-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSea level predictor
1 lines (1 loc) · 196 KB
/
Sea level predictor
1
{"cells":[{"cell_type":"markdown","metadata":{"id":"Nma_JWh-W-IF"},"source":["<div class=\"markdown-google-sans\">\n"," <h1>Welcome to Colab!</h1>\n","</div>\n","\n","If you're already familiar with Colab, check out this video to learn about interactive tables, the executed code history view, and the command palette.\n","\n","<center>\n"," <a href=\"https://www.youtube.com/watch?v=rNgswRZ2C1Y\" target=\"_blank\">\n"," <img alt='Thumbnail for a video showing 3 cool Google Colab features' src=\"\" height=\"188\" width=\"336\">\n"," </a>\n","</center>"]},{"cell_type":"markdown","source":["import pandas as pd\n","import matplotlib.pyplot as plt\n","import numpy as np\n","from scipy.stats import linregress\n","\n","def draw_plot():\n"," # Read data from file\n"," sea = pd.read_csv('epa-sea-level.csv')\n"," lreg= linregress(sea['Year'],sea['CSIRO Adjusted Sea Level'])\n"," slope,y_intercept = lreg.slope,lreg.intercept\n"," # Create scatter plot\n"," plt.plot(sea['Year'],sea['CSIRO Adjusted Sea Level'],'ro')\n"," # Create first line of best fit\n"," next = pd.Series(list(range(len))) +sea['Year'].max()+1\n"," bestfit = sea['Year'].append(next)\n"," \n"," # Create second line of best fit\n"," secfit = sea[sea['Year']>1999]['Year'].append(next)\n"," plt.plot(bestfit,slope*bestfit+y_intercept,'b+',secfit,slope*secfit+y_intercept,'p')\n","\n"," # Add labels and title\n"," plt.xlabel('Year');plt.ylabel('Sea Level (inches)')\n"," plt.grid(); plt.title('Rise of sea level')\n"," plt.legend(['Sea level','Upper Error','Lower Error','Line of the best fit over'])\n","# Save plot and return data for testing (DO NOT MODIFY)\n"," plt.savefig('sea_level_plot.png')\n"," return plt.gca()"],"metadata":{"id":"DdeEIhqo_EZT"}},{"cell_type":"markdown","metadata":{"id":"5fCEDCU_qrC0"},"source":["<div class=\"markdown-google-sans\">\n"," <h1>What is Colab?</h1>\n","</div>\n","\n","Colab, or \"Colaboratory\", allows you to write and execute Python in your browser, with \n","- Zero configuration required\n","- Access to GPUs free of charge\n","- Easy sharing\n","\n","Whether you're a **student**, a **data scientist** or an **AI researcher**, Colab can make your work easier. Watch [Introduction to Colab](https://www.youtube.com/watch?v=inN8seMm7UI) to learn more, or just get started below!"]},{"cell_type":"markdown","metadata":{"id":"GJBs_flRovLc"},"source":["<div class=\"markdown-google-sans\">\n","\n","## **Getting started**\n","</div>\n","\n","The document you are reading is not a static web page, but an interactive environment called a **Colab notebook** that lets you write and execute code.\n","\n","For example, here is a **code cell** with a short Python script that computes a value, stores it in a variable, and prints the result:"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":34},"id":"gJr_9dXGpJ05","outputId":"9f556d03-ec67-4950-a485-cfdba9ddd14d"},"outputs":[{"data":{"text/plain":["86400"]},"execution_count":0,"metadata":{"tags":[]},"output_type":"execute_result"}],"source":["seconds_in_a_day = 24 * 60 * 60\n","seconds_in_a_day"]},{"cell_type":"markdown","metadata":{"id":"2fhs6GZ4qFMx"},"source":["To execute the code in the above cell, select it with a click and then either press the play button to the left of the code, or use the keyboard shortcut \"Command/Ctrl+Enter\". To edit the code, just click the cell and start editing.\n","\n","Variables that you define in one cell can later be used in other cells:"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":34},"id":"-gE-Ez1qtyIA","outputId":"94cb2224-0edf-457b-90b5-0ac3488d8a97"},"outputs":[{"data":{"text/plain":["604800"]},"execution_count":0,"metadata":{"tags":[]},"output_type":"execute_result"}],"source":["seconds_in_a_week = 7 * seconds_in_a_day\n","seconds_in_a_week"]},{"cell_type":"markdown","metadata":{"id":"lSrWNr3MuFUS"},"source":["Colab notebooks allow you to combine **executable code** and **rich text** in a single document, along with **images**, **HTML**, **LaTeX** and more. When you create your own Colab notebooks, they are stored in your Google Drive account. You can easily share your Colab notebooks with co-workers or friends, allowing them to comment on your notebooks or even edit them. To learn more, see [Overview of Colab](/notebooks/basic_features_overview.ipynb). To create a new Colab notebook you can use the File menu above, or use the following link: [create a new Colab notebook](http://colab.research.google.com#create=true).\n","\n","Colab notebooks are Jupyter notebooks that are hosted by Colab. To learn more about the Jupyter project, see [jupyter.org](https://www.jupyter.org)."]},{"cell_type":"markdown","metadata":{"id":"UdRyKR44dcNI"},"source":["<div class=\"markdown-google-sans\">\n","\n","## Data science\n","</div>\n","\n","With Colab you can harness the full power of popular Python libraries to analyze and visualize data. The code cell below uses **numpy** to generate some random data, and uses **matplotlib** to visualize it. To edit the code, just click the cell and start editing."]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":281},"id":"C4HZx7Gndbrh","outputId":"46abc637-6abd-41b2-9bba-80a7ae992e06"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAXoAAAEICAYAAABRSj9aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvXe4JOdd5/v9VejuEydogkbBki1L\nloUlW7IALWYXgw2XLFgvcAnGpDULvg/2xXjx8rCENXgNlzXBrGG9zlg4YBks27JXsiyhHGYUZjQa\nTdDkmZP7dK5c7/3jrbdSV3VX9+kzJ8z7eZ55pk+f6urqPlW/+r3fXyLGGCQSiUSyeVHW+gAkEolE\nsrpIQy+RSCSbHGnoJRKJZJMjDb1EIpFscqShl0gkkk2ONPQSiUSyyZGGXrLhIKI/IqLPrNK+/56I\n/utq7Dv2Hg8Q0a8Fj3+eiO5Zhff4PSL66Kj3K9mYSEMvKQwRfTcRPUpEdSKqEtEjRPTta31cRSGi\nbxDRf8t4/nYimiUijTH2nxhj77tQx8QYu4Mx9gMr2QcRvZGIzqb2+37G2K+t7OgkmwVp6CWFIKJp\nAF8F8CEA2wFcDuCPAVhreVwD8ikAv0BElHr+rQDuYIy5a3BMEsmqIw29pCjXAQBj7LOMMY8xZjDG\n7mGM7QcAIrqGiL5FREtEtEhEdxDRVvFiIjpJRO8hov1E1CaijxHRbiL6OhE1ieibRLQt2PZqImJE\n9HYiOk9EM0T0O3kHRkS3BSuNGhE9R0RvzNn0XwBcAuDfxl67DcCPAvh08PMniehPgsc7iOirwX6r\nRPQQESnB7xgRvTK2n/jrtgWvWyCi5eDxFTnH/ktE9HDw+D8TUSv2zyGiTwa/+2UiOhR8V8eJ6NeD\n5ycAfB3AZbHXXZaWt4jox4noYPBZHiCiV6f+Nr8T/G3qRPR5Iqrkfd+SjYc09JKiHAHgEdGniOiH\nhFGOQQD+O4DLALwawJUA/ii1zVsAfD/4TePHwA3U7wHYCX4u/lZq++8FcC2AHwDwu0T05vRBEdHl\nAL4G4E/AVxq/A+BOItqZ3pYxZgD4AoBfjD390wBeZIw9l/GZ3w3gbHB8u4NjLdIzRAHwCQBXAXgZ\nAAPA3/Z7EWPszxljk4yxSfDvcAHA54Nfz4PfkKYB/DKAvySiWxhjbQA/BOC8eC1j7Hx8v0R0HYDP\nAnhX8FnuBvAVIirFNvtpAD8I4OUAbgLwSwU+p2SDIA29pBCMsQaA7wY3dP8bwAIR3UVEu4PfH2OM\n3csYsxhjCwA+COB7Urv5EGNsjjF2DsBDAJ5gjD3DGDMB/DOAm1Pb/zFjrM0YOwBuOH8249B+AcDd\njLG7GWM+Y+xeAHsB/HDOR/kUgP8Q81h/MXguCwfAHgBXMcYcxthDrEBzKMbYEmPsTsZYhzHWBPCn\n6P4uciGiMfDVx18zxr4e7PNrjLGXGOdfAdyD2MqkDz8D4GvB38cB8BcAxgB8V2ybv2GMnWeMVQF8\nBcDrih6vZP0jDb2kMIyxQ4yxX2KMXQHgNeDe+18BQCDDfI6IzhFRA8BnAOxI7WIu9tjI+Hkytf2Z\n2ONTwfuluQrATwWSRI2IauA3pD05n+FhAIsAfoKIrgHwHQD+Mecj/38AjgG4J5BL3puzXQIiGiei\n/0VEp4Lv4kEAW4lILfJ6AB8DcJgx9mexff4QET0eSEg18BtZ+vvN4zLw7w8AwBjzwb/by2PbzMYe\nd9D9t5BsYKShlwwFY+xFAJ8EN/gA8H5wb/9Gxtg0uKedDnoOypWxxy8DcD5jmzMA/oExtjX2b4Ix\n9oEe+/00uCf/CwD+D2NsLmsjxliTMfZuxtgrAPw4gN8mojcFv+4AGI9tfmns8bsBvArAdwbfxb8L\nnu/7fQQ3k+sA/GrsuTKAO8E98d2Msa3g8ovYX79VxnnwG6LYH4F/t+f6HY9kcyANvaQQRHQ9Eb1b\nBBWJ6EpwKeXxYJMpAC0A9UA3f88I3va/Bt7xt4Hr0p/P2OYzAH6MiP4vIlKJqEI83TAz+BnwaQBv\nBvAfkS/bgIh+lIheGRjGOgAPgB/8+lkAPxe85w8iKc1Mga9QakS0HcAfFvmwRPRD4HGKnwziCYIS\ngDK4Zu8G28VTMucAXEJEW3J2/QUAP0JEbyIiHfxGZAF4tMhxSTY+0tBLitIE8J0AniCiNriBfx7c\naAA81fIWcIP4NQBfGsF7/iu4dHIfgL9gjHUVFjHGzgC4HTxQugDu4b8HPc5txthJcCM3AeCuHu9/\nLYBvgt/AHgPwYcbY/cHv3gkeUK4B+HlwTV3wV+Aa+CL49/SN3h8z5GfAg6WHYhk0fx/o/L8FbrCX\nAfxc/LiD1dVnARwP5KuExMUYOwy+evlQcEw/BuDHGGN2weOSbHBIDh6RrDeI6GoAJwDoMrddIlk5\n0qOXSCSSTU5fQ09EVxLR/UT0QlBw8c7g+e1EdC8RHQ3+F8UutweFF88S0V4i+u7V/hASiUQiyaev\ndENEewDsYYw9TURTAPYB+AnwgooqY+wDQabANsbY7xLRJIA2Y4wR0U0AvsAYu351P4ZEIpFI8ujr\n0TPGZhhjTwePmwAOgeff3o4oY+FT4MYfjLFWrKhkAsUqCSUSiUSySmiDbBwEyW4G8AR4Pu9M8KtZ\n8BJxsd1PgpfD7wLwIzn7ejuAtwPAxMTE66+/Xjr9EolEMgj79u1bZIx1tftIUzjrJpBk/hXAnzLG\nvkREtaBwQ/x+mTG2LfWafwfgDxhjXT1K4tx6661s7969hY5DIpFIJBwi2scYu7XfdoWyboIiizvB\nW7mK/Oi5QL8XOv58+nWMsQcBvIKIipZqSyQSiWTEFMm6IfDeG4cYYx+M/eouAG8LHr8NwJeD7UUl\nIYjoFvCKvqVRHrREIpFIilNEo38D+GCGA0T0bPDc7wH4AIAvENGvgjdM+ungd28B8ItE5ICXgf9M\nkY5/EolEIlkd+hr6oNtfXjOmN6WfCDru/VnGthKJRCJZA2RlrEQikWxypKGXSCSSTY409BKJRLLJ\nkYZ+SBaaFu4+MNN/Q4lEIlljpKEfki/uO4vfvONpzNbNtT4UiUQi6Yk09EPSNB0AwIFz9TU+EolE\nIumNNPRD0rE9AMDz0tBLJJJ1jjT0Q9Kx+eAj6dFLJJL1jjT0Q9IOPPr9Z5fX+EgkEomkN9LQD4kR\nGPrFloP5hgzISiSS9Ys09EPStlwoCjf2Ur6RSCTrGWnoh6RlOdgyuQyASUMvkUjWNdLQD0nHdlHW\nLUyOd6Shl0gk6xpp6IekbbtQVRdTE8syICuRSNY10tAPScf2oaoepidqWGg6mG/KgKxEIlmfSEM/\nJKbtQVVdTE/WAMjCKcn6Zq5h4j/9w160LHetD0WyBkhDPwS268P1AU3xMD1RB8Bw4GxjrQ9LIsnl\n8eNL+MbBORyelefpxUiRmbFXEtH9RPQCER0koncGz28nonuJ6Gjw/7bg+Z8nov1EdICIHiWi1672\nh7jQiKpYVXWhaR4mxzo4cK62xkclkeSz1LIBAG3LW+Mj2Ry0N9jKqIhH7wJ4N2PsBgC3AXgHEd0A\n4L0A7mOMXQvgvuBnADgB4HsYYzcCeB+Aj4z+sNcWURWrqvx/GZCVXAgOnq/j0ZcWh3pttc0NvejR\nJBmeA2fruOmP78Hppc5aH0ph+hp6xtgMY+zp4HETwCEAlwO4HcCngs0+BeAngm0eZYwJq/c4gCtG\nfdBrjSE8eoX/Pz1Zx3zTCS8mScRy28acrBweCX9z31H8wZefH+q1S8G5aTgbyxNdj5yuduD5DOfr\nxlofSmEG0uiJ6GoANwN4AsBuxpiYvDELYHfGS34VwNdz9vV2ItpLRHsXFhYGOYw1Ryx/NZVfNKUS\nN2TLHWno07zvay/gNz6zb60PY1PQMNywPfagVNsWAOnRjwLD4d+h6Wyc77KwoSeiSQB3AngXYywR\n0WGMMQAstf33ghv6383aH2PsI4yxWxljt+7cuXPgA19L2qFGnzT4G023uxAstWzMydTTkdAw7aEN\ndejRS0O/YsSKftMZeiLSwY38HYyxLwVPzxHRnuD3ewDMx7a/CcBHAdzOGFsa7SGvPeJiEdKNMPQy\nda0b0/HC4LVkZTRNB6bjD/XaxRa/2UqPvhvH8wdy0sR3OOzfYi0oknVDAD4G4BBj7IOxX90F4G3B\n47cB+HKw/csAfAnAWxljR0Z7uOuDdDBWDT16eRGlMRwXpr1xLoj1TMty4XgMrjf49ymDsfl86L6j\n+MkPP1J4eyHdGBvIo9cKbPMGAG8FcICIng2e+z0AHwDwBSL6VQCnAPx08Ls/AHAJgA/zewRcxtit\nIz3qNaZjRemVQNyjH04/3QxYrgeFCLqa9B1Mx4Ph+PB9BkWhNTq6zUErcCQ6jodptXh4zfV8NIzA\nOMnVVRcnlzoDZdCIFf1GksH6GnrG2MMA8q7QN2Vs/2sAfm2Fx7WuEV6RltLoWxexR/8rn3gKr9w1\niT++/TWJ54WOaboexktF/ApJFrbrw3Z5GMywPUxX9MKvXe5EDoj06Ltpmg5M14fnM6gFnBEjdk5v\nFGRl7BB0UumVqgzG4sRSC2eWu9PNTJfLDNLArIz4uTXodxlP++1sILnhQlE3+I2waCwp1Og30Dkt\nDf0QtG0PCvlQFO5hqYoHgF3Uhr5puplLWTsw9BtpmbseaSUM/WDn2VKQWglEsqMkomEOFr8Q57Jw\nYjYC0tAPgWF70LToj0wE6Kp/0WbdMMbQtrzMYhyRmdCW2vCKaJor9+h1bfj0zM1MI/Doi16/YTB2\nA32X0tAPQdtyQ31eoGnumnj0z5+r41svzl3w941juT581p2FwBgLPfqVGpizyx28/n334vhCa0X7\n2ai0RiDdVModecPNoGkGQe6CMbbOZs2jlyTp2F6ozws01V2T9MoPP3AMf3jXwZ7bPPbSEn78bx9e\ntRNTeJvp/bs+gx+U0a3U+zmx2MZS28ax+YvV0EcB1UEzZ0RDs7GyIWsaUrieD2PAVaeQvzZSeqU0\n9EPQsV0oSjKVUlGcnks/y/Xwu1/cP/K+L8ttB60+ZfFPn17G/rP1Ves5I1YyaUMf/3mlHr24UVys\n8thKpZuS7kLTHGnoU8S/16Ir8o4jPfqLgrbtQkl59Kra29AfnWvh83vPDN19MI/ljtX3wl8Olu7x\nNLtR0so19FEcY6UGRnhP69XQO56Pzz15Gp7P+m88BCuVbkq6DVXxNpSufCFIGPqC382mrIyVdNOy\n3DB3XqCqLlpmflMzcUKNOtd+uWPDcllPAyMM/Go1XRNGyEplIVju6Dx68fr4hbmeeOTYIt77pQN4\n/PjqdPxoxT73oMZ6qW1B10yoqhfKFBJOI7YaLpqRJJyOjbQ6koZ+CDqWG7Y/EGiq29PbFF0HWyM2\nVEVygGuBga+tlqEPPpPlMPD+dpykR7+5pZuFJk9hPJdRSzAK+Ofm3+2g3+Viy4SuWVAVF3Yfp+Bi\nI27oi55boqWHlG42OR3bzQ7G9rgAxUk0yjYJpuPBdKJqyTyqgYGvtldHuhFBLAbAjvVhiV8IKy29\nD6WbderRi8yW1epR3jRdlDQPquKHGnFRlto2SroVOicbKYi42jSMwSQxxljowAz6d1hLpKEfgo7t\ndXn0ap+sG2HoR5mZI/J/gd76ouhFvloefVxOiTcwi0s5K5du1neHUNEGeKa2OgHvpulC01xoqj+Q\ndOP7DPWOG2r0wMaSHFabeH//Ilk3luuH/dg3UrxDGvoBYYzBcPwujV5TeWdBJ6ezoDCGo9SYa3FD\n38MACgO/Whp9/L3j/T+sEWbdrHeNXqQwrpZH37IcaKrb16FIUzcc+AzQdTts1bGRDNRq0wjOJ6Ji\nrYrj53E6JrWekYZ+QGzPh+dH/W0E/YaPRB79CA19LIsmbznu+ywsCFleJekm7mXH5RozEYxd2ec2\nw6yb9dkhVLQZOLvcXpX9t0wXihJkzgwgGYiVRkmzQo9ettOOEKvisZJdqGBKnMeaZkuNfjMjTgZx\n0QiE4c/zOIW23ByhoYpLMXk3kIbphEVLq511AyQDsNYIg7Hi9Y0hR+mtNostbuhn61YiID0qmqYD\nTXWgKM5A36WIHZTiHn3sRiHqO87Viq9E/vwbL+LOfWcLb7+eaZoudNWDpjmFpBth3Eua3ZV8sJ6R\nhn5ARPe/XI8+52QJs25G6dEb/dvPxnPnq7HmVr1YbFl4/Z/ci8deKpYqGA+QZnn0mprd8GwQxOfr\nVxy2ViwFE5wMx08E+EZFI5BuFMUd0NDzv3lJt8K2HfHXH5vn9R33HpwtvM9/2ncGXzsw03/DDUDD\ndKBr/HststIR311Jt8GwceQbaegHROTapnvd9GtVLAz8sMOdsyji0QsvvqSbYfZNPx4+uoillo1j\nBfvKxG9ucQlJePe61r+oqx/mOi+YqrYdVMp8eMVq6PQt04Wq8bTe9gCrwqW4Rx9kisX/FiI991S1\n+OCNWsfBXGN1YhEXmqbpQNOcoOCx//cqvjtd5zdQa4PUJUhDPyDhGMGu9EphiLINWlQwNUpD31+j\nFzeDibFWYvteCE++aAEJ/2x8CZvw6J3I+1np526vQtbSqOjYLiyXYXqiDgCYWQVD37Y8HoxV3IHi\nHdVWXLrp7rooNOpTi8ViC6bjwfEYFjbJwPeG4UJR7SDI3f97NWLSTfzn9U6RmbFXEtH9RPQCER0k\noncGz28nonuJ6Gjw/7bg+euJ6DEisojod1b7A1xowqEjGQVTQL5nLTz5URqqmuGEN5i8/YoA7PhY\nG7bLCkkoD7+0wPdZ0AtvWTx9D0hp9MGyVtftFQdjxarBcvMzm9YKkXEzPVkDAJwfcYql54tMLweq\n6g20Olpq29A1D4rix9Ir44aef68nloqt3oSzsNR24G+Cwqu6aUNXbWiKV8gZMUKPfpMZegAugHcz\nxm4AcBuAdxDRDQDeC+A+xti1AO4LfgaAKoDfAvAXq3C8a04YjM1ogQDkSwvC0Hcsf2QBnHrHQaVs\nAWC5hlRINxOVVuLnPM4ud3Bu2QyOtahHzwtygGTbA+HR8z7oKzP08devtwEvQh6ZGm9CITZyj16c\nU5rmBlk3gwVjxU1YnKPx71JIN2eXzUIVs2J7z0/GiDYqDcMO01aL3ECFoRce/UbJvOlr6BljM4yx\np4PHTQCHAFwO4HYAnwo2+xSAnwi2mWeMPQVg458FGQjPMp1109ejt6Lq0VENf6h1bGiqCV3zc/dZ\n6zggMIyPcQ02PlYuiygAywb06LmhN1MavaLwmoOV9lgxHQ9EfB/rLZc+DHiWTIyVrZF79KGhVx2o\nqgvDLv5dij43QHTOGhkaveMxzBbobhqPC4m2DxsZXojGA92dAt9rJyZHApvLow8hoqsB3AzgCQC7\nGWMi9D4LYPeA+3o7Ee0lor0LCwuDvHRg/uqbR7D/bG0k+4oGgw+WR881VrvnNoOy3LGhazY01evp\n0Zd0F7omqmN7338fO76Esu5gomIW9sJblodyYOiNREGJB03xB5YbsjDs6D3WW0B2MaaDl0ptnB8g\nVbEIIqtJU/nAG8djcGPy1dG5Jt731RfwP+8/hi/sPYNDM43wd0stK/zbKwqDQn5ibmw95pUX0enj\nXvxGN/SM8RoTHoztXfAoEK08dH1jefRa0Q2JaBLAnQDexRhrEEXT0hljjIgG0iMYYx8B8BEAuPXW\nW1dN7HM8H3/1zaNoWy5uumJr4ncf+tZRXLZlDG95/RWF9ycMVlq6URQfCvmZwVjL5Rfn5LiJVqeE\npuVi1xCfJc1yx4JecqD2SA2rdRxugPT+HSwZY3jk2AK2Ti/AMKcKxRMYY+hYHi7ZFnj0brzXjR9o\nw1EzLVWhvF31xHB8TIybMO2xwob+4Pk6Lp2u4JLJ8lDvWZQoV91CuWTgXK14BksRhOwngrEA9yyn\nVe6nfWHvGXzs4RPh9goBd7/z3+L6S6ex1LZQGov+5ukWCnXDgap48HwVp6odfFefY4nfGBZaGzsg\n27E9XjWsuiAl6F9jedgynu//itXUppNuAICIdHAjfwdj7EvB03NEtCf4/R4A86tziCtDZBVkLfc/\n++QpfOaJUwPtT+jWaekGAHQtu4xaeGTlEr8wRuXR1w0XumYH+mK+R6+qFnStfxuEU0sdzDVsbN+y\nCFUtNqTCdPgYwVKpW7qxHN6Ea6XNtJygGjn06AtIN4wx/OxHHseHH3hpqPcchKWWxT+n4qFSNjDX\nsEYaqGzGNfqMzJnljoPxioU33/ZVvOHmb0FVXXzw3iNgjGG57YSpgACC9Mzo+2uYDibHW1AUHyeX\n+nv09c7m8eiFTRDSDdC/303HcYNzWrSTWF+JAXkUybohAB8DcIgx9sHYr+4C8Lbg8dsAfHn0h7dy\n6j0MfdN0cXi2MVBwtG3zDAZF6X6NlpOiJTzQSokv6UfRgdF2fXRsH7reu1qSa7R2ZOh7tEF4LOil\nvn3LIi8gKWDoI/3YhaL4XVk3iuKtuJmW+GziRtkscKNcbNlomC5m66vvdS61bZRLDoiAStmA47Ew\nQDsKIunGycyc4bEaC6rqY3K8hZftOYZ7Ds7hsZeW4PqRngxwQx+XbmodG5pmYbxi4PRS/5VI3eAx\nH1XxN7yhb4QrJSdcKfVzwgzbg6pGGUybyaN/A4C3Avg+Ino2+PfDAD4A4PuJ6CiANwc/g4guJaKz\nAH4bwO8T0Vkiml6l4++LMPTp0nnGGNqWh47t4+wAPcQN24WuZt/F86ZMiZtMpcyNzig0ZvG5dM2G\n0iM1bLljQ9dtKAqDrnk9PfrHXlpEpWRjYqwV3LT6x9Pjhl5T/K48ekXxQm+p6PDlNEZo6It79KeD\nAqClgtXAK6HatsOA51hwMxpl5k38O87KnFkOjLXg6suOo6Q74SzhhKFXnMRqoGbY0FQHY+UmTiz2\nT7GsGTzmUylbG97QC0lMT3j0vc9Rw/agKd6KV6kXmr4aPWPsYQB5wuqbMrafBVBc9F5l8gx9O9Dn\nAODwbBNXbh8vtL92RotigaI4mR5BM5RuAo9+JIaeX7ziJM3zROodB3smo2BhXqtirs8vYuv0PIhQ\nuICkncgI8btaIBBFcsOwAVlh1IRHXyTf+Uxg6C9EYc9C0wwNfVgdWzNx04iugngwNitzhgflo+9E\n01xcfdlRHDl1AwDe0EygpAqu6oaDiUkHimLh1GIHjDHE429pah2Hn3Payg39YsvC3Qdm8Nbbrur5\nnquFqCHQNBe+z9+/X0pxx+HXv7IJPfoNjWhD2jCSBi7ey/3wXLPw/rKGjghU1c1sWhZKNyP06EX2\nTC+N3nQ8WC4LMwQ0zUI1J+vmxGIbS20H27fwmbaqUixTRtzEVNWFoniZHr34vgbpuhjHSKS0sUIe\n/ZnQo1+dRm5xltpW6DWLv/EoPXohValq9k1TZF/FuXLPCVRK0Q1ewAP3QaovY2gaLnTNwXilDcPx\nwwyiPOoGN/Il3cRcc2Wf8SvPnccffPkgThWQjFaDuHQTVbb3PrdM24OiuIWkm/VU2LfpDX2eRh//\n+cXZQQy9B0XNNpZ8nGCWoefPVUrZhv6Bw/NYag3mHSUMfY5RFjKN8PZ01cptbCZ6nUyO8+W7WjCv\nOF3ME9foDYfr8yv16IX3qip8ylIRjV5IN/WOu6qj80TAU9QR8L+HP9IUy5bpQtc8vtIK+9VExrph\nuOHNXKCpHl5+xYsg8sNVBhBo9La48XpwfR6MHK/wQOypPgHZ5Y4NTbVRLpkr9uhFttKZ5bUy9EGq\nZJBeCfQ/Rzu2B0VxQMRAxJA3IPxMtYNv/9N78dGHjo/2oIdk0xt64bmnjavQ51TFxaGZ/Bz7pukk\nvLO25UKhbEOjqW6mtymeK+kWFEp6pB3bxa988il87qkzBT8RR+Qz67qTa5RF4FV4e7puYznH0M8F\nQUsRMBb52v28knZMPyZyEz3ouUfvZzbTGoQopdWDpnkDafQMq9eeWRxbfNVEBIyVTZyPBYGPzTcT\nee+D0rIc6Gqy9Yb4Ttq2B89HQroRXHnpSbzx2+9BuRT36CNDL6QLXXMwPiYMfW+jW+tY0DV+Y6sb\nHuwVdG8Uf5cz1bVpkNZMePTFsm7atgNF4TddTfFzNfr3fe0F1Dou/uwbL+LYfLH2EqvJpjf0wqM3\nnaTREsu2rVPLOLHYSZTux3nfV1/AW/7u0fDntuV2FUsJ1Jy5sVF6nANNS6a3LbVs+CwpJRWhFnrr\ndmYRTXwbsXTXNTvRtjiOqIoUOnhR49xMZN0k2xFbXR79yqQbVXGhKtkB7zQnl1rhZ1jqI0esBOGV\nlmMpjPGiqX89soA3f/BBfOmZc0O/R8viYwSBqDBP/F2W29HfNg1RUrYB+DkqqpTjAf2xcgcE1tej\nrwerBxEYX0mwWzgiZ9fKozdcKOQnnJFCWTeKcDyyDf0jxxZxz8E5vGzPSyBy8N47n1vzvkCb3tDH\nDWhcrhGPt04vwfOBl+azT/CHji7gfM3EfBDUa9tR5kMaLShPT6drNs3ghCIfuuompAehIRdJZYwj\n0tzSRTRxljtJj76kO+jYfqYXNtcwUSk5YdpoVnZHFu2YfqwofkKHN92kRr9i6Ub1oKpO3xYItutj\nvmGHTcYGlcUGQQwciUsnlbKB87UO2paL9975HADgmdPLQ79HM5guBXS3MRDGupTh0WehKl7XazXN\nhaIwjFesnu2KfZ+hZXrQVAdlnV8PK5FvQo9+gKw3geP5uO3938SXnx3+BtowHZT0QBLr0xxQ0Ild\n/2oqJgUArufjD+96HuMVA9ddfQjXvfwA9p6q4Y4B63VGzaY39PWEoY8eixvAtukqAODwXANpZuoG\nZur8RH7hPP89D8Zmnwyq6sJn3SlXCY01lc0ijNCgqYeitUH8JE3vY7mT9PbE/zWj2/ubrZsolaIL\nLmtIRRYt0w3yqr2uE98SlbEZRT6DEEo3ileob/i5mgEGvloDVjcgG6+KFVRKBhaaNv7sGy9ipm6i\nUu6sqAVH0+T90gF0acm11M28H6rKpSbPZ5FHH7TmKPdJsWyaLhi4XCgK5FZi6MVq4HR18PGLyx0b\nsw0Lz5xeyffqQgu+VyL0bCUi6DiRR59OPgCAO544jWPzbVx39QGoio/Ldp7Bjq3zeP/XDw00xWvU\nbGhDbzoeHj++1HO8XD3HoxeAI2v+AAAgAElEQVSBmC1Ty1DIzwzI7j0ZeWEHQ0Pv9fToge54QHzp\nrSh2QmMWssKgHr1IcwNiQ09S+4ikm8DrC7zOrH43M3UDZT0etCuW+96yopuYkuqsaLlsJMHYqDU0\nl836DW8R+vwWYehX0aOPD/YQVMoGfAZ8+rFTuPLSk7h0xzkcnm0OrWc3zEhD5gFZH51g5RTezPWi\nHn0UiI2km6CVdaXdU7qpxVJ6yyMw9CJedGYIQy8ctZUEvRuGA1WNt4fwcudJCEwnclwUxU0EY9uW\ni/9xz4u4ZMsCdm3nE7uIgBuueQ6m4+FzT54e+lhXyoY29AfO1fF/f+RxPN5j5F2tE03Wid8Q+HLY\nh6Z6mBxv4/BMlqGvQlM9jFdMvDDDK2gN2++aLiWIGpslf980I3klnYK5GJzsgxrBWscJi2Q0cfHa\n3dKNpvKAKBB5fVkdLGcbZqjPA5FE0O8GxG9ikcdtBYbe9xkcj0FRPCjEKykHvZkJTCfav6Y6fefu\nCkM/PVkDYbRVqmmWWhkefZkbn7GyieuuegHTE3W4PnBkgDTeOK1gXqwg3q+mZgzu0QP85tkIpZvI\n0NcNL+EcxYmvHkRMYlhDzxhDzXBB8FFtDz5qUhzjSvoKNbq+194ePWMMph3p+emY1MmlNhqmhysu\nPYl4WcBYxcBY2ZIe/bDcePkWaAqwr4f+WTdsjFX4yZD06B2UAgM1MV7Hodl612ufOlnF9GQVkxNV\nPH+uBsvlfV3yPPq8cYItK/IcNNVJeKTCUAyaW7/csaBpos+40Bfd1DZRMzMgJt2kslAs10Ot4yYN\n/QAavaqIlYUXBvrE0BFxk0k30xqEjs1vForCguKw3vs5U+1AVXxUSibKJbdvbvhKqLajPjeC6YkG\nyiUTN1zzDDTNw/QkP7cOnOs+x4rQsrxEAkC8G2g9lULbj6hHS4ZHH2Te5LVCiG+vKD5KuouFIVdL\nhuPBdhkmJ/jNb9CAbGTohzeedcMOb3KAKHjMP7cs1wcDYh69F66sgKgPUDoAzp/rXJB2HHlsaENf\n0VVctUPB3pPV3G3qpouxcrehj+tzk+MNzDXsRMOmluXixdkmtk1XMT3RwOklI/Re8jT6POkm7jmk\nq1iFrDDIHFCAG2s9NPTZwU4u70QnnTgB05k38w1+DKLYJ/5Z+hnVpumG+rGi+KGBj3vh/BiHb1Xc\nsb1wFaVpLjqW3zOL4Uy1g/GKASI+r7boUPQ8XM/PlYuWWjbKJTvhwZVLFt747fdgxzbefnu80kZJ\nc/H8EIbe9xk6th9KfwAS4wTTq7Z+xHvl1A0nlN34cfLrJK+5WXr1UNaHr44V5+D0BNfY89qQ1A0H\n//7Dj+BEqoWyMPS1zvCD55spj15VsyvbBYadOqcVD2aiFUX+6qqyCl1NB2FDG3oAeMVuYP/ZemZ6\npO8ztE0vXEo3E9JN5GVPjXP9PV4h+8zpZfgM2DpdxdREHQzA08HKoVd6JdDtWTeNSGPlRVXRsQpv\nc9COlvwiFTePbJml2ragqdGFmCfdRKmV0cVWNCWSr1ZETQL30hhjMY8+So0c9oI0Hd5ICuDfH0N3\nhlGcU0ttlMs8qKjrRpgZMwiO5+Nr+2fw259/Frf8yT247f3fxNEM6YWP6uu9fyJgcqI2VEBW/E3j\n5xxvYxAFY0sF9Xkg6RQ0DCeRrTNeaUFXPdz/YnYj2vQKQNc7YTbaoIi0ULHaySuaOjbfwtOna3j6\nVHLVHnfKhh3GzoeOJG+gvQL9nZTzwj36ZIUykO3Rl8sm5hrmyKbLDcqGN/TX7CY4HguDpXFElsBY\naOiTPT5Cj34iMPSz0T6eOrkMAsPWyWo49PmpYOWQ1+umSDBWTAgSHuli0NN7EG/X9Xy0LD/y6HPS\nF6ttK5H2x7vu+V3SzWxYLBXX6It69NFNTBh1y/VjHr0w+MXaHmfRsb1YjCMogMtJsWSM4VS1HVZ6\nlnR7qH43f/3No3jHPz6Nrz5/EhOTJ+HBxK//w96uv+1iy4Su99//9EQNL842By6Lb1nJzw2I71Kk\nSHa3P+iFFkvP5O0MkufHnl2n8JX95zM99bRMVNItzBeYSpWFMIqT4w2oih+2rEgjPn+66K1uRH+H\nmSEmejmeD9NhCclLVb2ecaR4mi+QjEkBydqWNJWSAdNhYZHahWbDG/pX7Obrzn0nu3V6EXwt6RY0\n1Uvk1Ddi+lylZKKkuYnMm6dOLGF6sglN81AumSjrTpiFk9frJk/uaFleeKFqWtIjFd7mIIY+XroN\nxNMrU1k3htN10pVLTpd0M5cqlop/lv4efTKvGOAeuKiQVULvJ7uYrAidoL9I/LjyPK+64aBt+aFc\nV9Lz+/v04uFjC9g6tYzv+fZv4KbrnsGN1z2FE4tt/OcvPpfwyhZbVjiEohfTk3U4HsPRucGqJOMN\nzQS8pzz/TNU2nzdQlPhKrW46Xa992aUn4HgMn83IEKmlZKJyyRo6/lGNZSuNV4xc6UaswrsNfcyj\nH0KnD3vRJ4KxvRv5xVtxAMmYFD9GB7rqZbYwF6rCTGNtArIb3tBvHSdMVAzsO9Wt08eXmrrmdQVj\n4zm005NV3PXcObxwvgHH8/HsmRq2TC2Gv5+cqIXSTj+PPn6yiOlScelGbMMYC4wuC3Obi5DOj4/S\nK6Pj8nyGpuF1GXpds8Jls2C2bkJV/IR3E46d62Oc45XCwqgbjgcruADiGv2gcQiB4biRoQ9WRnlF\nU6KcXujNJd1Gy0yW6t//4jweObaY+36O5+OFmQa2TFWhBIPTtm9ZwrVXHcLdB2bDaU7i7xfPuMlD\naNGD6vTxoSOCpEZvDeTRx9Mrax0rEYwEgInxNnZsm8enHzvRlQ7K5cLoOMq6BcPJHrbTj0QGT6mV\nm0svbnRp56RuOEHTNjZUQDadcQTkV7YLojTfyImx3Liht3NltErYvnptArIb3tADwPTUIp46Ve3S\nv6LKP7srLa9leomL54ZrnoPLOviFjz2Guw/MwHD8sJgKANfpg933y7qJL++Fd6+FenpkqBqGC8+P\nToKi0kZ4kQQnlUI+iFhCA28YDhiySuAtVNPSTYMPtU53itXU3oaesSBQGHr0IhAbSTfC+4sbp0Hp\nxMrO8+QxgUitHKtEHj2QjEv80Veex7s+/0xu/5kjc03YLsOWyaSmfvXlx7Br+wzef/chPHB4Hm2b\nxySyNNk042Nt6Ko3cOZNnkcfavSxWE0R4jUNdcOBntGg72V7jmOx5eDrz88knk+vEEulZHXs337r\nKP78Gy8WOo54/v9YpRP+3dKIG3pabuRVrRbGyvaKPHpdTRp6w/ZydXQjnWAQxKSEDMtTnrPPhXLg\n0a9V5s2mMPRbp5ax1HK6miNFHr0LVbXDP67r+TAcP7FsG6sYeP0ND6NtG3jX554N9ps09AItR7oR\n1XVxDyc+75P/z39uW26YQz8W6MlF5ZuoF33USEtP6YvpzpWCkm53ZaHMNkzoeveFlv4saQyH9/RP\ne/RcukkGY7VU1o1he7m6bJqOFXUX1Ppo9KGhLwuNnn9WIZGZjoczVV65+q2coOP+s/xvPZ0y9ETA\njdc+g8mJBn7jM/vw4JGFxHv0QqwKD5wbLCAbDR2JGaSgMC2vc2Uv4oa+EbQoTrNj6zwmx9r4xCMn\nEs/XjaRMFObStyycXGzjL795BJ989EShlely20ZJc6EQw1i5g6bpZRY+htJNO+3R82MplzpDGfqw\nRXHM2dNU7njZOQ5At0YfODaBTJlOfohT1i0QmPToV8LWwPPedzop3zRiHr2qOqGBbKY0bsHEeBu3\n3PAINM3FRMVIpBtOxwx9nnQDdBvcZsoji3v9IodeeJ9Fl8DRsjfujfiJKtYw1UtPSzfdw0dmap1E\nxk20T7fnzScKFHZr9FZXemVyX3/3wDH86IceKpSFkOXRx/sFxT3z09UOKiUnLOIS3rbw6F9aaIUD\nZ+54IrtScf/ZGkq6GwZ042iai