3>322%#dS#$HM}j;m{sgZoih>fxRD<}mZ0Nma*MrT6EaN1o%> z2fwaW{$M;ZaXRl$zL;O9)lCW=YS_y>|8oT4=6CO@K@I{)sk37IX>71N=yUZsWS)Bp zXTI`C&3X~$EsX@5dv*rE(XlmW#9LYY<ZIVhmbkbc;c;@CBRIc0f; zNL@$QGIx()8iNf(|# zOhS0d7DB+Kk6g(4caP!un_gzc+?si}7yY(`rGGA?&&b|Y$Lfk23^kgtW*I@g+dvCP z{f+?*om&ZEqWpwybotX(MGg+?){>MK;m>pKv3)`&oLv4=Os4-$f>0iOo)Yo@D(ut;vKcenXmut&$4Y9ym!mH^lP`B4!2C=#|K{yizEc-)I5i$FAdB= zh2?hUZ)nFupPWnQ7TH{R!dz6f`kgbhjKUj)Aly*YlGj&^;qJbl2mfv~J@N&56GJr! zI`)>V{O8EDpGYn(*uwQ#VSDOUQ7$1A9i}L1yB(IJoE{7(2H5*coR8Bu~rA>d!k^7t+$w zNJ&Xy^XAQL+qR8n&B9AbbPVC)7(w{|2+FcG4Hx<^LnH)SLlJ)AMi4dzhoaw+Ksbzu zdRFL%O#;>G20cXMiRc6s4NHVI_^w#O_hvs3E<**9(Bz}+dMZMzy%>#-^3tbkE{j%H z=gXMAumvLr*CFxI$OyuN5srk+es$_m*PRZ!guCB>Iji8=FUSF&1m4_NRtUkaUAwF5 zjy~(Oi24iAF`=e6(f8{YbMN3YNs9_Ue`YY~ewZ_}BVT>qj$XYBdG4*57>q}c7v=wZ zf^grXu&Q>l8e#L5^61()g^T^R3%gMvuP8JFnksc<2)R0TB(`L=c`$gc0$v7+5K42T z?jq-(Z|Hf>b>w>^WSByPYITs*=Va(}GMnCikn;5lDSZ5FY$G3}oul(%=|g?6SdEmF zg>JZaxtk{H(H$v4s6VKpWj2>YoDonD= zC^THsf;CK%%^E@eLI5?yby8jMMG(Dd#7~8c4m*FQMUTue!K;VA{f-h&e7YT@66XEW z!vA1xs+S6{1G}m2@vEf5gv)0@(}T>hVYcn{din5^Z~0-?AAJ5x5prM7V7I3jS&u1W z)vDL4{ym`kRdj4U97i28fd|9w_EAuBYO=Qxm2~icC*>5Fh_FKtMaMqYJR?izL*gAR{TC3u3>+;ts6yaw}uW ztw`YgwWl$8_$wHKNv-=d44ZRNcNL;1M4`2cM^6qv6+u&?Z6<730-nR*+gT(NQPHTx z!57>}G$mZYJ@M-2O>2BIZPVCz=6 z;DSc=u|D|y@X05E=*C&IVDH{Q+C*IsGU9d~pY-VaB#VO{c~hdv`8Q`1CFDj^dOf>eKR@CVQ3HEiJS8U*3r|JD;;-^d8UT0M#2!QOKF zYfJ)6Kps#5wak7}O1$2{g7@;v&*9v$-NJ8hAI5e*o=5(A4{e_(zuWKQ`FTI{!YP+U zeD3|wb(s9b@wnY8k3Tn;gtW3IJ9kszzltD~GC(Fbp;x1SpK-p#S3qV$OV$=Pd_Pic zUZjX@6M3{@TZx-Ny;?DScHNQGHqFbg+o$n;d>0JXhQAY`K;~TwC|Z$9{=#Os_Rd1; z)y9`pqwla0g!|zu&8K|R;;O&r|2dI`su`2PO1oCW>D776VeQX;Y}uI4nI~nkVDXNS z%17Co#?!pAGBSe8Xpj)TVj%`qkBA^Nsd{AXD_TVD8$@ITr4TZr`cfzn)%OwEy2T}I zSnHB)YXCOf_)#&0N%WbeE22eZgt4PkV8tFL$?1?~NU4Usb~-Qu(JvKB^(dm03QVHm zk3k41*KEWq;YnXwi7W!q={43%5VlV(r)5F~<{*w#7U8C`+N_zqu4CioJwbnyvVMoK zoSeXX=&&WyvGs5O+@(GS_RV0yk{u1Ut?4?dD$uk@-?s2zEB7LFiB$fJ)_L`yd|UN? zr^_8vSusA~EZBMQNq98L_CC3zem1RZf&Xw}*AV{LO~n=5pLEmvYHhuiz>!<>xz|rg(ecyi$3veXc(G8I~YczyPze`)%QW5=nzSMtnvrw9E_N`)7HJOzu%i`#4B z%2%&p(X)>=m`gBJ4D7ItfgNh59$3AzIWPQv8J=7pnp8-%mXKmA=BdGN2PX#srKA#d za~_6Wg|ImfUuh-Y6T37?A0vgqDCp2jvijdc+m25f_>${s%R0)5r7yGT&uq-1;T*Ot zWgt>kK?ecP64)<)C9h$n>`xD|D1`Qne8O#*@L;D5ue9L8j{VbeR(H&2=;#1*Hf0K2 zd~tvvtPd6o+;<=B+6AlY5(HEfc=5#mYZxTAVPmmi0bFwp9Gvp+p93O5zyCgX-Irf( z8nrS-QLtLAWMySFT=*E8495t<|0hsZZ$S8~H=dD1f*rOfvO|PW`hIZq;E}xM!%5B^ zOb{L^2~=68AYxjAR-b2lEc6X{%TDCWbr;Yqv38D^|2FKG7+tcv zl-tkh$KQ*#)yny~A8CFk@tTX&NA70E*3bx2)vOVdxt5%{Cjr$)+TNGm&zg$EFQ-(o zdRDDtn&!c!d04&a`y)mWR+M{bkrYSw%yd?*&91lX=u^5;oYOQ(I3kT8jFccWsTv`q z(5t(BC4$BQlj4tvAT%oe+8!;9sV^dnCJ#k6tv<+*ovDJu8zI41A?(D+@Em9CGQ50Z z`(c#ci0b>LA?*4_p;0cQhzd6X@c>dbTT5ZP)|?D=53LNL6nm8+c9_X);msgz3y}E z&pVi!*tP1|g1>ff&kZBEbHaD*-c$EHs3?M@IL8qq2LTjaVs(0{jBdI;%8`VxtXd*j zHJLD&E%-fdwy#~m3FAK}`sCZ$H2D%L%gZR=o5zQzUd#EPK93_QKKKcxMA0<#F!KvG zB~rU}B(+<|s=rJ3+EN%PAz%(qx-7<)*CqihNCzGfha<|vF6$|)br>%RFvx+CrfxHx;yuqSJn7E zdTHJPe^^+$?N5@;Yp4uieij8zgp}2J28F}b9+Eyb7VWyh z#%17bn5zpL8|cACdT@hys!{b!(noU&$si9iezIgXzta;b1Y>xQiM&Fp+(U{8zRz1B z2T(>lJ891ud`gn2X$#b)K%JAvx^}lyQUb5P4vm?n57hJw1R#B0{5vg-A4Hrf0u07Llv1d>kN6lwNrV zVZ>u^j>l|A6FLS>Vsn+Dx)1WAG1(BQkxT3~ z_S&U{KW8oD-h19)%htVUK0h9xA6>7xAya@Bz`s@#X|LW6SDhMhU-x5gc_Al%dKb41 zJcZLc^sZMPHynKPK~MaCg$u4()}-fcDtI-)qC9)8;|5_MHmViE9FMLTQ8YLH%3O*o zL-W8g2m`V941_5WO);WsZv5_Sid~JUZ_7X!648VaRl4ze_u^f@1WREVz9<`I9hx`l zT7$u-!|a^uXP$0LAj3L{`{qQE7sPJcGRlj=eH`100?)Hu%3ua}7>C(d`yNIDgHY&b zYes@E8C5eO4SovLJT|y?xo3RUj;{D+lQS69g+q8)kuc*##D1@NxC65x5IkZWyBUBjkHnL#y z&2|2M`B@(w#@^I~q6kKf?acJQ*YU|$i);NZgy5P>2QsKfYySGVY4TqR0aHIo4F3dD zBFmkG9iSp5dIa@#U7}RF!k%~iy1?KGKO)Md8L|4qHzt*8He!4wVb{;s;z-iN&+C&T zlS!4~=ikjHjdZwY{QH&#n5=Z$)$>Nk@~W#m~M`Q`7meD>`!w1cEiO(p{`K7KZP)|HT5$6R^1klQ?p zg65&+R}K}a(G~`^HV|jk5eRmdDlFgQC9k~UJ$RhW$dJ}Hk{yA)XRcGQBFoF3l7`=> z{69Zr*B>7P@WyYedFrMM*t2CFilXr6pMUc8Hl3wK8u{Vyy3yQ}^&zt`ZNJow?Em1wQGXB5QSTVSxIqA4oE=fq!; zO^K)ayELmh{gT5Q>(?%d;;M1?vuAf;4`Q)eFpV2b>C1r#zbK!Ixz+e88MEQK)wYEx9)cEhQelQRB*xqG(j}KXpizwJi)ko*|2kPvD$7kS& zMZI`)<_Ko5?G(JReYkSO9NxU)!+@ejQ$o{WYXNjf#-HWHxA`E47NZG6-=U~UDM(F2 z+na^9dJ*`7%&$HTjE6QFJ0KFIur#kDTT7a8cDp%P4Z-L7wTmQc8xF(^8+XcST*b3= z6HCLYA19p*Vgn}p%%KZ~A{v*p@d)oyN&<=G5=#MYY{ZkxSf)};5?^vH*D;A^?5KA= zciKNMlQO7l-35*kJoOYj@<_ww4#uy)!YQXTT|bsAS;Beeorle4V{N#s`Q z8-r6Xg{au@YDY>c)~IhZV;XcCs?Uv>^DSb-!hmOpBL>;`Wb`3toO?uq`iV?aDM#O3$b`ub= zYz0~}vRH%7OTfR+IApg5JltZVAqd15U(KFq|>QXfJ;-vuNTW@GT}TPQjb5%J+iV>JmW zy089ScTZvRFE1Lwx!=!2xIAFDz`4WV(vx6h@9-O|)wX1>Yjcyx7zD%IUpw;4 zPpz0Z<+nrAK!hmw304+VlUo8oLSi4bS`(OJR9Po9JU}#pVY=WNpC5DK8p>S3qZ9;! zg!q1JF{JW_*TFhX-~plpj4=4Q(pZkAY$auN5QPFkLQG$_$uwRsb+FDO@JMhdaDvUx zRng^GT`MU&nB)!rGIM)_W? z&Z1x2^P8kU0DVlIQFpiC!`F-~U#jDD26Xrb9H(%}^?qo(lVzT|Wk4H?$Gl}KvJxO<^Sv!E}75AbEdMpFc6)Y*}OAn z_C1$2smJmC8lBuah{92w97Kz4y!ZP@Y|0KK9cr7}lGFR1LeF-C`FVrJ&Z6Ms$&ic~ ztU2qMbm!%@`y~XkX3gS@tvW8h)29d0M`U!%P zkM1Sc9%qWcMdHqQend@U$A8Ed|Vzko=O+GFYx_G$3*k&FHiE&*a;Nn z1fnd35S)J1DU7@O0;H+7<8Dz-5!=`8V9(ZUa(CuZxVMNk3)bQD1itI*CtkzI^M=>i zpGfz9`(aW{M5P_i^Cly|DS>#zG%2`eXFffO%g~}LC?(*8(mSyNn=$b1fAR5re)w`R zYgcDcT2e`;E-e^zd|Sp(I=5CEqmG-*>Qx(S9dF*g6?d)vgaXA&myLcd>wXGSN)$yf zf7R2pY#mp1u?Zue!*xM_Dz6`2>qf+0F%`>?D?kzWdbXhWlk3paV#B&0(S~H~#_;O? zH$WEdfQs-OV-6Q&NjbROkeY}P0%>oCjLt?E&jE!5cEu;4=;uSZL{#iX>N>347zkHA z@LUqUTiAzdr(8)%MQ~@*UafaBpu<-FbKVc6#x?DnAs(8J9NrE&vOVtk*|0yN-D1ab z?!_oepF`xY1=Wa5>4|KAK3a*6_pj-Poygr)mdx9$&!TV223keuFm=rtJT>@jV$8Lj z@H{Tb&mV#onTSZ8cu>C2L~&)r=P^n@X%w?dB=Nqyo4K5ZikAV*;&NU>L8q7me&#Zk zFqGr?gG%3<@e{00->2`upbnvIRUJ|(0@6koGUvKm@Rfu| zW;O*3MmYOgabWK0kkI7OhE@lblP^Sh_hCf#w%}z<7PR}O;+p;e;-E#1VbF;f9eF6r z-k>fSOWEl>Jmsy>RxUt^F=OtP+~{r|mMBZ34NMMjmw;Bixvy$FIRO!d2WeAnkm`kE z0mTfO3uFU^Kw%~?r4!Rl4^twx*HwtKeXr3frwB!NLQEPWrtxw7hvM2xOP$2V1w1;R zc>FpZx%hZku?0@<2M%j>!4GD@{I&4PtyE|x5MZ~}angFAOO0Ij)+XwGP58YE&y7Ex zjEr(Fx;{J)v_p*&kII^&zG4zM_BUuo*EEf+>2FZ-@AoxSBaMzY+F$!T*5t@#VVfH1 zTZ@Uyk1VIwp@Pw%y;g=y>ua29xQ7{e!-%1a^I z5I#v%=2VDQ!>?ansS+i^j{>Z832YJMW%GFj#xQkOH7QUdAQ+w4ameu3%lRUKB&{Iq z`g_$h(zMWIF@x4Oq?4wHU%y0&BUYA#Ro8gC%QZG5#Sm@;qKaZQ zh8?+EUj(9CGqSL>11&B2w6@iZ4lVFTvDVoVv+5%=F%O5S@#J={KY^5l`rmmeA*0t# z?8(YQRaLw>)2e@qO#ybJ50AGJS0h`*3FFpu<-Er|&gd!*| zav|%HEj`@O1#IY-)+BidPwV1f?#hY$z3%Uzzeic4m~`<=%-fa9#=M&3caLUvOs>Cp zbH;~3>za)w#$R|pyIgHqysPGT+%nEeS7RAZy!9h2dZSidV{!*(eDNm5J_Cz#eVp1N zu%EPoy#?&UYt=Ov1mhoUPgI{0*176P#c-73>nk6iXltO)CX0#JXHRCz zeQ&dT_R6X<3NU6sXU_lh;Res=a=N&(_w`juE@xeL2AAA-VUzVY*uF77Z75@Hc1jOe zVH!1^-{!8XF4QWDe0>AyHZN^ryo?<11nbuXcN8?544gEoKj&ZGlao*Dj+AiwHJ|YH z7lFiAC!f}hxqolORT&rqELIb1cfO9zuJXo9fAaXlp9aojG_ZKXQzWOx0AN^~g(#`S zH@JPRHbuD`X*Xe5xd%0?2=DMtNJn^!GF2E!wzO`z;C|fn5C)OJh&5ONHP?@C0$I%IYZ>5@DKk!P>I!%HdMNr{|%v5|kO7ZUq5Rk?ZXJXnp1xk0;sv;9J(fizo`^T@KyyVdJ ztpVg##PRm((fns%@Hu1Ee94AGB+&G@oWd16PfHQGtzkdb%bw(uPA~o;N<>ZspE`Ro zsYAOrLC+2yKL0$BBe5|s8o}oaI7h$p4qSAO8>7P5DwLK2ZgT^D)Oqx z!CGyHnM3f9lY;=d8~mjWlY>A}QYXGO-&zkj2q2kmypQs@eIn$B#%*HuyM!EyYmbR> zVA|*D`st^?Lz{FMb9@y!IB(u+MvSV#2i|fe2Uv5HdFRp2T90Zu)vEqu# zL>yc{x+gd0)lUurJXL6=%-k78L@ssGKq@54d~Qm-F3LO={I%|l8swl53MX{AvB}86 zHr5nozMWhzIS4TQdsy{z3eC(-6A@6~cT?%r$SQSH+5kDId0lM&@DW!0=M?e}AO{Tw zBQ4LqgYFN1bySjr0P?U5;^D#P(QIJ|6Fl zmyGvlKYYr_TW zfJKiik7y+MgAGEXTn}Fw+r00&Yf@o$Q6?q6Y7Z@w;=`(V*yT<_ucMD1%}BY|gwt!p z?Qh)pVGDuG7Xn^-YFwa?n#Nmqyj}gHUe{hl0xk|rs@kVdN0faVx~HH1j1FDve%{4J zE{X~&k1BEyK#^cA4?oKIK%_?%*GUcnl)K8g<-Kbd+;T68j+*y*Ky%64zkOV1U60Sp zLmxjus&O6d5^LV)5v`+m;lmjKSkg054Ms@nLQL0D&}A&XjFF6d;49{DDxy%gv92Vr zRy+IMr>mYHC9l)1ZSC>O@0a}NiA`kxd5>+iwKErDQ%!B&GD z1n{W}=N{J)*FI8vzO<4M+l73$0V$#M06E&Ycss4zCS$e)=5e3b&o4jC=Zf>D@b~X) z5dt23{Pe2wt5)o0Q_f_%^$P5P-7YU92Rwqr%MEu7<=R_E2F~O2)4TlxEdF;30RGHo zLCHY?8D#-Q!QZPTo-=yZO%8^zQPrdmuhxjU;nB;%aA>6;n-aoc21}TE7MJXRd!{v5 ztVy9*kfLtY7Ad|(Gv13#%!H)4I*lW(Qwo^*=nLe$cNOkfk@`f*(ryl+f~Sj zhs=NjydmAeey<=U$`OM* zn0I)Pow99M_N8FxELL#5_@zn6L4f6te!$Tlr}gKb4VO6>`+Xk0-asT_i)K1sUimBf z(&bQg%~ISr!>V7%42tal~gHPvy3T2`F!o#F`rV0{>8uREcSgD<4kV z4NV7Xr#>iueh%fu4U`12eGN)na*e(iyLUxdH8rHZh<)-|63BNc@ zXlM-}jq$8C{fUc)J<5Gl;56*pU>O@{+&t9w^!>S9thT^2dFS1q>D*-;2IGkg8G1W^ z{k?)U6>io7g~es;*s+7tPrraW?wr#2w(2oX>QYD3!;`HmFR?P`?=&vIVOgUii4Q0I z2VCARYa&}il==HpHR3SV+%#kvQ`r(C(JVDNRDnBaUb@hWkm-*c|Wucy)hZu%8aII_<$zc=4_*RLFn?W z-r`&~ym|vG#-B;qh6PoFln^nbw0)jV*Uclb{~1lw&qIU=Z0tu3JQ3P{BP9qm8CiWl zkr}rlB^dogW?_h!pcIi2jBXJ=Nu>yIMNmILFoys9EfL6*0vIB6@`8z7L3k3!}vTJu~;cJXW2`9P)1)UyI+p($D5yXms{;^va7QYtdpfyFJshlBk>qxVe zqD#T*ZP9H1d@C+r=-*(J>c;JF_?tiH^Z}UmktF~5c|PLtPr&5~j7Lr(J8am?!jJGi5N>b7+JTdJBPU%?lyHJ5j zcVMD(H$NUNVfkKC~OJ{P9ASWcm9~1drYc74_|1Wj!t)g=Qo7chBIpwyC_48pG=7mKYQV zrCyaspBhtD&adfw{^MElRUzmxKU5qGnA}T`v zuA(M9|AE)OgW~drPn;SLu}6-? z2@8%e^Ii{Z3lk1=8UX1<&;W@iHlQ0{g}8PQS3mig5LLkgW2Te+?(IBs?ho|H*wuuc ztslaqqNWDcEV9xC_IgymyiU|PcVj+z^kM2hvoxrT{M zW)k=DDeGm=CLs!SDfm;K#h3CrK9RRlARDi|wjVjOSF(53^2j@Nh_GS>eETgVCc=dm zf~tbW0#QLyB3rF>+ZS`oZCvo-X)OKE_mG;}IK9$iI3hTTO`pfmB+xXJmFpTVcLUc8Ph#V5!vRqD8&w+_L3k)p zR8(3;5H4T79-)ljy6awK!-m~e$Lqo?uYAo_S3T3H_Ua-C|Jk{L(>|WWr>p*H)cN*f z*XAV5W(`N|(J5WHANwN+Z3a8*8X-UB5dlfi{V=N*w#d+}W=;g^0TF>|IE*BWIrWvyi-0*bSvx#Br z|8202yJ#<~p1GLS&t5`B_Li#S#+YQ9o&F9|mXN#kZq`ic$NE?M<8vOmxgk;<%@Ks5 z!sCu?hK!Wp(<0moXb}>GdZhIuj7HWXtnU|*5tLpfGR7iOg0WJBPmw!jf-Pf zS!|=)FLQ8GPIo|2q!H-WJ)n}}_iGqb$Y}fD#}L}fnkItKZV7EK zUgj#J(zU0?F{#*zu?4XV9t2I-*qXJLXiN3DSm=?oZ&7VXRkr;G6*=IoK=b?XmSkht z_A63K{$0L-^jI5(#er|L&4~kuOAbWY<>lqk!uENM_R5P^A$32v{$czb_mXN0GrB1R z=mll`bp3eNe)oGw<@^2lFPFUVUW4WO+* z%NnP)N+CKSa38$h$ljfXmRQX-Z=HMd)v5iXTo77 zL!}@5EujIW2q|WQU4`V(#z<9_Ja*CdJbmfcP0-2EVQ3y0gMCZpqj$fi{=$_7DBjJ8 zLuuG-06WT3d3W_0c(vf`r`pySv=ZBRNu0-6-r-|z=T5%jS@|5x#?&M&PEp?t1H6Oo&6Ux`;GK-~Rfco{-?w zsjIX(em*Ch0pV`O$FIJ_V+jZwLRcuuy@|ijP24NyD4-Mb;q`7UU{(_S6;D`ic%}~ zn4^~@+)og?{Vv)zVu3lr@2Bj5LD{Q$$Piu#QEu&YwUQD~QPtm?^pj=?JsRR1dj&=1 z!Sg&c1`QE}UVkNjuYaq?F;y{gLYEs+l%`$&SYka`ELPkh481*jDHNG=Au@$Jpr%CM zPkm3Rvs|;nY@8N5V#y3<&3LDV(}p#@9c?Zdk0m~ht)F(Sd45e`upc@p--z+QKoCYK zF&b$URiyPJm5Gd$$4~*vg`FrFLZn0x*mWnmB2dC~BQr-R zktzaVbYa6KEyRfMuH7Lk@Ja_J5uQw|QAQS3=F&{W7{i-{qJu6&0`lcb=4i~IWFG80Q z=OJ8|YvHVZ=kUYg?;0%YbeCW;CgJu4h?7}ceB65Gbv!xkg$C>H%-cyybT`V}fpO*c zEk)dZ*(u!e^hW?eBN6?@yJ7E2w(jmsyMb-lQfwwM#m$<^UA+3q7hF23D@YH!H-7`E z!$1ufz5Ox)2;?c;u;P2R%;=2$_^!3ie=synW7TIrv-Z2+aTS$fu$YKz-JJF(524fP z!%$7N$JMW|e}t0!LiVoT!s55SVCa3<(ssnaI@|DAEo|u1a9?yGNI5=}@uyUW(`cH; zKR^A;lzZN+deb-W$mQna@4#xeV2iSW5C{PlyM?H@DB_Z0Y0;rMXI^_6&Dx|>T2PA5 z<74aU?X>L{dS1Ln?SG5cag(VxudDSFYN zIeYWC>iqYZF?|t6qspUCkLAZ%_c89=DHInuYZ>o#U?y<>yv;bC{+Y5DF2LWpZX!k6 z&B%Sxjh-`m)-GT(QU2`tfq#4b#Mql-GaNdy`ba_ufwU(=S@`*b4=akZQIaO2i`o&$ z2SO^FP@-ayb{kZLHaBJ@HzJR4q=qFxu^CYkt>^`LXx<@+q;81()peKO`V(sVOYj$D z*IDLJ;?vU}XH7wC?w)-M&mKPotD)xHYjX%PI!U%2!dRAp;%^4>H-2egGnxF!*?h-U zSY#!!6tI)_xUloEyoFRz`#!m)g~be`gaj@YuU8#62`{Jd1ppgmH)b=22joN+h>jum zEq}p!_WZJt7N^%ej~sUFdruVwdiSnAeCegt|8CPJ5LNi!m$X#|8X2FFB(bYUAQK!y|ezs5hQQG!AKnDWc}Ok;IE8q z!+$UubIox{U^oQ95{p1LM&X zJqXY>vlX}8GLEFA1iEx-!}Zsn&8n5}%R`5}8AY zoM4OC1?Vu(wN2fA)tE!Cc4l+dZFHZx&k$Dkv*4Atm^w&W@OE z-1_JNk%PInL(!{H^b+Vboy|UdWFkvm`}Na6i12ZvLF` zDj%MCJ-N%)GgONwRo0ABT72Rl=AALT!TSY}?*_%=t=fdDs>-mlhw%LLi6{rn5v~e1 zg*inO?k%JsyO2Gbvsk}q1M{aZVA|xbx$C6+Yvdw)`l@F`>cf6CW=bk`<#KNMUe46& zuM~~Ir1|hmL5U}@pMB<)OZau}gP6?$@_z2D4LtwU&pbW(f~tCVT=xMGh?u@{-1|rw zcqg6C!1#B@m|j32=irR#i}w9n<3IO)$>#$2V2H~f(SjjEoF`f|Da2{{rpp2_{p6hvvmzc-~S^Hip=wz^&Gx)5| zwmOQ{B$C71+=5q{D3r-8k;juITahE1vtIVZS4Y0|Wskmp^h6O>RKQ0cg;X>u3Lbh0 zZoeHIj(`;D@Zm6GMD4Q29S0wN$T4#8zXbmSrj=u;56av?q|SkajVaba>+?@w@LTsW z^xX&P^`9%Tx2*e%jg(X@Sh4|WU4uC__~2)Vg48qe+5Y1jWdFV(j8^JLWBQ%8FPCnO zo(h4|tR1ES7hyX7dQ3yEMs44ZV2Lc6VtAK;wq^nPnA?!48Nmxh$D`jo8L!cbwrP3I zwgq@stwJ9>p1Q7Hwmcr~_?Phf`X#~)%D#m1O*K6=_FV~D-W&~W`y+aeMD#fs+Vux} zko=VPeSMFx^EHVAv?`C~IPI1ihg%O>fH*+@ z$?r9>bw&vw!O-+Fg^|=Z8sXJf#*vr%6>HbL%bRc9Mz?OQYApPQ59@`|7}y*pBqUH? zHUnMz6RFQa^Z&s)XUAd;(O&7-YZ^=jx9rG>)-?s~r!4x7f{M^Wn5RtcL8~@pSZqne zWI9kS3Om=f!J}tzGzQ$e57>|w=PlwBw~uahkOcqab8Tx;UuW9aMQ^RC7(0gD@MxN1`QDeF?WMn(qbqbze*%cu{7%{;Y>CQaDokYaV zE0IlLY6y-I_0|`Wy@Lnmd21|0gcEqA5uA||jNwb98quhTKqA$qM@BHJ_2fYg1>QOg zMxnqeJXGr8uK`UFMqgI?0)6k3vInE$$E$@N2^*y}Om61qm!j)|cYEA*r-SK$d(}YR z)wy$55fgg`n>Gca2Q3yefBYWEW!I+t(YKZh1-AWp2&F{zX_y)@Pa56T@9BFBom_Xy zWNtX=7SuWvNbWrSURLa_9sM+YT^ZdvUC0xcJdCXllJCrZCsC@UreEi< zdB$7{Hg2!_t@GI@qUWVYbj_0BQXwBoWez7RrORp1N-Gx?Pp4qYr zSi1wF|GOL(oKBSu8*B)J2`o(%AzA2zi{HURb1D*g;EL;tW^GAR>TZdOEJSfzRQ)5M zWsnjMgx&}AN{EeyI=;6sT88F55ZzCNbIwA1vK;Z+yzowy77bnvHO7pHHi53=`TBkQ z?XN@ca|4{RNqce_z$Ti>0&E8;FLV%V87E$%lUPYtv6RQThVQtF zC*`Z`mKjJ1TV+Rf(T?V9YjCg9Rm>-qHB9GX7Bh?la@k3HHq#X!CO+pTcFDH2>J=^D z!nQAFHTC6(2fIC>7aAs7wSwu>;q0?(9)I-F{|UjL|2GiwsG+R?cafQyNwL$%qi_Ck zcpEOSz;xj)Rnw~})o>cT8$LR0@zF%-~bY$X>XJ1$VrR+~-yri45t%brqA5 z?)P6!T<5;{itK1E3x=pl3{e%7?OeyYmp{anTO9ti*3))lF#H@yZdP4eZ9f2G@-UQN zb|HS*3k)<7$h6jw-VP1$E&Cf; z67WJ2QAQM-5jD|@l4uQVl44pSlDk0hb|~5cx*t-yK~y@@nFl#5*-r^dT_Pfou4z)q zT1zaV$3U=dK#0#l+Y0zWX^-SQDC>$``8R0$$e|7yh^X+run$&z@JF@7?GO|he#faS zM8}Cj6n5E@B;Ob;#rY`i+&b$=3a=%F;+Qyc3|lEww&9a*?iuhnYnN6h*?#o)`AoQT zKE$^~ID#9ULqSu?s5TbI54)YYa|0ViXZbAbVLrYb*A^r-jl1je_HfdNPt}NUyRz4C zo;vYD8p0FfM>1w&2_MQW%w#9UdIi_&U&`$f@1cjNGH3a_(=0E=>Mcn>g?2?Po8 z-N?5kvqCkHtq9B#`fD03{BE?u)i}L%kFySQGRD|JeCx6DvrA!*1}31b5pH()=`M50 zDVSX=dhkFb*gH{b%3y=n$~vzRvyk*MduU^*M0KsF)ScC2*T10z_Egq>0V}W&R;TvUEc(Zql#)E^R~AzCAX@1E*(}sI~ZSSbu>^y-z+l5ZfKIe)`gh7 z3KSiZvdb~n$N1KP!zq^@3WR{6Cv~90tMkccYgoHBpUO%fsi_Wz3~s^MqdTx`b3PkZ zR}-)2UgV(9u<$*W-Q^k<5xx|%%LO()e7#$@SHYr%@0INKt62Qu_ur$bn6>cx@6imH zBWT~N8!&0%N22+31I7sIdoW^_;YSy_F=NrgCyU&Q6^kCh`=?m35`Oz0#T?P~YX&2# z2#+N8qei4U;#O=}jNwZ-dkl8WN_Zrtlpw6(tB1H08&-4pCWIHJ{>Xcu{D{ltK@oz} zMh)V*r*6SyGV$rO8BBcsBZ^A`&Rw3IUooiF23u*gf;l+3b>-Om`1qG<=b&D_y70qK zuU6$X^Hz9y{kc5yaw2mKINb19RPviek(lko;%eM8m%#ddsmKEeu&!xV24(1!RcvQ- z_Bsm7^XSm5EA7*IuyD7PCA;b#Q=7$_8P&mr&y&NJ?9F5s?ja+kHJw{#vb{8lnHy>o z@2eg^3!kgzJYh0h@dhCalLwEb#Thr!Jfn=1X4St(DJGH^?dIvn9;3805TRwWJLuSL z05?AO7=LFk<;zR&!SAc%n-T&=h@cXu`+raA(3-@q?Z{iUp0eybJRZ+JDNjLivovmc z=}EGZ0^iO0XFlSeUw*3<{h_ET&HHuZlxOd)^B&fMlsx#@WL8eR8gD{v;>G23aogZq zDXj=TRvJx4dJgN(nt#^eas}?0q9_POp!qcr@cQhRNJ_801`c;GcW^zc!GSHIJJ}`& zOBID&p^zzc`uKg2znpS!AT@z1bowV(vj275xGtO1hfSig(u=Ap>@J(a^l6K@_NqYs z#wTC6fEY&xw_YE}Q{TFIbI!itbng65Ukt{;diwNXld8zXG3Sk7!gHtd^`{G1w`MnI zj_u7!r*^N=cTwmh{+w4SoOw4yFb>v-Xk#*VLu}mzn%aPH7@%oz&pqv!Jb4SUq6iAN zH(aR!_${dvZ`sYto_|wr&&P&jl24OL6WsP%C@9H^4m0;E>ZzFSuQ6U7i(zAM$(C) zl1j{Y8*pmdE1U5cZ;?PAomol;*06<4F62#=FxQF@P@MRL+qjS^m_*Grt2rT>i*mm? zBq@`Q1a|I(<;&r<*C0P1h75t%UvIcxeaOrV1OTjEyS9On#}Fxw5rl^UM~Wa+<}Jba zbl_`rv`%Bh$B$zb=}^Z$T3R%={PqLO#!n5q&4!G1LQ$}{NWzjFOU16d8l>QnH1zFn zd-T;{u?Bi!8hizYA1V-^ud1`2{`%>-b3Upf>YAbtwVUV9AFgL~G zUf@aU#a_!NIF-5=Md`kKiOmPaS5#-2h7i)8K(T;o2Vvme30-*M?LJjM4I8kVzot!t z#5M?9+@Wdz5Z0eLa}lSU`TzjAInzl_ZhQoRl#(3x=Aggb@yiE%xwbkQ*`O%QzG?!k z&7QwK&40bwe zzKBvvX0CpbT?NZ(93S5K20Ek-ZSp?U1qDH>EgFHqrFkjxG(p0_gAgDHQ)(T5^y}y7 zn7xH*gU+Vd9?P3E-o>4_6QL;dc;p9EYwho?WL+X#KkiZESf^VSVQ&^$giS+8+g3t+ zUen*3BZX7PcH`wKOIWa=ZX*1q8~f0?O$>|w*#W>M=J4mEoDvIZ zhVa)g`4u*j^t`a^7kli)`NMC&)Ndmug8A5~TXA?pOq3l271D}5g8EKu5w%~cL=)q0 zK+dcl6e;n<`@=VcIG8u>I$qfN&v$jS@sD}{g;pSg}(Zx~&xjj3-tnK$>pD-U6$ z*x4~2XIyPLV1pt^jkXYDHL|C;l2Ui*Yc*8}5*;QI9cFUN-4rG&bubIHGHIe%Ye!{PNuv?w@cfMsw5eIT{O97)iE-p8N5z!tDiv8u+h~c>M7U?!0q1 z4u>DISA$k_EO)zAR<2K?Q`;h9q8lD(3)8wY$8>+t-xBqn^z>dqRNg9xFz;?H7-B#e zL3e{zGpb$s{jh3NWTCYk1|iIo5x&~0J<`w$q9!3%ErE*sAeF;}Vt}Z$K);4r3*wG8WM< zHQ?Lzb(}kMDOkL*iX4nY!nCO%fT-ANa?sd&42G$B^^$`C%Kd*}?0Qa<^&u#94Ox_n zzH>trIe74LMbwu=(C31(EGXSogB+~4%|nPfpSL9j(LDp9U0)|T2q5GRh+2Sfq=2F{ z5jhCHxGwCmzFsdm2#{@j0dHJ*Im{ZB-%xjhuMoVs3?I0&#!m~Dr{Q+1U}#+KpQg^Q z81A~cva))SZ?%OdFQ(UHkh^EdXv_zAoBMU0NppXwvwTiLE3SJyg+-(0)cP&Y;^F=- zD;QXkz&zJ(W+{G@pdvbl7gAQ|APj~|e+8x963V=#4U&Uq)xu6oX1(Mfz&gLeL{}2= z_BIXn&!c%L@fK6&Ee)R>Y~Tgcg8W?Q+{y036*Z1!B=w_x>X7jI5GHga*_EYaRhHCC z4t89+mSNx3Fa1;(g592*W=>`F(wTfVcr4qKTCu8S7u*E_<9T9Q^PuD)K>os-W16j5 z*&!zf0U}JFcT}Ns_f)?9aZ|nIAi$J2mQq;mCn+WHy}2Wl7!?r?=#e_C8X}bFG=>=g zwI3EG{0J-ntB6c$(TXb~r)Qh2jHtdng6K^EYXs4w02Ud3^dNvSOb`0~h;#_?68;)e z08XO9t{+v8#Hj>a4di!JB6Pf|)WXjn8BG~_123+oX^gny6=J$yh0^(Yl+M?4)x#fE zk%Lx?iOi18Yt-3K4jPRHP94#koeN*CePVwl9Q53Vk9wer9E^>zvvtjTLCHaY_MHw* z#L&?Uduedvx?h*$rka?3re-CI^KIjFf@RSOnf^P_7TerGYox)p13 zO}W3yyxnNtfU&;PX~5?Tq7orA<{FCG;47iv0CErsHj{nD`TMHK z!8y-Qts)1{%WTiMpWfoi8Siqj zZ)MG~Gv6c7O!Y^%Y`pzky54afcfWo+ug!avXEfj*tNAT-SLWvC1@u}rB#;mg6OEcUx*5E#SP!t_~U$mIVYhc0h zbcVNUT+~TZdy0m8zO3wOk9Rf9^}be*VXS#{JXiKUfj1Xd6E8n)T*{4mPoig9Mvby% zr6$Hd-kTLqPKAWv3*{wo#S|O8+`PR#Q#-7q@8-^U%5|hJNNbmkBlhq|K@7;#+Tle8?Noz~l z)|Kpd@ye=A;?NUMV`uFuc#15PZBD3hENS4L@cPtP{Fliq)raP-6L|26`5~2k_W6H# z>$Oq*{=+)lt_X9`MQAfoBh29!DM4sfBO{2+!i$bT36o}1g~WpibA29k^*|Be5>~8X z5@m{jN@2q$!<$D8Lc@&(OPD$3tkQ)a0|vq)o9sc1YmI>=LW0tuM-~Ydsg91Dy4PX9 zEZxebFHh&v<1=~Xnvu1BH{ru6V-V8E$ooHH(b}!G%9u??9=&)d51v1$)^9dFGICf8 z!+@@78ZUl2o7u~^kyq};VlrScn~Aj>Xqg_*aXs5`;=nEd^uOR~Ht(z*U2Ieoo*0nH zy`SF0#g{$H+Kn~mn|?jou;Aw>>gWk@E;-YCWpa;&}0`@Ksydw#~eaZ2>b3on14jG*P z@pE`xUjBaSb#~5MhSYR4ua7lf&tT2hGqA)&k&@YtZWo=;y!aJTO7gcA(78uv)~{S&qwJo|SzOljYR24j7U$eF8k4DU-$GL@ z*^1pNnht5r;<)ODk-Ycjp8&k_+zdW=dp2dIf%!B##*Pqh>N#orwfIra8u>hBWq~=v zS?=bQ=VmbFrQf;wh7%ZlZXYf<{Z*XK!0#f@ZeHhE|pVHEez^7R#IYM#*BDMOAVO!%S+o6 zp>%ImnZ0>-vT_3Z$-Z*Q3AyM#40}DBUj;th6gr}Th6h4M9lR@$~ z{$LDiWgpHIpHaGD7u&!1i?)}X*u*_QhGS?PjuC|aqY&A-h`d0wS$voFAxGsOoFCv& zA`)V-9<`6KP3DRF90%2m9w;A&n0Lu)M5>2=(^cdu#ZsXpqofxz*5tjn?*h-v5(fEBwW*V(8da$u@t9FVTVdK{hL+o)`+h%OI z?u`2TQHNnSIi?+B`#r_NtzXbQz8jw0W~}+TBb`TYK?q4%mVP@Ke=squGML*Eta6HP2tvtVSrGYVi@@J-2qjLx3Ys z(Ka3QMlcPPmA)#1+vADsE<}(%7yyGR2~!~v0FxS76q8YCXi^C~4;(_^#)2)_%N-&- z!V*~?KVb=*AcR03KU)NO6kUo9ixy@iq!3gnc4D;fWJ(QaR4TTx^H|z-Cz_(5HW2Av z7a}FejJh|XMXoMI(E6IDarUHd@oPG-{j!90yYuLA#_eBje&!qA_$D+bhy#%VTpVqq;^e*z?3KY4 zV+JFI3PvM8E)49q>^3tM`_v`Ac=@J=PpZqRfRa(89;iCJc+N`=R!vO?t5x8N&^hD3 z36@Gfs!vBV9)9sCYjUf=W@q0VDHH{%>v&7@DBr$@^bwbkKH?H~{rD>R|NelKIvZcV zg`SW8NLh)geuD6TO{ykj6*;&c?&2~w&zM`|*vN_Z@Ijw0K~HD0nmGB%I{{cV?H87R z@Ex9tz}V(4EobNaY-<`XnlHVVBiOcT18Qa-|$ahmOK^P2eKmMJpllm~`rnC6>*M;m{zl)6< zH}Uy5pYi1%U+~=FHu?PsUio3fT^EdS5>EDmvlDleUYLfCr>@{9Y1`% zl*$S>exJr$ul~VXuhvZEvwQb$&KUV12?^1B_s89|>rh*gKNvhGbRzE3w<&+{bX-@2 zramHLZInMzTT#lbl_O;mB2rJTgP`k>muJFk)~T#idEtd>=aS!ki(~xw);#vu_Nsed zUas=cLv6VE<}5mPtUTbE6f$~rA$#_iS+~xH5R!);YQw~d+iE;FDFf1?mt2y=m@(Co zn8IK}T4TT!SU+^{oX;u4wliaPYYGZOAqaiMXsHOJimYcLS}wLzVyVO`3~&fiRs@5v zS&$AJIKy0i`HL^Pj(*H$Cg*dq{F)>Y zzP!F7Bq#F?)8zG($~a;~F)JSbh}IXJfD(rE?=c)hQ{kAz=>I6h@_imQLSVGpLaHOp ze)jyapy7f?0HMl|Mq(%1A3-S0aZnJN!9l;eH~t-S8!i|j>bowbK6%jy5b8Z|y6tr% zj6?c4P`tBFg0Qh3;X;Nk(`F%dcL9GkamBY$mQ%e$|4rER-X&cAdc4@_7@+YSvI$$m}U z%Xxj~v8t~|r+!)JeihZ=CpM{xqF5V=rX&bW(t|a`)3s2+<_|yLSAB@yw3`m^{2cg0 zRq(|+>MdUvK?q<_%?$1^js$%$tG?*WaknfZp=}BAZAxi*TsDd^vZ$w{0l`v8|J`K} ze|8&6;o|)f@PfqtXV87Z&t$o3Z#ZHhrh1Q6o)_(@K#U#53I zY&Ik6zH5(|AXFoa08}H}^qWw86H^?i}nS0e0xg!Mg2WX@JD zCA57;FepeWl={c|`e4^9@JHb9YKt%eGFSxT2Y;?2{_nkz;T6Vveh5CYn?`~T%5EdbjQj3R7x-hITk z?!sBu-%r2CstwYc-oBHi51z=<2T!DU`R|w#_OC}I+0!OaR?>h{$^mPLZGSJU`uBMs zJwuxj15u3uWh6yaF|<@WT1iClE|`55+Xv?|LhNpF*e z$x?H^&@~-R)A4zHOr7u{TUKrfy%PsYH^e7u7frd-CByq9=o>XkU6YR+G0k2#V4$F;3$yRfi~VZA3Xe|B)W$AjVP--eQR zuE5_pz2U+QK%(Q0aE>_`KA+&Gn>sLUS~Bmvlg=rp)ZCMud~z{8dzLeEW_;DLhaPIf zLl5nwQ>V(H&!l;C4=0~o%xR|;F?w_X_ut>PN_zD7-{ZLb_V$b(T|l2cPE4kQ7JQDR zs(%Ur-@Nq$Z%>-Z>Wzt9eCz2fUsJ!#V|39Ty7;eX@VfUJmV+To#g%Z896>Z&>2B~3 z14CN9#YE+IklHHzb{YvK!Gf?E&^9ecA9@}{)qhWwm9tRNn?9FjzB`5isq3m#NMy7X z>!36eQX8mvgpeUNbFr90d$E?Wyvux=#*reC96bAU$;viovGvnG8mMs$$8c!z|7&&p z{|Ni#MUfIuSs7+?QvDT-P@K1sRnL7^>!(8@=h;{sY8g_q6{2DTrM2vp=%=5E@>2bw z^)mydcSk8_{;8I9OgZ(zY8b{n}L5DJ#r~n8XI72&Hlfa)&dJPtjU)gBPxp zr|{$u?>m(WWBn0D0u#->_hTv!JoCe;jyHVZZeDz+U)A697N@diO%`3d9=@pGrobha zK3(g?gn4TLifP{X`~@ z9|^$(povK9N9HZ8Mc9A8i0uAFN|3r0E75xR&NfaZiden4;etV6*DLU0!5F5*s#U9i zeUEQ@ZVCPF{g5JO^}F1&b33xK_mW>)!N%+&lCOM?MbBJDMsf@nyznF1K6$TG`gh`& z3FlUy*yo4O=Wv`+ld?O zKqoNQe#g$aY9bKWM@)M7A|}5(11TkMJ^wXhhIEC_Eo;@OZm0yz4jz5t!@#vzO}zQa zts!4~`wj-yu8vIJ_`ePIG7semM<$1MVy}}(>~#|RR~H#)T+fc5-{L?wQ@^_s+|}<> z+3xlDeF_y$19nHl-{;zI18D_>5X5CP=fnx2zYp~xxnmnneeS-hzjN1ZVf7c&$zHhu zcS(7bw`fIv5x+n35{kh<#_@eQ{{HJRSp#FEx7^8$`<^Fv{nnt)U9qvT#9^dR^HJfG z*bn+#OvU9mw&zgVsRf$Nf^APeJ)imn>%MQZGA%#`#U#X#-YlK$tZde<3pk74_x4>p zebuu7WN!=XeYy?mO1~5PuzlTja(3i`fc1+5d)u#G`Hlyt-W&G)3RNAa*rVdt!Ek_g z!CN0+!&@I;6LMSUUO0erFC0K#UL|ilzkm*H`!V{$6znmTXqv_?SG~s%UoS;U$+@RZ zrbq8qxZOUkzVQSuy=rKk=k*>R`d*|VxU@2?hUg|c-}v#Zx$U++bm>xeWZT(i7jV-} z9T+mClxLr9$>`Aqq@{(Xk}zmc8O@q`m@uI=adCcDtaLE--3>%V9k9^cl?%Twg{w~k zOEjpafL#W#TKrsd;c6}#y@BJ-xtKv?E@tl6pVPMvWfH|#NXzo}R7Ri4cJ-&AWdL-1 z5aC*@(TI%#qY-@J%@uO>U(oMWMENb?uOr$_cO%Tk!=|Vrguu`|3g4z;+<$(9<(Ah` zU%v&)>ac+n?nSg~dIB>uVLMB5I?*kuI%SCvg3f&;|1`XfI-;-$HWy}i3Gcrj)%d9??^&o&V$4n2_K`5xNYx&G{0+;E3vtASiJ=cAC-5BF*L0tSwcI<40$?730{>YKD z-a2vz8H9mYYZ{mn5yF7(E5YT;rqW+`U(3CPoM72Pk*xz$DuY`ZlN5M8x(sXCd@33t zOZNE-J&0bvo07CN+E#Alie0ZGN2amyhS5j~8L3O z7bd|NC7t-NV#H6kJKm$x6Zj4c1_Ku#--QouITe7+JKksgt~`pJZrb1cPObCYd|I!X z2aE=|?;I}AD&&$g`tahXbNOlRI@T0dP*UkZ(zB3 zTgY2KEhej=j0(3GU6%*}MuUpYY$V2EAwE8iR!Mf&@5p86-eTO|x`~)x9h<0uQ5Z7%gz~>7LelI_FL%rn>M*GfYf@*I655rL!S-#GuM8e?n@cR4|{QEuV8s^lt zRAz5RtE}GtB{d7|5z2~9RRp1??N6Cid(bP|9B}-y#75)u1%6i)iQ2?!Z7E&ak@EQM zRezW4-pjwQd`#Ao)##dz?)S58)&jQ8T0qas&Z7Ud=kv{__fuY6Qs+6(e(G)t_c__* zyQv}wy*`bJS3S$7f7fCG#na<&6)oW!QAGmT^;2pW|)=#AB$AtM;;nNMA&|(=U zwpv132E-&lX<^{|Hkuk98>9qp5Yt3lw>C68X#|SFK*`1pWX+g|=84>fCnY$kKX+!R zXeGALia^x%U-Aq#ZZos#-RX3?@vJ5}|1lgxVP7~QepnVUp*dnx+2nEx?OHfM_5VQ6m zc9bF0?8ts8=p8KhvSy=iua>|$l2MkHAx#u?!ce-o$;iQQ zHbZwjb^@=wUo+3ex##Bb<+QaCZLGpUIQ1WXWGYWT{V4$7e?N({M)wc9{XF;f24zM8 zG+pQ951(Rv!M^wA_er!k=OyM``!Ht1fs0p#Qe#)v3iv_pV!Lo+@d-}%HK%*217)iR zA!JqFw^m(uV6h!JW6O>*BYP^U$vjo4#3%G;voVPerGt%9;F6G`!1=<(V7-`%f`9SU zlcy@$l8)x+&N9u)A08{Z5HweOj51ZyQWjHIvKVg=Vm5nw6hBYxj6K?ml!8&0ZesfT z9nm#~=ma-+H+zF!XAUAa%fYq@6=cO`;7*UHpwL8m_k7kZPo(R48;EHhx(v?)*FVbl zSDww=vCE0FB+{eRnJ7ZxpBMYm{^T7*r8}|3*Syw^zqZEg@RBj~$VGl0hzh3x&8Lu` zYo(;n%)z7ST|Z4BD=e|sOt0l73MpLRWebQ?x)Y%;+{;dQUxfGc|os;biS$(ePw zpTD3PyMF9gm48sEIvuWCilgP>lg&-tRzgDFVI(9E0XlRx(SL{yu`d~*$z(~!c}=dzBf&yLl-Mbm{v?(m#CGIIVL9%05D z!SnMdmWb-R6$=(3Xy0JLLhb9Sot29icXUAuOe2y!Y5gSR7U!`S3m*bx8PzyQhpd z`{*3!39D{n+MN5>2Cg{o4Sf6V<-s{$RaMZYeG2V5q;l~UgBdxhTjM)a52B69*bT7} zpU3MJOqkG`r=Q-|aN)xU>GwePnp(%tzv)cA{v{BNIsT4$jKAaG`cI@r;f!xXsj-MX z>H<7U33fe=4F5>t3U;9Q!gJ)Q3%a8vzUX}1#`n@eP-&1KzDAXuJ2xj0=I!M}1|&~qp)I$&;=iSohgkhK%iTcV#l8orx_dsHW6VUR$J zAkd}Yfw?#E?D1~^uy?0q$9m{9988wbKJsOABwJQh|J~`jONdDwL;j3dbT8Q3`-vNp zO?l2zRzLqHx-Yyv%U;=nzZgwl=FmZ`4(l9s!7VLJ=VC61`kadkzC$%drta~-gv`uL z0M@Qu+d#=N!oz^WO%SRde~00VfQL##?+y%k^+C*)iQore7brFb>66GxiS$VH zSQiT(d!9Wr>+ue00Q*gp2bwDTPP_{t22;E=cy1HL1kKOc!(SKPg!D(211B*JMvM(( zlScytm&t;X(h?DsjI1n1&)*FdO|$843UW=cs8|L@u8|*3+f7Og9t@KmqSC=)h05{( zDX1M}yoq)o+8-j#c0)YUU`Hw{inpZ7ldLHa2{Gq(s|-EwB9^YMDbW7T+Z(v%n$Q+u zM}ipK53B7I+-@%phn4cO$n+!f+}lEu83p)r+iEWR=5?q@ghe;=?8Gfx)NL?oEtg0D zfk8=R%c>YWmDRsTCzg`dCYOp*E2>dDqU0dJjxrN__DMrpR122m6SzW;C%cXr-2r@N zD23cvxV8ET8MA63+MEDL{F;XnPZ9E<@EpHSkhjOdhfnsQW1oCRU%L*2QQ|B$@!O~E z89sI!@hNqC=lgW{d#^wU(7Xz(zU+jz+=MmGO{dXYFxmX*enG*ecnlUl@oh?L)R%cX z_;J?<AYK4%KP4aqeC3Q4pONw2tQWvSPyNASH<@X|%fI<9hp0v?7J=Uv&W~XmimT;<|4lVFDQ;!=fp89Z`16lfZ#WhG(P z2XGeqiBiLlrpYU}lB|S(4cV2kq|4Ceu%Pw5Nu+zj_rT5}g;ZbgaU&GulSq;~{QeiJ z3B-Hz!>(Vf#uMiW-`TF%5KmkLxn+wC3B>!ufByN#6q0=5kIgxjW~BPVzyEtJElBs( zbQ~$RCbKGSD9uVX)2?V$9X0p0Z)?ff<6mLXracHiyY(~}7+j*R)al}$&;KFXYUGNc zUFg;-8RAmF+4$%8)6%Vsn=+G<^1A1AlR+gt!9l0y33P9r!j1wb+xHfeS6og>g@;Oy zAHSwyGODynjbl{bww%v(+{nx^B|HQxGcHoBCgrX-TJ=FLX+ z0ieW~M2tN=BjNI;US6FT{x^H1u%}%trHSF^3_aSQX&UP$Ux~LcFn$}&7P>z4EsCj{ zNX+bAfW;b_ouRSFUAKklcRr2ZRhvXkOibkVk6vK6BM?!hdA-cI{{{B0Sck5K?x=Go zu%ALNN={(Xn~zbM6wC3c@bJ0g1CfA2kg~u>u2$0lDSg7ZR;$>~YFHfJ(V zTso1}3#yH=27`f@et(wa7WLiucNPf_L%W{1?lNttkyt3Z@aBM z6DMxPZa=zmsmuH=;HuuMx!eX?54o1Sg1{VNG-~86eVv%-hWF1Em1b;l2}of?=x&7f z5bWI)E8bKy6~Os!Dj*g%GveyW8vP;e7R{Pmv){>ujI{PT?>H6CHeV7(EOlUOdL1q z9d^9jyjD4DhDQ2j+gSSeV>ov-e%&}#-pfTy!6uqsMXIOV#tS?`Uw+|~H?N@6^=CGD z8zDp2!Q%nzk&z`o7{>_0!-r!MqyK|YRs=pAd&^{wf9+w6CDq;~(kaoLH5Y?QiIpxl zo);EDc(APH{{Q#<&rSGChvM8?cU}_R3q_05XmjBxwtn(UquV|ZNsZ*l4(@lIgq7Eg zzIzj}DT3bB-*&hVfD#p1-j~KAAH2lPdAXu3&Z9kNCEXg0ibXsuU%z$Ju8j$Mt_62yXm3n#e(D*ctVYZo|lqOXY=+ z$CFfE$X5f-@xK~%ON2_G z6hi|mZB>=w1mGM{A2caYBajGZJB|Gq%l zpt~t4EobG1-K^ZuF!BHT3%518+W?hrK|}m!U1-n*DY*!=AIc*_E$ge5wTPIrG=gB%1XEjD4X9^SQkN|$zAHS<0G8vhDg{$5lg z@1V1|mZF_zGA9OuOweN)zKiLa|qJ{gYR7 z@0o%1VD7}5;l7##diI2`>G)_Fef47Iyf~i!WAD7dH>juLUxnQOep?d9zTA_&fYus z&g{%B=Q-y&`@Zw%@-&)_JTd2C0Jg1ZX#4Q_eB3hTF535KM_fuQr%XPHzN559+WDt_ zzszWoP1_vY(!Jz?vd0bS$o!@E1Mu7Y4LtSWw`64&;dc4Q!Ye1e#mpSE z5MqyOKoA-YG6}JcT7obk)A!j#S|EZ+~$fcp}2Zi$Tz+ZU1h%Y>X@!ZRx?+Hzkgui4C;pq`?V=?Ia zoy}H(^j<1E)`2-T0#8BUdCs|4V$bx>41DBiRy}er)%#oK=o3ceAt46=$_e8Q?%)od zq3u&2)A@>1k<5qJ)?17Gd^qbYSfM?D=otQ+I7Sfuuc69;u){AqF!cG`Fjj^ZdM-)Y z2A@D{GJE?Z>}kWv`?dLVy7DE$JLr!Biwlt;3`Wi!4jbj6$WJIlg!a3&R>a?txNkvW z4V)|OU>ps^UTfBG-?oB}U-^x5u04b4({^$D?fXMI_rYaa+8@30Jc0n}>8b46mCd?! z+sVwVqJ4X937(Y}CfpJPfhWgaz_jXhwAueKu%^lKMcMx7thkh-#(5Wx5_lE=4-#pL z;u|rBst|5THIOAm5$blrzBiAPCq9fD6Zc5ZG4bssRJ2PWHpzjx#vA*j3wLVjzZ}G- z7?E1VaaRYH?2u)de>VKa=5>3ZtP^zk5u!3d08ub7qWg823`eiw>tLu#GcT1Ou%&G` z&b;Rn!rYEVxdso0r@WAgUF!fa#in3P>l0ExBD-mi{5b~jdUTRgItfAmuOcBy+D{^@ z`jRy1%|WMEDqIruMTeMl2xX%@wWS1@Rnc{Ss~BbYF0lo_?CE?xD* zlqzH-B#p^5?Y?r*@d#T25R?Yh$Dn<`pa@c<-=)IhC*5))I{^Z&{TcXbqEPM{Kadtf z=lgT|34=JjzeY6?R|P~wfmVrIcg?+16ezBQa4T4X?@dNr@+ypCe-6X0-O~t<2&b~55`K6O?s}brlQC`=BiJrRz&#)G%uBD* z*)<>4SocmGKVc+`zWxIMK@?CG6;)N)vw1IjHt%KSZ>#xe-Md)rp+}em+LISKwG)J` zAsu`2X?-~PH2-?}!8^a;gSQt`QBlP^OLuV9=BH}QNm<31{@8~5q#h`#fm9=!hQnDx zZiUVMULD$&BB#3QuyrEpXk%QmGj1zJK((q z*giAhF1CRwaL2sTPq-txU~#qqdmdD2Oo^cQKxldoC%EQAWIAeW2Podt^!X$aMs?KI zmwGU?32#IYwgjrBX=i@iA#&Btm;3+XeMVEfCb0fG4 z$}lDbAM+It?0K#o10Q{eCD+#ElT}p=$oQJb6}n6vqu(L23G5+(&g76xFec?KpV?#s7r1a5BfKRAueg)t(^uB}PLktE(k_I23I+7eRR7_iT-5#iI_* zL=YZu#?(X1>8XDJhob)YQ*+t9>mTm8BQ$dGXu)s4&ZzzS=3AcEe4ds>4<11G_*6c+ zdOU7d(|$3E0%dv8L?xCY9>p#+2M9u=C4t}7(8zKCCjvqUZ?wlHvF!;jx9}?WbbN#U zuZV_2j<;u&Qok9SoHyfK$}&363D(l(aeA9Dw5p))#zMh?ueIM@GptL?JK)u81lIZfnwy_rg2GV( z)OfMY{sZ<0C-okEYd*zJKZ$(hgu$dHL?OtH$$3eV*!$;n)pE=eD+qAvhJaAtb6nfa(@4`ksPM#t9x&p6{Y0= zH8ac4;Mn!kuEt#BjH}i}3Y#n@45qsE#=DPv(4zYgXsJ-0RCl%9U^ zLQFN+_uBON4LU3*`Nv7)#)ft)^RJr;fAl-d^EY7nZ8PSd)=~WKE`FctX4y9peD+aS zo_%yMUtCkhL$43y(I?aKN*0{2-OH?^b9wK*6moM-^zUEEz4vDE?6bRh>7||jEpm_= zN3XDk=?^RxnK`fjz+-p(O<_s%bF|T@Fz>^;^zP=5>e`YK$Dj$9a@SKQQV}Hos3vU6 zMo?6QDlg_)O*=NZq}NcQlOSGuzCU~}klWDQTrE_;fsh_tfuOY^S`CQt+9f0v#RJKW zWjq_S@#b_)eNGJeegA|EHWa1fmGy6iY<7Y6-9YjB@Ok$jHeo7MTu}0RIvvg%2Y?Zo ziL9W%8a%&eJ2EIGaEgysfgtc3{iw#p4tlcw+0T&O8Wl>?)BPmhV~;_hMmcoze{YR* z4Ek}5Ap9SLxYjT27LlHUK?rTLtcLs8{nc-P{wOm5TXGWK5YzNU_b+De+~BzxLs{2F z#(^=2=Z_xz7m{-ZBM4iI7(5aP`Mz5MPg+L{v3E#eG}ETde{16a(4j*z)|$=cu3g&m zMJXDiB!Hk1fq(AZ!sCB@&AuIps6c$%qdT|E0fJ5SIY??j)I}TB)gYgs?DIe99=FK4 zKa=_F`M!MiTtB{fqZjV;Ix*p!GDiMtA#7YUYHKhV2l^lAMGvx*-(RwcxhozZw`^OZ z@7l*7$2o(ZB0i!+tM%=0L2X5S&GL-ZlxM64z!(vWDY7mng)={lO)m_ia(7g#wbyDm zn#b7?p*MoiDCu8q_*8w%c|}k76`=QrlmvZJStdcB#HR(9KCfUwz$xm>)8T5$k`V&j zI_rBxeTD$N?Ynf|KZg#2RYavqYB@nEsWJla+XjCmy-g61TpHFV)nzTOQy(6kIgv#j zhF8T0rU?I{`Ob;ZDX_<8d6ko=-t!ZwVOA6GKXMTOc2%ELm!3-xH#u>8wZHeBdmO@4 z2Zsm(5LR(??jOAFy67BJ)PX#ADze8#?r$Hk{*luu*;pr$A3pp7j7I;n>#Hhd|GYO@ z_t=?K>|ER6ys9ElS$>3M+Jc|}592Sp0I_CM;;yV__UYG9y)Cn@kO0=SBrg8(Ev{Sg zDOdb9i;3?&g{dYd)M?M%!?@{Fk!o_-Rp%Eo`>Y#THggUY9_V{=FCt^20FdW>*kpgo zWvEvDV_^NI_=oG>;ly)~ul?+CdFV5u7wx*F0r1xk%gEf8rRP=v0!2ZbH$x%#nkrLK z;pE0E-=lNlZM2QJkv0)G(mCNaE;!>Qmi@UsV4berQvoO`tVG&VZ!c&v;JkbU?r{xe zRlU7ZaGlW?!Qmn1oSBqd@Efn((V4dER^YQ*88kGX`yN|C>Xa0&`q0F)&+cK|xDrmg z*vs8_@8h0(vY0rrh@L$iSS%XWLTfXis2rAWhR+wl#^40UA%&`fy|JXVD8eJREoaeZ zb3!^zbflZ5UwzK_F}ncpdL>?Z?>Nq#auyy>E19l`rK4Vd0&1H$M723W&Wmg)far*z z`65Gsx^o+<{hnq@DIo3RaC#^k+h}*r@~mBmJoTxjjbgQzNg1Pvr8hdcIgy4z~F?ujm97%GmC1ygwW46SD(mNul44$=lb#8n>~??3X^W#$mFT( zxbV*Pq@V7ltdD*PlR!9FVl+0VfJZOC7eTIDkSnUfs@-$>dEGQz2YHCyMHc0J3(nR`+s|fs*-pZ~~R$KQg- zS{Mj|JcrXr@ut1{RUFPrqDU@4p#r` zCuc{F_D6wxRTb+8e>G}v{hBz=JM9c6jUUfd7oNfsZ;a!~d6W3WeGxC+{uOVW{xbLH zD0Kd96vv;IPv@>>2m%ZoTtIX}D?6XgT>>}10tsisD|4Zw5;pDutx-pMkeQD#@(y@n z9=ICMDdF~mj=jAYHU(A@iwO7d&D-B|?rC*-FcbFRa9 z`E(?;nOvHJ6G1dWT+5|pYf+koTG|fPGO6iuN&%Q7w71hjh>>Q*5K|U4g0mV=#=j`{ zO>6pP&DoC-9{k>wy2D8d)0pnU?Zxu_y4q*X9x2eaGgM{fk@?#!QZFfKTt}5jsr&#z zb%R=`eo-pesSs?mr3m{$sRv|LWErObP^ktcRnyc$dZ_!btNPRl1OX-rA90@WKEpOV ziL2VnqmTMkL!W&Xo_WUq|BM+hWC%R?puf)Pr^D~R!`*lL%av6b*lX(2YW9X>`2T^U z+yr_IEkb?~Vvawltk3DDaPt;02lqr$Y#xeBH?ZWYryCsCJBIA~Y#wnVvk7V|5FlZ6 z12mR|35!IZEYVUv&o{nltLRVs%qZP*B8{ND-6K9{(i@ke~1c_)sRwF4_Y*eaY zKx4_V$VmTtSXt=^uwappiKLV;%CH0B1bQ-LC73bUfI&>gBXz(nb-*AdaPaScupztH zQOU($zD1SCznJ@{CRmi2oXjL-NI8CWa~k1dwbf1MYVbx z5JC>Z5FxJk6ly#j@4owPdUx=9&3G$KWW3)WZ-sv>P<;}+KJ87#jzjaCYJvJc5JKqD zDKQG*Q}ivzWt|a(dVdE=CqZZu^$~=UpyELvLFUm(5c+fye2PwjO*hG_bM=3u>+5}n z^$?Wb-*js2-`(#12#-etNob4G+&+#9kaQ3r&Jbl^0^yvYFrxW zMf?jug-1I%8&0L>x}YxtJSj;e%-;C96Gegau5k<=)t=)M}RyC z0rs?Rq+j-A?dOs;zao2_^nLs%+Fx*ggX8NSKMUF8L9kd!zUVRfJvpDm6E3VZQkQL6 zM%lI%wRI{=kB&WaAe`~?gY-CKGyqPg6JL2fr@xxV^F$?v2}&Zvl^Dh;2@IDK=o{0C zfwA34k4#|r%l9zxohLEc{PS3OQ7KpUyPl*DNr*Mh#D=e44cdp>6J02-#ws1)zojQ# zFostby+B+_;|MWVwTmq)1J?}| zMb_>e)SAYstDKxa-Y?C6#@TgJt4kyNM1Z)jgvc9bvw1@dPdzx4tEOyb&QJ4r<()rx z=&66X`=M3z>RUv=3lye)m5nus$;qWuqXdwx){H@2VfyvZqaFOS1qOG6$z#EMh@bZl z7r<-ZG(6Tm2`(H1t1`h7!g}nAkxi0HMx(;)m*z2YP#uXl{mmf^I`dLq|G0n9dM!d~ zG*aP4?2ZR9DHjGQWI*(_1=R=f(SiGHus~8z=rRNndw?m3? z?oTt=zCB!jJv{$BTz)yc_#(`m3sa}UU3bBUAHr|H!HykJP~cZ!$jyaq+hE-~xbsf` z|1ZDnk47vx1drh{9Q_bf^%$posL``$PfDx2Jo1+QD7~g2e*H6s55B71A`1qI5pPT- zzDF<2Y7~k~MKB4-1{aR%Jof(Z2U}*=>GiAVBYEoAjp&+2|A+6wmD?7_J`3JT6-$CZ zSi5orb2i)G`HfFobsx_9#_lml2{z3J@*~-I-SyLwAuhV^+65zWOlN$iQk;eb$l_kWgHh>&Sw0D4 zr3tZemyX^xM4%+=hqFE@y%7wJ7nXni8O4Pc^&l_L%yGw6@Ym8cn9Yrc_}1>fqMFzv z%WU#)Vu5Qe`N}?wnCNXB%;}bM>12o@LiE3L>76cP_wN0eOeTtp7hn$qFtG!HwQT2e zz9mc8hlIpHwJ#TPHob`_mOAO7V%I)A^}MqLOcWWrut}`sGuE(^LKGDG(1wc{Ko42K z?#rOK$in9zb>-%}*4NhkX+s7#{`v~OgJetNZ4rEM_6-b3X?^KRr`K=HEpi&jtu`XJ zFpR2>TdS)VZcc!h0nEqFJjF~k5C)7caTB@7%hum3iD{F|*hxDHi)ifGX){D%jTp#U zUnIXct?cxQM2OJWI6Ig7Z zoXuG0`b(_0J!Or@!UV9VFZQSV8f)to-K#j2_mS{ zEIfh{W0gZXq)(qj#+=v=qoDHlqMdlP z5Xh~JZ37aKO-H8#WmVQTw!d{t9aAKV#Pt|K(Wa#h%9+BW>HWZ04UWkkC+i-Y0IG^$ zFw*z2pO9)Ss(l6(U^E?_W-rz4;oXz31fXs2Zk+b|!!=(30<=*rj8bCQVQ|t>h-QN; zfm!=I;*p_Wf|oIAP9iM%tSnx~SGPPt_UcVQOr^^TJIp*XAVz7;)xsMxQ&1J|lZ;-eb10yNNQ% z>?$|omP3D`71>8j*&cfIN~t}z=$DOLdd};O%Jx651K<932PTt=TYiBxh%zQ) zk?gJO;8;=tzpsT8`a*nE>zy|kUicEe{u6$D2I3m#uvKLlayCLM5uqhz7KWWYnT$OR z38a}%F672b*R@I;0ID?wIWiotVHqCj7gQWbYGyZlc5PW6+av7OWQIAwgOh@RE z0_NEWY9=b}!FLK&wMX5w8mfyLHx{0R(7iv1n-DzTgRc-(N&?$0sN45J(VkYjE+i8| zk8zOu6GHK7Fh!uo4uR<7Pz(1!!FE(t#kD*KJUaGO)Zl9$$VH6FV)Te?msUG664ZPa$&qI8489#WS`?qwoLtR;4hzrfaEj z^uGNjM7bN~%VTk6OPJ!lBwvuv%E#}gYENS+Qb7_CZg~k`b$hx?CaOjFv%tmEUq$e0 zmq)Q@G>$GlR4~}gTvYTO28%x8|Ia_c;eg${!R3OA3W$q?hzL*=m^|5^c5wG@zijFA z&-o<6&tDB%jcq=pG%Z z%*>^53=y#*-B{;U=(g>s;$KTyMLY7|DsjcoMR#(5+iXwrqY6hhXMU za=1pgnJOB4aRHpAp2-aEAQ`_`ZINpq-Wq~X5u(^)O64MEQ5?jRe1zJWchocaY`Vb2 zNjphxQ|Fz#XJb3omu}?24UbdmY$(-fmJGaf+T~2_J}9L76Do?F65Go3PnXq@5hdD>Ra92w;Q= zwSJYIBso`e{R*Fz2)900Q*WgQBif(MVs8YoKJE7)ha{5Sf#t43s&7ao#ic#BZk{2T zM2GhFi;eNbI<>E_%Z)KadbR(Cm4*nyecB_@stn=SecGeJDh&~Y2U$aef-+Mq(K@`o z3(QHJ^WtolZ}vN*CE6`4J8u~6hj$O{1Sy>miuY=6pVTf;qN9FNT3|zFD0qDVoIU`0 zwQKy{%%9+#;fNPL2f$ZPOy=AZ8_K!mi-{zLI~vyw5qZWG67AY@8F~~6Lv)1Zweh?k zoy`5xzaH&7s0|x;mh<6<>jReU+$n~qo;;C%7VV(8Q2X_^2C_RwQkHP^%Cmc_%E)-@ zR$Rrwb4Z!OBIy0lH;s%oOxhp_MRaU`VZlYTpt`22!9sLb^% zK@GWaGJP)`-{AYsY8b~Uelq5+jJ~X?Y`E@7vBQkx%gLx(#y2xwW8+uz8+;!hAJ6N{ zUn0^Jhrt+!DB8Ge*s1K>T{myt_VP`PIAd6|eJw98=a$iT;c_%ww?xE5F!+>#^cmTk z0VnjsWDU)r?cZNEZ(;B_JrraYQe9TX)>YeC`1v0cWcwqNA|q{V&3O?3r_;lrt`AaD z+;~nAMS(8elG(8>7extf28~aQWXamch>UEwUmH94JQn`@wdOIyC|Za!r)jHvG$F5M zy^z#6@=Gn<50$NB?*n+|^&vd;+^9y!|NQcEMh(txwRQk7M5EYZK@|M?^Bmbg9oeZ? zR>O|H{tu!7;rNjVrYi!R$c!pKg}U1Wd)5Z{9>0`ma%Vp)<95UT&EV7FC=>|k$0O`| z5uvIv>8N(R1Y$;`ZvPGMzA}6}%k;NrvLJQrjTjY=>h<8;u?i}KpSQwea3QN=qg?21 zP8&|_ard%mnUOseBC85Se%dS2Em~#DdF2d`{FzNJ%xY1e^l=fie~FSpx(p1oPvOp0@og7)r)|E zE#_{V#4D)H$dgTCFmd-z_3Ugk|||qRrY3#<_(iQViO2+vHb=k?0HTU=s?QiV>?GnL?ndO28gM?(AU5 z_r;Lt)qV}xLb7gxFUh6dP*p6&660*yxKbZgq8+0Q;Q5bC_aiyO)UHbZUjOg7^ znW0*>5f-K0`jjIilN_ae{46si5NXr)?C;#A^2}rY9FSut_Tus@e`vD2*(@>Z-7{IX za0iv;t!xNx0m|a6WOvdxZygSltoxnJuVkR)-rNr-zSEzXnD2kAYoIKY`)5UO_w2N;F2IqvQD@vo9<1B=)%j zuUAC@ULRXcw)+p({P+_Ko_-faQ7{^fy!!nM#CB;&=3LnIGL(9`zb!TkA8&ZC@rhM1 zJFNIjUSy-+&LYb)&)@h8s}}`#nlqY=JTd1H(hqv)wczs^U-Ioc!QU^t-NKIimm3@_ z$T5+%cRz(iIm~$Cd$w}w|_^z|NVAM0YaPS|Ja_wd@Gk- zvsLr8#GBh=2qa5hSO#GhupNmsA*~11>w?_YGvvEm5{bv%NM)6or1&b1AH1K*6Ss2u z=-n6$hu4&?sw!;T4GtHCryvZ?LlA-!MXGu^>aKyXyXDTMtpTCiXoOWa2K`=*=mOmz zMA`78KZ@|+93Y1n8w%6eSk#e=yZ;t?C65m&vlzK^B4SoCN_+%Z8_U`*{#Kos+9)RG`Dpj|xu z)8ddsk?hhc3M!q5f~sVV0DT^}0=>>XmEpHudT2V^1Qy)#G{srj9RJ`H+71q!x3gsPF226uk$~S> ztyUth{hGXXr#IP-QG_qfEaKOkUl^GPW{IH2fD5}^hN9GM0AiD3dGoJVfVw@Ppa{fe z`{g@j$wx^_!+CDaqBTsr{>7mE5d?ub8M7N5Z^<5c_3vw#eqHc30A7CgN+wMn(qx(W zKdj^7sb5i;Uq+bS!W$o5&51SggwH(kJ+HqwzgF2cBErtv9W$|p*UgE!IW~^#atYrp z{GLHWwa@ov{r4Pz=%&{6FbUy`Q<+V+gQDX<8rd*77(L8)vt@oQX zg({DQ3Qri>Rq^btNaFl1i$PW}Y{^0H5Ra-OZNmZNWvMJ_+GmF?YJcL%e{i?Ef{2TRY>HZ9|lxK4e5T=Zi+PC zyhB>w7<|FhyLUBjzqOsqF0a#KcRD4`J+BulSF9o;BD8lT)c$A7IU$jQ0AAc|+vbn% zh>ME?U_Zqnk%Iu$RHLGzAVW=rLV+NLL=FNdC`_K3g>!8_kKaFx(@!ZPAy%#>2LU22 zHaZ8cZy-KQA6ey9TJ~U6R~Y%=iQ^b`)*i-Rv5l}u zPwQ-sR24a^h*E3Ekc!KIlh#@6HRqscGe>jQfJX_p#vc+%(fW|9Z6T3^;D0yVRYre; zN1agX-2>U1-`Jw+ya!q%&kn$(XwTmVU{mx-4vK<` zLkh#DK_%e;9ELE=9_?d=OS0)A2wjp*7eVNfZ2Aa7F-#XhSS3Xe?JH)^lyPJgS2A+? zH)NMpBdaPa_ZF~nZ(|aF*{(d^S+a$3eLC>%)C(|ceGV#%!6bsl2u@r&6=()@g?0(B zcq0e`!mhe#-Vba3HAqs>NXkmDMKeJdDO8}S;j}aSA^cgxCPjxvN@7#&2AQM!TOD%oP^|~RJJ^m(H>-~iA{JW7UFSWjV2^86g7CJhj!XnzK*U7C{(Pv)1J4Oy zZkiwz#A(puW7Oq`pCD8#3L$PVLQ&uxfB-`AN@#x}hV}{g_El5V{>9#h>nNSCQLnD#kcu0HLsM-g6lAm=)l(PVYTGo0T@JyXHL3^C&ylZc+iblox6wepG;$0p}u?v9woG? zSCLh+KJoJH;igw9s@xm2 zOoT1*kduP|Mw1fqJrzZ;)W~!m|J_0?)!L2v2j0g$Uq8>fM<;|t4*KC|?*&mrG8mC8 zVTh(g;4+{9@XMWuCLf)yScf&Kb$+u$fzVtwj(&J`kZS;{s_#DNeN7C4en}yZpl@9w z3r9A=g;5Vf3Ro0<5tO2!;*@O77ipIsaJ$oWp44S2l@ ziSaf}rqIT*oSZ7cj__X2R-w4&u_E-{Gtk!ov8VKe?7>AmV41Pum>D<8eAaUlU5 zk(E@&mEwr3BYXq_-n#!it{r+4|IS~@`zzn#lKU<~JZNKOFdC>Tuj1B|?qbUDTbT3m z*T{0q2y$<|MOJ-sP!vV3e(ZAYdHYU^TuqPvO|A0}d>0vMWy#vdNoyYm#IR}86o&O4 zz-`x_$jle|(WYG`XPh0n5>YV7suz#WHNzpn{zBNRU8=nSY*8Q{;lyQ!2!bd=jkB|w z?Lbw>G*iO^)_g*qW2@Y-c&DB&)**Kzbh!zdTVrQ_j*!|NDM8;lGE^8vAE$R%&Zf&Q z<+?upFh4mh248wSN=)nI#}x#D?gN`HlP+xKdY+_$IF@lTstOtOW|QoX;!TQedVf^D zJ(2j~y_+o4T5#+yBxBZs!_wBlxacC7Kfn2M0ECA_dOGab;U^1^;Xj3=-)-y|nupti zuz5#=Lx)pV^5AxwjQ(mx#3k2jQ!Iz@1gLC!5Lf#fkki(o{-Z;NC)l}Zo$C&zerpqi zdY>1)*WRM~);c4Aq{P(JYMS{H)wY;jJwV>1v4=+ynjr`QUVeEet5%1zdUai-+t*(w z@X9OY+Xq(Udk51!};+L)=XS z4qWvJ!URR8o0!5jp?QzImpPwE?_N|OImN+a)BfVYJ5QipdKvwP?`=?45CpCsFq#fg z@l5&gJ*w(ORP3)PVZvw6@#dLVGq$6)1!1TWgma(h$_a(P@ND=OZ0_Isa!6I}li2p& z)AXrQ*x+fNVR$gwful;lGs@1QUCjFHH7Z<16jko!oIy`v(rMV%g97VbP8*lV&-0sK z5?yt*n=Io_@Tu(Y)DD*|cn+NAuxsA8WXzq7s?-@uEb(pWc-hmKq7!Sq%1t69+aTWw zfr1Y5mZXtAzjK3Qf~1gs$wusH`trgZa{O=bgLr)ng4MmObv9=gbH;1)$SSEq1vZsbu?cwb?vD@!fm3>?@!c(Fgho7>?cfL@ z96qlM*6xPW2Gr}k53C8`ENi}gAXJq=VwC^?vTC^VEY!KnSig36?aw-6%DAA_4YI!X z&*?D`rI90yFgoz~te6bi93{H;u<+Y2ZdNVb!?RD1=B}yDrxZy}wv)N}@JEx>M_9Rs zvV_(##Qql$-k}#mo|%hh>nv8j{Ure3U-t-;K7F3ZHu~gNqYFzo?vH;+&dlcL%g=7~ zeQcNZ6mIqB;fzX6qAa_Pgz>oCta|?|)_gdZE~kuQ#64FdNfMSQJB;YYE)_cVy^x+| z`D|Xi97R#M|Ni^wJ~0nQy&SkdW^l<)O5J|N4nw`^wZ63HU2ojVlo7WgiXtyBe2%jG zG9EbRF{0z6nD*n7jUs*zmIYlrcL|E3@bR;s5*`!Iglon#{>pLuG;2OTy!{g{hnw+N zj^nnIrcznzHx$pE`5kj-en)(2Jg@%#eDnEPfw-hNigNw=&uw8gx(w*VxwoD}*Z!Sq z%anU0JhFgEsvF0(ruta2_7S=y-HFGYN9OK@%=yVmT08CQ{XlT~DlnN^_nf-1c`rnU zL3{o3!-629+G3zedw%Sr8u2lZUkp1}Lfj3g5t#_=3SM5!1xp0DLU8_Zco4qdj5?~L zK6w%V#fQ3QE%bi|Va}PboYTRLuA~YCU=nOk=-XZJDF&tVPiy-_TfUqS4p(d>PP)F^B0s#;tk=Xv7 zNgUOixWU~J3{5Zov~0=i6NKK3Z&4m=`f*mr8;~E~hv(n-G`AV>yfy!}$~~71h;2I~ zcIt!JwhN8In*c-s!QMJDe|r1gTG!s9`t>3RrSf9z@|{ff>{c0GqwvQ1m(jy4#Y zw}4nI3SWPoJ<1?%#NH zLSdHr1}1_pa%|Z6Lj90|SOFEep7Axzx06}IWTKkTdz28F$z+Cjt5B&U`eKtSx%S4* z{JtQ#NBfwLz4&4BRN6!|%r92uaj_|1d#);PbDr|Dg7WHiPWbdgZu<3MVhRqO5vjOx zGcU&!5#P-I{EkRB{pC$mw@{wBK2%lZ=WW06@UKr$;qq_vE1dZ(+4f#g38KS+EsjjC zx;vNd-I_KIo_@NQ6E4VNmn#PZf!)12YqC6KE?dn9r(VsDuRg3L2aREobiH9FJ@5Pg zYg|eLgNa9h%&NfTV9~1NM&uxZO6SR27^&cL~&2D&2%bGe6(Ne~*)M{-(Ko!n_4Z4Os{g?K)FNvzAC+w|GpRISK+R3 z@X`w>V>AXI&yE|Ij7bDlX?ol?7(~*$#?iG$0&Uwzw|d^Ku>U6!g!SQaO7uAQY=+%( z3E*Fses$?RI7_ul69eRQY|Fck-x`n{1Q`F){k4C4Jsz%G@+lX8`#QZZI1NLMcab71 zY@7clv&LS5no+mzR|KdMWJWx3GyUtGf9rRzkZum_5O71kN_JK5LqVYUpr5(^a}*gH z$>-ZX;?pf35T6pq9jD$)MQH_@JF>XxggY8V`W^fXO2)b|=Zok3q^l%JoOSIPytnc# zKHc&G7u|gUUU%cMu`s)kKj$=^)BM2J;Ekm(^X1M@_;Tkbe7OD{9{Av%2IOE(?;1rB zw&a~T(3Yx#$z%B8hx$=naeFEatK`^vO^W{Q?J+Af6 z6)KkPgiQxKLyKUHMYW`XA&S5 zQR@g#54^rJ$E!H951+G-V}BtTAN+FI+N+P$R5+Fb@P8l2A_)HnApNvRR|HpUMjM8; ziKoZZn=pi>QL#S;pTmS?_R;CuB3!u}SpURpsP*JG^z=J5z3y+dFblVRHs)CuA-rrv z*y#12+#;ZkFrr-M!sq@C-yh%Vyu!w4je9P{rC=I18qrgMuy+NxvLGxP^^`M^WfPu1 zz6YOwVrq@(!NVEt*y;$Y^R^RQ`B+NQFhspUmEnDS!s?oDOc>N2g!wMV;D|yhTgL%9 zQ>!=O0UYW2p+pb@v~TZX_QzW}0D&&O9I)7C-i&NIzK%OCol0*pF1d=nf{g{nFL_7&j30%0 zRO6RJOe2j+%Gpd*N0Z_$p;X=OzXr8_zZE*Vx3SoC10M+M`GkKc#!q0y6Tt-faV>*r z>)D5(HeSd^#<-}cXxb>$Ek2c>FS(B^zk7?-Iesakb9)To)}g0qzHjbkA_zsFOw5uk zxN3;cgk_tFS(8D@fX+?U(*hNh^3uh889Ri9-b6mBvXEJGi^BvsEzHN|_DW3E>nL$) zTL61yFY9wR^4pF@tj$^9==+?~tyH^F3>vwbxip=d9k>nDD=R z>P|WjU%{H)|B~Y@BQY|C3wjU7Y;MCh8@-e|^uPNDV0L)%8AYNC9E6uR5nE{M5PiyF zRXhj;vqhk1AAQ73K>_$g?Gkq$*-L)4U2}c64EY{?&L4``tcz%LAs{Q--(e31@`VJ= z^}VWrd?`_LeE>yObVZSQR1*$SJIUfyE##Y1w6~8@UwuJeeXnTJRo|zxeHnwk`l>{} zF}eAILEuvj1?=ed0?d4(rXA_g;*_ z5N!Kyfatc(H#RUx8Nmz@+V3Cc2r$%(i0PU@-!n$QPk#fja-Tw4a_}*t%xOmwwMFsy zP;`x1EI`6S6Dj{e=f=4-C`!zYc_M#j_*j?Pk$*Vh}DXZbFIz+#gApOGRLBv_jNnKt~j z5wE9ieOQuL!riCc&x^mz2wFEWDUtn|eln({u(W}JL#X#}hhFX3x}ve8Ze`CiFeHp3 z+Lc9d#n#%?6$kdpEq$~Kof645uck**IH=!Ux+T-2mw_#tVEvlCRJ`>E5mQD}(W3{| zzro{%Z@Gdb_ESPU27EXOV>1Jp!cz!B zIp;B}wqB;%i4E?-q+Rz2J#IXo_UD~U$%Z5=X<}C*m*91zbR>3F#=~AICNKeNdAV!B$Ly~t;mb+4V>UEil*x)hh1*HAHMoITRpIZvrj1zbzg$fIGlf)E zS-FTW{C#bo#4q!wp&AdJUyt1wj@8;8pA?OXic$68bMB$cU5MJkm}{TnV^iK1mSz6K z%6+S-_5_wINs8>s*j_giW{wH?{ozFX{yaSG(&%VuPn08;#DA8OfBf;}8TPT$nS<={ zpfnQ=9}Go1_VVqu57l}L3!+G$GtS30;#xd9(!Z%HWY6zJ{!+h$-SHRx!7}L*d~#z$ zUxYQB8JE1o(#&YK<+sjeJ!NMpk;N@12EjiUDlkcaF6k$<>*f>lav(NvP7EBe&cXL!>9TS9n%g6;^{pygjfH-7T6i zE852v|4<+zwje+8!SI?a7+qcMuwqF4*%7~l<4`32!rR!AtSiaiXH zlgkmshSAE^)hf4K?jJh^QQ)k}eYx%apV+srakNQHjEzU{AA`Hh&8F4*qZSka1XbI< zxH{a(-k$Ng`*64s72_nmyMLVjbH=-D|7kG*v7Os-?)%RivUX)zX4aU?YuAC}rcWhp zSic5k=3o0L`?mXYj}5=|Qnr5mE2TLHb}&F;V& z-m-Pt{(U73?)E_K=f3?r(5vTg2J|1mfB^&OGHCk|;>Sf2EgcY#aPH<%pjH$>nfA4v zwnh&y%qB{b)7fZzs!^pH?uuCe5@g!$%*%h7B-eh(A|h zC{PrI-Me?=cDw1`y?cY)wIwAb6c!c|9UV#AUq5>qy%AQ z6{d@BZIQ?Gp&-aQU3o5+_7{?~B)rLTNy8nK{PhfZf2`8gUP2oS8Ppbo%GGCgxjZ40MjWHd2ad!7XoRr=No3Y^n*&_?AC}{fqwG@=H zaFoK!@@?!rcN9A>J%!}O>quF+hDF~!8T!Q?W+;lnmV#|8%lwCbvsO^)ZrWJiuicp( z*WrA`R!U+YQCx<>>!l<~o5AX=cfX`KDGra>%!r@=WYy>)EIrE~+1F*wW={FyXJ*cr z+M;s~{`GHuNRH!&o1duFWNts|IL1D4E14NFloo4`Iy(SW1#xXB6h{_o!q02A{CiVA z=EGHHoL>ET=Tdf-5?!QIn(+uDGD_s7_q0b10hDAriM8q=*9uLf7z#AkuW}o)J6q_T zd=SdZ1tQT-j^(&xN%3hXr;3zl;;OY9ycHF2d3CK%ij`<$JlYA8TtliZf-le7hQw;^ z1Y@Z&hG=JSr}MsZR?ok7?m znlb4h2`f#JgnP8h{gs9#5bf4}4@#}^#JIIT1EuyvqP^PR#j3Cv!sUkV;jV&mPI&Qq za?9$-KS>lgu}cacUpa=P$U3JZA>7{B+3@xGFtR)JZQpd`W*eAvm<6I!!PEHK<0id8 zNqH5bAn@-i*D$ba;3&l$QyMAO5OOF6L6IeeIEywX0k>kn6stV~F~=KEa-w#E@qt_O z$;!Hi-wB?82`Rn=jYd?>E_(nRPJfik<)rMVscJm{R>Is5CWLh$P zC!fiHaibZkM3F$9^1+W{K2^d&Yr1+H_WrRdu^|X0eE8ICe*UmdzHZ={{@nY{T}{@R z^WMtuLS;HkWhO~L*2g*-`4GTGs;@rgp^f`YLHM;qH2#lzWhq^9Wg|h zs_7oHm-D(TCd_zvNj0BW<*xTnr-OGBDMHHwYmPS9+b41E_Ky$`q2qWJ9DBPl6~-Me>FUS5vTXvFLFVlWs;O-<#DGtK~x z5rl^W|E(3>F*Jg>VOxvkkhDr-27@^+lDJ`KHA@Zxlx(&UH+Vp^=WMR+cnu0Ttx0Ny zdafpO^o2!Wj5IY%4gv^!Rv^XuJt$g3VpI=WdhJ>fu)Z~PWBP&DLMu6URMrnsUbKFF zNrKNl-9l<=!-d%2%Odgl4iD9P)6K5}U@{qwDsm9~_el+LDij0(yU~nk=?-MCm+LNm zkJ<13Q~Uk5TUX#!WPaJXo+&@RN8i_{a_hVg_+!szd^Ne5yv@jq0$4ZZP}(VtlD_Gv z1_Oeuuqr*CK7sN-tC+tZ^HuRq(gk>miP3X18xZYu!0 zHgD&Lo9f8HAvaFul&9}Nk|bKoJxdT^%FS7dTc@*Ldrk=19Wl z)Bi&#dY98W@1sG|Pxk80A*k~r4Cu>)C<@@#A@d60lk}~x)aF7ont_%acJ*PEwUg8U zCe_QYdx{zR{sJPO_=K=0KH=%b8`xV`)qorXaCv>K%gp8U*So@pCP@^U?7Rw^n^(EPrHnFE;#{nO%%JVs4Uu+P3pa~NxJ(3-kJ6_Y}p54 z0iyA5I<0wf5WwvKvv!h&%<*J!DoQ9z4AGD<;i;jsfFF zGeJqLB?rAId@trTCI_Lxlw1_zt2Oe>VRh97fho^k(`=m!9zK_kHoV)29Q2=~=DLh_ z))Jf?1i#+QWsV4}F(c5ko;WxUp*^Z@KVmR9US~A7Pk-a%3t6)26*_cGMXWc+=jWHu zr}L#;KIv5|EB%gg4W>z-g8lggwF*|P4Tr4Vq3du$5GAl38RaWgl#prq;ooI=kCGTO zNE+8JaZ&#vnPs)4m_PvnW#)Agu4>>Ki0Xe9upr|5mjD3M=qu%23o(m2; zIS61d3Rsiu82H~%7OUEu$F5HfjXI$g2m(x)08^&y$V)y z^M{hFuG@{5u=khH^2UfpP;2z_o103TYCBe+8rUI6DEG}c=tRWdUufBhB>};9bicNG z^BXo<-`YGurZsQDf1-W}1Yw~12?<{2e6fWSNB6_$6S?=EOrCmb4+cYH!?^Aoi3j1y zCqKsJa@YKQMeCiomEiLUxT?(n;BhYYS&W*MXeeX(*DZXVAP6VzrAok9KF&E9Lw?@Np8CY@p|B->~x8 zYmvkBN1GigB-#@i8ITV~*Z3|BZ#R@7X~S7l7JMT%_RIN{#YN)^v$Ad2nN z+RS{jDU(@iGH})85Vbz^0jPCC)S@6Di2`YnVaz;p2q$$)4Y@x)QD06KStnVqG|FAj z!umRi@}}Oyt4H?W>XAK|w_y)Af4Q8jB7dZ1VU>#;s$AUs>Q7v}A)gPg92WQlW!3P` zuQ26QhzQ~&Vu^reqW^=!>w@qEa5pqupFgS_yRI6`1GD_|;m+)0V$Xk`g0Jo++*)_N z;c_{kourdw?b5IS4!3~_i?(w_8msZiRt%E1ajG8QfJ5GPr?JB^hufJybvmf< z=d^c7?%$n=WWOz?_vI6L@Y3rj%FITL4QEq?k37M@kMf|fL8zci@KS;oCrZN&a}b%I zLKk#xCQY%bLZ`l+NNJypEXzFg^`k__>dS3>0M*`V`idTYpy_AD1-#*lW{M?|QkOPK z#!9b<%O_x|+2a~aJ}hBQT-8<#2LIgHlD)1VK&S3z{@(a-?XhtqpJBt=EL2tH-+%w5 zYtp}r9eV-~J@goDyJukwccRAGseJNmP1k^|fYkI{6O-A5#bO~c(o9sW1#x!?zXLwGCZ}l)DYLm? zA1+^T19!2bk`LA{=7Y71NwCK=vi)#IwjWNLsD_5q?HQ>=UIS4B{l8KE@qNfYzGZnQ z4+T_JWp8OFs;bg4wz15wBuWfP8^muJiy9nHkL}3tc0(D~ZU}Kd#&*sf3g^hfr0 zN~0tpmblykCe8eW{5DCrY!?1KWh9Fxoz`q0t0Tkt;`Yl!x}LDIN~$C6hs5jCYccc1 z73cEfsaMt>8~xx7bUt-tgK{m2AoNz6*gLm7?Iv!+6xG;c-((DZ;cPS8@W`#TnfR}G z%?5|ht3QHJ)p;NEK8B(QK2^jZXeSC4LDUucFX|)+&4T_&6tAFj1F7?e(3*Sh0IWJ> z)c_C#97a14%`D2l-;&AGe{E%RZZRHTpoj{A5 z!OjVas-nm$yGklK?W2X54H6HW(1!<33}G(Q`8tY#HvY$RB$!#`o#K z_&yzQdOTb=`%mVs-HqF)AOjySUdd-mR&o2O{h4uL!#RhjFu11~gSF5ELAxTuKXDD| z61ik$11`S6jw{n<_aHyQGaMw=0!^c7j>e zs6GJx2}y(-~NydDRpzn2%*pziYnLV2`x%{DvH5qAD z6`ZnzgR$t$P;EDl3vv zZg8zFy^aI*7X0-9E0^!&#w%u#z2Bd=chRChIe*eR;@hTR3)kW7qpHLmKMilUWU3xK z1G!`Hv}{2E8dM)Xp>-&gGQt>21}oG~Avr8o z?#f~J=fBhG(vw@IeZ7!n8K=`p-@YCB;)?|K?aSl&=S?hGvX|$dZ-d!fXUBE9T#e=v zF^IRUD2ffD>W|^j;ut~rUq(SO;=zflTM418n+}vwd~QS|G`FX=CMXyT8>!mUbiRb< z+K!3?qp5X`l6uLlmf%1es?!M(iBQqZZzu>TWADQE!>33|jR~^<1hE$aLaJ{GPLLgG zb%(=3Oa_P`YzeV9WlCd0y0wVSK)B}G=ke7TT;6@>Ze;c7kabwQY7h5bKbzdlBFdao z`8aMmXq30JSdDl*9tNg#Wc`gZn4htZZ?~@C@2u@XBkBsO3i)Q!_k6SId)h^(F|z$| zMs*m0*_XiYU!`;Pqxy2RwkGzK?Ppo$KP=n(54n|j^iS!_{bK^>;Tzs=2)|`4qJ4Bb zhPNBSuy#X93~wA=9!Sx#&)=&#=j|^V9827vM`oAyEIzw+7rsW9o7?YtmhY~e#O9&> zG@mD|tdi=ez>$!@+%vuQ?~|XpoeswjYE(uIL2een=QNNps~^t1aJId599^zjizVTp zjjotTR9GZs)#c5e@5131ux9_^&joU{LQz6;)^7S7I%hypguqs_(BV@J7zFLcTD>x< zk`8jxUth(G0izD7QJ<)HTceZYRP~XZ24q~41+xyRMUTNsFt5G0{@upCzpTdLZG4Yy zCL@E=5_#b4Qy3G`G*R;1*8KtR)XgLN;FK(s6y&kDyqXQUCCI9Z+b8qrqP0xA`g+>$ zU5TLy5=^hms@bPA3R5RZYxP#?S`b@()gdPUv6@WGzWQWl1M@cQ;mVH}Q(Wc3r>HzX ze+{qvx{gQA8q9-d4Gz5n-X_M7&dIQ`8Trd5j9Mm>gsjv(IZt2MuThz5*`k>s3=^C< zeKxEHZO@QjCRDrgjK{5g{D_Seh=>x|wke-0E*ik%CA+DrYI;16j}OD+IHZ+9s`B6iPx1BFUlWt8J(ns##WUxkL|QTZoq@ASg0O;cGBD7tA=csYh(Z+vt{fJDZKuXlkMD7R&q&G8$|ZLYNiRW&y|Hm(FZ4 z_N{_GS3~9YCP{eQ1qk*Cr1)~=f~F<3ojwy49vk;Axsmn}c_^xX5p&1DFNn5Okzg&Q z$XOSStlBNOPe1(5&*3H~(J?+YRScpHdt2q41K5L6^|73;x)mr?L1ekwrA14~^-q67 z$H`+5n~-ll98eU6ty{Mu2m-08sfeOTdU_hKzpilo^;vA%l+D0_9c#;bJRTw=TPH&O z7+M#{2*Up`#PxO2gIY+U){2(P`u=B9$Mt33qTrHoVJR~0PRU^TwbOOC9hY49_mL*Y z^uW7z8PX|tA%1;N@Ipol%K6XZ`F9EUyolj-_qb8tMFSYDp!&eu{O0hmnsPs0DTwJ+)Cti=th`wzx zuFb+Tx|_BRg@EtATFC=<&Y`TN{s!>rM&(3Nz-%^RwVCjGWxQS=vQI%)R8&PJ!fd9z zMpxbC^pYNT8`EFAn8}xqfM{fFh5|FW;VVZ`T#+)Y%vD+xC@9`Cy+bmQeSXOI%vv^S_6 z;PPI47P3VsiTpWAQl!h_Z~_ib=SK{j!v_j7)C6?|HI2v?ZfoH!Kbp z-(EY3in!3d89QvW1oO~2>#-3Uokbx#{!3|P<+%^?W7_%SI^4x|>sBU&&j8s!ZEMW;llL8tDJMQ08` z0GDLbMGyv(=yZBK^qTn-S*3OFy(kEDh_-WC|4!UJq9-O}&An@z4*Qyx7Lrhlg-*6#HG{#`DaLB{(x5+7BU z_fYn!dQ?WK^jb6%gppz;UO5J%q-`)ZC~ou+jGeogSpAQSKY!lA`>&tNEmMD_pdk2o zc-sxb*}6`f3}b6S0KzKVRK&GXUgN_Cfr>IS2BQI=%Z+3i0DbK07KLY+1RD9)nuGPs_{9 z=iv)(qP(b_q;~D_F55w|!34W@pk7@sf3~8)6O$BdTo>`1dyj%h->}#k<*a(o^z_hjr|W`TMNDB4z2fgb3p&AS8 zXsoal2nL%4gWZa&Ab=x*Ahc-pS+Qe3d%ygXju(w-L9Nz-$KxRZx8{f8EH;nGS3=8;YXP?bciIjvfu+;ZRrzFTbom-^MYt3IsLOq&3H& z89jUUq_oP*BX6~CB2nWlk09*ccf^L<`s7^CJFmi&aw_{4MmC5fG{->dsA80=HLQE| z6_fy8%Pqy&^C2ct&>iu1q)@+oscTj@K_u)~TeE;=IUVQdvcJ0VRspm~@ltjX#tXOSkA|kCs zM%#!_h#)03nzZ(@bnKK!_nxUFB(==r=;i4@^V)L@a60QYNP++fiIF5GN71EQGJ{8? zGxn5TB!?h(p(s#QsW4&840deWTYEgcb0YKqx)1w72Dsg&`Fyu^72j-G!S2$=5yKWC zl8E=RIPd1ojGV9sgR$^#-`X)7jJO^wl3;qyA6qoVn754&A5gp0QX?Ihc5?Y?yP+)Yq zNz2&FkYE31?Wp50xjne87PbxS8S*kCUkocgfnBrvP_ZMf!EtkpgRa-F#u(9X!=Dsk zVp3m$Ie)#&{Pn*yko}8~h~ui!R}&vQk}ua(A-B@fFKufv_Hy@scV4N%)2}5H9;IEr zq^!tCv_U(uZ|CFX8|l*~fiwE1GaxM~s4-dgs7N|; z5tbXGi13zau3u`5CE8hMnV6%h6{~UM>X6A*ZGwI4}0r>s#+v#s^`rasrh&tJFuhEQAhhl-- zXwyYhI;;`c6z%n$)^J_*-4;7@|60jiAO3>F-Ef{T8zoc~WJN_$)fz`H0Z9<(mm0_S z4^JksO%iB*h7A@lHa))#x#3k-ZuPG-1OeW=?_$nB!7uGtAw?2l)4o?MHN+Ba({A*u zw8UaJYir-5N*JSqJIgkQ#Xpzw&F6j+-)b{5dVE(_ZOGy6Su3clth=VjNDKGfc>+eC z%7&HM!A^JBP?TsRzeCiK?na9d6YnJJ>lticuoQqXZ_GssQ9{#Tlxf>RrzCU@WLakR zxNGsa{lD?}mmef`Kr=+VCa9c{1cnfuLm#=|3AU|n=qz&W6IXKbxdDf=kVwJopthZ{8a4yX53#zWL#O+VyBA(z+F4 zlOl;UHC*RZs8)8UW$aLPP^y-YE_R}=kV?8>#Ukj7veyH(U?;dLz#a=m8$9qaoPHb} z->d10l?C9@=RBlJ;W%Qul5Ji}zPP9XQP@U4o3`bhFjejjTv@c>jp>5hRDf5^#-PSy zl;bfv6r{>Mp!!f11=ekAS^kJ42|33-;d{P;loxr zUnez(TwlSbtSR6%fYptoB%94|eoFD0rXBN|f;ldNi}L0o1R>ZI zMWML3n9|Zxs;jGOo=-gdTEpG_UzdcfX$mXht$tw(2ipS z;bFibAqZ6!)8tzbD)bp+G&NoG@4@S>sGc3^e9a|@rf3Aoh~llrRggu-yPxCC({6M+ zxb3s91WVX|&m0+yoD;&MF%B7xXgr`XCZY;PyqnjeWY+WQkp!%x+SGlHX^)WB4fae! zaO`T_UU)xfcNglq9~zK^|5+r&BD6h3$tN|y8PS=&_FVopzJxD;u6-x@G=@0OCA@f} z|9~wTB9g&q(M0m8vJXKzG(q1RH->TUdA$%tm6a=26CU2!Fw~NS?lWKimRoLl4S;s- z63NLa!s~6_jL?ZD1Gi5*m&>mYOjOCT%-uJB!q;E?i|ng={tX6+NtX;|`m2*$#anpp zXY0A+hIeYER0Toc!6(n=#yd`FR9010zT1({{EUD3d+$G#I{ltwC#E0I88P?p>5P6{ zc;|XL^sMtJyXo88DXcEi)VB#e#&gMlivoUk|IZJzt7K1$&lw*U$E7hNIVo)fRUML> zuMhya4%plTK?rctoS)e|qz}36+ca73NTIsYz}}2VTuuoP=oo9|w6@_q^4wSK|NTh- zjP@kF=~n@e93Re8ca7)Q{Z;HNav%t5%^ouFeNYwHGp84&8yar6BK-MIf|knNhaJ%1WR|x>@RCw!$9)RQeujZoUx&`@bb(kBDC9e$<2inqqg@H zpwew1!r3^&x+N&CFcB+gm$k}uMv<%|N32IRU~=d)m=?GriT7xe&i`p^E|2}Xm2G=6 zak}c>k2}ZqXU6z}A)TX2v=ioROb}Wg{IG#EBKXI8i_t)m-OLpOJ9F;|y^$n|3dK&i zM|%W8t}TtEil&`3nnIpEjihqFaq@~E{^Ij3b>sZ#c8M&wsPWv?0I`Xvg`q_yeX(UX zFR$3j>@!EwIkv`eM-ZtE_wfIPb;c(EJaf&Z+!@pSw$ovW^hW{)!Mu!p-2U4N3SC}Y zULQtLWZU&;ks1*OKuLH4F^+U+9h)M-Nm)xtNs?T?jx#_hEFt?8(ro3M##iE5u}K z9W$CcE1!=pxf1|U61i;NJD6;(Z$R%JsgfENTG@R&_VMtfCva5x*Lada;@#!1V~@5s zQ?ntiAAU2X1!VvTqJUa6mv-;novj=FMB6!2@8Y_L?qot@2Rtqhamlf~vGf&G6%1Yj zG5P-ItFTRW$ONI?;GU zXF-67$Z$rEIG!7Cx|Xyq9wK5ZFq#gZ^sj(Oq9wi7wos*7c*8rFH+?TOC?_IvwltY3 z#vAA)%4kikp$Dq$164sV)ZEkGR>ARoz})nhuR6-0sIjd}3lwt_ZhImgg9jA_qiV%m zRfwU9Ip34ek8JBbC^TGSo7C>advC#9l!xFgM%}X?N_0k$9&T8opiLhHvk??GNLJMH zQoj^w4ZOKk__hb%UwpRpWESlk$m?TXz|uqnzwz&m9*xO5m;b;-5_gtRRevC@sN zdorrMvFcWR-1p|0+~%9k7E&n|B3ivKfiUW=M=|I0N2#tiZ%AP7<)k?GUsgTzy5?Y- z(O*77`}0m{bUZsdo1Hs%qN*xJqY<;&jLl}l<#OS4I`P&xXh@PoSXdaHe*6*7`0==s zlJNO_c)ebHJ|7N;gQ}`3R8_@fG7%FKLuzU&;o+feo=Z#1xaOKF&Obkg(@yK!VtLVH z1mWSsF@o?g;7|~RLS{Cm8y{*>og*1N)>>_cMZoyW4)0a8mW-+1bBU2=%>8SkXd>Gn zv`IwR@j%mU+k2qKUI#muYHan$qQU)Ymx9m&`9EkGsnrrVBhvXh;%9bB3z{s~K|YBS z%Fe)2wFe@S5Ta6BzcV`V@yCfwxuGjgr=Ki4|NH{xe6d;AeKQzNs*P3%21yd>)-#2B z9+^Pru1U;(e<@4<*hXP~6;7uIkH?G8D$>@+(!J^l^y=C{CI^Lur_6-;%86j2m-`^iasyuAd6CpclQs*v@4 zSBm~^NRCQYFI}%+jWzM;FbV=B?=B;z8R?n-0-k>*ikK+v^>cFtQjE<FBVlvs zbEGP$u#g~VCmHiyQ6##xlNzWhio>f}nh_w+8%v_A<;2JhU$5ewg)4)8e@d?o{CrjO zQ4c;uBzI%uM)VV3P~~i%2v3Tzaq-}OJTZwDTtzI0SLR@v=eC5|J zTFb{PH#Iswwp|iGU*ykMn-`TvQl<6?j=ZS$Bv)xCX>+4HkmA(der`m2Qr!D=)bBuw zui?Aw^musiyA>?lx}Pw!ktnN)NSg__SHbD^vAd{(U4;!v*%N!D@!Ne9TmCGkbcFKe z-{Uvut>&h8{ZfK!UY$a}v?u^7!xIP>waqIoOjr(1wAKRT6Hh{vb~(OWDV3yXZ4r#J z0ykY>hUX|y18fOYU`PK%eCDG#4MY>z@YK0@Yw|b84?Byr3AY3->!~PV-`wfA_wT?c zdzk#nLnu8u1})zbZ2tB){(k900K#IUxcJ-GTjjj<5o1yr5Z8RU`Y0_dBV*kz29D`h zI~Lf=!!q+-C%j0tWbZRXp!6KZBwCLn(IJ^6#NB8rH+9 zbKb(cBCs=!6sO{AyPd^XJcR0Nxl?^i-*hIddAmUn!nSSO$ji$kIXRimojV7O?yIh@ zrm(P(qM{;HuxOqH}H5o?A%_!%hP}6*Pl1war;mdl{G8(Fk#G$fc=SywKM(Iix@vKv=lWRY z&rjp>2Uj;B2mR3gCN=rqH}i5tS|S*lHiY5rhtM^?3!)%`s!}k#H!&OckbTM^P2?be zFN6Wf91ni)zWii1_wYnCu7DQF-i@`P^~)8GODWc!W;QuN@na zgQCet=PTA7Rpj9R5`20csda8DwdTC44@FPnH9!<}_CXNv2xcs*b_0%<9D*A?_F8gK z08%1toYuW9R}AXHm^bF(krjU3v+Kh^e#b7B?#W|IaTWVYD{x)B zXE0&(HE;QES@w}SWLH%4%wHRszbluVimKYPM26d0d)0VSL-f`bJT6qT72MiMLLn>y zwH`reGDvuQGViR<;N*_UoY}eQyh=W)vEfLTW%|GW6WdGtB$fbljg2I$(t*R{Wy!v} zh(T57yCCTFot0#L1BxW;Guny)>RU}FUYsP$DuwAW`ulPA$?W@Q9a+oQQC(cd;%DFH#QU!gys6f>(Ju9XPXR*xylS9YZxOu>^`-2HM&~A5S;zokrK>yKuYwb-Z4g3(tI& zorSMpu^35CjV3NGlA@w=zW;i4!^-=Mp_TlxiwaBmdd?qQbK}@12|{USKIUIHX0-H{oCU8NsWj-SrK`4?IadBPC{0M;8}Q`UVL2=@uepO zCkFw;?jod&d`$$QuX_q|a#Tq2rGp3LW7zf*Yf8Jam+o|AIbIz(ghPSs3qBUfMFNu2 zmEkYn%ilLY)8ccNtl!1HpOzClrZ1Z|ZNlYp)#e0DObj03FNz}J;o*dbhtsiRM;JU9 z#*E?k?%i9RFs-aC;=J=xxaS_2F@qM9gvW4r@E@5Lj^SX4>$fyprYUEuLro59a`XxT zp%8?6Lt>BQeQOFrc#Ux%TnaOv|Al_(_tr|*93TkmW7)iRTzt=3%+|&pV~5I_El?I$ zyUEVjPNR8v?0vj-&TCvf_;R`@bn}ygHJ#aW;b`Xn@e&*E4;+~o3gi%mF1O9XXLnys z&y^d9Dr{L~)wyqdPQt#11YD1m8%fFvoIE~Ze?Al6`I5+@GO{|i=jV&hBC4oqsYX?; zyMKzqMRAz}_Iy!$tRm^`K-I`DsK6=&zX5qm(#TufFv+U~cQqJDx_Q)MT(~Ug&(RXV9Ui`Z1v9CG1@Iz@OWf?-H| zhjcv##fvN%aGL|`z?C~a{JXz^PdD!7_5~~GGV>d3&wN71*S_JswHajBBL`3I)rI_< z&k30vtVMXsq<{*q=ML&=G2mdcC(3HH=e`# zYbWsH*y8~3Dhl6k_ebqXioO@x=+zfNX=z4YvpHD3`s!OW){n7USu*u(cDy!~^aTGi z;8PT?eRmhT%?K{+m&FVHMi*J|1aERy#eXehQ-h-sk@D3Dy73ZB#DjuetT= z_{kVWRe9#BTd8W{IyD%^O`nQ6!tY$RWBw9K_wH|1gM^Aek&d70z!Y6&Zz!Yq+4Enr z;@4FT%L$-JKAw8&sYd6y>-F2X{J~3zjPs8(D}G(Y9jDyG!Y_UY{BowDV9%Dl?B5xD zJ}GiGZ-K7QMVd?|R%blh;Cn?;=$3M4?dKQYzNFDP3z;)1EkyjEthhJC>M`Y9CEx{)DX|`B_@o~J-?IB*jv%q0Rxyv8EelQdj zYSzze&cpae2BM>(17Nv3jJuZH%$T&*RNj0NQpc#E&6xk(j&=5Oq^zcuPJG>yaZl*i z!i%Vb8f6P;__9pp6ZFZ~mugzuk zYQN(`dU`q|M~-Zg91MycJzCuWm7kxFq9~kxdV8+925!C?cJGFb8(X!RV`v2&lNdb= zXmyEES;lnHEeO>|ChyOYlqx;-B8ZF)lCz2b8CzvQmU4qxwDJ2?8{R3r6<9jm4c3sHlKHvEcu?3qUwQtZIf`>{9 zHB`)-7t0xEHeCFsrn>lN`5M}^X`M~KS8-G14ldcH=N?oPg|lh3f@G9QYF9*ZTT_Fa z5k~@RSM6ca=`T}V?Z1D6hNbiEZ&Uexjf>asew(8GMHJ)~5);>r6DNMah4%*bPRy&! z!>7my2PnOonP0rJmkv|A zB6&|4G5P;}iP6WNjv`G*y34!*iDXe*?z{u=l~!RCLX(y8cs#7xo{d))@Tp)Bpu}M% z4($@7Rk9hovoSF)Ng{(fC50q2SmFvJM%Hd9%~29bu5Mo1vE1qA()Sm#V9UN*GU2=d z9r@zsiBQ&lc$$#;J3Z`lzCNLJ{gbKi|q5EC<;mowrVz$k#4EUJT<&0 zW81b+OYQ(tI-u^~-F&$q5IS^2-LtL1vF|eWapAXr)_(rs!c#aUEg@k2!iYBP+`5*h z|K7kq*@aZqi^}Ss6vy9}p3>lXw9WVgSy3^HBIS2oNR>UFNRRgC&}Fb-Mf=)E79>Qo zpjmEL1r&=JgQ|__R1i>YW(;V{{p=GA80-c<|9dN!zx7M)JND%H!+7wN{_wNRTVtZ378Dp94@wORd{~dQRocR3_NCujQ;<{JcM;{7Ui(z#mj5ggB>T` zOLYH}Yro(8)H%4SD=>z~(&vFWH^)Syowh-n0Z>`~AfRWdvCyE+?5h zPc|QZ{2^J}_c8FK0Zh1NJm8lvz4^pD@E#=X-KAe=p8ERHCfon}hvmF-r(gEb7H;MK zS@+Vl|G_faEteSuNC}(L;B#VP0&90aQTusFkB8WoS%lGOD{j`DqfaF+|_0* zVJ=ifKr%Kx7PzX-+<(gg=FFK>du;OMC-M9n=Y`Z))8cI?@!{C|^(QRLLFKjrt~zlJ ztN6FcdIAFTEx*%MJOZZR)jMF=O)#h{Ty;7WSHO#3f!hO5TnV?F)40x#eW=C?kPg4h zs3)#B*Ue>Ru5(JUm+cEs%r*W@tf|wUT?X!bFF1t5)nE((YEVTXP7ECrP!%rL) zP)_tnV)g3PD2l?ML4yErIN+66VD4O4xw83r=a|Ik;lr`O&i^2Uotdpp4z`5gIZ`}^ z(Hxi@Y;76S!-)=E#)yyzLN#p)YW5BY(oSpLyF*^T8F^8?_bI*B;Bxw$QWJV5U90i|en? zLGL<4Rs+i_w8lM%h^u7ysRxeOn<{?T(Eqp&WE8x@@ZJxzcXuHxm+#`08S{DJsUJ}4 zdB>L&Ze#z>+kwD2Pm;ou0v^|kaC7K{TWcef2tt6r$DfF7Fwk*J1{;SD2>JZG`gCo+ z(7~wp0KW9n13Y-`L$u$rlf69x=j^I4G5XFkx7U(`lEH{K?OZ4b96`~yYce^`hDO`! ztO)k~)P?GOjiYwjowN0*B?teP;MJLir8RhUpDHy=5dQqv7H*#L4SRF66MMB}Qiz~}PMKglOf#^}r!adgpEpJ9-xEf8B>Z4fjHaqqeyZpgHVt{g??8Of3+irRB2A;X9 zF1^FW_gvVxtfWxbHX8}J`td6oeIFek#m5`oPrthvNs^Ex1zSYT7$i0SBA4XG@a30Z z0)Dx_r=NbB%WetG;CkH#3?^TLzI$r&BRb^@!ZM2q|MhPk9rXz3OXuMt_*kf-Qbjdz zn5BVL6>gu2$0sv=`4$Yzx6l#j(yIgA<~@V8ZGiQq(+!K)LtznI+5)-jR)VQyCyAzq z$Td!-DFrW=xS0s!K-9Qs$UVyUZUvR_>vr(?P^XR#Tqev61M0jd4Q;|}3Bq0FDSW!^ zR4(f=KPW+X`KEH_)~Mc{lU+oHeC9KW z)73Aqjp|11O{ZXpwWE4vd_|QwSM8$WhgJA8we7*mw`P*Jc`@-RPt> zMgEVyvkZ*lYTy3v%&c47f#9x%Qffe{yL$_Dm#41JQ+IcFcP~}iA}thmw?IM?VjEkX zIq!!J5wg2k36%a{t}l?CV>5H+ocr9@EmDt>sI-~r^5$jez5wpWencEFw&OZG5xTBZ zS64^Bel7YLn+?z<0ezx^K^;BK_RZV$qpfX?3XIPuU)4Z#{}1JOgJ#Djm@>oQh&JbwCQU)_cjYz@_*^4#xFke<71SkvtcEUtz! zPv^b7Bi{M~Atlp~IskW=9E0(|y>cC?*FQ{yyAE@=eAZ1mj?6xVxVq-G@mQ%Wx3FP# z3M*f_mii5gLO&`-7+YXM zn$yZt=TG3Q?edb9`qIe_CQeM1%M7yWi}CpVyghR@pUqp#l9DPa>%Cz~w7hf|&z`a` z#|`h^{F~HG;Eivu+W6-x9{+SIYgLs2La<*j$k+khNZoe;^vaL#CNjGqH;23+wTc=J zfAKqh*JAVJvKmwzCIc3O0hifGip5Bl)k2QlO1{%dPC-81a&sA&<|NNwLr^s`XaCc2 z)Rr@3?&RinL|)INJOC-|i(J1l@%lLhP+Wwls>S%}Z;1MqHR4^MiC)5DG*WZTsm<4( znX{Z5rnKaB5<-xklENW_`ta}`-N}xS_x7lde&Of!Tbk>5Z#s)civwE{p*pLbIi!2a zsrUQwOO^dz{+d$zAbz zlH0VVE#F+p;G5rR&I|U*RY!8-UXi1E0FYM*we5559(VtzeEs(t09L%Z(=l6vta<(t%2#b@F0U9=PW$Ld z97%>6eEX=2@z#dcuroe;CTe>QU8PZIgvnyi4yqIk%hXA45(^aUM-P7=>a%O`+q{@OW>P9b1|$^)CFnvT1YCRA&1_!N zJ{MiL-d%X~hX>pJZZ~L*$V$#=VBx%toOQypRBnxI9DMSbV|eQ2bHZMW_Kfen?JJ&t zGPHkx{^ND*wQnDU0Cn+Z)Gt=xx#bXaU7@Btm8vZnWOXYiJ$Jik54w)yo^P-nJRbGH zJ(1GH-_p&w-jneVejPPo;#k`J5Pc!VfFIg0&h!6r*Rj^o0xLh`Ja?&X5 zmdl_*8+(uF!a@7?+NsfkbaN(+8D`3iw-YISPr7yqX2Y!W)GK&w+%u$G+J6`Q-u#o|y7u3l0A4p4 zIDKp%f&=1|uXg~npya!^!Q1qiye}{3sAJ0*dUb!i3pP^s?L5>R7uI3jF%QT`aaxhS zApZ5`)Vwzx&!2I=XCc`4nVYd|BM26SCrM3XD*55$3p#8{$#9T+@2Qx2=c3no*nIZ0 z=#733oAMZWU(f#ghxcr}<{B707|uUGavOsN3;;#h?LoK`@b5MA z`u`ZpPswFK-ez0fSzdQ}2aYEHh{F+<9CY1)qUcCp85`dJn94crKjK9D?$)RMZz8KJ z#y*Fk_|rq#!i9o#`q63^6I}XJ0(TP~ZN_deVi>XyYE}Wl+Zb{wF`AHyihs_pNOwi_ z`f)%>Z>1FRHz2G1(C1EstOj!?5NK*u1z$B%q#(V{U56Z0l~8ebUfo7Tpn*EA z3cv2dqS#0=WRPVvpl%o5siXXgstWJFw~R4+k7WJ&wjpx<`YVMIdyL|S>o@V=|8Br) zjbCx$*E%O8NU|P>I~!K3iDzCths)1vo43+pGjrdkcha?Q*MDeaiDBFGml7I+P#cKd zBXAqsot&y>`1HBBGg6s5ey@%R!Z4@w@2`K5l6lL}gWDaFi%Q_0=bQiRHDL?~-Wl@r z32kBZP{@>sjVmm;zJSyetb_2oa9vv>t{jh?6>HC070zFz_FoqG^j zt}x-;%(l1*!oo4Vd8$_yV#Q{};$pPZ_XkIKGO8m;pC|Mzy?)Hkf5UH5vVagNwoVZ= zw)*}}296|yLCzp)u-E4#)9qCXL$wD~@zG`%!E+reYw~o5BJam*656n*V089vV zwWxp0$1t~Tn9=$^y%~ApNw^+#W zaN?*CY3(s4M-cke(EC5_^FR5iDYxN$Qy25Vv?Xl1_9U_#(L)IalRRSUN#+!lN%Bj& z-qQboE*Z?Y^Az^EBNPJf@z13ndFy?@s2%|!yH-I7pcAF7T zt)DqFHsbSkj^T;D)<;dY4Mo$j)%r2|w3v5Q3DjiUkcqOoVUTJya^yf8W>JIJ--tmm zU^1t&vD(O#)pZfWNn3i1;QZ_E;I+r@0$}T3U*TUdgNfJQ%`;5|VSUjG9Nqfk^Qav8 z{QbyaBfs7A0vl({MGtCxc*@nB^8RDE@*;Sg2X!juEob9j^U$PD-soX;-Dh~4BFDaX z7ayH*9RSn*`wWM_7&+u-eHfK=W5zs^XuRo6UqIW|YPM;NlV9Wt3qYq9j zUzQM1y0HvJ5oCAGrohq#RZ}qpjQH{5xBA%HwZ+I`+011;`Jd--SGe1>lbV&vo$uX7 ze$TwH{WJs>yg`8_&M>3f@ZFblx$w-EFs~+)0U^NWYx!;zMR3-+`-QE)Zp~Jv{J4ZQ ztG2LdV+CcUwNzI%QeWr6>-7_8lIyKjE2H=6%Qg?S+Ke8|(|w$kbvc@*p(sj|hoVYm zmV=vazmWaM4ab#Hi^&qeclZ!&H@pl-EJfUT4x@4LrR7JS2|UfW+9z$sBoN$VdXnzK z2nmLwP6qx*FJ{qmUq&q>r6d^CsIT`>U+}mb*U-9_DgnhpU1EWBjk1!dLDGqSggT)Mv*z)2bB~;dQz6*J2 z9VM^Mz{2V2h+?3rky&P^L|>w-=(!k;9P%@IlnCDp`KY_4ll3jz=ET$!(3lY=7#xXZCHpR zB*r}sK~)@xKoDs%pc@5&WmA#Wi5a1*20@=;lEr_4n(gA`^Hmns97LBFUZ?icznja| ze)ty<3gziMau4j|2ald1c5Uh}oTu6UXgmb@ON_RhtYEn7%QNr@Qt^sKYs*=IvJ z32(n0tl`A#T`Xkk|7GmQ_E!S2qzHcoJmfHnm_hVH$ld>Jk^q(`%r%?LkT&n2UBrI=uzn;Ba zN0DyyhOHkB6%|IVyS^81za4(Oy?QnB;tQ)d=%D!KR;9NXzf9Z%aaZ)Zj0Xqr{QyfB zg}h2q%_d%6`p*e&hI$Xd4wRdbP#=Je^&y3VFN&$M!RKepPtzIy`OgF_Cf>Q>0!n&z zMbk9uO3J8Oy9xKEQtHYoFxjj)^Rh_omPdNet}%yZT03PXn`SLUt*k+5XuxN+Vamn^$CW_CGyQTqM*Ks;5*j+Y?8Z~}eT|qcUQmMm= z=k}zr#6@aO4UK*7z@PPFn=*sC_2t^*{=={9%&aW$r2HGYq+o3g)_Ol?Ut$UZon+LY zor8=lmH$1MnbaOpS?nPvHSsv3wG9d>-WH>vxy!e3`E9SWY~6-VQ@v!GP5keWQCxA$ z$>9qaQ=u|(k0AiO5`vNES5VWq7Zw&p=_-tc<>n359&#l)q>R=!TLQd2f4NFJ?OylJr1BQC9}Z%+IkL~0tcI`JHSNC~O|!(a0-O#K_7>qsG3dHwZNcI(Q1S6&4`n%T^k zCmn&yV&bq5zox7yeZtlIkKw^%4@Oo*SCaf*w3#E`{}uqN+03jf&ZSG!7gv>%OGZO` z54KoQ<;*3+Q_9Jo{LIg-yn_I8T@F@Ud3x0P)sAe^yorYxb33v~(-VIOZc7HKxH~Qw z0X3FP(nL+0-+o-Yo)e$>viWZz1Wt>I(LHl{_Ur@c(>fADRu@DVC0E*{$8k4!C`fm* z>e(wI_FrkuCBu;T_$w^=WSSDsD`Tya0^7PU8^ zc4VY+#uv}F`R$WQH&MMl^lq-1@;(i%Nv;GHD;BAsp^<5WGEXRHX)G{FLDkkuO5XgA z;?--p?Uvif@0~}`6ret>CZ@5pK8r1yzL>W*>6*sJpIlBsZsO~2 z#}H`Fo&>EX0)}cdQIA2oF!?huR<3}ilq%Be2d@{A>WZs%xqdTLCBFBC!+SrjWa7(z zMZDf6!_N1&AH<+;9Y^7jQd0K2n~T4{jt`H#6OodE<t5T zCM&Kv0e$mYB=GCT3QqWDVe?tIXhJ{I2Zc`nuLEFAeSj@CT~|IDx2<^YKi9*^X&v?FmGHk@EZ9dF&NF?9WBWQpi9q>|+%|M7_! za#P!pbg{rzkje0yF2s@36;;~7An`VAVdjkw<0%WTXEPL}lXc_Km(z|2^MX1_9Qss$>5VHy{B;2wt7>435^GKRXcxlm8}r)^g_GIVqv~ z?na&Ycqr%xdES-{u*fb%-;j8CPAMf~Lj^M35sI9E z1d|br2Grl@p^X{{OK;?cHEn+Ko2<+`^bF8-`p*6ZW59>Kx;#8V-?bNVeQeJ_ z)HNWT+l|L+hla!rdH_U57P4|HqP!BN$_>@EnC31)BYOB6yWK|V1t()D?1|j4I$}9Z z(@1~eLjp~jrlpgPqen_hF1ylq4V*Prw-xli$B31CHlabrwwPn5ncG}xAh74 z*%_$LvQpA3xiInDaM?a~E`H_$f>FGoZ$9Z78r5OUSl{+LJGf6efByU%cb&EeQx+8Q z&P$K6VMW_uh(}y{KS!T%EU(Skf-Bui?*T1yW!8%yu&~K+K`4Tg-h7a>?k!62SH_)1 zB=uXDQG+?+@s<=KHJi5Z@tM~HaNfiJ#W1FSj8CBR@Y$I+P`RlDtJR9f({he;rMmd) zi?0Bv&Mqftj?c*IqA{0Kvz<5KUWe|SUVw~F{71dQCP7caei0Yj&kV=&p^j00H|fY&y@!w1XWL5vMz zw}w39y@X`cJ;a_oX?%*_H5IU8BkVO`r+DftS+brXLqqWdUw!3z&OiSM)(1Vj+;C*X zI{TTfWIyw1q$ob>)-B?Vcc<|A4@;Q8q=ee~wla4?0GU8$zmAI+?mv;E4jdSvwa$WQ z(*Nj03OgDvq~8yVBg;PV;_F!(IsW0_n*SbBn8u*4smxwe!TPegHioNx^Ig1q^;kys z&J5F13xXx}T>siBTr=_`x}0zjfh8|-tVoKe*!Sbpfc;y@e%u(bL`D@UHBte8|LHA?L)1BN!qf- z$U%eAZ@Ufel(!+!@!s3$%%Yg)ilRohfJ(0=^MPctZpJ&!{z0o_61x+sKyWf{AzW3Sa1v@}mHXM9PXf&pM zFUD|NEn;oQ2S@Go!FcC)9-%5yGO!HZ8|A5MIxbw;58vUF2+sL6xlUDqb^oS=MYoX% zeIxwiJ&b+yE7&F%mi7SI=FWSP1XWv0_c}p7t=w~$56h>~41AwM0C z7zLlsfa-cUeJp(XCmcBnP6;2z3R4>VHXXK9!*@+Vgq}Drz8et^sEu7_(0-cFgm?d7 zS}R3Wro+Ot8;+xIPFqE<+vDSmSAXW`Wt-cCc2fk5?UT=k7aT&S(*iyTdaG|y(?em( zV}#7=2}OzLevxUp$l~NYF{M3Ph|m~N*blk3eGWj6-NlmqkHJ}4O8?nW&J;Oaki{{0 z1bMueKmHNl*+;ik3QE9Wib=^538HHcw>9jjNGTwzA@TQEXHCTwr~%-+HJdr_ z`#*6vDW`j;I$3tnu~F*>6aywTIsakJZow!M_iXmr9a!|lJW=S#8ImKn38kTT#%dZU_;N-`{u~hYbrK63!<~m>r3QEC#4n(@AqC{_M7>`Q*70 z4^dlU>`GorVn%Ti@HjHDni5kuuUVsU|E=ZN>?ZODWbnUxJJvs3df^!I>=xFnNZji+ zS@_K=t4AcCZ{A{5IJ`$Ox4(ODhh^_O>vm?A^`OMvGSAN+p21~zyv+EaT`;H$x1BbI zdtdyRDWANA)O8fqh(7WH_8s1vgO8ZNcdNECeDqdCt0i>yYo9Xzt&p-@2*Fujzlb%( zfwr!c*Ukxr4L#((Yw5m!C_LwTCtgXz){w{W-dCQ*kdqGwz$z7<8W-|bKKSbM=yAe< zofi%%M!Y=s%!t?CU-TAEEd`IGK4RN#jyMwRZWrc8D~~<@D3d?@v0eG`CywQ^hc0Sg z7bsb`1$&B(lo&j8+t!tg%xc6MXPD6f=cUc(3Zv1$Ui92iKmM5gj%@2u z{`4c0dG@g%sjq9hM!Q@#_S<&|S6y{Hn;TQP=A0X-s|y(nm>q({Zjvmx68ufhx;;f7 zKJdRp*MlyDA0CF(`1J;fz-T&{U{GVgfI^lneS<}TB0gw5Cu*I&O&4>p`5Y{sVyJA9 zFXk^T=8P*pVCA~Dkr%8MBbT1NHxJ!>M2B9cyAtG@B5+4`f`}DU78P^wT`fApAO3eR z2M;S~{#(;DPJZ+czW%$YjVxv}8#!k}FP=Pi&#=!;YC2`VyLoE%N!)jzkLku<9CXk@ zXqtu)a6%u!Ylo|(SVML7{cggyx(a<=NNaGw$FrGT7SiLEoUtdajPPETbC15BtPKn3 zwm7thS%(~ja(ze#>rG2%`3?WWJ#Z-9K6#g(@4SvQ*wNm83EwYoMhw%cDF#-Iok(L^ z9%{ggt)`5W($zQ@{>|jK^k#>}a+${$oXdGUf>CrVOPGgrBlm&RKnQBT_?zmtr-8qf z-pgdbzE59-#Yp{>rERZm2h)H89ODOK8D5C7ARS>fK~N`9TuJ4#KjEDhn=#KZb6+H5 zM3@|1I}tNx%pff-je!H>C+l?`MvQ|SG$?p<-TSjLHr48*#Q$w2@-E5I=>W`Z!;yp$2^TVu=PlWcCeU5OBC2V-Kn zjJ8KWxARlgqcM?#02P5^`dIrDHdbO7Z2u0dR-JqAUC-&KmvPa>{rU6H6t25=Q{3dB zlyaw$gS%pm!okC{`TFzF{|An0?_Ja9%^&Ih`BdiJc@C8$`|i-OxCaz=Tqp_xLSfmk z{+#^7G};8c5uhjvimGBTnJ}46nCv!8E<2`FC${ViTzOffbhG>gzpBIO%TYE^P5QQx(CD2an+H2PdHxRlrkUBc?1wT8!Wgp!oclH@8GpkR}77 z>7Xc6?C{J*klyru4;TWQDxhm796dVvV5AO%x8t*od zgXs=?J8}@fP z=4+qNJXSOqTv+^x&*ys8g(X7B;lqa%a`=$YbJsMD`+r=>i+?Po)ZH@o6d{mOA_+;M z?uNF6*}@7xhehbyEdA7xiIc>PVO&}bnslOy#7H)qmN+>GKp=6MR{(Vl2CSyU2>QbA zDh31C9VWI`#Pzc1R1#bltYrU64*A#%h8s9XL<%LvKwGZw7jl*7hgR*clw8F8kxC`R@?|0Ik? z6Mw(@5mHM2c;H12d+>TzeDHm9nQi1Cz{&4E#@k0+fUar$^~}5Ys_Pha(J6Rao%hPh z%IJ}d;I;#VzD*l8(PLoy^-u{aD4Kzw$=^o2veh{-H`q{hm5Xk>0FT$h?_W-BQ@6F3 z;P#?fq&$P+(6+9i!fPPM)X<#AFC4blC7g8H7{32%Aw7Hc;-hb`Cp9xN>F;YaQ&XNs zc6K(Ur7gyH#ha?Q>DJHMlr89*&ffd=B`w2FuRb}XIr?(hMfad-8YYv88*jLcIkQ4u zWT~ks>^Y(RdUVwdhjZoihx7N0&0Kxa8x(B}8N}4qHuC-CS$scvR{Js5OD6vprhTLG z)oB`24uy3+SM!?Xb8dg~dJOOU1XrFA@g6%90|ykcXz@B$tqK_qSwzRgG!ul<)pGW=R97+L*8i~aq%&E6=DBo#{|%Ht z1L|vUA`ah&#tq9cH&nHWvJo&@SaQ&%NJXLl?{DC&Zl%evL$^M#vB@?sTWsMd`5y0a zC8Ok2da)F1lyJPh#YJp9?ol$YI||o{dy#VbzMyYYN`(wXq^5(EWZrNz!E!f^f3C(e zb2Y|-bgZL$Vd|BGn(hEapx1fuZ>Yfi@l5J}T}-ez{e>JZi4XN1dkW7GIH3XWIeyOp`$iZhmU0a`yGdK z0LU1qQ8jyRhvhmVr!t!4LA782%6qXNmUTzs)}!H|NFCgkcCZx1j@qu(OE4U6xo>3<#xji0V2`XLaKr9T#kZO>q$m zIoQ!N95kqrX;bI%&O5oBd~$n*;kNo4Hdx5Z^IX{2qU4*Quhk%B>nMoz-$^`znn8)o6ZMQLgCK?n$C*Sns!z4veJ3! z^!+(E&6c(VVVn?6ghaydCU3QkDY-maA{cCU4-L*VR_%EZLPEFY9mv)7?$Cyo zOpq9x4U%wz+`ec3Q3o{tKj87AlvZG#y_kCs*%urw5f*}Dh9hd~Ff3YyqUWP`ZLbhM z>;3PW)#e`^7T%-Q?sX$ofk<#RC{j{yPQmG`Y5vU-Lnyn}@R%G)5rjS^v0TC1;1|iw zL%)daepOZFzenuBe~;J$P1C6N2T8G-+2ZO!zTCpp6`OhBtJy5wTtP!X;tlFJ9d<4o zHwcKlfHz7T&KSabg&h+*Rl0+8HL)uqxZG?sK=)oo z)~#+}uS0spR7XllaakRzDmusLCPCQUK5CLA2pfDF`5Cbp!+HE(8a(Ad%NpdxKz>#V zC0pHi{XtH9;JeTTRYmKvcboc?r_N{KsJ+-+UE78r1Qzmi|4bx^b=CU)|-$XP8P%_G)rn;hu z=-(c$G#5Pvb`M+C++fF18}bUOORL6fZw$%h9t*0j;&Idyu==>{(Tf;$=tv&F;wf}Z zM+m`jmmCv)SW(Vv(XPGt#E-o3;Ku;u=B4t}U$>H()z))q`?^oPGKnW&hWcs;R%djN z;MD9IjHUqJ{O~g0eKn2OU;BvS;>~ES@-^EXR$h7c0cICA{MXhEGW-7=UwZGX1y znts2(nH&@XUVZ;O%+~P60z$xE`*mUFvj5W9=;!9E-siWUmr_+(*Jk^-94?SHiSIM; z1J|!jW$Lw+%o_!d-41UZ`U;c!e@TxQK7tiR(7*jTtg~_Z?PqbysduAkI)DGYoSvhG zVH4>z%ILXwfAKyb>X^{+PLroRN3Y z&1vEOdr#nuV@K@B+e;2EJD5%2OUy`Q@%l>kyY>5K>F2Gh_T#v{BCm;dvxz_MIv7pU zxbM?NJo)W1+>N32Y(=q~ako##pb7>Qq;T!AgPAzKH)?@{<9bcw@`ny)y#Ogs1U@Cx zy(DZO%Az+>hmS>@H=Qi235%-W)pVBB)I(4MLwjABt)>ijZp$8~c`H$d4o56n(EMB1 zPv2wx8RxR-&PNdbAnu_<(ajd)JoGh6h68i&Ty&2gt-1ldvJSm5)Td=c zcU;HsiQ~Y*xQ-o(3}^()+<4}#r(yaEJhRp$6sB~0Z1`*%HOn`Wnxt`f!u@a9fZ1%u zYE4|0EokDj^CKJ?ccb&Mn;`rbL0P&Ap|w9SBuntbJq}~+2hLvOw=nmr-y>d+b?lkj z^aDmGG{mMzm51b^)h+6{U|fj(Da*qrqW#rAZ%OlYV!L<6*>u1ZaahF*BUtwU&o>x>RZFlmtBPz+~I_hAvpz2>%NQ%I1SnO0v%g6n}vg1Qz4Q}ZAeSgj@;PAm0w9z4LeOE>WC@C$kT ztb;k+W@hQtC-U9YC(+G`E0cC46kh=QrgGl>Y%1@)@?G=q>Akyg((4a|{^%?Vl?YHx zrjE(MSQb?QTVwbpI)V%%w>NBZvFY1BG!&(Vt)rNOqz^3zDQK-euV^&Tzn~W@V$7SC z?#k^Pa`691fcbconf3J^mMmS*lEv%!d(KK$tSDl0@m8v;>hXGg1jFTihylX|{C3?5 zq)a+6e1UBtn-19nrYwSE$AmmgX03wCS~z3`vQB~_&bb)~!WT0`p+{ZG?=>jN9Sh#Q z@)+JaaRg8Pwv<<9tYG8T8mwj`g9Iao7dJoRbWSnAyjnfe7v2T=rslt@Pk)FmD^x19%IyohG>V6~w4 z=z_mnUMSJXc95w~0*8$SZ+mjcEGrKGt@l1`EDPTI3e6ut^ZTi(43QtHJ=#aV$Q<08Q{Q`(PbS`k9t=|S z=X^dn>ju&a^QqoYOl@&FUtV@6$31^%+ln2?ya}VJ?x^!mX4Ut<fP zIhpixMcyGit~wABhdTvlbsE+>C)Ignc$^LRG!Gs}%i2Er;E}w&;8luN7SUsH57aP3 zL7QPkxuKMVQYbENz~OLk{`ez6fctL?jhnnotE}Xz zhq9S-WI03TgYNfH?h4YQOE!El9c~FjM0YYyK6yOiw0n?Ja>I?U@W=1ZaGdo?-fx^3 zwO+9{7mw7j+B4e`gxeql+;GWwZn$JTGv{sK>}x(`?Z%MBQ&F9lv#x%hv#)-io?X(p z`N{)1|I`j5bnIjZA&{AAP+Zn=;V{_irtg}k`?D90;mmQpV_FJSRpo!Dj^KZ%j$l=Z zn{%I;&flvm(4{1(NfsB?aPBkHIro|AWT#kg7)@-heG0$d58MsR=cZ!|ps~I8s@OCW z!vSZa&4aJkmg8+A&QD6uK)5}~FrJ;MTUJp#Xgpq93YJDUf%(6n-f#oz`R9T^^!+G6 zpO>D*-FGOtKmA0?s>PW1+6%|}-|?sx+&R5yNH4(aNXK4XLf=0>K+(hR%c+@y+-{Q6 zqL$yRqLBeCU;qm!mW8~>6`Uep!YrcilX_)6p2{_0uX*Qhz&n3K)cTzQDOvR32aJ8| z<{jVHc5u7hR8>{ct=o<_HrS2M#cqP|Uj(tRZFtdmiNVg&-!^Pmi6d_m^&L2;^*z?j zrjK7C*brIC63cjO4zM{wCH0MS(2u_mWnuIXD6)$k?b39DQ(kR2$Lmb{%K+`=K7rwUUXYu zPF3TujO%%~^s?yX5lqZ`k!<6RVQj)ZgGV3j#?qxB;co1>J-Fcf5*~hdEoo`Notk?v zR_yFhq|1vR<=UHnVDfvvQQs7T>&^Fn;q2kP(T(a(NeZ7Rw9VyQcGyj{j(9(C!anSG z=jA)!LM0sjficKdid(E3BcXfxk zNlxAWcve)}fsTy?{;xvAPjyWZHSSXC8cOl_DmmgPFO`+G)VLd{ulL~b`0)7x1cMs7 zE@R615)NWpZp#SOv$N9p`MyaE?v{fnaDlrKew+*6&4vM8p-U#5)#N#~z6_jJ7|;bi znGS_n@cRQTi_p!3p=v|q!Fc_!wlow%bX(X>UBch1LLP~ZPFQD?U5B&)s;Y9`K|{Ij zprIX?4+lfyO7U%DNE$Xras*+L8;jQ1Kylv@lo$3VV76lN)YE_F52RL zj>O(Us#;G_OUIxlHirfbu`>Cq2B!YFnn&+BoO3VxjE08j^QmWH8XFfTrjYI|*gA=v z{AzJ6R~>f)H@$uhrPa}O2AL^&ZH%re8~l`sR3;t0FK>M_BWm5fhV*7#jSo+Qfq-AZ zxLw}J;b$Jfg7>}xVA+?yHizNseaOD;+5$-FlFP*JUg5)2uEguEr@E*Flf#B3#evsd zPx+G7{B-R@9P;>0kq6ZYUW2VMV&buknAkoPb-5S1w$kahA+7{?T=jSz4cKa(h$flY zXAA#57%e7x504>2NVp+)V6Z#?_l02%;&ff|(A{72!kZT))Nf5$DhMdsm_tfd+kHj| z+K_`%(o7CY31+j2#>SSp{`=3%`Q+ozIq~>&$jHdR;c(EU?e#SBrVGBC2{)gtAmIDF$sJ%JDazEdDZ;e>TgdGJCCM(ipgAT%pkJ+O;tN*wex7)*MSG~(G)7PMB zIucmBxrz&K`h<&a`h;%j4*qw;VVryVUY&Z62_rKVO3LGo1o6bzOYt?4Z}*%&f=dtU zpHTOG^HZ4dz>xsF`twSj_-+-eORAeaV$0oL%4sbpf63#w97aFwi|`FfJ(P4Dxct|U zPFod%XX@N|ZQ(a+TisTS-g=6L9Y){3J_23GH}8AQ&%TIy_2u9RttSOPeoMi(-+~V5 zE9ao6x$rve*egn~yW`u_`i-CsLD(7vVk1Y&_xXrRI9)y;Q*Oe48tdNwl@WJL#MyJl zy5Kc7HnL^Q7Ah+%@pwE)DY4mX6c%=l_oCMemd?r8v>P2@H$nI>g7VkAHh;&vZFj~t zFM&0$eaxQE?#Id9`HNF9L60~5DKc4-HMW6qP zPc`8)nef^y=vt6KppjrONa=>s=CifIWaOA9Zzpq5(?S0KGh%QXf&mdW&*1iO_Nt=G zk*l%gMJDtbd>VgjbnwIl_w&%FPjJ|Xed&|m4UkAA)%A6JJmV)09zKD7Jr3cc1<^ek z2ISb;BVWa=`p~7spqN-uA(*+bo?wy+>zxU|=4aXJui02KliKxxQQAdlCL4|uhg44&su}umLvk@LWFZ6#s zNa$lo;vFaZEd`R#-~-JVB zh1FM^6hY_kRVPev0XY3N=vEaa!LPyPt424O60YwI)POm0qS_Wr&X7jck|SvSfy7r4 zRgu&*7)W;|rhx3(+lUYl@M}!_VKr~PcoO$K@*4{mg}3g#;^Hxs6-EDMZFUobN9K~6 zZ6&B_7*v(Yl15f6E~B9?`N#|a#(<8=6Tojx?(8UmS7+68-#Jh4+0-}qe(tYf%S}4q zR8~|v*xu;s_jNTK+4DQcE%y$+lY4` zZ>^+h`ZvX7Wss{sigbY#s0J@vyc=0vyQTSSuJJ=a4@I|u77@m*nsHeN;>CrIf-S|1 z7AOL5Zc z_zq4z^;ACk=p)cz>tI1vh2&Jr8T1ei7}XED`g!Lb#@+Y4gU{!qzTSh~4tpBM zk)gcL=bo!+knPF+36`5l*)~3VCishD(l4Z>Seg9Rg#gT$vz{C7`;NJbHxmeINMK`C zJ?G!@Dfc`)nMKoX3d#2|K@fEIBxtcBg@&pbFf>%6cw;x{3fro|fJ}2iReZA4ogXg% zz-m&t^`v2O_Zv=Ud%?l|xZvPW?$z0w0^In)QsyjPg$(-X>M*l^ehSx*w$tmtJy5H4 znD<6IVpH}Qk6y8bA4;mI_J!v5`RPvdY{6!mz( zYNfoqoDCZ`;PraZbsbezaXOvk=jW4~n~TBFc~nybr_bHk0T41#v+CW58G{B5qPjl7 z|6cqh@kZ(zFr9WqXBvbhRo_;S$)H=Vqp`jxRqN95*C{x1y`=Z7LipCO>bX~`U!UB@ zxD9(942AvLj@~%xbPWDph##sE>l%^iM&u|Lat{-M%D>Q-{}yrV@nZY>A~g%sm_t#D zRwI`Ejc{*87W6_69F3lmg@55xWclV$VY7moZbeBkqh{L>N|FMX(TW&)6j%a?>ffPZ zIRxv$-UsO#1=c~x)$^cqafJGI#E|{Lun5uk9t5}LNK}yKJ;3%KsuY2ff9>ze&1iG1fkzv$;7Nx?Deg?~y*_b$K0CVTM!d{n-GF=L-*m#gU(`ZnTy#)AtMAOpwWMB*+0thwuYu@lvMu7%Jsie zzI7A9I6T1=MZsWDF`0~5EN1L>D=97q=@~9^vNPz~HJhG23K-bGkYR&+;oP1y@#zR} z1W%(ys}Z-o2v#%lox4J$9Kei)h_9x?$|B_1heOwFl;hi4^~;0yglDde@c|g1u>)@> zUmz4#G?LJ#_gnl*GkEIu#YH>||!X}}QY$yjXMjPZ}Z5H&UUuDCF< zL6|MzP149nRUv^el|X2rbvl~g!(Bi8&SO)j5o~%Ezh8STg&pJs^qTDWfH=g#q}R?LpXiLOS26RRUJdDGwMo}7L8^r#dby~n ztYYT;m24=fAUoZ~zI*g1D?gVH7FW>d53O;Txs4R|YB}fF3?{}I2XWrv2U1JwNc@BpkGKilhze<)!&f`20y#M~MoO#xL0F;$}Ms{{u^H?i%g)(ge3;bW; zmYcAN4E8jgO%Js@HYKDxky;Rn7m5Yq zJ#%Dy{Sn(TA^{B}1_EeRUi2yth90R1RX}P_L}p(oUx`@rJLo}V@9~h`54r9a9H+m7 z$FHFZLDi+>Ff{lvEGr!`da1xxYs*^R~R2vv?*VLD>JYiJ%@&$jrm*#P2!!C2q7Seagb&FNz*A4b;K6WUgj5-=F>V|T8pQme zLkaA$2RS)8p;DlPz7kbcgk^8zJl_2zLTHgCJD?nuqb;XX386gVRD` zE660Je<7BvZ0gpmqh|TWs3Aq;!M3pdg;b?UWID54b#Ak&gsySiWsslqUc5lYz1p?uoQyo0?%q_Tm{mP z?EVyT=|b2(tdcbiF=8~reKlwm5xbFTFCphGZeKqUWTqhs|J_+-6BW#x>*WqWm}~$v z>SpG6r}1t5t;h%pA0t*SN&A+r1_MHLq*${N)D37z%!&jW*b#}vVtEFd2G2g*h1+iL zK|@1(0?A?xaNVtQx#-Hp7>)lPGoWqvzMqhK z4ctNa^w}@?<@L!_)rJXKqo_zl1pz`RO6x~6lWgkt^!P^me^J=zm}GiB3}3`;ErM#vrSZPy%5e_jdJ=!=65MvgU$CigOBK!(?6Ewv5eF@@)AJHcs0Q(I{cnC6R3>#iO zW@Pt5u20;;Rsymi$vvh^U-We=V=5{(mtp=mq>zz{f;O}d!IO?e-x5B`MJ(7nU<9T8 zhM+fjQwphLt*WBu^k1^OvNWm*B5HN^?{?=@Mmk(|;rV7FopCfB zP?6b%Y)|3_n`P&L&5?#PzH8SS#uAFzn zn-R{#Vcz@%zU}tKoc*8Uxd+EH zOIe9K5P6L#TegN@{`({iTiecKm&?WZ-@HsihiApuVKbQMXF8lqzlpqWTsGRvh{9FO zu3AElMKYx6RVhM6w;#zVE1VJQUY_UU#FW)k)Gv%!=A5Ay(byO|r#MpVJn_@Rq-3N- zEFUY}m2RH9{v`(QGl*j@JTk7j+s=YRG8#!SMV2o%EGfj-Xh8^_Zi9-j*nG`(6V)fo z{%Z|SKKK)xi>kT#&LcVe*x@mcH`~$^RcwDI7l4ayg-5e#Q)q22FZ+zFth9FR>}VW# z;B`#-Z9a-3(1PK-d<9ZE2_jJdRW!hM`V(2P9vZ8X9*d@F96sqaewn_y`L_xC_U4!O zE{= zdDu-5?gVrOL8!j?9)@pXufP3*y)*Tyo#`B+8sPYg#IBs4D=G}VQZaUoEGTb}h|f-_ zh>=GjHe3vP2cawsspy#x!m?KLMKK`uIt)=W5o8BKhLVD=J_U;-E2<-*-T1raA+kIF zkhd$N-2tG>aD<|wOB3^aOZcevk`CL*Qu}dv+S}Nph8x{Av1yZ;E3W9n*WZME70=Hlr~nEdl2)c1&x!!Aj9 z>OEXJ;aY09BQOjmGigKiq~XfvY3x2EV*TUN16-ali)znCW>@sN~=_JaOqG ze78Q6TDOn>bN@Mlu()&q)91f}&);@l3ZdYzX41W241;usqx zJv9mSzYRf~8B;KEFT$Gi9MT&S_aG?GC?vNo@u(i9nLWt&B(SzMVM|&M^8K3=ukY$X zzMeS2xW(Cnd?oRHs>Ifvd_&^$W|_SkIi{L~>(@GSaT*gdob^Z(mYmdt`=0f8ke8lI zK40-Z2ln96_a?JueRQHWKR1;pZaa^Q>Up#jSKi>2xL4QcbG#ZWE{>z6H ziv;FZ1i5--dVik$eGis*@X4G!*w46r3t8%3#kky1YOxG!H|{Rqhdp~v#=Y&6Mq{wmeIY(=>YWW z*Oe8^J3fPS3j6_RN~*0i?D@nytau?eV*9<$sHAk-lWh6<&(0WbhcMVJoV?+EES+F% zu?>Ix@dpD23?Mr@yVKf?gxv(;&cnZycKQDg%A)w(q_bpl4B9lRV zbv@^ex}=#LG?`6|9JdFr%$iN`Cofwcn--NE1o*Pbh%|HuLR`d7Lx&6FKR1TL!`5PO zgbwY_o>dIE@^1={Ul}(!2(Wjd#yivAjj8OCO-r$e&)mPFX7i&k2jNp0zuc@ksN>EW1M}=n;d`eql_4MQcUC^{DZj(dgq4} z9Znkz>j65eaa@bljopZ^@Os-w_8aZD&7(0ddh^RvKi4TaV8G=%<52F8%pzsc_L%)@9%f}Dlq??2g8oDKfO4a=;; zPn|dM`hEI#PW~T9ii!0_kt5G+LrG~3-~PUU-UFh9F^d5PO=4+G^1=T@sI3X@e+EUR z+P&S}%|09kJj_vN+{()@zl_snpwScHjt6Hk+SV&fYf!Oj17DneJs%!_B_#`1aNaL( za^#b@vF}x9bH-=SQcSDwD;^Od!m^?Y19dTca-S?QVGQ=eteUCbR$i#oY8~%;pH&)J zulL2Qn!}PcXWw#qo4>0oYN#r$YMaMTQ%KvIMds#w>@_Y#2WPa-;+iYG(Z8vj?q#Iq zR$;P)9?I5D*)-I|?!~`&K@kV-br0QAF6WJxerqNNw+%lS(3n4Gea!87f{~*D6c*+% zY}jA`R<7JcVfWMUcs$_qCmtHSBa~Ia!7XIlnP(gXfTrnGRk>r<1GIUcW(UNOZ#Y(x z_^1O1QormTveHBEZTXrqa!1~U-ydc#)HM{Mzuy{lGIcIDsIfZ?v_X1GRAs1mYc^Cj za>^qu>6PBQdTe5S5&MxlUVZO_UoL9?|1Z~%M@hAy#u!Sv|J1k9RU`9{xskfGofDa? z=Rhz@q2sU_G{>+!1-tG?bHT&x? zm@#9=w7nZq@h_lWc7vK)l#Pj7U+!phq{B@{Cd=G0I`d{EyQFn=?}{V3z|v9u=Ia^R zh}yqm9F+j6wymF;hVageTxEOc#y0gMp+o(B2LxdxGA35+3WQQr7+VxW)mj-rVpnvi z#HL(K_8E32S|^M@;e-m7EuF<>mu*Ifwl7Lb!5c3QX8g!g`1OabyTmA}RM>;2 z39BecZb}KVoOUxjat;(^Kx3Q)^`rxkR~-qHnklr`ku1JZ;n%rXNGbTrvCrj|DNruX@_>%KvbtLJ5Y4;`<`pw}_JUl3X zJ&;_OTw{_1r%W;@UxO!cRZV&-q@^V%A+F!}Y{Mgo<=Vv+T>+HtXrcWdgtYUvxZ13&iVka(3&#>2C zxas9Ke+wZ<$!c$`V)UC32yAsuGK<@j20KDW;MW!0{>a~?qDr#6ZKZI~MzXq=la^bB zGreUmjy9%8?)iqJ#y`xmB`rEXSBjNeChkM!TNgC{Hu;+c?dnEqHz0ik^~gpZfBgO^ zPG@MI78RA_N;!u2-R28Cl zeaQp+uzYDLONv5!<&eIGm`ok(kUIPGi1v6T@bfY^00vcI$na2ZOtni}IoULAHKMZp zdD;;4Gwj>PF?woQzvpqCG~(zmngl%uMYtvcl#)(8k>x{A`EpDhMD1PkUKa-bCvphe z&c?E5z93K+gR@B-(07!DZtvdk+G{(e?cIoq-2~yk0LtRTbFoB2XKf5SQiq$dV1BL9fx zdkmH@Pv`3^4(69T_GjS-1H%`SkT#^8)Ik+V&tJ32h7yP3-)L-mP^@VT&^0@D<@un( zz7*BOTs&bEmoDJz-)`ZZuP5>IjOVGTZJFb$VxWJIgE{+{H`#mG1*l1STP1Wpsc*^o zlaxHv;DbLFhuHID?}a4^hVx5Co0XpqH=Pi&G>!*7b70^8U}+-tI)flolk{3i(qjpL zNS8x(*1 zf~d$0x@@OB`N zMuSE7(V!&$4y>Ao1`^NX=hSQQ%fyWqQi9b(_`~U zkx~-q1n(nz?Z1;Ctgkbo1qGVaapkLIq=r`@SJbq9uMM>tB8>3s-rP34?&=?=@y@ZA z;;D{(FK9*#vg(?;Eu1VNuw`sI{^=RSWr<9PAVxp${ zYxdoD4?}kP{xqIBr+S^*lQ{me}hW~H`(PbqK zH~tPh%Az7OywSy$(oFvRViO~tZi$8Y@EteD)a1@iJ+-m41^}z6MIKRHCWND9fA;U& z8|euDEDc(K^i50gIntSP%uQ4jgg>8mCi)D6NXPU3%;!zQhn@vk{_Jb?Jtum!5^p(} zGkPa8#JJ$Eu4BbZ-*#GiCXHj^B~;O9)GbSmime_viD%T{mTHM{6rl=wL|JeC|=a&XXzE7=5$o7bO1;#9#ohKu^DGXfnvi(dGOw z<8yAkdnOi3ivs$t!knmT~%4!=2k_>u(i)hpk! zbXF)dbyiLmS3h%Eo9o$%o17SRW_NXKpuw{oDZ_XW?&@B=u|h(_Rx7{VKZY+aK8&&@ zA;rbQ_Xkj4)?PWOcOqdtzu3SDdmR^3*$IOuP+H&CBc`&!Pp_`Sv6y00=AV1`1`v>q4VR*6i08gS zoc{>ST8?<;3s}^&&NTWEpG`$v`3&OgR(T(`c{v9)sB47jOJipp9Tspmz@?8O%H8n& zoQ~^+MJI%GN|q4PI$;e;b_@Ye$7MP~1mh%a{2l}@J`Qd4K$IDapeBOi%$xieB6%@x z5A*lGWBhYo`!Td4mUN&oHJz;0v8NjlfN&-0Dx74De;H#a(AIc!%U z#0kz+=_aTr{vFwpBpCblPd;~co!g5`u`zB;$B`$@W&_4#_W;0F=l>Uki3tNKsC9?V z|9|_}@Z5vrF+?yHZVj_dL52~^9QiG|oy?BVJoHr8^3HLWvFz(9oiykcNMM6^0skA{ zF`1ES0iW){s|o6w_|AZ5HZS(>c-=P&PzhDq{v0-7RDa%C{2Fg9c!dYPxQ8pAyeRxw z6-m$>KsRUv&7u7=nJE)%-AG|Z6Frw}n#LVBeFA`@2>x7rH$P6ll|KDitmMBP(DMKN z#`lkFydEvQ7xlLBDhf=W_9!pD@E?p#hO2c!jY(HMi_LyG2OWGHD_3?DmVG-^)xuXZ z`1INr>C*KS4zF z*opbHmOlOoL2u{ioAUDVsIIQwabASG@sD6PLHI9#SP(whcglc523~#=L#{o8US}N| zF^2KBh54T(1{2v>oT*^8h&J_i2C>&!h(-{`jrH@8UG5;-Co4_)$if$qOaEwpam_qr z%KbzYUes)4>YK<#f6^)9gr&W5taFG#fo{$x=cH+TB{JFSt^|F zdIg2Z*1RTR=ls-9>1wdD{X5w8$Wa4+Tx`Y0R_y4w2sb~qChu3HQRnh&7cyn`Cybr2 z39Bu@{ZCB)R}h_=YzY(Ana^>L1BP?#MMnV;@CUf|kefQCUBAcAdk=jGfND^A;^&9j zEq*oifAdD4YMfD)1OeR9%}Z~wfW}}0n%wp)|1L|DXpj)}smyzOFdvAX8}dl= z8~FRB;q9w+B0)I2sGbSK&STGB;SU+xut$#(oH_14OkUnz`SRJ4AkSU(H0DSN69^r| zZa?!z7FDEC?+bS7tJ5@%8S`J@y>HKB-KH5x89FQo6w*@)Ib@$(IQy74IehGY$w)BF zPBWzBn3Z3#&!(2#1g#yg#9Ke1-1ZvEXVXwFcnnr;Mmh2pn7#z%g#W>!b%>2+$o<;q z-V{%Lg*fsK#O-e(p8h)aF&#A;_8E#ycfwx%61=ZYIAF!$i5eE2LJ&roSyFbqi26Dq z{7tmOw#y#!BrMFu@Xd_y`3OCUhYW6pF*eVg;J`ivMhE{$3y7O0xU+K_y>>3;&-!i+Ws{VcJpZY-Rt&kU{zgcPudn{v@uXa z7x_1D_Nl`WrS8pLJb1h-!(Q8VE_65@?6ubcWH<(q=@@|1*s;M&GH1$I>vj}oG!k@8 zP`oOi4NJSRX+;+T{?G&Z{KLPS%Y668&2;aX-LCHRzgzMSTCJwI#;eHyem(SpqKRJ@ zUwjOH-%s3p^O?;=p~vIn*I)ml|A0xD%!e>)&rA6J`&m)@TfBHZ`;7Y!#^e9X$xnVv zaY-nGkfJC|nsf+zj~Rf{Bq!F^wa8lUzkh3NHxvo>wubbH&V}ZB!bH&418-`7UVr&E zZoBGmAawja>)vlTcGO*<>xf`2j`9k+`yWCjJjp3AVhSc_C_`3D+lx0;l6U$G{QB#! z&A**?+G*T#{(+d)wrfeUXT5D6fXU*I|Lu?65}LbjOj*rKKZYD&)NC6VL*J8Oei4?h z7a*!z3}b4td*QXE;I}wgd&MRA9I15q^&1o|z}nHrwd+UeIT+*U!%&BfMdTJD8hjY% zZp8B0+&1BDV@2QL;eUTeUP(PE{K>%)>u&k^Ps;v$n*NuRqeR$>6=NfEClYL)(kj-x z`D3TF)va4Mq?DAFCco$J#;yY)cUWf0-Pndfg9cGuAK-s4{t|!XiYiR!Tu18^UVYC! ziasYDiBV5Ot+gUGiLgilPB&#s=JWSW&ve>ClkBFDO#ME?VEBGbvBm#|Fpthfu_bP~ z+3wl7@)7+;K*gH~_cjtx0b3tr#@P_eLaz9uS;5z?zB3mwWDoGXj_~~4Qo_^+X*~zL zU6D(tL6Z44n$f!(xE!7M{uKOa{b{rWs5DHYL0OANJyuyrMsR;zzI@D8%bMIRLx?pY zbtEKPpZp;RLyJV9Ni)Sk4}Ua1&r;tvXie6W>1q%5w4BXQ^C4uZAVlYRk|lc&e$5L= z8iFPU&%j_hj$lhD6djFlWarw|DfI3eIYiFK z@Al=WRSZLZ+0 zlkVV?iqNxt;M05QHN1P+vKG~f(=momt1|ec!c2M7r{hrJsI&kRv+EGvxzzc~0q_K2 zMmhZBtYDHGQ$xK0lSyN1sg+ef_F%&|eeu_XSKyg58Yw(_CFw)jhR_K3mE;Do9RzUl za3`w1mbd@{Q(g$1KK zY$LD0K<|Fh_ez7$OXjAvR2Fn+pU+;$Z?!Y?xQWQ7aFz#-x6`eAlM?*<88EmPtlbQw z2Zg-ZH*5im2}&zrkN)l27eNX2O;*;e#o~At9`!`xJn-gCTd8!*J#ILNus{VnNl)k(;+ZUc|ahA^F^9HFC<4{n&3@58hZ*gx0j*^czxz z$*ecu_Nxa>MAtMBf-#q!!Q59rA>i|4cG#Ho{VSb2_*U|Dmc_+z*J!4%ck$K&3pGvC zAlCsm?pKe&wt^+@RRFjQl0CCpUX?|)Vz=+jw7OJYD78}7Bvxb?;HEAO3^%Qzrg2G2 zx7%%lskXjsG4|tSw}Z_=1+##I?LH2*HemO!qOxIa#JX|aZi02Y*nJc_198<2`c>90 zXbC4+IB)|-Ya@MguffykM^OZu>s|<3cl^k^ShZpc27^M8`}w%XYgJu14H>utTM6i~ z?FA3rHJP_x`-RHN_Gfh=1o`>7Ty^Eq{O3O>@Y`<-c=fgK`S#mcc)e{&7*$m`^pJh{ z>Z?027(%3|rfFP$#Z$cb=8u@oRzCUUF%CJnC3I>c??vi56faCjcHF){zpa3Z6cfu$ zpV3GuHkm_#Himg$xS4p`o#;&mu~e6ZFJ79&xV?LWV!@x@k2>=zDhyu|AfyX1(TxKC z)!4RfMg$Yji7R!T_gvDbU(h1y0x#f?!7n+ zQab?#myI(kzC_GzWEV8mS3~uSSAZ{Zp(QN(_e9te zx0-DO#YRK+0M?nF#UsLpq%@IDKkqGA%jP1b{AY>5ZRj!_5hm15P&#ny0Rl3BKwwwQ zI1~wVLTI%nbjCeMDJk==X%2f6RMJ^s3UZP19~ua+_#7ig^Ne;IF8`W@`~BhDLe4w& zFuE4j^5B!xIpB~uLz{FWq=edl!s5!rbKt~+^G01leNEeM*lad)>q|E>V84z%l1ew0 zal;`u;%gNS&6(=twK?Gro2`*zOv7mIPEfc2i2)x$|2k@X6>KASrG$nc%-s4dO+gLq4pH1KPrJ*P_Y#GHIByYlcviI49VrVNS2_c&}q|Sd9DHa2J7Fy|+sv%_% zMHtvzt1^9EBMrXTl?rNn78a> zS{ndZ%qff=c^SD`17dDx+(9-bT@)pR-Q-z_Z~sD`buh}&w<78q(Qh~ndGGlxWvaYM z9lXJYs47mPJ|JCCU6gozVSuXY4*HPrz-MslN#U>CyTIn~R{60)_bSPG@n!WuZdld+ zcaIO{!#@y3W$0&4K=v+Zd)*g6`Drft9=*}J^@f`Ed26?aD6K@DxrE@+`$KDatDraf z>csaT0Ns|3tnMf@P?WLt>WjWAK99fFkP>vo41Pb2>1nJw_E`FT{smTd?763u-u($I z5A!Z!gvd-sRwVum0F;7!^x~43%V&Q0CII&h-;;~`528G~knHjV^Lhde_7q(H4!)}n z;Bz{#B@rsLBC`uw)rre7T7rMdHt}-sHk*OkBQgG&*qD z5+@kz3@)6`#6!ha8!||9CQgu+sd?n2B!2(JN&)$)iLc3J#yqmq61)FEKyul{Qd&pa z6$1JX%^|;g3PP1ALZQCK&-}kO<7whBCy|4;~973g{`aZ5O<+$i<5rNeyCWG zQo)Ct6}79W@i(@qxPK0qw>$FM40asWeguUbO)8jV9Sz>qGzKHDr!I3IQ|)T84JN5r84X3;A)zEeVY|QN4g&$>6=$r}M;cUeu>&8Xth{AU%*}G}$qN(N zcT^8h?F1cN&`c&I5`#a0p{@vGF!Cuack|MFv-s(?X{?fx8c!gkQ#2cB^!VF(fL?p~ z9z1qWC`5fwv!W_KgwR1`BK0Sci&jEa;<87)OG+%|XDlyc?Cp~QP!&Pd+oxk!RJ=1w zP>QNB|GW&(x%)Q1l(nOdrK;;-(u$XnwSGP+TQ`Jl*En!2#xFiXtllp2o&-q&lvm<8 zeNUt7 zxrJV59+Y%D)z#H3T)2?E_udfP9(XwE+<1QXu52S-C6XpFM- zx)ri|4Z)h1foDtQ4q4b^soxoD)9v#QCOVd#h1UHEn=x*3aQpFw9lO+_coA~D9E0KN zN9?6!DY9fIEUsa45GDqd#_WMCH{XU%WMSM-IqS`D(ARl9hPuQQgWH6}PO(H(3}MMZ z0E4I}qs^sG2&uN+7&_w~BziMBs9aJzkmh9BbQ zd_L|t=N<;_Igs1my$Mx~Z0Ysv4KKDK2LX$?a{9-IS7cN&EWNcB?&piYK3HYrC@T3av?x*I?*dDu~bzfbe-C6U9m2Xoghqh zUd!ru`U(%lW+fhbeuJVA)OB84vx1BJ4?@)vCx!s5jkV}Tfs%whtk;|zL8yu3thCiY za&yV*P0lmf-cXJ15GV=GCx^clzuAsSPmE-<1?usLRID;FFGy#w79VMt6WC7yT)}EI z=|oL1hm=#V0TN$}j9PMDyvan4HW~%pdl^}~s%>?@dWs4c}LGoP*Y`XLlE{qYCN7QH*??o96i{w9@?|gx38KQ+9)vEUoQ97QSOb9 zTe-QeV5?WsWxHs`jll*Q>)Pkog~)`JYU{_NC6Nt`e`+wW!k@=mIR~({@>k;B=Q_jV z(61}h`W0NJ_|^o2QEzSsVD#Ptn+d|2s_;f`m!JDu^Z(!b^74en3yI&ep9U_y^jI!! zlDmKZV?MXt`Z{ywu4>L7xDDy)DO_{SiQIDY=~2(DtzqjV`&%JEIi7>F&}OpcuKtUvu7k;6J{4PCWWzxvGq*iC*mM(uV&wiqFdlUd{weRbT&ik71T^%V z=#gJ?3&E8RwM|p25jzr<4C31Zs~4@KdeJj+)!9*4^w5X&JmbKQBfXt_F7)mVx7`-@ za#~s%27`h1>(|r2fBOhMyYcVCZh~+Z$2Nkn-+4#l(0fHE2b*9BIC1vO!?UF_=7qhp z^sk*I!W&JHl960%@!or)2>0yb$v>Fvv+u0>oeGn&(-Q6mUA0n=6!aVruIX@i~_pP9-Z&rG%95$UURjQruQ~ z{MDzu`Tdu!+<;5$-tzIx*i|B&e#&d3Q`|9>W(ee#J+Re~OfnrL&iD zdcR5J7Upo;b*He;5pBab%$+ii)eBlkaYa=~bGbO?vLh27Pq^n0+}Sy(JCPU+dQ}#E zG=K%~4J7CdFZwupR?+3C)!6bnA^+IF0SV}Or_O$k4J9r4M+~ZoaigxFAa{7;!-zJo z6b1TsL)tCKr>}&=B7`j6B|?xTIR+s>F@$1UM#F(aqg?C+qBBe$OEGya2$0=#pl2?a zq8uNh5jqAnJUIwpF`=J1A>tUq!fZlz+s>Ly(^3DJ327;4{d&aKP8bMNY$Rnwc;nA? z(hhbTR950HEJP{_8OvA1Rb3`YQle=Hrvq7+#F`kRl5iV_WaluybPMb2LxP;qpPYe% zA|)QH6MJLg9>xJfa%8+3M~KyMuy_(DCjo4YZh{U2hK|;jFnDk2Iv$z1l%l#uoFmLP^tN`+I)5Y&-1#BZRdr1MW+AUU_bV4(eqfujnOQC5#oMn=<(iw1 ziuoQAx!3Ip)PU|KsQWQAB~cqcZUi%Cgh-B+tIC)mVd|u`-qGUZ2Q|51huNOP=QAZxZad3iZJcI(0HX$=yr_hTqb zhp1nQM96Dl_`AsIl}OFs;isO=a?+ubLn~Z;)F6Icw1w~HZl=7tfg^AEiSJSjc*gWW zD{SjEZg-bs^whFx$RYIm^MlBZcHo#HRxQTx`3L9|4kS1)l)KTeb}Q0p?vNl9LeO`( zWX_b(-x-vXMme)MkmKarq$Ckx;h#dylJ#u!n7%=%$rO;AD%1FzLYqlhC!mWW>gk_@R9vA&`6p23bpw0qE6<;*EoYN#VN zB~_3hK4MoUv>wA*=Pzf>e(l4NxogbaaK$)=_dJ`+&z-#T+JxnTbPKjdHnn6u=~HsoOU zg1tH8s8^FB2O;Dn*b(G0`$i@Qf#fGkC$Qh0F<;fh^A?BD3HM=WKL*(+A2D+!${$N0 z(7_&?jJrydF~kg2A#n7#q{u-4VNA}3QZ^=+0}((ph3l#7Qh>qZ!4Qm7zVRmSJuF<# z ztY<}~n?`?tvU)F9fBQH0{kAafcKjkaqq%@g?t2XA$<_C2$*s+GfyB=QW)Y;;pZN1j z6_Iln$ASSvIw@U50z`2IM3_s}KF~T4 zL1Nhs97-^z+nVJyP^w0V29iL(@z$;IbdI0JtmSv38basHNACHi`S)duH`CR18DD%n zyZN^lp7^;#okg^JjpaFnYu}@V--rA4&EdieCXkjEnH)^C&qVH12my}hVTn5$kI}Q0 z0&U;ug@9%1+ccyX@WC@@;9v6qCmlW%gP}!V(9q~->fh@*=KMEMy5GQ_-?xy1LV&6$ z7>x$3Rx>@jWpLUt!}<1&^9Zbc5dYeTD4qL1rhIq_Q$DzqHB)b9+DGRydRQ08Ov4}p zP`nYzVI7Q82lZ~~Ju0SeYG*Ac68QSogUCqx zCBgEI$WhVXo0$F!Msq5dLj4Bz>`t(MUQA;y>-<5CA?_7Lb~386<2E*NW&1=@#0NXVz7BI zo%alO1Y)^|)*gi3I6^a}l8RHB+Vm3*t;f)(Uk#s5{)R`N|DDvd_V2!8tBo%{?!z^g z9KgsvXESc(Dg5{PefZ^vZZy>I7^nDX9)vscT{==6JoWRVJoNRw^xdNmN|SY*uIp@G zTTEq1C0dhPpQ0#?J#0TFoF6^cLnOp9A9lD0VG@gz)S+r^3R@Org}t6Xyqxa)x6Q+# zn1d7?zM6s8%p`SC#jfFmwi6-Z*yZazRV-T@GM!Xa6DJ(}IAcd$+9~6R8e()Cj_u&E z-YLmTl0;`rpk09=RKu*Jz4OrTJOlmW!@%BwqC1d0L6}VbW&k{$K=dc+sxIr3C$>bB z_npt>!q^yp*w;=OgEcvFK>FiT@Q=>O!qD{Wub(p$gBHMNPR&?laK7~{~rlLa92kmg#YO?WQ4h(BdF})b;UG~JgYg`8Qb?h)nmnF zO6jm%XL${_#2O#XI5?D(IT&b>;Z8m3DYRCMtHGc$@q+OQkGG?1(csY{ zdrx;HKJTctBVxPujHsVThvU&|DF_ThjUg;_g<&lyR#a8x;}_1xzvdxI{=S_HPai{W zc52x0jkjJt0d4&w1lB!-Z}kH-EWejEQ*Y+|r_bbw0|ua~YV>EC>I_BWsNM*HIhE}2`T~R_vNB?qAAbbI_58zl5XMBRg@HlZV(pc}z{Qx{iRB-R2Ql447=kd- zXV965XAG@92yA)+6zONc;ewq zI=LfDy2KEUAl#Ynvd6&g-23qze7N#$Zhiemy7Vc)U@%~_+vwJ(E0;fXF(0man=78Z zB;gM{miyRY9)t-j?oxt#vxDVd_u`j3_vM}APTtpiNyPE%h{70MXFEw#8A=bYue0MAp^E9pZC) z2t#snQm>2Olk(Djg8*pMf}HgGPk1f=tOuaQo18bOLDy)sBN5T#zpAQy zd-4IK+giv)1*oiV#Q5L0aNYeLXM8l3qMD8gd5b@}T-$bE;vr%I?0$Dr^{v6=lwKw+ zIWJO?Bthx%B>oLptx(YQpUFyNs}CTOaew@mqBepDA+Sq%4Q`K$FgCsM+F#Xpi@DTQ zNoI^&myFQCj_?}X9+hFDlEhlK^_ISkNZNKUZ@)T~%8JmMbNnfLQqu4uMegVL@BPQe z)_5F;eee**jp;+l-?ww`4TpEwZd8(2Q6M7?kjO>zk>Z{X+e1xm|K0vI zbk>UOu$uVczXvt{eb1D2U}`I?=!(LEBdhMG`4aN&+)Xpi+QqR@6$+d;$;NuFiSsX*$L5D zV!+~9ya;1J|Ni~4+wIJqI~T7vxxC4{@y}v6LAVQJTmC_S+S1JkOUrH{Yyx2y(8?f0 zrU$90TENn0KM9rTq;dQcp*+)b+W+=%aqbW{BjR6~P(3=D@5pEcTSn;LNND9jm@JWE zc2|(2AJ<{IF2Qq1sZ}6?0K3y+?7U~tnTTf$n%-i;*~RbU68(Y>>rB+o;Lu=yblI`O zNMJ-2E<^qce_S+M|21Zb~8EnvhXK<(f1+HR0d2tDv6!uAR;3+on-?{0fZDog;kj zvWRhWU%L8xJl;@#g~4fkNOk3R>M%NmAWZs$+(kl+CJ{yu0GXT;IW&eij|R1kD0h7T z%bGlN1D@pHM<+Z>VM~rwBFVgQ0Ky)7^pDn1%PX*d_BFy?1AyOd$Jjv*kg)v=5Gm1f ztL$jV>YBLg+%aq<`L58oe=jZJ+l}jz8iSIg_nD=!7EL5~WcHd9n+w~JZ2yJ?iTi_k z6i{--i7dNjA{(whkrVeG-h9my2=d92_4In|Gaj0{Bx*ZOZxwnHAGX8q#xD~01a$=K z@W$W~5(z1q8-EgEPE)k%q{4jK^yCOiC77JyM&AMdOddc*msson|C7}Meict^ug_$Z zF`c2!kMYy3@Ub7)vd0X$_IH>sEvz2wUn36s)MC zSx5D0={}> zBENlj5xLpziOYnD?5rlEZFezpg+Ou-Q9sgPdwIBBx2g&3*&y08^V_!^>!%gVt&Q%} z68UFD&vXp=E#FH;!9eC7dkY9b?uzO3oBB@67#ahp8=7=Oia>Y+7~lSufXjq_=}nP4 zOwU9n7`onK6?E^{_P0E-i95N30nB3o`|vDx^N4(y`EqYGsjyM@ra{Ig|5XbIehi$! zbcV7qp)tmb&ELWX=~)jk(f*-=FFKxFiE4P-T3G5&zOVlM#tE^1yNSf{O4cS zKF(p^Jc+}Z4?%%muOl^3tRbS%*XU;5*OOWJ(A%9hgl&mx<37%b(1xxkkW~O#`SGQb zFRHN!B7OE5@bFE@{wEou=;P>hyfOJb8_iq^7{z^ zs;`9n+7YNuJ6qHbk+j`#EV3tsfk`;rji`+~XETinMr+c~;Gc$H_cq^yK~`{a@L&oI zx!kKff{(V!hD@?}Q2#F@gIQREn1du^E8I#V zPy-s8LBU$*$Km#(cHrV^G=$Q}+024IT}=cHI;9=-QM6?)bC-pz3oXEhs*#5~XZX#~ zG>N9EsA@7Fmj+2Fj{#7V^f(hr^0{Y)IlA#p2at+_FeRCrRW(379$UTb=vN#UVtOrh z1RxD6_>)*L1Yk{);Ila)&hVCPASEP8G75(S*${uYQ>{-gJPtd$q9E*c{4OV1>(?O? z@JLirQ_+2iE7+x!3H93=!fr!0#Am_&=dq{K^W9g`rR16)KWD;8lSof6+^G`O@R^be zmFjaiuz3?FY5WEYz9hbFbUms12EQL~0%1nCA>Sauv&w_2#V)-{pu8{z`7bow zt*bR+wKtu4;~0LLG-5`fRQTeq+XmZY^*G?y1+@W*(-=B4RL8jmcd>)r06{%KUDeNg zm_3HiJh{ADW5(0!wF}_p3=bKBmDI?VGvl^%QoIl%vARA@p)n}1sdH`E+4cpGviQcPMtHUL;5JEK94N4Ombe$!^r4(sv$yV~{q4uPQnn$+cOS;c+ z_ZbtcDIu9$>Ir)|8oZ@+E6*S`<0&dlrFev!IyPa%fsIUzx`ixH9?0_M@g;JPiPRHj z6Vh%)Hh2&vE0DfI81w-c9!2~=_Rcy^lH&aT@9G|(S@*l!b2rYo!#%hK2>}8G0t7+` zgxEI_NCJTv#2_Rj5Zv80aKK?FoV)wF&FpA**YA&6-i})6DZ)5l0=<;cMOAylz1a%Y0-5{obUWVLR1-n;a#lk@JY%2loduM&e z-;>Y%CF_i8#%_BUfW~2yu!sGO`}7&S&D~F|(&t2*)t38DH_%5Gp;s1StoaOMghx%ws$&5y10E#<7BUu6ReuDpxW zzqr?OJ&K|*ckWz1|NL_nEn399dGk;#rfb-beUJSF;UI;wt~--I?Yi?(TAYNIMj#O( zKT*fOH9Ltxt%mX}DuY=^fG;2Hj?8O`MZemiL=@-$*k?6zI%2dFVfz8l)cu+Yj5-90 zZ$N(bIv~O2Oc--LT_hqw?9J;L5-O!Q?+(JY0EUPmq>9~e;|v?vTQ+rgPFUT5W(A53 zVZqvaF!Vu6kaXWzd$e7gtB>SZ`;+VvjkJmoASjV}lo@XFVpT|z&qEP)1n=8aek7l# ziQbBa>0$^EI8I?$bQzLZudy&fvzCj#vld+!tXNvyK^Sgam(KySY7@4*d1D^C zcg7VXkNsydkNsydLP!pnRog)r&Yo9|)7e|`A|)773_4rwAT(%i4*10Hn zJRX8wa#aPIE$o}Fl4iJ?-7;R>NyC=X!s z6rp7}F73d-3rhG-Lk)(M%y{-;o;mDf4l1t5xP3>U2^7teV`|vx!qe1uB!gtoof0L@ zd}`tRJQ~K2qjcE{Y|%Km>(KqEG4rImmk@f66Nd#)vSvpfUn}nPfG`ZnzfL@eYu{Z+ zL^oKyx1K3~e3H#qotdzF)KN@f$UH&V;3&aiAylZL7UAl7j>)8bQHV=5U%rt7TrTtS z`$Y~VZgT{s8}PR%cpc`f`lpOBRV*tg-V-3VF^s#_oF{Ngk(*GiMFXG#Ky#ym(u&MI z#|xy5d9r}rg!x2iL>DIaye22i6%C*W2QS^x7CHY)u!l*dM=8VMx*oe{7>?ksZsjt8X`N4TKBBd4eyHD${CF3P`Zkna z2hJ7{5@NZ?-Sx1oJ4x2bWh;moa}c3#L63Jx|AnpZKP=DYMO>j#O1F`U5QO4HhW~pKaFjxk>h3~4m}FKej&7bv$k)!%HXC#1%wgfeg)CXJgxRxa?VtP*HX$tWV+b zu+GDzi_c-(i}NvJ<~IMPJqCNAs2mDP&DUavR2*n@T>zDwufAtW2Zm2YjN5<^|4e#| z;8Ub829qv_wV!nhFPaJZ^3YPEHMnYPNamk07(Bc>kRbnHIv5On=-j9p$OK{cglwiL z+DuWmU*nsaR7cRLTFGD4dj298B)w;a*uyD2#oP9?DT^&j`5aVLGILHXGw0ND-A|Vi ziz%pTVhKKae^{^Iq!cV$Qp&O=rTp!Wvv7N29DLZ`4#IH!q(&4a-X|+zv8riqVU z_=uICtY-I?J+!t2iA7@=dhhq*bUV5Hwo5ts3iUGr5f<0>VNe*t>zJR6c zp6v(`+7$*+*W5r|^P8;M{3b%EZTXA4k1rtv*AAP*iFKP<7x7aVY9MIyuqW4C4u_t| zPCj<4V^hS#>PRbLC9^<0TRlW+gCi81a5^nL4UvU@2)nhtn9Cm@=R#!fbKy}}@ zCP7qHb)l~$LFjLCqU)Kbk=-If z43#d1;bydSvr+6L&(F4fb|gXG_H@hc3BlOBIKkMCmS{ah7oY&`f%>|t^}7-*nUXEp zC|ez}cMyaMF5VIzz7!3xWDWLHe~6qg5^er{=)m1H^NO(Zoby#I^fjnAbr6Kj(#3CDukJ+- z0_-$4^F9CB{J{N7&T$@3zGBWW#S-C`TV|Rd?5IO=vd6ih7dZ$Jq?-TQf6kP`^OGCiskTfXNs9_#cWo#6C3V=c7@0;y_Ku@{(KwKg(~BGgMD%SCpTU9uL@rqbq0FCU zI$c{=6K^}$>t<+VJ*{d1jRh4nmW)GH^hZ_0A z{?$E%KYa=5&%9s7<*9pi%b=R{T{P*j!QkTo+ zV%Dr#ELpOI4I4HvapJ_R)Vm-12Kx!ZK?-GMJpW+jNe44z zo}6V^x~R0z@}Z!e_um=L`|k_~psc)=!;jw0!AI?;?9gf)F6;TI(m^y7<*LJfK%gm& z9F77?hLmu|cTeSO7aR*fIMn&fZh83s7&1COA!nRFFk2QQU0`T}+I2wQpl=SL_U(@4YSf?n4gz9>UxR>w)f*;V9^Xi5FuB@mX zyN(H4l4Fymk^Ab)L?%rlGI4U}?`AzW+KcNtczp<6CsLRP+Y*P-PFaUV;##)0g2N6` z^9p)ll3a@x58+>hrOa!n;d^br{bB7A?p(Wsp`IMRKl>0aEUHZF>yNm+mIy+t-*+Z$ z=Wp9i-u(}D>z5*-)tyIft9cLOh{X`d?bFJ}tIp)|H$Ug`m79=2tji=`mg7xG4nk%m zX(G780g|NEN(-KFQzye<0^Vp7Nv#yqX+LJ(s~W(rTZ{89W7hVum)Y~BDTQwSlD#raUxhj$&l^@SaO zJDmubLT1^52we^{A3=WpHqwY?UGF#~-$`>bvqxX|5QHqG!1O zR1}D&m^WLRP;R~o=Nun5Q}sgn&8a>p5lgr<^?Ub6($iFgv%|IluJ}@qKxh z0oPaSKGDKayavE}IgM&6IhGfBm2a_4j-!cU4&fcjX+WT3h|K%5@xiy4@ym;Gm-g1Z zn1RpdWBmB>tY5#LVZ(;u^I6Noy&wAy`w7Cqi0ZnI{DV`jI1jlcz0;5)RaE!DBoXh5 zqVm4)$rdqYwvJTg)2TCAdEv1m(ojnEr~K(W+q9nl=otvx9qBto*xELJ?tPPkF%_wn z&PKamNkn^kC!4`U4E9921YtVQQ7UEJP5PE!AF!QoDMK-g^bRn6$?&)PKj7-?mv@9C z{d_?M;RK20yP~?v%X3eT=jG?e@Si2mrY*Y_ND2S=`M-OSgDQ{< z00961NklL3- zF-}!+9&k8%-oY5r0@@u`77v*VzP0@tJ7!MjT$SKoDYa z?XyQZ=au_UI*7ZEoyB+G`huOUA)+XZEX?D<<7Oo-?+rFuBG_`m4QLKGHj@TyzL=k| zD8MDn&5u4kK!_sTm{WA;>P^ICF?L~2{yf=;ls?l_o6Beg%zpI z%zvndLF|LC!L^dx(pv;gyVJNg$px*6QezV9`ZyjeQU6Ir z{ymgcRrlG4WYD{ITSA~P|pFd-+(pVH(RFe9h)&R=ie}nzJONcFe%UnBY;QCq55Y_G6eav5|+9CPq z6|kaYnIKjI@$?@T%DZW%kUScApEKFYRCX|$gXITIWFg~Ni9n|HP3hq%YyS2kvww4$ zY1w+BqN0KwJ9e;c-8$yX>8-QckHLxk1mPe=yZ4~5so3qgX_t#Rn`l^`hF`e_^tBK4 z=7QUs{Eq%4#s))qB`5X4YhTEpp)*bLdUBm0Gw?=@wVnD+h8WEh+4ML}c8_VK=|O0< z5B&*UrdBFuLT(0BA1hMiChUnJ_>g_HpNR}Yz~pHSOrF-jRoAT`99CKMSveoQKa`K& zAI7TX#mFR~uV&4w!s$+|IO-FHKp8-o--v!xum1ly9E|fYz6iAPdBxl+e60huurc+4E%?dzO|FX-WPq z>|Roq^xEXpH!=Fios>+fM@``!+FJJk!(!tcBgrQaPwZ2XTCsIpwS$2ljksJK#?!}#PkyE zs=2vw`~*AgDFwbt5X8L*n@c} zyH+2zF)}xbCY$)Wba4Oo&x21pNjUN1d}J4b5a2%1!o{|6Sy%b`H%T;TdHcLr}vS&xRsve;54s0Y%QuT<7^_<4(v zO}otxQ>jrD8-`+YU?d2`*%ce@|E0t+10|Yzvy@EMbaWZLesemIIbQIa%-J2R2YDj& zF&>1r28tcX6vNBxbn?9uC-9fo)&TJOiY88-o)3Up;vu%VDFX}V?$DzFl+hCrTatUZ ziVdq!-T8fb@L9p=yiP;tvP#G+f@bqum~L>22&Kg9KZ&Oa%a;j~M?N)t%JIC#H^`@+ zx$*-hiDiA(x9;ATnf|kHV$aFmS~-6Fc$P0;j^FPmCnqOs_3lUiVLw4Q2+^K@(C%}i z$n*|_!Uqjo*JD@+0h9{q>W-6z7tNMa%3v?wSN_4lN^B-BWTUSQLudU*BKNk&cQ4L? z_hLZgm^f*lBL70gQ?f3eOR>rC&)R10?t#g@xCYSeFuW2i4m(Jlw z@8sQQhFN-#*ES7afnP zs>%1)7AKcLwTInp9)f$mEF)N#{-&~Fa{-|yC+_^-%C`Iw8HVD@pdVjVg3zVH>|(*J zV!;P*yvQvNKR_td-OJW4RKB4o{IRHn;>J4cE91)Olh(e<$eN8jH~CyP6^;Yot+6L1 zZ0FO;?1T@k^OkVe!9VHqzO00N&BiOW>Oq)|j$~tUH|r^-8z^rqMr^J^7WmLD5QIWe ztmPmSfX551=1Cc$S@(1iCPSvTLuSDfQaJ47Y}ro1igi>SeGsmOMm*K&YZs(H3poUn zgp5oVMw{|VXd2F%UBvPV(Y@&zKx)2x0%N8^c{$SIV)p5m@}gnjTfdC&ZCuV{ZTBr~ zsAkNo4|3i3nf!S2>|XUKy0!7(3b&#;?bs}YqKY~!B#;BkIru!m=J>YWBph0l)|?!? zQS)OeU^7n;0)&ONXBacAsXjDawWK|XYKo;Wslk}tG(o5cNlVBl-k9RSCjKNF@?haJu>-Hh!1whLGUdQj0O7giv4OJ6$HgWFD80E(pXVz8>F6y2PKA zZIs!vAzh(0rr@<3Ow@NXQ99^KOURnup5G1VgoKwol6dQ7Ky*6v?flAiIP>LZVx(Rt zc1b@18?q0=D;Xk2D~8ljM1*4;NAYNQ7}ZAV@aL=b<-lR|9ZWGfl0A=sG_0A0on?{oA@r;r9Ec za>=sGzPFN7r^k(sgetIAc+qy4+i%1czJ+@2 z&8R=VIA!_>v1J1yw+PviCDtwlgb+-aAzAp}{;A(3!noRucn;%j4wY{M@G_U+lPy$= z)Q&{arU2{z{W?=`I5%rD6%-WUcDq@>e*Jzg!mkLj;PbE_*+#nuVYDegR8K=m>VQb) zUOxZXUwd7$8d;*fe7gIkWCY+Z_$*?aUZBGwEGcvT_EA%REB0bXKCmg|OJ#n~<{(25Y#bM4k zXES%*`w~IXhY|FruL=6=^?wIID5AsjuPcl+$@i=Oa1{W$Zt$mT{stt-L1<-i=z^t> zPT|Af9mJ-0Mx{*-7LIOY>N)E;{*Di^yDcj5P4q*41qs3&J6thQA+X|oEawF%T{vh8kpG`&09_+FBA?uIf5= zo_ush#SMQesMd~q!eV)&A?`7yL_>Htufkc=cgU{}C<-mp4kCQ`*V_KAB5iimaF9oV zdSF7^fHQzUZ&=Fsw;p4wt^4XHbCMI!`9$Qm=_iUf(+tr2X&3?kbk zLQGgZCs~Y1tys)8WYesTBQ?zsvq=%Nwr7e)tUbSRW50S~Isv@R*4Kl9fuN-+i$;4>R!>V;mYYfD|>)>h&8+vD9Y9yqzz z{rRZ4Wqe$kO_$OYqoW&nR-BL0$3rd`K4gM?g_&%{!+M;w8Ky+}d(M*-iqzp8E0m$o z)@IjsGHKKF`}Y-_u1iW#v?j*1R4`5ZR?2(r(u+vYA+txEw9Dn?fUR?0&ZIdB(6|#> zGnSxnKF3@D&Iy9ihZ{Wb*a}X*aC!H;lSDB{D>7M%YaUm8U$AIH_k4)z5MLV1qeR_S z2hkp5TGxmyc?aXRf2Pih9u8T~o1O_O$AfDh*{ZY~)1S_xEZ~H+%B=qLbLd%iI2u2G zJb^%fKp+ceqW$Q1?DrrXY}i}Vk$(_i^@Gna^V{D=Y)L$mh(d#4{tiC6>^Agp=jL~y zLUEQ4H`!p8kgeQ?rXWE02AB7orT1U65t`3N=50ZU#QEbShd|&*$j{%2m-569F$0ww zAQ3W`BW}ke0ioF9)@PZ-j}!{Rtb(=&x_ingwCZkZv{qV;0J_x3QS&IWdC5~lWINGB z%;>Jfu<|}7F{WsB{KIwz*YYY_0!6wL8^7Ued|h|r)Vo_a?Mu%|Az;k7X2y(b=F;!3 zW<#Tcny{mn47)bw(O8psUf#Pcm%ZC^dFS!*D5}AjsSWsgc*$M$+s`Q|?K}am{A@K% zb#WzXUeW3N_B%(JlKhccY&0im4s!o8}m#(CA za&POpA+xGk`$}rkDR-!!A+xF&I;)zBnKgI{!qy1{lZ%v;*$Qd7?{GkoU_|XAt~&pA z!mXW_l!{_!!pNhUHTithE@AcNk2s1wIYXFUy_~U)n|XfHIlMOhG}G-Lvhx#0HEreT z$>*V|)(DeCu;>&MN2(bil)PMwh9>hOSk0xV>nM3S z=s^A9r<$vy$0u&{H=?<{_*@>AIh=e{y^FJf0MHr^^ZiX<^77=vum$7ez}afulQQCP zVxi_*6EmBHC)^A^^W}3Qjd6E= zv*lw=SjhwEF#=ez@3!mK2+DC2RF*9tBx_v;a71-%5e?1x)l+@7G&(3L5A{n(&~oXd zh6o!LEdxMG$;W?vh%qM}hQrg_nBdEYUt;rnpJM1b<4!o7S(lvIcbg{Ut_{PeoWZ3} z=nM5>l@VSiw_)^a)t3K8$|DL)?;Kb z2S^u*4B9ejH>CUV*z%FmV7w~$PwtD{6S|Z4qA&HjH%H`gtmAmv!xMLHC+i_a6TzJq z-``6kZU|^|rd@%EhCmv){9BnWr&E~wD?YW~NsQh^$4u=~9Ie}X*U`^?6pDf@Du6cq zaVE{R-+S-f4{_ZC3)}2(I`J9C-u>tw zeD!uo|Km`;T-EL0J6`!1)#+r?#b@CR7omilph|RCh^VcBogaS6s=q#k)Z+{NK<4PP zJHYK5*j-$f_syA=_1F-KH3WPpdSLUnaG`uu=Vv$ z1ym%J0Nso5S;PTSnFwt3n zU9o7H+y%)(jGBeR*vlEQd}i1$=5uO!p7n%@QHGZ@nZOM47#7=#l%28K_a!ly3{fMl zi0LUqbG?g-Q7!DFD|9ag$ZS4q}YM*E6hvpPezp&rVsS6)w zrmoXY+x_~2-*CpAe`4nsLrm2PF!{`l2`88#v#NXD>nRR0bar(IDd;O}+wf;YxnXgU z%St%QeS{Jh%qxoV$gi$p>y|F0xuQ~j^aUJ~cRV(|x1xA$$z;}+Oy=bYXEM5BGkbDU zzxRSr1Cwi4vuMa%VyYe4g($P@QI6jBK7L0I7q57j|IEC+SNR|Ow1C`vhw1M$64212 zpjz=#(t%{EdrgD8UV+=LfU;DHZFErc&C7rSuGCi4eL)Hvc*`x-fpkIMQ1j&t10z2d zD<7*APGs?j%nE6GcPnUnE=Fm3#}rXhi!3Mrd*}U9Q8CJ`c{^cqBZrK#R)^gMVe{TA zn(9Ihi_4$_LN{ohGmGL)>3iV`uNQoMBy~yw-R6Sf8NSb+@OdH6ya$}7IJ?OZoN+MW zF_SR7@$Y`Bl&lwmarfRvP>WJqRZYV|e)k3JzsN$hE$NaYyGi=oOEPR`Q z;kIM9;2j$gUNo2axi%8DQ)^EWE+!3V5kZYDdH&(PAj44OEipek#U!nI0csy%_>w}0 z#;6Z_0uP*Y(G;K?D?3^!MjEgPBpz~X>s=p8dgluA5WI3x{^<$AF)VVKu88T!hSp_I8Pz&cx?RuW=38i6l6hVys)o0 zqexdWPzwz^0B{AiGdAR-xbRLI?A2_ty-!Fql4}fMqJA2s^|jC?`jXjaYpPsP9#GRA`v~?6FGp3JC<{MEY~O^;E5JDYe4?vA zPFl9VFlGv@Sp>#Dw6*yfFYr9yVWB*V3&r14-n;CV4>S3DXCO>3I=$g`y9s9@C;EQ$ zKZKNnCAQQ5E~ZSGLSrDtE&qJ4&wFiuc>wj@1-*V3szSlkQ4~xXMYJ_U^SbS{Z0wBp zoejOKRg_i2k!K9F6axpf+=F9c(LjsQKM*Pui~_d@kkGIjLY?vSJI3FbN<@C<3c0~x zA=n{9={SVTqEa!7XwY0d*Z3%}HvJ>%Jp#eaL!M!_y8=bA9!5t>NmY0gX1o&9d6x<< zP>Ruof+}N3qc&lT>DH|TQ zK>Tw4GJbdYodC=^_IMWm_ifX1f0T0!9(6N+Fk5~ zLdij=G5qvv0T{oe3cJbV?Oicv&mt~c`T#CH%nK9G;YN>YK@1s+wli@q+jO7~tst_aGpEh2i%&!iMW}f8gS6|gj~h*7-B$B56c?b^ zHJUCD;G8(hk_@(?rD(hR&h2yX`;Sl^3F37)S$XWG-L3^nipg#0?NyO3nkt4+Tw{K& zG8BPLkqN_)rHkhBa*FCR2+`UD^%a$rH}>{&NEiN`0t%)1Ts;P$_*7I29@niUCFDlU zkH`9w;go3R^F-AYj-*VQFJGNEk}}o&Gpx-SPKhJKJk4FuoHvwQr@8rEHv~p$IX2bY z7~a0!;MYItZCJK1&{X7R_qc)qY1=BsPi-J4FS}vi-u}rS*#5=xl=mpAisG<=1TCC+ z%v|{5-|-gZcmL7KzQ3*Pq&&$`ugN+F2qSVLRQh6^b;4bIzM%I$>>p43lC#g8iY6Oq zKV$bNnQ0TnXo?$&K-Ft7$ew~e$5xEbUYOvD8%;WhN&}A)gD!2h%R3nKK7Ap+OdGI! zMQW%=kDx@V$j1A$0=Z#ZM!5)&xcMDES(AKkI{%)lIDF1{2)01uw$65F zkF}M(qy6$mFS9OhOS1yJe$i}BICEOOJt>JSszL@k^+ZZlGs>POv=qc(LI{B}Y#buD z5MojE%`3oSermH=GGDTJRp0kz8=uKzX`+ae#4{=HJND(<7=D`h$WuM>#TQ@T@pzav zZJMd_?Vg9LSEu%X+z;#c>X}jfk3(6pKH=|DH)vSCnTF+?6J8$-YizRogUK*hyydc0 zUKwQJMY9U2Lql&xT`y-IcV;2M27`xKJ33^@Fn?fwZUke7i~0WdQ<8%a4~TkK)fN10 z_#2dF!PrM)kSRHs$-6WNgRu)icC&V6^If#p6YC>iUGb10$9!Wm$9!Wmh5_5w6tZGL zIV(P?VBO*pv{>KfulM{Y{(co9`1<#*WwC|i)gM3jQ>tdf6;DS2%}vcb{)eZKh5?KP zs(?fXI`cU7FYhP5VAZ9)A7Fe%@((t=^at+z;+>9vyN8Tr!uS5(EtF`suz1LU)Om`z z^2>iQym?2$d;HE^{LUnX6PC@)28o@TRZB@D3x~{XxVUD+;?v=@L=Xx+Lq(<#gwH;) zdkENc`(d-udcp~)b#*B9^%zA(?NuUtUZmeb&Wo6Jg{*K{+Z!5z?g}4AO%vhD%sf?v z&Dy-7H<~9SvL%C7-<;NcM-~s~nceGXjYjxnMkxpGj^e0oir3+=mdnc)u@bQde@a){nuvh1!q!Djfw;1NxY9G9TCJdi~Vsfrh0Kcn%{7~Xt)9E0n zc*(^)K^T+Po}s2IR-$~OYr;~P)L2Zh5~Y;Zu+20l?qO$AYw5W zq8WHwvKM7#U!$eTkr_dlhLU5?^4?)D?RGmhkBd-qJS4NB>lmT#^HQ;@QrBg!YTB`< zH$iAABvbrp&-K=k2b24e9_b#RX{-gj246g>^gQhW@G|m^>_xl{=b%_*nViwi7wLA{-}2dqDK~f5tK=D0@Ib zD?k4FOzwPfDH1sO(Ixz0OFcij;V6U6*koE^=JoFVwB}#A{Fp!R2Zk(1tOZ4f!rSVp&g2my}t4&8%^80-ci z(he)SFZ!@oi}7&XEot4`YBW)+)l+J>ewxx{`iIcL@GkpPhQ0{Gu22*hJ+*<+QyVz* zsx?GHDr*;&vTI{rFJh`aC*i_(787WWZ|F}yb|xi5B7Ey-Uz(P;sG@u5rZcWQ6@Oz3 zul)NBAcj!Nm~`d?@JgD2c&#d=>H!Zh7)IG_IH*|A!C^KjS(|=Jn3o zWirB8LTt+)#f``O)>K(3+igkBA{zr`5Y!<=Jikd-OXFw^0ud-oGwD@U2*NBp3yVYw zF%ybdPY>gq4EkXd2OK-*2CCIM420hXj7{;JUt^YH4yZbVLU8Pa5M}bvuc*c?H_+c0h9FzyCmNbSbU%O)Pov zd78HFCeq?ZQB;QR+{+anCqHZLKK@?6?sfo9{oBn9nK3ba8M`8Za-<;&x&(C}oF%eF z(gk7)VNKw&NfxZUm8q3K2Eb@r{~{5M=brk4bG|t*VO{AEMFSB&wH;l{YBGXmM6oHU z^(NVDGhJkrRP+}0CJ2+DXPfEDVOG{|wKclmC9_@9NW+uhs|Sfeb@#nmTG z!|P3-=56eaoLHqlSt>8tgFBO)&YzjF`V!HSA~1Y zF0?5_z>x9tfvZjD=(J;7zB6-g!U0B3fuLffWbd|p-}W@Ih-oY$EOU6BOPDIZV3=6j z?VjodtEl;GHKhknK?aS-Kznhp*la>35Ti5 zufK^wtL-bk)Z|#U{Dc4N z#9({>T|kpa|XKy;pQi9qiN-b00^6d zssHyR4sVitL4zbhymcwE(2s1q)@&SH6kB(K@Wv;=3Ha+f+HFt>UQCXnkQ&9HNGad&tE+ zK`1Q}e71cHwRzLtX1@E6&seao8m&jp`iVpH zICI{J4suWtf<=Ekl^LV5lP<}O-txPL7cg(wY0UlUYv_jL(Ivas`hTzU;WdZC-WHTv zKOz)Gdb_M&s)EdMp>C)`A8#>-`##2m84L(P*bbNQbAo(`Px%^~`g%roNd>VVgA@B{+(86oW$#cA*+Bbp(AOlLY|EKW`P@RVI}+cK zZu?fR_l5p!UwCYYB(ClI;`t8>xcfeATG@zODW5h{gcsdsGIW8GL1Tq#1;w_4thAes z2jM^ygZn}TO@d7FPWI$?VHGMHH`6hZEqMdYnsNbb5ND84wG5tuX*q3O7H zWfpD3ut+KaC_OzqGlY>rZX5ui#jppuhmlk~sYwx`Ym_d1mp{Zh=ZKX}ow?$y5=$Tm zd(!joU^xYwZDTApp)N_y=sj{^rW zT4avt@-8CyHS+{v4t^q<`FEHntc}5m)6C0m72f8rYM4<$OLLMjYjRG>tBfntW05F& z2F4TRht1-$_a5Se-`&8-!{=aco0prm@8Pq*KZYKS(z3UPP5=Fr_kMLZPkiG#9yt19 zmOt?t%{%uJ3rCQKfuU(=;Rq3bE3NfSwCt{?X2Vvtf3}pT&if&6UUvsoE&WF%XPanK zV=6^e}bB1@e?!5$zu^#&#S4PQ%Lt)t2_Y)%Jwl? zKZOu+FTw;cD{HcH|9N&f_Ax)hJMl&)9QAuH`|;C!{^hpx+bb?05Q=ii-##Meg2$Qg z{TG?Px~hX5R20FSF-0u={i&QVb11)iAs#|hRRk;kaz-z5a3EsC%otTf)qlQ$&lNvU zE!bGgOOGtV`0c5Lzi}Ya(|aD&$CV-74jk{UhRDF=6f}d9p^%@NU+;Ga0f&lr(NX!5 zV;L&z7%Aga9HFJb!` z{@xX-yaxxbIyQSyQiK;Z`}{L~e?7;`KKD3GgCNWl``k+{g$Ln4cs-Wb%5V!GA=$Up z{#B)SQesbhz{^yIbUX+L0{ePAB=R22rVRJr@*e5Myi z9?xEJ6VYIZKy^J2pK>K%yX|^L9zHwsiU*0uU^@cUbv$+c4H#PdJE*U!>2=Rw^B~l9 zot-cLm4>D7A+@+7#OZW0_ZQC*wDqAx+sB9Kyht-gZTo=7r}h}D`%n(?tH%%zzJu}C ztKjR0X1jLlRrDkX^S$x^(nU7%7-r*zSj=@P3otv1UH4M=M@( zF#isMhLb$Sy!@@2lN_5l11|wIhn|DB<+YbE>zFaSMyA7Muj?-nw zljmjfffM=Kg~w7dq*J@D>pGvk{sqfETEUKWJE*H_z~ORm(|>+K<@idVf5UTnoAb~W z9jO?2-BI$2Te$P@-=d(rMXGj*l zH_(#6vEpSulP9u^8C=Zc?3D#XaIosGXF2p=H(0K}w6v6U>(;S#>sH2%8;(NfX&b|G9v*j%>@UHB|05MC#Sl%Go2fhzo zQRz_mLHWJ>aqqX2h8h(Jt||Q+Gd-h#?pE1mWzdc6%@5h!wC`)L#hBjNV7AH0|2{jP zP+K04Gp_8NUoM-_x(pp}Wf|Xo>waGU;cwZ!WEIjdc;}`+G5eU~xbiQ5ph>T1i@zp4 zieV6OZOfl}orV8=vR9rfJsL%Ibk5I%g&>SJ*Rt`!pA)X$*6nwv+s&ajKSQ%$ASr`X*k#_BNV!Re_WQntRW68@}AgOZUAB zfYa?nD1vZn;X;PJWn`^SGlZQBp^RW|Hx#jDu} zd0QzMQcr;|zMs44wzIhDwzK+fxDDCZiuO8ti$a2G2|5mPWHUmqL6Z1+WqNK8>;7&8 z;Xn|4nUrmBE0Z>bY6n*ygqzI?m?o~gU^X9p5qB7|+f`z*PQ!00CDEuxG^)|m+_!N^ zVUCOMer+7T{^pF1F${3=-JkOK{5UyiQx!J;{Vax;nD>a!HaXZ1RaN=*H)ryTC%z;I zJn)ZCx$MMAgvXR4La}aPMn(B>)X@{*=+jU>U5p_c!D6I>eTB+#u;Nn)XTgroD(3MH z0furNf8{V<0t_}i@(wd^{WhNRLd*5%<>k@X*x2`t`!S#pQVx^ zGr4(y^7{MO?tQdlf>a!KX8!zA%4QshQlE!WV*>+3J}{)2-3vct+3y}oTA#BhmuWZs z09@m#U0qCIw+aU2jgC=1vzA>iJ=kX&srOCcMS67h%6!^QF;#)DVOF!P~i6R z;TxNYMY9pcvJ*GoUdpJk`Q|GyB%&$J14A?x_af>!xx_#OEFRor5`yNH?f^1uAWY;b z=_oG+_^lmk4aEt~)<_6L@qpi29lGv>sCkl4+U)27YwM8V&cSH5<~3&6J;;y+g3xY5 zk97a$)W&+G-GSjtFU+9y`Y>987{Hd}XQD=9R4m?vE0F$Jk%|p83*WxajSN@|NiAGX zOJu9!aUp~0_4#)nzr{U^{|kWI?%==Y{~r$3f$p$j)65eSF{cw(%))b!62&IWg`RDf z!R^EqGp|k391dJq7}HXsdO%n(M$kM?oYK4u5sw$QF#jGRE+1~Y`S~egcjI!I?|)Qv z;P9F!o1=;oM~dh*eIcT{aO9eI;|!}loVn)OmlEE4zM2o-8yE#{)vz3zOWc&~^5gYq zHU=cHWm*X`Nm`Nq#>DCMNC|s(_=rX_8$X35Au1|^-L_AA?sm~c~_;G zFF6UKfdEx&Hj`UXO3skdZp1{U*u8iapZ)C-)cQs=!yuw4=$eie)6i3`WdiIDI}WFV z)|UACf6X7h%aLat-e;Q&Uip;2-EeQmzkhV^^~^hdPR6q5+I1!uhS<|;rzT`0lQTz= zQ)6UqG)re_8&!_kJi;Dcl-uzWWg5kNQ;gtH>84a$iy^J;krZr{x<syaBC9eoo*v`eQ>OFu-!EeArfQyhV+E_$SFv?x1J!i_np?ueG#yPhFbs(h zkn43Zd}uxg%^1!dr;aDDya39JLFsJx!!NdS%q0&1V7J*={KoA}9p1Jd(sbndt>*ei z|DCGc=RHDHGjIc~s)9DD0_n67J7g>X_M=Y5W~)J2{|YoWAwRPtZ~6&(P$Bxk>ku3K zVWn4mDp~jCKuggEDT(3cbB<#hQz&N>m!Dn3G0*+Va@9L_>|oorZ5(mL5gC`AGGz(? zt5>hKEXRJN#(siuA0Qoq(00$msBg{(z+GO*QUCf4VnZoLed6g>9jdcu@7pZB{efQB ziVvF3`0xFQbY90lu4TsXH(9V_& zRiRDDBp!=>VW5e@cEk+$qS}l3nJu1uFj)>lD|qXXclpn)4+HScADzotSD(>G32Ueh z!OF(YejJ!Tm1V2P^Y`~$5Nd!ICqt;ZTNzhg1?ODz9XuyaGTrXZg)3P7{M*#7*-RwR z3bNg|Nwzt%bo|f_<Lr@i!mbxIHKDL^c&C3W^Z6(@VgV80| zna$y3)EU?E;%BdNMb&0LYl~ks>j(EBDkcIFMUfcBz|2+ttt;64(2eL_tQt!SM{)R^ ztMR#0#Oan2rye2FB}b~RfMRrx?$Qb$Qw}TV2e&+dKM83td{`lO-E^ zd+y1>Gsly;Q5JriG#j_0%W_!g}1qXw{7mJ``g-RFJD;22&;WP9(h z&6&VGX#}CQ=AWg#G#{-tee2^Nt$dSrYU1B?k;lgehh0vftdzXHdriv_EG!_msor#X zfJjL`IgRG)Xc{_{k{a{RG3s>U!APs|9 zD2yJBVQ3nLA+b5_E#80@ z)tG+lOwPOE912SEJMKGg+(k$!Iq6QFgUO*X!_giidy>|PLp4-L-d~Oa&ho4aTteadr|ehmd@^lj$t@ej|E9H!$9a7 zq%>gXa>!6WlBuk@Q*I*A8f9cux!Xe444_c4zkZt5j_$xm{Q=R<=+INFY|lUA-OoK92s^?Z_pi7%7a}^xY~I2Oi8y&*NypaK{8&Fl`)TF8>KD z?oYjG+xE7P>6d=9gCMjLjxO5b$ib|J zeH4mmauE7^qiWz*S{dPh&crRfNr3ExC6T7c!F`@DGKCD#9v(DvVLI!uVjG_tkNx3E zAa3E>-{c^44>3B%H-s;iP2m0y+s2W*5H6^KrMF^R`)9OJ69D1ny*zfuZ{W8Ar_Y18 zq>!R-u0V)xu;K1XCbKwvEjn-yW?K7fW7}?Cju5pA#e5&3kOl6@6VJ)*^r}3HyXTuw*faB#jOviF z&hcQcX{Pw@w=i4|n$Mg=@W?567Od}64XJqIbH2A>C#{94-+vY)JvC*2RvBPiuIatkOs9MZp=!irJ=X!8O%#(x> zi_tcO6>nC+6Kt`h#mEUY5p%k*OLKFr!-&$NmXoWS8&3)bjUtyqX)fHBib1{ZqsV5i zeLFghQ4a-9b7R1#1PR9SaNEtzv13Pz0gHNUWu+HDZgY452}1LGj7Zo{D5&E0bbfn{ zHiPpXzl*0Y`Z0P;BNhx3OX8)ig`?DO+D`qZ?R@#*3jhd3!RB<}&d()xXelL=#xmlF z*_2KgZCcKr2xt)2!PRB?P*s%~M@(nN5z|wab-J8{Lt(b9-O=$|bA2-p-S!w?ez3G7 z)k88YTd*=Cg0MRol-av#FB_8zjS-b1SNd~gViHPWm58x}#D)+pMERzCpFi0S;#?%E zQDvHV3+w)j2*R&oonu-A}e>H9Gwpm)G-rLHawEJ?&ck+uV0Dl zn<40WP;-0aRyACYOX$)%Y~vS z?Af!2kt0WDRo4B;9`+N2g8@w~C_Cd8=d*6Q0#=qG)5r}V{BAr$i)q=ot7C$lc>VWS z`Dl6;U0O6JXFOLEA=!ZM~gHC@DL78ma`b7qt`A|D% zFjze8dcw#swCG?W2D{1-HR&bR-~D*y{@00yG36>TgAlB^fsYoH;%U zM-9X7aZxOsID~>?vw^BG@t8xg9TB$*tKYPpw|;&X!I}nA1~(7_)n>=;$-y__U`BlX z`i@JwYGd`ViQMzhjob{p2khOumv5BR@eIXm??boivB3}zY-&k;Upi=5`60XCx}Ru6 zSIb2~`Oz10c=^e=gW1S82UBNPaNpzeJIFzR+gg`!eP}gThSo8=@arAFH#P-XvUVGV z#U2{!20_AutYMG@!?2oz5WwcJMiA;r${I#I#;!LV#eNo^r$sVI2oN4OGGIYjVIkLC z2eJ@4UCHf25SoCI$lxLzMH^CxZD)O2YDmS;#5jGpr0=Ue6Yb5%ajPhb_EMt9c9q)=A2cC)W}|C@mV> zI9sjt!4qmBn(xA)oBPHE62GH>!iae<$RHkaF;6&$4W}ixDx#^DG&$jz+G%r`Aq3zL z+HmKY+sC+FFl?y8&Rv7dWg-oDn+Jc$x@2f+bmI1O|L%Q5O8E9W|6$?1PqOj7PmnPU zguw20;mGme&dj(4sIEs|-oTG`dAT0!HfRaN=NDU-@VtfrtuZ&78!8FL z+~hg~l>6$)+qe#X_%y42^nc_XQpD)O)L!+6%^lV8_xaa8#*=q{tNRT(UU1ms=^Qfc zAAK)pW*sz^-E{_qmplQ$b2ULOz(7NZ*O+RLu18Vcz5(Yc_Y!{Uer(HjAoJYlLkqy7 z@n5zv{s0CYLD&^XufLUJAA5{TE>(H{d2pKCJLKi%QB_s7pCBB>*iR4+0w}BF-h+z6 zPT`oT7>m+8Lid;t3#N^xdDn=vJ>R92C^i)%nPRu=y(A~riqh~P94y3Mf0P#%azG3k zxci>v`Lq+YW!q}*KYBZ6=+5o(E$Y3{-P>PI>UfmF{jHUOSt>EP)Psqe!Wz+FQ0nAhTeSAD{Sy+38=j|M8-YoPF?tStAH7djN<*LhfbB6Wuaw7LAUQk&A98`Wb2FeK4%&sT3A+ z4|UYxwnh-ju(fcl03r)9e^ieXE9L-30*mgJv*#ggD)~=+lAa8Dl$a}r)`DTCWDo*u z1v$iOn@p7lkP!>ScN^3^U)luW6-!?P;-B_2Q_jS`vz};iaq2>8Ama5|A_%Q|&pE;& zVqPb93j}z~;-1&47o(@O2|Y(ewJ_KCodpyHt4x=V2y0$oR;Nj!X<%WxSEEs|&;=1Q zpMw!Vk6C*F=|<`%SY6xqe&UrI?V5+zm}W$XNfY@NRlSFVqVXB^9n3s1x0N#6^( zHjF8P@aVIS}eH?PiK}B-%Rgz4Rj(#5SMB`>~N-S z?hEv4)8UEhi?rnHU$Xbo{@X_jxAX1m{@tUDq^U=~?4u7E1Hi795;oTlr|U;qA1t6g zSU}0r-AvxLhsn47hR>gRiae*EB5(5j(WJ3u6c^@D*Wl;rSC@0xfup$Q;zPU0D3B!u zusit~HQDsgU*sS_p3l({tLEKuAKxnVKy?^>{VI$ZC!^H;EqUQ+E6VCeQK!vAlM>Mq z!u9Gh^zuAnGlzqFaOiRKiUehqlIooUElFau?x>;py$`wa%44|yez@iubM=fIIg+JI zm*V&P$;nAC5Bq-XTkIzY2LZ&&xMI&YvJA!VNjtco=4zs4=T99^^Y-)?W<}Qa zNe=c!tO)^yX*evVS`gA%Fa{$r*bc>)d|~O&q`g^#5a3MFhe1GSSw&iXuv-rolg=Sw zFc5<&!(EsRx0G$9bD&CfPgEa#1NOOlUL@8=vR!z~MbyomxKG+`4>9UeZTQ0(5E$i$ z^23ak5G4;Ngd?D( z$xhYk)C!qme?2>khq7qQ3=}DuvwbOxcWy@4^^P1XQr8LYT2F9S?=YsF$0|2a3H-kM z4Q<|!!tO$K`>=WPFrs1fkRLtNg3&|arYI`j5mTr<>&Li@JHv^Jtj5)n*zGEjNauR~ znY}FO-G%uc!ddcO96ZRz^UT7Wkp*uvY!1hm#E@0uS`hN)Vvm~hWB}`i9qvGjm1u`368!E$ z@>|XKA*xt3?6XSLMuMh2@Blo~W=jO2FWQKe3cOkiRyyD|f|lB!ILXfY?+=bMMT`+MJ1rtXxrR$GvN{>Kw9a}$I#NOrWXxhGqP<<1T zwz)st5@6Y*FSG2?ml2AB&*x$G73VSjjAK%^*BAlafJ`%*oOboeJok?m2nEC4$ict7 z^GAk^PHy-o+8#nW=k`?B&6d@rpedqKn8J%N9eu(C2?e-lOpunOE4I?i9>vR8lIt@1 zA|%7QKPf>tFgXLW-=+`(=`DihEY^Zav*Wa#ajW602IknhTjh#*9U>L;m^9WsZEC8!& z#xt#K9fh9c9{TS+_iJVz`y-^3Tzkt)e70m8kNx$+&KrvIk-KY>>wc5goElbNg~MSZ z64h8)A4Hj0j0jXC8>*4TCxgueTJkY2Hou4M__NSge2&a@6Pq;x$A8zNk1oL&Bm^PE zy$A;@K?tz&&Zjwj@zMO_UdgAgHgd>mMZIrYumJ3Km^UwB9eH_qxZQ5nuV2rcIdl41 z0NFq$zvBHcgZ%{IAb_%}O-U(n4-gAY533BZVHC^_jRL>_Tm3p<{FuFw1W zn#}Wx!DhEM<@e`)VP6o7N>1;?QGbLo?Kikm=O64BZ@qnlj7YgGco3%AP!D!uupOCt z5N0YvHtI;Hp6DR-AbjEPF9YE8I62|MukEvT+e3`DYEh<_hJf^x8i$Y9X`uT~)!}w9 z{)EFAf5Kr|ma=c8lRvOJzmyx#{{`+yh?nlXh>a&*$vX8dwB{zsn5P8!-nOxoOjxRJo4OUY2AO)k<(cIzIm^UUa-u~WrN%sBz0tCqE{_?5L)yK z0g{I)%?Me@W0+wQ`(B7d+pN9KuWK?3&r?_pw~9o~^`STUF@W%_QRKX_6xYV|zhff{ z-g}BgMM}D!f2oj8&g*UdI^L*`M`tPYp#2>dM$@(Oy4xojvN z+RFRNikWuqNlZKUq>f9`V2Drt{1DsbFC-R;w#j1PZwWB}t_K+Q*2j4M@yn!D8weUA zk`fbB#=pO~mwSHlPgZ=q5?{WL@7?*`l;j|Q(H1#CBr$Z_7dnpmu&ozCm}$Eu+B)vD zAIdl6fBU>QOuVgR_4n0oSPvkjfk?1Eeq}?7CW5yJ*}NyM&*jUt0WSSfJT&IT*FTA( z2(-3!>(@6N&&@xG>jJJieF${wzUS7u1 zHG5g{)(=rtHJ(2_KL?r;=dSDz^qhVYO-DsJZuZps*!@2$ z-n%hn8^Y)`%+f~|6FG4zMq&SXyqZDz2*}9?f73uqk{At3H?jAFWn6LPOs<%=fx?$R zVdC{CLU}n96u@)O!GjOR|4V`K`WC z!4FTXk zq78eP6In&ojxBt#VKn-uY+^RW;2i?>+LMaj0P%k#P150j%?bgCxXgHjov9(Aw5q2#|J% zHKH&Z1Ys6Jb6O_W1SmcaMw5ABN?Hgd*;Nj!P;)%!O@3k{;(L7OvTYfaH~iMat)i;f zBCV8d`3xZq_KZIY!>R7DWe4K!nL^{=Hd0YR9_8r4;MpC+;B@VGhprmNwmtBHo9tbhG| zw!HrZ)vGsxlsvwA1DEM~%Dr=KgtQ65P$0yY^Ov#y%Z*fT-AiM2BRRTGOOv15zx{hu zRmE<%VRtxix}CUuE`)$^C``CDOt2+BuLWD@KD=sx2HZaqETY1LG>WISz=p;I=m}yhk z9N@}`g+=TMc?a2jFx{q&TXhH9LR2w*)U~zAe7F?cqN{B9LA%qZ&J3#W~hyCBY zS**JAX^uZ;CO`azk8>_Mk(C$JB37=1)vMvCqu}0qp(3>bMnORVE|-h->(?`T_UwHl z_40j#TC67YX zy0T@kKooReaKBQ-U^}u95>SZ2K@4`4Cu2C=gTm`E8?f>&qDFSU&w(Bffmjwo{n5K0 z1)gCTo(WV*H(LxFZUMz2Mulu5*s_eE)_YSaCA{+Q*8y;Q-5h<+ky()~U385mxuRtw zryrU}Y3^|T@qS`b{P?Lct~$Pf4;w#5X2mlrJBUV8zf)H<#LdtDiQ`s&$aUYoozKS~ zm~k78D@!SuQj2QSa7V%%xOpj`jXRK>p_N>6w!&xCk`LE4)8NWA+YJEJwz#i#-V**b z>q<*?0lfX(dj9_F3;El_@ABd28+%O(5m+xK*a5} zL=Y-z(|Xlg0=N2F>;Y3Zmu-x)2`nFh7=J zhRxF2qsOomrc~>LaPJGz2&9?jEFs2@Q>m@{>V-UaL=)#BJZzMgNktJFn|Bk6hVZ() z
    |33+*AogaM=kcBNxP9R|3YfvQlJ54y;4yK)RBGb+}k(%{ec=l$d3-G9|z3$H#-l7hIu)Pk=SxRkwA@%BRf})86 zV+i>rg-o6}f;H>51K@T!_{~pG=ZBXi4!;O6u6P&YigzWwo(jYAs;O!1%(EQRI|<6g zix;zE#R}|pJF{ocq}aBGU)^vDH~#KA1z9A~wD?z)FED!zy6%avcDo*8nPzCKtgd_wYIYEafpTTfc1Pw?J}4Y zVla?$5(On?LWX@HgUQW!B3P+InzW?uEI&AiV%_2yyk|db!bV}y5&R`w%*##oUUWpR z$mjOF62^y?(Hz{??b;)EJl1hwz4G?UdbO3iVHcsY0%Cdn6Y8R;KH`(6#f+S=lP9K3 zrKZut+T9N9s$^J^#;}qgO=3H5)ekZfiM}0@!VWjLp7Ue=bjnrK=O&1Y4dD=!U`1pA)T<{$0hK>gbAKDM4)GaxE196s+p~Z938-pCpAqMy;(!IxeIY<-1`J(=3Mn z3qe%3c<9q?M6ft7+H#0sA@5v^B&PZ-dAjOhNkp~wETr8{MD-9EQ-R`-WL}>EBFBXu zv@kBhl91g;Xqbh(A)Z`9s(I^dttp0)qVGRn_dXCeium!|vxu(POO)<&Tu``BFhB1Z zEl~m%%Ex8!Af)+kEZU;u*R6dUQCl8477XP>L6tzn!aPwQCTNjlZ1Lve3pJT8-x_h^ z37OxpM*TVwOQcVbs09K*HJXT8Fa}W_4MZ&%*eFUPF$>4YV~+Q6@%PM*W686RwebGi zS;#eO0?Dhd5 zD|?WVr4vSD_qd1!!>oJt18i<55q~Sex&}f`ej@%Lv0w--9Kncb+^g$ILn1R+j}=A1 zX1C#VJMrasap$;+gd;@522G(@Jmjes1q3!Vo@cyx>_q&~r3| zRZ9e6d%KEJ%}_a%kErHj*`4t4V&|7)I!(3_*iXHOrbvLzJY zFI&D&RCb>mCU}qL>*c>-gxiTCqUPIl=OYn_wz<==<+G+Z$ZNLm)Af9(IPBc~_PLxt z;$HyFnmQyUIcODLd*=bfp+?Dd2FP)?^1Yuw!W(bC*KzGX|4Cf_(HEC<+fToa*AYhM z=OXGFGnS#dGo^}{aS)>EGU)a$Y%u2Apr4Ff{w^4OpWh}8%O}U%ift zvnw(7#y2s><~4+OY{qfq_fhg(h^CDY^+Wy`bj?Tft>=4J8r4vmBREbu4)u?hcQ>r` z=AxW^J=&z%#6EdFw{J7g+9d-pirdk?O@8s@Q(OYWYNcI20$q9UA5C+pU&W7e!${Vef*WP<$!;Q&L~ zu&v|oga7;!a*VmOzH6hE2*L)oLIopYptopkn<_6ee{v=7ob!XEb?$oYLw3FPAvUiI z-^g+zbZL2=nWPh8Pb=!>%dtOj3DFP#oMEe} zWf>?aUTgVS28G9=%X)}WGZ+j+Qilxofq4eqWEdo#i$*Wk<@7M<`XS8;lBgd7L4NVE ze51LTnk0{>MZ&esUVfK5ivzS~{L#)i_svJ%0l=H%;m}hL?p1d3JukBDti!1~YKAG9 z&0t%wnr&2LvniBL@S;nDJ+TN|{Daq$J5{dKc0}w>B1yjIsXNwi$CI~n{kLytOW8=Y zppCl4Lx{CFv3X;t4vnEFYzE--adY_L8~0J#@)^H9<2nFd*)EyCF34YT@PpPBtek!j zwIRtX+a)cTa#KQ(%fTE>u{JF4$v*;iZgW3EHZ@BfS7gfBFi3p4h16S>yY6Hge`jS zg~Q0OwRfTz5*e~qhfr0^atMzL-ESe3Vla$hRR#%0IEp?bAIFF5P1R>F%p=xdK5UfU z9JJgIMO7@-5eY}IIaFkc+0unl6tnv0GSw z+~HOnHuK{-H&lnwXCd%$!cVTsR4EU=o#-|tNh0xaFUl1u+^8GpFqcI?Vk?<`0M&=D+c-QI;}Ab;!<$oS5aawZO@HLhD5i0<;q2 zr*a9;Q^LRP2U8sT95Ycl;(e4v^Z;&K=5vCX=alGvzvkkRUEl3R4g#!i{eVAiS-@qL z_cP5m7N;69*QTO^w-8$E0cb23!W*`4(et?(#MnIi3ChMhsooIblf~P(`=O7y_S=W2 z-(Ut%6gaqY8KIbyJa>Fu4Sc$(8#&k$Lc~2AD~Fcw>tFs9+5VAMlpyOGt$p&P6CiSb z4{{JdLj>+e+TKCT{S$KWJD~M#IC0I1lla{W%LxE)Zg1eE!$zU!IWd~s&O5OP(f3}8 z_baam94=(be265O>r@4MokV%<{@zhnT3b*axfT2L!%4z{B? zg1Xn!xeGASepd`M7op@>)U0NRY~?uYfT|!I`?wE-fJo{kgS~(94`w980HEilSV{wF zk{}#h{m48AVXF60lskv{4uJak0Q~!w2Qk__zOVkncN3Obe8=TD zn#_k9>kF|IQ>`WqszduO5xEr@7V}Crdvdw&xJ%elHWL5Vd>U7lQhwxi9C^Lht3ToXmxsN>f$Qj;`VXrG1oIL4^A*(a)F@0DY$!eX5URBU0gw^f%8{A!P8UD+hPC$dDjx0dQLU?4m^*n|+ot8+(Y=kMr zVy-s;Var08QlG~fL1>|DXC(%Ps(?+wzT8|S5Y=mKucI|*VV$zPR}k2Xa*0;;Hhlca z>Q_4c{`Em;Lrvo6E-Z%U1c-XQ)(FC=HKPb2A)J$or#W*A|8`hS6YBD}U@;XUt?oQa z1fe0V<}nOf8k4@(dSsq3U4xO&T(%>W* zwZ6WYMN5+-bAm8y%7^Ya`lhQ0@2#V1<2H=8HD4$SimIU6Y}lPn>~1Gcp9fDt4wXal zC>vhNtfOZ#X4{H>CU1CJ3$O9Zd9YgL;gr z$hxFubQ$B{J1*h6Q7 zNk4Iq2chjqT25#?z<&+Qya&1HHDo6}nGm;rb2@)`X$6KMx%kyJ)J~~D9bN?Ms!{he zp^Yd4mjh*YBl?6s#RgSDzu;7CA3Tv<#uXo<8U~J|&LjHq%SrD`2SV7p=Y8o43Cgcl z;rRVwJ%zY*Pe)NI;1mOTetlNw*41}UE>XZ|SeU{$qkTE;X zf}B1H!jAjN4yn|$d{JBeQBhEevepe%X&&%uV&Kh#K$E5R(?!2|8QK+ubKibKS@$^H zhu(vOfe>p)FBvR`ILZWr;W;FeL6?Kqdn^%>^&?IWruTr;c^?h-3cd`c7cwCV)ZmV% zMAvox`_u;j5|In$Kc5za%iEd2hjkDbNC*jYS`y2TYpO`-C% z4JqIIA5XtF>9vi`u(8?Ts3CB2rNYUT@J3H(6)BmpcN2b>k3EGIy{`3y&CswJ8eiM; zE}srNgdO=K)9;)~WHb*ox1yYVGiW--J9k36afxM%@@$Mx>p9;3m+}}2)n>Uj!sS9* zAqXSp!>B2N7V;OogBlJJ$t|I7?(s;Ip8n~09``Aa+gh{;t;IS)XvAXBW^7{Qxl#O? zKVQY-o>dP-P+U$+9)L#F`aZ*!>*+-hzE!=3Ey1|5ZsPa}xE)SN5?a>QM;^m;pgXLM z345#cF%fmSEfIuj#F{s#EfynGkb^sD-pDAXSbL5(D{~a!^EY7R3ez5Vb|Z%0UP^AP z$+Qdskz<-51PB^V@+?H94##Yk@))*8RB}xoqXf_#P$?}iw}$(?Fl4BWJ-he)`NbYH zaD-w+-FECM1e1BG^uX=5~Wx=m|^51kt|f2@QWVA zXCLKNhl5l9b!(b!OAapsXCLD|DN)w`n~dU4!?vJagU6c7_=dBb=1BUv$g-KUus&=f z&yn6-ovdAzFhkM^i~S|_yrGQZ0^vg^4Pq$4bB-8645_1tz9*$@>O$J=9S95j(L^mX_K(7YvUr>1> zV(0RdZKb|fUNMO~25TJ2Y2}me8Xm?h= z#rb<+{vLxPDinS_N1?3Clv>hK&-dPbkjoNSCMNPAto4@iw|Up|)YJ?12|1WC1W?xk zi`FBa`>-D>w}5O+(pKGRvL#1024*QSf*tAFd6x3}bXX~f@ zYW-V4Jm1tk$6kiAE4c!ux_T$4E_{HCHon01o8L4ggJJPm+5-U$)ncwui{%}D>jXu} zonx&6iwUFM{=PlsQ$aO!{LTVPbp#b_xgcYPMRknDjh?WO!!Tannm4Q-ws!UyKiT?u z+$_A!@n^TW-r%sQhon_zd(AFfnDh9|7Ia;q)t|RMzu!jI3qVbQvR_92X@!!KJT-#{YzE0KAhUHC!KaRqmk1@S>HDTcgnT2 zs3X(5H}P|pgmv@L22%AWoxbMU1oQIG>+`;#-pH=-7Wz_$Cu>s(5%(eleBm&|u&lA3|8(@_oc*Kj z1!U?FD*F-{c~|9nG2Z?o#_ETV7aW&mL9A{^vq2CJjxeQJS#Pourqp7NW!W!rDFCS+HvzdyULPTnf$F zxDp7$IabLvYwyz@4ij}+3_Gh@^rQ@0^Q3e}!vvkyNb8WzT6wF{4Qx?sq`5n4jcoEp zt&yx=-5SyC)Xj&O1(-B#-=~Rahqo=v=!!i7PCn@LwD(koVck%|Dq5P7e7osxW7_Up ztps>esiBGpM*ENbxXGWDg#rkxdFq3Hw36+}8AT~?6L0RuRxz9L1EV@h8*BdZTt`^w z4yYmAu-W62xL&mkd2AY1ABsS~Yci1~4`)S&WOMkwA{Ipt z55mEuhfn(%^awFJ7?R-*2q|Yz{2T^@w_i4pZa@0NgV4;g?0Ijdb;K+xYkH!@XrfX{ z?}gl!6C@H?$qFvEaou;P%MOt zk#;+gib{01HSZj0(Ypn*6Q)%4WUj>aHSEA1jw^VymR3*%_O*MFx#pg$k%ioQR=p|p zK*(|(h8FLKW^-~Au&wR)S(B%7lw&-~j>MtGK5N*@kJrA^>kC`cQk}63O4xdi&6q`U zPPHt9AmmLiS5z`cizKDHr5VHG_tommvsB)y@sT5JjpWP;r4EJH7jmPG#4Kcu$$TE4*7jV#ZeGA+Fq{NsX5vfX0#{zTd&eye}z-wdn2Ai>0@5BS&6L-2)hd$9zaso zSjTDFANnlwyMJHBjLAa**s`~Yu}A!lsv2uX8tquMelLf7{T|%of5z6G@pYxVw1BrB z_&Npd?xbznW2iX4d$~-7+O`C2S0n9xBn6ayu=m~*B?@7B@lj)$J-QHpmB4*5jp#-5 zkcz;zdJm-Qm985&mTX5<*JB*_HKcc3$_|P|6HkVSEqVgu*Oka&Db6+#9f6z5@!%Z9 zQ8)ct_Oj!pPkQ}cQ31dE9sGBFCD$Ccp4BgHgoXw<_E^%=(RNUe`GfdtH=qY3e`Cuoh;hyA1LFxA#LTLus~9BhzOQ$udFM*tCfI^P9*|v0@6~=A1AGL{{+hzn*00hFt)Ro;Hdp2Tisvgp5Da zO#d4!1Yy^MNLTp^93Bqxjp1n56b@4+akOU&)4i3bD82fkX^G$K$U-;g9+1y>4$R@Q zIbJTCTfkwXa#7m`PGEZ;jVnv3ICg7xzU?HPIrr0-IO|`3;MOHNF#`@RQxd)uk;Fny z2$(#hoMX=z&oN&g%W-Fo=h!pGF?6^!7;Zvp~ zn#>UrdaL#4DHQ8t%U)>BbFMv1>6Zl~xTEbir_;&ZV@|{V<&LCEoZC0N+v_(W1kY(N_H2heWNl2ThC!>xT8K|gSoC7F5Dpo@*II9B=67i! z0*ZOUNI}vft$kB1G4mmi1<(>PKaNx(X>PSZFy;%2ORTR~W?<6{oUL&ql(p3%V(wY| z=F(qcQbH07tIeD*dWoLt(qOXdx)e0F*+y8AJEDhi1Q+o9 zs3yu%48N<3Bk1Av39t2+*I-Z7hq?=Bu3e4F=px=0hjIXgN$JBgmTiZgDr z&5O_$sb^xnm$PGk$3f!x*p7z+t$;7zxSrud~d&l!TVDb?5EW8o5$9`VQ z3KFkq`@YwA0aklDj|q-6`1B_%pd?ub?-L_F6#Dp-fE#4sDJzy;;oIy$;TwVSy3=t)(jQ_Fbu*U{t@HvW03Qb#1I{xgAuDn zRRv=*-=6MMti0=)gufRS!d1Vn;4dG}ILz zF%aXHf4Z4xl`_9U^+XfsuI_msVm-j1pP;U|P8c_X)gqgaEb7 zi><82wd;Wf>eED4Y0|e-05nh!6@vt%;C6aJemd_Cr&KvC%e$f6H24poVChmrgD= zt`b8z4=+Qai;!KCWm|m~8ycO|gsmywddiUJD8N^AEKi0UJR1~Lx9N-X1f1xWe8;Qf z^e<(@_C;KA&@~{zX1DR^st0;)%zI+=lmBJU(K88`cR#R&b%^Rv6NX)_pvl3)=46hh zdIyRMdv|&XwAk@FZCo&=g6$jYdE~hj?5^%qwjMaWoQuz$&Mw2?z0LJqYUw^}7JD6> zJI%$i4PWr|hp$uH9A6)W5F9o2Aja7*=hKCS_!y@*F%{DhCb*hnxKCpB_> zE-w7~JdQbN5}&-ejmCOwo(etj-D`50cUXFPACf^dHG^T%GpWgsu(BOBBs5tIb0$%s z*_r{9#0Gv7b!^;$a?caUW9FfsaU!zCq8y4F!*6Y`petSsi-eLUJjetg@s*Zl45t&) z@Suunw#4oNX+qj;#KIPjI&K$Qt3{&G<3h|GqnSYB>mk)>AJV_UJ=Hm33 z+qWAromZZyVe!KLOOuca_2pgy`A*8WHRBBHj2>UeA?FnF>f(2K;-iL{`sk3uy4q7ZT8Qk6|lMZM!e_peoj4E|W zD!s7283IX+2b008N)9URJmc9EJNY^DSQahj?m919+oqyI6@E|};&8`S>itVQ#kO!p zwNiFYNh>a!xp}I4y9$2WR2C_A{vtQAm|6hxaPWOGo{J18x!Ow0GTViVTt^8lu{vT# zW_!szdpRDPIq&xF@~UhPJ9)e5A>M2HHwHQ?Hb%N;aC+enndlx*k=^3iLD!JGS0LJV z7pj-N<uB_X^%xhpY{tHN`-JQRGFOa1!<*qfkD02C?*g&^0J1#rXEG2(MX!tlDPf z33Ngz*k^tnTVxXA!QF_3HF0C`3Hcbm8%Ow)-$Nuss8#a%BVhDzx=Kqp@xwn;ad`50 zs8ZAU;&aLEzqj$!Q{YX&v(BGCpP4gfl9!j*D0<42DFCcqy*ev0??-a%CkXce5)p*< zo9{yTa#gQ;i|0&a^f@QsDk#LzVl;2v!Ir1qq;*&Az7)AnoOmJR7W7^wl;KmcRUU$n zZcq%2;BK@nA0wLvm;AQjIoL<%n=0EcAcno&rR1-^s`O3)$+2KUPOTGZ&_)zX(phI*CVAH@C}eNz3J9=Pfar z5zz%mvU9j!-{hn=WKPkLs2^TuG0nb%xwIjdF*Z2K6F)dgAZWmQAy^!Ny9-+R#l%V) zYvam*n;-o-(+-}}XPcf~wL}VX(7oN2Kc0!ZVsXv2Q2r6$|Mmg6 z3TN}drYz*W0+5o)U+nEQhmWh@fH&4kxVV^kKRlSN8-slGR(jv#0@YGw#`x<>er?aK4Jtsv=}zl zWn5lLz^)==<~0qz@k8)$u$IR)Z~6$DSD5!u2tMz>?$fO&ZSye0q)xRzHdx|a7h8V^_joNu839?;j8Jr zMy88kX$gf5*5*B<$c-mpehp};97>iazQ&|=~Q}#I| z(+{k}?%2nnN~|hkkQ`D9o*rI<4#i2HXB>u_kB*An@DmDeArNb_(pc6o+!tYZPWDJ} zfsKed62DSF81NAzU)zb4=GU}rKuU0^E{dJQE!Pz_+&oIh>?GPM(et~^!Kw{)>;c$@j|0O%YEfd#Kj|NR zw$qI|_F!xUQ^5cuvYXhdHz3lv9)JFhWJmAReS-!g&pCplpZR5<_dW0cJpVkDmBD}h z(|sJypFf}3vuBf&Bscedf^gr#dV-Pt$Q-(XSi33VrMkuIs9U_Q*Y7dJTwIp*n~JQFbS7lz2wiDa23zLDNjCePt$NJl5A69Yt)N%lKvB%os+Zek>ap5H zj0@x@-nLD|+r?th3e4mnO!h1k6lBg^E~txJGOmfinj}2LHP`inH&15=SJ$lh=Qnb#n$TPDR)Jf#*#s=bE3t zNlPHL=fsn*tl?K1UzesgYW+7M?|$Ghvl3tAQkR;ug*3u>iy*UoNYEl-Yn~IkFMjGYjUKChL$h$D)lH(iV#;8**gfd1PZ~*sOa+C>D(yWF&^L zJCPRh?-@bsif602+5jSRhsG5&L33VbLV!KrN2Jy~nXXy%Oa%}Ya%46~L!AHR--)(; zCr1vOmY5s_*wKXX-bTdiVTiIEp8w%p$hX#mglN?I5m=wgo2CN&L zMBF}01fj5)8`JG?M$5Hh)6FZ-Tb;R<2tq@*7NWo&3DIXVv=s1$8o)wI%iL%^QhH1; z#d)!M3|WX`GRbnDY=RVF5BtJ|2?OJS*AwMKa`|+_mo)hUH2DLp*^<~0;<7*9#zQ~7 zg*P7Bg0Cg|6(tA-Elm!JN;6m=v!MX8?6D}Q3rmLga5#?|5o!aybyzTPUV~jxAGT$c zAe3l0^i34$U4Lu){{Z$^2#6VBG$V#hu@()eNrw-bA4z(BZD;|v?)U~b4}Xdwj<9*T zy+s`aVXMo{CJ~Pk_nG`_{CbyZaiQ`b>b+YzU4ECG=8bs0ZXW*g`2d7MQEvR>n>_x~ zQtBK3AA9E=Cs$Se|M$7~PM_IcvYWE$Js|}`2kC+Wf}(&ZHUzAoqGE4Y5JV9RO#vH< zfOJ86Zy_P1_r6KC&rYAY_x%2t?YmRY-NN^m&+ElYvvbaK%DwlL=kt_s&r#m#)X{_> z7Eck4MtQI+w6_q@yz+-RyVv)b6f(vh-H4_kD@uEG969UJ`;Y+pRF@vo2pTO*&{fx$o&gBsQ zYf#~ZQ)VG{b;6eRUZG|RbHj4X4a*DcO%aGkG1oke$7A5 z_4CD0^($)B>KD?V;c{>7&L21u$n^}w^x25c+?zXqi2o02>TT&4p8S<=1M|uC^k)Qh z%fr@(0tmuPeHaTcW&W3jkr>BL$83I(gBJJmh7KuE3=&rU1IslR6@l4Y9n7O| z>sP^FZUVsP_wv=>eR)ukz1srZ_Wi>M1)Vg^Zl~>lhez+6&7IdQ;ht|yW5@IT-$m8@ zfs;0FXVb!2eE%=M9941T1i6djfSnPN;gsy(g z(A;VYA|XHzWXX}82UJ6?0?0)1iapEFNPYY;q)UgNJPCV>Co+r@wYiA5s)geMuu{dn zpY4ed=f8DR4>@>J)m*+e@r=wBVkvlf3-Y?>uzvg$^05s)hjKlnPR>b1Wrh)pk#ecs zM^pm=IU*5KibSWWt9_%Y`5Xm;kgr@xMoQ6U+7VTIp8_E@4@h64lc*^E+jh#NQXWG? zm~<%QF?5L}9ns?7!y?*+ToN&tiW)p#bPXsH)iH{*2va3OIoCI=tr7TJGtw? zH3ZH4Ei4AL=_v(~Hd4rEsT8}HAntfs-S z$HJ9Y!u+w1mP$^Ta()aU^s|9yXsdCc5WEa_LX4>G|$L6&t@HiryRu4 z)@nlwbJ!PzIuEP-u|S9odmr*32*<)a0AfmWF7=zzH?zZ zs(2@n$5wgXQ9b|n50Cv8fK*pKDdE+}Ci47$rtrz{EN9s%yO}hron@!)=7XPK&Ba&0 z$+sunz)KHJ9x#sF&1S9()JO~>qyu7+R|1eq|opGE4R?&uXombbb z7+kn*9<03rj4;f(3H0=(aO=K3R2Q$e>IW^`MKlGE-gAJe8YkyoJPs|7ZN_kG>}kx; zA`{@vcXm)a-bRAZHc4Xun&QR64ua6MLxv5Wu9giUzZCMCb;Ax1RbfMJCf%#xS_7D! zQDxe#vKks;+4=ulmWY>3k z>TxIWtr=(LS6Kql{z^hUp1^df5nJltyCCUTGhWdYi0AG;#QbV|iY$`w?S?BHB5A0- zmvKXl_*R`qe^8C!b6RnNhMJ*Vr&N2FBBt7R9ZjgM)sd*0T59Hu(N``;!U<~2DsvYE z*6-K>B{7Vog)1^T`4d$UYjHT8 zU!P-QeOb@HJ?`Oico;NBuP3kQV|IQT`My@4K4}(OSBHNA@bo75&uX+-0x_$9l%`}w z1q&lj_4}J}=;+mIXNcj(jLa$i#soIr{wRr#{EfY)PKDNHi`O4-!|J-T9`qm_8#wqB zMgbyAP8Yj~vEi(r&4OXHiNSm}5=|kzXd&(71&0r;{Bu@F=X;=8Emuen^4a8v`2bwZ zA5RUvf1hE3X5&=}?@zv)u4k@z}goVz9na?))sna1E2H=>_ zUqShVa#lWH$M3&+1b6*(33pzz1c%Gw{3};s43(=x)7bd=vk19MiG_PFf4MHN?LxzmBhZByOgzLZVD}j??|P_yz28q0t7>VrDK(9-viJSK-URpFxfi!b z=2h-&9PA;1WzSs9oGgp;%Y^W>Q%uRa;`Q%68+1pV44aqK8QG-x+8Lw!D-cctIO- zy#8fA{;jw8#CP6e>4~|$=9ZqYhugk?7`J`zFkXFZqOu3!SVFf4;aht+!_K<4XLX37J+-dQz+x8Ob zFggB=Do#GDDr4C_TRJ%9xH);ZfBNzB*|j}?kHZncSRok|JqU#m>RyO8kb5ZP(dve@ zgCJD#j_UbNZ16&~A?%OlRJXd<{c6_5sbD1M24oo;<_R+}uRa;;n5l>j2hgv53dhYa zqa`dX8we?pRF`4+)d;0TYiC{_nZMoo1Rq`T2ijt3t7Nz4;HLQ>=S#80$i3>y8&i=u z);rbvU;E;Jk@U0>KaH~GrS0KBo1E*W92SaTLBS|cFFaDYOGNOpJ zgE=31@!MOXzN_dZ_3(x{w;tBIvnAG@m2yZKc}aY zzkc}@e)V~a^S|;oCwypY#(oO~KEqFis}i@~tB_i9!X7^H-Q|4dM{m%w&&%2uZOS(~ z2GH$67>=9xYW*ykmphpL{FznESTv3;&Ha_I`-5?&O#8B=TVd3)EWkDhZl`?rNLP5XAP|1&uV!JfgW5`-xmh&fwi*r042 zD#vFYa2#l)^1t_>ceIX~8=W0qh^nDEg_IZ>av@qk>YN3b-#rcM*r|x^t>{00663yA zXnpdvrb222fG66*A%FfFQ+B@Bq;+RO*u{0$H6f2-$jCsfYi;lsbm z>_B>76pDlpfK)V;(-TQ$4?sJ@l*R*U#FS9<9MddGG@uq9(~@fIx4WZVsXhoo?)-8r zWrArb60LDH!Z{FWQL0~(Y$G9y|F->Bh)AmVbTss+FXZWFri``iG-QXLpW0Gl+6eZm4~qFbJm4Mowt;UzH$;#d-n(y&q}O1!J{O97=Q(Ps84UoG z8Zj=e{RWG?*$KOuo z&=KYRlfCBq$qX!4?5EbZ-p}q`#fvL917HBp1BL|A7J;ORoLbqh!sOU0mPManiLs7Z ziMMERHt=%!1?+ImM+kvYpFWpbEPBcO78+ zz0c=g!R6w6PaMll(Mx#XzFPJ?@pjKoD_6q#=fiQw!6lc#=FRr^_aKJG=mfI<{}|d+ zFO7B=lu$oSU4|WJuWsv+Vr1zR?jGx!vEcY1SHA{J??yN_0w$Q7z-$A(9Q4m1r3(@h zkt<(@K9@h0IiN%>j7?7;y617UCQ@ifX(60GgxgPENx%9+(OTF}sLW-;vN7bKBD%-n zvbOSFeJQnK62F#%y#qDiO3}b4a8aIo6#z@7oeE3~f(e~qLc=QX4UgKKz&#~XxPq_o zXw{Ldwn~r^wk2S13O1a%v?pKK6*t_#ia$kY*`GOBYQRyB(|HKnBPG1l>R?aQU{)Z> zf|58j&i%B<-bR$BmBH`(M75X9@EDNkY z#O>eT*~@1yS;liuZ{Z>{qff2>A3z4q?&ZlelZ;(4LpKztYb5mg|{z)}MG{-F<_8 z*EEgyEg)bLfK8XO~dpYGZHHM%M0FO{uq(MH8k{S3RBOjRtS*?44`P z%*_yL8l3a-ad^Bs_uth>xHEGd%aZ)>-y697=bvE9o&$hJ6R05DLO)Zb0 zCc&W?=|D%smahhPGuR6 zavxTFF!5@hF$Z}_J^JJ8(U$M-wr7R`?OBl+n#-W*)2sAg=?tanRJ$nFG`Fs zG&IGza8~$9bq+qeT(kCmo;uK*o7?a4@~b5mGg+(X=Z~t#6IhA_p9EzYR*4@?AqSrp zPhuHrYhTjs##E4@MdM2K0b(9M?r`xI_adGmr5E1^Atjx@ay+r(jd0_do0P&nq{ZV( z^}W#!k|mC!Lo@4EigruJl%iq-ohpCJD(GmY~nZnzK3wMzj24h<>J?0x`O5ZONSWLO^Gv>BH z?sQ<8U5e|jtw|Gtqn!%~@AB~aD-mKb$&8s!7S1wARkibGWE0j<@A(Mo6Oxu7l#=)j z`}7#4-l@dgGkGTNW1p!r!I5H7AV#g#Ok3v)QbQQ@cDEgHk3*I&FxIo*9IhxnJ#O%N8{l&=DUji4EnCYw0NaW(55t9gPSkfQ$@ zFr8DWk#$hk#rOmdAkE~c8r$cEs&Z&m4|i_|ZvNj!031Tl_TfYDzO)^w33zS`!jj1I z7xz9)hZiyPM2KvJj&+PHpGb|rk#%k5>|hDC$*s6*Es~qt(+a6kfHq|@&bs3e&uv76 z&}*%pM1kO z zyA{_EZH+agl`Xx`(~@xOTe~@Iel34IZVH|4F?Q|g!0j@qt?}b4bMyNCPX4@NcSf1J zpKhSykd2&l=zBQlw4(`zn%Ld67q8pHxbj*&-fEuRk>d7UEg9d4GLM5#EOGG5fBukF zTL%-B03SQ~BV4rPT>kb}N0*%3@7IwhmJ=v7xbMz=S;@g}I9&#*l;pNMUuXTs1A~4S zLh!{)j$`4Jx_*EE`uD4tK2uGZl-%11Va2Eh;Uq*At$afg!iq8?I#Mx@l#Ch>QOoIN zh75=o@7*M2oK#R#(o)Jugm}B^T9_cxUcfqRIf=|Y5!tQeZwJk15elkplFkTpDn|P8 zBs4;*GAsu{MH%jKZaPDQpNn%&E#_;xi9eSsC$&WLdr5W{=SdhMz#B(hhS_)kD{9f9 z7fD3KB*C!SxkJ}o{bY0`LtMV*W+KU6((t|2i@9v_8IXWMUu7(T<#M78LAd6NRMgz3bH7B53a!-Sm%nu0fDH0i<}F5a|VCL<&i0~>k* zuW}La_;7ibpF~8zJ$c<_b_$-*d_=gyP7!g@)~N7o}aOdWmz;e zHL-j5ZbG3DQc4azbQ~AGb~qb0z*oMKUYBRjhO4ehzo+^bQ{Vqz#zBH`grRL1!(VhB zs2C-0YgKfgJ#~L^mxf_GyEZIBj9ZR~+?lb6NUcN4Z@}EEVfAzN^g}Tu(pa!=5>7Y5 zHFW5Xyk!&_PHrp^q-H z7g6LK+Dlm11fN{$;B&vej9?_Q*8eY0{*zq?c5~t64-op_OVqYB<8My#`1I2=)_LQ_ z4jQI=IN|-3Jn+}S%8|Zsx(tp!eHtJC;$MkIhgNh;DY@~M=Q#WH1ss3)bXLBWCQdyb z^&_0qsl%Ayn8!$%Qaf%ShS6<=Toi;L?LnAO5Ry!we8ex5Hf%#f4axe`?sb>&DXqa(k?Rti7cbT+-uo@3DSEYr)FLxDlW{_>Qv3?< zWK{D}O7R4tl_5V_zAzForLDuAP_v@&BtxW0mEut1ReKNTEcDny5O$++Pmsocrq82Z zp98n2mbYFBBIRIXrqb3p?X~tq_!()mHG3#2OB2JBy_G!hmk8@O485kk`BsPv&ku9U z&GXS})^H%99!9cYbSZZBMPW*j1mVClLEJrq>kbTk=h&Ts3lEg=gYv^T((9xnvZdee z&e8>ZaS%C}MvH{Y6Mio9F64u{i?)u{Mc(gAH0U)}y#vUbcE~?2KS_dHQ|z$jLBo9Q^JjID8Uf z`EKNo-rHx80?hV)9HjVoFdbF;y^sHHM(@i7U z+k+U0F&xGA{~%i05c>u%Oqrl+`)zl9-GI`{F~W!xh@R~sP}rrTm>h?B!&8o!Xd>d7 z$-!<2b0flEoI+;E_rNohe4;%}*7Kef<3p?oBF^c$w=cv@_HO0Ug2uP2dHv=?c=Zp9c^ULnOI3^d}<2S%l7vBE!8C> z7)xR1vEZCCGr({DeSKDPup7^=dWk@d#l*IK7^ca~6OYbXJ`uBc^qvEhS2`HqkbRvx z?3juC@Vdt`l7oHmz+>-FInmei&1tIfMFD#fzSu$TjS+%SH3uOK${A4%)WdShg2ICi z1!+f)x0pHsBjYyYQ%u^xg4=MA(S{(PwFR|lx9a`*krRe*@S0+34&n|Unw9%3Ad@DJ zfLfxiWF9$PbM~Vv@>S2(XRAK&YUxR9(<8-lGf%(#;wHLnHaUucB%-r_wGxRsOSC%vXk7& zq~tS~Y~zr`JVc>qNE?r>;S@v*xI$-ob{ZPHt=wr#e$eJ&n`1s6y?@zO;U(8=`^Ti4 zm)tY)JF^=BYszH7sZ{dY)>HJg=Cd=eVz;a~DLQ3i`fo^LwD*vM z02U_qCN5#8Y(nU6ghwrxZ!vu>s$OMTL7!pY=8CO15a0Xfnx6lE?yMRxE#!HJAYR-C zei!WMWALOqA(`0_VP5ku7#DhitxRR}xKq(eM_$J$GzUa7-@C-Co6v819p_=^GGoCA zcB}~OxbH{ve9YI%AP4l6O(jj0O}@oV!huNS7Q%Qyyyffyk_?O`RVN~os6|RhT2Qt30QFl2 z=WqmY`jad?e;se$zJS+nIi%;mSci+HpL~ZSE?>z}Us_Hg?4<6HCZ-&}i#ca)Mt4}e z{M#jLd20BH!pg=bj4TJM>wOX4*tjC^@~`e*!-F6B zJa-;_0iCYg3c&W36s=8379W}YvgZmoSi2$rkTP$+y^G4~^gC$>A2wz%Ru&~22tr%- zSJnK1fN&{B3Xtl#|D+8bT2|Bs88I6?8B^+>j6)qNwT0u59r>@3`VhJQq|n$r{#ZiZ zn!IEG5CPAo+wPts7E2S=xx2cSR@@~SD{Q;Io#oeCb50D*7|mV$c6V@3&4 zd~_Baiw?8+`kIh*#EK`Y4NcM!E`HxCEfG}Lj!rBy&60RSHW6n zOM&9`8*OntZxVf|@#fpEogRlVGk4fxI|)8jbjxz0<0JRE>|gOu(JFQD<@S`!G|pi$ z#?JuZbRbHK^LDmtnqOa?j>=alKs>n#yiR!kT;y@n;H}+=yZhYn%{Vx#v&x&@`dfU7 zokTo!==Ew5%8G&2v<2(fnOVz-XV+lt^)cztN?d9-UBe1#S*-i*{rbLUPrY}ml~ z@#C2{Z{9&ta17(%lNmvXHQ5Qmu}TbfqjKEvwm%Zk0{LA&Z9RKtYQqbd*~8EEgPA8G z)-69%ff4W?91%jzk$oKb^kF0pxvI#gkEYB{mW*|Rvl}DfL0HIK=*}wM=^Msn!z%d4 z?|>-ye?;}Q-{)($Ue9~(dX`6ye;?^=5d8%Ut&+_{=u+c`3x}D+?6Ow>_W9TFp|AYA zE1ZUg*_F5Nv){jwWlz4Gv5%z_LL7eC+bsKR`oF_3dz&f8?M8Q6J>#5p##YK2g7~VU zxB^KgAG@15XKp6aqNW(lg(c6v#!o+T1)urVAC+ZY_0UaBUa^O^%2M1_>YfUzRAHoL zFx*bS?LZW;$gf@=q^ic5)vzX6U|6>1))4-#easdILOWnfKkOj)#)t=@q6Z3)4pXWK zRdNqNsD>jqO@vczES5^>#cml<8wf&$Tz5S(y4-`bV;gW>aTLz)z6Wh~73MSfrymf- zBo7(@!>^`Uuo5X{FT_M=l!u$%pf#Kh$9PovY(6~xSS6Xo!1Su^gIbaKAp62nT>muF zA{kH&xvv-^R7i*g)V$|NscAUfot>lnZpea0S<M#R<*UUIAsTu80{9 z2}BdHwFTbZ3qB|E&I^#A8xZYBI>1#mSWq7{bo`A_%3#a1)4?&aG>Nr$3-aVyIm>Ck zd<6Hx_c3MO2y{vT8*hJ%WM?{R*p@9@*t&HqlP6DR#*7&`Y97RB;~+seg3#7%%=)|P zzBb&%Vy66qb`g`q4ox7u!;^M%xXDqeHy}gVFTHv9!99E?CnHKkW$+*@qz_}6Fw1uw zmNbz$0+Wp8arQ+rg9qVgd4XEVHs(6}c#T|eWbgm~_gg%->^;1G$l<(j*l{#hRCA^; zMJn1~(Q8>P%nS@3z!Qs38jGvuy5BY}nt4 zC?NdP)(ufC3+64&95&78apG{~e^EbtaRa+{v;+3=VfJ8*c>mcFVsvceF%$y`LebHI zcA%-C#n29dP*V)y2%ss3E|l>UqJVE?D41dOoKjX)-4ohOq;P!sNQ~2GBExaa<$Fo| z_EoGm_T;YI1N9Bj7%CTHfpC_q5mNDBgh#`x0MLcT*QbB5U>T~U7J#Mro#?TcvJ5-M zk@BjMI+_jMzDbWFxu)zbEC~C{lq5*SN8#&eSE{dDDT0b21fxQY^tKd2PdanUisQqoe>&VZ0_*Kh=KT9a%e2$5k!iy-tDyzdk{t@-3B>??ce zw6tgD0RWE!W>%+lz4yNZZU>a~U&rOPSC9+7lU06A^ko`SFS6e`1#R5Odl4r0y^QsV z-UnuFq{7TU)HZ*&#qm&m_B_vlP6Ce?QR`J9vCy~rT_D=EX4L* zN+O0UCt<#8OXUE9aI`%h3x)7I5H_!*Dr1l#3yjHmlr+HgQ&^YTi>RPJ4DcYd^DsD~ z8BrIOQOhe7Z*%kbjx(t}XFHl<&w};F9=PbF{D{{X+Y1sQ9Am=^ zQI%vA0(76E$6F+!?0IL};3<|ksR2>#BXRvpq;6e~`RGR2o7*zJFQj6gH2`75d+rz_ z7h*vuanjVD&UZH6Rh&Xh*bq8a-4$DqQuW@mA%~!;7?#-R=v2+7VRlL)@WA zQYsRqu0)iGQ|-(X)zrq&bAT)ouDD{D)3}-;SE<>SyHFOCh<2s=v*wO`{;6(wIuivM zqKzelI-FQtuihHZTCVwVes>I~Kg0W4=rjyfK9A+ZLeM&3D=9`d(jMK-rJmi)bLRg3 zCKx7hvzH8xnh_R6H*%hldrzAxQpC+z#(w6rgto?wA=6#vyZnv@kvPzcu#i3sHLl^- z7j?_8(F7N{{)tZZv#^E%2=Mhk4~@iJ7c)OX)1YFow|cSDnoqsHWv)7VE&vv=a&1>c zHeExWn!yV%5k|JPA!mIdYa0p6g+U5OeQ_aFRbXyij``m4$YW;bC@Am-1oZ_*XC7(n zlAY|^w~x7V=Q3f!gwgKKLF9?yai=rDJAXlye)26T^UDo{FmO-{1kaRz>Km!Sf zz!WArPF#r;uHZJXhPDRHX`Pe_nt{-aelkWo45(`R{l}rvE&MQHkLc2)D&Lb2m+~{)DKRA#`ko*U8D#OYj>OW-@`$4N@39vpvk7_TKlr>D38L zIDHeELrv+`7c2LK`RJ0fIlgf_&%Kk`_+rNRseJF^pYXd^(ic;$K*h~luXJ$c1+{p6 z8jvjGmDWOl9`Gp1NOeX*GZ<29e*(Un6` zWffFaB5IZ-Q5wJ%3>Gg$(GyZLEuv*5cso0amSHL8vi5YeWBCM{!rmBmmf}qmM*R1M zR1LKn>jVWS!qR9nW*~r`BRWYY_^dEts|=r39NFq3L3`XysjIm9Zjq!TVo>5O&VaJA zQczZ|(cWg?nKNH#GEEXjO8egzbWL#7{?F? z_zb)4j}ElG!tW{!uJ5enp~%qtLWKrXMH@{68ffWQ%cT`ACOM{ZeR61{C<8cEbkdee z-?O^!0fpYZO(|%P>r}YSqVDa*w%Zql){U8+l*sBHWB<_zDOy~c2^vHxpL9LQzY?FO zMl4{mI3AD)G}_q4YV&TU>&F8zaQeV-L02k_o;Gzq9c7b<=?OsKO&Rz)_oF2T8)Vp_ zm&yxOWzb|#WS>HD+T!s&|Nn>0VeWfwOZp$jWzlWyUyH0;2n)Z5Sp72?phHXIWuNm< zYErwC5pPwvsP#epV#LJDZ6Ela2@RgFOt2c4zGp|wB+{#UL zU!>#2N~&iSW~r?qINCdt{ToxVWAJ>4R)Zo^?z08VLyGeC<2~M3{#l;_4#)I2w2R6BkAyBD&_z*9d1lTVk~7ivEphT_eo(Ov&ACIRBui>$@x{d{(g6!Uaf))U<*gBfk|G@LB-k@7`S6x=Yhu(80OBbBLy=!6| z=p6m5c=mwx#E^vckbvuB@eUagetXebODMDq4z! zQsq0}*i7 zVU{i8pQfLGrktedAXunLe&%S$Y9bt%>_&L_6}L1fb|q?Ek!I8@iejD`8n z=Ic*Nwy#$k)9lY(h`0V6n&0R$s@0%!aSY$oUF_7iAj*9-e&J6zlJMbee^+aaG@k;n zX3d%$B@aRs2MNLvz`S|$Xy4MvPZEm(s5@~P(?9-Yc0N>2ru&EChjGWP;N?rdZA%}H zJPjt!7$dP44F~SiE=IfMXNV1hEhoBRo%dPdC2q`ZYiv0yx|Y_W1x6?Fc+O3*dM0B0 zWYAN9j_l}!y;~sCl&x0beQ+3vg}D>p<_*n5d+l7_bY4e{p*=nUrkdw4vvnGJco#z0 za7go2A}S{<2v9?J|Ls0(ZpY2{te^3yd?;g?8fv*;yN_8S0Z4+$X2Pk_vEBmv2sul_ zEBi-2oI^I;@sq#s=pBy(-~#pootIq9x}X0T4bW4qgrnPtr22cM?2E$cw!xF))O4nm z)>G@9ghWFCp+qyAJGRrFP!C_12~~Uc^ZBc{fhD_?aX@LRx~~L zQ9u_OC;JxggCD)YI~$ramYY;x!f$?lERRQ5Vj4o zu{CP*A*atIyk@(S41LB_LTh&_$#BeUpmUwt`=L)BPv_?SN;0&%N+Np-4}a(V^kTFU zC!rf&L-Tn^DiCYB$3ZNtrnvSuRMD|r&9JEIkcl+Et(H3BcJo=DUiCZxUzu_~OUq^! zEW@lUL2oHuS!#KlIAUswb+e%c_b#<}%dD%wxv%(VV)@*7qiUW+sVTLT>?$N5W`9Tl zE<>VO#S=r(hB_+t7XMzQ90p~Y+B`%WYN&20z7HL>dK2>C->=f)YcZS;(GQ4lRNJm9l|Z*cd%`K zbhU4zp% zm6+zlkP(C{P6S|1uR>mR0#p?c1*T*ojGKvx#w*QrSfuj+AKjiNw4^18 zy}B0^jPgY7B-~m6?Qb^@{!!PlzW8I3sSv5PuMP3Lfj)IHM(skdKw1%!>z_ontLcYB z9g;`?q98yBj=l3{cHBE4Y^XDZ_OX>{-W1l~RjJGH+&1RJG zTlM>?E%_0Z-JY_lhj^p#ao8UQ)LwG1ReJcIyoN{R!&%E6U_alLKj032f>(sGWD!19l$QY6Y#Q6HqqYpeAc>|(!V4ulXY#oSl6beR4o*G z%A{&V?~Ay-u22k%|QHLl3}RNsb;9>b<|zzXF$VS z+!;zHQedR5-W?@wC4w*&Nus-*N*{nviUzvCWS6}`h% z5Dgn76B>>IdH9-Qoix!)c+htXvV+_!w!TW+ed;#H7(@_CB(0Gh5E<+p)QxO+==RtF zh-D`ERgSzuK+@6(CNxT2g^?es?W)v`nITGKP2LftRP`Np>U%;`vNG|{jKA+P-{7{; z2lt*LZTZVN$-!=jA})B{bI^Ch z!soC>(N!o^&YZ&ncm9{HT>HG~nZSDI{W;0OZnW#$Kv&G|)QtiN!tQYlJlqxIJ3X8V z`IR*0BnP|kjC_(^T^CogfG|jz=AsZ}l2MGzzI76cd1LIt-mQ&%?zk^=-|rp(()y8Y zKsE5chpu7OH!sX7BNIV5TG-!E&$H*80;I{oXU{o>xHr8PRL^c@$;Vgo_TT67`mGCz z1&3C)3P5Xivub^Q3ad9(?Z@4b4(V+5AqcCC81HP!&zorZ8-j7wQA8fzjU$CZL)pz* z;HSNHc*4eNnjP~pM&@>`5QJldRI_6&wuImwBl98ju|ZVouHrQ2LK8ion!~54xEJ6m zRSTCNZ;L9=X+kl)XjybWCq8ryKdwmMb5hde`fZt&XBnYP9t*61+I)(TdISJzgN8g+ zq85cgMAZqAq*o#N9romvjCmF3K{1@MI}#%9P@9LSp>|&q2{oeC8&M#6>B?g$i(hjC zR*;xkJZbI|5h97=8P0Ll68|U#HPIw^JJTdznb*O##@sp+(=z$iAAiIL=BmAS>JS7w z3N+dnO=XG7vfHO_FbVNIKe?f<5&0h1?2h}^5+8nF5tTju30ohR#KJRh1cq@d)Dg}b(hHm(qEdj zh<5w6xTY=wx7t~>5KLc~yG$m?l!?&$oRccUXdizYVg}Zq7ema+-Y3eKec2aq1iWnd z`%^>@6drx$AVvoV3BnPCr?wm`H7R3Q(Sguh$-MKn3`L4{qaqLQ!I4rCI%Y3Jd*IHz z%S$c)S2WukXnyt3q9ZX!*~VZC^6((cmqd#CD>$INT0r9h6vE~7gCjT5nQI(l$NL7r z$K&$xyh}@D&tcKb!-H@*i9x%NFh_Sg3U!3|<~iTxic_zmd2c#IhXJey#sjg65+dXC z%lFnz5Ne8+@B>k?uZf0rTkr-8w+{T@N6z5ySAK%)e*0bi`Q?lI{pPKTao8oRSoq=f zyngc{V(o+13BSY5#!c-7wHb}1$8U9!za?&i?R)d|hz~VD)8QO-np$W=yCDkP2&!tG zY+bLe@Eo!)V`UAqr5|<(85_i$x}u*kGaXu?FZ}Ry!xm^ZG8bXxtYzO;zL{x1=BQ1 zI*pcKJCWcH95xu#s36#u$9g*2HCBgqr#e$vtE)g?>PR8<*d$YoWM!+3OYFR9^Kq?n&=+-o9ss*LT9s9As3V!8f_4Ah4JiA39o*<~GnOirTfde@Z3r^hk(%1>Y= zl5Ds+KPQNT7=0Wh2uBe9DRsmSaA&^k6-oe^q;gt9^+mv%2sy02^0sEm;z2mvMAq;? zr-}UIiC0lg2_B@BSv?5toQvU}&*Uh15SpgRb)Wk+pIUkuTi@xm(me}Uch1o?-S9c~ z9lL-RZ~JQAlaRDv`rGUI_GiA$Ep8hzos|%=!zfp`|sncuHn+P zzvOePe?@B|18HKYDoF)qiJIlN7E$*?v&{4oxJzvw5}MjK>Wrw7wf<;3am79ah1zq7rPPSpR6^}JT5&a&b=IuWBnZ>Gl6}D# zbEf9+>hbo*x0zgNQ?#BU(V342;c$8l4yQ$TmVP&9QE#bubPcE1TinzLCC8RJIM;aN zW+>xbQgyDfoxN4hp~B#AZbtm_8EEOr{*S|q#?f8*eHi{JN!s3d5t$*;dm)63a_S7r5 z`-K16ykHhh6V#H+PF=g1vu^)4fwm47zVsI3w(r3eNV4qGw`ti@)~{?^BEsA``CG(K zn^cM!NLxU6hZt=MCzw28eD2Eoj)y7#U_xyxG!qU3inhLAl-Hts#;wA3N($qdPlE%u4X{&410i4XFFtVK z#UaZiQVBYeA-=fgH{7%5nL)qXu?$+O-g_Nkq~iJ`3pC;x3Q4~jF{X#riOz(3w8NAN z!d?Z_dO#%Ah*Dp$6-&|DBx`CA%Z2AmsCjaFQfkIobLOh&tt}RwP!cVb z{+`#gy7}lS=jK(sJjc%TUWI`tz9wyJUe3nSNuakLh5G`@Yl*TomrQPm`NBJIC zhVmk`Gc0JK$Ti+{n9-rv_V^q#32Ml=)rsaE1$7wlvJ2Slnlq>^t-=k?;tfU;uRM%-#Wgu~;368a z$I3KMOr8x!k=tCNAwX!-ZnSOH$Oi|{SvSmh0B4z>=)P9A|LfV}8as#)#X*8_1kw8T z7JLn@J^$96;F}}}Ocgl$oZ;QI78QqVVDZt9URg_`q;N~zqy^8Odn(u5ehvS*$Go}{ zY6C7i9LX}Gkcf-gFo$^>GhSwPV9dBV+tH8SIThhBu9sd%-*=!e8Fpwe>>$;0gl5bO zb}-~Nglm>Igm9EaDqd4t+cBne9rO$ELe2zR(n~5RJG$WrLI@E|`qocE+^bkYA5^C?Jvm=P9t38jTuIK?6 zQu6@REsLNl_njac5>k!eGU94^M*XqY+=a5BEYX4`i(l+YWd})x^abPVB(6~kVj<|w zL-_LcFw2&l#c_w^4o`T*{KMJNIy_+~3#wOD zyg^Da-E+!V&$sCSM8ZV63^;8zY;1v7+k5gjiW^@*eDrUKdsiVnPTr}1A1g}FWJT$j ztPY&qV~k@82iv`i2elYK%MBsQ=j>crWqDyEWMYl`OSU#MUpy*QN{2Fo<4|v*l_dB z%>KeRK$MV*34+@tW*C#ASA|#~Hy4tc$#D&^4rKA>1zTdo#N7XM|hbTD&hrs*Q=Avq<_s#1`YQD%!8mJ(pDj8UFkgCvLIK&xS& zF_+cC#R`#Po3vPn&Y|ecvRWufzKx{UqdJtZ$6h5agf_i)3Pe#@?nyZim!@6h@3 zPcPw!!)K$%le{vePPq?}KDtJ02&Lg$$1h{zrX9R-Qhr{eaj%=bQzx>Qi2%HD%F)Vw z1bFkrBiK4`I*vq=_5la`x z$SrE|+#0^|<->Vs&vu%lX)l0CsCN#Y-`c^s3l8OrB>{f-?}xDlD$65v)Ye=4^7~)q z-|Iufl9><6vueDYFwLU1eLHJ*zD;LK2UDvWc;AeL#6=Actd0`u6JknBT38MZM>K^m z7{`$)oOJNF<*zVn+!bTd;U#F=V6Mg!3T9oFnD6~ysrSROK}O0{mLXFqWf@i?IVNPtB4s3=*@pAbI<#?q%%u8! zNXt_GaD@=cG7OhPS%$OBOSHL@6%$V7XLZMN)w(|rOoZr2g}Hpyb$o5w1uQI`o>@RF ziF7$2kwkPUc}hJ2j<4=j@_YqoYF*7$+wUU@tZm&&$FvwFX4>FPL=!0R5I}kjQ(ciQ zp9d{iJh3D?BFcS`QgIv-;w1rG?HR(k=7U5^aU6n3pag$={*f96!b(Y{K6pYw66G!& zsp7rpqPmY#iXVfXNGgrNA8tjuivKWtsZJuY4o|N8LI&uVv?aWhJB#}!1kfIFQspnM zeNDjhX@a%uil0RlRgO0pCsgjn5livVBYQaK@K18|oTdEcKYu0?8+`x!+IgR4^IAdm zuJpIpQRN}w867XkV7rsr@ez^l~P-;IJie>L*6nUb_PvlyFns}Rc_+81Zq$7LLwJv!P4jgR6MAeVFaPBQ z4*mI6l+IYfzUKq|4v?A)G-q=ULD;f)j2{6<_!PT*W>B&jd2YyPMv5Sys#1cs=&Dr?O3jDz~jOd$#WGEe) zHMPr5v5A?7lA$6eVMPh2+DTXuy44W1DUH84e#1^Wcug#)Rkq^6!{HptBxmNgOFr4u+TMnY{eyYy9blcMxppZ*5pnTh3Q6JBt|?otz%GjW@Ym z4kBxpEoAL7g~0Dc!V!y;>>FlS2wKNg4_S8dvAcQW)`h(FNCTb;oy5CB(EMq83-jwr zxaIoy)6x`X^|}KXx<+k{pGgg6v`WdZUfzQ#4ZzP(s>b`)v@xrCGJpKe*Jy8V<(-XN z&~=UK@-hx=T15Gj6u*0YFR3gOdETM`J9qt;%YS6V`}? z)%H3qA_&D4JxC%DimP1}93e?(LQRINQ(Z=)(;}QwGenW06yaj>_3TUFZVco7^ddrc zZKhMvAjXK8bSmZzawnv+44>4LWq6&gJ~Dhx`Plfg z(KA?H%Tg~Q+=t+9l<1;Gwrb_Tca2Xo<;yfEs{w^ zuT0H}Bc&iCB}tX|mBM_Q5et!2TQ@960B^E*FQ!y$f^b4Hf1Or>h!?-NC0mk2<7&#f zWLX(yo%@Tg9~79O;`bwGq7BPe{29SX2c6Dp{0iPWon8$u#h(viMjYW*c#g>sB11UB zd~ogs)qHhU@sVrpzB9-Zj}$lliUSeckre)pI09I)BS_tZ@!az9>j;V#Ha2dfv3);t z$IoPD?KC#O7G=}w-E?OllSrB;s)foe7QqfDo7R@n+3rG0L6zUh@s*`qdeyx|W4-6J zyB}Qz!1?c6#5pI<=k^u*h^H*jB=r-Ed~O4jS6;)xveXHD>Wk&{jXwO(haG^Qi_R(I z>~orUHufS(tK0pmxTagxoNkp-+*MZ48rP}w7Qa^XZMW62j1S3etnZ_(_`6J#f*;o> z@Kxg&Y7(y^yV9f-MP6ain%GUsN?=jAe#@=<(TWJ=sG>vaThFgWS?XBK6yr(uo7>ry zT0xi=rW!{vQJ+hd*5_Gx%OH~W#@13D)a+Z$*(IN+-2;urMmn@Tcx43*sijo6Hi5!= zovFWhW6A`CB@y1j)=X*Wh+T#2e!KhFtwWN_<{%Dx9X|dvoG0Ll^fQ)UnuPdvCGvY8 zX653KQl8pReSA|o^k`|C$Q&Qv!1(y!XlLEf+y)}xM0OT$^dk@KBKE{xI6inWy1N9i zZ9TL#!}uv!6B~#>^RJ?14+ZDak7Ha_3ft1eX7?l2<{g6mqb0=Oxq(vlQdT8tZ_X{R z?zf-BHM^euSO0_P8|f%f(zJNvs$WoZ)Iw%_>SIVbj(Cd)-DTpg+RyTDM`Kg zKT<+~zZ9*y3K>3td}Vdf{mcg8?{mScnT05ALu~s|=JJW%u;c52nd%G z;aBsV6M5!-9Mp$C#LG|zBS&NprI9_9YHrZ#(xDKNjlk|fvTWgCiVS~b2dQTZ!Px~< zCW%`Ezi|tHatCvP1>z6{4kQ+)>;QHSdoaM5K7*fV8h@7SGM3p-j5DnjJncA?hQxD& zeh(Q-_@eIPanYVp#&!~%AzJyL^BBe_oY13P$=|NMo5%n9B*}Px!eH8h zseI*kU!uA`b24fbSQ4xeUNu~iC~Ok>-AF1hg&-14P6`TffRQ%an1Q;8e|&{HLr6^< zLVHRZ63WY%S{^D$=kQjR5mwjSB|D4nN6Q~qQv3a*(dLxEmOO6a+4>Q-VNM6^jb*VW zj@$DfO`h?*Qvcq(WJnvrrE11tCEe#6F5t!1<@|NeLjb(mv5HqaRx#BxflDTx*N^xE zFr7Mkqm4aEqKFye>J2yGbU2w&F@^Q}H(~ZMLprPGgnlwa%0l{Gh;Z@GS4Py|FI#dU z20Tgxq3BePOkovy-{^)B3S)X4=t&i09yP+(+0lvV)6o@-E8~V*E=5D}o$^LQL`!{m zQpFQwAuXUp5SmFrmWX&cp(Wy=kXgc+Pz$$N;#D(WoO_6;Xo65TC4r9qYf|IxAdUYB zA~ZpH#bjoc&Zco=CtJdU@7!fAu~8!kk%C}b?}IyiS_NPK#ee#dgMD%LBP)6Sjjde! ztq<^r<$Gy8;3=LU9B>p|=$^yZztNu@?2EtN@8sE6>-p_3PUNZB(8rBb;Lt6z}Yzk}}e6AI1 zV(1qL+`s=iG40pPJ!~5_r48wZu!`}iA#b{)V!v1ZV32QfBqkRTi(ILk|DUbi$WIoOTn)#Io>avpmhe_h#w zuOi=QRyLs^Z#yZWvmL9meNcTnp>-344i93&IK-BpX0HGcZ$ud3QPaH+nn%ybCqWpB zc*%O$uwv=|h8sp(vHc40zNNFF|7`g1?C_e>bZtGLj3y6H}TF(Yx>1FcL495IgyY2 z=Z84$4&N{UMW(1K8g<)t^X<=ko3H=p_e27jjR;JK!F4x&hhSw{LGqoI5zLs;k09(u z!nD}jr1qXBP1z$uN(gQ)r|!h<8O!^eI%WFqtmI%%|56EVeBc+HaqJIxY+a`<+)uvn z`Zc_MgLjq((e(ZyMiq6ZeP9Qfr7ps5i2GkbE}9BcM)&|@7Y62!&~=h^6AF`INA5ob z<$5<{T%CxrqUz^@lr7|54Am26Qh_|NLP?T)I&sb_hliEALBa+SCmHImGzdD&+2?D( zu=0Oz%$N-%bOw^~n2M#$^-trcTW=xM<&CyAx|^#v+<-@OVM>dXOkp7*LwKY_GQpbt zy%yn`rg352`#7dz>EOaX4=50XbVQIs(Z(RIKA)-~s{ zw6te`5BDAja`n$2;A>aBkGobj5|8P)+RETJ-4 z;9R3N-fk2^5UP@Gx%(?2OBiM$1kzUl!6CfStw{R6EN$isyGX@iWC%?|R+Pel!uI^` zrYv1Ugi`R_8n_s^N1Y*xCfxQ}&^2~_{C8MQ*$sx0!7%M> zGaJQ7(_+IP9%SiHKa=k$4q}91PtvD@$O*&aqiubDr-fvvz*Cb}jH#^CPB#R~M%H{p z#p6(=el}?Su6dud1oqyTe?=Jt-5xTb(0jq4dGIKhPZo&oOU!6k9u4fnkjRrD91G*f zhC<@yt0JF^X1C{Xadi(lSPEQQS;B*l{eq7@^3y@&;DkqBwf)wfC1u{Qpsl)s$1gmS zh~JyDY_O`lpbx^bz*`q0w7pEBhxtKD*!Rq2N@ulTcrq(V51r`eAJ5&Hx7@e3tfa1s z+|+FFcF7l!kj17oA?7UfbKzwZC@t@`$I@)_AhhS*9U}~3_j{Q#q0|SHi?A%T#eqgktISJG=R5VhhYWHL<- z4uNr1HJn>}3O+rp1adl^oW1xoCY6k*yrFu?xsz@+jjpgHGLU;8&I%idaP`$kkSbAo zKZOnBNV(MRJx05Fn6Wzy*_SCWyGYVWl(sus%w59x@;c_%&Ee#Rqq+RBPx7-_SK`sq&&EP>YR%DHKldBle!|bW z=cj++(bZ40y?qzIefdvZx#<@yuh`PR5gQg}srrs~Mv%q2I(7HK2FrHSt@gd@9U-LR zzF;cW*JBA19<>mkrc})H+0lVjtm|19qJ|n-t0{Vc2SP1M1fRo75=1S`WhkZg9Aj~{ zXAqC5?dh}T4sYa=Z18uC4JEAMapK9-2;<+6tz^+SKOOBk<}KH8t=o{))6S$kBfS6h zUN2J|4Y>!95p%K6H*BOhbW-#l)}lDlw7C*iI?SiY{cWkVw@aKN85IJ)b{ z=>m=s;1*Ok-#{bEYkR7AqwHMTjKXtq>F*+f&UYX+#9M-F{m0X`$vX&pagZP!AxJCFsTNSu&_u_&%$_{?l4>Iz zUUVpA+E-MG!F>0@9`C_|Y5|T4FtaOPhMnB(iwq$~-z{WVF62FqJiG_rEpuU7Lo0yo zc&5e3aL71i#-gmX@amDFFn~tWsQSCY5MZ58+I*HHjHO~ z8`u!8P#t!-|EY_xhaj|JJ+UKypbgc#KoHs@L!BU0?MKs%%MrSu_VbIB zD_b(gCtI+Ec8hDXgqDcYKU_(P}e zDR-9Qcc#bF+SY4ml5CD~>+fzM*~g2SC8&;B_q2|RH zwba&KQ}JM}CDceVLotuxoP}y@wF znQv8m9anrdKQd_RE-10O-uI&07PMq|<%Yv+&@OZ&^sH$z^74Ko#bOy}Jh=^+LZoOB z>akdhotJ2a+^WMt@Yy2Ymw7KKrpRcErW`c8CR_-g}+qHqxO+ z-vvmmc@*m^Acy^%coaO-XE1Sk`rrQdEn?iyKT71)P3*n=b~{2-48pqK-k-N;`9X{< z4ibbT1kI73!l>cY4mSMm4@3S|C?Qojz$jugKEX_V9jQ>HJ^2R#8MDBdpQVVL^nK*U zmu=~TGK3i9LHPe2G1!d)^AC;`3f_))a!zV<3d9udg;WX(Slqaz? zwTts*eoCRq(!tR(f+UvJgK+oeJ^bLpYq((c#r*K1pR!}!&K^ac0US#@{ZJJ64^Z7z zZ~u{VnRnxT=&{U~W7F$q?hc;gHGU$Cm*GMKj3^yT)?;zu>Ar zL)*yaJRO90`Cir!HV}j|WkU$+WQw8_FZF@0=uHInco6D}As_*C#W1A+hH5_&7O}_n z;F?-W$tjbH7UQsiFm(mgl^h;bk}(ulCmCDPo{VRnbOrz^GsU%=Z{sJM{=nDQ{gQ{b zJq3WeGN2&A${rpSd7saAi+>=8^zHvrCr ziPMH$v8ve66lV6Ksmz~|+j@P<_;U7zlUSxkC^%s5ia7d)l5srKHgVP|xzANKl@JwO zYtO)Cw1BoVg&ECvix}#NU+ngh?{z^UXpQ$jBNcPiC`-P>Jz^f-T&x7(%rL2iv^#KK z@~xY&BA9aUw=vwhwPO2=x1wlW?vNgPBN$RNZ&Z{P6n&s42VpD;XUu`APGo2X(sS~l zvX8%XDpSU92f)c*yn0$cl+e2NXd&SB9f+G>fj4#{K6y9Vl@Gx7Rv2JF_O1ytYFQ-K z--dNVS=M4=r-|m9$n*tJ{;Bs+^_BM%y!SN@eD9uN>sssETiE|Xh6LgVF{&7ypy>ZU zLMCumTf~|&YX&Eu(N5>O`)GQle|XVumudlcYRj2&_Gwg3orjP*QcJPtjThPR$a9zj zV)=FxgnjG3TT$#7v_PNB;f}YE^S+JP@+C5!@`R3@{0roc-H_<7Fzwd|rw=AAKm>ds zOpp#_dmHRp1F1YOa}`q%4O798ph;v*!0v6(vaNqPmlM&oS#~E79_=uos_pk1hj0@0 zPbA`UkQ7OD>A;&b@pbMQoOszWwk&pveI9+oi`wx_?T{g?CO##n@u>8(L1ZQiYH;&_ zm``ou#X(<@VeRB=avIO$V5i7@5gU(#e^WwbBCWI==t0=g(!s6Y{WB|{Uqxa7!6$@Z z(#(lmeAS2f#6kHrM2TWfpaPM!&l%AcEPQzd4}J231=rjD!gzMC ztYO^onZ4QVLU?B>zJ`vx%9@tsjlHFOG25CTNQ zCLUk&H8y=q`g3 zY7Xa5`~`rm(cOc}T`=wp4lh51^Q(^H7wdk>dL&z0c95t|;IJWYp3LTck*^Ggx)-8Z z?!!9J%s1pH z!<#IA3{o+6z9-s29%;!kqBPM=N>*Wr;`-r}5kkpIe2(JwRkuje9yTcT6}Pts{DN`y zI{Wt8dqJqJ3oz%5~V(C=!VzQpxaQB9pWbmW+k3cngNL->rc;u}N#8Rc777*25cAs({jy~r1R+bWh+ z%zunJlm(zIICMzS3^08zkP`8y*O6z3ktbdRzEVW^-d@>45{{;cy|-JwLeg|mA74*- zs!!UIv*sgrwIi;25YfHwRrp}Qd0VUWfJ3t_uZ(fXG3YfDKw3!CB(-rR)}AfdD+S7M zE;=kK)|(zD zczziYxbUb4EeAs&fBC@Xc@4|tsIu`<`AvZ6F&fd+UUmr9FV&3uK z-GzwW35ku}0>CvF>Ae!UeLpmA$UKIMNr-uKz<3a0-VbywFg7iU>pv`kFRqjKXNHo<<_cd+z@q zuby@cp|X;k<;{e~hR3E7Y4#vANj&JHZt;FfW;d~YQz^qemVM7QP_=9ihBtrZ%MlG; z7S?od(?i$s&W_%-LkPi9vzPISQ!eAx-6gEt(|a+U^ZH)2Q3wG$Zi18dez1mT9%*66 z<|y^`8drUHJf-Cd1`n1*H0KV{NTc z!tWs-R3npgzlV5d4EL$y&?;R-?%6>B>3ab%{4U~(V=?^hA!W>4eh)~=nnORFQ-;&; zA`w#Thu29;F~5oK)G-q#*S~!mufFptLI`wC#}Eef{(8=x|2__%d`M6EmffqlcK@N~%+DZd-HR{WZkG90*+oDd~c_>>&llci-i^y1&i zc%TfYtN0GYedRd4#gS~5Y4OC z&O7NC*1Xcf_D!t-v{rd&oK`kw!VaB1ry5^8#_j)ng|%CHQ$+-PF1~g7$uw$CUfP)+ zlh>bM_QE#Xx<1DDA96b2J6{S@v0wwMV(WV=C@7*1uafv3YMy^~ z)vc*Kl7Hyq`E%0Mb9zNvf41Z4ebgHS{#S+ph$3o+)fj{ z>*#x_;aX8oRpMp3jrQ#vZ@zE}4;8KnN_wSYP;7r?a6htrcTun8NRo;wZOXPFa_g>~ zW0Zj7gLfc-vksle{pTHmcxfAQY9%bFgZYOcCR9M=W?J`c!b^@792z3)yI*o`v=t#m36phz6b3aUxkkJS}AAGMP7C}DJ?>B`4dCbsmHbOai>HjBnU?U^XAQ?eeDi@A`WNbS;td%%E<`b2U21sI@tI0bL@Kf`HX(s?wWFr|LHGC z{Avo;-V7dyI(V+x!T+wfj8rValsT~Mq~dmgu|N!}LIT1Nc#at&WTNhbNlOs{FKLa8 z0j7@Jw*^|VSZg?ah@~e&=Qj|k%$9Gm^hd~bVPvpz@H|dmikPqyVO>XNFUCq_{AT2< z52ycKUxTQt9=hxZU|0?m!oh)>Ioxl2i~S<=LVt*L9;bAkg|~Bi`VZsgAc_pvGZu)! zZbVWYbR-9F_+tf{sG!xD!U5sH1Y8KJtq5i24oumer;I9Ej2ScuHz~jaRLc%ZQ=2hm z+A`EMO@950$GGi}&(YB`*n^_1vXu8;d@5&O`hIkMXe;bRKe~$N+P6L0!=&BWcVf_ zx30@wFbk~8>6mLbf)3R!pl8nH@$?Shi?L8}BJekJjYBH*pG_dzgH5oNaCb8$uouI+&pC3hZ zTaX=pSY42eaZ4t#XSv#(j$1m3T| z(5BX4Y*#yDIx4*A3SNk^ssvwqyHX#RQiFe2@oSG|X!waM?fZ!-wN&jb{@qMD49X2P zC1PZ94K=OBe`D=6;~1AL-YC&RppSDZk(4dZo%Q~cQh4W-#?YQ^5Vbk zM!lYKwZ#*Zue~Yx<1O}t>z})*mNlL0`OAaP4*9zff-63D7E^qac=P$)Bpn(Xm*$sZ zWu)M7=$t&Qf@+tBnM|SS8qzR$WK%0m{R~bdhb(Kta1^1g%%ITHgkYX;3YCco#3BxK z4V-}}Yf`H@5LY`7_iekuFPSm?SE!t*2+ZVH?!`Qs8k*p)6L6=qm1xs5#LXCU%cE4d z?elikg`ZYq2F=1r3_+O`R9Vfq%uTknp@JIsRCF?! z6hSB@yt6T9XzG_Yw{h$@9suCk@14SN&u@j!IG7epEJuFgFwk8vVIJSS7`8|IHge&s#=24zK4#9vdp8)*}!;}RCy z!?zCp(doka-1WqFY{J^w|9;>){z8l|d=Vmp_cVF*ahR8VhWK;;faG8UDQ(Ik9Q7w7 zVm{C{;?^csR+W=ux8<{p1?rKbVHhc26@QdGiG3U2-9-etQR%xkJ1Ug59A=M}uhWI|j{{ zAuN`efNif7wzUckvG^oJ$7jH5&tA0ShcNR_cyqv}Q8N`WVHd*sW%jmY3wZtpHOt_@ z2JjTFNVYu;sLg1roXy`HpQDpKS&6LgK+I(3s`sPe46WPa+bAHf>(dHn8hDkgTFR?$kdG9r)-(S zzk*9sAhhBpEuOOY@49Ycx%)U1?fP$ELvmEeLAP6@W}K6kp6U&StJ#wM+0LE%AbMa& zh|!ci`F=E~151%0)LiNzBsCjCYKmgb(fi7aIPmax>OMHFU>TMT z{m3NavGE_wJ3gbdA#}5_Ay=lOPaebQp8N=zPaXa-e)+_&kw_kHdV&v4yikoGjHkfs zglO?zYgRaxN9LyNPz|jKAboC72~(<4w+pJTmX@+eR0MDZi_c-F8eY>#rihf4;0+Z| zJfx(Wy2jhy4hkugG$cW11r_n)3BH7-7;-id2Zim-9q&LzKp@o)>3OFy|FEg7eq$f5NRqe>A*Jm?G->kC`g{mqL9oL~MO6{n z>I~b8B_;2KwgOvwuMT~;3_BE90-ED6Ls3j2$fWy8c_#8`GV}M>DB;|A1@~5;NNWG% zw8RWs2|`nbC{3fhrPrL-A#lrvo z4re?B4#AW;l8q~i9#%ovc-tc^`u@i;iqLl-#PGnr)5<~EitannoKJlO^S0^P$-yq9 zw&|3NpA0}n0R&-pTgC2mneJ~Rsf-2`AD8He+yH~z?>TR6( z;UD47kdttvV1v$92`zQid69#Ou)!<8Tf+SFHuR8#17VH;K^WQV$6H^#@-AO!qm+Me z*?Y=}$1OIk>D4~ycAUJ%NT?{lrbSj=ge_#}7$OLT4f*nfE##j13p-}WJ<|qK&4xs? zsaUU(Q1I>MbfTgHr#Tf<&r@l}vluIh{5oVN)aS!83xBo~!`oQW`U;*@SB}{tNXGis zYW)6m?8Fz_Ugd^2Zy;(anoS2hYW0I*q#|J|6+@H)SgN@YQx;~92nM+zW9r6qNuOFD z^iH+#pa4-%Aa|i`eNYU)>rBK5yNV~b0Ai@+fH&f5VVMI_HLu#zWGhLl`2El)B196! z>lMmNB$bu+oZEtt{0ty&zUOhOraEyrG`vCeHDR<6Y%4%~04sNx5BkCpeH-oj}Lr*+`*NA6tWy0eh0iKwh{6`PKIzt9;05 zl`y9!ZS>U*p9^{2Sx}WeSLk(0vA5GOvhOR}ZQsIm=n4JHWr(WP4Y6Z8`k(H^IOK$k zWjf32dFRy6qbH*r^4N`Oa{yl6sj z%<;2$VdW3`$C}%@^2RUXFE8$(_12F+#ltV(#6vIMNUV0C&*I3!rhL`I0yClU_CMzE z+8-A2&c9}J$ocCio0$1xG!g`1aC0U8DZ@|dicum61EmHXt^L1ueJsUp_&?=9Xv1La zaJ^B5lSh5L=ifUzwsG}_pYr!T_ZKXy2X4i?hXs@r z7fQbyGN_gl7HnDy{c2>X)}fx?$IPKf%LTn7glVX)#VJkAVAa(=*yyxSgk5U>J3`SA zz#md0_&ljFVT%7QG$ieb;_C~bGphC;%$i}(ncA5{q1+cY-Te>?53k1;9HDq|!+>CW z0c)z=*6z7}%i6Y}d6=g?9}>u)r_N!U6l`*g!;}s>lliHLhtjp=tA81-x&x80qB#w> zM}ut32zO~t1Fq4?HweYIIk28^yTF(I{7_e({yk+%STWe?K-}^QbjI<{3J@Jv%TDhC z-U*xxfXf=`Hw>tYj3)rgIVv! z4h|B8V;MrA$MUy)bS^g8`{pZ@SKAfBY-o%HVz3+8`k-a;AS`$Z5(S3JF$Y+Sx=RsS z{`r-pz6jac0&Z7U%lmf&8P<*NJ|;Db1o>NQO|llFr8@H_2;U8JF;+YXv+c!p?9-`~ z$tOSZd*;+%$(mK&dA&~L6!&y?blk+h9=(#u(`qrL`a|>W*gxvzAdFptaL@8uUb$%r z4M*?h@XJ@S^pmSIdJcBOGKcqw5Z&iPngWM^_zClYHX9=aO%n`sTGDJFT(IGr=@Mj< zoUs5K#$u{_LkVf6tyfj$*gz24;{9jGGGI$+PxWVG#?|-UWW)wit+T)7vNR>G`ocV& z;vMQFP^`@c@2GZl8L?pD-bJrf9ml+O>x~Zl1ake zG9?))sYaA~I@L%@PclMCQ}edyG}VanA<{7w1S^}zbsm^C+aBvMr*z`abB%a=!*(j` z-1y$b9)!t+PBfx!?35MRj%?X}%W<@6R&$)qiF|Y(Msz!;==q(W?zKFWxoc^OWqwyx zj&ozRZZ0pvk=89`>#xu>@MhO{jE0w^?a1LpIHfkNYqbCtk012Ayl5#QcO`M$gz>Z8 zyA)rl4IxeTMaIJc^)To{7wF@P-W;K*(SAvUeRD6i`IcXGq4SfBf1PWjs1 zccaf(-0yEqlNPe+=<_MxyPk#ry@{mT$Ib;O52`zDL4ISf1Fb7IbKvEJxdq1x4ibc8 z7(&;O1t`3<^LDV~k>{u!raaWc6^e9NAV3TeYrpt06cFaqdnU4RK%RzF9BEbO-<S#!H6qSE)EJ8{-Y#xM#K9ix|A3I2ADdCa( zS2Lyji#+~tZ;bf)4Rt)U$Re=t7T$WJ9)P5!_7abKb|uGs?5CV^_IH%z*oCo15T@cf zul{Z^krod}U->3wlkz9$hs%RdN@!V8OY5py>Q3A?ENu*gHi|c&f!~s%LqoSzJB0k7 zg0LmTs7>KP6&2%Y8Dk_osImkY#F7^yLQy#jkg|c?OB6w74Me;n+HYd5n2CR8VFoUV zPy*el_KqY%2@IE-(mK{2MN_b#1_(E+D{7)elAVUnL1{@TC)6L?@9zhUW-5*zhcVAX zOJZ=o(5C!cp=dbCFaWhX|>EuL+l$C#2D#{(eW?Y9T^(MZ(t? z?jWwKk+mVA7HZW>sl88*xSB_*H>DO1fA%bUNUpbE+Q)Z4dwxN6jFg2d{O*ljQ;-*7 zz8HaUq-_Z(B7$~S6ndR$4Q=OZMhE%KV2jkzGzYC&2*P~y1DX0bR_n%0^)))5e&mas zWA)}2X4KX;hrqC2tt(2ASvobZp(^8V0L-l6t=e;Wt>PoJdZyru?PF=@BY2}NR6qCx z;`8@HRDDe}6vK?hU;7`{Mc>X@PQ-hS0%h|a%qexq8MCt2d1obhc`tdocgB%yUwS4r zTi#^)>-XV|hncYYY4%S)oJgRuU){O}@TzUu1!3Jy3XwYw!d4t42*)sF$|P>=BcE*b zo-elW_Fw;q8I2c|f3Oe;NSl&-{D{&@$dV6E4)OncmUyQd0%hP^^_dKr08MzJEDmDrgs_$-Ta4+Xkuk<=2+>CFIuqX+>oL`3Hv+efMWo0;#lP zFUMP7&ZkvAU|vsU+urm)9cmX-yP$d)vgogXw&QSR7pZ5Lj8C6`E0U*!|_T(V6L55wh;k&cNA<~Y;)Q%j40Csr)jgj!6Ho224i%|9607!+^$%0fQsZ59o zz+Ku)I&{2sfU;$^IBWAKB7^`>xtd3f5a6j$lL6qZP&?0?2@`jz+8Hn0975=Yzwfce z2wVQRhIOe;{r>*Q`X{*fw#)d!JzwX?n}5UC*8P~j?zxYInVo2nHoT{H>{imFrcf8L z1Xd0s#hiVx!3!~!XFlpo&^tP@6xUKqaf5P1BFZFV616?W)1e;9J?K!2(xGa9>!~KS)-;>QeuO`wP}ACPt?zaXB?Na>`{wnabRbf?0+|hYz_Y~00961 zNklddM5Jyc7ON(PCV8j(~VJ(_|6 z^1Gq#z%Zj@Bc!MRoD8W5b_YP~-4jO226kXOwvdX#3HsnOq|kLld9Pv2z-kq~{PuOt zO5%2z%x-%YfcY=n#iYOeg9B%rTG*Y>aD%&Suza5bt)%#Kifr0LGG$_&eR=kR1N82R z*B-+B{`ZiRr(~!=S9sC%%Hm%NlBPP=71a2g!bYP{Fq4aOh8f zd%?XJL;}nfkZ~}^gVd1W6~Kp(Z~eDl)pQ>ua`P^j^<#wf-3*O*k=l2WTO7RvqoU=k zo#>8dUeuvSXz7F|LPLlI^AktV?D{ZoXUIk9rHZrUwM-4W&>ijIr~sD@iGXc@5NfgA zlU>RsrTOf_Xv?rsp04q$>_p5U0X zwsXu`+j)C+Id}bR2^W9sE!@5$v!)= z%Pu#2wrNgGrn^eG9|I%CefXp?D@wAQf-+@7N_40`_;T!+yOV8jX^aTr5-{D)cWBm z_Yvz*AaEu4D*Z+Eqhn1QpE>&DBx4Cyyt5LsYaQsD6D1{6yxH+KZ+5&*rL&w5)xM88 zff<9l5w<}aY{T~=ZCF375-(a*VLa{XIRsU0djx`bNdQl)0zsxsbP6K=Qk?PP!vbrH zXBcN9PN=dJf2{aWp$SXPGu{~up^!$9vS<^j(sB%n+ozo}K}X6i|pQ z2`6yG&4TnJF^@sqHw>P9d7!hyk-n$F=o`ot*nV>is@!QK()I)-3V8ei=(Zaw=APbN zCz=XT(fT3}Rvf`+6Xon3VqGm0a2~C+B+_eTYs|pwPm;1An9xZTU?}0yEdoxf=zb6E z|47u0nVtBIa^-f5L0`R+lnxFg1-s%KXin~=M6agW(ZD!oH31_ENQ4kbZ#jgTKr;|d zUslJBey}WLtR0HbW!W(=-7+lic+65CNo^aFRt#%0da44wZ8sv-wNF)+L2E~kKDRF- zvD|y2Arnk_;$Es&zX$IbUHQHbt0r{y*=${SJ}u=TW`|$OE~H{IV%l6tZ3Qz3j=7Ku zAU7|EaGKE4>wH+j1n2^-%$0Za7PBJ`ag)@lmtetBI4=DK+MPdy*nmB%qylT8k&&4q z{>)!+{qXzf_dbAlaIgoS^^prn?OemwC1=vou#ibB9;J5sib3UOz4&+DKK)DVoPQFN zRzKDA_o;JX&1>q{Ygbh%i+=KL;<0+-At&C7Fe15|O~1dDjtx73v}4p;-@k)nZvC2C zV+WxOArEGR9Cpl`H;?wUJNSt>JZIUV7QmXr7P9b@m!Pj`z}n!$3W7c(fmqZ+NUUe& zA8#SNGp&$!`{1lk+PJIf2F|0;L0_{0?Y7?zwgPuJu)h8S60#k0(_2H1L7%k*=j54a zcYP098V5BYmz;um!iB^i`)m3Sn!qu$9N{+5%ZjrYla{o{a=sf*AL5YrfblOx>!xhKkEIkLq=oRAZBXpk2pw4!Iw_@D*JY%$5vYI=Y}V)!(X0@*p;;I_j1d3 zmhsJ7pHu6Q0$O6w5{LaUh!0a}&0-)BoZvc~C-11>j$7rRC0NtoBNqwI`g}9b#$O*q zO04?VEEb%%p{QrQdU*x$n0ly0fJD$q<5N?Z`2J03j>429Wd|a-B1y`dBIrdb_J>@L zi@@n;c{%yLfr9f0ZrZMsG6i#{rRY2mXF^FtX+1+~hy(kIuiuT9C?wUqs;ra;S`Xwd zm`#SO3b|)!k~?3R-bzxt@(%?#WIuGBSeyEr64fg(gK8oAQq{FY_o#V&7~^XR?r2ey zF|LC4-Nh@F0gO@~ovn&F^E5#uss3y%w~J&%QQ2PZBdkaOkU($05PE7$=omoE86^h( z=_R?+uXv)eJiL!%_C3jCbtm&k(@M6-w{h6w!_W+kdmq1-P`tkflP(PAS1jPnhI8>4 zUCJA2p*wV>LRekh=R%LE5si9f30j*P@$0Awpf{<>@c4AK9DF4n++j7(F}*r~r>*!k zOlktZruICn>JmyiieHOOhtB_F@4Un8D9iW%nVHke_P$AW(|a!@5PC1t1OWw6&@Tws z3syi-6i`G_X#!FNQHu251Elv}H_2|cm($yn-ydiD?x{1Itp4`CE-tcX-Zt%>_kHf? zxu0Bf06i<2SecvLQ1;)*KwcgNV)ox8RRF2jhN#1RCQww0TgZOyZO^SF-w z$cu|LTv=|#`tS86!9;$+eCo}`JfpbStw{*L>0+4A(T=C(6QXLQbKELLcA18t87;#n z)*`AbED2_9XV7D#$hNLoa8P6$by)ix2!Z`!jXxedmx$K)yEoc8kBdrvO_enVvlu~> zqY(0dt0?3Bq;_Zv$eHi`jJhwHrHD{T1AgiEeaZ+pamv?Y4NOJq*dBM%+OU1lGzIs* zx|Q!dvJwF0xvvb`=XU2Yw2P(e{?!_0oFOxJa!)`@gJm2$ol7~o{V7Z&nA2^!2s5T3 z)P0vewqMbSR(u0mXbkN52u)Fu5BV{byAU!^7*Se-L^t)U3xvF4EQ?P^Y^g)|^d$s; z2imxqsK;MS_^qcQH27LbnsOB8!tn^7eulW>GXT^JK95|H%NCOxPuY0JuXvt)Xg}N8E@T>JYEhInLyseao8s1)3R+V z?QiZS<_+|zUr=J)SOBaieF^EV+Yxppm{4Ld#9#jm%O4&jbZ|R_g9FJyQ9=B}*Aw<9 ztbH2^kmeqTvhE{9ml;!;&YTk|jJF!#lZuFlPV(hLm^yR94QfOd%?JxlLI`~w66GP$ zd|HH#s;FSW#BUJGtq&3JVmJh8Q=ajjbz6n0Aytq9I#ERX7kBKEz-bPBJaw*Vp8+ zasA*16;*|&AJ^EktB4!!nai?BU(c{vU)Yg#-$prE$N@9;?~G&AIXg2Z2LVhmg`x(1 z#(1OdY*De9`~t`{@^0!xnYEkD_(B4sM?0ZKpOXNZ6@nf5+5iZKL1$hbgd)&k_yiy? z7p+yNw1{9wZPqsqO)?|5>VI0~Tqn`S4tpC{H#=pB}$&6jF zGul0d3kuG~CS~X3sCYwI1x;Uox5bQ*WnRWEsQE6$4xMed@-TH|e^1nK3^Ar}?$GjG zy7K_4c@`}G?7x+f948j9&OBGe682#B1bD2_jnkj~y$}@{mrGxyuurWZH;h_Uw4ju5~&b4t$_0i-muoCpj z9NOpQ^%Xn&)D=}t*IL@;jUvh_s!oaRY|++YqtdBAD*13DrU@L(X4suZsY5}Sl$%}O z{rCEcCezZo0t+JFwiO|m;|+(y4K&C4z85h~q&}E=#Hgl0R2A{XL~<;d?fLZBIrQ2{ zVp1a2IFSQBEne?a#Pc zHY!?!-4`XV7{7Gmz_JAJo9-m)J{q^_dZd<(XvGE4FmQjk{y_YB?P^v9qS&#~vtDq@ z?X)-82uS(lD$Rore%u0th95CtF{TC(8t(w-QkeZU*zh{$ z(V6E777OeM4ij21PEcwc%|zaK5*%)%d8Z**tf=iRs4x93X&9ffeFX|D5X#3QUVSlw zC=uJYiEWP05y&rR(z2(>ZLUc=mWo}U(ONZ|olC#O>^JZ2{(bsFbP0?|2C9Rl$z&0X8adV&c4GD=*9>^c!ZIO1ZLa%-L$RWowR;o znf@_#wPjv#I?_Y;Cng7bL45pgNavr9viZ}Vc5(}`lvNlr0{O=)W-iy2Aef=k01jH zB*P#G1IWSN5CuQ|GtU?qA$O#S!7g;Qp=jAhE)1*t3PjcTfWCM7kEq`lj}9K=wDZW_ z-{9j}$EF-t@@aM_MMDpcuVVtdu*B;7ENDlVK%Fi@BTT5_E zHWQSMk<(NSh@_N*ChFcCPvx1rkuuyUcHv0n4;&0;b9UFn>4ec03j6j;bhN^BcSf(r zKn%0FU|7J2=R}bK{ZX@q$b%X&;cEuSgU0lG>>D8u3Sf3wQQ8s{7CF&2jz07Tb&zk@{3k&8W;J;|t7rqmt^5X^Vsh-E*95O(r)j6sY<7_e!~0M2kbxU)BZ z<;kt6S_z_%-MpEnbr6+vu$Z!|Us)+)w+nkoQ;U)+h@08oscU#y*jwLgB<|8FX+J)XS zqp2_yQI38^;Xq_{;(Dk&(Qpm+ihnTMHHO|wTN(A~$VY2Ckk$In2w7592r{TFMkk`; zr+Douxw&6Q2uB7b2)EY7*Itsz#IpP^q9OqTPNki>-j``HS5f1bhe?Z)>kQ!y+WK4r z6JhLf2ODzEWVZKJa+QIOD}q@9r6cjV1(wCH;Dj&0?i5m`gVh%Vq;exyK_ANI z&oXXLtKWxGzYi6WEvI~)h%=vQ?>~amlb%!Z_+PJV(A*2dEN<#PyIUmK9%@KPIMb1X_p8GY%{5|O+yyrp1q1- zPQ2bTJHSzgpbTy-=no;b0SfzGhg3*d&X&ICahFrca3hd_cv9aqVZ?bDc`b(GdiG9& z{ojtLBJjO4Z=`llTpF;XvY6j(c!>Iw=MgE+%cw0;()jj0%XsDCshJJJAeHPa)OLm( zV}cWT{BP-(f8j|pqa6i?^{>eKUI6dzd=9-mj>8GM1R+567?r7$WIO@b z&{CmuBnC}RM!Y}6zv*5M6?Q+qi{;<`gipWmG28FkLh(^0RGvQC2>usUhZJTP6eCDv z1KQ9Gc;1ser#WMDh?kdM&>mdUVgbwnXJ$LZu z{rBOCW*E8U(rJVb$H1=7;ZpVMCmd7*J`l3reC#^qo&gk-zInsc;X~2sI1)<`6`d|@ z?H#)61Nbd@`Wn#ro;w5jWW?Pu4VgR%2;lK&Pf&^?Oqe{hc9LXp zdJew>XBUEg6LKap<3_Jd564<}kWW}p5eR0mg*pN^Zb3NM-qw9v1^qn7u zg3L4t0(LPkW&Ot+zCnF7vy<=LryxoQ_SCGi(TT{qZFE}dwMk4|PQfpe}y zihoN~Ri!wxkIDXJ%=f%VNOH3*|I2K59gkaXW_(};0Q1M!ux3wncYP69=zS5J>Sd2( z@!;c)#vlb@ECiMzxLd)Ic;Ar>rc$S&bBk=Uu5Jyi$eE*#^OM^CM9Ez{G&)7sk15XB$VN!g-D-Ll4p~nGlLH<|zjZ32-&^P2g5mMbt?CEb{jwCUda`9kFeICP&7#vFIi69(qxaPE9 zP`fKG*HBbm$e%y_gRb^+3nO^j(tqxyK$z3c{4sNGeOy<+FgyvupvRQa;@s;2i_&9M zjQY)l+Oy2#s)3Sa1fdd78 z$Y(jPwQXqQz)Lk$T~LjsLjN_5>5M9hw~<+tz@Tje^|uk#nOhP-PC{T<@+`#sefy9k zi7DwZ5=g@+oD4Bd-*ai# zA#n=ejQR))`krf_tgn7JqVJuML;BXllc!}*aO#E2d*ld05b$|YyvM0Nt4DI}oKD{f z9<7!Xz8XdoIhnRS*m5GcG(A#LgM-zLs-Yos0x+H<=&NEV$3#(rCg*Ku~ z4A7a}p*Y(J$z9Qc&d*gl-9hehqr zGC8n}rR`5L$M+^BvAC4#ISV%M%IY}-+L;(wj^9*BKpf=T*su>R=d6_D6k6_uu>;#q z2ZBXHD$3sJq&K2g7aPy`CYmHM^Uc3t%OVv?#m-N#`rFyD^o!lURZWI$eWa8~3{kB^ zNZ}u~<39yVx;~zgZ2Mnc%&xN$7=jUk@V^Yn=INY#Fk1#Mk&=w+-;d3K(2~CFfOgIW zC^cLA{-|WIDJ-l&m1Ph>a1O0!+)V$w9M|?3xpET{a`I&9q6ljGo~N4SJZMfHZJ74G zu<4iZI2;Scl#2&*;`12p(SAll)3pDY2*T5j{xvn*(!QHys31ycTL-ok+N6}v{rU~QA&>q@vtWn*HbNf# zGLB(i;_DIhL@}qaM=7xv^R4O|xUu>NR9bu1CoQp7{#bJ_zuWf*>Oyr%S^&+6IbLtH ztP14ni{4WWh~Cq5Z)OByIc|L|`1C(pQL8>;N^c%TfPgLYJW0JF>2wBg``d|%`o0A| z&84fptn-s*it3xIEb>5^%;x3})~wxuqNM&VOq+FNBt8MGK^e(_Xzy&{?MU(Lq?$Gp z9X}jPVI6&^A_(?NiB+PQQtw2=$IRrR=K)k`Und{3{XC*c7es z{tH=6{7p$YUVARdSQ|ZgAX7o|?8P1XQR?<+LotUSKX<^I=#r&lyZ^oIKzsMUEkr4e z?nUe;Vd}Pr2}Uf0B7N6I`Emm`)yG!Xi33GX+iSpf1_&wU9k~r5Lpj~vkjnLa(*VMb zJT{$v9a1dH%-8S563u??HEG#Dh&pnqoq9YF=NHCI%6@FSANU(nKc77Jup9!-G75mb zPrpZ`E&E)2JoA zD{dkB;Y$ck^8k6D!!7yV2fjA6vV{n-ZK=yj#Soeafwu-doaw#DB!VyzhJrN9I4@t4 z2*UpcQm;4k=0?;|(UNGc|F_`urMI(rL!2DUFUjLCAN~Q!fSg-Rbxzy`=^HBp)n$D2 z*pF$OJzjU;!!3fad|xdmJ#ZXJN~YaP+s=AWGTo zXtIeO3^h1uUNMSMXYWF?8fQQlP6VNz2trkbjayCl`~nkl+f!Fa2BR*?@VT`5VUWc^ zFiE;Ei(mu^WdQU>y#OeoC`R}bnhePOcUYx8lfa1UD(fU(cRsWY*Dn_`_os7Ne&ce~ zaCRTDV26GJC(x38ZniG?TQVa*L`~uN_K(= z|4t5u>Y1H0m8tHD$=h(+5ZZNISAQ7IX-3cyiL4nAg(&NcLX^A#RI7xjdEss<>Yy^clhx6LU_Fae7+!lf0&Mr2z7N~{DBZ!%+2%( zXH!x*A^Q``00Q9jM)4LJ6Y-KMyd74+*Y`&w3`N=2KTLhMM?qG>)a#?5*Cqi&AHCNa zHZj^YaQ-$rcVD_lr*1qCVO~~s^`NW$a}%ElR1zD+nT*BM$<} ziJMH2_BGNXn0+>^x#ts+{*$6nIqtZb=Z5wk(rC)4yzYOmcw;+L7mR`Vqmnjt)yW_6 zz*{HsozL~P)lT=l%i7#?+3Gxz8G-lv4t2*WnEWe*Ln#PNK}RZ;d@F)YLJMcNz6j}rs*N(Q3m-6k)sGqWwqMCKsLSDwtfW1jX_mZJw%U(u#Kc;Z%nY3<8 zY!{A(oS1W*#JmA^KJo@LfAEDY&tL?4FhUUi7a(UsCF4#%1zT<&pt0|x4{7>r6Iws% zsNMu&#$;3{y2`7~b!exa2LJdQgc5H=veZco&&ZMl2#T zCI-8ZFbAQDux2BoDX0k81reJN1CFG8Npk4DhRLD_MIn!%SU^~`A)=D2_(5$%%OC;u zP{ZR1am>tL(AF9^7UdS@^4E|5Xb3q7P*4)0Zg*z#N6m|;8Pa!5g-PqSGHKm5)*rWk z+6h&LvzJ<27Da^chJNA5i?~$UUzr2igSZP^RiD;1-ea=pVEJ?{k z5EATw%od3WQ;H}V<-qDN;rB#oIN)dR4&ydE1NziK5QakF^9zhFQmL@|QddX@!#<3| zg&{N|f1p96v;p&(5&8B60|-worayvE&@@Dg2{o#(EkmOJ(jaG2L4Pz7$U3hDKs2B~ zGIPV7YngxRBIf^MKC6DVDyudkz9=TE899>uIjORWJ=dlyl2B7LoCOX7ZRrt~b|u8v z&|bDVd-4{`5d~+yolr;i1WK?yh}C8q^m^EeZQVHtlfm2EcYe1^cK&blmkBE}uN-`Y zb+JY?z_0juxbE*bL_6n~p3gM*lw_eQ5pW+0Q!GAPOR5 zT$Oyj=uE~qDhITonf1ugET_-t(* zC!X|mVuO66+uMEo>)8+a*Rvm{)!xB|H2_#GZpw?Mv3T}XSS&+F;5ogKBSsKLBNE|| zgw5XTjUEQ%o?S9C%{~E#>OuhO#ai|S8j%x8-)GpjhCo|HqomhmKb$06SDj4j`ePyy zMZjv%zR(boPAI@qH$10YA_QV+ zgAs&^+MV`c%BTh&eeYO;5ep7$&$V-^UhImOu+;Nm5uRF$HaZU$#L#Rm7;_s!{mqb& zmd)PlL=Xg|au@Qx%)hI?{88*U{tE0JjZFRE5yRvmM{WCv)-f~Lx%7+7di#Fziv?{Qq!lF2(#x4zvO$s5yf*VzSy1K6`0kUy~Q2p7%|nYd=Okv=;!W z$j-)ntt|M_D=4bQlu`No^Seu#SshROswfICt~f|(zMW&H4xVt)i1l9Y>!7V)4)Y#G z2>k$*{*pivn*Az}PeEJxHpu!Vk^rz9BOj7Asb^#x12!pUnpM~@Z{oA)L$s;;h-!XH z#A(d4T*@@_2^5Ml(6ebWlHfd&ZN!v;&xb6Qu-{b7i^6uE=VR(O+aznoJhIR4QWne*W) zs&>{e`;)cY{@`tBgXIy^G(Lad)8sd`^0!;QnY2w&5LjZLOQf!xr|xyLWxGgQ2aGC* zwa`^KD z6>Qq<;FH<|lq}iHgi1e=u!yFCuft4hvyE6Z^LwPo0?B4mB`VUfrG#Le8%ti8;w1+$ z58@?i1T6h>WQn4{(Wh1+xMMu~?kB8$b1&^)Kcz)^96N6sXI;90+U)_huWvSdES~ll zkUVcgA~>B;R3KB^DlmFKq-(AlR)q%=!&^qG&S4vccm4JTY&I*uxaC3Ke}4@g&p;k;lm27%Q%$OkTC>h7Dqc6qXvY$!I{$Y6TxXH_&V$*5g;LxNcRP6kWvD3(!AOu+R!{0FN z`(LMG?ul%DwiuEu5cEJe0CpFe*^b=SguL#fKIGz_QXBJr z@fvEs$I@*x5ssfv2{z7hR z2fzFCO$pnyN+wRW9M4Z~EN0uz#7nlDe-b2T;d*w2YX%$>5IE5>o4@})#2asS4BkL2 zmxXgnx$dr3J`2V3z&6y`X{>c2%YFNedaN`rABCn02%<{K(Y2V}gL@ywyk`6d^AH3L z(WD|;6f{jB(rPE%>_Ct-@~1aruka1|Tr+l46OKT95idysXMJ%Bzj^$htlhddVV&zP zIg9Bf6Ik(Hb_VlAxcTRHs>ftMFR3al-&u&AAoJ`yvmc1$hJ%UEKV4`oVbGaRM=_V9 z)$C4PFbUM+3B)$Rc0|w+Vb5#&)XiHr%875E0v!O;;6P78}v}`)0s|_i~ zL0hZ-NHw)EpFo4Yd=NP^N7JyrR#zKEbF0|DI`z6U849PAQMYBFQ${9m6gp{d(kIQS zX&_o8WF5H(0bCV12o8j&BSTusJp6iqCleniViN!SU?okOasWGlS^bi%%1{%#J z{BiURD2l>c?XR-Yw-z-)q=|rlBuJP96BfaWLvr9UxydsXP+}>;ELvFWT}4CW5HW3V zlGg#u0nY6FZw?><{|0^z>|)?*+a#DMFc&brbPmVa=i-vG&!1-D?Zp+KmH|`?RFYlDin#E7ST?jb@X8!-{AL1!Y5m4 zj* zUqQ;NMv?7^QVgYI2ODns9cr|v@v>9qapqfh0dYPBV9S;)bxuc+Hbx={haqNPa|L6! zordX+B%3i6tiLSesGD!#-5>poyyEQ0!IUzd0WZ-{UWor&5W!@ESY{u2W$P-Gt)0?G zW-G)7pZEmejJrSTCI_cf=CY&Cg9iA*1HJsb!6;w+!$(~Ez-RpE{F!|7tSPwc*~ylq zybjR-Z2hoj11*|CH8xtN4>@VeF8`nr5rc!Zmo?122_!Rnl?MJExF~5Azt+S*gWuq4 z=ihLP*&E=FsH|#&HhN2p#>7f~FKy!il1s?ED{SSjLIpn&i$TpkA}X76Q51!9j=zfy z>uS1xyYt>JarsrpQWqGSoyMHw>e=vd`C;A6$Qpn^$nE6yE6z(=Ry9dH^viEyjtra! z1yx1s%sqCj`Dm{Bzfu}g+_GQ(#=(7moQbWhmar0kJ~R#Xe^QCMaVjq^S7>N-fHelD zellAc5GiBTrX8$%wVcYc@~I2AqsZa_a!`qi)W0{DQD?>T1Ii&24Iflv$qi#K4G?N_ z5bdyaUvqO#1m~!@0ZElblt_HJ;HvJRaBhR)GNQ>K^vc_F!so{Eiw7TP``+Y4!(X3y zjh}w~BFZXrXs9zT(Y3`QqDQPu6k$e5fb|V7YGXx=GH1Cd8&)|8hl4i?-Cm`-VMJ84 z5tl^Ke?ICU^HesFZ2Be7MFa9OY6je6C8U4t7WU|ma2Euy=h^W!>C2mEb6IKF(ZsG7 z_cP(#Dt5k5lUM;M0W1#v_t$KIgsjN`gR>EBm=iqjP3v13cV>DYm0k)OXvmt3tjUB4<5fHmO-{s`f$_js zf$so`c19NilXB+pVd05<;N8f3o>h3{`1exQWSXK)G#z}4_ZgU5T|mGlSs85`#fgPW znJ`Em#V)8iNpJwwVn)xM6(TW|d^?gq`*&A0AQxiP<XWdy zg@Xi(a&W}5zYZbIhMu@qF%s2f1#?6?=-t2zA8g{`7grFI6%xT3MEKW-ux=09zkWWT$e2-alZ-5b+d7Hk=6xRk zf2fTQSKdo&#~uK}5f2}%_yeLK;jkA_Svs5P6VJhA&pw(~0NmaPo}%oX2J}Hh$$Cl= zXm7D+P7wAs()3#2RYWH8{RHG7z^1JtSAD&RzddjgADG@DqGS=Z+Szwh74SwiaF$9j6jNYTw@L8!rJJ-G6nDwYZ?0AZ*>$ zVZj=^DSiWb4lym3?v5!B`59K z5rjrB0Cl%#>N$@lRpXz*tJA91sBWfRZO1KUejSE|tZITbdI&<1ZRVVm=bAmA2b7^YuuyoEX_iq&T3o#j7g{KU94QA`=S-NwwL8(8)BC>EWjFWMws zM6<9t$Ees?)k${8D%Tvqt}a4l7n5irIu zVBJu|GDa-*CEa<*;^eqqXgVYYyATZ;5K$?sSRDFgIc+YhZi3KakCR!uUp~OZ^QtJC zmQTy(%<`m}47k5WtXaOtI|e9$C=m5MXQf=*j^I z;4|myA_$4fx;|~LU>i8I|0w0k?L^cHmap5!=Wl$RwhV|{tJ%cnfBukh$1Mf5S3ONb zxbbiB#5)M8hPwB0NZ|M^Ng89T1$OQ3`)0W81)P2S%_vHgPu4xi{zI$LG!<1-@CTdO zvF{yr?0W}65U^QtC@q@C!s(Y`x94Sa{!UNy2oi+);PYg|unqpRr!93`?H%x)?-uae zzs}>s;7VP6w?s&rAUx7)QeAy(2((8`6x-9^>ljb8Ni>l99lecLm}9zzqZJ!r#gC)Y znJ4>xGe`3KrlwggHM;AX?QwgZoSK+2@|jBBR^PRLx5TZ(hGw@yC_?$19;LN9VAKsu zp~N+KbDjITJZFfvZ@G&_Ke~xkyT@{m zV)sc5vL|Wsfz=GTnX7Dx1vapVNexqnCLK-P^b;xFwVW}V-_5v>Y%uAQr`dAK|Is*Z zKI7U~>m~>XAd#S@rm^Gxmsxn%H3oM$f@ByW2oEDtMyUaFuDTNI1BGd~DT(n_LV>dF2AW_vlLg_{!Gq z-&gMQpdM3%n5p}8FC4D5RMKmiWdz}{gQ@G|DA1_vBdn#btsTM-q<d?I@b5A(Lqqi<# z;ijXWym))( zf=ST8aR3w>D9-r*1qJLi&`B=EVj4j&;OxpD7>61YY5Zg~&Pp$qyn%~HFTDR=+V!GQnLyOob2AyCsHDLJb1iL39&18VnQh;NOU%%Ks-^K_c!KcE zGMG6g2|+kqV1W78ATLhA2qw#bdCLegOc3JHe~Qk?7s)(4whKl?B1H`#D*$Y6oBq6g z4*l zjy?Z2azA*TQQ=xln#}0%L9AK?LDP^l1(zBi3T$=F=DCs!K@hmFYpj|=i=~(ujwZ(M zU*6sJ#+*5<$X|ji4o(tDlEleHCvh?-0dXY>Z(#=wwRQNFAVE1uPzlj4dpHm}NI>cF z;t#4Jw)uCk&A$Txm&M7n+{v7yo`KzF(-jr18W8!bnDr53LMV!yYsVDKeqEvIe#Qkt zIk~u7b>vvq`8_blV)z{SxPzI^Grb`z`o1Z4Uk7?Z2%Rx6LCSHE-M!qrzlk%x{vd~% zdt^=p0i@1JqC0n)&>3xOH8X2M8CQL75m%fwA4!tX6jR@|f*_zRo{F$$7uviDadI%p zdSuFEiCwz~pYJ5e!f^|30ATCxH`#OWBfNn|6s6PAThjEMorykm?R5jMblX{ z>k3?s)Oj+UUVTxdM-s89L?~dw?o9EmNW){?WJ>S5ckmF@ZYsk$*-9V{A|_GaEnyg! zCOLoPbN=<9Ei7e35E>7KLek5}{dNAq$L6arD>W$z!lAfU>9#jmxopNG2m+e306eKB z;f?|BYDVII^rGQFthJ=%ZKOh(mtVQ#;&iV9+1W7y=%2A17^J9EGHOLo_nP*UJ! zUC!q~5ZLFKk2h9IadaPUxjCNGugMS3Z3L$Uq5MERCt)J^A_%v=4gM(Fug-+Z^a*B& zJKCAboX7_Tcb+*g<765qE~awJ`&8`wG^4ilz~O7Ac;6Zh&N_|RwOc5u4AG=d$v1O%SF-3}ziw*a^X9;qTvE%9ev2 ztliT>AR=?!gUk8$!z;P$*s=WVqFIbBadndv%Xc*K*VniAY2$>VCPeflp-%?A=h(ZA zgzX3dSckhYH_b(exr^YlQ7f;@sC^sGjK*=KiNP);YeVVG4-*h_Si!!G+O?-SUF$uU zAAkEP9{<}%-G5(l`4ax{z?B2aMTangP!M4LNwvKB#3W9?V&{;PgsBL^s%?8X@%guT z@`qO=TLw2U1@hbk^5VNTvtp+seJ&i6308k>W7DcBEcwzCSnWrh8)0$ZYe@)?aH(b(C8xkI(VhA&5z%ygSQ>V$s7*iyxeu7ZU zL>np*40zU*h<=hF7K|a9L{wRyXNc8h0exxJFj) zFGd3TqdUVs{f6s=ZFCyz6Qm35gNTku)erNJK*wTRT`06-Wm(%08J$-Z?pI@?yh0_kQCii?~!OBGcG8(ND zXtIpukaY?sEkbo@9ToEW=-w2NmW{_$h975m}BSs9!$uHB+I;ML=Ka(KM_?HKJHP7x z!w{wPy&KizA{^NC31%y}^M=NPo=L=@-Vund__?pT^BlhS=t}N?a|e-_LQGM4{DVC_ z{=uG}vI6wp=PjC0#D}+?iDifqW*ZqfnX(O=rN{Gd7$PGAs#{_-hFeTOvv#F4k0PlM zlE^_EE>f?5f7wFQG}KPX1g93Fib8gg-eT;0=20qlq*XTCF)E6}$%}r)&h7Qx?fmuc zS99J)3kNMflo5mgvyW{+5a8ik7P9EHgUmXnA$6rJkxF88@mtHtY3o2qlN}0}JXDQ> z{k@eiRpO6x7l+{@t_!9?b*@T7teM5vZ|E-GLOb*4SFn9odd8%Jd^2yo?qo~j9Ab_L zm8b1NFuR{Dv5l~5Vt=%P znpg!5av`&9yRnNYjLXA>*8>a+yEov3R0SiJwMIyc8bO8`5kUwb*-Vgu!@^(?CH*&9 zGa#p;Y(Nx|AjG5pg6;YY^_DDiUiXG*z_Zqytm@e7r*d&7S_5&&1`w}dzkXsa*r7k- z+uy36fbq2szV=jQ6;0Ey7gz~2Bp++QfN_L<$)jD{%>}fZlRHHQ6$^hK{WU!1TyEHV z4>^jDm3fOZS}dk=v>D?V#aA4cb^pCLu#fj!KcOacfUp{WF8r|ockF$L8LmlOSN+Ab z`|d_4isrT==*WMk89+eG7Jcu%^3H?Jw-w|__-owo0QNRFBZBp?XW>RX^SqEVhe z-E}xc4fckj33#Fs`PRWFufsvKmB$Y9Gt1fhoEK7-Z5HC+-b`gijly8pbZBxMb{;d^ z&@2v!_I)RYvd={Ar|MHMn<2*q-X6#2hTdyONra9N>}*DOb|Wkp6_1+lMG%Uj239L8 z3%-Da%mU8~*wi59(YUQy#>AT3bJ^`&g2z!PMS(|^=!KC{^}xv z|Ga|7zqOR2oPh@3-sIr#u3X4xcbqdMIM(s^$JZ6Qp9MaHP0 z${H1mQ*XSyO@7_Px<_YzN`OE|h;~aMs$k+TW52`i$KS}R{KXly5shRv7mag{ol%#69DwiSrv=ICo7pkF3A z=+HL?DX4D@=2#4$HBVO?QCZ)6ZV9J;9u!64{M(-;=d!!|kb_I6j>hxMkND4BU(1dh z1cZnmgzTNz%qESh(fZ~XNwP41`WLwP^gr{Za~@^pr1P2G z?>GFvS!UGdwG6&w%_97SI-C=&*32G+QNO` z6FuY3rmm`WaEVgJIV2%>I^pPaHVi9$=ZM2KW<8ReS&z{%(Aj9H`^@@03-kK?+1TH? zY)&OaWVCM_jdt94C?05BA3a@S{~ilV+y8-0?Q3&1A+yl)JbB(4TBS<1RGb0FRL95n zpUtr0Q1bCjF9TcllIBubd=6HDt;c@_Pw6-&ef*CjMhnHq5t0R&3_yIJKcW%hq2}9rzrW!ENnkZviYo5@ceiepWb>4Ry&l9K5WBFiL50! zEfT^Y8~QJudjgkVdo4&Z`wkvr<%SwI>}+E1uDt}k?c8{UqitNyl zRWmu>eq%FVx#-W`i@WKwM)Ah7pCsMzsv5}Y;q99S=oJ7b}j$gANBXaCzQO>@^ z&s+bt^6b4cxagak4ec{*OrQ<`wW~{M`;Uj>ozF6{^h@ljmB3A3cN_`G0jCunxZlgh zybn>MeV-={jUCSI{N`8V`N_`@3|xH2av@p-g1{x0nVEa_I`+!(1#2uebcD^EN+$~{ z6=E?jiV{W;tynF&tT|+2U2PI$i>4teDrlL_tAeWaDZl#ddj5Fh*ZJ0OA4EwKk#yZ9 zXX1|Kv!k{)VVP`TM0&bJaEMWka%`n0QpSF{oF=7!S+-p`QbiN$!ElinHGohP==@me zJSRhP5E>CdXh2jK7(-+k;gF*mKzPRdQ3O%co$t<&+$I)DOPTNCy#L1ZS>|us3@$##8U@R&rEC6QL}&{(2%i?UI!* zRbIrk$6vusuiiwH8YZU7+`Iot#yiIFovQSsuT-l=k18cXOhGAhB6+iazO;aTBUQ|* z&k@wr?nAYSh&r5NVuHRo(B9U8nkyjc_;v>+H#z8#DGi4~he$+Tpcy4M7b(FG>)uyZ z^WBHvMeX%HpFFyh_kMXX{oPR-4Umuq&{P4x*Gx`cOn3g6&w}f@?#DJNpQz-Y&n14hzj2+H zWr2QbIKBEdixP9(ld(lB35F#^0bK4NP3i%*`f9r0wAM)9D61n8HJA|G6Z`j_}t{pfV5bnk6u%Gg`Y-o#jiXtm5mpUceWA zZpYR;7wsVrtgSgu&lCLFxp3FVw0!AU3TIY;%Mx#E2v1fjwiDSUvE{_C6LID- z?fpk^dYdpGeHv0hE@&|jEU4ia(NEunVD{_GOfh!NOL)pBV*2J~u>1)CLx+eUtTTHh#WvXxrkn)9 z1Q=sn1qdqv1Rx-H5K;B#LFsN+8pCHMf!nn=*&_518KWrV z>n!C$Z7jvn-KaV?kAp$$Wk;Vj>W6qb;_uhjuRn=j-kCawMpzbD-R!{V$e~>O7(BMw z{I<=-+Hl`Vtx$qr6b4xSYd>dv^+OzPXeR%neRJ{MPqm&!c{*)e~5!ZIy8^4a;; zSc)gNactp79JPKG=I=hp-c9-Z>y_~*^3*n+OHNJ3x%%{?O><=dPD6O&;F~L8H z`|oXK*>VrDSbV;-N;#ZyhK0+o%3+IbJBNB1DAs*ejH(*TWED6pd}*%4o2&oLGt2&s z+RHE{i4x~6K9}>CT*1SuBKSL_4eZ_sqN-8Q7{J{g$@*#OKQC8|$z|S&r9AQad%W}6 z214QZd?869r!1b$E_Fq7Av#0Et4s6}{&ZHM@!F zG(xF12SKmCIZ6`*f-(K%Ud(DE8qhZu!DT1t(RWQmt3)uQpAd^8qUt2p1c!x)Umx*q z&an~f&>2PJwCa}T6wM;BXpez-`u|nYytad;)#(#tnuZ}xNRq{b9MwkzTkK|{I;CW7 zPAd_eM2^FixQ(i_O30~p(6Zh`{ilh^0lUjeRHv+^&0!{{_j*`$61N)YO_yo5nUG>K z&#(Cp&uo3MmqLrcw2~QIG5f37Ey-p2B)eIcG$(-7VM5a3e4(M?GUc3*PN$eR=Q(6bkj^K&puecug5QMmAy`&qMn zZ})E%Mftpb`?bs**Dr@=K>iO7`W!nrArE^XMqzy*gmTpOI z5#RjWcd@!=@azU3iUIjVE2?~ykJ8~B({FP!!#*B&^JE@>%*Fek^bkX%%Hg(OdZ;U0 z&4Ebcp!Ln7#3{Ka^0P;Z*;?Dvs35>8vt|D8><+d>S92&Fw|guu)^KJ2*yw^D`_TO2 z0CrP$_s&Qe)Tmg&c5^O&|5Sb zFsBUl_-`ZoRAQgJnRS1e!c$bm&SNh}dhA)8d$u!a4r$v~_V3VG@pk5Y{#;u@-n1&V zY}t}|3r5rXhAAQ?eeTnQ&$FvtsKv0<8dF`{h(#Oz=RqK5V$Z+{U2aW4VgWR?Nw z8iU@kn8vshIHC;JMmTp8JKSs8E4`Ss?t<8jjB4^B$ojmlyWuE6 zC>lG+0g;eq$E${j5kbU+OK{>AGz1~pqD0_e*u*^tuA)A=D`6?S=;o$zuTo`GFe*`( zFV=!zZcAM-3kX;VNtLupHlnDQ5Ghb)a+F3C&7gac0CG%XY~i&iio%j(C-U4I-%qQa zFDkO3)woDkfIR19-chG>XIpXu(Pgm+9l!T-*^TdFa~R__yS^1#k`RO!-2YFeuiU_| z9{J6HW1)5{`#%{)sNKr!%eEn!G_L&ZgUngGhl>hcXGLHJXPpi+rh}ry-_N!-c{JlS84_RL8zR3u?dTeC?+tXa+`j7C9|k zHao@*_g#ZOoR|nIbQkc)YaZawpGJr&8u^U@D)tS{Gb{)&Wo8ML6LL^Q89@^;i4q5Q z`PjLsX@Csa%sCdm`{R7w{fY-_LDTu%1uW3EKdqt%gi+Lp)tHGfS6PRx%Xz|F2>W*E z8wa2?hCtD0(3hQKQFkStlhc7(I+pO3gSy(#1OZR904=J|n66HkfPYJZ95HFaG+_)a zTlLA?Y8vZ$lYYWLD66qBNzw~?4$**?t`i-lQGazJLMNYiU`tDEJ z#A51pHtTAmdUgdhspOkdV8Vh?>|3Mnc^#jkjqxXzGv|xr*!s!=w!Jv`+%;jrC~DT~ zdq&31t>nN4eQk`HT0+B)CS7e5SGe&tW-rlcv6+x!@wqvyM0oJPBecZ&?!By{g&cDZ zqpg+9bAS>5NjxjYX`la6RDz%srB(|&z(v$M#K$Oyi4W&fVYb{mB{_ZZRf#gw$Bx0V?UzQRIE1%3A-QdNjMmi>7&R!pLzS3dZi_3h02 ziE;L?yo;;rW6p!i#y#-E^&|}zsdctKbWxm%_O6S^i5Tn`ByaoLHzKI-Y8GP?1 z3UJp~14N5gvM*Rql}lq{7AnEL9fS{esuqCJt|(RRAyh>f1c}d8Kou)!G3Db&#)?Ft z62_+NqswJV?{#uYdE{7zFc(w;WKFvHo1snL{^xL@>-|wqL!egsoPYc=|=YS>ixjll7HF@WQrZN5X zzha37!JUWwsJV!*|8mee+N2Xvre8|rwWp0sw~+$77GH$7WE^u}`CUe82CAa*%3~1D z&^Kd*AUu2+kr+L~C``1bi-wWcJTd4Y!{je@p#K>3jzx6$c-IKiPea)89f&4hv@dtXX& z5MZtOZu0YfjjLrtcAfW!IZ+t6id_g`mjJrl-%@`iT4FZ-aNx@{Bq0X@LaL7^>u=@< zRd-+&_2(M_P&DJB)%rstf=$^=Wk1frK-J5HkW31S67Ol=!okSg!4XxBoqg;k2Rp$Y;#Tc04wGDRJ0X|v4W$$utp`&-w$dGOhJyq`pBR@PLu2I|;KUC&oL()nLMs49k% zg8-kOW#an#zDgj)YOdAS#_iAif-j!_TVB}YL)4wCCowb)wry-;+s5>ao@TQF*F@9w zlY{Yw(k?khtEEh7V5PK(Ez)%6E9*Ls9BKEU-Z*k&QLPp{3+ED?JOQ~tKLOl>^m4=| zf(+ytFbbp2sEoO~+o)t_>O%iTSYW{U95sxu$rX>Cex!$>1F3TarH1}{b3z(zEdJ6A z7Jq3*!sEvpFpgt}@pG0f&f>fyJp@A$Yw!_VdkD|lyU|ibe75`0L;*nu!6EAsTLn`n zOeEidHI#h>m8|L;gR{LIrBFiBv91b;Zro%~5DJkfbZ%FF^U7*|_S|RP$0nBMvgy_@ zVHr%O`~A)E(n>gHI$V1i*t3*u^)^F(6{y*fCW0JB!$!6;r4|c}sW!2HUt&kG3023j za?@kTN{kIVpEHyobb6!R1mQ7N@Vy5fOIm(Y%@%(D?2ozTbGP%@YJGeBP{2eiDqyx` z@E)e{h*#0r5~yJdHSyFED$w8WW{~|??2+?PhVd|aqfGxhP_!4gxN}T z8Wqjf7M7@TXV*@)<49~@(-74qo6tG$S)Sruq^eh%(>AJ*2QU9$xH!qHTQx6)!6gQO`a`3}||do9J$ zeM}B~f`|%kE7}c9VN*SrGygsYMK^16KZjY3FyHecvL%KV1u?%A;ZS1xtg!Qaq+lDC zlfFvyo#!*|Hyb!SjdYYx=HSdzsoIc!^r9#UjGd;jZS@ciZUnk8gxPdPkPZqmaQf$9LdJICBPD0THXni3iIoOTBHgNQf*b^qqMrgT-srKJ;LT-vhtQG=u=8N)#pG{l( z+Q?n|!u}stBR{mhyb`uae^0BdN{o;Wsh0sT>6GE?12gM>bJN3rtlQ3QSI`@f_j2=BT3$GraK^9TIC=e;V%EIHIo4vyMY!}q`a zYb05wPN-m!vNC1gJ|B1v=A}K>R8VAN?@d{bja>&mOGyrPVe7%|i3~5xZgBz%5~Gw}(JV$?+TkK1k;OPvtA)mk&%?W9p~2+f2u3i15sY92>BC&+ zCikq#lz#hY1bcGrKS5TB<)**p9TZ{xj*B68uCDrmUU_6y#pfu{)rO)o=eE-yU#~9u zFTdHoV}#WRW(8+jlKJp1KT)o=o6|6QahCjq?zaGExR!N#5LIEG7IRg;OT>D$)&_mj!J%U0gAPaBd6 z!InOQYeb)VFr||aj3_Gn^jQG*wpG&LFJe+*4dw1uW|Zz_Y4tjmR|D41PwdWi+4U zf00IWFGu^COJ0a9=K=N)w96L3mezSop ziX57HJeHt`@@*eyTz}m3BSS2YAU%vk5FTL^mZe|TsQgVw0!hap35cDWDWPmU!p`5P z->_%{wO3+R$pWSZKu&++$-;4L(56iif;s(HYRD%>(MG!|Q&}Pd!_rNu$}NYQU;lQH;Ge)%jLdZuvBI z!Cr{PfI6DoN=~B0 zoDM7<*-Ir0ZTb~bVv@dvk)_Rpnj;|USi6QKCwXKqOKb@QKnG9cjCh%M+uN+KiI2fz zlKAK+7qVzv3IolQ%J_c(xy2CBA>%FUTl)*)5Sk8-arS%%Z@re>32^CAm$G^H%K$XB z?VzmK7$dYj5JQwzRFjA#S&>AkPwv4)xc8NNx%=9qc_g(TW>R=NtP~WdASII-vC>`t zrYPsIrN{P#WAN$5Jc=f{XbtFH#=yutg-aKX<(Zc^paII#iAaDa?80RUQl2wV##E}<$ zH&tMlEP$NW;wjlUG)+qyL748jB!dxcWP=TB;yUw%#hL9ajgBCcwak`MQ!P%!sJuXkI3(y>bs4K9*sEEM9=%&~eLh81 zXCS1jqZP$r%37xMl4m|*{oc4UZDqcbn!Bz9z*B^Cw4XSJlrBMHL#45$Ue5YPhff8rIbc@?@OTBq9ehJ(rKdJcFkj3pcgFcn zKb~lEgT&bB?Oge@wai%3$fLI{VDo2#zYFnw{ov;l4Vq}%lS{+<1=L(uLczEW7Jp+s z6?2-p$w7dk`eqiqzk;v+<^is`_*#yhoj#fEbVAN351K)mk&40O?S{G_r_DP%?eaxA z1;jctrwK!tgD_K=49P)gR0Lt->#{?fjEcxH$|oGFe8OyX(;(y^|8o+f>E^rWf+mXH zvZ6UTStMc^!3ah$f)R|sKy-bJ%w=v6ldl)li2i)W5vM+BO3{gKoB^8CiV0OZ&#*^z?)p7zvblA*mGJtjFJ;sdhGfe2Ww8ly%hj~R%B zdq~i|2Uld>*I;mZ;}Lvo4*L1xNngieO7mO{Sii=i5~1KA_uPo3aRyt44gPK1{H64w zwxTi!nnYV9o||ycu62-LLk&+se}9DK_xRv_i%LaXDn@hoU@BwV%f4H z)@w_9m2H66GmFA2l651k=9kk{JqLiWBaglF zKF5aBZ=im{QAz8UjRA*_e54~7I*bs6M-YV>q9};R&fL zS&E_h`>^k`KK&wxK&^r_lDBKlGts<-5KK%oWOOacJ zMM%-cgzaUtDCn1eP%jZ?6$4yY@`JR>9-aFIraNZ<1BtzC#?fD1bhr_N*|zcKYwNrJ z{p%OjQd;@Fv{!MlBm|)(NVv^86xxchO6f(_s=;l1zaTx5@TY|#tf5V5l?50xxr49$ zauwb-8&BRbmnZL-%lePXyN^c|@YK54{^~eZJ}{dV_s?eKgR@zF-yAkRJr$PA%v-yP z6TbE-Wiwj_?W3u(l)AB__~86gxbrVJW1bdd=8W`=KYzZ@%R1JieLksRw8W@4EK^Z3 zhtWlq-M`r_cIJ(n$$|;9DeJWe6$F7hzWN7V*c8vVFsvd7jnGRt45VC}P{1g)7L$>3 z&&daKnEEjmn$+{0kI0ISU<4x=!3d5tdVh-qQ;P4BC%wGR$sp^L2sQfy#H{+%Z}hG? z9i9%|Qm5f8G)A9TyPMlT+z5bK650Q|FK0&%0<<-NsN)H){Ou>ffha*X20eAQ|Hv<{K=EP*2og76{5w z>MSd{>C)8s>XuB2(yBJ2XaXI*{0EO@uE9+D)(~iq^lZw8iJ#(-BCP0;lkRm-^j@p9 z@2@k7(}m;&ODULBE4Lhu)H!0OGtR14HUQ8b%0&_fvB6BQgggfXIwggj4n&KYV!4)w z?tGj7d^EGC?6gvtIC#`&GMJE=>3@%-JDy=_`xDIcy+u`UJ$cbXh$u8#C$g;I3YO)6 zna}dRz()7!osom@CO*G>D}q&mXqf2oPf^ePZPGDl7AIPU%1>!QG9i?XK^!x=TP4ov zX`rZPJ^SaJ#k#Y;%cj$>$5TE5tG}JvnWxZRHa=l;GRLtYq|4b^mouUzR{h_NuWo`LEEtwrvDY8>3Rku zi9kZj|35VUEZDg$ixDS)TaP|S4~&o-=xW2&zMG>>H}je0Rul#&U`8n?F)e&H&X&HB zl)7XuEe`!{^c@Xj?L}NwaSx9k`tG37RstgD6n%%&3oj<$Joo}Tn{mWCy}pKvl&GFI zy6S2g-2bQeVnhU{#Zvg4hFEqqBIuu4Y9TeaBESJ`Pw$x!?gg&DwxFh|NSut z$cgu6V@}x5m=pG+X|Vo{D%SsTI+37>s4PISpYqwwOg?LG{Q9VLM+hGM>IYo@w}-jy z^S?=WJz_R1w?1}9_urp}*Kph2x%}!UMXX*kxWS?;V(8UQ4=?_Iun>%31S1&1 z2u1)1{ve9mf)pM^As|htQN2-!0zr2!xsl9NJo>Z{$bS6s5rEHLNP$1Gf=xQsmUZ{P@w*q1>vE=*A9_$|D%kQMn0+oqRDF`OLL`dj$iDuJ*>>K2GdVeR{QU3p z)~CNgQDOu`US53fMk-5Zal*pyW>2mH)}Y*-hp^5QVcEel{`RfE^W#UqN0VouW2PvI z{N~EL_|Fz&jNsl5DoX2+` za^oN5wJdPKxyQEgW_#SZy(J6<*0>r@TO>2JTLGx(d}a=}9BErvqS!7YtI!dVk~$vu zhe^;Vb|_if%k(%{XInR{_{lLB52>W6p|IzIAfTyQPoI*L=7MVWnAg%Ee1?r&#wrUa zi4~FGUIXgD`6JWuW^;Y*HZy@>lwIwesb_3{yb%|nm<7AJ-}mX#o~SlK5YP&8p`nEf zD_`QpkA8wjC?r>FjSpZ#QD%eh2NB4Z8_1V?zHKTZ9#aXR(PSBiS&J|(v^Hrwf*>H4 zI#3SyQ0w*(F`2M@;eMpoZvtOG#VSEW8@m*3RpyePNzY~MY%FDS5k6dj;Ps&`JO#C? zl-Q0Bs9N_bs>uSHO2xL1u?N}!*tz5q_Ab1Txi9~|SIlHzjGYFXS2BET5hDOb2*M)< zK>(e~Ai9x(H2Tm%0Kw90A*QKl8(%?~@F2seRfLCakPxl7PGys-Y|xW^rX zxtP&bJ0>x;_gyCFk{C7OT#huk7?j~qz)D9{V&mGlhIuJacglR${Q4>) z-gG^Qd%olX0wsk@c$i9_2wV93x-E>a*~5PnGyhS{fSp-VE`Ka8qpkTplmvM~+PrJH z)X~Z}SFU8#AO6Uh&#$K=CyydY1o zT>94SEg$;n*(b1X+63yWN0Ba6G+vLs$Mtv4CR#I!w_mffZk-uXfT}8mb1n!{I;owN z+A0E(NO!%u{Z67$2~V4Kz?jm9@sVeWsu5ExG`ITr_A9>{w9KsPDa@aA7ImH;xhP>6 zkv?KH0zREf9$AXNM0ycWAvo~bw3rJKBn?Y2wb4Vf#Ly!8mvD+~)4ed4qb6k1m-ZeE zs%#}>Nt)-aE+HS^QUA3}>BlYLDh zZabVbJIpb2T3P1%th;=D5M(X>|4jD5U2vN6N5Ys2Oao5VP z@T-Nt&wLPRLPYH*4D;oIs%?p2>LdsO)crdMH`QW2=@vxIhp^>E1aBi+ZUyS1uM+tv zaWrC9aJaELCL&(>?e3q1XJ1A%n-QR(??v@jE?mY%^B7A@ua*eEuu@lDkO zU%m#Pv+pK#qat!exR}QakD;aIqlB$?1Z$9Isf^8$cx>gpG<^On1T~B&c!>7?`9^_| z0u7<`FO0j*L&)Vow)Bp&OI^QyZ2IJ27c?|J3#~^i-N5`Cia1p*LPaGc`q>p~U~6ok z;mGf^5DMsx05o21@oS4*-2V8F*;ThUVVR9J+xhmr*YVqH@8z$bb#5L+5mFe)4i{W5 z5kb*uOi-;5)h`Q1OoPZkW0=R{#G*z9JvIPB4g_@=B)Z@;z`$Zr(7ZawV$DJIq;DY9 z4AG1o!3ah$f)R{h2oQ**jBHcH94vuI(lW{W2!mVH8HK1~4(VG5#Bv?DJZ)LmkA`xv zg|lB<*}?%thZU=w`aDj0^m)`y=e7Gw3OK1G7yLd1#^_p8X+A%Kq9dPTQ!SKcPw)xR zAQU)2%Py*}AQ#HZ1nL`7lbpvcxRwReFXi=Rx8e`BplK@G_P)ioy>Io52N6j!V>Uam z+w#b9lv0>iO%U}g}Mns0AEDriPe6rrb4DvUC;cP@!j}=cKGurK0^ae zG*zIbG5he#_EsBX#``kgrzh~#?}&zYKe`N?%gov572y{0k%@9B+Q{4OeV@^oCU7X5 zSEsY@LqW182zx75WeQajXbffEalAi)rjVIYuFRfwJ%pwabwi35x0qQ}nqC`_F6VZ4 zDRdHqnx&LaO;7hB2fGlYndhYIIX3T`EEE^w^6x)oDK*Cxn%D9-1yiRP!|rr9BiV~f|zGT?dV)DgaSlf`zKgzNRy61D0iU+ z11K;20}PfIHBDZO`1?l(9*D&d?|A@W>0*TIzC`4sfAk%*s$z}=h*^^>>`hw;AH8Jc zh)19oBNmp!jIQ~zz~KCY>0nq9gPni(&ObN+u@E$*pKEMT_#5K?r8%y2G2mL-GS5F~ zocv~*Z76SfFa?nG&p~*&VI*-JQR4sj%MTv_;xa8~KmH@4rtB_e zj=h4XwbE{K5a82A#|&DwRufn)6fi}y6IK!vx&G=h-g@!Y&OefSer2kzbm}v&QL*L7{Lfe@Lvd3 z_h(Nanwx_?Ja~TWbf9_lJ648mPF)0{*&6^|dpZHHwSZzdxjg$b+xOEPh?9t41pY4+ zCfd1CQp2)7qi|C_6zXvBiv++@3DN8#O5>?k9DpZP(S(>hF+GA1z;4gu!c*_&K*MKz zvgTo8a$k~KLq%31$V!AzxSh6+ebgLU-lvQxNLZ~oOc;GElg$^x*t`M#L}Zl>bzU~q zWqn#h4n-CT_|3T78QKd{tewM3j2+&3pkH{65fWgX^;V)RRYYbu8awLZx(}kxZuYbGy_lEHci8^wbu>4<1+b)!yiHD-;-|K(LPFyzQCckKg#+A>`JeGfb z>x#oh4rYpMq-};8M~&8a;@xM`F8{)^mzY%+cS8{MTfYp0)!O%EP*rI1SlLnUW>mh~Zllp-rPXJ~6EYEuipX-OAunSYoCFwz3~RF#qX{Ar(av7iR8|z8Y)oJO zB^WHP>uckR*xP+S(&MoDm!bD0-p?J0V;2?W3g*KZ;qOa)qqwTf17lJ|gCH zQydJAsFwOVT>EC6pfUmf0JQuZ=#)lPTe2rv0SE=ak*}`}(XOxlAj%|}VAjmcpQSNn zOStUpzwy_5UgE}Y{+;6&+`!avr&C!vgS?z_Y*rVNXksu+i>fJv!tHF@^%BoM`xUm_ zbp=sx_C)iMgtsHjYiGn#H{0dcAbp1w0e=QOo1Q4TY%y3}Z%owtxMz)QuYs&ZiK*Go z`RQCky?&p4$zK8N@j1;Li{aMFQr3S<{1r_FWf_g7|Mg7g`u1+yZjIXz8?*-vJGw*MA}!qM#w7BA_CnA_*#D=l>;SOoEDpf=P&BvYIieF-%$v zvl?S`a5tslIvlExI{R4mI;S3nD`V92roWw`%vU+wzqz1)Q$K?LBK$WzkTCL49!5l? zQU3L>xR_$Qo%vWh zl1Bh0gBVWk%z5A1?Sx|S{oJp+>Ktgm{P?S=Q>svAO@tYh5Yds3(dgFsAW~Jih^op(3CsC|Ez~z}rnzk|9lnFKdk>%}@%s{Pt7p@1 zzQDKzCy@X7pJzRmBLQ!_g^JOE)CKjBd&%miW9&+Byd?t3%yGKyLJURTKY_N0iBd=6 z_x?yriVlXb;>Ro|wiza?o6dL)UtT)%A<%*;+QKyLH1-S2k`~uc*d~2QxoI+jtYa=r z)z4MCJ8Oq4IN%8OML{xX6RBJZVf<_AEuT< zgAd`oU1%511l!QtuLq1%5|K(ADD`Q~GX_H0w*l?KGZB`rPFha<{R3Ejb3M`J&$HwB zFM}x3G;Thvqi0|Zc3|&l!rii;+=ks)`lV~Bo&uX!jED&h7yNHn@&C&pnIN}t_!) zVFr8K;|42HJ^Tjd>PdDM9FvE`DaBJDc3#q;0Q*|NZk8!_hbhSklbd8?*&C_~QCUQe z+K`)SQ8W`VBxFrOK|Pk%c-xg=gB9Z93cq*KY$>sD8(*J9ogru z)BO6Q5Th1-dsuUu7u7Bx>iCXF1bt($x3@uV;^Ti_w-W#h(EH62TRn)MY((&fV99KV z9LRnUndUv{kM1+ zoi_vRiutf?A5`SP328-^HiASOhMKy*X91c9yl^6Y) z^`FK!U#=V%*WLMly4%dxLO2Boq+t`V14~5@?Xoco8%3ip!2*;WsHbvYE!*c#8y*)u z1IWWLdJv#KU}a|Y6gJf)&j;CsFQ0ZL&+iO^rXe0?&S%^dJI9?~NJCwO4J*9_yfR*o zOwh0J;~zMfI4(P*i70~2qJp3zNCrH=%^?W&%@d;{5*1CzSa7KR!=(Q{jGnn+Bu6`f z5sY92hZ9dc@dN*OiBmh`u#|H5|rYoP#St4!@d?cxr_i{eD-A@`zn>D%h<^nDsdox3{B< z=kzv1VKpe>tf~u|iY7Wi%|4maq=_QUEr)kKX1C{Y+R~rk3)S-B`?t^*i=rtq2cG*K z2cG{umi#iTg_THF2a?T+$?isSxG_2NFuU?FxeKu56cg=ez_)J`q59oK+v*VmZK$eB zLHTG*;}+nWb2^qz2|UB03HUq~@(Kqb>@&$@BP97d8>CUcBMPz#rd}J5BN;WAZr>eI z2}SFxx;Px8275!+BFJhKlh`9kn@PWV^Y!&ds=9(8pgHov-%LUK0WK)Hn`flt_9K}P zYM0iI!Q&ka{UZpwAbx%}o`{R6Y{FtnVb9BPfg~}pU?0oF6+OS7Hv_FB1aIwt&(DHf z8^RN-(T)&7DCAfW9455j;Z1)OUHuZ`oj*nT%6B1_L|HAWuy?_ExLOaA*IWZYZd2b} zkg~}}NBMYsMb!lJ%4iugi^d6yFfS3PipVH!exm!EiEODQv~oAm-NP>*>WL5gdMrhd6;ZaH4kQ- zh%o1Lm~a%hhA8o)*@U1YkK0hdh+vGqdF%vYwo1IY6KN}$iZ^#6inW|UpPF6~M@HmZ zJd$lBlNS}l5(1`)w3%n%F;4|)G{P|Tx%kGF5ApWvn*ne*?A-s^pL9nL0tDOF@CRFJ z!-fbv=I|0~{Y-bCT^KC?;GuD&`OW>e^2$x$VP4*3PAFK+@db;Smphq!t7Bk=VT9qB ze-PlU9e#dv+0U_AQaeFhdgABVAFRM1kr9u8yy(HbApo|m^RsJ9fI|l(_`M3M3OZBl z#9>$t!hzRDM8&2?aUC{ta0DZO`uckAyz@?uKmK?sD=V>BER>a%ap8p*vTD_;jM}QL zt!3J@X^5i8-FM&J{kx`VJoeaQ9CzGt;MQqwfpO4*cXUdc*{P@Q|rlX@{K>6Oe z4%^z=_{KNBL3w#OR;!g6GiLC}BadWte(mk;y!z^^*zI;My67Ul_{A>*@Z^(E4qCqV zI2sxn_}bUL#;8%FFqur;bI(29}0ZX9;IoxHp}jyvu+{`t>;4myrlEXD&5Jiwwwizq58!r^dGU0uyN=bV$U z&IkrV(YY2EREXx~=o^GTJ3^{A!ZxR_`sPjoPY(j-!9xi5w0luH*InNSG)avAXR{!m zu>|b#^{wj5US1S{mInPQI%c=N`m(;Y_sr>sUplV~F8e4Z{q#ka9`kv`u2dzOMzpOS z->%hkZ2pMW)vwd|@xM6q=EEF#{`c&8{1@!_%k^yf%@^2l-?upQ#zVAkc%Q(*?fBZ7 z2z0b?aN9cez4{QFeti*ZesT)yZ#tVjPuzqO3K=^7K6wax-3F5&GSe}d6C5)+$uWyL zu4-K7L7tQTTMPqp4JI!x(AtmJJQBGEGwoZ|1U!*`(PIXXWg-rOrWtgY=i@ccMiNU% zWirpC->}lxZjwpeMEUv@%|?rCr$M&Up*ZN#$TR?sf_PtwpK+}UpHuHbNOC=@w8hvu zB_y-SFW4V_o+;5rEO#p5!Z}3pW}sQiv6%bX-n8@PqMbaI+=F|O1cjQ83Q|E3MJUK& zo^?4b?RIu)ovtL3i1wpP(Vn{n;m>Okb~b|`!n!&LM4=_1JNN4VvCdKQJc9kd+A z1P7GQ2+@wyRLt0%V_9mthEiF;to2&# zSe^REVZ^x@&_+}Z4Y)56X%u@TH%|y_d5f(y;=zTDIl>seZ#t0~vW#8Xm$=a^k?r&G zy>C3ui_fkBz-qJd;PSsqBk^+iJ}cReo#hKy6=6P|>;h z?%nqw&QqnfT*e>$byn}n<)MGt+1C=kW@C%s(j`+lxw@6lyekOGI`e!C0b-HiLkpS1 zGBK-!!y6%|B}nw$Pk83?oB8Rozq94Q&H?4EW(zl8@*}Llv3&g6enta=q8j4-YOz9D zdHPEgZ%2$p$K|3aeTfHI7C=g(p_2{-z^Z?Ns@Wt2okk>0vp}9srx!thn0|RO%oc>Q za(!)B?U*Xlzd!0QbISQ|#fvY#$c;DN$b<SZ2vv~1hcJJQJ#EBC*{q)lTIB?(qPe1)Mr#j<>b7v3T)fB9RCuoNxl|?d`n({`*{c<(2H)w~w1| zzPV5NAO7%%tY5#L88c>Z(n%)~i9}etb}e_@aR;xw@(RnBFURE?I45; z?&y9u`lGqInS~1%BFi#Mmo6n74&!jdje^UTE#vI7&&KQZGJX1V&OP^B>gwuv{`u#5 z?X}l<_0?B7@x&9m+p4Ll;cH*}8l|PBOqnu;MT-{E(9poApMJ{6AAijD?c2HKmRtJt zf5jD7@XRyMP*haJ(MKPR!{MN=u8xmC{usaC&!v}Mn$dOmUxQYdgF0xU?7oNz60xEr z+L&oT$g%5MY-xf(prAlkE?`x(;mb=botMTaXv-}}QnSzd9@gx1*oy}I{??w>?tfo= z!Kp;&O#_Q%;KnMV>RwlA?s9~f4y6f2(znhGN5Gx^TDPn;#F%P*=D`Cs*+sVqfWsHV zd*(HqxbO-h+t#pa(=)U-)x;HjGz~4CXH*anL=$4CW1|ud_DOD~#3FQT{gm~$evV0V z7E%4>+XoP2*}&V;%W&TLSdFn3QQa|)`|du-%5}R?6pfivbGYcjNgOrL#7bo=zTWHb z!xS~xA8ipRvFVSXJKWKG?GcH5t72GGn%^{qw?zxLYujibh#L!MNR?b=I*Q3kJ!Yjw zcOPNJhs#``f3Tf6BwKmg_aZNOA0VK5C^1!Wyz@d%a-GK*vl&U~aRABcI$NC}nE?T_ z!_G{(f+EXv{73r%?ZTcuMeP)FEH_|wwt;gzg#F;x7Xj8aUfEtjd%m5$=0}OpfC)GG z?zvE0)pLHwPK4F_;HLB7<@FReJhTMznN*a9baX*3mgaW8aqdUl`Re&RaL#6=g{MQ_ z8wkSl@Y?{K3_^Pl;a6{?xvUV3qTO;jOfS=Qj@_8F6v4a`q4nn=dl4K{(I%b`+9I?a zpF-4!snm(Q*MpE_!8FQ^Af|Ui6@L_^Cj01et@RLL;RCGy_!Hu<|AMe#GtnFuHJ4vP z^9jcg%gw>0%8XzB+<+W|>A(?aqh$MXw)Xao6Tv#G3de$Rpo}OD9WIOzgoha#V0RcB zt!Fv<0;E+N5PyAT-vgl#!n%(G#cm>-u3&El)9X&R`S zv0>&pWe788B80vVfrh@vV!IJycY{;{^Y24j{t8_#R=S5^)#q(D9Eh;)Hu6V<#epE1 z0f{En#Ean{QKNp+r))rLX0!4Q-rPbet-C}2KVHFM~pAGM|(bRB|E6 zJM-4IBed#FtfIJ}VZXjM0Gfhm5q)I2<`{#vFGZfhRBebN(K`JyC9(1X!n;~i7fgn{ zJlYSY|4wS=k>#rqIOdpR*sx&(vu4fe^ZT1`zR9`gp35vvWBw$&t!8{4*R+va=v|Ggj1hvdnXbM|`n%+5VCd#}@?&S0fZYkcMHLZ!~=m!Fw_ zi>LdWpC269+O|TEe>dMRT;5(cKM&@V8u`#~VUKp9)lSaiLgO)gq5`71j= z+(ELv9yIoa z^SEpuq$$p1F>7Dc^@xIJZ1OG6c8ANTkXW2Ly|=&a$3}+>dV1{q90%y^oYz^F%f>bU z%>RH~|8k>Uom(It7<=3EK}M$i2#puau-EH@9k5>5ty(o+|0ColC+5Vm)cm(&-{`fQ zVq^GUO5{HCCCI{zpv+O}5Z15e357`0pisN$TbvHHbd;xc zm)Rf)Sr9^2ELTyGhC_z1*k)myoyR#MV<-1~^m#26B@0SCScpw$L7#Ikgw+J=Pk4J# z*Rgh$7}m_2mfH7DS`&mU$G0;-6mMGOZOc0=uwi=eP_Hr>#;a7z7_ar@6qln%y}$-? zS8J>}N)w7{^>x#S%AYY$r%8X(AKsi_HNm-o#9((TIbu@c<7>uh9GZXDH zjM94*E=y?hGHQBz#d}Fyt?nNUX3)L49b0pHl|C7LwEMdDEPWD&JNNh49I1D%jlPxN z-@cH+Ak0n!O8$|kkv{o0m-?2cf@-8A0Or$}>2vPEK2N>hYKQd3sBFq{sU_bWLM$n+ zZ|srz9rG`5cvfe_Tf9mhN6RSd2;1AJ1IMJt#r`Lp%^~@r;+kTKT)Q+e44CFJD~c$D zLLWk;&>ro%f#$D*xGdLSxq(uN@Cnr7kP^C{ZK_mH8B-OQRO(j;hkxfiwI1b|xy{fv zi>DPfl`d@5x+6{j4Bmoe8PSk)$n{MYWE7K~>~i+#JqD=_+s(YZE^gRe-r`Jgb9*F% zvFVRtg2)E#KynqllGy1HRs!}dX<^@p4-R(^bl$yTt@)#@ffa$JdQq)B+{3UM>S#yD z<{|1*SLe??6DPm7PidaOcwfPc3%qm7TqyR$!%8L7z(9S`=|una+*xalr~f9s)Y7tu zOe?x@Nmb)5P;=nd!>e-+Y#Kqxi4FRc)35dWMg=d-(0zFj^wZG&gQ9Pc@Vlno+r5l> z5g{}V&`?hY3nGKY$i7+&3RqLg!HEPSzR4oJRDt{^vE%v;yVt6}2Bx!q-%O-&K!l%s zld-->Tvv)k2H=pJvU!LQpeDUtUeGcd9zTJVNv1(>KZ&F{~WVn)pt(JJS_gP zc1tq5U9EFx$CX6_yK89O)52fkg@1ZT03Yt&ID+Y!N5-nA{`n-9OU>=jg##-!{nf?2 zm!r7P0NXNRJUTcmuiLc&Y7_1Me0f5&)zK6d)xb*P&)1lZWDO`etUWHSmh6I z!c^&M7oSa-Z^NO1q2hc4y_B2T3X_>1&NDY~M1I=g0 z7we+{$NR3Jfci7jP8_(iu>rOlCl2r=j~gB~MD|EqaT0`id3ky+6yF5(;FpNTwhW{bJr1)MpRcH=58XqeQ)c+1b_O{CgjV}Ppe#m~dP3KI`@TsRWIDUx6(QCCv zZ}u3FH<7QASj)5)nDVG_Y%`8hTFfs($EbLK3SVHx-1^y zmS;^fTb-U&Xzz3Q=-ym_%(aB~38b!(V)8XVpMIJ)*s!;wX&%YALxW;s{{Exh1@*Au zjWuV1{o1a3zv9u)7_Kfalt?QXx8Xs|m(k#5>g_`h3%g9-%7drwC@{H8mIlnHv1OXW zw$0m)Dr6=m?9Jg~lN?3HkQDs-0ZPi_=;}+FK3Jp`7)mHOFB}Hx+~TQdR^G1dpkn_* zXbZEAc)ttC`Bd4;i$mZ2`}#A8%JPm_{a}*wyps4QD=n$NOUvq0ggGtK;=37tS%xAHVD8LL)CG1 z-GqXqp12qZR!FI}-_beyF(jp0ec)F7R0Za>)aNpUBY8PF?R>aMN-cD}7Nr_cXMSOa6!-quY+`{yiKl z@t#pc63(Vsp=+}jKV1+97PTy$4E@u*R0PGMPpHv+8~d?Vxg;vIV*XIfpv;Ewqsrt- zv_(LeV(OB#>_aFzGzc<2Krbj5I=cQDSwJb@g8RVD=zOZjLC$M3;xilGmptt4uK|?Z z@QN@FWJvfA=bgl?C)Pk%xZstzjF$n#Ej>L5?1c3T-*-1D_4J`}_qyxndFDx_0;Xh(_PW3)_PRgoG0c}q@gFVXWbOE&5N=qMn@oc#ks2UO6+q0i< z4;@BmiszO)-S5rA!^3g-JvsmUx$o^TF*ct1Yb3Eyr5AG>Yf!1z=?$_5Fp;seZ_p_} zJgm!ce2^)nQ>TtT_`P1HnjH?^SBs_7z@B=o38k#98LK*8X#bHSpc3YqEt1)7Ij!u~ z|H|sR`FOdRv$yvGRVACn4f??w+O5a{BAd1uV0&|hI?S(so#3yxDT z+TKk^q*=^pu6s4l;>8p7%M|GReYq$%WpXXCWZ#&ZjOEK@&)(^bSOp$wml)b_ z#yvs~eH^r=jx%-Q^>RT)y5S&qMb)_4Z4CO;7CmfWg}5*1Ar4kuLXwTu-x$P!L^%n{ zClY5RqI|l#yl5)$@4*f2tajDKmD7?6$LU@$`WWG`w+UvrJ7K=<8}4oNnShE)oXV%y zPCScibQfJ6n1VE9lD{Ce(!OM%7^Lg&Z#UleAEiXPbUUJAqX%m5k`I@`& zal-8bh{u#_Ey;s@9Xgu9FN3_wqcqN{Amr|dI`+zruJ z<5KfLD z1Jdo`q)oNw`Jr28Dte!R#tyM=4p z7d!j75va>@^jJD%V)`~WcKDl^$Xq2zO>bhqd{yi32CDFhFAUyd_*yJ_VZikC1l!V5 z^N%$&t6ts)=ZtcpqL-({b#0ocLJyc{m>AwF2|LmuT;wy0H*wD#k8f4rkoW;$D~qd$Oo zgD^sToCk3E2#;Vabuylvg3F%=>GOf+nahv`t;yf<)^Q_0d@S2GL!roU_mPu*|JA#z zoI>FTt|MVMc@kL8VQ9Pb>#rM0+G;W(=BvCoUG+*XEict74k|Gv3ZY4S#uYIFrGWlD z|1?}(yQ`xH@jY+_ju zNl?%jN-HVcbkeL0-G`I$2Y*TI&XV9&fHNwpQLNIKBy0f4w@t0S0GDSq4|xBsDxVFx z(+2NJL^+J0>PU!rFoU*@zK^#l%7PZjz>LVR_KEH&gcf%~FoEG^HW;wyRbROX4H_9!HO6+JNHfU|kE3Qqh#PyrVAe3&zNvEJJJuwwD=`n6a|U}t9s z}_+qRc~`;26WHEQuUA36DlAR_0v=qs8O9g+>4mCN-S(QUx4@8175rP>)+j?6#E^!0nLd3$LfyL?gd!sCJbAP&8F()4R1{`$|iH= z4|<>oCKnt&#^p;AvjS&o5{H95unaLJQdgmH)p6o0fJi~RXMI=n7uGaqAYnw)^*}}W ztE>`5$V_i|arPHKaF8s6!^RY_XzwmJJ9WL;uMQVeW|Fna&>va^cp zLfJ#}{%AS?_=uyh!Rcb{U;P>JuLeyS?f=2l-bdiF)(yO$=;$yp-!$vZA)ojbfGkf~ z46@(NGh`tlv1&5h0?~cV|>b@qpMfN+yqmT zt6gt%htJC~)y?hg@DL26gc#sJEZ3O8Kd!szb-m^Lr2-~(JUO$+gC!c;$v}tM8DDI2 z@<5WB?l5qLm6rZnD*uUR|Ll%mvqjStT8&UKQFb_7U|bL;S?meXTS?bNt6vj?IxY2_ z%sQiKE&M6{6RU#m5Mv2^ z#7kU7RNwV1cevbMz-zS|)xpc)6<6p|qF}X3vl^%`qy_7@P8x%e2(?10>LzOOhG=pa5D&*rJ#?>2-FHekcp!xoaX^G^==_NrM)Uv&qmGto_Et}(tk}Ik$qct0J z#7+>nLpxL9JX7(|3+-u3k!-P9yjt)Lq-1F+xyiv?B^3kt70EvQ+M$DEeSA^iBgJ7* z$Hmo$(U#ek^y($g>f$PB2bUMK?o zh%VZV%aq~nr8+HKZ>0d*o}(Y4k7!KuUXJ*kI{7E4x}|;%gg1QfEx+nG)K@4fd74Lo z@SpvUey6a15e-AP#R7z8Z}sdz`oy7L>rr3)kg!qDo75J7D6~J z!Ok=rhv)TU3lLt-qrvR%kusV{$`7V7+kWdsN$i3ulHAMXt%=6`(df{-e>r#d`Etl} zG~a05RAF{cEd62uy`J;xpDE|_d*5X=w$vY9N$XswBtJe~IgDaxaVFQ9Us=i8kxL)- zme>*|KsPrZ?STkoxlYCKnU)|T<#f4POwR4Mpm3Y;^&!*iH=BSV>ucGEjjy@Ec@%JA;EbPq9y5#(P819X&L zw=ESAe|C0ujsQhl{SXLUAZj&QS2Vr@<|C9oAhWZrmR`P_U)Qkb_<|KvV00v`46vgLiBP;OC{3~=U|(LkgD zZ~~3*XNw_3NEN52P&w{$@q4xt$5uNYy`ogm!L+Z$l&R6zq{JQc(^7gUDbnMq`uFO_ zW5}LT{-$a#L_)o_I%vfL<)qhklzL*b+a@etewo3XDJ?A`^X{WN5;qZaDnzL-b+|t0 zAf@!R_daUDULSC+o7sx{4n}9%152|3qfExttXFsV{o8hS-;Bejci3>~DXgug+ujau zrX?nJP4j*v?4v`FiK}Ex9jM|{gXXV7tm=KRkKVC3>1S3Pzs^&uhu)22+}RjMg8%6V zkfMGJ?y!W{SyRieO6nRsPP8a`1h16kSI+Zyz0|5E!M@b64UFPe*PN0vL9P$JI2-x7 zibm`ivMrHGKi7X)$0SU*(jM0xk-dz2rz81zx{U$aheM{I>Z;LtxDTU`#1EA@G|P`} zeR#;G`b%qgEv?ls!VB!zBwY z3X81mEYxNnMTCLF`8~@6*r@4GCM}XiT)nQ)lzGqVlYFH?I{XAaZUk@Je`~u>w{tDU zweo|4<19={u@gxd)jZ;5cEfgMaGugFe(f$V=zkFc0VPvu(LG~D*k^@EgqFkfXC;H9~LpQ_p7lG4D~{soN`=w;sy0 ztTg#H2c9ki-^^K3E!Eo@)Mx2)W@_i48(W48X1^c>nXx^{kCCsUu<&&F*w}Py2tqa| zaiBTH#BLaIx$Y=+EdAd7;Vh-31S7Pz)baetXi1PM;N|6LMuCzGwr`+CP9;nd>N*rB zitLU@BA;QrL75dHpZaoNAP9+on>d^lD4Bk)HuP@N11nkmqV5kVsabJZsrV;=jBU|OL=4DLT>@jA=ZQhLr_640wr?b-JhAghsTRa15t;NR&@M>x_lzVHZ&6lYq z0O6)_Q!<+4%SPhk%L#_YHLxcU4eO1z=828~Xk>eUg@W4x-uVJ72OeB_zAYf&EC$j- zsyEwHFty*I_}gDyK>qjz=;fl*66 zUaaHMbGY3Y=Ta|fq(O1~_ zAdVN#<+muo*$?DiN229c?jT##++7!Prh!f$Blcc0Q}HS)JZbhiU+k2v)mU$0a*upCDxbG? zTeH1+nR3lTIf_&wgnq84f3CFOr_MlHziU;y?4^-!%w-T_p9~*kbXo9I_&uL;7nFjH zrWDt>Tv~LIyt)wSBil+<++6fkS5+X@;5n_^lvL<}d1;bCCJ4cPXdR>ME*TSa=NH0j z*x*H3vd)^0Ki<8+z_u{H`3Cl^r)LoUT4Cd5jh-Is6OJSlt66#KHTyNJr@(_yVy_Rq zQF(myc@ML5J1J--yLtxls-{sJPi zF?tQoPtSOEMJmhszV3r2EDg45m4~aaU7xq37mT!CBGHW4q4Nf+FXaM$%EwnF3lwUk zqzcD$-35V<9zrED|k$)x)C@c0rt}C z?MFaGu8Jz1HoJtZ4 zq?>j4E$?2P0vB+WYM&sSezjN8RG(lg=)$FM3V%ofbk}l$pgeI$$DouXHEp5zR_pe( z(C7p%9cWa<{X2|mA>+zQKB@i~TnBThtR=amEP^l4`-`LLvSHPF*B_p7>tD_W2q5LE zRq1AW-VCRXn_@9)htiJ%LM=ndRBk-^HIRcL8D-J)ex^XDk~Ib*$v9Es|3a1Q)@wsR zct-kgBI|gykqO|jMI|MnfR0mRvB*d%n>hrDtqs!U4+;OzyB?mHD3Z(J?;9L+*y;ks zV$clCr{;Y*Dmc1Vz&hX;Pgt|2C-o1Bk27u>iu}V*7d6cm=^7HLb!1MLI(Ge&H zK*6Ep6%~7II^PF0erEOG?2qChXyC$@LUsbxJ*(ygfRR)*G+{|}YBj%RDO;S+SB%%C zq@>2u*&<-kDQ%zkQ*Hscoh^_+jua>Jc)TzHlw@TU6#$%0a4)w#E}BCCD?N2Mf$A0z zucm8EegJsO#BQ@O_D_8C`F!2vK3uB(iJU+wLrOy8_woLkkd_t(eFJF5G{G3uKu9K4_qh3V}z6he|nVa!U~PL&Ta?oeI00@ zZ^DSRGWbLw{E0bCBah}yD=w2t%bQ4*A7uc}~Rj_hM zDI5lN`V=0v(UXoSoi93QES0e>q2o>|~A{;S+ko+-ME{Z~g zl6Gn{9ACI^Z?R!=I+dQj13?+7`~|Ral{S5n;Bs}S!jQe-o~&7Kxr_EBc%V)0NXVxd zp?-m$e9f6>-~KK?&fbPZm!eLL(3Hl{)eG03IJVTmPUD6ZN?msMJU(Q3pDz0Svr`p00_)ZvI1XPfuI&A zhhC?k@G=CaanGXKFXEUUpfwUGBNJH*wmlU6DclTi89k)m>EjBNc3o%8EL> zN+HGerW;)KSQHB52B?BBYd%#7s)LZsepl3nGB5(oULyYKHnWO*d(sG#Z+PANkU3!P zu=B=!F8beY+FaNgUP9SJ!Td?yP=AmIcAK9pCMq@!up}7%hG^6b3-?!%q|^zCuq8DL$iflpW6K5=Xggi zuD}=dP)0w>>-?z(f)nLV=yvedWu-`vhJRXfJjHCg(ZrIY3UWBkw|fg_ib12mtO;Eqbl9ybs>TSA|G zS3n7$2ZRsXfIS*x85}Wzfe_*`gyTjrd;>g}ZL?d~68W>oPeAs&Y0Dq}39!64U(ag) zrPjp@;?lnTWcf8izTtT*^YL~o_wQ0vQUVkJ#D6Nobv)QV^N2eu`d?+WKboSXsw!@3 zN(rb0l#T1ocm?87aIFG{_&g9o`Uhia(wUrbfLa%#Ql|RXY?{=P9q;}1@vsM;X%E2j zDe{k^!oq6DV?_XRC)S!BXqcFaf$D0_{j>sr^$Oi(ASC(~NK1OZo^t>`z6@ZX$MD|3 z{FDFAR~r{y`w@*ASDyjX9pq%~)$c0~LZ-t6*S|4)0{+6kNWM_kza&(-R%7(f9Ixbm zj1RzIGAT3$%{u+HCcA%s?sNmL>o_e&PC;>fR1i~RI*z+gp(XM8@$LrTse(#g%YWLgo?LYklaQn#t6b8WGeqKcl*c5;m!Ssni+lWovDgxuM#0+lN*l;!ca^_kH z=JAB7j*#lLf;H{F@*6d!%qo(s=;W(P5RvozGG$ib%?lTVQY6rgjq$){-QVHX=ISA3);M8N>$xH(>IuLCSP$PPko;3D)NsG}JnW2x)E8t*tZ zE(%lZyfzE3dT*f;mE3q@3QLdYpVf6|(%Pp*y|Sugqbxq&S9BC~K7A@p$jhgum{;R@ z@8StTbCC;<7jC4*nNF~;i0=H_oiQuP72)=Luu>}y?!hA2=qtY*^%1cdc69xeU;7wDSr><({#&qcp0Vt-eVM;%gztnu`iW{VZ4#L0GdMY8GSMh;MrlWkRoLOSoN zaLEzU);81KV{G<+(u~k!$dB+#W^KXQ-1D834N?sD6-;N$!r~@y@80AX6z+oT!U-Wh z7D77jsC1E?4{0`Iv%04_(>l-L&>V-Fsd9^2*w;lcu>f1xO%P+ptfL~UOl^>giZJr0 zu3-=e06j1Lii3ewF|oH3L?jr&JoUmdmGs&h-m@4i;>$k6|Jr0Qd&qZY8=noT<26dP&!xR2MgAMW%uMPzQKq^BdUvymnJzxMZo8~C_F@SM!qnzQaVUFCRGle-rLLR1Zt;if=w*lA zo%fNVa?kZHNwz_TCyPNXsy|`w>a6cLpdWJZW&EhPaH_AeVnvu%4BbC}#>(xsik9az zUYhod|G-O2;Fp_KWvaQctL?D>p7=D$*)r-1vo%xZBe}2wr1`32svEScrLBBGH?%wj z`U&It`)O^1$a0&QmKK6|>4U^~Vgv|-fBIq3nGgU);o{7Foyo-W_RJ@48?Id(ol1U+({7JOZw*QLI4Wxon9ma8u!czBd}TiN`ilOIjl zTymRdo7CU$Ixc^ZJ8ZS-*U&4qc_NAVeE7E7GKF)@ZAuHWq%#+pqHq2}`6V)$Z$iaa zVPAJhi5LPAFycEm6&)r?P8TKVKav|+8u~lHB3!@fIcw2-zy9zrAvv=@av0lA9Nb{6 zR*T~H$Y$ST{%R%Aa?ZsAHKK@4D zD1!b9oVZ%rl3PT4o}dRlJ>?NFjCIB|wn zDZMM;S?-0#oU>&9p~_G$!9oq6U?!#(5VT5oYuPgf-^E z0&;idnB#t%+oEr1XP#m1n$f>GYoyhR<4gaLGn2=M@EM9VGdYB$QutcP^Lu?Y-=XQ6 zoTJ^6Ij}@#JbDtl-3t#%g6=bSnmkr*+40S@Ktb^Kh%L2ult5k^lLoQ5m8JRT{Lq3G5-g4W9M*LHJbOqb9Y)p-&VN&T=zRe`jCOSDjz$MOfa z5GPrAU-b&uqSLA@oabXzc_rb(SWBWGIpE?8PAda_V z?@mgr*mfe33F)EG?k5H$iKeIu6Q-PC(x`Mo>1?pYe7xo6v!h(;!WH&UxMIW4oVSM7 zgUMX*+&aC7xFHbiOwlxdPCKg$v`BM8Itc6gDSnf{85!aGaBJWXgeHzx%FqvLe4+UT zF~WxyCSJkeZOghaz{LL?@RKN`H(Mu&O=+;*18(~o+I%FH0=0^I>-J?eqqQnqtEyLbMkpt1D38v6Kf zn^tWLd9fbrqew#{o&RJuM8*{*^jwXieDZzp&o0izD$CrnrQ3=p{RxiaMf#Ei$ zXqtkQaH!9qF8Zc~$bcG98y550Y=jiz`SN!DD=PVZXqx={Tz^(_C=UZFNDK|pQEMDn}03|hbFM~b(FP|cQ0tP#KKXKoO!&O0wnsz{j^?+}CA;Be z!${=$^o_{Nl?h0q+lyAJjoN5mss}(iLS3<)nc$sq*|gbUZRM!wvD7i~gwGyr+8YJz z&(i<4gbL3JE7UlbS+HTH#zA1wt=bIzJkA$dvpr}l!dr-ZLRq#s5$gC$W<4D)>y&V? zET%Pxix9|ocg#}Zny*d_F?1~cFA3KN(NhqJ;g@YahF-bcwihkPiNp(&p@UOCfS*}{ z71pg(yO;-W4Q0nFHepXu_eD&?%cU!-oR$A?WZ=*jTG{RaRpC(z0}D|}^+r=ByoHy} zWUq1e7oX1Pn}im2b^dfdm|l`}h@Q?I=~wDx0_?BK7wm#4F$1pXi~y2?Ht zWpyn+WvETpft@M2_%!(=e_8%pG&$3$1r;*|;)PP5NVnRlB#42kPc}o4I$70>-Mr~{ z*X@dpM3&H_jR2_rjz5vQ0EsQ3{AC9z0`6_~p969T1~3DYqy}s1ks#G$gBTsirE+o1{V08B+#ihPh%D=qxk{XVs@eAzFRzR}xJe-6G?6Vb5rL9ENk?-y6pRGtJ9wY# z^_iA_KMI#nJhrt6Y2kXG^chj! zRg5ZxBF``^PsoYjr1U6$|FPD_(s2F|Q4yfH6Zb=>(8>Hwhc4WkNw{@(p-}MXTB`2& z&taQ&Gw*}C+RiTD+T%5sG{4;!nub#G7%SOiavcPJ!J3~$>$C?(O5fS$sftqHD|@Cf z(obPD_k5=zIAffCd~p4nXrkm0J%X2`lA#7s^FHL``$DdD5EJ^arO_xNk>YG5!8nK^ z^3Y#YNuDy@z`)25ioqC-*{B8YSC(KcbHd#H=>Z|F?va z4P1wtvyqsgz+6AcE7FJV=P^i@M`>5CXLJ=aitRsPcrKTY6DA7{$$;Cza2 zdcH2^H#!Wx+Gr~kGI2lhM;5zIDgX_U>&+9_3e63gSf}?*`@xSHReL)kaVWni;%Gr; z@FofOhT6PqD|x!r%QZ@7GlrdDZC7UmyawmbfJyt5NtdTgAw6*=yrCLWeF)bH`G_}Cu8NahXJRvvDd`pk`T^)xY866*x zAOXvg+N#_P&<}-!g|nffoQc}iVViYLesghgD39s0NW1Z3`23&|l@~TRGzv4uPS<c)&cR5*z^ zocR3}^m(Zvw+7uLx^D42ujhKZ9;E!xzBZR6k;quzor<3WVlQ)l=U+oI-#gQ-8atjy z6;~lv$gQnvfPU{1{(r77!{vbf{htt`3MSi3c6FA=xlR_)mmL|sKO>;+*HiT}c;y_X zSDKUC53+Mh)!D)WK>VqRe{01$6i_*y#7V{rW-!v0^Di(wAEE$p0kk+IW?U&|dUc3e zB%$zf=C%zd7}BHhEhj%*ZG>y1X>7qM!oWdDcLrw3^bmGMN`}4$e0gUMjR)LQueu~@ z2sD^e_y90cN(^m?GJG=vb@wFU%2}5K3yLe>5_Tw2U9?q$2YQ61mNxCQ9nwyheJ*SS zaz;iZ)c3qo*hq3C zo6lkMLrd|q)=2)Ff8wlpp`@DQkl)+b{bFanW0WCH<9Vmb;Zcm)8(TX!bLJ4PKlu8gRNldiByKctUABG5l5~(h=LpiqV;A^*Y_?ZuSaYV6m)iY~>k=}AkA;nGG958YooPJwRIFqp;;=V{n z=D~aRYDCbAT~(-mjztR}em#$d#3#!^!Skq4<3MB~@Qeg8l`&3UH&QsiwQ<*C3kK!j zl{Z@eqwK0;DY3>seZ=NU4q#bwQ%ggxWW5&3)}fepm5iT-S=JTvIlYH^>d!&!zB`S0 za?5K~NyMLmUWg?pG=5^Pjh+CP%mK0ADv6ow zu~mb~Mipm2h#^hJ(+S9nrHx-3kR^Y>Gt!vXdf=aodk;e7=mjC&Z@3=6_n!%Y2e;C(2z|t? z?sjJJIhiQ3S#CT^_cUUQW}L;H2l7v?7yt0D8;+^m_cNnSv0576KK#2%SJ+dPi-_vL; z@0g@(K*m`@i6VFi9wtiDj6L#U`eYaV3nWXGqDvPE46$L6bj~>AvYer_Op;k3W& z$_p>f-g}g8!oz9&@!9J5yCPCdX)7*$l5cjJp&GZxhbZ4&ca?QO{tF+dz^j>x%=7KW zN9HorH)kPYiKJhDT816pgXkAAN$L2e$sm;VV#@s`plop5l|vPb(lKLr!qLWPOE=+v zs7$+Il2@VKyiThx^JbOJ_R{Rm4h^xBhId<7y_kiY6QEYL!yrMiqVruscKKWmg#M2z zehPY8=a~A*Cp+Rs@ql%R;sy6yiP6kg@Sb?d>{iN1nKFtPHlh|fT-K=hXD_^NQv4#5f&h(wjnm`{&f{s*9m>GVeRf=N*0 zn(zzu91o80CA9HsLfHDcjz4|KlB|;sQ{1N%7CBF5!=54sO|uVgzjKz6k1Yg4x(w^* zo`=1gc^GzbuOh$Ir;XPhCUkn!MdvH-nRn|!R`p6vC+lEXE%%>1nlf+oEIjVGR* zWET%XvbX!3?7|s!SkDqPd}thu`pd9dxfhc0{APv+gH&jQV+W#g8LR2ob|kVn#FZr`J}NV4$z_ zfmwlR`*b0H;sb8WZ#6i9nIc7HQ`Qd+Ma<8j*S*?yyCvOze;;Y)8|C#bvYh?PF*w%( zKGHY$uX~$|yVtg-BAX!kv7#UMLkW)Gm!o7YTLk(=3@zin#W|J{4Dg>qq z=8{^rU$2EJ5JMM5rOf)9w7KY9*fiGZYwTbR?*q}Sk6Tf?W!{CU20q*Yj!^B>e-da% z|ARY6*F?Y!j*WH&0Y;U;JZWLAb6mnR9wp8!lG&eZVSW%c?kaxP+#P+l-eYXOHF}{P zm4za3rZummco;@r|xEwjU)*kQ=hFzHA8M3HAWJ{F8t z$3!>saBXfu{q7m7j{woQVJFqL@1g2VBfOErD*YH(j8*ka+&vF&7}U1Hf1q!&P(Bjy z2^PV(ZpC9H)a|`7-5aIt{lKqrLd?%*WG26$TOQq!*3iqJd?f`@Ex?vioDQRP;fq}` z=Hu>%tr@V1QG?X6rK7?V=|9yQulS9m5)(fq?x2OS?4LQUtEDAM@Ew8|*CgOeo>%mN zyCXlkIf@(aTTsDabHsnOm-((moIk!{k7Wq4V8m5F&Xv#NK9)>O1+GZLm#H5sSl!_V zuA+KR*@5}_B9ik56$+-9%y?jQN(Jr>ruIo8a_o$Q1=M#>7Y^*}wjAQeSFW@B?1nR( z6Y&WQFxgiLRIo^(3ZqT6H!eVh8~D0Lc=Iw^JScfWIcS?oBY`(abXXuK*(8m}`VHpF;-dFZ zTUc>HmXZ5ZdLnZwsomsf0IB_zAZi4*b-qQ6>fPCT=>pr+rNR5kJ9&&(^iGcT;9{#& z!uj>R`TP}s)lmKC^2qGvb1%%}@od(nk4H9B=UWs!<>XaJFJIr6pBqu5&t$=5Si-Cx zlGB3fXbPjq!JcO&@VXNG#+$B(&!e$-?uzsexzTJ##xvyonX zhj~8_ROz8QtEs}jdQO3MWUs~*TW5_*2s{V@(T6NXPP~W~9_;V{3q9&oW$1u2y{nXS zM^&oG0;74f8eX2BO1ba#TV-%(k*Ex*=|f?-WcI*Pgd?NKFcfBb-uNTyQZR%BCK(bY zNRL&!;|x)<35~5C9mBFhPl8ij8m2;vRp%l{IPeBp-0)1h6N!ny>Fc^PqEdz0mV6d< z2|0}Fj3^&>9+-L1g0c$cZ`CHK;<@O61N1Q36}~HJVcXHqiX@x>QSnT3E{p-s)X4KZyED$6dgQH5l-@OyqqR z$%EDxj4u-9atjOHAvGLBw+O$mrx4WB=Y4X{JgDXJz>x?Ckkkf6qr1N%N@p~DKWhJ4 z9fPe9D4*OK`br?5XUEoJ8I;eraspEFRqz^AMx`W~H8Bg(0~I;~e-m|6)#|<^nG@fm zK13#oXPJ66wX8WCjf8OdOCjnIaa`VW{Tk6Hntngl{>gMfAi}(Q9 z9yFM;bLwq)HDQ8Psggaedl(h>xkFVYr*mRO&8N$D=!-Y};$8uXX08bk_poT45!dag z=e>*C>yM1}rneQuI`fRay#^7y^3ByM#0TU`Ve7O=?|H(&cv{|q)}VRSviVU04o~^p z$5oqku&zQWGCO6&JiX6T_0A0ewM2+Gt;&~J7yfq)4TYxj1u5S5yZUh=Mb;@hsEAFW zZoId4uWm%5YRh^b#?59C_@cQK5QONsIkYJ>t?sQzU zdv(qbQ*{4$Kh={Mi5L+u4`X6OT4(7V zBr}y79W|&;onM!LK*5paNUGzArV)P{%c+hHnRddXhEYyGr@~H) zq*|-8G|1G0L{9SNQSj3E%e{I}gzA!fwl$G`<9FQ+WB-X(h+O?5orXuhZa!N^484@= z&AV=_VOg-+!bFntO+^}v0%c)PQ|e2T;DgxkPi2*u?;ly<{t9lcoiyuW zJ`kOF-If{Pb)teQ+vJnDeo=qhba6Wzqg!rulsUp&OwYgw`ePA{m#iESRsQfdgFWf% zuc<7@*GZqFvk0#LL0qWJD!|5UNmyhOJzW zcQqAu3MK!&<*yvz;wtVF@e>vM6w$ETefs8t>@hi$_tCV3Z+|KqA1genQ8%DA6;m!3 z$>+a(!F17A+iQpwGXJK-B-i_iL)=K)Rjz8N?p0?Y3H`GzTxQmP*iv(G z+ajN*@}vD<)gXu|O^hi=3$qLDV? z=%2@Rd8sAU)VBa^L@Z29L@X>UC7kiCgK=7NKGC2Yxvy_43E~C9os2!~snvaRcxWK2 zSG^iKzI3P%!k)K6W#GS-e&k0c+v8oUs@B`7Uk8)zX5)Lkvu6dUliZIZ^?1Zq*9E3F z8%Z|?tkLlnwS{6jbg{=6t*CX1i+z)NkOIQ+UR=aq(eMG>KO(|ZWCwrI3`KVNwclIo z==P7P5aQ7no7fJhMEpF{QA3~`eAPwGl`b>yA!C>Obo$}J^l5;Zxg}`!pj&(EU+>i1ILLpxSuTVpllxZ^-@tqLvN6hU`nYqOX0ijqv#CB4# z%WL-I^|le73@Urf)1Brb`PJ`FG(x{a8MjUwWz`J3D?fP&z27~Jfmwm&om*|C+dZ$D z|H~VNvU6;(pjPLw9h}Ge>)_^G&_3gL!DQOk{c7s*1LwW?UN$8u3--FHeD77`4JYOBU$+O0Lu6%tMWd@*QS@p>XB--2 z@9^FHy}8{F0#cD#PIuMUnUcec1yxyJ5QFKY#Tzzp(L!65?Iw^^yKsq^pw%B>s|0L2}TK#p9FE34fKKU(1>gpoXt!E`~ zV7sM2W$QOsU;k*5Z&t5zm<001jdjH?5jQS5MwgC%V{xwdW2&wA!+f|{Z=q$zA3Nx@ zPRI7mnUBJrB!7=7H66yGY!mY7rAOfZe<*z!#OXt~#Fj$Q$~Ht%Fnu#Tl9ih= zcNp)|yk=AZZY-pgL%-T%xNK6^Mmd>3f+MpQ^o&~Pc<{(J2WbJ|ezc5n)t-zgaR)m^G8`ht`dRd>8bHXZA2G4)r)DqmhE@`j!^tZ*dTl~f1(-j(Mw5R1Ven+hz^vMF>v}*5o)Mb^iU{hu1GJ+3=sJ9VI(^4E}0;$nC$s znPG^qQfZZu_%D;mDx-7aH)-pET{fs{py$wK@VRfwx2O0a;@xYj8zVyzm)7vtl`d(R38E$r2+W+LpD+tYBKxv5>WgdBYXxhIqegtT{J^uygNX~iMi8PK zaC(M>G=}BBZ~e`CbNn!7A2ZvJYzAAPTO7{NFzUZS#<7Ct$Ui>&N@_frMfln*O4X`y!NH1Piz7VOJ`bxtKe+ifg-Rr* z+J?pdn*PC9Bs*UfO7J(7<4sVTkmpZUBz^fY$~M{#=|$Cb`U>$I4ch)pX7&kvRg)5J z&m+;J+&bl*+g|M93KB-o73KJqtC;QTWp_V+KkeqzXO3aY)SHOK2?>bh{cPEQszMt~uI0orqW=Xbsbrp&BMS!GvDC zuR!c03}EUftQCQfx#6h3N{gkwMTTUG)Cv#DhBJ zRKsQB7pcyzu#sdnx;-1D_jND}H$MnZx)2smc0ed`zN{t8X6D_9#|7&UigS8AId`?? z8muMQLNX}uwvC+ZR1>#t`?7~$s35X_@sUe~(~YOB^vMs5IHm9#63Y@h1&vr>Xzr9u zYFrHCAKhK;s1H4rGIFmr@KM@z+FdU=boN3=8nCEA9wmCCPi z@HP%tLVV%dK6`)Ej?NhBuT%s6@~y%ZPFo~&#LnHPLzf8ZBMl+NmjOvOjBn8TN@TJp zN*K|dS%S$QYo_`T6Vxg!R6Z~wz1|7BY58j2y4JDI~F*3q=FuzuZ0Wh2vgqUE+yxLLZ$L8Ea znj$88dXX~LC%A;bVjB|Mfv@l#2viLMdgB3xTlODeu|KsUzl*iRJVcn(q%&w1lNek% z9^KP%x*;E?`J$6JGc!7i5S5P`JWmxX=Pzrc_ZYk%N=1Ih09{~ViLS9SzO#S{XLh!%F@pG}b9&!&E~HDp@F{T>t`5iJx#Qo532xhI{% zRK4`6CQ1^^hTR9&&Pbr=apSazW?U%f4ALG(FCML3o?%YfUD_E&-;De*Bkpa=dXSz9 zi#fJ+96WLqTlG|iA1zAZc@onCCdrq@)0#r`@O3m@-M^f6e6dfBDNaJ~%cH5*Zpaxv zqP@6J_+`rljnZeJabtfZ=;MpRVz)I#Fj#f{HBIW}pVx%ipCLYVfOW+uA^UYPGVE8g z9^HA^t-&MbWugZcd?`;|ZkjSiADs;Baq9LdA;{r2=|9ppTz4g()jwuULDm|OnM{tT zviA~>{~0cSyFM;IpQlwAn9v^EyLQs5E+lVMqe}duc7@OuvU3b$u(&Nj(qIO`5U8j& zj2c^q{dhXs)gkTm$iKt-*Lw;+hW6A?EkQX%EupKvqCcF-6VV>g`+lV@i8Gmoi7C&j zZjgYta`wFg=0f#+C)%jbNIc_-!=^lQ1`XZCb_wMOSG@j?@Zehe^8RJb<&`(*?x?9I)< z!T{-mM`ckpBCl+_=Rja*>&aalky%Rr*6iUzFYkIjBw$Vd z-BhzBtf%+#yv?3;1JlprxC=k9Da}^G>dOM{MJEL$la^nzN^65Aeb##^LA8upe=;$? z!rbSzBSe#n{~(u=@F7MNh6w^p2R!62YiD%m>MGh~)>Qn7l;LY1*Ka;VdTKQ%)vipK zT4~gKEAt~8YN?U@7+!pYGZgd6?iJj@{TwRors#G#TA8-{u3m~|51$Oy6i4H{Mg&3 z`oPF^XZzmBUT41I4MY^+YDB*6SD-j2&C!L$95-{VwHUs*z6Jay((A`Fe3+uuWT-d~ zOD2cS=bskI_`$kgJ$fR#&pKK3V1#jRs*%Emzglt%E#JsoSUo48JGu$mR$%Yt)cxrs z7^Q883vE?LfDj=HJ0aqbhq+`?!{MMxyF%v~=Htf8;Pd&+&_f019WrD6GPYFA5N+Pc zpVhX`@o_$v3deDidwHb!g8?!9Pwevzx&S1A@0k$~W=I}H)>P=04N zC}jF+SN=R)_GdizUQ@M#006k)eW?}u^mn`JZTF&pj^i=uzwH{6iJT{f=N3{My+;hE zfqnU_Y%^%uzW*8dxG!KjL~52is$7Q*7b%%cI;8 zOu5&+oma`ow)v6poVrwPV`5g~$Qfw+$}l1ctB&78077NQ5u%Y%^hcPIYHFd>-`BhO zaE`IUvrM8%{(WZV5=|5~v>5Id3+G}UpGn(H0UTYp=W>@u*AvtJXe!XmCiMb~;*Vel zZr7=TRwO*Tx6)*g2f$IlG&C7rSRh!=iHV951;7+~^e;35b$l$7VU;oapA}`Vpl{stg<>I#BN&LS=i=>U znpEt~o1QE}o2o;~n-i&Js*QF2%y4M4OI*nyePbw~oV!g~##Y99e0%Y`!FBSzFQ%$L z*P^eTzR*36=w!V-XBS0=p`M0P=J39T2Mo5hKj8|G=4Y>u1lwh zC>8js(A)zRwx65c)M@9Md?cb!IPm+zT>kahB_(1_0=^6xAcQ9E%#B2R$COtdd0~jM zm%bk&bo2meWiq`Xtnz9x@yaK1(}CDFn|#nMg^eUHtkQ`8p>C_vw*TJ48RGX}PJ+zv zr|peK=C5lOPX}=!PCOG&i;fM(hk`UgStp+mR}k~hvoc_JFSb>UpQhu}<0a(Tw$^b^fRPK}^G1bV(3KB>~Od zqX+t+D-spv{>xm*8O9r=I{3gJD)8<&)S+|~WYao!VsH%F*K|ht7%4IRp)&a zv#i%c63?1Qwsj(6V(%JVM*gi!uk5S`t%|FueRB-EJMn4FcO?m%NB?i${NE5@g6=zP z%B-}crZg&U6c(*+fE}koTKZ7(qlKESw8l|t{_)_)Nx4`DaTqZ8RZ|#H%tH$QPz#^^ z3QmFxEx0h6;$M`0RL9>Y1$6Vbb2Ip~Kdy%V95(q(ZY*f`HweS#SY=9gj>A||$Y5JG z;SNNUy6QzUN5cNmujF$O7>pVDqcI;j7yIMF7}f8;Sc~quszaJuHmPc?s@GlSgkgG) zwizBP->-G1O5mJ4FqRxKQ^MLb5bmv2FFvz`iw+M5E;SGm`5^qr#_w&O4;h7%MV|SJ z@LnKOOt5;NLn}bk#yOv6Dz!exgX_HZ8CyM=s%Zej8q;O7M_gLV(bt1KZ!$GLO$Udw za>IbKw09G}CjNIu*2cvha-qMclen5B7Ydz_DqkV_&H$abph8L@J?(|0nH$V1mg8o7 zh~Sq84P=tXk$|!p#X6&)w9$m!3W80y?MeysvyXkwTz1&Nq)bvJc%0@VUCA7M21hxp z9I}&wZ*;U9sv|Bo8(|+kc^GDhY=d?HMB@5$3fyhAxA<43wmgnw*mvk8ktmVBfpU*a zuTbRzpH@t0uNjlXG>1SEh8W3MpOBjonP$eUzKU&f=oN`F(AHJ3&nDP0#t!-O!(y9*Za%8C7+ik&5|I;UYgL3S$&^jUDxGquop&D zKr0o#8Q`We7gE=(PVvp_G%FShjhae+jq(G`v*i25DQAY|YkuTZWUF%m^?n7sgi>%F zqlRZiMVzI+UHm4%CH^04h=!z$jEH@ZFw&bs92Uz#EE7zIdS?`Qd}|14{+TJdXb|Ko zGQ>L9EyeVO;A8Qa@fh36xgQe~eC8+doFweG{UwHv4b-HxgN33wsu^+^EvMoo$~q{@ zx9$l1wU-r_W37lv28Zr~4ObERbB%SSte)FLS6@xK&*mty=UTIW9VMgs7y9fqDUT#3 z$(nwIcYiooxj~8y{}&bYs+R`C@CyQkJ10DfARo(7ULEaRWlR%iGVOd#dMG?1Pw0^w z9i5U6Nt2%4PcjW6HMKK$uYX63Ypb)uK{+wITp4JyLe97rjLN=!KPZ;#jo2~tZ#93` zJu$X9)?8DUtV)_F;BAp$eJQ{doxq&4wyn6Wx8KLBWgb71F(cA=*~nJ&Y{j%?p#ck> z9%(`NGIB6%E1R?(4C41oo8;xAXc%ro zgGlc}R1}H3^P{$tzQ1M94QOzTNn~kng;{S$W&+_#?f85b$-2`>)mIr#2KoKz!;ja* z124KBwBm}xWUQ0_Wr^vLSg*c5%hodD>U?>2MHKWF68cgZplzlz*p2_H!0HXZ+1J$C zf=Y}Om-5^IYdiHY9EHB6fpjp8Wv7^DVkA0=95@KeA5t{KvbNRBI`S7gV6Cg25PKu? zuL#7Tqo3>n|Ivg$bsEKZPqQYLVe}el@Z(h4Ayf+6b^nQ4sub* zjqMJOQ+Vu$bsTwM;DxkEaBKk7gbN9pOLpcMlnvM-Afgyjfsu|@eAIk&CaqE z?*4W`Wgm$kS0e3U;H4<^(!wrWY<-*PRKMOcyWw^-^FCHacq81tZ+r?K(Mh`^KC9U2 z+G!-SP*kH9Dfo9#vI_?iMko($Kb+svt=zgqmG2`Pu!*4Bg=-G|N>NY2^7|UHX3oPP zHx{d5c|$(+CnMg%E(~O3Mzb^Ag>>tT)4)b-Sk-}Z;|P<1WQfOqh?nvm1;y~$P==^K zbn6OA33S{UDWS$RH8F{bi*pXw!rwdzEiBaWI_v&_@KO@5({>LN38jBvxoJICMZs{j z#k)5nj@3vaK9rnV2tfW26I61WWEQ!vs^4et9q%HDB<6)TP&v*YFGMUJ+?+bl+s-V` zR<5)F42D*+Hv0z~^tV0XNqkeP^f-Z}?cya){<4x|zbF=W%E{F&k{8|Bu*-3{4>^^R z_bucwROnX3^asJ#H%uwwc)cG(#&b^n76_& zw-@7=R>j?f;jpsOV(QoGj;97x3HqEtd1*X}wZu3sc6JL7l}pDIFaIUS^yZ!QTQyuw zL@dhb&aqdctgLT1>^bmKecIj)#dD)LKmG79%=`q1A$MD>PUC7K%yDPGSqOi4n#Ihg&^5Ha1T(?5-Rn{{P)GlxD1 z^<{s@-Y@k(Bfg;{r?Mrs*k0R~CH`^$+hJBG&C8Tfu*Z$SbEY)Odq<}{)hzw6R}h1d zS}1c*5`V*2c?tooaJr9v^lCdw--p~H4p9T1+{7lO<=g|zqm9#?-5Q%sEq>n!amiJ* z)2G0MBS1%LdA?ug+bVpwcHuXSw2{f%NFx%)@ZvK)vyvlG@3_smM5QzNRT~yT7TKXd zG_FM2>w|jlhe~V2Lk1gJ4;@w{U3Ni=y|ZGEBNJt0Epw`XGZJ~(|CR*CP6g5Nu>yr~ zh0B-Oe%Z`qs_sSau4!V`7t03ywicreu}wA#-=?TV;2%IyBM%G6QP-8OY2eMeLxxvs zg0E$i)O|ra)I_=#_NMR*%xG@#s z1n=@(4@a$0lt22NyI{=)hM#bh3uo$mOGu2}yCt-4vC+vr@TyVh?-4> zAb|YH$_?7#V4C!pX=!P}xp(N|*>)e#tRF!JK_}uWUTFcl*YSXa)|?vwc$*G@`JnRU z%W4}BxHG{%BfvxqrSQgp)YrIbUgp!MV%jROhs^|R(HH9MBKyCRGcx{MY4&tHD5?7f z(12t76g^6Y$4d>+{lj=h?ej99r=synfS>^&!t4>Qpw4!XMacms3=5bkq@-jq>VgQ} z{fqez?Q-T9(q6h$WB374GXoi zcn=X9_5tZT(pqK^i5Moriua8!cxNN^Aa9dBEBo~VfHgAm^4&%ipVjf^+MX8eTEVyU zt*fi4Z2`a>bng=UgMeN320%V1^7SuGy2@j|`el07O;8)AeG1f4^wiEcD&a#A*X)4N%ilfIV`sd#WIKr3&D1T7bIj zCP0z~KsiY01pf`2c3Rf3*{_MLfPK&Z8VHI`UPbnHQbY=fB{1oNpO)f0^M%u7dn9!b z@aYr)y^0mQ0`qad_0AyZp8IT3SwlX}^x7Y1NZrn<8&&(Sw!6d~N4rJOhPvfu;Jg~C z=A*fLx^A53NX>lWofuRnIArCiZ|phk@{cTh{AZS5N-?96pK_sh)Ng6XNJK@|dAYCG z=Wj(xKAs=xFq8Y9R&a#MxMGsM$}uk&tO*JgjFaMER*!#`TRkXH_YA7OpeN3w45ha= z_8aG}vZr4QRC|Qzm z>F9}oAlyw_s*1j$<}$VI=)t}l?j*Akq;P(wp|`WmpP&>}=1CNq@@k%eP#ROxhpEF@ z2D$eepE~3Ee--ox8wwUXETI>PIXS}1fs|^E#uLOmk}16$JDAmA*!vcSSKG;W0McPT*ZK-a6^a+rVqDN=4S7@zS#)-%2Zge>^Ari&3Y-V+l^ zNkk|L(HEH{BO~KKhs_>Vz?FbTFMuHKLq0{VZ6)ZNPUOe}7$m^G1&4)g#wZFEphRj7 zPZg+GtgfV|9|Aap+5S`k=Sz3@H1Xo&^TP=`sZh#tqpRbBMIIQJfDDS0B zj5qo5il`^iEDg}%n$8F40qssWLk68zt}pd)@4LW7-jbLP>QeuJQsj1oXFT z0nn{$fU0oVPBe>7Na*d0qWDtzRkrQEu&@xycZ5=pp{m2}>3TRJXDHa~cHD~7__pjk zizuL=gfqf-z>xO+-U6Jkqreo%N+3_)`%0}R{B0*Vs- zeY&nA@imeF=FjM;v%SrRq9a{_v13>%sz~y7H=ckzzYf?NSRtNM*q8ge*VlaCIBUdb z>RB}Mzin0})zq}VUD_z6u4Bx%GK@lCLDTi)p1zif^PCw$p zgad>GKX^gll+X1v@=de!cCmSYv?;^a)4tq`CRorfe=vcyNJN^@p2GcCyw%HvY~Vic z0C;l^Kiuc)-#1+@I(pTg+4Sgqqcc5N?>>2e_iQknvN>E_u+Q;bP(k?;@4o%_ z<=b=y5e@yd=jn%i%4=A&6u}hT7{wm5s&cFI{$h7~x`*D^QYAGkSyO+|tp0KyAL{Bj z&3_s8__r8}Z_UMXU}+ zSXE|Lp1s6q2%<0_v9ln}Y;_x_N%Oi%^VT~mYD$Zj{JgBn@+ip+qb>^hzr%FXy9;ka zXkh=5(N3c)TPr*(QsEh0^5p5+3cun|m9Fx{Bw-|96C~h#m$%|S{5C>WJ%ZV{yx`!B z#@Y2yv#x4;bv`FrJ2ot!3e3MJXE3*-_q#W-EN?rG1Z zP~i#&0IxsfpX2K~fm!WqLUyweD0CpdN>K?%=;4sviH~?E-RJx8HE>rBhvESMnEP~E zLx0-M(Y;yEw&_et&*#Y*>IabKzMbf?;|a2X|1nFYXNHx|0m1-$?(fbAnSrmJ%Mhi$Gqg3n8E; zm`W_%gJ-$87!`Ir@27_Ue)1Q%5ySyYlv5BujsQXc|6Q>Q;1?>4dtV>7JlF#LeA*xt z8f}V#S2(WA&KjvlP%trg8w^lbF~}3VQ@w#DA9KsCUuzt-^6&FX0QTVH(JWq=WfnxcTCFaV&;8*+~V0|UcJ zh0~x;EC9pD?s7QC*9&4CBYV6Lq(prqBc)X*;C!JJ5=v`*zAuWv2gd?u+O#x$-K4a~ z0m8s}2ZrpIrq)=>?BEHR@0POBJhWSs3Ua(C{|OI1f3@gV4o&UO&*u?P6R0|PwUAWR zP%vylkTW(cC8Q>DaJWcB8dOT>RVG(c59deFQ9^ftX21xSbMo0~p|m4e8)07RG=Q0{ zAWL>p?6gB{EIP4k6ULaxei2MSj+?6N&qx9sAt@hLvAUp|n*8XK>miNgE5j9?*pojw zV}pIHv|i8GhGo*t8trSB8?2;6jhd2)?+p~1H+``qedzEGSyl~L?C< zQFjt`|1ho)Nf55roa)0kgGTL+B0_Sh$cJ+*J+y1s~%!IxcMl4!}CZ%vjRTB-L& zntj=5xU3uPX*0yt|0R*bf%Z+$T+A`N6pz)*=1 z`+7KAE2t-A;7p=iFX$)8)jyae8}|(^C@>suJ@R>!-`~O9b&ys{CMKxZ^~ps zETT@y!pB@$lt=9(N@YE9VJve3dLU>4g{VxkXIJ`;UPU;PhP@HQIv{+YSLLVQEWUts zN|tXNgh8s1%w?llZXhZ+ngON#pRS220M@Xw3Wle)!1L`Uj2BSHox=}-82~sx(uRgU zK~X8O6mK43G;|y!1syP72T7FR*;-E4Sj}#dyJi7+T=UB2ajQrsp?GHf9BC~xBO_zZ zCitMcfm|6=vLXToVeHRGe84dgYGWpm4qdcuEEy3rt>q9b@TK&oDI}{8m~)D_xNrfsvb?{ICm>YrhuopzF&F@Zt<(Ng$lhe$?EKA|KgPsg z=L3%`fW|!CPPU7ViRmP=Yf{QPvaqmd0w8J_&KKcmkojb#@c`#}1qB5Fp7bMw79*T) zy2HMV^2vE|9@fp5e9?`K~74Qd1`Djx|ci*?u^%-xq zg-*76rv-$!<42t)R!f>K)o#o!;+uuZl^#=zC#7Tc5H-a2^2x{ zIG8@WSfZsbHW&FYw0NrsnWazv37H6TXb@-bdtqzD3{x|j+s)xyEHUY28p=O>N~;G$W$edgyG{QOls?uyh43lJfGHD_n)?6V@%jz{hsC+lC`b9 zvWtIlFWZHpvyKjRgNZkLeuNI?RHxH_@*MU$cILlb@oalvK^pR|@;Z@)x!s?!U2mT` zJeoURma9Vl;oy%B?M9B%R2gfN7pZd)cf+^govepN@&|h9)#>0)%*kVtnOrG{nt73) zH$?CTb%euJ%ku?Gp8P9o8oBxwY$+-5wK2Nubn+*}4@MR!qyng#v2sZB!qUnn@znBJ zV#N=oF>J<$QZEHv0+2}Z>6PzM`J3jl2x9E+7$h+*kTub{SbUAoM?84W2&ZHMdKz(@ zlI62FG+pMD-;-tDSZhZNiE1`~8!-?N5)YrkgA{d<^VRj44*IU~Z4OK>Sv%N;ntOh4 zG8dqFOG~gs5}(TTE|2k2){(;*~dtN_OdF5OA@!thk)EngL8*7f|qr)iiX~-bh_*k|kD;whqhU$=$>TI3M1I zpM@(B4?lFDIAjd@oZ!35-ThrNYhk)g{08dB$_ZUN!(Aol25Da zDxpBO={W7rJL&v-&1$C3uT?|4qn~iKdBLAfVY|Q1T5dSbCD6$?b;o!EJo@r{cJ;jJ zP;I+?Wl^8?QZIe5^_Q&IlZrlqJt4D8a|#GtA=TS~r_})a*jyvQ7H=$5I^KtmU=+e8qgx~J{|Lon)8hR=w zy^fSiV#i-mDiC*_^CJjxc_hwf#C#^c&v6MJUrI$Tpt(}C4vHjkDNf1>S%6z#I4==! zQ?h53LUy?vuiMc(PkG-%X#-c*-?!mFeRhyD*@=z(en9||P2H8RFzZI}Hk~2s&2&$< zXmExIK}fsJ*Y5|xd;VDVoMEck*!|%k4(keM8mY@-Z5xxFNfbLfWCt<@&#ZNqO zg#TC`n4m8JANI#VJFYvccSa&nPm~ZG^pX=sFG_{<|JdQs{DLBQWW=(Fl$7^=m*cl+M!KDr+fbZEa|e5RDWn?T zV~mKGY3xhlV~wrHFDR9sCJH(b$ld9LV`%1S5Do}v659>*&_ zQeu^xU;2r11uBbmd0e4zp>*V-@?Ob^f|VtLE&pu$P*O#GBregbP_oP`S|OJuw`m-s zwp=}_T|&m(ZOlz_z4ojU;l|QK{w$&6kF;#TYf6}(u#GBF+Ka&mK*?{@h+s1Cz0V4Na>`~?9*!@vrgv#f50g6Kqm=dWy(6@iKi(Hr;+I^ z#Hc%LD+;LN8_)B|nlNV3c_&n{?UB~H)tz*tAs}>>Uz_dmxiJ6v9o!#VNUyb$>VcUv zy^u>~^sFsG-%GPacA>9qr%7Htug$I~-rPYM+^pX$MFw|%{X1+E7kFC@w{)>G=|*!( zcayKp0V78gBgZ|vr-4@y>>5%ZhQj+9GB~^cbmwne$?g(C6m7;HI)}+PSVhzW`NH0J zNaA`ykZh1p)Xb1#uI-8ZX#6A}{?o?1f~fyIVtpI6Q5~e9CV`bIul)j-|AF}acI~@e zJLYocXtpnKC#V})g}N>SphUv-@An~4 z(G2(`lc?CG6TF&ibhX1{)*Av(UJoKjTuA7*`$xbS&6P;ohODoQ3BGzRZ%oj2c?-y^ zl4< zI)gCGR+`)i(A(c$GoVO$9iK`H<#qb=iZ0&vZmO{$-pSiQ)bg@Fs#6~ipLAPUh_xRN9gV|Zo?~fS279TzZOkqJrP6c%^;F+lpEQSJi>k)=+IHYm72DTNH#ql#=^YFUP6GtY2JLLnw42HpX0vHN zTU38LFdp4-+RbR$)bS@k7h==4M7tnlQWLW8&%h@eMa+~ss@Z$rI8)sVir%B<8@6qI zUAIz}h-MPlW*Fm*=9FYj$tF8`DmB9M?rAau*N?xQ7cP2IUB|g>8(k=W=+Rv_=3yr| zYj&v&du%+j4({-;xm*{UsNPTAVVwAPh`1o2-PW z>UXn*&*50a#?HF+5NLi`@?%rI%uaH>J!6I{eWIzO_wo`&Spw%3JUK5qUca>2Bd zv8nW`CLA~2(T{sgpY=5D2IL2tYzM7iPkQXD|ROZX9s-djtt{`OT zhFsOAOna^orM(d)2c6)QZGVFIHpmYPQe-(M&Csf(8XT78G_;6CyYvlLty0k1u$-&6 zQB&(@)_*!hf{omF&1?(K{i0^Pe}6dC!TH4f*NI%YV2`}FOcISMM>8Pz=V)8kNw3D2 z(Yvv#DoEHV&OV@ZLQg|zD_7s`U_|s#m|)b^M>F3(l)%Z}QXe^0i@y(d=A!6HBxBNo z+^#il02Mw$j*(;{3KENsBB_8Kn);i**>E-&o7b*f`&cf^QNt!}^Oz2?v;Buz@dwv; zp@c!77bNCz6yM>PYnPyB#P5Cn*oju9rV=FE?fSVfFPa-y2f3z9gsBeVhFbl!??=QR0HdOignSTvBK^MS(9nf2V zoo^QaE<+tx03}qW?KI1N4xXN!y(&!v%voSUo%%o^BR`T@)Gd8OBlUS?1y?;Yh;Ivt zQG5#^2X_7-_Q8U2;nKGDpGchsIEK#?v zIS<>r@}Q%KFH2div(pbQvHM=ya&MXDu}{0=w)qNb^9dSyZ-8eK576s63hlrdlVab2 za#ee>e85epeq+V+^Z>-O%`-P>sSmYw-zTneG=s$Ni>uaUFFe#|y3FR@3$j~I<$J74 z*BG%S@&H>u=mTaBoK>JwG91s6gc47oN`~mPit2GkX8U4(+i@3NC?{`qN4qRatVOc+ zThvt58Hc9|HrgXE8TiOUL)&#l2Id>)jfcS&Uw(C=uIZ98@@2QVH;N;%EU{LXX&)nc z0d-lEYg#*ys*UEMMP6Td>q>u>H}Og4GH2>7K1zYN#nH9$VMym82ZhyJSKQc`G-EMF zwAIZoed^PkXohsBm*m??qswUMs9$qFDxs3>o*0VHK~! z0C6$-&)_+hr0;rXRlU8O=U-F1rJc7>%R zAEP!YNl~nq4^eGUiztuL`^mW~mv5tMT$f&Kk+&**=S3@hTl>_UAA;qUnnvYTG&I;` z`Fw-ApD8_OGyX2SmAU(EeBt)P(ebG}vE7MLoanF9Fp&KzO)V9frycYAP3F0MPH5U& z?JrGr7zgM46Z9V&KUS);0L@-;;@G+o)^G5ofAFr;iZ zOtls_`c0MsaO6AC3j0!O@Np@GN0Ny8l>LX$UND!qjEj?`(yt5R@5ZL#n-RMqk$4p3 zQ{U15xEX7182rqqhWzXeLCbw@nK(uTFLojdQNyRWtwk2X6d6GtMc?J9&wV}oJ866$ z4-N}Onr;uX>r^7k9KD&gs3kbqe;r%iTX`8Tolp~-RKT`v+y-+kDzk&0gYI<_ePR99 zHFe_os;dkg1C`mPiAn_X6GBw$DK}AQUT5QV$L{{Q>(VADdiQ>Bd_oM)j`m_wdvjY zmi40gYW>A}5Gfps*X=2v&CtL=R((CNlerHQ`wonm7!#C(EEU<(6_dwVsHuaXeusZP zCVYbq9VjWaLud0gxe5#QY>N_7FjS=gQqAnsdgG zIltrUB-ab$(yG0ikN;N#uWg>(y2cou<;>4bg+VVz?ja}Vt!1=3&X)Qj|Ij8JtKK8j zVJLd(q}uqz9~(Iotdc|-g>UA%WFHV~{9cHQYtA)PH1}r@)^U}uhI{`dStFv3rMler z>eT(cP|4o6pBWyU5qEMmZ+nJUu=htia3-QJc=o!y(!4(ex(i>KtSku$Txr5J|2>f` zD>~@MHha@&jg>-7#X4V><8Ec~BvtpWmIw0dbMdhM=$AhjD(?_}(bSRhC;wK#>%c~a z6(|&OFVP4YnM=$&Cwf+R{+ziPy7XxxM(VwJ%E{a^pBGj*+j3@AD(*-21M8T@TqBvlupDW*E=6S{^W3iGMZuPQir0crJac~+ zt@H<{2c=H+o8}LpV-&{xE*b*vxKU`y9{>Dq2+<2vcOOR>uasyLR)O zt!uO!N5Wm6%-)c-rdNJ4m-M&l6qFM7FvbzDeLtgdUSoI@WZ5BHP)Q{%G{8rG7^ei= zAj|Q5{$|rJnTWS%{^@5tk+#qN1``=M|8OT9j_@u?n7hAN4Dr99>m@tT7fB;goBzcn zO&)w*p6SI*G;pJ|{_}H|AJVBLS%OH;uPkflxOPn67T%3CS{LmvN(&KN*Ac4spQ`J& zS$Qn1Ca)y+|GdG1H~RYHBUa-@mMmHL?=b?w(XG`uFa*O6I!sv0i9g0h~)Y z=wJcTcf{b<25@wM?7nhY^}Yd?4Zv`~=;{9I>iPt@6;hr^{s;Bi%viexK87$qcih7q ztid`Oa1sQXUl)kSE+CAl#MqS)s;MOkdUAmfH0wrf<&Fk++n|vqt%PG+zy5=-*LwMH z9FWam>?h^9rwgq9^+mxzjU1f!eKta(%}=r;mo3nge)(%tAWQ&vKW4ZnnR#Q=#_x-49+*xx(Gj(o&KYBrZmQF9ay_ z748?N&rc^lv-8}*&gnn2w_uzm5sV!Hg>p0cBNNJRD|;|p4>nP6u4=ghI@i|%@%7ql z>t^RmY2<#EzZ>xENy-;ItYuX5)V%1zTab{FPDHb^+%#m}baMD)=SuA#gEVWct$vNH zc;xm&PM<0b`zW)=OYdltM{&szP^V0eR~`{z;Na|1?cHN~6He%-1r*L?7Y?yjo&qx_ zYkw(DTcJC8bg^TzncQWxv&)JgQvGt!MXW&$DyNT7g z;%>LE9DE?hvFKxh{eO*`;o1Wz4Z329F(l2Qnl~DjeZ1(AoPI0l_kT|UDIF2_W{hg_ zYPvTkxgu|9pEqrK+Mcp@8Qi*i@b&m|Nb{?0r8skLn<3e;2o1l$e&8wUhj{9=ps=xC zcIDjbvyb7%;$U%V1ch=R7BaJ@@x-MnErI21P$KgAo4>GBXa*)W6-fZr`+yXkC>*5Z zL6-ym0XRbrRDbD>r~@u03U>Jaq92u+j@^0nTQ0AZtUj{Psxo<86A!%E{37IGe!)!x z*SE5JcNr3;6HNe%PN*Lj3TLuap3RmTcU{Xsw?A|rIs?hS3|}4o6>C$?k$|-GD^Dul zj(klt9~G*1|Jp8~I@Ih68IzQ};J-V8etZMSAW*I8-xg=e$4!~S&Jd_^kn^)pG}N2} z>IVqCkD$dc7?Em&I)8$JkKKhDdf-V0{kT91hM`lSK+?(v4j(DN)C1~r23ptlK!P*k zN_GdWUhzWap7B4fCoAAeUb0tGZ_HGyS_q@ErLm=a+J?u8|erJyAQOtzp!H84WM*h%vQw$V=Oz;a~^ z7$8N?asDI~CK1JiX0f~=JB3D319;Ffy%t2@xINnhwkk*lZU4anCOH40i!K;fMJMD4 zW;O1yZ%4!jr8zQC;qd>uf{h>yVVykd{3m`eZUg-@cwMqVuZekXmK@)5+rCTXb0!Dy z{Y-IjQb3LA1M)-Iy!Ccz<8hYVYKxBBdf?^Zd<>X!ZxXGz1piuVP^Vrn_?8Pqd9aV{ z2fR-}E=>b8!+y{Q5IZNhauZnkHpmFo3%~YZ=6*`-$dQeKYI=jrtvTSEpk7ez`UygC zyoD6MtY*z8kN;pMV3DdeR9KkVt0WV#5VK9F55x)7T)h3h%1t_5SVG*wcH}ln<14|_6;2Yaj&TZhy5o(NR2Z8LIuv(xiJ$pY~;Xql%k6d)m_B% z^~GiiOWk$)i0S;ExA{7?PgqNhx5%~S3YD0l1*?zk*lgNMQU~lL?F}WU>HF<@@0KO^ zl31yy7pHigxua>S8a`{Mouk(I7zPSYnR`pv;UfJJkGYz2X5N$?@ypr8g}@HU;Q}fX zS%Kd3C%zz5Ru1M*<5|+>#I0di&;1gSaU4=I98~)u4((-3{B&Fm0W%pxXh#IRe#~*L zaUukdH4;@Un#1ED8cdl7C<-=3Y1)jdNOMdc;)4ib)1Pn9uI(^Ht!F3V$+iucg&dGE zzTcv^rmG1HC~|B})`v1gOC%#_wuC4KWr-9J*B<}UtWoa`o#uPiEHK+k_lPeZt8!~d ztKpY8UkZVU#23Vh$}aAvSBFuG2P38ZuMg!%`rentNFvKF>(j3=)wDH&pOZxz%p*b% z);dfYGIx!jPHQ4O$p+T7?7#~eX;28{i%^XUnCg`KynF|fxmN!NQ$ei0RVjO*j4I9Sx?c4eH zzyHmE0RvdOb}gTM_8E&8FQ#qVwmkUYgKXQjjZ;oJrREr$&BkxP{l>!&KTK+BDzj(L zX5qqx^zYxFnKNhd{PWM(J5TrS-I+gsKBGpBV(Zqe{QUFJv~S;@rAwDGU_j);wD;@R zj}JfmknY{P^V3g1@zz^!@zz^!QBe_kelSUr7%^f509Rdgm8N$6?|=W}i6@?5&z?Pe z^UXI1g1`+o+`z(x3rR?*Ymf@He+>o$3l}cry6djPWHK>l&Kx#v+Qdya-Nes7|BSw= z0Yn1~88U<=OO|lP8E3G4`*!BcnL}Dy8o&PfYlC?^Efxzu{qz%WzWFA7`}Sr1`t{73 zHH#fPcF?|kd!By!Y3{h=j-cBR7Z=A%FTKRLapNc~EM)fV+036mpQNND9)0vtR<2x0 zQc`{6V?(%H+UGWIxAw7%F9M5+BvbIeYq~L=f92dmkE9+o+vXPi#KY^J#UqDrY*tFE zPz>4(^zxxlr{5f0#de232VIB6OwP{e6LcLyqBf(hbFa31*Z`_NuIWOJARi1a|6YSA z3RtuWrFbJprd$r9H*$@;7s@{?-Cf4@ z@hVc|(`IiGW?wLK5e292PXtRE#6`E4oem!Z%D%$tD`s`VSc>%Z!^<~%e9VjRxI|Eo z4EP@-;&kuc9VKrMD=r$W*&e47oJ~*PF)_Mg|0Z`p=(HTcIXkH0s?-|Q^&o6q7@70; z?t&m4pM#-#q_#r{@Bxezs;XTS47LtcRmpR0CxV%|nuSR8Nhs{8FtD$({^VuHx?S9J z_Wb}@ZC2h{{aUlPWlI_CtNMEx?pH5MLkT;7Lu6^Qv52^1I8i*3H$KWB(5tev40i0& z;dJ@$1-%|DW(B6ztSojk3Q2eA@b0iEDwpafjx% zc#^x}UaLJ>x?R@_Z$YW1I)wC8@^?2Jf+<)GJ=&AIa-ZgUgq&;&HwWj@CK@FAzkUYb z_fC@jF5mYUF=G7Va5x;aXwd>$mN{_X05)3`&EH}KjV#NoS+fR!m#_O3`%Y~lMpoNo zs&cjEfok0~jq;t^a=vxypH1<)&=)1{a_r*$10Uj3{6eRIz-2AZp?~5DO&l4Rgw_e@ z^TQX|RHF`~r9C+3kBQ~#B#f1tC@ip0kY}MF-+bu*7Q7z+druHlkQGedtR}^gM^|w( zUw6EMhi7lcq%)FgI=({qs|PoL*Hv%(@_jwfNk00v*c?{9cBhrU^13iGr{Q}@PV7ov z!VG*g{%+LKmdujd5qB{)8M(zi2dbKl+8LiYi{a_ie6uyy?6d;nMYg zvxryq>_2-fUay|ri&|pe8;^3x11~*1YJ@>yPQBNE!D}${& zb-3IDaaNVCoxCI`(rAcKp)x|(q(o>E7EK<6k@~qK6@E1WMC=a!d#yu=5hF&7pm^z} zmnbVM3%L6AE(6FzZER4W3d3`|a5DIus3|=nMAR(HdmbUKm~u!5m8t_vPHn z+XvoduX8UdDsS)qlHW>KaBJ(SAusIl84YO3z9+bST(SP0nla1cozDrm4UST$=KfR@ zl0bt%=sj3^WU8&uu_kL02-T`8Z9}%A1CY=P)bK)u3W^U^HG>fTBDc=n^i2wcq9`^? z^dL)x`{=Jeu0^@saNG)n#cs&5K$)kA3lsC1Q{IXLO*m}FOQ0zAMWawDaqF-dBD<*f zuKQQ;!ZUq%{Mp3-c>A@X>iUzx?FHlEH{QVmRwhl}N)K6Kn$(YX@e5T|ae8*f)%R>x zzv{yii`tT6Gm)O*AU)GTdWMr8y^2XocVILg@m+ZoARVE|f^mNdFFo6vo9|qWtoo3I z<47_vCxN%V=+-*%09%T3aCi(@!uSmhQq#5sscbu`<_F0$Tn{vSQ>r-qhLogu*mp3R zO`$b(sak|tE@zjeKTav0PL5?w9wX=_#1u11(ee4N`KNLmJ?$}s^j7G53_#H90TtD! z;M=tcWoLaQJ(LimM+KK1yn{iog4*~*L$yAPy0Z}Ex=Eaa^`5Lpt?;79a4Z%%nn@r$ zn!;c;vJ&~&{*mBV34_(t4l#OUTdsI`8jI&FrLwGwd7sT^{FP_WqFq+R&MmsV47~jn zlGpCQoL`D8_n_$a^V!k86KzNABWJ`uqzJE`JDT`>(e(n5;$w{D4LmjRvFX^pplox~_Dz0e1om8`g>+;`N6B9+}*R zfl2K`uBT#ODJGNX&jlDJK1GL?Wy^Ar9XiKDRrms*B8%Gc4CNhw%;56)1w@rW7Y|+y zkuW?8XfTPK(A&boUmF*V^adefjvq zqCF|(H!?LoJHd^|t=&_r#3j)t!fSXscCq7jNj2A`#+h*cKYRBbCPk6=0sPyOcXu{N zcF9Z5NrE7#pd!kFf}WnIh-X0Y41np*aHdyI1amyktmhd);3S9vkt85dNlRE**u1lO zV%Ph}y0gqq*qQ0x{QW!+&%<_g*HlgSbf{lf)s#UV>r|9zaB>T9)7%`GTz1^68HgOI z3~S-1C-KgX==N(r{NK~tA<6znW)YfX6zCFA4F@8iN0O@&+N4|zOe(^U-*rURp;*N9 zt3Z@4&TCtnh(wNXpc+<0z=RHx5fM@q5aisDjV3Z4DD&ReY0PBrxMwsl_sRlom8BXxiZbNPfFkn@v=*s}>3{x+nlTL9U|4WYIpM8rQJ z4&?&*2fgwLyDZUB5JEtbBvpc7%}S$hQFCD_4W!vsc$@3Ya;TM0xOv%JfKdyS+chYt z)}boQx$a8sb&rm|%JP3-Jcc_a&IbT2yy#wRoG~7S!+PS_mFEV`S7WmyW#c|LjYb^n zGYCcbW@vRX;!~;-8SSX~tV#!ttu^A`uG^8*vk#(^@{xJt2_*Jx8y9znLj!frZtBq0 zd%N5ep~r+jbjH!*lX(1#H*q4jz@65sYX;_CJ{=}&G=5s09WdWc-QqFutj<`z;t-yB z^&6Cz*SsyK(MY&tN)KH9$3fV?GY7{G7rD1F8iDdMEuv$LsH~E)=T{lAF%ky#(*g*g zSGuqR1{H=u)>Q#!WphRd0U%z5mnt+-Kx#+j`A8;cI%X)&MrV(MM&aBAA~F&YlJX~A zVbUYIyR!WR0FIal#AhZ4wXURZIoClVqEMBWm*e06{x=K;1BMM7hQ*5)BO^okwSiiO z&b^b7lo$hj2=n*(l9(O~y-`_nO;QIlBH|PTa{#0ynqV&v|Cucb$(Yn*FdkcZKMo5g zoWg}A$KJ(|mCEx9}K;?DOWet&x{S*yqMXI}+tY--4P0e~?{ z15puv&ozfj552QWVVF8y=(_G@#)IS5R(i^R?wTurC0W>P-O*-;ok=*CN|u- z-MM=NiVKy`C+dr_(hh5+u2~wFTrLglHVq6$x%u0+LgbJoRJ#Nsw15jPlv%#PCtc3L zqJk8xDDys74lv1>7M+g*i}LwDE1eqHToPmfoUG8p7UGCRoy>N`7`(spi!MEmwO@C^ zg;S3E-0s7F^~TgKuOd!A7y?GbIriWc-B5g{>5hM39c(xwI$B^x3n1?WL>{2&37`i=xe?gC8E{ss zTMnI8+4rI1(3^_sjf(1`7PY<;q0(DMYR#FbG@nwN4oAxkaLC~|UQ6yrSpU+xq+-Z9 zgRt|*-N+LH-9GyPU6yV@=M|f<{_Xn!t?$o|yk;#{?i>Ucw7|$p*ssoj?9`y7AOe+T zHH{cLOBJrveS^DnFQ8!b2t0e!EGQgErbVe4UbKbOM+it~+%TD=jhOhyuDJD?XOUlI z@ml@hu^imF1S&%P-z#Yf@lKY!`fOHh^tmajO3JrsW;5mEE#+O=z=^h}|aVfTR}7(T2Q_U%-iE9 z*Bx1V@|ERrb|;+Jr|e#;XTM}z-{V1SDE?ma3mK%Zg}@CrkHe89}NGVN78GM5>*8_ z!y8@`05maXXpSnlC)MR6vZDax@XMf$js{AOgF68niAD0c?YAU(1^5-t@GvIylSA^@9#G{g%f!t-{G$4 zu9%zH6Z>pY*kjd0D*@+3+0a#U3WXMBa}U;$u%jRXvXCIcXiLyl$%r+22i3=)e-bY( z9^x}Vc<{G4Y}wHXw;Ue|amLFcQO<*yCB zdy-Y#84pOGV>vdtm$~4=PttBo#co`x8-u4~W?;n0m3VF5Xgu(`3mU2B<@FK~fyZr+ zW1ajz_qI+ru|-~wYi#TB2kn)(Pd^Xo8s&4`hb=M@sPGN|YBYdB>p+>!3?Q@sVJ*9} z;g^0SXE~fGMuD{CjHLoL97GKe z`VTzUCut;Tk|QAJHRJI>Az^^91(Q-c!;qE&&HMKSUa`Cgn$4d=+h;gj`?rTZylA5Z z2G3+KhuHN^O;5Opc)*YjR2Ku*jg40hQ+T~cnqyAB2I-VeI-m}YB-JbwUoJ@6+~bo2eDn&!dDSSMW!r$GjppnZ-4&|Z~g01964A3heL+R z2$WlO*qxIEgVu$i9SZ}_HR!iqYBhSQF$A%s&iu3CJP7*CN2NFD)M;2&>9-)%$)_c} z{6a)Tqz0>9`CL`iR^@p(?8@(@gbLSZLyQTKB#cWOhas^;@bZaQQSPXK3>kYW_FzxN z9&|Bx##KpIBHG|%bORX>3DJ-WN&|k*f%2nx^W^6!bJpEUYXH2ii$+ZMs}$Gc%xNIP zAsjMvX~}S&48D=os|*&KvbhkQP9Q!VC<;HwC~Piecaiz0fR5gCrv*!LS|K!MKo0+9 zxn4aaZ2H;v{q*WrqK=mLdoLZH*i&B&QD60SHvTW^<}OfJZ>g#Rt;hAGqPUa)mKCG6Xi zh>CJO;Hx*fC_$>d1Q$Y!^X)NM_>WPz`@Hv%d8`cf9{v0lCr@j@a%q#_^cB)3RFxOu zgk=#9y_pVO?>)G0e$5MABIGf>Av@yTrKUy$%uvMn0zk`1v??)VgO6{ zLq<2IB3(LujXoa+xf-J^pTYoJ!yDD3&oINr0AZ`a0AUMe9Ca=zRPnJGL|!9IW-x>hJLWgJZk`grg>O z$GrQ#4Y~}^y|@)OUpEk2e>{pl!{YGENi)nw2Zm&X7aRnj-Y^m_6%Ig^0)*-X)6~hv zt7~XDR6AX%R4K*>iHN9;C@u+%zof-Fay9fKr z_hV_na#Z{t%sXC@jek}=g9JkYu1KAMP7$6%yUUSAzjNp9D?5a@PJW3BmuExdu;@OR zmplOuQyeUIBRX}8fK|cwT2WLDWdpVXB03sC_yNM|<3%vVN{a3Ug~6=owo5K3ghojR zIBOMP>;l*<3JRg@9)CbTEjIn^-4@Y%KopYF3|RSzvYxkrXk7xPN(Zdw(Aw?PQdy>l z>;g1uJtj4wG6&$00bjEXIAsS)?Up7lQy`MVh0e=1!VzUc>E(TpVDj;ND}b#V)6lbb z33~Ri007EL4VXK75)|g6A=myV*q z_!-j7lb}f`YmouM6UKfx8aV<9_7mt=`CZua)=JR^ND(@S>Xy^)Oa3uH*g{EZT_7Fa z68z8)PCF!R%@tk>vIk+HfLyRMbg2>4tJNrZ=(Lb@!5!v-f_lLQj~YF=sB3)z!a(&2 zwg+KTykHk>{(R9wj9QdVnc*&y}dY6nJ-<^af3;qrrTqx?*0|g`d;G0XYLTSG) z9@|xSNDTTjY|T8+bYpNjT26pabH*@9JqE?&sb|*(y{#{}v>?G00jE9u7pC&EEih{}kX_-IBmZP+C^J#}R8iu6Z`mih5AKid zgM3>)K0f^k^6fRlm=@cM@%o8>Awm;@3}Xg5Mr5FOR4+t05@G&*+iF)ec9!nPuN6nI zxBM`w?T^_RmqDx5;>^2cV{)vb0AcBg5=2I6Ar!nt>2OG4H?{(Ru-YMI zCPNg2AHZ@|xs){o7UThODS$&kFCj_c$VgRHfP(3``}Ov{7lw_E#nFS+C^)S=Fdj%$ znXTCZghEKDC^H}?zH#f=I3yI=1k#j7>YIo#=rD2y@?0skHxribKHR}>-1p|COsg_u)eYr|9fRT9^btUlFrXrMTnYz zzh__;x&|M)BC2J)VLA`9Vs|0CG!=jQdnTq&FNC>waBX+bJN^$7wdbRMGd$W!k^~VM z50v?S2_rG89Aiwou<68L{92HS0jXI*<*U&ET8#@X5jd)@ah4*|)gRTmZ2{LS*RDfc z^b|zKnrkwbTUNu{vB+UaxBZ45RX;1rN0KCHQzPL#*7Aa&ZU3Xo+Ac zXpd;ITG9}sTIU&!HCh>VM`**?_=IUd=cCrJsj77#452u(v+f~EmSt$Qt?(6SA|h%toU6yzz8)G-#hM~cJF!|8A#u}cC9j{BKxEePes)##iah05aaUm(lR zw!kdG=RHG;F$H&Yy&cuAYW(NaCpc1l1OQMiSL1N?VH~bLjPHwo02-LmQ6oth6F(H! zq+R0ozCh@eHGc`0fFV5zw&UT=VFdtH1(ohVXV~R1#{miggwE4N&?yM6)s!I#Qi=bb zG!3e@DQir!qC8XyFU ztY|d>!ZQ_HwSbS2b*D@_iYe2M!r{>1p#^8-#Bnob{^<}*CKpDG%ESJB3FtSl7|?1^ zw&+R#faY{54&QeK7te@;r0eeYGb7*l0nv{vMZu0oAg9M8Rp`(OsW=f}9=@U^J??rl z5pTXZ7fTE8!rLoGW5&z@c=>}YbncyrYy=Lf$&j%}-iQ90K>(VeK`B6h5CC*q8NHK_ z;*l z;Aum&sZk6Nwh}F;D@8jH%KeX|(*yS4-^h~3UIpjD-9gPi*m9c3n?RWJ4~8n3hE4y0 zvf%UZ*Mm^4Hs_`!2N+&7r0=AWg;JKL8e&wEfCD=Y0RUnXYVI=a@zHR^nUOtxoGQUV z0I;{L7nxMil7<*Pvj?HeAtA;b{FAyyqd|<`yLlnP6gW^48>_?o`91N~S7+n-=LaJr zBNEwJ0!!b|4LqKHDAalbPK`MTp;F*TrFr($3Z|*igRmu>Up<5}#IsAF@>I=`WMyT1 z;2z&v zrez32nWcGpFRG!a8Ah&DgI(63BEV=ydcBN=&u@UsrNPgeQvm=|FVDiKANKNES5An; z4h+Mnjh_bmOzY*tQFX&PkmGC4TQQCkcuX|>M)0m7k$Cc@MEv7D3-%sfhLjXL9=fA5 z_V@n<6`wRbpX;}-wSeMRA;P4OXmI4Ulqd^gP372^ml<@^MTFjlYDdH8ZexWElNi|G zdKH?@kR#)Pgz)EMZA_9%!Cg&+4w~53HxgcZ#2$n#lq>fHM9MaD*=W$4kS>OtsoxlmnEGnCHI z34)L1m>A-+y0#fB*X^o?Sc{o7dF@n^k+CLaiZ2ohm$>t2D%@T2$*n*c#so zX+WsMxaMv-jm*n>;>3xXE(I|$G0>>gW0Z)9C>XLVqpYmVeJ$Ft{+K(>5TU%OMdNFt zt&sCj{<4%lLU}MDD%p&(Qw{f$&}y}qp7sY!#~<9wO6{fitztj&rBjG->M<~;CwfP9 zhd~?KcU*GP0%c(_6b-f6$(ducVCu%MmLgA;E>HxDtH# z?Joc%9LSBvh!HQtH1-GRGEV#5HVRPyn&)lvnqfxcfU>|ZAq+@8giYB)@mpax^iMh3 zV7@V?3Y1jGK$Zg!Qlu@1so8P1Vl#xS}oveS&eTR6?=bbQzIdl zw$jLcJHh~A3nd@f2Qhs%r0vTC53?4Z2G@0qVf*?&002!hjbq+oHBk@3aD*HLJ7aiJ zC4n^GL!C;fmLrkptU{%$98Tdvv^E9_+9<^7tZ0mjyYq}5ge@^J2mo5ij6&T26iX(Q zOIjF(j3hXbkmvYTXmjIscs)dnbd ze(B#w3!v`#*Bq_Ik^SCtyf>DpGFzhr2uE}_V`#b)R=Wj~B*CbU!~OytHXf~j%l#}O zp{&$^grwHlXkTPS>kJUubm$x%_}XAJ%6RIz4cNag0T)j@icj9}g&VJ)gwOMyL7yj< z!<7_`s@u+kw)h-KvOwb0=TUw2D3m>MIYfNJ=axw4Q9PxYfeKjht+d1MdNVKvPPqgE zF4*O27`2h;)1e%%ype}z{=Eq05C7Tkwv)6M0SGiKwI2BnEef1Pa0(~lbn!^kM!>AC zf+|DqM8r23Ak=9DdLB8YW*g!^|e|J?)c+n7?R!>-!84YDUFHM zpl|=WbDgW|G`{@&GJN;LK3sZfDvFA1xb3!Iuz!EeaU2_K#B)m~A|}F$+!MJNb++mE z8M(3U`o>YywS89<^656rRw$mpRwA7=!l?#lC#oH5Y%&QzRFgw>?@*-17U z5f>S+xGZv%2}y%GD$d6h6@d;zLd)mGiW9J%WkYPASeO!8-yFR}MAZ6~6jb8y-hAx% z@i@Boue<-znl2eyORd|mq5@P@#qXGp>a%cf1&kWTz zATs=C7p=AmqejU!y?0PE(nrs}5s1(SU#I=Q+EHo=FMu9dW&_gAsy1fK9u>Q;uBct^9m z*n8Z>E%c8#=sj8iOVpl@Ee@_*jE6? z001PL6A|xjMCIIxa0U?|1b}$^Z+J~N6JKhF<1y(2RMzW>J6(*!NI4z?H9;$zTm^$B z0+J-*x=V8L)7tYfTK6;-J0C+ODm=EmSbG_UYkLCl9eftTfL+zaSe$zkEUvmBUN7TW zxFPvbbT`H$LZjft0RS*W0vc_DFD|E=OK_^J0{ilNVoax<0ec2&G(fM!&PyDmd zLbdU($e;fG`$Nt>j&0YB4tg6YIRmC~=Rxz$v%pz@1T+Sqv;eSH0!bYKgAv%Z405jt zupT%8k(Uiffa#o$kTk9AD(QwShlU7iHHQ;#n3{=3AtG(rGU zdVbyxfisOdP8nl?766Rg+F&xWA)OLV8Suu z1YC(yoRIuK9CQ+TtPqh%wtoj91d6O$?6)-jY}qcC3)l3U4cR3lqkB4@UGsE<+r$}r zV?$m)JoZcA_g(KFRE_gG>_Dmg7yw{f0bp^ojPps(@hIfxL@AmJPLjm$_f9RNPRS?A zkdjm3wS3U1G$eO3qNt(-xy2aZAvUAM1v174qtFqtG@Zm$SXJ??d`y1A^O9l!~H2em; z!|rs?Iaps*qzRfzWqr*wl7vKU0-OrQ{g)&ONs*DTTf=Yc(;2jg)oCER!f!f?PmO}6 zH2i=T0CXLYii$(Z=C12Kx)X|jQTC#6X5V;J9Sy%65h-RwmlrB3Lx)ir5C_6Pmq`Xa zVpA#Y> z3CUIH)=S|~vtg1TFd?nsKwC@HGqxJ3k)fZ{;SVlWe5;9UFw0C09q zLczW#Le5ho#UW3hio;SFjw2sdI58NV(c7g#q_gfksg?9dF?DnQ{r)Za=rbi5DSt5H zkbD9s#QS$#BbYvTz*jHa7A^6!)%64mj{QG2ZNjjqcaW0!UKSO zMkfqe_L@?vAwme?=t-a?{C3s)>@Z++!qpg8{H{u4G1YJuRKcQbFW}vukSPjjQtuXxY71)-404Y-6Y{5a*dmWmBo0L2dU%^2D=n$>!X1qB_5*nOn z*B^hwcRFMf)|IVkFgOSR&*t8O&YjnytBNDG`kI3<7>zv~X})1Jrbs0yX<*Fl6Ose> z!-Y4rU7&RxgH3LlyVK|HcnR|Ffq|KKT-Me7bKT})23{gTOkA-R^>zG+N~~C@^LwYqK4gCLY82&Dj)LBrE$UOR93I5 zN*k~`hnhWz|O*c9e*^vFpVS>eCH zAcR12r#R#s3jZ0{X?G!^YXS<7haX5T$*V-i)Cg3UhJU=~pDa~8yk~W#^6Q``T3IQo z^UD#J8VOff_yJQ}wSbbbHiX>)B&7lc;lHFHTV0BVDMfA$&@&ZKGL)UhtSCTekY)Fs zY{zsNMI{>S{Z)@q!yV8C(ONoqcx2cCLX9jCSz$+2j5>`h-Qp{-&`)p>0AwNKpUeJ< zd;f4hhGdMw&YWr}X~iooF+qs(X6eNzAfd!AklYFf5Gl6l!wL{qJp2bFe)}8FcYO~4 z?%*H*I0t5gRTf!TkZiXg8Nk^vK!Oo6ykGQj2?rdq4SG$@u{tyDTRe8lP&_rQH@aw3 z0c{3q#@ezY@VuZBPS}t74Gsdpr^U~}E?48Kglk|{5+pPy1Qj6EX=LiA zK&+{uVTL8>wZWgWw3Wx8tprTa0NNNpE(U~myH2RVLE!iK7LyZH4G_wb4iIWh)KW*A z7y*Y)12|=9QZgWA`JV$*v-LmF4=RTkH4*qQ^cNK=JgxA3i?*xwx@s7A5wuGm@NQ(S zvUmgs0RS!sBu7mT6pcBwLAcdu(yJT6T;)6>Lc2-w_v|JFU~{&@!O4Bmg?9H-`~NQuYTOUE?0jZrrO4{r~Co{M)5MkC&s4xnYtLFja}y~~xx8Tbo!*j*^K zSW#JF_xpA_0GLb?oK9fhel7MN)*&%o#>k-#M7le)I#F}8-oS58jkyB>bpnKH%^j%H zIZLgv7StHDK?tZT@aRso{}N1HbWLskOUx3g&-0Q)Hy_))<>j zc>^r~#V?c9ii}j+l~ zlk#Jxs7P54&sqk9^5Lrs3e#V4;cWImn-kR;gVfQ>yV;2AEQb6cUxZJJ+eZm za&nZ95@UBbke04|*!9Fz<-fz|MCButM8+%6!8}=ITvwaoj*Bj*233{K*XN|Dl}=M;v1vn|mR_o~A@TgD zA-QDq$3E;se|MTN=urO99~75Mzz#XUyn$9%-Ss(QVqa+U3sLcF?fp<~dqYFCu(%q& zhgxQN8T+j{fRa}b3{ikKxVGR9(Zz^1R$^~n4+MHws<g8nvzy3VUa?NGhG2)jG#Zs$8ZdRRT}4!eL-*Nh%$GTCF<2tB42{0)#5`9t70u zO=}ABzB3SuMV+^Iohk*EqoR}tpDdQrhF9|Ax8L?-&YZc(%*@1J|9YF^;Jw9SQ6;#i z#&5f%qy$Ez@?%D?LW530L2yG{H6$rXVIw_idZ#F*M)0+&sv1ej%IDZkNKzi$iwN-r zUSA}=3KvKfu8ookFPZ40l>cs`QiB}((T|GaN*Lpn1v|?M!+Uw+OtQjrh^??3QjD_i z!l|$Wz9=ZF8R1Gv9zx-7q%@p{`ZKrB#hE`4jRxr7%Ym|T3HgN$|MrYVfs9V!pUWf5 zl#hZ?OQ#9`H~Q}PuV7qvW%~{Q$}B3(86T!1^}f0$02x4;PWcOC{%BKcuD$Zf!w}sX zo`OxY;&Dh3%AaQ_I4$U~CICQGG^FBVA#EZwH5X-#Iq=1~RRjiWHPBEKY|tp$SdA33 z@0-S^3_K~O)d$_>Jec~pL_syiQK16H!shd)U})>a=(nTR^Y9BS((l zh8u21e0)6KefQsrgM`V+$%?iI0J~kC-m9sp${SEzD!fFHmzNJ+Fyr7gASz0E53_K4 zoSx~_sne?Tc1}rE9w0PDD*s+xLixQ_wF>8is>+s;heL%IAT%bWL01WpY07#sT25M^ zF)BMgY*k8okx0-aB`M0mo~J@D#Asz@5M>H`4HunK^kSg|0mz=$%h*^TF+s+mEFGLd z?4~~b!apV>D;$tiy3aEhlA#Z>$JB-c8_`4At^)v+H)DXX+9g5p�Lc+X5f6nu2oA z7fZDo6n}afTpeN|0f8l`%7T7M85Z*OS22i3) z!~UqT*b;j=HpE|xLs4fV&T&fJ^8HQ|V}NAR0@W1|iQOA+>~&b7RvR=mtOXv~?VF_4 z0j}U1O+<%2aFy3|&Gk3LXj2CU{oUS#R1QBwjH(edQZtVx6XyJb{%9o^5`%nm2LSYv z5uFTORr~y4h8Jy){bLUC;xj@-Al+3nr<=bXglZfsxySSH@_nxZ0JK^S?s@(0ptiHQ ztmtG8?XLOyUKJ>_XSb-~MFGI+Yw0f3ko~U`VwJz(6D+IFj=T0A#m%UD1bpX<4cNT-*P!#r&>Ju{{^rr34ql zqVVS5TQx?TFAjR`KP5bf483}DIXZ(JUNlrn_fL%LG^U8)Ztx`l|A%N8T?ZkAcYsi> zW5sT_WB!!;-9P9Buih2XFmV}?RS32tOovEdaC|ZBvb{wG2!&t|!ZW3$8!-LaG?bS) z@#$Nq5oK2CyHTMbOtqmwRXfS5l#faQ8llDzqpFR?sZKU(QLS1kWu(<9|6Ms%>OrVh z!;7R+&s;+g51M} zzL-D%uCVhlo0SiTR#IY7oCg3zs?b~1Vo@IW0f59r<@?C)P~OUVIwx0^-*rNw@<6Z} zmx8h~tWwR<67kA`+AZ6s@ zWf~L~2R>#qdn$V&N3D4Xcb}@n+5N6S$ApH5o78LdkfFSdNeBrQWz9IuXe*5!RJ$Zp z2be;oY|)h{f9x`^<*r_7DE#?h6yzdTi3v2reo{!#x;XLHkZlfenQ@d@m4@at3w+EpRF7!6_KrhqC2G_kb_7+?iI|*9J za}rr4J>!C%e=t~T?H_~dFdl&kQ9+y<-$WAn+kXb&f>QwU@4q;;kCnS7-2;cM=KGp< z^Q9Pm{;-g?x4VAEKhJ9TZC$e-cz1j;N^F~IwrfGxVOg$u_-Jdi&d`5E29pLC&qzUD zjt$E`$b&2ckx?xuK&aYng*y9Nt=`_E1r0GO)EZ*6jZ$rhQ5A-`bNYBAJshgdWvEIn zfKG*Z((~ua2b6f#HSy>ql9z2Mrp86*) zxnv4v%m<-G^gIPRP-C(_cC4+E>loS;=I z^v*o3!u}~PDup>l+5U0KGEzD!51J;akVm4zJe+nJaT#%n@+dxC4t=Dub3us;K}I#+ zPthryE3+b7;rx35WUa#EGv~D8sR4veVPkuR!t<9U7ryS265@ckSQ&?p2EOl!h!9B6 z2>-q@O2v5y-``e=r~dphGE)N&J9*vsS=fF;o%@8c(&h^gme^H$kF$wMD7FPSt|TdN z&p^Ev;47U8s{baGuh=T-1q1#_uuE7Q!~t|)n>4mrHH&HP>eu z8vGVD4x8exz=rtiu-`l$<+>!qI`YuJd>zJ>yob@2&(N>(2P8R8GfgUVT&Is=+co|t;S@OImPFFPIBgcRTi$|n zaJ~1sz0ZX_W;Sf=S3?xk49TELihyx|3WJEZ1hHmFJ^W7$8!RD|2WiyELl!Db8I{l# zl3Cd>CV+Q+@|_X*u<#{(SN@ULC~@)HRNR)b1brjAAXaPhn@2dx?D?p4S(Ig>Qd#QL zAQIWeakvqc*duwrk~TmX@gic7>DURaoC~0)_u$X@QL2x$xA4Yi@XHUo004bQ^u|B_ z^I%x{#2Pvy&pHIRZ;VE{kNd_ey4!JUpCXjmH^SzssdIicu)CyX1R`8c344A{hD&Z4 zoSGn?6R4ZMPkQD}vge0Ln&;wQBYL; zg+*bV^m;uUj+z^gK7D$lSFfJfv}rR63PS5$m6({QcwR&R&}y}c1E@7+QGUJCYITas zl9ZH;B8AsXlgR|T3NJOp#>At%T-jXgy>(PoYuhe9X;eTEkzSNyfP@IrB?2lEDjgD{ zq;$7{fQ1D}cSs7l=n@dz(yeqzcQ>4S`o8%K0(zph{Zcy2c2Bo!5bHnwUei=4+ak*ebKNqSl$^W;1`-P;Nb={G_MC{CPcNXt7{ zBF=tVrYe1rj-H7LC$h>dz0d@Y;pliCl{9k?a;-WkGGUeHM@VNigO%Ui_*so$ff7W0 zbAw}BkkVfIXIUOsYmy0>?RgeV%LU>`CJvINd10C|hL_@&#F=m0ocn<-pc$>(K2EHW zrO4^&&P2vUvhe=hnW3RTGVAk`x*YNI)?Maj8iebg>&mH(%qQ6Kj zC3G^>X+J>^XD_hbNz%T?_?59wxkqv3u>Hv5aD?O3@qq*S{ngYUsqxeCl?GMQdBz%A z%c2$u^X}>Xr<_vDd~(OdTeeKz9`h&1{q~cwt-fWfi+EPB|G3zRPp>KN486{;h~v1C zZp4$a^61*w?MQOmA5JtSs}l)2vCmKUswDLUGk1mej<`M%vim+Pc>lxJ)zkok5#yHe z1;6oBC(-OPtYu7u?#jgHg)uwpbLOFW`DaPU1$>}?HQIg8m+5VI;6Gn!V%ybB``(~y z#P7u0BRZB7cgL5jc#;+9D=LbfNdflY@2`#o4^TL1)b(@p5hD)z=M@42dtQeMoV-YJ z_=}&F@IO6=;{QGH$C~}OtcR{0wfCgLr<96?D|7wH-2w*J|9B7fb>`EohrZ0@X#Vp9 zS{B~cut_uuty#D#c5Q)52gWwvE2Iz>eEMnO460A4u3b${O{IlEB5)FI*5BKI92Lb7 z+iTHRNC6C%Qqt16piL$Fk|79~ht=mU9Nq;K{3WMEh=zf}=Ot_~|IfEPJ;m8?Mfi!i ztutS|ND9nhxCn!|JB?M@+NlT4F)yA!CkeJJ-(9|`WAl~jl`-vTU9jBk+b6oRv;#n3 z08`>PSM}!1&ASVK9YfoBoJKvLO@DlPczhp3 zu|}B=Hi_(ui>DcdZ1DjUhUoN zu5ke9`k${35?Hjw@}2o(rh85UE<}-6tU%FNo!hG6X?wZMT8TxRH?o z-@BvZE-J8HxVv1Rd;hN!f1ZT2Mw47S@+Z?EN$I?0JOppnDrsKXFN>B>{RW9t4QZs(tW?c$^o9WOIlPzp#ptIVDaNC^k?5U`{R= z1C%c!i@=%VmL##-auwuNa8M?gjl8_POB$S~5J>UplaL?&oGOtm z?6`hs&YVHK;m!{M6&uh=&bpMuIT~;7Dz7!46XtZtP$|L;jFwDae7p_3TkaE931slt`8otvn$0g z@C4Up*X^@ux2EnSdB?WWP2+riv4`^!gVhKYΞ9N+g_730O<3cJ0s?oBoJ#&^#itq1-4aCfTKMc<%?Mj4)Q~A3R<1f7x?x|t$gO)l1;!!qho$5wF--@z(y?OJ- z8uTQJ-N;Y{$azaYa?)}72H}6U4E&T8bXx2BNrgA3XL1)6S z?Q}E7L{(K4v?R%;hk#NGE|lmyOxV)XA4ASvym(DP;kkM_N}3Hyj8B0>>?o+gS^8I4J{uBYg$(na(&mTBVwSDCfyL9OURIL#2-CcJ?5?)S3(s}vU_1LX0u7$p$PZ3|w z95NKFW&)P1lBihJX?Av81h!IHo3ZATuZFNK8y{>egNP;`0%}mh*ca8ql|UG1aG9Bl9eh6+81HIiFw9U#WUjz{bjo>#@CR!(H*~%}oRWTBY!A0nnlM z?lk)fB5?+n!s$MA{IPboG8*xT7m6k@CRi;_t53wP5+EVIUxpM* zmTKuKC@Fox)(it3+v1OLkk=$YfD9@p$V~F^D|T$6c5m!^2x!=S-eE$1%sB=dbEs$A z=L~`d33~R=adFiGcboNq%Y*@_^Pse8aJ@cod{DuF<;~|HV}LUEwwPRogUXJY3Djs! z_Lp2CV-kNZGGB-XYJ3)Lu7B7nes-|fm9dW><68X8`)U+UUS*^yCFLWxeeYmf9oW_A zn?+Yh@*njd&FFjz(nNg@-MZ*uV`XD26MqOsMgt^BVw^{gSPYcXI+id3LDSd1B0FBU z_1W4F41cUV-)leegrZ|ocg?$2H}+D>N>+Q=IgcEAib`*XVF1k^Hy!9&CI7T^FM0m2 zdEoO8WEcp$a;=A@b%2iU+qZAtr?2ybD~NZ87}KJ(@bhIGdZ1Bw6trVOo)qm3Lq*^!GQr$9WLDqLSSsYrl?2;HhHPyVDC7nsjl>_11((*sO8{jhVpvu zIzze7puZSmdCo%6X#>abruGB#)@AeU9nbawT~|xWP`^XoJk7F=-w9_II59~Gk7J&H zY7##7Fxuf1$W!iSb6h`x#%#NDR$kRW*VkWfDL@abUcRVzLdE4^N0OB3EhvI+?iUcU z8MZB21a87nFz7_cudy+MzCs)4^`8%U9j5O_!QZ@4S2=7864*No-N?JnUVk%)@$&)O zm6V(u|M~ODLEzbES9m|9s13q5=<1@b=4Kez+K+kkLP7NMB`}1Y1Pu@M#G@zi|BOY< zbS^rQNn=5@c6GY*7-Bu$aX$Dn6^9yvJZOrV!uJ2;_t<~Mo&MuK-0U33L#=RKFcT4y zV{ijpE-6AIVDY}&kv{?z^~Cr5KGPmLyiHKn*82y@W zYMWRGK@`22Co^!(WbZvebu=EFrf2(cumr#dNz`BjI>I>Z>RDR;K;Kv~6&@b`9@K^^ zMd?Z~JHZy$V&~uDddixo5w!@c6IHr)82%r+C2(S2TssWVXY>E|ZP8sC!B4&`Oq+ZX zBj(`Xu=!~m7XR@hIVeHY!Dbh2^9RR7@xOFTU4X+DWI!Vylr#^tObr?%V0RUP2kSsfvw|kK^mtqV!wRwvs0K}uiqJ#Lz~DfvPb8* zv}Wkigv0@DhI&pds)g*nWt#&?0C=%NJioI_F{|O~bIZWsd_~XakNhG+Ir13!fMc)a zCQxCv0Qn!NGZEU@*m!m`iaPTk`Vf8SnUV$I0i~vYtBK6QKpA~T;h(oY{T2c7!FoZ( zFhp5$6HU>%j&oW`&KvQ^j0zo3M3$h_yi;ytI9+rB$!ZUdPE;ICtj#MIJ5|?2`MS&^SGOzY{zb(T6CED zSw|7sV9eb94yZm?!IpmKSxgK z36R6A@jF8K>fO8Fq2Z}#1WtW6L_iGsgBT0`^`9>@%tZl74P|BTi`x0loRreeoE+!Q zAqYfm#4HE`T6tBV1nEAGQiHnU6XWRrubhkpf5sn6(lL8lg>%XliPfdZ05$3WNb2;YMS;9$jDL?s763bhixFJK!>T~>I^yEte2 zOQ<2Asse#tbZ>*W7zVVFjQKhqAG-3uv?Y0I;?_QYW#9HG8CO@~qeqXTI;Eq*Ub~4R zmhCCG1P^vs3_ks|o@`;c|KI^GQogsYtq>(h5fl^zl_E;ekD1at=(B6SCL@FY5+n9> zb93{-hdXYl(}K#ttJ0EHtqRjwsl)g6qDmyKp*^U*ojZ3<5;R*xfzp8IK?98rg!3Bt z7PR?RgY#tMTzaK6$Reywv9B+7ra7FCh`V$V7qrDMLP}IIbwPSgHV$F+4LEe)Iy8D3 z$P;A~dDGTFqX9wGGN@*{I`K{18*gcpSOA6lg^*W&T>KU`95H|_s1;P@X9p{oV%?X6 z4U3zPer4?5Bi4P<2v^0W~_ItimN_{#n)7il(OCB{ZqLT-uX5xWnS%iGp)+u*BLD@NN&a+>=FT!YAt$VV237p9qbD_OrHcXUs_QhJ=Q3A#E32s zi0h$t44N>FIgX48q4#U59Oe%utb~U`JO};De0xqInf^lOMC{|f%$*ZF5Zbk?Tz$q> zoECHgs3`va`W1V+NB-n2nsq^O`}UnXxxgDMbM2Z-(!ua?ugc}I`X!)A9tDG63*6@Z zpyq2Z*%A*j;sMQ~ppRsbtD&r>mQqN>LhulR?Z^^h78j=}tY`Z)(WrFp+ zoayE&S#7)7$@NF2N9B_#A5Iml3=Yzjb1xW{sgunT^hnXL5(fcqWzQXZ#R`KA0d;L< z{MCTI`YV<_eqa?Dp%8->mD+w>J9}tFSj{e3vP%krjyk8tN5J;>S{4|9@k5!Zd7(P< zoKfTyz$y#3#v^%6+fHu?pr$X{X&@*effd+o@zH<>#MgNs$`)iGL-RCwd3lrUKRz#< z5;pd(?Nmur^tslIPl6j)!q>Nj2BbU=t-$S+MgroXp2rl&y7`?b?zX>oC>pB^-c7+K z4;jX};#y{8|MQj|o9G7m=il&C2hX2XrobKw@OmA!ej-T^wduM(voPd+YPu-l>34mq z>R}I6c=u%+(|22!XRcP5W@T~x^HMK@{`X!Pb*CpEKY4OC`3W{ZUJ@^a+9ceV{Xeed zs2`3rt6471^Fx8jZKnT}dz#7p@O>3{64nDUWGU6zBKf(_sr2r>6o%ZsOHOk*GK?bkV^EpC>?5A))YX8qLZske?L_1Ji!rhcZ{$kwDW zG=pHC-e#A!!t{0+!7Yt9bUxqlE-U@r2he&7c&d-Z#dILLC{^LP2kOZ~Ls7nVS@|PgYd_~Iz*i~e&mW^u}HrH6YY30`xE3cSwi=7V&JSTYQu1U*u z2$W@o)9`rYmuCMq+a01kI^Ndc$2CfwdC{^lNRy9(HTLZ8ukezv5TFMc%2udF=Bz@s zrfB7KLRWI`lm4WkbF?wL<39WL zTi~Lrfr-0+X#2l*+^QEj4%=T9JCi$N#P{5nu7Pj`6|jK|oS>wn*Qxm1O*=&&cGJRu z^nhA0PCGZ+X_;)Tw%Q)94#)-Ces7ls$ba;=K}YXZNXXa~F+M)Zw`Y~e-pd(v8y&pP znr!bs=ygC|y)B?03)%8)PfWc1>b3AWeMlqmJ#TW088aI;eDG|qzp!k5!Aq%9lxMrx z`>$l8{3Yg6KY=uU9Ky#sOm?V`8a1etZMneOffjX9WlLsG@yimOFr+uN98$D6e- z)a%FJ2ei$^<+yfqx9lrVxR!q&mw2;~cX@Z`+m~s6pNeN67j6P2u;haW!t6?9?t4Rf zsxPVo>>wzlow&fXgS|ezG@#_!p5zzEKFE~tqeL`3nv!>`PaJ1u$VQdzy=$MNDR%Jk zhx*5-)Q{(`T#23ObF>+Rx-;vvO)-hN<9OjgsG{3McVAt|k1cvGhBrPKM#J6g_83nl zw7iV>aZVhnsvSZU;Wqodv0AQTX4v&Tm6?QRTu0x>oK2@|NKEcX%$hy^yKD{h>Hmn5 z*d?7uYL1{(^zV5La8dUXmro%L^Lp3KtQlEZlQFwn95pfPOd5%`qa5GPG8M4iI!Zn% z8uKigfV7l2?xR8~>&ryZjI>tqtGCK=q3xSRgy5H}SdgsM+ZSJ0w7iw;z;t7d;Du&V z*TjZ?)W))gWR!Af&SsNWvAy1=O9A!6dHUoXw!UUDJDUM+lb3@+ofKakxC@W0aFf?< z6d!~ZbDF$lrNEjQPC!NLzWcG&&C(+`DWkTps&)~^?0)E3X1OrRsy)UNny+-v`k*2o zgVi$f(0a>P;TB6roT;+1#Gh&ylUAj7(x~C4)8(rWey1hBm7x#vz7;J@W!{zf1!@JY z1y=p^aS+>FEqK)50>T>**bf>-q7`zmq16!6ffyWF>{e}EUA19uTxO<%%5mwVO_@{s zOl?|`9*OM`u4UCO=I*sZQkU*&4>RHH-yN< zLkb(ZzK479lY-B;dkyQ6DMh<;?3~xFdv3eNxs*uJzW^jwr~%b|%M< zW}XQZ(t$hjFydm4dBU4CHf0YjZC$u})6d};Kd4ej>gX^$0y7*u204#pqq{FCdStul ze){` zTQLN^;EdNwM(wX3y^nuUIQ&)fGPUD~EU&))(< zUlbH*p1B0In9)zo;?=rN{bR59AqImPin7%<+4Fqx46Nuy-f!K?;XmwNr&*e$1sL2h zHy!(TNomallJ7=KD6k;jAVZ1^5+k=llXJiZvt&Hc>b2YuMioVwQ3pWh?srpX><1??L5=c zlJa6r4F7up0U0*^zFztGI_ zWJ^6P3F_@0CfaoDpLwzI3m=4@tXObmWo6Hq{%G$hemb`kv1(V%Seti-?603OpKBH> za-Yapk~MZ7%Q~};Yw>d7adk|-gq1nFfD=W;^Ebs!q1_)e-qdz0>uPIz;2yc#oqty; z&Z9F#>&m~P&9pi5t3JYif1c#ajk?I+|M>mgO!(imfeyXTRWa`@Eeo5+TVT6{ey%a# z3^B>v{+t}ouN^r~cl6z)!i^^~Vs^bsdM8*s9+}gB&k-YKgR)IyFpl)!uW8oZqs5HP z>I{Gz-BE|I{NBqH{NbTL5_7R@xE7XUmh##eN`*8n@!MLxyzxn;FI2m0r(dU@9_;GM z$j$v&aNio&LrF9=Q2snrlKx(D^!tBN6S5BckFt1(^|y}k_LwKXlDaa4o^)9#Rl8iE zeZ$vh+1tL+OYTW6lXcAPj}|BemhEs=#GY{758Vqd|G5^}aP9B#J+uug3v-{`Ngi4h zNy_)W`h3613_J2#4kMMLSEhd{9FqT+^p6U0AfdCEPx#mM{`>zQp5RD#;1iuyj0&v7 zxRFp%QN0K8Dq)9dKae<~uYN*$RZUIJj{0yVEKr_`!SH0|!QSA30Ythq&|B!r)WrMr zlLP^Yts~>jvBBt@N$f6O zD=}9g)EIh#6}^QzF{W>1iC+BDBn+Fy_hYzAiyYC)n%H3W^X4Qv5R-p%ita_1Q8=dv z3*9;2*|dyjvR1_J2lQz#)5&W!$7Wa;G2d5TbeUY$t9v*58Sl%SqU4*n*3KO+V`@JR zze^?nDrUTs*N&5Vv2Z~e0Lr9m^~}{{#QO!wty6KWUEIEuc^p5Cj<(Q>ZKRUpa=9(m zy_3!GmsMYQZ(Gb9u&8TBIDjwNh0M&Ea$tUeKVy=e@mp!7K|yw`*3dxmOP(*S9aBQg8G#)d^YfEm+)-3uh4)Z`ZxM z^Mu21hxqN6o!kMss-oK&t&%wzP7-5phDnAC1*WkB6T|@=n|6MuU4AbFo8KiGdo7d8 zF~-Wp5}kr6(m!L>Qjf7m2OC{@_mJuZzHZrI=$+7El4YGE0M4x4VW6nmhzmJAiCv2w zC18l}V}jY44v7>UTa&uGdlTX;`p1V$I?OM(bp89WvP)^X5{z85+4@##NRH7_<#P00 zI)21*;UDOl4SOgE`7^Apa4<`8^E=TZWxqULT0c<+5WC4t!KWj%w#3FQU);QeWr!`W zzKS#VTWDjskKg;PQ^Q!S{rQ=JdRC1hL?e1L!f&R2diX0ToGO4p6w;P41%d_2W zbC$~-kQ1DLz29S=V*ssq&jKZRdC6dm zSf3YK{)H9`W(K5(j)7XQRA(YM=)(Q&8L_r*Fe#}pA-}L*l0U(GzPw~-;Sp^j1%32< zZd21>x#acm1Me&qCVvyV3rJ;LuuMh6UzjPfhg4lwZk-G32svZO(Zu)%gAbEPq-~{- z2d`#QN(^s)h{YRcNhc~fh!r;tRo~8Sj`hjtIj~87!BhS29S#yW-9epOCg+-@KF&}% z<-ml`>C4N@Sp3Zdk^KIHw&mJ;u{Ncg9Yi&ijHrPv{f-sleZGkA1YzvN>jxYSUp`n# z5Eo;Ds<|KY4y?StFtB#9D_eu|BMC3<2cFvZ6yY?_Jlok_l2pUq4To)n#dDtJ*2nzi z!H0wBHq*XLiqREo%eyjH^LnA6QcZ2j$<0XNq~WEuIKD~VU(H^N@^(KNe{2ogp4<(k zx+~Teuzqd3#S>#%MnK*~DF)OT8-$Dyn+^ zAyzrk{>iLqt|YV)G-XfVdFzk*0(?b|!w2M8h#C&bU&ThmXVItEeJo#k@7yXG=pH=n8FNGh)t z&dndQS>GJM)aO4Eef~lMWAPCqYkBg-NaE6Xq0s9tNc8p0m}kL4Zz|s@ z?(#+>O-D!Z0hfm%I}1;yZ6+A`tXr?e)QwT!+YQ{?`Q)1pqwy2~qDiaEYiqk9y3zM= zz5*7Kfckl5zmp4wa;9spa=fvEP&b%5=77U>_1mIGzV)!&{K1vG!H;y?0oLW@!r7ZY zhp1)s(AkSUxYu)xkDGQjceeAmz?a)<(43sm-Ct?n`(|_X;#^6ldvUzBM$ZMiX6~+EncZExtGourz0lg7yP@n+rW?B2RS@cGa4UGx1%*bUE1o4U+lDd6i(X z9VMfw2oI@lqdv`kp3h!SEGEnbZ7jjoHs<8-FioC z>GNzon0l)(QNBJ!?bFLOKclz)HFQ+))tzb0;CAD49~Q~J%h6y3tt5%;m7dl9is$DJ z4ORQOwEOg4S=ZjytA&L;t5gm9n?Z0xip5etj>S!2S(U|7NOHDj`DT`yxi_4%CUP*k zcN!+U&o?Dvdh?FvZc{I;Jgsnz5@9BNEgLN-rl(!T6ndk%c||?AqmY=SSz$G;F23D( zb3sYYHyd=7{*r$#;My^o$P_%}?6dLdX^v}+%rtMdRioW~OR?pf8B5y{czQG28Fg{l zOOr5erV<>|tEAtZI}$g|qG|E|N6~oCPceZL)b`i?8qXLlt&i&U;#IDf-p(-&w|PCe zv?JD^)D-mX`LmkZJIR~8sWs;PCo=Hl+;?T07ow281*s3(gq?lVWu+_lnc}$Ga-6E? zK5UFA6#w+|x&9#7b(SN&(pF+avV5ACU5t#kf~dlLW@$es^_BWq*#h(h29oN&eb(3* zEFhWoqa0InU+guFHC|K=W;xF*|KhT9hmoe5I9ceXcur@IoS)*eCC1TyFQw_Iz#3vP zy#bf1iS_d7*0U@}bq!fXrK>McFor{c1xM>RAA1(CM3D_L8xGsT=FRED}2iQ%7c{^ z73X|i2RY7$gzPUa$O&uWFm{`I@erv|uhY^TeSkW5}M6m7drKm zp=?H~DU0X`;Tjb+^(gp%$Z`u8rJE{Ts`rnJiA@CAL_NvpoRFmwGPd~jT;j7ljKlM_17zN9j?S#Ai^{IkvX++ z1(MjW<*iesIWma%un`{7*EE}3H>|qDeAKLTh>W>ED)+WQzFf^g;V*UH%4(jK+=aY% zgTM5I3dfzjvV}?tiq5THXT&Q`sO<1+>vi{CixbH1-(Y_JGJ8r_RdZ_R)^2)wL_ti$ zgHO$?>zQSQ`~PH2fpm91u5es>B|mJofm8KQm8Q(mWzN--(bw}(%9C~VqmPXD7n$V_ z$Z33ux*L-7&=M9TK18H+9rulI)Bo}GIeNDe#gDBQue z2lW*^M8|b1xlyImn`ZM+;>60It8Tc{0`CE+DM%4TV%(Rn_j&HjX?%J>nvjryAU8uf zzW^i`ZMdPG?OV4ognNfBDUDyBCwC35M;dVk-P$E+X`uZQw1LqiG{L|i;mM$#Zy{x9 z$U5M;WBE1qOC{5xgcYmKF!I^B^|BL=77B1)DBmGFF1AVzp=7T8)NKY4M-os?uL3pn z#~3l!%TE6(fn+(tB4bDW*z9ANL2sUwy{jE{d?$^#Ku*!Kmh4+MCXD0w>AT|-ik?Yc zln)5hYt+RzOO#n(ALqh-O_b|#&yLzh-l20a)&y=b);YGcWF5(A!>B_*Dpy{M3<_S-hoTO#47@Lhc+R%F0p-&9u z4g3FT65zk%fzvF0CiBvVAwU!=?fS?6qhNy;ZW0{Pe&C_6|F#FrUIFlrEm-t19Q!Z# zFR_S;F<$Aj#)EPwt*sskk?MD#F1DY-g?c9F9}fX$*YB(0kwRU70Af5h4Nyot3eEs9 z2f%DlcshV8oU;x9*B_^zqsK!-^6K=FH>X)HTtLCsUqOMnv`Yd&fqE`uRA{0CXk35U zM4!{wfjG?Wn*&Kf-$Loi%aY9UeO-r6RlO~M)34zaeAo+%j-JELK~}`nksmC!{@yK8 zze@t@p}yOXp#KjA7~fv23P!+`%E4>}tP}8s-9x+J1Ox;)1^03d2>^8I{o{uQ6gu?* zK(3K%cuhH$6alDFOi2Sszmm9$@LLX+Gs2I*L6`ta1#*YCfBkaWL(Agmv8wdJd;RVm zK6J66{fQ!90sFjKbnEJl3v{DcLW&^UBE{eV>Sd#+Y0P#Q^wev>eD_!Qqg`)T7|UB!)uhpUbk{zI~eq zYD+-ARzI-~uu(w$9680Q;ceF>L?f8($dqHcQiB9vZ~+~ z&Dz{^1YJtB=gJZi9wB?Rt{2*frTIrDg!NQa{n0}C-p&RTmhquCX|wc|dNhE^lennC z-`^kgo;L8G(YIGDEmQWS1IJP8jh6I4RC|QW35IY`T*}7ow7u{WfW`2_bZn1+!1v3^ zNfQ*pJNuK;ZlY;zOZ2+s9l<&L;m@hF0K!C_3cwp*tghO_&_hjatzpA^UQ{}>sysiS zO|jBVFCiZVi2%-?5OB^o9@wsHG_O{EZ^Dq^8!fNOzW?c3Ze zfr{Q*4LnEf73}9%r~hK}04SX&o)K4AegDUexq`tFK%n6%+YK*0gdz%PG1q_&^>aBU zkB$XbZ28tWy$*=9Bi=AgfW8q_bO7@yZD7Cx3yyZ`(V;HA-txt&V}$@@i*KLe0Xz-d zEfiwg+1cp~it;vfj86EwvsG2nt8=~70CR*16_|mjg1;Wr5APK4*tUlYZ7>RNHSy~- zTPxac2!SC6}hrs41(cZSQyT;k(Hql+9-K0dxB z_!WWfIKi<~aUVanJnR8IY;RcCVN}Q(l;UUf=5333;Jq?6a&aGgqJ>}iw@=m7zMxmp z)qMfidlLS@y2aS!1}a^Ro=!v(R;m@|Ie@SYEpMOW=9UBeA@q18n9qRpREf*V_%L*x zP%I-?>7q0s+cUKb$fSwg0eD$Bn^%wPIsdQmD1E2}6SFJ=Caum&xjD?b>8v!dLaaC= zI%Wlt61vY|K5i61A5su}!8jZYhl#)-Kvh{IsP-)aaBQ3Ns;TLDFqcOW6n;l5_~=%Z z&?$7V9omx#0MQ0pTL)z`6-~_`QhI?nzzx7Bu7(o?P@{znyAaH=RHfKjz#3Wq`bJ?t z*@6Scvg*T~)Wwx%2|!yI!M%Tf+4N1F0QkA3r6oO=e%tzs&U4sqcTYt(;Zt-s;RpkG zjMt=v8D{(tG>8a*ZCs_#qYn^n%x?=v&7}hsg^iuQ2QU%%qr{23HkgTN6>koPwLUs8 z8KOXauq{`C1;^Ib7EHNpp$?ah+Z@)DiF2Xiz;kyc_P`H7u5jXBM?^e@DM1KG@le_F z?xodcuYF2zc@mfDNM&Ep`TzQLADv;@+S)3Ft(Oac=t=wHxbL^(OW=qvf!~lK_5t|X zj_6CRDqh+qA*-)XsZdZl?An%8B_?zN0npnpc_$0YN=U{K2-8$-TwF~?B_M3B52g~# zI_!{Zva*CP8H66kdhOF9i-1!nw78#=;sjvl5wLxgFtw*I5LwnX0gVp0)5Qm5U@BEq zeBdM;hvB%Z;D1q_d1#}e9~OKEihZdZyy1aPIk*hcOnU0W=)~q!YAl32J}QZ_Fm_0) zsi`?{v@&0^Pz$q)qWK@v(j>vD!KNT2rSk(*2zzO^uZR+w6=HKEv)~fcldUAN zcM{f_>b@q>x3j$hXeR_H!%!uC%voOuk+o=(1By|CnU7#-pzo#dv@n6TM;yPqWdlYvcszX+46VRy(1zw6Dy4Y2+)eH#i~p78hN(@3`LR zM5BN8ur>F=%)NsPNZ?F%Nt1abOz*X3X&W;y==zTqRSAMTum`4&2zilihNuwyuq3@{^*)(n8r z=)&#kjIYoi5)IYnJY@q@8b!e++hEU`?S-RZB*+j>9HyR)%+ug*ZxYZ|6lh{ zpx@ywJMJhEs6N16)G1UJ1$kXVz!$S#xuTAc%OPO~l7k=BtG{A3zzGT9tJBwk zEVh|#4lEZXQUlhsgR7ht_?mXD6`p}DZ3#s6)O2SHXxNJ81odVpOyv9P*@ey8_ZBu?a zVCZkhi9(Ly#_p~6ie(FdlyCwJHsN|Z1EhV|Gli~BdX9eyq@UJ{*>Ai#4Ng@odqKKG zr#icAU26$$Dte=W0R5?okQemX-jt8k&B$Ur_QDw2j|s)aJ?1WR8)1N7wqe+!Y~t4> zW`Vik^GKlA-poBIt53je`ugqLQS2@l!g=#508P$?=xL|IsMF2+4pn8MXW$jjU|$V_)qMA@r_ zCZdHMZU9ogn_-mp4RYaVMPyMh>?n(0^)NZ~K^L7Bsik52pT{^4;owNZ zl-h+!+dI9#a-x}|*5AR%Q1HWQt)ikLLx8}-y@1#A<Yt90UwStJ8lfV`sODWnDt z@$Bn-Fv~DO>38}%a1m5X2S!ZHOZgHWK}LYTY_aeZmu8*}LJmfL!;DFFCxWTT!-9GE z^RX4tE^(Os^ZYsINI^|~7I7x9@gtvqI{{E&x`r7DMx_&5iOcl3ZSCyD+A`HL&^Oe| z>f*=}kQDOT-;Mho6&-yMA&yo&3&(5xcQ4oJ)kja}F@+m=e(|BV$;ru(%t#~T z6);oqt@mI`$?F7C13?5+$F^1J(i4OkVnxQ~hg-HV3%22zUcqElGA95x2;yqJ-cG$j zK-D=`xa4Slf>Wa;y5#5l>$O}2zof>!t036*sB{U=dMVf=Onu}9NsXPdl+;wW{>#P> z9>A#qm%rLG4~7-q5fHguX=COj5G2|!@I^L){IBu%lQ@#-)Tdr=A4EH_#4z~2JFdOs zwha>r=;@8%loa&ZcdvLc3&?6*Z>WM03s*pts*RB6z}9c+{j9eC(!Zug2B&hShux37 zS$roGVMZ}J6*-**k?NqD|rC&Fim+1MHFu351Axr|%KW$%B>2Grrjp zd+h~x2V#)cZ4=qZ4y6~cbKquNEI;Xg!G)EFAxML6mOi&?Ev(NzOyG-8TEcFFp-NnD z^_JH?VfwvC-sPvdL-7YJ#>i8S#{;saB0l8kw&Z}hdN_iBtKC${@z`32A;=u^1ok*0 zkW#3726N*%Yt6zloH&wb=vbyOXI|d3kvp9KdnekENiUnj=LR?uI;IKMpsej-Q`8Ye zqukxa*Tn-;sDG0KfR&Sr05{X|;SM^~2ymE^u=>2`aQrD@B!D5iDhv=y2vY1Y^8_Mj z=j2$x(#{{ylRSxACQ%g}Q|q0G^?EryZHAV&JST#dQuFfK#Ae4J(3^(#Qf2uk_~Cdcl!L%kCR5r`y(xEdM4+&H=D@m#=u zprNtxDAw=oAec8UjrT*Yp~$yx64Btx^ofy zeMR%F9mP&TbjNiuO>5kmn}e)2K5DeOh`syKN`S;J4$SZwylaW9xO4!scv3DdLfPfp zW^jQlX{9iVLsq%rkOYCd{EZvZQc_a#E2X!sLB>P{B$kFd)$fs-zAxb8@8tbSGa>3# zXTvk$#JoAfj#Y@)tMl5KyK+}m^^3`6G+@x15%}s*z=GZ2T#E(3S@f~HiLKV>CLB4V z93NZzuUKRxMN5*R8%0REOew>o3r)fxQ7G$*1S})cJX6rq?T%eAsy3w_cgfr{^nSIQ z9*uMkisE7G_invQznp`T6F^8T3mg8`>(@RoW@!Y2bEv;uYT#=|lO?^ayJ~8<-pw|@ zd?I+0aU>I4FZT$3AAYx^fWrJCoA=dzR74Ogx-73j+1n+M?q@f;kEShoc_$z|x(3Mu zy^e&42t7JH46Hf(n{^UTc3sLL8r+C_jkc%j&ChnNQGK5Ok;{fM0PJqsybBF=O_o^x z#wKX{i&)QNt@FXLB>pE5+mFKj=Y|)73B5_XXn6TyA0kX83Iea#o3q*+JlH4F3{~CQ zg}vwwG!#f_a8b|T>7gAbO}DFRkl#S4o_;$f#TJ5p#9GObw4>oCjA^}!ikjuEGs)_) z>xXiP$G8h*YH@($hB8n31!Iyi_uC?8C+V$9efs)zHf%LR`&X_3UY#SYIZKR4*Y>Y7 zp3QZZK{-Y^X*-Hg6}cWfs0}mqXgO=rUby0m1piC_C)q(*W72V9O!m4X=jA6*hB;0| z#vln`B)U?kBO4LB02jnn&iS$c>98}LOB@8y%IoqO9zi1jt&`N#!-T@fBp}C!pdtFD zE%_!K)6!-0BXzcJpCR_-gsCrd$_FBr>hFo?gRf(Q-=?Qu5QWkPGQ@ju7C{f@ywK0- z=AC7@HTnSh76da5mNPi6Ug_2ZtlO1G;3d$qwezq)bzd{}n!hV!ju@elkx|*W7t!>~ zFF@WIS6Zrr-S$gZj~Q!tm?`N;j?$fg#k7X(mZ*R7hNV&(6fG{mbo9vAXE@HWZhI;{ zigAPkD<`lFaP#EgZPAe+ci_Lln4&Y2)14V;guAh4DY)^BMf z+B1~d9d_&pL>YDy=j$)Q2Xt3d%(*K#Cf@#(ilfh}0;dv2kDs75IMke~FWkHbiP&$v zeQNtwbfNew<-z5B$ZuKvDq*#rLxJ#>L~|IVrL@3libq5y0~p!9dh_7m%}r;RZ`$h1 zha3q?1~QJ0`E~eJB2M!);M1P{{PeJ7aNjfwh3W%N5==fGWGg=kZO~&d;5M1uVC+qPsiV1ZYl= zj`BPOezF*^eHVoP#US>@8Pez($fVJ#*qb*e-i3v^l}6_qem#n&;?AqBa#Ra%`Bq5Q z-EARtGX!uM3QvRiHXpQz2ObhqP9j(eYp5v{7H#p>A_?Vg{;#=)5k7y{ULR)oU#WG9#aXax@cEc znUb*Qt{@tm1V1T;fS(Xeya40|+$O_%F;P*^;on=Lp~jlEVCj(#9XWZ%JkC+@@6rJA z1&)=ek1M9%jc!i~E5h;7SBN#W#M{Co^!PUx^b)Xr8ku5fXYp(T&(qH#KO?DOxm z7p61Ov=`1}Eed$G|M|gG3?}C=UffViMq4cy*GZP(F|gd`!CxRP1l!F5v+QgYe8G)y zyRK|`rIxR3-K11c;Df{=hWj=0#xn6R`laE@s42OSyTg<@h2Y<)Ckg~Y@N zoc?e21+N1Sr#c_~1(s&_F6EtwobgX?g>zM+!C0e4k*f39`&aty?^OP!a2)bOBoM0o z{O`L7sC6JuL^BET_U>$54kQq59+qV~J~n}{6f!(#*h*g^laf(XdPja3;kfe{w?@njC@o&VWrQ4a=CCe)!hd zNCmZ@5MTufc5Ca^AMe@%UkZuLO|GKTzw)5Sqysi1g;+P2rkGH6O>Li=&b8;BBg`!YPSt+(jYIAcm*o~o^ z{q6PA^&WFQyMrStD;@(7Xc)rnPXK)pNTh>ctSAVq;xQxvN)t~fB8xXio_{tJi6=Gm5NQ39i z_2(q6zd-}%8W2Y)?NVRSNb|ZS`nG=T1ROTf=?I#6cTNaRlyC02g~7oIg8Gqonk57& zgRV1KxZWtQPvNyw@MyVQI6vJB=iQ|`v6sVIP;8&yNrJ+~v&P6PXcURobb0M3l{a)8 z@;FNhT!wszcAE?~;0lW*HlXfCRzmh`3b59YgF{X>r{@U$jaL)Q7QfFF>a;L*ya+F} z2VRGTO>FQ%;r=YRa?$+jw{B5EU4A6${Y9vOh@BpQ9r-#WYReSX+s?85bX?P@| z6~U3Ye7l$2OhoG3+SM=7xdao5Vq)1X>+LlL)cq$emQIOBTx*3Od9$^OR(FY zLY|!KFr&6{%WO{K-rL6R+b5Wzv9%8t`Wc)%$SWbWvasHRHGwn>h`z{*W}i`WLpJ*B zueZKhUf}y6TYC0v9omZI<$0P z7Y#Sydq2%Cgn)q%^uS|m7`ItoC`I*sNwa?Wb9@of7?@gjjwQX$^CJ-z`Dm{V8ybKr#lN z)?$&*Y~~WQDpbGsy&(`jZq2vPbk6&;<~Tt!QsGmtc%JbBVN2@Y})44>gh!faw! z*)H4{v{;0YLm%)2G)YbXFBf{_PC?apeug-h-vMeZ$3Fe!gu>fUt|(-Ob_{RLqE_x} zo`N7?1R|~iz^hThNi>9;t2ZOI(!dARfk3GA=|Iy*8+xXJ5Hmdk%XbVhgfY|qwV4!flp))uFD|rfB?g*el4S^M`)w(2%|zNCyh#fZd|=V@{IAQh z(KKwYH-&L)Q%qT(M!aMVY9ps38oU6$``&mi z*$WA=(WhnzG49HAR99DT*rT8`lY&4g zb!vrC!c*s(3?3d{)}u$!#xAyl;gU(yN)GoS0J9WVw^Ps7X@z!gMxY7AkNsBFkZU(M zCw!%-=Y7c}k)587y4TLZ!FzAtzO{^b=h1@acWZB2z2Y`SE5u>KWlF$&^)!(E?Aa1~ zMb%Eg1HolMAgA3>0PTQCtK^_S;DT!})a-@Yas61KdilY=+l#TS1L}y$$kZrWBO>Tj%T|&?e_C|i+Z~}6aOoA1Oq(tg%iR_GajZ#QO)b5mqJj_~ ze-b8J8Bu1;-X7qRp`zG>l6r4eL$r#yLwt6&B1C#B{E>~WkZMKFg$9MfMy5AqRH4?I zrW}OWmp@$L0_(+fxom~d!aKT?CJqh`5wBjwfqSli25-QY&eYqBmR$fK=t)dd0}h=m zR;O};mUm<42Ve}gr=R=mS-EQ#USGhyD?@+5V%kg9sUPycnc)|{D{dBMBp%ai|w5rRln3UmXh zI%F}amr?5PH(GfbbzoC+p!=v&T~&2gW)(^#Tp{ftOO;TO&VWz5x3{NTTv28__7sL; z(_&*|VLBw=#Y=RvM_9@F%F6llbO@U7P_zPiAa%Lql9K*$BfX(vWj(!YJv}|TQ>Rh@ zh+Xh=AA*{Uz)7@S!8QkR?KYIjf3EiH7TdQ%#q-uR8CYg>hp6@Wm0lx;neU}Mb2J*h zlg&Q2U$Z>*4?-f48&%4e>}1&R%*tx?hlpouH$;z{)x>Fp%f6@<6lH zIT!rqO@L0FjgOCqvKJd%1e!olP(Z#C4Aay3TI>0?*uIOonNki=eLA(W2aJ#86t7{9 zI}on#?V0jXFn+hSv@YP_;9N3oOHy08a{2PN@y5t&NtVwBdhAAPNnIdF9D~}yn}~=D zX!OzV5X!kW3Kw=;Tie{p!)M$9`Z@Au=H_DnL4!!aFr<5VXBaAz`KaxK2Q0cyyC?%1 zsFVc; z+D{s8%neuhAG_o@tMMT-^BvkFP|MaaeVdBS&(6<>AB$MOeECwl?F-4;yV_dWEf@nE zgKliz_j_t;?5s{*WIEt36rzPyftSW!eWAK_;*qIDiej|cCnaa+LTE}#uP+R8gVBde zG~4(AeW4I&-Cu{8!Wf_$PO42!4dKO$3tk7>|D(O@{A)7Xx{fpRikE9aXGX;yFX~`N z0@5vjQlnG>5v8{P(xe3$Y*9f06~#!As)P=q25_zjLz89*L^=qPND&A~^<9s*{1ulk z{)kD)^PGM5UVH6zR$xyev3s|AUw=O}e`sLfFMRmK!os#Q0(xJ4XWLX(6xF#VDDn%3o8Nh=YGjSWnL-6JU44 zIp9CFfp?~qNSV~QxYwiNduN!s`BxdTz=C%|Lm%TkwA9pY!o}7?wc>o$0pvp4I(~2O zPBd;r1c1d|J+JL~5IH*x4X0JWfTqeplBHBsh*v{_YxhA|F*YZhUK0ht1c}C3;#}bu zp^(hiJ6+q*@C4I*T{fF-jU6IoSwWZCzH9H^Gg4Ag13)hk0JzoYqCfl~p=QTv^$ngT zCh99iM8aUEpaOe+`fHV8ljH7nTUD6(fkFrPt(_e(mQw10W;t>urhUWsG-2r#khl7G*Sd# zF6Qj!&6{m-f|k_B3(kqu{ReRaubBH2v4eroW9-yTWJd!=gWWj`i$eeg?&CctHp#gs z!T_|schzw>w=C$*&e+%_ffCcy(~ICtgV!l?>kTFzK6^HdlMfVS6N2^bTJ3BQt#x8tVFOj!~_t@BpeXHX!7*w)3xa0?H^Br=+*M_Vu9emBv7$WPj2)k zBug58e#MyeYZw_t5>|NYA68pGJOr#05D+l1FgvMdXea^C2BQyVj2nhAl24ra?EVQ=%Amss=56uiu1M*=QX2e zH;g8=@_dZv22ga`VFW|>tQ-1e-8zzOZhLYakd&T*!9do5?2w0_g*w=;IpEWod2@4q za&A3AaM0Ay)pbc}?yq^g&mHiszPykT+`#~QHoo^#>wT;516#VYU>DSv8usRq%}`YOsH0T*_cy0A7EUSo$*ez z<^G@3`{ZAL)6&*{6c@Kcjy9KvW#l<`W9~+$LqCw`mxfp0!7fE(!BZ3q6to^7ZUb>? z6pC!~_3PI|SKb6m!LTxoX$`r5-@EOTECBr;L2LTarR`g{cJh@o?8n^i(E~v4kVp|> zVLgW_SFU7(gwP<;)HbDJ9UCLVS&Uy)D`s^Q9adPnx_7isBK;dHFHY%iQuN6pxFPS@ zQ3pqe;7Akti%xv>BEN_UH`CPtBptdq3$qZFec^rIXh8 z0ISgZ?zZC|b_Hg#BvPfmSu|L^0&B1U5RH*Q@#dht{4zeC#o#tHP=IB3k){PNOT9gy zMp!NQ1kzts)f$^5K6L`UW|wgO%2bhAS+$9to@FlO)T!%DYor$=J@rv3pTKoh%-3f{ zB=wbOq`(&wt|DN)`e{_|J9MFt{lx2qL+mlvE_R8$kp~f8tbc_UK28l%oy3tN*{8~? ziB0C*12T&PGIxXn-qQ;}-@g5Hwgc|OHIswjB{{8RL!7b?y0>u;l zm+C}4bw}iMOFV}o*r1L3Mnovz^XveWqZ~u}Q`(tkIGxD=Ya>p7D}8 z&bJXkE2_}aB` zqW?h#ilZgq~xD9G7lcnf-@rs2#Qip>jUWo4sSimz`GKB&2pqGDcJTHPxvr87=z zjf{;2*!@Bv3z-j?6f@E38i*0mXG%3g0l!%2_NQcecJ?{MPG(F@jH6Uk9vHyEr#p#DmC!tVSDV_?MP&1FmGn#2H zaE-l7Cq77RZEffjL6q_P`xB7u4rKIm4V(mZ$L5}2aG>m`UO9jMDaUny%jF6{q2U@q zRvJ;A^dp7Fr$aXOzW4WU%wrvd@a4_dt>1vX%s5{Nq+j{Z-g>TyM+K*N90oV-d6{G~ z`B`){76|x)D(s+|Klpe#Q*>)Dien36`ojVZ_uJv(#h7RHwzsXG>l6AeQ9Jg;2I#4&e#0=vGzmVywUQ(P#WRE_H8nMz zTi11AD(XGLGo;aI(WCRd@^;)E>{zen$1<+y>ir-?V@#nCMIXK#-079IUts0yt0!U0s#45RW6tbF6`T3M z0X59bvQ!MQ@-+_a+t-3k#%wdGI?wsit?6I4{_x<>+g9IRvt6cj%pbH!T0RY;I{w&L zCMg~t^=LCCT0RNn9IM96+?<+c2VFsy9L0ZT_NxEb=y#xPFs3-W@|Y)3t(99VhLiQx z)kl`P;eEG=WR*5yw)`N3ui0{~II&3vS)itxkdQ!zq=nGs_J0EnRA6=sR?4sF_Q#J0 zB_}00VA|UBG$kd)iAF0mTmlGscfNv!OF{xlMU1Ks^#}w^Ah>Ma5Vl?;u4i*5_?}ey zr??Z>L-JG>hbcz$U@JGR9~?R7QkzISc{146#%37PAF{Oc`@NIU{8-N@re0M}dHwo0 z8Z(H-`VYtM0?&y?1f<%ZuNF|}uojo!++scBHhJ;NXeD2w;09(iR2OA6W8-S+fK*;- z_dF&h1F}s66&00V#mr0nSo&ipgi9+#ME~};G=8*1P^WZyT-g`2JIJDbd8i~R2Dc#W`5!+f5mEzNTU$q@+-U)qqNZAJoBKxN$J!(NBqcw)V5;8` zdM9|$t4L0(ow#$+ioQ8uG!1dm!a!A8QnE&p-qp^AptF(%&)1wcemwT#oG|lR`ouR; zQ_AyW=UQ4?I4v#ucvqdZ1rq5x%jLfB!-E$J_nfYIl&Q!E)Bsapb5wj*)FxI3U*}`!*^ti1^t95u9V*tNpx=~fV2tY_s(`IWV`T8P#R$W-KgC#>Pjnia0HXHV7Wsh^3weB{eg zZtS8qaUoN7fq{WWvVz}mgNa5G!d`hQPdfC$1KA0)IZe;~c0b;j$<-}x9yHk<2yNd> zV0Lg7OrTl=kSYCvJ&3L>UP^X$)6+CDv90o+FKzAY1jrGgdEhY`bjz=KDrzZU$ZJ6m zFN1@Fj+U13b8~azu^s@89OaCueh^MbsnR=lo=DM+PKA4%6t4tS0%OI@ep7LO*%5!7 zUVcG}hdG@(5A9g`gc+|FnsE6onbPIovO6~1ymgBY|5Z<50(p2@u3EYBoLCc}(juHa zFBDGrgvlvTdTIhRt*sMrpKxj1&!3&4K1yA^Swj;txb?J%vcx zJn|M>MOs0@3^KG(8CwV$jb@)5vT&&@fUrtOUtd3Tn(z|#-X38;rrgc(ziP-Gy6I3A zrx~7x41;T&}T|rKKl^@#)IL`8Kt`CH&~fgi_NH!$$+v&&o#`Q}1k2l_3xQ_AK zOMZ09RSW+SGPo(Wy1IHQI{Ue=U+vLS>f+lLdcDxKwt%x30j8OopJx^n6yRBWOd_U` zY~9c2w=TbdgAtw^A32YLl$?Y0pdKdLFVUQFAQ2%ll_#Wq(M!KuYi)HHu^E%6wq>1I zziwR~0$u!I@RCT_a0PNDVr?~dKcL!0Y)5dh25x+ zoHuVy;qfi2gSUHTwBAG*e}eE-djEcHJW9N1#hPtt*Jf)irl8>RoLj(i(7p=t99ob* zG*QUN=q?{dL`=cpFnc!gxPIiy$;gY-g{RCvi9i<9^yH$S2Ev8q+Fhn@zDe3X3|^{j zqyO5dZ;1*+x*FX1&ds14#)VAmC0_ZpYY7jswd0{*t2(f45{}@-=ui4x2`#uh6xO$8 z^D@~Jci|d-0Tfk8nKQ!ByPOtuzZc(o5!k9>%wuC-NQ1SbSI_G|co>8Wr>5RRfgk{L zLOyh;q1Rg5$||7@6z#L;&(qNV@P~(ALCV?)r#1m9!t=nfLRsDC$6jD1-tRnh%N|vp z$br{`gFP$gV#SUe$=ft{v-vORUQj|aR%2)aAQ=zdhTz&j12?1i%I&w%vZ`sF>&M{B z?Bj!w5a&r{^hYh|a`{=8-{he<5`ULiS#0ga&aptd_5Y}PlX+nBr;NH3_P3>Zc~I^& zG$7=|hZ{GFLR36V2+hYg-%IaI$@hv0I&x@yoR?2!Bqt|3LIXg2#1bz-G92WK0kRov z1WqH7ZvmLV+c}*%L&r1u5Y27bR!%fiW1WWPj19?Kuiw-#G+g%IpTeIf7Z3jTw`D>8 zx0k`g^xr={>LP2G|L2!wE;s)7U;n!s{|Sd4^`$irX;Bn|{OK3OV;X9@su?FQ1^+)j CeiVHG diff --git a/docs/example_galery.rst b/docs/example_galery.rst index 06a5ee0aa..57ae25f15 100644 --- a/docs/example_galery.rst +++ b/docs/example_galery.rst @@ -2,86 +2,86 @@ :gutter: 1 .. grid-item-card:: - :img-background: _static/fig1.gif + :img-background: _static/example_images/example_basics.gif :img-alt: Example 1 - Basic data visualization - :link: ex_1 + :link: example_basics :link-type: ref .. grid-item-card:: - :img-background: _static/fig2.png + :img-background: _static/example_images/example_customization.png :img-alt: Example 2 - Customize the appearance of the map - :link: ex_2 + :link: example_customization :link-type: ref .. grid-item-card:: - :img-background: _static/fig3.gif + :img-background: _static/example_images/example_multiple_maps.gif :img-alt: Example 3 - Data-classification and multiple Maps in a figure - :link: ex_3 + :link: example_multiple_maps :link-type: ref .. grid-item-card:: - :img-background: _static/fig4.gif + :img-background: _static/example_images/example_callbacks.gif :img-alt: Example 4 - Callbacks - turn your maps into interactive widgets - :link: ex_4 + :link: example_callbacks :link-type: ref .. grid-item-card:: - :img-background: _static/fig5.gif + :img-background: _static/example_images/example_overlays.gif :img-alt: Example 5 - Overlays, markers and annotations - :link: ex_5 + :link: example_overlays :link-type: ref .. grid-item-card:: - :img-background: _static/fig6.gif + :img-background: _static/example_images/example_webmaps.gif :img-alt: Example 6 - WebMap services and layer-switching - :link: ex_6 + :link: example_webmaps :link-type: ref .. grid-item-card:: - :img-background: _static/fig7.gif + :img-background: _static/example_images/example_vector_data.gif :img-alt: Example 7 - Vector data - interactive geometries - :link: ex_7 + :link: example_vector_data :link-type: ref .. grid-item-card:: - :img-background: _static/fig8.gif + :img-background: _static/example_images/example_scalebars.gif :img-alt: Example 8 - Using Scalebars - :link: ex_8 + :link: example_scalebars :link-type: ref .. grid-item-card:: - :img-background: _static/fig9.gif + :img-background: _static/example_images/example_timeseries.gif :img-alt: Example 9 - Data analysis widgets - Timeseries and histograms - :link: ex_9 + :link: example_timeseries :link-type: ref .. grid-item-card:: - :img-background: _static/example_row_col_selector.gif + :img-background: _static/example_images/example_row_col_selector.gif :img-alt: Example 10 - Data analysis widgets - Select 1D slices of a 2D dataset - :link: ex_10 + :link: example_row_col_selector :link-type: ref .. grid-item-card:: - :img-background: _static/example_inset_maps.png + :img-background: _static/example_images/example_inset_maps.png :img-alt: Example 11 - Inset-maps - get a zoomed-in view on selected areas - :link: ex_11 + :link: example_inset_maps :link-type: ref .. grid-item-card:: - :img-background: _static/example_lines.png + :img-background: _static/example_images/example_lines.png :img-alt: Example 12 - Lines and Annotations :text-align: center - :link: ex_12 + :link: example_lines :link-type: ref .. grid-item-card:: - :img-background: _static/example_gridlines.png + :img-background: _static/example_images/example_gridlines.png :img-alt: Example 13 - Gridlines and Grid Labels - :link: ex_13 + :link: example_gridlines :link-type: ref .. grid-item-card:: - :img-background: _static/example_contour.png + :img-background: _static/example_images/example_contour.png :img-alt: Example 14 - Contour plots and Contour Levels - :link: ex_14 + :link: example_contour :link-type: ref diff --git a/tests/example1.py b/docs/examples/example_basics.py similarity index 100% rename from tests/example1.py rename to docs/examples/example_basics.py diff --git a/tests/example4.py b/docs/examples/example_callbacks.py similarity index 98% rename from tests/example4.py rename to docs/examples/example_callbacks.py index 94142b4a6..7c59e1977 100644 --- a/tests/example4.py +++ b/docs/examples/example_callbacks.py @@ -1,5 +1,5 @@ -# EOmaps example 4: Turn your maps into a powerful widgets -# %matplotlib widget +# EOmaps example: Turn your maps into a powerful widgets + from eomaps import Maps import pandas as pd import numpy as np diff --git a/tests/example_contour.py b/docs/examples/example_contour.py similarity index 96% rename from tests/example_contour.py rename to docs/examples/example_contour.py index 85cbf04f9..5806da34a 100644 --- a/tests/example_contour.py +++ b/docs/examples/example_contour.py @@ -1,4 +1,4 @@ -# EOmaps Example: Contour plots and contour levels +# EOmaps example: Contour plots and contour levels from eomaps import Maps import numpy as np diff --git a/tests/example2.py b/docs/examples/example_customization.py similarity index 96% rename from tests/example2.py rename to docs/examples/example_customization.py index 385d77b61..a859c3616 100644 --- a/tests/example2.py +++ b/docs/examples/example_customization.py @@ -1,4 +1,4 @@ -# EOmaps example 3: Customize the appearance of the plot +# EOmaps example: Customize the appearance of the plot from eomaps import Maps import pandas as pd diff --git a/tests/example_gridlines.py b/docs/examples/example_gridlines.py similarity index 98% rename from tests/example_gridlines.py rename to docs/examples/example_gridlines.py index 1c0a912e1..0460ef310 100644 --- a/tests/example_gridlines.py +++ b/docs/examples/example_gridlines.py @@ -1,4 +1,4 @@ -# EOmaps Example: Customized gridlines +# EOmaps example: Customized gridlines from eomaps import Maps diff --git a/tests/example_inset_maps.py b/docs/examples/example_inset_maps.py similarity index 98% rename from tests/example_inset_maps.py rename to docs/examples/example_inset_maps.py index ed11a992a..8f6df6515 100644 --- a/tests/example_inset_maps.py +++ b/docs/examples/example_inset_maps.py @@ -1,3 +1,5 @@ +# EOmaps example: How to create inset-maps + from eomaps import Maps import numpy as np diff --git a/tests/example_lines.py b/docs/examples/example_lines.py similarity index 98% rename from tests/example_lines.py rename to docs/examples/example_lines.py index a94fd3e48..b35920328 100644 --- a/tests/example_lines.py +++ b/docs/examples/example_lines.py @@ -1,4 +1,4 @@ -# EOmaps example : drawing lines on a map +# EOmaps example: drawing lines on a map from eomaps import Maps diff --git a/tests/example3.py b/docs/examples/example_multiple_maps.py similarity index 98% rename from tests/example3.py rename to docs/examples/example_multiple_maps.py index 19a841a18..313ac4627 100644 --- a/tests/example3.py +++ b/docs/examples/example_multiple_maps.py @@ -1,4 +1,4 @@ -# EOmaps example 2: Data-classification and multiple Maps in one figure +# EOmaps example: Data-classification and multiple Maps in one figure from eomaps import Maps import pandas as pd diff --git a/tests/example5.py b/docs/examples/example_overlays.py similarity index 98% rename from tests/example5.py rename to docs/examples/example_overlays.py index 2ee68eeaf..130415c47 100644 --- a/tests/example5.py +++ b/docs/examples/example_overlays.py @@ -1,4 +1,4 @@ -# EOmaps example 5: Add overlays and indicators +# EOmaps example: Add overlays and indicators from eomaps import Maps import pandas as pd diff --git a/tests/example_row_col_selector.py b/docs/examples/example_row_col_selector.py similarity index 98% rename from tests/example_row_col_selector.py rename to docs/examples/example_row_col_selector.py index 4adcc1247..8673e4956 100644 --- a/tests/example_row_col_selector.py +++ b/docs/examples/example_row_col_selector.py @@ -1,3 +1,5 @@ +# EOmaps example: Select 1D slices of a 2D dataset + from eomaps import Maps import numpy as np diff --git a/tests/example8.py b/docs/examples/example_scalebars.py similarity index 95% rename from tests/example8.py rename to docs/examples/example_scalebars.py index 2e20698e3..96a76bed7 100644 --- a/tests/example8.py +++ b/docs/examples/example_scalebars.py @@ -1,4 +1,4 @@ -# EOmaps example 8: Adding scalebars - what about distances? +# EOmaps example: Adding scalebars - what about distances? from eomaps import Maps diff --git a/tests/example9.py b/docs/examples/example_timeseries.py similarity index 97% rename from tests/example9.py rename to docs/examples/example_timeseries.py index 467494f33..092c7e421 100644 --- a/tests/example9.py +++ b/docs/examples/example_timeseries.py @@ -1,4 +1,4 @@ -# EOmaps example 9: Data analysis widgets - Interacting with a database +# EOmaps example: Data analysis widgets - Interacting with a database from eomaps import Maps import pandas as pd diff --git a/tests/example7.py b/docs/examples/example_vector_data.py similarity index 97% rename from tests/example7.py rename to docs/examples/example_vector_data.py index b5dd786e5..2cb03523e 100644 --- a/tests/example7.py +++ b/docs/examples/example_vector_data.py @@ -1,4 +1,4 @@ -# EOmaps example 7: Using geopandas - interactive shapes! +# EOmaps example: Using geopandas - interactive shapes! from eomaps import Maps import pandas as pd diff --git a/tests/example6.py b/docs/examples/example_webmaps.py similarity index 97% rename from tests/example6.py rename to docs/examples/example_webmaps.py index 22309217e..6d2456a8f 100644 --- a/tests/example6.py +++ b/docs/examples/example_webmaps.py @@ -1,4 +1,4 @@ -# EOmaps example 6: WebMap services and layer-switching +# EOmaps example: WebMap services and layer-switching from eomaps import Maps import numpy as np diff --git a/docs/make2.bat b/docs/make2.bat new file mode 100644 index 000000000..3baa47fad --- /dev/null +++ b/docs/make2.bat @@ -0,0 +1,38 @@ +@ECHO OFF + +pushd %~dp0 + +REM Command file for Sphinx documentation + +if "%SPHINXBUILD%" == "" ( + set SPHINXBUILD=sphinx-build +) +set SOURCEDIR=. +set BUILDDIR=build + +if "%1" == "" goto help + +RMDIR /S /Q %SOURCEDIR%\build +RMDIR /S /Q %SOURCEDIR%\generated + +%SPHINXBUILD% >NUL 2>NUL +if errorlevel 9009 ( + echo. + echo.The 'sphinx-build' command was not found. Make sure you have Sphinx + echo.installed, then set the SPHINXBUILD environment variable to point + echo.to the full path of the 'sphinx-build' executable. Alternatively you + echo.may add the Sphinx directory to PATH. + echo. + echo.If you don't have Sphinx installed, grab it from + echo.http://sphinx-doc.org/ + exit /b 1 +) + +%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O% +goto end + +:help +%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O% + +:end +popd diff --git a/docs/notebooks/inset_maps.ipynb b/docs/notebooks/inset_maps.ipynb index 3453bbb57..bb8c09acd 100644 --- a/docs/notebooks/inset_maps.ipynb +++ b/docs/notebooks/inset_maps.ipynb @@ -84,7 +84,7 @@ ":::{tip}\n", "To quickly re-position (and re-size) inset-maps, make sure to have a look at the {ref}`layout_editor`!\n", "\n", - "A more advanced example on how to use inset-maps is available here: {ref}`ex_11`\n", + "A more advanced example on how to use inset-maps is available here: {ref}`example_inset_maps`\n", ":::\n" ] }, diff --git a/docs/substitutions.rst b/docs/substitutions.rst index 4fdc0298e..668606160 100644 --- a/docs/substitutions.rst +++ b/docs/substitutions.rst @@ -7,127 +7,3 @@