5uvfwykdvDOzz0TvEcxjXx6soZDM42BOlmGHn1cugkC+i2LG6ai\nfW6ASLqpdWxYLuuSbgB+U7piz0t49kwdz56JbkzL7eSAk3h17F/eewSeD3Rsv1Bh2HIsW0ic/2cz\nuliKv3O1nTSQtWDYSqXUwZnlwStrQwdMS95AgfwEBMOJJBsAUIJzUVTHppMf4igKQ6XsYHaEcwoG\nocjM2CuJ6H4ieoGIDhLRO4PntxPRvUR0NPh/W/A8EdHfENExItpPRLes9oeYGm9AVz3sS6dgxTR6\nTXXCu3gz4+IRTE82cNtND+B1r3488fzEWCu8g+dJN+J3cf04PgYu/n/TdMMceqEnF/Xos/qbcH3R\njW2TnQGgazYahhd6XYwxzDftRMaNoN/c2FYqoBUfr2amCqbSvepfnG2ibhQL0BpO1HYivFEG7103\nHNzyJ/filz/xJGbrJk5X26iUo4CnMMKir4poGbvrkvN48MhCZqHOs2eWMTWx3CVlCSplCze/+lGQ\nErV/LsL0RB2Wy3BsoXhANj4cQ6AqPO4jHIVBNHoee2GhhJAn+1y+8wxUxcfX9p8Pn6ulMnxKQbbR\nQ0cXcNdz53HpDt5gLH0dZlFt29DE+MUgcJ71t2iGGn3yMwrJqlLm/agGTVsMWzSngrFAvsMlrs+0\nVCluAFnJD3HKpc669uhdAO9mjN0A4DYA7yCiGwC8F8B9jLFrAdwX/AwAPwTg2uDf2wH83ciPOgUR\nMD1VxVMnkh593XCC8nuux4uTRlw8WfokAIyPdTA5nvRKiCL5Jq9gCuguukgbw/jJtBh4meJEL+zR\nGzyAm/DoU7NAhUefzggp6TYYotVOrePA8RjK5SxD37uAJIw/pNMrHT+zYCreSlk0z0oHhrMwHC8m\nASU1+oPn6mgYLu4/PI83ffB+PHemhko58vBCQx8YxSNzTSjE8KqrXgDA8PnUHADT8XBkroXpyd7G\nanK8hZuvfxw7t890nSt5CCnowNniOn3aUeCP+Xch8scH0ejF60XtRN5rNc3D1EQ9kfuflnpKug0i\nhs89dQa65uKGa/ajUrKLGfpYZbfw6LO6WIrrp5ZKS2waLrTA0A8zjL2R5dH3GT4iri9FSZ7bpuPl\nJj/EKZU6OL9GRVN9DT1jbIYx9nTwuAngEIDLAdwO4FPBZp8C8BPB49sBfJpxHgewlYj2jPzIU2yd\nWsKRuVaiKEpkCXAN2wlPmqw/chGmJmpQlez0KYGS6pfeSmVNiP+5dBNo9OXBPPp6xw7bq0bvm+PR\n62lDz99TGAlxwVcypJt+6WYiuB3WCChRVWy6BUK8lTJjLNTS+w0FSfcXUhTeN0d8ry/M8NqH77zx\nYZTLC2hZXkJy0VTeInoxNPQtTIy1MT7WwY5t8/jsk6cSue0vzDTg+egKxGaxdXoZt7z6qdzeR2km\nxlpQFH8gj75lutDU5N9afJcif3wQjR7gN13h0ecFDwF+vh84V4fvs2gsZeyaIQIqJQeMAVddfgS6\n5vDEiJP5vacE1XaUlqprPC0xK2YjrmfbjZINnCDGxvvo8/N2UJ2+kRnk7h3oD4OxatLQG7aHppmd\n/BCnUjLD6+1CM5BGT0RXA7gZwBMAdjPGRFh+FsDu4PHlAOJu0tngufS+3k5Ee4lo78LCwoCH3c3W\n6WUwING2tGFGHoimObBcBtv1M3Noi/CKK47g5lc/0XMbPmUqVoGb8sjSGn1Zd8MbTtGmX7VURaPY\nb/wEXWhZQdO25D5FJtFDR3l6YXrgSHqfvY5JePRqyqM33SyNProo5psWLJffLNNVumeqHfz+vxwI\nja/jMd5fKLaK0mOrsxdmGhgr2dg6vYxbX/MIbnn147j68mh8GxGvHRAB6MOzdYyP8ZvDFbtPYrHl\n4L5DUVB2f6BJFzH0g0IETFQMnFwsrimL7qBxxHcpjNsg0o14fT/pBuDfQcf2cWKpnRhSEqekG6iU\nbLxsDw/cbptaxtlls2/FbL3jJqdyVTqZufTxAK1wCuKSbDSMfTBD3zST7R+AeGvufOlGUfww5Tae\nfLCcETdLUykZaFv57TRWk8KGnogmAdwJ4F2MsUQZKuMC2UAiGWPsI4yxWxljt+7cuXOQl2Yi8pTj\ngaB45V+kjTuxIO1g6X6VsoVLtubnXwPdBreZ0ljFAJKW5QZDpa2oOKlgT/r5phV2rgzfV3ETeepn\nlw2Ml80unblSNjE92cB9h+YAxEcIZhn63t38RNFSpFmKEz+eXpksMmlbbmJcXbpl8jcPzeEzj5/G\n8QVuDKNMh2R2RDsm3UyMc6mACNi5fT4j08jCUsuG6Xg4u2yGUsuO7fMYK1v4+MPHQ413/7k6KiU7\n88Y3CirlJo4P4NE3Myaaie/ifAFjnYWqRMNv8uRLIJKanj9Xj6UqJ7d/1cv347XXPx4aSZGplm5Z\nEMd0eKFRXFYsl9o4Xe3+XhqmA4X4vtOGXkg3AHBuwOrYrIyjqIVJnnTjQov1FBI3XNPxY+miPTz6\nQB6dWwOvvpChJyId3MjfwRj7UvD0nJBkgv+FW3QOwJWxl18RPLeqlHQHZd3F8Zi3VOtYUddILQrE\nDuvRF0FTXbRixrFlukHnRX6C8EZbvMhkqcUDUoOM2nM9H88FwcLk+ybTF88ud1AuZXuOO7bOYN+p\nZdQ6dm+PXumXdZOt0Rs2l24IfIAykEzrizfNSnv0QksXF4PoDqjEPHo+fMSF7fp4aaGFqYnu9hdx\nNM3EQssMM26EoVeI4erLD+PJk8v4p71nAYhAbDU3ELtSxsfaOF3tFB4t1zJdKGryOxI31Jn6cB69\nosQCkD1uEhPjLWiKj/1n6121G4Jt08vYOhWtfqYn61AVv6dOX8vICBurdHBm2egKqrYsN9TwxeuS\nhZC8WndQj365Y3fJVlrMGcmCJwVE52G8QLBX+wOBkEfXIiBbJOuGAHwMwCHG2Adjv7oLwNuCx28D\n8OXY878YZN/cBqAek3hWlbFKM9HlTqRgAQiHKzdNNzOHdlRoqpvwzOODOeLbtEwXCy0TJd3KrGzN\n49BMEx3bx7bppA6aTl88U22Hy9o0O7fPw2d8nml6hGDys3iZoxHDz5ZOHY1JN6IRmfjc8Yyc00sd\nEDEQWFeqp8iOCQ19KneZP7bRNB0cnW/C9ZM1Dllwj94K2w/Eg6dXXnoS27cs4b999SCOzbdwYqHT\nlT8/SsYrbVguw1zB/juLLRN6Kjc7Lt3kldz3QknIYPmGXiGGySAgm55Glb9vH9OTtbAvVBbVjDm3\nY5UODNvvWuG1zMjQZ0k34TD2AQ39TL2TGLQD9G/kF0/zBZLBWJHn3+v7FAkP69LQA3gDgLcC+D4i\nejb498MAPgDg+4noKIA3Bz8DwN0AjgM4BuB/A/jN0R92NuOVFo4vRBdxM6XR8+f4zFFd9UKtbZSo\nqgvLjbJLeDAtvfR2wmBsSbfCytYiHv0TJ7iBj1ftAkjMAjUdD9W2i7FK9sm/ZXIZZd3Btw7NY7Zu\nZubQi8/iMyTKvOO0LD63NupnE6+M9cPgLBB5S8Kjn6iYKOluV5Wu8Ojng2pL8Zm02AWmqfxmLcY7\n9vPoeZEYvzEoxDBeiSQCPgHoWRiOg1/+xJNgALZMraKhD3q+n1wsln1xvmaE8oQgHowtOlkq8fow\n1bf/TWJ6chnPn69HQ8gLvN+WqSqeP1fvGrMnSA+tB6LGg/FOlI7nw3JZmKwgdPBG6qZTKrUH7mc/\nUze7VrFaH4fLdJLT5dSYR9+rc6VAyKNrUR1bJOvmYcYYMcZuYoy9Lvh3N2NsiTH2JsbYtYyxNzPG\nqsH2jDH2DsbYNYyxGxlje1f/Y3DGx9qYa9hhGXPDdGMafXCSmHwU3Wp48/x9kicL11iTF4eiOqgZ\nDuqGh5JuRZWtBTT6J09UMTHWSRRzAfzidX0+GFt4N2M5Hj0RcMm2Gdx/eA5nlzsoZVTFin0C+UvZ\ntuUlVitizJ3lBB59hp7ZsVycWGyhXG6ipNtdPUxEBau4GMIiFTVp6Fumg0MzTaiKj4mx3pp3KejJ\n8tyZOibG2l3GbWKsjVde9UKY3rcagdjwvYKbTF7P9zg8yOdm/K2jc2tQ2QaIbpqlAtfA9GQdhu3j\nmTNciinyftumqnD9/EErWX3bRavneAWsWDGGHn07rdHz31fKg/V6F4N20t8rd1hYzzx6ilXFR+nE\nHmod7vT0koMVxUel5Kxbj37DIDy1U9U2OrYHz48km6gZlpNb+j0K0kUXTdPp0lg1xQlTyYQH0C/w\nCfD++k+cWMLWqe6AsHhfw/bC7IU86QYAdm6bQ8P0cHS+nRt4FAYhT6dP9/Pmx+GH6ZUJXT3m0Z9a\n4m2EVbW7wdpCKxmwigaDJ9PgWpaLF2bqmJpo9NXTRUrp3lPVMOMmzVV7jmPbdBWTY+1CvWuGpVI2\noCh+IUMfto/O8egBDNS5MnpNsv9SL8RNj2dpsa7VaeZrgoBsnk5fzfB+o6E40XMiqaGk29DVyGuu\np24UY2UD1babu4JIIwbtpFeyUfwsez9t201990mPvqS7fc/FcqmzJtWxm8rQTwTL4hML7URDMyDy\n6JuBR68oq3Mxq7FYAP/f6brLa6obBkGFEdL6dM4DgGMLLdQNt0ufB2Ll27YbdvPLk24AYMfWhVC6\nSns26c+Sl2LZzsoICfqwmLEiJ76vKIDYsnyMV9rQdSvU5AVCv50N2rmm+4sA3EC1LA8Hz9cxOd7f\n+xZGxHT83OImIuCWGx7Dra95uO/+VsIgKZZCxkjXOMS/iyItktNEbXb73yQmxprQVO48lFO1G3mU\nSzYmxzq5hr6WodGLx3FDH68K1nUnEYyNy06VWMOwtuXiNz6zD1/cdzb3+KLake7zvtfcWMN2MzV6\nEVso4iCsVdHUpjL0wqM/sdSOql+15DKvabqopWZFjhLRE0c0zGqYDtItE1TVDTthCkOvKG5XP/k0\nTwSVv9u2ZBj6WP/4s8s82NkrRVDTohtGL42e7zPHo7e6b5iKwvV5M8ejPxQMYefj9Rwsxwy96Xho\nW1zuER694SQDvUDUfKppen31eSDZi6ZXFaumemH/ltWkaIqlKIjq8uhjhn44jV549P0NU7wifJBV\n8PTUIp48sZSZXVTt2NC1ZHxAfI54FlY82K9rViIYG2+XXClxw3l0voW3ffwJfP352bDhXBZipZRX\nO5JXMNWx3cR3TxSc7y736IvcOCslEzPrNb1yo6BpHiolm3v0qQIGhRg0lVewpae/j5KJ8Ta2b1nC\nZ544Cd9nfLpUytDH5Q7hBSiK07dg6qkTVYyVrUztPZ6+eG6ZT53vF2zesW0WQLZnA8Skm5ylbHzo\niEBR3LCpGVH3MvdQUMk6PtaBrtuoGW6Y1RMNo7Cw0LSDeand0k38++yXccP3FxmPou0KVpOiKZYz\nOR59PF13GI1efJdFDfdUUKOi9hmZGGf79BLqhosj893fd63TXfCnEENJdxNSXjwNWovN/q2nWjOL\nQO5vf+FZ7Du9zFuS9yhKiiSxrJRiJ9exiU86E2gKH3pfbRebC1ApG2gY3tBjNYdlUxl6IEqxzCrw\n0DXeCrVlugmPYNRcsfsEzi2beOjYItqW17V6iBuquHST50kAvBXA48cXsWVqIXP5HB/9d2a5g3Kp\nv8d42a6zuPLSk2H3z6599pFu4mMEBYrCG5rxYSFRMFYEak8E2vRYuQ1ds3lpe6CtioybqYk6fMbn\nsWZKN3FDP17co09n3KwVRVMsz9X4ZDMxLzeOrq7A0AffZa9iqThCp9f6pFbG2b6Fx5Eef6l79Rlv\naBanpNmJaWDx9iG6ZieCsXHvWRjsluXgpuv2YnqyltnyWDDbMKGpXqaz16u/E88kS1cp+7ACj75I\nKwqxirjQrRA2naEfr7RwfLHZNcgYQHCn5wVTq+XRA8DuS2ZQ1m188pETsN3uAFZYYERR7xC1T+/3\nM1UD800b2zP0eb7PKAf47HIn9HJ6UdJt3HDN/txeLf3yirNWK0Tco+dZN8n9aqoHxoDxsgVV9WMB\nOP4diP78wkufa5g9Df3kWCdsR9wLflF7mRk3a4HIEoqnWH51/3kcPJ9cncxkpFYKQmM9hAQ5SDAW\niCpkB7mpjFUMjFdMPH48y9BbmbKRlpp+Fp/lUNJtLIeN+JKvVxQfr7jiCF53/ZO4dMcMT781ehv6\nSql70I54r2bGJDTGGDf0qWtFpDWnVxl5RJOmLmxAdvMZ+rE2qm0X50XDp0R3OhsLLQuuP3hDs0FQ\nFIbLdp3C/Ye5TphXwl4uOVFBUZ8JTGH+fIY+H99n3XCw0LTDlLSVkDcDF+AZQNWW3dWLXWQPpYOx\nfH/853KZL+fDAFxwcQuPfjrQ3eebJjpOsr8Ifw/+t5soEIgVlEvGQNuvJqLpmsi8WWpZeOfnnsHf\nfutYYrtztfzq5kh+WX3pZmKsBV1zBo5fbJ2ex2PHu3X6eEOzOHpMngHiYxS5EW2ZHlzPz5yqde1V\nL2LX9rlw+yxjLZitGyiV8lKKsx0u2/O7ei4BfAVbMxyYDisUGK+s0aSpTWfoReaNaK+a6OOtOjgX\npB4WSRNbCVdceip83J2CKFYb0Undb8jHkyeqKOtObs64MPSizL9XamVRopTI7u+q2rHh+tGINIGi\neDAdF6abzKOPH6MwdOmUOtHNM/LoLRi2l+gvAkTfZxF9XnDz9U/g+pcfLLz9apJOsbzrufPwfODQ\nbMqjr+d79GKG7kqCsUUNPRHwHTc+hFdccWSg99m+JVunrxlOpsyh63YiC6tpumFvKHFDqxsOb1bY\nY0UuKs/zmKkbuYkK/Drsfm1WzyWA/x3CBnEDSDcXOpd+0xl6ocE+e6aGkpbMa9U1J8zmWK08+ug4\nOtixlWfeZKVXAoCuG7Hn8tsNGLaHew/NYuv0fG56m/A0jgRl/kWkm34Ig5Dl0c/mNENTlSCP3vG7\nPHphnER1qLh4RRB2qW1DU/zwRjBb59JNWloar7QxNVHDzm1zhT/LxHj7gmTUFCGdYvnFfbzZ6+kl\nI8wFb5oOWpafGygX/XQ0j/EAABozSURBVGqGKphSB18NTI63cgdf57F9ulunt10fbcvPfO+SZida\nIMQ7TAojutiyedvqHtevpjpoW35msNv3GeYbVmZbboBXcGed78IJS5/TRG5otIt8n5rqYaxs4dOP\nncBDR1fetbcom9DQB8vhtt0VcNVUJxwjt5oaveDKoHVrXql1PBukV7uBzz11GrWOi6suO9H1u/Q+\njwbdO/OqYgdBzMDN8nDyDL0STJKyXJaxzOXfedqjFxf3YstCuWTzsWslJ5JuUoZe11x81+sexPRk\n/0DsekWkWB6ebeLg+Sa2TlXhM74iAyKPbzU0+i1Ty3jVy5/v24l1pXCd3sBjMZ2+ZuS3CtB1Pt5Q\neM+tWEGekEVOLQknoYeh11wwZCcRhCvRnBtoqWShY/tdbZbTvegFqurltnDO47WvegJtdxlv/diT\n+C9f2t8zCWNUbDpDr6o+xivZQxUSg4BXMetGsGv7HN5w87e6SupVcfLqSekG6G43YLs+/te/HsO2\n6WpXf5s4fEScj1PVDgCWayAGRVP9TElpJux6ma7a5IFY2+326IXhF6MThVdWjWn0WjCerlQyAunG\n7Upp2wyIFMs7nz4LhRiuveoQgKjNtmhjkWvoFWHoB/foFWK4+rLjiayo1WLb9AIeO74YetdZYzAF\npVTRVDxpQg8NfSf4ubdHL16fpldqJQDs3s77L375mfOJ50PpJuecBlB4xbNlqobbbrofV19+DJ97\n8jT+n398utDrVsKmM/QA95aA7sq/uBe/2tKNYHK81SW3RB59dHx57Qbueu48Zhs2Xn55f31UU30w\nBoyV7ZFll+TFDubqZlCUle6L76Fj88BV2pCIm9lY4NGL3GnR5GqxZaIUpN2VdV4qzoc9bEJDH6RY\n3vH4KVyybQ5bp6pQyMfh2aIePc94Wg9ZRL3YtmURDcPD4eAGFtVKZHv08W3iBXkiFnFyKSn7ZaHH\nprilmctxUAQT421snarhn/adTsioWV1UgXQn0OI3XVX18aqrX8D3vv4Z/M4PvKrw64ZlUxp6EZDt\nyl9PpVquFWXdxNRELRzSAGTnrPs+w4cfOIrpiSZ2bJvv2k+aMKslJ1NjGPhAk+4LZqZuYqxkd93E\nFMUL5bG091PSbVRKRkJSi+dOL7as0ACUSyZmGwY6trspDb0IqrdtD5ftPANFYZgcb+PILJejZmoG\nCPnVzbu2z+KKS09eqMMdGpEOLNIse/VtTwfn+eAgfm4Ib18Y+l4avRp69N3bzPQYtCPYs/M0jsy1\ncfB8JA2G0k3qXExMPhuiR9IlWxp4zeVbBn7doGxKQy8CsunIvB6LmK+loVdVH9/1ugexfUuGoY8F\ngu55YQ7HFzq4+vIjhXqMiH2MIuNGoORUCs42slPU4pk2aY/+misP49bXPJp4TuROM8ZQbTvhKqdc\nsrDc5u2Iew1j36iEcQrNDdMCx8fqOBQY+vN1E5WynVvdvPuSWbzq6hcuzMGugLGKgYmKgYeC2Qdi\nVnBm1k0qON+KFeSpwexfUXvQa0UurvNGhnQz1zBBYCj1CMxfuuMcFMXHnU9H/XIMu7sVBxB59Jra\nnWW2ntichn4sO2AjjDuBdS3B1pqseZUffeglTFQM7N5xPu9lCYTnO4ocegHv/ZHlGRmZy99kf5u0\nR++Eqy2ByJ1uWi4cj8UMvQkG4Nyyue7+VqOgUjagaw4u3Xk6vCFOjTcxU7fQNB3M1AyUc3K9Nxpb\np+fxrcML+M7334f33/0iN7S9PPpQuokK8oiAsu7Gpmr1Csb21uh73UD5cTjYuW0W//LMWTieH1Sl\nV4N9p2tiird8Xku0tT6A1UAsi7ulG5HWWKwL34Uk3sYX4JV4B2ca2HnJ+cIDUkRWyyhSK6Pjyi4g\nma2b2HFJ9pzZ6Hj6G2hdt1HtWGGxVFy6AXgW0mYMxhIB/+a1D6QarnFv/uh8C2eW25vG0F971YvY\nOr0MxghgQKViZLZ14Ncrw3LHAWMMbcvDJfEWJroNwy7Fts1G3ByyculnGyZKev/r47JdZ/DMocvw\nwOEF7D1ZxScfPYnLd5/qymYTzkx6hvN6Y1Ma+vFKG5ftOt2la4uT40IFYgch3W6gYbowbB9jOdkB\nWWirIN3w9snJC6ZpOujYfmYuctKj77+U1TUHc8tOWCwlDF9cQ92MHj3Q3UZ6coIHLA/PNjHbsHDZ\nrgvft3w1KJcsXLH7dN/tFGIo67xvjOn48PxkYSNPrpiEqvg9zy2tp0bfyQ3ExtmxdR6Vko33/NNz\nqBkOrrz0BF79igNdDqI4jvVu6IvMjP04Ec0T0fOx515LRI8R0QEi+goRTQfPl4joE8HzzxHRG1fx\n2HscM3Djtc9iy2Sy0lBo9mupz+eRbjcQdi4cwDsXBnGkHn1G1k2YuZDZ/W8wj76kWzAdFvbQj0s3\n0T43n0efxVi5A0318MTxJdju6FJkNxK6bqPatsMWBnFDLzT8kt77fFBVDwTWQ7rp/70qCsPuHWdQ\nMxxcteelTCPPtxs+zfVCUkSj/ySAH0w991EA72WM3QjgnwG8J3j+PwJA8Pz3A/gfRLRu4gBCulmt\noSMrId5PHoh6kRfxPsJ9CI1+xNJNuqXqbF143b09+kLSTbC6OjbP5TZh6PmIRS5ZbVaPPg0RMDHe\nxINBxWRervdmRlNNLLftqEVxSrrh2/S+fvmkKK/Lo+/YLlqW33NOQ5xXvuxF3HLDY3jVyw/2rUgf\ntGr4QlNkZuyDANKVOtcBeDB4fC+AtwSPbwDwreB18wBqAG4dyZGOgKj4Yv39UcIJUYFHf34Ij35q\nooHpyeWRGkYx7NyLlZNHfdJ7e/RFpBuhyUeGnv9MBFRKdtc+NzuTYw1Ug7mpeWX6mxld4/1u4kNH\nBCKAqxbwnnXNDZuiCfKqufPQVA87t2W3BRdEFcrrz3mMM6y3fRDA7cHjnwJwZfD4OQA/TkQaEb0c\nwOtjv0tARG8nor1EtHdh4cL0fOAl/d2tddcD6XYDMzUzyKMurv1dddkJ/JvXPjTS48rKBuot3cTT\nK4t49PwCOTrfQklPFgCJ1czF4tEDUUAWGOwmv1ko6Taqncij1xNFjkEOfoG++GrQkjzObFgsNbqV\n0maSbrL4FQC/SUT7AEwBEJ/y4wDOAtgL4K8APAog8ypljH2EMXYrY+zWnTt3DnkYg7Nn5xns3F68\nGdaFRFO9cG7s+brBK1wLZtysFlnjBGfqwUCMDI89Kd0U9+hPLrZRTuVWi+yIi8qjDyZgKYrf1QL6\nYkDXeWOzsBd9LG1RSDdFVuSqandJN5FHP1ppM35s65Whsm4YYy8C+AEAIKLrAPxI8LwL4P8V2xHR\nowAG6226ytxwzYG1PoRcVNUL58bO1s3cntkXkmhyVdKjz50z2yOPPgvhCbk+g6Yl9yk8r4slGAtE\nHv1YOXswxmanFEwdm2+KyWtO7HfdU+Py0FSna/jIbI+V6LCI87eoHLRWDOXRE9Gu4H8FwO8D+Pvg\n53Eimggefz8AlzG2/sv31gmq4oYe/dnldjj0eC2JpJvIaJ+vGyjlGPrBg7GRJ5T2YENDfxFJN+WS\nhZLmoqSPro3FRkJ4xqKCdliPXlPdLo9+rm6ipLm5E9WGYWqigVu/7dFwdOJ6pa9HT0SfBfBGADuI\n6CyAPwQwSUTvCDb5EoBPBI93Afg/ROQDOAfgrSM/4k2MojjoWHxY9nrJo87qqjlTNzAx2bt9LlAs\nGKsoDLrmwXHVLkNfuQgNPRHwssuODZRttZkQAVdh6NWM9MpCfd81F81Ot0Y/Sn0e4H+v1W73PAr6\nGnrG2M/m/OqvM7Y9CWD1W7FtUlTVRct2sdxx1k0etZry6G3Xx3LbxfbtORN6BgzGAlynd9yxro6G\nW6ermJ5cXhcDvS8k11y5rtTOC0ro0S/xmoJ4jGq80sHObbPYnjNOM46mOmiZ3GmiQAMrWhW7GdmU\nlbEbFVV10bacsBf5qL2PYUi3ZhAZN3k53nwxx6AqrLDGrKkWgLEuj35irD3yLCLJ+qYUVJiernag\npwa/K4qPW254stB+NM2B6/MWGhVdBcBnxZYrF6ehXzfFTBLek75tuX17kV9ItFT75NDQ50gLPE20\nd4l6Gl1Ptj+QXLwIj95wvBVVsIvzVqRY+j7DQtNeF87TWiAN/TpCtBsQBUmjrHAdFiHdiAwGcRPq\ndcH060WSJiptl4b+YkcPGpsBUV/5YUj3u1lq2/DZ+s+OWS2koV9HcEPv43zNhELrI49a12xMjHXw\nuadOw/X8mHSTfxNSVb9rzmsvSqGhX9+5yJLVR7QjBngu/LCIbB3h0c+tQrHURkIa+nWEpnpwPIYz\nyx2MlbunN60FRMC1Vx3Esfk2vrD3LGbqJjTV61ldrCgeFCru0QsDvx5ubJK1R/SNWUkFe3purBj2\nfbEaehmMXUeIwOdL8y2URjgOcKXs2j6D7dNV/MU9h3DTFdtQ6VPMo5AXBGWLcfnu0yiXjXXfGEpy\nYdA0E8D4yjT6cG4s38dco7sr6sWE9OjXESJn+PhCa101tCICrrv6eVTbLh44vNC3mEdRXNAAbQvK\nJQuX7zrbf0PJRYGuiarY4T160SOnkZZuLtJVozT06whRsWd7DOV1EIiNs2Wqhj07uDHuF9Dadcl5\n7No+cyEOS7IJEcH59Ni+QVDVtEZvoVJyEk3zLiakdLOOiFcBrofUyjTXXn0I89U9GB/rXcD08stf\nukBHJNmMRH3nVy7diKyb+R79mS4GpKFfR8Sbd42tQy1xrGzgu2+5b9136pNsbEoj8OgVYtBUL/To\nZxoG9Iu0KhaQhn5dEW+2tB49euDinHokubCURuDRA3zKVCum0VcmLt5zV2r064j1Lt1IJBeCUKNf\n4YAgTXXQtBy4no9qy7loi6UAaejXFcLQq4q/7ifWSCSrxdbpZey+5DymJ2sr2o+q2mgYLhZaFhgu\n3tRKQEo36woh3YyVzXVRLCWRrAUl3cbrrt+74v2oqoOGaV/0OfSA9OjXFSIYux4mS0kkGx1N5SMJ\no0Z80tBL1gGKwqCQv66KpSSSjQqfMuVi/iLvcwNIQ7/uuGzXaey6RBYbSSQrRdNctCwXcw0LROyi\n7qXU19AT0ceJaJ6Ino8991oieoyIDhDRV4hoOnheJ6JPBc8fIqL/spoHvxn5tlfux+5LZtf6MCSS\nDY+mOjAdhnM1A5XS+mgSuFYU8eg/CeAHU899FMB7GWM3AvhnAO8Jnv8pAOXg+dcD+HUiunokRyqR\nSCQDIIaIv7TQyh1mf7HQ19Azxh4EUE09fR2AB4PH9wJ4i9gcwAQRaQDGANgAGqM5VIlEIimOyMN/\naaGF8kVcFQsMr9EfBHB78PinAFwZPP4igDaAGQCnAfwFYyx9kwAAENHbiWgvEe1dWFgY8jAkEokk\nG9FCoW15F3UgFhje0P8KgN8kon0ApsA9dwD4DgAegMsAvBzAu4noFVk7YIx9hDF2K2Ps1p07dw55\nGBKJRJJNvIXCxW7ohyqYYoy9COAHAICIrgPwI8Gvfg7ANxhjDoB5InoEwK0Ajo/gWCUSiaQw0tBH\nDOXRE9Gu4H8FwO8D+PvgV6cBfF/wuwkAtwF4ceWHKZFIJIMR734pDX0fiOizAB4D8CoiOktEvwrg\nZ4noCLgRPw/gE8Hm/xPAJBEdBPAUgE8wxvavzqFLJBJJPvGmaJXSxZtDDxSQbhhjP5vzq7/O2LYF\nHpyVSCSSNUXTpHQjkE3NJBLJpkRVfCgKH1J/sXeDlYZeIpFsWnTVg6Z6F3VVLCANvUQi2cRomgtd\nu7iLpQBp6CUSySZmy+QiynJamzT0Eolk83Ljdc+s9SGsC2SbYolEItnkSEMvkUgkmxxp6CUSiWST\nIw29RCKRbHKkoZdIJJJNjjT0EolEssmRhl4ikUg2OdLQSyQSySZHGnqJRCLZ5EhDL5FIJJscaegl\nEolkkyMNvUQikWxyiowS/DgRzRPR87HnXktEjxHRASL6ChFNB8//PBE9G/vnE9HrVvMDSCQSiaQ3\nRTz6TwL4wdRzHwXwXsbYjQD+GcB7AIAxdgdj7HWMsdcBeCuAE4yx/7+9e4+R6qzDOP59uLVyqaV2\naZSL0MhiUKSQjWJaa2kNocWIpqLdNLEJJITQxHpJG4wYo/+ZmCompoRQaLVKjfQircYGsWb9A7EL\nRVjKSgEvbEtla29GTaH684/zkozrjrOcndnpvvN8ksmc854zM7+Xd3ly5p0zcw7WsV4zM7tANYM+\nIrqAlwY0twNdaXk3cPMgD+0EHhxWdWZmNmxl5+iPACvT8ipg5iD7fBrYUe0JJK2V1C2pu7+/v2QZ\nZmZWS9mgXw2sl7QfmAL815V3JX0A+EdE9Az2YICI2BIRHRHR0dbWVrIMMzOrpdQVpiKiF1gGIKkd\nWDFgl1v4P0fzZmY2ckoFvaRpEXFG0hhgI7C5YtsY4FPAh+pTopmZDcdQTq/cAewF5knqk7QG6JR0\nDOgFnge2VzzkWuBURJxsRMFmZnZhah7RR0RnlU2bquz/K2DJMGoyM7M68jdjzcwy56A3M8ucg97M\nLHMOejOzzDnozcwy56A3M8ucg97MLHMOejOzzDnozcwy56A3M8ucg97MLHMOejOzzDnozcwy56A3\nM8ucg97MLHMOejOzzDnozcwyN5RLCW6TdEZST0XbQkl7JR2W9JikSyq2vS9tO5K2X9yo4s3MrLah\nHNHfBywf0LYV2BARC4BHgDsBJI0DHgDWRcR7gOuAc/Uq1szMLlzNoI+ILuClAc3tQFda3g3cnJaX\nAYci4nfpsX+NiH/VqVYzMyuh7Bz9EWBlWl4FzEzL7UBIekLSAUl3VXsCSWsldUvq7u/vL1mGmZnV\nUjboVwPrJe0HpgBnU/s44Brg1nT/CUk3DPYEEbElIjoioqOtra1kGWZmVsu4Mg+KiF6KaRoktQMr\n0qY+oCsiXkzbfgYsBvYMv1QzMyuj1BG9pGnpfgywEdicNj0BLJA0MX0w+2HgmXoUamZm5Qzl9Mod\nwF5gnqQ+SWuATknHgF7geWA7QES8DNwNPAUcBA5ExE8bVbyZmdVWc+omIjqrbNpUZf8HKE6xNDOz\nNwF/M9bMLHMOejOzzDnozcwy56A3M8ucg97MLHMOejOzzDnozcwy56A3M8ucg97MLHMOejOzzDno\nzcwy56A3M8ucg97MLHMOejOzzDnozcwy56A3M8ucg97MLHNDuZTgNklnJPVUtC2UtFfSYUmPSbok\ntc+W9E9JB9Ntc/VnNjOzkTCUI/r7gOUD2rYCGyJiAfAIcGfFthMRcVW6ratPmWZmVtZQrhnbJWn2\ngOZ2oCst7waeAL5S18qGaPyY8UyeMLkZL21mNiyTJkwakdepGfRVHAFWAo8Cq4CZFdvmSHoaeA3Y\nGBG/HuwJJK0F1gLMmjWrZBmwdM5Sls5ZWvrxZma5K/th7GpgvaT9wBTgbGo/DcyKiEXAF4Afnp+/\nHygitkRER0R0tLW1lSzDzMxqKXVEHxG9wDIASe3AitT+OvB6Wt4v6QTFNE93Xao1M7MLVuqIXtK0\ndD8G2AhsTuttksam5SuBucDJ+pRqZmZl1Dyil7QDuA64XFIf8FVgsqTb0y4PA9vT8rXA1yWdA/4N\nrIuIl+petZmZDdlQzrrprLJp0yD7PgQ8NNyizMysfvzNWDOzzDnozcwy56A3M8ucg97MLHOKiGbX\ngKR+4E/DeIrLgRfrVM5o0Yp9htbst/vcOi603++MiJrfOH1TBP1wSeqOiI5m1zGSWrHP0Jr9dp9b\nR6P67akbM7PMOejNzDKXS9BvaXYBTdCKfYbW7Lf73Doa0u8s5ujNzKy6XI7ozcysCge9mVnmRnXQ\nS1ou6feSjkva0Ox6GkHSTElPSnpG0hFJd6T2yyTtlvRsup/a7FobQdJYSU9Lejytz5G0L435jyRN\naHaN9STpUkk7JfVKOirpg60w1pI+n/6+eyTtkHRxjmMtaZukM5J6KtoGHV8VvpP6f0jS4rKvO2qD\nPv3u/XeBG4H5QKek+c2tqiHeAL4YEfOBJcDtqZ8bgD0RMRfYk9ZzdAdwtGL9G8C3IuJdwMvAmqZU\n1TibgJ9HxLuBhRR9z3qsJU0HPgt0RMR7gbHALeQ51vcBywe0VRvfGymu6TGX4rKr95R90VEb9MD7\ngeMRcTIizgIPUlzHNisRcToiDqTlv1H8x59O0df70273Ax9vToWNI2kGxdXLtqZ1AdcDO9MuWfVb\n0lsprulwL0BEnI2IV2iBsab4yfS3SBoHTKS4LGl2Yx0RXcDAa3RUG9+VwPei8BvgUklvL/O6ozno\npwOnKtb7Ulu2JM0GFgH7gCsi4nTa9AJwRZPKaqRvA3dRXMQG4G3AKxHxRlrPbcznAP3A9jRdtVXS\nJDIf64h4Dvgm8GeKgH8V2E/eY12p2vjWLeNGc9C3FEmTKS7q8rmIeK1yWxTnyGZ1nqykjwJnImJ/\ns2sZQeOAxcA9EbEI+DsDpmkyHeupFEevc4B3AJP43+mNltCo8R3NQf8cMLNifUZqy46k8RQh/4OI\neDg1/+X827h0f6ZZ9TXI1cDHJP2RYlrueor560vT23vIb8z7gL6I2JfWd1IEf+5j/RHgDxHRHxHn\nKC5PejV5j3WlauNbt4wbzUH/FDA3fTI/geLDm11Nrqnu0rz0vcDRiLi7YtMu4La0fBvwk5GurZEi\n4ksRMSMiZlOM7S8j4lbgSeCTabes+h0RLwCnJM1LTTcAz5D5WFNM2SyRNDH9vZ/vd7ZjPUC18d0F\nfCadfbMEeLViiufCRMSovQE3AceAE8CXm11Pg/p4DcVbuUPAwXS7iWK+eg/wLPAL4LJm19rAf4Pr\ngMfT8pXAb4HjwI+Bi5pdX537ehXQncb7UWBqK4w18DWgF+gBvg9clONYAzsoPoc4R/EObk218QVE\ncWbhCeAwxVlJpV7XP4FgZpa50Tx1Y2ZmQ+CgNzPLnIPezCxzDnozs8w56M3MMuegNzPLnIPezCxz\n/wEY0siNlckV2gAAAABJRU5ErkJggg==\n","text/plain":["<Figure size 432x288 with 1 Axes>"]},"metadata":{"tags":[]},"output_type":"display_data"}],"source":["import numpy as np\n","from matplotlib import pyplot as plt\n","\n","ys = 200 + np.random.randn(100)\n","x = [x for x in range(len(ys))]\n","\n","plt.plot(x, ys, '-')\n","plt.fill_between(x, ys, 195, where=(ys > 195), facecolor='g', alpha=0.6)\n","\n","plt.title(\"Sample Visualization\")\n","plt.show()"]},{"cell_type":"markdown","metadata":{"id":"4_kCnsPUqS6o"},"source":["You can import your own data into Colab notebooks from your Google Drive account, including from spreadsheets, as well as from Github and many other sources. To learn more about importing data, and how Colab can be used for data science, see the links below under [Working with Data](#working-with-data)."]},{"cell_type":"markdown","metadata":{"id":"OwuxHmxllTwN"},"source":["<div class=\"markdown-google-sans\">\n","\n","## Machine learning\n","</div>\n","\n","With Colab you can import an image dataset, train an image classifier on it, and evaluate the model, all in just [a few lines of code](https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/quickstart/beginner.ipynb). Colab notebooks execute code on Google's cloud servers, meaning you can leverage the power of Google hardware, including [GPUs and TPUs](#using-accelerated-hardware), regardless of the power of your machine. All you need is a browser."]},{"cell_type":"markdown","metadata":{"id":"ufxBm1yRnruN"},"source":["Colab is used extensively in the machine learning community with applications including:\n","- Getting started with TensorFlow\n","- Developing and training neural networks\n","- Experimenting with TPUs\n","- Disseminating AI research\n","- Creating tutorials\n","\n","To see sample Colab notebooks that demonstrate machine learning applications, see the [machine learning examples](#machine-learning-examples) below."]},{"cell_type":"markdown","metadata":{"id":"-Rh3-Vt9Nev9"},"source":["<div class=\"markdown-google-sans\">\n","\n","## More Resources\n","\n","### Working with Notebooks in Colab\n","\n","</div>\n","\n","- [Overview of Colaboratory](/notebooks/basic_features_overview.ipynb)\n","- [Guide to Markdown](/notebooks/markdown_guide.ipynb)\n","- [Importing libraries and installing dependencies](/notebooks/snippets/importing_libraries.ipynb)\n","- [Saving and loading notebooks in GitHub](https://colab.research.google.com/github/googlecolab/colabtools/blob/main/notebooks/colab-github-demo.ipynb)\n","- [Interactive forms](/notebooks/forms.ipynb)\n","- [Interactive widgets](/notebooks/widgets.ipynb)\n","- <img src=\"/img/new.png\" height=\"20px\" align=\"left\" hspace=\"4px\" alt=\"New\"></img>\n","\n","<div class=\"markdown-google-sans\">\n","\n","<a name=\"working-with-data\"></a>\n","### Working with Data\n","</div>\n","\n","- [Loading data: Drive, Sheets, and Google Cloud Storage](/notebooks/io.ipynb) \n","- [Charts: visualizing data](/notebooks/charts.ipynb)\n","- [Getting started with BigQuery](/notebooks/bigquery.ipynb)\n","\n","<div class=\"markdown-google-sans\">\n","\n","### Machine Learning Crash Course\n","\n","<div>\n","\n","These are a few of the notebooks from Google's online Machine Learning course. See the [full course website](https://developers.google.com/machine-learning/crash-course/) for more.\n","- [Intro to Pandas DataFrame](https://colab.research.google.com/github/google/eng-edu/blob/main/ml/cc/exercises/pandas_dataframe_ultraquick_tutorial.ipynb)\n","- [Linear regression with tf.keras using synthetic data](https://colab.research.google.com/github/google/eng-edu/blob/main/ml/cc/exercises/linear_regression_with_synthetic_data.ipynb)\n","\n","<div class=\"markdown-google-sans\">\n","\n","<a name=\"using-accelerated-hardware\"></a>\n","### Using Accelerated Hardware\n","</div>\n","\n","- [TensorFlow with GPUs](/notebooks/gpu.ipynb)\n","- [TensorFlow with TPUs](/notebooks/tpu.ipynb)"]},{"cell_type":"markdown","metadata":{"id":"P-H6Lw1vyNNd"},"source":["<div class=\"markdown-google-sans\">\n","\n","<a name=\"machine-learning-examples\"></a>\n","\n","### Featured examples\n","\n","</div>\n","\n","- [NeMo Voice Swap](https://colab.research.google.com/github/NVIDIA/NeMo/blob/stable/tutorials/VoiceSwapSample.ipynb): Use Nvidia's NeMo conversational AI Toolkit to swap a voice in an audio fragment with a computer generated one.