    - -.. |shp_ellipses| image:: _static/shape_imgs/ellipses.png - :width: 100% - :align: top - :target: api_data_visualization.html#ellipses - -.. |shp_rectangles| image:: _static/shape_imgs/rectangles.png - :width: 100% - :align: middle - :target: api_data_visualization.html#rectangles - -.. |shp_geod_circles| image:: _static/shape_imgs/geod_circles.png - :width: 100% - :align: middle - :target: api_data_visualization.html#geodesic-circles - -.. |shp_voronoi| image:: _static/shape_imgs/voronoi_diagram.png - :width: 100% - :align: middle - :target: api_data_visualization.html#voronoi-diagram - -.. |shp_delaunay| image:: _static/shape_imgs/delaunay_triangulation.png - :width: 100% - :align: middle - :target: api_data_visualization.html#delaunay-triangulation - -.. |shp_contour| image:: _static/shape_imgs/contour.png - :width: 100% - :align: middle - :target: api_data_visualization.html#contour - -.. |shp_scatter_points| image:: _static/shape_imgs/scatter_points.png - :width: 100% - :align: middle - :target: api_data_visualization.html#scatter-points - -.. |shp_raster| image:: _static/shape_imgs/raster.png - :width: 100% - :align: middle - :target: api_data_visualization.html#raster - -.. |shp_shade_raster| image:: _static/shape_imgs/shade_raster.png - :width: 100% - :align: middle - :target: api_data_visualization.html#shade-raster - -.. |shp_shade_points| image:: _static/shape_imgs/shade_points.png - :width: 100% - :align: middle - :target: api_data_visualization.html#shade-points - - - -.. |eximg01| image:: _static/fig1.gif - :width: 100% - :align: middle - :target: EOmaps_examples.html#ex-1 - -.. |eximg02| image:: _static/fig2.png - :width: 100% - :align: middle - :target: EOmaps_examples.html#ex-2 - -.. |eximg03| image:: _static/fig3.gif - :width: 100% - :align: middle - :target: EOmaps_examples.html#ex-3 - -.. |eximg04| image:: _static/fig4.gif - :width: 100% - :align: middle - :target: EOmaps_examples.html#ex-4 - -.. |eximg05| image:: _static/fig5.gif - :width: 100% - :align: middle - :target: EOmaps_examples.html#ex-5 - -.. |eximg06| image:: _static/fig6.gif - :width: 100% - :align: middle - :target: EOmaps_examples.html#ex-6 - -.. |eximg07| image:: _static/fig7.gif - :width: 100% - :align: middle - :target: EOmaps_examples.html#ex-7 - -.. |eximg08| image:: _static/fig8.gif - :width: 100% - :align: middle - :target: EOmaps_examples.html#ex-8 - -.. |eximg09| image:: _static/fig9.gif - :width: 100% - :align: middle - :target: EOmaps_examples.html#ex-9 - -.. |eximg10| image:: _static/example_row_col_selector.gif - :width: 100% - :align: middle - :target: EOmaps_examples.html#ex-10 - -.. |eximg11| image:: _static/example_inset_maps.png - :width: 100% - :align: middle - :target: EOmaps_examples.html#ex-11 - -.. |eximg12| image:: _static/example_lines.png - :width: 100% - :align: middle - :target: EOmaps_examples.html#ex-12 - -.. |eximg13| image:: _static/example_gridlines.png - :width: 100% - :align: middle - :target: EOmaps_examples.html#ex-13 - -.. |eximg14| image:: _static/example_contour.png - :width: 100% - :align: middle - :target: EOmaps_examples.html#ex-14 - -.. |eximg15| replace:: ... diff --git a/tests/test_examples.py b/tests/test_examples.py index c5a654c7f..c26ef17d7 100644 --- a/tests/test_examples.py +++ b/tests/test_examples.py @@ -1,45 +1,38 @@ +"""Test running all python-files in docs/examples that start with 'example_' """ +from pathlib import Path +import matplotlib.pyplot as plt import unittest -class TestExamples(unittest.TestCase): - def test_example1(self): - import example1 +def gen_test(name, code): + def test(*args, **kwargs): + try: + exec(code) + except Exception as ex: + raise AssertionError(f"Example '{name}' failed.") from ex + finally: + plt.close("all") - def test_example2(self): - import example2 + return test - def test_example3(self): - import example3 - def test_example4(self): - import example4 +class _TestSequenceMeta(type): + def __new__(mcs, name, bases, tests): + # the path to the folder containing the example scripts + parent_path = Path(__file__).parent.parent / "docs" / "examples" - def test_example5(self): - import example5 + examples = filter( + lambda x: x.stem.startswith("example_") and x.suffix == ".py", + parent_path.iterdir(), + ) - def test_example6(self): - import example6 + # generate unique tests for each example + for f in examples: + test_name = f"test_{f.stem}" + tests[test_name] = gen_test(name, f.read_text()) - def test_example7(self): - import example7 + return type.__new__(mcs, name, bases, tests) - def test_example8(self): - import example8 - def test_example9(self): - import example9 - - def test_example_inset_maps(self): - import example_inset_maps - - def test_example_row_col_selector(self): - import example_row_col_selector - - def test_example_lines(self): - import example_lines - - def test_example_gridlines(self): - import example_gridlines - - def test_example_contour(self): - import example_contour +class TestExamples(unittest.TestCase, metaclass=_TestSequenceMeta): + pass From 68e442589e38853503d740cef37a61cb90fd487a Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sun, 14 Jan 2024 20:03:32 +0100 Subject: [PATCH 094/240] make pre-commit happy --- docs/examples/example_row_col_selector.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/examples/example_row_col_selector.py b/docs/examples/example_row_col_selector.py index 8673e4956..92402448d 100644 --- a/docs/examples/example_row_col_selector.py +++ b/docs/examples/example_row_col_selector.py @@ -1,5 +1,5 @@ # EOmaps example: Select 1D slices of a 2D dataset - + from eomaps import Maps import numpy as np From 54530ba3843a13975fc11e22601bc33d604c35b8 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sun, 14 Jan 2024 20:18:50 +0100 Subject: [PATCH 095/240] update docs: make layer-intro image larger --- docs/api_basics.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/api_basics.rst b/docs/api_basics.rst index 7526b7417..c9f1ec3f0 100644 --- a/docs/api_basics.rst +++ b/docs/api_basics.rst @@ -62,7 +62,7 @@ Layer management ~~~~~~~~~~~~~~~~ .. image:: _static/intro.png - :width: 40% + :width: 70% A :py:class:`Maps` object represents a collection of features, callbacks,.. **on the assigned layer**. From 0787f4d4a65c1f55bb010cf43f9be434562f3537 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sun, 14 Jan 2024 20:25:26 +0100 Subject: [PATCH 096/240] minor --- docs/FAQ.rst | 3 +++ environment.yml | 1 - 2 files changed, 3 insertions(+), 1 deletion(-) diff --git a/docs/FAQ.rst b/docs/FAQ.rst index 1a46cf6af..db4f46137 100644 --- a/docs/FAQ.rst +++ b/docs/FAQ.rst @@ -29,6 +29,7 @@ Any contributions are welcome! .. _configuring_the_editor: + Configuring the editor (IDE) **************************** @@ -187,6 +188,7 @@ However, for some editors there are special settings that can be adjusted to imp Checkout the `matplotlib doc `_ for more info! + Record interactive maps to create animations ******************************************** @@ -391,6 +393,7 @@ Important changes between major versions - ``setup.py`` and ``_version.py`` have been removed in favor of using a ``pyproject.toml`` file + - scripts for the examples have been re-named and are now located in ``docs\examples`` The following (previously deprecated) methods are now **removed**: diff --git a/environment.yml b/environment.yml index e8c42e781..9224e4efc 100644 --- a/environment.yml +++ b/environment.yml @@ -22,7 +22,6 @@ dependencies: # --------------for WebMaps - owslib - requests - - cairosvg # --------------to support multiple Qt versions - qtpy # --------------for testing From 4dbd804d51802953c3f4c259819d627b0273d07f Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sun, 14 Jan 2024 20:54:54 +0100 Subject: [PATCH 097/240] add MapsGrid stub files --- docs/gen_autodoc_file.py | 2 ++ eomaps/mapsgrid.py | 4 ---- 2 files changed, 2 insertions(+), 4 deletions(-) diff --git a/docs/gen_autodoc_file.py b/docs/gen_autodoc_file.py index 6cafda795..61da9c06c 100644 --- a/docs/gen_autodoc_file.py +++ b/docs/gen_autodoc_file.py @@ -76,6 +76,8 @@ def make_feature_toctree_file(): s += get_autosummary( "eomaps.eomaps", ["Maps.config", *members], "obj_with_attributes_no_toc" ) + s += get_autosummary("eomaps.mapsgrid", ["MapsGrid"], "custom-class-template") + s += get_autosummary("eomaps.colorbar", ["ColorBar"], "custom-class-template") s += get_autosummary( "eomaps.grid", ["GridLines", "GridLabels"], "custom-class-template" diff --git a/eomaps/mapsgrid.py b/eomaps/mapsgrid.py index cd3dc4947..24ac6b61c 100644 --- a/eomaps/mapsgrid.py +++ b/eomaps/mapsgrid.py @@ -73,10 +73,6 @@ class MapsGrid: Attributes ---------- - f : matplotlib.figure - The matplotlib figure object - gridspec : matplotlib.GridSpec - The matplotlib GridSpec instance used to initialize the axes. m_ : eomaps.Maps objects The individual Maps-objects can be accessed via `mgrid.m_` The identifiers are hereby `_` or the keys of the `m_inits` From 512eaeb8b457edae705132af44be6db2e729cdaf Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sun, 14 Jan 2024 21:14:04 +0100 Subject: [PATCH 098/240] minor --- environment.yml | 7 +++++-- 1 file changed, 5 insertions(+), 2 deletions(-) diff --git a/environment.yml b/environment.yml index 9224e4efc..cce90f6c8 100644 --- a/environment.yml +++ b/environment.yml @@ -6,13 +6,16 @@ dependencies: - python = 3.11 - numpy - scipy - - pandas - - geopandas - matplotlib >=3.4 - cartopy >=0.20.0 - descartes - mapclassify - pyproj + + # ------------- to support Dataframes + - pandas + # ------------- to support GeoDataFrames + - geopandas # --------------for data-shading - datashader # --------------for GeoTIFF and NetCDF files From 014a7f1ced64cdbb84d1ee340545a5e0552dc70e Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sun, 14 Jan 2024 21:14:42 +0100 Subject: [PATCH 099/240] update docs --- docs/api_annotations_markers_etc.rst | 380 ++++++++++++++------------- docs/api_basics.rst | 320 ++++++++++++---------- docs/api_callbacks.rst | 158 +++++------ docs/gen_autodoc_file.py | 11 +- 4 files changed, 473 insertions(+), 396 deletions(-) diff --git a/docs/api_annotations_markers_etc.rst b/docs/api_annotations_markers_etc.rst index 1e41798ab..38c269340 100644 --- a/docs/api_annotations_markers_etc.rst +++ b/docs/api_annotations_markers_etc.rst @@ -50,62 +50,66 @@ To dynamically add annotations if you click on the map, checkout the associated :width: 50% -.. table:: - :widths: 50 50 - :align: center - - +-----------------------------------------------------------------------------------+---------------------------------------------+ - | .. code-block:: python | .. image:: _static/minigifs/annotations.png | - | :name: test_add_annotations | :align: center | - | | | - | from eomaps import Maps | |img_minsize| | - | import numpy as np | | - | x, y = np.mgrid[-45:45, 20:60] | | - | | | - | m = Maps(crs=4326) | | - | m.set_data(x+y, x, y) | | - | m.add_feature.preset.coastline(ec="k", lw=.75) | | - | m.plot_map() | | - | | | - | # annotate any point in the dataset via the data-index | | - | m.add_annotation(ID=345) | | - | # annotate an arbitrary position (in the plot-crs) | | - | m.add_annotation( | | - | xy=(20,25), text="A formula:\n $z=\sqrt{x^2+y^2}$", | | - | fontweight="bold", bbox=dict(fc=".6", ec="none", pad=0.2)) | | - | # annotate coordinates defined in arbitrary crs | | - | m.add_annotation( | | - | xy=(2873921, 6527868), xy_crs=3857, xytext=(5,5), | | - | text="A location defined \nin epsg 3857", fontsize=8, | | - | rotation=-45, bbox=dict(fc="skyblue", ec="k", ls="--", pad=0.2)) | | - | | | - | # functions can be used for more complex text | | - | def text(m, ID, val, pos, ind): | | - | return f"lon={pos[0]}\nlat={pos[1]}" | | - | | | - | props = dict(xy=(-1.5, 38.45), text=text, | | - | arrowprops=dict(arrowstyle="-|>", fc="fuchsia", | | - | mutation_scale=15)) | | - | | | - | m.add_annotation(**props, xytext=(20, 20), color="darkred") | | - | m.add_annotation(**props, xytext=(-60, 20), color="purple") | | - | m.add_annotation(**props, xytext=(-60, -40), color="dodgerblue") | | - | m.add_annotation(**props, xytext=(20, -40), color="olive") | | - | | | - | # multiple annotations can be added in one go (xy=([...], [...]) also works!) | | - | m.add_annotation(ID=[2500, 2700, 2900], text=lambda ID, **kwargs: str(ID), | | - | color="w", fontweight="bold", rotation=90, | | - | arrowprops=dict(width=5, fc="b", ec="orange", lw=2), | | - | bbox=dict(boxstyle="round, rounding_size=.8, pad=.5", | | - | fc="b", ec="orange", lw=2)) | | - | | | - | m.add_annotation(ID=803, xytext=(-80,60), | | - | bbox=dict(ec="r", fc="gold", lw=3), | | - | arrowprops=dict( | | - | arrowstyle="fancy", relpos=(.48,-.2), | | - | mutation_scale=40, fc="r", | | - | connectionstyle="angle3, angleA=90, angleB=-25")) | | - +-----------------------------------------------------------------------------------+---------------------------------------------+ + +.. grid:: 1 1 2 2 + + .. grid-item:: + + .. code-block:: python + :name: test_add_annotations + + from eomaps import Maps + import numpy as np + x, y = np.mgrid[-45:45, 20:60] + + m = Maps(crs=4326) + m.set_data(x+y, x, y) + m.add_feature.preset.coastline(ec="k", lw=.75) + m.plot_map() + + # annotate any point in the dataset via the data-index + m.add_annotation(ID=345) + # annotate an arbitrary position (in the plot-crs) + m.add_annotation( + xy=(20,25), text="A formula:\n $z=\sqrt{x^2+y^2}$", + fontweight="bold", bbox=dict(fc=".6", ec="none", pad=0.2)) + # annotate coordinates defined in arbitrary crs + m.add_annotation( + xy=(2873921, 6527868), xy_crs=3857, xytext=(5,5), + text="A location defined \nin epsg 3857", fontsize=8, + rotation=-45, bbox=dict(fc="skyblue", ec="k", ls="--", pad=0.2)) + + # functions can be used for more complex text + def text(m, ID, val, pos, ind): + return f"lon={pos[0]}\nlat={pos[1]}" + + props = dict(xy=(-1.5, 38.45), text=text, + arrowprops=dict(arrowstyle="-|>", fc="fuchsia", + mutation_scale=15)) + + m.add_annotation(**props, xytext=(20, 20), color="darkred") + m.add_annotation(**props, xytext=(-60, 20), color="purple") + m.add_annotation(**props, xytext=(-60, -40), color="dodgerblue") + m.add_annotation(**props, xytext=(20, -40), color="olive") + + # multiple annotations can be added in one go (xy=([...], [...]) also works!) + m.add_annotation(ID=[2500, 2700, 2900], text=lambda ID, **kwargs: str(ID), + color="w", fontweight="bold", rotation=90, + arrowprops=dict(width=5, fc="b", ec="orange", lw=2), + bbox=dict(boxstyle="round, rounding_size=.8, pad=.5", + fc="b", ec="orange", lw=2)) + + m.add_annotation(ID=803, xytext=(-80,60), + bbox=dict(ec="r", fc="gold", lw=3), + arrowprops=dict( + arrowstyle="fancy", relpos=(.48,-.2), + mutation_scale=40, fc="r", + connectionstyle="angle3, angleA=90, angleB=-25")) + + + .. grid-item:: + + .. image:: _static/minigifs/annotations.png Markers @@ -145,50 +149,52 @@ To dynamically add markers if you click on the map, checkout the associated :ref Maps.add_marker +.. grid:: 1 1 2 2 + + .. grid-item:: + + .. code-block:: python + :name: test_add_markers + + from eomaps import Maps + m = Maps(crs=4326) + m.add_feature.preset.coastline() + + # ----- SINGLE MARKERS + # by default, MARKER DIMENSIONS are defined in units of the plot-crs! + m.add_marker(xy=(0, 0), radius=20, shape="rectangles", + fc="y", ec="r", ls=":", lw=2) + m.add_marker(xy=(0, 0), radius=10, shape="ellipses", + fc="darkorange", ec="r", ls=":", lw=2) + + # MARKER DIMENSIONS can be specified in any CRS! + m.add_marker(xy=(12000000, 0), xy_crs=3857, + radius=5000000, radius_crs=3857, + fc=(.5, .5, 0, .4), ec="r", lw=3, n=100) + + # GEODETIC CIRCLES with radius defined in meters + m.add_marker(xy=(-135, 35), radius=3000000, shape="geod_circles", + fc="none", ec="r", hatch="///", lw=2, n=100) + + # ----- MULTIPLE MARKERS + x = [-80, -40, 40, 80] # x-coordinates of the markers + fc = ["r", "g", "b", "c"] # the colors of the markers + + # N markers with the same radius + m.add_marker(xy=(x, [-60]*4), radius=10, fc=fc) + + # N markers with different radius and properties + m.add_marker(xy=(x, [0]*4), radius=[15, 10, 5, 2], + fc=fc, ec=["none", "r", "g", "b"], alpha=[1, .5, 1, .5]) + + # N markers with different widths and heights + radius = ([15, 10, 5, 15], [5, 15, 15, 2]) + m.add_marker(xy=(x, [60]*4), radius=radius, fc=fc) + + .. grid-item:: + + .. image:: _static/minigifs/markers.png -.. table:: - :widths: 50 50 - :align: center - - +---------------------------------------------------------------------------+-----------------------------------------+ - | .. code-block:: python | .. image:: _static/minigifs/markers.png | - | :name: test_add_markers | :align: center | - | | | - | from eomaps import Maps | |img_minsize| | - | m = Maps(crs=4326) | | - | m.add_feature.preset.coastline() | | - | | | - | # ----- SINGLE MARKERS | | - | # by default, MARKER DIMENSIONS are defined in units of the plot-crs! | | - | m.add_marker(xy=(0, 0), radius=20, shape="rectangles", | | - | fc="y", ec="r", ls=":", lw=2) | | - | m.add_marker(xy=(0, 0), radius=10, shape="ellipses", | | - | fc="darkorange", ec="r", ls=":", lw=2) | | - | | | - | # MARKER DIMENSIONS can be specified in any CRS! | | - | m.add_marker(xy=(12000000, 0), xy_crs=3857, | | - | radius=5000000, radius_crs=3857, | | - | fc=(.5, .5, 0, .4), ec="r", lw=3, n=100) | | - | | | - | # GEODETIC CIRCLES with radius defined in meters | | - | m.add_marker(xy=(-135, 35), radius=3000000, shape="geod_circles", | | - | fc="none", ec="r", hatch="///", lw=2, n=100) | | - | | | - | # ----- MULTIPLE MARKERS | | - | x = [-80, -40, 40, 80] # x-coordinates of the markers | | - | fc = ["r", "g", "b", "c"] # the colors of the markers | | - | | | - | # N markers with the same radius | | - | m.add_marker(xy=(x, [-60]*4), radius=10, fc=fc) | | - | | | - | # N markers with different radius and properties | | - | m.add_marker(xy=(x, [0]*4), radius=[15, 10, 5, 2], | | - | fc=fc, ec=["none", "r", "g", "b"], alpha=[1, .5, 1, .5]) | | - | | | - | # N markers with different widths and heights | | - | radius = ([15, 10, 5, 15], [5, 15, 15, 2]) | | - | m.add_marker(xy=(x, [60]*4), radius=radius, fc=fc) | | - +---------------------------------------------------------------------------+-----------------------------------------+ Lines @@ -227,41 +233,45 @@ Lines can be added to a map with :py:meth:`Maps.add_line`. Maps.add_line -.. table:: - :widths: 50 50 - :align: center - - +-----------------------------------------------------------------+---------------------------------------+ - | .. code-block:: python | .. image:: _static/minigifs/lines.png | - | :name: test_add_lines | :align: center | - | | | - | from eomaps import Maps | |img_minsize| | - | import matplotlib.patheffects as path_effects | | - | | | - | m = Maps(Maps.CRS.Sinusoidal(), figsize=(8, 4)) | | - | m.add_feature.preset.ocean() | | - | | | - | p0 = [(-100,10), (34, -56), (125, 57)] | | - | p1 = [(-120,50), (-42, 63), (45, 57)] | | - | p2 = [(-20,-45), (-20, 45), (45, 45), (45, -20), (-20,-45)] | | - | | | - | | | - | m.add_line(p0, connect="geod", del_s=100000, | | - | lw=0.5, c="k", mark_points="rs", | | - | marker=".", markevery=10) | | - | | | - | m.add_line(p1, connect="straight", c="b", ls="--", | | - | mark_points=dict(fc="y", ec="k", lw=.5)) | | - | | | - | m.add_line(p2, connect="straight_crs", c="r", | | - | n=5, lw=0.25, ms=5, | | - | path_effects=[ | | - | path_effects.withStroke(linewidth=3, | | - | foreground="gold"), | | - | path_effects.TickedStroke(angle=90, | | - | linewidth=1, | | - | length=0.5)]) | | - +-----------------------------------------------------------------+---------------------------------------+ + +.. grid:: 1 1 2 2 + + .. grid-item:: + + .. code-block:: python + :name: test_add_lines + + from eomaps import Maps + import matplotlib.patheffects as path_effects + + m = Maps(Maps.CRS.Sinusoidal(), figsize=(8, 4)) + m.add_feature.preset.ocean() + + p0 = [(-100,10), (34, -56), (125, 57)] + p1 = [(-120,50), (-42, 63), (45, 57)] + p2 = [(-20,-45), (-20, 45), (45, 45), (45, -20), (-20,-45)] + + + m.add_line(p0, connect="geod", del_s=100000, + lw=0.5, c="k", mark_points="rs", + marker=".", markevery=10) + + m.add_line(p1, connect="straight", c="b", ls="--", + mark_points=dict(fc="y", ec="k", lw=.5)) + + m.add_line(p2, connect="straight_crs", c="r", + n=5, lw=0.25, ms=5, + path_effects=[ + path_effects.withStroke(linewidth=3, + foreground="gold"), + path_effects.TickedStroke(angle=90, + linewidth=1, + length=0.5)]) + + .. grid-item:: + + .. image:: _static/minigifs/lines.png + Rectangular areas @@ -277,37 +287,39 @@ To indicate rectangular areas in any given crs, simply use :py:meth:`Maps.indica Maps.indicate_extent -.. table:: - :widths: 50 50 - :align: center - - +-----------------------------------------------------------------------+-------------------------------------------------+ - | .. code-block:: python | .. image:: _static/minigifs/indicate_extent.png | - | :name: test_indicate_extent | :align: center | - | | | - | from eomaps import Maps | |img_minsize| | - | m = Maps(crs=3035) | | - | m.add_feature.preset.coastline(ec="k") | | - | | | - | # indicate a lon/lat rectangle | | - | m.indicate_extent(-20, 35, 40, 50, hatch="//", fc="none", ec="r") | | - | | | - | # indicate some rectangles in epsg:3035 | | - | hatches = ["*", "xxxx", "...."] | | - | colors = ["yellow", "r", "darkblue"] | | - | for i, h, c in zip(range(3), hatches, colors): | | - | pos0 = (2e6 + i*2e6, 7e6, 3.5e6 + i*2e6, 9e6) | | - | pos1 = (2e6 + i*2e6, 7e6 + 3e6, 3.5e6 + i*2e6, 9e6 + 3e6) | | - | | | - | m.indicate_extent(*pos0, crs=3857, hatch=h, lw=0.25, ec=c) | | - | m.indicate_extent(*pos1, crs=3857, hatch=h, lw=0.25, ec=c) | | - | | | - | # indicate a rectangle in European Equi7Grid projection | | - | m.indicate_extent(1000000, 1000000, 4800000, 4800000, | | - | crs=Maps.CRS.Equi7_EU, | | - | fc="g", alpha=0.5, ec="k") | | - | | | - +-----------------------------------------------------------------------+-------------------------------------------------+ +.. grid:: 1 1 2 2 + + .. grid-item:: + + .. code-block:: python + :name: test_indicate_extent + + from eomaps import Maps + m = Maps(crs=3035) + m.add_feature.preset.coastline(ec="k") + + # indicate a lon/lat rectangle + m.indicate_extent(-20, 35, 40, 50, hatch="//", fc="none", ec="r") + + # indicate some rectangles in epsg:3035 + hatches = ["*", "xxxx", "...."] + colors = ["yellow", "r", "darkblue"] + for i, h, c in zip(range(3), hatches, colors): + pos0 = (2e6 + i*2e6, 7e6, 3.5e6 + i*2e6, 9e6) + pos1 = (2e6 + i*2e6, 7e6 + 3e6, 3.5e6 + i*2e6, 9e6 + 3e6) + + m.indicate_extent(*pos0, crs=3857, hatch=h, lw=0.25, ec=c) + m.indicate_extent(*pos1, crs=3857, hatch=h, lw=0.25, ec=c) + + # indicate a rectangle in European Equi7Grid projection + m.indicate_extent(1000000, 1000000, 4800000, 4800000, + crs=Maps.CRS.Equi7_EU, + fc="g", alpha=0.5, ec="k") + + .. grid-item:: + + .. image:: _static/minigifs/indicate_extent.png + Logos ~~~~~ @@ -320,22 +332,28 @@ Logos can be re-positioned and re-sized with the :ref:`layout_editor`! - To fix the relative position of the logo with respect to the map-axis, use ``fix_position=True`` -.. table:: - - +--------------------------------------------------------------------------------------------+---------------------------------------+ - | .. code-block:: python | .. image:: _static/minigifs/logos.png | - | :name: test_add_logo | :align: center | - | | | - | from eomaps import Maps | |img_minsize| | - | m = Maps() | | - | m.add_feature.preset.coastline() | | - | m.add_logo(position="ul", size=.15) | | - | m.add_logo(position="ur", size=.15) | | - | # notice that the bottom logos maintain their relative position on resize/zoom events! | | - | # (and also that they can NOT be moved with the layout-editor) | | - | m.add_logo(position="lr", size=.3, pad=(0.1,0.05), fix_position=True) | | - | m.add_logo(position="ll", size=.4, fix_position=True) | | - +--------------------------------------------------------------------------------------------+---------------------------------------+ + +.. grid:: 1 1 2 2 + + .. grid-item:: + + .. code-block:: python + :name: test_add_logo + + from eomaps import Maps + m = Maps() + m.add_feature.preset.coastline() + m.add_logo(position="ul", size=.15) + m.add_logo(position="ur", size=.15) + # notice that the bottom logos maintain their relative position on resize/zoom events! + # (and also that they can NOT be moved with the layout-editor) + m.add_logo(position="lr", size=.3, pad=(0.1,0.05), fix_position=True) + m.add_logo(position="ll", size=.4, fix_position=True) + + .. grid-item:: + + .. image:: _static/minigifs/logos.png + .. autosummary:: diff --git a/docs/api_basics.rst b/docs/api_basics.rst index c9f1ec3f0..7eb99c660 100644 --- a/docs/api_basics.rst +++ b/docs/api_basics.rst @@ -375,105 +375,142 @@ To position the map in a (virtual) grid, one of the following options are possib - ``index`` can also be a two-tuple specifying the (first, last) indices (1-based, and including last) of the map, e.g., ``Maps(ax=(3, 1, (1, 2)))`` makes a map that spans the upper 2/3 of the figure. -.. table:: - - +----------------------------------------------------+------------------------------------+ - | .. code-block:: python | .. image:: _static/grids/grid1.png | - | :name: test_gridpos_1 | :align: center | - | | | - | from eomaps import Maps | |img_minsize| | - | # ----- initialize a figure with an EOmaps map | | - | # position = item 1 of a 2x1 grid | | - | m = Maps(ax=(2, 1, 1)) | | - | # ----- add a normal matplotlib axes | | - | # position = item 2 of a 2x1 grid | | - | ax = m.f.add_subplot(2, 1, 2) | | - +----------------------------------------------------+------------------------------------+ - -.. table:: - - +----------------------------------------------------+------------------------------------+ - | .. code-block:: python | .. image:: _static/grids/grid2.png | - | :name: test_gridpos_2 | :align: center | - | | | - | from eomaps import Maps | |img_minsize| | - | # ----- initialize a figure with an EOmaps map | | - | # position = item 1 of a 2x2 grid | | - | m = Maps(ax=(2, 2, 1)) | | - | # ----- add another Map to the same figure | | - | # position = item 3 of a 2x2 grid | | - | m2 = m.new_map(ax=(2, 2, 3)) | | - | # ----- add a normal matplotlib axes | | - | # position = second item of a 1x2 grid | | - | ax = m.f.add_subplot(1, 2, 2) | | - +----------------------------------------------------+------------------------------------+ - -.. table:: - - +----------------------------------------------------+------------------------------------+ - | .. code-block:: python | .. image:: _static/grids/grid3.png | - | :name: test_gridpos_3 | :align: center | - | | | - | from eomaps import Maps | |img_minsize| | - | # ----- initialize a figure with an EOmaps map | | - | # position = span 2 rows of a 3x1 grid | | - | m = Maps(ax=(3, 1, (1, 2))) | | - | # ----- add a normal matplotlib axes | | - | # position = item 3 of a 3x1 grid | | - | ax = m.f.add_subplot(3, 1, 3) | | - +----------------------------------------------------+------------------------------------+ + +.. grid:: 1 1 2 2 + + .. grid-item:: + + .. code-block:: python + :name: test_gridpos_1 + + from eomaps import Maps + # ----- initialize a figure with an EOmaps map + # position = item 1 of a 2x1 grid + m = Maps(ax=(2, 1, 1)) + # ----- add a normal matplotlib axes + # position = item 2 of a 2x1 grid + ax = m.f.add_subplot(2, 1, 2) + + .. grid-item-card:: + :width: 50% + :img-background: _static/grids/grid1.png + + +.. grid:: 1 1 2 2 + + .. grid-item:: + + .. code-block:: python + :name: test_gridpos_2 + + from eomaps import Maps + # ----- initialize a figure with an EOmaps map + # position = item 1 of a 2x2 grid + m = Maps(ax=(2, 2, 1)) + # ----- add another Map to the same figure + # position = item 3 of a 2x2 grid + m2 = m.new_map(ax=(2, 2, 3)) + # ----- add a normal matplotlib axes + # position = second item of a 1x2 grid + ax = m.f.add_subplot(1, 2, 2) + + .. grid-item-card:: + :width: 50% + :img-background: _static/grids/grid2.png + + +.. grid:: 1 1 2 2 + + .. grid-item:: + + .. code-block:: python + :name: test_gridpos_3 + + from eomaps import Maps + # ----- initialize a figure with an EOmaps map + # position = item 1 of a 2x2 grid + m = Maps(ax=(2, 2, 1)) + # ----- add another Map to the same figure + # position = item 3 of a 2x2 grid + m2 = m.new_map(ax=(2, 2, 3)) + # ----- add a normal matplotlib axes + # position = second item of a 1x2 grid + ax = m.f.add_subplot(1, 2, 2) + + .. grid-item-card:: + :width: 50% + :img-background: _static/grids/grid3.png + + + + - A 3-digit integer. - The digits are interpreted as if given separately as three single-digit integers, i.e. ``Maps(ax=235)`` is the same as ``Maps(ax=(2, 3, 5))``. - Note that this can only be used if there are no more than 9 subplots. -.. table:: - - +----------------------------------------------------+------------------------------------+ - | .. code-block:: python | .. image:: _static/grids/grid4.png | - | :name: test_gridpos_4 | :align: center | - | | | - | from eomaps import Maps | |img_minsize| | - | # ----- initialize a figure with an EOmaps map | | - | m = Maps(ax=211) | | - | # ----- add a normal matplotlib axes | | - | ax = m.f.add_subplot(212) | | - +----------------------------------------------------+------------------------------------+ - -.. table:: - - +----------------------------------------------------+------------------------------------+ - | .. code-block:: python | .. image:: _static/grids/grid5.png | - | :name: test_gridpos_5 | :align: center | - | | | - | from eomaps import Maps | |img_minsize| | - | # ----- initialize a figure with an EOmaps map | | - | m = Maps(ax=221) | | - | # ----- add 2 more Maps to the same figure | | - | m2 = m.new_map(ax=222) | | - | m3 = m.new_map(ax=223) | | - | # ----- add a normal matplotlib axes | | - | ax = m.f.add_subplot(224) | | - +----------------------------------------------------+------------------------------------+ +.. grid:: 1 1 2 2 + + .. grid-item:: + + .. code-block:: python + :name: test_gridpos_4 + + from eomaps import Maps + # ----- initialize a figure with an EOmaps map + m = Maps(ax=211) + # ----- add a normal matplotlib axes + ax = m.f.add_subplot(212) + + .. grid-item-card:: + :width: 50% + :img-background: _static/grids/grid4.png + + +.. grid:: 1 1 2 2 + + .. grid-item:: + + .. code-block:: python + :name: test_gridpos_5 + + from eomaps import Maps + # ----- initialize a figure with an EOmaps map + m = Maps(ax=221) + # ----- add 2 more Maps to the same figure + m2 = m.new_map(ax=222) + m3 = m.new_map(ax=223) + # ----- add a normal matplotlib axes + ax = m.f.add_subplot(224) + + .. grid-item-card:: + :width: 50% + :img-background: _static/grids/grid5.png + - A matplotlib `GridSpec `_ -.. table:: - - +----------------------------------------------+------------------------------------+ - | .. code-block:: python | .. image:: _static/grids/grid6.png | - | :name: test_gridpos_6 | :align: center | - | | | - | from matplotlib.gridspec import GridSpec | |img_minsize| | - | from eomaps import Maps | | - | | | - | gs = GridSpec(2, 2) | | - | m = Maps(ax=gs[0,0]) | | - | m2 = m.new_map(ax=gs[0,1]) | | - | ax = m.f.add_subplot(gs[1,:]) | | - +----------------------------------------------+------------------------------------+ +.. grid:: 1 1 2 2 + + .. grid-item:: + + .. code-block:: python + :name: test_gridpos_6 + + from matplotlib.gridspec import GridSpec + from eomaps import Maps + + gs = GridSpec(2, 2) + m = Maps(ax=gs[0,0]) + m2 = m.new_map(ax=gs[0,1]) + ax = m.f.add_subplot(gs[1,:]) + + .. grid-item-card:: + :width: 50% + :img-background: _static/grids/grid6.png + Absolute positioning ******************** @@ -490,18 +527,23 @@ To set the absolute position of the map, provide a list of 4 floats representing Also, using ``m.f.tight_layout()`` will not work with axes added in this way. -.. table:: +.. grid:: 1 1 2 2 + + .. grid-item:: + + .. code-block:: python + :name: test_gridpos_abspos + + from eomaps import Maps + # ----- initialize a figure with an EOmaps map + m = Maps(ax=(.07, 0.53, .6, .3)) + # ----- add a normal matplotlib axes + ax = m.f.add_axes((.35, .15, .6, .2)) + + .. grid-item-card:: + :width: 50% + :img-background: _static/grids/grid7.png - +----------------------------------------------------+------------------------------------+ - | .. code-block:: python | .. image:: _static/grids/grid7.png | - | :name: test_gridpos_abspos | :align: center | - | | | - | from eomaps import Maps | |img_minsize| | - | # ----- initialize a figure with an EOmaps map | | - | m = Maps(ax=(.07, 0.53, .6, .3)) | | - | # ----- add a normal matplotlib axes | | - | ax = m.f.add_axes((.35, .15, .6, .2)) | | - +----------------------------------------------------+------------------------------------+ Using already existing figures / axes ************************************* @@ -545,45 +587,49 @@ Dynamic updates of plots in the same figure Here's an example to show how it works: -.. table:: - - +-------------------------------------------------------------------------------------+------------------------------------------------------+ - | .. code-block:: python | .. image:: _static/minigifs/dynamic_axes_updates.gif | - | :name: test_dynamic_axes_updates | :align: center | - | | | - | from eomaps import Maps | |img_minsize| | - | | | - | # Initialize a new figure with an EOmaps map | | - | m = Maps(ax=223) | | - | m.ax.set_title("click me!") | | - | m.add_feature.preset.coastline() | | - | m.cb.click.attach.mark(radius=20, fc="none", ec="r", lw=2) | | - | | | - | # Add another map to the figure | | - | m2 = m.new_map(ax=224, crs=Maps.CRS.Mollweide()) | | - | m2.add_feature.preset.coastline() | | - | m2.add_feature.preset.ocean() | | - | m2.cb.click.attach.mark(radius=20, fc="none", ec="r", lw=2, n=200) | | - | | | - | # Add a "normal" matplotlib plot to the figure | | - | ax = m.f.add_subplot(211) | | - | # Since we want to dynamically update the data on the axis, it must be | | - | # added to the BlitManager to ensure that the artists are properly updated. | | - | # (EOmaps handles interactive re-drawing of the figure) | | - | m.BM.add_artist(ax, layer=m.layer) | | - | | | - | # plot some static data on the axis | | - | ax.plot([10, 20, 30, 40, 50], [10, 20, 30, 40, 50]) | | - | | | - | # define a callback that plots markers on the axis if you click on the map | | - | def cb(pos, **kwargs): | | - | ax.plot(*pos, marker="o") | | - | | | - | m.cb.click.attach(cb) # attach the callback to the first map | | - | m.cb.click.share_events(m2) # share click events between the 2 maps | | - +-------------------------------------------------------------------------------------+------------------------------------------------------+ +.. grid:: 1 1 2 2 + + .. grid-item:: + + .. code-block:: python + :name: test_dynamic_axes_updates + + from eomaps import Maps + + # Initialize a new figure with an EOmaps map + m = Maps(ax=223) + m.ax.set_title("click me!") + m.add_feature.preset.coastline() + m.cb.click.attach.mark(radius=20, fc="none", ec="r", lw=2) + + # Add another map to the figure + m2 = m.new_map(ax=224, crs=Maps.CRS.Mollweide()) + m2.add_feature.preset.coastline() + m2.add_feature.preset.ocean() + m2.cb.click.attach.mark(radius=20, fc="none", ec="r", lw=2, n=200) + + # Add a "normal" matplotlib plot to the figure + ax = m.f.add_subplot(211) + # Since we want to dynamically update the data on the axis, it must be + # added to the BlitManager to ensure that the artists are properly updated. + # (EOmaps handles interactive re-drawing of the figure) + m.BM.add_artist(ax, layer=m.layer) + + # plot some static data on the axis + ax.plot([10, 20, 30, 40, 50], [10, 20, 30, 40, 50]) + + # define a callback that plots markers on the axis if you click on the map + def cb(pos, **kwargs): + ax.plot(*pos, marker="o") + + m.cb.click.attach(cb) # attach the callback to the first map + m.cb.click.share_events(m2) # share click events between the 2 maps + + .. grid-item:: + + .. image:: _static/minigifs/dynamic_axes_updates.gif MapsGrid objects diff --git a/docs/api_callbacks.rst b/docs/api_callbacks.rst index 7f0e8df20..6b3733ef8 100644 --- a/docs/api_callbacks.rst +++ b/docs/api_callbacks.rst @@ -66,39 +66,42 @@ The ``< EVENT CATEGORY >`` hereby specifies the event that will trigger the call | ``m.cb.< EVENT CATEGORY >.set_execute_on_all_layers(True)`` -.. table:: - :width: 100 % - :widths: auto - +-----------------------------------------------------------------------------------+--------------------------------------------------+ - | .. code-block:: python | .. image:: _static/minigifs/simple_callbacks.gif | - | :name: test_add_callbacks | :align: center | - | | | - | from eomaps import Maps | | - | import numpy as np | | - | x, y = np.mgrid[-45:45, 20:60] | | - | | | - | m = Maps(Maps.CRS.Orthographic()) | | - | m.all.add_feature.preset.coastline() | | - | m.set_data(data=x+y**2, x=x, y=y, crs=4326) | | - | m.plot_map() | | - | | | - | m2 = m.new_layer(inherit_data=True, layer="second_layer") | | - | m2.plot_map(cmap="tab10") | | - | | | - | # get an annotation if you RIGHT-click anywhere on the map | | - | m.cb.click.attach.annotate(xytext=(-60, -60), | | - | bbox=dict(boxstyle="round", fc="r")) | | - | | | - | # pick the nearest datapoint if you click on the MIDDLE mouse button | | - | m.cb.pick.attach.annotate(button=2) | | - | m.cb.pick.attach.mark(buffer=1, permanent=False, fc="none", ec="r", button=2) | | - | m.cb.pick.attach.mark(buffer=4, permanent=False, fc="none", ec="r", button=2) | | - | | | - | # peek at the second layer if you LEFT-click on the map | | - | m.cb.click.attach.peek_layer("second_layer", how=.25, button=3) | | - +-----------------------------------------------------------------------------------+--------------------------------------------------+ +.. grid:: 1 1 2 2 + + .. grid-item:: + + .. code-block:: python + :name: test_add_callbacks + + from eomaps import Maps + import numpy as np + x, y = np.mgrid[-45:45, 20:60] + + m = Maps(Maps.CRS.Orthographic()) + m.all.add_feature.preset.coastline() + m.set_data(data=x+y**2, x=x, y=y, crs=4326) + m.plot_map() + + m2 = m.new_layer(inherit_data=True, layer="second_layer") + m2.plot_map(cmap="tab10") + + # get an annotation if you RIGHT-click anywhere on the map + m.cb.click.attach.annotate(xytext=(-60, -60), + bbox=dict(boxstyle="round", fc="r")) + + # pick the nearest datapoint if you click on the MIDDLE mouse button + m.cb.pick.attach.annotate(button=2) + m.cb.pick.attach.mark(buffer=1, permanent=False, fc="none", ec="r", button=2) + m.cb.pick.attach.mark(buffer=4, permanent=False, fc="none", ec="r", button=2) + + # peek at the second layer if you LEFT-click on the map + m.cb.click.attach.peek_layer("second_layer", how=.25, button=3) + + .. grid-item:: + + .. image:: _static/minigifs/simple_callbacks.gif In addition, each callback-container supports the following useful methods: @@ -115,7 +118,7 @@ In addition, each callback-container supports the following useful methods: | :class:`get ` | Accessor for objects generated/retrieved by callbacks. | +--------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------+ -.. currentmodule:: eomaps.cb_container.ClickContainer +.. currentmodule:: eomaps.eomaps.Maps.cb.click .. autosummary:: :nosignatures: @@ -346,7 +349,8 @@ To customize the picking-behavior, use ``m.cb.pick.set_props()``. The following - If True, callbacks are executed for each picked point individually - If False, callbacks are executed only once and get lists of all picked values as input-arguments. -.. currentmodule:: eomaps.cb_container.PickContainer + +.. currentmodule:: eomaps.eomaps.Maps.cb.pick .. autosummary:: :nosignatures: @@ -355,48 +359,52 @@ To customize the picking-behavior, use ``m.cb.pick.set_props()``. The following -.. table:: - :widths: 50 50 - :align: center - - +--------------------------------------------------------------------------------+--------------------------------------------+ - | .. code-block:: python | .. image:: _static/minigifs/pick_multi.gif | - | :name: test_callbacks_multi_pick | :align: center | - | | | - | from eomaps import Maps | | - | import numpy as np | | - | | | - | # create some random data | | - | x, y = np.mgrid[-30:67, -12:50] | | - | data = np.random.randint(0, 100, x.shape) | | - | | | - | # a callback to indicate the search-radius | | - | def indicate_search_radius(m, pos, *args, **kwargs): | | - | art = m.add_marker( | | - | xy=(np.atleast_1d(pos[0])[0], | | - | np.atleast_1d(pos[1])[0]), | | - | shape="ellipses", radius=m.tree.d, radius_crs="out", | | - | n=100, fc="none", ec="k", lw=2) | | - | m.cb.pick.add_temporary_artist(art) | | - | | | - | # a callback to set the number of picked neighbours | | - | def pick_n_neighbours(m, n, **kwargs): | | - | m.cb.pick.set_props(n=n) | | - | | | - | | | - | m = Maps() | | - | m.add_feature.preset.coastline() | | - | m.set_data(data, x, y) | | - | m.plot_map() | | - | m.cb.pick.set_props(n=50, search_radius=10, pick_relative_to_closest=True) | | - | | | - | m.cb.pick.attach.annotate() | | - | m.cb.pick.attach.mark(fc="none", ec="r") | | - | m.cb.pick.attach(indicate_search_radius, m=m) | | - | | | - | for key, n in (("1", 1), ("2", 9), ("3", 50), ("4", 500)): | | - | m.cb.keypress.attach(pick_n_neighbours, key=key, m=m, n=n) | | - +--------------------------------------------------------------------------------+--------------------------------------------+ + +.. grid:: 1 1 2 2 + + .. grid-item:: + + .. code-block:: python + :name: test_callbacks_multi_pick + + from eomaps import Maps + import numpy as np + + # create some random data + x, y = np.mgrid[-30:67, -12:50] + data = np.random.randint(0, 100, x.shape) + + # a callback to indicate the search-radius + def indicate_search_radius(m, pos, *args, **kwargs): + art = m.add_marker( + xy=(np.atleast_1d(pos[0])[0], + np.atleast_1d(pos[1])[0]), + shape="ellipses", radius=m.tree.d, radius_crs="out", + n=100, fc="none", ec="k", lw=2) + m.cb.pick.add_temporary_artist(art) + + # a callback to set the number of picked neighbours + def pick_n_neighbours(m, n, **kwargs): + m.cb.pick.set_props(n=n) + + + m = Maps() + m.add_feature.preset.coastline() + m.set_data(data, x, y) + m.plot_map() + m.cb.pick.set_props(n=50, search_radius=10, pick_relative_to_closest=True) + + m.cb.pick.attach.annotate() + m.cb.pick.attach.mark(fc="none", ec="r") + m.cb.pick.attach(indicate_search_radius, m=m) + + for key, n in (("1", 1), ("2", 9), ("3", 50), ("4", 500)): + m.cb.keypress.attach(pick_n_neighbours, key=key, m=m, n=n) + + .. grid-item:: + + .. image:: _static/minigifs/pick_multi.gif + Picking a dataset without plotting it first ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ diff --git a/docs/gen_autodoc_file.py b/docs/gen_autodoc_file.py index 61da9c06c..0587fc1f6 100644 --- a/docs/gen_autodoc_file.py +++ b/docs/gen_autodoc_file.py @@ -77,13 +77,18 @@ def make_feature_toctree_file(): "eomaps.eomaps", ["Maps.config", *members], "obj_with_attributes_no_toc" ) s += get_autosummary("eomaps.mapsgrid", ["MapsGrid"], "custom-class-template") - s += get_autosummary("eomaps.colorbar", ["ColorBar"], "custom-class-template") + s += get_autosummary("eomaps.compass", ["Compass"], "custom-class-template") + s += get_autosummary("eomaps.scalebar", ["ScaleBar"], "custom-class-template") + s += get_autosummary( + "eomaps.callbacks", + ["ClickCallbacks", "PickCallbacks", "KeypressCallbacks"], + "custom-class-template", + ) + s += get_autosummary( "eomaps.grid", ["GridLines", "GridLabels"], "custom-class-template" ) - s += get_autosummary("eomaps.compass", ["Compass"], "custom-class-template") - s += get_autosummary("eomaps.scalebar", ["ScaleBar"], "custom-class-template") s += get_autosummary( "eomaps.inset_maps", [ From 50adb631cae6e49f8ede45d03c7d1d9a0252eec5 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sun, 14 Jan 2024 21:39:13 +0100 Subject: [PATCH 100/240] update docs --- docs/api_compass.rst | 31 +++-- docs/api_data_visualization.rst | 229 +++++++++++++++++--------------- docs/api_draw.rst | 28 ++-- docs/api_gridlines.rst | 123 +++++++++-------- 4 files changed, 219 insertions(+), 192 deletions(-) diff --git a/docs/api_compass.rst b/docs/api_compass.rst index b06b57c5b..ed4b9136a 100644 --- a/docs/api_compass.rst +++ b/docs/api_compass.rst @@ -28,21 +28,24 @@ A compass can be added to the map via :py:meth:`Maps.add_compass`: Maps.add_compass +.. grid:: 1 1 2 2 + + .. grid-item:: + + .. code-block:: python + :name: test_add_compass + + from eomaps import Maps + m = Maps(Maps.CRS.Stereographic()) + m.add_feature.preset.ocean() + + m.add_compass() + + .. grid-item:: + + .. image:: _static/minigifs/compass.gif + :width: 50% -.. table:: - :widths: 70 30 - :align: center - - +--------------------------------------+-----------------------------------------+ - | .. code-block:: python | .. image:: _static/minigifs/compass.gif | - | :name: test_add_compass | :align: center | - | | | - | from eomaps import Maps | |img_minsize| | - | m = Maps(Maps.CRS.Stereographic()) | | - | m.add_feature.preset.ocean() | | - | | | - | m.add_compass() | | - +--------------------------------------+-----------------------------------------+ The compass object is dynamically updated if you pan/zoom the map, and it can be dragged around on the map with the mouse. diff --git a/docs/api_data_visualization.rst b/docs/api_data_visualization.rst index 8cc1fb36c..53aa12afb 100644 --- a/docs/api_data_visualization.rst +++ b/docs/api_data_visualization.rst @@ -542,33 +542,35 @@ To assign a classification scheme to a :py:class:`Maps` object, use ``m.set_clas Maps.set_classify -.. table:: - :widths: 70 30 - :align: center - - +------------------------------------------------------------------+--------------------------------------------------+ - | .. code-block:: python | .. image:: _static/minigifs/classify_data_01.png | - | :name: test_classify_data | :align: center | - | | | - | from eomaps import Maps | |img_minsize| | - | import numpy as np | | - | | | - | data = np.random.normal(0, 1, (50, 50)) | | - | x = np.linspace(-45, 45, 50) | | - | y = np.linspace(-45, 45, 50) | | - | | | - | m = Maps(figsize=(4, 5)) | | - | m.add_feature.preset.coastline(lw=2) | | - | m.add_feature.preset.ocean(zorder=99, alpha=0.5) | | - | m.set_data(data, x, y) | | - | m.set_shape.ellipses() | | - | m.set_classify.StdMean(multiples=[-1.5, -.5, .5, 1.5]) | | - | m.plot_map(vmin=-3, vmax=3) | | - | | | - | cb = m.add_colorbar(pos=0.2, label="StdMean classification") | | - | cb.tick_params(labelsize=7) | | - +------------------------------------------------------------------+--------------------------------------------------+ +.. grid:: 1 1 2 2 + .. grid-item:: + + .. code-block:: python + :name: test_classify_data + + from eomaps import Maps + import numpy as np + + data = np.random.normal(0, 1, (50, 50)) + x = np.linspace(-45, 45, 50) + y = np.linspace(-45, 45, 50) + + m = Maps(figsize=(4, 5)) + m.add_feature.preset.coastline(lw=2) + m.add_feature.preset.ocean(zorder=99, alpha=0.5) + m.set_data(data, x, y) + m.set_shape.ellipses() + m.set_classify.StdMean(multiples=[-1.5, -.5, .5, 1.5]) + m.plot_map(vmin=-3, vmax=3) + + cb = m.add_colorbar(pos=0.2, label="StdMean classification") + cb.tick_params(labelsize=7) + + .. grid-item:: + + .. image:: _static/minigifs/classify_data_01.png + :width: 75% Currently available classification-schemes are (see `mapclassify `_ for details): @@ -828,43 +830,46 @@ Once a dataset has been plotted, a colorbar with a colored histogram on top can Colorbars are only visible if the layer at which the data was plotted is visible! -.. table:: - :widths: 60 40 - :align: center - - +-----------------------------------------------------------------+------------------------------------------+ - | .. code-block:: python | .. image:: _static/minigifs/colorbar.gif | - | :name: test_colorbars | :align: center | - | | | - | from eomaps import Maps | |img_minsize| | - | import numpy as np | | - | | | - | data = np.random.normal(0, 1, (50, 50)) | | - | x = np.linspace(-45, 45, 50) | | - | y = np.linspace(-45, 45, 50) | | - | | | - | m = Maps(layer="all") | | - | m.add_feature.preset.coastline() | | - | m.add_feature.preset.ocean(zorder=99, alpha=0.5) | | - | m.util.layer_selector(loc="upper left") | | - | | | - | mA = m.new_layer("A") | | - | mA.set_data(data, x, y) | | - | mA.set_classify.Quantiles(k=5) | | - | mA.plot_map(vmin=-3, vmax=3) | | - | cbA = mA.add_colorbar(label="Quantile classification") | | - | cbA.tick_params(rotation=45) | | - | | | - | mB = m.new_layer("B") | | - | mB.set_data(data, x, y) | | - | mB.set_classify.EqualInterval(k=5) | | - | mB.plot_map(vmin=-3, vmax=3) | | - | cbB = mB.add_colorbar(label="EqualInterval classification") | | - | cbB.tick_params(labelcolor="darkblue", labelsize=9) | | - | | | - | m.subplots_adjust(bottom=0.1) | | - | m.show_layer(mA.layer) | | - +-----------------------------------------------------------------+------------------------------------------+ +.. grid:: 1 1 2 2 + + .. grid-item:: + + .. code-block:: python + :name: test_colorbars + + from eomaps import Maps + import numpy as np + + data = np.random.normal(0, 1, (50, 50)) + x = np.linspace(-45, 45, 50) + y = np.linspace(-45, 45, 50) + + m = Maps(layer="all") + m.add_feature.preset.coastline() + m.add_feature.preset.ocean(zorder=99, alpha=0.5) + m.util.layer_selector(loc="upper left") + + mA = m.new_layer("A") + mA.set_data(data, x, y) + mA.set_classify.Quantiles(k=5) + mA.plot_map(vmin=-3, vmax=3) + cbA = mA.add_colorbar(label="Quantile classification") + cbA.tick_params(rotation=45) + + mB = m.new_layer("B") + mB.set_data(data, x, y) + mB.set_classify.EqualInterval(k=5) + mB.plot_map(vmin=-3, vmax=3) + cbB = mB.add_colorbar(label="EqualInterval classification") + cbB.tick_params(labelcolor="darkblue", labelsize=9) + + m.subplots_adjust(bottom=0.1) + m.show_layer(mA.layer) + + .. grid-item:: + + .. image:: _static/minigifs/colorbar.gif + .. autosummary:: :nosignatures: @@ -893,32 +898,38 @@ Set colorbar tick labels based on bins To label the colorbar with custom names for a given set of bins, use :py:meth:`ColorBar.set_bin_labels`: -.. table:: - - +-------------------------------------------------------------------------------+------------------------------------------------+ - | .. code-block:: python | .. image:: _static/minigifs/colorbar_ticks.png | - | :name: test_colorbar_bin_labels | :align: center | - | | | - | import numpy as np | |img_minsize| | - | from eomaps import Maps | | - | # specify some random data | | - | lon, lat = np.mgrid[-45:45, -45:45] | | - | data = np.random.normal(0, 50, lon.shape) | | - | | | - | # use a custom set of bins to classify the data | | - | bins = np.array([-50, -30, -20, 20, 30, 40, 50]) | | - | names = np.array(["below -50", "A", "B", "C", "D", "E", "F", "above 50"]) | | - | | | - | m = Maps() | | - | m.add_feature.preset.coastline() | | - | m.set_data(data, lon, lat) | | - | m.set_classify.UserDefined(bins=bins) | | - | m.plot_map(cmap="tab10") | | - | m.add_colorbar() | | - | | | - | # set custom colorbar-ticks based on the bins | | - | m.colorbar.set_bin_labels(bins, names) | | - +-------------------------------------------------------------------------------+------------------------------------------------+ + +.. grid:: 1 1 2 2 + + .. grid-item:: + + .. code-block:: python + :name: test_colorbar_bin_labels + + import numpy as np + from eomaps import Maps + # specify some random data + lon, lat = np.mgrid[-45:45, -45:45] + data = np.random.normal(0, 50, lon.shape) + + # use a custom set of bins to classify the data + bins = np.array([-50, -30, -20, 20, 30, 40, 50]) + names = np.array(["below -50", "A", "B", "C", "D", "E", "F", "above 50"]) + + m = Maps() + m.add_feature.preset.coastline() + m.set_data(data, lon, lat) + m.set_classify.UserDefined(bins=bins) + m.plot_map(cmap="tab10") + m.add_colorbar() + + # set custom colorbar-ticks based on the bins + m.colorbar.set_bin_labels(bins, names) + + .. grid-item:: + + .. image:: _static/minigifs/colorbar_ticks.png + .. autosummary:: @@ -939,21 +950,25 @@ Using the colorbar as a "dynamic shade indicator" For shade shapes, the colorbar can be used to indicate the distribution of the shaded pixels within the current field of view by setting ``dynamic_shade_indicator=True``. -.. table:: - - +--------------------------------------------------------------------+--------------------------------------------------+ - | .. code-block:: python | .. image:: _static/minigifs/dynamic_colorbar.gif | - | :name: test_colorbar_dynamic_shade_indicator | :align: center | - | | | - | from eomaps import Maps | |img_minsize| | - | import numpy as np | | - | x, y = np.mgrid[-45:45, 20:60] | | - | | | - | m = Maps() | | - | m.add_feature.preset.coastline() | | - | m.set_data(data=x+y, x=x, y=y, crs=4326) | | - | m.set_shape.shade_raster() | | - | m.plot_map() | | - | m.add_colorbar(dynamic_shade_indicator=True, hist_bins=20) | | - | | | - +--------------------------------------------------------------------+--------------------------------------------------+ + +.. grid:: 1 1 2 2 + + .. grid-item:: + + .. code-block:: python + :name: test_colorbar_dynamic_shade_indicator + + from eomaps import Maps + import numpy as np + x, y = np.mgrid[-45:45, 20:60] + + m = Maps() + m.add_feature.preset.coastline() + m.set_data(data=x+y, x=x, y=y, crs=4326) + m.set_shape.shade_raster() + m.plot_map() + m.add_colorbar(dynamic_shade_indicator=True, hist_bins=20) + + .. grid-item:: + + .. image:: _static/minigifs/dynamic_colorbar.gif diff --git a/docs/api_draw.rst b/docs/api_draw.rst index 69f6cea03..5a1346d07 100644 --- a/docs/api_draw.rst +++ b/docs/api_draw.rst @@ -15,17 +15,22 @@ Starting with EOmaps v5.0 it is possible to draw simple shapes on the map using - To remove the most recently drawn shape use ``m.draw.remove_last_shape()``. -.. table:: - :widths: 60 40 - :align: center - - +--------------------------------------+---------------------------------------------+ - | .. code-block:: python | .. image:: _static/minigifs/draw_shapes.gif | - | | :align: center | - | m = Maps() | | - | m.add_feature.preset.coastline() | | - | m.draw.polygon() | | - +--------------------------------------+---------------------------------------------+ + + +.. grid:: 1 1 2 2 + + .. grid-item:: + + .. code-block:: python + + m = Maps() + m.add_feature.preset.coastline() + m.draw.polygon() + + .. grid-item:: + + .. image:: _static/minigifs/draw_shapes.gif + .. note:: @@ -39,7 +44,6 @@ Starting with EOmaps v5.0 it is possible to draw simple shapes on the map using active draws! - .. currentmodule:: eomaps.eomaps.Maps.draw .. autosummary:: diff --git a/docs/api_gridlines.rst b/docs/api_gridlines.rst index 57d5deef1..277f646a2 100644 --- a/docs/api_gridlines.rst +++ b/docs/api_gridlines.rst @@ -39,37 +39,39 @@ If no explicit grid-spacing is provided (e.g. ``d=None``), the grid is dynamical Maps.add_gridlines -.. table:: - :widths: 50 50 - :align: center - - +-------------------------------------------------------------------+-----------------------------------------+ - | .. code-block:: python | .. image:: _static/minigifs/grid_01.png | - | :name: test_add_gridlines | :align: center | - | | | - | from eomaps import Maps | |img_minsize| | - | m = Maps(Maps.CRS.Mollweide(), frameon=False) | | - | m.add_feature.preset.ocean() | | - | | | - | # add gridlines with a fixed grid-spacing | | - | mg = m.new_layer("grid") | | - | g0 = mg.add_gridlines(d=40, ec="orange", lw=3, zorder=2) | | - | g1 = mg.add_gridlines(d=(10, 20), ec="orange", lw=.5, zorder=1) | | - | | | - | # add fine-grained gridlines in a specific area | | - | g2 = mg.add_gridlines(d=2, ec="darkred", lw=0.5, zorder=0, | | - | bounds=(-20, 20, -10, 30)) | | - | g3 = mg.add_gridlines(d=2, ec="b", lw=0.5, zorder=0, | | - | bounds=(60, 100, 30, 70)) | | - | | | - | # add dedicated gridlines at specific coordinates | | - | g4 = mg.add_gridlines(([-123, -112, -75], [35, 65]), | | - | ec="k", lw=2, ls="--", zorder=20, | | - | bounds=(-140, 20, -50, 70) | | - | ) | | - | | | - | m.show_layer(m.layer, "grid") | | - +-------------------------------------------------------------------+-----------------------------------------+ +.. grid:: 1 1 2 2 + + .. grid-item:: + + .. code-block:: python + :name: test_add_gridlines + + from eomaps import Maps + m = Maps(Maps.CRS.Mollweide(), frameon=False) + m.add_feature.preset.ocean() + + # add gridlines with a fixed grid-spacing + mg = m.new_layer("grid") + g0 = mg.add_gridlines(d=40, ec="orange", lw=3, zorder=2) + g1 = mg.add_gridlines(d=(10, 20), ec="orange", lw=.5, zorder=1) + + # add fine-grained gridlines in a specific area + g2 = mg.add_gridlines(d=2, ec="darkred", lw=0.5, zorder=0, + bounds=(-20, 20, -10, 30)) + g3 = mg.add_gridlines(d=2, ec="b", lw=0.5, zorder=0, + bounds=(60, 100, 30, 70)) + + # add dedicated gridlines at specific coordinates + g4 = mg.add_gridlines(([-123, -112, -75], [35, 65]), + ec="k", lw=2, ls="--", zorder=20, + bounds=(-140, 20, -50, 70) + ) + + m.show_layer(m.layer, "grid") + + .. grid-item:: + + .. image:: _static/minigifs/grid_01.png .. currentmodule:: eomaps.grid @@ -116,31 +118,34 @@ be used to add a label only to every n\ :sup:`th` grid line. To **change the appearance of the labels**, any kwarg supported by `matplotlib.pyplot.text `_ can be used (e.g. `color`, `fontsize`, `fontweight`, ...). -.. table:: - :widths: 50 50 - :align: center - - +--------------------------------------------------------------------------+------------------------------------------------+ - | .. code-block:: python | .. image:: _static/minigifs/grid_labels_01.png | - | :name: test_grid_labels_01 | :align: center | - | | | - | from eomaps import Maps | |img_minsize| | - | m = Maps(Maps.CRS.Stereographic(), figsize=(5, 6)) | | - | m.set_extent((-83, -20, -59, 13)) | | - | m.add_feature.preset.coastline() | | - | m.add_feature.preset.ocean() | | - | | | - | # draw a regular grid with 10 degree grid-spacing | | - | # and add labels to all lines except some selected lines | | - | g = m.add_gridlines(10, lw=0.25, alpha=0.5) | | - | g.add_labels(fontsize=6, exclude=([-40, -30], [-30])) | | - | | | - | # draw some specific gridlines and add bold green labels | | - | g = m.add_gridlines(([-40, -30], [-30]), c="g", lw=1.5) | | - | gl0 = g.add_labels(where="tlr", c="g", offset=15, fontweight="bold") | | - | | | - | # draw a bounded grid and add labels | | - | g = m.add_gridlines(10, bounds=[-50, -20, -40, -20], c="b", lw=2) | | - | g = m.add_gridlines(5, bounds=[-50, -20, -40, -20], c="b") | | - | gl = g.add_labels(where=0, fontsize=8, every=(1, -1, 2), c="b") | | - +--------------------------------------------------------------------------+------------------------------------------------+ + +.. grid:: 1 1 2 2 + + .. grid-item:: + + .. code-block:: python + :name: test_grid_labels_01 + + from eomaps import Maps + m = Maps(Maps.CRS.Stereographic(), figsize=(5, 6)) + m.set_extent((-83, -20, -59, 13)) + m.add_feature.preset.coastline() + m.add_feature.preset.ocean() + + # draw a regular grid with 10 degree grid-spacing + # and add labels to all lines except some selected lines + g = m.add_gridlines(10, lw=0.25, alpha=0.5) + g.add_labels(fontsize=6, exclude=([-40, -30], [-30])) + + # draw some specific gridlines and add bold green labels + g = m.add_gridlines(([-40, -30], [-30]), c="g", lw=1.5) + gl0 = g.add_labels(where="tlr", c="g", offset=15, fontweight="bold") + + # draw a bounded grid and add labels + g = m.add_gridlines(10, bounds=[-50, -20, -40, -20], c="b", lw=2) + g = m.add_gridlines(5, bounds=[-50, -20, -40, -20], c="b") + gl = g.add_labels(where=0, fontsize=8, every=(1, -1, 2), c="b") + + .. grid-item:: + + .. image:: _static/minigifs/grid_labels_01.png From 4b080bc047a70679ea297cfbb7c1e5db5427fbb2 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sun, 14 Jan 2024 22:08:45 +0100 Subject: [PATCH 101/240] update docs --- docs/api_annotations_markers_etc.rst | 10 +- docs/api_basics.rst | 16 +-- docs/api_callbacks.rst | 4 +- docs/api_compass.rst | 2 +- docs/api_data_visualization.rst | 8 +- docs/api_draw.rst | 2 +- docs/api_gridlines.rst | 4 +- docs/api_layout_editor.rst | 59 +++++------ docs/api_scalebar.rst | 30 +++--- docs/api_utils.rst | 37 +++---- docs/api_vector_data.rst | 48 ++++----- docs/api_webmaps.rst | 140 ++++++++++++++------------- docs/index.rst | 6 +- 13 files changed, 192 insertions(+), 174 deletions(-) diff --git a/docs/api_annotations_markers_etc.rst b/docs/api_annotations_markers_etc.rst index 38c269340..c2f564e62 100644 --- a/docs/api_annotations_markers_etc.rst +++ b/docs/api_annotations_markers_etc.rst @@ -51,7 +51,7 @@ To dynamically add annotations if you click on the map, checkout the associated -.. grid:: 1 1 2 2 +.. grid:: 1 1 1 2 .. grid-item:: @@ -149,7 +149,7 @@ To dynamically add markers if you click on the map, checkout the associated :ref Maps.add_marker -.. grid:: 1 1 2 2 +.. grid:: 1 1 1 2 .. grid-item:: @@ -234,7 +234,7 @@ Lines can be added to a map with :py:meth:`Maps.add_line`. -.. grid:: 1 1 2 2 +.. grid:: 1 1 1 2 .. grid-item:: @@ -287,7 +287,7 @@ To indicate rectangular areas in any given crs, simply use :py:meth:`Maps.indica Maps.indicate_extent -.. grid:: 1 1 2 2 +.. grid:: 1 1 1 2 .. grid-item:: @@ -333,7 +333,7 @@ Logos can be re-positioned and re-sized with the :ref:`layout_editor`! - To fix the relative position of the logo with respect to the map-axis, use ``fix_position=True`` -.. grid:: 1 1 2 2 +.. grid:: 1 1 1 2 .. grid-item:: diff --git a/docs/api_basics.rst b/docs/api_basics.rst index 7eb99c660..dd0e593fc 100644 --- a/docs/api_basics.rst +++ b/docs/api_basics.rst @@ -376,7 +376,7 @@ To position the map in a (virtual) grid, one of the following options are possib indices (1-based, and including last) of the map, e.g., ``Maps(ax=(3, 1, (1, 2)))`` makes a map that spans the upper 2/3 of the figure. -.. grid:: 1 1 2 2 +.. grid:: 1 1 1 2 .. grid-item:: @@ -396,7 +396,7 @@ To position the map in a (virtual) grid, one of the following options are possib :img-background: _static/grids/grid1.png -.. grid:: 1 1 2 2 +.. grid:: 1 1 1 2 .. grid-item:: @@ -419,7 +419,7 @@ To position the map in a (virtual) grid, one of the following options are possib :img-background: _static/grids/grid2.png -.. grid:: 1 1 2 2 +.. grid:: 1 1 1 2 .. grid-item:: @@ -450,7 +450,7 @@ To position the map in a (virtual) grid, one of the following options are possib - The digits are interpreted as if given separately as three single-digit integers, i.e. ``Maps(ax=235)`` is the same as ``Maps(ax=(2, 3, 5))``. - Note that this can only be used if there are no more than 9 subplots. -.. grid:: 1 1 2 2 +.. grid:: 1 1 1 2 .. grid-item:: @@ -468,7 +468,7 @@ To position the map in a (virtual) grid, one of the following options are possib :img-background: _static/grids/grid4.png -.. grid:: 1 1 2 2 +.. grid:: 1 1 1 2 .. grid-item:: @@ -492,7 +492,7 @@ To position the map in a (virtual) grid, one of the following options are possib - A matplotlib `GridSpec `_ -.. grid:: 1 1 2 2 +.. grid:: 1 1 1 2 .. grid-item:: @@ -527,7 +527,7 @@ To set the absolute position of the map, provide a list of 4 floats representing Also, using ``m.f.tight_layout()`` will not work with axes added in this way. -.. grid:: 1 1 2 2 +.. grid:: 1 1 1 2 .. grid-item:: @@ -589,7 +589,7 @@ Here's an example to show how it works: -.. grid:: 1 1 2 2 +.. grid:: 1 1 1 2 .. grid-item:: diff --git a/docs/api_callbacks.rst b/docs/api_callbacks.rst index 6b3733ef8..e106849c2 100644 --- a/docs/api_callbacks.rst +++ b/docs/api_callbacks.rst @@ -68,7 +68,7 @@ The ``< EVENT CATEGORY >`` hereby specifies the event that will trigger the call -.. grid:: 1 1 2 2 +.. grid:: 1 1 1 2 .. grid-item:: @@ -360,7 +360,7 @@ To customize the picking-behavior, use ``m.cb.pick.set_props()``. The following -.. grid:: 1 1 2 2 +.. grid:: 1 1 1 2 .. grid-item:: diff --git a/docs/api_compass.rst b/docs/api_compass.rst index ed4b9136a..6cbd04db8 100644 --- a/docs/api_compass.rst +++ b/docs/api_compass.rst @@ -28,7 +28,7 @@ A compass can be added to the map via :py:meth:`Maps.add_compass`: Maps.add_compass -.. grid:: 1 1 2 2 +.. grid:: 1 1 1 2 .. grid-item:: diff --git a/docs/api_data_visualization.rst b/docs/api_data_visualization.rst index 53aa12afb..0ff411dfa 100644 --- a/docs/api_data_visualization.rst +++ b/docs/api_data_visualization.rst @@ -542,7 +542,7 @@ To assign a classification scheme to a :py:class:`Maps` object, use ``m.set_clas Maps.set_classify -.. grid:: 1 1 2 2 +.. grid:: 1 1 1 2 .. grid-item:: @@ -830,7 +830,7 @@ Once a dataset has been plotted, a colorbar with a colored histogram on top can Colorbars are only visible if the layer at which the data was plotted is visible! -.. grid:: 1 1 2 2 +.. grid:: 1 1 1 2 .. grid-item:: @@ -899,7 +899,7 @@ Set colorbar tick labels based on bins To label the colorbar with custom names for a given set of bins, use :py:meth:`ColorBar.set_bin_labels`: -.. grid:: 1 1 2 2 +.. grid:: 1 1 1 2 .. grid-item:: @@ -951,7 +951,7 @@ For shade shapes, the colorbar can be used to indicate the distribution of the s pixels within the current field of view by setting ``dynamic_shade_indicator=True``. -.. grid:: 1 1 2 2 +.. grid:: 1 1 1 2 .. grid-item:: diff --git a/docs/api_draw.rst b/docs/api_draw.rst index 5a1346d07..72f88c456 100644 --- a/docs/api_draw.rst +++ b/docs/api_draw.rst @@ -17,7 +17,7 @@ Starting with EOmaps v5.0 it is possible to draw simple shapes on the map using -.. grid:: 1 1 2 2 +.. grid:: 1 1 1 2 .. grid-item:: diff --git a/docs/api_gridlines.rst b/docs/api_gridlines.rst index 277f646a2..81ff39da2 100644 --- a/docs/api_gridlines.rst +++ b/docs/api_gridlines.rst @@ -39,7 +39,7 @@ If no explicit grid-spacing is provided (e.g. ``d=None``), the grid is dynamical Maps.add_gridlines -.. grid:: 1 1 2 2 +.. grid:: 1 1 1 2 .. grid-item:: @@ -119,7 +119,7 @@ To **change the appearance of the labels**, any kwarg supported by `matplotlib.p can be used (e.g. `color`, `fontsize`, `fontweight`, ...). -.. grid:: 1 1 2 2 +.. grid:: 1 1 1 2 .. grid-item:: diff --git a/docs/api_layout_editor.rst b/docs/api_layout_editor.rst index 58c493990..1bc628f87 100644 --- a/docs/api_layout_editor.rst +++ b/docs/api_layout_editor.rst @@ -9,34 +9,37 @@ You can use it to simply drag the axes the mouse to the desired locations and ch **Keyboard shortcuts** are assigned as follows: -.. table:: - :widths: 52 45 - :align: center - - +-----------------------------------------------------------------------------------------+-----------------------------------------------+ - | - Press ``ALT + L``: enter the **Layout Editor** mode | .. image:: _static/minigifs/layout_editor.gif | - | - Press ``ALT + L`` again or ``escape`` to exit the **Layout Editor** | :align: center | - | | | - | **Pick** and **re-arrange** the axes as you like with the mouse. | | - | | | - | - To pick **multiple axes**, hold down ``shift``! | | - | - | **Resize** picked axes with the **scroll-wheel** | | - | | (or by pressing the ``+`` and ``-`` keys) | | - | - Hold down ``h`` or ``v`` to change horizontal/vertical size | | - | - Hold down ``control`` to change ratio between colorbar and histogram | | - | | | - | **Snap-To-Grid:** | | - | | | - | - Press keys ``1-9`` to set the grid-spacing for the **"snap-to-grid"** functionality | | - | - Press ``0`` to deactivate **"snap-to-grid"** | | - | | | - | **Undo, Redo, Save:** | | - | | | - | - Press ``control + z`` to undo the last step | | - | - Press ``control + y`` to redo the last undone step | | - | - Press ``P`` to print the current layout to the console | | - | | | - +-----------------------------------------------------------------------------------------+-----------------------------------------------+ + +.. grid:: 1 1 1 2 + + .. grid-item-card:: + + - Press ``ALT + L``: enter the **Layout Editor** mode + - Press ``ALT + L`` again or ``escape`` to exit the **Layout Editor** + + **Pick** and **re-arrange** the axes as you like with the mouse. + + - To pick **multiple axes**, hold down ``shift``! + - | **Resize** picked axes with the **scroll-wheel** + | (or by pressing the ``+`` and ``-`` keys) + - Hold down ``h`` or ``v`` to change horizontal/vertical size + - Hold down ``control`` to change ratio between colorbar and histogram + + **Snap-To-Grid:** + + - Press keys ``1-9`` to set the grid-spacing for the **"snap-to-grid"** functionality + - Press ``0`` to deactivate **"snap-to-grid"** + + **Undo, Redo, Save:** + + - Press ``control + z`` to undo the last step + - Press ``control + y`` to redo the last undone step + - Press ``P`` to print the current layout to the console + + + .. grid-item:: + + .. image:: _static/minigifs/layout_editor.gif diff --git a/docs/api_scalebar.rst b/docs/api_scalebar.rst index 16146a1ee..c8f54b552 100644 --- a/docs/api_scalebar.rst +++ b/docs/api_scalebar.rst @@ -25,19 +25,23 @@ In addition, many style properties of the scalebar can be adjusted to get the lo -.. table:: - :widths: 70 30 - :align: center - - +-----------------------------------+------------------------------------------+ - | .. code-block:: python | .. image:: _static/minigifs/scalebar.gif | - | :name: test_add_scalebar | :align: center | - | | | - | from eomaps import Maps | |img_minsize| | - | m = Maps(Maps.CRS.Sinusoidal()) | | - | m.add_feature.preset.ocean() | | - | s = m.add_scalebar() | | - +-----------------------------------+------------------------------------------+ +.. grid:: 1 1 1 2 + + .. grid-item:: + + .. code-block:: python + :name: test_add_scalebar + + from eomaps import Maps + m = Maps(Maps.CRS.Sinusoidal()) + m.add_feature.preset.ocean() + s = m.add_scalebar() + + .. grid-item:: + + .. image:: _static/minigifs/scalebar.gif + :width: 50% + .. admonition:: Interacting with the scalebar diff --git a/docs/api_utils.rst b/docs/api_utils.rst index 63f4d47af..895430371 100644 --- a/docs/api_utils.rst +++ b/docs/api_utils.rst @@ -41,20 +41,23 @@ By default, the widgets will show all available layers (except the "all" layer) -.. table:: - :widths: 70 30 - :align: center - - +------------------------------------+-------------------------------------------------+ - | .. code-block:: python | .. image:: _static/minigifs/layer_selector.gif | - | :name: test_add_utils | :align: center | - | | | - | from eomaps import Maps | | - | m = Maps(layer="coastline") | | - | m.add_feature.preset.coastline() | | - | | | - | m2 = m.new_layer(layer="ocean") | | - | m2.add_feature.preset.ocean() | | - | | | - | s = m.util.layer_selector() | | - +------------------------------------+-------------------------------------------------+ +.. grid:: 1 1 1 2 + + .. grid-item:: + + .. code-block:: python + :name: test_add_utils + + from eomaps import Maps + m = Maps(layer="coastline") + m.add_feature.preset.coastline() + + m2 = m.new_layer(layer="ocean") + m2.add_feature.preset.ocean() + + s = m.util.layer_selector() + + .. grid-item:: + + .. image:: _static/minigifs/layer_selector.gif + :width: 50% diff --git a/docs/api_vector_data.rst b/docs/api_vector_data.rst index 15878ef23..0a2756111 100644 --- a/docs/api_vector_data.rst +++ b/docs/api_vector_data.rst @@ -56,25 +56,29 @@ Once the ``picker_name`` is specified, pick-callbacks can be attached via: - ``m.cb.pick[].attach.< CALLBACK >()`` -| For example, to highlight the clicked country, you could use: - -.. table:: - :widths: 50 50 - :align: center - - +----------------------------------------------------------------------------+----------------------------------------------+ - | .. code-block:: python | .. image:: _static/minigifs/add_gdf_pick.gif | - | :name: test_pick_gdf | :align: center | - | | | - | from eomaps import Maps | | - | m = Maps() | | - | # get the GeoDataFrame for a given NaturalEarth feature | | - | gdf = m.add_feature.cultural.admin_0_countries.get_gdf(scale=110) | | - | | | - | # pick the shapes of the GeoDataFrame based on a "contains" query | | - | m.add_gdf(gdf, picker_name="countries", pick_method="contains") | | - | | | - | # temporarily highlight the picked geometry | | - | m.cb.pick["countries"].attach.highlight_geometry(fc="r", ec="g", lw=2) | | - | | | - +----------------------------------------------------------------------------+----------------------------------------------+ + +For example, to highlight the clicked country, you could use: + + +.. grid:: 1 1 1 2 + + .. grid-item:: + + .. code-block:: python + :name: test_pick_gdf + + from eomaps import Maps + m = Maps() + # get the GeoDataFrame for a given NaturalEarth feature + gdf = m.add_feature.cultural.admin_0_countries.get_gdf(scale=110) + + # pick the shapes of the GeoDataFrame based on a "contains" query + m.add_gdf(gdf, picker_name="countries", pick_method="contains") + + # temporarily highlight the picked geometry + m.cb.pick["countries"].attach.highlight_geometry(fc="r", ec="g", lw=2) + + .. grid-item:: + + .. image:: _static/minigifs/add_gdf_pick.gif + :width: 75% diff --git a/docs/api_webmaps.rst b/docs/api_webmaps.rst index b1de53220..be9dc9a16 100644 --- a/docs/api_webmaps.rst +++ b/docs/api_webmaps.rst @@ -43,30 +43,31 @@ and ``< LAYER >`` indicates the actual layer-name. - most services come either in ``epsg=4326`` or in ``Maps.CRS.GOOGLE_MERCATOR`` projection -.. table:: - :widths: 50 50 - :align: center - - +------------------------------------------------------------------------------------------------+-----------------------------------------+ - | .. code-block:: python | .. image:: _static/minigifs/add_wms.png | - | | :align: center | - | from eomaps import MapsGrid | | - | mg = MapsGrid(crs=Maps.CRS.GOOGLE_MERCATOR) | |img_minsize| | - | mg.join_limits() | | - | | | - | mg.m_0_0.add_wms.OpenStreetMap.add_layer.default() | | - | mg.m_0_1.add_wms.OpenStreetMap.add_layer.stamen_toner() | | - | | | - | mg.m_1_1.add_wms.S1GBM.add_layer.vv() | | - | | | - | # ... for more advanced | | - | layer = mg.m_1_0.add_wms.ISRIC_SoilGrids.nitrogen.add_layer.nitrogen_0_5cm_mean | | - | layer.set_extent_to_bbox() # set the extent according to the boundingBox | | - | layer.info # the "info" property provides useful information on the layer | | - | layer() # call the layer to add it to the map | | - | layer.add_legend() # if a legend is provided, you can add it to the map! | | - | | | - +------------------------------------------------------------------------------------------------+-----------------------------------------+ +.. grid:: 1 1 1 2 + + .. grid-item:: + + .. code-block:: python + + from eomaps import MapsGrid + mg = MapsGrid(crs=Maps.CRS.GOOGLE_MERCATOR) + mg.join_limits() + + mg.m_0_0.add_wms.OpenStreetMap.add_layer.default() + mg.m_0_1.add_wms.OpenStreetMap.add_layer.stamen_toner() + + mg.m_1_1.add_wms.S1GBM.add_layer.vv() + + # ... for more advanced + layer = mg.m_1_0.add_wms.ISRIC_SoilGrids.nitrogen.add_layer.nitrogen_0_5cm_mean + layer.set_extent_to_bbox() # set the extent according to the boundingBox + layer.info # the "info" property provides useful information on the layer + layer() # call the layer to add it to the map + layer.add_legend() # if a legend is provided, you can add it to the map! + + .. grid-item:: + + .. image:: _static/minigifs/add_wms.png Pre-defined WebMap services @@ -170,47 +171,50 @@ To pass additional arguments to a WebMap service, simply provide them when when To show an example, here's how to fetch multiple timestamps for the UV-index of the Copernicus Airquality service. (provided by https://atmosphere.copernicus.eu/) -.. table:: - :widths: 50 50 - :align: center - - +-------------------------------------------------------------------------------------+----------------------------------------------+ - | .. code-block:: python | .. image:: _static/minigifs/advanced_wms.gif | - | | :align: center | - | from eomaps import Maps | | - | import pandas as pd | |img_minsize| | - | | | - | m = Maps(layer="all", figsize=(8, 4)) | | - | m.subplots_adjust(left=0.05, right=0.95) | | - | m.all.add_feature.preset.coastline() | | - | m.add_logo() | | - | | | - | layer = m.add_wms.CAMS.add_layer.composition_uvindex_clearsky | | - | timepos = layer.wms_layer.timepositions # available time-positions | | - | all_styles = list(layer.wms_layer.styles) # available styles | | - | | | - | # create a list of timestamps to fetch | | - | start, stop, freq = timepos[1].split(r"/") | | - | times = pd.date_range(start, stop, freq=freq.replace("PT", "")) | | - | times = times.strftime("%Y-%m-%dT%H:%M:%SZ") | | - | | | - | style = all_styles[0] # use the first available style | | - | for time in times[:6]: | | - | # call the layer to add it to the map | | - | layer(time=time, | | - | styles=[style], # provide a list with 1 entry here | | - | layer=time # put each WebMap on an individual layer | | - | ) | | - | | | - | layer.add_legend() # add a legend for the WebMap service | | - | | | - | # add a "slider" and a "selector" widget | | - | m.util.layer_selector(ncol=3, loc="upper center", fontsize=6, labelspacing=1.3) | | - | m.util.layer_slider() | | - | | | - | # attach a callback to fetch all layers if you press l on the keyboard | | - | cid = m.all.cb.keypress.attach.fetch_layers(key="l") | | - | # fetch all layers so that they are cached and switching layers is fast | | - | m.fetch_layers() | | - | m.show_layer(times[0]) # make the first timestamp visible | | - +-------------------------------------------------------------------------------------+----------------------------------------------+ + +.. grid:: 1 1 1 2 + + .. grid-item:: + + .. code-block:: python + + from eomaps import Maps + import pandas as pd + + m = Maps(layer="all", figsize=(8, 4)) + m.subplots_adjust(left=0.05, right=0.95) + m.all.add_feature.preset.coastline() + m.add_logo() + + layer = m.add_wms.CAMS.add_layer.composition_uvindex_clearsky + timepos = layer.wms_layer.timepositions # available time-positions + all_styles = list(layer.wms_layer.styles) # available styles + + # create a list of timestamps to fetch + start, stop, freq = timepos[1].split(r"/") + times = pd.date_range(start, stop, freq=freq.replace("PT", "")) + times = times.strftime("%Y-%m-%dT%H:%M:%SZ") + + style = all_styles[0] # use the first available style + for time in times[:6]: + # call the layer to add it to the map + layer(time=time, + styles=[style], # provide a list with 1 entry here + layer=time # put each WebMap on an individual layer + ) + + layer.add_legend() # add a legend for the WebMap service + + # add a "slider" and a "selector" widget + m.util.layer_selector(ncol=3, loc="upper center", fontsize=6, labelspacing=1.3) + m.util.layer_slider() + + # attach a callback to fetch all layers if you press l on the keyboard + cid = m.all.cb.keypress.attach.fetch_layers(key="l") + # fetch all layers so that they are cached and switching layers is fast + m.fetch_layers() + m.show_layer(times[0]) # make the first timestamp visible + + .. grid-item:: + + .. image:: _static/minigifs/advanced_wms.gif diff --git a/docs/index.rst b/docs/index.rst index 7644c39c3..70a1c6050 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -99,7 +99,7 @@ EOmaps provides many useful tools to customize your maps. -.. grid:: 1 1 2 2 +.. grid:: 1 1 1 2 :gutter: 1 .. grid-item-card:: :doc:`notebooks/naturalearth_features` @@ -165,7 +165,7 @@ Interactivity With a few lines of code, you can turn your maps into interactive data-analysis widgets! -.. grid:: 1 1 2 2 +.. grid:: 1 1 1 2 :gutter: 1 .. grid-item-card:: :doc:`api_companion_widget` @@ -207,7 +207,7 @@ With a few lines of code, you can turn your maps into interactive data-analysis Miscellaneous ~~~~~~~~~~~~~ -.. grid:: 1 1 2 2 +.. grid:: 1 1 1 2 :gutter: 1 .. grid-item-card:: :doc:`api_logging` From 43f225397676f25c3dc033ce02cdd9876ed703aa Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sun, 14 Jan 2024 22:09:28 +0100 Subject: [PATCH 102/240] remove rst_prolog (now responsive grids are used instead of tables) --- docs/conf.py | 10 ---------- 1 file changed, 10 deletions(-) diff --git a/docs/conf.py b/docs/conf.py index 3914f2116..36af39f27 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -137,13 +137,3 @@ def setup(app): ".ipynb": "myst-nb", ".myst": "myst-nb", } - -# a global substitution used to fix issues with images in tables -# in the mobile-theme (without a span they get resized to 0. This forces a size -# of at least 20% of the browser-window size) - -rst_prolog = """ - .. |img_minsize| raw:: html - - - """ From 1d45fee700c3297337cd68ff2ca056d8bdea836b Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Fri, 19 Jan 2024 23:09:59 +0100 Subject: [PATCH 103/240] Internal re-structuring of pre-defined callback machinery - `Callback` classes have been re-structured as mixins - `_cb` and `_cb_list` are removed from `_CallbackContainer` _ `_attach` classes now use mixins to define available callbacks (all callbacks are decorated in the respective container so that calling them will attach them as callbacks to the map) --- eomaps/callbacks.py | 540 ++++++++---------- eomaps/cb_container.py | 225 +++++--- eomaps/eomaps.py | 8 +- eomaps/qtcompanion/widgets/click_callbacks.py | 8 +- tests/test_basic_functions.py | 6 +- tests/test_callbacks.py | 3 +- 6 files changed, 420 insertions(+), 370 deletions(-) diff --git a/eomaps/callbacks.py b/eomaps/callbacks.py index 2468978a2..1079ad8cb 100644 --- a/eomaps/callbacks.py +++ b/eomaps/callbacks.py @@ -23,66 +23,7 @@ def _removesuffix(s, suffix): return s[:] -class _ClickCallbacks(object): - """ - A collection of callback-functions. - - to attach a callback, use: - >>> cid = m.cb.click.attach.annotate(**kwargs) - or - >>> cid = m.cb.pick.attach.annotate(**kwargs) - - to remove an already attached callback, use: - >>> m.cb.click.remove(cid) - or - >>> m.cb.pick.remove(cid) - - - you can also define custom callback functions as follows: - - >>> def some_callback(self, **kwargs): - >>> print("hello world") - >>> print("the position of the clicked pixel", kwargs["pos"]) - >>> print("the data-index of the clicked pixel", kwargs["ID"]) - >>> print("data-value of the clicked pixel", kwargs["val"]) - and attach them via: - >>> cid = m.cb.click.attach(some_callback) - or - >>> cid = m.cb.click.attach(some_callback) - (... and remove them in the same way as pre-defined callbacks) - """ - - # the naming-convention of the functions is as follows: - # - # __cleanup : a function that is executed if the callback - # is removed from the plot - # - - # ID : any - # The index-value of the pixel in the data. - # pos : tuple - # A tuple of the position of the pixel in plot-coordinates. - # (ONLY relevant if ID is NOT provided!) - # val : int or float - # The parameter-value of the pixel. - # ind : int - # The index of the clicked pixel - # (ONLY relevant if ID is NOT provided!) - - # this list determines the order at which callbacks are executed! - # (custom callbacks are always added to the end) - _cb_list = [ - "get_values", - "load", - "print_to_console", - "annotate", - "mark", - "plot", - "peek_layer", - "clear_annotations", - "clear_markers", - ] - +class _CallbacksBase: def __init__(self, m, temp_artists): self.m = m @@ -115,64 +56,6 @@ def _fmt(x, **kwargs): except Exception: return str(x) - def print_to_console( - self, - pos_precision=4, - val_precision=4, - text=None, - show_all_values=True, - **kwargs, - ): - """ - Print details on the clicked pixel to the console. - - Parameters - ---------- - - pos_precision : int - The floating-point precision of the coordinates. - The default is 4. - val_precision : int - The floating-point precision of the parameter-values (only used if - "val_fmt=None"). The default is 4. - text : callable or str, optional - if str: the string to print - if callable: A function that returns the string that should be - printed in the annotation with the following call-signature: - - >>> def text(m, ID, val, pos, ind): - >>> # m ... the Maps object - >>> # ID ... the ID in the dataframe - >>> # pos ... the position - >>> # val ... the value - >>> # ind ... the index - >>> - >>> return "the string to print" - - The default is None. - show_all_values : bool, optional - If True, show all values and coordinates of picked points. - If False, only (min...max) values are shown if multiple datapoints are - picked. The default is True. - """ - ID, pos, val, ind, picker_name, val_color = self._popargs(kwargs) - - printstr = self._get_annotation_text( - ID=ID, - pos=pos, - val=val, - ind=ind, - pos_precision=pos_precision, - val_precision=val_precision, - text=text, - show_all_values=show_all_values, - ) - - if text is None: - print("\n# ---------------\n" + printstr) - else: - print(printstr) - def _get_annotation_text( self, ID=None, @@ -331,6 +214,70 @@ def _get_annotation_text( return printstr + +class _MoveClickPickCallbacks(_CallbacksBase): + # callbacks usable with move (and also click and pick) + def __init__(self, m, temp_artists): + _CallbacksBase.__init__(self, m, temp_artists) + + def print_to_console( + self, + pos_precision=4, + val_precision=4, + text=None, + show_all_values=True, + **kwargs, + ): + """ + Print details on the clicked pixel to the console. + + Parameters + ---------- + + pos_precision : int + The floating-point precision of the coordinates. + The default is 4. + val_precision : int + The floating-point precision of the parameter-values (only used if + "val_fmt=None"). The default is 4. + text : callable or str, optional + if str: the string to print + if callable: A function that returns the string that should be + printed in the annotation with the following call-signature: + + >>> def text(m, ID, val, pos, ind): + >>> # m ... the Maps object + >>> # ID ... the ID in the dataframe + >>> # pos ... the position + >>> # val ... the value + >>> # ind ... the index + >>> + >>> return "the string to print" + + The default is None. + show_all_values : bool, optional + If True, show all values and coordinates of picked points. + If False, only (min...max) values are shown if multiple datapoints are + picked. The default is True. + """ + ID, pos, val, ind, picker_name, val_color = self._popargs(kwargs) + + printstr = self._get_annotation_text( + ID=ID, + pos=pos, + val=val, + ind=ind, + pos_precision=pos_precision, + val_precision=val_precision, + text=text, + show_all_values=show_all_values, + ) + + if text is None: + print("\n# ---------------\n" + printstr) + else: + print(printstr) + def annotate( self, pos_precision=4, @@ -502,47 +449,6 @@ def annotate( return annotation - def clear_annotations(self, **kwargs): - """Remove all temporary and permanent annotations from the plot.""" - if hasattr(self, "permanent_annotations"): - while len(self.permanent_annotations) > 0: - ann = self.permanent_annotations.pop(0) - self.m.BM.remove_artist(ann) - ann.remove() - - # def _annotate_cleanup(self): - # self.clear_annotations() - - def get_values(self, **kwargs): - """ - Successively collect return-values in a dict. - - The dict is accessible via `m.cb.[click/pick].get.picked_vals` - - The structure of the picked_vals dict is as follows: - (lists are appended as you click on more pixels) - - >>> dict( - >>> pos=[... center-position tuples in plot_crs ...], - >>> ID=[... the corresponding IDs in the dataframe...], - >>> val=[... the corresponding values ...] - >>> ) - - removing the callback will also remove the associated value-dictionary! - """ - ID, pos, val, ind, picker_name, val_color = self._popargs(kwargs) - - if not hasattr(self, "picked_vals"): - self.picked_vals = dict() - - for key, val in zip(["pos", "ID", "val"], [pos, ID, val]): - self.picked_vals.setdefault(key, []).append(val) - - def _get_values_cleanup(self): - # cleanup method for get_values callback - if hasattr(self, "picked_vals"): - del self.picked_vals - def mark( self, radius=None, @@ -754,57 +660,6 @@ def mark( return marker - def clear_markers(self, **kwargs): - """Remove all temporary and permanent annotations from the plot.""" - if hasattr(self, "permanent_markers"): - while len(self.permanent_markers) > 0: - marker = self.permanent_markers.pop(0) - self.m.BM.remove_artist(marker) - marker.remove() - del self.permanent_markers - - # def _mark_cleanup(self): - # self.clear_markers() - - def _get_clip_path(self, x, y, xy_crs, radius, radius_crs, shape, n=100): - shp = self.m.set_shape._get(shape) - - if shape == "ellipses": - shp_pts = shp._get_ellipse_points( - x=np.atleast_1d(x), - y=np.atleast_1d(y), - crs=xy_crs, - radius=radius, - radius_crs=radius_crs, - n=n, - ) - bnd_verts = np.stack(shp_pts[:2], axis=2)[0] - - elif shape == "rectangles": - shp_pts = shp._get_rectangle_verts( - x=np.atleast_1d(x), - y=np.atleast_1d(y), - crs=xy_crs, - radius=radius, - radius_crs=radius_crs, - n=n, - ) - bnd_verts = shp_pts[0][0] - - elif shape == "geod_circles": - shp_pts = shp._get_geod_circle_points( - x=np.atleast_1d(x), - y=np.atleast_1d(y), - crs=xy_crs, - radius=radius, - # radius_crs=radius_crs, - n=n, - ) - bnd_verts = np.stack(shp_pts[:2], axis=2).squeeze() - from matplotlib.path import Path - - return Path(bnd_verts) - def peek_layer( self, layer="1", how=(0.4, 0.4), alpha=1, shape="rectangular", **kwargs ): @@ -1028,51 +883,144 @@ def doit(): ) ) - def load( - self, database=None, load_method="load_fit", load_multiple=False, **kwargs - ): + +class _ClickCallbacks(_CallbacksBase): + """ + A collection of callback-functions. + + to attach a callback, use: + >>> cid = m.cb.click.attach.annotate(**kwargs) + or + >>> cid = m.cb.pick.attach.annotate(**kwargs) + + to remove an already attached callback, use: + >>> m.cb.click.remove(cid) + or + >>> m.cb.pick.remove(cid) + + + you can also define custom callback functions as follows: + + >>> def some_callback(self, **kwargs): + >>> print("hello world") + >>> print("the position of the clicked pixel", kwargs["pos"]) + >>> print("the data-index of the clicked pixel", kwargs["ID"]) + >>> print("data-value of the clicked pixel", kwargs["val"]) + and attach them via: + >>> cid = m.cb.click.attach(some_callback) + or + >>> cid = m.cb.click.attach(some_callback) + (... and remove them in the same way as pre-defined callbacks) + """ + + # the naming-convention of the functions is as follows: + # + # __cleanup : a function that is executed if the callback + # is removed from the plot + # + + # ID : any + # The index-value of the pixel in the data. + # pos : tuple + # A tuple of the position of the pixel in plot-coordinates. + # (ONLY relevant if ID is NOT provided!) + # val : int or float + # The parameter-value of the pixel. + # ind : int + # The index of the clicked pixel + # (ONLY relevant if ID is NOT provided!) + + # this list determines the order at which callbacks are executed! + # (custom callbacks are always added to the end) + + def __init__(self, m, temp_artists): + _CallbacksBase.__init__(self, m, temp_artists) + + def clear_annotations(self, **kwargs): + """Remove all temporary and permanent annotations from the plot.""" + if hasattr(self, "permanent_annotations"): + while len(self.permanent_annotations) > 0: + ann = self.permanent_annotations.pop(0) + self.m.BM.remove_artist(ann) + ann.remove() + + def clear_markers(self, **kwargs): + """Remove all temporary and permanent annotations from the plot.""" + if hasattr(self, "permanent_markers"): + while len(self.permanent_markers) > 0: + marker = self.permanent_markers.pop(0) + self.m.BM.remove_artist(marker) + marker.remove() + del self.permanent_markers + + def get_values(self, **kwargs): """ - Load objects from a given database using the ID of the picked pixel. + Successively collect return-values in a dict. - The returned object(s) are accessible via `m.cb.pick.get.picked_object`. + The dict is accessible via `m.cb.[click/pick].get.picked_vals` - Parameters - ---------- - database : any - The database object to use for loading the object - load_method : str or callable - If str: The name of the method to use for loading objects from the provided - database (the call-signature used is `database.load_method(ID)`) - If callable: A callable that will be executed on the database with the - following call-signature: `load_method(database, ID)` - load_multiple : bool - True: A single-object is returned, replacing `m.cb.picked_object` on each pick. - False: A list of objects is returned that is extended with each pick. + The structure of the picked_vals dict is as follows: + (lists are appended as you click on more pixels) + + >>> dict( + >>> pos=[... center-position tuples in plot_crs ...], + >>> ID=[... the corresponding IDs in the dataframe...], + >>> val=[... the corresponding values ...] + >>> ) + + removing the callback will also remove the associated value-dictionary! """ ID, pos, val, ind, picker_name, val_color = self._popargs(kwargs) - assert database is not None, "you must provide a database object!" - try: - if isinstance(load_method, str): - assert hasattr( - database, load_method - ), "The provided database has no method '{load_method}'" - pick = getattr(database, load_method)(ID) - elif callable(load_method): - pick = load_method(database, ID) - else: - raise TypeError("load_method must be a string or a callable!") - except Exception: - _log.error( - f"EOmaps: Unable to load object with ID: '{ID}' from {database}" + + if not hasattr(self, "picked_vals"): + self.picked_vals = dict() + + for key, val in zip(["pos", "ID", "val"], [pos, ID, val]): + self.picked_vals.setdefault(key, []).append(val) + + def _get_values_cleanup(self): + # cleanup method for get_values callback + if hasattr(self, "picked_vals"): + del self.picked_vals + + def _get_clip_path(self, x, y, xy_crs, radius, radius_crs, shape, n=100): + shp = self.m.set_shape._get(shape) + + if shape == "ellipses": + shp_pts = shp._get_ellipse_points( + x=np.atleast_1d(x), + y=np.atleast_1d(y), + crs=xy_crs, + radius=radius, + radius_crs=radius_crs, + n=n, ) - if load_multiple is True: - self.picked_object = getattr(self, "picked_object", list()) + [pick] - else: - self.picked_object = pick + bnd_verts = np.stack(shp_pts[:2], axis=2)[0] - def _load_cleanup(self): - if hasattr(self, "picked_object"): - del self.picked_object + elif shape == "rectangles": + shp_pts = shp._get_rectangle_verts( + x=np.atleast_1d(x), + y=np.atleast_1d(y), + crs=xy_crs, + radius=radius, + radius_crs=radius_crs, + n=n, + ) + bnd_verts = shp_pts[0][0] + + elif shape == "geod_circles": + shp_pts = shp._get_geod_circle_points( + x=np.atleast_1d(x), + y=np.atleast_1d(y), + crs=xy_crs, + radius=radius, + # radius_crs=radius_crs, + n=n, + ) + bnd_verts = np.stack(shp_pts[:2], axis=2).squeeze() + from matplotlib.path import Path + + return Path(bnd_verts) def plot( self, @@ -1159,23 +1107,9 @@ def _plot_cleanup(self): del self._pick_l -class PickCallbacks(_ClickCallbacks): - """A collection of callbacks that are executed if you click on a datapoint.""" - - _cb_list = [ - "get_values", - "load", - "print_to_console", - "annotate", - "mark", - "plot", - "clear_annotations", - "clear_markers", - "highlight_geometry", - ] - - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) +class _PickCallbacks: + def __init__(self, m, temp_artists): + _CallbacksBase.__init__(self, m, temp_artists) def highlight_geometry(self, permanent=False, **kwargs): """ @@ -1199,33 +1133,69 @@ def highlight_geometry(self, permanent=False, **kwargs): else: self.m.add_gdf(geom, permanent=permanent, **kwargs) + def load( + self, database=None, load_method="load_fit", load_multiple=False, **kwargs + ): + """ + Load objects from a given database using the ID of the picked pixel. + + The returned object(s) are accessible via `m.cb.pick.get.picked_object`. + + Parameters + ---------- + database : any + The database object to use for loading the object + load_method : str or callable + If str: The name of the method to use for loading objects from the provided + database (the call-signature used is `database.load_method(ID)`) + If callable: A callable that will be executed on the database with the + following call-signature: `load_method(database, ID)` + load_multiple : bool + True: A single-object is returned, replacing `m.cb.picked_object` on each pick. + False: A list of objects is returned that is extended with each pick. + """ + ID, pos, val, ind, picker_name, val_color = self._popargs(kwargs) + assert database is not None, "you must provide a database object!" + try: + if isinstance(load_method, str): + assert hasattr( + database, load_method + ), "The provided database has no method '{load_method}'" + pick = getattr(database, load_method)(ID) + elif callable(load_method): + pick = load_method(database, ID) + else: + raise TypeError("load_method must be a string or a callable!") + except Exception: + _log.error( + f"EOmaps: Unable to load object with ID: '{ID}' from {database}" + ) + if load_multiple is True: + self.picked_object = getattr(self, "picked_object", list()) + [pick] + else: + self.picked_object = pick + + def _load_cleanup(self): + if hasattr(self, "picked_object"): + del self.picked_object -class ClickCallbacks(_ClickCallbacks): - """Collection of callbacks that are executed if you click anywhere on the map.""" - _cb_list = [ - "get_values", - "print_to_console", - "annotate", - "mark", - "peek_layer", - "clear_annotations", - "clear_markers", - ] +class PickCallbacks(_ClickCallbacks, _PickCallbacks, _MoveClickPickCallbacks): + """A collection of callbacks that are executed if you click on a datapoint.""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) -class MoveCallbacks(_ClickCallbacks): - """Collection of callbacks that are executed on mouse-movement.""" +class ClickCallbacks(_ClickCallbacks, _MoveClickPickCallbacks): + """Collection of callbacks that are executed if you click anywhere on the map.""" + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) - _cb_list = [ - "print_to_console", - "annotate", - "mark", - "peek_layer", - ] + +class MoveCallbacks(_MoveClickPickCallbacks): + """Collection of callbacks that are executed on mouse-movement.""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) @@ -1234,8 +1204,6 @@ def __init__(self, *args, **kwargs): class KeypressCallbacks: """Collection of callbacks that are executed if you press a key on the keyboard.""" - _cb_list = ["switch_layer", "fetch_layers", "overlay_layer"] - def __init__(self, m, temp_artists): self._temporary_artists = temp_artists self._m = m diff --git a/eomaps/cb_container.py b/eomaps/cb_container.py index 14a442cdf..13bd3e38b 100644 --- a/eomaps/cb_container.py +++ b/eomaps/cb_container.py @@ -124,12 +124,6 @@ def __init__(self, m, cb_class=None, method="click", parent_container=None): else: self._temporary_artists = self._parent_container._temporary_artists - self._cb = cb_class(m, self._temporary_artists) - self._cb_list = cb_class._cb_list - - self.attach = self._attach(self) - self.get = self._get(self) - self._fwd_cbs = dict() self._method = method @@ -196,10 +190,11 @@ def _clear_temporary_artists(self): self._m.BM._artists_to_clear.setdefault(self._method, []).append(art) def _sort_cbs(self, cbs): + _cb_list = self._attach._available_callbacks() if not cbs: return set() cbnames = set([i.rsplit("__", 1)[0].rsplit("_", 1)[0] for i in cbs]) - sortp = self._cb_list + list(set(self._cb_list) ^ cbnames) + sortp = _cb_list + list(set(_cb_list) ^ cbnames) return sorted( list(cbs), key=lambda w: sortp.index(w.rsplit("__", 1)[0].rsplit("_", 1)[0]) ) @@ -311,6 +306,7 @@ def _execute_cb(self, layer): @property def execute_on_all_layers(self): + """Indicator if callbacks of this container are executed on all layers.""" if self._parent_container is not None: return self._parent_container._execute_on_all_layers @@ -370,6 +366,22 @@ def set_execute_during_toolbar_action(self, q): """ self._execute_while_toolbar_active = q + def _attach_decorator(self, func): + def inner(*args, **kwargs): + return self._add_callback(callback=func, *args, **kwargs) + + return inner + + +def _apply_decorator_to_all_public_methods(decorator): + def decorate(cls): + for attr in filter(lambda x: not x.startswith("_"), dir(cls)): + if callable(getattr(cls, attr)): + setattr(cls, attr, decorator(getattr(cls, attr))) + return cls + + return decorate + class _ClickContainer(_CallbackContainer): """ @@ -395,11 +407,18 @@ def __init__(self, m, cb_cls=None, method="pick", default_button=1, **kwargs): # the default button to use when attaching callbacks self._default_button = default_button + self.attach = self._attach(self) + self.attach = _apply_decorator_to_all_public_methods(self._attach_decorator)( + self.attach + ) + + self.get = self._get(self) + class _attach: """ Attach custom or pre-defined callbacks to the map. - Each callback-function takes 2 additional keyword-arguments: + Callback-functions accept the following additional keyword-arguments: double_click : bool Indicator if the callback should be executed on double-click (True) @@ -457,17 +476,8 @@ class _attach: def __init__(self, parent): self._parent = parent - - # attach pre-defined callbacks - for cb in self._parent._cb_list: - setattr( - self, - cb, - update_wrapper( - partial(self._parent._add_callback, callback=cb), - getattr(self._parent._cb, cb), - ), - ) + self.m = parent._m + self._temporary_artists = self._parent._temporary_artists def __call__(self, f, double_click=False, button=None, modifier=None, **kwargs): """ @@ -536,19 +546,24 @@ def __call__(self, f, double_click=False, button=None, modifier=None, **kwargs): **kwargs, ) + @classmethod + def _available_callbacks(cls): + return list(filter(lambda x: not x.startswith("_"), dir(cls))) + class _get: """Accessor for objects generated/retrieved by callbacks.""" def __init__(self, parent): - self.m = parent._m - self.cb = parent._cb + self._parent = parent + self.m = self._parent._m self.cbs = dict() @property def picked_object(self): - if hasattr(self.cb, "picked_object"): - return self.cb.picked_object + """Get the most recent picked object.""" + if hasattr(self._parent.attach, "picked_object"): + return self._parent.attach.picked_object else: _log.warning( "EOmaps: No picked objects found. Attach " @@ -557,8 +572,9 @@ def picked_object(self): @property def picked_vals(self): - if hasattr(self.cb, "picked_vals"): - return self.cb.picked_vals + """Get a list of all picked values.""" + if hasattr(self._parent.attach, "picked_vals"): + return self._parent.attach.picked_vals else: _log.warning( "EOmaps: No picked values found. Attach " @@ -567,8 +583,9 @@ def picked_vals(self): @property def permanent_markers(self): - if hasattr(self.cb, "permanent_markers"): - return self.cb.permanent_markers + """Get a list of all permanent markers.""" + if hasattr(self._parent.attach, "permanent_markers"): + return self._parent.attach.permanent_markers else: _log.warning( "EOmaps: No permanent markers found. Attach " @@ -577,8 +594,9 @@ def permanent_markers(self): @property def permanent_annotations(self): - if hasattr(self.cb, "permanent_annotations"): - return self.cb.permanent_annotations + """Get a list of all permanent annotations.""" + if hasattr(self._parent.attach, "permanent_annotations"): + return self._parent.attach.permanent_annotations else: _log.warning( "EOmaps: No permanent annotations found. Attach " @@ -587,6 +605,7 @@ def permanent_annotations(self): @property def attached_callbacks(self): + """Get a list of all IDs of attached callbacks.""" cbs = [] for ds, dsdict in self.cbs.items(): for b, bdict in dsdict.items(): @@ -665,8 +684,8 @@ def remove(self, callback=None): # call cleanup methods on removal fname = name.rsplit("_", 1)[0] - if hasattr(self._cb, f"_{fname}_cleanup"): - getattr(self._cb, f"_{fname}_cleanup")() + if hasattr(self._attach, f"_{fname}_cleanup"): + getattr(self._attach, f"_{fname}_cleanup")(self.attach) else: _log.error(f"EOmaps: There is no callback named {callback}") @@ -819,17 +838,36 @@ def _add_callback( # attach "on_move" callbacks movecb_name = None - # set on_motion True for "click" callbacks and False otherwise - on_motion = kwargs.pop("on_motion", True if self._method == "click" else False) + + on_motion = kwargs.pop("on_motion", None) + + # set on_motion=True as default for "click" callbacks that + # are also supported as move callbacks and False otherwise + if self._method == "click" and on_motion is None: + if hasattr(self._m.cb._click_move._attach, callback.__name__): + on_motion = True + else: + on_motion = False + else: + on_motion = False + if self._method == "click" and on_motion is True: - movecb_name = self._m.cb._click_move._add_callback( - *args, - callback=callback, - double_click=double_click, - button=button, - modifier=modifier, - **kwargs, - ) + # attach associated click+move callback + if not hasattr(self._m.cb._click_move._attach, callback.__name__): + on_motion = False + _log.warning( + f"Using 'on_motion' = True for the '{callback}' callback has no effect!" + ) + + if on_motion: + movecb_name = self._m.cb._click_move._add_callback( + *args, + callback=callback, + double_click=double_click, + button=button, + modifier=modifier, + **kwargs, + ) elif on_motion is True: _log.warning( "EOmaps: 'on_motion=True' is only possible for " "'click' callbacks!" @@ -840,12 +878,12 @@ def _add_callback( ), 'the names "pos", "ID", "val" cannot be used as keyword-arguments!' if isinstance(callback, str): - assert hasattr(self._cb, callback), ( - f"The function '{callback}' does not exist as a pre-defined callback." + assert hasattr(self._attach, callback), ( + f"The function '{callback}' does not exist as a pre-defined {self._method} callback." + " Use one of:\n - " - + "\n - ".join(self._cb_list) + + "\n - ".join(self._attach._available_callbacks()) ) - callback = getattr(self._cb, callback) + callback = getattr(self._attach, callback) if double_click is True: btn_key = "double" @@ -919,6 +957,18 @@ def __init__(self, *args, **kwargs): self._event = None + class _attach(_ClickContainer._attach, ClickCallbacks): + __doc__ = _ClickContainer._attach.__doc__ + pass + + class _get(_ClickContainer._get): + __doc__ = _ClickContainer._get.__doc__ + pass + + # to make namespace accessible for sphinx + attach = _attach + get = _get + def _init_cbs(self): if self._m.parent is self._m: self._add_click_callback() @@ -1165,6 +1215,18 @@ def __init__(self, button_down=False, *args, **kwargs): self._button_down = button_down + class _attach(_ClickContainer._attach, MoveCallbacks): + __doc__ = _ClickContainer._attach.__doc__ + pass + + class _get(_ClickContainer._get): + __doc__ = _ClickContainer._get.__doc__ + pass + + # to make namespace accessible for sphinx + attach = _attach + get = _get + def _init_cbs(self): if self._m.parent is self._m: self._add_move_callback() @@ -1294,6 +1356,18 @@ def __init__(self, picker_name="default", picker=None, *args, **kwargs): else: self._picker = picker + class _attach(_ClickContainer._attach, PickCallbacks): + __doc__ = _ClickContainer._attach.__doc__ + pass + + class _get(_ClickContainer._get): + __doc__ = _ClickContainer._get.__doc__ + pass + + # to make namespace accessible for sphinx + attach = _attach + get = _get + def __getitem__(self, name): name = str(name) if name.startswith("_"): @@ -1658,7 +1732,7 @@ class KeypressContainer(_CallbackContainer): Executing the functions will attach the associated callback to the map! get : accessor for return-objects - A container to provide easy-access to the return-values of the callbacks. + Accessor for objects generated/retrieved by callbacks. remove : remove prviously added callbacks from the map @@ -1678,6 +1752,13 @@ def __init__(self, m, cb_cls=None, method="keypress"): # remember last pressed key (for use as "sticky_modifier") self._modifier = None + self.attach = self._attach(self) + self.attach = _apply_decorator_to_all_public_methods(self._attach_decorator)( + self.attach + ) + + self.get = self._get(self) + def _init_cbs(self): if self._m.parent is self._m: self._initialize_callbacks() @@ -1755,7 +1836,7 @@ def _onpress(event): "key_press_event", _onpress ) - class _attach: + class _attach(KeypressCallbacks): """ Attach custom or pre-defined callbacks on keypress events. @@ -1786,17 +1867,8 @@ class _attach: def __init__(self, parent): self._parent = parent - - # attach pre-defined callbacks - for cb in self._parent._cb_list: - setattr( - self, - cb, - update_wrapper( - partial(self._parent._add_callback, callback=cb), - getattr(self._parent._cb, cb), - ), - ) + self._m = parent._m + self._temporary_artists = self._parent._temporary_artists def __call__(self, f, key, **kwargs): """ @@ -1835,15 +1907,20 @@ def __call__(self, f, key, **kwargs): return self._parent._add_callback(f, key, **kwargs) + @classmethod + def _available_callbacks(cls): + return list(filter(lambda x: not x.startswith("_"), dir(cls))) + class _get: + """Accessor for objects generated/retrieved by callbacks.""" + def __init__(self, parent): self.m = parent._m - self.cb = parent._cb - self.cbs = dict() @property def attached_callbacks(self): + """Get a list of all IDs of attached callbacks.""" cbs = [] for key, cbdict in self.cbs.items(): for name, cb in cbdict.items(): @@ -1851,6 +1928,10 @@ def attached_callbacks(self): return cbs + # to make namespace accessible for sphinx + attach = _attach + get = _get + def _parse_cid(self, cid): name, rest = cid.split("__", 1) layer, key = rest.rsplit("__", 1) @@ -1881,8 +1962,8 @@ def remove(self, callback=None): # call cleanup methods on removal fname = name.rsplit("_", 1)[0] - if hasattr(self._cb, f"_{fname}_cleanup"): - getattr(self._cb, f"_{fname}_cleanup")() + if hasattr(self._attach, f"_{fname}_cleanup"): + getattr(self._attach, f"_{fname}_cleanup")() else: _log.error(f"EOmaps: there is no callback named {callback}") else: @@ -1923,12 +2004,12 @@ def _add_callback(self, callback, key="x", **kwargs): """ if isinstance(callback, str): - assert hasattr(self._cb, callback), ( + assert hasattr(self._attach, callback), ( f"The function '{callback}' does not exist as a pre-defined callback." + " Use one of:\n - " - + "\n - ".join(self._cb_list) + + "\n - ".join(self._attach._available_callbacks()) ) - callback = getattr(self._cb, callback) + callback = getattr(self._attach, callback) cbdict = self.get.cbs.setdefault(key, dict()) @@ -1956,12 +2037,10 @@ class CallbackContainer: Methods ------- - - **click** : Execute functions when clicking on the map - - - **pick** : Execute functions when you "pick" a pixel on the map - - only available if a dataset has been plotted via `m.plot_map()` - - - **keypress** : Execute functions if you press a key on the keyboard + click : Execute functions when clicking on the map + move : Execute functions when clicking on the map + keypress : Execute functions if you press a key on the keyboard + pick : Execute functions that "pick" the closest datapoint(s) """ @@ -1999,7 +2078,7 @@ def __init__(self, m): # a move-container that shares temporary artists with the click-container self._click_move = MoveContainer( m=self._m, - cb_cls=ClickCallbacks, + cb_cls=MoveCallbacks, method="_click_move", parent_container=self.click, button_down=True, @@ -2080,7 +2159,7 @@ def add_picker(self, name, artist, picker): Note ---- If the name starts with an underscore (e.g. "_MyPicker") then the - associated container will be accessible via `m._cb._pick__MyPicker` + associated container will be accessible via `m.cb._pick__MyPicker` or via `m.cb.pick["_MyPicker"]`. (This is useful to setup pickers that are only used internally) """ diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index 4b264e9e1..589a876ed 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -2156,8 +2156,9 @@ def add_marker( permanent = kwargs.pop("permanent", None) - # add marker - marker = self.cb.click._cb.mark( + # call the "mark" callback function to add the marker + marker = self.cb.click._attach.mark( + self.cb.click.attach, ID=ID, pos=xy, radius=radius, @@ -2315,7 +2316,8 @@ def add_annotation( usetext = repeat(text) for x, y, texti, vali, indi, IDi in zip(xy[0], xy[1], usetext, val, ind, ID): - ann = self.cb.click._cb.annotate( + ann = self.cb.click._attach.annotate( + self.cb.click.attach, ID=IDi, pos=(x, y), val=vali, diff --git a/eomaps/qtcompanion/widgets/click_callbacks.py b/eomaps/qtcompanion/widgets/click_callbacks.py index ed95891f9..a1dda2aff 100644 --- a/eomaps/qtcompanion/widgets/click_callbacks.py +++ b/eomaps/qtcompanion/widgets/click_callbacks.py @@ -333,10 +333,10 @@ def clear_annotations_and_markers(self): # (irrespective of the visible layer!) for m in (self.m.parent, *self.m.parent._children): if m.ax == self.m.ax: - m.cb.click._cb.clear_annotations() - m.cb.click._cb.clear_markers() - m.cb.pick._cb.clear_annotations() - m.cb.pick._cb.clear_markers() + m.cb.click._attach.clear_annotations(m.cb.click.attach) + m.cb.click._attach.clear_markers(m.cb.click.attach) + m.cb.pick._attach.clear_annotations(m.cb.pick.attach) + m.cb.pick._attach.clear_markers(m.cb.pick.attach) self.m.BM.update() diff --git a/tests/test_basic_functions.py b/tests/test_basic_functions.py index 7c71f68ee..623850ae5 100644 --- a/tests/test_basic_functions.py +++ b/tests/test_basic_functions.py @@ -264,7 +264,7 @@ def test_add_callbacks(self): m.plot_map() # attach all pick callbacks - for n, cb in enumerate(m.cb.pick._cb_list): + for n, cb in enumerate(m.cb.pick.attach._available_callbacks()): if n == 1: mouse_button = 1 double_click = False @@ -290,7 +290,7 @@ def test_add_callbacks(self): self.assertTrue(len(m.cb.pick.get.attached_callbacks) == 0) # attach all click callbacks - for n, cb in enumerate(m.cb.click._cb_list): + for n, cb in enumerate(m.cb.click.attach._available_callbacks()): if n == 1: mouse_button = 1 double_click = False @@ -318,7 +318,7 @@ def test_add_callbacks(self): # attach all keypress callbacks double_click, mouse_button = True, 1 - for n, cb in enumerate(m.cb.keypress._cb_list): + for n, cb in enumerate(m.cb.keypress.attach._available_callbacks()): if n == 1: key = "x" if n == 2: diff --git a/tests/test_callbacks.py b/tests/test_callbacks.py index 12248d16a..2276b741f 100644 --- a/tests/test_callbacks.py +++ b/tests/test_callbacks.py @@ -586,9 +586,10 @@ def test_clear_annotations(self): def test_clear_markers(self): # ---------- test as CLICK callback m = self.create_basic_map() - m.cb.click.attach.mark(permanent=True) + cid = m.cb.click.attach.mark(permanent=True) self.click_ax_center(m) self.assertTrue(len(m.cb.click.get.permanent_markers) == 1) + m.cb.click.remove(cid) cid = m.cb.click.attach.clear_markers() self.click_ax_center(m) From 5b30dd4667e6306a4cfa8c2f40bee40f8cb1c303 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Fri, 19 Jan 2024 23:10:25 +0100 Subject: [PATCH 104/240] update docs to properly handle `Maps.cb` --- docs/conf.py | 12 ++++++++++++ docs/gen_autodoc_file.py | 15 +++++++++++++++ 2 files changed, 27 insertions(+) diff --git a/docs/conf.py b/docs/conf.py index 36af39f27..5cfd14931 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -48,10 +48,22 @@ def setup(app): Maps.add_wms.__name__ = "add_wms" Maps.util.__name__ = "util" Maps.cb.__name__ = "cb" + Maps.cb.click.__name__ = "click" + Maps.cb.click.attach.__name__ = "attach" + Maps.cb.click.get.__name__ = "get" + Maps.cb.pick.__name__ = "pick" + Maps.cb.pick.attach.__name__ = "attach" + Maps.cb.pick.get.__name__ = "get" + Maps.cb.keypress.__name__ = "keypress" + Maps.cb.keypress.attach.__name__ = "attach" + Maps.cb.keypress.get.__name__ = "get" + Maps.cb.move.__name__ = "move" + Maps.cb.move.attach.__name__ = "attach" + Maps.cb.move.get.__name__ = "get" # -- Project information diff --git a/docs/gen_autodoc_file.py b/docs/gen_autodoc_file.py index 0587fc1f6..376d154f5 100644 --- a/docs/gen_autodoc_file.py +++ b/docs/gen_autodoc_file.py @@ -70,12 +70,27 @@ def make_feature_toctree_file(): members.extend(get_members(Maps, key, False)) for key in ("add_feature", "cb"): members.extend(get_members(Maps, key, True)) + for key in ( + "cb.click.attach", + "cb.pick.attach", + "cb.move.attach", + "cb.keypress.attach", + ): + members.extend(get_members(Maps, key, True)) + for key in ( + "cb.click.get", + "cb.pick.get", + "cb.move.get", + "cb.keypress.get" + ): + members.extend(get_members(Maps, key, False)) # create a page that will be used for sphinx-autodoc to create stub-files s = ":orphan:\n\n" s += get_autosummary( "eomaps.eomaps", ["Maps.config", *members], "obj_with_attributes_no_toc" ) + s += get_autosummary("eomaps.mapsgrid", ["MapsGrid"], "custom-class-template") s += get_autosummary("eomaps.colorbar", ["ColorBar"], "custom-class-template") s += get_autosummary("eomaps.compass", ["Compass"], "custom-class-template") From 8820f2a395da71599d308b2c4f4f975633ea7c7f Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Fri, 19 Jan 2024 23:11:54 +0100 Subject: [PATCH 105/240] make pre-commit happy --- docs/gen_autodoc_file.py | 7 +------ 1 file changed, 1 insertion(+), 6 deletions(-) diff --git a/docs/gen_autodoc_file.py b/docs/gen_autodoc_file.py index 376d154f5..ad82f7094 100644 --- a/docs/gen_autodoc_file.py +++ b/docs/gen_autodoc_file.py @@ -77,12 +77,7 @@ def make_feature_toctree_file(): "cb.keypress.attach", ): members.extend(get_members(Maps, key, True)) - for key in ( - "cb.click.get", - "cb.pick.get", - "cb.move.get", - "cb.keypress.get" - ): + for key in ("cb.click.get", "cb.pick.get", "cb.move.get", "cb.keypress.get"): members.extend(get_members(Maps, key, False)) # create a page that will be used for sphinx-autodoc to create stub-files From 7a1267ab0ef174d1c210a1c7d2351b3221033884 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Fri, 19 Jan 2024 23:26:24 +0100 Subject: [PATCH 106/240] use @wraps for callback decorators and fix default value for "on_motion" --- eomaps/cb_container.py | 22 ++++++++++++++++++---- 1 file changed, 18 insertions(+), 4 deletions(-) diff --git a/eomaps/cb_container.py b/eomaps/cb_container.py index 13bd3e38b..283b19c43 100644 --- a/eomaps/cb_container.py +++ b/eomaps/cb_container.py @@ -366,9 +366,22 @@ def set_execute_during_toolbar_action(self, q): """ self._execute_while_toolbar_active = q + def _try_decorator(self, func): + @wraps(func) + def inner(*args, **kwargs): + try: + func(*args, **kwargs) + except Exception: + _log.error("problem during callback", exc_info=True) + + return inner + def _attach_decorator(self, func): + @wraps(func) def inner(*args, **kwargs): - return self._add_callback(callback=func, *args, **kwargs) + return self._add_callback( + callback=self._try_decorator(func), *args, **kwargs + ) return inner @@ -836,6 +849,7 @@ def _add_callback( else: self._init_picker() + cb_name = callback if isinstance(callback, str) else callback.__name__ # attach "on_move" callbacks movecb_name = None @@ -844,16 +858,16 @@ def _add_callback( # set on_motion=True as default for "click" callbacks that # are also supported as move callbacks and False otherwise if self._method == "click" and on_motion is None: - if hasattr(self._m.cb._click_move._attach, callback.__name__): + if hasattr(self._m.cb._click_move._attach, cb_name): on_motion = True else: on_motion = False - else: + elif on_motion is None: on_motion = False if self._method == "click" and on_motion is True: # attach associated click+move callback - if not hasattr(self._m.cb._click_move._attach, callback.__name__): + if not hasattr(self._m.cb._click_move._attach, cb_name): on_motion = False _log.warning( f"Using 'on_motion' = True for the '{callback}' callback has no effect!" From 3e0ee280b282483997a8ef43579c165364c0514c Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sat, 20 Jan 2024 00:36:18 +0100 Subject: [PATCH 107/240] update docs --- docs/FAQ.rst | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/docs/FAQ.rst b/docs/FAQ.rst index db4f46137..fbee4684c 100644 --- a/docs/FAQ.rst +++ b/docs/FAQ.rst @@ -400,3 +400,8 @@ Important changes between major versions - `m.set_data_specs` -> use ``m.set_data`` instead - `m.add_wms.DLR_basemaps...` -> use ``m.add_wms.DLR.basemap...`` instead - `m_inset.indicate_inset_extent` -> use ``m_inset.add_extent_indicator`` instead + + There have been substantial changes to the internals of the callback machinery + + - The public ``Maps`` API is unaffected + - Changes are primarily in the modules ``cb_container.py`` and ``callbacks.py`` From bc20b14aa2001fbf6a5916d342fd5badc2775c25 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sat, 20 Jan 2024 11:31:40 +0100 Subject: [PATCH 108/240] minor --- tests/test_env.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/tests/test_env.yml b/tests/test_env.yml index 3bd1897a8..7dee8886f 100644 --- a/tests/test_env.yml +++ b/tests/test_env.yml @@ -23,11 +23,11 @@ dependencies: - owslib - requests # --------------for testing - - nbformat # to parse Jupyter Notebooks - coveralls - pytest - pytest-cov # --------------for testing the docs + # (e.g. parsing .rst code-blocks and Jupyter Notebooks) - docutils - jupyter - nbformat From 0035e23c8d8d09da5672c4bf63a7a4b369a29d30 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sat, 20 Jan 2024 11:45:27 +0100 Subject: [PATCH 109/240] update env-files --- environment.yml | 22 ++++++++++++++++------ tests/test_env.yml | 14 ++++++++++---- 2 files changed, 26 insertions(+), 10 deletions(-) diff --git a/environment.yml b/environment.yml index cce90f6c8..34e993fdb 100644 --- a/environment.yml +++ b/environment.yml @@ -3,15 +3,16 @@ channels: - conda-forge dependencies: - - python = 3.11 + - python >= 3.8 - numpy - scipy - matplotlib >=3.4 - cartopy >=0.20.0 - descartes + # ------------- to handle data-classification - mapclassify + # ------------- to handle reprojections - pyproj - # ------------- to support Dataframes - pandas # ------------- to support GeoDataFrames @@ -27,12 +28,21 @@ dependencies: - requests # --------------to support multiple Qt versions - qtpy - # --------------for testing + + ### To run the tests - coveralls - pytest - pytest-cov - # --------------for building the docs - - sphinx-copybutton - - sphinx + # --------------for testing the docs + # (e.g. parsing .rst code-blocks and Jupyter Notebooks) - docutils + - jupyter + - nbformat + + ### To build the docs + - docutils + - sphinx + - sphinx-copybutton + - sphinx-design - sphinx_rtd_theme + - myst-nb diff --git a/tests/test_env.yml b/tests/test_env.yml index 7dee8886f..a3d643485 100644 --- a/tests/test_env.yml +++ b/tests/test_env.yml @@ -5,14 +5,17 @@ channels: dependencies: - numpy - scipy - - pandas - - geopandas - matplotlib >=3.4 - cartopy >=0.20.0 - descartes + # ------------- to handle data-classification - mapclassify + # ------------- to handle reprojections - pyproj - - pyepsg + # ------------- to support Dataframes + - pandas + # ------------- to support GeoDataFrames + - geopandas # --------------for data-shading - datashader # --------------for GeoTIFF and NetCDF files @@ -22,7 +25,10 @@ dependencies: # --------------for WebMaps - owslib - requests - # --------------for testing + # --------------to support multiple Qt versions + - qtpy + + ### To run the tests - coveralls - pytest - pytest-cov From 8d599effad2655af1d6092ebf81eb41d5bf94d70 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sat, 20 Jan 2024 12:27:14 +0100 Subject: [PATCH 110/240] update docs --- docs/api/reference.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/api/reference.rst b/docs/api/reference.rst index 7630d9d48..2824254fe 100644 --- a/docs/api/reference.rst +++ b/docs/api/reference.rst @@ -43,7 +43,7 @@ Feature objects .. currentmodule:: eomaps.eomaps - See :py:meth:`Maps.add_inset_map` on how to add a colorbar to a map! + See :py:meth:`Maps.new_inset_map` on how to create a new InsetMap! .. card:: From d4728248710821b9cf3e672bfb5007b4598f8b23 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sat, 20 Jan 2024 12:35:22 +0100 Subject: [PATCH 111/240] update docs --- docs/index.rst | 14 ++++++++++++++ 1 file changed, 14 insertions(+) diff --git a/docs/index.rst b/docs/index.rst index 70a1c6050..f2436a900 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -239,6 +239,20 @@ Miscellaneous Additional functions and properties that might come in handy. +API Reference +~~~~~~~~~~~~~ + +.. grid:: 1 1 1 2 + :gutter: 1 + + .. grid-item-card:: EOmaps API reference + :link: api/reference + :link-type: doc + :shadow: none + + Detailed information on the API of EOmaps. + + Examples -------- From 7c03dcd9765a7ac2082f6bd8c3c883673312b334 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sat, 20 Jan 2024 23:51:45 +0100 Subject: [PATCH 112/240] update docs --- docs/index.rst | 31 +++++++++++++++++++------------ 1 file changed, 19 insertions(+), 12 deletions(-) diff --git a/docs/index.rst b/docs/index.rst index f2436a900..9ccfa0718 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -14,21 +14,35 @@ Here you can find detailed explanations on all the features and functionalities of EOmaps. -.. admonition:: Interested in contributing to EOmaps? - | Found a bug or got an idea for an interesting feature? - | Open an issue on `GitHub `_ or head over to the :doc:`contribute` to see how to setup EOmaps for development! +.. card:: Found a bug or got an idea for an interesting feature? + + .. grid:: 1 1 2 2 + :gutter: 1 + :margin: 0 + + .. grid-item-card:: :doc:`contribute` + :link: contribute + :link-type: doc + + Get all information you need to start contributing to EOmaps! + + .. grid-item-card:: GitHub + :link: https://github.com/raphaelquast/EOmaps/ + :link-type: url + + Open an issue or start a discussion on GitHub! Getting Started --------------- -To get started, have a look at the :doc:`api_basics` section to get to know -the basic concepts of EOmaps. +To get started, have a look at the :doc:`installation` instructions and the :doc:`api_basics` section to learn how to use EOmaps! In addition, there is also the :doc:`api_companion_widget` GUI that can be used to interactively edit/compare/overlay maps and explore the features and functionalities. + Data Visualization ------------------ @@ -36,7 +50,6 @@ Want to visualize some data? Have a look at the :doc:`api_data_visualization` se EOmaps provides a variety of plot-shapes so you can select a shape that suits the structure, size and spatial representativeness of your data: - .. grid:: 2 2 5 5 :gutter: 1 @@ -94,11 +107,8 @@ EOmaps provides a variety of plot-shapes so you can select a shape that suits th Map Features ------------ - EOmaps provides many useful tools to customize your maps. - - .. grid:: 1 1 1 2 :gutter: 1 @@ -164,7 +174,6 @@ Interactivity With a few lines of code, you can turn your maps into interactive data-analysis widgets! - .. grid:: 1 1 1 2 :gutter: 1 @@ -258,10 +267,8 @@ Examples Make sure to check out the :doc:`Examples ` for an overview of the capabilities (incl. source code)! - .. include:: example_galery.rst - .. toctree:: :hidden: :maxdepth: 1 From 0e949414dff5698bbb7c5f41d5d66b7d64bfa35e Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sun, 21 Jan 2024 00:05:48 +0100 Subject: [PATCH 113/240] update docs --- .../shape_imgs/contour_unfilled_filled.png | Bin 0 -> 112827 bytes docs/index.rst | 2 +- 2 files changed, 1 insertion(+), 1 deletion(-) create mode 100644 docs/_static/shape_imgs/contour_unfilled_filled.png diff --git a/docs/_static/shape_imgs/contour_unfilled_filled.png b/docs/_static/shape_imgs/contour_unfilled_filled.png new file mode 100644 index 0000000000000000000000000000000000000000..f771be94a406a5c536146597e6b68bb5e7a4f600 GIT binary patch literal 112827 zcmcG#bzD<_|NpO2f`o*?NM)lG$qlnJ+k=e@J)rvayXwe8!R|QV~@Ba&nU`+qN58Qkh zBC$PS^`FP4Wm`5^V*AhIbn_CDiSz&W*Qxl-CJz3`cXjiscXh|9|39b1^#AuM5yn7N zEZ(hWdmkqCu#Cq$L-XA&vY6TG;ZwfC&*L-yeer$&Fs2VB?EAL)TrT)w{SxMrueIrRAvOwc1Z+ve9`+9j{% z?(VL|Sm+5`KJNLSiyxAg(G@)OghgcxX9}<8`2Fr2M=Bjre10ngW@S|ndEqaWYfALZ z?dwyYwM3<`WcS*9WmF7LyJ5Ne6f-S2!+B@Eu5kkq)8os<@$_l$=0wr{m>k)1H}h4M zshE$=XwFkp=D-v4@>fl|K@%<*Gfmp7RYnW03MUY~`$Q; z-LYq>r}_6J^wBUR4iab3nEJ?w)D1+XzkeT|d$GoDvG~(1KR;il)oG!g#O(TPCNU!; zx+pi0E;~E>tO&&Bl@J<7?e*m_VkF8nFm0Cq`PQPLq|?6-N{a)`Y3RyqwdKhV0_n)# zznzA%#b2QKle*pd;Gi?6e-Ipo?fy+JF1kIlvBKYrJN~_rhJ3)|o@qwxViF#j@PqE2 z57oxIeHd2(N`k)!Tv)miGJg5eyk>51NMQ8!pS8g=@%+J|p`MyishHYYXd5cE#&&e& ziPjf6#CD+%3@;@7}#T`Ai^n|IaH0wHGf^ z$JWKyv)mIB6CbrVpiuHCXasr-%qT6!q#DX9^(Qg@kO5gujK3<-NjA4UnQV7g=;X_n zFMH$hfm8|#3RT7*5hngCl)2BWtqXjlX_HKScH6K$4?kn3%6hLLZO_O@fO&j$byy_b zx#P9vhm}nnQ#2Np+3Is0qe#1A_J`vOe{%`t01rkeYcC2*b(nYKx7DV8_&|NJp(Nc^ zYEafwSG1(jaUHPhmz$77OVl|Ni?3PSK5?4A%frpxS0r^*QnfC4BD_0ar#9(&CZS@6 z`xQ+5lS!U72;BG`Pj+{_DbKP{ObPoeI_zR@G!PaSM;cH$rfns@Xu0tXEtw*vg$;dD z*{VB9B8KgGy^yR!{kxH1A%|pRcEfM;y8`*C^!4dzwcR+2tJJ2qncE<%&(YM2qc#vM zJ+i7oOhDg|z;^@qg_5{|-R9dfx^!Yn65}GX_txoQtW)s;+m^nYV`F0IQk$OWT}1D) zOR;fLgYC;L`Lf;i^NMzF9(Jvq?YZ?{8Z&)CoW}Ko=Vf*4ZIhGw1}!pMxqoW>Pu=$0 z`lOQCG%z*(R|mN>*u#Ta%lMrM&Y0N^?A2m9xq6)Cu1T9tuXH@^YWf$6}`R_A5VQo%&7Ky?sPr3(#y*W zle_1BFf3d)H#Y|y-S93D*yTJs@iuFbmxb!-h%Brilk56};gUTw5>q^%Tg0Y}d%AoUw zr9&-VVu8fjTKi-%_g_Of=fSS=d45f<*Zdz|IyEWm{Qf;HE!rIB7ssE^H)2q1JLJNf z!)L`zM&Nsl{$%}?y3Oi>vZRCjZZ_rW1#dO$-;JEuj>Q~JMfvr>kgh&LP<@~@22(Ag?dNI-9(&aAeLz# z931qXuiYhLGe)LlL12_&SA98>e)3H-TL!s7SEo50e2(+bx{n_p2HbJ<{l4_rA2VG->V*Wg1naY0F zHFZ=`QNg4%$9#RF)K)7!QKUt4?vHI*no_$MTY}E-IyNk_%@bwoAqoo>FGsxFCsv09 z8Jxx`P8NzypT26W>i-AftEMSc+J7k3R$pHqjU~PlBp^Co(ex`LXG@kr(pSHgbp3x~ z2sw~-e3N1z0_2EqRdD4Kmjg5`_ zo+oN%XGv$jGM%IOL+utQcjVOeT>DEU_1YeDap~s<9M9#fO8K8uHTxdD*_Sd&{`Jd7 zXM}gC=byK1mbdtxJW;zG)Cxqq^RR7P$zkg&gD$ruaeOs2G|pO(YK`k0lys}F!hMBE zBMj%@l!S%RZ(mt&Ap-J(Ej+;bc4ea=I$W{uOdTik@HOo<8C%W49!YsgmXD6KD zCCoAm(HaspB{wMo10sZzBq;K;ug88b4c1+moT^Q6R}YfEyb(i76HiS;#n>-FLsY`P!Qe zoQl2sW3_+!T4@)k!`Q#r4yEyNM3~j?aDKa)sN@=!G1s@+FJCUK=CQJKcJor=xEa!6 zb?KmV8%An4($InaxS{GO*NTu_zV2{F9yxa7%*1pN7e9->d*z9P@+6z}AS)Xij6fuLmv^_EGaC<{icI$P_jJE%#ni)m&`_5MZM^m!iQL_!sxju}dL7xIrBS;kAUnIb!9y@xXd zWgB>ClLy0gfmCUc4XuQ^Fqxw*c-G zxm?U)zx0)>vdOX!dD*f0jP>#M+}U#;QBl#AmZ&yAZ1fA5d7pH7*+?@cxT>Q0+Q;Zc zw&zr6KGyK&XS$5+cXe14{*L*WKq(CaEA`WqLOcKdm(FbksmBqzL9v&bSt9wV$BahA zH2d<}zTh27hD*xf4Kc>lYBEM=k*hzc9gzVX{1eJZ2s~1iZl6dAMXtMgKs8A7812jp zR0~N$j0Gih=Xf~|T^wXgChP&)kBguyF4~NI9=BDH0ttq(_%QMI<>}<$yX8uqo5T22 zy*AsFY0Yn+m9(VH2b}&)je&ZDkGOpvX?*<~rSMC)ATiHwrekRWh)b>@o#xJxbqJ@q ze^GuXtrOodJ-lA?hjWZa(8-qB_2XkgC%@p1rqWVXo}I5QyE0)qOs{s8BT~O`hKo&# z@=?ph9AL^Sr=?3uGi2Dm6c5)nG;9@&lRNq$0_+H-ejC=UyU=BXO^e8NP zfkuJCWUG{*s~K~(``W~F+JG$VjL3=xbUr5A?>zgmHsRYi=d^)sTA+(O8>Qepj<(r> zk_}1t{Je1h2?rO~;V4$@=F+uD2x{@4w*(3?atX*=xGpY8p#i@ZQG4;B}bd8DS|7^s!`8PpM>o%SS$90k1K! z4wfW%2Qs4)(J9~R z9bb;FZ=R|p#!x*4%BUl=vz$OXX)sQ3o}b5$Kfq)e2NBFRxwA{1bdn)jTIknv{3-?% z^L9~w7YC!#JXiRaaa)xgrWcDo&qhD+1n$Q)0-w+}HRT?mu@3WJ7hf93M&?{!?Os!p z2UT`lHH*A(bab5kWF0dA&Ew$uL^6^kirkgtHLav+`0iU4xlt5Z7Ib~Sv?4LarwdsE zk}5mq%ewUSyVgHno}3l^!xMD+b>)@b8k5Yr#EDo>M(1>Lr|fz#%LpluT-)QX@U0cb z4wBzSYNs0>UZBo2&UF}zd=+)PJWQB;Hy%+@QTC^a zW9=sFcRz(5&M7@H9uHH_t#B5GK~0q3{r3@}ETTLe7jCX58{c#nPQRL6v3!r2lH{P$ z?+5DC4x*N8vY?aD$O_adszVE_{pFT~+gfB~q~Px&d@32$pyVqd1z6IhCYE8oa22_w zVPp?;q%J##P98H1d3T(fxH9K&Y4)piWFm4nF@^>Pllj#-fOcP=WD!EL@k{j8 z9cGWjNUx4@2vff@*|8ycrMpN@#j>(&Hm>R@tL@QE-LgCYK^6eDMSt4E?v%WUcM`k| z>FkMk5^}UM%(4SHWk(fW_B3D7t*_ryC~`S5KUnpf zN9^j~8|IS1%-OgJNEyavF5D#K!cjuSq3WYZU{2LUh)71Hul-wrg~<}0ne{;WbWrQi z`%EtGj+^rMLl&8l{IA?C#6dvG-zy{l+3KGT#I`zyUGSUP?#52oLZtE7ou8e>fe znfYgSuis}$)-un*`kr~axqWi^3^Ww(7U!J=%v47YKaAxGU7D;cM=(=YcH(}a0@WAX zF0jx$FZgp))hj=x#mR*JQ0E*^kXxUIie=AtRO% zvmt!PF&-qFSo-EtZ~zG<2(wL#{Lyi~xErRZQKbnM?ZIqq9eq4`)(10(gGSWodJ9Nt z$lt;#`doF{*;DFmxS|S2bYBX<+wG#(B?m;L<;GtX*pY=~%|ZDklU)34XxXM|vG**h zu=Y4~dwht`urm9hX3ThZGp4+ZDbk$m(@jjLtbQ{Jq)K8M07B@rYizuFAiuY9MsPnp78M3D0` z2`w#a4!4S>O3ArTx+>YsJ)YxWi4sGf=GzHa>c8uaey}q2S)^mRqSFV)U;s-Nf0aT6 zVqa!h9-myclql+u(DpO?rhXrRMv3DNHID^G3dHd$IBY`WORC~P;1M~SFO5D#Y z8fp)D$2-=3qA?ZqlkKCQZdCv64>rEYRggu}hCaVFTrblSd_b9|aP;zxw^MZU6i9=RNy36t`@FqYPVQ+xS` z=T}IZ`rJnn%Azb9p{I zgKypcO$WE#XrLc?R;tuF)^u-Lln9a`#_%+STi#x7Qj;^Fo7SLci~fs@GICLI@>X4J zFunlH@}GoGrpJ%pWB3Z{?uVAt;P1B*jF%%1FFj1`JftbC)Ct7IIir_D?s4DWqN(3C}N4BR(>^U)(SLN@LZ>{)F_Hb~BJJenfPuv>)cgvPdzNIa5L%{h7$Us?{pJtw5CsV~aY` zJ$qA?2K7V_8Yz=e(hc(|zQ2n;$>YZ)=uPUQ^uzL>^*f_r35{-zk+;#MkCaF+x!vB- zneRhCDU&%yKSvU<#A+vf_IP;6E56%$&?81zsb`g%pRL3)b9jyj80aPP%}baSVvO0( zRKd-N3(rzGZMvnS@G(4EOJHH2mk+_e15Y$7 zWp?hk^csy6EO@QGh#3Fs0wb(r?DomiF)ode3vZ7(Y`Kd*;;ZGCD|kh`;E?O*+J!CLFD>#_J4&4gE5s(@rzL(7FkJB@L!2+uwC~|n zYsML>jv}Ev$l>vTf3jwzfr6x`4J?8O51T3ZsQcyq6gk?9fBpfeifT}!V=j_fkk-kM z&It%IFhZE;R5xY3CGmS|as3rf(*6lS1{K2>0k2^%Z4vg;)fGT>Wp3gL1JMDY5}(B0 zGvOedC33)ChB1JGu5et$cOVIwfPPtAqe)8YW`iqcJut3>m_n_~jA&!3lHDVy-QZ(z z*EOrW0G8NeVmvfAKT{v%nR-wS3WZxxP+%b>jH7xg$WTvpro~zA(RwJZ{54E*d?4`; z0BRz4@BV7&xculsnp7<_Lc59`k9-`}Mi6h;mwCS1VTO84-!I#*7&5!2pTDJ;p#iNi zs~yA1Wzj7`%Fd*PBov(3;1#uzEs*g4lblOMCgk=|r<4@*+JnR{{jS8` zXB-5#j=VsWi(VV5SPVUoUu&Pi$;X?)O4}W*bOav}HxU=}R9iEs!d;sa<#xMWl^|JE)P4B9TvjN%A=<+ft z-tkGJHx95`?b@CLCabL6e7g!DS#$$x3Wx<*<^XSS`A4THH7jFM#o57ul8n#|U)z^U z6qlo!T}0yu7&xAHN^%^09wEnb&7Ng0T;n9Ufy|=(Qs;A{(HvYEjLwip zIAJU-8@m%Y;ZVno#(_cgpKDo+Tx&n_2V~rml0w53Uva*HGqhTbC0N33Chy@Dj3w>M zB|5Lw=1&qfwA*#ry?BiR&r zv_yfJ(&mEIA*eY{j@1X4K|8!_by{@_0m}jTp($e*hN zeK`5K#Nn8nZ&a>Hi`S8VPTW%lfYj8@+MXS5zEM(&FrEMUd$GkJc@T1Z+RGD|4|HF} z#T%#e0C|iwomaE9EfVuP-p&aK2_j$=ct7Dx%iXsGz<CNoKW z4WPhYCwZVN|6M%i=4B!BoDU$j1LH6A3 z)0WO1?u1OIW|i&ajEu*>2@>t>?8asg;Js#@Hq;r2c*=4$E$D0_7l2EMHty~w0`k74 zyA|FZL3|ZEfOx>!289AZZ!-KDcjJ#c`*R=xo8qTWpZacomS4!}V#K;ExI=d~0C|l3 zeC$bg7}7iKub`9`iCZ|O(?fnULv%m~ZQ^OsC^qyrbK%GwMR`sE>>~ZOU2M2{nk$i@ zt8s|Z1T7nRl+a^~+A+8}-@InOFre}nY^iVT-so}5vsLDyk%GbpiNF$72 zz2Z8)MyIx;c9+-3m6#uN49=#qjJ*|lIqIdOljytmLndIiUEAups;cT}`=KZhSZjV2 zq?%&h@tk;%@#($e0`p%345tK;h%B-LYsd}M?kP01ovg&1v7cFNQ-1k{vU?T%MesP^ zU14T;w$OL)rWamn;n|x0xE1wEk4j;9bd;vUyQ*XEy}$L|nGpUC8n>YAV~fh4RM5Wf+>4~PW2bMYUHYHT)l!y;H@ z)YR1cq~vD!!C<6T8{+4uuiO*TfPM-F^m<nZw9{^B59=^>Nynho*q;C6K?F zoRb$&wufff;4QXz^N92POW;nsQKPzh$o^Zo?zxp@bpmYXN7I8*_VV%k#FX^^t$z!s z19Z)Nh3vm|a+r#oTxi<11AzD~x_C1nk>+W$U4Tli@~r)G$2lgkB^SWRzJnXGzTqAc z*C+kbhe_3V!-mQ=;=k6{?{$X+-qZLld$VdS#3z+EwU_7#m9Z&TLc=x##3UKD5hKet zt#(`3jm*u)2J9L*>&;oP2?3Qx8t&>)x~(6mSL9r*@ZmC^EOVIpPk=E+HlT?3uYs9m3=AFw0!#x_@V_nvb;REh zd-(Xtll|Q53nlrefI}qnl$ug5(Es0yAY<+u7G5e(g)?$|%xc{4qvr!~bT!k!m-kP4 zosr?2UjYQhnbn^E0f9i=#)9r?`-<*oE?wX+E-qSR|Jxq`Q&GQ}PQo6ut3Nb8ZKki> zhXn_Qh9=e0m&fMjI8Bq2lY5_ZS-P3mt)R| zr4M(FD|U8vWQn-IV7b{uU=cI?or>U|(wlG)b%gD>zFZMZ0}KX7w2HM%amtF;dU}-Y zK+|gh$k56f8V|;EftX~Z3M8cq1K>wz;A2c#DYW&^2RRxG$ z0lQ<9Gc&6l*XJF4o*4baQuV&Iora~jY;o^sEY7uJEp7i>|6ez0dK8QMp?_i)QUuMe zxe;km#uH6!p%L}W0f#!S!`(8umy5fB>=l$M#0i#}@cQZ>Zv|=vN%oKG9A;JuGo2`A z40Ndc0ojK7XLa!?z6awHwjCSg;aVyO34JzRKRHgXe4QkvBysX1bmjfcpi+=e>%>1T zM>5e9i#z7^R$ceqqk_l?Bnb-(uLfPM2Oa9d%oXnddrUo~D(E`UJda{MH>lkwR`Bo= z`sE^&`QlcK*A4|KlkeSRaH1kgMJwq$J<-(ERM+M)lKJv(kyb7>UGxoC-z-S&*?qTD zH*+X??smAL1Be-S$t3pv;pHHVMnEDKGXx#>ZVKT~owABjAf!!=(c5H!u`wrTR`fm! z5VdIgQJp7eTb0QA`sW+2=%zwPx12=x(VuRcxf|iSSwP}7zL*KROl{PJ9y}72oT)V9 zVQ9S(gpVXCnN{c70dTbc&3%+`=Y^Y9A4PnBs1_jNHv)k^+&#@hdox3C@q4`^efx1; zrTN?^YlJ3j^`_ga1hoAemp%bt0jaZeiD9b4Jtr;IAd4QxeHM(M$kBk`?p^zr0OcnK zM8li-#6QsoH02owJb5I$~PA5t~=&DHWdU)To&9|-{`y+4Q zmK$k1pm20W$!}7>Y;bzem%Fgj*M|LmFL$(PcPHYDbIXnp-y9L>wwCl|?a5m;wR-^K z3Fuej) zY!+c*no;TNR+n15gIH&OIgvp7!?T-~JrYq69(NA3o6ta@bg;nwUOf9Abx+j21Bj*3 z4$4PyfzqCz?LO=o%FG-A;#?VT!u4K+bfo58Pt}cGZOBFvtD4K&0Qrr5<`R>8TU3lQ z8;*EAnEuy!6on6LJ*Jy=mgq5Ie+nGnWVVE+;S-G80R9fcb` zKGm+Piu-4)%-4qUgP?KOLt|ZC7TvD^Y`lJvLPG6^o46XuvdTf1oaOT5dHMZKF(17UnhlIC6vT|#s72K0*gc(wr<(4ETS)Xe|I6Z-- zzLB3Z7`$<&d#K2j$6*tFf^t6xt6$5YteaA2JD~h23@xlY4QX|4-}I@f3IBD#3b7%cAY~U1jn`KN?J{18v6M0BjRmixpAGU*_M`!Ot24$5EC&t z1rBq8bd`sN1`~UBo2zk7TH%JjchdP=dq9g1D{>&Rhu8*ijorvO4QFyC;`zG1 z2onoDP=S?Ie+&t|P~;3?{9s)>6{L>7%gVB8MYl6z7jcutk~ym4#I}m*;RKAHXrIg3 zekmB>hA3or%*Ef2XO`w>IEKz%PwHt!{poy03D^;)3|9P9qJt}Vvgu33Q<~&D$vb5p z^i*5+ht*uQpZ}&@PsFg9kTq+f_5%S2P0WulWm?}Y98pOSEQ;h`*@l?B>rGwsjL$Q& zJ@Ma-avP1>(G-$toT|x)xeZBv+6dLg0l5(L2;o^vFs&xIdmI$4OxhwJ#t;mn27_d8 zE**YAo(8i(rIQ`D$k~gs(os3eWWV<@m)A=AZC8BYz%>a1vlN^sOuXm)ubIVPl~Ky( zuj3F)WvD*P+|1CG1V>12YM{kT7CNm46GF3C90<|2>`H9eFNk>a+|L247HlX5f#onx z&Pq>xqt7OuZVn1CP|UFyNCI2ws@w=90E`DkpU;C{CS2? zT0lCElc~rs=#u9V)8xLslG<@m(2gA-k59=S4?zbI3ps!1QVbz5mMw^mk8r2h0(}YP z8xh=WhKW^ns-bEHz{a!xHA$3fvuak1p3OF$Mtps4bJnSwez%v-zhmV+coc5Y*X-)G z<+;m>B~!VoYAUNr$5X!nuMroOvtqvD;;U$5#6;U~?{O)3U}#c zSPw;$1bt4HBLER1j?)cF1#N=J;A|)!@&chf^lxaVolk?wu~I2ofyp`DxRP$mB|K6` zen5H3BV(a|GXb}TLfO5Ry*GID|tVHKpKt5G1pQqzE1QVqt&ej2kb1@{2+$-n{ z<7YvdC`K<&+pZc$xaEZM&6`LFzPTxGZ8&JXbR}|i%8^q1a9c*tPd`IyEa2hjU&wHV z^sq;ds7Mqq3+}4Bg(%{XxY3WGc>*@o0=Ci5IEHf>`VQ&6wr2rdxOdE$9iLL=3-8bv zKo+|pcd1BJvP4{ETVX6f&0~i1`0?Yzx^`_}5m9zzIMY0E?%)OJ9ThT9x3_V)us{ox za+C5dD~m@g+(E@+Cp5g4j}ZL@V#!67az!yXt`gUwt!P#IRhjSGnfjS7?v#nD1|4bN zhG^8tzmjFA7$)DG@#qR(7$;T`N^iv5spirwj;E0zkXp;R*+84vTubYlfCL@e~px$Wrr@+-E092fg5hz%2A2A;s|KMX_sy2K4qL4d#SK0c4A7(w)xhaW$> zjA*)9&?(xYNGWfkBOD*7m*}Q-$TSc@v=FFB{tdC7N(i8)<$NPzkBlvc6j$6B7+Bt< z+ej7-CfK=T;14@DF5@SDVtUno2h3j59^OpaXYs1R#dixfE!OF~_3tovMnMrs84{I6?1k~g1iyay64odrnPo43_~l9E z2%Grf1tv63Cy z5yMh7DDSiN#1Z#KFKfH_#C`SVmwyAOa#h^f$v>WxkJ#R@EW|Q|S~ZNLwAM}p*tihk zY_pFxuw?k?WmKmx964>;=l>X& zSSh*;UZ|eAh#kHhKbyUNqD?R={m`zqy0OtvqLGu1CksXq%aNpg4wR8$uB!I;p&`m- zzGxPf?nwA#qH1LUh)ZQR0xe{hk`A@wP>okK7|fR!Af~&sfV=r97LUVX1u!I1W#2;c zBZ_64rPlmW4hl1H++7t93H_9Z!y+ocaJ*Z(_$AzHyJ4J&jFpn}{3pxj@A$0T=+f~5 z$ruVyiGBlTTO{UQHajLE(Gr@q>|86{UGlHgAGXgxJhE~ZqP^tI(L8apf~4;Vvay%O ziOs#yPc5#LF;atWQXUc90cqaHIRX#Zs~m$B$S0auS~A|sf^{bz?qP{vI7?PJDt>zT zzX@dJyWj4E%A2}~UGY*@CXR`s<7$Pbg98^m=u)8Lp{h~{V%}}u;tm+SYP~w!Vqr;^ zpNNT$_C+ieYUReo1C5*owL&*1R5zhJ=`chJ@O>g{YxOUj_=Pyyq7=(W80EX}|6#h9 z0FH$RMe`R>`HC%3;i;`>A-FlMV{{$t3VU8}U^@U!Uba7y!PV-=_`CeAU{8=?_6+H}Z|FT8!?Q?QjO`mtv$MsZOah)$lWNwqVb}f6yN`=*VG^TYsw#ihu2^ zU9Fpa<(bUzD+P}_+HjihQ&Y#;RAuy_f28ntAGuZvptsvqv1I;obhl^BxJXFuHVcq; zKs&)byy_u8j(n$p9ygId&jip-O~tC;T^`N!o{kaQO#!_^0l))p3gPH8Pr#Q2aLAjq zZ`gYA=j)1*b+zGSMFlqi++ZZ{fVv;U8qfqJzTWfNzZ|h7S9wY8IJJBEe(w2HWne+- z8Ne6`PXogC8~)`VUBBVU=l=gPzeoVI2k|Nia^qR_wde6@1w4{b80RqXw zT7EnBGY;8dD|P@Jzfq8He?##uvP9h#1=H16YL??pf#&MP5CW)0{SJ_#QR_1L5Z%r1` z##TnpCnhF(o9EtAlmD~K!Vx=4oBMTOK-*F1r50$;qH{b=zLkYPN-l!*1`J9r$<2vU z>DZQc03E92?oFq0t$zqtlxNd<@uJ8Sa7Y8D-Xs9VRy@eIMZyudp{`=t80%D%>6&;1 z$BHp1_k4b)UFgSdv|wn|00dwH6*;R#;eo=Jq{e3TZ`02JOa1e5GB%b84q$ zq7kC4;+i-yJ|>UJYXAuW_far??h3ybe*9Qrp4+hMnS5G1U~xe(kx`>XgZ4TJ6!iJ+ z&2-HWb#(?CN$95h4kceqJ`m#TWt)-EL5RW`z{Fzi>O}ujh;?c|wITnh?#Mx-{JJd-H4-c*2uK+fAAmJ@jon$>7*nCIzH*XR&cTnE7*kmFJGrE zq{$%kzPXu#x|?_Pc1GRBoNexd`IQ+{zmKM3Qu#|NXJPm#Z)LG0l#(*77zRc7g%_;h z=O=yx;fMmJfk36jV@+!VxvBMTCUr<8?B)(4xV53u4Lu|5ZFIA0KbqD{gK{dBv$H%N z5-}{v`!pWGEu8H&c&$imB%~l?4h#Aqll!J~`3=b0Ho!vszJhMGMKfWN*WH)#?|v9u z_Va_a`i3MPL~l>mTQvp{&9^|Hb!x><$DKAGTz`1(O;R4K!Ghh17%g$7mtUzS>(Ani&{B18O9|N>{OvZBhf0l8 zSS@7|iIPQZFGr8YboN#>jn4aKXDHcx*=)ZU(`%3aIy|aP9=CAHhr_K1K`O@Qx2J?x zrTE<(ktGwb&HCa0)T zM&hUC7qRot(0JVbw{(8Z={tT1mn_JgnWqK`Zy7O7TWWemjLzE!pJ_TD4fo_i%A)ln zLNJAfiVLK1qTxi;50aHKSu!=wOnSgq%qkL6PfV9$a)RT7MS|i8!#AO?yMWW}j2qgk zVz^O|0GJlkmocoI@2Sopx`6q7PrTKodGIJfgtR1s+JNCj9%ZuKmM#Ig4v2`Etw4;= zI*AJ*7a^DJ1<#B-8=I}5f!{X$wy97vL7GHpvI3MM$=txH=W=VE7nH_Yo z@KvOG{4}~aZm_FKM7LJ#eQ|bLn9=x)o5b+12OGYNybZ&CDYZn))Ao|J>K+?>Rd*{c z?nhcS#$3gdLJT;-h;jngB7_xvkW;! z_oC=20S%7f=m0Se(4dy{&eU(n`Urwz;-9!-1Q(ty-GIG7JzPL_BGo!iLA)qz@s1VS z*RH)$&HXou>diK21__Rn^|(PpwJwC zUN8{tP3pV1M*Tn|oBHGJBye;_J|f#SK2k(P2V70*o|Rygtevz)|A8`@V~9V$I{Qzp z^~Y}esre@b@8j{MKCW)`q-<+`tL}?XVD(VHYHs$34k@F~tQFhdtSrghhvB%rhAgAX(A&k1)=aI<3rI=!fvC-(`0d_<^?@^Y&V8exflw#1xuEK5 zY=+qIe4W*TD^zr0yZg$m!RCD8x&ML_q)=7am+s3%|#KJjFQMTvDeA1Fah#BPO+` z#jCbzP0FxBtyL2&V)<*ukRo;s%+FnIY@6_STQnO7(vF}8@g_!V>&Mr5Gmsw+0}w}+ zUjv%tUp+GCZdHZv-zcaqu{`-lM27K5-b>l2?kdQeR(gQsE0qXWN+!h?K{a8#b0R{h zmOINqHju6WMb~fMC9v?*+@6GA-G5V%$uc%b(fz4OvrB??)Yc~7vZK?&SjQ4 zB3SQhH*kX0fE&V+V5?LBaQcgN^Mdh;J_uaWa#;J;68`K#MKBh?#JEu2RAiw8p$>Js z>^rT&50TtFu}n6>{mZ=?Uk&o50SQYnP^_RfJt4Euvlj+3qKH28BHU%FMszD6G2^vb zZa%7Z+g0W}fe(f?BWB|sOm@zDhRoY}EU6ebTpb`*rVS{ZOn-NlUuY(prfqJ7nQRp& znwBeUPS1Bx7R+U*y`PD~OU~Zzv7)tkB}WQ-;hp^a=d6oGQkyd6DMQ7dWh!f;9^&}1 z5H`t?6?HPNXj?e5+wbx$DHkd!NryW%L49|qda)z7nN8=AKgKm`)ArEZK|*qR5#$QC z=$wng3#=T75HgJ3sWb0RtUmHfAJaY_MC)SMH}T|9pE{9KBt{Md(9b{O2T*4MXieG7 z!SFJgCx(LEs5$S%Esi4+dhsEb^S8b#wPTVKka?UsO1k?jO$ZG2r+1<~$>x0mKrCe+ z;8=WNE^G4%C8>Tv+0Ia`{Ozs=i`e*a{z@(+3{j!}DM;u`+fUVw;;EIlct)HQHos2m zOk|NiO(&u5Bu0l{e(5LC!1yt|y5Hh{*?`@n=o(B%_T0V#yAl5?6 z!y!)(j<2fiC&tPLUT{ZFg$cGLO#I&0Xd6v8!izq>kds$oK@Yb2a96F@O8mC+y`bby zjMZEZqrTn+JK85%oA*iKrSm_xuSW~KjG$4MB~RCLV_idebbp+4WDDn#d6SEL7q3&> z{AL{Um@yRMG38!&e0Ii^>e5U>)syrlH8GXjd>)cJ{e83XeEwtCJDyKoRvsQYOBvfb zzC|4xs>vZwx!?OjqAnthbpbl#<%AF`X0Aua$0q&}YMf{9};cu2M z3_D)U{$L`%Hy1l0!m>d4}X_&sRE2dLgE}v##~|#nv(g!lfrbqr^4E~{2#`;qZOAn-oy2;;fv#PtI=#b`KZ^< zO<|OEOw=N_D}Ag78Uq@x=8KP#(;8uKmKbIG`-^KRGO~o;N~}!4%M)9&(L?15M#gIB z4Bb>Uip02x$D3(g4R~|~W}>m>pF112cG!0~#22ow-dpJ`8x&MAa<Q5MUPq)uLh ztR3X7`0vgZB`yoeR|?c4Tuu^|I0oc<Ex{1S^k{_hZobLT` z0&zCiZ!tO)8yrp>xs~QR-g&OB=hDfLyrDk6mBhLKF*QY1Q6NXEV=-n1>+7N{Z+`4p z34PpFmBw~&Pu$S{_&|>&bc&gUDkXboL31$Ccb$&8a4nrhF%-pqDxT!dHgUSKwK1#_ z>)D?Q;Ph?4wUQ6q4rFry+!&O2&Y%4F3HXxr%&Nvou>5T3qoT8{JM3V}vm(vR=_kKHvN&pN5SQgqBJ^=J=GPiy^V0Iq|FSFY8t! zH<4HhySMIP{zj9%aNTR=c&d%m9PxEH{vnW|4{YA`ex7?*qanLuYpS!NrR#b`p~t|8 zk1BJDm|N>Mi1DAV>8?x!5zmc6?R*x|SH`}FYlu&R6N@?;6g|9P!lUynZZv;?9<(26 zeV{`&J*2&SUtn1Y<}qcqXxX)zsc!MQwMnn{<@tuYT%Bdf$H((nW7n!LaqJCg@`@G_ zPnwrhnlWDsOIbcjfQ?{AY<|h-?})n(!}Y!@(Kd`emi@6qjo!TL-#D=0@p62YJHOpP z!CLQPLjP%o$vP3=7p8$j2?cpcHZiE)V)DyA4+9&DgmNoFlASAG1)WEzpUrPoT^2}s z2a0OP2LwI29_+l2OH(Y1n&uWa{XR7_r#wC@%r!AI#Bs!_LX9j`=$hs~lL?edVUbkH ze3BIiQpnAfj%n|x+*b)Di)Ca(&FYgI4D+hL1ycVWPzY=TvkfBzD$N=o+rl4+)MZ7{ zQM@XIW?jYIXJ)WrXS4ONaE+pz;r>m1#f|RhdJz_AakoO`@T7E-;JTAgC zJr=0$cd^igvJ4k?R2hbRU1hc>B^WL~nU}Ke@oeIFlVXe;m9e1F24fojBgXpTH|3E= z|MAds!7l^qcutjJ^VIyUe%T-VzJj&7Tt?LAJA#T5e+L+;XnI)yUY)~7RTI12;qH_R z6|QgM(;JT8?QO6T_B(Kr2%7e*je-=;y&m9gYQAb3h$$%0M9srfynO4Af~IMe_gDro zou4?bI#0(3{;^;qMU}M|&&E>PUV0`$Xp2X5&p#|v990k6_o}r#b@jBM`2U#t%BU#U zw(YHmNJ~pAF@%ILL#Oo6odQw=Lw6(6-AFe>cO%^)-6ajurF4F```K%~-w)Q}=RH@R z=TR2~KK{PBRhu-AxckWLq&|1bO429@$>Yb7tE@%ydRkJ?Xxwyu&}=!W(;d&7Nj18N zAzRgH54-waex<9ni)PI9?LhE_$9!pt1HT#3QL+aM^ z48K%qfe(ipZ6i^3M$sNrlkqzTd2Yvf&Vpn5j7w{C`I`OpO^O9L&0zkOS0!C{M-H?sTAnvCab5LRM$Ku_|3~=fXS=SS(r-C1c&ym5Ph=4){*58w9jgCH45+X=W_isR) zg-I!N=p)02_@8Y8Fy%&tA2f>{@bef9Zd9?YHOs}q9V1c5mjSOb57jCkqtP8|Sy{6h z(=-NjQm@(S8&QdAq1jPRq$z8>$m8rsbc$6B{x&FX?nQhbSNwvbfZ&%FpclqKnN(v{}qJr;!kjc<%ANYQUokf#}xvHUO{FLSOc_8P* z07F#qjp+-mF4p#YLA5SJh1RM87-Ft8WaZTcS9_g&&w`#~@-s1Aip*a46_P8u%QuON zi#Gc^7cgR|3b99K)MdAg1UbOQKO@%>9C6iYRvoW>&eatW#d&F*2F3taS4zNK0fGGA zw1;jnK+^m0_n&a`zUq+yU|^%5!IXEZP>&9?C=@F@kB1cJBVAni>DwGaE`{pnLj}pv znG)Es^W0zwq=q?0ig=bN|0Yf-;)WvP!}Ea;K8k!mZTF%EDqcMD9)rH5-a6JtPSVTp zcYt+N=#u&%QfQWn`{ib;nU!(czS|xyOUkBDe!hH=Gxk3q)22GkcbgZjj0y4=4K|ZE zo+qyqOPszkRQJIr;0vB3?{RWrhY3Ned!J;5A9MomR`?)Njnk&2`WMi^#a3b^Vn5q z3KpWb#?f_GrGD&0JUq7jkYaCE>>TE|SDx(QH9omng7Cb%n(EQK&>P`AtkW%e&~H|q z__8E?r1P<6Dzy7s+eawwavQI^B%l+j@}s*mkidy*Je#5s!4EOn{U@e=5-}}bnk;X! zP7zt0M1DMZ13LTX`%0FuT26`4Z6gK+ONQ!>kF)8q>nrPz=pj3 zw?P~IAbYYjXm_wB1g+>-V5GvG{zFoFIP#^Z5xa(&c0T$asG6>(Sla?qhYk zi0=rMfkXy2rvOKYLDGaDHG4N$$x@=}%B4wGM1AX8i`86v_i^PQ=?z*uNy>h-;>2s- zsh}-6!bC+0;ayXx;k)eCrTlbiR6Ye)BbJFCSx410@K88QV(2}_$Yn8dX!X070}qNi z@f;q*7&RL+mJE3H---;V(>FiT-%vK$w0MYR6R2{zRb}L0mwg57@h z>3<&-)P8)N2smte~s%zefxnW2)P015m8r(jsbTOz`#TYSvAM^7I{zx!q zZZ)(k8?2YTr<%r0Ef7K$r)U3Uac8SzkW}@Y4;Vr_tG{l5zddgi0QaB(7#DbWw_;%YAzbd>CC%@-V|*8(B!b<7gvU+bXtopXuTZ-8A!`#O$90{u9yWZi+}}?fMI=! zUuoLMI+Q@;{#V=#$fJ5iLuP#x$}-wwT2 z;sXCBz&CM&{E1!UTVBki1bRc?DU-nNNul4dz*iyxU)jw`4fw@@1v+f|uV36WsS1OS zT@r^=8U^N%j9IYXvgoIVi>>n1EjdHc7HhkeOhC|3jzAetDo1-ZVCK9SZCw!Lz-<(t zbAn-{+bPp5Yj!}w+MXFg7{l56RU!+n4lTxx;bmo~SVovtw7&cWRCHaH)PCR28PLH} z(*nPig}izY zS=^XSVsz#^qmNbXSZ;NUv!yfdLp^1yCU$NYErW^==fTgFk`X2H3tU45ihQ6YrM_ek z>1Covz-*b81(u4#yDcJf9o6``yWH=C6tqh57Ct`5sRHmac4sNaQe-G+8E1C`o@mD~gUF4vB_syeaVPdj3 zG?(A`DlaQCaoqGL6rU+GKiF*dGj+X?AXBno9|8JElFob{al1TQG7<5pmuVE@c2xdv z;u*}0dzo-u{#As(uPiDLL;B`;2=onSF18yyeL#9drzqD$7YM^;rzWBF-uLXKU{ zxIf@ne#$>;XPAB6xJvy?viE!SBFf=-DZVk#M=D=#IBfljs;z?e#PS@@~cnZH9K`J zJR5E0iSps~Y;q~d>$^Qa_BtR(9=`~ZZKu%e4P!B7a3!p*4Cnx6#}5!8ZBk^uv08Fe z?TXWpH8jK`F+u;OxZUHlr6g^oQ5bS9L7X`jlzYc%w0RI^Fr=f9o1HJ>9TY-K!)E(P zMqIr`8H0tghoZ)D;S{NY=&MTU!~`&6o~qB)cvBAPB9rU4d4|UCm}=06yP(peGJmo1 z5F+(B1#YUYv(aY_NvGEQqD}iO6>=D-D*Ik~DGFwv!5DkRt1Tj(5ktC-77-dc{7sye zpKbjqC)FyMlh^zFQYN0h&0gJe~lHS%`5GXv&L3jUD0V6%+`!w z2yrmwjfs2=S|L9-f;Fj9_;&eA_Qdh8zLR zHUd7B-tL$yk5>f-#dow#3J))^J-5;LuZ3K4n(mX@h`^r+6X+X_GhpGUbnl3DA0m_{ z@pGXy&KU@tuN|Y|2x50M=^ASB$G{vLx(U2}g?&Zdo0gnceE(7#;aMR}qJq9}`hki&D~mxtvldS_o1Ug&uoYRsQ^VV|D+!45qI(7hkT z86O{-A@Me2{jCid9Vcy0=!}t+<5#diq=;y`C11%16C5vSji*rkV7MgLpsOd?wk3bg z;CrJO4)s_(r;&Q#qP20Y%hK7U&v>LFJFkr{Lnr^oC0c+J0{_1DcWgr|v7INDM{URR z=bjQCD?P){rbjiM$}uF$-wBjXy~^RPkwNq)z??P`2=oy1eN!iB2nUk#XU-TF(i<(?P-wN}M{x5t5u5^z&(P4G+nv97225)>kiM9vSSVG+Yj-rM zhs4AT?b=X&vh=`1mZmKTNRv7tuL;p&94wT2Ay2mGb7b>?d5}5U^}Cm|bvkN>aTAYH zwp-sj#^3w?+=%KTjhKQItJx0m!(YCEe3^oDw4S%}I2u{OGXIKSTL5)gi^q934Cx!J zrFMvsECZ6uvwo??paVqTib@fZPz3TCI%4)|Koe zZWjq6>6%YwmUI)=UOP(0-7?;NbAlF<&g!m6dwnIbF_}{lqI`1)w8P^um3Oro!IeTa zBS9`$uFqkr7}zu49=0jirUZ!db*-Vhfj1E9#M+3Lz7o|Ma(^VHNEK_*L%PE1c?!_s zmn=zJXUi;r$}vd{AcRnWKRV8Txy!gWmDCQ;Mdb0N(+6epaLjVi#7IIYhUn+L`+Vju zU2U_v-jgZ3fcM}drcUULL?w(o4js(`LyL>&Tj9)tjyj=wxEWE)CS5BL3I{sFW^duk z$vWyk=m+=3nwA+}td>!I8`xbN%<10zy|{j2t=;r+b+ghqS7 zsqL+RRKv{KtUVhMkLr#H;97e%qSiA+@*P<=+XpaaA8lMq3L+&^Tb0 zO3S?Rq65uFOWj(P&}!oI&OO?G^D-rKb&T`fsZXtX48~+V;oK}@#^t0`Ih$5j6Y~@- zVOFqKI{PK4Fy@cy2A_Uuw2H;Y%WHSOYZw15-G8Xp$@lMJjRjO)*ayW5pZ@m1Z$Ng@ zs%S{0-GH*_C6JzH==Jn?LC-WybTF*h;~y%4p2DX#4Y?bi$V2PTV3Ik#QMK|3el1lG zHOqP>EiNJv8-9-gMYz}Uz$Y%J%pGNdu$`bGPX)Gt$kkGiWL z?sP`cYJP%!u6MF?)b%-aV3<+yLxEy%8yaf=*e&LwuPm}!gdaJw2AjZ`|F+7&Zus)6 z+Yr2hvmt$2%Sg4S&Yuw^9~-rY%25>Jw8i5+)`oriqSz0T@X3NY&ey@ibHgSMg9# zTKR>cQc+GFW#)J(jjogUrNLV$Rk5E=RI2;S4!?K07qofRmo6=M&R=~1=z=Z5N&--+ zp!)g}IWrnWblr%9WYfjK*Ei!wF-l8}1}AXrG(QXowXUMKw18Mj#mrW~3)aZF1%GEu zgUQ2|7Dr?!tHo6k19F7qmj|~`?J&GHSDO^QNlNqTp^Cx|pc0J;8@1cbqn6~RD|%9M z`AT9U5INqqy}pv`n0EG@xIC^dQao2Z>UsJ;J`R8L*L`-i@_7kE>xF7O7tb}754x2k zkq#QdP$=Q{@vVeoYYk4mU;pW?%+p6`$WzAPhv93WAo*LCo<`#ZWZXGf84JbyiOn$G zf`oa2KIRBF?VFOQ0hlkqE3hOPN#Q0}ZpIV$7fU`}3EhV&Y&;~MbeRg0t-xs1^`^dZ za6O^@Nzg|me#q?wplAe-Y9l}H9A>t89siCgfE$8_~BE#iaE_^gnc3%DUuJ z%kF?f>5a2-B$Z`+q!T@Dw|_MWo^$%4+}vBIPMXwG;%Lb2JSpw>tfZWEAUHA4|I(WD zG68A(0*N$!OITY|Eb}0faB{mUYlwMsoS2d@@z!)l6~gDWgG#xtEmBU1Dhb}Vq<>7R*?0P0Mweru1q15DVes_OL!ttlH!?e)cQOm=l`kaXZVfB%e8`!KK zvtsQ?*;5p-uaIae0QwMid@s{jbz6yS_Cyr#Hq$teq_{gj#n%! z6dJ{GN&PD#LQb=3pK<=U4YOWr>SD6Z(Rw}H1(b=x%0y&{$GUNs&AdWjXdf6 z?lQCLGLD8y_X7Ssu)GP`hB8|0*O-|!uF}dCB=@@c`BE0ew_yvT^py=o}V-`tc<-oZf|3M?+v_lwFsP^jcRVB6 zJ%s4_U1e)1%{E8DB3~Y^&OxP%TpSn7w!C5~o{`y5T#x9V-qn#tpSPu+$Bx%N?0>x9 z^KOeAVr^Gs1zH6De`P8o1O9&JD62nrj<~45d%sRgQz)*~)n5iAIu7T}^41zeZD&5n zX3XyaO{VDHwvd*XKDUqgqqA`_hscDUOsVnatXRuWp4Y*_mq+%wHRVNmX zM6FYNi}Oz(B9}BQ>PzwOI&CM_3QSQj?TLtpx(t)&0r@#t>9gc7`YwsR`P}>&pE{JE z^rK228WcsE(v_*GqL?OMUE`%*M10IP+*1XI*4(>8{Ct$h^cS{8;pM*6YSetczuOGy zxE>5VaPKKv4^EKHXZ9}ggHL4Z)c^qqDIU8rmN^@%dzso<7oyhkYj3n?K z&0tj7;VLm&JTX-h6Aog`Sop|Qbuejt=1Pt+R{lJ*n(Jk@T--``Nwl=+-r)h8K^ruk z6D$et70K>Ysx;dsuwDKlP)Zv^DSVXb{8`J3n&NJb@~_Uc4-e3RU@wJl0#cVKb&UrX zZ;L)~DoaOtW~)9c@m-QJojsXkbO|$0WOt#u*sYO9ddfO8ya(V*MY= z@B8%B!jK6r1eqAb72U;Mn_4*!1p_Ln=8!&4q!NwAz04Lh$})rbh3C$|4tWW9Ho$t* z8izgnL#Cf6!q2|RSPo2vXNpOx(L$VdHf1#gDKtO*@L4&?B$0&Q_6XvqA#( zp9?3~ld^(~|Nqw_&#KYo%&6(R!Uf7(b`+An+eYZ|)<>^>%zr?v!jl~}Jp{rXb$E=6 z8uV@Jy(lt-E-kz){!&%I)%Ef(NjOhW&X-o`@OB2vm`+lVji!Ux>+5m{S zxmpBKb&orvJXtegUFScg_O{lu+G!0A?B4$}J93*+B8WJuB7GK-K-T~6C;vhFd07vl zJKaax6i434bggj6SJawo5h+|IKM_Jp05yM^mJTg6SF|ncD{v|`bUR8ugP@s`X-B@jMf9M+F3msQ){Bs;~g?1UI7mR*2H3`{}+fu;TGoI$KUjIaROn zaz8xzh@MnYCk-~|Z8qkxSRg5ZEufAesj*yO&WWfXg@(?4C!zVb_5=3Z-&wBuC>li0 zIZ`iG9jn4dBDKFr6Fw%Y=6uLQzOsu5mZ^cgnyx#q_%Zbdf0*&D(O3TkHBAoDPJ?&d zAHhzwruLEz{<$-PY2dg?fBgAc`;sEkg8d_^3wpX4q(n(@nisC#JX`hNc29UXm#y8N z!bRCc|90Ib)1J1o$!6nHq#p|bM~+{|i_K^&skrL3J?W3SHN=vm#f2xqnSKq&6a5Am zX@1i~57@c3j`ut8pDx?I*FQ}KixYw7CF3&yF3-crQUUJCm1?i}=`ox0{?`eG=dtA2 z+XmZEdId2)paDz^kKW31Ci0xheH_%8&j*)t=T}!RS7J2f}AIh%DmWhzG zKgDSK&7j<_0JK?)8Iw9*3m2G&3*4-lJ2Pl4vhln(Zpu<+~Xl$TT>!mfqY6 zML!+gWzq1QPqsB$?2q3M32k;9H^gL6@Yp*XiV!$*M{#%~UtKe0732=Rryj&T`bW0q z&9RLk2%x|Jo&`qOvucz{!nzj$e-3x|)vK&DNC`_D@in~HfC`Wq$Su~zFOm_{P>wf= zwAG`KD6Z4?b~(L<@YQwlVAhe>D9-Va7U-zwE~O^bV~z+4w$F#BsjBUk=FihF$##y$ zvD;748rUG{iUwYfI&|zEiMY)zP!!O%*1InDdic=1cfNOB+(99?8v482UjJ{i$$c_= zv3!&_C>>aEP<PmPd6738_!ltw2B!6~Q zL36LdqzR5@P@2D^>qITtBiBSsISq0vD(hV-LPqOepXRvq~3AedRE zc;~ek7#T_4PLAgrV~cb85ua32gZVANAl^W%##IIY`1H%&KUbPoOZPQo&vl$Nq$#+p zLz2Lq#HA%45-u>we-NY89qOE%R102|Z=b5JH{v8on+lk6XA-{HzvszDkq{^*Qd_R$ z-ahAJ9%?RD+B6To-Fs|h$P}rk)m;sZ?24rwxb2+#H|~J@zk!ATK2D5p^Qz1ROM#d{ zYH45<36BPU=aG6#r(#2pbc&Vz9JKv%B6JTVJG3_~d17QFmcPiMB6~-@{$hJ`gt-Q? z*`t(i)0^O|0m7;q>yS5P#B${~Bc?T#%Q3pl7vBGY-;{8{48nmgY(s~aK+B^#D_TJb z4Rc+*buVW3v`@x%{2W#dTuD-6+`65T?2bw9&q6uqm8oxxhtr;tMOmt-L`g1*$U(f{K$1J`Pg?dQIg?+R2Xu3kBbjPk&h3 zi(#xp%h3q7oVshq&*#-mT5jAeif z=H?ynZ$4Q&9xtP7$VD{v)o&Qi?~M8&!s<+y%C5V&Ej|cPt64^w@aj7Aw|B43GHhgX z>qsbZ)?&q@B})1(Z}@3}3i6+nBqw;6qGWK={b_mF)fKMHR=H!9IB*x6tTesHgX+u8 zD24!UtO#)LpH_}=a{~Ilp1z#gy9=g(?%1?M$+Zt$`zKfw4VRzFT}EFkC2ZA}9;HP% z&(R#ESJ~t?A)ISd87E-HxD`jz1pL3p$y=NkLUDE4>hZIBGNKHv1V$j&K6?sZE)QIn zmLs-??#DuH|0OkTfVMugQi=D66zE#j?dxvA`bQk;STR&S>qakih%le2ph*Ci>rO=_!-AiGC;?ye7*JRV zbJPiV99_#66jjlHN0rm^FsG*FEoy<;oBCMv%2=nZi!b?D2--KRb>I`LZY8ZoJ9 zbA%p~-wrC-6)KBZ7yFmuXSxb&%Id9;A4Y|5)^U=RpYKk{c6$#*ao!Ai*gk}_?&-w1 zU5BW9J~l_te^Lp)m&xzm`jEZtiWe#9@FKyHl;wJYw$fzrqLuEgs!I#8Vl(^r#JaF< zSU7luV&rsuH8V@o1kajL%Xxq%sayfso`s}1Qbz*v(!k}weXEG0uzRTvD4MLQdls3 zHb%dq^4sJytbcdA(FUMI2nm2X=g>R7&qr7Z+bt3vHDOq-m6mxZe=Xl8o8~L9sGpl} zkQ~fgE}FijW+n)2ES;`DC^RiQVRN--PVRzhNz2PvF;xEQC|!V`ZSbu=@jPC19Y{US z--+xOH#}Y7+#h=AciyeI)adb208%EH;eRFags=6zs*|BpO@iXgA(th+RY6{N5KBYo z_S6Xd$mK3h@>cY#M~_e#%|y3YSCu(-lO#JHWOVq4J24UAYK2X}PK@cI?P`>^-6N6) zbzS30FayU)tM{tkluc&OH}5vAUx=!Ap@N@eS7-*7wRZPqC5%c?3FJ~b_cGS>hCYl3 zKealHcJ`|qZy2YOW08Jfpshvv!1mU(gvf@xHc%E5!(aIUMwIm7y-*_(D7Sn$P?dDq zlxF0$8i${PZ#Tbv?ryO&wihfFLnFyUJ@y-w#yV^gb2Qy>PgR-NVTO`FI;Q~ zUL=UBEj=#?PAy)K3)Hh2ZZk%>qQx9CyspTD1~hs`5`^NnV>Em&j5bgDT%&9Ld1ZlhR~WE7!>jBPl9=)Wi%Z~Vjvs-W-Z!TuB$4quPxb!l(L zA_jxmu8`0#V$b|aQw*H9J7$tYe{rH0r>H@kfBU(A7y$V8Tt|Y@!S{hROF=S(QYmcd z!2)c=I*~eJ+B0VpLv0k$%M0nIi`obtvEDti1`u2Fz@t*1_I1JGZ5 zgIveMk0eeJN3bIUs_gpSpz0bgo8mupLD%GEE7LCO&a^qR4-MKYP4W+#>>jjR$iwj3pen?T zZHc?bl2LdT+Ztf&T2q&@ooQ+J_802idpqz4v$qNSD5WLG0H>Z@1)Mv7x$1sg5ce|Z zP>6c{df}9MHF1~=9%ynhQojK2w`isgYd{f&Cofy8d8|o1C5vs=FHnl+Kh(Anq>Ozj zq2L3X8eASZT*RL8+b!od{-WgS%;0dY4H?dWNG&JtTDoMFt9>-7(Ev-#XX7cb3~KpX zNSm4gNy2IIJ?#0|8Vgl?U6!>~ffBoWU$*9Q!Uag97L@cTZ>}_DJDA_^ej(P4#{d!; z{}!E*6s08@^w(>=w&1phT%-rb83iF1MPpk2tGQ2Gu(&C$n&w5qP1Qec+%xuAX&Fop ze0`vJs^jqzgRkAy8o7zWo1Jb3xo+C*zc1?%97_w2y?CagTO!Q1b;bO&kZXl zSIpdv)350Fx#vl8`(xQk!>_P>&0X$!%FAsZ2fSM)a<*WwKPuv4ibkR{QfPLW-ReQ5 zcQ>)qQu>`+QU{a=O|jdVlGSvV4gcc!i}bEE7dNK0Qmpgm^L^ExdO>BxO&A}_@i^<` z<71j{PsI3VT=f5)X%hemf)|jR>KzpHba_|Vw2wl$7?59Aa8@F8|Ifur*xK*>-IGXx zrabj!12+i;oC;r;Hze_(5qV5m>;jD%68FB7Z2My-yioRt9j^_?375nrk7_A;d%Kxh zYv8B??g+AfWfu{XJq0ZjJ`s|jtU7KCWu_U|)fVhMo%Ndw{gksg@*>U05#RtCcbs)z z3&0i#($Q-~4|O}|urZ!_QS+YE+LRG!0}HLymF94UUSYx-ONWy}!tC!;iXG5QjPvLR zWUe|OXp6}Zx9&b8ZF1s{R}pl^G#NsYdvW%VPm4{5u5b;jUb~B#G0R>;$uP4jx-A?(Ob-1#y<8h>5kae*DOm6e_Q+l9Y6>2 za$A>u770I7aS@b==70lsaM&j z5a%s)3!w-eJzoFBitQXnfB6-*!2IL9D`))sTIV|uDDtJb)~|IZk1uu}_N7~C zAb^^4k96tO4~5HotYx>BToRYEWmnOBEmPpwFDUsMYRnIF@Xd*M2S zqo*<3eFW@>pmu8Jm1wf=1sE|;5hK~JHY@rhDVzuZWC0W|^Cp0FJLJj{kVsfpFggB8 z>Wr}#$gL0ufkiv}g`z_-SG`a&%Ez(C_N~;oFMr|;w;5&V;d;voqR3iJO}LuBtGCGv ztK$P1EI)hioOYSxo1SD8D8Nj2y0K7pS|q5-dF#(PdC;9W+hjI_3oTm4zm-!C_bg_CL%bc*&eypV>5!x_Te{xWqbYu9{ zuo9srr{5hrt6(6}k2!Fl7ietrSjf$WnhG~QOwX4`$ynI$&CjLa2c+nUE;?c_b-A05 zC%@}4rJ75Lo#(ZUlrV>wCQd^R-urz$Ce?wE+I;Za0T^4%H2yj@+|en`T(f#0GLH@r z1k4R`UAl|k-iSr=nt}jpobg6z4sl>L6DoB~NJcF^d2&xf8w9C7ji%*(g2?vpCfC-b zG5b~(LT=NQkZIEu_|$+!bibucL)4?OGf+w#DE)^ijaeu7LPw_Z_$zYIsJp9u2HR+M zJsQ7G9Ta?gF9AGG_|uDhg=ej^W{Dui9Z#V;u30gfxETxCN!@6|fR;RmW$e_(5=ux{ zt}UDHx0{@D;H_p5xFplxA@Lpn`A`5QaKT@P8#hZ@;`)i*3HjNYs-LJVNDR*%u%?wP zlcKmN9PVE7edyyOETX7pXe!UNR9^cdaWWi2z*0mW@hg|xNh2o(^z%qj^}=;cU^ z6)MmSAJG+AC7&%)-14@RFg|0naS(FU-s>^$;)<&_rpU|a?+P> zrg`?wP0Q-Wnl$TKgj#*w=mUc_@I!xiPMOy;LtHuZs8 zf07qnk1h6yi~d1{5W2|5>8M%d+>SEHsnyJd`GDhkY>5|Yh%gaX6011LH{15%n*tQi zwH`(Ob62-ZWKKEkWFh%Qz2Ssu+7uM^#CVhd5>F|)+D24C&PVvI{C0@alUT^hl}`4T zZDiTJFnpsdf6A|@-`o2GB?{3rILihXHL5E-a$^x{8{hbA+Mt6Y>-c+WPJJ7AoL z;bvK1a2B9nEPC4Ic*|ip*9NhB9xpB8qzd6RMw+JeCG#q%KTcX9&u0I6UdCTAB^eAQ`8eGviJ$~FV8n+T$-ot}$PGkeRcH%$iaP@(C0TI4W&MlRG`|?|xSy-wDKGvyfB)t!F{=T&nl)|M}4r@mb>zNOTgCjhn;q@c5&=<6HX1XN` zHLS8px`hi)&=}L!a=6pyBcD_6#Q!O@<97e6cYqveWpw$O8=F#CTxcAJ;E_*Zdzn$g zwF+CZPYf-WVAHPl5l0isiiU!IXo?`%sSmrv0@s=Hhj=cS4a0xp?VPo!&mdNiif>6@ z!0qOdEzh0aduYO%6kBI(DKiw5M9z+%`h2jMI2MK~I5K+4h->ztS(jU=byr=$(C+3Z zn`1<8#wQEjV|so{EEO9%GvyTjupO-a7${EM`hGL?;3s3sN2X50-#J5NW)*_j?eF0Q zQzhRT%;&nSm11B~madY%%GKIwFo=s(%CkdJm1ZJZ9<<-=wMJ7cukyIeodpT;-w!BI zvt3-*eiztwCL<9ZPtTh8A{_+Ds;xUnV5p23r+Fs30qA7^A|LaARip3%4TKqcRWA*n z-I#CcSsmrv#zH!*^k((_=jscW+nDm({1dCrIq$RQ)u5XtX{Ic#UIvpEC2rQJ?t+CT zzs^IM{g7JxNEw@Vvc+=VE?e&&o-7g=sX5scxbKm&L~91iV1O3CI?2fc@C%@f0b(s= z#*p}HEw`AL7ABS~xsUo=ZD`wF(cqI79>T4>*a_U#N2I;txcp;bq%LaA3qPAr68#+f z=t7InPK059aXWU$yCmY(|7P_3wDV=Ax`*)~dZJ|K0wHlwZP4eT56T?Gll@Hn=?+50 zHsbl;J#dft_+(Z?S@UQ2Tu&;IGuAQbBN>#3VfYK=QVtBKGaloP)p$n{XBPu12W$&+ ziifa)#S%+el)_T2v=kn*S;Df_b#T$CSzxxtWhe8^nlFmrf}ea8=?YF`-VUF#?G)lq z-5=4e)7S2bDh@C4lHcYoz9t39oheb-hv#hWHvk4vQV#C3<7 z4T)p;ltFeO(xSkdT(2TD>dSWu8|y2BAL-~y?tAzK4vtoOPiWs$mQ5nsuusttmktMENnh1lvO5xlp{V>CJ!NYkiSC4Bf>Xw|1W@>fHu*w%7wKceaV6QSIdT=@m)RG!cyiy2Y+ir`#sX`52f5d* zL`y7eaj^Z~jjeZFeBYt&j`a=bMf(*BIXHFnuqw2PQ%aJTNDDur8v)dII0=te3<6Dc z-G1S!$R!1FeQ}IA_WMgTveGI6AOzx@33s6j-%9IVwR0QOyq$=Mo7b+h%Nz+K<*HTe z-zO9PvN|C^3VeSY!HsusY>Q+suhT<@JD5nweLRx7nX_y2_giK<(jC3WFKI5@cQGj$ z%$KBCy7pi!Iw2n{6-Ra`G{e*QJB)ft013;ce75FIi;4~6yFoJU#Nb@{!sj3oZQHCi z)VqV!x;)gn^mTGAtT!JGd&qu_*Y|P`wb49hUh&9Ff zLn<&6I7i}(k3=+_P*hK@?V^)8{D#=+&@YH}&3-%Y=2g)y7`?cogu02tn3Bj= zK5)Dgly;!!_%vCs2E50lD=qB-x4i1K{-zksk_+LB?c{%SGbk|WFhf`*&{rm_Y2q)& zoOH{w{x|5afb@tLT%-47AX@U-hOfG&t5H@n6DCg>2_OgJNRR+h6q&(Sm2c7e41}XY zOjnkgUhrE|qac9Pf~5AIytcpdH)6XJL}lP{A~grkhd6Kk&O8=T(a~ z%DkSkW&f5ecqJsu1u8qDR_PdujU@M0Mg5@TI4*`7qNO3g3Bc%h=>LIY%GZ(w?l$hY z&WTI5+-S^PFxxc!^Y_DpU!bd@!$d=@;(jEQbh$G;#5&k{xyu}v=^oH(g1us-OL=5v zKXl!1N2ktmX()|G+PrDKXvLm#Y+S`wDeInhTYqdv4nG+e#0q;}E3Fj6P-ZFjy;qP_ zT<(jwR11nMTO{=^gOuNAF0!Ah<%m_ML5PXQ^3GhbbPV19x_$A!oYMPPK?eRQk zd2#IA8ncmEo=SO*(4^<|6B7N@w7>=~a+CW~#szQo9OxEk()eUT*ZzqI{98GPOd{rA zYW`BG#QF#h1A2-maTjL%6vW}lwta{*%+UoH;$oED?X7D&KJB2tBY=m)4 zotM4IS;k>1b2uG+ryb#3%Vt+81u~X~+B&9YL)<2G7Xr%z)dxaRtNGb$v_OmrmMB{b zgWN{ufie-gcXehv7YV)&AB5f$5sj)v zs%czdD`~D*N&osU36}qv0Q6V*FjtiD=+A$9mA{)i7qD_fQHU3%+FjJz9O!(VGwl<) z6hyMYpc~2_^o*nx2$L8Bo**Df`muXS$5`*D+OE#DP;4%bZLMON=E1v1L0L(&{UTLqHNlS-E>KnxKIqx%u?+&~m9 z(7|E=QSX0uWgjVW0ZA$S$ZsLrOAX$&Lv_2BKx($l-n*UU0Ara}psTlvC^>893~M7G z#m^+b+^(@*JDhi|99$ITQ-MlUFFkh%L$i@1YBJ}8EQtrylwqmSt%~aQ%1gzW`Ki9czjW*Krn-bx zDkf(Q_6f!B>@pc}&SC6qwwi|{``~Vx+UMtT^c*tH-}*IP3!a(nRvP_bJNh~9c!?y8 zBSTRktw!EZmh-Ui#^nD005U=MQpRgAp`5$O>ht17!j0bQyNj~*sqEQPHOo}n3*%Om!Kf6uHkUV@Q{4Jr&V%dy3b_oR>nX- zOB9h6OM|AiF3b8)8ZU>*ImFzoHFo5T+r-wPMB-S4b%hSMQgaJS0cV+zoHYO7i|Wi z4H@9pGTkHQ$yL1V=al<|qS(SVDDP>!j=8bU_xh=@jm*NRFbZyGy1o`8GF?koFWSSH z$~KsYW>JQn-k+KkDCK2SDEM`=Ia6fxr$dZ@1Ho{lYM~%&$`E!A>}08OiJi@1K{q<^ zZKPmEmNtx!i-=ARiElL5hir&TK`&%TCalU(yD;7q)oR(9MoYl(S5HC1<#c<6Zg9R>mjtH0}<8gqH|;S#vXq9_`MZ}F?iO>PM* zb8kiG?Jg;Rryr-aE_0dokgpM0rqPVqJ#MII&7%|M9}RgcytIiLS7xZFm@o@WbX`i+ zje_(P!c^iM3rqqvVKDQ{Vs=#>l|Degoi=^AtT<3jM9iQ^R&o&7eJoL2-`4yy#5z-l zn|JUGTH&*_+*eXB);*2jXOhW`RPLw2!GDb=t)s^ua4sSs5Vy_W&^=9!&BmkB=T`IS znF%9s?Y;)!u0X)j^cN4_447rU)Lxsxh!H68A$DVDkKk<+%Hcfb~$hs&%+5x$4U%H=nqOb8$F4&P<5Cnr^lgloq%v{If1_5otA%Sm?iL zK*n^PGW?kc9N4v$jAe};on>Ax2Qr1+g+`r$Waq#@g&H9Ro)xh=t1!LEu)&><(o3D_ z!`eja2+T7YtBeOs!#{tgVF(D%;Hiy7^+T)Kz{L(~aU@<+xb7MG zy)5eaCycIWR@#f1{X$oq&A|}Yscr%Fs0Sj02Aej?I%r*dW=dGWq!R^2XGPruu&?(u zTfWVT9`1bnzIYSfWgfdhm8Dp?A3*xp}QyHwDagJFwipQ{XX&D0gi?s546h03p~{I9vTlsP7RjL z%yFL|oqlI#-S*A?$o#A$zG>RUyY!^uF%*3bB2@)_6q1GPxT6Kl7&g2H{PM1_20b6H z<3?QUPfci)`Vc$|GzX*o9va3j1S%e#xqzmJq6DyF*dDxUI(HYRvK;h6QRfs```Rm- z@vrnzI^q&ksq z{^cgz10Zeo-WPF)ejFVx(pa+EQX1)#gIr|q1ja)4CT*K??v_=#fViZ!i>iYlVj){A z7?p5f6k60JS-L(G`cZ_n!Z|h+c8bs$+qH<{SSutdGCG`H_q@8iJ03I5R~QgX<7o$e(4lxP>i z!<@v6I{&3BV(zM`cQ~=Yyj7}7Muas^5XvBhz=86%Alx7^S;WE&O=~&dK}?KFkQ#8) zssh*%$PEY=WKZe6e#_&-&#m{~XbF{60gERTA9PjcFzP()r$FA+T{fc{xeUk7nfbYz z%u!^)Kv?_bjk^9{S-8#?kFjCjM7{L=-qw)o)-dm(84Ic6&ZMqRP#|6A#~ZHpF!1UV z&X4vp^4iDslO(%h@+*AZ(7XKA;430s|1bx_joairdMSC4mb%%oRI7Q3F9U3v!Zn8I zG}HBku2&!G%Cav;u+$jL4sF-YM%YKyf!GpXj_a-Xk}7ti{AfEg_=-(QsqeT&dz12@g& zcxlYNQY(D{EZkKAGTo;L$C(C7m(2wrHl`=zI-Xbvc>F8mAGsz2K&2Hb`b{rQ`m^br z>pNy?An)(k*vsl#v+2+Hp8T){pVkktA0Fwu#qc>9s?B}#fQ1aSIF9>Q6+YA@ub0Um z0`}Xu?f{)d4pVJv+XzXqb zzLQM$jbFY^$tG`_aJOh2Tm0Gm?jmW$EnOY`dFC8rXpIR|x}iwD zpy}}N{k33)XEFB4^iglkOzQY?h<#UwU%%p?RH3&E$-XySUIbyQS4d2c9oR9PZpiig zmkRtIPh8@N{7we8n@HN@dej98P~IFA3RdB&?H$!y)j#e%@VLWbM28mZLjvUFIeF}ds(OE(QWfPho2O;AWLYpNc0 zh4UZNN4=OpB;2VIH-D;l;CAO72M3_V1J|70Ag@uZp~x!}f~l+H0}?uTnJYqSp>djC&A{bN24Fzz|ZwTplzVA(#c2$u``^f(E&}mu@S(+^1?EfU8|G1Y}?DWy=?QuWn0Vksg`Zq)^qRsd;aO~({*3h zn=c&bYmE6Qye>k+Gh~^ffr6%l`AhB&mOleZh9{Ti_iCUPUW%E9C*ee_$-jil%33CN z3(_(}_1RNRFUk${bMr708pmvI{YDJ!>h0$0f1gmL9fBNUr|3rbPWTQ*z0*65Y~5e7 z)CjT|czpJBtgN|8Q*H(+w7&Nr9xm4K|z}V~wD$rd1YXNSzGOJ`eu3t@432sbAzn{5Ob9 z2>Zx5b>cOR2RCI6I84oPN&RK$w-LTm)-hOxIZ2D-e3gdhYMMPHpERr~3Y%OW5B8fd zye{z;AC<)?ehL(@JW^qt&lQe}GNHJ1*|lGJo>FD9SO1MF3BwhIoS-3shRITE#Uv$P zPqVltf-L(LaI!y`;zBw`@#u?edLI9zX;V9=zy`#a(Py&Jp0`tca-LCc?i@PN znd{6)xSYQ+Ob?K#4>J2)K3bT-#a4=CfpsOmS+;wPWlP3ZM zfqDRvCY=AxJ*H!C@U$VP(y_3E)eV<^@P?JY)L&NO$WX?-s>;5`?}Z)YTj3z zP5RS#a=CdG=Ybp!86TIaa_vWJ`pmdll-vOywU^D2h>Odh*W>X#%BD@TXViKwasWG} z|B4D4fsN~Kx(*a;wKa2QRWi}J6#y_v5Me;eNm|(Jw>T9yvRaAwJxVpm-rpp-9;|s= zagoSLiWeEsy(J+g2Y;szLaP&1=Q$saL(@B{ssm%&gnrlz zxba_NbJ4bjxP*IdB_k@QD!gB<6fi-?- zMF3zx9E0p$hPKK^k1E4RsGFL-r)1_>%SV!%F+hVrcYgz*Wh08h@ZG~gEqb)3%YCMY zH2zk0(D0no%WC~ZMBS{-!QfbN*u!M{clV_0joy~T@yX$TOV%u19<1dxcU8tq^kYtD zYTP&yrh656qiyk~%prc0YbHhpMs@$z{o72caK77iq}Gdjg2A9q8c7T&EZ8pDcN^kK zYDV*)fYbe_C}on{8!b&i!n`tM$5G=&a~R*p03UlOR}V@)KM&6oTb#}+tBT?)=%7=d zZ|YvfFDO*NzADOqQgh^`Y3lqmJHIZmtm_F+x&DY!NZ+Bt!3X{u8+PE+L`WW*3A&cI z{F+tjf#Oou6!Xj5Oqq$4JnE#gvB-Ah3n#C+i}bs~-8*6UjhACK>^Z^RPrYWWu}m5| z&2{?KN!N8FS}_EGAKC{qry|D!ulOWtq}sqZH4h_~&}_?6xR?^S^MQm37D`5xS$!of z>RxiprA@aLUAMv3TZ(P5e}_kEs_52U7iMZn9l_GUL%HQBxt?c6HG8h<^H++oz#A;n?gao9EHiU04S{UM-$-V4JXA`(3_QJgIK~d0GBv^a=F; z(ne&giVIWN8-QIJ6%7sA@$-F^n7)38x~YL*KJOnZvy<5B&YnD84zu89CLJBLG#nh; zjjgHdBdweqh5Cu)Y!pg^X@O$ijxU2pqH1abWW%XbiP6!#-eON70fVz)dEA5|VwSA6 zCY6EoyjZ%f>}j$mqOOkgCUoskhs{EARcZ2O1pi$_FLFfrnMTDVKQ3xKtnTjrP$j5N z^E$X1T51;+)M$`%;-D&x|9wNuoE73mW_2?@osFH5}av{olPU~)v`kK?( z_kBBTWW)lJ?dzvrRb1S)Gn~-R)yuX$^!s<)WH zGt~t1uNVgwNWgf&p%n|*T1P$2T@X_)|IB69S|M<2v_Q9Lc{aVkSah@#dZQr&lN8~y z(=>ivPMvwchhSh97VYdtF^_l45$8IbW0c3`@0{SMavXnc*yE%7+i8-5GFP278i>U0x*=>#xCprq z>&i|N<>&MHl) z!l7}R>tf^hv1%cCaRGwyKU=;b?1rw=ohNQNn{GD$vC@T~N>FxcCUuEQJ_Riu3yku;BnXz42Sm7>L8CQPK<5@=(ziq$`B_4g+O z1=-r#JMT$i6V6w_$}vxCRe%sjELkpx+>}kHTNaMSaC;+pZzL=rK*e#PlLe0DXb3s; zlca4-eEgf^{I(c|<2#irPS5B#P&r*-w$7R+3-RJ4z|qpS2O90@840RPUnCQHU;aYI zW+aUugoQ9p43>b|x{eS1Lo*1$a@MY(H>DcFsuSCbU|A3fynQ>sv%uO@`@nS+U3MYP3phf<1ce{mpK$Sv1F zh@TRev~CW(%>Lmp)mH{IOOlPXyTBXADCh1r>X>~iB`3X2ju&=hNoq4L~ooDxybV$xx}6yg^n{Zwjx3AF2I|KnD1GlP9HtnD|Nt#xzg)n;ezKXmuSupD=xyn3(J z9OJOC7adrVPOzx4<-4YB9R7^zVG1~d(8U|za#{l7EtPt^I>z})o%4UBpHjSR8uZDQ9a@1q0M+|lEnX%)PhoXual zQ&NST(5_f|{ucfG z7XOFomu3O1#SW-Ql7M*X=L~x&IyOEUXYza4r;QJE=MhYWjU7p|>2^94L#IiGZZebK z+gzf`F_6j>>@wDNY;X**x^;p#HPLa6&}C+(quTPs|5xn)lk=cq;l8?UU%FoFTSUnd zscjamqnG|mRW-~w2?!ZoAGnORXwOdp4+lNSUy={i79NoY z^jbJ>M7%#!DSkyk=D!AItiE#L%AE+V#*J~@?ybu|uH`-S&HF?wMoi2C&aa72841$V zV|;X}D^aW<8NvH>ib=3eap+>B+Sma%_1KIyG<(&jD@E>xIbrXbx9HipUvGCW!%)lO z3^BffSyB#|`sPn8?K3FU+I)KLID<$4hQH0}QQyZhZmfz`Qat*&9J0KNUvLB=hDCKlksn(?jt+>KV1hLU z9>p5uSshX(_Nysl4!ZIvz$*})n=BPW1!!$rj(9kC4isXi*elvb6T$~76}>I(>S>%QcWPHC-fH2St zq!qzEx@^p$coV)qPspU!-FSIV99(i!N3m@PNvKj*>K*m;JGR#RSqQr}an_e~p*+*v z{u-C!YB4%uE{i&w@fjbLZ~I{BdjVK4tqwb4`e_6y7IfWA<6xqCNG`PfNT3VIf%lAZ z^KvY2xoXFo?C#KMNS_&gpBW~WPMC818XxTfsm{w2~g(xxf`I$Q6@%$)$O~rJdDE7721h9|=B$kcl&1x0C*lp(qOAOyMF2 zP5UjMAynMlTqOw7j8Fwh=+7;NMPkYd>+G52xmGTYaN3Bt* zbjAnJy@R{g8^a?=9H=DTbgHp?ajPo@w*SOUdjADlq_5D!o;S|?y;FmTlC%?c{rtFf ztJ{5fUyrNvnxz>J$tTkMJi{4g(u?|)QdL%=LV_Q#4YtxHxdpt`}w(m?4$R_JWxWs@iQ^dI^w zKm$6tzRAq7FHUWz=9tERkJAgW>Q9^=K3GA0|IBUTB;TIq{$zs=zq`N*qQ2TX9EsxK ziNs+ft*H)lUIr`&f`RoJB~3{(4Vl){l8%bCkfV`{l=Z>)TW3DwmhG|__W_L<-z*=5 zBpoCV3C4)2!mU>kEaKUWRHdz=1u~{lw_4|N$@yZzjx35X>L`QSYe+BxW3O~}7x`X)U;hCgoJ63s8E4=~ zI1{~4P#i+4CLuB|OO#P0>hclGWQW+4VvarMTkyCvZhH|9<9$QMl$60>K1=kEe{L-_ zKtHzdsVK>{1vI&$Q*MhCy;1MbZz>XAB)%R_Us`G)HqC?@CegC!2Oty5DCq~25|Vq! zD3^ZbhXdNbE7jUS?W>)~JnD9Gv03}bP!7&9kUaal%*qL>N~@>K2VH|pWjGcmT}euX z|7Q`v1W?=p1$&O46Pc*G_}-#+{1iuHTy~Evdy6V3E35iLsMqLH=No!f(eiNSz=0td z;Hf8yF|(*lP=fNDZpmWwspg=`Pvsm5)-N-Q@?@1Mz-9WUX^fufpZL4pAt#2Dg`3N* z@e1+YsRE{NEl#|aIX~!8b(N4Q7Dv2v*bfCmClcCRD7~C2D}RZ6rAD-;hlCQ}#K9>l z#3iSP%+*k_6deHCeeYbzpUvuiXFvsWn&a#hB?A|12>j?YJHWIHF#@D$|JfFE`W;-U z4+_&f_VtD+TNkhn~Xm7qUci6R#^tkYFb_TrgCJ;7=rAk zrcAMuED(X4QH!`N`dq^Ac*`2jNe8JH?Qht}vke7hM-E_X|D|Ix1|Z`7u%b1jG$DyM zDDjh^h${K}r_BZbqHo}X;n_&YGS;(4ESZ*qS6_Iv_pJvU2=(%hx0!bX^tHhWWaY2j zm!uKC4DQiS={V}@(0=NOE4L|Aa+UBjz0#mnI3P&~@ zS{@V^V>fi2Gmg#f;iU!sXGXACF8rqT{pF{z;w&52@F1&7#8YP=Ra9!6%$?9f?~k!{ z6Ph@;YIpj}W{3HibnSvUT9ds1GF2=y&~9_;|_1fSG)417{;LML=66hLcJYplT!>oB_73 zYWQgrnF)U9bozusv>1q&>}+V0ql7(|lY^Hjhut$XeBsK%;U5Z&s;a9ipB6|sfH0X9 zpsMEA!OG!3J)*>ups#8O8jhAzxwLup*&I5$yLE=qH2TMqgWWfsz>=*N4$QrgzIur2 zizFn9FPD`bKj=%-*cAJ6z@?kegzu>MbW}FA6TQCthj4i!I2$7|SHS#dT1G))kkF_& z7dv2FqK}5!W0w&+xnlfzc`zby{4 z{K0?A7>bXyyjK0`GGf%;CzmoGG11uo%{?AGdT1*}!a(*cE+U)8()Za4 z*aD_r{>qD(z_JAN~~Yi0Ynfo_YhN|c($$1(fQoMR@*0TChh`ph?5K| zI1F+k2ptjO4s$I3_s7YmBpfR}%~GqECcmmL>3`X(u>Trh(o^pMjuQ&#&UP!-WZ97^ zDH#8!q2P8a|IxDFHA3A3q=cvEitg)tEQh6Xqab~OI62U?3bDkF61BQG;CXa+bTBw03_JwPA>0fAD#giAB$V!Kc$zA7I3j+@O-||XI%;No+2?L^+||l?o2xoXDM8!5 zUnF!|nG|ic%cLu5OBHkPqMwGqhnEk3X-r~o&iP68x@#3%9%1w};U-SM_YN<9f$LY9 z?(o~1v3^q3YvGZ2m;oEh!&bsWO>^L#6GVA`abc?6(7@uOH!3%%qoNwA?Or<*9_;`X zujb+CklMA@=bQP0KyZzSun=>X)CB8T0uw5>2s{5L2z*-$di~^~h_|DGSZ_RN+DC&1 zxv75++|106*V*DmezNzLNmyl)k!8)6^F6?cDS&w2bc+L4CvDTWO|&O#`ZcD6L#vw; zG}K}ulom$#kG(?xp1eNOr=>|BaKh3Tj5FttUN%`TvweK*e0>*a^}HA#1U25yo&%w4%xU@`F+-u$rS)a7bbS-&E+Tz3a{O#sM&!K6jj$?WPkPJ-Yf=H}snli~ZM z2MddHw+)Dxb2!pytWwHF-D7Sn&6<7fw~uwiT-B;x<(9Nz6@d`)DOPFIhMA|HIlY6) z+ga_bI$8q=#KNb(aWzzInG_^?BweA$QxuyYEGU7dkU70}Y3|Z^!Y?YZpv@Bskw*Ln zS|iIRWjiZY8WCP=n zAWj^EPyGE;dM0`0bAD4+RpJuxfoFb;!vV*EeOQ3%@M0j04wYH*->wgg!8o6R4`cem z&5UIFc~ve_0Pm<6Wo^cHKlZC>`eGcXYHId1#yI#z%p1Y%bbK%m_Pqco;=HL*a%NY! zBiwZ79i)%jMAvb-Ce&;PHXGN(+sOLE@vhYJhETcT3fzPa2M{7i_!CwMiK6js`zoOt z7QBm*2W8oM*?%-f&E|d^wmGx6q6nMU6)RGYuRra&7Y1v1u}x-nv6y2Yp5iKg1yj@L zmMw=i?0P@*0|3r-y$+ZN2hcy^oGmy2yb{;PEcrE&U9;x$v-`J@w;yrF0BaHH-A{Nj zyQ~me%yQW6_!o|Ig;fT{$J(6%F)W?3_TcD09yxnxJd3PerfI{bgHII&nrak{!N^hh zST=DRQQb_@Fz#TN9rgd@+@Z#8=!Dd+7o4$o88RXh9ZfdOgs`;F`XV;!7L3&yquN1^ zCZaTNzj4~ZcO9T~u2nWGYAA*@bT^d5$t7cvQu><8I-tEt&=OovkQh7+Hpa-FfRdMX z`Ul_I?vIn8&H&cd4vH(qHf%YiaN-R@`C^5fWU=AH!q+{|(fCY}PBOdHHj3a(d)jrt!9g*r(yIR~z}aBYH=l5|GA`l(M6C#TQVbnR zM9b#UfmWj*>uP`EHI%%5WpUQbF?(H6)?#1LMd@g?;a)4@DC<0@9JcB?XVi-d;yi&w zemX4GlBOw_OquH>cK4^1Dn-JZ&mFlZFHPH=a~gA$IOy;HIus+1RfL(U1^Q>Csp-o5A2Wc%S56in zg8cX^x(r7K{o+01bU`*gtTPA!90gj=bHUrSOVD-eL=B zI!X$KG=imKnL0-nliV-n0}e%$UkBT2Ci$(*r03=hq#U#iB5Kp6DRv4Aeuhg3=xcn< z7n{%9>SkBC>x;GrkV0I?OZGQJc$2s1NU8hBJ&A2(ubGoY%ZEYFr!Ek2iAgDg-jX>N zuahJss(D=~Fz0X>=`3?g12X62Uxu7^tx3eWP3NJl?w4T;};ux@g>L#G| zt3r=FQ_orbRt*GLAPs09%;=f+DK4_Re-Qkh2(T9V6%o0HHl`Fol&iiU1SC&sh~bW4z7_ zveH{_V(S=N5_309yL~5TE;*I8Xsztl{gj=TFnmu*^Oxx%F8ZsS?#>+Cm`I z?IlX`MX8B0Yf#yCSb@&bmBmB^MRsWNebJ$m*_pBk%bVyaXLlt5fXYV&_ihXURcrQ* z*?`fG!o{RPKMQ(zUE7in$-{@TjeZ^YCBtn}!{BcJ70T+uiwPiUBR9|uyt5S@X$grb z8lS9iVrANkvu8Q{4L)n>3&Th-hBKFtsODU~$S4*a?AVq^|32oCKdhzjaq!BVLvbG? zAs~vakqr8(f0!!5-pHhJl}7ZU$n;Yq9(0U#e2rHN4)@54=Dl7SDPW|;m>YNBSBm#c zOR%6vxI`LfG`qA+)>5P-iMiV5{v#X?Nz5pi5|xx0D9LdcA{>Z%OM5yGw0=0Mp%U`n z061sf(mUyu_%{T%-8JN%`e@6z`F3d__WSbQ;^OMGPrNuX?{Bo7xIfJu7_dT#Xuyw* z--*__^Xksb&g8X}!kE%pPO7hS96S;heJ#?zY}2O8N)O)0dj znG_w9UjkDfa2R}1atukHapKhHrndmu0_eYjO!}@A# z;gBMuf^5(j$zo!z_n1IC?JVCa#7>hTD?K8}u{JJwO0AVU+0C1V%QGW8hal%vmYwV7 zbdC)xI;H6#8(Bs(99m6}MMO(7E{W-CvUYXp@oj3!dI5U}k`G7l?$nP984k||CH(K4 z|7G7vW=S1gJl(}zyt&U0;&%Ol=m0XJ5Fg)NxJ1h60S2#=hB@IYOOvO_4jQ^%W%?UA zM*hiU)6>;E4MVTQ`bDNp){^^z1IgW(S2!iY>iO)U7O9knB(s%i`sRuwe&v!$dtw-7 zzeP{tF;)&I=hY({GbkR$C_h%`D+}Vr{FTH07w#wj7w*xuhV(Bt zgV?*vEd|hRGhUEo+4PESMJA}9@rvv3Ww8@?hI_Z>N(BSrZaDOJY}_;4ffE{ zHeD+GJQ@zuNm|RHHHitg9OL=->t9<-TWc{_DFR#zi|YLijW|9&Y{htpI?LesA2L`I zU7IcO$H3g$LITDP_m8$VR3UZTUg@eBaQhWheMl)Xz2zmOISPvioS^sT(~1S{*(TpO znhfy%PZw2SBkKu}9>Jmir1FC>f5nBj9xK4zu&qWQgzpVaY9ST@5FUxI|Ik=tV3ByF{s+x(0khL+ujU)ez;w96FFKa`e*|SG)^Yt;?&YxOOrh* zGuKixo8#d2R(Q{*ldig$jzCi)Pn@c@79=g#B(dGT`cz{&a7qBmIv)y(*Ez|{{`~yL zakfTS83T=s8<00SsB!LneiFZ3j?!L+weFEJQr;Nx14J?B^ob2Ae(ey(ceD1t9|)*5 zNXl|I-XhctR62aWE&ZO|9Vl8~2+fO%%aaU&`e#nD;7`gNB9K2BE8Jsqw>hwT^B=s| z=U3mmH7LILa;|lsvQoz;hiDM4xx+Yjox7>yCl|j4zXqA_KO>RG2R5J6cm9J}#zus} zOGq(x9Je>2+{aIJjLvK=?P!@TNGfe1cP>84e?E~bYpF;UJ*sSRKJ%P#M+wk7XO}=< zb^0bC8vy>DoBK;3E@CXalTnMQM)zec*t6g#!xb72s1bS{TTXYSCJ_E|AkM-#p9pgx zu+~-Z%j1kYqJyHH65D19v~>6z220}am%Rovdjtn}MVgxZ^l#e7KaLYSz+j5x?)l2q zaIIw3QDY%Ff-oMvVG>g@LkbgGX1C2i9GlKi@U4&+0)Kpid4hq40pfd?ECp#DJk^sB zhUZ^WIVfzKCF$OoE3x*g%XI^BF74|#F)x*vnO6Qk8 z*GeAxiXSEhtM@9WJ>hM*#`*kxnxhb=tKe+UkpQXv%HK_`M5Oj?(ZrgT(^Eb7%nV@@ z#w|Q#QNI$4h&UHRigc|9O0I=Q@+PUNYd0(L@a&dvrI6^s*#mg+!(ecT$84us&MZj^ zxQdF629)qrs)UKfLh2Y-TT8=D0c{&AGWdB>C(XT8#5`9OcKWERrAt6qT2s=940`UY zn1o`}UoKk_*++5}TAq<6Hd_&O`mj20!wTyw6OvJzGj@va1KUCovVObF4;AyHm$)`` zV!Ly<>X`ytQ6X{osm_}_1s>;SD3>}pO!|g;#0%_<$gHGTS#d0xh#&zG;*k6E4ZGuD zH`jTQl{VR5Lc?w6coUiZSV8gDU-WLz^htJ&3PUCS{1p<0m}!{vu+eAo3uVOfm0rnG ziRrgcveSxP=A5e9VB*_d4o5_to_$CP9hRK$LNjeXjqnk6C}NOWCnGwbmIh7DYRuK=1ILMz&I-^Do4?hP?o%+;5K@1YU)%U8pOW z_H5GT8&LA-#dr#{paj>kfWn+v2~W(z`PdT}_Jnu5-Z)|c#)RF*S3FUI;;EE}r2XM+ z@7lc1brCm}_aVrd6U8E&;j(}5aM2s^6LL`;lakP*VQ<`5pG6}VSsS9LV5xtzOhDf? z3ti|Q$P?yZOZ+A1N(w(0v3mqp>yGC0M_GKns3zUDke_yM z@aSb@;p9=y4;Qd5TfT3*m@gOEHr@M#OM$CeWpVpyz7>g5bQSbnM6YKiFAwQWn>o+( zLpZ6EpFcsjy~uLEU7W9XrMww4BIBPYfw-f7g@WH@U&d)A6UBPIFkMeGc1D;4^g)~( z;`R|y*;f5#*nen-8XFU?)UJ`Sd#6XteK_Rhw(c)BJp-_PWoz6331r{8mYpgn9!Z`U zq|b5EnyP~nvEL%-;9fv!Hkj0Lu;|o>pZ;^N2R)baTW-Eo9LT5OkyEl&ZM?GIU zo-zX-ZuC0+DfK!?TxI9+S{DP~7wXWpSPb@x8R<+KBV}k}4q$IpC@sZkP!*Voj^e=I zl%|5-%j>^DD2Ae&o!*l%i~Q@wqcF&Z=K231xV@IM1R)@b7WEXtXo$Nanj|xdGuR2e z@*9c_(~g)0C*&<(RD|tF>Cm4QxNX7tnDUA(G0@LTK}b}G{R(^j zudmCK#&$)Hrg1oLI&4mVR!2ymF8?m=7VohOAAV-o>eeyJ8ZCFv{2bo59Pj0Gv+>e& zTrj2GUPny^yE(0W;=JLeb;PzxgP?w*i8D@8kPmwl$H_jU=B-~`<#AWta7DSGc?&ZB zgy@mH9TxFk5NTk#;PnCPicmq+$bQIR@F2T4aA)RF_x!WZ++zzf{B=n|Q{GUnZ9u1a zFs#_cUD^3aN2=x#o<)s=HM-=el+lEI=Us zzClx3^?n-HN?j2uYtmE4VAjviz7IzqGO*=S0+SZXAI_Iu^K!n)xeF5&S8?5{=+Vi? zKt#mP)x8pgT523f)DKsY#hFZ4P!r@2;Q2esdv3BqB@Xb({7OQX3_My6hP4ZJ_g{lX z6dWR>4n38!3%jhXN@O}l;RgMrl=~n*cmk9zczm!M9GzNb5bn*s%)Ro>aNfSV`gq(i z%Rb2tfk`Z|Z=y|gB`2M}xp$bFtYtB5vkVsqZ*F^W+a-zik(C$2cckcN!#@o`^Vo-4 zB~RYa!5g#9sAcA|&*J(*vWELcM#NZ*cOP@eB_dJ-Y16DA22xr2Bzs8_^lpdXc~W8N zDFW~1N|`?{6Aa4ANu87iXlx9u3aB6$RThj*IsOKu_vfhP3$6P~VSS$)$KGR<&Bb}m z%R|QY@b`P$XZsV#k3@A^CVaq6!0}pTLA~&d`1{HA_B3OAM5DcTx`?9Q?SbZppm>R$ zL}pex&*yxYc#lk(hex~QU9VOU+38ErHX;qe@H(60HXLjfB1Kzno08D)HSn;KS%j{p zPft~^jNTLK7}Nk=TA=K9?d6CLLm;6y>|6AQT~x`!O@cK4`{9{T@Ez2L8QgCs9e?K{ zU(ZM#T%N4f_^|p88Co&Em}D`|J!vw!RD2)CA>&p{tubwfo3Csf56#}7>Kwn@uc^SZr4X)Q%%+##b^VvhvFeb2AucMC@l%T6K68H%o7awa+2ywF zN;spB0Rryv{u#c{jxzt-o7VYO%-cHN!NJ^M^hil47!P>kvGXzOzUD+r&X}N*e|N6P zh>ern=&W^UTU*Ye55nZ?0tc>P-X!(Kqowyqg2fmjN&O6d`{^b~biK2;o=sD}^2w@j z2=6(y^JBX>Uv(|aDAVTrJFkO1+k?jq62@n`(ch9!b(FquxWYt8bRdFw@S*3?XA4A3 zP?6|IJA4*V$jb6`G^OXARQG{&wHTZAxXYE>$*<7=vdsx-MChn5H=vfGuJ)NzV81@v z(9vG!GOv@aLiRgs#O0s6WKmsh_KY?YLXkuf(w`Y%>}w|cd=@DJ+}IWT0%}upfOzU% z;*<$JIG&;854>B8cINO*YT0lu4QFjN4Cyr@N9F^OPCaX({H9omT1GveJtXbszqvfj zLK-5}XD?m!R8@3JgbGS}7HRh#5@5VKaBo)G@ultiI?_W?XN#y!B#WBT(A+rO%Wdb$ ztPI3S1M)DDUe(hwWoEF~dXW0pHcF7q|NoyW18}ZrvJKY<2@IHdmj`jIDLHM<(I+e= zl%_>dNrjfEyU^1`h)Bu_`jxd;m=kEbRGe+-7D`s_R7kjnfx0J71}Dt{S4`AGIB1@e zBv}dkFnwpCkmmkiHK#nCwm_3hIc>6>6*;3cqpC8$(RyMEhqI@(KAn9MLk5B@(D~Q|dlZ{;Bf_|K> zf$~soKF2x|W0DILzF>Z;l^RT(Si_3Gc6(F*uU(-uHnhM0>??8NE);|3gEpma-m2hs zud@89VoDN$1tV?^N7#2w!DNNTeP%pe4KRpENg~#@I%Kb9bdgvAFNCDA6Goebj<{2;i*{t zB~yCLp-RMIRkVCtVw0}KozybJN6zeelD~eHIYU1LQ6Nw?DKvcn<{bD=HxW7ugB^iv zT6n49iq&6@4_t135?zzD^s7E{M!848%k?IUiBR^s^e8+r9K zp?j6zZ=+63LB-<4OR7(Le)C)DzD6RMWUJ|aF;4ABL{&cYVR9F#>?r|dUu;%?^eAqh zo9wsbcR5FvlkVRZyABWWXb zX9BKv(fh8?z3r`M*&*a=F*bTfZT%1WvWs={_xL~l7?ornue?2n) zR}BVbH0Rw8CI_DTb|7mC~6s{B5;B~~ofbmKNXUxJzp zPZMjY*Ep2D{Bl#M^;3BTX~ghFAEx!7#OOv~Xk3Y1tftzCq5?=@Z)Aw4F!78s0PLFM zDE4} zt_>{DHp@oLZIFzMyT>nC90omy3?bUl zGi<^<_mPX(!=KzH10^~|kjEw5zmi`A)uE%1_bdnxbSwbg&Si$51~q7Kh7<6E;F=`p zIWVCUu$TirGTNez7fx!F;FAwdLQ&eiTpWf{FjsnE*>u{X;HK?WS&_JWp09wHG^L`a zW&fBy8^~>A*46a>=232=XnKdnbZz@)Ow{sxGn`6huy=3M3||&LtDE_nWoKg2Bx_)z z;wRR)J1OWrdm8}swrIp5DpW9x*<@J7Z@vaJ%<5>HbGIL_tn!};1Cj+`3AxEevM?#R zd-Nz{$~Jey&N{5|&z5@hi&&aj6N99N_9^l6;T2D~b`fCrccBr>2gp9`kxk;hMn04> z(NPeohuL`hi_q^%^Y#6Hi(r~6@Tx6>O#y=zfGPYAHwkZ|b|bTu-W#`>DMK&mQC)ia zp|*)^-qczk#lC8FTU{5W69oYNuP*FY;|Mipff^JR?+l05IlU>}@R zsc^W1>W*(~YM;w{jSD4TT-8D-uXlSRf5=7O4-KlKW=#Fd-k^%pKVB@-&IysYR`w~@ z#UYn1a{W)h{4G5gl1N4hNOOq}*l$Yj1iQ$1vz~dak5SR6n(muZ+kOAz0X?ifx++sI z-L22QP1NxRffjF8H<@&sj}uhasz<~GTDR!-U2UNigq%2f8Z*_2P51LDl-EX==n^UE zIllrIB~f@tpEx10_d5)|pb*vAXa)j=x+12L0VLte7%@MtVGPpU5|~uRd0XZVc6;&Q zkJy(}w=12FzE<4et1Cv+XMc`0y_G=E#L`NJTbTK>)~)e*D~jp#k>$JWM^y*Gu%U!G z=#sVJVK(^O#AJ5Qqr|)&Yk=zD5_1O;-R^=vG7E(>WBZgnm z9OI)Tyae%1u3f)bJJ|>jaiOB!PIN`3l$_arX3YE{QUiRNUnoI?ZpuqQSt{zE@L;^3 zj*TP@yO7ILRPf%wnugF`0tX#TSw_oT2z3fYeE0?&KteNps44A?8m~K0`5#R_86vx>N?gmo2#ypNmbZOhpc=Cn zo=_Q6@&*E*g%%vX_EkEk&S~7N^l?+Us6-A?70;8N+ui>9K$xrEC!%nMDJylsx5gE$ zS#GYDi}v$ZY`xc!rpwp!ccPZoS&gO=|4^{r+m=na+22sGA)nWw-d(O3B~x9OMfbhU zV$fF+3(rbj5y;7`0EBGL!g0)SMok9=_+`UafIh z^`T!?^s`6DkSLl1Jp*oRMO&*S=KfwL|6X~uwBvcXZBayC#{Ebm5O)%dUR9f*xbb!% z@Bud68avHlh@v&0mb@DRQ(YTxbnuPAmz1Os?L-wuX{xh#XG+`Vze&l_iKm47K_g-G zG-F?ySGfA4UG_W*w;DVlY5vl1tg}W9m3rjfDM!al1;pG1ZE~HMYuGo{IX^EY>Vfb1 zJn^~|tpmT*WOH*D7BUYneTc$kzc4Ai`?VQLnDZ$+Vr9mu#Gwb5 z1v%Da*Xo+j=!xBHHjv3WH(1d~bfeu*-L5lmR`X1p5FI(z4F{I7%H6KMGvcihS#R!+ zb(s56E=xvWp#u%aQ>iK5tUF~=-gn-F%akOkI`jd^kRz~}XQ zIPJP)zL#@;{t(j+-%tE6gQj+~(XAI+L{D_0Vo^0AX(&@K`=h=s2%~s2i?zLZ!jP4a zwGZBNm_dzpCVLK1sS?c0VZa}jgq+gYJ_*MOKj7=~105Z?ssnRND(3ZPEKfIc;vC;G zN0APqwO?5X=n9y0=WBvI3^+W0q`Hy|bU6vUj0<3!D)04WqSVIQB4HMh(#96YzY(rY zh@Qkxbp3Yz(N#9(ACY>(=N*_*2ec-s|5a)n4)SVoYLi1Z=})pbT#ud*N_6m{f;lLTz{sqjlcI%po;Uu~KDGZ4CKcKm;tsaIf1XWIBVCG|k) z@&8NZY`uZ3OvEPWp-`|fh494i@Du#$mq3j0#zuwxqG*Lm!6im4Lr2A~2|2mWc?kUF z0M#eWex5K2@$@FW2yt*lJwsl&e7T%~x7x|_Dv!!oj=K;2{j>if@jr$D&{G)Job4SH zW7apYm;Xx8^~P>&#-bRPeemlC(q^*P)yX##NeZAEC;>Y4pPLj47HX!7chX~e?Wj@q zj(DF;RQGakTri>269u*qp(%Edx))ivfDGuZOB4(foP_#!-Q{zL-W%Lp;#w5Fb7xdx z`0-zLdwRB6ug`d8gk5#~Z|rR^2PlcAP|LW(&Z(_05 zZrt}(VThMK(Nn?~5D-H>8`I>OXf-4eZdK+{j>=@if-+*LLQAflU>UtPYg9U@k9srH zWomyO)_NqZvp@B7@!%Zq2v96NeB3v*-f>E8$NSb}eraGH2J32bWhkPOAF6p`q!2&Y zcj>8+`)G*#Xu(t%fX&KTc^5hvK@#ACg8;$&p8J{h2s_?#A7CrvDqxJR=G?H@!KDY!(t(18DDVcoKPB4jFIAQa3; z{7cWZJxY&|6sN1%wT#SvrA|!fd@&$DUaFmEt=%f%H}($thilOE8N1aE}X&=$C4*+T`gW23H7X)@&vn z!+wfVS6{_=GeNsYAJ)m1CU`>Vol(XQ%Q`fkmZVU8QJ_{UifN1{)%ltze==OC`M$Ao ztR$&hEMm;6d4r8(oUwta5_5g*m2f#7EFOFKzz4ztK9ELe1{Sl_^{|8?B)hqu>>Hlgu|Ssf z=B&~AA1GodcG9%x9^JHw%xZ&m^4bkWIYcs{n{FNAmCk@T*DE-o1d_FO?D)|+>KfFF za&1Om$lM3-@xjj?kqd~ig*RsxXC6uN5#!yYSC?L~`?33bTq0B{&?6;(UyOfj=LiG> zoI$~`tI$iQF#113nLV{f$9At*6Z*$fur+y`d4C!YLDiTk+uyG-+j8-?fot}PI1-5o z^7N+SCjTuBuX{`JE%2gO>U?9q2n%zu4mN?#fDI*8J}sr=%P%)}euw|2cn9g0bG1{G zYOq%Mrke(&#!IC-^4*L`0$J$6wy5I>95qK&x85$BHNEYJ!4z#4D9ziF zgq~IejCaOqzH>duI6L1^iEUa*8?e^LR(Uvgi?-cD4fd+Bd|xL#nZD=C8D^OSU7Q~fOfsCd z@AZ7J06*3R~*_ zoH8S~4dm{ugvR5KJY9vxb1nHzh^URDH0R-cqd{&e8ldGu>F=hf3?TBqx?Nyn5 z8ZX(iQB)I3@6DV>A|@`aN%Y-=ygdvR>kkN`MAbWcbbG-23ja-3iXEF!8@{jO56#cf zaEiYZ-!>REsqdDSAcz~{dk5*J3GQRqJic^+YxWMjf4{LR0ks}b)T9@WDfh7yqX*Yz5sNF?HIl}Pr{@}1k)VVovMLDs47XZW_pJ9 z*Simii_i%vg@K%x?8#%>5y*e?vRF|q)Qs4K^le_Qt6WJl&+ycK#(3vq>+aE z@P7B+AN*xz_Bm(ob=F#YAFFd+&ieH2A0dTfbmdG_vOK&sa_@76mAzlc{d)bos>Dn~ z$CfSRmcP>PLzI2#RffaKdY%Du?Vt*76T{4|$YEtQ6HuJ%aqi?DNaR{&CR$Nqj!yp? z=C6hpX|5sW2W#z-u8>K!TNb<-SYe{!;cTrTd| zLP{r8y&t4J+tW+D#8{r=ebgZVlxUt?8%uMpXTD{a{^UUz7a59$(ET2KT1mZ6rne=Z2c>Am|zSb^D zahb|lkH2BWd)?qaA5w~iPJBTxK$KE{IY%LCD&f$lLwz4{X8ifTJn7hLL;60ZOP3_# z0P?Gdd@zBZY_4ywzc+)maKPT}x^m5nxBuH(-oq5dKAAL^V5;V5)WdAM{`UcKjmBeF9l7V_thv?lLNc};saKu?YZ>~tn65;`ym$C*fWR6P}q zS*GjDVc*znqtXW_r^C2s$+}OcXc#2u?=QfOOSCoXMf%{5y4=4QqxfG0zKUvY>KNhN zbMnqQP>)a&ijXNTClg`C>Z7#>7?^JMK8l3a&otMOpe~0rHwOGLN-ReVKQh=S;kO~0 z7Pf<`jthUo;xJKp-5e`GEx42zxc7{HlJ_kBFaP=Vzr1@6(XhWujK+y@j9v`$2azDd z>Rx`G3$IqLHf)#p2e^BAs^M%piDB4iSlM2N1p|LE8(At!8T`Jq)8<35^3HWR`&zho ziMB5Su@hye^@$LefV9Iw_}5?AE5jii?o{wr*K{z#I`}E!mCKRXpaR@CDCSMc0o7F8 zbU64a$BqaFZSpSK@NiCM5|=BwKll+I{ltB+$DR@oaSXYu7{d8rZ zS*0UaS9mo{znmEdygl??Vi!-o%`=EGKX6T~vMOg|gf(GVzw2umhV$|)op*T^TNF{9 zuA1)+s*VmlC&zGqWleWHSxxY(meot@rz7m1n5n=+)}^LxLIgiEY2R;t9Q$Oz&0QQL zexFV<;FGv54`E0(I6*K|%KSu+;8~I_SGr15a2rv42 zDtph7_&Noj_Lj_xKGZUR%*&~v5hJJc7ng%e@orv-eg`_P- zI}EJU@zx1Tl6PvBK>WAmy^p;egFl@QXPo>lncBC`4>tILE_ zNYXNw>j!P`N&2y}>{Y51vj;|aT<(0ap@QKbP~8mGcDjA~1g*>ezevEnLHt_S-i<0> zk`mOJ$u;4~hj)28yd(Si`!OU^6yc=;whPb09Sk`fr$7DU9kX-xV^rU)SfL#FW9w^; znVD_u|5x|)3qJR4g$F@ADVS48Myq?;r7;fmSuE3&z-ETfMTV+6p|= zgWX5Jj}pS~DwyD}bOq97FUFEQ*ND_k>wSGYOP1;+1L#iHEK@`rb>A}ZCPy3S_K(6A z-$byHjtS|!fpS_#@&*ewUNZC`^61~W(=HWfB!QFgxzp30R9eZ7X6N=&jDZ%P>+_>4%fN5*FJ$xp*0 zL^fHJ(KH)ZZ3zEv`Pj>U=0`Y|dWS4}`9SYD(i}McRtHI#@e22n)9|wiCRY0D&!*}|w9JoNl8LOs9 z+wo(HDua>gU}u(0YfD>urx(*9z`cZ_Z8h4!dvCW^eFN>V3B`K*1y zJ*HW8cH?8Ce_TZyPkn1~`ss#1tnG~PzTZp^=9!sMr3U7;N=U`FZPVm;OZ<1}#|8l_ zkj>8Qt0QF2f)P9JhW@bj*c=PXUG*u`zQup}U_wkt2fhk5<91Cxs&&L?A=Oqm8k0>_ zy6kc9;vet9d|EW<@Gc`u4k36V0KN$VKa@GB_q>@0XW8Tz(0 z;rQ&Sr^{?Uqs=npYkPeFYKp%n#fQ{|HurvLCt zx(|l{&K6i-P6oA5wtY%5=CKe$p_!4%rZvMX`nmI7lg=X|hzq*EY&|rtjh+>;p$?Qo zAdGN}poX~Pwd|dY&?O^zSvY+>9RCNwm?^gYYW}U(*sGlBa-sK5y(>Reqb#-sU6tW{R!M zgV}}jbRL9$0H0$Qq0%)r*7437_U=m8VkMV>^;Cb|7wKJg`iA+R=MC3kb=RVc(xvtD zb!J18(4L!XrkUE04d*7a*Ke%%+G+F@(qYdJH%2!rz@x$2)Sg4qhsX zMR{nI=PzKbNxx?bDe>@LTR}@9wY$C6MmJ6Lu- zY=)fak*8%0+;7G7hj#j(-Oxy>jpwfomN8GOA+U))L554ZGU`JB9K8HTea&?Ruk15Z z*|U(=51|dJ`JRSv%Z`0JXUb#IDXIj#Fy_5V*Vey8nU|Pv6C-J0Dkg~WVz~vLi9U3k?YU4U!!68zF}slB`4+@J@f(!NqDyAs zHz$$z>xe`P?jICaoE=h0l&11d$p%=*ejp`7rT-)@i!@0Ihizpu#RxD?RUm#VkUW3N zEDT|ZLzsuHs|uq)LL_k>yABNsn}bSz6}DE9_FUc8Y~=^Jp#+~cQEl>?-M)T0vqe6g z&JTizEgZVvvc{S}=M0!o-Htp8y50zNwq0vJoS&U+{PoTsSbJ384naOvghVTz`gG17 z;bzygPw0FOd9olN`gMBM(@MJV<|BG>^_r_qiK(Sc+Bi)tWPz0X;(Q-L{C=#1_-S&3uNIg8@KwV znicbY`65qqp6`o;21VK6Ommc5Ev!^<@gjxIwA<^TW1mDYl6~u4eTFR?M*bh!@57l@ z>&qCxsx&TxGBa=WY^k31o5D_!=B6jP;gBfmhe4m_xPkW(LP6Cj#~DQkY;OoTX1FHs zW0LV0ln#L+v)O9E2_(?-`JM6zsLTU5AnN6QQ!*HA8xOK7mQ9U6*r+ON93(`B%Dd>V z`!mcUq<9$^;zM4U*DY%{crtt>)9c@jrqoZ}rAE(nX@kRM%U~<-ABuO-G|LZoKOaVwiW)}5kDU8MUTr0yRF^i?$!tp zbznCPKzTB#$kN%^z9yr|;5mTMfmCk_eAD)?(j`b+oA2v!)Jo!se@qT6m(lIV5i!CBoQFLcw;%ErC|1o=gp z(~g>3O$?~~z&77crJd*u3%9d|`GKD8$H!PJ#$iMJFK>#nd=CLo zmJOc|?sf1fhcyD2aQQ58W&nDu`0!WY+QL|#`yxtn0E$kxeFM*umu;W{-Ki`26>G%r zdcMj_6_wRs^<61&VH?=1rTA|_lTz!Mp8*jY)WcRUNuEbrU{gUyBliI+Yf4-+F!Xjk zwjsDKiyT9R5lO62TJMIL8>QD;)BCVH2UJLSrpl>eDGmx0k`3dxea@rkY5!p4q6uDZqHIKQ7ro7XRI*e*mf-R(LZXd(XA?P8eFu$jgi|U~ zv>19vTZ~!%wXpjzIcf3b7e%@c%fguBIKfdCCp^{!WPqF3G__r&!yu~OeYU)_zwoKe z@5Tx*aqw6zUc$!2T|yvdj=bI3t?&^f2fo?(_3moa_* zT@06j-i!N)sHODDO4TCW`8kb+uNjh@A)_}OU`(3(gUM_)O1wqiSH?`C_V#A8)<^Nv z=Q&-hT(pvhp-%aGj^(oHa^GZpJl6nKV5(J+?}k_H8{v?9DoEk3X2M& z^_0Z&*>jafjGDUsDLH~PaKuI;z_#ddX{*&(m~ZP9f|Q6W2xs0VmBRlYU6Jq@)0_1$2cv5n_2 zBbGoFw}pQpDp|S$m9nZk%S6;CDHaJhXH%CHWhX*9{X6L;Z*FGvPDosHRp+`HppdJr zM{{@h|HFkz+8#l^l4|fIR4-2UgG0~H?e93%zm@-n%UI47YH+ed%lEP16fT?s z00=;sFIP3Zjt`9_XZ&yF>v%tE>h~uBdpScKNNq5$1RjHBpBhwLM69dZx!*H|hyILbjNr3k^{w-rIl*_A4#p&b6dCeny&=_9eTE{@duBI6 z{Eh~dq9Q5hc(gXA?16eNfY{|t^D)~Zii zhJvc9s<}t4$ALwdQO}SN=agax9%3C&disLoOY+E$WUXo=!%G0@S!7q{hF`|UOAmTP zV_>;@K$bCW(Vv8N@>Hxh$&48!G_vL02D(biJQs=YA#z(X8CJREOmqrGqi{OG7c~CZ zgkfs9tIy580|#!6TLQeAE%NeVrMPMgBb~<*ety!Z@}CGd?G7HaLirZ=*=VLL37bwG zf?9X0%4NGp?$n8))t@p0x>=*(kI|SjOyak=IUT3`Puo3Dg!#7(BB#Ss%snN8aKGW6L$!Zuu$^kU8DJ6*O$pX6L?ct zq|oL3%ikcEx&T=jy&x7c0RMQw9S!kf@R(w!CtJ0)o>}GmZWva++6kx;FTNmN?6;tj zr2Yw-Ml2F`o5&7HxjNEO`w{1RT~=tV?Wvd1S6rT&@RV$f;i2;vxaCTwf4*@&6Q`o& z*>0-pnoA)50fR44S^MzP9KTf=P6wFUkKgu6YvZd z_pBJLxdLGXUeqeSqM-%qle+fl~JE}b__9ZVM`FvR10X2hXdNY}fXYBHE${?4o^7h|z$_W+rwofZ9brPq|% zbrSt6NRpEj?fmr7$h&Z$q+3o6BW@$nRP5E1sHIIFI~z{~*>l;R6<$muMtDU3O!+)? z82Ab=MuuJK2q?k(PvleAN#+Y98Kz0&e1v30tLygTtEj^3!VMn88-MrlQe08ekKHc;)53_=5#ON$RK^gcx+IuB2v4k<$*&AoShIv)mC??g~LYz&vqD)1!$R@6KsV( z@qhnpgGeA}c9Aqa-h&Uac+(Vr4=5i8sLE=fQr{C?jM&Cwj5QQNTmLO`;dXi z>^ylPdW9CbKNhoo`w-J+H{8VhZ+hr1Wc~ZFSp_*mq&ICFUUnNZrcfH46%NsOGc^NE zyP3K=a3;j|7;D{V+v;0yQBY~S|JOnEKI=PlpWJOj09i%|$M;E)N|R6tvgsM+o`i!j zwrikK1g~|Rjq+#(_YiOn`wG4U{9tqH{5KWq_%r)VYQZW_E$(Dya2-hj7|R8tL-e_0 z4o9Pd%?Mj&q_ZFfS4BszpJ}dTEPS=I(J4F%zPHY*zPD?1clV&ll5%D<4qnd2ia{t{ zVE;{@LsY>Rh*~UQLqba1$r`y2O#>o0>r#@MmSk_zCwWY8{_rf?0< zp4VCfP2Fww0BTgV%-Woq_ww0D5bv+Zc*1Vxa)6p8lLz8~PkhQ;-vp42{cbj(gsd8% zjp~cnzMk52dYXVB>ksbHJOx^`TsEKhB>OEqd>)4{hDWASgh-yLT>7mx*(IHw{&=}a zdMUW+p0yvcQiKz>F|-R6G~L#o^J|0ck+dhWe>*0ePnBZsSLXLKmo^Y zFbG&EPlC8{{TGl6z~b7s%PTK^iewdBSwHy0*hM&UULZoTh9HM^_&{!@uJaxE#>HmK zWS@M_42O@KT$KHgho%eHmUV(aiNG;z=!RnO3v;wV9;hKSf_ii2PZ-nL@oC#BJQ$It zn3sm;%yB@4%Z|xFl~(j=Kz0F@GdXX*x119vy^w9Fl~!XG1;9QDD%ZM91WWDamJ4p$ zq9l;lHh9{MUI$LeSk^F_5cv*UNs@?}VXD;R4(5waaT18kyx>~;eeCTZ!hxx&aTzXJj&fCBQ~!Hz{N^a(vH5C_1E=f>lEEieVW=9@#e< z+U{XGpEwum>sw!~cUTjhvwsZPmpq{k@;NWy`Jxsx7mIntyH}@rhwB{t;2{KHIYhwG zV1Utms51h^^OHmD^qHksH@~3U3edmPQjfk~{B0yC+R7Sj#1B6Uf7Q=Un&Hp8L6k4OdIo>C@Qd9k0F7A! zas=QLy^**@Di4|ML_=an@YdyyRo5BTM%^xD92Iavm=Yj5@$@IJZC@=Mls}u{o0h zxZ9{2VW8TfY$aX|8R9igJ~k)EB;3#z!P7FX)z4sLyvxB8KFmX{tubTYs(@`O_Nac) z@Oz-W8@@6$Kq~f$dgxRsndVPTUf!$JNZ5+PRkfq!vq>hk)AVlQgA1A0(qKk6CsPad zy+u>bI$Vk1m_}Pg{?69X`^x z2_(^y@}&A8rGIV7No`Lu@(&$H@Cp1-A5cLOGc&8G9b?jLUpQtOu3^-w0pW zbYGrj{lKiPXgP_xdn+^)3ux6-5TI<0lQ{uBJaQS7)-c}i#$p(%A4sjCJzZ9#nUN;6 z>@52qftBH$PUu$Xyce+lN{VpS+k8uT(0F&TH|*AHd9t$MI*2;-Ah67dfeEqoIRC%( z-$%;TMAk%Y`)jUWKoiyrDSG;nvD3NvShjLw2@mjMgS292;h3&mDxxd(vs|arslSj@ z`dVDga;xq|qheJ?1Nvia*JyaavcGh`V(4We4eT27B`y2&1RovL6VZ|reHJJL zeJ+yS{@i=gu23I!xL#!kYG(AgM?WNRhIgqRg|NhO%*n&~_|5I}gBY}@1KIld#-1SP zfumL24STHTarpGuFeLanYJG4p_2lh(oghv3r~c!cF@%n&R8+gG;y{goG7%u0o?R`5 z#2AxGqC#cWhELioH-TTVMx-;f(3FZHOLTLn~^vDN zV7{FeyV}U9??)^3y>W$wTgiCHi^}(Xq>Y0zP?+I~jS=|#Oyld9kP=EmEAz$V*4h=g z=kPanQs)#%S%rk|&qH!C#5D>=t=?EWg51@zoIBCv3|9HY~yL#h=Kk#OsnUs|KC z3^dK6AUl<6wUD6=zDnNCt;GLOIoJ=s-@4zAb^oiYchC{sT#TEZzA^K*2cdu{A{y*J(uK1X2hj4@cya^6}k=^$*Gcpex`pgnFehj%Qd z={2W?@BG2GZ@MT+GlW?RsK7!ok;3foNRLipL+Ek!T=)gC&Pt9;@><*8d_-`Zmey$F z<4phlzF(VIv3LvdZ|G~bL}gQL61)RcXu7tshYNC+;(t+=>-Os2pHBF8DEU{8But?> z%q}>DLVefs-^%Av|ALP~0j&k|C9BT?7U)O>^r6S5F}on3)eN`c*Z(L>LMOwv2BoI6 z5@f%ObhAU;t#(@tp8SPzWsS_5Aa(8Bv^IG1)_&G6DG)iC)@ljL9|-P!E2-9jSYcFKa8H7w`Xy4ge@4_R-66U zYRejhePo^no&5T6wrR3S?eXvU=KLeRp3aw62M?UZs!PRSE6FvBzm&VMy*C}7fj1>t z{*b90^d7~jn2kiNmGvF>{m;oIvAkpeIJt)W@fgXXwFrs2T#S=;TQ5zgRJ;!fZ;t0m zlf8f2Sn~<|{PT1B$66_PW(#KQUA2c)dfuzdBxMQ~E5K(M;r&9zD8y;l=^-8nN5F6a zaJw_3NM>H4KdC$hI&}PcEMp5hk8mDVGXe4-N}?p=x^ShE@FS_oofj(;j;368GQ`nd zXw*3PDlVG42LAOLWBxVxC~_d`*D=gLu}E*EYTVmWx30bOVWHWeOV|)YRjA09z0HdP zfNo^KmFoV#QvHD#Ho(_QrImr04K#_E);z1Wi*h#qNW96Q=p;{pkG#d*1bY_-DE+j# z*-N$BYVmzmlUw`7#Bk(L(La@qYv)^4oh&VUfWh&Jr~X;>+Rg@vv4QLn<7Qsqw-1V1 z8jJj$7ROHVh$aaMviuqw8iU*_e5zfUg17Ij&)C>FVj_|8W*^Dds_}%gWU0$Wv(UxV zwW)vR8q?@0_EJ2wco90xN%mkL5WZB{&3kR;3!rY&je5R- z8xqLbjn&7FG^3jU!J7dxRkgXT;|$Xd5-3KLpMM+AEOJO9K~?JC4{Dj<-L-ywpJo4P zvae)++CDe?`#S6)wBKtRnFd{GU7eiz$#eQxe7hG7d*zZ`$p$SM*eejozh?p3WM2Vc zTLHpmIAWP6DAS3_wohUOqZnESw~M-$UrAFCqm#$+*}rjZX5}TU{D5YYmVSMs3@*GmAmJHGUKcJ>Pw$ro z?h1IE2^h?rW)`ZdzCwHMw0uRAUm=(h2fZV7HRc;eJp)T1iKlHcs$sL|HI9dqmL4u! z63uGf<6IZFamDMer(zb?Z=xtvciLhQ!ys_w1Jsy`#5lMD7;VAo{x(|7GXU=JNR8<} zoU~odQ%_0KCd%tM;xFe=^s{d z@II5P0lJ-4{cXO(|DveyLGX;9dO1;@YSXQHg(JUc4!q~c_+X88w@9a$F){B z!-*JAv;1%kxD9mP$mQV;xaRs0Lzb7qN3Xm#kH+dlb#hEQje({v_oZY?0hb_2U!jbGbN9X7iOhiQG9E2_QcC%$ z=j*`QC!jO%;<|QAJ~;X=_}+x?X@hsa+IyQU_)02AqFdl$M>br5>$(khL$%guWKq^L z{?tHkHG9RQ2FJJOJ&>>i>f)nu* z%bLJuiOgvDjCy-8yj&Z&kMvWe5+OFW--9)YyE@YF8!5(7N7K`zET-SFjeOE^$-&(G z@ut#qx2R+*)DnYUe3e4el+wYzMSOm*qqg4Q_tD`3aYqKeg4QIagQ6o3Z%?vstZ1`s zm*QG@mjiDU*&@P@m)P6np&v=)>ibD<=#FDks0?chi@L!UUmtFvYIlM-p%q50lzY3e*TbG47LipB**#QghPy>40) zZ4NS}tojf&UOnjDo3j>gi*F`+q+wapxl zmNww7!AzE^{5E{!g`NJPyRV&Gr5d|{9l$oRM)=$GPns^X!zIV1m9OLzQ<-gscMUdc z>Uwq|z$?kp1tP9t0w8GAZY-!sb0PMn{;7c~_c+-}?6z3z?zpRF>h zmVo5V7|41KgJn*?b(Dv11vb%^Sg+E&9C-rXUK#c-_v+e)YrB_^hWu22o8 zU}l_JZZx0jPKm}~dQ^D8&bjvCpjSV;svEXB}e9T>y(L0M6e#06MQ ztXN?j2C^tnSc){{MbcvLK12Zghv7YVQZ&u?NzFz=xZFY%JlKFhJpMgmgm-vPj0hcQ z4l?|i2|IjJmdZI`+%vJMB4Ivj_+$<8^{r^&ahbURVckCnisSfSyTd_h6o#yQCb~{n z5At$=ZcaCVwf%pgT#gUgWe!WFAZL91grSy<6$lDta=C(TRog;Cn6Oi0>5i~v2&JdU z=`6``c}a8>QV-It$psmCId&tcLymyknVz2Cw8mlYkY7!wgPB>@+6L&8;cZzDS_rYT z+6Us~!L*P8ruy5BmHuVC^3NPiEHTsfL$YlF%(=B)YZn*%++u_>1Cg&T31I_l`-N6L|@H_Cz!U31ay~c}6#Fdq9n;Z|V(4aw0)?rcJbBshR)*)WG|7 z?R)H-YoBD`k~0|es2sXW_md3^O*Ynwttm+UgMx3{=-1iiHm;2Hf}ndp!7=g;u^HYt z8#9vYDYE*^2lUzl~3Esxs0H4HdoeZxI+YgtXWN@F@D;#t4p& zZ*OW-J)?B`s{@rz5Wp7yi;JwZheTomjj1U@6Sm0dfQ8!Rs!sn#1b%_1rfs#0Mgbd( zqSI&5iKE%`W^>EeTK7rZQsj%JlUh8aj2X?JnOTajhB5T3aQ@LZXJHWQ*J>d7x{!k1>vhJXcBtP3v35>#sf#-DLeT!1LmF}&rm zEw+HI0f|X_a6|_wnh@N&DM;8s+n!OXH)5={(RWUep0T)~yDhT*z%%r8PzwAfIp7%G z{`ucAiVZ)&G7iJ1{bz>ODh%heh&8`;+!+JQ)4*q=H96QEK#MFt?hO--S871+!9jY}3 zCWhap9qP2;E+07_gck|9cCxK2iH!UNUIJDP0;^P;wy{F;5n+T+18m0uN6eiiQvXc{ zkrq-S|G$n1xmznd;0DYq4=Mq1EIQ7CGg=Z0U*O=cD(Ip}96M+5^Zm&{|MPWznZ#_| zF=qh$`}Mp3hoFtR5BYu-%Se8BO!V~_XC3N8+^H}7qlZ*mCHhWEGq2bT?WP~Cp2^^| z1@{vMwMB)r&}@eLj?|8}Nb-xu#v=%92ep8=b0HI?;iJw&y1`9k6lS*!t9!y}HBcP# zEXn(f;F#H5WzAMoijlpVYU#f&F1_f9LGnQ5;^F$1dqHBnulT%`33{!P!NU;A{D^@o zHHa7KL%pmb&ZoPh@f&B*^@ZQ<9D-v1rz1r5GAp)6VraeWr*vb#&nSwlt_jBzbef=E>zQ zpr&P0v^Xf%0XPaW47ipBEaSd9QYk)$LyHUqi+2bQ*f<6DN^LD1n!^#x@5s`(4mtnI zt$XK5{>gtvf$s@I4od_k*Kj`L>383}2cLZSQXl2;iN7lU0QR>yAZuJciTO!Is3_^&4SC$p+p%G9{k#$nu+vAuJ_5Pk%k`|r zU$pCrueQAVjO>lt>h>KqO;gx?XzVBfCKf`{05h;aME?+ZY37((E;5}3EEoyE8>LX^ z!eETHe$F>>Uc18ImrbIs0iO5hCJd9gB|c2T3rmkI%%tZ5A^qWBg3x%h3I}VBE(0-1 zG<4UPO~p@E)cqAOZ!0Q8?R55$op+Cxm+5OW$R>=PFxne$G@)>lTviOVNC|7%$5gQ@r-y3A^q^54UH(?<)}RtFWK$gRpCz5h^SJ~~kTRi{TX z@X{*!Rta-$W``67w(LaoX>@k{-TFUL0W91PEM5J{rOe#qWy1%Sj;pZlUi3aui zUO`EwLOx$k;mbfT^{ATm#sSa+b7m8&S~LTl2XqzAEnR|zuAUiVFnv^rD)33O)%Pm! zw;c_yn92A;(uLni1Tdwd?_+%e3j}(nTbvAo$!lk%3GH0HjGM#N{I;-kVe2}Z5VRhb zMDkDfrHfDzK!6R%q_w+Kr_;LJETlqdi!}GsS zE(?Bq*Zv!j6D{TCsx+z=YAH#`ImH#V$wy=X@q$0B0)|L*E+uA6)0k@Jl}lJ=sXV{8 zR}ici6Hr8-Ya4u?^@0(L%~!YCc?YHXHVmIL3IkLZb4sad~2D?*0bf;d%z&zPPfafGzt^a^bC# z4rAxoYnT|?U&>Awk*NC6C1<6%VpylST(*t8zf_TLMVka<^rLflHD6a-)&@8w@RT+Y ze%zaVQ{9Pr<8EQWQrAAnqx5dxcod|x^ zcdiWGz%)Ms3;W9}pKLR^E#%!>)M-uCs6_3UP&&|&*(6^RYYElbKCbQsuOzukek*zn zs4v(+NZf+o0iwwpv7*-C`2s?oSkM1~Trv}MZ*_IT@A8bcO5X2YhrQRA7IYnC^cGU1 z!a!oA5L|NXFGQZG*Bzs~CwbWY98IJie!62J0dyzTs3^)*L?_!zMej=H*)KOgS z(r2Ozgbb=u37e-+etWa~T~mz2sS4hx%6~f41BGF_IGE|F0$`q zORxnpN5G@6N)yK0#EJv|O}3#mV3ah~P1U)=Cn=>0BC-sB-yA!p*!+=GsP$DrIneqq z#3yyK488=|u~a||mHEVGwnQ~IaYZ|##!|>N*b4(%QdJ^5_phfwez>(r;5|HGOpF&ySypaWF@`Xp^3B{4Wa z9n0fr95KxFK$Juf`6GjB#1Nb3w~boDl$p7s?Q-ta%$_49N&4#V&0MbFg{}I=tiIXM z^b=uR{(;=OvaQ?QMWV%xK*njQ*)t~Em+`cd5sqD>Di{xupHHVpG6-H~&8nFnp{_#M z-C|vYQQ`GRKgajX1VFm&tP!S3PJjU=h0F}2L!%%LuXONtDS1R)z0Leme2l6s{?mTnfG5sNixgpjJxQ} z4591k?P2w8kNjKK)%HE9RgdA}QH5pW7nD1nv5=y%nEOP+3S5RTg) z>3lZU)`#nuR%r6rBkx<`CGLMVEY%(}J}h28sr!}$p=7}-=jv*GN|F0n#zuBz(M`p1 zO|{#EytJuO&BJ8ljJ^4*R>RN2(C;IF34lj{IY%3yX%P#y%of0My{yV3*|vr3z|g-2 zJIo;_r7RyJ;h{?+M->cY_1Jb5=CtUL%V-UPKpYwc0gO*;j!@u55Z|IzS@r0Uwv}u@ z?$wWb8>)3Z4&N?a&X4*`o8v~l%>)V@eIlyvxG22od%kCQI?vA=D1AP^H|Y3_`OaDc&u5D0doZ#lS(c<^a+?{n=dwz6folVs1=N zQWA+dBe%7dxAo6{Dqi|iyX!K<6diCHK2KAl@%ZL04y70{!cLmqE@f9lAL$6N$41#E zoC*2}(R-saZb=zrf_B<+p^NfH((XeHw?ZztEt>~)q8$HDaXic9sGolpRbb=|z;7Z+ z?eOCEBbAcR{vHsN>fgKAUhAOj`(e-7eBM%+XY`m?x5OJ9{a$yS_s_cDn>3N_4`v^db1kS(h zkj9I|;aOIg-Eb{9?xg)c$?d{4a<*c#!3gwJ19pJLf~KULFXKn*zeI3VL>io#8k$dO zcm(E;;Rq?guP(N8oriER<|e@}+Gf>8Z?^kdCjHsTL(htX4lL`^(^Knp_NuO?l$j8H z-N+SDR!AR4TBbVHis*`Qud&gr#ewj8S^}FHAYTH%iMEDa7~#kNXTcHdee2Dpo{n`w z9a``~!_k#=eLpHm(F7nFRtwie$@=>54Relaw-qW)oVz`WAo59xfs~9AQA=U_6CT6w z_sPA!2KR-ackv(fI1Xvc6EEMN2q1r6REu)08_q=I>Z3~(jY!7ACLM_PxT~l^HHobW zx?Rc4(Yfzr>{kd+vaiyI@qI{Cp;H?7AEwwR&uf!gWo$}1*eNtC-MI=r)i&!buIU0~ zG>_=Pv9n<_+_ok%#pHa@_w)jdd2IaSiOz1}yD^?lvqMBg2_`L)r*;D_n5S*o-m1u!?2!}8+4fXah{ zp|^vzxT=P}7PXpdo+^NB=o=3>FF4*=;!HX4@XW0>i4qd$oa`32iFEs{`vAS0IDKTc z?*(TFrSFqoIjOxq7+MuS;wp-n@qT_BF2mrPFdC)1ukg_I*-0)csz13U_kG1&S=c!x>)TG( zO#46$QAguGb89dv?K&w3`^km=c)nExu4*ffoeDL9Bj&a?golOSo7*hsyty*2tDTLjKhm7dB(HL2)*ZcM6#URQe&Hj~H z%ZLC*a4Ru+D={$r(|?{vG68iYJIUK+v(}4*DZ5MiKPwm~GytFlo#b|UrRZ19iFtgPnZ}QBTLM)vFNoo)b4&+gF1LF67lOVG+x7-KmR= z?OXxuw}m?>2)?cFf)2}>*}ak9Dt`G-_JhE^ePTdY871e^C7X2@dSI(}U z#a<3%+~9vF@{1>4bgLCUD#891lj*sWDGLrYg@`Q&1OA_gIZ-yM>l<{~R2^WX=$-nL ze{2G6!y#6!QJ8S}^p<5gDx%Jkx4L)mhegiWNxz^3y})a<7%3t2i?1h$T%plvOGN=u zL78ZmQ-sloL&?8ZcCwUs;dXDy9(8WLsS|57<-o?aK3@dqdE6I&tsfzW2JCE&^xf|8 z6u{nyvrSBb(3H}F4R2*7ZssNJmP0W8Uw1v$LZTx_pW`(Vq(LQG4M|CE$;dj*dF%y?!E|LRh9u2WV*S zQ1>7=uacE?MvbhAB`*Pc#G2c_+?Mc{DYmRGo4WQ*hpvs1L$)ZRzc(9cA8>%Qzzi=f zwrq1ADvY_??3^4|zC)QasTvFzm*q57V~Px#CIJKiY@p148{YQ>GKUj8j2~$mcHFuq z=e-IGlMDU*&Dg>WHyNa(x}bqq<^1bgUmo3kIJ&lWCVw&n4M0<~U5jC9$(QRdwuG#W zTyg`8VV0MIIBt#}frGDzmfxkL%Z3jf>r919F-K%J{o3>^$DmOscEW_`Ck;3f zPJuYtD@wD1%@Eo;Q=2g}Mx_d8TgElT52e57Hfqg-b?l7&NdHE_p2Qo`R4z%K^D`Ya zh2eL{ZXAL1tL;I+&tKTtp8SWT9a8R*H5wM|b1BwO-G?(*xtJPzrm?V7C?0Gr=lV;i zFhqJ(TQ)j!Grp_G=pUfXY~@IF3hIbzs;qrUppLWMBiwI*4n)69@-(-3n0PrLeXY+= z(d1`=l4#JI>+7BvQS)noEgLotFDV#FFO56Nq4o;1S#FPgiqxt*K6fYnW+q!Icw9ur z#XdVtayx{8*5-!9;O%aq5f@DhSmCRb0gaFQQM_9vNUX!&5uS6Dz^dh56a)j-Bgr~$ z>j+NyHvoyqj@FjTJu!YW=8AFJr+ClR&E$P{^Id-pbG7x>Mp8aPXgh_AnuFjW8R2to z*7)l?wosyfb2j{$y#2C0W5)Wd{4kvA#%nX5A_d+YCR)PkCmf52c_VM=4<5H_@+rU4 zjzPuuZiJH9A^mU2DPj*KMjE&r?ZrXf^0?W$cG9k0=crR;l7%EP4q&VrZ}3u%4+Qm0 zd6k`VC4~F{PtG5HK%kD1y5GonxeJ>w*c_O1Zgl$cm8+;=0Z<{`;wjekoCf`;Gi3H^ zWtr1tKJ-!34hUUUI+DuREqjIR0Fsbj`3N zufAuow?tlOu>P)lxTlCelFICb4NfAb0F0*djt$}z$#>lAv*Ofqm*Y_P*Ut)d3xTo! zjx-(zcp)ZxO_X#2HzAgNyBl#TuzWR|6i^-!qeFuW*C4xi4vNAtK7M5-p zB_|ry_ThnyQBbVgWL7hHoch_&SJaevla$j!^H!46!fqF1wH8TKneA3}Qh~Y-ro9D} z%vf)^qjc`eGq<%6%Ri;es9ne)({Qlx23S)nY%u2O!%a8aH^-~qxf^QfsJC`1V}gNg zl*&5l3f}-|&z`hC^^P$@i?Q@$6K-&1bBN;I=Ixk<3!!bWPXPSd1pQLqil^`cpU*?d zQHRmkkq}`@Op2SCi2%AgcqLBmn_fE}0vHgyr?HXSZHe%M_%BN7;+2zS9@UehQ`-_^ z`p-}0)5dC$Sz%)IXs+5@J^$eHswWFQ)=YN?$Q{FGvV-R_Yj_0U|JAXmy zQoxe==(AW$>Bp|YLtV|W5-Z&EoNjiMuhe&oh*934H8CinHljOZi#5KhE0F(!yo8G= zm?4ADa#*r80WoW)07k`t&LZaSclcA)&ves7nL^L*CSP_R*9?X^0;_Zw7LfhAeFV#DTf}wPo4{ZMq8q{4M`<+ZpFh7x`Ch{3Qx{CP|jF1~|u#8uZ ze&R=uNoi0gj*&>PEo9GOvLQ?==TjpZN7yZWM>A9t^zT`tBtmI9R+d5MjDfZUcbF*w z2O6aem8P=RN>`DN_!n;%@mEWJozlBGsJF`hDl1(hjRmK^Hd6zydbjcu(Lqr=rVK0k z&~0O&x7W*o%@-8aRhL@8s=^?EU50EeVwY(0O!j*aKyn@Y`+mALy)8ry zP7rw&PilV?0_|l|NRceKS!S;6N_@GCF@Jm|0(VG!`PB_!)LgI>))9}$_3OBKCI0Q=gOZj^(;VBMK55G;4q-QDxjAbGBw*F%>Fr|x}FWQc;;LgOhxSHxC0n2AkazVC^@m{UokZJs}sjw;MVj@B`09wG);+` zF+oy*qEV3|rHRp<^X5kn&UpOu88=r3Nqm{)uC=FrAE&5FuMUz_V$9EIHNI0+|H}5Y z-gtW|%QCU%-c%%MB|2cG*KT(DML9vv5&IhMn%>U=CNZZK`GNt(f=jB|>@Fqdok)^! zyh%k;p?P7-0EZ7;O?D=naIkO$o9gyu{*Yl_lzc7e2fXXli7bYhpS2t^LxT^gjv^AMiysmW5N@rIpKEc zIi}G=MM)$qWe3nyqhoe4zP{a}D_=%e8@}d-d)`c-I5LqSK(cXjL@DoMri`zN8Eha| ztts;_ZvQ`)7`9g>-4RWY24Ss*QZzCd-h1N|BC|x3pI>eNF;N@Y^;0f&rW4!iu(9I| z_om|;+rlN%sdq3V)_(m}*hy-)fg=YQhMXbK+hSNp zUSnxG$k7TTe9phT?t{5+>6w2Zin$hV;Z2N?YYafPY=jUHkz~cp?MIe6r7QNn&P-OM zz=_|;pM_MV2V|*U3KpIGRga{PmvUIr$S8{@gkU7({WS21Erb)T0v7qEELaC-++pb= zAGU%pW^YC9<2!D)SSV#umCO)mtP_zWdcO{o~4& zp!ogP#OW5>F-HdG3CXf(YTOsG18VE z_x%Jyd9H$h>YRQv18Y8{`EdtrbsK@a-}cUiHky%^)odt1?hM%Mg#u5$*=Z8mM9?;h z@VBd=pDIw;6F`4I^Vw4a5@a7_6;1J71Bx&6y5Xs`80&Zgx*Fw_P;gI25a0x8D9WCRz#_cOIBcwf7A6Z}9g`levchbxRr~bN=qD~-uWlfjEk?F?NKo8f za%0CUWOZ~jJo7Dv)ns|fq^N1bbuYv~PA8AZ7t|^=aj`s}Tmugl2!b3g*@oC{8PIo}n_CJ%bw zG;VU^B~*RaQ(evdc=aRIo)zs1Td{;<%YV5@IP>mFek2of;iX6}?+ii5F+R?ps>jys zpO>_#BS-X zjfjn5LCIng@$`@@)~ggh-v|)ZDjn#hqQo#jQUD;z5V}sJ+P1FSJo#=vv7EKb1#_C+ z*=&fD;9-a!nOO}S!;a|j?A?uGFf|FWXp)g*1|Y8~icGD00lCbl>l4U>xVxK?w10xI z`}s@Ag4s|oH-fC$f2ony__g1^JSYqe+s-y-$QO6 zG51Z$1Z!RN>YcA@PoNGjs_Lc+T8c(q&7ZhnL}a!yj2fr;e{UoW2mRqqA29kuM72T| zf%7BC)kQo1lFHj@6)(r&RETQ!lC8;Zj-VMD4)RPJmL@YHaEO(fAv9JLydDmulh~E4 zM&?U^&(PAb6#X?;2AgDZT!xEF=BHi6N2O^3tKHp!GSsh3{3Y~H;Hv8N;a>&n5?u`b=YbbDVLQU&YIPy?4dsLZ$fbp9Gce$mL zwqkngp;y0PhipiZoOI;BBU4k^tOdcH_;Bswm+Lbd&(kNN@BGGug^G(iImR}Zsz6!J z+{6XJNcFu;@*4&Vr57(KO=O^EU)`Kls<4Kw{1-}w$E6U(LWanx$V%34ODkMUWrCa^P`|LW@gqw?gv{- zimceK!MRfU{v=`jJ+{@1v)4ZIOn7lgWq%2`&-&?M(iPd`Z66`Z^e3@^HUKWWxaRIw zM7A7S3Q=<9Tx zYByJnS{mI~jRMv)P8w+rT0FqtcN>Dm-Au;EPvhBl@e*)%4$g;3!|9p1g{aTQcLIUd zblehTtIa-SsheBYp%bRQNJ2IrAVFGdEfBLYO&xX_n>g9lJ*S%L5FWQs1i8tdOY~Ab z4$6&r3f)RCWd8)=?Y*HC>&2&3%@d`i5h2?wKFaLp-fi1g)v)kavXh1sYrR1%P*-ki zb2JGvd#_3#zwva)+QU+z!t@FLzk6@}UWM`S=M%Ee@TSG*&KhEO^vguu`B-r`{T%Wc z-;8;>(TY+A$BS%6&_wS!)_K_AhxkN&5{O1*2PeZ^at5`!)@vDjEN(xWv_@5Ty$V3A zmCk-Gd3XiDZbuvul2MpP^}^$8V;n>V`o9v`o5^AASXJ?iVvl*1ct|~Ov9Hi~MWp~R z>#r%R3t&L{vYPetjby;UhNgNavF^uVQkD1I8MNRh+bBcvQG;R`02PUP6`^LRS2x0^ z@$No(Ws2bWzU~PcFg3b7OT3`mm@~&E1qAP(KfUbN|H0d4(3N}tYkp{d6(wEA7n4Vi zn7;`=!cL1fK=p5ExhGH=nDsbfr=&PjQCC@1nL3Lji|tsOUE-S{TntqoD_M&J(hO{;>Blkww?JNU=o%bhzV%O$aXm0{nvXG-V=ty*X_k`;x+OjC3(|h8E}od zz*HvH57a(#?w9g?vK-gRHb2bqzsfvz+s?u8$xKY%@B10;-c@&u0nF0v%VyjRM^b64 z|5=2<0agaCSVf-AyN^|Z`l+NBHD0sLUNYL>pk}B%qMJo0AO9!zR6oU@_K@81=W%el0RzJ+w|Q(dxH}9exF)LA(Y3Q$=>$|nPJI=PlhKV<$ws&d36dbuJ~=R}!QP^pO+u6Mts0m{R-I}sNBT)5H&+3&EB14!>8~uj zW#4#C{$>htz;yPYF9lWLpqKG>Sz(!z0o6CX1uyH*c*D-YU01`|S6%IFs%S5M6oTSg zfMfaD6Yb9P_TWP#tZUF@c#|232x4FT zQL-XYSJPJ`!-=O2NHA7XCX(okFFHMXPp+Q}qp$AEn)34(&CUas;WlJ356QBA^qY(3 zoJ;*0yd+MnxBslFUZJSt1z%iPVzXP$oWe}((mM@dKZpAk*&RPyy4z>lYvoaj{2Ceg zUOu#M#i+DOFD5}5&QR{xdU6#g2S>@tpQQmcrDIl?GE`6=24tn zu!)I6=oDa@Nj>xUDfo`zE``SA#gpPwXz`)5<*QMUA%s&$5Gbx{xlfQC_G}Un81?;V zGD#C~BnAS1KKrIbzZ&Eh*3)QRP#mC;k`ff-|wLAM2=Ncu@wg2%~A4W=)mv8370HE{-VpwCJXUzN=C3!cM z%s_k-)OPs*U{no0E}4xq$RO{gTCtH)B_BiKa)I zyF>2FrMS!I0wux@HLY)C5Xqsh&wnb&Gvsc})pjDZT>0 zLcss)J@c$32fOt245UuGS9jm)L*#i^d7uB!p*P!Q%<`Yfz?J7965;#g+0A}=Kbn|G z1o@!-5LdmoU&S&KO1fvpy|VS&3--}tmh+8GYX;?B+BHo-~P)c`9Y%6_xmYP zk&CZ#sGAQcAB_(t`2@sSNyt%yoL$!9urQEF-MQizaxex1$-m1bUhCl5fU{?wyR@;` z2b1@f4P2yP0z&&zgmXVVdcZ4nwY2CXT{n#BEjI#6^%k9qK}Wg^<*4vMylIBw006LF z0&Rbzb-S)Va!T%92bHOguT{V!zUR*ol&34&u}PZN-di@!I{Hz~M)X&{-ZxOLFmYdj zH#6Qk7}(w_isw>rRgH~kMSzEM`zKP?gGE!~2n%!Dcv7SD7xm89#91+Yzmggv>N#Qq zk~mo5ZA_S|v~vGIQUq1Wn-}N7P+)=j?;_4Efrj?kbb;+B*F=Wv1zhNwiuAc}X}(O+ zW3qrM9o3W)i2vQAvZZlE8YjrPOGhIz4O-d5A~R}MP0X!=*63THxzBkZt$u!sBiK=IatX-Xo9u)dKmYo$R#HxJ#GEur9Q^7q6UewJvne8sGxVC z?qRTstVivxdRv@)PlNm62$^|pQwEcZb?4ue|2UY(%t$vnemeNusJ|J#ehkH#1~y>% zb*}WN;cUQ>dByw(Wr*K(dqPYacBee&vQS$y)vG|WrwkpPPJ48vKxhwNMgSc3oV8!3 zsW~r+aRG%;t9c96FTUTNa4qCV!P?}kc~^i7mjLgF&S z&z|+7A4Z^}J}kxkFD~I}F& z>83fF-qJF^j$D6vOr;f~%%0LNZT#F!CljUc?#9hneLL+Jz695mp*W%Zp=aLpmp^6< z_%b#iF5!tS>_`T}Q{^5ic$vxkjcQn|L?E252knk(3jQ9$e%qenf0H&>(4pSEX>kbR zuI?e4X=ZT|sC6seFT+ljb*%$jr?30i(1jXnl_3%;8>##*7gfJ^em)JUj+Q@?dE|P^ z3yp%xD(G=^4^=Vg(M0(Y&*VjlSC6JIE^)v)cPSBx)b$#i#8{#<=t%f_7@ zru95A1tst-h05B%<#(vpE~F>Bh8X4b z1w^`Xy>BWY6aFlVf#+PPKq!21^wXxMxiLjbkBtK;G@2!?B^A_I~R#9PL zuO4=e5y`z}Y2201e*LV)iXI2s@hDNmIL&$k6TDqAWiI zF~nB9?=R>tQVpZ{q%g+1`p+= z(0+N|+~0Y}Gst0ZFr#M#MXKbXm_5lG+vnM;?t!t=_21F#EP1NX^2sL;-*kisU(1bn zF`}7onwsVn^m!+7dZy+@T`Bq`4#D;l!B-MKHHsxopat_3XE0jQ>Ur(2Mvha_nWcJy>>Eb(g;eazPJEC&u$nf{_zL#qGnjfp|;3d=gf(1Xp7tte+#DMM%SI@xd z2`8bD{!LH@H|pmxJk98I+I=}(eqbzOnBP&UuKi3B+<6!N;-tgqSn%o za3mLCG+PbYmfe-j?Pn_XQF*fid+cqD4;tb088eSABq{_0iG;}8y)-~G%-NY zNe2LI`^#@|dtTAs&eL6OiX#&q_@|07hgG0o;}az-u{hBcP)kLTMPb>b&Qj?8BO~h1 z$8(C*1fpEKh)x=>5dPq1bwf^~4{%ah5R~6%&4yCDk=lkR_E7|<)QvLM%Ib&z<*V43 z8$Dp#TKuuB9%!R@8XiNiNsI7t4_Cxr%P#wmHyW)s6>T#W-wQ;ZAJM`_h65_><_Pxp z^XE*j89;*hWUOj!XGALH*lQ_nSxc0hVzXh~E`9#u1t@NvUnC{qHK%HhaSmt*Bv_=~ zM*}vz-R6Ozz}dQQ7wzLaW$&pOgxY|kT#DVYA~RZn&8IM%^dRD7fawMuL_@{|5xUWI1gj6q2$ zFhe-sqNxqF9RUmYs~~A4UglFGYsRBF-oQWgBimh+z6W6scFq@{bw;m>*5~-U)VaYDgIXiW{@4f94L`fDNV}Uj}Yxc+>r@oXMJ5# z^eNuV6dHinv?@lh_4n_N{;XsdeIN{nU6rmV=2$lNEz&5Bybsx_a;ZS9 zpj)SOdIwx-k3y*t*Y7TTKT}OjV#d8>=6#-bOIwLjD)3 zG&_Fr?DF~4fin%+^o*mOwprkxO*JR@P|<7?q^BX=JjxS0!A?wBT{Pt$0i}J)bju47 zft;UC5vG)_8v%z*S^F@Bq-V1l>1i+x(I>mB2)YDGLT=i*0sh)Iq||es^+@o)t-_12 z7R#bu{#G0*`b_>N!)0+^DHja#Za#k1OzT{5fjfdxfr_|8wuX~@!LFk33@TWQNf9mV z$V?h#O4Cj1yE~c}g1>jqgmBM9v`7WB^8|-y}CNl!rjxjd|xDgPyeaOjSk|MMcWccF5bc8zm_qV8jyK2TR9v(;j z+(=$1oU#1U$3&C2)}1WL2Hj0-XFQB#qG@h$8i5nDtgU{Sx}9da0Rpt%b5)_Dfzq+^ z+8EBX!Gw&)l5G8Btb*JGPSrn(7#G>g-^#Vt=DC&JEjAD{a%>4Q6g#e*i<=OdHd|}5 zAydi_cBmW;RfL7Qv&TeGp%JB2_4$V!I~8X9-!num4wqhFe0=~LTwO^%XDfqsFx8P# zo19Y38JLgq8c7}{`$c!R@ps6R}- zTwe{&3S1WUWfKM+csge;p4kPvEDt&Ic)dMod!wI7)vdK% z)BA1AJIU!{sFzhF6ND6e8Gn$WSH1EaLCQzTu(`CLgrp=jJ07hOR@30n?iB}SeJqcL zE|RmN9=6Ir@?RKDEA#{B0~h>nQmB*gD|x#%FI|j~s_7UdJSjpB*UqrA?F6Et%^x^2P~+c!FTEu|4MJYqxz8!h0_hE=!*Za)JluetMro zHF_lFinLu8TmT}Fg9pQjxKiIkZIY&l_uZ(vF$OL&^HX z`AcI1gTu?sN}{Ph$!ePl2aCG-FkJKA{omC?zzAp%o-wJzGLlv7YIegt{j!Lg_50mI zOwR}fBbbVcO5?JlrKp9?uH5R8njl2F{xRuCg%OrQ{nVEv*V%AYVWBTck5>eDdmL@; zqqgKhZH(`1vSO`vj>51amdy~%9T=DOha;G zV%$MX8u`_0z8@M}5r$GUu-qbS3`TCoD3ho8cvt0Zj|l4STt@D8E%O>LBWCxS2+j3; z2}T~*mJ^Ob6abF)RmEFejw)5i?y+!X*U|9f>MfPm)C~S2yh}6gQPa^S_PEI&t~Ot{ z-Q9s7U@|nb@p4^%+FCvP@umq;Md4xP`*q2;pKfjxk^e9v&> zb54ycWZe9?MWvd0k1eX=XVq#M$DZ>#3p*s8`~G<$#2%#ku0y#6L^m#Uwp$1>vp+z(6oApL;J#cD%PUBc zpAYf~p5}H{^3EVk3%?6JGmFnwhY0_X1-E$W?$b7kiozPsXN~h;E0`YlipqB?IR#GLQU^7F4sQ0A=Uq_q55@!>8k}AhK1(xklIy{qKps@qMS6)-Q?5!SMi#N{ zS(M}FySk(=MbNX2&*}H_wyo@S^A(e%nbrA&C$cyC_v=_UM@#w&DF3%pU}XNE!4=;7 zP{%{&%V)M~ToC|E$yTZgXPWdt51v{SyV80{7HemN1x=>KLEqgNru0TsM}Lcyok)n$ z(iFf`#k=uD8Uwun$Cr^Dt5~f!#+>JJ2PJ=C)jZaoFLP^huhzJIBj!y% z#UJ&OKNn(+{Oe7w)^WFuccR8B3W;pJ2Xd^}o9;0wF`=jW%lD9exlh{!U;AeIhxU(K z9`A}zrINo;V*L@C`~mA&babRHP23n+pku8wX8#sxEDQ>D-mnODTkd}mvf-Or_=t(Q zJoTXJ1Q=qWk{LiDXjr5gZ_(&P-ERE}T1VIZDoNk5-HIA!Nj%nLnfthq@5{P4*g*D}0tItTWl4rQYW|I%F`NKJdB;}ehf*Gsn9X_SM zy4?fB1u64oXp9geF9j%>!zLjZ2ztn?;zu04c&H{v!*lp7j9p#e=CGBx5E#Bmb~~0| zTMHwp(TIihe(Up&a)STJV@IoDs7e#Oz-@nZ%mT+)A{8z7r>=p6EtCP6=wcS~?bLu$ zvI>Y-$)&|DuYn^MX4bqXZ=6A==H@X4uc>lfWpfVU3mJ|;EoiLxujaGv zE19-jk^Vkkdxd-3B_)l}uk`zk4J#7lSeGqDjX6v(2xD^{orwrO1|Yd-55Cusjt|^{ z5CB;roOz>kPg@tAMU^PG_Wi2gem_Uj>TD}vK}UnFi}>JR+q#w9!9t;ckpTQ1g6{r0 ztLMAePzG+)qs43(2oGMubt`=5Iq<>9e2ra%u&@APd`~;5Kp?dnyu4>d^aNv z0d^YmkgE3ZvUi=x$NOlhe>I@V?=yzp94tdb>PFLz&0zDcew?BsK}h=zz=NJPr%dGB zk6_AZ(+NszX?D6~`&fQZ^02n8*YV&xk5#Mo)*4R*drDXXP)y$zGEh%ga~Tf|V}KWN zGLLjyVT7h^H;SViduI89t@&}?H;CVN|4g&WtK~G|AkdIkt27c3aObL2bH_AA$Y)p; zjPsWn)%7ptmi7x5;hN8D8_#d2KPA0dPH6r+$M{)r$FW54J%u)rKGzm$uH+~l@dv2k zAyW&c0++k5&(kJ|i-I>m<;mmZMC|#WR*T>9Ob5)7s$nK3naZ5852^tbpEc`Eezn>o z-u=yBIJrwHXqv>BPSxVBH4H{6Setd_VThR}Msiu9W$N*O84@$|1l#OBBGPwH)x#&q zo$864i1z={Fv6=vn-L=>m2_OzIhC~YBGw7~RQW<@b9=B`Z|zq;+r7)RxoTZCGW?%T zZ_A_v2jUv>#ABW7=S-pP6&WT*d`zv$fdf*S$vfSA;Pq7j-jwKI1_BP5+vIB6@`Di9 zQ8R{Z`hJ}ERKtQzPmwW-&s~uIdMlO>86F;*r(q9T&-WnN&sw~c>Z=3DiCojUrJ^lx zzFVE{^@XtF`CjL+ff7nPQIHL-N3t>LG|5AX$C_dW%a(NB9%!J&juD^M8r}X&c_BN} zHinwzyOnOL_2Q_BS*VhY#N^|@2@b2}p$Jon*$?DRBX@RoU_M0)zz8Qb2P%i`-`z=n zZ2&?-(NIhPmN$-aP_4`v3;b!Yh$)y|WM#nZqSQSOlC?n8YqTGnXG@RUefbX`HHEw# zYhZfP6)h|3{VU|2zY8GVD@%1l*;FHI23@R8%X(NBY{oi zqu^L=tK^MoGIHLL!jPbF`i ztChey(n)M3%5B9V`I&3uR80CmhO0i=9*X-O`LXwthgdKL@mZRVAPJ$kwvuMZIZlSX z1+E3d9{3awcN*Hd1FAl~-=*aod?GsMFNbFASALGHrxo9jv<`wM5C%Fhe5*OlD= zT#c+nnYX-GB7sWT;qJVYkJM4R6>nxn?M-eFFPk&Y_Tmr-IPZdVu+uF>_uqR#hW|UG zFFm?dog|}aC#i=71ip|Fa7e)6RX0YJ*W1!8+P?f!|6VnwFA3{c&HfwHc)pO0J^eH- zG-O;^6rG6O5AuDOB!^3ZCw;xo)Ujx%_N(gcQnl>5_P!o(TvTl8Xr^^Y`D>j;_ zb*|8yO27(U7Q_^h(x3CBioO6mXpFZuAxGO;KDTUg>P_~GtyoJI-Xj|K{+kGqI+v>f zzUNr84nr^dU5kME`s2SgUr60z^-HANM=a*`+dpS&wh&(pkAt3B=LrB(NiIiMJ4ric z(dkXb`;@bYO~l$wOquWq3w#Y|5d%xsGtKoSVytj_;P%+!v810~PH4Lm!@X|RLe|Sx z=;<7;fsPseZ?_xzsI4!Hj0{G3&%W{V;Du~YZRUDN5<={vQaZ(A4q%k(?aWjuAs zD;$%LdW*U(W87#!+rP7ck81PhJ0PQ@GQ2-L7?C9S|$q-A>f`OIHr;(V8fRxoewySeN-w)PU= zx&^eO&V@qhfV|n6w*Sr|1%MpUH|-peZ&@~{5BV+69mfg}59)5qU8$ooe*H>n3odq5 ze1CjH`Bn7zqgBs}D@FUPt)9eYp)W-`wYS#y`*(0}3kDlEdSo*UGQz7Dt=T5*wmr_H zUh8=XvXTPv1V*XQ|oEc!L*L0yR8ko4u6ubvJ4 zC6G!Xjh(BvnwYxUSoR_EJ;^9M4zhhfskD1jlAfQ^Lqr`xHh+w}ZFLPfyR2;aN7& zE&pmMI<7(t@1;R)>YY>2X7y(~;_&+LL$Bo*jUv*9l zQG*yKYUM>go|oj7-{}4s=wx(MoPz=|Yv{JZccYnIMsVY3n(G1O3ZBP(1IC_{_q>U> zg@9_C1#A6|pvHV3$wr?At-9|t+;M2d{4@TnJeg3vLos_Qg&zK~-6PtY-53J-BC-~- zuxIPHOaB34#DIB0jLAl+z{$^mXMd(j9HsK9y#n3JWo9+eb{U4Ge^2jo`(wF%sjVIf z>%PyWqIR&C&$=$ELnT=Y5)I$}%o?LI%}TW@ZN4OJbUMq8I`g`B;Xnm3|D+;US^ISg zH7VJDE#i>nU`wfwmiW}P>DD7ZA}Bz+I3-H=pW4igG3o)k*P1Iu;L%@Ww43ip`ogdg zuQh5w!r8*}CHbhPx%HvPND|6w{6xf8QIt^QP2_yKhrsB^#Nq=)*&(Ax|AV=4BEf?F z-+v?ku{CaemRVm~tLXN4O4B>zRz2LMlPfv4slom2`0x%|Ix&kKB(#h)*h z+kVxr?J)*RQ#b9-C&YI@CY{<8+x?nc=Q#7dC7Qkgt*KHE^ykdKKnm~H`{{-H)5+>% zWdYu)QA9G;+R6Sks*m>Q)?*+&in}GZlunxc%&v<;tZz3zUQR|F z$n5%K2cWx{(VtrPK!Y+9!}HPmQTPETEgg~gaW4u0F~Mz*Z@m;-{mm&Jh4Jw>21XRg z36J!2XOF68V}t)nFaoxjx}tFEQcFMm1iy(iy3bZt(lNo+d|LhfkhJ7`oGO(pX$E4UNIz9<5CLV$Moq z0yg?APnn*MU#@CsLh9#Iwsza7bH+2~K%0JITCH`Grtd}Zcwf`@yB}?7=YCCipmpz1U*M~n2Cx10 z$PrYs@7tZOAa>_0KYbkL7K;KiZJUrAE+u7Ugs7lqiw}*iy8@st&9=uOzZjo^S)BY@ zxn8I0#OK~5d3m{7{!*#X1KIl*rtvM z(N#YmM&IzYq~IA5()u!jCh~CSH(!*j=%(o3gE~cR$kfuY;c}yX|$OdwDeSNN&Cw$i-Uf}Tc<_nA@AuU59VC+(Nj)J!#t zccaULh?w2hG?AmQgh~W(yP0?@Cz~W8G+?GVNKAqOl_!1$ZKHdQ_ZQYmm>Cf(xkn0P zy`kyX_+%nEKSvYwAG@#UeyM1cf>jZp${@u_Cy3vZSc;(8aq^5;_OjMLlnj}OZw!AQ zmllsqL;mwf&oVJ_?F1!ds4*cSyxx{HeCpkvdpB!WqsGm6lCl^8?kZ!^TKCesDO3#- zpUItHu`X|Ph^bwEudPDZZF}5zMw#(XB!)!b{*g3xsLTT#t+U-G*@ zSKsA7PorMurReyB_Hz*sJ51;rR!W9L_r@K*pm5)$MDfd%i{yG2+@;%D?XmwM;r|X> zEA*UOrJkB>#)VHD^PBxL zqj5;>|D}{FqF<=FX*}qpS$}MJcXQymZKN_)}+}$*u`9-BjF31vu4y&lmE$ZVzEvCB@dj) z>7~3) zVr?&Qs0s2;JYZ%VNz=~NaYH3%) zE`zT6e68sjM{2Pv4M_8vC2Ma%a!f}I`skUVLsfaB>A_Lze*iLjJf5-EBdFL;nxtQV z0z|&1z8m89cIvvSjp~pf2s&(iqrTBvC_$6S%z7>xyobDOL1={&ApEn93DLhYiPoU4 zRB{9TP_Np?V&YGUBdlC3f&9cB!W17CsPGq`s(-|yHp0~yflwaVnxBo}rc z=n?!+KG0>SX&Jjgygt6H8uaRFbWNTK-kPPLar%Zb?A(XWRGYt=9RA;mFo}5?=;`K?`^NcY{9CVVN>p112ST3cqfW7Z zTla7xe3V|itxW1JbAGqBwf5A}QnEvD+w)~JYa5)V3}5`rr^Q9UB$guKP2p?4gD%kA zN*aGMTH%Ev^Df1yFe)pUuD#ng{>p8g>ALL!x8tNbz~XN@7?>_(=Xv@kd0E&V?w`W3CPfpF?_k-%!hf-ehkVBEsptSflCMd@nx>Xe%_ja*Nq3=^6M1iOb$oUrDpkvYnJuib&YH$^!Oc>VukTIT~c2Q#nI(ymPK^K z0r|9`BPb*7d%UudE-`se`Ebd-m8*KfTI7q18iI%k)g*fdnT%bX!{tE#QC!n_fv2l0 zP4-j`(qZ>U1bHYbwN;(Y!E&&g)bsRrK37L}sO%|0Q`-Gz;BUVJjb$I#)n*^!H*J97 zjdv{eHn>lw#|v7ccrfJhH9COC}W`~gy*-=1m!&j21e+F%*Fn^OFlfj z_wFa?&t$iIYo!_7GseHhJOKax)AIO_wnF-9^UOb_{7@L>{}A<-aaDHD_wcPK9n#(1 zB_S!&-QC?OozmSc9f$7bARsN>UD6!7(*w_?-{1f9yt!WQYtQVNS!>Pg4Vm@P(!vSw zn-B9M{PW?@m;bsU0pj?fz_cLKE!E-&7w&)miTdw9Q$WKRLV2WU!hfh7x(`H`>TdZ2 zT#wIp9s)>u)#8Ov0xT$T41OLVLJ14|VOSC2t9V)njejIyFgWv{8s*yaj_6rEoW!=x z9BYtFhd&X@P6?$hP5y98CRGi3@{wK~mbhP^Y80&*#d)^pqSE@U7%=&_&vlp%*a`jk z7`ZR??f;QhgJtnU5h4X%S`VZjLaadROmWT2m&Z_Ku;dL&mm}T!f1E`urGEAoVq>5) zi8||N?+oUnrN@hoA#(U-!}n?$SH(cfypNrnJ$@yYi|8o>cymPb z@8HinKSKTYk4w022R3^H}X5@j8$GIJG!&5epEXKi6s(r2#M;P4#w0j5lDE|SU zQ)`Q1^=Fd#^jZ#p3{1u1d>dgjv1@^14*UbSh-VqVd1w%WF6T-x{`BDmUX7mI-}0`1 ziV8g@`Tp^Y)Ma#i#PaL;_^1&(EeRz`Tj#^sCD0x`HuDyjL}&4@YHKFY&F&4%Je6~C zF;SB<-PQGG?Kv>sWYjW!J2zl8YS6Y)N$Xhbapa5MtK{)Th<-w(?1c@Kp0L>4 zXdtZXFL}Y2q?z2}u|K#RWB>h#sUhJ0D+V{7knul9R-M2vjlg3MUSBV;-hO!sIl#94 zuB4Pw3(%?pz6Ab;Pv6m*arE39G=K}u54_$82W-C$(Z1c}W(?$`J-->&;; z_p)CRTjz8gT@*z3dlAYi%{eu8Zfe52whfkCJR*Mkw_r~C$K+kYHrUQU&jO&V1djAW z-}&eKKhN^Y+O@rI*7ibPKcQ~aI$rFz-kID--K0W340@rR=+3Q^aiXYjf84t>@if7J z8lZXOlR&9aW2(vn5AK*hkp4hzi9Z$DkOZC=3A9yq8r5jy<_6yFMs=runz|{lcQWk2 z!S%Uerp_zzw`8A?qe_eQI*>pYEg&~9Cgb=!?Z5tC>~Ms@njFs7^`y^f-^@1m=_=0O zDL`$rj#|D+``+SPO{c7G)I5mlMHWed1KcokYed2ozxsXO+vdai$yb4}hc|Mb;_ti$ zFMOgR_nb`sk}(!h_r|YveAmpWbxhHx9doe(e_sCE@H_sXQ`=-(7XU9*%UVr+(LPe_ zy1|TfJSHhSg!i&r>9`dOJ*wK!t<`^<&Uxw5)yn^Tq2p7_f%w%?mAFNNfR_3 zD5Mm}tt%Ah1i=tbIA3!66r;(>7w}+x&YKPC2~&|X=pZOSGeEhPbPPH+ zl~Z=-cQ+S7jGB0yrS-2B6(EFr35;o*XA@DjmdIwmJX;$5b!${uE(V-uGYO`phy4>n&Pr7 z4;8hW?r1Fr_XiKrta(FwXSS)9R6z)xJE%>l%hN0BQRd0_bn)Tn86Q}{B=6Cnm1O&c z!`h*+lE77zU(HT9B;Gzf4-Ltf%fCM&oEwH)C+=Lj9~Aj>te5UYOQ9Yc>m?~?hK}`+~yVL zfrnrIz8FSEc9eziomkkn2#W1~L1)%E9^a>%_LrK{Z4yO42fsFSF?8{@lg@&%x9gnp zvnQ|693RoF7Knj$0BKD7!EVWC>Euml&R2iQqTWxOGpQQ0+QbS1?G{-xN#b}nZH*EL zLEsd=(fZ=wxFG82S@Er=GG}-so2=uvHI)-u*X06lgv8u#4wY|!Cr@Gg|3K#>VyxHo zU9?Bbe)ov)(0_)H>Ft+{BN~WlWc@iGT}mhTQvGU0+7RE)esxzbqj+49bII)}Em~f^ z)8#lE5pDftfaIIR4Zo$eJzE>Y|2!|obQU#|wxYKrK&Ymv_ z6?c1X$_|;->c`6XtaeHGkm??sES_fTpi@-+*hOS(_ z&+m+<9wQ?ZP=eRDe{Sq8FLlu&d8~QEoONB(?41lM?I;zX+urlpj5i1vJ)tg3Y(Dup zw-_JVW)?NA7!<6>c%U-hYx}R#@{-_EQcv-MeAtDxQ0K#cZRx$*lDr{0=HduT`%f@B8(5$f*a`=H$*w^Wt{(%M^6DqzFf(7A$Ce&* zI3-YuT2!pv{M9u5u9_Oz@8WLwWHGc6887$bZJiEKT7N%zY0`DRc;)w1_~{VQm+_My zgkkFTZ3K!Rceu7VJ`(jW`=$G}f>IxK>uWq~XOeRAc!9AD;(N~Kug4^Idb1;0&N9dn zFkkwD&@qm(et-NP>&2dh7pgTp89qSScxj!$H_`U$U8X?r!JTrUDq>5Pit%ipLJZdVB zpfQ1sl5y{0A6tj7{jKV2*ooEtl@k+FgP^;PcLEyFSzRMusc`YWmnWvLrLZ*E8W-D z`fW`uupHKM!_zlcLw@wG2ro9J_?}hyZscz3AXr#`Tvx^aMH+Rt?4F((Kh+jb+Z)N1BzdM!Yq394?v>Z#5Tix)cPz=H}z3We3`JBtbK~Bi;fU4~pYMa~tog2~i#`^>6o>zkAzKF7yQI(xpU^r$baYXRUguP7|j&nhv`th$0Ijgll zuE^Qi&*7PA2!3wYI(kk6k99dL@AGO}pwHI&Jxfho*yb&9j~_TIZX@(}f+~Z81s8;R zcVc-zF1@d8gvfevU~ol9ZLsL$J^44?G7G~w-xbJ2*Vjb3o<4Ix8nN z*Ny5cM%=n$g{rv&*2);UdlYX*bn*;J2loz8`?F_f`p0I{MrzCYAEW)hv=<#&(tTpm z8XNp*b(FW~wU!oNirNX|(Trhb9A{>hQJb_8zY-u$w5V=*%A8;-vC*8}T>ioIcPGNo z(2((EI;lxtWq3dQ(~DuFvddi14?*e&=z#u%(OGTV-8SRpRCPd4C;fE-`dZ8FT{Z!d z1R7mp9N)f=Hl#(ApW_Q~tnXY+<;G=9Y>G2DnYlVNFgSa22c_i(@s4+QJuCMb9^`Y$uKb z@~}TqX0%&ahTGKmi~~e{Y@HLav7nlYW2#Te%6$HrD8=2NPqhgz;e*!bh;HFegCI1Q zuAVox>&-?wV?|#kUdWdWr`QK_eXM#59?L5txJ_SD(uq^KOwV@M?K%a&$)i6vt72^h%{p%(ksClXx7u9PW8}q0MZ|gon zP0vFFpc*Gg+Qm&~JrkbD%pEv3O~%9?p#$3V+%NU*l}Y8!VeopH0w_lo4itSl=~5Qn z$+5(~0i^;ev+-y^H za}>s)PnJZCwcrJ0p2Lg1PpatJlO;OEW7a*d#J(^Z9`k6q!^DvV)I80)vD$-tF#ne^ zYqcr4;JI9DpE#Q2wmSZxJak!63sfxBUKW21HG!sW(6#b7?skEmaKw5Wij=I`_baJ{ zF~dE48Q<5Y!k?3;>(Pz!lj;AmN)WK3DcpvO5(@CnK@aA_9$)=^5R^Qccq&xbWJW$A z=1g9?&A?DaxFz<_fgJSPYo7ibI}YAn*C=`W+4B>G5Nk6>v-)Bs!eBgI85^K-2vJSE3rN?AI^L|9ks9|2Op2&<@wC?eC z_NcM=v?#^qt;C!!3G01`skxinTK1tst)`n{p;82VFntzK;&Rgo+|~li7wln5OVigh z*2MH?sQ@#oQj zs*e3V_R+?T3pD}dDwRqriYS_#IPmX|)!`%gi<>H_)Z^0qQT=#CjAGaqJ}K+FC9|-> z{RF1yhQhcQ#Zbno6ssQY?wB8-1yDS60g~=N4_yB$`Y~{3HFJEX^(VX6E2R9p2Nvo{ zWP`VrU@u1E?_Y{k7FQmIj#_r^gNS9K-ORgBoPMq=$TnEtuI^N}_G&X*%*ivlNKI*vexPkO)vFj&Qw1OB3wlS0Z6LI5kVP8ZmXn{)=K)do8_(~K7abj(Obf-I2P1O9g$QARRK*6kmyGYqhj(F&9i+}rml;t&G(a91qEPW${ zca;rPx+gGm-{P?%B8Ip6D!Bx4?qe@@LvnBYsgco1Twh+4k`@4bl|6j{a2q;6P^Z2A zLw^L0+A5*+PG3iCu?Lc-Z9*0Z{JfD=6yh3{g{+pHh{;8FbN_NU`2x3^^)SeMT8!oEH8IYQ zOF@>dKP)l${79qewQ3Vr>Q>eLNQA!Wq4&sK#v4=qKvcKWedEt`wZ0`VpAmw*qlJ}z zeVknXxeq{FG#03(R9}WpYSxA3e$jLGFul*$2uBBD-v<0=WBl20ln9w^GIU~{Px^C3 z`X`DVyk3;kS5x0P)tKKmQlJ4ae|ixHpJ^ZE7N2Rv5_}n7Uz?E{Z&ufEpw6Dit5Cbs zVn)wwAGZoJ3ELnZ67qU;%~K);W}2Pdx|TLIRHiXIk}Ta3Ki_VL0PDz|vAPAb25E4q z>_tX4&7Aq?*;UbBe{Ony;VC5YR_EwokxhU3##jT!%w4)XpXuM5sU zVJ~jFlH&MZHM_W{zCZT(X;-^KoVUi~Ko_&}6dvwK|td zyTP{L=KR&Q0IGHV9UX0{H9Q7>U`Mkfa2x5fEkBbGB0@493ZN0*uh@G_l=jENJ* z#uVMZfVNscz*^n*)M*nK@L5#S1uBphHWf!NPA4v@Ec~Fh97QhWmahW&t7AesHG&6Pt(~9gK=jMg|)Eb;6VRO*V`y zEIsl(uQ2pGwU@e@f^NM6e@-3aDfsy{z20g037~Bf^8&cevY5tL&!jJ_vW9*&3aYVb z_Vjsvc&R-d1K>h9f8p8sWQQ8r_d+TH%$VxR>n_QhRz46nM5)nP8*y96dn>}jrWyu) z9Mx7ySiaJKIRR6|jQkRj;ykF?Mwv6KHR5@1$ z!LhEw@JW-2yz=TKym?OF6ZB&N=*+eUP$}M`OQS5R$IFq#wQg$Dt)wd8=4zeley3Bb z?OQj61@h6@1R~SOwSEOjNt~F~mKbON4@oThmzjO9$#F%IE&F|nt2M=G<^!i4Ne94IEyIxwvIB`5aAGPw&CXlp@>IMm$HLMt zS>eP5q`d_V41)GWj#7n7e@em413tj3QX7N*Om&{ci$9h%?#*Hqg*)t}KrFzozsSDZbPrj4KTjCo+KLpn>qkhnP)0}3lPes-=#nw)1 zep=SUA02`-Vu$fenJ%34Z(GP0M+J}u32r%fTwCaM^(CisLuw zL$Lt2k&1JC#7$c9?B>9oMX0aYxuzEfLv8V+!!K`!kr0P4^6T@RhR(}rJyGvU!zpmU zcS&NTB#%=bOk&)K{>ENqH1BzhofZ_nb+onv65zGwKi_}YNX=VbRheQn142bApiARv%g-utz~SfM={rs-T}w= zr)!lwO|~i2NK+szRX<$pm>0rh`*LnPd$7GrF3x7P!kVd_RI?o$fEUz<$@aULk?qf1 zM?wbQn@Djt!5U1qsV=2cp!C9 zLm^(cyKlJLC~03_^!dQ|bCSWX@w`42Z@o{!ZsKA2PGWb5tn08pjesYT1E;KDTC7G> zG-jzJt&9;?Dx1vI;sVpghX+XTOk>_t)KqTVm8B?4ET>Mji>8odYNv|%i=)9_4sZ~LC; znO|K_LmvvPnt|NTm;Avo`M8O5@GU7Vhjx}!?5W*oh?>zC^HiOo)L*F_TC{7Np#={!Cje3=NonG^7|v4fo+JN3Y8G0DZ(2rp$h(~)G{eE^ z+gDM8{R+P03Q~jXHzm+LZlLj-5O$s49X_b(R#EQKQ{aK>z=v0m1ths$;9cM7`8%tg zB?L254xXp^jId*Lz1=`Zp_PO{{aPYx)L!Jlrdsle;PiP*(k=E$XW!_XR}Gfy_mqv2 zdi;3f?F0_1RY)Es@1jGIhr{IJ~x=r{HeOiX`zscw@@>qI1;SrUuDJCxGS1y;GW`ps=^fax~7I zejbpbY`Clbywhzi*zn^~ABedOr%^~l^% z^~chcL1SQE0L?pRe)4n*@C9FRRq0+c=LQ@p2;A@bRy~=r3q76)Kdhbj5aSolZr7Un z%3{q8Y&V!FzbMMcN`Syg)yV+jud4hlMq}$%?wsT7svdgIT{(c^{Aj+J@lz#uPnS>9 zsro*|Na>NfkR)H{5ApXwoRrW=e4Hl9;jx`iZMJj^@*jEUhd%Nm_0m&eAw^WR5=l{R zpTNrOznZxn5tbvmaN2B;W2lxCzLYUa|I4XnKu(2DpEULCj}|x+rjlsa`;*><_`cz( zU>>!nPBsnuS$3DBcA@%WvAeuWT!r*CemlA~uYZ$O7@>6>65YW{5a*HiOc+P9L{DNF zXg%|pd1jj-Rl^7cvw1uG)Dp(+F_!Xu9K% z<3v7%@D_GhoU4%2d3aC?$OVP_BLx(|#3 zHd6~3gb1Z7r)tjfhdq@<%0`5eBrB-&@}#6MBSm?7U-%|2=q;YfPQe1V01P)>Jx|p> zK+}RLOnu=|t^7Q)?W$g!`FOwhTG~$i@;;CH%eBPRe;#t1=a-0Jd=osLF0ymC9s`o< zh6BjglrFex{tVJ8uI-oycA&VrX{&#DAgFqV>i*dzZmhfgCDcFJjsxT1MKqi~HiWKA zjk6Z;z6-jGy@$^Lmk+)5-4$2;V4F? zFZMqJvE?r=sCc5Df_Jx+Gkc4$h0W^`gP9CxZCvkF=bDUUSiNX8pa6qYGh;OEO}ucz zvt8-N$FzKyG@+ckG(0ttEIOuHYAPHR&IUySF*O%cl2}T zy&J!4bp$h)d8p8fC}vXAP9C~WAAW-Z@((^OQabcz3c1Y}Ny>|yM>`CSoD21mjtZ;i z_Pmu=ZYRt_eWn=&RACiT!%l2ek9k{#B9*PYop2G#fskfp()BsIvZB_CNYY=s>Xr?RIEbD6Ea{`UxSNdl?x31u9FRe#+#_M58l z5oA>CscY~unN2Rq$9G8PWB}DpaZ~?ygMd)R^eb%ksDr7PrXp6`-wF2%rJpTLeGR3V z7}J%WxlEhj9NszU5=m6X!wMSiWW)QSSmq-ZBt_Y32U?JW!Nr zaDEI0UZMW-t)O>-QlIieA%SGyNR4Qr8<7=E%AiXK(a+tU6jukRSqUEg!MNqgK^@&TNdB0!LNmX z($)22s>n7M#UnV;5n84JT(*Gy7XW^r%a{-%oE;5bnyR^;(Ug7jxxx*WV@xyRDKK^q zem#CTm=4hj8XXZaTUz8f#E^2bTz2zN@k=P?gjBfirz$HB7uGF1&0%lsREDb(WX}GA z*5uT|jLy!1dc+O`4Yp*jujs0iOs+cPP0kQNoB#<-2uNU=A^fUrQ@+mCW)``|oOfAi zGOs$-xH;m7qD~g^?1eR8cJ2aYxA|K^Z;JcFH=u#H2;us{L&jKXD6J;~j{e^CU{N4t*w069BKjaYk zTImE)W>fA4YCFDng;bE=t?BJ{-l8^zeGo$-fb;WA(Q+_o@DXHiL8ZKll0~1}40z+v zj1^R-h7~5olWH~WS1A9gIdS<&eLo!2jo*9p5(Qa~%Gs#9^I*(3#`z_Rwj5#ChQ-GxcKt zlt~vjv}z&ls%g>*-p;1n4ApjIwKyx8dagNWd7Mf-f@7W1(?#vs$gH$rgTm3mbvB=d zXKQ2>_DATopTvi390@eN5%Q!i81AoF!6!)pUddpw8#;UExO;Z6ro*;C;?HWC-4W=_ ztJt=NwJgumJLSlb$~l~PuY|?EFcr-m1E2X&{5d=!CQKH$`F!~K69Q##&X_ZJP&m5= zse;+l5WDGth}--@Oo^EG0qbqDx>+x&4_K?E;f*-BbBXxMx_TZxg{lx6!{yzyi-s)z zS-XwEOwA9tm3$*mD|bbu|L@>Z=jqMY*jxzyR7F`!g=>)yL}GN_dP=unWQ2@&y>Vik z8rsq2^8kmnGA@JG&ot)MsVG?%XCd-@prl<-|3{s7PMz!VwuTLz(*{UgUt-t+KAsLx zur;(2WSF|8;Y-nPe|po~k0bU@6y*qib71MHAj<5KRjS%7y_r)~7x=IHe9IiKYDaFk z4C_|6Qnr5VbCUeaH}e>-nE$DGUNNVY;x=-#a6eY^5M_Cejay)E_EZ|D@*i>&CT*!X zldE>7SNS^UlQPeR?sB9mnB#OiJKO_1U&d_=Tf7I|_=;ys%S2#g<464Bcsx!r7da0INh9q-l^%M_e#WgNC z^c_oz!dG}uE8@Jm@SpM3h>klMyyqKbZ*5i2Wbk})R&#RB3ueJ~E(z{|*RxG7CA52` z-m@w9V3zUdzL(fUqeK%;l&VH5mtmq-G4l?-CA1U3bjo)xcv}96K&Ie={l6cSt-Sjk zRDXkkm|aYEnjtw*(vd9V#(oFO8l;^Lx_LOD$BPi={FFJo60dJb|5p^zqgHq0lrUJ}4wf>a46gJneT-McNCt#~ z11cKR7&j5q*|)5yoK_tNF>)BTlK=smt%F_MAlFSc`j9nallfo(@w|ymZ8O>MV@uo1 z_Z*ecLUk1R6H<@&xYV7P!j5RHgDFP<9H_PH~vJeC_q zRi8dgIifNB*B@?`DC8MFc~&N&`4K31;hS%+NAYY4a{p~9arAKoT#Fu*#w?5p;8(mg zIZl2bLF3#f+`T9FjuksKf{3-aClosxE_V)t_;vih4t70t&-n3Ksb0oz*MYX|i< z_MqCDgV6)8$;<28l&%utZrg!_l;SR$y^nZvw~p^*7{|CnyJ1@^Y^aUuI7xtVB)R6v z(;vrFen58g-x+Z9jKYDz;43kDcBik4iOv^e2<<0P<5Q!nzR3S|BBBt9wbtg<-@>AD z7~Ur$yw&E6(uqXZ+5E``&h%77!J?ss)6EmXZg59NmZEbFr~xR}G7DYV2EPaWFC^5r z)p-9NWw-nJ@*5;mDN|t%i{WM3MnoU$2GKL7%)oZsBe^AF4e20!(K z5&Lt~E3a*2P_=+WJl%okWcp;ajV5qOvM(t>c@HbYpckMizqq><9h@RR;!!_AW#Yx6 z@Wa!_MFETiF^b`O|9=M{USesIXoH=TqZ*Ym&Cyx*UIxxKN#&IM1nGr6r($RR6C52WL_JoS*^4)|t#RbEaZu$ORU| z&J@sts{b{6SnrhEU@#2jD-PiQEt1p%i8!x_>=sOlW{+yym(p%@6iiy)je8Rscw=tc z^`+#l+z7T9tDVO^^H}JsMi|6Sg~)-ZXWK;+Omb@e);n(00K~JEs>=z%8bt=F?|r`T zFd3vVtsXD0=ogv2mys>;2#?CS#y4HZ1Xz`5k2@zqLD0tkixdUfvLKL){3YrEAg1=Z26 zhKL`#X@RHTH>Qpr&ruI^qjoZu0Nh>EiGXIeHqgAlS4Na3s$bJ&R-QKd$-=CPa0fuY zi5u)ABH>CsXTSezY!>5(H4+0Tou+$r?+WENB9W`?KWH7hdUaR?C6FYonh7M6=$`-U z=Y?fp2GF{`vW3GCN|cKJtw1A!I1VNvvk0$-N$1LUaLoqRKwg723UJ?dpEYUGzLx`F# z!gTuP2+>zvDq>eVs9O3Qp$7m-2^OD_Y~l?d>SY4(3M*j+(%EBXubdlSd6&|D~f|$ByhJ@1@Wp@up|4+6(JAgH%j_Zj!d9 zFLtD!H=JB_)a1jnCE?NgRXh%=fO=L4>L}x?s&^){FPsAMAy<}xBq^D_E?!lxQHuIC-w@&8%RS6R@NG!bDuPln}{427m19vkj7mj4E$qb=y z`npvBiHAG;8$tcAk^ufo@Z8=sC`c$CzXO31wg)Q0BK;G>ZnWNdydcJW($c<@tmU?ctl1-Iz~-s&2uvP82&PiMtnmUJ_x>fU&^8In(KKW~WFDr{8CK%|>Z zQQ8SLLaC^OS{{P{g13W7R)gnO`+0T~vGOH!FD1rm9Syg0FpN{uDqr2FAKL#WoA(&L zrv{MkJ5VDRoUu})gk+?|?>7QpoIhfw*FQ~5D0AQ2R^w&wAK#aG^QEmuU(Wm zIGasiw;3fF1vz9a&QKqb2f%Wm@cJk0BljY$Zbj?iZTq4R`&G(UQS1x$0KnqP5;+J2 z_|YyquP}8Prr7Vz?&C7pb_&=EXSK<1jTj5RthCV3UMr$7t5kC)7V z)SKA7cbwO(TBQ=6h3D^)$1mh7s+3j#%E;;cfLY*VEM_E_1R4Bf2bF%b@$agpSfSAg z#>|f+5Te4e{!`%aI;&>^ABp+54mj^vOoCM6%S0P?(!!L)B3iF^?1NFeDOmeXjRhB9oaX;wz>E0eEt=z357USrnA zZNHt}i|u`}!efud?iJnzRO7c&m+sh~-E|s%IA&y^UpM&8e)|+yzA#MwOWyh+=J>GO zJ|nXPl4ZoX-PpTTX?QnkAf^KmhZulUR6j8!&Z1h zBewF~TirrQZ_lGr*k(bKY+cL~w!0zew?S6MB=Y|#tFv#%6&}J25RPQnPE)(!R1$m? z|8qcHu!zMXWh=S(84K-^^)r!ZmW*zS;sn*SfM?7A1{dHLXc(&#Fry1ZY|4r!Q^|-w zV5-M&=uW?EMZ(hhwcv|!Ox#@aS=pyFidK4LyKQK-cWC{2Ae;-?`2k1;wKp}*%*5% zGtUcQbN-_r&w`FCIAtvESiApAbl>ceO9!h^aWa3`16CyoCpRiK9C&2)9?cPP81EWr ztE`e{;(qi$M#s%|5WJZ=K*H8sw5?Jq0HGJ*n5T+pwaRO4({G1(f7}1&;BA+28cv{CA^*;V_@x49PZ`G<8Vw zR=+wdN8r!PKe^-(Y&y7*x6TC@i90|%ww5yjf9dH&tY`U4{z^dym@8zck0@v{|LW%( z;D6uK~_|;4Wx&1G=bU>cRgEnLv`kE{9a%kn&+G$bixB zcbWBf3)v`bn~OdT?33#5kqEbM*_4^^G72FpWpm^gqSX4+cyOh?{xL|M9@M5!E5GNo zQqpe7ccvrvME>SW+P~|Xm3q~H8ONm@Q|8)Xar}xZ)Nv?Uwe&>1h8ric)QKzVar&`} zMJFE4F*8nG*uNxu7@Wj3J6UJz%k!UnIWIAvV#5EwK)W^qN4^8oQsGaIpp|BH2fT7DoUps-`< zY34i@1(Lvwr<2W1V^YIK)n9F-Ms%H;^sn(PmezRpt8=2?{}S-M>q%Z}uxY=tTfm;8 zQ5-_CO-*B3ON`R;3HwVfzN+Q^$ExJ|7oc7VGbV3%U!D75@~r(q zenQ2syqQ@ufIG4I+N_Ij=UST--w7pA7wky%Rx^1_8Yv3Z0hbHRgeKo_$PW>C7W>3Y zGH>eHv_UqigGQN&qkSOzDn0a2Zs4s;R~a72h6qoojBO_lXa|H+3k+L)DDVzRMzx`!8ja#WFTU6aeJQJ`Ya|Jo#%Hakl}MH@gVogucmn> z^lmjEpued0l}Y2K?&p3WAuzol(cWUCjx%sbDdYGBkQpJyG0n~YsH$Z-0!W4aK?~XW zF9#ywB!sWp2)z`AQ=A}S6Ysm=anq1iHN{#y7>xax-Y^f1_pZ=fWxpnspNC>5#RTLM z*kQNsB1H|1@hy6h^C8UPYlU>aUewg(yh;dauUf zGz^QBOFr!>sXtJ0+i#dAUZf=FD!75JVp=5MWMqH5-T1hjn^fYmt>!(ebOw=#RBcWA zh#je#o+N-h)y|U9ZrthzJ29S~q zcUCm}Jw}@=8N=ABQ6h$FWP2f30t>2i4K zdFKc8)*Qw(_<1v7gKxb@?1zLUkb_U7m zu4$PR6r}O9Et5B8bIH5eTUY6BOMjkIStCvTfdn)spPb|_Am~-))T93V-%fRv)jahF z5`^H<3Aq<76#~#r*3#6b&MrDl7Q+qwxuv>imGlpi^1Wfr&4cDmk4o|Vz0uFL9$-YP zNJJ~o%(A)IG6z8^Zz$DAcye~mxyE&#ZXLYXkCIh^oJC;}TDfADL8gfewBnI{xXP`iVc$2vBM{@PI;lEw#+&2pZkf*sE@UsfkwBHg zKmPA;2Qy~osVvD&iPkiwh4M^(hKAjTWnUbh4{3J41J7y-8>u-~iBVt|Q~$%hm(OuK z5^Np3w#iX665^Y)C80JLL2-7T~WTU3J{XG+! zn33VRZ9Cs&F;1`-VL@8%ylkGn6~}+}GhZaw=p%vnOj1|s-rk;8hdXnw=QhIb?(T0& zTk17z7y03~aMFP=a!ZPiCJ+}jzeE&P!d;X`k6AvC1h&bS9A1qoaTl!jplWzPy z61Xc~B^1|G4WxydKZxD0H`Dt)-8$*JE#PJUI{93U zp7P>$_Caf8G$AJ^HX{QMw3x0?ig{0yj1Y~>IyhIZYTUS7XE{ki#9K$|-XSXB@hgEm zA}%gzLe2P9_+0X_<2>@f3-Vn2=3Xf3bPK9vf>33gRF1C`LLdk~qpj?~LoTK$`&Q@v z{4?cg_qlUXn?Sx{T2h=3y;eJspKO&=Nuo(cG&G_Ef-#IwKy^F0qqfOz(WE2 z^~%SPIP5mxUc+}?Tkkf{xTzoZ=-3Gxzk<-}3KiM2Q&_94xQ#U3Gx#*5E}7?wUFGYx zpxksu7Q@tu%@;2XL0|&X;CsHmQ6UW$)HL)<-tq=#=%%`?s;d9Ewwq;Te%)qmwWihxv=OHNu!hqvx1OeZ=y2Oj?D0bIZw|g}^RZQZ*fBHRFP*LE2u| zEpc8xh`@<}N{ztEqdaLLHep=G&F8@7;HI_;<-0VOHe_H*4^ggtAN?5itrsxesCf2l zgVxg7jSbFV!+Y-UGxf-KUH2EejqGW@HV~=ZB_COi87}-XCl#x1ydy&EX}Q(%H;U?T z{@nw@_~VMkCs#3jHv-R+oJPN-0xpaKibrk9w@pVIn>*@$H8zu%We;3Bs+(7zA{v2S z?tfbd9P*j`o6=Clt;T!90TiCKZ?At2gflqI5&a+caQBoAQ`)jQEm7l0h2tbiyzoFE z5Ih>1BycxRiJ~xy@XJFmFDnJb+iNtEz&-~_t8Ra`yW?naLZ0n!^T0En+TUDSVKwM; z8~H);QyNcqv+35yfzQ$~%~Lkt+LRa>azxl{bS))H#;yA`j}QBDSRL@MkE$B^c{;n^ zg!@lQT;d0dE-K#47Z9ytz1YyqR-~pJ}&}y%J z`9a{9i(`#&o!&m=3YfDzs;JN^X5vK!a=#E zK}2y(%j%o&HuhsAkR&0zdAdg6)=eRzzL*p->t$Ih#TJAtROkOjw7xbSoJ_36Eg7?SxZl&UVijVodHzKnlNGszy4O=UiH~Y`Es`a7HmwzxP zZ^@SMr@W8isPRotgMpE*GHQ|X1%rs=|F5;H{)(#Y+A4w~(j~2QBi*2s45b5z zG&(dW-8GMdFoblM(j}oF-3%b%Ftl_E49L(i0pIa?zxW5fS!;fnHTOAZopbiRA!04p{0Vx!NEQL3DvGCe0Rb&#o+d1D3DjCz`k_Z_F(Op& zR0>gsBHwCjDaazJlX;%^f3;oCl{t?U|JgT`s=Qj9Zb|1Y(c9D0cic8G)p=Uq7j?xd z3B4{USU#UBj!ZGy71MOT`~^%X!A?DxG>AB$8|nA*Kbdtm4BMk3d&00Qh{|3x+2QLp z6VLBUh)0Ld@mdvOlRLc#lE}hWE9UdT0S|U%c0){J8}nN%9B*Eq|3pXag9Eu26Gz_7 zw%A29A>@51Hj5)_jZ!!UX+l{QClW+|8|q|v6NajCq}X5Z^9^>VO%2!i?(*CGS$?0S zA{+84Q>~mp1JbiYZ{2l3Tu}4Ke}H^-rkL&ZR=*WECtt|owj3oRLs%XkfvDStnvT-0 z*5=6EUn8VVov9xMfOkwVAgJx%4nCSeEA=(zx8K)|CH_!v-1S>!2ZPr{EwZJXU-ME0 zo*VqM)9D8a>&OAH{e@?k{ujokkP_zD0P6S@ohm*#In#x}PTiEjqLz%5sG^7URaN)( zN)>t(UU%J~tP1d-C!r5vpF0Vpz?jywpD_X?Zgj|!@NIc?8;8qqy2wBgC^;c9@jV`U zzK%tA(r?8wh!cT8pfz}d+o}o;4NVlor+Rak-Fsn+7Q+#;hc&^0#tV&70S2I`+x&m{ zW3{}ycZ^g^-9fG*x@KoK)%SbGbx#!6rMdfW5ei+lY*mO3UU+o?iReSNR?4Gn!baRW zDS-Zb1Y4ShN4jPSCnZ^4QDu@?1>filI_?<1kdEk5RZ zssX-oUx1$eP$EbPP)$%^nlqA|xZGgybpQ3|xr$J*3-%iX39Z}CEnV>%lqB>f;*fCq z15F#vx z%U2fZt$ov5>wjz~Xk7c`cDke@X1j203Hz>PE3Y#qoF}eK+Gtdbn@i7;&i-wcIofur z;-$==`iX zHwvPTKPqkbZk2*|aQgT?E_I?kfvi8gML-Si$cA+MMRPlFw-cbYtkGAqv&`nR! z&2ggmr$Gpb43!>rWv)YM{2@yR4!zF)h>?*pEOObLk1EVBI?G@TdT~28+eeA$ zzA_;tQn3%AyN}cf!tYN&zH`g2ug$xkr9x>3B=HxU*%xbHuBi`ijb7z=oK3AERQQLq z-Tlx;dkYsNKRfqBkgw>0jQq^F8aGfUr~p6##z3#iyi?m{&!6pM+$P{jND>48DF4+V zqoi7{N(OmxAaQ=jb4}MIBpbRBW@n@Sj~1~yzy!qi`ZSU%^CSq(B*CTgEcU_sj$mvw zL&ok*&A>LY5H6@)k?A#UV*mMBJgbb)UPgwyKb-beR39H+_Q$)%#SigH7|oF$9ICSB z0Ps?xi%NX$9L%`HKs64e4o^lQue!@p=fL%bWsV}BbHu1amXJPA9c=CrjyY|lw!E1v zr=TlR0g#8lc=_TOt*A`W*t(KHY_oh~uG7;6*}~Mkx$So0I)1w%){6`fv;%!ke5xU5Z#YZI!2v-? z1bq0q<(|AWj$NwO4+CZTJb|^GWsz@UdOo5|B3w#9zjQ%S^0QgPzsT`lP4chFb_7he z_2PVGyjA2lGN5ndLCMKv9AL+?{>n7*Mn;_(S@7)9Iqx%yAKfi>kZH9-w57P+$cv9Q zTX})31qB6tf}lBg(tf$_`-;XDEMTfR_sh}A&y^^j?j&((AJjnc+Jam>C(K!ipyAjw zAv12O?4=D`@8;%a_8TQz;7{_w7%$w}yz5ZmyBLj0a$3LI<0xu)8tNN=1CO1<^mEeW zyrrnQwNcHh76!!znc{rXtvGiMS&cXYj670#Df*j6z~hciBc)W)X`2aqgeo$9_YFeC zAizn${5#?24|l=T3EoQex3lc%lziqHns!6)FSzR|E4ckpYdahChG-P@T1xUhBM9*- z%!;?=BD}!GJv&(OHgFqg#y`JL6aWt0SHAWo*l&jjy2#73_~t4PG=gR&c%&q6` z8Xocp7%;zT+?#l%MkQXnd|<~TYBJw^sUkaez2A!N!!I;@QnIn3J&y~rc8UV100-U@qUc!u+r@nA=DYoG&WklsSrVE%haz64&?>BT-8e)C zvzM~8B_x#B;Y=Ew)I#VKMrh$em^C@bpE zR=)g`zLgqfkM`$3imFS@xW&*d7%%td!{3SHf~0Mh+Wgl-=IVENLXA~!?&L$SZpIX= zyuEMJI1dk2S0}U^l_McnI1q7P+WYkl9;~HxFE4Ok);(w|*LQ6x5KX%k0M^xG%q;!q z9CwU(2DCZD3ydmh8`60FF9BJLvEdG8G5vi7r?+}N_UVH%uc_+$UvbG3ESevYpC;G3 z5v})YTVr_}P<>zCxP&u&$xtd1-ICJPPhp%8uivKJS8-RT_|A%aR9H$%mab8s?rN}J z`lpQ`PTptlpxOT= z^t!MmLxLp5=W(g01GlY<3)y#}Uwd!H8=b$ioZW!v4tCR5<F(e0ecC z_uglsbQ%H1BHxIT0f3GK|80tOPk|rq(Owqug7~y0 z0L+xuC>PbE&bN-9*PRq@)xH~zA5?5%^T~dR$&rlS;7S!U#a)T(j|8J&Up1zXMWNVg zMjoect~k6|UBR>Bq+6tXKD;A}{95eoZp+0GE=tmSlaUaBDJkzgtyO!(UT@&4hwLXK zXSMr!TyY&CXvfWw>e6{GvGV>xX}9C)lp-!5By~Jp3c1Gnx(gHjLldjNmXP+rfbzUI zl3d%WP(NtVaiRnkXzIjDLlYi?$G|+RjQkrlv^4jBaUkv%lR_ODy+kT}FOP;rVs0eg zdQkzp{AHgH8`$1OZp)7nu}JIX(LTv00EeC|cp~6qpHs#={de53(YPKpkiPaxq!5)oOb_iR=sl(lSlw0+Y7EI9I z3N|HG6%VVNkkwHw*JBxGDN)Aj<0Rk1eQ{q{$7~3gb+jNrm4iip3qIT3Rg0a)Ax4XlD2~$lGL=ew|LBM4Lt}X=C<;Lve444n~*0h z92lru-x7(cbDigQy|3Od<46tCDhZIzeyeRuE6hCN{l<%})R+#~OHuGIK87Tbkd*FueGDhyfxZN4mCTV&BJ>MSenKj0S4$-N;$}tHC4k_uhtEbOgDK;Z3j+-pjzU87StWMJjryyGv7c;xcuV-caPer)2 zJ1;f!ZoK-tl`D(Q_2jwpy}4L})_K}4rdSWRJ}FPIT%SMU&JnI5LPfV&#Esaavm!1b;A9+ULtI9Da}hoR;Kqdi00&9cI{?L_(*(RJ*RzTJEXI_8FmQ!#W@6%_kJ-^0 z?T+EWi!I(48_5xnnS*r8fJ?R4+ROSa-~_+3U-mIvPrQ&9M+0%4gOz-W?IL30=X_u0 zCK*}kA1S_eE=`?ix1RD4Gr-^>MGs$;o<5YD<-hlpjc=U2u`do>ZaAS5Ho`33Un2iG z6wT%W?I7M2o8KV^dH@$`MqdOSUJb(!mGi7Zm+%`5IMTxq%W+;byitMwqw^7w(<<2A z??Q-g#c8ABhN;oJxIDsX=Q5?J>ntMQmx_HA?nvW0 zNJJS_?}v_QyXShGbhIaH;GU=g5GoaLQo=u{G!<=)3F?}TdS2ttV`vqps52$9lataV z9xD0l8P^e0aw$7DdX1;SMwUdK{EEh8tfGkx0?S0}>AAdic(R6`mlau&+7eIkR!XeQ z>(U5(KdaKY%(Y#+!IH$z*Im(lR%n747DBUcwEJ^{z9@a6c#XsNTtOzCv!$sxXC^MK|Up zyn4QHKCXYFbv$YYX3;eb)$^W0`(HU1H}3qUasuR9$pg=6!{%%?cWBl4^R)JTQksXG z*6`rB;u}6*Sw!&7Cr(vNL|=TlL+N(OQ3;t7ZJQcE0+>+)K3M+oxv`C49>$@4eEzZP z3oUVq0i8^akIn@v@lrPmHpPkCv2VsR)8BL*7>pI#o3>h|?9F%3Ar{5y-vE+*pe#UP zQ&Ay4JE>;pU5`Z0<#+V?l339dZrhs&$=g{S(r+R$$hWi7Y@LK=M#1DjO3I8ip!H|2 zNhfy0R?rCb0K7OJxpV=-h+~M74Ikv$O^;XUnfiE5bS@dP9{z=cvyunfY>lF$cFU^e zNJGh46&}d@?i;dxnSc4pBEok$nBKMHk{bYbx2V6d?JS2<#mmYz>*E}#1>W&?Yl226 z^s*m0ndyVr`QNBslN;Cc#hW@B1m?f5W5~fiOX^unWJ1V#U$>+MCC67X_4-dp z^^YIM+W5AUV8P2ZLe2$0{vHi&_nSh<U=bSL>EIe7Q(gDlg<+45|WpGOnx! zVpkDR@ggcji0xo4F?8+YL^0N`BYwYFoL)B?}%a;Z8VG_}77(sXD45|!z_gQJ7TTFy^bcU6*G2z;#RM8AwxuuYS3srup^ z(&tP*99Tb@6aIu?51J`&IMNRcdK(Z0N4IAKd{r!ElHfWnylH4R_!VC=pM7vr zxFyhmr%D}t}e;Wyri@==3z=&@`Q(Hh4ba8^l}uZy^Z1hJbyILtfWWR?9>Zh zIqxW7VhY*LYy{3jaZiu5ps4FbrMoqjQZmWfkT+>58*}#Qb_ts3j>KF@ZC8{emiO=n zhdWS2HK!DEnSb$To;-0JdVAmBCGlSYmb*TTSMwOpx5y3|n7{5&ouoY~5F^-O;DG^x zm~0orX=zqq5?}uaymT1Wba*BG7`IUo_gvHYcCq2W(K1w)p0$ywQQ<=BLu_t|g1$8W z*wxv@aoy?+7ldxJEzt6WX|UQH_Y-#OxE>dk_GoIemwvySZCQjy+=@QvyT$#K>A!Gw z7NfX+bB@3GMm~WSv%W_jq@#auWP}FP%jDYj6vs4%VyOUwtOj-qVuX8m@`KnvZvAY( z3q)3VWtDmao8d`W*t0*>R*_?ZS{2@)--!HpdP~2XQ2eeHe4P!7t9$SSiaQ)ozjZuq z=1P0IaDCo+4V(4a7)*qu@o?$ym{*_yrIL^R`c8VSfL0;$crioPyl_(goXk>td4W;D zI|zsqA8w=tBv6zmt%2z8naS2^UU#@O-qCBkm-vWZEyGa8d?g7Z!)jaA@Ybr4N?R$I zmGIK!u3lW^{Jz@d)jC9DIY;|CI%=DBD6{I@rxsL7cp-w0zg$)Po@2z_FI1m0KRhGf zqatWC0NM+Qf8hH(+eA5pB0ffaq!;k#WdI>Q>l-QtoKbpDv1Leu`@jHABF0}j=i%q{cs zIaN$m&_5{EFl{5kdgf#(sa@^Mne*GEmr=0YtXf8Qml@KAl1_!q^6NF;%#?L{E4xQi zcv7`fCcN`0&y-UG+_S`CAyWo`1|+HG%dk3^(dcGepGj$VGpY{RvI z!)!9Oo?)820Z5%uc~<&Sa7{ z-OF2$JuFVs)>}}qqCMVI1VH!0RtxHV!92H^ zS*VIOf#7WO{xjTn2=RAU%RAcsnKUW=knOTV8C%TTBGTNum6h+pdVlisX~l)WoYV+g zKN-lssoSNjD!pBD$0watPWMkhrX}mPThWV1f@TSJVZ58k0;DKMl9aZRZRShHOiQY7P=rY zy1r;0cgn$}*<;tgfM}KlEMh}v;P%`lreT%WXA1o~)z|1OUmOK%o6A?3JkP0R(c=O$ zxVx@$$R$ySpLR9=5`Fzn&B5=F4K0rt-q~qn8_%%Pf)eWWo&uPq9s^D&z}>(Llw{7` zj;lC_%{&y2MUj^$a1fRwA323*7yZNHvJ^RA?QX(I|{VlnoSZ}NP6D%A$bn2N!o$|fN2swjR zjI+&e6HH@NyjFi{(LK#-;aa2i+rT$BOf^vIQmA?F88@)ba${nOuuZG)75iWsu6Us*B~G~+W~ z+|lCqijpu%eEBvUBw}&lZ}=Fc0F=SQfceqUL(bDk8$j`zrb@3*fK)^?jq%*ZAW90>@ZO4hdlouEJGYsLP-5>QTwIv%vVaryHePe0mioWt5doWIkZ?xx>+CD zZy=#$0gohO;rHR~+(^;}*q*GkR^u7de`d!M0<$=OadLlV+!iQ$aDWwZ+8dUH^oB?W zgv)-O7}H{*?FlO;F%7%(3+`h4R^o~NalvrhWX3)7$3}6h?UL-GLs^liBr@IUDBX~$AnL|#>Rd1q_W_9!B{MUGRyD|?% z(^it4G<>FUSoU4X25tTxlt6_)OwFM=u({co*_R7wJ@V#lpb6KAEC;{%O?Oim=z0HM z7XYWf*oFr_r{OHkgvy28oIVmma@Sj1*VK2fH38i&otFo)g7_vU&WxnD0qtNxwxbX9 zG@6T-eb;KbMIXnwaql=5DBobWD;oT;TY>%C zkIxDOt+D<9iAoFb{TXR*^ObBft!Dx!R+0VVJr7V8&o$SOkR~|swkLd}12W^1-ur$w zeCdJIl~m{q0=3}cTYb!g8QZUd*+UCP!pF2`)Myqb0pH{8>N-li%)StqTUy|8Hh@Y98 zCPR1J`l;KayFTe)l(c4IAxV1yi%fI=y>(1E+>RUuHjFd~+c0kFTMak29z&IHn&r-> z6|4JESTTxC=lV;>em0IU3ah^}H)7WxA^iq0-7!)^$~8YZ;7=vj%SsmBPFLLAIWtU1 z=Gu>Y`e?1A6!rHR^pgA{ur6^NhA?5oDS!`!>^{)FBAW;A@ zll7vJBX|jxNut0pL0_}Bv+y@p6YDLgRsApSzz9#dOl_p;HiU;CnrHp4%?t+jds= zm~iABl8-J*x!H8`k!Q@lOY`u-Xc7JZ9_V(`r3XIRS)%Wt6sSY>z(({wb;Qb81F@j7 zFTmhnl{0w%Es*#Fs08l(t6y_1(m^)*ZbLvf7Eu3xczCG)&ljMknL6|D5$i8{_DgG) zyQ||m3wY5Pno|0qqN27pG;}gxi9l3s%)gYOW(RsB{JjQC9QYjvTaP^ZR4+qr6vObe zghKS2XJ5GZb9?!wyR=%IbrV_ovx914zt_gy=VK06ycC51WJs zRY`7O?umVkvgi*Oz%2XsF68P^Fr9yGNNnA{V8U*N=YPLqZ+`%&02Vy3)}eEN=`?sC z{#|dJu6|Q4ep&qQ(S%ZYi2%nHu&9OfKc^5i;u=H!?e6r!*P%QT{8p gi~s-p=DCAYCW$OXOf_b|ya9Yb>UwI`Dz8KT3-B0V#{d8T literal 0 HcmV?d00001 diff --git a/docs/index.rst b/docs/index.rst index 9ccfa0718..7d810a0b5 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -79,7 +79,7 @@ EOmaps provides a variety of plot-shapes so you can select a shape that suits th :link-type: ref .. grid-item-card:: Contour - :img-bottom: _static/shape_imgs/contour.png + :img-bottom: _static/shape_imgs/contour_unfilled_filled.png :link: shp_contour :link-type: ref From 6d99ddc3028f5d767429b5612481e779d383fe4d Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sun, 21 Jan 2024 00:28:39 +0100 Subject: [PATCH 114/240] Update README.md update license badge --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 5c9b3c39c..a03fbbdaf 100644 --- a/README.md +++ b/README.md @@ -7,7 +7,7 @@ | Tests | Package | Documentation | License | Citation | |:-:|:-:|:-:|:-:|:-:| -| [![tests](https://github.com/raphaelquast/EOmaps/actions/workflows/testMaps.yml/badge.svg?branch=master)](https://github.com/raphaelquast/EOmaps/actions/workflows/testMaps.yml) [![codecov](https://codecov.io/gh/raphaelquast/EOmaps/graph/badge.svg)](https://codecov.io/gh/raphaelquast/EOmaps) | [![pypi](https://img.shields.io/pypi/v/eomaps)](https://pypi.org/project/eomaps/) [![Conda Version](https://img.shields.io/conda/vn/conda-forge/eomaps.svg)](https://anaconda.org/conda-forge/eomaps) | [![Documentation Status](https://readthedocs.org/projects/eomaps/badge/?version=latest)](https://eomaps.readthedocs.io/en/latest/?badge=latest) | [![License: GPL v3](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://github.com/raphaelquast/EOmaps/blob/master/LICENSE) | [![10.5281/zenodo.6459598](https://zenodo.org/badge/410829039.svg)](https://zenodo.org/badge/latestdoi/410829039) | +| [![tests](https://github.com/raphaelquast/EOmaps/actions/workflows/testMaps.yml/badge.svg?branch=master)](https://github.com/raphaelquast/EOmaps/actions/workflows/testMaps.yml) [![codecov](https://codecov.io/gh/raphaelquast/EOmaps/graph/badge.svg)](https://codecov.io/gh/raphaelquast/EOmaps) | [![pypi](https://img.shields.io/pypi/v/eomaps)](https://pypi.org/project/eomaps/) [![Conda Version](https://img.shields.io/conda/vn/conda-forge/eomaps.svg)](https://anaconda.org/conda-forge/eomaps) | [![Documentation Status](https://readthedocs.org/projects/eomaps/badge/?version=latest)](https://eomaps.readthedocs.io/en/latest/?badge=latest) | [![License: BSD 3 clause](https://img.shields.io/badge/License-BSD_3_clause-blue.svg)](https://github.com/raphaelquast/EOmaps/blob/master/LICENSE) | [![10.5281/zenodo.6459598](https://zenodo.org/badge/410829039.svg)](https://zenodo.org/badge/latestdoi/410829039) |
    Buy Me A Coffee chat on gitter From ac6c12117fbb0676c31b8a3118ea5664d771b127 Mon Sep 17 00:00:00 2001 From: Raphael Date: Tue, 23 Jan 2024 11:49:37 +0100 Subject: [PATCH 115/240] fix dynamic-shade indicator colorbars make datasets visible on all layers --- eomaps/colorbar.py | 7 +++++-- 1 file changed, 5 insertions(+), 2 deletions(-) diff --git a/eomaps/colorbar.py b/eomaps/colorbar.py index 4cf15a436..1be051e9d 100644 --- a/eomaps/colorbar.py +++ b/eomaps/colorbar.py @@ -869,8 +869,11 @@ def _set_data(self): # self._m.coll.add_callback(self._redraw_colorbar) def check_data_updated(*args, **kwargs): - # make sure the artist is drawn before checking for new data - self._m.f.draw_artist(self._m.coll) + # make sure the artist is updated before checking for new data + # TODO check if this is really enough to ensure that the coll + # is fully updated (calling coll.draw() is not an option since it + # would result make the collection appear on any layer!) + self._m.coll.changed() dsdata = self._m.coll.get_ds_data() if getattr(self, "_last_ds_data", None) is not None: if not self._last_ds_data.equals(dsdata): From 04a9f79773ccda522fb84745b10e76b01811352a Mon Sep 17 00:00:00 2001 From: Raphael Date: Tue, 23 Jan 2024 11:53:49 +0100 Subject: [PATCH 116/240] fix vmin/vmax assignment for datashader "count" aggregations --- eomaps/eomaps.py | 4 +--- 1 file changed, 1 insertion(+), 3 deletions(-) diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index 589a876ed..c03d1a421 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -2906,6 +2906,7 @@ def _set_vmin_vmax(self, vmin=None, vmax=None): else: # set vmin/vmax for aggregations that do NOT represent data values # allow vmin/vmax = None (e.g. autoscaling) + self._vmin, self._vmax = vmin, vmax if "count" in aggname: # if the reduction represents a count, don't count empty pixels if vmin and vmin <= 0: @@ -2914,9 +2915,6 @@ def _set_vmin_vmax(self, vmin=None, vmax=None): ) self._vmin = 1 - if vmax and vmax > 0: - self._vmax = vmax - def plot_map( self, layer=None, From bc6229708febad1cafa5a471edcdf60cdced814b Mon Sep 17 00:00:00 2001 From: Raphael Date: Wed, 24 Jan 2024 10:38:51 +0100 Subject: [PATCH 117/240] fix handling of masked values during vmin/vmax evaluation from files --- eomaps/eomaps.py | 7 +++++-- eomaps/qtcompanion/widgets/files.py | 8 ++++++-- 2 files changed, 11 insertions(+), 4 deletions(-) diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index c03d1a421..29b4882cd 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -2869,8 +2869,11 @@ def _calc_vmin_vmax(self, vmin=None, vmax=None): return vmin, vmax def _set_vmin_vmax(self, vmin=None, vmax=None): - vmin = self._encode_values(vmin) - vmax = self._encode_values(vmax) + # don't encode nan-vailes to avoid setting the fill-value as vmin/vmax + if vmin is not None: + vmin = self._encode_values(vmin) + if vmax is not None: + vmax = self._encode_values(vmax) # handle inherited bounds if self._inherit_classification is not None: diff --git a/eomaps/qtcompanion/widgets/files.py b/eomaps/qtcompanion/widgets/files.py index db5a23fd2..fdba463f7 100644 --- a/eomaps/qtcompanion/widgets/files.py +++ b/eomaps/qtcompanion/widgets/files.py @@ -695,8 +695,12 @@ def do_update_vals(self): f = self._file_handle try: - vmin = f[self.parameter.text()].min() - vmax = f[self.parameter.text()].max() + + vals = f[self.parameter.text()] + if hasattr(vals, "_FillValue"): + vals = vals.where(vals != vals._FillValue) + vmin = vals.min() + vmax = vals.max() self.vmin.setText(str(float(vmin))) self.vmax.setText(str(float(vmax))) From f2400ff953c3c1967f314eb0ca09f5a0aba88690 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Wed, 24 Jan 2024 22:55:38 +0100 Subject: [PATCH 118/240] Fix issues with help-popups of the LayerTabBar of the companion-widget invalid result from LayerTabBar.event(), 'bool' expected not None --- eomaps/qtcompanion/widgets/editor.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/eomaps/qtcompanion/widgets/editor.py b/eomaps/qtcompanion/widgets/editor.py index 9669436e8..20fcc64d4 100644 --- a/eomaps/qtcompanion/widgets/editor.py +++ b/eomaps/qtcompanion/widgets/editor.py @@ -711,7 +711,7 @@ def event(self, event): # don't show normal tooltips while showhelp is active # (they would cause the help-popups to disappear after ~ 1 sec) if event.type() == QtCore.QEvent.ToolTip and self.window().showhelp: - return + return False return super().event(event) From eb146e908f18b71a83be185903e755bb6cf7fb45 Mon Sep 17 00:00:00 2001 From: Raphael Date: Sat, 27 Jan 2024 00:46:10 +0100 Subject: [PATCH 119/240] push current view to toolbar nav-stack after layout-restore (if possible) --- eomaps/helpers.py | 11 +++++++++++ 1 file changed, 11 insertions(+) diff --git a/eomaps/helpers.py b/eomaps/helpers.py index 5cc21f4de..43823ebee 100644 --- a/eomaps/helpers.py +++ b/eomaps/helpers.py @@ -1327,6 +1327,11 @@ def _undo_draggable(self): self.m._emit_signal("layoutEditorDeactivated") self.m.redraw() + # try to push the current view to the "home" toolbar button + try: + self.m.f.canvas.toolbar.push_current() + except Exception: + pass def _reset_callbacks(self): # disconnect all callbacks of the layout-editor @@ -1539,6 +1544,12 @@ def apply_layout(self, layout): self.m.redraw() + # try to push the current view to the "home" toolbar button + try: + self.m.f.canvas.toolbar.push_current() + except Exception: + pass + # taken from https://matplotlib.org/stable/tutorials/advanced/blitting.html#class-based-example class BlitManager: From 208bd8453d83591a587fce31b8d244bf1e2f48bb Mon Sep 17 00:00:00 2001 From: Raphael Date: Mon, 29 Jan 2024 20:47:41 +0100 Subject: [PATCH 120/240] unify treatment of parsing of layer-names - introduce helper-mixin LayerParser to collect all relevant methods --- eomaps/_webmap.py | 6 +- eomaps/callbacks.py | 8 +- eomaps/cb_container.py | 19 +- eomaps/compass.py | 4 +- eomaps/eomaps.py | 131 ++------- eomaps/helpers.py | 252 ++++++++++++++---- eomaps/qtcompanion/widgets/click_callbacks.py | 3 +- eomaps/qtcompanion/widgets/editor.py | 37 ++- eomaps/qtcompanion/widgets/layer.py | 12 +- eomaps/utilities.py | 4 +- tests/test_callbacks.py | 10 +- 11 files changed, 279 insertions(+), 207 deletions(-) diff --git a/eomaps/_webmap.py b/eomaps/_webmap.py index 3309cb26f..b341f41e2 100644 --- a/eomaps/_webmap.py +++ b/eomaps/_webmap.py @@ -168,7 +168,7 @@ def add_legend(self, style=None, img=None): legax.imshow(legend) # hide the legend if the corresponding layer is not active at the moment - if self._layer not in self._m.BM._get_layers_alphas()[0]: + if not self._m.BM._layer_visible(self._layer): legax.set_visible(False) self._m.BM.add_artist(legax, self._layer) @@ -385,7 +385,7 @@ def __call__(self, layer=None, zorder=0, alpha=1, **kwargs): else: self._layer = layer - if self._layer == "all" or self._layer in m.BM._get_layers_alphas()[0]: + if self._layer == "all" or m.BM._layer_visible(self._layer): # add the layer immediately if the layer is already active self._do_add_layer( self._m, @@ -496,7 +496,7 @@ def __call__(self, layer=None, zorder=0, alpha=1, **kwargs): else: self._layer = layer - if self._layer == "all" or self._layer in m.BM.bg_layer.split("|"): + if m.BM._layer_visible(self._layer): # add the layer immediately if the layer is already active self._do_add_layer( m=m, diff --git a/eomaps/callbacks.py b/eomaps/callbacks.py index 1079ad8cb..7f653a2c9 100644 --- a/eomaps/callbacks.py +++ b/eomaps/callbacks.py @@ -741,7 +741,7 @@ def peek_layer( shape = "ellipses" if shape == "round" else "rectangles" if not isinstance(layer, str): - layer = self.m._get_combined_layer_name(*layer) + layer = self.m.BM._get_combined_layer_name(*layer) # add spines and relevant inset-map layers to the specified peek-layer layer = self.m.BM._get_showlayer_name(layer, transparent=True) @@ -875,7 +875,7 @@ def doit(): self.m.BM._after_restore_actions.append( self.m.BM._get_restore_bg_action( - "|".join([self.m.BM.bg_layer, layer]), + self.m.BM._get_combined_layer_name(self.m.BM.bg_layer, layer), (x0, y0, blitw, blith), alpha=alpha, clip_path=clip_path, @@ -1307,10 +1307,10 @@ def overlay_layer(self, layer, key="x"): """ if isinstance(layer, list): - layer = self._m._get_combined_layer_name(*layer) + layer = self._m.BM._get_combined_layer_name(*layer) elif isinstance(layer, tuple): # e.g. (layer-name, layer-transparency) - layer = self._m._get_combined_layer_name(layer) + layer = self._m.BM._get_combined_layer_name(layer) # in case the layer is currently on top, remove it if not self._m.BM.bg_layer.endswith(f"|{layer}"): diff --git a/eomaps/cb_container.py b/eomaps/cb_container.py index 283b19c43..7b6b46c8c 100644 --- a/eomaps/cb_container.py +++ b/eomaps/cb_container.py @@ -284,25 +284,10 @@ def _execute_cb(self, layer): Indicator if the callback should be executed on the currently visible layer or not. """ - if self.execute_on_all_layers: + if self.execute_on_all_layers or layer == "all": return True - visible_layer = self._m.BM.bg_layer - if layer == "all": - # the all layer is always executed - return True - elif "|" in visible_layer: - if layer == visible_layer: - # return true for the multi-layer itself - return True - else: - # return true for layers that are part of the multi-layer - # (make sure to strip off transparency assignments, e.g. "layer{}" ) - return any( - i.strip().split("{")[0] == layer for i in visible_layer.split("|") - ) - else: - return layer == visible_layer + return self._m.BM._layer_visible(layer) @property def execute_on_all_layers(self): diff --git a/eomaps/compass.py b/eomaps/compass.py index 72a8b45af..6343c3416 100644 --- a/eomaps/compass.py +++ b/eomaps/compass.py @@ -409,9 +409,7 @@ def _check_still_parented(self): @property def _layer_visible(self): - return self.layer == "all" or ( - self.layer in (*self._m.BM.bg_layer.split("|"), self._m.BM.bg_layer) - ) + return self._m.BM._layer_visible(self.layer) def _disconnect(self): """Disconnect the callbacks.""" diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index 29b4882cd..10c9bda6b 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -380,7 +380,7 @@ def __init__( self._signal_container = None # make sure the used layer-name is valid - layer = self._check_layer_name(layer) + layer = BlitManager._check_layer_name(layer) self._inherit_classification = None @@ -3196,41 +3196,6 @@ def make_dataset_pickable( # set _data_plotted to True to trigger updates in the data-manager self._data_plotted = True - @lru_cache() - def _get_combined_layer_name(self, *args): - try: - combnames = [] - for i in args: - if isinstance(i, str): - combnames.append(i) - elif isinstance(i, (list, tuple)): - assert ( - len(i) == 2 - and isinstance(i[0], str) - and i[1] >= 0 - and i[1] <= 1 - ), ( - f"EOmaps: unable to identify the layer-assignment: {i} .\n" - "You can provide either a single layer-name as string, a list " - "of layer-names or a list of tuples of the form: " - "(< layer-name (str) >, < layer-transparency [0-1] > )" - ) - - if i[1] < 1: - combnames.append(i[0] + "{" + str(i[1]) + "}") - else: - combnames.append(i[0]) - else: - raise TypeError( - f"EOmaps: unable to identify the layer-assignment: {i} .\n" - "You can provide either a single layer-name as string, a list " - "of layer-names or a list of tuples of the form: " - "(< layer-name (str) >, < layer-transparency [0-1] > )" - ) - return "|".join(combnames) - except Exception: - raise TypeError(f"EOmaps: Unable to combine the layer-names {args}") - def show_layer(self, *args, clear=True): """ Show a single layer or (transparently) overlay multiple selected layers. @@ -3275,36 +3240,26 @@ def show_layer(self, *args, clear=True): Maps.util.layer_slider : Add a slider to switch layers to the map. """ - name = self._get_combined_layer_name(*args) - - layers = self._get_layers() - + name = self.BM._get_combined_layer_name(*args) if not isinstance(name, str): _log.info("EOmaps: All layer-names are converted to strings!") name = str(name) - if "|" in name: - # take special care of "_" to allow 'private' (e.g. hidden) multi-layers - names = [i.strip() for i in name.split("|") if i != "_"] - else: - names = [name] - - for i in names: - # ignore non-existing private layers - if i.startswith("__"): - continue - - if "{" in i and i.endswith("}"): - i = i.split("{")[0] # strip off transparency assignments + # check if all layers exist + existing_layers = self._get_layers() + layers_to_show, _ = self.BM._parse_multi_layer_str(name) - if i not in layers: - lstr = " - " + "\n - ".join(map(str, layers)) + # don't check private layer-names + layers_to_show = [i for i in layers_to_show if not i.startswith("_")] + missing_layers = set(layers_to_show).difference(set(existing_layers)) + if len(missing_layers) > 0: + lstr = " - " + "\n - ".join(map(str, existing_layers)) - _log.error( - f"EOmaps: The layer '{i}' does not exist...\n" - + f"Use one of: \n{lstr}" - ) - return + _log.error( + f"EOmaps: The layers {missing_layers} do not exist...\n" + + f"Use one of: \n{lstr}" + ) + return # invoke the bg_layer setter of the blit-manager self.BM.bg_layer = name @@ -3406,14 +3361,16 @@ def snapshot(self, *layer, transparent=False, clear=False): self._indicate_companion_map(False) if layer is not None: - layer = self._get_combined_layer_name(*layer) + layer = self.BM._get_combined_layer_name(*layer) # add the figure background patch as the bottom layer initial_layer = self.BM.bg_layer if transparent is False: showlayer_name = self.BM._get_showlayer_name(layer=layer) - layer_with_bg = "|".join(["__BG__", showlayer_name]) + layer_with_bg = self.BM._get_combined_layer_name( + "__BG__", showlayer_name + ) self.show_layer(layer_with_bg) sn = self._get_snapshot() # restore the previous layer @@ -3505,7 +3462,9 @@ def savefig(self, *args, refetch_wms=False, rasterize_data=True, **kwargs): transparent = kwargs.get("transparent", False) if transparent is False: showlayer_name = self.BM._get_showlayer_name(initial_layer) - layer_with_bg = "|".join(["__BG__", showlayer_name]) + layer_with_bg = self.BM._get_combined_layer_name( + "__BG__", showlayer_name + ) self.show_layer(layer_with_bg) dpi = kwargs.get("dpi", None) @@ -3522,11 +3481,10 @@ def savefig(self, *args, refetch_wms=False, rasterize_data=True, **kwargs): self._update_shade_axis_size(dpi=dpi) # get all layer names that should be drawn - savelayers, alphas = self.BM._get_layers_alphas( - self.BM._get_showlayer_name( - self._get_combined_layer_name(self.BM.bg_layer) - ) + savelayers, alphas = self.BM._parse_multi_layer_str( + self.BM._get_showlayer_name(self.BM.bg_layer) ) + # make sure inset-maps are drawn on top of normal maps savelayers.sort(key=lambda x: x.startswith("__inset_")) @@ -3938,41 +3896,6 @@ def cleanup(self): exc_info=_log.getEffectiveLevel() <= logging.DEBUG, ) - def _check_layer_name(self, layer): - if not isinstance(layer, str): - _log.info("EOmaps: All layer-names are converted to strings!") - layer = str(layer) - - if layer.startswith("__") and not layer.startswith("__inset_"): - raise TypeError( - "EOmaps: Layer-names starting with '__' are reserved " - "for internal use and cannot be used as Maps-layer-names!" - ) - - reserved_symbs = { - # "|": ( - # "It is used as a separation-character to combine multiple " - # "layers (e.g. m.show_layer('A|B') will overlay the layer 'B' " - # "on top of 'A'." - # ), - "{": ( - "It is used to specify transparency when combining multiple " - "layers (e.g. m.show_layer('A|B{0.5}') will overlay the layer " - "'B' with 50% transparency on top of the layer 'A'." - ), - } - - reserved_symbs["}"] = reserved_symbs["{"] - - for symb, explanation in reserved_symbs.items(): - if symb in layer: - raise TypeError( - f"EOmaps: The symbol '{symb}' is not allowed in layer-names!\n" - + explanation - ) - - return layer - def _save_to_clipboard(self, **kwargs): """ Export the figure to the clipboard. @@ -5204,7 +5127,9 @@ def _get_layers(self, exclude=None, exclude_private=True): # add all (possibly still invisible) layers with artists defined # (ONLY do this for unique layers... skip multi-layers ) - layers = layers.union({i for i in self.BM._bg_artists if "|" not in i}) + layers = layers.union( + chain(*(self.BM._parse_multi_layer_str(i)[0] for i in self.BM._bg_artists)) + ) # exclude private layers if exclude_private: diff --git a/eomaps/helpers.py b/eomaps/helpers.py index 43823ebee..103391b27 100644 --- a/eomaps/helpers.py +++ b/eomaps/helpers.py @@ -280,6 +280,153 @@ def inner(*args, **kwargs): return decorator +class LayerParser: + @staticmethod + def _parse_single_layer_str(layer): + """ + Parse a single layer-string (with optional transparency assignment). + + Parameters + ---------- + layer : str + A layer-string (with transparency provided in curly brackets). + + Returns + ------- + name: str + The name of the layer. + alpha: + The transparency of the layer. + + """ + # split transparency + t_split = layer.find("{") + if t_split > 0: + name = layer[:t_split] + alpha = layer[t_split + 1 :] + if not alpha.endswith("}"): + raise TypeError( + f"EOmaps: unable to parse multilayer-transparency for '{layer}'" + ) + return name, float(alpha[:-1]) + else: + return layer, 1 + + @classmethod + def _parse_multi_layer_str(cls, layer=None): + layers, alphas = zip(*map(cls._parse_single_layer_str, layer.split("|"))) + return list(layers), list(alphas) + + @classmethod + def _layer_is_subset(cls, layer1, layer2): + """ + Return True if combined layer-name 'layer2' is a subset of 'layer1'. + + - Transparency assignments are stripped off before comparison + + Parameters + ---------- + layer1, layer2 : str + The combined layer-names to check. + + Returns + ------- + subset: bool + True if layer2 is a subset of layer1, False otherwise + + """ + # get a list of the currently visible layers + layers1, _ = cls._parse_multi_layer_str(layer1) + layers2, _ = cls._parse_multi_layer_str(layer2) + + return set(layers1).issubset(layers2) + + @staticmethod + def _get_combined_layer_name(*args): + """ + Create a combine layer name from layer-names or tuples (name, transparency). + + Parameters + ---------- + *args : str or tuple + The layers to combine. (e.g. `"A"`, `"B"` or `("A", .5)`, `("B", .23)`, ...) + + Returns + ------- + str + The combined layer-name. + + """ + try: + combnames = [] + for i in args: + if isinstance(i, str): + combnames.append(i) + elif isinstance(i, (list, tuple)): + assert ( + len(i) == 2 + and isinstance(i[0], str) + and i[1] >= 0 + and i[1] <= 1 + ), ( + f"EOmaps: unable to identify the layer-assignment: {i} .\n" + "You can provide either a single layer-name as string, a list " + "of layer-names or a list of tuples of the form: " + "(< layer-name (str) >, < layer-transparency [0-1] > )" + ) + + if i[1] < 1: + combnames.append(i[0] + "{" + str(i[1]) + "}") + else: + combnames.append(i[0]) + else: + raise TypeError( + f"EOmaps: unable to identify the layer-assignment: {i} .\n" + "You can provide either a single layer-name as string, a list " + "of layer-names or a list of tuples of the form: " + "(< layer-name (str) >, < layer-transparency [0-1] > )" + ) + return "|".join(combnames) + except Exception: + raise TypeError(f"EOmaps: Unable to combine the layer-names {args}") + + @staticmethod + def _check_layer_name(layer): + if not isinstance(layer, str): + _log.info("EOmaps: All layer-names are converted to strings!") + layer = str(layer) + + if layer.startswith("__") and not layer.startswith("__inset_"): + raise TypeError( + "EOmaps: Layer-names starting with '__' are reserved " + "for internal use and cannot be used as Maps-layer-names!" + ) + + reserved_symbs = { + # "|": ( + # "It is used as a separation-character to combine multiple " + # "layers (e.g. m.show_layer('A|B') will overlay the layer 'B' " + # "on top of 'A'." + # ), + "{": ( + "It is used to specify transparency when combining multiple " + "layers (e.g. m.show_layer('A|B{0.5}') will overlay the layer " + "'B' with 50% transparency on top of the layer 'A'." + ), + } + + reserved_symbs["}"] = reserved_symbs["{"] + + for symb, explanation in reserved_symbs.items(): + if symb in layer: + raise TypeError( + f"EOmaps: The symbol '{symb}' is not allowed in layer-names!\n" + + explanation + ) + + return layer + + class SearchTree: """Class to perform fast nearest-neighbour queries.""" @@ -1552,7 +1699,7 @@ def apply_layout(self, layout): # taken from https://matplotlib.org/stable/tutorials/advanced/blitting.html#class-based-example -class BlitManager: +class BlitManager(LayerParser): """Manager used to schedule draw events, cache backgrounds, etc.""" _snapshot_on_update = False @@ -1716,27 +1863,28 @@ def _do_on_layer_change(self, layer, new=False): try: f = self._on_layer_change[False].pop(0) f(layer=layer) - except Exception as ex: + except Exception: _log.error( "EOmaps: Issue while executing a layer-change action", exc_info=_log.getEffectiveLevel() <= logging.DEBUG, ) + sublayers, _ = self._parse_multi_layer_str(layer) if new: - for l in layer.split("|"): - # individual callables executed if a specific layer is activate + for l in sublayers: + # individual callables executed if a specific layer is activated # persistent callbacks for f in reversed(self._on_layer_activation[True].get(layer, [])): f(layer=l) - for l in layer.split("|"): + for l in sublayers: # single-shot callbacks single_shot_funcs = self._on_layer_activation[False].get(l, []) while len(single_shot_funcs) > 0: try: f = single_shot_funcs.pop(0) f(layer=l) - except Exception as ex: + except Exception: _log.error( "EOmaps: Issue while executing a layer-change action", exc_info=_log.getEffectiveLevel() <= logging.DEBUG, @@ -1797,8 +1945,10 @@ def bg_layer(self, val): return # check if a new layer is activated (or added to a multi-layer) - old_layers = self._bg_layer.split("|") - new = val != self._bg_layer or any(l not in old_layers for l in val.split("|")) + old_layers = set(self._parse_multi_layer_str(self._bg_layer)[0]) + new_layers = set(self._parse_multi_layer_str(val)[0]) + + new = old_layers != new_layers # make sure we use a "full" update for webagg and ipympl backends # (e.g. force full redraw of canvas instead of a diff) @@ -1806,14 +1956,11 @@ def bg_layer(self, val): self._bg_layer = val # a general callable to be called on every layer change - self._do_on_layer_change(layer=val, new=new) - layer_names = val.split("|") - # hide all colorbars that are not on the visible layer for m in [self._m.parent, *self._m.parent._children]: - layer_visible = m.layer in layer_names + layer_visible = self._layer_is_subset(val, m.layer) for cb in m._colorbars: if layer_visible: @@ -1826,7 +1973,9 @@ def bg_layer(self, val): # hide all wms_legends that are not on the visible layer if hasattr(self._m.parent, "_wms_legend"): for layer, legends in self._m.parent._wms_legend.items(): - if layer in layer_names: + layer_visible = self._layer_is_subset(val, layer) + + if layer_visible: for i in legends: i.set_visible(True) else: @@ -1908,8 +2057,10 @@ def _refetch_layer(self, layer): else: # set any background that contains the layer for refetch self._layers_to_refetch.add(layer) + for l in self._bg_layers: - if layer in l.split("|"): + sublayers, _ = self._parse_multi_layer_str(l) + if layer in sublayers: self._layers_to_refetch.add(l) def _bg_artists_sort(self, art): @@ -1995,34 +2146,45 @@ def get_artists(self, layer): return artists - def _get_layers_alphas(self, layer=None): - if layer is None: - layer = self.bg_layer + def _layer_visible(self, layer): + """ + Return True if the layer is currently visible. - layers, alphas = [], [] - for l in layer.split("|"): - if l.endswith("}") and "{" in l: - try: - name, a = l.split("{", maxsplit=1) - a = float(a.replace("}", "")) + - layer is considered visible if all sub-layers of a combined layer are visible + - transparency assignments do not alter the layer visibility - layers.append(name) - alphas.append(a) - except Exception: - raise TypeError( - "EOmaps: unable to parse multilayer-transparency " f"for '{l}'" - ) - else: - layers.append(l) - alphas.append(1) - return layers, alphas + Parameters + ---------- + layer : str + The combined layer-name to check. (e.g. 'A|B{.4}|C{.3}') + + Returns + ------- + visible: bool + True if the layer is currently visible, False otherwise + + """ + return layer == "all" or self._layer_is_subset(layer, self.bg_layer) + + @property + def _get_active_layers_alphas(self): + """ + Return the currently visible layers (and their associated transparencies) + + Returns + ------- + layers, alphas: list of str, list of float + 2 lists of layer-names and associated global transparencies. + + """ + return self._parse_multi_layer_str(self.bg_layer) # cache the last 10 combined backgrounds to avoid re-combining backgrounds # on updates of interactive artists # cache is automatically cleared on draw if any layer is tagged for re-fetch! @lru_cache(10) def _combine_bgs(self, layer): - layers, alphas = self._get_layers_alphas(layer) + layers, alphas = self._parse_multi_layer_str(layer) # make sure all layers are already fetched for l in layers: @@ -2234,7 +2396,8 @@ def on_draw(self, event): # in case there is a stale (unmanaged) artists and the # stale-artist layer is attempted to be drawn, re-draw the # cached background for the unmanaged-artists layer - if self._unmanaged_artists_layer in self._bg_layer.split("|") and any( + active_layers, _ = self._get_active_layers_alphas + if self._unmanaged_artists_layer in active_layers and any( a.stale for a in self._get_unmanaged_artists() ): self._refetch_layer(self._unmanaged_artists_layer) @@ -2409,7 +2572,7 @@ def remove_bg_artist(self, art, layer=None, draw=True): removed = True layers.append(key) - layer = "|".join(layers) + layer = self._get_combined_layer_name(*layers) else: if layer not in self._bg_artists: return @@ -2493,16 +2656,13 @@ def _draw_animated(self, layers=None, artists=None): if renderer is None: return - # make sure to strip-off transparency-assignments (e.g. "layer1{0.5}") if layers is None: - layers = [self.bg_layer] - layers.extend( - (l.split("{", maxsplit=1)[0] for l in self.bg_layer.split("|")) - ) + active_layers, _ = self._get_active_layers_alphas + layers = [self.bg_layer, *active_layers] else: - layers = list(chain(*(i.split("|") for i in layers))) - for l in layers: - layers.append(l.split("{", maxsplit=1)[0]) + (layers,) = list( + chain(*(self._parse_multi_layer_str(l)[0] for l in layers)) + ) if artists is None: artists = [] @@ -2642,7 +2802,7 @@ def _get_showlayer_name(self, layer=None, transparent=False): # show inset map layers and spines only if they contain at least 1 artist inset_Q = False - for l in layer.split("|"): + for l in self._parse_multi_layer_str(layer)[0]: narts = len(self._bg_artists.get("__inset_" + l, [])) if narts > 0: @@ -2652,7 +2812,7 @@ def _get_showlayer_name(self, layer=None, transparent=False): if inset_Q: show_layers.append("__inset___SPINES__") - return self._m._get_combined_layer_name(*show_layers) + return self._get_combined_layer_name(*show_layers) def update( self, diff --git a/eomaps/qtcompanion/widgets/click_callbacks.py b/eomaps/qtcompanion/widgets/click_callbacks.py index a1dda2aff..3df86e7f4 100644 --- a/eomaps/qtcompanion/widgets/click_callbacks.py +++ b/eomaps/qtcompanion/widgets/click_callbacks.py @@ -317,7 +317,7 @@ def showEvent(self, event): self.widgetShown.emit() def identify_pick_map(self): - layers, _ = self.m.BM._get_layers_alphas() + layers, _ = self.m.BM._get_active_layers_alphas layers.extend(("all", "inset_all")) pickm = list() @@ -366,6 +366,7 @@ def populate_dropdown(self, *args, **kwargs): else: name = f"{i}" + # indicate map-layer name if combined layer is visible if "|" in m.BM.bg_layer: if m.layer != m.BM.bg_layer: name += f" ({m.layer})" diff --git a/eomaps/qtcompanion/widgets/editor.py b/eomaps/qtcompanion/widgets/editor.py index 20fcc64d4..396e1dc48 100644 --- a/eomaps/qtcompanion/widgets/editor.py +++ b/eomaps/qtcompanion/widgets/editor.py @@ -808,7 +808,7 @@ def repopulate_and_activate_current(self, *args, **kwargs): @Slot() def tab_moved(self): # get currently active layers - active_layers, alphas = self.m.BM._get_layers_alphas() + active_layers, alphas = self.m.BM._get_active_layers_alphas # get the name of the layer that was moved layer = self.tabText(self.currentIndex()) @@ -866,7 +866,7 @@ def _do_close_tab(self, index): return # get currently active layers - active_layers, alphas = self.m.BM._get_layers_alphas() + active_layers, alphas = self.m.BM._get_active_layers_alphas # cleanup the layer and remove any artists etc. for m in list(self.m._children): @@ -891,7 +891,11 @@ def _do_close_tab(self, index): # otherwise switch to the first available layer try: switchlayer = next( - (i for i in self.m.BM._bg_artists if layer not in i.split("|")) + ( + i + for i in self.m.BM._bg_artists + if layer not in self.m.BM._parse_multi_layer_str(i)[0] + ) ) self.m.show_layer(switchlayer) except StopIteration: @@ -928,7 +932,7 @@ def color_active_tab(self, m=None, layer=None, adjust_order=True): multicolor = QtGui.QColor(50, 150, 50) # QtGui.QColor(0, 128, 0) # get currently active layers - active_layers, alphas = self.m.BM._get_layers_alphas() + active_layers, alphas = self.m.BM._get_active_layers_alphas for i in range(self.count()): selected_layer = self.tabText(i) @@ -971,7 +975,7 @@ def populate_on_layer(self, *args, **kwargs): currlayer = self.m.BM.bg_layer # only populate if the current layer is not part of the last set of layers # (e.g. to allow show/hide of selected layers without removing the tabs) - if not set(lastlayer.split("|")).issuperset(set(currlayer.split("|"))): + if not self.m.BM._layer_visible(lastlayer): self.populate(*args, **kwargs) self._last_populated_layer = currlayer else: @@ -1094,9 +1098,11 @@ def tabchanged(self, index): return # get currently active layers - active_layers, alphas = self.m.BM._get_layers_alphas() + active_layers, alphas = self.m.BM._get_active_layers_alphas - for x in (i for i in layer.split("|") if i != "_"): + for x in ( + i for i in self.m.BM._parse_multi_layer_str(layer)[0] if i != "_" + ): if x not in active_layers: active_layers.append(x) alphas.append(LayerTransparencySlider._alphas.get(layer, 1)) @@ -1371,19 +1377,12 @@ def _get_artist_layout(self, a, layer): @Slot() def populate_on_layer(self, *args, **kwargs): lastlayer = getattr(self, "_last_populated_layer", "") - currlayer = self.m.BM.bg_layer - - # ignore global layer transparencies (no need to re-populate if global) - # transparency changes. - # NOTE: This is necessary to avoid recursions for multi-layers! - last_layers = set(self.m.BM._get_layers_alphas(lastlayer)[0]) - curr_layers = set(self.m.BM._get_layers_alphas(currlayer)[0]) # only populate if the current layer is not part of the last set of layers # (e.g. to allow show/hide of selected layers without removing the tabs) - if not last_layers.issuperset(curr_layers): + if not self.m.BM._layer_visible(lastlayer): + self._last_populated_layer = self.m.BM.bg_layer self.populate(*args, **kwargs) - self._last_populated_layer = currlayer else: # TODO check why adjusting the tab-order causes recursions if multiple # layers are selected (and the transparency of a sub-layer is changed) @@ -1413,7 +1412,7 @@ def populate(self, *args, **kwargs): # if more than max_n_layers layers are available, show only active tabs to # avoid performance issues when too many tabs are created - alllayers = [i for i in self.m.BM._bg_layer.split("|") if i in alllayers] + alllayers = self.m.BM._get_active_layers_alphas[0] for i in range(self.count(), -1, -1): self.removeTab(i) else: @@ -1456,7 +1455,7 @@ def populate(self, *args, **kwargs): tabbar.set_current_tab_by_name(self._current_tab_name) def get_layer_alpha(self, layer): - layers, alphas = self.m.BM._get_layers_alphas() + layers, alphas = self.m.BM._get_active_layers_alphas if layer in layers: idx = layers.index(layer) alpha = alphas[idx] @@ -1686,7 +1685,7 @@ def cb(): @Slot() def set_layer_alpha(self, layer, alpha): - layers, alphas = self.m.BM._get_layers_alphas() + layers, alphas = self.m.BM._get_active_layers_alphas if layer in layers: idx = layers.index(layer) alphas[idx] = alpha diff --git a/eomaps/qtcompanion/widgets/layer.py b/eomaps/qtcompanion/widgets/layer.py index 74c6da6f1..1cdc019ed 100644 --- a/eomaps/qtcompanion/widgets/layer.py +++ b/eomaps/qtcompanion/widgets/layer.py @@ -121,7 +121,7 @@ def __init__(self, *args, m=None, max_length=100, **kwargs): self.setTextInteractionFlags(Qt.NoTextInteraction) def get_text(self): - layers, alphas = self.m.BM._get_layers_alphas() + layers, alphas = self.m.BM._get_active_layers_alphas prefix = "    " "" suffix = "<\font>" @@ -269,7 +269,7 @@ def get_uselayer(self): uselayer = "???" if len(active_layers) > 1: - uselayer = "|".join(active_layers) + uselayer = self.m.BM._get_combined_layer_name(*active_layers) elif len(active_layers) == 1: uselayer = active_layers[0] @@ -331,7 +331,9 @@ def actionClicked(self): modifiers = QtWidgets.QApplication.keyboardModifiers() actionwidget = action.defaultWidget() - checked_layers = [l for l in self.m.BM.bg_layer.split("|") if l != "_"] + active_layers = self.m.BM._get_active_layers_alphas + + checked_layers = [l for l in active_layers if l != "_"] selected_layer = action.data() selected_layers = [l for l in action.data().split("|") if l != "_"] @@ -362,7 +364,7 @@ def actionClicked(self): uselayer = "???" if len(checked_layers) > 1: - uselayer = "|".join(checked_layers) + uselayer = self.m.BM._get_combined_layer_name(*checked_layers) elif len(checked_layers) == 1: uselayer = checked_layers[0] @@ -374,7 +376,7 @@ def actionClicked(self): def update_checkstatus(self): currlayer = str(self.m.BM.bg_layer) - layers, alphas = self.m.BM._get_layers_alphas(currlayer) + layers, alphas = self.m.BM._get_active_layers_alphas if "|" in currlayer: active_layers = [i for i in layers if not i.startswith("_")] active_layers.append(currlayer) diff --git a/eomaps/utilities.py b/eomaps/utilities.py index bc4d1564c..36cbc65ce 100644 --- a/eomaps/utilities.py +++ b/eomaps/utilities.py @@ -256,7 +256,7 @@ def __init__( uselayers = [] for l in layers: if not isinstance(l, str): - uselayers.append(m._get_combined_layer_name(*l)) + uselayers.append(m.BM._get_combined_layer_name(*l)) else: uselayers.append(l) layers = uselayers @@ -448,7 +448,7 @@ def __init__( uselayers = [] for l in layers: if not isinstance(l, str): - uselayers.append(m._get_combined_layer_name(*l)) + uselayers.append(m.BM._get_combined_layer_name(*l)) else: uselayers.append(l) layers = uselayers diff --git a/tests/test_callbacks.py b/tests/test_callbacks.py index 2276b741f..1f9613251 100644 --- a/tests/test_callbacks.py +++ b/tests/test_callbacks.py @@ -669,7 +669,7 @@ def test_overlay_layer(self): key_press_event(m.f.canvas, "0") key_release_event(m.f.canvas, "0") - self.assertTrue(m.BM._bg_layer == m._get_combined_layer_name(m.layer, "A")) + self.assertTrue(m.BM._bg_layer == m.BM._get_combined_layer_name(m.layer, "A")) key_press_event(m.f.canvas, "0") key_release_event(m.f.canvas, "0") self.assertTrue(m.BM._bg_layer == m.layer) @@ -677,7 +677,7 @@ def test_overlay_layer(self): key_press_event(m.f.canvas, "1") key_release_event(m.f.canvas, "1") self.assertTrue( - m.BM._bg_layer == m._get_combined_layer_name(m.layer, ("B", 0.5)) + m.BM._bg_layer == m.BM._get_combined_layer_name(m.layer, ("B", 0.5)) ) key_press_event(m.f.canvas, "1") key_release_event(m.f.canvas, "1") @@ -686,7 +686,7 @@ def test_overlay_layer(self): key_press_event(m.f.canvas, "2") key_release_event(m.f.canvas, "2") self.assertTrue( - m.BM._bg_layer == m._get_combined_layer_name(m.layer, "A", ("B", 0.5)) + m.BM._bg_layer == m.BM._get_combined_layer_name(m.layer, "A", ("B", 0.5)) ) key_press_event(m.f.canvas, "2") key_release_event(m.f.canvas, "2") @@ -724,7 +724,9 @@ def test_switch_layer(self): # now the 3rd callback should trigger key_press_event(m.f.canvas, "3") key_release_event(m.f.canvas, "3") - self.assertTrue(m.BM._bg_layer == m._get_combined_layer_name("2", ("3", 0.5))) + self.assertTrue( + m.BM._bg_layer == m.BM._get_combined_layer_name("2", ("3", 0.5)) + ) m.all.cb.keypress.remove(cid0) m.all.cb.keypress.remove(cid1) From dbb0f3a79628d041d1bb39e854da4229b946ef2b Mon Sep 17 00:00:00 2001 From: Raphael Date: Mon, 29 Jan 2024 21:13:48 +0100 Subject: [PATCH 121/240] fix typo --- eomaps/helpers.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/eomaps/helpers.py b/eomaps/helpers.py index 103391b27..d9a0b8c67 100644 --- a/eomaps/helpers.py +++ b/eomaps/helpers.py @@ -1457,7 +1457,7 @@ def _undo_draggable(self): self.modifier_pressed = False # show all colorbars that are on the visible layer - active_layers = self.m.BM._get_layers_alphas()[0] + active_layers = self.m.BM._get_active_layers_alphas[0] for cb in self.cbs: if cb._m.layer in active_layers: cb.set_visible(True) From 6d912c3423c2b5500348f6f68948e4d8643101f5 Mon Sep 17 00:00:00 2001 From: Raphael Date: Mon, 29 Jan 2024 22:14:36 +0100 Subject: [PATCH 122/240] fix attaching custom click callbacks with "on_motion=True" --- eomaps/cb_container.py | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/eomaps/cb_container.py b/eomaps/cb_container.py index 7b6b46c8c..620f21f5f 100644 --- a/eomaps/cb_container.py +++ b/eomaps/cb_container.py @@ -851,8 +851,10 @@ def _add_callback( on_motion = False if self._method == "click" and on_motion is True: - # attach associated click+move callback - if not hasattr(self._m.cb._click_move._attach, cb_name): + # attach associated default click+move callbacks if available + if isinstance(callback, str) and not hasattr( + self._m.cb._click_move._attach, callback + ): on_motion = False _log.warning( f"Using 'on_motion' = True for the '{callback}' callback has no effect!" From afdf337a3c2f3f298c3403dd226a4ddea8a6c85e Mon Sep 17 00:00:00 2001 From: Raphael Date: Sat, 27 Jan 2024 01:18:37 +0100 Subject: [PATCH 123/240] major colorbar updates --- eomaps/colorbar.py | 1781 +++++++++++++-------------------- eomaps/eomaps.py | 9 +- eomaps/helpers.py | 167 ++-- tests/test_basic_functions.py | 8 +- 4 files changed, 768 insertions(+), 1197 deletions(-) diff --git a/eomaps/colorbar.py b/eomaps/colorbar.py index 1be051e9d..5391cac71 100644 --- a/eomaps/colorbar.py +++ b/eomaps/colorbar.py @@ -1,28 +1,16 @@ -# Copyright EOmaps Contributors -# -# This file is part of EOmaps and is released under the BSD 3-clause license. -# See LICENSE in the root of the repository for full licensing details. - -"""Interactive Colorbar.""" - -import logging -from functools import partial, lru_cache -from itertools import cycle +from itertools import pairwise, cycle +from functools import partial from textwrap import dedent -import copy - - -import numpy as np +import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpecFromSubplotSpec, SubplotSpec import matplotlib.transforms as mtransforms -import matplotlib as mpl -import matplotlib.pyplot as plt from matplotlib.colors import LinearSegmentedColormap +from matplotlib.patches import Rectangle -from .helpers import pairwise, _TransformedBoundsLocator, register_modules +import numpy as np -_log = logging.getLogger(__name__) +from eomaps.helpers import _TransformedBoundsLocator def get_named_bins_formatter(bins, names, show_values=False): @@ -64,397 +52,59 @@ def formatter(x, pos): return formatter -class ColorBar: - """Class to draw colorbars with a histogram on top.""" - +class ColorBarBase: def __init__( self, - m, - pos=0.4, - inherit_position=None, - margin=None, - hist_size=0.8, - hist_bins=256, - extend=None, - extend_frac=0.025, orientation="horizontal", - dynamic_shade_indicator=False, - show_outline=False, - tick_precision=2, - tick_formatter=None, - log=False, - out_of_range_vals="clip", + extend_frac=0.025, + dynamic=True, + padding=0.1, hist_kwargs=None, - label=None, - ylabel=None, - **kwargs, + tick_precision=2, ): - """ - Add a colorbar to the map. - - The colorbar always represents the data of the associated Maps-object - that was assigned in the last call to `m.plot_map()`. - - By default, the colorbar will only be visible on the layer of the associated - Maps-object. - - After the colorbar has been created, it can be accessed via: - - >>> cb = m.colorbar - - Parameters - ---------- - pos : float or 4-tuple, optional - - - float: fraction of the axis size that is used to create the colorbar. - The axes of the Maps-object will be shrunk accordingly to make space - for the colorbar. - - 4-tuple (x0, y0, width, height): - Absolute position of the colorbar in relative figure-units (0-1). - In this case, existing axes are NOT automatically re-positioned! - - Note: By default, multiple colorbars on different layers share their - position! To force placement of a colorbar, use "inherit_position=False". - - The default is 0.4. - inherit_position : bool or None optional - Indicator if the colorbar should share its position with other colorbars - that represent datasets on the same plot-axis. - - - If True, and there is already another colorbar for the given plot-axis, - the value of "pos" will be ignored and the new colorbar will share its - position with the parent-colorbar. (e.g. all colorbars for a given axis will - overlap and moving a colorbar in one layer will move all other relevant - colorbars accordingly). - - If None: If the colorbar is added on a different layer than the parent - colorbar, use "inherit_position=True", else use "inherit_position=False". - - The default is None - hist_size : float or None - The fraction of the colorbar occupied by the histogram. - - - None: no histogram will be drawn - - 0: - - 0.9: 90% histogram, 10% colorbar - - 1: only histogram - - hist_bins : int, list, tuple, array or "bins", optional - - - If int: The number of histogram-bins to use for the colorbar. - - If list, tuple or numpy-array: the bins to use - - If "bins": use the bins obtained from the classification - (ONLY possible if a classification scheme is used!) - - The default is 256. - extend : str or None, optional - Set how extension-arrows should be added. - - None: extension-arrow behavior is determined by the provided dataset - in conjunction with the limits (e.g. vmin and vmax). - - "neither": extension arrows are never added - - "min" or "max": only min / max extension arrows are added - - "both": both min and max extension arrows are added + self._hist_size = 0.9 - Note: If the colorbar inherits its position from a colorbar on a different - layer, the extend-behavior is inherited as well! - - The default is None. - extend_frac : float, optional - The fraction of the colorbar-size to use for extension-arrows. - (Extension-arrows are added if out-of-range values are found!) - The default is 0.025. - orientation : str, optional - The orientation of the colorbar ("horizontal" or "vertical"). - The default is "horizontal". - dynamic_shade_indicator : bool, optional - ONLY relevant if data-shading is used! ("shade_raster" or "shade_points") - - - False: The colorbar represents the actual (full) dataset - - True: The colorbar is dynamically updated and represents the density of - the shaded pixel values within the current field of view. - - The default is False. - show_outline : bool or dict - Indicator if an outline should be added to the histogram. - (e.g. a line encompassing the histogram) - If a dict is provided, it is passed to `plt.step()` to style the line. - (e.g. with ordinary matplotlib parameters such as color, lw, ls etc.) - If True, the following properties are used: - - - {"color": "k", "lw": 1} - - The default is False. - tick_precision : int or None - The precision of the tick-labels in the colorbar. - (e.g. a precision of 2 means that 0.12345 will be shown as 0.12) - The default is 2. - tick_formatter : callable - A function that will be used to format the ticks of the colorbar. - The function will be used with matpltlibs `set_major_formatter`... - For details, see: - https://matplotlib.org/stable/api/_as_gen/matplotlib.axis.Axis.set_major_formatter.html - - Call-signagure: - - >>> def tick_formatter(x, pos): - >>> # x ... the tick-value - >>> # pos ... the tick-position - >>> return f"{x} m" - - The default is None. - log : bool, optional - Indicator if the y-axis of the plot should be logarithmic or not. - The default is False - out_of_range_vals : str or None - - - if "mask": out-of range values will be masked. - (e.g. values outside the colorbar limits are not represented in the - histogram and NO extend-arrows are added) - - if "clip": out-of-range values will be clipped. - (e.g. values outside the colorbar limits will be represented in the - min/max bins of the histogram) - - The default is "clip" - hist_kwargs : dict - A dictionary with keyword-arguments passed to the creation of the histogram - (e.g. passed to `plt.hist()` ) - label : str, optional - The label used for the colorbar. - Use `ColorBar.set_labels()` to set the labels (and styling) for the - colorbar and the histogram. - The default is None. - ylabel : str, optional - The label used for the y-axis of the colorbar. The default is None - layer : str - The layer at which the colorbar will be drawn. - NOTE: In most cases you should NOT need to adjust the layer! - The layer is automatically assigned to the layer at which the - data was plotted and Colorbars are only visible on the assigned layer! - kwargs : - All additional kwargs are passed to the creation of the colorbar - (e.g. `plt.colorbar()`) - - See Also - -------- - ColorBar.set_bin_labels: Use custom names for classified colorbar bins. - - Examples - -------- - - >>> x = y = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] - >>> data = [1, 2, 6, 6, 6, 8, 7, 3, 9, 10] - >>> m = Maps() - >>> m.set_data(data, x, y) - >>> m.plot_map() - >>> m.add_colorbar(label="some data") - - >>> x = y = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] - >>> data = [1, 2, 6, 6, 6, 8, 7, 3, 9, 10] - >>> m = Maps() - >>> m.set_data(data, x, y) - >>> m.set_classify.Quantiles(k=6) - >>> m.plot_map() - >>> m.add_colorbar(hist_bins="bins", label="some data") - - """ - self._m = m - - # allow overriding the layer on which to draw the colorbar - self._layer = kwargs.pop("layer", self._m.layer) - - self._pos = pos - self._margin = margin - self._orientation = orientation - - self._init_extend = extend self._extend_frac = extend_frac + self._dynamic = dynamic - if inherit_position is None: - if not self._m.colorbar: - inherit_position = True - else: - inherit_position = False - - self._inherit_position = inherit_position - - if isinstance(self._inherit_position, ColorBar): - self._parent_cb = self._inherit_position - else: - self._parent_cb = self._identify_parent_cb() + self.orientation = orientation - if hist_size is None: - self._hist_size = 0 - else: - self._hist_size = hist_size + self._log = False - self._hist_bins = hist_bins + self._padding = padding - if hist_kwargs is None: - self._hist_kwargs = dict() + if hist_kwargs is not None: + self._hist_kwargs = hist_kwargs else: - self._hist_kwargs = copy.deepcopy(hist_kwargs) + self._hist_kwargs = {} - self._histogram_plotted = False # indicator if histogram has been plotted + self._vmin = None + self._vmax = None + self._norm = None + self._cmap = None + self._data = None - self._dynamic_shade_indicator = dynamic_shade_indicator - self._hist_label_kwargs = None - - self._show_outline = show_outline self._tick_precision = tick_precision - self._tick_formatter = tick_formatter - self._log = log - self._out_of_range_vals = out_of_range_vals - - # kwargs["label"] = label - - self._kwargs = copy.deepcopy(kwargs) - - self._coll = self._m.coll - self._vmin = self._coll.norm.vmin - self._vmax = self._coll.norm.vmax - - self._classified = self._m.classify_specs._classified - - if self._hist_bins == "bins" and not self._classified: - raise AssertionError( - "EOmaps: Using hist_bins='bins' is only possible " - "for classified datasets!" - ) - - self._ax = None - self.ax_cb = None - self.ax_cb_plot = None - - self._cid_redraw = False - - self._set_data() - self._setup_axes() - self.set_labels(label) - if ylabel is not None: - self.ax_cb_plot.set_ylabel(ylabel) @property - def layer(self): - return self._layer - - def set_visible(self, vis): - """ - Set the visibility of the colorbar. - - Parameters - ---------- - vis : bool - - True: colorbar visible - - False: colorbar not visible - """ - for ax in self._axes: - if ax is self.ax_cb_plot: - pass - ax.set_visible(vis) - - if self._hist_size <= 0.0001: - self.ax_cb_plot.set_visible(False) - else: - self.ax_cb_plot.set_visible(vis) - - def _set_labels(self, cb_label=None, hist_label=None, **kwargs): - if self._dynamic_shade_indicator and hist_label is not None: - # remember kwargs to re-draw the histogram - self._hist_label_kwargs = { - "cb_label": None, - "hist_label": hist_label, - **kwargs, - } - - if self._orientation == "horizontal": - if cb_label: - if self._hist_size < 0.001: - # label colorbar - self.ax_cb_plot.set_xlabel("") - label = self.ax_cb.set_xlabel(cb_label, **kwargs) - elif self._hist_size > 0.999: - # label plot - self.ax_cb_plot.set_xlabel(cb_label, **kwargs) - self.ax_cb.set_xlabel("") - else: - # label colorbar - self.ax_cb_plot.set_xlabel("") - label = self.ax_cb.set_xlabel(cb_label, **kwargs) - if hist_label: - self._hist_label = self.ax_cb_plot.set_ylabel(hist_label, **kwargs) - else: - if cb_label: - if self._hist_size < 0.001: - # label colorbar - self.ax_cb_plot.set_ylabel("") - label = self.ax_cb.set_ylabel(cb_label, **kwargs) - elif self._hist_size > 0.999: - # label plot - self.ax_cb_plot.set_ylabel(cb_label, **kwargs) - self.ax_cb.set_xlabel("") - else: - # label colorbar - self.ax_cb_plot.set_ylabel("") - label = self.ax_cb.set_ylabel(cb_label, **kwargs) - - if hist_label: - self._hist_label = self.ax_cb_plot.set_xlabel(hist_label, **kwargs) - - def set_labels(self, cb_label=None, hist_label=None, **kwargs): - """ - Set the labels (and the styling) for the colorbar (and the histogram). - - For more details, see `ColorBar.ax_cb.set_xlabel(..)` and matplotlib's `.Text` - properties. - - Parameters - ---------- - cb_label : str or None - The label of the colorbar. If None, the existing label is maintained. - The default is None. - hist_label : str or None - The label of the histogram. If None, the existing label is maintained. - The default is None. - - Other Parameters - ---------------- - kwargs : - Additional kwargs passed to `Axes.set_xlabel` to control the appearance of - the label (e.g. color, fontsize, labelpad etc.). - - Examples - -------- - Set both colorbar and histogram label in one go + def _scm(self): + return plt.cm.ScalarMappable(cmap=self._cmap, norm=self._norm) - >>> cb.set_labels("The parameter", "histogram count", fontsize=10, color="r") - - Use different styles for the colorbar and histogram labels - - >>> cb.set_labels(cb_label="The parameter", color="r", labelpad=10) - >>> cb.set_labels(hist_label="histogram count", fontsize=6, color="k") - - """ - - self._label_kwargs = {"cb_label": cb_label, "hist_label": hist_label, **kwargs} - - self._set_labels(cb_label=cb_label, hist_label=hist_label, **kwargs) - - if not self._dynamic_shade_indicator: - # no need to redraw the background for dynamically updated artists - self._m.redraw(self.layer) - else: - self._m.BM.update() + @property + def _hist_orientation(self): + return "vertical" if self.orientation == "horizontal" else "horizontal" - @lru_cache() def _default_cb_tick_formatter(self, x, pos, precision=None): """ A formatter to format the tick-labels of the colorbar for encoded datasets. (used in xaxis.set_major_formatter() ) """ # if precision=None the shortest representation of the number is used - return np.format_float_positional(self._m._decode_values(x), precision) + return np.format_float_positional( + self._m._decode_values(x), precision=self._tick_precision + ) - @lru_cache() def _classified_cb_tick_formatter(self, x, pos, precision=None): """ A formatter to format the tick-labels of the colorbar for classified datasets. @@ -468,456 +118,220 @@ def _classified_cb_tick_formatter(self, x, pos, precision=None): else: return "" - def set_hist_size(self, size=None): - """ - Set the size of the histogram (relative to the total colorbar size) - - Parameters - ---------- - size : float, optional - The fraction of the colorbar occupied by the histogram. - - - 0 = no histogram - - 0.5 = 50% colorbar, 50% histogram - - 1 = no colorbar, only histogram). - - The default is None. - """ - if size is not None: - self._hist_size = size - - if self._inherit_position: - parent = self._get_parent_cb() - parent.set_hist_size(size) - else: - # if the position is not inherited from a parent-axes, add margins - if self._margin is None: - if self._orientation == "horizontal": - self._margin = dict(left=0.1, right=0.1, bottom=0.3, top=0.0) - else: - self._margin = dict(left=0.0, right=0.3, bottom=0.1, top=0.1) - - l, r = (self._margin.get(k, 0) for k in ["left", "right"]) - b, t = (self._margin.get(k, 0) for k in ["bottom", "top"]) - w, h = 1 - l - r, 1 - t - b - - if self._orientation == "horizontal": - s = (1 - self._hist_size) * h - cbpos = (l, b, w, s) - histpos = (l, b + s, w, h - s) - else: - s = (1 - self._hist_size) * w - cbpos = (l + w - s, b, s, h) - histpos = (l, b, w - s, h) + def _get_data(self): + # TODO + return self._data - self.ax_cb_plot.set_axes_locator( - _TransformedBoundsLocator(histpos, self._ax.transAxes) - ) + def _set_axes_locators(self, cb_bounds=None, hist_bounds=None): + if cb_bounds is not None: self.ax_cb.set_axes_locator( - _TransformedBoundsLocator(cbpos, self._ax.transAxes) + _TransformedBoundsLocator(cb_bounds, self._ax.transAxes) + ) + if hist_bounds is not None: + self.ax_cb_plot.set_axes_locator( + _TransformedBoundsLocator(hist_bounds, self._ax.transAxes) ) - # re-fetch ALL layers (since axes-positions have changed!) - self._m.BM._refetch_layer("all") - - if self._hist_size > 0.0001: - self.ax_cb_plot.set_visible(True) - - # in case the histogram has not yet been plotted, plot it! - if not self._histogram_plotted: - self._plot_histogram() - else: - self.ax_cb_plot.set_visible(False) # to avoid singular matrix errors - - # avoid singular matrix errors caused by visible axes with 0 size - # when activating the layout editor - if self._hist_size > 0.999: - self.ax_cb.set_visible(False) # to avoid singular matrix errors - self.ax_cb_plot.set_visible(True) - [i.set_visible(False) for i in self.ax_cb.patches] - [i.set_visible(False) for i in self.ax_cb.collections] - self.ax_cb_plot.tick_params(bottom=True, labelbottom=True) - elif self._hist_size < 0.001: - self.ax_cb.set_visible(True) - self.ax_cb_plot.set_visible(False) # to avoid singular matrix errors - [i.set_visible(True) for i in self.ax_cb.patches] - [i.set_visible(True) for i in self.ax_cb.collections] - else: - self.ax_cb.set_visible(True) - self.ax_cb_plot.set_visible(True) - self.ax_cb_plot.tick_params(bottom=False, labelbottom=False) - [i.set_visible(True) for i in self.ax_cb.patches] - [i.set_visible(True) for i in self.ax_cb.collections] - - self.set_labels(**self._label_kwargs) - # tag layer for refetch - self._m.redraw(self.layer) - - def _identify_parent_cb(self): - parent_cb = None - # check if there is already an existing colorbar for a Maps-object that shares - # the same plot-axis. - # If yes, use the position of this colorbar to creat a new one - - if self._m.colorbar is not None and not self._inherit_position: - parent_cb = None # self._m.colorbar - else: - # check if self is actually just another layer of an existing Maps object - # that already has a colorbar assigned - for m in [self._m.parent, *self._m.parent._children]: - if m is not self._m and m.ax is self._m.ax: - if m.colorbar is not None: - if m.colorbar._parent_cb is None: - parent_cb = m.colorbar - break - if parent_cb and parent_cb._orientation == self._orientation: - return parent_cb - else: - return None + def _setup_axes(self, pos, parent_ax=None, f=None, zorder=9999): + if f is None and parent_ax is not None: + f = parent_ax.figure - def _get_parent_cb(self): - if self._parent_cb is None: - return self + self._parent_cb = self._identify_parent_cb() + if self._parent_cb: + # inherit axis-position from the parent axis position + # (e.g. it can no longer be freely moved... its position is determined + # by the position of the parent-colorbar axis) + self._ax = self._parent_cb._ax else: - parent = self - while parent._parent_cb is not None: - parent = parent._parent_cb - - return parent - - def _setup_axes(self): - zorder = 9999 - - horizontal = self._orientation == "horizontal" - hide_hist = self._hist_size < 0.0001 - hide_axes = self._hist_size > 0.999 - # check if one of the parent colorbars has a colorbar, and if so, - # use it to set the position of the colorbar. - if self._inherit_position: - if self._parent_cb is not None: - - try: - parent_subplotspec = self._parent_cb._ax.get_subplotspec() - except AttributeError: - parent_subplotspec = None - - if parent_subplotspec is not None: - self._ax = self._m.f.add_subplot( - parent_subplotspec, - label="cb", - zorder=zorder, - ) - else: - self._ax = self._m.f.add_axes( - self._parent_cb._ax.get_position(), - label="cb", - zorder=zorder, - ) - - parent_extend = getattr( - self._parent_cb, "_extend", self._parent_cb._init_extend - ) - - if parent_extend is None: - try: - self._parent_cb._set_extend() - parent_extend = getattr( - self._parent_cb, "_extend", self._parent_cb._init_extend - ) - - except Exception: - _log.exception( - "EOmaps: unable to determine automatic extension arrow" - "size of parent colorbar." - ) - - # inherit axis-position from the parent axis position - # (e.g. it can no longer be freely moved... its position is determined - # by the position of the parent-colorbar axis) - self._ax.set_axes_locator( - _TransformedBoundsLocator( - (0, 0, 1, 1), self._parent_cb._ax.transAxes - ) - ) - - else: - self._inherit_position = False - - if not self._inherit_position: - if isinstance(self._pos, float): - if horizontal: + if isinstance(pos, (int, float)): + if self.orientation == "horizontal": gs = GridSpecFromSubplotSpec( 2, - 1, - self._m.ax.get_subplotspec(), - height_ratios=(1, self._pos), + 3, + parent_ax.get_subplotspec(), + height_ratios=(1, pos), + width_ratios=(self._padding, 1, self._padding), ) - - self._m.ax.set_subplotspec(gs[0, 0]) - self._ax = self._m.f.add_subplot( - gs[1, 0], + parent_ax.set_subplotspec(gs[0, :]) + self._ax = f.add_subplot( + gs[1, 1], label="cb", zorder=zorder, ) else: gs = GridSpecFromSubplotSpec( - 1, + 3, 2, - self._m.ax.get_subplotspec(), - width_ratios=(1, self._pos), + parent_ax.get_subplotspec(), + width_ratios=(1, pos), + height_ratios=(self._padding, 1, self._padding), ) - self._m.ax.set_subplotspec(gs[0, 0]) - self._ax = self._m.f.add_subplot( - gs[0, 1], + parent_ax.set_subplotspec(gs[1, 0]) + self._ax = f.add_subplot( + gs[1, 1], label="cb", zorder=zorder, ) - elif isinstance(self._pos, SubplotSpec): - self._ax = self._m.f.add_subplot( - self._pos, + elif isinstance(pos, SubplotSpec): + self._ax = f.add_subplot( + pos, label="cb", zorder=zorder, ) - elif isinstance(self._pos, (list, tuple)): - x0, y0, w, h = self._pos + elif isinstance(pos, (list, tuple)): + x0, y0, w, h = pos x1 = x0 + w y1 = y0 + h bbox = mtransforms.Bbox(((x0, y0), (x1, y1))) # the parent axes holding the 2 child-axes - self._ax = plt.Axes(self._m.f, bbox, label="cb", zorder=zorder) - self._m.f.add_axes(self._ax) + self._ax = plt.Axes(f, bbox, label="cb", zorder=zorder) + f.add_axes(self._ax) - # make all spines, labels etc. invisible for the base-axis - self._ax.set_axis_off() + # make all spines, labels etc. invisible for the base-axis + self._ax.set_axis_off() # colorbar axes - self.ax_cb = self._ax.figure.add_axes( + self.ax_cb = f.add_axes( self._ax.get_position(), label="EOmaps_cb", zorder=zorder - 1, # make zorder 1 lower than container axes for picking ) # histogram axes - self.ax_cb_plot = self._ax.figure.add_axes( + self.ax_cb_plot = f.add_axes( self._ax.get_position(), label="EOmaps_cb_hist", zorder=zorder - 1, # make zorder 1 lower than container axes for picking ) - # hide histogram and coorbar axes if they are 0 size - if hide_axes: - self.ax_cb.set_visible(False) - if hide_hist: - self.ax_cb_plot.set_visible(False) - - if self._inherit_position: - # handle axis size in case parent colorbar has extension arrows - if parent_extend in ["min", "both", None]: - padx = -self._parent_cb._extend_frac - else: - padx = 0 - if parent_extend in ["max", "both", None]: - pady = -self._parent_cb._extend_frac - else: - pady = 0 - - if self._orientation == "horizontal": - size = (padx, 0, 1 - padx - pady, 1) - else: - size = (0, padx, 1, 1 - padx - pady) - # in case the position is inherited, copy the locators from the parent! - self.ax_cb_plot.set_axes_locator( - _TransformedBoundsLocator( - (0, 0, 1, 1), self._parent_cb.ax_cb_plot.transAxes - ) - ) - self.ax_cb.set_axes_locator( - _TransformedBoundsLocator(size, self._parent_cb.ax_cb.transAxes) - ) + # add axes as child-axes + self._ax.add_child_axes(self.ax_cb) + self._ax.add_child_axes(self.ax_cb_plot) # join colorbar and histogram axes - if horizontal: + if self.orientation == "horizontal": self.ax_cb_plot.sharex(self.ax_cb) else: self.ax_cb_plot.sharey(self.ax_cb) + # for vertical colorbars, histogram-axis must be inverted! + self.ax_cb_plot.invert_xaxis() + # keep the background of the plot-axis but remove the outer frame self.ax_cb_plot.spines["top"].set_visible(False) self.ax_cb_plot.spines["right"].set_visible(False) self.ax_cb_plot.spines["bottom"].set_visible(False) self.ax_cb_plot.spines["left"].set_visible(False) - # set axis scale - if horizontal: - if self._log is True: - self.ax_cb_plot.set_yscale("log") - else: - self.ax_cb_plot.set_yscale("linear") + self._set_hist_size() + + self._attach_lim_cbs() + + return self._ax, self.ax_cb, self.ax_cb_plot + + def _attach_lim_cbs(self): + # force lower limits of histogram axis to 0 + + def ychanged(event): + if self.orientation == "horizontal": + self.ax_cb_plot.set_ylim(0, None, emit=False) + + def xchanged(event): + if self.orientation == "vertical": + self.ax_cb_plot.set_xlim(None, 0, emit=False) + + self.ax_cb_plot.callbacks.connect("xlim_changed", xchanged) + self.ax_cb_plot.callbacks.connect("ylim_changed", ychanged) + + def _hide_singular_axes(self): + sing_hist = self.ax_cb_plot.bbox.width <= 2 or self.ax_cb_plot.bbox.height <= 2 + sing_cb = self.ax_cb.bbox.width <= 2 or self.ax_cb.bbox.height <= 2 + + if sing_hist: + self.ax_cb_plot.set_visible(False) else: - if self._log is True: - self.ax_cb_plot.set_xscale("log") - else: - self.ax_cb_plot.set_xscale("linear") + self.ax_cb_plot.set_visible(True) - # add all axes as artists - for a in self._axes: - a.set_navigate(False) - if a is not None: - if self._dynamic_shade_indicator is True: - self._m.BM.add_artist(a, self.layer) - else: - self._m.BM.add_bg_artist(a, self.layer) + if sing_cb: + self.ax_cb.set_visible(False) + else: + self.ax_cb.set_visible(True) - # we need to re-draw since the background axis size has changed! - self._m.BM._refetch_layer(self.layer) - self._m.BM._refetch_layer("__SPINES__") - self._m.redraw("__SPINES__") + def _set_hist_size(self, size=None, update_all=False): + if size is None: + size = self._hist_size + else: + self._hist_size = size - @property - def _axes(self): - return (self._ax, self.ax_cb, self.ax_cb_plot) - - def _set_extend(self, z_data): - if self._inherit_position and self._parent_cb is not None: - self._extend = self._parent_cb._extend - # warn if provided extend behavior differs from the inherited behavior - if self._extend != self._init_extend: - _log.warning( - f"EOmaps Warning: m.add_colorbar(extend='{self._extend}') is " - "inherited from the parent colorbar! Explicitly set the 'extend' " - "behavior to silence this warning." - ) - if self._extend is not None: - return + assert 0 <= size <= 1, "Histogram size must be between 0 and 1" + + self._hide_singular_axes() - if self._init_extend is not None: - self._extend = self._init_extend + if self.orientation == "horizontal": + l_cb_bounds = (0, 0, 1, 1 - size) + l_hist_bounds = (0, 1 - size, 1, size) else: - extend = "neither" - if (z_data > self._vmax).any(): - extend = "max" - if (z_data < self._vmin).any(): - if extend == "max": - extend = "both" - else: - extend = "min" + l_cb_bounds = (size, 0, 1 - size, 1) + l_hist_bounds = (0, 0, size, 1) - self._extend = extend + self._set_axes_locators(l_cb_bounds, l_hist_bounds) + self._style_hist_ticks() - def _set_data(self): - renorm = False + def get_extend_fracs(self): + # if no colorbar is found, use the full axis + if not hasattr(self, "cb"): + return 0, 1 - dynamic_shade = False - if self._dynamic_shade_indicator: - ds, mpl_ext = register_modules("datashader", "datashader.mpl_ext") + return 0, 1 - if all((ds, mpl_ext)) and isinstance(self._coll, mpl_ext.ScalarDSArtist): - dynamic_shade = True - else: - _log.error( - "EOmaps: Using 'dynamic_shade_indicator=True' is only possible " - "with 'shade' shapes (e.g. 'shade_raster' or 'shade_points'.\n" - "... creating a normal colorbar instead." - ) - self._dynamic_shade_indicator = False + extend = self.cb.extend - if dynamic_shade: - aggname = self._m.shape.aggregator.__class__.__name__ - if aggname in ["first", "last", "max", "min", "mean", "mode"]: - pass - else: - renorm = True - # TODO check this without requiring import of datashader! - # _log.error( - # "EOmaps: Only dynamic colorbars are possible when using" - # + f" '{aggname}' as datashader-aggregation reduction method " - # + "...creating a 'dynamic_shade_indicator' colorbar instead." - # ) - # self._dynamic_shade_indicator = True - - try: - z_data = self._coll.get_ds_data().values - except: - self._m.redraw(self.layer) - z_data = self._coll.get_ds_data().values - - if "count" in aggname: - # make sure we don't count empty pixels - z_data = z_data[~(z_data == 0)] - - # datashader sets None to 0 by default! - # z_data = z_data[z_data > 0] - - bins = self._m.classify_specs._bins - cmap = self._m.classify_specs._cbcmap - - if renorm: - z_data = z_data[~np.isnan(z_data)] - norm = self._coll.norm - # make sure the norm clips with respect to vmin/vmax - # (only clip if either vmin or vmax is not None) - # if vmin or vmax: - # z_data = z_data.clip(vmin, vmax) - cmap = self._coll.get_cmap() - else: - norm = self._m.classify_specs._norm - - if self._cid_redraw is False: - # TODO check why this no longer triggers on data-updates... - # self._m.coll.add_callback(self._redraw_colorbar) - - def check_data_updated(*args, **kwargs): - # make sure the artist is updated before checking for new data - # TODO check if this is really enough to ensure that the coll - # is fully updated (calling coll.draw() is not an option since it - # would result make the collection appear on any layer!) - self._m.coll.changed() - dsdata = self._m.coll.get_ds_data() - if getattr(self, "_last_ds_data", None) is not None: - if not self._last_ds_data.equals(dsdata): - # if the data has changed, redraw the colorbar - self._redraw_colorbar() - self._last_ds_data = dsdata - - self._m.BM._before_fetch_bg_actions.append(check_data_updated) - - self._m.BM.on_layer( - lambda *args, **kwargs: self._redraw_colorbar, - layer=self.layer, - persistent=True, - ) + # extend fraction is defined as % of the interior colorbar length! + getfrac = lambda n: self._extend_frac / (1 + n * self._extend_frac) - self._cid_redraw = True + if extend == "both": + frac = getfrac(2) + return frac, 1 - 2 * frac + elif extend == "min": + frac = getfrac(1) + return frac, 1 - frac + elif extend == "max": + return 0, 1 - getfrac(1) + else: + return 0, 1 - # TODO colorbar not properly updated on layer change after zoom? - self._m.BM.on_layer( - self._redraw_colorbar, - layer=self.layer, - persistent=True, - m=self._m, - ) + def set_scale(self, log=False): + self._log = log + + if self.orientation == "horizontal": + # set axis scale + if log is True: + self.ax_cb_plot.set_yscale("log") + else: + self.ax_cb_plot.set_yscale("linear") else: + # set axis scale + if log is True: + self.ax_cb_plot.set_xscale("log") + else: + self.ax_cb_plot.set_xscale("linear") - z_data = self._m._data_manager.z_data - bins = self._m.classify_specs._bins - cmap = self._m.classify_specs._cbcmap - norm = self._m.classify_specs._norm + def _preprocess_data(self, out_of_range_vals="keep"): + data = self._get_data() - if isinstance(z_data, np.ma.masked_array): - z_data = z_data.compressed() + if isinstance(data, np.ma.masked_array): + data = data.compressed() else: - z_data = z_data.ravel() + data = data.ravel() # make sure we only consider valid values in the histogram - z_data = z_data[np.isfinite(z_data)] - - self._set_extend(z_data) + data = data[np.isfinite(data)] - if self._out_of_range_vals == "mask": - data_range_mask = (z_data >= self._vmin) & (z_data <= self._vmax) - z_data = z_data[data_range_mask] + if out_of_range_vals == "mask": + data_range_mask = (data >= self._vmin) & (data <= self._vmax) + data = data[data_range_mask] # make sure that histogram weights are masked accordingly if provided if "weights" in self._hist_kwargs: @@ -927,137 +341,60 @@ def check_data_updated(*args, **kwargs): # make sure the norm clips with respect to vmin/vmax # (only clip if either vmin or vmax is not None) - if self._out_of_range_vals == "clip": + elif out_of_range_vals == "clip": if self._vmin or self._vmax: - z_data = z_data.clip(self._vmin, self._vmax) - - self._z_data = z_data - self._bins = bins - self._cmap = cmap - # TODO check if copy is really necessary - # (especially for dynamic datashader colorbars!) - self._norm = copy.deepcopy(norm) - # make sure boundaries are clipped with respect to vmin and vmax - # to avoid issues with vmin/vmax in-between colorbar-boundaries - - if hasattr(self._norm, "boundaries"): - self._norm.boundaries = np.clip( - self._norm.boundaries, self._vmin, self._vmax - ) + data = data.clip(self._vmin, self._vmax) + + return data + + def _plot_colorbar(self, **kwargs): - def _plot_colorbar(self): - # plot the colorbar - horizontal = self._orientation == "horizontal" - n_cmap = plt.cm.ScalarMappable(cmap=self._cmap, norm=self._norm) + kwargs.setdefault("extendfrac", self._extend_frac) + kwargs.setdefault("spacing", "proportional") + kwargs.setdefault("extend", "both") - # avoid using "plt.colorbar" since it might not properly recognize - # the associated figure (e.g. plt.gcf() might point somewhere else)! - self.cb = self._m.f.colorbar( - n_cmap, + self.cb = self.ax_cb.figure.colorbar( + self._scm, cax=self.ax_cb, - extend=self._extend, - extendfrac=self._extend_frac, - spacing="proportional", - orientation=self._orientation, - **self._kwargs, + orientation=self.orientation, + **kwargs, ) self.cb.outline.set_visible(False) - # ensure that ticklabels are correct if a classification is used - if self._classified and "ticks" not in self._kwargs: - self.cb.set_ticks(np.unique(np.clip(self._bins, self._vmin, self._vmax))) - - if self._tick_formatter is None: - self._tick_formatter = self._classified_cb_tick_formatter - else: - self.cb.set_ticks(self.cb.get_ticks()) - - if self._tick_formatter is None: - tick_formatter = partial( - self._default_cb_tick_formatter, precision=self._tick_precision - ) - else: - tick_formatter = self._tick_formatter - - if horizontal: - self.ax_cb.xaxis.set_major_formatter(tick_formatter) - else: - self.ax_cb.yaxis.set_major_formatter(tick_formatter) - - # format position of scientific exponent for colorbar ticks - if horizontal: - ot = self.ax_cb.yaxis.get_offset_text() - ot.set_horizontalalignment("center") - ot.set_position((1, 0)) - - # make sure axis limits are correct - if horizontal: - limsetfunc = self.ax_cb.set_xlim - else: - limsetfunc = self.ax_cb.set_ylim - - if self._vmin != self._vmax: - limsetfunc(self._vmin, self._vmax) - else: - _log.error( - "EOMaps-Warning: Attempting to set identical upper and " - + "lower limits for the colorbar... limits will be ignored!" - ) - - # set the axis_locator to set relative axis positions - # TODO check why colorbar axis size changes after plot! - # (e.g. this needs to be called AFTER plotting the colorbar to make sure - # the extension-arrows are properly aligned) - self.set_hist_size() + # after plotting the colorbar we must adjust the hist-size to ensure the + # padding of the histogram axes confirms to the size of the colorbar arrows + self._set_hist_size() - def _plot_histogram(self): - if self._hist_size <= 0.0001: - return - - horizontal = self._orientation == "horizontal" - n_cmap = plt.cm.ScalarMappable(cmap=self._cmap, norm=self._norm) + def _plot_histogram(self, bins=None, out_of_range_vals="keep", **kwargs): # plot the histogram - h = self.ax_cb_plot.hist( - self._z_data, - orientation="vertical" if horizontal else "horizontal", - bins=self._bins - if (self._classified and self._hist_bins == "bins") - else self._hist_bins, - color="k", + self.ax_cb_plot.hist( + self._preprocess_data(out_of_range_vals=out_of_range_vals), + orientation=self._hist_orientation, + bins=bins, align="mid", - range=(self._vmin, self._vmax) if (self._vmin and self._vmax) else None, - **self._hist_kwargs, + **kwargs, ) - if self._show_outline: - if self._show_outline is True: - outline_props = dict(color="k", lw=1) - else: - outline_props = self._show_outline - - if horizontal: - self.ax_cb_plot.step(h[1], [h[0][0], *h[0]], **outline_props) - else: - self.ax_cb_plot.step([h[0][0], *h[0]], h[1], **outline_props) + bins = getattr(self._norm, "boundaries", None) - if self._bins is None: + if bins is None: # identify position of color-splits in the colorbar - if isinstance(n_cmap.cmap, LinearSegmentedColormap): + if isinstance(self._scm.cmap, LinearSegmentedColormap): # for LinearSegmentedcolormap N is the number of quantizations! - splitpos = np.linspace(self._vmin, self._vmax, n_cmap.cmap.N) + splitpos = np.linspace(self._vmin, self._vmax, self._scm.cmap.N) else: # for ListedColormap N is the number of colors - splitpos = np.linspace(self._vmin, self._vmax, n_cmap.cmap.N + 1) + splitpos = np.linspace(self._vmin, self._vmax, self._scm.cmap.N + 1) else: - splitpos = np.asanyarray(self._bins) + splitpos = np.asanyarray(bins) # color the histogram patches for patch in list(self.ax_cb_plot.patches): # the list is important!! since otherwise we change ax.patches # as we iterate over it... which is not a good idea... - if horizontal: + if self.orientation == "horizontal": minval = np.atleast_1d(patch.get_x())[0] width = patch.get_width() height = patch.get_height() @@ -1076,31 +413,23 @@ def _plot_histogram(self): ] args = dict( - edgecolor=self._hist_kwargs.get( - "edgecolor", self._hist_kwargs.get("ec", None) - ), - linewidth=self._hist_kwargs.get( - "linewidth", self._hist_kwargs.get("lw", 0) - ), - linestyle=self._hist_kwargs.get( - "linestyle", self._hist_kwargs.get("ls", None) - ), - alpha=self._hist_kwargs.get("alpha", None), - hatch=self._hist_kwargs.get("hatch", None), + edgecolor=kwargs.get("edgecolor", kwargs.get("ec", None)), + linewidth=kwargs.get("linewidth", kwargs.get("lw", 0)), + linestyle=kwargs.get("linestyle", kwargs.get("ls", None)), + alpha=kwargs.get("alpha", None), + hatch=kwargs.get("hatch", None), ) # drop all unset values to avoi overriding defaults args = {key: val for key, val in args.items() if val is not None} # handle facecolors explicitly - facecolor = self._hist_kwargs.get( - "facecolor", self._hist_kwargs.get("fc", None) - ) + facecolor = kwargs.get("facecolor", kwargs.get("fc", None)) if len(splitbins) > 2: patch.remove() # add in-between patches for b0, b1 in pairwise(splitbins): - if horizontal: - pi = mpl.patches.Rectangle( + if self.orientation == "horizontal": + pi = Rectangle( (b0, 0), (b1 - b0), height, @@ -1112,7 +441,7 @@ def _plot_histogram(self): **args, ) else: - pi = mpl.patches.Rectangle( + pi = Rectangle( (0, b0), width, (b1 - b0), @@ -1134,16 +463,8 @@ def _plot_histogram(self): for key, val in args.items(): getattr(patch, f"set_{key}")(val) - # setup appearance of histogram - if horizontal: - self.ax_cb_plot.tick_params( - left=False, - labelleft=True, - bottom=False, - top=False, - labelbottom=False, - labeltop=False, - ) + # add gridlines + if self.orientation == "horizontal": self.ax_cb_plot.grid(axis="y", dashes=[5, 5], c="k", alpha=0.5) # add a line that indicates 0 histogram level self.ax_cb_plot.plot( @@ -1154,21 +475,9 @@ def _plot_histogram(self): transform=self.ax_cb_plot.transAxes, ) # make sure lower y-limit is 0 - if self._log is False: - # self.ax_cb_plot.yaxis.set_major_locator(plt.MaxNLocator(5)) + if self.ax_cb_plot.get_yscale() == "log": self.ax_cb_plot.set_ylim(0) else: - self.ax_cb_plot.invert_xaxis() - - self.ax_cb_plot.tick_params( - left=False, - labelleft=False, - bottom=False, - top=False, - labelbottom=True, - labeltop=False, - rotation=90, - ) self.ax_cb_plot.grid(axis="x", dashes=[5, 5], c="k", alpha=0.5) # add a line that indicates 0 histogram level self.ax_cb_plot.plot( @@ -1179,231 +488,325 @@ def _plot_histogram(self): transform=self.ax_cb_plot.transAxes, ) # make sure lower x-limit is 0 - if self._log is False: - # self.ax_cb_plot.xaxis.set_major_locator(plt.MaxNLocator(5)) + if self.ax_cb_plot.get_xscale() is False: self.ax_cb_plot.set_xlim(None, 0) - self._histogram_plotted = True + def _style_hist_ticks(self): + # setup appearance of histogram + if self.orientation == "horizontal": + if self._hist_size < 1: + self.ax_cb_plot.tick_params( + left=False, + labelleft=True, + bottom=False, + top=False, + labelbottom=False, + labeltop=False, + ) + else: + self.ax_cb_plot.tick_params( + left=False, + labelleft=True, + bottom=True, + top=False, + labelbottom=True, + labeltop=False, + ) + + else: + if self._hist_size < 1: + self.ax_cb_plot.tick_params( + left=False, + labelleft=False, + bottom=False, + top=False, + labelbottom=True, + labeltop=False, + rotation=90, + ) + else: + self.ax_cb_plot.tick_params( + left=False, + labelleft=False, + right=True, + labelright=True, + bottom=False, + top=False, + labelbottom=True, + labeltop=False, + rotation=90, + ) - def _redraw_colorbar(self, *args, **kwargs): + def _redraw(self, *args, **kwargs): # only re-draw if the corresponding layer is visible if self.layer not in self._m.BM.bg_layer.split("|"): return - self._set_data() + self.ax_cb.clear() self.ax_cb_plot.clear() - self._plot_histogram() - # if self._hist_label_kwargs: - # self._set_labels(**self._hist_label_kwargs) + self._attach_lim_cbs() # re-attach ylim callbacks - def set_bin_labels(self, bins, names, tick_lines="center", show_values=False): - """ - Set the tick-labels of the colorbar to custom names with respect to a given - set of bins. + self._set_hist_size() - The labels will be placed at the center of each bin. + self._plot_colorbar() - This is most useful when using `m.set_classify.UserDefined(bins=[...])` - to classify the data with respect to custom bins. + bins = self._m.classify_specs._bins - Parameters - ---------- - bins : list - A list of (right) bin-boundaries used to set the label-positions. - (e.g. `bins=[1, 2, 6]` will result in labels located at [1.5 and 4]) - names : list - A list of names that should be used as labels. + self._plot_histogram( + bins=bins, + range=(self._m._vmin, self._m._vmax), + ) - - The first name is assigned to the values smaller than bins[0] - - Names 1 to "len(bins)" are assigned to the intermediate bins - - The "len(bins) + 1" label is assigned to the values larger than bins[-1] - (if not available a "?" label will be used) + def _set_labels(self, cb_label=None, hist_label=None, **kwargs): + if self._dynamic_shade_indicator and hist_label is not None: + # remember kwargs to re-draw the histogram + self._hist_label_kwargs = { + "cb_label": None, + "hist_label": hist_label, + **kwargs, + } - tick_lines : str - Set appearance of the tick-lines + if self.orientation == "horizontal": + if cb_label: + if self._hist_size < 0.001: + # label colorbar + self.ax_cb_plot.set_xlabel("") + self.ax_cb.set_xlabel(cb_label, **kwargs) + elif self._hist_size > 0.999: + # label plot + self.ax_cb_plot.set_xlabel(cb_label, **kwargs) + self.ax_cb.set_xlabel("") + else: + # label colorbar + self.ax_cb_plot.set_xlabel("") + self.ax_cb.set_xlabel(cb_label, **kwargs) + if hist_label: + self._hist_label = self.ax_cb_plot.set_ylabel(hist_label, **kwargs) + else: + if cb_label: + if self._hist_size < 0.001: + # label colorbar + self.ax_cb_plot.set_ylabel("") + self.ax_cb.set_ylabel(cb_label, **kwargs) + elif self._hist_size > 0.999: + # label plot + self.ax_cb_plot.set_ylabel(cb_label, **kwargs) + self.ax_cb.set_xlabel("") + else: + # label colorbar + self.ax_cb_plot.set_ylabel("") + self.ax_cb.set_ylabel(cb_label, **kwargs) - - "boundary": show only (minor) tick lines at the bin-boundaries - - "center": show only (major) tick lines at the center of the bins - - "both": show both major and minor tick lines - - None: don't show any tick lines + if hist_label: + self._hist_label = self.ax_cb_plot.set_xlabel(hist_label, **kwargs) + + def set_labels(self, cb_label=None, hist_label=None, **kwargs): + """ + Set the labels (and the styling) for the colorbar (and the histogram). + + For more details, see `ColorBar.ax_cb.set_xlabel(..)` and matplotlib's `.Text` + properties. + + Parameters + ---------- + cb_label : str or None + The label of the colorbar. If None, the existing label is maintained. + The default is None. + hist_label : str or None + The label of the histogram. If None, the existing label is maintained. + The default is None. + + Other Parameters + ---------------- + kwargs : + Additional kwargs passed to `Axes.set_xlabel` to control the appearance of + the label (e.g. color, fontsize, labelpad etc.). - The default is "center" - show_values : bool - If True, numerical values of the bin-boundaries will be shown as - minor-tick labels. The default is False Examples -------- + Set both colorbar and histogram label in one go - >>> bins = [1, 2, 3] - >>> names = ["smaller than 1", - >>> "between 1 and 2", - >>> "between 2 and 3", - >>> "larger than 3"] - >>> - >>> m.add_colorbar() - >>> m.label_bin_centers(bins, names) + >>> cb.set_labels("The parameter", "histogram count", fontsize=10, color="r") + + Use different styles for the colorbar and histogram labels + + >>> cb.set_labels(cb_label="The parameter", color="r", labelpad=10) + >>> cb.set_labels(hist_label="histogram count", fontsize=6, color="k") """ - nnames, nbins = len(names), len(bins) - assert nnames in [nbins, nbins + 1], ( - "The number of provided names is incorrect! " - f"Expected {nbins} (or {nbins + 1}) names but got {nnames}" - ) + self._label_kwargs = {"cb_label": cb_label, "hist_label": hist_label, **kwargs} - if nnames == nbins: - names = [*names, "?"] + self._set_labels(cb_label=cb_label, hist_label=hist_label, **kwargs) - horizontal = self._orientation == "horizontal" + if not self._dynamic_shade_indicator: + # no need to redraw the background for dynamically updated artists + self._m.redraw(self.layer) + else: + self._m.BM.update() - cbticks = np.array(sorted({self._vmin, *bins, self._vmax})) - centerticks = cbticks[:-1] + (cbticks[1:] - cbticks[:-1]) / 2 + def tick_params(self, what="colorbar", **kwargs): + """Set the appearance of the colorbar (or histogram) ticks.""" + if what == "colorbar": + self.ax_cb.tick_params(**kwargs) + elif what == "histogram": + self.ax_cb_plot.tick_params(**kwargs) - tick_formatter = get_named_bins_formatter(bins, names) + self._m.redraw(self.layer) - self.cb.set_ticks(centerticks) - self.cb.set_ticks(cbticks, minor=True) + tick_params.__doc__ = ( + "Set the appearance of the colorbar (or histogram) ticks.\n\n" + "NOTE\n" + "----\n" + "This is a wrapper for `m.colorbar.ax_cb.tick_params` or " + "`m.colorbar.ax_cb_plot.tick_params` to set the appearance of the ticks for " + "the colorbar or the histogram." + "You can select what you want to edit with the additional parameter:" + "\n\n" + "what: {'colorbar', 'histogram'}, default: 'colorbar'\n" + " - 'colorbar' : colorbar ticks (same as `m.colorbar.ax_cb.tick_params`)\n" + " - 'histogram' : histogram ticks (same as `m.colorbar.ax_cb_plot.tick_params`)\n" + "\n\n----------------\n\n" + dedent(plt.Axes.tick_params.__doc__) + ) - if horizontal: - # set the histogram ticks to be the same as the colorbar-ticks - # (just in case somebody wants to show ticks on the top of the histogram) - self.ax_cb_plot.set_xticks(centerticks) - self.ax_cb_plot.set_xticks(cbticks, minor=True) - # set the tick-label formatter for the colorbar-ticks - self.ax_cb.xaxis.set_major_formatter(tick_formatter) - self.ax_cb_plot.xaxis.set_major_formatter(tick_formatter) +class ColorBar(ColorBarBase): + def __init__(self, *args, inherit_position=True, **kwargs): + super().__init__(*args, **kwargs) - if tick_lines == "boundary": - self.ax_cb.tick_params(bottom=False) - self.ax_cb.tick_params(bottom=True, which="minor") - elif tick_lines == "center": - self.ax_cb.tick_params(bottom=True) - self.ax_cb.tick_params(bottom=False, which="minor") - elif tick_lines == "both": - self.ax_cb.tick_params(bottom=True) - self.ax_cb.tick_params(bottom=True, which="minor") - else: - self.ax_cb.tick_params(bottom=False) - self.ax_cb.tick_params(bottom=False, which="minor") + self._inherit_position = inherit_position + self._dynamic_shade_indicator = False - else: - self.ax_cb_plot.set_yticks(centerticks) - self.ax_cb_plot.set_yticks(cbticks, minor=True) - self.ax_cb.yaxis.set_major_formatter(tick_formatter) - self.ax_cb_plot.yaxis.set_major_formatter(tick_formatter) + @property + def layer(self): + return self._m.layer - if tick_lines == "boundary": - self.ax_cb.tick_params(right=False) - self.ax_cb.tick_params(right=True, which="minor") - elif tick_lines == "center": - self.ax_cb.tick_params(right=True) - self.ax_cb.tick_params(right=False, which="minor") - elif tick_lines == "both": - self.ax_cb.tick_params(right=True) - self.ax_cb.tick_params(right=True, which="minor") - else: - self.ax_cb.tick_params(right=False) - self.ax_cb.tick_params(right=False, which="minor") + def _hide_singular_axes(self): + super()._hide_singular_axes() + if self.layer != self._m.BM.bg_layer: + self.ax_cb.set_visible(False) + self.ax_cb_plot.set_visible(False) - if show_values: - minor_tick_formatter = partial( - self._default_cb_tick_formatter, precision=self._tick_precision - ) + def _get_data(self): + if self._dynamic_shade_indicator is True: + data = self._m.coll.get_ds_data().values + else: + data = self._m._data_manager.z_data - if horizontal: - self.ax_cb.xaxis.set_minor_formatter(minor_tick_formatter) - self.ax_cb_plot.xaxis.set_minor_formatter(minor_tick_formatter) - self.ax_cb.tick_params( - labelbottom=True, which="minor", labelsize="xx-small" - ) + return data - else: - self.ax_cb.yaxis.set_minor_formatter(minor_tick_formatter) - self.ax_cb_plot.xaxis.set_minor_formatter(minor_tick_formatter) - self.ax_cb.tick_params( - labelright=True, which="minor", labelsize="xx-small" - ) + def _identify_parent_cb(self): + parent_cb = None + # check if there is already an existing colorbar for a Maps-object that shares + # the same plot-axis. If yes, inherit the position of this colorbar! + if self._m.colorbar is not None and not self._inherit_position: + parent_cb = None # self._m.colorbar else: - if horizontal: - self.ax_cb.tick_params( - labelbottom=False, - which="minor", - ) + # check if self is actually just another layer of an existing Maps object + # that already has a colorbar assigned + for m in [self._m.parent, *self._m.parent._children]: + if m is not self._m and m.ax is self._m.ax: + if m.colorbar is not None: + if m.colorbar._parent_cb is None: + parent_cb = m.colorbar + break + if parent_cb and parent_cb.orientation == self.orientation: + return parent_cb + else: + return None - else: - self.ax_cb.tick_params( - labelright=False, - which="minor", - ) + def _set_map(self, m): + self._m = m - if horizontal: - self.ax_cb_plot.tick_params( - right=False, - bottom=False, - labelright=False, - labelbottom=False, - which="both", - ) + if isinstance(self._inherit_position, ColorBarBase): + self._parent_cb = self._inherit_position else: - self.ax_cb_plot.tick_params( - left=False, top=False, labelleft=False, labeltop=False, which="both" - ) + self._parent_cb = self._identify_parent_cb() - self._m.BM._refetch_layer(self.layer) + self._vmin = self._m.coll.norm.vmin + self._vmax = self._m.coll.norm.vmax + self._norm = self._m.coll.norm + self._cmap = self._m.coll.cmap - def remove(self): - """ - Remove the colorbar from the map. - """ - for ax in (self._ax, self.ax_cb, self.ax_cb_plot): - ax.clear() - ax.remove() - if self._dynamic_shade_indicator: - self._m.BM.remove_artist(ax) - else: - self._m.BM.remove_bg_artist(ax) - if self in self._m._colorbars: - self._m._colorbars.pop(self._m._colorbars.index(self)) + def _add_axes_to_layer(self): + BM = self._m.BM + + self._layer = self._m.layer + + # add all axes as artists + self.ax_cb.set_navigate(False) + + for a in (self._ax, self.ax_cb, self.ax_cb_plot): + if a is not None: + if self._dynamic is True: + BM.add_artist(a, self._layer) + else: + BM.add_bg_artist(a, self._layer) + + # we need to re-draw since the background axis size has changed! + BM._refetch_layer(self._layer) + BM._refetch_layer("__SPINES__") + self._m.redraw("__SPINES__") - def set_position(self, pos): + def _set_hist_size(self, *args, **kwargs): + super()._set_hist_size(*args, **kwargs) + self._m.BM._refetch_layer(self.layer) + + def set_hist_size(self, size=None): """ - Set the position of the colorbar - (and all colorbars that share the same location) + Set the size of the histogram (relative to the total colorbar size) Parameters ---------- - pos : [left, bottom, width, height] or ~matplotlib.transforms.Bbox - The new position of the in .Figure coordinates. + size : float + The fraction of the colorbar occupied by the histogram. + + - 0 = no histogram + - 0.5 = 50% colorbar, 50% histogram + - 1 = no colorbar, only histogram). + + The default is None. """ - self._get_parent_cb()._ax.set_position(pos) + self._set_hist_size(size, update_all=True) + self._m.BM.update() - # @wraps(plt.Axes.tick_params) - def tick_params(self, what="colorbar", **kwargs): - """Set the appearance of the colorbar (or histogram) ticks.""" - if what == "colorbar": - self.ax_cb.tick_params(**kwargs) - elif what == "histogram": - self.ax_cb_plot.tick_params(**kwargs) + def make_dynamic(self): + self._dynamic_shade_indicator = True - self._m.redraw(self.layer) + if not hasattr(self._m.coll, "get_ds_data"): + print("dynamic colorbars are only possible for shade-shapes!") + return - tick_params.__doc__ = ( - "Set the appearance of the colorbar (or histogram) ticks.\n\n" - "NOTE\n" - "----\n" - "This is a wrapper for `m.colorbar.ax_cb.tick_params` or " - "`m.colorbar.ax_cb_plot.tick_params` to set the appearance of the ticks for " - "the colorbar or the histogram." - "You can select what you want to edit with the additional parameter:" - "\n\n" - "what: {'colorbar', 'histogram'}, default: 'colorbar'\n" - " - 'colorbar' : colorbar ticks (same as `m.colorbar.ax_cb.tick_params`)\n" - " - 'histogram' : histogram ticks (same as `m.colorbar.ax_cb_plot.tick_params`)\n" - "\n\n----------------\n\n" + dedent(plt.Axes.tick_params.__doc__) - ) + if not hasattr(self, "_cid_redraw"): + self._cid_redraw = False + + if self._cid_redraw is False: + + def check_data_updated(*args, **kwargs): + # make sure the artist is updated before checking for new data + # TODO check if this is really enough to ensure that the coll + # is fully updated (calling coll.draw() is not an option since it + # would result make the collection appear on any layer!) + self._m.coll.changed() + dsdata = self._m.coll.get_ds_data() + if getattr(self, "_last_ds_data", None) is not None: + if not self._last_ds_data.equals(dsdata): + # if the data has changed, redraw the colorbar + self._redraw() + + self._last_ds_data = dsdata + + self._m.BM._before_fetch_bg_actions.append(check_data_updated) + + self._m.BM.on_layer( + lambda *args, **kwargs: self._redraw, + layer=self.layer, + persistent=True, + ) + + self._cid_redraw = True def indicate_contours( self, @@ -1610,3 +1013,227 @@ def indicate_contours( self.ax_cb_plot.annotate(xy=(level, y), text=label, **label_kwargs) self._m.redraw(self.layer) + + def set_bin_labels(self, bins, names, tick_lines="center", show_values=False): + """ + Set the tick-labels of the colorbar to custom names with respect to a given + set of bins. + + The labels will be placed at the center of each bin. + + This is most useful when using `m.set_classify.UserDefined(bins=[...])` + to classify the data with respect to custom bins. + + Parameters + ---------- + bins : list + A list of (right) bin-boundaries used to set the label-positions. + (e.g. `bins=[1, 2, 6]` will result in labels located at [1.5 and 4]) + names : list + A list of names that should be used as labels. + + - The first name is assigned to the values smaller than bins[0] + - Names 1 to "len(bins)" are assigned to the intermediate bins + - The "len(bins) + 1" label is assigned to the values larger than bins[-1] + (if not available a "?" label will be used) + + tick_lines : str + Set appearance of the tick-lines + + - "boundary": show only (minor) tick lines at the bin-boundaries + - "center": show only (major) tick lines at the center of the bins + - "both": show both major and minor tick lines + - None: don't show any tick lines + + The default is "center" + show_values : bool + If True, numerical values of the bin-boundaries will be shown as + minor-tick labels. The default is False + Examples + -------- + + >>> bins = [1, 2, 3] + >>> names = ["smaller than 1", + >>> "between 1 and 2", + >>> "between 2 and 3", + >>> "larger than 3"] + >>> + >>> m.add_colorbar() + >>> m.label_bin_centers(bins, names) + + """ + nnames, nbins = len(names), len(bins) + + assert nnames in [nbins, nbins + 1], ( + "The number of provided names is incorrect! " + f"Expected {nbins} (or {nbins + 1}) names but got {nnames}" + ) + + if nnames == nbins: + names = [*names, "?"] + + horizontal = self.orientation == "horizontal" + + cbticks = np.array(sorted({self._vmin, *bins, self._vmax})) + centerticks = cbticks[:-1] + (cbticks[1:] - cbticks[:-1]) / 2 + + tick_formatter = get_named_bins_formatter(bins, names) + + self.cb.set_ticks(centerticks) + self.cb.set_ticks(cbticks, minor=True) + + if horizontal: + # set the histogram ticks to be the same as the colorbar-ticks + # (just in case somebody wants to show ticks on the top of the histogram) + self.ax_cb_plot.set_xticks(centerticks) + self.ax_cb_plot.set_xticks(cbticks, minor=True) + + # set the tick-label formatter for the colorbar-ticks + self.ax_cb.xaxis.set_major_formatter(tick_formatter) + self.ax_cb_plot.xaxis.set_major_formatter(tick_formatter) + + if tick_lines == "boundary": + self.ax_cb.tick_params(bottom=False) + self.ax_cb.tick_params(bottom=True, which="minor") + elif tick_lines == "center": + self.ax_cb.tick_params(bottom=True) + self.ax_cb.tick_params(bottom=False, which="minor") + elif tick_lines == "both": + self.ax_cb.tick_params(bottom=True) + self.ax_cb.tick_params(bottom=True, which="minor") + else: + self.ax_cb.tick_params(bottom=False) + self.ax_cb.tick_params(bottom=False, which="minor") + + else: + self.ax_cb_plot.set_yticks(centerticks) + self.ax_cb_plot.set_yticks(cbticks, minor=True) + self.ax_cb.yaxis.set_major_formatter(tick_formatter) + self.ax_cb_plot.yaxis.set_major_formatter(tick_formatter) + + if tick_lines == "boundary": + self.ax_cb.tick_params(right=False) + self.ax_cb.tick_params(right=True, which="minor") + elif tick_lines == "center": + self.ax_cb.tick_params(right=True) + self.ax_cb.tick_params(right=False, which="minor") + elif tick_lines == "both": + self.ax_cb.tick_params(right=True) + self.ax_cb.tick_params(right=True, which="minor") + else: + self.ax_cb.tick_params(right=False) + self.ax_cb.tick_params(right=False, which="minor") + + if show_values: + minor_tick_formatter = partial( + self._default_cb_tick_formatter, precision=self._tick_precision + ) + + if horizontal: + self.ax_cb.xaxis.set_minor_formatter(minor_tick_formatter) + self.ax_cb_plot.xaxis.set_minor_formatter(minor_tick_formatter) + self.ax_cb.tick_params( + labelbottom=True, which="minor", labelsize="xx-small" + ) + + else: + self.ax_cb.yaxis.set_minor_formatter(minor_tick_formatter) + self.ax_cb_plot.xaxis.set_minor_formatter(minor_tick_formatter) + self.ax_cb.tick_params( + labelright=True, which="minor", labelsize="xx-small" + ) + + else: + if horizontal: + self.ax_cb.tick_params( + labelbottom=False, + which="minor", + ) + + else: + self.ax_cb.tick_params( + labelright=False, + which="minor", + ) + + if horizontal: + self.ax_cb_plot.tick_params( + right=False, + bottom=False, + labelright=False, + labelbottom=False, + which="both", + ) + else: + self.ax_cb_plot.tick_params( + left=False, top=False, labelleft=False, labeltop=False, which="both" + ) + + self._m.BM._refetch_layer(self.layer) + + def _set_tick_formatter(self): + if self._m._classified: + self.cb.set_ticks( + np.unique(np.clip(self._m.classify_specs._bins, self._vmin, self._vmax)) + ) + + if self.orientation == "horizontal": + if self._m._classified: + self.ax_cb.xaxis.set_major_formatter(self._classified_cb_tick_formatter) + else: + self.ax_cb.xaxis.set_major_formatter(self._default_cb_tick_formatter) + else: + if self._m._classified: + self.ax_cb.yaxis.set_major_formatter(self._classified_cb_tick_formatter) + else: + self.ax_cb.yaxis.set_major_formatter(self._default_cb_tick_formatter) + + @classmethod + def add_colorbar( + cls, + m, + pos=0.4, + orientation="horizontal", + hist_bins=256, + hist_size=0.8, + out_of_range_vals="keep", + tick_precision=2, + dynamic_shade_indicator=False, + extend=None, + **hist_kwargs, + ): + + cb = cls( + orientation=orientation, + hist_kwargs=hist_kwargs, + tick_precision=tick_precision, + ) + cb._set_map(m) + cb._setup_axes(pos, m.ax) + cb._add_axes_to_layer() + + cb._set_hist_size(hist_size) + cb._plot_colorbar(extend=extend) + + bins = ( + m.classify_specs._bins + if (m._classified and hist_bins == "bins") + else hist_bins + ) + + cb._plot_histogram( + bins=bins, + out_of_range_vals=out_of_range_vals, + ) + + cb._set_tick_formatter() + + if hasattr(cb._ax, "_EOmaps_cb"): + cb._ax._EOmaps_cb.append(cb) + else: + cb._ax._EOmaps_cb = [cb] + + if dynamic_shade_indicator: + cb.make_dynamic() + + return cb diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index 10c9bda6b..ae0af63d8 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -2715,7 +2715,7 @@ def getpos(pos): _TransformedBoundsLocator(fixed_pos.bounds, self.ax.transAxes) ) - @wraps(ColorBar.__init__) + @wraps(ColorBar.add_colorbar.__init__) def add_colorbar(self, *args, **kwargs): """Add a colorbar to the map.""" if self.coll is None: @@ -2723,15 +2723,12 @@ def add_colorbar(self, *args, **kwargs): "EOmaps: You must plot a dataset before " "adding a colorbar!" ) - colorbar = ColorBar( + colorbar = ColorBar.add_colorbar( self, *args, **kwargs, ) - colorbar._plot_histogram() - colorbar._plot_colorbar() - self._colorbars.append(colorbar) self.BM._refetch_layer(self.layer) self.BM._refetch_layer("__SPINES__") @@ -3498,7 +3495,7 @@ def savefig(self, *args, refetch_wms=False, rasterize_data=True, **kwargs): # handle colorbars for cb in m._colorbars: - for a in cb._axes: + for a in (cb.ax_cb, cb.ax_cb_plot): stack.enter_context(a._cm_set(animated=False)) # set if data should be rasterized on vector export diff --git a/eomaps/helpers.py b/eomaps/helpers.py index d9a0b8c67..b20045913 100644 --- a/eomaps/helpers.py +++ b/eomaps/helpers.py @@ -100,6 +100,12 @@ def __call__(self, ax, renderer): # Subtracting transSubfigure will typically rely on inverted(), # freezing the transform; thus, this needs to be delayed until draw # time as transSubfigure may otherwise change after this is evaluated. + if ax.figure is None: + return TransformedBbox( + Bbox.from_bounds(*self._bounds), + self._transform, + ) + return TransformedBbox( Bbox.from_bounds(*self._bounds), self._transform - ax.figure.transSubfigure, @@ -689,7 +695,6 @@ def __init__(self, m, modifier="alt+d", cb_modifier="control"): self._ax_picked = [] self._m_picked = [] - self._cb_picked = [] self._modifier_pressed = False @@ -791,25 +796,10 @@ def ms(self): def maxes(self): return [m.ax for m in self.ms] - @property - def cbaxes(self): - axes = list() - for m in self.ms: - axes.extend((i._ax for i in m._colorbars)) - return axes - @property def axes(self): return self.f.axes - @property - def cbs(self): - # get all colorbars - cbs = list() - for m in self.ms: - cbs.extend(m._colorbars) - return cbs - @staticmethod def roundto(x, base=10): if base == 0: @@ -929,24 +919,13 @@ def _color_axes(self): for ax in self.axes: self._color_unpicked(ax) - for cb in self.cbs: - for ax in (cb.ax_cb, cb.ax_cb_plot): - self._color_unpicked(ax) - for ax in self._ax_picked: if ax is not None: self._color_picked(ax) - for cb in self._cb_picked: - for ax in (cb.ax_cb, cb.ax_cb_plot): - self._color_picked(ax) - def _set_startpos(self, event): self._start_position = (event.x, event.y) - self._start_ax_position = { - i: (i.bbox.x0, i.bbox.y0) - for i in (*self._ax_picked, *(cb._ax for cb in self._cb_picked)) - } + self._start_ax_position = {i: (i.bbox.x0, i.bbox.y0) for i in self._ax_picked} def _add_to_history(self): self._history_undone.clear() @@ -987,7 +966,7 @@ def cb_pick(self, event): if eventax not in self.axes: # if no axes is clicked "unpick" previously picked axes - if len(self._ax_picked) + len(self._cb_picked) == 0: + if len(self._ax_picked) == 0: # if there was nothing picked there's nothing to do # except updating the info-text visibility @@ -997,7 +976,6 @@ def cb_pick(self, event): return self._ax_picked = [] - self._cb_picked = [] self._m_picked = [] self._color_axes() self._remove_snap_grid() @@ -1017,38 +995,22 @@ def cb_pick(self, event): self._m_picked.remove(m) else: self._m_picked.append(m) - elif eventax in self.cbaxes: - cb = self.cbs[self.cbaxes.index(eventax)] - if cb in self._cb_picked: - self._cb_picked.remove(cb) - else: - self._cb_picked.append(cb) else: if eventax in self._ax_picked: self._ax_picked.remove(eventax) else: self._ax_picked.append(eventax) else: - selected = eventax in self._ax_picked - if eventax in self.cbaxes: - selected = ( - selected or self.cbs[self.cbaxes.index(eventax)] in self._cb_picked - ) - - if not selected: + if eventax not in self._ax_picked: self._m_picked = [] - self._cb_picked = [] self._ax_picked = [] if eventax in self.axes: if eventax in self.maxes: self._ax_picked.append(eventax) self._m_picked.append(self.ms[self.maxes.index(eventax)]) - elif eventax in self.cbaxes: - self._cb_picked.append(self.cbs[self.cbaxes.index(eventax)]) else: self._m_picked = [] - self._cb_picked = [] self._ax_picked.append(eventax) self._add_snap_grid() @@ -1069,10 +1031,8 @@ def fetch_current_background(self): with ExitStack() as stack: for ax in self._ax_picked: stack.enter_context(ax._cm_set(visible=False)) - - for cb in self._cb_picked: - stack.enter_context(cb.ax_cb._cm_set(visible=False)) - stack.enter_context(cb.ax_cb_plot._cm_set(visible=False)) + for child_ax in ax.child_axes: + stack.enter_context(child_ax._cm_set(visible=False)) self.m.BM.blit_artists(self.axes, None, False) @@ -1096,10 +1056,6 @@ def cb_move_with_key(self, event): bbox = self._get_move_with_key_bbox(ax, event.key) ax.set_position(bbox) - for cb in self._cb_picked: - bbox = self._get_move_with_key_bbox(cb._ax, event.key) - cb.set_position(bbox) - self._add_to_history() self._color_axes() self.blit_artists() @@ -1121,29 +1077,12 @@ def cb_move(self, event): bbox = self._get_move_bbox(ax, event.x, event.y) ax.set_position(bbox) - for cb in self._cb_picked: - if cb is None: - return - - bbox = self._get_move_bbox(cb._ax, event.x, event.y) - cb.set_position(bbox) - self._add_to_history() self._color_axes() self.blit_artists() def blit_artists(self): - # TODO the current colorbar implementation requires the parent colorbar - # to be drawn in order to change the inherited position. - # a full redraw takes care of that but it is slower than blitting... - if len(self._cb_picked) > 0: - self.m.redraw() - return - artists = [*self._ax_picked] - for cb in self._cb_picked: - artists.append(cb.ax_cb) - artists.append(cb.ax_cb_plot) if getattr(self, "_info_text", None) is not None: artists.append(self._info_text) @@ -1158,31 +1097,30 @@ def cb_scroll(self, event): return False # ordinary axes picked - if self._scale_direction not in ["set_hist_size"]: + if self._scale_direction == "set_hist_size": + for ax in self._ax_picked: + cbs = getattr(ax, "_EOmaps_cb", None) + if cbs is None: + continue + + # use the hist-size of the first colorbar as start + start_size = cbs[0]._hist_size + for cb in cbs: + new_size = np.clip(start_size + event.step * 0.02, 0.0, 1.0) + cb._set_hist_size(new_size) + + self._add_to_history() + self.blit_artists() + # ordinary axes picked + else: for ax in self._ax_picked: if ax is None: continue resize_bbox = self._get_resize_bbox(ax, event.step) if resize_bbox is not None: ax.set_position(resize_bbox) - - for cb in self._cb_picked: - if cb is None: - continue - - if self._scale_direction == "set_hist_size": - start_size = cb._hist_size - - new_size = np.clip(start_size + event.step * 0.02, 0.0, 1.0) - cb.set_hist_size(new_size) - else: - resize_bbox = self._get_resize_bbox(cb._ax, event.step) - if resize_bbox is not None: - cb.set_position(resize_bbox) - - self._add_to_history() - # self._color_axes() - self.blit_artists() + self._add_to_history() + self.blit_artists() def cb_key_press(self, event): # release shift key on every keypress @@ -1284,6 +1222,18 @@ def _snap(self): return snap + def ax_on_layer(self, ax): + return ax in [ + ax + for ax in self.f.axes + if ( + ax in self.m.BM._get_unmanaged_axes() + or ax in self.m.BM.get_bg_artists(self.m.BM.bg_layer) + or ax in self.m.BM.get_artists(self.m.BM.bg_layer) + or ax in self.maxes + ) + ] + def _make_draggable(self, filepath=None): # Uncheck active pan/zoom actions of the matplotlib toolbar. # use a try-except block to avoid issues with ipympl in jupyter notebooks @@ -1320,10 +1270,6 @@ def _make_draggable(self, filepath=None): # check if the axis is the container-axes of a colorbar cbaxQ = ax.get_label() == "cb" - self._revert_props.append((ax.set_visible, ax.get_visible())) - self._revert_props.append((ax.set_frame_on, ax.get_frame_on())) - self._revert_props.append((ax.set_animated, ax.get_animated())) - if not ax.axison: showXY = False self._revert_props.append(ax.set_axis_off) @@ -1332,15 +1278,26 @@ def _make_draggable(self, filepath=None): showXY = True # keep singular axes hidden + self._revert_props.append((ax.set_visible, ax.get_visible())) if not singularax: - ax.set_visible(True) + + if self.ax_on_layer(ax): + ax.set_visible(True) + else: + ax.set_visible(False) else: ax.set_visible(False) + self._revert_props.append((ax.set_animated, ax.get_animated())) ax.set_animated(False) + + self._revert_props.append((ax.set_frame_on, ax.get_frame_on())) ax.set_frame_on(True) for child in ax.get_children(): + # make sure we don't treat axes again (in case they are child-axes) + if child in self.f.axes: + continue revert_props = [ "edgecolor", "linewidth", @@ -1381,11 +1338,6 @@ def _make_draggable(self, filepath=None): child.set_visible(False) child.set_animated(True) - # hide all colorbars that are not on the visible layer - for cb in self.cbs: - if cb._m.layer != self.m.BM.bg_layer: - cb.set_visible(False) - # only re-draw if info-text is None if getattr(self, "_info_text", None) is None: self._info_text = self.add_info_text() @@ -1431,7 +1383,6 @@ def _undo_draggable(self): # clear all picks on exit self._ax_picked = [] - self._cb_picked = [] self._m_picked = [] _log.info("EOmaps: Exiting layout-editor mode...") @@ -1456,17 +1407,11 @@ def _undo_draggable(self): self.modifier_pressed = False - # show all colorbars that are on the visible layer - active_layers = self.m.BM._get_active_layers_alphas[0] - for cb in self.cbs: - if cb._m.layer in active_layers: - cb.set_visible(True) - # reset the histogram-size of all colorbars to make sure previously hidden # axes (e.g. size=0) become visible if the size is now > 0. for m in self.ms: for cb in m._colorbars: - cb.set_hist_size() + cb._set_hist_size(update_all=True) # remove snap-grid (if it's still visible) self._remove_snap_grid() @@ -1685,7 +1630,7 @@ def apply_layout(self, layout): i = int(key[: key.find("_")]) if key.endswith("_histogram_size"): - cbs[i].set_hist_size(val) + cbs[i]._set_hist_size(val) else: axes[i].set_position(val) @@ -1963,6 +1908,8 @@ def bg_layer(self, val): layer_visible = self._layer_is_subset(val, m.layer) for cb in m._colorbars: + cb._hide_singular_axes() + if layer_visible: if cb in self._hidden_artists: self._hidden_artists.remove(cb) diff --git a/tests/test_basic_functions.py b/tests/test_basic_functions.py index 623850ae5..9272d8e23 100644 --- a/tests/test_basic_functions.py +++ b/tests/test_basic_functions.py @@ -583,8 +583,8 @@ def test_add_colorbar(self): self.assertTrue(len(m._colorbars) == 4) self.assertTrue(m.colorbar is cb4) - cb4.remove() - self.assertTrue(len(m._colorbars) == 3) + # cb4.remove() + # self.assertTrue(len(m._colorbars) == 3) cb4 = m.add_colorbar( (0.1, 0.1, 0.7, 0.2), @@ -597,7 +597,7 @@ def test_add_colorbar(self): extend_frac=0.4, show_outline=dict(color="r", lw=4), ) - self.assertTrue(len(m._colorbars) == 4) + self.assertTrue(len(m._colorbars) == 5) self.assertTrue(m.colorbar is cb4) m2 = m.new_layer("asdf") @@ -609,7 +609,7 @@ def test_add_colorbar(self): m.redraw() m.show_layer("asdf") - self.assertTrue(len(m.BM._hidden_artists) == 4) + self.assertTrue(len(m.BM._hidden_artists) == 5) for cb in m._colorbars: self.assertTrue(cb in m.BM._hidden_artists) m.show_layer("base") From 105bfca112b7819970fb7f4435107b55dda9dddf Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sat, 27 Jan 2024 12:22:30 +0100 Subject: [PATCH 124/240] fix wrong import --- eomaps/colorbar.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/eomaps/colorbar.py b/eomaps/colorbar.py index 5391cac71..720af546f 100644 --- a/eomaps/colorbar.py +++ b/eomaps/colorbar.py @@ -1,4 +1,4 @@ -from itertools import pairwise, cycle +from itertools import cycle from functools import partial from textwrap import dedent @@ -10,7 +10,7 @@ import numpy as np -from eomaps.helpers import _TransformedBoundsLocator +from eomaps.helpers import _TransformedBoundsLocator, pairwise def get_named_bins_formatter(bins, names, show_values=False): From c15bafd5c208c3485ddf5e84ff9aea5ef4ce4576 Mon Sep 17 00:00:00 2001 From: Raphael Date: Mon, 29 Jan 2024 12:08:24 +0100 Subject: [PATCH 125/240] minor --- eomaps/colorbar.py | 51 ++++++++++++++++++++++++---------------------- 1 file changed, 27 insertions(+), 24 deletions(-) diff --git a/eomaps/colorbar.py b/eomaps/colorbar.py index 720af546f..063b049db 100644 --- a/eomaps/colorbar.py +++ b/eomaps/colorbar.py @@ -95,29 +95,6 @@ def _scm(self): def _hist_orientation(self): return "vertical" if self.orientation == "horizontal" else "horizontal" - def _default_cb_tick_formatter(self, x, pos, precision=None): - """ - A formatter to format the tick-labels of the colorbar for encoded datasets. - (used in xaxis.set_major_formatter() ) - """ - # if precision=None the shortest representation of the number is used - return np.format_float_positional( - self._m._decode_values(x), precision=self._tick_precision - ) - - def _classified_cb_tick_formatter(self, x, pos, precision=None): - """ - A formatter to format the tick-labels of the colorbar for classified datasets. - (used in xaxis.set_major_formatter() ) - """ - # if precision=None the shortest representation of the number is used - if x >= self._vmin and x <= self._vmax: - return np.format_float_positional( - self._m._decode_values(x), precision=self._tick_precision, trim="-" - ) - else: - return "" - def _get_data(self): # TODO return self._data @@ -682,7 +659,33 @@ def __init__(self, *args, inherit_position=True, **kwargs): def layer(self): return self._m.layer + def _default_cb_tick_formatter(self, x, pos, precision=None): + """ + A formatter to format the tick-labels of the colorbar for encoded datasets. + (used in xaxis.set_major_formatter() ) + """ + # if precision=None the shortest representation of the number is used + return np.format_float_positional( + self._m._decode_values(x), precision=self._tick_precision + ) + + def _classified_cb_tick_formatter(self, x, pos, precision=None): + """ + A formatter to format the tick-labels of the colorbar for classified datasets. + (used in xaxis.set_major_formatter() ) + """ + # if precision=None the shortest representation of the number is used + if x >= self._vmin and x <= self._vmax: + return np.format_float_positional( + self._m._decode_values(x), precision=self._tick_precision, trim="-" + ) + else: + return "" + def _hide_singular_axes(self): + # make sure that the mechanism for hiding singular axes does not show + # colorbars that are not on the visible layer + super()._hide_singular_axes() if self.layer != self._m.BM.bg_layer: self.ax_cb.set_visible(False) @@ -1199,7 +1202,7 @@ def add_colorbar( out_of_range_vals="keep", tick_precision=2, dynamic_shade_indicator=False, - extend=None, + extend="both", **hist_kwargs, ): From 53d157abaf5829cb7c0f05bdda71e81eb20cea3b Mon Sep 17 00:00:00 2001 From: Raphael Date: Mon, 29 Jan 2024 17:58:35 +0100 Subject: [PATCH 126/240] colorbar updates - re-introduce marings to preserve layout with respect to v7.x - fix identifying relevant colorbars with the layout-editor - introduce additional kwargs - fix inverting axis after ax.clear - avoid recursions in xlim callbacks --- eomaps/colorbar.py | 137 ++++++++++++++++++++++++++++----------------- eomaps/helpers.py | 20 +++++-- 2 files changed, 102 insertions(+), 55 deletions(-) diff --git a/eomaps/colorbar.py b/eomaps/colorbar.py index 063b049db..f0cb135b1 100644 --- a/eomaps/colorbar.py +++ b/eomaps/colorbar.py @@ -57,27 +57,23 @@ def __init__( self, orientation="horizontal", extend_frac=0.025, - dynamic=True, - padding=0.1, hist_kwargs=None, tick_precision=2, + margin=None, ): self._hist_size = 0.9 + if hist_kwargs is not None: + self._hist_kwargs = hist_kwargs + else: + self._hist_kwargs = {} self._extend_frac = extend_frac - self._dynamic = dynamic self.orientation = orientation - self._log = False - - self._padding = padding - - if hist_kwargs is not None: - self._hist_kwargs = hist_kwargs - else: - self._hist_kwargs = {} + self._tick_precision = tick_precision + self._margin = margin self._vmin = None self._vmax = None @@ -85,8 +81,6 @@ def __init__( self._cmap = None self._data = None - self._tick_precision = tick_precision - @property def _scm(self): return plt.cm.ScalarMappable(cmap=self._cmap, norm=self._norm) @@ -124,29 +118,27 @@ def _setup_axes(self, pos, parent_ax=None, f=None, zorder=9999): if self.orientation == "horizontal": gs = GridSpecFromSubplotSpec( 2, - 3, + 1, parent_ax.get_subplotspec(), height_ratios=(1, pos), - width_ratios=(self._padding, 1, self._padding), ) parent_ax.set_subplotspec(gs[0, :]) self._ax = f.add_subplot( - gs[1, 1], + gs[1, :], label="cb", zorder=zorder, ) else: gs = GridSpecFromSubplotSpec( - 3, + 1, 2, parent_ax.get_subplotspec(), width_ratios=(1, pos), - height_ratios=(self._padding, 1, self._padding), ) - parent_ax.set_subplotspec(gs[1, 0]) + parent_ax.set_subplotspec(gs[:, 0]) self._ax = f.add_subplot( - gs[1, 1], + gs[:, 1], label="cb", zorder=zorder, ) @@ -193,8 +185,8 @@ def _setup_axes(self, pos, parent_ax=None, f=None, zorder=9999): else: self.ax_cb_plot.sharey(self.ax_cb) - # for vertical colorbars, histogram-axis must be inverted! - self.ax_cb_plot.invert_xaxis() + # # for vertical colorbars, histogram-axis must be inverted! + self.ax_cb_plot.xaxis.set_inverted(True) # keep the background of the plot-axis but remove the outer frame self.ax_cb_plot.spines["top"].set_visible(False) @@ -213,11 +205,14 @@ def _attach_lim_cbs(self): def ychanged(event): if self.orientation == "horizontal": - self.ax_cb_plot.set_ylim(0, None, emit=False) + with self.ax_cb_plot.callbacks.blocked(signal="ylim_changed"): + self.ax_cb_plot.set_ylim(0, None, emit=False) def xchanged(event): if self.orientation == "vertical": - self.ax_cb_plot.set_xlim(None, 0, emit=False) + with self.ax_cb_plot.callbacks.blocked(signal="xlim_changed"): + self.ax_cb_plot.xaxis.set_inverted(True) + self.ax_cb_plot.set_xlim(left=None, right=0, emit=False) self.ax_cb_plot.callbacks.connect("xlim_changed", xchanged) self.ax_cb_plot.callbacks.connect("ylim_changed", ychanged) @@ -246,12 +241,24 @@ def _set_hist_size(self, size=None, update_all=False): self._hide_singular_axes() + if self._margin is None: + if self.orientation == "horizontal": + self._margin = dict(left=0.1, right=0.1, bottom=0.3, top=0.0) + else: + self._margin = dict(left=0.0, right=0.3, bottom=0.1, top=0.1) + + l, r = (self._margin.get(k, 0) for k in ["left", "right"]) + b, t = (self._margin.get(k, 0) for k in ["bottom", "top"]) + w, h = 1 - l - r, 1 - t - b + if self.orientation == "horizontal": - l_cb_bounds = (0, 0, 1, 1 - size) - l_hist_bounds = (0, 1 - size, 1, size) + s = (1 - self._hist_size) * h + l_cb_bounds = (l, b, w, s) + l_hist_bounds = (l, b + s, w, h - s) else: - l_cb_bounds = (size, 0, 1 - size, 1) - l_hist_bounds = (0, 0, size, 1) + s = (1 - self._hist_size) * w + l_cb_bounds = (l + w - s, b, s, h) + l_hist_bounds = (l, b, w - s, h) self._set_axes_locators(l_cb_bounds, l_hist_bounds) self._style_hist_ticks() @@ -280,8 +287,6 @@ def get_extend_fracs(self): return 0, 1 def set_scale(self, log=False): - self._log = log - if self.orientation == "horizontal": # set axis scale if log is True: @@ -343,17 +348,36 @@ def _plot_colorbar(self, **kwargs): # padding of the histogram axes confirms to the size of the colorbar arrows self._set_hist_size() - def _plot_histogram(self, bins=None, out_of_range_vals="keep", **kwargs): + def _plot_histogram( + self, bins=None, out_of_range_vals="keep", show_outline=False, **kwargs + ): + + self._hist_bins = bins + self._out_of_range_vals = out_of_range_vals + self._show_outline = show_outline # plot the histogram - self.ax_cb_plot.hist( - self._preprocess_data(out_of_range_vals=out_of_range_vals), + h = self.ax_cb_plot.hist( + self._preprocess_data(out_of_range_vals=self._out_of_range_vals), orientation=self._hist_orientation, - bins=bins, + bins=self._hist_bins, align="mid", **kwargs, ) + if self._show_outline: + if self._show_outline is True: + outline_props = dict(color="k", lw=1) + else: + outline_props = self._show_outline + + if self.orientation == "horizontal": + self.ax_cb_plot.step( + [h[1][0], *h[1], h[1][-1]], [0, h[0][0], *h[0], 0], **outline_props + ) + else: + self.ax_cb_plot.step([0, *h[0], 0], [h[1][0], *h[1]], **outline_props) + bins = getattr(self._norm, "boundaries", None) if bins is None: @@ -516,7 +540,7 @@ def _style_hist_ticks(self): def _redraw(self, *args, **kwargs): # only re-draw if the corresponding layer is visible - if self.layer not in self._m.BM.bg_layer.split("|"): + if not self._m.BM._layer_visible(self.layer): return self.ax_cb.clear() @@ -528,11 +552,10 @@ def _redraw(self, *args, **kwargs): self._plot_colorbar() - bins = self._m.classify_specs._bins - self._plot_histogram( - bins=bins, - range=(self._m._vmin, self._m._vmax), + bins=self._hist_bins, + out_of_range_vals=self._out_of_range_vals, + show_outline=self._show_outline, ) def _set_labels(self, cb_label=None, hist_label=None, **kwargs): @@ -687,7 +710,7 @@ def _hide_singular_axes(self): # colorbars that are not on the visible layer super()._hide_singular_axes() - if self.layer != self._m.BM.bg_layer: + if not self._m.BM._layer_visible(self.layer): self.ax_cb.set_visible(False) self.ax_cb_plot.set_visible(False) @@ -733,7 +756,7 @@ def _set_map(self, m): self._norm = self._m.coll.norm self._cmap = self._m.coll.cmap - def _add_axes_to_layer(self): + def _add_axes_to_layer(self, dynamic): BM = self._m.BM self._layer = self._m.layer @@ -743,7 +766,7 @@ def _add_axes_to_layer(self): for a in (self._ax, self.ax_cb, self.ax_cb_plot): if a is not None: - if self._dynamic is True: + if dynamic is True: BM.add_artist(a, self._layer) else: BM.add_bg_artist(a, self._layer) @@ -1191,31 +1214,47 @@ def _set_tick_formatter(self): else: self.ax_cb.yaxis.set_major_formatter(self._default_cb_tick_formatter) + def _redraw(self, *args, **kwargs): + super()._redraw(*args, **kwargs) + self._set_tick_formatter() + @classmethod def add_colorbar( cls, m, pos=0.4, + inherit_position=None, orientation="horizontal", hist_bins=256, hist_size=0.8, - out_of_range_vals="keep", + out_of_range_vals="clip", tick_precision=2, dynamic_shade_indicator=False, - extend="both", - **hist_kwargs, + extend=None, + extend_frac=0.025, + log=False, + label=None, + ylabel=None, + show_outline=False, + hist_kwargs=None, + margin=None, + **kwargs, ): cb = cls( orientation=orientation, hist_kwargs=hist_kwargs, tick_precision=tick_precision, + inherit_position=inherit_position, + extend_frac=extend_frac, + margin=margin, ) cb._set_map(m) cb._setup_axes(pos, m.ax) - cb._add_axes_to_layer() + cb._add_axes_to_layer(dynamic=dynamic_shade_indicator) cb._set_hist_size(hist_size) + cb.set_scale(log) cb._plot_colorbar(extend=extend) bins = ( @@ -1227,14 +1266,12 @@ def add_colorbar( cb._plot_histogram( bins=bins, out_of_range_vals=out_of_range_vals, + show_outline=show_outline, ) cb._set_tick_formatter() - if hasattr(cb._ax, "_EOmaps_cb"): - cb._ax._EOmaps_cb.append(cb) - else: - cb._ax._EOmaps_cb = [cb] + cb.set_labels(cb_label=label, hist_label=ylabel) if dynamic_shade_indicator: cb.make_dynamic() diff --git a/eomaps/helpers.py b/eomaps/helpers.py index b20045913..9fc6e7711 100644 --- a/eomaps/helpers.py +++ b/eomaps/helpers.py @@ -1096,14 +1096,24 @@ def cb_scroll(self, event): if not self.modifier_pressed: return False - # ordinary axes picked if self._scale_direction == "set_hist_size": + # resize colorbar histogram for ax in self._ax_picked: - cbs = getattr(ax, "_EOmaps_cb", None) - if cbs is None: + if not ax.get_label() == "cb": continue - # use the hist-size of the first colorbar as start + # identify all relevant colorbars + # (e.g. all colorbars that share the container-ax "cb._ax") + cbs = [] + for m in self.ms: + for cb in m._colorbars: + if cb._ax is ax: + cbs.append(cb) + + if len(cbs) == 0: + return False + + # use the hist-size of the first colorbar as start (to avoid ambiguity) start_size = cbs[0]._hist_size for cb in cbs: new_size = np.clip(start_size + event.step * 0.02, 0.0, 1.0) @@ -1111,8 +1121,8 @@ def cb_scroll(self, event): self._add_to_history() self.blit_artists() - # ordinary axes picked else: + # resize axes for ax in self._ax_picked: if ax is None: continue From f1f580edf166c1105f0511febbbc52548c963b62 Mon Sep 17 00:00:00 2001 From: Raphael Date: Mon, 29 Jan 2024 18:17:13 +0100 Subject: [PATCH 127/240] update m.add_colorbar --- eomaps/eomaps.py | 8 ++------ 1 file changed, 2 insertions(+), 6 deletions(-) diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index ae0af63d8..566c937a0 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -2715,7 +2715,7 @@ def getpos(pos): _TransformedBoundsLocator(fixed_pos.bounds, self.ax.transAxes) ) - @wraps(ColorBar.add_colorbar.__init__) + @wraps(ColorBar.add_colorbar) def add_colorbar(self, *args, **kwargs): """Add a colorbar to the map.""" if self.coll is None: @@ -2723,11 +2723,7 @@ def add_colorbar(self, *args, **kwargs): "EOmaps: You must plot a dataset before " "adding a colorbar!" ) - colorbar = ColorBar.add_colorbar( - self, - *args, - **kwargs, - ) + colorbar = ColorBar.add_colorbar(self, *args, **kwargs) self._colorbars.append(colorbar) self.BM._refetch_layer(self.layer) From 66bc47e881b4a1b0489fcd8fc04b5a48e1f3f92f Mon Sep 17 00:00:00 2001 From: Raphael Date: Mon, 29 Jan 2024 18:33:40 +0100 Subject: [PATCH 128/240] add docstrings and missing methods to colorbar --- eomaps/colorbar.py | 235 +++++++++++++++++++++++++++++++++++++++------ 1 file changed, 208 insertions(+), 27 deletions(-) diff --git a/eomaps/colorbar.py b/eomaps/colorbar.py index f0cb135b1..676e68cd8 100644 --- a/eomaps/colorbar.py +++ b/eomaps/colorbar.py @@ -127,6 +127,7 @@ def _setup_axes(self, pos, parent_ax=None, f=None, zorder=9999): gs[1, :], label="cb", zorder=zorder, + navigate=False, ) else: gs = GridSpecFromSubplotSpec( @@ -141,12 +142,14 @@ def _setup_axes(self, pos, parent_ax=None, f=None, zorder=9999): gs[:, 1], label="cb", zorder=zorder, + navigate=False, ) elif isinstance(pos, SubplotSpec): self._ax = f.add_subplot( pos, label="cb", zorder=zorder, + navigate=False, ) elif isinstance(pos, (list, tuple)): x0, y0, w, h = pos @@ -156,7 +159,7 @@ def _setup_axes(self, pos, parent_ax=None, f=None, zorder=9999): # the parent axes holding the 2 child-axes self._ax = plt.Axes(f, bbox, label="cb", zorder=zorder) - f.add_axes(self._ax) + f.add_axes(self._ax, navigate=False) # make all spines, labels etc. invisible for the base-axis self._ax.set_axis_off() @@ -166,6 +169,7 @@ def _setup_axes(self, pos, parent_ax=None, f=None, zorder=9999): self._ax.get_position(), label="EOmaps_cb", zorder=zorder - 1, # make zorder 1 lower than container axes for picking + navigate=False, ) # histogram axes @@ -173,6 +177,7 @@ def _setup_axes(self, pos, parent_ax=None, f=None, zorder=9999): self._ax.get_position(), label="EOmaps_cb_hist", zorder=zorder - 1, # make zorder 1 lower than container axes for picking + navigate=False, ) # add axes as child-axes @@ -263,30 +268,17 @@ def _set_hist_size(self, size=None, update_all=False): self._set_axes_locators(l_cb_bounds, l_hist_bounds) self._style_hist_ticks() - def get_extend_fracs(self): - # if no colorbar is found, use the full axis - if not hasattr(self, "cb"): - return 0, 1 - - return 0, 1 - - extend = self.cb.extend - - # extend fraction is defined as % of the interior colorbar length! - getfrac = lambda n: self._extend_frac / (1 + n * self._extend_frac) + def set_scale(self, log=False): + """ + Set the scale of the colorbar histogram. (e.g. logarithmic or linear) - if extend == "both": - frac = getfrac(2) - return frac, 1 - 2 * frac - elif extend == "min": - frac = getfrac(1) - return frac, 1 - frac - elif extend == "max": - return 0, 1 - getfrac(1) - else: - return 0, 1 + Parameters + ---------- + log : bool, optional + If True, use a logarithmic scale for the histogram. + The default is False. - def set_scale(self, log=False): + """ if self.orientation == "horizontal": # set axis scale if log is True: @@ -603,7 +595,7 @@ def _set_labels(self, cb_label=None, hist_label=None, **kwargs): def set_labels(self, cb_label=None, hist_label=None, **kwargs): """ - Set the labels (and the styling) for the colorbar (and the histogram). + Set the labels (and the label-style) for the colorbar (and the histogram). For more details, see `ColorBar.ax_cb.set_xlabel(..)` and matplotlib's `.Text` properties. @@ -672,6 +664,8 @@ def tick_params(self, what="colorbar", **kwargs): class ColorBar(ColorBarBase): + """Class to draw colorbars with a histogram on top""" + def __init__(self, *args, inherit_position=True, **kwargs): super().__init__(*args, **kwargs) @@ -798,7 +792,7 @@ def set_hist_size(self, size=None): self._set_hist_size(size, update_all=True) self._m.BM.update() - def make_dynamic(self): + def _make_dynamic(self): self._dynamic_shade_indicator = True if not hasattr(self._m.coll, "get_ds_data"): @@ -1218,8 +1212,41 @@ def _redraw(self, *args, **kwargs): super()._redraw(*args, **kwargs) self._set_tick_formatter() + def set_position(self, pos): + """ + Set the position of the colorbar + (and all colorbars that share the same location) + + Parameters + ---------- + pos : [left, bottom, width, height] or ~matplotlib.transforms.Bbox + The new position of the in .Figure coordinates. + """ + self._ax.set_position(pos) + if self._dynamic_shade_indicator is False: + self._m.redraw(self.layer) + + def set_visible(self, vis): + """ + Set the visibility of the colorbar. + + Parameters + ---------- + vis : bool + - True: colorbar visible + - False: colorbar not visible + """ + for ax in (self.ax_cb, self.ax_cb_plot): + ax.set_visible(vis) + + if vis is True: + self._hide_singular_axes() + + if self._dynamic_shade_indicator is False: + self._m.redraw(self.layer) + @classmethod - def add_colorbar( + def _new_colorbar( cls, m, pos=0.4, @@ -1240,6 +1267,160 @@ def add_colorbar( margin=None, **kwargs, ): + """ + Add a colorbar to the map. + + The colorbar always represents the data of the associated Maps-object + that was assigned in the last call to `m.plot_map()`. + + By default, the colorbar will only be visible on the layer of the associated + Maps-object. + + After the colorbar has been created, it can be accessed via: + + >>> cb = m.colorbar + + Parameters + ---------- + pos : float or 4-tuple, optional + + - float: fraction of the axis size that is used to create the colorbar. + The axes of the Maps-object will be shrunk accordingly to make space + for the colorbar. + - 4-tuple (x0, y0, width, height): + Absolute position of the colorbar in relative figure-units (0-1). + In this case, existing axes are NOT automatically re-positioned! + + Note: By default, multiple colorbars on different layers share their + position! To force placement of a colorbar, use "inherit_position=False". + + The default is 0.4. + inherit_position : bool or None optional + Indicator if the colorbar should share its position with other colorbars + that represent datasets on the same plot-axis. + + - If True, and there is already another colorbar for the given plot-axis, + the value of "pos" will be ignored and the new colorbar will share its + position with the parent-colorbar. (e.g. all colorbars for a given axis will + overlap and moving a colorbar in one layer will move all other relevant + colorbars accordingly). + - If None: If the colorbar is added on a different layer than the parent + colorbar, use "inherit_position=True", else use "inherit_position=False". + + The default is None + hist_size : float or None + The fraction of the colorbar occupied by the histogram. + + - None: no histogram will be drawn + - 0: + - 0.9: 90% histogram, 10% colorbar + - 1: only histogram + + hist_bins : int, list, tuple, array or "bins", optional + + - If int: The number of histogram-bins to use for the colorbar. + - If list, tuple or numpy-array: the bins to use + - If "bins": use the bins obtained from the classification + (ONLY possible if a classification scheme is used!) + + The default is 256. + extend : str or None, optional + Set how extension-arrows should be added. + + - None: extension-arrow behavior is determined by the provided dataset + in conjunction with the limits (e.g. vmin and vmax). + - "neither": extension arrows are never added + - "min" or "max": only min / max extension arrows are added + - "both": both min and max extension arrows are added + + Note: If the colorbar inherits its position from a colorbar on a different + layer, the extend-behavior is inherited as well! + + The default is None. + extend_frac : float, optional + The fraction of the colorbar-size to use for extension-arrows. + (Extension-arrows are added if out-of-range values are found!) + The default is 0.025. + orientation : str, optional + The orientation of the colorbar ("horizontal" or "vertical"). + The default is "horizontal". + dynamic_shade_indicator : bool, optional + ONLY relevant if data-shading is used! ("shade_raster" or "shade_points") + + - False: The colorbar represents the actual (full) dataset + - True: The colorbar is dynamically updated and represents the density of + the shaded pixel values within the current field of view. + + The default is False. + show_outline : bool or dict + Indicator if an outline should be added to the histogram. + (e.g. a line encompassing the histogram) + If a dict is provided, it is passed to `plt.step()` to style the line. + (e.g. with ordinary matplotlib parameters such as color, lw, ls etc.) + If True, the following properties are used: + + - {"color": "k", "lw": 1} + + The default is False. + tick_precision : int or None + The precision of the tick-labels in the colorbar. + (e.g. a precision of 2 means that 0.12345 will be shown as 0.12) + The default is 2. + log : bool, optional + Indicator if the y-axis of the plot should be logarithmic or not. + The default is False + out_of_range_vals : str or None + + - if "mask": out-of range values will be masked. + (e.g. values outside the colorbar limits are not represented in the + histogram and NO extend-arrows are added) + - if "clip": out-of-range values will be clipped. + (e.g. values outside the colorbar limits will be represented in the + min/max bins of the histogram) + + The default is "clip" + hist_kwargs : dict + A dictionary with keyword-arguments passed to the creation of the histogram + (e.g. passed to `plt.hist()` ) + label : str, optional + The label used for the colorbar. + Use `ColorBar.set_labels()` to set the labels (and styling) for the + colorbar and the histogram. + The default is None. + ylabel : str, optional + The label used for the y-axis of the colorbar. The default is None + layer : str + The layer at which the colorbar will be drawn. + NOTE: In most cases you should NOT need to adjust the layer! + The layer is automatically assigned to the layer at which the + data was plotted and Colorbars are only visible on the assigned layer! + kwargs : + All additional kwargs are passed to the creation of the colorbar + (e.g. `plt.colorbar()`) + + See Also + -------- + ColorBar.set_bin_labels: Use custom names for classified colorbar bins. + + Examples + -------- + + >>> x = y = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] + >>> data = [1, 2, 6, 6, 6, 8, 7, 3, 9, 10] + >>> m = Maps() + >>> m.set_data(data, x, y) + >>> m.plot_map() + >>> m.add_colorbar(label="some data") + + >>> x = y = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] + >>> data = [1, 2, 6, 6, 6, 8, 7, 3, 9, 10] + >>> m = Maps() + >>> m.set_data(data, x, y) + >>> m.set_classify.Quantiles(k=6) + >>> m.plot_map() + >>> m.add_colorbar(hist_bins="bins", label="some data") + + """ cb = cls( orientation=orientation, @@ -1274,6 +1455,6 @@ def add_colorbar( cb.set_labels(cb_label=label, hist_label=ylabel) if dynamic_shade_indicator: - cb.make_dynamic() + cb._make_dynamic() return cb From b10bc836d8fc2385608660487b7efb3c5e324b87 Mon Sep 17 00:00:00 2001 From: Raphael Date: Mon, 29 Jan 2024 18:34:01 +0100 Subject: [PATCH 129/240] minor --- docs/api_data_visualization.rst | 1 - 1 file changed, 1 deletion(-) diff --git a/docs/api_data_visualization.rst b/docs/api_data_visualization.rst index 0ff411dfa..99c135d0e 100644 --- a/docs/api_data_visualization.rst +++ b/docs/api_data_visualization.rst @@ -889,7 +889,6 @@ The returned ``ColorBar``-object has the following useful methods defined: ColorBar.set_hist_size ColorBar.tick_params ColorBar.set_visible - ColorBar.remove Set colorbar tick labels based on bins ************************************** From d0229ebc34249fc16a8b710696f6c05535db87b5 Mon Sep 17 00:00:00 2001 From: Raphael Date: Mon, 29 Jan 2024 20:33:12 +0100 Subject: [PATCH 130/240] fix typo --- eomaps/eomaps.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index 566c937a0..620c78b6f 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -2715,7 +2715,7 @@ def getpos(pos): _TransformedBoundsLocator(fixed_pos.bounds, self.ax.transAxes) ) - @wraps(ColorBar.add_colorbar) + @wraps(ColorBar._new_colorbar) def add_colorbar(self, *args, **kwargs): """Add a colorbar to the map.""" if self.coll is None: @@ -2723,7 +2723,7 @@ def add_colorbar(self, *args, **kwargs): "EOmaps: You must plot a dataset before " "adding a colorbar!" ) - colorbar = ColorBar.add_colorbar(self, *args, **kwargs) + colorbar = ColorBar._new_colorbar(self, *args, **kwargs) self._colorbars.append(colorbar) self.BM._refetch_layer(self.layer) From ce610e711006140c77f7a57dfca273fef07ec947 Mon Sep 17 00:00:00 2001 From: Raphael Date: Mon, 29 Jan 2024 21:58:18 +0100 Subject: [PATCH 131/240] update docstrings --- eomaps/colorbar.py | 9 ++++++++- 1 file changed, 8 insertions(+), 1 deletion(-) diff --git a/eomaps/colorbar.py b/eomaps/colorbar.py index 676e68cd8..5d4ad7b94 100644 --- a/eomaps/colorbar.py +++ b/eomaps/colorbar.py @@ -664,7 +664,13 @@ def tick_params(self, what="colorbar", **kwargs): class ColorBar(ColorBarBase): - """Class to draw colorbars with a histogram on top""" + """ + A colorbar with a histogram on top. + + To add a colorbar to a map, use + :py:meth:`Maps.add_colorbar `! + + """ def __init__(self, *args, inherit_position=True, **kwargs): super().__init__(*args, **kwargs) @@ -674,6 +680,7 @@ def __init__(self, *args, inherit_position=True, **kwargs): @property def layer(self): + """The layer associated with the colorbar.""" return self._m.layer def _default_cb_tick_formatter(self, x, pos, precision=None): From 64d6c8192b469db16577dc658268959a9aa9789a Mon Sep 17 00:00:00 2001 From: Raphael Date: Mon, 29 Jan 2024 22:35:49 +0100 Subject: [PATCH 132/240] update docstrings --- eomaps/colorbar.py | 13 +++++++++---- 1 file changed, 9 insertions(+), 4 deletions(-) diff --git a/eomaps/colorbar.py b/eomaps/colorbar.py index 5d4ad7b94..f9ea2766a 100644 --- a/eomaps/colorbar.py +++ b/eomaps/colorbar.py @@ -851,8 +851,9 @@ def indicate_contours( """ Indicate contour locations in the colorbar. - Note: Before using this function you must draw a dataset with the ``"contour"`` - shape! (you can also indicate contours from other Maps-objects by using + Note: Before using this function you must draw a dataset with the + :py:class:`contour ` shape! + (you can also indicate contours from other Maps-objects by using the optional ``contour_map`` argument.) Parameters @@ -1048,7 +1049,8 @@ def set_bin_labels(self, bins, names, tick_lines="center", show_values=False): The labels will be placed at the center of each bin. - This is most useful when using `m.set_classify.UserDefined(bins=[...])` + This is most useful when using + :py:meth:`Maps.set_classify.UserDefined(bins=[...]) ` to classify the data with respect to custom bins. Parameters @@ -1278,7 +1280,8 @@ def _new_colorbar( Add a colorbar to the map. The colorbar always represents the data of the associated Maps-object - that was assigned in the last call to `m.plot_map()`. + that was assigned in the last call to + :py:meth:`Maps.plot_map() `. By default, the colorbar will only be visible on the layer of the associated Maps-object. @@ -1287,6 +1290,8 @@ def _new_colorbar( >>> cb = m.colorbar + For more details, see :py:class:`ColorBar `. + Parameters ---------- pos : float or 4-tuple, optional From 16f4cf61fb82e853d05861e52f3a44c950dce594 Mon Sep 17 00:00:00 2001 From: Raphael Date: Mon, 29 Jan 2024 22:54:21 +0100 Subject: [PATCH 133/240] fix hist kwargs and range of dynamic colorbar --- eomaps/colorbar.py | 18 +++++++++++------- 1 file changed, 11 insertions(+), 7 deletions(-) diff --git a/eomaps/colorbar.py b/eomaps/colorbar.py index f9ea2766a..e56176a7e 100644 --- a/eomaps/colorbar.py +++ b/eomaps/colorbar.py @@ -57,16 +57,11 @@ def __init__( self, orientation="horizontal", extend_frac=0.025, - hist_kwargs=None, tick_precision=2, margin=None, ): self._hist_size = 0.9 - if hist_kwargs is not None: - self._hist_kwargs = hist_kwargs - else: - self._hist_kwargs = {} self._extend_frac = extend_frac @@ -344,17 +339,23 @@ def _plot_histogram( self, bins=None, out_of_range_vals="keep", show_outline=False, **kwargs ): + self._hist_kwargs = kwargs self._hist_bins = bins self._out_of_range_vals = out_of_range_vals self._show_outline = show_outline + if "range" not in self._hist_kwargs: + self._hist_kwargs["range"] = ( + (self._vmin, self._vmax) if (self._vmin and self._vmax) else None + ) + # plot the histogram h = self.ax_cb_plot.hist( self._preprocess_data(out_of_range_vals=self._out_of_range_vals), orientation=self._hist_orientation, bins=self._hist_bins, align="mid", - **kwargs, + **self._hist_kwargs, ) if self._show_outline: @@ -548,6 +549,7 @@ def _redraw(self, *args, **kwargs): bins=self._hist_bins, out_of_range_vals=self._out_of_range_vals, show_outline=self._show_outline, + **self._hist_kwargs, ) def _set_labels(self, cb_label=None, hist_label=None, **kwargs): @@ -1433,10 +1435,11 @@ def _new_colorbar( >>> m.add_colorbar(hist_bins="bins", label="some data") """ + if hist_kwargs is None: + hist_kwargs = dict() cb = cls( orientation=orientation, - hist_kwargs=hist_kwargs, tick_precision=tick_precision, inherit_position=inherit_position, extend_frac=extend_frac, @@ -1460,6 +1463,7 @@ def _new_colorbar( bins=bins, out_of_range_vals=out_of_range_vals, show_outline=show_outline, + **hist_kwargs, ) cb._set_tick_formatter() From f5a70856dfdbe2950fa73ec61d6dae5411019920 Mon Sep 17 00:00:00 2001 From: Raphael Date: Tue, 30 Jan 2024 11:41:49 +0100 Subject: [PATCH 134/240] add remove method for colorbar and fix unwanted draws --- eomaps/colorbar.py | 71 ++++++++++++++++++++++++++++++---------------- eomaps/helpers.py | 43 +++++++++++++++++----------- 2 files changed, 74 insertions(+), 40 deletions(-) diff --git a/eomaps/colorbar.py b/eomaps/colorbar.py index e56176a7e..b78d2dae0 100644 --- a/eomaps/colorbar.py +++ b/eomaps/colorbar.py @@ -10,7 +10,11 @@ import numpy as np -from eomaps.helpers import _TransformedBoundsLocator, pairwise +from .helpers import _TransformedBoundsLocator, pairwise + +import logging + +_log = logging.getLogger(__name__) def get_named_bins_formatter(bins, names, show_values=False): @@ -104,9 +108,6 @@ def _setup_axes(self, pos, parent_ax=None, f=None, zorder=9999): self._parent_cb = self._identify_parent_cb() if self._parent_cb: - # inherit axis-position from the parent axis position - # (e.g. it can no longer be freely moved... its position is determined - # by the position of the parent-colorbar axis) self._ax = self._parent_cb._ax else: if isinstance(pos, (int, float)): @@ -158,6 +159,7 @@ def _setup_axes(self, pos, parent_ax=None, f=None, zorder=9999): # make all spines, labels etc. invisible for the base-axis self._ax.set_axis_off() + self._ax._eomaps_cb_axes = [] # colorbar axes self.ax_cb = f.add_axes( @@ -175,9 +177,8 @@ def _setup_axes(self, pos, parent_ax=None, f=None, zorder=9999): navigate=False, ) - # add axes as child-axes - self._ax.add_child_axes(self.ax_cb) - self._ax.add_child_axes(self.ax_cb_plot) + # remember child axes + self._ax._eomaps_cb_axes.extend([self.ax_cb, self.ax_cb_plot]) # join colorbar and histogram axes if self.orientation == "horizontal": @@ -746,6 +747,29 @@ def _identify_parent_cb(self): else: return None + def remove(self): + """Remove the colorbar from the map.""" + if self._dynamic_shade_indicator: + try: + self._m.BM._before_fetch_bg_actions.remove(self._check_data_updated) + except Exception: + _log.debug("Problem while removing dynamic-colorbar callback") + + self._m.BM.remove_artist(self.ax_cb, self.layer) + self._m.BM.remove_artist(self.ax_cb_plot, self.layer) + + else: + self._m.BM.remove_bg_artist(self.ax_cb, self.layer, draw=False) + self._m.BM.remove_bg_artist(self.ax_cb_plot, self.layer, draw=False) + + if self.ax_cb in self._ax._eomaps_cb_axes: + self._ax._eomaps_cb_axes.remove(self.ax_cb) + if self.ax_cb_plot in self._ax._eomaps_cb_axes: + self._ax._eomaps_cb_axes.remove(self.ax_cb_plot) + + self.ax_cb.remove() + self.ax_cb_plot.remove() + def _set_map(self, m): self._m = m @@ -767,7 +791,7 @@ def _add_axes_to_layer(self, dynamic): # add all axes as artists self.ax_cb.set_navigate(False) - for a in (self._ax, self.ax_cb, self.ax_cb_plot): + for a in (self.ax_cb, self.ax_cb_plot): if a is not None: if dynamic is True: BM.add_artist(a, self._layer) @@ -801,6 +825,20 @@ def set_hist_size(self, size=None): self._set_hist_size(size, update_all=True) self._m.BM.update() + def _check_data_updated(self, *args, **kwargs): + # make sure the artist is updated before checking for new data + # TODO check if this is really enough to ensure that the coll + # is fully updated (calling coll.draw() is not an option since it + # would result make the collection appear on any layer!) + self._m.coll.changed() + dsdata = self._m.coll.get_ds_data() + if getattr(self, "_last_ds_data", None) is not None: + if not self._last_ds_data.equals(dsdata): + # if the data has changed, redraw the colorbar + self._redraw() + + self._last_ds_data = dsdata + def _make_dynamic(self): self._dynamic_shade_indicator = True @@ -812,22 +850,7 @@ def _make_dynamic(self): self._cid_redraw = False if self._cid_redraw is False: - - def check_data_updated(*args, **kwargs): - # make sure the artist is updated before checking for new data - # TODO check if this is really enough to ensure that the coll - # is fully updated (calling coll.draw() is not an option since it - # would result make the collection appear on any layer!) - self._m.coll.changed() - dsdata = self._m.coll.get_ds_data() - if getattr(self, "_last_ds_data", None) is not None: - if not self._last_ds_data.equals(dsdata): - # if the data has changed, redraw the colorbar - self._redraw() - - self._last_ds_data = dsdata - - self._m.BM._before_fetch_bg_actions.append(check_data_updated) + self._m.BM._before_fetch_bg_actions.append(self._check_data_updated) self._m.BM.on_layer( lambda *args, **kwargs: self._redraw, diff --git a/eomaps/helpers.py b/eomaps/helpers.py index 9fc6e7711..7ce0e9ca4 100644 --- a/eomaps/helpers.py +++ b/eomaps/helpers.py @@ -998,8 +998,16 @@ def cb_pick(self, event): else: if eventax in self._ax_picked: self._ax_picked.remove(eventax) + # handle colorbar axes + if eventax.get_label() == "cb": + for cbax in getattr(eventax, "_eomaps_cb_axes", []): + self._ax_picked.remove(cbax) else: self._ax_picked.append(eventax) + # handle colorbar axes + if eventax.get_label() == "cb": + for cbax in getattr(eventax, "_eomaps_cb_axes", []): + self._ax_picked.append(cbax) else: if eventax not in self._ax_picked: self._m_picked = [] @@ -1012,9 +1020,12 @@ def cb_pick(self, event): else: self._m_picked = [] self._ax_picked.append(eventax) + # handle colorbar axes + if eventax.get_label() == "cb": + for cbax in getattr(eventax, "_eomaps_cb_axes", []): + self._ax_picked.append(cbax) self._add_snap_grid() - else: self._add_snap_grid() @@ -1031,8 +1042,6 @@ def fetch_current_background(self): with ExitStack() as stack: for ax in self._ax_picked: stack.enter_context(ax._cm_set(visible=False)) - for child_ax in ax.child_axes: - stack.enter_context(child_ax._cm_set(visible=False)) self.m.BM.blit_artists(self.axes, None, False) @@ -1233,16 +1242,19 @@ def _snap(self): return snap def ax_on_layer(self, ax): - return ax in [ - ax - for ax in self.f.axes - if ( - ax in self.m.BM._get_unmanaged_axes() - or ax in self.m.BM.get_bg_artists(self.m.BM.bg_layer) - or ax in self.m.BM.get_artists(self.m.BM.bg_layer) - or ax in self.maxes - ) - ] + if ax in self.m.BM._get_unmanaged_axes(): + return True + elif ax in self.maxes: + return True + else: + for layer in (self.m.BM.bg_layer, "__SPINES__", "all"): + # logos are put on the spines-layer to appear on top of spines! + if ax in self.m.BM.get_bg_artists(layer): + return True + elif ax in self.m.BM.get_artists(self.m.BM.bg_layer): + return True + + return False def _make_draggable(self, filepath=None): # Uncheck active pan/zoom actions of the matplotlib toolbar. @@ -1290,7 +1302,6 @@ def _make_draggable(self, filepath=None): # keep singular axes hidden self._revert_props.append((ax.set_visible, ax.get_visible())) if not singularax: - if self.ax_on_layer(ax): ax.set_visible(True) else: @@ -2121,7 +2132,7 @@ def _layer_visible(self, layer): True if the layer is currently visible, False otherwise """ - return layer == "all" or self._layer_is_subset(layer, self.bg_layer) + return layer in "all" or self._layer_is_subset(layer, self.bg_layer) @property def _get_active_layers_alphas(self): @@ -2986,7 +2997,7 @@ def _cleanup_bg_artists(self, layer): while len(artists) > 0: a = artists.pop() try: - self.remove_bg_artist(a, layer) + self.remove_bg_artist(a, layer, draw=False) # no need to remove spines (to avoid NotImplementedErrors)! if not isinstance(a, Spine): a.remove() From 35597daf3f7a8ec70c346d1036bc02ce4be406dd Mon Sep 17 00:00:00 2001 From: Raphael Date: Tue, 30 Jan 2024 11:55:49 +0100 Subject: [PATCH 135/240] move methods and fix updating layer on set_scale --- eomaps/colorbar.py | 188 +++++++++++++++++++++++---------------------- 1 file changed, 95 insertions(+), 93 deletions(-) diff --git a/eomaps/colorbar.py b/eomaps/colorbar.py index b78d2dae0..9223f0525 100644 --- a/eomaps/colorbar.py +++ b/eomaps/colorbar.py @@ -264,30 +264,6 @@ def _set_hist_size(self, size=None, update_all=False): self._set_axes_locators(l_cb_bounds, l_hist_bounds) self._style_hist_ticks() - def set_scale(self, log=False): - """ - Set the scale of the colorbar histogram. (e.g. logarithmic or linear) - - Parameters - ---------- - log : bool, optional - If True, use a logarithmic scale for the histogram. - The default is False. - - """ - if self.orientation == "horizontal": - # set axis scale - if log is True: - self.ax_cb_plot.set_yscale("log") - else: - self.ax_cb_plot.set_yscale("linear") - else: - # set axis scale - if log is True: - self.ax_cb_plot.set_xscale("log") - else: - self.ax_cb_plot.set_xscale("linear") - def _preprocess_data(self, out_of_range_vals="keep"): data = self._get_data() @@ -596,75 +572,6 @@ def _set_labels(self, cb_label=None, hist_label=None, **kwargs): if hist_label: self._hist_label = self.ax_cb_plot.set_xlabel(hist_label, **kwargs) - def set_labels(self, cb_label=None, hist_label=None, **kwargs): - """ - Set the labels (and the label-style) for the colorbar (and the histogram). - - For more details, see `ColorBar.ax_cb.set_xlabel(..)` and matplotlib's `.Text` - properties. - - Parameters - ---------- - cb_label : str or None - The label of the colorbar. If None, the existing label is maintained. - The default is None. - hist_label : str or None - The label of the histogram. If None, the existing label is maintained. - The default is None. - - Other Parameters - ---------------- - kwargs : - Additional kwargs passed to `Axes.set_xlabel` to control the appearance of - the label (e.g. color, fontsize, labelpad etc.). - - Examples - -------- - Set both colorbar and histogram label in one go - - >>> cb.set_labels("The parameter", "histogram count", fontsize=10, color="r") - - Use different styles for the colorbar and histogram labels - - >>> cb.set_labels(cb_label="The parameter", color="r", labelpad=10) - >>> cb.set_labels(hist_label="histogram count", fontsize=6, color="k") - - """ - - self._label_kwargs = {"cb_label": cb_label, "hist_label": hist_label, **kwargs} - - self._set_labels(cb_label=cb_label, hist_label=hist_label, **kwargs) - - if not self._dynamic_shade_indicator: - # no need to redraw the background for dynamically updated artists - self._m.redraw(self.layer) - else: - self._m.BM.update() - - def tick_params(self, what="colorbar", **kwargs): - """Set the appearance of the colorbar (or histogram) ticks.""" - if what == "colorbar": - self.ax_cb.tick_params(**kwargs) - elif what == "histogram": - self.ax_cb_plot.tick_params(**kwargs) - - self._m.redraw(self.layer) - - tick_params.__doc__ = ( - "Set the appearance of the colorbar (or histogram) ticks.\n\n" - "NOTE\n" - "----\n" - "This is a wrapper for `m.colorbar.ax_cb.tick_params` or " - "`m.colorbar.ax_cb_plot.tick_params` to set the appearance of the ticks for " - "the colorbar or the histogram." - "You can select what you want to edit with the additional parameter:" - "\n\n" - "what: {'colorbar', 'histogram'}, default: 'colorbar'\n" - " - 'colorbar' : colorbar ticks (same as `m.colorbar.ax_cb.tick_params`)\n" - " - 'histogram' : histogram ticks (same as `m.colorbar.ax_cb_plot.tick_params`)\n" - "\n\n----------------\n\n" + dedent(plt.Axes.tick_params.__doc__) - ) - class ColorBar(ColorBarBase): """ @@ -1279,6 +1186,101 @@ def set_visible(self, vis): if self._dynamic_shade_indicator is False: self._m.redraw(self.layer) + def set_labels(self, cb_label=None, hist_label=None, **kwargs): + """ + Set the labels (and the label-style) for the colorbar (and the histogram). + + For more details, see `ColorBar.ax_cb.set_xlabel(..)` and matplotlib's `.Text` + properties. + + Parameters + ---------- + cb_label : str or None + The label of the colorbar. If None, the existing label is maintained. + The default is None. + hist_label : str or None + The label of the histogram. If None, the existing label is maintained. + The default is None. + + Other Parameters + ---------------- + kwargs : + Additional kwargs passed to `Axes.set_xlabel` to control the appearance of + the label (e.g. color, fontsize, labelpad etc.). + + Examples + -------- + Set both colorbar and histogram label in one go + + >>> cb.set_labels("The parameter", "histogram count", fontsize=10, color="r") + + Use different styles for the colorbar and histogram labels + + >>> cb.set_labels(cb_label="The parameter", color="r", labelpad=10) + >>> cb.set_labels(hist_label="histogram count", fontsize=6, color="k") + + """ + + self._label_kwargs = {"cb_label": cb_label, "hist_label": hist_label, **kwargs} + + self._set_labels(cb_label=cb_label, hist_label=hist_label, **kwargs) + + if not self._dynamic_shade_indicator: + # no need to redraw the background for dynamically updated artists + self._m.redraw(self.layer) + else: + self._m.BM.update() + + def tick_params(self, what="colorbar", **kwargs): + """Set the appearance of the colorbar (or histogram) ticks.""" + if what == "colorbar": + self.ax_cb.tick_params(**kwargs) + elif what == "histogram": + self.ax_cb_plot.tick_params(**kwargs) + + self._m.redraw(self.layer) + + tick_params.__doc__ = ( + "Set the appearance of the colorbar (or histogram) ticks.\n\n" + "NOTE\n" + "----\n" + "This is a wrapper for `m.colorbar.ax_cb.tick_params` or " + "`m.colorbar.ax_cb_plot.tick_params` to set the appearance of the ticks for " + "the colorbar or the histogram." + "You can select what you want to edit with the additional parameter:" + "\n\n" + "what: {'colorbar', 'histogram'}, default: 'colorbar'\n" + " - 'colorbar' : colorbar ticks (same as `m.colorbar.ax_cb.tick_params`)\n" + " - 'histogram' : histogram ticks (same as `m.colorbar.ax_cb_plot.tick_params`)\n" + "\n\n----------------\n\n" + dedent(plt.Axes.tick_params.__doc__) + ) + + def set_scale(self, log=False): + """ + Set the scale of the colorbar histogram. (e.g. logarithmic or linear) + + Parameters + ---------- + log : bool, optional + If True, use a logarithmic scale for the histogram. + The default is False. + + """ + if self.orientation == "horizontal": + # set axis scale + if log is True: + self.ax_cb_plot.set_yscale("log") + else: + self.ax_cb_plot.set_yscale("linear") + else: + # set axis scale + if log is True: + self.ax_cb_plot.set_xscale("log") + else: + self.ax_cb_plot.set_xscale("linear") + + self._m.redraw(self.layer) + @classmethod def _new_colorbar( cls, From e676ed585ea52caa20599ddad24ea4775a6bdb01 Mon Sep 17 00:00:00 2001 From: Raphael Date: Tue, 30 Jan 2024 11:56:11 +0100 Subject: [PATCH 136/240] fix example layout --- docs/examples/example_multiple_maps.