\n","\n","- [Retraining an Image Classifier](https://tensorflow.org/hub/tutorials/tf2_image_retraining): Build a Keras model on top of a pre-trained image classifier to distinguish flowers.\n","- [Text Classification](https://tensorflow.org/hub/tutorials/tf2_text_classification): Classify IMDB movie reviews as either *positive* or *negative*.\n","- [Style Transfer](https://tensorflow.org/hub/tutorials/tf2_arbitrary_image_stylization): Use deep learning to transfer style between images.\n","- [Multilingual Universal Sentence Encoder Q&A](https://tensorflow.org/hub/tutorials/retrieval_with_tf_hub_universal_encoder_qa): Use a machine learning model to answer questions from the SQuAD dataset.\n","- [Video Interpolation](https://tensorflow.org/hub/tutorials/tweening_conv3d): Predict what happened in a video between the first and the last frame.\n"]},{"cell_type":"code","source":["import pandas as pd\n","import matplotlib.pyplot as plt\n","import numpy as np\n","from scipy.stats import linregress"],"metadata":{"id":"zT9NJjrX9i1x"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["sea = pd.read_csv('epa-sea-level.csv')\n","sea.describe()"],"metadata":{"id":"Vd-c4FYq9puT","executionInfo":{"status":"error","timestamp":1674998235754,"user_tz":-60,"elapsed":414,"user":{"displayName":"Randy noe Tchuisseu","userId":"14239266362476156768"}},"outputId":"d1aa9396-00af-4e26-a1d5-e07e1e88f8dd","colab":{"base_uri":"https://localhost:8080/","height":345}},"execution_count":null,"outputs":[{"output_type":"error","ename":"FileNotFoundError","evalue":"ignored","traceback":["\u001b[0;31m---------------------------------------------------------------------------\u001b[0m","\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)","\u001b[0;32m<ipython-input-2-dd328198b163>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0msea\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_csv\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'epa-sea-level.csv'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0msea\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdescribe\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.8/dist-packages/pandas/util/_decorators.py\u001b[0m in \u001b[0;36mwrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 309\u001b[0m \u001b[0mstacklevel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mstacklevel\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 310\u001b[0m )\n\u001b[0;32m--> 311\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 312\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 313\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mwrapper\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.8/dist-packages/pandas/io/parsers/readers.py\u001b[0m in \u001b[0;36mread_csv\u001b[0;34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, error_bad_lines, warn_bad_lines, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options)\u001b[0m\n\u001b[1;32m 584\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkwds_defaults\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 585\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 586\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_read\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 587\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 588\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.8/dist-packages/pandas/io/parsers/readers.py\u001b[0m in \u001b[0;36m_read\u001b[0;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[1;32m 480\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 481\u001b[0m \u001b[0;31m# Create the parser.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 482\u001b[0;31m \u001b[0mparser\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mTextFileReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 483\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 484\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mchunksize\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0miterator\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.8/dist-packages/pandas/io/parsers/readers.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, f, engine, **kwds)\u001b[0m\n\u001b[1;32m 809\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptions\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"has_index_names\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"has_index_names\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 810\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 811\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_make_engine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mengine\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 812\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 813\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mclose\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.8/dist-packages/pandas/io/parsers/readers.py\u001b[0m in \u001b[0;36m_make_engine\u001b[0;34m(self, engine)\u001b[0m\n\u001b[1;32m 1038\u001b[0m )\n\u001b[1;32m 1039\u001b[0m \u001b[0;31m# error: Too many arguments for \"ParserBase\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1040\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mmapping\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mengine\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptions\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# type: ignore[call-arg]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1041\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1042\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_failover_to_python\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.8/dist-packages/pandas/io/parsers/c_parser_wrapper.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, src, **kwds)\u001b[0m\n\u001b[1;32m 49\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 50\u001b[0m \u001b[0;31m# open handles\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 51\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_open_handles\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msrc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 52\u001b[0m \u001b[0;32massert\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhandles\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.8/dist-packages/pandas/io/parsers/base_parser.py\u001b[0m in \u001b[0;36m_open_handles\u001b[0;34m(self, src, kwds)\u001b[0m\n\u001b[1;32m 220\u001b[0m \u001b[0mLet\u001b[0m \u001b[0mthe\u001b[0m \u001b[0mreaders\u001b[0m \u001b[0mopen\u001b[0m \u001b[0mIOHandles\u001b[0m \u001b[0mafter\u001b[0m \u001b[0mthey\u001b[0m \u001b[0mare\u001b[0m \u001b[0mdone\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mtheir\u001b[0m \u001b[0mpotential\u001b[0m \u001b[0mraises\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 221\u001b[0m \"\"\"\n\u001b[0;32m--> 222\u001b[0;31m self.handles = get_handle(\n\u001b[0m\u001b[1;32m 223\u001b[0m \u001b[0msrc\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 224\u001b[0m \u001b[0;34m\"r\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.8/dist-packages/pandas/io/common.py\u001b[0m in \u001b[0;36mget_handle\u001b[0;34m(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)\u001b[0m\n\u001b[1;32m 700\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mioargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mencoding\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0;34m\"b\"\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mioargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmode\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 701\u001b[0m \u001b[0;31m# Encoding\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 702\u001b[0;31m handle = open(\n\u001b[0m\u001b[1;32m 703\u001b[0m \u001b[0mhandle\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 704\u001b[0m \u001b[0mioargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmode\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'epa-sea-level.csv'"]}]},{"cell_type":"code","source":["lreg = linregress(sea['Year'],sea['CSIRO Adjusted Sea Level'])"],"metadata":{"id":"2fAWp4Gx_eZE"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["slope,y_intercept = lreg.slope,lreg.intercept\n","print('slope=',slope,'y=',y_intercept)\n"],"metadata":{"id":"GvVSjq8u_u6z","executionInfo":{"status":"ok","timestamp":1672614325483,"user_tz":-60,"elapsed":219,"user":{"displayName":"Randy noe Tchuisseu","userId":"14239266362476156768"}},"outputId":"f5526273-b10f-4ca0-9430-d57039e041af","colab":{"base_uri":"https://localhost:8080/"}},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["slope= 0.0630445840121348 y= -119.06594196773978\n"]}]},{"cell_type":"code","source":["plt.plot(sea['Year'],sea['CSIRO Adjusted Sea Level'],'ro',\n"," sea['Year'],sea['Upper Error Bound'],'g',\n"," sea['Year'],sea['Lower Error Bound'],'y')\n","next = pd.Series(list(range(len))) +sea['Year'].max()+1\n","bestfit = sea['Year'].append(next)\n","secfit = sea[sea['Year']>1999]['Year'].append(next)\n","plt.plot(bestfit,slope*bestfit+y_intercept,'b+',secfit,slope*secfit+y_intercept,'black')\n","plt.xlabel('Time in year')\n","plt.ylabel('Sea level in inches')\n","plt.grid()\n","plt.title('Rise of sea level')\n","plt.legend(['Sea level','Upper Error','Lower Error','Line of the best fit over'])\n","\n","#plt.savefig('sea_level_plot.png')"],"metadata":{"id":"hTSc5FL6n5SI","executionInfo":{"status":"ok","timestamp":1672617276247,"user_tz":-60,"elapsed":709,"user":{"displayName":"Randy noe Tchuisseu","userId":"14239266362476156768"}},"outputId":"c8bd6482-0a61-45a4-d6ac-9982795e65ee","colab":{"base_uri":"https://localhost:8080/","height":312}},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["<matplotlib.legend.Legend at 0x7f4d6b35dd00>"]},"metadata":{},"execution_count":36},{"output_type":"display_data","data":{"text/plain":["<Figure size 432x288 with 1 