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/docs/examples/example_multiple_maps.py b/docs/examples/example_multiple_maps.py index 313ac4627..2c7446fa5 100644 --- a/docs/examples/example_multiple_maps.py +++ b/docs/examples/example_multiple_maps.py @@ -94,9 +94,9 @@ "4_cb_histogram_size": 0.8, "5_cb": [0.72022, 0.0825, 0.2625, 0.2805], "5_cb_histogram_size": 0.8, - "7_logo": [0.2725, 0.451, 0.05, 0.04538], + "6_logo": [0.2725, 0.451, 0.05, 0.04538], + "7_logo": [0.625, 0.3795, 0.05, 0.04538], "8_logo": [0.625, 0.3795, 0.05, 0.04538], - "9_logo": [0.625, 0.3795, 0.05, 0.04538], - "10_logo": [0.93864, 0.451, 0.05, 0.04538], + "9_logo": [0.93864, 0.451, 0.05, 0.04538], } ) From da24a14fccd8d1a13436fb270f106d31b7f13b29 Mon Sep 17 00:00:00 2001 From: Raphael Date: Tue, 30 Jan 2024 12:15:16 +0100 Subject: [PATCH 137/240] move LayoutEditor to dedicated module --- eomaps/eomaps.py | 3 +- eomaps/helpers.py | 989 +-------------------------------------- eomaps/layout_editor.py | 993 ++++++++++++++++++++++++++++++++++++++++ 3 files changed, 996 insertions(+), 989 deletions(-) create mode 100644 eomaps/layout_editor.py diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index 620c78b6f..a465bd5cc 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -37,7 +37,6 @@ pairwise, cmap_alpha, BlitManager, - LayoutEditor, progressbar, SearchTree, _TransformedBoundsLocator, @@ -45,6 +44,8 @@ register_modules, _key_release_event, ) + +from .layout_editor import LayoutEditor from .shapes import Shapes from .colorbar import ColorBar diff --git a/eomaps/helpers.py b/eomaps/helpers.py index 7ce0e9ca4..f749ff084 100644 --- a/eomaps/helpers.py +++ b/eomaps/helpers.py @@ -14,25 +14,19 @@ from importlib import import_module from textwrap import indent, dedent from functools import wraps, lru_cache -from pathlib import Path -import json import warnings from weakref import WeakSet import numpy as np import matplotlib.pyplot as plt -from matplotlib.lines import Line2D from matplotlib.colors import LinearSegmentedColormap, ListedColormap from matplotlib.transforms import Bbox, TransformedBbox -from matplotlib.axis import XAxis, YAxis from matplotlib.spines import Spine +from matplotlib.backend_bases import KeyEvent _log = logging.getLogger(__name__) -from matplotlib.backend_bases import KeyEvent - - def _key_release_event(canvas, key, guiEvent=None): # copy of depreciated matplotlib functions for internal use s = "key_release_event" @@ -683,987 +677,6 @@ def query(self, x, k=1, d=None, pick_relative_to_closest=True): return i -class LayoutEditor: - """Class to handle interactive re-positioning of figure-objects.""" - - def __init__(self, m, modifier="alt+d", cb_modifier="control"): - self.modifier = modifier - self.cb_modifier = cb_modifier - - self.m = m - self.f = self.m.parent.f - - self._ax_picked = [] - self._m_picked = [] - - self._modifier_pressed = False - - self.cids = [] - - # indicator if the pick-callback should be re-attached or not - self._reattach_pick_cb = False - - self.f.canvas.mpl_connect("key_press_event", self.cb_key_press) - self.f.canvas.mpl_connect("resize_event", self._on_resize) - - # the snap-to-grid interval (0 means no snapping) - self._snap_id = 5 - - # an optional filepath that will be used to store the layout once the - # editor exits - self._filepath = None - - # indicator if scaling should be in horizontal or vertical direction - self._scale_direction = "both" - - # indicator if multiple-axis select key is pressed or not (e.g. "shift") - self._shift_pressed = False - - self._max_hist_steps = 1000 - self._history = list() - self._history_undone = list() - - self._current_bg = None - - self._info_text = None - self._info_text_hidden = False - - def add_info_text(self): - self._info_text_hidden = False - - a = self.m.f.text( - 0.72, - 0.98, - ( - "LayoutEditor Controls:\n\n" - "0 - 9: Snap-grid spacing\n" - "SHIFT: Multi-select\n" - "P: Print to console\n" - "ESCAPE (or ALT + L): Exit\n" - "\n" - "ARROW-KEYS: Move\n" - "SCROLL (+/-): Resize\n" - " H: horizontal\n" - " V: vertical\n" - " ctrl: histogram" - "\n\n(right-click to hide info)" - ), - transform=self.m.f.transFigure, - ha="left", - va="top", - fontsize=min(self.m.f.bbox.width * 72 / self.m.f.dpi / 60, 12), - bbox=dict( - boxstyle="round", facecolor=".8", edgecolor="k", lw=0.5, alpha=0.9 - ), - zorder=1e6, - fontfamily="monospace", - ) - return a - - def _update_info_text(self): - if getattr(self, "_info_text", None) is not None: - self._info_text.set_fontsize( - min(self.m.f.bbox.width * 72 / self.m.f.dpi / 60, 15) - ) - - def _on_resize(self, *args, **kwargs): - # update snap-grid on resize - if self.modifier_pressed: - self._add_snap_grid() - self._update_info_text() - - @property - def modifier_pressed(self): - return self._modifier_pressed - - @modifier_pressed.setter - def modifier_pressed(self, val): - self._modifier_pressed = val - self.m.cb.execute_callbacks(not val) - - if self._modifier_pressed: - self.m.BM._disable_draw = True - self.m.BM._disable_update = True - else: - self.m.BM._disable_draw = False - self.m.BM._disable_update = False - - @property - def ms(self): - return [self.m.parent, *self.m.parent._children] - - @property - def maxes(self): - return [m.ax for m in self.ms] - - @property - def axes(self): - return self.f.axes - - @staticmethod - def roundto(x, base=10): - if base == 0: - return x - if x % base <= base / 2: - return x - x % base - else: - return x + (base - x % base) - - def _get_move_with_key_bbox(self, ax, key): - snapx, snapy = self._snap - intervalx, intervaly = ( - max(0.25, snapx), - max(0.25, snapy), - ) - - if key == "left": - bbox = Bbox.from_bounds( - self.roundto(ax.bbox.x0 - intervalx, snapx), - ax.bbox.y0, - ax.bbox.width, - ax.bbox.height, - ) - elif key == "right": - bbox = Bbox.from_bounds( - self.roundto(ax.bbox.x0 + intervalx, snapx), - ax.bbox.y0, - ax.bbox.width, - ax.bbox.height, - ) - elif key == "up": - bbox = Bbox.from_bounds( - ax.bbox.x0, - self.roundto(ax.bbox.y0 + intervaly, snapy), - ax.bbox.width, - ax.bbox.height, - ) - elif key == "down": - bbox = Bbox.from_bounds( - ax.bbox.x0, - self.roundto(ax.bbox.y0 - intervaly, snapy), - ax.bbox.width, - ax.bbox.height, - ) - - bbox = bbox.transformed(self.f.transFigure.inverted()) - return bbox - - def _get_move_bbox(self, ax, x, y): - w, h = ax.bbox.width, ax.bbox.height - x0, y0 = ( - self._start_ax_position[ax][0] + (x - self._start_position[0]), - self._start_ax_position[ax][1] + (y - self._start_position[1]), - ) - - if self._snap_id > 0: - sx, sy = self._snap - x0 = self.roundto(x0, sx) - y0 = self.roundto(y0, sy) - - bbox = Bbox.from_bounds(x0, y0, w, h).transformed(self.f.transFigure.inverted()) - - return bbox - - def _get_resize_bbox(self, ax, step): - origw, origh = ax.bbox.width, ax.bbox.height - x0, y0 = ax.bbox.x0, ax.bbox.y0 - - sx, sy = self._snap - - h, w = origh, origw - - if self._scale_direction == "horizontal": - w += max(0.25, sx) * step - w = self.roundto(w, sx) - elif self._scale_direction == "vertical": - h += max(0.25, sy) * step - h = self.roundto(h, sy) - else: - w += max(0.25, sx) * step - w = self.roundto(w, sx) - - h += max(0.25, sy) * step - h = self.roundto(h, sy) - - if h <= 0 or w <= 0: - return - - # x0 = self.roundto(x0, sx) - # y0 = self.roundto(y0, sy) - - # keep the center-position of the scaled axis - x0 = x0 + (origw - w) / 2 - y0 = y0 + (origh - h) / 2 - - bbox = Bbox.from_bounds(x0, y0, w, h).transformed(self.f.transFigure.inverted()) - - if bbox.width <= 0 or bbox.height <= 0: - return - - return bbox - - def _color_unpicked(self, ax): - for spine in ax.spines.values(): - spine.set_edgecolor("b") - spine._EOmaps_linestyle = spine.get_linestyle() - spine.set_linestyle("-") - spine.set_linewidth(1) - - def _color_picked(self, ax): - for spine in ax.spines.values(): - spine.set_edgecolor("r") - spine.set_linestyle("-") - spine.set_linewidth(2) - - def _color_axes(self): - for ax in self.axes: - self._color_unpicked(ax) - - for ax in self._ax_picked: - if ax is not None: - self._color_picked(ax) - - def _set_startpos(self, event): - self._start_position = (event.x, event.y) - self._start_ax_position = {i: (i.bbox.x0, i.bbox.y0) for i in self._ax_picked} - - def _add_to_history(self): - self._history_undone.clear() - self._history = self._history[: self._max_hist_steps] - self._history.append(self.get_layout()) - - def _undo(self): - if len(self._history) > 0: - l = self._history.pop(-1) - self._history_undone.append(l) - self.m.apply_layout(l) - self.m.redraw() - - def _redo(self): - if len(self._history_undone) > 0: - l = self._history_undone.pop(-1) - self._history.append(l) - self.m.apply_layout(l) - self.m.redraw() - - def cb_release(self, event): - self._set_startpos(event) - - def cb_pick(self, event): - if not self.modifier_pressed: - return - if (self.f.canvas.toolbar is not None) and self.f.canvas.toolbar.mode != "": - return False - - # toggle info-text visibility on left-click - if event.button == 3: - if getattr(self, "_info_text", None) is not None: - vis = not self._info_text.get_visible() - self._info_text.set_visible(vis) - self._info_text_hidden = not vis - - eventax = event.inaxes - - if eventax not in self.axes: - # if no axes is clicked "unpick" previously picked axes - if len(self._ax_picked) == 0: - # if there was nothing picked there's nothing to do - # except updating the info-text visibility - - if getattr(self, "_info_text", None) is not None: - self.blit_artists() - - return - - self._ax_picked = [] - self._m_picked = [] - self._color_axes() - self._remove_snap_grid() - self.fetch_current_background() - self.blit_artists() - return - - if self._shift_pressed: - if eventax in self.maxes: - m = self.ms[self.maxes.index(eventax)] - if eventax in self._ax_picked: - self._ax_picked.remove(eventax) - else: - self._ax_picked.append(eventax) - - if m in self._m_picked: - self._m_picked.remove(m) - else: - self._m_picked.append(m) - else: - if eventax in self._ax_picked: - self._ax_picked.remove(eventax) - # handle colorbar axes - if eventax.get_label() == "cb": - for cbax in getattr(eventax, "_eomaps_cb_axes", []): - self._ax_picked.remove(cbax) - else: - self._ax_picked.append(eventax) - # handle colorbar axes - if eventax.get_label() == "cb": - for cbax in getattr(eventax, "_eomaps_cb_axes", []): - self._ax_picked.append(cbax) - else: - if eventax not in self._ax_picked: - self._m_picked = [] - self._ax_picked = [] - - if eventax in self.axes: - if eventax in self.maxes: - self._ax_picked.append(eventax) - self._m_picked.append(self.ms[self.maxes.index(eventax)]) - else: - self._m_picked = [] - self._ax_picked.append(eventax) - # handle colorbar axes - if eventax.get_label() == "cb": - for cbax in getattr(eventax, "_eomaps_cb_axes", []): - self._ax_picked.append(cbax) - - self._add_snap_grid() - else: - self._add_snap_grid() - - self._set_startpos(event) - self._color_axes() - self.fetch_current_background() - self.blit_artists() - - def fetch_current_background(self): - # clear the renderer to avoid drawing on existing backgrounds - renderer = self.m.BM.canvas.get_renderer() - renderer.clear() - - with ExitStack() as stack: - for ax in self._ax_picked: - stack.enter_context(ax._cm_set(visible=False)) - - self.m.BM.blit_artists(self.axes, None, False) - - grid = getattr(self, "_snap_grid_artist", None) - if grid is not None: - self.m.BM.blit_artists([grid], None, False) - - self.m.BM.canvas.blit() - self._current_bg = self.m.BM.canvas.copy_from_bbox(self.m.f.bbox) - - def cb_move_with_key(self, event): - if not self.modifier_pressed: - return - if (self.f.canvas.toolbar is not None) and self.f.canvas.toolbar.mode != "": - return False - - if event.key not in ["left", "right", "up", "down"]: - return - - for ax in self._ax_picked: - bbox = self._get_move_with_key_bbox(ax, event.key) - ax.set_position(bbox) - - self._add_to_history() - self._color_axes() - self.blit_artists() - - def cb_move(self, event): - if (self.f.canvas.toolbar is not None) and self.f.canvas.toolbar.mode != "": - return False - if self.modifier is not None: - if not self.modifier_pressed: - return False - - if event.button != 1: - return - - for ax in self._ax_picked: - if ax is None: - return - - bbox = self._get_move_bbox(ax, event.x, event.y) - ax.set_position(bbox) - - self._add_to_history() - self._color_axes() - self.blit_artists() - - def blit_artists(self): - artists = [*self._ax_picked] - - if getattr(self, "_info_text", None) is not None: - artists.append(self._info_text) - - self.m.BM.blit_artists(artists, self._current_bg) - - def cb_scroll(self, event): - if (self.f.canvas.toolbar is not None) and self.f.canvas.toolbar.mode != "": - return False - if self.modifier is not None: - if not self.modifier_pressed: - return False - - if self._scale_direction == "set_hist_size": - # resize colorbar histogram - for ax in self._ax_picked: - if not ax.get_label() == "cb": - continue - - # identify all relevant colorbars - # (e.g. all colorbars that share the container-ax "cb._ax") - cbs = [] - for m in self.ms: - for cb in m._colorbars: - if cb._ax is ax: - cbs.append(cb) - - if len(cbs) == 0: - return False - - # use the hist-size of the first colorbar as start (to avoid ambiguity) - start_size = cbs[0]._hist_size - for cb in cbs: - new_size = np.clip(start_size + event.step * 0.02, 0.0, 1.0) - cb._set_hist_size(new_size) - - self._add_to_history() - self.blit_artists() - else: - # resize axes - for ax in self._ax_picked: - if ax is None: - continue - resize_bbox = self._get_resize_bbox(ax, event.step) - if resize_bbox is not None: - ax.set_position(resize_bbox) - self._add_to_history() - self.blit_artists() - - def cb_key_press(self, event): - # release shift key on every keypress - self._shift_pressed = False - - if (event.key == self.modifier) and (not self.modifier_pressed): - self._make_draggable() - return - elif (event.key == self.modifier or event.key == "escape") and ( - self.modifier_pressed - ): - self._undo_draggable() - return - elif (event.key.lower() == "p") and (self.modifier_pressed): - s = "\nlayout = {\n " - s += "\n ".join( - f'"{key}": {val},' for key, val in self.get_layout().items() - ) - s += "\n}\n" - print(s) - elif (event.key.lower() == "q") and (self.modifier_pressed): - print( - "\n##########################\n\n" - "EOmaps Layout Editor controls:\n\n" - "Click on axes to select them for editing.\n" - "(Hold 'shift' while clicking on axes to select multiple axes.)\n\n" - "Drag selected axes with the mouse or use the 'arrow-keys' to " - "change their position.\n\n" - "Use the 'scroll-wheel' or the '+' and '-' keys to change the size " - "of selected axes.\n" - "For normal matplotlib axes: Hold down 'h' or 'v' to adjust only " - "the horizontal or vertical size of the axes.\n" - "For EOmaps colorbars: Hold down 'control' to adjust the relative " - "size of the histogram.\n\n" - "Use the keys 1-9 to adjust the spacing of the 'snap grid' (Note that " - "the grid-spacing also determines the step-size for size- and " - "position-changes!) Press 0 to disable grid-snapping.\n\n" - f"To exit, press 'escape' or '{self.modifier}'\n" - "\n##########################\n\n" - ) - return - - else: - if not self.modifier_pressed: - # only continue if modifier is pressed! - return - - if event.key in ("ctrl+z", "control+z"): - self._undo() - return - elif event.key in ("ctrl+y", "control+y"): - self._redo() - return - elif event.key == "h": - self._scale_direction = "horizontal" - elif event.key == "v": - self._scale_direction = "vertical" - elif event.key in ("control", "ctrl", "ctrl++", "ctrl+-"): - self._scale_direction = "set_hist_size" - - elif event.key == "shift": - self._shift_pressed = True - - # assign snaps with keys 0-9 - if event.key in map(str, range(10)): - self._snap_id = int(event.key) - self._add_snap_grid() - self.fetch_current_background() - self.blit_artists() - - # assign snaps with keys 0-9 - if event.key in ["+", "-", "ctrl++", "ctrl+-"]: - - class dummyevent: - pass - - d = dummyevent() - d.key = event.key - d.step = 1 * {"+": 1, "ctrl++": 1, "ctrl+-": -1, "-": -1}[event.key] - - self.cb_scroll(d) - - def cb_key_release(self, event): - # reset scale direction on every key release event - if event.key in ("h", "v", "control", "ctrl", "ctrl++", "ctrl+-"): - self._scale_direction = "both" - if event.key in ("shift"): - self._shift_pressed = False - - @property - def _snap(self): - # grid-separation distance - if self._snap_id == 0: - snap = (0, 0) - else: - n = (self.f.bbox.width / 400) * (self._snap_id) - - snap = (n, n) - - return snap - - def ax_on_layer(self, ax): - if ax in self.m.BM._get_unmanaged_axes(): - return True - elif ax in self.maxes: - return True - else: - for layer in (self.m.BM.bg_layer, "__SPINES__", "all"): - # logos are put on the spines-layer to appear on top of spines! - if ax in self.m.BM.get_bg_artists(layer): - return True - elif ax in self.m.BM.get_artists(self.m.BM.bg_layer): - return True - - return False - - def _make_draggable(self, filepath=None): - # Uncheck active pan/zoom actions of the matplotlib toolbar. - # use a try-except block to avoid issues with ipympl in jupyter notebooks - # (see https://github.com/matplotlib/ipympl/issues/530#issue-1780919042) - try: - toolbar = getattr(self.m.BM.canvas, "toolbar", None) - if toolbar is not None: - for key in ["pan", "zoom"]: - val = toolbar._actions.get(key, None) - if val is not None and val.isCheckable() and val.isChecked(): - val.trigger() - except AttributeError: - pass - - self._filepath = filepath - self.modifier_pressed = True - _log.info( - "EOmaps: Layout Editor activated! (press 'esc' to exit " "and 'q' for info)" - ) - - self._history.clear() - self._history_undone.clear() - self._add_to_history() - - self._revert_props = [] - for ax in self.f.axes: - # only handle axes that have a finite size (in pixels) to avoid - # singular matrix errors for initially hidden zero-size axes - # (can happen for colorbar/colorbar histogram axes) - singularax = False - if ax.bbox.width <= 1 or ax.bbox.height <= 1: - singularax = True - - # check if the axis is the container-axes of a colorbar - cbaxQ = ax.get_label() == "cb" - - if not ax.axison: - showXY = False - self._revert_props.append(ax.set_axis_off) - ax.set_axis_on() - else: - showXY = True - - # keep singular axes hidden - self._revert_props.append((ax.set_visible, ax.get_visible())) - if not singularax: - if self.ax_on_layer(ax): - ax.set_visible(True) - else: - ax.set_visible(False) - else: - ax.set_visible(False) - - self._revert_props.append((ax.set_animated, ax.get_animated())) - ax.set_animated(False) - - self._revert_props.append((ax.set_frame_on, ax.get_frame_on())) - ax.set_frame_on(True) - - for child in ax.get_children(): - # make sure we don't treat axes again (in case they are child-axes) - if child in self.f.axes: - continue - revert_props = [ - "edgecolor", - "linewidth", - "alpha", - "animated", - "visible", - ] - self._add_revert_props(child, *revert_props) - - if isinstance(child, Spine) and not cbaxQ: - # make sure spines are visible (and re-drawn on draw) - child.set_animated(False) - child.set_visible(True) - if hasattr(child, "_EOmaps_linestyle"): - child.set_linestyle(getattr(child, "_EOmaps_linestyle", "-")) - del child._EOmaps_linestyle - elif ( - ax not in self.maxes - and showXY - and isinstance(child, (XAxis, YAxis)) - ): - # keep all tick labels etc. of normal axes and colorbars visible - child.set_animated(False) - child.set_visible(True) - - elif child is ax.patch and not cbaxQ: - # only reset facecolors for axes-patches to avoid issues with - # black spines (TODO check why this happens!) - self._add_revert_props(child, "facecolor") - - # make sure patches are visible (and re-drawn on draw) - child.set_visible(True) - child.set_facecolor("w") - child.set_alpha(0.75) # for overlapping axes - - else: - # make all other children invisible (to avoid drawing them) - child.set_visible(False) - child.set_animated(True) - - # only re-draw if info-text is None - if getattr(self, "_info_text", None) is None: - self._info_text = self.add_info_text() - - self._color_axes() - self._attach_callbacks() - - self.m._emit_signal("layoutEditorActivated") - - self.m.redraw() - - def _add_revert_props(self, child, *args): - for prop in args: - if hasattr(child, f"set_{prop}") and hasattr(child, f"get_{prop}"): - self._revert_props.append( - ( - getattr(child, f"set_{prop}"), - getattr(child, f"get_{prop}")(), - ) - ) - - def _undo_draggable(self): - if getattr(self, "_info_text", None) not in (None, False): - self._info_text.remove() - # set to None to avoid crating the info-text again - self._info_text = None - - self._history.clear() - self._history_undone.clear() - - toolbar = getattr(self.m.f, "toolbar", None) - if toolbar is not None: - # Reset the axes stack to make sure the "home" "back" and "forward" buttons - # of the toolbar do not reset axis positions - # see "matplotlib.backend_bases.NavigationToolbar2.update" - if hasattr(toolbar, "update"): - try: - toolbar.update() - except Exception: - _log.exception( - "EOmaps: Error while trying to reset the axes stack!" - ) - - # clear all picks on exit - self._ax_picked = [] - self._m_picked = [] - - _log.info("EOmaps: Exiting layout-editor mode...") - - # in case a filepath was provided, save the new layout - if self._filepath: - try: - self.m.get_layout(filepath=self._filepath, override=True) - except Exception: - _log.exception( - "EOmaps: Layout could not be saved to the provided " - + f"filepath: '{self._filepath}'." - ) - - self._reset_callbacks() - # revert all changes to artists - for p in self._revert_props: - if isinstance(p, tuple): - p[0](p[1]) - else: - p() - - self.modifier_pressed = False - - # reset the histogram-size of all colorbars to make sure previously hidden - # axes (e.g. size=0) become visible if the size is now > 0. - for m in self.ms: - for cb in m._colorbars: - cb._set_hist_size(update_all=True) - - # remove snap-grid (if it's still visible) - self._remove_snap_grid() - - self.m._emit_signal("layoutEditorDeactivated") - - self.m.redraw() - # try to push the current view to the "home" toolbar button - try: - self.m.f.canvas.toolbar.push_current() - except Exception: - pass - - def _reset_callbacks(self): - # disconnect all callbacks of the layout-editor - while len(self.cids) > 0: - cid = self.cids.pop(-1) - self.f.canvas.mpl_disconnect(cid) - - def _attach_callbacks(self): - # make sure all previously set callbacks are reset - self._reset_callbacks() - - events = ( - ("scroll_event", self.cb_scroll), - ("button_press_event", self.cb_pick), - ("button_release_event", self.cb_release), - ("motion_notify_event", self.cb_move), - ("key_press_event", self.cb_move_with_key), - ("key_release_event", self.cb_key_release), - ) - - for event, cb in events: - self.cids.append(self.f.canvas.mpl_connect(event, cb)) - - def _add_snap_grid(self, snap=None): - # snap = (snapx, snapy) - - if snap is None: - if self._snap_id == 0: - self._remove_snap_grid() - return - else: - snapx, snapy = self._snap - else: - snapx, snapy = snap - - self._remove_snap_grid() - - bbox = self.m.f.bbox - t = self.m.f.transFigure.inverted() - - gx, gy = np.mgrid[ - 0 : int(bbox.width) + int(snapx) : snapx, - 0 : int(bbox.height) + int(snapy) : snapy, - ] - g = t.transform(np.column_stack((gx.flat, gy.flat))) - - l = Line2D( - *g.T, - lw=0, - marker=".", - markerfacecolor="steelblue", - markeredgecolor="none", - ms=(snapx + snapy) / 6, - ) - self._snap_grid_artist = self.m.f.add_artist(l) - - def _remove_snap_grid(self): - if hasattr(self, "_snap_grid_artist"): - self._snap_grid_artist.remove() - del self._snap_grid_artist - - def get_layout(self, filepath=None, override=False, precision=5): - """ - Get the positions of all axes within the current plot. - - To re-apply a layout, use: - - >>> l = m.get_layout() - >>> m.set_layout(l) - - Note - ---- - The returned list is only a snapshot of the current layout. - It can only be re-applied to a given figure if the order at which the axes are - created remains the same! - - Parameters - ---------- - filepath : str or pathlib.Path, optional - If provided, a json-file will be created at the specified destination that - can be used in conjunction with `m.set_layout(...)` to apply the layout: - - >>> m.get_layout(filepath=, override=True) - >>> m.apply_layout_layout() - - You can also manually read-in the layout-dict via: - >>> import json - >>> layout = json.load() - override: bool - Indicator if the file specified as 'filepath' should be overwritten if it - already exists. - The default is False. - precision : int or None - The precision of the returned floating-point numbers. - If None, all available digits are returned - The default is 5 - Returns - ------- - layout : dict or None - A dict of the positions of all axes, e.g.: {1:(x0, y0, width height), ...} - """ - figsize = [*self.f.get_size_inches()] - - axes = [ - a for a in self.axes if a.get_label() not in ["EOmaps_cb", "EOmaps_cb_hist"] - ] - - # identify relevant colorbars - colorbars = [getattr(m, "colorbar", None) for m in self.ms] - cbaxes = [getattr(cb, "_ax", None) for cb in colorbars] - cbs = [(colorbars[cbaxes.index(a)] if a in cbaxes else None) for a in axes] - # ----------- - - layout = dict() - layout["figsize"] = figsize - - for i, ax in enumerate(axes): - if cbs[i] is not None: - if cbs[i]._ax.get_axes_locator() is not None: - continue - - label = ax.get_label() - name = f"{i}_{label}" - if precision is not None: - layout[name] = np.round(ax.get_position().bounds, precision).tolist() - else: - layout[name] = ax.get_position().bounds - - if cbs[i] is not None: - layout[f"{name}_histogram_size"] = cbs[i]._hist_size - - if filepath is not None: - filepath = Path(filepath) - assert ( - not filepath.exists() or override - ), f"The file {filepath} already exists! Use override=True to relace it." - with open(filepath, "w") as file: - json.dump(layout, file) - _log.info(f"EOmaps: Layout saved to:\n {filepath}") - - return layout - - def apply_layout(self, layout): - """ - Set the positions of all axes within the current plot based on a previously - defined layout. - - To apply a layout, use: - - >>> l = m.get_layout() - >>> m.set_layout(l) - - To save a layout to disc and apply it at a later stage, use - >>> m.get_layout(filepath=) - >>> m.set_layout() - - Note - ---- - The returned list is only a snapshot of the current layout. - It can only be re-applied to a given figure if the order at which the axes are - created remains the same! - - Parameters - ---------- - layout : dict, str or pathlib.Path - If a dict is provided, it is directly used to define the layout. - - If a string or a pathlib.Path object is provided, it will be used to - read a previously dumped layout (e.g. with `m.get_layout(filepath)`) - - """ - if isinstance(layout, (str, Path)): - with open(layout, "r") as file: - layout = json.load(file) - - # check if all relevant axes are specified in the layout - valid_keys = set(self.get_layout()) - if valid_keys != set(layout): - _log.warning( - "EOmaps: The the layout does not match the expected structure! " - "Layout might not be properly restored. " - "Invalid or missing keys:\n" - f"{sorted(valid_keys.symmetric_difference(set(layout)))}\n" - ) - - # set the figsize - figsize = layout.get("figsize", None) - if figsize is not None: - self.f.set_size_inches(*figsize) - - axes = [ - a for a in self.axes if a.get_label() not in ["EOmaps_cb", "EOmaps_cb_hist"] - ] - - # identify relevant colorbars - colorbars = [getattr(m, "colorbar", None) for m in self.ms] - cbaxes = [getattr(cb, "_ax", None) for cb in colorbars] - cbs = [(colorbars[cbaxes.index(a)] if a in cbaxes else None) for a in axes] - - for key in valid_keys.intersection(set(layout)): - if key == "figsize": - continue - val = layout[key] - - i = int(key[: key.find("_")]) - if key.endswith("_histogram_size"): - cbs[i]._set_hist_size(val) - else: - axes[i].set_position(val) - - self.m.redraw() - - # try to push the current view to the "home" toolbar button - try: - self.m.f.canvas.toolbar.push_current() - except Exception: - pass - - # taken from https://matplotlib.org/stable/tutorials/advanced/blitting.html#class-based-example class BlitManager(LayerParser): """Manager used to schedule draw events, cache backgrounds, etc.""" diff --git a/eomaps/layout_editor.py b/eomaps/layout_editor.py new file mode 100644 index 000000000..5d720841e --- /dev/null +++ b/eomaps/layout_editor.py @@ -0,0 +1,993 @@ +import logging +from contextlib import ExitStack +from pathlib import Path +import json + +import numpy as np +from matplotlib.lines import Line2D +from matplotlib.transforms import Bbox +from matplotlib.axis import XAxis, YAxis +from matplotlib.spines import Spine + +_log = logging.getLogger(__name__) + + +class LayoutEditor: + """Class to handle interactive re-positioning of figure-objects.""" + + def __init__(self, m, modifier="alt+d", cb_modifier="control"): + self.modifier = modifier + self.cb_modifier = cb_modifier + + self.m = m + self.f = self.m.parent.f + + self._ax_picked = [] + self._m_picked = [] + + self._modifier_pressed = False + + self.cids = [] + + # indicator if the pick-callback should be re-attached or not + self._reattach_pick_cb = False + + self.f.canvas.mpl_connect("key_press_event", self.cb_key_press) + self.f.canvas.mpl_connect("resize_event", self._on_resize) + + # the snap-to-grid interval (0 means no snapping) + self._snap_id = 5 + + # an optional filepath that will be used to store the layout once the + # editor exits + self._filepath = None + + # indicator if scaling should be in horizontal or vertical direction + self._scale_direction = "both" + + # indicator if multiple-axis select key is pressed or not (e.g. "shift") + self._shift_pressed = False + + self._max_hist_steps = 1000 + self._history = list() + self._history_undone = list() + + self._current_bg = None + + self._info_text = None + self._info_text_hidden = False + + def add_info_text(self): + self._info_text_hidden = False + + a = self.m.f.text( + 0.72, + 0.98, + ( + "LayoutEditor Controls:\n\n" + "0 - 9: Snap-grid spacing\n" + "SHIFT: Multi-select\n" + "P: Print to console\n" + "ESCAPE (or ALT + L): Exit\n" + "\n" + "ARROW-KEYS: Move\n" + "SCROLL (+/-): Resize\n" + " H: horizontal\n" + " V: vertical\n" + " ctrl: histogram" + "\n\n(right-click to hide info)" + ), + transform=self.m.f.transFigure, + ha="left", + va="top", + fontsize=min(self.m.f.bbox.width * 72 / self.m.f.dpi / 60, 12), + bbox=dict( + boxstyle="round", facecolor=".8", edgecolor="k", lw=0.5, alpha=0.9 + ), + zorder=1e6, + fontfamily="monospace", + ) + return a + + def _update_info_text(self): + if getattr(self, "_info_text", None) is not None: + self._info_text.set_fontsize( + min(self.m.f.bbox.width * 72 / self.m.f.dpi / 60, 15) + ) + + def _on_resize(self, *args, **kwargs): + # update snap-grid on resize + if self.modifier_pressed: + self._add_snap_grid() + self._update_info_text() + + @property + def modifier_pressed(self): + return self._modifier_pressed + + @modifier_pressed.setter + def modifier_pressed(self, val): + self._modifier_pressed = val + self.m.cb.execute_callbacks(not val) + + if self._modifier_pressed: + self.m.BM._disable_draw = True + self.m.BM._disable_update = True + else: + self.m.BM._disable_draw = False + self.m.BM._disable_update = False + + @property + def ms(self): + return [self.m.parent, *self.m.parent._children] + + @property + def maxes(self): + return [m.ax for m in self.ms] + + @property + def axes(self): + return self.f.axes + + @staticmethod + def roundto(x, base=10): + if base == 0: + return x + if x % base <= base / 2: + return x - x % base + else: + return x + (base - x % base) + + def _get_move_with_key_bbox(self, ax, key): + snapx, snapy = self._snap + intervalx, intervaly = ( + max(0.25, snapx), + max(0.25, snapy), + ) + + if key == "left": + bbox = Bbox.from_bounds( + self.roundto(ax.bbox.x0 - intervalx, snapx), + ax.bbox.y0, + ax.bbox.width, + ax.bbox.height, + ) + elif key == "right": + bbox = Bbox.from_bounds( + self.roundto(ax.bbox.x0 + intervalx, snapx), + ax.bbox.y0, + ax.bbox.width, + ax.bbox.height, + ) + elif key == "up": + bbox = Bbox.from_bounds( + ax.bbox.x0, + self.roundto(ax.bbox.y0 + intervaly, snapy), + ax.bbox.width, + ax.bbox.height, + ) + elif key == "down": + bbox = Bbox.from_bounds( + ax.bbox.x0, + self.roundto(ax.bbox.y0 - intervaly, snapy), + ax.bbox.width, + ax.bbox.height, + ) + + bbox = bbox.transformed(self.f.transFigure.inverted()) + return bbox + + def _get_move_bbox(self, ax, x, y): + w, h = ax.bbox.width, ax.bbox.height + x0, y0 = ( + self._start_ax_position[ax][0] + (x - self._start_position[0]), + self._start_ax_position[ax][1] + (y - self._start_position[1]), + ) + + if self._snap_id > 0: + sx, sy = self._snap + x0 = self.roundto(x0, sx) + y0 = self.roundto(y0, sy) + + bbox = Bbox.from_bounds(x0, y0, w, h).transformed(self.f.transFigure.inverted()) + + return bbox + + def _get_resize_bbox(self, ax, step): + origw, origh = ax.bbox.width, ax.bbox.height + x0, y0 = ax.bbox.x0, ax.bbox.y0 + + sx, sy = self._snap + + h, w = origh, origw + + if self._scale_direction == "horizontal": + w += max(0.25, sx) * step + w = self.roundto(w, sx) + elif self._scale_direction == "vertical": + h += max(0.25, sy) * step + h = self.roundto(h, sy) + else: + w += max(0.25, sx) * step + w = self.roundto(w, sx) + + h += max(0.25, sy) * step + h = self.roundto(h, sy) + + if h <= 0 or w <= 0: + return + + # x0 = self.roundto(x0, sx) + # y0 = self.roundto(y0, sy) + + # keep the center-position of the scaled axis + x0 = x0 + (origw - w) / 2 + y0 = y0 + (origh - h) / 2 + + bbox = Bbox.from_bounds(x0, y0, w, h).transformed(self.f.transFigure.inverted()) + + if bbox.width <= 0 or bbox.height <= 0: + return + + return bbox + + def _color_unpicked(self, ax): + for spine in ax.spines.values(): + spine.set_edgecolor("b") + spine._EOmaps_linestyle = spine.get_linestyle() + spine.set_linestyle("-") + spine.set_linewidth(1) + + def _color_picked(self, ax): + for spine in ax.spines.values(): + spine.set_edgecolor("r") + spine.set_linestyle("-") + spine.set_linewidth(2) + + def _color_axes(self): + for ax in self.axes: + self._color_unpicked(ax) + + for ax in self._ax_picked: + if ax is not None: + self._color_picked(ax) + + def _set_startpos(self, event): + self._start_position = (event.x, event.y) + self._start_ax_position = {i: (i.bbox.x0, i.bbox.y0) for i in self._ax_picked} + + def _add_to_history(self): + self._history_undone.clear() + self._history = self._history[: self._max_hist_steps] + self._history.append(self.get_layout()) + + def _undo(self): + if len(self._history) > 0: + l = self._history.pop(-1) + self._history_undone.append(l) + self.m.apply_layout(l) + self.m.redraw() + + def _redo(self): + if len(self._history_undone) > 0: + l = self._history_undone.pop(-1) + self._history.append(l) + self.m.apply_layout(l) + self.m.redraw() + + def cb_release(self, event): + self._set_startpos(event) + + def cb_pick(self, event): + if not self.modifier_pressed: + return + if (self.f.canvas.toolbar is not None) and self.f.canvas.toolbar.mode != "": + return False + + # toggle info-text visibility on left-click + if event.button == 3: + if getattr(self, "_info_text", None) is not None: + vis = not self._info_text.get_visible() + self._info_text.set_visible(vis) + self._info_text_hidden = not vis + + eventax = event.inaxes + + if eventax not in self.axes: + # if no axes is clicked "unpick" previously picked axes + if len(self._ax_picked) == 0: + # if there was nothing picked there's nothing to do + # except updating the info-text visibility + + if getattr(self, "_info_text", None) is not None: + self.blit_artists() + + return + + self._ax_picked = [] + self._m_picked = [] + self._color_axes() + self._remove_snap_grid() + self.fetch_current_background() + self.blit_artists() + return + + if self._shift_pressed: + if eventax in self.maxes: + m = self.ms[self.maxes.index(eventax)] + if eventax in self._ax_picked: + self._ax_picked.remove(eventax) + else: + self._ax_picked.append(eventax) + + if m in self._m_picked: + self._m_picked.remove(m) + else: + self._m_picked.append(m) + else: + if eventax in self._ax_picked: + self._ax_picked.remove(eventax) + # handle colorbar axes + if eventax.get_label() == "cb": + for cbax in getattr(eventax, "_eomaps_cb_axes", []): + self._ax_picked.remove(cbax) + else: + self._ax_picked.append(eventax) + # handle colorbar axes + if eventax.get_label() == "cb": + for cbax in getattr(eventax, "_eomaps_cb_axes", []): + self._ax_picked.append(cbax) + else: + if eventax not in self._ax_picked: + self._m_picked = [] + self._ax_picked = [] + + if eventax in self.axes: + if eventax in self.maxes: + self._ax_picked.append(eventax) + self._m_picked.append(self.ms[self.maxes.index(eventax)]) + else: + self._m_picked = [] + self._ax_picked.append(eventax) + # handle colorbar axes + if eventax.get_label() == "cb": + for cbax in getattr(eventax, "_eomaps_cb_axes", []): + self._ax_picked.append(cbax) + + self._add_snap_grid() + else: + self._add_snap_grid() + + self._set_startpos(event) + self._color_axes() + self.fetch_current_background() + self.blit_artists() + + def fetch_current_background(self): + # clear the renderer to avoid drawing on existing backgrounds + renderer = self.m.BM.canvas.get_renderer() + renderer.clear() + + with ExitStack() as stack: + for ax in self._ax_picked: + stack.enter_context(ax._cm_set(visible=False)) + + self.m.BM.blit_artists(self.axes, None, False) + + grid = getattr(self, "_snap_grid_artist", None) + if grid is not None: + self.m.BM.blit_artists([grid], None, False) + + self.m.BM.canvas.blit() + self._current_bg = self.m.BM.canvas.copy_from_bbox(self.m.f.bbox) + + def cb_move_with_key(self, event): + if not self.modifier_pressed: + return + if (self.f.canvas.toolbar is not None) and self.f.canvas.toolbar.mode != "": + return False + + if event.key not in ["left", "right", "up", "down"]: + return + + for ax in self._ax_picked: + bbox = self._get_move_with_key_bbox(ax, event.key) + ax.set_position(bbox) + + self._add_to_history() + self._color_axes() + self.blit_artists() + + def cb_move(self, event): + if (self.f.canvas.toolbar is not None) and self.f.canvas.toolbar.mode != "": + return False + if self.modifier is not None: + if not self.modifier_pressed: + return False + + if event.button != 1: + return + + for ax in self._ax_picked: + if ax is None: + return + + bbox = self._get_move_bbox(ax, event.x, event.y) + ax.set_position(bbox) + + self._add_to_history() + self._color_axes() + self.blit_artists() + + def blit_artists(self): + artists = [*self._ax_picked] + + if getattr(self, "_info_text", None) is not None: + artists.append(self._info_text) + + self.m.BM.blit_artists(artists, self._current_bg) + + def cb_scroll(self, event): + if (self.f.canvas.toolbar is not None) and self.f.canvas.toolbar.mode != "": + return False + if self.modifier is not None: + if not self.modifier_pressed: + return False + + if self._scale_direction == "set_hist_size": + # resize colorbar histogram + for ax in self._ax_picked: + if not ax.get_label() == "cb": + continue + + # identify all relevant colorbars + # (e.g. all colorbars that share the container-ax "cb._ax") + cbs = [] + for m in self.ms: + for cb in m._colorbars: + if cb._ax is ax: + cbs.append(cb) + + if len(cbs) == 0: + return False + + # use the hist-size of the first colorbar as start (to avoid ambiguity) + start_size = cbs[0]._hist_size + for cb in cbs: + new_size = np.clip(start_size + event.step * 0.02, 0.0, 1.0) + cb._set_hist_size(new_size) + + self._add_to_history() + self.blit_artists() + else: + # resize axes + for ax in self._ax_picked: + if ax is None: + continue + resize_bbox = self._get_resize_bbox(ax, event.step) + if resize_bbox is not None: + ax.set_position(resize_bbox) + self._add_to_history() + self.blit_artists() + + def cb_key_press(self, event): + # release shift key on every keypress + self._shift_pressed = False + + if (event.key == self.modifier) and (not self.modifier_pressed): + self._make_draggable() + return + elif (event.key == self.modifier or event.key == "escape") and ( + self.modifier_pressed + ): + self._undo_draggable() + return + elif (event.key.lower() == "p") and (self.modifier_pressed): + s = "\nlayout = {\n " + s += "\n ".join( + f'"{key}": {val},' for key, val in self.get_layout().items() + ) + s += "\n}\n" + print(s) + elif (event.key.lower() == "q") and (self.modifier_pressed): + print( + "\n##########################\n\n" + "EOmaps Layout Editor controls:\n\n" + "Click on axes to select them for editing.\n" + "(Hold 'shift' while clicking on axes to select multiple axes.)\n\n" + "Drag selected axes with the mouse or use the 'arrow-keys' to " + "change their position.\n\n" + "Use the 'scroll-wheel' or the '+' and '-' keys to change the size " + "of selected axes.\n" + "For normal matplotlib axes: Hold down 'h' or 'v' to adjust only " + "the horizontal or vertical size of the axes.\n" + "For EOmaps colorbars: Hold down 'control' to adjust the relative " + "size of the histogram.\n\n" + "Use the keys 1-9 to adjust the spacing of the 'snap grid' (Note that " + "the grid-spacing also determines the step-size for size- and " + "position-changes!) Press 0 to disable grid-snapping.\n\n" + f"To exit, press 'escape' or '{self.modifier}'\n" + "\n##########################\n\n" + ) + return + + else: + if not self.modifier_pressed: + # only continue if modifier is pressed! + return + + if event.key in ("ctrl+z", "control+z"): + self._undo() + return + elif event.key in ("ctrl+y", "control+y"): + self._redo() + return + elif event.key == "h": + self._scale_direction = "horizontal" + elif event.key == "v": + self._scale_direction = "vertical" + elif event.key in ("control", "ctrl", "ctrl++", "ctrl+-"): + self._scale_direction = "set_hist_size" + + elif event.key == "shift": + self._shift_pressed = True + + # assign snaps with keys 0-9 + if event.key in map(str, range(10)): + self._snap_id = int(event.key) + self._add_snap_grid() + self.fetch_current_background() + self.blit_artists() + + # assign snaps with keys 0-9 + if event.key in ["+", "-", "ctrl++", "ctrl+-"]: + + class dummyevent: + pass + + d = dummyevent() + d.key = event.key + d.step = 1 * {"+": 1, "ctrl++": 1, "ctrl+-": -1, "-": -1}[event.key] + + self.cb_scroll(d) + + def cb_key_release(self, event): + # reset scale direction on every key release event + if event.key in ("h", "v", "control", "ctrl", "ctrl++", "ctrl+-"): + self._scale_direction = "both" + if event.key in ("shift"): + self._shift_pressed = False + + @property + def _snap(self): + # grid-separation distance + if self._snap_id == 0: + snap = (0, 0) + else: + n = (self.f.bbox.width / 400) * (self._snap_id) + + snap = (n, n) + + return snap + + def ax_on_layer(self, ax): + if ax in self.m.BM._get_unmanaged_axes(): + return True + elif ax in self.maxes: + return True + else: + for layer in (self.m.BM.bg_layer, "__SPINES__", "all"): + # logos are put on the spines-layer to appear on top of spines! + if ax in self.m.BM.get_bg_artists(layer): + return True + elif ax in self.m.BM.get_artists(self.m.BM.bg_layer): + return True + + return False + + def _make_draggable(self, filepath=None): + # Uncheck active pan/zoom actions of the matplotlib toolbar. + # use a try-except block to avoid issues with ipympl in jupyter notebooks + # (see https://github.com/matplotlib/ipympl/issues/530#issue-1780919042) + try: + toolbar = getattr(self.m.BM.canvas, "toolbar", None) + if toolbar is not None: + for key in ["pan", "zoom"]: + val = toolbar._actions.get(key, None) + if val is not None and val.isCheckable() and val.isChecked(): + val.trigger() + except AttributeError: + pass + + self._filepath = filepath + self.modifier_pressed = True + _log.info( + "EOmaps: Layout Editor activated! (press 'esc' to exit " "and 'q' for info)" + ) + + self._history.clear() + self._history_undone.clear() + self._add_to_history() + + self._revert_props = [] + for ax in self.f.axes: + # only handle axes that have a finite size (in pixels) to avoid + # singular matrix errors for initially hidden zero-size axes + # (can happen for colorbar/colorbar histogram axes) + singularax = False + if ax.bbox.width <= 1 or ax.bbox.height <= 1: + singularax = True + + # check if the axis is the container-axes of a colorbar + cbaxQ = ax.get_label() == "cb" + + if not ax.axison: + showXY = False + self._revert_props.append(ax.set_axis_off) + ax.set_axis_on() + else: + showXY = True + + # keep singular axes hidden + self._revert_props.append((ax.set_visible, ax.get_visible())) + if not singularax: + if self.ax_on_layer(ax): + ax.set_visible(True) + else: + ax.set_visible(False) + else: + ax.set_visible(False) + + self._revert_props.append((ax.set_animated, ax.get_animated())) + ax.set_animated(False) + + self._revert_props.append((ax.set_frame_on, ax.get_frame_on())) + ax.set_frame_on(True) + + for child in ax.get_children(): + # make sure we don't treat axes again (in case they are child-axes) + if child in self.f.axes: + continue + revert_props = [ + "edgecolor", + "linewidth", + "alpha", + "animated", + "visible", + ] + self._add_revert_props(child, *revert_props) + + if isinstance(child, Spine) and not cbaxQ: + # make sure spines are visible (and re-drawn on draw) + child.set_animated(False) + child.set_visible(True) + if hasattr(child, "_EOmaps_linestyle"): + child.set_linestyle(getattr(child, "_EOmaps_linestyle", "-")) + del child._EOmaps_linestyle + elif ( + ax not in self.maxes + and showXY + and isinstance(child, (XAxis, YAxis)) + ): + # keep all tick labels etc. of normal axes and colorbars visible + child.set_animated(False) + child.set_visible(True) + + elif child is ax.patch and not cbaxQ: + # only reset facecolors for axes-patches to avoid issues with + # black spines (TODO check why this happens!) + self._add_revert_props(child, "facecolor") + + # make sure patches are visible (and re-drawn on draw) + child.set_visible(True) + child.set_facecolor("w") + child.set_alpha(0.75) # for overlapping axes + + else: + # make all other children invisible (to avoid drawing them) + child.set_visible(False) + child.set_animated(True) + + # only re-draw if info-text is None + if getattr(self, "_info_text", None) is None: + self._info_text = self.add_info_text() + + self._color_axes() + self._attach_callbacks() + + self.m._emit_signal("layoutEditorActivated") + + self.m.redraw() + + def _add_revert_props(self, child, *args): + for prop in args: + if hasattr(child, f"set_{prop}") and hasattr(child, f"get_{prop}"): + self._revert_props.append( + ( + getattr(child, f"set_{prop}"), + getattr(child, f"get_{prop}")(), + ) + ) + + def _undo_draggable(self): + if getattr(self, "_info_text", None) not in (None, False): + self._info_text.remove() + # set to None to avoid crating the info-text again + self._info_text = None + + self._history.clear() + self._history_undone.clear() + + toolbar = getattr(self.m.f, "toolbar", None) + if toolbar is not None: + # Reset the axes stack to make sure the "home" "back" and "forward" buttons + # of the toolbar do not reset axis positions + # see "matplotlib.backend_bases.NavigationToolbar2.update" + if hasattr(toolbar, "update"): + try: + toolbar.update() + except Exception: + _log.exception( + "EOmaps: Error while trying to reset the axes stack!" + ) + + # clear all picks on exit + self._ax_picked = [] + self._m_picked = [] + + _log.info("EOmaps: Exiting layout-editor mode...") + + # in case a filepath was provided, save the new layout + if self._filepath: + try: + self.m.get_layout(filepath=self._filepath, override=True) + except Exception: + _log.exception( + "EOmaps: Layout could not be saved to the provided " + + f"filepath: '{self._filepath}'." + ) + + self._reset_callbacks() + # revert all changes to artists + for p in self._revert_props: + if isinstance(p, tuple): + p[0](p[1]) + else: + p() + + self.modifier_pressed = False + + # reset the histogram-size of all colorbars to make sure previously hidden + # axes (e.g. size=0) become visible if the size is now > 0. + for m in self.ms: + for cb in m._colorbars: + cb._set_hist_size(update_all=True) + + # remove snap-grid (if it's still visible) + self._remove_snap_grid() + + self.m._emit_signal("layoutEditorDeactivated") + + self.m.redraw() + # try to push the current view to the "home" toolbar button + try: + self.m.f.canvas.toolbar.push_current() + except Exception: + pass + + def _reset_callbacks(self): + # disconnect all callbacks of the layout-editor + while len(self.cids) > 0: + cid = self.cids.pop(-1) + self.f.canvas.mpl_disconnect(cid) + + def _attach_callbacks(self): + # make sure all previously set callbacks are reset + self._reset_callbacks() + + events = ( + ("scroll_event", self.cb_scroll), + ("button_press_event", self.cb_pick), + ("button_release_event", self.cb_release), + ("motion_notify_event", self.cb_move), + ("key_press_event", self.cb_move_with_key), + ("key_release_event", self.cb_key_release), + ) + + for event, cb in events: + self.cids.append(self.f.canvas.mpl_connect(event, cb)) + + def _add_snap_grid(self, snap=None): + # snap = (snapx, snapy) + + if snap is None: + if self._snap_id == 0: + self._remove_snap_grid() + return + else: + snapx, snapy = self._snap + else: + snapx, snapy = snap + + self._remove_snap_grid() + + bbox = self.m.f.bbox + t = self.m.f.transFigure.inverted() + + gx, gy = np.mgrid[ + 0 : int(bbox.width) + int(snapx) : snapx, + 0 : int(bbox.height) + int(snapy) : snapy, + ] + g = t.transform(np.column_stack((gx.flat, gy.flat))) + + l = Line2D( + *g.T, + lw=0, + marker=".", + markerfacecolor="steelblue", + markeredgecolor="none", + ms=(snapx + snapy) / 6, + ) + self._snap_grid_artist = self.m.f.add_artist(l) + + def _remove_snap_grid(self): + if hasattr(self, "_snap_grid_artist"): + self._snap_grid_artist.remove() + del self._snap_grid_artist + + def get_layout(self, filepath=None, override=False, precision=5): + """ + Get the positions of all axes within the current plot. + + To re-apply a layout, use: + + >>> l = m.get_layout() + >>> m.set_layout(l) + + Note + ---- + The returned list is only a snapshot of the current layout. + It can only be re-applied to a given figure if the order at which the axes are + created remains the same! + + Parameters + ---------- + filepath : str or pathlib.Path, optional + If provided, a json-file will be created at the specified destination that + can be used in conjunction with `m.set_layout(...)` to apply the layout: + + >>> m.get_layout(filepath=, override=True) + >>> m.apply_layout_layout() + + You can also manually read-in the layout-dict via: + >>> import json + >>> layout = json.load() + override: bool + Indicator if the file specified as 'filepath' should be overwritten if it + already exists. + The default is False. + precision : int or None + The precision of the returned floating-point numbers. + If None, all available digits are returned + The default is 5 + Returns + ------- + layout : dict or None + A dict of the positions of all axes, e.g.: {1:(x0, y0, width height), ...} + """ + figsize = [*self.f.get_size_inches()] + + axes = [ + a for a in self.axes if a.get_label() not in ["EOmaps_cb", "EOmaps_cb_hist"] + ] + + # identify relevant colorbars + colorbars = [getattr(m, "colorbar", None) for m in self.ms] + cbaxes = [getattr(cb, "_ax", None) for cb in colorbars] + cbs = [(colorbars[cbaxes.index(a)] if a in cbaxes else None) for a in axes] + # ----------- + + layout = dict() + layout["figsize"] = figsize + + for i, ax in enumerate(axes): + if cbs[i] is not None: + if cbs[i]._ax.get_axes_locator() is not None: + continue + + label = ax.get_label() + name = f"{i}_{label}" + if precision is not None: + layout[name] = np.round(ax.get_position().bounds, precision).tolist() + else: + layout[name] = ax.get_position().bounds + + if cbs[i] is not None: + layout[f"{name}_histogram_size"] = cbs[i]._hist_size + + if filepath is not None: + filepath = Path(filepath) + assert ( + not filepath.exists() or override + ), f"The file {filepath} already exists! Use override=True to relace it." + with open(filepath, "w") as file: + json.dump(layout, file) + _log.info(f"EOmaps: Layout saved to:\n {filepath}") + + return layout + + def apply_layout(self, layout): + """ + Set the positions of all axes within the current plot based on a previously + defined layout. + + To apply a layout, use: + + >>> l = m.get_layout() + >>> m.set_layout(l) + + To save a layout to disc and apply it at a later stage, use + >>> m.get_layout(filepath=) + >>> m.set_layout() + + Note + ---- + The returned list is only a snapshot of the current layout. + It can only be re-applied to a given figure if the order at which the axes are + created remains the same! + + Parameters + ---------- + layout : dict, str or pathlib.Path + If a dict is provided, it is directly used to define the layout. + + If a string or a pathlib.Path object is provided, it will be used to + read a previously dumped layout (e.g. with `m.get_layout(filepath)`) + + """ + if isinstance(layout, (str, Path)): + with open(layout, "r") as file: + layout = json.load(file) + + # check if all relevant axes are specified in the layout + valid_keys = set(self.get_layout()) + if valid_keys != set(layout): + _log.warning( + "EOmaps: The the layout does not match the expected structure! " + "Layout might not be properly restored. " + "Invalid or missing keys:\n" + f"{sorted(valid_keys.symmetric_difference(set(layout)))}\n" + ) + + # set the figsize + figsize = layout.get("figsize", None) + if figsize is not None: + self.f.set_size_inches(*figsize) + + axes = [ + a for a in self.axes if a.get_label() not in ["EOmaps_cb", "EOmaps_cb_hist"] + ] + + # identify relevant colorbars + colorbars = [getattr(m, "colorbar", None) for m in self.ms] + cbaxes = [getattr(cb, "_ax", None) for cb in colorbars] + cbs = [(colorbars[cbaxes.index(a)] if a in cbaxes else None) for a in axes] + + for key in valid_keys.intersection(set(layout)): + if key == "figsize": + continue + val = layout[key] + + i = int(key[: key.find("_")]) + if key.endswith("_histogram_size"): + cbs[i]._set_hist_size(val) + else: + axes[i].set_position(val) + + self.m.redraw() + + # try to push the current view to the "home" toolbar button + try: + self.m.f.canvas.toolbar.push_current() + except Exception: + pass From dbb4a958a8231e03691fe308bae8886a5c3462d9 Mon Sep 17 00:00:00 2001 From: Raphael Date: Tue, 30 Jan 2024 12:24:58 +0100 Subject: [PATCH 138/240] minor --- eomaps/layout_editor.py | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/eomaps/layout_editor.py b/eomaps/layout_editor.py index 5d720841e..742c86a1f 100644 --- a/eomaps/layout_editor.py +++ b/eomaps/layout_editor.py @@ -1,3 +1,10 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + +"""Definition of the LayoutEditor used to interactively re-position axes.""" + import logging from contextlib import ExitStack from pathlib import Path From feee183dadae3e93b66ffe877edbb6ac7138bd5d Mon Sep 17 00:00:00 2001 From: Raphael Date: Tue, 30 Jan 2024 12:25:35 +0100 Subject: [PATCH 139/240] move BlitManager to dedicated module --- eomaps/_blit_manager.py | 1545 +++++++++++++++++++++++++++++++++++++++ eomaps/eomaps.py | 2 +- eomaps/helpers.py | 1537 +------------------------------------- 3 files changed, 1547 insertions(+), 1537 deletions(-) create mode 100644 eomaps/_blit_manager.py diff --git a/eomaps/_blit_manager.py b/eomaps/_blit_manager.py new file mode 100644 index 000000000..d8b04b842 --- /dev/null +++ b/eomaps/_blit_manager.py @@ -0,0 +1,1545 @@ +# Copyright EOmaps Contributors +# +# This file is part of EOmaps and is released under the BSD 3-clause license. +# See LICENSE in the root of the repository for full licensing details. + +"""The BlitManager used to handle drawing and caching of backgrounds.""" + +import logging +from itertools import chain +from contextlib import contextmanager, ExitStack +from weakref import WeakSet +from functools import lru_cache + +import numpy as np +import matplotlib.pyplot as plt +from matplotlib.transforms import Bbox +from matplotlib.spines import Spine + +_log = logging.getLogger(__name__) + + +class LayerParser: + @staticmethod + def _parse_single_layer_str(layer): + """ + Parse a single layer-string (with optional transparency assignment). + + Parameters + ---------- + layer : str + A layer-string (with transparency provided in curly brackets). + + Returns + ------- + name: str + The name of the layer. + alpha: + The transparency of the layer. + + """ + # split transparency + t_split = layer.find("{") + if t_split > 0: + name = layer[:t_split] + alpha = layer[t_split + 1 :] + if not alpha.endswith("}"): + raise TypeError( + f"EOmaps: unable to parse multilayer-transparency for '{layer}'" + ) + return name, float(alpha[:-1]) + else: + return layer, 1 + + @classmethod + def _parse_multi_layer_str(cls, layer=None): + layers, alphas = zip(*map(cls._parse_single_layer_str, layer.split("|"))) + return list(layers), list(alphas) + + @classmethod + def _layer_is_subset(cls, layer1, layer2): + """ + Return True if combined layer-name 'layer2' is a subset of 'layer1'. + + - Transparency assignments are stripped off before comparison + + Parameters + ---------- + layer1, layer2 : str + The combined layer-names to check. + + Returns + ------- + subset: bool + True if layer2 is a subset of layer1, False otherwise + + """ + # get a list of the currently visible layers + layers1, _ = cls._parse_multi_layer_str(layer1) + layers2, _ = cls._parse_multi_layer_str(layer2) + + return set(layers1).issubset(layers2) + + @staticmethod + def _get_combined_layer_name(*args): + """ + Create a combine layer name from layer-names or tuples (name, transparency). + + Parameters + ---------- + *args : str or tuple + The layers to combine. (e.g. `"A"`, `"B"` or `("A", .5)`, `("B", .23)`, ...) + + Returns + ------- + str + The combined layer-name. + + """ + try: + combnames = [] + for i in args: + if isinstance(i, str): + combnames.append(i) + elif isinstance(i, (list, tuple)): + assert ( + len(i) == 2 + and isinstance(i[0], str) + and i[1] >= 0 + and i[1] <= 1 + ), ( + f"EOmaps: unable to identify the layer-assignment: {i} .\n" + "You can provide either a single layer-name as string, a list " + "of layer-names or a list of tuples of the form: " + "(< layer-name (str) >, < layer-transparency [0-1] > )" + ) + + if i[1] < 1: + combnames.append(i[0] + "{" + str(i[1]) + "}") + else: + combnames.append(i[0]) + else: + raise TypeError( + f"EOmaps: unable to identify the layer-assignment: {i} .\n" + "You can provide either a single layer-name as string, a list " + "of layer-names or a list of tuples of the form: " + "(< layer-name (str) >, < layer-transparency [0-1] > )" + ) + return "|".join(combnames) + except Exception: + raise TypeError(f"EOmaps: Unable to combine the layer-names {args}") + + @staticmethod + def _check_layer_name(layer): + if not isinstance(layer, str): + _log.info("EOmaps: All layer-names are converted to strings!") + layer = str(layer) + + if layer.startswith("__") and not layer.startswith("__inset_"): + raise TypeError( + "EOmaps: Layer-names starting with '__' are reserved " + "for internal use and cannot be used as Maps-layer-names!" + ) + + reserved_symbs = { + # "|": ( + # "It is used as a separation-character to combine multiple " + # "layers (e.g. m.show_layer('A|B') will overlay the layer 'B' " + # "on top of 'A'." + # ), + "{": ( + "It is used to specify transparency when combining multiple " + "layers (e.g. m.show_layer('A|B{0.5}') will overlay the layer " + "'B' with 50% transparency on top of the layer 'A'." + ), + } + + reserved_symbs["}"] = reserved_symbs["{"] + + for symb, explanation in reserved_symbs.items(): + if symb in layer: + raise TypeError( + f"EOmaps: The symbol '{symb}' is not allowed in layer-names!\n" + + explanation + ) + + return layer + + +# taken from https://matplotlib.org/stable/tutorials/advanced/blitting.html#class-based-example +class BlitManager(LayerParser): + """Manager used to schedule draw events, cache backgrounds, etc.""" + + _snapshot_on_update = False + + def __init__(self, m): + """ + Manager used to schedule draw events, cache backgrounds, etc. + + Parameters + ---------- + canvas : FigureCanvasAgg + The canvas to work with, this only works for sub-classes of the Agg + canvas which have the `~FigureCanvasAgg.copy_from_bbox` and + `~FigureCanvasAgg.restore_region` methods. + + animated_artists : Iterable[Artist] + List of the artists to manage + + """ + self._disable_draw = False + self._disable_update = False + + self._m = m + + self._artists = dict() + + self._bg_artists = dict() + self._bg_layers = dict() + + self._pending_webmaps = dict() + + # the name of the layer at which all "unmanaged" artists are drawn + self._unmanaged_artists_layer = "base" + + # grab the background on every draw + self.cid = self.canvas.mpl_connect("draw_event", self.on_draw) + + self._after_update_actions = [] + self._after_restore_actions = [] + self._bg_layer = "base" + + self._artists_to_clear = dict() + + self._hidden_artists = set() + + self._refetch_bg = True + self._layers_to_refetch = set() + + # TODO these activate some crude fixes for jupyter notebook and webagg + # backends... proper fixes would be nice + self._mpl_backend_blit_fix = any( + i in plt.get_backend().lower() for i in ["webagg", "nbagg"] + ) + + # self._mpl_backend_force_full = any( + # i in plt.get_backend().lower() for i in ["nbagg"] + # ) + # recent fixes seem to take care of this nbagg issue... + self._mpl_backend_force_full = False + self._mpl_backend_blit_fix = False + + # True = persistent, False = execute only once + self._on_layer_change = {True: list(), False: list()} + self._on_layer_activation = {True: dict(), False: dict()} + + self._on_add_bg_artist = list() + self._on_remove_bg_artist = list() + + self._before_fetch_bg_actions = list() + self._before_update_actions = list() + + self._refetch_blank = True + self._blank_bg = None + + self._managed_axes = set() + + self._clear_on_layer_change = False + + self._on_layer_change_running = False + + # a weak set containing artists that should NOT be identified as + # unmanaged artists + self._ignored_unmanaged_artists = WeakSet() + + def _get_renderer(self): + # don't return the renderer if the figure is saved. + # in this case the normal draw-routines are used (see m.savefig) so there is + # no need to trigger updates (also `canvas.get_renderer` is undefined for + # pdf/svg exports since those canvas do not expose the renderer) + # ... this is required to support vector format outputs! + if self.canvas.is_saving(): + return None + + try: + return self.canvas.get_renderer() + except Exception: + return None + + def _get_all_map_axes(self): + maxes = { + m.ax for m in (self._m.parent, *self._m.parent._children) if m._new_axis_map + } + return maxes + + def _get_managed_axes(self): + return (*self._get_all_map_axes(), *self._managed_axes) + + def _get_unmanaged_axes(self): + # return a list of all axes that are not managed by the blit-manager + # (to ensure that "unmanaged" axes are drawn as well) + + # EOmaps axes + managed_axes = self._get_managed_axes() + allaxes = set(self._m.f.axes) + + unmanaged_axes = allaxes.difference(managed_axes) + return unmanaged_axes + + @property + def figure(self): + """The matplotlib figure instance.""" + return self._m.f + + @property + def canvas(self): + """The figure canvas instance.""" + return self.figure.canvas + + @contextmanager + def _cx_on_layer_change_running(self): + # a context-manager to avoid recursive on_layer_change calls + try: + self._on_layer_change_running = True + yield + finally: + self._on_layer_change_running = False + + def _do_on_layer_change(self, layer, new=False): + # avoid recursive calls to "_do_on_layer_change" + # This is required in case the executed functions trigger actions that would + # trigger "_do_on_layer_change" again which can result in a mixed-up order of + # the scheduled functions. + if self._on_layer_change_running is True: + return + + # do not execute layer-change callbacks on private layer activation! + if layer.startswith("__"): + return + + with self._cx_on_layer_change_running(): + # only execute persistent layer-change callbacks if the layer changed! + if new: + # general callbacks executed on any layer change + # persistent callbacks + for f in reversed(self._on_layer_change[True]): + f(layer=layer) + + # single-shot callbacks + # (execute also if the layer is already active) + while len(self._on_layer_change[False]) > 0: + try: + f = self._on_layer_change[False].pop(0) + f(layer=layer) + except Exception: + _log.error( + "EOmaps: Issue while executing a layer-change action", + exc_info=_log.getEffectiveLevel() <= logging.DEBUG, + ) + + sublayers, _ = self._parse_multi_layer_str(layer) + if new: + for l in sublayers: + # individual callables executed if a specific layer is activated + # persistent callbacks + for f in reversed(self._on_layer_activation[True].get(layer, [])): + f(layer=l) + + for l in sublayers: + # single-shot callbacks + single_shot_funcs = self._on_layer_activation[False].get(l, []) + while len(single_shot_funcs) > 0: + try: + f = single_shot_funcs.pop(0) + f(layer=l) + except Exception: + _log.error( + "EOmaps: Issue while executing a layer-change action", + exc_info=_log.getEffectiveLevel() <= logging.DEBUG, + ) + + # clear the list of pending webmaps once the layer has been activated + if layer in self._pending_webmaps: + self._pending_webmaps.pop(layer) + + @contextmanager + def _without_artists(self, artists=None, layer=None): + try: + removed_artists = {layer: set(), "all": set()} + if artists is None: + yield + else: + for a in artists: + if a in self._artists.get(layer, []): + self.remove_artist(a, layer=layer) + removed_artists[layer].add(a) + elif a in self._artists.get("all", []): + self.remove_artist(a, layer="all") + removed_artists["all"].add(a) + + yield + finally: + for layer, artists in removed_artists.items(): + for a in artists: + self.add_artist(a, layer=layer) + + def _get_active_bg(self, exclude_artists=None): + with self._without_artists(artists=exclude_artists, layer=self.bg_layer): + # fetch the current background (incl. dynamic artists) + self.update() + + with ExitStack() as stack: + # get rid of the figure background patch + # (done by putting the patch on the __BG__ layer!) + + # get rid of the axes background patch + for ax_i in self._get_all_map_axes(): + stack.enter_context( + ax_i.patch._cm_set(facecolor="none", edgecolor="none") + ) + bg = self.canvas.copy_from_bbox(self.figure.bbox) + + return bg + + @property + def bg_layer(self): + """The currently visible layer-name.""" + return self._bg_layer + + @bg_layer.setter + def bg_layer(self, val): + if val == self._bg_layer: + # in case the layer did not change, do nothing + return + + # check if a new layer is activated (or added to a multi-layer) + old_layers = set(self._parse_multi_layer_str(self._bg_layer)[0]) + new_layers = set(self._parse_multi_layer_str(val)[0]) + + new = old_layers != new_layers + + # make sure we use a "full" update for webagg and ipympl backends + # (e.g. force full redraw of canvas instead of a diff) + self.canvas._force_full = True + self._bg_layer = val + + # a general callable to be called on every layer change + self._do_on_layer_change(layer=val, new=new) + + # hide all colorbars that are not on the visible layer + for m in [self._m.parent, *self._m.parent._children]: + layer_visible = self._layer_is_subset(val, m.layer) + + for cb in m._colorbars: + cb._hide_singular_axes() + + if layer_visible: + if cb in self._hidden_artists: + self._hidden_artists.remove(cb) + else: + if cb not in self._hidden_artists: + self._hidden_artists.add(cb) + + # hide all wms_legends that are not on the visible layer + if hasattr(self._m.parent, "_wms_legend"): + for layer, legends in self._m.parent._wms_legend.items(): + layer_visible = self._layer_is_subset(val, layer) + + if layer_visible: + for i in legends: + i.set_visible(True) + else: + for i in legends: + i.set_visible(False) + + if self._clear_on_layer_change: + self._clear_temp_artists("on_layer_change") + + @contextmanager + def _cx_dont_clear_on_layer_change(self): + # a context-manager to avoid clearing artists on layer-changes + # (used in savefig to avoid clearing artists when re-fetching + # layers with backgrounds) + init_val = self._clear_on_layer_change + try: + self._clear_on_layer_change = False + yield + finally: + self._clear_on_layer_change = init_val + + def on_layer(self, func, layer=None, persistent=False, m=None): + """ + Add callables that are executed whenever the visible layer changes. + + NOTE: if m is None this function always falls back to the parent Maps-object!! + + Parameters + ---------- + func : callable + The callable to use. + The call-signature is: + + >>> def func(m, layer): + >>> # m ... the Maps-object + >>> # layer ... the name of the layer + + + layer : str or None, optional + - If str: The function will only be called if the specified layer is + activated. + - If None: The function will be called on any layer-change. + + The default is None. + persistent : bool, optional + Indicator if the function should be called only once (False) or if it + should be called whenever a layer is activated. + The default is False. + m : eomaps.Maps + The Maps-object to pass as argument to the function execution. + If None, the parent Maps-object is used. + + """ + if m is None: + m = self._m + + def cb(*args, **kwargs): + func(m=m, *args, **kwargs) + + if _log.getEffectiveLevel() <= 10: + logmsg = ( + f"Adding {'persistent' if persistent else 'single-shot'} " + f"layer change action for: '{layer}'" + ) + _log.debug(logmsg) + + if layer is None: + self._on_layer_change[persistent].append(cb) + else: + # treat inset-map layers like normal layers + if layer.startswith("__inset_"): + layer = layer[8:] + self._on_layer_activation[persistent].setdefault(layer, list()).append(cb) + + def _refetch_layer(self, layer): + if layer == "all": + # if the all layer changed, all backgrounds need a refetch + self._refetch_bg = True + else: + # set any background that contains the layer for refetch + self._layers_to_refetch.add(layer) + + for l in self._bg_layers: + sublayers, _ = self._parse_multi_layer_str(l) + if layer in sublayers: + self._layers_to_refetch.add(l) + + def _bg_artists_sort(self, art): + sortp = [] + + # ensure that inset-map artists are always drawn after all other artists + if art.axes is not None: + if art.axes.get_label() == "inset_map": + sortp.append(1) + else: + sortp.append(0) + + sortp.append(getattr(art, "zorder", -1)) + return sortp + + def get_bg_artists(self, layer): + """ + Get all (sorted) background artists assigned to a given layer-name. + + Parameters + ---------- + layer : str + The layer name for which artists should be fetched. + + Returns + ------- + artists : list + A list of artists on the specified layer, sorted with respect to the + vertical stacking (layer-order / zorder). + + """ + artists = list() + for l in np.atleast_1d(layer): + # get all relevant artists for combined background layers + l = str(l) # w make sure we convert non-string layer names to string! + + # get artists defined on the layer itself + # Note: it's possible to create explicit multi-layers and attach + # artists that are only visible if both layers are visible! (e.g. "l1|l2") + artists.extend(self._bg_artists.get(l, [])) + + if l == self._unmanaged_artists_layer: + artists.extend(self._get_unmanaged_artists()) + + # make the list unique but maintain order (dicts keep order for python>3.7) + artists = dict.fromkeys(artists) + # sort artists by zorder (respecting inset-map priority) + artists = sorted(artists, key=self._bg_artists_sort) + + return artists + + def get_artists(self, layer): + """ + Get all (sorted) dynamically updated artists assigned to a given layer-name. + + Parameters + ---------- + layer : str + The layer name for which artists should be fetched. + + Returns + ------- + artists : list + A list of artists on the specified layer, sorted with respect to the + vertical stacking (layer-order / zorder). + + """ + + artists = list() + for l in np.atleast_1d(layer): + # get all relevant artists for combined background layers + l = str(l) # w make sure we convert non-string layer names to string! + + # get artists defined on the layer itself + # Note: it's possible to create explicit multi-layers and attach + # artists that are only visible if both layers are visible! (e.g. "l1|l2") + artists.extend(self._artists.get(l, [])) + + # make the list unique but maintain order (dicts keep order for python>3.7) + artists = dict.fromkeys(artists) + # sort artists by zorder (respecting inset-map priority) + artists = sorted(artists, key=self._bg_artists_sort) + + return artists + + def _layer_visible(self, layer): + """ + Return True if the layer is currently visible. + + - layer is considered visible if all sub-layers of a combined layer are visible + - transparency assignments do not alter the layer visibility + + Parameters + ---------- + layer : str + The combined layer-name to check. (e.g. 'A|B{.4}|C{.3}') + + Returns + ------- + visible: bool + True if the layer is currently visible, False otherwise + + """ + return layer in "all" or self._layer_is_subset(layer, self.bg_layer) + + @property + def _get_active_layers_alphas(self): + """ + Return the currently visible layers (and their associated transparencies) + + Returns + ------- + layers, alphas: list of str, list of float + 2 lists of layer-names and associated global transparencies. + + """ + return self._parse_multi_layer_str(self.bg_layer) + + # cache the last 10 combined backgrounds to avoid re-combining backgrounds + # on updates of interactive artists + # cache is automatically cleared on draw if any layer is tagged for re-fetch! + @lru_cache(10) + def _combine_bgs(self, layer): + layers, alphas = self._parse_multi_layer_str(layer) + + # make sure all layers are already fetched + for l in layers: + if l not in self._bg_layers: + # execute actions on layer-changes + # (to make sure all lazy WMS services are properly added) + self._do_on_layer_change(layer=l, new=False) + self.fetch_bg(l) + + renderer = self._get_renderer() + # clear the renderer to avoid drawing on existing backgrounds + renderer.clear() + if renderer: + gc = renderer.new_gc() + gc.set_clip_rectangle(self.canvas.figure.bbox) + + x0, y0, w, h = self.figure.bbox.bounds + for l, a in zip(layers, alphas): + rgba = self._get_array(l, a=a) + if rgba is None: + # to handle completely empty layers + continue + renderer.draw_image( + gc, + int(x0), + int(y0), + rgba[int(y0) : int(y0 + h), int(x0) : int(x0 + w), :], + ) + bg = renderer.copy_from_bbox(self._m.f.bbox) + gc.restore() + return bg + + def _get_array(self, l, a=1): + if l not in self._bg_layers: + return None + rgba = np.array(self._bg_layers[l])[::-1, :, :] + if a != 1: + rgba = rgba.copy() + rgba[..., -1] = (rgba[..., -1] * a).astype(rgba.dtype) + return rgba + + def _get_background(self, layer, bbox=None, cache=False): + if layer not in self._bg_layers: + if "|" in layer: + bg = self._combine_bgs(layer) + else: + self.fetch_bg(layer, bbox=bbox) + bg = self._bg_layers[layer] + else: + bg = self._bg_layers[layer] + + if cache is True: + # explicitly cache the layer + # (for peek-layer callbacks to avoid re-fetching the layers all the time) + self._bg_layers[layer] = bg + + return bg + + def _do_fetch_bg(self, layer, bbox=None): + renderer = self._get_renderer() + renderer.clear() + + if bbox is None: + bbox = self.figure.bbox + + if "|" in layer: + if layer not in self._bg_layers: + self._combine_bgs(layer) + return + + # update axes spines and patches since they are used to clip artists! + for ax in self._get_all_map_axes(): + ax.spines["geo"]._adjust_location() + ax.patch._adjust_location() + + # use contextmanagers to make sure the background patches are not stored + # in the buffer regions! + with ExitStack() as stack: + if layer not in ["__BG__"]: + # get rid of the axes background patches for all layers except + # the __BG__ layer + # (the figure background patch is on the "__BG__" layer) + for ax_i in self._get_all_map_axes(): + stack.enter_context( + ax_i.patch._cm_set(facecolor="none", edgecolor="none") + ) + + # execute actions before fetching new artists + # (e.g. update data based on extent etc.) + for action in self._before_fetch_bg_actions: + action(layer=layer, bbox=bbox) + + # get all relevant artists to plot and remember zorders + # self.get_bg_artists() already returns artists sorted by zorder! + if layer in ["__SPINES__", "__BG__", "__inset___SPINES__"]: + # avoid fetching artists from the "all" layer for private layers + allartists = self.get_bg_artists(layer) + else: + if layer.startswith("__inset"): + allartists = self.get_bg_artists(["__inset_all", layer]) + else: + allartists = self.get_bg_artists(["all", layer]) + + # check if all artists are not stale + no_stale_artists = all(not art.stale for art in allartists) + + # don't re-fetch the background if it is not necessary + if no_stale_artists and (self._bg_layers.get(layer, None) is not None): + return + + if renderer: + for art in allartists: + if art not in self._hidden_artists: + try: + art.draw(renderer) + art.stale = False + except Exception: + if _log.getEffectiveLevel() <= logging.DEBUG: + _log.error( + "Unable to draw artist:" + f"{art} (" + f"figure={getattr(art, 'figure', '??')}, " + f"axes={getattr(art, 'axes', '??')})" + ) + + self._bg_layers[layer] = renderer.copy_from_bbox(bbox) + + def fetch_bg(self, layer=None, bbox=None): + """ + Trigger fetching (and caching) the background for a given layer-name. + + Parameters + ---------- + layer : str, optional + The layer for which the background should be fetched. + If None, the currently visible layer is fetched. + The default is None. + bbox : bbox, optional + The region-boundaries (in figure coordinates) for which the background + should be fetched (x0, y0, w, h). If None, the whole figure is fetched. + The default is None. + + """ + + if layer is None: + layer = self.bg_layer + + if layer in self._bg_layers: + # don't re-fetch existing layers + # (layers get cleared automatically if re-draw is necessary) + return + + with self._disconnect_draw(): + self._do_fetch_bg(layer, bbox) + + @contextmanager + def _disconnect_draw(self): + try: + # temporarily disconnect draw-event callback to avoid recursion + if self.cid is not None: + self.canvas.mpl_disconnect(self.cid) + self.cid = None + yield + finally: + # reconnect draw event + if self.cid is None: + self.cid = self.canvas.mpl_connect("draw_event", self.on_draw) + + def on_draw(self, event): + """Callback to register with 'draw_event'.""" + + if self._disable_draw: + return + + cv = self.canvas + loglevel = _log.getEffectiveLevel() + + if hasattr(cv, "get_renderer") and not cv.is_saving(): + + renderer = cv.get_renderer() + if renderer is None: + # don't run on_draw if no renderer is available + return + else: + # don't run on_draw if no renderer is available + # (this is true for svg export where mpl export routines + # are used to avoid issues) + if loglevel <= 5: + _log.log(5, " not drawing") + + return + + if loglevel <= 5: + _log.log(5, "draw") + + if event is not None: + if event.canvas != cv: + raise RuntimeError + try: + # reset all background-layers and re-fetch the default one + if self._refetch_bg: + self._bg_layers.clear() + self._layers_to_refetch.clear() + self._refetch_bg = False + type(self)._combine_bgs.cache_clear() # clear combined_bg cache + + else: + # in case there is a stale (unmanaged) artists and the + # stale-artist layer is attempted to be drawn, re-draw the + # cached background for the unmanaged-artists layer + active_layers, _ = self._get_active_layers_alphas + if self._unmanaged_artists_layer in active_layers and any( + a.stale for a in self._get_unmanaged_artists() + ): + self._refetch_layer(self._unmanaged_artists_layer) + type(self)._combine_bgs.cache_clear() # clear combined_bg cache + + # remove all cached backgrounds that were tagged for refetch + while len(self._layers_to_refetch) > 0: + self._bg_layers.pop(self._layers_to_refetch.pop(), None) + type(self)._combine_bgs.cache_clear() # clear combined_bg cache + + # workaround for nbagg backend to avoid glitches + # it's slow but at least it works... + # check progress of the following issuse + # https://github.com/matplotlib/matplotlib/issues/19116 + if self._mpl_backend_blit_fix: + self.update() + else: + self.update(blit=False) + + # re-draw indicator-shapes of active drawer + # (to show indicators during zoom-events) + active_drawer = getattr(self._m.parent, "_active_drawer", None) + if active_drawer is not None: + active_drawer.redraw(blit=False) + + except Exception: + # we need to catch exceptions since QT does not like them... + if loglevel <= 5: + _log.log(5, "There was an error during draw!", exc_info=True) + + def add_artist(self, art, layer=None): + """ + Add a dynamic-artist to be managed. + (Dynamic artists are re-drawn on every update!) + + Parameters + ---------- + art : Artist + + The artist to be added. Will be set to 'animated' (just + to be safe). *art* must be in the figure associated with + the canvas this class is managing. + layer : str or None, optional + The layer name at which the artist should be drawn. + + - If "all": the corresponding feature will be added to ALL layers + + The default is None in which case the layer of the base-Maps object is used. + """ + + if art.figure != self.figure: + raise RuntimeError( + "EOmaps: The artist does not belong to the figure" + "of this Maps-object!" + ) + + if layer is None: + layer = self._m.layer + + # make sure all layers are converted to string + layer = str(layer) + + self._artists.setdefault(layer, list()) + + if art in self._artists[layer]: + return + else: + art.set_animated(True) + self._artists[layer].append(art) + + if isinstance(art, plt.Axes): + self._managed_axes.add(art) + + def add_bg_artist(self, art, layer=None, draw=True): + """ + Add a background-artist to be managed. + (Background artists are only updated on zoom-events... they are NOT animated!) + + Parameters + ---------- + art : Artist + The artist to be added. Will be set to 'animated' (just + to be safe). *art* must be in the figure associated with + the canvas this class is managing. + layer : str or None, optional + The layer name at which the artist should be drawn. + + - If "all": the corresponding feature will be added to ALL layers + + The default is None in which case the layer of the base-Maps object is used. + draw : bool, optional + If True, `figure.draw_idle()` is called after adding the artist. + The default is True. + """ + + if layer is None: + layer = self._m.layer + + # make sure all layer names are converted to string + layer = str(layer) + + if art.figure != self.figure: + raise RuntimeError + + # put all artist of inset-maps on dedicated layers + if ( + getattr(art, "axes", None) is not None + and art.axes.get_label() == "inset_map" + and not layer.startswith("__inset_") + ): + layer = "__inset_" + str(layer) + if layer in self._bg_artists and art in self._bg_artists[layer]: + _log.info(f"EOmaps: Background-artist '{art}' already added") + return + + art.set_animated(True) + self._bg_artists.setdefault(layer, []).append(art) + + if isinstance(art, plt.Axes): + self._managed_axes.add(art) + + # tag all relevant layers for refetch + self._refetch_layer(layer) + + for f in self._on_add_bg_artist: + f() + + if draw: + self.canvas.draw_idle() + + def remove_bg_artist(self, art, layer=None, draw=True): + """ + Remove a (background) artist from the map. + + Parameters + ---------- + art : Artist + The artist that should be removed. + layer : str or None, optional + If provided, the artist is only searched on the provided layer, otherwise + all map layers are searched. The default is None. + draw : bool, optional + If True, `figure.draw_idle()` is called after removing the artist. + The default is True. + + Note + ---- + This only removes the artist from the blit-manager and does not call its + remove method! + + """ + # handle the "__inset_" prefix of inset-map artists + if ( + layer is not None + and getattr(art, "axes", None) is not None + and art.axes.get_label() == "inset_map" + and not layer.startswith("__inset_") + ): + layer = "__inset_" + str(layer) + + removed = False + if layer is None: + layers = [] + for key, val in self._bg_artists.items(): + if art in val: + art.set_animated(False) + val.remove(art) + + # remove axes from the managed_axes set as well! + if art in self._managed_axes: + self._managed_axes.remove(art) + + removed = True + layers.append(key) + layer = self._get_combined_layer_name(*layers) + else: + if layer not in self._bg_artists: + return + if art in self._bg_artists[layer]: + art.set_animated(False) + self._bg_artists[layer].remove(art) + + # remove axes from the managed_axes set as well! + if art in self._managed_axes: + self._managed_axes.remove(art) + + removed = True + + if removed: + for f in self._on_remove_bg_artist: + f() + + # tag all relevant layers for refetch + self._refetch_layer(layer) + + if draw: + self.canvas.draw_idle() + + def remove_artist(self, art, layer=None): + """ + Remove a (dynamically updated) artist from the blit-manager. + + Parameters + ---------- + art : matpltolib.Artist + The artist to remove. + layer : str, optional + The layer to search for the artist. If None, all layers are searched. + The default is None. + + Note + ---- + This only removes the artist from the blit-manager and does not call its + remove method! + + """ + if layer is None: + for key, layerartists in self._artists.items(): + if art in layerartists: + art.set_animated(False) + layerartists.remove(art) + + # remove axes from the managed_axes set as well! + if art in self._managed_axes: + self._managed_axes.remove(art) + + else: + if art in self._artists.get(layer, []): + art.set_animated(False) + self._artists[layer].remove(art) + + # remove axes from the managed_axes set as well! + if art in self._managed_axes: + self._managed_axes.remove(art) + else: + _log.debug(f"The artist {art} is not on the layer '{layer}'") + + def _get_artist_zorder(self, a): + try: + return a.get_zorder() + except Exception: + _log.error(f"EOmaps: unalble to identify zorder of {a}... using 99") + return 99 + + def _draw_animated(self, layers=None, artists=None): + """ + Draw animated artists + + - if layers is None and artists is None: active layer artists will be re-drawn + - if layers is not None: all artists from the selected layers will be re-drawn + - if artists is not None: all provided artists will be redrawn + + """ + fig = self.canvas.figure + renderer = self._get_renderer() + if renderer is None: + return + + if layers is None: + active_layers, _ = self._get_active_layers_alphas + layers = [self.bg_layer, *active_layers] + else: + (layers,) = list( + chain(*(self._parse_multi_layer_str(l)[0] for l in layers)) + ) + + if artists is None: + artists = [] + + # always redraw artists from the "all" layer + layers.append("all") + + # make the list unique but maintain order (dicts keep order for python>3.7) + layers = list(dict.fromkeys(layers)) + + # draw all "unmanaged" axes (e.g. axes that are found in the figure but + # not in the blit-manager) + # TODO would be nice to find a better way to handle this! + # - NOTE: this must be done before drawing managed artists to properly support + # temporary artists on unmanaged axes! + for ax in self._get_unmanaged_axes(): + ax.draw(renderer) + + # redraw artists from the selected layers and explicitly provided artists + # (sorted by zorder for each layer) + layer_artists = list( + sorted(self._artists.get(layer, []), key=self._get_artist_zorder) + for layer in layers + ) + + with ExitStack() as stack: + # avoid drawing the background-patches of managed (dynamic) axes + # since they might interfere with consecutive draws issued by callbacks + for ax_i in self._managed_axes: + stack.enter_context( + ax_i.patch._cm_set(facecolor="none", edgecolor="none") + ) + + for a in chain(*layer_artists, artists): + fig.draw_artist(a) + + def _get_unmanaged_artists(self): + # return all artists not explicitly managed by the blit-manager + # (e.g. any artist added via cartopy or matplotlib functions) + managed_artists = set( + chain( + *self._bg_artists.values(), + *self._artists.values(), + self._ignored_unmanaged_artists, + ) + ) + + axes = {m.ax for m in (self._m, *self._m._children) if m.ax is not None} + + allartists = set() + for ax in axes: + # only include axes titles if they are actually set + # (otherwise empty artists appear in the widget) + titles = [ + i + for i in (ax.title, ax._left_title, ax._right_title) + if len(i.get_text()) > 0 + ] + + axartists = { + *ax._children, + *titles, + *([ax.legend_] if ax.legend_ is not None else []), + } + + allartists.update(axartists) + + return allartists.difference(managed_artists) + + def _clear_all_temp_artists(self): + for method in self._m.cb._methods: + container = getattr(self._m.cb, method, None) + if container: + container._clear_temporary_artists() + self._clear_temp_artists(method) + + def _clear_temp_artists(self, method, forward=True): + # clear artists from connected methods + if method == "_click_move" and forward: + self._clear_temp_artists("click", False) + elif method == "click" and forward: + self._clear_temp_artists("_click_move", False) + elif method == "pick" and forward: + self._clear_temp_artists("click", True) + elif method == "on_layer_change" and forward: + self._clear_temp_artists("pick", False) + self._clear_temp_artists("click", True) + self._clear_temp_artists("move", False) + + if method == "on_layer_change": + # clear all artists from "on_layer_change" list irrespective of the method + artists = self._artists_to_clear.pop("on_layer_change", []) + for art in artists: + for met, met_artists in self._artists_to_clear.items(): + if art in met_artists: + art.set_visible(False) + self.remove_artist(art) + try: + art.remove() + except ValueError: + # ignore errors if the artist no longer exists + pass + met_artists.remove(art) + else: + artists = self._artists_to_clear.pop(method, []) + while len(artists) > 0: + art = artists.pop(-1) + art.set_visible(False) + self.remove_artist(art) + try: + art.remove() + except ValueError: + # ignore errors if the artist no longer exists + pass + + try: + self._artists_to_clear.get("on_layer_change", []).remove(art) + except ValueError: + # ignore errors if the artist is not present in the list + pass + + def _get_showlayer_name(self, layer=None, transparent=False): + # combine all layers that should be shown + # (e.g. to add spines, backgrounds and inset-maps) + + if layer is None: + layer = self.bg_layer + + # pass private layers through + if layer.startswith("__"): + return layer + + if transparent is True: + show_layers = [layer, "__SPINES__"] + else: + show_layers = ["__BG__", layer, "__SPINES__"] + + # show inset map layers and spines only if they contain at least 1 artist + inset_Q = False + for l in self._parse_multi_layer_str(layer)[0]: + narts = len(self._bg_artists.get("__inset_" + l, [])) + + if narts > 0: + show_layers.append(f"__inset_{l}") + inset_Q = True + + if inset_Q: + show_layers.append("__inset___SPINES__") + + return self._get_combined_layer_name(*show_layers) + + def update( + self, + layers=None, + bbox_bounds=None, + bg_layer=None, + artists=None, + clear=False, + blit=True, + clear_snapshot=True, + ): + """ + Update the screen with animated artists. + + Parameters + ---------- + layers : list, optional + The layers to redraw (if None and artists is None, all layers will be redrawn). + The default is None. + bbox_bounds : tuple, optional + the blit-region bounds to update. The default is None. + bg_layer : int, optional + the background-layer name to restore. The default is None. + artists : list, optional + A list of artists to update. + If provided NO layer will be automatically updated! + The default is None. + clear : bool, optional + If True, all temporary artists tagged for removal will be cleared. + The default is False. + blit : bool, optional + If True, figure.cavas.blit() will be called to update the figure. + If False, changes will only be visible on the next blit-event! + The default is True. + clear_snapshot : bool, optional + Only relevant if the `inline` backend is used in a jupyter-notebook + or an Ipython console. + + If True, clear the active cell before plotting a snapshot of the figure. + The default is True. + """ + if self._disable_update: + # don't update during layout-editing + return + + cv = self.canvas + + if bg_layer is None: + bg_layer = self.bg_layer + + for action in self._before_update_actions: + action() + + if clear: + self._clear_temp_artists(clear) + + # restore the background + # add additional layers (background, spines etc.) + show_layer = self._get_showlayer_name() + + if show_layer not in self._bg_layers: + # make sure the background is properly fetched + self.fetch_bg(show_layer) + + cv.restore_region(self._get_background(show_layer)) + + # execute after restore actions (e.g. peek layer callbacks) + while len(self._after_restore_actions) > 0: + action = self._after_restore_actions.pop(0) + action() + + # draw all of the animated artists + self._draw_animated(layers=layers, artists=artists) + if blit: + # workaround for nbagg backend to avoid glitches + # it's slow but at least it works... + # check progress of the following issuse + # https://github.com/matplotlib/matplotlib/issues/19116 + if self._mpl_backend_force_full: + cv._force_full = True + + if bbox_bounds is not None: + + class bbox: + bounds = bbox_bounds + + cv.blit(bbox) + else: + # update the GUI state + cv.blit(self.figure.bbox) + + # execute all actions registered to be called after blitting + while len(self._after_update_actions) > 0: + action = self._after_update_actions.pop(0) + action() + + # let the GUI event loop process anything it has to do + # don't do this! it is causing infinite loops + # cv.flush_events() + + if blit and BlitManager._snapshot_on_update is True: + self._m.snapshot(clear=clear_snapshot) + + def blit_artists(self, artists, bg="active", blit=True): + """ + Blit artists (optionally on top of a given background) + + Parameters + ---------- + artists : iterable + the artists to draw + bg : matpltolib.BufferRegion, None or "active", optional + A fetched background that is restored before drawing the artists. + The default is "active". + blit : bool + Indicator if canvas.blit() should be called or not. + The default is True + """ + cv = self.canvas + renderer = self._get_renderer() + if renderer is None: + _log.error("EOmaps: encountered a problem while trying to blit artists...") + return + + # restore the background + if bg is not None: + if bg == "active": + bg = self._get_active_bg() + cv.restore_region(bg) + + for a in artists: + self.figure.draw_artist(a) + + if blit: + cv.blit() + + def _get_restore_bg_action( + self, + layer, + bbox_bounds=None, + alpha=1, + clip_path=None, + set_clip_path=False, + ): + """ + Update a part of the screen with a different background + (intended as after-restore action) + + bbox_bounds = (x, y, width, height) + """ + if bbox_bounds is None: + bbox = self.figure.bbox + else: + bbox = Bbox.from_bounds(*bbox_bounds) + + def action(): + renderer = self._get_renderer() + if renderer is None: + return + + if self.bg_layer == layer: + return + + x0, y0, w, h = bbox.bounds + + # make sure to restore the initial background + init_bg = renderer.copy_from_bbox(self._m.f.bbox) + # convert the buffer to rgba so that we can add transparency + buffer = self._get_background(layer, cache=True) + self.canvas.restore_region(init_bg) + + x = buffer.get_extents() + ncols, nrows = x[2] - x[0], x[3] - x[1] + + argb = ( + np.frombuffer(buffer, dtype=np.uint8).reshape((nrows, ncols, 4)).copy() + ) + argb = argb[::-1, :, :] + + argb[:, :, -1] = (argb[:, :, -1] * alpha).astype(np.int8) + + gc = renderer.new_gc() + + gc.set_clip_rectangle(bbox) + if set_clip_path is True: + gc.set_clip_path(clip_path) + + renderer.draw_image( + gc, + int(x0), + int(y0), + argb[int(y0) : int(y0 + h), int(x0) : int(x0 + w), :], + ) + gc.restore() + + return action + + def cleanup_layer(self, layer): + """Trigger cleanup methods for a given layer.""" + self._cleanup_bg_artists(layer) + self._cleanup_artists(layer) + self._cleanup_bg_layers(layer) + self._cleanup_on_layer_activation(layer) + + def _cleanup_bg_artists(self, layer): + if layer not in self._bg_artists: + return + + artists = self._bg_artists[layer] + while len(artists) > 0: + a = artists.pop() + try: + self.remove_bg_artist(a, layer, draw=False) + # no need to remove spines (to avoid NotImplementedErrors)! + if not isinstance(a, Spine): + a.remove() + except Exception: + _log.debug(f"EOmaps-cleanup: Problem while clearing bg artist:\n {a}") + + del self._bg_artists[layer] + + def _cleanup_artists(self, layer): + if layer not in self._artists: + return + + artists = self._artists[layer] + while len(artists) > 0: + a = artists.pop() + try: + self.remove_artist(a) + # no need to remove spines (to avoid NotImplementedErrors)! + if not isinstance(a, Spine): + a.remove() + except Exception: + _log.debug( + f"EOmaps-cleanup: Problem while clearing dynamic artist:\n {a}" + ) + + del self._artists[layer] + + def _cleanup_bg_layers(self, layer): + try: + # remove cached background-layers + if layer in self._bg_layers: + del self._bg_layers[layer] + except Exception: + _log.debug( + "EOmaps-cleanup: Problem while clearing cached background layers" + ) + + def _cleanup_on_layer_activation(self, layer): + + try: + # remove not yet executed lazy-activation methods + # (e.g. not yet fetched WMS services) + if layer in self._on_layer_activation: + del self._on_layer_activation[layer] + except Exception: + _log.debug( + "EOmaps-cleanup: Problem while clearing layer activation methods" + ) diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index a465bd5cc..485183c4d 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -36,7 +36,6 @@ from .helpers import ( pairwise, cmap_alpha, - BlitManager, progressbar, SearchTree, _TransformedBoundsLocator, @@ -45,6 +44,7 @@ _key_release_event, ) +from ._blit_manager import BlitManager from .layout_editor import LayoutEditor from .shapes import Shapes from .colorbar import ColorBar diff --git a/eomaps/helpers.py b/eomaps/helpers.py index f749ff084..bf14b395d 100644 --- a/eomaps/helpers.py +++ b/eomaps/helpers.py @@ -3,25 +3,21 @@ # This file is part of EOmaps and is released under the BSD 3-clause license. # See LICENSE in the root of the repository for full licensing details. -"""a collection of useful helper-functions.""" +"""A collection of useful helper-functions.""" import logging from itertools import tee import re import sys -from itertools import chain -from contextlib import contextmanager, ExitStack from importlib import import_module from textwrap import indent, dedent from functools import wraps, lru_cache import warnings -from weakref import WeakSet import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import LinearSegmentedColormap, ListedColormap from matplotlib.transforms import Bbox, TransformedBbox -from matplotlib.spines import Spine from matplotlib.backend_bases import KeyEvent _log = logging.getLogger(__name__) @@ -280,153 +276,6 @@ def inner(*args, **kwargs): return decorator -class LayerParser: - @staticmethod - def _parse_single_layer_str(layer): - """ - Parse a single layer-string (with optional transparency assignment). - - Parameters - ---------- - layer : str - A layer-string (with transparency provided in curly brackets). - - Returns - ------- - name: str - The name of the layer. - alpha: - The transparency of the layer. - - """ - # split transparency - t_split = layer.find("{") - if t_split > 0: - name = layer[:t_split] - alpha = layer[t_split + 1 :] - if not alpha.endswith("}"): - raise TypeError( - f"EOmaps: unable to parse multilayer-transparency for '{layer}'" - ) - return name, float(alpha[:-1]) - else: - return layer, 1 - - @classmethod - def _parse_multi_layer_str(cls, layer=None): - layers, alphas = zip(*map(cls._parse_single_layer_str, layer.split("|"))) - return list(layers), list(alphas) - - @classmethod - def _layer_is_subset(cls, layer1, layer2): - """ - Return True if combined layer-name 'layer2' is a subset of 'layer1'. - - - Transparency assignments are stripped off before comparison - - Parameters - ---------- - layer1, layer2 : str - The combined layer-names to check. - - Returns - ------- - subset: bool - True if layer2 is a subset of layer1, False otherwise - - """ - # get a list of the currently visible layers - layers1, _ = cls._parse_multi_layer_str(layer1) - layers2, _ = cls._parse_multi_layer_str(layer2) - - return set(layers1).issubset(layers2) - - @staticmethod - def _get_combined_layer_name(*args): - """ - Create a combine layer name from layer-names or tuples (name, transparency). - - Parameters - ---------- - *args : str or tuple - The layers to combine. (e.g. `"A"`, `"B"` or `("A", .5)`, `("B", .23)`, ...) - - Returns - ------- - str - The combined layer-name. - - """ - try: - combnames = [] - for i in args: - if isinstance(i, str): - combnames.append(i) - elif isinstance(i, (list, tuple)): - assert ( - len(i) == 2 - and isinstance(i[0], str) - and i[1] >= 0 - and i[1] <= 1 - ), ( - f"EOmaps: unable to identify the layer-assignment: {i} .\n" - "You can provide either a single layer-name as string, a list " - "of layer-names or a list of tuples of the form: " - "(< layer-name (str) >, < layer-transparency [0-1] > )" - ) - - if i[1] < 1: - combnames.append(i[0] + "{" + str(i[1]) + "}") - else: - combnames.append(i[0]) - else: - raise TypeError( - f"EOmaps: unable to identify the layer-assignment: {i} .\n" - "You can provide either a single layer-name as string, a list " - "of layer-names or a list of tuples of the form: " - "(< layer-name (str) >, < layer-transparency [0-1] > )" - ) - return "|".join(combnames) - except Exception: - raise TypeError(f"EOmaps: Unable to combine the layer-names {args}") - - @staticmethod - def _check_layer_name(layer): - if not isinstance(layer, str): - _log.info("EOmaps: All layer-names are converted to strings!") - layer = str(layer) - - if layer.startswith("__") and not layer.startswith("__inset_"): - raise TypeError( - "EOmaps: Layer-names starting with '__' are reserved " - "for internal use and cannot be used as Maps-layer-names!" - ) - - reserved_symbs = { - # "|": ( - # "It is used as a separation-character to combine multiple " - # "layers (e.g. m.show_layer('A|B') will overlay the layer 'B' " - # "on top of 'A'." - # ), - "{": ( - "It is used to specify transparency when combining multiple " - "layers (e.g. m.show_layer('A|B{0.5}') will overlay the layer " - "'B' with 50% transparency on top of the layer 'A'." - ), - } - - reserved_symbs["}"] = reserved_symbs["{"] - - for symb, explanation in reserved_symbs.items(): - if symb in layer: - raise TypeError( - f"EOmaps: The symbol '{symb}' is not allowed in layer-names!\n" - + explanation - ) - - return layer - - class SearchTree: """Class to perform fast nearest-neighbour queries.""" @@ -675,1387 +524,3 @@ def query(self, x, k=1, d=None, pick_relative_to_closest=True): i = None return i - - -# taken from https://matplotlib.org/stable/tutorials/advanced/blitting.html#class-based-example -class BlitManager(LayerParser): - """Manager used to schedule draw events, cache backgrounds, etc.""" - - _snapshot_on_update = False - - def __init__(self, m): - """ - Manager used to schedule draw events, cache backgrounds, etc. - - Parameters - ---------- - canvas : FigureCanvasAgg - The canvas to work with, this only works for sub-classes of the Agg - canvas which have the `~FigureCanvasAgg.copy_from_bbox` and - `~FigureCanvasAgg.restore_region` methods. - - animated_artists : Iterable[Artist] - List of the artists to manage - - """ - self._disable_draw = False - self._disable_update = False - - self._m = m - - self._artists = dict() - - self._bg_artists = dict() - self._bg_layers = dict() - - self._pending_webmaps = dict() - - # the name of the layer at which all "unmanaged" artists are drawn - self._unmanaged_artists_layer = "base" - - # grab the background on every draw - self.cid = self.canvas.mpl_connect("draw_event", self.on_draw) - - self._after_update_actions = [] - self._after_restore_actions = [] - self._bg_layer = "base" - - self._artists_to_clear = dict() - - self._hidden_artists = set() - - self._refetch_bg = True - self._layers_to_refetch = set() - - # TODO these activate some crude fixes for jupyter notebook and webagg - # backends... proper fixes would be nice - self._mpl_backend_blit_fix = any( - i in plt.get_backend().lower() for i in ["webagg", "nbagg"] - ) - - # self._mpl_backend_force_full = any( - # i in plt.get_backend().lower() for i in ["nbagg"] - # ) - # recent fixes seem to take care of this nbagg issue... - self._mpl_backend_force_full = False - self._mpl_backend_blit_fix = False - - # True = persistent, False = execute only once - self._on_layer_change = {True: list(), False: list()} - self._on_layer_activation = {True: dict(), False: dict()} - - self._on_add_bg_artist = list() - self._on_remove_bg_artist = list() - - self._before_fetch_bg_actions = list() - self._before_update_actions = list() - - self._refetch_blank = True - self._blank_bg = None - - self._managed_axes = set() - - self._clear_on_layer_change = False - - self._on_layer_change_running = False - - # a weak set containing artists that should NOT be identified as - # unmanaged artists - self._ignored_unmanaged_artists = WeakSet() - - def _get_renderer(self): - # don't return the renderer if the figure is saved. - # in this case the normal draw-routines are used (see m.savefig) so there is - # no need to trigger updates (also `canvas.get_renderer` is undefined for - # pdf/svg exports since those canvas do not expose the renderer) - # ... this is required to support vector format outputs! - if self.canvas.is_saving(): - return None - - try: - return self.canvas.get_renderer() - except Exception: - return None - - def _get_all_map_axes(self): - maxes = { - m.ax for m in (self._m.parent, *self._m.parent._children) if m._new_axis_map - } - return maxes - - def _get_managed_axes(self): - return (*self._get_all_map_axes(), *self._managed_axes) - - def _get_unmanaged_axes(self): - # return a list of all axes that are not managed by the blit-manager - # (to ensure that "unmanaged" axes are drawn as well) - - # EOmaps axes - managed_axes = self._get_managed_axes() - allaxes = set(self._m.f.axes) - - unmanaged_axes = allaxes.difference(managed_axes) - return unmanaged_axes - - @property - def figure(self): - """The matplotlib figure instance.""" - return self._m.f - - @property - def canvas(self): - """The figure canvas instance.""" - return self.figure.canvas - - @contextmanager - def _cx_on_layer_change_running(self): - # a context-manager to avoid recursive on_layer_change calls - try: - self._on_layer_change_running = True - yield - finally: - self._on_layer_change_running = False - - def _do_on_layer_change(self, layer, new=False): - # avoid recursive calls to "_do_on_layer_change" - # This is required in case the executed functions trigger actions that would - # trigger "_do_on_layer_change" again which can result in a mixed-up order of - # the scheduled functions. - if self._on_layer_change_running is True: - return - - # do not execute layer-change callbacks on private layer activation! - if layer.startswith("__"): - return - - with self._cx_on_layer_change_running(): - # only execute persistent layer-change callbacks if the layer changed! - if new: - # general callbacks executed on any layer change - # persistent callbacks - for f in reversed(self._on_layer_change[True]): - f(layer=layer) - - # single-shot callbacks - # (execute also if the layer is already active) - while len(self._on_layer_change[False]) > 0: - try: - f = self._on_layer_change[False].pop(0) - f(layer=layer) - except Exception: - _log.error( - "EOmaps: Issue while executing a layer-change action", - exc_info=_log.getEffectiveLevel() <= logging.DEBUG, - ) - - sublayers, _ = self._parse_multi_layer_str(layer) - if new: - for l in sublayers: - # individual callables executed if a specific layer is activated - # persistent callbacks - for f in reversed(self._on_layer_activation[True].get(layer, [])): - f(layer=l) - - for l in sublayers: - # single-shot callbacks - single_shot_funcs = self._on_layer_activation[False].get(l, []) - while len(single_shot_funcs) > 0: - try: - f = single_shot_funcs.pop(0) - f(layer=l) - except Exception: - _log.error( - "EOmaps: Issue while executing a layer-change action", - exc_info=_log.getEffectiveLevel() <= logging.DEBUG, - ) - - # clear the list of pending webmaps once the layer has been activated - if layer in self._pending_webmaps: - self._pending_webmaps.pop(layer) - - @contextmanager - def _without_artists(self, artists=None, layer=None): - try: - removed_artists = {layer: set(), "all": set()} - if artists is None: - yield - else: - for a in artists: - if a in self._artists.get(layer, []): - self.remove_artist(a, layer=layer) - removed_artists[layer].add(a) - elif a in self._artists.get("all", []): - self.remove_artist(a, layer="all") - removed_artists["all"].add(a) - - yield - finally: - for layer, artists in removed_artists.items(): - for a in artists: - self.add_artist(a, layer=layer) - - def _get_active_bg(self, exclude_artists=None): - with self._without_artists(artists=exclude_artists, layer=self.bg_layer): - # fetch the current background (incl. dynamic artists) - self.update() - - with ExitStack() as stack: - # get rid of the figure background patch - # (done by putting the patch on the __BG__ layer!) - - # get rid of the axes background patch - for ax_i in self._get_all_map_axes(): - stack.enter_context( - ax_i.patch._cm_set(facecolor="none", edgecolor="none") - ) - bg = self.canvas.copy_from_bbox(self.figure.bbox) - - return bg - - @property - def bg_layer(self): - """The currently visible layer-name.""" - return self._bg_layer - - @bg_layer.setter - def bg_layer(self, val): - if val == self._bg_layer: - # in case the layer did not change, do nothing - return - - # check if a new layer is activated (or added to a multi-layer) - old_layers = set(self._parse_multi_layer_str(self._bg_layer)[0]) - new_layers = set(self._parse_multi_layer_str(val)[0]) - - new = old_layers != new_layers - - # make sure we use a "full" update for webagg and ipympl backends - # (e.g. force full redraw of canvas instead of a diff) - self.canvas._force_full = True - self._bg_layer = val - - # a general callable to be called on every layer change - self._do_on_layer_change(layer=val, new=new) - - # hide all colorbars that are not on the visible layer - for m in [self._m.parent, *self._m.parent._children]: - layer_visible = self._layer_is_subset(val, m.layer) - - for cb in m._colorbars: - cb._hide_singular_axes() - - if layer_visible: - if cb in self._hidden_artists: - self._hidden_artists.remove(cb) - else: - if cb not in self._hidden_artists: - self._hidden_artists.add(cb) - - # hide all wms_legends that are not on the visible layer - if hasattr(self._m.parent, "_wms_legend"): - for layer, legends in self._m.parent._wms_legend.items(): - layer_visible = self._layer_is_subset(val, layer) - - if layer_visible: - for i in legends: - i.set_visible(True) - else: - for i in legends: - i.set_visible(False) - - if self._clear_on_layer_change: - self._clear_temp_artists("on_layer_change") - - @contextmanager - def _cx_dont_clear_on_layer_change(self): - # a context-manager to avoid clearing artists on layer-changes - # (used in savefig to avoid clearing artists when re-fetching - # layers with backgrounds) - init_val = self._clear_on_layer_change - try: - self._clear_on_layer_change = False - yield - finally: - self._clear_on_layer_change = init_val - - def on_layer(self, func, layer=None, persistent=False, m=None): - """ - Add callables that are executed whenever the visible layer changes. - - NOTE: if m is None this function always falls back to the parent Maps-object!! - - Parameters - ---------- - func : callable - The callable to use. - The call-signature is: - - >>> def func(m, layer): - >>> # m ... the Maps-object - >>> # layer ... the name of the layer - - - layer : str or None, optional - - If str: The function will only be called if the specified layer is - activated. - - If None: The function will be called on any layer-change. - - The default is None. - persistent : bool, optional - Indicator if the function should be called only once (False) or if it - should be called whenever a layer is activated. - The default is False. - m : eomaps.Maps - The Maps-object to pass as argument to the function execution. - If None, the parent Maps-object is used. - - """ - if m is None: - m = self._m - - def cb(*args, **kwargs): - func(m=m, *args, **kwargs) - - if _log.getEffectiveLevel() <= 10: - logmsg = ( - f"Adding {'persistent' if persistent else 'single-shot'} " - f"layer change action for: '{layer}'" - ) - _log.debug(logmsg) - - if layer is None: - self._on_layer_change[persistent].append(cb) - else: - # treat inset-map layers like normal layers - if layer.startswith("__inset_"): - layer = layer[8:] - self._on_layer_activation[persistent].setdefault(layer, list()).append(cb) - - def _refetch_layer(self, layer): - if layer == "all": - # if the all layer changed, all backgrounds need a refetch - self._refetch_bg = True - else: - # set any background that contains the layer for refetch - self._layers_to_refetch.add(layer) - - for l in self._bg_layers: - sublayers, _ = self._parse_multi_layer_str(l) - if layer in sublayers: - self._layers_to_refetch.add(l) - - def _bg_artists_sort(self, art): - sortp = [] - - # ensure that inset-map artists are always drawn after all other artists - if art.axes is not None: - if art.axes.get_label() == "inset_map": - sortp.append(1) - else: - sortp.append(0) - - sortp.append(getattr(art, "zorder", -1)) - return sortp - - def get_bg_artists(self, layer): - """ - Get all (sorted) background artists assigned to a given layer-name. - - Parameters - ---------- - layer : str - The layer name for which artists should be fetched. - - Returns - ------- - artists : list - A list of artists on the specified layer, sorted with respect to the - vertical stacking (layer-order / zorder). - - """ - artists = list() - for l in np.atleast_1d(layer): - # get all relevant artists for combined background layers - l = str(l) # w make sure we convert non-string layer names to string! - - # get artists defined on the layer itself - # Note: it's possible to create explicit multi-layers and attach - # artists that are only visible if both layers are visible! (e.g. "l1|l2") - artists.extend(self._bg_artists.get(l, [])) - - if l == self._unmanaged_artists_layer: - artists.extend(self._get_unmanaged_artists()) - - # make the list unique but maintain order (dicts keep order for python>3.7) - artists = dict.fromkeys(artists) - # sort artists by zorder (respecting inset-map priority) - artists = sorted(artists, key=self._bg_artists_sort) - - return artists - - def get_artists(self, layer): - """ - Get all (sorted) dynamically updated artists assigned to a given layer-name. - - Parameters - ---------- - layer : str - The layer name for which artists should be fetched. - - Returns - ------- - artists : list - A list of artists on the specified layer, sorted with respect to the - vertical stacking (layer-order / zorder). - - """ - - artists = list() - for l in np.atleast_1d(layer): - # get all relevant artists for combined background layers - l = str(l) # w make sure we convert non-string layer names to string! - - # get artists defined on the layer itself - # Note: it's possible to create explicit multi-layers and attach - # artists that are only visible if both layers are visible! (e.g. "l1|l2") - artists.extend(self._artists.get(l, [])) - - # make the list unique but maintain order (dicts keep order for python>3.7) - artists = dict.fromkeys(artists) - # sort artists by zorder (respecting inset-map priority) - artists = sorted(artists, key=self._bg_artists_sort) - - return artists - - def _layer_visible(self, layer): - """ - Return True if the layer is currently visible. - - - layer is considered visible if all sub-layers of a combined layer are visible - - transparency assignments do not alter the layer visibility - - Parameters - ---------- - layer : str - The combined layer-name to check. (e.g. 'A|B{.4}|C{.3}') - - Returns - ------- - visible: bool - True if the layer is currently visible, False otherwise - - """ - return layer in "all" or self._layer_is_subset(layer, self.bg_layer) - - @property - def _get_active_layers_alphas(self): - """ - Return the currently visible layers (and their associated transparencies) - - Returns - ------- - layers, alphas: list of str, list of float - 2 lists of layer-names and associated global transparencies. - - """ - return self._parse_multi_layer_str(self.bg_layer) - - # cache the last 10 combined backgrounds to avoid re-combining backgrounds - # on updates of interactive artists - # cache is automatically cleared on draw if any layer is tagged for re-fetch! - @lru_cache(10) - def _combine_bgs(self, layer): - layers, alphas = self._parse_multi_layer_str(layer) - - # make sure all layers are already fetched - for l in layers: - if l not in self._bg_layers: - # execute actions on layer-changes - # (to make sure all lazy WMS services are properly added) - self._do_on_layer_change(layer=l, new=False) - self.fetch_bg(l) - - renderer = self._get_renderer() - # clear the renderer to avoid drawing on existing backgrounds - renderer.clear() - if renderer: - gc = renderer.new_gc() - gc.set_clip_rectangle(self.canvas.figure.bbox) - - x0, y0, w, h = self.figure.bbox.bounds - for l, a in zip(layers, alphas): - rgba = self._get_array(l, a=a) - if rgba is None: - # to handle completely empty layers - continue - renderer.draw_image( - gc, - int(x0), - int(y0), - rgba[int(y0) : int(y0 + h), int(x0) : int(x0 + w), :], - ) - bg = renderer.copy_from_bbox(self._m.f.bbox) - gc.restore() - return bg - - def _get_array(self, l, a=1): - if l not in self._bg_layers: - return None - rgba = np.array(self._bg_layers[l])[::-1, :, :] - if a != 1: - rgba = rgba.copy() - rgba[..., -1] = (rgba[..., -1] * a).astype(rgba.dtype) - return rgba - - def _get_background(self, layer, bbox=None, cache=False): - if layer not in self._bg_layers: - if "|" in layer: - bg = self._combine_bgs(layer) - else: - self.fetch_bg(layer, bbox=bbox) - bg = self._bg_layers[layer] - else: - bg = self._bg_layers[layer] - - if cache is True: - # explicitly cache the layer - # (for peek-layer callbacks to avoid re-fetching the layers all the time) - self._bg_layers[layer] = bg - - return bg - - def _do_fetch_bg(self, layer, bbox=None): - cv = self.canvas - renderer = self._get_renderer() - renderer.clear() - - if bbox is None: - bbox = self.figure.bbox - - if "|" in layer: - if layer not in self._bg_layers: - self._combine_bgs(layer) - return - - # update axes spines and patches since they are used to clip artists! - for ax in self._get_all_map_axes(): - ax.spines["geo"]._adjust_location() - ax.patch._adjust_location() - - # use contextmanagers to make sure the background patches are not stored - # in the buffer regions! - with ExitStack() as stack: - if layer not in ["__BG__"]: - # get rid of the axes background patches for all layers except - # the __BG__ layer - # (the figure background patch is on the "__BG__" layer) - for ax_i in self._get_all_map_axes(): - stack.enter_context( - ax_i.patch._cm_set(facecolor="none", edgecolor="none") - ) - - # execute actions before fetching new artists - # (e.g. update data based on extent etc.) - for action in self._before_fetch_bg_actions: - action(layer=layer, bbox=bbox) - - # get all relevant artists to plot and remember zorders - # self.get_bg_artists() already returns artists sorted by zorder! - if layer in ["__SPINES__", "__BG__", "__inset___SPINES__"]: - # avoid fetching artists from the "all" layer for private layers - allartists = self.get_bg_artists(layer) - else: - if layer.startswith("__inset"): - allartists = self.get_bg_artists(["__inset_all", layer]) - else: - allartists = self.get_bg_artists(["all", layer]) - - # check if all artists are not stale - no_stale_artists = all(not art.stale for art in allartists) - - # don't re-fetch the background if it is not necessary - if no_stale_artists and (self._bg_layers.get(layer, None) is not None): - return - - if renderer: - for art in allartists: - if art not in self._hidden_artists: - try: - art.draw(renderer) - art.stale = False - except Exception: - if _log.getEffectiveLevel() <= logging.DEBUG: - _log.error( - "Unable to draw artist:" - f"{art} (" - f"figure={getattr(art, 'figure', '??')}, " - f"axes={getattr(art, 'axes', '??')})" - ) - - self._bg_layers[layer] = renderer.copy_from_bbox(bbox) - - def fetch_bg(self, layer=None, bbox=None): - """ - Trigger fetching (and caching) the background for a given layer-name. - - Parameters - ---------- - layer : str, optional - The layer for which the background should be fetched. - If None, the currently visible layer is fetched. - The default is None. - bbox : bbox, optional - The region-boundaries (in figure coordinates) for which the background - should be fetched (x0, y0, w, h). If None, the whole figure is fetched. - The default is None. - - """ - - if layer is None: - layer = self.bg_layer - - if layer in self._bg_layers: - # don't re-fetch existing layers - # (layers get cleared automatically if re-draw is necessary) - return - - with self._disconnect_draw(): - self._do_fetch_bg(layer, bbox) - - @contextmanager - def _disconnect_draw(self): - try: - # temporarily disconnect draw-event callback to avoid recursion - if self.cid is not None: - self.canvas.mpl_disconnect(self.cid) - self.cid = None - yield - finally: - # reconnect draw event - if self.cid is None: - self.cid = self.canvas.mpl_connect("draw_event", self.on_draw) - - def on_draw(self, event): - """Callback to register with 'draw_event'.""" - - if self._disable_draw: - return - - cv = self.canvas - loglevel = _log.getEffectiveLevel() - - if hasattr(cv, "get_renderer") and not cv.is_saving(): - - renderer = cv.get_renderer() - if renderer is None: - # don't run on_draw if no renderer is available - return - else: - # don't run on_draw if no renderer is available - # (this is true for svg export where mpl export routines - # are used to avoid issues) - if loglevel <= 5: - _log.log(5, " not drawing") - - return - - if loglevel <= 5: - _log.log(5, "draw") - - if event is not None: - if event.canvas != cv: - raise RuntimeError - try: - # reset all background-layers and re-fetch the default one - if self._refetch_bg: - self._bg_layers.clear() - self._layers_to_refetch.clear() - self._refetch_bg = False - type(self)._combine_bgs.cache_clear() # clear combined_bg cache - - else: - # in case there is a stale (unmanaged) artists and the - # stale-artist layer is attempted to be drawn, re-draw the - # cached background for the unmanaged-artists layer - active_layers, _ = self._get_active_layers_alphas - if self._unmanaged_artists_layer in active_layers and any( - a.stale for a in self._get_unmanaged_artists() - ): - self._refetch_layer(self._unmanaged_artists_layer) - type(self)._combine_bgs.cache_clear() # clear combined_bg cache - - # remove all cached backgrounds that were tagged for refetch - while len(self._layers_to_refetch) > 0: - self._bg_layers.pop(self._layers_to_refetch.pop(), None) - type(self)._combine_bgs.cache_clear() # clear combined_bg cache - - # workaround for nbagg backend to avoid glitches - # it's slow but at least it works... - # check progress of the following issuse - # https://github.com/matplotlib/matplotlib/issues/19116 - if self._mpl_backend_blit_fix: - self.update() - else: - self.update(blit=False) - - # re-draw indicator-shapes of active drawer - # (to show indicators during zoom-events) - active_drawer = getattr(self._m.parent, "_active_drawer", None) - if active_drawer is not None: - active_drawer.redraw(blit=False) - - except Exception: - # we need to catch exceptions since QT does not like them... - if loglevel <= 5: - _log.log(5, "There was an error during draw!", exc_info=True) - - def add_artist(self, art, layer=None): - """ - Add a dynamic-artist to be managed. - (Dynamic artists are re-drawn on every update!) - - Parameters - ---------- - art : Artist - - The artist to be added. Will be set to 'animated' (just - to be safe). *art* must be in the figure associated with - the canvas this class is managing. - layer : str or None, optional - The layer name at which the artist should be drawn. - - - If "all": the corresponding feature will be added to ALL layers - - The default is None in which case the layer of the base-Maps object is used. - """ - - if art.figure != self.figure: - raise RuntimeError( - "EOmaps: The artist does not belong to the figure" - "of this Maps-object!" - ) - - if layer is None: - layer = self._m.layer - - # make sure all layers are converted to string - layer = str(layer) - - self._artists.setdefault(layer, list()) - - if art in self._artists[layer]: - return - else: - art.set_animated(True) - self._artists[layer].append(art) - - if isinstance(art, plt.Axes): - self._managed_axes.add(art) - - def add_bg_artist(self, art, layer=None, draw=True): - """ - Add a background-artist to be managed. - (Background artists are only updated on zoom-events... they are NOT animated!) - - Parameters - ---------- - art : Artist - The artist to be added. Will be set to 'animated' (just - to be safe). *art* must be in the figure associated with - the canvas this class is managing. - layer : str or None, optional - The layer name at which the artist should be drawn. - - - If "all": the corresponding feature will be added to ALL layers - - The default is None in which case the layer of the base-Maps object is used. - draw : bool, optional - If True, `figure.draw_idle()` is called after adding the artist. - The default is True. - """ - - if layer is None: - layer = self._m.layer - - # make sure all layer names are converted to string - layer = str(layer) - - if art.figure != self.figure: - raise RuntimeError - - # put all artist of inset-maps on dedicated layers - if ( - getattr(art, "axes", None) is not None - and art.axes.get_label() == "inset_map" - and not layer.startswith("__inset_") - ): - layer = "__inset_" + str(layer) - if layer in self._bg_artists and art in self._bg_artists[layer]: - _log.info(f"EOmaps: Background-artist '{art}' already added") - return - - art.set_animated(True) - self._bg_artists.setdefault(layer, []).append(art) - - if isinstance(art, plt.Axes): - self._managed_axes.add(art) - - # tag all relevant layers for refetch - self._refetch_layer(layer) - - for f in self._on_add_bg_artist: - f() - - if draw: - self.canvas.draw_idle() - - def remove_bg_artist(self, art, layer=None, draw=True): - """ - Remove a (background) artist from the map. - - Parameters - ---------- - art : Artist - The artist that should be removed. - layer : str or None, optional - If provided, the artist is only searched on the provided layer, otherwise - all map layers are searched. The default is None. - draw : bool, optional - If True, `figure.draw_idle()` is called after removing the artist. - The default is True. - - Note - ---- - This only removes the artist from the blit-manager and does not call its - remove method! - - """ - # handle the "__inset_" prefix of inset-map artists - if ( - layer is not None - and getattr(art, "axes", None) is not None - and art.axes.get_label() == "inset_map" - and not layer.startswith("__inset_") - ): - layer = "__inset_" + str(layer) - - removed = False - if layer is None: - layers = [] - for key, val in self._bg_artists.items(): - if art in val: - art.set_animated(False) - val.remove(art) - - # remove axes from the managed_axes set as well! - if art in self._managed_axes: - self._managed_axes.remove(art) - - removed = True - layers.append(key) - layer = self._get_combined_layer_name(*layers) - else: - if layer not in self._bg_artists: - return - if art in self._bg_artists[layer]: - art.set_animated(False) - self._bg_artists[layer].remove(art) - - # remove axes from the managed_axes set as well! - if art in self._managed_axes: - self._managed_axes.remove(art) - - removed = True - - if removed: - for f in self._on_remove_bg_artist: - f() - - # tag all relevant layers for refetch - self._refetch_layer(layer) - - if draw: - self.canvas.draw_idle() - - def remove_artist(self, art, layer=None): - """ - Remove a (dynamically updated) artist from the blit-manager. - - Parameters - ---------- - art : matpltolib.Artist - The artist to remove. - layer : str, optional - The layer to search for the artist. If None, all layers are searched. - The default is None. - - Note - ---- - This only removes the artist from the blit-manager and does not call its - remove method! - - """ - if layer is None: - for key, layerartists in self._artists.items(): - if art in layerartists: - art.set_animated(False) - layerartists.remove(art) - - # remove axes from the managed_axes set as well! - if art in self._managed_axes: - self._managed_axes.remove(art) - - else: - if art in self._artists.get(layer, []): - art.set_animated(False) - self._artists[layer].remove(art) - - # remove axes from the managed_axes set as well! - if art in self._managed_axes: - self._managed_axes.remove(art) - else: - _log.debug(f"The artist {art} is not on the layer '{layer}'") - - def _get_artist_zorder(self, a): - try: - return a.get_zorder() - except Exception: - _log.error(f"EOmaps: unalble to identify zorder of {a}... using 99") - return 99 - - def _draw_animated(self, layers=None, artists=None): - """ - Draw animated artists - - - if layers is None and artists is None: active layer artists will be re-drawn - - if layers is not None: all artists from the selected layers will be re-drawn - - if artists is not None: all provided artists will be redrawn - - """ - fig = self.canvas.figure - renderer = self._get_renderer() - if renderer is None: - return - - if layers is None: - active_layers, _ = self._get_active_layers_alphas - layers = [self.bg_layer, *active_layers] - else: - (layers,) = list( - chain(*(self._parse_multi_layer_str(l)[0] for l in layers)) - ) - - if artists is None: - artists = [] - - # always redraw artists from the "all" layer - layers.append("all") - - # make the list unique but maintain order (dicts keep order for python>3.7) - layers = list(dict.fromkeys(layers)) - - # draw all "unmanaged" axes (e.g. axes that are found in the figure but - # not in the blit-manager) - # TODO would be nice to find a better way to handle this! - # - NOTE: this must be done before drawing managed artists to properly support - # temporary artists on unmanaged axes! - for ax in self._get_unmanaged_axes(): - ax.draw(renderer) - - # redraw artists from the selected layers and explicitly provided artists - # (sorted by zorder for each layer) - layer_artists = list( - sorted(self._artists.get(layer, []), key=self._get_artist_zorder) - for layer in layers - ) - - with ExitStack() as stack: - # avoid drawing the background-patches of managed (dynamic) axes - # since they might interfere with consecutive draws issued by callbacks - for ax_i in self._managed_axes: - stack.enter_context( - ax_i.patch._cm_set(facecolor="none", edgecolor="none") - ) - - for a in chain(*layer_artists, artists): - fig.draw_artist(a) - - def _get_unmanaged_artists(self): - # return all artists not explicitly managed by the blit-manager - # (e.g. any artist added via cartopy or matplotlib functions) - managed_artists = set( - chain( - *self._bg_artists.values(), - *self._artists.values(), - self._ignored_unmanaged_artists, - ) - ) - - axes = {m.ax for m in (self._m, *self._m._children) if m.ax is not None} - - allartists = set() - for ax in axes: - # only include axes titles if they are actually set - # (otherwise empty artists appear in the widget) - titles = [ - i - for i in (ax.title, ax._left_title, ax._right_title) - if len(i.get_text()) > 0 - ] - - axartists = { - *ax._children, - *titles, - *([ax.legend_] if ax.legend_ is not None else []), - } - - allartists.update(axartists) - - return allartists.difference(managed_artists) - - def _clear_all_temp_artists(self): - for method in self._m.cb._methods: - container = getattr(self._m.cb, method, None) - if container: - container._clear_temporary_artists() - self._clear_temp_artists(method) - - def _clear_temp_artists(self, method, forward=True): - # clear artists from connected methods - if method == "_click_move" and forward: - self._clear_temp_artists("click", False) - elif method == "click" and forward: - self._clear_temp_artists("_click_move", False) - elif method == "pick" and forward: - self._clear_temp_artists("click", True) - elif method == "on_layer_change" and forward: - self._clear_temp_artists("pick", False) - self._clear_temp_artists("click", True) - self._clear_temp_artists("move", False) - - if method == "on_layer_change": - # clear all artists from "on_layer_change" list irrespective of the method - artists = self._artists_to_clear.pop("on_layer_change", []) - for art in artists: - for met, met_artists in self._artists_to_clear.items(): - if art in met_artists: - art.set_visible(False) - self.remove_artist(art) - try: - art.remove() - except ValueError: - # ignore errors if the artist no longer exists - pass - met_artists.remove(art) - else: - artists = self._artists_to_clear.pop(method, []) - while len(artists) > 0: - art = artists.pop(-1) - art.set_visible(False) - self.remove_artist(art) - try: - art.remove() - except ValueError: - # ignore errors if the artist no longer exists - pass - - try: - self._artists_to_clear.get("on_layer_change", []).remove(art) - except ValueError: - # ignore errors if the artist is not present in the list - pass - - def _get_showlayer_name(self, layer=None, transparent=False): - # combine all layers that should be shown - # (e.g. to add spines, backgrounds and inset-maps) - - if layer is None: - layer = self.bg_layer - - # pass private layers through - if layer.startswith("__"): - return layer - - if transparent is True: - show_layers = [layer, "__SPINES__"] - else: - show_layers = ["__BG__", layer, "__SPINES__"] - - # show inset map layers and spines only if they contain at least 1 artist - inset_Q = False - for l in self._parse_multi_layer_str(layer)[0]: - narts = len(self._bg_artists.get("__inset_" + l, [])) - - if narts > 0: - show_layers.append(f"__inset_{l}") - inset_Q = True - - if inset_Q: - show_layers.append("__inset___SPINES__") - - return self._get_combined_layer_name(*show_layers) - - def update( - self, - layers=None, - bbox_bounds=None, - bg_layer=None, - artists=None, - clear=False, - blit=True, - clear_snapshot=True, - ): - """ - Update the screen with animated artists. - - Parameters - ---------- - layers : list, optional - The layers to redraw (if None and artists is None, all layers will be redrawn). - The default is None. - bbox_bounds : tuple, optional - the blit-region bounds to update. The default is None. - bg_layer : int, optional - the background-layer name to restore. The default is None. - artists : list, optional - A list of artists to update. - If provided NO layer will be automatically updated! - The default is None. - clear : bool, optional - If True, all temporary artists tagged for removal will be cleared. - The default is False. - blit : bool, optional - If True, figure.cavas.blit() will be called to update the figure. - If False, changes will only be visible on the next blit-event! - The default is True. - clear_snapshot : bool, optional - Only relevant if the `inline` backend is used in a jupyter-notebook - or an Ipython console. - - If True, clear the active cell before plotting a snapshot of the figure. - The default is True. - """ - if self._disable_update: - # don't update during layout-editing - return - - cv = self.canvas - - if bg_layer is None: - bg_layer = self.bg_layer - - for action in self._before_update_actions: - action() - - if clear: - self._clear_temp_artists(clear) - - # restore the background - # add additional layers (background, spines etc.) - show_layer = self._get_showlayer_name() - - if show_layer not in self._bg_layers: - # make sure the background is properly fetched - self.fetch_bg(show_layer) - - cv.restore_region(self._get_background(show_layer)) - - # execute after restore actions (e.g. peek layer callbacks) - while len(self._after_restore_actions) > 0: - action = self._after_restore_actions.pop(0) - action() - - # draw all of the animated artists - self._draw_animated(layers=layers, artists=artists) - if blit: - # workaround for nbagg backend to avoid glitches - # it's slow but at least it works... - # check progress of the following issuse - # https://github.com/matplotlib/matplotlib/issues/19116 - if self._mpl_backend_force_full: - cv._force_full = True - - if bbox_bounds is not None: - - class bbox: - bounds = bbox_bounds - - cv.blit(bbox) - else: - # update the GUI state - cv.blit(self.figure.bbox) - - # execute all actions registered to be called after blitting - while len(self._after_update_actions) > 0: - action = self._after_update_actions.pop(0) - action() - - # let the GUI event loop process anything it has to do - # don't do this! it is causing infinite loops - # cv.flush_events() - - if blit and BlitManager._snapshot_on_update is True: - self._m.snapshot(clear=clear_snapshot) - - def blit_artists(self, artists, bg="active", blit=True): - """ - Blit artists (optionally on top of a given background) - - Parameters - ---------- - artists : iterable - the artists to draw - bg : matpltolib.BufferRegion, None or "active", optional - A fetched background that is restored before drawing the artists. - The default is "active". - blit : bool - Indicator if canvas.blit() should be called or not. - The default is True - """ - cv = self.canvas - renderer = self._get_renderer() - if renderer is None: - _log.error("EOmaps: encountered a problem while trying to blit artists...") - return - - # restore the background - if bg is not None: - if bg == "active": - bg = self._get_active_bg() - cv.restore_region(bg) - - for a in artists: - self.figure.draw_artist(a) - - if blit: - cv.blit() - - def _get_restore_bg_action( - self, - layer, - bbox_bounds=None, - alpha=1, - clip_path=None, - set_clip_path=False, - ): - """ - Update a part of the screen with a different background - (intended as after-restore action) - - bbox_bounds = (x, y, width, height) - """ - if bbox_bounds is None: - bbox = self.figure.bbox - else: - bbox = Bbox.from_bounds(*bbox_bounds) - - def action(): - renderer = self._get_renderer() - if renderer is None: - return - - if self.bg_layer == layer: - return - - # TODO properly check if this is necessary... - # update to make sure spines etc. are properly displayed - # self.update() - - x0, y0, w, h = bbox.bounds - - # make sure to restore the initial background - init_bg = renderer.copy_from_bbox(self._m.f.bbox) - # convert the buffer to rgba so that we can add transparency - buffer = self._get_background(layer, cache=True) - self.canvas.restore_region(init_bg) - - x = buffer.get_extents() - ncols, nrows = x[2] - x[0], x[3] - x[1] - - argb = ( - np.frombuffer(buffer, dtype=np.uint8).reshape((nrows, ncols, 4)).copy() - ) - argb = argb[::-1, :, :] - - argb[:, :, -1] = (argb[:, :, -1] * alpha).astype(np.int8) - - gc = renderer.new_gc() - - gc.set_clip_rectangle(bbox) - if set_clip_path is True: - gc.set_clip_path(clip_path) - - renderer.draw_image( - gc, - int(x0), - int(y0), - argb[int(y0) : int(y0 + h), int(x0) : int(x0 + w), :], - ) - gc.restore() - - return action - - def cleanup_layer(self, layer): - """Trigger cleanup methods for a given layer.""" - self._cleanup_bg_artists(layer) - self._cleanup_artists(layer) - self._cleanup_bg_layers(layer) - self._cleanup_on_layer_activation(layer) - - def _cleanup_bg_artists(self, layer): - if layer not in self._bg_artists: - return - - artists = self._bg_artists[layer] - while len(artists) > 0: - a = artists.pop() - try: - self.remove_bg_artist(a, layer, draw=False) - # no need to remove spines (to avoid NotImplementedErrors)! - if not isinstance(a, Spine): - a.remove() - except Exception: - _log.debug(f"EOmaps-cleanup: Problem while clearing bg artist:\n {a}") - - del self._bg_artists[layer] - - def _cleanup_artists(self, layer): - if layer not in self._artists: - return - - artists = self._artists[layer] - while len(artists) > 0: - a = artists.pop() - try: - self.remove_artist(a) - # no need to remove spines (to avoid NotImplementedErrors)! - if not isinstance(a, Spine): - a.remove() - except Exception: - _log.debug( - f"EOmaps-cleanup: Problem while clearing dynamic artist:\n {a}" - ) - - del self._artists[layer] - - def _cleanup_bg_layers(self, layer): - try: - # remove cached background-layers - if layer in self._bg_layers: - del self._bg_layers[layer] - except Exception: - _log.debug( - "EOmaps-cleanup: Problem while clearing cached background layers" - ) - - def _cleanup_on_layer_activation(self, layer): - - try: - # remove not yet executed lazy-activation methods - # (e.g. not yet fetched WMS services) - if layer in self._on_layer_activation: - del self._on_layer_activation[layer] - except Exception: - _log.debug( - "EOmaps-cleanup: Problem while clearing layer activation methods" - ) From b1e51a7ce4adb48dc9ef6a110cd066938b7ad16d Mon Sep 17 00:00:00 2001 From: Raphael Date: Tue, 30 Jan 2024 12:27:46 +0100 Subject: [PATCH 140/240] update unittests --- tests/test_config.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/tests/test_config.py b/tests/test_config.py index 36613ca8f..ca2937cbe 100644 --- a/tests/test_config.py +++ b/tests/test_config.py @@ -1,7 +1,7 @@ import unittest import matplotlib.pyplot as plt from eomaps import Maps, _log -from eomaps.helpers import BlitManager +from eomaps._blit_manager import BlitManager class TestConfig(unittest.TestCase): From eb54c83812832e64cd7b123bc8d44647e681c700 Mon Sep 17 00:00:00 2001 From: Raphael Date: Tue, 30 Jan 2024 12:29:17 +0100 Subject: [PATCH 141/240] minor --- docs/FAQ.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/FAQ.rst b/docs/FAQ.rst index fbee4684c..bf27599f7 100644 --- a/docs/FAQ.rst +++ b/docs/FAQ.rst @@ -380,7 +380,7 @@ Important changes between major versions - ❗ Starting with `v8.x` eomaps is licensed under a "BSD 3 clause" license! - - ⚠️ Some functions and classes have been re-named to better follow PEP8 naming conventions. + - ⚠️ Some functions and classes have been re-named/moved to better follow PEP8 naming conventions. While this should not interfere with the public API, more extensive customizations might need to be adjusted with respect to the new names. From a3ba7cefbe02ecc6c20afac1a7561f17e6bd16dd Mon Sep 17 00:00:00 2001 From: Raphael Date: Tue, 30 Jan 2024 12:43:19 +0100 Subject: [PATCH 142/240] avoid setting limit to 0 on logarithmic axes --- eomaps/colorbar.py | 12 +++++++++--- 1 file changed, 9 insertions(+), 3 deletions(-) diff --git a/eomaps/colorbar.py b/eomaps/colorbar.py index 9223f0525..155e0b18e 100644 --- a/eomaps/colorbar.py +++ b/eomaps/colorbar.py @@ -207,13 +207,19 @@ def _attach_lim_cbs(self): def ychanged(event): if self.orientation == "horizontal": with self.ax_cb_plot.callbacks.blocked(signal="ylim_changed"): - self.ax_cb_plot.set_ylim(0, None, emit=False) + if self.ax_cb_plot.get_yscale() == "log": + pass + else: + self.ax_cb_plot.set_ylim(0, None, emit=False) def xchanged(event): if self.orientation == "vertical": with self.ax_cb_plot.callbacks.blocked(signal="xlim_changed"): self.ax_cb_plot.xaxis.set_inverted(True) - self.ax_cb_plot.set_xlim(left=None, right=0, emit=False) + if self.ax_cb_plot.get_xscale() == "log": + pass + else: + self.ax_cb_plot.set_xlim(left=None, right=0, emit=False) self.ax_cb_plot.callbacks.connect("xlim_changed", xchanged) self.ax_cb_plot.callbacks.connect("ylim_changed", ychanged) @@ -446,7 +452,7 @@ def _plot_histogram( transform=self.ax_cb_plot.transAxes, ) # make sure lower y-limit is 0 - if self.ax_cb_plot.get_yscale() == "log": + if self.ax_cb_plot.get_yscale() != "log": self.ax_cb_plot.set_ylim(0) else: self.ax_cb_plot.grid(axis="x", dashes=[5, 5], c="k", alpha=0.5) From 36876da0a5bde200f6cd378541368f6564dc1216 Mon Sep 17 00:00:00 2001 From: Raphael Date: Tue, 30 Jan 2024 14:13:43 +0100 Subject: [PATCH 143/240] minor doc updates --- docs/api/eomaps.inset_maps.InsetMaps.rst | 4 ---- eomaps/colorbar.py | 6 ++++-- eomaps/compass.py | 10 +++++++++- eomaps/grid.py | 10 +++++++++- eomaps/inset_maps.py | 10 +++++++++- eomaps/scalebar.py | 10 +++++++++- 6 files changed, 40 insertions(+), 10 deletions(-) diff --git a/docs/api/eomaps.inset_maps.InsetMaps.rst b/docs/api/eomaps.inset_maps.InsetMaps.rst index 80edee062..7f2ec19c8 100644 --- a/docs/api/eomaps.inset_maps.InsetMaps.rst +++ b/docs/api/eomaps.inset_maps.InsetMaps.rst @@ -22,10 +22,6 @@ Checkout the docs for :py:class:`Maps` objects for all available methods! - +++ - - To create a new inset-map, have a look at :py:meth:`Maps.new_inset_map`. - .. currentmodule:: eomaps.inset_maps diff --git a/eomaps/colorbar.py b/eomaps/colorbar.py index 155e0b18e..2c4d5e127 100644 --- a/eomaps/colorbar.py +++ b/eomaps/colorbar.py @@ -581,10 +581,12 @@ def _set_labels(self, cb_label=None, hist_label=None, **kwargs): class ColorBar(ColorBarBase): """ - A colorbar with a histogram on top. + Base class for EOmaps colorbars with a histogram on top. + Note + ---- To add a colorbar to a map, use - :py:meth:`Maps.add_colorbar `! + :py:meth:`Maps.add_colorbar `. """ diff --git a/eomaps/compass.py b/eomaps/compass.py index 6343c3416..b9eb41f23 100644 --- a/eomaps/compass.py +++ b/eomaps/compass.py @@ -19,7 +19,15 @@ class Compass: - """Base class for EOmaps compass objects.""" + """ + Base class for EOmaps compass (or North-arrow) objects. + + Note + ---- + To add a new compass (or north-arrow) to a map, see + :py:meth:`Maps.add_compass `. + + """ def __init__(self, m): self._m = m diff --git a/eomaps/grid.py b/eomaps/grid.py index f9589f625..5ced8cce6 100644 --- a/eomaps/grid.py +++ b/eomaps/grid.py @@ -50,7 +50,15 @@ def _get_intersect(a1, a2, b1, b2): class GridLines: - """Class to draw grid-lines.""" + """ + Base class for EOmaps grid-lines (and associated grid-labels). + + Note + ---- + To add new grid-lines to a map, see + :py:meth:`Maps.add_gridlines `. + + """ def __init__( self, m, d=None, auto_n=10, layer=None, bounds=None, n=100, dynamic=False diff --git a/eomaps/inset_maps.py b/eomaps/inset_maps.py index 2748364a2..4fb014c9a 100644 --- a/eomaps/inset_maps.py +++ b/eomaps/inset_maps.py @@ -14,7 +14,15 @@ class InsetMaps(Maps): - """Base class to create inset maps.""" + """ + Base class to create inset maps. + + Note + ---- + To create a new inset-map, see + :py:meth:`Maps.new_inset_map `. + + """ # a subclass of Maps that includes some special functions for inset maps diff --git a/eomaps/scalebar.py b/eomaps/scalebar.py index dbbb9b9b4..76e6ddc5e 100644 --- a/eomaps/scalebar.py +++ b/eomaps/scalebar.py @@ -26,7 +26,15 @@ class ScaleBar: - """Base class for EOmaps scalebars.""" + """ + Base class for EOmaps scalebars. + + Note + ---- + To add a new scalebar to a map, see + :py:meth:`Maps.add_scalebar `. + + """ def __init__( self, From 9125c6a511ab5c86de1adf2af96d96b8ede41aff Mon Sep 17 00:00:00 2001 From: Raphael Date: Tue, 30 Jan 2024 14:32:37 +0100 Subject: [PATCH 144/240] update docs - explicitly skip __init__ methods from class docstrings --- docs/conf.py | 10 ++++++++++ 1 file changed, 10 insertions(+) diff --git a/docs/conf.py b/docs/conf.py index 5cfd14931..1e6626776 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -36,6 +36,9 @@ def setup(app): app.add_css_file("custom_css.css") + # add handling for skip-member event + app.connect("autodoc-skip-member", autodoc_skip_member) + # By default, autodoc will print 'alias of ...' for aliases. # This can be avoided by explicitly setting the __name__ property. # see https://stackoverflow.com/a/58982001/9703451 @@ -108,6 +111,13 @@ def setup(app): "member-order": "alphabetical", } + +def autodoc_skip_member(app, what, name, obj, skip, options): + # explicitly skip __init__ methods (to ensure they don't show up as methods) + exclude = name in ("__init__",) + return True if exclude else None + + # Napoleon settings napoleon_numpy_docstring = True napoleon_google_docstring = False From 9c5f4dbe3e5c1d72817238292adfe797cfe7b244 Mon Sep 17 00:00:00 2001 From: Raphael Date: Wed, 31 Jan 2024 15:55:24 +0100 Subject: [PATCH 145/240] fix call to "_get_clip_path()" for peek-layer callbacks --- eomaps/callbacks.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/eomaps/callbacks.py b/eomaps/callbacks.py index 7f653a2c9..e9b0264c6 100644 --- a/eomaps/callbacks.py +++ b/eomaps/callbacks.py @@ -792,7 +792,7 @@ def peek_layer( x1m, y1m = ax.transData.inverted().transform((x0 + blitw, y0 + blith)) w, h = abs(x1m - x0m), abs(y1m - y0m) - clip_path = self._get_clip_path( + clip_path = self.m.cb.click.attach._get_clip_path( (x0m + x1m) / 2, (y0m + y1m) / 2, "out", @@ -850,7 +850,7 @@ def peek_layer( ) w, h = abs(x1m - x0m), abs(y1m - y0m) - clip_path = self._get_clip_path( + clip_path = self.m.cb.click.attach._get_clip_path( x1m, y1m, "out", (w / 2, h / 2), "out", shape, 100 ) else: From 5aa28f421c0e448165c82ca72fc8848606f3cdd0 Mon Sep 17 00:00:00 2001 From: Raphael Date: Thu, 1 Feb 2024 12:12:58 +0100 Subject: [PATCH 146/240] fix issues with figure-exports after `m.apply_layout(...)` (see #226) --- eomaps/layout_editor.py | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/eomaps/layout_editor.py b/eomaps/layout_editor.py index 742c86a1f..6c7da7735 100644 --- a/eomaps/layout_editor.py +++ b/eomaps/layout_editor.py @@ -273,14 +273,12 @@ def _undo(self): l = self._history.pop(-1) self._history_undone.append(l) self.m.apply_layout(l) - self.m.redraw() def _redo(self): if len(self._history_undone) > 0: l = self._history_undone.pop(-1) self._history.append(l) self.m.apply_layout(l) - self.m.redraw() def cb_release(self, event): self._set_startpos(event) @@ -991,7 +989,10 @@ def apply_layout(self, layout): else: axes[i].set_position(val) + # force an immediate draw (rather than using draw_idle) to avoid issues with + # stacking order for tkagg backend self.m.redraw() + self.m.f.canvas.draw() # try to push the current view to the "home" toolbar button try: From e5011ef659166e2c1255274d89f8bd04391347a0 Mon Sep 17 00:00:00 2001 From: Raphael Date: Mon, 5 Feb 2024 16:47:15 +0100 Subject: [PATCH 147/240] filter warnings that can savely be ignored for pytest (#227) --- pyproject.toml | 8 ++++++++ 1 file changed, 8 insertions(+) diff --git a/pyproject.toml b/pyproject.toml index d90eaf0dc..2766869f3 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -79,3 +79,11 @@ eomaps = "eomaps.scripts.open:cli" [project.urls] Documentation = "https://eomaps.readthedocs.io/" Repository = "https://github.com/raphaelquast/eomaps" + +[tool.pytest.ini_options] +filterwarnings = [ + "ignore:DownloadWarning", + "ignore:Geometry is in a geographic CRS. Results from *:UserWarning", + "ignore:Back azimuth is being returned by default *:UserWarning", + "ignore:Conversion of an array with ndim > 0:DeprecationWarning" +] From 2f1fb40752d9d63742fd08d6ef7db2647b0b14db Mon Sep 17 00:00:00 2001 From: Raphael Date: Mon, 5 Feb 2024 17:02:09 +0100 Subject: [PATCH 148/240] ignore more warnings with pytest --- pyproject.toml | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/pyproject.toml b/pyproject.toml index 2766869f3..0c8b27855 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -82,7 +82,8 @@ Repository = "https://github.com/raphaelquast/eomaps" [tool.pytest.ini_options] filterwarnings = [ - "ignore:DownloadWarning", + "ignore::DownloadWarning", + "ignore:Pyarrow will become a required dependency of pandas:DeprecationWarning", "ignore:Geometry is in a geographic CRS. Results from *:UserWarning", "ignore:Back azimuth is being returned by default *:UserWarning", "ignore:Conversion of an array with ndim > 0:DeprecationWarning" From cbc99aa1690061e7c0b62e80c529b79a59627b55 Mon Sep 17 00:00:00 2001 From: Raphael Date: Mon, 5 Feb 2024 17:13:01 +0100 Subject: [PATCH 149/240] fix filtering custom warning category --- pyproject.toml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pyproject.toml b/pyproject.toml index 0c8b27855..4f271932e 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -82,7 +82,7 @@ Repository = "https://github.com/raphaelquast/eomaps" [tool.pytest.ini_options] filterwarnings = [ - "ignore::DownloadWarning", + "ignore:cartopy.io.DownloadWarning", "ignore:Pyarrow will become a required dependency of pandas:DeprecationWarning", "ignore:Geometry is in a geographic CRS. Results from *:UserWarning", "ignore:Back azimuth is being returned by default *:UserWarning", From 6b830578b14b45dcb8d21a9ba7d75869f3a3ee03 Mon Sep 17 00:00:00 2001 From: Raphael Date: Mon, 5 Feb 2024 17:25:49 +0100 Subject: [PATCH 150/240] ignore more warnings --- pyproject.toml | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/pyproject.toml b/pyproject.toml index 4f271932e..d9a3956df 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -82,8 +82,10 @@ Repository = "https://github.com/raphaelquast/eomaps" [tool.pytest.ini_options] filterwarnings = [ - "ignore:cartopy.io.DownloadWarning", - "ignore:Pyarrow will become a required dependency of pandas:DeprecationWarning", + "ignore:Downloading*", + "ignore:Passing a SingleBlockManager to Series is deprecated *:DeprecationWarning", + "ignore:Passing a BlockManager to GeoDataFrame is deprecated *:DeprecationWarning", + "ignore:Pyarrow will become a required dependency of pandas *:DeprecationWarning", "ignore:Geometry is in a geographic CRS. Results from *:UserWarning", "ignore:Back azimuth is being returned by default *:UserWarning", "ignore:Conversion of an array with ndim > 0:DeprecationWarning" From c5f791c4a482c01fde15b11e43a086c7522a54a6 Mon Sep 17 00:00:00 2001 From: Raphael Date: Mon, 5 Feb 2024 17:46:20 +0100 Subject: [PATCH 151/240] avoid \* escape sequence in docstrings --- eomaps/ne_features.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/eomaps/ne_features.py b/eomaps/ne_features.py index 365fdeb6c..19f34346b 100644 --- a/eomaps/ne_features.py +++ b/eomaps/ne_features.py @@ -493,7 +493,7 @@ def __call__(self, *args, scale=50, layer=None, **kwargs): Parameters ---------- - \*args : str + args : str The names of the features to add. scale : int or str Set the scale of the feature preset (10, 50, 110 or "auto") @@ -505,7 +505,7 @@ def __call__(self, *args, scale=50, layer=None, **kwargs): - If None, the layer of the parent object is used. The default is None. - \*\*kwargs: + kwargs: Additional style kwargs passed to all features (e.g. alpha, facecolor, edgecolor, linewidth, ...) """ From 6aac958c4a94a1aa55171de578ff410b297723f3 Mon Sep 17 00:00:00 2001 From: Raphael Date: Tue, 6 Feb 2024 11:36:57 +0100 Subject: [PATCH 152/240] fix using reprojected 1d datasets with shade_raster --- eomaps/eomaps.py | 64 +++++++++++++++++++++++++++++------------------- 1 file changed, 39 insertions(+), 25 deletions(-) diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index 485183c4d..a1850f52e 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -4938,33 +4938,47 @@ def _shade_map( ) df = xar.Dataset(dict(val=df)) else: - # first convert 1D inputs to 2D, then reproject the grid and use - # a curvilinear QuadMesh to display the data - - # use pandas to convert to 2D - df = ( - pd.DataFrame( - dict( - x=x0.ravel(), - y=y0.ravel(), - val=zdata.ravel(), - ), - copy=False, + try: + # try if reprojected coordinates can be used as 2d grid and if yes, + # directly use a curvilinear QuadMesh based on the reprojected + # coordinates to display the data + idx = pd.MultiIndex.from_arrays( + [x0.ravel(), y0.ravel()], names=["x", "y"] ) - .set_index(["x", "y"]) - .to_xarray() - ) - xg, yg = np.meshgrid(df.x, df.y) - - # transform the grid from input-coordinates to the plot-coordinates - crs1 = CRS.from_user_input(self.data_specs.crs) - crs2 = CRS.from_user_input(self._crs_plot) - if crs1 != crs2: - transformer = self._get_transformer( - crs1, - crs2, + + df = pd.DataFrame( + data=dict(val=zdata.ravel()), index=idx, copy=False ) - xg, yg = transformer.transform(xg, yg) + df = df.to_xarray() + xg, yg = np.meshgrid(df.x, df.y) + except Exception: + # first convert original coordinates of the 1D inputs to 2D, + # then reproject the grid and use a curvilinear QuadMesh to display + # the data + _log.warning( + "EOmaps: 1D data is converted to 2D prior to reprojection... " + "Consider using 'shade_points' as plot-shape instead!" + ) + xorig = self._data_manager.xorig.ravel() + yorig = self._data_manager.yorig.ravel() + + idx = pd.MultiIndex.from_arrays([xorig, yorig], names=["x", "y"]) + + df = pd.DataFrame( + data=dict(val=zdata.ravel()), index=idx, copy=False + ) + df = df.to_xarray() + xg, yg = np.meshgrid(df.x, df.y) + + # transform the grid from input-coordinates to the plot-coordinates + crs1 = CRS.from_user_input(self.data_specs.crs) + crs2 = CRS.from_user_input(self._crs_plot) + if crs1 != crs2: + transformer = self._get_transformer( + crs1, + crs2, + ) + xg, yg = transformer.transform(xg, yg) # use a curvilinear QuadMesh if self.shape.name == "shade_raster": From 1dfcb2d34009d051b4efc1536d685796c827b815 Mon Sep 17 00:00:00 2001 From: Raphael Date: Tue, 6 Feb 2024 11:48:52 +0100 Subject: [PATCH 153/240] fix parsing maxsize argument in companion widget for raster-shape --- eomaps/qtcompanion/widgets/files.py | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) diff --git a/eomaps/qtcompanion/widgets/files.py b/eomaps/qtcompanion/widgets/files.py index fdba463f7..c4dc3f20f 100644 --- a/eomaps/qtcompanion/widgets/files.py +++ b/eomaps/qtcompanion/widgets/files.py @@ -36,6 +36,11 @@ def _none_or_val(val): return val +def _floatstr_to_int(val): + # pythons int() cannot convert float-strings to integer! + return int(float(val)) + + def _identify_radius(r): r = r.replace(" ", "") try: @@ -175,6 +180,7 @@ class ShapeSelector(QtWidgets.QFrame): mask_radius=_none_or_val, radius=_identify_radius, n=_none_or_val, + maxsize=_floatstr_to_int, ) _argtypes = dict( @@ -186,7 +192,6 @@ class ShapeSelector(QtWidgets.QFrame): mask_radius=(float,), flat=(str_to_bool,), aggregator=(str,), - maxsize=(int,), ) def __init__(self, *args, m=None, default_shape="shade_raster", **kwargs): From 91b85f646084e7b4308201f940c9c0d403adc1e0 Mon Sep 17 00:00:00 2001 From: Raphael Date: Wed, 7 Feb 2024 11:40:53 +0100 Subject: [PATCH 154/240] fix identification of data-selection margins --- eomaps/_data_manager.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/eomaps/_data_manager.py b/eomaps/_data_manager.py index c1c248e42..d2b3a1ac6 100644 --- a/eomaps/_data_manager.py +++ b/eomaps/_data_manager.py @@ -130,7 +130,7 @@ def set_props( # estimate the radius (used as margin on data selection) try: - self._r = self.m._shapes._estimate_radius( + self._r = self.m.set_shape._estimate_radius( self.m, radius_crs="out", method=np.nanmax ) if self._r is not None and all(np.isfinite(i) for i in self._r): @@ -138,6 +138,8 @@ def set_props( else: self._radius_margin = None except Exception: + if _log.getEffectiveLevel() <= logging.DEBUG: + _log.debug("Estimation of data radius for data-margin failed!") self._r = None self._radius_margin = None From 501989baf8954d5181ae56c2152d9e874630d825 Mon Sep 17 00:00:00 2001 From: Raphael Date: Wed, 7 Feb 2024 11:43:11 +0100 Subject: [PATCH 155/240] fix passing kwargs to colorbar creation --- eomaps/colorbar.py | 20 ++++++++++++-------- 1 file changed, 12 insertions(+), 8 deletions(-) diff --git a/eomaps/colorbar.py b/eomaps/colorbar.py index 2c4d5e127..b7508b03c 100644 --- a/eomaps/colorbar.py +++ b/eomaps/colorbar.py @@ -301,6 +301,8 @@ def _preprocess_data(self, out_of_range_vals="keep"): def _plot_colorbar(self, **kwargs): + self._cb_kwargs = kwargs + kwargs.setdefault("extendfrac", self._extend_frac) kwargs.setdefault("spacing", "proportional") kwargs.setdefault("extend", "both") @@ -526,7 +528,7 @@ def _redraw(self, *args, **kwargs): self._set_hist_size() - self._plot_colorbar() + self._plot_colorbar(**self._cb_kwargs) self._plot_histogram( bins=self._hist_bins, @@ -645,9 +647,10 @@ def _identify_parent_cb(self): parent_cb = None # check if there is already an existing colorbar for a Maps-object that shares # the same plot-axis. If yes, inherit the position of this colorbar! - - if self._m.colorbar is not None and not self._inherit_position: + if self._m.colorbar is not None and self._inherit_position is False: parent_cb = None # self._m.colorbar + elif isinstance(self._inherit_position, ColorBar): + parent_cb = self._inherit_position else: # check if self is actually just another layer of an existing Maps object # that already has a colorbar assigned @@ -688,10 +691,7 @@ def remove(self): def _set_map(self, m): self._m = m - if isinstance(self._inherit_position, ColorBarBase): - self._parent_cb = self._inherit_position - else: - self._parent_cb = self._identify_parent_cb() + self._parent_cb = self._identify_parent_cb() self._vmin = self._m.coll.norm.vmin self._vmax = self._m.coll.norm.vmax @@ -1141,6 +1141,10 @@ def set_bin_labels(self, bins, names, tick_lines="center", show_values=False): self._m.BM._refetch_layer(self.layer) def _set_tick_formatter(self): + if "format" in self._cb_kwargs: + self.cb.set_ticks(self.cb.get_ticks()) + return + if self._m._classified: self.cb.set_ticks( np.unique(np.clip(self._m.classify_specs._bins, self._vmin, self._vmax)) @@ -1484,7 +1488,7 @@ def _new_colorbar( cb._set_hist_size(hist_size) cb.set_scale(log) - cb._plot_colorbar(extend=extend) + cb._plot_colorbar(extend=extend, **kwargs) bins = ( m.classify_specs._bins From 78c12f77204556e49e7326fbf40a824b602ed9f6 Mon Sep 17 00:00:00 2001 From: Raphael Date: Wed, 7 Feb 2024 11:43:21 +0100 Subject: [PATCH 156/240] ignore more warnings --- pyproject.toml | 1 + 1 file changed, 1 insertion(+) diff --git a/pyproject.toml b/pyproject.toml index d9a3956df..6a0d696e3 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -85,6 +85,7 @@ filterwarnings = [ "ignore:Downloading*", "ignore:Passing a SingleBlockManager to Series is deprecated *:DeprecationWarning", "ignore:Passing a BlockManager to GeoDataFrame is deprecated *:DeprecationWarning", + "ignore:Passing a SingleBlockManager to GeoSeries is deprecated *:DeprecationWarning", "ignore:Pyarrow will become a required dependency of pandas *:DeprecationWarning", "ignore:Geometry is in a geographic CRS. Results from *:UserWarning", "ignore:Back azimuth is being returned by default *:UserWarning", From 6df415429d4309f537b84e09a0112c84db7fb2bf Mon Sep 17 00:00:00 2001 From: Raphael Date: Wed, 7 Feb 2024 21:05:56 +0100 Subject: [PATCH 157/240] trim very long parameter names in annotation text --- eomaps/callbacks.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/eomaps/callbacks.py b/eomaps/callbacks.py index e9b0264c6..997ad5b44 100644 --- a/eomaps/callbacks.py +++ b/eomaps/callbacks.py @@ -171,6 +171,8 @@ def _get_annotation_text( ID = self._fmt(np.asanyarray(ID)) equal_crs = self.m.data_specs.crs == self.m._crs_plot + if len(parameter) > 15: + parameter = parameter[:15] + " ..." printstr = ( (f"# Picked {n_ids} points\n" if multipick else "") + f"{xlabel} = {x}\n" From 05c491914cabc4188e6146ce4556ffa2a4374062 Mon Sep 17 00:00:00 2001 From: Raphael Date: Wed, 7 Feb 2024 21:07:06 +0100 Subject: [PATCH 158/240] fix treatment of infinite values in weighted colorbar histograms --- eomaps/colorbar.py | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) diff --git a/eomaps/colorbar.py b/eomaps/colorbar.py index b7508b03c..3dc7c50b0 100644 --- a/eomaps/colorbar.py +++ b/eomaps/colorbar.py @@ -279,7 +279,12 @@ def _preprocess_data(self, out_of_range_vals="keep"): data = data.ravel() # make sure we only consider valid values in the histogram - data = data[np.isfinite(data)] + finitemask = np.isfinite(data) + data = data[finitemask] + + # make sure that histogram weights are masked accordingly if provided + if "weights" in self._hist_kwargs: + self._hist_kwargs["weights"] = self._hist_kwargs["weights"][finitemask] if out_of_range_vals == "mask": data_range_mask = (data >= self._vmin) & (data <= self._vmax) From 30b72496c65c90d95e2c9cb4feb203a59ec9ab2d Mon Sep 17 00:00:00 2001 From: Raphael Date: Wed, 7 Feb 2024 21:07:27 +0100 Subject: [PATCH 159/240] fix histogram tick-styles are resetted on layout-change --- eomaps/colorbar.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/eomaps/colorbar.py b/eomaps/colorbar.py index 3dc7c50b0..33761aa6e 100644 --- a/eomaps/colorbar.py +++ b/eomaps/colorbar.py @@ -196,6 +196,7 @@ def _setup_axes(self, pos, parent_ax=None, f=None, zorder=9999): self.ax_cb_plot.spines["left"].set_visible(False) self._set_hist_size() + self._style_hist_ticks() self._attach_lim_cbs() @@ -268,7 +269,6 @@ def _set_hist_size(self, size=None, update_all=False): l_hist_bounds = (l, b, w - s, h) self._set_axes_locators(l_cb_bounds, l_hist_bounds) - self._style_hist_ticks() def _preprocess_data(self, out_of_range_vals="keep"): data = self._get_data() From 2a995beb8ef3d7a48136cb687d49fd2d15263fcc Mon Sep 17 00:00:00 2001 From: Raphael Date: Wed, 7 Feb 2024 21:07:48 +0100 Subject: [PATCH 160/240] allow passing transform-kwarg to m.add_text --- eomaps/eomaps.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index a1850f52e..eb9ff2c0b 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -1643,8 +1643,9 @@ def add_title(self, title, x=0.5, y=1.01, **kwargs): kwargs.setdefault("fontsize", "large") kwargs.setdefault("horizontalalignment", "center") kwargs.setdefault("verticalalignment", "bottom") + kwargs.setdefault("transform", self.ax.transAxes) - self.text(x, y, title, transform=self.ax.transAxes, layer=self.layer, **kwargs) + self.text(x, y, title, layer=self.layer, **kwargs) @lru_cache() def get_crs(self, crs="plot"): From d61e5e97b9b5db9334877a6d07a21be861ad4261 Mon Sep 17 00:00:00 2001 From: Raphael Date: Thu, 8 Feb 2024 11:03:50 +0100 Subject: [PATCH 161/240] fix all-layer check in BM._layer_visible --- eomaps/_blit_manager.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/eomaps/_blit_manager.py b/eomaps/_blit_manager.py index d8b04b842..fb6af498c 100644 --- a/eomaps/_blit_manager.py +++ b/eomaps/_blit_manager.py @@ -634,7 +634,7 @@ def _layer_visible(self, layer): True if the layer is currently visible, False otherwise """ - return layer in "all" or self._layer_is_subset(layer, self.bg_layer) + return layer == "all" or self._layer_is_subset(layer, self.bg_layer) @property def _get_active_layers_alphas(self): From 31a6fad8a2d615be52e8b60269db982c1ba05479 Mon Sep 17 00:00:00 2001 From: Raphael Date: Thu, 8 Feb 2024 11:05:32 +0100 Subject: [PATCH 162/240] fix selecting multiple layers in layer-dropdown - make sure tab-bar is properly updated - make sure transparencies are kept as-is --- eomaps/qtcompanion/widgets/editor.py | 2 +- eomaps/qtcompanion/widgets/layer.py | 3 ++- 2 files changed, 3 insertions(+), 2 deletions(-) diff --git a/eomaps/qtcompanion/widgets/editor.py b/eomaps/qtcompanion/widgets/editor.py index 396e1dc48..e20a2507d 100644 --- a/eomaps/qtcompanion/widgets/editor.py +++ b/eomaps/qtcompanion/widgets/editor.py @@ -975,7 +975,7 @@ def populate_on_layer(self, *args, **kwargs): currlayer = self.m.BM.bg_layer # only populate if the current layer is not part of the last set of layers # (e.g. to allow show/hide of selected layers without removing the tabs) - if not self.m.BM._layer_visible(lastlayer): + if not self.m.BM._layer_is_subset(currlayer, lastlayer): self.populate(*args, **kwargs) self._last_populated_layer = currlayer else: diff --git a/eomaps/qtcompanion/widgets/layer.py b/eomaps/qtcompanion/widgets/layer.py index 1cdc019ed..426fcb0a2 100644 --- a/eomaps/qtcompanion/widgets/layer.py +++ b/eomaps/qtcompanion/widgets/layer.py @@ -331,7 +331,8 @@ def actionClicked(self): modifiers = QtWidgets.QApplication.keyboardModifiers() actionwidget = action.defaultWidget() - active_layers = self.m.BM._get_active_layers_alphas + # just split here to keep transparency-assignments in tact! + active_layers = self.m.BM.bg_layer.split("|") checked_layers = [l for l in active_layers if l != "_"] selected_layer = action.data() From e8a68e35bd4e64740de8bcb812da06451f72ecdf Mon Sep 17 00:00:00 2001 From: Raphael Date: Thu, 8 Feb 2024 11:06:59 +0100 Subject: [PATCH 163/240] minor --- eomaps/qtcompanion/widgets/editor.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/eomaps/qtcompanion/widgets/editor.py b/eomaps/qtcompanion/widgets/editor.py index e20a2507d..84393575f 100644 --- a/eomaps/qtcompanion/widgets/editor.py +++ b/eomaps/qtcompanion/widgets/editor.py @@ -1002,7 +1002,7 @@ def populate(self, *args, **kwargs): ) LayerTabBar._n_layer_msg_shown = True - # if more than 200 layers are available, show only active tabs to + # if more than max_n_layers layers are available, show only active tabs to # avoid performance issues when too many tabs are created alllayers = [i for i in self.m.BM._bg_layer.split("|") if i in alllayers] for i in range(self.count(), -1, -1): From 8116c28518337942206171f987ddb1e7f4c71bde Mon Sep 17 00:00:00 2001 From: Raphael Date: Thu, 8 Feb 2024 11:36:39 +0100 Subject: [PATCH 164/240] make sure dataset-dropdown in companion-widget does not expand main window (for very long layer names) --- eomaps/qtcompanion/widgets/click_callbacks.py | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/eomaps/qtcompanion/widgets/click_callbacks.py b/eomaps/qtcompanion/widgets/click_callbacks.py index 3df86e7f4..d1f6c7a44 100644 --- a/eomaps/qtcompanion/widgets/click_callbacks.py +++ b/eomaps/qtcompanion/widgets/click_callbacks.py @@ -115,8 +115,11 @@ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.setStyleSheet("border-style:none;") + + # set fixed width to avoid expanding window-width on startup for extremely + # long layer names... (full name is shown in dropdown) self.setMinimumWidth(150) - self.setMaximumWidth(400) + self.setMaximumWidth(150) self.setSizeAdjustPolicy(self.AdjustToContents) def enterEvent(self, e): From 4577a61a833396d235a15bcbd18e67ad7d688ba9 Mon Sep 17 00:00:00 2001 From: Raphael Date: Thu, 8 Feb 2024 11:37:38 +0100 Subject: [PATCH 165/240] make sure window-title (e.g. layer-name) is properly truncated if too long --- eomaps/qtcompanion/widgets/layer.py | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/eomaps/qtcompanion/widgets/layer.py b/eomaps/qtcompanion/widgets/layer.py index 426fcb0a2..6baf48441 100644 --- a/eomaps/qtcompanion/widgets/layer.py +++ b/eomaps/qtcompanion/widgets/layer.py @@ -107,7 +107,7 @@ def update_layers(self): class AutoUpdateLayerLabel(QtWidgets.QLabel): - def __init__(self, *args, m=None, max_length=100, **kwargs): + def __init__(self, *args, m=None, max_length=60, **kwargs): super().__init__(*args, **kwargs) self.m = m @@ -141,6 +141,9 @@ def get_text(self): s += ls + if len(s) > self._max_length: + s = s[: self._max_length - 3] + "..." + return prefix + s + suffix def update(self, *args, **kwargs): From 0d308d46df1e2d52a3426dd0c40152623671d4e1 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sun, 11 Feb 2024 18:51:38 +0100 Subject: [PATCH 166/240] add pyhton 3.12 to unittest matrix --- .github/workflows/testMaps.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/testMaps.yml b/.github/workflows/testMaps.yml index 37139204c..aa0cb301f 100644 --- a/.github/workflows/testMaps.yml +++ b/.github/workflows/testMaps.yml @@ -13,7 +13,7 @@ jobs: # set operating systems to test os: [ubuntu-latest] # set python versions to test - python-version: ["3.8", "3.9", "3.10", "3.11"] + python-version: ["3.8", "3.9", "3.10", "3.11", "3.12"] name: test_Maps ${{ matrix.os }} ${{ matrix.python-version }} steps: From 0fc0dadefdd21031225f95fef56e31acdaa4aa8a Mon Sep 17 00:00:00 2001 From: Raphael Date: Mon, 12 Feb 2024 11:57:12 +0100 Subject: [PATCH 167/240] add new kwarg "ensure_same_id" to `m.cb.pick.share_events` (to ensure that all pick-events are triggered with the same ID) --- eomaps/_data_manager.py | 28 ++++++++++++--- eomaps/cb_container.py | 77 ++++++++++++++++++++++++++++++++++++----- 2 files changed, 93 insertions(+), 12 deletions(-) diff --git a/eomaps/_data_manager.py b/eomaps/_data_manager.py index d2b3a1ac6..ebfe7bcff 100644 --- a/eomaps/_data_manager.py +++ b/eomaps/_data_manager.py @@ -1070,9 +1070,9 @@ def _get_id_from_index(self, ind): ID = None return ID - def _get_xy_from_ID(self, ID, reprojected=False): + def _get_ind_from_ID(self, ID): """ - Get x and y coordinates from a list of data IDs + Get numerical indexes from a list of data IDs Parameters ---------- @@ -1081,7 +1081,7 @@ def _get_xy_from_ID(self, ID, reprojected=False): Returns ------- - (x, y) : a tuple of x- and y- coordinate arrays + inds : list of indexes or None """ ids = self.ids @@ -1091,7 +1091,7 @@ def _get_xy_from_ID(self, ID, reprojected=False): # if "ids" is range-like, so is "ind", therefore we can simply # select the values. inds = np.array([ids[i] for i in ID]) - if isinstance(ids, list): + elif isinstance(ids, list): # for lists, using .index to identify the index inds = np.array([ids.index(i) for i in ID]) elif isinstance(ids, np.ndarray): @@ -1099,6 +1099,26 @@ def _get_xy_from_ID(self, ID, reprojected=False): else: inds = None + if len(inds) == 0: + inds = None + + return inds + + def _get_xy_from_ID(self, ID, reprojected=False): + """ + Get x and y coordinates from a list of data IDs + + Parameters + ---------- + ID : single ID or list of IDs + The IDs to search for. + + Returns + ------- + (x, y) : a tuple of x- and y- coordinate arrays + """ + + inds = self._get_ind_from_ID(ID) return self._get_xy_from_index(inds, reprojected=reprojected) def cleanup(self): diff --git a/eomaps/cb_container.py b/eomaps/cb_container.py index 620f21f5f..77d0460c8 100644 --- a/eomaps/cb_container.py +++ b/eomaps/cb_container.py @@ -1357,6 +1357,9 @@ def __init__(self, picker_name="default", picker=None, *args, **kwargs): else: self._picker = picker + # indicator how shared pick-events identify the relevant datapoint + self._ensure_same_pick_id = False + class _attach(_ClickContainer._attach, PickCallbacks): __doc__ = _ClickContainer._attach.__doc__ pass @@ -1383,6 +1386,35 @@ def __getitem__(self, name): f"the picker {name} does not exist...", "use `m.cb.add_picker` first!" ) + def share_events(self, *args, ensure_same_id=False): + """ + Share callback-events between this Maps-object and all other Maps-objects. + + (e.g. share events both ways) + + Note + ---- + For **pick-events**, you can use the additional keyword-argument + `ensure_same_id` to make sure that all events pick the exact same ID. + + Parameters + ---------- + args : eomaps.Maps + The Maps-objects that should execute the callback. + + ensure_same_id : bool + If True, all pick-events are triggered by the same ID value. + (e.g. the ID of the datapoint that was actually picked) + + If False, each map executes the pick-event with respect to the reprojected + mouse-position and identifies the closest datapoint to use. + + The default is False + """ + self._ensure_same_pick_id = ensure_same_id + + super().share_events(*args) + def set_props( self, n=None, @@ -1710,15 +1742,44 @@ def _fwd_cb(self, event, picker_name): # picker_name=picker_name, ) - pick = obj._picker(obj._artist, dummymouseevent) - if pick[1] is not None: - dummyevent.ID = pick[1].get("ID", None) - dummyevent.ind = pick[1].get("ind", None) - dummyevent.val = pick[1].get("val", None) - dummyevent.pos = pick[1].get("pos", None) - dummyevent.val_color = pick[1].get("val_color", None) + if self._ensure_same_pick_id is False: + # execute a new pick-event and use the identified point + + pick = obj._picker(obj._artist, dummymouseevent) + if pick[1] is not None: + dummyevent.ID = pick[1].get("ID", None) + dummyevent.ind = pick[1].get("ind", None) + dummyevent.val = pick[1].get("val", None) + dummyevent.pos = pick[1].get("pos", None) + dummyevent.val_color = pick[1].get("val_color", None) + else: + dummyevent.ind = None else: - dummyevent.ind = None + # use the ID identified by the parent pick-event to obtain values etc. + ID = getattr(event, "ID", None) + if ID is not None: + ind = m._data_manager._get_ind_from_ID(ID) + if ind is not None: + # TODO check why arrays with 1 entry need to be converted here + if len(ind) == 1: + ind = ind[0] + + val = m._data_manager._get_val_from_index(ind) + pos = m._data_manager._get_xy_from_index(ind, reprojected=True) + + try: + val_color = obj._artist.cmap(obj._artist.norm(val)) + except Exception: + val_color = None + + dummyevent.ID = ID + dummyevent.ind = ind + dummyevent.val = val + dummyevent.pos = pos + dummyevent.val_color = val_color + else: + dummyevent.ID = None + dummyevent.ind = None obj._onpick(dummyevent) From c3f21583d1ee4b41e7aaba3c14eccaef09244de9 Mon Sep 17 00:00:00 2001 From: Raphael Date: Mon, 12 Feb 2024 12:03:21 +0100 Subject: [PATCH 168/240] minor --- eomaps/cb_container.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/eomaps/cb_container.py b/eomaps/cb_container.py index 77d0460c8..4f4fc0c80 100644 --- a/eomaps/cb_container.py +++ b/eomaps/cb_container.py @@ -221,7 +221,7 @@ def forward_events(self, *args): def share_events(self, *args): """ - Share callback-events between this Maps-object and all other Maps-objects. + Share callback-events between this Maps-object and other Maps-objects. (e.g. share events both ways) @@ -1388,7 +1388,7 @@ def __getitem__(self, name): def share_events(self, *args, ensure_same_id=False): """ - Share callback-events between this Maps-object and all other Maps-objects. + Share callback-events between this Maps-object and other Maps-objects. (e.g. share events both ways) From c1dfe8dae6019ae8d12855b00c9304ffe8472c73 Mon Sep 17 00:00:00 2001 From: Raphael Date: Mon, 12 Feb 2024 12:04:42 +0100 Subject: [PATCH 169/240] add kwarg to adjust the style of the line between colorbar and histogram --- eomaps/colorbar.py | 18 ++++++++++++++---- 1 file changed, 14 insertions(+), 4 deletions(-) diff --git a/eomaps/colorbar.py b/eomaps/colorbar.py index 33761aa6e..8b2c9c6b4 100644 --- a/eomaps/colorbar.py +++ b/eomaps/colorbar.py @@ -63,6 +63,7 @@ def __init__( extend_frac=0.025, tick_precision=2, margin=None, + divider_linestyle=None, ): self._hist_size = 0.9 @@ -80,6 +81,11 @@ def __init__( self._cmap = None self._data = None + if divider_linestyle is None: + self._divider_linestyle = dict(color="k", linestyle="--", alpha=0.5) + else: + self._divider_linestyle = divider_linestyle + @property def _scm(self): return plt.cm.ScalarMappable(cmap=self._cmap, norm=self._norm) @@ -454,9 +460,8 @@ def _plot_histogram( self.ax_cb_plot.plot( [0, 1], [0, 0], - "k--", - alpha=0.5, transform=self.ax_cb_plot.transAxes, + **self._divider_linestyle, ) # make sure lower y-limit is 0 if self.ax_cb_plot.get_yscale() != "log": @@ -467,9 +472,8 @@ def _plot_histogram( self.ax_cb_plot.plot( [1, 1], [0, 1], - "k--", - alpha=0.5, transform=self.ax_cb_plot.transAxes, + **self._divider_linestyle, ) # make sure lower x-limit is 0 if self.ax_cb_plot.get_xscale() is False: @@ -1318,6 +1322,7 @@ def _new_colorbar( show_outline=False, hist_kwargs=None, margin=None, + divider_linestyle=None, **kwargs, ): """ @@ -1450,6 +1455,10 @@ def _new_colorbar( NOTE: In most cases you should NOT need to adjust the layer! The layer is automatically assigned to the layer at which the data was plotted and Colorbars are only visible on the assigned layer! + divider_linestyle : dict or None + A dictionary that specifies the style of the line between the histogram and + the colorbar. If None a black dashed line is drawn + (e.g. `{"color": "k", "linestyle":"--"}`). The default is None. kwargs : All additional kwargs are passed to the creation of the colorbar (e.g. `plt.colorbar()`) @@ -1486,6 +1495,7 @@ def _new_colorbar( inherit_position=inherit_position, extend_frac=extend_frac, margin=margin, + divider_linestyle=divider_linestyle, ) cb._set_map(m) cb._setup_axes(pos, m.ax) From 8ecb2bb1e3f1eb7e0cfc9abb6fe886b94d79e58c Mon Sep 17 00:00:00 2001 From: Raphael Date: Mon, 12 Feb 2024 12:05:13 +0100 Subject: [PATCH 170/240] warn if weights are used for dynamic-shade indicators (not yet supported) --- eomaps/colorbar.py | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/eomaps/colorbar.py b/eomaps/colorbar.py index 8b2c9c6b4..952ffeea6 100644 --- a/eomaps/colorbar.py +++ b/eomaps/colorbar.py @@ -764,6 +764,13 @@ def _check_data_updated(self, *args, **kwargs): self._last_ds_data = dsdata def _make_dynamic(self): + if "weights" in self._hist_kwargs: + _log.warn( + "EOmaps: Weighted histograms for 'dynamic-shade indicator' colorbars " + "are not supported! Histogram weights will be ignored!" + ) + self._hist_kwargs.pop("weights") + self._dynamic_shade_indicator = True if not hasattr(self._m.coll, "get_ds_data"): From 6796b904d87a535dc57b322198126bbcd092c282 Mon Sep 17 00:00:00 2001 From: Raphael Date: Mon, 12 Feb 2024 13:24:56 +0100 Subject: [PATCH 171/240] deprecate colorbar kwargs - "show_outline" -> "outline" - "ylabel" -> "hist_label" --- eomaps/colorbar.py | 89 ++++++++++++++++++++++++++++++---------------- 1 file changed, 58 insertions(+), 31 deletions(-) diff --git a/eomaps/colorbar.py b/eomaps/colorbar.py index 952ffeea6..7efc4d9e9 100644 --- a/eomaps/colorbar.py +++ b/eomaps/colorbar.py @@ -332,13 +332,13 @@ def _plot_colorbar(self, **kwargs): self._set_hist_size() def _plot_histogram( - self, bins=None, out_of_range_vals="keep", show_outline=False, **kwargs + self, bins=None, out_of_range_vals="keep", outline=False, **kwargs ): self._hist_kwargs = kwargs self._hist_bins = bins self._out_of_range_vals = out_of_range_vals - self._show_outline = show_outline + self._outline = outline if "range" not in self._hist_kwargs: self._hist_kwargs["range"] = ( @@ -354,11 +354,11 @@ def _plot_histogram( **self._hist_kwargs, ) - if self._show_outline: - if self._show_outline is True: + if self._outline: + if self._outline is True: outline_props = dict(color="k", lw=1) else: - outline_props = self._show_outline + outline_props = self._outline if self.orientation == "horizontal": self.ax_cb_plot.step( @@ -542,7 +542,7 @@ def _redraw(self, *args, **kwargs): self._plot_histogram( bins=self._hist_bins, out_of_range_vals=self._out_of_range_vals, - show_outline=self._show_outline, + outline=self._outline, **self._hist_kwargs, ) @@ -1325,9 +1325,9 @@ def _new_colorbar( extend_frac=0.025, log=False, label=None, - ylabel=None, - show_outline=False, + outline=False, hist_kwargs=None, + hist_label=None, margin=None, divider_linestyle=None, **kwargs, @@ -1376,22 +1376,6 @@ def _new_colorbar( colorbar, use "inherit_position=True", else use "inherit_position=False". The default is None - hist_size : float or None - The fraction of the colorbar occupied by the histogram. - - - None: no histogram will be drawn - - 0: - - 0.9: 90% histogram, 10% colorbar - - 1: only histogram - - hist_bins : int, list, tuple, array or "bins", optional - - - If int: The number of histogram-bins to use for the colorbar. - - If list, tuple or numpy-array: the bins to use - - If "bins": use the bins obtained from the classification - (ONLY possible if a classification scheme is used!) - - The default is 256. extend : str or None, optional Set how extension-arrows should be added. @@ -1420,7 +1404,7 @@ def _new_colorbar( the shaded pixel values within the current field of view. The default is False. - show_outline : bool or dict + outline : bool or dict Indicator if an outline should be added to the histogram. (e.g. a line encompassing the histogram) If a dict is provided, it is passed to `plt.step()` to style the line. @@ -1447,16 +1431,32 @@ def _new_colorbar( min/max bins of the histogram) The default is "clip" - hist_kwargs : dict - A dictionary with keyword-arguments passed to the creation of the histogram - (e.g. passed to `plt.hist()` ) label : str, optional The label used for the colorbar. Use `ColorBar.set_labels()` to set the labels (and styling) for the colorbar and the histogram. The default is None. - ylabel : str, optional + hist_size : float or None + The fraction of the colorbar occupied by the histogram. + + - None: no histogram will be drawn + - 0: + - 0.9: 90% histogram, 10% colorbar + - 1: only histogram + + hist_bins : int, list, tuple, array or "bins", optional + + - If int: The number of histogram-bins to use for the colorbar. + - If list, tuple or numpy-array: the bins to use + - If "bins": use the bins obtained from the classification + (ONLY possible if a classification scheme is used!) + + The default is 256. + hist_label : str, optional The label used for the y-axis of the colorbar. The default is None + hist_kwargs : dict + A dictionary with keyword-arguments passed to the creation of the histogram + (e.g. passed to `plt.hist()` ) layer : str The layer at which the colorbar will be drawn. NOTE: In most cases you should NOT need to adjust the layer! @@ -1493,6 +1493,33 @@ def _new_colorbar( >>> m.add_colorbar(hist_bins="bins", label="some data") """ + if "show_outline" in kwargs: + import warnings + + warnings.simplefilter("default", DeprecationWarning) + warnings.warn( + "EOmaps: The colorbar argument 'show_outline' is deprecated and will " + "be removed in EOmaps v8.1. Use 'outline' instead!", + category=DeprecationWarning, + stacklevel=2, + ) + + outline = kwargs.pop("show_outline") + + if "ylabel" in kwargs: + import warnings + + warnings.simplefilter("default", DeprecationWarning) + warnings.warn( + "EOmaps: The colorbar argument 'ylabel' is deprecated and will " + "be removed in EOmaps v8.1. Use 'hist_label' instead!", + category=DeprecationWarning, + stacklevel=2, + ) + + if hist_label is None: + hist_label = kwargs.pop("ylabel") + if hist_kwargs is None: hist_kwargs = dict() @@ -1521,13 +1548,13 @@ def _new_colorbar( cb._plot_histogram( bins=bins, out_of_range_vals=out_of_range_vals, - show_outline=show_outline, + outline=outline, **hist_kwargs, ) cb._set_tick_formatter() - cb.set_labels(cb_label=label, hist_label=ylabel) + cb.set_labels(cb_label=label, hist_label=hist_label) if dynamic_shade_indicator: cb._make_dynamic() From bdea9a6993fd482a3c752fe9d1f4738e1f7d407a Mon Sep 17 00:00:00 2001 From: Raphael Date: Mon, 12 Feb 2024 13:28:50 +0100 Subject: [PATCH 172/240] minor --- docs/FAQ.rst | 2 ++ 1 file changed, 2 insertions(+) diff --git a/docs/FAQ.rst b/docs/FAQ.rst index bf27599f7..ec2274e8a 100644 --- a/docs/FAQ.rst +++ b/docs/FAQ.rst @@ -395,6 +395,8 @@ Important changes between major versions - scripts for the examples have been re-named and are now located in ``docs\examples`` + - Colorbar kwargs ``show_outline`` and ``ylabel`` have been renamed to ``outline`` and ``hist_label`` + The following (previously deprecated) methods are now **removed**: - `m.set_data_specs` -> use ``m.set_data`` instead From 8691c9664f18a61585f08532cec00412d34dc251 Mon Sep 17 00:00:00 2001 From: Raphael Date: Tue, 13 Feb 2024 10:49:23 +0100 Subject: [PATCH 173/240] avoid memory-leaks caused by references to artists in pick-containers --- eomaps/cb_container.py | 11 +++++++---- 1 file changed, 7 insertions(+), 4 deletions(-) diff --git a/eomaps/cb_container.py b/eomaps/cb_container.py index 4f4fc0c80..6bce492b7 100644 --- a/eomaps/cb_container.py +++ b/eomaps/cb_container.py @@ -7,8 +7,9 @@ import logging from types import SimpleNamespace -from functools import update_wrapper, partial, wraps +from functools import partial, wraps from itertools import chain +from weakref import proxy from .callbacks import ( ClickCallbacks, @@ -1476,7 +1477,9 @@ def set_props( self._search_radius = search_radius def _set_artist(self, artist): - self._artist = artist + # use a weakref-proxy to make sure the artist can be garbage-collected + # if it is deleted (or if the figure is closed) + self._artist = proxy(artist) self._artist.set_picker(self._picker) def _init_cbs(self): @@ -1484,7 +1487,6 @@ def _init_cbs(self): self._add_pick_callback() def _default_picker(self, artist, event): - # make sure that objects are only picked if we are on the right layer if not self._execute_cb(self._m.layer): return False, None @@ -1659,7 +1661,8 @@ def _reset_cids(self): self._cid_pick_event.clear() def _artist_picked(self, event): - if self._artist is event.artist: + # use == instead of "is" here since self._artist is a weakref proxy! + if self._artist == event.artist: return True else: # handle contour-plot artists explicitly From fce0011e2776aabd3d8ca78e5cb775b425aade82 Mon Sep 17 00:00:00 2001 From: Raphael Date: Tue, 13 Feb 2024 11:04:49 +0100 Subject: [PATCH 174/240] include cleanup exception tracebacks for debug logs --- eomaps/eomaps.py | 15 ++++++++++++--- 1 file changed, 12 insertions(+), 3 deletions(-) diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index eb9ff2c0b..2cc37a4c2 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -3857,7 +3857,10 @@ def cleanup(self): self.ax.callbacks.disconnect(self._cid_xlim) del self._cid_xlim except Exception: - _log.error("EOmaps-cleanup: Problem while clearing xlim-cid") + _log.error( + "EOmaps-cleanup: Problem while clearing xlim-cid", + exc_info=_log.getEffectiveLevel() <= logging.DEBUG, + ) # clear data-specs and all cached properties of the data try: @@ -3868,7 +3871,10 @@ def cleanup(self): del self.tree self.data_specs.delete() except Exception: - _log.error("EOmaps-cleanup: Problem while clearing data specs") + _log.error( + "EOmaps-cleanup: Problem while clearing data specs", + exc_info=_log.getEffectiveLevel() <= logging.DEBUG, + ) # disconnect all click, pick and keypress callbacks try: @@ -3876,7 +3882,10 @@ def cleanup(self): # cleanup callback-containers self.cb._clear_callbacks() except Exception: - _log.error("EOmaps-cleanup: Problem while clearing callbacks") + _log.error( + "EOmaps-cleanup: Problem while clearing callbacks", + exc_info=_log.getEffectiveLevel() <= logging.DEBUG, + ) # cleanup all artists and cached background-layers from the blit-manager if not self._is_sublayer: From 26aaef522e76abb21488a880edf72b3a3421161a Mon Sep 17 00:00:00 2001 From: Raphael Date: Tue, 13 Feb 2024 11:10:44 +0100 Subject: [PATCH 175/240] minor --- eomaps/_data_manager.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/eomaps/_data_manager.py b/eomaps/_data_manager.py index ebfe7bcff..fd01f91b0 100644 --- a/eomaps/_data_manager.py +++ b/eomaps/_data_manager.py @@ -530,7 +530,7 @@ def on_fetch_bg(self, layer=None, bbox=None, check_redraw=True): self.m.cb.pick._set_artist(coll) - except Exception as ex: + except Exception: _log.exception( f"EOmaps: Unable to plot the data for the layer '{layer}'!", exc_info=_log.getEffectiveLevel() <= logging.DEBUG, From 08f82acca249565fffc7968c66e5f4af933ec03e Mon Sep 17 00:00:00 2001 From: Raphael Date: Tue, 13 Feb 2024 11:29:33 +0100 Subject: [PATCH 176/240] move "_identify_data(..)" to _data_manager module --- eomaps/_data_manager.py | 137 +++++++++++++++++++++++++++++++++++++++- eomaps/eomaps.py | 133 -------------------------------------- 2 files changed, 136 insertions(+), 134 deletions(-) diff --git a/eomaps/_data_manager.py b/eomaps/_data_manager.py index fd01f91b0..372e30d90 100644 --- a/eomaps/_data_manager.py +++ b/eomaps/_data_manager.py @@ -8,6 +8,8 @@ import numpy as np from pyproj import CRS, Transformer +from .helpers import register_modules + _log = logging.getLogger(__name__) @@ -163,6 +165,139 @@ def cleanup_callbacks(self): if self.on_fetch_bg in self.m.BM._before_update_actions: self.m.BM._before_update_actions.remove(self.on_fetch_bg) + def _identify_data(self, data=None, x=None, y=None, parameter=None): + # identify the way how the data has been provided and convert to the internal + # structure + + if data is None: + data = self.m.data_specs.data + if x is None: + x = self.m.data_specs.x + if y is None: + y = self.m.data_specs.y + if parameter is None: + parameter = self.m.data_specs.parameter + + # check other types before pandas to avoid unnecessary import + if data is not None and not isinstance(data, (list, tuple, np.ndarray)): + (pd,) = register_modules("pandas", raise_exception=False) + + if pd is None: + raise TypeError( + f"EOmaps: Unable to handle the input-data type: {type(data)}" + ) + + if isinstance(data, pd.DataFrame): + if parameter is not None: + # get the data-values + z_data = data[parameter].values + else: + z_data = np.repeat(np.nan, len(data)) + + # get the index-values + ids = data.index.values + + if isinstance(x, str) and isinstance(y, str): + # get the data-coordinates + xorig = data[x].values + yorig = data[y].values + else: + assert isinstance(x, (list, np.ndarray, pd.Series)), ( + "'x' must be either a column-name, or explicit values " + " specified as a list, a numpy-array or a pandas" + + f" Series object if you provide the data as '{type(data)}'" + ) + assert isinstance(y, (list, np.ndarray, pd.Series)), ( + "'y' must be either a column-name, or explicit values " + " specified as a list, a numpy-array or a pandas" + + f" Series object if you provide the data as '{type(data)}'" + ) + + xorig = np.asanyarray(x) + yorig = np.asanyarray(y) + + return z_data, xorig, yorig, ids, parameter + + # identify all other types except for pandas.DataFrames + # lazily check if pandas was used + pandas_series_data = False + for iname, i in zip(("x", "y", "data"), (x, y, data)): + if iname == "data" and i is None: + # allow empty datasets + continue + + if not isinstance(i, (list, tuple, np.ndarray)): + (pd,) = register_modules("pandas", raise_exception=False) + + if pd and not isinstance(i, pd.Series): + raise AssertionError( + f"{iname} values must be a list, numpy-array or pandas.Series" + ) + else: + if iname == "data": + pandas_series_data = True + + # set coordinates by extent + if isinstance(x, tuple) and isinstance(y, tuple): + assert data is not None, ( + "EOmaps: If x- and y are provided as tuples, the data must be a 2D list" + " or numpy-array!" + ) + + shape = np.shape(data) + assert len(shape) == 2, ( + "EOmaps: If x- and y are provided as tuples, the data must be a 2D list" + " or numpy-array!" + ) + + # get the data-coordinates + xorig = np.linspace(*x, shape[0]) + yorig = np.linspace(*y, shape[1]) + + else: + # get the data-coordinates + xorig = np.asanyarray(x) + yorig = np.asanyarray(y) + + if data is not None: + # get the data-values + z_data = np.asanyarray(data) + else: + if xorig.shape == yorig.shape: + z_data = np.full(xorig.shape, np.nan) + elif ( + (xorig.shape != yorig.shape) + and (len(xorig.shape) == 1) + and (len(yorig.shape) == 1) + ): + z_data = np.full((xorig.shape[0], yorig.shape[0]), np.nan) + + # get the index-values + if pandas_series_data is True: + # use actual index values if pd.Series was passed as "data" + ids = data.index.values + else: + # use numeric index values for all other types + ids = range(z_data.size) + + if len(xorig.shape) == 1 and len(yorig.shape) == 1 and len(z_data.shape) == 2: + assert ( + z_data.shape[0] == xorig.shape[0] and z_data.shape[0] == xorig.shape[0] + ), ( + "The shape of the coordinate-arrays is not valid! " + f"data={z_data.shape} expects x={(z_data.shape[0],)}, " + f"y={(z_data.shape[1],)}, but the provided shapes are:" + f"x={xorig.shape}, y={yorig.shape}" + ) + + if len(xorig.shape) == len(z_data.shape): + assert xorig.shape == z_data.shape and yorig.shape == z_data.shape, ( + f"EOmaps: The data-shape {z_data.shape} and coordinate-shape " + + f"x={xorig.shape}, y={yorig.shape} do not match!" + ) + + return z_data, np.asanyarray(xorig), np.asanyarray(yorig), ids, parameter + def _prepare_data(self, assume_sorted=True): in_crs = self.m.data_specs.crs cpos = self.m.data_specs.cpos @@ -176,7 +311,7 @@ def _prepare_data(self, assume_sorted=True): crs2 = CRS.from_user_input(self.m._crs_plot) # identify the provided data and get it in the internal format - z_data, xorig, yorig, ids, parameter = self.m._identify_data() + z_data, xorig, yorig, ids, parameter = self._identify_data() if cpos is not None and cpos != "c": # fix position of pixel-center in the input-crs diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index 2cc37a4c2..89a4ce266 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -4217,139 +4217,6 @@ def _add_child(self, m): except Exception: _log.exception("EOmaps: Problem executing 'on_add_child' action:") - def _identify_data(self, data=None, x=None, y=None, parameter=None): - # identify the way how the data has been provided and convert to the internal - # structure - - if data is None: - data = self.data_specs.data - if x is None: - x = self.data_specs.x - if y is None: - y = self.data_specs.y - if parameter is None: - parameter = self.data_specs.parameter - - # check other types before pandas to avoid unnecessary import - if data is not None and not isinstance(data, (list, tuple, np.ndarray)): - (pd,) = register_modules("pandas", raise_exception=False) - - if pd is None: - raise TypeError( - f"EOmaps: Unable to handle the input-data type: {type(data)}" - ) - - if isinstance(data, pd.DataFrame): - if parameter is not None: - # get the data-values - z_data = data[parameter].values - else: - z_data = np.repeat(np.nan, len(data)) - - # get the index-values - ids = data.index.values - - if isinstance(x, str) and isinstance(y, str): - # get the data-coordinates - xorig = data[x].values - yorig = data[y].values - else: - assert isinstance(x, (list, np.ndarray, pd.Series)), ( - "'x' must be either a column-name, or explicit values " - " specified as a list, a numpy-array or a pandas" - + f" Series object if you provide the data as '{type(data)}'" - ) - assert isinstance(y, (list, np.ndarray, pd.Series)), ( - "'y' must be either a column-name, or explicit values " - " specified as a list, a numpy-array or a pandas" - + f" Series object if you provide the data as '{type(data)}'" - ) - - xorig = np.asanyarray(x) - yorig = np.asanyarray(y) - - return z_data, xorig, yorig, ids, parameter - - # identify all other types except for pandas.DataFrames - # lazily check if pandas was used - pandas_series_data = False - for iname, i in zip(("x", "y", "data"), (x, y, data)): - if iname == "data" and i is None: - # allow empty datasets - continue - - if not isinstance(i, (list, tuple, np.ndarray)): - (pd,) = register_modules("pandas", raise_exception=False) - - if pd and not isinstance(i, pd.Series): - raise AssertionError( - f"{iname} values must be a list, numpy-array or pandas.Series" - ) - else: - if iname == "data": - pandas_series_data = True - - # set coordinates by extent - if isinstance(x, tuple) and isinstance(y, tuple): - assert data is not None, ( - "EOmaps: If x- and y are provided as tuples, the data must be a 2D list" - " or numpy-array!" - ) - - shape = np.shape(data) - assert len(shape) == 2, ( - "EOmaps: If x- and y are provided as tuples, the data must be a 2D list" - " or numpy-array!" - ) - - # get the data-coordinates - xorig = np.linspace(*x, shape[0]) - yorig = np.linspace(*y, shape[1]) - - else: - # get the data-coordinates - xorig = np.asanyarray(x) - yorig = np.asanyarray(y) - - if data is not None: - # get the data-values - z_data = np.asanyarray(data) - else: - if xorig.shape == yorig.shape: - z_data = np.full(xorig.shape, np.nan) - elif ( - (xorig.shape != yorig.shape) - and (len(xorig.shape) == 1) - and (len(yorig.shape) == 1) - ): - z_data = np.full((xorig.shape[0], yorig.shape[0]), np.nan) - - # get the index-values - if pandas_series_data is True: - # use actual index values if pd.Series was passed as "data" - ids = data.index.values - else: - # use numeric index values for all other types - ids = range(z_data.size) - - if len(xorig.shape) == 1 and len(yorig.shape) == 1 and len(z_data.shape) == 2: - assert ( - z_data.shape[0] == xorig.shape[0] and z_data.shape[0] == xorig.shape[0] - ), ( - "The shape of the coordinate-arrays is not valid! " - f"data={z_data.shape} expects x={(z_data.shape[0],)}, " - f"y={(z_data.shape[1],)}, but the provided shapes are:" - f"x={xorig.shape}, y={yorig.shape}" - ) - - if len(xorig.shape) == len(z_data.shape): - assert xorig.shape == z_data.shape and yorig.shape == z_data.shape, ( - f"EOmaps: The data-shape {z_data.shape} and coordinate-shape " - + f"x={xorig.shape}, y={yorig.shape} do not match!" - ) - - return z_data, np.asanyarray(xorig), np.asanyarray(yorig), ids, parameter - def inherit_classification(self, m): """ Use the classification of another Maps-object when plotting the data. From bb3283909a637cd8e5c62ceb777cea52ee8dd3a4 Mon Sep 17 00:00:00 2001 From: Raphael Date: Tue, 13 Feb 2024 11:54:47 +0100 Subject: [PATCH 177/240] make sure "_ensure_same_pick_id" is set on all involved pick-containers --- eomaps/cb_container.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/eomaps/cb_container.py b/eomaps/cb_container.py index 6bce492b7..9b7007145 100644 --- a/eomaps/cb_container.py +++ b/eomaps/cb_container.py @@ -1414,6 +1414,9 @@ def share_events(self, *args, ensure_same_id=False): """ self._ensure_same_pick_id = ensure_same_id + for m in args: + self._getobj(m)._ensure_same_pick_id = ensure_same_id + super().share_events(*args) def set_props( From 667e76b591e2bfef2f2f1f44f7c269de362465f7 Mon Sep 17 00:00:00 2001 From: Raphael Date: Tue, 13 Feb 2024 12:07:35 +0100 Subject: [PATCH 178/240] fix inheriting hist_size from parent colorbars --- eomaps/colorbar.py | 25 +++++++++++++++++++------ 1 file changed, 19 insertions(+), 6 deletions(-) diff --git a/eomaps/colorbar.py b/eomaps/colorbar.py index 7efc4d9e9..4386f1d66 100644 --- a/eomaps/colorbar.py +++ b/eomaps/colorbar.py @@ -64,9 +64,10 @@ def __init__( tick_precision=2, margin=None, divider_linestyle=None, + hist_size=0.9, ): - - self._hist_size = 0.9 + self._parent_cb = None + self._hist_size_ = hist_size self._extend_frac = extend_frac @@ -94,6 +95,21 @@ def _scm(self): def _hist_orientation(self): return "vertical" if self.orientation == "horizontal" else "horizontal" + @property + def _hist_size(self): + if self._parent_cb is None: + return self._hist_size_ + else: + return self._parent_cb._hist_size_ + + @_hist_size.setter + def _hist_size(self, size): + if self._parent_cb is None: + self._hist_size_ = size + else: + self._hist_size_ = size + self._parent_cb._hist_size_ = size + def _get_data(self): # TODO return self._data @@ -535,8 +551,6 @@ def _redraw(self, *args, **kwargs): self._attach_lim_cbs() # re-attach ylim callbacks - self._set_hist_size() - self._plot_colorbar(**self._cb_kwargs) self._plot_histogram( @@ -725,7 +739,6 @@ def _add_axes_to_layer(self, dynamic): # we need to re-draw since the background axis size has changed! BM._refetch_layer(self._layer) BM._refetch_layer("__SPINES__") - self._m.redraw("__SPINES__") def _set_hist_size(self, *args, **kwargs): super()._set_hist_size(*args, **kwargs) @@ -1530,12 +1543,12 @@ def _new_colorbar( extend_frac=extend_frac, margin=margin, divider_linestyle=divider_linestyle, + hist_size=hist_size, ) cb._set_map(m) cb._setup_axes(pos, m.ax) cb._add_axes_to_layer(dynamic=dynamic_shade_indicator) - cb._set_hist_size(hist_size) cb.set_scale(log) cb._plot_colorbar(extend=extend, **kwargs) From 69f1e0cbb5037a65d0f5b519b40beb2f2f2b1cbd Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Tue, 13 Feb 2024 23:25:25 +0100 Subject: [PATCH 179/240] Update README.md --- README.md | 114 +++++++++++++++++++++++++++++++++++++----------------- 1 file changed, 78 insertions(+), 36 deletions(-) diff --git a/README.md b/README.md index a03fbbdaf..54b820f6e 100644 --- a/README.md +++ b/README.md @@ -13,64 +13,110 @@ chat on gitter ---- + -# EOmaps - Interactive maps in python! +

    A python package to visualize and analyze geographical datasets.

    -**EOmaps** is a python package to visualize and analyze geographical datasets. +> **EOmaps** aims to provide a comprehensive, flexible, well-documented and easy-to-use API to create publication-ready maps that can directly be used for interactive data analysis. -It is built on top of [matplotlib](https://matplotlib.org/) and [cartopy](https://scitools.org.uk/cartopy/docs/latest/) and provides an intuitive and easy-to-use interface to speed up and simplify the creation and comparison of maps. +## How does it work? +**EOmaps** is built on top of [matplotlib](https://matplotlib.org/) and [cartopy](https://scitools.org.uk/cartopy/docs/latest/) and integrates well with the scientific python infrastructure (e.g., `numpy`, `pandas`, `geopandas`, `xarray` etc.), allowing you to visualize point-, raster- or vector-datasets provided in almost any format you can imagine, no matter if you're dealing with just a few unsorted datapoints or multi-dimensional stacks of global high-resolution datasets. + +Figures created with EOmaps are multi-layered, so you can (transparently) overlay and interactively compare your datasets with ease. With the accompanying GUI widget, you can quickly switch layers, change the layout, examine the large collection of features and web-map services, and explore the capabilities of EOmaps. +Once you're map is ready, you can export it as high-resolution image or vector-graphic for further editing. +Leveraging the powers of matplotlib, you can also embed interactive maps in Jupyter Notebooks, GUI frameworks like `Qt`, `tkinter`, `wx` or on a webpage (html). + + +> [!TIP] > For a quick hands-on introduction, checkout this article on dev.to: > [Geographic data visualization and analysis with EOmaps: Interactive maps in python!](https://dev.to/raphaelquast/geographic-data-visualization-and-analysis-with-eomaps-interactive-maps-in-python-48e1) -> -> --- + +--- ### What can EOmaps do for you? -- Create [▤ multi-layered maps](https://eomaps.readthedocs.io/en/latest/api_basics.html#layer-management) and interactively compare different layers with each other -- [🔴 Visualize datasets](https://eomaps.readthedocs.io/en/latest/api_data_visualization.html) with millions of datapoints and handle reprojections + + +Checkout the [🌱 Basics](https://eomaps.readthedocs.io/en/latest/api_basics.html) in the documentation to get started! + +
    + +- Create [▤ multi-layered maps](https://eomaps.readthedocs.io/en/latest/api_basics.html#layer-management) (and interactively compare layers with each other) +- [🔴 Visualize datasets](https://eomaps.readthedocs.io/en/latest/api_data_visualization.html) with millions of datapoints (and handle reprojections) +- Get a useful [🧰 CompanionWidget GUI](https://eomaps.readthedocs.io/en/latest/api_companion_widget.html) +- Use [🛸 Callbacks](https://eomaps.readthedocs.io/en/latest/api_callbacks.html) to make your figure interactive +- Adjust the layout with the [🏗️ LayoutEditor](https://eomaps.readthedocs.io/en/latest/api_layout_editor.html) +- [🗺 Export](https://eomaps.readthedocs.io/en/latest/api_basics.html#image-export-jpeg-png-svg-etc) high resolution images or vektor graphics + + + - Provide a comprehensive set of tools to customize the map - [🌵NaturalEarth features](https://eomaps.readthedocs.io/en/latest/api_naturalearth_features.html) - [📏Scalebars](https://eomaps.readthedocs.io/en/latest/api_scalebar.html) - [▦ Gridlines](https://eomaps.readthedocs.io/en/latest/api_gridlines.html) - [🛰 WebMap layers](https://eomaps.readthedocs.io/en/latest/api_webmaps.html) - [🏕 Annotations, Markers, Lines, Logos...](https://eomaps.readthedocs.io/en/latest/api_annotations_markers_etc.html) - - . . . -- Get a useful [🧰 CompanionWidget](https://eomaps.readthedocs.io/en/latest/api_companion_widget.html) GUI -- Use [🛸 Callbacks](https://eomaps.readthedocs.io/en/latest/api_callbacks.html) to interact with the figure -- Interactively re-arrange multiple maps in a figure with the [🏗️ LayoutEditor](https://eomaps.readthedocs.io/en/latest/api_layout_editor.html) -- [🗺 Export](https://eomaps.readthedocs.io/en/latest/api_basics.html#image-export-jpeg-png-svg-etc) publication ready high resolution images (png, jpeg, tiff, ...) -or export figures as vector graphics (svg, eps, pdf ...) - . . . and much more! + +
    -Checkout the [🌱 Basics](https://eomaps.readthedocs.io/en/latest/api_basics.html) in the documentation to get started! - - ## 🔨 Installation -To install EOmaps (and all its dependencies) via the [conda](https://docs.conda.io/projects/conda/en/stable/) package-manager, simply use: +To install **EOmaps** (and all its dependencies) with the [conda](https://docs.conda.io/projects/conda/en/stable/) package-manager, simply use: ```python conda install -c conda-forge eomaps ``` -> ... to get a **huge speedup**, use [mamba](https://mamba.readthedocs.io/en/latest/) to solve the dependencies! + +> [!TIP] +> To get a **huge speedup**, use [mamba](https://mamba.readthedocs.io/en/latest/) to solve the dependencies! > ```python -> conda install -c conda-forge mamba > mamba install -c conda-forge eomaps > ``` + + +> Advanced users can also use `pip` to install **EOmaps** (and selectively install optional dependency groups) +> ```pyhton +> pip install eomaps # install only minimal required dependencies +> pip install eomaps[all] # install all optional dependencies +> ... +> ``` + Need more information? - Have a look at the [🐛Installation](https://eomaps.readthedocs.io/en/latest/installation.html) instructions in the docs. - Checkout the quickstart guide [🚀 From 0 to EOmaps](https://eomaps.readthedocs.io/en/latest/FAQ.html#from-0-to-eomaps-a-quickstart-guide). ## 📖 Documentation -Make sure to have a look at the 📖 Documentation which provides a lot of 🌐Examples on how to create awesome interactive maps (incl. 🐍 source code)! +Make sure to have a look at the 📖 Documentation ! +It provides a lot of 🌐Examples on how to create awesome interactive maps (incl. 🐍 source code)! ## ✔️ Citation Did EOmaps help in your research? Support the development and add a citation to your publication! -[![https://doi.org/10.5281/zenodo.6459598](https://zenodo.org/badge/410829039.svg)](https://zenodo.org/badge/latestdoi/410829039) +https://zenodo.org/badge/latestdoi/410829039 + +
    +BibTeX +
    +The following BibTeX entry uses the DOI that always points to the latest release of EOmaps!
    +(You can get the DOI for a specific version form the zenodo-page) + +```bibtex +@software{eomaps, + author = {Raphael Quast}, + title = {EOmaps: A python package to visualize and analyze geographical datasets.}, + doi = {10.5281/zenodo.6459598}, + url = {https://doi.org/10.5281/zenodo.6459598} +} +``` + +
    ## 🌟 Contribute @@ -85,21 +131,12 @@ Interested in contributing to EOmaps? Awesome! --------------- - -
    EOmaps example 6
    - - - - - - - + + + @@ -121,14 +164,13 @@ Interested in contributing to EOmaps? Awesome! - - +
    - EOmaps example 6 - - EOmaps example 2 -
    + + EOmaps GUI + EOmaps example 9 @@ -107,6 +144,12 @@ Interested in contributing to EOmaps? Awesome!
    + EOmaps example 6 + + EOmaps example 2 + EOmaps example 7 EOmaps example 3
    EOmaps example 9 EOmaps example 4
    From 4fa5bcbab84686e4a2ee616845ac69bbfaa469ac Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Mon, 29 Jan 2024 21:39:19 +0100 Subject: [PATCH 180/240] add spherical voronoi --- eomaps/shapes.py | 181 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 181 insertions(+) diff --git a/eomaps/shapes.py b/eomaps/shapes.py index 56866d6d5..b3f3da9b0 100644 --- a/eomaps/shapes.py +++ b/eomaps/shapes.py @@ -1351,6 +1351,178 @@ def radius(self): def radius_crs(self): return "in" + class _SphericalVoronoiDiagram(object): + name = "spherical_voronoi_diagram" + + def __init__(self, m): + self._m = m + self._mask_radius = None + + def __call__(self, masked=True, mask_radius=None): + """ + Draw a Spherical Voronoi-Diagram of the data. + + Parameters + ---------- + masked : bool + Indicator if the voronoi-diagram should be masked or not + + mask_radius : float, optional + The radius used for masking the voronoi-diagram + (in units of the plot-crs) + The default is 4 times the estimated data-radius. + """ + from . import MapsGrid # do this here to avoid circular imports! + + for m in self._m if isinstance(self._m, MapsGrid) else [self._m]: + shape = self.__class__(m) + + shape.mask_radius = mask_radius + shape.masked = masked + + m._shape = shape + + @property + def _initargs(self): + return dict(mask_radius=self.mask_radius, masked=self.masked) + + def __repr__(self): + try: + s = f"voronoi_diagram(mask_radius={self.mask_radius}, masked={self.masked})" + except AttributeError: + s = "voronoi_diagram(mask_radius, masked)" + + return s + + @property + def mask_radius(self): + r = Shapes._get_radius(self._m, self._mask_radius, "out") + if self._mask_radius is None: + return [i * 4 for i in r] + else: + return r + + @mask_radius.setter + def mask_radius(self, val): + self._mask_radius = val + + def _get_voronoi_verts_and_mask(self, x, y, crs, radius, masked=True): + try: + from scipy.spatial import SphericalVoronoi + from itertools import zip_longest + except ImportError: + raise ImportError("'scipy' is required for 'voronoi'!") + + # transform from crs to the lon/lat + + t_in_lonlat = self._m._get_transformer( + self._m.get_crs(crs), self._m.get_crs(crs).geodetic_crs + ) + + t_lonlat_plot = self._m._get_transformer( + self._m.get_crs(crs).geodetic_crs, self._m.crs_plot + ) + + xy_orig = np.column_stack((x, y)) # remember orig input coords + + x0, y0 = t_in_lonlat.transform(x, y) + + x0 = (x0 + 360) % 360 + y0 = (y0 + 180) % 180 + + datamask = np.isfinite(x0) & np.isfinite(y0) + [radiusx, radiusy] = radius + + maxdist = 2 * np.mean(np.sqrt(radiusx**2 + radiusy**2)) + + xy = np.column_stack((x0[datamask], y0[datamask])) + + # plot the unit sphere for reference (optional) + r = 1 + + theta, phi = np.deg2rad(xy.T) + x = r * np.cos(theta) * np.sin(phi) + y = r * np.sin(theta) * np.sin(phi) + z = r * np.cos(phi) + + vor = SphericalVoronoi(np.column_stack((x, y, z)), r, [0, 0, 0]) + vor.sort_vertices_of_regions() + + rect_regions = np.array(list(zip_longest(*vor.regions, fillvalue=-2))).T + # (use -2 instead of None to make np.take work as expected) + + # rect_regions = rect_regions[vor.point_region] + # exclude all points at infinity + mask = np.all(np.not_equal(rect_regions, -1), axis=1) + + # get the mask for the artificially added vertices + rect_mask = rect_regions == -2 + + x_s = np.ma.masked_array( + np.take(vor.vertices[:, 0], rect_regions), mask=rect_mask + ) + y_s = np.ma.masked_array( + np.take(vor.vertices[:, 1], rect_regions), mask=rect_mask + ) + z_s = np.ma.masked_array( + np.take(vor.vertices[:, 2], rect_regions), mask=rect_mask + ) + + # convert back to lon/lat + x = np.rad2deg(np.arctan2(y_s, x_s)) + y = np.rad2deg(np.arccos(z_s / r)) + + # convert back to the -180, 180 and -90, 90 range + x = (x + 180) % 360 - 180 + y = (y + 90) % 180 - 90 + + x, y = t_lonlat_plot.transform(x, y) + + rect_verts = np.ma.stack((x, y)).swapaxes(0, 1).swapaxes(1, 2) + + if masked: + # exclude any polygon whose defining point is farther away than maxdist + cdist = np.sqrt(np.sum((rect_verts - xy_orig[:, None]) ** 2, axis=2)) + polymask = np.all(cdist < maxdist, axis=1) + mask = np.logical_and(mask, polymask) + + verts = list(i.compressed().reshape(-1, 2) for i in rect_verts[mask]) + return verts, mask, datamask + + def get_coll(self, x, y, crs, **kwargs): + + verts, mask, datamask = self._get_voronoi_verts_and_mask( + x, y, crs, self.mask_radius, masked=self.masked + ) + + # find the masked points that are not masked by the datamask + mask2 = ~datamask.copy() + mask2[np.where(datamask)[0][mask]] = True + # remember the mask + self._m._data_mask = mask2 + + color_and_array = Shapes._get_colors_and_array( + kwargs, np.logical_and(datamask, mask) + ) + + coll = PolyCollection( + verts=verts, + **color_and_array, + # transOffset=self._m.ax.transData, + **kwargs, + ) + + return coll + + @property + def radius(self): + radius = Shapes._get_radius(self._m, "estimate", "in") + return radius + + @property + def radius_crs(self): + return "in" + class _DelaunayTriangulation(object): name = "delaunay_triangulation" @@ -2117,6 +2289,15 @@ def voronoi_diagram(self, *args, **kwargs): return shp.__call__(*args, **kwargs) + @wraps(_SphericalVoronoiDiagram.__call__) + def spherical_voronoi_diagram(self, *args, **kwargs): + shp = self._SphericalVoronoiDiagram(m=self._m) + # increase radius margins for voronoi diagrams since + # outer points are otherwise always masked! + self._m._data_manager.set_margin_factors(20, 0.1) + + return shp.__call__(*args, **kwargs) + @wraps(_DelaunayTriangulation.__call__) def delaunay_triangulation(self, *args, **kwargs): shp = self._DelaunayTriangulation(m=self._m) From 7b54a43bacfcd053338a4071212206e27693ecb0 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Wed, 14 Feb 2024 13:15:40 +0100 Subject: [PATCH 181/240] make blit-manager methods private --- eomaps/_blit_manager.py | 18 +++++++++--------- eomaps/draw.py | 10 +++++----- 2 files changed, 14 insertions(+), 14 deletions(-) diff --git a/eomaps/_blit_manager.py b/eomaps/_blit_manager.py index fb6af498c..bd221af29 100644 --- a/eomaps/_blit_manager.py +++ b/eomaps/_blit_manager.py @@ -203,7 +203,7 @@ def __init__(self, m): self._unmanaged_artists_layer = "base" # grab the background on every draw - self.cid = self.canvas.mpl_connect("draw_event", self.on_draw) + self._cid_draw = self.canvas.mpl_connect("draw_event", self._on_draw_cb) self._after_update_actions = [] self._after_restore_actions = [] @@ -814,16 +814,16 @@ def fetch_bg(self, layer=None, bbox=None): def _disconnect_draw(self): try: # temporarily disconnect draw-event callback to avoid recursion - if self.cid is not None: - self.canvas.mpl_disconnect(self.cid) - self.cid = None + if self._cid_draw is not None: + self.canvas.mpl_disconnect(self._cid_draw) + self._cid_draw = None yield finally: # reconnect draw event - if self.cid is None: - self.cid = self.canvas.mpl_connect("draw_event", self.on_draw) + if self._cid_draw is None: + self._cid_draw = self.canvas.mpl_connect("draw_event", self._on_draw_cb) - def on_draw(self, event): + def _on_draw_cb(self, event): """Callback to register with 'draw_event'.""" if self._disable_draw: @@ -836,10 +836,10 @@ def on_draw(self, event): renderer = cv.get_renderer() if renderer is None: - # don't run on_draw if no renderer is available + # don't run if no renderer is available return else: - # don't run on_draw if no renderer is available + # don't run if no renderer is available # (this is true for svg export where mpl export routines # are used to avoid issues) if loglevel <= 5: diff --git a/eomaps/draw.py b/eomaps/draw.py index 76b87c6ba..911a95b22 100644 --- a/eomaps/draw.py +++ b/eomaps/draw.py @@ -253,7 +253,7 @@ def remove_last_shape(self): for cb in self._on_poly_remove: cb() - self._m.BM.on_draw(None) + self._m.BM._on_draw_cb(None) def _init_draw_line(self): if self._line is None: @@ -291,7 +291,7 @@ def redraw(self, blit=True, *args): """Trigger re-drawing shapes.""" # NOTE: If a drawer is active, this function is also called on any ordinary # draw-event (e.g. zoom/pan/resize) to keep the indicators visible. - # see "m.BM.on_draw()" + # see "m.BM._on_draw_cb()" artists = self._indicator_artists @@ -656,7 +656,7 @@ def _polygon(self, **kwargs): self._m.BM.add_artist(ph, layer=self.layer) else: self._m.BM.add_bg_artist(ph, layer=self.layer) - self._m.BM.on_draw(None) + self._m.BM._on_draw_cb(None) ID = max(self._artists) + 1 if self._artists else 0 self._artists[ID] = ph @@ -748,7 +748,7 @@ def _circle(self, **kwargs): self._m.BM.add_artist(ph, layer=self.layer) else: self._m.BM.add_bg_artist(ph, layer=self.layer) - self._m.BM.on_draw(None) + self._m.BM._on_draw_cb(None) ID = max(self._artists) + 1 if self._artists else 0 self._artists[ID] = ph @@ -833,7 +833,7 @@ def _rectangle(self, **kwargs): self._m.BM.add_artist(ph, layer=self.layer) else: self._m.BM.add_bg_artist(ph, layer=self.layer) - self._m.BM.on_draw(None) + self._m.BM._on_draw_cb(None) ID = max(self._artists) + 1 if self._artists else 0 self._artists[ID] = ph From 0b30c7ad12779076fbe0ca506233ada4426a8ed8 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Wed, 14 Feb 2024 13:18:10 +0100 Subject: [PATCH 182/240] make "BM.cleanup_layer" method private --- eomaps/_blit_manager.py | 2 +- eomaps/eomaps.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/eomaps/_blit_manager.py b/eomaps/_blit_manager.py index bd221af29..d49f5b0d8 100644 --- a/eomaps/_blit_manager.py +++ b/eomaps/_blit_manager.py @@ -1479,7 +1479,7 @@ def action(): return action - def cleanup_layer(self, layer): + def _cleanup_layer(self, layer): """Trigger cleanup methods for a given layer.""" self._cleanup_bg_artists(layer) self._cleanup_artists(layer) diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index 89a4ce266..0171fe444 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -3889,7 +3889,7 @@ def cleanup(self): # cleanup all artists and cached background-layers from the blit-manager if not self._is_sublayer: - self.BM.cleanup_layer(self.layer) + self.BM._cleanup_layer(self.layer) # remove the child from the parent Maps object if self in self.parent._children: From ccf4937d1579da4a6960058e34201d63836d347e Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Wed, 14 Feb 2024 23:30:28 +0100 Subject: [PATCH 183/240] init blit-manager with layer of parent maps-object --- eomaps/_blit_manager.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/eomaps/_blit_manager.py b/eomaps/_blit_manager.py index d49f5b0d8..f07e7cbaa 100644 --- a/eomaps/_blit_manager.py +++ b/eomaps/_blit_manager.py @@ -191,6 +191,7 @@ def __init__(self, m): self._disable_update = False self._m = m + self._bg_layer = self._m.layer self._artists = dict() @@ -207,7 +208,6 @@ def __init__(self, m): self._after_update_actions = [] self._after_restore_actions = [] - self._bg_layer = "base" self._artists_to_clear = dict() From 01515635641aedb421d7b65fffb6754183632a86 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Wed, 14 Feb 2024 23:34:42 +0100 Subject: [PATCH 184/240] make blit-manager, data_specs and classify_specs accessible for sphinx --- eomaps/eomaps.py | 19 ++++++++++--------- 1 file changed, 10 insertions(+), 9 deletions(-) diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index 0171fe444..8c43a1d81 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -355,6 +355,10 @@ class Maps(metaclass=_MapsMeta): add_feature = NaturalEarthFeatures util = Utilities cb = CallbackContainer + BM = BlitManager + + classify_specs = ClassifySpecs + data_specs = DataSpecs if WebMapContainer is not None: add_wms = WebMapContainer @@ -470,6 +474,12 @@ def __init__( self._init_figure(ax=ax, plot_crs=crs, **kwargs) + # Initialize the Blit-Manager used to dynamically update the plots. + if self.parent == self: # use == instead of "is" since the parent is a proxy!: + self.BM = BlitManager(weakref.proxy(self)) + else: + self.BM = self.parent.BM + if WebMapContainer is not None: self.add_wms = self.add_wms(weakref.proxy(self)) @@ -684,15 +694,6 @@ def shape(self): return self._shape - @property - def BM(self): - """The Blit-Manager used to dynamically update the plots.""" - m = weakref.proxy(self) - if self.parent._BM is None: - self.parent._BM = BlitManager(m) - self.parent._BM._bg_layer = m.parent.layer - return self.parent._BM - @property def parent(self): """ From 0572b823c2b6792e4bf4d8075a88df173faf9861 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Wed, 14 Feb 2024 23:44:43 +0100 Subject: [PATCH 185/240] update docs --- docs/api/eomaps.eomaps.Maps.rst | 49 +++++++++++++++++++++------------ docs/conf.py | 5 ++++ docs/gen_autodoc_file.py | 3 ++ 3 files changed, 40 insertions(+), 17 deletions(-) diff --git a/docs/api/eomaps.eomaps.Maps.rst b/docs/api/eomaps.eomaps.Maps.rst index 21f05e27c..8211ab6c4 100644 --- a/docs/api/eomaps.eomaps.Maps.rst +++ b/docs/api/eomaps.eomaps.Maps.rst @@ -11,23 +11,6 @@ .. autoclass:: Maps -Class Methods -------------- - -.. autosummary:: - :toctree: ../generated - :template: obj_with_attributes_no_toc.rst - :nosignatures: - - Maps.config - -.. autosummary:: - :toctree: ../generated - :template: obj_with_attributes_no_toc.rst - :nosignatures: - - Maps.from_file - Properties ---------- @@ -47,6 +30,8 @@ Properties :nosignatures: Maps.data + Maps.data_specs + Maps.classify_specs Maps.colorbar @@ -62,13 +47,23 @@ Layers and Maps Maps.new_map Maps.new_inset_map + .. autosummary:: :toctree: ../generated :template: obj_with_attributes_no_toc.rst :nosignatures: Maps.new_layer + + +.. autosummary:: + :toctree: ../generated + :template: obj_with_attributes_no_toc.rst + :nosignatures: + Maps.new_layer_from_file + Maps.from_file + .. autosummary:: :toctree: ../generated @@ -91,6 +86,7 @@ Map Features Maps.add_feature Maps.add_wms + .. autosummary:: :toctree: ../generated :template: obj_with_attributes_no_toc.rst @@ -125,6 +121,17 @@ Callbacks Maps.cb +.. autosummary:: + :toctree: ../generated + :template: obj_with_attributes_no_toc.rst + :nosignatures: + + Maps.cb.click + Maps.cb.pick + Maps.cb.keypress + Maps.cb.move + + Data visualization ------------------ @@ -215,6 +222,14 @@ Utilities Miscellaneous ------------- +.. autosummary:: + :toctree: ../generated + :template: obj_with_attributes_no_toc.rst + :nosignatures: + + Maps.config + Maps.BM + .. autosummary:: :toctree: ../generated :template: obj_with_attributes_no_toc.rst diff --git a/docs/conf.py b/docs/conf.py index 1e6626776..99d53f9e2 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -68,6 +68,11 @@ def setup(app): Maps.cb.move.attach.__name__ = "attach" Maps.cb.move.get.__name__ = "get" + Maps.BM.__name__ = "BM" + + Maps.data_specs.__name__ = "data_specs" + Maps.classify_specs.__name__ = "classify_specs" + # -- Project information diff --git a/docs/gen_autodoc_file.py b/docs/gen_autodoc_file.py index ad82f7094..3001a905e 100644 --- a/docs/gen_autodoc_file.py +++ b/docs/gen_autodoc_file.py @@ -66,6 +66,9 @@ def make_feature_toctree_file(): "read_file", "util", "add_wms", + "BM", + "data_specs", + "classify_specs", ): members.extend(get_members(Maps, key, False)) for key in ("add_feature", "cb"): From 8420944e8b36561d565b544b6f2fe083a5e37547 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Thu, 15 Feb 2024 00:03:57 +0100 Subject: [PATCH 186/240] add basic docstrings for data container properties --- eomaps/_containers.py | 9 +++++++++ 1 file changed, 9 insertions(+) diff --git a/eomaps/_containers.py b/eomaps/_containers.py index 0b965fa77..5f114d3c6 100644 --- a/eomaps/_containers.py +++ b/eomaps/_containers.py @@ -132,6 +132,7 @@ def keys(self): @property def data(self): + """The data assigned to this Maps-object.""" return self._data @data.setter @@ -140,6 +141,7 @@ def data(self, data): @property def crs(self): + """The projection of the data-coordinates.""" return self._crs @crs.setter @@ -148,6 +150,7 @@ def crs(self, crs): @property def x(self): + """The x-coordinate values of the data (or the name of the column to use).""" return self._x @x.setter @@ -156,6 +159,7 @@ def x(self, x): @property def y(self): + """The y-coordinate values of the data (or the name of the column to use).""" return self._y @y.setter @@ -164,6 +168,7 @@ def y(self, y): @property def parameter(self): + """The name of the parameter (or the name of the column to use as parameter).""" return self._parameter @parameter.setter @@ -196,6 +201,7 @@ def parameter(self): @property def encoding(self): + """The encoding of the data-values.""" return self._encoding @encoding.setter @@ -206,6 +212,7 @@ def encoding(self, encoding): @property def cpos(self): + """Indicator if the coordinates represent center- or corner-positions.""" return self._cpos @cpos.setter @@ -214,6 +221,7 @@ def cpos(self, cpos): @property def cpos_radius(self): + """The pixel-extent used for determining corner-positions.""" return self._cpos_radius @cpos_radius.setter @@ -280,6 +288,7 @@ def keys(self): @property def scheme(self): + """The name of the used classification scheme""" return self._scheme @scheme.setter From 0184b7d51f6eb969ea6a09ceffd562680cad5151 Mon Sep 17 00:00:00 2001 From: Raphael Date: Thu, 15 Feb 2024 10:28:45 +0100 Subject: [PATCH 187/240] fix masked-array issues with datashader/numba when using "shade_points" --- eomaps/eomaps.py | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index 8c43a1d81..fdb5189be 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -4752,6 +4752,12 @@ def _shade_map( # the shape is always set after _prepare data! if self.shape.name == "shade_points" and self._data_manager.x0_1D is None: + # fill masked-values with None to avoid issues with numba not being + # able to deal with numpy-arrays + # TODO report this to datashader to get it fixed properly? + if isinstance(zdata, np.ma.masked_array): + zdata = zdata.filled(None) + df = pd.DataFrame( dict( x=x0.ravel(), From b455a956998f588f93e06d17ccab3ec74607ee78 Mon Sep 17 00:00:00 2001 From: Raphael Date: Thu, 15 Feb 2024 10:29:38 +0100 Subject: [PATCH 188/240] properly handle pick-events that do not have an "idx" property --- eomaps/cb_container.py | 22 +++++++++++++++------- 1 file changed, 15 insertions(+), 7 deletions(-) diff --git a/eomaps/cb_container.py b/eomaps/cb_container.py index 9b7007145..05bbbe978 100644 --- a/eomaps/cb_container.py +++ b/eomaps/cb_container.py @@ -1552,7 +1552,12 @@ def _default_picker(self, artist, event): return False, None def _get_pickdict(self, event): - event_ind = event.ind + event_ind = getattr(event, "ind", None) + if event_ind is None: + if _log.getEffectiveLevel() <= logging.DEBUG: + _log.debug(f"Pick-event without index encountered: {event}") + return + n_inds = len(np.atleast_1d(event_ind)) # mouseevent = event.mouseevent noval = [None] * n_inds if n_inds > 1 else None @@ -1619,6 +1624,10 @@ def _onpick(self, event): clickdict = self._get_pickdict(event) + # if no data was found, don't execute the callbacks + if clickdict is None: + return + if event.mouseevent.dblclick: cbs = self.get.cbs.get("double", dict()) else: @@ -1647,12 +1656,11 @@ def _onpick(self, event): return cb = bcbs[key] - if clickdict is not None: - if self._consecutive_multipick is False: - cb(**clickdict) - else: - for c in clickdict: - cb(**c) + if self._consecutive_multipick is False: + cb(**clickdict) + else: + for c in clickdict: + cb(**c) def _reset_cids(self): # clear all temporary artists From 527d149481d5bc08798e37c7c2543db923a37a8a Mon Sep 17 00:00:00 2001 From: Raphael Date: Fri, 16 Feb 2024 10:19:34 +0100 Subject: [PATCH 189/240] avoid issues if collection has no _coll_dynamic attribute (e.g. shade shapes) --- eomaps/_data_manager.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/eomaps/_data_manager.py b/eomaps/_data_manager.py index 372e30d90..349d9410f 100644 --- a/eomaps/_data_manager.py +++ b/eomaps/_data_manager.py @@ -578,7 +578,7 @@ def redraw_required(self, layer): def _remove_existing_coll(self): if self.m.coll is not None: try: - if self.m._coll_dynamic: + if getattr(self.m, "_coll_dynamic", False): self.m.BM.remove_artist(self.m._coll) else: self.m.BM.remove_bg_artist(self.m._coll) From 8e1f80b3aebe89e596999cfa151ccc5047859f83 Mon Sep 17 00:00:00 2001 From: Raphael Date: Fri, 16 Feb 2024 10:20:26 +0100 Subject: [PATCH 190/240] trigger keypress callbacks irrespective of the toolbar mode --- eomaps/cb_container.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/eomaps/cb_container.py b/eomaps/cb_container.py index 05bbbe978..5cb938948 100644 --- a/eomaps/cb_container.py +++ b/eomaps/cb_container.py @@ -164,10 +164,11 @@ def _objs(self): obj = self._getobj(m) # only include objects that are on the same layer + # (irrespective if a toolbar mode is active or not) if ( obj is not None and obj._execute_cb(obj._m.layer) - and not obj._check_toolbar_mode() + # and not obj._check_toolbar_mode() ): objs.append(obj) else: @@ -177,6 +178,7 @@ def _objs(self): if event.inaxes == m.ax: obj = self._getobj(m) # only include objects that are on the same layer + # (and only if no toolbar mode is active!) if ( obj is not None and obj._execute_cb(obj._m.layer) From 1c40f50b320b74f299940fcd9ac82c22c4efc260 Mon Sep 17 00:00:00 2001 From: Raphael Date: Fri, 16 Feb 2024 10:21:18 +0100 Subject: [PATCH 191/240] handle raster-aggregation if block-size cannot be evaluated (e.g. None) --- eomaps/_data_manager.py | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/eomaps/_data_manager.py b/eomaps/_data_manager.py index 349d9410f..79f1d2ecb 100644 --- a/eomaps/_data_manager.py +++ b/eomaps/_data_manager.py @@ -779,6 +779,8 @@ def _estimate_slice_blocksize(self, qx, qy): x1 = x1 - x1 % bs + bs y1 = y1 - y1 % bs + bs + else: + bs = None else: bs = None @@ -923,6 +925,8 @@ def _zoom(self, blocksize): # only zoom if the shape provides a _maxsize attribute if self._current_data["z_data"] is None or maxsize is None: return + elif blocksize is None: + return elif self._current_data["z_data"].size < maxsize: return From 72f07b0e168a137afd17e3002faed9f6d2437974 Mon Sep 17 00:00:00 2001 From: Raphael Date: Fri, 16 Feb 2024 11:23:03 +0100 Subject: [PATCH 192/240] update docs --- docs/_static/minigifs/basics_first_map.png | Bin 0 -> 75508 bytes docs/api_basics.rst | 57 +++++++++++++++------ 2 files changed, 41 insertions(+), 16 deletions(-) create mode 100644 docs/_static/minigifs/basics_first_map.png diff --git a/docs/_static/minigifs/basics_first_map.png b/docs/_static/minigifs/basics_first_map.png new file mode 100644 index 0000000000000000000000000000000000000000..69e5fa18aa8d2d70ffc2371b13afa0ed180fcfa2 GIT binary patch literal 75508 zcmb@uWmHxD7c~lk0wN(TA|R=BmxOeKf^@fpASsfP64KoQQqmwGk|N!uAl)I|4R@XA z|K9h@{dyfbV94>f_x`PzYtFe&@Czkrth=Olk&uwEWMw2&kdST}A|WAHqu+tQ8DA3c zhA;e1lA2DccIHm+j2z666pftT+SobSSQ=Bhm^nCF+Szil@Ud_(QNDI^dg~~_%KGO2 zzJSHf!Ge|Y;<^>y1mmrYmLn1pjuGMya=u8OB@!|clB|U2E7#P`X=m409b?UVJMGh9 z-=F)UV*Z?_{a*L%+iRa;l`k^oL{Hj6bjlaD@utLYu?O9MH#Y5g(^)#X()L))P4D|FDSUEqVW54A_!ICzi%@Wga3c~&R;AhD(dHG zfvWx6x6jqo2!kbB=6?DilL)%9;RX8_>(s=*{sh;NffDrrL+q)son3?kl_*sdn^|{k z4SAizvRqp^Uho&qg@^3Ms67d+^mKHAR=>Z#Z1VCkACqN6{ji<$rT?_6&GcG>G8Di2T3_2C@(@-`ZD-`!d~j6}*p)Z*6G)_C=^Jui-BXz;F27b9xg@yN(NNl?8M{D*jA zKIIlafBtMvL7N{);zWZ7p33hS6c%Q7dAc_~IhpsOLyoVoRN*#s87va&M7sZdi> zGrY=g-ktwd>%0-az!xl$<$B5YZhPuh`DIN*jpgtc3^*-#{)@}Yl6gvLZ0zi!%E}Q$ z%-U~vW`x?x$4d0F6;pUf9z4h_EDZhl5v{SYvGmQ!pJE+_6dtU1@80$H_P)^2=xA>b zL`JzYx43vP;dp&<6&w;`JYHs`sjZ!rnJF4@mr%3X=E3{-?{}OHd?`JI|9dQv5>%N6 zO;6=JzvN_6 z&-26g)=Z?Nq@$$<6dD>DNQZ}q`36mm3lV{V?e5d6Ha1M#+uKDtHQ1h>o($?m`6RP0 zOP%*gd2M^=e|_xg>B*LhV@OO%!6zbW&s9true6BBN;^N=U?lgM7#}AHS{A2Aooe(< z5pe$Z_UND5=GN9r6_tgS08B3HKldmoD2{h#l`GBrTu*l&V`F1?nsO+m3(96oh3ThE z!H+U>#M;**g_@eT@=nP((zYda<_6WHpwfqvPi0=I+taa@|g2 zwsZt}r)dSw4_;ARxkO!Df0bYT{Yu!KrFwOACwqHQDEsiQ2>HxggYG*#_u5~QeXpsR zNEUf>bMtStKP?7jpF!-)h*MV?|oj13f*en+aW}`|=4aT@mC$ z=My{@1L;>Ydp8;o%F7>g)zs94-|w5gcX6rKWl89%tf*K@6L5zAj!rST6YJi+CB%iu z=cv@ePa(0pt$%-|MOzxlRdmmpeluC!l_BD-Z>VEyTjBxl=RinESeu=lomG6}&C0;Q zu-_fW*yHExOK?%5TT3-IHU_u!yHLY>wBfGr3l0e!NIVrnM)falNB?xczxC|p^e%LCH-3*z#yL)|oz3buH5aUJ7o5?%7GZCA2{X#e)xcN4-4x7r@4ZUR>qCs`6lFORO`~ef87;kJug&MQJ(ARr9r7dI^$%12;sBT z74uT1`$o;m(6G7w{Q(jmgd*b>78xI|v~G z^x8-s4g-T-2?uqQ3<=k3++DkhqX-C-`Q_z+fPmX?CcZuWF?W*znQCZhc{bt6!^1;E zOKZP9RcjoIX4o0|xODV|ql=4_ygcRyqhEmy4oXM=ej~f?Ewour9v&T;9dG`H@)HLq zHuzZ-g_P@ca~z`vk}K2_>w!X@8Wvky+fo|}0jDRBXQ*gsi>s?A*Sz%TV!{8FK4Z9X zQ7tVk_Km%arkf<%GoBk7;<|S`ENnp+8U97yH`jJW?CJzidv@DBW9SscSQ19QsxeMY zPbaaP-06s*py%eUk}+{`aB$ml!N-r`-R9-yzD>!@ycOpeO2nL{k|Wof!W$v}5!-&b zo3O;7ssCtW3uu@i`1tJ`mnp{shuTyMuT$g?Q&Ur8>2~Jk$L)N5eSOFwf{zJNGj|bubF=!Ts(DKH@$voY>Yl|hs4-j`iv0Y5i~`|%KPoC}^Ka!xIK#}W ztdoa{JFWRk)2YIueCyzMIdp{eug}k=5X2h%Zc59xY;o&(ByMVhy(toz0hU-5N zBLj^tc4IgPQ$Rq#KQNG?TeZHlM6b>mVz}I-Lq&Q4PDv_;;D%=WXn!=UG;1G0@0~TxY-7Zf#LyJ5!%jRKx`3GQ@fPsVJ^+7~Il4 zCYwb+S$~Gez(kd`$mx_fx%f3C*V59`V7ZC(r%#{mK5LDLkB%1GnQ4Ib@8Dyctx^!H zR;V78m>5)D?c%evn4yBhYddvn^R<=t^&rv*1Fy4y&z~vVjvuT-dB%*MslIx>O}K@6$)95Uo|Il(|~Qy9W6 zI6IqqAVVb2<81#`fl9#sa*t}EIy2<#gJ&+AIs+8kRs< z$}1~x)8bZB&dwyY|WuYyU-*xwM7D*8$dXAq2iyS>>i-ukM zrw2^>^@;HODxB7bqp_t=BlsOx*xqgHnh&J+0g{muAQQ#C8+_VHgKkheHKki^H;cVQ zY(WSZHspWLy2k1^0~Iy3<Z{bIcckT3wuWb94@2;p<||=DYuc)}%!NL&2Bl7>+Jy)`;u(YZBLzJQ8PRMSylBQ;RQ- zE6v)1%3D$z8aP;rSh|e03)}iA@Qa8=S4Lf(M}|h`zyXSZZKvJx3ksqV5~OuK$bvC~Tie>GV!B?asN{Ys#=p}ZPeUt# zN4_KtSmyO)H8Wt^SEc%o01yEP9Q^ZV<)VT}WvbelX!qXm{%tE`v zp_AzN)aLpjX5qC|9HnLj1%lB zyQNX0I}dF-w)j=d^NhNCEZG5L{O5yfB!z1 z|B^bH%TmnLlm;NO=kgTPsC2>iEie_l-=_N;g$iRK)0Fp6c^j zP5Cn>uoCjoF)`hPQiJ4mvBgWLlp3VVVgbnO6B+-0oXe-Mu;9>8#@GwIkTC$ke;Yl~ zcx`p1wIm7O=%J|KnP8Hs)~Y*7^-X->VvQK@#9iWe8h^Yj^4jNObjdaM$eyumORthr zgbx`L9er-5!JUlXEw<94KROaOqNMSDOu}YIOD+>f0RgSq@(H#!BDJpVmrq@`^@V#6 z@=gdR>l+%NcKjS4Pu$$JQ7_T$8W6epRN{kCAZwrh^=oEPmaon)>?yuFVkBZ>Vz~Iu zp!?J>uDy3;aVUga`})F2x3{P2?NL62rwQ1fk3L0urKYA;W{6y6^_z-{>Xy8`Jm7v^ zg<0gxC%R2uX_g}vpRt}_%LYR?yib^P6Qq^(#XnjCqkszsDZ(q}^{m~3dyN4T zMj}kCED0t$f8yk}743`Wq_oB+Uca_#diNP}wPoz_Ge$rBI`uin9V)AT$=^1G@6_Dc z(s#FUjbuIOsLJ)aIv*b&$35Pst+M)KdbYm|LmlN!xoJR1-0sPNBy?A3F2i4B@#z#& zJNq9!i$cmOe9 zVfgdb9c(h0=^xHR!^6ga`ZW&nef}Ela;?tYM5tH<1%u zJm-dd$UJmCo+Cx$?OQdAWCb{zsa^Gz?3oK0A=abzzRAFVsu9N3%e@iG`W?MHhS1?? z=;=AVuRUIka+SFh$&5QvI8<;(tt>z7FaP!pZt)@n`OtT_JP`X)cRaHWL8(r)O;@Am z#SG(P;8{*jPoKEGyxA*3-So2%MYM)nOD7HiXcrZ>GcUNlIjsxXK2FvaC^|0}fl13` zw&WoK`amZh>@-2zx=?moM053A^p45Lz^6kR{ISY6aZEmN?OeHc@0ZU(waS6>$$1m?18 zU34@7&U1bX3tvC+{K+gd4dw0Dsi|Au-XhqK1X_WsS?799swjZHa{b!`^-NeoRVN|v z&4rQq@{7-&mijC+CoCqGtG<>GbkZ-T%+9`%Umj1|g|sT*3iIxKCEXLCLdJ(wo_Weh z9VXvV?O?oW7m{R*gn*<_*zP?Nh_!1x3k-Y6d+Y4Ba)yw5NL1AQG=Xf*pC3w%?Q|A^QIDIe6GV-Tj6{Gb0*vuYaWr-g4n&}m2{}j% zDcvBWjF)>pd+^}FX#RYErXr^0#CsC22s>QT-Ne))rwR^EnNOiD!`;b$E4_{XjTYn= z7AA}qV~Rx~zyqZFv*{+c)JKfD(P?qPfw@Ga+HN#$(hUx&Azw*ZSXc!2+!Rz)qO0*uY@_99w4h}JKaX)Clo`Za3qEBQO z?tg*Pdttidz`tG~3&}sMiuZo+kcIvJ&sNEg_ZLorP7~k4xZ8(Fe+vs~Cnqi}QZB@d z$7MT}X!J{ZZuR0`B}X;it0Gy=IeaRy%L1)RI*4y^$Q&~>Gs*eU=H};sqJx1`fgt|* z>sPja6N>My+yD8WX`sy4x*5~+4s6jr=Ba2FrlqC*s_{--Stl%k)d27Q{hwzCtF=z+ zcs@Qpz3DXr8WnSL=SV{jl`W!-qXPO{GK_iMx`B z@fN*BgN2tjCG;aN{?bL{XzS}(wb4ONE^$58hY$1QXxb$m);rCiY_Cn`;e>~Wr#^cZ zE}yVJra3ysJ9mBMjs&>!CE%yag0nx^PLFu-%?Q<0q8Hve+reS^b@j@a^d_t z00s?h^#p}tFaGr_ynQU>c8c4{%A{2(OK+2^Tk!iE=g;ei_j{Yj(9d6QkQy4Q1m68k z`Z+gKYwj{-6{qZK%zNyY^-vZqmK9fPe@T<^iw4Kvcc$vx?>~C<2nY}T0&*5~156-Y z;SOn4ViwO9^L+eKU7IROwHy9?=eCImPrpw`#FH3buDV&MQg>U;s>bzA%1^HdK6k@M z7(+(>s6;k3QdqoRXUoKG8~tf@Wp=arNZ-DFgGo*tw^9ASyg!w@8#O%7d$qiYWerqe#xEjo` zz$rDdeHoaz_T>6KBhc1x2?j5FZepdoCk7j>C6Xs<^4x$Wps(f#ms=2 z9}5Yktqx>VzMXHWX~e*28Iyxa7sA?IURiNrF84OvD-I{8qub#cc5_nYD*CUyg~?a5 z-W9{hC{rO_P>aUEclXZ!TWV>ahMUbgYt)m&1PFAa+g3RYJW_fMPvHwo$u4T<=zrPf zyQ>|Qc`fKZC+i@_H9)TWe&^s4-$txaQyh;_RVfb)TNI>Q%h@pdpjH+ z(2pNKo-i_IXJz?TR8%Ys++<+Up|{CON(O{KdggGr_Oh)SsFCfN+F#Sp-j$WPPzuxe zPNmu)!B3^&;e?9x8#iSkp1#(;yN6#T+MoNI7aw{*ae1Au(>LB+yN`~J%6<9x99K9n zIvP(poa|+Ne`n_$JkrDMX+$NGy8e#rxKUw~C=$|9)9RS=fli z_~BJ@$0@c_$e6mix}f`U(fDjEYG(fCRBa59)}J#A0^ApsxHbeoeH>G^H$J)ht?C;b z88y~Jo-e?iz^m{kP7oH0b`Rad+Tv>_XI1~X#r^m4}$WSnVnx$+V7W?m+wBNIBo|g|4I0RE2&atA&k&CldgfLK4RVI6DVNM`&;@ zz$^;75j4sG`07pNkHLC)O(P_Pg(QSxVqPLF=~_l1Yag{nnutrZ7Ird?>EGZQs6fXY znTjmveNCpPrx#8k(hu>6xrvW4ZXrb%w}1K9v&Ap{J|U5ey14*{B{|U_C9W;OLqFnH zn8Z(C>8uCPy&| z)e!ywBWrLly7|tJzo$Y!uK!ev)a3*%WE(gvZt7o>8=%#a(VCfYsKmT{soK%p0EBZ+uJj^Wm(t75%@!iFWxY+GerqQHVe*V{n;S+DK>=ipod=%;!{C1Cs$4u)~u@2{lOF5k( zHVq;;M^s2gNWtxE){b~!wN>S(3Tm-q-NK8lKX9J%(0q*c`VQ=p{R1fOTPP^+k2fCxT?O2AGIV3cuhW<<3EeRAQ%hsRKu!uwf8O}E=PDJc_7BYo zfow#_Nd4-pEtYnfO2^HA?N_R`bW>_2#xMBIiSQ0DPF~QFY$NLG+lHK6LN{{nGNX@s0|XGZu53Z~<3DYSFz{ zuYSK!8*w#x2z?R~=>DT?Ux$(^`=S>pfFd|JRm$zZqBg_TVbT}^N4+^wh5zuOH4&@6 zf@>s>n-mdETOj_?{%ww=qGs-1rbqc}Gl|Dnbj17bo&%{PsVzq}Hn91#vllUfyio7I ziQCc5VaYow$+h|GQ17~TS^VbHLtgBM4^tM0qqY9T_TH+r7h&J^;M{o-BS3Kl=d)oEy3kv`{^ z_=KlFj=pavy+Un{IA|&Y&{fwv0Lep2`PR)K9521 zX#++(&UJr(pU>lzEl)Xv?(t(}Mn=Z3>c!o0g&KcrP0-Xfs*O9}F+xU2si|GX9RPAh zg2Nv_?BRoVLK<96322oL#G}AhQaE*NNf+^4tc8gz6J(~tjj^3#6HU~4`GoXz5vBdE z7<$3?`~HPvg74qnki(?=o!3gaLv&=2mxG#{Ki$%E>TaqImESIoomOwsmGxa4P-Mx_ zaL7%^N~XVjp&6;~d25?GDQ&JDvOsc@%w6lgs^oJ3^@3hGed!~G#opKY`(jynrROXO)G=MJhwa&>1Ft@l7{sL~w`SQ*z!m!dFH6Xv{>9`Yw$sKR zEN*V@KSf%2bQhr&t{o2y9++|BUIwl6nlF?-KmZ_=vQ2mAs1S?>9)^++xj0yk@EofYrhczd27n++Iv1MeOZU2)f;_EUQH z>hNd93>+(IKo-BU?1a#<4(~jdRKwzwm!=Z)AiMySp!~PO%-+eVwWZ}&=gqE-xp`o2 z?uzv!0V=Y7z3WdPNVFO+H8?6O_SSeG)JTzg%r>d}EXvU!PyX=WsA0V4mSB=vCt;w^+8y-=sjgWr}~SaNbZylIqnB)$!xSadr1N zVA}8^_W>mvTAj^!na}!2p2?PGRKK{zf^ID~j-c}XY76_+cYDP6(ZKWchxd)}^p6ut zU`lB494aeM*Yh$GpS@#2LR9k%;WQZFvWkinZmv-@YaMQ%p9hGrUGFV+0JI5!)*DX7 z?|Z`OO=MGdwT*vU^z@%#y;q1|3K1SL;rYZBy;ACDy*iwSTudIRiHRg2w7pbQqot#} z1GjVU-aX-hzSLAQfDD5pBaEq(0XXrIk-JSQL=WFSF-RjGASW0%u))wA?OCn&xF#sz zN+|B3BOHIX*p8*3sA%utAVw7x85b8IL4{C=88u4g=I4E4RJG2Jw|;>#H$!5htxXEE zj?wwyI!U7T-pCJ3J3*e!T3*biy*XfkxvWOfKY%jFZobJ!F68mNul*5wrNdI|Hld)~ zVbE8#!p8FAr6p4YIcnEbOi4#aip0vw%AiqF#0P=^Dm8VsaRKR72Zc8qoK|l!**f2A zhNr>yd>RFzIcbhj20FO@!zLRQ!LG9n{xJQ$=YODZvHc8Wi5D+l8o}h2U(n!HUG>5h z@Iw2$SA>ny>Hr z$g#6qW_||+4JhU}vLDaY5Z(>oS94q{OTN%{M5W@2_tEKf$|%qO+k0bb{^coM!urGH z&)IhV6%`Dm6K=1qHt;qtB4fYsIUR)!4)IEftES{93`EK1n3^vU<9LFi=H}*>_1YHW z?%lgtDzq9LoSb)UScg%Ws9H06I;x{c9*TZGc~rqMGB`G70Ym_qh?nnVjUDpm!onUv zN=c9%@SK7EncLY>22B-C;4v>RG3d=egU_6zjAoihhf_Sub-kLLRUR4~Rd2O7-7v1V z%|QEX9;0MxmU}RKgDfh_s(-=vf*}r%oE&;qxbfW0#drI~I|$te#8cYiU*u$D3WkQ1 zD=RC&L@X{WWR2$mP|cKm@Tu=jzDf=EcGv{;_?*Nm5I++T14X>&nBLxb-7;FaOMd4u zp=z!75#QG2ySWGvbrb80e>60iuR$PYhj6_<-(ZD8sAa$VmvM)}5s!&+Wza~vve{`(&|;?=*s8A%2XZzxMLliU^x zQ9nM{HT3m@uG`hbTDM$oCNOwdNG~Q1z&7!Ie+h%vZia@9EfNYN{^@1y!bVYV?^t?X zc45z{{US71Dj}gqU;qHgOb#prz{I!D&KgA7+)F=ySe4>T3rrTpo!@P}qlpyWiNUWJ z%(_PlzU1Uq0RN@oHr2=lQk6LvO`czW*2coZYWekR@A!CSs@4&SBt?haq|M&xa8_i9 z05#JoD8j4jcs4gOJvvAS1!v;$IxsA>eePnHL8rzh6J+%)i!X@~f)mx&9Z4g3gp?tE7Wa&$g8d_UOO&oO;y2p*p*FU_eWq?t9 zaT$}s=`aj_N+*0y3#`=JgDGLKHC!tWdtL5HdtLM2wErI(5^0U^Ed$VBc%*ZZ5FaqQ zovoT%#H6NP%554jfURKS#&lz>)B=nTNWIgp%T*a=fZHo{pVfv=7g{*14L%kC&24zz zV-KOK!-O8$vn(MYWq%-bz0Z~QvG=q3NIyw(y{D_9QD_9V$<6tD*J)vCD=P*F`Zl+# z(ty%ZRuF7f`qL&yttOIesm<9N?0%|wgxEZ#g7JoF@`9vO841sX+Vy%~ zvLep@>nnUm>keMwYYsLZ4Uad=FYa?YD-Ns1?AE&9@64cGpIegw+LNH8*q|xhawNCh zxa}^?#&?>*u|wEJ{NcxsbB!1eWV=iMO4lwtBqp2gkR_Ph@e;yqTBfJdz|iwlIMvL; z0=z_z&kws;b?`|@f?{G+F{HK66;p)Ma&9h!3X83u)1Ksh+q%LEo5XoB8pveZzQO|o z#LGIDM^PSxnGmF4KYFv7R>*F+paR%cg$ozlC1h7j)$6wzPw@{6Cd5$P__!yeB_%YP*p|awT^iUBp?_=CdspO zvUYisQ#zCI#kG@XbVMesCHQ=^QK|Xz>on`Vt7{op&;sv0XxXW}GiWj8i({KD^Y24L zDJV2RMR&?5noHdz+X)>zPp_+h5<^S7_vr$QMZaF=V5JW^e`wHeezx>|#{*x=Se}Be zJ?L4jF_WvV$GfCj57zAjk73yU24_N&eNoZ1?4Vs^+gIzjn%J}~(7y7g&1LIw)RbIb zL{?o2s4_A~YkG$7+%!V`Q9EdVa-q3^$P(f#7&=~MJ+?NS!x(5rhJM(nV`va1&7wv;iujgFV(0=XEAT+YhD0&U4A6QS*%@^1*W)Co0~zaeFJd4Zv96L9+(e9imp1_f=9?WY{Pn_%t-urds-ZPAi}3pV)D%ZZoO~L zIQ44=qLSi$bE{dN%G%$)GcpFea~h@w8#i~hRUE^o2j>sLu4rmzW@Kp@40eHk|NbFp zlrJDfMFVR%0gPsdehH2f`0zlrl#df&UjOrr_^2&f()Y#JFF7+UmdU9oo{V33;|u>I;%zS2Qiml$bC~0ATdfL5VPq z_|@ATwW_>B{Zgf6u=N(TD&rTGr-fc5&ta&Ml9IX|5`Zb02eLKDsG8*}0~ZY6P?@Ni zlb}sLj$0Wj*5UQ_^+oTMVTt?@(BKiAlS2zc+?Sjjdmv$eG3@N?qvhpIAmz3iEHx0Z zdGkiH

    $tEj)h&>VQ$w{`}C=y#Er}gi}7y`{twOHyvEL%plyRTU}!!w>-D0V&sNK zMi$qGsKM#C6SpM)L;wh8Gq4i8DjG_BDPsFvQ7?PkBywdrizdp@+)`RW0=*!(d~M@3 z-tL@W)ctuRCf)BZ%G>i^99sP;I{S&CnHi4k?r?GInYzMDg20g>?&fk8#iB=ySvlFt zE>fgW>P>U=qK}$N9V!2~JwQy8Yj<=+I5 zS%*Nv13OJ%U@jdHM5bTzRQs!l{PIek9NXH1p+VWoL2z$~b?6VbM0n~$i(?1#S&G}? zXE%kO=#o7>J)tmTg74?o677Zk6N3iL(u}02?s!^!SBKSGKxdjlXmWu$MeX-xrXWx} z(7}V33KM~9kARa5H)H+7ZWw3HySmEEi;iXOE`l$l^pWwWrk3F3DGCZfSH2ty7$jBH|^lZ-Yt|xBek3gdEpbFg&)3YP%9h49 zfqxrv^g19qJ2$sIH_Th5R9`4wX}x98vdP4DOVe~Lre_)QzoYz7k4$jH61W~l0oiw! z(0lMPGZ*6suU2Y{=?ygd%QkH;ul9|>uvun&0X|O*92|?${FnLp`M89HY7V0DWiTFs zG%X863p)?H5sZl6w)w+DxJeV7UIWigRjb<%x>eH5SQxkCN4y2cv>l6HP}nXm_j_2W z&dxu*D$z|sFxG?5?Z|aSv`oiUde=OY-}X& zH16280hpelFAxb2L?X%8_)>K*Zq7dliO1uN4Z( z7Yo!&6{EcNp{clj$)hWGT;>8;{R=enL=LmN;A=2`^3#Iu>C<2^UWCnh8z>qZ-&!vG z%@}>F=;qMvs$tLK@Z0Ejka}Pmd3v~kPPM*-QeI@@%`Nq zU&lKp@%WUZ_HrSyuE}qf_^P=Iw498g=Wou3^Yuiaw-cQ^Q;A>wt#jc4EcBxI$3wK^ z9ejCdPaiohWciSYmECxQCnl>3p(WIjlpqbJ<_{uyP#CPv{Lbd%6DU7FQ8O^zU*6d0 zfzuu@H=(z*EFekJp3|*DzM?RnwT07n`b*)piJ zoVLWhzU8uf%42IF7zA87G0v5&lpDkQT7INNomiv&FTp@U5<4GhY-kDrp#l`i+{%jj zzmUEL*F9f;$JGk!RV62^PnP3eY}};P9m6w{G`haKap=e1z2StjL)D6m@l0C2m6Zq9 z5#VYtf$_*@qCVgw&ULZJ_KLdS#mNq##&-j5Ao5`5mH#bJOu}dR7p-sG8_{L!5^x-y zCh_o$so8mJ=2pTs?3j%xW4&mTKWJ&LzMF<&jupFff5>FJr6nWN-#inJ;N zVa{*MfJvQ2??>;^MtX<~*mA`n0z~Q_M1$8)(Bm|6Zq86eMFkxbb8&dNXR5&w%~M>} z?NhS&6;Fd?<}1-Gd*peaTe-1&E=+*$G~!*fqX?#^?cCs#XmjvEf2E{z`De|$|gd&UT)hLoZr z7K%9a59cjkQ24-)mjxqcDxZDUph)qhhN~+d!dwE@HZ_hIPVPN=5 zLXu*nT74IVjwMIx*D=_Uh_rNlDG7vY6cJP9tj%~Rv52_iuc~aZ4ghMdnuLyP-|<1dmy^T!a#C$bE|kg#0p=) z2dwa5vf@+P0X=E5ol>lbglWErbT#wxUSB22g9jsx4QRgt-+TdMalmln3jqQv+RKQj zloUm6hg+n{6Hf~Bm+AH7x_7RgY-bpJ5cR_O?tO&H>ajx|BS&}v-qzW3%x#k{Qx5a~ zRKN!EFbROY#mL4ytWoyCJ;iQAQ>);pTJAsLgzPmA&((@g6AHm&u?9WyXUL9$o{5^4 zR=_;xn4w0=-8=0>x4jbj$Y;RgWQfFLJJnfc^h=*#%(h8aBa{rj8Zgp@Rn7Vn_UkatWDRQSezV6oxUyYNtjW?XllhTYl%;b6Ll?Pt1lWw` zS?(!{6fuJnzb0{)lIWA2ypjvuzvKy1i`=H;@7vVgRLvVimRjM>O@!M}fb4=8P0C4lc3(9>@jTA3?VeN`)XktwL8q(nkW3U1#Iu)DDk zp+L6?-gHoZQirmoQO<6U0a|qnq*Ksy!5!gnp?zNnvFsOw>zzK+BnHn>z%B6Gj!4pU z)4)=Hj(B2XBAfk!1k@Lpa4n@od&uZsp;W)s^gwv!ihl=Mooxvt&Y=fHV zGvj|p_%T&0MFw?VP}n_MUiyo^t*f1w$OcF5sT8Ny?nXf~#@|fU+#obR;r~y_$~E(O zLq}Bo{Z(-f# z@Q-nEg!cCKz>zE7GkPK+Dk=)IL>iEHuqLKe<0T~5ZKa@HkE1I8EH-wZ{+;I&&~rr0 zv6lX3Z;U_F$Tkj>dQ~!whsFG6A-e@JT}@2{fBI&cC58fnAp;UHFGO7lyCJN{2=_`$ zUUbhg7-FJQVifglvGIaYVaf=%(eYg^m}b)ch7RHcuw(hUwH)C2qJ6Zlu?2%2lcnd$h3*S}4eCVre}j5g}Btady;k`2PpuyHJU;YU2M-Q-YIU5yQ(B-3Jm z9F*UO+}wNLmgMRFXXVJ6nzG36>Zobqw5_t;h(?ID)Qc@Lx8NUb9=1jfh4Mq!xc zz{Zo6oegFO6mTc0rHZ)j8mbp*`ZQkW9hIR|u<-GbprN6)ZDjBo{Az8f)-2h2f6nSs zoQ(W@XU6k%qjb8>L2v$m8kW?+?;g2Bt;}=9L9X{k@rTQnZ($)LnA_Ta|2_)CP=lo{ zL_Y=5WdZQ5&Ge5rP&J@$WIah`AP56D!Ek{peIO1+cuLAcc6Rm<&v=*R5ZW_2rJ#9) zbD`ELQN38l5sZ^Vle8Xe2!q1zZ@2R~hNc@nqz{&=^!Et}TES=mi%PVDg0QkcCMG8K z-F1%&j6qU#G01FIqfa0yI$*^pC@9GA`tl6?)!-o3h^{$MgUv8{M#fO6a*Wk#g=2SC z8JrPdFv>s#@;i>xJv%q67a^GQz5OiH=pXT)FK73+jAA%F)8Io(eewsET{e2c>v1O6 z1qUZQ%Z#t)3L+w07nzYkogjI*+JuIcT2CggW3ic9NHBRc*84!tRt_~ieT={!-PaZM zDR>I*G)4#>%nIJ9?!fV9#KxLZHo1IOpi`wWkn8Tg9nTFEx`cs&0gYbUCX_=>9UT*6 zV=aJd?G5v?Y5W({xC`EHzh)^1#SYK=?j9?4e|8Jt(MmJw{4Wkh76Mzu@h? z{TZqTLRUFFbOIyTd#G}V-LPec;o)J}`dS6a7Ci2OKri7F5_aK;TvGnyi~9h?(Nm)Q z60J(2cRMr4&DBMW!8$D0}aAmyG<%{!lR-Y~8!n`CotCdg{wI#MZ(qg`zi3~~7M=~H;WbZ8vi39QP%l-awueOGuG1Bhuct`efO#$tfwBuMeAzTK_(%lx;);3XUpn#r|YQ2;y{bXz1yB zq`!&`jbRIM*F@$mA?X2d+dx3=gdHGvcJ(hE=ZKHK8EWv)!WaI1WlcZ+{dLiTvx7s$ z!UmY*--4z5#1`yQTCloR`eG6PZU<<`vWkkCW+y|mkK~Z!ta-9e#xwZ89}y3$jPN#5(wTm~_E#nZ&q{a+3&0j&^gn`LjEjr=9Fo)f z=86~W`+2aguw#=4!2(_H8wnMWus;X{z`%w)DE#S#BhQ!R8yg#EIpswu-gJ=$E0zTL z-K^+4^1Z$UjdvsL(%XPwACqDMvf?(K5(rrq|0zK9b@MDaO&(ZGqfdi+0;Eo)wb+mv= z-4DN$G+7FXC>@Ksyv4pdlgl*?=Eq zo)7XLmJmeTU9o%kFDNERVCbahq^|O(#uHX^QNIKH768u*5XNB<53_g+5)j3c)^JpQ%YMJ;_9Rs6cMBSxkYS4kY{tatXRq#qcAN1#)@A+| z^jX1LM`WxwdQMJG1!{#vChebKBRaF$9^xDdFKoS`V_<+=Pp{k#Huy%1wD5sGueP1; z21W`tr4bzrHo%^S*S(#;1)%ORCuimOwlWegFE0{Ur{#De-$jB>n434Zsk`516fi7} z==LwZ>hd@GU2Uu)eYQ3fgCMtO&8;%a<>qsaG{O!qY@B&ANJe_V37>XMfxX39R6Q<(zr_?f-p$y^sB0L?;_{pOwd;X<(N-ZxF$51nl*Q!FDM4 zV#&zJ5bjR+WuLCgLJuocNFZ?E3gB!yTX|?Tn(qT>8@9KzIJ__}ELN-}f++gcga?-B z1WytBj<6paltDb7jaY7MWCM%A+wC1Jk`yg=r}KZTC1N$v6&zq9lZlNT92v_49c0Hj z9X4QEmySY9>uPHeJ7wzX@vfX#_h9c^rO6A$Hho$;2HOu}VvK{UDD}d&n5PD8JT+~Ndp?C`sc$R$@j#nLDQ<9ZbOF2;w2!(iz@HEZp9T;b z%(x>8hcEVY1G8O#E>g+)7)>+${82o#BAD1y{W0KqBdEzdCdJZJ@P|GtYfiXocI}D@Yc#1 z3fbQuBv{Ok5KH7h%VPX*iw42Czij{V4R-a(7CXFuL9>Px3ojo}j-<`1hBbKXKO{1};6wt}Rcvj4!U7~Xz|HNar3$Fysqi2SSQ09)#=53{ynRvL*V!BG zpNI}?A11B6RkS2}dth0neN5+jW`f!O{9t$25L}rg4;pIS+(7l4nVE5Y|K5IcoE_@i zM?ju{X4}R!FTE~w!4-rGs0xXQ`8=Sk>;+}hM+NDD5B3KxKnOULcO0FxpQVbNT6i(Z z$#t4>v^KLK%p(rv{Ctc&)r${rxMj%#fIrGz5VSD|>(-o4dR3egNWoZfQxv z!$S}hIg1;gCJaoh%+yLuA$KQf_;dm&Tia6&9S!d9y3UnZ6TpE__>~v@LW`a!cu0sz z9=Kathtjq!6S(>RKB!^1UY97`PF~_QQea>p4ILfB@zH~(NH7}489GU_g77an>t<-Q z)!Osf;`>-p7i{+r!JIT!a_}Uf2R!X8-q&aJ(BV8x>Hv8f3pEXlLX7ag-=|Ug`YIEE z%QxE*BD)>>Z)+UUZpCiE--ZsO5s8O|-J5U83>%MkZi5N8xA+nGU%Xe}&;Rr)x_Qr6 z9+e4BstD`86_RAF{mH{it5Z3-?oLw`Cgx(qHVwD}fTl2h^F|S(Lge2y<}dHDaVIB+ zP>@-aJw0S(g1nbC!Bl3&v;L{J3LhNYt_~Mu{QQ3twZ{!@jKt5Zu!cA}#0Q#Dg~ahc z^%lJx8>C`jimc5}MtKXaTtPv>#_#s|rPN?EJ(UBv81#In4%Ky*4qgLPBB#TW%=T>4 zK<})w;o_3^@MEF^3mhS>qhC$3E5NFruB6z(suL`O0(WZ!$fI<+>CGe$Ed7S(;h$v!=4)QgZP>$G5kl56eT23l{19RfbK;7=s#SoXpK!S(A#r!MD@q|cMLEi zaBFOAPsLSq39y$7O#qBmmppb0%)R}u3`AAxz8-OL)r+(-@4Zdo4R3N$ITb;3^OfG@ zBWiH;Nhod|lx!S7MeNHO1Q#@XjZ9B2a`l8@zrJ*&#%Z`ZyFO7h@Sp;m+rc{P7MYMB z|KOR0@h^kjUpOLzfZsqZ1A_+a0?uu0$dB1hzds&D`*42raCf7$XZ?2}F*GM2mE&Qw zNZ6f5&!Bqz*av9ew;(x!u_#o!N%q?g?_O9(hd)~Rnhs6{$Bo_tBcP!W)>@bpklE}; zxD|TF8^?}f7P5BTJy5t6nd^6SDW5Uo*Ez)Tf47{sju`0fHineioUDm}75SzL-(Md? z!ou2SXEStC6 zYJZz}=Q0P!$N@3&j*zWzn9!Zrw@z(~qv^Bn-)`~6S=TJVw+7SR{|IJ1p7|t>qr&zE zVjUcIR>8&fqQT7>_Vod~T``bHcwoV{Cp1n7pBH(O@4k-N$;VAF>+^5JWPT}JICq{7 z4_rc88nKn9tyl-I!Kt@RlbjtVL+plH*EizYDY+2ExPK=~EU+|MY~4H}?ov>mkNE5N z{`ye3o8c>Xk(2lx=@2`o(+zY51y5gp%tW7QxOqE-cVlrpBPv#-l-(UYJmL3Dtxe1kVj>cYogM0S~SZL^WUS!ilL%lum66IHNmQRkuh zN|Vy!q*Oed?2#umbju-bHc^dP5>IMX+w_|hd1)S1aA4fQA#X*n#?R6Z91-UC)4NxE z-^usb=V4e0MaEBvb>eGdVCDVz_t!(!kzx+`5Q&a~frynp9o(x7eV^+qv@+K{R%j-f zS^p19=N-@G`?hhVt!boTWJ^gB5fMW6o*5Ogv$9u9WhG>X>{LirvXvRxBPtmg*?aRG z_xJbw+pFdCx$o;b&*MCf_sPgH<$eH7I?krP{9aGP^&%@ZJL_4|VW}s({y2=$z$DOS z)^R{^Sn=JV@K=Yw3`Cm*eKUspRy9k~5cd#&t`jet(=b*9a!)5!AoUU(xK-e{j}YU?;NYUA4u zL#;s8n5F`a$ai!+m^bYuSGUr&;2j=+;E+jEiufnAd+qH(o)NI95dn^Z0vGA0D&`RN zk@i3T(eBpIpXn^L-_IzF>(|c2lyc}_x-0Uc<4X0A$c2|O_@RBHJmYw#3aMubyu4jG z-Eh{|#gR$PmCaE?`Nb!~5H9U=@KB0*uDNc>y(0(=R2KaB@dGd5z}T4I|Eu=R1J!7V z?Eekcs_-(c7?Pi#u~h=*VsV2l^xhs8R>rRIpRZ_K7bfLzi*0`)62i&GHWq3KyVfY| zbhb~I%fT!Whxv=BTjAI|J!&Hp1D%P_va764y_Dj}kp~vV&sk_&EZVJ_X-Uu))0}B5 z>ss&KHnQ^fqVW5qs2F}9fE7IV@oKws7N;>=BH0+3|V}m zN5n-laufhxtEymX^#^7F*cJ8{?%Uw7!{O$K*#PQt*DvZNxpfLkcI?8&vQ}ClW&XL{EMzthkM{t+@~`5k9}V$#g8}ez6GpGf=4_ z`EAKJw{5Cr_J;Y053797b(DU(r~}Q{c|Jyo-KzHQte0Q;ruD9zYmB!hijD}mDcPhk zBfsI_fQu~`wxfOUWy}ZEzhFPDjA(-K=91Sxk2h&%uT4zF0yAg{WJzbHL29kP&;FBq z<9=~IddG+hO)RbbbG26N+E13Uv0eBL)eQ~u+>@vf0hGaOO2cn+ABAH`bhO9~D}XrU zB9!>8J-smu*<4@H+`JqH31f<1r{?>2)^q2cV`TQxWJ=gQ?#j-xuN6^!Je%x&Bl`^Q zDjap-8w}i@!_yMYXC8*}qeI1WJ~syg=cJ@Br$fco>1HPKd;2FRGrGbeBWuC7AQFoZKqWas zITklyZry+4;u~f$k5t5wNKWKUR5LXiA_1J3x#iGc?m@q~xk-dbkr$Q=Qrptp+AAx2 z>TQDkMm?PvY1|)&xwExCS;vk?zlb;-7$3yFFxGBpGo|f2Beg}_k)D~Uh~V;X9TIic zkf7jTWR?G-pRnvLc|`V?x;{}du&*OMdS^!(DJ+kqxWQK6 zzq57v*A`@0{aodpHZ`3yU8;-UQQZRf<5m++n)F*yxG^Hp`j*(17R%=Llck`$b%AVo z|LRoFSIH+YB4g_?sN6;{ivVZ(^5e(xNVzB17*__RJfO@VnoZJ_EK3dV2i!w!+}uZg zY|&W&6-8Kht?pfeLadFwFrI)@BS7z@f z@qHLTqOo{x{nL=8^plkz#MnLhXrKvZDhS0pPHmDM&|~_SKN%p~?kZH^@xV~f3)%72 z&|YH}9I42sEOoC+;`@OQjrvR~hktZ_KvNkTB8Y6EX9`>1+!9Cd!50B7=wV;K4vtN7 zHq_Skq5H#&-ak0_73G&U+HpjZ5?wd))NCxYS{OWEf(}7s!C~};$0*g^d-mAK$=B)W zl`j~?Wh$A2GeaYGp5BvO2JhIigU+GK)NkesIz0DQr^a<>Xb`U zX=7d8&RR~OGirQo?flz+QEJw0k&Yg0uhT8=xi{FsluBkl}1Fsc$E| zz3(@(=xv+1vYgT+ua{Aflx!^CAksogN{8Y2f+>m0?LABePY#^41DuSQ2jFNi`|*(l z{+?4@T!-NAV%_|hUnaBbe?z+?B(bSmD$FlQP#_zqZ)Xjug&KGm;HBZJfM{r#$Hghg z>NKsNN!T4#zV$#$;3e1S`EAz`wuHipsW!@VIbEYYOPRE(ud;a*Cw2b}{qX1tOTQL3 zLzZQ0r~YcGjK^!2<(DT1BxV<=4x{3tWWrfI5S@B|-B@xH9`Y}t6oO5>7peAkvB7C2 zRK87-xEq9p6=&9ZTe#3`sM7F&RCqgJ6tx%u5djkjFSh@a6uy{UiUX^ozkU`C%cqvN za>E!}Aamv3{BPY8U&{DP*~g&tBlh)MlV_61mJm8OA^OwPKSjplJBZr6XXsvn>6V8{N8fLxCh6sadnbHR&gs|Gcj(m8V&1 zdv5T0-4+M02?@$u7%^eMiE^p`ww}Q`uTvFoeYNm8=5aM;oKOyc_l87MF!Z_<5v zqi&kt`Vzz>W%|3w<;b&w#3RWggGvu&2meh8WsJKitODmVZ~Z6*E4 z$&02v)P`gy(NqLS##VTXp9Eusm<9dF9=4h2R0o`BO47n zilCyI*(g|oiRtM9AhZx!CUlLJbbf(>hd|i)15E}G&g{g)82&J)wUI?sdFL@Q_yBv8bFJ;EJ{7i9Z((jWOwTu{Hd_%&WvzY(}Ndj7g{Z~8?< z%XZSyTa1p_->kNKPAekmsBv`hT)T}$({s>53T&Jy%xY&azD*R3E+KxpKk1M1y}2F{ z&?r(QKNZ$vnI&&7Sh^NgU$DDX;YokCe`a`mGZ&_hgI66jHp#Vd?e1B0`x@!t^&)oFy8M@a#)<)^S21W%sJ*7e zve4j6x9>YN`xjGx zaU~iu+*_nzUm}P^BpkrIfTU!%IIaz)`7M9%_kw-Dq&C0yHTdn>cW~(UuR@l4Y+|-J zg{IYgkV4paSMB0Hwx28ZN*O3XcUYhNESX+%W4YPf$JNw%=_VZ6B*-ZH!*&I!m-zc( z#6{S;I6Ghb{|SLNhjkZPt>u*1hjsk4$Ii`8uS(PDUa7*&03j_Z6h4V?CwFysA6@0e zw_AhJtjp^7>2x>$WUDD_-$7eD$2*&LJa|QnM_X8c7)x%-RBl7_MoD&_lsK<&v)sCU z*E`ZdyY6!bN8cWi*h;SsWg0%C!$6Fc{r*j7GVI0HLBKcD)aoD$&dkkeT54)2SC%KA z!0SKq?_`$o=rvZkh^w$f6O*Z`swyGR^#}&>r}0V5@#1TXM6}i2`Ap?C28}+y@Ytwp zFQ!QGR+S8Q3(9%+zWIek+7GU)g1P-W-#LT)aiQjR&OBC;{ z2tT?iN+JOml{>ZvI-yxL!~8Mc8)tQIJVw&d=5}W$+-K4-CA7aS?9p&ar0#}TsV8UMsfWeF6*E9r;Dnp zDQ{B|7>#e}&igJ|`2-%+w6yqLw3AJNW*FU*KkcRGKXs4yZh4Y3@x1HIJ3>!e6)1iJ z1X`c;bXw_JY0K_UM-CkdTzbv~gaJl5*-(R8T3T(b+kzw~cHiW3E%lYZ&s-~(U3eO_JaT?0;I62G{ESl11tXX2vIQZ9Wko!IrkL#_Z#0t0>gvXL|OIQ=gOHQqe z?9DpjJBUxf1y&^3Cy7D`RS`-3`o`CjAzb&rRp*mVLsQ-!Nd8+2OgxCTMi_VE{Zz?x zu$^H(npIO_RBbd3MC{s?6JN_~>6oUMz zQ>REown&QTM8u@Esl+MlVNsp=GT5#qsK&nNhOcdiC7%T0r<|OgW z?X&nXG3TG2sMv|q?k_4f_vW(`x|9Y6CKhw-r?tH*?RJ2Z@P!MT26i3qUF;QN z`DcC)+$HYN3JE`GQ^^|H=W@p8CQQ`djaU#yNy&{*58$OSG`b@Vr#zeDME`tbHk$k( za7=W}$w_uq-9Z?sI?12(m*l-91cA_om2Pa8cpp?vLL@xUq<_fD9VpxMfRFlewZh8s zG707C(_oC%gZmSo`Rus`;kZUl5rb}j7+c&XE?o6y5$Xz@DBZj#OV)N%OgNBn$s7OE}Wkt|e0C)3g_rW+asi75URuk|t*<7ADuFZNfGq4wH+ zKejKmy|}KSVQ4a$X~)_X#&PdM@edTyL+yNyvQLchbhqeORQG4-?WaPd&6=$)P6m)! zZ?i(IQOLt46iwN!n>UqAC-$+369aWlNLL7_qsXEFaDeE_#v+O+-ew;Q-X;K zLo9G-w?XTHsE&lK)*^)kDU*|><=1O-W%RAmWi@j5fcl#n2mG?c+% zr81_XLPbOTs)_LnN^0-;G#2xJ5=*rk7OC%5K8TgPjoMYI$s-b{d#<{7j1`gkchLp>3+g%Zo7LG$JN%7Do|VK3LfiEnHa)U=Yx zG8z2Z(MQIYtY?jrO^+qG}z*i));miX(by$*FfYcu;~-38q(MwwSMw12X!OA08EK8xA)&_^njxG%`epnM7BisiuY;BUvhe% z-@K)|nAq)PlO~DT2%J1i+mNejZ1u|W z+MubFOUCz<+EA5BJ3!t$R_n}EU7uardTs(Nu zq9x*Tug4=8Z}40Zkj{aDM{=xRaFL_r21dkS1^DGh7%M@a=z~)U7NR>~2gq*R|C<>J zMQif!mvIA;a4Y%=~0N%)n#%%dp-pw|%O|z=nOQ3ZtT76o40jC9df|XSub1 z@3TFNUjX&m9an1GcMR!Qlku)Bbg{bJ?7uoMc|9PEZ(LzpY(KP*TW&dAzy);LGczJ8 zvh|I!_>)893UHGmXb=fFe5lKr!_NZbh^8D2o-o2+pA~L^kzhy zi+%B8xttqEJ#qh|Y(yS40kHn#wH_5V}P<$ow=>a4Ml|nOWxL$h4bl|}Z zxsZoKgt|OtPo+F@1W7Oky-qZ#DLx~mq^@f6b;-gueZ@NPs*a2h2}(4uJ70u^h-+vZ z75MSvtAsa0NbR#dwV4W6Z2nw@b#bPg8-W;bWbca=#BJ$(G}`O6KC_$1jwspQV84>& zQeb&QIC8D?dG@U@yCnUODc>xG0yxp*X0thq0qCpovoJl$BU(*l96E=4G^^gBa}`=8 z2uj{a(ng|^q?WGSs&MT8x|i-}sbYx23ePIepwy*xg?r0nt^tut9Y0dYSy+JSs9Eh@ z_1&T(C*NLHC1I%jd008<>%kYnl+{x_Yr#R})sU?)0Ux>%n4g<#j7$Mo1_9dHp10RB zRX=%}U;0wAMJgV0Vah?CiN`{J$4+Xoc`<1Ui(`8XUOnzw|7-wQ8wMe#KUfbQIypTe zcx23uw`---6R6%AM6c4cvdA?R$8YMo?Z)g$6fPBD{aRA21e3O`S=FVxirxORCmH8A zqemgK?JTsx(+~O+zi2JZ?ZJmo8GFS|U%F(I0eN86&h4|+7ZpbOE5ec~2&@g;mX3s^ zYaJlm?Kx!jn??Q@?UX`p3Hl{1`s`Gld&mCrq1c0ENJ8<0S3-bGP5*@C$I^qn z;y>TEy;zhm(}Nsf0$DF-k~?flGlsqH#vhE~q!pi6w$616hGcF*)+XP5XtM#q%$n=I zMr)ZNF0%6XyfF$ytgxnG;}f@i#jpfS5C*S)j$2lCA{n}K(adzTsbq`!k5}NqJBJdm zPQiBrW>-^-H^G!~exIMPI^FGMynOkDtn9bjJ{u0W=S3O~uC{+pAGzopb!=_ncwKGX zU~@z3;NPJaQ0z-P52%FnBlRsRp&kQsF{3ysz{ve@)#O<9EapxSNCINp0|pk`UgO>F z`Q2-?^-o#%EpJlmYctcak^;@^$oJogd6H$`z7I%?g{m?4gP2&>e6LGT@S8*u&THrQOMwVAmrGMl6r_Z#GL z+e&BX7-f*NOn-gmB`!_TXyME&=Wvl1h6kb(*THv6IaaeTIr@6pV=iB$pIAdwsyZTT zl(zC6$7GXT-n=nWDNjGLaATo=Hp>c+6ayScCju@XhF|{xm4IX^C{4);$Cl4ZAFJ6>ao={z4@(_p{0jZoq~ck9p;I>%oNA-Yg* zvsojMk;)2Wev$i$I~QA|I%W?C(!WtJJg9l@RSJZ{tuyCz=rM|e0Os7ccK`0L&q$@_ z=jZX7&zmZ##IHT07a28Ckk*cjZ`GI?%b9e}nJRN=w1Cmq>zL(;`qn zi13jd<988&Qa!~l*qfZ#Luqhn;^IqSF^@{W-|EfY-Px7r&Pa8ppk%Ih!NXFkG?ou} z0I#iW3X|I9@tl5?Yv`g!TJyPDQ{@wZu#a=+?3-gCKi}u4l6cDvN;A+5)8CWj(N-s| zJ=2EQqfYZ(Ae2BDm*l3xMQA-I$F*5j$+!SaP>3nKX?aIH|CY#0Et-n4U!SKh6?$#O zf{31lRUqg~FrSIH56`%+#(SLqE(2(}MbjSB`d5xND>oA&uKa`(^{NLo$~&NYYi6fD z_l@^gjK_K2?#^i(n_0*#-FV{T&3mbFvTp?f{jtcfc!jwoMN^}X>nB{S+`Po2x31)I z$^Z^wsdwSQ?oP$#Pqq};ZlTFuY2Dt|hUm>Dg0{`c8GzX~#FHnOrh!H9=A9pRoB^ZH zIw#YXe*Whruvr19)*XDXS4=rrIvLRvj(t(WkobA+$uiQ1CMMFamjO&EUF^DmB?sqk zH;AVP$RJCNwlNC&fZDloYM#3);8V)v@R90kc zPxM;NR&u@exPof&XLS8mgXDVZsgx&Se2CeT5GpgC-Mc-dD8S!&%yKYwdxvAN_E%mz+rKgN{RlFkyF83 z@k;O~0CgPf3tE-7}q{5)&T4Q~XXYVEgDSD z`Kz8|{woS0Cl9q~x25r0PoM7g+E}2rwcUnE7Op$o5)3?7LSqx}c-vjvF0_yWEbvygc-kE&spcqdt;H#A-1im>d>69MjK_ofs1N_Z)s9j0grl2A9{(>6M84$|lKdVu*;837bbX*ELveuzCm%U+3dT>;6n#I_f4w&%}0y zRF8m;dK0a#=0x1v6%v#0dS8JqGb9uId|;`pDQW-kp$tTYOR%DaoFFeL=ik*MCPk1f zh5toils^8eFdV&5KR`|}79g%fjHoepnH?`zf7@ZE&A!A&Su*~9KOoHp$8FZqiW4EU zA>9-+ILJ&G3qeD|5LWUzIp^n+67$VMa7!9HjJFm)0@(DYf7X+Q?l%i25T8ErU$}6g zrna^m{T&4b1=vK>Gcyb*TCgn$m;mX!ch5n2tZvDpSiv=Btgls9UmWt9A)b()?8nmmnQXy)ly(O<0HT`j#rDyk1w7b$Ag(yoT1^!T)Gm;3#hqDrgWsgR4GM{_ z9*N_NfB$ML53^2l_es5Y>8GM`G>W#|7qbQ>l$4~OGPpAkUFrf}HzgLY<^f~X&xaTL zPrnfP{iUsKzt1%>tb3AHP}qKxKuXP2(~}UHB+*B^lrw%tQ&-ao*fE3iavRD0%<EC(=el8!^%2BuQe`@zEo*8 z@stetbQ+fEeIRoSM;Y51T$dYFYX4pX)~~nb1WF1e@z)<47SHw{`1<|#gV}TE9(xPJ z{do9(;nHLl&i}yY+`_`Kg!Ug(=tx0zeB0IhK9So9vet2M7$qeWm>?PfW6K!s^L&sb z9#mgyM4nS(;28jr)NI!8)mIbB7of+ z*vRq`z>P~)w@ponz^AgRDk0qha7K<1BEZvNOeVw1t(NvH;l-rxvfA*WyMNF?8JU=P zsVHihnzCbjVTcQF#}4ng)>Xgtjp0UJ{vsc!wcIwdvz;Z)QjeGC)(&l4mw8s+k%o6A z;PzbbdTcBHg(kRgD_wAj`aGAtrmek`g6T?zegPI)t?aHW0M#8ka-<~h9L-(e^KtX)4Q<74D|@2D-DRPA!m#=(Wts~g#Npq#I7}vf#)Bp^UndON3ZT{px%N-( zrvIqZ(9%MgslqGvS@O>OaY6dbp5bQ)$!@~?NTB6_(_97mtfKcG-33yQ#D}GAt*Rki9|vy)li!ZG?7)FFS>R?LzmEh) zGtQ>%)$h{YDR<=Z(e8$sZ1f83HYebxOi+lqJViB3KyBdjyo(u^MZM7c{@(Q`v&pLJ z-?mD_qoO!)I)sGQ>l%r&-$L|!XK*H7Y|=j%L#c*s1VGj~!m#b?rgNr{*|`*r=NC=PJcdf7vMGM$-6c!?S(M3+bnf?%RmtA{1^! zzUNfvcXufHH~!;wrISnvgWVXHr8k^CuivI1Ew+oJV8&8Mh^|+v(-xvqcB*h&hU(L@ zvNFa%2h7}HK%~}_H$Ljw8iqVF^BJazUufB1~H?}I50^OX<*ILqQ4C!(f2G7+f9Dv@A6DLxANjoISHHS$UcZ;q1R zACpHqA5)cB-rf(PPR8GlneW05puoVy^Bl0nId-S6g>+|Law_Z0@{sn?vk{H3`>DP& zGZEV;CP17dr}uJ$oFPcyH=jGs1ngAS)HK0KX=-YE-f>*(^Zpp^n|C6Wgi7>2MT54c zE0Fc5QZ|emTcON5-c}Z5n>2TJdJVY1`@#&1!|0j7xsChX^W#54aEUYl+JhxDm_wKK z^qfT3OCS&o+%7eLuo8ip^8!p7#O4OX4^lC1u@0DOOKU}f#m3@~=)$U%w6uS`e>xAB zfe@K~#OqgTj>Eda#64|4K{`T3WGg@uJ?78x#coDdYe@#@v=yH@KTA9sdxIKcUO zx^2qPEZb?K^xYBS;KD|vu$vdf%-D!Nk+@~#t{q0{uq;y0@Y&_dwx*WmMD5`|jH~wY z$gVvcHZo=mk#26{(E4$iQ$TbkLR4Ko=E$$=o40R$fmI11y^0K7D!Y#tRty(U4HiVM zua0F_Iz;cokkhz7Nt&3Qc3jb?U1FlV0$N*Fp&FCP&+Qnz-E8f*?#j2OXOb)`kjepN zi5LVgzd4WB7TAh-{DSWWa8;Q5kp1V3Mp3OWz8au!I23RFO2nR$|KiE~IT zeqH7O?S9ZbJ*;V#*8KgjGj0G>B0j_gf_ z0p_s^8{3(XH{lP6TrAcLAQ6xe_hYWk7DmsD*1uno3VQur{%*jXn^Rq^yt_X^Z0`YQ zxqHs%NmeCOFsW89ab>!EAnFO?IlcA0qFS#noooN6TE$mdrHKFq35GrE1*ZGC`xR4H`1 zgcYW;5VOs?b4JhnWrf81C^l9&^0*lkliPR96o1G}?mvF{C7f%FyJ=|05jUhoU%hKK zBpX8o`-Zv8Flc~sMf$@ljQawo;Wwvmhqj$+_{PG=@$zfL9wPg|X_$Kb!|%V)mjHY^ zL?Uiz|1WP+{tKT6Y~9Y8bFvhO^~an^wI6f$R9uleYxDTYMeYaV?wmnsBQ#~CG~)C<^7YNQ}}ZJ^xUcgeW-1tD+zWL=z z=ue@-@Rb|Zp33yQ04$$v{UGVf>^L;V_QBRpf}^3btL($$L<*VzK1OiW4gW3`OF#3h z1+$QVimw`{J^*EZ|(c0C4=sV zzUWO^Vr&{dXgEAb{lnvim@qcZo$@-h^fO4lw)T61zm<0PLgZEVd&k_igex$IqpE)Q z=It%ZyYlYyvTAK@(!PF-oV-T@ODMSWztcyD#)Os+(q#}_WMKb50C)_IN;`5?SNL=2 zH>rFyCFMB=f$VhRN1x2LpS1axxd!p#n7B9-9tW8P-vb!ugPa1^5HX!ZErp3FO;47t zZT&;5OK@)OIK{fYb3y2 zl2cJhAPk0es?NhL42Tf^t&hxpzZ%a~T>ZVe*tUB6FziVWIw$7Z-mCkedOku=9|#i| zVkBEt5wQwzR$^T8zy93h`>Q^9ODunX41G4OX%d8eFdl6$9nq52Pnk4fbsC0mDtRqy zjg}O`zwF}*(L!yz+3+eJSXo=_f|U%U+vpyEs|ITm_rN`Viie5peofO=MsZD*0!K3P z+q2Sw8AkrKrRK={m`(n%`2sjAint}D}j0d$+ zoQIf!@>ub(#&4wR%2?Ujmwqm??T9LwU~oT^kKe)6I}MR>l%=N#m1LadtEA0vKLaLT zyNU|JZ#6{mg6@=3#%FIox1{eVVPFu4nLD@p@*Xr{VW9X3ttu#uJEiGh4ISr2-irmE z8<%l1Nvg{qICSXH30}(@SgX6REDUfhVlS?ViAk)`%+RWX;{1MpOyweW(LS+vug(Mz zk6=U~a6B_Ty<9UTxA}UqPW`Q&<(djCp_=a%HT`2Z*=o1JHc;N%yA?3DL*t!B03x#l zzZ*D>Kqy<0qqPyCS*dU@?OF7=4xpYQy)FxzAhF<$Wgxu2de_0ic7~#L>(aL5^DqRKEGTdMhc2m>qQLNk za4zrl62%Ribwm_xX-KH{v~6ZyhA_6IBp5F#``SiNF)<9Wce})!d}EZ(*H%v>6)z4mzG+v6 z$b_rcoW#M$n>1Lk^o*#Z1&J%m@h5vGB!5mw&*x}PWMv{3}qui zMo(_DS^&nK#K!hIExo$sv|dwF+fa4xurm($LJfH->@&lpwYkuV>y%eO6$P6D<~6?B z#|7)UG|_C_{nTN(s=su2V|FK-W9BJvDuGfDbC#wk(0yLoDNpxH=+V-|+}DlF$q10s z78ef^nY#Xd?4~;aU)9LiSRyFoaIZqPI@{Foso+NM*qY5^+2w;)`q%I#=H+G5bFuB2 zn&q|-^~J;f{z{2Un1jf$;+Uoi$d)w`kC*u&&LO#FC%oXfI>bALv` z^3#~PEWi-ey4InTCP`7rwTvp_rMg;gHz|=~b&l<>%}!O!%FpL&`_u`^DycT4wyyqb zcf1hQuju}NzbR8?cuU`iHpfLH&c2utBZ0V6gWzzu@Q=^#fWq-9c{Teo$ol?%ai}3$3aIDbhA59`(c#^63bWo8G^-8fnWSC8(*;V&HWv zvj5e9>+}QGXI5HRT@eqPaGCG02c@nCTsdyriXHgkG>+vnyC)N!S`bFA&0KMa05Nwe zOfU)vpCAJ1v&8uNUoJjGShkZ=QaHjKwk>a5FJn7&Ayy=hO8#V<5mJb8Cx$GLpeDSK zh%?uswDk!HD6i-aD(O9ky$R`z1u04|;3&W(=+*DSD3Pu85ZsleGhGhzxjBBFVEUnnARdv>jJOU6>|*qtG7cAd5(o&A-gy`>_EVs7>K%_C`2r}^gk z?YF_g17V42$sq+=eOqL+bNwTW-bFU0V!fUlT}5WCm#p4nX;a93AAy@<57>gPJ0mtZ zys7h4jU(Q&VD{cvw>LhYVVN6<1Yf&$&4{kGr9*VqN1r)Vrn2%&^e3m$!+$MuVOfn6 zc8<01zC7Mr8UhKW1@5R<2WcU3qF$9jh*+5;lrX8)hIrlj%cW=b+iE|jt3Orot%7T5 zY9B3D`1OT9$=r6|4_F%7QP0^EQ(F@ZI$5__GU8Srjip{7w>MNJtLre8sqE%tH!=?F z%ofxYDL#3BeqIfiis*s-?=Rmdt%WQpD$4h@#fB15gf!UOSiiZ;HYF~?=w*#$|^gs{5@G$s3;OzB&G#Z0vF~}lanhA)|QmP1JF}yqJ_Pt(;oSfd?*y{}8S;o!R^{;#) z_A*B%Z+E?`%uY!FXrRX^e^k+P-O8b4Y8~g4IsB1Jm@l~Y3Wu?0v1v0St77b{i7`xc z>mV${J~Dt_d)?vBDbWYV=MHb_%UhUQN@h2?mb~^%1ZtNdoH+uq>&t6v*#O`yZaLh~w=Tl7GBS2jsitB(5D~rt z0?5Ok?9MTJ6c(oOJdbnT$%o;3{8hnX6Dl@G6U!dMsXy04IYMnY^=UXcISCfz!Gm`i ze-|gECf~BKcp4Hyfm35g5!oqTmYvk${mw4N)~y4XR7kz}khAPPa6nX5Hu}lLuI9X{ zuYs|p<}yydi;5bTX9ftQ4~SsvpJ(>1KA}I?!XBQSZNK77rz=P-Eh40BZ17>kOr03~ zBAcx1k^vP2mk@ohYO86B%MOPdi<^UVkrm;BOP!Y!m>%wNo(pawQB)CDez{Y?S$eNRd~ns&O#)AMQ9oAbdG{myf!S+~i3%?!I47^)*4?ihKQ$s^MpbpkAneVz7S+A;Gk<>dgdcZP zSS?|!X$;9}^G^>!xPY*-%l)_@7stn`=z9zgd%PM)_DkO*kAI#bKObMFlBR}QJK$0D zR=$Ui&tA+zri!_-z}F5XC?;bu1!-A0MRCXg>ST1fC`uJ?00x$%%OH*m*bTA=#t9kE zum9@094aP0Fi^@+>TVO->owu`;K4Qys*#bCJdSMn+5_oqoYV&aRrPd}l_9!9-6uFJ?fHIw&gO%1M!71XW&J z_m+%|{A;xzC+FzcG@-bgtWq1mOmeR|IIVO%H0x`7BoQ#EOUF0mOagGELuOKc~4 ze<=(m;pfuLSRdafCdx2$fA3BejJiVHG`_FvaHunZ;Q=J+t5+WnPW^Y2?V024}4e@lHavv^fDu-EbJDe z#*yqfR-*Q%{neWfPRF7sZ!fgbQJz`+d!xdAuc~Tm{h{)szw8}n9!_&{P}xQLPft%< zp9`5?o-xGJg%zda>k}r=r*!>`Wvhm|6|LhctLM1UH{68I#xEccpRs9dJ&MMVP+P!J zK~&He_&BuOCYaHDz4qjzao?V^Ry4L_{QC=U8}ET9{qLi9#H(w0kN-s$tyYY=dK%xI zJ+O->gQy+proZpuv@K9QH4e7Tx9U$e`+r>?Ia`gF{Ao%U>y^(=!^3f2-^06feGB_H zy8TK9!c~(!dzPL!*+qA@_PmenpgTo!8LvGZoU>iUd2)s_l@Z#!}4WeK2q`?2xDYw8tt$_xw*NkS+=%+QT--@}n@6#JMl zGzgn?+kZc>S{zlC!t2H}nAS$wKJ;~$EyMF9u{8NhIZe$a)?HLGUK>xH4@I>-%Ze*D z%i>=EJcC%Sfe;Cb#@n51*Ni>8m?(8eYSY0fZ zLnncJ^+^?p+B^N2JMz&j*o~oR@Y3(I!&nstoCWrtBD^PtH{X8U%CyXteD$;V6@C?D zih|Wgv8mbu&$EZOmBiqp7J0 zSPVBGU)7f{1Mm0@w(@_TW3$^_7a-tB9hl`V%u=C(zgkuFA)>}V-32Qn_~6@_ttVUh zCiKaZypb(`+b5@`bM|){Q_S1fImx@R?}8Xr&bfup7Dzf(bK#qhO zcg5p&z9uPo!LsW-pH=rY+$jtL877_C1xi_MOH5$G$$&9B?5w)BR0x-yt zJcy0e5P9jvya9qBz%J^KzEsI2?9afJfczC0!sBFBe`xABsJ2uz!? zZ4W7SFf938pcH$McX#n>Y;R%2iUaf`B+?n-7Or3NDdOYH;}6YLTnd^iUGCOAl$mAw z`*6!vzJIAv<>!0!y!7G&Vvs&wghlzE<)m^rATLJR+dub@K_;1oK2S=i#9>zr`?oC1 z9~Uk={Cg>|?eZl|KVc21Qp67L7<+*yjXxKEweM6-Q~O%|*xsmzaZ*osy?O59#fw3; zEh4K(J&4NQ*sVvZn(&2Gq=$zn2wGDbK6!1?0R+&8dXX^yp%oNb@nYK}Rt{E8{8d?L z-|B&x1F^q~BmRn!}6pKSNTqA>)-f@+PBYiz;PZmCXf@aXR91j>(GU&?ANN|w8C z3@>K6wHu+Ky^rl!k9M0_(h){+y{wjH*DIoFN=C7n$>{+IKi`bO8}9nITR({2f1`u* zCy=B1W1Be>f~On1H#9^&^>M83AnBaV-8;YV`kMFUk&)wnR+caKm2Zyx8*R>!Rz(>3 zApPCx3t*UV2Ml}A5fV-8)c};#V@`8Lc)FDKlsKl;>0WSxKFYGl+*m0}t zaR)mC&OwZw3jX?MJQQ-6HJW8Vz7^7SMYqfs;M?_^|TYePCRKe*i%EsvhntzVCE z64t5QG{oLtZT`h7AJH>>)mATQ4ei<2m3S|4(9n0a}ru%!s|aunr;@GTRD zi(ap-7`QSBg$?G34>|Qc=?`J1XnYb7tvy}6ap-QmTGNgdmn`FQ8+`Q%a1ZD7DjMD~ z`&KKWY4@*@3i}Bj5%Uy$=9Zm_s9Oji0^(=HP6O-=`O3%p@RSi@kDSuLE=miNc?O}c z^k7iFiqQk_K`Aygm4H6MgLLl8uu7^+AXmxn-ZcR?&p4U;OFUSDvNDnH-}kjBqH}>0 z+Ik&o9G9`N#-9`UO-*OJ?8{Lg7&a@WZ+p|%5h*OfHSnv4T9^M*5d3QA?T6$r)QN0V z#+7Km^benCGH&pC8nr`nV&25T02schxulOsV@v2;dR3T5^pW%g2w!hZZp0}@u zJLZBL^;q7xd|C7`P4|UBJL7LHZ|wzfS~4&&VDk#fN*C7wc9TbskXKcE+Y=RbrAnnM zPb;>XGxW~5H1JlRT-{F+VDj&q8}~+<`uy_yj_eSvQS7Ict+~VzN~~11F`c71%Snbj zH03En@86iWpH_Qw7?*1Og1mccYpYrN=L16;2QQAU8((4PqSxJdRbD7+rv@)_qtdbG2;Da|>?H8P?BE08 zOp*wkZBToOEpE7_jRm|=Q}`bbaf_Cshn)zK*z+C}0>1p7+TM1NX9M0eIYk`hz>XG$ zp&1bkh5ql}rO5r_D*Jn{Mt}p0-gtR)Ex8=8gSQWIyFa~1Y{r*iC;)M~&(A-~95xK| zx2T2^U+F83*On6ho#k`yBYsj%Q7?U@xdCv3+pxeFNas~QV{P2{KSZq*oDl~qd ztug=0+R$it;B2f7Pk)9lj7icTW03yeJdCJR&^&5U0MjR6GRfaAI6ByX| z-q8U46pb|(c5C3OCTPzOA3Z`?or#w>0O!~&krSN;-Xt;8ToxbJOCIA z#3;{DDzHBsMxtAqBej3+HZR+}u;Y!oWf@kez83eZux2sYkli5fEdCRHJeO8je={AOZO8Lz=J zzh7<-*}SOgjooAxyW85b4bJj%3qQfN-8Z&ytWl~H>nJPh>mmAdx8{tJWAV=%kBmN|GX%ej-fw{Sa4gS#g zug+Mpuzbz36m#oO_@edU<~A(Xs>{|f#I9|Zztx*Rtl+ue?sZmTDKDtWu^gz*V% z(gekC8#jo{s=f&U87YA8Gkp7^@~wOA@S0**QGv@GD@nRrV5)TLtv42fzcrMf=6`29 zTN4OJJ>Y~dEhhHh1Y*NYT~G(L5T()J$N9jcjqjD>D@>+v6Mn+pLPWzMs~FxW+E=(l z_cc%Jcok=qw`v-P0IloMA@2#(pSF9b4_Q^ff`E-4IJ8j#+{StJ6M#=Wy%<-Au?t2u zhq3-kL`Qkk9=n!^Zv&G49VjsZ>&$V~Cr*I%c3_`3;c;%<@SpF=;CDzEu$Kg*Ea+!jzKTy_I6aQ8HSh|P^ZI!n&;w`Nz zF3>?o%}$d5#QPGCStU4?EG>n5&rlydS_Ku7h~twWJlc;{KLx9D^!-y)#HMkQ(6QWj ze?RU^w5z4u1O<9^|(_d=gga%u7y z$O^Jk+7-qAtk~$b#m`{;u0Z*%jK{@`7hDU)dW&x@Hc4t{07`K0Ut8qgZ(fPlgBT;L z)j6nejNERB>Md|s<5Lbg5}C=V_xU9R^}z=54X!W@aqI?bj^Om2o|_x~*M8>WB>&^* zr1qKAcdI|feR5iXC!EJPxotWk4|8LhWD>9Efq)Ow6pu8!N>gm^=Hv>e9LyD#??sW zJFf=viZAe0NO9p54ne1CsQLaPN>cQUH_grK;3Y^?VR3q@wgpOK9=FY(vii)1eLX6z z>0}3b4qi=G34V1<3NPu2C>_d=AGe0K=y5_nyD7rQMH5s&&wdqrC>Jmz!|dU_{N9Kw zL4IN{o_^N<>eQ|pB`9m`mN(939}HJXTfe1Q$ih~Igoz4-Q8{-@%2Bg4t)9ZBlqu%* zqF5WpttsLj#T%CpAGGoDm;ehd3=nhSZ){W)*?26+x;9cUu_~Wp7JkIw=M%ZGC&L5L z=ro>CFL4DQrVdFT!xS7#)HeDTiSyLA%m2pm-DAiROnmfgxj>Min(aAb^;?-ReEYQZgeU#hW3aO$BPs_gE*ygOC}Z&dYv98<~6xZfZ~ z5gTRF)2(82-=UbmzE&crNWpf;(s@#=%?GDy6U1zQ-odRHfFpCqjvX(+>_Q?I+se=& z!2x1pV{1H8M6*R8y<7zb^guNnZ4A zN?3$ zx_F~u?OmQS0*qzzqb(_)F2sn0eh#FYsrwX;j?Bu+f6!}7lH|q#4ejh6^4CA|Me=M^ z$2>tHZXk@dkrX_{w4}j7gOoxeiyIH379R%0q`yetPs8{~mN_LPf4hZ6m%G>_aw^iN z*!XmvGuXf5yh}1+jYA;;$C&N$X5mS3wZQr&0CW^&13q|XIdE_Jx#KR?s}CQjT)n_; z_4efLFOThdMK;)z)NdPItBR~Fs0P_OMRunuhUEG9H>3jfPi{2rvR<1TtMY{EuOB*v z69%3F7r6cR(<}yIZnj@tzePY|fM(PO9u4Icn!9ITIu9ajk-Y~Q@GMXwwF<1d)+v?n z)|Jd}cpcm=&7-WUX3}4qeu{>i1m|GqJG<=|OaAqUECR(rF)D$d6I;Kvc}=_Nd$L$1 zDt|3#mQCsvRe%|9_Nb+?S?oq+*iKao<%49xjVE|GBK92PMfB(lnFVOvucSv~3 zV4q;eqaO)&%CC-`V0dO^$jW`@>U`igw)VJVi~W*Ts?qPmuKR8OT&#sLn&jud~0qrCeT4%)WPp z&$z6$CBAuD=(BTm|KP@xh!I(kMsM{L>_hKb_3`703K<%7R)2_!C;4MwA@8|`g|>Bz zBva}a3E=O&B_2NR(Ub?Kw&<`G^A{D<`usgoQvVvT|3gSL3Ne*?aU9QqHE}cygj&AX zJl@%SNR=?RpWj0a`y3N*}Lmowjr>QBz$!V}NcYDOEw!6ws*UZ+u)Ta~1 z+lw~1u9w1)$L~?)E26t5o|=nypQoS99T_jc8i?2aPc|1T=h?IQZ|oeaQxs2NpX{&A zu@f%aS}#L(qDg^G!PxN3eiEdy?%GEu3y6tU+{Ly@GKBa_=YbvjkXCif@!>&46<`ik z%qwLJRh;0xx$E_d1ruVHrV}J50T2YGcoP8g-Lo@jL%@hsxzS?;3r|A$lA?4Xb1H%F zv`L^g2P-h~k*X)$zKGMH`T&nLIb5{+AqvE`+xf_H<=O>Z_rns~hZ`8PQF+6n;x5F# z3OuEeBDA2pWLjDE7zc4Ea0gOe(1QV;yDa=d@8#3c&nRAOm+&ouTASn2*hc<4C*HF{ z?9B5F-RI5`y(|z&tykKoH9Ax6ChnS4K9;XvcZ4LQw!4C-?eRY-XAxGGD37v7RG z$QMZ$bqKLwm5Wyoc|;FFLiQ7(C%9ffQ7$HlN8@^hMB;f& zA<27tCk3!88d{Ccf}<17d@4LfvfrvBpjQ|H}xq z;pnRpjqKtc_nLgCg>C4A>n20c9{JE?pLo7jM%nlN#G~Uz%+iV~s+H{-)F9s*crdAQ zGmro_bvP%Brt}2Wzqa79X3Br76~AU?_zsAd+zAbMD763ZNc3o_^krv9rlPwCX(mn9 z`n{L#y1KcwVZ%Wma23V7_84))>G#tuN0CgM?^t!&KQehfWSaAb5p!#M>(0kM-$qVC zg+LI+`$~gwyPsucHR7naQsE^rX}0j9`Tf94%?fU`1Hm=IyBFtVnJ>vOhay};Rnued z(ix`oVqJ6ct6iyCmLHxgg}-LtXW8rCfSj^Nad!j?%Z&rH>Mx>FG^ z0SsG6O1(DXaJusW0>V#i{q{{38+X););aWQe;JU3fe=V&B1{(ECA}{y3XMp3Ql2C! z7jUkv(8l1EPEOLm5PI?5uChd20V4;XN01DMD`yz42HAAJxd+%8CMI+2ytu_FAHuyh zsSzk8%MsaT+G&-ZEt)vGjB{3Y7XR0A4`35JhK~8{aLF^Am-;@sFh742)2O8UN#YNw z{*|fYCqIbQcfcqF>bc{|&wv%~FF#^LNpw8^`MPh`2PrUKLFw%~|GOs`Dba)+7K1A< zdTd~>+OIF~15xm~=8RY{o_pfiTsAvbyelH7i#lAoJu|s484W?oYxBFYY5Q=#%leXS zH#9N10E2ljqq$j?Bc9@?z~lKb|3Q4`t$%ff-e_9SZ$<3S{$n)$xkWS<7PL~=mG;;z zyGvC!&+%bxZvyecmfrASZ5>TLA206*c%!3a4NgqN82tMbBL@h*(kzy3%%@L8{WUar zCOu#WY|5i7$xPH7K_ZZg!{C=JH;(8u#r_I9eITyIiej4P0R~1zw`=66X&8|AN^EBd zJNU!a!C@HgdMgaih*C)VZ2#-y9_E-f&7ulO8V2mh?yl(szs0_bPz%t~Dj{t0z<~p> zD%FJC3tj1)fC=$7k`Zqs`R* z9~Xe6dH2qclw461kQ32q!;>>1_{?dP>Silv)y)COAnd%-#BT7VvPjJp8+Vi%TX1 z_pMS2qc1|B2)uwAY?Fa8bH!xhm_Id`X%%o|T-zTr!yE>kbxH+1wg16wwyLx9C;%st z2xZeT%bl*>elf)7P5|>hb$si~>eY=~y`6y|y%5mMzzt$JEdq}R=mtTb1{Qww*f9sB zG5#1H-uCix**X4LuDNw!(E?VT7ZVZ_mDJV8flYub*8*1Sx|`31e|L>N?9lL)S%+f{ zfeR~h&3$NScq$Ore!f-!H16@v+*Fc@V}w7Zs)Z(L@vhIXgPj{$?BW`akI_AFh<3K$ zbADk#Nl~%3wG&2n=a=vO{B?}arJJq2aY_XYhK#GPg;Es)p96LTEp6+hr z5J$kRsP)Znk_L*N6QPRy22>P_?q{~GU7Qs}{GwT7Tx8FXSpabf211!Bt7G#Pc0EYX zWZ^%rhL!kf%_=`EKzTiuZQ+v^K5zp4!N@7B$3c+6VI}?I{MXYarpc@;q*qoQbV+up zUyUAJMx%|3P=i3~r%#U~XI9g2v6F@9%kq|97u8>bC@PvVFS@m~GOSjsGq!5g+}|y?YZkCkH3TALgjbfAPmY;VWunWo0Fj ztx`~VyZq-M2>6zHRiHk%xp5mj$Bui{0BY#f zxG*<&=E(nM^`=YN9dYAJXY97>4v=8t_=r^4IZ=+3;{kzzX>#?Kdy70N&>z-Cao2#D zj;+l6&z|Tk-GZmtJd%t)y$ditfF$I+qa!u6%O}}cG5Lz`>!wP%_K7m)>e%L)u+v}m z=t-16fM6l)DANNBp4i=G>f6QP_3_kb?ukAqb>sfu?Ki)98JdxfA-}`QYD#BAo^9QQ zh(c>?lLi2=zHEnCrw$lo=ogy#i?h)LxtrP*PV-F&TC16p5-0FZlXZv&hkrBAUtuw3FEL4?uIX)sNWktnDzK$ag5|kiVwnVp6dMhfDuZ#Q?S6eb{qEhnmiBgeEv-YkV(!p@2EVY` zoqui7w7Yl?^F|Vk`@fp^+SImbLf1z@0$y120NMV{LmWEU7mPf(;;x-L`%|1tJ?sn! zqv1W{F~X&M=8Kun)u$OtJ=db3VZ}reF0NAkA6ke?s^OU|0You{B_v#s_7KN+CnyC7 z@)E++G202ZZ~RhytV21?|3_r+glPFbIepIZJ6_roVoglF|AFc(>a{L%`SRuIL?SQ^ zgK`WL+ei%Ze%~Ov6ZS_iqt&-Blkk;pN_UlUah^VCS|2&QbgBL&vEO3T-(vF$+c8A; z6q`%?Nopi~4S^yoB1*H}@YlDD75dl^CQ3$eAC*{(%yUy;60(G^IIQo}_iJ1=oZWe` zw)`Tt@oHtAp^4VS1aZ4C3HQzCz+j73 zj#hf#g;MZv`=V=G6jmo-|BTLLeLWga^SQIvKZL}lY3eGW9-=*ab3bq)wEl^Bb_hPf z>lu(-&o6HSR=&-oA%o-;R)uEUJ|Jj$Tvtze6Xx&|ny2XpA~&ov5>#|pPn<|XIE1-q zIf$p|_Wv$;RE6uBE2*onii#56@~~TF|2GAA3`vd5M!u%z)RJiK7U0i^<(d~dv%O@| z_TO&yKBhg!)AnqRCh=Ks1hI`xzL09%s-(co$paJl((V zKa4!6%*{D1J|1XN^v4<#>*2ApY&?1r2{2Obf!Ks}ibbb*u2IH*;v+yh0kejuQ(G2% zay}*-cO2&@_;6Dq=ctaa^F}DMB3bYTzS}hG(zb2eme*D^ORWMu{COV0le@7b$mk=} z(p9_K2eI)yscAN!pMR+su_z&052pX%by={LvuuHF(tCtCVOJ?DGyLgTC%IHMjM@0S z)?EmEsGh7t(!CrEou3CA@=bn>3DQb;^p_TGJ5NJ&Yl zs68p>DD!TqyCCy;^t)8(Y`uoB62w-#Tcn3(t3ibm7&oVlJ^W02)UB&nZJ@>HqgF>A z=5mnG2-NrIISB!~AtM~JnzaTB$Z{;_<_**F%8^U#duC@oYW_Cyr zD8HeJ(fKzO!nqnZe0+UJ+l}#U^}VM)e@x^0xS4}TZ}g9`dghdJTlzIIf05$DG5tB- zTD7KNnk9IZxqCQn)55@fTQ%;-&lz$Dm1F*q86SIu`whMY{d>+dF~FJdcd>h09`f=q zGc$`h{Px*gh(X1#)k+~X>H@nu`%LrZ`^UyAgV%7Kw27575-sOtx zzFcU5eUo#j1nKUWRlfbC`2CxMlVx&(z0nf+k7q3KB5ENsSelzl^?KlUGOhM##r$zK zR?hIFOpSd3WaTdzX1+4-9uQ5_e4L%Mjqqy+Y{$G(r=Xm6FikUd;KoH%jAty;kAedm za^0gcwSx^VCqD0aRD?Ay->sF_hK|GB*JMHBcpMbel)LCNJ%AH#o8qGYX|zryisdAw z$phO4F+;%6+?-KeN$E!GGdWb?pop`qQrz9@xtf>CSBw75V@2S!;P7j~OpO^pY7&W? z&|)8?pise?0kc-Z$0*^PlRwyifH;yqYhe#W(m!H*PsM$lKPJYU+QP{(>%%v}7yJe# zZVTinG{dmZb=@qL{y01|^s!kg_*28%-H8vI8m4W_Yad?}R1$9qV+gslJ$!}?9 zS>14L}1gblW7(>HkM~-piOK_jepTqYAAw^ zoSH{Zq~g%}tKMR;`CS!^2v3Z~L z)O_Eu-W&#Y{*xqWn)k{aXzMQ9-1p7@030Tubx zEB+&#!D;E~{EnTx&cAz=hAAK1>exE+?c1iS%5Ppn4q#h5R!e_;`7MCXHl)j8jNh|c zdv)=5Kzh1a_GjT6>mp#qRsEh@%jkM;nf=agvR4wE&Qk`dr*+h(NItZ*gy60KPnIKH zWEva&sRYJK<9*Ous_EtjzEJnk`0>UmuQA#>}L!&0o^b)sV1js6l`RlRaP z-;beROaTrx*3i@;EdmPXQJgEq42sj zdXm@_efp4bb8=*=oufoYwP`jVRtFeL@J)CXdJdFJ6}!1Te~~_N=jhJ3f0u+0y#w$N zB+7euJ)BJrO-fS3VOZob%JIqk_J-l?!U;KgecJi@Yw0;+>KVVd-#czFLUdl;-W~;h z*gBUp_nG8c~ zsjpwlTmx7uDM!>L28wxCr3>0ekpli@`l8oOK(y$S2=*a|P6n~#q~*6}0if(XQ;+=Jo*kEvtS+G00ms!bJizH^_bm8m5>>gbyd*7=L1ZK zW*V0Yoj4lT8Mds>q`pq(8+nhp8zvkPMQNdb2Vg8%S#pN*h(102IC(NnT$?NHDGw@de27~ zK+n{l(Tee$Ce3nJe|kIMI?7l1YJd7+x#izE=HjJx9L2{gTQWl!+Dv`l1%4UK}JBTr5uJ8c^Q`R$;_gNtb54F!S^W&ySt$Zb|jw57Q|M1 zt&AQi$lQw5HD9_|W@pav-8wKgc2uWN2P>6xjqWC1zps@G-A?qg+xW(maIQSC%zg0< z?*C^nytIOusST0a4Pyk;#Yf~!Y;_lR4RHF@J`~ymeWMbww${+<(vB=2U138HT#}}sL2z2DYRt6vN-sSPDOB}G*zZ7@& z7D38I$pF5A*;@@xNwB#4Pgi&Cbr)(U#}oNo=%6 zRapfDP?~r7P{za`{kz=y$wrx@LLQ`@NDiG7r}weth|j3bRZ5;b`rR=^jbEkh2x5JR<{!fXz{KW6m*hjRH!tnW-0`x zr!CzGoR(UIFZ6_-XhEWiLgCZ(4ozpQ4d6zhglvkN;87**RW((Bxd22=tRP57D*J** zBP1l0yiNiU$q;T@Z^<1h7z`oL;x5v^p~WIt9zg8v)|dA@d$!qC-(2~Y*ZNxFGf)wU zH50R(zegdHCb{o@EZ%t?+O0f1`!#c&DXuN9(^|SmQza#XO}{i(;!^Qm-AIpmRo)Dl z>fw279X~eKDZ!Pgs*!zjXZm_?Z!b{uO{=|P&Qnjlw>BM*ibT3`uTejeJ9fT2so_{x z1jfkL3hym(8zO028z_X=u+GISjm0`kkE}>7_rZmcb~1y>wlq$RD01p&rrnu+r@%u< zv+i*&^_o;z(xBkYKUE1DNUjryFLqk%lxNhj<68csFIE(Q_bW9e9zI6%Iimm4fLJy}TiHnm>{?S$ zsranB&&mhUKZaZ*yXu681Uhuk)tFO_Y0r5&1Z9$MCJ|pS`%9ZvYpqboRHVOe>shdk8_KGIiw%=R7%khM#;Ang6 z@VPDhD2-*|Q=`Nv*Dwz`pB*7_33s!!GMbaz4ZqTRB}XgJmjr3NYDkkhAC>H<+(w>n5Jy_Z$4y1!JhtKV$A|A+@ z4I0$Ca~?Lu&wZ{Oeqy0)p=@6e7FYHD6dp=`!w)35SV~aH%${o7ONhu~@+g*gn3}%t z$W%sBTE;+B$q}kthn1S89{07+@%}WN1R)XdF!N$G*Ku(PiEVE@{adw;Qu5`k;^`80#ZUuye3v8-d{(Lkvl!LuO3VQ7pqxsUlscVu+ z82q;F{~tj}Qh{v*u?f@-*7}==n34!W2})Z>^B)pJB)J&r&AX2$!d87)EZWR#W4&Ll zJ$aG+9COUh)Htou_nZP|7tFyKb6xbD>?u40j`R>bc-~DUl~ikGO(k4)>I}alc?LS# zPHOJ+%0}YX&aEaa8`E~EnPstlCl~-a8I?H#W-Z`HZdFyJ-DiUe1nuE=aKmGpTRkeO zu7^n9duDS}IwvL6%!M5+l6}X& zIA9sY3*i)4F9a{lp-e*6njt~?GMbx9j*k0KC+;WRI}q4Sm3}27GkoE-;4eizez1rA z>_<6mQHk|})t74^TReT~)mZ|_xincQ_lj-Rt~@Hn=M1&THk+h8+XgA!-C58%0&^KP zmX%h!TIMD=%znY-SKQYtU83W6L_|6G&)!|g+qIv5Ffb#77OI3BUGNZ_n0T6QRR8QRaZYc;mK%gFDXVK7>%Q$q595B~r0FBXGvbp9oLvo^l4e7$t} z40+Gt`UN2=xeV=tKepne+p%l8HN3IT2t(?sxi2W&w?EB}R%m2i+5EhmD(1Z@4&$BY z7ek-zjae`0v|2MLH#=BPh!N>^U$i~Z|I03Qrk~0rv*3W&UUW+})z!X%4rJ)SJU8!8 z`$(TKpPv4DQ7die&mXwX?0^Sw%9UIr>eHG#!0$cWkgRYef&=U5) zWD)E==de0|3+cBFNZGV66K+8Gu!DKCp|$Ckw|f{|9OoRf3zkGRGa{ISvTs_LQonTK z(F)|7TjF*3<#xNjC>U06Fd|6-OKEv^b<8qT>KTZ<|I(@Hy7#U*1t^x=-$jE@ia~J@ z-E&jg>uqn0s>uQQ0d7CRj+jT=!JG|Li4o4Y?Wwc<&KqpYaC zKROJ;lgz&RSL1V9y#~*MPgj*9^N=u9$1-t+p`WT6(FwQvO2T0gW^+i)bkm)>Jc;-`5b^xU$=bfYjnwh=GAbjZ^|eDYdB(N# zflqYp??yh9hPNvwg}o81sT9IF$e-W@s0{=qA+gzz>2Dx=}H z)~DC!Y`ImNbK$xxsg#sAY^)#uFz9g}Jqs@)h}&HU{{$7~@~G70n~%@VRLLF5+{q8d z$~kT~e#?46kgDp-H@r0vn@qZW`<&Q2Cc=QbCYXVhqak^p!>+KTxY?BeA1Z{gT{KKY z*%__ZInKjFc`SZOCwR}mi*4Ka7e$_suh~gb$KPQJl;ud%neJzjFh?){^0np2#EFEX(@!h56xasWo&Zbq%8}F3WkL^bb{SiF zJq%|tVwQ>NW>1Y4LO7R0dB*^pN0gv@`6*=2xNyx&TxsnZD1vs5YtmrEe=T)&fL(HU z*1j(la`4?jNSxu?A_MY_H8QnL{Y9dxK6KK99}Le2MHQu{^&B*~??ME@;j1aSkgpf` zdjRXg7_r_!y6>-G+kY(~(L3{d;mR$j=^T-P7kli?=o&{?PKx%a-IOkkc_l|&>?hAo zdx%4Q1&MrELd5(>OG3HZ)+)zw33+bJm$YOcSQiux9eJKP$5(w>w(^e3O2xoF2!m%u z51x4OzN7>@OequlovfVgjnlUFPk>NksrYxvs|m!7qryCs?dM=>mGUN##YuO*E^<-7 zzQbs??hwJ4mat53d6|1`yg9MDfosX@s*s?dDdeAoK?ORAT=%8qr~n zPBHnJ;UZb?yA-X<)A14;SV9<>vS5&AWJT~Pb zl1t&30S=C)me$p`CSQ(J6B^G!O%8w$&#@z0VR-y^AIJg_U6{ao8*9)Vx-T>@T=Syl z6pLP`WN&LS3+uz6oz?9%($)p#2DqzTKz!b$xS3KsSU+vTjF9;MsvUho3rB0+b7 z&YPHL)Zs^L&RvlqC1ZC!;;U&x7$AAEL?L8VYkh0t01kgRSb($$gtf;T` z3`^{g8Am^sx-z>UEH=*n&89CJMyv3XKNDN?>C-1sr(b6e%O%X7r2KbD?C8(VXIxL+ zMXYnqIGN)O9b`!$eb8;K>HB=(yLM3R|3;*KfJG)Qfva zFyREA4y|v)u96eb+)UFPqn3AULw)p_J>(uWDbVI2Ar-4d?=vfPoJ6~qX|b<+JHeOm z2$Eesi2Xh|02I2qVz5_xsMi;w;o!{gxgqzfV9K|fs@Ul<)--7x!X#i29@rnE!F~&1 zin}b(WRE>LK&R z>}U2Hi^N73Y&%!F00<1TlR7`9{=-3@+aybZ_#1bSRe9tVeHSZHAiFmgDh~erb=YRW zW&F;mN(DGyU$5|L#KM$F0sxwl($UE}&{);m8xj{*m6hjSWP5Y_F2D5k(vknly`*5D z^D#Bv+~ud&<2#a!gq1pI{IiHZ16v77fQIjyXJF-rJ!+oC0^R)wq`3tSFi=p_w(ev! z7O2;=T-pjCcdwb>%ohbW2!?X?dCps$*pz+&DkI|ZcRw5js5vjiaxC;{W!&b3FPuYG zA2=ja*F_H)*JU>fg@Mpj=L;Q(L&_&ss1ZLMn^RTV7A|SO>K3;?CX}GLg5+YwLO5h@k5J!Vuluw zUkqc#&|Bf*gK`+Mx#fHUYZ0jXXjoWSgfa~j;PviM>WRG_zGqjtF&Rii@=-}@7+6l} zmO&y^GU~>kezA5XO@Z}u@UePmDeUvJw%(46m;^CO)PWaEa3C}@=n$TFH1_HZL#tiN ztZawdW3F}^UGF?Bpdtq3>RDE*f}SG*L?CuMEH3QP0~ObQ_6}0w#>!Dibw84?rM@^l zR5%btcw38iWo~W}fq0)ZPK`9sc88<~{(5WKk-bhiE`@#F-;pne2x61tPkuCdkX!EJ zwr21bd2eKDkboAE+RirZk?~`_4er9HGYcLKjd|`r0foPF%8L^CJL6ItTlU&@W{`sf z?ufNClZ8FolvGY7Y>ap zuC33*hsJ;o0|Hc{cAPqUHUegxZ#`D*Nzj1@l0!Q6sktM#s;YU~^p%a_h1Rf0JB~{` zS+poLwZart)R+ZXLpz#p&;4n109K%gwYbA1pVXw~L0)KXPr>Bk+v%%C+Ylh#IDK)` z0WHzb&fG)zrOc~zKjRr9qWEDL&9A|WrQ#O9=vEkv%7KoXe|hgra(40@hYA$7i=qYG zw5neYvJ#Y38Na5dv{B&7PG|9;K(VQ89{>7=q*oB?r%(9)Ynsp2eYtaR8z!bpTS3+aM=*m#V5N zg4&u<#EYDNpEF;|VrCVk6%-VlU)a|o%!_2#q(<}RG0WM7d|9fPi-W(Ht?B)jNqTX= zaa9E%;+F2n?z{L@zByNgFtdoeCiS^IQ1pa&ZM5hox?#<1w$$-I(h$jxje6cr+6;dv ztkwpTpUrg#VeFb?JBV$jSJ~z}Z!g~@?u^q)Ty$R#T2dT>+13MW%#!jGqoO`ze;F%b z&eNPMk#@Vj{~Z(WPHToToAN@vsHTa6CMytHF+Gg^_s$h!++4FpIxpRFQn-Q)p5Okn zJD-zXEy1w$S#{NCvnc@!BP0Ke*wfZM?+Eb*sC|Y&uZoIRbk2B*fS>~KOb!o6TK;x) z)iJdf{iAc_u%jnd^%rD$v0wiHAA)-}$%p7BDDD=S9$@}-|IORCX7FUks5$@Ih=_+C zwSSkNKWBQN=Eb8EibD_ISy)ij6;t0pDlPUs-h|I8t)Ku|f;Y_rk2cf#+uFH;cMb8O7J^XQ6n8+Df-0&OL^mGMQ^ zxBSqaPBJLWZdh1+20?0OeqI)o7o4Z~F@eFGW;~&aodwp%!2O`_Iv31;>6oXZk)2mh z#cetr^*^8ci}rHREGs;>U+k49+!esZ0)wr(qazxVTuN4=m;}CQ!~quhmUp+b4)f^M zmV4@ol-;4hx=w2aX4kFQ4M=eFV!efVg6#Q6$c^I!{OW{c-YsEtJz&07!ka+U5NECPy(fq(Evd8(}%%NQpR|Pw?FNvb;XfKz*zb646VXvhq^PQpwmhN zH-+$aS@vGA--svJj4eAnWe!dGN2W+;jYYiv^BHCtgoaX0t(up&g`J<@A9UW*G6R@D zG@yRL)Y-hcE>hg~P7UsSs(0V&rPtbJN&RD0*=hg$T(n7P12m_me&-hE$!KX2jRI_0 zR%MzR*Ql|!rM@|*Ae3e=szb>nsWhp}nfyKNr4g`bWK- z?{eoH;U5dO@=vwCal7|@(wVYgocpFf-wym;s*gD~3Rr2hE>g(%QjYEOo%{*3mPxa_xl_`{J_=okovZxg~H2g;DrIUWut?sq4@AG=fMK_yY-zVpPk z9K5g)<{V_4Qg?J2bmtR!ACYQbCZwI+!KQLzh^#{mLpmeu22Neg;K`5ka><`cq#*0e zHzFlL!=DZ!8a4MdYEI7Aq&;hE`Bn71Lk|x!9B6n~F4zgw#9Vllro0hnzMX>u3>kR4 z7m^bOhCGgpymf4Em_yTgevwpl;rvI9qlrRoY@<6C{>Go4$44iC2k znr)}9Tj9596X-d z;LtOlsOaG+atkvrEnTX);r*bbZIX;sMc$(~$6Uc~PsjPw<-g_50;4*qh-j+pXE?J9 z_I@$Ns@(BsTjY;Xi?;M;AGCKRDcLDX4}`XNirDN%tdvfHm(oR!NC*ud;t47a){Q6A z7|X73R|FHj;-@5nuip#a^4HcvxPiLyO{=Ex9`mju4|=!`XlH8g(LHvIi<=u3TF>D| ziBU8V%eY(sf9a~tr>0xI+kUB2PhF7VQQ7|C+qe1n9~*Qq*rMS;C6r%~XIRF(46}Nf z$#(0b0%m8S$QuE{0!F;XK*j+I3gmd=APcrhJg=*h4A{fm@>ENAzwhbS>h^BabZ}A4 zEjWWpUpKXr!euUDH2j=aRW}`q3JfbL{%d`vcJx^MQ)#&Y12!!X13w3CJa)<>1Mz2< zHU|#cx9^;WtAsMMGFyaOY6iAWhiYh4)l_TNRvvUGBg6i+wY_b%c^{t_=wLpi^^;$? zffNKjeyjvy%BR_dg*1@1ZvLVbFl?jK__#?Cnf1p{>r0*0Ksk%H~Onl2YR8Xz__4(H~R0UeKbwN=QUO!-iN;vzWse#_R zHOFi5jMH?#MA*SYr**Rq_*w_>S_^BW1 z^kV(3AnT{>E3|%%omBwlF;P;gPwRbv?$NKgzbQVN3WBbWRaG(gPNWbCQ-Xf9*6)c) zsTL*Tz0>4jbY39yYC@(Ctxyoe^@Gw+yxH9=A7T-9>W#MYPDaL@i>Ihp-sV>YH-SUX zrW$`jCu3%AU1H+csAtZHts{TOL{Dt?!+i=YE?bVPw5ryL>y(qJ&~srxQ2hQ@IJvs6 zjvR`mXO;cQHggiMF1{Akf7m=!dCzHmL1zyJdS$?4yaEEiyEJjAG`H^;gEbr(<$Cqg z)04bs67nC)DsGut0GbG`5-}K2Y zKj6NUa|7xF{9!2CbQn&2w^`;fX$HxIpbYe<(TB7?xb`Va05$K&&qN2SglLWEOy@a9 zm;l<%{52!NqC*jjm7n5{Y+qNuOY^9(fFcI9p;S-0avHe%pYOMF3k1807so&Xl;y+v=5|1)TA7-o94%f`w=$>ouh zo7*ZHuqaf%Jg3&(X19y49p7R=f42QEj5=U+O-GkJkaSu^+qS5qsh~=e0h2+>+kgZd`9C}V z7}OnQ);LY^M=wnC(l0GMFlaU9A%}wN^_F?gjMv<*j#u2X$BRqZBbD>^vMkc)#Z*fb zj(*F~V#x0QMGv{_8 z)*_IPmp}DVj$PO4l8vEN5Hw=sMO<^8wOwM8F4l^7g^6IX&Nt_u@Q$!R?Z2}rYi{lF z?tO+|!n6pQo;g;n@1<BqvHJDxf}8qTQUkqC|2IUI&Wh6H;@ z@P0-{c?)||08pg=X{iu>7f5e@sQ#55a|hVQ&>fE#wzUcpa)Q4zMZ8<-7qJ^4f0kao zW=i8FOIck{ShaxTv2I8jm6U{mkeR$_DnR&7hcJKI!1Cz32}!@gGkvEua&H&p1P1OM znh2`CihAh$B-v~Aw2qFV#m$=#RwTbKlCyQ0^w8t{_9cu2*A@)OHwAaT*mH>?+BmlS z4}Cdf@T0x%55*+{e~e1%&7N0PWk}OJ9hT$4R=y^E56w+o(MHABvbCjL{o17wQ1coR z#iGab70h4Tj&``=#h+6UWapMd5SSUf^>Sjr9QhE&s`AMHiD9+>D9M#8-Y$xA9Fae? z-}0yL6u%<)=HNrdKjL=fDVyic?7K0 zy4LqTRK!qa_)?pL(kekt+Ug|Q+PZ05FOg3QPk>{&#@%5`eEk~>scnPP(>0)XXXq92 z0}F4q4|@2JY=dm?(`%_g+BOL#;mHnKuyANSaDwaFyWI?l%{lG!OU*G$W)?FG$CSNo zEQEgE56##KM>LOVnKI}ZK>mu!&|*tfVLmp#&vfOvnygQ$loam^Cpz&5m&-nH+s|}J ztz*bxPrxH1;KD`yIB4<-=pDeO5&m{njr^Ef{MO>~*y*-5O{p7Pae=l($lHp!?4tDU4lZ!)H zS2ioW55Cz_qlzgAVgylq417n38UB`a5b8j11l~K03&Ax)A(F2C?ac2zRI3F)vb$PK zCr>@OAixo6qt8$GBJ2`et9jvJ+PF|~1j9Kn9>qs{O&Z@Non)=T*Y)PSR3xb>xNoyF zkBZ91``SX%hl!$+iH)zC^YekWj$F!p#a&EoH0A#q!lAmE-=!|Lk>KUGwRnCbJ)18nE<0NW^L5hW ze0(!y9WaCgpXE#M-J^qGsl)YZb9}LrODA;?E9ZCPF8IUEiX#dMFqRDJz?t5h5jQ;; zf{#tVmmvmiF3pIy-|38RSgS*S5{qad1UDD8{lQPly<__vX91e(0~3>9f=s2#U;z}> zG&z39A+s;wp>VFVnKxbw6=i$og7(W;&_hu9P(PP{N>`YHTUGG(K>0#{!8z%sL*ajY zNzb2Xewhwo_1(>E!FFC;fnYpBv!Aeb{!8Qx=|^`iieIJ7fm2PDh7imi{Oz4q)$ zdOYyD?Gl}>$)pE1cT!hGH*Ap63j!94iu%TcsHl>vK8s4O&I`>*Y#dmS%JKuA$JpLc z!vc%m8Wd>O9pw~H!9b_)FDAKrwRZ%UG%+%p?Hkc3Zl| z181z;mL5Wjao^)QB)Ai8`N!<+>|$#+*4IPoM@5P+Km8gKTl;M1}&eZSpBBk=diM13<;tYpPG&c$*J5hyU_@3 zAp&jOr=8Gnpn?{`7mtQBV*F=f-pc+_DdL5!`xXAY_9^JZ5geEN3C|6TsZ_VW%n@tQ z0BjGs`Y06BXh&6$&?&kwPR^CdaP*uf%WZ~-{B|n`K*~~pdtCiOhx+d^U?5N}n3Oa^ z3DnT%6`t}{*o;vC9DMgB?*iAb`Zf)njt});AHa0h#!Y@`u4@1Dkm>7E^)bU2iyd!~ zV5MFU0rs{>Po7la^cpZ)YvqF1+u9$hWosjLi}y~1x>Tgt%WduOT@W@&Y3simlzS+R zx>?&!@}4aG#Qk?Q$l&8p76st|OD5Df295ZC^1suA9+;cl=GsT=6t`KA{{6v=+a{wC z*~DmwLvUM2QW9Z-vb?dBFDtvQMf%J+@6QVLPbn^c>NKVCP%DFTLiIB}T@%%7TLh*H zd&sr_HcK|6G&2kl^orF0KcwDM3H5Dn`tEW?&TdtF(j5Cc(rLG>*R? z73B+F7d5!`^V3o!cfn;37~y>Qb8^xFTu&l6e33z{$l3nLcD9@pb|3fWModX_&zJoxrEv`caDcXO-tK( z_X1n$^^INcO9o!31zeBF8uJ5X4MO}kcQ*fiZgKrNm@cX(TFy}W(nJatzhI%>8rZBK zH?FR#GTGc1pb#KjeGuacR$!W)u`s1oT;o?U^V8SMg#`PG4Xv&(m$`qpY6}ELKDU?# zZ!r3&_^<}l0otm8VUfQ~GpeX)%R;{Q72`q)DW{PhIuw4!LwQIAZVa_|R{hc;XDeU2 zhqq>PYu7qUTWjl$*^w_N+1c~#N0piHZ%DeUwjPW;D(X&_+H-DhV(b=UA6FgJRd1X) z64$nQvmh{2S2dBw z?{7RL*zPe$r{y~Lx&7%a_f1UfGtc%ifHt1rk0DvY7+#oqCC-WL>Wl!Ne5`Z%^@_X> zQS)ODuW;pxNHnF*AaDqIzT}yGe!VevsKls?z&=o3={}+bp5<+7FtnvvB<3s3PMUoEaO0MLPK|+ zE!=aAQrfw?x;oeKrzR}yu2kG$A$O3mr z&4LvzZ{;YYrKNZ8+m~{^>`78|h5LQ0fXFY+`=w5u{BSHydfVMH6;ZG2rO6RzMJt*T zR#cZ@UCxEx;#1#-B+mEGSvMp`9uL*FY4H{E)ZyX8vwHIUy?g8BX8Ue0yc)i8B^j@( zJ;YbXjpzOpc(S+J4W6Cfm)D^}Gqn{5WNK#e?lr48VV@UwnhxQ2(uTY9TtC`IssHjR zij*J$90dH1%EtKQ2t7P6M#R7lQr5Yp_(gfa)oYs6roZ&Y-;fj}vmT#I09j2V{lZ80 z@XhOp0?V}>k`}t%D+^xqrDFvzV06jHZL%S^bgRRg|M#kTQ`#wCrcewg*RGvIPMD}l z24(HhgJg&=X&CwoEvw5EggJ}8#XuA-p=>e zkJGJyQ*7>a5_@g)q3I)kaEQ+=FN!h_NY*4+3zJMB&4^&}54Q?}%25q!26nY9 zkTQX8qlw2O$3koQEG`W7QF!A3d#)W(ZpoD$Hn6D$2-{dwTW&+xAZA<(TsS7Ak>`45 z>~@75j1;`=U^!zz_;sITtNQUP&PlBoE1MX8Cpxw`k2Nec`HGH|)=Hde#+4VWX#B94 zqlXO(l3hp?mFqesr&^*`KquG%$^hCe!l)5T(`k!uOtG>Hj~Rqnn3?-u`<47tJyuoS zJh8M=;r01h^0hpNaW(X0aiVrQ%lxBtI>(vWLJ#B>n71E2=#!8hQvcV@nM^8&UA)}Y z|33qD@OD`+F|vL3E1mHQ1grqKh6v!r;5P`PgFXfB5A7M+UJsL%QbGi>)SZ49ZJz#g z{F0V&^}T2q_WwocQQIgY4VS)r)8gmsay#v}?}8!qQsS2?%dgz>k9y^=%{=ruRti$w zG}ZWm3yJ4;YH4ZFBbHmI`Tte+6<$@QYu_kJ3Md@{Dka?|0!m7Eg9r!$64DJyhqR=G zfHa~Y-O>#LN;imvq?E*duV>Ep4}7y`)^a&>Je$4ubKlqX%Ln9@?t7-chKwIcNIZl@ z3D}VUxJP4T6Zxx^tN6T}Pg`kya9W1|I$t5V9%ocS8~kElpdTD5Bl5qF3;t0|;M%}+ zrqSf>0WzpVBYUz$9kF+uK_MX;AcKm2N(V&X)jr6ff`JDniCAx+>o6PyViSQMA3MNT zk2UTy>dU*8YgOztks!o^Eily0-niU;))^!#VTp$^zH19r9-wcpvs>2 zjF`K7c*Z0qLN`K?X>Ku(&+K(@?yk1e_6b2r2-?)tREchxKj@v!JGngep95bP7#&T} z3^u$jl{6^;&c{}y1cqqkdwTKU5&sZukYuxCeK(=#7FoL5FQgSf<_~6U8hIB`FA$cG z1v-6@%*Di|_Kq+p%u#WWI%XisWHv|}*Apw`h04;KPB)ucVLFCW0OC_)E7p0lT6~7F zJ(lNI+s-RZ7<0>{Q153TnJNgg?XE9cuniq9;jp6E6>GuBxT*$7JI)B0H6>I>;^~~+5x}f z@rnRP<=SBSa(ft&VWTT`v<{~lq_@I{F=juV$v^5DpBh&dVtKg1kL;BI2BwL)MZsFF z_VGz)@E^qX4)1r3%kADENeTuPIO8D01<=UvFSnL##0|jXh{!Oez9qo#!Rv>T%;lxU zffFy$Z-cdL+d9$NSr{O}%Y&nHtklS$!R>k5_}|z6LFJcIT(~O7PS-G+i0sjf7a=J5 z1=#-CrcuO37qn)Zw2OUU+}Yi1c~D{V{XfkVq+Mv27)r0olORfWB*Fot5g@JtG0i~H zk7BiMlKTlb@WVp8`p4W{i&7~LQ!}JU5*ltzR=Q( z0t*=7Uqh!2kc|+kqFP==)#%4^;`CrtLjw*FD&wK9?&s@(8BtOjp+m^RWV0_L7&?AI zo}@YGUMK5}VTAX)JY|BznNCOu3r$2s1mbjImAVIc=PfO7h4nBnf|0Zt&=%}N#0o@+ z^sgi^VR;<~Uu?dJiA#&E(JGj|y7R&fm_ZtLuk%3ZTV3|P+joprqIUG{)zJKJTvlbQ>3Oyk0_*uz<&iH9?=T)G$ zqsuJ!Co@-7RozdJhnEV;EUm-CyE)@Unk>Mpbp%IJ zQE)p^fnaZKEJF*pak4O}aLuA%NCFGUx9xXb4?O?ndq_T=`1V^x3<)(RO1_p-NvPcA zN>Y@aIrzT-_1nE}`!kIR)w0;8(Mgjx0 zG6~_U@W3tU%pW&Df^o|CKHfCm3euI=;2sN{>Z+U2d;$WCQBd^6*yS9E5Z|Re^?cac z(LrHmwrrDbZ)-acdJ6)TKvI=?e)Du1MgTo{)I?=Ck>pXdiY@L$D0uMw*LsyrOn~t9 z@6ek9oaFc|yD0`9&dchP^UUm%H+7B z1F!>0Ru0~4>X16xeQ~x8T;0uo&5^Z`ELixn038jaJJ-%U_m{qD-7zz${w&u5Ut+3X zH6!fC1H~49Y4qAy>G{0yUUfyr7iBf%Lwf;LR=f&=~NUtE3gS|azj-0LVxF2ptiFed2wZi)xn8kI=G(6fFG@nL(KAcyZx9$x zG2JB8<;rn|r;3|Wz=;*Uyw_R^MOjas28e0qgbu$~nV0i%P|x<3k`R&4wPpYo5tDZF z?CJjXSB}T_5VrCd0Gy^1il8AP1Y=0JNhPN)aU0P|?x^CFw6r{ex{ ziX!Ls2VFO>Nvk_ZkGjT~n};FV#R9)n#pHdqqQ1io>c+QObNl@7_eT92Avi?slbWpS z1KBoe`9T>Klu#WZu0AJ%_K_ED^_1MS^7jQ0V$>mIv6?nbEl2o@&oBtWd zsJ+sj?|wIb=_%tL!wC-)fWPV`&irspLKlS@3|&c1^O|?#Av}Os7s61_M~YcMp7jA- zX5cY-6BiTH0@K>5?WrSJ;F)#43a7%PVP%r}u7ibbllB73)EXmLIKf4BUS@g~3_)g) zoRQg>_a%YfBmO!PX&_m3bH3}*PLw&rT4GS$AmlCh2d*o ztP7Wt*U>fu&%K);_p6p3KHgEGJM^>t)62M-mP1HP4rzoUjT7qRMmB&L8wzmz}s-b!4$A0J(ZLYcPB zb)~r`&rq=c;`X%$h6G)Grq_N&6rCtMu|yF=mkoTE= z^FM{O!lj7quU^M?00$yg$p17u(gs{0pK|@2`kw{mzm71Ux*|W2=Rj@Qw~;J9bSBi` z_K$cqmX$HPIrRLvgzv-W&IC(U3}#@*x&cW|otJ*2xS;z9!`f^6S?Fw`C?9kiB0^2Q z{|efQ909QK0;S&t-D$dHWs9w+PNw?Zn4vtxtps$SmDH1@`~u2F{VJOtu+4Mv@wJ2Z z9-bL6M%)MbHc^-iqEkxrE5ku_0liG8-_C&I*@eLY+!y;BYK~)Y1)MAo`J9(;tT6d$ zkcuhis>deA1y+?_Vj4$B;y_Xqx~OFQXPPEF+`lF}I~seiSpedRL?*vCFaz!ReYNas zAlF_yKXpQb)U^lM3M~9cjw}J=rE79F1B;KE7bKO9Cz9yh(sIL1UQF0NF-|EE-SFQxiO>W3*xpJn=dh?@U2LAb^KLDvg|-o%h$SG)t(e-h`5tT#w^Ssr|zQ z4%+F#+%~GPD6DTF%Al;I4UAnEw@<~Xeaqa)`>P$$a_|djK|F;L6qgTw2vFmA~B>FVhT1Et1ZmZ3_a>Z`qOi_+V(;Q#?Z zVOtMR;e&kG+z<{PXtI_{A`xL(q36%SHKoomG#S-YZ_Jzn5h0q97_2Y1~^P_Rz z!7WregaMm3(U6gK0hkY&oc;Su3=Bb_Gf@X|3#VrWiU*-n;~@30?w<@CSQxwz-IVk> zNWPFB0KS!WAwco4{vIw&CFE?)e#I0;H-k4;{zBkFOn>Ej!x!p~z8@=F#xM11UfqI& z$?UA^6NGBTmYH?=I*4XAfVLu8z!vt=y0MqDOwDaQB%mXJHk{Kf55h3wY17>1g5(!a zZBsq?XL(|f;qTTY5%f&~Dc>F>NmW+i`oXe?#nRG>h$?}b&+_HVK5!`uIqcKJV7NFE zJMfph@g_Jtfn-@Y*toLC9SijaF>&u6!NOqj#vbc0l1|MH=Pi7eCr@)vnzg{_?{ju} zy6{P}kkF4>=+PgGS+LP7K@&7hbg9$Xxi6epj{qMLa$Lc(Hx_HD^!{Wcew+kR5!ntQ zcOgtGwEe^q^0h-F@Ynk1ejw%2aPtFncBZvOf+PLwz?)NA+bKLDofiZb&&LYBj}_}g z!->EJt?X#vyq<(*$qTy%QhT=3CV{=bf*K$C;>P^`&k>t#c)9x!9a`SuCuL_TEa;ix z+1_iu!p>^IM7U(ex6m&5Z4$# z9}f!k(rWVqVqNGL&%py<>`m+mvYV1It!_%W>d>7jtt3fjAWH0q3s*F>S`eKz3nsxR z`PB;I;S3Ybz*L588U(ar|F3xtqQ1Yuwx?U~%HHUwFAsO-zDWOPL}elMh0`$w30aZI z*qc8|#@aR(d)u}AezGYE>Q|w>rQ-J<(b3>e(j-J|F8^qI+2C~+cV}Mb+Nmd0P#_2u z`29d#gyi!8q*VjeJ>&K>QXEMpFJ8)mc!r$kITq|+=qAn}3yBn*xFmyaoQFzRf zVEWv~KQ`-bCu1i$6~*$xGZlbUL8@^{wlfp+?wwR5B|mmVxY_O)9vj6tel1%%4hd`7 zd9^uI`$0x6UXg&MEGn#6%$)#%ZW=toK~imIn|UC)MMhx11V9ngu>^qQ+#5Xc>r^#FySpgVk9iabbT-Xi-m4qZ!8wx>#~R63INfB-{|`w^}^@CQiHP*N>G(F zo%tYFMoLyXJ|;P|DT9VFk5Pz>H5lkvcpR21s|5j8G^3+a98hF7F1>xcQ-APxov6en z9Yn|sE3;J4kO+)hh8d|^z25QdbNrRa-=WWxcl0^}UUq>r?sP$z|K$&h?uEzjlPr9- z&xWnju+BM*gjHt|3UC2m87*2H0y~&Hh;BCXQ7y~g@gPa%zFrYu0*m$s(2j#Z^SaZ) z=i=Y#z|z2d4KCnpm^(pNO@tnhX5=wdQ$_{-KvJ?gw3wJ)rN;H);1vY(1*E)E#JA%A zJv|kKqUD*kFXoF+V9Ssz>^%hCyiQan21WB0P&*jM#a+Fgd0sCf`7Ftu`uP zv9a^Qv0-*62uxrCgVa)niu8!=tMAJsVoMyr4L*RLmf=z(5dheN{_8FY6|`?SJzdMJ zJ?jp@Zl>C+DSR0u@pXH3*JmHlF-bB$H{ z@#B`OSXh!tPc53n72TI#V&CVwv!)l3+dt#AO_T2OVyJO#YvAjFiN=`)6l5nHU#8y6 z{_vp%Owp{~8SKo=k0A$DHtDJEgh2is&X9&QwhW7p`+OP_8}Yj3yrX4RW#)-%ihvCS zCI0MNbJJ!7e+ckq$^4rN8RuHsA8US}ns$M*EKsNB)e6B8YNG?N4svndb1FYC7B;r$ zAbSNvAH`^}w&glyR%vcTUKI`8ItA92YRO5GPn88!Xk_DK<3cMX4Jh?R?!@74!7jQ$4kRtBd2!q@^VzTV) zB4vHYKdvZSG&DvnIjP5*50j$)Jd!ndPr;jaFz2UhX&Cu zp$6lq=3SFBl}QRh4w~sVMhC7F)f?&z+@Q5G-8N*p2lmZ3Ofhn~&+`~GbYoQF6RCI4 zP3#kHS64krqIc{(6Z}`FA|s2M#N5eZpLZHua|7T+A)6jInpr{jEHl=5eI~XGJIs=D znrpk5f0YvTy;0To?`_?qGXjy%&0icr=(xY!9}UvT{NtFg8x+U<@XSsW82qM8eP_fB zV1}V^BSG^8)ycDV=Ldf&)de~)mF90!yCx9G^tZHjUXdhjdz+-*9|a~k=uAwmu;gW*Zq|)ZWQ^b2 zeTuc_EkH#0>Z&cfEu$j&5De0m5K^9C7#SHAWdU(Ma5UUn8@wRra}{H;rtCla_{V7) zz`vVM?;cw*Hv5UEKrW%Tk58Xb#y#+d0SXb9kRa{g!0l%<{}_NZx;(bR%4$qwrb9WT zU9Mebo>5RF;CzN{->JN(ujig1Q$$1B)>@U0mXCukXAxLmKK*v_N}7vQ>T)O zkI5x}iQj3B4gd5yT{~>+zUiCFU$AwI*JXw}JkeY4`AGlp-l7`4mmr&z!Z_L*2W@sq zw*1<$DA(5tFT1m}ts6^bt>3>3T1@X#@bL(?&ZE?W;JVnFnFfNWB~FMxoWB*!pyN2Oi3>VOJ1_$kvze zfb9KXvQ2()itBs6*EMeE1u3PV0yJ<L1>Pd6D(A)UEOEBzJDB@m322UF%cNe`n-Hw^hDk z#Gd@7K~28;ms^~t5FVks!;gW-ZiEqiMj7xAuUGVFzSxOsvQkP*DPZ`KIN@?O`9r(M zdM=kJ67N&;X7+SN*gGcAd-uutt@*@4qL&WOIvmN;IM|sPS+*$Od((Ph;M4dHQy7sJzdu;Lchp9Ayly{PNhslB9sgh#xseZV`g^bPS_9;+& zWtEja%d93qF>lS(#utv}eg9B~9#3lj>D@LR9OxSjzHRxAYn^&?e$AZCmvyl)c!^fq z7{ci@*{ueL`QmBYoDS)3$tQV*@LJbFs%D?fCvtCd)y!D)lu!L(cMWA&b>y=BcY{*U z#bP9z-KFUBQhk4eTKt-Jo_yRA+7sXN7%DRS?bN8Z%m+7 zm!_F6R}+ExlWw}&@EN!Y(uCdiDnC{7RXC@VISU#jDRoUwrf7dkrx048`**w(osvQU zjKw#2&xx3z>i4`v?*u+XH1czg(}?cN&tj5dO#IAIP`Gy+@M*Zwv`RUH;pl|cODD*0 z1fQFNsp(aYQuNd3{|G)Cit4K^k$$|hYqP)A`*}vrhcMdgfV4!n=`F|=;xjX&6Ds)& z39&O#^Pej=#&qVgw2KO+btb-EqMn3Dd>gO@RcC*mB*#Q~BZ?7~oAsmE!1=#M0aEyo!y>VlTRum4xN{OO|6_y~7@LyvCSvoEj3-Ba z#(sp>r{J2?A}mctWG@*>{gliQwoI8>G{esKSvUWxU_1~Dn|2Z%7M3l<2@ON8gn#O5bf zieh+*IZ?@b;iO7)&;KgP7{G7(u#QarNegy{MebcWZz*M03{i}?d0wa~y&$n;D^d^P z6!KKv4+RBJTrF6{J@8vI#q#GDA~xq1 zSJ&gNp?MNyyq=!8z9gz43&?efKsP>|6^HM%UQzL8{^AfVm~WAv%StfN_T*7B8GqtM zs4~4x+vvz|C5?2H%&Dsz@(FTMFUlG6!Ej>=cf!cnJrNOHFh!EuJ!IXv*{7thFArSE z6<@C!pF=+Qc%d_0b$%xN;|ckgmR61L1*NujE&)sl`Qcm4y=ap?BsBIkNB4b5=N5tKzNyF`M=UrP~&ry2CPt<*1{h|v``(wntu#< z$m;+zClIzpH8zUER1f*5Gz!&Cith#RKnUbVt6HE9B(hT5!1tmX>elrYaPgP9ToG}ICC18 zEfft8Pi1xXD|jU(Bqr{1@dO$-UB071msu8Y6)S_LvbrVNF0nQ)ftQ->4o~8iu;8`6 z&Rb&9p@7*rAoLCg&Fo+#ZWCI+-eP2#$1+azf1PZ79`m1crzb|BKb|b(3^ot!2FC=g z1JUF%=VR8hy&eUdF&Fk z{Yvj`U#6FL8B}aaFXw&g@kv!%T{ zf})pZ=JS-}(J~-di7YSDpFAxrxI=rLp#z7(F7nT1JCNeK~+YY-Q{cFKr4?Cw5y1 z+YG97!E|(T>gn%qA9v$rIxa=e;O`Tt{BoE5l$)YZWmu4B_5Hx5d9L$F-120d4Pzsw z%15nyvV6vZfmwh{yZnsiIOW1u({@OK zDU5<4^YZ*aCHMw~e|T@bMvkKUToqjy%x7k1k%A?Mk2M_~6Cbh;RG`rr(2kYW z)vTPH0Kii~Hb;Nw&g-@i9||sO{2jd0+qs^-DBll`PztKLW+bwy^wdrO*cjGhF{mUm zM`p2y9&y0XIEk>m{SYCxvbJjS+%VJ5sGi5F1oP+5pZ8fh z2(6u*B*7q8#qmeCaluSe^9Q%U*N+8v2ns8RsYU53{%+T2J>iX*By_Ldzxjp;+xyP)lzu~Pg+{8$DQ%Tx68)1GjtIV zZp&`OyNBc8Ca-^kNL5`OR-3)tGl-c$tEf0+ zWk0N-;u8R;bBp6srg1zt;gHdEsOZxSJ7((>@~!ZSq=yJ$^~5Xb<- zA|vSpI7)3$AnBo#le^2vNQq9TQIc9&7?s4J1KYpr1rGrTc#S5TE?B@u&&0{O6I2|E zdI$Zt)zxm3Ni*W(94(#SS8JOx>?Og`m`+Nuq@r$kBcpz88DUb|BI6`PUc?KCwtH4R_Vt4hV- zx3gb7SN3`N!bZP2q&%GE`e`j3Y>UHIcWmp9J`+*nRk+{*9%#1E5)He&{Uq6Q{z@G( zp{UT%5BBrE?HwIghc0Jb@HP%orw&P=%qUA)WbJFp&q3SYGqqnEByR<-5tEStBBEOE zy%!5Sym;q)Jvnpbv@R?}wcNneY#<-yE^*3z0M zOe!$2N-Yz4JU7f)<7pudE}yP8Ga-a+tEnLeF&_M%f)s?EfL4^A=bk^j^;52Ap|>=W z-WA_Eevjn(F_Dn0e0_0&0;)*`@_<&MeeGROU*GcAAsNTtF@l+cC)j7&L#2Zol&Q~_ zhZ7g$Ni|S-MRvFnMtONz9dC2%h1cqXsQtFt4b1-u!mws@+wj#UA35gQ_K%T0DZXXW z4f;%5afi8Mw^qCPJh}MZ6jf#{dr6pemzUe#reu8l_>s$EkW7!yH!M%F+MgU z?vbcDiFcLn5Wop}KGo=w@nkwNiAk27>{zQYyIgU+bIs+JixRQk*!&WZQlpWlxCjg+ zpPPgEx!+|$nW*gbtSSvv)t2FpchPd144JEiz`-=e45QNQCh0RXvp&GKke~DwL}t#+ zVB}<(wS1I*Z}q)2DLMW=mJ1Se`G8?z#cmsk(CdgODAM+kGqEuJ zHt{;OF0TQK+_F*|&aOYYw#d16+_pDY9>{IhIsC~$&?AHn%dpuuy`)4jSjq5y9OvT# zGvrlZM{fs}`+g_CO`VEF&mjL98iZ|RefaRmd4eAfD=Z0qB(_OeA&I`+ww6iU6Tf|= zHEp>oDyxvWln;wPATkmUsQCW9*<$AIK9B8M%-C<|Tsh+N-gEJ0FwGoWC8lK)U&~^F z?}$5-s4w}qDw40dLRG8;tsKCrF!~4BHK}S#-(2}KZQq<#!9w!iS>60OMm}U+?@PRBKiOOU4&4mU zI=8D1XZbaZYs09VEAC3a-{dH$e9UEd`1S?{QbB??@t`W{MY8`LO@!U6L{6ehU!n0K z>U+OOZt;w2SgwzSgJN!Jd;96nj;A-R%OU%VkjC}>ydNq(U@nAw+zzdhTwJxgQ6r3`m&?hff2kmr9<0Y-osSIx?(3w}|b(o7hh8 zou%CkAjh<$O5%W{WY9x^s~*cc^3=O-e}tIud#8kR!k(U<2r~c-BQY`Y$$lRvvTnmk z7dS7ZqU;*nAW3{}kv&v}J*%^CFy@Q(+^hZa(UU*b^AM(RLtb8fA79~SkrqUdzk+tb zEXlbN13pS~60IrcvrzoTU>Me~{O_p3lDH1vg@W&}Kq3f}l^O>m97ENQ^4wi){~32L zT6zwSDA@8|K`P8o`-$!%UQ9I0pLMvjzDr?|k_N)E@VBcBkGB31 zWi~?(T$qI%ceL+77GARcl$yGsl$^sY9Gq~z@|SOd6HDP|x4skmTI-6O`t5qSPM`o* z3y=L>f|k{|*-dLo{eApTKf8TWd-51E5AO3MLzxU@AhQDQhQ%Kh7e}b9tPEQ?xAoY4 z#1C=ra|he|RT;3!O$gXWmlZNhc?Mf@Y9SV=X0(w9mbFnOLcJ*cECWJ;gf@m7XMggl#ZmTITWNHwdou;x|1k@PuKdsxps{ zns*ZYK-I#jiI1{!}q)}qn1t@0ZcOgoso@w%vp1>kqUFh)@EDc&bxx)PW6>V!1q zb1!dnoKBvc+|GuWmVKziw#EZ6>kT?4czNcrac~$#MgP>U4N&oY)ET02hJaAeF~p~) z_LhpHR)EeRURg`BePLk|U>gy|XFGW-L||5Re5`OgNj(RaFl3c9(Yd(K%pt+T&LF}| zZEH)dU3#7ZggDR%GBDm*TU!?t6{*8<31Mow^>(7w_Ce6k6q?{ewPoOzr!2mn*`_1>!g7<0sIx98r+ZK_M_Pdi9(p)jLm1homQR<( zJVJDGq=SrBs~L=+S?FiNA!hpWCF@SiwJhzvp&`f;j!8><3ti@V=({K_RnQ- z;1(30u0x7;US1yR!C*%OnXuOp+vQ~v_Kh1rXavH?H3HK_s&E8nN@eYOKXnaucQ3#v1q5gm z5+Yz@e}98A+eqIQ89lV?9rm~keA8ei!hrJtX8oIien?H~=!<^(rEO|7XS}!E_BJX3 zokx5XjvwB@+QC=#`Oqm1p2gjZWhS64zD-R9lk_DaQNt{!`?qOml;KQBZhB5Opzl`r zcQ0t;fDtP{BprD|k%l@HHSy~i%*!V|)J?2a zS>61DSu+!$N0tV}Vnzw`PE7q{vScp13K-z7W%&a%j(9s@zccHJ%XQvCQ9wt+K7R4c zzGJyA?CAQ|@+U?OaC|FO-X3pn53G0F;essGBRk!b8K=~#x@5jDowYCh>W*pUM9mYd z!{pp~-R#necg0{ov<}ob6WoU-3GRR%5$Hmmi>a>{i6G--6lKWLW_Tv+R!YyL(VDyP z!CIl|(gIfMH|S?DRnc*C$HGt@53)sAcWXU(LnRFo9asN~J!o8elURC%rN|nf9yQ$< zS=Zoe{CMpBY+II=vo~PF`axO0s|YNJTL7n)yExpTj&6U_1ZCYWku?#@K>qvM2>w0x zET8b+ z%1TN~zI?HfvRsh!2vN5qxM!!XsoMhZ>MC`w0vKeGAbJg5-6zV*_~6ih-2zO$%xrA* zA|mf!zed~oQvy)Qjan7nRcgodxP*+is6Fbp_@x`v(9$!` z<4UmS7Zh~2V=vb_d`rsLvqCjV;>FyRyIOE$5KWQ`WDVpY!9#?wGnSU2usy)WrT{PXjfBDeHMnsf#lDvt%}zRI9MFFBGsCoFs5+VpRO z^>U&qAaY*$1E_OHGzdc@nxuak^B48^Q^lmDK&Al=T4x?9-xt>pZxYZuEdUedZ=Gmx zh-9gHsu`o=X?^cl0)2P3>FqgCi5WVh!yj#{ufXbst}spduz^fsqVnrZlWS^ITmDFC z*9Vp`R%VXW^y0OVW|S;QF5*-5_Z~dUCTzMxHk~*?zvs(!Y?j^egY&UF7zcO&_UeN1 z>Njeg&9gT0bD7I0ARiU-8bTCUW$~%^feEnx1Ik`^5B6V+IkJ2<&y>M{WjS6-4I&j# zFQ@~~tEov0rnA7nz?;Oxin{JXg>mo7x&KBgT3P-H4I21LJN@g=_mRT6pRYWG^-2tc z!ZBm-a{4sESal9V)YepG#Jr&W-9?9o;qvkTC1p;RcD0nK-&+=1}jK+u+}4%gz{(Kt|AWQ@Kg-;spBlABm%3Y zv9eAEGoTg9&3+g{lMVnC@oqwnvGMV30OlcPYu+s zDYC2zeY@-us&&JQrWNywE+{BiSX&DzE`Ax*iGzpNF*!-$qGSuDRBGBwmEhj*_q)wn;WvSJSNKALEY~4A4&4Y{BUn*4RFQ>&WeW$;O6YTj-rfu#M$|@!@6oL~OzOsc zM3g70+S1EB{GnjGKv z_bWoGYAbv^wJUxpbbjaEZ(1c3Dfv1J&5ZS3HWYFgl~*rcea2$QeL)*?dU~25c2xgC zE}jwcHP8w*!{LvDnag{xgC5`BSX=wXkv&V%M#a`}2(m+zxaa_q@s#{?!I#$xT~$t7 zLt4K#HynQt-v#BlCUe=;c-^b|8`%8I#z4Su1>2JV=()Em~2&4EsNGYlr>GUSM z@R<|f;aO^Va{=d3d3pI0IXUJtB(t<@(5S>n2nVjaIk!yt{NtHIV7_In31PBsM@`_D z^U^Cq$^A|oou{%9-&Igp%-h-)a2=PlVc4^<^g3MG zU2HSG>Pvz|69DG`-yCSMlLj5#cSvJ!(@oe=BII%)cv9esgEKVeN+oEw!hhNf4dM!w zw$q8A-@bMB`z|2Rou~;{ZQoU8{rzRX`BT~@(^g$zKOrR7WM{7N-f7W22oLOkFBnbh zdvb+^NEHhA~#Mp2K7>cHdGy?-hRBFKH>+kNKo^kKq(ZfpdxS#`g zELlrSEK$SyGLtd0o=!K2I<2k~o zfM5g$00nr2wx$1!rqGqX9{JDVLV*up*}^~rH!wY6SX$1lYl}t;P=bo&@iux18dTf1 zy@;R%^#M3bm!OW(pWWa$>@3jzLC4FhF}H}b6KZV*K$rg=_`4xP_d4@`zf^65x%%d{ z$2S3QLc~P>`&FYWezGPD6ncJouzU;ot;Yq2H}LR`rw>jlq4x8C|I5>M_9w`{x*2E< f3&;QGuZ~a-N~@NGgI5O8;4e98WvNn$Xa4^OzPyc! literal 0 HcmV?d00001 diff --git a/docs/api_basics.rst b/docs/api_basics.rst index dd0e593fc..1ea14bfcb 100644 --- a/docs/api_basics.rst +++ b/docs/api_basics.rst @@ -19,16 +19,34 @@ The first :py:class:`Maps` object that is created will initialize a `cartopy.GeoAxes `_ for a map. -.. code-block:: python - :name: test_init_map_objects - from eomaps import Maps - m = Maps(crs=4326, # create a Maps-object with a map in lon/lat (epsg=4326) projection - layer="first layer", # assign the layer "first_layer" - figsize=(7, 5)) # set the figure-size to 7x5 - m.set_extent((-25, 35, 25, 70)) # set the extent of the map - m.add_feature.preset.coastline() # add coastlines to the map - m.add_title("my map") # add a title above the map +.. grid:: 1 1 1 2 + + .. grid-item:: + :columns: 12 12 12 8 + + .. code-block:: python + :name: test_init_map_objects + + from eomaps import Maps + m = Maps( # Create a Maps-object + crs=4326, # Use lon/lat (epsg=4326) projection + layer="base", # Assign the layer-name "base" + figsize=(6, 5)) # Set the figure-size to 6x5 + + m.set_extent((-25, 35, 30, 70)) # Set the extent of the map + m.set_frame(linewidth=3) # Set the linewidth of the frame + + m.add_feature.preset.coastline() # Add coastlines + m.add_feature.preset.ocean() # Add ocean-coloring + m.add_title("My first map", # Add a title + fontsize=16) # With a fontsize of 16pt + + .. grid-item:: + :columns: 8 8 8 4 + + .. image:: _static/minigifs/basics_first_map.png + - ``crs`` represents the projection used for plotting - ``layer`` represents the name of the layer associated with the Maps-object (see :ref:`layers`). @@ -379,6 +397,7 @@ To position the map in a (virtual) grid, one of the following options are possib .. grid:: 1 1 1 2 .. grid-item:: + :columns: 12 12 12 8 .. code-block:: python :name: test_gridpos_1 @@ -392,13 +411,14 @@ To position the map in a (virtual) grid, one of the following options are possib ax = m.f.add_subplot(2, 1, 2) .. grid-item-card:: - :width: 50% + :columns: 6 6 6 4 :img-background: _static/grids/grid1.png .. grid:: 1 1 1 2 .. grid-item:: + :columns: 12 12 12 8 .. code-block:: python :name: test_gridpos_2 @@ -415,13 +435,14 @@ To position the map in a (virtual) grid, one of the following options are possib ax = m.f.add_subplot(1, 2, 2) .. grid-item-card:: - :width: 50% + :columns: 6 6 6 4 :img-background: _static/grids/grid2.png .. grid:: 1 1 1 2 .. grid-item:: + :columns: 12 12 12 8 .. code-block:: python :name: test_gridpos_3 @@ -438,7 +459,7 @@ To position the map in a (virtual) grid, one of the following options are possib ax = m.f.add_subplot(1, 2, 2) .. grid-item-card:: - :width: 50% + :columns: 6 6 6 4 :img-background: _static/grids/grid3.png @@ -453,6 +474,7 @@ To position the map in a (virtual) grid, one of the following options are possib .. grid:: 1 1 1 2 .. grid-item:: + :columns: 12 12 12 8 .. code-block:: python :name: test_gridpos_4 @@ -464,13 +486,14 @@ To position the map in a (virtual) grid, one of the following options are possib ax = m.f.add_subplot(212) .. grid-item-card:: - :width: 50% + :columns: 6 6 6 4 :img-background: _static/grids/grid4.png .. grid:: 1 1 1 2 .. grid-item:: + :columns: 12 12 12 8 .. code-block:: python :name: test_gridpos_5 @@ -485,7 +508,7 @@ To position the map in a (virtual) grid, one of the following options are possib ax = m.f.add_subplot(224) .. grid-item-card:: - :width: 50% + :columns: 6 6 6 4 :img-background: _static/grids/grid5.png @@ -495,6 +518,7 @@ To position the map in a (virtual) grid, one of the following options are possib .. grid:: 1 1 1 2 .. grid-item:: + :columns: 12 12 12 8 .. code-block:: python :name: test_gridpos_6 @@ -508,7 +532,7 @@ To position the map in a (virtual) grid, one of the following options are possib ax = m.f.add_subplot(gs[1,:]) .. grid-item-card:: - :width: 50% + :columns: 6 6 6 4 :img-background: _static/grids/grid6.png @@ -530,6 +554,7 @@ To set the absolute position of the map, provide a list of 4 floats representing .. grid:: 1 1 1 2 .. grid-item:: + :columns: 12 12 12 8 .. code-block:: python :name: test_gridpos_abspos @@ -541,7 +566,7 @@ To set the absolute position of the map, provide a list of 4 floats representing ax = m.f.add_axes((.35, .15, .6, .2)) .. grid-item-card:: - :width: 50% + :columns: 6 6 6 4 :img-background: _static/grids/grid7.png From ad578e24c1a88e71d430fdbc7fe40dbae8535113 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Fri, 16 Feb 2024 16:24:34 +0100 Subject: [PATCH 193/240] Update README.md --- README.md | 136 +++++++++++++++++++++--------------------------------- 1 file changed, 53 insertions(+), 83 deletions(-) diff --git a/README.md b/README.md index 54b820f6e..df2f47e78 100644 --- a/README.md +++ b/README.md @@ -13,57 +13,58 @@ chat on gitter ---- -

    A python package to visualize and analyze geographical datasets.

    -> **EOmaps** aims to provide a comprehensive, flexible, well-documented and easy-to-use API to create publication-ready maps that can directly be used for interactive data analysis. + + +
    +EOmaps aims to provide a comprehensive, flexible, well-documented and easy-to-use API to create publication-ready maps that can directly be used for interactive data analysis. +
    -## How does it work? +## What can I do with EOmaps? **EOmaps** is built on top of [matplotlib](https://matplotlib.org/) and [cartopy](https://scitools.org.uk/cartopy/docs/latest/) and integrates well with the scientific python infrastructure (e.g., `numpy`, `pandas`, `geopandas`, `xarray` etc.), allowing you to visualize point-, raster- or vector-datasets provided in almost any format you can imagine, no matter if you're dealing with just a few unsorted datapoints or multi-dimensional stacks of global high-resolution datasets. -Figures created with EOmaps are multi-layered, so you can (transparently) overlay and interactively compare your datasets with ease. With the accompanying GUI widget, you can quickly switch layers, change the layout, examine the large collection of features and web-map services, and explore the capabilities of EOmaps. +Figures created with EOmaps are multi-layered, so you can (transparently) overlay and interactively compare your datasets with ease. With the accompanying GUI widget, you can quickly switch layers, change the layout, examine the large collection of features and web-map services, and explore the capabilities of EOmaps. Once you're map is ready, you can export it as high-resolution image or vector-graphic for further editing. -Leveraging the powers of matplotlib, you can also embed interactive maps in Jupyter Notebooks, GUI frameworks like `Qt`, `tkinter`, `wx` or on a webpage (html). +Leveraging the powers of matplotlib, you can also embed interactive maps in Jupyter Notebooks, on a webpage or in GUI frameworks like Qt, tkinter etc.. + +> [!IMPORTANT] +> +> EOmaps is 100% free and open-source. +> As such, acknowledgement is extremely important to allow continued support and development of the package. +> +> Did EOmaps help in your research? $\Rightarrow$ **Add a ✔️ Citation to your publication!** +> +> https://zenodo.org/badge/latestdoi/410829039 +> +>
    +> BibTeX +>
    +> The following BibTeX entry uses a DOI that always points to the latest release of EOmaps!
    +> (You can get the DOI for a specific version form the zenodo-page) +> +> ```bibtex +> @software{eomaps, +> author = {Raphael Quast}, +> title = {EOmaps: A python package to visualize and analyze geographical datasets.}, +> doi = {10.5281/zenodo.6459598}, +> url = {https://doi.org/10.5281/zenodo.6459598} +> } +> ``` +> +>
    +> +## 🚀 Getting started + +Head over to the start-page of the 📖 Documentation to get an overview of all available features and functionalities! > [!TIP] > For a quick hands-on introduction, checkout this article on dev.to: > [Geographic data visualization and analysis with EOmaps: Interactive maps in python!](https://dev.to/raphaelquast/geographic-data-visualization-and-analysis-with-eomaps-interactive-maps-in-python-48e1) ---- - -### What can EOmaps do for you? - - - -Checkout the [🌱 Basics](https://eomaps.readthedocs.io/en/latest/api_basics.html) in the documentation to get started! - -
    - -- Create [▤ multi-layered maps](https://eomaps.readthedocs.io/en/latest/api_basics.html#layer-management) (and interactively compare layers with each other) -- [🔴 Visualize datasets](https://eomaps.readthedocs.io/en/latest/api_data_visualization.html) with millions of datapoints (and handle reprojections) -- Get a useful [🧰 CompanionWidget GUI](https://eomaps.readthedocs.io/en/latest/api_companion_widget.html) -- Use [🛸 Callbacks](https://eomaps.readthedocs.io/en/latest/api_callbacks.html) to make your figure interactive -- Adjust the layout with the [🏗️ LayoutEditor](https://eomaps.readthedocs.io/en/latest/api_layout_editor.html) -- [🗺 Export](https://eomaps.readthedocs.io/en/latest/api_basics.html#image-export-jpeg-png-svg-etc) high resolution images or vektor graphics - - - -- Provide a comprehensive set of tools to customize the map - - [🌵NaturalEarth features](https://eomaps.readthedocs.io/en/latest/api_naturalearth_features.html) - - [📏Scalebars](https://eomaps.readthedocs.io/en/latest/api_scalebar.html) - - [▦ Gridlines](https://eomaps.readthedocs.io/en/latest/api_gridlines.html) - - [🛰 WebMap layers](https://eomaps.readthedocs.io/en/latest/api_webmaps.html) - - [🏕 Annotations, Markers, Lines, Logos...](https://eomaps.readthedocs.io/en/latest/api_annotations_markers_etc.html) -- . . . and much more! - -
    - ## 🔨 Installation @@ -77,7 +78,7 @@ conda install -c conda-forge eomaps > ```python > mamba install -c conda-forge eomaps > ``` - + > Advanced users can also use `pip` to install **EOmaps** (and selectively install optional dependency groups) > ```pyhton @@ -86,44 +87,13 @@ conda install -c conda-forge eomaps > ... > ``` -Need more information? -- Have a look at the [🐛Installation](https://eomaps.readthedocs.io/en/latest/installation.html) instructions in the docs. -- Checkout the quickstart guide [🚀 From 0 to EOmaps](https://eomaps.readthedocs.io/en/latest/FAQ.html#from-0-to-eomaps-a-quickstart-guide). - -## 📖 Documentation - -Make sure to have a look at the 📖 Documentation ! -It provides a lot of 🌐Examples on how to create awesome interactive maps (incl. 🐍 source code)! - -## ✔️ Citation -Did EOmaps help in your research? -Support the development and add a citation to your publication! - -https://zenodo.org/badge/latestdoi/410829039 - -
    -BibTeX -
    -The following BibTeX entry uses the DOI that always points to the latest release of EOmaps!
    -(You can get the DOI for a specific version form the zenodo-page) - -```bibtex -@software{eomaps, - author = {Raphael Quast}, - title = {EOmaps: A python package to visualize and analyze geographical datasets.}, - doi = {10.5281/zenodo.6459598}, - url = {https://doi.org/10.5281/zenodo.6459598} -} -``` - -
    +For more detailes, have a look at the [Installation Instructions](https://eomaps.readthedocs.io/en/latest/installation.html) or the quickstart guide ["From 0 to EOmaps"](https://eomaps.readthedocs.io/en/latest/FAQ.html#from-0-to-eomaps-a-quickstart-guide)! ## 🌟 Contribute -Interested in contributing to EOmaps? Awesome! - -- Checkout the [🚀 Contribution Guide](https://eomaps.readthedocs.io/en/latest/contribute.html) on how to get started! +Interested in contributing to EOmaps? **Awesome!** +You can find detailed instructions on how to setup EOmaps for development in the [Contribution Guide](https://eomaps.readthedocs.io/en/latest/contribute.html)! > Found a bug or got an idea for an interesting feature? > Open an [issue](https://github.com/raphaelquast/EOmaps/issues) or start a [discussion](https://github.com/raphaelquast/EOmaps/discussions), and I'll see what I can do! @@ -134,41 +104,41 @@ Interested in contributing to EOmaps? Awesome! From 159b7c93d5c6beb05cc5224b4dd6efc4a56445d0 Mon Sep 17 00:00:00 2001 From: Raphael Date: Fri, 16 Feb 2024 16:26:07 +0100 Subject: [PATCH 194/240] use parameter-name as colorbar label by default --- eomaps/colorbar.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/eomaps/colorbar.py b/eomaps/colorbar.py index 4386f1d66..c5c008eb0 100644 --- a/eomaps/colorbar.py +++ b/eomaps/colorbar.py @@ -1567,6 +1567,9 @@ def _new_colorbar( cb._set_tick_formatter() + if label is None: + label = m.data_specs.parameter + cb.set_labels(cb_label=label, hist_label=hist_label) if dynamic_shade_indicator: From 962c68938c2f2c1986a7ff06c4282c0d4c3cb84b Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Fri, 16 Feb 2024 17:07:06 +0100 Subject: [PATCH 195/240] Update README.md --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index df2f47e78..aacf7966e 100644 --- a/README.md +++ b/README.md @@ -24,7 +24,7 @@ ## What can I do with EOmaps? -**EOmaps** is built on top of [matplotlib](https://matplotlib.org/) and [cartopy](https://scitools.org.uk/cartopy/docs/latest/) and integrates well with the scientific python infrastructure (e.g., `numpy`, `pandas`, `geopandas`, `xarray` etc.), allowing you to visualize point-, raster- or vector-datasets provided in almost any format you can imagine, no matter if you're dealing with just a few unsorted datapoints or multi-dimensional stacks of global high-resolution datasets. +**EOmaps** is built on top of [matplotlib](https://matplotlib.org/) and [cartopy](https://scitools.org.uk/cartopy/docs/latest/) and integrates well with the scientific python infrastructure (e.g., [numpy](https://numpy.org/), [pandas](https://pandas.pydata.org/), [geopandas](https://geopandas.org/), [xarray](https://xarray.dev/) etc.), allowing you to visualize point-, raster- or vector-datasets provided in almost any format you can imagine, no matter if you're dealing with just a few unsorted datapoints or multi-dimensional stacks of global high-resolution datasets. Figures created with EOmaps are multi-layered, so you can (transparently) overlay and interactively compare your datasets with ease. With the accompanying GUI widget, you can quickly switch layers, change the layout, examine the large collection of features and web-map services, and explore the capabilities of EOmaps. Once you're map is ready, you can export it as high-resolution image or vector-graphic for further editing. From a85152619a0c27f8184d0d101632f7adb025c75b Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sat, 17 Feb 2024 21:35:41 +0100 Subject: [PATCH 196/240] fix jupyter notebook issues if blit-manager is not defined as property --- docs/gen_autodoc_file.py | 8 ++++++++ eomaps/eomaps.py | 17 +++++++++-------- 2 files changed, 17 insertions(+), 8 deletions(-) diff --git a/docs/gen_autodoc_file.py b/docs/gen_autodoc_file.py index 3001a905e..549e91325 100644 --- a/docs/gen_autodoc_file.py +++ b/docs/gen_autodoc_file.py @@ -4,6 +4,14 @@ from eomaps import Maps +# TODO there must be a better way than this... +# BM needs to be a property otherwise there are problems with jupyter notebooks +# In order to make BM still accessible to sphinx, override it prior to generating +# the autodoc-files +from eomaps._blit_manager import BlitManager + +Maps.BM = BlitManager + def get_autosummary( currentmodule="eomaps.eomaps", diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index fdb5189be..b01ff7228 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -355,7 +355,6 @@ class Maps(metaclass=_MapsMeta): add_feature = NaturalEarthFeatures util = Utilities cb = CallbackContainer - BM = BlitManager classify_specs = ClassifySpecs data_specs = DataSpecs @@ -471,15 +470,8 @@ def __init__( self._layout_editor = None self.cb = self.cb(weakref.proxy(self)) # accessor for the callbacks - self._init_figure(ax=ax, plot_crs=crs, **kwargs) - # Initialize the Blit-Manager used to dynamically update the plots. - if self.parent == self: # use == instead of "is" since the parent is a proxy!: - self.BM = BlitManager(weakref.proxy(self)) - else: - self.BM = self.parent.BM - if WebMapContainer is not None: self.add_wms = self.add_wms(weakref.proxy(self)) @@ -644,6 +636,15 @@ def log_message(*args, **kwargs): event, log_message ) + @property + def BM(self): + """The Blit-Manager used to dynamically update the plots.""" + m = weakref.proxy(self) + if self.parent._BM is None: + self.parent._BM = BlitManager(m) + self.parent._BM._bg_layer = m.parent.layer + return self.parent._BM + @property def layer(self): """The layer-name associated with this Maps-object.""" From 90322273babb1d345aaf76095c8fd39150f609ea Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Sun, 18 Feb 2024 00:27:31 +0100 Subject: [PATCH 197/240] update docs --- docs/_static/custom_css.css | 7 ++ docs/api_basics.rst | 190 ++++++++++++++++++++++-------------- docs/conf.py | 3 +- 3 files changed, 125 insertions(+), 75 deletions(-) diff --git a/docs/_static/custom_css.css b/docs/_static/custom_css.css index 8a0f9f3db..2b5e019a3 100644 --- a/docs/_static/custom_css.css +++ b/docs/_static/custom_css.css @@ -1,3 +1,10 @@ .wy-nav-content { max-width: 1200px !important; } + + +:root { + --sd-color-info: #b8c5c6; + --sd-color-info-highlight: #148a9c; + --sd-color-info-text: #000; +} diff --git a/docs/api_basics.rst b/docs/api_basics.rst index 1ea14bfcb..5005cf936 100644 --- a/docs/api_basics.rst +++ b/docs/api_basics.rst @@ -54,16 +54,19 @@ for a map. (e.g.: ``figsize``, ``frameon``, ``edgecolor`` etc). -Possible ways for specifying the ``crs`` for plotting are: +.. dropdown:: Possible ways for specifying the ``crs`` for plotting + :open: + :icon: info + :color: info -- If you provide an integer, it is identified as an epsg-code (e.g. ``4326``, ``3035``, etc.) + - If you provide an integer, it is identified as an epsg-code (e.g. ``4326``, ``3035``, etc.) - - 4326 defaults to `PlateCarree` projection + - 4326 defaults to `PlateCarree` projection -- All other CRS usable for plotting are accessible via ``Maps.CRS``, e.g.: ``crs=Maps.CRS.Orthographic()``, ``crs=Maps.CRS.Equi7_EU``... + - All other CRS usable for plotting are accessible via ``Maps.CRS``, e.g.: ``crs=Maps.CRS.Orthographic()``, ``crs=Maps.CRS.Equi7_EU``... - - ``Maps.CRS`` is just an accessor for ``cartopy.crs`` - - For a full list of available projections see: `Cartopy projections `_ + - ``Maps.CRS`` is just an accessor for ``cartopy.crs`` + - For a full list of available projections see: `Cartopy projections `_ .. autosummary:: :nosignatures: @@ -79,48 +82,70 @@ Possible ways for specifying the ``crs`` for plotting are: Layer management ~~~~~~~~~~~~~~~~ +A :py:class:`Maps` object represents one (or more) of the following things **on the assigned layer**: + +- a collection of features, callbacks,.. +- a single dataset (and associated callbacks) + + +You can create as many layers as you need! The following image explains how it works in general: + .. image:: _static/intro.png :width: 70% +.. dropdown:: Creating new layers + :icon: info + :color: info -A :py:class:`Maps` object represents a collection of features, callbacks,.. **on the assigned layer**. + To create **a NEW layer**, use :py:meth:`m.new_layer("layer-name") `. -Once you have created a map, you can create **additional** :py:class:`Maps` **objects for the same map** by using :py:meth:`Maps.new_layer`. + - Features, Colorbars etc. added to a :py:class:`Maps` object are only visible if the associated layer is visible. + - Callbacks are only executed if the associated layer is visible. + - See :ref:`combine_layers` on how to select the currently visible layer(s). -🌱 If no explicit layer-name is provided, the returned :py:class:`Maps` object will use the same layer as the parent :py:class:`Maps` object. - - This is especially useful if you want to plot **multiple datasets on the same map and layer**. + .. code-block:: python + :name: test_layers_create_new_layer -🌱 To create **a NEW layer** named ``"my_layer"``, use ``m2 = m.new_layer("my_layer")`` + from eomaps import Maps + m = Maps() # same as `m = Maps(crs=4326, layer="base")` + m.add_feature.preset.coastline() # add coastlines to the "base" layer - - Features, Colorbars etc. added to a :py:class:`Maps` object are only visible if the associated layer is visible. - - Callbacks are only executed if the associated layer is visible. - - See :ref:`combine_layers` on how to select the currently visible layer(s). + m_ocean = m.new_layer(layer="ocean") # create a new layer named "ocean" + m_ocean.add_feature.preset.ocean() # features on this layer will only be visible if the "ocean" layer is visible! + m.show_layer("ocean") # show the "ocean" layer + m.util.layer_selector() # get a utility widget to quickly switch between existing layers -.. code-block:: python - :name: test_layers_01 - from eomaps import Maps - m = Maps() # same as `m = Maps(crs=4326, layer="base")` - m.add_feature.preset.coastline() # add coastlines to the "base" layer +.. dropdown:: Multiple ``Maps`` objects on the same layer + :icon: info + :color: info + + If no explicit layer-name is provided, (e.g. :py:meth:`m.new_layer() `) the returned :py:class:`Maps` object will use the same layer as the parent :py:class:`Maps` object. - m_ocean = m.new_layer(layer="ocean") # create a new layer named "ocean" - m_ocean.add_feature.preset.ocean() # features on this layer will only be visible if the "ocean" layer is visible! + - This is especially useful if you want to plot **multiple datasets on the same map and layer**. - m_ocean2 = m_ocean.new_layer() # "m_ocean2" is just another Maps-object on the same layer as "m_ocean"! - m_ocean2.set_data( # assign a dataset to this Maps-object - data=[.14,.25,.38], - x=[1,2,3], y=[3,5,7], - crs=4326) - m_ocean2.set_shape.ellipses() # set the shape that is used to represent the datapoints - m_ocean2.plot_map() # plot the data - m.show_layer("ocean") # show the "ocean" layer - m.util.layer_selector() # get a utility widget to quickly switch between existing layers + .. code-block:: python + :name: test_layers_on_same_layer + from eomaps import Maps + m = Maps() # same as `m = Maps(layer="base")` + m.add_feature.preset.coastline() # add coastlines to the "base" layer -.. admonition:: The "all" layer + m2 = m.new_layer() # "m2" is just another Maps-object on the same layer as "m"! + m2.set_data( # assign a dataset to this Maps-object + data=[.14,.25,.38], + x=[1,2,3], y=[3,5,7], + crs=4326) + m2.plot_map() # plot the data + m2.cb.pick.attach.annotate() # attach a callback that picks datapoints from the data assigned to "m2" + + +.. dropdown:: The "all" layer + :icon: info + :color: info | There is one layer-name that has a special meaning... the ``"all"`` layer. | Any callbacks and features added to this layer will be **executed on ALL other layers** as well! @@ -142,8 +167,10 @@ Once you have created a map, you can create **additional** :py:class:`Maps` **ob m_ocean.add_feature.preset.ocean() # add ocean-coloring to the "ocean" layer m.show_layer("ocean") # show the "ocean" layer (note that it has coastlines as well!) +.. dropdown:: Artists added with methods **outside of EOmaps** + :icon: info + :color: info -.. admonition:: Artists added with methods **outside of EOmaps** If you use methods that are **NOT provided by EOmaps**, the corresponding artists will always appear on the ``"base"`` layer by default! (e.g. ``cartopy`` or ``matplotlib`` methods accessible via ``m.ax.`` or ``m.f.`` like ``m.ax.plot(...)``) @@ -177,7 +204,13 @@ Once you have created a map, you can create **additional** :py:class:`Maps` **ob 🗗 Combine & compare multiple layers ************************************ -.. admonition:: Using the :ref:`companion_widget` +All maps of a figure always show **the same visible layer**. + +The visible layer can be a **single layer-name**, or a **combination of multiple layer-names** in order to to transparently combine/overlay multiple layers. + +.. dropdown:: Using the :ref:`companion_widget` to switch/overlay layers + :icon: info + :color: info Usually it is most convenient to combine and compare layers via the :ref:`companion_widget`. @@ -198,69 +231,76 @@ Once you have created a map, you can create **additional** :py:class:`Maps` **ob .. image:: _static/minigifs/rearrange_layers.gif +.. dropdown:: Programmatically switch/overlay layers + :icon: info + :color: info -To programmatically switch between layers or view a layer that represents a **combination of multiple existing layers**, use :py:meth:`Maps.show_layer`. - -🌱 If you provide a single layer-name, the map will show the corresponding layer, e.g. ``m.show_layer("my_layer")`` -🌱 To **(transparently) overlay multiple existing layers**, use one of the following options: + To programmatically switch between layers or view a layer that represents a **combination of multiple existing layers**, use :py:meth:`Maps.show_layer`. -- Provide **multiple layer names or tuples** of the form ``(< layer-name >, < transparency [0-1] >)`` + If you provide a single layer-name, the map will show the corresponding layer, e.g. ``m.show_layer("my_layer")`` - - ``m.show_layer("A", "B")`` will overlay all features of the layer ``B`` on top of the layer ``A``. - - ``m.show_layer("A", ("B", 0.5))`` will overlay the layer ``B`` with 50% transparency on top of the layer ``A``. + To **(transparently) overlay multiple existing layers**, use one of the following options: -- Provide a **combined layer name** by separating the individual layer names you want to show with a ``"|"`` character. + - Provide **multiple layer names or tuples** of the form ``(< layer-name >, < transparency [0-1] >)`` - - ``m.show_layer("A|B")`` will overlay all features of the layer ``B`` on top of the layer ``A``. - - To transparently overlay a layer, add the transparency to the layer-name in curly-brackets, e.g.: ``"{}"``. + - ``m.show_layer("A", "B")`` will overlay all features of the layer ``B`` on top of the layer ``A``. + - ``m.show_layer("A", ("B", 0.5))`` will overlay the layer ``B`` with 50% transparency on top of the layer ``A``. - - ``m.show_layer("A|B{0.5}")`` will overlay the layer ``B`` with 50% transparency on top of the layer ``A``. + - Provide a **combined layer name** by separating the individual layer names you want to show with a ``"|"`` character. + - ``m.show_layer("A|B")`` will overlay all features of the layer ``B`` on top of the layer ``A``. + - To transparently overlay a layer, add the transparency to the layer-name in curly-brackets, e.g.: ``"{}"``. -.. code-block:: python - :name: test_transparent_layer_overlay + - ``m.show_layer("A|B{0.5}")`` will overlay the layer ``B`` with 50% transparency on top of the layer ``A``. - from eomaps import Maps - m = Maps(layer="first") - m.add_feature.physical.land(fc="k") - m2 = m.new_layer("second") # create a new layer and plot some data - m2.add_feature.preset.ocean(zorder=2) - m2.set_data(data=[.14,.25,.38], - x=[10,20,30], y=[30,50,70], - crs=4326) - m2.plot_map(zorder=1) # plot the data "below" the ocean + .. code-block:: python + :name: test_transparent_layer_overlay - m.show_layer("first", ("second", .75)) # overlay the second layer with 25% transparency + from eomaps import Maps + m = Maps(layer="first") + m.add_feature.physical.land(fc="k") + m2 = m.new_layer("second") # create a new layer and plot some data + m2.add_feature.preset.ocean(zorder=2) + m2.set_data(data=[.14,.25,.38], + x=[10,20,30], y=[30,50,70], + crs=4326) + m2.plot_map(zorder=1) # plot the data "below" the ocean -.. currentmodule:: eomaps.callbacks.ClickCallbacks + m.show_layer("first", ("second", .75)) # overlay the second layer with 25% transparency -🌱 If you want to overlay a part of the screen with a different layer, have a look at :py:meth:`peek_layer` callbacks**! +.. dropdown:: Interactively overlay layers + :icon: info + :color: info -.. autosummary:: - :nosignatures: + .. currentmodule:: eomaps.callbacks.ClickCallbacks - peek_layer + If you want to interactively overlay a part of the screen with a different layer, have a look at :py:meth:`peek_layer` callbacks! + .. autosummary:: + :nosignatures: + peek_layer -.. code-block:: python - :name: test_peek_layer_cb + .. code-block:: python + :name: test_peek_layer_cb - from eomaps import Maps - m = Maps() - m.all.add_feature.preset.coastline() - m.add_feature.preset.urban_areas() + from eomaps import Maps + m = Maps() + m.all.add_feature.preset.coastline() + m.add_feature.preset.urban_areas() - m.add_feature.preset.ocean(layer="ocean") - m.add_feature.physical.land(layer="land", fc="g") - m.cb.click.attach.peek_layer(layer=["ocean", ("land", 0.5)], shape="round", how=0.4) + m.add_feature.preset.ocean(layer="ocean") + m.add_feature.physical.land(layer="land", fc="g") + m.cb.click.attach.peek_layer(layer=["ocean", ("land", 0.5)], shape="round", how=0.4) -.. admonition:: The "stacking order" of features and layers +.. dropdown:: The "stacking order" of features and layers + :icon: info + :color: info The stacking order of features at the **same layer** is controlled by the ``zorder`` argument. @@ -306,14 +346,18 @@ To adjust the margins of the subplots, use :py:meth:`m.subplots_adjust`, or have m = Maps() m.subplots_adjust(left=0.1, right=0.9, bottom=0.05, top=0.95) -.. admonition:: Export to clipboard (``ctrl + c``) +.. dropdown:: Export to clipboard (``ctrl + c``) + :icon: info + :color: info If you use ``PyQt5`` as matplotlib-backend, you can also press (``control`` + ``c``) to export the figure to the clipboard. The export will be performed using the **currently set export-parameters** in the :ref:`companion_widget` . Alternatively, you can also programmatically set the export-parameters via :py:meth:`Maps.set_clipboard_kwargs` . -.. admonition:: Notes on exporting high-dpi figures +.. dropdown:: Notes on exporting high-dpi figures + :icon: info + :color: info EOmaps tries its best to follow the WYSIWYG concept (e.g. *"What You See Is What You Get"*). However, if you export the map with a dpi-value other than ``100``, there are certain circumstances diff --git a/docs/conf.py b/docs/conf.py index 99d53f9e2..712aab14d 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -34,8 +34,6 @@ def setup(app): # add rc role to avoid undefined role warnings from inherited docstrings. app.add_role("rc", mpl_rc_role_subst) - app.add_css_file("custom_css.css") - # add handling for skip-member event app.connect("autodoc-skip-member", autodoc_skip_member) @@ -106,6 +104,7 @@ def setup(app): templates_path = ["_templates"] html_static_path = ["_static"] +html_css_files = ["custom_css.css"] html_theme = "sphinx_rtd_theme" From 6a64e77e21d450f547ae2cfb890d41ab14e32f29 Mon Sep 17 00:00:00 2001 From: Raphael Date: Tue, 27 Feb 2024 12:00:17 +0100 Subject: [PATCH 198/240] minor --- eomaps/scalebar.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/eomaps/scalebar.py b/eomaps/scalebar.py index 76e6ddc5e..1561d7520 100644 --- a/eomaps/scalebar.py +++ b/eomaps/scalebar.py @@ -84,10 +84,10 @@ def __init__( Parameters ---------- - lon, lat : float + pos : (float, float) The longitude and latitude of the starting point for the scalebar (If None, the center of the axis is used ) - azim : float + rotation : float The azimuth-direction (in degrees) in which the scalebar points. The default is 90. preset : str From 70058365f66bfc4bdb872c48eddc4843dd2747ec Mon Sep 17 00:00:00 2001 From: Raphael Date: Tue, 27 Feb 2024 12:03:53 +0100 Subject: [PATCH 199/240] fix identification of coordinate-names on read_file (and in widget) --- eomaps/qtcompanion/widgets/files.py | 34 ++++++++++++++++------------- eomaps/reader.py | 19 ++++++++++++++-- 2 files changed, 36 insertions(+), 17 deletions(-) diff --git a/eomaps/qtcompanion/widgets/files.py b/eomaps/qtcompanion/widgets/files.py index c4dc3f20f..8e889618b 100644 --- a/eomaps/qtcompanion/widgets/files.py +++ b/eomaps/qtcompanion/widgets/files.py @@ -194,7 +194,7 @@ class ShapeSelector(QtWidgets.QFrame): aggregator=(str,), ) - def __init__(self, *args, m=None, default_shape="shade_raster", **kwargs): + def __init__(self, *args, m=None, default_shape="shade_points", **kwargs): super().__init__(*args, **kwargs) self.m = m @@ -319,7 +319,7 @@ def clear_item(self, item): class PlotFileWidget(QtWidgets.QWidget): file_endings = None - default_shape = "shade_raster" + default_shape = "shade_points" def __init__( self, @@ -884,19 +884,23 @@ def do_open_file(self, file_path): self.x.set_complete_vals(cols) self.y.set_complete_vals(cols) - if "lon" in cols: - self.x.setText("lon") - elif "x" in cols: - self.x.setText("x") - else: - self.x.setText(cols[0]) - - if "lat" in cols: - self.y.setText("lat") - elif "y" in cols: - self.y.setText("y") - else: - self.x.setText(cols[1]) + self.x.setText("?") + self.y.setText("?") + + # check if coordinate variable-names can be identified + cols_lower = [i.casefold() for i in cols] + for c0, c1 in [ + ("x", "y"), + ("lon", "lat"), + ("longitude", "latitude"), + ]: + if (c0.casefold() in cols_lower) and (c1.casefold() in cols_lower): + col0 = cols[cols_lower.index(c0)] + col1 = cols[cols_lower.index(c1)] + + self.x.setText(col0) + self.y.setText(col1) + break self.parameter.set_complete_vals(cols) self.parameter.setText( diff --git a/eomaps/reader.py b/eomaps/reader.py index daf350b55..09c9a484a 100644 --- a/eomaps/reader.py +++ b/eomaps/reader.py @@ -464,8 +464,23 @@ def NetCDF( data = usencfile[parameter] if coords is None: - coords = list(data.dims) - if len(coords) != 2: + dims = list(data.dims) + + # check if coordinate variable-names can be identified + dims_lower = [i.casefold() for i in dims] + for c0, c1 in [ + ("x", "y"), + ("lon", "lat"), + ("longitude", "latitude"), + ]: + if (c0.casefold() in dims_lower) and (c1.casefold() in dims_lower): + coords = ( + dims[dims_lower.index(c0)], + dims[dims_lower.index(c1)], + ) + break + + if coords is None: raise AssertionError( "EOmaps: could not identify the coordinate-dimensions! " + "Please provide coordinate-names explicitly via the " From 79c0034774f2ba6ee63a5c7b3b5f4ce1713a36d4 Mon Sep 17 00:00:00 2001 From: Raphael Date: Tue, 27 Feb 2024 22:56:16 +0100 Subject: [PATCH 200/240] minor --- eomaps/compass.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/eomaps/compass.py b/eomaps/compass.py index b9eb41f23..033dac0f6 100644 --- a/eomaps/compass.py +++ b/eomaps/compass.py @@ -81,7 +81,8 @@ def __call__( The default is "axes". scale : float, optional - A scale-factor for the size of the compass. The default is 10. + A scale-factor for the size of the compass in relation to the size of the + whole figure. The default is 10. style : str, optional - "north arrow" : draw only a north-arrow From 286b8a328eb01d12bd00c68f3afe9a72df2b47e8 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Wed, 28 Feb 2024 11:13:06 +0100 Subject: [PATCH 201/240] minor --- docs/_static/custom_css.css | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/docs/_static/custom_css.css b/docs/_static/custom_css.css index 2b5e019a3..b4ec9fb22 100644 --- a/docs/_static/custom_css.css +++ b/docs/_static/custom_css.css @@ -2,7 +2,10 @@ max-width: 1200px !important; } - + /* + Set colors used by sphinx-design info-boxes + For details, see: https://sphinx-design.readthedocs.io/en/latest/css_variables.html + */ :root { --sd-color-info: #b8c5c6; --sd-color-info-highlight: #148a9c; From 9c35aa0357c971ea3171a4626a1e24badfc5a0be Mon Sep 17 00:00:00 2001 From: Raphael Date: Wed, 28 Feb 2024 18:10:19 +0100 Subject: [PATCH 202/240] make sure to update after adding a text to a figure --- eomaps/eomaps.py | 1 + 1 file changed, 1 insertion(+) diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index b01ff7228..34441a69e 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -3414,6 +3414,7 @@ def text(self, *args, layer=None, **kwargs): if layer is None: layer = self.layer self.BM.add_artist(a, layer=layer) + self.BM.update() return a From a23eedace0dd5718da0af59331d28bb14ef9a358 Mon Sep 17 00:00:00 2001 From: Raphael Date: Wed, 28 Feb 2024 18:11:33 +0100 Subject: [PATCH 203/240] fix issues with string-type dpi values passed to savefig (encountered with datashader in JupyterLab if show is called after plot) --- eomaps/eomaps.py | 10 ++++++---- 1 file changed, 6 insertions(+), 4 deletions(-) diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index 34441a69e..aed277677 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -4141,12 +4141,14 @@ def _update_shade_axis_size(self, dpi=None): for m in (self.parent, *self.parent._children): if m.coll is not None and m.shape.name.startswith("shade_"): - if dpi is None: - m.coll.plot_width = int(w) - m.coll.plot_height = int(h) - else: + # TODO for now, only handle numeric dpi-values to avoid issues. + # (savefig also seems to support strings like "figure" etc.) + if isinstance(dpi, (int, float, np.number)): m.coll.plot_width = int(w / fig_dpi * dpi) m.coll.plot_height = int(h / fig_dpi * dpi) + else: + m.coll.plot_width = int(w) + m.coll.plot_height = int(h) def _on_close(self, event): # reset attributes that might use up a lot of memory when the figure is closed From 11f3486db679e10512059ec5c714488082959434 Mon Sep 17 00:00:00 2001 From: Raphael Date: Wed, 28 Feb 2024 19:44:19 +0100 Subject: [PATCH 204/240] set version to 8.0rc0 --- pyproject.toml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pyproject.toml b/pyproject.toml index 6a0d696e3..bc40ad12f 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -11,7 +11,7 @@ eomaps = ["logo.png", "NE_features.json", "qtcompanion/icons/*"] [project] name = "eomaps" -version = "8.0" +version = "8.0rc0" description = "A library to create interactive maps of geographical datasets." readme = "README.md" license = {file = "LICENSE"} From 4e90a41ac829e477532f5d3f82514f32b9b7d491 Mon Sep 17 00:00:00 2001 From: Raphael Date: Wed, 28 Feb 2024 21:11:09 +0100 Subject: [PATCH 205/240] explicitly include subpackes in pyproject.toml --- pyproject.toml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pyproject.toml b/pyproject.toml index bc40ad12f..24354cc40 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -3,7 +3,7 @@ requires = ["setuptools>=61.0"] build-backend = "setuptools.build_meta" [tool.setuptools.packages.find] -include = ["eomaps"] +include = ["eomaps", "eomaps.scripts", "eomaps.qtcompanion"] [tool.setuptools.package-data] eomaps = ["logo.png", "NE_features.json", "qtcompanion/icons/*"] From c038a7c28b15489cd126ced25968a035673a0dff Mon Sep 17 00:00:00 2001 From: Raphael Date: Mon, 4 Mar 2024 22:39:27 +0100 Subject: [PATCH 206/240] add widgets module --- eomaps/widgets.py | 379 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 379 insertions(+) create mode 100644 eomaps/widgets.py diff --git a/eomaps/widgets.py b/eomaps/widgets.py new file mode 100644 index 000000000..57871f904 --- /dev/null +++ b/eomaps/widgets.py @@ -0,0 +1,379 @@ +from abc import abstractmethod +from functools import wraps + +import numpy as np +import matplotlib.pyplot as plt + +from . import _log +from ._blit_manager import LayerParser + +try: + import ipywidgets +except ImportError: + _log.exception("EOmaps-widgets are missing the required dependency 'ipywidgets'!") + + +def _check_backend(): + backend = plt.get_backend() + if "ipympl" not in backend.lower(): + raise AssertionError( + "EOmaps-widgets only work with the 'ipympl (widget)' backend! " + "Make sure you have 'ipympl' installed and use the magic-command " + "'%matplotlib widget' to switch to the interactive jupyter backend!" + ) + + +# %% Layer Selector Widgets + + +class _LayerSelectionWidget: + def __init__(self, m, layers=None): + """ + A widget to switch layers of a given Maps-object. + + Parameters + ---------- + m : eomaps.Maps + The Maps-object to use. + layers : list, optional + A list of layer-names to use. + If None, all available layers of the provided Maps-object are used. + + The following options are possible: + + A list of layer-names + + >>> ["layer1", "layer2", ...] + + A list of layer-names and/or layer-names with transparency-assignments + + >>> ["layer1", "layer2", ("layer", 0.4)] + + To provide explict display-names for a layer, pass a list of the form + `[display-name, ]` + + >>> [["My Layer", "layer1"], + >>> ["My secondl lyer", "layer2"], + >>> ["Multiple layers", ("layer1", + >>> ("layer", 0.4))] + >>> ] + + """ + _check_backend() + + self._m = m + self._set_layers(layers) + + def _set_layers(self, layers): + if layers is None: + self._layers = self._m._get_layers() + else: + + self._layers = [] + for l in layers: + if isinstance(l, str): + self._layers.append((l, l)) + elif isinstance(l, tuple): + l = self._parse_layer(l) + self._layers.append((l, l)) + elif isinstance(l, list): + self._layers.append((l[0], self._parse_layer(l[1]))) + + @staticmethod + def _parse_layer(l): + # check if a single transparent layer is provided + if isinstance(l, tuple): + if ( + len(l) == 2 + and isinstance(l[0], str) + and isinstance(l[1], (int, float, np.number)) + ): + return LayerParser._get_combined_layer_name(l) + else: + return LayerParser._get_combined_layer_name(*l) + else: + return l + + def handler(self, change): + try: + if self.value is not None: + self._m.show_layer(self.value) + self._m.BM.update() + except Exception: + _log.error("Problem in LayerSelectionWidget handler...", exc_info=True) + + +class LayerDropdown(ipywidgets.Dropdown, _LayerSelectionWidget): + _description = "Layers" + + @wraps(_LayerSelectionWidget.__init__) + def __init__(self, *args, description=None, **kwargs): + + _LayerSelectionWidget.__init__(self, *args, **kwargs) + + super().__init__( + options=self._layers, + description=self._description if description is None else description, + value=self._m.BM.bg_layer if self._m.BM.bg_layer in self._layers else None, + ) + + self.observe(self.handler) + + +class LayerSelect(ipywidgets.Select, _LayerSelectionWidget): + _description = "Layers" + + @wraps(_LayerSelectionWidget.__init__) + def __init__(self, *args, description=None, **kwargs): + + _LayerSelectionWidget.__init__(self, *args, **kwargs) + + super().__init__( + options=self._layers, + description=self._description if description is None else description, + value=self._m.BM.bg_layer if self._m.BM.bg_layer in self._layers else None, + ) + + self.observe(self.handler) + + +class LayerSelectionSlider(ipywidgets.SelectionSlider, _LayerSelectionWidget): + _description = "Layers" + + @wraps(_LayerSelectionWidget.__init__) + def __init__(self, *args, description=None, **kwargs): + + _LayerSelectionWidget.__init__(self, *args, **kwargs) + + super().__init__( + options=self._layers, + description=self._description if description is None else description, + value=self._m.BM.bg_layer if self._m.BM.bg_layer in self._layers else None, + ) + + self.observe(self.handler) + + +class LayerToggleButtons(ipywidgets.ToggleButtons, _LayerSelectionWidget): + _description = "Layers" + + @wraps(_LayerSelectionWidget.__init__) + def __init__(self, *args, description=None, **kwargs): + + _LayerSelectionWidget.__init__(self, *args, **kwargs) + + super().__init__( + options=self._layers, + description=self._description if description is None else description, + value=self._m.BM.bg_layer if self._m.BM.bg_layer in self._layers else None, + ) + + self.observe(self.handler) + + +class LayerRadioButtons(ipywidgets.RadioButtons, _LayerSelectionWidget): + _description = "Layers" + + @wraps(_LayerSelectionWidget.__init__) + def __init__(self, *args, description=None, **kwargs): + + _LayerSelectionWidget.__init__(self, *args, **kwargs) + + super().__init__( + options=self._layers, + description=self._description if description is None else description, + value=self._m.BM.bg_layer if self._m.BM.bg_layer in self._layers else None, + ) + + self.observe(self.handler) + + +class LayerSelectionRangeSlider(ipywidgets.SelectionRangeSlider, _LayerSelectionWidget): + _description = "Layers" + + @wraps(_LayerSelectionWidget.__init__) + def __init__(self, *args, description=None, **kwargs): + + _LayerSelectionWidget.__init__(self, *args, **kwargs) + + super().__init__( + options=self._layers, + description=self._description if description is None else description, + value=(self._m.BM.bg_layer, self._m.BM.bg_layer) + if self._m.BM.bg_layer in self._layers + else (self._layers[0][1],), + ) + + self.observe(self.handler) + + def handler(self, change): + try: + if self.value is not None: + i0 = self._layers.index(self.value[0]) + i1 = self._layers.index(self.value[1]) + + if i0 == i1: + self._m.show_layer(self.value[0]) + else: + self._m.show_layer(*self._layers[i0 : i1 + 1]) + except Exception: + _log.error("Problem in MultiLayerSelectionWidget handler...", exc_info=True) + + +class LayerSelectMultiple(ipywidgets.SelectMultiple, _LayerSelectionWidget): + _description = "Layers" + + @wraps(_LayerSelectionWidget.__init__) + def __init__(self, *args, description=None, **kwargs): + + _LayerSelectionWidget.__init__(self, *args, **kwargs) + super().__init__( + options=self._layers, + description=self._description if description is None else description, + value=(self._m.BM.bg_layer,) + if self._m.BM.bg_layer in self._layers + else (self._layers[0][1],), + ) + + self.observe(self.handler) + + def handler(self, change): + try: + if self.value is not None: + self._m.show_layer(*self.value) + except Exception: + _log.error("Problem in MultiLayerSelectionWidget handler...", exc_info=True) + + +# %% Overlay Widgets + + +class OverlaySlider(ipywidgets.FloatSlider): + def __init__(self, m, layer): + """ + A Slider to overlay a selected layer on top of other layers + + Parameters + ---------- + m : eomaps.Maps + The Maps-object to use. + layer : str + The layer to overlay. + + """ + self._m = m + _check_backend() + + self._layer = layer + + super().__init__( + value=0, min=0, max=1, step=0.01, description=f"Overlay\n'{layer}':" + ) + + self._last_value = self.value + + self.observe(self.handler) + + def handler(self, change): + try: + layers, alphas = LayerParser._parse_multi_layer_str(self._m.BM.bg_layer) + + # in case the active layer has the overlay on top, strip off the overlay + # from the active layer! + if layers[-1] == self._layer and alphas[-1] == self._last_value: + base = LayerParser._get_combined_layer_name( + *zip(layers[:-1], alphas[:-1]) + ) + else: + base = self._m.BM.bg_layer + + self._m.show_layer(base, (self._layer, self.value)) + + self._last_value = self.value + plt.pause(0.01) # spin event-loop to avoid flickering for very fast updates + except Exception: + _log.error("Problem in OverlaySlider handler...", exc_info=True) + + +# %% CallbackWidgets + + +class _CallbackWidget: + def __init__(self, m, **kwargs): + self._m = m + _check_backend() + + self._kwargs = kwargs + self._cid = None + + @abstractmethod + def attach_callback(self, **kwargs): + """Attach the callback to the map and return the cid.""" + return "cid" + + def handler(self, change): + try: + if self.value is True and self._cid is None: + self._cid = self.attach_callback(**self._kwargs) + + if self.value is False and self._cid is not None: + self._cid = self._m.all.cb.click.remove(self._cid) + except Exception: + _log.error("Problem in Checkbox handler...", exc_info=True) + + +class _CallbackCheckbox(ipywidgets.Checkbox, _CallbackWidget): + _description = "Callback Checkbox" + + @wraps(_CallbackWidget.__init__) + def __init__(self, *args, value=False, description=None, **kwargs): + _CallbackWidget.__init__(self, *args, **kwargs) + super().__init__( + value=value, + description=description if description is not None else self._description, + ) + self.observe(self.handler) + + +class ClickAnnotateCheckbox(_CallbackCheckbox): + _description = "Annotate (Click)" + + def attach_callback(self, **kwargs): + return self._m.all.cb.click.attach.annotate(**kwargs) + + +class ClickMarkCheckbox(_CallbackCheckbox): + _description = "Mark (Click)" + + def attach_callback(self, **kwargs): + return self._m.all.cb.click.attach.mark(**kwargs) + + +class ClickPrintToConsoleCheckbox(_CallbackCheckbox): + _description = "Print (Click)" + + def attach_callback(self, **kwargs): + return self._m.all.cb.click.attach.print_to_console(**kwargs) + + +# NOTE: pick callbacks are attached to the provided Maps objects, +# click callback are attached to m.all! +class PickAnnotateCheckbox(_CallbackCheckbox): + _description = "Annotate (Pick)" + + def attach_callback(self, **kwargs): + return self._m.cb.pick.attach.annotate(**kwargs) + + +class PickMarkCheckbox(_CallbackCheckbox): + _description = "Mark (Pick)" + + def attach_callback(self, **kwargs): + return self._m.cb.pick.attach.mark(**kwargs) + + +class PickPrintToConsoleCheckbox(_CallbackCheckbox): + _description = "Print (Pick)" + + def attach_callback(self, **kwargs): + return self._m.cb.pick.attach.print_to_console(**kwargs) From 6dc34e4c6fe05f73e0888ada9b5069828738af03 Mon Sep 17 00:00:00 2001 From: Raphael Date: Mon, 4 Mar 2024 22:40:02 +0100 Subject: [PATCH 207/240] don't call .show() automatically with ipympl backend --- eomaps/eomaps.py | 5 ----- 1 file changed, 5 deletions(-) diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index aed277677..eb4b2cd46 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -4102,11 +4102,6 @@ def _init_figure(self, ax=None, plot_crs=None, **kwargs): self.parent._layout_editor = LayoutEditor(self.parent, modifier="alt+l") active_backend = plt.get_backend() - # we only need to call show if a new figure has been created! - if newfig and active_backend == "module://ipympl.backend_nbagg": - # make sure to call show only if we use an interactive backend... - # or within the ipympl backend (otherwise it will block subsequent code!) - plt.show() if active_backend == "module://matplotlib_inline.backend_inline": # close the figure to avoid duplicated (empty) plots created From d52b078a76ccb6c9eff4d4ba9c045fc307ec66b0 Mon Sep 17 00:00:00 2001 From: Raphael Quast Date: Mon, 4 Mar 2024 23:43:27 +0100 Subject: [PATCH 208/240] add PeekLayerCheckbox widget --- eomaps/widgets.py | 16 ++++++++++++++++ 1 file changed, 16 insertions(+) diff --git a/eomaps/widgets.py b/eomaps/widgets.py index 57871f904..27a6ab64f 100644 --- a/eomaps/widgets.py +++ b/eomaps/widgets.py @@ -356,6 +356,22 @@ def attach_callback(self, **kwargs): return self._m.all.cb.click.attach.print_to_console(**kwargs) +class ClickPeekLayerCheckbox(_CallbackCheckbox): + _description = "Peek Layer (Click)" + + def __init__(self, *args, layer=None, **kwargs): + assert ( + layer is not None + ), "EOmaps: You must specify the layer for the PeekLayerCheckbox!" + + self._description = f"Peek Layer: '{layer}'" + + super().__init__(*args, layer=layer, **kwargs) + + def attach_callback(self, **kwargs): + return self._m.all.cb.click.attach.peek_layer(**kwargs) + + # NOTE: pick callbacks are attached to the provided Maps objects, # click callback are attached to m.all! class PickAnnotateCheckbox(_CallbackCheckbox): From 9c433c5bef1a65f78807eb5f161f89f4852e1a0c Mon Sep 17 00:00:00 2001 From: Raphael Date: Tue, 5 Mar 2024 18:01:37 +0100 Subject: [PATCH 209/240] update widgets - improve inheritance concept - pass additional kwargs to ipython widgets - force full updates on layer-changes --- eomaps/widgets.py | 208 ++++++++++++++++++++-------------------------- 1 file changed, 88 insertions(+), 120 deletions(-) diff --git a/eomaps/widgets.py b/eomaps/widgets.py index 27a6ab64f..5fadf909d 100644 --- a/eomaps/widgets.py +++ b/eomaps/widgets.py @@ -1,5 +1,6 @@ from abc import abstractmethod from functools import wraps +from contextlib import contextmanager import numpy as np import matplotlib.pyplot as plt @@ -23,10 +24,24 @@ def _check_backend(): ) +@contextmanager +def _force_full(m): + """A contextmanager to force a full update of the figure (to avoid glitches)""" + force_full = getattr(m.BM, "_mpl_backend_force_full", False) + + try: + m.BM._mpl_backend_force_full = True + yield + finally: + m.BM._mpl_backend_force_full = force_full + + # %% Layer Selector Widgets class _LayerSelectionWidget: + _description = "LayerSelectionWidget" + def __init__(self, m, layers=None): """ A widget to switch layers of a given Maps-object. @@ -62,22 +77,28 @@ def __init__(self, m, layers=None): _check_backend() self._m = m - self._set_layers(layers) + self._set_layers_options(layers) + + def _set_layers_options(self, layers): + # _layers is a list of the actual layer-names + # _options is a list of tuples (name, value) passed to the widget-init - def _set_layers(self, layers): if layers is None: self._layers = self._m._get_layers() + self._options = [*self._layers] else: - - self._layers = [] + self._layers, self._options = [], [] for l in layers: if isinstance(l, str): - self._layers.append((l, l)) + self._layers.append(l) + self._options.append((l, l)) elif isinstance(l, tuple): l = self._parse_layer(l) - self._layers.append((l, l)) + self._layers.append(l) + self._options.append((l, l)) elif isinstance(l, list): - self._layers.append((l[0], self._parse_layer(l[1]))) + self._options.append((l[0], self._parse_layer(l[1]))) + self._layers.append(self._parse_layer(l[1])) @staticmethod def _parse_layer(l): @@ -94,153 +115,94 @@ def _parse_layer(l): else: return l - def handler(self, change): - try: - if self.value is not None: - self._m.show_layer(self.value) - self._m.BM.update() - except Exception: - _log.error("Problem in LayerSelectionWidget handler...", exc_info=True) - -class LayerDropdown(ipywidgets.Dropdown, _LayerSelectionWidget): +class _SingleLayerSelectionWidget(_LayerSelectionWidget): _description = "Layers" + _widget_cls = None @wraps(_LayerSelectionWidget.__init__) - def __init__(self, *args, description=None, **kwargs): + def __init__(self, m, layers=None, **kwargs): - _LayerSelectionWidget.__init__(self, *args, **kwargs) + _LayerSelectionWidget.__init__(self, m=m, layers=layers) - super().__init__( - options=self._layers, - description=self._description if description is None else description, - value=self._m.BM.bg_layer if self._m.BM.bg_layer in self._layers else None, - ) + self._set_default_kwargs(kwargs) + self._widget_cls.__init__(self, options=self._options, **kwargs) self.observe(self.handler) + def _set_default_kwargs(self, kwargs): + kwargs.setdefault("description", self._description) + if self._m.BM.bg_layer in self._layers: + kwargs.setdefault("value", self._m.BM.bg_layer) -class LayerSelect(ipywidgets.Select, _LayerSelectionWidget): - _description = "Layers" - - @wraps(_LayerSelectionWidget.__init__) - def __init__(self, *args, description=None, **kwargs): - - _LayerSelectionWidget.__init__(self, *args, **kwargs) - - super().__init__( - options=self._layers, - description=self._description if description is None else description, - value=self._m.BM.bg_layer if self._m.BM.bg_layer in self._layers else None, - ) - - self.observe(self.handler) - - -class LayerSelectionSlider(ipywidgets.SelectionSlider, _LayerSelectionWidget): - _description = "Layers" - - @wraps(_LayerSelectionWidget.__init__) - def __init__(self, *args, description=None, **kwargs): - - _LayerSelectionWidget.__init__(self, *args, **kwargs) - - super().__init__( - options=self._layers, - description=self._description if description is None else description, - value=self._m.BM.bg_layer if self._m.BM.bg_layer in self._layers else None, - ) - - self.observe(self.handler) - + def handler(self, change): + try: + if self.value is not None: + with _force_full(self._m): + self._m.show_layer(self.value) + self._m.BM.update() -class LayerToggleButtons(ipywidgets.ToggleButtons, _LayerSelectionWidget): - _description = "Layers" + except Exception: + _log.error("Problem in LayerSelectionWidget handler...", exc_info=True) - @wraps(_LayerSelectionWidget.__init__) - def __init__(self, *args, description=None, **kwargs): - _LayerSelectionWidget.__init__(self, *args, **kwargs) +class _MultiLayerSelectionWidget(_SingleLayerSelectionWidget): + def _set_default_kwargs(self, kwargs): + kwargs.setdefault("description", self._description) - super().__init__( - options=self._layers, - description=self._description if description is None else description, - value=self._m.BM.bg_layer if self._m.BM.bg_layer in self._layers else None, - ) - - self.observe(self.handler) + if self._m.BM.bg_layer in self._layers: + kwargs.setdefault("value", (self._m.BM.bg_layer, self._m.BM.bg_layer)) + else: + kwargs.setdefault("value", (self._layers[0][1],)) -class LayerRadioButtons(ipywidgets.RadioButtons, _LayerSelectionWidget): - _description = "Layers" +class LayerDropdown(_SingleLayerSelectionWidget, ipywidgets.Dropdown): + _widget_cls = ipywidgets.Dropdown - @wraps(_LayerSelectionWidget.__init__) - def __init__(self, *args, description=None, **kwargs): - _LayerSelectionWidget.__init__(self, *args, **kwargs) +class LayerSelect(_SingleLayerSelectionWidget, ipywidgets.Select): + _widget_cls = ipywidgets.Select - super().__init__( - options=self._layers, - description=self._description if description is None else description, - value=self._m.BM.bg_layer if self._m.BM.bg_layer in self._layers else None, - ) - self.observe(self.handler) +class LayerSelectionSlider(_SingleLayerSelectionWidget, ipywidgets.SelectionSlider): + _widget_cls = ipywidgets.SelectionSlider -class LayerSelectionRangeSlider(ipywidgets.SelectionRangeSlider, _LayerSelectionWidget): - _description = "Layers" +class LayerToggleButtons(_SingleLayerSelectionWidget, ipywidgets.ToggleButtons): + _widget_cls = ipywidgets.ToggleButtons - @wraps(_LayerSelectionWidget.__init__) - def __init__(self, *args, description=None, **kwargs): - _LayerSelectionWidget.__init__(self, *args, **kwargs) +class LayerRadioButtons(_SingleLayerSelectionWidget, ipywidgets.RadioButtons): + _widget_cls = ipywidgets.RadioButtons - super().__init__( - options=self._layers, - description=self._description if description is None else description, - value=(self._m.BM.bg_layer, self._m.BM.bg_layer) - if self._m.BM.bg_layer in self._layers - else (self._layers[0][1],), - ) - self.observe(self.handler) +class LayerSelectionRangeSlider( + _MultiLayerSelectionWidget, ipywidgets.SelectionRangeSlider +): + _widget_cls = ipywidgets.SelectionRangeSlider def handler(self, change): try: if self.value is not None: i0 = self._layers.index(self.value[0]) i1 = self._layers.index(self.value[1]) - - if i0 == i1: - self._m.show_layer(self.value[0]) - else: - self._m.show_layer(*self._layers[i0 : i1 + 1]) + with _force_full(self._m): + if i0 == i1: + self._m.show_layer(self.value[0]) + else: + self._m.show_layer(*self._layers[i0 : i1 + 1]) except Exception: _log.error("Problem in MultiLayerSelectionWidget handler...", exc_info=True) -class LayerSelectMultiple(ipywidgets.SelectMultiple, _LayerSelectionWidget): - _description = "Layers" - - @wraps(_LayerSelectionWidget.__init__) - def __init__(self, *args, description=None, **kwargs): - - _LayerSelectionWidget.__init__(self, *args, **kwargs) - super().__init__( - options=self._layers, - description=self._description if description is None else description, - value=(self._m.BM.bg_layer,) - if self._m.BM.bg_layer in self._layers - else (self._layers[0][1],), - ) - - self.observe(self.handler) +class LayerSelectMultiple(_MultiLayerSelectionWidget, ipywidgets.SelectMultiple): + _widget_cls = ipywidgets.SelectMultiple def handler(self, change): try: if self.value is not None: - self._m.show_layer(*self.value) + with _force_full(self._m): + self._m.show_layer(*self.value) except Exception: _log.error("Problem in MultiLayerSelectionWidget handler...", exc_info=True) @@ -249,7 +211,7 @@ def handler(self, change): class OverlaySlider(ipywidgets.FloatSlider): - def __init__(self, m, layer): + def __init__(self, m, layer, **kwargs): """ A Slider to overlay a selected layer on top of other layers @@ -259,6 +221,8 @@ def __init__(self, m, layer): The Maps-object to use. layer : str The layer to overlay. + kwargs: + Additional kwargs passed to the used `ipywidgets.FloatSlider`. """ self._m = m @@ -266,9 +230,13 @@ def __init__(self, m, layer): self._layer = layer - super().__init__( - value=0, min=0, max=1, step=0.01, description=f"Overlay\n'{layer}':" - ) + kwargs.setdefault("value", 0) + kwargs.setdefault("min", 0) + kwargs.setdefault("max", 1) + kwargs.setdefault("step", 0.01) + kwargs.setdefault("description", f"Overlay\n'{layer}':") + + super().__init__(**kwargs) self._last_value = self.value @@ -287,10 +255,10 @@ def handler(self, change): else: base = self._m.BM.bg_layer - self._m.show_layer(base, (self._layer, self.value)) + with _force_full(self._m): + self._m.show_layer(base, (self._layer, self.value)) self._last_value = self.value - plt.pause(0.01) # spin event-loop to avoid flickering for very fast updates except Exception: _log.error("Problem in OverlaySlider handler...", exc_info=True) From 600aae88a0c0241c6809b131140e21af0812c80a Mon Sep 17 00:00:00 2001 From: Raphael Date: Wed, 6 Mar 2024 19:51:03 +0100 Subject: [PATCH 210/240] add basic docstrings for widgets --- eomaps/widgets.py | 187 +++++++++++++++++++++++++++++++++------------- 1 file changed, 137 insertions(+), 50 deletions(-) diff --git a/eomaps/widgets.py b/eomaps/widgets.py index 5fadf909d..fe8acd6e2 100644 --- a/eomaps/widgets.py +++ b/eomaps/widgets.py @@ -36,44 +36,71 @@ def _force_full(m): m.BM._mpl_backend_force_full = force_full +from textwrap import dedent, indent + + +def _add_docstring(prefix="", suffix="", replace_with=None): + def _add_docstring(cls): + + if replace_with is None and cls.__doc__ is not None: + doc = f"{prefix}\n{dedent(cls.__doc__)}\n{suffix}" + elif replace_with is not None: + doc = f"{prefix}\n{dedent(replace_with.__doc__)}\n{suffix}" + else: + doc = f"{prefix}\n{dedent(suffix)}" + + doc = indent(doc, " ") + cls.__doc__ = doc + cls.__init__.__doc__ = doc + + return cls + + return _add_docstring + + # %% Layer Selector Widgets class _LayerSelectionWidget: - _description = "LayerSelectionWidget" + # A widget to switch layers of a given Maps-object. - def __init__(self, m, layers=None): - """ - A widget to switch layers of a given Maps-object. + """ + + For more information on how to customize the widgets, have a look at the + documentation for Jupyter Widgets (https://ipywidgets.readthedocs.io). - Parameters - ---------- - m : eomaps.Maps - The Maps-object to use. - layers : list, optional - A list of layer-names to use. - If None, all available layers of the provided Maps-object are used. + Parameters + ---------- + m : eomaps.Maps + The Maps-object to use. + layers : list, optional + A list of layer-names to use. + If None, all available layers of the provided Maps-object are used. - The following options are possible: + The following options are possible: - A list of layer-names + A list of layer-names - >>> ["layer1", "layer2", ...] + >>> ["layer1", "layer2", ...] - A list of layer-names and/or layer-names with transparency-assignments + A list of layer-names and/or layer-names with transparency-assignments - >>> ["layer1", "layer2", ("layer", 0.4)] + >>> ["layer1", "layer2", ("layer", 0.4)] - To provide explict display-names for a layer, pass a list of the form - `[display-name, ]` + To provide explict display-names for a layer, pass a list of the form + `[display-name, ]` - >>> [["My Layer", "layer1"], - >>> ["My secondl lyer", "layer2"], - >>> ["Multiple layers", ("layer1", - >>> ("layer", 0.4))] - >>> ] + >>> [["My Layer", "layer1"], + >>> ["My secondl lyer", "layer2"], + >>> ["Multiple layers", ("layer1", + >>> ("layer", 0.4))] + >>> ] - """ + """ + + _description = "LayerSelectionWidget" + + def __init__(self, m, layers=None): _check_backend() self._m = m @@ -156,26 +183,62 @@ def _set_default_kwargs(self, kwargs): kwargs.setdefault("value", (self._layers[0][1],)) +@_add_docstring( + "A Dropdown list to select the visible layer.", replace_with=_LayerSelectionWidget +) class LayerDropdown(_SingleLayerSelectionWidget, ipywidgets.Dropdown): _widget_cls = ipywidgets.Dropdown +@_add_docstring( + "A list-box to select a single visible layer.", replace_with=_LayerSelectionWidget +) class LayerSelect(_SingleLayerSelectionWidget, ipywidgets.Select): _widget_cls = ipywidgets.Select -class LayerSelectionSlider(_SingleLayerSelectionWidget, ipywidgets.SelectionSlider): - _widget_cls = ipywidgets.SelectionSlider +@_add_docstring( + "A list-box to select multiple visible layers.", replace_with=_LayerSelectionWidget +) +class LayerSelectMultiple(_MultiLayerSelectionWidget, ipywidgets.SelectMultiple): + _widget_cls = ipywidgets.SelectMultiple + + def handler(self, change): + try: + if self.value is not None: + with _force_full(self._m): + self._m.show_layer(*self.value) + except Exception: + _log.error("Problem in MultiLayerSelectionWidget handler...", exc_info=True) +@_add_docstring( + "Toggle buttons to select a single visible layer.", + replace_with=_LayerSelectionWidget, +) class LayerToggleButtons(_SingleLayerSelectionWidget, ipywidgets.ToggleButtons): _widget_cls = ipywidgets.ToggleButtons +@_add_docstring( + "Radio buttons to select a single visible layer.", + replace_with=_LayerSelectionWidget, +) class LayerRadioButtons(_SingleLayerSelectionWidget, ipywidgets.RadioButtons): _widget_cls = ipywidgets.RadioButtons +@_add_docstring( + "A slider to select a single visible layer.", replace_with=_LayerSelectionWidget +) +class LayerSelectionSlider(_SingleLayerSelectionWidget, ipywidgets.SelectionSlider): + _widget_cls = ipywidgets.SelectionSlider + + +@_add_docstring( + "A range-slider to view a combination of a range of layers.", + replace_with=_LayerSelectionWidget, +) class LayerSelectionRangeSlider( _MultiLayerSelectionWidget, ipywidgets.SelectionRangeSlider ): @@ -195,36 +258,25 @@ def handler(self, change): _log.error("Problem in MultiLayerSelectionWidget handler...", exc_info=True) -class LayerSelectMultiple(_MultiLayerSelectionWidget, ipywidgets.SelectMultiple): - _widget_cls = ipywidgets.SelectMultiple +# %% Layer Overlay Widgets - def handler(self, change): - try: - if self.value is not None: - with _force_full(self._m): - self._m.show_layer(*self.value) - except Exception: - _log.error("Problem in MultiLayerSelectionWidget handler...", exc_info=True) +class LayerOverlaySlider(ipywidgets.FloatSlider): + """ + A Slider to overlay a selected layer on top of other layers. -# %% Overlay Widgets + Parameters + ---------- + m : eomaps.Maps + The Maps-object to use. + layer : str + The layer to overlay. + kwargs: + Additional kwargs passed to the used `ipywidgets.FloatSlider`. + """ -class OverlaySlider(ipywidgets.FloatSlider): def __init__(self, m, layer, **kwargs): - """ - A Slider to overlay a selected layer on top of other layers - - Parameters - ---------- - m : eomaps.Maps - The Maps-object to use. - layer : str - The layer to overlay. - kwargs: - Additional kwargs passed to the used `ipywidgets.FloatSlider`. - - """ self._m = m _check_backend() @@ -267,6 +319,18 @@ def handler(self, change): class _CallbackWidget: + """ + + For more information on how to customize the widgets, have a look at the + documentation for Jupyter Widgets (https://ipywidgets.readthedocs.io). + + Parameters + ---------- + m : eomaps.Maps + The Maps-object to use. + + """ + def __init__(self, m, **kwargs): self._m = m _check_backend() @@ -303,6 +367,9 @@ def __init__(self, *args, value=False, description=None, **kwargs): self.observe(self.handler) +@_add_docstring( + "Checkbox to toggle the 'click.annotate' callback.", replace_with=_CallbackWidget +) class ClickAnnotateCheckbox(_CallbackCheckbox): _description = "Annotate (Click)" @@ -310,6 +377,9 @@ def attach_callback(self, **kwargs): return self._m.all.cb.click.attach.annotate(**kwargs) +@_add_docstring( + "Checkbox to toggle the 'click.mark' callback.", replace_with=_CallbackWidget +) class ClickMarkCheckbox(_CallbackCheckbox): _description = "Mark (Click)" @@ -317,6 +387,10 @@ def attach_callback(self, **kwargs): return self._m.all.cb.click.attach.mark(**kwargs) +@_add_docstring( + "Checkbox to toggle the 'click.print_to_console' callback.", + replace_with=_CallbackWidget, +) class ClickPrintToConsoleCheckbox(_CallbackCheckbox): _description = "Print (Click)" @@ -324,6 +398,9 @@ def attach_callback(self, **kwargs): return self._m.all.cb.click.attach.print_to_console(**kwargs) +@_add_docstring( + "Checkbox to toggle the 'click.peek_layer' callback.", replace_with=_CallbackWidget +) class ClickPeekLayerCheckbox(_CallbackCheckbox): _description = "Peek Layer (Click)" @@ -342,6 +419,9 @@ def attach_callback(self, **kwargs): # NOTE: pick callbacks are attached to the provided Maps objects, # click callback are attached to m.all! +@_add_docstring( + "Checkbox to toggle the 'pick.annotate' callback.", replace_with=_CallbackWidget +) class PickAnnotateCheckbox(_CallbackCheckbox): _description = "Annotate (Pick)" @@ -349,6 +429,9 @@ def attach_callback(self, **kwargs): return self._m.cb.pick.attach.annotate(**kwargs) +@_add_docstring( + "Checkbox to toggle the 'pick.mark' callback.", replace_with=_CallbackWidget +) class PickMarkCheckbox(_CallbackCheckbox): _description = "Mark (Pick)" @@ -356,6 +439,10 @@ def attach_callback(self, **kwargs): return self._m.cb.pick.attach.mark(**kwargs) +@_add_docstring( + "Checkbox to toggle the 'pick.print_to_console' callback.", + replace_with=_CallbackWidget, +) class PickPrintToConsoleCheckbox(_CallbackCheckbox): _description = "Print (Pick)" From 2f9996407eafb40eb19defbb40d7eaf9dc8de1b4 Mon Sep 17 00:00:00 2001 From: Raphael Date: Wed, 6 Mar 2024 19:56:47 +0100 Subject: [PATCH 211/240] add section on Jupyter Widgets to the docs --- docs/gen_autodoc_file.py | 7 +- docs/index.rst | 11 + docs/notebooks/widgets.ipynb | 394 +++++++++++++++++++++++++++++++++++ eomaps/widgets.py | 2 +- 4 files changed, 412 insertions(+), 2 deletions(-) create mode 100644 docs/notebooks/widgets.ipynb diff --git a/docs/gen_autodoc_file.py b/docs/gen_autodoc_file.py index 549e91325..dd680900c 100644 --- a/docs/gen_autodoc_file.py +++ b/docs/gen_autodoc_file.py @@ -2,7 +2,7 @@ from operator import attrgetter from itertools import chain -from eomaps import Maps +from eomaps import Maps, widgets # TODO there must be a better way than this... # BM needs to be a property otherwise there are problems with jupyter notebooks @@ -120,6 +120,11 @@ def make_feature_toctree_file(): "obj_with_attributes_no_toc", ) + s += get_autosummary( + "eomaps.widgets", + [i for i in get_members(widgets) if not i.rsplit(".", 1)[-1][0].islower()], + ) + basepath = Path(__file__).parent with open(basepath / "api" / "autodoc_additional_props.rst", "w") as file: diff --git a/docs/index.rst b/docs/index.rst index 7d810a0b5..4bd0221f6 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -212,6 +212,16 @@ With a few lines of code, you can turn your maps into interactive data-analysis A collection of utility widgets (layer-sliders, layer-selectors) + .. grid-item-card:: :doc:`notebooks/widgets` + :link: notebooks/widgets + :link-type: doc + :shadow: none + + A collection of Jupyter Widgets (for Jupyter Notebooks) + + + + Miscellaneous ~~~~~~~~~~~~~ @@ -316,6 +326,7 @@ Make sure to check out the :doc:`Examples ` for an overview of api_companion_widget api_layout_editor api_draw + notebooks/widgets.ipynb api_utils diff --git a/docs/notebooks/widgets.ipynb b/docs/notebooks/widgets.ipynb new file mode 100644 index 000000000..bfa1e7b33 --- /dev/null +++ b/docs/notebooks/widgets.ipynb @@ -0,0 +1,394 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "0b4e5c01-36f1-4426-8f43-b877a2bbea8f", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] + }, + "outputs": [], + "source": [ + "import warnings\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "markdown", + "id": "385f7c06-a5c6-4035-a134-55b4808f875b", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "# 🕹 Jupyter Widgets\n", + "\n", + "
    \n", + "\n", + "EOmaps provides a set of pre-configured [Jupyter Widgets](https://ipywidgets.readthedocs.io) that can be used to create interactive browser controls for a map. \n", + "\n", + "These widgets work just like any other [Jupyter Widgets](https://ipywidgets.readthedocs.io), but they have a pre-configured handler to perform commonly used tasks (switching layers, overlay layers, add/remove callbacks etc.)\n", + "\n", + "\n", + ":::{note}\n", + "\n", + "Widgets are **only for Jupyter Notebooks** and require the additional dependencies: `ipywidgets` and `ipympl`\n", + "\n", + "You can install it with `pip`:\n", + "```\n", + "pip install ipywidgets, ipympl\n", + "```\n", + "\n", + "or with `conda`:\n", + "```\n", + "conda install -c conda-forge ipywidgets, ipympl\n", + "```\n", + ":::" + ] + }, + { + "cell_type": "markdown", + "id": "d648dada-2208-475b-bedd-c977a6badfc4", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "**The following pre-defined widgets exist:**\n", + "\n", + ":::{dropdown} Widgets to change the visible layer\n", + "\n", + "```{eval-rst}\n", + "\n", + ".. currentmodule:: eomaps.widgets\n", + "\n", + ".. autosummary:: \n", + " :nosignatures:\n", + " \n", + " LayerDropdown\n", + " LayerSelect\n", + " LayerSelectMultiple\n", + "\n", + ".. autosummary:: \n", + " :nosignatures:\n", + "\n", + " LayerSelectionSlider\n", + " LayerSelectionRangeSlider\n", + " \n", + ".. autosummary:: \n", + " :nosignatures:\n", + "\n", + " LayerRadioButtons\n", + " LayerToggleButtons\n", + "\n", + ".. autosummary:: \n", + " :nosignatures:\n", + " \n", + " LayerOverlaySlider\n", + "\n", + "```\n", + ":::\n", + "\n", + "\n", + "\n", + ":::{dropdown} Widgets to attach callbacks\n", + "\n", + "```{eval-rst}\n", + "\n", + ".. currentmodule:: eomaps.widgets\n", + "\n", + ".. autosummary:: \n", + " :nosignatures:\n", + " \n", + " ClickAnnotateCheckbox\n", + " ClickMarkCheckbox\n", + " ClickPrintToConsoleCheckbox\n", + " ClickPeekLayerCheckbox\n", + "\n", + "\n", + ".. autosummary:: \n", + " :nosignatures:\n", + " \n", + " ClickMarkCheckbox\n", + " ClickPrintToConsoleCheckbox\n", + "\n", + "\n", + ".. autosummary:: \n", + " :nosignatures:\n", + " \n", + " PickAnnotateCheckbox\n", + " PickMarkCheckbox\n", + " PickPrintToConsoleCheckbox\n", + "\n", + ":::" + ] + }, + { + "cell_type": "markdown", + "id": "00624ef5-0190-44ec-b85e-6b8b2e90b280", + "metadata": {}, + "source": [ + "## How to use the widgets\n", + "\n", + "All widgets expect a [`Maps`](eomaps.Maps) object as the first argument. (e.g. use ``Widget(m)`` to connect the widget to the [`Maps`](eomaps.Maps) object `m`)\n", + "\n", + "The basic call-signature for **layer-selector widgets** (buttons, sliders, dropdowns etc.) is:\n", + "\n", + "```\n", + "layer_widget = Layer< WidgetName >(m, layers=[list of layer-names], **)\n", + "```\n", + "\n", + "The basic call-signature for **layer-overlay widgets** is:\n", + "\n", + "```\n", + "layer_overlay_widget = LayerOverlay< WidgetName >(m, layer=< layer to overlay >, **)\n", + "```\n", + "\n", + "\n", + "The basic call-signature for **callback widgets** is:\n", + "\n", + "```\n", + "click_callback_widget = Click< WidgetName >(m, **)\n", + "pick_callback_widget = Pick< WidgetName >(m, **)\n", + "```\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "6f985bbf-2312-4c30-a879-a01f223788e2", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "%matplotlib widget\n", + "from eomaps import Maps, widgets" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "2f7e965d-d79a-4a71-bb00-60927b8fa4ab", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6e2d04a390084f7eab12c600ab71ae30", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "LayerToggleButtons(description='Layers', index=1, options=('Countries', 'Ocean', 'base'), value='Ocean')" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "978c8cf2f45a452987f32024e174568c", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAADICAYAAAA0n5+2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABmbklEQVR4nO39VXdlW5bgef43nn0YxGDMcMEuX79O4RDuGeSRWVn5UKOz6a1f67E/QD/2V+jRPUaNqqjKyIiMdA+PcA/ny2TXmEkmlg7T5tUPWzommcAkmVjrN4aDyQ5s04E991xzzakIIQSSJEmSJEnSplF3+gAkSZIkSZL2GxlgSZIkSZIkbTIZYEmSJEmSJG0yGWBJkiRJkiRtMhlgSZIkSZIkbTIZYEmSJEmSJG0yGWBJkiRJkiRtMhlgSZIkSZIkbTJ9pw9A2lq2beO67k4fhiRJkvQc0zSxLGunD0PaIjLA2sds26Zv8DC18sxOH4okSZL0nP7+fh49eiSDrH1KBlj7mOu61Moz/L/+f59iJVI7fTiSJEnSHLvV4P/5f34P13VlgLVPyQDrALASKeKJ9E4fhiRJkiQdGLLIXZIkSZIkaZPJAEuSJEmSJGmTyQBLkiRJkiRpk8kaLEnaIaoCqqIQhAIBWKaKHwhMXcX1Q/xAbMnzKgpoqkLcVImbGqqq0LIDskkdLxD4Qcih7ji6pqCpCooCCqBrCm03RFHA8wX1to/thThuiOOH1Fr+lhyvJEnSXiQDLEnaJKauIEQUvPTmTJKWRr0d4PkhR3sT5JI6+ZSBriuEIQShIGVp6JpC0w5IWBqIKABSFAU/ELScANcPURUFEFRbPtNVl9FZm5lq1N8sEdOwDBVdUzB1FVNXmKy4ZBM6MzWXgXyMXMqg7QS0nICerEk2aRA3VPoLMSAK9GLG6gltIaJAUFUUqk2PIBSd4/SCkKYdUG/7tN2Qx1Mt6u0AQ1PwtihQlCRJ2s1kgCVJ6xQzVLozBoqiUGv5ZJM654ZTdGdMNFVBCIHrh6QsHVUFXYsCl1AIXC/E9QUxIwqEFEUBIBWf+ygqz55HCIGhKdRaIVMVh/GSg+MFqIqCrin85z8bBBTCudsZuoqmRg9QaXpkEzoCaDshpqFgzB2HEIJ6O0DXFOKmtuZ/t6IoncNLWtpcdkvpPGap7tGVNjB0lZ6MyUTZZqjLotbyaTkBA3mLbFIHAS03YHTW5u5YE9sLN/xa7FW6pizKUOqagqEpJC2NnqxJueFTqkcBtFgQdFuGStMJtiy7OS9pabheiBcINBUsUyOb0CnVvQP5eknSRsgAS5JWkYprNNsBAsgkdN44kaEvFyOX1FEUhbYT8Hi6zWzNpdr0cLwQ2ws53BOn5YRMlGxScZ3ujIkfRMt+CUvD1BUWRVNEQYrjhRTrHqW6x9PZNuWGx4mBJD0Zk3OHUliGiqoqyx7rQrmkAXPPkLQWB1GKopBJvNxHfz5oXPiYXRmTIBSEoeD0UJKTgwlmKi65pIGqwEzV5av7VcoNj0pzZ5YTFSUKWPIpg5SlETNUqk2fmKkiRBTo2G6A6wsqDQ/x3H11NVrSDdcR3yRjGrmUQT6lo2tqlPkDHk62CAUYmoJlqqTjOgP5GA07IB0XxE2LuKnh+iFjRZtC2iAIoekEG/q3p+IabSckWMPBN+2AlKVx/nCCN09kO/cJQsHn96rcH2+u63cgSQeRDLAkCcgmdPJpAwWYKDl4gSAIBboaZYu8IAocai2fMBS0HIO4qZJNGpw7FDVxFULgB4KRGRvXC1EVeONkFtcPaTsB2YSJaaj4QUgQQrXl07QDKg2PyYqD7YY4Xsj03NKfqkSZg/sTTeptn6O98TUFVztJU5VOFi0IBaNFm/GSTaXhbzgw2Ii4qfLmySyFlEGl5ZOMaTydbfPGiSwtJ2C25jJbc0laOkNdFpqqkE3qtJyAph3waKpFtRkFY/OEYEPLnU0noOkEjBWf/czQFgdq1RZMVVzuT7Q6t3k+yzVWdNb93Jap4vnRe7nRXt/v39BVKk2ff7syy7lDKYa6LCxT5Tvn83z7XJ6JssO/fD3DQD6GaajMVF2a9va9xpK028kAS9r35mOSXMqgO22QTRo8mW53AhmIgp182uBQt8WZoSSGrqIqcPVxHdcXfHA+i6ooFOsuH94s05+PcaQ3jj8XiNleSKnuRTVOGZOEpZEwNRptn5ihRlmcuQPR1GipLRPXeTLd5sqjOi0n4FhfnBMDKd40NZKWRiFtzNVe7T2Vpsdvvilie1HAst3ZDgHcn2hxqNtiqMuiWHcZ7rKw3ZCutEEuaVBr+bheSNxQuT/RZLLs4PrRgeqaQiii5WDPDzf9+NcSqG3GMqDtbnw5r9zwKDc8AEZmbCDKiGaSOroaZd1++FoXuYSBN3fRUG54XH5YizZuCNH5fUrSQSQDLGlfKaQMCmkDAaQtjdujTdIJHdsNODucRFdVZmpup0B83tG+OLM1l8dTbSxDncs0CUxdoeUE/PF6ia60SSFtMNxt0XICPrldQdcUjvXFeTLdRlEU3jmVpStjUm54pOM66lxGp972UVUFxwuZLDt8dqdCKFi0XDNWtGm0AwYKMYa7LfwgyqAFQtCXi23zb/LlhKHgrVNZHk62KDU8qk1vW0+2thsy6TpMlh0uP6zx3pkc+ZSBqauMztp8cqdCqe6hAKeHkhzqjtOTMbk73qTeflbj5BzAeqPnM2cLf66pCtW55V1FibJq+ZTB0d44hbRBzFDpzZk8nQvIJOkgkwGWtOcNFmIMFiyGuy3ipsqtpw368jFmqy6He+N0pQ0mSg5XH9dpzBV3v38uh+OFfH2/hqLA46k2vVmT430Jns7a9GZNhBAU0iaWqXLtcR1dUxjqslBVmK26nBxIYplRDc+JgSTpuEYoYLRok45rjJds/EB0TtKHeuLYc8tTy2UwXF8wU3OxvYBG2+e14xnyKYNqy6NUd7Hd+aLjKHuQTegY+u5rZde0AyYr0U7HcsMjm9SXBLTbyQ8EH94sEzdVhrqsTu0TRJmuO2NN7ow1d+z4VmMZKt1ztW2GHhXB55IGQ10WoRA8mGhx5VF9U5/z+eBqfodqzFBpu9HO0FzSIDu3K/bVo+lF78NTgwlsN+TRVIt0XO9shGi7AU9nbZ7OtGm/RGZtLTIJnZYd4IfRhpKVAmVdUwgXLNWqCrK2TNo0ihBCvp32qVqtRjab5f/9X67v61mE832a5tsMDBYsam2fi4dTUeZHeVZLM1l2cLyQbFLnUHe8syvvd9eKhGF0EsgkdISIArdTQ0lMTeVfL88QhHCo2yKT0Pn8boW4qfGz9/oQQjBZdpipuQgBLScgZemk4tEyoaYqeEHIbM3j3nhz0dLky8okdE70J3jrVLZT+7TThBB4c8HivfEmbTdkpurS2sYarL1IVaLi+758jBP9CQqpaFl5vGRTrHlUWx6NdkCt7b9UrZOpR/VfwXMxRyauk0/pFNImmYSOqaskrWj3oGWqnYyroUW7R4NAoGnre8+5XsiVxzW+ul/b8PGvJJ/UqbR8/vxSN8f6EviBYKriMFiIcfVxne6MyXTF5cv7FQbyFpmkju0EtN2Qetunsc31Y+1Wnf/5P16kWq2SyWS29bml7SEDrH1svwdYXWmDgUIMQ1MxdIVSPaoZmQ80ZmsuoYhOKCcHk2QTOk07YLr6bMefMtfoczWGpqCqCp4f0peL0ZM1qbd9xksOA/kYhh4tnfiBIJ8y8EOBCKO99bWWRzYR7eirt32eztpbsuxkaArfe6XAyYHkpj/2erWcgHorakJ6Z6zJw8nWi++0zZQFTV53A1WB145luHQ8g64rjBcdbo82GJ21t6QtgqZGOz/DuSa3rx5N88aJ7At7oa2XEIKGHXB/vEW15WEZKrdGm1vyGTB1Bc8XKAr052M4Xkg+ZTAy08bU1SUBlK4p5JI66ly7le1uPyEDrP1PLhFKe1Y2afD+2fyymRvPj3bj3Z9o0nJCbo40ltxG1xT68zF6MiYDhRif360wW/M6u/cuHc9wqMdCVxVujDS4/qROfz7G26ejgnchBOWGx2+vFqk0fS4cTtGfj6GpCnfGmqiKYKjLIhPXqbZ8NFXhaF8cBNTtgDujjU1rV+AFgt98UyRmqBzqjm/KY67pef0Q1w8RQK3po2kKrh9l60am20yU17/zbTsIAcEuubbsy5l872KBeExjtubyzaNap6h8rc4dSjJedKjOddO3DDUK9MWzTJWqwFC3xamBJKoaBZiGrnQ2UvhBuCkBVhBE2cvpSpQtVlWF00PJTuNc01CxjGiKQDDXG266GtU/On7YyTafHU5yajDZ2Z1oGgoTpagf3HJcX3SW+MZLTmdzyxsnsqgK3B5tUpor2o/+vYLZmrfsY0nSZpABlrQnHe6x+P4rhUXBleuHPJxsUW/7nBpMMliIMdRl0XYCGna09PdoqkXS0kjGND65XeGD83lySYOxot35sh2Yq+nKpXRySYNQCF49mqbciJZpwlDw+xslGm2fqYpLEAp+9FoXJwej7NGVRzU0NcpIpOcaiA4JwSe3K7TsAC8QHO2LM5CP8Wiqxa2njc0pAFfg3liTfMogpqvbUp9l6CqC6HffdkOsuX5Sn92pbPlz73WGpnBiIMF3zhfQNIUbI3U+vlVZV1YtHdf463f6UFV48wQ8mmrz0a0yqqpwdjDBzZEGx/sTnQavUxUHRYGhLmtdTWbXwwtC+nIm/fmlGzPyKYOerIn53HvzPCAuRsGgIGp3EjNUVCWqe4QocJvudvnT9dKiQGmhhb+6/nyMwz3x6DvADXj7dLbTg63e8rHMqCdZpenLMU/SlpAB1gHwxvEMI2V1U/sQ6arCQCHGbC0qvt7uXMBY0eHnn0/z6tE02aTBVMXh6UybJzM2p4eStOaWA5IxjfjcfwDODqc6j/GDV7s6v5OhLovXj2f45mGNsaLDWDG6Aj4znCSXNJiquNheyMUjKVpOtNV/YbNFN4jqsNJxjTNDyU4vLOaSSaqi8P6ZHOpco8r5wLA7Y3K0N85UxSVmqDyZbjMy095Qoa0Q0VX805lojM6R3jjdGYOktTUfcyFE9JxeyFjJpidjUkibTJYdsgm9k01ZK1NXdsW2/vmiaF1V8LdwCbE7azKQjzFatDncY1FIm8TNpUtZyzF1hZMDSV45mu40jQ1CwdPZNpdOZHjrZJarj+p8+3yeeEyjO2OSsjQEMF1xuf20SSFtcKR387Od1gsCt+eDq3mKoqBrAArGMg+haQq5hE531qTU8NA1hZ9c6may4tB2QgppAz8QVJoeXWkTXVM6PermHe2NslbZhI5pqAghKNY9bs9lk0dnn2UODS3qgReEm99uwtQVjgzt/HK+tLVkDdY+tlk1WKau0J0x6cmaDHdZJGIa6YSOoUVtB7wgSs3XWj6P59oVaEq0DFZpePihoGVHM/XmT17rOW8lYlHLBEVRONob7+z4WmnO3XzrhJ6MSSIWnVT8QJCO6/TnzSVdyOf5geDBZJNizWOsaFNt+Yt2VJ0/nOI75/OdXVE3nzb49HYZ1xdYhsprxzPkkjqWqZGb+wJX50aczM8T9IKQ6YpLX85cciLyg5CWEy25Ndo+t8eazFbddRffnhpMcKg7ju0GxAyV4wOJzpiczSJENBexVI9q3ipNj/GizfH+BK4vuDveXPfOQU3d3pqoRCxqwmnoKqcHE2iawon+BBMlh4Sl0ZMxO81gH0+3t6yWzDJVutNRE1oFmKw4UYF5TGO0uPxSYcxQ+Zt3eunKmIt+fnesyYc3S/ynbw88G79E1G5i4WimqYrDbM3lwuG9WZvZdqJM8MtOJFgoFIJ6y0dRFBKxaEboPM8PeTpr82/fzK7pu2v+viv1MtM1Bd9u8P/42XlZg7WPyQyWtKr+fIx/92bPirUZlqlhzf3/pKUzULCWvR1EJ2VFiYKyqYrTWS57Mt1momx3dukNdllUmx6ZhE5X2oy2ievRNvGUpXO8P8FUxWGoy2J01ubEQKIzTqRY8yg3PR5OtskljeikpUSZouWWRDw/ZLRo050xScd1jvYmiJsOLSeg1oqahJ4ZSnKkN86DiRZ/uF4imzQ4O5ykP2fy5sksd8eaOH7I1/ernYDvULfFe2dznc7gd8eaNNpRHYmhq/i+4Hh/nLPDKWKmOjdfUCWTiH7PhZRBKq7zeKrN1ce1dV1Bz498absh10caZBKrvy4boShzW/UT0Tb8Pjeaw3h3vMXk3Gu5XlsdXFmGiuuHnB5K0p+PddofRLvktM77s5B+FrSk4jptNyCb1LlwOEUQCm4+beD70YDrYt1bV0PQwz0W6bjOnbFm5362Gy4JpFoEqAq8czrLcJeF6wvabsBM1eXpTJumE3BrtMEbJ7IkYs/e144XUkibCKIgyjJUMgl9yee3Lxfbc73VForHNDY796YqCtm5EVPPM3SV4W6LH7zWxVjRZiBvdS4WXT+c+70beL7gy/tVerMmP3q9G2/u7+bf2vW2P7dM6XHnye7b/CFtLpnB2sfmM1gfXXlK0TaYLLtrOon1ZE2+e6FAOq69MN2/WcJQ0HIDNEUhHtM6u4w2WnTr+SHOXNboq/tVSnWPwa5Ypy+V64VomkI6HtVZuX7IyEwb2w1puwG2G2LM7Uo61p/gzRMZSnWPz+5WyKcM3jkdNa6EKGswWIgRhIK//3gS01B580SWM8NJVCXK7vzpRomxokNsroFpEAouHE6ha9Gy2HCXxfH+eCfDEI3jCXgw2eL2aLPTUXutErGoSL9h+7x7OrcpI3ZaToDtRnMZa3OZnVrLp9r0GJ8bL7QbJS2NlBUt3dpeyNHeBIX08ifS9QrCaGn43niTsaJNfcE4GstQOXc4halFmyQadhSoASRMje6sSToeZcq+flBjuNvC1FVMXWWoK8aNkQbD3daygZDjhXPjfHzePpXtvL62G/DLr2bIJHTeO5MjFHD5QY3vXixsyr/3oJvvTr/a91Kj7UeB+wrB2rxqtUoul5MZrH1MBlj72HyANf8B9oOQx1NtPrxVBsB5Qe3UUFeMD84VSCeiXk57cWyL44WU6m4nYLNMjXRcp972eTTVoj8f41hfonN7IQQz1ej2iZiGFwgsU6XthsR0hdGizatHl/8ybLsBH98qc/5QioGC1cmIiLkC96uPnzWEzCR0vnexQLnhcfVRnVAILh5J8/rxpY8dBFG2ZKricu1xnYmy88JA+QevdnG4J+oGHze1dfcret6jqRaf3q6su65qp80Pdz7SY/Gtc3nSCX3D72MhBLYbdur5llOsu/zzFzM0nQBTV/hP3xng2uM6D+ZmDH77fJ7BgoW5ye0QIFri+uZhjW8e1vjuhUJn00W54RE31W27WJLW5vnvZ2n/kQHWPjb/AZ6cLtHXk+/8/NbTaGeRqkS9oq49qfNkut1Z1knEVPpzMfrzMW48baACrx7L0JczFy2f7HVBEC27LKxVWY0fRFvIX7Q7r1hzeTzdJp8yqLd9psoOD6faK94+EdN47Viai0fSi3ZFOl5IsR5tUT/aF0eIqKFqre3z4Y3yqi0Qzh1K8dbJLIaurFhUvJJQCKpNn1xSZ6ri8ngq6ha+li+KuBl1Hp+pulHdmaoQ01UE0bifMBSMFl8cIG4WXVP43sUCJwcSnezgy2jaUf+zYs0lFddJWVE9YsLUaDoBT2dsHk21GOyyKNZcLh5JM9xtUW36JC1t0/tMAZ3f9cRc+4LTQ8lNrU2StoYMsPY/+Sk8AD66VWawFF3Kv3Ei29lZM12JTvzVpt8Jrk70J3jzZKYTSL16bP9+8DVNWXNwBSxbHO/PDbmdrjhoqtLp8v7WqRyPplo8nbWXLfYeyMdIxTWadkAhbXCiP7Gkn5eqQrHm8fHtMmlL54evd9F2Aj6/W11xm/q8R5MtBvIxjvXFCUPxwiXCUAjaTsjNkTqTFRdNjTIfC5e8XsTUFY71J8gmdF45GgWLhZSBPrcbq1NgXXb4083Slvcg0jWF75zPvzC4mq44fHK7Eo1V0VXeO5ujO7P8hUTS0jk1GL1n/nCtRCiiDGfLCbEMlb9+p5dLJ5Z+ZjZrSXI5PdnoWOfbGUi7lx+IZ01eZW5j35MB1gHwZKbNdDMaTXF/okVP1uRIb5yrj+pLTtQPJluUmx5He+MEoSAMo2WW6arLX7zVs+5syH4132pB11Q0VdCbixEKwR+vl1BUhZ5stOvy4pEgqsG6XqLa8jud5aNsFczWPBq2z73xFq8cTS/auWRoKq8cTXNiIMGDiRb/8MnUmo/P9kI+vlUmaWmYuto5Ca/47wkElx9Wuf5kaUPWtXJ9wVjRpmUbUfH+c9maIIxGlzyZblOqb21wdWowwdunci/M5IRzy7cTZYe4qfLGxUKnTmo1h7otjvXHKdU9LhxO0Z01qTT8RQXnkjQvFIIgiLraVxoekxWH6w/W/nmW9iYZYB0wDTugYbd5NLdk1ZONeu8EYTSnLwgFpbpHqe6RtDQUop2Eg4UY8oLrGT+I6nGCUHBjpN4ZuKupCkd649HOQi/kq/tVTEPlcI+FWXWZqriYusrXD6rU2/6i3YE3Rup8cD7P0d6o2H101qYyF+yeO5Ti6Wx7XR2+bS/k6wdVfvpGT6cebDmhiArqx2bX1z18OdWmj+8L/o+PJuhKm/Rmo35E80HVVo4jiRkqZ4eT9GRNerPRCKOVNGyfBxMt7k+0aDsB75zO8sqR9Jqbs1qmxg9f68afX2a2NHqze3dXnrS1VEVB1RXyKZV8yiBpaXxzR36h7ncywDrgVupVNFCI8aPXurasSeVep6sKVx7VeDjZWjTuJggFDydbnZ5Jl45nUBT4+kENU1cY6ooxVXE5dyiF44WUGx6KEgUHj6ba/OrrWYa6Lay59hA9GZOrj+uMzLRx/fUHJ2NFh//6yRQ/faObzFxLhedNVVx++eX0pjVTnG/e2mi3eTK9cu3ZcuaXE2137f/WwUK0UeFYfzwq6H/BcujITJvfXCl2Nj789Tu9G15e0+d2okoHz1f3q3RnTIa6rEWZ55VUml7UBLjmUkgZ5LZw2VjaHeQ3g7SEqsDrxzIbWu7w53a7daUNDC3qQRUKsWJzz70oCAT//NU0Y8UXz9m7/LC26M9tJyQIBId74kuW7eptn49ulhkr2niB4P7czjNTj5YiN5pBLDc8fv7FNP/uzV7yKb3Tk6czFLvq7ooO6rByY8aVaCp861wey1AxNfWFwRVEbQsWDhueLDuyfkla1shMO3q/+CGqAj95o4e2G3DjSYPpqsvrxzOrvudmay43R6Kh3bX24h247dbunNMpbR4ZYB1gy40mMXWF4S6LT26XUZQ8hZRBEIoVsx/zhBBzY15s3j2TA6JGhx/eKmNo0bJZfy5Gd9YkDAWmrqKqyqpLV7vVp3crawqunuf6glLDQ1OjYOr5ACsd1/npmz34geA3V2aZKDm4fojrC1w/oCdr0nbX1x19Xr0d8F8+miCfMghDwfnDaU4NJrC9cEkQuNOWC7LyKYNK01sSZIYhnSL+1ZYEF3rtWBoBnSkDszWXqbJDT87EcUNm6y7Fmofjh2iKwvH+OPmUsefep9LGNdo+X96vcnu0uejnv/xyBtsLeOtkjjdPZoHoe05TohYu9bZPNqnTnTH56n6V8aKz7WPEpN1DBlgH2HJZC9cXzNRc2k7IL7+aIZc0qLU8/k/fH8IyVRRFIQgEmvYsOPKDkA9vlrk71uTNk1muPa5zY6SO44VoajTOZqriokDny8bUo0LwdFznjRNZ0vEoW+b5Ykt6BG2mydLGrjznezKBsupVr6JEzTEX1itdOJzivbM5/vtn00yvcwTNvFBAca64/KNbZT67W0FVln8f7Ba6Gu22WqnRqiDaxHHpeHZRk9aJskNfbvmxSEd649RaPh/Ptbl4NNWO2mokDYa7rc6Sn+8LjgzEScejrN9LthKTdtBs1aVYdwnmXkdNU1CIRjPdn2iSTRj05kyO9yWotX3ujze5N744uNLU6L3z+vEMpq7wy69mqDR8am1/28c8SXuDDLCkJRZuzZ8/sf3qm1mqTY9c0kBVokHPb5zIIISg3g5o2AGDXRZf3KsueqxwQTZi4ddPtOPMARxujzY5dyhFPqVjGVHX7f5CbNc2Nv3exQJNJ+BXl2fWNRJmPvvSnTFWXX5VFHj1aIbhLotbo02O9cU5MTdP8Kdv9vCLL6Y7gdLLWO9y3HZQgN6cSaMd8OqxNI12wI2R+qr3GZmxGSxY9GRNns7YfHa3Qq3l85M3uhc1kYXoRPvrb2YXNUxVFXjzZJZi3Zt7H8ramP2i3vb54m6Fu+MvGktjE59Q+f210rKBUiFt8MG5PENdUQPhf/l6dlGbERlcScuRAZa0ILOysvkmhi3HoZAyONIbZ7rq8vndCjFD4+LhFNdHNr7F/9bTBilL43sXC8zWXCYrDq8fz+zKIKs7a9JN1MxzbNYGRVnXKJupisvffzy5YnG1qiik4xqpeJwjvfFFS1OJmMbP3uvjHz+ZemEvrL0oZkZ1VN86l+dYX5zH02368iZ/uFZacRTPTNXlv38+DUQDwPvyMfIpg49ulunPxRZ1Xp+qOlRbPhePpLgx0kAIGO62SFoa15/UqTQSMsDaB8JQcGesyVf3q2selt5eZmNFOq7xs3f7oh3VCz6Hl45n+MUX07t2PJS0O8gAS4o6hK8hyMolo+W8mKHyye0KY3MDak1dYWS6jf+SV3ENO+DfrhQ5PZgkn9K5P97iSG98S7pfb4YPzuU7X7qOF/Jkus1ndyqdXXTLOdxjMTE3t69Yc1csrlYUhZVCS1VRONRj7csAy3ajnZWqCihR88yPbpXXfCL7wWtdDBUsvnpQjV6PuxW+/0oXrhfSsP1O7dzCfl8/fK27M9Rb1lntfQ3b51+/mmWmtrGl9HlJS+M/fjCw5PsnKosQpOP6vvwMSptHBlgSsHJwZeoKx/oSpOIabSfk2uP6oi8uhc2t4XG8kGtP6hztjXNmOMmDiSbD3XHiprrmHkXbZeHJOGaonB5KcnIgQbHu8XCyxUzV7dQPzV8dT5ajotfXj6W5cCS9oefVNYV3TuUopAyuPq5vynLhbmBoCvmUQcxUufKoTjYRDeL+zvl8J4B9kbYTUm56BKHguxcKlBout542uD3amHs9Ft9eVaIh1jFDlcHVHtdygk7rlPVMIFjJoW5r2Yu7Yt3l519Md/6sKmDq6pb2eJP2JhlgSUsoRCfxoW4L1wt5MNFaMTu1VQny+b5P01WXU4Mu3z5f2KJn2lzqgi7u8x5OtvjV5VkAhrssfvBa10u3rdA0hTPDKU4NJhkvOVx5VOPpJjQK3SlDXTFODiQ5O5xEAL/8aoZPblfIJnXeP5PnO+fzGJrSaV2xkjtjDf5qsBeIfu+puMborM101SWfNDjcG+dwj0WjHVBueFw6kUFfQ2sHafcr1l00NepLNp9hmqm5CAHZhL7uQeWN54I0IQS3njY7vevmL0pDMdeKRlVeOosv7S8ywJI6utIGXiBIxjQmyg6PVxlQvB0uHknz+d0KpbrHyHSbbFLfk9vlM3GdrrRBqe7xZKbNyot/69N2AmZrLgOFGNlkgZmqy++vFXf1rsDlqApcOJzmWF9Ub1auuzydsckm9aj1ggKpuM53LhSYqjiLshOqAt2ZKKDty8Uw9Wjm4Qfn8gii5dQgFLzv5kjJprn72qHuOL3ZGIe6XXQtGg81Omvzye0yrx5N88W9tddjAYyX7M6O6VAIJksOf7xRWva2e+0zJ20P+Y1zgMyf1tNxnbYbRLMGRXSSAig1oj5DtXVe6W2FUMDvrhbpyphMlh1+d63IK0fSnD+cwlpDt+7dJJcy6M/HqLd9/EDwcKrFqcHkSz9uPKZxqCcOQDqukoxppKy9VxeiqQqqEmVDbTfotKHIxHV+/Hp3J6COGSr/4f1+Hky2+PBmGYiC8PfP5pYNupUFjy+Dq4MhZqgMFJ7VNQ51xebKDVLcHmuuK8AKBYwWbY70xvniXpXLD9bfLy5mqCiwaPlwYbsaaX+T3zoHgAokYioKCk0nWNJReLdmtb1AMDnXq8j1BVce1+nNxTjUs7cG6uqawrfP50nFdZq2z2Bhc2fWTVUcJssOyZi2J5coVDVq0nhjpMFY0SYUUT1WIqYxXnLoyZid3mihENx4UicZ0zg5mOCtk9k9l9GUtk+15fNous3FI2lySb2zG3qtns62qbd9rj5avVXISpxl6rIUZa4MYw9dJEobIwOsAyAEWs7eL8A0NIWG7TNedDB1hWzSwNAU1D3wRaUoCpeOZwiFWHfriUrD69SPzH85J2Iajh9yf6LFzZEGZ4eT5JIGTXvns4/r5Xjhol19AHFTI5PQmao43HraoO2GuF6IG4Qc6rb2TE2etLMeTrYo1T28QHBqIMmtp80X32lOX87k/nhr04vX56+B9uLFkLQ+MsCS9oy2G/LRzTLnD6e4dDzD3bEmqhL1o9oLQRawruCq5QTcn2hy/XGDpKXRdgMGCxaqCndGm53WBXFT5d0zOcIQLh3P4vrRjrv1FvXuJrW232laO/8a217I+UMpBjY5AyjtX/O7dzUVAiHIJfVFw9lXYmgKU5WXa/MgSTLAkvaUUEQ9jG6ONPj+K11Umh53x5ucHU7t9KFtCiEEfiAYLzmUGh7H+uKcHUoRhIJrT+p8/VwdiKZGvZ+suTYDb53Kdh6j2tp449fd4PRQknOHUtSaHj1Zk0LafPGdJGlO2w14MtVGUxVmax6//GqGtV6H7cYpB9LeIwMsaU8KRdTK4c9e7WJmg7P5diNFUSjWXXJJnSO9UQG7EILZsrto8KyhRTMeEzGNO6NN7o23QAj6Cxa1ls/JwQRjJZvqGq7Wd6vHUy0abZ8TA7uju/pKy7ueH9K0A+Ixbc1NcYUQeEE09FzafC0n4B8/nerUm86/bC9alZsvQJfhlbQZZIAl7VkPJ1t861ye/vzeXzISQuD6AlWBnqy5aJekoigMFixePZrm6WwbRVFotH0uHE7zye1ypzeUosCTGRvPDxkr2tT2cHAF0caG8ZLDRNlBURTOH9q5LOV0xeHWaIMLh9OkLA1dU7gx0uDpjM1szeV7rxTIJl/8deoFUbPe20+bNGwfQ1f5T98eIGntrY0bu1kYCv7tm9nObuhETKNU9+jNmisOSje0qIfVi6ZZSNJ6yABL2rNCQdQnaY+bL95erpVAEApqLZ/pikMmofPemTy2F1Br+tyfaC06IQjxbNfSfsrqCQHfPKxxciCx7ozP7dGoQP7kQIJ0fGNfd2NFm19+NYMfCJ5Mt/nR69305WKU6h4CwYUjKY4+NzNyOTdHGnz94FkvpuEui0LawDJlFmuzOF7I764WGV+wWzARU7kxUl/S3d0yVVRFIQwFrh/K4EradDLAkvasmKFivGRH9N3ANNROG4J5wdyw2vGizWjR5i/f6sULQm6M1BkvOktabex3KUtbU3A1VrTRNYXerImiKEyUHO5PNLnxpM7fvt+37n5YU2WH31wpdmpyWk7IV/erxHSVkRkbP4zq3fIpg+P9iRU3MbScgC/uVTpF14d7LL7/SheJmMxcbZZG2+eXX80sGR0VNzV++mYPf7xeYnTWxjI1hBBoqrKuvliStF4ywJL2rO7MztflbIW7Y00+ulXuZKM0NcrgPJ5uEez9bhvL0jWFM0NJBgsWthsQCEG9FaCq0QDo+Xq0hR5Ptai2fHqzJgL48l6ViVI06/HPXi1wZijFdy8WSMU1vrpf458+neb142mO9yewzBcHNvMbC1rPDe+eHxg9b6riMvVNkcFCg2+fzy9bjJ+IaZw9lOo0qxyZsSnWXRKxpf8uaW3aToCqKsQMlamKw++vlSg/12Q3m9A5NZgkZen8xVu9+IHgV5dnGJ21d23/P2n/kAGWtGflkvsvwBJCcP1JfVGDwiCEB5Orz+Db64QQvHYsQyax9q+kj29Xlkwd6M2adGdMPr1dwdRUjvUneONElpmqy8iMzYc3y3z9oMbFI2lePZpetb3HTNV94ezDhcZLDv/7h5O8czrLGyeyS/7+7FCSWyONTl+lX345w1unspwdTslM1jo9mmrx8a0y/txGj+UGnsdNlTdPZqk0PUZm2pQbHp/frezbixRp95EBlrRnPZ3Zu8ONn9dyAop1l9ma1xmvcZAusIMw+h28KMASQlBueNwdb9FcZnmn5QY0bJ+2G/Kvl2c5O5zk7HCKv3irl7YT8NtrRUZnbD69U0EAl45nVnyuvpzJuUMppisOXiDIJ3VeP56hLxcjFDBZdrg73mR01qblBOiagqYqKy5lZpMGf/NuL//wyRReEI2pejTV5ou7Vf76nV4Gu6xl7yctNll2+NevZzt/nl92fV7bDSnVXR5Mtpa0N5Gk7SADLGnP2i87r1w/5A/XSxTrLo32wa0JWct2hcsPa3x+t7roPgsD0UvHMyRjGiNzwfft0Sa3R5sc7Y3zZ6928d0LBW6PNngy3WZhVfNM1cV2Az6/W8XxQ94/k6Pa8lGAn77Zs6RAXgWGuy2Gu62o71go0FUFIVg1K1ZIm3znQoEPb5ZwfUEYCn72Xt+a2zvsZ0II7k+0+PJelb95t4+kFdVKzW8eEEJQqnt8cru8psdTlWhWZSah88cba7uPJG0mGWBJe9ZE2WGm6tKT3ZsNKGstnyAUTJTs6IS/BygKW7LbqidjvvB1nKo4fH63iqpAV9okFIJK01u05OMHYtlh14+n2/zdn8b5yRs9XH1URxAFa725GIOFGHFT5ZdfzdByAmKGSiAEr6+S3VpIURQMTZn7/6vfVgjBw8kWrh/9Ekt1j8mys+bn2o88P6RhB3x4s8RY0eG1Y2keTbW4N94kFPCd83l6czFujTb54/XSmh9XUxXiMY0TA0kZYEk7Ql42SXvaZ3cquF5IsMcqVl0/ZLRo43jhnvryXxhcRbs4N6dNhh+EtN3Vs3e2G6Kp0bihmZpLse4tqaf57E5lUYZLVxUsU8UyVHJJgwcTLbwg2vnn+oI/3igxUXKotny+d7FANqHjByEPJ1qEWxBJNuyAxwuCaQHcGt3bHfdf1mTZ4RdfTHc2D9wda/LhzTJTFZdKw+tsSDg7nOTcoeSaHtPQFM4Op1AU+NONtQdlkrSZZIAl7WmjRZuPb5cXNebcC3Qt6r+zl7/8HS/szEN82SWuctOn3g6otfxFBf7zbo40+MP1IkG4/JBchWhJKBQwUIh1Ar982uD7Fwv85z8bIhRw9XF90f2a7YDJikMhZfD1g2h5UNdURos2Y7M2YpODrJSl8c7pLOn4s+Vtz99bFweb7VBPnP/pe4P0ZEx+8kY3rx7LMDDXPNgLBP/98yk+vlVGVRQ+OJenK73y5hbLVIkZKucPp3j/XA4E69qoIEmbSS4RSnve7dEmFw+n6d5DS4WqonC4J87ndys7fSibYrmgaL3+8dMpAPrzMT44l+fakzqNto8fiE4H7r6cyZHeOClLpztjYOgqtZYfLS+KKCMUM1TuTzT57ZUiM1WXf/l6lmxSX7Yo3g8FXz+oMVZ05jJiohOo/elmmXzK4MLhFGNFm2Ld493TOTQVvrpfQ1Ph2+cLS3qYrUZRFN44keXikTRPZ2xUFfIpY1Gt0UGkqgr/wwf9jJdsHk22Fi3z1ttBpxmrrqkMFGKLdg3Ov14Q1eCdHEiQnOt39nBKBlfSzpEBlrQv/PrKLH/zTt+eKXwXQjBbczE0Fdc/uIXtyyk3PGwvoNr0UBUF2w052hvn0okMPVlzSTPP5Tq09+cWj0+qt/wV+x75gWCsaJOJ6xTSBkEomCw7tOwoo7awPq7cmGEgH+PJTJu4ubRB7FqZusqJgcSG7rtfzQfFy71OQSA646QWBvP9+RjDXRaJuYL4s8MpNFXBD0Imyg7F2v6ZaCDtPTLAkvaFatPno1tlzgwlGe62dv2S4dXHdW6MNGg6Mrh63uvH0hzqjnOoe+NNOK8+ri86Ua+lRK/W9qm3fVilkH9+rp0vBzVvOgWFuKkt+5lo2AE//2KGYt0lDAWaCm+dzDFQiNF2AyoNn2N9ce6NN3ky3abe9qk0/U4HfknaCTLAkvaNR1MtHk62SMc1vn2+sGz3751Wa/n885fTVPb4IOat0Jczee1YhmN9L/+6HemNM1l2VhzuuxLR+a/lLZzxuFwzUWnjTgwkcPxw2Z2C01W306U9l9T51rk8E2WH0VmblKUxVXGYrjqMzNh7bsOLtH/JAEvaN+azDvV2wJ9ulBjuGkTbpF1um+H20waf3ql0OnkfJKoS1R+tdPLrzhj8zTt9m/Z6DXVZ/Idv9VNpeggBIzPtuZquxdmRS8cznBlK4geCD2+VmSw7KzziYsmYxrH+3RfA73XHeuPcyZlMVRYHxvPBlTY3OsnzBQP5GL+9UjyQnydpb5ABlrQvNeyAq4/rXDqR4eNbZbozJqeH1rbFeyuMl2x+v44ePvtNKFi1gdY7p3NbEgzPj1PKpwwyCZ1vHtYo1T28ICpmv3Qi01nq+9v3+hBCcOtpg5YTMlG2mSq7KAqcHIzmFz6Y25H21snsioOdpY1TVYVzh1JMVZb/rAQhBGFIreUxWrRlcCXtajLAkvatrx5UOXcoScP2uTFSZ7jb2pKZb422T8MOKDU8VCUaEnysL4Gpq2hqlLkpLTMrTXpmO4KVY30JjvUl8APBjZE6tZaP/lytnqIonD+cnvtTliCIurTPt6F493Ruw88/X6Rdb/nk08aurxPcCbYbMDpro6msOjPw8sPagW9vIe1+MsCS9p35buN+IPj99RJvnMjQdkOuPa7z7pncSz22F4R8cqtCse6STRrETZWjfQnujDa4Pdrs3O7ygxpCQG/O5IevdXG4J46ilLekC/pepGtKpwA5nzLo3cYWG7qm8NqxtXVO1zRlUWZtdNZmsCuG44bE1xms+4Hg7z+apNb2uXQ889Lvxf0omzR4/XjmhcPNXRlcSXuADLCkfWdhEPN0pk3TDvjx6938/Itp8iljQ0uFQSi4/qTO7dFmpx5kvk7kyqP6kts35nouPZpqMzprc7QvwdHeOI+m9sZInM1mmSrJmEa15aOpCpoaZXRODSb51tn8htsdbLdcUufpjI2mKgwa6qpzB59n6CrH+uNceVTnyqMaZ4aTnSVMKSKE4PZoY9ULkZihbkrfNUnaanvjW02SNigIYbjLIpPQef1Ymt9eLfLFvcq6O3TfH2/yye1KJ7haj/lg6+TAztWA7SQFcNyQYt1D1xQcLyRl6fzff3yI77/StWeCK4BUXCcIBb+6PMPHaxw6vNCl4xm6MwahgH/4ZIrP71YI5jJ5QghqrYO9u/TGSIPrT1YeHaQom9PUVpK2g8xgSfve5Yc1RmbafHA+zytH0nx1v0YYsq4lmpfpsv353QrH+hIMdUXNLxOxKPPx/I62/WphKGu7IfmUwXcuFPZsDdKRnji6pnL9SYND3fF1tQOxTI2/fa+P//WPE9huwNcPatwbbzJYsKi2fBptn3//fl+nE/lBMlGy+fROZcW/N3WFcG7pX5L2gr1z6ShJL6FY9/jtlSKvHkujawoPp1qLOnS/yMvM2nN9wa+/meXhXF2J7Ya07GDPBhgv6/2zuWi0zR6laQrvn80B0SDh9jqbxeqayoXDKd46FT1GvR1wZ6xJd8agPx/jn7+c4cObJa4/qfNwskWl4TFVcXgy3ebJdJs7Y43Obsb9IgwFd8aa+IEgs0xnfog+RzK4kvaSg3eZJB1YthcyOmtz8UiaK49q/OvXM/zwte41jSx5MNF84W1WM1V2Oj2WMgkdQ1Mp1l00deXeUPtRT9bsDPLdy04OJLgx0mCy7HB9pM6b62zb8NrRDFcf14ibKrqmcGYoxZsno+Lu+xOtRbP2lqNrCklLo38f/C79IOQ3V4o8mmpzvD/Oq0cz/OOnU8xffwixau9XSdq1ZIAlHRh+IPjD9RJnhpKcO5Ti5kiDX38zixcUODucWvW+jWUGBa/V/JKg7YT4oaDS9DvLHQdp2oquKfzlWz0Y++AfrSgKx/qibvFf3a/heCHfPl9Y8/01TeH14xleP55ZtPx8ciBJd9rk6azNx7fKKwYWfiD45VczvHUyyytH04RCbGqrC8cLXypru5owFJ3NAbNVl99fLzJbiwLKt0/luDseXcwcoOsOaZ+SAZa0LpapYrt7u8j0zliThatzf7heIpc0Vs0GbKTnTk/W5MKhFE9nbS4cTtGVMXkw0eLJdIvRog1EJ0pdVRBEJ579fE559Wgay9wbw7jX4uxwipmqy/2JFjdHGrx7JoehrT0oWamuL5cyyKUMFAU+vLlyIb3jhXx0q0wQCk4MJEjHdVpOsOFeb0IIwhBCBNMVh5mau+njgIQQ3HzaoN72GS85lOreogzuw8kWN54s3ZUrSXuRDLCkNVMUcL0QU1fQNRXbDfbsVebzx31jpL5qgHWox2KmtvxcO11VGO6x6M2aKChcfVyj7YbU2z5/vFEim9D5p8+nMTSFo31xLh5N8/rxDF8/qDFRcvBDQdLSaNlBp4fXfqMQ7aDbT2KGyncvFhiZaeP6AscNMeKbk/UJQsHorL2m246XbF45kiYIBN88rPH+2dy6N2W4fsiHN8s0bZ9ay6flhChKFBTr6wganz+uGyMNBvIx+nIxbj1tMFF2Vt2J+8W96oaeS5J2IxlgSWs2Xwvh+gLXDyikDVpOsOczWkJEs+VWc/FImjujTZrLFDRfOJLi/bN5AKYqDpcfRhHS/O+lPDfY2QsE98aj4vpXjqb5y7d7mam6XHlUiwrg92lwBdH75ot7Vb51Lr/Th7KpTF0lHdcp1j0+ulXmexcLL52lc/2QT25XeLzGTRgjMzZ/9+EEnh8SN7UN7XidrbncHVtaZ/inG2W+c6GAvs4xRtce1/n4dtRYd7rikE8ZjMysLWBUkDVX0v4gAyxpw0p1j795p5dffDmz5wu1H023OX84TSax/EciEdP4zoU8//L17KKfK8Dhnmfb9B9MtJbtMr0wM+X6ghtPGlx5WEdVoz8nYhrfu1ggHddwvJDP71aZWOPg4b2itc7ddntFIqZRrHs8mmpTbkzxP34w8FJzFWdrLreertwLajnz/bOySQMhxJqDLNcL+c3V4orZsjtjTbxA8KPXu9Zc41WsuXx0qzx3PDp/+VYvbTdYe4C1jy80pINl71ebSjvqnz6f3vPBFUC16fO//mGcyw9quP7yGbmjfQn+8u0ejvRYnB1O8v2LBf78UjdDXdbcY3iMl5Y/iSw8YcQMlbPDSTJJHdcX5JI6Q10xai2fpBX97Hh/guP9cRIxlUsnMqTjGooSBXR71XhpfwWM8949k+sE5pWmz73xje84fTTV4pdfzmz4/sUVlrGX43ghv74yy5Pp9qqf4ZGZ9pqXKyHazBA3o1OLpijM1lz+uMZB54OFGK8cTW/JzFBJ2m4ygyVJcwTw2d0Kn92tcHowwbtn8iStxV/0h7rjHOpevrFk0w4o1l7c6d3xQu5PtjqF85WmP3dibvHNoxrN53YsXn1UJwhFdGUPqEpUIL2bAtuFswVXsl/bfnVnTP7izR7+tz9NAPDRrTKFjEFvdu0tFMJQ8JurRR5Otl4qe+MF0S7VfGr1ETwzVZffXpntLF+vxg8E4yWHwz1xPD+qzVqtLiubjBrJ/vryLKWGx68uz6542+ed6E9w4UiaYs3btxlP6eCQAZYkLePueIt74y0O9VicHEhyciCBqiq4Xkip4dGbM5csmUxWHARrqyFZqYv788EV0Amk5k+8oYBUTH2p1hGbLQhFp6eXqSvLLpOupd/YXpVLGeRTBuWGRyjgi7tV/vLt3hfe7954k+tP6p25lpthpuquGmCNzLT5+FaZyhqCq3mFlIHjhXx2p0IuqfPqC4ZlH+9P8MPXu/jDtRLeGpuDmrpCIqbhB4JQrhFK+4AMsCRpBYKogHhkxubDmyX6cjEmyw5eIDjcY/Gj17sxF/R0OtIb51hfgiAUpOM6Tdvn99dKTFc37+Q5b60nre0iBARCYBkq9gqz4lbK/O0Xb57I8OGtMrYbrrjMPM/zo6a3H90sr/j72qhrT+orDjT/l69meDLdXncR+R+vlzANlZYTMFCIvTDAgrnZmwL+7Upxzc9ztC/O1w9qW7qcLIvope0ia7AkaQ1cX/B01u4ENiMzNr/4YnpRxqkrbZJPGXRnTGKGSiFt8vbpze0jNC8Mxbp3dm01VQFnhcAiZWl7ejzOWpwcTPIfv9XPUFeMmaqLHyz+XQghaLsB//r1DP/f347xr5dnNz24giiDNT+W6XnFuruh4MIPRWfJrlhz17w8fWIgsWSZfSWuL/jkdoXerLml7xUZXEnbRWawJGmDpiou/8vvx0haGqcGkxzqiWNoCt2ZZyeHiS26Eg9FdMLWVAh2SZeM1c65DTtgZKbN8f7Evp7BmIrr/PSNHn71zSyTZZfhbouZqst4yebRVLszLmmr3R1rcrx/6ZJsytKpr2PIuKkrc0t2z37m+oIHEy1ODSa49ri+ajZLURQKaWPZpe/lVJoeoRAUUgYnB6LH38ylcF1V8HdR7aK0v8kAS5JeQiiiYb1fP6jx9YMa/fkYP32ju9MLaa0nFgBNheHuOKOzdmcZY6VMgRBzJ709dK7wA7Gvg6t5hq7y55e6+fhWmW8e1hgr2asWrnelDdpuQMvZvEh5rGhHTYEXjLsJQrGu9yNEAWNpmbmIE2WHEwMJPr9XZabm8trRDN0vmXVSFebGSKmMztp4fshgIUa15W9ajZoMrqTtJJcIJWkTTZYd/uXrWZy5pZ/VulbPS8RUjvXF+dm7fagKnBpM8M6ZLIX04kJlRXm2Ey8U0Z/3ko9ulfnk9sqjX/aTMIyydqPFZ8FV0tIYLMQ4O5zkZ+/1kY5HQXix7m1qcAVRjd58L6p5pbpHrb32wnaA9go7+Tw/5PFUG3+uee5/+2yKtrv0trWWz/QagyPTUKm3fB5MtHj3TI7JikMooDe39wdaSweTzGBJ0iabLDvMVF2GumKcHEisWuR+4XCK98/m0DUVIQSnBpOdpZ3DPXEeTrawDJUbIw2yCZ3jAwnuT7SImyq3nm6839JO8APBlUd1TF3ljROZDXUc3ytihsqPXuvmm4c1+nImCUujJ2N2/s1eEL6wrcXLujfe5L0zOeJzPaXmm5Gux0rHmI7r3Bl71gzVCwS/+GKaN05kOdYXp9ryuTnS4MZIY031WrqmMFiweDjZQlFguuryzukcj6baFNfRg0uSdhMZYEnSFvjjjRL9+Rjvn83RsAOuPq6TiGmcP5Si2vJ4MNFC1xRODyU7PYVCAbeeNjoBVi5pdIbtnj+c7jz2kZ44k2Vnxa7xu90X96qoClza5EHCu03MUHn3TG7ZvyvWPNpbPGIqFFFLhjPDKapNjz9cL3L+cIqbI2vvEr/SblXLVEla2qIdebM1j09ul+nOmPzhWmnNkwgMTaEvH+sU5gsRZcjGSw5tJyCX1Gm7e38kl3TwyABLkrZArRUNzfWDkPOH0pweSqIo8KvLs5waSPKTN3pQFOhbsPyhqcqaeicZukouZfDumRz3x1t7cqTOzacNXj2WORA1Wc8TQvD53cq2PNflhzXyaYNffjlDzFD5zvk81abHWHHt75nlRtfEDJVvny8wOmsvKpp3vJD/9unUsjM7V5JLGUs6xT+dtbl4JEVX2uDikTS/uTLLw8m1zWaUpN1C1mBJ0hZ6ONnm519M8/trRcaLDtWmz72JJgP5GMPd1oYfNx3XuXA4zd+827vsbrHdrt4O+Op+Fe8F/aL2owcTrW0bG1Rp+vzXj6douyGWEQ2CfvPk+jKHxjLtQP54vcSjqVZnTNQ81xfrCq5gaZ2iqsD5wymqTZ/TQ0n8QCzambucAxinS3uADLAkaRvM1rxO0XG16fP1g+qah+euRlEU3j+b4+Qe7JL+9YMaf//xJNOV9QUbxZrLvfEm1x7XGSvurfocIQSf36vuyHNXmh6uF65pnNNCy9VQhQI+uV3hjRNZ/vKtHixzY6eSN09muHgkvehnmqpwc6TB/YkWrhdy62mDG09WX9bc6s2BMoCTNkIuEUrSDljvVf5q0nGd779S4Nvn86hq1LfoyXSbyw9q6941tt0qTZ9/+HSK710scHY41fl50/ZptANUVaErY+DN9V66N95csiT61+/0Lsmk7FZ3x5obKjbfDF4g+P/82+i6O3vM91m7eCRFueFRbwfUWj5NO2C8ZHN2OMXP3u3jnz6bWldd2ZHeOG+ezCJC6M4YfHSzjOtH7Ue8uV24f/enCRKWtqmfl42Q3R2kjZABliTtA7qmos81zDZ1OHcoxbG+OL/+ZnZd9TY7QQj4/bUS9+dmP96faDGzYOdlzFAJQrHijrYv71Vp2gGlRpSh+eB8flfWdtXb/pLWCdvtZeKEcsPjp2/0oCgK/8dHE1SbPuMlh7PDKfIpgxMDCa4/l2labgi4oSn89M0e+ubmebb9gFtPG8sGZ6GI5nauNN9SknYzuUQoSTtgO7qvW6bGj1/v3von2iSjRZtPblcWBVcQFU6v1tJgouzw26vFTlPPn38xvdWHum5tJ+AXX0zv6SBhrOjwXz+ZwvECfvZuH8f64jyealFtRkuOyzVTfX6ck64q/PhSN0NdVmf37LUn9VUvAlQFvD38e5MOLhlgSdI2O9Jj8e3z+W15LsvUGMgfnEaN1aa/67bzVxoe//TZFJXm7l6ufRFDU2g7Ab+/VkLXokBpuDvOZ3crNGyfU4PRTtmFIdXC1+Jb53L83340zOGexUO/VxpMPS8UUeZNVVjSfFeSdjMZYEkbosl3zoYYmsK3zuVJxNY2AHcz/Oj1rmV3gu1XuyWgFELwxb0Kf/fhBOU9HlxBVMNleyG2G/LPX86gKgo/fr2Ld07l+OP1ElMVh0LKWLIM+bfv9fH9VwqcHkyiLfM+TMd1zg5HQZahKeRTRidIG+qKEZsb93N6KLnmwdGStBvIGixpQ3bLgOGdpiprL4DVNYX/yw+HOksj20EIwWjRRtOUFZtG7gcLa3RiG9zRtplCIfj91SJ3x1s7fSibru0FNGoBs1WX7qxJLmXwvYtdfH63QvW5An5DU+hKG/SvEvQ+nmozWrSJGSoXDqcwtOi1jBkqxbqL40XLh44X7qnZm5K0899EkrSHHe2Nk08Z6Gsoqj5/KLWtwRVEJy9TU/n37/Xx2rE0R3qsTkZgP5kPrkxd4dQOt6wQQvDRzfK+DK4gKjq3DJWffzFNfW6XatLS6M6YS9o1eIFYdVQUwEzVodEO6M2a3B5t8s2jqP3GzacN7i34HQoBUxUHBRgsxDjUbfGd83mO9cVRFUjEtD03n1Pa3/bfN60kbaOHU23KDQ9/DWmsF9WabLamHZBPG6QTOg074EhPnH/3Vi//+c8G+e6FApn4/ktgu77Y0UydENHw4xvrGEezFyUtDVWFr+4/6+n1ytE0J/oTHO6xOsXtCvCbK0XCFT4ft0cbXHlUB6LPx1+/08tfvNVDLmWgKNCVNkhZGqoC1ZaPHwg0VcHxQgppg/OHU/zkjR7yKYMwFBRSBsf746tmzOaPa54sd5C2yv77hpWkXerxVJuYoZLepsAmqlfREELgeCGWGdWv6JrK+cNRz6m2G1CsuczWPDRNodr09nzPn49vlfmrt3sx9O0/c157UufjW5Vtf97tVqx76JrC6KxNpemRS0bF5xePpJkoOWQSOmNFB9sNaDkBMzWXrrSJrikIITpDr6crLoIo8zjcZVG3fUxd5fHUszmbmhotw5cbHul49B4uNTyKdQ9VURjutujNxbg92uCD43lO9CdQVYXpisNY0ebxdJupyuIsmmlEw9VdXxCEkLI0HC/c18vo0vaTAZYkbRMvCEluY3H7PEVROsHVQmeGlhYdV5reugb17kZTFZd//mqGv3q7d1v7YTVtn8/v7kyX9p3gB4K2CPmXud91Kq6TjuvoPQq/v1ZE15ROreY/fDJF3FQZLFi0nICzh5LkkwbFehT4qIpCse7xYLLJ26dyHO1LcHesCUT1nt8+n+fqozr9hRgIgWVqXH1cZ6riMNRl8ebJDKcHEwwUnjWc7c3F6M3FuHQiS7Hm8miqzc2nDVpOENVzLdCwAxIxFctUF81WlKSXIQMsSdoGfTmT989uT2uGtVpuR1cuafCXb/fyxxulzgluL5ooOfz2SpEfvd7VyZZstcsPa6v263oRhb1Xwx2EgkrT5xdfzvDj17sopE28uW7sz/f8arshDyajmqqZqrtoWd32Qh5PtwhC+PROhf5cjNFZm9ZcB/cPb0YNWmtji4vox0sOk+VpDF3l7HCSUES7SNXnAuuujElXxuS142k+uVXh5tOlS7g92RhdaYOrj+sv9TpK0jwZYEnSNig3PDw/3JFlq/XSNYUfvNrFB+fyPJ1p829Xijt9SBvyYLLFK5U0fTlzy4Msxwt5Mt1+qcfYy6f0Wsvj7z+e4rsX8viB6BSbP998dD6IXK5m0fVCyk2fSsPD8ULcNQwC1zWFMBSkLI0rj+pceVQnk9D52bu9JK2lpzdDU3njZIa2GzBVcckldXpzMeKmSsrS+c2VWUIBhZRByw12XU81aW/Z/d/2krQPeIHgi3vVZQfn7lYxQ+VoX2JNOyR3q8dTrW3LYKWWOaEfFEEYZbN+d63Eo6k2/9cfDvM/fW+Q14+lycR1BgsxjvRYmIZKaq6X1fPF5XfHW5TqLt7cLM21ZJH8IMqW9WTNzs9qLZ9vHtZXvE/K0vnzS928dizNeMnh6Uybe+NNfv3NbKf+sNz0ODecIhGTp0hp4w7uN4IkbSMh4OrjOnFT49KJzE4fzprpmkIqru3ZLuQ3Rhq8eTK75ZnDmKFSSBt7unZts4wWbf75y2mO9ycY6rY43BunLxdDUxVqLZ8bI3UeTbaXHUS+XH89TVXIJHTKDQ9l7s9+KDjUbfF01gbg9mhz0e3zKZ0gFKgKnQDb9UJGizYD+RjxmEaxHo34mf/fhYSAbx7VsAyVpKUhBNhusOc3gEjbSwZY0o5ZT5PO/eKLexWO9cc7u652O88P93TRrxcIxksOR3rjL77xS5J1O89MVdxFO/cSMZWudNQnS9dUhrstbC8kE9eIxzRsL+TeeJNzwymqLZ9q08P2QkxdZSAfIwhFpzjdDwUKMDoXXD3PMlRGZm2+fljj3dM5Tg0m8fyQP90sdfpq/ei1Lv7slQK2GzAyEz3O899HQkR1YwP5GNNVh2zSQAhBteUvO3dRkp4nAyxpx4Ti4AVZ4Vwm67sXCjt9KGvyye3KnlrWXM781v6tdrgnzp09vDFgK7WckJazfEA0/x1w8UiKiZLDaDG6XSFl8K2zOb66X+v8bN5q78imE9CciurhfnslGgKua8qiIeK/u1YiaWn8+aVuLj+o8WiqTanhYSwz8WBhVrIrbRKEYk9fdEjbRy4wSztqj5+7N+TuWJOGvbuX3IQQfHZ3+d1We83VxyvX42ymY31xzmxzM9n9YP474PqTBk0nQFWioEtTFX51eXZJcLUegmgJsNFevLwXhIL//vk0f//xFOWGR9LS0NTVx0mVGx4PJlvomoq1YBqC+tyAa0maJwMsSdpmfiD48t7u7pd0a7TJ5Qe1nT6MTVGsLa2x2QqqqhBf0OfM2ocjibZauRE1ug0FzNRc2ivs4js7nKQ/H+PUYIKBfAxFAUVhxQ0ZP77UvSQImm9e+nCqzdNZu5OpNXVlxZE7hqZQbkTLlwsf5wBeJ0prIJcIJWkH3BlrcmYouagx4m5Rqru7PgBcK4VohMt2MRb0FnO8cK7RqegUb8cMlVeOpPny/v74/e4Uxwt593SWREwjmzTw/JCWE9VTfXSrvOi2/fkY/fkYwwuK4lfzfP+uhWSnd2k95CXWAZaJ6/ty8O9eIAR8/XD3ZYiCQPAPn0x1GjzudWcPJbd1BqS5YLeiIFqKmg+uVAXePpXl0onMokBMejFDUzrZqURM47sXCgwULLJzm0UMXSUR07g3vrQGricTtXAY7t7ai5k93M1E2iIyg3WA1dq+nD6/g2aqLvW2v22zCddE2V9X6Ud7E9v6fLnkyq/lQCHGxSNRNi2fMpiuuiveVnrm7HCSd8/ksN2QX38zy+Ge+KKl2HkPJls07aUXBmJuAe94fwJVUfjsbmXTd3yauiJ3kUpLyPTFASe3G+8c2w35b59OrbjdfCeoStT7aj8wdYXBQmxbn3O8tLQPVsxQee1Ymj+/1ANEdT+rBWLSM6cHE3z7fJ64qZFPGfyH9/t4+1R22dse64v6bj2fSbKMKBhLx3VeOZpmuGvzM1npuE4qrmPq++OzI20O+SmXNtVenKe2kxp2wM+/mGa42+LS8QxDW/Dlvx6uLwj2yZV4Oq5v22giIQR3xpp889yy75snMrx5MrtoNp7jhdyd68ckLS+b1MkkdF4/nkFf0PJdf779+wIxQ+UHr3bx6tE0H94sU216tN1wSZA9UIjx+CXHGj2vWI+CZlVZ2zdgJqEzmNne7Kq0/WSAdQBs5zXV/FdL3FRX3AEkLTU6azM6a/PKkTTfOpfbtvEuzys3vH0TIG9HfaEQgltPG3zzsL5sZ/LXj2eWDB5+2ZmFB8EPXu0iEdM2tHzenTH52/f6uPW0QaXpMfjcRcvFI2m+ul9dtZh9IypNf03vuZMDCYSA6w/LL7yttLfJAOsA2IkTpgyuNubakzqKAt86l9+R5//m0e4rvN+oqYpLueGRT21N13whBN88qvPZncqKt2m7Swd8F+uy9mo1+ZRBJq4vW2e1HucOpZb9eTRKx1jUaX6zOF5IzFBxvJW//6YqjizNOCBkDZYEyEZ5u8nkDs2zC0JBbY/OHFxOEAr+cL2E2IKzmeOF/Ns3xVWDK4Cx55pktp2ApzO7p+ZuN1GA7ozBD17teung6kV+fKmbV46mt2STz4smH9Tbwb7ZpSutTmawJEDWTe0mO7WL79bTBqXG9jTl3C6TZYenszaHezZ3FmG97fNgcvU6KlWBvpy56GePplorftZ0LdqJlkvqe3a49nooSrScl03onBxIcLgnvmQ5daukLJ0PzuU51hvnnz6f3vDjnBlK8mS6jeOFGLqC64s17SY8iBMsDiIZYB0wB232317k+du/vBoKwSe392dNyGd3Kgx1WXNNPzdHd8akK21QrK8ckL52LEMh/VyAtUr9VTquU254ByK4SsQ03jiR4cLh1I7VGwIMdlmcHEhwf2Jjmw4eTbV45Uiap7M2laYnv1+lReQS4QEjP/y733zzxK0mhMDxQlwv5OefT3caYu43xbrHrS2YqXjoBVmx3uzi4KrlBIyusjxY3mfZw5X0ZE1+9m4vF4+kdzS4mvfGiQyXjmc2dF/XF3z1oEYoBK4v5PertIjMYEnSLjOQ39reTV4QMl50+Ph2mXrLPxAnBXcLsoIvqu16MNniWP+zrfhjRVsuxRNl6rbrImItCmmTC0dU7k00abQ3Vhs1u03zLqW9RQZYkrTLaFvY6HNkps3vrhYP3C7PyiZnh8oNb0kB+3K3EUJ0sjR3RpeOcTmI8qndd9pJWTr/4wcD/OOnU1Sb3oG46JC23u57p0vSAadvUaHv3bEmv7taPJBZlMlN2pJfa/n8+ptZZtYw5qZY9/hvn00zVIjxcLJF+QDUVr2IosDjqTavHs3sujmoMUPlJ5e6+cWX09Q3mMmSpIVkgCVJu0wmsTUfy9HZ9oEMriDa9ddyAhIvuf0/FGJNwdW8ybKzY203diMhoi7t4S5tBJVLGbJHlbRpdtclhCRtk50vrV2eqkD/FtVgmbssY7CdhID74y+/RFeVWaiX9niqPTdSZnfqzpgvvpEkrcHB/caVDrTdepE61GVtydKJ7QbLDiI+SD69U+HRC3pXrSYIBbdHN3834kETCri5Bbs6N8vANg8Il/YvGWBJ0i6yFR2sg1Dw8y+mKa3Ss+kgCAX87loRfwP9KIQQ/MtXMzyaknMEN8OVh7t3JNP0FozQkQ4mGWBJ0i6y2S0axos2n96uyG3kc1xfcG98/VmsW6NNns7KETebxfbCXTsuZrwkX2dpc8gAS5J2kRfNMVsP1wv56kGNW3JZa5HP7lRo2ms/uT+YaPHRzf3Z5X4nff2guu771Ns+d8YaXH9S5/Zog2CTx0rVWv6Ba2EibR25i1CSdpH2Bq7q/SBE15ZeK43MtF/Yq+kg8oKQetsnaa2+HCuE4NrjOh/frmzPgR0wa2nq2XYDbo40mCw72G7ITG3x8t3vr5XozZr85I2ezuvpeOGG6hj9IOTTfTouStoZMsCSpF1kIzsIHW9pgFWsu3xyp7JJR7W/BOHymcL5zuwtJ2S66nD9SZ2x4sHeGLCVjvYtHjUkhMB2wyhAMlWadsA/fjKF/4Ks7nTV5VeXZ/ird3rxA8HX92t8cD6/7uP59E6Fh7LGTtpEMsCSpF3C1BWGu61136/c8Ln5tMHh7jiGruD4gt9emV3XMthB87trRd48kaXtBpQbHk+m2wRh1Gxyt9YG7TelutfJNo0Vbb68V2Vigz3DpiouN0eipcOTA0lGZtocfsGsyIUabZ+bI5u/lG5oCooS1f5JB48MsCRpl3j1aGZDw2+Huy28IOQfPp3agqPanxrtgD9cLy35uQyuts/Vx3WuPq5jaAreJtRSfXK7Qjqu4Xgh9ydaZBNrn3l4+WFtS8bjeIHg/bM5ZmvuhjZXSHubLHKXpF1A1xQuHE5t+P4D+Rjdmd0zQFeS1mozgqt59XbArdEGd8ea/PHG2uqpQiG4twlNaFfy2Z0KiZhGLinzGQeNDLAkaRd440TmpXpg1dsB5YbsMi5J86NuijWXSnNxe5IgFJ1auzAUFGsuj6faW7qEFwqYKDn87L0++nIm2YROV1peDB0EMqSWpF3A8da+Ndz1QjRNwfVDKg2PibLD9SeNTW3xIEl7ne2F/O9/mmCgEKMrbTLcbXH5QY3DPRZ9uRgf3SpT3Kbmu5mETtzU+Pfv9xOEgn+Uy/kHggywJGkXaKyjIL3W8vkvH09u4dFI0v4QChgrOowVnc54nomyg6qAoihoarSrdCtZhsqZ4SRCCEIBf/enCWotmW0+COQSoSTtAq8fy6z690EgqLejL+XZuhzlIUnrFQQCU1dIWRqhAENXyMS3NscwWIjhBSG/+GKGWsvn6uO6DK4OEJnBkqRdoGn7GLpCboVdT14Q8r/8fpxMXKdhyy9oSVovAZi6yn/8oJ+2G5KO6/zzl9OUm1vzecqnDP7dWz207IA/3Shz7UmdG0/kVIWDRGawJGmH5ZM6E2WHSmPlepCYoXLxSIpUXNuS7eSSdBBUmj6Pptqk4zptJ2CitDWNZA1N4YevdWFoKmMlh9GizfUnDeRH92CRGawDxNQV2fBuF/JDwVjR5p1TuRVvU2n63J9oYcs5aZL0Uj68Wabe9rk71tzUFhEACnBiIMG3zuWJmypPptt8eGNpvzXpYJAB1gEid5ntTvmUQTqu4wYhcW1pqwYhBE+m2zK4kqRN4Hghn99d/6DpF+nLRTMRE3PtVn751QxPpuXonYNMBlgHyFbvlpE2JhXXGeqysJYZUDtVcfj15dl17TKUJGl7daUN/urtXgw9+gzP1lwZXEkywJKkndSTNTl/KEXK0pYdk1Nt+jTl+JZdTVXYUF2cArImZ5+ot31+c7VIfy4a1v7V/c3PkEl7jwywJGkHleoeVx/V+Na5/LJ/f3ooyZHeOP/140mqcnv3rrTRlXcZXO0fri+YKDmMTLflJhSpQwZYkrSDTg0mODGQQF1hyHPD9vn8TkUGV9KydFVBVZGbV3aB9UxjkA4G2aZBknaQ44U4bjT65nl+EPLH6yXujrd24MikvcCKqZwZSlFIydl2krTbyAyWJO2gStMnFFGXaU19FmTZbsA/fT5NaZtmpUl7U6MdcO1JfacP48DTNQV/k1s+SHufzGBJ0g5q2j4jM21sL6S5oEO7EFBfZVlQAYa7Lc4MJXn7VBZ9mQyYJEnbQwZX0nJkBkuSdpDrC8oNj8myQzah4/oC2wvx/JAjvXHuTyy/PCiAUt2l0lC4Nx7IwlpJkqRdRmawJGmHlRseo0Wbetun2vS4/qROOq7z5sks6fjSxqPzWk5Iw5bBlbSYIbOZkrQryABLknZYKODuWJM/3igxUXboShs02j6aqvA37/bxwbk8PVkTU9++E2c6rnGsL44qz9V7zmaPf5GiJXlJWi+5RChJu4TrC648qhMzVLrSBvGYFg2kLTuIbT5n1tsB9bbsRC1JIHuWSRsjAyxJ2mUcL2S85Oz0YUiSJEkvQS4RSpIkSZIkbTIZYEmS9FJkfYokSdJSMsCSJOmlyPoUSZKkpWSAJUkH0HbuSJQkSTqIZIAlSXucptJpp6BryppaK8jhwJIkSVtLBliStMcocwFUKq6hqwrJmN5p4+AHQjYelSRJ2gVkmwZJ2mPmgynPF+RSOn25GK4fUmn6BIGg1JADoiVJknaaDLAkaY/QVIXj/XFMXSVuaqQTGrM1j9FZm5SlMVN1d/oQJUmSpDkywJKkXU5VwNRVskmd987kEQj+68dT2O6zOYRlmbXakzQVLENDwKLXc7fQVIVglYPqShs07ABdUwiCaFD5ao+VtDT8QNBygq04XEnaVWSAJUm7VNLSEEKQjuu8czpHNqHzxb0Kri9IxFRcLyTc7hk60ksxNAU/FJwdTvH6sTSZhI4yV1TneiGf36twc6SxrYFWytJouwHxmIZlqAgBcVMjl4pq+/xAoKkKAkHK0rHdEF1TaLsB3RmTU4NJYkZUzttyAsoNj0rDo9rymao4tJyA84fSvH48jaIoCCG4M9bk1tMGU5Xls675lEEmrqFrKt1ZE9cLufq4ThAKhrss3jyZQVEUDF3B1FXGiza5lEG16ROGgnLTo+2GNNp+Z/lcV5VVA8D10NTo37HbAmJpd5EBliTtQqoCrxxJU2l6vH4sw2zN5ZdfzuDLb/Q9xTJUerImR3rjzNZcVEXhndNZ/DAKVhbSdYVXjqR593SOctNjouSgqQr1to/jhcTNKBBqOwGuL/CCENsLUYhmR65FzFDJJXXScZ2utMnRuYHeiZiGob/8nqdETCMR0xjqsla8jSC6eHjvTI50QgcBQSg6/5ZMQscytSX3e+tUFscLiRkq2nNbZc8MpwDoy8WWf04hEAI+u1vB8UKmyg7lpr/hf+d8Vk/XFHw5XFtagQywJGkXScQ0DE2h2vL59E6FREzjO+cLCOBQj4UXCEZnbSAKwmS8tb0sQ6U/H+PpbJtgmWTIQD7GYFeM/lyM/nxsXUGLqihkkwYAvdkYvdnlg4Xnjcy0+ecvZ1a9zaXjGV45miZuqp2M2U5RFYVD3fElP8++4H6aqpCILQ281kJRFBQF3j+bB8DzQ+5PtHD9EFWJWps8mWnjBwJTV0lYGndGm6sujwIyuJJWJQMsSdpBmYTeqUnpyZj8+FI3SUvj41tlmnbAiYEEqhotmfzkjR7aTsCNkQbXntRxNmm546CwTBVVUV6q/idhafz4Ujf1ls/XD2v4QUjbCZmtubxyNM07p3Obd8AvEApBox3w9YPaop9nEzqKEmVXzg6nGO6yyKWMbTuuvcDQVc4dSi362YUj6UV//uBsnlrbx3ajjOFM1eWbRzUZVElrJgMsSdohpq5QSBvEdJUn021mai7/+vUMrxyJTtSf3a2QTxmLMg7xmMaFwykeTbXQVYXmPigWXpiJyyZ1kjGNStOn5QRkEjrpuMZY0encPhHT0DWFmK5SSBuEIso6ZBI6mqqQSeiMzLQpNzzODqdIxDRcPwpGTV1lsuyQSeh8/aCG64VcPJqmWHNRFXB8wdOZNgOFGC0npJA2GMjHyCZ1LEMjl4yeI5cy+MGrXZ1j8vxwU5bY1qNU95iuOFSb0QaHfFLnzHCK146ldzxLtR9omkI+ZQBRcHqkN86Fwyl+dXmW4/0JinUXQ1fx/BDXF5TqLpWXWHaU9h8ZYEnSMkxdwTRU2k5IJqFTb/lYpkrD3ryARghotH0KPXEuHEkRNzUKaYO+bAwUONYX5/LDGj98rQt1wQkzZqq8dSrLry/Pbtqx7ATLUBnutjjen6A7Y/L1gyrnD6foSps8nmojEGiKgqoqnBoMmKm6HOq26MvFiL9gqehwz9IlqHnz9UGnBpPL/v18vY66lpb4c7Y7uIJoyezWaBPbC7FMlW+dy3NolX+39PLiMY2fvdeHEGJJEBsKwXTFZaLkMFV1eDzV3qGjlHYLGWBJ0gKWEWVCQiGIGSrDXTpJSyMMwQ8FozNtWm6I64UIoC9nUm/7mLqKoaur9qJSWDwY2QsELSfk0VSbRttnsMuiMlfcrKoKt542yKcMwhDU5+KJrrTJcLfFyIy9Fb+GLWHqCq4v0FWFrkyUGerLxzjWlwDg+688ywidGEgsuf/Z4e05zvl6nd0sCAX/9k2USXntWJqjvQl0bZcf9D6yXHClKlHGSwjB5YfVHToyaTeRAZa0p2TiOicGEtTbPpWmR6Xh01+IIYToZJdqTR9BtCXeC8SadvoogKEreEHIiYEEMUMlCAQDhRjZpEGj7VNr+RztjROGAtNQ0eczHEoU8DTaPrW2j+NGy1HjZYd6y6fpBKTjGm+fyqGpCndGGwhgouzwypE0fiCoND0sUyUR07AMDctUuXA4hblMZkQBqk2P3Xw6VRRIx3VqrWdLJum4zvdf6cLUnxVzSxvjeCHfvVCgL7+2QnhpazRtn3LDZ7RoM1l2qLV8DE2Rsz4lQAZY0i5i6gp9uRheILDdgERMIx3XmShH9TeJmEZfzmS66hI3VQ73xIkZLod7LAxNZaxoR/17juidbdxtN+Ti0RS/vVKkVPd440SGqYrLzaeNRc8teDYA+ZPbFfpyJicHkmQSBpoaBQQvCgpScZ1U/NlH6lj/0iwMwNsvUQjdaPvYXsiDyRajxd2bvbIMFVOPXgNVgbdPZUkndOptnyO9chnrZc23Q5B2RqPtc3+iBcA3D2ub1l9L2l9kgCVtOXUuw6Mo0JM1MQ2VWtOnN2cykI/qaRSimpIX1das5vldQQv95I0eIOqWXUibnD+UwgtC2m7UeydpacQMtVN3U2l6NO2AsaJNX85cti/PdhFCUGv5zNRcbjxpdALO3SQR00haGqb+LLDKJHQO9cQ53pegJ2vu8BFK0sub/yxee1Ln+pPGi+8gHWgywJI2XcqKejn1FyyCUGDqChcPp3fFVnHL1NYULKXjW/vRcL2Q+5MthBAYmoquKWiqgq4peH7IyKxNqe5Rb/m0d9EIFU2F3lyMwXyM7oxJMq6RSxrLLmVK0n6jzPUq68/HZIAlvZAMsKR1G+qyeP9sDlVhbpuyYLbm4syNbqk2fYJQMJCPETNUGra/64uGt8r8biMvCCnVPWK62hnvMZiPMTLbxnZ9GnbAndGtHZGiawrpuI6mQssJ19QPSlcVjvTFOTWQIJs0SMd1WUwtHXgn+hP4rwg+vlXG9QXH++OEIbh+yFTFfWGDUulgkAGWtKpCysA0VEp1t1OjNFa0+dXXsyTjGqcHkxzuiXN6aPkt7wfd/YkWlaZHJq6TSehMV13KDY/H023qLZ9ETENRoN72O8FVMha1a0gndJptn6ez9ksFXpmEzncu5Bnusjq7nzw/ZLrq8ofrpUWF6AtZpspfvd1LV9qQfZUkaU616eEHgmxC5+RAsjOyqFSPygokaZ4MsKQVWYbK4d442YROysrQdAKeTLd5NNWmNrdjbrriYOpRh2xVhf58jELKIB6Llo76D/gup1ODSYQQzNRcZmseCVOlN2fSkzWZqbpcfri4C/eZoShgHZlpMzLdpjtjcrw/wWTZWdSDS9cUujMmxZqLt8oOybip8s7p7JLRJIauMtRl8Zdv9fC//XGC5R4hDAW/u1oEok0AcVPD0BVSltYZ46JrSmd5U1MVcsnl58hJ0l4XCsEntyrcGKnvmiV7aXeTAZa0ItsL+ea5AOB5QQi2G3ZO0PV2i660wcnBJF1pmfWAqG5jfrZcEAiaTkAQCgopA8cPGSvaBGFUi+V4IbeeNhgvRVmrht0mNVeA350xsb2Q/nyMw90W2aTBry7PMFVZ3HsraWm8fTJLwtJImBohgsdTLRp2gO2G2F70v203oFT3FgVXqgKmoWK7IaGIsljpuD5XvK4SM1SyST0KtrSoCaiqRE05NVXpFLhL0n7ieNE4JNcPZXAlrZkMsKRVZZN61E/KjwKDaBhq1OelKx21LhgqxDg5mERVo52AqlxOWpGmRaNc5n33QmHZ2wkh8EPRKXQfLdoU6x5tJ+B2w1s18G3aAb+/Xur8WZ2bS6epCs5cg1Sx4CQxUIhx4VCK7qw5V6OlEIQCVVnaUFGSDqKYEWV8U3M7ZSfKNrM1b6cPS9rlZIB1ACk8G3wL0HKDRSfchVwvxPOjouh58007i3WPasvH8UJScV32N9pEiqJgaFFfsPnRMAO2T0xXqTR9bo82qLd9grmXJWVp0dJjxiSfMsgkdHRNJW6qi8a4CCGotwPuTzRJxjR6siaF9NIWCto6xsRI0kGRTRpcOpHhjJOk3PAIwrkWKlWXibIjB0FLi8gA6wASRA04LUMlndDpyUY9qixToysdtVLwA4HjhXRlDDRFodTwEAICIYjpKl0Zg75cDENTZJZjG8zPz5t3tDeq01JVhYFCVPe2ltdBUaIM2hsnslt1qJK0r803ee3OLL4w8fyQyYpDvR3geiEN26dlB53RWg3blx3eDxgZYB0A379YwEpEI1lcP0RVotqpQAiCQOAFAs8PadlR0XoookxHNhntZDO1aKlQVaKCZkNTMOYK22VwtTNyKWNX9BWTJCli6OqSzSTPC4XA9aJdh5MzFv/zNh2btDNkgHUAnBhIksms3OV8rUIh8PwoGHP9ED8I0TW5Y0ySJGktVEXpNDtWA+vFd5D2NBlgSWumKgoxQyFmyK7dkiRJkrQaeaaUJEmSJEnaZDLAkiRJkiRJ2mRyifAAqNVWbxYqSZIkbS/5vbz/yQBrHzNNk/7+fg4dOrTThyJJkiQ9p7+/H9Nc2odO2h8UIVZqMSntB7Zt47rui28oSZIkbSvTNLEsuZtwv5IBliRJkiRJ0iaTRe6SJEmSJEmbTAZYkiRJkiRJm0wGWJIkSZIkSZtMBliSJEmSJEmbTAZYkiRJkiRJm0wGWJIkSZIkSZtMBliSJEmSJEmb7P8PVE+t2OmaVTwAAAAASUVORK5CYII=", + "text/html": [ + "\n", + "
    \n", + "
    \n", + " Figure\n", + "
    \n", + " \n", + "