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXxM1/vA8c9JZE+ECLEndrVELLHUkvgqvi2lqqqqaml/lqpSqpQyM0q11VbRqqVaQWopX1rdKGJfQ9GIJYrYCUE2ke38/riTkchERvblvF+veU3m3nPvfWbEkzvnnvscIaVEURRFKTmsCjoARVEUJX+pxK8oilLCqMSvKIpSwqjEryiKUsKoxK8oilLCqMSvKIpSwqjErxRqQogFQogp+XzM6UKIW0KI6/l53DTH9xJCSCFEqTw+zgUhxDN5eQylcMrTXyxFyYoQ4gLgASQDMcCfwNtSyhgAKeXwfI6nOjAO8JRS3szPYytKflFn/Eph8LyU0hnwAZoCHxRgLNWB2yrpK8WZSvxKoSGlvA5sQvsDAIAQYqkQYrrxZ3chxK9CiLtCiEghxC4hhJVxXWUhxDohRIQQ4rwQ4p3MjiOEcBVCLDO2DRdCfCiEsDJ2e/wFVBZCxAghlprZNlsxCCFaCiH2Gbe7JoT4Wghha8nnYox3iXG7K8auKGshhJ1xf43StC0vhLgvhKhgfN1dCHHU2G6vEMLbkmMqxZtK/EqhIYSoCjwLnM2kyTjgMlAerXtoEiCNiXcjcAyoAnQCxgghumayn3mAK1AT8ANeBwZLKbcYj39VSukspRyUizEkA+8C7kAb4/q3svhIUi0FkoDaaN+IugBvSikfAP8D+qVp+zKwQ0p5UwjRFPgeGAaUAxYCvwgh7Cw8rlJMqcSvFAYbhBDRwCXgJqDLpF0iUAmt/z1RSrlLasWmfIHyUsppUsoEKeU5YDHwyqM7EEJYG5d/IKWMllJeAL4ABlgYa7ZikFIellLul1ImGY+5EO2PzmMJITyA54AxUspYYxfU7DTv7cdH3uerxmUAQ4GFUsoDUspkKWUA8ABobeF7VYoplfiVwuAFKaUL4A/URzsrNmcW2reBzUKIc0KIicblnmjdM3dTH2hn4h5m9uEO2ADhaZaFo52lWyJbMQgh6hq7iK4LIaKAjx/zPtPyNMZ7Lc1+FwIVjOuDAEchRCshhBdaN9n6NNuOeySmakBlC9+rUkypUT1KoSGl3GHsV/8ceMHM+mi0rpZxxn7tbUKIQ2jfFM5LKetYcJhbaGftnkCocVl14IqFMWY3hm+Bv4F+UspoIcQY4CULDnkJ7SzdXUqZZCaeZCHEGrTunhvAr8YYU7edIaWcYcl7U0oOdcavFDZfAZ2FEE0eXWG8UFlbCCGAe2j95inAQSBaCDFBCOFgvPDZSAjh++g+pJTJwBpghhDCRQjhCYwFVlgSXA5icAGigBghRH1ghCXHk1JeAzYDXwghShsvQtcSQqTtJvoR6Av052E3D2hdTcON3waEEMJJCNFNCOFiybGV4kslfqVQkVJGAMuAqWZW1wG2oI333wfMl1IGGZN5d7RujvNoZ/XfoV3ANWcUEAucA3ajJcvvLQwxuzG8h9b/Ho2WkFdbeDzQLj7bon1DuQOsRbvOAICU8oDx/VQG/kizPBj4P+Br43ZngUFPcFylmBJqIhZFUZSSRZ3xK4qilDAq8SuKopQwKvEriqKUMCrxK4qilDBFYhy/u7u79PLyyrA8NjYWJyen/A8oB1TMea+oxQsq5vxS1GLOabyHDx++JaUsn2GFlLLQP5o3by7NCQoKMru8MFMx572iFq+UKub8UtRizmm8QLA0k1NVV4+iKEoJoxK/oihKCaMSv6IoSglTJC7umpOYmIizszMnT54s6FCeiKurq4o5j+U0Xnt7e6pWrYqNjU0uRqUohUeRTfyXL1/Gw8ODqlWrotXLKhqio6NxcSlaNbKKWsw5iVdKye3bt7l8+TI1atTI5cgUpXAosl098fHxuLq6FqmkrxR+QgjKlStHfHx8QYeiKCxd6pUn+y2yiR9QSV/JE+r3SikM9HoICPDKk30X6cSvKIpS3Oj12rPBcAF4l6SkDPPv5FieJX4hxPdCiJtCiJA0y9yEEH8JIcKMz2Xz6vj5YcaMGTRs2BBvb298fHw4cOBAjve5dOlS3n777VyILm/3qShK7nqY8B8gxHTgKWAxNjbHEOLh+tyQl2f8S4H/PrJsIrBVatPTbTW+zh+BgeDlBVZW2nNgYI52t2/fPn799VeOHDnC8ePH2bJlC9WqVcuVUBVFKXkMBnjttU1AI2AK2rw+p4Dm6HRFJPFLKXcCkY8s7gkEGH8OwMy8qnkiMBCGDoXwcJBSex46NEfJ/9q1a7i7u2NnZweAu7s7lStrc1gfPnwYPz8/mjdvTteuXbl27RoAixcvxs/PjyZNmtC7d2/i4uIee4yIiAh69+6Nr68vvr6+7Nmzh5SUFLy8vLh7966pXZ06dbhx44bZ9oqiFG56Pbz77iXgJQID/4uWljcBPwFVkTJ3kz7k/3BOD6nNIQpwHfDIrKEQYigwFMDDw4Pt27enW+/q6kpycjLR0dFmtk7P6YMPsHo0ycbFkfLBB8T26PEk8Zu0adMGvV5P7dq18ff3p3fv3rRr147ExETeeustVq1ahbu7O+vWreP9999n/vz5dO7cmT59+mBtbc20adP45ptvGD58eLr9xsfHk5CQQHR0NG+99RbDhg2jTZs2XLp0iV69ehEcHMyzzz7LypUree211zh06BBVq1bF0dGRIUOGmG2fdp/ZYennXFjkRrzx8fEZfufyUkxMTL4eLzeomHNm6VIvkpMTWLFiPTANkMAMYBwDB14jIAD69TvD9u1Xc/3YBTaOX0ophRCZzvsopVwELAJo0aKF9Pf3T7f+5MmTWFtbWzZe+/Jls4utLl/O9nhvFxcX/v77b3bt2kVQUBCDBw/mk08+oUWLFpw8eZJevXoBWhKqVKkSLi4uHDlyhFdffZXo6GhiYmLo2rVrhuPb29tja2uLi4sLO3bsICwszLQuJiYGIQQDBgxg2rRpjBgxgo0bN/Lqq68+tn3afWZHSRrHn8re3p6mTZvmUkRZ2759O4/+jhd2Kubs00bsbKN+/ZHAKXr27MnPP3+FlF4Iof1R8PICf/+reRJvfif+G0KISlLKa0KISsDNfDlq9epa94655TlgbW2Nv78//v7+NG7cmICAAJo3b07Dhg3Zt29fhvaDBg0iMDCQp59+mqVLl2Z55pGSksL+/fuxt7dPt7xNmzacPXuWiIgINmzYwIcffvjY9oqiFA56PQwdehWDYRywilOnagAb+fnn7qb1Ot3Dtnn15SS/h3P+Agw0/jwQ+DlfjjpjBjg6pl/m6Kgtz6bTp0+nO7s+evQonp6e1KtXj4iICFPiT0xM5MSJE4B2JlqxYkUSExMJtOD6QpcuXZg3b166Y4A2zrxXr16MHTuWp556inLlyj22vaIoBUuv13KBwTCbKlXqA+sBHXAC6I5Oh+kCbm7355uTl8M5VwL7gHpCiMtCiDeAT4DOQogw4Bnj67zXvz8sWgSeniCE9rxokbY8m2JiYhg4cCANGjTA29ub0NBQ9Ho9tra2rF27lgkTJtCkSRN8fHzYu3cvAB999BH/+c9/aNu2LfXr18/yGHPnziU4OBhvb28aNGjAggULTOv69u3LihUr6Nu3r0XtFUXJfw+HaO6iatXmwFigPVrC1wMOpnb5kfBNzBXpL2wPcxOxhIaGyqioqBxNUlAQVMx5LzfiDQ0NzYVILFfUJgiRMvdjPn/nvBz9x2j5IOlBru43rfz8nHU6KeG6bNLkdQlIqC5hvYQUqQ0vfNguM2oiFkVRirXFhxcz58AcNp3dVNCh5IheD0lJSRgMXwP1OHZsJfABcBJ4AZ1OKwmSti8/v6nEryhKobDl/BYA1p1cV8CRZM/Dbp192Ni0BEYBvsA/wMfodI6mdrl9Q9aTUolfUZQCd+f+HYKvBlPKqhS/nP6FxOTEgg7JYg8T/i2aNXsTeBptwOIaYDNQz9SuIM/y01KJX1GUArd9mYEUmcLo3Uncib/D9u+nFHRIWXqY8JPp3n0hUJe//w4A3kPr1ukDCKQsPAk/lUr8iqIUrMBAtvz+DU4JMHUHOCXAut+/yHE9rbyk12u1dYYODQZa89tvwwFv4CgwC51Ou4GwsCX8VCrxK4pSsCZPZkv1JPwuQOkH0O0MbKidRPKHkwo6skwZDHeAESxe3BK4BKwAgtDpGgKFox//cVTiz6YLFy7QqFGjdMv0ej2ff/55vsbh7+9PvXr18PHxwcfHh5deeilfj68oOfWLfThn3OGZc9rrcftg6Qbg4sUCjcscP78UhPgBqItWUeYd4DQ6XX9AFKp+/McpsnPulkSmMbhW6f9eBwYG0qJFi0y3S0pKolSpUpm+tnQ7Rcltn+7+lIn9oOk1eP2YtqzlFeNKT88Ci+tRej1cv36UnTvfQrsvtS3wDdDEtD5t28JOnfHnEX9/f0aPHo2Pjw+NGjXi4MGDAHz88ccMGDCANm3aUKdOHRYvXmzaZtasWfj6+uLt7Y3OeNpw4cIF6tWrx+uvv06jRo24dOmSRccfNGgQw4cPp1WrVrz//vsZXh89epTWrVvj7e1Nr169uHPnjinuMWPG0KJFC+bMmZPLn4qiPHQ95jofbP2AXk4t2LPSgXL306zMYUmV3KLXw7179zAY3mHx4ubAWX744QdgJ9CkUF64tUSxOJ0b8+cYjl7P3bo0PhV9+Oq/X+VoH3FxcRw9epSdO3cyZMgQQkK0yciOHz/O/v37iY2NpWnTpnTr1o2QkBDCwsI4ePAgUkp69OjBzp07qV69OmFhYQQEBNC6dWuzx+nfvz8ODtqt3507d2bWrFkAXL58mb1792Jtbc2gQYPSvfb29mbevHn4+fkxdepUDAYDX32lvd+EhASCg4Nz9N4VJSvrT65HIpnm1hsHm/OAMfNbWUFcHEyerL3OQWmV7NK6bCQGQyCff/4ecJOUlBHAdAYP1iYO9PN72LaoKRaJvyBkNiF32uX9+vUDoEOHDkRFRZkmT+nZsycODg44ODjQsWNHDh48yO7du9m8ebOpFHBMTAxhYWFUr14dT0/PTJM+ZN7Vk1r7/9HX9+7d4+7du/gZf3MHDhxInz59TO3S1v9RlLzyv6D51L1jRUP9B4BWjT6hHNjdTtEapE6YBPma/LUROyEsXToS2ElsbEvgN6A5UDTP8B9VLBJ/Ts/Ms6NcuXKm7pFUkZGR1KhRw/T60T8Oqa/NLZdS8sEHHzBs2LB06y5cuICTk1O2Ynx0O0v3k93jKYqlbi9bQFBsCO+HQOr/hhtd4fR70HIAOFw3Lkw988+HxK/Xw7hx0RgMBuArwsNd0S7gvgFYodNpQziLcsJPpfr4s8nZ2ZlKlSqxbds2QEv6f/75J+3atTO1Wb16NQC7d+/G1dUVV1dXAH7++Wfi4+O5ffs227dvx9fXl65du/L9998TExMDwJUrV7h5M2+mK3B1daVs2bLs2rULgOXLl5vO/hUlP/yy7EOSreDFkw+X3fgPyFIQ+eiX2zwe3aPXawMnDIY1lC5dH/gCGAKcAf4Pnc7K1C71bL+oKxZn/AVl2bJljBw5krFjxwKg0+moVauWaX3qLE6JiYl8//33puXe3t507NiRW7duMWXKFCpXrkzlypU5efIkbdq0AbQ/LCtWrEjXVZOZtH387u7ubNmyJcttAgICGD58OHFxcdSsWdN4wUpR8seairfxvAvNjbMKJjnBXeOEZ7dbQpUNaRrncMKkzKSWQjYYTrF8+ShgC9AMWAe0TtfO3M9FmrmSnYXtURTLMvv5+clDhw5lWD5x4kQ5a9asAogo+wrz52yOKsucP7Ib85lbZ6TQIaf6G2sTg7zeCRkUhAz+Frnjd2SSjXGdo6OUK1bkasypZZAhRrZtO1GCjYQyEr6RkGRxyeT8oMoyK4pSLMw7OI9SwpoRJxxMy261A9vb4LnGjhQHuOdNrkyY9KilS70wGCR9+64HGrBnzyfAq8Bp4C10Ou0bdnG4gPs4qqsnj2Q2n+6kSZOK1MTlipKb7sXf44dDi+l71p6KEbFgbU1c5WQiWwkqpHSk7F+/IHa7EblqFG61c+8u+NRunYCAROA51qz5E622TiDQLsOF2+Ka8FOpM35FUfJNwJJRxMh4xmyNRQKhE5I5uAxS7K2p1H4m1tZOlCnTgcjIP3LleA8raN5HCB3QGNgDzAYOo9O1M7Ur7mf5aakzfkVR8s1PIWtoAjS/BtG14GZnqLQRavxVEdvjLQHw8HiNqKhDpKQkYWWVsxRlMMDp0xvRaupcQOvW+RyoBBTTC7cWUIlfUZR8EREbwd4KD/hwp/F1RyAZanwHttFXTO0qVhxIxYoDc3QsvR7u3DkPjGbVqo3AU8A2oCOgXb4tKd065qjEryhKvvh92YekWEGP09pdujc7QtkjYBsFeObOkE1tvtt4ZsyYBXwMWAOfAaPR6WwxGEpWl05mVB9/Djg7Oxfo8S9cuICDg4OpJLOPjw/Lli0r0JgUxazAQH7ZtYTKUdDsGkTXhfjKUCGIXCvIpo3J38Tq1Y2Bqbz8cg/gFFKOB2zR62HgwAslOuGnUmf8RYi5Msm1atXi6NHHF6hLTk5OdyPYo6/NMY33tVLnBkrOxU+dxKZXkhlwTCvRENERRCK477XK8ZBNvR7eeOMSBsMY4H+cPVsX2MyaNZ1N61PP8gcNugB45eStFAvqf3UuM1fu+ObNmzRvrhV4+ueffxBCcNF4G3qtWrWIi4sjIiKC3r174+vri6+vL3v27AG0yV0GDBhA27ZtGTBggMVxODs7M27cOJo0acK+ffsyvP7yyy9p1KgRjRo1MlXlzG4JaEXJyleVLxJrC8+fgWQbuN4V3A6CTZTMdtLX67VKsgbDp1SvXh/4A5gBHAc6o9M9nAVLneWnVyzO+MPCxhATk7tlmZ2dfahT58mLv73++utmyx3Hx8cTFRXF3r17adGiBbt27aJdu3ZUqFABR0dH3nzzTd59913atWvHxYsX6dq1KydPaoVMQkND2b17t6ksQ1r//vsvPj4+ptfz5s2jffv2xMbG0qpVK7744guAdK8PHz7MDz/8wIEDB5BS0qpVK/z8/ChbtmyWJaAV5UlIKRm3eRyzn4EXTkKXf+HGs5BYFqquJVvlGB6WWtjGN9+MBE4BLwBfAZ7p2inmFUjiF0K8C7yJdo3nH2CwlDK+IGLJTY8rd/z000+zZ88e9u7dy6RJk/jzzz+RUtK+fXsAtmzZQmhoqGlfUVFRpoJtPXr0MJv0IfOuHmtra3r37m329e7du+nVq5epCueLL77Irl276NGjR5YloBXlSawMWcns/bMZ5dqF2b/uwkre53IfcD4DZc44wKIn69vXEv411q0bC6zi1q2aaCWTnzO1STtiRzEv3xO/EKIK2qDaBlLK+0KINcArwNLs7jM7Z+b5rUOHDuzatYuLFy/Ss2dPPv30U4QQdOvWDYCUlBT279+Pvb19hm2zUybZ3t4+XT/+o68zo0oyK7kl6kEU4zaPw9euJrPnnMI69j63n7YizjOFpxaWQyyaY3E3j14PkycnYjDMA3SEhCQCOmAiYG+681aN2LFMQfXxlwIchBClAEfgagHFkaseV+64ffv2rFixglq1amFlZYWbmxu///67qYxzly5dmDdvnmlfWV2wzYn27duzYcMG4uLiiI2NZf369aZvHoqSXUHng+i8vDOjfh/FrD2zGLhhIDeirzN/3jmsL2jXtK53SsHmDpTv/oVFSf/hnbe7sLVtBowDOgAnAD06nb2pXWp/vpK1fD/jl1JeEUJ8DlxEm2tts5Ryc37HkRvi4uKoWrWq6fXYsWMzLXfs5eWFlJK2bdsC0K5dOy5fvkzZsto0bnPnzmXkyJF4e3uTlJREhw4dWLBgQZYxPNrHP2TIEN55553HbtOsWTMGDRpEy5banZJvvvkmTZs25cKFC0/0/hUlrfnB89l9cTf7L+8nJkHrpnx/L7QwntZJK7jTAsrtBatVOuif+U1aD/vxb7B+/XhgOVAdWA/0JHX6lpJ6521OCa1yZz4eUIiyaAWv+wJ3gZ+AtVLKFY+0GwoMBfDw8Gi+atWqdPtxdXWlRo0aFnVfFCaWDKUsbIpazLkR79mzZ7l3714uRZS1mJiYAr8v5EmljTlZJvPC3hdo796e9+q+x4OUB7QcOIhyVx5OJnSvAfz9DTSYBuW3C3YYJzFKa+lSLwYNukDHju1o2XI6Bw/ORjs/HA9MRusggKCg7aa22Y25KMhpvB07djwspcw4L6u5Ws15+QD6AEvSvH4dmP+4bYpiPf7MqJjznqrHnz/Sxrz/O71Ej1zVECmtrU119tM+zg1GBm1BJrggpadnhv3pdFrTIUP2SvCRgITOEk5LeLg+JzXyi9rnXJzq8V8EWgshHIU2+Wwn4GQW2yiKUlgFBrJ55QyEhE7ngeRks80iW0Lpk2ATI8zeqWsw3ALe4PvvnwYi0DoDNqHT1QVUP35uyvfEL6U8AKwFjqAN5bRCm9FYUZSiaPJkNldPpPlVcI8z3yShDETX127aYvjwdBd2/fySEWIhUBdYhtatcwqd7iVAlLiSyfmhQMbxSyl1aGOxFEUp4qKuh7OvGkzYbX59TC04/Z72s3u3GdB3EqAl8atXg9m58y3gEOAPfA00NK1PpRJ+7lIlGxRFybbklGTG9nYm2QqePZtxfUwNODwf4itAg2/cce47Cb0eIiMjMRiG8913LYFLBAYGopVNboiU6gw/r6nEryhKtkgpeW39ayypG8OHe0vR9uIj64GwMWB9H3xHOTA/eSspKSkYDEuoWrUu8B1SjgZO07//q4DAeNuLSvh5TCX+HDA3zGrBggV5Xhp57ty5PPXUU/R/5AaYo0eP8vvvv5te6/V6Pv88+/OWenl5cevWrWxvD1rhtx9//DHT9ePHj6dhw4aMHz8+3We3dOlSrl4tFvf1FVv7I/ezKmQVhiOufLQ5iWQXKyJ9Ib6SFcl2cO15wT1vqLXOjY9b7cewPgVPz3bAm9y/Xx/tMt9soLSpoFomU1UruaxYFGl7EnldqW/48OF5t3Oj+fPns2XLlnQ3j4GW+IODg3nuuecy2TL/pSb+V1991ez6RYsWERkZmWHc/dKlS2nUqBGVK1fOjzDNlrxWMielZM3xb/CMFnzwq3a/Q3i/FC71A0hJbcXKlYv5ZM6LGNz0wDdcvlwO+AFtFLdVhknOlfxR4s74DYa83X/as2x/f38mTJhAy5YtqVu3rqmUQ3JyMuPHj8fX1xdvb28WLlxodl/mSicPHz6cc+fO8eyzzzJ79mxT24SEBKZOncrq1avx8fFh9erVgFbZ09/fn5o1azJ37lxT+xUrVtCyZUt8fHwYNmwYyZkMwfvss89o3bo1LVu25OxZrRM3sxLSO3bsME0I07RpU6Kjo5k4cSK7du3Cx8cnXbygFZ+LiYmhefPmrF692vTZrV27luDgYPr374+Pjw/3799Pt5250tenTp0y3YkM2h+cxo0bA3D48GH8/Pxo3rw5Xbt25dq1a6Z/nzFjxtCiRQvmzJmT6b+pktHO8J0ctbrC+N0SG2Oej2wFLiehToAbGzbsok6dRSxaZIebWwO0i7bDgdPAIHQ6LfWkHbGj5CNzg/sL2yM3b+CCJ94kU05OThmW6XQ6OWvWLCmllH5+fnLs2LFSSil/++032alTJxkVFSUXLlwoP/roIymllPHx8bJ58+by3Llz6fYTHBwsGzVqJGNiYmR0dLRs0KCBPHLkiJRSSk9PTxkREZHh2D/88IMcOXJkuljatGkj4+PjZUREhHRzc5MJCQkyNDRUdu/eXSYkJEgppRwxYoQMCAjIsD9PT085ffp0GRUVJQMCAmS3bt2klFL269dP7tq1S0opZXh4uKxfv76UUsru3bvL3bt3SymljI6OlomJiTIoKMi0XVaf4aOf3aFDh8xu07hxY7l9+3YppZRTpkyRo0ePllJK2aRJE3nu3DkZFRUlP/nkE/nRRx/JhIQE2aZNG3nz5k0ppZSrVq2SgwcPNh1jxIgRZo+hbuDS3I67LYdtHCZvxd4yLdt/ab9sOtNTVngPGVdKuznrvjsyKAg5poFOSiEk/CM9PTsYb8JqJSE43f1cUubsRqzsKqyfc2aK0w1c+U6vByG0Bzz8OT++Xr744osANG/e3FQLZ/PmzSxbtgwfHx9atWrF7du3CQsLS7dd2tLJzs7OptLJT6pbt27Y2dnh7u5OhQoVuHHjBlu3buXw4cP4+vri4+PD1q1bOXfunNnt+/XrZ3ret28foJWQfvvtt/Hx8aFHjx6mEtJt27Zl7NixzJ07l7t37+ZJ14m50tc7d2qzd7/88sumbzqrV6+mb9++nD59mpCQEDp37oyPjw/Tp0/n8uXLpv317ds312MsTpYcWcLCwwtZc2INAIbtBlovac35qEvM/QMckrR2k8top+1fhY6jjY0f4EN4eAjaLTp7AW0iIjVip3AoEZ2aafv1hdB++fKLnZ0doNXDT0rS/pdIKZk3bx5du3bNt+OnjUFKycCBA5k5c2aW24vUv5Zpfs6shPTEiRPp1q0bv//+O23btmXTpk259C4s07dvX/r06UOXLl0QQlCnTh3++ecfGjZsaPqj9ShVhjpzUkoCjgUAsOX8Foa3GM7Cwwt5puYzrH9zC84JWjs9Or48q+PIxBCgPvsTrqFNtzETKKdKJhdCJeKMv7Dp2rUr3377LYmJiQCcOXOG2NjYdG2yUzrZxcWF6OjoLI/fqVMn1q5dy82bWgGtyMhIwsPDzbZNewbdpk0