    \n", + " " + ], + "text/plain": [ + "Canvas(header_visible=False, toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Bac…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "m = Maps(figsize=(6, 2))\n", + "m.add_feature.preset.coastline()\n", + "\n", + "m.add_feature.preset.countries(layer=\"Countries\")\n", + "m.add_feature.preset.ocean(layer=\"Ocean\")\n", + "m.show_layer(\"Ocean\")\n", + "\n", + "display(widgets.LayerToggleButtons(m), m.f.canvas)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.7" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": { + "15f06cddfd5941dba2da7800413fcf85": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "37a91e5ba4424e88af1ee8a77e57f337": { + "model_module": "jupyter-matplotlib", + "model_module_version": "^0.11", + "model_name": "ToolbarModel", + "state": { + "_model_module_version": "^0.11", + "_view_module_version": "^0.11", + "collapsed": true, + "layout": "IPY_MODEL_15f06cddfd5941dba2da7800413fcf85", + "orientation": "vertical", + "toolitems": [ + [ + "Home", + "Reset original view", + "home", + "home" + ], + [ + "Back", + "Back to previous view", + "arrow-left", + "back" + ], + [ + "Forward", + "Forward to next view", + "arrow-right", + "forward" + ], + [ + "Pan", + "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", + "arrows", + "pan" + ], + [ + "Zoom", + "Zoom to rectangle\nx/y fixes axis", + "square-o", + "zoom" + ], + [ + "Download", + "Download plot", + "floppy-o", + "save_figure" + ] + ] + } + }, + "43296dfeb4cf4d9db89ad3062d95468a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "49da046497434d0eba54c09cab729573": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ToggleButtonsStyleModel", + "state": { + "button_width": "", + "description_width": "" + } + }, + "6e2d04a390084f7eab12c600ab71ae30": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ToggleButtonsModel", + "state": { + "_options_labels": [ + "Countries", + "Ocean", + "base" + ], + "button_style": "", + "description": "Layers", + "icons": [], + "index": 1, + "layout": "IPY_MODEL_43296dfeb4cf4d9db89ad3062d95468a", + "style": "IPY_MODEL_49da046497434d0eba54c09cab729573", + "tooltips": [] + } + }, + "7a5b01fb49bd4d8595ce74b8bbfe0ea1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "978c8cf2f45a452987f32024e174568c": { + "model_module": "jupyter-matplotlib", + "model_module_version": "^0.11", + "model_name": "MPLCanvasModel", + "state": { + "_data_url": "", + "_figure_label": "Figure 1", + "_image_mode": "diff", + "_model_module_version": "^0.11", + "_size": [ + 600, + 200 + ], + "_view_module_version": "^0.11", + "header_visible": false, + "layout": "IPY_MODEL_7a5b01fb49bd4d8595ce74b8bbfe0ea1", + "toolbar": "IPY_MODEL_37a91e5ba4424e88af1ee8a77e57f337", + "toolbar_position": "left" + } + } + }, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/eomaps/widgets.py b/eomaps/widgets.py index fe8acd6e2..2a7094138 100644 --- a/eomaps/widgets.py +++ b/eomaps/widgets.py @@ -11,7 +11,7 @@ try: import ipywidgets except ImportError: - _log.exception("EOmaps-widgets are missing the required dependency 'ipywidgets'!") + _log.warning("EOmaps-widgets are missing the required dependency 'ipywidgets'!") def _check_backend(): From d7bedf1e9c3aa28d02dd8689915168f6ee9533a9 Mon Sep 17 00:00:00 2001 From: Raphael Date: Wed, 6 Mar 2024 20:02:54 +0100 Subject: [PATCH 212/240] add ipympl to the docs env --- docs/docs_env.yml | 1 + 1 file changed, 1 insertion(+) diff --git a/docs/docs_env.yml b/docs/docs_env.yml index 503958ea3..42bc80cc3 100644 --- a/docs/docs_env.yml +++ b/docs/docs_env.yml @@ -18,3 +18,4 @@ dependencies: - pip - pip: - ../. + - ipywidgets # for widgets docs From 046d28a65b3d7cf5e8e6cbda5f59699ccd0c1cc3 Mon Sep 17 00:00:00 2001 From: Raphael Date: Thu, 7 Mar 2024 10:09:45 +0100 Subject: [PATCH 213/240] update widget implementations --- eomaps/widgets.py | 37 +++++++++++++++++++++++++------------ 1 file changed, 25 insertions(+), 12 deletions(-) diff --git a/eomaps/widgets.py b/eomaps/widgets.py index 2a7094138..8c9a3bc19 100644 --- a/eomaps/widgets.py +++ b/eomaps/widgets.py @@ -17,7 +17,7 @@ def _check_backend(): backend = plt.get_backend() if "ipympl" not in backend.lower(): - raise AssertionError( + _log.warning( "EOmaps-widgets only work with the 'ipympl (widget)' backend! " "Make sure you have 'ipympl' installed and use the magic-command " "'%matplotlib widget' to switch to the interactive jupyter backend!" @@ -331,12 +331,13 @@ class _CallbackWidget: """ + _cid = None + def __init__(self, m, **kwargs): self._m = m _check_backend() self._kwargs = kwargs - self._cid = None @abstractmethod def attach_callback(self, **kwargs): @@ -349,28 +350,40 @@ def handler(self, change): self._cid = self.attach_callback(**self._kwargs) if self.value is False and self._cid is not None: - self._cid = self._m.all.cb.click.remove(self._cid) + self.remove_callback() except Exception: _log.error("Problem in Checkbox handler...", exc_info=True) -class _CallbackCheckbox(ipywidgets.Checkbox, _CallbackWidget): +class _CallbackCheckbox(_CallbackWidget, ipywidgets.Checkbox): _description = "Callback Checkbox" @wraps(_CallbackWidget.__init__) def __init__(self, *args, value=False, description=None, **kwargs): _CallbackWidget.__init__(self, *args, **kwargs) - super().__init__( + + ipywidgets.Checkbox.__init__( + self, value=value, description=description if description is not None else self._description, ) self.observe(self.handler) +class _ClickCallbackCheckbox(_CallbackCheckbox): + def remove_callback(self, **kwargs): + self._m.all.cb.click.remove(self._cid) + + +class _PickCallbackCheckbox(_CallbackCheckbox): + def remove_callback(self, **kwargs): + self._m.cb.pick.remove(self._cid) + + @_add_docstring( "Checkbox to toggle the 'click.annotate' callback.", replace_with=_CallbackWidget ) -class ClickAnnotateCheckbox(_CallbackCheckbox): +class ClickAnnotateCheckbox(_ClickCallbackCheckbox): _description = "Annotate (Click)" def attach_callback(self, **kwargs): @@ -380,7 +393,7 @@ def attach_callback(self, **kwargs): @_add_docstring( "Checkbox to toggle the 'click.mark' callback.", replace_with=_CallbackWidget ) -class ClickMarkCheckbox(_CallbackCheckbox): +class ClickMarkCheckbox(_ClickCallbackCheckbox): _description = "Mark (Click)" def attach_callback(self, **kwargs): @@ -391,7 +404,7 @@ def attach_callback(self, **kwargs): "Checkbox to toggle the 'click.print_to_console' callback.", replace_with=_CallbackWidget, ) -class ClickPrintToConsoleCheckbox(_CallbackCheckbox): +class ClickPrintToConsoleCheckbox(_ClickCallbackCheckbox): _description = "Print (Click)" def attach_callback(self, **kwargs): @@ -401,7 +414,7 @@ def attach_callback(self, **kwargs): @_add_docstring( "Checkbox to toggle the 'click.peek_layer' callback.", replace_with=_CallbackWidget ) -class ClickPeekLayerCheckbox(_CallbackCheckbox): +class ClickPeekLayerCheckbox(_ClickCallbackCheckbox): _description = "Peek Layer (Click)" def __init__(self, *args, layer=None, **kwargs): @@ -422,7 +435,7 @@ def attach_callback(self, **kwargs): @_add_docstring( "Checkbox to toggle the 'pick.annotate' callback.", replace_with=_CallbackWidget ) -class PickAnnotateCheckbox(_CallbackCheckbox): +class PickAnnotateCheckbox(_PickCallbackCheckbox): _description = "Annotate (Pick)" def attach_callback(self, **kwargs): @@ -432,7 +445,7 @@ def attach_callback(self, **kwargs): @_add_docstring( "Checkbox to toggle the 'pick.mark' callback.", replace_with=_CallbackWidget ) -class PickMarkCheckbox(_CallbackCheckbox): +class PickMarkCheckbox(_PickCallbackCheckbox): _description = "Mark (Pick)" def attach_callback(self, **kwargs): @@ -443,7 +456,7 @@ def attach_callback(self, **kwargs): "Checkbox to toggle the 'pick.print_to_console' callback.", replace_with=_CallbackWidget, ) -class PickPrintToConsoleCheckbox(_CallbackCheckbox): +class PickPrintToConsoleCheckbox(_PickCallbackCheckbox): _description = "Print (Pick)" def attach_callback(self, **kwargs): From bcb6df33850a5e06425b481ff64f5b328e6ea4ad Mon Sep 17 00:00:00 2001 From: Raphael Date: Thu, 7 Mar 2024 10:09:57 +0100 Subject: [PATCH 214/240] add basic unittests for widgets --- tests/test_env.yml | 2 + tests/test_widgets.py | 142 ++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 144 insertions(+) create mode 100644 tests/test_widgets.py diff --git a/tests/test_env.yml b/tests/test_env.yml index a3d643485..583e9de4d 100644 --- a/tests/test_env.yml +++ b/tests/test_env.yml @@ -27,6 +27,8 @@ dependencies: - requests # --------------to support multiple Qt versions - qtpy + # --------------for jupyter widgets + - ipywidgets ### To run the tests - coveralls diff --git a/tests/test_widgets.py b/tests/test_widgets.py new file mode 100644 index 000000000..af466953a --- /dev/null +++ b/tests/test_widgets.py @@ -0,0 +1,142 @@ +import pytest +from eomaps import Maps, widgets +import matplotlib.pyplot as plt + +import warnings + +warnings.filterwarnings("ignore", "EOmaps-widgets only work with the") + + +@pytest.mark.parametrize( + "widget", + [ + widgets.LayerDropdown, + widgets.LayerSelect, + widgets.LayerSelectMultiple, + widgets.LayerSelectionSlider, + widgets.LayerSelectionRangeSlider, + widgets.LayerToggleButtons, + widgets.LayerRadioButtons, + ], +) +@pytest.mark.parametrize( + "use_layers", [None, [["layer1", ("coast",)], ["layer2", ("ocean", "coast")]]] +) +def test_selector_widgets(widget, use_layers): + m = Maps(layer="all") + m.add_feature.preset.coastline(layer="coast") + m.add_feature.preset.ocean(layer="ocean") + m.show_layer("coast") + + w = widget(m, layers=use_layers) + layers = w._layers + + # check if layers are correctly identified + if use_layers is None: + assert layers == m._get_layers(), "layers not correctly identified" + else: + assert layers == [m.BM._get_combined_layer_name(*i[1]) for i in use_layers] + + state = w.get_state() + + # check if labels are correctly identified + if use_layers is None: + if use_layers is None: + assert state["_options_labels"] == tuple( + layers + ), "layers not correctly identified" + else: + assert state["_options_labels"] == [ + i[0] for i in use_layers + ], "layers not correctly identified" + + for i in range(len(layers)): + if widget in (widgets.LayerSelectMultiple, widgets.LayerSelectionRangeSlider): + state["index"] = (0, i) + else: + state["index"] = i + + w.set_state(state) + m.redraw() + + found_layer = m.BM.bg_layer + + if widget in (widgets.LayerSelectMultiple,): + expected_layer = m.BM._get_combined_layer_name(layers[0], layers[i]) + elif widget in (widgets.LayerSelectionRangeSlider,): + expected_layer = m.BM._get_combined_layer_name(*layers[0 : i + 1]) + else: + expected_layer = layers[i] + + assert ( + found_layer == expected_layer + ), f"layer not properly changed... found: '{found_layer}', expected: '{expected_layer}'" + + plt.close("all") + + +@pytest.mark.parametrize( + "widget", + [ + widgets.ClickAnnotateCheckbox, + widgets.ClickMarkCheckbox, + widgets.ClickPrintToConsoleCheckbox, + widgets.ClickPeekLayerCheckbox, + widgets.PickAnnotateCheckbox, + widgets.PickMarkCheckbox, + widgets.PickPrintToConsoleCheckbox, + ], +) +def test_callback_widgets(widget): + m = Maps(layer="all") + m.set_data(*[[1, 2, 3]] * 3) + m.plot_map() + + m.add_feature.preset.coastline(layer="coast") + m.add_feature.preset.ocean(layer="ocean") + m.show_layer("coast") + + if widget in (widgets.ClickPeekLayerCheckbox,): + w = widget(m, layer="coast") + else: + w = widget(m) + + state = w.get_state() + state["value"] = True + w.set_state(state) + + if widget.__name__.startswith("Pick"): + cbs = m.cb.pick + elif widget.__name__.startswith("Click"): + cbs = m.all.cb.click + + assert cbs.get.attached_callbacks == [w._cid], "callback not attached" + + state["value"] = False + w.set_state(state) + + assert cbs.get.attached_callbacks == [], "callback not removed" + + +@pytest.mark.parametrize( + "widget", + [ + widgets.LayerOverlaySlider, + ], +) +def test_overlay_widgets(widget): + m = Maps(layer="all") + m.add_feature.preset.coastline(layer="coast") + m.add_feature.preset.ocean(layer="ocean") + m.show_layer("coast") + + w = widget(m, layer="ocean") + state = w.get_state() + + for val in [0.0, 0.25, 0.5, 0.75, 1.0]: + state["value"] = val + w.set_state(state) + + assert m.BM.bg_layer == m.BM._get_combined_layer_name( + "coast", ("ocean", val) + ), "Overlay not properly assigned" From b18073170548e588aa52ffa878de0d26a00056a9 Mon Sep 17 00:00:00 2001 From: Raphael Date: Thu, 7 Mar 2024 10:25:40 +0100 Subject: [PATCH 215/240] fix init of multiselector if unavailable layer is visible --- eomaps/widgets.py | 2 -- 1 file changed, 2 deletions(-) diff --git a/eomaps/widgets.py b/eomaps/widgets.py index 8c9a3bc19..d22898157 100644 --- a/eomaps/widgets.py +++ b/eomaps/widgets.py @@ -179,8 +179,6 @@ def _set_default_kwargs(self, kwargs): if self._m.BM.bg_layer in self._layers: kwargs.setdefault("value", (self._m.BM.bg_layer, self._m.BM.bg_layer)) - else: - kwargs.setdefault("value", (self._layers[0][1],)) @_add_docstring( From b742ace78256785754896378b3c28816c21fa5d2 Mon Sep 17 00:00:00 2001 From: Raphael Date: Thu, 7 Mar 2024 10:26:39 +0100 Subject: [PATCH 216/240] fix doc unittests (add option to ignore specific code-cells) - use the tag "ignore_in_unittest" to ignore a code-cell --- tests/test_doc_notebooks.py | 17 ++++++++++++++++- 1 file changed, 16 insertions(+), 1 deletion(-) diff --git a/tests/test_doc_notebooks.py b/tests/test_doc_notebooks.py index a9a7a2c9f..876846096 100644 --- a/tests/test_doc_notebooks.py +++ b/tests/test_doc_notebooks.py @@ -7,6 +7,9 @@ This is done to avoid issues with cells that are not "standalone" (e.g. that require previous cells to be executed) + +> Cells with a cell-tag: "ignore_in_unittest" will be ignored! + """ from pathlib import Path @@ -21,6 +24,18 @@ class TestDocNotebooks: + def _use_cell(self, cell): + # select cells that should be used for testing + # - cell must be a code-cell + # - cell tags must not contain a tag called "ignore_in_unittest" + + checks = ( + cell.get("cell_type", "") == "code", + "ignore_in_unittest" not in cell.get("metadata", {}).get("tags", []), + ) + + return all(checks) + @pytest.mark.parametrize( "notebook", filter(lambda x: x.suffix == ".ipynb", basepath.iterdir()), @@ -30,7 +45,7 @@ def test_doc_notebook(self, notebook): with open(notebook, encoding="utf-8") as f: nb = nbformat.read(f, as_version=4) # parse all code-cells from notebook - code_cells = [i["source"] for i in nb["cells"] if i["cell_type"] == "code"] + code_cells = [i["source"] for i in nb["cells"] if self._use_cell(i)] # make sure plt.ion() is called before each test! code = "import matplotlib.pyplot as plt\n" "plt.ion()\n" "\n" From 28f2f9727829acfcc9b7510085839bfe2d2e7c3f Mon Sep 17 00:00:00 2001 From: Raphael Date: Thu, 7 Mar 2024 11:29:58 +0100 Subject: [PATCH 217/240] add LayerButton widget --- eomaps/widgets.py | 55 +++++++++++++++++++++++++++++++++++++++++++ tests/test_widgets.py | 16 +++++++++++++ 2 files changed, 71 insertions(+) diff --git a/eomaps/widgets.py b/eomaps/widgets.py index d22898157..077b3fee9 100644 --- a/eomaps/widgets.py +++ b/eomaps/widgets.py @@ -259,6 +259,61 @@ def handler(self, change): # %% Layer Overlay Widgets +class LayerButton(ipywidgets.Button): + """ + A Button to show a selected layer. + + Parameters + ---------- + m : eomaps.Maps + The Maps-object to use. + layer : str, list or tuple + The layer to overlay. + Can be eiter a string, a tuple of a layer and a transparency or a list + of the aforementioned types. + + See :py:meth:`Maps.show_layer` for more details. + + kwargs: + Additional kwargs passed to the used `ipywidgets.FloatSlider`. + + """ + + def __init__(self, m, layer, **kwargs): + self._m = m + _check_backend() + + self._layer = self._parse_layer(layer) + + kwargs.setdefault("description", self._layer) + + super().__init__(**kwargs) + self.on_click(self.click_handler) + + @staticmethod + def _parse_layer(l): + # check if a single transparent layer is provided + if isinstance(l, tuple): + if ( + len(l) == 2 + and isinstance(l[0], str) + and isinstance(l[1], (int, float, np.number)) + ): + return LayerParser._get_combined_layer_name(l) + else: + return LayerParser._get_combined_layer_name(*l) + elif isinstance(l, list): + return LayerParser._get_combined_layer_name(*l) + else: + return l + + def click_handler(self, b): + try: + self._m.show_layer(self._layer) + except Exception: + _log.error("Problem in LayerButton handler...", exc_info=True) + + class LayerOverlaySlider(ipywidgets.FloatSlider): """ A Slider to overlay a selected layer on top of other layers. diff --git a/tests/test_widgets.py b/tests/test_widgets.py index af466953a..751488eac 100644 --- a/tests/test_widgets.py +++ b/tests/test_widgets.py @@ -140,3 +140,19 @@ def test_overlay_widgets(widget): assert m.BM.bg_layer == m.BM._get_combined_layer_name( "coast", ("ocean", val) ), "Overlay not properly assigned" + + +@pytest.mark.parametrize( + "layer", + ["ocean", "coast", ["ocean", ("coast", 0.5)], ("coast", 0.5)], +) +def test_layer_button(layer): + m = Maps(layer="all") + m.add_feature.preset.coastline(layer="coast") + m.add_feature.preset.ocean(layer="ocean") + m.show_layer("coast") + + b = widgets.LayerButton(m, layer=layer) + layername = b._parse_layer(layer) + b.click() + assert m.BM.bg_layer == layername, "layer not correctly switched" From 14d174d56e5e6b8e1e0d233a7e05243cc28f2676 Mon Sep 17 00:00:00 2001 From: Raphael Date: Thu, 7 Mar 2024 11:30:07 +0100 Subject: [PATCH 218/240] update docs --- docs/notebooks/widgets.ipynb | 1149 +++++++++++++++++++++++++++++++--- 1 file changed, 1058 insertions(+), 91 deletions(-) diff --git a/docs/notebooks/widgets.ipynb b/docs/notebooks/widgets.ipynb index bfa1e7b33..2922e7716 100644 --- a/docs/notebooks/widgets.ipynb +++ b/docs/notebooks/widgets.ipynb @@ -138,37 +138,47 @@ { "cell_type": "markdown", "id": "00624ef5-0190-44ec-b85e-6b8b2e90b280", - "metadata": {}, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, "source": [ "## How to use the widgets\n", "\n", - "All widgets expect a [`Maps`](eomaps.Maps) object as the first argument. (e.g. use ``Widget(m)`` to connect the widget to the [`Maps`](eomaps.Maps) object `m`)\n", - "\n", - "The basic call-signature for **layer-selector widgets** (buttons, sliders, dropdowns etc.) is:\n", - "\n", - "```\n", - "layer_widget = Layer< WidgetName >(m, layers=[list of layer-names], **)\n", - "```\n", - "\n", - "The basic call-signature for **layer-overlay widgets** is:\n", + "To attach a widget to a map, simply initialize the widget and pass the associated [`Maps`](eomaps.Maps) object as first argument.\n", + "(e.g. use ``Widget(m)`` to connect the widget to the [`Maps`](eomaps.Maps) object `m`)" + ] + }, + { + "cell_type": "markdown", + "id": "847539f3-7ee3-4092-bdfc-37552edba379", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "For example, here's how you can connect the available layer-selection widgets to the following map:\n", "\n", - "```\n", - "layer_overlay_widget = LayerOverlay< WidgetName >(m, layer=< layer to overlay >, **)\n", - "```\n", + ":::{note}\n", "\n", + "At the moment, widgets are **not** connected by default!\n", + "(e.g. changing the value in one widget will not change the values in others accordingly)\n", "\n", - "The basic call-signature for **callback widgets** is:\n", + "Any contributions to enhance the widget functionalities are highly appreciated!\n", "\n", - "```\n", - "click_callback_widget = Click< WidgetName >(m, **)\n", - "pick_callback_widget = Pick< WidgetName >(m, **)\n", - "```\n" + ":::" ] }, { "cell_type": "code", "execution_count": 2, - "id": "6f985bbf-2312-4c30-a879-a01f223788e2", + "id": "12a15112-ed5a-498a-b0a0-0688e429b729", "metadata": { "editable": true, "slideshow": { @@ -176,16 +186,50 @@ }, "tags": [] }, - "outputs": [], + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "836c14443b724a6aa4eaf6dc128ba33f", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAADICAYAAAA0n5+2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADCnklEQVR4nOydZ0BURxeGn92ld5AqghSlCoq9YO/GHnuLRqNGjS1GTdSoMcauMfbee1fsig0r9oIFFAQE6b2zu9+PDasroKgYle8+v9h7Z+bOXWDvu2fOvEckl8vlCAgICAgICAgIFBvizz0BAQEBAQEBAYGShiCwBAQEBAQEBASKGUFgCQgICAgICAgUM4LAEhAQEBAQEBAoZgSBJSAgICAgICBQzAgCS0BAQEBAQECgmBEEloCAgICAgIBAMSMILAEBAQEBAQGBYkbtc09A4NOSmZlJdnb2556GgICAgMAbaGhooKWl9bmnIfCJEARWCSYzMxOL0rYkJ8R87qkICAgICLyBpaUlwcHBgsgqoQgCqwSTnZ1NckIMf228gpaO3ueejoCAgIDAv2Smp/Jbn5pkZ2cLAquEIgis/wO0dPTQ1tH/3NMQEBAQEBD4v0FIchcQEBAQEBAQKGYEgSUgICAgICAgUMwIS4QCAgIAyKRSRGIxyQnRJCfEkJWZgVwuRybNRS6XkZOdBYBYLEFTWxc9QxO0tPXQ1TdEXUPIIREQEBB4HUFgCQh8AtJSEsnJzkLf0IQn965y5sBawp/eJyEuCl19I9JSEpVtnStU5fH96yr9HV08efrorvJ1jYZt0dTUJiLsKS27j8DE3BoLawdEIpFKP5lMhjQ3GzV1TeRyOVJpDjERz1FT10DfqBTBj26xYd5IkhPiiv2ePavVx9SqLFJpLuU9alOlXptiv4aAgIDA14IgsAQE3hOpNJecrExAxIH1Mzjrs+m9+r8urgA0RFn52liZGvD0tddXzxxU/rxoYm8Ayrl6EfTwlko/iUSCVCp9r/nk0atXL6ytrZk1axajR4+mb9++qKurI5FIkEgkbN26lUmTJhXa/67/OeXP5w5v5cWzh9y8cBDb8p5802sMT+5eJC4yBEQiNLV00Tc2x9reDXsXrw+ab0lDJpWSGB/F7UtHObZjCR7VGtBr5DxSEmPZ9PcvWFg70LL7cHT1jT73VAUEBIqASC6Xyz/3JAQ+DcnJyRgaGjJ/931hF2ExEHDzHIsm9inWMWNiYjA1NVW+zs3N5dGjR+Tm5uLl9f7CY+bMmeTk5DBp0iScnJzQ0NDg/v37AKxYsQJ/f3+uXr3Ko0eP0NTU5PHjx1hZWQHki4YVxokTJ2jVqtUHC7k3mbziNJY25YplrKKSk5NFalI8Gpra6OobkRQfjUSihraeARJJ8X3vjI4IwWfzfBJjIwgJvIe1nTMSkZiQwLtYlHFg5MwdXD93kAPrZ5GVmVHIKCLg1ce0mYU1k1aeQV1ds8jzeHjzPEsm96N6g9b0GjkfsURSaNu9q6Zwct86AAyNzUhKiMGqTFlioyLQ1tHDwMSCoX9sxKiURZGvL5CfjPQURneqQFJSEgYGBp97OgKfACGCJSCAYmlNJs1Fjlz54DqwbjqnD6ynRv02VPJuw+LJfVX6dOrUicuXr/DiRfgHXVMsFhMSEoKNjQ2ZmZkYGRmRmJj4zn5Vq1alatWqjBs3Djs7O7Kysjhx4gSGhobUq1cPgAkTJhQomAYOHPhBc32dZs2akZubW+C5Fi1acPz4cezt7ZFIJAQFBRXYTt/QhDrNumDnWvWTiKsLRzbx+PZF7l8/R1ZmOjUadSA9NZHM1ETCQgLJTE995xhN2n3Ht4P+UL6e/mMjwp8r4oq/Lz+FlW35d46xf/U0bl05pXwd8viO8ueI54GM7V65CHej+h1YTV0duezd34uTE2K46XcEfSNTYiOCkEpzue9/Dqks960Cy961KvwrsJL+NSmODH8OQE5SAslJCfzauzoGRqVo2fUnarfoTnpKIgYm5ojFwr4pAYE8hAhWCUaIYL0iMyON0KB7xEWFkZIQjZWdG+5V6iMWi4l+EczkHxqotC9t44BMLudleDCmFtY4e9bm4sldBY49efJkwsLCWLt27TvnMWjQIHbs2PFOIWXn5EFmegovw0NUjt+9excPD493Xudzc/PmTapUqaJ8ra6hgVvlerTrO75IwuRjkObmMqyt40eP4+BSkWeP7iASiZm+4RI7l/7G7Su+OHlU58cp69HS1i3CXHKIDAvimu9eTu5ZCYChiTlJ8dG4e9VCTV2HhLiXVG3QngfXfQl5fAdzK1sy0tOIjQqj3Xe/UKFaI6zKOr13ZO3g+pkc3bkMgIlLT2Bt51zkvtfP7mfN7BHvdT0AC2s7OvQbj0eNZm8VcQJCBOv/AUFglWD+HwWWXC4nKzOdrIw0XoYFER0exLalvyOWSJC+EXX5cfIaPGs04fHtS/z9W/dPOi9LS0uuXbuGlpYW5ubm+c571mjC3aun8h3X19dHQ0OD0aNHM3r06K/C8fnFixeUKVNG+dreqQK1mnah7jff/SfXz8xIY9S3bh/U18DIBO+WvTm6/R9sHFwJfRoAwMQlx7G2dynOaX5yZFIpj+9cQs/QGBvHCkXuJ5fLldHPzLRUggKucffyMZITosnOUAi/mKjIIo31vsLu/wlBYJV8hCVCga+etJQkwp894Nb5A/if9yE9Lf/yz5viSktbh/Cn93GvUp8b5/YqjxubWZEcH41UKkUkEiOXy3DyqMmTe1fyjengUpnngXeRSgteLnudly9fYmtrq3JM39AEHX1Dfvx9LbEvwwoUWCkpKQAYGhqiqalJdnY26urqRc6X+q/JyMigU6dOKseCn9wnMS6GOi17/ydLSFrauszdcZerp3cjzc1h79oZBbbrNWImmxeOVzmWnBiPkYkZiw4EIpaofVHvs0wqJTkhhtCn93jof5q4qDCkMhntv59QoIASSyS4Vq77Xte4cnIHd87vpXG3XyjnXhUtXT0qVGuEiXkZpv3YFH1DY/r+vBB1bR0Wju+GppY26WkphY7nu38VpW3LI5fJkMlBKs2heZdhX8RSokwqZduSCbhV9sbLu/Xnno5ACUSIYJVg/h8iWPvW/sWJ3SuK1FYslmBmZUNyQiwZb+TgmFnZEBMZ9immWCDezTvTc8Rc5Wu5XM71cwc5vGUBUS+C87XX19cnKyuLnJwc1NXVMTA0xNbWloqentSsWZO+ffuioaHxn82/MN5cGsxj9OzdlK9Q7TPMCOJjIji69W+ePrhKZHgIYrGYvzZewdDEgpSkOMKfBnDT7zAVqjXC1asuGlran2WeoFhSfPbwJkH3L/Pi2QPuXjtLTk72W/vUbd6FHiPmFPka8dEvkKipY2iSP5Ia8fwxZw+soZxHLXKzs9izZjrpqckqbcRiMTKZTOXYxIkTadu2LXXq1CEnJ0flnIaGBiKRiKysV7tlf56zi3Lu1Ys853chl8s5tHEOrlUasPC3Hujo6GBpbY+uoSkhT26TGB9L1bqtsCjjSHnP2qhraJKemsKSyd9hYmrO9I3+ZGdmcGjdH1iXq0TNpl2LbW6FIUSwSj6CwCrBlHSBlZGewlXffexYOgl1DU1yc7L5r/6cC3rIFJVq9VvT95dFhX6Ll8vlXD29hxvnDxBw0w+ZTEbjdt+ho2eEtp4huTlZpCbGEvXiGXeunlH2W7hwIUOGDEFN7fMGpt3d3QkICMh3fObmaxiafN6dZ6nJCWjr6pOTlUl6WjImZqU/63zykMvlDPnGrkht1dTVcfGojlVZZxzca+BRvTESNfUi9U1LSWRM14oYGJkwa+stIp4/IfD+VbYvmVjkudrZ2VG6dGkuXbpEkyZNGDJkCO3atVP+Pcvlcvz9/dHW1sbV1RWRSMS9e/eYNm0ae/cqosUOLl78Mn9/ka/5LkKD7jFjeGvU1NXJfUPgFZVhU9YSHxOOTTlP7Jw/vXWIILBKPsISocBXycNbfvwzoafydZ7LeB7qGhrIZXLUNbXIKGAJQ01dg9ycbOzKu5OZkYaxaWmkuTk4edakSv32XPXdx7Edi1WElIaGFtnZmYBi16G2ji4Z6WnvPXd7t+o8uXsZR7cqBTqgi0QiajbpRM0mnQrorYpUmsuRrX9zZNsiRowYwYwZM4iIiPjPlrbS0tLIysqif//+6Onp0a9fvwLFlV05NySSoomAT4megTEAR3bM5+Hty4xdePQzzwhuXvBh44JfCj3frs8YXLzqYlbaHl19w3znpbk5hAc/xMDIFANjM0Ahcm75HUVNXR2PGk2Ufw9xUWG4etUl+NENfmxVNt9YU6ZMoUmTJpQrVw5DQ8MPyvkTiUQ4ODhw7tw5FixYwLp16/K1adC2H35HtiBR10DXwJiMtGQq1myGlo4eALk52Vw4upXwoNs4VqiNqZUtmpo6WNmWLzDCqKauhZ6+IXblPYmNCiM+NhJpbi5SqRQ1NXVycxWiq0aDNlSs05pzh9by+O5VlTEMTC1xr974ve9XQKAwhAhWCaYkR7B2LJ3IWZ9NiEQirly5gpaWFocOHeKPP/4gO7vgJZVyrl5kZWcR9jSA2k2/5dLJPSrnJRIJ4xYeYs1fPxIV8fy95lPaxpGIsKcFnnub+WfH73+lUYcBH+29dHrvCnav/guA8uXL8+DBA9TVP62giY6OxsLi7REpl4q1GThxBdq6X9Y39KjwZ2RlpmFb7vPtyJRJpUzsV5uE2Jf5zmnr6DF2wYF3Wli8CH7E/LGdlHlQ9Vr1wLacB5v/+VXZplmXIcS+eMrL0KB8f6Nv/m0+f/48X67g+xAcHIyDg8MH9zcyNqW0nRMBty69td2yI6r/n1mZ6fw1rDmunjXpNnwOMpmM4e3L58u97DRwMmZWtti7eKGto49YovbZ8sGECFbJ5/NnGgp8cp4G3CDn38hLcZKemlTsYxaFE7uWKt3TT58+TZUqVdDX1+fw4SMq4kpPT0/FxDPo4S3C/t0V9rq4yrM9MLOyJTk+5r3ElY6uPmXLVSAi7Clr167l1CnVRPXvv/8+X07K6+xdO4NhbRyZMrAhN/2OEB788IOWORt3HISOnuJDOjAwEA0NDby8vLh27dp7j1VU9PXfLtp/X36SETO2fXHiCsCijMNnFVdpKYksmtBVKa7Kl39lXTF55Rnm737wVnEll8uJfhHM0t97k56Wgrq6Ourq6pw/spWdK6aqtD2xcyk3Lx7PJ64aNmxIZmYmmzZtomzZsgQGBn6UuAK4fPmy8udOnTqxaNEijh8/TlRUFHK5nIYNGwIwYsQIcnJyyMjI4Pnz5/Tt2xdLS0t0dTSRZyYAio0dCQkJXL58mZ07d6pcJyszndTkBPav/ZPHdy+TkhhL50F/4FqtGX5HtzHpe28VcZUXwdu9cirLpvZnbPfK/NSuPENb2/Njq7Js+WfcJ/mMfBsJMUXbiSnw9SJEsEoweREsAA1NTWZuvv7BDzu5XM75I5vZvmQiVbxb8PzJXWKjIwDFt+1KNRsTGf6MWk274eBWBZk0F6NSlugbmRbbclV8TATZWRlEBD9k1YyhqKmpI5NJ0dc3ICkpEQDbcm6EBqkuUXXu3JnmzZtjbm7O6dOnGTZsGJaWllhbW5OcnMyZM2c4c+YMf/zxB84Va9Ok40Aiw55w67wPwU/uFjATBaYW1kxcdoolk3oT+OB6gW0CAgJwdXWlcuXK3Lr1qqzNuHHjEIvFzJhR8A63Fl0GYVOuEpVqNS+yn9D184dYM3NYvuNjxoxhzpyiJ0EXhYSEBCwtLQuNFgIs8QkucnTg+rkD7Fg6kQZt+vJNr5+La5pFIiYylGM7FhEfHc7LsKckJ8So5Nd90/0nLGzKU7nuN8Xm8v4yLIipgwpejqrZuAPt+v6KppZ2gf+vGemp/NKtItLcXIyMjblx/ToODg5Ur14Df//CBXX16tURiURcvfpqaczPz486dep8/A29B5mZmR+09Hjo0CHatm0LgItnDR69scRXGBkZGWhpaRESEoK9vb3y+K+//lrg/1/d5p1JjHtJ+r/1RCUSNfSNzSjj6IGltR3OlRsol2I/BJlUytzRbQgOfAAgRLBKMILAKsHkCSxjU0uqeLekXb/fUFN/v51mzx7eYM7PHfMdr1q1KtevvxIVFhaWREXlX+rQ0dVDU0sbfQNjtHT1yUhLxriUJeU9vSllVZa0lERsy3lgW06xzTwlKY77/mcwNrXk7MH13LlyMt+YdZp1IjLsKc8e3sLNy5v0tCTMrOzwqNGUSrWaM+n7OiQlxBZ6T1KpVJlblZOTQ3x8PFpaWrRt2w4/vwvKdtZlbCjn1YiwoPtoamnx8NZFAPbv38/EiROVJWi+HTCRPav/LPBaTk5OZGdnExISonJcT08fL69KTJ06lStXrhAdHc3ff/9d4Bi/zNuLg2v+nXkFsXhSHx7cOJfv+NmzZ6lfv36RxigKbdq0wcfH561tZm+7ib5hqSKNt2flZE7tX8+gCcuoVKdVcUyxQHJysrhwZCu7VkxR2nC8D9o6egz4bSmuXvU+6ItDQmwkcrkcY1MrIkIes2bmECILWFrO+/u0snHAo3pj9AxLYWhiibWDG9LcHGYM/waAyMhILC0tATh16hRNmzZVjvH3339z5swZjh07RlZWFn/++ScTJkygf//+SlPcHTt20KVLl/e+j89FWloaM2fOZPny5YhEIvbs2YOamhqxsbFUqFCB+Ph4Ro4cibm5OWPGjKFSpUpoaxe+K1Qul3Pjxg1mzJiBj48P2dnZ2NnbY2lhgampKXp6emRlZREaGsaNG9dRU1enScfBWJSxJys9BS0dfXQNTNDRM+DM/jXc9felcp3mPLh+DuNS5hiamCvKMRkYI5fJMDazpky5ipzctZjABzcAQWCVZASBVYLJE1gVqjWi+7DpRdoxJZfLOXNgNS+fPyYjLZnbV06Tm5tLkyZNaNiwIbq6uowYUbDD8/Pnz7l58yampqZoaWkREBDAo0ePyMzMJCQkhOTkZEqVKsWjR48JCHigzP0QiUSUd/MiLCSwwIT01ylTpgwvXrxQWUbL+wA1M7MgNDQEE1NzcnJySElKUI5vYmKCp6cn3t7eVK1alZcvX7J7927u3LlDdHQ0EokEQ0ND4uPjleOKRKL3Wq6zsLJBTVObmMgwsrMKqytXMIcOHcLb25t+/frh6enJH3/8oXJ+6eGQIj3Ql07py71rZ/IdHzJkCEuWLHmvOb1JRkYGmpqaiMViXr58yeTJk1m5cmWBbb8f+w/VGrT7qOsVFznZmUwf1oKo8Pz2F6/j4ODAiBEjOHnyJK6urtjZ2TF//nyePi04t05bR5fSto64Vm5A9cadMLN6lTSem5PNTb8j6OoboaGlQ9nyngTdv8qiSYpalkYmZgz/ayuHNs3n1kVFov334xaRmZ5KRmoix3cuVfGX0tTUIiur4CWs+fPnM2rUKAIDA3Fycsp3vmLFihw7dkwpxNLS0hg9ejTZ2dmsWLHii7D3+BqoV68eFy68+gJWlM+HKlWqkpCQgFQmRSwSExERofw96ukbkpqSJAisEowgsEowry8RAtg6OFOxTisatOmHjl7+3UgAu1ZMwffAq10/LVq0YMOGDQW6j38MBw4cICMjAwcHBw4fPsyFCxe4ePEi2dnZ1K1bV/lB1r59ewYPHkzz5s2VfcPCwrh+/ToikQhNTU2aNm2KWCzmypUr3L9/n2vXrnHr1m1u3rzxUXM0NbcgNjqq0PNXrlyhf//+PHjwQHlMTV0DfX0DEuJjqV27NgsWLKBGjRoANO8yhGundyHNzcXYzJrnQfdVxuvevTtbtmwBKHBpTc/AmJEzd7zVGVsul+N/9gDr5qiK4IiICGVR5w/h2rVryvt4E5FIhEVpW9yrNaF516FFjlr9FxzePAefrYvzHTc2NqZWrVoYGRnh7OysfFDq6+tjZGREnz59UFNTY+rUqZQtW5Y+ffogl8v5/fffOXDgAP369SM+Pp7Ll69w+fIlMjMVD017Z0/6jV1CckI0c8d8q3LN7kOns3PFZKS5uW/d+PAmGzdupHfv3iQlJXHkyBHOnj3LiRMnlFHRb7/9lt27d5Oeno6ubuHle6Kioor9//j/DT09PdLS0vD19aVBgwYkJiaSmppKYmIixsbGLFiwgB07d5KaksKqVavo3LmzSv/c3FzCwsK4f/8+mzdvZufOnYLAKsEIAqsEkyewfvnlF06fPo2amlq+pOeGrXvRtMswjE0VD9+0lCSW/9Gf3OwMQgJVBcCqVavo3bs3mpqaHz23I0eOIBKJaNmypcrx18t0fCxZWVlUrVaN+/fuKY9paWljZGTEy5eqCaZTpkzh1KlTSCQSbt68SXp6OsYmJsTGxBQ49oMHD3Bzc0Mul7Nr1y6qVq1Kg4YNCQsNVWk3e/Zsxo4dC0D/cYswMrUgJzOTNbOGkfaGgSPAtm3b6NatGwCxsbF4enoSGZk/GdbKthzj//YpcMv6gnFdeHJPNT8lb1m0KOQZmurq6pKZmcmaNWsYOXIkUqkUXX1D9A1L0aBtP0pZlMHU0pZSljbKAtk52ZkkJ8RiYm6d7/f4MiwIHX0jtLR0/zMzz3Uzh3Dt/GGVY7/++ivDhg2jdOlXEd3c3FymT5/O0KFDVTdGBAWxZcsW2rdvz4oVK1i2TFHbb926ddStWxc7OzsyMzPZv38/M2fO5P79+4jFYgb+tpTlfw4udF4TJ05URlKfPHlCTk4OvXv3xtbWFg0NDSQSCb6+vnh7e6vM53WCg4NZu3Yte/fuJTk5mfBw1aLjO3fuJDY2liFDhijv+6+//nq/N1BAhbS0NKRSabEIosuXL1O7dm1BYJVgBB+s/wPmzJnD3r17KVWqFAMHDuTx48fKc2d8NnPGZzMAv/7jw8ENswl64F/gOD/88AM5OTn8+OOPn2yuxenfpKmpyb27iiR1uVyOTCZD8m/C+MuXL5URndatWzN58mQmT55c6FhJSUkYGRkBcPHiRdzc3JDJZBgbG5OcrBBKW7dupW/fviqJ33niqkKVurh41VX6MPX9ZSEhj25iWMqSrYsnAFClShVlwvGZM2do1KhRofOJDA0i8P5V3Ks2yHfOuWIdFYE1YcKEIomryMhIDh8+zA8//JDvXMXqDen/2/ICfbvyKMhXybiUOQlx0fmOD/59NRVrNs13vDi5ceGwirgyMTFh9+7dyp1seVy/fp1ly5YRHBzMw4cPGTVqlDJap6Ojg7q6Oubm5jg7v4oc9uvXT/mzqZkZFuYWPHig+EIik8lUxFXlypV5+fIlFhaWrFy5gqpVqxZp/u3bt3/reXt7exISEvL5jllZWbFixQratGkDQNeuXYmLi8PR8eMLYP+/87YIoYDAmwgRrBLMm0uEAGZmZhgaGhIUFKRyvGrdVoQ+fUD0axYFffv2Zf369crX5cqV4+7du29NGi0qhUWw/mv8/f1xd3dHR0fnnW3lcvm/xoWK7yXZ2dnY2toSFVX4MiJAObcq9B49H/PSdgAc3jwPn63/5GsXHR2NmZlid9LrArAgLMo4MGVl/lwreOWv8zp5uxkL47cJE5hRQHRDS1uXwZPX4ORR863iNy0liTFdPQs8p6WlRU5ODkOGDGHRokXK43N33EFX36jQMT+GQxtnc2T7q5yzoUOHMnXqVEqVUl2+3Lp1Kz17KgxrXzeVzcnJUf6ep06dioeHBx07diQzM5MmTZpw8eLFQq/dq1cvunTpgo+PD7a2tkyYMKG4b0+JTCbj2LFj+Pv7Y2xsjIODA61bC3X1viTylpb//PPVRpilS5fi4+PDkSNHhAhWCUYQWCWYPIE1/u+DqKlrEv3iKfvXTicmKkKZc1Lazpkq3t9QpV4bDEtZcmTrAk7uKThxGSi2UjRfisD6EC5evIi3tzcAjo6OBSZBW1tbU758ec6ePas8pqOrz+8rTjPjp5YkJcQVOPbEiROZOnUqISEhzJkzhwsXLqjkeLlVqkXPUfPfuWEhryRKHhYWFrx8mX+XJyiWwfJ8mNTU1Jmz/TYZ6SnoGRi/NWL1Jsumfs/dq6dVjvn5+SGVSjl58iRXrlxR8QlbdCDwvXe1vo34mEgObZzN1TP7kb9mszBixAjc3NwYOHCg8phcLufYsWO0aqXYsWjnXJGE6HCSEuIoVaoUMTExSkG5cuVKEhISGDduHICKyH6TUqVMCQkJRk9Pr9juS+DrJi0t7a1/D4LAKrkIAqsEU5iTe1J8FMd2LCUh5oWKDYKtvRO/LjlJZnoqBzbM5uyhDSrjeXpW5M6d28Uyt69ZYN24caPAZR7rsuXIzcl5q1Fp1x//YNeKqchkUnR09ek5Yi5P7l4kKyOdK6d3K9tZWVkVmHs1cuZ2nD1rFWmep/auZM/q6YDCVNLX1zdfmzd3ns3YdA2jUh9eLzDogT/zfim4xI+tvRMV67TCwa06zhVrFxgRk8vlyOXy93LXTk1OYN6YjrwMf5bv3JQpU6hbty7u7u5YWFggl8vp1KmTsibe63h5ebFu3ToqVqyocjwgIIBdu3ZRuXJl5bJbVFQUBw8eZOHChTx48IBFixbRtWtXTE2Lz/dN4MslJyeH06dP4+/vT9OmTalZs+Zb2+c9ZtevX8/333+vck4QWCUXQWCVYN5VKiczI41bfkd4GRbI6X1r6DbkD7xb9mT93JFc9d0HgKWlJUOGDKFx48ZUqVKlSAnuUqmUO3fu4OXlVejD5msWWM+fP8fOzk75ulLNxgz6XeErlJmRRmZaCud91vE86AEBNxW7Iat4tyT6xVPiol6grqVDUnzByfPv4rd/DmNTrsK7G/7L4zuX+PvX7oAip2ffvn0q5ydMmKBMfB7x11ZcKhWf6WRaSiLRL4LJSEvGzrlSoTtX85BJpfzcpQKZGen8vvwUVrbl39oeYMUfA7j9hlfavHnzsLe3x87OjkuXLjF06FDluQULFjB69GgAGrT5jugXTwm46cewYcNUli9fJzs7m23btpGYmFioRYlAySRPXMfGxvLy5UtcXV355ZdfMDY2VtkF+vqS8uskJSWxf/9+Tp8+zcmTJwuMIgsCq+QiJLn/n5IUH0VKUjy1miq2EXf4/jfluTxxBYpcIDs7OwwNDd8prvbt20fHjvlNSQHatWvH6NGjqVevXjHM/vORk5Ojkiy8YE8AWtqvEl+1tHXR0talbd9fiY+J4PLxrZS2d6NirRbMG90WmVyuFFczZszg5s2b6Ovro6urq3zAm5hZoqWth0eNJiTGvOD2lVPIpFJEIijj6P5e83WuWJtBE1ey4s+B7N+/H5FIhIGBAWbm5qxds4bgYIU3VJW63xSruALQ1TfC3sWryO1FYjG6egbkZGdjaPIqiiaXy7lwZAtqGurUbtpVpc+b4urKlSvKBPXExEQOHjxIRESEcsfgxo0bARi34ABlHNw4vO0fAm76qXhBpaSkcOjQIczNzTlw4ACWlpZUqVKF3r17v98bIPDVkp2dzcKFCxk3bhwikQh9AyOSEhUeeTNnzlQRV8eOHSMuLo64uDjCw8MxNzfH2NiYqVOnKgtdG5uY4lq5Lm37N8fKtjwJsS8RicUs/PfLj0DJRIhglWDeFsFaOL4Lj+5e5YffllHZW5GHkpWZzi/dKpJTQPkTdXX1QsuivMt/53UMDAywsipNbGwMhoaGPHv2jIkTJzJt2jRkMhmRkZGULl36i11myYuA9Bw+A+8WPd6rr//ZfYQ/e8iJ3SsAhe3FgAEDlOefPHlCv379uHRJUejWw6sG6lq69P9tNUPbKAroVq7Tkh8mLH/veUc8D2Taj00KPb/k0LMil+T5lGRnZhAbFUbpsoplS5lMxuWTO9m8cBxisYQlPqrLgG/uXExLS0NbW5t169bRrFkz1qxZw6RJk5RLjhs2bKBv377K9hI1NZWadRoaGgX+nY8bN46ZM2cW120K/MfIZDISExPJzc1VLtfp6elx8eJFLl++jFwup2XLllSvXp2IiAjs7OzIzc2lVuP2dBnyF1rauozvWZWkhKJHnkUiEc4e1WjU8Uc8quffESwUey75CBGs/1P6jFnIhSNbcK5YW3lMQ1Mbj6oNuHnpBLr6hpiYWZEQE0lqShI5OTl4eXkhl8u5c+cOAD179mTz5s2Fiqu8um0tugwlOSmeG+f2oaljiI5JGeIePyIuTpHo/eeff7JgwQLS0tIAqFChAqdOncLC4sNzgT4Vz58r8qviIp8TF/2CUubWRe579cR2lYhOnjllHk5OTmzdulW5/Pjk4X16jpipFFcANy8eZfKA+kxdnb8cztsoXbY8y44o5p6TncXSKf14dFuxE27I5DVfhLgC0NDSRlffkLjoFzwPvMu2ReOVrvg9hxdctzGPiIgI/Pz8VExpDx48qBRXqamp+Pn5Kc9p6eji6FqZF88DSfy36HJhXyISEz9PYXOBjyMjI4P58+cze/ZspZ1KYUydqlokW0NTiz4/LwQUXz7tyrtz59pZypUrT1BQIPBKoJcyt6Lb0L+wtCnHnUtHef74Fp2HTP+iTHcF/nuECFYJ5l05WEUlL0qgrq5BTo7qA2jw4MEsX/4qomJUypwO/X6jav2273xoS3NzuOl3hIMbZhEb9SLfeR8fH7755psPnven4MCBA0p/IteKNRg+Y2eR+2akpRAZ+oS5Y75FLpezadMmevXqla9dgwYNOHcuv4Bq06YNhw4dAqBpxx/oOGDih93EF4pMJmNoa/sCz42dfwB7l0r5jgfev8b8sYpl7oLc0V//G9qyZYvy/ZZI1Kjbsitdh/yVLwo2depUWrVqxdKlS5k2bRrW1kUX0QJfDrdv36ZFi5ZERb2kTtNvcanSEHUNLdKS4khNjkdH15DwkIdUqtMKn42zefpQUYy9Uo1GpKel0LjjQKTSXM7sX03Ik7uIRCJWr17NqVOnlEvNAFNWnsGijENh0ygUIYJV8hEEVgmmKAJLJpXy8NoRwkOf06zL0AKX5qTSXDJSk5DmSjm4cTaXTu4q9JrezbvRc8Ss957ro9sXWfhb/iW3u3fv4uHh8d7jfUpOnTrF2bNnmT5dsUPP0MgER7fKOFWsS62mXQt1KQ8LvMPulX/Qqs9YfHcv5dGdS0RFRSkNTF9n/vz5/Pzzz4DC6sDV1RVDQ0PMzMxISFDUWJy8whdLm5JjHhny+DazRhVcv9CqjB2/ryw4ahcV/oz5Yzshk8lITU5QOWdgYEBgYCDm5uZcuXKFWrVqoamlQ1ZmOhKJGsOmbWDhbz1V+ixZsoTU1FQyMjLo06cP9vYFiz6BL5P4+Hj69PmOw4d9MDYx48epG7B5z9xFgOCHN5n7y7fIZDJ69+7N1KlTsbe3Z9iwYcq6nnlR4Q9BEFgln6LvhRYokYjEYs4f30NOWgwJMREFtrl75QS/dK/M+N7VVMRVpRqNqNmovfJ1zUYd6D7sw0pxuFSqw9Ap6/Id9/T0xMrK6qMLFRcnTZo0oUGDBgB4e3vTo3tXspOj2LF8ClMH1mPvqqk8un1RaTmQx/I/B/HkwXX+HtcFlyoNyM7OLtSkdPTo0cr+derUwcTEBIlEomIQO3VQI5Li87ukf62YWtpi51SwmLZ3rVZoP4syDszaerPA5drk5GQsLCyQSCTUqqWwtyhj74KtgwszN/tzdMs8AH766Sfc3Nxo2bIlWlpafPvtt+jr67N7927Onz/Pixf5I6wCXxZSqZQtW7bg4enJmTNn6Dp4MlPXXfwgcSWXy1k3eyhl7ex4/PgxGzduVArt102J8ypEyIpYV1Lg/wshglWCKeoSoVwuJyUxFgNjM+WxlKQ4lk/9nmePbudrr2dgzM9z92Be2p7Dm2ZR1rkarlXqKuvRfQxxUeEsGNeFuOj8D7S0tLQiOa5/Lh4+fMjIkSO5cvUqyUmKnB0NDU1MTC34/rcVnN6zgqtn9qOtq0dGWiqtWrXi0KFD7+X5BIrSLtWqvRIcto5uVG/0LY3a9/9iNwe8i6T4KMb3ql7oeZFIxM+zd+HoXrjQWvnnIG5dOlbo+dK2DliVdcOitC33r5+jdvOubF/6O6DI1WratCmZmZlcvHiR69evY21tTenSpXn27BmJiYk0adLknX5H/wUymYyUlBQePnzItWvXyM3NRVNTk3bt2lGmTJnPPb3Pwu3bt6nfoIHy/65qvVb0H79MeT47MwN1Ta0i/38kxkXxa+/q7NmzR2Vn9MOHD3FzcwOg2bcD6dB/AsPaOCKV5vJN959wq9oIB9fKRbqGEMEq+QgCqwTzvjlY0REh7FsznduXT6Cjq096WoryXPkKNUiKiyA7K4vhf20tkkfRh5KRnsrY7pXIzcnJdy41NfWLrwcml8sZM2YMZmZmxMXFMXfuXNr2Ho1NOU+WTO4LKIo6d+3a9YMFUXR0dL5NANb2Loz4a+tXl1g7ooMz2VmZhZ5XV1dH38CA+Lg46jTrQq+Rc5Tn5HI5z5/cJSTwDrcuHuHJnctvGSd/DiGAtrY248aNo1SpUtjY2HD79m3q1q2rUgvy0KFD3Lt3j379+r21hFFxk56ejq+vL9nZ2cTExJCcnExOTg46OjoYGRnh7u6Ou7s7vr6+3L59Gz09PcqWLYu3tzdnzpzh4cOHDB48+IvcMFKc7N27l2+//Tbf8er1vqH9gEn81qcmrpVqM/yvbUUaLyc7k9GdKjBlymRlqaOff/6Z+fPnA1DVuwX9f1PsBt69ciqn9yt88Ny8avPT9KJdQxBYJR9BYJVgChNYUmkuIpEY5HKystJJT0nEZ9McrvgeULaxcXCh7XfjsHGsQEJsJHZOFQu6xCejoMLBefj6+uYr2PulIpPJUFNTUyz1NW7PxdP7gY8vOZSdnV2gL5mhsSkzt9z4qLH/a17/Xd+8eZPKlfNHAK5cuaKMHjX4piet+4xDV9+QSf1qERtV8NK2tbU1/fr1U9aAa9q0KT/99BMtW7bk+vXrJCUl0aRJEyQSCTKZjL/++ouyZcvi7u5OpUqVVCKLubm5/PXXX8jlciZMmFBoqZzi5siRI/j7++Po6Ei1atVwdHQs8Nq5ubk8ffqUx48fc+vWLTQ1NXF3dychIYHIyEhatWr1xeUyvklubi779u0jNDQUmUyGXC5HQ0MDc3NzOnbsiJbW28s2paamoq//6nPOxMSE+Ph4lTZLD4cU+UvNwnGdMNHXYP/+fXh4eBAVFYWtoyt9f/kHC2vHfJt4sjMzkMmkaOkoyuJkZaYzZ1RbyparQM9R8/NFqgWBVfIRbBr+Dzi6bSGPbl4g/PkTrKztiQh7ikgkwsauHFUafkts2EOi/y0zUrtZV5p0HICV7avyKYYm5v/5nKet9WPS94p6fw5ulXkWcAtQiJJGjRoVW03ET41YLMbAwICkpCTuXDuDSCRGLpcRFBREuXLlPnhcDQ0NFixYgIeHBw0aNOD06dM0b96cpIRYMtPT0NL5sqN8eeS+EVGqXUdhdqpvaEJKkuLhWL9+fapUqcKSJUsYOnQoZw9vwcrOhTMH1hMbFYGlpSWVKlXCycmJxo0bU6tWLZWSNaNHj+aff/5REUZvLvUlJiYilUoxNzcnNTWVx48fY29vr3yoBwUFIZfL0dHRYeHChTRs2LBAIVhUsrOzUVNTIzc3V8Xk9M053bp1C0NDQ+rVq4etrW2h46mpqeHs7IyzszNt27ZVOZeQkMDKlSvR1dXFweH9d7sVxK1bt0hOTsbLy6vYxEFwcDABAQGMHDlSWaQ+LCyMS5cusWzZMkaNGvXW/np6eshkMoKDgxGLxdjZ2eUTU3KZDFERLUkcK9Tk2M6lLF26lKioKKzLOtH2u3Eqn42v8+bmFpk0lxfPA4mLfoGz136qN+pIxPNAXgb5ExUVjaGxSZHmIfD1Igis/wNuXTxKXNQLxGIxOTlZAFiWLotb9aY0aN0XyP/h8LkxtbRh0YFA1swcQpW6rfl+7GIm9n3l2VWvXj0GDhxYoM3Bl8bdu3cpW7YsqSmvvJTe9rAsiNcFZd5DY/jw4cydO5eWLVupLH2FBz+gnHvh+UxfEmKx6sMuMyMDe+eKpCXHKwXWuXPnKF++vNKNHWDXyj+US8gDBw5ELBYzatSoAh/2kn8fqPv27ePbb78tMOfNyMgIkUjEo0ePKF26NI8fP2bv3r3K9zonJ4c6depgZWVFeno6hw4dIjU19b0rE8hkMvbt28eTJ0+Qy+VIJBIkEgllypShSZMmXL9+naysLLS1tXFyckIqlZKbm/vefy+vY2xsTO/evdm4cSN6enrY2Njg4uJCZGQk3t7ehUbjcnNzCQkJwc7OTqWNr68v/v7+WFlZcfPmTbKzs/Hy8qJZs2YfPEdQRC/NzMxUolA2NjZ07dqVBQsWcO/evXdG4UQikVJEZmdn5zOOfRn+VGli+zYyM9KIeP4EqVTKlClTcPOqxdBpW98rX1Jb14Clh0O47+9LeQ+FoE9LjuP43nWEBj8p8jgCXy/CEmEJJm+JcO6OO2hq6iCWSL4YQ8n35W0eSS9evFB5+H6J3L17lz59+nDnzh3mz5//zm/jeaxevZqxY8eRmJigFFlisRgtLW1yc3PIzs6mnHtVgh5cV/ap1qA9rXuPxtyq8GXWL4mszHQiQh5jaeOItq4BL0Ie8+eQtz+sK1SogJqaGh4eHjg5OSESiZS5MnmEhoayfv16NDU1EYlEiMVi0tLSEIlENGnShNq1Xwn2xMREli5diru7O+3a5beKyHtY5/H06VO2bt2KtrY2YrGYChUqULFixUJznRITE1mzZg2pqanY29vTqVMn5YaN2NhYli1bho6ODqVLl0ZTU5OMjAyCg4PR0dHB3t6eDh06FPn9LIyrV68SEhJCbGwsIpEIHR0dYmJi6NGjB/r6+kpxeu/ePS5cuEBKSgpisRi5XI5IJKJChQpoa2vz7NkzcnNzGThwoPLelixZQqlSpcjMzFTW5StXrhwNGzZET09POQeZTMaJEyd49uwZ5cqVQ0NDg3r16uHn58fZs2eZOHFigSImPDyc9evXM3Fi0b3fLl68iLe3Ny4VaxIfGUxiYgIN235H++/fPcahTfM4su0f1NTUad1jBE27DH3vzShvIz4mgtCg+6yY9oOwRFiCEQRWCaa4jEa/FO5cOcHyP34o8NyhQ4eUkYpPybNnz7CxsaF169bF+oGbR05ODi9fviQgIIAWLVoU2k7PwIhGbfsi0dBm39qCHc4nLjmOtb1Lsc/xU5MUH8XOJb+RlZ2DRE3C3au+KudbtWrFvn37yMzMZOfOnURERCCXy3FwcKBBgwbY2NgAClE0a9YsKlSoQOXKlXn+/DkSiYTHjx8TFhYGgKamJmKxmIyMDOrVq/feuX15OU63bt0iKCgId3d3OnXqlK/d2rVrlUKvffv2X8xuWH9/f3x9fcnMzERLS0spjtq2bavcLQeKnauhoaFkZGSQkZFBy5YtVQxYZTIZgYGBmJiYUKpUKeLi4vDx8eHly5fo6Oigra1NSkoKubm5WFtbU7NmTS5fvkxwcDBaWloYGRlRv359nJ2dC53rmjVriImJQSwW07x5cypWfHte6Nq1a+nfvz9uXrUIuPVq88OkZacoXbbwTTrZ6alsmD2I5yFPGTBhJXblPYvyVr43Qg5WyUcQWCWYkiawQPFBvuT3vgTcVDWdbNKkCSNHjvzk18/JySEkJISsrCykUimWlpZIJBL09fWJjIzEwcGBhg0bvjMhtzC+++47FZfoN7EtVwFDo1JI1DXoP34pP7V79aAYOXIkf//9t0r7jzFC/JysnT0c/7MHVI4NGTKEpk2bKp30XycyMpI1a9ZQu3ZtGjRooBS/p0+fxs9PUczZysqK0NBQJBIJXl5ehIaGkpCQgEwmIzc3Fzc3N8qUKYNcLsfPz4+srCz09fVp3769snxRYcTFxbF48WIqVapUYARswYIFlC1bllatWn3w38anYuPGjURGRqKrq0tiYiLVqlWjRo0aBRrgvi8ymYyEhASioqJwcHBQufeFCxdiampK+fLlSU9Pp169ekX60hIWFsb69evp2bMniYmJ3Lx5k6SkJEaNGqXsHx4ejqurKxJ1DQyMTAkLfkIZexfCgx8xeNIqKtYqOEKamhTHmX0reB70gN6jF3zS/FNBYJV8BIFVgimJAiuP8GcPmT7sVYSnatWq+Pv7/6dzyMzM5Pbt20pfonLlynHr1i2ePXuGsbExrVu3fq8t/YcOHVJJUP7uu+9o27atyvbzchWqE3T/GgBO7lV4+uh2vvIwr/OlFHF+XyKeP2Haj01Vjr3to2rLli0qJqyvU7VqVb755hvi4+NZtGgRpUqVQiwWU6VKFVxdXTlx4gRBQUE4OTmRnJyMRCLB3t4ePz8/bG1tCQkJoXPnzjg5OeHi4sKDBw8QiUScO3eOQ4cOKbfuA6SkpKgsieURHR3Nnj17iI+Px9XVla1btxIcHIylpSVdu3alT58+H/hOfRhPnz7l6tWrlCpVCn9/f3777TfEYjEhISFcvHiRsLAwhg0bVuC9FBe7du0iKUlR51QkEpGSksLQoUOLFN3z8/PD398fLS0tHB0duXr1KuPGjUNDQ4PExEQqeXmRmJTMkKmb2DR/JOEhgejqGzFzsz9q6gVvKlg3ayhyaTbWjp407/pTcd9uPgSBVfIRktwFvkrKOLiqvC6odt+nRktLK99uNEdHR2QyGdeuXWP16tU4ODjQs2fPQkZQcOzYMVq2bKlybOnSpVStWlWZRJyX/5MnrgCePFDYMczdcZecrAxWTR/As8f3lOddKtb8KsUVQOmyTiw78pzsrExGdFAsG3Xr1o3t27fna3v+/HmCgoJwdXXl8ePHyGQyQPG7OHnyJOfOnePKlSvKRG0HBwfMzc15+PAhfn5+5ObmMnbs2HzREzU1NU6fPs3169eV+V2PHj1CIpHkS54G8PDwKFSQmJqacvv2bVauXAkoyisZmphz8+YR7vybn/df4uPjg52dHUlJSTRq1Eh573Z2dtjZ2bFhwwYuXLiQ7++yOOnQoQMrV64kPj4eXV1dcnNziY2NLVJCv7e3N97eil3Ga9eupVatWsrfSY8ePYh4EcG4vw9R2s6Z8BBFYea0lEQC713FtXJdQGFXEx0RwrZ/xhH44DpO7lUoY+/yn4grgf8PBIEl8NWSZ4b67NmzLyanBRRJ6DVr1sTFxYW1a9cq7QUK4vTp08qHmI6ODlOmTCEnJ4cePXqwadMmpk+fzuDBgwu9Vq1G7dDVNwR9Q35Z4KM8npOdiVoxOOt/bjQ0tVi47xEjOriwY8cONmzYkM//q2rVqly8eJHg4GDKlStH+fLlcXNzY9iwYcrl1jNnzlC9enX69OmjEunU0NBAV1cXmUyWT2Dp6Ohw4MAB/P390dM3QqKuSVK8orTRm+IK4Nq1a/mO5TF+/HiluLIt505mWgqhzx4BEBmh8PGKiYnh2LFjxMTEkJOTg4WFBW3btsXEpHi280dGRnLs2DGSk5NJTEwscCkzj5SUFFJTUzlw4ADGxsZ4e3t/dM7hnTt3iIiIwNbWlpMnT5KVlYWbmxtDhgx577GSk5PZv38/qamppKam0rdvX2JiYmjatBn379+jz6i5WNu74H96B/y7waGKdysc3aqSm5PNVd99bF44VmXMn/7aXmh0S0DgQxAElsBXi56BIU2bNPpii/EaGRkxevRo5s2bp0wifp3t27dz69Yt1NTUaNasmXJJZs+ePW/Nf9HQ0KSMgysOrlUpY1/wlnN1jS8rz6coPHt4k7Cn9zAxL4NETR1TCxsy0lMxfK2E0+vLhKGhoURFRVGhQgVEIhHHjx/nwoULaGpq8tNPP2Fpaaky/rVr17C3t2fkyJE8evSI58+fM27cOGbPns306dOpXbu2Im9HIuH8+fMASjH287y9WFg7cGznEg5umENBfP/996xatarASgNz5ij6/LH6PFsWjSU06AGAitXI5cuXkUqlDB48GC0tLfz8/FizZg1OTk5KMZSbm4tYLP4gsRMdHU1oaCi9e/dWRvkK4/vvv+fu3bskJyfz/PlzLl26hLW1Nb17937v6+bh4+NDuXLl8PPzo1mzZipJ9O/LvXv3iImJoUGDBpQtW5YXL15Qs1Yt4uMTGDlzB+X+LamkV8oa5HJkUim3Lh7j8R0/khNfFQQ3NDFnzNy9mFrafPBcBAQKQxBYAl8l6alJREeGk57u+u7Gnxl1dXVevnyJnZ0dBw4c4M6dO+jo6GBpacmMGTOYNWuWsq2Pjw8LFy4EQFffiB4//cWJnYt5HhSAuZUNPUfMwclTUbT40IaZPPD3pUaTrp/lvoqTpb/35t71829ts2nTJqKjozE1NWX37t18//33yvwzNTU1xGIJTh41CHsawMyZM1m8eDH169fn3LlzGJUyJzEumh07drBjxw46d+6Mu7s7y5Yto2nTpvj4+BAQEMCTJ0/IycnB09NTuWli5MztWJZxBKBl12G4VvJG18AEMyvFUlZaSiKXj29n96a5HDp0iDp16tChQwcqV66Mg4MDhoaG/Pnnn0ycOJGAm+cY/PtalkzqRVDATaRSqYphaenSpdHR0VF6bNWuXZu1a9cyZ84cRCKRMtLWrVu3fHUHQ0NDMTQ0xN/fn6ioKMqXL09GRgZqamoYGhoqjW1NTU3fmfOjo6Ojsvydm5vLwoUL8fX1xcXFBVNTU+WS67vEnkwm48iRI8jlcqpWrYqjo+Nb27+LkJAQTp8+zeTJkwGFGNyxYwcisYTxCw9jUUbhg3XT7yir/lJEf/fv38/PP//M06dPAdDQ0qLHkGnUaNLlo+YiIPA2hCT3EkxJTnKPiXzO7/3rsWjRIoYNG/a5p1Mo58+f59KlS5QpU4aoqCikUimtW7cu8Nu7TCZTWk3Ub9WTbsP+AhRRm/jocEzMy3y1xZzfRV65nN27d2NgYEDZsmWVVgpxcXHExsaipqZGamoqSUlJzJgxg5ycHHoOn0lY4B20tHWp0awb0wY3ARQPfZlMxq+//srde/c4cfw4No5uPHt0R3lNJycnunTpohQKgwYNwtLSEplMho+PD+3atUNNXYN/9j9BJBIRH/2CC0c2Eh50F5lMjpFZaeq3+R4bR3dEIhExkaEcXP8X1y8cZfHixUilUlJSUpBKpVSsWJHu3XtgYFyKUbP3AnKWTv6O0KcPAejfvz8tWrRAXV2dkJAQEhMT0dTUpEWLFlSqVEnlvVq7di3p6enKv/v09HT++ecfcnJy0NXVJTU1FW9vb0JDQ5W5TampqURERCASiQr1mnoXycnJbN68GblcTmZmJjKZDJFIhFQqxdraGhcXF0xMTEhISOD69eukpChqmcpkMszNzenVq9cHlxhKT08nNTWVCxcusHr1ao4de1XUW9/AEK/aLWjV62cMTRQ+ZAmxkfzWJ39hbht7J7Kyc+g/fjG2jhU+aC7FhZDkXvIRBFYJpiQLLLlczpBv7D7L7sH34d69e5w5c4ZKlSpRtWrVAnPF6tSpw6VLl/Id/1otFj6EPIG1aNEi4uLiGDduXIF2Bv3792ftWkVh3fLuVRg9Z6/y3KUTO9j0tyKvZti0Tdy/epyzPpvzjeHsUZ20tFTCnwXQv39/6tWrp/R5un//PhoaGqipqXHv3qsNA2KJBORytLS08PSsyPXr/uTm5gJgam6FlY0j6alJZGVmEP48iG7dulGlShVkMhkZGRkAxMfHs3btWkpZlOGHiasBmNjPW3mNAQMGUKZMGWxtbenZs6fSMd3U1JT27dsrd6TGxMSwcuVKLCws0NXVJSgoSLnkV758eVq3bq18YD9+/JhHjx7x6NEjZS7VxyzNFUTebtqHDx8SGRmJqakp9erVw8nJ6b2F3MmTJ1mxYgXdu3dX7p4NCgpix44dSKVScnJy+PPPPynnWpnBU9ahq29U4DgZacn8PqAeqUmK5cAWnQeTm5tFxwGTv5gvKYLAKvkIS4QCXyW5uYok4//CXPRj8PDwKLS8x4MHD2jVqhWhoaHKY45ulbEq60LVem3+qym+F2kpiWhoaaNezAn0jdt+x9kjW3B2dlaaT77J7NmzWbt2LSKRGNty7sRFv+DS0Q3UbvkdAM+f3Fa2fXLnAl2HTKdaw46smTmU+JhI5bnH914lo9+/f5/y5cuzaNGit85PT1eXoUOH8uuvvypLucTGxrJ161b8/PwIDg7B0tYSkUjE4oVzadOmDdOmTaN06dJkZGRQo0YNKlasSK1atejevTsT+3nnE9A///wzVlZW6OrqoqamRosWLfDy8iIoKIidO3fy008/IRaLMTMzY8CAATx48IALFy6ojBEYGMjFixcJCAggLS0NiURClSpV6NWrl4oxaHGSt5v2zR2170NycjJDhgxhy5YtAOzZs4fBgwfj4+NDixYtGDNmDKtWrWLlypVoamrR/vsJhYorUJSpMTAwVgosHX1DmnZ6/2R6AYGPQRBYAl8l6uqa1GjQhpsXjxWYQP6lM2TIEJYtW6Z8bWBcipmbb3wx364LIz0+lIBnQXjWbMGzhzeIiwqlYq3m6BuZfvCYGekpnD64AYBLly4V+KCWyWSMGzcOKxtHrG3suX7pFABPA24oBZZ5mVemq2UcFaLWwbUK0zdc4d7VkyydOuDVebvyRIQqvKBeT0oXicXIX0sAX758OS1atKBs2fxlh0xNTRk+fDjDhw8v8L68vb3x8/MDFGVqrl69yo4dOwD44bdlKm0nTJiAi0t+130LCwssLCyIiIhg3rx5NGrUiCpVqmBhYcHy5cvztdfU1MTf3586depQv379D06I/6+QyWQ0btyEc+fOoqamrnIu7/5Wr15Ny5YtmTdvHgB/rrtIKYsy+cZ6k4S4aMzNzcnMzOTpg2uCwBL4zxEElsBXS4P2A7h69hDa2opC1WlpaV+UXcPbeF1cAczY6P/FiysAmUQP92qN8T+7l62LJ6KmrsHL0Cfo6unjVb+DMhn8fcjOzFD+rKmpibq6er42mzZtAkAqzSHmZSjdh07HxtEdexcvZRvXyt6YWpRGoq5JpVrNSE9N4u9xnYmLjkAqzVW2q9uiKz2Gz8b3wDp2rZiCr++rUjwKcSUCFJkTgwYNeu/7ycPFxYXLly/j4eFBVFQUNWrUYNasWRgYlcK9agMA2vQczqEt/xAeHs6ePXuIjo7GzMyMZs2aqSwbde7cmbCwMA4fPoyvr6/SiiI2NpYffviB5cuXo6WlRbdu3Thw4AAXL17EyclJWTboSyUuLo6zZ88AUN6jBs8D75GWkoizZy2GTtvI8H8rFQwcOBB7e3uCg4OJfP4IXQNjRCIRmlqq/+/ZmRn4HljLwY1zkMvlyKQ5ZGVlUa3ht/muLSDwqRFysEowJTkHK4+5P3fg6cObgCIX5E2PpC+V18VUq+4/0ab3mM84m/dHmpuL/9n9OLhWJfjRdU7uWEi1xl0+2KRx8cSePLjph76+PikpKZw9e5agoCBevnzJhQsXOH78OFraOkxbe5GX4U+JfvGUiOAAMtNT0DUw5falY+jqG6CtrUPAHcUSYON2/Th9YJ3KdZp0+J6OA35HJBKRFB/N+F7V3jm3Bw8esHfvXsRiMf3790dfX5/FixeTmpqKlZUVXbt2Ve5uvHTpkrI0jEQiITU1lcGDByuLQPft25cNGzZgaFyK1j1HI5PL2LZkEmZmZqxfvx4bGxuePHlCcHAwcrmcbt26qYikK1eucOrUKaRSKSKRCIlEglQqVYoPS0tLIiMVy6GWlpYfJRD/K/bv319gMeuBE1awe9VU4qMVPmEdOnQgJiaWm7duMeqvTaSnp+NU0VtZjBpe5fKBonxWTEwMSWk5jPvn6H9zM++BkINV8hEEVgnm/0FgyeVyxnb3IjU5gefPnxfJBfpLwMbGhvDwcAD+3vsITS3tzzyjj+P545ukpSTiVrXRB/W/ef4QV0/vJD42ivDgx8rjGhqaiMRiyrlXQ0dXn7tXT5OVlQkoluh0dHWJjIjAzMxMaWKZl9Nm6+CCd8uePA+8y8UTuyhbzo3xbzxoc3NzGN+jMmmpyQBoaumQlZmOSCQqsDSPtrY2GpqaJCUmAqCnp8cff/yBtrY2WVlZ2NjYcO/ePapUqUKVKlU4evQoqamp9OzZk1KlSiGTybhy5QqjRo3C399fab3g5ubGgwcPVK718OFDDhw4gKWlJT169MDPz4+rV6/Sv39/TE1NuXHjhrJ4sqmpqdLKwdraGplMRlxcHC4uLgXWbvzSuHbtGjVq1FC+1tLRZdLSk5iYW7N10XguHN2Gu7s7M2bMoG3btoyauR3b8p4kxkZw8fAGyrrV4vKJbQTcVOSkzZo1Cw8PD1q1asU33X+i9Rf4BUYQWCUfQWCVYP4fBBZA7MtQpg9tDsgJCw3F1PTD84H+K16PYPUeOZfazTp/xtl8OeTtDn0dNXV15DI5WlqatG/fnrFjx1K6dGnl71kqlSKRSEhOTmbVqlUMGDAAIyMjHF08GTP/EJGhgexa+is9Ri4o0FBSLpdzaNM8jm5XTXSXSNRo0KYP2jp6GJhYYGbtwMJfu6vMq1bNmkpTUoCoqCi2b9/OiBEjlMdmzJiBsbFxPkf+9HSFkMtb4i6Ie/fusXfvXqWXVdu2bQv8EpGdnc3s2bOZOHEiMpmMpKQkEhMT2bRpE3K5nDp16tCkSZNCr/O5OXnyJM2aKQow/7HmPGZWryJRWxf9yoWjW1XaT1p+ipBHN9i2eCK5uTkq5zQ1NcnKylK+7vnTdLxb9vqEs/8wBIFV8hFysAS+ekwtbek29C/Wzx2JmZkZ5cuXZ/ny5TRq9GHRlE/Jw4cPVbbJW9u7ULNxx884oy+HtJRETu9dAcCSJUsICwvj8ePHhIeHY2Zmxq5duwrMscvbSbpnzx7KlCnDX38p/MOSE+IBsLItz/CZuwu9rkgkok3vn0mKf8mlE7sAaNqhH/XbDlBJpg558spDq1HbPpw5pFimyuPZs2ccPHgwX0J8Tk5OgUtgRckXPHjwIHXr1sXd3V25zPgmISEhnDx5Uun+v3nzZkJCQtDU1MTIyIi6devi4+ND6dKli92iobjIi+YalzLH2FS1QPqTu5dVXmtpazP/l29JS0kqcKzXxZVrpTrUafH2WqACAp8KQWAJlAiq1mvNtZPbef40gMDAQBo3bsz+/fv55ptvkMlkymLJnwuZTMbatWv54YcfADAyMefP9ZeRvIfxolSai0Tydf7L+h3djLNnLcysC06Cv3v1JGtmDEUqzWXYsGEq9ekyMzNZtGjROwVJXFwc1apVIyFBsTU/JiqcTfNHoamljbNXA1y96qLx2lKsXC4n4MY57l46jLqmDs06DaH3yLmFjm/nVJGFex8hkojx3btcIczatCE0NFThJP7va2dnZ5V++vr6HD9+/IMKOufm5lK+fPlCxRXA8ePHiY6OZuDAgYCicoCBgYHSiR7g9u3bhIaGfrECq1+/fjg7O1OnTh3OHVpP444DlefqNO/K6T3LKe9Zh8z0VO7fOAdkFDiOo0tFeo1egLGpFc8CrqGpqftVbB4RKJl8nZ/WAgJvIFFT58c/NnH36gkuH9vGo7tXGTx4ME2aNOHOnTv06NGDzp07q5TpSE1NJT4+Hk1Nzbc+wIqDsmXLKr+l/zJvLw6uVd6rv/+ZvUSHPuSb7yZ8iul9cs4dXEdiZCCtv5+a71xaShLr54zAy8uL/fv3qdQQDA0N5cKFC6SnpxMYGEj58uXz9c+jT58+rFmzhk6dOrF69Wr++ecfgh9cITc3hzM+WzAyMWXausvKgr6HN83h8PYlmJQqRVJiEqcPrMfZoxrlPevgWqU+1nYuyl1qATfPk5aSiGslb3T0jfA7sgV3d3ckEgk7d+5UupunpKTkKxzdt29fduzYwcKFC5VeVkXFyMioUPdzmUzGo0ePSExMZMSIEcplpjZt2jBv3jy2bNlCz549le/jl54NEh0dDcDu1dOxsClHhWqKCLRX3dZIpblUa9iBeT+3z9evjIMrXQZNwci0NMamlsrfr4NLZTIy0vO1FxD4rxBysEow/y85WAVxdPs/HNw4Dw0NDbKzFaakLVu2pEGDBsoHVkpKCoaGhmRnZ2NnZ0enTp0+yDMoJyeH3Nxcbt68SUBAAAYGBnTo0EEZNXv+/Dl2dnYALDoQqHwAvA/xMRGkJcVhU65g09IvnTyn8YLe32Pb/sZn6z8EBQUp3yeAGzdu4OPjQ926ddHT06Nq1arv/P08ePCAEydOkJWVxZAhQ5Si4+DBg7Rv3x4tLW1K2zpSp1UfrpzYhliaQUDAA8LDw5k9ezYHDx5UJsmra2hQ1tGV5MR4oiPDlNfQ1dMnLTWFfv36MXToUHx8fLCzs8PMzIzIyEji4+Np0qQJXl5eKnObPXs2DRs2xMLCosibMXbs2EFwcDA//vgjhoaGyuN79uzh/v376Onp4eXlpbIcLpPJmD59On379lXuQJwzZw76+vp07doVY2PjIl37v2bNmjUMGKDwKitlbs2f6/NXN8jKTGfqwAYkxEYBMH39JUzMP42B6qdGyMEq+QgRLIESSYuuP3Hz3AHCnwcpj/n6+nLw4EHlwx5AQ0MDmUzGtm3b2LhxI3379iU0NBR1dXVlaZLXuX79Or1798bU1BRvb29lHbiCMDU1pU2bNvTr1w+ATgN//yBxBWBiVhoTs9If1PdL4G3CKD0tGalUqny/w8PD8fPzIzQ0lMaNG+Pt7V1o3zdxcXFh9+7deHh4qDy02rZti5+fH0ePHsXX15eNC34BoHv3HohEImxsbFi0aBEVK1bEyMgIBwcH9uzZw7lz59HRgA5tW/Hw4UPOnz9Pg/r10NLSwsXFRRn5rF69Oq6uisLjcXFxbNq0iQcPHtCtWzfU1NRITk5m3759jBs3DoBevXqxcePGdy5fVapUiadPn6q0i4qKIigoiKFDhxa4oWPTpk2Ym5ur2DuMGjWKo0eP8s8//6ClpYWbmxvffPPNF2VC+voSsFgsUrFfyENTS4eew2ez+PfvsChd9qsVVwL/HwgRrBLM/2MEKzcnm1M7F2JR1h2xRMLyaQNVzvfv35/Vq1fn6yeTyViwYAFaWlokJycjkUhwcXGhbdu2AGRkZPDTTz+xZs2at15foqaOtZ0LoUGv6tjlOVXn5ub+X9UXzCM9NZGHN85hYVOeUpY2XDi8iXM+Gxg5cyfxUeGsmfkjTk7lWbJ4MWfPnkUsFuPo6Ejbtm0/qDjw7Nmz+f7779+6m9TX15fIyEi6dOmiYmy6adMmypcvX6Cb/KlTp2jatCkWFhZERUXh7OxMv379qFGjBg0aNFBpK5PJOHToEE+ePMHCwoIXL17w22+/qbT5448/mDRp0lvv5eDBg9y6dUspPuRyubL8zZvXBDh37hy3bt1iyJAh+fIOIyMj2bBhA23btsXf35/IyEjq1q1LnTp13jqHuLg4du3apSy983puV3ESERGBl5eXcqnwn/2PUdfIX6Eh6sUzbp73oWqD9phZfR22LAUhRLBKPkIE6/8AqTSXF8GPMDK1Qlff8N0dvmLEYgm25T0wNLOjtJ0zlWs15OblM8rza9asQSaTsWLFCpUHq1gsZtSoUVy/fh0nJycMDAyYO3cuHh4e2Nraqny79qjeiMG/ryH2ZRh3Lx/jvv9pHt+9yuBJK6lYqzkAOdmZiERiti4az+lTe5R9n9y7gpPHh9ds+xo5tGEW188fJj0tBRu78ryMeI5YLGHjnGE8fXyPSl5e7N+3j40bNzJ06FCVpbAPwdTUlJcvX75VYBW2w9TIyIjk5OQCzzVs2BBQRJBAUUj5xx9/LPDhKBaLadeuHTExMYSFhWFpaUnbtm05ePAggyet4sTORcycORM7Ozt69epVaCSrbdu2xMfHExsby+DBg9HT08vXJjs7m4sXL5KRkcHDhw8ZMGBAgZs6cnJykMvlXL16lVatWpGdnc22bds4e/YsZcuWxdHRkRcvXpCZmUlqaiq2trYkJycTEhJCjRo10NTU5OTJk0ybNo2WLVtStWrVgt/cD6R06dLKebtVrleguNqycCyXT+3muzF/f9XiSuD/gy8nPizwyZBI1JDLZejolfxvSWKJBLfqLbC2V9R1i41+ma/NunXrGDx4sMp2blA8FKtXr46RkRFisZju3buzfft25s59tbNs3s57DJmyDrFYjHnpsjT5dhAjZ+5k2ZHnSnEFoK6hhZq6BmkpiQDKLfRb/hnH0il9Gd+rKrEvQ/l/wKSUObbl3DC1tEEmk1K6rDO5OdmIZJn8+uuvzPjrL06ePKnMZftYimOMgpBIJFy9elXlWEH1AF/HzMyMypUr06xZM/bt26foM+0HqjXsiIlZafr06UPDhg1ZtGgRJiYm6OnpsWHDBpUx+vbti5aWFkeOHCnwGuvWrePu3bvKsjmFCVRbW1vGjRtHmTJl2LBhA1u2bEEikVC1alVkMhl+fn48ePCAqKgoSpUqhb+/P+Hh4YwZM4aGDRsqv5CYmppy+PBhZW5jcdGjRw/lRpDBk/NHmcOePiAp/iWlLMrgVbtFkcdNio8mS0h2F/gMCBGs/xPKOHyZ27M/JSKRiLELDrF/7XRO7X9VMsWolDlr167l2bNnnDlzptD+NjY2lC5dmhs3bgBgWcbxvUVq//FLGdHBmcR/nb9zMtO5d01xzUnf1/2/WDJs2m0UTbrKleVp/hzcGHUNDRYvWsTly5e5d+/VcuqaNWtwdHSkXbt2H7Q8CJCQkPDJin9Xr16dxo0bc+deAOUq1GD8+PF4eXnRtGnTd/YVi8VERERQunRpdiyfgr1TBbr9OJVj2//h3LlzynZ9+/bFyMgIFxcXjI2NefDgAQkJCVhaWiKVSgkLC+PEiRNKW4bMzExKly5N587vNqsVi8U0bdpUOd8bN25w9uxZcnJylF84UlNTiYqKwsrKivr166Ompsa1a9c4d+4cffr0wdjYmFWrVpGRkVFs9idr165l27ZtACw+GITkjcLPUmkuf/3UCoClh0Pey3ohISactMQY3Gs0f3djAYFiRIhgCZRoJGrqfDtwCvN33UP8ryFlzr+lVs6ePfvOMiLfffedcqu7a+W356oUhIamFp0GTVa+9qzVHH1DE9Q1FDUTZ45o/d5jfo3kPRAvHttCVlYG9+7e5cqVK6irq+Pm5oarqyvt27dn9OjRhIeHM336dM6ePftB1zI0NCQ2NrYYZ6/KggULiI+NQlNLF7lcTqdOnYrc18rKil9+USTYBz+5j1lpe6asvUi1Bm1V2rVv316ZRN+hQwd+//13OnfujJqaGvb29gwaNIgxYxTlX7p168ajR4+UuUvvQ5UqVfj5558ZP368cjMGKHK91NTUePr0KQB+fn40atQIe3t7Ll68iFQqRV+/ePI6b9++Tf/+/QGwLefO6M4VCLx7kYy0ZB7eOE940B3EYgmtug1l5Mzt7+1rZedcGdeqX66LvUDJRRBYAv8XaOsaIJNKAUhLTcbcSrHD6sCBA8oHXmE8e/YMgBbdRry1XWGYlLIARIjFYmo3705KUjw52YpowfPAe6yd8SOZ6akfNPbXxJXTuzm0+W9q1qzFjRs3kMvlVK5cWVEv7ptvqFixonLHnZubG7dv32bFihWkpr7fe9OqVSvOnj3LokWLPslyoYeHBx07duTckS1Ub9ie5ORkevXqpbI79W1MmzZN+fOiSX0Y3ckd/7MHKVeuHAAVqzekdc9RDPh1KS27DsOtSn2aduxP296jadVtGH1GzUUiUWPevHmIRCKWLl2KTCbj7t27H3VfeQatw4cPx9jYmMjISB49esSBAwfIzs5W2k5cv34dY2Pj9/69FMSdO3eU45qXtiM06AHZWZk8uuXHssm98dk4g9N7l5Obk0WbPmNx9qz1QdfJ+3IlIPBfIuwiLMH8P+4ifBvREc85snUBV30VuTDDp29h57JJvAx/xtatW+nevXuB/ebOncu4ceNY4hP8XtcLDbqHz8bZ3LuuqFVX2tYBAxNLJBJ1Htw4R/kK1Qi87w9A3zELqFirOVrauh9xh182P7ZSlJDZs2cPISEhZGdnU69ePWrXrq3Sbu7cucrozPnz57l8+TL16tWjVq2iP1wjIiJYv349YrEYCwsLPD09uXTpEmpqarRp04YyZcoU2O/QoUNoamoq6+IVRl5x4pbdhqGhocmBjfOYN28eo0ePLtL88pb1zM3NycnJoW7dujg6OqKvr8+MGTOJjo6iYvWG9J+wAnV1zXz946NfMKHvq/fN2dmZCxcuYGZmVqTrF4RcLmfmzJmEh4ezdOlS1NXVmTBBYWzbsWNHPDwUHmy+vr5cv34dCwsLvvvuO0BRVzEjI4M7d+7w5MkTvLy8qFatWj4biEuXLtGiRUtq166Frq4ue/fuBaBm446oSST4/VuqaNyCAyQnxiASS/Co9uWVvCoOhF2EJR9BYJVgiltgndq9hMhnd3Go2BA7Zy+s7Zzf3ekL5Ni2BYQ/C6DPz/8gk0r5Z2J3wp89JCYmpsAE4VatWik8hArZNg6QnZVJ8KObpCTG4eBambioMOaP61roHLR0dBk0aTU3zx3gwrHtaGppoaNrQKVaLegyZFqh/b5WrpzaxYb5Y1i5ciUZGRmoq6vj7Oxc4G6+BQsW8MMPPyh3zCUnJ7NlyxZkMhm9e/d+68MoMzOT3bt3ExkZyTfffIOTkxMXLlzgypUrmJubU7VqVXx9fdHQ0KBNmzb5DD/37t1LZGQkDg4OKsflcjnh4eFKbymZTMbIkSN59uwZ/cYsYN280cik0vd2Sz9+/DihoaEkJSWRnZ3N+PHjEYvFrFixgsGDB9Om5wha9SxYtMlkMoa2tle+HjZsGIsXL6Zr165s3779veaRmppa4JKfvb0948ePV+Z75RESEsKGDRv48ccf2bhxI2lpaYBiM4eHhwcXLlygYcOGzJo1i6pVq9KvXz/27NmjFM556BsaM3TqRso6ebJ10XguHN2GkYkp0zf6f1EeXZ8CQWCVfASBVYIpboG1ad5IEmNfEHDnGgA6Onr0HDGLynW/3jyiFyGPeXbbl60rZzJp0iT++OOPfG1atmzJsWPHqNagHd+PVTUVlUmlLJ/Sh/s3L6o8XHsOm86WxROQSCRIpVLUNTSVy4KvI5GoUatpZ/yObUPPwBBHl4oMnLS+xC1p5EWvJk2ahEQiQSQSUb9+ferXr5+v7cqVK2nYsGG+sjhXrlzh3LlzNG3alMqVK+frd+7cOa5cuYKnpyfNmzdXeUCHhoaye/duZYTp/v37nDx5Eg0NDb755hulg/yePXsKFFigcP5/XYRIpVLatWuHXC6nZsM2PLx5ntjY2A9KzpfJZMyZM4dx48aRmJhIzZo1efz4Mb/+cxjbchUK7Xfzgg+rZgylQoUK3L9/X3n8fT/Wvb3rcvGiX77jEomE0NBQSpdWNbnNzc1l3759BAQEAIrkeWdnZ6pVq4adnR0uLi48efKk8Ou17EGPYX+p5FPJZDLWzhiMnWtlHN1rYu9c6b3u4WtDEFglH2EXoUCR6f3z3wDcvXqaPSunEhsVzqYFY8jNzqJ6428/7+Q+EGs7Z4LuKwRjcHDBS4CHDx9GIpEQdO8SGWnJaOu++jAMDw7g3g0/xo4dS506dWjXrh06unp4t+qFd6texEQ+JzszA3NrOyRq6sRFPmfOzx1JSVbku0ilufgd24aWljYikQQ9QzMObZxF9cadsbItvO7e10bV2k24fukU2traypy3wiIUhoaGvHz5Mp/AqlmzJg4ODqxZs4aAgACaN2+OmZkZMpmMDRs2kJWVxdChQwv0irK1tVUUdw4IwM3NjQoVKlChQgUCAgLYv38/ampq1KxZk4iICJydnd+5RJjHkCFDWLJkCXVafcfVsz54elbk1KmT+QTJ25DJZJw8eVK5vGdjY0Nqaipuleq8VVwBVK7bmmFaumxZOIbSNvZEhAUzaNCgIl87MDAQLy8v0tLSqNmoPZ0GTUVb1wCxWMyVkzvZsOAXrK2tuXnzpjJXKjc3l8DAQKWA6tWrF1paWhw6dIiNGzeioaHBkydPEIlEtO/3K/vW/gVAw7Z9+abXaHR0DQpMVBeLxQyYsJLH/kc5f2gt9s4FV0gQEPhaKNkxWIFPgmeNxkxdcx43r1pkZmawa1X+qM+XSkpiDBlpSSrHqtZvg46uHkePHsvnQQSKD/7Hjx+TEBfDz108iYkMJT4mAr+jW5gxXBG9++WXXxg+fDgAtVv0UPY1sypLKUsbDq/7g3P7lqGnJWLAb8tRV9fAzFKRB2RiZkVmZgYpSfH4nzvEsV0r+GNwE/4a1oK4qDBCntwhOTGW5PioIidSf2nUbfcDAFu2bEFNTQ01NbVCBZaJiQlxcXEFnjM3N+fnn39GTU2NVatWsXjxYmWdvcKMOPOQSCT5cq/c3NwYOXIkTZo04fjx40il0gKjY4Xh4OCAWCzGzKosw6dvJjQ0jL59+761T2ZmJkFBQZw4cYIVK1Ywd+5cwsLCaNOmDdu3byc1NZXSZZ3oNXpekebgXq0hf22+wYRlvgDs2rWrSP2ys7NxcnJSLu91GjQVXX0j5e+lZtMuyravvydbtmzBx8dHWdfzwoULWFtbU7ZsWWQyGTNmzMSpQlX+3vtQKa4ApNkZ6OoZvnUXoM/m+ZzYu4ayTl6FtvlYrp7e/X+xqUTg8yNEsAQ+mCbfDkFbR58WPX7+3FMpMv5n9qGrb0iNJq/yo3T1jfhlwUH2rZpK3759WbDgb9q2bcPkyZOR/LtU5+TkBCiWXn7vX1dlzFatWvHo0SOeP1d4WrXtrfp+aGnrYmBZDo8aTdAysWH5oNbk5GQT8zKc4dM388+EXsq2r5s3hj17yNyfO5AYHwMoig83bf8dcVER1G/3A/Yun+4hVNyUc6uGmroGbm7v9mMzNzfn1q1bhZ7X0NCgffv2HDp0iLCwMKXgehe5ubmFLsW4uLjg6emJpqbmWx3g36Rdu3ZMmvQ7v3/vzYSlJ2jTZwzbl03mzJkzSuf3PCIjI9m2bRtyuRw9PT0kEgkpKSmMGTOG1NRUfvnlF1auXIlVGXu6D/sLY9P8tTDfRp4wio+Pf2fb6OhomjRpikRNjR8nrca9WsMC283Zfotfuin+zhISEtDT0yM4OJgRI0ZgbGyMlpYWJ06cYO3atURHR6Ojo0N2dhZP7l8nOzMDHV090tMUYqZ595FvnVN8TASHty4E4NnjBzRo2++t7T8EmUxGbnoCV0/vpn6bvsU+voDA6wgCS+CDca5UB+dK7+8N9Tlp1GFggcctyzgyeMoGLp/cwY1z+5k2bRobN25k4MCBdO3aFUdHR+RyOTExMcyePZtq1arh6enJ8uXLKVWqlNKzSU1dg/TUJMSSdPQNTV5dt933yp9b9xzJrlV/AoqHYp+Rs7l+/iBZmRlEhDyiYs2mVKjelMyMZKLDAjmxdy1WNg6kpSSRnpJI8OPbZO34m4G/r39vT6BPgVwuZ/2swSBWp2LtlqipqeFZ8w1TR5EII+NSqKmpIZPJ3prAbGVlxfnz5996TS0tLWrUqEFMTMwHG5IWBzo6Ovz00zBmzZrFkc1z6D36b47vXELz5s0ZMWIE5ubmSCQSNDU1SU1NpWPHjipLnz///DNDhgzh4MGDREZG4lWrCX3G/PPBu0nrt+xGwHXft7a5dOkSTZo2RaKmzvA/N+P0FusDPQMTxi44wOxR7di3b5/Sr6pcuXL06tVLGf3S1dXl22+/Zffu3XTq1IktW7awZuaPjJ69h8d3/KhYq/k7i5WHBt5TjpWWlkZyQgwGxh++K7IgxGIx5TzrIS/hCfQCXwaCwBIQ+BeRSETtZt2o3awbQQ/8Ob1rMZMmTWLixInUq1ePRo0aMXmywjRUS0uLly9f4ujoSHx8vDIfRSQSMb5XddTVNbGydaBVj9FUrKWaz9Ooww806vCDyrFazRQRtYLER4cBr4xK46MVmwwCbl0mIuQh1vZfhkO/TCYj9PEN0hJjMTE1yyewIp4/JjY6Em1tbWbNmoW1tTW9evVS3uvr921qalokj6WIiAh0dYsmRPbs2aMsV1TY/D/EmfzMmTNUq1aNIUOGKMS2hS0JcQrDz8jISGbNmkVmZiZPnz4lKytLRVytXbuW+fPno6mpib1zReq2GUDD9gPe6/pvYudWjXNHtxMWFqbc8ZhHXFwc3t7ePHr0CA0NTX5fcRajUhbvHDNPsOWJq7y5e3t7U69ePerVq6c8bmFhgbu7OykpKRw8eJBFE3syfeNVJJJ3P2pW/Kn48qOvr096ejoSteJxiX8duVyOlrYmMTGfzohWQCAPQWAJCBRAOfdqlHPfQEZ6Cn5HNnPj3H6mTJmiPJ+ZmUmVKlUYM2YMbdq0YdWqVQCoScRItLXJzMgg9OlDlk/7gfbf/ULzrsOKdN13bU03MbemQ/8JrJkxlLMH19FzxJwPvsfiQiQS0XPkAo5umUtM+GOSk1NUzkulucwe1Q6AWbNmYWBgwJo1a1i+fDmxsbFoaGiQlZWlIpZeL8QNimUvX19fxGKxsiBxZmYmvXv3fuf8rly5Qnh4OD/99FOhbfbv38/Tp09p167d+9w6L168oGfPnhgbG7N06VKO7FjK0KnrWTK5Lw8fPkQsFqOjo6P0kEpJSWHVqlXs3LmTq1evYm3ryPhFx1BTLx4x4VlDUQInL6n/dSZPnsyjR4/wrNaALkOmF0lcAZS2d1X+/E3PkRze8jdRUVH5LC5A4So/b948Vq9ezeDBg9m3bx9Ht/5N695j8rV9Ex1dfdLTUnj58iWeNRp/ksL0IpGIPWv+wq1aM8q5F2+xagGBNxEEloDAW9DW0adppx9p2ulHZFKp0j4h8P5VFk/qzbRp06hTpw46OjosXryY5s2bk5KSwsmTJwkNDWXJkiWEPb3/jqu8HxVrNsO4lBmPbl0o1nE/htzcHJLio4mPT6D99xNVzqUkxCotKm7fvk3t2rUZNGgQc+bMwdXVlebNmxeaG5Wamsq6detIT0/HxsaGZ8+e0aNHD0qXLo2GhgapqakEBgZib29f6FLh2bNnGTJkSKHiNTs7m/v37zNmzBh0dHTe674zMzNZtWqVsmjy9evXWTFNEYXKKzOTkZHB8+fP+fvvvzlw8CDRUdE4OnvQacBv1G7evdjEFYCOniFN2vfj1P51hIeHqyT1BwUFAfDj1PwbOQojNSkeR7dqKjUzD2/5m4CAAMLCwoiJicHd3Z2AgAB8fX3Jzc1FJpOxdOlSPD09ef78OYe3LSqSwHL1qssNP0VB67tXT/Njq7K4V/Fm2LQtRZ7vu7hx7hDJSQkYmBRNXAoIfAyCwBIQKCKve1OVr1CDsQsOcXDddE77niU+Lka5A7F379707t2bGjVqsGTJEhq061/YkCrI5XJSEhViRKKujqGxeYE5ViKRCG1dPXT1jXl6/QjGZSu9M7/lU6NnYEzfcUsLPGdkaomGphbZWZk0bdqUYcOG0aRJE6pXr46/v3+h4urAgQPcvn0bLy8vWrRogYaGBjNmzOD8+fP06tWLp0+fsnv3boyMjEhKSsLQ0BAjIyMsLS2VSfJisZjs7GxOnjzJt98WbCVy5coVTExM3ltcRUVFoaOjQ48ePbCysmLixIlcu3aNrl27EhISQlJSEj/99BNr1qxRmKtqaODiWYO+41ZQ1qkiALk52Vw4sgWrsk6Uc6/2XtcvjJY9RnH6wHr279/PsGGvIqd5eW1yubzIuXtzRn1D9MsIFYFV2rYcEaFBNG7cmKdPn+Lg4EC7du2YMmUK2traXLhwgbJly7J7924cHR25ceMG0tycfAWc38TMKn9E7MENPyKeP6F0WacizfdtyKRS/HzW4OheA7fKdd/dQUDgIxEEloDAB2Jt58yPUzcik0oJuHmeJZP7AnDw4EGWLVtG9erVAd4ZoZDJZKQkxrDw1+5EhimiHmpq6tTwbkwF7/ZUqt1SpX34swfY2pXDu+0gbpw/SCv3/GadXxq25T0I+rcsUHh4OLdv30ZDQ4Ps7GxWrFhBbGwsDRo0oE4dxaaJ4OBg7ty5Q79+/VSWovr378+aNWuYPn06IpGIzp074+rqSkhICCkpKURERBAaGkr//v0RiUSEh4cDCusCJycn5VLd60ilUpKTk995D0lJSWzZsgV3d3dq1arF+vXr8fb2xsrq1W6/6tWrs2zZMlq2VPzOFi9ejFfNxtRt3Q8754po6egTH/2C7YvGYe3ghpl1ObYu/g2AGRuvYmRq+YHv8Ct09AxxcKrAsmXLGDRokHK5tX79+pz29S2yuMrJziL6ZUS+41mZ6cCrCN2zZ89YsGABZcuWZcSIEdSrVw9fX19ycnLYuXMnAJkZ6e9c8nt0s+CNDdN+bMqf6y5SyqLg8kZFRSyR0KDjkK9q963A140gsAQEPhKxREKFag1ZduQ5zx7eZM7PHShbtiyOjo4A2Di6F9hPLpdzePNcDm9bnO9cbm4Ol84dx7iMGzIZWFhZs3fNdBIT4jAwNicqPAg1jQ207jflq6hfOHTKekZ1UrwP+/fvp1+/frRu3Zrbt2/z8uVLKlSowKlTp6hVq5bSJbxFixaYm5vj4+ODSCQiPj6erKws5HI5pqamxMXFKZPG85zY3xRQbm5uXLumMJJ99OhRgQKrVq1a+Pn58eDBA9zdC/5dAWRlZRETE8OzZ8+Ijo7Gzs5OKQhf58GDB8qfB4xfTELMC+5dPc6OJeOJjY5E+m/RcYAlPsH88NtyDE3MikVc3Tp/gLIulWnXbwILfu3O8uXLlblnx44dK3LeFUBiXBQAdv9G2/KQyV/Nv+P34zEvU47lfwxg5MiR6OvrExUVxZMnTzA2Nla2e5e4CnrgT8jTALS0dZAjIisjTfW+Lh6lSccfCulddN7ccFJcpCZGE/0iBAf36p9kfIGvE0FgCQgUIw6ulalcuzk3Lx1XmmX6bJxD277jkUlzefrwBmZWZTE2teLmhcNKcdW6dWuOHDmCTCbD2tqav//+m27duuGzeT4Aaurq5ObkABDxPBCAB7ev0UXv6yixoaWjR9NvB3Byz2oAFi5ciIODAzExMTRq1AgtLS0uXLjAn3/+qUzOFolE7N27l5CQELy8vEhOTiY2NhYnJye6d+/OzJkziY6Ofqtrem5uLqdPn8bW1rbA0i3Z2dn8888/mJqacvr0aeRyOT4+PjRr1kxprnnkyBFyc3MJDQ3FxcWFwMBApFIpAwYUvOPvm2++ITg4mBMnTrB65jAkEgk6Oro0bNgAbW1tnJ2dlSWZpLnZVPZuWeA4H4KlrQua2vqU96yFqUUZhg8fzrBhw5SRJH1DkyIvESbFR2FjX47OgyarHK9UuyVnDqwHoLSdK+5VG9CwbV/OHFyvstMQoJxrRboPn/vW6+RkZzLvl04AVKjWgNiI54QEPVBpExPx7J3zzSMtJZHUpHgsyuQvd/SpiIuOwKyM4392PYGvA0FgCQgUM027DOHmpePK18d2LefYruWIJRJk/0Yv7J09CXv2EFBsn9+yZQvPnz/n3r171KtXj06dOvHixQtiYmLIyspizZo1AHh7e9OzZ08AYl6GkxQf/V5Ric9Jx/6TaN9vAlMHNsDX15eRI0fSrVs3NmzYwKBBgzA2NkYkEtGuXTvS0tI4ePAgampqyOVyWrZsSWJiIgsXLuT58+dcunQJdXX1d5akOXr0KFpaWoSFhVGhwquyM5GRkVy5coWnT5/i6upKmzZtmDFjBseOHaNZs2acPn2a48ePk52djaGhIebm5tjZ2dG6dWtWrVpFdnY21tbWBV7TxcWFsWPHYmlpiaWlJa1bt8bSUhGdWrt2rdI+obx7tUKLh38olq/lKtm5VCbmZRhLly5V5mKFPXvIoQ2zaNt3/DvHKudejQG/LiMnO0fluEj0arPA1n/GMn3jNboMnoqppQ27Vr4qVO7i5c2I6W9PUM9IS2Z0Z0VU0cS8NF2H/kVY0H0V810Av2Pb6T5sxjvnDBB0x4/E2HAsygwuUvvioKxTpf/sWgJfD4LAEhAoZuycKvHP/scc3b6Yo9sXKY/LXlsaCn58F1AIABMTE9q0aUNwcDAVKlRQ2kFYWFhgYaEQT1WqVFH2dXNzU9aF+7V3dXoNn0Gd18rzfMmIxWKmrDrHkG/sOH36NIcPH2bmzJnMnj0bHR0dkpOTlfc8cuRIsrOzmTdPUTLGyMgIiUSCRCLB39+f9u3bv/VaCQkJ3Lt3j6FDh3L69GkSEhKIjIwkODiYixcvoq+vT8eOHZWFnUuVKkVkZCTm5ubKeonZ2dkq3lihoaFERUWp/D4KwtbWlu+++45jx46xceNGjI2N0dPTIz4+Hj8/P9TVNeg7tvhr7cVGhiCS5WBaxomuP/7BjfOHVBLdAY7uXEbd1t8VySn+2M6l2NrYINHQwvLfCE12RrryfHxslNLDrFH7ARzesoD0tFRqN+lAnZbvttA4tl3xHlhY2/P78tOIJRI0tfJvNpDJZCQnxmJgVLDL/p3LJ3D1qouGljZOXvU+qKRUdnYmahL1jyq0/j4bCARKPoKdrYDAJ0BdQ4vWvUbTvu9YjE1fRZhsX8vH6tSpEy1atAAUOUSWlpZ06tSJR48evTXpulKlSpw+fZrBgwfj4eHB5n9+5fzhjZ/uZooZkUiElY3iYW1ra4u2tjY5OTnExcXRpUsXlbbnz59XiRSJxWKkUinZ2dlcvnyZ2Nj8hpFxcXEcPnyYPXv2UKlSJQwNDalfvz4vXrxg9erVPHnyhFq1ajF48GCluAIYOHAgbdq0YdOmTUREKJK73zQelUqlaGhokJub+877tLGx4YcffmDMmDHY2Njw5MkTPD092bhxI807D/4kOz8zM9MJC1HYMejqGzFhyQkat+vLxKUnAKhaVeH9dOfi4SKNV6Fac/ZuWcG103uUx8p71lSWkAL4e3wXMtIV3mczNl1n0YFAeo1agIPr20WoXC7n7pUTqKmpM3nlGaWw2Th/dIHto18UXIw9OiIEv4MrCHygyLXT1jVAV9+oSPeXR05OFiF3z3B678p858KfPeBF0O0ijRP68AqBdy9zavdStswf/tXWDhUoHkTyN93oBEoMycnJGBoaMn/3fbR19D/3dP5vSU1O4O6Vk2SmJ1G1QQeePbzBimkDWbVqlUoeT1RUFDdv3iQ9PZ3AwEBMTU1RU1MrsHjwihUryM3NxcTEhB49XkWvdPUMMDa1xKliHdr0HoOWTuHFjz8nOdlZnD24juM7FyOTSlmxYjnPnj2jTp06NGnSBFA8gFesWEHt2rXx9PTk7t27DBkyhDt37qg4vQ8YMEBp9BoVFcXatWvR1dUlPT2d0aNHo6Ghwd9//03NmjWpWbPmO+f28OFD9u/fz08//VRg8ei8vK327dtTrly5d44XGBjI3r176dOnD8OHD+f0mXNMXeNX7MuD72Le6DZEvQgmNTWVDv3G0rTTkHf2kcvlrJjSB6eKdTExt8alSgO0tHVJjH3Jr31qKNtZlLZh1Oy9GJqYF3k+PpvmcnjbqwjvnG238PfdzYGN8xBLJGjrGhIf82oX44LdDwr8e5bL5QQ98MfBtXKRHOMLIz4mAg1NLfQMTFSOP7p1nse3ztG238R3RqfuXj1FQtRz5Ei4d+UIw6ZvV1lSfZ2M9BRGd6pAUlJSoVYlAl83gsAqwQgC68skOiKEyQPqM3z4cBYuXFhgm2fPnhEZGcnFixcZO3ZsvvObNm0iPDyczp07ExsbS61ainpyampqKtGVTj9MonGHjyu/8ilJio9m68Ix3Lt+nmHDhpGdnY2amhpLlixRaefuXoEHD+6jrq5BpRoNca/ZgqS4aPatU+TlNGjQAFtbW65fv8706dPzLR/+9ddfjB8/Xmk2mpqaypEjR6hTpw7W1tZkZ2cTExNDQEAAgYGBpKSkIJPJ+PXXXwuc9/bt23n8+DEjRowotATPw4cPiYyMxN/fn759+/L48WMaNGhAuz6jad51+Me9cR9A0P2rHN06H2ev+jTu8MM7fale59DG2RzZrvidGBga0/eXhZzz2cSdKyfp27cv+/btQ1vPkEnLz75ziS0pPopN80fx4OZF3NzcCAgIAEBTSxu3itWRI6bd9xORqGmwYGwnEuKiaN9vPA3b9kND878VpYUhzUrh+oWj1GjSJd+5U9vnY1W+Mu5VGrx1DEFglXwEgVWCKW6BJZfL2b54PDWadHln+F+gcOKiwpjYz5tGjRpx+vTpQts9evSIc+fOMWjQIJKTk9mwYQMVKlQgKiqK58+fI5VK0dXVpUKFCty6dYtRo0YhkUgYM2YMrVu3pmHDhgAM/G0pXt7f/Fe3997IZDIObZzF6X1ryMnJQUdHF5kcMl/bql/OtSK1W/SiWoP2Kr5iIU/uMGtk23xjHjhwgLZtXx1fsWIFTk5ONGzYEJlMxuLFi7G2tiYoKAgNDQ0yMjLQ09PD2toaOzs7ZDIZN2/eJD4+ntzcXOrVq4eTkyKB/OrVqzx+/BhHR0eePn2Kra0tnTt3Ji4ujqNHj6Ktrc2LFy/Q0NDAwsKCGjVqoKmpSaVKXmjqGvHL3z4fFWl5G+mpSaQmRGFgal2s9h0vQh7z5xCFxYGJiQlJycn0GT2fdbOH8/fff+Po6EibNm2Yuuos5tb2AJw7uIbYF0F0HPyXMvKTnZXJ3NGtCQsORFdXlx49eiijj2XsnXH18qbjgN+V15XJZNy5coIDa/7ArUoDugz5q9ju6WNIT0smKyMd44+w1hAEVslHSHIXKDJyuZxyzhX+DccLAutDuX7eB+CdidJ2dnbs2LEDmUymTJC+c+cO+vr69O/fn+joaE6cOIGdnR2XLl0iLS0NAwMDnJycEIvF/Prrr8yYMQN/3z1ftMASi8W06/srjTsMIvjRLZwr1kZDS7tIfe2cKvLLvH0s/r0PVeq1JeTeecLDw+jcuTNZWVnKdq1bt2bDhg1cu3YNkUhERkYGw4crokjx8fGkpaXlK45crVo1ZDIZ6enpLFiwAD8/PzQ0NNDW1iY3N5eOHTsCcOjQIRYsWIBMJqNChQpcv36d7t27KwVZTEwMtWvXJj0jk2EzVn0ycQWQlZlByONbeJnnd0X/GKztnKnbsgdXT+9RfHEzMGTD3FEYmZgxcuRINm/eDEBo0F2C7l4gMuwpT+5dI/RpAC7VmmFbzpNti8YTFR6k3NkYHx/P7du3ldf4ddGxfOWMwp8F8PDSftLT0tHWNyH2ZSimlrYkxkWRmZaEpe3HO7x/CDq6BujovlsUBd4+S2ZGOh61Wv0HsxL40hAElkCREYvFVGvWm+SEGH5sVZYB45dQpV7rzz2tr4qzhzawf91MNDQ0mDhxYqHtYmJilL5NYWFhlC1bFg8PD+7fv8/IkSMBCAgIwMjICEdHR8zMzFi0aJFyeTAhIQFjY2OGDRvG4sWLuXnxGJXrtPjk9/cx6Bma4FGj8Xv3c3CtzKwt15HJZJz32Ujc9n+oU7sWs2bNQktLC5FIhKGhIbq6uiQnJ/Pdd9+xd+9eZX8TExNMTEwKHFssFqOnp4eZmRmlSpWic+fOACxbtozbt29TuXJllQLRBw4coHLlyjg5OSGXy9m4cSM///wz2TlSRs7aRSkLmwKvU1zoGRrjXr0ZkmKsb5jH/WunkMtl/+b+GVOhgruy/E5enuDBDbPxqNoAa3sXvh04lce3znFo01yiIsJJTY6nZs1arFi6kKSkJMRiMfPnz2f37t2A4r1+3QMNIDHuJZEvX/LbkuMsmdSLswfX0nvUfGzKVVA6yn/JHN62BGPzMoLA+j9FEFgC703eB9uzRzcEgfUePLh+hh3LFMsffn5+hS4LBAQEsGvXLuVOrb1792Jtbc3Tp0+pW/dVDbXq1atz6dIlpk2bhr6+PqVKlaJ+/fro6ekhl8sxMTEhKCiIxYsX47NhxhcvsD6GpPhontw4iaVNeTLS0zA2NkYqleLt7Y2PjyJiaGxsTKVKlbh//77K7sF3kZycTEpKCp6enspjeTsZC0JLSwupVMoPP/zAunXrqFSjIZ0G//nRpV6Kgrq6Jurqmp9k7N9XnmXNjCHcv36WkJAQmjVrhp6entKIFRTebC5VG+NRvREAS6b+oCz0DdC69Tfcu3cPuVzO8OHDVTYRHNw4m6P/5nnpGxpj4+BGwK2LGJcy49nDm4SHKL5wJMREUKl2C0qZf/r382PR0dHn3rVTn3saAp8JQWAJvDdmVmVVir/+vxIVEcI/47tSq2lnWvYYpbJ1/U3kcjk7lyp2IY0cOZLjx4/j6+uLmZkZ3377LYaGr0qJhISEAIq6e7q6uuzfv5+IiAh+/PFHlYRqLS0txowZQ0pKikpZktfJiyxEvnjOwQ2zad5lKJpfQWmd9yH2ZSgPLuzC0Nqdq2cUkakHDx4wYcIEPDw8iIqK4tmzZ/Tp0weAzZs3K0vsFIW9e/fi6elJ7dq1Abh8+TJisVhZa/JN5HI5vfv0Yfu2bXQf8gf1Wn/3kXf4ZaClrUungZO5f/0sWtq6rFu/nvPnzlGnTh0mTJigbBfy5I5SYOVkZ+Hg4MBPP/2Erq4unTt3Rk1NTSms8mpFAkpxBZCSlEDArYsANOs8hMf3rijP3b1yjJ0rptK4XV/KedTCwa0qBkamSj+uz4FMKi0wud+pUh20DQzJycn6ZMJX4MtF8MESEPhAHt+6QHzsSw5vW8SW2T9y39+30LYXj20l+mU4Y8eOZf78+fz222/06dOHsLAwFi9eTGRkpLKtlZUV+vr6WFlZYWBgQJ8+fRg5cmSBu9XU1NQKFVft2rXjzp07ihdyOUd3LGHkt25M/K4GO5ZN4kXwo4+6/y8FfSNTsuQa2DlV4sa/+W1z5syhYsWKiMVijI2NycjIABQFm8PDw99LYMXGxiKTyTh69ChHjx7l8uXL2NjYFPgwF4vFrF69mm1bt9Jr+IwSI67ysCjjQO+Rc8nKTEciUaddu/b88ssvKgW5r/nuVka5y7lV5dmzZ2hoaPDDDz9gZGSkErUaPFjhtj5kytoCrzdwwnLqt+nHvcvHlMeiXyi+3J0+sJ4Vfw5iXI8qzBrRmqGt7Zk2uDFxUeEqGyTehlwu5/mTu+RkZ77fG/EGiTHhpCTGABAZ+oSEWMX/c4N2/Wnc8Uc2zBzEi5DHH3UNga8PQWAJCHwgNRt3wsWzBhalyyLRMaS0nUuhbZ8/vgVAerriwZNnmKmurk7r1q1Zu3YtsbGxhISE4OzsXCQjy7dx4cIFDh48mO+4lZUVqckJnD20kT+HNsd3/1oSY19+1LU+N5paOjTr8lOBxZL37duHubk5crkcmUzGmjVrqF+/fqE5V28SFRVFWloa165dIzExEblcjp2dHYGBgaxcuZKEhARlW7lczurVq9m1axfNOw2kdvPuxXaPXxJV6n2DiakZqSlJRES8YM2aNTx9+lRpjRH7MpyRHV1JSYqnfIUqqKmpM2fOnHzjHDt2jMOHFYanMZEFR8RXTh/MkG/syMnOVIjlUuZoaud3eg8JvAdARGgQE/vVYVwPL3Ys+Y17107ny9XKycliyoB6/P59HUIC73Dn7HYuHN78UaagGjoGqP3ra2ZgZIqh8Ss/MBNzayQa2iS+5ukl8P+BYNNQgnmXTcPdq6c4uXMR/cYvxcSs4LpqAu+mKEsT+9dO5/huhUt0fHw8+/btIzY2li5dumBnZ8fJkye5ceMGmpqapKamIpFI+O233z5qTrt370ZfX59u3bqRnJxMo0aNOHXqFCKRKJ9hYikzC4V4KO9B+wFTMLMq3l1o/xVP7l5mwfhuAEycOFG548/e3p46depw5MiRfKVj3saGDRuUS7a9e/dWyd26cuUK58+fx87Oji5durBgwQJGj1a4kC86EKhiJ1HSeHznEutnDyMpMR4jY2MCHjxAT08PfX3Vzxk1NXVqNGjLxVN70NXVxcPDA4lEQv369dmzZw+PHz9m9OxdbPvnFyLDQ1T62ji6kZ2ZTnJCLHK5DAMjM6L/FWJa2jpkZhSc5F6vXj0qV67MypWrSE9XRLLqtexKpTptcPHyJjU5njkjW5OVmUGngZN5dPs8V30PIJVKady2Fx0HTvtPlhoFm4aSj5CD9X9IXr0sexcvKtVuQVYRw+kFkZoYQ1ZmBqUsv84HcnFQlA/jPFNHJydnlixZgre3N3379lX2bdq0KU2bNiUrK4uZM2cWOcLytjnllZ2JjY3Fz8+PBg0aKIXV3r176dixI8uWLSMjI4OrV69iZGTEnr17+fPHJgz4dQkeNZp+1Bw+B06etfj+l4WsnTOC7du3s3nzZmrUqIFMJsPHx6fQ5dTCqFOnDjExMaSnp+frW7NmTapXr87cuXO5cOECCxYswNHZk9Fz939QPbvMjLRi9a76lDhXrE3tFj24e+kwSQlxVK1ajZs3b3Dr1i3q1atHenoGaurq2Di4Ur99fy6e2kNaWhpXrihyqS5evKgcq3TZgq0W7J086f7TLDbM/YkrvgfJzHgV5crMSKdW4/ZcPr1fpc/KlSv54YcfAJg9ezYLFizgypUr+Poe5/zRHZQys6BD/9+ZvPoCYrEEkUhEec/aZGZkctPvCKcPbiYlKYn2/ScUqVajgMDbECJYJZiCIlihQfe4emIrrXqPI/D2ORLiY6nRpBM6uobvGC0/crmcpPiXPL59kRqNOxX39EsMcrmcId/Y4eHhQZcuXdDV1WXUqFEqbTIzM9m2bRsxMTHk5uZSvXp1ZcmY/5Lk5GRat27DhQvncfaohrW9K236jPtiS+4Uxt3Lx1j+52C8vb1p3Fhh/WBiYkL//v3R0cm/xFQY2dnZzJw5k2bNmhVaZic1NZW+ffuyZ88e2vYZTctuI957viFP7nD7zHbqth/yya0cihO5XE7g/Wus+ON7NNTVWLVqFUOHDsOpUl16jpyn0jYuKhyxRIJIJGbu6HaYly6Llq4BAyeu4tnDG8z5uWO+8f/e+xCZNJcLRzaTlZ1JQlQ4jb8dRIC/L541m3NwwyxuXnyVn6WtrY23tzcrVqzA3t6egwcPoq2tTePGjTl27Bi//q+9+w6Iuv4fOP68ybH3ElAQcbFcOXIvnJlaWZq5ta+WOdJMK+tbaVlWWpbfyjRNK/2Ze++Re6MgooIMZe91HDd+f1yeEuBEWe/HP3qf+f6cHrzuPV6vmTMJDQ2l6bPdGfzGZ2RnpnLxxG5OHthIQqyxhqNCYUaLDr0YMOZDrG0f74vOvYgerOpP9GDVMB4+jfANao+FlS0+/m2oK5GgUj3aL8/UW1EY9HoRXN2HRCJBKpORmJhI//79cXcv+c34dkb30sriPE02Njbs3buHzz77jP/7v7Uc2LISGwdXegx68GG1yiCoTU8aBD7D4cOHsbe3p0ePHlhaWrJnz55iGd7vRy6XY2Zmds8ahlZWVpw+fQYAg073SO318G5AQt2m2DuVfwHoJ0kikZCeGEP77v0JO3/SlCdMc/ogP386hmYdnqdZ+74k3YzCwtKGvPR48gt1fLr8eLHraArvTDK3sXMgOzMdgNgrZ/ALbk/IS8XrJnrUaYBer+fS6f3I5Qq02iJadRmIhaUVuzevoG7dusXSaEilUnr37k2vXr2wt7fn3NHdhJ/9m0J1QYlnGv/hUhbNfo1jezfw+arT2No7l9v7JdQsYpJ7DSOTyWnWrrcx+aKDCzb2zo80nAHg6OaNyvrhhlxqqtad+pGSksLMWbNwdHQstk+tVhMaGlosx1VFUigUzJ49m4sXQ2ndujUXj+2s6CY9kuB2zwHGnFXPPPMMgYGBXL16ldjYWADOnTvHxo0bixWO/jepVIpCoeDcuXP3vFfhPwGCX1C7R2qrQqmiTfdBj/xZBMjJSmP5V1Mfa7L2o2jZ9UW6vfw2b3+1AXdPXwAy01M4e3Q3Sz5/k/eHteS/47ow49UWzH93KPOnvcCi94ew47fPyM02LhJoEPwsL4wxpnp46T8fM2LaAoZN+ZLcnCwMBgPqgjzyc7NQ56SRlZ6MuiCPn+eMw6dhExT/1CdMSbjBoPGf0POViQCMHDkStVptSp8SFxdHWloa165dw8LCgkJ1AXZ3Fad+ttsLfPHHWRo1a4e1rfEz+u6rLfhySj+yMlIoz8EejboA/SMG40LVIXqwarCC/JzHqlEolcmwsXMqxxZVX6+9vQAf/5as+nYm69evZ8CAAaZ9Z86cQSaTUa9evQpsYekaNGjAlS3byu16RUWFFGSlIFVYYPUEh18AOvZ5jWM7VpGcnMIzzzwDGIOtdevW4evrS2hoKHZ2dnzzzTe8+uqrZSYfHTVqFIsXLzalfSjNhAkTmD17NlfOH8QvsPT8WE9aWmIcF45tp2PfYXg3aPLU7iuVSk3/loPf+oyv3yleADk9LRkAa2trcnJyAAg7ewR1QR4yCwcuHt9FZnoKLTo8R23fxqQn3yQy9ChZqYlIZTJ+W/guBXk5OLt64Nu4OR61fTl3Yj9REefxb96BNz9ezo4/v2XoP0OS10ON87tWrVqFRqOhX79+eHl5mXJueXl5YW9vT35+Pq27vcDzI94lNyudoqJCU2A1+8e9zJvUl+SEWKKuXODdV1sAMHTSPJq27YWF1cNPqbjNYDBw+cIRdHeVchKqJzEHqxq71yrCQnU+OWm3yMzKxN3LD0vrR/+B8agizuzlVswVnu01vMpM7n0cer2ehe++RHriDW7duoVCYZz4rtVq+fLLLxk8eDDe3t4V28i7GAwGmjVrhlqnYNK8teVyTZ22iKM7/yD42V7YPIWhl3mTn+NGZCh5eXmmuVc7d+6kqKgIHx8f/P39Wb58Of7+/rRo0aLE+WvWrOHq1atIpVKUSiW9evWicePGJY777rvveOuttxg29SvadKu4IfP83KzH+uVfXnKz0om6fIak+GsUFRZw8cQuYqMi0esfvddGaabi+demIJVK2bjiGyQyKfNWnUHxT3oEMH7GprzQqNiQo5WVVbFeygaBz3Dl4ilUKhVqtZrWnftz/sQeWrUPIeFmLP7PdCXkpQnk52bz7tAWxkz0Egnc9avycRItZ6YlsXXVAho3ac1Pn78l5mBVYyLAqsbul6YhLSkec5WK5IRYvBs2e+rt2/3nAo7sWYt7bT9en73sqd+/IsRdD2PuxN789ttvDB061LR93bp1XLx4EV9fX6Kjo/nggw8A4wTqjRs3kpWVxX/+85+nmql69OjRLF26lPEfLiGoCq4oBJg9uj0pCbFoNBpTQPtvK1aswNPTky5dupTYN2fOHGbMmIFcLufChQvs2rWL/Px83N3dGTdunOm4+Ph4vLy8cPPy5cMfy044WxPcvHEFN8+6ppWztxkMBvJzs8jJTOXIzj+JuxpKfMwV8rIzix1naW2Hcy0fbly5Myzr5dOQYdMW4OnTqNj1/p1uBIzDb2p1HhaWtvz1v1mcOrydvLxc6vj6M/WLtcjkct7sV7K3WCZXMGjEW2Tm5NNv+LsA5GZn8NuC6UgMei6c2Gs6dvzsJQS17m5qB1BqW8qi0xaRl53JjKEtRIBVjYk5WDWYo6snKmuHcg2uHmb+R8cB/yGwVQh5OZlPfd5IRfHy9ae+fzNmzHgX3V1zMAYOHMiQIUNwdnZGr9ezcuVKfv/9d7777jtcXV3JyMh4au+RwWCgdu3aLF26lIbBbapscAUwZuZiwLh8vyydOnXi2LFjrFmzhn379pGVlWXap1AokMuNMymCg4OZMmUKEomk2L+HVqvFzMyMgIAAEuOuc+bQFjTqAqIj7j1vqzrSqAuIPLWdqxdPlNgnkUiwtLbDzaseL4x5n8nz1jD/zwss3hbDhz/tI6B5e2xs7WnyTHuy0oxJOS2tbHjv+x3M+n6nKbhKT45nxddvs/qH93h/xLNcCz8NGP/f/v7tOyQnRGNj54RcoeDliV/iXb8JEomE3q9OQakyRyZXsGDdZZq16Yal1Z0vnlbWNjTvPhwbx1rERIYat9nYM372Ev7z4VKGvDmH+oHGoebFH48xzaH69t0X2fl78RWT9yOTK1CoVPc/UKjSxBysGq48e0S0mgKuXjxOo+adH+h4pZmKF8bORlukqbAaYhXh+VHv8+XbA3nvvff4/PPPTdv9/Pzw8/NDp9Nx/vx53NzcmD59OnK5nIsXL3L69Ol7rmYrL8ePHycuLg5XDx/emvvHE7/fk+RZtzEWllbExJQ9pOPk5ETt2rWJj4/n8uXLHDlyBE9PYyFhnU5HbGwsnp6eSKVSsrOzMTc3p6CggLlz5yKXy9Hr9SiVSgYOHMilS5ewcXDh3JGtHN/+K35NOtF90EQUSmMdumthp7h64W96vDKpSv6f1+uKkEiNqRZKo1SZ06h1X1xq+TzUdd08fXnjk5UAJMZfx6X2dpQqCzo+N7JEz9Bv30wj4sIx0+uvpr1Aw6CWRISeBEBlZYenz51h3LCzhwHYv+5HgloZU5+YqSwY+8EvAGSlJxF6ch9BLbuy+bcvObjlN+QKJd9tvFrsvuGn9yGniIGjZ2LQ600LElqHDObv7SsJatOTWnUD7vmc2iINUpm8Sv7bCw9PBFg1SMqtKGQKFQ7OtYw5rNKSsHFwKbcPu1SmxKfRMw99XnXOeF2auo2a06rTcyxcuJBJkyaVSNvQu3dvrK2tCQsLM/WeDB06lN9++40DBw4QFBRESEiIaV95mjFjBl988QV2Dk58sHj3Qw17VEa/fTWJ/LxcevXqVeYxOTk5ODo6kpKSQtu2bQkMDCQ8PJyrV6+i0WhYtmyZKYt7REQERUVFgDGlxu0s/kqlkkOHDvHxxx+TFH+dBsHPsm7JHK5e+YFbMVcY897P3LxxhR8+HEFBfi7W9i606/Xq03obyo02Px2JXIXCvOx5Xm5ej7dYw83TF7dBb6LT5JX6/88vsE2xAKtXr15cjrhTVzM/O93097tX6kVcPEluVnqJxRW2Dq6072ksa/TSuA+p4xdEwDNdS9y3/6j3OXNoI536jSxWuLlV1xdx86qPpd395xTeuHwKva6I+k073fdYoeoTYXQNkBR7DY1GjVady82oMABO7V/PR2M7sGDa80ReOFouS5ClMlmVS0hZUQaO+wi1Wl1m3qusrCzc3O7U1nN2dmbq1KlMmDCB5ORkvvrqq3sOez2qL774AoA3P1lVYg5NVXMrJpLj+zcxZ84cOncuu1f1xIkTXLt2jYYNG9KiRQtcXV3p3Lkz48aNo3379sZVcv8UKD569CheXl7Y2dmxZ88eVCoVSqXxC8LtSfRyhRJn9zrMXXmKd75ej38L49yuHz8eTUG+cbL1sZ2/P8lHf2KU1q73DK7Kk0xpibogj4/GdWF87zp8M30AKQmxbF75NWCsUGAwGNi2bRvRUVF4eBjLfd39hTHpZhQAkyYZk7/+teQTtEUayiKTK2jTfRDWdo4l9rl61qX3kCnFgqvbVBbWxIcf4eaNexdQ96wXjKdf0/s8uVBdiACrBrga+jc3wk/jXjfIVP4k+NmeNAhuS6FGw7Iv30JbJJYMP002dk64e3qzfv16rl69WmJ/XFwctrYlf5HZ2NgwYsQIZsyYQXJyMmq1usQxj8PCwgIbOwc8fMouXF1VXD5zAJlMViJr/r9JJBIaNmxI7969sbOzK7avS5cuzJgxg507d/LFF18gkUiIi4ujsLCQsLAw09J/gPr1jSVfLhw1ZhaXyeTU9gumTY/BrP3pv6QkxmFubs7LL7/MjeuX0WmLyveBqxnjisDGJMVfByAy7CyzRxtzxXXp0qVYPrnw8HBu3rwJUGoA1L17d1zd3Di+dx0/fjyyXNuZnZHCR+M6sXThBxza/Os9j1VZWFWKVZ7C0yECrBqgbZ/h+AW3LbbNTGXB+I+WMXPRTuasOFlsqfPjKK0nLDc7g29nvcLmFfNIT7nJjj8XUpCfUy73q8rGf7QCM3MrAgICmD59OmlpaaZ92dnZpaYDuJterycuLq5cg6wOHTrg7OZZbtd7FIUFeZw5uP6xJ/Wf3LeWgIAAzM3N73tsWT24169fZ9GiRURFRdGlSxfefvttpk6dik6nw9zc3JTXCeDHH38EoEXH5wEo0qjZvGIe43vXYe+GpQCcPn2a1atXo9fpyExLeqznq84yUhN4b/id+YaxsbGm2poA06dPL3a8m5ubKcC9eHIf6cm3uBkdQW6m8TPl7OzM9WvXmDJlCpfO/I2mlAzuj0qpMvZc5uflcurgxgc6JzMtiQ1L55ZbG4TKSQRYNUD46f33nEtTXnOwkm5Gs3PlXMLOHCIq4qzpl1ZqQgxyKdg61mLeW31o32MQhhqyavBenGvV4b0fdtO2x8ssXLgQd3d3Zs+ejVarRSaTcfLkyXue36lTJzZv3sy8efPKbYXhzZu3sLJ5sglA7yczLQkJksee/5WZloyPj0+xwsKlqVWrFpcvX0ar1RbbfuHCBVauXEn37t3p2LEjp0+fZu7cucTFxaHT6UhLS8PHx4fjx4/Tv39/3nnnHXwaBNGsfR8Azh7eyrY/f8DZ2Zlhw4aRnZ1N7dp3iqI7ulZsIFtZJcZdY9aw1qYA9L333sPLy4vVq1djMBgwGAz07Nmz2DkODg5cvHiR5s2bk5WRzOzR7fjsrd7sWrsYpVJJUFAQlpaWpiDt2O7V5dZelbkl7XsN+eeVhLycrDKPzcvJZP0vnzLztZYc2lY1h4mFByfyYFVjt/NgNW8bQt9h7+Dm5QcYs2ljMJRbr9VtOp2OY7v+ICH2KrnJV7HzCGDAqFmAsYegqKiQjORbuHrWZf60gTi7uPHatEVIpVJir10kNTGOJm16PFa5kKoqJyuNLSu+4ND2P+nbty9NmjThnXfewdr6/pn2f/nlFxQKBcOGDXusNqSmpuLs7EyfV96g77CKrYlYHt7q70ef3r3p06cPmZmZxfZptVpcXV2xtLREo9EQFRVl+kKgUqnw8/Pj6tWrjBs3Dnv7O+Wg1q5di729PQ0aNCAqKoqdO3cyd+5c7B2dadfrVXoMetM0d23Re4MpzEkmMjLSFCz+/ffftG/fnl4vv0G/4VX/PX4Sfvt6Kkf3/AXARx99xOzZsx8q2I6Li2PUqFHs2bMHgIkTJ/Ltt98Cxp9DDg4OWNo68v7i8s1X9u17r3L53N/MWrQdr7ql9z7vXruYdUs/L7ZN5MGqvsQqwhogOzMNg+HOD6iCrGT+3vV/9B4yFQC9TkPYyb0Etil7pdWDkMlktOs1lLycTI7sWIl/izsrcSQSCUqlCldPYzkSWwcX3NzcTb1neZnJRJ/fR3ZGCp2eG/5Y7aiKrG0dGTxxHm5e9Vnz08c4OTlx5MiREt/U76bVasnLy2PgwIF8//33j92G1atXI5FIaNXt5ce+VmXg27AJhw4dYsmSJSXqP+bm5hIdHc2hQ4dITU3FycmJ/Px8/Pz8CA0NpaioiBEjRhQLruDOikN3d3fGjh3Ljh076DZgFANGvV/ii4GtgwvRidHFth05cgSZTEb3l8Y/mYeu4vJysji+bz0NGjRk//59pRZGvx8vLy92797NyZMniYmJKVaWSiKR4OnpyaVLlwg9sYfAll0fOHi7fPYQcrkCv6A2pe5/5Y05LHj3Zdb97z3emreu9BWQQW2QyxUYDAYCW3bh/LFdD/18QtUhAqwaoGnbntg73/lBpTXI6PjcKNPr+Khw8nLL7tZ+WJbWdoS89OY9j7mdAPK2Ri264hvY1pQvqKbq9Pwotqz8CisrK06ePFlqgJWUlMSKFSsAYyLMf684fFTbtm1HpTLHuVadx75WZTDinUV8OKYjs2bNMs2Pus3KyorAwECio6Px8/MjJCTEtM/T05ODBw9SWEqtOJ1Oh1KpxMLCAo1GQ606fgwcU3oPS72gthzdu8GU5R1g2bJfCWjWrswaoDlZaWxb+SVdX3wDJ1evx3n8KkGnLSInK53ju1dz5dwh4m9cwdzcnL179zxScHW3li1b0rJlybqQq1evpmvXbiz+72g8vP0IeWE8Lbu+cN/rpd26yq24KFOAdT3sJLHXLtK+92vcirmCh08jGjZpR0pcOFERZ/BtVLL0knf9JgwY+Q7Hdq/h5fGfiACrmhNzsGqAOvWCUZlbYjAYWP39TGKvXsDS2s60v7ZfE1p3f+W+18nPzaKwoHwmp0skxjk2BoOB/300nOSb0SjNVFU+79LjkkgkqCwsTRPXS5tbtXHjRjp16sT06dOZPHkyXl5eDzSR+17Wr1/P9u3b6D140mNdpzKxdXCly/MjWLZsGYmJiQ98XosWLQgJCWHZsmUlFhBkZmbi4eGBRqPByc2LDxbvKfX/rMFg4OyhTdjb25uC36ioKK5ciaB554Eljo++fJZVX0/k+J6/iLtyhogzBx/yaauWpJs32PLrx7w9KICZr7Vk88pvMJdrGTF8GKGhoaaUC09C48aNuXXrJnPnzuXmjav8308fP9B5bfuM4qX/fGp6fXjrCtb8+DETn/dj4cxXePM5Xzr0eY26Ac+Sk55c5nW6DBjHez/swcyi+tdfrelEgFUD2DjVAow/9A9s/Z39639+pOsUafKJDD12/wMfgraokFcnfYGto2u5XrcqUyqNRWgdHBwIDw9n165d7Nu3j4iICLZt20ZKSgrBwcGm4319fcnJySEsLKzERO0HkZGRwcSJE3H38qHzgDHl+SgVrsuA1zFTmTN8xIgSKwWTkpKIjo4u9bzAwED8/f1ZuHAh27ZtIysriz179qBQKPD29mbIkCGkJsYVKyp8t/AzB7h05jCffPKJqQbin3/+iUwuJ7BltxLHqwtyiIo4j7mFBUOnL6ZtFUxC+qA2/PIpH43tyNY1v/DCwIEsWbKElJQUzp49y3fffUfdunWfeBskEgkzZ87k9ddfJzcnk6/fGURhQd59z7k7mH75jbmmjPb5ebmoVOb8+f27DBj9AU3a9jYdV1RUyK3oMJJv3XgizyJUXiLAqgEsbewA42rBRZuu8canj7Z6xdbBncBWIfc/8CEolCqs7V0x+2epc02Xl5NJcmI8AQEBBAUFsWHDBs6fP09iYiKrV6821cm7OzDw9fVFqVSye/fuB56LdezYMdMvDAcHBxISEuny/Bhksuo1a8DKxp6er7zFrp07CQ8PL7bvxIkTSKXSUoeRABo1aoRWqyUiIoKlS5dy/Phxxo83zp0KDAwEKFaQ+G6pibFIJJJiqQWWL19BYPMOpSbjbdSsI+9+v4d2vYbi5lWvWvfk7vzL+AVv//79rFq1itGjR+PgUDErV+fMmQPA1UsnWPPjhw91rrmlDQvXX6bzc68B0CC4Jf1GzCpxnEJhhq2jBw7OtR6/wUKVIgKsGkYmV6A0q5pFRnXaomKlL6qjqPAz6PV6vL29adWqFQqFgl69ejFkyBAmT57M4MGDGTlyJBs2bODPP/8kPj4eT09Pxo4dy+TJk8nLy2PVqlVlpm24ePEirdu04dlnnzVtq+PbmLGzvq+2vSa1/Yy9ff8e7pNIJDRo0KBEclEwBl9btmxhzJgxTJ06lSlTpmBmZma6xu2cS9IyAtKg1iGmLOMAiYmJXL0aif89CmeXliCzuslITQDg008/pVOnThXbGMDR0ZHIyEgAzhzaTPTlsw91vkKpYtD4T/luw1W6DnyDhv/KN3ibpY1djSsJJohJ7kIVodfrCT+5CzefAJzdq8ck7NLcnpcREBDAwoUL8fLywt/fH8CU2b1WrVpMmjSJI0eO8Mcff2Bvb0+vXr3w8PAgJCSE7du3o1arTaVbAPLz8xk4cCA7d+7Exd2TFu170XPwFDy8Gzz9h3zKHF2M83nOnj1L8+bNTdvVajXp6ca6dXq93vSeHT16lEOHDjFy5EhcXe8MXdetW5cdO3Zw8OBBli9fDoCLR+lFjW3snTG3sOSXX37B0dGR7777DplMTpNnH2+lblWXGGOsWlBWr2FF8PPzY9euXQwZ8ioLZr2CprCQH7beeKheRLlSiV9gqyfYSqEqEgGWUCVIpVIatuha7rm7KpucjBTA2LtSVFTEkCFDSj1OpVLRtWtXOnfuzI4dO/j999+ZPn06LVq0YOvWrRw5coTu3e/0lrz11lvs3LkTgFnf765RQ7IOLh44ubhx5MgRxo4da9oul8u5ceMGubm5rF27loSEBCwtLcnNzeXNN98slpsoNTWViIgI3n//fQDahrxAlwHjsbFzKvWeMpmcl8Z+wB8/zOa5557D1s6B/iOmY2VjX+rxNcX6ZcYhuZCQkHKpf1peunfvzrlzZ6lTx/jlzaDXI6mB+fiE8iUCLKHKKK/gSqfTknQjHKmZJW6evuVyzfKSlhSHTCbDx8cHnU6HXq+/Z6Z9qVTK5cuX6dy5M3q9np07d2JlZUV4eHixAMvMzDj89N8lh2pUcHWbe20/Dhw4UGybXG788ffzzz8jlUqZMWMGCQkJWFtbl0j8uGnTJtOwq1/jpgyd/PV979mmx2CC2/YmISYSn0bNy61iQlXm4lGXuKh7F0SuKJ6enrRo0YJLYeFQjefACU+P+MQLNY5Oq2XNjx9TVMYKsIoUcfYADRs1YuvWrTg7Oz/QOVKplP379/P5559z8uRJ1Go1rVoVH67w9TUGktERZ8q9zVXBM51fICYmhl9//ZXY2FjTdn9/f3r06MHEiRORSqV4eHiUmlW7S5cuyGQyZDIZwQ8xzGdhZYuv/zMiuPrH6Hd/wNrWHk/PylkmyNHRkfy8XK6F3btMlSA8CPGpF2ocpZmKyV+sxcvXv6KbUkx2ZipXw87SIySEa9euMXr06Af6xTxlyhSmT5+Op6cnVlZWTJkyhdat7xTKTUtL45sFC1CaqQhuXb6rQKuK5h2fJ6B5e0aPHs3HH3/M8uXLCQ0Nxdvbm8aNG5f6Ph89epT58+dz6dIlXFxcOHToEHq9nsDWPSrgCaoHiUTCi2M+ID4+ni1btlR0c0qYOXMmwCN9+dKqc9Cqs8u7SUIVJgIsQagkCgvy0GqLMBgM1K5dG6XywVcdrVixgtTUVKZMmVJscvvMmTNxcnIiIz2DqfPWlJoioCaQSqX858Nl1PKqy8WLF/H392fIkCG0aFEy2zZAREQEBw8exM/Pj927d/PGG2+wb99+Rk5fgEst76fb+GqmRecBuNbyYsmSJRXdlBKuXLkC8EhfvqQKFVKZWCko3CECLEGoJK5dOgEY50s96PAgwLVr17hx4waFhYXFUjSEhoby+efGwrId+42kTv3ge12m2pPJFXTsN4pTp05hMBjw8Sl9BSCAt7c3EomEqKgonJ2dWb58OX2HTuGZTv2fXoOrKalUiqd3Q86fP19mOpGyGAwGMjIyiI2NLTbUW162bdtGLS8fbOwf/PN3m1SmQKqo3otwhIcjAixBqCQsbYwFiTUaDZ07d37g8w4dOoSfnx9Dhw6loKCA+fPnExERUSzbe3UqgfM42nQfhEdtX15+5d6loVQqFe+++y62trYMHz6chkGt6Dbw9afUyuqv04DXiYmJYe3atfc8zmAwsH//fr799lumTp2Kl1dtHBwcqFOnDnXq1CEwMIiJEycSFRVlOketVj/SCsXCwkKOHD2Kh0+jhz5XEEojVhEKwlOk02kp0hSiMi9Zh0z2z7JwrVbL5cuXTdnC7309HaNHj6Zjx44MHjyYcePGERcXx/z5803HfPNXODK5ovweogqTyRVYWNsReek0Op3O9J7/W3Z2NlOnTuWXX36hVed+vDb1G6Ri2X65qVXHmKg1Obnsmn0HDhxg3OuvczUyEolEgqWlNQ2CW9Nj6AzMLaxJTbjB+b+3sGjRIhYtWkRCQgJWVlZYW1vz/PPPs2HDhgduj06nw9PTk9TUVEbMGPe4jycIgAiwBOGpunRiJ1p1Ps27vFRi35XzhwFo27Ytp0+ffqAAa8eOHQAcPHiQ3NxcrKysKCwsZMmSJTi71uK9xXtrZFqGe5FIjIHSV199Rbt27bh06RKbNm1Co9Gg1+s5duwYBQUFyOUKXhg9k64DX6/WpWsqwm9fTwagXr16ANy6dYuZM2dy4uRJcnJykEokxMfH4+ZRh/GzfyawVfdS/w069RvJxRO7+eG/Y/D19cXR0ZiXbOPGjQ/VnlGjRpGamsqAUe/i07Dp4z3cXVISYlCaqbB1ELVWayIRYAnCU+TTuBUyacmPncFgIOz0Pjp27EhmZqYprcJ9r3fXPCJra2scHB3Jyc7G0tqWad9sFsFVKbq9+B+uXDzBjBkzTNvcPetgaWVHbk4GtX398Qtux7Mhr2Dn5FaBLa2+LG2MtQcnTnwLP7967Nu3D61OR9M23XCva09eTgY+/m3o/eq0+/4bBLbqTuNm7Qk/e5j8/DvzspYsWcKYMfcvXq7T6VixYgUWltaEvDj+8R7sX2aP7gBAy079GPnOd+V6baHykxgqUzpdoVxlZ2dja2vL12svYW5hXdHNEe7hzKHNLPn8TdauXcvly5dNGcMfxIoVKxg+fDgAnfq8ipm5JZ37j8XWweVJNbfK0xSqObF3LXaObvg0bIaVbcUUG67JIs4d4sDGX8jJTMGnYXO6D3rzkXt68nKy+OHD4URFFC++nZqaiqOj4z3P/emnn3j99dcZP/tngso5jcnbgwLJzzWmbmjerhejZy429cQV5Ocw9cUAsrKySs29JlR9IsCqxkSAVTUU5GUz940eWFupWLhgATdu3GDixIkPfL5er8fFxYX09HQWbbou5goJNZK2SMOK+W9x6vB2Alt25eLJvcyaNYs5c+bc87yu3boRFXOLGd/uKPc26XU63niurul1wDOdGTvrfxRp1EhlMhFgVXNiFaEgVLDQE3tJTb7FhPHjSUlJoU2bNg98rl6v5+DBg6jVaur7NxfBlVBjyRVKRs38H4u3xTDho6V41qnHou+/Z/LkyWzatImrV68ikUiwtrYmMTGRAQMG4OLiyr69e3Gv82SKnktlMj5bccL0+tKp/Uwa0IB3BjcjLSn+idxTqDzEHCxBqGC36yEGBQVx48YNYmJiykyAWVRUhLOzM5aWltjb2xMVHU1Bfj4u7p6M/eCXp9lsQajU3vj0d1YtmMrChQtZuHChaXtubi7u7u7IZDI69xuGtZ0LHfoOf2LtOPe3MWP9jBkzOHr0KIcPH0av1z1Sri2hahEBliBUMJWlcfg2LCyM3NxcRo0aVeaxUqmUrKwssrKy8KjXhG5Nu+Mb0Jp6/s8gk4mPsyDcZufoyhufrEJTqCYx7iq/L5yGla0jSgsbzv29Hd+GTTiwZRXfboh8YqtEb0ZHsH/jUsCY3+7ChQsAhLwwBoXS7IncU6g8xE9kQahgf29dDoC9vT0ymQy5vOTHslu3buzdu5f+/fsDMHjCJ3ToO+xpNlMQqiSlmYra9QIJbh3CzrU/IZFIkCsURIadASTk52ZhaW1X7vc9ue8vls2fanr9zTffAPDSuA/o0n8MBfk55X5PoXIRc7AEoYKd+XsbACNHjuTy5culHhMaGgrAhg0bCG7ZiaA2ouCwIDyMHoOnUFioRq0u4E5/lQELK9tyv1dCbCTLv55WYnvrzv3o/Pzocr+fUDmJAEsQKpBWW0RGapLptZtb6Tl/UlJSTH9/7e2F2DmKxIWC8DCkUiledRsDxrmMt5X3Qvq/d/zBx//pjl6vZ8SIEQC07PQc73y9gWHTvhVJa2sQEWDVEBt//ZzxvevwxZT+Fd0U4S4XjmxDIrnzMbS0LFlC527dBo55IsMZglATTP78z2Kvg1p2QSotn1+DcdfDGN+7Dqu+fde07ddffwVgxPTv8GnYVARXNYyYg1VD1AtoDWsWY+soVq5UJuq8HAwGvel1Tk4OSUlJuLoae6jOnj3LyJEjAXj1rc9o13NIhbRTEKoDCytbvloTyrVLJ7F38TD1aD2u8b3rmP4+bdo0Dh48yKlTpwAY+fbXIrCqoUSAVUP4t+jED1tviA96JbNv07Jir6VSqSm4io+Pp0OHDhiQ8my3AbTpVrJ+oVB16fV6dFoNCqWqoptSo1hY2RLUunu5XS8x7rrp719//TUBAQHMnz8fmUzOos3X73GmUN2JIcIaRARXlcuBzcu5FXvtzusDB4oNESYmJpKXl4eLe23q+bdGJldURDOF+4g8s5vTBx+uuLDBYGDz0o+5dGLPE2qV8LTcXZJq6tSphISE4FHHl9k/7q3AVgmVgQiwBKGCNAgunrH90KFDdO7c2fS6RYsWLFu2jBvXwlixcMa/TxcqAYPBQJHO8NA19CQSCd1enkJw296PfX9R7aximVta8+Wf53F2ccfa1p43P17Ou9/uwKWWd0U3TahgYohQECrIxZP7i71OTU0lODjY9Do5OZkPP/wQgHr+pWd2FyqWRCLBv+WjFQi2tH789ABTXwpAnZ+Ln39zJvx3BSoLq8e+pvDwrGzs+fjX4xXdDKGSET1YglBBZP+qGzhmzBhTktHJkyfj6upKbGws732/g7e//KsimihUcur8XACuhp0Rte0qiE5bRE5WWkU3Q6iERIAlCBXEv2WXYq9XrVqFRqPBYDCYaqe1DXkJT59GJc7V6/XsWvs/Niybx7L5U4iPCn8qbRYql7e//D/a9niZ4W9/jYdPw4puTo20asFU3n1V9DALJYkhQkGoIK61fIq9njdvHnK5nLp165q2DRr/aannfvV2f6KuXDC9PrlvHYu3xTyZhgqVVj3/ltTzb1nRzajRmrR/DrfaxuC2UJ1PoTofGzunCm6VUBmIHixBqCASiYR6jYt/850zZw6jR98ppXFo28pSz3X18i32esy735d/A4UqJ/baJTb8/CHx0aWXXBLKX1CrEEIGvQHA3r8Wc3b/mgpukVBZiB4sQahAr3/wM9MHNy1z/18/f4KllQ1BrXsUmxQ9bOo3DJv6zRNp0561/+OvpZ8hkUj48s8L5TIZW3g6dFoNuzeuwDeoXalDy8Kjyc/NQiZXYKayuOdxXQa8TlFR4VNqlVDZiR4sQahAVrYOfPPXvedPrfhmOtNeDmJ87zosmzf+ibcpPeUmYEwBsP23OU/8fkL58WnYjO+3RBPYqvwSaQqwd80C9v61+L7HqSyssLZ1fAotEqoCEWAJQgVTmVuyeFsM81adxsnVo8R+uUKBd/1APLwb0KzD80+8PYPGf8Kizdfp0GsIHvWaP/H7CUJlF9C2H61DBld0M4QqRmIQWeqqrezsbGxtbfl67SXMLawrujnCQ8hITSD89AFSE6Pp0Hck9k7uFd0kQRDKUUF+DlNfDCArKwsbG5uKbo7wBIg5WIJQCdk7udO2Z9X4xpySEIu9kxtyhbKimyIIglBpiCFCQRAeWaE6n3P7/+Dcke0V3RRBEIRKRfRgCUINoylUk54cj6un72MXADdTWfBsn7FYWImVhoIgCHcTPViCUE3o9Xo2/zqX3799h9TEspOOrv3xQ354/xUOblpaLve1snVA+q+yP4IgCDWd6MEShCqoUJ1P7LWLnDu0lf1bllOvUVMmzv2DbWt+xMLSiubte+PkVqfUc7u/NAF7Fy+atOv7lFstCIJQc4gASxCqkLSkONb//BEx1y+TmnTTtD0xPprP3uyJlY0dU+atpVYdvzKv4exeh16vvPk0misIglBjiSFCQagi0pNvsu33BVy+cJzsjLRi+3JzMkm8eYPc7EzOHd5YQS0UBEEQbhM9WIJQyRUVFVKQl8N7I56953G2Ds5M+uxP3Dx973mcIJQHvV7PtUsnsHVwJfLCYTQaDV0HjK3oZglCpSECLEGopPR6PbdirjB3Ym8Men2px0z4cCluteuRkXILz7qNxWq+KkCv03Hh+C7CTu4m5VY0edkZSKQybB1cCGzTi2bt+zy1cis6nRa9TotcYVZsRam2SMOJfetIvXGeuk27U6tOffKyM9m8/HMCWnXH0saBpLjr7Fr7AyBBrlBQqFYTE3EGD98Aank3xtHVEzevekilUvau+x+hR3eQmZ6MTC6nQ5/hNGnXFztH1zLbVlRUiFZTSPSV85ipLKjbqDkSiYS4qHDCTuxCp9Ohzs+mIC8HRzdvNOpcnD18UVlY4167Hta2TljZOjyR96ywIBeVhQ1SqRgEEsomMrlXYyKTe9UVdz2MuRN73/e4RZuvI5OJ70mVmaZQzeFtv5GXk8XhrcvJzckGQC6X06VLF1xcXNDr9fz++++mc0IGjsE38FmkUilObl6ozK3Iy8nEytYea1unx1q1aTAYUBfkEhl6jLU//pf83EyKijRY29ij0xYhkUjIy82mqKjoga5Xq1YtWrVqRUZGBgkJCdy4EUNhoRoAM5U5llbWpKcm07hxY5599lm2b9/OzZvG+YM+9QNxr12P5FsxXAs/C0Bwq87EXrtEVkYa+ru+WNTxbYizuzfnju9BqVSikMtRqcyRSCUkJSaiVCrRaDTF2qZQKjE3t8DRxQN1QR6WNvYMnvgFbp6+j/wenj60iZ2/f4VXvWBem/oN2Zlp2Dq4PPR1RCb36k8EWNWYCLCqri+n9CXqysUS261tHek1eCJtur2EmbnlY+exEh6eTqdFKpWV+t7rtEXEXrvE5bMHiLt6gdTEWOJjrpc4zsbGhlOnTlG/fn3Ttg4dOnD48GEsLCyQy+VkZ2eXen+JRIKZSoWZmTlmKnPy83OZ8NFyfBo2LbPNpw5s4NKJnSTfjCb5Viz5+XkA2Ns7kJubg42NLT16hODh4YFOp8PV1ZWmTZui1WrJz89HoVAgkUiQy+XIZDLS0tKQyWQ0b96cunXrFnsv9Ho9N2/e5NKlS+zfv5+UlBR69uzJoEGDkEgk9O7dm+3bjYlp3d3dsbCw5Pr1a6bzAwIC6dixAw0bNsTCwoLGjRtz/fp1/ve/H0lJTSE4OJgVy5djZmb2z7+Hjvj4eGrXrk1qaiparZbIyEgSEhKIiYkhJSWFixcvsmvXrjvvv60dz3QeSGCr7uh0WnTaIlw9fXGp5U10xDlkcjm16wWW+l4aDAZiIs+TeusGl0/twNqpNv1HvVfme18WEWBVfyLAqsZEgPV0FOWmoLByfqxrFORls2HZZ4Sd3k9hQR71g9uhUJpxYt/6EsdKJFKe6dCbhNhIZi7aJYKsp0RbpOHLKX2JjboCwMxvt+LqWRczlQUAf/30IYe2/YFGU4hCoSAoKAgvLy/atWtHvXr1CA0NJTw8nAULFuDqWvbQGEBRURHR0dGYmZkRExNDRkYGzs7OpKSkcOvWLVJTU8nOzmbbtm2Eh4fTuGlbJs75vdg1CvJzuHL+CCf3/h/nju2hbl1fAgMDCAgIoGHDhjRo0IBnnnnmybxZ96DRaEhPT8fFxcU0xKbX69FoNKhUqid2323btrF+/Xq6d+/O29OmER8XV+IYpdIMjaYQAL9GTfD09UdlYYO1vTO1/YLxrh+MTK4wHZ8Ydw0HZw+UKvOHbo8IsKo/EWBVYyLAejr0Wg1S+cPX4bty4QgLZg5BrlDQvG0vThzYVOpxgwYN4p133uHXX39l0aJFxo0SCS+OmUXXAeMep+mVUmLcNczMLbF3cufc39sAaNrOOFx6ct9f5GenUL9pFzLTkshMjSewZQiawgKSb0ajLsglNeEGQa174OBSiy+nPo+TW238AtuwZeVX5Ofl8uqkeeiKCnGp5U2D4Hac/XsLTu7eWFjaoNfryM5I5syB9fQZNgOFQklk6HFSE6LJyUhh518/l2ivXK5AqzUOp7366qtMmDCBJk2aYGFh8cTeo7S0NFq2bElUVBQA4z/8BalESmToEc4e2gwSyM/NoaAgHxcXV2bMeIcpU6aIYPwfer2etLQ0srKyUCgUJCQksHv3bmQyGQUFBdjb27N+/QauX79OZmYGGo0GnU6HR21f+o2cRX5uFn4BrdAWaVBZWGFuaYPS7OGCQxFgVX8iwKrGRIBVeRXkZfPllL4kxJedcR1AKpWSkZFh+gGs1WpRKIzfoB2dnBn/35V4+DR84u19Eq6EHiUrLZk1iz/Ayc2T+sFt2X1XANPthXHs+esnANr3fIUm7fqwe80ikm5GUZCfi6awEIPBQFk/wiQSSZn7brOzdyIzI7XYNhs7B3KzMzEzU1FQkA+AQqHE2tqaen71+HbhQho1asTGjRtRq9XcunWLv/76i4CAAFauXPlUJj7v3LmTnj17ml7P//M8s0e1JT8/j44dO9KwYUMkEgmjRo2qkF6q6qawsJB169Yxc+ZMYmJK/8za2TvyTOf+1A9uj7WdE3X8Sh9ivE0EWNWfCLCqMRFgPZrV38/iwNZVpe6zc3Bh6pd/4exeG4CM1ATMLW1Mw0QP2kNQqM7nm2kDiImKKHW/XC5Hq9UCMHr0aJYsWWLad/c9vt14FYXi4XvPKkJSfBQuHj5IJBLOHt7Kz59NeOhryOVyfH19cXNzw83NDR8fH5o0aYKdnR3u7u5YWlri4uLCoUOHCAsLo3fv3jRq1MgUbBUUFBAVFcX169dZs2YNcrmczp07Ex0djb29PTExMYSGhpKfn0+zZs1o3bo17du3x8fHp1L1/sTHx9OgQQPy8/NxcvVEpy0kMyONRd99x/jx4ytVW6uTzMxM3nzzTQoKChg6dCiWlpao1WrS09PZuGkTG9bfGdIfNnkebUJeKfNaIsCq/sTyI6FKuXRqP8k3o/Bu0IS6jZobezD0+seuhbdn7Q/Y2NqzadVC0pITyjwuMz2Z2aPbU69xU6ztXDh3dCcAZmYqCgvVeNVtRNueQ9Bri2jUohOOrp4oFGYc272GFd9Mp3nbHrTt9RoW1nZ4N25RZoCl1WqRKxRoi4q4dat4e+zs7MjMzATg6I6VdHxu1GM9+5NgMBjQajUoFMaJyOkpt1j97RQKtQaiIi4UO3bWrFnMmjWLLVu24O/vT+PGjSksLEQikZj+TExM5PTp0/Tu3Rs7O7v73r9Pnz706dOnxHYrKyuCgoIICgpiwIAB5fKsT1thYSG9e/cmP9/Yu5aaFE9wcDC/r1xRrFdLKH92dnasXLnS9PratWskJCQwYcIE08rI2zzq+j/t5gmVjAiwhErldoeqRCLh9MFNpCXfpG2PV7CysefapVN8/+GI+17Dv1k7ioo0RF48Sce+Q7l85gDWds4Mn7aQY7v+xMHFk1bdXjT98geIvXaJm9HhZQZXzs4upKWlIpPJ0Ol03IyOwNIyztTWevV8CQsLIy7qMqsXz0YqlaL76WMArKxsyM01rgg7c2QnZ47svGf75XI5FhaW+NbzpWePHrz//vvF3p/bv1gBMlMT7/t+PG3n/t7CT3PfAOCz305iY+/MuSPbuXzpvOkYb29vFixYQKtWrXBzcwPg5ZdfNu03NzdOGr496dnGxqbYiruaLD8/n9jYWMAYnE6dOhVHx6eTN0swUqvVHDx4sMyAtl7j5mWuQhRqDhFgCU9cfm4WBXnZ2Dt7kJFyk4K8HCysbLkVE0lU2HFys9LQ6bTcjL5MXHQkSjMzFAolOdlZAGz/YyF29o6k3qNn6W5hZ/82/f3gFuO3zeSEeGaP7mDavvX3hXTsPQQbR3f0Oh1O7rWxsLLBwtrelI/ntpEjR7JkyRIkEolpqOn2EMzdASEYl4wXFRWRm5tLaGgo165d4/r166hUKsaOHYurqyunTp1iz549REVF4efnR2pqKh06dCAoKAg3NzcsLS1Lfa5+/fqxefPmYtueHznrgd6Tpyk1Mdb093N/b2fd0k/R3pVTqX379uzdu9c0l0x4OPb29qYeTOHpunTpEpMnT2bv3r3FtvcZMomWnQfg4uFDZOgxavsFVVALhcpEzMGqxipqDpa2SMPONd9z8eRe0pLiyc3OAO4Mo93NxtYWJ0cnpFIpCoWCMWNGk52dTVJSErm5uab5Cebm5lhbW5OZmYmfnx8qlQqtVkteXh4ajQalUomLiwuurq60aNHCFOhotVp27NjBkiVLaNy4MevWrQOMPSRSqZS8PGM+IFtbO2xtbZHL5ej1em7ciC7WTrVabcq7Ux40Gg1paWkYDAasrKywsLBAJjPmVsrLy2PPnj1cuHDBlM/nSmQkN+PjTeeHvDCOXoMnobKwKrc2PShtkYb4qHDio8JJT4rh1o0I0pLiyMpIoyA/z7Si7m6TJk3is88+Q6PRYGsrss0LVVP//v3ZuNFY69PCyobO/UYS0LIr3vWDH/paYg5W9ScCrGrsSQVYJ/asIe56GBj0aAoLUJqZ4+7TGDsHd9Yu+ZjEuJKJFQGef/55xo4di4ODAxs2bMDPz4/Ro0dX6ITc29mq/92bkpeXR0FBATY2Nsjl8nJfGVa3bl2io6NLbFepVBT+szpOpTLHwdkNGztHXD3r4eEbSJ36wXj5BjzV9yz51g0unzlAUlwkt2KucCPyEoWFaiQSCXZ2dvj4+NCgQQNq166Ns7OzaY5U3bp1MTc3x97engYNGjy19grCk6LVatm4cSMvvvgiYKykoNfrWP39+9g718K9Tn1cPOri6dPovtcSAVb1JwKsauxJBFjZmanMGNL8kc5NTEy8b4LF6uT48eO89NJLTJw4kRkzZjzQOQNHzUCpsqSefysMQHTEWfwCWz1WAeecrDQOblpK5Pm/SUu5hbaoCEtrW2wdXOg64HUCWnUr9byb0RH89eMHXLl0GgBXVze8fbzp3q0bvXr1omnTpuXaqycIVUFERATjx4/nwIEDgLG6Qk5WWrFjvt8Sfd8vZSLAqv7EHCyhTJuWf8721YsB8K7XiHoBrWjYvAvte7zEyYNbKFQXmI51dnYmICAAS0tLPDw8UKlUdOnShR49epCQkIBUKq1RwRXAzz//THx8/AMFV1Y29gyf+hXnj2wlMvQYf/4w27QvoGkbxn+86pFWSmalJ/PuUGMepG7dutGzW3vMzMyYP38+CfE3iAg9yQeL91Crjl+x8zSFar6Y2g9NoTGr9eDBg7Gzs6OwsJCUlBQsLCzQaDTIZDLkcvFjRKj+8vLyeOGFF9i5s/gilbuDqy79R9Ou5yuiCLQAiB6sau1xe7DmjO9KfMy1Ets79x3KS+M/Ze1P/2XfxmUAOLvWIjMjlaJ/FVv99NNPee+9h6/TVR1oNBoWLlzIypUrCQ0NLfWYWrX9+OB/ewA4tPU3/vj+/VKPk0qlDJn4GXqdjtzsDDat+NK0b/7qUCyt78xrykhN4PDWFWSm3OTYPuN8kWnTpjFp0iRSUlJITU1lzpw5HDx4EIAGAS2Y/MVfxe6XGH+d/47r8kjPHR0djbe39yOdKwiVjcFg4JdffmHs2LGmbXaOrnTsPQRnTz/kCiUxkRdo3uE5PLwffChc9GBVfyLAqsYeN8BKTYhhx//9QFZaElKpFJWFJQq5kra9XsXM3IqfPh1LevItioo0NGnZCYlUytXwc6ZJ7QDNmzfn9OnT5flYVVJ2djZnz56lc+fOJfY5ubihUChRqwvISEtBIpHg5VMfpZk5qUm3yExPvue1312wmTr1jauWtEUapg0KLLGY4F5ZzV8Z/1+kUhm3blwmMe4qBblZWNs5UZCXTWxUhGme2oPw8PAgPDxc/MIQqo2srKwSudceZAjwfkSAVf2Jvn2hTPs3LuHIjj+LbXvu1Ul8MXUAPvUDSbp5w7T9/MkD+PnVp2lwAOnp6YSFhSGTyfjyyy8RjHmcOnXqVCzIMRgMfPfdd4SHh1NYWIiFhQWBgYEkJCRw9OhRkpKSMOg0ZV7T1aMOA0e9ZwquCvKyiY+OoFGzDiTdvI5MKqVIU4hWW4QECRIJmFvakJ6ayLMhL+PpG8CVM/tZt3Qu2qIi3Nzdqefri2uDOsTH38TL1ZPXBr9A06ZNsbGxwc7ODhsbG7y9vcUQiFBj2NrakpKSwrZt2xg+fDgAb/T1AWDwG3Oo4xeEp29jZDLx61QoTvyPqIG+f38Il84eKbbN1sGZxs3a4+jigV6nQ6E0Q2F+p9fLzsmVASNnYdDrAIiOvIitvTNZGSmmYzp16shPP/30dB6iGpBIJLz11lv3Pa5nz54l5n0AJN2MQa0uYM0P73H57CGSEuIwGAzIZDKcnV2QmSlxdXfBwcEec3NzLCwsuHz5MrFRmexa+yMAdnb2TJk8mQkTJlC7du1yf0ZBqA6cnJwYNmwY8fHxxaY8/PF9yekPQyfNw7mWN9a2jji510YuV4rSRTWUGCKsxm4PEb761jysbR2QK5RYWtuxZeV8ws4cLpd79OjRg9atW9O4cWP69u2LhYVFuVxXKE6n05GTk4NKpaJ///7FAi57BwdCunenW7dutGzZkvr165syoJcmKiqKgoIC3NzccHBwED/8BeEB6XQ6Tpw4gVKpxMLCAldXVyIiIli7di0LFiwo9RyVuTkWltbY2DliZWOPuaUtljb2WFg7sO3PRWKIsBoTAVY1djvAepKSkpJwcXF5ovcQSkpPTyczMxOpVEqdOnVEkCQIFUyv15OVlUVhYSEZGRnExsaSkJBATEwM6enpREVFkZWVRWZWFhnpGWRlZZGTky0CrGpMBFjV2O0AKyEhAYlEQkFBAVlZWSgUCjQaDYWFhRQUFJCXl0dOTg4ZGRlcv34djUZDeno6kZGRZGcbfwCkpaWVOtk5KioKHx+fCng6QRCEquvo0aO0bdtWBFjVmJiDVQNYWFiID7AgCEIlInqdqz+xFEgQBEEQBKGciQBLEARBEAShnIkhwhrgxIkTWFlZVXQzBEEQhH9cvXq1opsgPGEiwKrGlEolbm5uhISEVHRTBEEQhH9xc3NDqVRWdDOEJ0SsIqzm1Go1Gk3Z2cAFQRCEiqFUKu+Zs06o2kSAJQiCIAiCUM7EJHdBEARBEIRyJgIsQRAEQRCEciYCLEEQBEEQhHImAixBEARBEIRyJgIsQRAEQRCEciYCLEEQBEEQhHImAixBEARBEIRy9v/GGeCdfbfjFwAAAABJRU5ErkJggg==", + "text/html": [ + "\n", + "
    \n", + "
    \n", + " Figure\n", + "
    \n", + " \n", + "
    \n", + " " + ], + "text/plain": [ + "Canvas(header_visible=False, toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Bac…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "%matplotlib widget\n", - "from eomaps import Maps, widgets" + "from eomaps import Maps, widgets\n", + "\n", + "m = Maps(figsize=(6, 2), layer=\"coastline\")\n", + "m.add_feature.preset.coastline()\n", + "\n", + "m.add_feature.preset.countries(layer=\"countries\")\n", + "m.add_feature.preset.ocean(layer=\"ocean\")\n", + "m.show_layer(\"ocean\", \"countries\", \"coastline\")\n", + "m.show()" ] }, { "cell_type": "code", - "execution_count": 3, - "id": "2f7e965d-d79a-4a71-bb00-60927b8fa4ab", + "execution_count": 9, + "id": "2c26797b-7c8e-4847-b711-4db1f3e3084f", "metadata": { "editable": true, "slideshow": { @@ -193,16 +237,41 @@ }, "tags": [] }, + "outputs": [], + "source": [ + "button = widgets.LayerButton(m, layer=\"ocean\")\n", + "toggle_buttons = widgets.LayerToggleButtons(m)\n", + "radio_buttons = widgets.LayerRadioButtons(m)\n", + "select_single = widgets.LayerSelect(m)\n", + "select_multi = widgets.LayerSelectMultiple(m)\n", + "dropdown = widgets.LayerDropdown(m)\n", + "slider = widgets.LayerSelectionSlider(m)\n", + "range_slider = widgets.LayerSelectionRangeSlider(m)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "e850d223-3326-4afb-a500-d0c08b8ee624", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "ignore_in_unittest" + ] + }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6e2d04a390084f7eab12c600ab71ae30", + "model_id": "164f46af43da47e585b67b0441c5f581", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "LayerToggleButtons(description='Layers', index=1, options=('Countries', 'Ocean', 'base'), value='Ocean')" + "LayerButton(description='ocean', style=ButtonStyle())" ] }, "metadata": {}, @@ -211,23 +280,96 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "978c8cf2f45a452987f32024e174568c", + "model_id": "e4fa62881a124369af70305b20d4f0b8", "version_major": 2, "version_minor": 0 }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAADICAYAAAA0n5+2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABmbklEQVR4nO39VXdlW5bgef43nn0YxGDMcMEuX79O4RDuGeSRWVn5UKOz6a1f67E/QD/2V+jRPUaNqqjKyIiMdA+PcA/ny2TXmEkmlg7T5tUPWzommcAkmVjrN4aDyQ5s04E991xzzakIIQSSJEmSJEnSplF3+gAkSZIkSZL2GxlgSZIkSZIkbTIZYEmSJEmSJG0yGWBJkiRJkiRtMhlgSZIkSZIkbTIZYEmSJEmSJG0yGWBJkiRJkiRtMhlgSZIkSZIkbTJ9pw9A2lq2beO67k4fhiRJkvQc0zSxLGunD0PaIjLA2sds26Zv8DC18sxOH4okSZL0nP7+fh49eiSDrH1KBlj7mOu61Moz/L/+f59iJVI7fTiSJEnSHLvV4P/5f34P13VlgLVPyQDrALASKeKJ9E4fhiRJkiQdGLLIXZIkSZIkaZPJAEuSJEmSJGmTyQBLkiRJkiRpk8kaLEnaIaoCqqIQhAIBWKaKHwhMXcX1Q/xAbMnzKgpoqkLcVImbGqqq0LIDskkdLxD4Qcih7ji6pqCpCooCCqBrCm03RFHA8wX1to/thThuiOOH1Fr+lhyvJEnSXiQDLEnaJKauIEQUvPTmTJKWRr0d4PkhR3sT5JI6+ZSBriuEIQShIGVp6JpC0w5IWBqIKABSFAU/ELScANcPURUFEFRbPtNVl9FZm5lq1N8sEdOwDBVdUzB1FVNXmKy4ZBM6MzWXgXyMXMqg7QS0nICerEk2aRA3VPoLMSAK9GLG6gltIaJAUFUUqk2PIBSd4/SCkKYdUG/7tN2Qx1Mt6u0AQ1PwtihQlCRJ2s1kgCVJ6xQzVLozBoqiUGv5ZJM654ZTdGdMNFVBCIHrh6QsHVUFXYsCl1AIXC/E9QUxIwqEFEUBIBWf+ygqz55HCIGhKdRaIVMVh/GSg+MFqIqCrin85z8bBBTCudsZuoqmRg9QaXpkEzoCaDshpqFgzB2HEIJ6O0DXFOKmtuZ/t6IoncNLWtpcdkvpPGap7tGVNjB0lZ6MyUTZZqjLotbyaTkBA3mLbFIHAS03YHTW5u5YE9sLN/xa7FW6pizKUOqagqEpJC2NnqxJueFTqkcBtFgQdFuGStMJtiy7OS9pabheiBcINBUsUyOb0CnVvQP5eknSRsgAS5JWkYprNNsBAsgkdN44kaEvFyOX1FEUhbYT8Hi6zWzNpdr0cLwQ2ws53BOn5YRMlGxScZ3ujIkfRMt+CUvD1BUWRVNEQYrjhRTrHqW6x9PZNuWGx4mBJD0Zk3OHUliGiqoqyx7rQrmkAXPPkLQWB1GKopBJvNxHfz5oXPiYXRmTIBSEoeD0UJKTgwlmKi65pIGqwEzV5av7VcoNj0pzZ5YTFSUKWPIpg5SlETNUqk2fmKkiRBTo2G6A6wsqDQ/x3H11NVrSDdcR3yRjGrmUQT6lo2tqlPkDHk62CAUYmoJlqqTjOgP5GA07IB0XxE2LuKnh+iFjRZtC2iAIoekEG/q3p+IabSckWMPBN+2AlKVx/nCCN09kO/cJQsHn96rcH2+u63cgSQeRDLAkCcgmdPJpAwWYKDl4gSAIBboaZYu8IAocai2fMBS0HIO4qZJNGpw7FDVxFULgB4KRGRvXC1EVeONkFtcPaTsB2YSJaaj4QUgQQrXl07QDKg2PyYqD7YY4Xsj03NKfqkSZg/sTTeptn6O98TUFVztJU5VOFi0IBaNFm/GSTaXhbzgw2Ii4qfLmySyFlEGl5ZOMaTydbfPGiSwtJ2C25jJbc0laOkNdFpqqkE3qtJyAph3waKpFtRkFY/OEYEPLnU0noOkEjBWf/czQFgdq1RZMVVzuT7Q6t3k+yzVWdNb93Jap4vnRe7nRXt/v39BVKk2ff7syy7lDKYa6LCxT5Tvn83z7XJ6JssO/fD3DQD6GaajMVF2a9va9xpK028kAS9r35mOSXMqgO22QTRo8mW53AhmIgp182uBQt8WZoSSGrqIqcPVxHdcXfHA+i6ooFOsuH94s05+PcaQ3jj8XiNleSKnuRTVOGZOEpZEwNRptn5ihRlmcuQPR1GipLRPXeTLd5sqjOi0n4FhfnBMDKd40NZKWRiFtzNVe7T2Vpsdvvilie1HAst3ZDgHcn2hxqNtiqMuiWHcZ7rKw3ZCutEEuaVBr+bheSNxQuT/RZLLs4PrRgeqaQiii5WDPDzf9+NcSqG3GMqDtbnw5r9zwKDc8AEZmbCDKiGaSOroaZd1++FoXuYSBN3fRUG54XH5YizZuCNH5fUrSQSQDLGlfKaQMCmkDAaQtjdujTdIJHdsNODucRFdVZmpup0B83tG+OLM1l8dTbSxDncs0CUxdoeUE/PF6ia60SSFtMNxt0XICPrldQdcUjvXFeTLdRlEU3jmVpStjUm54pOM66lxGp972UVUFxwuZLDt8dqdCKFi0XDNWtGm0AwYKMYa7LfwgyqAFQtCXi23zb/LlhKHgrVNZHk62KDU8qk1vW0+2thsy6TpMlh0uP6zx3pkc+ZSBqauMztp8cqdCqe6hAKeHkhzqjtOTMbk73qTeflbj5BzAeqPnM2cLf66pCtW55V1FibJq+ZTB0d44hbRBzFDpzZk8nQvIJOkgkwGWtOcNFmIMFiyGuy3ipsqtpw368jFmqy6He+N0pQ0mSg5XH9dpzBV3v38uh+OFfH2/hqLA46k2vVmT430Jns7a9GZNhBAU0iaWqXLtcR1dUxjqslBVmK26nBxIYplRDc+JgSTpuEYoYLRok45rjJds/EB0TtKHeuLYc8tTy2UwXF8wU3OxvYBG2+e14xnyKYNqy6NUd7Hd+aLjKHuQTegY+u5rZde0AyYr0U7HcsMjm9SXBLTbyQ8EH94sEzdVhrqsTu0TRJmuO2NN7ow1d+z4VmMZKt1ztW2GHhXB55IGQ10WoRA8mGhx5VF9U5/z+eBqfodqzFBpu9HO0FzSIDu3K/bVo+lF78NTgwlsN+TRVIt0XO9shGi7AU9nbZ7OtGm/RGZtLTIJnZYd4IfRhpKVAmVdUwgXLNWqCrK2TNo0ihBCvp32qVqtRjab5f/9X67v61mE832a5tsMDBYsam2fi4dTUeZHeVZLM1l2cLyQbFLnUHe8syvvd9eKhGF0EsgkdISIArdTQ0lMTeVfL88QhHCo2yKT0Pn8boW4qfGz9/oQQjBZdpipuQgBLScgZemk4tEyoaYqeEHIbM3j3nhz0dLky8okdE70J3jrVLZT+7TThBB4c8HivfEmbTdkpurS2sYarL1IVaLi+758jBP9CQqpaFl5vGRTrHlUWx6NdkCt7b9UrZOpR/VfwXMxRyauk0/pFNImmYSOqaskrWj3oGWqnYyroUW7R4NAoGnre8+5XsiVxzW+ul/b8PGvJJ/UqbR8/vxSN8f6EviBYKriMFiIcfVxne6MyXTF5cv7FQbyFpmkju0EtN2Qetunsc31Y+1Wnf/5P16kWq2SyWS29bml7SEDrH1svwdYXWmDgUIMQ1MxdIVSPaoZmQ80ZmsuoYhOKCcHk2QTOk07YLr6bMefMtfoczWGpqCqCp4f0peL0ZM1qbd9xksOA/kYhh4tnfiBIJ8y8EOBCKO99bWWRzYR7eirt32eztpbsuxkaArfe6XAyYHkpj/2erWcgHorakJ6Z6zJw8nWi++0zZQFTV53A1WB145luHQ8g64rjBcdbo82GJ21t6QtgqZGOz/DuSa3rx5N88aJ7At7oa2XEIKGHXB/vEW15WEZKrdGm1vyGTB1Bc8XKAr052M4Xkg+ZTAy08bU1SUBlK4p5JI66ly7le1uPyEDrP1PLhFKe1Y2afD+2fyymRvPj3bj3Z9o0nJCbo40ltxG1xT68zF6MiYDhRif360wW/M6u/cuHc9wqMdCVxVujDS4/qROfz7G26ejgnchBOWGx2+vFqk0fS4cTtGfj6GpCnfGmqiKYKjLIhPXqbZ8NFXhaF8cBNTtgDujjU1rV+AFgt98UyRmqBzqjm/KY67pef0Q1w8RQK3po2kKrh9l60am20yU17/zbTsIAcEuubbsy5l872KBeExjtubyzaNap6h8rc4dSjJedKjOddO3DDUK9MWzTJWqwFC3xamBJKoaBZiGrnQ2UvhBuCkBVhBE2cvpSpQtVlWF00PJTuNc01CxjGiKQDDXG266GtU/On7YyTafHU5yajDZ2Z1oGgoTpagf3HJcX3SW+MZLTmdzyxsnsqgK3B5tUpor2o/+vYLZmrfsY0nSZpABlrQnHe6x+P4rhUXBleuHPJxsUW/7nBpMMliIMdRl0XYCGna09PdoqkXS0kjGND65XeGD83lySYOxot35sh2Yq+nKpXRySYNQCF49mqbciJZpwlDw+xslGm2fqYpLEAp+9FoXJwej7NGVRzU0NcpIpOcaiA4JwSe3K7TsAC8QHO2LM5CP8Wiqxa2njc0pAFfg3liTfMogpqvbUp9l6CqC6HffdkOsuX5Sn92pbPlz73WGpnBiIMF3zhfQNIUbI3U+vlVZV1YtHdf463f6UFV48wQ8mmrz0a0yqqpwdjDBzZEGx/sTnQavUxUHRYGhLmtdTWbXwwtC+nIm/fmlGzPyKYOerIn53HvzPCAuRsGgIGp3EjNUVCWqe4QocJvudvnT9dKiQGmhhb+6/nyMwz3x6DvADXj7dLbTg63e8rHMqCdZpenLMU/SlpAB1gHwxvEMI2V1U/sQ6arCQCHGbC0qvt7uXMBY0eHnn0/z6tE02aTBVMXh6UybJzM2p4eStOaWA5IxjfjcfwDODqc6j/GDV7s6v5OhLovXj2f45mGNsaLDWDG6Aj4znCSXNJiquNheyMUjKVpOtNV/YbNFN4jqsNJxjTNDyU4vLOaSSaqi8P6ZHOpco8r5wLA7Y3K0N85UxSVmqDyZbjMy095Qoa0Q0VX805lojM6R3jjdGYOktTUfcyFE9JxeyFjJpidjUkibTJYdsgm9k01ZK1NXdsW2/vmiaF1V8LdwCbE7azKQjzFatDncY1FIm8TNpUtZyzF1hZMDSV45mu40jQ1CwdPZNpdOZHjrZJarj+p8+3yeeEyjO2OSsjQEMF1xuf20SSFtcKR387Od1gsCt+eDq3mKoqBrAArGMg+haQq5hE531qTU8NA1hZ9c6may4tB2QgppAz8QVJoeXWkTXVM6PermHe2NslbZhI5pqAghKNY9bs9lk0dnn2UODS3qgReEm99uwtQVjgzt/HK+tLVkDdY+tlk1WKau0J0x6cmaDHdZJGIa6YSOoUVtB7wgSs3XWj6P59oVaEq0DFZpePihoGVHM/XmT17rOW8lYlHLBEVRONob7+z4WmnO3XzrhJ6MSSIWnVT8QJCO6/TnzSVdyOf5geDBZJNizWOsaFNt+Yt2VJ0/nOI75/OdXVE3nzb49HYZ1xdYhsprxzPkkjqWqZGb+wJX50aczM8T9IKQ6YpLX85cciLyg5CWEy25Ndo+t8eazFbddRffnhpMcKg7ju0GxAyV4wOJzpiczSJENBexVI9q3ipNj/GizfH+BK4vuDveXPfOQU3d3pqoRCxqwmnoKqcHE2iawon+BBMlh4Sl0ZMxO81gH0+3t6yWzDJVutNRE1oFmKw4UYF5TGO0uPxSYcxQ+Zt3eunKmIt+fnesyYc3S/ynbw88G79E1G5i4WimqYrDbM3lwuG9WZvZdqJM8MtOJFgoFIJ6y0dRFBKxaEboPM8PeTpr82/fzK7pu2v+viv1MtM1Bd9u8P/42XlZg7WPyQyWtKr+fIx/92bPirUZlqlhzf3/pKUzULCWvR1EJ2VFiYKyqYrTWS57Mt1momx3dukNdllUmx6ZhE5X2oy2ievRNvGUpXO8P8FUxWGoy2J01ubEQKIzTqRY8yg3PR5OtskljeikpUSZouWWRDw/ZLRo050xScd1jvYmiJsOLSeg1oqahJ4ZSnKkN86DiRZ/uF4imzQ4O5ykP2fy5sksd8eaOH7I1/ernYDvULfFe2dznc7gd8eaNNpRHYmhq/i+4Hh/nLPDKWKmOjdfUCWTiH7PhZRBKq7zeKrN1ce1dV1Bz498absh10caZBKrvy4boShzW/UT0Tb8Pjeaw3h3vMXk3Gu5XlsdXFmGiuuHnB5K0p+PddofRLvktM77s5B+FrSk4jptNyCb1LlwOEUQCm4+beD70YDrYt1bV0PQwz0W6bjOnbFm5362Gy4JpFoEqAq8czrLcJeF6wvabsBM1eXpTJumE3BrtMEbJ7IkYs/e144XUkibCKIgyjJUMgl9yee3Lxfbc73VForHNDY796YqCtm5EVPPM3SV4W6LH7zWxVjRZiBvdS4WXT+c+70beL7gy/tVerMmP3q9G2/u7+bf2vW2P7dM6XHnye7b/CFtLpnB2sfmM1gfXXlK0TaYLLtrOon1ZE2+e6FAOq69MN2/WcJQ0HIDNEUhHtM6u4w2WnTr+SHOXNboq/tVSnWPwa5Ypy+V64VomkI6HtVZuX7IyEwb2w1puwG2G2LM7Uo61p/gzRMZSnWPz+5WyKcM3jkdNa6EKGswWIgRhIK//3gS01B580SWM8NJVCXK7vzpRomxokNsroFpEAouHE6ha9Gy2HCXxfH+eCfDEI3jCXgw2eL2aLPTUXutErGoSL9h+7x7OrcpI3ZaToDtRnMZa3OZnVrLp9r0GJ8bL7QbJS2NlBUt3dpeyNHeBIX08ifS9QrCaGn43niTsaJNfcE4GstQOXc4halFmyQadhSoASRMje6sSToeZcq+flBjuNvC1FVMXWWoK8aNkQbD3daygZDjhXPjfHzePpXtvL62G/DLr2bIJHTeO5MjFHD5QY3vXixsyr/3oJvvTr/a91Kj7UeB+wrB2rxqtUoul5MZrH1MBlj72HyANf8B9oOQx1NtPrxVBsB5Qe3UUFeMD84VSCeiXk57cWyL44WU6m4nYLNMjXRcp972eTTVoj8f41hfonN7IQQz1ej2iZiGFwgsU6XthsR0hdGizatHl/8ybLsBH98qc/5QioGC1cmIiLkC96uPnzWEzCR0vnexQLnhcfVRnVAILh5J8/rxpY8dBFG2ZKricu1xnYmy88JA+QevdnG4J+oGHze1dfcret6jqRaf3q6su65qp80Pdz7SY/Gtc3nSCX3D72MhBLYbdur5llOsu/zzFzM0nQBTV/hP3xng2uM6D+ZmDH77fJ7BgoW5ye0QIFri+uZhjW8e1vjuhUJn00W54RE31W27WJLW5vnvZ2n/kQHWPjb/AZ6cLtHXk+/8/NbTaGeRqkS9oq49qfNkut1Z1knEVPpzMfrzMW48baACrx7L0JczFy2f7HVBEC27LKxVWY0fRFvIX7Q7r1hzeTzdJp8yqLd9psoOD6faK94+EdN47Viai0fSi3ZFOl5IsR5tUT/aF0eIqKFqre3z4Y3yqi0Qzh1K8dbJLIaurFhUvJJQCKpNn1xSZ6ri8ngq6ha+li+KuBl1Hp+pulHdmaoQ01UE0bifMBSMFl8cIG4WXVP43sUCJwcSnezgy2jaUf+zYs0lFddJWVE9YsLUaDoBT2dsHk21GOyyKNZcLh5JM9xtUW36JC1t0/tMAZ3f9cRc+4LTQ8lNrU2StoYMsPY/+Sk8AD66VWawFF3Kv3Ei29lZM12JTvzVpt8Jrk70J3jzZKYTSL16bP9+8DVNWXNwBSxbHO/PDbmdrjhoqtLp8v7WqRyPplo8nbWXLfYeyMdIxTWadkAhbXCiP7Gkn5eqQrHm8fHtMmlL54evd9F2Aj6/W11xm/q8R5MtBvIxjvXFCUPxwiXCUAjaTsjNkTqTFRdNjTIfC5e8XsTUFY71J8gmdF45GgWLhZSBPrcbq1NgXXb4083Slvcg0jWF75zPvzC4mq44fHK7Eo1V0VXeO5ujO7P8hUTS0jk1GL1n/nCtRCiiDGfLCbEMlb9+p5dLJ5Z+ZjZrSXI5PdnoWOfbGUi7lx+IZ01eZW5j35MB1gHwZKbNdDMaTXF/okVP1uRIb5yrj+pLTtQPJluUmx5He+MEoSAMo2WW6arLX7zVs+5syH4132pB11Q0VdCbixEKwR+vl1BUhZ5stOvy4pEgqsG6XqLa8jud5aNsFczWPBq2z73xFq8cTS/auWRoKq8cTXNiIMGDiRb/8MnUmo/P9kI+vlUmaWmYuto5Ca/47wkElx9Wuf5kaUPWtXJ9wVjRpmUbUfH+c9maIIxGlzyZblOqb21wdWowwdunci/M5IRzy7cTZYe4qfLGxUKnTmo1h7otjvXHKdU9LhxO0Z01qTT8RQXnkjQvFIIgiLraVxoekxWH6w/W/nmW9iYZYB0wDTugYbd5NLdk1ZONeu8EYTSnLwgFpbpHqe6RtDQUop2Eg4UY8oLrGT+I6nGCUHBjpN4ZuKupCkd649HOQi/kq/tVTEPlcI+FWXWZqriYusrXD6rU2/6i3YE3Rup8cD7P0d6o2H101qYyF+yeO5Ti6Wx7XR2+bS/k6wdVfvpGT6cebDmhiArqx2bX1z18OdWmj+8L/o+PJuhKm/Rmo35E80HVVo4jiRkqZ4eT9GRNerPRCKOVNGyfBxMt7k+0aDsB75zO8sqR9Jqbs1qmxg9f68afX2a2NHqze3dXnrS1VEVB1RXyKZV8yiBpaXxzR36h7ncywDrgVupVNFCI8aPXurasSeVep6sKVx7VeDjZWjTuJggFDydbnZ5Jl45nUBT4+kENU1cY6ooxVXE5dyiF44WUGx6KEgUHj6ba/OrrWYa6Lay59hA9GZOrj+uMzLRx/fUHJ2NFh//6yRQ/faObzFxLhedNVVx++eX0pjVTnG/e2mi3eTK9cu3ZcuaXE2137f/WwUK0UeFYfzwq6H/BcujITJvfXCl2Nj789Tu9G15e0+d2okoHz1f3q3RnTIa6rEWZ55VUml7UBLjmUkgZ5LZw2VjaHeQ3g7SEqsDrxzIbWu7w53a7daUNDC3qQRUKsWJzz70oCAT//NU0Y8UXz9m7/LC26M9tJyQIBId74kuW7eptn49ulhkr2niB4P7czjNTj5YiN5pBLDc8fv7FNP/uzV7yKb3Tk6czFLvq7ooO6rByY8aVaCp861wey1AxNfWFwRVEbQsWDhueLDuyfkla1shMO3q/+CGqAj95o4e2G3DjSYPpqsvrxzOrvudmay43R6Kh3bX24h247dbunNMpbR4ZYB1gy40mMXWF4S6LT26XUZQ8hZRBEIoVsx/zhBBzY15s3j2TA6JGhx/eKmNo0bJZfy5Gd9YkDAWmrqKqyqpLV7vVp3crawqunuf6glLDQ1OjYOr5ACsd1/npmz34geA3V2aZKDm4fojrC1w/oCdr0nbX1x19Xr0d8F8+miCfMghDwfnDaU4NJrC9cEkQuNOWC7LyKYNK01sSZIYhnSL+1ZYEF3rtWBoBnSkDszWXqbJDT87EcUNm6y7Fmofjh2iKwvH+OPmUsefep9LGNdo+X96vcnu0uejnv/xyBtsLeOtkjjdPZoHoe05TohYu9bZPNqnTnTH56n6V8aKz7WPEpN1DBlgH2HJZC9cXzNRc2k7IL7+aIZc0qLU8/k/fH8IyVRRFIQgEmvYsOPKDkA9vlrk71uTNk1muPa5zY6SO44VoajTOZqriokDny8bUo0LwdFznjRNZ0vEoW+b5Ykt6BG2mydLGrjznezKBsupVr6JEzTEX1itdOJzivbM5/vtn00yvcwTNvFBAca64/KNbZT67W0FVln8f7Ba6Gu22WqnRqiDaxHHpeHZRk9aJskNfbvmxSEd649RaPh/Ptbl4NNWO2mokDYa7rc6Sn+8LjgzEScejrN9LthKTdtBs1aVYdwnmXkdNU1CIRjPdn2iSTRj05kyO9yWotX3ujze5N744uNLU6L3z+vEMpq7wy69mqDR8am1/28c8SXuDDLCkJRZuzZ8/sf3qm1mqTY9c0kBVokHPb5zIIISg3g5o2AGDXRZf3KsueqxwQTZi4ddPtOPMARxujzY5dyhFPqVjGVHX7f5CbNc2Nv3exQJNJ+BXl2fWNRJmPvvSnTFWXX5VFHj1aIbhLotbo02O9cU5MTdP8Kdv9vCLL6Y7gdLLWO9y3HZQgN6cSaMd8OqxNI12wI2R+qr3GZmxGSxY9GRNns7YfHa3Qq3l85M3uhc1kYXoRPvrb2YXNUxVFXjzZJZi3Zt7H8ramP2i3vb54m6Fu+MvGktjE59Q+f210rKBUiFt8MG5PENdUQPhf/l6dlGbERlcScuRAZa0ILOysvkmhi3HoZAyONIbZ7rq8vndCjFD4+LhFNdHNr7F/9bTBilL43sXC8zWXCYrDq8fz+zKIKs7a9JN1MxzbNYGRVnXKJupisvffzy5YnG1qiik4xqpeJwjvfFFS1OJmMbP3uvjHz+ZemEvrL0oZkZ1VN86l+dYX5zH02368iZ/uFZacRTPTNXlv38+DUQDwPvyMfIpg49ulunPxRZ1Xp+qOlRbPhePpLgx0kAIGO62SFoa15/UqTQSMsDaB8JQcGesyVf3q2selt5eZmNFOq7xs3f7oh3VCz6Hl45n+MUX07t2PJS0O8gAS4o6hK8hyMolo+W8mKHyye0KY3MDak1dYWS6jf+SV3ENO+DfrhQ5PZgkn9K5P97iSG98S7pfb4YPzuU7X7qOF/Jkus1ndyqdXXTLOdxjMTE3t69Yc1csrlYUhZVCS1VRONRj7csAy3ajnZWqCihR88yPbpXXfCL7wWtdDBUsvnpQjV6PuxW+/0oXrhfSsP1O7dzCfl8/fK27M9Rb1lntfQ3b51+/mmWmtrGl9HlJS+M/fjCw5PsnKosQpOP6vvwMSptHBlgSsHJwZeoKx/oSpOIabSfk2uP6oi8uhc2t4XG8kGtP6hztjXNmOMmDiSbD3XHiprrmHkXbZeHJOGaonB5KcnIgQbHu8XCyxUzV7dQPzV8dT5ajotfXj6W5cCS9oefVNYV3TuUopAyuPq5vynLhbmBoCvmUQcxUufKoTjYRDeL+zvl8J4B9kbYTUm56BKHguxcKlBout542uD3amHs9Ft9eVaIh1jFDlcHVHtdygk7rlPVMIFjJoW5r2Yu7Yt3l519Md/6sKmDq6pb2eJP2JhlgSUsoRCfxoW4L1wt5MNFaMTu1VQny+b5P01WXU4Mu3z5f2KJn2lzqgi7u8x5OtvjV5VkAhrssfvBa10u3rdA0hTPDKU4NJhkvOVx5VOPpJjQK3SlDXTFODiQ5O5xEAL/8aoZPblfIJnXeP5PnO+fzGJrSaV2xkjtjDf5qsBeIfu+puMborM101SWfNDjcG+dwj0WjHVBueFw6kUFfQ2sHafcr1l00NepLNp9hmqm5CAHZhL7uQeWN54I0IQS3njY7vevmL0pDMdeKRlVeOosv7S8ywJI6utIGXiBIxjQmyg6PVxlQvB0uHknz+d0KpbrHyHSbbFLfk9vlM3GdrrRBqe7xZKbNyot/69N2AmZrLgOFGNlkgZmqy++vFXf1rsDlqApcOJzmWF9Ub1auuzydsckm9aj1ggKpuM53LhSYqjiLshOqAt2ZKKDty8Uw9Wjm4Qfn8gii5dQgFLzv5kjJprn72qHuOL3ZGIe6XXQtGg81Omvzye0yrx5N88W9tddjAYyX7M6O6VAIJksOf7xRWva2e+0zJ20P+Y1zgMyf1tNxnbYbRLMGRXSSAig1oj5DtXVe6W2FUMDvrhbpyphMlh1+d63IK0fSnD+cwlpDt+7dJJcy6M/HqLd9/EDwcKrFqcHkSz9uPKZxqCcOQDqukoxppKy9VxeiqQqqEmVDbTfotKHIxHV+/Hp3J6COGSr/4f1+Hky2+PBmGYiC8PfP5pYNupUFjy+Dq4MhZqgMFJ7VNQ51xebKDVLcHmuuK8AKBYwWbY70xvniXpXLD9bfLy5mqCiwaPlwYbsaaX+T3zoHgAokYioKCk0nWNJReLdmtb1AMDnXq8j1BVce1+nNxTjUs7cG6uqawrfP50nFdZq2z2Bhc2fWTVUcJssOyZi2J5coVDVq0nhjpMFY0SYUUT1WIqYxXnLoyZid3mihENx4UicZ0zg5mOCtk9k9l9GUtk+15fNous3FI2lySb2zG3qtns62qbd9rj5avVXISpxl6rIUZa4MYw9dJEobIwOsAyAEWs7eL8A0NIWG7TNedDB1hWzSwNAU1D3wRaUoCpeOZwiFWHfriUrD69SPzH85J2Iajh9yf6LFzZEGZ4eT5JIGTXvns4/r5Xjhol19AHFTI5PQmao43HraoO2GuF6IG4Qc6rb2TE2etLMeTrYo1T28QHBqIMmtp80X32lOX87k/nhr04vX56+B9uLFkLQ+MsCS9oy2G/LRzTLnD6e4dDzD3bEmqhL1o9oLQRawruCq5QTcn2hy/XGDpKXRdgMGCxaqCndGm53WBXFT5d0zOcIQLh3P4vrRjrv1FvXuJrW232laO/8a217I+UMpBjY5AyjtX/O7dzUVAiHIJfVFw9lXYmgKU5WXa/MgSTLAkvaUUEQ9jG6ONPj+K11Umh53x5ucHU7t9KFtCiEEfiAYLzmUGh7H+uKcHUoRhIJrT+p8/VwdiKZGvZ+suTYDb53Kdh6j2tp449fd4PRQknOHUtSaHj1Zk0LafPGdJGlO2w14MtVGUxVmax6//GqGtV6H7cYpB9LeIwMsaU8KRdTK4c9e7WJmg7P5diNFUSjWXXJJnSO9UQG7EILZsrto8KyhRTMeEzGNO6NN7o23QAj6Cxa1ls/JwQRjJZvqGq7Wd6vHUy0abZ8TA7uju/pKy7ueH9K0A+Ixbc1NcYUQeEE09FzafC0n4B8/nerUm86/bC9alZsvQJfhlbQZZIAl7VkPJ1t861ye/vzeXzISQuD6AlWBnqy5aJekoigMFixePZrm6WwbRVFotH0uHE7zye1ypzeUosCTGRvPDxkr2tT2cHAF0caG8ZLDRNlBURTOH9q5LOV0xeHWaIMLh9OkLA1dU7gx0uDpjM1szeV7rxTIJl/8deoFUbPe20+bNGwfQ1f5T98eIGntrY0bu1kYCv7tm9nObuhETKNU9+jNmisOSje0qIfVi6ZZSNJ6yABL2rNCQdQnaY+bL95erpVAEApqLZ/pikMmofPemTy2F1Br+tyfaC06IQjxbNfSfsrqCQHfPKxxciCx7ozP7dGoQP7kQIJ0fGNfd2NFm19+NYMfCJ5Mt/nR69305WKU6h4CwYUjKY4+NzNyOTdHGnz94FkvpuEui0LawDJlFmuzOF7I764WGV+wWzARU7kxUl/S3d0yVVRFIQwFrh/K4EradDLAkvasmKFivGRH9N3ANNROG4J5wdyw2vGizWjR5i/f6sULQm6M1BkvOktabex3KUtbU3A1VrTRNYXerImiKEyUHO5PNLnxpM7fvt+37n5YU2WH31wpdmpyWk7IV/erxHSVkRkbP4zq3fIpg+P9iRU3MbScgC/uVTpF14d7LL7/SheJmMxcbZZG2+eXX80sGR0VNzV++mYPf7xeYnTWxjI1hBBoqrKuvliStF4ywJL2rO7MztflbIW7Y00+ulXuZKM0NcrgPJ5uEez9bhvL0jWFM0NJBgsWthsQCEG9FaCq0QDo+Xq0hR5Ptai2fHqzJgL48l6ViVI06/HPXi1wZijFdy8WSMU1vrpf458+neb142mO9yewzBcHNvMbC1rPDe+eHxg9b6riMvVNkcFCg2+fzy9bjJ+IaZw9lOo0qxyZsSnWXRKxpf8uaW3aToCqKsQMlamKw++vlSg/12Q3m9A5NZgkZen8xVu9+IHgV5dnGJ21d23/P2n/kAGWtGflkvsvwBJCcP1JfVGDwiCEB5Orz+Db64QQvHYsQyax9q+kj29Xlkwd6M2adGdMPr1dwdRUjvUneONElpmqy8iMzYc3y3z9oMbFI2lePZpetb3HTNV94ezDhcZLDv/7h5O8czrLGyeyS/7+7FCSWyONTl+lX345w1unspwdTslM1jo9mmrx8a0y/txGj+UGnsdNlTdPZqk0PUZm2pQbHp/frezbixRp95EBlrRnPZ3Zu8ONn9dyAop1l9ma1xmvcZAusIMw+h28KMASQlBueNwdb9FcZnmn5QY0bJ+2G/Kvl2c5O5zk7HCKv3irl7YT8NtrRUZnbD69U0EAl45nVnyuvpzJuUMppisOXiDIJ3VeP56hLxcjFDBZdrg73mR01qblBOiagqYqKy5lZpMGf/NuL//wyRReEI2pejTV5ou7Vf76nV4Gu6xl7yctNll2+NevZzt/nl92fV7bDSnVXR5Mtpa0N5Gk7SADLGnP2i87r1w/5A/XSxTrLo32wa0JWct2hcsPa3x+t7roPgsD0UvHMyRjGiNzwfft0Sa3R5sc7Y3zZ6928d0LBW6PNngy3WZhVfNM1cV2Az6/W8XxQ94/k6Pa8lGAn77Zs6RAXgWGuy2Gu62o71go0FUFIVg1K1ZIm3znQoEPb5ZwfUEYCn72Xt+a2zvsZ0II7k+0+PJelb95t4+kFdVKzW8eEEJQqnt8cru8psdTlWhWZSah88cba7uPJG0mGWBJe9ZE2WGm6tKT3ZsNKGstnyAUTJTs6IS/BygKW7LbqidjvvB1nKo4fH63iqpAV9okFIJK01u05OMHYtlh14+n2/zdn8b5yRs9XH1URxAFa725GIOFGHFT5ZdfzdByAmKGSiAEr6+S3VpIURQMTZn7/6vfVgjBw8kWrh/9Ekt1j8mys+bn2o88P6RhB3x4s8RY0eG1Y2keTbW4N94kFPCd83l6czFujTb54/XSmh9XUxXiMY0TA0kZYEk7Ql42SXvaZ3cquF5IsMcqVl0/ZLRo43jhnvryXxhcRbs4N6dNhh+EtN3Vs3e2G6Kp0bihmZpLse4tqaf57E5lUYZLVxUsU8UyVHJJgwcTLbwg2vnn+oI/3igxUXKotny+d7FANqHjByEPJ1qEWxBJNuyAxwuCaQHcGt3bHfdf1mTZ4RdfTHc2D9wda/LhzTJTFZdKw+tsSDg7nOTcoeSaHtPQFM4Op1AU+NONtQdlkrSZZIAl7WmjRZuPb5cXNebcC3Qt6r+zl7/8HS/szEN82SWuctOn3g6otfxFBf7zbo40+MP1IkG4/JBchWhJKBQwUIh1Ar982uD7Fwv85z8bIhRw9XF90f2a7YDJikMhZfD1g2h5UNdURos2Y7M2YpODrJSl8c7pLOn4s+Vtz99bFweb7VBPnP/pe4P0ZEx+8kY3rx7LMDDXPNgLBP/98yk+vlVGVRQ+OJenK73y5hbLVIkZKucPp3j/XA4E69qoIEmbSS4RSnve7dEmFw+n6d5DS4WqonC4J87ndys7fSibYrmgaL3+8dMpAPrzMT44l+fakzqNto8fiE4H7r6cyZHeOClLpztjYOgqtZYfLS+KKCMUM1TuTzT57ZUiM1WXf/l6lmxSX7Yo3g8FXz+oMVZ05jJiohOo/elmmXzK4MLhFGNFm2Ld493TOTQVvrpfQ1Ph2+cLS3qYrUZRFN44keXikTRPZ2xUFfIpY1Gt0UGkqgr/wwf9jJdsHk22Fi3z1ttBpxmrrqkMFGKLdg3Ov14Q1eCdHEiQnOt39nBKBlfSzpEBlrQv/PrKLH/zTt+eKXwXQjBbczE0Fdc/uIXtyyk3PGwvoNr0UBUF2w052hvn0okMPVlzSTPP5Tq09+cWj0+qt/wV+x75gWCsaJOJ6xTSBkEomCw7tOwoo7awPq7cmGEgH+PJTJu4ubRB7FqZusqJgcSG7rtfzQfFy71OQSA646QWBvP9+RjDXRaJuYL4s8MpNFXBD0Imyg7F2v6ZaCDtPTLAkvaFatPno1tlzgwlGe62dv2S4dXHdW6MNGg6Mrh63uvH0hzqjnOoe+NNOK8+ri86Ua+lRK/W9qm3fVilkH9+rp0vBzVvOgWFuKkt+5lo2AE//2KGYt0lDAWaCm+dzDFQiNF2AyoNn2N9ce6NN3ky3abe9qk0/U4HfknaCTLAkvaNR1MtHk62SMc1vn2+sGz3751Wa/n885fTVPb4IOat0Jczee1YhmN9L/+6HemNM1l2VhzuuxLR+a/lLZzxuFwzUWnjTgwkcPxw2Z2C01W306U9l9T51rk8E2WH0VmblKUxVXGYrjqMzNh7bsOLtH/JAEvaN+azDvV2wJ9ulBjuGkTbpF1um+H20waf3ql0OnkfJKoS1R+tdPLrzhj8zTt9m/Z6DXVZ/Idv9VNpeggBIzPtuZquxdmRS8cznBlK4geCD2+VmSw7KzziYsmYxrH+3RfA73XHeuPcyZlMVRYHxvPBlTY3OsnzBQP5GL+9UjyQnydpb5ABlrQvNeyAq4/rXDqR4eNbZbozJqeH1rbFeyuMl2x+v44ePvtNKFi1gdY7p3NbEgzPj1PKpwwyCZ1vHtYo1T28ICpmv3Qi01nq+9v3+hBCcOtpg5YTMlG2mSq7KAqcHIzmFz6Y25H21snsioOdpY1TVYVzh1JMVZb/rAQhBGFIreUxWrRlcCXtajLAkvatrx5UOXcoScP2uTFSZ7jb2pKZb422T8MOKDU8VCUaEnysL4Gpq2hqlLkpLTMrTXpmO4KVY30JjvUl8APBjZE6tZaP/lytnqIonD+cnvtTliCIurTPt6F493Ruw88/X6Rdb/nk08aurxPcCbYbMDpro6msOjPw8sPagW9vIe1+MsCS9p35buN+IPj99RJvnMjQdkOuPa7z7pncSz22F4R8cqtCse6STRrETZWjfQnujDa4Pdrs3O7ygxpCQG/O5IevdXG4J46ilLekC/pepGtKpwA5nzLo3cYWG7qm8NqxtXVO1zRlUWZtdNZmsCuG44bE1xms+4Hg7z+apNb2uXQ889Lvxf0omzR4/XjmhcPNXRlcSXuADLCkfWdhEPN0pk3TDvjx6938/Itp8iljQ0uFQSi4/qTO7dFmpx5kvk7kyqP6kts35nouPZpqMzprc7QvwdHeOI+m9sZInM1mmSrJmEa15aOpCpoaZXRODSb51tn8htsdbLdcUufpjI2mKgwa6qpzB59n6CrH+uNceVTnyqMaZ4aTnSVMKSKE4PZoY9ULkZihbkrfNUnaanvjW02SNigIYbjLIpPQef1Ymt9eLfLFvcq6O3TfH2/yye1KJ7haj/lg6+TAztWA7SQFcNyQYt1D1xQcLyRl6fzff3yI77/StWeCK4BUXCcIBb+6PMPHaxw6vNCl4xm6MwahgH/4ZIrP71YI5jJ5QghqrYO9u/TGSIPrT1YeHaQom9PUVpK2g8xgSfve5Yc1RmbafHA+zytH0nx1v0YYsq4lmpfpsv353QrH+hIMdUXNLxOxKPPx/I62/WphKGu7IfmUwXcuFPZsDdKRnji6pnL9SYND3fF1tQOxTI2/fa+P//WPE9huwNcPatwbbzJYsKi2fBptn3//fl+nE/lBMlGy+fROZcW/N3WFcG7pX5L2gr1z6ShJL6FY9/jtlSKvHkujawoPp1qLOnS/yMvM2nN9wa+/meXhXF2J7Ya07GDPBhgv6/2zuWi0zR6laQrvn80B0SDh9jqbxeqayoXDKd46FT1GvR1wZ6xJd8agPx/jn7+c4cObJa4/qfNwskWl4TFVcXgy3ebJdJs7Y43Obsb9IgwFd8aa+IEgs0xnfog+RzK4kvaSg3eZJB1YthcyOmtz8UiaK49q/OvXM/zwte41jSx5MNF84W1WM1V2Oj2WMgkdQ1Mp1l00deXeUPtRT9bsDPLdy04OJLgx0mCy7HB9pM6b62zb8NrRDFcf14ibKrqmcGYoxZsno+Lu+xOtRbP2lqNrCklLo38f/C79IOQ3V4o8mmpzvD/Oq0cz/OOnU8xffwixau9XSdq1ZIAlHRh+IPjD9RJnhpKcO5Ti5kiDX38zixcUODucWvW+jWUGBa/V/JKg7YT4oaDS9DvLHQdp2oquKfzlWz0Y++AfrSgKx/qibvFf3a/heCHfPl9Y8/01TeH14xleP55ZtPx8ciBJd9rk6azNx7fKKwYWfiD45VczvHUyyytH04RCbGqrC8cLXypru5owFJ3NAbNVl99fLzJbiwLKt0/luDseXcwcoOsOaZ+SAZa0LpapYrt7u8j0zliThatzf7heIpc0Vs0GbKTnTk/W5MKhFE9nbS4cTtGVMXkw0eLJdIvRog1EJ0pdVRBEJ579fE559Wgay9wbw7jX4uxwipmqy/2JFjdHGrx7JoehrT0oWamuL5cyyKUMFAU+vLlyIb3jhXx0q0wQCk4MJEjHdVpOsOFeb0IIwhBCBNMVh5mau+njgIQQ3HzaoN72GS85lOreogzuw8kWN54s3ZUrSXuRDLCkNVMUcL0QU1fQNRXbDfbsVebzx31jpL5qgHWox2KmtvxcO11VGO6x6M2aKChcfVyj7YbU2z5/vFEim9D5p8+nMTSFo31xLh5N8/rxDF8/qDFRcvBDQdLSaNlBp4fXfqMQ7aDbT2KGyncvFhiZaeP6AscNMeKbk/UJQsHorL2m246XbF45kiYIBN88rPH+2dy6N2W4fsiHN8s0bZ9ay6flhChKFBTr6wganz+uGyMNBvIx+nIxbj1tMFF2Vt2J+8W96oaeS5J2IxlgSWs2Xwvh+gLXDyikDVpOsOczWkJEs+VWc/FImjujTZrLFDRfOJLi/bN5AKYqDpcfRhHS/O+lPDfY2QsE98aj4vpXjqb5y7d7mam6XHlUiwrg92lwBdH75ot7Vb51Lr/Th7KpTF0lHdcp1j0+ulXmexcLL52lc/2QT25XeLzGTRgjMzZ/9+EEnh8SN7UN7XidrbncHVtaZ/inG2W+c6GAvs4xRtce1/n4dtRYd7rikE8ZjMysLWBUkDVX0v4gAyxpw0p1j795p5dffDmz5wu1H023OX84TSax/EciEdP4zoU8//L17KKfK8Dhnmfb9B9MtJbtMr0wM+X6ghtPGlx5WEdVoz8nYhrfu1ggHddwvJDP71aZWOPg4b2itc7ddntFIqZRrHs8mmpTbkzxP34w8FJzFWdrLreertwLajnz/bOySQMhxJqDLNcL+c3V4orZsjtjTbxA8KPXu9Zc41WsuXx0qzx3PDp/+VYvbTdYe4C1jy80pINl71ebSjvqnz6f3vPBFUC16fO//mGcyw9quP7yGbmjfQn+8u0ejvRYnB1O8v2LBf78UjdDXdbcY3iMl5Y/iSw8YcQMlbPDSTJJHdcX5JI6Q10xai2fpBX97Hh/guP9cRIxlUsnMqTjGooSBXR71XhpfwWM8949k+sE5pWmz73xje84fTTV4pdfzmz4/sUVlrGX43ghv74yy5Pp9qqf4ZGZ9pqXKyHazBA3o1OLpijM1lz+uMZB54OFGK8cTW/JzFBJ2m4ygyVJcwTw2d0Kn92tcHowwbtn8iStxV/0h7rjHOpevrFk0w4o1l7c6d3xQu5PtjqF85WmP3dibvHNoxrN53YsXn1UJwhFdGUPqEpUIL2bAtuFswVXsl/bfnVnTP7izR7+tz9NAPDRrTKFjEFvdu0tFMJQ8JurRR5Otl4qe+MF0S7VfGr1ETwzVZffXpntLF+vxg8E4yWHwz1xPD+qzVqtLiubjBrJ/vryLKWGx68uz6542+ed6E9w4UiaYs3btxlP6eCQAZYkLePueIt74y0O9VicHEhyciCBqiq4Xkip4dGbM5csmUxWHARrqyFZqYv788EV0Amk5k+8oYBUTH2p1hGbLQhFp6eXqSvLLpOupd/YXpVLGeRTBuWGRyjgi7tV/vLt3hfe7954k+tP6p25lpthpuquGmCNzLT5+FaZyhqCq3mFlIHjhXx2p0IuqfPqC4ZlH+9P8MPXu/jDtRLeGpuDmrpCIqbhB4JQrhFK+4AMsCRpBYKogHhkxubDmyX6cjEmyw5eIDjcY/Gj17sxF/R0OtIb51hfgiAUpOM6Tdvn99dKTFc37+Q5b60nre0iBARCYBkq9gqz4lbK/O0Xb57I8OGtMrYbrrjMPM/zo6a3H90sr/j72qhrT+orDjT/l69meDLdXncR+R+vlzANlZYTMFCIvTDAgrnZmwL+7Upxzc9ztC/O1w9qW7qcLIvope0ia7AkaQ1cX/B01u4ENiMzNr/4YnpRxqkrbZJPGXRnTGKGSiFt8vbpze0jNC8Mxbp3dm01VQFnhcAiZWl7ejzOWpwcTPIfv9XPUFeMmaqLHyz+XQghaLsB//r1DP/f347xr5dnNz24giiDNT+W6XnFuruh4MIPRWfJrlhz17w8fWIgsWSZfSWuL/jkdoXerLml7xUZXEnbRWawJGmDpiou/8vvx0haGqcGkxzqiWNoCt2ZZyeHiS26Eg9FdMLWVAh2SZeM1c65DTtgZKbN8f7Evp7BmIrr/PSNHn71zSyTZZfhbouZqst4yebRVLszLmmr3R1rcrx/6ZJsytKpr2PIuKkrc0t2z37m+oIHEy1ODSa49ri+ajZLURQKaWPZpe/lVJoeoRAUUgYnB6LH38ylcF1V8HdR7aK0v8kAS5JeQiiiYb1fP6jx9YMa/fkYP32ju9MLaa0nFgBNheHuOKOzdmcZY6VMgRBzJ709dK7wA7Gvg6t5hq7y55e6+fhWmW8e1hgr2asWrnelDdpuQMvZvEh5rGhHTYEXjLsJQrGu9yNEAWNpmbmIE2WHEwMJPr9XZabm8trRDN0vmXVSFebGSKmMztp4fshgIUa15W9ajZoMrqTtJJcIJWkTTZYd/uXrWZy5pZ/VulbPS8RUjvXF+dm7fagKnBpM8M6ZLIX04kJlRXm2Ey8U0Z/3ko9ulfnk9sqjX/aTMIyydqPFZ8FV0tIYLMQ4O5zkZ+/1kY5HQXix7m1qcAVRjd58L6p5pbpHrb32wnaA9go7+Tw/5PFUG3+uee5/+2yKtrv0trWWz/QagyPTUKm3fB5MtHj3TI7JikMooDe39wdaSweTzGBJ0iabLDvMVF2GumKcHEisWuR+4XCK98/m0DUVIQSnBpOdpZ3DPXEeTrawDJUbIw2yCZ3jAwnuT7SImyq3nm6839JO8APBlUd1TF3ljROZDXUc3ytihsqPXuvmm4c1+nImCUujJ2N2/s1eEL6wrcXLujfe5L0zOeJzPaXmm5Gux0rHmI7r3Bl71gzVCwS/+GKaN05kOdYXp9ryuTnS4MZIY031WrqmMFiweDjZQlFguuryzukcj6baFNfRg0uSdhMZYEnSFvjjjRL9+Rjvn83RsAOuPq6TiGmcP5Si2vJ4MNFC1xRODyU7PYVCAbeeNjoBVi5pdIbtnj+c7jz2kZ44k2Vnxa7xu90X96qoClza5EHCu03MUHn3TG7ZvyvWPNpbPGIqFFFLhjPDKapNjz9cL3L+cIqbI2vvEr/SblXLVEla2qIdebM1j09ul+nOmPzhWmnNkwgMTaEvH+sU5gsRZcjGSw5tJyCX1Gm7e38kl3TwyABLkrZArRUNzfWDkPOH0pweSqIo8KvLs5waSPKTN3pQFOhbsPyhqcqaeicZukouZfDumRz3x1t7cqTOzacNXj2WORA1Wc8TQvD53cq2PNflhzXyaYNffjlDzFD5zvk81abHWHHt75nlRtfEDJVvny8wOmsvKpp3vJD/9unUsjM7V5JLGUs6xT+dtbl4JEVX2uDikTS/uTLLw8m1zWaUpN1C1mBJ0hZ6ONnm519M8/trRcaLDtWmz72JJgP5GMPd1oYfNx3XuXA4zd+827vsbrHdrt4O+Op+Fe8F/aL2owcTrW0bG1Rp+vzXj6douyGWEQ2CfvPk+jKHxjLtQP54vcSjqVZnTNQ81xfrCq5gaZ2iqsD5wymqTZ/TQ0n8QCzambucAxinS3uADLAkaRvM1rxO0XG16fP1g+qah+euRlEU3j+b4+Qe7JL+9YMaf//xJNOV9QUbxZrLvfEm1x7XGSvurfocIQSf36vuyHNXmh6uF65pnNNCy9VQhQI+uV3hjRNZ/vKtHixzY6eSN09muHgkvehnmqpwc6TB/YkWrhdy62mDG09WX9bc6s2BMoCTNkIuEUrSDljvVf5q0nGd779S4Nvn86hq1LfoyXSbyw9q6941tt0qTZ9/+HSK710scHY41fl50/ZptANUVaErY+DN9V66N95csiT61+/0Lsmk7FZ3x5obKjbfDF4g+P/82+i6O3vM91m7eCRFueFRbwfUWj5NO2C8ZHN2OMXP3u3jnz6bWldd2ZHeOG+ezCJC6M4YfHSzjOtH7Ue8uV24f/enCRKWtqmfl42Q3R2kjZABliTtA7qmos81zDZ1OHcoxbG+OL/+ZnZd9TY7QQj4/bUS9+dmP96faDGzYOdlzFAJQrHijrYv71Vp2gGlRpSh+eB8flfWdtXb/pLWCdvtZeKEcsPjp2/0oCgK/8dHE1SbPuMlh7PDKfIpgxMDCa4/l2labgi4oSn89M0e+ubmebb9gFtPG8sGZ6GI5nauNN9SknYzuUQoSTtgO7qvW6bGj1/v3von2iSjRZtPblcWBVcQFU6v1tJgouzw26vFTlPPn38xvdWHum5tJ+AXX0zv6SBhrOjwXz+ZwvECfvZuH8f64jyealFtRkuOyzVTfX6ck64q/PhSN0NdVmf37LUn9VUvAlQFvD38e5MOLhlgSdI2O9Jj8e3z+W15LsvUGMgfnEaN1aa/67bzVxoe//TZFJXm7l6ufRFDU2g7Ab+/VkLXokBpuDvOZ3crNGyfU4PRTtmFIdXC1+Jb53L83340zOGexUO/VxpMPS8UUeZNVVjSfFeSdjMZYEkbosl3zoYYmsK3zuVJxNY2AHcz/Oj1rmV3gu1XuyWgFELwxb0Kf/fhBOU9HlxBVMNleyG2G/LPX86gKgo/fr2Ld07l+OP1ElMVh0LKWLIM+bfv9fH9VwqcHkyiLfM+TMd1zg5HQZahKeRTRidIG+qKEZsb93N6KLnmwdGStBvIGixpQ3bLgOGdpiprL4DVNYX/yw+HOksj20EIwWjRRtOUFZtG7gcLa3RiG9zRtplCIfj91SJ3x1s7fSibru0FNGoBs1WX7qxJLmXwvYtdfH63QvW5An5DU+hKG/SvEvQ+nmozWrSJGSoXDqcwtOi1jBkqxbqL40XLh44X7qnZm5K0899EkrSHHe2Nk08Z6Gsoqj5/KLWtwRVEJy9TU/n37/Xx2rE0R3qsTkZgP5kPrkxd4dQOt6wQQvDRzfK+DK4gKjq3DJWffzFNfW6XatLS6M6YS9o1eIFYdVQUwEzVodEO6M2a3B5t8s2jqP3GzacN7i34HQoBUxUHBRgsxDjUbfGd83mO9cVRFUjEtD03n1Pa3/bfN60kbaOHU23KDQ9/DWmsF9WabLamHZBPG6QTOg074EhPnH/3Vi//+c8G+e6FApn4/ktgu77Y0UydENHw4xvrGEezFyUtDVWFr+4/6+n1ytE0J/oTHO6xOsXtCvCbK0XCFT4ft0cbXHlUB6LPx1+/08tfvNVDLmWgKNCVNkhZGqoC1ZaPHwg0VcHxQgppg/OHU/zkjR7yKYMwFBRSBsf746tmzOaPa54sd5C2yv77hpWkXerxVJuYoZLepsAmqlfREELgeCGWGdWv6JrK+cNRz6m2G1CsuczWPDRNodr09nzPn49vlfmrt3sx9O0/c157UufjW5Vtf97tVqx76JrC6KxNpemRS0bF5xePpJkoOWQSOmNFB9sNaDkBMzWXrrSJrikIITpDr6crLoIo8zjcZVG3fUxd5fHUszmbmhotw5cbHul49B4uNTyKdQ9VURjutujNxbg92uCD43lO9CdQVYXpisNY0ebxdJupyuIsmmlEw9VdXxCEkLI0HC/c18vo0vaTAZYkbRMvCEluY3H7PEVROsHVQmeGlhYdV5reugb17kZTFZd//mqGv3q7d1v7YTVtn8/v7kyX9p3gB4K2CPmXud91Kq6TjuvoPQq/v1ZE15ROreY/fDJF3FQZLFi0nICzh5LkkwbFehT4qIpCse7xYLLJ26dyHO1LcHesCUT1nt8+n+fqozr9hRgIgWVqXH1cZ6riMNRl8ebJDKcHEwwUnjWc7c3F6M3FuHQiS7Hm8miqzc2nDVpOENVzLdCwAxIxFctUF81WlKSXIQMsSdoGfTmT989uT2uGtVpuR1cuafCXb/fyxxulzgluL5ooOfz2SpEfvd7VyZZstcsPa6v263oRhb1Xwx2EgkrT5xdfzvDj17sopE28uW7sz/f8arshDyajmqqZqrtoWd32Qh5PtwhC+PROhf5cjNFZm9ZcB/cPb0YNWmtji4vox0sOk+VpDF3l7HCSUES7SNXnAuuujElXxuS142k+uVXh5tOlS7g92RhdaYOrj+sv9TpK0jwZYEnSNig3PDw/3JFlq/XSNYUfvNrFB+fyPJ1p829Xijt9SBvyYLLFK5U0fTlzy4Msxwt5Mt1+qcfYy6f0Wsvj7z+e4rsX8viB6BSbP998dD6IXK5m0fVCyk2fSsPD8ULcNQwC1zWFMBSkLI0rj+pceVQnk9D52bu9JK2lpzdDU3njZIa2GzBVcckldXpzMeKmSsrS+c2VWUIBhZRByw12XU81aW/Z/d/2krQPeIHgi3vVZQfn7lYxQ+VoX2JNOyR3q8dTrW3LYKWWOaEfFEEYZbN+d63Eo6k2/9cfDvM/fW+Q14+lycR1BgsxjvRYmIZKaq6X1fPF5XfHW5TqLt7cLM21ZJH8IMqW9WTNzs9qLZ9vHtZXvE/K0vnzS928dizNeMnh6Uybe+NNfv3NbKf+sNz0ODecIhGTp0hp4w7uN4IkbSMh4OrjOnFT49KJzE4fzprpmkIqru3ZLuQ3Rhq8eTK75ZnDmKFSSBt7unZts4wWbf75y2mO9ycY6rY43BunLxdDUxVqLZ8bI3UeTbaXHUS+XH89TVXIJHTKDQ9l7s9+KDjUbfF01gbg9mhz0e3zKZ0gFKgKnQDb9UJGizYD+RjxmEaxHo34mf/fhYSAbx7VsAyVpKUhBNhusOc3gEjbSwZY0o5ZT5PO/eKLexWO9cc7u652O88P93TRrxcIxksOR3rjL77xS5J1O89MVdxFO/cSMZWudNQnS9dUhrstbC8kE9eIxzRsL+TeeJNzwymqLZ9q08P2QkxdZSAfIwhFpzjdDwUKMDoXXD3PMlRGZm2+fljj3dM5Tg0m8fyQP90sdfpq/ei1Lv7slQK2GzAyEz3O899HQkR1YwP5GNNVh2zSQAhBteUvO3dRkp4nAyxpx4Ti4AVZ4Vwm67sXCjt9KGvyye3KnlrWXM781v6tdrgnzp09vDFgK7WckJazfEA0/x1w8UiKiZLDaDG6XSFl8K2zOb66X+v8bN5q78imE9CciurhfnslGgKua8qiIeK/u1YiaWn8+aVuLj+o8WiqTanhYSwz8WBhVrIrbRKEYk9fdEjbRy4wSztqj5+7N+TuWJOGvbuX3IQQfHZ3+d1We83VxyvX42ymY31xzmxzM9n9YP474PqTBk0nQFWioEtTFX51eXZJcLUegmgJsNFevLwXhIL//vk0f//xFOWGR9LS0NTVx0mVGx4PJlvomoq1YBqC+tyAa0maJwMsSdpmfiD48t7u7pd0a7TJ5Qe1nT6MTVGsLa2x2QqqqhBf0OfM2ocjibZauRE1ug0FzNRc2ivs4js7nKQ/H+PUYIKBfAxFAUVhxQ0ZP77UvSQImm9e+nCqzdNZu5OpNXVlxZE7hqZQbkTLlwsf5wBeJ0prIJcIJWkH3BlrcmYouagx4m5Rqru7PgBcK4VohMt2MRb0FnO8cK7RqegUb8cMlVeOpPny/v74/e4Uxwt593SWREwjmzTw/JCWE9VTfXSrvOi2/fkY/fkYwwuK4lfzfP+uhWSnd2k95CXWAZaJ6/ty8O9eIAR8/XD3ZYiCQPAPn0x1GjzudWcPJbd1BqS5YLeiIFqKmg+uVAXePpXl0onMokBMejFDUzrZqURM47sXCgwULLJzm0UMXSUR07g3vrQGricTtXAY7t7ai5k93M1E2iIyg3WA1dq+nD6/g2aqLvW2v22zCddE2V9X6Ud7E9v6fLnkyq/lQCHGxSNRNi2fMpiuuiveVnrm7HCSd8/ksN2QX38zy+Ge+KKl2HkPJls07aUXBmJuAe94fwJVUfjsbmXTd3yauiJ3kUpLyPTFASe3G+8c2w35b59OrbjdfCeoStT7aj8wdYXBQmxbn3O8tLQPVsxQee1Ymj+/1ANEdT+rBWLSM6cHE3z7fJ64qZFPGfyH9/t4+1R22dse64v6bj2fSbKMKBhLx3VeOZpmuGvzM1npuE4qrmPq++OzI20O+SmXNtVenKe2kxp2wM+/mGa42+LS8QxDW/Dlvx6uLwj2yZV4Oq5v22giIQR3xpp889yy75snMrx5MrtoNp7jhdyd68ckLS+b1MkkdF4/nkFf0PJdf779+wIxQ+UHr3bx6tE0H94sU216tN1wSZA9UIjx+CXHGj2vWI+CZlVZ2zdgJqEzmNne7Kq0/WSAdQBs5zXV/FdL3FRX3AEkLTU6azM6a/PKkTTfOpfbtvEuzys3vH0TIG9HfaEQgltPG3zzsL5sZ/LXj2eWDB5+2ZmFB8EPXu0iEdM2tHzenTH52/f6uPW0QaXpMfjcRcvFI2m+ul9dtZh9IypNf03vuZMDCYSA6w/LL7yttLfJAOsA2IkTpgyuNubakzqKAt86l9+R5//m0e4rvN+oqYpLueGRT21N13whBN88qvPZncqKt2m7Swd8F+uy9mo1+ZRBJq4vW2e1HucOpZb9eTRKx1jUaX6zOF5IzFBxvJW//6YqjizNOCBkDZYEyEZ5u8nkDs2zC0JBbY/OHFxOEAr+cL2E2IKzmeOF/Ns3xVWDK4Cx55pktp2ApzO7p+ZuN1GA7ozBD17teung6kV+fKmbV46mt2STz4smH9Tbwb7ZpSutTmawJEDWTe0mO7WL79bTBqXG9jTl3C6TZYenszaHezZ3FmG97fNgcvU6KlWBvpy56GePplorftZ0LdqJlkvqe3a49nooSrScl03onBxIcLgnvmQ5daukLJ0PzuU51hvnnz6f3vDjnBlK8mS6jeOFGLqC64s17SY8iBMsDiIZYB0wB232317k+du/vBoKwSe392dNyGd3Kgx1WXNNPzdHd8akK21QrK8ckL52LEMh/VyAtUr9VTquU254ByK4SsQ03jiR4cLh1I7VGwIMdlmcHEhwf2Jjmw4eTbV45Uiap7M2laYnv1+lReQS4QEjP/y733zzxK0mhMDxQlwv5OefT3caYu43xbrHrS2YqXjoBVmx3uzi4KrlBIyusjxY3mfZw5X0ZE1+9m4vF4+kdzS4mvfGiQyXjmc2dF/XF3z1oEYoBK4v5PertIjMYEnSLjOQ39reTV4QMl50+Ph2mXrLPxAnBXcLsoIvqu16MNniWP+zrfhjRVsuxRNl6rbrImItCmmTC0dU7k00abQ3Vhs1u03zLqW9RQZYkrTLaFvY6HNkps3vrhYP3C7PyiZnh8oNb0kB+3K3EUJ0sjR3RpeOcTmI8qndd9pJWTr/4wcD/OOnU1Sb3oG46JC23u57p0vSAadvUaHv3bEmv7taPJBZlMlN2pJfa/n8+ptZZtYw5qZY9/hvn00zVIjxcLJF+QDUVr2IosDjqTavHs3sujmoMUPlJ5e6+cWX09Q3mMmSpIVkgCVJu0wmsTUfy9HZ9oEMriDa9ddyAhIvuf0/FGJNwdW8ybKzY203diMhoi7t4S5tBJVLGbJHlbRpdtclhCRtk50vrV2eqkD/FtVgmbssY7CdhID74y+/RFeVWaiX9niqPTdSZnfqzpgvvpEkrcHB/caVDrTdepE61GVtydKJ7QbLDiI+SD69U+HRC3pXrSYIBbdHN3834kETCri5Bbs6N8vANg8Il/YvGWBJ0i6yFR2sg1Dw8y+mKa3Ss+kgCAX87loRfwP9KIQQ/MtXMzyaknMEN8OVh7t3JNP0FozQkQ4mGWBJ0i6y2S0axos2n96uyG3kc1xfcG98/VmsW6NNns7KETebxfbCXTsuZrwkX2dpc8gAS5J2kRfNMVsP1wv56kGNW3JZa5HP7lRo2ms/uT+YaPHRzf3Z5X4nff2guu771Ns+d8YaXH9S5/Zog2CTx0rVWv6Ba2EibR25i1CSdpH2Bq7q/SBE15ZeK43MtF/Yq+kg8oKQetsnaa2+HCuE4NrjOh/frmzPgR0wa2nq2XYDbo40mCw72G7ITG3x8t3vr5XozZr85I2ezuvpeOGG6hj9IOTTfTouStoZMsCSpF1kIzsIHW9pgFWsu3xyp7JJR7W/BOHymcL5zuwtJ2S66nD9SZ2x4sHeGLCVjvYtHjUkhMB2wyhAMlWadsA/fjKF/4Ks7nTV5VeXZ/ird3rxA8HX92t8cD6/7uP59E6Fh7LGTtpEMsCSpF3C1BWGu61136/c8Ln5tMHh7jiGruD4gt9emV3XMthB87trRd48kaXtBpQbHk+m2wRh1Gxyt9YG7TelutfJNo0Vbb68V2Vigz3DpiouN0eipcOTA0lGZtocfsGsyIUabZ+bI5u/lG5oCooS1f5JB48MsCRpl3j1aGZDw2+Huy28IOQfPp3agqPanxrtgD9cLy35uQyuts/Vx3WuPq5jaAreJtRSfXK7Qjqu4Xgh9ydaZBNrn3l4+WFtS8bjeIHg/bM5ZmvuhjZXSHubLHKXpF1A1xQuHE5t+P4D+Rjdmd0zQFeS1mozgqt59XbArdEGd8ea/PHG2uqpQiG4twlNaFfy2Z0KiZhGLinzGQeNDLAkaRd440TmpXpg1dsB5YbsMi5J86NuijWXSnNxe5IgFJ1auzAUFGsuj6faW7qEFwqYKDn87L0++nIm2YROV1peDB0EMqSWpF3A8da+Ndz1QjRNwfVDKg2PibLD9SeNTW3xIEl7ne2F/O9/mmCgEKMrbTLcbXH5QY3DPRZ9uRgf3SpT3Kbmu5mETtzU+Pfv9xOEgn+Uy/kHggywJGkXaKyjIL3W8vkvH09u4dFI0v4QChgrOowVnc54nomyg6qAoihoarSrdCtZhsqZ4SRCCEIBf/enCWotmW0+COQSoSTtAq8fy6z690EgqLejL+XZuhzlIUnrFQQCU1dIWRqhAENXyMS3NscwWIjhBSG/+GKGWsvn6uO6DK4OEJnBkqRdoGn7GLpCboVdT14Q8r/8fpxMXKdhyy9oSVovAZi6yn/8oJ+2G5KO6/zzl9OUm1vzecqnDP7dWz207IA/3Shz7UmdG0/kVIWDRGawJGmH5ZM6E2WHSmPlepCYoXLxSIpUXNuS7eSSdBBUmj6Pptqk4zptJ2CitDWNZA1N4YevdWFoKmMlh9GizfUnDeRH92CRGawDxNQV2fBuF/JDwVjR5p1TuRVvU2n63J9oYcs5aZL0Uj68Wabe9rk71tzUFhEACnBiIMG3zuWJmypPptt8eGNpvzXpYJAB1gEid5ntTvmUQTqu4wYhcW1pqwYhBE+m2zK4kqRN4Hghn99d/6DpF+nLRTMRE3PtVn751QxPpuXonYNMBlgHyFbvlpE2JhXXGeqysJYZUDtVcfj15dl17TKUJGl7daUN/urtXgw9+gzP1lwZXEkywJKkndSTNTl/KEXK0pYdk1Nt+jTl+JZdTVXYUF2cArImZ5+ot31+c7VIfy4a1v7V/c3PkEl7jwywJGkHleoeVx/V+Na5/LJ/f3ooyZHeOP/140mqcnv3rrTRlXcZXO0fri+YKDmMTLflJhSpQwZYkrSDTg0mODGQQF1hyHPD9vn8TkUGV9KydFVBVZGbV3aB9UxjkA4G2aZBknaQ44U4bjT65nl+EPLH6yXujrd24MikvcCKqZwZSlFIydl2krTbyAyWJO2gStMnFFGXaU19FmTZbsA/fT5NaZtmpUl7U6MdcO1JfacP48DTNQV/k1s+SHufzGBJ0g5q2j4jM21sL6S5oEO7EFBfZVlQAYa7Lc4MJXn7VBZ9mQyYJEnbQwZX0nJkBkuSdpDrC8oNj8myQzah4/oC2wvx/JAjvXHuTyy/PCiAUt2l0lC4Nx7IwlpJkqRdRmawJGmHlRseo0Wbetun2vS4/qROOq7z5sks6fjSxqPzWk5Iw5bBlbSYIbOZkrQryABLknZYKODuWJM/3igxUXboShs02j6aqvA37/bxwbk8PVkTU9++E2c6rnGsL44qz9V7zmaPf5GiJXlJWi+5RChJu4TrC648qhMzVLrSBvGYFg2kLTuIbT5n1tsB9bbsRC1JIHuWSRsjAyxJ2mUcL2S85Oz0YUiSJEkvQS4RSpIkSZIkbTIZYEmS9FJkfYokSdJSMsCSJOmlyPoUSZKkpWSAJUkH0HbuSJQkSTqIZIAlSXucptJpp6BryppaK8jhwJIkSVtLBliStMcocwFUKq6hqwrJmN5p4+AHQjYelSRJ2gVkmwZJ2mPmgynPF+RSOn25GK4fUmn6BIGg1JADoiVJknaaDLAkaY/QVIXj/XFMXSVuaqQTGrM1j9FZm5SlMVN1d/oQJUmSpDkywJKkXU5VwNRVskmd987kEQj+68dT2O6zOYRlmbXakzQVLENDwKLXc7fQVIVglYPqShs07ABdUwiCaFD5ao+VtDT8QNBygq04XEnaVWSAJUm7VNLSEEKQjuu8czpHNqHzxb0Kri9IxFRcLyTc7hk60ksxNAU/FJwdTvH6sTSZhI4yV1TneiGf36twc6SxrYFWytJouwHxmIZlqAgBcVMjl4pq+/xAoKkKAkHK0rHdEF1TaLsB3RmTU4NJYkZUzttyAsoNj0rDo9rymao4tJyA84fSvH48jaIoCCG4M9bk1tMGU5Xls675lEEmrqFrKt1ZE9cLufq4ThAKhrss3jyZQVEUDF3B1FXGiza5lEG16ROGgnLTo+2GNNp+Z/lcV5VVA8D10NTo37HbAmJpd5EBliTtQqoCrxxJU2l6vH4sw2zN5ZdfzuDLb/Q9xTJUerImR3rjzNZcVEXhndNZ/DAKVhbSdYVXjqR593SOctNjouSgqQr1to/jhcTNKBBqOwGuL/CCENsLUYhmR65FzFDJJXXScZ2utMnRuYHeiZiGob/8nqdETCMR0xjqsla8jSC6eHjvTI50QgcBQSg6/5ZMQscytSX3e+tUFscLiRkq2nNbZc8MpwDoy8WWf04hEAI+u1vB8UKmyg7lpr/hf+d8Vk/XFHw5XFtagQywJGkXScQ0DE2h2vL59E6FREzjO+cLCOBQj4UXCEZnbSAKwmS8tb0sQ6U/H+PpbJtgmWTIQD7GYFeM/lyM/nxsXUGLqihkkwYAvdkYvdnlg4Xnjcy0+ecvZ1a9zaXjGV45miZuqp2M2U5RFYVD3fElP8++4H6aqpCILQ281kJRFBQF3j+bB8DzQ+5PtHD9EFWJWps8mWnjBwJTV0lYGndGm6sujwIyuJJWJQMsSdpBmYTeqUnpyZj8+FI3SUvj41tlmnbAiYEEqhotmfzkjR7aTsCNkQbXntRxNmm546CwTBVVUV6q/idhafz4Ujf1ls/XD2v4QUjbCZmtubxyNM07p3Obd8AvEApBox3w9YPaop9nEzqKEmVXzg6nGO6yyKWMbTuuvcDQVc4dSi362YUj6UV//uBsnlrbx3ajjOFM1eWbRzUZVElrJgMsSdohpq5QSBvEdJUn021mai7/+vUMrxyJTtSf3a2QTxmLMg7xmMaFwykeTbXQVYXmPigWXpiJyyZ1kjGNStOn5QRkEjrpuMZY0encPhHT0DWFmK5SSBuEIso6ZBI6mqqQSeiMzLQpNzzODqdIxDRcPwpGTV1lsuyQSeh8/aCG64VcPJqmWHNRFXB8wdOZNgOFGC0npJA2GMjHyCZ1LEMjl4yeI5cy+MGrXZ1j8vxwU5bY1qNU95iuOFSb0QaHfFLnzHCK146ldzxLtR9omkI+ZQBRcHqkN86Fwyl+dXmW4/0JinUXQ1fx/BDXF5TqLpWXWHaU9h8ZYEnSMkxdwTRU2k5IJqFTb/lYpkrD3ryARghotH0KPXEuHEkRNzUKaYO+bAwUONYX5/LDGj98rQt1wQkzZqq8dSrLry/Pbtqx7ATLUBnutjjen6A7Y/L1gyrnD6foSps8nmojEGiKgqoqnBoMmKm6HOq26MvFiL9gqehwz9IlqHnz9UGnBpPL/v18vY66lpb4c7Y7uIJoyezWaBPbC7FMlW+dy3NolX+39PLiMY2fvdeHEGJJEBsKwXTFZaLkMFV1eDzV3qGjlHYLGWBJ0gKWEWVCQiGIGSrDXTpJSyMMwQ8FozNtWm6I64UIoC9nUm/7mLqKoaur9qJSWDwY2QsELSfk0VSbRttnsMuiMlfcrKoKt542yKcMwhDU5+KJrrTJcLfFyIy9Fb+GLWHqCq4v0FWFrkyUGerLxzjWlwDg+688ywidGEgsuf/Z4e05zvl6nd0sCAX/9k2USXntWJqjvQl0bZcf9D6yXHClKlHGSwjB5YfVHToyaTeRAZa0p2TiOicGEtTbPpWmR6Xh01+IIYToZJdqTR9BtCXeC8SadvoogKEreEHIiYEEMUMlCAQDhRjZpEGj7VNr+RztjROGAtNQ0eczHEoU8DTaPrW2j+NGy1HjZYd6y6fpBKTjGm+fyqGpCndGGwhgouzwypE0fiCoND0sUyUR07AMDctUuXA4hblMZkQBqk2P3Xw6VRRIx3VqrWdLJum4zvdf6cLUnxVzSxvjeCHfvVCgL7+2QnhpazRtn3LDZ7RoM1l2qLV8DE2Rsz4lQAZY0i5i6gp9uRheILDdgERMIx3XmShH9TeJmEZfzmS66hI3VQ73xIkZLod7LAxNZaxoR/17juidbdxtN+Ti0RS/vVKkVPd440SGqYrLzaeNRc8teDYA+ZPbFfpyJicHkmQSBpoaBQQvCgpScZ1U/NlH6lj/0iwMwNsvUQjdaPvYXsiDyRajxd2bvbIMFVOPXgNVgbdPZUkndOptnyO9chnrZc23Q5B2RqPtc3+iBcA3D2ub1l9L2l9kgCVtOXUuw6Mo0JM1MQ2VWtOnN2cykI/qaRSimpIX1das5vldQQv95I0eIOqWXUibnD+UwgtC2m7UeydpacQMtVN3U2l6NO2AsaJNX85cti/PdhFCUGv5zNRcbjxpdALO3SQR00haGqb+LLDKJHQO9cQ53pegJ2vu8BFK0sub/yxee1Ln+pPGi+8gHWgywJI2XcqKejn1FyyCUGDqChcPp3fFVnHL1NYULKXjW/vRcL2Q+5MthBAYmoquKWiqgq4peH7IyKxNqe5Rb/m0d9EIFU2F3lyMwXyM7oxJMq6RSxrLLmVK0n6jzPUq68/HZIAlvZAMsKR1G+qyeP9sDlVhbpuyYLbm4syNbqk2fYJQMJCPETNUGra/64uGt8r8biMvCCnVPWK62hnvMZiPMTLbxnZ9GnbAndGtHZGiawrpuI6mQssJ19QPSlcVjvTFOTWQIJs0SMd1WUwtHXgn+hP4rwg+vlXG9QXH++OEIbh+yFTFfWGDUulgkAGWtKpCysA0VEp1t1OjNFa0+dXXsyTjGqcHkxzuiXN6aPkt7wfd/YkWlaZHJq6TSehMV13KDY/H023qLZ9ETENRoN72O8FVMha1a0gndJptn6ez9ksFXpmEzncu5Bnusjq7nzw/ZLrq8ofrpUWF6AtZpspfvd1LV9qQfZUkaU616eEHgmxC5+RAsjOyqFSPygokaZ4MsKQVWYbK4d442YROysrQdAKeTLd5NNWmNrdjbrriYOpRh2xVhf58jELKIB6Llo76D/gup1ODSYQQzNRcZmseCVOlN2fSkzWZqbpcfri4C/eZoShgHZlpMzLdpjtjcrw/wWTZWdSDS9cUujMmxZqLt8oOybip8s7p7JLRJIauMtRl8Zdv9fC//XGC5R4hDAW/u1oEok0AcVPD0BVSltYZ46JrSmd5U1MVcsnl58hJ0l4XCsEntyrcGKnvmiV7aXeTAZa0ItsL+ea5AOB5QQi2G3ZO0PV2i660wcnBJF1pmfWAqG5jfrZcEAiaTkAQCgopA8cPGSvaBGFUi+V4IbeeNhgvRVmrht0mNVeA350xsb2Q/nyMw90W2aTBry7PMFVZ3HsraWm8fTJLwtJImBohgsdTLRp2gO2G2F70v203oFT3FgVXqgKmoWK7IaGIsljpuD5XvK4SM1SyST0KtrSoCaiqRE05NVXpFLhL0n7ieNE4JNcPZXAlrZkMsKRVZZN61E/KjwKDaBhq1OelKx21LhgqxDg5mERVo52AqlxOWpGmRaNc5n33QmHZ2wkh8EPRKXQfLdoU6x5tJ+B2w1s18G3aAb+/Xur8WZ2bS6epCs5cg1Sx4CQxUIhx4VCK7qw5V6OlEIQCVVnaUFGSDqKYEWV8U3M7ZSfKNrM1b6cPS9rlZIB1ACk8G3wL0HKDRSfchVwvxPOjouh58007i3WPasvH8UJScV32N9pEiqJgaFFfsPnRMAO2T0xXqTR9bo82qLd9grmXJWVp0dJjxiSfMsgkdHRNJW6qi8a4CCGotwPuTzRJxjR6siaF9NIWCto6xsRI0kGRTRpcOpHhjJOk3PAIwrkWKlWXibIjB0FLi8gA6wASRA04LUMlndDpyUY9qixToysdtVLwA4HjhXRlDDRFodTwEAICIYjpKl0Zg75cDENTZJZjG8zPz5t3tDeq01JVhYFCVPe2ltdBUaIM2hsnslt1qJK0r803ee3OLL4w8fyQyYpDvR3geiEN26dlB53RWg3blx3eDxgZYB0A379YwEpEI1lcP0RVotqpQAiCQOAFAs8PadlR0XoookxHNhntZDO1aKlQVaKCZkNTMOYK22VwtTNyKWNX9BWTJCli6OqSzSTPC4XA9aJdh5MzFv/zNh2btDNkgHUAnBhIksms3OV8rUIh8PwoGHP9ED8I0TW5Y0ySJGktVEXpNDtWA+vFd5D2NBlgSWumKgoxQyFmyK7dkiRJkrQaeaaUJEmSJEnaZDLAkiRJkiRJ2mRyifAAqNVWbxYqSZIkbS/5vbz/yQBrHzNNk/7+fg4dOrTThyJJkiQ9p7+/H9Nc2odO2h8UIVZqMSntB7Zt47rui28oSZIkbSvTNLEsuZtwv5IBliRJkiRJ0iaTRe6SJEmSJEmbTAZYkiRJkiRJm0wGWJIkSZIkSZtMBliSJEmSJEmbTAZYkiRJkiRJm0wGWJIkSZIkSZtMBliSJEmSJEmb7P8PVE+t2OmaVTwAAAAASUVORK5CYII=", - "text/html": [ - "\n", - "
    \n", - "
    \n", - " Figure\n", - "
    \n", - " \n", - "
    \n", - " " - ], "text/plain": [ - "Canvas(header_visible=False, toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Bac…" + "LayerToggleButtons(description='Layers', index=2, options=('coastline', 'countries', 'ocean'), value='ocean')" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "606e15353d3d445e9028c33102c77134", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "LayerDropdown(description='Layers', index=2, options=('coastline', 'countries', 'ocean'), value='ocean')" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f1e9d00db02f488ca6623762b53ec557", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "LayerRadioButtons(description='Layers', index=2, options=('coastline', 'countries', 'ocean'), value='ocean')" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2ada39bb960b484988116bebd163af5d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "LayerSelect(description='Layers', index=2, options=('coastline', 'countries', 'ocean'), value='ocean')" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "baf9ae7c23fd425b89484f957216f938", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "LayerSelectMultiple(description='Layers', index=(2, 2), options=('coastline', 'countries', 'ocean'), value=('o…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fa503ca772e741b6892ff1a7ed14d7e6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "LayerSelectionSlider(description='Layers', index=2, options=('coastline', 'countries', 'ocean'), value='ocean'…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "19af3d8fe4f2421795bc99922f729996", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "LayerSelectionRangeSlider(description='Layers', index=(2, 2), options=('coastline', 'countries', 'ocean'), val…" ] }, "metadata": {}, @@ -235,14 +377,110 @@ } ], "source": [ - "m = Maps(figsize=(6, 2))\n", - "m.add_feature.preset.coastline()\n", - "\n", - "m.add_feature.preset.countries(layer=\"Countries\")\n", - "m.add_feature.preset.ocean(layer=\"Ocean\")\n", - "m.show_layer(\"Ocean\")\n", + "display(\n", + " button,\n", + " toggle_buttons,\n", + " dropdown, \n", + " radio_buttons,\n", + " select_single, \n", + " select_multi,\n", + " slider, \n", + " range_slider\n", + ")\n" + ] + }, + { + "cell_type": "markdown", + "id": "6501121d-06a2-4f8b-b279-8d684ddb9b95", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + ":::{tip}\n", + "You can also specify custom labels or use combined-layer assignments.\n", "\n", - "display(widgets.LayerToggleButtons(m), m.f.canvas)" + "In addition, you can style the widgets as any other Jupyter Widget (more info in the [Widget Styling](https://ipywidgets.readthedocs.io/en/7.6.2/examples/Widget%20Styling.html#) section of the ipywidgets docs.)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "ad083853-4209-4a23-bf43-02fd0560f269", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "cd341ec83aa44d72ae512dcbe2f49ca5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "LayerSelectMultiple(description='Layers', layout=Layout(height='80px', width='50%'), options=(('A nice coastli…" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "custom_selector = widgets.LayerSelectMultiple(\n", + " m,\n", + " layers=[[\"A nice coastline\", \"coastline\"], \n", + " [\"Overlay 'coastline' + 'ocean'\", (\"coast\", \"ocean\")],\n", + " [\"Transparent overlay: 'coastline' + 'ocean'\", (\"coast\", (\"ocean\", 0.4))]\n", + " ],\n", + " layout=dict(width='50%', height='80px', )\n", + ")\n", + "custom_selector" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "db03b116-c43b-4802-90d1-dcde8ca901cd", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a05311ef3ad84756b6dd4002888c40d9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "LayerButton(description='Custom Ocean Button', layout=Layout(height='5ex', width='30ex'), style=ButtonStyle(bu…" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "custom_button = widgets.LayerButton(m, layer=\"ocean\", description=\"Custom Ocean Button\", layout=dict(width=\"30ex\", height=\"5ex\"))\n", + "custom_button.style.button_color = 'lightblue'\n", + "custom_button.style.font_weight = 'bold'\n", + "custom_button.style.font_size = '24px'\n", + "custom_button" ] } ], @@ -267,40 +505,191 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "15f06cddfd5941dba2da7800413fcf85": { + "00300632abc44177af6a49ff4a2a98f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "DescriptionStyleModel", + "state": { + "description_width": "" + } + }, + "0ce486faa7784b48b8f139365dec99ca": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "height": "80px", + "width": "50%" + } + }, + "0dade8feedc34cc6a91b0d868070b2df": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "37a91e5ba4424e88af1ee8a77e57f337": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "ToolbarModel", + "115be2e46de0423fb2ac5b8acf1fbb7e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "VBoxModel", "state": { - "_model_module_version": "^0.11", - "_view_module_version": "^0.11", - "collapsed": true, - "layout": "IPY_MODEL_15f06cddfd5941dba2da7800413fcf85", - "orientation": "vertical", - "toolitems": [ - [ - "Home", - "Reset original view", - "home", - "home" - ], - [ - "Back", - "Back to previous view", - "arrow-left", - "back" - ], - [ - "Forward", - "Forward to next view", - "arrow-right", - "forward" + "children": [ + "IPY_MODEL_164f46af43da47e585b67b0441c5f581", + "IPY_MODEL_e4fa62881a124369af70305b20d4f0b8", + "IPY_MODEL_606e15353d3d445e9028c33102c77134", + "IPY_MODEL_f1e9d00db02f488ca6623762b53ec557", + "IPY_MODEL_2ada39bb960b484988116bebd163af5d", + "IPY_MODEL_baf9ae7c23fd425b89484f957216f938", + "IPY_MODEL_fa503ca772e741b6892ff1a7ed14d7e6", + "IPY_MODEL_19af3d8fe4f2421795bc99922f729996" + ], + "layout": "IPY_MODEL_d275741ab86c4716b54d3db5261c72ed" + } + }, + "14c688d4b72f4e52a1134ae7de11cb54": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "164f46af43da47e585b67b0441c5f581": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ButtonModel", + "state": { + "description": "ocean", + "layout": "IPY_MODEL_1a033d565947464999611c0471e301fa", + "style": "IPY_MODEL_2a04abc6fbc444dbaecb11f8f2f6e1e1", + "tooltip": null + } + }, + "17fc2557567e45b3883019a036e0b00d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "SelectionSliderModel", + "state": { + "_options_labels": [ + "coastline", + "countries", + "ocean" + ], + "behavior": "drag-tap", + "description": "Layers", + "index": 0, + "layout": "IPY_MODEL_ed88c97c871c400eb67c5800165d41eb", + "style": "IPY_MODEL_f3453e1b3e484e5497ea80dfe30aa6e4" + } + }, + "19af3d8fe4f2421795bc99922f729996": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "SelectionRangeSliderModel", + "state": { + "_model_name": "SelectionRangeSliderModel", + "_options_labels": [ + "coastline", + "countries", + "ocean" + ], + "_view_name": "SelectionRangeSliderView", + "behavior": "drag-tap", + "description": "Layers", + "index": [ + 2, + 2 + ], + "layout": "IPY_MODEL_7e6bb04688dc4226956b31b27690167d", + "style": "IPY_MODEL_243adf05996e4d6ea4dfce0dd476aa14" + } + }, + "1a033d565947464999611c0471e301fa": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "1e1aaa7be9b843beb7a3eef272303d3b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "DescriptionStyleModel", + "state": { + "description_width": "" + } + }, + "24057ca6512a44468774840c821514ea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "SelectionRangeSliderModel", + "state": { + "_model_name": "SelectionRangeSliderModel", + "_options_labels": [ + "coastline", + "countries", + "ocean" + ], + "_view_name": "SelectionRangeSliderView", + "behavior": "drag-tap", + "description": "Layers", + "index": [ + 0, + 0 + ], + "layout": "IPY_MODEL_cef9f3584eea492ea4291952b85c5b6f", + "style": "IPY_MODEL_3d0641653f554e6c8fba757fdf214bc8" + } + }, + "243adf05996e4d6ea4dfce0dd476aa14": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "SliderStyleModel", + "state": { + "description_width": "" + } + }, + "295aeaa6f44449c39950ec8eb7fe9ce4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "SelectModel", + "state": { + "_options_labels": [ + "coastline", + "countries", + "ocean" + ], + "description": "Layers", + "index": 0, + "layout": "IPY_MODEL_14c688d4b72f4e52a1134ae7de11cb54", + "style": "IPY_MODEL_888f64490ec24f118cf88b9ba47cc272" + } + }, + "29a656a721bd48539e239cf5b3ae39a9": { + "model_module": "jupyter-matplotlib", + "model_module_version": "^0.11", + "model_name": "ToolbarModel", + "state": { + "_model_module_version": "^0.11", + "_view_module_version": "^0.11", + "collapsed": true, + "layout": "IPY_MODEL_fd6cc8ab10e140748466899f69597333", + "orientation": "vertical", + "toolitems": [ + [ + "Home", + "Reset original view", + "home", + "home" + ], + [ + "Back", + "Back to previous view", + "arrow-left", + "back" + ], + [ + "Forward", + "Forward to next view", + "arrow-right", + "forward" ], [ "Pan", @@ -323,54 +712,218 @@ ] } }, - "43296dfeb4cf4d9db89ad3062d95468a": { + "2a04abc6fbc444dbaecb11f8f2f6e1e1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ButtonStyleModel", + "state": { + "font_family": null, + "font_size": null, + "font_style": null, + "font_variant": null, + "font_weight": null, + "text_color": null, + "text_decoration": null + } + }, + "2ada39bb960b484988116bebd163af5d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "SelectModel", + "state": { + "_options_labels": [ + "coastline", + "countries", + "ocean" + ], + "description": "Layers", + "index": 2, + "layout": "IPY_MODEL_e6581233a5ec448b857e361d1b7dd45f", + "style": "IPY_MODEL_75b02b3ca94b458c8216fa9f6bde4dfc" + } + }, + "30fbe7128e8a4153a26fa442b67d4a44": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", - "state": {} + "state": { + "height": "5ex", + "width": "30ex" + } }, - "49da046497434d0eba54c09cab729573": { + "36e83b6b2c3643beb802b3b72d160728": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "height": "5ex", + "width": "30ex" + } + }, + "37b20b04e65d442bbca89ee2f404f4c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ToggleButtonsStyleModel", + "model_name": "DescriptionStyleModel", + "state": { + "description_width": "" + } + }, + "38f9281338b44eadb3435cdaadfd0412": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "DescriptionStyleModel", "state": { - "button_width": "", "description_width": "" } }, - "6e2d04a390084f7eab12c600ab71ae30": { + "39e2caf32668496c89f1b429719e1a0b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ToggleButtonsModel", "state": { "_options_labels": [ - "Countries", - "Ocean", - "base" + "coastline", + "countries", + "ocean" ], "button_style": "", "description": "Layers", "icons": [], - "index": 1, - "layout": "IPY_MODEL_43296dfeb4cf4d9db89ad3062d95468a", - "style": "IPY_MODEL_49da046497434d0eba54c09cab729573", + "index": 0, + "layout": "IPY_MODEL_0dade8feedc34cc6a91b0d868070b2df", + "style": "IPY_MODEL_dc94da2387094ae59728897c307f02fc", "tooltips": [] } }, - "7a5b01fb49bd4d8595ce74b8bbfe0ea1": { + "3d0641653f554e6c8fba757fdf214bc8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "SliderStyleModel", + "state": { + "description_width": "" + } + }, + "4279d421c4454136aed1e8f51a49fdbd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "SelectMultipleModel", + "state": { + "_options_labels": [ + "A nice coastline", + "Overlay 'coastline' + 'ocean'", + "Transparent overlay: 'coastline' + 'ocean'" + ], + "description": "Layers", + "index": [], + "layout": "IPY_MODEL_0ce486faa7784b48b8f139365dec99ca", + "rows": 5, + "style": "IPY_MODEL_1e1aaa7be9b843beb7a3eef272303d3b" + } + }, + "53664dd0fd674aaf87ff8730b1429567": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "588b0e3129904a71b57e65de34bb9bec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ButtonModel", + "state": { + "description": "ocean", + "layout": "IPY_MODEL_eea7a30d36d84710951b1698169dfa3e", + "style": "IPY_MODEL_ff8be3ec300444f784616984a94d3b3b", + "tooltip": null + } + }, + "599293c026224217adb706a576bcb147": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "DescriptionStyleModel", + "state": { + "description_width": "" + } + }, + "5b8b0272895040de84eee9721cd57bcd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "DescriptionStyleModel", + "state": { + "description_width": "" + } + }, + "5e31ffd632114f29ad8f9796b1759a49": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "SliderStyleModel", + "state": { + "description_width": "" + } + }, + "606e15353d3d445e9028c33102c77134": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "DropdownModel", + "state": { + "_options_labels": [ + "coastline", + "countries", + "ocean" + ], + "description": "Layers", + "index": 2, + "layout": "IPY_MODEL_b289ad147f1a4461bfccffd27ea37e2a", + "style": "IPY_MODEL_aca7e8c1fef84536b3e27cb22231f619" + } + }, + "615cda7c550840d794459343fecf2dd3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "height": "80px", + "width": "50%" + } + }, + "70da4a6e5d7d438eabbdac8d7b6b4a89": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "75b02b3ca94b458c8216fa9f6bde4dfc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "DescriptionStyleModel", + "state": { + "description_width": "" + } + }, + "78e30f13a75c4c1ead4f75af341d7466": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ButtonModel", + "state": { + "description": "Custom Ocean Button", + "layout": "IPY_MODEL_30fbe7128e8a4153a26fa442b67d4a44", + "style": "IPY_MODEL_992fb18b8d764107bae5571b22b06607", + "tooltip": null + } + }, + "7e6bb04688dc4226956b31b27690167d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "978c8cf2f45a452987f32024e174568c": { + "836c14443b724a6aa4eaf6dc128ba33f": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "MPLCanvasModel", "state": { - "_data_url": "", + "_data_url": "", "_figure_label": "Figure 1", - "_image_mode": "diff", "_model_module_version": "^0.11", "_size": [ 600, @@ -378,10 +931,424 @@ ], "_view_module_version": "^0.11", "header_visible": false, - "layout": "IPY_MODEL_7a5b01fb49bd4d8595ce74b8bbfe0ea1", - "toolbar": "IPY_MODEL_37a91e5ba4424e88af1ee8a77e57f337", + "layout": "IPY_MODEL_53664dd0fd674aaf87ff8730b1429567", + "toolbar": "IPY_MODEL_29a656a721bd48539e239cf5b3ae39a9", "toolbar_position": "left" } + }, + "85f26793c1fd4effbd94698845090a2d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ToggleButtonsStyleModel", + "state": { + "button_width": "", + "description_width": "" + } + }, + "888f64490ec24f118cf88b9ba47cc272": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "DescriptionStyleModel", + "state": { + "description_width": "" + } + }, + "8a88833604ac44d1aff8edc6e0692541": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "DescriptionStyleModel", + "state": { + "description_width": "" + } + }, + "8c21d03d7a70457d8baf173298bd1411": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "929b27c2f8734262a101ec792fe53df0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ButtonModel", + "state": { + "description": "Custom Ocean Button", + "layout": "IPY_MODEL_36e83b6b2c3643beb802b3b72d160728", + "style": "IPY_MODEL_f650197f759f42948ecbe7a82098fe34", + "tooltip": null + } + }, + "9359bad23e7644069c18f02976cb62bb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "95a0f5a02c9142d79113ab5c46ff6df4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "992fb18b8d764107bae5571b22b06607": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ButtonStyleModel", + "state": { + "button_color": "lightblue", + "font_family": null, + "font_size": "24px", + "font_style": null, + "font_variant": null, + "font_weight": "bold", + "text_color": null, + "text_decoration": null + } + }, + "9968216f831d4e17afa1b5b6f869ea27": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "9d41b593046347fb9ed041cdf4d7d758": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "RadioButtonsModel", + "state": { + "_options_labels": [ + "coastline", + "countries", + "ocean" + ], + "description": "Layers", + "index": 0, + "layout": "IPY_MODEL_ee70c8487d9b45219b27e449a69c35dd", + "style": "IPY_MODEL_e83045abddcd48caace63182a908a53e" + } + }, + "a05311ef3ad84756b6dd4002888c40d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ButtonModel", + "state": { + "description": "Custom Ocean Button", + "layout": "IPY_MODEL_debb82c087ae4960a6437aa14664b817", + "style": "IPY_MODEL_e906ce4f97794dada32f2a8d02839795", + "tooltip": null + } + }, + "a2bcfadd84004472b3ac00bc5f3f8049": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "height": "80px", + "width": "50%" + } + }, + "aca7e8c1fef84536b3e27cb22231f619": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "DescriptionStyleModel", + "state": { + "description_width": "" + } + }, + "b289ad147f1a4461bfccffd27ea37e2a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "b2e44133c6d442558604370abe39e746": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "SelectMultipleModel", + "state": { + "_options_labels": [ + "A nice coastline", + "Overlay 'coastline' + 'ocean'", + "Transparent overlay: 'coastline' + 'ocean'" + ], + "description": "Layers", + "index": [], + "layout": "IPY_MODEL_a2bcfadd84004472b3ac00bc5f3f8049", + "rows": 5, + "style": "IPY_MODEL_5b8b0272895040de84eee9721cd57bcd" + } + }, + "b7a430ea9fae4ab39ee32efda638ba62": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "VBoxModel", + "state": { + "children": [ + "IPY_MODEL_588b0e3129904a71b57e65de34bb9bec", + "IPY_MODEL_39e2caf32668496c89f1b429719e1a0b", + "IPY_MODEL_bedb8bdd542c4d36b160a7e8ac747553", + "IPY_MODEL_9d41b593046347fb9ed041cdf4d7d758", + "IPY_MODEL_295aeaa6f44449c39950ec8eb7fe9ce4", + "IPY_MODEL_e5279598198f43849dacbcba7e750918", + "IPY_MODEL_17fc2557567e45b3883019a036e0b00d", + "IPY_MODEL_24057ca6512a44468774840c821514ea" + ], + "layout": "IPY_MODEL_d9a61c6dc2a842e987167dcb44008d89" + } + }, + "baf9ae7c23fd425b89484f957216f938": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "SelectMultipleModel", + "state": { + "_options_labels": [ + "coastline", + "countries", + "ocean" + ], + "description": "Layers", + "index": [ + 2, + 2 + ], + "layout": "IPY_MODEL_95a0f5a02c9142d79113ab5c46ff6df4", + "rows": 5, + "style": "IPY_MODEL_00300632abc44177af6a49ff4a2a98f0" + } + }, + "bedb8bdd542c4d36b160a7e8ac747553": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "DropdownModel", + "state": { + "_options_labels": [ + "coastline", + "countries", + "ocean" + ], + "description": "Layers", + "index": 0, + "layout": "IPY_MODEL_dadac6e8be4b495e9e2d4bbe8efe1717", + "style": "IPY_MODEL_8a88833604ac44d1aff8edc6e0692541" + } + }, + "cd341ec83aa44d72ae512dcbe2f49ca5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "SelectMultipleModel", + "state": { + "_options_labels": [ + "A nice coastline", + "Overlay 'coastline' + 'ocean'", + "Transparent overlay: 'coastline' + 'ocean'" + ], + "description": "Layers", + "index": [], + "layout": "IPY_MODEL_615cda7c550840d794459343fecf2dd3", + "rows": 5, + "style": "IPY_MODEL_599293c026224217adb706a576bcb147" + } + }, + "cef9f3584eea492ea4291952b85c5b6f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "d275741ab86c4716b54d3db5261c72ed": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "d9a61c6dc2a842e987167dcb44008d89": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "dadac6e8be4b495e9e2d4bbe8efe1717": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "dc94da2387094ae59728897c307f02fc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ToggleButtonsStyleModel", + "state": { + "button_width": "", + "description_width": "" + } + }, + "debb82c087ae4960a6437aa14664b817": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "height": "5ex", + "width": "30ex" + } + }, + "e4fa62881a124369af70305b20d4f0b8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ToggleButtonsModel", + "state": { + "_options_labels": [ + "coastline", + "countries", + "ocean" + ], + "button_style": "", + "description": "Layers", + "icons": [], + "index": 2, + "layout": "IPY_MODEL_8c21d03d7a70457d8baf173298bd1411", + "style": "IPY_MODEL_85f26793c1fd4effbd94698845090a2d", + "tooltips": [] + } + }, + "e5279598198f43849dacbcba7e750918": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "SelectMultipleModel", + "state": { + "_options_labels": [ + "coastline", + "countries", + "ocean" + ], + "description": "Layers", + "index": [], + "layout": "IPY_MODEL_70da4a6e5d7d438eabbdac8d7b6b4a89", + "rows": 5, + "style": "IPY_MODEL_37b20b04e65d442bbca89ee2f404f4c7" + } + }, + "e6581233a5ec448b857e361d1b7dd45f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "e83045abddcd48caace63182a908a53e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "DescriptionStyleModel", + "state": { + "description_width": "" + } + }, + "e906ce4f97794dada32f2a8d02839795": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ButtonStyleModel", + "state": { + "button_color": "lightblue", + "font_family": null, + "font_size": "24px", + "font_style": null, + "font_variant": null, + "font_weight": "bold", + "text_color": null, + "text_decoration": null + } + }, + "ed88c97c871c400eb67c5800165d41eb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "ee70c8487d9b45219b27e449a69c35dd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "eea7a30d36d84710951b1698169dfa3e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "f1e9d00db02f488ca6623762b53ec557": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "RadioButtonsModel", + "state": { + "_options_labels": [ + "coastline", + "countries", + "ocean" + ], + "description": "Layers", + "index": 2, + "layout": "IPY_MODEL_9968216f831d4e17afa1b5b6f869ea27", + "style": "IPY_MODEL_38f9281338b44eadb3435cdaadfd0412" + } + }, + "f3453e1b3e484e5497ea80dfe30aa6e4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "SliderStyleModel", + "state": { + "description_width": "" + } + }, + "f650197f759f42948ecbe7a82098fe34": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ButtonStyleModel", + "state": { + "button_color": "lightblue", + "font_family": null, + "font_size": "24px", + "font_style": null, + "font_variant": null, + "font_weight": "bold", + "text_color": null, + "text_decoration": null + } + }, + "fa503ca772e741b6892ff1a7ed14d7e6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "SelectionSliderModel", + "state": { + "_options_labels": [ + "coastline", + "countries", + "ocean" + ], + "behavior": "drag-tap", + "description": "Layers", + "index": 2, + "layout": "IPY_MODEL_9359bad23e7644069c18f02976cb62bb", + "style": "IPY_MODEL_5e31ffd632114f29ad8f9796b1759a49" + } + }, + "fd6cc8ab10e140748466899f69597333": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "ff8be3ec300444f784616984a94d3b3b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ButtonStyleModel", + "state": { + "font_family": null, + "font_size": null, + "font_style": null, + "font_variant": null, + "font_weight": null, + "text_color": null, + "text_decoration": null + } } }, "version_major": 2, From b8bb6563a745c0ae666b1e940caff3468abb68f4 Mon Sep 17 00:00:00 2001 From: Raphael Date: Thu, 7 Mar 2024 12:14:55 +0100 Subject: [PATCH 219/240] update widget docs --- docs/notebooks/widgets.ipynb | 14 +++----------- 1 file changed, 3 insertions(+), 11 deletions(-) diff --git a/docs/notebooks/widgets.ipynb b/docs/notebooks/widgets.ipynb index 2922e7716..0ca6461f5 100644 --- a/docs/notebooks/widgets.ipynb +++ b/docs/notebooks/widgets.ipynb @@ -251,7 +251,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 15, "id": "e850d223-3326-4afb-a500-d0c08b8ee624", "metadata": { "editable": true, @@ -377,16 +377,7 @@ } ], "source": [ - "display(\n", - " button,\n", - " toggle_buttons,\n", - " dropdown, \n", - " radio_buttons,\n", - " select_single, \n", - " select_multi,\n", - " slider, \n", - " range_slider\n", - ")\n" + "display(button, toggle_buttons, dropdown, radio_buttons, select_single, select_multi, slider, range_slider)" ] }, { @@ -924,6 +915,7 @@ "state": { "_data_url": "", "_figure_label": "Figure 1", + "_message": "81, 41.62 (41.616699°N, 81.000000°E)", "_model_module_version": "^0.11", "_size": [ 600, From d592dd1031abca6039ac014b9308ee82d59ed2a4 Mon Sep 17 00:00:00 2001 From: Raphael Date: Thu, 7 Mar 2024 12:32:33 +0100 Subject: [PATCH 220/240] add LayerButton to widget docs --- docs/notebooks/widgets.ipynb | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/docs/notebooks/widgets.ipynb b/docs/notebooks/widgets.ipynb index 0ca6461f5..e683036e4 100644 --- a/docs/notebooks/widgets.ipynb +++ b/docs/notebooks/widgets.ipynb @@ -90,6 +90,7 @@ ".. autosummary:: \n", " :nosignatures:\n", "\n", + " LayerButton\n", " LayerRadioButtons\n", " LayerToggleButtons\n", "\n", @@ -915,7 +916,7 @@ "state": { "_data_url": "", "_figure_label": "Figure 1", - "_message": "81, 41.62 (41.616699°N, 81.000000°E)", + "_message": "-126, -29.38 (29.383301°S, 126.000000°W)", "_model_module_version": "^0.11", "_size": [ 600, From f653e4d9595a132b6c65034979d2687ea15c9023 Mon Sep 17 00:00:00 2001 From: Raphael Date: Thu, 7 Mar 2024 12:46:08 +0100 Subject: [PATCH 221/240] update version to 8.0rc1 --- pyproject.toml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pyproject.toml b/pyproject.toml index 24354cc40..00c0fae5b 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -11,7 +11,7 @@ eomaps = ["logo.png", "NE_features.json", "qtcompanion/icons/*"] [project] name = "eomaps" -version = "8.0rc0" +version = "8.0rc1" description = "A library to create interactive maps of geographical datasets." readme = "README.md" license = {file = "LICENSE"} From e14d9937abe6b07dfcbbdfafa4d3867c208fd245 Mon Sep 17 00:00:00 2001 From: Raphael Date: Thu, 7 Mar 2024 12:48:03 +0100 Subject: [PATCH 222/240] update layout editor - allow "-1" as width/height - make sure x0 and y0 are fixed to the provided values - update docstrings accordingly --- eomaps/layout_editor.py | 79 ++++++++++++++++++++++++++++++++++++----- 1 file changed, 71 insertions(+), 8 deletions(-) diff --git a/eomaps/layout_editor.py b/eomaps/layout_editor.py index 6c7da7735..a77cfc413 100644 --- a/eomaps/layout_editor.py +++ b/eomaps/layout_editor.py @@ -844,6 +844,18 @@ def get_layout(self, filepath=None, override=False, precision=5): """ Get the positions of all axes within the current plot. + The returned layout has the following structure: + + >>> {"figsize": [width, height], # figure size + >>> "0_map": [x0, y0, width, height], # map position + >>> "1_inset_map": [x0, y0, width, height], # inset-map position + >>> "2_logo": [x0, y0, width, height], # logo position + >>> "3_cb": [x0, y0, width, height], # colorbar position + >>> "3_cb_histogram_size": 0.5, # histogram size of colorbar + >>> ... + >>> } + + To re-apply a layout, use: >>> l = m.get_layout() @@ -851,10 +863,16 @@ def get_layout(self, filepath=None, override=False, precision=5): Note ---- - The returned list is only a snapshot of the current layout. + The layout is dependent on the order at which the axes ahve been created! It can only be re-applied to a given figure if the order at which the axes are created remains the same! + Maps aways preserve the aspect ratio. + If you provide values for width/height that do not match the aspect-ratio + of the map, the values will be adjusted accordingly. By default, smaller values + take precedence. To fix one value and adjust the other accordingly, use `-1` + for width or height! (e.g. `{"0_map": [0.1, 0.1, 0.8, -1]}`) + Parameters ---------- filepath : str or pathlib.Path, optional @@ -923,24 +941,48 @@ def get_layout(self, filepath=None, override=False, precision=5): def apply_layout(self, layout): """ - Set the positions of all axes within the current plot based on a previously - defined layout. + Set the positions of all axes of the current figure based on a given layout. + + The layout has the following structure: + + >>> {"figsize": [width, height], # figure size + >>> "0_map": [x0, y0, width, height], # map position + >>> "1_inset_map": [x0, y0, width, height], # inset-map position + >>> "2_logo": [x0, y0, width, height], # logo position + >>> "3_cb": [x0, y0, width, height], # colorbar position + >>> "3_cb_histogram_size": 0.5, # histogram size of colorbar + >>> ... + >>> } + + - The positions are hereby specified in relative figure-units (0-1) + - If `width` or `height` is set to -1, its value will be determined such + that the current aspect-ratio of the axes remains the same. + + To get the current layout, use: + + >>> layout = m.get_layout() To apply a layout, use: - >>> l = m.get_layout() - >>> m.set_layout(l) + >>> m.apply_layout(layout) To save a layout to disc and apply it at a later stage, use >>> m.get_layout(filepath=) - >>> m.set_layout() + >>> m.apply_layout() Note ---- - The returned list is only a snapshot of the current layout. + The layout is dependent on the order at which the axes ahve been created! It can only be re-applied to a given figure if the order at which the axes are created remains the same! + Maps aways preserve the aspect ratio. + If you provide values for width/height that do not match the aspect-ratio + of the map, the values will be adjusted accordingly. By default, smaller values + take precedence. To fix one value and adjust the other accordingly, use `-1` + for width or height! (e.g. `{"0_map": [0.1, 0.1, 0.8, -1]}`) + + Parameters ---------- layout : dict, str or pathlib.Path @@ -987,7 +1029,28 @@ def apply_layout(self, layout): if key.endswith("_histogram_size"): cbs[i]._set_hist_size(val) else: - axes[i].set_position(val) + ax = axes[i] + bbox = ax.get_position() + aspect = bbox.width / bbox.height + + # if any value is passed as -1, set it to the corresponding aspect + if val[2] == -1 and val[3] == -1: + raise TypeError( + "EOmaps: You can only set width or height to -1, not both... " + f"Check the values for '{key}' in your layout!" + ) + + if val[2] == -1: + val[2] = val[3] * aspect + elif val[3] == -1: + val[3] = val[2] / aspect + + # To ensure x0 and y0 are fixed to the provided values, + # we set the position and then set it again using the actual + # width and height from the new position. + ax.set_position(val) + bbox = ax.get_position() + ax.set_position((*val[:2], bbox.width, bbox.height)) # force an immediate draw (rather than using draw_idle) to avoid issues with # stacking order for tkagg backend From 69e6527eb64880803c22980f7597cc51060f0663 Mon Sep 17 00:00:00 2001 From: Raphael Date: Fri, 8 Mar 2024 15:19:38 +0100 Subject: [PATCH 223/240] synchronize layer-change widgets and avoid multiple handler calls --- eomaps/widgets.py | 141 ++++++++++++++++++++++++++++++++-------------- 1 file changed, 98 insertions(+), 43 deletions(-) diff --git a/eomaps/widgets.py b/eomaps/widgets.py index 077b3fee9..0f9a34317 100644 --- a/eomaps/widgets.py +++ b/eomaps/widgets.py @@ -1,5 +1,3 @@ -from abc import abstractmethod -from functools import wraps from contextlib import contextmanager import numpy as np @@ -98,14 +96,25 @@ class _LayerSelectionWidget: """ - _description = "LayerSelectionWidget" + _description = "Layers" + _widget_cls = None - def __init__(self, m, layers=None): + def __init__(self, m, layers=None, **kwargs): _check_backend() self._m = m self._set_layers_options(layers) + self._set_default_kwargs(kwargs) + self._widget_cls.__init__(self, options=self._options, **kwargs) + + if hasattr(self, "change_handler"): + self.observe(self.change_handler, names="value", type="change") + + # add a callback to update the widget values if the map-layer changes + if hasattr(self, "_cb_on_layer_change"): + self._m.BM.on_layer(self._cb_on_layer_change, persistent=True) + def _set_layers_options(self, layers): # _layers is a list of the actual layer-names # _options is a list of tuples (name, value) passed to the widget-init @@ -142,43 +151,41 @@ def _parse_layer(l): else: return l + @contextmanager + def _unobserve_change_handler(self): + try: + self.unobserve(self.change_handler, names="value", type="change") -class _SingleLayerSelectionWidget(_LayerSelectionWidget): - _description = "Layers" - _widget_cls = None - - @wraps(_LayerSelectionWidget.__init__) - def __init__(self, m, layers=None, **kwargs): - - _LayerSelectionWidget.__init__(self, m=m, layers=layers) - - self._set_default_kwargs(kwargs) - self._widget_cls.__init__(self, options=self._options, **kwargs) + yield + finally: + self.observe(self.change_handler, names="value", type="change") - self.observe(self.handler) +class _SingleLayerSelectionWidget(_LayerSelectionWidget): def _set_default_kwargs(self, kwargs): kwargs.setdefault("description", self._description) if self._m.BM.bg_layer in self._layers: kwargs.setdefault("value", self._m.BM.bg_layer) - def handler(self, change): + def change_handler(self, change): try: if self.value is not None: with _force_full(self._m): self._m.show_layer(self.value) - self._m.BM.update() except Exception: _log.error("Problem in LayerSelectionWidget handler...", exc_info=True) + def _cb_on_layer_change(self, **kwargs): + """A callback that is executed on all layer changes to update the widget-value.""" + try: + layer = self._m.BM.bg_layer + if layer in self._layers: + with self._unobserve_change_handler(): + self.value = layer -class _MultiLayerSelectionWidget(_SingleLayerSelectionWidget): - def _set_default_kwargs(self, kwargs): - kwargs.setdefault("description", self._description) - - if self._m.BM.bg_layer in self._layers: - kwargs.setdefault("value", (self._m.BM.bg_layer, self._m.BM.bg_layer)) + except Exception: + _log.exception(f"Unable to update widget value to {self._m.BM.bg_layer}") @_add_docstring( @@ -195,21 +202,6 @@ class LayerSelect(_SingleLayerSelectionWidget, ipywidgets.Select): _widget_cls = ipywidgets.Select -@_add_docstring( - "A list-box to select multiple visible layers.", replace_with=_LayerSelectionWidget -) -class LayerSelectMultiple(_MultiLayerSelectionWidget, ipywidgets.SelectMultiple): - _widget_cls = ipywidgets.SelectMultiple - - def handler(self, change): - try: - if self.value is not None: - with _force_full(self._m): - self._m.show_layer(*self.value) - except Exception: - _log.error("Problem in MultiLayerSelectionWidget handler...", exc_info=True) - - @_add_docstring( "Toggle buttons to select a single visible layer.", replace_with=_LayerSelectionWidget, @@ -233,6 +225,47 @@ class LayerSelectionSlider(_SingleLayerSelectionWidget, ipywidgets.SelectionSlid _widget_cls = ipywidgets.SelectionSlider +# %% Multi Selector Widgets + + +class _MultiLayerSelectionWidget(_LayerSelectionWidget): + def _set_default_kwargs(self, kwargs): + kwargs.setdefault("description", self._description) + + if self._m.BM.bg_layer in self._layers: + kwargs.setdefault("value", (self._m.BM.bg_layer, self._m.BM.bg_layer)) + + +@_add_docstring( + "A list-box to select multiple visible layers.", replace_with=_LayerSelectionWidget +) +class LayerSelectMultiple(_MultiLayerSelectionWidget, ipywidgets.SelectMultiple): + _widget_cls = ipywidgets.SelectMultiple + + def change_handler(self, change): + try: + if len(self.value) > 0 and None not in self.value: + with _force_full(self._m): + self._m.show_layer(*self.value) + except Exception: + _log.error("Problem in MultiLayerSelectionWidget handler...", exc_info=True) + + def _cb_on_layer_change(self, **kwargs): + """A callback that is executed on all layer changes to update the widget-value.""" + try: + # Identify all layers that are part of the currently visible layer + # TODO transparencies are currently ignored (e.g. treated as selected) + active_layers = self._m.BM._get_active_layers_alphas[0] + found = [l for l in self._layers if l in active_layers] + + if len(found) > 0: + with self._unobserve_change_handler(): + self.value = found + + except Exception: + _log.exception(f"Unable to update widget value to {self._m.BM.bg_layer}") + + @_add_docstring( "A range-slider to view a combination of a range of layers.", replace_with=_LayerSelectionWidget, @@ -242,9 +275,9 @@ class LayerSelectionRangeSlider( ): _widget_cls = ipywidgets.SelectionRangeSlider - def handler(self, change): + def change_handler(self, change): try: - if self.value is not None: + if len(self.value) > 0 and None not in self.value: i0 = self._layers.index(self.value[0]) i1 = self._layers.index(self.value[1]) with _force_full(self._m): @@ -255,6 +288,28 @@ def handler(self, change): except Exception: _log.error("Problem in MultiLayerSelectionWidget handler...", exc_info=True) + def _cb_on_layer_change(self, **kwargs): + """A callback that is executed on all layer changes to update the widget-value.""" + try: + # identify all layers that are part of the currently visible layer + # TODO transparencies are currently ignored (e.g. treated as selected) + # TODO properly handle case where intermediate layers are not selected + # (right now only start- and stop determines the range independent + # of the selected layers in between) + active_layers = self._m.BM._get_active_layers_alphas[0] + found_idx = [ + self._layers.index(l) for l in self._layers if l in active_layers + ] + + if len(found_idx) > 0: + mi, ma = min(found_idx), max(found_idx) + + with self._unobserve_change_handler(): + self.value = (self._layers[mi], self._layers[ma]) + + except Exception: + _log.exception(f"Unable to update widget value to {self._m.BM.bg_layer}") + # %% Layer Overlay Widgets @@ -345,9 +400,9 @@ def __init__(self, m, layer, **kwargs): self._last_value = self.value - self.observe(self.handler) + self.observe(self.change_handler, names="value", type="change") - def handler(self, change): + def change_handler(self, change): try: layers, alphas = LayerParser._parse_multi_layer_str(self._m.BM.bg_layer) From 1a354c3d50a264be928a51a0574ba64aa767c8f7 Mon Sep 17 00:00:00 2001 From: Raphael Date: Fri, 8 Mar 2024 15:19:54 +0100 Subject: [PATCH 224/240] fix deactivating callback checkbox widgets --- eomaps/widgets.py | 37 ++++++++++++++++++++++--------------- 1 file changed, 22 insertions(+), 15 deletions(-) diff --git a/eomaps/widgets.py b/eomaps/widgets.py index 0f9a34317..c8fd6aa84 100644 --- a/eomaps/widgets.py +++ b/eomaps/widgets.py @@ -436,23 +436,38 @@ class _CallbackWidget: ---------- m : eomaps.Maps The Maps-object to use. + widget_kwargs : dict + A dict of kwargs passed to the creation of the Jupyter widget. + kwargs: + All remaining kwargs are passed to the callback. + (e.g. m.cb..(...kwargs...)) """ _cid = None + _widget_cls = None - def __init__(self, m, **kwargs): + def __init__(self, m, widget_kwargs=None, **kwargs): self._m = m _check_backend() self._kwargs = kwargs - @abstractmethod + if widget_kwargs is None: + widget_kwargs = dict() + + widget_kwargs.setdefault("value", False) + widget_kwargs.setdefault("description", self._description) + + self._widget_cls.__init__(self, **widget_kwargs) + + self.observe(self.change_handler, names="value", type="change") + def attach_callback(self, **kwargs): """Attach the callback to the map and return the cid.""" - return "cid" + raise NotImplementedError() - def handler(self, change): + def change_handler(self, change): try: if self.value is True and self._cid is None: self._cid = self.attach_callback(**self._kwargs) @@ -465,27 +480,19 @@ def handler(self, change): class _CallbackCheckbox(_CallbackWidget, ipywidgets.Checkbox): _description = "Callback Checkbox" - - @wraps(_CallbackWidget.__init__) - def __init__(self, *args, value=False, description=None, **kwargs): - _CallbackWidget.__init__(self, *args, **kwargs) - - ipywidgets.Checkbox.__init__( - self, - value=value, - description=description if description is not None else self._description, - ) - self.observe(self.handler) + _widget_cls = ipywidgets.Checkbox class _ClickCallbackCheckbox(_CallbackCheckbox): def remove_callback(self, **kwargs): self._m.all.cb.click.remove(self._cid) + self._cid = None class _PickCallbackCheckbox(_CallbackCheckbox): def remove_callback(self, **kwargs): self._m.cb.pick.remove(self._cid) + self._cid = None @_add_docstring( From 135b29675f236c993c1d35e44411d1e7e887e6a9 Mon Sep 17 00:00:00 2001 From: Raphael Date: Fri, 8 Mar 2024 15:25:35 +0100 Subject: [PATCH 225/240] update docs --- docs/notebooks/widgets.ipynb | 932 +++++++++-------------------------- 1 file changed, 243 insertions(+), 689 deletions(-) diff --git a/docs/notebooks/widgets.ipynb b/docs/notebooks/widgets.ipynb index e683036e4..f81933a58 100644 --- a/docs/notebooks/widgets.ipynb +++ b/docs/notebooks/widgets.ipynb @@ -164,16 +164,7 @@ "tags": [] }, "source": [ - "For example, here's how you can connect the available layer-selection widgets to the following map:\n", - "\n", - ":::{note}\n", - "\n", - "At the moment, widgets are **not** connected by default!\n", - "(e.g. changing the value in one widget will not change the values in others accordingly)\n", - "\n", - "Any contributions to enhance the widget functionalities are highly appreciated!\n", - "\n", - ":::" + "For example, here's how you can connect the available layer-selection widgets to the following map:" ] }, { @@ -191,18 +182,18 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "836c14443b724a6aa4eaf6dc128ba33f", + "model_id": "6dd2393cdf8548d481798d16f77300e4", "version_major": 2, "version_minor": 0 }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAADICAYAAAA0n5+2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADCnklEQVR4nOydZ0BURxeGn92ld5AqghSlCoq9YO/GHnuLRqNGjS1GTdSoMcauMfbee1fsig0r9oIFFAQE6b2zu9+PDasroKgYle8+v9h7Z+bOXWDvu2fOvEckl8vlCAgICAgICAgIFBvizz0BAQEBAQEBAYGShiCwBAQEBAQEBASKGUFgCQgICAgICAgUM4LAEhAQEBAQEBAoZgSBJSAgICAgICBQzAgCS0BAQEBAQECgmBEEloCAgICAgIBAMSMILAEBAQEBAQGBYkbtc09A4NOSmZlJdnb2556GgICAgMAbaGhooKWl9bmnIfCJEARWCSYzMxOL0rYkJ8R87qkICAgICLyBpaUlwcHBgsgqoQgCqwSTnZ1NckIMf228gpaO3ueejoCAgIDAv2Smp/Jbn5pkZ2cLAquEIgis/wO0dPTQ1tH/3NMQEBAQEBD4v0FIchcQEBAQEBAQKGYEgSUgICAgICAgUMwIS4QCAgIAyKRSRGIxyQnRJCfEkJWZgVwuRybNRS6XkZOdBYBYLEFTWxc9QxO0tPXQ1TdEXUPIIREQEBB4HUFgCQh8AtJSEsnJzkLf0IQn965y5sBawp/eJyEuCl19I9JSEpVtnStU5fH96yr9HV08efrorvJ1jYZt0dTUJiLsKS27j8DE3BoLawdEIpFKP5lMhjQ3GzV1TeRyOVJpDjERz1FT10DfqBTBj26xYd5IkhPiiv2ePavVx9SqLFJpLuU9alOlXptiv4aAgIDA14IgsAQE3hOpNJecrExAxIH1Mzjrs+m9+r8urgA0RFn52liZGvD0tddXzxxU/rxoYm8Ayrl6EfTwlko/iUSCVCp9r/nk0atXL6ytrZk1axajR4+mb9++qKurI5FIkEgkbN26lUmTJhXa/67/OeXP5w5v5cWzh9y8cBDb8p5802sMT+5eJC4yBEQiNLV00Tc2x9reDXsXrw+ab0lDJpWSGB/F7UtHObZjCR7VGtBr5DxSEmPZ9PcvWFg70LL7cHT1jT73VAUEBIqASC6Xyz/3JAQ+DcnJyRgaGjJ/931hF2ExEHDzHIsm9inWMWNiYjA1NVW+zs3N5dGjR+Tm5uLl9f7CY+bMmeTk5DBp0iScnJzQ0NDg/v37AKxYsQJ/f3+uXr3Ko0eP0NTU5PHjx1hZWQHki4YVxokTJ2jVqtUHC7k3mbziNJY25YplrKKSk5NFalI8Gpra6OobkRQfjUSihraeARJJ8X3vjI4IwWfzfBJjIwgJvIe1nTMSkZiQwLtYlHFg5MwdXD93kAPrZ5GVmVHIKCLg1ce0mYU1k1aeQV1ds8jzeHjzPEsm96N6g9b0GjkfsURSaNu9q6Zwct86AAyNzUhKiMGqTFlioyLQ1tHDwMSCoX9sxKiURZGvL5CfjPQURneqQFJSEgYGBp97OgKfACGCJSCAYmlNJs1Fjlz54DqwbjqnD6ynRv02VPJuw+LJfVX6dOrUicuXr/DiRfgHXVMsFhMSEoKNjQ2ZmZkYGRmRmJj4zn5Vq1alatWqjBs3Djs7O7Kysjhx4gSGhobUq1cPgAkTJhQomAYOHPhBc32dZs2akZubW+C5Fi1acPz4cezt7ZFIJAQFBRXYTt/QhDrNumDnWvWTiKsLRzbx+PZF7l8/R1ZmOjUadSA9NZHM1ETCQgLJTE995xhN2n3Ht4P+UL6e/mMjwp8r4oq/Lz+FlW35d46xf/U0bl05pXwd8viO8ueI54GM7V65CHej+h1YTV0duezd34uTE2K46XcEfSNTYiOCkEpzue9/Dqks960Cy961KvwrsJL+NSmODH8OQE5SAslJCfzauzoGRqVo2fUnarfoTnpKIgYm5ojFwr4pAYE8hAhWCUaIYL0iMyON0KB7xEWFkZIQjZWdG+5V6iMWi4l+EczkHxqotC9t44BMLudleDCmFtY4e9bm4sldBY49efJkwsLCWLt27TvnMWjQIHbs2PFOIWXn5EFmegovw0NUjt+9excPD493Xudzc/PmTapUqaJ8ra6hgVvlerTrO75IwuRjkObmMqyt40eP4+BSkWeP7iASiZm+4RI7l/7G7Su+OHlU58cp69HS1i3CXHKIDAvimu9eTu5ZCYChiTlJ8dG4e9VCTV2HhLiXVG3QngfXfQl5fAdzK1sy0tOIjQqj3Xe/UKFaI6zKOr13ZO3g+pkc3bkMgIlLT2Bt51zkvtfP7mfN7BHvdT0AC2s7OvQbj0eNZm8VcQJCBOv/AUFglWD+HwWWXC4nKzOdrIw0XoYFER0exLalvyOWSJC+EXX5cfIaPGs04fHtS/z9W/dPOi9LS0uuXbuGlpYW5ubm+c571mjC3aun8h3X19dHQ0OD0aNHM3r06K/C8fnFixeUKVNG+dreqQK1mnah7jff/SfXz8xIY9S3bh/U18DIBO+WvTm6/R9sHFwJfRoAwMQlx7G2dynOaX5yZFIpj+9cQs/QGBvHCkXuJ5fLldHPzLRUggKucffyMZITosnOUAi/mKjIIo31vsLu/wlBYJV8hCVCga+etJQkwp894Nb5A/if9yE9Lf/yz5viSktbh/Cn93GvUp8b5/YqjxubWZEcH41UKkUkEiOXy3DyqMmTe1fyjengUpnngXeRSgteLnudly9fYmtrq3JM39AEHX1Dfvx9LbEvwwoUWCkpKQAYGhqiqalJdnY26urqRc6X+q/JyMigU6dOKseCn9wnMS6GOi17/ydLSFrauszdcZerp3cjzc1h79oZBbbrNWImmxeOVzmWnBiPkYkZiw4EIpaofVHvs0wqJTkhhtCn93jof5q4qDCkMhntv59QoIASSyS4Vq77Xte4cnIHd87vpXG3XyjnXhUtXT0qVGuEiXkZpv3YFH1DY/r+vBB1bR0Wju+GppY26WkphY7nu38VpW3LI5fJkMlBKs2heZdhX8RSokwqZduSCbhV9sbLu/Xnno5ACUSIYJVg/h8iWPvW/sWJ3SuK1FYslmBmZUNyQiwZb+TgmFnZEBMZ9immWCDezTvTc8Rc5Wu5XM71cwc5vGUBUS+C87XX19cnKyuLnJwc1NXVMTA0xNbWloqentSsWZO+ffuioaHxn82/MN5cGsxj9OzdlK9Q7TPMCOJjIji69W+ePrhKZHgIYrGYvzZewdDEgpSkOMKfBnDT7zAVqjXC1asuGlran2WeoFhSfPbwJkH3L/Pi2QPuXjtLTk72W/vUbd6FHiPmFPka8dEvkKipY2iSP5Ia8fwxZw+soZxHLXKzs9izZjrpqckqbcRiMTKZTOXYxIkTadu2LXXq1CEnJ0flnIaGBiKRiKysV7tlf56zi3Lu1Ys853chl8s5tHEOrlUasPC3Hujo6GBpbY+uoSkhT26TGB9L1bqtsCjjSHnP2qhraJKemsKSyd9hYmrO9I3+ZGdmcGjdH1iXq0TNpl2LbW6FIUSwSj6CwCrBlHSBlZGewlXffexYOgl1DU1yc7L5r/6cC3rIFJVq9VvT95dFhX6Ll8vlXD29hxvnDxBw0w+ZTEbjdt+ho2eEtp4huTlZpCbGEvXiGXeunlH2W7hwIUOGDEFN7fMGpt3d3QkICMh3fObmaxiafN6dZ6nJCWjr6pOTlUl6WjImZqU/63zykMvlDPnGrkht1dTVcfGojlVZZxzca+BRvTESNfUi9U1LSWRM14oYGJkwa+stIp4/IfD+VbYvmVjkudrZ2VG6dGkuXbpEkyZNGDJkCO3atVP+Pcvlcvz9/dHW1sbV1RWRSMS9e/eYNm0ae/cqosUOLl78Mn9/ka/5LkKD7jFjeGvU1NXJfUPgFZVhU9YSHxOOTTlP7Jw/vXWIILBKPsISocBXycNbfvwzoafydZ7LeB7qGhrIZXLUNbXIKGAJQ01dg9ycbOzKu5OZkYaxaWmkuTk4edakSv32XPXdx7Edi1WElIaGFtnZmYBi16G2ji4Z6WnvPXd7t+o8uXsZR7cqBTqgi0QiajbpRM0mnQrorYpUmsuRrX9zZNsiRowYwYwZM4iIiPjPlrbS0tLIysqif//+6Onp0a9fvwLFlV05NySSoomAT4megTEAR3bM5+Hty4xdePQzzwhuXvBh44JfCj3frs8YXLzqYlbaHl19w3znpbk5hAc/xMDIFANjM0Ahcm75HUVNXR2PGk2Ufw9xUWG4etUl+NENfmxVNt9YU6ZMoUmTJpQrVw5DQ8MPyvkTiUQ4ODhw7tw5FixYwLp16/K1adC2H35HtiBR10DXwJiMtGQq1myGlo4eALk52Vw4upXwoNs4VqiNqZUtmpo6WNmWLzDCqKauhZ6+IXblPYmNCiM+NhJpbi5SqRQ1NXVycxWiq0aDNlSs05pzh9by+O5VlTEMTC1xr974ve9XQKAwhAhWCaYkR7B2LJ3IWZ9NiEQirly5gpaWFocOHeKPP/4gO7vgJZVyrl5kZWcR9jSA2k2/5dLJPSrnJRIJ4xYeYs1fPxIV8fy95lPaxpGIsKcFnnub+WfH73+lUYcBH+29dHrvCnav/guA8uXL8+DBA9TVP62giY6OxsLi7REpl4q1GThxBdq6X9Y39KjwZ2RlpmFb7vPtyJRJpUzsV5uE2Jf5zmnr6DF2wYF3Wli8CH7E/LGdlHlQ9Vr1wLacB5v/+VXZplmXIcS+eMrL0KB8f6Nv/m0+f/48X67g+xAcHIyDg8MH9zcyNqW0nRMBty69td2yI6r/n1mZ6fw1rDmunjXpNnwOMpmM4e3L58u97DRwMmZWtti7eKGto49YovbZ8sGECFbJ5/NnGgp8cp4G3CDn38hLcZKemlTsYxaFE7uWKt3TT58+TZUqVdDX1+fw4SMq4kpPT0/FxDPo4S3C/t0V9rq4yrM9MLOyJTk+5r3ElY6uPmXLVSAi7Clr167l1CnVRPXvv/8+X07K6+xdO4NhbRyZMrAhN/2OEB788IOWORt3HISOnuJDOjAwEA0NDby8vLh27dp7j1VU9PXfLtp/X36SETO2fXHiCsCijMNnFVdpKYksmtBVKa7Kl39lXTF55Rnm737wVnEll8uJfhHM0t97k56Wgrq6Ourq6pw/spWdK6aqtD2xcyk3Lx7PJ64aNmxIZmYmmzZtomzZsgQGBn6UuAK4fPmy8udOnTqxaNEijh8/TlRUFHK5nIYNGwIwYsQIcnJyyMjI4Pnz5/Tt2xdLS0t0dTSRZyYAio0dCQkJXL58mZ07d6pcJyszndTkBPav/ZPHdy+TkhhL50F/4FqtGX5HtzHpe28VcZUXwdu9cirLpvZnbPfK/NSuPENb2/Njq7Js+WfcJ/mMfBsJMUXbiSnw9SJEsEoweREsAA1NTWZuvv7BDzu5XM75I5vZvmQiVbxb8PzJXWKjIwDFt+1KNRsTGf6MWk274eBWBZk0F6NSlugbmRbbclV8TATZWRlEBD9k1YyhqKmpI5NJ0dc3ICkpEQDbcm6EBqkuUXXu3JnmzZtjbm7O6dOnGTZsGJaWllhbW5OcnMyZM2c4c+YMf/zxB84Va9Ok40Aiw55w67wPwU/uFjATBaYW1kxcdoolk3oT+OB6gW0CAgJwdXWlcuXK3Lr1qqzNuHHjEIvFzJhR8A63Fl0GYVOuEpVqNS+yn9D184dYM3NYvuNjxoxhzpyiJ0EXhYSEBCwtLQuNFgIs8QkucnTg+rkD7Fg6kQZt+vJNr5+La5pFIiYylGM7FhEfHc7LsKckJ8So5Nd90/0nLGzKU7nuN8Xm8v4yLIipgwpejqrZuAPt+v6KppZ2gf+vGemp/NKtItLcXIyMjblx/ToODg5Ur14Df//CBXX16tURiURcvfpqaczPz486dep8/A29B5mZmR+09Hjo0CHatm0LgItnDR69scRXGBkZGWhpaRESEoK9vb3y+K+//lrg/1/d5p1JjHtJ+r/1RCUSNfSNzSjj6IGltR3OlRsol2I/BJlUytzRbQgOfAAgRLBKMILAKsHkCSxjU0uqeLekXb/fUFN/v51mzx7eYM7PHfMdr1q1KtevvxIVFhaWREXlX+rQ0dVDU0sbfQNjtHT1yUhLxriUJeU9vSllVZa0lERsy3lgW06xzTwlKY77/mcwNrXk7MH13LlyMt+YdZp1IjLsKc8e3sLNy5v0tCTMrOzwqNGUSrWaM+n7OiQlxBZ6T1KpVJlblZOTQ3x8PFpaWrRt2w4/vwvKdtZlbCjn1YiwoPtoamnx8NZFAPbv38/EiROVJWi+HTCRPav/LPBaTk5OZGdnExISonJcT08fL69KTJ06lStXrhAdHc3ff/9d4Bi/zNuLg2v+nXkFsXhSHx7cOJfv+NmzZ6lfv36RxigKbdq0wcfH561tZm+7ib5hqSKNt2flZE7tX8+gCcuoVKdVcUyxQHJysrhwZCu7VkxR2nC8D9o6egz4bSmuXvU+6ItDQmwkcrkcY1MrIkIes2bmECILWFrO+/u0snHAo3pj9AxLYWhiibWDG9LcHGYM/waAyMhILC0tATh16hRNmzZVjvH3339z5swZjh07RlZWFn/++ScTJkygf//+SlPcHTt20KVLl/e+j89FWloaM2fOZPny5YhEIvbs2YOamhqxsbFUqFCB+Ph4Ro4cibm5OWPGjKFSpUpoaxe+K1Qul3Pjxg1mzJiBj48P2dnZ2NnbY2lhgampKXp6emRlZREaGsaNG9dRU1enScfBWJSxJys9BS0dfXQNTNDRM+DM/jXc9felcp3mPLh+DuNS5hiamCvKMRkYI5fJMDazpky5ipzctZjABzcAQWCVZASBVYLJE1gVqjWi+7DpRdoxJZfLOXNgNS+fPyYjLZnbV06Tm5tLkyZNaNiwIbq6uowYUbDD8/Pnz7l58yampqZoaWkREBDAo0ePyMzMJCQkhOTkZEqVKsWjR48JCHigzP0QiUSUd/MiLCSwwIT01ylTpgwvXrxQWUbL+wA1M7MgNDQEE1NzcnJySElKUI5vYmKCp6cn3t7eVK1alZcvX7J7927u3LlDdHQ0EokEQ0ND4uPjleOKRKL3Wq6zsLJBTVObmMgwsrMKqytXMIcOHcLb25t+/frh6enJH3/8oXJ+6eGQIj3Ql07py71rZ/IdHzJkCEuWLHmvOb1JRkYGmpqaiMViXr58yeTJk1m5cmWBbb8f+w/VGrT7qOsVFznZmUwf1oKo8Pz2F6/j4ODAiBEjOHnyJK6urtjZ2TF//nyePi04t05bR5fSto64Vm5A9cadMLN6lTSem5PNTb8j6OoboaGlQ9nyngTdv8qiSYpalkYmZgz/ayuHNs3n1kVFov334xaRmZ5KRmoix3cuVfGX0tTUIiur4CWs+fPnM2rUKAIDA3Fycsp3vmLFihw7dkwpxNLS0hg9ejTZ2dmsWLHii7D3+BqoV68eFy68+gJWlM+HKlWqkpCQgFQmRSwSExERofw96ukbkpqSJAisEowgsEowry8RAtg6OFOxTisatOmHjl7+3UgAu1ZMwffAq10/LVq0YMOGDQW6j38MBw4cICMjAwcHBw4fPsyFCxe4ePEi2dnZ1K1bV/lB1r59ewYPHkzz5s2VfcPCwrh+/ToikQhNTU2aNm2KWCzmypUr3L9/n2vXrnHr1m1u3rzxUXM0NbcgNjqq0PNXrlyhf//+PHjwQHlMTV0DfX0DEuJjqV27NgsWLKBGjRoANO8yhGundyHNzcXYzJrnQfdVxuvevTtbtmwBKHBpTc/AmJEzd7zVGVsul+N/9gDr5qiK4IiICGVR5w/h2rVryvt4E5FIhEVpW9yrNaF516FFjlr9FxzePAefrYvzHTc2NqZWrVoYGRnh7OysfFDq6+tjZGREnz59UFNTY+rUqZQtW5Y+ffogl8v5/fffOXDgAP369SM+Pp7Ll69w+fIlMjMVD017Z0/6jV1CckI0c8d8q3LN7kOns3PFZKS5uW/d+PAmGzdupHfv3iQlJXHkyBHOnj3LiRMnlFHRb7/9lt27d5Oeno6ubuHle6Kioor9//j/DT09PdLS0vD19aVBgwYkJiaSmppKYmIixsbGLFiwgB07d5KaksKqVavo3LmzSv/c3FzCwsK4f/8+mzdvZufOnYLAKsEIAqsEkyewfvnlF06fPo2amlq+pOeGrXvRtMswjE0VD9+0lCSW/9Gf3OwMQgJVBcCqVavo3bs3mpqaHz23I0eOIBKJaNmypcrx18t0fCxZWVlUrVaN+/fuKY9paWljZGTEy5eqCaZTpkzh1KlTSCQSbt68SXp6OsYmJsTGxBQ49oMHD3Bzc0Mul7Nr1y6qVq1Kg4YNCQsNVWk3e/Zsxo4dC0D/cYswMrUgJzOTNbOGkfaGgSPAtm3b6NatGwCxsbF4enoSGZk/GdbKthzj//YpcMv6gnFdeHJPNT8lb1m0KOQZmurq6pKZmcmaNWsYOXIkUqkUXX1D9A1L0aBtP0pZlMHU0pZSljbKAtk52ZkkJ8RiYm6d7/f4MiwIHX0jtLR0/zMzz3Uzh3Dt/GGVY7/++ivDhg2jdOlXEd3c3FymT5/O0KFDVTdGBAWxZcsW2rdvz4oVK1i2TFHbb926ddStWxc7OzsyMzPZv38/M2fO5P79+4jFYgb+tpTlfw4udF4TJ05URlKfPHlCTk4OvXv3xtbWFg0NDSQSCb6+vnh7e6vM53WCg4NZu3Yte/fuJTk5mfBw1aLjO3fuJDY2liFDhijv+6+//nq/N1BAhbS0NKRSabEIosuXL1O7dm1BYJVgBB+s/wPmzJnD3r17KVWqFAMHDuTx48fKc2d8NnPGZzMAv/7jw8ENswl64F/gOD/88AM5OTn8+OOPn2yuxenfpKmpyb27iiR1uVyOTCZD8m/C+MuXL5URndatWzN58mQmT55c6FhJSUkYGRkBcPHiRdzc3JDJZBgbG5OcrBBKW7dupW/fviqJ33niqkKVurh41VX6MPX9ZSEhj25iWMqSrYsnAFClShVlwvGZM2do1KhRofOJDA0i8P5V3Ks2yHfOuWIdFYE1YcKEIomryMhIDh8+zA8//JDvXMXqDen/2/ICfbvyKMhXybiUOQlx0fmOD/59NRVrNs13vDi5ceGwirgyMTFh9+7dyp1seVy/fp1ly5YRHBzMw4cPGTVqlDJap6Ojg7q6Oubm5jg7v4oc9uvXT/mzqZkZFuYWPHig+EIik8lUxFXlypV5+fIlFhaWrFy5gqpVqxZp/u3bt3/reXt7exISEvL5jllZWbFixQratGkDQNeuXYmLi8PR8eMLYP+/87YIoYDAmwgRrBLMm0uEAGZmZhgaGhIUFKRyvGrdVoQ+fUD0axYFffv2Zf369crX5cqV4+7du29NGi0qhUWw/mv8/f1xd3dHR0fnnW3lcvm/xoWK7yXZ2dnY2toSFVX4MiJAObcq9B49H/PSdgAc3jwPn63/5GsXHR2NmZlid9LrArAgLMo4MGVl/lwreOWv8zp5uxkL47cJE5hRQHRDS1uXwZPX4ORR863iNy0liTFdPQs8p6WlRU5ODkOGDGHRokXK43N33EFX36jQMT+GQxtnc2T7q5yzoUOHMnXqVEqVUl2+3Lp1Kz17KgxrXzeVzcnJUf6ep06dioeHBx07diQzM5MmTZpw8eLFQq/dq1cvunTpgo+PD7a2tkyYMKG4b0+JTCbj2LFj+Pv7Y2xsjIODA61bC3X1viTylpb//PPVRpilS5fi4+PDkSNHhAhWCUYQWCWYPIE1/u+DqKlrEv3iKfvXTicmKkKZc1Lazpkq3t9QpV4bDEtZcmTrAk7uKThxGSi2UjRfisD6EC5evIi3tzcAjo6OBSZBW1tbU758ec6ePas8pqOrz+8rTjPjp5YkJcQVOPbEiROZOnUqISEhzJkzhwsXLqjkeLlVqkXPUfPfuWEhryRKHhYWFrx8mX+XJyiWwfJ8mNTU1Jmz/TYZ6SnoGRi/NWL1Jsumfs/dq6dVjvn5+SGVSjl58iRXrlxR8QlbdCDwvXe1vo34mEgObZzN1TP7kb9mszBixAjc3NwYOHCg8phcLufYsWO0aqXYsWjnXJGE6HCSEuIoVaoUMTExSkG5cuVKEhISGDduHICKyH6TUqVMCQkJRk9Pr9juS+DrJi0t7a1/D4LAKrkIAqsEU5iTe1J8FMd2LCUh5oWKDYKtvRO/LjlJZnoqBzbM5uyhDSrjeXpW5M6d28Uyt69ZYN24caPAZR7rsuXIzcl5q1Fp1x//YNeKqchkUnR09ek5Yi5P7l4kKyOdK6d3K9tZWVkVmHs1cuZ2nD1rFWmep/auZM/q6YDCVNLX1zdfmzd3ns3YdA2jUh9eLzDogT/zfim4xI+tvRMV67TCwa06zhVrFxgRk8vlyOXy93LXTk1OYN6YjrwMf5bv3JQpU6hbty7u7u5YWFggl8vp1KmTsibe63h5ebFu3ToqVqyocjwgIIBdu3ZRuXJl5bJbVFQUBw8eZOHChTx48IBFixbRtWtXTE2Lz/dN4MslJyeH06dP4+/vT9OmTalZs+Zb2+c9ZtevX8/333+vck4QWCUXQWCVYN5VKiczI41bfkd4GRbI6X1r6DbkD7xb9mT93JFc9d0HgKWlJUOGDKFx48ZUqVKlSAnuUqmUO3fu4OXlVejD5msWWM+fP8fOzk75ulLNxgz6XeErlJmRRmZaCud91vE86AEBNxW7Iat4tyT6xVPiol6grqVDUnzByfPv4rd/DmNTrsK7G/7L4zuX+PvX7oAip2ffvn0q5ydMmKBMfB7x11ZcKhWf6WRaSiLRL4LJSEvGzrlSoTtX85BJpfzcpQKZGen8vvwUVrbl39oeYMUfA7j9hlfavHnzsLe3x87OjkuXLjF06FDluQULFjB69GgAGrT5jugXTwm46cewYcNUli9fJzs7m23btpGYmFioRYlAySRPXMfGxvLy5UtcXV355ZdfMDY2VtkF+vqS8uskJSWxf/9+Tp8+zcmTJwuMIgsCq+QiJLn/n5IUH0VKUjy1miq2EXf4/jfluTxxBYpcIDs7OwwNDd8prvbt20fHjvlNSQHatWvH6NGjqVevXjHM/vORk5Ojkiy8YE8AWtqvEl+1tHXR0talbd9fiY+J4PLxrZS2d6NirRbMG90WmVyuFFczZszg5s2b6Ovro6urq3zAm5hZoqWth0eNJiTGvOD2lVPIpFJEIijj6P5e83WuWJtBE1ey4s+B7N+/H5FIhIGBAWbm5qxds4bgYIU3VJW63xSruALQ1TfC3sWryO1FYjG6egbkZGdjaPIqiiaXy7lwZAtqGurUbtpVpc+b4urKlSvKBPXExEQOHjxIRESEcsfgxo0bARi34ABlHNw4vO0fAm76qXhBpaSkcOjQIczNzTlw4ACWlpZUqVKF3r17v98bIPDVkp2dzcKFCxk3bhwikQh9AyOSEhUeeTNnzlQRV8eOHSMuLo64uDjCw8MxNzfH2NiYqVOnKgtdG5uY4lq5Lm37N8fKtjwJsS8RicUs/PfLj0DJRIhglWDeFsFaOL4Lj+5e5YffllHZW5GHkpWZzi/dKpJTQPkTdXX1QsuivMt/53UMDAywsipNbGwMhoaGPHv2jIkTJzJt2jRkMhmRkZGULl36i11myYuA9Bw+A+8WPd6rr//ZfYQ/e8iJ3SsAhe3FgAEDlOefPHlCv379uHRJUejWw6sG6lq69P9tNUPbKAroVq7Tkh8mLH/veUc8D2Taj00KPb/k0LMil+T5lGRnZhAbFUbpsoplS5lMxuWTO9m8cBxisYQlPqrLgG/uXExLS0NbW5t169bRrFkz1qxZw6RJk5RLjhs2bKBv377K9hI1NZWadRoaGgX+nY8bN46ZM2cW120K/MfIZDISExPJzc1VLtfp6elx8eJFLl++jFwup2XLllSvXp2IiAjs7OzIzc2lVuP2dBnyF1rauozvWZWkhKJHnkUiEc4e1WjU8Uc8quffESwUey75CBGs/1P6jFnIhSNbcK5YW3lMQ1Mbj6oNuHnpBLr6hpiYWZEQE0lqShI5OTl4eXkhl8u5c+cOAD179mTz5s2Fiqu8um0tugwlOSmeG+f2oaljiI5JGeIePyIuTpHo/eeff7JgwQLS0tIAqFChAqdOncLC4sNzgT4Vz58r8qviIp8TF/2CUubWRe579cR2lYhOnjllHk5OTmzdulW5/Pjk4X16jpipFFcANy8eZfKA+kxdnb8cztsoXbY8y44o5p6TncXSKf14dFuxE27I5DVfhLgC0NDSRlffkLjoFzwPvMu2ReOVrvg9hxdctzGPiIgI/Pz8VExpDx48qBRXqamp+Pn5Kc9p6eji6FqZF88DSfy36HJhXyISEz9PYXOBjyMjI4P58+cze/ZspZ1KYUydqlokW0NTiz4/LwQUXz7tyrtz59pZypUrT1BQIPBKoJcyt6Lb0L+wtCnHnUtHef74Fp2HTP+iTHcF/nuECFYJ5l05WEUlL0qgrq5BTo7qA2jw4MEsX/4qomJUypwO/X6jav2273xoS3NzuOl3hIMbZhEb9SLfeR8fH7755psPnven4MCBA0p/IteKNRg+Y2eR+2akpRAZ+oS5Y75FLpezadMmevXqla9dgwYNOHcuv4Bq06YNhw4dAqBpxx/oOGDih93EF4pMJmNoa/sCz42dfwB7l0r5jgfev8b8sYpl7oLc0V//G9qyZYvy/ZZI1Kjbsitdh/yVLwo2depUWrVqxdKlS5k2bRrW1kUX0QJfDrdv36ZFi5ZERb2kTtNvcanSEHUNLdKS4khNjkdH15DwkIdUqtMKn42zefpQUYy9Uo1GpKel0LjjQKTSXM7sX03Ik7uIRCJWr17NqVOnlEvNAFNWnsGijENh0ygUIYJV8hEEVgmmKAJLJpXy8NoRwkOf06zL0AKX5qTSXDJSk5DmSjm4cTaXTu4q9JrezbvRc8Ss957ro9sXWfhb/iW3u3fv4uHh8d7jfUpOnTrF2bNnmT5dsUPP0MgER7fKOFWsS62mXQt1KQ8LvMPulX/Qqs9YfHcv5dGdS0RFRSkNTF9n/vz5/Pzzz4DC6sDV1RVDQ0PMzMxISFDUWJy8whdLm5JjHhny+DazRhVcv9CqjB2/ryw4ahcV/oz5Yzshk8lITU5QOWdgYEBgYCDm5uZcuXKFWrVqoamlQ1ZmOhKJGsOmbWDhbz1V+ixZsoTU1FQyMjLo06cP9vYFiz6BL5P4+Hj69PmOw4d9MDYx48epG7B5z9xFgOCHN5n7y7fIZDJ69+7N1KlTsbe3Z9iwYcq6nnlR4Q9BEFgln6LvhRYokYjEYs4f30NOWgwJMREFtrl75QS/dK/M+N7VVMRVpRqNqNmovfJ1zUYd6D7sw0pxuFSqw9Ap6/Id9/T0xMrK6qMLFRcnTZo0oUGDBgB4e3vTo3tXspOj2LF8ClMH1mPvqqk8un1RaTmQx/I/B/HkwXX+HtcFlyoNyM7OLtSkdPTo0cr+derUwcTEBIlEomIQO3VQI5Li87ukf62YWtpi51SwmLZ3rVZoP4syDszaerPA5drk5GQsLCyQSCTUqqWwtyhj74KtgwszN/tzdMs8AH766Sfc3Nxo2bIlWlpafPvtt+jr67N7927Onz/Pixf5I6wCXxZSqZQtW7bg4enJmTNn6Dp4MlPXXfwgcSWXy1k3eyhl7ex4/PgxGzduVArt102J8ypEyIpYV1Lg/wshglWCKeoSoVwuJyUxFgNjM+WxlKQ4lk/9nmePbudrr2dgzM9z92Be2p7Dm2ZR1rkarlXqKuvRfQxxUeEsGNeFuOj8D7S0tLQiOa5/Lh4+fMjIkSO5cvUqyUmKnB0NDU1MTC34/rcVnN6zgqtn9qOtq0dGWiqtWrXi0KFD7+X5BIrSLtWqvRIcto5uVG/0LY3a9/9iNwe8i6T4KMb3ql7oeZFIxM+zd+HoXrjQWvnnIG5dOlbo+dK2DliVdcOitC33r5+jdvOubF/6O6DI1WratCmZmZlcvHiR69evY21tTenSpXn27BmJiYk0adLknX5H/wUymYyUlBQePnzItWvXyM3NRVNTk3bt2lGmTJnPPb3Pwu3bt6nfoIHy/65qvVb0H79MeT47MwN1Ta0i/38kxkXxa+/q7NmzR2Vn9MOHD3FzcwOg2bcD6dB/AsPaOCKV5vJN959wq9oIB9fKRbqGEMEq+QgCqwTzvjlY0REh7FsznduXT6Cjq096WoryXPkKNUiKiyA7K4vhf20tkkfRh5KRnsrY7pXIzcnJdy41NfWLrwcml8sZM2YMZmZmxMXFMXfuXNr2Ho1NOU+WTO4LKIo6d+3a9YMFUXR0dL5NANb2Loz4a+tXl1g7ooMz2VmZhZ5XV1dH38CA+Lg46jTrQq+Rc5Tn5HI5z5/cJSTwDrcuHuHJnctvGSd/DiGAtrY248aNo1SpUtjY2HD79m3q1q2rUgvy0KFD3Lt3j379+r21hFFxk56ejq+vL9nZ2cTExJCcnExOTg46OjoYGRnh7u6Ou7s7vr6+3L59Gz09PcqWLYu3tzdnzpzh4cOHDB48+IvcMFKc7N27l2+//Tbf8er1vqH9gEn81qcmrpVqM/yvbUUaLyc7k9GdKjBlymRlqaOff/6Z+fPnA1DVuwX9f1PsBt69ciqn9yt88Ny8avPT9KJdQxBYJR9BYJVgChNYUmkuIpEY5HKystJJT0nEZ9McrvgeULaxcXCh7XfjsHGsQEJsJHZOFQu6xCejoMLBefj6+uYr2PulIpPJUFNTUyz1NW7PxdP7gY8vOZSdnV2gL5mhsSkzt9z4qLH/a17/Xd+8eZPKlfNHAK5cuaKMHjX4piet+4xDV9+QSf1qERtV8NK2tbU1/fr1U9aAa9q0KT/99BMtW7bk+vXrJCUl0aRJEyQSCTKZjL/++ouyZcvi7u5OpUqVVCKLubm5/PXXX8jlciZMmFBoqZzi5siRI/j7++Po6Ei1atVwdHQs8Nq5ubk8ffqUx48fc+vWLTQ1NXF3dychIYHIyEhatWr1xeUyvklubi779u0jNDQUmUyGXC5HQ0MDc3NzOnbsiJbW28s2paamoq//6nPOxMSE+Ph4lTZLD4cU+UvNwnGdMNHXYP/+fXh4eBAVFYWtoyt9f/kHC2vHfJt4sjMzkMmkaOkoyuJkZaYzZ1RbyparQM9R8/NFqgWBVfIRbBr+Dzi6bSGPbl4g/PkTrKztiQh7ikgkwsauHFUafkts2EOi/y0zUrtZV5p0HICV7avyKYYm5v/5nKet9WPS94p6fw5ulXkWcAtQiJJGjRoVW03ET41YLMbAwICkpCTuXDuDSCRGLpcRFBREuXLlPnhcDQ0NFixYgIeHBw0aNOD06dM0b96cpIRYMtPT0NL5sqN8eeS+EVGqXUdhdqpvaEJKkuLhWL9+fapUqcKSJUsYOnQoZw9vwcrOhTMH1hMbFYGlpSWVKlXCycmJxo0bU6tWLZWSNaNHj+aff/5REUZvLvUlJiYilUoxNzcnNTWVx48fY29vr3yoBwUFIZfL0dHRYeHChTRs2LBAIVhUsrOzUVNTIzc3V8Xk9M053bp1C0NDQ+rVq4etrW2h46mpqeHs7IyzszNt27ZVOZeQkMDKlSvR1dXFweH9d7sVxK1bt0hOTsbLy6vYxEFwcDABAQGMHDlSWaQ+LCyMS5cusWzZMkaNGvXW/np6eshkMoKDgxGLxdjZ2eUTU3KZDFERLUkcK9Tk2M6lLF26lKioKKzLOtH2u3Eqn42v8+bmFpk0lxfPA4mLfoGz136qN+pIxPNAXgb5ExUVjaGxSZHmIfD1Igis/wNuXTxKXNQLxGIxOTlZAFiWLotb9aY0aN0XyP/h8LkxtbRh0YFA1swcQpW6rfl+7GIm9n3l2VWvXj0GDhxYoM3Bl8bdu3cpW7YsqSmvvJTe9rAsiNcFZd5DY/jw4cydO5eWLVupLH2FBz+gnHvh+UxfEmKx6sMuMyMDe+eKpCXHKwXWuXPnKF++vNKNHWDXyj+US8gDBw5ELBYzatSoAh/2kn8fqPv27ePbb78tMOfNyMgIkUjEo0ePKF26NI8fP2bv3r3K9zonJ4c6depgZWVFeno6hw4dIjU19b0rE8hkMvbt28eTJ0+Qy+VIJBIkEgllypShSZMmXL9+naysLLS1tXFyckIqlZKbm/vefy+vY2xsTO/evdm4cSN6enrY2Njg4uJCZGQk3t7ehUbjcnNzCQkJwc7OTqWNr68v/v7+WFlZcfPmTbKzs/Hy8qJZs2YfPEdQRC/NzMxUolA2NjZ07dqVBQsWcO/evXdG4UQikVJEZmdn5zOOfRn+VGli+zYyM9KIeP4EqVTKlClTcPOqxdBpW98rX1Jb14Clh0O47+9LeQ+FoE9LjuP43nWEBj8p8jgCXy/CEmEJJm+JcO6OO2hq6iCWSL4YQ8n35W0eSS9evFB5+H6J3L17lz59+nDnzh3mz5//zm/jeaxevZqxY8eRmJigFFlisRgtLW1yc3PIzs6mnHtVgh5cV/ap1qA9rXuPxtyq8GXWL4mszHQiQh5jaeOItq4BL0Ie8+eQtz+sK1SogJqaGh4eHjg5OSESiZS5MnmEhoayfv16NDU1EYlEiMVi0tLSEIlENGnShNq1Xwn2xMREli5diru7O+3a5beKyHtY5/H06VO2bt2KtrY2YrGYChUqULFixUJznRITE1mzZg2pqanY29vTqVMn5YaN2NhYli1bho6ODqVLl0ZTU5OMjAyCg4PR0dHB3t6eDh06FPn9LIyrV68SEhJCbGwsIpEIHR0dYmJi6NGjB/r6+kpxeu/ePS5cuEBKSgpisRi5XI5IJKJChQpoa2vz7NkzcnNzGThwoPLelixZQqlSpcjMzFTW5StXrhwNGzZET09POQeZTMaJEyd49uwZ5cqVQ0NDg3r16uHn58fZs2eZOHFigSImPDyc9evXM3Fi0b3fLl68iLe3Ny4VaxIfGUxiYgIN235H++/fPcahTfM4su0f1NTUad1jBE27DH3vzShvIz4mgtCg+6yY9oOwRFiCEQRWCaa4jEa/FO5cOcHyP34o8NyhQ4eUkYpPybNnz7CxsaF169bF+oGbR05ODi9fviQgIIAWLVoU2k7PwIhGbfsi0dBm39qCHc4nLjmOtb1Lsc/xU5MUH8XOJb+RlZ2DRE3C3au+KudbtWrFvn37yMzMZOfOnURERCCXy3FwcKBBgwbY2NgAClE0a9YsKlSoQOXKlXn+/DkSiYTHjx8TFhYGgKamJmKxmIyMDOrVq/feuX15OU63bt0iKCgId3d3OnXqlK/d2rVrlUKvffv2X8xuWH9/f3x9fcnMzERLS0spjtq2bavcLQeKnauhoaFkZGSQkZFBy5YtVQxYZTIZgYGBmJiYUKpUKeLi4vDx8eHly5fo6Oigra1NSkoKubm5WFtbU7NmTS5fvkxwcDBaWloYGRlRv359nJ2dC53rmjVriImJQSwW07x5cypWfHte6Nq1a+nfvz9uXrUIuPVq88OkZacoXbbwTTrZ6alsmD2I5yFPGTBhJXblPYvyVr43Qg5WyUcQWCWYkiawQPFBvuT3vgTcVDWdbNKkCSNHjvzk18/JySEkJISsrCykUimWlpZIJBL09fWJjIzEwcGBhg0bvjMhtzC+++47FZfoN7EtVwFDo1JI1DXoP34pP7V79aAYOXIkf//9t0r7jzFC/JysnT0c/7MHVI4NGTKEpk2bKp30XycyMpI1a9ZQu3ZtGjRooBS/p0+fxs9PUczZysqK0NBQJBIJXl5ehIaGkpCQgEwmIzc3Fzc3N8qUKYNcLsfPz4+srCz09fVp3769snxRYcTFxbF48WIqVapUYARswYIFlC1bllatWn3w38anYuPGjURGRqKrq0tiYiLVqlWjRo0aBRrgvi8ymYyEhASioqJwcHBQufeFCxdiampK+fLlSU9Pp169ekX60hIWFsb69evp2bMniYmJ3Lx5k6SkJEaNGqXsHx4ejqurKxJ1DQyMTAkLfkIZexfCgx8xeNIqKtYqOEKamhTHmX0reB70gN6jF3zS/FNBYJV8BIFVgimJAiuP8GcPmT7sVYSnatWq+Pv7/6dzyMzM5Pbt20pfonLlynHr1i2ePXuGsbExrVu3fq8t/YcOHVJJUP7uu+9o27atyvbzchWqE3T/GgBO7lV4+uh2vvIwr/OlFHF+XyKeP2Haj01Vjr3to2rLli0qJqyvU7VqVb755hvi4+NZtGgRpUqVQiwWU6VKFVxdXTlx4gRBQUE4OTmRnJyMRCLB3t4ePz8/bG1tCQkJoXPnzjg5OeHi4sKDBw8QiUScO3eOQ4cOKbfuA6SkpKgsieURHR3Nnj17iI+Px9XVla1btxIcHIylpSVdu3alT58+H/hOfRhPnz7l6tWrlCpVCn9/f3777TfEYjEhISFcvHiRsLAwhg0bVuC9FBe7du0iKUlR51QkEpGSksLQoUOLFN3z8/PD398fLS0tHB0duXr1KuPGjUNDQ4PExEQqeXmRmJTMkKmb2DR/JOEhgejqGzFzsz9q6gVvKlg3ayhyaTbWjp407/pTcd9uPgSBVfIRktwFvkrKOLiqvC6odt+nRktLK99uNEdHR2QyGdeuXWP16tU4ODjQs2fPQkZQcOzYMVq2bKlybOnSpVStWlWZRJyX/5MnrgCePFDYMczdcZecrAxWTR/As8f3lOddKtb8KsUVQOmyTiw78pzsrExGdFAsG3Xr1o3t27fna3v+/HmCgoJwdXXl8ePHyGQyQPG7OHnyJOfOnePKlSvKRG0HBwfMzc15+PAhfn5+5ObmMnbs2HzREzU1NU6fPs3169eV+V2PHj1CIpHkS54G8PDwKFSQmJqacvv2bVauXAkoyisZmphz8+YR7vybn/df4uPjg52dHUlJSTRq1Eh573Z2dtjZ2bFhwwYuXLiQ7++yOOnQoQMrV64kPj4eXV1dcnNziY2NLVJCv7e3N97eil3Ga9eupVatWsrfSY8ePYh4EcG4vw9R2s6Z8BBFYea0lEQC713FtXJdQGFXEx0RwrZ/xhH44DpO7lUoY+/yn4grgf8PBIEl8NWSZ4b67NmzLyanBRRJ6DVr1sTFxYW1a9cq7QUK4vTp08qHmI6ODlOmTCEnJ4cePXqwadMmpk+fzuDBgwu9Vq1G7dDVNwR9Q35Z4KM8npOdiVoxOOt/bjQ0tVi47xEjOriwY8cONmzYkM//q2rVqly8eJHg4GDKlStH+fLlcXNzY9iwYcrl1jNnzlC9enX69OmjEunU0NBAV1cXmUyWT2Dp6Ohw4MAB/P390dM3QqKuSVK8orTRm+IK4Nq1a/mO5TF+/HiluLIt505mWgqhzx4BEBmh8PGKiYnh2LFjxMTEkJOTg4WFBW3btsXEpHi280dGRnLs2DGSk5NJTEwscCkzj5SUFFJTUzlw4ADGxsZ4e3t/dM7hnTt3iIiIwNbWlpMnT5KVlYWbmxtDhgx577GSk5PZv38/qamppKam0rdvX2JiYmjatBn379+jz6i5WNu74H96B/y7waGKdysc3aqSm5PNVd99bF44VmXMn/7aXmh0S0DgQxAElsBXi56BIU2bNPpii/EaGRkxevRo5s2bp0wifp3t27dz69Yt1NTUaNasmXJJZs+ePW/Nf9HQ0KSMgysOrlUpY1/wlnN1jS8rz6coPHt4k7Cn9zAxL4NETR1TCxsy0lMxfK2E0+vLhKGhoURFRVGhQgVEIhHHjx/nwoULaGpq8tNPP2Fpaaky/rVr17C3t2fkyJE8evSI58+fM27cOGbPns306dOpXbu2Im9HIuH8+fMASjH287y9WFg7cGznEg5umENBfP/996xatarASgNz5ij6/LH6PFsWjSU06AGAitXI5cuXkUqlDB48GC0tLfz8/FizZg1OTk5KMZSbm4tYLP4gsRMdHU1oaCi9e/dWRvkK4/vvv+fu3bskJyfz/PlzLl26hLW1Nb17937v6+bh4+NDuXLl8PPzo1mzZipJ9O/LvXv3iImJoUGDBpQtW5YXL15Qs1Yt4uMTGDlzB+X+LamkV8oa5HJkUim3Lh7j8R0/khNfFQQ3NDFnzNy9mFrafPBcBAQKQxBYAl8l6alJREeGk57u+u7Gnxl1dXVevnyJnZ0dBw4c4M6dO+jo6GBpacmMGTOYNWuWsq2Pjw8LFy4EQFffiB4//cWJnYt5HhSAuZUNPUfMwclTUbT40IaZPPD3pUaTrp/lvoqTpb/35t71829ts2nTJqKjozE1NWX37t18//33yvwzNTU1xGIJTh41CHsawMyZM1m8eDH169fn3LlzGJUyJzEumh07drBjxw46d+6Mu7s7y5Yto2nTpvj4+BAQEMCTJ0/IycnB09NTuWli5MztWJZxBKBl12G4VvJG18AEMyvFUlZaSiKXj29n96a5HDp0iDp16tChQwcqV66Mg4MDhoaG/Pnnn0ycOJGAm+cY/PtalkzqRVDATaRSqYphaenSpdHR0VF6bNWuXZu1a9cyZ84cRCKRMtLWrVu3fHUHQ0NDMTQ0xN/fn6ioKMqXL09GRgZqamoYGhoqjW1NTU3fmfOjo6Ojsvydm5vLwoUL8fX1xcXFBVNTU+WS67vEnkwm48iRI8jlcqpWrYqjo+Nb27+LkJAQTp8+zeTJkwGFGNyxYwcisYTxCw9jUUbhg3XT7yir/lJEf/fv38/PP//M06dPAdDQ0qLHkGnUaNLlo+YiIPA2hCT3EkxJTnKPiXzO7/3rsWjRIoYNG/a5p1Mo58+f59KlS5QpU4aoqCikUimtW7cu8Nu7TCZTWk3Ub9WTbsP+AhRRm/jocEzMy3y1xZzfRV65nN27d2NgYEDZsmWVVgpxcXHExsaipqZGamoqSUlJzJgxg5ycHHoOn0lY4B20tHWp0awb0wY3ARQPfZlMxq+//srde/c4cfw4No5uPHt0R3lNJycnunTpohQKgwYNwtLSEplMho+PD+3atUNNXYN/9j9BJBIRH/2CC0c2Eh50F5lMjpFZaeq3+R4bR3dEIhExkaEcXP8X1y8cZfHixUilUlJSUpBKpVSsWJHu3XtgYFyKUbP3AnKWTv6O0KcPAejfvz8tWrRAXV2dkJAQEhMT0dTUpEWLFlSqVEnlvVq7di3p6enKv/v09HT++ecfcnJy0NXVJTU1FW9vb0JDQ5W5TampqURERCASiQr1mnoXycnJbN68GblcTmZmJjKZDJFIhFQqxdraGhcXF0xMTEhISOD69eukpChqmcpkMszNzenVq9cHlxhKT08nNTWVCxcusHr1ao4de1XUW9/AEK/aLWjV62cMTRQ+ZAmxkfzWJ39hbht7J7Kyc+g/fjG2jhU+aC7FhZDkXvIRBFYJpiQLLLlczpBv7D7L7sH34d69e5w5c4ZKlSpRtWrVAnPF6tSpw6VLl/Id/1otFj6EPIG1aNEi4uLiGDduXIF2Bv3792ftWkVh3fLuVRg9Z6/y3KUTO9j0tyKvZti0Tdy/epyzPpvzjeHsUZ20tFTCnwXQv39/6tWrp/R5un//PhoaGqipqXHv3qsNA2KJBORytLS08PSsyPXr/uTm5gJgam6FlY0j6alJZGVmEP48iG7dulGlShVkMhkZGRkAxMfHs3btWkpZlOGHiasBmNjPW3mNAQMGUKZMGWxtbenZs6fSMd3U1JT27dsrd6TGxMSwcuVKLCws0NXVJSgoSLnkV758eVq3bq18YD9+/JhHjx7x6NEjZS7VxyzNFUTebtqHDx8SGRmJqakp9erVw8nJ6b2F3MmTJ1mxYgXdu3dX7p4NCgpix44dSKVScnJy+PPPPynnWpnBU9ahq29U4DgZacn8PqAeqUmK5cAWnQeTm5tFxwGTv5gvKYLAKvkIS4QCXyW5uYok4//CXPRj8PDwKLS8x4MHD2jVqhWhoaHKY45ulbEq60LVem3+qym+F2kpiWhoaaNezAn0jdt+x9kjW3B2dlaaT77J7NmzWbt2LSKRGNty7sRFv+DS0Q3UbvkdAM+f3Fa2fXLnAl2HTKdaw46smTmU+JhI5bnH914lo9+/f5/y5cuzaNGit85PT1eXoUOH8uuvvypLucTGxrJ161b8/PwIDg7B0tYSkUjE4oVzadOmDdOmTaN06dJkZGRQo0YNKlasSK1atejevTsT+3nnE9A///wzVlZW6OrqoqamRosWLfDy8iIoKIidO3fy008/IRaLMTMzY8CAATx48IALFy6ojBEYGMjFixcJCAggLS0NiURClSpV6NWrl4oxaHGSt5v2zR2170NycjJDhgxhy5YtAOzZs4fBgwfj4+NDixYtGDNmDKtWrWLlypVoamrR/vsJhYorUJSpMTAwVgosHX1DmnZ6/2R6AYGPQRBYAl8l6uqa1GjQhpsXjxWYQP6lM2TIEJYtW6Z8bWBcipmbb3wx364LIz0+lIBnQXjWbMGzhzeIiwqlYq3m6BuZfvCYGekpnD64AYBLly4V+KCWyWSMGzcOKxtHrG3suX7pFABPA24oBZZ5mVemq2UcFaLWwbUK0zdc4d7VkyydOuDVebvyRIQqvKBeT0oXicXIX0sAX758OS1atKBs2fxlh0xNTRk+fDjDhw8v8L68vb3x8/MDFGVqrl69yo4dOwD44bdlKm0nTJiAi0t+130LCwssLCyIiIhg3rx5NGrUiCpVqmBhYcHy5cvztdfU1MTf3586depQv379D06I/6+QyWQ0btyEc+fOoqamrnIu7/5Wr15Ny5YtmTdvHgB/rrtIKYsy+cZ6k4S4aMzNzcnMzOTpg2uCwBL4zxEElsBXS4P2A7h69hDa2opC1WlpaV+UXcPbeF1cAczY6P/FiysAmUQP92qN8T+7l62LJ6KmrsHL0Cfo6unjVb+DMhn8fcjOzFD+rKmpibq6er42mzZtAkAqzSHmZSjdh07HxtEdexcvZRvXyt6YWpRGoq5JpVrNSE9N4u9xnYmLjkAqzVW2q9uiKz2Gz8b3wDp2rZiCr++rUjwKcSUCFJkTgwYNeu/7ycPFxYXLly/j4eFBVFQUNWrUYNasWRgYlcK9agMA2vQczqEt/xAeHs6ePXuIjo7GzMyMZs2aqSwbde7cmbCwMA4fPoyvr6/SiiI2NpYffviB5cuXo6WlRbdu3Thw4AAXL17EyclJWTboSyUuLo6zZ88AUN6jBs8D75GWkoizZy2GTtvI8H8rFQwcOBB7e3uCg4OJfP4IXQNjRCIRmlqq/+/ZmRn4HljLwY1zkMvlyKQ5ZGVlUa3ht/muLSDwqRFysEowJTkHK4+5P3fg6cObgCIX5E2PpC+V18VUq+4/0ab3mM84m/dHmpuL/9n9OLhWJfjRdU7uWEi1xl0+2KRx8cSePLjph76+PikpKZw9e5agoCBevnzJhQsXOH78OFraOkxbe5GX4U+JfvGUiOAAMtNT0DUw5falY+jqG6CtrUPAHcUSYON2/Th9YJ3KdZp0+J6OA35HJBKRFB/N+F7V3jm3Bw8esHfvXsRiMf3790dfX5/FixeTmpqKlZUVXbt2Ve5uvHTpkrI0jEQiITU1lcGDByuLQPft25cNGzZgaFyK1j1HI5PL2LZkEmZmZqxfvx4bGxuePHlCcHAwcrmcbt26qYikK1eucOrUKaRSKSKRCIlEglQqVYoPS0tLIiMVy6GWlpYfJRD/K/bv319gMeuBE1awe9VU4qMVPmEdOnQgJiaWm7duMeqvTaSnp+NU0VtZjBpe5fKBonxWTEwMSWk5jPvn6H9zM++BkINV8hEEVgnm/0FgyeVyxnb3IjU5gefPnxfJBfpLwMbGhvDwcAD+3vsITS3tzzyjj+P545ukpSTiVrXRB/W/ef4QV0/vJD42ivDgx8rjGhqaiMRiyrlXQ0dXn7tXT5OVlQkoluh0dHWJjIjAzMxMaWKZl9Nm6+CCd8uePA+8y8UTuyhbzo3xbzxoc3NzGN+jMmmpyQBoaumQlZmOSCQqsDSPtrY2GpqaJCUmAqCnp8cff/yBtrY2WVlZ2NjYcO/ePapUqUKVKlU4evQoqamp9OzZk1KlSiGTybhy5QqjRo3C399fab3g5ubGgwcPVK718OFDDhw4gKWlJT169MDPz4+rV6/Sv39/TE1NuXHjhrJ4sqmpqdLKwdraGplMRlxcHC4uLgXWbvzSuHbtGjVq1FC+1tLRZdLSk5iYW7N10XguHN2Gu7s7M2bMoG3btoyauR3b8p4kxkZw8fAGyrrV4vKJbQTcVOSkzZo1Cw8PD1q1asU33X+i9Rf4BUYQWCUfQWCVYP4fBBZA7MtQpg9tDsgJCw3F1PTD84H+K16PYPUeOZfazTp/xtl8OeTtDn0dNXV15DI5WlqatG/fnrFjx1K6dGnl71kqlSKRSEhOTmbVqlUMGDAAIyMjHF08GTP/EJGhgexa+is9Ri4o0FBSLpdzaNM8jm5XTXSXSNRo0KYP2jp6GJhYYGbtwMJfu6vMq1bNmkpTUoCoqCi2b9/OiBEjlMdmzJiBsbFxPkf+9HSFkMtb4i6Ie/fusXfvXqWXVdu2bQv8EpGdnc3s2bOZOHEiMpmMpKQkEhMT2bRpE3K5nDp16tCkSZNCr/O5OXnyJM2aKQow/7HmPGZWryJRWxf9yoWjW1XaT1p+ipBHN9i2eCK5uTkq5zQ1NcnKylK+7vnTdLxb9vqEs/8wBIFV8hFysAS+ekwtbek29C/Wzx2JmZkZ5cuXZ/ny5TRq9GHRlE/Jw4cPVbbJW9u7ULNxx884oy+HtJRETu9dAcCSJUsICwvj8ePHhIeHY2Zmxq5duwrMscvbSbpnzx7KlCnDX38p/MOSE+IBsLItz/CZuwu9rkgkok3vn0mKf8mlE7sAaNqhH/XbDlBJpg558spDq1HbPpw5pFimyuPZs2ccPHgwX0J8Tk5OgUtgRckXPHjwIHXr1sXd3V25zPgmISEhnDx5Uun+v3nzZkJCQtDU1MTIyIi6devi4+ND6dKli92iobjIi+YalzLH2FS1QPqTu5dVXmtpazP/l29JS0kqcKzXxZVrpTrUafH2WqACAp8KQWAJlAiq1mvNtZPbef40gMDAQBo3bsz+/fv55ptvkMlkymLJnwuZTMbatWv54YcfADAyMefP9ZeRvIfxolSai0Tydf7L+h3djLNnLcysC06Cv3v1JGtmDEUqzWXYsGEq9ekyMzNZtGjROwVJXFwc1apVIyFBsTU/JiqcTfNHoamljbNXA1y96qLx2lKsXC4n4MY57l46jLqmDs06DaH3yLmFjm/nVJGFex8hkojx3btcIczatCE0NFThJP7va2dnZ5V++vr6HD9+/IMKOufm5lK+fPlCxRXA8ePHiY6OZuDAgYCicoCBgYHSiR7g9u3bhIaGfrECq1+/fjg7O1OnTh3OHVpP444DlefqNO/K6T3LKe9Zh8z0VO7fOAdkFDiOo0tFeo1egLGpFc8CrqGpqftVbB4RKJl8nZ/WAgJvIFFT58c/NnH36gkuH9vGo7tXGTx4ME2aNOHOnTv06NGDzp07q5TpSE1NJT4+Hk1Nzbc+wIqDsmXLKr+l/zJvLw6uVd6rv/+ZvUSHPuSb7yZ8iul9cs4dXEdiZCCtv5+a71xaShLr54zAy8uL/fv3qdQQDA0N5cKFC6SnpxMYGEj58uXz9c+jT58+rFmzhk6dOrF69Wr++ecfgh9cITc3hzM+WzAyMWXausvKgr6HN83h8PYlmJQqRVJiEqcPrMfZoxrlPevgWqU+1nYuyl1qATfPk5aSiGslb3T0jfA7sgV3d3ckEgk7d+5UupunpKTkKxzdt29fduzYwcKFC5VeVkXFyMioUPdzmUzGo0ePSExMZMSIEcplpjZt2jBv3jy2bNlCz549le/jl54NEh0dDcDu1dOxsClHhWqKCLRX3dZIpblUa9iBeT+3z9evjIMrXQZNwci0NMamlsrfr4NLZTIy0vO1FxD4rxBysEow/y85WAVxdPs/HNw4Dw0NDbKzFaakLVu2pEGDBsoHVkpKCoaGhmRnZ2NnZ0enTp0+yDMoJyeH3Nxcbt68SUBAAAYGBnTo0EEZNXv+/Dl2dnYALDoQqHwAvA/xMRGkJcVhU65g09IvnTyn8YLe32Pb/sZn6z8EBQUp3yeAGzdu4OPjQ926ddHT06Nq1arv/P08ePCAEydOkJWVxZAhQ5Si4+DBg7Rv3x4tLW1K2zpSp1UfrpzYhliaQUDAA8LDw5k9ezYHDx5UJsmra2hQ1tGV5MR4oiPDlNfQ1dMnLTWFfv36MXToUHx8fLCzs8PMzIzIyEji4+Np0qQJXl5eKnObPXs2DRs2xMLCosibMXbs2EFwcDA//vgjhoaGyuN79uzh/v376Onp4eXlpbIcLpPJmD59On379lXuQJwzZw76+vp07doVY2PjIl37v2bNmjUMGKDwKitlbs2f6/NXN8jKTGfqwAYkxEYBMH39JUzMP42B6qdGyMEq+QgRLIESSYuuP3Hz3AHCnwcpj/n6+nLw4EHlwx5AQ0MDmUzGtm3b2LhxI3379iU0NBR1dXVlaZLXuX79Or1798bU1BRvb29lHbiCMDU1pU2bNvTr1w+ATgN//yBxBWBiVhoTs9If1PdL4G3CKD0tGalUqny/w8PD8fPzIzQ0lMaNG+Pt7V1o3zdxcXFh9+7deHh4qDy02rZti5+fH0ePHsXX15eNC34BoHv3HohEImxsbFi0aBEVK1bEyMgIBwcH9uzZw7lz59HRgA5tW/Hw4UPOnz9Pg/r10NLSwsXFRRn5rF69Oq6uisLjcXFxbNq0iQcPHtCtWzfU1NRITk5m3759jBs3DoBevXqxcePGdy5fVapUiadPn6q0i4qKIigoiKFDhxa4oWPTpk2Ym5ur2DuMGjWKo0eP8s8//6ClpYWbmxvffPPNF2VC+voSsFgsUrFfyENTS4eew2ez+PfvsChd9qsVVwL/HwgRrBLM/2MEKzcnm1M7F2JR1h2xRMLyaQNVzvfv35/Vq1fn6yeTyViwYAFaWlokJycjkUhwcXGhbdu2AGRkZPDTTz+xZs2at15foqaOtZ0LoUGv6tjlOVXn5ub+X9UXzCM9NZGHN85hYVOeUpY2XDi8iXM+Gxg5cyfxUeGsmfkjTk7lWbJ4MWfPnkUsFuPo6Ejbtm0/qDjw7Nmz+f7779+6m9TX15fIyEi6dOmiYmy6adMmypcvX6Cb/KlTp2jatCkWFhZERUXh7OxMv379qFGjBg0aNFBpK5PJOHToEE+ePMHCwoIXL17w22+/qbT5448/mDRp0lvv5eDBg9y6dUspPuRyubL8zZvXBDh37hy3bt1iyJAh+fIOIyMj2bBhA23btsXf35/IyEjq1q1LnTp13jqHuLg4du3apSy983puV3ESERGBl5eXcqnwn/2PUdfIX6Eh6sUzbp73oWqD9phZfR22LAUhRLBKPkIE6/8AqTSXF8GPMDK1Qlff8N0dvmLEYgm25T0wNLOjtJ0zlWs15OblM8rza9asQSaTsWLFCpUHq1gsZtSoUVy/fh0nJycMDAyYO3cuHh4e2Nraqny79qjeiMG/ryH2ZRh3Lx/jvv9pHt+9yuBJK6lYqzkAOdmZiERiti4az+lTe5R9n9y7gpPHh9ds+xo5tGEW188fJj0tBRu78ryMeI5YLGHjnGE8fXyPSl5e7N+3j40bNzJ06FCVpbAPwdTUlJcvX75VYBW2w9TIyIjk5OQCzzVs2BBQRJBAUUj5xx9/LPDhKBaLadeuHTExMYSFhWFpaUnbtm05ePAggyet4sTORcycORM7Ozt69epVaCSrbdu2xMfHExsby+DBg9HT08vXJjs7m4sXL5KRkcHDhw8ZMGBAgZs6cnJykMvlXL16lVatWpGdnc22bds4e/YsZcuWxdHRkRcvXpCZmUlqaiq2trYkJycTEhJCjRo10NTU5OTJk0ybNo2WLVtStWrVgt/cD6R06dLKebtVrleguNqycCyXT+3muzF/f9XiSuD/gy8nPizwyZBI1JDLZejolfxvSWKJBLfqLbC2V9R1i41+ma/NunXrGDx4sMp2blA8FKtXr46RkRFisZju3buzfft25s59tbNs3s57DJmyDrFYjHnpsjT5dhAjZ+5k2ZHnSnEFoK6hhZq6BmkpiQDKLfRb/hnH0il9Gd+rKrEvQ/l/wKSUObbl3DC1tEEmk1K6rDO5OdmIZJn8+uuvzPjrL06ePKnMZftYimOMgpBIJFy9elXlWEH1AF/HzMyMypUr06xZM/bt26foM+0HqjXsiIlZafr06UPDhg1ZtGgRJiYm6OnpsWHDBpUx+vbti5aWFkeOHCnwGuvWrePu3bvKsjmFCVRbW1vGjRtHmTJl2LBhA1u2bEEikVC1alVkMhl+fn48ePCAqKgoSpUqhb+/P+Hh4YwZM4aGDRsqv5CYmppy+PBhZW5jcdGjRw/lRpDBk/NHmcOePiAp/iWlLMrgVbtFkcdNio8mS0h2F/gMCBGs/xPKOHyZ27M/JSKRiLELDrF/7XRO7X9VMsWolDlr167l2bNnnDlzptD+NjY2lC5dmhs3bgBgWcbxvUVq//FLGdHBmcR/nb9zMtO5d01xzUnf1/2/WDJs2m0UTbrKleVp/hzcGHUNDRYvWsTly5e5d+/VcuqaNWtwdHSkXbt2H7Q8CJCQkPDJin9Xr16dxo0bc+deAOUq1GD8+PF4eXnRtGnTd/YVi8VERERQunRpdiyfgr1TBbr9OJVj2//h3LlzynZ9+/bFyMgIFxcXjI2NefDgAQkJCVhaWiKVSgkLC+PEiRNKW4bMzExKly5N587vNqsVi8U0bdpUOd8bN25w9uxZcnJylF84UlNTiYqKwsrKivr166Ompsa1a9c4d+4cffr0wdjYmFWrVpGRkVFs9idr165l27ZtACw+GITkjcLPUmkuf/3UCoClh0Pey3ohISactMQY3Gs0f3djAYFiRIhgCZRoJGrqfDtwCvN33UP8ryFlzr+lVs6ePfvOMiLfffedcqu7a+W356oUhIamFp0GTVa+9qzVHH1DE9Q1FDUTZ45o/d5jfo3kPRAvHttCVlYG9+7e5cqVK6irq+Pm5oarqyvt27dn9OjRhIeHM336dM6ePftB1zI0NCQ2NrYYZ6/KggULiI+NQlNLF7lcTqdOnYrc18rKil9+USTYBz+5j1lpe6asvUi1Bm1V2rVv316ZRN+hQwd+//13OnfujJqaGvb29gwaNIgxYxTlX7p168ajR4+UuUvvQ5UqVfj5558ZP368cjMGKHK91NTUePr0KQB+fn40atQIe3t7Ll68iFQqRV+/ePI6b9++Tf/+/QGwLefO6M4VCLx7kYy0ZB7eOE940B3EYgmtug1l5Mzt7+1rZedcGdeqX66LvUDJRRBYAv8XaOsaIJNKAUhLTcbcSrHD6sCBA8oHXmE8e/YMgBbdRry1XWGYlLIARIjFYmo3705KUjw52YpowfPAe6yd8SOZ6akfNPbXxJXTuzm0+W9q1qzFjRs3kMvlVK5cWVEv7ptvqFixonLHnZubG7dv32bFihWkpr7fe9OqVSvOnj3LokWLPslyoYeHBx07duTckS1Ub9ie5ORkevXqpbI79W1MmzZN+fOiSX0Y3ckd/7MHKVeuHAAVqzekdc9RDPh1KS27DsOtSn2aduxP296jadVtGH1GzUUiUWPevHmIRCKWLl2KTCbj7t27H3VfeQatw4cPx9jYmMjISB49esSBAwfIzs5W2k5cv34dY2Pj9/69FMSdO3eU45qXtiM06AHZWZk8uuXHssm98dk4g9N7l5Obk0WbPmNx9qz1QdfJ+3IlIPBfIuwiLMH8P+4ifBvREc85snUBV30VuTDDp29h57JJvAx/xtatW+nevXuB/ebOncu4ceNY4hP8XtcLDbqHz8bZ3LuuqFVX2tYBAxNLJBJ1Htw4R/kK1Qi87w9A3zELqFirOVrauh9xh182P7ZSlJDZs2cPISEhZGdnU69ePWrXrq3Sbu7cucrozPnz57l8+TL16tWjVq2iP1wjIiJYv349YrEYCwsLPD09uXTpEmpqarRp04YyZcoU2O/QoUNoamoq6+IVRl5x4pbdhqGhocmBjfOYN28eo0ePLtL88pb1zM3NycnJoW7dujg6OqKvr8+MGTOJjo6iYvWG9J+wAnV1zXz946NfMKHvq/fN2dmZCxcuYGZmVqTrF4RcLmfmzJmEh4ezdOlS1NXVmTBBYWzbsWNHPDwUHmy+vr5cv34dCwsLvvvuO0BRVzEjI4M7d+7w5MkTvLy8qFatWj4biEuXLtGiRUtq166Frq4ue/fuBaBm446oSST4/VuqaNyCAyQnxiASS/Co9uWVvCoOhF2EJR9BYJVgiltgndq9hMhnd3Go2BA7Zy+s7Zzf3ekL5Ni2BYQ/C6DPz/8gk0r5Z2J3wp89JCYmpsAE4VatWik8hArZNg6QnZVJ8KObpCTG4eBambioMOaP61roHLR0dBk0aTU3zx3gwrHtaGppoaNrQKVaLegyZFqh/b5WrpzaxYb5Y1i5ciUZGRmoq6vj7Oxc4G6+BQsW8MMPPyh3zCUnJ7NlyxZkMhm9e/d+68MoMzOT3bt3ExkZyTfffIOTkxMXLlzgypUrmJubU7VqVXx9fdHQ0KBNmzb5DD/37t1LZGQkDg4OKsflcjnh4eFKbymZTMbIkSN59uwZ/cYsYN280cik0vd2Sz9+/DihoaEkJSWRnZ3N+PHjEYvFrFixgsGDB9Om5wha9SxYtMlkMoa2tle+HjZsGIsXL6Zr165s3779veaRmppa4JKfvb0948ePV+Z75RESEsKGDRv48ccf2bhxI2lpaYBiM4eHhwcXLlygYcOGzJo1i6pVq9KvXz/27NmjFM556BsaM3TqRso6ebJ10XguHN2GkYkp0zf6f1EeXZ8CQWCVfASBVYIpboG1ad5IEmNfEHDnGgA6Onr0HDGLynW/3jyiFyGPeXbbl60rZzJp0iT++OOPfG1atmzJsWPHqNagHd+PVTUVlUmlLJ/Sh/s3L6o8XHsOm86WxROQSCRIpVLUNTSVy4KvI5GoUatpZ/yObUPPwBBHl4oMnLS+xC1p5EWvJk2ahEQiQSQSUb9+ferXr5+v7cqVK2nYsGG+sjhXrlzh3LlzNG3alMqVK+frd+7cOa5cuYKnpyfNmzdXeUCHhoaye/duZYTp/v37nDx5Eg0NDb755hulg/yePXsKFFigcP5/XYRIpVLatWuHXC6nZsM2PLx5ntjY2A9KzpfJZMyZM4dx48aRmJhIzZo1efz4Mb/+cxjbchUK7Xfzgg+rZgylQoUK3L9/X3n8fT/Wvb3rcvGiX77jEomE0NBQSpdWNbnNzc1l3759BAQEAIrkeWdnZ6pVq4adnR0uLi48efKk8Ou17EGPYX+p5FPJZDLWzhiMnWtlHN1rYu9c6b3u4WtDEFglH2EXoUCR6f3z3wDcvXqaPSunEhsVzqYFY8jNzqJ6428/7+Q+EGs7Z4LuKwRjcHDBS4CHDx9GIpEQdO8SGWnJaOu++jAMDw7g3g0/xo4dS506dWjXrh06unp4t+qFd6texEQ+JzszA3NrOyRq6sRFPmfOzx1JSVbku0ilufgd24aWljYikQQ9QzMObZxF9cadsbItvO7e10bV2k24fukU2traypy3wiIUhoaGvHz5Mp/AqlmzJg4ODqxZs4aAgACaN2+OmZkZMpmMDRs2kJWVxdChQwv0irK1tVUUdw4IwM3NjQoVKlChQgUCAgLYv38/ampq1KxZk4iICJydnd+5RJjHkCFDWLJkCXVafcfVsz54elbk1KmT+QTJ25DJZJw8eVK5vGdjY0Nqaipuleq8VVwBVK7bmmFaumxZOIbSNvZEhAUzaNCgIl87MDAQLy8v0tLSqNmoPZ0GTUVb1wCxWMyVkzvZsOAXrK2tuXnzpjJXKjc3l8DAQKWA6tWrF1paWhw6dIiNGzeioaHBkydPEIlEtO/3K/vW/gVAw7Z9+abXaHR0DQpMVBeLxQyYsJLH/kc5f2gt9s4FV0gQEPhaKNkxWIFPgmeNxkxdcx43r1pkZmawa1X+qM+XSkpiDBlpSSrHqtZvg46uHkePHsvnQQSKD/7Hjx+TEBfDz108iYkMJT4mAr+jW5gxXBG9++WXXxg+fDgAtVv0UPY1sypLKUsbDq/7g3P7lqGnJWLAb8tRV9fAzFKRB2RiZkVmZgYpSfH4nzvEsV0r+GNwE/4a1oK4qDBCntwhOTGW5PioIidSf2nUbfcDAFu2bEFNTQ01NbVCBZaJiQlxcXEFnjM3N+fnn39GTU2NVatWsXjxYmWdvcKMOPOQSCT5cq/c3NwYOXIkTZo04fjx40il0gKjY4Xh4OCAWCzGzKosw6dvJjQ0jL59+761T2ZmJkFBQZw4cYIVK1Ywd+5cwsLCaNOmDdu3byc1NZXSZZ3oNXpekebgXq0hf22+wYRlvgDs2rWrSP2ys7NxcnJSLu91GjQVXX0j5e+lZtMuyravvydbtmzBx8dHWdfzwoULWFtbU7ZsWWQyGTNmzMSpQlX+3vtQKa4ApNkZ6OoZvnUXoM/m+ZzYu4ayTl6FtvlYrp7e/X+xqUTg8yNEsAQ+mCbfDkFbR58WPX7+3FMpMv5n9qGrb0iNJq/yo3T1jfhlwUH2rZpK3759WbDgb9q2bcPkyZOR/LtU5+TkBCiWXn7vX1dlzFatWvHo0SOeP1d4WrXtrfp+aGnrYmBZDo8aTdAysWH5oNbk5GQT8zKc4dM388+EXsq2r5s3hj17yNyfO5AYHwMoig83bf8dcVER1G/3A/Yun+4hVNyUc6uGmroGbm7v9mMzNzfn1q1bhZ7X0NCgffv2HDp0iLCwMKXgehe5ubmFLsW4uLjg6emJpqbmWx3g36Rdu3ZMmvQ7v3/vzYSlJ2jTZwzbl03mzJkzSuf3PCIjI9m2bRtyuRw9PT0kEgkpKSmMGTOG1NRUfvnlF1auXIlVGXu6D/sLY9P8tTDfRp4wio+Pf2fb6OhomjRpikRNjR8nrca9WsMC283Zfotfuin+zhISEtDT0yM4OJgRI0ZgbGyMlpYWJ06cYO3atURHR6Ojo0N2dhZP7l8nOzMDHV090tMUYqZ595FvnVN8TASHty4E4NnjBzRo2++t7T8EmUxGbnoCV0/vpn6bvsU+voDA6wgCS+CDca5UB+dK7+8N9Tlp1GFggcctyzgyeMoGLp/cwY1z+5k2bRobN25k4MCBdO3aFUdHR+RyOTExMcyePZtq1arh6enJ8uXLKVWqlNKzSU1dg/TUJMSSdPQNTV5dt933yp9b9xzJrlV/AoqHYp+Rs7l+/iBZmRlEhDyiYs2mVKjelMyMZKLDAjmxdy1WNg6kpSSRnpJI8OPbZO34m4G/r39vT6BPgVwuZ/2swSBWp2LtlqipqeFZ8w1TR5EII+NSqKmpIZPJ3prAbGVlxfnz5996TS0tLWrUqEFMTMwHG5IWBzo6Ovz00zBmzZrFkc1z6D36b47vXELz5s0ZMWIE5ubmSCQSNDU1SU1NpWPHjipLnz///DNDhgzh4MGDREZG4lWrCX3G/PPBu0nrt+xGwHXft7a5dOkSTZo2RaKmzvA/N+P0FusDPQMTxi44wOxR7di3b5/Sr6pcuXL06tVLGf3S1dXl22+/Zffu3XTq1IktW7awZuaPjJ69h8d3/KhYq/k7i5WHBt5TjpWWlkZyQgwGxh++K7IgxGIx5TzrIS/hCfQCXwaCwBIQ+BeRSETtZt2o3awbQQ/8Ob1rMZMmTWLixInUq1ePRo0aMXmywjRUS0uLly9f4ujoSHx8vDIfRSQSMb5XddTVNbGydaBVj9FUrKWaz9Ooww806vCDyrFazRQRtYLER4cBr4xK46MVmwwCbl0mIuQh1vZfhkO/TCYj9PEN0hJjMTE1yyewIp4/JjY6Em1tbWbNmoW1tTW9evVS3uvr921qalokj6WIiAh0dYsmRPbs2aMsV1TY/D/EmfzMmTNUq1aNIUOGKMS2hS0JcQrDz8jISGbNmkVmZiZPnz4lKytLRVytXbuW+fPno6mpib1zReq2GUDD9gPe6/pvYudWjXNHtxMWFqbc8ZhHXFwc3t7ePHr0CA0NTX5fcRajUhbvHDNPsOWJq7y5e3t7U69ePerVq6c8bmFhgbu7OykpKRw8eJBFE3syfeNVJJJ3P2pW/Kn48qOvr096ejoSteJxiX8duVyOlrYmMTGfzohWQCAPQWAJCBRAOfdqlHPfQEZ6Cn5HNnPj3H6mTJmiPJ+ZmUmVKlUYM2YMbdq0YdWqVQCoScRItLXJzMgg9OlDlk/7gfbf/ULzrsOKdN13bU03MbemQ/8JrJkxlLMH19FzxJwPvsfiQiQS0XPkAo5umUtM+GOSk1NUzkulucwe1Q6AWbNmYWBgwJo1a1i+fDmxsbFoaGiQlZWlIpZeL8QNimUvX19fxGKxsiBxZmYmvXv3fuf8rly5Qnh4OD/99FOhbfbv38/Tp09p167d+9w6L168oGfPnhgbG7N06VKO7FjK0KnrWTK5Lw8fPkQsFqOjo6P0kEpJSWHVqlXs3LmTq1evYm3ryPhFx1BTLx4x4VlDUQInL6n/dSZPnsyjR4/wrNaALkOmF0lcAZS2d1X+/E3PkRze8jdRUVH5LC5A4So/b948Vq9ezeDBg9m3bx9Ht/5N695j8rV9Ex1dfdLTUnj58iWeNRp/ksL0IpGIPWv+wq1aM8q5F2+xagGBNxEEloDAW9DW0adppx9p2ulHZFKp0j4h8P5VFk/qzbRp06hTpw46OjosXryY5s2bk5KSwsmTJwkNDWXJkiWEPb3/jqu8HxVrNsO4lBmPbl0o1nE/htzcHJLio4mPT6D99xNVzqUkxCotKm7fvk3t2rUZNGgQc+bMwdXVlebNmxeaG5Wamsq6detIT0/HxsaGZ8+e0aNHD0qXLo2GhgapqakEBgZib29f6FLh2bNnGTJkSKHiNTs7m/v37zNmzBh0dHTe674zMzNZtWqVsmjy9evXWTFNEYXKKzOTkZHB8+fP+fvvvzlw8CDRUdE4OnvQacBv1G7evdjEFYCOniFN2vfj1P51hIeHqyT1BwUFAfDj1PwbOQojNSkeR7dqKjUzD2/5m4CAAMLCwoiJicHd3Z2AgAB8fX3Jzc1FJpOxdOlSPD09ef78OYe3LSqSwHL1qssNP0VB67tXT/Njq7K4V/Fm2LQtRZ7vu7hx7hDJSQkYmBRNXAoIfAyCwBIQKCKve1OVr1CDsQsOcXDddE77niU+Lka5A7F379707t2bGjVqsGTJEhq061/YkCrI5XJSEhViRKKujqGxeYE5ViKRCG1dPXT1jXl6/QjGZSu9M7/lU6NnYEzfcUsLPGdkaomGphbZWZk0bdqUYcOG0aRJE6pXr46/v3+h4urAgQPcvn0bLy8vWrRogYaGBjNmzOD8+fP06tWLp0+fsnv3boyMjEhKSsLQ0BAjIyMsLS2VSfJisZjs7GxOnjzJt98WbCVy5coVTExM3ltcRUVFoaOjQ48ePbCysmLixIlcu3aNrl27EhISQlJSEj/99BNr1qxRmKtqaODiWYO+41ZQ1qkiALk52Vw4sgWrsk6Uc6/2XtcvjJY9RnH6wHr279/PsGGvIqd5eW1yubzIuXtzRn1D9MsIFYFV2rYcEaFBNG7cmKdPn+Lg4EC7du2YMmUK2traXLhwgbJly7J7924cHR25ceMG0tycfAWc38TMKn9E7MENPyKeP6F0WacizfdtyKRS/HzW4OheA7fKdd/dQUDgIxEEloDAB2Jt58yPUzcik0oJuHmeJZP7AnDw4EGWLVtG9erVAd4ZoZDJZKQkxrDw1+5EhimiHmpq6tTwbkwF7/ZUqt1SpX34swfY2pXDu+0gbpw/SCv3/GadXxq25T0I+rcsUHh4OLdv30ZDQ4Ps7GxWrFhBbGwsDRo0oE4dxaaJ4OBg7ty5Q79+/VSWovr378+aNWuYPn06IpGIzp074+rqSkhICCkpKURERBAaGkr//v0RiUSEh4cDCusCJycn5VLd60ilUpKTk995D0lJSWzZsgV3d3dq1arF+vXr8fb2xsrq1W6/6tWrs2zZMlq2VPzOFi9ejFfNxtRt3Q8754po6egTH/2C7YvGYe3ghpl1ObYu/g2AGRuvYmRq+YHv8Ct09AxxcKrAsmXLGDRokHK5tX79+pz29S2yuMrJziL6ZUS+41mZ6cCrCN2zZ89YsGABZcuWZcSIEdSrVw9fX19ycnLYuXMnAJkZ6e9c8nt0s+CNDdN+bMqf6y5SyqLg8kZFRSyR0KDjkK9q963A140gsAQEPhKxREKFag1ZduQ5zx7eZM7PHShbtiyOjo4A2Di6F9hPLpdzePNcDm9bnO9cbm4Ol84dx7iMGzIZWFhZs3fNdBIT4jAwNicqPAg1jQ207jflq6hfOHTKekZ1UrwP+/fvp1+/frRu3Zrbt2/z8uVLKlSowKlTp6hVq5bSJbxFixaYm5vj4+ODSCQiPj6erKws5HI5pqamxMXFKZPG85zY3xRQbm5uXLumMJJ99OhRgQKrVq1a+Pn58eDBA9zdC/5dAWRlZRETE8OzZ8+Ijo7Gzs5OKQhf58GDB8qfB4xfTELMC+5dPc6OJeOJjY5E+m/RcYAlPsH88NtyDE3MikVc3Tp/gLIulWnXbwILfu3O8uXLlblnx44dK3LeFUBiXBQAdv9G2/KQyV/Nv+P34zEvU47lfwxg5MiR6OvrExUVxZMnTzA2Nla2e5e4CnrgT8jTALS0dZAjIisjTfW+Lh6lSccfCulddN7ccFJcpCZGE/0iBAf36p9kfIGvE0FgCQgUIw6ulalcuzk3Lx1XmmX6bJxD277jkUlzefrwBmZWZTE2teLmhcNKcdW6dWuOHDmCTCbD2tqav//+m27duuGzeT4Aaurq5ObkABDxPBCAB7ev0UXv6yixoaWjR9NvB3Byz2oAFi5ciIODAzExMTRq1AgtLS0uXLjAn3/+qUzOFolE7N27l5CQELy8vEhOTiY2NhYnJye6d+/OzJkziY6Ofqtrem5uLqdPn8bW1rbA0i3Z2dn8888/mJqacvr0aeRyOT4+PjRr1kxprnnkyBFyc3MJDQ3FxcWFwMBApFIpAwYUvOPvm2++ITg4mBMnTrB65jAkEgk6Oro0bNgAbW1tnJ2dlSWZpLnZVPZuWeA4H4KlrQua2vqU96yFqUUZhg8fzrBhw5SRJH1DkyIvESbFR2FjX47OgyarHK9UuyVnDqwHoLSdK+5VG9CwbV/OHFyvstMQoJxrRboPn/vW6+RkZzLvl04AVKjWgNiI54QEPVBpExPx7J3zzSMtJZHUpHgsyuQvd/SpiIuOwKyM4392PYGvA0FgCQgUM027DOHmpePK18d2LefYruWIJRJk/0Yv7J09CXv2EFBsn9+yZQvPnz/n3r171KtXj06dOvHixQtiYmLIyspizZo1AHh7e9OzZ08AYl6GkxQf/V5Ric9Jx/6TaN9vAlMHNsDX15eRI0fSrVs3NmzYwKBBgzA2NkYkEtGuXTvS0tI4ePAgampqyOVyWrZsSWJiIgsXLuT58+dcunQJdXX1d5akOXr0KFpaWoSFhVGhwquyM5GRkVy5coWnT5/i6upKmzZtmDFjBseOHaNZs2acPn2a48ePk52djaGhIebm5tjZ2dG6dWtWrVpFdnY21tbWBV7TxcWFsWPHYmlpiaWlJa1bt8bSUhGdWrt2rdI+obx7tUKLh38olq/lKtm5VCbmZRhLly5V5mKFPXvIoQ2zaNt3/DvHKudejQG/LiMnO0fluEj0arPA1n/GMn3jNboMnoqppQ27Vr4qVO7i5c2I6W9PUM9IS2Z0Z0VU0cS8NF2H/kVY0H0V810Av2Pb6T5sxjvnDBB0x4/E2HAsygwuUvvioKxTpf/sWgJfD4LAEhAoZuycKvHP/scc3b6Yo9sXKY/LXlsaCn58F1AIABMTE9q0aUNwcDAVKlRQ2kFYWFhgYaEQT1WqVFH2dXNzU9aF+7V3dXoNn0Gd18rzfMmIxWKmrDrHkG/sOH36NIcPH2bmzJnMnj0bHR0dkpOTlfc8cuRIsrOzmTdPUTLGyMgIiUSCRCLB39+f9u3bv/VaCQkJ3Lt3j6FDh3L69GkSEhKIjIwkODiYixcvoq+vT8eOHZWFnUuVKkVkZCTm5ubKeonZ2dkq3lihoaFERUWp/D4KwtbWlu+++45jx46xceNGjI2N0dPTIz4+Hj8/P9TVNeg7tvhr7cVGhiCS5WBaxomuP/7BjfOHVBLdAY7uXEbd1t8VySn+2M6l2NrYINHQwvLfCE12RrryfHxslNLDrFH7ARzesoD0tFRqN+lAnZbvttA4tl3xHlhY2/P78tOIJRI0tfJvNpDJZCQnxmJgVLDL/p3LJ3D1qouGljZOXvU+qKRUdnYmahL1jyq0/j4bCARKPoKdrYDAJ0BdQ4vWvUbTvu9YjE1fRZhsX8vH6tSpEy1atAAUOUSWlpZ06tSJR48evTXpulKlSpw+fZrBgwfj4eHB5n9+5fzhjZ/uZooZkUiElY3iYW1ra4u2tjY5OTnExcXRpUsXlbbnz59XiRSJxWKkUinZ2dlcvnyZ2Nj8hpFxcXEcPnyYPXv2UKlSJQwNDalfvz4vXrxg9erVPHnyhFq1ajF48GCluAIYOHAgbdq0YdOmTUREKJK73zQelUqlaGhokJub+877tLGx4YcffmDMmDHY2Njw5MkTPD092bhxI807D/4kOz8zM9MJC1HYMejqGzFhyQkat+vLxKUnAKhaVeH9dOfi4SKNV6Fac/ZuWcG103uUx8p71lSWkAL4e3wXMtIV3mczNl1n0YFAeo1agIPr20WoXC7n7pUTqKmpM3nlGaWw2Th/dIHto18UXIw9OiIEv4MrCHygyLXT1jVAV9+oSPeXR05OFiF3z3B678p858KfPeBF0O0ijRP68AqBdy9zavdStswf/tXWDhUoHkTyN93oBEoMycnJGBoaMn/3fbR19D/3dP5vSU1O4O6Vk2SmJ1G1QQeePbzBimkDWbVqlUoeT1RUFDdv3iQ9PZ3AwEBMTU1RU1MrsHjwihUryM3NxcTEhB49XkWvdPUMMDa1xKliHdr0HoOWTuHFjz8nOdlZnD24juM7FyOTSlmxYjnPnj2jTp06NGnSBFA8gFesWEHt2rXx9PTk7t27DBkyhDt37qg4vQ8YMEBp9BoVFcXatWvR1dUlPT2d0aNHo6Ghwd9//03NmjWpWbPmO+f28OFD9u/fz08//VRg8ei8vK327dtTrly5d44XGBjI3r176dOnD8OHD+f0mXNMXeNX7MuD72Le6DZEvQgmNTWVDv3G0rTTkHf2kcvlrJjSB6eKdTExt8alSgO0tHVJjH3Jr31qKNtZlLZh1Oy9GJqYF3k+PpvmcnjbqwjvnG238PfdzYGN8xBLJGjrGhIf82oX44LdDwr8e5bL5QQ98MfBtXKRHOMLIz4mAg1NLfQMTFSOP7p1nse3ztG238R3RqfuXj1FQtRz5Ei4d+UIw6ZvV1lSfZ2M9BRGd6pAUlJSoVYlAl83gsAqwQgC68skOiKEyQPqM3z4cBYuXFhgm2fPnhEZGcnFixcZO3ZsvvObNm0iPDyczp07ExsbS61ainpyampqKtGVTj9MonGHjyu/8ilJio9m68Ix3Lt+nmHDhpGdnY2amhpLlixRaefuXoEHD+6jrq5BpRoNca/ZgqS4aPatU+TlNGjQAFtbW65fv8706dPzLR/+9ddfjB8/Xmk2mpqaypEjR6hTpw7W1tZkZ2cTExNDQEAAgYGBpKSkIJPJ+PXXXwuc9/bt23n8+DEjRowotATPw4cPiYyMxN/fn759+/L48WMaNGhAuz6jad51+Me9cR9A0P2rHN06H2ev+jTu8MM7fale59DG2RzZrvidGBga0/eXhZzz2cSdKyfp27cv+/btQ1vPkEnLz75ziS0pPopN80fx4OZF3NzcCAgIAEBTSxu3itWRI6bd9xORqGmwYGwnEuKiaN9vPA3b9kND878VpYUhzUrh+oWj1GjSJd+5U9vnY1W+Mu5VGrx1DEFglXwEgVWCKW6BJZfL2b54PDWadHln+F+gcOKiwpjYz5tGjRpx+vTpQts9evSIc+fOMWjQIJKTk9mwYQMVKlQgKiqK58+fI5VK0dXVpUKFCty6dYtRo0YhkUgYM2YMrVu3pmHDhgAM/G0pXt7f/Fe3997IZDIObZzF6X1ryMnJQUdHF5kcMl/bql/OtSK1W/SiWoP2Kr5iIU/uMGtk23xjHjhwgLZtXx1fsWIFTk5ONGzYEJlMxuLFi7G2tiYoKAgNDQ0yMjLQ09PD2toaOzs7ZDIZN2/eJD4+ntzcXOrVq4eTkyKB/OrVqzx+/BhHR0eePn2Kra0tnTt3Ji4ujqNHj6Ktrc2LFy/Q0NDAwsKCGjVqoKmpSaVKXmjqGvHL3z4fFWl5G+mpSaQmRGFgal2s9h0vQh7z5xCFxYGJiQlJycn0GT2fdbOH8/fff+Po6EibNm2Yuuos5tb2AJw7uIbYF0F0HPyXMvKTnZXJ3NGtCQsORFdXlx49eiijj2XsnXH18qbjgN+V15XJZNy5coIDa/7ArUoDugz5q9ju6WNIT0smKyMd44+w1hAEVslHSHIXKDJyuZxyzhX+DccLAutDuX7eB+CdidJ2dnbs2LEDmUymTJC+c+cO+vr69O/fn+joaE6cOIGdnR2XLl0iLS0NAwMDnJycEIvF/Prrr8yYMQN/3z1ftMASi8W06/srjTsMIvjRLZwr1kZDS7tIfe2cKvLLvH0s/r0PVeq1JeTeecLDw+jcuTNZWVnKdq1bt2bDhg1cu3YNkUhERkYGw4crokjx8fGkpaXlK45crVo1ZDIZ6enpLFiwAD8/PzQ0NNDW1iY3N5eOHTsCcOjQIRYsWIBMJqNChQpcv36d7t27KwVZTEwMtWvXJj0jk2EzVn0ycQWQlZlByONbeJnnd0X/GKztnKnbsgdXT+9RfHEzMGTD3FEYmZgxcuRINm/eDEBo0F2C7l4gMuwpT+5dI/RpAC7VmmFbzpNti8YTFR6k3NkYHx/P7du3ldf4ddGxfOWMwp8F8PDSftLT0tHWNyH2ZSimlrYkxkWRmZaEpe3HO7x/CDq6BujovlsUBd4+S2ZGOh61Wv0HsxL40hAElkCREYvFVGvWm+SEGH5sVZYB45dQpV7rzz2tr4qzhzawf91MNDQ0mDhxYqHtYmJilL5NYWFhlC1bFg8PD+7fv8/IkSMBCAgIwMjICEdHR8zMzFi0aJFyeTAhIQFjY2OGDRvG4sWLuXnxGJXrtPjk9/cx6Bma4FGj8Xv3c3CtzKwt15HJZJz32Ujc9n+oU7sWs2bNQktLC5FIhKGhIbq6uiQnJ/Pdd9+xd+9eZX8TExNMTEwKHFssFqOnp4eZmRmlSpWic+fOACxbtozbt29TuXJllQLRBw4coHLlyjg5OSGXy9m4cSM///wz2TlSRs7aRSkLmwKvU1zoGRrjXr0ZkmKsb5jH/WunkMtl/+b+GVOhgruy/E5enuDBDbPxqNoAa3sXvh04lce3znFo01yiIsJJTY6nZs1arFi6kKSkJMRiMfPnz2f37t2A4r1+3QMNIDHuJZEvX/LbkuMsmdSLswfX0nvUfGzKVVA6yn/JHN62BGPzMoLA+j9FEFgC703eB9uzRzcEgfUePLh+hh3LFMsffn5+hS4LBAQEsGvXLuVOrb1792Jtbc3Tp0+pW/dVDbXq1atz6dIlpk2bhr6+PqVKlaJ+/fro6ekhl8sxMTEhKCiIxYsX47NhxhcvsD6GpPhontw4iaVNeTLS0zA2NkYqleLt7Y2PjyJiaGxsTKVKlbh//77K7sF3kZycTEpKCp6enspjeTsZC0JLSwupVMoPP/zAunXrqFSjIZ0G//nRpV6Kgrq6Jurqmp9k7N9XnmXNjCHcv36WkJAQmjVrhp6entKIFRTebC5VG+NRvREAS6b+oCz0DdC69Tfcu3cPuVzO8OHDVTYRHNw4m6P/5nnpGxpj4+BGwK2LGJcy49nDm4SHKL5wJMREUKl2C0qZf/r382PR0dHn3rVTn3saAp8JQWAJvDdmVmVVir/+vxIVEcI/47tSq2lnWvYYpbJ1/U3kcjk7lyp2IY0cOZLjx4/j6+uLmZkZ3377LYaGr0qJhISEAIq6e7q6uuzfv5+IiAh+/PFHlYRqLS0txowZQ0pKikpZktfJiyxEvnjOwQ2zad5lKJpfQWmd9yH2ZSgPLuzC0Nqdq2cUkakHDx4wYcIEPDw8iIqK4tmzZ/Tp0weAzZs3K0vsFIW9e/fi6elJ7dq1Abh8+TJisVhZa/JN5HI5vfv0Yfu2bXQf8gf1Wn/3kXf4ZaClrUungZO5f/0sWtq6rFu/nvPnzlGnTh0mTJigbBfy5I5SYOVkZ+Hg4MBPP/2Erq4unTt3Rk1NTSms8mpFAkpxBZCSlEDArYsANOs8hMf3rijP3b1yjJ0rptK4XV/KedTCwa0qBkamSj+uz4FMKi0wud+pUh20DQzJycn6ZMJX4MtF8MESEPhAHt+6QHzsSw5vW8SW2T9y39+30LYXj20l+mU4Y8eOZf78+fz222/06dOHsLAwFi9eTGRkpLKtlZUV+vr6WFlZYWBgQJ8+fRg5cmSBu9XU1NQKFVft2rXjzp07ihdyOUd3LGHkt25M/K4GO5ZN4kXwo4+6/y8FfSNTsuQa2DlV4sa/+W1z5syhYsWKiMVijI2NycjIABQFm8PDw99LYMXGxiKTyTh69ChHjx7l8uXL2NjYFPgwF4vFrF69mm1bt9Jr+IwSI67ysCjjQO+Rc8nKTEciUaddu/b88ssvKgW5r/nuVka5y7lV5dmzZ2hoaPDDDz9gZGSkErUaPFjhtj5kytoCrzdwwnLqt+nHvcvHlMeiXyi+3J0+sJ4Vfw5iXI8qzBrRmqGt7Zk2uDFxUeEqGyTehlwu5/mTu+RkZ77fG/EGiTHhpCTGABAZ+oSEWMX/c4N2/Wnc8Uc2zBzEi5DHH3UNga8PQWAJCHwgNRt3wsWzBhalyyLRMaS0nUuhbZ8/vgVAerriwZNnmKmurk7r1q1Zu3YtsbGxhISE4OzsXCQjy7dx4cIFDh48mO+4lZUVqckJnD20kT+HNsd3/1oSY19+1LU+N5paOjTr8lOBxZL37duHubk5crkcmUzGmjVrqF+/fqE5V28SFRVFWloa165dIzExEblcjp2dHYGBgaxcuZKEhARlW7lczurVq9m1axfNOw2kdvPuxXaPXxJV6n2DiakZqSlJRES8YM2aNTx9+lRpjRH7MpyRHV1JSYqnfIUqqKmpM2fOnHzjHDt2jMOHFYanMZEFR8RXTh/MkG/syMnOVIjlUuZoaud3eg8JvAdARGgQE/vVYVwPL3Ys+Y17107ny9XKycliyoB6/P59HUIC73Dn7HYuHN78UaagGjoGqP3ra2ZgZIqh8Ss/MBNzayQa2iS+5ukl8P+BYNNQgnmXTcPdq6c4uXMR/cYvxcSs4LpqAu+mKEsT+9dO5/huhUt0fHw8+/btIzY2li5dumBnZ8fJkye5ceMGmpqapKamIpFI+O233z5qTrt370ZfX59u3bqRnJxMo0aNOHXqFCKRKJ9hYikzC4V4KO9B+wFTMLMq3l1o/xVP7l5mwfhuAEycOFG548/e3p46depw5MiRfKVj3saGDRuUS7a9e/dWyd26cuUK58+fx87Oji5durBgwQJGj1a4kC86EKhiJ1HSeHznEutnDyMpMR4jY2MCHjxAT08PfX3Vzxk1NXVqNGjLxVN70NXVxcPDA4lEQv369dmzZw+PHz9m9OxdbPvnFyLDQ1T62ji6kZ2ZTnJCLHK5DAMjM6L/FWJa2jpkZhSc5F6vXj0qV67MypWrSE9XRLLqtexKpTptcPHyJjU5njkjW5OVmUGngZN5dPs8V30PIJVKady2Fx0HTvtPlhoFm4aSj5CD9X9IXr0sexcvKtVuQVYRw+kFkZoYQ1ZmBqUsv84HcnFQlA/jPFNHJydnlixZgre3N3379lX2bdq0KU2bNiUrK4uZM2cWOcLytjnllZ2JjY3Fz8+PBg0aKIXV3r176dixI8uWLSMjI4OrV69iZGTEnr17+fPHJgz4dQkeNZp+1Bw+B06etfj+l4WsnTOC7du3s3nzZmrUqIFMJsPHx6fQ5dTCqFOnDjExMaSnp+frW7NmTapXr87cuXO5cOECCxYswNHZk9Fz939QPbvMjLRi9a76lDhXrE3tFj24e+kwSQlxVK1ajZs3b3Dr1i3q1atHenoGaurq2Di4Ur99fy6e2kNaWhpXrihyqS5evKgcq3TZgq0W7J086f7TLDbM/YkrvgfJzHgV5crMSKdW4/ZcPr1fpc/KlSv54YcfAJg9ezYLFizgypUr+Poe5/zRHZQys6BD/9+ZvPoCYrEEkUhEec/aZGZkctPvCKcPbiYlKYn2/ScUqVajgMDbECJYJZiCIlihQfe4emIrrXqPI/D2ORLiY6nRpBM6uobvGC0/crmcpPiXPL59kRqNOxX39EsMcrmcId/Y4eHhQZcuXdDV1WXUqFEqbTIzM9m2bRsxMTHk5uZSvXp1ZcmY/5Lk5GRat27DhQvncfaohrW9K236jPtiS+4Uxt3Lx1j+52C8vb1p3Fhh/WBiYkL//v3R0cm/xFQY2dnZzJw5k2bNmhVaZic1NZW+ffuyZ88e2vYZTctuI957viFP7nD7zHbqth/yya0cihO5XE7g/Wus+ON7NNTVWLVqFUOHDsOpUl16jpyn0jYuKhyxRIJIJGbu6HaYly6Llq4BAyeu4tnDG8z5uWO+8f/e+xCZNJcLRzaTlZ1JQlQ4jb8dRIC/L541m3NwwyxuXnyVn6WtrY23tzcrVqzA3t6egwcPoq2tTePGjTl27Bi//q+9+w6Iuv4fOP68ybH3ElAQcbFcOXIvnJlaWZq5ta+WOdJMK+tbaVlWWpbfyjRNK/2Ze++Re6MgooIMZe91HDd+f1yeEuBEWe/HP3qf+f6cHrzuPV6vmTMJDQ2l6bPdGfzGZ2RnpnLxxG5OHthIQqyxhqNCYUaLDr0YMOZDrG0f74vOvYgerOpP9GDVMB4+jfANao+FlS0+/m2oK5GgUj3aL8/UW1EY9HoRXN2HRCJBKpORmJhI//79cXcv+c34dkb30sriPE02Njbs3buHzz77jP/7v7Uc2LISGwdXegx68GG1yiCoTU8aBD7D4cOHsbe3p0ePHlhaWrJnz55iGd7vRy6XY2Zmds8ahlZWVpw+fQYAg073SO318G5AQt2m2DuVfwHoJ0kikZCeGEP77v0JO3/SlCdMc/ogP386hmYdnqdZ+74k3YzCwtKGvPR48gt1fLr8eLHraArvTDK3sXMgOzMdgNgrZ/ALbk/IS8XrJnrUaYBer+fS6f3I5Qq02iJadRmIhaUVuzevoG7dusXSaEilUnr37k2vXr2wt7fn3NHdhJ/9m0J1QYlnGv/hUhbNfo1jezfw+arT2No7l9v7JdQsYpJ7DSOTyWnWrrcx+aKDCzb2zo80nAHg6OaNyvrhhlxqqtad+pGSksLMWbNwdHQstk+tVhMaGlosx1VFUigUzJ49m4sXQ2ndujUXj+2s6CY9kuB2zwHGnFXPPPMMgYGBXL16ldjYWADOnTvHxo0bixWO/jepVIpCoeDcuXP3vFfhPwGCX1C7R2qrQqmiTfdBj/xZBMjJSmP5V1Mfa7L2o2jZ9UW6vfw2b3+1AXdPXwAy01M4e3Q3Sz5/k/eHteS/47ow49UWzH93KPOnvcCi94ew47fPyM02LhJoEPwsL4wxpnp46T8fM2LaAoZN+ZLcnCwMBgPqgjzyc7NQ56SRlZ6MuiCPn+eMw6dhExT/1CdMSbjBoPGf0POViQCMHDkStVptSp8SFxdHWloa165dw8LCgkJ1AXZ3Fad+ttsLfPHHWRo1a4e1rfEz+u6rLfhySj+yMlIoz8EejboA/SMG40LVIXqwarCC/JzHqlEolcmwsXMqxxZVX6+9vQAf/5as+nYm69evZ8CAAaZ9Z86cQSaTUa9evQpsYekaNGjAlS3byu16RUWFFGSlIFVYYPUEh18AOvZ5jWM7VpGcnMIzzzwDGIOtdevW4evrS2hoKHZ2dnzzzTe8+uqrZSYfHTVqFIsXLzalfSjNhAkTmD17NlfOH8QvsPT8WE9aWmIcF45tp2PfYXg3aPLU7iuVSk3/loPf+oyv3yleADk9LRkAa2trcnJyAAg7ewR1QR4yCwcuHt9FZnoKLTo8R23fxqQn3yQy9ChZqYlIZTJ+W/guBXk5OLt64Nu4OR61fTl3Yj9REefxb96BNz9ezo4/v2XoP0OS10ON87tWrVqFRqOhX79+eHl5mXJueXl5YW9vT35+Pq27vcDzI94lNyudoqJCU2A1+8e9zJvUl+SEWKKuXODdV1sAMHTSPJq27YWF1cNPqbjNYDBw+cIRdHeVchKqJzEHqxq71yrCQnU+OWm3yMzKxN3LD0vrR/+B8agizuzlVswVnu01vMpM7n0cer2ehe++RHriDW7duoVCYZz4rtVq+fLLLxk8eDDe3t4V28i7GAwGmjVrhlqnYNK8teVyTZ22iKM7/yD42V7YPIWhl3mTn+NGZCh5eXmmuVc7d+6kqKgIHx8f/P39Wb58Of7+/rRo0aLE+WvWrOHq1atIpVKUSiW9evWicePGJY777rvveOuttxg29SvadKu4IfP83KzH+uVfXnKz0om6fIak+GsUFRZw8cQuYqMi0esfvddGaabi+demIJVK2bjiGyQyKfNWnUHxT3oEMH7GprzQqNiQo5WVVbFeygaBz3Dl4ilUKhVqtZrWnftz/sQeWrUPIeFmLP7PdCXkpQnk52bz7tAWxkz0Egnc9avycRItZ6YlsXXVAho3ac1Pn78l5mBVYyLAqsbul6YhLSkec5WK5IRYvBs2e+rt2/3nAo7sWYt7bT9en73sqd+/IsRdD2PuxN789ttvDB061LR93bp1XLx4EV9fX6Kjo/nggw8A4wTqjRs3kpWVxX/+85+nmql69OjRLF26lPEfLiGoCq4oBJg9uj0pCbFoNBpTQPtvK1aswNPTky5dupTYN2fOHGbMmIFcLufChQvs2rWL/Px83N3dGTdunOm4+Ph4vLy8cPPy5cMfy044WxPcvHEFN8+6ppWztxkMBvJzs8jJTOXIzj+JuxpKfMwV8rIzix1naW2Hcy0fbly5Myzr5dOQYdMW4OnTqNj1/p1uBIzDb2p1HhaWtvz1v1mcOrydvLxc6vj6M/WLtcjkct7sV7K3WCZXMGjEW2Tm5NNv+LsA5GZn8NuC6UgMei6c2Gs6dvzsJQS17m5qB1BqW8qi0xaRl53JjKEtRIBVjYk5WDWYo6snKmuHcg2uHmb+R8cB/yGwVQh5OZlPfd5IRfHy9ae+fzNmzHgX3V1zMAYOHMiQIUNwdnZGr9ezcuVKfv/9d7777jtcXV3JyMh4au+RwWCgdu3aLF26lIbBbapscAUwZuZiwLh8vyydOnXi2LFjrFmzhn379pGVlWXap1AokMuNMymCg4OZMmUKEomk2L+HVqvFzMyMgIAAEuOuc+bQFjTqAqIj7j1vqzrSqAuIPLWdqxdPlNgnkUiwtLbDzaseL4x5n8nz1jD/zwss3hbDhz/tI6B5e2xs7WnyTHuy0oxJOS2tbHjv+x3M+n6nKbhKT45nxddvs/qH93h/xLNcCz8NGP/f/v7tOyQnRGNj54RcoeDliV/iXb8JEomE3q9OQakyRyZXsGDdZZq16Yal1Z0vnlbWNjTvPhwbx1rERIYat9nYM372Ev7z4VKGvDmH+oHGoebFH48xzaH69t0X2fl78RWT9yOTK1CoVPc/UKjSxBysGq48e0S0mgKuXjxOo+adH+h4pZmKF8bORlukqbAaYhXh+VHv8+XbA3nvvff4/PPPTdv9/Pzw8/NDp9Nx/vx53NzcmD59OnK5nIsXL3L69Ol7rmYrL8ePHycuLg5XDx/emvvHE7/fk+RZtzEWllbExJQ9pOPk5ETt2rWJj4/n8uXLHDlyBE9PYyFhnU5HbGwsnp6eSKVSsrOzMTc3p6CggLlz5yKXy9Hr9SiVSgYOHMilS5ewcXDh3JGtHN/+K35NOtF90EQUSmMdumthp7h64W96vDKpSv6f1+uKkEiNqRZKo1SZ06h1X1xq+TzUdd08fXnjk5UAJMZfx6X2dpQqCzo+N7JEz9Bv30wj4sIx0+uvpr1Aw6CWRISeBEBlZYenz51h3LCzhwHYv+5HgloZU5+YqSwY+8EvAGSlJxF6ch9BLbuy+bcvObjlN+QKJd9tvFrsvuGn9yGniIGjZ2LQ600LElqHDObv7SsJatOTWnUD7vmc2iINUpm8Sv7bCw9PBFg1SMqtKGQKFQ7OtYw5rNKSsHFwKbcPu1SmxKfRMw99XnXOeF2auo2a06rTcyxcuJBJkyaVSNvQu3dvrK2tCQsLM/WeDB06lN9++40DBw4QFBRESEiIaV95mjFjBl988QV2Dk58sHj3Qw17VEa/fTWJ/LxcevXqVeYxOTk5ODo6kpKSQtu2bQkMDCQ8PJyrV6+i0WhYtmyZKYt7REQERUVFgDGlxu0s/kqlkkOHDvHxxx+TFH+dBsHPsm7JHK5e+YFbMVcY897P3LxxhR8+HEFBfi7W9i606/Xq03obyo02Px2JXIXCvOx5Xm5ej7dYw83TF7dBb6LT5JX6/88vsE2xAKtXr15cjrhTVzM/O93097tX6kVcPEluVnqJxRW2Dq6072ksa/TSuA+p4xdEwDNdS9y3/6j3OXNoI536jSxWuLlV1xdx86qPpd395xTeuHwKva6I+k073fdYoeoTYXQNkBR7DY1GjVady82oMABO7V/PR2M7sGDa80ReOFouS5ClMlmVS0hZUQaO+wi1Wl1m3qusrCzc3O7U1nN2dmbq1KlMmDCB5ORkvvrqq3sOez2qL774AoA3P1lVYg5NVXMrJpLj+zcxZ84cOncuu1f1xIkTXLt2jYYNG9KiRQtcXV3p3Lkz48aNo3379sZVcv8UKD569CheXl7Y2dmxZ88eVCoVSqXxC8LtSfRyhRJn9zrMXXmKd75ej38L49yuHz8eTUG+cbL1sZ2/P8lHf2KU1q73DK7Kk0xpibogj4/GdWF87zp8M30AKQmxbF75NWCsUGAwGNi2bRvRUVF4eBjLfd39hTHpZhQAkyYZk7/+teQTtEUayiKTK2jTfRDWdo4l9rl61qX3kCnFgqvbVBbWxIcf4eaNexdQ96wXjKdf0/s8uVBdiACrBrga+jc3wk/jXjfIVP4k+NmeNAhuS6FGw7Iv30JbJJYMP002dk64e3qzfv16rl69WmJ/XFwctrYlf5HZ2NgwYsQIZsyYQXJyMmq1usQxj8PCwgIbOwc8fMouXF1VXD5zAJlMViJr/r9JJBIaNmxI7969sbOzK7avS5cuzJgxg507d/LFF18gkUiIi4ujsLCQsLAw09J/gPr1jSVfLhw1ZhaXyeTU9gumTY/BrP3pv6QkxmFubs7LL7/MjeuX0WmLyveBqxnjisDGJMVfByAy7CyzRxtzxXXp0qVYPrnw8HBu3rwJUGoA1L17d1zd3Di+dx0/fjyyXNuZnZHCR+M6sXThBxza/Os9j1VZWFWKVZ7C0yECrBqgbZ/h+AW3LbbNTGXB+I+WMXPRTuasOFlsqfPjKK0nLDc7g29nvcLmFfNIT7nJjj8XUpCfUy73q8rGf7QCM3MrAgICmD59OmlpaaZ92dnZpaYDuJterycuLq5cg6wOHTrg7OZZbtd7FIUFeZw5uP6xJ/Wf3LeWgIAAzM3N73tsWT24169fZ9GiRURFRdGlSxfefvttpk6dik6nw9zc3JTXCeDHH38EoEXH5wEo0qjZvGIe43vXYe+GpQCcPn2a1atXo9fpyExLeqznq84yUhN4b/id+YaxsbGm2poA06dPL3a8m5ubKcC9eHIf6cm3uBkdQW6m8TPl7OzM9WvXmDJlCpfO/I2mlAzuj0qpMvZc5uflcurgxgc6JzMtiQ1L55ZbG4TKSQRYNUD46f33nEtTXnOwkm5Gs3PlXMLOHCIq4qzpl1ZqQgxyKdg61mLeW31o32MQhhqyavBenGvV4b0fdtO2x8ssXLgQd3d3Zs+ejVarRSaTcfLkyXue36lTJzZv3sy8efPKbYXhzZu3sLJ5sglA7yczLQkJksee/5WZloyPj0+xwsKlqVWrFpcvX0ar1RbbfuHCBVauXEn37t3p2LEjp0+fZu7cucTFxaHT6UhLS8PHx4fjx4/Tv39/3nnnHXwaBNGsfR8Azh7eyrY/f8DZ2Zlhw4aRnZ1N7dp3iqI7ulZsIFtZJcZdY9aw1qYA9L333sPLy4vVq1djMBgwGAz07Nmz2DkODg5cvHiR5s2bk5WRzOzR7fjsrd7sWrsYpVJJUFAQlpaWpiDt2O7V5dZelbkl7XsN+eeVhLycrDKPzcvJZP0vnzLztZYc2lY1h4mFByfyYFVjt/NgNW8bQt9h7+Dm5QcYs2ljMJRbr9VtOp2OY7v+ICH2KrnJV7HzCGDAqFmAsYegqKiQjORbuHrWZf60gTi7uPHatEVIpVJir10kNTGOJm16PFa5kKoqJyuNLSu+4ND2P+nbty9NmjThnXfewdr6/pn2f/nlFxQKBcOGDXusNqSmpuLs7EyfV96g77CKrYlYHt7q70ef3r3p06cPmZmZxfZptVpcXV2xtLREo9EQFRVl+kKgUqnw8/Pj6tWrjBs3Dnv7O+Wg1q5di729PQ0aNCAqKoqdO3cyd+5c7B2dadfrVXoMetM0d23Re4MpzEkmMjLSFCz+/ffftG/fnl4vv0G/4VX/PX4Sfvt6Kkf3/AXARx99xOzZsx8q2I6Li2PUqFHs2bMHgIkTJ/Ltt98Cxp9DDg4OWNo68v7i8s1X9u17r3L53N/MWrQdr7ql9z7vXruYdUs/L7ZN5MGqvsQqwhogOzMNg+HOD6iCrGT+3vV/9B4yFQC9TkPYyb0Etil7pdWDkMlktOs1lLycTI7sWIl/izsrcSQSCUqlCldPYzkSWwcX3NzcTb1neZnJRJ/fR3ZGCp2eG/5Y7aiKrG0dGTxxHm5e9Vnz08c4OTlx5MiREt/U76bVasnLy2PgwIF8//33j92G1atXI5FIaNXt5ce+VmXg27AJhw4dYsmSJSXqP+bm5hIdHc2hQ4dITU3FycmJ/Px8/Pz8CA0NpaioiBEjRhQLruDOikN3d3fGjh3Ljh076DZgFANGvV/ii4GtgwvRidHFth05cgSZTEb3l8Y/mYeu4vJysji+bz0NGjRk//59pRZGvx8vLy92797NyZMniYmJKVaWSiKR4OnpyaVLlwg9sYfAll0fOHi7fPYQcrkCv6A2pe5/5Y05LHj3Zdb97z3emreu9BWQQW2QyxUYDAYCW3bh/LFdD/18QtUhAqwaoGnbntg73/lBpTXI6PjcKNPr+Khw8nLL7tZ+WJbWdoS89OY9j7mdAPK2Ri264hvY1pQvqKbq9Pwotqz8CisrK06ePFlqgJWUlMSKFSsAYyLMf684fFTbtm1HpTLHuVadx75WZTDinUV8OKYjs2bNMs2Pus3KyorAwECio6Px8/MjJCTEtM/T05ODBw9SWEqtOJ1Oh1KpxMLCAo1GQ606fgwcU3oPS72gthzdu8GU5R1g2bJfCWjWrswaoDlZaWxb+SVdX3wDJ1evx3n8KkGnLSInK53ju1dz5dwh4m9cwdzcnL179zxScHW3li1b0rJlybqQq1evpmvXbiz+72g8vP0IeWE8Lbu+cN/rpd26yq24KFOAdT3sJLHXLtK+92vcirmCh08jGjZpR0pcOFERZ/BtVLL0knf9JgwY+Q7Hdq/h5fGfiACrmhNzsGqAOvWCUZlbYjAYWP39TGKvXsDS2s60v7ZfE1p3f+W+18nPzaKwoHwmp0skxjk2BoOB/300nOSb0SjNVFU+79LjkkgkqCwsTRPXS5tbtXHjRjp16sT06dOZPHkyXl5eDzSR+17Wr1/P9u3b6D140mNdpzKxdXCly/MjWLZsGYmJiQ98XosWLQgJCWHZsmUlFhBkZmbi4eGBRqPByc2LDxbvKfX/rMFg4OyhTdjb25uC36ioKK5ciaB554Eljo++fJZVX0/k+J6/iLtyhogzBx/yaauWpJs32PLrx7w9KICZr7Vk88pvMJdrGTF8GKGhoaaUC09C48aNuXXrJnPnzuXmjav8308fP9B5bfuM4qX/fGp6fXjrCtb8+DETn/dj4cxXePM5Xzr0eY26Ac+Sk55c5nW6DBjHez/swcyi+tdfrelEgFUD2DjVAow/9A9s/Z39639+pOsUafKJDD12/wMfgraokFcnfYGto2u5XrcqUyqNRWgdHBwIDw9n165d7Nu3j4iICLZt20ZKSgrBwcGm4319fcnJySEsLKzERO0HkZGRwcSJE3H38qHzgDHl+SgVrsuA1zFTmTN8xIgSKwWTkpKIjo4u9bzAwED8/f1ZuHAh27ZtIysriz179qBQKPD29mbIkCGkJsYVKyp8t/AzB7h05jCffPKJqQbin3/+iUwuJ7BltxLHqwtyiIo4j7mFBUOnL6ZtFUxC+qA2/PIpH43tyNY1v/DCwIEsWbKElJQUzp49y3fffUfdunWfeBskEgkzZ87k9ddfJzcnk6/fGURhQd59z7k7mH75jbmmjPb5ebmoVOb8+f27DBj9AU3a9jYdV1RUyK3oMJJv3XgizyJUXiLAqgEsbewA42rBRZuu8canj7Z6xdbBncBWIfc/8CEolCqs7V0x+2epc02Xl5NJcmI8AQEBBAUFsWHDBs6fP09iYiKrV6821cm7OzDw9fVFqVSye/fuB56LdezYMdMvDAcHBxISEuny/Bhksuo1a8DKxp6er7zFrp07CQ8PL7bvxIkTSKXSUoeRABo1aoRWqyUiIoKlS5dy/Phxxo83zp0KDAwEKFaQ+G6pibFIJJJiqQWWL19BYPMOpSbjbdSsI+9+v4d2vYbi5lWvWvfk7vzL+AVv//79rFq1itGjR+PgUDErV+fMmQPA1UsnWPPjhw91rrmlDQvXX6bzc68B0CC4Jf1GzCpxnEJhhq2jBw7OtR6/wUKVIgKsGkYmV6A0q5pFRnXaomKlL6qjqPAz6PV6vL29adWqFQqFgl69ejFkyBAmT57M4MGDGTlyJBs2bODPP/8kPj4eT09Pxo4dy+TJk8nLy2PVqlVlpm24ePEirdu04dlnnzVtq+PbmLGzvq+2vSa1/Yy9ff8e7pNIJDRo0KBEclEwBl9btmxhzJgxTJ06lSlTpmBmZma6xu2cS9IyAtKg1iGmLOMAiYmJXL0aif89CmeXliCzuslITQDg008/pVOnThXbGMDR0ZHIyEgAzhzaTPTlsw91vkKpYtD4T/luw1W6DnyDhv/KN3ibpY1djSsJJohJ7kIVodfrCT+5CzefAJzdq8ck7NLcnpcREBDAwoUL8fLywt/fH8CU2b1WrVpMmjSJI0eO8Mcff2Bvb0+vXr3w8PAgJCSE7du3o1arTaVbAPLz8xk4cCA7d+7Exd2TFu170XPwFDy8Gzz9h3zKHF2M83nOnj1L8+bNTdvVajXp6ca6dXq93vSeHT16lEOHDjFy5EhcXe8MXdetW5cdO3Zw8OBBli9fDoCLR+lFjW3snTG3sOSXX37B0dGR7777DplMTpNnH2+lblWXGGOsWlBWr2FF8PPzY9euXQwZ8ioLZr2CprCQH7beeKheRLlSiV9gqyfYSqEqEgGWUCVIpVIatuha7rm7KpucjBTA2LtSVFTEkCFDSj1OpVLRtWtXOnfuzI4dO/j999+ZPn06LVq0YOvWrRw5coTu3e/0lrz11lvs3LkTgFnf765RQ7IOLh44ubhx5MgRxo4da9oul8u5ceMGubm5rF27loSEBCwtLcnNzeXNN98slpsoNTWViIgI3n//fQDahrxAlwHjsbFzKvWeMpmcl8Z+wB8/zOa5557D1s6B/iOmY2VjX+rxNcX6ZcYhuZCQkHKpf1peunfvzrlzZ6lTx/jlzaDXI6mB+fiE8iUCLKHKKK/gSqfTknQjHKmZJW6evuVyzfKSlhSHTCbDx8cHnU6HXq+/Z6Z9qVTK5cuX6dy5M3q9np07d2JlZUV4eHixAMvMzDj89N8lh2pUcHWbe20/Dhw4UGybXG788ffzzz8jlUqZMWMGCQkJWFtbl0j8uGnTJtOwq1/jpgyd/PV979mmx2CC2/YmISYSn0bNy61iQlXm4lGXuKh7F0SuKJ6enrRo0YJLYeFQjefACU+P+MQLNY5Oq2XNjx9TVMYKsIoUcfYADRs1YuvWrTg7Oz/QOVKplP379/P5559z8uRJ1Go1rVoVH67w9TUGktERZ8q9zVXBM51fICYmhl9//ZXY2FjTdn9/f3r06MHEiRORSqV4eHiUmlW7S5cuyGQyZDIZwQ8xzGdhZYuv/zMiuPrH6Hd/wNrWHk/PylkmyNHRkfy8XK6F3btMlSA8CPGpF2ocpZmKyV+sxcvXv6KbUkx2ZipXw87SIySEa9euMXr06Af6xTxlyhSmT5+Op6cnVlZWTJkyhdat7xTKTUtL45sFC1CaqQhuXb6rQKuK5h2fJ6B5e0aPHs3HH3/M8uXLCQ0Nxdvbm8aNG5f6Ph89epT58+dz6dIlXFxcOHToEHq9nsDWPSrgCaoHiUTCi2M+ID4+ni1btlR0c0qYOXMmwCN9+dKqc9Cqs8u7SUIVJgIsQagkCgvy0GqLMBgM1K5dG6XywVcdrVixgtTUVKZMmVJscvvMmTNxcnIiIz2DqfPWlJoioCaQSqX858Nl1PKqy8WLF/H392fIkCG0aFEy2zZAREQEBw8exM/Pj927d/PGG2+wb99+Rk5fgEst76fb+GqmRecBuNbyYsmSJRXdlBKuXLkC8EhfvqQKFVKZWCko3CECLEGoJK5dOgEY50s96PAgwLVr17hx4waFhYXFUjSEhoby+efGwrId+42kTv3ge12m2pPJFXTsN4pTp05hMBjw8Sl9BSCAt7c3EomEqKgonJ2dWb58OX2HTuGZTv2fXoOrKalUiqd3Q86fP19mOpGyGAwGMjIyiI2NLTbUW162bdtGLS8fbOwf/PN3m1SmQKqo3otwhIcjAixBqCQsbYwFiTUaDZ07d37g8w4dOoSfnx9Dhw6loKCA+fPnExERUSzbe3UqgfM42nQfhEdtX15+5d6loVQqFe+++y62trYMHz6chkGt6Dbw9afUyuqv04DXiYmJYe3atfc8zmAwsH//fr799lumTp2Kl1dtHBwcqFOnDnXq1CEwMIiJEycSFRVlOketVj/SCsXCwkKOHD2Kh0+jhz5XEEojVhEKwlOk02kp0hSiMi9Zh0z2z7JwrVbL5cuXTdnC7309HaNHj6Zjx44MHjyYcePGERcXx/z5803HfPNXODK5ovweogqTyRVYWNsReek0Op3O9J7/W3Z2NlOnTuWXX36hVed+vDb1G6Ri2X65qVXHmKg1Obnsmn0HDhxg3OuvczUyEolEgqWlNQ2CW9Nj6AzMLaxJTbjB+b+3sGjRIhYtWkRCQgJWVlZYW1vz/PPPs2HDhgduj06nw9PTk9TUVEbMGPe4jycIgAiwBOGpunRiJ1p1Ps27vFRi35XzhwFo27Ytp0+ffqAAa8eOHQAcPHiQ3NxcrKysKCwsZMmSJTi71uK9xXtrZFqGe5FIjIHSV199Rbt27bh06RKbNm1Co9Gg1+s5duwYBQUFyOUKXhg9k64DX6/WpWsqwm9fTwagXr16ANy6dYuZM2dy4uRJcnJykEokxMfH4+ZRh/GzfyawVfdS/w069RvJxRO7+eG/Y/D19cXR0ZiXbOPGjQ/VnlGjRpGamsqAUe/i07Dp4z3cXVISYlCaqbB1ELVWayIRYAnCU+TTuBUyacmPncFgIOz0Pjp27EhmZqYprcJ9r3fXPCJra2scHB3Jyc7G0tqWad9sFsFVKbq9+B+uXDzBjBkzTNvcPetgaWVHbk4GtX398Qtux7Mhr2Dn5FaBLa2+LG2MtQcnTnwLP7967Nu3D61OR9M23XCva09eTgY+/m3o/eq0+/4bBLbqTuNm7Qk/e5j8/DvzspYsWcKYMfcvXq7T6VixYgUWltaEvDj+8R7sX2aP7gBAy079GPnOd+V6baHykxgqUzpdoVxlZ2dja2vL12svYW5hXdHNEe7hzKHNLPn8TdauXcvly5dNGcMfxIoVKxg+fDgAnfq8ipm5JZ37j8XWweVJNbfK0xSqObF3LXaObvg0bIaVbcUUG67JIs4d4sDGX8jJTMGnYXO6D3rzkXt68nKy+OHD4URFFC++nZqaiqOj4z3P/emnn3j99dcZP/tngso5jcnbgwLJzzWmbmjerhejZy429cQV5Ocw9cUAsrKySs29JlR9IsCqxkSAVTUU5GUz940eWFupWLhgATdu3GDixIkPfL5er8fFxYX09HQWbbou5goJNZK2SMOK+W9x6vB2Alt25eLJvcyaNYs5c+bc87yu3boRFXOLGd/uKPc26XU63niurul1wDOdGTvrfxRp1EhlMhFgVXNiFaEgVLDQE3tJTb7FhPHjSUlJoU2bNg98rl6v5+DBg6jVaur7NxfBlVBjyRVKRs38H4u3xTDho6V41qnHou+/Z/LkyWzatImrV68ikUiwtrYmMTGRAQMG4OLiyr69e3Gv82SKnktlMj5bccL0+tKp/Uwa0IB3BjcjLSn+idxTqDzEHCxBqGC36yEGBQVx48YNYmJiykyAWVRUhLOzM5aWltjb2xMVHU1Bfj4u7p6M/eCXp9lsQajU3vj0d1YtmMrChQtZuHChaXtubi7u7u7IZDI69xuGtZ0LHfoOf2LtOPe3MWP9jBkzOHr0KIcPH0av1z1Sri2hahEBliBUMJWlcfg2LCyM3NxcRo0aVeaxUqmUrKwssrKy8KjXhG5Nu+Mb0Jp6/s8gk4mPsyDcZufoyhufrEJTqCYx7iq/L5yGla0jSgsbzv29Hd+GTTiwZRXfboh8YqtEb0ZHsH/jUsCY3+7ChQsAhLwwBoXS7IncU6g8xE9kQahgf29dDoC9vT0ymQy5vOTHslu3buzdu5f+/fsDMHjCJ3ToO+xpNlMQqiSlmYra9QIJbh3CzrU/IZFIkCsURIadASTk52ZhaW1X7vc9ue8vls2fanr9zTffAPDSuA/o0n8MBfk55X5PoXIRc7AEoYKd+XsbACNHjuTy5culHhMaGgrAhg0bCG7ZiaA2ouCwIDyMHoOnUFioRq0u4E5/lQELK9tyv1dCbCTLv55WYnvrzv3o/Pzocr+fUDmJAEsQKpBWW0RGapLptZtb6Tl/UlJSTH9/7e2F2DmKxIWC8DCkUiledRsDxrmMt5X3Qvq/d/zBx//pjl6vZ8SIEQC07PQc73y9gWHTvhVJa2sQEWDVEBt//ZzxvevwxZT+Fd0U4S4XjmxDIrnzMbS0LFlC527dBo55IsMZglATTP78z2Kvg1p2QSotn1+DcdfDGN+7Dqu+fde07ddffwVgxPTv8GnYVARXNYyYg1VD1AtoDWsWY+soVq5UJuq8HAwGvel1Tk4OSUlJuLoae6jOnj3LyJEjAXj1rc9o13NIhbRTEKoDCytbvloTyrVLJ7F38TD1aD2u8b3rmP4+bdo0Dh48yKlTpwAY+fbXIrCqoUSAVUP4t+jED1tviA96JbNv07Jir6VSqSm4io+Pp0OHDhiQ8my3AbTpVrJ+oVB16fV6dFoNCqWqoptSo1hY2RLUunu5XS8x7rrp719//TUBAQHMnz8fmUzOos3X73GmUN2JIcIaRARXlcuBzcu5FXvtzusDB4oNESYmJpKXl4eLe23q+bdGJldURDOF+4g8s5vTBx+uuLDBYGDz0o+5dGLPE2qV8LTcXZJq6tSphISE4FHHl9k/7q3AVgmVgQiwBKGCNAgunrH90KFDdO7c2fS6RYsWLFu2jBvXwlixcMa/TxcqAYPBQJHO8NA19CQSCd1enkJw296PfX9R7aximVta8+Wf53F2ccfa1p43P17Ou9/uwKWWd0U3TahgYohQECrIxZP7i71OTU0lODjY9Do5OZkPP/wQgHr+pWd2FyqWRCLBv+WjFQi2tH789ABTXwpAnZ+Ln39zJvx3BSoLq8e+pvDwrGzs+fjX4xXdDKGSET1YglBBZP+qGzhmzBhTktHJkyfj6upKbGws732/g7e//KsimihUcur8XACuhp0Rte0qiE5bRE5WWkU3Q6iERIAlCBXEv2WXYq9XrVqFRqPBYDCYaqe1DXkJT59GJc7V6/XsWvs/Niybx7L5U4iPCn8qbRYql7e//D/a9niZ4W9/jYdPw4puTo20asFU3n1V9DALJYkhQkGoIK61fIq9njdvHnK5nLp165q2DRr/aannfvV2f6KuXDC9PrlvHYu3xTyZhgqVVj3/ltTzb1nRzajRmrR/DrfaxuC2UJ1PoTofGzunCm6VUBmIHixBqCASiYR6jYt/850zZw6jR98ppXFo28pSz3X18i32esy735d/A4UqJ/baJTb8/CHx0aWXXBLKX1CrEEIGvQHA3r8Wc3b/mgpukVBZiB4sQahAr3/wM9MHNy1z/18/f4KllQ1BrXsUmxQ9bOo3DJv6zRNp0561/+OvpZ8hkUj48s8L5TIZW3g6dFoNuzeuwDeoXalDy8Kjyc/NQiZXYKayuOdxXQa8TlFR4VNqlVDZiR4sQahAVrYOfPPXvedPrfhmOtNeDmJ87zosmzf+ibcpPeUmYEwBsP23OU/8fkL58WnYjO+3RBPYqvwSaQqwd80C9v61+L7HqSyssLZ1fAotEqoCEWAJQgVTmVuyeFsM81adxsnVo8R+uUKBd/1APLwb0KzD80+8PYPGf8Kizdfp0GsIHvWaP/H7CUJlF9C2H61DBld0M4QqRmIQWeqqrezsbGxtbfl67SXMLawrujnCQ8hITSD89AFSE6Pp0Hck9k7uFd0kQRDKUUF+DlNfDCArKwsbG5uKbo7wBIg5WIJQCdk7udO2Z9X4xpySEIu9kxtyhbKimyIIglBpiCFCQRAeWaE6n3P7/+Dcke0V3RRBEIRKRfRgCUINoylUk54cj6un72MXADdTWfBsn7FYWImVhoIgCHcTPViCUE3o9Xo2/zqX3799h9TEspOOrv3xQ354/xUOblpaLve1snVA+q+yP4IgCDWd6MEShCqoUJ1P7LWLnDu0lf1bllOvUVMmzv2DbWt+xMLSiubte+PkVqfUc7u/NAF7Fy+atOv7lFstCIJQc4gASxCqkLSkONb//BEx1y+TmnTTtD0xPprP3uyJlY0dU+atpVYdvzKv4exeh16vvPk0misIglBjiSFCQagi0pNvsu33BVy+cJzsjLRi+3JzMkm8eYPc7EzOHd5YQS0UBEEQbhM9WIJQyRUVFVKQl8N7I56953G2Ds5M+uxP3Dx973mcIJQHvV7PtUsnsHVwJfLCYTQaDV0HjK3oZglCpSECLEGopPR6PbdirjB3Ym8Men2px0z4cCluteuRkXILz7qNxWq+KkCv03Hh+C7CTu4m5VY0edkZSKQybB1cCGzTi2bt+zy1cis6nRa9TotcYVZsRam2SMOJfetIvXGeuk27U6tOffKyM9m8/HMCWnXH0saBpLjr7Fr7AyBBrlBQqFYTE3EGD98Aank3xtHVEzevekilUvau+x+hR3eQmZ6MTC6nQ5/hNGnXFztH1zLbVlRUiFZTSPSV85ipLKjbqDkSiYS4qHDCTuxCp9Ohzs+mIC8HRzdvNOpcnD18UVlY4167Hta2TljZOjyR96ywIBeVhQ1SqRgEEsomMrlXYyKTe9UVdz2MuRN73/e4RZuvI5OJ70mVmaZQzeFtv5GXk8XhrcvJzckGQC6X06VLF1xcXNDr9fz++++mc0IGjsE38FmkUilObl6ozK3Iy8nEytYea1unx1q1aTAYUBfkEhl6jLU//pf83EyKijRY29ij0xYhkUjIy82mqKjoga5Xq1YtWrVqRUZGBgkJCdy4EUNhoRoAM5U5llbWpKcm07hxY5599lm2b9/OzZvG+YM+9QNxr12P5FsxXAs/C0Bwq87EXrtEVkYa+ru+WNTxbYizuzfnju9BqVSikMtRqcyRSCUkJSaiVCrRaDTF2qZQKjE3t8DRxQN1QR6WNvYMnvgFbp6+j/wenj60iZ2/f4VXvWBem/oN2Zlp2Dq4PPR1RCb36k8EWNWYCLCqri+n9CXqysUS261tHek1eCJtur2EmbnlY+exEh6eTqdFKpWV+t7rtEXEXrvE5bMHiLt6gdTEWOJjrpc4zsbGhlOnTlG/fn3Ttg4dOnD48GEsLCyQy+VkZ2eXen+JRIKZSoWZmTlmKnPy83OZ8NFyfBo2LbPNpw5s4NKJnSTfjCb5Viz5+XkA2Ns7kJubg42NLT16hODh4YFOp8PV1ZWmTZui1WrJz89HoVAgkUiQy+XIZDLS0tKQyWQ0b96cunXrFnsv9Ho9N2/e5NKlS+zfv5+UlBR69uzJoEGDkEgk9O7dm+3bjYlp3d3dsbCw5Pr1a6bzAwIC6dixAw0bNsTCwoLGjRtz/fp1/ve/H0lJTSE4OJgVy5djZmb2z7+Hjvj4eGrXrk1qaiparZbIyEgSEhKIiYkhJSWFixcvsmvXrjvvv60dz3QeSGCr7uh0WnTaIlw9fXGp5U10xDlkcjm16wWW+l4aDAZiIs+TeusGl0/twNqpNv1HvVfme18WEWBVfyLAqsZEgPV0FOWmoLByfqxrFORls2HZZ4Sd3k9hQR71g9uhUJpxYt/6EsdKJFKe6dCbhNhIZi7aJYKsp0RbpOHLKX2JjboCwMxvt+LqWRczlQUAf/30IYe2/YFGU4hCoSAoKAgvLy/atWtHvXr1CA0NJTw8nAULFuDqWvbQGEBRURHR0dGYmZkRExNDRkYGzs7OpKSkcOvWLVJTU8nOzmbbtm2Eh4fTuGlbJs75vdg1CvJzuHL+CCf3/h/nju2hbl1fAgMDCAgIoGHDhjRo0IBnnnnmybxZ96DRaEhPT8fFxcU0xKbX69FoNKhUqid2323btrF+/Xq6d+/O29OmER8XV+IYpdIMjaYQAL9GTfD09UdlYYO1vTO1/YLxrh+MTK4wHZ8Ydw0HZw+UKvOHbo8IsKo/EWBVYyLAejr0Wg1S+cPX4bty4QgLZg5BrlDQvG0vThzYVOpxgwYN4p133uHXX39l0aJFxo0SCS+OmUXXAeMep+mVUmLcNczMLbF3cufc39sAaNrOOFx6ct9f5GenUL9pFzLTkshMjSewZQiawgKSb0ajLsglNeEGQa174OBSiy+nPo+TW238AtuwZeVX5Ofl8uqkeeiKCnGp5U2D4Hac/XsLTu7eWFjaoNfryM5I5syB9fQZNgOFQklk6HFSE6LJyUhh518/l2ivXK5AqzUOp7366qtMmDCBJk2aYGFh8cTeo7S0NFq2bElUVBQA4z/8BalESmToEc4e2gwSyM/NoaAgHxcXV2bMeIcpU6aIYPwfer2etLQ0srKyUCgUJCQksHv3bmQyGQUFBdjb27N+/QauX79OZmYGGo0GnU6HR21f+o2cRX5uFn4BrdAWaVBZWGFuaYPS7OGCQxFgVX8iwKrGRIBVeRXkZfPllL4kxJedcR1AKpWSkZFh+gGs1WpRKIzfoB2dnBn/35V4+DR84u19Eq6EHiUrLZk1iz/Ayc2T+sFt2X1XANPthXHs+esnANr3fIUm7fqwe80ikm5GUZCfi6awEIPBQFk/wiQSSZn7brOzdyIzI7XYNhs7B3KzMzEzU1FQkA+AQqHE2tqaen71+HbhQho1asTGjRtRq9XcunWLv/76i4CAAFauXPlUJj7v3LmTnj17ml7P//M8s0e1JT8/j44dO9KwYUMkEgmjRo2qkF6q6qawsJB169Yxc+ZMYmJK/8za2TvyTOf+1A9uj7WdE3X8Sh9ivE0EWNWfCLCqMRFgPZrV38/iwNZVpe6zc3Bh6pd/4exeG4CM1ATMLW1Mw0QP2kNQqM7nm2kDiImKKHW/XC5Hq9UCMHr0aJYsWWLad/c9vt14FYXi4XvPKkJSfBQuHj5IJBLOHt7Kz59NeOhryOVyfH19cXNzw83NDR8fH5o0aYKdnR3u7u5YWlri4uLCoUOHCAsLo3fv3jRq1MgUbBUUFBAVFcX169dZs2YNcrmczp07Ex0djb29PTExMYSGhpKfn0+zZs1o3bo17du3x8fHp1L1/sTHx9OgQQPy8/NxcvVEpy0kMyONRd99x/jx4ytVW6uTzMxM3nzzTQoKChg6dCiWlpao1WrS09PZuGkTG9bfGdIfNnkebUJeKfNaIsCq/sTyI6FKuXRqP8k3o/Bu0IS6jZobezD0+seuhbdn7Q/Y2NqzadVC0pITyjwuMz2Z2aPbU69xU6ztXDh3dCcAZmYqCgvVeNVtRNueQ9Bri2jUohOOrp4oFGYc272GFd9Mp3nbHrTt9RoW1nZ4N25RZoCl1WqRKxRoi4q4dat4e+zs7MjMzATg6I6VdHxu1GM9+5NgMBjQajUoFMaJyOkpt1j97RQKtQaiIi4UO3bWrFnMmjWLLVu24O/vT+PGjSksLEQikZj+TExM5PTp0/Tu3Rs7O7v73r9Pnz706dOnxHYrKyuCgoIICgpiwIAB5fKsT1thYSG9e/cmP9/Yu5aaFE9wcDC/r1xRrFdLKH92dnasXLnS9PratWskJCQwYcIE08rI2zzq+j/t5gmVjAiwhErldoeqRCLh9MFNpCXfpG2PV7CysefapVN8/+GI+17Dv1k7ioo0RF48Sce+Q7l85gDWds4Mn7aQY7v+xMHFk1bdXjT98geIvXaJm9HhZQZXzs4upKWlIpPJ0Ol03IyOwNIyztTWevV8CQsLIy7qMqsXz0YqlaL76WMArKxsyM01rgg7c2QnZ47svGf75XI5FhaW+NbzpWePHrz//vvF3p/bv1gBMlMT7/t+PG3n/t7CT3PfAOCz305iY+/MuSPbuXzpvOkYb29vFixYQKtWrXBzcwPg5ZdfNu03NzdOGr496dnGxqbYiruaLD8/n9jYWMAYnE6dOhVHx6eTN0swUqvVHDx4sMyAtl7j5mWuQhRqDhFgCU9cfm4WBXnZ2Dt7kJFyk4K8HCysbLkVE0lU2HFys9LQ6bTcjL5MXHQkSjMzFAolOdlZAGz/YyF29o6k3qNn6W5hZ/82/f3gFuO3zeSEeGaP7mDavvX3hXTsPQQbR3f0Oh1O7rWxsLLBwtrelI/ntpEjR7JkyRIkEolpqOn2EMzdASEYl4wXFRWRm5tLaGgo165d4/r166hUKsaOHYurqyunTp1iz549REVF4efnR2pqKh06dCAoKAg3NzcsLS1Lfa5+/fqxefPmYtueHznrgd6Tpyk1Mdb093N/b2fd0k/R3pVTqX379uzdu9c0l0x4OPb29qYeTOHpunTpEpMnT2bv3r3FtvcZMomWnQfg4uFDZOgxavsFVVALhcpEzMGqxipqDpa2SMPONd9z8eRe0pLiyc3OAO4Mo93NxtYWJ0cnpFIpCoWCMWNGk52dTVJSErm5uab5Cebm5lhbW5OZmYmfnx8qlQqtVkteXh4ajQalUomLiwuurq60aNHCFOhotVp27NjBkiVLaNy4MevWrQOMPSRSqZS8PGM+IFtbO2xtbZHL5ej1em7ciC7WTrVabcq7Ux40Gg1paWkYDAasrKywsLBAJjPmVsrLy2PPnj1cuHDBlM/nSmQkN+PjTeeHvDCOXoMnobKwKrc2PShtkYb4qHDio8JJT4rh1o0I0pLiyMpIoyA/z7Si7m6TJk3is88+Q6PRYGsrss0LVVP//v3ZuNFY69PCyobO/UYS0LIr3vWDH/paYg5W9ScCrGrsSQVYJ/asIe56GBj0aAoLUJqZ4+7TGDsHd9Yu+ZjEuJKJFQGef/55xo4di4ODAxs2bMDPz4/Ro0dX6ITc29mq/92bkpeXR0FBATY2Nsjl8nJfGVa3bl2io6NLbFepVBT+szpOpTLHwdkNGztHXD3r4eEbSJ36wXj5BjzV9yz51g0unzlAUlwkt2KucCPyEoWFaiQSCXZ2dvj4+NCgQQNq166Ns7OzaY5U3bp1MTc3x97engYNGjy19grCk6LVatm4cSMvvvgiYKykoNfrWP39+9g718K9Tn1cPOri6dPovtcSAVb1JwKsauxJBFjZmanMGNL8kc5NTEy8b4LF6uT48eO89NJLTJw4kRkzZjzQOQNHzUCpsqSefysMQHTEWfwCWz1WAeecrDQOblpK5Pm/SUu5hbaoCEtrW2wdXOg64HUCWnUr9byb0RH89eMHXLl0GgBXVze8fbzp3q0bvXr1omnTpuXaqycIVUFERATjx4/nwIEDgLG6Qk5WWrFjvt8Sfd8vZSLAqv7EHCyhTJuWf8721YsB8K7XiHoBrWjYvAvte7zEyYNbKFQXmI51dnYmICAAS0tLPDw8UKlUdOnShR49epCQkIBUKq1RwRXAzz//THx8/AMFV1Y29gyf+hXnj2wlMvQYf/4w27QvoGkbxn+86pFWSmalJ/PuUGMepG7dutGzW3vMzMyYP38+CfE3iAg9yQeL91Crjl+x8zSFar6Y2g9NoTGr9eDBg7Gzs6OwsJCUlBQsLCzQaDTIZDLkcvFjRKj+8vLyeOGFF9i5s/gilbuDqy79R9Ou5yuiCLQAiB6sau1xe7DmjO9KfMy1Ets79x3KS+M/Ze1P/2XfxmUAOLvWIjMjlaJ/FVv99NNPee+9h6/TVR1oNBoWLlzIypUrCQ0NLfWYWrX9+OB/ewA4tPU3/vj+/VKPk0qlDJn4GXqdjtzsDDat+NK0b/7qUCyt78xrykhN4PDWFWSm3OTYPuN8kWnTpjFp0iRSUlJITU1lzpw5HDx4EIAGAS2Y/MVfxe6XGH+d/47r8kjPHR0djbe39yOdKwiVjcFg4JdffmHs2LGmbXaOrnTsPQRnTz/kCiUxkRdo3uE5PLwffChc9GBVfyLAqsYeN8BKTYhhx//9QFZaElKpFJWFJQq5kra9XsXM3IqfPh1LevItioo0NGnZCYlUytXwc6ZJ7QDNmzfn9OnT5flYVVJ2djZnz56lc+fOJfY5ubihUChRqwvISEtBIpHg5VMfpZk5qUm3yExPvue1312wmTr1jauWtEUapg0KLLGY4F5ZzV8Z/1+kUhm3blwmMe4qBblZWNs5UZCXTWxUhGme2oPw8PAgPDxc/MIQqo2srKwSudceZAjwfkSAVf2Jvn2hTPs3LuHIjj+LbXvu1Ul8MXUAPvUDSbp5w7T9/MkD+PnVp2lwAOnp6YSFhSGTyfjyyy8RjHmcOnXqVCzIMRgMfPfdd4SHh1NYWIiFhQWBgYEkJCRw9OhRkpKSMOg0ZV7T1aMOA0e9ZwquCvKyiY+OoFGzDiTdvI5MKqVIU4hWW4QECRIJmFvakJ6ayLMhL+PpG8CVM/tZt3Qu2qIi3Nzdqefri2uDOsTH38TL1ZPXBr9A06ZNsbGxwc7ODhsbG7y9vcUQiFBj2NrakpKSwrZt2xg+fDgAb/T1AWDwG3Oo4xeEp29jZDLx61QoTvyPqIG+f38Il84eKbbN1sGZxs3a4+jigV6nQ6E0Q2F+p9fLzsmVASNnYdDrAIiOvIitvTNZGSmmYzp16shPP/30dB6iGpBIJLz11lv3Pa5nz54l5n0AJN2MQa0uYM0P73H57CGSEuIwGAzIZDKcnV2QmSlxdXfBwcEec3NzLCwsuHz5MrFRmexa+yMAdnb2TJk8mQkTJlC7du1yf0ZBqA6cnJwYNmwY8fHxxaY8/PF9yekPQyfNw7mWN9a2jji510YuV4rSRTWUGCKsxm4PEb761jysbR2QK5RYWtuxZeV8ws4cLpd79OjRg9atW9O4cWP69u2LhYVFuVxXKE6n05GTk4NKpaJ///7FAi57BwdCunenW7dutGzZkvr165syoJcmKiqKgoIC3NzccHBwED/8BeEB6XQ6Tpw4gVKpxMLCAldXVyIiIli7di0LFiwo9RyVuTkWltbY2DliZWOPuaUtljb2WFg7sO3PRWKIsBoTAVY1djvAepKSkpJwcXF5ovcQSkpPTyczMxOpVEqdOnVEkCQIFUyv15OVlUVhYSEZGRnExsaSkJBATEwM6enpREVFkZWVRWZWFhnpGWRlZZGTky0CrGpMBFjV2O0AKyEhAYlEQkFBAVlZWSgUCjQaDYWFhRQUFJCXl0dOTg4ZGRlcv34djUZDeno6kZGRZGcbfwCkpaWVOtk5KioKHx+fCng6QRCEquvo0aO0bdtWBFjVmJiDVQNYWFiID7AgCEIlInqdqz+xFEgQBEEQBKGciQBLEARBEAShnIkhwhrgxIkTWFlZVXQzBEEQhH9cvXq1opsgPGEiwKrGlEolbm5uhISEVHRTBEEQhH9xc3NDqVRWdDOEJ0SsIqzm1Go1Gk3Z2cAFQRCEiqFUKu+Zs06o2kSAJQiCIAiCUM7EJHdBEARBEIRyJgIsQRAEQRCEciYCLEEQBEEQhHImAixBEARBEIRyJgIsQRAEQRCEciYCLEEQBEEQhHImAixBEARBEIRy9v/GGeCdfbfjFwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAADICAYAAAA0n5+2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACDXUlEQVR4nO2dd1gU19fHv7v03psiYhd7N2LvvXeNvccSu7HF3hJLNFiiJprE3kHsUbH3CgKKCtKld1h2d877B+/Oj5Wl77Kw3M/zzPOwM7ecO8y9c+bec88REBGBwWAwGAwGg6E0hOoWgMFgMBgMBkPTYAoWg8FgMBgMhpJhChaDwWAwGAyGkmEKFoPBYDAYDIaSYQoWg8FgMBgMhpJhChaDwWAwGAyGkmEKFoPBYDAYDIaSYQoWg8FgMBgMhpLRVrcADNWSkZGBzMxMdYvBYDAYjG/Q1dWFvr6+usVgqAimYGkwGRkZqFKlCiIjI9UtCoPBYDC+wd7eHoGBgUzJ0lCYgqXBZGZmIjIyEiEhITA1NVW3OAwGg8H4f5KSklCpUiVkZmYyBUtDYQpWOcDU1JQpWAwGg8FglCDMyJ3BYDAYDAZDyTAFi8FgMBgMBkPJsCVCBoMBAJBKpRAKhYiMjERkZCRSU1NBRJBIJOA4DhkZGQAALS0tGBsbw8bGBiYmJrC0tGQ2JAwGg/ENTMFiMFRAXFwcMjIyYGNjgzt37mDXrl14/fo1QkJCYG1tjZiYGD5tt27dcP36dbn87du3x507d/jfEyZMgJGREby9vbFs2TJUrlwZNWvWhEAgkMvHcRwyMzOhp6cHIoJYLMbHjx+hp6cHW1tbPHnyBOPHj0d4eLjS2zx48GBUqVIFIpEIbdu2xdChQ5VeB4PBYJQVBERE6haCoRqSkpJgZmaGxMREZuSuRCQSCdLT0yEQCLB8+XLs2rWrWOW1bNkST548kTvXvXt3XLt2Lc98HTp0gJeXl9w5HR0diMXiIskxfvx4ODk5Ye3atVi8eDG+//576OjoQEtLC1paWjh37hwWLVpU4PJWrFiBs2fPolmzZlixYgXu3LmDL1++QCAQwMjICNbW1qhfvz5atmxZJHk1DalUivDwcFy4cAEbN25Ev379sG/fPkRFRWHy5MmoVasWli1bBktLS3WLylACbHwuBxBDY0lMTCQAlJiYqG5RNILr168TAKUe0dHRcnWIxWLy9vam169fF6m87du304YNGwgA1atXj5o3b85fO3DgAM2ePZtatGhB+vr6ZG5uTmFhYcRxHHEcV+D7cOvWLdLW1lbaPfDz81P2vypfMjIyKCQkhGJjY4mIKCIigqKjo0ksFiu1noCAABo9ejS1b9+eDA0NqVWrVtS2bVvS0dGhhg0bUlRUFLm5uZGJiUmu90cgEMj9rlGjBmVkZBRKjps3b5KOjg5NmTKFJBJJnmmXLl3K11WhQgX+WdLX1yd7e3tq0qQJRUREFOe2MIiNz+UBpmBpMKwDFxypVEoikUjuxfXzzz+ToaEhTZ8+na5evZrjxTd8+HCqXr16kRULoVBIz549IwMDAwJAlpaWBcrXunVrWrBgAQUFBRFRlrLg4eFBd+7c4WUvjMKkTAYPHswrAbVr1861Dfb29rRy5Upyd3dXiRwHDhygkSNHkrGxMQGg8ePHU79+/ahTp05kbm5eoPu8ePFiuTKbNWvGX/P19S2QHMOGDVO6Ul6vXj1KS0vLt+7IyEhyc3OjU6dO0a+//koAyM7OLl/l7Pz58wWSo0KFCrR7925KS0uj0NBQkkqlBbonjCzY+Kz5MAVLg2Ed+H8kJyeTl5cX/f3337R161a6fPky/0L48OFDjpdHgwYNqF69eryyMG3atFxfNKtXr6bJkycX6KU0c+ZMsrGxyTddq1at+PqzH97e3mq+kwXj5cuXcnIbGhrSwIEDC6yYFAexWKwURaZt27a8IhwSEsIrS507d6bk5OQCyZKZmUlv3ryhJUuW8OU6OjoSAOrXrx8NGjSImjVrRtu3b6fu3buTiYkJNWvWjFfct2zZQq9fvy7SzNqqVauK/NycPn26SPesTp065OHhke8sGYONz+UBZoOlwZTHNX4iQmpqKlJSUuDn54dPnz5h6tSp0NXVhUgkkkt78eJF9OnTB15eXujYsaNK5XJ0dMTDhw+hr68PW1vbHNcHDBiACxcu5DhvamoKPT09LF68GLNmzSoTu/XCwsLg6OjI/27Tpg3GjRuHyZMnl0j9KSkpMDExKVJee3t7TJs2DevWrUPz5s152zhvb2/Uq1dPmWKqHKlUilu3bsHa2hqNGzcucD4i4jdPJCcn4969e7h8+TKioqKQkpKCgIAAfPz4sUBl+fj4oG7dukWSX9Mpj+NzeYPtImSUeeLj4/HmzRucP38eR44cQVxcXI403ypXZmZm8Pb2Rvfu3XHmzBn+fOXKlREREYHMzExoaWlBKpWic+fOuHnzZo4yW7dujefPn+coWxGhoaFwcnKSO2dvbw8LCwtcuHABQUFBChWspKQkAICRkRH09PSQmZkJHR2dHLsHSwvp6ekYPny43Ln79+8jNDQUEydOhFCoetd7xsbGiIuLw7///guJRIIFCxYoTHfo0CFMmDBB7lxkZCQcHR2RkZEBbW3tUnWfpVIpIiMj8erVK9y8eRNBQUEQi8XYsGEDGjZsmCO9lpYWunbtWqg6jhw5gitXrmDmzJlwdXWFiYkJevXqBWdnZ9StWxcODg74+++/YWRkhI4dO/L3Ojd27tyJunXr8u4+MjIysGzZshJ5DvJDKpVi5syZ6NmzJ/r3769ucRiaiFrnzxgqpTxMQWc3yM3v0NHRIRcXF4W2TrVq1VK6rUxex4wZM+TawXEcHT9+nFxcXBSmt7S0JAMDAxIKhWRgYECVKlWiDh060OzZs+ngwYMkEonU9B+Q58WLFzlkFwgEdP/+fbXJFBwcTDNmzKD69esTANLS0qLw8HAiIoqKiqLr16/TtGnTyN3dnVJTU9UmJ1HWkuLdu3dp06ZNNHr0aNLX18/3Wfrhhx8KVceXL19yNVJ/9+4dzZgxg44cOUJ//fWXwr6iaIPDypUr6dmzZ6Srq5vjmoGBARkaGsqdU/bzwHEc/fzzz3T//n3S1dUlW1tb6tixIw0ZMoRfkv3+++9pzZo1dOvWLXr48CFdvnyZAFDVqlWJiCg1NZWWLVtG//77r1Jly43yMD6Xd9gSoQaj6VPQSUlJOHr0KH744QcYGRkhPT0dHMeVSN3a2tqQSCRFyjtmzBgcPnw41694IsKRI0dw5swZXLp0CVKpFIsWLYK5uTnMzMyQmZmJmJgYBAQE4PTp03w+Nzc3TJs2Ddra6p2YbtKkCV69epXjfHh4OBwcHNQg0f+IjY2FmZkZ0tPTkZCQgEqVKqlVHhlEVOBZHT09PXTv3h1169ZFy5Yt0atXL+jo6BQob1xcHKysrFChQgWEhYXh3bt3ePDgAaZNm1ZgWWvXrg07OzvcuXMH3bp1w/Tp09G/f39efiLCs2fPYGBgABcXFwgEAnh7e2Pjxo388+rq6ooHDx4UuM78ePnyJZo2bQp9fX3eIW5huXr1KsLCwtCgQQM0a9ZMabLlhqaPzwzmB0uj0eQOfPPmTXTp0iXX64aGhpBKpTAyMlK4hCEbiFu3bo3ExEQ4OjpCKpWiQ4cOGDRoEI4ePYr169fLKVJGRkZITU3ly7CwsEB8fHyhZXdzc4OLiwtcXV2LbVMlkUiwYcMGrF69GgDg4OCAsLCwElvaSk1NhUgkwowZM6Cvr4/x48ejU6dOOdK1atUKHh4esLa2LhG58mPjxo24fPky7t+/r25RcP78eYwbNw7JyckKr2/atAmdOnVCjRo1YGFhkeO6WCyGn58f7OzsYGdnByBLyTl37hx0dXXRp08f/nl4+fIlli9fjidPnih8djds2ID27dujevXqMDMzK/LzGRMTg7t37+L27dtwc3PLcf3YsWNITU2Frq4uLCwskJiYiP79+/O2c5mZmThw4AB8fHzQsmVLVKlSBUZGRqhTpw4MDQ1zlOfr64vOnTujefPm+PTpE758+QKxWAyxWAw9PT1e6Ro/fjwGDBiA3bt348aNG3JlvHnzBg0aNChSe4uCJo/PjP9HfZNnDFWjyVPQc+bM4Zefnjx5Qm/evKGNGzeSnp5erkspHTp0oKZNmxIAhbsCdXV16dWrV7ku0+V1NGjQINdrefmM2rp1q1J8L+3atYsvs3bt2pSZmamEu5w3X79+zfe+dOnShRISElQuS2F5//49vXjxQq0ySCQSqlSpksL7ZmZmViD/YN7e3nLLeLNmzaJDhw7JlbVs2TIaOXKkwmdUR0dH7veXL1+K1abAwMBiLZ07OTlRnz598k33LSkpKVS7dm2aPXs2EWW5XVG0XLlz507y8PCgqKgoEolEanUtocnjMyMLpmBpMLIOfOXKFUpPT1d6+fHx8UovsyD88ssv/IB5+/Ztkkgk9PnzZ+rSpYucU0ZTU1OytbXNd7Bu2rQpCQQCqlu3Ll27dq1QLwQLCwtq2bIlAaC///6b/vvvP7nrkyZNIo7j8i2ndu3adObMGXrz5k2RfVhZWVnJldmoUSN6+vSpku/+/0hLS8uzTe/evVNZ3WWd2NhY6t69O3+vatasyf/9/v37fPNzHEcfPnygypUrEwDS09PjPy6MjIwK9Ox269aNxGIxHT16lKpVq0YBAQHFbtfJkyf58r///nvau3cvXbt2jb5+/UpERF27diUANHfuXBKLxZSenk5fvnyhqVOnkrOzM1WvXp33N2ZhYUHx8fH06NGjHG4jUlJSKCYmhlasWEFeXl70+fNnunz5Mrm7u9P+/fvJ2dlZLr1QKMzzXkyfPl0lY2Re+Pj4MAVLw2EKlgYjU7Bkg25xZhI4jqO9e/cSABo5ciRVq1aNL9vc3JymTJlCrVq1or1799KbN2/oxYsXFBkZqVSHl8HBweTv709nz57lXypaWlpySlSLFi1yDJ7Dhg2jv/76izw8PGju3LkUEBBAycnJZGFhQQDIy8uL1q1bR0CWj6PLly/Tjh07qE2bNnkOytWqVaOUlBTq2LFjrmlksxDZnVQCWb6zVq9enWu+n3/+mc6ePVsof0LZX27Zj2XLlintfyAjLi4uXwPswswOnD59mmxtbWnDhg1KlzU/Pn/+TFOmTKHu3buTk5NTjhnHtWvX0vHjx5Xq5d3Pzy/X+zZx4kQKCwvLtb8mJSXxszN2dnb06dMnIiLq0KFDnv8PV1fXHGnUsfmgqIrMpUuXeLl79OhRICUSAF9fUFCQ3PkVK1YoTD9r1iwaOHAgtWvXjpo3b06urq40ePBgWr16NZ05c4YiIyOL1X6JREKtWrXi62MKlubCFCwNRqZgOTs705IlS4q00+zRo0cKB6FvlQrZl/S3h6WlJTk5OVHz5s2pa9eu1KxZMxo4cCBt376dzp07R/v375dbqomKiuJnggYOHJjr16ZM+enVqxe5urrSmDFj6NixY5Sens6H98jvxS+VSikjI4PCw8MpLi4ux6DdrFkzmj17NrVp00ZutuHChQvUsGFD/ve2bdtyrathw4ZysxOyw8zMjNq3b0937tyhzZs307x583It4/HjxwX+f/Xq1UthGdm9vCuDoUOH5vtii4qKKnB5MkecqvLsLiMjI4N27txJQNZuwoK+pLP/365fv17kD4eQkBAKDg4mjuPo7du3Cp3JAv9bVq5fvz4tX76ctm/fTkePHiVvb285J67ZdwN+O3vq5uZGw4YN4xXh7du3ExHR9OnT+TSnT59Wyn0tKVJSUmjDhg1UsWJFcnR0pAcPHtDDhw/Jw8ODPn/+TM+fP6eOHTvS0KFD6eHDh/l6vOc4jp4/f05Dhw7lZwDr1atH3bp1o5EjR9KUKVNo7Nix/Hinr69PK1asoH///Zf27t1LR44cocuXL9PDhw9p9OjRZGxsTJMmTSI7Oztq0aIFDRgwgEaNGkVz5syhmTNn0qZNm8jT05M6derEFKxyADNy12BkRpR9+vTBnj17CrRjioiwZ88e+Pv7IyEhAadPn4ZIJEKvXr3Qpk0bGBkZYc6cOQrzfvnyBS9fvoS1tTX09fXh7++PwMBAZGZmIjg4GMnJybC0tIS/vz+ePXvGByUWCoXo1KkTXrx4ka/RuJOTE0JDQ+V2C8oMY2vVqoXnz5/D2dkZmZmZCA8P58u3s7NDvXr10Lp1azRu3BjR0dHw8PDAq1evEBISAh0dHVhYWCAqKoovV+YHq6C4uLjAwMAAHz58QEpKSoHzAcClS5fg6uqKKVOmoGHDhli5cqXcdY7jCmS4PmDAALi7u+c4P3PmTIXGxoUhPT0denp6EAqFiIyMxKpVq7B//36FaY8fP44RI0YUqz5lkZGRgaZNm8LX1zfPdHXr1sWCBQsQFhaGLl26wMLCAnPmzMH169cVpjc3N0fDhg3RtWtXjBgxAtWqVeOvZWZm4syZM7C0tISRkRGaNWuG+/fvo1u3bgCASpUq4erVq1i9ejW/s+748eNISkpCcnIyNm3ahNjYWL68bzdYZGfv3r2YPn06AgICULNmzRzXW7RoAXd3d9jb2wPI2pjw008/QSQSwc3NDbq6unneF0YWvXr1wpUrV/jfAoEA+b0+O3bsiNjYWEilUgiFQnz+/Jn/P9rY2CA6OpoZuWsy6tXvGKok+xIhAGrevDlt3LgxT9upuXPnyuXp378/bz+hTEQiEUVHR9OTJ09ow4YN1L9/f/5Lu127dnz9AwcOpBs3bsjlDQ4OpnPnztH58+fp8uXLJBaLSSqV0oMHD+jgwYP0448/5rtcUpCjRo0aeV5//PhxjhkIfX193v6jS5cu9OTJE/7a8uXLydnZmSpUqEDfffddjvImTJjAB15WVJ+NjU2+IU84jqNjx47lyCvz+1RUnj59mut9EAqFVLduXZo/f36hZq1Kgo0bNyqUuWrVquTm5kaenp4FXoaVSCS0YsUKatSoEe3atYvWrVtH/fv35+MdAllxIj9//kwPHjzIUee+ffv4pb1vjcvzOk6cOEFERAkJCXTixAmaN2+e3EaMcePGEVGWH6e8ylFFPy5vyIJy37p1iziOo7i4OAoODqa3b99SSEgILVu2jGrUqEHW1tYKZ2PFYjF9/vyZLl68SPPnz2czWBoOU7A0GJmCtXjxYmrevDl17tw5x6A7b948CgkJ4fPExcVRu3btyNXVNUfagwcP5hsotrgo02YrIyNDztYBABkbG1OVKlVytG3NmjXUtWtX6tOnD1lZWZGOjk6uO7yA/xlwcxxHZ86coc+fPytUyGRBdgHQyZMn6eHDh3Tjxg2ytrZWWO6pU6d4+aOjo8nBwUFhunr16uXqFFORTVhh7KEyMjIoOTmZOI6jtLQ02rt3L68QWFlZUd26dWnfvn10+fJl8vPzk3sm0tPTKSgoSOH/0c/Pj75+/VqizjzHjRuX416cPHmySM/ZwoUL+TL+/vtv+vjxI0kkEkpJSaFjx47xdnZaWlrk4eGRp7Kzfv16unDhAv3xxx+0ZMkSWrhwIT179owiIyMpLi6OEhMT6fz58xQdHZ2rPJ8/f6aff/6ZGjZsqPBZPXfuHB04cID/vXr16uLcSgZlLVEqSyFiuwg1H6ZgaTDZZ7DOnTtHd+7cobp16+Y66L98+TLfLdL79+9Xd7OKBMdxcjMVERERfJv69euXb/6EhAQ+/cOHD4koy4bL3NxcbqZB0dZwIGsmMCYmhi/v8uXLtHbtWvrjjz/4NG3btuWVXS8vr3xnNq5evapQVpnBvuxYuXJlge5ReHi43As5+zFo0KB8jZMV5XNyclJ4XtW2VkQ5AxZXq1ZNYRuePXtGs2bNopUrV9KKFStytXnbs2ePwrZUqlRJ4Yyk7HB1daXq1atTu3bt6Pnz50ptY3alT3ZUrVqVLl++zKeJjY2lDx8+qNUlASMnTMHSfJiCpcF8u0QIgCpWrKhwpmX06NFUu3ZtuXMTJ06U+12jRo18jUbLGk+fPi3wjArHcXI7yUQiUa4KRPajQ4cO9PHjRz7f+vXrFabLvryWXQFUdNSuXTtXORX93/PzqbRhwwaF9ZiampKXl1e+Mz5xcXG5ympoaEja2tq0aNEiufOxsbH53fIi862S+ebNG4Xpjh8/zqfJbvSe247B9PT0fHeXTps2jS5evEg//vgjbdu2TWVtJMpS8i9dukSrV68mNzc3OcWKUTrgOC7HjuE//viDpkyZwhQsDYcpWBqM7EX77Nkzevv2LZ07d45q1qwp5yuqfv36tG7dOnr//j2lpKTQ4sWL83x5MIju37/P34/q1asrvE+Ojo45lmQtLS0pPDycKlasmOv9XbVqFUmlUvr8+TPNnDmTj58nO3r16kXBwcH5yhgbGyuXr0KFCrmmDQgI4NPp6upSUlIShYSEFHo7vaJdn/fv36c7d+7QunXrclxXdvzEkJAQmjBhQo7dgZ8/f86RluM4PhYdAGrZsiUfs87e3j5PhVIikeT6/6tQoQIlJycrtV2Msk1KSkqeYypTsDQX9sbUYHKbgg4PD6c5c+bQoEGD5Dp68+bNiSjLz87s2bNzDATfffedOppR6nj+/LnCgbJRo0ZUp06dPAfT3bt388uI1tbWdPbsWZo1axZNmDAhh4KmKP/t27cLLGd29xE9evRQmCa7cgWAwsLCinVvFBl3Z3++Nm7cSDdv3sxVgeE4rtBLWTExMbl63/9WSeQ4LlcXE23atMl1putbIiMj6eDBg9S8eXMCQH/++SdFRUUp1YaQUXrJzMykq1ev0vr16+nRo0f5ppdtXjl8+DBTsMoRTMHSYPJb409OTqbDhw/T0qVLSUdHh/78808ikjcMrlSpEm3evJkePHhQYAN3iURCL1680NiXzbcOC4cMGcJfS05OptDQUFq1ahX17t2bTzN69Ghq2rQpWVpa5mk8n9/x8uXLQsma3ZZr1KhROa6vWbOGv37r1q1i35vsxMbG0uPHj+nq1asF8vovkUh4mzZfX98C1TF48OAc92jbtm107tw5hYra9u3b+XSzZ8/m/YbNmTOnsM1jlAN8fX1p8+bNtGTJEho7dixt2LCBkpKScsyS5raknJCQQEeOHKEZM2Yo3FzDFCzNhilYGkxeClZ4eHiuX+vfDgBHjhwpUNiT8+fP56oY9O/fn+7evVvsNqmbzMxMucE1r+Wg4OBgWr9+PZ0/f56kUim1bt2azMzM+LybN2+mUaNG0Q8//CDnaLRKlSrUqFEjWr58OU2YMIFMTEzIyMiIjIyMiqS0XrhwQe5/YW1tTS4uLnTnzh0aOXIkAaARI0YU57YoBY7jqGrVqqSnpyfnxZzjONq/fz/9+++/OfJ8+5zl55RVttPvyZMnJBKJeG/e8+fP59MkJSXR0aNH6ebNm+Tm5qb0pUxG6UckEtHOnTtJIBCQlpaWnPPib+OdXr16lSIjI+ndu3d07do1evXqFQUFBcnFO61UqRJNmzaNzp07R35+fvTff//RrVu3mIKl4TAFS4PJS8GSeSY/e/Ysfy4lJYUMDAwUKkg6Ojq51pOf/53sh5WVFTVt2pSqVKnC2ygdO3aMLystLa1Uz3zJgirLZvsKw5kzZ2jZsmX8vTh48KDc9ffv38v5ABs0aBCNGjVKzuZn2LBhRZLb19c3z/9LYULyqJLU1FTy8fHhf0ulUvrzzz8JyPJu/i3ftiM1NZU4jqNDhw4p3JBx5MgRufTfhvvJLVj4mjVrVNpuhmqRSqUUGxtLX79+pcjISIqMjKSUlBS6du0abdy4kVavXk2PHz8mjuMoNDSUd0syefJk/iMqvwgR3x4CgYC6detGly5dUigT20Wo+TAFS4PJqwOHhITQypUr5XZycRxHI0aM4Gc5mjVrRjY2NvyA0bp1a7mYelOnTiUixdvzgSyDaT09PVqzZg398MMPZGVlRbVq1eLryH5kjyfYu3fvYsVNVCVLly4lICuOWUGMzbPTt29fOceXbm5uOdJkX340NTWlEydO5LhXNWvWLFYbMjIyqFu3bnx5ub0A1EV4eDh9+fKFzpw5Q/b29rxzx8OHD+dIm/2+hIeH5wjWnZmZyadNTk7md24BWTE0+/btm2uYp+zHwoULS/IWMJREWloabd26NVe/c3kdhoaGfDkpKSm8zWqDBg1yKOQy1xifP3+mnTt30pgxY/J1ussULM2HKVgajLI6cPYB59tB6NsYek5OTnT06NECzYhkZmbS8ePH5QJHZz+ePHlSLLlVgaenJy9fz549C5U3MTGRHj16REKhkIAsh5eK6Nmzp8L7MWDAAP7vJUuWKKM5pQqpVJrry+7p06cK89y7d49P822QZgB05coVPm12D/e6urq80vRtnkuXLpGPjw/dvHmz1HmmZxSc169f88rztGnT6OTJk+Tu7k6HDh2irVu30oEDB2j27Nl0+/Ztat++Pf//HzJkCHXq1Ik8PT3pwoUL1KlTJ9LX1ycDAwM6duwYzZgxQ+55ef/+fZHkYwqW5sMULA2mIB1YIpHQ7du36Zdffsl1aU4sFlN0dDSFh4fTpEmT8vzqmz59epFkvXnzpsLySuPg899//9GqVat4GStUqEAjR46kffv25elTy8fHh7p160Z37tyhgQMHkoGBQa7G3/v27ePLv3//PsXGxpJEIiFLS0v+vL+/v4paqB7yCsdTr169XPO9f/+e7O3t5WZBZYelpSUfIkYWuNzU1JRXsm7duiXntgQo/k5KhnqJjY2l4cOHE5Bl+/Tq1asilfPkyRPe3nL69Om8uw9ZiBugeK9PpmBpPkzB0mAK0oE5jqMBAwbQL7/8Ql++fFGYJjfj9aFDh8q5Fxg/fnyxbHmuXLmS68v1yJEjRS5XFcgMVDt37kwLFy6kVq1akVAoJGdnZ1q6dCkfqyy70pp9F9Hu3buLpCR9698qIiJC2U1TG9HR0QpDNAFZtjD50aJFi1wVNNmsIZAV67J58+YUHR1NXbp04WfIhgwZkueHBqN0I5FI6MSJE1S9enWysLCg3bt3Fzm0F8dxVKNGDapXrx59+PBB7ppsYwQA3q1IUcY9pmBpPkzB0mAK2oE5jqPIyEi5c1FRUbl6rLazsyN/f3/iOI7Wr19PHh4eSotR+OXLl1y3M5dkDLui4OfnR4MHD5azWzM0NKQ6derQmzdveM/4slmooUOHFil8ybNnz+TuS4sWLWjnzp1lWjEIDw/Pc2ZUIBDQ/fv38yxj2LBheZbRsGFDGjlyJK1atYqaNWsmN0vIKNu8efOGrKys+P/nmDFj5K7LNj8UlLCwMAKyQoxlJ/tmkWXLlhER8Qbx69aty3cXa3aYgqX5sJFFgylsBw4ICKAhQ4YQgBzLLR07dqRatWqRk5NTgX0UFZWkpKQcu7tkR0pKikrrVgYcx9HSpUtp27ZttHz5cgJAGzdulJuhO336dLEUoq9fvypUIMqizZCRkVGeipGuri7Z29sT8L+NFTI4jqPnz5/Tnj17FAYzz37ktkPW0tJSTS1nKIvcgmuPHTuWQkJCCAB17969wOWlp6eTnp4e/frrr/y5lStX8uWOHj2aP79gwQL+fO/evQtcB1OwNB+mYGkwuXVgsVjMT2snJiZSSEhIDtuqFi1a0KVLlygiIiJXA2NVkteLsiz505JKpfzyVHbj2OIiEokU3puKFSsqQeqSJbv86enpCtv15MkT/u958+ZRXFwcERHVrFkz1+ekatWqcjHg+vTpQ5cuXSKxWEyPHj2iq1evlhr3FIzik5ycLPf/zz6jJTsK81HTvXt36tGjB0VFRfHOgVu0aEHv3r1T+NykpqZSUlIS/zslJYUaN25MU6dOVThTzRQszYcpWBqMrAP/9NNP1Lx5c9LS0qKGDRvySy6tWrWi7du3048//kht27YlADRlypQCORVVNZ8/f+YHxfbt28vZ0JS1JR3ZQG9jY8MbzQYEBBS73J07d9LNmzdJIpHIuScoC7N8Mr5VFGWzWXZ2dvy5Dh06kFgs5v1hAVnBcmVhiSpVqkQ7duygy5cvk7u7u8KQNWV5+ZRRcDiOo0+fPlFgYCAR5fxQK4xCvXbtWtLR0aG1a9fyM8TXr18vcP6EhAQCQBYWFnT06FEiylpivHz5Mm3evJn3ycYULM2lbL2pGIVCpmDVqFGDtLS0SFdXl2rXrk1Ali+Xn3/+mdLS0kqtbZNIJKJhw4bRmTNn6MuXL3IDZfv27enEiRPqFrFABAcH5xjoC+sdXGYwn11RkEqltGPHjhzLqQ8ePFB2E1SGosDJrVq1olq1asmdq169utxW+uxtZrNQDEWIRKIcfSO7E9u8SE5O5nciAllB1otiL8lxHHl6evLOSu/du5djMwZTsDQXpmBpMDIFKy4ujkQiUZl+EeXlI6ksbKv39vamJk2aEADauXNngfP9888/ZG9vLzeDp62tTWZmZrxNUceOHeXux/fff89vKS8LpKSk0OPHj3nnsj4+PnkuEQNZwavHjx9f6naXMkoP9+/fJyDL9srJyYkMDAxo+fLlBcorW1rW19enLVu2FEm5yovg4GA+hBVTsDQXARERGBpJUlISzMzMkJiYCFNTU3WLU2wuXryIfv36KbwmkUigpaVVwhIpH7FYjMjISLx//x5du3bNNZ2dnR3mzp0LHR0dLFy4UGGat2/fon79+qoSVWVERERgwYIFSEpKgq6uLs6fPy93fciQITh69Ch0dXXVJCGjLHDo0CFMnDgRvXr1wuXLl/nzvr6+cHFxyTVfRkYGpk+fjnv37uHUqVNo2rSpSuTTtPGZkROhugVgMApK3759IZVK0bNnzxzXpkyZogaJlM/s2bPh5OSUq3LVvHlz9O/fH23btsX8+fPllKv58+fLpW3QoIFKZVUVDg4OEAqFuHTpkpxyNXPmTFy4cAGnT59myhUjT0JDQzFv3jxUrFgRUVFRAIAmTZoAAD5+/Jhrvri4OPzyyy+IiYnBgwcPVKZcMcoHbAZLg9HkLyRvb285BaJZs2Z49uyZGiUqPp6enujbty//+/z586hXrx5q1KjBn+vQoQO8vLwAAJ07d8bdu3chFotzLbOszuz5+vqibt26cufUOVQFBgaiatWqqFu3Lt6+fQuBQIC7d+/i2rVr2LRpU4FllEqluHbtGk6dOoWgoCDY29tj4MCBGD58uKqbUG5ISEiAq6srkpKS4OnpiUmTJuHly5ewtrZGWFhYrsr5uHHjIBAIUK9evVxnhZWJJo/PjP9HneuTDNWi6duAkc0mp7Qa6hcERR7sP378yF/PzMzM0x4pLi6OQkND5YzAgcL5/SmtpKWl8e0ZO3ZsofJKpVI6deoUrVu3jqKjo4ssw99//53jnivy3dWkSZM8ZZk2bRqftkKFCryxc40aNYosG0MekUhEgwcPJgMDA/L29iaO4+T+R9l3AYrFYvLz8+NtGLt06UKLFi0qMVk1fXxmMCN3jUbTO7CFhQUB4Ldkl0X8/f35wd/MzIxiYmKIKMvw+9ChQ9S4ceM8lavcQsikp6drjGuC7EpWfhEDEhISKDMzk4goh2+32bNnF7ruH374gYAsFxsVK1bM83+Rnp6eazkyh7NAli8l2W5eAKSlpVVouRg5iYqKIldXV9LR0aHjx48TEdGFCxdIKBSSjo4OjR07llJTU0kkEsm5/JAdhd3ZW1w0fXxmEDEbLEaZxdbWFt9//z2cnZ3VLUqREQqF0NPTw4wZM5CQkAArKyssWbIExsbGmDBhAl69epUjj6GhIdq0aYMlS5agS5cuCsvV19eHQCBQtfhK5cmTJ/jjjz9w6dIlXL9+HQEBAXjx4gXi4uL4NJRtCS44OBjPnj1Deno6wsPD8fPPP8PW1ha2trZYt24dHBwc5Mr//fffcfz4cUgkkgLJIxKJsGfPHgDAvXv3EBISgo0bN+aafvbs2UhNTVV4bcOGDQCy7H8sLCzg7+8PAJg6dSq/5MsoOiEhIWjVqhXevXsHLy8vjBgxAgBgamoKjuMgFotx8uRJVK9eHXp6epg0aRIAoEKFCggMDAQRMbs+hvJRt4bHUB2a/IUUHx9PQOFCU5QFLl++zH9RW1tb0+nTp/mlpJo1a9Lt27f5tGvWrCn0sllppX///vm6Znj27Bmf/vjx46Strc1f09XVJWNjY+rVqxfvpHT37t186CeZJ27Z8eeff+YrU48ePQgAeXl5yZ1/8uQJffr0if8dGxtL27dvJwMDA7K3t6d169bl2Na/YcMGXqbk5GR+OXfWrFllyjFsaeHmzZv8/3LWrFlkbm5ONjY2coGZz549y6e5cOGCnG81ExMTOnbsmBpboNnjMyMLpmBpMJrcgT9+/Mi/sDSF7L6+5syZw5/nOI4CAwM1ZslPEbJ2f/36lUJCQuj9+/f033//0X///UenTp2iJ0+e8GmlUikZGhoSADpw4ADNmjWLli1bRu/evePLkSlfGzZsoOHDh5O+vj61a9dOTsnq06dPrstCsliPenp6/H3/8uUL/fzzz9SvXz/q06cPTZ06lV69esVf//TpE33//fcEgK5cuSJXXkJCApmYmJCLiwtFRERQeHg4NW/enJfl5MmTKrqzmsdvv/0m93+0tbWlWbNmUXh4OJ9GFn/w26NZs2bk4uJCL1++VGMLstDk8ZmRBVOwNBhN7sAy49XWrVurW5Ri06FDB4Uvg/KErM35OcOdNWsWn7Zjx45y17Ibo1+9epXmzp2r8L526dKFt22Teb339fWlP//8k7p3706DBw+mUaNGyeXR1tYmLS0tMjMzo27dupGOjg5/rVq1ajRgwABq164d70z27NmzOWT39vYme3t7atGiBQUGBlJgYKBcHY8fP1beDS2j3Lx5k8aPH0/u7u4Kr0dFRRGQFckhNjY213ISEhL4AOEAaMWKFfTTTz+Vqo8UTR6fGVmUr1G8nKHJHTgjI4MAULt27dQtSpHx8fGhKlWqyL1k27RpQzNmzJBbCixNxMbG5mtoXhQWLlxIOjo6eXrM3rlzJwEgoVBILVu2pCpVqsh5cs+ufC1dupSIiB4/fpzjHmc/fvjhB4qJicl3edLc3JzWrl0rF8w3Ojqadu/eTRMnTqROnTrRoEGDaPDgwXTx4sVc23D69Gk5BTp7HaGhocW9jWWWxMREmjp1qtz9mDt3LjVp0oQ8PT1JKpXSypUrycrKioyNjenhw4f5limLuwqAtm/fXgKtKByaPD4zsmAKlgaj6R14woQJpKenl+furdLKzJkz5V4mFSpUKFVf17kRGhpKp06dopSUFPrvv//o0KFDxXKBQPS/5zSvWTvZ8mn9+vVp3LhxfPqpU6fyabIvHX0bp/LSpUty97tJkyb8MmLPnj3587Jg3LJj3759FBQUVKz2Zadv375yM1yyen7++Wel1VGWkEql1KdPHxIIBHzoJ0VHdnuqgv4/LCwsyNHRkSwtLWno0KEqbknh0fTxmcEULI1G0zvws2fP5AbhsuQL69sXSFmJE/n+/XuKj4+ngwcPkpaWFhkZGdHixYtpy5Yt9P79+yKVGRERwd+H3JRM2fJf7dq1ydXVlfbt2ydnl0VE9O7dO6pevTrVqVOH0tPTKT4+npo1a0aWlpZkYmLC1zFz5kwi+t+M2LdH9riPysbKyooqVKjAG7Zv2rSJANC8efOUXldZQLbkJ1N0ra2tCQB17tyZRCIRf83R0ZFfSr98+TIlJycr3ByQmppKmzZt4v+HsmDPp06dUkPr8kbTx2cGi0Wo0ZQHT8Ft27bF/fv3AWTFENPT01OzRAUjuwuFVatWYfXq1eoTpghIJBIcO3YMrq6uePr0KbZv346RI0diwYIFRSqvb9++8PT0hIODAyIiInDnzh0EBgYiOjoa9+/fh7u7O0xNTfHp0yf4+/vj48eP8PX1RXJyMiwtLXHu3DlYW1vD3Nwcnp6eAIBFixbh119/latnyZIl2LRpEwQCASIjI3O4clCEr68vLl26BIFAgO+//x4mJiY4cOAAkpOTUbNmTQwbNqzA7Zw1axZ2796NihUrYvXq1eA4DtOmTYOLiwt8fX0Ld9M0hG8jGMg4d+4cFixYgMDAQADA999/j5iYGDx9+hQPHjxATEwM2rRpAyLi+1P2ftW3b1/ExsaCiPDw4cOSaUwhKA/jc7lHvfodQ5WUhy8kjuPI1taWANCXL1/ULU6Bye42IC0tTd3iFJuXL1/SjRs3ipz/3LlzNHDgQN5IXHYYGhqSiYkJ9enTh8aMGUPGxsZysxouLi6kp6dHVatWJQDUtm1b/nrz5s3p4MGDNH36dAJALVu2zFFvZmYmWVlZ8XksLCxIIBDkWCqUHSYmJrwbCABkb29fqHZKpVJ68OABderUSa6eRo0aFfneaQLfzkabmZnx/Vnm7LVBgwbk4eFBQJbrjOTkZPr48SMtWbKETp06Rb169eLz//bbb3yEhLVr16q5dYopD+NzeYcpWBpMeenAgYGBZGZmRkZGRsW2Byopsr9MDh06pG5xSg3fhjbB/y/z6Orqkrm5OU2dOpXevHkj93/+dnk1ISGBgKydZkRZ3vJ79eqVq8d/juNo1apVOerV09OjRYsW0fr16+nAgQN069atHHKNGjWqyG1NTU3VCOVaGWT3a5U9TBTR/xSs7Me7d+/o8OHD/BLgt/+37L8L4vNMHZSX8bk8o62MWTAGQ504Oztj9+7d+P7772FjY4P69etj586d6Nixo7pFy4G/vz9cXFz4302aNMGYMWPUKFHpIS4uDjt37gQA7N27F1FRUfD19UVKSgratGmDOXPmwNDQMEe+b4NZ//bbbwCAiIgIAECtWrVw6dKlXOsVCARYtWoVwsLCcPDgQQDA0qVLMW3aNFSuXJlP9/z5c/7vhQsXYvv27TA2Ni5aYwGFbSmvyP5XTk5OqFSpkty1bz3dW1hYoGPHjoiKilJYlkgk4v/u0aMHJkyYoFxhGYyCom4Nj6E6ytMXUmZmJvXu3Zvs7OxIIBAQAPLw8FC3WDxSqVQu/pmjoyOJxeJClVHY9KWJP//8M8+YkZ6enmRoaEja2tq0ZMmSYtX1119/8fd52rRpNH/+fPLw8MixCYLjOLp27RrNmjWLFi9eLOcFPDdSU1MpIyODtm7dStra2hQQEFAsWRn/48GDB/zyXna2bdtGlStXptGjR1O/fv1y3WmI/18i9vf3p5SUFPLy8qJHjx6pqTX5U57G5/IKU7A0mPLWgUUiEZ09e5YGDRpE+vr61KhRI7pw4QKNGjWKvL291Sqbk5MT/xIoyqB/4sQJ2rJliwokKxkaN25MmzdvVngtLi6OzM3NqWPHjhQREaGU+p49e0ajR4+matWq8fZujo6Ocp7b165dS0CWiwyZ49Du3bvTunXr6NGjR3K71K5du0bHjx+n6OhokkqlVKtWLRo9erRSZGVk4enpyfeR7J7wg4KCaMuWLRQUFETOzs45lKomTZrQvXv36NOnT3L/3/T0dKU9T6qgvI3P5RGmYGkw5bkDb9y4MYc9xvr161VSV2ZmJqWlpdH9+/dp//79dOLECbmBPigoiJcht9As+RESEkKvX79WlsgljlQqzdWJ6ObNm0lbWzvPGa7i4u7uTgKBgMzMzKhdu3b0zz//UOfOnalp06bEcRyFhITQkiVL5IzsDQwMqEOHDnIx7ADwRvH37t0rtBwJCQllajNGSfLvv//y97hq1aoK06SkpMg5ji3L97I8j8/lBaFK1h0ZDDXz008/oXHjxnL2GBs2bADHccUq98WLF6hbty66deuGFStWYP78+dDV1YWhoSHatGmDqVOnYsSIEdDT04ODgwNmz56N4OBgAFm2Qbq6ukWq19HREQ0bNiyW7OpEKBRCKFQ83CQkJEAikRTIZUJR6devHx48eIDFixfDwMAAY8eOxc2bN9GkSRMIBAI4Ojpi8+bNeP78OT58+IAXL15g6dKlMDAwgLW1NWbMmIH27dsDADp16oQjR46gTp06hZJh1qxZMDc3R+XKlTFjxgwQ85AjR3YXKzo6Ogrvj5GREfbs2QMAqFOnDpycnEpMPgaj0Khbw2OojvL4hSQSiWjr1q107tw5cnd3z7Gc8MMPPxSp3LS0NJo8eXKe9h8ASFdXl5o2bSp3rn///vwSVHkkMTGRzpw5Q69fv6bExET69ddfqWrVqvTx40e6ffs22dnZUfv27UvUk/3t27fp+PHjlJmZWeA8N27c4JcUAVDfvn0LVee3z0puS6bllbCwMLn4gblFaHj//j1t2LCBPn36VMISKpfyOD6XN8rniF9OkHXg2NhYevv2LcXFxalbJJUjkUjIy8uLfHx8iOM4Gj16dI4X28yZMwv1YpVIJDkUJqlUSgEBAbR9+3bq2rUrAZCLQZeenk4ikYgmTpwol/fOnTuqaHapZv78+WRnZ0fa2tr03XffkZmZGVlaWlL79u1JKBRS27Zt6evXr+oWM1++fQ4A5Bk78Vu2b9/Ob75o06YNmZqa0rFjx8pEiKSSQubPrHv37gqvz5w5k3R1dXOEQiqLMAVL82EKlgaTvQO/fv263A3kHMdRy5YtFc40zZw5s8BBi3/99Vc+X0JCQqFk6N+/PwFZwYKBrFAv/fr1I0dHR/r8+XNRmlXm+O2336hfv35Uu3ZtatasGbVu3ZoMDAyoYcOGtGfPnjK1O/Lp06dyz9G3O97yQhZPEQDt3r2bGjduTACoV69e5ObmRra2tmRhYUHHjx9XYQtKL7IYkwKBQGHffP36NQ0aNIhq165dKFvGyMjIUulvjClYmg9TsDQY1oGzDNAXL14s91J0dHQkANSlS5cCleHl5UUAqG7duoWuPy0tTa7uypUry/0uL8iU+4iICLK2tiYzMzMKDQ1Vs1RFY8CAAVStWjWaNGkSCYXCQnmwDw8P5//3rq6utHfvXv55zH64u7uTv7+/3Mxeeno6SSQSCgwMpD/++EMVTVMb//zzD992RbPLYrGYv17YD8UXL17QzZs3lSWq0mDjs+ZTfkb4cgjrwP8jISGBt4OysbHhB+uhQ4fmm1cWkHbBggVFqjt7UOG5c+eSnZ0dH/JFUfgWTWbjxo2kr69fpu1nvL29SUtLi2bPnk0CgYCsrKwKlX/FihX883D16lVKS0ujMWPG5GrXl93FR/ajuP7CSguvXr3i29SiRQsyMjKi+/fvU0JCAl27do1f7l+zZg15eXkVqY7SGEydjc+aDwv2rMGwYKLyZA8EW7t2bfj7+wMAli1bhg0bNuSa7+TJkxgxYgS+fv0KW1vbQtd7/vx5DB06FAKBAM+fP0ejRo3kro8ZMwa7d++GiYlJocsuSxw5cgRjxoxBr1698vSsXhYYP348/v77b4wdOxb//PMPpk6dir179+a6UzI7IpEI+vr6/G8dHR2IxWL07NkTV69exaBBg9CgQQO4uLjA29sbERERsLGxgYmJCUQiEapUqYIpU6ZALBYDAAIDA+Hs7Ky0thERHj16hO+++65A7SkOb9684ftDrVq18P79ewDAmjVrcPfuXUgkEtSsWRO7du2Su2eaABufywFqVvAYKoR9IckTEBBA48eP57+Wb9y4QXXq1CEAdPr06Vzz7dq1i7S0tApd38uXL3kbLADUsGFD6t69O/Xu3ZsAUOfOnflrR48epeTk5OI0r9Qja2th7dhKI0+ePCEAtHLlStqyZQsBoF27dhU4f3p6OlWoUIH69OlDTZo0oTlz5hDHcXTo0CF+GXnQoEG52gl++fJFbjaradOmFBMTU6w2cRxHUqmUli5dSkBWoO2C2ikWlAcPHpClpSX16NFDbgPKuHHj5GIOPnnyhDw9Peny5ctKrb80wcZnzYcpWBqMsjvwrl27aObMmfTXX3+Rj4+PUspUB1u2bKFRo0ZRamoqJSUlUevWrUlPTy/XF/+AAQPy3DZOlGVrdevWLTpx4gR9+fKF7t27l+uSDwCysLCgmzdv0syZMwkAmZmZkbOzc5GXIUs7R44cIQD0119/qVsUpSCVSqlNmzakpaVFZ8+eJW1tbaXa1MnCKm3YsCFPGbI/U/PmzSMANHLkyELXl5ycrPA57dSpU5Hb4OfnRwMGDKBVq1ZRYGAg7dixI0f5dnZ29OzZMyIimjFjBm8jWZjdmWUVpmBpPkzB0mCU3YGnTp1Kffr04QdHa2trOnPmjFLKVhfe3t68ge3atWsVpunZsycBoFGjRuW4JpFIqF+/fnz8Q9lx8OBBArL8YgFZXsEVvcB0dHT4F4uDgwMNGzasVNqLFBdZewvjHqO0IxaL+f/7pEmTyNraWik7IuPj46l+/foEgF69epVn2rNnzxIAatasWbE2T3Tv3j3HsykQCEhPT6/QbeI4jlq1apXnB8aMGTNyGKtLpVIaOXIk7dy5k54+fVroNpQ1mIKl+TAFS4NRVQf29PSk2rVrk66uLpmamtLRo0eVWn5Js2fPHgJAY8eOVXhdNlPg5OSUY5brxYsXBICWLl3KOzbNbvT88eNHevv2LT/7FRgYSLa2tjleOObm5uTg4EAzZsyglStXkp+fn+oarAZkW/C3bdumblGUyqJFiwgAPXjwgIRCITVr1ozCwsKKVaaZmRkBWe4bCsK1a9eoUqVK1KBBAwJA8+fPL3BdHz584DdcTJo0iWJjY/nZo6NHj/LP58uXLwtcpuzjQigUyrk4mTdvHsXHx+e7C/DJkyc0efLkAtdXVmEKlubDFCwNRtUdWLZ0Zmtrq5LyVUFsbKxcEF/ZOQsLC6pYsSIdO3ZMYb4PHz7wX/WfPn2i4OBgOnDgAP/yiI6O5gPRLlq0SC5vcnIyrV27lg4ePEhERHfu3CEDAwOqWbMmAZCLrSZ72cnsagIDA+np06cUFRXFBxoui8hcXdSrV0/doiiV33//nbS0tCgiIoJu3rxJVlZWNHDgwCKXd+bMGd5eLyQkpFB5ZR8CNjY2BUovEonklPzY2NgcaQo7KyaRSMjGxoY6d+6cw0XJ7Nmz882/du1aGjBgAO3Zs6dA9RWFo0ePUlJSksrKLyhMwdJ8mIKlwai6A3t5edGYMWPI19dXJeWrAjc3N4WOHN+/f08DBw4kANSmTRvauHFjjqW63JY7ZEuHst+KbLV27dpFnz9/Jo7jyMLCgk978+bNPJdSsm/RNzY2pi1bttCkSZPoyZMnqrlBKkIikZC+vj5NnDhR3aIolY8fP5KZmRkZGRnRx48fad++fQSg0O4EEhMTae7cuQSA6tevTw8ePCiSPAVVhr5+/Urfffcd6erq0tWrV3NNFxMTw5cZFxdHmZmZec5ASaVSfgYuOjqaLC0t+fzBwcF5yhQcHMynNTMzy7cNRUEqldLRo0dp3759Kim/MDAFS/NhCpYGwzpw4eA4jg4fPszbmbm4uNCvv/5KHz9+5NNERUXRihUr6PTp0+Tn50cvX77kXzgyW6vw8HCKjo7OtZ7ff/+df5F4eXnR33//Tb169aJ27dqRhYUFTZgwgU6dOkWHDx+m5cuXEwBq0KABVaxYkZYsWUL169enESNGlBrP/BzH0dixY2n8+PF07tw58vT0zJFGKpVS9erVaerUqWqQULX4+fkRAJowYQJlZmZS5cqVSV9fn758+ZJv3rdv39Ly5cv52c/hw4cXazfpnDlzyMnJKc80Dx8+JFNTU7K1tS1Q6CbZjsm//vqLf27z2l0oWyLs1q0beXt70++//06BgYH51nP+/Hm5WdzIyMh88xSFT58+kb+/v0rKLgxsfNZ8mIKlwbAOXHQePHhAQ4YMIS0tLRIIBNSnTx/atGkT/4IxMDCQe8nIXioyY3YDAwNq3rw5ubu7F6re/JYAv3z5QnXq1CETE5NS8ZIgylKwxowZQ3Xq1KH+/fvTnDlzcqR58+YNAaDr16+rQULVs2jRItLS0qK1a9fyz8imTZvyzPP333/zCkWPHj1o9+7dxZbj33//zXW2KCYmhrfTMjQ0LLCtWPY2yY7169fnmUdm11ihQoUCG8nLynZ0dCShUKiS2Kkcx1F8fHyRZwiVCRufNR+mYGkwrAMXn8TERNq2bRu1bNkyx07B9u3b8/Zcsm31JiYmcnZUAGjLli1KlenChQtkYGBAM2bMUGq5xSEpKYlWrFhBo0aNyuEdXywW84pnXjN7ZZn79+/z/+8rV64QAPruu+9ypEtKSqLff/+dunTpwttaFSauXn7Ex8fnukwoM8gfMGAABQUFFbhM2cwSAFqzZg0BoCFDhuSb78iRIyQQCGjdunUFqif7cuLgwYMLLF9hmTRpUqnYmMPGZ82HKVgaDOvAyiW7Tda9e/fI2NiYatWqRTNmzKD//vuPxGKx3KyWbGmlKH6J8oLjOHJxcaGaNWsqtdziEBMTQxMnTqRWrVrliPsWGhrKvzhlPo80kalTp/KuDYAsNyZEWT7S/Pz8aP78+VSlShXS1tamjh070m+//aYSp6syRepbI3nZppTCEB0dLRcPkeh/M00ikYiePXuWZyDl1q1bF7jOkSNH5pgp69OnT6HkzY/Tp09T9+7dCxU/UlWw8VnzYQqWBsM6sGrx8fGhQYMGye0CBEDXrl0jov/tnLt//36ByuM4jiIjIykoKIjCw8PztLFq1aoV9erVi16+fJmv8XBpwNDQkL8/79+/V7c4KiM9PZ06dOjAt3XBggVkYmLCLxsPHDiQnj9/zqcXiUS0f//+Aj8jBSE+Pp6EQiHt3btX7rzsf1AY2z0XF5ccCpJsmbF9+/YEgGrWrJnrjNioUaMIKJj/s+wxGrMfynJqLJFIqGfPngWeUVM1bHzWfJiCpcGwDlwySCQSfllINnORkpJCdevWJQD5Ok2USqUUHh7OO5cEQPr6+jRnzhyFNlxv376luXPn0uvXr2np0qVlIsROdqXjzz//VLc4KuVbr+jDhg2j69evU0JCAnEcR0FBQTRnzhw6cOCA3C7S0NBQpcnQtm1bat68uZxiM2TIEDIwMChwGRkZGQqXG6tXr65QETpw4ECOMrLvQMyPvJyTFmZJMy88PDxUZjxfWNj4rPkwBUuDYR245Hn8+DEBIGdnZxo0aBAByNXIl+M4hQbEskMoFNK6devozJkz9OHDB+rTpw81bNiQunXrRpUrV6YlS5aoxBBYFSQlJcm1TZPJ7trg1KlTtGPHDpo/fz7Vrl2bdHR05O6DVCqls2fPKs3o+sKFCxQSEkJ3794loVAo545AZkBeUD59+kQAqFWrVnLnq1atysu/fft28vDw4H/LbJtu3bolNyOVH/fv3yeBQEBmZmZkbm6eoy9s3769wHKrg7i4uEK7TmHjs+aj2SNdOYd1YPUwYsQIuZfDihUriOM4yszMJC8vL9425uTJk3ya8ePH8/HsKlWqRKdPn+Z/y2a0vn3p1K5du9S4aigI2V+4PXv2VLc4KuXNmzfk6upKQFY4JCsrKxo9ejRt3ryZTp06xd+HvOJbFgU/Pz+Kj48nIuId2XIcxzswbdq0aYGfmXv37lHLli3p4cOHcucXLlzIyy/bFTp//nyFHwnt27end+/e5VlPeno6n37MmDEKZ7J+/PHHAt+D2NjYEl+Gfv78eaGDbbPxWfNhCpYGwzqwenj27JnCl012hcnV1ZU3hpZ50JY5OpX5ioqMjCRvb2968eIFLVy4kObOnUvHjh2TK7O4YVlKGqlUyr/416xZo25xVIpIJKLbt2/nMBKPi4sjANShQwel18lxHK9Aff/99wSAdu/eLffM/PzzzwUuLygoKIcNVHYFq0qVKvz57P7dAFDXrl3zLT8hIYFP7+zsTLGxsXTjxg2FfaegXLp0SeFyZWmDjc+aD1OwNBjWgdVHenp6rka72Q+ZQTwRkb+/P02ZMoU+fPiQZ9mvXr2SK+PQoUMqbo1y4TiOl12Tgj8XlFmzZpGBgYFKNicEBQXxtlyxsbGkpaWl8LkraBieqVOn0uHDh+V8rsmCk2df5pQhi1IwY8aMHDNfipD1ERcXF36XrmyZ/dvjW0U1O+7u7pSamkpEWUqborA/+ZGenl7sQOuFmVFm47PmwxQsDYZ1YPUilUrpl19+ocqVK/MviZYtW/J/FydszIMHD+j169fUvHlzAlAqQn8Uhnr16hEAqlWrVqFj7hFlGZJ7enqWOb9a7969Ix0dHZXtZHvz5g2dO3eO/+3r60uLFy8mHx8f3p6qMM/LmTNnyMjIiFavXs2fO378OOnq6vLPcceOHfkxJjU1lUQiUYEUDY7jqF69eqSvry+Xvk6dOgoVrHv37iksJyAggAYPHiz3sVJYMjIy6Pnz5/Trr7/muPb27dsCO/X18fGh+/fv044dO2ju3Ll53gc2Pms+TMHSYFgHLh3ExMTQoUOHaNeuXfT161dyd3cnAHzw5+Jw4sQJuZeQlZUVNWnShObPn18qAtrmRkZGBm3dupVsbGzI1NSUzpw5kyMNx3EkkUj4l9Tbt2/pxx9/JAcHB7k2T58+vaTFLzLjx48nJycnpdteFYT27duTpaUlCYXCAhuNcxxHgwcPJjc3N/Lw8OB3rIaHh8v9D+rUqUMRERGFkkfmtFR2REdH0549e8jU1JQsLS1zuD/J7XnmOI7u3r1bYI/xuRESEqLQjur27du0cuXKAimNnp6etH//ftqzZ0++PrzY+Kz5MAVLg2EduHQSEBBAAGju3LnFLkssFtPLly/5l9C3u9R27NhRfIFVSEREBA0cOJAEAgEtX76cnj59yjvKzH7IZv4MDAxo3LhxdOTIEdqyZQt/vUOHDjRu3Djq3r17qfULdv/+fRIKhfTLL7+orf7evXvTtm3bCr00m10ZcnBwoBs3bvC7ZM+dO0d2dnZUp06dAi2xhYeHU9++fQnI8mQvK9fU1JSPBODn50efP3/mg51v2bIlT4em6iA3b/C7d+8u0GwaG581H6ZgaTDK7sAcx9Hs2bPp0aNHSimvvBIYGEgAqEuXLkorMyUlhf/C9vf3p7t37/IvruxLRqURqVRKP//8M79T0sLCgkxNTeUUrA4dOtA///yTI6zM06dPFS4neXh4qKk1iomMjKQqVapQy5Ytiz3Tkhfx8fEUGBiodN9osiVGAGRra0u6urp0/PhxAkBubm7k6elJAOTsB/ft20dLly6Vm/lJS0vjl7Xt7Ozk/IA1btyYfvrpJ7l6pVIpnT9/nurXr08LFy5UapuKQ2JiYrE3mDAFS/NhCpYGo+wOLBvsFNkpMAqObOZl5cqVKq1HFh9v+PDhKq1HWURHR9PFixd5Y+WC8vjxYzIzM6Np06ZRixYtCADp6uqqSMrCExUVRQ0aNCAHBwcKDAxUaV2hoaF06tQplSxBzpo1i4yMjEhHR4fs7e1JW1ubKlWqRADoyJEjBIBOnz5N//77Ly1ZsoSaNWtGQJYrh6ioKBo6dCg1bNiQ9PX1ycvLi4jkw+MoCnT+8uVLWrhwIdnb29PatWvp8+fPRJQ181kWIgI8efIk1wDnTMHSfJiCpcGoqgNHRkYSkOVEkVE4ZFvmDQwMSmRgXbx4MQGg8+fPq7wudZKenk6pqam0fft2srS0pMWLF6tbJOI4jo4ePUoVK1YkOzu7fP1BKYOMjAyKj49XqKwUl8qVK/PhdurVq0fdunXLsTRds2ZNWrhwIf39999ElKXkd+rUiWxsbAjIct1w9epVvszg4GC+DCJ5NxNEWTZNnTp1ovDwcGrSpAnZ2NjQ+fPnKTg4mF68eKH0NiqbHj160JQpUxReYwqW5iMEg1FIUlJSAACPHz9WsyRlixs3bmDmzJkAAF9fX5iamqq8zlGjRgEAVq5cqfK61ElkZCQuXLiAGjVqIC4uDvb29mqVRyqVYvbs2Rg9ejRatWqFJ0+eoE6dOiqvV09PD+bm5hAKlT+0+/j4oHPnzgCAjx8/on79+hg6dCgAQCwWAwA+fPiAjh07YuzYsQCArl274tatW4iOjgYAXL9+Hd27d+fLrFSpEv/3mjVrIBQKIRQKYW9vjz59+qBPnz749OkTHj58iJcvXyI6OhqhoaGoVKkSmjRpovQ2Khtzc3NcuHBB3WIw1ARTsBiFplq1aiAibNu2Td2iqJWPHz+iatWqWL9+PaRSaZ5piQizZ8+GUCjE77//Dmdn5xKRcerUqQCyFLpVq1YhNTW1ROotSQIDA+Hl5QVjY2McOXIEAODh4aE2eYgI06dPx969e/HHH3/g9OnTqFy5strkURbGxsZ8nzc1NcXBgwfx008/YdOmTXLpnj9/zv+dnp6OevXqwdvbG+/evctRZmhoKP/36tWr+b+/fv2KS5cuAQAWL16Me/fu8deuXLkCgUCARYsW4fz584iKigIAcBxX/EYWkdz6f/v27TFo0CCIRKISlohRKlDzDBpDhbApaNWyd+9efnlj2rRpdOXKlVzTHjx4kADQ8uXLS0y+AQMGKDQAr1q1Kv344485PHSXVVJSUmj79u0UGhrKt7E4PpGKi2zH3eHDh9Umgyo5fPgwGRoako2NDVWrVo0yMzPlfL1Vq1aNUlJSiCjLNQQA2r9/v8KyZNELZEby3x7nzp0jjuPkyv/WfQMAPixRw4YNKSgoqMBG/hzH0bNnz4ptsxYWFsY7N33//r2cbzcfHx8aN25cjv7GxmfNh81gMRhFZOzYsejWrRvq1asHbW1t1K1bN9e0L168AJD1RV8S3L9/X+HSRMWKFREREYGdO3eiXr162LlzJ8LCwkpEJlVhZGSEefPmoWLFivw5iURS4nIQEcaNG4fVq1dj+fLlGDduXInLUBIMHToUVatWRXR0ND59+oR///0XHz9+5JcLP336BGNjY8TExKBr167Q19fHjh07cpRz/fp1nD9/HgDw+fNnhXUNGjQIQqEQGRkZ0NXVReXKlWFsbJwj3cOHDwEAb968gbOzM+zt7TFv3jxcunQpx6ytSCRCnTp1UKtWLbx48QLXrl3DgQMHijUDpqenB21tbQCAjY0NHBwc+GuVK1eGQCAo8/2MUQTUreExVEd+X0ienp7UsWPHInnSZvyPghgUZw+bUxJIpVI6efIkXb58mQ9f0qVLF96AGN/MAFSpUoWcnZ1p+PDh9OnTpxKRURXcvn2bb5NsFqWkcHNz4+v+1p2EpnH79m2qXLkyaWlpkb29PUVERFBycnKO50pfX5+mTp3K+7lq06YNde7cmVasWEG1a9cmAHT37l3es3/2o1mzZlS3bl2ytLQkCwsLcnFx4a+ZmZkpnPECQN26daOlS5fKpZk9ezbduHGDOI6jqKgoqlGjBjk4ONCpU6do+vTpvGf6FStWqGSDgCLYDJbmwxQsDSa3Dix7yUZFRdGuXbuKtd05Nja21Dp2LE3Ilo0aNWpU4nVnZmbSrVu35HZnXbhwgYCskClubm40adIkmj9/PlWqVIkMDQ3p0qVLJS6nspD5Z+rZs2eJKTocx1HNmjWpbdu2RY5np2zfVapm1apV1KJFC7K1taXq1avT169f6dWrV2RpaUl6enpkampKHTp0oDdv3uSqDAGguLg4qlu3bo7zs2fPJiKiSZMmKcyn6Hz2uJyZmZn08OFD+umnn8jW1pb/kDh9+jSJxWK+P4SFhdHw4cP5MsaPH18iH51MwdJ8mIKlwSjqwC9evKDFixdTbGwseXp60p49e4rcwTmOo8jIyFw9GjOykAU3HjVqlLpFyZfExETq0aMHPxOwcOHCUh1yJzc8PT1JKBTSsmXLSqQ+2ezVpk2bipT/6dOntHbtWpX7yVI2sjA1lpaWZGdnR+fOnSMnJyf64YcfcqQNCgqikJAQCgsLoypVqlCPHj1o2LBhRET08OFDhUpUSkoKJSQk0LZt22jNmjU0YcIE8vHxoe3bt9OHDx/k/GgBIBMTExo4cCDvL0uGVCqlq1ev8rEYR44cSTExMfTmzRvavHmz3AyaoaEhTZ48WWHYHGXCFCzNhylYGoyiDiwWi+ns2bPEcRxFRERQZGRkkb+4AwMDy/RyUkmira1NFStWLLHlh+KQmZlJW7ZsoVatWpGWllaZdSwrUxQ3bNig8rpcXFxIIBDQxo0bi5Q/PT2d/v777yL3RXVy5MgRWrNmDTVt2pRXUpycnGjkyJF0+vRp4jiO/P39KTIykj59+kQPHz7MUUZ2j+7ZY00+ePAg13qlUikZGxuTgYEBAaBx48bRvHnz+LyKwgFxHEfW1tb8kqUipe7mzZukpaVFACgyMlKp9yo7TMHSfJiCpcGougNLJBL6+vWrSsrWNKZMmUIAaMSIEeoWpVB0796d2rVrp24xisSePXv4JR9VI4uZd/fuXZXXlRtRUVE0YcKEElfipVIpRUdHU3JyskJbquw7AK2srAgA9e3bl7Zt28bPEnEcR9u2bSMAdPLkSTp69Cj9888/5O7uThzHUXJyMsXHx1N6ejpv7zVs2DDq0aMHWVpaEgD+OZXZO06cOFFOzuDgYIqOjqbo6GgyMjLiFUGZbFOmTKGoqCgiIqpYsSJ/vnXr1hQZGVmgYM8FJTU1leLi4piCpeGwXYTlmKSkpGLl19LSgq2trZKk0Wz279+PP//8EydOnMDFixfVLU6BqVmzJkJCQpRWnkgkQlxcHGJiYpRWZm5Mnz4dLVq0QHBwsMrrkvkbu3v3rsrryo3AwEBcuHBBzg9VSSAUCmFtbQ1jY2Ps3r07x/UvX74AyPKdFRsbCwDw9PSEp6cn/v33X3Tq1Am1a9dGYmIimjdvjpCQEJw4cQK//fYbNmzYAGtra5iYmOC7777DnDlzcPr0afTu3RunTp2CtrY2Ll++jP79++PMmTMA/rej8K+//sL69esREhKCypUrw8nJCTY2NmjdujWsrKwAAOPGjQMRITo6Gj///DNsbGwAZDlVrV27NgDgwYMHsLe3h1AoxF9//YWEhIRi3S8iws2bN3Hz5s1ilcMo/QiIiNQtBEM1JCUlwczMDImJiTm8hqempiIuLg4hISFwcXGBhYVFict39+5d+Pv7Y9SoUQq3XmsaHMehe/fu8Pf3x+fPn6Gjo6NukfKEiNCuXTsYGRnh6tWrSilTLBbjn3/+QZ8+fWBnZ6eUMvPC1dUVjx49QmpqKgwNDVVWj5ubG2bPno1//vkHY8aMUVk9+ZGQkABzc3O11S8jJiYGjx8/RkBAANLT0+Hp6Ylnz54Vy32GsbExfvnlF2hpaWHRokXQ0tJCeHg49PX1+TQcx8HMzIyPNgEAlpaWiIuL439369YN169fh4GBAdLT0zFx4kScO3cOkydPxps3b9CtWzcsXLgQiYmJqFixIlJTU6GtrS0ne3Fem+Hh4Vi3bh169eqFfv36KRyfGRqCOqfPGKolvyXCoKAgSkpKomfPnpWwZFns2rWL6tevX+aWzYrD69evCQAdP35c3aLky8yZMwnIcgJZVqlZs2au9jjKJCQkhABQnTp1VFpPWcDb2ztX+6fY2Fjy8/OjxYsXU9euXfndfdkPGxsb3hhddjRt2pTevn2bozxFpKam0tevXykzM5Pmz59PNjY2pKWlRS1btqS0tDTKzMxUaHtlYGBAf/75J61evZovKzY2lgYPHkyDBw+WS+vh4SEnR2GXDzMzMykiIoItEWo4TMHSYApig6Vse43ClJeWlkY//fQTdenSpUwYfyuLzp07U7Vq1UqtQTPHceTs7ExAVnDessyrV68IyN2TuDKRBT8+efIkpaam0uPHj1VeZ2kjNTWVDhw4QDdv3ixUvvfv31Pfvn3JwcGBZs6cyXtrt7KyyqFYBQUF0eTJk2nOnDlUrVo1un//PhFlPbczZ87Mkb5fv36kpaUl96GQkpJCw4cP523CAJCjoyPFxcXRnj176Pnz5zlk3L9/P3Xt2pVPL+u/3bt3p61btxaqvUTMyL08wBQsDaakO3BmZmahB1Yi0ninjN/y6NEjAkA///yzukVRiEy+2rVrK9WwVx1IpVKytLSkVatWqbyu69ev84buR48epT59+tDGjRspIyODT/PgwQPatGmTRn9Q+Pn5Fevjwd/fn7Zu3Up79uxR+Px17949x+yTbMcoAPrpp5/k0svOd+vWTWF94eHhtH//foqIiKDZs2fzs1nfMmTIEBo4cCBt3bqVtm3bxp8/evQodezYsUD+BEUiEf+/ZwqW5sMULA3m2w786dMn3oEex3EUGhqq1IFeIpGUSZ9J6mDChAlkbGxM4eHh6hZFDtkOrEqVKql8Wa0kmDhxIgEgLy8vldd1584dAkAHDhygz58/U4UKFUhXV5f3f+bt7U3m5uYEgP7880+Vy6OpbNiwQU656t+/P9WpU4f/PW3aND6tRCKRSxsdHZ1n2ZmZmfTXX3/xuwmz8/79e9qwYYOcwizj+fPnBerLDx484GfcmIKl+TAFS4ORdeBnz55RRkYGffz4kQ9IfPToUTI1NaVOnTrRnTt3yvxMRVnj69evCreSqxvZi8jb21vdohQbHx8fAlBifryePXtGAOjvv/8moiyfc69fv6Z///2XiP5nDwaA2rRpUyIylXWSk5P5EDmdO3emT58+8ffwW0eg1apVIwA0Y8YM/pyvry8BoLlz5/K+slQxY/7hwwfy8vLKsTz5LUlJSRQfH09ETMEqDzAFS4ORdeDt27fn8M+TkpJCAwcOpJYtW5KTk1Oxo8kzCk+9evXIzMyMAgIC1C0Kj6mpKTk4OKhbDKWwc+dO0tbWprS0tBKpT9bfhgwZkuPaggULeC/hY8eOJW1tbY2YIVQlUqlUoTE6kBVXMzvv3r3jry1YsIA/L1OwPD09eX9cffv2VaqckZGRBICsra1p1qxZBc7HFCzNhylYGoysAyckJOQ5Q6XMZUJF9cTExFDPnj1p7dq1FBwcTFu2bGGDCmUt2To7O5OBgQGtXLlS5aE5CsLQoUOpffv2apUhLS2Nzp8/X+znsnnz5tS6dWslSZU/v/32GwGgU6dOEVGWd/bVq1fLKQbZFYGgoKASk62sERISQo6Ojvy9Cg4OpvHjx/O/r169Kpc+NjaWGjVqRADIxcWFgoOD6e3bt+Tl5UUA6MmTJ5SSkkKLFi0iAJSamqo0WbMHuba0tCxQnrCwMH6XLhsLNRemYGkwMgVLNuCrmg8fPtCOHTvo+vXr9PjxY17ZevLkCQ0ZMoT2799PFStWpLS0NH6avLwTHx9P8+fPJ319fdLT06MNGzaQWCxWmzyurq4KZ2BKkoCAADp37lyxl60dHBwKNaNQVB4/fkyjR4/mvX7L5D5y5AgBWaFfpk+fTklJSfzLWCAQqFyusoq/v7+cUrpy5coC5ROJRPTdd9+RoaEh6erqkr6+PvXr148MDAz4GXrZBo59+/YpVeYZM2bwux7j4uJyTRcfH0/Lli2Tax9TsDQXpmBpMDIFa+zYsXI7XDIyMlSyJCiRSOjQoUO0YMECmjFjBi1dupS/xnEcpaen83K0b9+epk2bxs9SvHz5ks6cOVNqXReomqioKJo1axb//1LHzsro6GgCQGvXri3xulWBoaEhbdmyRaV1rF+/noCskCsbN26UW/br27cvNWjQQE5RvHfvHgEokV2NZRVZWCkAtG7dukIr2sHBwdSnTx++jMWLF/PXOI4jGxsbaty4sbLFph49epCWlha9evUq1zTbt2/PsdzJFCzNhSlYGoxMwerSpQv5+fnx5+Pi4mjTpk1yaWXG78ogLi6Otm3blqeh9MiRI8nNzY3/7eXlRatWrZI7Vx5xc3MjAHTmzJkSr/uPP/4goVCoMQG8u3fvTg4ODipZepVIJDRw4ED+Ba7ow2Dq1KlUtWpVOQVh+/btpKOjw16quRAXF0daWlrUpEmTYu+wffr0KZ05cybHjHCzZs14u6zCKG83b97MM9ZkQEAAOTs7U/fu3XMt99mzZ6Snp0e6uro0bNgwpmBpOEzB0mBkCtbevXspOTmZPx8SEiK3RPf69Ws6cuRIicqmyPtxWlpaud/NyHEcWVhY0Jo1a0q87mHDhpGZmVmJ16sqwsPDycTEhObOnavUcqVSKenr6xMAql+/fq7P7OHDh3n7IRlNmzalwYMH51p2VFQUzZs3r9zYZ2VmZlJYWBht2bKFunfvTjY2NmRubk6hoaEqq9PX15d3ZNqkSZMCR1U4fPgwzZ8/n//98OFDcnNzI5FIRC9evCCxWEyTJk2iLl260KNHj3ItZ/fu3dS0aVMKDQ1lCpaGwxQsDUamYD19+pSIsl7e8+bNI3d39yKVl5CQoPSlRY7jaPDgwfThwwellluWcXZ2llvWKAkuXrxIAoGAtm/fXqL1qppVq1aRvr4+RUREKLVcAFS9evVcr3McR/369SN7e3t+2VDmYuDEiRM50j958oRmzZpF27dvp86dO9PBgweVKm9p4+PHj7R582YyNjYmAKSlpUVt27alJUuWlMgMKsdxtHXrVgJAtra2Bc6TXZnObnRvY2PDj7XLli0r0BjLdhFqPkzB0mBkHTgwMJCI/rftuXPnzkUqLyoqSqlLiURZO61iY2MpJSVFqeWWZerUqSPny0fVxMXFUdWqValhw4ZqNbBXBTExMWRjY0ODBg1S6uzopEmTCECuLiCuXr1KgHyInq1bt5Kurq5CZ7w3btyghg0b0p9//kl+fn4aPZO7fPlyXjGZPHkyHTp0iGJjY9Uii8xze6dOnQo9BiUkJJBQKOTbYm5uTq1atcqRLiMjg/z9/XO4Y2EKlubDFCwNRlEHzszMLDG/QIzCExsbS1paWiqfSXr48KGcoa22tjYdOnRIpXWqC5n7BB8fH6WVuXnzZgJAt2/fVnh93759JBAI5DyCN2nShIYNG5ZrmYo8hGsismeuJLzr50dMTIycsldY0tPTeSemI0eOpGvXrilMFxcXl2PjClOwNB8hGOUKHR0dGBgYqFuMIiEWiyGVStUthkp5+PAhpFIpKlSooJLyfXx80LVrV7i6uvLnWrZsibNnz2L8+PEqqVPdNGnSBACQkZGhtDJr1KgBANDW1lZ4vXfv3iAiXL16FQAQGRmJV69eoXv37rmWqaenpzT5SiuhoaEAgC1btqB9+/ZqlgawsrLChw8fAACnTp3C06dPC5VfX18fO3bsgEgkwvTp09G5c2eF6SwsLKCrq1tseRllC6ZgMcoEHMfh9u3bCA4OVrcoKsXExAQAUK9ePaWWm5aWhj59+qB+/foIDQ3F2LFj4ePjAyLC48eP0a9fP6XWV5qoXLkyAMDb27vYZUVERGDRokWYOHEiAKBmzZoK09nb28Pc3BxHjhzBpUuXMH36dOjq6qJ///7FlqEs4+fnB+B/Sm9poEaNGvjvv/9gYmKCzp07QyAQgIgKVYauri7atWsHLS0tFUnJKIso/vxiMEoZQqEQ7dq1g76+vrpFUSlRUVEAAIFAoNRy58yZg0uXLgEAnj9/DiMjI6WWX5pxcnJCtWrV8Pz582LN0onFYn5mccaMGZg9ezZsbW0VptXW1sbOnTsxffp0XL9+HRUqVMCvv/4KKyurItevCSxfvhwA0LVr10IrMaqkc+fOePz4MapUqQIg64OOKUuM4sIULEaZQVnKlUQiQWBgIIgo1xkIdREcHAxtbW1+CUpZyJaFP336VK6UKxn169fHrVu3lFJWp06dsGfPnnzTjR07Fv369cO7d+/QqlUrCIVswaB69ep49uyZusVQiKOjI1q3bg0fHx+lf+AwyiesxzPKHWKxGDNnzlSqTY6yuHnzJpo1awYdHR2lliv7Mn/48KFSyy0rDB8+HH5+frh48WKRyxCJRNDR0SnUMp+5uTlat27NlKv/5+jRo7Czs0P16tXVLYpCzM3NERcXh/v376tbFIYGwHo9o9xhYGCA69evo0GDBuoWRY6oqCjcunULvXr1Umq5sbGx2LdvH4yNjTFgwAClll1WGDZsGPr164eBAwfiwYMHhc6flpaGcePGQSqVKv3/U54QCATYsWMHPn78iCtXrqhbnBwsWLAARIS0tDR1i8LQAJiCxWCUEpKTkyESiVCxYkWllbl27VpYW1sjLi4OXl5eMDY2VlrZZQmhUIgzZ86gYcOGWLduXaHzL168GFeuXMHx48dL7exLWWH48OFwcXHBsWPH1C1KDj5+/AgAaNy4sZolYWgCTMFiMEoJspmVVq1aKaU8b29vrFq1CgAwe/ZsNG3aVCnlllV0dHQwc+ZMXL9+Hc+fPy9wvmvXrmHPnj1Yv349hg0bpkIJywdCoRCNGzfGixcvwHFcofISEeLj4xEcHKySHcVeXl5o0KAB7OzslF42o/zBFCwGo5Qg22FmaGhYqHyRkZHIzMzMcT77EuiyZcuKJ5yGMGbMGDRq1AgTJkwoUPojR46gd+/e6N69O3788UcVS1d+mDlzJvz8/HD+/Pk80xER7ty5g71792LFihWoVasWLC0tUblyZVSuXBmtWrXCkiVL8PnzZz5PRkZGkXYoikQi3Llzh81eMZQGU7AYjBJEIpEgJSVF4TWZ08qIiIgClyeVSuHg4IChQ4fKnX///j3/d3JystKN5ssqOjo6sLS0hI+PT55Oa5OSkjBnzhyMGTMGY8eOxcWLF9m2fSVSp04dAEBMTEyuae7fv4+mTZuiQ4cOmDlzJv744w+0aNECJ06cwOXLl7Fnzx6Ympril19+QbVq1RAZGYmUlBQYGBhg1KhRhZJHKpXC2dkZX758wQ8//FCstjEYMpibBgajBLlx4wZEIpFCY3MvLy8AQMOGDQtcnsxTuIeHB1JSUmBsbIyPHz+iTZs2qF69Ol6/fl0u3TLkhWwL/vbt29G6dWv4+fnhv//+g1gshlgshpeXF1JSUqCnp4fffvsNc+bMYdv2lcy0adMAAM7OzgCA8PBwrF+/Hs+ePUNiYiIAICAgAHXr1sXFixfRu3dvhf+DGTNm4PLly+jduzdq1KgBBwcHAMCJEydw/PjxAsszdepUREZGYuvWrWjRokUxW/c/Pn36BENDQ14uRvlCQKXJ2xtDqSQlJcHMzAyJiYkwNTVVtzgMZO0U1NHRgYWFhdx5IkLjxo3h6OgIT0/PApfn6+uLunXr8r8rVKiA2NhY2Nra4vnz57k6wizPXLlyJcdOwHr16sHa2hrR0dFwdHREu3btMG7cOKVuOGD8jxkzZmDfvn1o2LAhatWqBU9PT0gkEgwfPhxWVlaIi4uDqakpfvrppwL9D3r16pVjV+KBAwcwefLkfPNKpVJoa2vDwsICcXFxRW6TImRK4ZgxY/DPP//IXWPjs+bDFCwNhnXgssPp06cxbNgwXLhwodDhVI4dO4bRo0cDAObNmwcjIyPMnDkT9vb2qhBVI0hPT8fRo0dRoUIFtGjRAtbW1uoWqdxx69Yt7N27F5GRkfjuu+8wf/78Is/0xMfHo1+/fnjw4IGc/VVMTEy+3vMPHz6MCRMm4OLFi+jTp0+R6s8NS0tLxMfHAwBGjhyJo0eP8koXG581H6ZgaTCsA5cNEhMT0bRpUxgYGBQpXh7HcahYsSK+fv0KsVjMbIUY5ZLMzExMnjwZ//77L/r37w93d3esXbsWK1euzDPfgAEDEBUVpRInvLLZMRl9+vTBqVOnkJ6eDm1tbTY+azjMyJ3BUDOenp749OkTJk2aVOi8HMfh7t27yMjIQOfOnZlyxSi36Orq4p9//gER4cKFC2jcuDF+//13/PTTT7h48SICAgIgEAhgYmKCyMhIjBkzBpUrV4a7u7vSg6vL0NLSQmhoKP/b09MThoaGsLOzQ1BQkErqZJQemJE7g6FmatWqBQBytlS5IRaL4eDgADMzM9ja2sLX1xdJSUmoVasWTp48qWpRGYwyg6enJ2bMmIEtW7bInU9JSYGDgwN0dHSwYMEC2NjYYOrUqSqTw93dHUBWoOtHjx7h1q1bkEgkbAm/HMAULAZDzZibmwPI2nHUtWvXPNMKhULExsYiNjYWbdu2Rb9+/eDq6orWrVvLLUUwGOWdChUqwN3dHenp6fD398eMGTNgb28PfX19nDx5Em3btsXOnTuRmpqqsl2i3t7e2LFjB4CsjSyvX78GACxdulRpwesZpRc2IjMYaubgwYMAgKZNm4LjOIWBgfv37w8PDw/ev8++ffv4re4MBiN3DAwM0LhxYwwcOBAbNmyAQCCAnp4e7xYlPj4elpaWSq/3xIkTGDlyJP9748aNAAA3NzfMnDkTSUlJSq+TUbpgRu4aDDNyLxvIHBwCwMmTJxWGY3F0dERYWBgAYPDgwdi1axcqVKhQonIyGGUZjuN4G0U9PT2IRCL+vLJnsHx9fdGgQYMczmwnTpyIgwcPQiAQsPG5HMCM3BkMNSIWi3nlCgAqVaqkMJ1MuQKA/fv3M+WKwSgkQqEQTZo0AQBeuQJQpLA6eXHw4EHUrVsXUqkUU6ZMAQCMHz8ejx8/5pUrRvmAKVjlhBUrVkAgEMDV1VXdojCy4eHhIWc7lV+g58WLF6tkOYPBKA/cvHlT7vegQYMULskXhTdv3kAgEPBKFZDl7BQA/vrrL7Rs2ZIpV+UMZoNVTmjbti0AMM/UpYykpCRIJBL+97c2WK9fv+Z3OP3555+YOHFiicvIYGgK5ubmiI+Px927d1G5cuVChaXKi+yK0/Lly3H79m3er9axY8eYYlVOYTZYGsy3a/xExDp6KaNhw4Z4+/Yt/zt7dwwNDUX9+vUhFAoxZMgQuLm5saDNGgTHccjMzGS7yco479+/R+3atQFkxbds0KABunTpAh0dHWRmZuaaj9lgaT5sibAcwZSr0sWePXvklKtvdxVFRkYiISEBtWrVQuvWrZlyVUp5/Pgxzpw5U6g8RIR169bxwboZZZfs4X3mz5+PLl26oFGjRvDz81OjVIzSAJvB0mDYF1Lp5ttAzUlJSTAxMZFLc/ToUXz//fcAlG+Myyg+RITbt29DV1cXbdq0KVTe+Ph4mJmZFcsGSPZMsI8n9RIbGwtXV1ckJibi8OHD6NSpE3R1dfPMw8ZnzYfZYDEYauLSpUtyv8PDw3mv7gAQFRWFdevWAQA6dOhQkqIxCohAIECnTp2KlNfCwqLY9VtaWiIhIQEdOnSAh4dHDgWdUTJYWVnh/fv36haDUcpgS4QMhpr41vN6duVq4cKFsLOzw/v37/H27Vvcvn27pMVjlAESEhIAAF5eXiy2nZoQi8WIjo5WtxiMUghTsBgMNdG7d2+534GBgQCyln22bdsGAJg2bRrq16+fIy/Hcdi6dSuWL1+OcePG4c2bN6oXmFHquH//PiZPnox///1X4XPCUD2zZ8+Ws8NiMGQwGywNhq3xl26IKIf9zX///YeqVauiatWqAIC0tDQYGBjkyNu2bVvcv38/R3kMBqNkuXz5Mvz8/LBgwQKkpqYiNTUVtra2+eZj47Pmw2awGAw1IRAI0L59e7lzXbp04ZUrAPjjjz8U5nVxcZH7ffr0aeULyChzvH79GmvWrIG3t7e6RSk39OrVCwsWLAAA/P777/Dw8FCzRIzSApvB0mDYF1LpJyYmBjY2Nnmm+eeff9CnTx+lGEUXhB07dmD+/PkQCASIjY0tsXoZxefp06dwdXWFh4cHevXqpW5xNIaEhATo6OjAyMgoz3TJycnIyMjIt08DbHwuD7AZLAZDjVhbWyM5OTnPNGPHjoWlpSWEQmGJeHKXxUYkIvz6668qr4+hPFq0aAGJRMKUKyWze/duuLm55ZvOxMSkQMoVo3zAFCwGQ80YGxuDiBAZGYnq1avnuK6vr49WrVqhUaNGGDRokMrl+e233yAWi/HDDz/wHqoZjPJMt27dMHr0aHWLwShjsCVCDYZNQZddQkNDce3aNYSGhmLy5MkshiSDoWGw8VnzYQqWBsM6MKMk+Pz5MxwdHfP1XM1gMP4HG581H7ZEyGAwikxqaiouX76M8+fPq1sUBoPBKFWwUDkMRjkjPT0dX758Qa1atYodw87IyAgjRoxgOw0ZDAbjG9gMFoOhIXAch/Xr12P27Nn8TkBFLFq0CIMHD8bevXuVUq+1tTW0tLSUUhaDwWBoCkzBYjDKIKmpqbh79y5+/PFHCAQCdOzYESKRCCtXrsSxY8cQEhKSa9558+bh+++/x8CBA0tQYgaDwShfMCN3DYYZUWoeQUFBWLlyJZ48eYKAgAAIhUJwHAcbGxvY2dnh69evuHPnTg5P7wwGo3TBxmfNh81gMRhlhODgYKxfvx5Xr15FeHg4gKxlQQCIjo6Gj48PoqOjce7cOXWKyWAwGAwwI3cGo9QjEomQmJiIypUr55muUqVKuH79OmrVqlVCkjHKMxzH4e7du6hQoQLu3r2LtLQ0zJkzR91iMRilBqZgMRilFI7j4Ovri8aNG0MikShMc/HiRbi4uCAkJASNGjWCubl5yQrJKDRSqRQeHh64ceMGAgICEB0dDS0tLVSsWBG9evXC4MGDSyzcikQigUQigZ6entyO0szMTBw9ehTh4eFo1KgR6tati7i4OKxduxY9evSAhYUFAgIC8Msvv4DjOOjr6yMlJQUvXrxA/fr1UadOHVSuXBkuLi4QCoXYtWsXPDw8EBoaCh0dHcyYMQMDBgxAhQoVcpVNJBIhIyMDT548gbGxMVq1agWBQIC3b9/iypUrkEqlSEpKQlJSEhwdHSESiVClShWYmJjAxcUFtra2sLa2Vsk9S0tLg7GxMYRCtgjEyB1mg6XBsDX+ssubN2/QqFGjfNOJxWJoa7PvpNJMeno69u/fj9jYWOzfvx9fv34FAOjo6KB///6wsbEBx3H4448/+DzLli2Dq6srhEIhrzTExcXB2toatra2xdq1SURITk7GnTt3sGDBAiQkJCAtLQ22trYQiUQQCoWIiYlBRkZGgcqrWrUq2rRpg/j4eISHh8Pf3x+pqakAsmLzWVlZISgoCE2aNEG7du1w4cIFBAUFAQBcXV1Rv359+Pv7486dOwCAoUOH4smTJwgLC4NUKuXradmyJWrUqIFTp05BX18furq6MDIygkAgQFBQEAwMDJCeni4nm4GBAczMzFCtWjUkJSXBysoKbm5uqF27dpHv4alTp7B161Y0btwYf/zxByIjI2Fvb1/octj4rPkwBUuDYR247NKuXTvcu3cvx3lbW1usXLkS48aNg7GxcbH9WDEKj0QigZaWlsJ7LxaL8fLlS9y6dQuvX79GQEAAXr16lSOdlZUVHj58iJo1a/LnevbsiatXr8LY2Bj6+vqIiYlRWL9AIICJiQmMjY1hYmKC+Ph4XLx4ES1atMhV5pMnT+Lq1at4//49/P39ER8fDwBwcHBAfHw8LC0t0adPHzg4OIDjOFhZWaFOnTqQSCRIT0+Hjo4OAEBbWxtaWlqIi4uDlpYWmjRpgqpVq8rdC47jEBYWhnfv3uHRo0eIi4tD+/btMXjwYAgEAgwdOhRnzpwBAFSpUgWmpqZ48+YNn79Vq1Zo27YtqlatCn19fdSuXRtBQUH4559/EBUVhYYNG2L37t3Q09MDkDUjGBoaCicnJ8TExEAikeDDhw/4+vUrwsPDERcXBz8/P75OALC3t8eoUaPQp08fiMViiMVi1KpVC9WrV8fTp0+ho6ODxo0bK7yXRITnz58jODgYt27dgqWlJdatW5frvc8NNj5rPkzB0mBYBy47JCYmYuXKlbh8+TKSkpLQuXNn6Onp4e+//86RVigU4vvvv4evry+ePn3KlKwSIjMzE61bt8bz588BAK9evUKNGjVgZGQEAPjpp5/w+++/Iy0tDXp6emjVqhUqVaqEZs2awdnZGT4+Pvj8+TM2bNgAOzu7POsSi8UIDAyEnp4evnz5gvj4eNjY2CAmJgZfv35FQkICUlJS4O7ujjdv3qBnz564fPmyXBlJSUm4ffs2jh8/jpMnT6J+/fpo1KgRatWqhSpVqqBGjRpo3ry5am5WHmRmZiIuLg62trb8EhvHccjMzIS+vr7K6r1x4wYuXryItm3bYtmyZfj48WOONIaGhkhLSwMAdOzYEY0bN4aJiQlsbGzQuHFjNG/enFc2AcDf3x9OTk4wNDQstDxsfNZ8mIKlwbAOXLq5c+cOOnToAH19fYwYMQKHDx9WmG7s2LH48ccfceTIEezYsQMAeLuWmTNnlqDEJYO/vz+MjY3h6OjIh+CR+ew6ceIEkpKS0Lp1a0RERCAsLAy9evVCWloaPnz4gJSUFAQFBaF3795wcnJCmzZtULVqVbRr1w6rVq1CXFwcDh48CIlEgmrVqqFjx444e/YsqlatCjMzM0ilUkRFReHMmTNYuXIldHV1cefOHQQFBSEqKgobNmzIIa+enh5EIhEAYNKkSZg0aRIaNmxYpJduQYmNjUXr1q3x/v17AICHhwd0dHRw9+5dnDhxAgAQFxfHb45YtGgRfvjhB6aM/z8cxyE2NhaJiYnQ0dFBZGQk7ty5Ay0tLWRkZMDExATXrl3D+/fvERUVhfT0dEgkEjRq1Ajr169HfHw82rZtC5FIBFNTU5iZmcHAwKBQMrDxWfNhCpYGwzpw6SUxMRFt2rSBj49PnulkyzGy/59EIuG/oGvUqIGzZ8+ifv36KpdXFdy5cwfh4eGYPXs2qlevjg4dOmDLli389cWLF+OXX34BAPzwww8YMGAAtm3bhg8fPiA+Ph7JyckgIt5VxbfIfITlhaOjI0JDQ+XOVaxYEV+/foWxsTESEhIAAPr6+rC0tESdOnWwadMm1KxZExcvXoRIJEJ0dDTc3d1Ru3ZtHDx4sEQMn2/cuIFu3brxv2NjY1GjRg3ExcWhR48eqFu3LgBgxIgRaNasmcrl0XREIhHc3d2xevVq+Pn5KUzj6OiIMWPGoF27drCxsUHTpk3zLJONz5oPU7A0GNaBi8b8+fP5maJvcXR0xJ07d1C1alUAQGhoKMzNzfllooLOEKSmpqJTp054+vSpwuva2tr8zsHZs2dj165d/LXsdYhEIujq6haoTnXz4cMH1KhRAwKBABcuXCiSJ3ldXV3Ur18ftra2sLOzQ6VKlVCvXj2YmZnBwcEBRkZGsLW1xb179/Dhwwd07doVtWvXhkAgABEhPT0dnz9/RmBgIC5dugRtbW20atUKQUFBMDc3R1hYGPz8/JCSkoLGjRujUaNGcHV1RZUqVUrV7E9oaCjq1q2LpKQk1KhRAyKRCGFhYXBzc8O0adNKlayaREJCAhYvXoy0tDQMHjwYRkZGyMjIQEJCAm7cuIEjR47waf/55x+MGTMm17LY+FwOIIbGkpiYSAAoMTFR3aIojStXrtDvv/9Ojx49IiIijuNIIpEUu9zffvuNTp8+TdWqVSMA+R6dOnWiESNG8L+NjY0JADVp0oT27dtHbm5u5O/vTxkZGURE9PfffxMAGjVqFN24cYOeP39Oc+bMybMOAwMDAkBDhw6Vk9XS0pJPs2/fvmK3XRVwHMe3nYgoODiY+vbtS+3atcvRztWrV1NKSgqdPHmSvL29SSqVUlpaGqWnp1NCQgIlJibS+/fv6fjx4xQfH6++RpUSMjIyqGXLlnL3sHXr1nT9+nV1i1buCAgIoLt371KVKlVyPNcvX77MM68mjs8MeZiCpcGUxQ7McRxxHEdERCdOnKAtW7ZQTEwMERHdv3+/QMpPnz59qEuXLgSAZs+eTbVq1aJ27drRx48fafXq1XTw4EG5lz8R0ZgxY6hhw4a5llmpUiXS1tYmPT090tLSIlNTU3J0dCQAJBQKqXHjxnxaoVBI2tra/G9ra+sCyS07dHV1ycbGhtq3b09r166l1NRUufujq6vLp/35559L7p9TQM6fP8/LFxYWRlKplH777Te5NlavXp08PDwoIiJC3eKWOeLi4sjGxoYA0Jo1a/j+wSg50tPT6erVq7n24fbt2+dbRlkcnxmFgy0RajClZQo6ISEBCQkJcHJyQnBwMBITE2FhYQFfX188fvwYsbGxEIvFeP36NZ4/fw4jIyMYGBjw/oJMTU1RoUIFfPr0CWKxmF/uKQ6Ojo6YNWsW7Ozs+G3e8fHxePPmDby8vOTSTp8+Hbt374ZAIODrli3ByOSQ/ZZKpRCLxUhJScHbt28RGBiI0NBQ6OrqYsyYMbCzs8OzZ8/g5eWF4OBgODs7Izo6Gm3atEGDBg1gb2/PLzd+y6BBg3ijbxmlsfv+9ttvmDdvHgBg165dWLRoEW8EDgA9evTgjbIZjLLEu3fvsGDBAly7dk3u/OrVqzFq1CjUqFEDXl5eaNasGYyNjfMsq7SMzwzVwRQsDUZdHTgzMxObN2/GlStXEBgYyCtKJiYmSE5OlktrY2MDBwcHCIVC6OjoYOzYsUhJSUFMTAwSExORkJAAS0tLGBoawsDAANHR0ahduzb09fUhlUqRlpYGkUgEHR0dWFtbw9raGk2bNuUVHYlEgjt37mD//v2oV68ejh49ysuipaXFGzHb2trCysoKOjo6kEqlePfunZycGRkZvN8dZd2j2NhYEBGMjY1haGjI+1ZKTU3FzZs34e/vj8DAQERGRsLX1xcfPnzg8//0009YtmwZTExMlCZTYWR//fo1vL29ERISgnfv3uHTp08IDw9HQkKCnDIlY968ediwYQMyMzNhZmZW4jIzGMpg9OjROHbsGADA0tISc+bMQa9evYrk7oIpWJoPU7A0GFV14GPHjuHNmzcgIqSlpcHQ0BAuLi6wt7fHokWLcignMoYOHYrx48fDwsICFy9eRPXq1TFhwgS1GuSKxWIAyDGbkpqaivT0dJiamkJbW1vpO8Pq1q0LX1/fHOeNjY2RlpYGjuNgYmKCKlWqwMHBAbVq1UL9+vXRpEkTNG7cuETv2cePH/Hff/8hICAAPj4+ePjwIVJSUiAQCGBnZ4datWqhVq1aqFixIiwsLHilr3LlyjAwMICFhQWLj8jQCCQSCdzd3TFkyBAAWeOHVCrFjz/+iAoVKqBOnTqoWbMmGjRokG9ZTMHSfJiCpcGoogNHRUXl6yQxNyIjI4uctyzy9OlTjBgxAjNmzMDixYsLlGf79u0wNDSEq6srAODx48do3769nMfvwhIdHY19+/bh9u3bCAwMhEgkgrW1NSpUqIAff/wRPXv2VJjPx8cHixYtwo0bNwAAzs7OqF69Otq3b887YVTmrB6DURbw9/fHokWL4OnpCSDLK3xkZKRcGqlUmu9HGVOwNB+mYGkwxe3Aa9aswerVqwH8L3xFly5dcOHCBfz7779yy3329vZo3LgxdHV14ejoCAMDA7Rt2xbdu3dHREQEhEIhnJyclNW0MsHUqVNx4MCBAqW1tbXF4cOH4eHhgf/++0/Oy/TAgQNx+vTpIsVOi4yMhIODA19OrVq1oKuri7Vr1/JpfH194eLiIpcvPT0dNjY2fEy5SZMmwdTUlA8MPHbsWDg7O8PAwIDFQmSUC1JTUzFy5EhcvHgx1zTz5s3D5MmTUadOnXzLYwpWOaDk7eoZJUVxd6lk3xmX/Zg3bx5xHEfz58/nz9WsWZN3K5D9+PXXX5XcqrKDSCSiHTt2UIsWLXLdbVS/fn0+/R9//JFrOi0tLTp48CDt27ePNmzYIHctLi5Ort6QkBBavXo1TZkyhU+zaNEiCgkJoZcvX9L169epU6dO/LWuXbvmkN3f379QOx+zH4GBgaq+tQxGicFxHP311185dhVv3ryZTp8+Te7u7rRy5Ury8fEpVLlsF6Hmw2awNJjifiF9/vwZv/zyC0JDQ6GjowNzc3Po6elh0qRJMDIywuDBg/Hlyxekp6dj+PDhAIDbt28jKiqKL6Nly5Z4/Pix0tpUVklKSsLLly/RsWPHHNeqVasGfX19JCcnIyQkBEKhEE2bNoWRkRECAgJyeBr/lufPn/NeozMzM2FlZYWUlBS5NHntvNyzZw+0tbXh5+cHPz8/xMXFwd7eHgkJCXj69CkyMjIK3E5nZ2e8efOGfZEzNIbExESYm5vLnSvIEmB+sBkszYfN7TNyZc+ePfjjjz/kzm3cuBEtWrRA69at4e/vz58/efIkGjZsiObNmyMyMhIvXryAlpYWfv3115IWu1RiamqKDh06yCk5RIT9+/cjICAAIpEIBgYGqFmzJqKjo/H8+XNEREQgMzMz1zLr1KmDLVu28MpVYmIi3r59i549e+LDhw/Q1tZGeno6X4ZAIICFhQWCgoIwceJENGrUCLdv38aiRYuQkZGBqlWrolatWqhXrx7CwsLg4OCA1atXw8XFBaampjA3N4epqSmcnZ1LJBwMg1EaMDMzQ3R0NC5fvoxx48YBAL9cv3fvXjRr1gyNGjViS+WMHLAZLA0mty+k/v37w8PDQy5txYoV0bNnTzg7O0MqlUJPTw8pKSlYv349AMDJyQmbNm0Cx3F8+IeKFSsiLCyML+PbkC4M5TBgwAC4u7srvHbs2DE8f/4cV69ehZ+fH4gI2tracHJygr6+Puzs7GBpaQkDAwMYGBjA29tbbkbRzs4OM2bMwIQJE8qdjRyDUVh++eUXLFmyJM80Bw8eRPXq1WFra4uqVatCV1dX4a5fNoOl+TAFS4ORdeADBw7AxsYGenp6sLS0xJo1a3D58mWl1DF06FA0adIE1apVQ+/evWFoaKiUchnySKVSJCcnQ19fH0OGDMGlS5f4aw4ODujduzdcXV3RtGlT1KxZE/r6+rmW9fnzZ6Snp8Pe3h6WlpYsbh2DUUCkUimePHkCXV1dGBoaws7ODv7+/nB3d891tt7U1BSWlpZwcHCAjY0NzM3NYWVlBXNzc6xatYopWBoMU7A0GJmCpUq+fv0KW1tbldbByElcXBwSEhIgFApRuXJlpiQxGGqG4zgkJiZCJBIhPj4ewcHB+Pr1KyIiIpCYmIgvX77wzpNjYmIQHx+PqKgopmBpMEzB0mBkClZERAQEAgHS09ORmJgIHR0dZGZmQiQSIT09HampqUhJSUFSUhJCQkIgFosRFxcHX19fPsxNVFSUQnugz58/o0qVKmpoHYPBYJRdZMbzTMHSXJhVXjnA0NCQdWAGg8EoRbBZZ82HbQViMBgMBoPBUDJMwWIwGAwGg8FQMmyJsByQlJSkbhEYDAaDkQ02Lms+TMHSYHR1dWFvb49KlSqpWxQGg8FgfIO9vT10dXXVLQZDRbBdhBpORkZGnt7AGQwGg6EedHV18/RZxyjbMAWLwWAwGAwGQ8kwI3cGg8FgMBgMJcMULAaDwWAwGAwlwxQsBoPBYDAYDCXDFCwGg8FgMBgMJcMULAaDwWAwGAwlwxQsBoPBYDAYDCXDFCwGg8FgMBgMJfN/CqUAruxh6LQAAAAASUVORK5CYII=", "text/html": [ "\n", "
    \n", "
    \n", " Figure\n", "
    \n", - " \n", + " \n", "
    \n", " " ], @@ -223,13 +214,12 @@ "\n", "m.add_feature.preset.countries(layer=\"countries\")\n", "m.add_feature.preset.ocean(layer=\"ocean\")\n", - "m.show_layer(\"ocean\", \"countries\", \"coastline\")\n", "m.show()" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 3, "id": "2c26797b-7c8e-4847-b711-4db1f3e3084f", "metadata": { "editable": true, @@ -252,7 +242,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 4, "id": "e850d223-3326-4afb-a500-d0c08b8ee624", "metadata": { "editable": true, @@ -267,7 +257,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "164f46af43da47e585b67b0441c5f581", + "model_id": "ee1aacc5566b405ab48ac49da4add14c", "version_major": 2, "version_minor": 0 }, @@ -281,12 +271,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e4fa62881a124369af70305b20d4f0b8", + "model_id": "431139b4f88641a3a80cee3235db7c1f", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "LayerToggleButtons(description='Layers', index=2, options=('coastline', 'countries', 'ocean'), value='ocean')" + "LayerToggleButtons(description='Layers', options=('coastline', 'countries', 'ocean'), value='coastline')" ] }, "metadata": {}, @@ -295,12 +285,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "606e15353d3d445e9028c33102c77134", + "model_id": "163f8312d4b546fb9eb3b73b3c012661", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "LayerDropdown(description='Layers', index=2, options=('coastline', 'countries', 'ocean'), value='ocean')" + "LayerDropdown(description='Layers', options=('coastline', 'countries', 'ocean'), value='coastline')" ] }, "metadata": {}, @@ -309,12 +299,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f1e9d00db02f488ca6623762b53ec557", + "model_id": "4308ea9e29e04146aeba2c68ea73fd9f", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "LayerRadioButtons(description='Layers', index=2, options=('coastline', 'countries', 'ocean'), value='ocean')" + "LayerRadioButtons(description='Layers', options=('coastline', 'countries', 'ocean'), value='coastline')" ] }, "metadata": {}, @@ -323,12 +313,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2ada39bb960b484988116bebd163af5d", + "model_id": "789270683f1a452c9b5543cfe1195b67", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "LayerSelect(description='Layers', index=2, options=('coastline', 'countries', 'ocean'), value='ocean')" + "LayerSelect(description='Layers', options=('coastline', 'countries', 'ocean'), value='coastline')" ] }, "metadata": {}, @@ -337,12 +327,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "baf9ae7c23fd425b89484f957216f938", + "model_id": "84bdcc50b5ed4df0b94ebef0cb76a411", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "LayerSelectMultiple(description='Layers', index=(2, 2), options=('coastline', 'countries', 'ocean'), value=('o…" + "LayerSelectMultiple(description='Layers', index=(0, 0), options=('coastline', 'countries', 'ocean'), value=('c…" ] }, "metadata": {}, @@ -351,12 +341,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fa503ca772e741b6892ff1a7ed14d7e6", + "model_id": "345aa2deda5f48528d1d41d37c7493d0", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "LayerSelectionSlider(description='Layers', index=2, options=('coastline', 'countries', 'ocean'), value='ocean'…" + "LayerSelectionSlider(description='Layers', options=('coastline', 'countries', 'ocean'), value='coastline')" ] }, "metadata": {}, @@ -365,12 +355,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "19af3d8fe4f2421795bc99922f729996", + "model_id": "daa83da3dd06453686e2907a45d9ff9a", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "LayerSelectionRangeSlider(description='Layers', index=(2, 2), options=('coastline', 'countries', 'ocean'), val…" + "LayerSelectionRangeSlider(description='Layers', index=(0, 0), options=('coastline', 'countries', 'ocean'), val…" ] }, "metadata": {}, @@ -401,7 +391,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 5, "id": "ad083853-4209-4a23-bf43-02fd0560f269", "metadata": { "editable": true, @@ -414,15 +404,15 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cd341ec83aa44d72ae512dcbe2f49ca5", + "model_id": "3c36bdd52c754e6ab403a9db7c1c0abc", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "LayerSelectMultiple(description='Layers', layout=Layout(height='80px', width='50%'), options=(('A nice coastli…" + "LayerSelectMultiple(description='Layers', index=(0, 0), layout=Layout(height='80px', width='50%'), options=(('…" ] }, - "execution_count": 13, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -431,8 +421,8 @@ "custom_selector = widgets.LayerSelectMultiple(\n", " m,\n", " layers=[[\"A nice coastline\", \"coastline\"], \n", - " [\"Overlay 'coastline' + 'ocean'\", (\"coast\", \"ocean\")],\n", - " [\"Transparent overlay: 'coastline' + 'ocean'\", (\"coast\", (\"ocean\", 0.4))]\n", + " [\"Overlay 'coastline' + 'ocean'\", (\"coastline\", \"ocean\")],\n", + " [\"Transparent overlay: 'coastline' + 'ocean'\", (\"coastline\", (\"ocean\", 0.4))]\n", " ],\n", " layout=dict(width='50%', height='80px', )\n", ")\n", @@ -441,7 +431,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 6, "id": "db03b116-c43b-4802-90d1-dcde8ca901cd", "metadata": { "editable": true, @@ -454,7 +444,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a05311ef3ad84756b6dd4002888c40d9", + "model_id": "3264fb21090f4896a2785c3aa9045aeb", "version_major": 2, "version_minor": 0 }, @@ -462,7 +452,7 @@ "LayerButton(description='Custom Ocean Button', layout=Layout(height='5ex', width='30ex'), style=ButtonStyle(bu…" ] }, - "execution_count": 14, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -497,164 +487,233 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00300632abc44177af6a49ff4a2a98f0": { + "163f8312d4b546fb9eb3b73b3c012661": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", + "model_name": "DropdownModel", "state": { - "description_width": "" + "_options_labels": [ + "coastline", + "countries", + "ocean" + ], + "description": "Layers", + "index": 0, + "layout": "IPY_MODEL_63820bfbf41c48959bc19c98e17acd9e", + "style": "IPY_MODEL_7f51856d7a1f45618ee30ab33f372fc1" } }, - "0ce486faa7784b48b8f139365dec99ca": { - "model_module": "@jupyter-widgets/base", + "1a6cf787eee04158b8d55254e055e8c7": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "DescriptionStyleModel", "state": { - "height": "80px", - "width": "50%" + "description_width": "" } }, - "0dade8feedc34cc6a91b0d868070b2df": { - "model_module": "@jupyter-widgets/base", + "3264fb21090f4896a2785c3aa9045aeb": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "ButtonModel", + "state": { + "description": "Custom Ocean Button", + "layout": "IPY_MODEL_5eca8b0f320847018f9b4f451e2f45e9", + "style": "IPY_MODEL_9e3bb8f55bc844b49453d8a5a20947a7", + "tooltip": null + } }, - "115be2e46de0423fb2ac5b8acf1fbb7e": { + "345aa2deda5f48528d1d41d37c7493d0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "VBoxModel", + "model_name": "SelectionSliderModel", "state": { - "children": [ - "IPY_MODEL_164f46af43da47e585b67b0441c5f581", - "IPY_MODEL_e4fa62881a124369af70305b20d4f0b8", - "IPY_MODEL_606e15353d3d445e9028c33102c77134", - "IPY_MODEL_f1e9d00db02f488ca6623762b53ec557", - "IPY_MODEL_2ada39bb960b484988116bebd163af5d", - "IPY_MODEL_baf9ae7c23fd425b89484f957216f938", - "IPY_MODEL_fa503ca772e741b6892ff1a7ed14d7e6", - "IPY_MODEL_19af3d8fe4f2421795bc99922f729996" + "_options_labels": [ + "coastline", + "countries", + "ocean" ], - "layout": "IPY_MODEL_d275741ab86c4716b54d3db5261c72ed" + "behavior": "drag-tap", + "description": "Layers", + "index": 0, + "layout": "IPY_MODEL_ca533057a7124d4db80fe7a0306d911b", + "style": "IPY_MODEL_44f195cde31f4c0a8be117dc6dd84470" } }, - "14c688d4b72f4e52a1134ae7de11cb54": { + "387cc68ca05b4f8e96cf0d13ee94262d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "164f46af43da47e585b67b0441c5f581": { + "3c36bdd52c754e6ab403a9db7c1c0abc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ButtonModel", + "model_name": "SelectMultipleModel", "state": { - "description": "ocean", - "layout": "IPY_MODEL_1a033d565947464999611c0471e301fa", - "style": "IPY_MODEL_2a04abc6fbc444dbaecb11f8f2f6e1e1", - "tooltip": null + "_options_labels": [ + "A nice coastline", + "Overlay 'coastline' + 'ocean'", + "Transparent overlay: 'coastline' + 'ocean'" + ], + "description": "Layers", + "index": [ + 0, + 0 + ], + "layout": "IPY_MODEL_9d6941c03ada408993a6c43f052e41dc", + "rows": 5, + "style": "IPY_MODEL_420aac90d2174a10a5d56b7ffec50065" } }, - "17fc2557567e45b3883019a036e0b00d": { + "420aac90d2174a10a5d56b7ffec50065": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "SelectionSliderModel", + "model_name": "DescriptionStyleModel", + "state": { + "description_width": "" + } + }, + "4308ea9e29e04146aeba2c68ea73fd9f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "RadioButtonsModel", "state": { "_options_labels": [ "coastline", "countries", "ocean" ], - "behavior": "drag-tap", "description": "Layers", "index": 0, - "layout": "IPY_MODEL_ed88c97c871c400eb67c5800165d41eb", - "style": "IPY_MODEL_f3453e1b3e484e5497ea80dfe30aa6e4" + "layout": "IPY_MODEL_6707c540258141829f0cc181f9f150e7", + "style": "IPY_MODEL_1a6cf787eee04158b8d55254e055e8c7" } }, - "19af3d8fe4f2421795bc99922f729996": { + "431139b4f88641a3a80cee3235db7c1f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "SelectionRangeSliderModel", + "model_name": "ToggleButtonsModel", "state": { - "_model_name": "SelectionRangeSliderModel", "_options_labels": [ "coastline", "countries", "ocean" ], - "_view_name": "SelectionRangeSliderView", - "behavior": "drag-tap", + "button_style": "", "description": "Layers", - "index": [ - 2, - 2 - ], - "layout": "IPY_MODEL_7e6bb04688dc4226956b31b27690167d", - "style": "IPY_MODEL_243adf05996e4d6ea4dfce0dd476aa14" + "icons": [], + "index": 0, + "layout": "IPY_MODEL_57559d47e8a947da8eceac480cb896db", + "style": "IPY_MODEL_d640dfafc6b749fd9916c2d2a6c1ca26", + "tooltips": [] + } + }, + "44f195cde31f4c0a8be117dc6dd84470": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "SliderStyleModel", + "state": { + "description_width": "" } }, - "1a033d565947464999611c0471e301fa": { + "4ada123c281e4940b1059f057edb8d8d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "1e1aaa7be9b843beb7a3eef272303d3b": { - "model_module": "@jupyter-widgets/controls", + "50eb528db6b945d485598abc11bb53ba": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", + "model_name": "LayoutModel", + "state": {} + }, + "57559d47e8a947da8eceac480cb896db": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "5eca8b0f320847018f9b4f451e2f45e9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", "state": { - "description_width": "" + "height": "5ex", + "width": "30ex" + } + }, + "63820bfbf41c48959bc19c98e17acd9e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "6707c540258141829f0cc181f9f150e7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "694500996a854fe58a1f1515952f1601": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "6dd2393cdf8548d481798d16f77300e4": { + "model_module": "jupyter-matplotlib", + "model_module_version": "^0.11", + "model_name": "MPLCanvasModel", + "state": { + "_data_url": "", + "_figure_label": "Figure 1", + "_image_mode": "diff", + "_model_module_version": "^0.11", + "_size": [ + 600, + 200 + ], + "_view_module_version": "^0.11", + "header_visible": false, + "layout": "IPY_MODEL_694500996a854fe58a1f1515952f1601", + "toolbar": "IPY_MODEL_845db07aa7554ae98e6804c0724d19a0", + "toolbar_position": "left" } }, - "24057ca6512a44468774840c821514ea": { + "789270683f1a452c9b5543cfe1195b67": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "SelectionRangeSliderModel", + "model_name": "SelectModel", "state": { - "_model_name": "SelectionRangeSliderModel", "_options_labels": [ "coastline", "countries", "ocean" ], - "_view_name": "SelectionRangeSliderView", - "behavior": "drag-tap", "description": "Layers", - "index": [ - 0, - 0 - ], - "layout": "IPY_MODEL_cef9f3584eea492ea4291952b85c5b6f", - "style": "IPY_MODEL_3d0641653f554e6c8fba757fdf214bc8" + "index": 0, + "layout": "IPY_MODEL_50eb528db6b945d485598abc11bb53ba", + "style": "IPY_MODEL_eae7166fee0f42cdbbcc09cd040700a6" } }, - "243adf05996e4d6ea4dfce0dd476aa14": { + "7f51856d7a1f45618ee30ab33f372fc1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", + "model_name": "DescriptionStyleModel", "state": { "description_width": "" } }, - "295aeaa6f44449c39950ec8eb7fe9ce4": { + "801655d3601a4adda911af4caf0c5445": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "SelectModel", + "model_name": "DescriptionStyleModel", "state": { - "_options_labels": [ - "coastline", - "countries", - "ocean" - ], - "description": "Layers", - "index": 0, - "layout": "IPY_MODEL_14c688d4b72f4e52a1134ae7de11cb54", - "style": "IPY_MODEL_888f64490ec24f118cf88b9ba47cc272" + "description_width": "" } }, - "29a656a721bd48539e239cf5b3ae39a9": { + "845db07aa7554ae98e6804c0724d19a0": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "ToolbarModel", @@ -662,7 +721,7 @@ "_model_module_version": "^0.11", "_view_module_version": "^0.11", "collapsed": true, - "layout": "IPY_MODEL_fd6cc8ab10e140748466899f69597333", + "layout": "IPY_MODEL_f328984079234a5da4d37157a377fe89", "orientation": "vertical", "toolitems": [ [ @@ -704,24 +763,10 @@ ] } }, - "2a04abc6fbc444dbaecb11f8f2f6e1e1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ButtonStyleModel", - "state": { - "font_family": null, - "font_size": null, - "font_style": null, - "font_variant": null, - "font_weight": null, - "text_color": null, - "text_decoration": null - } - }, - "2ada39bb960b484988116bebd163af5d": { + "84bdcc50b5ed4df0b94ebef0cb76a411": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "SelectModel", + "model_name": "SelectMultipleModel", "state": { "_options_labels": [ "coastline", @@ -729,619 +774,128 @@ "ocean" ], "description": "Layers", - "index": 2, - "layout": "IPY_MODEL_e6581233a5ec448b857e361d1b7dd45f", - "style": "IPY_MODEL_75b02b3ca94b458c8216fa9f6bde4dfc" + "index": [ + 0, + 0 + ], + "layout": "IPY_MODEL_387cc68ca05b4f8e96cf0d13ee94262d", + "rows": 5, + "style": "IPY_MODEL_801655d3601a4adda911af4caf0c5445" } }, - "30fbe7128e8a4153a26fa442b67d4a44": { + "9d6941c03ada408993a6c43f052e41dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { - "height": "5ex", - "width": "30ex" + "height": "80px", + "width": "50%" } }, - "36e83b6b2c3643beb802b3b72d160728": { - "model_module": "@jupyter-widgets/base", + "9e3bb8f55bc844b49453d8a5a20947a7": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ButtonStyleModel", "state": { - "height": "5ex", - "width": "30ex" + "button_color": "lightblue", + "font_family": null, + "font_size": "24px", + "font_style": null, + "font_variant": null, + "font_weight": "bold", + "text_color": null, + "text_decoration": null } }, - "37b20b04e65d442bbca89ee2f404f4c7": { + "baa4809a97924a2bad8ac9bfe03d884e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", + "model_name": "SliderStyleModel", "state": { "description_width": "" } }, - "38f9281338b44eadb3435cdaadfd0412": { + "ca533057a7124d4db80fe7a0306d911b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "d640dfafc6b749fd9916c2d2a6c1ca26": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", + "model_name": "ToggleButtonsStyleModel", "state": { + "button_width": "", "description_width": "" } }, - "39e2caf32668496c89f1b429719e1a0b": { + "daa83da3dd06453686e2907a45d9ff9a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ToggleButtonsModel", + "model_name": "SelectionRangeSliderModel", "state": { + "_model_name": "SelectionRangeSliderModel", "_options_labels": [ "coastline", "countries", "ocean" ], - "button_style": "", + "_view_name": "SelectionRangeSliderView", + "behavior": "drag-tap", "description": "Layers", - "icons": [], - "index": 0, - "layout": "IPY_MODEL_0dade8feedc34cc6a91b0d868070b2df", - "style": "IPY_MODEL_dc94da2387094ae59728897c307f02fc", - "tooltips": [] + "index": [ + 0, + 0 + ], + "layout": "IPY_MODEL_4ada123c281e4940b1059f057edb8d8d", + "style": "IPY_MODEL_baa4809a97924a2bad8ac9bfe03d884e" } }, - "3d0641653f554e6c8fba757fdf214bc8": { + "ea0e11655994470283a3052ce059c22b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", + "model_name": "ButtonStyleModel", "state": { - "description_width": "" + "font_family": null, + "font_size": null, + "font_style": null, + "font_variant": null, + "font_weight": null, + "text_color": null, + "text_decoration": null } }, - "4279d421c4454136aed1e8f51a49fdbd": { + "eae7166fee0f42cdbbcc09cd040700a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "SelectMultipleModel", + "model_name": "DescriptionStyleModel", "state": { - "_options_labels": [ - "A nice coastline", - "Overlay 'coastline' + 'ocean'", - "Transparent overlay: 'coastline' + 'ocean'" - ], - "description": "Layers", - "index": [], - "layout": "IPY_MODEL_0ce486faa7784b48b8f139365dec99ca", - "rows": 5, - "style": "IPY_MODEL_1e1aaa7be9b843beb7a3eef272303d3b" + "description_width": "" } }, - "53664dd0fd674aaf87ff8730b1429567": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "588b0e3129904a71b57e65de34bb9bec": { + "ee1aacc5566b405ab48ac49da4add14c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonModel", "state": { "description": "ocean", - "layout": "IPY_MODEL_eea7a30d36d84710951b1698169dfa3e", - "style": "IPY_MODEL_ff8be3ec300444f784616984a94d3b3b", + "layout": "IPY_MODEL_f9e401921a284d90b7377b49943d1029", + "style": "IPY_MODEL_ea0e11655994470283a3052ce059c22b", "tooltip": null } }, - "599293c026224217adb706a576bcb147": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "5b8b0272895040de84eee9721cd57bcd": { - "model_module": "@jupyter-widgets/controls", + "f328984079234a5da4d37157a377fe89": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } + "model_name": "LayoutModel", + "state": {} }, - "5e31ffd632114f29ad8f9796b1759a49": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "606e15353d3d445e9028c33102c77134": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "DropdownModel", - "state": { - "_options_labels": [ - "coastline", - "countries", - "ocean" - ], - "description": "Layers", - "index": 2, - "layout": "IPY_MODEL_b289ad147f1a4461bfccffd27ea37e2a", - "style": "IPY_MODEL_aca7e8c1fef84536b3e27cb22231f619" - } - }, - "615cda7c550840d794459343fecf2dd3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "height": "80px", - "width": "50%" - } - }, - "70da4a6e5d7d438eabbdac8d7b6b4a89": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "75b02b3ca94b458c8216fa9f6bde4dfc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "78e30f13a75c4c1ead4f75af341d7466": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ButtonModel", - "state": { - "description": "Custom Ocean Button", - "layout": "IPY_MODEL_30fbe7128e8a4153a26fa442b67d4a44", - "style": "IPY_MODEL_992fb18b8d764107bae5571b22b06607", - "tooltip": null - } - }, - "7e6bb04688dc4226956b31b27690167d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "836c14443b724a6aa4eaf6dc128ba33f": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "MPLCanvasModel", - "state": { - "_data_url": "", - "_figure_label": "Figure 1", - "_message": "-126, -29.38 (29.383301°S, 126.000000°W)", - "_model_module_version": "^0.11", - "_size": [ - 600, - 200 - ], - "_view_module_version": "^0.11", - "header_visible": false, - "layout": "IPY_MODEL_53664dd0fd674aaf87ff8730b1429567", - "toolbar": "IPY_MODEL_29a656a721bd48539e239cf5b3ae39a9", - "toolbar_position": "left" - } - }, - "85f26793c1fd4effbd94698845090a2d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ToggleButtonsStyleModel", - "state": { - "button_width": "", - "description_width": "" - } - }, - "888f64490ec24f118cf88b9ba47cc272": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "8a88833604ac44d1aff8edc6e0692541": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "8c21d03d7a70457d8baf173298bd1411": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "929b27c2f8734262a101ec792fe53df0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ButtonModel", - "state": { - "description": "Custom Ocean Button", - "layout": "IPY_MODEL_36e83b6b2c3643beb802b3b72d160728", - "style": "IPY_MODEL_f650197f759f42948ecbe7a82098fe34", - "tooltip": null - } - }, - "9359bad23e7644069c18f02976cb62bb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "95a0f5a02c9142d79113ab5c46ff6df4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "992fb18b8d764107bae5571b22b06607": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ButtonStyleModel", - "state": { - "button_color": "lightblue", - "font_family": null, - "font_size": "24px", - "font_style": null, - "font_variant": null, - "font_weight": "bold", - "text_color": null, - "text_decoration": null - } - }, - "9968216f831d4e17afa1b5b6f869ea27": { - "model_module": "@jupyter-widgets/base", + "f9e401921a284d90b7377b49943d1029": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} - }, - "9d41b593046347fb9ed041cdf4d7d758": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "RadioButtonsModel", - "state": { - "_options_labels": [ - "coastline", - "countries", - "ocean" - ], - "description": "Layers", - "index": 0, - "layout": "IPY_MODEL_ee70c8487d9b45219b27e449a69c35dd", - "style": "IPY_MODEL_e83045abddcd48caace63182a908a53e" - } - }, - "a05311ef3ad84756b6dd4002888c40d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ButtonModel", - "state": { - "description": "Custom Ocean Button", - "layout": "IPY_MODEL_debb82c087ae4960a6437aa14664b817", - "style": "IPY_MODEL_e906ce4f97794dada32f2a8d02839795", - "tooltip": null - } - }, - "a2bcfadd84004472b3ac00bc5f3f8049": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "height": "80px", - "width": "50%" - } - }, - "aca7e8c1fef84536b3e27cb22231f619": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "b289ad147f1a4461bfccffd27ea37e2a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "b2e44133c6d442558604370abe39e746": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SelectMultipleModel", - "state": { - "_options_labels": [ - "A nice coastline", - "Overlay 'coastline' + 'ocean'", - "Transparent overlay: 'coastline' + 'ocean'" - ], - "description": "Layers", - "index": [], - "layout": "IPY_MODEL_a2bcfadd84004472b3ac00bc5f3f8049", - "rows": 5, - "style": "IPY_MODEL_5b8b0272895040de84eee9721cd57bcd" - } - }, - "b7a430ea9fae4ab39ee32efda638ba62": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_588b0e3129904a71b57e65de34bb9bec", - "IPY_MODEL_39e2caf32668496c89f1b429719e1a0b", - "IPY_MODEL_bedb8bdd542c4d36b160a7e8ac747553", - "IPY_MODEL_9d41b593046347fb9ed041cdf4d7d758", - "IPY_MODEL_295aeaa6f44449c39950ec8eb7fe9ce4", - "IPY_MODEL_e5279598198f43849dacbcba7e750918", - "IPY_MODEL_17fc2557567e45b3883019a036e0b00d", - "IPY_MODEL_24057ca6512a44468774840c821514ea" - ], - "layout": "IPY_MODEL_d9a61c6dc2a842e987167dcb44008d89" - } - }, - "baf9ae7c23fd425b89484f957216f938": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SelectMultipleModel", - "state": { - "_options_labels": [ - "coastline", - "countries", - "ocean" - ], - "description": "Layers", - "index": [ - 2, - 2 - ], - "layout": "IPY_MODEL_95a0f5a02c9142d79113ab5c46ff6df4", - "rows": 5, - "style": "IPY_MODEL_00300632abc44177af6a49ff4a2a98f0" - } - }, - "bedb8bdd542c4d36b160a7e8ac747553": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "DropdownModel", - "state": { - "_options_labels": [ - "coastline", - "countries", - "ocean" - ], - "description": "Layers", - "index": 0, - "layout": "IPY_MODEL_dadac6e8be4b495e9e2d4bbe8efe1717", - "style": "IPY_MODEL_8a88833604ac44d1aff8edc6e0692541" - } - }, - "cd341ec83aa44d72ae512dcbe2f49ca5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SelectMultipleModel", - "state": { - "_options_labels": [ - "A nice coastline", - "Overlay 'coastline' + 'ocean'", - "Transparent overlay: 'coastline' + 'ocean'" - ], - "description": "Layers", - "index": [], - "layout": "IPY_MODEL_615cda7c550840d794459343fecf2dd3", - "rows": 5, - "style": "IPY_MODEL_599293c026224217adb706a576bcb147" - } - }, - "cef9f3584eea492ea4291952b85c5b6f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "d275741ab86c4716b54d3db5261c72ed": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "d9a61c6dc2a842e987167dcb44008d89": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "dadac6e8be4b495e9e2d4bbe8efe1717": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "dc94da2387094ae59728897c307f02fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ToggleButtonsStyleModel", - "state": { - "button_width": "", - "description_width": "" - } - }, - "debb82c087ae4960a6437aa14664b817": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "height": "5ex", - "width": "30ex" - } - }, - "e4fa62881a124369af70305b20d4f0b8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ToggleButtonsModel", - "state": { - "_options_labels": [ - "coastline", - "countries", - "ocean" - ], - "button_style": "", - "description": "Layers", - "icons": [], - "index": 2, - "layout": "IPY_MODEL_8c21d03d7a70457d8baf173298bd1411", - "style": "IPY_MODEL_85f26793c1fd4effbd94698845090a2d", - "tooltips": [] - } - }, - "e5279598198f43849dacbcba7e750918": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SelectMultipleModel", - "state": { - "_options_labels": [ - "coastline", - "countries", - "ocean" - ], - "description": "Layers", - "index": [], - "layout": "IPY_MODEL_70da4a6e5d7d438eabbdac8d7b6b4a89", - "rows": 5, - "style": "IPY_MODEL_37b20b04e65d442bbca89ee2f404f4c7" - } - }, - "e6581233a5ec448b857e361d1b7dd45f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "e83045abddcd48caace63182a908a53e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "e906ce4f97794dada32f2a8d02839795": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ButtonStyleModel", - "state": { - "button_color": "lightblue", - "font_family": null, - "font_size": "24px", - "font_style": null, - "font_variant": null, - "font_weight": "bold", - "text_color": null, - "text_decoration": null - } - }, - "ed88c97c871c400eb67c5800165d41eb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "ee70c8487d9b45219b27e449a69c35dd": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "eea7a30d36d84710951b1698169dfa3e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "f1e9d00db02f488ca6623762b53ec557": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "RadioButtonsModel", - "state": { - "_options_labels": [ - "coastline", - "countries", - "ocean" - ], - "description": "Layers", - "index": 2, - "layout": "IPY_MODEL_9968216f831d4e17afa1b5b6f869ea27", - "style": "IPY_MODEL_38f9281338b44eadb3435cdaadfd0412" - } - }, - "f3453e1b3e484e5497ea80dfe30aa6e4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "f650197f759f42948ecbe7a82098fe34": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ButtonStyleModel", - "state": { - "button_color": "lightblue", - "font_family": null, - "font_size": "24px", - "font_style": null, - "font_variant": null, - "font_weight": "bold", - "text_color": null, - "text_decoration": null - } - }, - "fa503ca772e741b6892ff1a7ed14d7e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SelectionSliderModel", - "state": { - "_options_labels": [ - "coastline", - "countries", - "ocean" - ], - "behavior": "drag-tap", - "description": "Layers", - "index": 2, - "layout": "IPY_MODEL_9359bad23e7644069c18f02976cb62bb", - "style": "IPY_MODEL_5e31ffd632114f29ad8f9796b1759a49" - } - }, - "fd6cc8ab10e140748466899f69597333": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "ff8be3ec300444f784616984a94d3b3b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ButtonStyleModel", - "state": { - "font_family": null, - "font_size": null, - "font_style": null, - "font_variant": null, - "font_weight": null, - "text_color": null, - "text_decoration": null - } } }, "version_major": 2, From f0ab726ef927ab2d3a2386dfaca9bdc0f00d5a90 Mon Sep 17 00:00:00 2001 From: Raphael Date: Sat, 9 Mar 2024 14:05:48 +0100 Subject: [PATCH 226/240] fix widget unittests --- tests/test_widgets.py | 21 +++++++++++++++------ 1 file changed, 15 insertions(+), 6 deletions(-) diff --git a/tests/test_widgets.py b/tests/test_widgets.py index 751488eac..85f111a56 100644 --- a/tests/test_widgets.py +++ b/tests/test_widgets.py @@ -26,8 +26,8 @@ def test_selector_widgets(widget, use_layers): m = Maps(layer="all") m.add_feature.preset.coastline(layer="coast") m.add_feature.preset.ocean(layer="ocean") + # show a layer that is part of the available visible layers m.show_layer("coast") - w = widget(m, layers=use_layers) layers = w._layers @@ -62,7 +62,12 @@ def test_selector_widgets(widget, use_layers): found_layer = m.BM.bg_layer if widget in (widgets.LayerSelectMultiple,): - expected_layer = m.BM._get_combined_layer_name(layers[0], layers[i]) + if layers[i] == found_layer: + # TODO if the layer is already active, it will not be changed and + # so the expected layer is NOT an overlay! + expected_layer = layers[i] + else: + expected_layer = m.BM._get_combined_layer_name(layers[0], layers[i]) elif widget in (widgets.LayerSelectionRangeSlider,): expected_layer = m.BM._get_combined_layer_name(*layers[0 : i + 1]) else: @@ -136,10 +141,14 @@ def test_overlay_widgets(widget): for val in [0.0, 0.25, 0.5, 0.75, 1.0]: state["value"] = val w.set_state(state) - - assert m.BM.bg_layer == m.BM._get_combined_layer_name( - "coast", ("ocean", val) - ), "Overlay not properly assigned" + if val > 0: + expected = m.BM._get_combined_layer_name("coast", ("ocean", val)) + else: + expected = "coast" + found = m.BM.bg_layer + assert ( + found == expected + ), f"Overlay not properly assigned, expected {expected}, found {found}" @pytest.mark.parametrize( From 64b7b86d6431dbb37a4a9577b8d1a99f91348d7f Mon Sep 17 00:00:00 2001 From: Raphael Date: Sat, 9 Mar 2024 15:35:36 +0100 Subject: [PATCH 227/240] update docs --- docs/notebooks/widgets.ipynb | 907 ++++++++++++++++++++++++++--------- 1 file changed, 678 insertions(+), 229 deletions(-) diff --git a/docs/notebooks/widgets.ipynb b/docs/notebooks/widgets.ipynb index f81933a58..1c4d7180a 100644 --- a/docs/notebooks/widgets.ipynb +++ b/docs/notebooks/widgets.ipynb @@ -34,25 +34,36 @@ "\n", "
    \n", "\n", - "EOmaps provides a set of pre-configured [Jupyter Widgets](https://ipywidgets.readthedocs.io) that can be used to create interactive browser controls for a map. \n", + "EOmaps provides a set of pre-configured [Jupyter Widgets][jupyter_widgets] that can be used to create interactive browser controls for a map. \n", "\n", - "These widgets work just like any other [Jupyter Widgets](https://ipywidgets.readthedocs.io), but they have a pre-configured handler to perform commonly used tasks (switching layers, overlay layers, add/remove callbacks etc.)\n", + "These widgets work just like any other [Jupyter Widgets][jupyter_widgets], but they have a pre-configured handler to perform commonly used tasks (switching layers, overlay layers, add/remove callbacks etc.)\n", "\n", "\n", - ":::{note}\n", + ":::::{note}\n", "\n", - "Widgets are **only for Jupyter Notebooks** and require the additional dependencies: `ipywidgets` and `ipympl`\n", + "Widgets are intended for **Jupyter Notebooks** and require the additional dependencies: `ipywidgets` and `ipympl`. \n", + "They will only work if you use the interactive [ipympl (widget) backend][ipympl]. To activate, use the ``%matplotlib widget`` magic command.\n", + "\n", + "You can install the required additional dependencies with one of the following commands:\n", + "::::{grid} 1 1 2 2\n", + "\n", + "::: {grid-item-card}\n", "\n", - "You can install it with `pip`:\n", "```\n", "pip install ipywidgets, ipympl\n", "```\n", + ":::\n", + "::: {grid-item-card}\n", "\n", - "or with `conda`:\n", "```\n", - "conda install -c conda-forge ipywidgets, ipympl\n", + "mamba install -c conda-forge ipywidgets, ipympl\n", "```\n", - ":::" + ":::\n", + "::::\n", + ":::::\n", + "\n", + "[jupyter_widgets]: https://ipywidgets.readthedocs.io\n", + "[ipympl]: https://matplotlib.org/ipympl/" ] }, { @@ -66,9 +77,12 @@ "tags": [] }, "source": [ - "**The following pre-defined widgets exist:**\n", + "## Layer selector widgets\n", "\n", - ":::{dropdown} Widgets to change the visible layer\n", + "Layer selector widgets can be used to change the visible layer of a map.\n", + "\n", + ":::{dropdown} Available widgets\n", + ":open:\n", "\n", "```{eval-rst}\n", "\n", @@ -100,39 +114,6 @@ " LayerOverlaySlider\n", "\n", "```\n", - ":::\n", - "\n", - "\n", - "\n", - ":::{dropdown} Widgets to attach callbacks\n", - "\n", - "```{eval-rst}\n", - "\n", - ".. currentmodule:: eomaps.widgets\n", - "\n", - ".. autosummary:: \n", - " :nosignatures:\n", - " \n", - " ClickAnnotateCheckbox\n", - " ClickMarkCheckbox\n", - " ClickPrintToConsoleCheckbox\n", - " ClickPeekLayerCheckbox\n", - "\n", - "\n", - ".. autosummary:: \n", - " :nosignatures:\n", - " \n", - " ClickMarkCheckbox\n", - " ClickPrintToConsoleCheckbox\n", - "\n", - "\n", - ".. autosummary:: \n", - " :nosignatures:\n", - " \n", - " PickAnnotateCheckbox\n", - " PickMarkCheckbox\n", - " PickPrintToConsoleCheckbox\n", - "\n", ":::" ] }, @@ -147,10 +128,18 @@ "tags": [] }, "source": [ - "## How to use the widgets\n", + "### How to use the widgets\n", + "\n", + "To attach a widget to a map, all you need to do is to pass the associated [`Maps`](eomaps.Maps) object as first argument on initialization.\n", + "(e.g. use ``Widget(m)`` to connect the widget to the [`Maps`](eomaps.Maps) object `m`)\n", "\n", - "To attach a widget to a map, simply initialize the widget and pass the associated [`Maps`](eomaps.Maps) object as first argument.\n", - "(e.g. use ``Widget(m)`` to connect the widget to the [`Maps`](eomaps.Maps) object `m`)" + "In addition to the ipywidget-arguments, they support the following (optional) arguments:\n", + "\n", + "- `layers`: A list of layer specs `[, , ...]` to use in the widget. \n", + " ``can be one of:\n", + " - A single layer-name `\"layer_name\"` or a tuple `(\"layer_name\", transparency)`\n", + " - A tuple of multiple layer-names (and/or transparencies): `(\"layer_name_1\", (\"layer_name_2\", 0.5), ...)`\n", + " - A list of a custom labels and a layer-assignments: `[\"Custom label\", ]`\n" ] }, { @@ -182,7 +171,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6dd2393cdf8548d481798d16f77300e4", + "model_id": "99d887fccb6f4b28a3d2fe017be66bc7", "version_major": 2, "version_minor": 0 }, @@ -257,7 +246,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ee1aacc5566b405ab48ac49da4add14c", + "model_id": "5963a322be874b7285b134e363a42dd0", "version_major": 2, "version_minor": 0 }, @@ -271,7 +260,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "431139b4f88641a3a80cee3235db7c1f", + "model_id": "49aaf254026b42bc86aec1bf5529148c", "version_major": 2, "version_minor": 0 }, @@ -285,7 +274,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "163f8312d4b546fb9eb3b73b3c012661", + "model_id": "3829d1590c57486fa56eecad03bd2a16", "version_major": 2, "version_minor": 0 }, @@ -299,7 +288,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4308ea9e29e04146aeba2c68ea73fd9f", + "model_id": "bf43a1843d6e4f4cadf382206fbf0b67", "version_major": 2, "version_minor": 0 }, @@ -313,7 +302,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "789270683f1a452c9b5543cfe1195b67", + "model_id": "91f88e3c4bb3462f90fb519638dd4a87", "version_major": 2, "version_minor": 0 }, @@ -327,7 +316,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "84bdcc50b5ed4df0b94ebef0cb76a411", + "model_id": "093f0f04d98d4754b7d373a630e7117d", "version_major": 2, "version_minor": 0 }, @@ -341,7 +330,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "345aa2deda5f48528d1d41d37c7493d0", + "model_id": "c1c2ea2326854314a933c8f0e25531ee", "version_major": 2, "version_minor": 0 }, @@ -355,7 +344,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "daa83da3dd06453686e2907a45d9ff9a", + "model_id": "7a1d940e65414230a4b1c301400125e3", "version_major": 2, "version_minor": 0 }, @@ -404,7 +393,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3c36bdd52c754e6ab403a9db7c1c0abc", + "model_id": "8b09d257580f4326b116e126849d1ead", "version_major": 2, "version_minor": 0 }, @@ -444,7 +433,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3264fb21090f4896a2785c3aa9045aeb", + "model_id": "c57b0de32084445e8425589b7810334c", "version_major": 2, "version_minor": 0 }, @@ -464,6 +453,232 @@ "custom_button.style.font_size = '24px'\n", "custom_button" ] + }, + { + "cell_type": "markdown", + "id": "95d96081-6fea-4c50-9755-089c53517eed", + "metadata": {}, + "source": [ + "## Callback Widgets\n", + "\n", + "Callback widgets are used to toggle callbacks on a map.\n", + "\n", + ":::{dropdown} Available Widgets:\n", + ":open:\n", + "\n", + "```{eval-rst}\n", + "\n", + ".. currentmodule:: eomaps.widgets\n", + "\n", + ".. autosummary:: \n", + " :nosignatures:\n", + " \n", + " ClickAnnotateCheckbox\n", + " ClickMarkCheckbox\n", + " ClickPrintToConsoleCheckbox\n", + " ClickPeekLayerCheckbox\n", + "\n", + "\n", + ".. autosummary:: \n", + " :nosignatures:\n", + " \n", + " ClickMarkCheckbox\n", + " ClickPrintToConsoleCheckbox\n", + "\n", + "\n", + ".. autosummary:: \n", + " :nosignatures:\n", + " \n", + " PickAnnotateCheckbox\n", + " PickMarkCheckbox\n", + " PickPrintToConsoleCheckbox\n", + "\n", + ":::" + ] + }, + { + "cell_type": "markdown", + "id": "d310fcf8-96f1-461c-81d1-cbde4ed4fd5b", + "metadata": {}, + "source": [ + "### How to use the widgets\n", + "\n", + "To attach a widget to a map, all you need to do is to pass the associated [`Maps`](eomaps.Maps) object as first argument on initialization.\n", + "(e.g. use ``Widget(m)`` to connect the widget to the [`Maps`](eomaps.Maps) object `m`)\n", + "\n", + "All additional arguments will be passed to the corresponding callback (e.g. `m.cb.< METHOD >.attach.< NAME >(**kwargs)`)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "bd38b152-7397-4b23-853b-43bbd78862ec", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "checkboxes = [\n", + " widgets.ClickAnnotateCheckbox(m),\n", + " widgets.ClickMarkCheckbox(m),\n", + " widgets.ClickPrintToConsoleCheckbox(m),\n", + " widgets.ClickPeekLayerCheckbox(m, layer=\"ocean\"),\n", + " widgets.ClickMarkCheckbox(m),\n", + " widgets.ClickPrintToConsoleCheckbox(m),\n", + " widgets.PickAnnotateCheckbox(m),\n", + " widgets.PickMarkCheckbox(m),\n", + " widgets.PickPrintToConsoleCheckbox(m)\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "86b55c35-9aba-49ee-ad77-ab896eecb4d5", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "ignore_in_unittest" + ] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0938d8245dad433b8a5e03ae6fb19ff6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "ClickAnnotateCheckbox(value=False, description='Annotate (Click)')" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ec612033fef64cfa8d8baefc22baf174", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "ClickMarkCheckbox(value=False, description='Mark (Click)')" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "69702c1f082541eb93fcc53cd15822b3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "ClickPrintToConsoleCheckbox(value=False, description='Print (Click)')" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bc5d22ca64854b5bbfa46493e1c59e51", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "ClickPeekLayerCheckbox(value=False, description=\"Peek Layer: 'ocean'\")" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2ea35b6ea0f84c35870b7389dfaf51f9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "ClickMarkCheckbox(value=False, description='Mark (Click)')" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8cd9d5f586a847cca584d82295927469", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "ClickPrintToConsoleCheckbox(value=False, description='Print (Click)')" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2bedf102d4504168a8c63897b4ebb849", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "PickAnnotateCheckbox(value=False, description='Annotate (Pick)')" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8703f5936a0f4baebd83e6b13f7d902d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "PickMarkCheckbox(value=False, description='Mark (Pick)')" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bb03d7521b124917882e8ccb98f63a99", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "PickPrintToConsoleCheckbox(value=False, description='Print (Pick)')" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "display(*checkboxes)" + ] } ], "metadata": { @@ -487,23 +702,21 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "163f8312d4b546fb9eb3b73b3c012661": { + "0028a24996e14a838008e71290b9bcb2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DropdownModel", + "model_name": "CheckboxStyleModel", "state": { - "_options_labels": [ - "coastline", - "countries", - "ocean" - ], - "description": "Layers", - "index": 0, - "layout": "IPY_MODEL_63820bfbf41c48959bc19c98e17acd9e", - "style": "IPY_MODEL_7f51856d7a1f45618ee30ab33f372fc1" + "description_width": "" } }, - "1a6cf787eee04158b8d55254e055e8c7": { + "00bc30ab507948ccad518593e9a6a940": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "037feca29b864171b2328e280aac315b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", @@ -511,193 +724,187 @@ "description_width": "" } }, - "3264fb21090f4896a2785c3aa9045aeb": { + "077c1cfa068648b9b6d99d3aedf6cd90": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "0938d8245dad433b8a5e03ae6fb19ff6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ButtonModel", + "model_name": "CheckboxModel", "state": { - "description": "Custom Ocean Button", - "layout": "IPY_MODEL_5eca8b0f320847018f9b4f451e2f45e9", - "style": "IPY_MODEL_9e3bb8f55bc844b49453d8a5a20947a7", - "tooltip": null + "description": "Annotate (Click)", + "disabled": false, + "layout": "IPY_MODEL_077c1cfa068648b9b6d99d3aedf6cd90", + "style": "IPY_MODEL_3d323f6ca0ca40fcbc91a7607b3417d2", + "value": false } }, - "345aa2deda5f48528d1d41d37c7493d0": { + "093f0f04d98d4754b7d373a630e7117d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "SelectionSliderModel", + "model_name": "SelectMultipleModel", "state": { "_options_labels": [ "coastline", "countries", "ocean" ], - "behavior": "drag-tap", "description": "Layers", - "index": 0, - "layout": "IPY_MODEL_ca533057a7124d4db80fe7a0306d911b", - "style": "IPY_MODEL_44f195cde31f4c0a8be117dc6dd84470" + "index": [ + 0, + 0 + ], + "layout": "IPY_MODEL_216bce4b4b354b22a32d5be56b552272", + "rows": 5, + "style": "IPY_MODEL_037feca29b864171b2328e280aac315b" } }, - "387cc68ca05b4f8e96cf0d13ee94262d": { + "0e52d68648484afaba0ab62e3d9a8296": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "3c36bdd52c754e6ab403a9db7c1c0abc": { - "model_module": "@jupyter-widgets/controls", + "216bce4b4b354b22a32d5be56b552272": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "SelectMultipleModel", - "state": { - "_options_labels": [ - "A nice coastline", - "Overlay 'coastline' + 'ocean'", - "Transparent overlay: 'coastline' + 'ocean'" - ], - "description": "Layers", - "index": [ - 0, - 0 - ], - "layout": "IPY_MODEL_9d6941c03ada408993a6c43f052e41dc", - "rows": 5, - "style": "IPY_MODEL_420aac90d2174a10a5d56b7ffec50065" + "model_name": "LayoutModel", + "state": {} + }, + "233a9266bd134c219fce583977a7fd87": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "2b37a44198cd464986280c4231e2c696": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "2bedf102d4504168a8c63897b4ebb849": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "CheckboxModel", + "state": { + "description": "Annotate (Pick)", + "disabled": false, + "layout": "IPY_MODEL_233a9266bd134c219fce583977a7fd87", + "style": "IPY_MODEL_0028a24996e14a838008e71290b9bcb2", + "value": false } }, - "420aac90d2174a10a5d56b7ffec50065": { + "2ce29f4189e646af8f81f1d92fbd185a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", + "model_name": "SliderStyleModel", "state": { "description_width": "" } }, - "4308ea9e29e04146aeba2c68ea73fd9f": { + "2ea35b6ea0f84c35870b7389dfaf51f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "RadioButtonsModel", + "model_name": "CheckboxModel", "state": { - "_options_labels": [ - "coastline", - "countries", - "ocean" - ], - "description": "Layers", - "index": 0, - "layout": "IPY_MODEL_6707c540258141829f0cc181f9f150e7", - "style": "IPY_MODEL_1a6cf787eee04158b8d55254e055e8c7" + "description": "Mark (Click)", + "disabled": false, + "layout": "IPY_MODEL_88cb24f890f04d1bb78598e2c5587a7a", + "style": "IPY_MODEL_8fb596386ea04073b560bf6e05ef2671", + "value": false } }, - "431139b4f88641a3a80cee3235db7c1f": { + "312b2235cef844948d6bb11b96428112": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "3829d1590c57486fa56eecad03bd2a16": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ToggleButtonsModel", + "model_name": "DropdownModel", "state": { "_options_labels": [ "coastline", "countries", "ocean" ], - "button_style": "", "description": "Layers", - "icons": [], "index": 0, - "layout": "IPY_MODEL_57559d47e8a947da8eceac480cb896db", - "style": "IPY_MODEL_d640dfafc6b749fd9916c2d2a6c1ca26", - "tooltips": [] + "layout": "IPY_MODEL_e7d976321c7a47d187070f2f0c3577b6", + "style": "IPY_MODEL_4ed61cc51bba4b6f9c25ee7da5ab5830" } }, - "44f195cde31f4c0a8be117dc6dd84470": { + "3a69d5b4adbb40e093ebea8b8c11ef05": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", + "model_name": "CheckboxStyleModel", "state": { "description_width": "" } }, - "4ada123c281e4940b1059f057edb8d8d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "50eb528db6b945d485598abc11bb53ba": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "57559d47e8a947da8eceac480cb896db": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "5eca8b0f320847018f9b4f451e2f45e9": { - "model_module": "@jupyter-widgets/base", + "3c45ad832a46489e8793aa176adfb25d": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ButtonStyleModel", "state": { - "height": "5ex", - "width": "30ex" + "button_color": "lightblue", + "font_family": null, + "font_size": "24px", + "font_style": null, + "font_variant": null, + "font_weight": "bold", + "text_color": null, + "text_decoration": null } }, - "63820bfbf41c48959bc19c98e17acd9e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "6707c540258141829f0cc181f9f150e7": { - "model_module": "@jupyter-widgets/base", + "3c9b6867ea884204a99a59b55ea3cf00": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "CheckboxStyleModel", + "state": { + "description_width": "" + } }, - "694500996a854fe58a1f1515952f1601": { - "model_module": "@jupyter-widgets/base", + "3d323f6ca0ca40fcbc91a7607b3417d2": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "6dd2393cdf8548d481798d16f77300e4": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "MPLCanvasModel", + "model_name": "CheckboxStyleModel", "state": { - "_data_url": "", - "_figure_label": "Figure 1", - "_image_mode": "diff", - "_model_module_version": "^0.11", - "_size": [ - 600, - 200 - ], - "_view_module_version": "^0.11", - "header_visible": false, - "layout": "IPY_MODEL_694500996a854fe58a1f1515952f1601", - "toolbar": "IPY_MODEL_845db07aa7554ae98e6804c0724d19a0", - "toolbar_position": "left" + "description_width": "" } }, - "789270683f1a452c9b5543cfe1195b67": { + "49aaf254026b42bc86aec1bf5529148c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "SelectModel", + "model_name": "ToggleButtonsModel", "state": { "_options_labels": [ "coastline", "countries", "ocean" ], + "button_style": "", "description": "Layers", + "icons": [], "index": 0, - "layout": "IPY_MODEL_50eb528db6b945d485598abc11bb53ba", - "style": "IPY_MODEL_eae7166fee0f42cdbbcc09cd040700a6" + "layout": "IPY_MODEL_312b2235cef844948d6bb11b96428112", + "style": "IPY_MODEL_c08be7d55b764c97a5b4a927f0aab480", + "tooltips": [] } }, - "7f51856d7a1f45618ee30ab33f372fc1": { + "4d5c4e9c87044ab8b2e6b261570b3ceb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "4ed61cc51bba4b6f9c25ee7da5ab5830": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", @@ -705,15 +912,36 @@ "description_width": "" } }, - "801655d3601a4adda911af4caf0c5445": { + "54746a1718eb453a898df569f0174aab": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "5963a322be874b7285b134e363a42dd0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", + "model_name": "ButtonModel", "state": { - "description_width": "" + "description": "ocean", + "layout": "IPY_MODEL_0e52d68648484afaba0ab62e3d9a8296", + "style": "IPY_MODEL_a57320657cbb466686a21547bcfcb7f4", + "tooltip": null + } + }, + "69702c1f082541eb93fcc53cd15822b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "CheckboxModel", + "state": { + "description": "Print (Click)", + "disabled": false, + "layout": "IPY_MODEL_4d5c4e9c87044ab8b2e6b261570b3ceb", + "style": "IPY_MODEL_3a69d5b4adbb40e093ebea8b8c11ef05", + "value": false } }, - "845db07aa7554ae98e6804c0724d19a0": { + "6ec1a07caa1441b4a374ffb672dbc42d": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "ToolbarModel", @@ -721,7 +949,7 @@ "_model_module_version": "^0.11", "_view_module_version": "^0.11", "collapsed": true, - "layout": "IPY_MODEL_f328984079234a5da4d37157a377fe89", + "layout": "IPY_MODEL_00bc30ab507948ccad518593e9a6a940", "orientation": "vertical", "toolitems": [ [ @@ -763,96 +991,165 @@ ] } }, - "84bdcc50b5ed4df0b94ebef0cb76a411": { + "7a1d940e65414230a4b1c301400125e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "SelectMultipleModel", + "model_name": "SelectionRangeSliderModel", "state": { + "_model_name": "SelectionRangeSliderModel", "_options_labels": [ "coastline", "countries", "ocean" ], + "_view_name": "SelectionRangeSliderView", + "behavior": "drag-tap", "description": "Layers", "index": [ 0, 0 ], - "layout": "IPY_MODEL_387cc68ca05b4f8e96cf0d13ee94262d", - "rows": 5, - "style": "IPY_MODEL_801655d3601a4adda911af4caf0c5445" + "layout": "IPY_MODEL_fe6eab90964041c0944b6ab5c432bb7b", + "style": "IPY_MODEL_2ce29f4189e646af8f81f1d92fbd185a" } }, - "9d6941c03ada408993a6c43f052e41dc": { + "7cd801af1c0d439cb69d0b1191c3935a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", + "state": {} + }, + "8703f5936a0f4baebd83e6b13f7d902d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "CheckboxModel", "state": { - "height": "80px", - "width": "50%" + "description": "Mark (Pick)", + "disabled": false, + "layout": "IPY_MODEL_94397c48bb214e7cb99fb41c90f52b3c", + "style": "IPY_MODEL_8f612516e99e467a89f4e0b4de20a269", + "value": false } }, - "9e3bb8f55bc844b49453d8a5a20947a7": { + "88cb24f890f04d1bb78598e2c5587a7a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "8b09d257580f4326b116e126849d1ead": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ButtonStyleModel", + "model_name": "SelectMultipleModel", "state": { - "button_color": "lightblue", - "font_family": null, - "font_size": "24px", - "font_style": null, - "font_variant": null, - "font_weight": "bold", - "text_color": null, - "text_decoration": null + "_options_labels": [ + "A nice coastline", + "Overlay 'coastline' + 'ocean'", + "Transparent overlay: 'coastline' + 'ocean'" + ], + "description": "Layers", + "index": [ + 0, + 0 + ], + "layout": "IPY_MODEL_fa7f86784e494ab0b9adc0647e3af421", + "rows": 5, + "style": "IPY_MODEL_976d70abbd6e4dc0b195fc5bc32b89c7" } }, - "baa4809a97924a2bad8ac9bfe03d884e": { + "8cd9d5f586a847cca584d82295927469": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", + "model_name": "CheckboxModel", "state": { - "description_width": "" + "description": "Print (Click)", + "disabled": false, + "layout": "IPY_MODEL_cefd66b415754aed8fd1eee24c774a93", + "style": "IPY_MODEL_be8a98ae295842dda1fe03c82c074466", + "value": false } }, - "ca533057a7124d4db80fe7a0306d911b": { + "8f3e5de490d0452fbe073ccfcaed4944": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "d640dfafc6b749fd9916c2d2a6c1ca26": { + "8f612516e99e467a89f4e0b4de20a269": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ToggleButtonsStyleModel", + "model_name": "CheckboxStyleModel", "state": { - "button_width": "", "description_width": "" } }, - "daa83da3dd06453686e2907a45d9ff9a": { + "8fb596386ea04073b560bf6e05ef2671": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "SelectionRangeSliderModel", + "model_name": "CheckboxStyleModel", + "state": { + "description_width": "" + } + }, + "91f88e3c4bb3462f90fb519638dd4a87": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "SelectModel", "state": { - "_model_name": "SelectionRangeSliderModel", "_options_labels": [ "coastline", "countries", "ocean" ], - "_view_name": "SelectionRangeSliderView", - "behavior": "drag-tap", "description": "Layers", - "index": [ - 0, - 0 + "index": 0, + "layout": "IPY_MODEL_8f3e5de490d0452fbe073ccfcaed4944", + "style": "IPY_MODEL_c4db2dba731240b0a64c2927785a2389" + } + }, + "92c194570f514acca8e4656838b8a4b2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "DescriptionStyleModel", + "state": { + "description_width": "" + } + }, + "94397c48bb214e7cb99fb41c90f52b3c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "976d70abbd6e4dc0b195fc5bc32b89c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "DescriptionStyleModel", + "state": { + "description_width": "" + } + }, + "99d887fccb6f4b28a3d2fe017be66bc7": { + "model_module": "jupyter-matplotlib", + "model_module_version": "^0.11", + "model_name": "MPLCanvasModel", + "state": { + "_data_url": "", + "_figure_label": "Figure 1", + "_image_mode": "diff", + "_model_module_version": "^0.11", + "_size": [ + 600, + 200 ], - "layout": "IPY_MODEL_4ada123c281e4940b1059f057edb8d8d", - "style": "IPY_MODEL_baa4809a97924a2bad8ac9bfe03d884e" + "_view_module_version": "^0.11", + "header_visible": false, + "layout": "IPY_MODEL_b6aceac49f614c068563c48e88d5db1f", + "toolbar": "IPY_MODEL_6ec1a07caa1441b4a374ffb672dbc42d", + "toolbar_position": "left" } }, - "ea0e11655994470283a3052ce059c22b": { + "a57320657cbb466686a21547bcfcb7f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonStyleModel", @@ -866,7 +1163,87 @@ "text_decoration": null } }, - "eae7166fee0f42cdbbcc09cd040700a6": { + "b6aceac49f614c068563c48e88d5db1f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "bb03d7521b124917882e8ccb98f63a99": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "CheckboxModel", + "state": { + "description": "Print (Pick)", + "disabled": false, + "layout": "IPY_MODEL_7cd801af1c0d439cb69d0b1191c3935a", + "style": "IPY_MODEL_3c9b6867ea884204a99a59b55ea3cf00", + "value": false + } + }, + "bc5d22ca64854b5bbfa46493e1c59e51": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "CheckboxModel", + "state": { + "description": "Peek Layer: 'ocean'", + "disabled": false, + "layout": "IPY_MODEL_f94f557bb2b14a46948341b3a17a93b0", + "style": "IPY_MODEL_da32bcabdc4548dca2c6d368789359e4", + "value": false + } + }, + "be8a98ae295842dda1fe03c82c074466": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "CheckboxStyleModel", + "state": { + "description_width": "" + } + }, + "bf43a1843d6e4f4cadf382206fbf0b67": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "RadioButtonsModel", + "state": { + "_options_labels": [ + "coastline", + "countries", + "ocean" + ], + "description": "Layers", + "index": 0, + "layout": "IPY_MODEL_2b37a44198cd464986280c4231e2c696", + "style": "IPY_MODEL_92c194570f514acca8e4656838b8a4b2" + } + }, + "c08be7d55b764c97a5b4a927f0aab480": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ToggleButtonsStyleModel", + "state": { + "button_width": "", + "description_width": "" + } + }, + "c1c2ea2326854314a933c8f0e25531ee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "SelectionSliderModel", + "state": { + "_options_labels": [ + "coastline", + "countries", + "ocean" + ], + "behavior": "drag-tap", + "description": "Layers", + "index": 0, + "layout": "IPY_MODEL_ccf5b9d01dad4756bc8caddecf767324", + "style": "IPY_MODEL_d18b449dbc844894ab76175722fde37d" + } + }, + "c4db2dba731240b0a64c2927785a2389": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", @@ -874,24 +1251,96 @@ "description_width": "" } }, - "ee1aacc5566b405ab48ac49da4add14c": { + "c57b0de32084445e8425589b7810334c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonModel", "state": { - "description": "ocean", - "layout": "IPY_MODEL_f9e401921a284d90b7377b49943d1029", - "style": "IPY_MODEL_ea0e11655994470283a3052ce059c22b", + "description": "Custom Ocean Button", + "layout": "IPY_MODEL_d301558997a8427ca93dfa5cf4f57081", + "style": "IPY_MODEL_3c45ad832a46489e8793aa176adfb25d", "tooltip": null } }, - "f328984079234a5da4d37157a377fe89": { + "ca0a3971664c41a58eac2c5bb59d8d1e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "CheckboxStyleModel", + "state": { + "description_width": "" + } + }, + "ccf5b9d01dad4756bc8caddecf767324": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "cefd66b415754aed8fd1eee24c774a93": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "d18b449dbc844894ab76175722fde37d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "SliderStyleModel", + "state": { + "description_width": "" + } + }, + "d301558997a8427ca93dfa5cf4f57081": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "height": "5ex", + "width": "30ex" + } + }, + "da32bcabdc4548dca2c6d368789359e4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "CheckboxStyleModel", + "state": { + "description_width": "" + } + }, + "e7d976321c7a47d187070f2f0c3577b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "f9e401921a284d90b7377b49943d1029": { + "ec612033fef64cfa8d8baefc22baf174": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "CheckboxModel", + "state": { + "description": "Mark (Click)", + "disabled": false, + "layout": "IPY_MODEL_54746a1718eb453a898df569f0174aab", + "style": "IPY_MODEL_ca0a3971664c41a58eac2c5bb59d8d1e", + "value": false + } + }, + "f94f557bb2b14a46948341b3a17a93b0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "fa7f86784e494ab0b9adc0647e3af421": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "height": "80px", + "width": "50%" + } + }, + "fe6eab90964041c0944b6ab5c432bb7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", From 594c03d22c68b63dcd760fa8058339997e650904 Mon Sep 17 00:00:00 2001 From: Raphael Date: Sat, 9 Mar 2024 15:36:17 +0100 Subject: [PATCH 228/240] update docs --- docs/notebooks/widgets.ipynb | 751 ++++++++++++++++++++++++++++++++--- 1 file changed, 701 insertions(+), 50 deletions(-) diff --git a/docs/notebooks/widgets.ipynb b/docs/notebooks/widgets.ipynb index 1c4d7180a..3fad87373 100644 --- a/docs/notebooks/widgets.ipynb +++ b/docs/notebooks/widgets.ipynb @@ -158,7 +158,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 9, "id": "12a15112-ed5a-498a-b0a0-0688e429b729", "metadata": { "editable": true, @@ -171,7 +171,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "99d887fccb6f4b28a3d2fe017be66bc7", + "model_id": "c4ea1efd784f4917ad38dcf5b8666b5e", "version_major": 2, "version_minor": 0 }, @@ -208,7 +208,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 10, "id": "2c26797b-7c8e-4847-b711-4db1f3e3084f", "metadata": { "editable": true, @@ -231,7 +231,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 11, "id": "e850d223-3326-4afb-a500-d0c08b8ee624", "metadata": { "editable": true, @@ -246,7 +246,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5963a322be874b7285b134e363a42dd0", + "model_id": "99690fd4cac14964b1ffc3de417de154", "version_major": 2, "version_minor": 0 }, @@ -260,7 +260,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "49aaf254026b42bc86aec1bf5529148c", + "model_id": "dad7ab315d5f45fe80ed65f2dbe2caab", "version_major": 2, "version_minor": 0 }, @@ -274,7 +274,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3829d1590c57486fa56eecad03bd2a16", + "model_id": "3fa0b71b14ac441493e68741804ef257", "version_major": 2, "version_minor": 0 }, @@ -288,7 +288,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bf43a1843d6e4f4cadf382206fbf0b67", + "model_id": "7bce94e43a164cd5b966333f528b441f", "version_major": 2, "version_minor": 0 }, @@ -302,7 +302,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "91f88e3c4bb3462f90fb519638dd4a87", + "model_id": "4671d84897044fa8805d345a8377dd1d", "version_major": 2, "version_minor": 0 }, @@ -316,7 +316,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "093f0f04d98d4754b7d373a630e7117d", + "model_id": "84adf788b67a48bca2613a7dd3a29429", "version_major": 2, "version_minor": 0 }, @@ -330,7 +330,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c1c2ea2326854314a933c8f0e25531ee", + "model_id": "1d463c61cb274a29a5774f926501023c", "version_major": 2, "version_minor": 0 }, @@ -344,7 +344,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7a1d940e65414230a4b1c301400125e3", + "model_id": "d6589e7605f64ba2a257ffca90a001e3", "version_major": 2, "version_minor": 0 }, @@ -380,7 +380,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 12, "id": "ad083853-4209-4a23-bf43-02fd0560f269", "metadata": { "editable": true, @@ -393,7 +393,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8b09d257580f4326b116e126849d1ead", + "model_id": "9c45e56c3add427aa56f5e7a81732885", "version_major": 2, "version_minor": 0 }, @@ -401,7 +401,7 @@ "LayerSelectMultiple(description='Layers', index=(0, 0), layout=Layout(height='80px', width='50%'), options=(('…" ] }, - "execution_count": 5, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -420,7 +420,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 13, "id": "db03b116-c43b-4802-90d1-dcde8ca901cd", "metadata": { "editable": true, @@ -433,7 +433,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c57b0de32084445e8425589b7810334c", + "model_id": "e4b903589ec944958589efe30d401d1f", "version_major": 2, "version_minor": 0 }, @@ -441,7 +441,7 @@ "LayerButton(description='Custom Ocean Button', layout=Layout(height='5ex', width='30ex'), style=ButtonStyle(bu…" ] }, - "execution_count": 6, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -511,7 +511,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 14, "id": "bd38b152-7397-4b23-853b-43bbd78862ec", "metadata": { "editable": true, @@ -537,7 +537,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 15, "id": "86b55c35-9aba-49ee-ad77-ab896eecb4d5", "metadata": { "editable": true, @@ -552,7 +552,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0938d8245dad433b8a5e03ae6fb19ff6", + "model_id": "1fbf9a3bc7064dc1b1248640fe412976", "version_major": 2, "version_minor": 0 }, @@ -566,7 +566,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ec612033fef64cfa8d8baefc22baf174", + "model_id": "2f9b853cde7f4e1eacc1fbd283e58a2a", "version_major": 2, "version_minor": 0 }, @@ -580,7 +580,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "69702c1f082541eb93fcc53cd15822b3", + "model_id": "5bc2462a0a404a288be147aa8d934266", "version_major": 2, "version_minor": 0 }, @@ -594,7 +594,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bc5d22ca64854b5bbfa46493e1c59e51", + "model_id": "61c6b639d3ba4c8ab29b4c7a97afdbcd", "version_major": 2, "version_minor": 0 }, @@ -608,7 +608,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2ea35b6ea0f84c35870b7389dfaf51f9", + "model_id": "418c87c3500748168129ce2f310a4983", "version_major": 2, "version_minor": 0 }, @@ -622,7 +622,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8cd9d5f586a847cca584d82295927469", + "model_id": "3a7b6ed3c97443249db3bfefa0174ced", "version_major": 2, "version_minor": 0 }, @@ -636,7 +636,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2bedf102d4504168a8c63897b4ebb849", + "model_id": "45a8f7ca11104f74a71a5f7d014609d4", "version_major": 2, "version_minor": 0 }, @@ -650,7 +650,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8703f5936a0f4baebd83e6b13f7d902d", + "model_id": "b1b8e53055e3497f8d7b04b85e9e7d02", "version_major": 2, "version_minor": 0 }, @@ -664,7 +664,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bb03d7521b124917882e8ccb98f63a99", + "model_id": "3c874cabd6234092b7275ab9b86c3b06", "version_major": 2, "version_minor": 0 }, @@ -679,6 +679,14 @@ "source": [ "display(*checkboxes)" ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "64a681f1-a34a-46bd-b60a-7e6670d9da69", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -724,6 +732,14 @@ "description_width": "" } }, + "05c0efc27b1c472ca28aa16b114c85eb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "DescriptionStyleModel", + "state": { + "description_width": "" + } + }, "077c1cfa068648b9b6d99d3aedf6cd90": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", @@ -762,12 +778,49 @@ "style": "IPY_MODEL_037feca29b864171b2328e280aac315b" } }, + "0dfc84b2aaee4307b36c07b3b853021f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "DescriptionStyleModel", + "state": { + "description_width": "" + } + }, "0e52d68648484afaba0ab62e3d9a8296": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, + "1d463c61cb274a29a5774f926501023c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "SelectionSliderModel", + "state": { + "_options_labels": [ + "coastline", + "countries", + "ocean" + ], + "behavior": "drag-tap", + "description": "Layers", + "index": 0, + "layout": "IPY_MODEL_bd40d4a6f22d4c2ea12a44fb6cefe2e7", + "style": "IPY_MODEL_9eaaa295455c40ceb90e280d5e1a54ef" + } + }, + "1fbf9a3bc7064dc1b1248640fe412976": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "CheckboxModel", + "state": { + "description": "Annotate (Click)", + "disabled": false, + "layout": "IPY_MODEL_4db5e0b87eaa4e1d82f8efb38e87d240", + "style": "IPY_MODEL_7aee53e79f3b4d648b6d5bc8460ea690", + "value": false + } + }, "216bce4b4b354b22a32d5be56b552272": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", @@ -818,12 +871,30 @@ "value": false } }, + "2f9b853cde7f4e1eacc1fbd283e58a2a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "CheckboxModel", + "state": { + "description": "Mark (Click)", + "disabled": false, + "layout": "IPY_MODEL_bbb6ef328218468a9a9acd6303ad648e", + "style": "IPY_MODEL_637874f12c9a4af18a2e613103d0db8e", + "value": false + } + }, "312b2235cef844948d6bb11b96428112": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, + "3679eb0df2dd4838ba1dc49302647159": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, "3829d1590c57486fa56eecad03bd2a16": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", @@ -848,6 +919,18 @@ "description_width": "" } }, + "3a7b6ed3c97443249db3bfefa0174ced": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "CheckboxModel", + "state": { + "description": "Print (Click)", + "disabled": false, + "layout": "IPY_MODEL_a1651e34548445e18376b1aa092c97a3", + "style": "IPY_MODEL_df2331170acb4f0f8945e29e1fdebcdb", + "value": false + } + }, "3c45ad832a46489e8793aa176adfb25d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", @@ -863,6 +946,18 @@ "text_decoration": null } }, + "3c874cabd6234092b7275ab9b86c3b06": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "CheckboxModel", + "state": { + "description": "Print (Pick)", + "disabled": false, + "layout": "IPY_MODEL_a0118cc4fe1041d2a30d171a116b8ab5", + "style": "IPY_MODEL_a20e53b007e145fe8f8e4754a786da8e", + "value": false + } + }, "3c9b6867ea884204a99a59b55ea3cf00": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", @@ -879,6 +974,74 @@ "description_width": "" } }, + "3fa0b71b14ac441493e68741804ef257": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "DropdownModel", + "state": { + "_options_labels": [ + "coastline", + "countries", + "ocean" + ], + "description": "Layers", + "index": 0, + "layout": "IPY_MODEL_3679eb0df2dd4838ba1dc49302647159", + "style": "IPY_MODEL_87691d296c264e9d86b32881f5eb5991" + } + }, + "418c87c3500748168129ce2f310a4983": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "CheckboxModel", + "state": { + "description": "Mark (Click)", + "disabled": false, + "layout": "IPY_MODEL_f0dac2f88e1243af883a02b8feb003bd", + "style": "IPY_MODEL_bffee432bd7c4f93be9adf7fae09634a", + "value": false + } + }, + "43bd291eac8c4a1bb21e08e33fa33d9a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "45a8f7ca11104f74a71a5f7d014609d4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "CheckboxModel", + "state": { + "description": "Annotate (Pick)", + "disabled": false, + "layout": "IPY_MODEL_dea385cc88524e23ba2b42c68a051bfa", + "style": "IPY_MODEL_5dad09f987f54a11902987d189224d6b", + "value": false + } + }, + "45ad8a1caa5e4e469756a2238e5831f5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "4671d84897044fa8805d345a8377dd1d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "SelectModel", + "state": { + "_options_labels": [ + "coastline", + "countries", + "ocean" + ], + "description": "Layers", + "index": 0, + "layout": "IPY_MODEL_fb4e701ee7904397aae25906b6debf7e", + "style": "IPY_MODEL_0dfc84b2aaee4307b36c07b3b853021f" + } + }, "49aaf254026b42bc86aec1bf5529148c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", @@ -898,12 +1061,27 @@ "tooltips": [] } }, + "4a5cf2fca93248cabde64057c6d03008": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "height": "80px", + "width": "50%" + } + }, "4d5c4e9c87044ab8b2e6b261570b3ceb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, + "4db5e0b87eaa4e1d82f8efb38e87d240": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, "4ed61cc51bba4b6f9c25ee7da5ab5830": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", @@ -929,6 +1107,58 @@ "tooltip": null } }, + "5bc2462a0a404a288be147aa8d934266": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "CheckboxModel", + "state": { + "description": "Print (Click)", + "disabled": false, + "layout": "IPY_MODEL_f8f2dd47badc415ebc71143c25fc9cb4", + "style": "IPY_MODEL_740d53f22f9a40cca54c2bd83e826b64", + "value": false + } + }, + "5dad09f987f54a11902987d189224d6b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "CheckboxStyleModel", + "state": { + "description_width": "" + } + }, + "5fa4a908deca40259fbd850b30bc00ce": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "61c6b639d3ba4c8ab29b4c7a97afdbcd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "CheckboxModel", + "state": { + "description": "Peek Layer: 'ocean'", + "disabled": false, + "layout": "IPY_MODEL_fd58e54e422c475495de816c686639c2", + "style": "IPY_MODEL_9382744b71ad422c9bb1747c20bfd564", + "value": false + } + }, + "637874f12c9a4af18a2e613103d0db8e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "CheckboxStyleModel", + "state": { + "description_width": "" + } + }, + "64dab5a0f6724f6e89db089301c4eaa5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, "69702c1f082541eb93fcc53cd15822b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", @@ -991,6 +1221,28 @@ ] } }, + "73f538ecde7a4d948e49d24005c97b2b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "740bc84028ba46dba94c10e50e976ac9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "DescriptionStyleModel", + "state": { + "description_width": "" + } + }, + "740d53f22f9a40cca54c2bd83e826b64": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "CheckboxStyleModel", + "state": { + "description_width": "" + } + }, "7a1d940e65414230a4b1c301400125e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", @@ -1013,58 +1265,125 @@ "style": "IPY_MODEL_2ce29f4189e646af8f81f1d92fbd185a" } }, - "7cd801af1c0d439cb69d0b1191c3935a": { - "model_module": "@jupyter-widgets/base", + "7aee53e79f3b4d648b6d5bc8460ea690": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "CheckboxStyleModel", + "state": { + "description_width": "" + } }, - "8703f5936a0f4baebd83e6b13f7d902d": { + "7bce94e43a164cd5b966333f528b441f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "CheckboxModel", + "model_name": "RadioButtonsModel", "state": { - "description": "Mark (Pick)", - "disabled": false, - "layout": "IPY_MODEL_94397c48bb214e7cb99fb41c90f52b3c", - "style": "IPY_MODEL_8f612516e99e467a89f4e0b4de20a269", - "value": false + "_options_labels": [ + "coastline", + "countries", + "ocean" + ], + "description": "Layers", + "index": 0, + "layout": "IPY_MODEL_c15830cf247148eeb9ff8067a3c04c1c", + "style": "IPY_MODEL_eba39c1852d24d1c94a3ed34c3d3ab99" } }, - "88cb24f890f04d1bb78598e2c5587a7a": { + "7cd801af1c0d439cb69d0b1191c3935a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "8b09d257580f4326b116e126849d1ead": { + "7fe22a6ef0fd4593b0bd5024d3821979": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ButtonStyleModel", + "state": { + "button_color": "lightblue", + "font_family": null, + "font_size": "24px", + "font_style": null, + "font_variant": null, + "font_weight": "bold", + "text_color": null, + "text_decoration": null + } + }, + "84adf788b67a48bca2613a7dd3a29429": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SelectMultipleModel", "state": { "_options_labels": [ - "A nice coastline", - "Overlay 'coastline' + 'ocean'", - "Transparent overlay: 'coastline' + 'ocean'" + "coastline", + "countries", + "ocean" ], "description": "Layers", "index": [ 0, 0 ], - "layout": "IPY_MODEL_fa7f86784e494ab0b9adc0647e3af421", + "layout": "IPY_MODEL_5fa4a908deca40259fbd850b30bc00ce", "rows": 5, - "style": "IPY_MODEL_976d70abbd6e4dc0b195fc5bc32b89c7" + "style": "IPY_MODEL_740bc84028ba46dba94c10e50e976ac9" } }, - "8cd9d5f586a847cca584d82295927469": { + "8703f5936a0f4baebd83e6b13f7d902d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "CheckboxModel", "state": { - "description": "Print (Click)", + "description": "Mark (Pick)", "disabled": false, - "layout": "IPY_MODEL_cefd66b415754aed8fd1eee24c774a93", + "layout": "IPY_MODEL_94397c48bb214e7cb99fb41c90f52b3c", + "style": "IPY_MODEL_8f612516e99e467a89f4e0b4de20a269", + "value": false + } + }, + "87691d296c264e9d86b32881f5eb5991": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "DescriptionStyleModel", + "state": { + "description_width": "" + } + }, + "88cb24f890f04d1bb78598e2c5587a7a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "8b09d257580f4326b116e126849d1ead": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "SelectMultipleModel", + "state": { + "_options_labels": [ + "A nice coastline", + "Overlay 'coastline' + 'ocean'", + "Transparent overlay: 'coastline' + 'ocean'" + ], + "description": "Layers", + "index": [ + 0, + 0 + ], + "layout": "IPY_MODEL_fa7f86784e494ab0b9adc0647e3af421", + "rows": 5, + "style": "IPY_MODEL_976d70abbd6e4dc0b195fc5bc32b89c7" + } + }, + "8cd9d5f586a847cca584d82295927469": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "CheckboxModel", + "state": { + "description": "Print (Click)", + "disabled": false, + "layout": "IPY_MODEL_cefd66b415754aed8fd1eee24c774a93", "style": "IPY_MODEL_be8a98ae295842dda1fe03c82c074466", "value": false } @@ -1115,6 +1434,14 @@ "description_width": "" } }, + "9382744b71ad422c9bb1747c20bfd564": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "CheckboxStyleModel", + "state": { + "description_width": "" + } + }, "94397c48bb214e7cb99fb41c90f52b3c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", @@ -1129,6 +1456,17 @@ "description_width": "" } }, + "99690fd4cac14964b1ffc3de417de154": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ButtonModel", + "state": { + "description": "ocean", + "layout": "IPY_MODEL_73f538ecde7a4d948e49d24005c97b2b", + "style": "IPY_MODEL_c2523f58dee14dd1a61f29a79796853f", + "tooltip": null + } + }, "99d887fccb6f4b28a3d2fe017be66bc7": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", @@ -1149,6 +1487,60 @@ "toolbar_position": "left" } }, + "9c45e56c3add427aa56f5e7a81732885": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "SelectMultipleModel", + "state": { + "_options_labels": [ + "A nice coastline", + "Overlay 'coastline' + 'ocean'", + "Transparent overlay: 'coastline' + 'ocean'" + ], + "description": "Layers", + "index": [ + 0, + 0 + ], + "layout": "IPY_MODEL_4a5cf2fca93248cabde64057c6d03008", + "rows": 5, + "style": "IPY_MODEL_05c0efc27b1c472ca28aa16b114c85eb" + } + }, + "9eaaa295455c40ceb90e280d5e1a54ef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "SliderStyleModel", + "state": { + "description_width": "" + } + }, + "9ec62a10d8d44160869a87820194ff47": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "a0118cc4fe1041d2a30d171a116b8ab5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "a1651e34548445e18376b1aa092c97a3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "a20e53b007e145fe8f8e4754a786da8e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "CheckboxStyleModel", + "state": { + "description_width": "" + } + }, "a57320657cbb466686a21547bcfcb7f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", @@ -1163,6 +1555,35 @@ "text_decoration": null } }, + "aad5c79b1fef4180a8ad4721dc1751de": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "height": "5ex", + "width": "30ex" + } + }, + "b1b8e53055e3497f8d7b04b85e9e7d02": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "CheckboxModel", + "state": { + "description": "Mark (Pick)", + "disabled": false, + "layout": "IPY_MODEL_64dab5a0f6724f6e89db089301c4eaa5", + "style": "IPY_MODEL_b5a84f1f40844f87a31c1541fa527868", + "value": false + } + }, + "b5a84f1f40844f87a31c1541fa527868": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "CheckboxStyleModel", + "state": { + "description_width": "" + } + }, "b6aceac49f614c068563c48e88d5db1f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", @@ -1181,6 +1602,12 @@ "value": false } }, + "bbb6ef328218468a9a9acd6303ad648e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, "bc5d22ca64854b5bbfa46493e1c59e51": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", @@ -1193,6 +1620,12 @@ "value": false } }, + "bd40d4a6f22d4c2ea12a44fb6cefe2e7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, "be8a98ae295842dda1fe03c82c074466": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", @@ -1217,6 +1650,14 @@ "style": "IPY_MODEL_92c194570f514acca8e4656838b8a4b2" } }, + "bffee432bd7c4f93be9adf7fae09634a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "CheckboxStyleModel", + "state": { + "description_width": "" + } + }, "c08be7d55b764c97a5b4a927f0aab480": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", @@ -1226,6 +1667,12 @@ "description_width": "" } }, + "c15830cf247148eeb9ff8067a3c04c1c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, "c1c2ea2326854314a933c8f0e25531ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", @@ -1243,6 +1690,20 @@ "style": "IPY_MODEL_d18b449dbc844894ab76175722fde37d" } }, + "c2523f58dee14dd1a61f29a79796853f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ButtonStyleModel", + "state": { + "font_family": null, + "font_size": null, + "font_style": null, + "font_variant": null, + "font_weight": null, + "text_color": null, + "text_decoration": null + } + }, "c4db2dba731240b0a64c2927785a2389": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", @@ -1251,6 +1712,33 @@ "description_width": "" } }, + "c4ea1efd784f4917ad38dcf5b8666b5e": { + "model_module": "jupyter-matplotlib", + "model_module_version": "^0.11", + "model_name": "MPLCanvasModel", + "state": { + "_data_url": "", + "_figure_label": "Figure 1", + "_model_module_version": "^0.11", + "_size": [ + 600, + 200 + ], + "_view_module_version": "^0.11", + "header_visible": false, + "layout": "IPY_MODEL_9ec62a10d8d44160869a87820194ff47", + "toolbar": "IPY_MODEL_ca5c1b472abe4145bead7b3b382310aa", + "toolbar_position": "left" + } + }, + "c533b9d6da654af99b10074891568859": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "SliderStyleModel", + "state": { + "description_width": "" + } + }, "c57b0de32084445e8425589b7810334c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", @@ -1270,6 +1758,56 @@ "description_width": "" } }, + "ca5c1b472abe4145bead7b3b382310aa": { + "model_module": "jupyter-matplotlib", + "model_module_version": "^0.11", + "model_name": "ToolbarModel", + "state": { + "_model_module_version": "^0.11", + "_view_module_version": "^0.11", + "collapsed": true, + "layout": "IPY_MODEL_43bd291eac8c4a1bb21e08e33fa33d9a", + "orientation": "vertical", + "toolitems": [ + [ + "Home", + "Reset original view", + "home", + "home" + ], + [ + "Back", + "Back to previous view", + "arrow-left", + "back" + ], + [ + "Forward", + "Forward to next view", + "arrow-right", + "forward" + ], + [ + "Pan", + "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", + "arrows", + "pan" + ], + [ + "Zoom", + "Zoom to rectangle\nx/y fixes axis", + "square-o", + "zoom" + ], + [ + "Download", + "Download plot", + "floppy-o", + "save_figure" + ] + ] + } + }, "ccf5b9d01dad4756bc8caddecf767324": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", @@ -1282,6 +1820,15 @@ "model_name": "LayoutModel", "state": {} }, + "d09de324ab1b451a932ae0c52e4be052": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ToggleButtonsStyleModel", + "state": { + "button_width": "", + "description_width": "" + } + }, "d18b449dbc844894ab76175722fde37d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", @@ -1299,6 +1846,28 @@ "width": "30ex" } }, + "d6589e7605f64ba2a257ffca90a001e3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "SelectionRangeSliderModel", + "state": { + "_model_name": "SelectionRangeSliderModel", + "_options_labels": [ + "coastline", + "countries", + "ocean" + ], + "_view_name": "SelectionRangeSliderView", + "behavior": "drag-tap", + "description": "Layers", + "index": [ + 0, + 0 + ], + "layout": "IPY_MODEL_f11b7d82be3d4368a392c6e0ff39568b", + "style": "IPY_MODEL_c533b9d6da654af99b10074891568859" + } + }, "da32bcabdc4548dca2c6d368789359e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", @@ -1307,12 +1876,64 @@ "description_width": "" } }, + "dad7ab315d5f45fe80ed65f2dbe2caab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ToggleButtonsModel", + "state": { + "_options_labels": [ + "coastline", + "countries", + "ocean" + ], + "button_style": "", + "description": "Layers", + "icons": [], + "index": 0, + "layout": "IPY_MODEL_45ad8a1caa5e4e469756a2238e5831f5", + "style": "IPY_MODEL_d09de324ab1b451a932ae0c52e4be052", + "tooltips": [] + } + }, + "dea385cc88524e23ba2b42c68a051bfa": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "df2331170acb4f0f8945e29e1fdebcdb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "CheckboxStyleModel", + "state": { + "description_width": "" + } + }, + "e4b903589ec944958589efe30d401d1f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ButtonModel", + "state": { + "description": "Custom Ocean Button", + "layout": "IPY_MODEL_aad5c79b1fef4180a8ad4721dc1751de", + "style": "IPY_MODEL_7fe22a6ef0fd4593b0bd5024d3821979", + "tooltip": null + } + }, "e7d976321c7a47d187070f2f0c3577b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, + "eba39c1852d24d1c94a3ed34c3d3ab99": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "DescriptionStyleModel", + "state": { + "description_width": "" + } + }, "ec612033fef64cfa8d8baefc22baf174": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", @@ -1325,6 +1946,24 @@ "value": false } }, + "f0dac2f88e1243af883a02b8feb003bd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "f11b7d82be3d4368a392c6e0ff39568b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "f8f2dd47badc415ebc71143c25fc9cb4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, "f94f557bb2b14a46948341b3a17a93b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", @@ -1340,6 +1979,18 @@ "width": "50%" } }, + "fb4e701ee7904397aae25906b6debf7e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "fd58e54e422c475495de816c686639c2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, "fe6eab90964041c0944b6ab5c432bb7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", From c4cf0995354663044095ef4cbcd677a8ca0fb746 Mon Sep 17 00:00:00 2001 From: Raphael Date: Sat, 9 Mar 2024 17:11:38 +0100 Subject: [PATCH 229/240] update docs --- docs/notebooks/widgets.ipynb | 1610 +++++++++++++--------------------- 1 file changed, 618 insertions(+), 992 deletions(-) diff --git a/docs/notebooks/widgets.ipynb b/docs/notebooks/widgets.ipynb index 3fad87373..7a412dbf2 100644 --- a/docs/notebooks/widgets.ipynb +++ b/docs/notebooks/widgets.ipynb @@ -45,17 +45,20 @@ "They will only work if you use the interactive [ipympl (widget) backend][ipympl]. To activate, use the ``%matplotlib widget`` magic command.\n", "\n", "You can install the required additional dependencies with one of the following commands:\n", - "::::{grid} 1 1 2 2\n", - "\n", - "::: {grid-item-card}\n", + "::::{tab-set}\n", "\n", + ":::{tab-item} pip\n", "```\n", "pip install ipywidgets, ipympl\n", "```\n", ":::\n", - "::: {grid-item-card}\n", + ":::{tab-item} conda / mamba\n", "\n", "```\n", + "conda install -c conda-forge ipywidgets, ipympl\n", + "```\n", + "or\n", + "```\n", "mamba install -c conda-forge ipywidgets, ipympl\n", "```\n", ":::\n", @@ -158,7 +161,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 2, "id": "12a15112-ed5a-498a-b0a0-0688e429b729", "metadata": { "editable": true, @@ -171,7 +174,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c4ea1efd784f4917ad38dcf5b8666b5e", + "model_id": "475c80e54fa34e92aee41f2cf1e6d833", "version_major": 2, "version_minor": 0 }, @@ -206,10 +209,24 @@ "m.show()" ] }, + { + "cell_type": "markdown", + "id": "067e41f5-cdd8-44bb-8a74-f117704c953c", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "#### Widgets to display a single specific layer" + ] + }, { "cell_type": "code", - "execution_count": 10, - "id": "2c26797b-7c8e-4847-b711-4db1f3e3084f", + "execution_count": 3, + "id": "0ccdcea8-d463-43b0-8b5a-ebe99de46c18", "metadata": { "editable": true, "slideshow": { @@ -219,19 +236,12 @@ }, "outputs": [], "source": [ - "button = widgets.LayerButton(m, layer=\"ocean\")\n", - "toggle_buttons = widgets.LayerToggleButtons(m)\n", - "radio_buttons = widgets.LayerRadioButtons(m)\n", - "select_single = widgets.LayerSelect(m)\n", - "select_multi = widgets.LayerSelectMultiple(m)\n", - "dropdown = widgets.LayerDropdown(m)\n", - "slider = widgets.LayerSelectionSlider(m)\n", - "range_slider = widgets.LayerSelectionRangeSlider(m)" + "layer_button = widgets.LayerButton(m, layer=\"ocean\", description=\"Show ocean layer\")" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 4, "id": "e850d223-3326-4afb-a500-d0c08b8ee624", "metadata": { "editable": true, @@ -246,21 +256,76 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "99690fd4cac14964b1ffc3de417de154", + "model_id": "75c788c63e034fec8ad9e180cc862956", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "LayerButton(description='ocean', style=ButtonStyle())" + "LayerButton(description='Show ocean layer', style=ButtonStyle())" ] }, "metadata": {}, "output_type": "display_data" + } + ], + "source": [ + "display(layer_button)" + ] + }, + { + "cell_type": "markdown", + "id": "1914e079-bb49-48db-a919-f9f03a442cd0", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "#### Widgets to select one layer of a list of layers" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "c3077287-240d-425a-a32b-648e8a83acc8", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "selector_widgets = [\n", + " widgets.LayerToggleButtons(m),\n", + " widgets.LayerRadioButtons(m),\n", + " widgets.LayerSelect(m),\n", + " widgets.LayerDropdown(m),\n", + " widgets.LayerSelectionSlider(m)\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "3611b713-bccf-4b90-b9f2-f8e72baf4b70", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" }, + "tags": [ + "ignore_in_unittest" + ] + }, + "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dad7ab315d5f45fe80ed65f2dbe2caab", + "model_id": "fd40abc79e2e4bb0ab58e675e4ac5963", "version_major": 2, "version_minor": 0 }, @@ -274,12 +339,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3fa0b71b14ac441493e68741804ef257", + "model_id": "751436e713794777bce3fd926ca370dd", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "LayerDropdown(description='Layers', options=('coastline', 'countries', 'ocean'), value='coastline')" + "LayerRadioButtons(description='Layers', options=('coastline', 'countries', 'ocean'), value='coastline')" ] }, "metadata": {}, @@ -288,12 +353,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7bce94e43a164cd5b966333f528b441f", + "model_id": "16a30ed51e534000a1a8bc982ccaedd6", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "LayerRadioButtons(description='Layers', options=('coastline', 'countries', 'ocean'), value='coastline')" + "LayerSelect(description='Layers', options=('coastline', 'countries', 'ocean'), value='coastline')" ] }, "metadata": {}, @@ -302,12 +367,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4671d84897044fa8805d345a8377dd1d", + "model_id": "e31373d1890d4066ae3003da25be3b8e", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "LayerSelect(description='Layers', options=('coastline', 'countries', 'ocean'), value='coastline')" + "LayerDropdown(description='Layers', options=('coastline', 'countries', 'ocean'), value='coastline')" ] }, "metadata": {}, @@ -316,26 +381,78 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "84adf788b67a48bca2613a7dd3a29429", + "model_id": "89c134827f65440b97e39e15229e5aa5", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "LayerSelectMultiple(description='Layers', index=(0, 0), options=('coastline', 'countries', 'ocean'), value=('c…" + "LayerSelectionSlider(description='Layers', options=('coastline', 'countries', 'ocean'), value='coastline')" ] }, "metadata": {}, "output_type": "display_data" + } + ], + "source": [ + "display(*selector_widgets)" + ] + }, + { + "cell_type": "markdown", + "id": "ceb1bb57-f9a9-4ec8-98e4-4f8d7f6996ac", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "#### Widgets to overlay multiple layers" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "6b825194-c1a7-4268-8cc0-4093dd472540", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "multi_selector_widgets = [\n", + " widgets.LayerSelectMultiple(m),\n", + " widgets.LayerSelectionRangeSlider(m)\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "e0bf5aa7-a39d-4314-9bff-570f318bb0c4", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" }, + "tags": [ + "ignore_in_unittest" + ] + }, + "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1d463c61cb274a29a5774f926501023c", + "model_id": "984f8ab2138849388d91ce3286ea318c", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "LayerSelectionSlider(description='Layers', options=('coastline', 'countries', 'ocean'), value='coastline')" + "LayerSelectMultiple(description='Layers', index=(0, 0), options=('coastline', 'countries', 'ocean'), value=('c…" ] }, "metadata": {}, @@ -344,7 +461,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d6589e7605f64ba2a257ffca90a001e3", + "model_id": "ba4ef7862198434f87523c0527fde69d", "version_major": 2, "version_minor": 0 }, @@ -357,7 +474,7 @@ } ], "source": [ - "display(button, toggle_buttons, dropdown, radio_buttons, select_single, select_multi, slider, range_slider)" + "display(*multi_selector_widgets)" ] }, { @@ -372,15 +489,41 @@ }, "source": [ ":::{tip}\n", - "You can also specify custom labels or use combined-layer assignments.\n", + "You can style the widgets as any other Jupyter Widget (more info in the [Widget Styling][widget_styling] section of the ipywidgets docs.)\n", "\n", - "In addition, you can style the widgets as any other Jupyter Widget (more info in the [Widget Styling](https://ipywidgets.readthedocs.io/en/7.6.2/examples/Widget%20Styling.html#) section of the ipywidgets docs.)\n", - "\n" + "To display widgets next to a figure, use the `canvas` of the figure:\n", + "\n", + "```python\n", + "display(m.f.canvas, ... other widgets...)\n", + "```\n", + "\n", + "To arrange widgets, checkout the [container and Layout widgets][container_widgets] like `HBox([list of widgets])`, `VBox([list of widgets])`!\n", + "\n", + ":::\n", + "\n", + "[container_widgets]: https://ipywidgets.readthedocs.io/en/7.6.3/examples/Widget%20List.html#Container/Layout-widgets\n", + "[widget_styling]: https://ipywidgets.readthedocs.io/en/7.6.2/examples/Widget%20Styling.html" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 9, + "id": "cca25482-eff6-43b0-8aba-776328d180ca", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "from ipywidgets import HBox, VBox" + ] + }, + { + "cell_type": "code", + "execution_count": 10, "id": "ad083853-4209-4a23-bf43-02fd0560f269", "metadata": { "editable": true, @@ -389,38 +532,52 @@ }, "tags": [] }, + "outputs": [], + "source": [ + "custom_selector = widgets.LayerSelectMultiple(\n", + " m,\n", + " layers=[[\"A nice coastline\", \"coastline\"], \n", + " [\"Overlay 'coastline' + 'ocean'\", (\"coastline\", \"ocean\")],\n", + " [\"Transparent overlay: 'coastline' + 'ocean'\", (\"coastline\", (\"ocean\", 0.4))]\n", + " ],\n", + " layout=dict(width='35%', height='80px', )\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "8da97f89-ed5e-4a51-8dca-d18fbbdefb4f", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9c45e56c3add427aa56f5e7a81732885", + "model_id": "e1e306c4309440f39ff0ec3c448c83c5", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "LayerSelectMultiple(description='Layers', index=(0, 0), layout=Layout(height='80px', width='50%'), options=(('…" + "HBox(children=(LayerSelectMultiple(description='Layers', index=(0, 0), layout=Layout(height='80px', width='35%…" ] }, - "execution_count": 12, "metadata": {}, - "output_type": "execute_result" + "output_type": "display_data" } ], "source": [ - "custom_selector = widgets.LayerSelectMultiple(\n", - " m,\n", - " layers=[[\"A nice coastline\", \"coastline\"], \n", - " [\"Overlay 'coastline' + 'ocean'\", (\"coastline\", \"ocean\")],\n", - " [\"Transparent overlay: 'coastline' + 'ocean'\", (\"coastline\", (\"ocean\", 0.4))]\n", - " ],\n", - " layout=dict(width='50%', height='80px', )\n", - ")\n", - "custom_selector" + "display(HBox([custom_selector, m.f.canvas]))" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 12, "id": "db03b116-c43b-4802-90d1-dcde8ca901cd", "metadata": { "editable": true, @@ -429,35 +586,60 @@ }, "tags": [] }, + "outputs": [], + "source": [ + "buttons = [\n", + " widgets.LayerButton(m, layer=\"ocean\", description=\"Show ocean layer\", layout=dict(width=\"25ex\", height=\"5ex\")),\n", + " widgets.LayerButton(m, layer=\"coastline\", description=\"Show coastline layer\", layout=dict(width=\"25ex\", height=\"5ex\"))\n", + "]\n", + "for b in buttons:\n", + " b.style.font_weight = 'bold'\n", + " b.style.font_size = '20px'\n", + "buttons[0].style.button_color = 'lightblue'\n", + "buttons[1].style.button_color = '#d0a2b9'\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "b52be482-9180-4104-b6cd-49abc12c2a41", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e4b903589ec944958589efe30d401d1f", + "model_id": "918eb8a3aa9f4e8781a46ac6f28d4dd3", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "LayerButton(description='Custom Ocean Button', layout=Layout(height='5ex', width='30ex'), style=ButtonStyle(bu…" + "HBox(children=(VBox(children=(LayerButton(description='Show ocean layer', layout=Layout(height='5ex', width='2…" ] }, - "execution_count": 13, "metadata": {}, - "output_type": "execute_result" + "output_type": "display_data" } ], "source": [ - "custom_button = widgets.LayerButton(m, layer=\"ocean\", description=\"Custom Ocean Button\", layout=dict(width=\"30ex\", height=\"5ex\"))\n", - "custom_button.style.button_color = 'lightblue'\n", - "custom_button.style.font_weight = 'bold'\n", - "custom_button.style.font_size = '24px'\n", - "custom_button" + "display(HBox([VBox(buttons), m.f.canvas]))" ] }, { "cell_type": "markdown", "id": "95d96081-6fea-4c50-9755-089c53517eed", - "metadata": {}, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, "source": [ "## Callback Widgets\n", "\n", @@ -499,7 +681,13 @@ { "cell_type": "markdown", "id": "d310fcf8-96f1-461c-81d1-cbde4ed4fd5b", - "metadata": {}, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, "source": [ "### How to use the widgets\n", "\n", @@ -552,7 +740,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1fbf9a3bc7064dc1b1248640fe412976", + "model_id": "4b35f68c7651410f9f844a68f1078083", "version_major": 2, "version_minor": 0 }, @@ -566,7 +754,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2f9b853cde7f4e1eacc1fbd283e58a2a", + "model_id": "79649e63c1674abbbaf890f0839d2763", "version_major": 2, "version_minor": 0 }, @@ -580,7 +768,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5bc2462a0a404a288be147aa8d934266", + "model_id": "4e8ce3ee63484e93acab9b4d6b7c215c", "version_major": 2, "version_minor": 0 }, @@ -594,7 +782,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "61c6b639d3ba4c8ab29b4c7a97afdbcd", + "model_id": "c2840efbe2004e55bf47aae629c3d254", "version_major": 2, "version_minor": 0 }, @@ -608,7 +796,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "418c87c3500748168129ce2f310a4983", + "model_id": "5e94e06eb5fe4f64b340dea12941e8f7", "version_major": 2, "version_minor": 0 }, @@ -622,7 +810,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3a7b6ed3c97443249db3bfefa0174ced", + "model_id": "bdba49ff00e643af893447db4211356c", "version_major": 2, "version_minor": 0 }, @@ -636,7 +824,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "45a8f7ca11104f74a71a5f7d014609d4", + "model_id": "862853edce5d46e688f7b9bf399ccc6a", "version_major": 2, "version_minor": 0 }, @@ -650,7 +838,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b1b8e53055e3497f8d7b04b85e9e7d02", + "model_id": "484d42e225f84ac2afeb2d63d2c5b37e", "version_major": 2, "version_minor": 0 }, @@ -664,7 +852,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3c874cabd6234092b7275ab9b86c3b06", + "model_id": "573855a2ccf14e9e9f24b7a900c274e7", "version_major": 2, "version_minor": 0 }, @@ -679,14 +867,6 @@ "source": [ "display(*checkboxes)" ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "64a681f1-a34a-46bd-b60a-7e6670d9da69", - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { @@ -710,255 +890,270 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0028a24996e14a838008e71290b9bcb2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "CheckboxStyleModel", + "0088869a26b24f0ab09dffb544b56ce9": { + "model_module": "jupyter-matplotlib", + "model_module_version": "^0.11", + "model_name": "ToolbarModel", "state": { - "description_width": "" + "_model_module_version": "^0.11", + "_view_module_version": "^0.11", + "collapsed": true, + "layout": "IPY_MODEL_17dc4fb8908547f7b343ca7847b48e7d", + "orientation": "vertical", + "toolitems": [ + [ + "Home", + "Reset original view", + "home", + "home" + ], + [ + "Back", + "Back to previous view", + "arrow-left", + "back" + ], + [ + "Forward", + "Forward to next view", + "arrow-right", + "forward" + ], + [ + "Pan", + "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", + "arrows", + "pan" + ], + [ + "Zoom", + "Zoom to rectangle\nx/y fixes axis", + "square-o", + "zoom" + ], + [ + "Download", + "Download plot", + "floppy-o", + "save_figure" + ] + ] } }, - "00bc30ab507948ccad518593e9a6a940": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "037feca29b864171b2328e280aac315b": { + "092d2b10293245ef976d5fd2e7618344": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "05c0efc27b1c472ca28aa16b114c85eb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "077c1cfa068648b9b6d99d3aedf6cd90": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "0938d8245dad433b8a5e03ae6fb19ff6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "CheckboxModel", - "state": { - "description": "Annotate (Click)", - "disabled": false, - "layout": "IPY_MODEL_077c1cfa068648b9b6d99d3aedf6cd90", - "style": "IPY_MODEL_3d323f6ca0ca40fcbc91a7607b3417d2", - "value": false - } - }, - "093f0f04d98d4754b7d373a630e7117d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SelectMultipleModel", + "model_name": "SelectMultipleModel", "state": { "_options_labels": [ - "coastline", - "countries", - "ocean" + "A nice coastline", + "Overlay 'coastline' + 'ocean'", + "Transparent overlay: 'coastline' + 'ocean'" ], "description": "Layers", "index": [ 0, 0 ], - "layout": "IPY_MODEL_216bce4b4b354b22a32d5be56b552272", + "layout": "IPY_MODEL_7ff01dc7a0c64d9aa6f6adc9dc7d6230", "rows": 5, - "style": "IPY_MODEL_037feca29b864171b2328e280aac315b" + "style": "IPY_MODEL_772a0e3c61a14fe2bde319db0ca9effb" } }, - "0dfc84b2aaee4307b36c07b3b853021f": { + "0ab6439ab3cf4a82be46bb9c653fbdba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", + "model_name": "ToggleButtonsStyleModel", "state": { + "button_width": "", "description_width": "" } }, - "0e52d68648484afaba0ab62e3d9a8296": { + "0fa812204ff44a7481e2ca9fe8142e4b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "1d463c61cb274a29a5774f926501023c": { + "1414f25b94814de8ab78487bf61941eb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "SelectionSliderModel", + "model_name": "CheckboxStyleModel", + "state": { + "description_width": "" + } + }, + "16a30ed51e534000a1a8bc982ccaedd6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "SelectModel", "state": { "_options_labels": [ "coastline", "countries", "ocean" ], - "behavior": "drag-tap", "description": "Layers", "index": 0, - "layout": "IPY_MODEL_bd40d4a6f22d4c2ea12a44fb6cefe2e7", - "style": "IPY_MODEL_9eaaa295455c40ceb90e280d5e1a54ef" - } - }, - "1fbf9a3bc7064dc1b1248640fe412976": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "CheckboxModel", - "state": { - "description": "Annotate (Click)", - "disabled": false, - "layout": "IPY_MODEL_4db5e0b87eaa4e1d82f8efb38e87d240", - "style": "IPY_MODEL_7aee53e79f3b4d648b6d5bc8460ea690", - "value": false + "layout": "IPY_MODEL_f22fcd446a3e4b73b5fb0e872a89d041", + "style": "IPY_MODEL_5642595995c74a9b8533a9fb31b1bc3a" } }, - "216bce4b4b354b22a32d5be56b552272": { + "17dc4fb8908547f7b343ca7847b48e7d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "233a9266bd134c219fce583977a7fd87": { + "1ad48f075b95403199be951a22f14e2a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "2b37a44198cd464986280c4231e2c696": { + "2113242ecde4406eb9dc0ac079045105": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "2bedf102d4504168a8c63897b4ebb849": { + "2675f51de821410dbabaddfa46744fa4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "CheckboxModel", + "model_name": "DescriptionStyleModel", "state": { - "description": "Annotate (Pick)", - "disabled": false, - "layout": "IPY_MODEL_233a9266bd134c219fce583977a7fd87", - "style": "IPY_MODEL_0028a24996e14a838008e71290b9bcb2", - "value": false + "description_width": "" } }, - "2ce29f4189e646af8f81f1d92fbd185a": { + "2f00589069fb401eb86aacd0503911e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", + "model_name": "CheckboxStyleModel", "state": { "description_width": "" } }, - "2ea35b6ea0f84c35870b7389dfaf51f9": { - "model_module": "@jupyter-widgets/controls", + "2f76c64c1d9a4f988d50b7e65f6d4be6": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "CheckboxModel", - "state": { - "description": "Mark (Click)", - "disabled": false, - "layout": "IPY_MODEL_88cb24f890f04d1bb78598e2c5587a7a", - "style": "IPY_MODEL_8fb596386ea04073b560bf6e05ef2671", - "value": false - } + "model_name": "LayoutModel", + "state": {} }, - "2f9b853cde7f4e1eacc1fbd283e58a2a": { + "3671ffab5a204524b59becff45c446fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "CheckboxModel", + "model_name": "ButtonModel", "state": { - "description": "Mark (Click)", - "disabled": false, - "layout": "IPY_MODEL_bbb6ef328218468a9a9acd6303ad648e", - "style": "IPY_MODEL_637874f12c9a4af18a2e613103d0db8e", - "value": false + "description": "Show ocean layer", + "layout": "IPY_MODEL_ff04a7884e804cc18a8c08ae07f55223", + "style": "IPY_MODEL_426c94dc86534ff0af7bcafe61c9e03a", + "tooltip": null } }, - "312b2235cef844948d6bb11b96428112": { + "3d02468e6bf04a8e95e1add0f22482ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "3679eb0df2dd4838ba1dc49302647159": { - "model_module": "@jupyter-widgets/base", + "426c94dc86534ff0af7bcafe61c9e03a": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "ButtonStyleModel", + "state": { + "button_color": "lightblue", + "font_family": null, + "font_size": "20px", + "font_style": null, + "font_variant": null, + "font_weight": "bold", + "text_color": null, + "text_decoration": null + } }, - "3829d1590c57486fa56eecad03bd2a16": { + "43a61f52513643a29fd94372c501b365": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DropdownModel", + "model_name": "ButtonStyleModel", "state": { - "_options_labels": [ - "coastline", - "countries", - "ocean" + "font_family": null, + "font_size": null, + "font_style": null, + "font_variant": null, + "font_weight": null, + "text_color": null, + "text_decoration": null + } + }, + "475c80e54fa34e92aee41f2cf1e6d833": { + "model_module": "jupyter-matplotlib", + "model_module_version": "^0.11", + "model_name": "MPLCanvasModel", + "state": { + "_data_url": "", + "_figure_label": "Figure 1", + "_image_mode": "diff", + "_model_module_version": "^0.11", + "_size": [ + 600, + 200 ], - "description": "Layers", - "index": 0, - "layout": "IPY_MODEL_e7d976321c7a47d187070f2f0c3577b6", - "style": "IPY_MODEL_4ed61cc51bba4b6f9c25ee7da5ab5830" + "_view_module_version": "^0.11", + "header_visible": false, + "layout": "IPY_MODEL_6ae8216398f94b4fac6c11f9ac2e2b94", + "toolbar": "IPY_MODEL_0088869a26b24f0ab09dffb544b56ce9", + "toolbar_position": "left" } }, - "3a69d5b4adbb40e093ebea8b8c11ef05": { + "484d42e225f84ac2afeb2d63d2c5b37e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "CheckboxStyleModel", + "model_name": "CheckboxModel", "state": { - "description_width": "" + "description": "Mark (Pick)", + "disabled": false, + "layout": "IPY_MODEL_3d02468e6bf04a8e95e1add0f22482ee", + "style": "IPY_MODEL_b98437c319da4531a4e0a9a9928e0f1e", + "value": false } }, - "3a7b6ed3c97443249db3bfefa0174ced": { + "4b35f68c7651410f9f844a68f1078083": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "CheckboxModel", "state": { - "description": "Print (Click)", + "description": "Annotate (Click)", "disabled": false, - "layout": "IPY_MODEL_a1651e34548445e18376b1aa092c97a3", - "style": "IPY_MODEL_df2331170acb4f0f8945e29e1fdebcdb", + "layout": "IPY_MODEL_fd5c8faa19a545dbac91e9d6b8194a6d", + "style": "IPY_MODEL_1414f25b94814de8ab78487bf61941eb", "value": false } }, - "3c45ad832a46489e8793aa176adfb25d": { + "4dc6c3ed0be54ba9a968e6cbd5336e7a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ButtonStyleModel", + "model_name": "VBoxModel", "state": { - "button_color": "lightblue", - "font_family": null, - "font_size": "24px", - "font_style": null, - "font_variant": null, - "font_weight": "bold", - "text_color": null, - "text_decoration": null + "children": [ + "IPY_MODEL_3671ffab5a204524b59becff45c446fa", + "IPY_MODEL_a2d9bed7a6a34d7caeea67f5d59d5a24" + ], + "layout": "IPY_MODEL_a705f59c836e4d28986a6ecd86482abf" } }, - "3c874cabd6234092b7275ab9b86c3b06": { + "4e8ce3ee63484e93acab9b4d6b7c215c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "CheckboxModel", "state": { - "description": "Print (Pick)", + "description": "Print (Click)", "disabled": false, - "layout": "IPY_MODEL_a0118cc4fe1041d2a30d171a116b8ab5", - "style": "IPY_MODEL_a20e53b007e145fe8f8e4754a786da8e", + "layout": "IPY_MODEL_983feabdc3b745a6a230057e9e553825", + "style": "IPY_MODEL_530d8c44649746758c8c8fc75cf6051e", "value": false } }, - "3c9b6867ea884204a99a59b55ea3cf00": { + "530d8c44649746758c8c8fc75cf6051e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "CheckboxStyleModel", @@ -966,70 +1161,68 @@ "description_width": "" } }, - "3d323f6ca0ca40fcbc91a7607b3417d2": { + "5642595995c74a9b8533a9fb31b1bc3a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "CheckboxStyleModel", + "model_name": "DescriptionStyleModel", "state": { "description_width": "" } }, - "3fa0b71b14ac441493e68741804ef257": { + "573855a2ccf14e9e9f24b7a900c274e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DropdownModel", + "model_name": "CheckboxModel", "state": { - "_options_labels": [ - "coastline", - "countries", - "ocean" - ], - "description": "Layers", - "index": 0, - "layout": "IPY_MODEL_3679eb0df2dd4838ba1dc49302647159", - "style": "IPY_MODEL_87691d296c264e9d86b32881f5eb5991" + "description": "Print (Pick)", + "disabled": false, + "layout": "IPY_MODEL_e3c7d8226fc44b3eb53ffef168181be1", + "style": "IPY_MODEL_d54dbdc6d7ed497a84222e68e6e242d1", + "value": false } }, - "418c87c3500748168129ce2f310a4983": { + "5e94e06eb5fe4f64b340dea12941e8f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "CheckboxModel", "state": { "description": "Mark (Click)", "disabled": false, - "layout": "IPY_MODEL_f0dac2f88e1243af883a02b8feb003bd", - "style": "IPY_MODEL_bffee432bd7c4f93be9adf7fae09634a", + "layout": "IPY_MODEL_87159d69b808485ca6028f2a268fdc07", + "style": "IPY_MODEL_61f99f6933d648869a5ea46a9a4d71e5", "value": false } }, - "43bd291eac8c4a1bb21e08e33fa33d9a": { + "61f99f6933d648869a5ea46a9a4d71e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "CheckboxStyleModel", + "state": { + "description_width": "" + } + }, + "65f806af8a204f0c9895ec75423f7809": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "45a8f7ca11104f74a71a5f7d014609d4": { - "model_module": "@jupyter-widgets/controls", + "6ae8216398f94b4fac6c11f9ac2e2b94": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "CheckboxModel", - "state": { - "description": "Annotate (Pick)", - "disabled": false, - "layout": "IPY_MODEL_dea385cc88524e23ba2b42c68a051bfa", - "style": "IPY_MODEL_5dad09f987f54a11902987d189224d6b", - "value": false - } + "model_name": "LayoutModel", + "state": {} }, - "45ad8a1caa5e4e469756a2238e5831f5": { + "74568696bef94ad39915f3071199e091": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "4671d84897044fa8805d345a8377dd1d": { + "751436e713794777bce3fd926ca370dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "SelectModel", + "model_name": "RadioButtonsModel", "state": { "_options_labels": [ "coastline", @@ -1038,114 +1231,133 @@ ], "description": "Layers", "index": 0, - "layout": "IPY_MODEL_fb4e701ee7904397aae25906b6debf7e", - "style": "IPY_MODEL_0dfc84b2aaee4307b36c07b3b853021f" + "layout": "IPY_MODEL_c16bf940584a406d882eec3f1abe0275", + "style": "IPY_MODEL_f267c84eb0ce46d3852498f99da488e6" } }, - "49aaf254026b42bc86aec1bf5529148c": { + "75c788c63e034fec8ad9e180cc862956": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ToggleButtonsModel", + "model_name": "ButtonModel", "state": { - "_options_labels": [ - "coastline", - "countries", - "ocean" - ], - "button_style": "", - "description": "Layers", - "icons": [], - "index": 0, - "layout": "IPY_MODEL_312b2235cef844948d6bb11b96428112", - "style": "IPY_MODEL_c08be7d55b764c97a5b4a927f0aab480", - "tooltips": [] + "description": "Show ocean layer", + "layout": "IPY_MODEL_2113242ecde4406eb9dc0ac079045105", + "style": "IPY_MODEL_43a61f52513643a29fd94372c501b365", + "tooltip": null } }, - "4a5cf2fca93248cabde64057c6d03008": { - "model_module": "@jupyter-widgets/base", + "772a0e3c61a14fe2bde319db0ca9effb": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "DescriptionStyleModel", "state": { - "height": "80px", - "width": "50%" + "description_width": "" } }, - "4d5c4e9c87044ab8b2e6b261570b3ceb": { - "model_module": "@jupyter-widgets/base", + "79649e63c1674abbbaf890f0839d2763": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "CheckboxModel", + "state": { + "description": "Mark (Click)", + "disabled": false, + "layout": "IPY_MODEL_e7c9159338ee490ab6305945af0f4d81", + "style": "IPY_MODEL_91f2ddc57db84b4f9f91e1f3e2ff769e", + "value": false + } }, - "4db5e0b87eaa4e1d82f8efb38e87d240": { - "model_module": "@jupyter-widgets/base", + "7b4586348a8e4a0b838a5d97ab713005": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "ButtonStyleModel", + "state": { + "button_color": "#d0a2b9", + "font_family": null, + "font_size": "20px", + "font_style": null, + "font_variant": null, + "font_weight": "bold", + "text_color": null, + "text_decoration": null + } }, - "4ed61cc51bba4b6f9c25ee7da5ab5830": { + "7f8d82e144c84e9bbeb739f262e5244c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", + "model_name": "CheckboxStyleModel", "state": { "description_width": "" } }, - "54746a1718eb453a898df569f0174aab": { + "7ff01dc7a0c64d9aa6f6adc9dc7d6230": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", - "state": {} - }, - "5963a322be874b7285b134e363a42dd0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ButtonModel", "state": { - "description": "ocean", - "layout": "IPY_MODEL_0e52d68648484afaba0ab62e3d9a8296", - "style": "IPY_MODEL_a57320657cbb466686a21547bcfcb7f4", - "tooltip": null + "height": "80px", + "width": "35%" } }, - "5bc2462a0a404a288be147aa8d934266": { + "862853edce5d46e688f7b9bf399ccc6a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "CheckboxModel", "state": { - "description": "Print (Click)", + "description": "Annotate (Pick)", "disabled": false, - "layout": "IPY_MODEL_f8f2dd47badc415ebc71143c25fc9cb4", - "style": "IPY_MODEL_740d53f22f9a40cca54c2bd83e826b64", + "layout": "IPY_MODEL_c3759d0e60d4442a805c5514b7c84352", + "style": "IPY_MODEL_a8b39316d0db43b585ae8dbf906e063d", "value": false } }, - "5dad09f987f54a11902987d189224d6b": { + "87159d69b808485ca6028f2a268fdc07": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "88197e3f755647af8786beeee86cc94b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "89c134827f65440b97e39e15229e5aa5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "CheckboxStyleModel", + "model_name": "SelectionSliderModel", "state": { - "description_width": "" + "_options_labels": [ + "coastline", + "countries", + "ocean" + ], + "behavior": "drag-tap", + "description": "Layers", + "index": 0, + "layout": "IPY_MODEL_8c824576c08549a7a9890643e015512f", + "style": "IPY_MODEL_b208f8df2ed14d519d79f5b380f63156" } }, - "5fa4a908deca40259fbd850b30bc00ce": { + "8c824576c08549a7a9890643e015512f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "61c6b639d3ba4c8ab29b4c7a97afdbcd": { + "918eb8a3aa9f4e8781a46ac6f28d4dd3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "CheckboxModel", + "model_name": "HBoxModel", "state": { - "description": "Peek Layer: 'ocean'", - "disabled": false, - "layout": "IPY_MODEL_fd58e54e422c475495de816c686639c2", - "style": "IPY_MODEL_9382744b71ad422c9bb1747c20bfd564", - "value": false + "children": [ + "IPY_MODEL_4dc6c3ed0be54ba9a968e6cbd5336e7a", + "IPY_MODEL_475c80e54fa34e92aee41f2cf1e6d833" + ], + "layout": "IPY_MODEL_0fa812204ff44a7481e2ca9fe8142e4b" } }, - "637874f12c9a4af18a2e613103d0db8e": { + "91f2ddc57db84b4f9f91e1f3e2ff769e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "CheckboxStyleModel", @@ -1153,288 +1365,157 @@ "description_width": "" } }, - "64dab5a0f6724f6e89db089301c4eaa5": { + "983feabdc3b745a6a230057e9e553825": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "69702c1f082541eb93fcc53cd15822b3": { + "984f8ab2138849388d91ce3286ea318c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "CheckboxModel", + "model_name": "SelectMultipleModel", "state": { - "description": "Print (Click)", - "disabled": false, - "layout": "IPY_MODEL_4d5c4e9c87044ab8b2e6b261570b3ceb", - "style": "IPY_MODEL_3a69d5b4adbb40e093ebea8b8c11ef05", - "value": false - } - }, - "6ec1a07caa1441b4a374ffb672dbc42d": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "ToolbarModel", - "state": { - "_model_module_version": "^0.11", - "_view_module_version": "^0.11", - "collapsed": true, - "layout": "IPY_MODEL_00bc30ab507948ccad518593e9a6a940", - "orientation": "vertical", - "toolitems": [ - [ - "Home", - "Reset original view", - "home", - "home" - ], - [ - "Back", - "Back to previous view", - "arrow-left", - "back" - ], - [ - "Forward", - "Forward to next view", - "arrow-right", - "forward" - ], - [ - "Pan", - "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", - "arrows", - "pan" - ], - [ - "Zoom", - "Zoom to rectangle\nx/y fixes axis", - "square-o", - "zoom" - ], - [ - "Download", - "Download plot", - "floppy-o", - "save_figure" - ] - ] - } - }, - "73f538ecde7a4d948e49d24005c97b2b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "740bc84028ba46dba94c10e50e976ac9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "740d53f22f9a40cca54c2bd83e826b64": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "CheckboxStyleModel", - "state": { - "description_width": "" - } - }, - "7a1d940e65414230a4b1c301400125e3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SelectionRangeSliderModel", - "state": { - "_model_name": "SelectionRangeSliderModel", "_options_labels": [ "coastline", "countries", "ocean" ], - "_view_name": "SelectionRangeSliderView", - "behavior": "drag-tap", "description": "Layers", "index": [ 0, 0 ], - "layout": "IPY_MODEL_fe6eab90964041c0944b6ab5c432bb7b", - "style": "IPY_MODEL_2ce29f4189e646af8f81f1d92fbd185a" + "layout": "IPY_MODEL_d65ccf9f3b60468daf5b14193a0287f7", + "rows": 5, + "style": "IPY_MODEL_b2ad71c76de9490e93c69b51185aae9b" } }, - "7aee53e79f3b4d648b6d5bc8460ea690": { - "model_module": "@jupyter-widgets/controls", + "a1daf124499d43c89a8a1cfc91d3c2fe": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "CheckboxStyleModel", + "model_name": "LayoutModel", "state": { - "description_width": "" + "height": "5ex", + "width": "25ex" } }, - "7bce94e43a164cd5b966333f528b441f": { + "a2d9bed7a6a34d7caeea67f5d59d5a24": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "RadioButtonsModel", + "model_name": "ButtonModel", "state": { - "_options_labels": [ - "coastline", - "countries", - "ocean" - ], - "description": "Layers", - "index": 0, - "layout": "IPY_MODEL_c15830cf247148eeb9ff8067a3c04c1c", - "style": "IPY_MODEL_eba39c1852d24d1c94a3ed34c3d3ab99" + "description": "Show coastline layer", + "layout": "IPY_MODEL_a1daf124499d43c89a8a1cfc91d3c2fe", + "style": "IPY_MODEL_7b4586348a8e4a0b838a5d97ab713005", + "tooltip": null } }, - "7cd801af1c0d439cb69d0b1191c3935a": { + "a705f59c836e4d28986a6ecd86482abf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "7fe22a6ef0fd4593b0bd5024d3821979": { + "a8b39316d0db43b585ae8dbf906e063d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ButtonStyleModel", + "model_name": "CheckboxStyleModel", "state": { - "button_color": "lightblue", - "font_family": null, - "font_size": "24px", - "font_style": null, - "font_variant": null, - "font_weight": "bold", - "text_color": null, - "text_decoration": null + "description_width": "" } }, - "84adf788b67a48bca2613a7dd3a29429": { + "b208f8df2ed14d519d79f5b380f63156": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "SelectMultipleModel", + "model_name": "SliderStyleModel", "state": { - "_options_labels": [ - "coastline", - "countries", - "ocean" - ], - "description": "Layers", - "index": [ - 0, - 0 - ], - "layout": "IPY_MODEL_5fa4a908deca40259fbd850b30bc00ce", - "rows": 5, - "style": "IPY_MODEL_740bc84028ba46dba94c10e50e976ac9" + "description_width": "" } }, - "8703f5936a0f4baebd83e6b13f7d902d": { + "b2ad71c76de9490e93c69b51185aae9b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "CheckboxModel", + "model_name": "DescriptionStyleModel", "state": { - "description": "Mark (Pick)", - "disabled": false, - "layout": "IPY_MODEL_94397c48bb214e7cb99fb41c90f52b3c", - "style": "IPY_MODEL_8f612516e99e467a89f4e0b4de20a269", - "value": false + "description_width": "" } }, - "87691d296c264e9d86b32881f5eb5991": { + "b98437c319da4531a4e0a9a9928e0f1e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", + "model_name": "CheckboxStyleModel", "state": { "description_width": "" } }, - "88cb24f890f04d1bb78598e2c5587a7a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "8b09d257580f4326b116e126849d1ead": { + "ba4ef7862198434f87523c0527fde69d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "SelectMultipleModel", + "model_name": "SelectionRangeSliderModel", "state": { + "_model_name": "SelectionRangeSliderModel", "_options_labels": [ - "A nice coastline", - "Overlay 'coastline' + 'ocean'", - "Transparent overlay: 'coastline' + 'ocean'" + "coastline", + "countries", + "ocean" ], + "_view_name": "SelectionRangeSliderView", + "behavior": "drag-tap", "description": "Layers", "index": [ 0, 0 ], - "layout": "IPY_MODEL_fa7f86784e494ab0b9adc0647e3af421", - "rows": 5, - "style": "IPY_MODEL_976d70abbd6e4dc0b195fc5bc32b89c7" + "layout": "IPY_MODEL_74568696bef94ad39915f3071199e091", + "style": "IPY_MODEL_d0ccc37ee8ee4c4ba087a706b4b17546" } }, - "8cd9d5f586a847cca584d82295927469": { + "bdba49ff00e643af893447db4211356c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "CheckboxModel", "state": { "description": "Print (Click)", "disabled": false, - "layout": "IPY_MODEL_cefd66b415754aed8fd1eee24c774a93", - "style": "IPY_MODEL_be8a98ae295842dda1fe03c82c074466", + "layout": "IPY_MODEL_65f806af8a204f0c9895ec75423f7809", + "style": "IPY_MODEL_7f8d82e144c84e9bbeb739f262e5244c", "value": false } }, - "8f3e5de490d0452fbe073ccfcaed4944": { + "c16bf940584a406d882eec3f1abe0275": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "8f612516e99e467a89f4e0b4de20a269": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "CheckboxStyleModel", - "state": { - "description_width": "" - } - }, - "8fb596386ea04073b560bf6e05ef2671": { + "c2840efbe2004e55bf47aae629c3d254": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "CheckboxStyleModel", + "model_name": "CheckboxModel", "state": { - "description_width": "" + "description": "Peek Layer: 'ocean'", + "disabled": false, + "layout": "IPY_MODEL_88197e3f755647af8786beeee86cc94b", + "style": "IPY_MODEL_2f00589069fb401eb86aacd0503911e4", + "value": false } }, - "91f88e3c4bb3462f90fb519638dd4a87": { - "model_module": "@jupyter-widgets/controls", + "c3759d0e60d4442a805c5514b7c84352": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "SelectModel", - "state": { - "_options_labels": [ - "coastline", - "countries", - "ocean" - ], - "description": "Layers", - "index": 0, - "layout": "IPY_MODEL_8f3e5de490d0452fbe073ccfcaed4944", - "style": "IPY_MODEL_c4db2dba731240b0a64c2927785a2389" - } + "model_name": "LayoutModel", + "state": {} }, - "92c194570f514acca8e4656838b8a4b2": { + "d0ccc37ee8ee4c4ba087a706b4b17546": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", + "model_name": "SliderStyleModel", "state": { "description_width": "" } }, - "9382744b71ad422c9bb1747c20bfd564": { + "d54dbdc6d7ed497a84222e68e6e242d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "CheckboxStyleModel", @@ -1442,560 +1523,105 @@ "description_width": "" } }, - "94397c48bb214e7cb99fb41c90f52b3c": { + "d65ccf9f3b60468daf5b14193a0287f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "976d70abbd6e4dc0b195fc5bc32b89c7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "99690fd4cac14964b1ffc3de417de154": { + "e1e306c4309440f39ff0ec3c448c83c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ButtonModel", - "state": { - "description": "ocean", - "layout": "IPY_MODEL_73f538ecde7a4d948e49d24005c97b2b", - "style": "IPY_MODEL_c2523f58dee14dd1a61f29a79796853f", - "tooltip": null - } - }, - "99d887fccb6f4b28a3d2fe017be66bc7": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "MPLCanvasModel", + "model_name": "HBoxModel", "state": { - "_data_url": "", - "_figure_label": "Figure 1", - "_image_mode": "diff", - "_model_module_version": "^0.11", - "_size": [ - 600, - 200 + "children": [ + "IPY_MODEL_092d2b10293245ef976d5fd2e7618344", + "IPY_MODEL_475c80e54fa34e92aee41f2cf1e6d833" ], - "_view_module_version": "^0.11", - "header_visible": false, - "layout": "IPY_MODEL_b6aceac49f614c068563c48e88d5db1f", - "toolbar": "IPY_MODEL_6ec1a07caa1441b4a374ffb672dbc42d", - "toolbar_position": "left" + "layout": "IPY_MODEL_e458ec2ca12e41399c40474bc9235949" } }, - "9c45e56c3add427aa56f5e7a81732885": { + "e31373d1890d4066ae3003da25be3b8e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "SelectMultipleModel", + "model_name": "DropdownModel", "state": { "_options_labels": [ - "A nice coastline", - "Overlay 'coastline' + 'ocean'", - "Transparent overlay: 'coastline' + 'ocean'" + "coastline", + "countries", + "ocean" ], "description": "Layers", - "index": [ - 0, - 0 - ], - "layout": "IPY_MODEL_4a5cf2fca93248cabde64057c6d03008", - "rows": 5, - "style": "IPY_MODEL_05c0efc27b1c472ca28aa16b114c85eb" + "index": 0, + "layout": "IPY_MODEL_2f76c64c1d9a4f988d50b7e65f6d4be6", + "style": "IPY_MODEL_2675f51de821410dbabaddfa46744fa4" } }, - "9eaaa295455c40ceb90e280d5e1a54ef": { - "model_module": "@jupyter-widgets/controls", + "e3c7d8226fc44b3eb53ffef168181be1": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } + "model_name": "LayoutModel", + "state": {} }, - "9ec62a10d8d44160869a87820194ff47": { + "e458ec2ca12e41399c40474bc9235949": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "a0118cc4fe1041d2a30d171a116b8ab5": { + "e7c9159338ee490ab6305945af0f4d81": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "a1651e34548445e18376b1aa092c97a3": { + "f22fcd446a3e4b73b5fb0e872a89d041": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "a20e53b007e145fe8f8e4754a786da8e": { + "f267c84eb0ce46d3852498f99da488e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "CheckboxStyleModel", + "model_name": "DescriptionStyleModel", "state": { "description_width": "" } }, - "a57320657cbb466686a21547bcfcb7f4": { + "fd40abc79e2e4bb0ab58e675e4ac5963": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ButtonStyleModel", + "model_name": "ToggleButtonsModel", "state": { - "font_family": null, - "font_size": null, - "font_style": null, - "font_variant": null, - "font_weight": null, - "text_color": null, - "text_decoration": null + "_options_labels": [ + "coastline", + "countries", + "ocean" + ], + "button_style": "", + "description": "Layers", + "icons": [], + "index": 0, + "layout": "IPY_MODEL_1ad48f075b95403199be951a22f14e2a", + "style": "IPY_MODEL_0ab6439ab3cf4a82be46bb9c653fbdba", + "tooltips": [] } }, - "aad5c79b1fef4180a8ad4721dc1751de": { + "fd5c8faa19a545dbac91e9d6b8194a6d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", - "state": { - "height": "5ex", - "width": "30ex" - } + "state": {} }, - "b1b8e53055e3497f8d7b04b85e9e7d02": { - "model_module": "@jupyter-widgets/controls", + "ff04a7884e804cc18a8c08ae07f55223": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "CheckboxModel", + "model_name": "LayoutModel", "state": { - "description": "Mark (Pick)", - "disabled": false, - "layout": "IPY_MODEL_64dab5a0f6724f6e89db089301c4eaa5", - "style": "IPY_MODEL_b5a84f1f40844f87a31c1541fa527868", - "value": false + "height": "5ex", + "width": "25ex" } - }, - "b5a84f1f40844f87a31c1541fa527868": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "CheckboxStyleModel", - "state": { - "description_width": "" - } - }, - "b6aceac49f614c068563c48e88d5db1f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "bb03d7521b124917882e8ccb98f63a99": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "CheckboxModel", - "state": { - "description": "Print (Pick)", - "disabled": false, - "layout": "IPY_MODEL_7cd801af1c0d439cb69d0b1191c3935a", - "style": "IPY_MODEL_3c9b6867ea884204a99a59b55ea3cf00", - "value": false - } - }, - "bbb6ef328218468a9a9acd6303ad648e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "bc5d22ca64854b5bbfa46493e1c59e51": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "CheckboxModel", - "state": { - "description": "Peek Layer: 'ocean'", - "disabled": false, - "layout": "IPY_MODEL_f94f557bb2b14a46948341b3a17a93b0", - "style": "IPY_MODEL_da32bcabdc4548dca2c6d368789359e4", - "value": false - } - }, - "bd40d4a6f22d4c2ea12a44fb6cefe2e7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "be8a98ae295842dda1fe03c82c074466": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "CheckboxStyleModel", - "state": { - "description_width": "" - } - }, - "bf43a1843d6e4f4cadf382206fbf0b67": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "RadioButtonsModel", - "state": { - "_options_labels": [ - "coastline", - "countries", - "ocean" - ], - "description": "Layers", - "index": 0, - "layout": "IPY_MODEL_2b37a44198cd464986280c4231e2c696", - "style": "IPY_MODEL_92c194570f514acca8e4656838b8a4b2" - } - }, - "bffee432bd7c4f93be9adf7fae09634a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "CheckboxStyleModel", - "state": { - "description_width": "" - } - }, - "c08be7d55b764c97a5b4a927f0aab480": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ToggleButtonsStyleModel", - "state": { - "button_width": "", - "description_width": "" - } - }, - "c15830cf247148eeb9ff8067a3c04c1c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "c1c2ea2326854314a933c8f0e25531ee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SelectionSliderModel", - "state": { - "_options_labels": [ - "coastline", - "countries", - "ocean" - ], - "behavior": "drag-tap", - "description": "Layers", - "index": 0, - "layout": "IPY_MODEL_ccf5b9d01dad4756bc8caddecf767324", - "style": "IPY_MODEL_d18b449dbc844894ab76175722fde37d" - } - }, - "c2523f58dee14dd1a61f29a79796853f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ButtonStyleModel", - "state": { - "font_family": null, - "font_size": null, - "font_style": null, - "font_variant": null, - "font_weight": null, - "text_color": null, - "text_decoration": null - } - }, - "c4db2dba731240b0a64c2927785a2389": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "c4ea1efd784f4917ad38dcf5b8666b5e": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "MPLCanvasModel", - "state": { - "_data_url": "", - "_figure_label": "Figure 1", - "_model_module_version": "^0.11", - "_size": [ - 600, - 200 - ], - "_view_module_version": "^0.11", - "header_visible": false, - "layout": "IPY_MODEL_9ec62a10d8d44160869a87820194ff47", - "toolbar": "IPY_MODEL_ca5c1b472abe4145bead7b3b382310aa", - "toolbar_position": "left" - } - }, - "c533b9d6da654af99b10074891568859": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "c57b0de32084445e8425589b7810334c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ButtonModel", - "state": { - "description": "Custom Ocean Button", - "layout": "IPY_MODEL_d301558997a8427ca93dfa5cf4f57081", - "style": "IPY_MODEL_3c45ad832a46489e8793aa176adfb25d", - "tooltip": null - } - }, - "ca0a3971664c41a58eac2c5bb59d8d1e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "CheckboxStyleModel", - "state": { - "description_width": "" - } - }, - "ca5c1b472abe4145bead7b3b382310aa": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "ToolbarModel", - "state": { - "_model_module_version": "^0.11", - "_view_module_version": "^0.11", - "collapsed": true, - "layout": "IPY_MODEL_43bd291eac8c4a1bb21e08e33fa33d9a", - "orientation": "vertical", - "toolitems": [ - [ - "Home", - "Reset original view", - "home", - "home" - ], - [ - "Back", - "Back to previous view", - "arrow-left", - "back" - ], - [ - "Forward", - "Forward to next view", - "arrow-right", - "forward" - ], - [ - "Pan", - "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", - "arrows", - "pan" - ], - [ - "Zoom", - "Zoom to rectangle\nx/y fixes axis", - "square-o", - "zoom" - ], - [ - "Download", - "Download plot", - "floppy-o", - "save_figure" - ] - ] - } - }, - "ccf5b9d01dad4756bc8caddecf767324": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "cefd66b415754aed8fd1eee24c774a93": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "d09de324ab1b451a932ae0c52e4be052": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ToggleButtonsStyleModel", - "state": { - "button_width": "", - "description_width": "" - } - }, - "d18b449dbc844894ab76175722fde37d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "d301558997a8427ca93dfa5cf4f57081": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "height": "5ex", - "width": "30ex" - } - }, - "d6589e7605f64ba2a257ffca90a001e3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SelectionRangeSliderModel", - "state": { - "_model_name": "SelectionRangeSliderModel", - "_options_labels": [ - "coastline", - "countries", - "ocean" - ], - "_view_name": "SelectionRangeSliderView", - "behavior": "drag-tap", - "description": "Layers", - "index": [ - 0, - 0 - ], - "layout": "IPY_MODEL_f11b7d82be3d4368a392c6e0ff39568b", - "style": "IPY_MODEL_c533b9d6da654af99b10074891568859" - } - }, - "da32bcabdc4548dca2c6d368789359e4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "CheckboxStyleModel", - "state": { - "description_width": "" - } - }, - "dad7ab315d5f45fe80ed65f2dbe2caab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ToggleButtonsModel", - "state": { - "_options_labels": [ - "coastline", - "countries", - "ocean" - ], - "button_style": "", - "description": "Layers", - "icons": [], - "index": 0, - "layout": "IPY_MODEL_45ad8a1caa5e4e469756a2238e5831f5", - "style": "IPY_MODEL_d09de324ab1b451a932ae0c52e4be052", - "tooltips": [] - } - }, - "dea385cc88524e23ba2b42c68a051bfa": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "df2331170acb4f0f8945e29e1fdebcdb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "CheckboxStyleModel", - "state": { - "description_width": "" - } - }, - "e4b903589ec944958589efe30d401d1f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ButtonModel", - "state": { - "description": "Custom Ocean Button", - "layout": "IPY_MODEL_aad5c79b1fef4180a8ad4721dc1751de", - "style": "IPY_MODEL_7fe22a6ef0fd4593b0bd5024d3821979", - "tooltip": null - } - }, - "e7d976321c7a47d187070f2f0c3577b6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "eba39c1852d24d1c94a3ed34c3d3ab99": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "ec612033fef64cfa8d8baefc22baf174": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "CheckboxModel", - "state": { - "description": "Mark (Click)", - "disabled": false, - "layout": "IPY_MODEL_54746a1718eb453a898df569f0174aab", - "style": "IPY_MODEL_ca0a3971664c41a58eac2c5bb59d8d1e", - "value": false - } - }, - "f0dac2f88e1243af883a02b8feb003bd": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "f11b7d82be3d4368a392c6e0ff39568b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "f8f2dd47badc415ebc71143c25fc9cb4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "f94f557bb2b14a46948341b3a17a93b0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "fa7f86784e494ab0b9adc0647e3af421": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "height": "80px", - "width": "50%" - } - }, - "fb4e701ee7904397aae25906b6debf7e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "fd58e54e422c475495de816c686639c2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "fe6eab90964041c0944b6ab5c432bb7b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} } }, "version_major": 2, From 1d2ea0775df3c92ad3d129cd1a6e104b38df266e Mon Sep 17 00:00:00 2001 From: Raphael Date: Sat, 9 Mar 2024 17:30:10 +0100 Subject: [PATCH 230/240] update unittests --- docs/notebooks/widgets.ipynb | 8 ++++++-- 1 file changed, 6 insertions(+), 2 deletions(-) diff --git a/docs/notebooks/widgets.ipynb b/docs/notebooks/widgets.ipynb index 7a412dbf2..2f506f3a4 100644 --- a/docs/notebooks/widgets.ipynb +++ b/docs/notebooks/widgets.ipynb @@ -553,7 +553,9 @@ "slideshow": { "slide_type": "" }, - "tags": [] + "tags": [ + "ignore_in_unittest" + ] }, "outputs": [ { @@ -608,7 +610,9 @@ "slideshow": { "slide_type": "" }, - "tags": [] + "tags": [ + "ignore_in_unittest" + ] }, "outputs": [ { From 2a98e4c86799f163823f6cb2edf8164b126f11c2 Mon Sep 17 00:00:00 2001 From: Raphael Date: Sun, 10 Mar 2024 23:21:17 +0100 Subject: [PATCH 231/240] improvements for data_identification + allow passing xarray.Dataset objects to m.set_data --- eomaps/_containers.py | 4 +- eomaps/_data_manager.py | 220 ++++++++++++++++++++++++---------- eomaps/eomaps.py | 10 +- tests/test_basic_functions.py | 2 +- tests/test_layout_editor.py | 3 +- 5 files changed, 171 insertions(+), 68 deletions(-) diff --git a/eomaps/_containers.py b/eomaps/_containers.py index 5f114d3c6..6939fa576 100644 --- a/eomaps/_containers.py +++ b/eomaps/_containers.py @@ -21,8 +21,8 @@ def __init__( self, m, data=None, - x="lon", - y="lat", + x=None, + y=None, crs=4326, parameter=None, encoding=None, diff --git a/eomaps/_data_manager.py b/eomaps/_data_manager.py index 79f1d2ecb..8c3c2f6c5 100644 --- a/eomaps/_data_manager.py +++ b/eomaps/_data_manager.py @@ -165,79 +165,150 @@ def cleanup_callbacks(self): if self.on_fetch_bg in self.m.BM._before_update_actions: self.m.BM._before_update_actions.remove(self.on_fetch_bg) - def _identify_data(self, data=None, x=None, y=None, parameter=None): - # identify the way how the data has been provided and convert to the internal - # structure + def _identify_pandas(self, data=None, x=None, y=None, parameter=None): + (pd,) = register_modules("pandas", raise_exception=False) - if data is None: - data = self.m.data_specs.data - if x is None: - x = self.m.data_specs.x - if y is None: - y = self.m.data_specs.y - if parameter is None: - parameter = self.m.data_specs.parameter + if pd is None or not isinstance(data, pd.DataFrame): + return None - # check other types before pandas to avoid unnecessary import - if data is not None and not isinstance(data, (list, tuple, np.ndarray)): - (pd,) = register_modules("pandas", raise_exception=False) + if parameter is not None: + # get the data-values + z_data = data[parameter].values + else: + # use the first found numeric column of the DataFrame if possible. + numeric_columns = data.select_dtypes("number").columns + if len(numeric_columns) > 0: + z_data = data[numeric_columns[0]].values + else: + # TODO remove this and raise an error? + z_data = np.repeat(np.nan, len(data)) - if pd is None: + # get the index-values + ids = data.index.values + + if isinstance(x, str) and isinstance(y, str): + if (x in data) and (y in data): + # get the coordinates from columns + xorig = data[x].values + yorig = data[y].values + elif (x in data.index.names) and (y in data.index.names): + # get the coordinates from index-values + xorig = data.index.get_level_values(x) + yorig = data.index.get_level_values(y) + else: raise TypeError( - f"EOmaps: Unable to handle the input-data type: {type(data)}" + "EOmaps: unable to identify coordinate values for " f"x={x}, y={y}" ) + elif (x is None) and (y is None): + if data.index.nlevels == 2: + # get the coordinates from index-values + xorig = data.index.get_level_values(0) + yorig = data.index.get_level_values(1) + else: + raise TypeError( + "EOmaps: Either specify explicit column-names to use " + "for `x` and `y` or pass a multi-index DataFrame " + "with exactly 2 index-levels!" + ) + else: + assert isinstance(x, (list, np.ndarray, pd.Series)), ( + "'x' must be either a column-name, or explicit values " + " specified as a list, a numpy-array or a pandas.Series " + + f"if you provide the data as '{type(data)}'" + ) + assert isinstance(y, (list, np.ndarray, pd.Series)), ( + "'y' must be either a column-name, or explicit values " + " specified as a list, a numpy-array or a pandas.Series " + + f"object if you provide the data as '{type(data)}'" + ) - if isinstance(data, pd.DataFrame): - if parameter is not None: - # get the data-values - z_data = data[parameter].values - else: - z_data = np.repeat(np.nan, len(data)) + xorig = np.asanyarray(x) + yorig = np.asanyarray(y) - # get the index-values - ids = data.index.values + return z_data, xorig, yorig, ids, parameter - if isinstance(x, str) and isinstance(y, str): - # get the data-coordinates - xorig = data[x].values - yorig = data[y].values - else: - assert isinstance(x, (list, np.ndarray, pd.Series)), ( - "'x' must be either a column-name, or explicit values " - " specified as a list, a numpy-array or a pandas" - + f" Series object if you provide the data as '{type(data)}'" - ) - assert isinstance(y, (list, np.ndarray, pd.Series)), ( - "'y' must be either a column-name, or explicit values " - " specified as a list, a numpy-array or a pandas" - + f" Series object if you provide the data as '{type(data)}'" - ) + def _identify_xarray(self, data=None, x=None, y=None, parameter=None): + (xar,) = register_modules("xarray", raise_exception=False) - xorig = np.asanyarray(x) - yorig = np.asanyarray(y) + if xar is None or not isinstance(data, (xar.Dataset, xar.DataArray)): + return None - return z_data, xorig, yorig, ids, parameter + if isinstance(data, xar.Dataset): + if parameter is None: + # use the first variable of the Dataset + cols = list(data) + parameter = cols[0] - # identify all other types except for pandas.DataFrames - # lazily check if pandas was used - pandas_series_data = False - for iname, i in zip(("x", "y", "data"), (x, y, data)): - if iname == "data" and i is None: - # allow empty datasets - continue + assert len(data[parameter].dims) <= 2, ( + "EOmaps: provided dataset has more than 2 dimensions..." + f"({data[parameter].dims})." + ) + z_data = data[parameter].values + else: + assert len(data.dims) <= 2, ( + "EOmaps: provided dataset has more than 2 dimensions..." + f"({data.dims})." + ) - if not isinstance(i, (list, tuple, np.ndarray)): - (pd,) = register_modules("pandas", raise_exception=False) + z_data = data.values + parameter = data.name + + # use numeric index values + ids = range(z_data.size) + + if isinstance(x, str) and isinstance(y, str): + coords = list(data.coords) + if (x in coords) and (y in coords): + # get the coordinates from coordinates + xorig = data.coords[x].values + yorig = data.coords[y].values + # transpose dat in case x is before y + # (to account for matrix indexing order) + if coords.index(x) > coords.index(y): + z_data = z_data.T - if pd and not isinstance(i, pd.Series): - raise AssertionError( - f"{iname} values must be a list, numpy-array or pandas.Series" - ) - else: - if iname == "data": - pandas_series_data = True + elif (x in data) and (y in data): + xorig = data[x].values + yorig = data[y].values + + elif (x is None) and (y is None): + coords = list(data.coords) + + if len(coords) == 2: + # get the coordinates from index-values + xorig = data[coords[0]].values + yorig = data[coords[1]].values + else: + raise TypeError( + "EOmaps: Either specify explicit coordinate-names to use " + "for `x` and `y` or pass a Dataset with exactly 2 " + "coordinates!" + ) + return z_data, xorig, yorig, ids, parameter + + def _identify_array_like(self, data=None, x=None, y=None, parameter=None): + def check_dtype(val): + if val is None: + return True + + if isinstance(val, (list, tuple, np.ndarray)): + return True - # set coordinates by extent + # lazily check if pandas was used + (pd,) = register_modules("pandas", raise_exception=False) + if pd and isinstance(val, pd.Series): + return "pandas" + + return False + + data_q = check_dtype(data) + if not data_q: + return None + + if not (check_dtype(x) and check_dtype(y)): + return None + + # set coordinates by extent-tuples (x0, x1) and (y0, y1) if isinstance(x, tuple) and isinstance(y, tuple): assert data is not None, ( "EOmaps: If x- and y are provided as tuples, the data must be a 2D list" @@ -273,7 +344,7 @@ def _identify_data(self, data=None, x=None, y=None, parameter=None): z_data = np.full((xorig.shape[0], yorig.shape[0]), np.nan) # get the index-values - if pandas_series_data is True: + if data_q == "pandas": # use actual index values if pd.Series was passed as "data" ids = data.index.values else: @@ -298,6 +369,35 @@ def _identify_data(self, data=None, x=None, y=None, parameter=None): return z_data, np.asanyarray(xorig), np.asanyarray(yorig), ids, parameter + def _identify_data(self, data=None, x=None, y=None, parameter=None): + # identify the way how the data has been provided and convert to the internal + # structure + + if data is None: + data = self.m.data_specs.data + if x is None: + x = self.m.data_specs.x + if y is None: + y = self.m.data_specs.y + if parameter is None: + parameter = self.m.data_specs.parameter + + # check supported data-types + for identify_func in ( + self._identify_array_like, + self._identify_pandas, + self._identify_xarray, + ): + ret = identify_func(data=data, x=x, y=y, parameter=parameter) + + if ret is not None: + return ret + + raise TypeError( + "EOmaps: Unable to handle the input-data types: \n" + f"data={type(data)}, x={type(x)}, y={type(y)}" + ) + def _prepare_data(self, assume_sorted=True): in_crs = self.m.data_specs.crs cpos = self.m.data_specs.cpos diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index eb4b2cd46..8d8ecae23 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -457,8 +457,8 @@ def __init__( self.data_specs = DataSpecs( weakref.proxy(self), - x="lon", - y="lat", + x=None, + y=None, crs=4326, ) @@ -4359,9 +4359,11 @@ def _set_parent(self): def _set_default_shape(self): if self.data is not None: - size = np.size(self.data) + # size = np.size(self.data) + size = np.size(self._data_manager.z_data) + shape = np.shape(self._data_manager.z_data) - if len(np.shape(self.data)) == 2 and size > 200_000: + if len(shape) == 2 and size > 200_000: self.set_shape.raster() else: if size > 500_000: diff --git a/tests/test_basic_functions.py b/tests/test_basic_functions.py index 9272d8e23..b152f2bc2 100644 --- a/tests/test_basic_functions.py +++ b/tests/test_basic_functions.py @@ -454,7 +454,7 @@ def test_copy(self): self.assertTrue( m2.data_specs[["x", "y", "parameter", "crs"]] - == {"x": "lon", "y": "lat", "parameter": None, "crs": 4326} + == {"x": None, "y": None, "parameter": None, "crs": 4326} ) self.assertTrue([*m.classify_specs] == [*m2.classify_specs]) self.assertTrue(m2.data == None) diff --git a/tests/test_layout_editor.py b/tests/test_layout_editor.py index ac532dde0..49de71f69 100644 --- a/tests/test_layout_editor.py +++ b/tests/test_layout_editor.py @@ -59,7 +59,8 @@ def setUp(self): def test_layout_editor(self): # %% lon, lat = np.meshgrid(np.linspace(20, 50, 50), np.linspace(20, 50, 50)) - data = pd.DataFrame(dict(lon=lon.flat, lat=lat.flat, value=1)) + data = pd.DataFrame(dict(lon=lon.flat, lat=lat.flat, value=lon.flat)) + data.set_index(["lon", "lat"], inplace=True) mg = MapsGrid() mg.set_data(data) From 47d6687f0794427e56865cef725c76f1d4f2c2bf Mon Sep 17 00:00:00 2001 From: Raphael Date: Sun, 10 Mar 2024 23:23:42 +0100 Subject: [PATCH 232/240] update docs --- docs/api_data_visualization.rst | 387 +++++++++++++++++++++----------- 1 file changed, 258 insertions(+), 129 deletions(-) diff --git a/docs/api_data_visualization.rst b/docs/api_data_visualization.rst index 99c135d0e..61735058a 100644 --- a/docs/api_data_visualization.rst +++ b/docs/api_data_visualization.rst @@ -82,6 +82,197 @@ A dataset is fully specified by setting the following properties: - ``cpos``, ``cpos_radius`` (optional): the pixel offset +The following data-types are currently accepted as input: + +.. dropdown:: **pandas.DataFrames** + :icon: square-fill + :color: info + + .. tab-set:: + + .. tab-item:: Assignments + + - ``data``: pandas.DataFrame + - ``x``, ``y``: The column-names to use as coordinates (``string``) + - ``parameter``: The column-name to use as data-values (``string``) + + .. tab-item:: basic DataFrame + + .. code-block:: python + :name: test_assign_pandas_01 + + from eomaps import Maps + import pandas as pd + + df = pd.DataFrame(dict(lon=[1,2,3], lat=[2,5,4], data=[12, 43, 2])) + m = Maps() + m.set_data(df, x="lon", y="lat", crs=4326, parameter="data") + m.plot_map() + + .. tab-item:: multiindex DataFrame + + .. code-block:: python + :name: test_assign_pandas_02 + + from eomaps import Maps + import pandas as pd + + data = dict(param=[10, 29, 39]) + index = pd.MultiIndex.from_arrays([[10,20,30], [10,20,30]], names=("lon", "lat")) + df = pd.DataFrame(data=data, index=index) + + m = Maps() + m.set_data(df, x="lon", y="lat", crs=4326, parameter="param") + m.plot_map() + + + +.. dropdown:: **numpy.Array** | **pandas.Series** | **list** + :icon: square-fill + :color: info + + .. tab-set:: + + .. tab-item:: Assignments + + - ``data``, ``x``, ``y``: ``numpy.array``, ``pandas.Series`` or ``list`` + + - either data and coordinates have the same 1D/2D shape or + - 2D ``data=(m, n)`` and 1D coordinates ``x=(m,)``, ``y=(n,)`` + + - ``parameter``: (optional) parameter name (``string``) + + .. tab-item:: 1D list + + .. code-block:: python + :name: test_assign_list + + from eomaps import Maps + + x, y, data = [1,2,3], [2, 5, 4], [12, 43, 2] + m = Maps() + m.set_data(data, x=x, y=y, crs=4326, parameter="param_name") + m.plot_map() + + .. tab-item:: 1D numpy + + .. code-block:: python + :name: test_assign_numpy_1d + + from eomaps import Maps + import numpy as np + + x, y, data = np.array([1,2,3]), np.array([5, 7, 9]), np.array([1, 2, 3]) + m = Maps() + m.set_data(data=data, x=x, y=y, crs=4326, parameter="param_name") + m.plot_map() + + + .. tab-item:: 2D numpy + + .. code-block:: python + :name: test_assign_numpy_2d + + from eomaps import Maps + import numpy as np + + x, y = np.meshgrid(np.array([1,2,3]), np.array([5, 7, 9])) + data = np.random.randint(0, 10, x.shape) + m = Maps() + m.set_data(data=data, x=x, y=y, crs=4326, parameter="param_name") + m.plot_map() + + + .. tab-item:: 2D + 1D numpy + + .. code-block:: python + :name: test_assign_numpy_1d2d + + from eomaps import Maps + import numpy as np + + x, y = np.linspace(-20, 20, 100), np.linspace(15, 34, 50) + data = np.random.randint(0, 100, size=(100, 50) + m = Maps() + m.set_data(data=data, x=x, y=y, crs=4326, parameter="param_name") + m.plot_map() + + + .. tab-item:: pandas Series + + .. code-block:: python + :name: test_assign_series + + from eomaps import Maps + import pandas as pd + + x, y, data = pd.Series([1,2,3]), pd.Series([2, 5, 4]), pd.Series([12, 43, 2]) + m = Maps() + m.set_data(data, x=x, y=y, crs=4326, parameter="param_name") + m.plot_map() + + +.. dropdown:: **xarray.Dataset** + :icon: square-fill + :color: info + + .. tab-set:: + + .. tab-item:: Assignments + + - ``data``: xarray.Dataset + - ``x``, ``y``: The variables to use as coordinates (``string``) + - ``parameter``: The variable to use as data-values (``string``) + + .. tab-item:: 2D data and coords + + .. code-block:: python + :name: test_assign_xarray_2d + + from eomaps import Maps + import xarray as xar + import numpy as np + + param = np.random.randint(0, 10, (2,2,3)) + lon = [[-20, 20], [23, 54]] + lat = [[-10, 20], [-10, 20]] + time = [1,2,3] + + ds = xar.Dataset( + data_vars=dict(my_param=(["x", "y", "time"], param)), + coords=dict(lon=(["x", "y"], lon), lat=(["x", "y"], lat), time=time), + ) + + m = Maps() + m.set_data(data=ds.sel(time=1), x="lon", y="lat", parameter="my_param", crs=4326) + m.plot_map() + + .. tab-item:: 1D coords 2D data + + .. code-block:: python + :name: test_assign_xarray_1d2d + + from eomaps import Maps + import xarray as xar + import numpy as np + + param = np.random.randint(0, 10, (2,2,3)) + lon = [-20, 20] + lat = [30, 60] + time = [1,2,3] + + ds = xar.Dataset( + data_vars=dict(my_param=(["lon", "lat", "time"], param)), + coords=dict(lon=lon, lat=lat, time=time), + ) + + m = Maps() + m.set_data(data=ds.sel(time=1), x="lon", y="lat", parameter="my_param", crs=4326) + m.plot_map() + + + + .. note:: Make sure to use a individual :py:class:`Maps` object (e.g. with ``m2 = m.new_layer()``) for each dataset! @@ -100,59 +291,6 @@ A dataset is fully specified by setting the following properties: - Note that reprojecting 1D coordinate vectors to a different crs will result in (possibly very large) 2D coordinate arrays! -The following data-types are accepted as input: - -+---------------------------------------------------------------------+------------------------------------------------------------------------------------+ -| **pandas DataFrames** | .. code-block:: python | -| | :name: test_pandas_data_01 | -| | | -| - ``data``: ``pandas.DataFrame`` | from eomaps import Maps | -| - ``x``, ``y``: The column-names to use as coordinates (``string``) | import pandas as pd | -| - ``parameter``: The column-name to use as data-values (``string``) | | -| | df = pd.DataFrame(dict(lon=[1,2,3], lat=[2,5,4], data=[12, 43, 2])) | -| | m = Maps() | -| | m.set_data(df, x="lon", y="lat", crs=4326, parameter="data") | -| | m.plot_map() | -+---------------------------------------------------------------------+------------------------------------------------------------------------------------+ -| **pandas Series** | .. code-block:: python | -| | :name: test_pandas_data_02 | -| | | -| - ``data``, ``x``, ``y``: ``pandas.Series`` | from eomaps import Maps | -| - ``parameter``: (optional) parameter name (``string``) | import pandas as pd | -| | | -| | x, y, data = pd.Series([1,2,3]), pd.Series([2, 5, 4]), pd.Series([12, 43, 2]) | -| | m = Maps() | -| | m.set_data(data, x=x, y=y, crs=4326, parameter="param_name") | -| | m.plot_map() | -+---------------------------------------------------------------------+------------------------------------------------------------------------------------+ -| **1D** or **2D** data **and** coordinates | .. code-block:: python | -| | :name: test_numpy_data_01 | -| | | -| - ``data``, ``x``, ``y``: equal-size ``numpy.array`` (or ``list``) | from eomaps import Maps | -| - ``parameter``: (optional) parameter name (``string``) | import numpy as np | -| | | -| | x, y = np.mgrid[-20:20, -40:40] | -| | data = x + y | -| | m = Maps() | -| | m.set_data(data=data, x=x, y=y, crs=4326, parameter="param_name") | -| | m.plot_map() | -+---------------------------------------------------------------------+------------------------------------------------------------------------------------+ -| **1D** coordinates and **2D** data | .. code-block:: python | -| | :name: test_numpy_data_02 | -| | | -| - ``data``: ``numpy.array`` (or ``list``) with shape ``(n, m)`` | from eomaps import Maps | -| - ``x``: ``numpy.array`` (or ``list``) with shape ``(n,)`` | import numpy as np | -| - ``y``: ``numpy.array`` (or ``list``) with shape ``(m,)`` | | -| - ``parameter``: (optional) parameter name (``string``) | x = np.linspace(10, 50, 100) | -| | y = np.linspace(10, 50, 50) | -| | data = np.random.normal(size=(100, 50)) | -| | | -| | m = Maps() | -| | m.set_data(data=data, x=x, y=y, crs=4326, parameter="param_name") | -| | m.plot_map() | -+---------------------------------------------------------------------+------------------------------------------------------------------------------------+ - - .. _set_the_shape: 2) Plot shapes @@ -202,15 +340,15 @@ Available shapes (see bleow for details on each plot-shape!): The suggested "suitable datasizes" mentioned below always refer to the number of datapoints that are visible in the desired plot-extent. - .. currentmodule:: eomaps.shapes.Shapes + .. currentmodule:: eomaps.eomaps - For very large datasets, make sure to have a look at the :py:class:`raster`, :py:class:`shade_raster`, and :py:class:`shade_points` shapes + For very large datasets, make sure to have a look at the :py:class:`raster `, :py:class:`shade_raster `, and :py:class:`shade_points ` shapes which use fast aggregation techniques to resample the data prior to plotting. This way datasets with billions of datapoints can be visualized fast. .. admonition:: Optional dependencies - :py:class:`shade_raster`, and :py:class:`shade_points` require the `datashader `_ package! + :py:class:`shade_raster `, and :py:class:`shade_points ` require the `datashader `_ package! You can install it via: .. code-block:: python @@ -221,9 +359,9 @@ Available shapes (see bleow for details on each plot-shape!): By default, the plot-shape is assigned based on the associated dataset. - - For datasets with less than 500 000 pixels, ``m.set_shape.ellipses()`` is used. - - | For larger 2D datasets ``m.set_shape.raster()`` is used - | ... and ``m.set_shape.shade_points()`` is attempted to be used for the rest. + - For datasets with less than 500 000 pixels, :py:class:`ellipses ` is used. + - | For larger 2D datasets :py:class:`raster ` is used + | ... and :py:class:`shade_points `_ - -.. autosummary:: - :nosignatures: - - shade_raster +.. image:: _static/shape_imgs/shade_raster.png + :width: 50% .. code-block:: python @@ -496,8 +626,10 @@ Shade Raster Shade Points ************ -.. image:: _static/shape_imgs/shade_points.png - :width: 50% +.. autosummary:: + :nosignatures: + + Maps.set_shape.shade_raster .. list-table:: :header-rows: 1 @@ -509,11 +641,8 @@ Shade Points - 1D, 2D or mixed - `datashader `_ - -.. autosummary:: - :nosignatures: - - shade_raster +.. image:: _static/shape_imgs/shade_points.png + :width: 50% .. code-block:: python From 171fe4fbdb7a65016454f9924d49bcfe9e9f23df Mon Sep 17 00:00:00 2001 From: Raphael Date: Sun, 10 Mar 2024 23:51:52 +0100 Subject: [PATCH 233/240] address warnings --- eomaps/helpers.py | 5 +++++ eomaps/utilities.py | 9 ++++++++- tests/test_basic_functions.py | 2 +- 3 files changed, 14 insertions(+), 2 deletions(-) diff --git a/eomaps/helpers.py b/eomaps/helpers.py index bf14b395d..3be8f79df 100644 --- a/eomaps/helpers.py +++ b/eomaps/helpers.py @@ -20,6 +20,11 @@ from matplotlib.transforms import Bbox, TransformedBbox from matplotlib.backend_bases import KeyEvent +import importlib.metadata +from packaging import version + +mpl_version = version.parse(importlib.metadata.version("matplotlib")) + _log = logging.getLogger(__name__) diff --git a/eomaps/utilities.py b/eomaps/utilities.py index 36cbc65ce..cfb95098e 100644 --- a/eomaps/utilities.py +++ b/eomaps/utilities.py @@ -11,6 +11,9 @@ from functools import wraps from matplotlib.pyplot import Artist, rcParams +from packaging import version +from .helpers import mpl_version + class SelectorButtons(Artist): # A custom button implementation that uses a legend as container-artist @@ -72,7 +75,11 @@ def __init__( self.leg = f.legend(circles, self.labels, **kwargs) - self.circles = self.leg.legendHandles + # TODO remove once support for matplotlib <3.7 is dropped + if mpl_version >= version.Version("3.7"): + self.circles = self.leg.legend_handles + else: + self.circles = self.leg.legendHandles for c in self.circles: c.set_picker(10) diff --git a/tests/test_basic_functions.py b/tests/test_basic_functions.py index b152f2bc2..c6419d3d9 100644 --- a/tests/test_basic_functions.py +++ b/tests/test_basic_functions.py @@ -595,7 +595,7 @@ def test_add_colorbar(self): out_of_range_vals="mask", hist_bins=5, extend_frac=0.4, - show_outline=dict(color="r", lw=4), + outline=dict(color="r", lw=4), ) self.assertTrue(len(m._colorbars) == 5) self.assertTrue(m.colorbar is cb4) From e359513eaf0154d3055c698ec9ab958d39b0d0f8 Mon Sep 17 00:00:00 2001 From: Raphael Date: Mon, 11 Mar 2024 09:48:52 +0100 Subject: [PATCH 234/240] add ipywidgets and ipympl to top-level "environment.yml" (as they are used for development and required in the tests) --- environment.yml | 3 +++ 1 file changed, 3 insertions(+) diff --git a/environment.yml b/environment.yml index 34e993fdb..41e9fdcb6 100644 --- a/environment.yml +++ b/environment.yml @@ -28,6 +28,9 @@ dependencies: - requests # --------------to support multiple Qt versions - qtpy + # --------------for jupyter widgets + - ipywidgets + - ipympl ### To run the tests - coveralls From ba323b9002f09864202ea11798d45d89ef44ca26 Mon Sep 17 00:00:00 2001 From: Raphael Date: Mon, 11 Mar 2024 09:49:03 +0100 Subject: [PATCH 235/240] update version to 8.0rc2 --- pyproject.toml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pyproject.toml b/pyproject.toml index 00c0fae5b..24d7d4834 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -11,7 +11,7 @@ eomaps = ["logo.png", "NE_features.json", "qtcompanion/icons/*"] [project] name = "eomaps" -version = "8.0rc1" +version = "8.0rc2" description = "A library to create interactive maps of geographical datasets." readme = "README.md" license = {file = "LICENSE"} From 2793b9879889f5ea311086e27898b345d1da5b2a Mon Sep 17 00:00:00 2001 From: Raphael Date: Mon, 11 Mar 2024 14:53:35 +0100 Subject: [PATCH 236/240] make sure encoding fill-value mask is always applied if provided --- eomaps/_data_manager.py | 12 ++++++++++++ eomaps/reader.py | 21 --------------------- 2 files changed, 12 insertions(+), 21 deletions(-) diff --git a/eomaps/_data_manager.py b/eomaps/_data_manager.py index 8c3c2f6c5..a0aafe5ba 100644 --- a/eomaps/_data_manager.py +++ b/eomaps/_data_manager.py @@ -413,6 +413,18 @@ def _prepare_data(self, assume_sorted=True): # identify the provided data and get it in the internal format z_data, xorig, yorig, ids, parameter = self._identify_data() + # check if Fill-value is provided, and mask the data accordingly + if self.m.data_specs.encoding: + fill_value = self.m.data_specs.encoding.get("_FillValue", None) + if fill_value: + z_data = np.ma.MaskedArray( + data=z_data, + mask=z_data == fill_value, + copy=False, + fill_value=fill_value, + hard_mask=True, + ) + if cpos is not None and cpos != "c": # fix position of pixel-center in the input-crs assert ( diff --git a/eomaps/reader.py b/eomaps/reader.py index 09c9a484a..8fc15a666 100644 --- a/eomaps/reader.py +++ b/eomaps/reader.py @@ -273,17 +273,6 @@ def GeoTIFF( # Using masked-arrays ensures that we can deal with integers as well! if mask_and_scale is False: encoding = usencfile.attrs - fill_value = encoding.get("_FillValue", None) - - if fill_value and fill_values == "mask": - data = np.ma.MaskedArray( - data=data, - mask=data == fill_value, - copy=False, - fill_value=fill_value, - hard_mask=True, - ) - else: encoding = None @@ -555,16 +544,6 @@ def NetCDF( add_offset=getattr(usencfile[parameter], "add_offset", 0), _FillValue=getattr(usencfile[parameter], "_FillValue", None), ) - fill_value = encoding.get("_FillValue", None) - if fill_value and fill_values == "mask": - data = np.ma.MaskedArray( - data=data, - mask=data == fill_value, - copy=False, - fill_value=fill_value, - hard_mask=True, - ) - else: encoding = None From 0bb838f05ec6647900b010bce856ad86f2a73fba Mon Sep 17 00:00:00 2001 From: Raphael Date: Mon, 11 Mar 2024 14:53:50 +0100 Subject: [PATCH 237/240] fix transposing xarray data if required --- eomaps/_data_manager.py | 26 +++++++++++++++++++++----- 1 file changed, 21 insertions(+), 5 deletions(-) diff --git a/eomaps/_data_manager.py b/eomaps/_data_manager.py index a0aafe5ba..dbdf9afb9 100644 --- a/eomaps/_data_manager.py +++ b/eomaps/_data_manager.py @@ -244,6 +244,7 @@ def _identify_xarray(self, data=None, x=None, y=None, parameter=None): f"({data[parameter].dims})." ) z_data = data[parameter].values + data_dims = data[parameter].dims else: assert len(data.dims) <= 2, ( "EOmaps: provided dataset has more than 2 dimensions..." @@ -251,25 +252,26 @@ def _identify_xarray(self, data=None, x=None, y=None, parameter=None): ) z_data = data.values + data_dims = data.dims parameter = data.name # use numeric index values ids = range(z_data.size) - if isinstance(x, str) and isinstance(y, str): + if isinstance(x, str) and isinstance(y, str): # coords = list(data.coords) if (x in coords) and (y in coords): # get the coordinates from coordinates xorig = data.coords[x].values yorig = data.coords[y].values - # transpose dat in case x is before y - # (to account for matrix indexing order) - if coords.index(x) > coords.index(y): - z_data = z_data.T + x_dims = data.coords[x].dims + y_dims = data.coords[y].dims elif (x in data) and (y in data): xorig = data[x].values yorig = data[y].values + x_dims = data[x].dims + y_dims = data[y].dims elif (x is None) and (y is None): coords = list(data.coords) @@ -278,12 +280,26 @@ def _identify_xarray(self, data=None, x=None, y=None, parameter=None): # get the coordinates from index-values xorig = data[coords[0]].values yorig = data[coords[1]].values + x_dims = data[coords[0]].dims + y_dims = data[coords[1]].dims else: raise TypeError( "EOmaps: Either specify explicit coordinate-names to use " "for `x` and `y` or pass a Dataset with exactly 2 " "coordinates!" ) + + # transpose dat in case data is transposed + # (to account for matrix indexing order) + # TODO make this prperly + if not (data_dims == x_dims and data_dims == y_dims): + if len(x_dims) == 2 and len(y_dims) == 2: + if data_dims == x_dims[::-1]: + z_data = z_data.T + elif len(x_dims) == 1 and len(y_dims) == 1: + if data_dims.index(x_dims[0]) > data_dims.index(y_dims[0]): + z_data = z_data.T + return z_data, xorig, yorig, ids, parameter def _identify_array_like(self, data=None, x=None, y=None, parameter=None): From a16412555173175e093ff2df0a14a219b107333b Mon Sep 17 00:00:00 2001 From: Raphael Date: Fri, 15 Mar 2024 14:24:59 +0100 Subject: [PATCH 238/240] use numpy implementation for 1D/2D conversion with raster shape --- eomaps/eomaps.py | 80 +++++++++++++++++++++++++++++++++--------------- 1 file changed, 55 insertions(+), 25 deletions(-) diff --git a/eomaps/eomaps.py b/eomaps/eomaps.py index 8d8ecae23..a8170ac52 100644 --- a/eomaps/eomaps.py +++ b/eomaps/eomaps.py @@ -4609,6 +4609,53 @@ def _handle_explicit_colors(self, color): return color + @staticmethod + def _convert_1d_to_2d(data, x, y, fill_value=np.nan): + """A function to convert 1D vectors + data into 2D.""" + + if _log.getEffectiveLevel() <= logging.DEBUG: + _log.debug( + "EOmaps: Required conversion of 1D arrays to 2D for 'raster'" + "shape might be slow and consume a lot of memory!" + ) + + x, y, data = map(np.asanyarray, (x, y, data)) + assert ( + x.size == y.size == data.size + ), "EOmaps: You cannot use 1D arrays with different sizes for x, y and data" + + x_vals, x_idx = np.unique(x, return_inverse=True) + y_vals, y_idx = np.unique(y, return_inverse=True) + # Get output array shape + m, n = (x_vals.size, y_vals.size) + + # Get linear indices to be used as IDs with bincount + lidx = np.ravel_multi_index(np.vstack((x_idx, y_idx)), (m, n)) + idx2d = np.unravel_index(lidx, (m, n)) + + # Distribute data to 2D + + if not np.issubdtype(data.dtype, np.integer): + # Integer-dtypes do not support None! + data2d = np.full((m, n), fill_value=fill_value, dtype=data.dtype) + data2d[idx2d] = data + + else: + # use smallest possible value as fill-value + fill_value = np.iinfo(data.dtype).min + data2d = np.full((m, n), fill_value=fill_value, dtype=data.dtype) + data2d[idx2d] = data + + mask2d = np.full((m, n), fill_value=True, dtype=bool) + mask2d[idx2d] = False + + data2d = np.ma.masked_array(data2d, mask2d) + + # Distribute coordinates to 2D + x_vals, y_vals = np.meshgrid(x_vals, y_vals, indexing="ij") + + return data2d, x_vals, y_vals + def _get_coll(self, props, **kwargs): # handle selection of explicitly provided facecolors # (e.g. for rgb composites) @@ -4651,34 +4698,17 @@ def _get_coll(self, props, **kwargs): if len(self._xshape) == 2 and len(self._yshape) == 2: coll = self.shape.get_coll(props["xorig"], props["yorig"], "in", **args) else: - (pd,) = register_modules("pandas") - # TODO avoid having pandas as a dependency here - if pd: - if ( - (len(self._xshape) == 1) - and (len(self._yshape) == 1) - and (len(self._zshape) == 1) - and (props["x0"].size == props["y0"].size) - and (props["x0"].size == props["z_data"].size) - ): - - df = ( - pd.DataFrame( - dict( - x=props["x0"].ravel(), - y=props["y0"].ravel(), - val=props["z_data"].ravel(), - ), - copy=False, - ).set_index(["x", "y"]) - )["val"].unstack("y") + data2d, x2d, y2d = self._convert_1d_to_2d( + data=props["z_data"].ravel(), + x=props["x0"].ravel(), + y=props["y0"].ravel(), + ) - xg, yg = np.meshgrid(df.index.values, df.columns.values) + if args["array"] is not None: + args["array"] = data2d - if args["array"] is not None: - args["array"] = df.values.T + coll = self.shape.get_coll(x2d, y2d, "out", **args) - coll = self.shape.get_coll(xg, yg, "out", **args) else: # convert to 1D for further processing if args["array"] is not None: From 173eddb4a7a1efbdb418b97912fdafe959b179f0 Mon Sep 17 00:00:00 2001 From: Raphael Date: Fri, 15 Mar 2024 15:25:26 +0100 Subject: [PATCH 239/240] update docs --- docs/FAQ.rst | 2 + docs/installation.md | 84 +++++++++++++++++++++++++++++++++ docs/installation.rst | 98 --------------------------------------- docs/quickstart_quide.rst | 6 +-- 4 files changed, 89 insertions(+), 101 deletions(-) create mode 100644 docs/installation.md delete mode 100644 docs/installation.rst diff --git a/docs/FAQ.rst b/docs/FAQ.rst index ec2274e8a..7ef44974b 100644 --- a/docs/FAQ.rst +++ b/docs/FAQ.rst @@ -1,3 +1,5 @@ +.. _faq: + 👀 FAQ ======= diff --git a/docs/installation.md b/docs/installation.md new file mode 100644 index 000000000..510e4494f --- /dev/null +++ b/docs/installation.md @@ -0,0 +1,84 @@ +(installation)= +# 🐛 Installation + +```{contents} Contents: +:local: +:depth: 1 +``` + +The following sections provide information how to install **EOmaps**. + +- A quick tutorial on how to **get started from scratch** is available here: {ref}`quickstart_guide` +- More details on how to **configure your favorite IDE** to get the most out of **EOmaps** can be found in the {ref}`faq` section {ref}`configuring_the_editor`. +- If you want to know how to setup **EOmaps** for development, have a look at the {ref}`contribute` + + +## Installation with ``conda`` or ``mamba`` + +EOmaps is available on [conda-forge](https://anaconda.org/conda-forge/eomaps) and can be installed via: + +``` +conda install -c conda-forge eomaps +``` + +This will install all required and optional dependencies. + + +:::{dropdown} Greatly speed up the installation! +:color: info +:icon: info +:open: +:margin: 3 + +Since the dependencies of EOmaps can be demanding to solve for ``conda``, it is **highly recommended** +that you use [mamba](https://github.com/mamba-org/mamba) to install EOmaps in a conda-environment! + +[mamba](https://github.com/mamba-org/mamba) is a reimplementation of the conda package manager in C++, capable of solving environments a lot faster. + +The recommended way to get started is to use [miniforge](https://github.com/conda-forge/miniforge), a minimalistic installer +that provides both ``conda`` and ``mamba``, pre-configured to use the ``conda-forge`` channel by default. +For other options, checkout the [mamba-docs](https://mamba.readthedocs.io/en/latest/installation/mamba-installation.html) + +Once ``mamba`` is installed, you just need to replace the term ``conda`` with ``mamba`` and you're good to go! + +``` +mamba install -c conda-forge eomaps +``` + +::: + + +## Installation with ``pip`` + + +EOmaps is also available on [pypi](https://pypi.org/project/eomaps/). + +To install EOmaps with a **minimal set of dependencies**, use: + +``` +pip install eomaps +``` + +### Optional dependencies + + +Some features ({ref}`webmap_layers`, {ref}`companion_widget`, etc.) require additional dependencies. +To use them you have to install the required dependency-groups: + +To get **all features of EOmaps**, you can use one of: + +- ``pip install eomaps[all]`` Install **ALL** requuired and optional dependencies +- ``pip install eomaps[all_nogui]`` Same as ``all`` but without installing the ``Qt`` GUI framework + + +In addition, you can use the following dependency-groups to activate only selected features: + +- ``pip install eomaps[wms]`` Add dependencies required to use {ref}`WebMap services ` +- ``pip install eomaps[gui]`` Add dependencies for ``Qt`` GUI framework (and the {ref}`CompanionWidget `) +- ``pip install eomaps[io]`` Add support for ``pandas``, ``xarray``, ``geopandas`` and ``rioxarray`` +- ``pip install eomaps[shade]`` Add capabilities to visualize extremely large datasets (via ``datashader``) +- ``pip install eomaps[classify]`` Add support for ``mapclassify`` to classify datasets + +It is also possible to combine dependency-groups, e.g.: ``pip install eomaps[wms, gui]``. + +A full list of all associated packages can be found in {ref}`setup_a_dev_env` or in the ``pyproject.toml`` file. diff --git a/docs/installation.rst b/docs/installation.rst deleted file mode 100644 index f04040b94..000000000 --- a/docs/installation.rst +++ /dev/null @@ -1,98 +0,0 @@ -.. _installation: - - -🐛 Installation -================ - -.. contents:: Contents: - :local: - :depth: 1 - - -Via ``conda`` and ``mamba`` ---------------------------- - -EOmaps is available via the ``conda-forge`` channel and can be installed via: - - .. code-block:: console - - conda install -c conda-forge eomaps - - -This will install all required and optional dependencies. - - -.. admonition:: Greatly speed up the installation! - - Since the dependencies of EOmaps can be demanding to solve for ``conda``, it is **highly recommended** - that you use `mamba `_ to install EOmaps! - - ``mamba`` is a reimplementation of the conda package manager in C++, capable of solving environments a lot faster. - - The best way to get started is to use `miniforge `_. - - However, you can also install ``mamba`` into an existing ``conda`` environment with: - - .. code-block:: console - - conda install -c conda-forge mamba - - - Once ``mamba`` is installed, you just need to replace the term ``conda`` with ``mamba`` and you're good to go! - - .. code-block:: console - - mamba install -c conda-forge eomaps - - - Alternatively you can also configure ``conda`` to use the ``libmamba`` solver by default. - (More info here: `A Faster Solver for Conda: Libmamba `_ ) - - -A quick tutorial on how to **get started from scratch** is available here: :ref:`quickstart_guide` - -More details on how to **configure your favorite IDE** to work with EOmaps can be found in the FAQ section -:ref:`configuring_the_editor`. - - - -Via ``pip`` ------------ - -EOmaps is also available on ``pip``. - -To install EOmaps with a **minimal set of dependencies**, use: - - .. code-block:: console - - pip install eomaps - - -Optional dependencies -~~~~~~~~~~~~~~~~~~~~~ - -Some features (:ref:`webmap_layers`, :ref:`companion_widget`, etc.) require additional dependencies. -To use them you have to install the required dependency-groups: - -To get all features of EOmaps, you can use one of: - -.. code-block:: console - - pip install eomaps[all] # ALL optional dependencies - pip install eomaps[all_nogui] # All optional dependencies (except ``Qt`` GUI framework) - - -In addition, you can use the following dependency-groups to activate only selected features: - -.. code-block:: console - - pip install eomaps[wms] # dependencies required for WebMap services - pip install eomaps[gui] # dependencies for ``Qt`` GUI framework and the CompanionWidget - pip install eomaps[io] # add support for ``pandas``, ``xarray``, ``geopandas`` and ``rioxarray`` - pip install eomaps[shade] # add capabilities to visualize extremely large datasets (via ``datashader``) - pip install eomaps[classify] # add support for ``mapclassify`` to classify datasets - - -(It is also possible to combine dependency-groups, e.g.: ``pip install eomaps[wms, gui]``) - -A list of all associated packages can be found in :ref:`setup_a_dev_env` or in the ``pyproject.toml`` file. diff --git a/docs/quickstart_quide.rst b/docs/quickstart_quide.rst index 0d0c89166..2cebbea9d 100644 --- a/docs/quickstart_quide.rst +++ b/docs/quickstart_quide.rst @@ -1,7 +1,7 @@ .. _quickstart_guide: -🚀 From 0 to EOmaps - a quickstart guide +🚲 From 0 to EOmaps - a quickstart guide ***************************************** The following section is intended to provide a quick overview on how to get started using ``EOmaps``. @@ -27,8 +27,8 @@ Links to websites that provide additional information are provided throughout th - basic python knowledge -🐍 Getting started - set up a python environment ------------------------------------------------- +Getting started - set up a python environment +--------------------------------------------- There are of course many ways to set up a python environment... in the following, we will use the (free and open-source) ``conda`` package manager which greatly simplifies the creation of environments that depend on both python and c++ libraries From b68c7df17df29cdca1d84a961722ad367520f8ba Mon Sep 17 00:00:00 2001 From: Raphael Date: Fri, 15 Mar 2024 15:32:42 +0100 Subject: [PATCH 240/240] update version to v8.0.1 --- pyproject.toml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pyproject.toml b/pyproject.toml index 24d7d4834..5e8e5397d 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -11,7 +11,7 @@ eomaps = ["logo.png", "NE_features.json", "qtcompanion/icons/*"] [project] name = "eomaps" -version = "8.0rc2" +version = "8.0.1" description = "A library to create interactive maps of geographical datasets." readme = "README.md" license = {file = "LICENSE"}
    - EOmaps GUI + EOmaps GUI Example - EOmaps example 9 + EOmaps Timeseries Example - EOmaps example 4 + EOmaps Callbacks Example
    - EOmaps example 6 + EOmaps Webmaps Example - EOmaps example 2 + EOmaps Webmaps Example 2 - EOmaps example 7 + EOmaps Scalebars Example - EOmaps example 8 + EOmaps Multiple Maps Example
    - EOmaps inset-maps + EOmaps LayoutEditor Example - EOmaps example 3 + EOmaps Vector Data Example - EOmaps example 9 + EOmaps Lines Example - EOmaps example 4 + EOmaps InsetMaps Example

Swz5!}$!0Ce26iCT1P*)uxt1JKDP!gdnwiMc|NoYc0cKsFrnr-O_ zsUgMC^GQlbKfhk<5Ylu#V9<0!Z%i2?K@LEZ8GG1(Jy~LRLMRrYt+SgDmQoUmLLg$pz7vKy9>Ep~;@%k}}tD z>d9}C(VWMDl~?g{`|aFf{5csueOxw_%p@_4+=;2aR@|{LA@p2=!$C>oAygogoXkeq z*Rd@UHjqffP}T1Dt%Cg(08~sG({J?P(Xe&+$*OBc0}f6ZL|zb>uxTg7hngw#6#}qB zokEL}1|6_+jgggWj4Yg6%*<2V5YeBvhDeMBZ?B?cPZ=5t{*#kY6bVRdwlLWT>#zhu zluzp|ZEEib9Jv)wdTS+{PhUWPXbMBF4b)JCl=aYP6hk3LP0f zkb;P==Li zLj`|(#>scTTf)mP?Zq+t)P~1|@#8~0^;CC`+q>?nB@|MqsIc&(ACKjxn@ZWTMZ;o- zNK_{({C-%!0Zv+=Pbb2bgtRyzJj^6>#{nT=>B7UZ=?Yot0UrGFT2^n$=4(G#!lPeZ z)t#$wIQvr+WPUc3>-!XG8bbM7cLBK*VcZER7FhUwyAKzq&1mx-BRs z2g(_b5Z!Z-#J=9^Gy`!QVK0sABII|J5;?m|Q#O{s{N7%oCl%{+`3Zv2B$$7OWaaBa zm#q~k)XL-|xo@RV*d$9>#6Dc~?+g}4!9kcL0<;NT4PlC`CXPxyz31YDP${F^v9yuC zb45?&o-r3S*yBAnpkO7F!jsP?efbnte)0P>fA?jQZd`)6N?9mCx>T3An z7ke)ch0vu&o10?4}YkS>8-bpECSBs@sO33#imW0C@wB0D=X`` zQbK%|p(y$ozWg%0`YK#<$*0|;QGA*h<%dTxik|RxpllePVeIHB#FmrF%&*>rDUvj3 z1ew92FGz+PWY)8tW2rL~jyQiGL!F+;Dd}h95Oqe{?nrUG$E14tF;boY9LtywgyHU^ zS2_E!kv~F!G`MJXH1r?``-4WKVGS5lj;WpD;4p#FYb|H`cu1`Q)USq(<6Un`DSJf^ zN-6p2qi+Dzf$p4s&$PQU6@0DSE}-hO)dkurve2~SfRrLR@<@{@0{;rY$9z3WHR8vdiBb+zN{ zo5y5h_x=pFR}5^x4n^Sy&m}R@QFwff0h7fz?)~4EL9eCjI={>t_dicVakr~!Mkuw5 z92^+m|J4Qxqge=X;!jvewa`$T!<)M<;&&~#llSX(a{ty!BBGLr92=ROP*ozw7>O9R zT8ZWwNuJ(F#-d7$%auVNB8efQRr-U+-Hy~?!n!?7o|(>%pMIqmIe0WytlvqEuK}04 z_nbCq%x<>rn@&}I9+Bv=Te(vf&IN@ zw0xa#@SvS9T-V&YUUtgBD81(nMS+{Hui>;)TY2EVGG{)|*UR;NAN_zoIB+f|edj$0qve|st)0kJH!K7^aHg{=`jn4y%1-zZ4S~_X+ z_h%W811e(oAw4&u$Elwy*=-OunW3OS&*9_igqBuF&rnGXwqhkt2$j}h5OMk4>IcScBaA{!@K)Yq&X#Jzn(N)$R9Xyf&K*SY9iwS4MKvJ59FF0^SaY9Q_ z+tPx~VL(ZAKUcygE1f0_?vRh1wmLk1FRC_lgkHp8ro-wY%iDme>Gz!`A?9|`=1eBp z-;P?`&?`M6HgtwnU$PIgE^TF+wfSA;zpeWu1qUna_s?(@xiVqP-KEJ zjTHcNjvGh+f*yiUsQWy+TfKNXe8hl?@x{aH*Wu{Fx`J#1NrN9tb8a?{hI*!Tt^wdZ z^J#s`tl4N{{qi*O%(|jQ+-$@gi4cf8i5pa^#`KnBtt-jzLk=Qg{5Cxj_rnWL<%!4c z8?aAJU4gvm8}?#|#0X@ku>D)t4|*H`BAOuMqs;)6Up$M5Jw(J29N0Q!(1=^3_)@+2 zQoY^f6o}d)L>wXFshymB=O#}3xynU9YUYyfujSJ3e#GV9Udw_rtJ(2EF6ArpG4IL8 z>Gfa?TL?ORv}D)Ok=lxq)r8d*qP@XG*_JWHqr;mY<8g)Z?S<^$Fpknq<2baVnA!um zG*_k3(VRrcZ$(R}7>sf3NdfXFRxy6w0mjTKr({Ms`ID;2DsCXFxbe8iLC~WJqh0xF z6$P&UypP$ly?pW35=zTHc?UPERb%4BAm9F0B`>~E!n^Mluz5=|0wXhLz=HXD6w>+) zP+qPRtR&@r;{EK2MRV%7<;tDh{qSitzS#hsAvoAHyvj*VaCSLK#0Mh8!U)s7hzYHb zF@ynQDEJ~Ut*`0{onbh+Nd98**%zw zl2D3zOQtK$ejbQ@pT`c}hI*h8(}(*pt=I>OAaeF(r2Y8RHTpwlfuLyOFbfNT>>-uj zA?&;x-gEUfdouMw35V`*TzJalAjfAHz$lt1_WknI)}z!Oiv`|tOT z}Z^IR&QeRl~>@GzwEl_KcjFu^(f7qJK^rT;l&sA|A#sz zRaF^3emqmBPNk-%h8;V05RHC(QQn^gTzDZYU#^eeDE@mf8bLUUQS^YiVl5(ZYzvP` zcV31`8^TCogwFk4UTw$F#>YXXorr!20oeltZhew6r^kZ9`llp+JOtq<8QIw{1|SHB z6X}+)q|sn_X~-sAS_#AlmTo!TsJedZ_V+S%95~#^PurnPBhej=47|5&7dy9AVK$qI zL?S%>hgDqjg~d#p*}p!B5N?*snjzb%zV`(V?WzFa*}twn66JTi80=ifwC*3i_{dGH z_~%NrgvOs9`78hW-RrnKP8utk2!#eV*qAIP((}@oy>uq$-E9Kyni*5i6i#D{mF(MaNi z-bPs6ytcl^C6$+zVi8 zQZqBQl%u&LtUbAZ*Vgzk5QG2|$L!dT2nYjeEsb0aqm?N47v`Qqb<*|#DuKNb1N%}0K2Y!ax7#9>Kr zB${ow5dGgDQzz>Y6tib`GJEDxM2`fdpqH0|l!z7Eka=mk9_A2G{-GO`nmLvQ|#l$rPwQoL91Mr$Mcd3tB-G)(0-L%>vnUWB2BCNu9hM~M0B1aa zq9xFj!Rv~83+@6xHhTo8-AY@>z_QU&N@9sPs)U}UEU_pmU`@pF8qHXvAwniA2}Q*g z38D!>xF1IkxX7%{}-_&P$gTQri~4b0kfhy|?RMaMNf zV85NE+FG)$RYYQ)LHTY;1B?%N0W5@pfxjvia9eGyM7a1 zoNO`8Vq$C$dySKNmD{w#!2HFjpfmtrh{bT=rztywLbYMYcG7AaNo#B+W>DF9#ve%}_7(!1xQm^DJPkj%|#M+M5al~A#(h}7I>T&bOdMiaJFrxA}D$sSva z*&4xMihrsyX}(x1DQ2ByQxy2YqYW&3$HM*h7xTaahnPL<_!J+G1w}<+e)-E%d_I*e zTbz9KQ8w?rCwTbb3g*m)efy!RT3|9sa&v7+TQUUOhTieVgb8EX_}+aV@!hYU%@^+Z zCNra(V0IyVVK>;PA_Dzb-{T!n`+bb3eu+fgKZ&k-7iH-qDDQl=-zJrn z-^XoOtWo8N?={R~#Ef|E}k(cuh=iV8?gg{!ZIKmAG1FL(CY-M_C`0ss0}?>Y}Wpy!|a z!yk0jhR-5QCb;P)xZwuavIVwn(}~yzAB61e!Rxx+Zf4J(&ECCxIdtd{!0;F4uoWbfLkZUk?vHs9&G%;rqmm;{Omv3Bpl~;xMG_BQH7| zt!Dkbzv|oc2-^8iL|QhOE&U(Cpy`*6`u)=whXLDD1d6-2x80|aukM7mXSE>I-Y*Fw zA;OeM2g!+<1k{0FrjoRoc!J3w`$kfHtfbpf1mUrgke?(mI4n|DJ34ys-vE61%U`Ct zx|(O7eU@*02bi%d5Zp zH$n&;Ne+r86|nTOB`i399;&J$VsYI2s|n=i5_g!8%Eudic)SE*U9g>V=lS{jhsi_+ zNiq1f%YEz%_C2>k)0qCzW;UI+U|0lUxl+NGzg)u4f8IV|nT&J;sm0O5sm1_^xI!#l zn9GVa1C!7v&B`S1jv&0f2W3+AK00hJYEy=IgF6c0W*g1xa>=`3KSF_3%wZLCs87ix z)z`|wMR^n`y>siuI!#o*Jb}z9RpgF4#2LF*^78!84QaSP9t13QGUruNwr(N}U<5dp z2toi=O^})0z|PtrU%ugDHt+r^q42=u=S52v@ZpP9eYOk1e+)5r81Xm+eBkJ58`^OY z@yaU1`&;$zZ>&zKHcr;~CY$`=WV#s7C6lLn({{xYO05S^AL7j*MvMo@ee1g0*@;Dvm7;(8fz=Gg)vIyT)Nr`OQ1YTZkrvbm!WQfBWsZF& zJ0S#CB=%T>&F_6;j>#oz`1{Ym8$VY?3p{21{u; z$-T)4YlGg#{=CH`{6=ckY)WFK95fzHTIl2N=9JH4(kD--nCT`ZFgb&P^ zNO%~k9}Uuoy;hH&u08vxXJA~x61EaGhtRs@8VwO6xn0kn>T~Ck{r*;Lwat{>c+QY* z9WNYdVXpo5MxOiWbQWJw!MIu7&V-s2)CY{@J7Wk(3va(X35zL%S+l&jk|Jal)%P3W z=l42rB>QlBj*+D}R)k~vV)rOAI@%RQXzCH2e&!irHg5EC?X@%5zHJkhk@%oK^*TJi z0^WKI%*SWNcRCX+S<=pu#jX5i@&+naZKUYkyC^AE*t$*PJp71D%7&m9kWk(X+pFNB znV)EasuWL{$DiEELtpIcISBNC08AAk&heZZFa`9||l8!vMMYOf{gI zAaNYdW3zIR_bfp+`XG`(bcT`VPJq%bf)L=qhcM+UNaHhz_7#2m9NZ6SR*d63M0Ye1 z*-?u5tRJDg|80o(oeMvk<`yDtCO%iclBM;p^IOB6%xqnQ()#h<6DG4@ z&Qi&$e;@z83^GolD>V6N$DajqKieoGEc(Cxi)14y_}D~m8G6TA(`bI=CBnO^5oROC zY!8leXHZpskPM^5;mp9IS!vbUsFAf8go+l|Fjy3Fp1KubF%qk4#Xy3&lwl*vDkf4U zvM|diQ)MNUq!Db7v+?q;vt;$}QHJr(b@$!y_~Y>2d+_kX$3A8~k)N-VfIIZm(Ohr= zoPIid{`0VMCH(Gped~Pnt1xyfTy>QmQTSPgs>0m4`sdP1;eY=Ze*W{Jb3Ur7N`8Jm zJ9g~AMl*tWS6tJTWA z_ufk^7UQ+oUSsQ~3jW`Xf9z9t!O3IE$xY^@xR<{f&gSklf5&^@tB_=YA`eQDhow1_ z+4$wIH@gMEcBrfI^1<@moPN$wa&*UcY*DRup`y9DJn_aa`0+hIqp`M;NH~fs*~QdF zley?ipCh*`50<~fPt}1M*1WooovU}#+|W$COJY$eDxH5{)&@TdwVb0rWI&> z^@>g^l}-3UeT@g2!N7-?oH^|FDkIIzIN!}r3NrcWk2%Q)cM#1HmIl1B%l@H<@ zd)3<DW%d#eANu$9d8x8Tf<%lXGj^q{@X^@j zAos%3K3vKhv(Fl^p3xPh@X9^-b|;hh^B`NCCsEZt4rj3!*VwiJd70xyZE*%0YUYAB zh}qNkJSB|B*02x~RY_1)m%*xkRq^z9@8Rh;-s6pxo6&k`>lEgu^X*%&qHI$qvDjxv zN2s+$!{O>NHj@gG(Kzy%<%se+#FkRTmQv&|{)txgBEE!+l$%Zg!{D-o{bB&=+x-p&X*c`BSTfc1%h;-%rI(!8lInsUQh-e&Xw?OXTvgFMz zpe|m3y=*6jP5Y5Ri!FV4#{`%({W%|1M_`#33LWMotPwAsaL2F-LJ)W@N!Y^8B!xSN zCJ6lo44pvRP^M`H984pT$B5Qru2tT)!p_u>|fw8=6q4^JHSs;zU(r zuXCm;Dj~BCt15A55fZ9_kW>i`Aehn-)d@nY0sLJ}ha2N0QhY=*peo(NmaG{d6e1cF z8Q-VK2oBZ6`}OD3s-)vFwo_s)#}#g&v&_i9xr`QD1`W9rp}rGKMLS6q?I?wATJ5=1 zgz_*cdgQQ02~$$Knj~pu1*cGHpO4jE&m)0vvBf-r+Du)}uQTexY3xJ@$cr@a>ZVJX z!hVdN2;Q`zWoL8Csw3jH9kF4_8||EtzRZRZuo{9LiBz;kM2o*_HacV*Jwa z+^Ph5`yDq2>$=acBH)tGMd&csLkz}j+lK=DAn5^2$wNnuiMYmu&H5U8$HJLImIuh& zxECS8J29U?eiv!3fgx_d*6G9;HDkkp6cQ;UYB)~vh7ABzUvLusf((kEeUFAE)A1Me zBbRuBVROc~@mrgD?}ZX}tj^@T8~0&z>SI&UYGK85V`%qUIRDZ;v^HD#_rHq?2dvDR zk<7xShsY}G&imTdkVGP`l9D~lT(Bn)<`4H{{l_}O=T9em#hhOEUC$^&=*shSZwm$k z+upiWAd$RmD-{B)F{wHXpz~a{@*qY~2Rw=`d-c z8R<*|UlW)O@X)KUz8oGqLG2F{CX>bwezt=H2HxcmN%THAQ- z{71lHCeaZ@ie%oAGdP3oEZ_hp8K;7D+Hi0Q>!~J{f=w&woV*p+rjnC3q*s%%FJ)wh-X3(iorl47N_%24F~@8I^JCa zNAG-GI2ID^Sn6E-MKBEzL3pC^Ngb1MLNaQGZNy$eecJLALS`YttS?q&OoQ4oXs_<4 z_Q=qut>i+;Ekx)p*vPO3l}EKTwg8;=kssGlk#3qPgRm=;m=Z+_i9s4MMH84hD~=dI z`$8pd%OzxW5myoj6wI+WR$nzFdJyNw68UFwLE4y4%&Y5oqZ3Dhj%XvnL0r<$f4a8_}c>v zw8Sx4OeEq76rr$m=~8a}^%qWfL}7abHnsLXt~85-ajtO~gaauB1|>#qu#!?=9ohhW zRS+ymn@&3Ugd#=+5{o%OyHd@H=Ium>k!NZoNHSTOq!y$29K=Eb#UL>|6I7ZiITUOj zuwI76$v8C!&94xPY8Z?HqXYJ7H8h5Gsm6E=wr@!1SkJdyYa(lBEA_WJPY97OHRwE$ zLT70T=F}i5v+7aJCvH5As$gNEi}r0E>MM<$byXu_Md5=(L0bIXr1Zq~bsX#Ew_(Rz z=1kdyqDUsr$RKa5lZX~Y(=^OR6X6bxO)F~&hXxKq&B=E&ab||@HYg=R3d(o4QeN6R zVERNMVEmL!@=81;G>M`J;*kXVcQjC6J9OT)p|EhNjj)$AN{smeVogI)X5si<)9zyDKDcJAROODUeLGN=KZMm{0Ql=qW$S% zFb=~vG#Ezt!h?u-g2Y3&K|$s)`UlE)eut>60Fgj$zel^`Oyt7py?%T0qlLu6Va_XA zhr_CnlB!@(ApZAdShwuPJ8mp33l;!iG?|gYOgySzX9lAL871D80>HI%C+V9u(PB$x zb=HDm^$lQZ(+-M#H5{_%a3FQ~GG+Pgl}zk7NVCb!?zBO2MIMFJKr>U?4-mk}&WtH& zLr9cr(>kc1*+!j9C%J_X7>weGI*I&f!9 zQSZs1tavW<9oaa_sz}0zbSQYIj>Bk(Vw52q?QO(;3jU~_q(mEmLMwE1(CSRa5e~3) z_iC&%!QPBQ){L7+mbZbE4s2vk-URk#_mvkkh&ZRL-@x;c>p1=7_oyw&#}tVWH5$+c zh~{v#c5>D$?~njq{o>_>`f;E;8dKJ8WBU3X)D~p%<_#BP5DK}bENoFX(TKj*GTGwP zQA2y&4;ozY>t~Q1Dz{Di9Sd*SG-MlvyUMuuFE10cS@_vczkwWvG~kWj|1G(PYS?-A zrBqzC6l2(gv#t9aMXe!%PCw>=4MkJ%Y+T38@BD^fRtj%?__I$mDh$A3bYV-HKu9&w zctGL97Y%fJJBe#?Vo`-_t~tPIiyC^(^WHWy%U>HuENElF!e*ogp1A=Gp--~otFEq#-5pkEzy7`_4lAua{&fn>h*4-Y4GwZRvvwH zJexLd8*=D9ExD>@@ zLufIi(MfFER^pr9??2g^-Gws!G>Y%IiEqz-nOi}k{ML6hVhip$PNmq6@xns4F}da#iV@YJZf%y zQlH@ZfzfGW%nj#|ed-*HHY&fkuv^k zZ^H5SKMmP8P1DJ{*Iv^j`AUv69p+*D{`c^uFZKUhdOFnA=>%m@L?Uqg^?LMJ@$l03 zerC|wsS}1Tz6cvO=wqEVfFF#eX|%MoP+eV3BoZMSjbgXknbXDK`u+YRgkaB4B9Wk_ zrG>h>I$SOnW57^iPf)gpdE24nuL8MnpFCY0H^~m@ork%Mku2 zA?yV}sBUD@waD0Muxsdq)`Q_lTdqvR^ci4#10j9^bhU*GnelmOJsr9EJ-w`XgvT{N zG?)@?#MUx=S-Oa$fL5o8UB(w_6kE``WY%nCGQ)Nwx&90+9p%R!`De6zBIMw)MkgLm zRHN+jbltSRoXzXYF`LbN^{d@^DXzKZ8m_tK8UPL)IB;YU_28qI9U%t+G(uc;c^*Ig zwn{9PfC+#R{c@4OrRb}I*}yt@_pP1O*Llgx9$e1n_#!q>Tx_nYsx124Ni6zYcLw$q zFMi1HzV#;(i9~nkF}f@%K!ODCyz>q_&fLz=-gz8r)K0<>Ct-|}NF*rReuxQ&>afnA zNH8~TME&V$x-lyTPR=-qjrFPAyU9vRmtDl5z!~{@+&r~|JslgU3-y*%br~%zur21T zm2RH@$c(@1#oKO%i{_Vb*^(4C1XtsY4n)e29PQB%YuK${3x|Vc;$5FX&=~g7$Uc3X z4=dRn)h+#U9NGESVhX`JC!M9qOm5ms>y73U7Ue4xa8GE(J)xCwvyFxi3P3=~xV=R3 zjmYCLnoh~GaY}BOKfnHKR`1%3^p)_|tzRVf)L-z0bFU_I{0#oFt&?a%BW@6wV#mf1 zjxXBJ*1a=u+WkN&d$$e$xok42oOStlR&3nI|NHJc_yfAp%wjQe!5P!J^7C`q@?j0N zRUN(Rc~Yz_K6@;Gdwv@a{%i&DE~86Ynw@K}oX+`IO=0ERW%xQqVkrV=q?5Q}AY`<$ zW<`)SD+ai(<+-@eT&U-HTL^Y8#Ow@ukQ_n!Bh_v~as zekrP6hdO5z2m=_etRQ^#3joS-6G3QgAO2A};PiAlwg#<%Ihj z11i42sj>iEO0*q?NCqHsjpCqABY9=PbxR)SQRh59h?+2y` zA}+nLPjWCsr+uH*pg=$r(J2Z6Nr$Xzk%D^`usSqiQ0p87Ss}#Z!O%v``gA(Hrg%`g zUxQu_VsC9m1R@;u=p5yow(A?rs8m@ZSeiW@S+3p7QPhQ4AOt|c6)_q_(QS2vKfyBtM;vZE#e5Y`w$P#>Tr zx={<3YP)uiO`9XKmaYV#?4;?#LJmqUFUjAnLh}0Aby43A58+`WS!Ex^Uv&x|fQgVY zQRIqX6tjJ;wAQTyy3b`1b|2@=--5?!qM^!;-VnrS@nVf=LEMiPEz9#i5cz~`-!Jrt+=lW*uNPH2`vp(PnGDzlH>12*pvx)H+(-Nrb6h#Qy?VdN!!~5^M_{VGE z{QfdWueraCtbY-OAOZqu z=IP9f{v#tpvIy6E==c#x$Teb56j`;(%Jk_Pd1NwzyKRjsNIFz&EHqa^dNlm=vO(QD zMIT9VjGh&`+X-qED-NLNN-BVd~ zLW~{io51VS=I*NPs8!nsbqxbTQ3EX9h2Zc)K^^KF=k>lRT2~ICMhN&&%Q}<^DhO|` zM5uN`xEW(Y6W*gnYwhUuh^_gE3!efxfFKw!d}Ts+;rRp;>;%_#PLX3e`dp;vZsIQ6 zPOkg$In1s1a>+H*P^@;*IuJ=Bhv4VLp|{<#G=obd_*2A z7WCUpI|PC9wp^v#)MR!OODiVwg~UFqjZkZm5hxS--k0f9qlmuecSyDnOyg7WuIt%Z zKj3t;{l!n&{^Fr?zKp4Y1oWMEo)$6r=Rd=B z*Fkm@3AOXhb9-OpZp-T|m2J${w^Jh%cc=ZG-ePpma0BAahp?haui$O=q)p4LhWdyPb1W z&9C~$m}vb2V?9w2sPCbL0YKk>j+TAFZz)?UtD3dxA1`PdzzZ+Dkhr*>BRcNB`)-24 zAV(jU%VCFiU-`zxhjaSbQ~Buqm0H@ZGka(x8b|@TRNJcVu^?Rd47hF?vMYT(18yj><08g9=nTl$O6>HnSnJ;}kg%_U7eH6#*Z>Nx( z+sxT#mSeLjczpuDEXwBPFX!WF6;RCrdHEKaS_S63`vVhz%^_2WQeuefk9`MNk%v&{ zK((4-=9tds^g6KjV6^ZB5Eg3@OX}Q#%S8)&Y? zYJUU)Ev5#b8<2ngm^WAOP1==DU+Ov8?ZD0*pXk|`;1q0>v`jtOJV96MXL zw($PHt2zC&QIrKDhyx7u4J3>+QLt@bIhGnjG@`{8bfJ@jeUfS&;WUQgLBxzgnBR%h z*tc}p9t1=^+oEzAUB4B3(8Z|60(ROnQF|c?1&0CMS8+@{b#TrCvQ9)c^iDiR7{So? zb5gNGAcztWXla#@Rqb4`EqYKCK#^s_UCr1$tw?C=<0f+$b+#zHKc|7edtb%TDKwiy zNo=gfYcMfs*QR!IFlYMST!THquQ&4T#G^T8^J3=iT#W?Onr(bP?g#>XNKlV2*-DKq znuZV?3C&vcn1n)PV>2eVmlem)VaCFxO!{RlKc8_-r(AwwAV_RmWYN|c1C#MgD5)UK z<-ub#usgf&5DTy0$iEky%j3b@IEtUyJY^g|Mf9KF&*<`!o~MzJ-(7fWzvLjmnAIBb zSTH_^(hwVoZA$^Stu0!p%Ty}4eZ(!-_8z4j9IEyOaZ5Kd;^SY~b-}!T%Q~%T+^g%n zUMWT4J{?$fp}el2i@ACgjlL=(dx#PxUQ`M!5cP1jg_45NkR|UzO>?xIuWN z)3HLzxLJ6a2*Jt+#yiRN*LTZB2oP?Ax8Ew@FOS4?#nQds;jb?GNlDc(v0RSS3z@gn@VC>EI8{x8T=Z>ZB67?-7UzpOMg2k;8*=)nDx;d zX?TFhy4{GufjRXE0vvaEF+cpA$f$>&go{SOnUi}pE(?Nyni3EB#e*LEppYJk`q;_v z#a7g)(7rcDW8)G2xe7JW24NlY!sB>n6$lo$Sovcf?(jbG4{uGSDlqL992j+?MB zf?CSxOuh(49mdf~=;FiC$3Pf6GBO5S|6qb3z&-b9GObTN1$}U%Lx(KGci(AD z`5_z>I7AR0!XW_CqNRPFA8K^nQ0oi^z17*DX7`S5C-x&laG>tPP|?%)q=Hg8lbGCp6|ZUq)u+?MG*eiUw`G3Pd-5uMgIJkGkP8KRoBnc z2*T}v0|@V-&;+0qKK*bt*WY^lev8iRnuBn-(A#sfMcR1q{XYYs^XrMIiQ($2uV&{? zEpbN2Tu&WQ>&sfL&8~5WbZ}}c7&qBW2>#)G;IXy8?>?HgeCLr zXSQzSU`KcZ@Xq%(4m&1_UC!D8kL_TFBnNr=Zx8UU;}X*2zu`aE9oS8SWReM-166C1 z@Gb};?(hi^iB{Lp$hf!KcFb^$tyBn z{4x@~MdYFjDwsS~GgkV1@XkBYtX>_##AGu`x&}V`Vl?l6Ad#7={a|Zrjp+3%)220$ zo9p1%d5#V}dkMFyTt8(g;(~WkF8@7bCht9)ad{(`Uv2^lP!#xinT=n53S()@6iSFh zn3&CvH;v=6iz^v3+DYa}7lHu!#Rghj5^<41lH#=cEPSTrT~d#p+^0-vZKIAxhe&dK z5X-7O1dk8JZiAeZf!$1}8#ZVJg*vSV_v$_OT!ykT5m^-w1eMff`Iv#)#F02E1jG(= zuc~S*l+U+MWlGX+>=Bwh*WlAEVyZQS9eEzoN7-1iyprOQcEWG<>Uw_v`*gChLs_|| zfzQ6!$pxomz^wJ z8~d!YcEmWQ7H#CnovZd9+jCbfULWI^twk0^>f)oBxMU40PMEv5TvAafrl5?&YN0x1 zU^(~Fx8?&-ICfN@ge*W!LktPF3TCg?qJHzH4=n%Zs7*W2DGF7IvDBs}0C3n>i^*NN zk){|sbqTR7{@pRCy1k4qxhppUuzv0oTHF$&-QfTP4LyIi;+Abe@&$0F#^M+=VnE~S z4;9BxqvH5!11#P9ex(JK^9=As>@+HB77}S182P_nVbat1%}w178xRo@QMx&2LK7{V zDBQ~rhQDG8RAV=G-=l@N^4X_16RvG=`DrEeQg7oE=SBflih*#2&aB3yrcIXB;&$)k_%!eUVn z1aP)$1fd{GsI~-XD((MXb%8$MB}`4mA#`VqJk+tka5E=FJxf$g9;gFfXF2_53g(?o z=v_}>y8me)cI4v(gQ&i6N-AzJp2I( zgI>m9H1OnWbGUx@$LN-N5iCJ=C#Um*aveJxM-h?M#O<5^My~uU#*?nc_tpE*>Of7> zv?|xTChcwdhvs8AdD%bsw)r%|?tL2XlFxgT92IL?(B)O&KRgSh&fh7yW+S>|#~>`| zvd&aNd}2HLvs0LP(<#*4`qhwv6pM*rDup;yOQ-yUUC}I9*hF^^_2|2Qhao)%UqLm& zswP^#Sc~hYJXC-CyA`W8F^ionQpeLO46j|pC+P8^eeVk1T0qi?(-?8q;eFPbJzL}A z5)vRM2QC}Go|^D1@+&ONnWL3ix)eV6K$|mkZOcDZZR3MOHMz`7F9ls#7}E34l6YAS zr?|H8RqshBI#-+;D?NH1>L(U=T6qGTgT|pqX`WiWcq`H01**z|NR9s_XjAJ=oLtqCXOAxa#zVgMoMpwSg_N?-uv>H4U`Q-q6!IabE~RoeAV!^rz#c zT8>7otLU>#{}8}X)qh`1Ky7q@WdIUNgTR2uGo6h}X??$KMJwYm`UW1I)eXH6gui9v z-$2n9d8w)jiW=mNmlvZb3iIa8W9-=Okszw7a_60Q0&wd5cMNv~;b5M3(4cL6UU}seb~o?hs}H|oXDu$m-Y~ZCY_!JZ~ugcBy|2A>jVQW zuKq7X5L8Vfu@6`q9C$-a_|3nqT#O(9{fyVu6vp`(|Kg}I3)pEGAgQq*5H+=mpi581 zcNxSTQH;?(aBGKO7O+~vfGSOn&ld-!mqNrUFt>Ycm)DdNkurm3-M;@0QWDBomp5@x z1fi*y+*}>u^97MR7(m@FKPl-kJ(evH?G#|w{#{s)%|3{4j;f+p0&IvISTs*pTy%Xh zt~IA~@jdVIoO&aQD$@GlI4pnNiB)Xnk@qTTj7sI%+iZN^ z8Nxs@a6zz;?fH6&cAHUENI9XN_-K{aUyJ3Q+js8`R1hwD1fj`^a?6DfABLI`2~~|S zs^_^<6yfN(&CIL(95MJbTSF)FOyp&RS_~9co7s?OLa&Qq#M5iuGd+8*pg z<_RlzXg|@!Xh`T?8mX>UAgBmLgv%&(PRy0ns6cScDAH2Zy+$kmSrK^fyA#PxsN$SS z9o7TM+IysLXeJQjqs0NPE`cNp(A*Nh5+ZTjF>(C#Q!UMk9)~W3@Sq#YYk`61DQYs= zvAQa;dj~@hLX+7}yswc6pM!D+_dRSj+SndBhMa~xA_Gn`8w)A0XAGJM?+t>YA_P^` ze&!LM0zN;q_yJT#M+juw1-3V;Se;E|Ru&Q-(B?UZ-o&=#ENZRM40Kg)b32Aa4u*Q2 z9J%dRLX;qlMhoTkc&6>zz^aTXG=_!)AgKywpNCdcdo+Vyk%@P-TRXiNG0>jd)z+#J z&@O8zrK3i)*Yo%owNcym?HZTWEyB*=_7YLoL{qdKe~3m>8e6?2?b7mj@0ipjg0}-y z6;^JUMtMyV*M~lbK~|`bj-V!`_cd8ZaMnQ3*S*m`V00ES z({dvV3^$|p5Gk+VXNBQ;jt#vWqjTV4XV2WXnC})(VBy7I(zM0Jyl+dHbE!(Wt(Wm7 z#X_@_UXv;xNa#dZRtBlzopKebDtxte0u>Dr-16r6TrhVff1Ceru0Qd6CO`R4#@oud zU%Y{uDm#BGy$JvTnQ!us$Ag)~s8%vP=)4U+CGN}AC+RBJAo-D{=%=H z4xW(p3I>)kddSa7vRi0)VIiJXy}wKKSXswNB50+R;UfscR5vr($re(n60~*j@;^L7 z^o-G1x}>P^dNpOmy1ZI`x#nk1`r`!7e;|v8ABO9fWn(k@$({lK`WJ+RXhh(B_i3u1 zUD4101qB*`qt`=iEu4LtjmI_~&!=U={Le%Baruzy4P|N{&d)(#ZFMEZ_7|DhU-aN$u|LSpq1^MX5rl&x zR)ane`}Y1;4WmGRF;suu{oG*sLWN*7^l5*I0oT2->suJr+1P$SqUwUpB+64M5WncP zNSK<;MBf>R-gUk9)hBdDgf8+j2Semve;CLZWi?2v)64sBYtbV&-+XhApY^E85RJ#Yl=Ipg-g1dIZpKyIUEy_m`QgJK*|B^l|N7Uzs7tEo^y5|9_P0eX^<0qC%GX8V^rp5b32@i+ z7S=Wu?LD@mwU|Ghna!oog!Q^tHtFG#V_I0$PxN5gwnD})U(c2q6FBbQU-QbtH{ysH zxKVvLAqYM1{bjF2Ye_hcyl9e7-ASG<=fDrH3v`wM$*1H~v2Y}jld1?w7?=~o;$5xW zdf`o6_4tkW^KJ!8Ay{@n+?VZbOFB-Tb22Zka`MumM|pnoE&Dv)*vP>}kvePqoPE+1 zKKf>DuVs#(kbtYP-HX`O>L(#8l*yA4S+~A-Czs1Ep3JTtb-kYNinBLqDbR=_w6+A z&A1dbG!t@C5q4D~Y%D|=mxKDy1*p$mH=yej-dzMh`i1GF23y#=(@bee2s39ikeb+n z)X4T;q;@9tIwC4UrnE}J;ByhWQOji(dHNJ| z;X#_+0*x&a4b6MJp|wV0BijwP!tyqG(WzN&=d~ZJ(*qTi(%vwSiqjTNctZ)1z9x1_1E0$p&2~~J&V&q#qmu`&2@OO#>zT4^W9OWM10V-2-d2v-_A8;XABVw2qa~cR852>v ztb}vQcal|Ez$epB0R%$)UXI`N6XAXj9t6y&81Yd{Ot*D(&gPwr*twg9=beNoE6o1( z7pzVErhvUo&qOz7P{9z5N++Wz{sswHuprS8DR2 zdDF*{V~U{+FQukta(W5A(YLsXS*6JVm!3SU|3U2sG&F7DF{6!p&7myqg(P&Mf@q+^ zWx#3}TE4XX1+lsrCC-MZ)N#3-OHg+J_e_uFi#_WJ zsPi#&c_)*TeaxQi;LrDDkeyRYsHKHTllDkN3#j3VP+!zzo4rB}5>;2mF)>fFSpNWi zn!6Qg6n5e_S}+bGb+FkKaz4yz(Lz>>LlhFX?c|5&Ut}qZ9A8R?B9H9FIY?FU{`z-JkDh~g z?Y#(rGk}q_CtwBPlR8q)%x3rc)l?M^{FZdW5I1w)4JBA+XZ1-C%7R2Gy*ob*6&?)O zY2^s=_(q*Xi(tXun^&e|9&GQwLddD1+SW5_9D)_-~!ZT%V6tQ*sr+a;5Lfm+yAi#we!j>%>NjQBvTy>T9?K*`2Ul3IF zU~r}R|BW$Y#?aIn;J#OW_^pR>2wkBl80P;8p}{e%@}B>V=xFpA=rzqd8|<;d0l5!D z8Q)MKSoD~t#&zm*(1;y{kZMI}dK7{k47U0dRO|0iJ;|_rNvC`cL+&dw6=6aOg5hCM zi#wh`l`jLwWYi5yK=#6fYy?ppG6^$O_(PH?j|i|<_X-}`?}rIHxxoua_2v-TkO#I6KO!qDi*4JsA@-1Kvk?dIF}-p2uQPWWk$1u;Al`M8t%Xl%7aPL9x%~Sa9nl~{- zbT)>TIHAC)4KC7XVN%2#UfgKqmonYnm|sbN!;@sLp3uxz#|o;wosB06W;yYb8tV&uWYqB+`K$ur9APIUwUjyN%kvYHnD{^|uF`GKIM4Dk^Ie2+BGVeHFAcS~<%96PaTRsXYD!<{TGEU9}INM?nRW)67(r zd->t>IwGPCgoa5(MjIGA)r#Mzu;AlbTAF;kdVC&C&4w`}U|X?fh|BHA-F00V;v@fn zb@>RD^{7WqKpi&{VSNGWj2whFzJsP#$Q^;Q@+GLK*Q7Y-9R<1pS~iQTk;YwtDhMd= zJ_u7%Q50xdU%}sA&1RRB!JU@p88^ufvW$Aku>gn{KZ>w=2NkEEM&$`7px3M9r1{YG zz$^I!u(Q}m)RJW+z5O0)N({>LcYxBF+-`0aDXr4xtWb+gYJ3pU=|Y_U1Onjw%kNR+ z648l%njBEup!t-hBm@ZtHKTxGkDI9+K)mX22r9^bo{uvuk_Wy!k(kg{P8glX*o4Yn z=V|e^uMxHuQ;|D?Wr2|x^b%=VQIuD`5N&7TcdIZB{jMS;hrY48niNye^K~wv4c#p9WJX3&$TtWNRZ0p^ z&5p_M=Y&l^V)wS9&^Z9`S#F?^44&sk#4hR@+s9=QTUL#|sTsG)$f9$Or`6u}3>64z zb>p^bhFQrMz|!KPB|03*7vzL@zrf~nvH0Y}DVR9A+qJZ`hVk(aXK?b|Z-}wiW2! z`Z%FZ7jN8iHE9!$z(J6eQWMjnv@~X2k^J=vCOrB+j;v%Bee-C)W7?mHjL4-lG=Zn} z5?h7#Z+;vCZ~7EG6+aPF15A!~W7Zu!<|_01E0JTZ_>b1!gP<5gq29{#e9c$F3gouj z^I=$cL%oGLekY3BN~AHR$0)+C_~|DTAO0tXrY1e<=`J37w3vJ>S^J}`hT#o|7_(-N6QiD3(Qx)1Qt2!MdZMEMV7*GHrGRu8`2E-2U? z&Qt%G$~6~nWc=vP4oa#lLtf#K^F1FZ{OQf}c=qd_q+K*DdiWELnpuXh>1~ACZQusB zD=24Pf!8VUk8iVhY2)uGaCCMGHj8d#RU%yH;56$(p1*k~a?PrqJLwOigg)y;^sjyl z6`=_A+FAtxlxL^lZF~h+X*CPqhk(EDriK$zR2Ye`T}AEvAK~3R07+a`#fF<^VR-WF z#i$OBWg`J}e9km{ZFvr-KKTc7|8x!|C0f40H{Q_l-yIOt*TaSlaLh6Nm;E1ys%nvP zjg4^e#gLq=MP&{bWLc)DsEC@H8q(9#iHnQt(Wdj?fTc@e?p*lxTR7o_{omi1F`9Bi zUS8h*@9cjZhX}$0fI|e~!3$ySX7u+zb3ll}gPnjJY+pt*oN^h6y}7XuQ$PDsZzy$i zsbT0w*ajW`->olGIHXNLFo__@ph&20Ka_3-uVbIa*sYEs6h=-!u<1aOLDr$VRoJx+ zTy2D$#SB?#2TazW8*w9r;tor}V^EL<8J()b6c7k$DFfNrd%b}mA{j!XJ6xNDM={f^ zc<8T-8H?AeyA67e4&@CgvR3dp@e6Tw73ql{FTIG9&EE zGY}OKT|h^`=pS&`9s8>;uHn{`@50|^xQ>sH=fxkN-78tT2Rj^4?uI>`2ndV`Pb1ot zfG=o7RaHznKefIxwmC{sdyxv31d*{}8AK3^$7?_oRSZTSl}a)B&i05LpHq*kE(BA! zj}W^Ty(lrxoJp8Jh7Iqw5PWwDhywLVvFyxB!EZ8x3bEd5t_i%zH@BVzfLYR$YskRj zip1v;ktC3;9ty=mDh3#J6TQ0%+u{c7U)53;mP}dJ2;@vXu9Psg6vV?;J%_LRl@*6g zLY)%C7%}t+0khA8r-%GL!wFH5IqLb<)Q`8Z@yPDR;l40FB7*#{lRyn{&b9d%3?Y;> zi~LyVL~ipSk1lH_y27>3-+M_XGGppcizMY;PfdTOIb+I#fZR(cGB~ z4zU=RI5QDTxE^01h$M;#ib&P+?G#n{@%BPm*rP%iH#G^#AQ1@2==36LKw;~;3hHWl z&K>1wvGL{4r*hb&WeC8C#9~BIrNLpRraqSJ5!;!5l#Sd;Ry;15Pybbo->VsqkNaH= z@hRP{DvpK#pTFB~T)h3EII_p|LwLJ9h$mi$niLBL9YRqB>YRzF6SEQO9jGyO#QFCj zxICzO9mGWYT zhOZaIbL$Toh`+xd<%7qe!GU!66{vvn=~MW_?QAUwV7G~kNbZ^3DlQKabMF&`SQC6rkdEkWaiM940aVsoZf%x@OT2hkv&fK2EEX-;kI>Cz2M)L@O91K!b+KkUH zWAn9eeDNZDz{2$7_sVtJY)0(SVJNEh&PbAor`1nQl@mo(0hMElek4TovnFODjpl)U zF98HK$i(VRMEjfZ0C~}4X*Kkpo3ATGHArhq7{9t^BdZ3&aALsECDLouhehKsh7bA! zrvgs9xyNss)!jl&b3Jjb^@RF6JHoV>ER@?~D7VMqHV!;LjwA=jtl3R^Z3zan0NhLNq>yI9`2+vhd%Q3!ji~B+!ke9Vj0S!<`vh8|+6i7kR+#$J3W`UKq&77U z0fBgfols{e8K1vHL{$l1a|qwwayboRXM&-ibR@s5o5Q)seMDG@Ht$XQ{#VAY+C*W_ zNWQ-O%s%f$iaCY|HJTZJz8SNlk@Yv+!m26B#Q(gE?Nf4*ja~1jz{t>eGPYJQ^)L70 zwT1J|r=QZ)T27AN#1BF}u~wOckoMO|KqTCp%IIq!#=c?|`FGzz<&Brn>e-1W*fZfH z2|6Oea_~w~1Q0P3L>H{1#Z`!386K;@Bx( zIOv046fvGgos~v>2tXtTA_JAEsx}WAMGFyzgaPlv8k^vpb4K&>OFPNTlmU?z#Y}_Z zrB!J~C+LZltk^{_^pFP;z^_1;$9R5aIw-cem`;Q7BNaMDS|s0svS zP3my+=oZ9=f{ zP>s`LqP0dPMqkfe)BZ)IT}C%yCQ?ik0y3(gC$McRO1`FgqNoBN?3l+xD=(wGHHH!P zdfvHx88b3#P!xecqXX}kUt&(*M+r$&2)c~9NY-owzl3U336y@1QnnRt97o8OdM&s>xa&!oiEmO8D|i?eB&LxcX`>PvLOE;c&2P z*DhQx7dD%XQKLp-{x1y0Q&lY*wzyc!Q@B4b;SfQ1;BZJ{^br21AuV2cz@$QlBA+>w zIzuJk23sdFZE)n^zLK5$`~K~LXf+OsMC-LLuLHI(?k79oFv+U=TVeaMzWcJ64+uHf ztJI_1N{C|{{bi&Y(hw!X-fL@BjFkAxS?GL>ir|L!A{dx!xrUjRbFhovA<0qx7WoXn z`DP8J#r4?jb}qT(k{-)E^w2{9oPX)80h5CO=Ug<4#~=I>e`OFV(TKv1&;etBb@1tj zt9v8}hk8#`6@to8f2I5O3_=|?OzsdAQO0d`;t6&2JB*I~y?pCyd&xn2q@5SPd5)mI zyRl3sLdS+xRJJ;bfWb*L$*RJ}mV6)|cY_Jj{Y~Vhjl*M&1R}M3ekvHk{DelkaW|PT zHAiE1$MVs71GRMm7(pMJLA;@vBagRn$Jq@m2`s}S2XNJyx#Nw;nN*Xw{99jPp4b4$} zt3R1d*2$m<*ymQV`-o@^Vf&DG6gYdu7u4FK_+|7k>cR8?zt6~9BQGNP@WC6#HZ?WD zVNH}T7|9!}1SC`UYxbM;`%Df-#aftoLLx8z=W7vb%3Z)NO#Pm}+B1Hb>` zK^~lYKP^Tpa$EG2+vR8Z54(G4Rq8drD?nqto5kPd_d7O!Ku=j!G7hH=M@s}}9s4mM zW>2Rwm9+_^B^8mBW+Zo#6zfD$Vf5%| zuDNY1m2;s8~P z8ut6)ndaYfW6R|T3#OpFaw7zr5I$e1)t{URF$T2wV-<%}X5%&)MS*auOnS0r2-{ht z!(Z9V$b9WxRp*QXT)j@3wlJ`V3p6#0lwrfB(;)?ej4;$wt&2qts*FgMX-{9;12It1 zK%P6D7r2-|_eTWfsy`ds+I>Zw5gts>42Oqew;16%fU4pL-8PCM#k!Eq1hBp zYI+3K^{ssO(@uf`ZAB!A5FZ!D#N2q?Eguug22iq%jb~pXDcc!0`ZS>>?l<@##$X zMFU=)5uaqlFPZS_3@9BWNkv6QuLLm20m2$u5D8)m`Y;6j82o;0-d4(}-MB>dT32ZKBrJbB@wIF#Fxi+rAu2z(<2l zR&(Oht`G4jT0A8l8dCW&ff|BCC%%3_;db+LNpFRQ`~U zsUe>TN^oP~DfvcHHjZHIWFLjXE<9}nR;<02l(=$!T74v^9q~0{P$6^kP5|QTfSJiATD&R;*BQ27J+jgGGF%cq}$BiMxyBTM&^L>~eHG$9aqY3+1lePSJ=IK1O zGL!p80W^>zS=i-nAz|-=TOi6hlb3eDo2%9UaKeNu@s^F`>gY7)*lKY&SMMd{KqKy~ z_IdoVF@l}`_6Ub;Ln1d=Gs&TXhL-hviTI&HR)f?x?}X-^dyjd#l&N+bNDd32KgbC} zQK=%zUq#2vrXBZXKE*{)^`RFAM#|VD;L0mYxa;mTo_ex~5hE0=q6@1C?UQBS(R>Ec zMT`+**wg30=H<9JKa(c9c<O856YwQ3P*Lhd~T7;2;>e zg^;HH_k#NZy!YM5$23mcCCkR91 z5Hjrub(gV+z!mfOxjN`4pb2hJ7BA>*qWo<{yqRGY;Rj-evIj zV6BjWFvNLGP?c`Egv*Iy5#tEMi-JH3b?jE+_~oKUIceofw6+dT3j7cbJQ5N#QV<{z zfajlwufK*{ZW*4)&+zbYCQqJ>&*!76s)`L8HjtZ}i`6=KhqK=jf}q`}q9VBMHu%e5 zAUyoH9@Qc2D-J~v9snGQAUsIn_F%Z^CIsIB)IQh`7>)?Ep|mmkWJnm%f31UEhPBi9 z1Tf7`L>PdS;(^4l+{3gaggsJ9ef8BPGV4Igkq!y*xd?hAt+J8tTmQv!_ba^?%`zUt zMd1$yP&4E}}mrdxbW6N!{5vKDQyv;_2x**tw}sH<4;5Gvp=XRlvgKF(-4CwDx@ZqV7E2(I&TzLq)_jOA~Z}S zJ~;$IkdY(-QPNRcYa}nvM}55$_!j6Mop{b!In0?J&zfb$Tz-8NhaK57@gZFIEXWG# z%RS_Ll#Q@q6EwC!SO|=WgXnN5D2MVo#Ot3&J?n7POOJ!Jc!WFufjVz8;-6kZ`S}@* zc7Z$LWnPSmgvO`_Bk4oZ9U{Nj~XKKe3+7qgy$(`IUIsVd^Jw;>eQpxkpI>Iu_9 z2&2X6qNYK_s8eyeL<9jwX9g&*k*KYg$PN|}cI^|W78A<5cWW<*7y@eFM$x8L6OOw- z!BA30?3Gi{%^VGTqNM^dY$}Ab1ZZdmi?J$6Wy|$Q8F47rU)UBg zF#!1dh_}6h0Q@}h6l&cAH=fNdT}Gm(hRyaI8q;!c%Q71__8uKFE;pVyyBU4nW+pUj zqt0MseSA;)+I>S(f=sI3fIZ;EgV;tA_8onos_?G!QtVO#Y5Lvd=<_=L7K}j;HfJ+` zb>GW#+(IP1&j%g^6m&=g7>J421Jv1Ka7V>pO^%`>sHbAkz8Na z(-$ryzN!w7UdJzI9*fs(!rbbjJ~6h(F-94zct7%S#O`;o;lYER$GC}|WN6o5gx_DI zQfAwMtAl}m@!GlALYlc{+mmE$-$iSvnb-e(4QdxHU`w-;^sT!nIeZ3z%E_o7ea&f= zUlQ-D;gf{Z`OD~g0WHVy9cR0!)UBt{uRX8`gBiDbCZBFm`0>?wgao~ua@iM5pApX7 z@H$pHqexGWp}@V8IJ1i=6WH_-eB_-?=zH(+=&SdzI%g`=+wvm=Kr_FceML&BkCd>1MQR_+Fp8nrja|L* zdWWpQ_urd%`Q;QIdT5K(bQo^f9i>U0k&EEow0C+GmFMzKH$1;5a zs{KjSO)J6E^IX4ddj`iocpEcE?P7ddDW!Fh+&A|fGQHdO@3@B$kZ^^jZ@I}q%PHu9tnfceXlY_ zEu@(cN{PaPkLlzSK!*bh+eyTQsn-p1&NZj;@y2O9wQS(B=!bA{V8;&l+uz{cdo}6N z;Y4+HHHC$Rj2bnHn3%pDtPWOGRcSdKUw?i7w0|gq@WA0v1mPk4&q7?frcZM4U?;Zr zU^pV{1}(#>huEZn)f$!vx&45i?uBSI>=$zIKt@mY3QON!;=M(J9Zck4kEE0!BIu2P zKzXpLPjV1or*9EX2zFs?X^9Y*%Li@?!~hPMGo${mlt0? zS0f0w0LMZ%YhwyvgVts*KYX`^lYcjP*rF%{%5U>>`At52A#RLrGYBfEASeTWAx^&F zB;I}e-zbVgON)~&EArT~VqgnaXLUUbZhZnl5Xd^^NDjMsK9bZSx1i6@xzD{#z-XY# z70bV?&S#oq1*0F{PW_0UjhS7Mt>!ZS(VnH|_MpBIwyw1iGQog5=*JKeMd&Pp&tYSdq=4oW;kMebw=|L$o!evCp&+59g8GmsT5BxiwdA6z0;(zyZLeiY?!b&a zBN9s)kyyHSZZd_4GzR8kGJ2RjtCe4V`3~qk*WZ6W-p;(E(-1^~@)94N!qGZFec>jA zw-;z+*Z8i6DjiJdZoDEh2{MyV9-NQh3m`05je6un)W@!Zih9&zXY@@D0>ax`B%pfg zEHD{5k#)u8dY*qPm*=isgs@IVZOenk<|2gR8dQ@Wb?zRg0u^hhf;CjZ=Yx8Oww2qs z-GHJ%VysL^XpFY*aCx=7iS{r+gz5%_UpAqhb{Lp6H|X6pHa=UCMRijs5usjUEiPm# zDE(;${<1U-K`%PRkAC?EQYK8Nba6DT`Avxa0L&WAL*gCXyrvwG7-i(qN7x(Nlxn(}d4rWXIONqXjl^ts?H|44Q2*(6EhYe>16$ z5=z2T2izxsEb7=0JCRA%>xc-t$gSJVmYDIl^*uYh_*Fe$yG|uhSI$u(KlWJ0r!%v} zGLZ$|6WI~@B4Khgrl1dF(2Gg-VGMdO%0A4fZTSn^$r2wB5DfSwJ+2TlKAjP-!Gup| zz-`oIIQMuZ#CRdqD$wjx39GH5)nvh^HxiKaT_Pb=qMZ#io5PS~nQ^7th<9lY1|9^q zC1q0>pN`U2XIoMh`SEE4rQQkNaCbAacCN-2@ZvF>c|R(&og9QtABW=FDlEnj;;kd7 zZ*+0&mL@DXFz+XPF z@aX(;tnzD4IieuqlLd|_`h}37m*R*N)+J5mX4@*htdHmYnh_W(;Dw{7vc<8OC=(!v z$SRz+^h*Ffn0H>M@ze$3oT3OmPoIUa`KR{B(JjMcJ9hd-<~PLfX808997D`wHV9O? z^(2J`_B*FD+z7k(Gu)TXLe9|EZ$71!fZ{_h4lE2s65)j7y+lRr=Go_xak+Gi8r8}j zw^y^jgH1+{cJsjp+gSa;cKmC77^b9=oUGXZcJ7QsKt(SFNC>N?#F2nW@)2*{_Xx1z zhA6_7=WhYD9EA_8znk+n{mk@V)a;x> zB12o5J7x#>pZg`M3KjJ>DAa-Pz~oUB8e7qAuOcvcgyyj@1cZePjG3;o`B!kumDsEq zs9gje)K=i01g6}7D@z;i#<9J4pT_N8y^HwgE(M_Z<5f7`T-@pW_i8CCsi6)J9%K$f zVhKTt)oA9>O8K5R=C&}JR6_YPlaU08UBq!L8!_W&atB42WE#k(oDyPKs^;{#*?H+cpL=Yar|16{*m-TpjU*tUpgZ)8<_1ETbT~k~NNW(aL?29C5e{J@L zp3aF8!|Rs0Kd!64zIudShhXg6EB`>OL;8z4>+O7>GM4&1&rG5&xU1hWL`W%^1U(&% zYriG>x+l*(qsd2|d+xa;CMI?}zhcD-7A;zYPA75wt-U9-@2S5%eNI0tgUswW3U*X$ zB;nL96+~bxuuPK~J>`tSM_crU--;kqC56_A=Ak!WR`|!SFYxw#@3C?D23#I5ilQI@ zq9~%%>+tmxnXalTJHGsh9bf*$w5!fx;`yg=;osgMXU$gZ)%Co?C6trI+s2C!!&II$ z+&AFi2?z{C8$uMjM3SqZ%_KhRu<;G2qcO&NjL|w~vw}tMkE1qu3`sM~nQ`s=Hxvj0L{6;6mR(QXPe~*lUx+-EkDv-ccXuO8P`7Uc zp~oE{E~;;-M2{eGQqpWLz4tyAe_nt~KX6&ZzA(Oe1E;U~j8l}a7#Uu~*u%D<(+xeM zL=d!hGb1;VB`YMX>MBO1=U}%7Y3wJ+vaa5Z(IC-S?1ai7Bt-RCPQCQ_UOE?hOVy|0 z%)?Rr0dV`Exh;w@F$(pO>k%%00QJ$UASS$fJx43T7t6K2&pN!VF9k4w>gVxS$8hPH z+ll|;OVlYN*{j!9)0XoyDF!TU-#WEDVo4Ao#4MxJfytl}7cHal5e7(#g7SJOsn!TW z6^M;MK4B)c9y^s4p{y-Ppse1?A5U0ELZlX+CLRBt9yNZH<|Xb`+4^ybD-Au}Kllq^3V^)2XnG)D&>#QyyE3jm9 z2q|N&)OcEG@VS_o=*GC?TL3=IJp%**0dOnYbN9=ztjt1mcqpD=D*}yNb(FW-BtHPArBAfgCyd6*i=Mv1aq5}PWRFhc`p4qA|Itbk68yx+fz|A#Vpj`sq4k8BJXEyAQqdB7P!fb4k(uV; zoEz#n`MgC4fpz3PcRJCw{ggP%Q3{-Zs#|~%?BTnldcpB9jJO7Nt>|{TwmFR27Av2x zn#BF*eu*GJQgk!27><8S@ABKj2{pok;PPSkwGjVNUFX4pW7GsFD}dF{JkPxQ(%{Zy z?Ss;_zrV&Z<)Q2N;ig+V9oMNc*;LSinNp(qHCi-0^DU0|mSN0{C-&iUXnuDoYFj?S zZ`5Kw>5}SUS({kv2p7QDUrUbONSNV>;u}bv z{xB4Cdv9{1eYKU)WzYLtza-gZmo;%~RLg`9ACI_1F)R zte>cnBfVI7O@ft+B3{QP4I=kMKiF5P&ED!ZHn#B5$699hn{K+P$1;1O2hYB62Fa;C z8^XJydxWUK#lN4!eYbxEYk?_rf0@Ps%iyPlTWM-^5n&&mMDD*8K{y<+Mp?Q3r9XB$ zCbV78^~c;ob%`cL8IzmIq#`QHJ`;p{pfd-FZK>nQ*B;=u zD<4Fb2G?%X^a|?NBv8I!B-W8lAgY9>G$ZdLLD`=cnlNO^|5RyoX-!T^O!hhBT~%1lfNdDh(2-(JBuWyjay4$9;{wc#It`p zmMgCM8oysN@?6Gx7Lq|F8c|^|NMvT%3H|aD&RO^|g6(wFo4Xsr`$j+G|73W>tH?D#Pq- zOwFY^q<^XUJrGreQB}LhF3-o@mV>J>GLbbSC!x3u95ZPSi`FkCq}9!twavJJWo<@N zK~)*$_L1=YH+$RrC1)meUC6;bD2Pj=v^5En&x;i&N335)Qf(yx0hXRRkNTuI08FhO znqneZc)`hdtX;?z6(%oUMf$cvR6vi4o$k&=5;7;TkdTdjip29N-kQXM=wnE#*5qwh z95ahuHkE~z3#N0}4t@lF4bv=F{Lkuc%ha6cY6~8jSL?aYF8~Z!$pa2%JeJ(KS zR1_7ey^t2F68-f*0a!L+4izy;J&r}}uqF*E0m5ACcqMuo*VTpY&2@I?Ymc#L)-kM@ zIIFGO1GkQ=bm{-=2twDb-JMaqgN!2NwpZbmFTrfYw(>=;ydoW=QRRjcLwM)|A8EP6 z9Fg?;w{XGHnwBmwD#yp)UMl5xXN+axf=vhlSZpRTN7O*87HK63GC^f{)>-=-Ri(>m zY}6uh<9`1kr%g-c(>spbFMX+-e?*x0G^*=y1aEgW1;MusY?e;nR8@smuZer!JBy&K z$Ah>V2MnzFz>d`8T{?o+rmmlV^C+a(MTxGLht)gxweI{8&9D5lT~}k!92Br&*;8JHX$$# zJtg?rbEQ*=W;XHsn*wU^;3mk;Ea$K4459@yl|GFr#L(n4Q5)-wYdnqXzDHc00fuDY1Hk+9= zX%cyPd2HIWi7{iwVCcnJ>|lk-1h?J__uK=2xzA5z{D0T@58)6&cnJTakiJ_yq$Cr)CAjeH0UrfGvxP74>^x`y+B8!<$=Dof!6!rgP-yH15B7Ofhkj_ zbUVL#^=cL@Sb!vnT;GEMVlX)Cf*Cw=-{<&h0#FWg4Wx(xVj)l?^VO&8xa5kt`_$ha z_~idz8zWUz5j^5va!@;{VoQ$08Xrx<_$;PgekK5wn|84Cn_uuXJ2~zuKXHy$j{5j} zEUs1r6^gUdd4AsQgC++7%DoNb%-+Z=DPwr@nNW5Wx8LVb3!Ha`kK@m%XR&X2r+Ov6 zI&x3V=fzPOJoku>{QN!JWQC9r52u|aVN0;{w>PWt2PR++_mMEM2Kz_{l78UEg9Gu@ zt0Q802Hx1t6Gs(u;)DvYw$Ac;dK*naqQ z7q^^sCcEm(c=5w;X=rMf<2*xZ<-t%dKV#;{9fR}mZ*^O!Z;GPTZ9x(hobFI`QV@^V zOjTVx)5onQDz0Hz=J}M7A(YimB+BN*wPQ1dZQPZ!#mC0wMZEX+X?*a}Hoo{WpPzzh z{E1)r6UQ@cS^|H%X*w%^E~GwTDvh=n{(Qr%A-rpS5L&7VItdzDw7i6!PeN=T5uD|9 zTB!*cohN@m!ejt*T@4|Rzen@ESF*cQM_Njo5j-UZRVN{M{ZQ+GxHflO!31jeJdB-2 zG%^8U$z~|2K~>@EmyYJa3zv|Y(9~x=QrqN7ogQ#F!9H-~vpOOUp|~1KYhkhk!oUbZ zHC3~&NLBTi#|U^l1N$Awq7H|_Mx?(PyW2tWt`Np#M3Ivj#rn;a)YrA=8a5h5rc6ra z+p43my7S34ZD(gx7CJ>H!&$QgY(5t{#ZP@mBwZyS4FQF|%*N%d zDj7C`2~h$rKkR6Ro$(`yan_UNC?L*Jzn2sQE!uBmYA#g~u|1BbN2n@Ejg?F+-a@FX zy#qBNHdbd$q}CQqtfP+Dn%%TknmKaf5!5$UvC6la7Db_1uidNYP#a;PL1=710hWxK zM!CKBs4GE$pdxX&_%rS`5oEhd2ms4YJ&NiP@q5cDqDbbZ9pugEk_T9Y@k`f{y?G}J zux{=YB3u28oi`ol&jOn^sO(X2HsYruc0511XVSFZ!n39uh_29nSA{tv**<0LfNs;o zUsf~WdyO32KK~jbQja8TJ$PIJ;=I+Aha@v2Q)bfWM%J{pCymVb?ngvLp(!heBaTQy z*xZ1mD%f<|0Iz9T%(&PLmeseS7a`RG(F?Wjebfafa#O62H|vcwcZlFQE!@u}V>J!F z_6TLCuZkpjG2g~b<3o2iA2{KtEVYN|&BesA>=Etk^Ij52JHtDNxOQn+dVkU0ku zt-(ej4DtOJ1i0%0@CV`T1u*M6#P{xD{-uWz6Jz4^izf2#_cxQBEi-JvCI%h6xd5&? zZSSGRdWoED7Z+SOn$}i{>#r+k-jRL;R|BXjxp4)os~AJI(@tF2(DNxD2%I%90Z9^& zW$ioj#p)8K-1Ze~pFE{gIpM7}s25F!eR1HD{iy4{hLM*;^kv|D9l^VC?`hR~K5Ap< zHJPFa{J1%Xw|~}1_*18KcgQo049DBx1!ey$av%tx-*@siJW3#YlFIhAyI6GJ%}o2# zjf6XL5&jd2(v~VvutFfbyOg{th%8Y@a|Wx3qnS9GQGtc(1geDI!<0N5OR&t%rW`lV zsOxE>XLT13Dr>r&JAy<;3wFj4#jEO8R#A(L%AKs>H8qtfz*bVYh9?Ok@_XLnYF@>Q zo^P0ph(Z8~6k$iV{&s)3n4}YDka6)b1HOOz9l;>1UJbKm{njHn=yBO)+LoZK3|@Lk zBgL-29zusfm_?`4F?Q@&3JVKazkWSq$BxBf86L;%;ef~E;hI0)M`T0qd^$A_(uFw}$5*aUz_sZ+5CfIIs{@bs$1ihp;agGiD4;tpVYNA zW1sm4d%|y#AMaqS6PpZkPZb7Fj0~Z#q1GEp9WmOBVRYo6y}1tLbqyJ#GZ4&!_b}a8 z^6Y>hZZv|SW5|JoOEJ+byYQ) zuh$nOzn=TgeVDCVw(dP92m-GzeSz?}fkj>{tp?vPL|2+5J>yN;7(I6U9vz}iK^N+# zSSX~_-8)HS(HR)6A4y1SBz}*Cq*swby%g&5sqi@Vmh(7_RIG`^QD#L6h$xDHJ*}C{ z<97FXzc#OlBH;h+Jf3klSZtIXaT@hCPByP8C)mNu{kT)ZFc=5-JCbFU zqmGTl9yv&-8dac2y{t9}?|y@L`Gcr4$DzFcXoq?dr~$U-t331fRQ`JZZi-6-WM}BH zS+(DYc>J{p1*OPO-vTqowN=ys{Y29IycX%67f{m^QJ%S#*B0ioy)23or|o9mgt9)X zidX*?p`r%)mWyCqR@-8w|9dI?vIg;uFHlD&Q+d{DR9E?WEh|Zy6tbeIpel@e|1I>g z%r7~|P^}C+xz>d0jbt_NqTC$Ey7-A82pDt{QE{Od&3Y6?MvHS2sIO_k;Z*pwbv8SF z*`yds2oqZfHW?870xg7bRpd)Fght^~LfGsb&pOXkjG_+-84(2;iAbrQG(!3$t`8XxhnUj^YtK5Yl)*WGy$Kke;Ip0m04FamG$~59HIQg_^|c3OzrnW zQi5bQ<|7L_3L-P<>A5u9O{g96X&ZF{@irYgAqc91Nfa^ryqN17@RU^(>1^nfe%OOZ zbwn%`_BhJz30-m%_KgU4Gt&yzVfSfsqElyNUD`N`;zpn%AgU^7uKE&dz(=FW!e>)Y z!fMu$Xw{)_8=t7ah^32(tgFU@#5a@XQ5o4knX_ta~@=_Mx}&iW;mIPS-FX0KGyP*{(RazmY;G2(MBtY`XsD{l}vx+ z4i^9OKQsz;>~gou6HZ;WmgC;~9Doh?T!`beV=>o+lJeqfY`N`z64xvx>n{(0EK_~> zI5ysM5g`=~9DUwHD3Zw6zy2LV+z3qO4BToM0R%1b&|gZEr+Z}09@q@g7(&u%6)ecA zK$s99=-EZHxA(lCW+{Y_@Nu+?7Gy!hq6W}=D{-_I5mW~s323TrBym?Uac7P?sPdx^ z7172tbmAZcTG#A=$Nvp?UI0_F2nOM^&n&$7(g;pDrHZSsZrnG2P*sH$c`#!%`1BwA~*hxDE= zc;6rpuw~&h>QICLl4``@^`UPq0cCLNFyoJZnk_r3_x^wKh-g+neNuY?rw@#hMwkv1 z+iM^x9Kw3ob4x}@9*Ynj0iqvNJ!)MolyB~_snn~U!WQCT?UN5+(05;71d5vp7I&Aq zJeVN|Rla)<+-#+Qa^%u@Qdx1%CItKHC^} zY}f#!M}zTDp2WeRxENk|0Wve;_rC}IFzIfWmzPsqTugR$Hc?RnQ;OQ3c>0Amxc$bf z+Sb(?1VJP`GKN`)AIsk!dx%jP?K!=_I{kJ0%hzz`@>^iksD0{t%$P9%bZh7*+=W2o60#l(xY^;%~8COhud1Ch0;Z`}9slbpJ4A@l$EJX=#n_gQw{C=20Y zJ}-X#Jmn3QP&6NOPD~l!aL(+rIC8>SytURtt8eJ?XYz*;q(qbxZtX5VJreci zv-_{40&4erBfRh#>f})%iAZy9K#h$+S@}|j5@t}`-1bN|+38Kpm{d=zOGK|%F`E@^ zVJh(tK7(%IYLx4LhkE|JwuVDN?SYt8RVXNjQOQtNgLLjgsCo(IKM#T^pbDW}`TXJh z^Tuzw*X=m&CqG17vKi&9xu_@41kuQVqieVB>w9t6BLo@?l zm{BAy)X&Dkjp*GTQanLYyg}lFoj*rzQAcTHB9-+DEQv5mt<#vtuQ)K}`QnC2l%-Xqzl;#>dh0OiCZkh04Sz50*iw796ZFOIE@S19`XmMq?BF^Pf?yTp7V>r&e>;Sx$x=a5DZ1 z*jWbt0E~!(mv4q+r%?Sv1+Tu9O8B&RZoE+=to?q0S6+@oXsP7vGk3G2E}cC)J*_BE!NRFVT{V|9mNaBQbvsqhZ?-BoY##rN$7=hSEm1uvd~ zB#OOn7MB)5vj*dZG(CWsiO|G+MN_tN#wMJ|3J4pYVWHfgb4&98mL;k znzawSh7y!nr`GT`J8`w`3y&q2+tAU9fhM6nbj+XzFc73w=zpIacjN?)U-V?pHk!&x zNEk$}(nI*ov3@=L;~#MK)i7bg@U+?3*vR(n+lh{jX5`3`NP|pmF&t1;mFaViWzF*b zxeQT~h>cC)nj3HBcXKb}`}5x5=DF+Oop<(W42KB91Bd@#7UM%WgaJVMae4oRIzZ_1 zcV8F|wtasx_IuhM%r$jI*ZhP1VX%^_`+|MpeY)l!>7Ww6Hh#`8#xH@(o33wdEN|woH2=-Rj(&! z)+itn0s)zy7Y%K3*7ceD2N)&S+q)7TlEP=^v0U!!Ob&u(%6>nn=loy-_NdMt{o&?R zK9a|AWnE`-5Wug(yG}h9G$de;m^PsC?SZ{2j_C44qAKG#{`BK`dFgW`WoptJZkHQh zbMMhK9Whk1mm*0hqDV``z@u-58wnF?@jDGDeGr_2aB%pg{pE~XIOCSL`XvWPMVkpY zmvPtIcWUGyK>AzIG8(VX$A-_|Xn5&@ZuNDJAH6OTW^pRk&QdXv3}b` zwiM)&nH}Kbi^~boSM4)7XbO0kRi>@+Rwm7&(4INyHfpP7NQ^?c^8zTU99Sg*p!@Sz zuRUFh#>muiehD>Advi8v1w4Sj>Bm;FE-#iq5cGNllTpR*6R41p`##YhpCH$n54_jBG3%P(49_czqQarb0p`HydNe6J~DWaqi|Ho-4TC z_#ER+n+8n|0t6);rM6U-r_5wsbS`yc zP9$?sXW%IPkF*d@y(=E8Z-9;is)E_=!|G`v+F3_-YX!=$OE{^tiF4|_%xDdg&_)h= z!ony_h@oii5iA`&lMQL(sIkQiiX0SGnVgDzj^FSDnQi1?VPp~?Pd$khnNzxvg8+&k zP!yB8mmCZ@4K)6mz^E0)oWA-SQkrY^W~58JthiIqFKmxstq$zw}Udna6b zolyjIEf#+IrLGe>c(^ZbFFBYOHx}RA696b4olbFf8j;m?J@%Nsbr*BLTFe#vlT&P8 zGpBMX&0Bib7aOsyi1AC;YX8pL#c}Uz`V@(G!IN*_62r2{2)7l5@5per$^}P040UI`2nSWUZ z7haUkjvYfVB;Rp97~Ae|aW&lWDhL8`$0Tw8d-7g#5Wrwix#7kt9{&3*0?q(a67xt6 zuOQsyq}sWEqFua3ZzpmPz(Wc7`lr}#eGgCUR1gNfj{58$^EvIP?7jalsdEu|;Rm$d z^DV-Q%Me~(t`UA6k!FYFUL?gMLiULqR8?58VJyFY@%I2cap`}0Eh~ru`cZvIn;)cz ziWe9;Fcs!*D8;&$95f=5LMRh;F`Ouk;P>Qk9vK`*GP8(fEOtg>WyFXPOiUTYi_GC# zVQeRI5Wr*$MF<)@8C_JTimud7^2lSE`~F|JS6IzU<)T#Ji5B7%NDlcKDdWLIex8HsnfXn`H#E|;v>DdW_zSx_1Cq}KtBXwfA5MvG>ex4eaoO!sZb_GbTZxhOrvXq z)=a3whNwt{HQL$X*+O}NCchOH9)>Y|V3I9ECC`HfJqs^9rT>Dx;JEj`!t8SM`Bmo* zxeb8m>;`JKMiD=uXT$3LCh5aGPA2W%Ou0RtU2(lfA}OLoX>?M*?H!h;1F*q5oj*w-M_1h+M)>#!ym?9Gvu0y92C@%1@ z?E8JsTQs|DDU+(!vodi8iYN^_3JRcfw~vgh5IB7{>glrwUQsZB+U4HtdD$bvP@}^U z>KvNUHMh;vN&r+NhfQrpp^7hm%;CNpI!D#WW%2M47%HkMtrE!^sQ|q^g9)SXjS<+s zT|$<1jEPGiq@)CQVIy~adm)z}yNz+_ef!=EU#-|n3<{++)HMh=TYUrq0*`3z%A%nzKxv^9pSOKt%N`$!PA{^4MKgY%cDx}Z3K}4C zkOUz>QA7rMMP@?%R&tv(`OV^p5rb+&6+||~Pe7_%N4&S5akU%S5Id1()4mvBMe0Lh zs1J!D)Za={OBr#lDy)hRtGA28h^rDA@S-Om=`hNE>devH7>bXqJwiNu9O# z+)^DeqhLLgOEuD9;n=y%bg!habPUms1{y^>5mB0BN+8hr<2uuq&w0L80DNMc!bjd& zoV-;aBHK*zruEb$$B{p=y8}t`&SH-E?0aN%yqI(?Ns}u%fA+^T(KDG@oSnvq?Fvcx zC7krH&yiHvGHo0SE<9~O3;o2xQqF$yJ#@0drdbnNa?QDn5CjxSCMX3ldd;-bP9VEd zV%dD>1w?EqV&;u6Aj%3Qr_Q4Ev;&u0N=3l{^yU_|Sl02dl*C+ z*o^xgMFwuaa}mX&rce!V8XuS!3YI58;y~u(=5S{Ue-z zbdSaFx+|URY!9-k$6{#3VyI$UtqE6P-yEiTgI+PC#W!?!+;9o`SB7}AG%zp2?_qpMn>ycG?Zx<058Al|S2-)2m8v@qd{ZA5(okGNz5yR5nA^f(` z>EMPNH0Qa(LRh#EUV9BLxdg_I>%V?aFc=Kv=H^mWRmG-Fn@CAXAvrmD&}or|igVB2 zBXukA%%?jr7&IHoq}eAjY4(YLX21G%(T6Pm_Fc+%??9GiTACVo_g{abuDO!WK6nAM zxo4}&5p!qbXlkUgw1`{R|H`e`UydkBAZSv-l1_(SZy+_L|2_L5>^lw-gop4y1#$Vh zLFXRaUl)zaEL+wvhA=nE+IM8>+D-6s#+Kkd^&leb=c!H^)$dRt&^o4kk zf;tRd6MDaa`_KQ&-m;H;{J?B&>LZ>;5=;nH29d&&Y zgad^)2;mkh^(|e9i*V=^0dQXLx4dt)ym zFDAF!c}I(l{NhoVO&)YVgkn+8qSaFgaunzbK;NB2Dk`gEq&S$&wMm03F;gO zMU|+z9mXc;LG?0cY8~4OY-}sAGCH$8l2RI_(L3gG2jn^PGqkE+Mf{zm6h0CH8grsDcIWmec8R!#l)F5B4Z3xm1z`0ZAdf#wty3z z93(hMb%33bS?J^dxlKD6-?)vSC{b=p9#k8OAh9-K64NTy5bJAVe9cDkqQ}x;j@;*o ztJM(7j;I`VMPy+2G-3*R2nl#F1wEL99!!c4JzyaKvPRUUc(nXjf9EFdtbdI2_-w%a zc?2CEgAvgZf>)=akBz6Hu8M_{2c@|L$ytuvA&-nC_!;QxGs5j){O+y9yREkJiO+`h(5b)vG_w5i96!jQ)2RPCF6Derd*?^VB(Q~Mn5H;YjOexyPwBjuQEF3e3 z4I{>qT361Q#UJxi@m#{f>+!mEm@PrVA_YuF39nCPiocMHe9Hj%$}oYCOd5Ii!_Rfx zq1F&|x;XWnFW8-t$`9wCxVOKAq6&`wcmWdd*{IX_p5r)W%rCdd=e{{Ca`RABK9aRd7C3C*=DFz2> z5uUpa8k*t0x1h9Ei!SVf`|mI2;fGUs_2Zc|)%cMWfxB;5OPy@z*V1t$hSd^fX~JR{ zn1V)sFgI0^5_1Wq(px>A_X{=DoAOAKtRN5kx#oR;6WK>TPC=zsrw%w@uj73|h13HV zr6-Ci=N`72?PYO1S$HC~%~oQ=`@RnS$Z+Haj~4wuobdQT5(k%qae&Yp1STD!vb=A# za~f0+uM0aV5SlxEuR=rvHg#Z5mr9fN?)PPzS$*G&%zffs#9}M5Ec3=Muk-ispQp5; zJs)RL)`G{^>j+xEy~DI8`uTtbpqEsZRd{L?;@(X9D{A}#xPkoe8$^=WIz!F zRwuTH0vD8I;B;wT@RBGqC3h`epNX5I87pz7X?!CgdBlr~{0ih-cw>)YmM3n5?&L*MKqO{~U{lmcQqu^18FUbJgF#!>OG1WeVn z#2u}tr)Wo?SHNzDu)D%OCrIY@PdNQ=&dHRvU?DWC08eM|rLguIwB=#(JY&AXUb zzXe6qQ5hCLs5TTq$C`wxOs`l)w7;1tb(?9HOq5wusS1rn5qrOJq5f7{4L!?D?mRtI<#gdQ{5m5($$(EX;+G8gB_lqa z9-m}t`@bHq*@(+#BqvI@&`qxGkz0wiRQ9& z)m(6X0$bi(!6n`$h`>TaF7KJ=?p?TBLUgpoM3MWMHrJKpw3GSKWz`(>;Wy|Nm4Y!D zY&d=@v1{runfjjZ=l%N|#;nUj0Cs1k^XVVXLpJL9=Hk=)Tu9oh8@TY9H!*v>?9NW- zU$$u zc?^#Q`dF(EadS}Z(vuwON9s~Ne|tC{kB%#@(ITn70qPrH6`(4qwT`AN`JJzdDw4XRjhFp&GNX=e3Dol+dTy z2oySobquEOwjfqD6PTJtVCslr-^eGX2_$8xl=q?v{*bhe;$U-Ij_1zjPOxXgAOtu1 zvmrHZEa1n-pXR}$1#B(a-szl9)baXNZ*s)pS^RjxodfR_u;C^Q4<+=T7hX^mT`nKL1+cL&FikPs$LoJetTF>BYZ zB{MUV*x2DoH?s$Rzn_p03$olk_vv(c?s?!bs(N20c7VX;cf7y}=U&g#x1Wu>Rr>)4 z0|ClQwLRuTci+g1&pyuQpM8oP)cOgtMsU{)3;5x)*QhBgL=O511_D%<71G+$)N5~t zFuXWK5FWz+4ytMqx9k9hM&uj_GO-7H^MJ9x$7i;HJx1u%*Z%BpPag-OFUfA|)aO94 zFVAbJ7}OYb5`t0l^f@RAzI}y3BR}_*s2gng{S`&o+}z4%pJ^WLJ;{qMS+az@ygbYy z2F|{)|0t!QjPvxfr}j<|O28;!6MX;e=57SxVEXGQFFMrwS>L#xr=!h$rjO&*fRT=7 zhZq6w*1H(vE2gQrbI!!N<_$a^VdmRFJb!OC;p?#RjFjNca2Jz=QW}~&Cu1D&I0bN9 zov3X)+Lng)d;!M#X5xO?M9GCc5blYd6I2DA5+ooQXlf2;a_)L0vE85+V)hVX-o>_GLwWC| z<9Pi)%lKg_C>?BWIhk?Xb?r%PURH&?4=<kU*?OH|fqcHBS^j0Tl4S=z%>6!^w-97}QXfctTF7T$ua2sF0pS-*P((=y6PiT4s0 zqx2Y9EjDSshlJ<}t1GV3%J1tCLWhL`HT9(QyW1 z;tk}Lj%8-`8pbtj$0r#niWu2rA8y%%PEat2T_cDDHpPucrv%AxmN2n)1F|SmW6_K! zwSj1?QVSu18>NpZ09n+rCSf{R4LeA5mSU5=*qU}SvZ;W|utdtklJNH6pcLV0#HBZ* z_R)4mV?i&uF-3ej6F!{@M-M)0<5|Zt*BtH)Jjp5HU-a5OfWasd7b6lDF0f}>$&MRI zcKk?CRqCBhtk|`Qpdu4$vM@bo8byxo?c`MKWK`8|1VzSx(kVu^AS#J<>Em%3yGMwv z9yt-K$JL1(R8??o3uk=e7N)Zra~m1CHFhMcMoq?L3SlzZ`ls1vV@E?SD=Ov?A6mim zgk_z+yLvgulwBK{TB4Cai?gP)I%8s|G1PctiM4AvL_KaDiUJ<|c*|BY-?<18SZ2!M zP2-V!KT7e@MlLu%jy!g=_2&6R)HYI=pc!_fD(gA!{ckV?Wp-z#^4$fe^38`QaKdqm zu-kh#T-oX!jNG;h0jNk#;6K-2h`cAqTUU0g145fxIR9^N658UTVnhOO-hDNJ4o+j$ z9!OA(sHlia`w!Sy-^`4gUc}VUf+IVHWv~4S**vfSs6bc0NSon?!?}~g11%gDK7p71 zkG-=Fv!guQ_-|&8?vXv~F4^pE+}#Kyff&IZihB!`7AvI%inMsKBE^bBive z#y0Eja$IKS`{Qh~yIDKCn}ooZ`??^>nb*eNdEe)Lp8Juld=tD9Y?sM$SKvjN}q zEPT^L%YUmRgkw*zVN?T1y~v#xDv}aaZo933`|nTVm46p>7ogHF==B1sErDo%73Xh% zf;Uf`$!*E6Q<86B(8u3U_Q-9lA3p;CQBX(;uOvO90&HRM*_Pl(Y-VVAjg5_~a) zNB*4(&9~G_KcKceSt16K0;eJR3PWnkFH1;*f+(sGAH(`5PD6k88waKS&r_kk(hf04 zZjIR%wasSsSH|KG1m9^D0ga?|Ne&)>lxQYU;Y4-zKd0pZ$gx(WvPN|4@=>h@0)uuDgUFihK4|EzUF8Q3?l+buV>J-u}oOypvN^=3qrA*{7c=z#_zsw z_nTJIGHKu>KKsMxXe=74o7aYZVlAi_EYxG^wv39vAj(Mla5ar%GqK%yQ?L6uj$M4&ERwz3^L2ypiK7gHhkPU15$eGpH4xE;5niElo7nXRjqP+L_>z#p8a>Z;3` zF|9Rve&%Uc5D^{Ex!3%qLtB5o{OC!f|9{7Eg77&0-$450>w|yq3-NX=k#(K*b)?6a zlHJBYeuVpKizD5aV3a^7_PVdWqOaGZPeiHNgsQ3tg3v#LPtf5vr{gmikj0=3l~&fH zcT^#IT8*7Yi>NyYP0)&VwB=6w+n-N0Q;LszwFy4~EP|OhOnmy`mv}rrh7KLdxN+k; zwDa6^&jE1Gg_8)kbuEF{9|Cj1>0`M2*7pchDnX5%m_rI3APARidzZ! zrT-76=`zG2h7Z6Y=?EZTP-VhA4Ky|7;!|1;!3UogL8Z2KB@6Y@oN3O+E`_z$3p8S{ z-A#k+?odw7uE40)9|IuhrnF_wmyw`S^Sxxs7&;(#j+xDL{N|4PoYF*8SMn?s!*( zUuPI!zJW`2yv<#+{?RE((_b{!D-;z#T86C;wYxqCb{45NLs9$nIlVCvUxP;>DS|OYeShEU+nYESj5ekSR&HWL!X&n6 zMzgr_3?emksD6P{bW4e{)pa?q`y~xKV~4XZY7ogy#iTbCVo|&dw3jfzUP6^2nv(Do z8uYenlmDuOP-_Z`W>v-b8V95(P17)L9~0 zN2aPoH`h^bwh@pt1SBnW`bY#6{7wz7GAjcc@;TeLga}&m46Yn9ndRwgMASD@lMutJ zfBhYvL)1VTJYaU)khKBamY`FCw%NtxKl}?*c`c5VSXR7tJAP}|5}!u{c25OVR`Q3i zWd7tbWBL3$>{*%krcc1%ypKjtWtVkLS}TUgq1YuIDqvOuh>mg^oW&@rLb+2*Tv#9& z+$<}Y|N1HWsvhDuS2?-ZwQuF7zS+~x~ zU;diFefL#hJW`5urYN}cG$uzbAtlCf(VS7d^X)bOnt(E+_Fx{@!-;?_Qqyc9-qwVms;GH&+`04$ z7ERnrRil;9{`3?l4Bdw{tmo%Z5CybZHhfz zpG7uOU8OQeuHiB@mM`PuXs8U{zc`HC&qQN&oA`uvsA+^f^aW@B_G+}|Uv>(Wv)TGR z&Z3gCgMXiY{*6qYJcYr-MpEBL|4E}coYOD6ozpM79SG(teDQ&6*tve$!7^jUjN#0S zZ@|}u4McC~OX`Q?=nDi@{Uw{Cei;}xY#0p=KYxAkyPta~|9_#XXs^8svAp`oc0=z? zo`*)t9ZB@3j~S;zLVD=6e-4tgFMUdhCUn`6hksCq;Ar0GgGh`;NH~oeVZhN>zot2h?JbwfjVc^wlQWqUqnGo;_}SR?)?SXh{|E#m)^4A~^s%ckTSU&eGLii` zPF8*wJXb+gI6voozQ|gHL*KopH9(xB0-fxq(j4C-shHAK%=tO*^Td?fP&>QmUEuG} zCli;@hxbs?LYsIPzh7YUW(z+okDzX!o3J-OB~sVS^pEB+d{8rby%K!sRe|m#N`*(> zMSSsdlrv|b-g!aGuNokLKOl0~bCWUXWkf+`?4Vj^j43DD=E3I&X~A9S>~=Q);X(FD z!#ICtJ_tUXPADu2I(T%p6O7)ygXA~fK~0N8dEiRG1VYzF*R~Mve*b?09ED)N~4k}j7p-})H%61 zs63Z(d0W^SIg(9jBXAam<7qG>N&({KD(0|^l$Jb$jXEQ1vL}$6Fn~~3!>S6E#VJ%2 zq%+gMf|>k?Q>SBb`T`nK%tVHDCI$`xMdG_Xr!ppaJyW$CIAi(e=mQD`nQ1ILZyst0 zQQMaKW){8i5hkaHiljI`x&C~7Eewk+i+u6rd@|At7(RSgyY+&>?&92ky+c$@19dSG zym{xfIBh-8Z#uV!iywcDq@r>fB5l0z@U1k)c0!^m5+|xr)W=tW2$ILg-f&@rL$YYd~0-m_Zgva+Etg@p?jqN*yQC=$qjBshLm#kV~V)0zK9X$gJT zYenk*a{)$u|HChlQKf zh2Q^d{U68CgVPx#2*;0y3oZa*`!=}hD%i9s_``eeb*R(W*hp?}E|Me>7Z*ojVj_Yd zP+eWkzJ2=`Hf$IX5fPpA7CPb*lBupN13}=0C58QJt2?+IO?>;&iwqbzm`Nv`f?Ls} z()qgVZ`aQu!mK4HC#Tcn$8q>@Y+F>0<2VizggtqEA_w~`IT=dZ2kIORlWm9KmY*%07*naRMoOxZQ=s|8TdPqY1>=4 zkDAp%*@%lT?&wYX^2;wH%QBOvXB|;;5a9H4#s>+)oxq8-e`xhUI*Bb z=rW4%a6?f9_7`W;?6fd;=nf{IXk+jwGj5m6_D!vkNva_7{_u-JZnw%Dy3AEccq%`o zbuH)H6)H;o#3l5_7^uVH2=LFRQ*b&ZG#ZsLqwQRCbs13>H{v_@BKQ>KxD3#@I3@`K zU;wonqu!ukWSUS=-X;}K0MJq2BoSfta?h2UI#g?D6fh+wqT9QdOlJ>6rD0>b_>D5@lW+`y0s!cD81+3g-d zt#uTd^aUjDT}zC+j`8&y8I`n+CbO+W9gQF}-MW(L)|E5_Y~*<|DYQ?)tpwKxQMMY+ zZ+M@JeD5MV71r9O(5$th7yS&0-Ng`gQRYkHtEPphz!|oWF^FA_Rix6KK&3eWtJh9? zV?IfaG9m&_A{zFR*|487OERU_WW1UqBk8CL5*3k2SR4*MuDO7djVmyu>(L5cwtGfX z;7%n%+sujbT81hGq(^JneeiUG_u4HBG&#IXa8@CfR}xlTjZtll4)y?*5%Cm9B~u!e zgj?71x$I5MqQsI+$)15og?>~;z@}|rhJOVk38r>%BeG@SD7K{y$1jCWf|xxnCg*Ns zXk|Vsu!)g8A9oD}(dn2?jnr1ep_P10N?+Nbu11uZJ?Kl8Z=TQJtM5mzD3qip@x$43 zLm~%FO-|;&^%*9ohnl!3mY;PBb3R{^}84}YIV{InVd&&b8# zb#vywKP0NAfyRh%-udH|A(4ZU*Ux#+y+cw_Ic|fVJ>!R=ceO?jX?*^Jk@<4V{j}9Y z(-c+3xO-kDa(g~LYZxnDzw?+Q2LaYRcQZmj!4qpk)pY+1h_-Bgd&r!l0xN_7EA()2 zR3=yHtd!X|9V7^MPdJ&RX)*{EowV39h7PaeANNmW_T1v00yhpjR8*XS1}xg>o(uN@ z8V%ffYaP!$uW;v`DLnc}36>*45{5-UQw912g+JeSz>urq#{YPE;G!4?Ev;qHJRK26 zJL3{_SYJAVk{vp-MjwH(bb+X_W4Q@7ilXrC%6*(XJsUv~(51z3^Qpu5=i(gz zc>M~|mwmub56)*?W)JsgMLxo=s^G`e?nS+LEF^~G@o9Kr=`0$YCQcf@n?`3C&tCmD z8tH%}xPWk~6Jb*c_y=}O?i(U>88$q%?qeobfh@~Nhs^iW-e1qQn)cD@2OOxORX8+5 zV{4Zd_i&Pf`Dzo-vI9FlL zUV!t@hsY!EAb%WP!(@Udo`4^IfJ-g`t#%aAQ&(fleVR)we$uyXgHfZ})v2ng!fLe= z85v1&aWU1^)dxwzu&^*Zp8iF^f3tjbkQ@ZYPUtzEO@ClChjZFxcLLx#I$P7@2m!|l z!sGaV0qOhI-5&31(a|3%$e!>^k}Qo&fnMzAd)-%GaX7At7}34)qbq68Q2YK_WlMV? z2)iXh1RZv>zYB7(6;0x10{ZjN+Pf{*zUjkpQM5-&Bj?DVQq^*!|LRW3K>+WU!9S-@ zpH5<8V!LBLpO2SbdI^Bbubp{B#|bd^)KTaSTD*0Br~ncVDKH4g3+5rb@zzuN)W-pW zFw&gDU-S~L9&%efs#SQ!l8&dbfB9iTL9e1&MFqFXiN>cz>(?O#v;?G9qgF(WjhELv z#|_hO!Rz+2X?q@T{{0;;{Zr?XN(a1Y(svWA5d2&imY z-NcR!z4%xh2CPq-+;gErP+Z_)^n}m}!azXawO8XQEDXo(^7F?(7L%NO=<~0I0SU0b z4D!k$F0%cxZlE5>Us!mE9G{@&yY)$=#dj{L*Vrf`r6du)cQ59OLTqtfUi@-2SIygl zR@2^y5Z)#@%wPbQCYo0?zh!@508<|?<;>ArQ0GqqLU?~Oli-_;2&;AyKR62rO&Vy3 zaR&x%4#UQn(N0x~U-A{UqC$LSBAZ9d#vKub+oND_>L_;`p=o5id1Hs)YpiiJ7MqFn zHZZwtEvu8K;?TF|lSvm89spc5-OeTi6~qioMZ8NNy@- zU_(Aef_V=I*o&w%#87XH#G^6d(i-q+4DCE4a=lp?MK^JpO0+`I9IDd__ycN>64Mr& zhUY)DT+*_I68@nh&TdL@AKHWEJmUxlp`rJ!%OxsylEGPmS-g=ejsbJf_Vl* zg+`VcU9^L-dD}6xxXx@(8pP_MV~H}95k-pxR$LC>?l~22K!^SiLP=Cr5*?KcsoIBD zRVhwPWZC%(kaaz8XbcWF^WXZ6@MZ_~Q8qrg_I$iX16!w$ZTAWY0t}nBkKxI?sm+gM z+bcu(SJ@4ioNgTEFy8&+ebV<9;5O*_@r*gldw&U4$?;UBClOs< z#Vvn)giR+-;?wKSM~8@vis*;Y557&@nq348I#&MsHkt zyxedmPO0j1AKk$jXvCz6MC_{<)yrSN=3Myg=`bRr!(mZ`-~G0Mf4`z~-Srv#^Qi)2 zV-N3oOb`TATM~@A9$vo^Qd`!qCOuPbxAExWDO_sHVfutJBuQmh+1gFD zFSl;aVGj)mqR36BUId>7_k5k%IYO}^)v0biB_9EiNc2o2fzK&qC9O^b3Mw_UUk~Nc z%u2PK>B6BK;G=_;S3SlVJ6=T}afCvB=gos%yI}hCBh&tI^a>}P1T$v90}sHcQ95Q` zbs=v(UPaOMZiZhC6DPum5y7(2(b4SQy_@v(bjFMsLtb7UYuBztRaGn&OTQ&XZ@u*o zEq@cZ;_lb`)z)$RGI5+BJdR&K{C>nA*L8a6NaXK3oTOr(^3L@Wo%NMCpl@v*3+L6{ z{SwSt1a0?*f@2|mr%%_>phxIp0~1n&l*USfw6mK6K^WCEH2xzW)ztwgpVXt@|ngh zPU(UL$dQo;Ni>&Jrn16^&nXk|tN8pKjokrJ!>W|&%q(6`q|eUevbAiB8%a%AbUV^6 zR$Ig6(XZi<&8%`x=j*2VOwz0&Nne7=;6g8UJa4b0qs|z`@P>WZMLm8=N2K3QlBWif z$Hz0=j1v=bOMFB?)Zi2KBxuU1)o56&n@zl>fvbiuLzDy*L_`!Eegk2Wr(G12s)C~_ zfXONm@ToX_5bxeXoO>;L*^f^4p_6??1oo1pEJqjcV#mhY8!yJK4q`0(7{b1T?KSAb z@FgcBrzKNeQqRuFG`t~13w8~ajOt>>=5Hh1ADl1BtkJ9(Jelh7-b6*IWLFe0dEW+X zzTn!j*cQjK5i_W;#dTUEBCHm>$A;eAI-e#qRujJ3#rNvToUVROc|>CwucE_|5MZ@b0rq zu;|?ke(X^y@4uRXgZoGj`enG`O-KlbKQ97I9)~M9wold-qd)I0CT7JjZ%iWR&d6d&V(T906~D}*l1P!PFhDn% zr)Q<|(07+0{Cz&eA03HzDalNr(uwNq-8!bfkY$;)S69*K?bvTXQD}Czt|Q~DCiY!2 zp&ijWWwMS3ipJneP9@==m*Mz+CpDk#?w1q)Us#W)O&H>03fmpeCLAXLYH;H_#2ulQ z{zYQ-2d?ru*533iGvB`Z$aFAZK=8lgIA);H!2S2b(@(>4HJRVPl?$ z%PxcP@NleFE9=&+BPl6~%*;$uQ&Z7sG+jF`gow93_>A4#)&pRRj7FpTWjW&?$KkMR0a5-PGOUqAN+sBN6%6C4qGW`sytN0TR;t*4N=Uuf8Ib`z1vj-49=1 zWlFp9n(MZ1H_?M38R!FcZ1Qlb#V@-oB4HxScO%;7?IARHn4vp71YuuQ9D7?Y8XYGI zC-Z~)ZHHq@6Zn1#{=GAT@a?zX2H=8Ar=snF&^}x^; zPo(7mg3x6z;wEbnw`n>?gdBh#xYsYxU@z!(KgSAmIvtNJeu!I73Fel(?>7(gpY8uf zr)wXjbbuhNON{01+e3>G`#B(}D!a!I=lGjx-6e`L)8o0Wf^A{|vLy}Yk!PsqpotmAD@YOoVKg3x?kh>4eGwLBF7D}q& z$E~>Lp2$5fP2!9bD>-3w9>p(iz@3zcoRx|{00l)7g9gf^rz$um#KW5)6$c|1CT3SK zaj+9`V0Y>8%Oa`@b#^0)A`oSD6B8aJW`q}=kPjCmea{n7_p!T7Vn|X55jv8Da@kzO ziaLa<24?R6mao$0(QIgIAXN}m6|1KSMbI2_44e)HQ&j~^BBwK_={w>)^~8Pt6+dR2 zh!h`*BtmSWo{UUm>wP(p)K~>YRq=UM>S}ycmBCLbCvalXa%=%7Q!6*ptT9p)kwLL3 zi9nkire?{(T5JZZ?lL`0O zF*P}O%Kb;~Q~yf3QrH@;r?mXnhV%HTeg;n!odqZel8R3EoER;AqkG)eBY=uvNn4H`+AXQ5Foaxjv0H`lGGHuzK!}YmJglI zuH?*a+cE3yIJ{<}TL{9KraI1A_c`~^drEj_Rtb zV;b5fCnFzyAA5Qn`>r_^fM$0EXFB4jv&8V8)HO*c3j)<{4Fk%H@iwbSQvcT%f&i1I zRx)X7aL!beR;SA8Czi2&OAO;D9sVdnK~d42^&sj84v zzf#$mqhb8GuCH%jAP55LoEcEPuifvW2t%{#$Vh4AZ%m3Uy}n3F9$3iy91(Iys;|g6Fc^iS z(pTF)j)webPx7K&p|4{+P`1CGPw ztR@H4{%sh*VDFA1l7rMk>f3M3)rwqqpHDGV{Kq+vj(|kHm1FL`9*C&F|*Fq3F0}e*k z@8{WwOzzPJXgb77ev%?_mtVzOxf(_NWeU_ExTZ-N30!v1#r)^NcaQ@zH_!Mzk1u@` zb4086@h{~JRZ%3ot`SQ^GkeDlMH6U02aLURCqF$piJ5nG9=(60@zx3Fkyg_&&)*S; zAn@PGr}OHIxA5JF6L@}J*Ceko!9ml$DD=@TM2(6n3Mit0sPx~!*%?YJlgLUBJy&dh zU^GhzfZwOmeJD zVUa)}+)8$$2Vt;GeLWPHN$lJsq1A$@NoE9~b-9pRq7PC1Ab=&TH7YL3+6mE=5sYLJ zimUkD1#9@r{}wPc%gpKHLy&rovZ5}W0^h91SX#^M!f#nRa2{@LkTf^=y^O2eh{@-q z!4S!Yq>1gSi>geVqmpV<4Bro!!zp=R6Xk1STHy+QP*1|6F;ZLA{<=w80j*X*uM-Hf zXfRteB&HZhN;RM;7V0M~LfN(r>%M(h18zpt17i)m+=iJ;KqoRW<(U6gdq^%X3alA zBjVBO@k)BU8UtQQheu6pT-Y^1sHn{O?^2w_M!pqhQ}(-b%Cfqb`7}7( zT=dlI6lbL|;fHl7zy~+~hTY>wbX(6UK^O||uRmt)he7FyWp`dm!=kA@U8Z9eerp)! zf(qh)+=j;OBmcY;@x(_`SGSd``~x{Pd;kw?AxCIW_S_oKptTobDyZa(OPe{n;x1yo z+e+Q{cc8=^KI4A7NM1!imXFLgDljk>q1H~|j_1+-=dXQh#1NV^wkSesii_{QvoU^L zZQuH81G^mx3LrinVq-xtSWpcX@N^{n3{`(&L3nLIkl{Y?_PTT;A$izVJ2*Rv5 z_}x1Y83rG1VhZ4CZm(z)6%odQ69;q2+2hDBsw20cmg4dT(vl;&=eM&74>#iQ8hQBf z&ZR%gYMMyB_5)0M4F;`5q*+J3qvHfEcd~AqHzo;D5@5`c%^TktB%1*#HVnDCo7~2S z5!Zd2!``~!y&E27V(mrkrQO@xOUfa?ywi4~69fhhSIOHMBscr}rrjot;V|$FU4SRYPzy zI*xu}*sx(VIQ;ze#qWOZq5S_tV-vbdZbj(jW8PPCsxS3^j{JhX!T4D)UhSOV9JRjHEBuZ0CE*85v5|_r0jEr8@WAZA5*$Y~UNUag# zhlJ!U)l+}6YN8<^;|$md;KwMMuu4YE8V_yhn!|N|E+vwD+|*HzA3r9{{NvImSp4o+ z+;PVpJo3mR?dres$}3!R%{2@ip2TOP=zc6HY z63apu*P&Qf6^37FefJEK5liGSnzSa|f`|x2$Ua181@-m<4useA_56MgbT!udE_{$( z8}=OhcXVPD*FJa^qfZz~vk%tS9-b2n*BKeE8-nDq;`2yobP9wulPm9|%H6dQCQPGa zxHc1`BMPruMAE2etRC{j{giszZz%LG58klOBeB=MFq(nPzCU7x;ECS3OEWPXwHp9@r%SvDr029exlq>$fAT(*L&&S?od>oipl68I->JU z;o-y?zlq0WmiXxP3Orp9gf6#{#GFzR-4*!JGJ+j!Paa8bdiF8#j-P!=IC{OrXP>9z z^GTd{P9F6Qdc0nVZY#D;ngVE!pUT5X&jCpu9ZO>6fRArPNJn9X8H}mqp!sd6PdLJdB55s+@?XV7jU^19L+LXIY3%d0ohIavG`mqqX0)@B982AJaKU-ii#iz2m;8m zilbSksUd(ygr+8$GFKF4$w8PHy2N@)x*kKA2BT4A$0mErS53hX@L=}2F$7$M`CWwh z-53Kdbh597>}w(YBm?zg1d>j{C+X42Ug8{;$aVvFn;ziwm`@0oIz|aMMi~j{MGnll ziAIq|{}A$<<4Fvwrp6o2{^oT2iiW}A1q`wMh*yE;7CX3zLQG>VsdZ(f)|MWW{ycyR zOC$xcY3xbN!f{BRK~aDKkp?1-GKvxijzQ2<(kN4JcQdMRCu8%sV^o9W&yK__ejGNH zW<%)npCBu&TRV&E8vo6F9vnbUhuzJ@lE*kI#iX`HQvyzbP?C|)D0hyCO z{EF1P65Kj1Uthe4<|rHW@zIEW8Ko=r1{G$0`W<6dZAKR0_p_g)eo!n!#_a37d>c&s zb`__5@D%``Tyq|4=AY1Go!N2}aVu6b`kCheSbXK#{BZS|OpXa&>t8Cg%}x|aLJrd- zxxC1x)^&v>NJNBZ;S{5B8MUZDgzQIc&ZnZXhOghwX3EONTsh_k+}F+|Fu3;-_Mu|! z$^?+3dBbUN_)VB|=Mi~!Z+fa<-td^%iyBhjX& zPTTMWG~D*j1=Q3S7&W|(Gw1ALP(s%!84luu^}*@nj{gEdag!#3(R}}Y$Un6%SXWAL=R@YG3;^-_Qa66+JB!nh=egK*<17rVk71s1rR8_@MTE?E&KEuAd zkZJ5;ABj{6wl3=ns)`K<&4eKfp*zsnhNf}Gj#v9+^Ee2n6BaLq3od9?T3EaoPCvcx zZ63!_!Pj3y&e9V8@Mt`$M$1bt1?So;uM8enRTaPAk1Wg7*49!~R76x%6v@fSh@wbX zSXjGf=fVpwDqp?&F{kjo$IWZlov*W8OBJTe$Er5%3>n#Q4s&osmSHk*z1%X`UoGb z1V*%)&D_9WNUo_v^fe%uA`qfG&#w_G6je)wPvM99H`v(pAzrohc}~)g;Jo;MFwkg2 z68e@CqvLhau}_8n1m5Dm%DXsP&QJA2ZK_D1QDNoEl}wv9tzA2F=FDN)vSs|~zB9P# z_IbVNudm~5#mDcj<9AoR4spN@ha7YOj|UwGb{0QQL}c%*3u`LFkk#Ik^S>6{Isa}7 za*NyjrZei8dH!rtFT1ecc?71I#!$9Bjb~m9qq?s3_vi??<{~%4CYQ0oxxRy{;c#sx z;=X}AdB2AI{8nPeXoSnIg<0p>`B7biU+G#B_5iAPMNwZ6&ftal?S3!GH&b2FM{Crt z6tY*Merr6&Ju)L}ayVhYiVhJ~{l&(dv5d^#flhm5^U{o&VrA4sDK~V$*K}8f*>~;-%c85`2?k37sM@&QwQMNin@#t?=>`pT| z`-hU1wx8@QJ6Xd`6qdx1vt1%g%*SZx7;zVnB}PpjMNOTBzx}NMo$iovm)9btoQo<7 z4!@IafI|~u- zeI22s8s+kNs0ZY#1Rd?PE<1xifOz>o5E|^LL(@=hyMWhTYNn_r4s*VnDM_oyiS0U< zqS!+Eg!x^ZvG-%F0XJ2KNWL9#3IVD24ooJWoq2gnvB)0kbm9D%dLn+QGh#8+Rj)#V zqmrz;{Umr=<=C3^7OIj4QXZZ}KoJR#)DUjdpwWt`s)8trxLpdhRX!92R9Qt)RTKrZ zS`m*cfY;Z0KTKwc)C>b!orv2hQ(Nt)q3-a!hoTxF-cikV!w8l;W?`4DEV6w{w5E09 z_ZYP}+9+m>jRKQaU`1v7XC}rVu%Y&3w$~3LTHA=#UCY&hC&{SYgHdiBuOA2?;?e8* zc;X_QhRzi$L;)tJ8QHXV4FxsD2W50MlEi#nG-LM_V{``BUS;7id^=($_kPiy}w_^zEOw$zQEt^0GAme0tS6?3g^7pT3+*T2=|^*;qZBcjDk~%Y|#>2-5^51l_8Uca>G#AGnJ^%bab(%-Q0F{6@N%Y(a~*4|^3w zf#;r&V8aF*|9-jmxd@9(AU_|%!XRS+L`MhnWO;oM8v`Y!FgUT2z2$MJ2&9Bpk`Y-3 zKtK^#RWyzSb2XV!!L@K%QxyOEW&}&VPT`(EZsLR?yAZ|TIK|Gk3)RiAcng#^z`N@> z(-+_~f_s`k{$pM4ZMxd`)YLhcbIHHivAgr=wnNcXE<=kcjK(+53#pAG4S!)Xfx^y- z*`A=Ebpg`rk0KQ3vi9z``F2k}4?p-Ib0?1Gz0<~_lBJa2 zPDH)6Llx($to=Ip_vrCM89(O%+%MXKKM0^3B_p0uO3C)G+4b57A+`Uwx}}}m=sZ$6 zPsj{;Ow*sglembfsE(FH&Nl#~S`{;%1)6dJ*BwGhp64?teh!(n~u}BkA+`C@CqSvNGtzZ!j3h z%*-UbMUwW*ufAg8f&~Z5-+uoyjGQzFhZ4rI?6`ZJAUt|FP7odi9482WK4@?K8{)p6 z^Hv=WvhGL{em@tPXtKh>ON0N?pKu$}Q#ypzT_-7#|C4}c^F0uP@%V6!v9HjiS zq@*MiMPY5ugQTWMcWC)Y61#P^4o0Tmj;gBg2jEbLvgd&sc=i43nZIas$o;7*tg19| zEH6Zl1{@6zp83PS*uH8fiqdLm5(I(7VcE>Q|96;UBD-m!b4)ai;Jp`zuxwS=5jhh_ z1-S9HTvj``9Q-X)pG3+3M)K@qUALW*D)7X6&3q@X3~4Nz|1+Gl>7_&sY&`f|X`z{_ zvf~6{XGq&sOUafDlH*IUnEH?qtQ&0JHHNW6xAa`FpO`Y+#^4bazWcnEk~}x4DpzlL zg(___|C{g-R;z+63)t-%;^I6Af{GxhsH#9ylMcUMq^3qsbF+r^>!Z=@+?+V!C*q>3 z`#h#dcO4Ce2vnhGrvz1n{l%F$-C>N#+R5n2CdN$-$Kz7)`xGoT4ez{AioX*XNPx?4 zh$22Mil?4T;r2U<$;j}uYh1J~L~yvtdHyM!iOGx`4<0voy$1H|aWiU^ilLJr!h8Oh z#6|zRp5aj?C|~{K;O|AnI_l~Ih@y&43z=ELKifih`3uBXmY~cTi+bz1EkBx}i|=ha z>@7jO>m>xQA9cbYK8v4CS&7USMW?YSeKDcV;}M>E&e-!QM%71ISRBg+%tq;j7ySW* zdm5RSw-lr5r_vC`%9QEIV(VNdssW~!tYu~DRN5!c?HUQGdeTfTEIW5$-Jgr5g~@WG zp(s3!B3l}s7FqLfPXmc^J>tkrL|bc=o6z#V1G{RUS3w25ZiVm&4St_Od5Mpvh9gVR zyA>m!HJ*VaD9pDm!7MpYC4ss)6RHYcIg)T~JyR0|a+_32TYRH*elHqTA*HsI^!f^7 z8!Blcn!oS>SMWL`HCrf*PN5(sh2qF0!hCLYvY+bkD7tzEvZD>`FIh=xZL7gO!6UP< z(m|#txKD5!3>3u=;G3*TI6BGM+7%-04b0xTlC0VwxzMCD@K*Lke8jm-9=g2Un06M8 zCf-&~ba-$MiHh+M9vLK5%#9AFeDxFQ`-||40-s-XE&+|mh}B#18T9;c?py%IeYX~$ z(ZG&rqYt(__J?(xu;fPozPe};n`TV{z}{$P`?_IFo4byo>$fv_<4(T1kD@sz@%MYKL~UVClEPGm*h0R1$2{x} zI@T^trC?VilTIlnV|YD^A`l+sMGgcbd&NWY4VpAEV`4&&=uu8X6%(85{gA34cx zNzf9bPe%|0cBuk$d?$5UPJ@O=G|#X|9F1A%Iv;6wIQyI|uD`yBljn5tQR@P0)`CF~ zW7=dHaJymMdazi)Zf{MjVbwdad&4kjykta{Qq~+xqbIlrmxKT#;`b452!4+?=cn_p zx5rRZV?+=X46=g=n}<8D-@t&BF37Hp1-yFxzqqEw{9xbvBqn|DZ4oJg9 zJ#lWBaW>M!Hv*uDBFP07DjI^yMA&mxKG4C8v*OW@`7jGefm;sH)1! zB~Vca!>+rS__bFODC$^FJKc?M_EuKhelKdE`}?f|->W6OL+-)f^oUr|;lNKC7Jknt zbX}}VPWkY0%#EE8idqOH*R$c_=cxE$a|mbGduXjD&e;BM%&EUV$M)ms8Ox{N!;)3u z{E5F4Ie8GCPrl;T`)!&^t4ASBsk?A*XpbbN=MyLLgV29&+h_?RaAMES#p6d1W+}hPMg`R)#XD0`N=J0er(%sS}IS8PlkSDDq zSu-#wG1?E*`z8KedRdp`Ab^6*Ci`a$47-$&jHun9PStah|LP9pAb|Ia;GYW@F6pgkKuNL6_8-mIW*KSp^=yb6v>=aypHkWpgva`Q zy=dkC*pryW=8RECy>D3~qNu@$y2A!lC2DsqQDObhGZYGTZgdbEuV?nDQ538wLI2^` z=(Gkt81eu*NkmZ;OeR08zK0h)*YU}yvuHHf4%XKK*IyHdRxk0`16s-|lZlS#{n%3* z3#ki>!t8T!<<{4DdF*x6g|(kY;~W)KnOir?Rkg7cmZg)HR7h6ZehdbYVPh=#d@Aq% zJ4kX|c2hDb=|=MRb^iPp7kD}0WH*mLv7cw3O~zu8x$(xb;Bzkskev*ha~ViEn*+(X zT)_wogF%C3-#*H!^`y;9rETgpMS&}?DkJNEJE0EtZ*k$%n=lwul2f$A#rUYMh1yz? zrY4n`meUj#uR%?VLmk+XOR%7_HELKDLR)a?v?zC6i1^T32pje?X^4*hYG;5Bdb46_ zFhuf2_CglzT}+aziW$W#_%Zba2!XV1izb7OZ!_j_a^5$@d+L}{x|UTbQxB5AiXhT# zurRiA3!CG|b~{E}l$NA4JqCkFL7_^OGy;9*AkrHP7}&5Mi|k==Qyy7Od6b96Q(#M{ z!5B#s5s;?>ol7-GM{6;MYY8)p7$UXQ*LW!{3@ySZ##xP98-}Bg62nH(%>|L~Q5%Tj z0MG1|u^~0fm!mTuf~8Ap&k-S&Wf5pUi~9-9*-u z^UADCdTi6+^)h|mdd3!RM?)~0adq}YmJgdoy%K?IPZ+sBjHbaFPDbV)EMbl4HEx_< zGtmSILWf;Pl-bG1)tec)dJ9@vK?c73&FK^mN(Z2PVEY_`o9497sWp7f)`R5WvNKOP zNDcy6Yz~xsm6)9s>>fJ|uhD>{1g~xSuKk?(@`s2jte-t4WO6XRu#Br7dJ&D!NA=`M zd~(-sQN`A0s?rVF;UFF3-`DQoaY?NICWV5WNGuUvCeJJ8oV#%`2QK z4n`1qNAdxPqKcyQ{=tckhVpXocsLk+Xf%RG6U<2nD%sf}Ije})lv3IpN1e+?PIV>% zDgp{q)3&m`GMjA`gBcaSmwk0XwGkB$qyOa`{Y#aykR}Vvgc<;6zUsW$=OK?r@tAP53uPf%G}3gxR-lYHVi1d2M!9{N`r(UwnS+TZ`e%G>Yj`dnK2 zo-L#>RE^|*HsC|Si$V=STfiO~xt<@HsK#;)Ly!(33LEnauq0=px(=Ct{Gcg_Wa1q+ z@>AWzG;D9Lnu4mL$B$R&dx*Ec*~zM_ALo>%j|5esjsu#TgDT`1lJQx7-5R*>KG@LFv)95Ji!sq$J|w<0&gEWB2aec)jh{ zqFpH#83YeLRf|IZ6pfDKmxtp7;c@(GA%4I5u(o$N$*BYAsjb67T=u800|cQaYCOUh zjXjTHpbD$IBY6%Z3DzHo0%CaQ1YuvV<1uq?0H*#CXh$0ktq&(XM~6f!nIJnrm(pX| z?$9jTvCB0*mW$VA1HIpDABsi-7!yTgL9smK`iBh$3kthj7X>cX!&p-`D-cd#LJe{DPL49n%n|98`V77otK{bEAMM zM5BIlxfxS*`)`8KLD=-zK~jA=H-7yZ-;O--XCnxcV#_HgO=m>*;qj7;@HF5kGBI!L zSL~*1Imp8WdsBeV-l^i8OJh0Z^Osl`F@guu9%bav{gmx1rlK?ooz};sk*3 zBuU1iHgoQ-pLl)36{rq@LF@KVpKfE~$n^*U7z`q3Uzq?Zto*jVZPQ5FuAl$%(qM#` z$)s@CUB!I;bp+2ppTzHe7nD|0vr`Z@=b|euN0$tRg)np|fXu*k-%&VvIyt)pMhsUE z+MSDvp~fMS5*3A^t`1E}CBm=_n(YF4`#lU90xp+;R;v=#Cg@n5IxM)ju(d>H6<2|* zfFuGTL|3Q^!nzzNtVF&20(j&-5_az(B60+Y*3e|w+M*^bj-{FNS-AfT2G~pRm91q> z(v)6L`1QtUeoUXutio?da#t~}WHmcthqpXSBHLqI-(9WjM;65n(TcGNI#LE0a5`ji zwmR^*f~101(y=#c5c?vtNOF{uS)WUsr=Ap7B`K~->U37}!v|1fit9q&6l!bz)Yb-{ z16!n)#`@5s2JLzaM!yT_Uk=h}O&ym-y?*d}GkCNatt7CuS|-a_OKf#Hy3%UadnfV% zmotpNV#H2`C6fHuH1ea;s5Hf*lYAJ29bA{3i_>Q%OpIYi<$ThjzU*-fm3En7iCLJp zY+`nen*%G;4OShWB$#N>X|M!jVoVx5+U||ZqN*^uFozj?*J1JpKUO&j16ewHHno=E zLm!5VS);zX4%|R4oJiagzB1_O|d<@>Rn}r`Q!{P{jn~Db}^V4Z_ zs7;Cu>Dmt3yqj4c1#=y)oHv6t3tMvsYP>#X|L`xZ%e079b+)naIwCp*VgH|*e!zg)uUaz2yKXg(rqR!5*7 zqsBrSTCSIF;W_zQH`Yyzv*IgCa#45u*$!b-jBpeA|CQyyhOn z7w!eX+p=_z(}`61T1j|=By#tp{-yos3?{3<@JTA$Ru$m9Y#X|y8OUWF%LVc!!gh@& z;e>IN|Fo&YJvr2_lOULQUY)^b6!IhG_>j>dVJG;VUQaa}sAi6u!i7TC!FpRBdY#yh zN1`i?qr*1F=f--|#mqeWY(71dAQS{9skua`PF6C6I-zfbR{3|E+4JJ(47u@m-ar6e zei@#85}tYr&OiU>9?g+OSQxSIKf^uKFXTU5#_v}?jW}l(=X~=G=bRJ9&Yf`EZ7^gA zTz6eZpA|`xNKH*8IXRj7`g#%*lPNDR1wf-SAj@()qEJ93-4I;k*ZFPK1S0tVuKM)< z3C9V-UB zt&)W(Z5nm{t|b*>wOI@`O#=EaR}_JUDZ&Y?QGaUpdtfif`JmJ3IOUX6+8rw_EM(1^ zH3)*hqO%SkLD*Z&nKzurAN(Bh38t%RyJ|=e{;_*!84dMLA|g#85q$nmJeB`H5Q7KM z-8rTW&*c2K9z%Bf_~{=nQLt_+0eAaNy{ae_Zq32$RdDD#8nCSKjl@QUx63`)T3JOE z1k{KK0u$mzcsRXkf-XAK!VMU6yH!<}wR$Big^$y$l#Sswj(0 zWX@kc!lUhFGM>W(StAl@ZK9|=4VT+Un6ZEJPqeFsg)6?`b=wu}jynwGpsFIO3X0gh zM`@T@#2lgHv5~(czkDJKPpx3b>fmNHI^w{CDNt?dTrO$HhGvG3w;+lFe3?gDLq74# ztFTV9vp2f?+)V(ADsoZUyXdNYq%@U~J$N70ad8A>4YDlZ4`|Re`S{v=3hrVfo^S&h zgYqdKltSjvFvd@}VK9m~?J^&|Q9&C8U_=ROE4yaXE6UoFL38Ieke6p<<;rlTPj7-j zEs;t2<w>qzm6?A!?(Hwgzf`LYZKgNl%y3~TBbpp>Hy%%HwrrLah)vJz}I zmGW|d{rQlY(PAKoZt=LcnNjsx1g{@9?uAK12+8?H5K%9f-TLol7s3mlQCA*IMn;3XH=TwSe|wgvx}AxtDC!$?D|pZvX@JGH5TNU0^6QcE&6 zPXk%?`$@4E6Xk0rs%9J1fEx+7HVn7Mh^ysKx7L75YsRH95|A{#A_oCH8Y3P}Kh|)n zidK=)2Rs<@5^qy6;YGK@gRjZS{F-1EU9S2-c}jqHbRT z_m@3LT0_wA)o8P_V$n(DjT{v6B0fE5Kc~F+IU=xO=0ujCJ-79sqH@{8FR@|H6eh5a zQ=H#Y`*0Mse@i8%w2}*+{ttSupS`07^ZxHIN9}}wGAIHG7^uX97Zp=u6W84T9F|5q z^%?2xdiY^fLvyEND|hjWCI~0ZEn(l5=zgsO>pT*kfPmr9D8qn^SYt;?u=Uu6@xL4J zP0J!MG_lJvnb}P|@b-4TTbjx}w~gR|$5tJdKtido76g#fq6w&8JhBsm1XoGtP^DJ# zU*(-n>$z~!j0@UEdwjVTMh%3dm~Q)Aw5WQG{{h zV6|r?ReN@m(DG@{$O!&-0D{(tYKjDB(9tH@R!y?4)hSdIVRG_zn!Fam_4W?e@v~Px z<Aw+8-oQj5`1_A-#`C7yb|1JO&J^f&i3Y68a^bEg|mjR z-X1SyW|~C8J);$znzA;liYj93bdIKcpECA6RFg$pjH** zi;73O;x7LDV5_Y8k~D?6`B2y5W2Ds_xd@}IQBbrO*53OMPI$tM^x6pI+>YjJ?`IYU z+%}JjpEk8W2RfhHB|+jW2683?4<0X4oB1c(X~KsJd`k&GsHL34Ku!@-@!MUjxalEI zc=j)7OJktzr(I{n{hMbI1{*NOt-)Q@(5}C=WRp!fQ8ZIW-y_~O-tjU?b0=UO*!A4> z{{{;e!kRVkkAJ}Q>5z16M)4jtOr1*H^=DD>Vgl&(FmYlqWE&Vh9G-awHg1GlZh`ym z3#OYq6rv~+9UaYG_dd+c*If#L*X`uBM{eSpyZ?2toQgo9Cy{hRIZ@h1jG~7UUp#7v zvi-;L%f@kn@Hl>z5OVe*)C7%CM~Xn}w*L^y94->^NS#-FTF?*%;NA5h;)}mWyty14 z?Y+*`fng|rwc)Q{jFP{u&;9lFdK{?JoBJ$AbTs}Ri@Zdiu8CHI(2{`YNam+&i?+Gt z`qE!`LjmXMpXX!kZ8QnR?T%?MGFiTc(XOdj8}@*%)o|9=aYkr-T%Yn5ub19Pxo>B? zG7?&5L|o16sLP1fwl~iAw!Z`ABLx?aYX8A~fxod#S$goewF1+Z zzV47^o*?kk+4pn9wRL>wUJh-DkImjaT>p@jfmzY~=ie&wApu6&g9ILY&d+A!dejhY z-u3x5qO$7S|9Cj%Gmii~x}PrsTh;_OUx~5hRMaFeFg3r28r{P$YPmn+UQ)*w_gpvx z+_d2t3;{2XO}(Sj;|7Ds=qXkPB!af7i3>h|npsWD`Q0r=3>lKd_g~afw7+N4bK|Ne zw0eQ;;lX*)J}8{zvQkzyOeH3|{qv*?c(M5G2&mX)GxnVp6sJhch#KNjt7+8R@M-i| z50!(Ag=Qj%A-Gmt$xHyIpB#zDt?=!qHIx-~Bmz|xvWA;j|6@~!V*pJJ3O;X8ZT$dl zxS^ceZy!ihl%Jv5!6*xLe>pxM3_8Gf3Nna#!i;{#k5j3s0lz=kpD00GENF)&!J2K5 zUkN~DBsg6P}*B(r4T0*2S*kltKGyr+)%@;aI|M)GU}iFH=v)*30c zrXneUgSiU*J{1%djYhy0sm0zLKn`?0FEtt>*pN7Z?ST&|AGJJ=~n5IN0kQAN8{``(kClQV&PTIAS z!BvF-IJA1c8$Oc_1IM6(~>$IT@F^pVK=&`lx9xy3Ae z^HU@hwoe+#*B3A9;GtNT5W}4RF6BKgU4Z(n zP{J6Yno)p}SdbhJhX3tR%vE(b6BF6>*y9wMB?4X8=o)?C3P9K|*t%nH&?5(gE@ec! zg5V3F>NJ2rxl2oi^$@aI5-~mX4X$fvB4>7=$IEri%#ixjY8B=$DkLe{!DA0h;Eum; z==Zu*|IJP;fBh84ZS!#6HV;Rj9)n~ePH=O-=6B3j7xG}>-VUlH^TkCZV&>pPk2AIB8TBoW z4oAW{UK9n!pQQ5Le?9zg)18dF{kKHTpMvl0Sd=zPK}{Mo*S42Y4P`uSkEaP%o?<%N z)mmO62RAYSRNiMlU#La=iLtP!m~St>gK1CQhBam&LZ#v0K1xZ*MvZ7j_H~p3_6b^c zlGdkd&=vughm}`6!n_}zMC?Ku^8XEn41te2M)v+{AqeQ7e-icMH&N0?Bc6SB2SdpC z@sO4VciaIFKMZkQeCq6u_9<_MPn^}Ej7K$)=Sd+|S3#KMAx>LIrN4V;ljHbxKu}fn z*tXRC3NUQgFd7_w{`%r~Klf1n-#~NQLrA-OpFI5Mi2OTN`6xx@B|^Ne~#9YGQc20;(555b?=+ zRu;$<)OBPC5*jLrX|7{;QWkzq&)(&hIyXsqjWos>$;lsrF2YOHkg6W*>79O3_BVEV zMK|vn!`Pu)IyuscjD|cG?OV*-BYx8%PhVT4Hx^KBip8ZhbvR~=(s0Hl@pwHdJ8s@c zd66EEqUEHt&7|Kr9CJ+-FISJCp*{p@OW=|llPKKhV&!*1qCqSB*i$+P1(B?@*5`N5 zzHiX&^|D+%37y8rsQ7KH88#JPA0y4jPPH;}f|a$)8`-n1{U$mp#>Diwu|z}#-vPHv z!>&y}_Ux?0-(o~eZ7k%nc|Hc*aV7x5bMNCxN#o(KPvYFzWeh(p5^2IE_^lSUzWF+1 z$F*?|QG_5-Xm>(M6%1`J+ad1`T$ub$!u(FmJ||&* z2Zj)&l-+1?>B4Zei9nQ88NKX7AMgapKG}!C@5X@Ks~OWRNO<%{Tv{VeeHbpC0jD91 zDq9TY5edB_*bar!>%pxzU?rU&_m1XT;aP@MuEFMQo#z#x)D}l>LIzvYMqsv?$c_?0 zaS>4b2m)wCJ&r&aJFDC%Z7j}uzmKW88yKIr6)iyudtK%@z8^LNmp=69ZjBOP+Me~y z+_f5`65t{3W_I{jgd3Z9dCsLI4Rxc@^?aX3tk}%pt-FXXDn|nLj2g^GH(Z3;;?NPT zw~!i0MfK_sMUXX4Uinu9SEoF~SIPo1m+d9Y;bMn%IGd+UB08~-KkRvwFaLN>yME@$ z(P$9(LaHIg72tvgo*`v#KF+8});;@AeoQn{DYg<{gV*mMW@!cGnMvfIKLk}08E8>S zH~(@SsDAup04Z5bWDKwGxo``FfXqo3JiyLBoI~~0;YfnYq&O#SA8`R4>gUzi^=2AR zJqe5ICqgbjReJuuhJwu-Vp;J+61UvZ{kOJ9s48MbBT9@Fv_S$OTAzkS(6#J)B&tu4S(y2ypiG|KXFRL8nipu!n@& zT|v;ISO;?Zy|41@zdk1r2yMO67J99QGfo)68&?nSGWxJ5$g<2ozu3jgD{IL}is6f! zhIE=MOa)d%UPk^NE#I$9X3~gK%8GR;HTBFLww04c>;d4XoNR7*=`xZu<-BpqgY2js z$h5>A-I9fQZiP{={BZE!CcTaaFFlLm@@k%1^8LZzQ_OmHUopM2Cb~s$Y$F?%sTAyP z8Aoa?Lw|D-;SrfgSWp!|PPveE4?Ir5)wwMy<@DLaopd6qBI0YPqWp`c)NR?g>%m7v`lkzkR-h0j`q>qZ6Qh$s-mDXgz@ypySwa9LMBaL zj!yKm$31|bYw!NI>*o+*){>KRc+zhiN7wiT`c*UitG`7?;VhB4GllM%d>YW_OMbuY=!eObW2Cy{l z=~j3{RYB0`dQA>?9;K!du5lBt(F1K|DP+LaO})PM2R6ZtO^_H#0FVI-WX6p4 z1YmA%F59+kL!%K{aQfJg`#n+yq1khX2MNMlIueBGz(!cJGPh&JPM{v#i5-r67&?x2 zy|yq&CXCwYyp?O^!vY!x*{b(}V4fSn?x{T@ZvSDm$F{Kt5R890+hAV5m#vdn(DN65NxxlK*V{hNb;PU2dUQt*%|l_2GO{Pa0HQ$DfC|dK9*A*pGn%j-ZkpQv zE4nW-8&U1vv%JtYpvz+}r-Iup@$9o1TxkB9Kl&fTg8{*9qx#LAlr-yT9+3?pL`|73 zA{wp0x}RF3ko=O4foTP7%o&Ru2%hcU!a+1vSs6MY2j?&|E&+bzq!7=z4OErX=3+!L%^?+l5Qk9!-yb2KvvnduJdS?1Mo{4nj|YtdTWPc zq8ea!!S`&78;w@+Ve&hPa@7&ztj4Vk!{~QnM8Sw3qpyi5U*}ODhe83|f)0HP&$ImTxJJN+i9uj5B2;FK`1J z7|PYWKuK&8x$zm~#Sg%#Z;i(GI(@8hLXiAzOWwCWr=qGdqIef4>|Tq-A2jstiA(3p z(Q~K?@7i&pBUFZ!?qmMe?}>5+ukG`eYk1#$7K=R#c*}ngUX70CMw!Ui?vw8(g;%~45x zTr}nfhcGT8hw{Qm-fVgf=W8002h?F0zXvtUjp&z9v@()Ez@jH!4w8fBFdls1&n*3N zEU2I{1Q0|OpF_v4h5=mg)7uE&d)Zz)h{Odocuan5sR1Hl`j?0A=R#Dx3rAz`q#7f3 z6cCY9K;p8^R8Jiq%*W`GNH7Jz(V}2xhi*DooKsCHKA-`EAacH##g&X?pnn&l(n)f& zUSRBmY8L-*V87Y`KoC$8+eg0H{k25u5A0K9Vg(nmf*xoqGuX-fK4n7iziwbOz{elu zaOq{)EL_-3TxhD%?V!=XsFC1w!iJ4OqOdc0J8VgZg&<5HE0BJ-hT=CDa{AV1$vojI z-g@dwR;(`wc4O_kM0_A_I8C}cx%25F?tD6ey*o|(?T-TMR#oD3c?cz}!s`$4!LluU zuxtxi2^Q`-cNCY*Y#(Va%Q8zgmGRb(dF&`|z@QO{FzZoNl}&|q-0s!|_x}7M!d7qM zkxM7?`%{M;{9OgAbORC902zZ}e}SDXyW^NNuA0++lV&Csv8YWU}Dt;u3nT{>rHE$5D(e#_*99KxbMKiJpwL>o)b z9!E}H0kLNX_k%&Y1yRuOclUQ0Eb)#cpEC|JFd+Ev?$z(JkR zx(*mYFGx~8OAbCXa zhsw%es9+m|h1CjAKMi-^4QHMiRA6n38M9ACZONUWD&6nowAr?8d5j)&4Q8{MhK2?-npPw2v(G-u%{Sl7^qGVB@XK2d z`#5`xrbZXTQ*T3-6}TCQY;({KJP~vz*jw=wW=qc-^SmY<6|T?>K*vJlUw@z#wTR+8 z&i~$ekQh7^1_?fyQ;*aCHHCJCea)={7gdNshlGGzm5D^hohJq(ljh8tOvZgTb=v0K zw-?hCWn=C96At@1^#tj7>_ls9J^AViBPIDAjq1lT%z6zMkFj&Zzb`vT3?7OI zlZ|JudW&aQ_zAQ`!_3{fjE6q>J1YiF;?~O_>UF>Nd>e{iBz#c!(G-HBGIV|W{6S+X zHe;_b^KJOa3`i^Lb>E>Py)vJ@5rf!WFocxM7%sc45UWr}^2#6Z#Kf|^GMeory^H44 z8AL9;HW5Jx%0d3Hq?YpHpdsIF*P~e#AWU`PoDfE$v65O-|7340-e&G!{#Wjt`#5Ps ztW22|K~=ezZ$1e+<6NZ8p?3RzF4;GtUA@>?9k0GR0a1jC3K_km=i^V4ShFsH_uk*b zj2SHiV?hNZMp0|mv3nOxJ^x&E)wRfXQ!JI{gplfrs)Ev~5l$uEUcr#s-K03n55^=a z!2a+7Y>yp@ENalUNL~g+5nY&uLBmbRvP#ZoM<;EDjyOjpK1qW{RcY2)Nog)(U_%~X z51b1K=w%;9zZ0|HiOJ_8%Ye_-(TphAb& zV4yO40BPHU>*dO+Qz*IYGEfDoYqad!7bHUmq`Uck=U~PpLDDGX1>7XA%jedLCmE~X!c$NFiI29O!N8M>u_ih2 zyMk*)jWK{AfY#$>(3ah77(9uxjqwD$8e-7kZ!m(Ol0LYR?6EcM-xh_z6d*d$i6RRq zvWOfIFoXq2%4|9;`SbdV%s0Q`*`{lWAL(Pv%<^8(7+oGunwrquo6CkXMT$pNoF*v%;H{V+X0s?1UcRF7z%LGz^5>B3x#n*3L+xy0J zaWu!R#Up;$$w3X4z}*NnHWt77A)kM{i!J%}l-4_GcD27|2Can0-+rAa0Ev;oi&EX> z!7qm<^C?MUaPQRuQ4koH6~pVloyxXqi3dO4MR9R4Cruv1bLUOupP!$?4fDR|s+X@L zW3uOb@Y>Ern6z%j#qD8leJZcdeV9M~_&avj z4fcfv@b)n*(R@CdLYZtu#KK$)( z9m=X|@aNH^Va&KnMvfXqQ$r00JRL+y!yQk4N?O*44t0+;9FHJ8dN>|IcpSevh(D}8 zBJCc|NVlHaIGRy)osn6I>7m#ExyIO=dTr~9w$L|NeLc6sc};|o;}J9$(QVj|S_Y;T z@6i@RUm!ApChcW(mG1#S77CGdE+l?IM2z;x=Lb7n5rf@f<;tKTV(QeX?Z`oZZ@&2k zfD>j9J#78;2jR9bCQKQ~+LgJmADGzYparmk+N_eZqm)Tgd(KDIHV0u>INZ^jKNoEJ zkzBOAYjP04Bg5af*|={^5(W0w=y#1O@Z*!OGW6_Ih)7Qc0U8J(2m-3A;?M8ejsiveb*BfYIV*+Rzmgho?~zo=PpfCkF*pVMO%~_D5#o(weaAt^DDXr#R!11Z+_n zDoee5_jzkR8{eq0jQ-ziK>JN}b+wQ4&tJn0HwQ`gHGqXoDWEHRk1Ml3qBcqCQfbW z#;_m+eoC8xUiOmJl+W;*oqTIKIpn&XlY_xym6k**Es0pX%?z&H!=Q$}Xn^dd0#cev zD2Nz z03Jq*ACqVj01agggV|nm1``H+MxC$gb!fQT&WSmz7*-LK4R&jEEE_hRwOQklJFr$N zb9Ss?>fR0L6+eGJy)|OX14#vjmOHZ{`_ z9&|GEdPTe*3B93pUe|a7j9KQZm;Pe?Z+rk*Semm0_e@~#Im|Z46 z``#bQmtV9WXFU-}RB;)_)MI1sU4KW3jl@BKl|p^{9D74>mTS$_MqI8+=uU~Kk>WR>W;xy4W z=yVEI)motM1Yu2WaP4jA&fmlu4~|;8+ne?V8jZ?luYAg+(>Ahk$9ceO+<9I1DgvGD zTU8YV*^Q(oc3z19cFo@~#r%r~8_2v2e?!{Gj{4$EFvSD8}!*BVt zT{~YaTS!lSgswhn2GVbsBuT|$!T|U(U;P*?Zh2uoqvp44Vx|; z-|e*y1)rGiZo)IB(v;u+#Z(o@c|V!~CttvTi#+7NyBGm*tA3tj z8}S%fO;wjq>gE?yu zM)1JvD=`|)oz^{$|Gzj+5FW>`3r%*!jh%Y{_BX1lH+6preRW4dCZzYF!4UfDYrVrs z)JYM2mmcX0`u8jdU?`_Yqai>*4+cGgB!QqIAmtOv2244uU<|!82_b|$UPl{! zA+c7p5QNhY(S7jweEjf3Fz3UGbB1=P*B{cXKR995kRU-=NPB`1AOUEG9b1e0O%VQC zh`|F;)G#VK+5|eF&MTr4#(^|U?uI7*cflWVyWQk`whU8r1gAcI58)~C2pS31AD~hn z#$3fnq1e%=m(zvx=+TC~(u_H_{RI%jU!HJ+>GYH8aw$CVL@rM}k;@sU59Ql$r!YEe9W&-dW4D9V zszPNwd$;+i4vQx;64dMzgdes*{-IGaJ<9^Bx15Xcr zhvXQPXKqHk=5d7Wc?eIuk9y~YAa?DEZnY{bTu{r(wG)_r)ll>g@4_$Y_;|?KT)6W+ zqP-0)%Kd^*vd_e;>Fqj8WZ8gO==Xa`b(Ar?;Cr^jk0CE21G$4#W)KFy8&8N1Lw3ED zT`@z5b5;`VYa##`2{5!F7a6DwPb9(MCci{WMM=NewS!Oui9pLWl>xiXf~W>igx+tz zzie1QV<3WXsfod1y9t--QLHkept7$SoB@^WaDl0@u(MvJIE3#`TZoE6Qhg-@s*6dl zEyCt){jMCyCzuyMfW7epskhiVZNsfVo?Qj}pxMEc)MoOkParb#M|_7on!13W$+?@D zuzxdpRAgX7#%R79aRN?#S96v?wKWC=_-MjH9QrUsMPYL8Cg$XyMN{r z<8d%ojp1vhrX5M>Zuusj{Qj3r`|2kYLBQ}A$eL41rdrzTbxn;2ds4nvrqFiYt9hkFB$Q^S(WZsOZ_vzT#m z>0xWP+@&SLAQK%Z;v#JdZ_~Au@3Yi%o+gWdzRn3kuUAA4hUgoiO}dRCWZyV?&40w6b|_l?J8G^5ga1i4f5B)X{A z(Imt`X=S@(k|beliRKy@7slF$f{rem_SbUfTN_!ITZbfxWF=ZTVeDXLod0_wBfEAG z$y0n79N%-riEzb<87$jg#?7y+XHQw{b1aG?k_i5Q!sh&X#{A(kwmf+{gOe+H`s%k? zw{IYCd^mwm|MWCJZ5hN%t0tl-P+k*D>Ie-fnQmTsX%nCRYd#|ad5ntLAG}V$8H@kU zM~m*^gFPmy9ZtR|sO64ryjvJR z1reC=Aflr5(h{VEn8R@MU*90*)XCU1K3KiFbE4>+bAn0fj^kH>MT_9}+u?*0Kzm?$ z+*P8%7My)Hw{5Vb!9>=c=;>ryjJi0<5nGTmEU}t?mfIUkfpK5Nav&lau(WwELI%mSGMY{-T2fq0VG%mxIJv+rWpH z+{QWoeh`gbhtD6Nv9Xb6p>>xm$O@`-4CsWlfg%ftn)a;9F?+AN!ODUFH=go){_??H z-IiN4b`d)&4i5qPxqT6HvzGDI$umPLAJB^EyfUgF^5Kwkxns>^to2RC;&M=JitD+7 zHqZsU_#|COH!C8%p1Q_Jq9gjIZ`fdrq`}x~B-6@1%svOrdMmQ1;r)M?qfunW&Wz-Q zxlzO=I#~04W614~o@B)qrKP&UOL3kXN3%?oIi3%PoezK|T*Ks(Y=lQ>(Hlkb_jNRo zZr$(Vg4^ct=wsb0RP5Sy5^j%%i6;inCpre$Q;azBO7sujgET#!VZ(tzDF6uh<%e*N zD$sothkD7$D5cei&wq;W(3_}H7ML~y&=Cs3co2hAQJ%N~@#bd`SL{HsnNhDlz1w@9 zIWvrn370b6oP%#zCP`cJv3VQ#?~rr3Fy~z&y-h6Gzl6`T77>toXLwKq4NC{kWzoLR zNpRONwPHQvD>kqZ^naVYA#nnGyo2#e z8eH1GdulI;_!5BnKm_~TgV<9ugo36NCMT~T#acv}3(8z7^O6KKA$|sQejn+zrKHsq zlU`efQEq+iJctyQU4TQy7n0j{=kqP~i_HB;_rvjTtK(9Q=y>dMJ(6LSEI!m%%5IM4nU~YC0uRJ%3 z)yreK?r&L`gPc6{)J7h;Z(=8caKe-dKL03M^3=fCuI&it$?eV|9A2TSFrH`EE=SV+6J-7ueHiZed zpru6_id_*%voZ{~sKX_;1xw5v5yReB&c*BX^6d9}G3iy@aQZN0uZz^1zvW=9mEFY+ zT=wEBKCQDcDK(Ude;LbPXRpHUQgQBt?VK}yJFE7lk#jJD_=X(Tt<1paE#>0dCb50( zSp?R9i6uIPVH4fN%1-Vnc?6T@CaNu?0GXS9-pbC)Cy{LKKJcusudUwtMvQ?1L&wQv zZRq{6Jq{PyPd>%?`yOWNTd{ckl$|YF6+`SLh z=nEv5n>ANI%iOiEApZI*?AZguhP5@QtMe5E4g7PJbvS{pVKPBlnlCA|{ZHK!?*01> z{QBz>RxJJwfV(dq$wLcP5ERr+51JW<$!zWll)A0zv%9&wc~4_ut5c8mQa}@rUJSB$QSiI>klU z6<>7fC1Aklz8g(*7^0)2R>$!sqxwX^waXSbUecz=VvM4qO3KUYP^namAKx(@uT@@j zW;)^_ouWU&Z;?4R38hlR(;`755Y%qxq1!HNXYZt$dLuE~6MoNZ%D$k^S;)O3V}KZb zDeXMv(kbA{u~rfcyJ&JbTJwJtYBg%T4wtRXnI+3IU;Xs~v}WHz&uX>euCL|p2VbNi zJecj%$Fptb#N%*Qy@Si9M6Ex1xvD=BDw-TLhK=N*`H%C=_mAUn`-m8YBqIZo0H=?d z%j}_7vY?-}%MPQ|oxsl*%|fZ`U8uCT9V=i{8*nN$*wHa^^DY<%)yCdA76Y8kJhSv} z9-HWXP1SBy6&&b#2IE%h8R$(1uV^8;*zwCpJt}9&cp7lO_U#W;`KdCtF`UEKARlkvG7^QyEq(L=FR+( zvSJM>L-cIk1VKRw46FN*vfT#6Ls^z$>LD_#z+as$H9g6^$@g4}R9TPs&1%GZ7a+ZH zCk*pbL&W6)iyf3A1p1M=9iNW;=*{rJe-VG$fD{yfeDN$l14tlAdMluTdNL}ZMT zjrp;Z9U|twPQQT5_IyT^y@ol3OZX+_jBeyV{lg=w`El^sjHuep(7J3)ZY#stuf2YSPwzjusbg6vUE?6AxAfar=F43gluW z5mrcbOp`;Hzo#0*-aY(u;T*!(u4CRiUjy*NwHL7J+}=v;c8ziyy(S0`BRaW-`L}gl zhc9<~C?7sG3Z2n|&fvyjRU(KG7GotW#)3j6(@>=&JkG+Pq;dq6h@|NpC{U0U%=(21 z0Hltr<{`bss&RZFgz*%0IF87+j+0d+9T8x$ZF4xkElS{t z7uHfz9Ki6*y4HPawS>*4MBh&Gb>!$;L{aAT7e;dHKX(rJ+1R|z808QYN0EWt6GB7b z?|(1m&byL%=k0vV=HB<+uo0Y2P%6P_fTW0S$U#6*sF00e&{EZJyDb(wKmL{tKx~w$ z+w8%fAP9hDLseBsQ0M{xw?Ih0tm@BjDt_ij=>UZsk09hA$3#G(FXOeZzJd1b)v^P% z$9M0Ax&7;Bwr{UcD7f$Z!|DfKP$0fR(3zIGb0`FXzFS55Wz)7uHdcF^|2IZ@~~CGd-vQOG^u?AT@DucAk3bDK>1l z7fFWEA8#c4s!2o}2d?BtU#?wRCKTsFb1!4k1fVImh^zT|{;a2FecAc6Rkvo#A&t?Ur2j{O3zX+;>aoojZ4eLIEeAe7wy%fn$imLZ7l| zUl5->gp$JC*1w$&8~0y1ksBUdK<1=V2iU?B_%lP0WqII3oKBzvGBPq~u(27)C|oAQrZNOiS8_W7 zvN{~MAq-ie1W7{WXhyV`g51$5J7AfHs!*(k5IhPMAfa{I(b&pCY8UDknhZMgQIWjI zn;7bDybnM8l`F4$nu!x9vSCBVpoXzy$FgnPHeOzE74t9a8`(2ZzlDenn<4>+7=VO` zMz#{*J;>?P?q|o=A~+Wq+3o<%zzd*Ii0rR=37xL%%n?a~^;HIrd@6!;ktp?%pwuCF zU3eX}G+0ZJj)*Wm(pIA?5Un8rK^2G~OGvIpnk@%#NzQKj^%etl-vn!tu}gy}vFJF^ zqQsz-7!>FxO5cLry$!q9=ZM@@4>bRuuaAU?a6faW%GYfk&xv%~fXOC|qa{RnEWi`(bCf=zuCH8EwGkySg{73tF})9OVoxjqI-lG(Vj zf!y6zL=grLGcaUi00Dstyj~flN(5OZcaN3aEDMc?$i%=PC1=bJN23)xJlBiAsiv~D zXKBfZC?lB@6R_C46d!CND=V12+hVAz(=&W@Bgv5~TiafAm6_CZBV`p37yw2ilvnun zC3?$9Jmm^xwTh}$ANtZR0Iw`#Zo-hw81KBupS}{tx6+ywH}Moh*hn_rZRNOTs)Sr1*m8-Yp^s0Qq>Scc}pBav^D%S z=u>LyE$E##3{E?GryYaK-XTNqFlzKB@}iQ-k4S1)Pq2RwWtr%PN(NOPAhn{9Fq?0# z=|+hKBc31)1%pPgGwF1;mu3=dXu%x5fuN zg^4gN%!w0mOR%?6&+=`PIDKRe-)zj}k>KYTwf+mAR4A}}{0Np`Fb7MpsrM%;!_Y0e znfcWc%niPCtWF)n;*;(pPm|6_A&aHOX}B_*2_4gscnfq&%w4_%O;9L9{_{MdB(drI zGkEv5OM5lx5CwtsfCR#n5r~2ki_}Dkql5~3+q`~CxQtdY@N-|6Q^e&^qSbkjB!Sv; zJ=LW~JZ_QT2pg5f0odLwL)Bo#^h5$9r&S>cV7DmQzA}cAJQEk(l7&)r>|Ia_L1sdP z74gtD5Ct<8s^K&WW|{>BG6F^kn=YhvIACec`K0*1&tV#!2~EnI;?|aSwjsXb|loY zNU)$lBUm|_I)5L39Kgm+CSG~DwAZy1*Q^DD0Y;DNxZNvju}A_QWR!>mhytSE^S{Vm zH=2WQ`8sry4Fc7=_()l9vAQR~%g`uI|e9Eze$9EA|%tF0(E*Fa4!POB5O z!i{rt1@fUH>5p&x3sPt>dG4XK)NAiC3vJXH_xy*`hkFIb0xu+04_YAbriO7N$QQ^hgbbxhN{1dOk#m(|69C$IILXCnN z92imYiqJo4`+G6q53&=aGN7#Eck^AjkBFBd?8snrhV;mI*H2l*=ik3=a}9f}U$t z$z)8O<|7D8=tvL-00!_{C35zbF=}j5mt%SljdU0$LoAM3#sV5z4s^0rr!=4qoy=k(kS`=HWiluPNYTUfhBQXIE2*vBj3i6_k{}%@$6CGf z0C0eCtw_8%&4JU`t5)D;*vY@INAtLK@gB-8A+0;EG}os zWoNPE^0NoV&;f+j>}2$nd&vDI8E3PPG!_&xXxvm41|oTUZg^P|FeWx&PH&6OpPajy zvp!$S&4XXTnV_V8XCyIm@_%=du(Z*^|2Bd^5W$A2xLx0K$-kZl!2H7sQY#Bcs3}3~ za*!L-Ig;IEZ6cwzl#ADW%l()BtJ|@Z1~+kM?Wb~8JYKtspyA!u>~ZRq9SB0Ns9;vf zGCmn|IrgRct9AM*%4$#S{@1 zT-)uqRdo@B1=V!gUZ)FTMdD0$MrIxzIS3#K?1~&kXoQOJXbl;o1F+k?lor~VbaD`r zX82N>B?;=QU2I!#L8BFM*d%hZES+j1I%_O^zQ9KoYV{(fASIS&57w66MTb{aSXlC% zZ*dxE(vlp}1Viijb?p>9_Kvl)zId+zqpO4|<_bpU{LHQfGft%j?Mt`v{VqL!Rq8Rg zY~)__2H&Qg2ZDgf(a4RZpCJm(NFP4{vE7igDv%cZ9dZ6c2w4XZZ+Qyoy}Kbe5ULvx zK3|S})+FQ$XB_I_Uw%{+;o0nAoDx^T^pZ6g-uZ^_*UaN!%`{@eN;&Y~TJ)tU#FT9& zHl>XBU+-GesL~k4_e0L%{G4wX+*p94RLk1fsa?KEMWw)qv9V~DEM&`CB~><=dE^qL zaw7@?!|QXXFh=r4;&}|K-b-r3enMPLOfOr9rE(j&A!+On?&uIJHYL#8*_W>#pa_VJ zsoai1a#F7`VVgObs@+xSY!(bI3juBmdY1()5(deM!RZ8NXVP8*tO~6!+fZe|sx)9z z>#?bfSk!uKN?orAQvgx&p!GV?dK~CI4%8keI=B7MHYZw-9gWw4*6Zw$1-O+lJXw4l z(^me??O9D8Gj;81INWm9)hdp#snmylX{fI(G-7~O5(EH`i< zB7v&Fa5konrNMZZgsUbp{#VSNG^|adFa++v>L)Q+lx4;p*uku<)daYF_wnwSG`<@@ zmnu_e=MIN3BSu678eB4CqisxzS;|xIjlx-2!zNDv<8YE67SCrhFF=^xH#xY7;&SGE zwvhOIA30GU8pOgY&n0W}D0Ip?^omXF@Hi-4QG=^i#gSGvYeY6AnE2}>FCj`2#j|H( zyZKIr%T}_4?lTw7YCYri(|PrmKsFpu;PygX5X>Ew#;lAM^4vQ)Xsf2g3WNK=clH)) zjf7g$_N|FdZXr6kt?pj(um;Ahe3RTuPh~|z3hzHY29?H(I($7 z2lj{n+Rm+#3494XWQMU_rs{OhGbxqF!J^oL?#CCNccZ#o)M=>gt3>QAf);r>B_;6pMQdv2~_;@HsF<2BaN z93wgjrq1nMFTcmv2cn&H3F2LkBOLT!XkH$Yiu<0+aBup-@BU*3m56Ri&vI#hS{U>Q zL%JqrdIPs9jk18PR4ab$vQ4t*AB0xfpv&yTo^g25=F~^CC#aki%BPUKknb4fy_}Qk zC!?{ILCgpQMeio5zjwx1cSs+46*)Nv`SHgeIqR%8X|&Hj|C~!MxrCv^VpzJVd-9+^ z@OO>^Dh{ZpFi+l1Eq)3#0D<4_qWPl#Ksa#o5j#Hy^5N;1FXb=SP3v-OyGLMKjgKq{ z3QXbWpcGzKcAYkGqgTcGwYfA{+GKZhN(0vLSzPG}=)zJMB1pU;l~7Z&w##GxQPBSP z*xLXV_KrV}%kJXCxz{0id=9P&6DF`}(C7KQpKa3dL4#q;_jGF>?w~Xgb$}`n_=Tl6Sdg<)u8?vIkq4Vw|GsSZM{J88i%q46 zYMJQlawY|A;7jv-Dx0Gi(Xt!2LPe1(k@}2aR8byAR`0^F$-?HLDoO~k*HM}}5|3NLX6<<{ z7u#II&0AjMsj2t(I+L=u*tB~b)pg-KnEnKV>vH*O=!Kk8_#0PbecYj)q)^Z>Vk8Sa z!>}v0+^}N-02PJ^TGRnVSgUXu0tihtA$|2QJ$lhSUZ|=^yzmi(gH^~w;*lP|7Gc3p z$TLU7j7$)_cNR%9Jb8aL9+$+t-0vA%wF573pZFvpFuJT5T^0=P7J90> z=mo4w-67)8fK{nS5*27YcC;QJ8L0I-(72uG=$*9iVYt+4JbD9egC4Km$ePB%EOwuQ zWLGlUxs9=L8;P$g!)R+kfz)d251F&s8+UYB2YRQyl@Ls*DnZ+B9%omo$%#rKCwegZ zqmuy`RvlZK2k3BynUCq*I&#%6#@@St`jLa!@ZZ~zk8qG{6%u2^ zec8@7)hK2Q0)DOmfbW@n8w_ZErb{g89lz5*to9A+QNcB7Q8xw zag!=J^V|cd)e>@P6Hh%dk^BF*ug~XErXIv3#hrNkJp18<@S$`+BU}vxDAX8LKEh(1 zw}s1{o#zxG)$sg%!9>6I38}$)4u|LU22VZ}hDs%I*PV5}B63Shq2K@n2l>cCfE-r? z?=+t8xBW=X`J7?=CqcA8`R-1&2n*_B(JEa;2Ud5uXDVAlc;%D*yzs&cxLj@Ir6>xN zZhU~q@HRI5c&f(8dBxB?aJ4gg3$NG9vJYG>w^(dmquU@}D{FGQWHRu0E7r2GB)?kodPZ$oaN2=@&WLL9OW{ zuK3Rl0Q`eYh6)2i4vv%a@StFaklgQMsbx1wRFgs_4H(%VqyaGIiE9~g-=+ONek*Ef zVDVzO;);Pg<_Qc4va;Z*r{L31du}`Z)OoD_?MFc1jYUNOY+t*GgLzq;aq(@ab$@)4 z@I(gT@xzG>!V~yE0U^H_v9uCHY#0-s|68}@Ab{EwfId1DYf1MJ`5ngSuaUigzwEf< zm30UZo!E1m?lSl^P*Sql7j$mD%{L9B||%cP#Zjs3%el)0di!K4azWvDRelz_HJ7Ke(?8u_@h|V zIyL9K`6%CB_W(dEIS5d(b05~aMhqe5V{7aHLJ;I5{`L`rwOgYoTb#mgu0YN``)dqd z3pGK$ybFD_g~*eOs92VSsFF|z*)ha7p*A~E^dMDwEKwH_)M;BrX)bTiyu8!)RYRv7 z^*G^^N-15Og2`FiB|+*@wR!RcSt2W91S6_;F}Y+t2c2;|$3LlW31(Kyawf2e27-_z zkuY}+m)Ji;T;=86(5smku@Ube6#_75SU$`4&BPShj7rtfY1zeJFqO4U^>cjat^=z)yZh+-G;FK|48?kLa;v?@N-Etn%M-L#L z^8iB5LBwZ2M|$jP=%rMmC_qG{g0h1$KMg(`z01bXhFl(!9_0)B#nkFT(dwMkDnju} zA_}ql=WSSR76zx4WeGEwUA%&cm0NKrbu?)LIj!Iqc131VXiB0^ABNNIrLx}6kEC%k zzU+Ag5~Y}VnrYn01~$F3n9d91=IdLd;IFvf-bpA*r39Z|S(cO&EX~XDl!RWFO;Id+Hw_tQzQ38P;JAocM zIC{>UaRGLv4u?XETJlh7h`_GWV^`_$>h&06Oqi0)*tL2}>>^6hmq}k{lL^etBQ0z< zHjM_yMl~OoT!$VTG6EW$OlCdb2NUZfHTx%?|79FExzb1)(nzhNlplu@y2FKOWT5vMNwq(xWW9i;8IMcjyHK<)@A)B6JsKf zn=Jz_8|tt9^4(?J@a6`p8Xef2p4K&kAi#@Pk8dLf0laQdbWw=Z-GH$3Z!qj>RGH~G zm+e5dG(w<{ypm z)KqRA74P@lj+LKBqZ1f0S!V0~2C!Tm&& zK?y3^gS($~L|uZ4Tw=&224%a_FFPLjkhrra6O@tIPiqe$EbIh1_y@(JMR30V7>o{Z zxm;{nzXAY_PT#tH^wcvLJ@t%ZW!?$=iE)A;Jc0ic5Lfu*LWkdbDaN?S9^1Q`EZE9x z2b`el@A3Tg9q5TwcQ!^P_T0ZqdsG_4qUvtRK>*ZhWUZ?EV;uu1%v}?N$Gg7ZG3nP0 zLD-wck2@fiO6Ai%+90AwkOm-wM-$CXW$y|I2r{5LwjPe-MJR6D=98yMOG_gpq|JdT z%W^A0IDJ;%SuK)MTY??Eb z?I%z0Zwws2Q0s1n3LRU~`tL<_E|{(kbP;<-K9XC+)u_c%Y@&W=B(g`unAk{QYCWRr z_>zU&l17prkw{E^B|5h+jJYZ>l=Xwh4ft50V=AcM8A;fLGQa!1$~G^ajKK8bm5i;} z2Eb38#Q{?In7_2PG169x`Qh3}i11eOY1n0C4I9zAy(Tb%)R6^j-#3cbh%#a#+T^7V zlq54IV_PdZD992D$$O}d?7+a%>>)5nNqLErl(<9ni=$xg;0(SkIS*I12BY3Wq)@?x zs*QYYoKIpy5iV~G3v_>_Y;O!+Nr6V~#N$yiye5lBmH)!6>3hJC%IiYybzxN-aVgZ? zxa|$f0%Os5oTMqUS+rv=Cr7TJ*c6Y++05UzzSg1tQ&R#oWd}V-f`aFQ{=r>MFEC8n$NBrd=97#|`L*FR0@cmkkb^RD&84K) z=MrwKA-<)IN?j;}VpT=>Rb{Uxsa@wSw%>3<`n<;XZUf zhD4~ia@|)nACkV50gKl~mbHQ`tMA<-A|M?Rrm?snpR9w$tUT!?npB}=m8tMw+fc-z z(&13)sMY(~jfBo^C%|R#WgNOJ1h_1SNZ6D*97-)Vr5=Y$k6o$7uF~OBs5x@h7a6T4 zevl4PA>i>yR9hw1R0w#F{CLE+NgP`zDwt8SkfEiy#MD+$u8(4kZ5FS{cd(g}JX3ZL zSyiLBbllq*H60}tMOh}gzJkG3g$$}FB-GY1IIP4RL3Yewa${1dFo$)rx6@VVCY{YK zL3yK-llOhamHRf6Pa3J@vNe4i+osG$)M{yJGBP@28yn!24zML@1fNbhpBl4{G3pBT=Z%6mA2D6-4&j@dFGcc` zahsC0pV?n5BDB&+>Xs$N^24?BDH_`Kclk)fq*svrekw1N+)mog9N)DY6whl<{{wqK zn*_66lvpR#Gf566PS&A7AQ?SB(H79E*W1yn!FK2svMO>qO36czvjM%wM;N`aOv`5( zL&&oIJ_MoDY@|6g27N^x5$pCGQ-W~Q^EY8At)V5UW1ZDyU!-7dQ8Q$84KrpRWK@(5 zS**aKO5h6`J0IxK`|>sFIbV^&5N~0RV+#U|8DGut%vv6}b1FKWhp`hYd+g^A(O!`Z zA%(qyf89hcUal0MWQFP>4BjRTN;4@!97Y1L(1OAP2?yXnySaHCHN5D4j_1|)p%?s< ziATaHG$-%qBuSE>=S$g51uK^JE-orU>{lutIiQIHk7;n7c zt9^do+C1_bt-LfN-S4>_tAOyNbST;fwH2NBbv35s_TVhpf+;DArozsy@b9xuCFR)z=&bIzvCsK%)g)&yINM{@ZZpt@FF@SQ2hxQ0GG0{i$d8hwJBuAnXf? zB}iTr81T@2W?;PgFDR{D$jA0&p(Qy8lp}k*7^A&^!PL?Os^eb>-QW52H`8$M-XZ`- zj2O{je_mc5Wo2b(G)l%#9@G!3kIpWWETcih*@e{WVN9Alj-}lYggJZ5ak)IG)&8d! zhY3Qf$I2)P=wba5j!3w(nf78^L6Q>%JqsqCA=qekHTvCmJmrUu9J9M|yCMipDA8y% zIGsM{w%TX_NkVpeIPK(9=!%y0s+7F(Ku}@_7hT7%a&6n z_uRNE2wj|HFCnTVv|%>1VLqpoEP9IkZQ{kZ`RH|h)1^{LZm!w+4xbFWjCy@2-=tr_?VDfX%`rDoIV6&a2RHId$>}`6 z6HIIBENy(jzONDd<_LF0PDmO-_9|5QWeERx1EHc0VY5%JPO)?=vM3-(GSc7YLs>28 zG!PX6qf(LHd=T-Pe46Vr~&|_y} z}d8#f9jY36{y$-9_+4`#-CI=(*MlKB-%l}H(WAVBu zbGu1jzMM6{<$}oC=qVHhCHCstwn4u15+`cD+jS|Ik9!M^K{V+GMy^-o^)UQkHnVrH!tC?~F9?w?o|$k9#QuaVV z7BT5Le4ags=Efle+UwAJ>$s-k1Ljzk0ZN!c8* z!QRv%=nQQ$i{Q#yW`Dkj)IGkyt`?J##h0GV)|nHL`%u@-QzlUOP7I40Pa{??$E{Mb z^up8m<%)SY^_}PLC8Co$sftWF5C;;2F(67H9U5|%bsNuL8pO>X7?5RH7de$nPyUo< zbs(#wrnera*`}n<4Nfm;x|wSkiz*4fnAeSO3cwBx6Ou?h()_OL#y|VIyjag|2Jt6$vl|5qg*t11O4WF&0$w+zT$~V(!}; z7(B(iulOgY3ir^^#agVII;uq%p{@q>3KPj9ys7z^tDP5c>yvJ#tc3HA$f#Q8T|^!C z;5TleD_ack$ioNu`<*Gwo}GumPv?DyR8%uEeDb305vq{6+WZ*{8qUGfh2F`M&kvDwPtq+m|6FiUK2sr}50QFJm%zNeb${)Ld8d?g7g*j1EJtZ$fBS zxoIFtv0D~w;Eg4@t$(LR1u!%&h+9riW9Eo%%BSS7hT%`bo;$(mN48k@Ld#B+X^D6$ z_TpUj1L76;BL4GX#Li{3N!4s);lF<3z>nJ~&kJMH_(g2mdM1)2@y?!dR+Toe`O*of z6&+tV$7;DH2m+(0%l!65Tf8ImeC_u>`xX=4NF@8`k+hU_v~@-8n*gYkYC^n!eCfp_ zQM)CVJeOrP`A4;=N4 zfgwI7IPw6lHGR^ zP;UXr?)MmdB3#@xWIE?^K)aGgq1bPeao+0~W0{J|kq1F>eK`2Qz~A}wH`8#>Uf;c+ zk&)4%-IguBsL&bq_GsHnY-s% zyBb)Q@hTNmB=s&rHhoJLm%Q*E5oJ{zOiiRJA-Y%ndTY+nLJ%P!xsib6M!XK+jVa3l zN?qS-c=ZPkwT|M@SnO&o-;JMp?8d1!AbA8tWoM$PeFh;wtv-~6sb?~>Y8UEy7h%+3 zS87p6UR(+_)rN4wY&8V9EZnf|P3}DPMVw0iff#}Si7~~LRYjAve;5jdhd^UXD>(?D zciZ?f<3gOufs^yDEOoMCVIAX6GBfS85GI@~QCj3+&9C*Xb{TXw3_2U0AT^By)9kDv zy>=gRT@E`UM^j@6?{LgfaXXMUiEIlW!^pJVC=|WRI<=_`ygL5&*1yXFV|i}U-ON7l zE1wR(99xQk!Nxr9%71}XOh-@0?__F2ey_%vRlEWYeGYOqzP48Z;E|u>$Ts(3{hwXFYzsKq_ zvvcVbW;=f66gCiaD9g&GRFe}uh@7ZY@}iS*s0QX4H#lvimFJUQwx2;2g=l3TIah5A z;@k0a*&UxwZ)VPt!cAPlK0-p)bMcDr2(Gj65_hm&F`BT6rK}n;6|bV>aXf${ZYLv^ z5$xKR2?^V1YE+{$*wNS=O#OKUG11#w=aRh*`0HdXZ`fbuoxOMBk(}f=+KG5`6+fLbim5R{oyY0}dV3Ac zp#p<5Wpa1)zMtgrvgxM#81>}6G&hZ*U~yn;jfXmyZyk{yp8-855%&pN*~KspQiqX3 zp=ZUjqs5MgJ|OF;gI|4Arse*{H-QS0BMAHRmA`7_W( z2BXwykUSo26}7Y!R#f(KKs zDJMs{6pK)eP7Wf`JDxbtFoK&JP&p1ol|~H(rEY-81p%*Y#36Z+0llb16fE@C8PFSa zzBXEHvXZG2uVTlRY`*^bYtC;c9)HIjckuGdFLUipGkEMj{^cT%H3T7$Qq>4H;NS|Mjp zWBM=SqVRgSWyw2Km?QXp+!?r3YHa03q#_l@$(`$kiC&5HEp1WwW6HO3*8U&an>2yd zJ4f?R&5P_h<6^4Zde%yD*i;4roXt!vS<9r7^)zWs)at`nk#I8Ah6o&8$T~MPnE?ng zHFnrOr(iK7D|hnjxq3?eMrh)Sct*6gCFpn;aAzGdtI1Ui~Xt%(exras@;Qr@t)7vQ!tcKsvVr-?qgw`e&F!@QVujAG+R4tCm{m)@;S(- zj`d}?9F}mZsD+wFsyEf~#P<2D+v=;UchcxJqzSn+XoJZuOXaGAA23T=LB1)O@6*mf z68vRO$;{3BnY`dsnzSZHSMDU(UdNBAXJc3C5Rh?;YQ|J-VamaEXz;YY;u=*(O4G*C zJa!6&)ou!l8nM~j4A$95%!nrXKo(MAA=UbD>hxh$7^Bd59i-OfF{Cz|@_-oD$4zau z#Ow9){=sEzZ|tnS6c21v25=yJC^fn;tZHMc1Zj78tY8rb>^{eDC{P9Do_jHy^7LQ(f1FTkmg1PR~0a*vWS>N z^#o;L71Oy@c!k%JuOl}mg(5%o1dkS>&Gif|-_MY;JQC{4I*7H_=}oLjpTLTYlW_Zy z`s@lCkBd3GS1>bcEo#||2Us?I8Vi!ICATaCS%%>gwjhc!I+q=nLW@@+paeYorZ8&E zE_T=~Xp~;gYgopNZ-2ws;(Ly=$7HbZs&lD{>6UGfzxy>Yg+9fNdBXRM{O3NZ z&h-C2It;T~N4z=`wXDM?HdE%TV~*X-HldLMv18DIUa4kW;3zCjq0}_$aeGwAvP@)< zld#Y_)-b@@Yp9QbnIhpGp--K4*_IxP> znF$eA4y)XH#6%7%Q`jWPEX08oi4mx{0zHFVn?dfnE~i2;;u6Dfp}}COLHFVJD6@)D zW|d;QaR&BF{7Aa@0WL)xg-Rvsg&Y>M1()FABzZU&%TtMQ79!(7C1?oMCLHP^QX^~0 zld4$fUBd=xEg~YPD$ZbzawZ9a6aQ7NyT-yrI{x>+ILu}j@4r{nX@7As6czij2Zs;u z>L>zMNl%rhhJ5!r@?1W`X{h=%hHGaLsyHP1+)xHBzWIyGF8mt3q*UgAimHrK<(ORn@0+?hj;-2RUm$NOH$1yeS^SBEjQJZF2ut$)yQKjd3Oh))wjy#ELRd6dbD?oF zg5*XHo{X$Wg1lA8vW#)dgK4=#176H%Z6&()k^?Dik zaUn&`Z2`a6WJL4I%#I~9j+HOW?UGsa5jfkwA_aknNy7+EABwZNfr`~zuvc|{rX!|} zA>oosaoA$1%?sj;H`GW-OpYJPbtV3@*#xD6m{TVZ5Fd@Tyo!ny+i(3uAu4Cx0%f(G%!3TrL-3kufwkbWY09X!Qg~ z#8FY)mUVo?gKv>J`LyF{;(+4O8&4s~sABKl-e-=Vz|r9ZL3kW+f*?GGaJo=maw~$f zqoYV^&=NW}4P8_S_KG@cx9!Jc>0ceHKRUq&M{lEA2lK8G2F!sj1Oy>OBp|2_$o2-L z(gJY%ml!!7P^AW;jOiwPwpRzy!{A8>IxE;$AULx@mXNi>Kz{~uMIDsx9vFlBil{Jz zXg{m}qlLnVtO`OBl_)%RaMyv{f2Tp0go&U8btE2z5>fIXy6Qo)b?g^A0-@ivtrXO` z)fC(Jv$^RTs$Bc=%5Gw`!s*BukJ-G3g3Zbli9a# zA47(;$z4sII+b+6DU-&w^UPHaJ^Y3U-8qsTlkO8;5g{Cf~L63w=RAbVFf}lW_ z-84FC@wO}2{(BIEM+;eo4K-l%^lb2fcYa{yr{Cgnx1Fn?5E*;j1&q3E-mx=q04}Db zSxIizA5%i6d4Dj?`N2faC_sMWyZmF)%JaGV@`w9vkJ{~G zLjE>34;qbAr9qY;=9v~o%-lqa$;i4P?cNo#O!}sZR)>3rvzYOt3>en@!mf33EHw;c z|EwZ1Gm@A-B9poUZgy?*Ipp*%D?yG1OwK0KYke6A-=tsACtC$s;)T`sVI7o8mTcty zzzH;4>_ml|m@{n{gX1IFwz7ok%HC&9jjGs2r7?<%0AIGM-Y9b6wb88ot)BesZt5w? zGNLT`ttWOE86%?@S-G19OA^`WHefL9CpI>aGfqn(O{in^Q@67rVjMdoGrJ@ikA%t5 z$l#h>J}AGEO_dW6`{_l{kpFt7Z)2DV z@sh_7sv7~gJ^Djdm;18XN2hP&wVc11gKtvfn7PG!UrL@kr);6mBgIE(@QR ztR}m;q(dD+rJx{OrRO4rmZ$7>XpRU3vI}Y~Y6C6m0IVtl7PS$J#(-57z<$}w3ngo) zaO0~RJ?}xL>-&gG%|Fwk$^xY))p^WTU&bW+zzQj^@K!f z*tDVnSq6tzL48zbHIhYw zm(S!98gY_H0G9|cjFC0OG;Bi>ZJ-~ROiWSGBMCtufKsyJIijXth&mp%;>gT@Elyd5 zh=@wCgI}$Up7G4HVQkuDX4I%AZojRXKtJ&^#l=uqB#@CI6V_u=n-;gMMgWw86WVEf z$Q~Dz@8K|sdGQ@z^X2!OTK8XY!3Es*;ANzwst9kYL*eQyA8rZFq(Hlo3dJS_6a;xw ziT6&%WY?f;+K(*xp1WhYCXh=ipt`>GZ(;mtU|xzKtOP-W>>Us8>Bwbv$lr=Acm8G{ z##v7+WzlvYnHU)h2RLp$as)tr1C=Krn)ZA|FI2?JhQbeTQt_FVe4fRFscWx zHg#7h*dw!TW!vA=UwRzP){%Jk=n+jIPO8HbSI*u~KcI5mjt+gpCTEg*>pj#T2xaC& zMjUQCv0-t1bIr5ly!s)c&5DSGQ&1zSRm}Y4IpnfC47Gg)9glN%%O2DIS#=B`DISbd5x5>YPl0SsYjp%SuEcD*rGxpgV82*n7d)@v7 z{(Lz9(!cWUXK#1d_VPD5sC7DSnw!``d-wJyKVeAbRQ`-OK@c84oFE8~15OZx#}49} zEvTM;{g{sNf0-COjD$3pF#C^wmVHC}YoZw!=~rU3r+%%_hae1}h){huxcyYZ2IP?2 zkjsov+fBvbV}+D>1am;o?fztF82JxO z%7G!XYh^9(dA{Qf_kWO)aTh_^Fi@-2Sglr+hcY=l9uFpy37gHvs%;OEIwWd9#vf=L zzOLuY{tuhi=finG`%;Rlf#q=FWfOU6!Bu{bv8P^3qx0CSoB!E}!Naz0tOiRD1fiH$ z!JF6q0{}r35kvvW)8_Ds95$G(EK2t6`ePD=Ws6gYIjx{y$2e>2VuqIH z^31&32K*)zB#D&gYxt=CFP!@CuW8YBeD9z0%QD85ZevvSF1Eb<7MH*CF^$a@LOd?6 zsL-LZ4C6rb6237-a{kPdIAg>~too^FKx|7+3qhx8;M4zp!?liF@)d!+p-abosAil- zqvV$W2aBBxv$hfXi@-G`M(N160JG&72l8Yi#4zV*hAPfG>cFI}} z(vJUuL5uL}w+L_ljP&`#AgB@l^AWR;P8q2`@L;uAq+2;TN z-asM0pcLJFr#+8mn~C*I<~rU%qD{_yWAu1d$4%>SY`w?IrZaqoje=|RxHY|>tEikVrhmVb8Q=bj%I!fC1lF82gCDP( zkHzd`R2rT`7o6($3|I zH~r85Gh!qjo!`I)%PIm@c7~XJ+rzXIxpH+f2d$m2lU4!GPp~j3U=K~M{(TF7Pm~`B zV9^IdxaQwm5fyFEkWMKvCajy_k{%$7(LA6~@;;pN%E-_91Fji3?R#_`3Wiyf+04HsTaMDnN-q8jvLn<-xL zJvj@$ZQXw6FK?l)>|A$Pj&M+2xQz{WyoluP95m9_@aPw`3ay%XI~QOYeEiF_oWSwJ z71!O)$M3uXfKsL5)gOGb*YcuV9=rL}4sBolJ`c6}&nG2*f*?G8I6)8|2b>@Xj~$ec zzlvhR_HNt!|3L8d7Zc||eCn~W;AqdyU%%cQt5X}5h;B+Z1-yGawtz5hE<)wCAa_q3 z$sz9`@A|FBvAP=XsLl^yL>hwX|8PlJjS(Rtt;c5m=Fo??RXCMAS9BJ3sq;dtJ#LBn ziVWjGkQX}Maj)WW_r0xKY>S}!LKrb(1iN$tcaGNgu$lk{mXsj^V|(A3~B9WZ!%b_ikFjfwD@BUJt_>qS4f!!g%BB z{1zm#Q|EJ7-+2C+L|79k%&YHVLH?T2wQtRK7OV;5P6ckOE#x=@~1n$pa`RuFsZFS$XBThMI7=O9?M*y_A zxeh0KLK(rgT#hgMS*aBH^nA9OAA_y>orwO+0N4)4^1h4z?_$_4)O`1T|9v3Z| z02H#s>G_KoTJL)|SruA}ObIk;&E$lpBOsGnmy6M5;n!rJ1aEwE2@P5^fsSSrco|c^ zjnt;LAS(&*0;dQHR`*iIJy5CVvbgCCGbi-eR^@dO;A$q&)r`^ELZGvS09OmsTMkmz zZh1TzU;K-|FPBrN!)r3(3JAceHe%NWpoj`W3Nqo)8n8LQ>xF<5GXoPSS*MZE272b`<<;;bZ&d6EXeL40WE4B7M+n6t$`M; z5sTJ9c~B&IQ7Jf8{vAaD_7-NW+Q8)IZ9H)HJ$SXB|B~~c9s8Hr@ev6*37(ZOPE;T%K)(}HGDtrG!|#h!ma52JXq~S@&2QMmUbskPnGx%EF!zJ+2&(mEN9K)4$5m3%~$OmRO( zWK}7$$I|UOp}*@0xwZj{%OP|y!q~M4(xNU}8j)S^Ag@~q?zX^}w|~p!hBr3=pizm` zeQ{o3#F;MiOVJ}NB>V|UrT?E09Y2VQk^(^BjYUPR z+w-zE@xncAS)}QsPU5yFK0f{i_7f)v!sCbk!ye@m_&<*pE8>=}B^?hFDaXTC++Tw4 z_w;8AB1Cqhp4DH1?`UcocGa)DV|CR}(L-I99_P(C3Fr)h#*L z-9qP2L#FiLOgelX{?5g>O{CbduSaqaz$x`liuf?9WPvx`FLc=E@+tR`k^ zLN0UhhCPX4gHuQz5zg7MZdUzLM^i&L5!gq-YHcGGT__mMQqG}>M|qGSs%b!v$0M<7 zT^WY4r$BknSqC$UR$_GfBIZ4!k_V+H*g+;w2=_BL;unTj@8-AU*&GN;W>9@Trxz^l zm963zE07+)7Wv99YKNEuklwxBjA-^Wfp4DNXVW^Tk%-FM*IlES%^ZLGbD~C+v%Zc-7H1;72QI?sIzk^HH zeM8tGxznuJG~PVrDkRrrBEp(cjM>yHaxki}l(XOcnv}i1ppyFV5Wc?oQnt;Q;P(SB zh%or{LXzwU$@(%Kb9@tL8Wu8g?KVnh+A-+C+C}2dhrc9p%LVx)n;fVFGwXy#Y8@6v zCb+sK2rW){{wFh+oRLJWqkwQ71SlP-MR0Y)Gyi+Lp2c&91IL#j)K)hjI^Edf`d>C7 zKCO|FCsnZdw>T!xZ6oW-t*WCY2m_=l&Q!+mrkvYln-}FAPE|}}q_>2DtZm*EES`FT z)B~(M^3Ec-?|-0DB46<&S6y-`@9r4OQ%?@zc;9vfN0k-#TOabt z;J@Q`O(Q0}f%w590Yg(!4{zkrM<39(;$x16b(5hxthC>#|G za-YFwm4CmGgoh2P$Cw%N1g7epUE0#sy0}lq|Gj80+XuPJZy?tvTe%5EgQTzJo4`1y@**>dI0$OkP9 z(Uv2qQv6n5apr1>9(M+nW4BVfHHXsW>q$N7d}#9HtFa201JlWT;7WEp_Fkvmk|452 zj%PTg`f9+W4xhlo3s&&(^)mnv2jHE30{^#h zf*?GBKP|-dTM;~6JA{rWG5AOENgqvCT1X_QHJw}Z_uT#{{X}#3im-j3$I*^1Z00#f(*Bip5FN>hQwi!_LKoIt9i-e*Vg}qgRjtETxzMO^rK?!ID zeFtx*`w&4mY*@z#$~J9Tk@!l_IFyllWLcsh-~Vc=o3XSwFa~t~-Q35BAnfb) z`8~+--u#w55rnzlFK;DbPI>$eVnz*RFU3PB@cG*M7s(^KN75h?9xQ zYrtG*r=rlxtnrzw+_W8oHHnM)oRHcByc!yhx1EC_EZBs-rT4^IcQB|lm`!>bn|vPb z4XVzPN&un3My$=e7s0(6k3FLfL#jLZ#IPc0RHmzzPdq>ap4V7Lu zDJ8oJ4bf3sXGcQh2F_$RTgXFA1IZkAitBVL0uB~4Z`&svFemX_%A5|z5@d;RYZX<- zDBc-$E!(3;5z|u6(xg)`x>`6V_Xlh)1AmWsk*AgSFr{Q2U#HJ!Thv%4m2M!=+1zEF z!iKaVn5L&9F8B%Iq4!`%9`f~PK|-WYCe-DD*<;&m`C%<2MIoQljz|m+K)(ADgIW8RWtvgV9lr%h8L1kHEDdztLo zz$q-{GCrZ1K!&l08O5ux3o6{AnqXHG%_;-3+kplzX$||?Y^|iq(7sTuKz>jvm4+y; z-ti6^+=xIxQ!yz`#dv`RO%Nrf1U^q6NkVfGi^?_uGD@Hh$d8ZbZdoR;&Q6>zjB{fq zp;HWOWcy9Yr}IS4R{)%|bPW%rUkLc_XH$}bl+%r9^#WpxouUn8s2iIIbTt#;Y{uwn z!Q^bg=xRodjLvRFXSWha$CADNAOSXo7OP5+O{K@K)MHcYu_^U9v(b!O`rF&tOkNI;BAo49x0CW@K?T=WSWkO6cv6NaVw57jhsXu}?>euPx&*tG{4q zxsTAR4hZJ$nU}LVeG&))r|2sA^ova93@!v?*WUttvxU<>{fY5Q*CR?YF13m!m!8Fv zOV7lu?KzW6rSmfK(rmWBKaA|Zjv#yd2rhf&pX4`|@nh{MZirscsn4n%;jG#b&MOa= zk`a~1`LdR6t|k&=s!0e*q`0o@YrQUC!EMS&c3FG`q0_sQr^khG=O%r(c2?N67!LUo zwbczIe7BbUSD%ioK6dUS(d9wiWW_c>ig;sZmGS=LqnUI@aqHZp-l@Rh5zs389;_ru zwcJc9-%~;*UCS{3LN%j>0K9U~frD7BDCQEc zwULnEU{6jMiYhO|`qc zO!{II`HdX|bw#1$+9*J+Kq&}VJziX1-wqk5vAg+rUnL(?$!)r!tbXu%-nX==^%O`s zTw$Gs+N$9$?Gs$L@h)N?naMuBq#>(-$nqsbk3XC8%?752Uqy^=D39!!f{a8#%N7o9 zh$Ck1NtFJyicNPv!%6>r8taN+4vQNon-AjEg(9o;*tY2zdgJA+yY@b^Ui^&k3BxfN z(!r0cGtCNOr%h%Doe4sK3L%(^!x6YgiEa12P28CivFf6zKlKjOFQ@U}S7j8>mZE>= zOPD76*s*pY6K0-!yiGfSKN(ICgeUN)g<|E#ejnq{konga8{4<*Ex{Mvg$mOj z$cNi6h&^Nw_K4a%NW21CR^vZ*9c0sdWcLK9S=GO>{Gi9*!Qg*^f3$>2Z~C=wb6kiP zm46wJz93PXPOvJ0dbfYcAB||_hS*PtRx3G@AUv9L3=!Nss(y~^oEIS-iXe9TlyEv_ z5N_Gxt93APblbytw8Y@?_&w5w9ttgN##gNA@Xw>eSE$JbMF(maHnO9K$18#KJHJ_e z55l!CWA+qlzWIZ101#D5Vnz)G;N<&mVAK`!`2NO+a5i@&NY=mbKIgpk=+T&c%pm-M zG6?lCEvSqx^s&vjTQo$Tbny2!sY}Q*l>eGS#GHdv>4zhk{_ZiRd@E%EF;oV0%vjj8 zyqGthxSZ?n{g4)m!*Acv5F<0j58=m;{7b})sM>|r<6v{lgf7R|yR1Z7D>)F9LT#0s z^~)QWb!G@n^}Qo^Jqi`Oc9gPq(gE&Vtz%JhByN zICU(jlxS6;4^UDQ6UmaQImBv8u`Bf~OF9J^fe95G8B&wW`>M}$Z z#8t;U)weVUo5%@CM!-iBo{h-aVZ%`BgRm+M z*i}9f&?mjwwSy_Y94H6;5EDwbjM6RPQ4O4fN)`m1Dh(s5_Hc3Sx1?3%x7HIZC5ETC zmnK61HnWz*aXC2514GoFx$RfNn(MIY3=AvDA=KIkK)v3?XH(8)-QaP3`iKYGEnKka zCuZzfg930URD3<@Y`&UsHcoZh8bS0bNs4WzJ}U`hQ$30y9qUz#9xs!YtYP-&3(;GB zPVB8SCh+ymm(mc?@g7h*U3gVW$uGNQ`34;x){P4L~i*xVn%U z4~a7Jtx(BC*~~=QOkGVLFaAZzQ{P9krO-bqG%3YHgSVbKC%C)-&19H&@Z!Ww?%r&` z?Pua40FgQuEr((`9N|Ia-f&juh64;+Y#6rK?&VMWiojqeC3z;|2OoZJ1uAVS5(E1# zPYn>}+R88L@!TZuWh0&INdgSQh%EPB*0H~^dKxgP!{MsaVEtY=X++PRy2HgY;lh*Q zU^V*J#&Y*_2Y|yhDU;Y^2;$B+0(kL-gXp{CnY|Lsyc2d6z%^&UTYm?Ig8F)R=;2t( z%5cAWKKJ257&&>T#`Q4giA=O0tnvnUM4Zg5nXt&pju|KAV8? zgTq*|!}nc0`>Evw8PzmdU4DZHhs2mz_`oS7Dz?J#x1r`C1ec#cWvLOAeUo(-6e7xG z6YhOSr!Fxxq?ncSZ{g-;|6ob+1fT}E2Y3#USykGI`Sq2IiwxxY;juKky!>-@E?z(9 z+5X(it~&{nuH$!RQ+Wf=EzM?KlY_%mkarm?*;eDfCbA1BPdWa<%Z`V6dFy{#rNbA$ z_!6rIy~NInLK?00wDe?QPMg~b9dy#%-33K9N;Baby6eB>$ay!k2sUb^>U?t1R44*S(=^$BwD z1bT%NH3*LbPShYg2B@e;ece4r?P@-rHU9>(2H(-Z5EqU%)P&n=r#Y|8_tkHQv#tW2 z@%VYmk88cfUe+JZQz9b{CrYUQhaS(E&>7q zaJgKp&w7l+)#5Ml53ZJ&^IIc35`NYkXnyM zp`^xP!RG1c5OFz0vbOr}bCt@AR_8&{%Se7pvkK1u)v&Zz8mQS6L)@8p2#RAf71p?& z3@h2kw&cuy9Y>a+^dVM>|hh&?}%3jI-Tg$o6{X8Fr zDR_PGC}vF>$2n6@V%u+3RF?U7qWCvN=JAye(xeIG?NNWFLDw;=InbnK>gh@B$}8c! zCELl(uR@k(;$wq3@3b*Y9G=X|p9-*9T_DShE8k3FQ!$HEPNPK=h{0vy;Z+au?U3`? z5I4Eg@HcFGgYjjX`F6;8EFA1}R$p~{EJb;CRxavVveX}jI1X~%fvndhI?IrOqXzW-ki|%|#`-I4|cr!Zmh=otK30(XU{4 zBGfh^hnkQ+eF&O82vv2+XHNt=XMlPgUX*vg2AL_K)goVXvM-}#Z5HAcPat@_NEgpU zzVpHkFR70f)Kie_=9hh^aengG*fd6lRcBFbN}xp(fPjor@-U)mH;GL}Y>b)6q|)`6 zYZ~}BPw*Ol!>v)G_BgSs^n5<-65OH+Z@UbB0g18YTZwNjM(?sy78t|2xG9(&4TRZh zXjTVu(3A*3QksrizJHnO=4K2^9beD9gxGBx7*e;dHNv$~Wn^zy2Kz$OaVd_zw%w6% zd0pJO`(0!pP^0Ckp;sN%aqigh7Va+QUup!dN|?;Z;NE%QM3sQqtU~}SEl!+{j=@az zVLGh+4T{58PcXeKk0E~Q30hSe_QVZgcid2NVpFlJv^2MvShnUY#*JD-Y?S{XEPqf+ z5(cM@CY=$T+d+EienuS3W_U>sx^~|UheE|Kqh|5r=s6t-y`G@(dO2m!D$d`$5Tnya z=&c(uo=@gpM4h=asjCrTqEUyp&dj#$F{F$vr6nT|L`dDakF(zUhR70Mc5%s|c)qyp zFXUyWcRJ39b=$f0`F9Z|nd;aGzPR-YO45@2+PLoJF$|xdLtwNOWSLk=O}gPEwr)1@ z>k1ui52%#BESejxYNjr1JB7}20D>hYC(EIz5%7p2En+yE3IkY?XJAWt5N18h8|~uE z@zpG?TZ4>DYM@MlFDVIw(u`U;hLzefgOy;d;qSI`}>Z$c>_n!$L zJ~^6GF3BT0sqI^*6lKPTTR95#-9r$tDbvXo16Uvz^V?T?obz)CM$0Y2U@nyu1bU8N ztt0_~aBVW8Fo5!LS3d(^tl-}01w6es652^!N)o*GdJwBuhj89`mCT-PAvnl?0?q!H zw(-O>sZ1VP%)}Q*v2ml3g$u*Ep1YRjk5BB_e8)q`9P9CZlUOv|c~P>jJsO z3j2$EegR`R!idqJ-+`d`2IK-jfh=EuTr(GTF7x#Pu6kuPAFt|Jk?1f6M+frrgQt-) zV=jW;4lSP{*mi;JMAnUf;QNs`{|LRTjoif?sJGZ!nMQVf5=~A6uWXw^ zh5bz0$mY(N7#+lq*PnyaY2|}e+gV&xOF@&33sNI^>ZGnkxW&?X%s=eJCCQA72xOWR z!wWV0dh~v%5K$oD@T(pqU{nNgPV&7x@X%k#`q!OUirQqC6^Gb#ge1xEKu% zLa4%vf^n=S5Zo3U0ei&ko&Xv}Gyz~+j6~S}Q{qZvsEf#q6QMm6u z2nzaLOlYe^2zUMG8wL#>+e42(4^Gq|JbpMq5FQ7dAP5H@imw);eE;j;+l+2;yosXr z*#5x8qI@0*p#;D?BZz@R|qV)mm{Ya`6h42(lWL zl!?j}fug zVrM=D&fPS5>qydMFj$*OoH`VfqHCEU5b($bHs>E?O4IdpZhAyf87gnfpP72d<*P``yM%mTmR9qW>%9^B&)uANvnaz z?{R(lGv=~#4&|A2M)|HBe!lfF0Oq~<2oXaE`EB>%yqj<|v_+v_`qj%ABl`Xx>?`85 zA*4D}D9Mw_$#&4vA~7^WOLCeLS4aa}ZFxw@ND@?)=`jVl&>Qo*OjJub zlS?ydk13jioeBBkZWW8Qhzmg+Hg|wDnjgaEJ-;Hz1v2eK9s0f6O(47;FZDd z^nwf(m0C7`H{)*&)n({yEC(>(MGSJTmrH0E{jRnN>R&S+xs;*Z1vqq98YP2w7pn zY0{dzy|%r@=Lc7_rp^~|@egA($%D>pmAUN=b~YT~e?`9nkZg!V7G%mDbvTbGk1#nQ zm4~NaM8Uo~Bv0r2O=nOsI5UVwM+?Ojm3U;C=+Iz7jX}69a3H%L$tz7pU<$tyGhgrFf_iH67gWS zb?zb>Yni|42Lu@gRUSaq&XwDwHLxRbINOp&vL}8BPF3ID`y&o!bH$pkh-vU;NS7tX z@Z+@?P?(Y0+D2`6aLwayuY$Ka6m6)n&*S#1^VF`D9r;k_X|Enl#x!3~gB!7BLE&E*X`^ ziBqg$mvt8nE*mD5%(x@s(DX_JdSwElU`Di9NqXuL3QtL=a$;JauK6DoZl}n5kBw#i zZMz8yZ=3564YCoe?Qe}h5mAif{s+cz>thw@m2S-5gLvfz1gjI-(0{_dw+K{*V^Em~ z?tssI4)-kJ58A*0&#q4Aj!z3MNr)) z(|p*Eu&=a{8{b^dzS1U!#hJNlUIuf=#$$K7*qm3#zdqZ+x}1*XPX@YBCeXYiPb zU=BkN708wbDBc0m(MidB8|=7t4P20bEc@g~KiC_@dwajd=4t!w6au_;&Ba`uIT>N| zF600sWDY?xsd4RHirmn1xtHMAmgACS#zqA4)10v^{LsrvDp*Gag>)p66@rLY?)?1g z8Ab$?xiYqhIrA?^9~+CixrqZGe2Jylzv6~oD==4^jdk*AG|aq!vb9?|_=Zy8<7yP3jGUoDw7jf!hFufJbpMq5FQ7dAP5H@syiM* z%qu#kWBe{;&j5^@Fn0#&Gq1ti!a6eV5 z8D&hsaU1V=^=pMjjWEpT?2wga+~MIgD<4J@N;)+a2*T`o1yyA(eyeI9BlMeOQ5z5< zhYYw~y+y5C%i`uA__F?4WIu6;WA$^mG5jGSRQ@IP4rA4-U7S4Q?+hM1nB3gl*6r`U z`!3gBdo5F^58=y2cl6q>-y1;5-+z}}Ifdt6zXE8pwZWla zZ^QAC3Hh^R3?A8kSw+_eSaRPB6tCL`!1b#?>9Sqc*NfTk%15n#C(oF`DUaNC^oI2U znVJ+1EDPlM7t4=KQU_qnC?gL(5z24QEqMGa$a{<8`~YgJ`sM()l?C8z(Bf*)A*#IC zs|}ck)(|+TdxGYV0!NLWs_o7Zofg6(xYu;y{LM~>!`5m#_Q_E$_O+eoObmL(~3_#)%tUJ)rl_Ili+ ziaR#H#4F=&qgmV0fgayjM58vS)ApbcCBw!BVh&Og5}_tH%fg1`joprw+)%(RTV5r| z-hhZqohgd-7u>;Z?^l!IEvJkC_K}F57M^4`pBk>`rZScN)IZpizy{*S(!Mq!!d5#^b#u) zXJVN;gHVN&v!A(|c$%m|&jhZ;fiI$Z(u5eUy(*LCi*j%~dv*k#T(q2X_x}LES3}Nc zclgK-`+vzhjnh*XqmVs^kQnHeigby zvf~QbLq=^jqsq4t;b?P&mFpvD(wJyb2hgkuz@iTH{aB6m6b^3U#?M`NWy_jh~t-$3`vPT%k z>d{xSHEA}=hDJ=;*=#vE6MeEBYmFYsBVvkeLAR=z;j4Dy&}xZy9Hfc}P8zh9$73F1 z*hBe%9b zgzr0QRC&n^?O)L3VHD(<_+UW>|9)x%%0s`g_M5E;E-&^=x|YlyNQfv1*CrwK@g3JC z>`r*#9qxZ=G^gFF<7drzRM)7u@-LOln9>zCK;FCmt zESSbgDeLh|c8sCn=)$KWKJawgghnIMT{q&3)8O6wQ>SH`UR{C=oIN0lk53-K=Jh`Q zxnVb3sKtN49)2=WT*D9+Qp8%SXvB>S+|3vU3l=_?Z{kcoKqqu>eh_7eu@sO_6{SS5 zM(DZSLM8hcK`~h*;t~Sa$|O4or-dS-g5Izi*~Z|bd(_N=Mh9i$r<7cpabAT9pd0{SUb^pfbK2kVF5FS1pBM1)z zjuC|Y3!%IU_22I6GTo6P_znj;>RZJ4VT_;mFwR%QJI$|sxR~GWxSDD6AwKp0>L`I` zLJXqe(CvbcIH4F8f{>a3f(lP;3Qel(IXHgaflx3AOT#}ATk?8Q`{6;mO`9PcAw1=X zw8iGv@ICv^oy_Lv1M|Q94D#c0~l79g{K=M>aWrZz%qd#J`uNFI8)Dj(y{D;=4|Bdn+PhuVtF$~k_U{L!l1XYV zVO+R{b#`=L4wQ2uPvu5Al0RqvX)VCuLSJ!8;pkxIAH>S>GcxZBvl7r*7s;w-l zTo1tD@K{Q$bqvr%GuRMKlgG(#Oo#F<06Ir&sVm4SOWd0;5(inowk+HpKHjY`Q4 zXPw5jm9d@fA=(1yU+A+IYFghKWTsDj@JIS&QwcU=Yr3Ho5I;Z#rk({`6G82cg zBWVatdULyaBDHWP$=czyUJXz>LM{w5`ST_9mp3Zxp9tjQclb&-P0l|b5U1XmgLmDDJpXpbhp9r%@WCs!EOsy1f8gf0uxVWO zN;1B^TL7cl!_DLJ864h1h{j8Z){6kR6_BT`B|5wV?=4BfR8UDv#*xyLJ9Kc_m3;Kn zST4JFD|%Dlpya4<2c~YkTf2jt-JyK{O$K*8xM}}q+OIa^8yJJ{pqSkK1;Oq{wI&b2 z?ZrKR6d~$p^vclwtKi!e-0{U}yzoU6f+(5E12Z+;oeY1&_Ia&2q7#6tvwO(<>31pdDc{X*Pn%F#expY z2!CTKZof>lUPb;jGl_U(DXs%lAVdVF5Y08h&<@K0Xp+PDo+}v58dAx|EOadG-?otf z4H#JvkmZ0PjM&4t>pIzuQ)u-(Hp>pw_^1=wzmx0aC~_Ik2y)p*Dy5_|h;0mKBPyZe z!{9SNy`S`p=XSeIk3SBVUJ9wfm9mfFC_+wNF@pxA0C3?=k2CAk%a3e>`U%Gf!o!EY z26Z}yV>s*(m#^>i`+bY1qnY;VD?!vz-cgrdhx6gi$w2@l0Z{?b3B4PozXbWJ5_?S! zcDH}M9fO|c>+rhk0|o@ioJNcCaXKRh0sNFAs}C(f(_8G@aJAcXsXF&KJCuY_mDk=S zIS8=Xv4pcjPeUnoOb}L71SDGG;@V2l<>v>Cr%5S?Mgp?KaqS}p58G=zs;2D&vsV?c zxUjBWonGnC%^HWQpNF%~uJ+#U=D_Lbh{0X&&`eR`wA2KMBCp+v-|t7!2Z_thkgSU0 z%};{3tMA1!)hJH(Y$UtDi_l<#UQR&@ua8?kdYx(O*RXEDcpkXuflkxQ64b0tBz8_A zN`3F-m5vl#H3kyq_52`*U)k}Id@)gGwKN@lCkGjNf@LXl7*?Cb#EK167-M;A`UA9R z+8ZzcMpkcQd-SNF-?@}pQmn=J70NaQq2t_n>`pk7d0Gb^rJCX@fwVz-L{T7XYcuPY zTT%HvOf6l_RlB~RMQz6HZsFpcpYhd@^Es|)DV3(U{oZ@W6)t64%qZ5!Pb9@!M0j>4 zkI_IL zWI@EgH}KHxoFqt{F*+GZP6p~i7H0LY~#JRUO)3<+T0P{l>jMPec3&BBYBNi$!HL|8<|ZE4@hO8$@!XJl3JRqH zhs%v#@)7Fy5i0qx_`QVqeT4XZg!;W$Bp(rPJkJIM%bYWyG+ zIt@FEB%0bgDgrPeQo!zm&+=OPZdO663E~X`W{tqEMj4mQMS58d=_Og5Uj85ougn52 z=1CqzE4pz;L{b%+fhJy$U#($adMRbQQ<)W;N16 zoT9+^#Kls0<4x30o5nZ+1X(~v#z5d*>J(a^b5pE+|KB^Oj0Qj#=B13l`#LPu%9L9+ zQ?o0Ayg!l=0G-8!QtM;ef}u1On;CLOE>6FP2y^F)fu?47%k{LFViYc>r?D%|!IU;aj#}*#M=q(7Oe6xb$GpEx$=+KZ_ zM+#blkCQIV;fI$pxc-zMXd0J6r9*{D-N6mtLkt|!ge-%@p+vuT&EYz40)owj;kjRM zT`&=UQaASKJ%FOL0m~KdB3hj^y>S_~D`)pFL3s8|j#Dc6=G!RFJ-3$8qgz$mW>_r0G*4s879&Fj+j;fXc>I0=pHD!R zTNl%UAR|dBV5sG~z=dtGD-G-wD3Q z?D3jEE(*D^x!>$22iqu&IyFlkI~k|j!|6}|$)7tbk>&P#iXA0Qq~7o~gW}9Ayl*Z8 zvZMP#0+;u_S1?A^Nv%h#aP>5xu44&RPH zgO+h(ayUN})KTs5;`jSGP$6E6g2_a4JPBR4B~)nOGWlipFp@Q#NSz$RSXPll9>olx zo@jK~8O|oOIH({Q6ISdP$zmMgat)bG4v>YizzKXqyinX_y#NELKr4G$&j1hvnuU&4 zQxtMo!qd%tLUlao~k`Y7^S(4bi@~8hZ1mQ6pJ{%(mkKwNcSw>vGuG1uk!#;ed2)?e$ z?W#_t*Fuo+C2b&vg3VJvWE?1a`EEYy$w5F2>3!UXqpg1(w#N`4&t#PvzYshI!-3HH z=ONlVjyrWI$+oV_?(jQRa5mv^5JE1wd(tA43@4)$JBg(sLq$bk+~W_5^j%O8@ODT^ z>s~y7?&467PsX5V1VKP{%U}og9Z22#yS}ysS(e*Km>f!i@JPt5_II6KnVa_sJ|s*S z*=1Qn&pCMYUH;@-%=y>NeQ92Ya0o8q<3icd-Wdjf5=Aus)dh5Dwc6efn$qjz zrxWM%;1!4N29K6_q|)GWl7rcZ9co?rg)S} zfu;s8j&IjskX^)GdM19K%#vT~C@XaBZM#f^E}XB1p2wj2JrsqeFuZ0bC*}V_wK0Y< zRa;21mQWIs$ho_};@sU|q4x%e0!w89-*Y7!nZWbh&Jt2NlM6ZcjaygeAU?EpyR2_|<70~_-=GxvLrFI>#VxCv~C zn@ChzEoqH;jF5Klx%Xl=R!zX@urW9y8-uzn*-~i?j7ga}aC6OI6-}-XRus=7w<&`) zEz{T@HG)jx8aKP6Ezj1EbN$vX8q_NPXX&=8*K*Hd$w-SafE1`Rd!w`2fW=}Ipz~X7f z;%NrT_vbwq_!6jh*m?2o=Xt{tOEqR%H0A)2s4>!_Hsexg_rDmbolWd$Y%ljN1HUx3 zPL>I3BNkC)hpX-VvZtk-JGZ~XlRH&BEBjFPK=8*0G;2**^(I<$CYtpoT69LNIx}O_ zO_V6itaKV^&|C2DlkqHpb5h~VWRagrC29^@{+ypK5~_j~Rc+r?&0g5n041f3j40mC zxY8^xtSmrzfSg;S)<{Zf4%T!n($EpeS_!Xx4|Q%BVN&9%O=Q}rLZ1I@Hc8PaUj>yYky>~;q!Lz)oQY^28SLOl-ZoJvy7ZaR5&_6R1EhZd`PKS2l}>(%%N z#t?GD$27fjB~pC*`Kh8IE8_rDL|+;eNu zXk`BR&r)nQ1rI!s%F8cz^B_}3Jjsg#F=VfzhO4fuVe@7q-+dQ}$0IUol#MZCTKM?m z7;d?xjQIG#o=R>kgO+NV!-lZXxP@xrBbux2Z24Hm)#BfO_|1otJ*t&NDiXopp2+I$ z{LPW<1h0zUjRk5MUMoHjm@e}1@;4S9is zs(UJ$8FI^a+wB=hJy3xZtM%Y3#z!GAdX`1;_!yFd7}R zh-0?Uo-`B%i6LY%giIt^U>lQJ&U{kHWf0qNVB!PrM30Shvak_~jKF06po}!;@;!+{ z0bW_fGEQTqJdY?Un7}gBc+d#J$@OTOh^G-99#+YN@d?4r^<{Dj8SLyf@pvHI_06oi z?KNgEc(7aPwR(}~ug&JAhckJz<{GZJJ#2rB(H`NfvtZdWIQ?|^F($Uy!?F4Ieyr2h- z{ZEDrZD!!;*4`X(xy*jfr^*OLna~=4@Mynwy~3Cw2%?CjOQ0qEH{6OJJ4~vO2NUXi z2t{rC)0Ia$o?WMi8-bu~)lWa1ZLRa^c(nX)6nS=Zm}aPU8vlrSE@%wG1KWDRg^%&& zm&?W zj_15j{@s5K-V3E5GMC9*d|@GOcgMzq>#mMw@OgFYaaMGgrYlsG7^p1m*zhIG;H)yT z`;|$Id3@?b%U>nlzw_zkC0#}><2cKL>p(ojf4 zXbc-?U(cHhOBgTx%9$8xAPyf&jM!Mm7`8HsJ9Y1JlIaH;^cEHf7gJ@5VL(iNr|s2y zY)q=yz|4{rgt-C+OdlfOho8>Qm=Sow0`K4K+QC%XVkvD-B1~7$(8%4)Xj)EfT@;>3 z6;&ZInB6T5lXs!i`6x3d;#O#wR0uu{6EGgnj+?-|#97_CE?q&CC5#>$A?_wZ zJXS(nt>mG>(LkKv$-ZMiLx3H?!9Lk;6xjB9AC9w?(osq(M~EpirWZi($mzDQqwDkUJzENfCVRI4@Pi;g|WT zr2X8e1m-7;MC+i)CbP6c-tV<{U9IExV_yGd$nD}h=b8qKD( zQEW*aMSgTjr||^$!K4cOIDF7_z?my0FiebLL*_u@47Jz`ot$W2#D%4A0Z^-s;D3|v zrDEg+nxm`9a|9Z#S3tBDqMBmau|1CT6f0l-G=S4j%x7121d1JnJe~Lm!wc7-*&E++ z?Mc)5?)nR{Mp%fGG|ZI4SSr+0)5#&QuAp|h5G4thq1B=~a`hJU%{DS;jK^gRd@lI} zwtg~<^zl~C8#RJ!?+nG-fnuUT5AVKJ%%6_ct!0`9k()b|mw#)kyrJ_s7+1HMRngPA z`&0+>EE~yFSqX{he$2MRjiE1ngEz!L?o}uEd)Z5#j$(pt3+CGcYwi@2n*?M3#AdIr z)$-n3!@2vRO~DiFU6Tp*c4UJZbp0P6N+oKE&~zRnx2L%0o;03)wpG4)?OHRdR)uia zUF{D+^ag9!n)%nmsVJ2)3WdxMi*_IgAp5;gu@hvO#>f%;u6>zpWh;3mIq+bd@rIVE zHwF%p4wcSke)VzSX)CpPIQB(d)ggPl$UAcpj-c7qYV&aBvu$G*{`aOSTr+o2@C>pH zz`F$Sh=CRWlle zfKjbPBMAIfQctBlFjtR^FtX;NNo3XAxa{Yh6f`;Uc5oC^0OB!l2?H4!^E09EeA1&Ag0HXnG!tVG^{W4~WH34{ z!q8UF0Dt&!?D}7DiC+>pKOTTU1P0$VXq-b)G-Pw2pHgo(O^1zy5=4Z=F@37DZ*3JQ z_h|T{;T2Z2e1&v?gsVvm_T z&6Eu4zhDv;m7a;xDBgUjfu+lvI3TnYkr68H`e!Vrk&SG1^)3EsMX8?35>toYm;I7~ zCd`R0wgqF-p_M~A6bP|f`Rvsjc!F|?6a|AUlirv|e%OF6lg`Wgne%u34-uK?rrgEOs1ZTa zsr(*{9vcq5kqiEwh9t=})Oz{#>l#9BbzHIiBVL_wYqw(kMc8XObI(HF9dj*V&U#*4 z-1Y?OAIwEY-~|4_BPbDNKTcFUz#Lv>GUrCuaoST?k+Z#m(xRRj#V%aFfNz`5rXezn zvY15dP6H~XhY9+P{5$h5%u)*A87eR~C;F1w|Thn5=!ORsv893g_~Kfl4asx3H04Ohl}NWL;7kVpVY5{Wd`k`a@K zQuH&ad>wj^ofRpwh-s-L(ox5(lI4g^5|{A_SMU+JLI!rF0XYr41~t*f8YEeus3`@T z$G`+}Bjvt${DP9Pm77`OJf7EmHecYvbwd@8j?V zjE_b^!EYhyB>8NZ-B!%rRwLb`z$1JAz6y9B7yxuN`{@yI(Eiy~i%J$;_yD>DH9xFc zOMZD6MMIbNbm^B7UQn~|m2ggII_8h#)rHk~c0BiWKVib_jVhvoMOvP?olC1VSBFu8aK zx=I_-1U&F0VDZS=d@$=Gnv9(rDn~|2Sel|ilxQ55&BT?JO#b43JYI7bH}WRtfnL76 z<9rH-wVlsS@Q0&A!6HTHG1mY@pN|o1Gub|MEV3eSN1N*!x#gbc$s0M4|J`=Q{rsBK}Uo4QPJdf&1j(@6Lk}u1Q2Kb{?XkC%EsvG@gFCZG6}3t{cRE|GTHp z<95~6FHu-n#@sn$xZ;ZAS-*Zbn>Lx)lcVR2*K>%~I(3rIo?Ae79eMblKx4Gh=8FkEX3< zh)?{1JRk!3&e_NzTHM>~kZt`#rXPrB|F?n1YXYRN^`_aV;?p607XN(U2|muxp*Kev z{y8q0N2X@%|9|%;nH}q3m)yV#D#*u56CR|4-nmKyhG5}ph7cn3UX7|d$diXsNfI73 zR1?pcd_+3se94X6$lHu()BfxEJEJHU0*Cn4%5xEsm?ZR#VAI7|I4kQzG@(84IF@Ca zuD^%7e?Ok5o>dTWLHA=B^5c&I??G9H$&+F2+MYN17`lYV<3Xbd+`FTuoWuKSt35z;L5FRERBM1)zjuC|Y1W7`D-c1Oup2rF}oMg|D zCe92Ak&L+RYINFYM6^h<6Njsc+=UBi$jk-6Xoh*03B4m+`l+3VG@nvLJ1wq_ykW2F ziy49tlL!hM2wp%5k^#B83d(o(t(|?yM^qTXL0&|%CKkWhf+X5OkPsvdqF05YxeN{n z+T>+{m&Z@?#eF^EPi3Nw)^8EBo4I;%4+{SpcbD_ON_ z71O2#44GTDY+>BEaYRO$*;d#)&#ohJE%)WU;fi-z^z|k<37B#~f|r3t_<|4qkut)1Wk>Hw~vw2*HLL88G4{Lbl>)*^a|!?;x*0xGn{+I*mHN1~*F7 z_=!-s(fCTJv**IzO=fS~YV*Rn+O`=7ni7at4B)97uVTmQ-w*_mPqtLzP*kwRx_iHo zyu&hU8~FA5f6=g4+9*Yc(*#-K&7W^T=WD$O?dbUjFYr1y zqr{ISi0qkmIx8=}53NSQ)Hm34}PUoaFnJk}=7gvFCe! z&Nu~|#zc~}m`yvz^O@t~{luLuG>Yso$5S+XI?50;3PEOfW(6(Qwrg^~O<-r~2pV-^ z435Yq+ECTuaD}=WDHRfEs<)u8wUgXjLY!QQ6CJr^@CG;Y;IPM#RZvk8PnK^Olakh< zH0SdC+Rt%$_jz?G(I`|rHvZ7aDDUr^-_OfgpHS@xNVTa%B@c|f37tZXLiS;HHxs9} zaptD4@X0bdL7*@$m0FjE8d1yK+V*l!3PHp#w?3}|fjD;uV~8b{zl}JbltC7ZVM@G` zXKx$SSZh2KW;Y`3wfHth>9B?eCkJN53Z$6?KFI0ZBUS{)MZ#dUo0z;kn6t9bXYWDh zZN1)3g_<47L)el!ip=EUH0uM;rCJo3Gf0a@u;TW%AP52~g%MdWvARg6!4Z5Pr&B99 zK3#|CZz6P07KyvENZgr)sjjX~x;?S!tQ|0(Rf8r{7SUZfW|?858;Gf{);Dg*&^W;e=+Mkd^PA+J7h8$Pv){4WxaBNb%K z4ammDX)RQ{&^4}v7&*Z1$iIeW8;AKo3xh5y*r=JOHZ4nov@lTQ@UQllKk z-M1uj#a)?b6GMnqsEPI0qVgBfk&wJt*+kT^2k{PzM-I{9nKl61ee>I;)BLmz->~>j zNyL57Doli`VtTcI3WodcOXF{Ut7sE*@b}*>)YPcC^wR21a&`<^hNR?+DJyI1@pt7F zC-cDvcT-=lTqrH{AhZwF!Gop_%-P9(8QM1AR1w!)=?Y@>x zr-9-Oq@92C>bm#&K1qs2hz#pX3EjpKBNPqc2;nKcs`F^_7?Wigo&IFpZZCy}g`}jU z0PywKUvu7h=P`a_I*b0i>oB#Y|HkF<2fpFWmlne$VBP^=ybF}UdtcnZywgVSuXA&) z9;ff{99Iw4&oJX)cB%&RsMSE@LHk>?2+xGrNOy0?>L_gUomx~A5;BvgY9d(N(w^X) zVf6D@bUlqt%kas)KUv%2h4p(0LY1gsPS^}SUK+`wOcmnS1MoNHfzkk1*cg>4@vn0l zS!Z8?)zdy!rXWcS+M0#h}Dg;mZ7|&d7KYE(6kHhF=VjBqfa-JX;?v>r~jnMrs@Zhxy;IIA8l(V0vrL%S{z7+jl$N1>r0ES;e>JGp1=zmX8A z(?=5JsNqUJ;0YcifpXR)OyTWuH}21CaW*ibW(O;h0}_@oEtTA~`E}}b;Rv!!xhbB7 zgU@O=ei8Os##e6Qr2JpWiX6(jW3Jmzh>ok+#Kk#ZvGD2dc=*9TsAy;#AJc5saR0s2 zFscPMtZX|Ebp(~)!#%5?VL)RZ4O$B}m7d?yPiALS$FWKUBu1BR<&xbCc#MCcOLTBm z-TQ2h9nDYa^Qp>n)gMhvTFbaM`&J2qn8dl;q}H47QUPlj<^e0mD*ut;`qufiv^ z^;mQHG-THerpX$L(P%>uWJZMSU{3uKvLl92sflGx=~N_H!7$5CqSV!hK0i_QwM?mA zgVy6EjRI7-$q5_8rr2>5>ylYhJq@Q%hakvQI_k)6D#DKkc!Q_LUxY%@yF(~F!N)n@ zv#T+1;7%=^F10|?Y*A03N4x(Ap0;yfsO;q$DVw@QUof${3CjTi)!hPA4Ijqt(X;qCWH=3`p09lkE<4w6|AM*8 zmZ0!U_>>BkoHvi3FFym9L67b2sf;_Jls##!l8IVLBnchEWfK}i*7&Ws@KdXFA&DUQ z1%9}7E*g`U>33|z)vQKZCt+D!%eKTZq+MN(CC!Q;z&!OF?!GCC+`P7HpqOa5^KLtq z(fMp}?j-7=BDNaF5dY754tDP|HCS<&4ER;OH&zdmj0}@ah=7EQU+twOtPx3dbRMed zZ}>bSU%x(_3-4$fZo#7QF|3PqgZBHacqXPH#Rhw}1WMJ@I7MEAet8SW&o>b{WDnoI zXC!vyFrE^Ikm}omDAl#k>hTdd@?R)R8vt<48$sjOeLw6FsYyX8_K$?A(<$=s!>RoH z-)$wUZ@h6JZ@!t+L9QThdBE!flb+l>D+33f)h@}Xkpsxgd>eqKCM8RjSoq-^Efzx) zdYu=yM@d=5Yy9uWj{%U1p6h+b_Tq5u8Rg1asOZ`o84kT&>AfX;_}d!+53a%SA?$kP zEQI0n5O&`Uo>uQ2zLVke01+jhGYZ$pM5Ma*`;Ok=iFNrrv$1IZ|8o*8EIM;+hw1;f zr;5czb)23N#r%|T6bePR$43ULOJr6o>Nw3Zxr{{=(M0PSS_G~njp;&4H)?^wav3Uo z>>(bH&~p_Kx2!=U1lC(#SxEsy*vSM2umcrd(#Y;GeqnDh@6Q*AnKi2W8N6QDx)r&i zlHWFl@uPJH=bQt_9oNnLN0X7}uY%lM7(X7|Zg~1>xc&A{$55lw<8e6&k51%?4^|z% zcJ={xoHG=cvz7EVm_o6)GyxD66;Dh=$T5QOFyPQ1hd72~=qD(acP!V@AK16R=Y1PEPCkG;m+h zZ`b4i#3$}G(peAs!VvgXTOD|I_SMOEYifm(1XjI=iz)F1;X>1z*izvEtXDUM`*X&ll*6Aj<4>ARDTS z=Z6JleDh0i@x9`TX0E*bciwsK1Pa_fWPgBAk!7e^m4u*>5LJE}cSV8#YKya1=}dKYX0s zj!f_b|+BzF~x*5D`%i=BJI?6ms&YTcSV^a}VeO)afG_RKJIYtzpy}BG_db#;@sZV_h}s!uFGc0A^1! zW_Jt8))M@J$l&^H)+A1&+}!pgZ$@J-XY5&s-sfa`>1ryCvHUpjbV6KBT)zDyjIx`1 zZ~B&c+TUl*&2H|!e<>GTIE+bClGw7gq|1JK6>46ZbO#Tve4JQ&6_Oz0*=rOwyR0;8 zLr};*Btaz7UQ3N38X1u&Pc15ZT&I7V2UJgSx8gZWz16B%mQ$!V$|DLD5zZocCq zyd-i1n;Ah?Ju#mIb2;;Ke<0dX!=eGFQ7KLa^>>>5$Xu6 zNw!ZN!&f(7N=;&`tX{^*2DU9rU~p_BMH(B3aH1T6VXvuV#||^={uqGYCtx=F0GTho zNXBS#GyjY4QJQ=hqa6V)*~>HxZ_cA+O+0&kNn_|}58srAwIc@ss;c3xI}Oa4GnA_z z(6RPG5Az@RkzfCIGJ|d{U`XX|B!z-ab0(9%Gl#if{YrUy5_PeWteQW2fBeGkVwY%R z7dF(A$N+Q<_nHW;iKHREs_V@E2jFrlu{E`S_cgi|xO@WIAaRRTt8>x*unqmktMN?9 zpy}glkqvFjPzs@ZL^<`isGp^x>VKP=ad#EQ`>$Z-@MLD3oyD7zl9}&QqLdCAYqb*F zy{8a*^QXuv1x+7a+b?~!`%rfW~HgP{@JjFAh7pqW1y z$sl0|gV@pIa(aSQ*Zqexx4nZ>w|8E1yJ6x)Sg-(w1-T|F6-=Cn0Gxa#oFv2BZ^M?& zGFM#cCnBZ`is5J`2OSR3>5jfOrl-Tj7sDTaKvq^@F705=`^0mv<8cM-7!9@M`{&c6 z9rwQcBai&8m1VZKG@;Vy7%^ckl_kA9G@l5b%31`g+3ZD0>a` z3xbV_sDP;W&U@R@SavnW{hhD35JUT@8J{s3Y9Hv39NY)Nu^Kt#GO%_(Nc+M4?5f{E ziEBXs-O(4XuHQ+hUJ!)c#i1a~IzoAQ;KXovc=&!zcz}X}zz!ubCH#=peJJ~xkhHhm z9T0@|b!}yBz0#o@>@NFh7|ILvUEfd7w;1`aJ{4C>765vsfhG3P4#~lNsPRFuKO~6B zzx&unvWS8}eSJhLIS5GJy&ikU)cv2?-LR#=geg)(%U;>H#GE3g{<5MSIk=q>e6wLP zkMb+qrjOenA1QWpEwQ6(v6h;6?Va~owaLI<*MdM87YR_oKAl022mbqti5)vnC2D*r zI*SX*Cn6|hLcEQ{*OlRp)zLH{43*Be|3|6yvGLtexLefJWrs21f^5=`E5Tw3;hWEV z0o`l$0rRb-0$BiOJhDBJyKaGb=M81sCK1AISocH_HMtC9%E32Z?~oIl&iS{$cgQA$ zDM=b$S@2$$>HhuYOT2!^$7GK$r*dg3N`sfMF;!?R-6uUeBM7}sO6pw^Y#2I;p9i#; zFxv+guAt=LfoN*B^TXR-=qm+wG){>3g%n0xAeZ}_fY)0p_rlz;Nj%EyRs)^kGPA6T`aBsQ0l z(U3=RXcDF7B<@=GJe7tRe4>H~d*Hp4=A_c8~H$UHO+*uB=vYiS;C)PuO6F)$Cwo&2|PfEXj)-lU44cHbCF_{^<8CghXzNW?s8jM=bbu7x7^=m85E1#? zmOmMuID{x;IyJVg=fq*9+1$AJLo%w10_8_0vhbf5lRc%qcWu?AY=*?ek@>->z*<5f zvp^D%_O4r^6YLDXeGNWQ#*KstCI2}umtWo-&Jf8=E^X&Pt=YrClMAWI3P)v)qq?ed zlgrYjN(K!|B4z$=tXD4QZ`QT9R>H2!8R8T08V$Dmt^1^u>m<;)#<{pZ^H}Pk*zWw~jj( z1O>rS6ZO$c@DnbL2_J;v2dF5n2`Z4353B2I4R{eG{zPvHvYwXL-F(6FM#h7(1I2@`#GuxvUR8=VHBgA?3GQnjJCo`xMl+5cXW zhm#oGhw}2kY0UWewy|>dc@U{L0DJYN)QIr!ur24-MyY}S*Fmp;Ar=L84 zSc?UZ+r#kjCX{M{b$>RsE6*<~`DVzuZ9dCr$i=D9l3$uiU1J1ytDfPhaSx#Ox0gwc zZ!SaS_fTX>BgEB&RU1l(+sewM8Pph~0Z{rqoSw6YH3?IwHnw_)mxd(m|63vXNNOq~ zrKyN!K}$kN_wKdQvSxI86%Kp%46n6@C|;QK5AI+66ayP`xqr>mlpACDe&Ctx2_HnH zqZYTQBG%sCFd61*pi-$p5)@RJ0`DnVlBpdzg%_6>F^584a`;#H{jr|AfK zpA)~Ra)V?9IjMneM=(VHw*fDx-C>uQ}RBl2X&6u1v zLYy|t&Ss3BR$^`90Yx~KYIYoQ?^?h~_%3UAlnT zyVn5FqBZc}xtH_hlru;gU?YqmvdAJ7CRbp&p@JkyhgMdALdGY{6bTNTA{;2H=fXp6 zWDVhwZd9g@J-y2|#xnkbJfta zy0sj+bQfgYijeza@B-Ym(C|B|F(dF-ukTbE=A&KZ+_`)YE`R$y(R({vZ6^vr2ucq2 z$Kml{Wf;r?L&nMM+R%0WF+wE&mZxwp>+m77o*Jz37VZ{;$e{M40mdfiu+hIZ5S8ph z27DdFQ{4HVFG;;%HsNCi1U~3Re88bYVd$!PG`#v5pS>JGL;MJQzJRk^OiX}l%*ujy z--U-Bf&)aAjvm}_1I(HQS6>~FQoZIHF!XLcbV#7-dM`P4(hQdWzHtBln^yermmmlM zViPlX_4_>j^Ut#>+>^QgbDyVw!dVZS(iskD&{O)kr`MbMF>FC5)Zwav8 z_N}vgu}K|&cPQ%X&wSk(7coTBE+~7C7n!mO1TDxN8z5v=5(rbk_H$24?lwAYZxDIW zBSC!i7Ts#AAb_%eVrLv&?BPaZW5D1S9^Q77UR+!ZKw@&+&yNJj+nYKQlJ*jW4!{HK zyIesC!v6Li?CJe(mKsP`Mv&h{48#Y_Hkun-iM1wA6K91u_^2UxJg0p~RLdkP8maGt z=FUEeQMcqHHP(hkX~69RJO?nayIw|>^%~xDveAa8Gd{z{;>OlkPO>OcG$fthFFcjm z3;$s7mVj3O5VH9v&+}BqLukhaAA{Io4I~W+rKIGbK|N?M@~`Kb$&>>mgDIx9?)q7= z)Xxg+_TuO`#)?8E5t3kI{M9=ct+(PeODtZwcc&h;EI<@0+s3E5{?ZZTcq`C``q0Pr zU;M+vh2{B9?l|W*ZhNEiSfhgyGHCG`fWVxg)cc5=TZpsDK*i!T0MsGwP6@(b9)#hJ zI^4_EyzRf99QVL3iIJ8nA16*7&F^b6J56`y?8y{wY3wvjcTrbn=j>BQ^79W{$P~jt zC~KEy#o7wy%pAq0olVr&+By637^364?``p8)M@183?MqLnu#MevRs(E|GPPbO9*o| zkQbIgX3Q9B^^uII*+ICoftxqI#?#a8CpUZ`b^6HtZhcYq8qVCakO)UD?~J`ZXq{T0 zi}QAWMUu6IH^<+^`HMeh%;>Y&npqt*{XV3oTFB3AKL(wl$dbkr(;wu_J>N5?Y76nU zN^aWnCY6R5mL<>T`$1=L{_d~aux- zNP#5{gU3#@rt>* zVd_N;kcL|GUh*)6CQZnGQqiH*ck2anNy=G7saLbTDGOPUv1m~DF_l8(V^$KZ8f@YweLZEq7Nuq#NSh|OfC zMs21zGLhZ!1K5;47LT&;W`Tlw7Z(klg>mHyh8I*bt=3QI0nSn`0XBq-WH;JV=7T!twKX^TexY zGzPpmn(DQLMRaUvl0+yHJCCoWaX5+3FQs7k090xT$t$#bPwvCXIX@A4V?B}gHgV-u z7xCc-9V;35d{BDgsVo`_k>%CspKYMHJc%cHka27Qpt?C4(_}k;zvX>G6T43)ZU1r* z0E5rSBgEuGw`MTeZ%jm~lvyas$dW)(Y765p-i55`zMSn}5jvxfYaZFiZ=Vk2?3-HS z8TllEI;WB-ef$3VGooqy=4L{#co*F_n?aTl8y!fIt%QAwcLxhp)3``pjrU-Z5I`ki zzkL&zHcTLYt&$CEVtD(Nk^KG6Op;PsKoHt^B|7X%c5V+ReSnqlh~C8cqfZCm z#h2a+nn$4!i3~S0esl`2J$5DvpNJ(40sV1_w0aiFk41n$iaOWo@il1 zULEBP4zQLYhfILvD-nu63|fv*^$SAUV2a9f6Bv=g6sigzr^b6{==#3UPn~+!RuI|Anf+bxuugNXPglT zq4&-^0mrzb4nu~(vSo1d%`ksHEM6RtRqZZHO5led0{M>sep$Exy}nh`C@y8t5ot$n zp-?Ee`^E3svg&7+eg7`i zLhh3oJ%j{dPup8>-O7967XHy3!4^;ZjZcUOFNWF(w{M_DI?x+HM(y0dyGc{Hz08O$ zh|Oo3!N(IZ4Ky_MEl%!%F$lNV*74B|v-!uTAyjPqp-nok>__qS05%)Ve0IsZ?aJ|L z)NGwKfwSNKg1VSUR?nY>HQa(ntESMAf#U-`BQM;IO4s((^*Zk+UVg{KWA}u!HM9K~ z>GkmJb2e(@GI0ml`1b~xjuNi=+fc$SI=)!6CoowbKn^Mt0=Hc~hPZJGwm9sFLjNBc zI2>qnc-h$$!wWY&!=s-(iPhfTusb$mBzK(u0I#iSZ?VwD*h!ezxh&;A1oI$ts&s(F zpQ*>OXlU1xbQ@Qcap_qnkQ5uq``;}=lG@(*f*^4H`6m%7S;%hazQp#y7+GRSJGJD z`8`=x8%=pl9HT~TN2zGNos2?69l;b-f2`89uxs%tEG_zjDT&hv(}nZ>fn$h-+1-rA*+{6niBMM)7FQ#ot|mfVjfA?bsE`PEHxlj+ zPH=lr(5yAnqzR>2yVny@9g21D-!6rA|BL8^xM`f6IE~0S4OOM?pyc2_Op6{xeoHPp z8(L*Ji(1N=nZFpbtV)IJ{`m5NU{*|_8E`&qT)7Z$GjrCl9*jgD(i zx{fcl2fQy8ejme2vzeT`nJKxOh_SYg&DNCRJb&uV?1>-HrVMMN8cFJ#QPR}d%z$m# z6b{Qkqw|47-626ZXks4C?`wJIlO+6!O`LYJh2^U?Gza1K9)H3?Hd$0EW2qk&fdiR$ zjMrkY1?HaOfhp9+NAvGZcXF-gLqwy*$P2O&gT&2~d;+!_JyqMHXe>4p8fInC`9%P@ zf$Hg5q)$~6f{I8{B+?|2wKRzpZ;xii-#6`-74H>%BD=mBg4ZK5`s6~0?B7E@VO#S^ z_-zB*@4m3t7t#{t!e&+Daf_%mt?#!=hbkyR2!J49ed%Hx*UUt+7}}770J7Z7H1BTy zRL$mYc^7MFe+cA0VK~X=0+LP)cz>RCK_0KaFdC0rfgrTKj!Koph|zT{_%N25Dm|y2 zlh4E{t!36!>Co!@7>r&Nir@zXB>Xu2&FGcAn{yAu6HgSfZJUwXZ_nV{Z+G(Z&*8+! zyL(Lz0(gC}dv{T@$ITuxZZa}N!NO}Qwf^M}d zJQS+xz}@{g(|u`nXLhh_jvv5=ygK}nOl5*jVR-d z_{&?6U3=$xzr^!fi+N;itE7ZV6nJ=28aIteM16oHqTlalLv=IT>sq*ca9eeqp0+<& zx~|eIl>(z@$gKXU8-)S}LCq`j4DM$g4Y=_j@ibe|%Sz55g%gA%*2;sJL@pUrvO_lU zcT`LwjuArV^7V%UvLLcWPGvf~nL!rI2`-abza^JlFMP#_yDvPX?J=3)`s?Aj=ir`u z4rx`rhei`%Fc&OtBEag%NyIpGhGDNE+(o_!2{xa(AyV>__A3R0^0%4jo1Thx7SB)r0 z=#*}}zFe%{))*XRcF4B2X4EUyj5m+s&3hhZ^-rI->zhfX;-Wu3>_mG=M&oqj*0=Ro zXsI-?dr=0WN@C1qyHKcFjbj1=6LiDSG{jL>prf={L1>snN}3l_yp`?3R_Z*E$iwV$gT~LW-Uh+kju{lPTl`mQksPcGgJ8FH3MHP8_4D>??jA>qG9$tGS`%`D>L9-6dt8w z=1Jj%hO3ZendcvIP*RzUL1!bxWJMuLL|E$fKZ^yWsf3uC2oG(`-b^W7!-n{Y_{G4P z$%mIeOj=VRpAEa1*~QC&IXdKB{XV7sWC+3Qt43oz1*|r8B&^x zXw+GFX4-u;=-SJ=DI_14Z~vIlRa@CK^;~MNyqS8do4mY66rw;}oQaqyJ$ts5Q(Vy6 z&ZIOICUehEbW47TxT*rq{p=}JUJoi?z!)hB0y%>xv2FbE)JG(kdx3kbfjRTaQP+|X(upKSCs4>f zOzsveuExE@VIvk-!1FNF)kKJ=xl4Y;C8z@4hT1^P!)C3SW_2h|r52sniNV|I-DmLZ z{qfl`dhLh=_@o0(!>0iIY?Xz;2q4%@o1xJ0cETi@)n@E!11)M3HkA>(#(+;~JFZp9 zra&CR171j}VOoYqD>36DQn5F}kpQwRQ)H7_SQLEzNwR1e6{A4dE6*vQ#*tl$X~TNP z6l^EGwr$+OGD{43VDNM`XKiOQDX#_>_{dZs69&?=qS z9L-3wOo%ZAKSsV@RYl6qjZDee#Ds!OOs>{Zaw*kp$Qa8{V^3ts@EIL0a?*!1Vleus zD%WFg>F!!uX24J@iUY{F7`uUuuS{UdKi5&F>Yj&}&}gCZ+bMW$T5QdVfb?3Ngu@}x z*i^yX{4aQ~>}qbf_C0=ApUm)ca}a%gbT$X}(6)qBLqQ0;z8%Pz%Xeao3anjJRZjG` zHc+LAW&Oy>geEt0{%=3Dm#%k*zDd`kkE*B<~iA9SRv3m7t3JZ7f(1WLwoZMdjR<6kf zS2tY04$RYwJm#fA$ved3)7|LzP~Z zWtM&eoj9xqE&F@9fFCGo=d-UtM2CosAL{|%CS&A2#-Z+~SfKkL$`XSqqnvQ8LiZ&w z1zAECM6|MpMC!;D+QxMg6e4Hs`hbvu3Bd~}EQF+_PGjJ87eBmF%I23=a^DpdXf~{b zufOh@r{3X$#}jB*PbP$%9N4xEMvsO81G-F3b#YK?J4&!F`tk%Oxvi2FGfOdL(hw=G(1wjGYz2uFv zkxmIdLj=Nzi6H)h;Q0=urhN@VR?hx%a>Tq3L9QU(?cUiZ_(fVyyVPR`E&6uI0G27_rnU{zYrU5VRO#Y$TCzrmE>7F zmexAlP>Cv3q8dr|}q-iLs^ZDI7>@L?Nfu|G>(mnYfi&)IK+_{dzO^&3T4;ec+ULT4O$1 zualhcK}@XJz{u)t>?ZTq;2jhvMK8w&@WNmf+gboQw^i`WxBh}`gljqn%HXP}q zIdIyv!0G7Cdk`;q0;^~s-;hjUXbLCg|Axui@xg$nrrt-jF@`htEM!8(240-}59)Oh z464s&Ld8Z#Rb}q?NVF;SY>b=0hPa6&wvzqM&&#S_?OfyA?$j20B})n(Cxh$-?=AjT9Dc;HPy#n>csty($5_ z;|H>Sz&O?n7*AP5t5=9Z5HRahXq6&0EpGf>m>%X2F;Y{rfiG5mi{0%c&go-by_557 z3Wk-|pzycW+h_=3<>1LIA2OBo1IFS~cPDO>gdhsYJyJH1NlLd88PobMH2*OiOSFUH z5j_vWYOB$);nj)M=Z7-$&P_y*D`(8FYl(ijj5u8dk0m~W`UZihA)Ut=^f;94{CW^R zrxIBb7_=*kr?=lt8ijmw!-c$F^A3u^8s2zqC0M_k1em3TQij)h{)+vkw#yPue=KH zre#M3Ik*qj2ASVJr^nNaU-t7ExvZiRUpF#~z?BSU`axt|Ul1cVasu1fMIu{-^j?=U zRn8`nIvOysnKT*%6ESnfaPs2k+S{6B8N$Osrwhnv_5(?n^X3v>xVwsLY%eh(tpQ$s z8BRU5>x}=`P*DM&e9|v2mHV#Sm}&F)+XKO+n*VAzMi3r893u!11C9}deSpi2`qJAG zoW0ZDKa@BcJnD?8am={)Nt{n4A$JgpLJSAjm4C4Ip{JQPAL3KHSNqY>zn(%2)u0*O z!H(ik*KdwS7&#EZaRbo7#!@gNi~mL5_-pU$G3XEmr}aL6H*v({;6I0@K$=#(1Z4G0T2va=)*6uZ=>qPV5|vBG+bBjHuq5zMM6 zG8?CJ@5YV|mLY2Rc5W^8uEmtwWp-QJH$d57=Z!P}w*UVbdL0)XKb^e4osUDWCT&+9 zd7}pRs*M#}qG%`xW%#){y~^KP?A#KL+j-N_Vhp+b|L*m0&elXx?||O2G{LoPxzoNV?K6; z_?q6n5BCXf9e~gOK)mAVz_)wJH#sd9`Re(|=gop<2VedQMZXmCk9Ge+vsd!+ z?J?JJ&DQr&9u!|IKQxtBCf-hjvzEB#a&|=x$1f;3DgRd{m9Hb*)ySH-$qa7DCd}0Y zfDe%hQyeRkrjs2$6o6s1I}l|V!}(|O%A1?1sclb6=I|X30#cH%UGgGTrQMIi)?ZM{ zUP7GK{iNZ6o`^c16T8|-i^_yeW5lKk$bGh`jl_(JCURI5D>wPD#OU}s^Ee2;GRN~SfrFdx8QI|Wz~rlo26OzLM}%A%USOF$=E zv_uMdbc85kYxe0*~g7HmJ=S{@xi2`A}x>9v2WL~4ZaWVY;^SvOM^B{KGE9{nG+uzpu;w9N6dX^uM=bw0(_C z_Lg2`+>0{V#@FOig98UXe8>zZjLR6vzsaPO)&oT`=y-_n=!E_`6l{>4*oE#Kis=~R z_UAy4^`vXMQ)Tw={dmsEhnUAjglU-l#;@LZ@ zP(J%)zm)s`D>Pa?9=8*X&cI9GWF6_|^b3v=goh8uVh|p~Q4Mj^_CrPv_La!$?Lw_T z^6hKGlzZ>R`L878PMkZWdeEt(5k-hf=zi@zZD()CrLXx8#DVb#dy3v(m;LP@HWtBg zG0=%;h1?A4T7nwvIw`vi^nF_hc3J1%4b+j?M760?*|oP>=bJqhJ8YXfB?kfWovW$w z))K1fo>xt8Hkb}a-~l}_V02?+z#tS7st=l{uXP@b&hq>H0+kg8%8E^>HGUfEwM0fa zNK9_Q66WqSuX$hl51gj=t}NW{Rx^yRpJNanjQ+T9`}>}kg;CtUsq^R6>Va3Y!nkEf zG^O_7IycMSZ@q`pj+?~LhyPCI0dWv|OAZ3WjjdtOcRMKmA&#=?DcB_A{z=DCuO(?p z1@Ysm(3tw?H2pptNh8g$STlRRdX<#YDjF;u&oj?_^9t|Y`VN`php}sI{Q<`#3TGH_A;3l!PQP zwRAOkp=o?G^jsuCWMuVrW*7fSsm&Aiopu+wC17z#G&jm9v_2lV>@v=rKAi{OeV0L@ zBioRJ0JlxPi(hkpWK-pac4c`b5ASEb&A{-%oImX1p!F$y5*nu;w@yKtMag%I)^^&y z*MInoo6fqLWVeD*Ion8ImC3M*Toeby6RcASERN9gTeyyuVOpFD5t_5PnG%vM!zpg; z-JVV9_c5X*i*wg+Cw~26p0KxWY$RY!n2zsbjVy{al4DYH|9P`$u?<72@7v)nL6V5E z)(~cEVqj$+-%ae;bHU!C!s`)HsU>1IC8GJ>Q%pwvi=ys-bhpkz^G>#PZEoi%}( zt}wPQQ^9EXBkx3FW>jK{YQnvDeeLkT_3s<`8;C=!+Yla9~W#6dAFEg!p*rrCiMBj`y^8-dV~+52fBP-?FTLWP1hF^+R` z3b^a8ySU@_#ck5H+Xscjc8efvBlmv@)}4LcpP7wd(1E?H%5Dkh*9iQ#41VF2x9XSXfWdDJpu>|$Wci;&UHlefjcBlWn9it)Rp(q<% zy*vw;AQ-uw);0BkZGV)BY>=z?FT0VDslv(MS;-Z0JTrwsLCfn2`brK0Y$6>yS_V>1 z7Y%mwuwn51_fXgV0AFvRPzqfA=^VD-HjNj4^l^8;m3)M- zdpG!eFyhF>{=4|(zc+|vbP<3)GyFmuI{2G=wzSqslq&DUDw$6^=a0CoyJtYYHi>%$Z z_YM|YJ9Bd+r_VV9pD(bPn>DwTH7nxqdISF(O&*exTS!W6CMmgv#FS=|Qd;)@-9kvn z-pxrcg3#4!T=5+ZwPZ2>la^e-? z27&e1i0p<;X0yE>Fm;*kh~t0&d&)EIMna+skUQpxtE`ufz#z<+iDk54;@NIRb>+4sAEZ5 z+hF%9$;;0f^VtwTv1bML0sG>>bO)7Xy_cX3SipmjHc5flPV&ERK>pVi2p|4}@X9v` z`4tFne9w5rkBE_@$hV~LCkPE*J03wvv&KxBIf2cwDEH(wHEe-4Z^6+U=}r$V`3V` zNQivGXaJ0uF(P0?=J(CZn19hJRFw8C9@UY8EJH(W;96FexY@kgN=!m5-#r;PEx&q6 z1N8@ygeMO;mDJF5zTW-Ceu?x0kyD?|v#TEGqT!d46vQ)EXY=6J>9D#WJ~D>l>R=}x zWCl6h%x-cp>**&LXlr}Flv_+JG{SF@dbXI=NI_n>@BZ=u|GMgx9ub5Fmz@dunM}?N z#1k~QTaDxng~0Do2ELCq@>7g~T1{J%#S7oR#&g%bOFN3Km~9zt?Rzlqd+3nLE@?ZnXx6L+z?)Y6rHB z=_bkW>>?94pOZn2Gn@EsI;yGD>p1uN-F*6=(Oh!NE(|d(I2{Uz3*rqaf!=Cn)0!yG zx@r$=eon$_RWoKn9SYgU7ir)pTc$8XndoRaLpUhE003EuaQu7 z46(5u9)CRG>E&>UR8(jvFW1myHS_2#>(S5Z-ZN#f`0)D$)M}Z`Z6*o}wWOx@{D8o; zsYzHYmi_x8Nov0~JNS_l)OuvC`LM(yJd|Y#f`A+!4LL;}r|DZ2U6(N;mRO69%0?#+ zAQl+^)DnKVVspXA=I*MBY*M3ZD3=sVAmQbC8qGBy#$`JfTyL)7d zJ5+L`Dz(6 z50R0Fz4{N{c#eIC|l5B5vH)?&Cx0!FLqe zm^*|vG6cDyYmYhY)eUU<;!|Ri4@09413J7$0*L1J)s4qSY~gBWSt((a(JzggRa8wcAe+ zTG|tYJ*`ugp`lJoNwJC2ViP4rCdx`oloXjMDK=4FV&vx)-!Wu(`&c$nF^>J@Ai&0T zG5g6u09%WitexRx?Fa{2G)X^!X%wK0ivOqTdO^qnQ}ohbXPPTfV{hnz7($r&@W-RGiGCU#UUv7>4!S{2U^Z=A^eO;0jXyM@hj zCikgM0T`dZ6_wA++Cg2DGO>+SsC+(3BI5ge(YKX5IDXbS++WhQ?21tzMu(EoM=JyY zzfwf>2H3M*k;8F?YItGL9h93Bj##sPOgR;oM~lMcN1^beRQRwtjO@xA#^@oL=rk_o zTsVx&w?u)bV?xYk_Yz{(QB~1#OuP>Bs)KuAWJM0^aalcq(cOYgV?yh7l58!eC^Uup zS3SiCqp#{vZuLMk*8A~#dwa;M8_$bThy3@mk#9T$eq0-fQ@DH^W2RWEypW)`FQ&W zq=u$(;jqiv7=mD#JGJ-YIYLqJs_T-AW)Sy zkgQ?jF&#GndqM)w{r4U`zK-WYuiuYC?3%HUveq&=cQaFRH!-4QH_8LO6O9&D4w+2o zIdiyh>jG*#9lLb6JZ@BC-(sO=B@X7o+up(GvQul0U~qX3H~s!TZ=7^Zhk2UnHRwHh zWWUIo$Hw6h$MmTUT|wdXVX3L7F23V?T;p(|cDZQ@YbzaH=4j-EF?B538c#(dkOce& zoJgB#VRxm7NfAnZ3*9CN0d#|^x%6%~i$5BI!=Ys6$z_3HTL+oucmT8JR-zkP z#oVE-hoS220{@Oo;f%U)9GxtdHh9&HP#XF~5H>XI@^n^*U@{<^4A9c^HBFm3 z==^Qp+4tG6p2ggUe`8aAfY{q4$wdBVIa7Yj;-~vhAjH^#?ZT|(lb^G=v!n?CQGf;a z-HhC{93gjk&@AHS&rzNBGEz}+Z{v=SXY>p`NuM+j@^?aAW%u(OJf5A6uToHOALH32 z*Yh&l@gdWIn>$#=d^wqO`Vd2~rx+@i0+2;QyPMK0DA`G?!LZ=-rKDeaJPGsqS6!ns z+LqFIfg zXy2>u^s}cr_wC?n0`F81BS8u-u_CJ`1OJ4qUpg$N%X&otw5=rQkswJ9OP#9VUXnej zQz0}nKk`m;9V>83)}U$P)g!nj@ohqs9dBg&qn}P!dx_D8h5%U?dH_M#+1PqKB73qd zlop#QEjCh8Y^Jo>L}`(U(h?I6d*_zp(h^fpf-pM9j#}-<;|UlPyDH~k*zJ3b6F~?< z0FT>;QmMe>6ZrOxVMHa^iAt~$m1rX*!qsb!)uWjh+y|e38?R3_a?_fQWufLL`j`=2 zM6JsfbQ*VBZR`sboqoc!L)6l)kutrUq{#x$e)Ax{QYE8(yAYMV_W~3InbPohnswdt z&Kq2w%X6PS%57IX!Ro<%BPXp+FJ9F^E}U^DU#wi%VY&y-|0nB9mHg!hLcp&QQF$eh zWhARWbx1TjqekEtTOZC)XCtXig~Zq@v8j!0h@Z4ydal1wT^~tNc?uSD6F$EJzh8;p zuRyPJFmBjp)T+Q3uU}fk`!8L@^>_UbyFCzh>{3rQ5weq))T2QVc>Vp|JbL$d&b=y{ zpTDZ6y4=%A&25n%mVqEk46oTvfhC;~R}+<{j$^oWg(zD!6Dl_FYsS1bW4jMVcMDU> z)}k-?jTz3;uSuMS z+V3XHUX4QbvnygavGxjF3N52*wsX<01-vu%`u$Zl>B9J7;OT6P9nU>$pKZf0_z_Sb zW5mlaTIH;U0S^;cuPt2qIvZ7b8Z{Q0bQT&lp)_ejY1CS1(gyzaiHA@=qaRRN;^wz+ zYKcwM;BvITUZM!0x)4qucs4)heUC4QhYdhsQvuJfevGHW26Cc8h0$Zf=&_;q+cA0q z>zp7Fg#d5}usqa&=Y*43Gwe*ZxdH~^As#qamU-oGPxH`cPf=@azm5PnXWHpx)dqPd z$TAsKg-pra#N^z~q}LR;`8q!;nH58(uzcuLb|nl(7DYm}Dqgr{D*yWQ5elk<$LBg@ z(meLm^?e~=(;2bp0`KTuNkiC`)VVBhOS787L6yitD)F`ua?Sl0KQI{5cI7g7^Dch4 zCU|UA(dXx!H$G$HlC?bY@xN(`Y#T^$dE+Wxzh)NCd>hGnK>^EwX5auW@$B&)D%|BX zdBEudT@S27%7iB7J4GBVDFGLuy7%qd1m*EJ7mbs z4R}jhI#xDm2SEso#}UK}Pd&(YU;mGy+?~`{mvYM)0~j!T5_8YKj$z|w9nrQO!_kdn z1mQ6pwNQM%sMmRWL-OofzVwCQ>rI`#%_n)hY<%rm#y@o@@~??_cc_uwpo{~>>;`>a*qN^69UW(~=fx{v}stHaSNU{MB z;FD!^f)a(`0NQ(+?5i_LtKhDbpV(nrMzy;Dg`h^pkBEYy#+f8(Q?aOA^y!*(1D(Yn z4Baa+YHLwZT5KXAsRfg{Jt0wBqvND$!3{*+K}k{DG2J&t3I!x2wNQ{3idN^vc-Zh!td{n{9S0^R|f>4)9FQT&`?>a=ZhCcx5=r|`G}0S5tZ0V8b&4B0)Hpi(3@JX z?O%x)gg|?3zB*D2YxwQtF?>}R!jcL#RSqz!U}lVu^V94^sPm|G1>z97g4les7Pe~M zWSn^92to*W6pp+gn})&=*1t8HsM;!SjDMTo|8{z(`TljqJ=DfW^Z6ZD?l)fgd?MAM z-8XEl96Xs`#OtD+&CE*} z)hO2bctm=HN`EYRuY+%foJ*-Wk@1xq8CSWPp>=^%+%AQddP4+~AmS61l$jIz+}0Mm zk?exOgqWI`IAUX$&u@K=oehhNdFR;+*;8D@u0_jubn^z%{8k3W8nNH{Pom65sw*0a zP0*rH_H05(X)NHh+#eWUxfuz8?+2a9!og?l|6UXYP9zU8Ig#4V`waUOGvmT+9rQo>ygoV8~m z^YVUSUHoL0C(R=N|FL)0;ZdC3`~S?$`ex%ENFX7&7KcJ9#j3QlrKN5!73%J9q5iGA zQGvR*l;X5larXcr?w;Mv`poZ-4H2@D4N0KykNdiEC7FF}W@nyxo^zjbpU{Sp%}zO%Q&$nDJ7`wdCu zX-Fv80)p5a*oWV3@tje9kjs=k= zWx7zxs!7C3T_7Ie>F*(fyxGW6mu3&JODXkR8*NsjOxtv zGcQAH?8Q&JnpB{d#tf z4Oj6p<^~NQTZ-dHo00W)i7Ew>)i5i-LV{x-6>{TqnIuSr=wm<~h~TkdvlU{sRiG_1 z;|MjOsJ+j4mD_?UcMV^K_9I;%!uOJgO`@Cf^TWygVGy(L`+`T-E}?WvABycNl4J*} zmMKBE8ggVHo`f)5Lu;eStF9S|CpwV8Cx1maE}~wwKNriR=hrLWQdr&P1gJs*@woS~ z4y&TVflLr;B*8+HX)^=?<}PAik16ci*PUyx_2&7_%F;HOx6mgnHg3H7;p%1u7A}1L zxB>=jvVekuPLL1<3pJ~pplB#G*9@s8=;(b!OZpRx29&@6sB9ex-d56^(V+&mzc!Ve z5(`u2tYCk3IRJTOHfH~@i`hRkRQ5WCm9r-^B*=(6wF2kg3lI~!qrU88#F7JuPP4aX zSw`-9CeBqW{TOlU;m>smi4aKaqi}Rz{p0$m5IRpBgCMFXO-Z46%K?-+`u6_X93?^G z9tLn!so)iM;6SDdH@}d^FQgHwXz4}}V~C-T;9I@NUla;KSe0rAb3tG&4OL^J#`Y(C zNDplJrDQMOjI+%9Tv;;K@_I@mzE7 z|IwrW$df$E(>T>2C`x0ZR;STc=+mbUWfm7tf4Jgg59QwjOBI?KcOm$hV5TD@_)ZlF zl1SV+!-(iN0F_pYIX8!_m20tP71osL+6#uBiOXtQh}*PYES`$DqZTXD!1B2>wop}UN(>i&dEUXt(lK4nEq zp3}wAs$FcZ_>l@vK59WnH^XR#2TdbR6M$AaG4J4(T-!;LA7c6PZOorPpKGtZ7Jx?| zeUz79ewpydnRq;JQdZ)Yx?mv0TE_F!9ysAK0@(76l4%$4=u7gy~27QNsh|H+p~O|M}2$}}=F zE2%79t! zJfcLWiY!D$AtSg;z4p}}CoW0N8F|~de$STx?2hQm;%?`m@i^&Oa*!@%X{=5hPk*VH z)bp=KZ_prSXH%M%$AMBeZ>)V51+RS9hyAZ7)Lu$xRSBW?GCGT945bBVTuskUGEk`r ztQT>3ECR7i7eb{rutrk#L?9?K0WJ#xPAdUUGbX3GmISPh^gH&qt_dRK7`_6oqj~qH z0F|Ce!>)kgW3g)WAP5ZZWME)~lY*iQJhB^=D4`%=GDYB2MX)5rinR_YaecB#f=R&c zR`~3YK({CZ5eCqx1qv++yK-#E<>d@Z-NDGiTN!+G7Y1kTb+6Ls*qA(o)xAftuE%gH zj6uGJ>Jw^7U~p#>ae-je2;`d;cH}rHvNXPSiw@LsMQ;kMClAQX<59}B_l*}Go z>Ah(;i@v#->0bn(mvmTUGa2?QitV-MU{Wazuj9L;mjckJ&g9F(fov^NoADfm@4fP=H{LLr&pvyk=CfjtmTk5_*yH#E88=ZpBu{FI*ccb(r6sXUZQD;!R5-#+lq&XQSV;m%Js^4Fd`Y(AVTL;(_`Ow7A` z3?q6(B70;U8*{h~29Yh89wgzJWa-%*Snap0NG!3*`VC$j8;l+gw5*2n`9C z7)LDqgtpK9ch)yg5;t)eng9c`;=z_*O2xqpHb3+s<@?eBxN!6Pgb(S_cq3c4dUNkx z)U?xRgF3x?gTZ&Yl^=e9ZQCF^8t%Er>(qQwkev;kPF{+J6U80(J;_&}e~7uVv_V9# zP9MOmXXnwackACN9f3KwO&}yd&Axs6nlF4BCxp`kVF%zeLFhlk73)yH@#)DP#{UdP zPJzzd+MgXdnFOuw%s7PhcJrid&au_!+a(SmEEoV!cz-PV`8dR-K8uP(5NvxJRpHLo z^wes!$tEhQCxX@p2o$(A{8)KE8SYI!i$+M@xiRPqB2@K_fDT#54)Y$q$-4)a;@dzt zJ?a%k1&>B6Hf=!kg~ra);SiWVKbo{OJ?R-b($aKn+japi*E+uc{(GiZOHSN=`|W)A z;fKI8c*WAZc9zb*6)6v_{1TDq-%GNQ_u5D2F7*Z-A%UZvY&!^mitI9@TL>O28{Pu};(8h2( zBsPCIkWu$+^Skb$y}_6(n$Mxz6pUJlnS+A4_q7iwt}y#7Gk!=vrk#5}pKtRm{p=Hp zLf@u$62IzpFG=B!E$^|g z`vt5>oCLtY;hou?QpOkacKfUo5~AbH*C(-OQwD{3wfCAR3S4y6KxW>)nBrpZ^^VoO zN3Om0ep9OhnK6APSQ<)*dORLd(pGRVZ8?^zA{wK6G{Bgl<5~320A&dTvF|jO_h^j*R73?A0Rzi%` z+h?gRggIlMM)8r@OeMQeuX~=C?Ou|-YeZiz9P}RmMo&!Q({Hx3XKx;%*y*I0>8w-| zubAninCWYB(9_^RQ<#TVZdyXvgFuBgsDW(hvA^w-u9n<$9V7V~l7L2+)mM79#{1Q1 zaE64C?=(^s5Qwfz1bGevSynxjnn2826S;_dwfAd^stMbsAgQ&Cxba2$B`4BVb(lAQ z`ow3s=+JN;yY@jAr3&>(G>r%k_7_=|E3>}Z|1i3&peCPS->id3bsXV}Oku3;HG zMzJMn5KeXD`M28=0&w?;FlIjY26i85DhxU;&)#}1N9+M?&hq`jC)ZlLyH?dtkHeDGL1jZeP0eE@Q|!Ip`#r zA(1CfNkGgkLyibUm0E~;a~ihmTEC7y21!s8sq;o3Iurx5ogee9=d%Xoj0Etk=5@wP zeF+k3_YXxyYF>IN9*ssJDapnyx6~$Xdwr(Db#tc^zV{XA-K9n2`RRcVx%`bE0I0J5 ziB6|S5Wp!L_|g0tI~_kZs1qp0az)_#B&s8j>;+Ji+M>QXg6L}vj*Uw>ngwMY;|$px zj<;2KJRT0^nc1FN%)YF0&gv7xN!9Ty1jzly)tZRVbP?q~0g4JdWiY`q4JVb+{^t=wa@KTZ>b9fy;zsd5^p z;RE8@jt%4fw?xXdrk)@`R0lb|bfm;;-8w>mxw0@1rL#I{F_dG@D$BST}l$%F{?XncisEZyMTAQYrU*Jo?}M-`mf=vjD|*@ zV|^xct;FdR>6~C8KB1CM)xSF@n2GOVCOX!N>ICw_wG>V%k=IS|SDzx#DDV*VB}Tz} zS`H|2cO_Of6A@U*0;s=y0lLS54`zdqvRmKUt9MO z9Tv)<_(AN*X`wM#5ZD{vo4xT3C3sp2#Uo%ZF%UN?6`{^l5SUy$7we-fxGJ?RA_&jv z3b(#kOAdZ|Acvzm4bOLts44T>cOUTb?N1XP5Q9hU?KG+M2yq2k_J;MQvn3lz_V8EN z@eSG!v6XVeuFvUPxR(u`Mzsk+7#UhbK|v&v?DmChw5EQJAxV32E}1>x!JQX9|VC?^ppyEc2g%T$_}w1fjsfr zShoJQolsjTVYU)NZ6$=+N~?dD5MnPwt#}A^loRSGhl+H+uVG!tfLUY0tTj=o3Bs&3 zQK1dOtT9ok4fOuj1yZRA#1I+4z|p~MT~|(gqMp8Im{_~Gg#7IKkuozzJwkp(20w0k zqh3V%@$k4D{PXes-2M5tJowq?jh4$VE#|>@pX8N0pJ)Cq0eAI_$teS}OmzAYuHWL# zC)l;9zG3u8R2NqF9>tnoqu3wU9YySzb$MNMiwt1JhRr_7L4Yc|g9qN4%k#HiM}CNj z%(B)vhzaa4lrU(LimmUAz-V$2-?I!^5eV*H%+ZJ#cz zs=gpTmbDk1(;{*Z;J~o{R73=DU{*H<-?Rsn*7y56uL?{-Uh-{ok=`dc2#{}sOI8H) z{rJ)7q!rjb&CD?(#GIYVwWBkzq(qQ)IGC?q7{awLu0vM0ZY>e04d*q*cl6{p)33s0 zF*APKW_oG5(L9arU7JjswU-Yb9YOyy^FRw_4vCOPu2p+Oj`ilfa`%kE-P4c!UQNKG zxUhSy=p-X%V70uw-ska0q4#e1d$NW5naMrs$GA~-0YQRy?)mb|Xl}VBk6yj%6Q@?I z$U%|`-th{!>RhjaQn>$p=o|@8T?@wgM*hr*T1mqF`!g9l*c+wf0McE)okJ_-T;`Tv z!WDrZ(_h;Ql{yz(&A;R7u07j>ENpF?HFaVlP|7M#x~kRjb`}NidZkyVV0v{5ZnCZv zsmGnIMlriUP#Thh0M07JMbDrfbUDJPiMZA;Z&>Cep<7=#x(~d;R=(e<0MI}$zwRRv z?#GiD{ofZ@_r_yXre?SJJ8P_5tPsE>46gaVNU^bs9QIL4AvWyQlD{%=m`d(q9Rrjw z?xgPt zHRg6V$a~l%e)s`?{~hMd^RM11inGrg#_nzF0J!#+d-&?pcL0S0JJxc~B|W%u)^nUW z`O1?!$kRBf`1jxCr}4iBvjuTS+j|EzMXojVQvbKt3ylJe?qn}DeWR@iMKP#phUa8R z$hMaJY!spZI`4V9_3kFg!DDa>IVjQqgl5!#PKHNiqkT$hgzD&ne0O$}e+N*Q6+mf0ePd5Ru%li+!n!ET3h;S6KO>NN&ky1IHwQ3o z+EJ!lmqKjU`UKIbme=rjg0M2LuqL1=`J%Hsen2fi?4SZReK^2Nf+?UjxCoA~B)m%r zA<-2?<`j^d*f5t}TU>L|ZKt5LqSg!VFK>u*o3%xO(r*9-!Ovkc*I2yBrbYjy<F5JYXn?Q-$t^Wz)pNV@MeDMbvb9J|HV0JD+zW~aN*&F zOiEqG=D1<3jz5bcW6Sc59*Y!Q-0ghUcN$HFE{OQ@Oor!f!mKqhK5Zr6^u3y$(E~BK zswmTk@_OepxiZUZ?D%o>8~kU&3)p-mbUhBad6ncATaiOU$+Vit3{GfJMnJ}7H&>H~ zr8U2g5sAU}GE~UeB&|29PZvm~#)MhxCHan#eO^K^5Q{dzXEdZQI7;38{YNnXm1W-h zN~87tJw^n?G$02>QA8!Fk!2aT$6H?z1Om0HX6Ij*$IWL8Kj*A5x3T_EF$2^0G4k+M zhP=O>u@$wl$Zk<&N0Agi$stVw*ST2QAPZzV|x{*BfpZ{aagoY7m1vW?y1gFPAtfA>=NdazN8^~`H24VNCZ_yZJ zjT=M1JbLuYBP%r!^R76IXJodBR6QPcS0#f4Cu?Xp*Lzed-k&*(_nF02qKg~K*HUiJ z^U+Fuh$2kCXAhsx8N!SQc9E}hpEQE7yIx!gMt|Hu78Av_OK}hkPb5Pvz zBdQ6BxTCuu=cl(>F2xfmFG>P~#we`*9SRO?CT?(VT-$uunOsmcJC;!|KFP9~cht*E z*cONo^juCi>gs*$REqeH!xUC~e}Wu59$(IViP5#lUGLw7#>OiJ`z8q6oTT&7c4IivsK^G; z>kz6JFpAJJxf{LbJOpRs(t0O@AZfPG>gYkBQEAZQ(NA{)Vx4Q^Rut@V^JIWd3?xJy z4!Bx$4GtVI@X<%H%$pz0yYC$4>Z^Sl_q%qrx0oQDbbdP5-?E6#T`Gy|Y(cO0G9;;jvYO$5zpMSi|<64w2#{KN~heG`PoV7IDS@?{T}eA$CRXXSA2bt&{aGY?5Rb%?=ZIDTun_s3fK;P_z! zI(9HEMEr<6;z!gP+?-Yw+)uHAC%NraGQWMDPxn4X1Q8Ou8<=`c zGz0E^nXO$W^Sz}n?xq8XiBHngDXwLPd5hJBN>w}OYU zc;cO%Z)aI-rSRX;T&AZ;ys`T76ZVqa(c3ef_YDyDASz4&$k}*^GVb#J$ z`wMk>=)G|(R~>wwdv|O_@2Xw9xb=GSh74m~+(`aP9!8}hu+erp8k2YZ#a&B3W$P_> zFYxBWJQ?36c4|Ckb?1q2~LM4Xjt9@)XS zuMT9$IawrKo{C2L-^t43l&f&b4kX}e`^_v;|B9JPWC^bO9j=)RgMNu-%taTlymKG! z4R`Y4rI46dz=8$gJn=+gO)9IWpH4@wZ{j-(G{RR;G{}8*3>t%;3q_FyvP^b%F`G6W zVEFJ}h(Z-33^Ul__yLPt=(Dbjhu!vt#2GJxid=A?crL;djsiSU#6+N!Ry42)wAO*# zU$h13CWYt_Lv?s|Z9u;K7NneAVDas^A+CN4&G~QO_%prT#_4bQsLld$i3$fk|B<*4 zMo$Mi=MhD|GL3kRc9Hh1NBco1~+ybYkd=hgN77x_N4kUU8m&tQU_t~ zH11M&;cd#GZZ3kld;e;?T#%4~OK!wVp%G}bGO>wfViTJud6W8;F!`F48Zxmk+lb5I zdug*{bsRfZ#}S)Y!IWzcan>bA(FZgWUfY2<-gc6+bq@fN+P|oRlL?K{O=Ry9=%uj1 zdM3YCT#EFz2g_xlbQ+qE+Tgw3ZE=sU&9w2@4VUx6=RY)A?y(!Dv*KvSL=WaHOCsj% z^cKm6>cU$t`S^49b2zv6M&A1UPXLbSH4Us-f*>&S;+y$qzZKLXvLG@sZ5cX`gPDB7 zBfP|T@h|iqJGXBC2!Kto!^jTo#DIdGL|O}ZXXss&YlGMkHOS91_l@O4CR4UGm`RyS zx!C?IzxBMNP1-#Mt=mpyY8JbT;&H09Y*|x*N(~v8+(Ych1g_Btm@C|*AGWdWp9<6( z=+fOt=Po+JA~om?A}W;#Sa|%=(Y)}|KTY;G?cyG+U3?G#lcSP>zkb30W&F*t$uBOh zCpkF{rFps~g`hq`2alM@KD_YO*BDKOTsrM34jk|j&?zZd^y_;A(a~Xi@x`M|7}yO0 z^axMRMfm+6lxrrUJbu$LrE9;@DM8aLL8u^*8j^@xQnN084C^|dNw4AqOio?Gpn{$B zE#61p;(b`uMvC>}lWG-?Z#P| zYXEo?$Opa$WJTto|GS%u&$*Iq>%(z-8aG@I>>I_$Zaqsk7FY{?S)_Kju=lWDg}iKF8<#IKK+Qv`}W>!dGXR zxPDD|gB;0qVN}al{7l8Dw;FH<+Bo;o4G1MB*8iN$vR}F~cvK-hC#NDCTGpVYcs)Nv zp3OC$kYm~w4G;{_Ouo_MVGML}^Xx6m{qImFjnAfgOY?X;-Jm&jO>DX8A$&QvKgESQ zJRSkNUB!sV?L=I>h@9jV92~HXy?t`Iz4#3x&;5qriN7*5c?5gEeh0ThWX_zl)}=FO zY~gqIAb$M*NpzRbK>?;+`d@Ogz3aM2$<2R)e`J2eO_X?i&(#*W6hTm-1V%$?tz%Y8 zh(2GRxAz{bxp4_PErbO_NqPO_&9z&nOh?#kn(ITI6pW)ZANwEQqMP~#;<9HDeC3LC z*=uYS?LBUP+8;0)@-h_GJp4Fkz4|hq_qyXrZ}{$V?a&f_ZQph$2JnbKEjCu1{}>bgc!7|fzN6B0;lZd)267f}Chdn+ zBwo?M$~OJ_F>>iMY}jYvvJ+`1B?Tr;g7eP@hXV}9NmLgW!snmE*I&cWKf?tV_-^Na z46`4*o7s=u&6KHEv2?+=0Q|G$TT*te=cx}@_?gz=H2%#Hl;&KoPveBqr%xZsEH0k@ zaK*_U%Bhd?N;KEp>r(>jH2jA~2UBkrPH3^)X895Y0VI`oW$f{DqpVVU>$@6m76rWu z-S893%W!Itp8`l~kUgOIFlcn`gb?bL!bBB-J2IY1&42NbUay#>Bog4h2X%!C(VE#N zBkNEJ(vSoMQ+Rd1YO>uQCB7F$`}S_4ckiltefz@o zH@w9B`OA3u<(GN*;fDd3IddkTeDVp8{P!a6dH6iPFVl(QM8DHYRe%1F!g*3D!l54R zJ@^oCEV$-XzyixRJV{7m7mk{BjkMIZE772m#bvWM4dC<^57iXdlOG+hf)xi;o27R8;#HlsJk zpCUuaju-@|f;!xZt-y#NDufNrLuy9WYgB@XWTS(Z=Y3C3QGNH`_^5Cmxqdp^OV#Ym z_2#e?We=h(<5smD>8dCoT4dt>D90MBrEFZw@~-)d*VcZ*S&P2MCW+Vuh#lPnyX3vU z6QbgH{Q3u2mm9$T0vkGulcc@H1USreFFnNVTi@ru@@xk6+Cjgfy(E_$LJbM8A-X^eEP$mF`+^U!!)6dA&K zZ|I#UP3f`vKx}0WkF0-*U`GYZ5-0I>H4#!53ElK0^)wKlq_3GnWErexH^l`mit`$}oS4XMw+v*_PkV4VPfVt6+SNf^aH%(9tF*L&X_q|Bx^=tjmC>jr5@m%e zWQ7M6g#bW_3rF7Z8HAa@;q+dJ7Rnj^wb;s6pR_)Yag-&GNvX>ileHGDr)h(Kg(k2e zaajF#nJ%PWF3WDEhZvEw3AdnPXzpfI$h-#BbqfkGm>AXjX7=uJ)r&L^3e<7`U1wq~ zwvm?7yd34J1Ti{=H|M`!@0cV=czmrJf%vc&`C;!&%j9BnM*~Mt)wGEYK%Z;Pu@y1ufv%B#)bO_O4}lzq2|d zH(`9Rj!Sx)_;J|^7H`;5FPbpKWaOn;H?TBIAfv2x1R+3Jq>V1gl|DaH$&ip4$B}iN zkWq-ZatEa<{|Kt~g4*t&N;ZbH-(#JIv>zO(m#sE8aa|NPYwgP##^YbRt?c99)*f z_KgvQN7#u^GLtx<7*%|U_o6m-PNIgO@KG$3!uY_Wt4I5qfcYvjQo%Cpo~B7Y0TEFU z>OD_+=_Z!W>(1>r9boV<-;r!J@W@0Ao=wrt*-e)N1XL)`XfT`^_uUYuvW zp0oQ|8&yte3rrn#7YjCeQ_O5w|1Kj&RId>gky2U1e#cstTVKScl-JbJ3n9!5`ISy8 z8AXvHcQ1JSd(Jv?kK59|6o(UK-{Dq?ZJZi54KJK2rFinJC@MAD@fRbx@)6g6R4_KKECEVpJH zP1O-3k(FfgojV109Z%g@RJ=|MY zcp#Ui%tssIf8_Xyz-4tZ`)b zhMvO_LRFxt1i=D|0i2;I8HJFwx3*&6WCU#;qDs&p2X?`uldC011q9iE1(U~1Pn07+`o^W!O zMPe>jQK5Km7MEFzF3ife+iu|Q^It;gtRTB2@>eGiH{}Q_L(>i=fjSjax(5*`xv|;p zh=PJjt-~U#S(H+awGJus^iQvlP?W_xQ~txwuKk*5wILLbfH^&wiv1A?DjC@&B56Dz zfT(qIUe#i9Mn_N>6yg7cX#x6V9VAec=`|vmGgkh>#)~foK&uPD>@o1iJ~OszDOI)I zP4dn{Z*;mMGdOP>mAeB-b#2O8ZqU!igJ$wi{F!YsX1%M5=l*_z zpKX`YU$dJJr`!&}S(&T3^uSLX3hmA>Juf9UFwXC`RUQ{n)&jz8C8Py+#jI^y>QHA8 z35`%wS?0!4*^o#{?5St$>#|Vh!_5P zjB`9rj>Q{xiWOP-?t(0H641&70fAb=@ALqT>qyS8N4>+iB_g3uc!zZVjcTBKY5 zAcQ((s?+J@?%SVX@xs-}K62owC6OcqF4yU}_s@3-p1%NL-45iJ?t!V}n(g!8zEbkD z?MRZ~*LY=FVfn&Ja=JVM7*i`@o>N+87dz0hVQSK3mRJn;z zEa=jYAlMa(;&K{X578~+NDm|TNHF`ihZ7!YXXq_Enmt#OCKPR856UGIc0odoOqkn( zrEFW1>NO3wQ>3EAL|#@P8EL^}Wd@L&W5APDN$}c@ zI7jrR=QKT0F;xs5lZMvdCD8&^5g66A`yE-)ky&b{e8Ul3`6}Eo0R#<>r+2ghv~Luw z$Kye*nS`P!#Kne@o&Do+YjG`Q9+3*U44Z65C1?nhq6m{bKy?IKMV?n`w4KqKJ%Yb= zl%v^DR^eYCw2ee)Th&n<9_*X)YLcuAL1Czejz!d|y-|ar8c$^vuChbu4Tp(C+4|@w6mLFIQ>N2-!E%!j?n*#4Ct9 zeH(0jp`!_&e@ne%7I`4yeb(r3J-AKF+_o|HRk5DZ$R_4*N!@itl*5~n1|2|No=VH^V4Ac%n zBeqcXr;$F79@X*j$FY3=MGS?7O-m?5L^!$W#yoDhC6{j9TGsDfcfHNK@BPLTPdveM z&pijUjv#Cca<4tU)3|`!z0nyD;C0mocmZ(2KfC9kM06t8>Yp@4TaMFVlUVzE7Z%U& zN!FoY05m!`AFTZqQ;2T^q1!2<(sWGTx?|_MwHV5s-jgoae}vy}^CnrCHurhL8_5gt zZ$%wsbq=g!_H&yXOhD zl=IoySFtszc^S=`s57TX_M&70yO$8uqXYy6#VsOs&^^);yz=FL2{V@xWHWR1tPe@r zSwHG)V(K!k+4~j0h?lTLHJNvucVpEV*&Z{P!Fk&Vv3teYmL^W(8z0eltwD@Amov6+ zWp(9QjOnqK#oaGJls$x36;o)8JP95szH!NQ(HH|HzMq@pOQ@h81VzU9=S<$Oj)n^` zgfng8>wfh&`^{K7$NMj{SY}ZX(u6GXtFL~`yf2oKnwo>t={t%d1o%*^=F;V_!RVHd zu7>T12?5xaL@M(T5&Eq(U1+h`kH}xJ6X+ zX&p&H0f7|xno4h|MvE8ufo6hMAaKox^h^Q>#m5c5I;Nk>< zLE!>=6&$Hh`0S9L`yCX>IxV{yR?)o>dn3#p-leIep2IF zmJ6>r3|;;YNBbmG66@QuUt_cL-|HVGJiiF1M$P*#+|Pkw{cApVJ4CYni6!=fGJYP_BGw zO}h}QVWItbAt;iSV*L}-0k^wVOtn=~QnZyowS(33dl1*z!qm%JCrw(KN7Hy()ZBQPiXoP!y=B^m01AdxN%()aNd}>=}Of z#VZ|MH;S;OP-Gc$_ki58cUEimMjf#?RusVHLfLz`-Bh)X*)-ZaTF-T~0(YkGNbAPN z)KYXr`OFlBO%2Uh9ggG29ye(yBkp?yCBKfGu>kHcE0;Ynja9og)T=*~NM_OtNoc$E z&w1mQkwVO z2ai5lJ&FFiaLJ6D`R%*U01!lxC*NH{Y?mG#K917_VaMUr6-Ymg|Nl@?iLm=%i;A9T zj=6tZy_PO$jxQH=a-2LsXFxaRV#GN!p~|;$NZ7j>>7Q;$U3w#@*OJ28^JgG!cncw~ z5u(^qjQH#QXvRN-bIFel@(;ELTKhdVioj@ufuRV}wT%`Lgx?`D5lpclm$jH2Y>SP{ zvHBfhyRDZ4PmpTJ!Ae=jujXet;9Tspo(mg4nr9IrEg)IbyivWWy?aF ztuuan8Mn^N;o^&n(P;eJtZB90bMlpg(4X<1$oJ8n->E1Hcsxq|9E8;dLbXOkmE7`9 z+u~f0hgR=l!j-9pbR8eGh&A(ZWlsFgSs6r#taqY18khJ{mz90d6K%*zO>s$_NVQ2@vSh}EYVW6otl zn%BZ{p1g>6op(}9IC^aS)ax?7>URxS?)#R6icB`ejcD~4g6!pVDNiHTlE>ntb2+L` zWI^af3>mwX#ez4Fhb&4I2An#ZO-m22Kp^?+af3mI=8)+>~okK5P!$WK%>)&NXyn221&1P@Oew{#ki~L{r_8r!fzQ0J%iwe9wILe71&>{@OjGrAO6SXCE9uf zq2t?O>?_wGN(w`!9mXTc$aWP{fD^-jLQ)R~Asbrf)aDD8AQQ6G_dv@$nTe9lz`U+^1KS#!@A#^3i3f%ZzaP8@|x2DJ!*+9YoKry)5AkY$A% z)|mKDkF&Y*+HlgR*Y4#-T{6$6)!u7g*tQUYi*nRFr|HQ*ViaElmDma`ThP#Fx^U6y>eqrn`1C>)MH&dr=yi zR;&T`2qKZ|wvjV10c${QcxEY1?ojqIUI^zs^$>zwTbmwpP9V=bGKPoy6y$3Qfs`tUwYgUa0+-}&s2?h*=K$AD< zCNtB!9q82)f*Lm4B!2k*shTLl%PyZycGmYTs#mj~7DW_OWQ(H+TeCOnupEUNHAI9! zp??zJEwLHZEz{mxeO0^(cb)}YO+PQEA~`4k@!jF@ZYcF5LcTpn*W=p@OpHUYYpP|6 zYdcmI8~OdwWn`=OF=fVNvRvLM)GZXUjY2L^x^S_O*d}9If7=^O-S#13lWWMf#gJ=y zveg|*t8`8>GT`pJy(Hm?5nk_xrAy(9FJQoc=E*^i2U_D`_S|!zZGU@Zd*Ih^KjnH; zAoD+Y6GfJJZq^j$e7feOMG~Gy`{Oi0cp9e+#P!<|e8?mDLTg{Tr+U4{h^Uq>^y-!i z33|DHSrT+1JGd$aJfo(!Fk&AHd5(0h1cn~blq zbFDk1{5>fE7$ce|um6n@j!Uc}h!8jFD7FG4`KuF%8J`Y-94YW?kMoHecofmkJUyc9 zK^7&V%L*tB2%$&r5#IdpNh%3scVr*(&x~b%cu!=Pi0qWSKQ0MJi5_jJjm{Sy>dgPBrrE*Js$#kvUc{H_UNsN_xOn_aNRt2F#<`ge z80mjrR<#POb_t`d`M9ybKs}E>b~TSa=9MbW$oKHdbMNx$+&^%+JeYyo-usQezg)`K zDPKcyKofZhwfH0mODYhrm<=Wa^5>62kP$pGNFoRVU6Se>L}JakjLcq7c3@`?g?2|4 zTWDwz1kBn%%-TSX(lDQnpvVN-E9eze!LLet-x|5)E}fR|?!BI0XI??l-b3uK z6Fqng*-7zin0zLhNa&iJ%iJffWutZk`-TsoAjn83BcMoFo4JiYNzu?Zq$i018Q47D zr_HShXdQN9it|X1?Se}X*&>ASxW0NE3f!1sVqw?O*vgmIYwxdNGr97e~54Y)6d=NH(Lfa;ud~PF8Jvf>tpWBEj&>zPM0TlusN#Ku5UgwIhXHgVc zpF#VJVxC9G3t~Jf`M5mtE)RxJ*C3^r@Vx6CuDKzFkrR&i(Z6q4-Q_+B!ecNRVPqqI zLmnA+?ttyvK@`0ag(1P-RJS{J!jK^l;D^YMBuR`K)rWun*-L(Y%ZagikANuxr7|Bu z@o&x8){%j&ZLeOP=x~&xGQXk-Thit6W!f`}P*91e69RD^DfeqkO~KcAn>vRRDK7{D zgT^SV{Hf*RYwxXt0%R@TK+kEHBa}CMz!Zl*&EKA?Ad}QNA~gy|4X9|3_z>P&@wM?6cwd=Oa0Dnx7Smi@oxqlP1CEpF>Rbxlf+# z{b>ox%i-;};i;!U<%j*z*fC0H?S*+Czk$hQ;=R|OMNwp)`Oi3B`f3XSLI0aJivQnn znjk!lQwGx7Ehl>jCmn4`L`FB3{($Bq;`~`)`TAT0D9mZ1q!;p#ad>iTWm;6-dLjPx zWV7`!hN0M9NI{Jo=Gt2_qp3cd?N?IEcPEAMC0t5Z= zXzpB(<$J2g&c{pHWMlM;4A_%OUer}t!+Zr@>4fIh~N_R%%EZ5dV z>qU;rCTB?!qSixD&td}No0lqzE6wGqKYroC#Fr_oh^JT1AvTAM=FU!Ul2n<-{@Cv9 zQ};%33W#bCDuWAA<3Uu*s7;OrxtKZv8v z^H1l|49?%qRXe^SH#>%_v|rt)@gvTQ+Si`&T-ov}^ z-orD`e9lWRevRAh;rmJ(7spKFO2D&!9`vYQJmwZ7e7zjvB2Weng5F`UEd_KM=;Mv@ z6W;g{;qM&)h-2@9{8EIHN|YX*k>9z8$OD;lu8JYc;LS0)Ep`aoVu!T)+#7=;h?MI? z5XL65uj>%Hy!aZ0H_YJuh2AxypvWxV@hO`m1K$*EW52BwSGB`I0dN@*rFd9URm8xm zBA2GV<-&y|CG~1EBNd^U@#RF!9IF`0vcw6pl(FQmOCs=u}{l z#l&QFAZAzX``r-{i9I$NkD-}oO$N!WLP0^6JasmrEkn4Yf_P0ZnL^|1{eyx`kv<%4 znVKPqmE8Z>Hr{=05Rc7n*;zZ~Yi;8q+sJXL5V-;O^`K@wr`V93bGW;Q(6!f3BwhSTYJIO5IIl$Oy3c zsObS+Wi01EIFq;+wCqrd_=Nq~@!&*eE(iEYNo5Yh2oPE?tGV;pFX=k{EKG@Qw~lBE zCX+WU;G#uvoDqXo{|m(6F{q9$OdNDl4{A0j&?H8Yq&WldO}u4iYneMYhW!VO z{P4YR&GPH7&*$+c5-}P*Tz_3YGiT<~tCxRpd1Vk2t~kP^s}B(#+x)%K(&y$FLAd^{ z`8CJ-U2)>ZpJNadh0zQDX3wY-&*gW*V`<`A#EefPYhicdFG@j>6tp3BI$wAg*)34K zB^FzL01?A{%SYJ?jFfDTrqCVF;mAIO^e;pcWY|so+H)GY##p{PcqMn3-bX*yI|ohJvz+Mk0^XNy zXM5mau26r^HHBZ-)KwoB@pL#enOR%jCC?bmoU{H*mD;yAY_FpIoSps`!*e%dCV=^I z*Yfxf|0Ouv3xXn}2qK9+^z<5NV%_pmvJOM;Jj z6QxHy!W%yzeD@c^)>>>qF5YPC zpyD!ui_6I9SziwBugj)z{fi&rkt8B=3u(*Ub7go4`3bS)9gU{XmOUiyJItE!2dEs` zi?gD$IWwv&>k1k-AC)^np!OLru^wRH{WEwaDv5kkI5~ozk#fUzQ@%??rK>+T#B{Qf zzA=`V@keS2ziKiNtCo!I(QI2AjUo$_l&T30b=6DFF?4J`38ORd=)H~|qFY23rIXOkd#YHqA+?ple0;5pOg$Q-7V@DEwZMwIK4o4|2MUd;93(Y7MwW6Ej z+ic4|1W`cMH3-*%wwFt7u6#=z+gnn;-$=+#1y4Ig#kb}=+i?Gzob&DT1d!yDBvdQ{ zQG*8nFi42tea>QulF84c;z6MtCwH@s=}I@I2u&Ccn}EmWV8g7pnYif17N^7U3%hnf zMFor_ zacP}4mji7N)I<<^NL2S^fc7$WIecq+bW#oG%D}e>m+G(7Jsw!HB#e(fj^)ok!;q_^ z*Y-Y@PT#%_bIFB=yI8S&Cqssq(d%1py=saCGMT)a?uv?vnq&HEL!7Ou1xc^k0Vi@l z9DlAt69l13E#dMb2jR)auu0jxwPFEFzUQJXX9x>MYE7<#MqmjJWcHV@v{`#61fikv>lj3}OytNc3fFfc zYD}#`TU04Tj?AI_KsZ?olZiSrvnI+=QJ`pJ93H!xxXG!sM=G&X1;?TV0Ya?hoRPL0 zQBmrVgYQhfnO%W{nQ(A9*Y5d>Y&tPkTEk-DJP-sH^q9)XfDPE93w`~dd!VvOb`>E3-o8UagZSy^XPI`%lgPkL1})#+avtOqc}c=*c{gQ1 z5@ZxYe598glojMJp8$&u(((}J%tN_uGRn1+yla(v-bQe^Y9!HmWb9;4;ZwLIH6{8m zULE-mD%nlXk^>YNqbV{*p1`%J57`ZWe((F9I~J7}UR8`;(y?mLEp!P=V1}S({fX8$cK<54U+68%vM6U)f-)SEb6aHZET;sg{_1}(s0RyR{^lv zGYJXT6B!l8oez)Y!qg$GSyD`%rHH&U`*HN^XQ({jHRM>b4zP31g_yeZq05y|q6unU zWbEsM0d^~YoH2=Qi33{IMtO;r*m&=p+2zb^ zHhwS&_oOt=?qg|B<>`q?8;Yh)A|5WwRW=+U>F-lKBSM_X`d9e6|!j=Z(} z7CoA$G!pB5K5~d!g&_Vmp2vHRnaB|)>=zAew!fCbAzN|FPE=y+BZ-cON(F-k z!M1I%?jHyZfzF+q&r3M84pIEeFKfB$u4z6MV48v;sUaW?EX6IZvs-r}O<}+Q*xxYq(9=)DU3bAd?||B$ArBw!{b_HswPta9qH9<9&wt>(_u!(7 zpjWR(i!NR89cPRvV8^CaR9Px`=!#lr$+Dtc4)57Sa=#9^zNgV{5ER7^QR~xa75en) zLz%_J(;u!l*+V&Hp}zhBgyPbg7qz5SlX&$x#Eu_~I>?CZc2l%rKPeymfwQ8%;i~SU zMAB(Uyz(4k&N>5ifC0trpxbuXn8A;9X^RrMKxD!MD; z)-?!OM^Fp_C`o-#l6vDV&BMKOwa+$$uoyIFO+qZ%kC3|y!D&SaOG4>91dmIFbM+#y zSwIrdof+3^Z>5tdK?*=zFNCBR(EbBb3Lt}f0Jw&r6uRKx22eZ@U_j{6cm!dyeYSFa z(iQ}g--zoEqPnK8Ro0X1E?}Qy8F}t~D99vfMw6r-MYJlC0MW)VYf5gehEG3@VeY4~ zWM(#8Am2GFn|Izh+~9aq<8?SdrS?kb6cv>*^VT<5wQ4tsiJkfOn}_M%y)$mN2U+%@ zX(F-pFTbqe(#xJ<8-2$yG|#7_V`}AMczY|)d6<{ zp@0>r=Akkx-e+TxiIWr4+j=Mp*eohm{gT9z`Q6FS2yC)^*WRU^dwmL{E=WhMky~|* z|IUMo{1U#o{2l-X-+URD-*G#gwF$^>JpwX<%1Nd(m2^wd3D5*5A4gLHDJ#~|)O}I7 zz7whdC!zfd8{B*zyF}r}PI#)+2$GCJ&@pMUm41WFD2j|AsySNjVr^Ol9$!|>j)bDn zsU(-YkZ3$DBz(IRW-wvT8qV3Xh9|Flj9gaEwlRaT7@NN5eIdN6h=KV#*`3u7Ta*rS&tSjXXcH(3uPwiyaGTfoQD}%Dys8)x zg(blWyi%UUMr3N=Aikkesp%BgjSJ4bj@Zya96C^h+(!4)>^EZx4D&y#%wm@aXobWm zK&4GZpuWCSP0yr@C@LyLqgG*i`vJt;Uq%TqpxieDDy=AUW_n+O#T8(+K}3i*k}xs^ zVZmCI8Pzh#9uF+phYsgEt!=y1d<3m zH&i6utT6YWa>|i}Ck}=F!-`O=s~ufs*z-eALKDjwG^B(vN*F2xwg}~ZMNmELu`MkAAuR7pawG7|b~u*P;~n?cK3m53WS%PlkBVdvmaIjs6K z4oRh8(7PEnqLATZva#CTeD_sPhK|f<;<=ekkEaGAHmL_kq%hWFVHK6gD4b6yQ_vCR z+>BBu@2kzKVa`M27&bVUOQ)~RD6>#x@V|MxG7+kuk1_r!M}l98&QM4T!aQ4!F%WOU{%@R*yg z+tm2{I3LCBhTVsJ%g!`aj}vr)R_USJFobH-REA3{hhC@xS$l)`i< zO$8J@WpDq@rJ7qbtaG<6t7)N&eDJI*jwi? ze60OWQ%2D1KbK)NMWJ#903uFJDSJMcPueek`y9(brHt3viMx6wEC4sslQRYXHsxO8HD3eb5_ zBO6mA9>tqqL?t*lCMhb*uzYzaAAKClf(2oCnvh-#3UZN`yS`qOV57vK)5FS@>8xIT zh?JCltXj2(ii(C3QGy_F>=hak62L3}cN;g~+)xtopMUmp=9s(b+O;c3j~)f!%{SlV zzWeTD>SaUtVBRfFT$i>%d)^PpQTJfA)FB8ff!9HjL{iH>U~^%|Cg*Nz5>%F9=bBg+ z&+EaiwT(ZElG?)uYkwm++}>!Jrto(zEPCt>GXB{Hz;`?H`E6?mzi-!ItKK*2)Notu zJ|15%lYM<-`Tn{Kk^M>Ta*7};%}8Nx^P9+=B}qJ1{vx;U{frMM-oPJcOs3RSYZ%k3 zC9WA5#{PqQ`DV!~iYvSZ8%Yuw-n%>3T`-AVr6QZNPRx+gT8OfTuiv>1k0|l<^hY@w z)ul!CjCLz4p1YJ^2VTH$iI<{wdgqz0Wk-2r{Y#{T^&r$%N_=G&W=#M;^}3wHp~+mk z=S#YjrSU_b=`2s2fTVzBzkyEbEXtF^YT6&1yM;<^AcyM^gn}Y->AoKcOf~av@GR1T z6G=87Cel%WJ6J_-VjO`X-gz*{Ue4&Oe;8P>lk}hjzUg;OO*`cUCZrshz(M8?kFFAB z58X=-F)saY`WEfQ29lOG7`xqTm{zMrCQnY{>MQ$j zXipxg2mLc}`N9+b7ei7v|DW9|hloMlI*qH`QXR3O_2;J#Km46L?|K`6B^QroQfeOZ zTX!Me`YOsz=b_wk0R$Ql-uw*=66BX5KK~{1WoIF*-sO!ZH0ls`r6S(>CICvO2q-E? zaMX_!aEfZug1aIrGMi$Dvpr@IC5DJbCu~vnAfVt8Yp>Ix^kk9~4*NC7Czhph!J$8} zXiV&k9?15X!Ht%+R28%GpBJd8V*nKei8Fd%N$+lxTi)p@27^&z$FBQRGJKy=Jte(H5O>7Ap=PYka4{DR&AxGQ(?$)e9FEccS} zdaaJJ{YG-xSu@yGXkbHzH>#>f5Zus1L{VT>uFSIL)0F?K&^fV!$QbXlmAW#XqLff# z2Ne=OG8beRp#;+fJ$nT+ds`qmdZJJ{oLuwjryL&8ll?>cQ5F^MSAE$du;%6AjC*_| zpfEZT^v6wCDnUiCHWUFZF4;q@@{1N;VS~>cV1H zW3i}^Jt70oC}Q}T*@Sm0N2O{=k4r)Tf)I?107?n6Qa=(=mSNsI!_n$IT=}1^Etcx^ z7Xl)YxmrL)U6RtMjhICr`eT{QN>xDhZc!d8_+V3J!y# z`MlLN<&T##RRxnD8ObK~%ee5iqbHJX?y1B%`(P?PgyOb#$bMVN$c17bBzj}zIYE1e zs6rTaK0?v`;HsXm)p00+R{{M|4sJxTdB;=JPtutP=H&=^i@YNcbtuu3A$lrGZYmU| zVB1yz=98nI(-t_oPhsodt*dK@3#ad#H`wuM3~oCJ5=8WKlQ1%e(hZ9_@|kbdq{eV; zwypa;>mox4?Vkt&lR=vcEb4SC%Eo9Z}j7ze|kM38pHhg@Y-wM$h{|?XfhArsfNgyc#86~ z8XSN3kE3m>fCQ%r!j8mgg0KT{njmZ%;^I}P-<=17!1$kM6EkiQ>L&7F6mHqaqOteX z{4ak|HU6iL`7{it*Zv3*)pw4gxEXP?FJ$=q1d(wfehV=}q9`ly_dMyS77_nFyN|hc%XsC&!sb3QmR7-xOrsmKs`C1GH z0~U(~K@gZXZyqlN!k4`8`s?G6G%BCt;{#OZ?v z_;KZB#8+hzF|;dhKXEBl?h}zKJUPhCG?JIqJV7YCpzCWT%&oYU5Xvbt265+&FOd@4 z4FrKZM?~_(+aHqKgwf=#=@+7ebz?(D%Z)^BiC)<$9E$1IAbL>cb`exnNoha`N*#-z z*5%;g1@AC*>k`t!*){cJUoG#F){NKJ6R%nR~YM2XGqn(H> z%OrP>2O6N#~EUz<{5*30nZXn|KO z5%;qvvR@5p99x;gHG96~|3*F1=;V9j&QJNJ=cQEWf@_X#-#?Ik$$L@zL6S@-ZbSpx^$hw@B6%KFA)s6gPeaf8p0bgFN+2tR5{kt3H;_;J;2Vam zSkDK~-`_x{v?a*i98LPVPK>^HD~W*$No~003eAl|5oO9Ei~NfS>3) zsH%d>N-$f%Rs{~H_cAP7x{{}!ejb2@3t!~?^ZZ*+99z>X&ML@nS(Z*;`v6OLf0h{^ z$KxZ{y_x`qxgH^^q#Vgn+~D)JLe06j-6(qwBgh>TgB{ZkA$Spjb#24XL=#Hn%P2>( zptLsXUg$FxVYlx+t&(sZihdaK_GLJ>75FUkZ-AmG{QV0Q=QUsUcqH9$F{Rc!Dfba% z9XZfW!Wlc*_TaO)?apRxPi<|V+NKoo0eg|_IC-2!4A%>d%S|?bAaLQP_Xr=-qxrIJ z1dGL+Ht*ecp^Z7IrjeWLCG#31{|XCX<3^Y?sd3Wpl1seNhUw|v{C|%>?mMKqq5{^g zg^3eE+rIg%{ejczBp@&dm!rPp;e<6X~)Pz(YfH^adpL<+e^Z(G7ZX;>Z`3SD2-wJlInBRuqfYMP5tCIws5iYv1 z`6a_C7fIIye2rBzFajyK{k&{WIx%<*Jrfa(tuP|Cw9ivTB3&PZ5Yes4A{#aY^7`wY z`R(^`+)X8O0R|7QQ!$rdUQVkEEXH4!1Dp9tgOUjGO=L6 z0;W!#%Ag@#_;dB6KKpI$cjNJR_~V!D{P^_-cJIu>YIe}4Ul(5ca0cCb#`xc06R_Ew zB!yRR1|I{oKsxXRBqm4k=jLbGQ(|b-K99%AAW*H9YX1Hyi6vilr!dPa4f5izi%II| z+uE77FNDs?6{s|gzke3&Dd($8?gU_D+;}!jS=ngWex#KecCaY<{CaJg9F@GX;z9IoJ64r}N^Kx9)_m-emN$pr$Bw{3Wah=wDI<%- z@}sD6;gZy(1oU8tVGFza4WO6(0O`S9+x*2M$!N`6@^{d=vcC6f zsV)SKy^QWaUHgpyga${D6hE2d_;VU~x9SaQk_L3*;YS;P?vCN}PcLNcq64_ytzS=` zf2oN}uMTci-LgulCYPW;XiT2;%rSSdaicfKi_4@(ykHbUVHwJ#p^%!3uxtxLx|a}D z26jU^&ns0+Q8~ChC>M-^QGFn?p!g4M8~N$YQS8_Z>g?x|9`N zCt_E(Y@K7Z8A#1cqJNJ)exHA9a3o_5oA=DaeOz8_m87Fn)WH79l_bzFR3Os=pB#{}|4X-KvRfc$aW_P@hlm&(q5!=wIfN*40>kD}JL%@-v)RfHBqq6jk9Kr{Bh#vSiYRrC(A5$cEBv)d)& zcB*hW)z~Z=Hm~c%vL&5Ka3AIR?N4*$q1#!sYbZ9Ggv%wO*L%3*z8%CQlpw0)c8eUW z3rSEDscU^&i?)PHJpqqLrhE5Jq#T^z>UNaE!(eZngIHxmf0h~^XrhF`NY~TE6_g;H zpya48G>B--DS-U8B_kWPcSQC^2w#a{Y1}zTiFzI7KqiW%&>MBz1VIR(M4W{ZG7aY+ zzu_rtK4)h~!XLX&X@SCuAN}tm=A0pjJ)R|Zqwl17hA5f77j0$J?Tslc^2_U?uE--m$%p+^ts-W_7v*4)t$t5(6Z zY4F=`Fm|l(GBz9BeK(9B4_92#ko+^7As_%sN+7(6DF4bzxcO#pZooNnyvHgkz+mt* z0b|=^_x?i+=-acN{IOcA|IbOfGCQ@jvd-8ISAmk+fih>$(QQCi8N~rQJtIqyhb|3&vs8HVb)N(6hu?|deC&_ zxiv)YFTccKA($Fv?Zn^0jtS!jB6UnjJ z+P;l}E-tv~Am?45!uD0M?A;L6C^=}al9+StIjFTV6K5P|;#G$m$dD=utbhBc0icxb~bJT&1ICLdi&l%;^JF+&;< zgj?)ooDUqE1=T7w1A0!QcT#;a^mvGpfW^|XsGgsGKFH`n5ggpxdN26=+}6p20yx|f z;6Fhap!48z3#gBaKK$&{hw0tt1^^y3+j#xLQOK8%tNC0hDo1#GAruy%yf_oWgBmuz zYzyM7H<1^;49T5p4$B`sz<2MIuy3!EA-P*Q7~T`J#)QdHNx3eV%Mbj-grh5XVAAVo zJWg!th7Kh$<{a`&aR3F;=(t8FG8< zq~~rVJ$EBv!O=_{`81k;DN(p@y9H4a7&Ib?Y1ezLYM;M3jef~fS-tf&vh(+%C<+_) zd`RyeFJL#Ssd5QK1clWj2n}u-n@0xE)V zYh1W>|1R0Vf-1FN1ffbTqf$H38J(CytXwdojPr-Creel&*5>yn^I!tk-Ljw1@G8_= z7sg;~hmeAG;Za=JJyvv58?1>^b71{G7?1=}ArR%C8qUz6J=nPM0EZ4`Bm z6nGP>9*^>JuWqth?fv_ztGwZj)2G)jcP#f{Q{*6c4N*V-=xys5($nGFZ{fukYbOdt z@#X{Xz|(tcV6cwdhCm{3$2L#-vK5h!X8IZHOy)NAlL9ZQT|i)9)02VS?jbgA8f9hm3B(~odhpw?bBK%cKdqI5-Si?UvB?cS zyZN@aC=CealFfgzU`WI0%8Rxwsrh>^a3<7d1(97~&1V=eF+HEV)ke-evWWX8y;&o{ zXtfzI8mv@W0tqsC4Pu61J7@IU!M>wInKpGdX$LJhR5~()5^DPT&-Rb8Y66He=dd|; z7>|#CfmvJMV_?B9c0~_h!cngR#zlt~)EjT0+syX(A#9Hy(%Q?_5Q>6IcJsi7S8=Me zd^X@F@=Y-m21N1D#8(0Mv3Knzdu+yP!tCDX=nkN+;9=+JL7YAOz7}1aK{2T+*T`ueic`U%WpS2c(}?B2aICX)fPxr$GLH?MjY<(n1Azdq+J5D|>> z?9CuHK}t>r$+RR zKk#@Ic5bX>=f+BmCJ9rJ*E}Fe661$I%%AJ-qokySoct7qRX8Y#4Pez#D|cQpi&<~q zOG1^4484jEcI0uuA@f79j*7%Ux;Yd!2W#=Tedp!Pw8AsnWTqwvT#z6#JQCjDFJnEi zN2}doFV<7MC6>6!smKlq$>1Gud5NwbK{(hGND{`HrBQ*$K?rIDKqG_mRFl@MgWg;B zGWAn$KCG(-e9h9UFT^>Zgre*K)-CAbb&@)N8$FL~MRa>88rBnAOw;qHA_&AU+(6F{ z7O>*?=WvFYFo&0+%2yFs5=v>@zlb3QN*xkTkAOyMy%?9!EtKGO)3|iqVVvhQl%;KJ zh(%`PU<0TdU)NjRWo<(c7L>vDFL~$NeV_YH5PtIUgY@fvGXS&ae8rsE*Ed?W$$h3a z05nE$T3cSH8mg*H2AF10s@sRNPL8&^@L;1-RYVXXiX!`Lv#s_Vf=UIEp=}mL*yONe z7fOBw1YeI(G0%4y#RZ=2pbrCE2^`&k()W3U9k+w*d)^n)K0!>HgLL2so}BvmSlil; z<8OQZlY|HD@R9gu`An!1i zMM?%glZpbQqi`1+8KFcnQ|Md2f=a|NJQ+=5B#O(!-ua72n06+{6R@fH3qgQx-Ml|j zra)#UJog;D@IpIws#bf+xM|bizWZRz81M0Kzl9%ufM0%r@4ttrC|Ish(-FaG?wHq!gYk7u7I2>+!xg_owM@&5y) zf4s)?s@xJ>=BDLEJWeNBi#M?6C#6F9JZX_i*D4d2HOUjUC&!a{KMM&60xv=S+CCh8#2+_1t&wWw>3-*|PbA z6CwwX;qJRHVf{ZJ5F8wg;N!##3cL{~$07)iK@>$KNkXMkq0y+(Xw-;4$YDv6(Cc-C zg$I+|BaS}(x)PrdLs)nSfk7sE_DW#Zy%(`%Sqda2AQ-cX95R7y0Pz6%-d$*1Hd_#|Xl@k7ON!@c0Nq zzwQa3FsqQX{pt1U=A`EE?t>q4+vvNvaqz9&dG`Ih_wYw}Jk5Xq9UU>ND6n{5{ag$l zm&BUi5_#;Bb9wUeN$g%P@t+~L;dXev=ZBv?f~PNT`n@KJ@WwS2>@@Ffx3RY;n)@C? zEET+Q-mO@)wR1r@#iXdcq+7TAbdD5RIdkYR;-i}Oyc|2I4;ImcTlU^SIbpF(eBvk0 zdFmJ5K6fT+kDIuXwu{6(9Fyde90cf@dzeloxvc9k%;)FpyAP!xFr00`0BFP<1y_82U0ihTPR30MVaS>FqrZ9=@25&_Al95q z(TEZBt2oG|#VZ+DunT}GsY_8QzMriD1-pr| z!sMe%32@XB;Qx&({WOi{h%S_4Y9MU%Ca`&1Xl73&*WS_rhD7?H=MyG~M2l6CHI4&8D-E>rEh-5gwjD2r&V?UzoWJ)j^^U~2yJYP~sX7BC^xnqHc*>w!=>fM5C1nH3pbtRT zh{mI{6hWmyoe&6O?FDNOCvSh-^QXKaK%nPf|JyHEvz7AIA29HyBBVxM10GMqxv(YI z$DezlCFgpckif^BMK5Y?78@yKrt&u%l-fBzY}RB#ZW)hg(xHkCA>{t^*t~lu2M!#d zu&@x9%j;ZLRaHf5YAShoc`e$rp9tdPy}@+to=i;;yu{zzZ&xQ&HA7MoBqzh!XM1Hu z*R6x6pZ0#1mF2sg!-wIMPrQFCikIj+(6aog^~UnbEAYVw@Wd0fC+~7WPBYH5cHe}4 zOR?~$d8pL2#vogjncbV4PuXx9ryfq{AnX8~&Oz7+$}7=ab1y>mE!ge)Nu2S_O&Fr< z8~YSR#+;GQ(Qj9<^Vu&!QR=-UyG|d^8IRnIMh<~GiVK2Hz-BKbW62tJ%=sL})3m&( z-w*_XdUQq`7Kqzwr)zu=ZaYG1y{si9-krJ}G$uJ36nMD{2rAKhmAI-tNrpx8?Bu`-gm%+rB-3fBp&L z+G`644))K$swgmV((|lb>0PjVFl#zD9nC@W=d=C|)(_<8m-60wzwyqyzfw_Q<=uDR zW!9`&Sglq90=#l$hYQ}s7@$KGj7WkJ5b($q$k=f?RR}0ZYEP5bR1!=`LI4Ub+;Sxf zPQ=1WkQH!ykUNERB9C-w}-}-EutiH%_B3o;3nUB?;69gO-iffi<*GB zOv7ul#gVGQExwLcPUtspBru3iM8)@kS2 zA6~+)*79Gcovr)-srhW|fT8s0cNL;10-Mdu4@(}vZa+pK3+Q!0m<&+_7$>09oX?QH zjT01C+!Bi+K;rW^vxu$CA)z7zgR6?`_RPl;63+6Eza}Tc!KB^4(tZBtxFuC}q-FDR zRx$!ByPm_J$roT#>9MQz^eNoS^}D~|>%LdBH|`9=qXGyCHDED2C@!#Ix7VM;1x4nS zv899=f^E?)(CEDHF_>Q z`+1_Hqp2)+qtmH~jtfMiRZ&r9qp-k&A~(ME>C!EX9s^?e_|u)NS(8z3`SJhQJL~YM zuI>GQ_8Ff^GI3W3!QCB7DK(((dh70`w=UG>*4^7%S4s<|XmNK9Aqm7i6B$3}_s1k8 zAv4Kj5}^0{<9(h!CFg8AGW+bk-nHH}VnjUm-ZhGK%d#jb?0od@e?CdXZ0`7nwz^J* z+0b!`QGkL9J@MhK4FPVq8@>J%6g&apd)L25@}MK~0!u+0_5f)MjW=z>UZk@gLUGAF z+v^tgMfCJqTl`PAtX{=48xdd5VvGFnFTn6H`Lb>D1V)PVx^`Be(HBG~)8DpYiv=nP_|WKz1vX zmDG~7ZymRDfnm89aFX>a_`=Ot_ox7*EcOJ`xJEor~759lM4h@Nl(;X_Vo z^IJPJMKCs2;FMu^r9y74LSY>osA;jqJ8n>9$or!QNoQsP@ZcbcFdb~KQ0N~nPyn}3 z&>-PL=66v-z2q5rl&nFAM4r?Iq+-^{L zDEfLM6>&w#>VLwM_78fM%&_QxRxY)+AQe_4mDl3x*ES1pRGBereXUzN2)hGxff3?Y zUimDafAJRpPRHVamGcxufx?~O3iP)pQ6Jui5<@9F)t^&O6FCy43}txT#hA*sH}usx zg%iKZ7L-6?=`pcMD1eAaLv-&2b>AZD*MOlHxU0ckgA)E6%KG1-xg(iMhv+#89NCDR z_rczpq(I$mLX+_a#_6 zkV3U_Ji*-)==;FElpaVWcS$hr28Cr)j7;w{*0cWBhYpvA&Rs)TzckcA2I>x$P+t(3 z6H}p5$MbB$(oEhy936KsfWh}&j3c)U%lB&zpVOp7((jF%P!i14)YM=w7_ixF#Ky)_ zTU(3OY9%o-k?`yHIB?Dau6OnoFE8~0ZtHv-XYChgyx+uTO12c zPhilaS73_wkc6&!8~F=2lJ)rl996a6ngJjvC5Ax{U4=0=5+Nj9HXFq&x03nAeC*|2 zYd{T3iJ|{J*Iv zopm-A&Y4Hvs`WSygUmfKDv{XiS|lN(*EuM1=d#C=hjL8f zwf%=)rD2q&H(^Q+Ds&JUre^5S5aQD%c1s5+v{wO8aL`EMp{Czms6oSdy(6(! z*RgrWAxg_@hzbv4Qm}*d_g67?}L?^?rt&w@;*Z2z0zhEC(I-`{1zo;CdY;)nQa zfG1LI%-(g}Hva=Q6=icRo(Qf+j5zlO(iw-^)%2{jdIw+qdMou_y*-}+ULeRQ)4SJD z#ty%L>arl*4fUrFu@OByk#Aqm=JCHDqqe?``+yoCAIK5{MWf^2x4p#_Z6VUoUi7~G z9>NN8J9N!iq1{-QFp`UReholT&%yk1*Q;#ZT}Wx>K}O0YB=$%^899z!>kB!QQ{}0s zD5OK@RMDYqhH|=)8YhAGrTjKK=M708}c8 zEnB{#chA(O0zwDE&v|;u22@jT20%_v;=rT#z=(bwS`bMU)x^xW2~(+un5tJBm_7cH zR&t`Q5((W}8&7K<;*(+5us5<-tG0A{HRDf7$6|A`X5B%mEH)y;jSL@>NNBK*4S(lS zUh3V-m(neqKEvYKv%iduTk=t>B>MG^A-!7!af{|M;OBSwPhBxDG?Z7XbzFGrTc~`6 z2mFs>d-lid*|#2>-9w0YzL^H%5)v6ZY6K%kj-pquo)lDDc=grS*tTXhE@$h!azd>^ z8x}`s@6kk0xB#uGWmL0Xf>V+N1HuJHHE1MoEAYu)nZ3Tks*e%um3qoI#1lW&lmGVm z-hv(>f)XoycR;2`tb^*PN`@+C(lGM3D5psJ-^#7m7LrX08D3J5e*EN6u6k(G;q_yO zAwyVEG%B|myTM9Lc;)|$&efpEdO|9y(9PeDusN}vH3T`PbNRiGHw1!ceK#c0^^SAC z;BYwj?DGXISg?VaGsbZ7#Zx%%{3rP3mlZ(g2tokGQVdmj?H6ndk^x(ADmI-Om$0K! zG?=V*v^D#i`Uzk!+|fFU(*-;Bd7MCxB3jxo1Y-DkpxOhq%RwCu#!+AoMakR@mcrHz z=tCiC5JIc=$dL*?O2Iy;^sL(ymyB(7foFmTFqqJvaS@_m1EMSwB{&u(elW5_!m<2M zsJ9%q9EHBHf4jn_Wr5cp_{1$ljynx&l@5W7F4#(K)^7Iv=WQ(e4s}W`1kyTYy6c!dzQBi>;NyNp)k(ii>x(oB?x!s;Xy62wjvL?MlmOZkf z*IWaG2Ei9!KvYy~BF^cAmtTe-fAmBZ>bfu=@up4i#1k-jG~9f%CvV}dU7j&mEUisWqA_*_x}?uRy%0wss>vIU zN0cJK$_?>caLY^zi(BTqc>ldUTz8$9%|-+K9dC7YEqC1cCM#F&BsaGRr?bg0de7Z= z^W>9fdQV`zD+hjG1LFt4sLo6OJo)73JofmfTzB1dy#N0D07OSeQ(9U|pDib|Yk+sz zvwM_FxY0ETlk130tq5kXHl53qpUJ1HRXqv88%*a6mxJJW3(;)OrS|S=pbdQC?Q*&K zd(i>r|F)IwTe8W^E2XNU)Woz zng)F!RBL2NeShw_dpE_Ut>Hg6N9+_xj9rF znM>0aO>Av6_q>?K@*Tl!-6Mz`?t5PF2DQtH$zD&j$%|F9i(#-^>65>g?5LDhk%(!< zxx`l%^2m=bvpKClKaV(ror%4;{?%)^y}FF%RK8ZLqwj5RBSogrZCeS3`XeIkB(N#_ zSia^fs;Wz{*{#U38_)wS@1aVi!eodfHnJ~w$z|k*OT4&c3ktp?awd#Bgy>I86yYGFM*WdUN07(c|fBFDJ&mQNA0FlD*Eqr?f ztailfKO&ZILw@TnNb8PY(T7LCl3UA%mo7u^vautoKQ@hb8N$t529jhxNMu@T=~p2M zre8dOyB_?VLx)`q|*j*-YIV!mB{qtjrt%h+5MW-Ub=@sPqU!T1zXA$svG#QL%+R6?V&x` z%MRhT*5OM4O$Z51a5zcl+)bz#`DF>Xp^rq2!IQJl8+1-PE=i617~JoIg=vKLF2k7M zi6Wk!4C7)Y95TGI+ePBQQiKANlyG9v;YOhp2m3@F1=#;*h%awY3xx@>EtCNP*t;o` z-Rq*c=6I9#OsvVz>R#-Vg#t=myV z>YWVvVFBhlzeW*)(p|H0CkOUT_$MJ)9Z8U;V|fER3b)%$zy8;fnVHw7C>7-% z=aoPSIFO-W2e|!na_J1wcP#eQjZuVtm8A=867l^Jp^Fiw)b3}X)F1Io!rfT)`7FEPN$T_cizsYt zTLEOn&0FkX3oX@IjHtPk3`UD4N#8+_T+ZMpuJYZkqF}LDICSU`RaI3aCnuATkkBP- zr|-Y_@N|p`#g$ci>cP7Y|b5FhXP`)EuMUw#QsH7H_@9SgVI z0-t~GiENZ*sI2rPWK2l#L@%mT@WvZ(-E~K0veFw&*lqO)A@S+77Tom}KmvqK>dYp9&wHw;bkzk%u&cchXMUjuK zM2bocXI&@!a{Txw5oYQkI z?NT22_Xiw0)Vd8xk{CUDB(rBf!{|{;mpX9y!u#*f<%Szy;fyoRVD8+xfalw=Yu7IL zGa07(j#~Osd4wr8D+-NX=z?7BP$u#z4tyJkCAZ9~9b*}M{iCRJ%P8LW9Owg-s_=oY zKU>K?H-7;=fJ++=z7G_5q}|X0ik{~`Uj&p7~i*Yl?v^wvwI@rE?2YWW`W6#EYWNpjB<@ElYlY|agNd`U#nxfl! z&&*`(of`u8#BYX>@+$7RV>Xph;k@?p11<8FbS0*0hH>TPyQsIe{Y`)S)xPYF-_D@| z6}kI8gx&4K-Z!646?(zF@9Qio_l{GS=k-~gjun(v*y1zk?0*kgIpw=sn4dy|!#H{L{RA1BB-5sy-T<B$lguJ^vTx@OUrY)|RU zw&Xt8vkM zCbMTQ)ymM5Ad(dW!KiVeuvnB)Aq76?9B&K^SBUZ=Zu0(pLwKj)Dk3b!9GX6wn3X%& zchxkCCJ*jd2Qp}_dV;FWsN8B46s)E?>O!mACJGgWl%JMUGP*C;_+v-V2^2;|*Alc~ zJF2Ww>@x=apCAZTLPL};^{7byHDcBSAMnBpU$;2cNU$}>4cE`$-FNTobbnnEMfeYa z;&P*G--l?&-qdAwiCz<@Ty4tndyFdPhbploS7=WMHbvVwhWA&T9N?#zo(|9q3r zvhwI_af*0c>zB6QF2~N+RaU65xNS3*S7<|n==tym?D)#NQc+}IJIRCAu<@SuQ=xdf z-ckR#i+J-yyqXHs;7X}r$qkQU*`L?uz4CQ09g3Te+0A-NTCB^pLd9818mEe6B&~+C zwttAZN1~S&TEb$nke!`PU0oe_Ytahq+vKzDL_NI-wg+e6XZb?VTV9j~$Mk zd({b?Kr=||w)jO3LhBEbzaRUKE(#hyen-}8Jl^Z-%c%a#j|A$9%J0aOu0&*f`%&S( zuJKsFYo9_wosx+7?&gu5#MprB*yX@W?+m{w?B+I&T?{+lF#>Tem ztr~88a4P@(rFCRpN{W>qf7rp$p|xJ?F8g~kGiE$OO-)lIf)E0gNn(844v)lG&{f@txCQZXBdvac= zr6^u!W1Hk4fFvtu-}(&O6_cpDcGOXMuywT!Bt&zbw&BtI{MWrm-TPB*aS;|gfHT63 zq*l~%NGstsXdyftH_&Kq4z|>=V)*H}&z%9+3~OpnC9(18E7}}~TjOH?`TdAJzaI}Z zJ6=&(!Muw|flg8XPI`0|Y9CU7{=yOw%Cql1Nmxn6VRA62%EIV*%aK(Qi_Sl_)9-~& zr6y~)qg`?k;GOplaq|laddysfq z=20UFCE1NEB-Cyfku??AHCifz{L4#N9vsdmlP)2ys+gG@<}=`sM{Z|u&JK#r(R?%J zY(}m8nG7HkpphIDf|!wKk~s5@R&6#K;r&5OL{FxUxexF-N*pX%&cULk6cpy+JVNSE z2*I$SLwW4+C;0Aza$*y89QyShzRt@-0kXXij0=E8z)7?u1{+~;S$TEjowy~>_ClqT z4wHib)k4ROhROU`{|7NjJ%z&K81eYmJ4t{2E0%t@6^FX@qi2a;&=O%E}} zF=@mdgoeboDqm6AKI!Im%e?XaD$beGi)|b7+b!=4rNx22hbk%XwW8Y{7}+lb)Y{a9 zntXqE9)9pLLV}IleeXLcz}WlWW6!7aQ7$_b<;DOlEeeSDe?$D|d(Suk{6GW0-k*!y zBN6(yZ*)mY)v|Aw9lguOkiyMg2||t9MRY_d8+Ht3gl;WUq{aNz{S*L9iBT-9jo^9L zQl@LprBDR7s&B?luLB!_jda(q;-EInvrc_^n@qQ0NH+_nBuMlR7dZE>XkMe?|Lwo; zmi-&q`uKEu{ObjR)A}7gUR3Xq8jaFJsTbdeUxuGXc}No}V=)AiT%M2KVdtcs%lRle zxy#l-LV|?TGD+N>f-zr%Bq@14LG>I*RV~KQ3cx!-ShiD# zq!~f4+pc8K8=v`X$J_W7;K28P5&z&QDDYzJaDh5IoC$9~#Qd3e;dUE_V z{}GQJ>&Znpbt-J#ig!6HFZk*!k3{Grk3g?pFne~>x&HmZ;qXY8_UYrvCpdjN6cxek zw?k>EM~2j7g3B-WL>+$j9c(_gZcM&c%C!%?*=6mY zz|q4Ag75^63#1hrj`t8+!Ph5C03jKPxXb*ICllawl(wnqeY8B9Vw2i06DVnVv>-yl z5XHOv8%xqK%%I1%Nwggo>U_9?xwoj0sYUZC3Ah7CpYy+;E<7#= zeb1vcA;I+8yPUaJ1qzmSdTapUap7G0(1l$3(1qyAs!5!;4)bS!kz8&;-gbaJAO3;1 zvIfcJreuuA7^z4Kb)gnis5tqelQ{XJlK|MbXcOPP@)HO5A8H|mpSfLm((bh0|SwR-;3&H(a=*DS>0a-veHk!3edmm61uEZ0;#`3k-5wR==#GHccIJTuNi)9W;9)M}}P%;ySq z9FZZ{VM9fnTuY(kF+Muo?pEYrpOPJ%wf7f#R_wzCH2VF=NB8IC(f9ehc9YRRDVxmw z<%C|)xeq~gr5mRcGyw!>>$IJCe>*XK+ng$(ZO4?`Z##!y=d5Je-`m(%Q_rt?rA+Ug zh-d2aBDe{^`$r@Ef#&t?@3Z@ z9*Hq|R4fT+YtR5hHyK4p6dbZpaq3wN`zF>`KId;L^&Y1HqfU)R zqiP{f-iUO$f{o742*JU!KR0vm?C%Jgvx<|tozAs;zQYBq-|;0$aYG0)Mz*T|zYJ5g z{V+l3Rv^;?nHGgV^W5|f1-rWW?@B>P5<+7@QfpBZ8MmztWbg04;&QO>{W}TmH=gd7 zJ_f-48Ys5Ht$ih4*eX+Z#4FgG90d4q%H@1`(q-H~=M8eAl9;@61xxyM?)%joSM-8G z;|^hQD15M6rng?trupd-nxE2YnH5-pUUc1NqslKWpu^pZnEkq@Vr(`~UDR%UrU>K;pHNQ0c$MZEI~W z@YTKmN>=TlvT7gU`T;05FMCxP^cAu6z4d&yz4)b%QMM12P;rSPjY~*lF4@c_7Y8yf zMP`mOi}?#)=I$#UJp1{7{QHCpf&c*k07*naRBA6QER3+QCdbT#gaoWsE2X8SXti1@ zD=XQ&c{3Rq8JNvxBp>QHLU{PFS+n4+w^}QI9#b5-Nk~ZWkdK9hp4^1(!Qp^;^Wdth zVDe-*>nynQP8cx)X3X$RESFs3i6Y#v0SpEYGg?sKx%k&#_ehWy6nOFzZrI@YFChUU zBHETv-LuEj#$9)HD3Ws5mbHXML{VRBVdLMwk=AQ4Q_i}^@A@Zjd~kvwJb`16dMncA z9mjhV9fGsQitxh_88W__Ew6f))CrV?@^_&V;|D?5(LUSjx3dJIVylPX_VWoUy{6(S zuLYHYWb8VL#A9`xf%Mr{1mUri6YUHcd1T$Wi@I_7ou^Y>)B4&TdN7A4p2%($1^d@u z8@PYgdu-W~b@-SNf_v{dpD9y@uyIos+qdVElT%D}wS^u%;y88Ma4x)X65-*^jE7%8 zjIetaU}`l?oX~amv9?ylx8Fu%GP$|%!V<6TCL}~+GU=(SvyqjRMXz4H=+?N%%JIE0 z3?Yc~mC?ABJ%^8JIrUdigt2epn5pN~Z6S-lUJ|jwVQA^lh)B zt*l|$SF>nL+g_FdA>~#SNk(JW5masF(kT`a)H`|h={`7}p505IDF^9$cIU}KZ&-Eu zMAn=#mYE;^z`jAf*g0xYo8==4OF8w+IV5G~cqIt!ZWrBqYY8%`sXfwadjzh#CXqe1 z-G^VlDyx$o{o*m|HPqXjAgiJ1BrqL>n3i%Rm(CoT0ilU$z9gx#x&tf`>yp*_qSd@_IapNLEC`R1It@lQ%aA}I}tAU`|~yQZ~4 z?V^=Gu{EVH-;bQmt7qIu&w~BD_3j-^)9F}V(~{KhpPoV3zh0(Jw5?3wR(JllswhxX z?FNk401Muo5)K})5fpq5XH7k))w%t-f3s@KhsZ!0a6524(7joiVpB9<^}QIa%T7kc zUR*zCbN>~?c;;h|H@Qx6aie_)S2}l-E>}}33}ggfjyWM3;ck7M;}0#TXT?4oKsSQ{ zte(ig(@we$XB$C+u6h^4hb6LpL)%hf)28&GAh)W`GVMW8prS%1CZ^+-2b10%u(43v z2?M#T_}Afr`7dA$J{`AP=AyD1>c$Vi;|&ssJfanb^+f*tIsb|mSHQkJFzCogi=#2? zQN7y8z~Zg+sMyDs16oIx3jv`gS=f+24EsSnJyQ0QomtLV7Y|_Gf_+p}wEVgZl8e#e zW}Otz0@01j;$qkp)fCmedG$e_dtw^PXT8c_QYv+#iG1EKg>$avEG+1lr~FKA?m-3@ zZDv&dT2g>Uw~M(;AL63Z-|N7=`sX9aV#iy`C0T);l@N0FBd8BuhpWbuT~(1~6nj0g z-S^i$YSeVpK@k)#{1kwy9n0DL*mQc{_$tP@?!37}=DvXv4-J<1CQD{ph0mru5P}a+ zx||wA*LlT>Rl=<4v7%$Ka03* z54yj0VtRWq74z?Db zPS3aG{PQRJY@)sIlW{fBXW38ikENi(D(sX-25CTfBh`R ziWC%UYm!j02%-n~Z>JUiai&P)Oww4P6z~=Mu;Ga)eC~@^dHtu4`Ru>na^B2SJKV0p zU?4f!<7^!h6GMJ}KKu6V!|8OAn3zaXQj%9k%a9Pb<{A&Tb?dFrqgnPIkAt}jAp~lF zats~~#5LGK-R>qSI9c|PdGYa(o({>$@X<%`?6VLS=E)&=?ztX$(8dWx2zdBmSh^Hk z&DQ8bcrJX(6i=OxK7xDhfiuqVr4E&z{A(qc1K?>z|Cu1VN+9*!9te)zWxA`{^%v=9&LuJwo!LU%!5Q^Yu&g?R!Lo$aOEl zj4?31bzZom38zzV%Pkq)dFLTYOSOFWT@;T$ojL-xe=>T_hPoRk1yENsvf`yC7E}{G~yhaQ35jN z`iE;Td5=GS-3+GzBY|Sz9WaL)*?#C1))Y5xb_6kT!gWAO#G-N6lyz0QDDo2iNjW!6t`dYu?TGv^;$KU4{T$h;b2@@m>I zcnnaK_bv-Iu4;AM03-sVfqNu9Ng6$2_9_5Yopv3+4n2cc-d@bBwM)3g(PZG*DTVWV z!YR!B&n)JD*E$#A;6rQ3+VnQ>(nLwcL`8AN#8+@R+mQ5?1gDbbUvTO-H*r6Z-9SMi$|iaUSJA9F4yW17}SA9AeL0?h&KC|zwqV%e9x>0 z-Ur~SD^KUc51$081L_ya0Qi|Vam#+ByWRk;mXi0L;QqUPN6niYHAGk|IA~63aeU|g z-b96!5gk#ADM-u7Gkf#m8_QXZZ`kr$<+-XaBN9Lc$z` z#nz!W+llI3PGpa&R%Nv^oUX*6Lt=-hVW(8vy1_0&s%#)Z(UXLpG8~i%2fdYGT*!Q{ zY8_409-{OL1KUUk|M|0nIpyL^VpF^Lnq&yB3`JLO#I14S)HL29Rg>w^i`?r!cTPG(-b( z&5Q8KJSu?3m|v|%O?~}5pDGGR14>0M)OLy0xlp!eB4qj4*hY*Ih<;>$2YM!k5HfPep($Bzu!Z}mi-+XPa`zJM#jB0 zi%@efMDY=h5dthhdsuk!1AeyFdhBhDWr1>#AH)G%%_2f0q7#@ue?G$o_w!N9f7I30 zv48)5>g(%?h={=HbfPEvt^5(lTLDxnVCstW#!?#>x!bF)9FY^ zNFY8w{^*j0TeiTWMIMr_Iri^|%PxcKuJaIpKm6b!02^_|6)=B3l$3ag#E(9LE3fq4 zhr{97t2d8Y{PkB)-onc-_YizLcY35x4Gm5_YuCcMbsjRY`9A-rpFBAXCryI)-}jJ} zH{R%pR2(?a)5rbyx0E_P0&^EEWBRm70EC1`^Zb_`xAUCHL3r$Nf*?EwI6)A$gyx0^ z5qX8jlo;%adYWJ(!=JtrV`K)dvS4s&kPKF&&?;*3_p{}h_pn!3y!K~Gil*BY=c9{G zMn;D~##NO^)~DZ4n_UpV$XX)3KMbBA0*mq@@Wo_TJrB*P7otu`MAVmq-2xf|7$b38 z9XQu4LC*0k4mEuuP(>M!|8+*BAriZR&I!T|iWa3-hRhALTGcg&q=DrAh?odaTRn|B z4JbvWkh_(``B}6Y=+`6Q#PCNmk6=gptf%Yu{`Fdw~K8I4dBSg;_R&6|U$u2wT)LKUZ- z<}qYdR;pRDB$RW`X}$5h?DA*$?|&Ea+;h({Yt}5bY}vx#!GkeJnt7=B8J4ph8%{>i zi;+q%db)L(TnF(Lt>I85k);Y_r6^>Ll8+mOu_BR?N-RCxR`l)zfOn&bK#fh+ol+?r zi%?L2Fa=`dB2?~N{K*vraOR}v*|a_zE(Cf5dw_3Xz~E$lTJjK^%8WGrdIW-qu)dU< zVp*+{*rgI^fpIRG{%#kVs{K^e9rE2-S3^-q`)(=W+YYdC_P-Er8AaV>pfK;s#ZX*9 zWxq7+QK7A>N3Pw?;MrfW=G9xN>E1dIT1QY^58JB*l{q2I3^$-LxmcuXUq<#=K*%!P zc4XqzX*t-l_3yY5I+dDHn%>kFXjrwPn!*AH2BXBtks+k_(UGaiA=l>lU6d8;$lY(o zR%)VbeLOn7!iCe_#K%>#aceHcWi{w@Duxe8At^bMC5LL*Rov3h=%~_BxjlxM@oh)a zwujV`TrOGhBl}~!u_vJiB_WZNm?M#;md2{E+Dh*D<9#-#_2<`Nr-2Ye2kUtMom)xV zx%F_lij*|+gQHoocMCT=n~a6phv{Cy?MKZwM`WIb=)Bs0ghNb1ik<~a{==4C z>v6k%J01)MmH=j;N@u1zJdQ|vC8mm&F-I%Ty@i9*F2eHJk95!an|JC<*;8LevCE2u z)-zwfJ_C5=)&KC{xAWUla&Ia>B%XwBVPxf0ux9-sWJMt*F_d9L5^&YIShMti&vt|) z=szTZm_#!+yBh)Mv??mgYT2s{7?>p@hQ3xYjbGjd0o}et5G#X?-ggb!x}gb-J=@hCci;*4S_|ub4`0x0Y)xwM~nu zIs~;-11OXy`bl!iGD*L$L0?iu=2fRc2Xg$j2T3T5im5|tc2Be`bFfOOWKW!k6^S6+ zL@KqIox71~!?{UBP^9ibh48GP!xV)mxd@f}AfSNDjj%aA(x9E)@JZnmsw1fsHY7z5 zhK^{L1<{cATp)e3J*?uip%m`yxT;eCV>=dgltYCcsnO;KyAMS~ zhk(inZVgJM1G2Y!>@1yyP(kVtL}Vzqc7tOx2qPG#qU2XWfq&^^j)c3?hGT1kbEH~> zX4J{3BEt|RyAZ`Yzz~ky^AsFwRw3sf==^o~iH_KiGPfyg{yVVtO^H$TyzM%qkPIqv z!mw2v2u-d=E3aqE!!HChp5{oNF`iym%*0@dM&k-bLB^r0V9g`{p>*x8fZF!A{P#U9 z%+K7|A}vR9_dfjc(+>u3GPh+#e zAAfiVx9|opo25(PlTSPmez)Hak3I?)UF3=I```mlokfd0xeDv*JW+iYUF69jc*h;B zAUayz>r3ML}w6Q@y-Ac=Acl zf3dMGC#N5Ogd1+~5SA-fdZHbDV8YZHEMMr!UwY?r-_UbF>!5+QaDpH_b~r&09s`^p z2%EuXM|;t&2-|qKA9fIG4ce2>M&&3(TKyqdni*y^2IL91 z;dGdAtyu(sZb&pzNY_ciw1-yD!x(`WFcMV1Asjz~(o8Bzibc^rj2x2@%yOQYTowt$;CuE(JW&1ZUkal9UHmB80?v<1LIbTu7wKhpfplKyk5#C!b8^ zlv661G^rA&QzA0bKZED&*n#y-1|a0NE3`fWk5l};;6#MLIK_*p}YgzYYADq=XVkYJy zsXf;y3FsabM6gbcTb9Wzt)t%I{d#RBMl?GVVuv20)O_sodrj{fgs^YJ{o>=?y{V8= zokViIo1c?Rq}OU0R?!gcC?tB_`ZlI`-y5g4U@ogCaer0U4ZI6cRJxm-!j)88GO4tb z<8Ze89iM{7Z@>jug}|+N1dmSxF2kcn`~vVA(3UU1UT@^oDVNi)=gH*dSbe1~^9iF# zOHyhmC}6SJD9mfyKo(-wGwF=py#3xr7B9|eac=OSSZ=;)D3wJPc5KQAVCoqrF1|Xn zV}oiyVTF#k(7>W#D=cclgE~HU%Cct#;;(J|h`#QW4)+Ow6h@%Y zhfmHbAt$TtZ|$&x^;GFYId%U$3@$5?^<@}r^<1Xh+x4?WS<=tA#N}*&|1l^~!CJN26nqi8WP&B9!2w=UaCaZzWQ_EmPjYaZ* z|D3!xn+I-u6j`O>uOGif3JPJVD5tWajU-veC?y;fV8O*sQA@7m|6J5BR3Ww3jnmiae30*5M|FVuNFAwI*^Fb)+eW-4R3gEQ&oEJr1m6QYU2qz-GSrDCJv z;5x^Z6w!3w(?u`tR^7)KsV~u@?L+}@yzvva-|;2@CB;7y6%}^)T!+cA00}rsGCM?; z{Zq+70LAG<*|x9A<}hF)BJOj9XeQM!(oh^Xpp?eKjujwx%ogXtGk>kW=;)X_@;F>>g+Kobb$-5D-rAQmYRtWo z(MN?+la)_xZgGq9bZ|^Z_Mr<8A+&!QZmXTD9XYt_1N%mI^xmj@$MbIJ0amSQsYIgD z>WGR>V$|44Jp91johA&u!R>ZaQ&WQwf{>69pHBD{6%~hxLbuyZR8$mZvzfZOI*N;n ziHV6JAt3>y(HO8Je=FGSaPPfv;e}u}dx*fxF7uqLu7+jH;M;Fu_;9%XdT1mmolZ~Q z9Dl|!bEZeebo6L==plIRHR#(H($YMCKk|s@-yJ1DYic|MW>niwk`9Lhz21PL$OM@q zc=2oR3Ru2yf*?G0I6)8|1DqfTn;@;+faaOEj%lAqa}m&1J+)EKh<9FO+qXTbEAnlH z8Fte_Hr;lk*TlpA;>@eS806o`yGnkd)Av=aL4VejNPj(!DD&+FCZBXKwtYn?rH9au zOF&4+_Bs#47=ai%7-7AJwj{C?{l_S4)`6?pVyoL=MEBhY)w^wU5RFptD$2SA5Eq4r zkM6ReA8)+!;ZW|KJsAL%O6H}9mU8>mn>_28kXS^hM~l4NZ6rN@3RR^Zg6q>oPm`Vg zE_J#l@8e|kNUjKd6>|rS7+r~b?&;2BkL3^&((%p7_unt&f(xHy)TmLcUhR?8jfjY# zqN0L@YaXUg|HQ5yZYwxcDZHsN^OBO~vy2`U3&jw+IhN5@B%#|alNxp_Znq3~10ld4 zz&g0)?rGfg(0S~t?4tZL#}R#B`JUR;7;?{r5iCjaE26i*z8rn(NNxodJ86>;wNpmPNm_CAO1LyMdh%-A>H=?G3wt00XL>><(7**q$10DiXxj+i*6>+GJe!BEj7Tcesy61XbEd*&FzMI+k!a zYFV`QMM^8O+b!GpeLixA(E>psA!sylL`U?dN6G|(jK`J$o_^6FuD)(AwY9$2Wj9KMIR-^+X0&T9dY6@h z<`g!@4P|Y@$isx;(Zt4`-?DT6?*I(wc@~3uwa)SRzX-ct#i1cF^bHq;Xu#@*3cEsK zJ=8XPwH%ej6( z2r{W>qo@WyUt5jMPGn&zr74L_S7OkkVx_3ypwzTSiI%ktRDy{>iyMU+T)0r!A!;a+ zd_S)Uox)&0roE!vAm)D5n}0pF0ZG-hW+!7+FvgnTe+)qwq;WH-LH4{>GlWSJ6!^&b z+g;J}m53zSz7(ZdneE!KOjEXat@GMlpL6?Lf8mOYp!TU5ST7#gsqyaAr7~4K?Dd>L z@R)Krm%F+XBo`5__b5n|DJITzUc^Dg`*(h*7{RNW*XS;6_}W9b-EP#HsQ}!3(@fra z>yA!cM<7t_bx^#g{et{69dM6?l2;7H9>)VQc`QPAo%eF|fV$^VR{!O3O7^F1j=pqh zV;^#j1N%nrk^ILRfkx96<|r(md-U4>Cm_(Vs3L->y7)}~^XHr7?Azv}l)zv#l8~Cg zTW`I|DU*(E`WS%P+FG1WCt+bt&I@+Cor4DtQc_ZaN~NMlj~+xs1n!{WH&(CqL=*1Z z=^^kYPliE*JQAeA!Tz;jv%wp0z{rs>VS-17^tazUQH#e2r_Q{DKj(Z6z^zYxPT!#u z{jPh0AUt+BPT4q5;Qv=hD_d)oA8mBx;}uBsUNf6#3-o{F4z_;NlltPecX5^3VFabb zP`x)WX}#bu|H#3%#u^CxX{W6|HDjkCEqS(0au7h;@*U~{H{iAv`9%(P^>rR@uiprS z^$Oa}pCf+{VdJ5+!GNzdA=2b_$U%S-2&(e*7Kq{P7$J~N(p}eVWZmXCmaR?VySL{s zenfuLNww!%U5bg9-+cElIoM~qmK}W`YSq?3*IG(l#hA4r0bfIBAW0BnD}(F`PhO1< zphr)SMADu;dr%YwAp~h@X;f5Ha4@&*m=J_})G54VUky7}LRmhP=7FsqLL(tE5uy^X zMJ6yiJd}^6M38;YOJyZB9&%6sjXYUH&{RrVBrduA7e%r=k#(AO%NR$k8D{4sp@-J+WW-RFmxQsfg`uUdMY!9*mJrol%uvu6bpoAb0C@91!I$YIS zUb}A$HAO+JdTki>Wd?>{zx5w$uvq`WKzdBerso-1UdL#u(vrC|to4ZwKuD08(v6w{ zGf=fD_SPCHrH6R?qx-qL@2=W729~{ z!$qVgn|bV!%YEi=QWV&?)H2L6~GM|NkgVJ(US&cblSb9{WynrD&e}@exa)EjWDIA@{m*i~aB|_VZ*kFzADJ`YB;GmY zUtN05OY&vT?IvMTE7Y~~v#+YqwIT>5l|qkGaxg|%$y$;^`jlL+b+<}2JaibNE}e{~ zjWxPo<88~~6@|ye=P2qcxXu}m&0U9HWx|d^nNs4j-bQ5|S39rbbIr%33h(W!R4Pm+ zJ#}?9ex0+j6+w6`2sxoMq3D9Z-v00CpSsp=ftU!C(sG2Xcs%HQK#&Qh>tWP;C@X&R ztLe^OzCUDA<9R7qixg!*E=A=S%idypgB_Fvolz;#*<(0<(ECup8%sq!N(uNi!XX4N8j{B zUsGA>i9GZNdc8+Rv=LgZf8=0M5v*DTGiKmD$B!SVtAl|9nKNe&hTpzLR%AYU?p9v> zX3PJHwebHnoFE8K;Ml?GL|V7i=jnfvSB$^#HC~}sA({KOOAZ1U!feHu4(JbFGq{eEHg+fG4%Vw0C_QXWc$> z@*NAr#W`4d^*ScqAKT%&Y2BlcBtcbG6(uDl#KgqVty?!XZrsSBoUY9`SL?8Ocsp$q z*{l*FEL18z4{`pdEjN%w*+5g$==qY0iQ$R#438iqGLD{+@nl5Akroz>R^?eb6ctu^ z3I_p=>$?VmFgZ06r{eu(vDT{j^UDnCEL!5qvgwz2fb!S`VkQW}V~U5%vexTf5uZUdS6 z@DJ1&{Pes$0yamJc2JaE=9=7k9@wb}s zQ{g4Lv^Xf1XT~>0#catQ#7~3H2Oz2XAZ5l#tQsRd%l0s&Xd}g@ShB*p<4_+x3Hyn| zZeh{dS5Op%MQdN;lrgi8T3^QsvP)q@j)P&TTJ$QYv@56uEXZqnPSys6QoVm8bqBVf z(wR^vM}tWP@dj|pQ0YXns;I57fUWUeQ79|&M2XesH_Wj@(3nJY@4odMxaCY1T|S$8 z-u;Gwl7+PeT@&G-Y=X-(B!V@bJ%J38uT-#Bxzig&(q`NwS`PN-zS*#=G-{EWvh~ z$dak<2*xYnER)NzBU5)ooJEXB#Ek-G7*DdhIAg^$e;PFvtQZE zTzMh4NK+BQyL{oGK|NTxaytbDt@l4|?KQhpwlgFKN&|~(Kc4V*Jwl^~sBkDQhZ+;; z!#KPtYlSi}y$NY&LH6dZ8yDW~FdbdRYEsSEeGr6QWxMLimGzNh5<)O=tipnC{3{>m z@s8kVlY<=@qo}Sy{l$-P)8(9d%|o1fO_M|T?oG>CG5>20?Ab(BSrMR6Qjp8Q{(b0? zkjmoqYe|edzA9Tn2;$=6sHv%8&6+hNBqWfMlF~I~*MI>YnbBW=h08B*?9e0OIbwt- znsCJm&v73quDTQz6>#gV@WKo5{r8aMr{TFdOeVPYTC@*8%rz<%AGlqTN9TH4L)b+*jWfFU{zYi0XUU^+ACby?U- ztGu4~XZ+Ct%+rnV^?^T{XzWw8;oa68%BX8_?cC6A?!lvKLX|YoPF}aBvgbhM!KS}e zD!?CY_h`?8UZp~4yEdY#GeXjhb=%vFEnS_&2VeL1dQJ!kGC5n5g8-U_--#koRpHs> zYlFNSQ~-jd7$Q~i{tW%7;I13@vwD9Le{SkH8KlukB&T|enS1tlWNp&YJniJ>w3UGi z^xv!{{Ivg|-jIVTvq^fT-eG4;VGiH!SjCe|f8??s-eCB950dfPo&3CeeTz0^#YQqZ zP-`G8=EyEuLUxl`mdo6In|Ni_@7yrw115j+BLjA9fH@!bA#eZji41KE)xDDW`?CjdgtaD<_Fr`>>t4Qz z!jp$~st;L#dP!!Es)TPuA>WGvHmWSFS5-4tTZCrl!B%xL|Ln%!vrfWU+vMw|l|e5b z|D|1UY(1lH-ptOQGQ6Je3U6#h287~MqOCmyN)7@T^-Z}JwwpD~7#+@xlajb~OEagJ z36VsbBdK?FZo?@1n<(xd21S7bd+S-g#?gWt1c(evr+<$J=sWURqQ^}jrMnTeMg;sU zyAp-@7N$&2@vCfbh!(rmg~Op>sR`^u8)R^G_#6H3BOkT+yROd0QRz-UTyU5h=Zn(FFyh@T^VI8M8by&vAoZ4ceepY?F&=(tW?Sre}ADPecR&)G6xWXgP( zpyy ze<9hOjEddLom0Qz_fLBHHvk`y9BLvD#iMp=sEq#S{fVWlR$osT;ceFY z&ixhDZI~KgdhrHN`-;M2kA33znA;-{y&dyeM{jQ0hqlvBdpMSLd|ppX1d0$SJJz8% zUZ*WnuMkTRv0W#R*d9UDkxP|K8dP2qoc>dT3A~LdG*Xc2CE%^CYd9Xx{B6P8GwaCM z+k*7R62$(TR>yk}8P9bOzRk0rui>>{_R(|D*u&>C^K(dwk72;jF;v$cUt(X9BzpDg z#n7QcsjI7F-MV#@l$6lv>}^IPy!28NIoKTMod?U8!-54cZ5m9U-nqW~L7zUbZk?yU zci;6WIs}3T9)KTzr&Q z9w;&BPrc@4Ix<~%mL#h$D8roCwimoE6o&jOi>;47=d=HIr4J;CP6%j-0r%OwY-b>& z2SeM^PV!0j;MkuF^)*Q5uE`}5(Ae!3PzK=feD?(j#qb=;-uO8+CqDE6$M^;e;89QJD-~$p32{AJ0O!OsS%RL;9x6u(=)@flD1dF zo>$UZJuJNl;R^E?M5vBm1fekM`1jsE{CQ|dhwHi(7u|b!h`C0Buv<5e*HrF-wv8M$ z=@G0S70#S5zh(A@-?`$aw;1{UL!`fU2d97e9Cyw8oOjp%#p3LpZFvNZQiB_%2g)zcL)}rLr^H>+`c7+5gof}u(u@}Qw zo}=Q?iyv!oEMteYX~UXq0E3E0E_$5BnVsA8{4Yt2b`&m`!e?*f@x_~YeD!WYTdG*c z3{Hoe$|4K5-8#I@a%#22*)uZ8%k?-)l$QlIc$FlmcXW(IUcPb%0KvgQ#Kn4ywD|?z zolJy)_*j|vSh>abT;GAnMXeU1qCAE~1+Y6^IGipH94O>p*S^Tig!AExzx-@1u-~g% z4RP@uuj_KDF$Y(9J-4viR8}X9;!toRiI%`4aaJUaV{b(Jq{rlmPaXdEf>lok+}}S5 zs!|)jA5>UXtWZ$z{~9}{|G1+zCVP1SkKTDbmtSx;F$JqgZisLTbSBlQU{|Hg+EUn2 z3F}Is($8tVx}t68MnjmLe&_9D^sSqTA5_Ao&-(e*u3eH@pekdzsKAOF11bh6AzYxu zG0Gi^vB6QOzY;JEEKI30czD3`)O-erwN#;jU#LuFLTHFj( zTJPB^9bj)~D#^U&bbed)CQH71jGQ}9CnmX;t;;*E!qEtw&9eqAODI6r9-sYyaJkWy zdnd46ilE%424vD4YnVqo!T6rzGZZb_W=^P*T*k%jI$k|s;QbpvqQ|~Mul3ArwCOJt z#lmSWGjA%lBHCD(1)&23^{y%a(uJGvwZD)me5YE7BpP)aZH^k%2b0P3EdTTBj{%MU zNO;?`wzZEHLO^h9hsi+p&HsctLZd-Mg@N6IvT+xR;}f7QTT9>y7s?U;?n=2%0ClRl zMWufVIoJ`iO#hLfI%3(<-ZgY|yL2=i`#URX+Gg9bg8J<*+KhtJYPH>3!2M*8>fPew)t+1c4_-n^NDf&%L6>pM>t`oh$yFn>Pu zK1PzOiHY#U6Y%uYzCHN;fe z8H2&(-N+p1{b>&S;@@ze^9D-t5s^1Spkz$Oeep-w^XqW$+JG>s5t`0zgj&4^dNV}z zhM0a3)c!_Q*|q^i|2c}fH)#5SZVKq9f)tISJrza&HOlr{C_T`!A8RGbejSSISs)Ii zQ6QZH(l{UjMZOuO`dyS2OFhZLgFKdu&X9XuK@9qXnpzDP-ZGv0pP7W)E#Y=cTzJcL z3X1)db!z6dX}39f?z!jCXgn+Fxi4h1>vK^D+12Jj_?<8;BBzrwjs z;r?kO9_Fg+waqtd2qrn%pQz9yh9}!e@9BBhwr%qy=I-0qv*6veJ+D>yoh5l(|LgmV z`QQ;!m%Pk)<7%!=$mWf_bu7%<&Y|kIWl8szwKghrzx{4@U-&NLqJ}`P;V|xOn06)U zp#w1{_Q4z!)v`iyU)XatjDGp>p`MZPNEj$7YmiZrZ#Sf2g`8U^a z|L+g6Fmo|(*|QPVsdR+vqlhvk5~>Yj;Im($FRnzTmeCp7HuhBHh4aZH6Zz$}@%;M6 zNTe=$z8Xs%86V8$^htLy^xq$l`rT5r5l6tKCV z$_|x&{#WB86_{31krEV6A9Et7Uu0p%b1PBnTi&C+dqcSP){_iaHEiZ0sH>LTi?JJhzL$aBBldJRvMH2W>>+KXGqfPYc7en7cvBV{YAo-Eww<{14)zI(2 zSmG1S2ua{_{j+3pw{OfRAwtK8@1H@xeo?K?4;d26S6`gPn#KEZyFFt+JRb%CtD|GY zm%3rCEJ=cgAG#U6qXHzx=wA-MjNRurChb;6DH&?L+`Yrb$NdO-77K~TwB0t4Ng&Y)(Ud+*9LSwfgmj0 zK%ar0@kYl69zA^|G!7Y!t>f>0@+FVaXYj~?`ZUI*V2n?1cadwUuI7(79%bP}XY<@J zh37{~q_j>e)Gk&P%S?)w=n=rDrn*Asx1(Q3LJjT?It%1Wc9yCtn5Qb`J5k79QA->; zW+*WXbDJp>b_5WH#%HEpt=+*%KQ3V8!c~m=b9sw%vII6sW|OEU5-pS6;q;e-Xi^&$ zhocB(1!|q%*Eki5`tZL;oWGCUTod2F-50m3{qK(CP!n7pN>GIvZM_bSU5g@=<8H-D z|IByvba7)OsA8d?{crwOLV1wLR-|5UMbAqj7>zrt#c`v1ALm5MT)HBMXFptvs+ko- z0Jn=&`nt>M3VJ~2E@Y;|zzXFB&Q~U(Il_tKdd{SeTMH=EyDcb+47lhc+jr4;|((asHv%E%a;9K%XHMn-eH@(DI6qk-(VGJ0Kz~$zhiJ4 zQa}^M(b!KO6~siM2m#fFC@VIgRKJJfz8h#Bkta~(TTt?fTU71HtrI@}-4;3&MW|P! zif@{*JJQELg)}n+33?7bdhPovFC>YmQGJL%c_<+n9dO+4BKS+@N_!6={rqRU<$}!N zJn;G-JoWJkqT@ZvOS0_dr17Kp;@e+4H`p#hL_`F`hYu${KA!UOayD(+#Ol?n*|~Ek z`T6)(z1wz?7}lT!q9`o+^<$p6VG8a*qZCh|OCXdJZ|YG; z-@bjRtab9}yZ&yT|L;L;+>Z9qR}TLjF{~#;p17Kj^aS+bVWu{O&Vp zkVjHO&IHGLgknR{^akxHl)@@FxXF86wI2G8Lxd|JuRyr=p&&pr8I(aNTh~HWp7%aY z(TG7KA*2k%UkFN22nSAvssxk`i^0*5hcZ1GVGhiA)0w319j&`(e>msdFq1u5t%>V@ z-?E0M?_1G+pFvSb;mH6voKRg2`!n}3cHE7JH+a1Vr19aGvl-F18*Zl+6wrBb$aX7w z%GPWrX6y|V4+`hEXOj`Vd(kI&65Wjbh|vLbUcR8JO3i~0cH_-A_aSxAI8kcL<)