bIPMS0v/++y+NGzdmwoQJ+Pr6curUKYtjsvS9PK70da1atbC2tuazzz4zncnXq1ePiIgIU+JPTEzkxIkTTxxPSXT42mFORJyg7AMrth35H8G+lbkWc43XYmrinGyN3ngPpoFXgM5sP7AOqAjsAxah05UDVKmFwqjEJf7cvJCUWpY59fHll19atN2bb75JgwYNaNasGY0aNWLYsGGmbwOp0pZObtWqlal08uN07FSxdU0AACAASURBVNiR0NDQdBd3zWnQoAHTp0+nS5cueHt707lzZ9MFz0fduXOHNm3aMGfOHNPF2blz5xIcHIy3tzcNGjQwlY/+6quvaNSoEd7e3tjY2PDss8/i7e2NtbU1TZo0yXBx93EGDRrE8OHDzV7cDQgIYPz48Xh7e3P06FGmTp1qWte3b19Wr17Nyy+/DICtrS1r165lwoQJNGnSBB8fH/bu3WtxHCVZwJpJ2CXBjL9SuOsA0+peR0gIeacSJCdjYDyCiYA3cBiYDxxEp2sFoEotFGbmOv4L20NV5yxYRS1mVZ0z5+7F35NuE61k35eQ152Q6JH46WSbN5CQIl/mZQnVjBdvB0m4UeAXbi1R2D7nrOTVxd0S0cevKMqTmRo0lTt2KYzbCx6x4H0dju/Q43AeIJE1HAHKAj8C2ixyMs1ct+oMv3DLsqtHCPGZEKK0EMJGCLFVCBEhhHgtP4JTFCX//X3tb+YdmMuIYIGv8ebp26uCANh2UQ/YApuBwwzqtwUAnat2n4lK+EWDJX38XaSUUUB34AJQG61uaoGT+Tk8RykxSvLvVfSDaAYvfYHyMZIZWyX+BCGQXLnrn67dJOcAoBQfuhjQlZqB/pvyBRKvkj2WJP7U7qBuwE9Syvybj+4x7O3tuXfvXon+T6rkPiklt2/fzjBUtSRITE6kz099CIm/SKclOsrEww78CRv+cEivNM51O2C4gYGv6am6rSz6pV4WTZyuFB6W9PH/KoQ4hTbx5QghRHkgPm/DylrVqlU5duwYMTExBR3KE4mPjy9ySaWoxZzTeO3t7TPUQSoJpgRNYdN3rVkUvYmhd/TUMS6vs+DhyZVA0rTudq53gxGXNmK3PLJAYlVyJsvEL6WcKIT4DLgnpUwWQsShTXNfoGxsbIiJiaFFi4zzCBdm27dvz3JYZmFT1GIuavEWBu9NiuEb+y9hRwJXjMsM6NO18WM7X87tyP0qUHuBOyeHz8r3OJXcYcnFXUfgLeBb46LKQNHKtoqipBOTEMNvZ35j5q6ZjJ5why9mOvNgqzYz1qMJf9Cr2uvNZToS1RCq/Awea25TAm8DKjYs6er5Ae3ujKeNr6+gzYL8a14FpShK3jly7QhdV3Tl1m8joaMBPvsAALlTn67dqBZ65gXrMaQYkAPhki1gBeX2AtWr53vcSu6x5E92LSnlZ0AigJQyDhCP30RRlMLo0JVDPD1gM442jrBDD/qMgyN0xjP+vpMMjPDTU34XDBpk4PJLYHcTnK86wIwZ+Ru4kqssOeNPEEI4oM2khhCiFvAgT6NSFCVL9xPv8/3f39O1dldqu9XOsn3vEf/wR1U/HmyNo9cxWzKbgUCPgchmkFgWZsZ8gn2P4djdXsyDcsmU+8cZsWiBNopHTZdVZFmS+HXAn0A1IUQg0BYYlJdBKYqSte///p63/3gbgNe8X2PZC8vSVVNNpddDuWfn8b8Fo6je6TMuAnNujc3QTiLQoyPWC3p/asDjT4Hru0ugf3/KnIzjxo1luL+7Ftzyvqqskrey7OqRUv4FvIiW7FcCLaSU2/M2LEVRzPlox0esC10HwC9nfqFm2ZoM9hnMiuMrCIsMy9Ber9dKIo+bpFU6vbj17XTrU7t1Up+n2Bo49T5Yx0HNJvNN4/MrVhxM2bJdKFPGP0/el5K/LL0sbw/cAaKABkKIDnkXkqIo5sQnxfPRzo8Y/edobi9bQNCZzbz46zk++D+tZv62V9tAYCDwsHRC6lSjidsmpdtXaqLXY0CHHj0GpBWcnAzR9aBe4mhs+z2cP7psWX+aNNmElZUdStGXZVePEOJToC9wgrSzKMPOPIxLUZRHHA34lMSURK5EX+GNQyNIrA89T0PtiBSqREFQ6UiGDx0KgMHQ3+z80jr0GIyJPlXqzxcGwK0OUPtrKL/2q3x5T0rBsKSP/wWgnpRSXdBVlIISGMiBgBnQCapEwc/1oXwstLmkDbH7z3n4szbo4sYjRkZkuhtzCR8gwRUu9YXyQVA12DMv34lSCFiS+M8BNuTiSB4hRBngO6AR2reHIVJK83PjKYoCkydzoEUiVaLgw50wojt0PwPWxtGYUXt1RETCNPRgpppW6oVb0BJ+QhmIagjxFaH8drj8IqTYgddqezVUswTINPELIeahJeU44KgQYitpkr+U8p0cHHcO8KeU8iUhhC3gmIN9KUrxd/EiB3pCq8vw+jH4qya8dUib71aPgZ9v6GGEgB16zjWsQs0TV6jzjhVhc1P4ME1/PsCdJvDPTEhx0HZ9fohACkmFA444TVmkCq6VAI874w82Ph8GfsmtAwohXIEOGIeESikTgITc2r+iFEe36lThnNtlhh0Gx0RYt0ZL+unKKxhvxqp5Qqu2c/7IVF4ro+ejuw+7dCJ9IWQa2EdYU89+MtbP9iYs7B2iovbj+U4wOD2Vn29LKSAiq7LGQggnIF5KmWx8bQ3YGe/gffIDCuEDLAJCgSZof1hGSyljH2k3FBgK4OHh0XzVqlUZ9hUTE4Ozs3N2wigwKua8V9TihaxjPrV1ASNKrWb7DxAUrp3lC8z/32394iYab97H1/cN2CZry5Ic4dxQuNoTrKMrkOyyAG0GLdC+2McCT/aZFcfPubDJabwdO3Y8LKXMWFvN3HyMaR/AfsA5zWtnYG9W2z1mfy2AJKCV8fUc4KPHbWNuzl0pi978mVKqmPNDUYtXyqxjnrptqsRPL6PtrUxz2z76mOL2pTbnrRAZVv5jQAZtQYZNcJFJSTH5EnNhVNRiLsg5d+2llKai91LKGGPFzuy6DFyWUh4wvl4LTMzB/hSl2LkWfY13/nyH2V1ns/iLKmysvBF2HGF8RwlB5rcZU3MsVpH3tFSfRmRzbZhmje/A89lvwdopH96BUphZcgNXrBCiWeoLIURztElZskVKeR24JISoZ1zUCa3bR1FKlLjEOH498ytJKUkZ1s07OI+13zRk0tZJTJsm+HtlDwAWBOkztE2yFwwcoOdO0/RDNAFSrOHsKLC/AtXWoC7cKoBliX8M8JMQYpcQYjewGng7i22yMgoIFEIcB3yAj3O4P0Upcr4++DXPr3ye1t+1JjQq1DSNaEJyAnM+LQs79CyfU0trvEOfbtshL2mvJzvpsY6H0S0M3DUz98yVFyHOU7spy6qyGp+vaCyZgeuQEKI+kHqGflpKmZiTg0opj6Imc1FKuN0Xd1PesTyXoi4x8tpI5l6cS+3jKxjQLIC4v+ZpjXbo0m0zcKCegAA9A0YasL4P00OWgn05yhy9TXh/SHKCUsZhEg/KwoWB4LYf3I87wiI1Pl/RWFqrxxfwBpoB/YQQr+ddSIpS/MkVK9h3/Dee2xvB6UV2+G1bgZuDG78tbsErI+ZlaP9+KT0AI/5jYKKb9vOH8x3hwgWYM4cyoXZgDXe9jfsHzg2DFBuovaIMLFLj85WHLKnVsxyoBRwFjIPDkMCyPIxLUYqldaHraHnwCg8mT+DW0BRuHdBR5pqBHWH9mXroMpndvv5JkoGIl6H0SZgZaSB6KDidGqOt7N+f0iRglfAGl16WXH8W7jWGxDJQPfp5HENy7TYcpZiwZFRPC6CBlPLxA/4VRXmsq9FXeemnl+gV7kAv93gAfrumN92CNe3+hAzbpJZaeOABr48wUNpYO80lwROsbE3trPsPpszxdUTa/oa9fQ3cXDtQtmxHKlRQZ/lKRpYk/hCgInAtj2NRlGLtj7A/ANhQ/T7xCWC1JIgUMk5unlpBM23p5JvGG2pLnwQcHc3W02nQYCXJyVHY2VXJuzehFAuWJH53IFQIcZD0tXp65FlUilIM/bZtAeXvWxGxcit/XPTPsP7Rkslph2ZGPQUiAZzCrWCJ+f76UqVcKFXKJa/CV4oRSxK/Pq+DUJTiLmFFAL/+3I0hZYJZeNEf9MJUW0ciEMh0iX6Sq4FTw6DmYrC5BxEdwPUfsEqQ6iKtkmOWDOfckR+BKEpxpddD+03vk7j/BvfcUhc+vGQmkPixXVtsTP5XXoTrz4JI1oZjPqgItecD1avna+xK8ZTpcE7jzVoIIaKFEFFpHtFCiKj8C1FRiqa00x9+GDECgFWR+nRtmjTZzj+f2PJb1Y6mZSk2cLU7iES49iycfwPsbkC5vx1UrXwlV2R6xi+lbGd8Vp2GivKEUic5T7X/X3269an9+fM+7sgde3tuLUvE7W8bqi1PJMEdEt2g/gwIGwNxNaDGT2WwWvC16uZRcoWlN3ApimKBRyc5f3Te27QjdYb01uN2EFq+LnA8356Y1u4cmw1nxgocLoHH2ep4JvWjVKmyVJodppK+kmtU4leUx/h87+eM+XNMlu3SJnwhMq6v2Ww6AJNdDExFzwM3GPC2gdKhYHflPt6TztCq1Tlq1JiJcHGl+jNLEOfDqdYjkKefvoatrXsuviulpLNkVI+ilEj34u+h364nNjGWfo360apqqwxt9PqM3TrmrLo+hY3WSRxYAQM3Gog6pS0vfUJ7trt5E2Ftj6fnRDw9H1YpF0IghF3uvCFFMVJn/IqSiR+WvE1sYizOD2DqNH8IDDSt0+vhzO0zGAwZu3fS2lTHmucr6vG9CqN9DSSVhis9tSkQRQK4hGntHlSokMfvRlEeyjLxCyFeFEKECSHuqVE9SkmRsmI5X4cF0vYi6HbA5irx7Jz2BgQGms7wXx6pTSPxaMJvX3MaAGNt9XQJS+GX61qD2621kTrJznCtm5b0rRIBR0fOvflmPr47paSz5Iz/M6CHlNJVSllaSukipSyd14EpSkH6deE4/i0rGXUA3joElaOgk8dEZq5625Toj61+Id02OmMF5fAeOmo11vNFwsO/CBK43QrK7QfXY4A1lA4FPD1h0SJuPvNMvrwvRQHLEv8NKeXJPI9EUQqJe/H3GNUigjq34cWT4JgI+5ZA0i49k369k3EDPz0AZ71fw7q9notlYPaD9F8DYr20m7DcDkC19Vqfvat+vVZWWY3WUfKZJRd3g4UQq4ENpK/V8788i0pRCsiDpAeM+mMUV0rDniVgkwJ6dHAv822cnzYQA/wcso4RlWwYsgCaXk/fJrK19lzukBV2Xy6hWbN6uLg0z7P3oSiPY0niLw3EAV3SLJOASvxKsXAl6gpfH/yapceWcj1Gy9hTgx3448r7/EHG6pmpHCcJxn6so+FGOOtmYMQsK8rFxGdoJ9Fq7TidBbsIaayfrygFx5JaPYPzIxBFKSjdfuxGyM0Qnq/3PC1u2nB4ZmOm3JiKDXokAoPxWSD5t6yg1h0JfnpaX4aPMGiFywFIMbv/u80g+imoMwdVa0cpFDJN/EKI96WUnwkh5qGdtKQjpXwnTyNTlHxwN/4ux24cY7pbHyaP3Ib+9tusZwrTjZPNCeOvfurzsjs6KjfTc7WjgXbbM99vXGUIHwCeP2rz3tpGQKVtDjBf1dpRCt7jzvhTL+gG50cgilIQjiz/DIBTugZw5ydTt86j3Tvve+hxuKGVWnC2h/FA+4uZ7/fia3Djv3DzPyBtoc4yN6zmz1UXcpVC4XFF2jYanwPyLxxFyRsHrxykXrl6uNq7PlwYGMjMGQ4wGFbc0bPCTF/+wIF6AgL0vDLJgM9obdmIQ1D6ATwdBzc7QIWd6bdJdNESfvntkOQEDyrbUOm7q2Cl7sBVCgdVskEplu7cv8PV6Ks0rNCQ3Rd30/6H9vhW9mX7oO042jhqpRaWTmZL+AVc/0jOdNDOu40MuNUX3PPWbsBy3w9OiTD0MJweB9e6g8P/gcvZh9tc7wIpduC5ApyvOSIXLUSopK8UIqpkg1IsjfpjFE0WNOHHf35k2K/DcHd0J/hqMH1+6kPr1/7UauRfHATAvQP6DNtf7yQYOFBPlQ1WfP6hJw4OtQmZITg7EpJttDZ3vbXnCwMfbhdfAa72gNIh4Jyk3Zwl+r+Wt29WUZ6QOuNXip1kmcwfZ/9AIun/P61P/de/yjM3fCq/v2mAwN8AmCH16bZLrZE/2UFP2Ch4O2Ia5ToHIPoPoFliD85/5Mnll2KwvQUVN8H96toEKbfbwcW+cL1HKeIqJwFQo8FqePvlfH3fimKpx43qMTuaJ1VOR/UIIazRLhxfkVJ2z8m+FCWt09GnibwfyaLui1i3bR63lrxEt9M6uqN/WFEtjf5l9QTe0TPFxkCCE/TWG4i2hQYunyL6DgDAxsaNutNjia4EEf7gcFXbtu6XcPJDODccHB3rUrvycMqU6YCzc5N8e7+K8qQed8af16N5RqONHFL3sii5KjR4FcIKwlpf4U8Zikieij6TMfYAsyt8RwUP2PuloIuDgXtA/frLcKw4IH3D6tUpvyOcc8PhRmewegBl/4YGCyvwYPFMPDxex8pKfYlWCr/HjepJN5pHCOEopYzLjYMKIaoC3YAZwNjc2KeiABAYyIbfOtGy2S5mJelxNC42d/ftMwMER07riNBVo4ejgdJlu1Kp0mCcnJrg5FQ/475nzKD8lDc5NzyeW+21YmtWNo649fsSKqlhmkrRIaTMtDdHayBEG2AJ4CylrC6EaAIMk1K+le2DCrEWmAm4AO+Z6+oRQgwFhgJ4eHg0X7VqVYb9xMTE4OzsnN0wCoSKOff9G/Mv7nbuuNq48kvPQ8yOGo+fp54d4foMbVP78XXoedfOQLQD/LsGpE03YBxgZvqsNCps2UJsjU+JrZVElf85kVh6TK5U1izsn7E5Kua8l9N4O3bseFhK2SLDCinlYx/AAaAa8HeaZSFZbfeY/XUH5ht/9gd+zWqb5s2bS3OCgoLMLi/MVMy5K/RmqCw1rZSs+mVVGXQ+SII0+9Chk9pvO1KHzrQiqhYyKAh5fd1Ii48ZHv6pDApC3rr1R669j8L8GWdGxZz3chovECzN5FSLOiSllJdE+olEk7P9JwjaAj2EEM8B9kBpIcQKKaUa86Y8ESkl7/z5Dk42Ttz8eg0dx7bJ0Cb1DF/PwzLJaX+Oqas9u0xYAvfbWHRnbeXKwxHCmrJlVQ19pWiyZBz/JSHE04AUQtgIId7jYTmHJyal/EBKWVVK6QW8AmxTSV/JjvWn1rNlSVvanN1EwrmMSR+0JK9Dz4NyMNU649yI0XXAOhYc/o2HyZMtOm6pUqWpVm2cupCrFFmWJP7hwEigCnAF8DG+VpQC0+etE7y+/nXYoWfjIq2uvVzxcE5cKazQGS/ovl/FwP4f4fjngmQ3R6QVJBq7TWPqgPNZEBK4+JjiO4pSjFhyyiKklHkyZEFKuR3Ynhf7VoonvR68XljK2m8HUfX5OcQCNtbar7F4Tfs19WM7Ee0kr7SdRtJyN/59KxIhBXebwNHNDUk8d4SE0sk0/z+IqQ2VNxp3rkomKyWEJYl/jxDiArAaWCelvJu3ISmKeamTnFc4dB+AyxvfSLc+9Qxfj4EjfSGqoeRekyjuV4SaNT/B1taDU6fewLV0HRLkKU5OhhR7cD4DODrCDFUyWSkZLJmIpa4QoiVaf/xkIUQosEpKuSLPo1NKnNtxt/nl9C+kyIc3XJ34qQ9fzixtmuT85u8j0m3z6AXcRGeIqg9lDsO9xknY29eiatXRWFnZUb58X6yt7Tm3sQcX62mn+i6xlWDRLFUyWSkxLB3VcxA4KIT4GPgSCABU4ldy3ad7PmXW3lnaiyAddDTAJ28w+5OMbc2N2AG40wywhho/QCmXylgHbcXKWB3T2toegGr/XcbVAzVJSXmA455LIKzz8m0pSqGSZeIXQpQGeqGd8dcC1gMt8zgupYTac2kPlQ8vYv/y/1JdX4021Z5mXyZtMxuieccXrGPA5SRYLfsM7D0zbGtjU4Z69RZz//55hEr6SgljyRn/MWADME1Kmdn/QUXJsSlTkzlse5gHG/ewZLa2bN+KLhnarfS24tTxqQAZzvYlEOkLZY+AVdlyj+2+KV++d67FrihFiSWJv6aUUgohHLNuqihPJikliQ+2fMD9LRP4ZpY7+E0EMPXnp7Lv9CnxWydQqbmBF45J7Mk4Jh8grho88ADPNTYwZ05eh68oRZIl4/hbGy/ongIQQjQRQszP27CUkuLlkaF8vu9zLekD7NCnW6/Tac/x7SdSvtVH/BOqxz7J/L6SHawIGw2kgFsfdbFWUTJjSeL/CugK3AaQUh4DOuRlUErxp9dDikxh/QJv0GcsFKgT07R200sxFT2BO9wJCZlKufvp20kBp96HkBnWHNtQk7vNBVhNxP6V0fnwLhSlaCqIWj2KgsEAp2+FAfXMrtdLHZACyckYMEAQIASPzg0U0QGuPwv2SW4kO9ylXs0lnD5dI6/DV5QizZLEn65WDw8nUFGUJ5Z2AqxV32RM+rNbC+7u1/p3Hr1wyyMlxFOs4PwbAsfEyvg+E24anXP69PbcDFlRih1LEv9wYA4Pa/VsRtXqUbLB3x927Mi4XKczXsztoKfTKWicyYXbR93o5cT9arE0bDhXDclUlCeQZR+/lPKWlLK/lNJDSllBSvmalPJ2fgSnFA+pZ/mpSf+lNX0AWH9yg7Z+qRc69Nw5aKDxTcv2meQE5/vH4+LSAnf3XrkcsaIUbwU22bpSvE3bMY0jK3uwYYEPBkP64ZlrX/4JgKOTaqIrNQPCw7VunXjL9//vMEgonUyjOt/yyPUnRVGyUJCTrSvF1KujzrDSXQcLpzLeLRZwytCmTbsE9Ed6QFK4+Z1YW0Oy+TEEd5vAteeh2h+lKd0p46xyiqI8nsWTrStKVvR6eG9SDCu/rkuZrl9xF/h8Zsak/9avI/mm2zdglUn9eyEgyThY38oqw0XdSy+DbQR4NZmdu29AUUoIS8bxK0qWUksm//fN/QDc3ZR+HP17H8QCYN1xOuOeHgeBgVpSN8fN7eHPj9TITywNkS3BY6891q8OybX4FaUkUYm/mLp07xIJyQl5fpzUC7epffh7lqefh1b4azdizfrYialTJdc2DqPm7/tg6FCzXTl3msLhGZEEb65JcHALghdZceO/tqb1ER1AloIKbSybJlFRlIxU4i+GrkZfpc68OnRe3pmoB1E53l+KTCH4ajAyTZdL2oRv7tpqaqmF46tfZNKHica2gvIbNsPAgRAXZ/ZY17tCbHWJbeh1bG0rkuiSxPlxrkiv6iAEN5+zwyGxEs59VOJXlOyypCyzPfAG0BCwT10upVTfswupn078xIPkB+y5uIdOyzqx9fWtlLYrne39bbi6gXk75/F83eep989KZn3slKGI2qP0S72AwTRq+QMznnsOvH6H8HDtr4TMdLAY0fW1ypqNp8RDyq/cvLmW0NA+3D60EReXptzdVw0vr2FqJI+i5IAlN3AtRyvQ1hWYBvRH3blbqK06sQqfij5M859Gz1U9mbFzBp92/tRs2zUn1vDpnk/x8fDBw9mDlSEraVqxKf/r+z8ApJT8cvUXXPZ+wSbrD9g40wkb6wTA1mzyP77kE9YNSzYO0dRDOPDttw8bPCbpJzpBnCd4/IWpb9/dvSe2tlW4fPlLpExGCGsqVFDF1xQlJyzp6qktpZwCxBpH+nQDWuVtWEp2nb9znv2X9/NKw1d4vt7zvN7kdb468BXn75xP1y4pJYmpQVPpu7YvMQkxrD25lk92f4JAsP7UesLvasMsd1/cTfhvg4jePJZ+t04DMHO6bbp9PfXSGgDeef8OjactQJ/0YbZijzZWcHA5b2ea/9bKyobKlYdz924Q9+7t4qmnVuDoWDtb+1cURWNJ4k80Pt8VQjQCXIEKeReSkhNrTmhJuG+jvgDM+M8MSlmV4r2/3jPNY7srfBfNFjbjo50fMdhnMMeHHydifAS33r/FtoHbAFh+fDkACw8vNJVKDpjjle5Ybs/OA2BnwH/Q6WCOt7E75wkluoAs50b0U9prl5Fz05VUrlx5KM7OTalXbwkVKvR94v0ripKeJV09i4QQZYEpwC+AMzA1T6NSskVKyYp/VtC6amu8yngBUKV0FSa1m8SHQR/SMaAjnq6eLD++nOqu1Vnfdz096/U09Ze7Objh5uCGn6cfy44t4+eJ7xK8L+PUyjb/+ZjEbZNw6jyL7nW64+5YA32dQG2kzhOKrWfP4W+TqeY1kpiYYzjEncbm1fT7sbWtQIsWR578A1EUxawsE7+U8jvjjzuAmnkbTsnz3ZHvWPL3EvYM2YOVyNkgq23ntxFyM4Tve3yfbvmk9pOo5FKJcZvHse/SPia1m8Sk9pNwss14cxWA677Z7Dj9M+wzv37Td22YP+sEP77zLzbWNtrCyZMzHanzOP9+VZ8UcZSLF2diZeWIu3vPJ96HoihPJstMI4TwEEIsEUL8YXzdQAjxRt6HVjLMOTCH/Zf3E3IzJMf7mr1/NhWcKtAvBPDy0m6Q8vJC/PgjQ5oOIWxUGGffOcuMTjPMJv3UIZq/LGqKU5fPAfg38pxpvZTaMM2ONTry0/yGWtIPDNSOlY0unjv/rUCk/VGqVXufUqXKkJwchYtLyyd/44qiPBFLTjGXApuAysbXZ4Ax2T2gEKKaECJICBEqhDghhCixUyWF3AwxJfyg80FPtG343XCaLWzGn2f/BOD0rdP8FvYbb9m1w37421oillJ7HjAA3noLd0d3qrtWz7CvtGPyU3+OnRwDQC037UueH9uhVCn0BqEl+sBA7TF0aLaSfkJFB8LGlsLOrjpeXgZq154LWFGmjP8T70tRlCdjSeJ3l1KuAVIApJRJ5GwGriRgnJSyAdAaGCmEaJCD/RV67/zxDi+seiHD8tUhq7ESVng4efx/e2ceXlVx/vHPmxsSTEL2hQAhLIJhERUUQUWWWrfWKiqKBUSqRSkKuFRUbHNjTbWirVZK1bogggUXRP1pq1IDbqyyB5A1YYeEECAJISGZ3x/n3Jub5CaQfXs/z3Ofe+7MnDnfOzl575x3Zt7h67Svq1TnO+vfYc3BNYx4fwQLtyxk3Mfj8Hf4M+EfK8q7XIyBV16xDLUnc+fiDH3RMvg+1grbslM0E32TScTJYoaWrLRNzHofFQAAIABJREFUT7cM/uTJ1XLvFPTuwLrZkeT7Z5GQ8CYOR2tiYu7giiuyCArqXeX6FEWpGmdj+HNFJAI7RLOIDACOVfeCxpgDxpjV9vEJrDUB7atbX2PnWP4x/rX6X3z808dsOLTBnW6MYV7qPIZ1HsYN3W9gSdoSiorP/vf0vdT3OD/6fEL8Qxg+fzibMjbx5o1vEr11n/cTjLH88DbOSz6DMWNIOmY9vCWZ0uP1iTitcqefLL8TFlgG/0gl2zKIgF/paZ8EBMCcOWyZewEn/TPp3ftTwsJ+5s729Q2puD5FUWqNszH8D2HN5ukqIt8Ds4EHauPiItIJuAhYXhv1NUY+2PQB+afz8REfXln1ijt9xb4VbM/azsheIxnaeSjHTh1j7cG1Z1XnlswtbDi8gXv63sMXo7/g4YEPs2niJn59/q/LBTUrRXq6ZfAjI0la9QvEnt7pidvgk+Q+rg477jXsnT8S4uPJ6wCrX/XnxFuPk3Pj+WRlfUbHjk8QHn7VmStSFKXWEVPJSkp3IRFfrF2xBfjJGFN4hlPOps4grJlCycaYBV7yxwPjAWJiYvrNmzevXB05OTkEBQXVVEqdMnntZI4WHCUhOIHvM79n1vmziAiOYNLaSew9uZc5/edwqugUty67lfu63MftcWeepz47fTaz0mYxf8B8ovyj3OnRixZx7ssv0+r4ccoGNHCSiJMkBGMfOb3WbRB32eqSORA2/hnAD/g38ArwFRAHdAJWAvOB6oeRqIymcF+URTXXD01Nc031Dh069EdjTPlNK4wxXl/AJUBbj893Ah8DfwfCKzrvbF5AK6wB44fOpny/fv2MN1JSUrymNxZ2ZO0wODHJ3ySbH3b/YHBibn/9dvPi0hcNTsysNbPcZRNmJJhr3rnG/fnb9G9N9snsUvXNXDHTjHhvhIl9PtYMenNQ6YvNmWNMQIAxllPH/Uok0RgwYEwiiWWz3S/PsjV5nfbHLP23mKVfRZmUFB+TmnqHSUlxmDVrhpiUFExKCmbbtgfrrtFN478vvKGa64emprmmeoFVxotNrczV8ypQACAiVwLPYrl5jgGvVfcXSKzVQm8Am40xf61uPU2Bdze8C8Co80cxoMMAbuh+A/P3zmfKF1O4Mv5K7rzgTnfZm867iUU7F3Ew5yCLdi5i0FuDiPtbHI9+9SgFRQVsPLyRB/7zAN/t/o7Wvq2ZdGmZnS+9zKN3kkgSTpxYoTLL9vJdrhxP905N2TM+hPy2hvP6vUdU1AgOH/43Ij4kJLxDXNxUHI5gOnR4sMbXURSl+lS2gMthjMmyj28HXjPGfAh8KCJn54z2zuXAGGCDRz1PGGM+r0GdjZIFmxcwsMNA4kPjAfh45Mf889N/ssN/BxP7T0Tefdcy2Lt3M653LM/eUsQ7695hSfoSogOjuarLVUz/YTp7ju8hMy+TYP9gNkzYQERAhDVD5/pOsHu35df3mFLpctW4DL03g2/9ICTZ5Wtu8AkIoOi1GeyN/z0RIb8iLGwIrVqFk5Exn5iYMbRu3YGuXZ8lPv5JfH2bzqO2ojRHKuvxO2zfPsDPAM/5hmcT6sErxpjvjDFijOljjLnQfjU7o7/r6C7WHFzDzT1udqeJCD2De/LCNS+UbEZiz7fvvmE/l+314cWUZ/hs22fc1+8+5t48l2d/9izzNs5j0c5FOIc4S4y+x7kuo+/ZsxfKj914G7h1kgQRETBnjlXXmcIde8uPiIDXXuPQ0EJOnz5CXNxDAAQF9eHCC7/h3HNLtkhUo68oDU9lBvzfwBIRyQROAt8CiMi51GA6Z3NlxooZdArtxC+7/xKAhVsWAjA8Ybj3E7y4ZsatLua3HY7SyqcVEy6ZAMCjlz9KXmEeK/avYMLFEyo8F8r37Mvi2bN3G/yXXioVEK3s00MpAgKsTVQ+/7zkSSM5mbzhl+DnF8ve1ZcSFHQRISFXuk8JDR1UqSZFUeqfyjZbTxaR/wGxwJf2QAFYTwm1Mp2zuXC6+DRTF00lPiTebfgXbFlAn5g+dA3v6v2k3eU3Gr8tFR68Bm7p/2vaBrUFrKeEpKFJlZ7r6umDd+NvDDhvXg+r43Hufgo6xlthj0d5iWufnGw9TXj8sBhAvP1IABkZC0ld4ZrwZUhImK2bpChKI6dSl40xZpmXtK11J6fpcPzUcZbvXc7Pu/6c9YfWk1eYx+bMzaQeTiUiIILvd39P4uDEiivw0rMOPgXrPmlHtHNG5Rf3OHcIKSxhSLkiY8c6efttJ2PH/oljx36Gc8FlQFq5csYYCgqsbQ4Bsq9vi+OtqQQ/+qa7V7/h3qspunYzvr7vE7rnMB06TEFEKCw8yrZtEwgM7ENk5I0UFmZp2GRFaQK02D13Z6yYQewLsczfOL9a54//dDxXz7manzJ/4oc9P7jT39/0Pn9bavm0b+t1W0kQMztgWvSiRVbB5GTLdeJJQABdHn+OIL8z+MGTk929fJfRN/bMfdf73bc9xRNPZHHvva/z00/jKS4uv/Ti9OljpKaOYOnSdqxYcR5r1lzOunVXsbHDq5hdO6C4GNLSyBq4kxMnfiQvbws7djzEvn1/x5gitm+fTEFBBgkJb9G581N07z4DHx+/ctdRFKVx0WIN/7e7v+VgzkFGfjiSiZ9NLLWR+Jn4YvsXzE+1fjA+2vIRS/cupV2bdlwZfyVvrX2Ll5a/xJgLxtDjy9XlBmHPe/55+N3vSvz0DodVaXw8vPaa5Uop82PhDojWqRNOccLYseUGcF3HiZLIuJFOIrmc5ORwunV7mby8VPbuLRlgPXXqILt3P8fKlReQmbmQ9u0n4+cXS0HBIWJi7qSgYD/Z2UsAKCg4DCwhNva39O+/icjIm9i+/WFWrbqQQ4feoWPHqbRp07cmfwpFUeqZas/OaersPLqTYZ2H0Se6Dy8uf5F+7frxm4vOvH/8ycKTTPx8It0juhPQKoCPtnzE4dzDXBZ3GYPjB/PAfx6gtW9rnh76NFwwqNwgrOPUKStgmuuHpqgIWrWCnBwriubkyXDiBBQUWPnp6TB6NE5JwmnSLR9+BSF9BrOYyUP/yvp7TxDV+2MAIiN/RUTEjeza9SSFhVn4+gaTnv40xcUnCQ6+nJ495xIScrm7jqKik2RmfsShQ3MICxvGgQNvAKdp126CPR9/NmvWXEZhYRY9e84nKmpEVZteUZQGpsX2+Hcd3UW38G48f/XzXNXlKiZ+PpH1h9Z7Lfv5ts9ZnLYYYwx3f3I3O4/u5J+/+Ccjeo5gxb4VpGWnMbDDQG7pcQv+Dn8eGfgIcSFxXgdwgfIbjhcWWgHPjLHeXUYfjyma5o8VLsQCMPGdWDxnHxkzR+JwBBEWdrU7LyHhDaKj72DPnr+wa9c0wsOvo3//LfTt+10pow/gcJxDVNStZGR8QEHBIfbvfwW4iMDABAB8fdvQr98qBgzYRXT0bTqQqyhNkBbR4y82xaV2tzp+6jhHTh6hS1gXHD4O5t48l94ze/PIl4/w5Zgv3eVOnDrBpP9OYtbaWQD0b9+fFftW8MzPnmFY52HEBsUy7Wsr4uVlcZcR2yaWHZN2ENsm1qqgsqmRZ4Fr5a2LihZiJZIEaWkUFZ0kY+kDRETcgMPR2l2uVasIevR4m7i4hykqyiMkZECl142JGcXBg2+xbFkniovzgd+Vyvfx8a/2d1IUpeFp9j3+gqICes3sxTPfPuNO23V0FwCdQzsDEB0YzcMDH+arnV/x4/4fMcbwwaYP6DmzJ7PXzebJQU8ybdA0Vh9Yzeg+o5l6+VQAekT14LyI8/Bz+HFR24sAa49bH/GxfPI5OdXSXLZnX1GoBddCLGf8WwBkZHzA6dNHiY29x2u9QUF9zmj0AUJDhxAUdCFt2lxKv36rgEur9T0URWmcNPse/5z1c9iSuYXv9nznTtuVbRn+LmElWwhPuGQCz3z3DElLkghpHcKc9XO4IOYC3rv1PQbGDQRgyoAphJ8TXsq9kTg4ka1HtuLv69ELdq2sreImJZ6hFry5c8qGWgBwBkyHZCt00v79r3LOOd0IDR1apeuWRcTBxRev8UhZXKP6FEVpXDRrw19UXMSz3z0LwNYjJcsPdh619pHtHNbZnRbsH8z9/e8n+dtkBOGpIU/x+KDH8fUpaaLIgMhy17jj/DvKX7iKG4+Xja1TcbkSgz8tKIktjwYS1/0PBN4+itzcVI4f/54uXaar311RlEpp1oZ/weYFbMvaRu/o3mzO2ExBUQF+Dj92Hd1FiH8IYa3DSpWfMmAKmzM3c/dFd3N9t+urf+GKBnXLUMrgiw+YCgZu7Rj51jlJEB9Pxg9PcHDrvRz1n0mf3F+yffsURPxo2/au6utWFKVF0Kx9/C8tf4nuEd15eODDFJkit29/Z/ZOOod1LtczjgyI5MPbPqyZ0YeKd8GSkpn3roHbh3rYe91WsPVhuZDJAQGQnExm5ie0ahVNYWEmK1f2Jjt7Ceee+xJ+fuWfShRFUTxp1oZ/we0LmHvzXBIiramI27K2Adbgrmtgt1You+Dq+uu9rsrlnXe4f9D/ID7e3bP/2+Y/lCpWbuA2Yoa1uEvEvciraORNHD26iJiYX9Or1/uEhV1N377Lad/+vtr7ToqiNFuatasnOjCa6MBosk5a2wpsPbIVYwy7snfVrFc/d647jj7h4eUXXLkWaDkc1gKt+JKgaDNHw0wvMXOm3P4hL86/pfzA7UuvlQuMlpWxEGNOERFxA2Fhw4iIqOETiqIoLYpmbfhdhJ8TTsQ5EWw9spWDOQfJP51f/R5/2Rk7R46UL+O5Ktd2zTi3jaKysdtxT7xOSEG3s4qgeeTIJzgcIYSEaMhjRVGqTosw/ADdIrqxLWtbyVTOB5+CpQ+4Y8p7DVHsjarO2Mn7PUzMIKmCHQxWruzL228/TXb2t/zxgwTwScOYYg4dmkto6GBcy7CMMWzZcieZmZ9QVJRLdPRt+Pi0OmsdiqIoLpq1j9+T7hHd2XpkK4sWWtv8Jmw6XLJ71ejREBlp9ebPxFmuxPVchOU8bu1I5XoQcL2PHeskMnI4f/xjPsXFuRw/vgKArKz/smXLnaxYkcDu3dMxpoiMjPfs+DlX0a7db+nY8fEqfHtFUZQSWkyPv3t4d2avm80LBfu4cSd0zi5T4MgR6wdg8uTSG46U9eefBWVDLYgptt7tSUROJ0yalMLw4UlERW3Czy8GELKzvyY09AoOHXoXX98wQkIGsXPnoxw9+j9yczcQFNSXXr3eQ8RRo7ZQFKVl02IMf7eIbgCcaGX409eVFDxyxPLhuziTP99FYCDO3Ecq3eT80Ue3c+iQL48/3prly39JRMTtBAb2ACAoqC+HD79H+/aTyMxcSEzMKM4771X273+Nbdvux5hCevdeoEZfUZQa06JcPQAjdwZw/uEzFM7Ls3r+Y8eelT/fSSJERla4yfnYsU4Ahg+/lrvu2kJamhNjCujc+Wl3mfj4J8nLS2XDhusoLs4lJsZ64mjXbjx9+y6jV68FBAdrzBxFUWpOi+nx94npw5+H/Zm7OrWBD6ee2aBX1ru3KbXythLX/29+8zzR0b8mP38H8AsOHCimXbuJBASc6y4TFXUT0dEjOXx4Hv7+cYSEXOHOa9Omr252oihKrdH8e/z24iofhy+Pj3mVWN8wa6eriIgaVevy41cWI7/IIYwbmURk5K947rnudOs2AxhBt24z6dp1erny5577Mv7+HYiNvQeR5v+nURSlYWje1sU1595j60O3/z4zE+bMqfIPwNmGTE7ESfZAf+681+negLx9+4nAfbRvPwGH45xydfv5RXLppbuIj/9DuTxFUZTaonkbfm9z7vPyrHSwZu64fgAclQ+aehp8b3780qEWknDGz+LI1Cvx8QkkLOyas5bs4+Or0TUVRalTmrfhryhKZtn0UaOguNhr0VLz8c/5S4WXcsXWIT4ep0mEtDSORu8nJOSKUrthKYqiNDQNYvhF5FoR+UlEtovIY3VykblzraBp3vAWPbNMmjeDn3Ty0XKnGaSktx8w3VoFDBQUHCYvL5XQ0CHV068oilJH1LvhF2si+j+A64CewB0i0rNWL+Ly7RcVlc+zY+eUIzm5VERNa+DWaR2XMfiJifb78PVWD1+eckfOdC38ys5eAkBYWM12w1IURaltGmI6Z39guzFmJ4CIzANuBDbV2hUqiqfjcJQyzqVwpU2bxpD0WQAk2b1+F4mJkJRkrbwFcDr7gJdImwDZ2Sk4HEEEBfWr1ldQFEWpK8SY8gOVdXpBkVuBa40x99ifxwCXGmPuL1NuPDAeICYmpt+8efPK1ZWTk0NQUFC59MHDhiFevpcRYcnXFS/bnTLlQtatCy2XPnZsGm+/3YmUlMXMmtWJu+5K83L2SiAMcM3NHwvEAs+elebGTFPT3NT0gmquL5qa5prqHTp06I/GmIvLZRhj6vUF3Aq87vF5DDCjsnP69etnvJGSkuI13cTHG2NN4Cz9ioiw8kSs9zlzjDHGJCZap0HJu+exZxkXhw7NN8uXJ5jTp3NMcXGR+fbbcLNq1cXGGGPy8w+YlBRMevpzZ6+5EdPUNDc1vcao5vqiqWmuqV5glfFiUxvC1bMPiPP43MFOqz2Sk0vH2AFo1craMMW1Ijc9HeddaTiZS1JSievHcyalCAwebB273DsAxcWn2LHj95w6tZvjx5fh59ee06ezOHEii9zcTWRlfQFAWNjPa/VrKYqi1AYNMatnJdBNRDqLiB8wEvikVq8wapTly/fcsjA42L1LlnvGzulpOCdmWMdJpasYPNjq9y9eXL76/ftf49Qpa0podvY3HD/+gzvvwIF/sWfPC4SGDqFNmwtr9WspiqLUBvXe4zfGnBaR+4EvAAfwpjEmtdYvNGpU6UFcuyvvCrVwvAewGZKOTSl1mmsA15vBBzh9Oof09GRCQ4dw+vRxjh37hoKCc/H1DSM4eCB7974EGBIS3qz1r6QoilIbNMg8fmPM58aY7saYrsYYL3Mra5m5c0umZro3OXeWKjJx4qeA5dJJLD2Zh4yMhRw58l+MKWbLlrEUFmbQufMzhIZeyfHjy8jOXkJw8EDatr0LMAQF9VU3j6IojZbmvXIX2zc/bRpJJHoNtfDELUsBGDHiViZMmF9yDlBcXMDWrRNJTR3Ohg3XsWrVhWRmLqBr1+cJCRlASMiVFBfnc/LkNoKDBxIRcQPh4dfRtet0DbugKEqjpdmHZbZ89+MqzE/+YCCtnNCx46PcdttIcnP7EBjYg2PHvmfr1t+Rm7ueuLhH8PUNIy3tKWJj76FDB8s95Bk6OSTkMhyO1vTp83ndfiFFUZQa0qwNv6vnXnYhFkBKirBw6jPAYzidUFAwiT17XiA9PRl//3bs2TMdf/+O9O79MZGRvwKgfftJOByB7t68n18UAQE9yMv7iTZt+tfPl1IURakhzdLwO53lZ+kA9rYpTp5o4wTgsaklu6f4+UURG/tb9u37OwDt2k2ga9fpOByB7jK+vuUXUrRtO5acnLVe8xRFURojzdbwu3r7Ita0TBFwxs+CdGHSoH+yHmg97I5S58XF/Z4TJ1YSGzue2Ni7zupaHTtOrUXliqIodU+zNPxlOXFiLU8+2Q3+lIYT2L+/HWwdT+vWnUqVa926A337/uCtCkVRlGZDs5/VM21aDmvWDGT06Afdafn5aYADP792DaZLURSloWj2hn/cuKcpLs4nJ2edOy0/P53WrePw8WkRDzyKoiilaNaGv7Awm/37ZwKQl7cJY6xdtvLz0/D3j29IaYqiKA1Gszb8+/fPpKjoBO3aTaCoKIf8fCu+Tn5+Wjn/vqIoSkuhWRv+3NyNhIdfR0yMFbMnLy+V4uICCgr207q19vgVRWmZNGsnd8+e71JUdJLi4lOA9UMQEJAAGO3xK4rSYmnWPX4Ah+McWrUKxc+vPbm5qeTnW4u2tMevKEpLpdkbfheBgb3Izd1IZubHiPgSGNiroSUpiqI0CC3I8PcmN3cTBw78i5iY0fj5xTS0JEVRlAahWfv4PQkM7IUxpzBG6NjxsYaWoyiK0mC0qB4/QFTUbQQEnNfAahRFURqOFtPjDwrqS1zcI7RrN7GhpSiKojQoLcbw+/j40rXr9IaWoSiK0uC0GFePoiiKYqGGX1EUpYWhhl9RFKWFoYZfURSlhaGGX1EUpYWhhl9RFKWFoYZfURSlhaGGX1EUpYUhxpiG1nBGRCQDSPeSFQlk1rOcmqKa656mphdUc33R1DTXVG+8MSaqbGKTMPwVISKrjDEXN7SOqqCa656mphdUc33R1DTXlV519SiKorQw1PAriqK0MJq64X+toQVUA9Vc9zQ1vaCa64umprlO9DZpH7+iKIpSdZp6j19RFEWpImr4FUVRWhiNzvCLyJsiclhENnqkXSgiy0RkrYisEpH+dvrv7bS1IrJRRIpEJNzOSxORDa5z6lnvBSKy1L7+pyIS7JH3uIhsF5GfROQaj/Rr7bTtIlKnmwJXRbOI/FxEfrTTfxSRYR7nLLY1u/4G0Y1EcycROemh6xWPc/rZ5beLyN9FRBqJ5lEeeteKSLGIXGjn1Us7i0iciKSIyCYRSRWRyXZ6uIh8JSLb7PcwO13sNtwuIutFpK9HXWPt8ttEZGxd6K2m5lG21g0i8oOIXOBRV33ZjKpqHiIixzz+/n/0qKt6dsMY06hewJVAX2CjR9qXwHX28fXAYi/n3QB87fE5DYhsIL0rgcH28W+AP9nHPYF1gD/QGdgBOOzXDqAL4GeX6dlINF8EtLOPewP7PM5ZDFzcgPdFRZo7eZYrU88KYAAgwH9c91VDay5z3vnAjvpuZyAW6GsftwG22vfsc8BjdvpjwF/s4+vtNhS7TZfb6eHATvs9zD4OaySaL3NpAa5zabY/15fNqKrmIcD/eamn2naj0fX4jTHfAFllkwFXrzkE2O/l1DuAf9ehNK9UoLc78I19/BVwi318IzDPGHPKGLML2A70t1/bjTE7jTEFwDy7bINrNsasMca42jsVOEdE/OtKW0VUsZ29IiKxQLAxZpmx/nNmAzfVtlYXNdB8B9Y9UK8YYw4YY1bbxyeAzUB7rHvxbbvY25S02Y3AbGOxDAi12/ga4CtjTJYx5ijW97y2MWg2xvxgawJYBnSoC12VUY12rohq241GZ/grYAowXUT2AM8Dj3tmikgA1o31oUeyAb603RPj602pRSolf4ARQJx93B7Y41Fur51WUXp9UpFmT24BVhtjTnmkvWU/fv6hLt0mFVCZ5s4iskZElojIIDutPVbbumis7Xw75Tsx9drOItIJ62lvORBjjDlgZx0EYuzjRnU/n6VmT+7GemJxUe82owqaB4rIOhH5j4j0stOq3c5NxfBPAB40xsQBDwJvlMm/AfjeGOPZu7rCGNMX63FuoohcWT9SAesR/nci8iPWo1xBPV67ulSq2b7Z/gLc65E8yhhzPjDIfo2pJ60uKtJ8AOhojLkIeAh4VzzGWRqYM7XzpUCeMWajR3K9trOIBGF1oqYYY4575tlPSo1uDnhVNYvIUCzDP9UjuV5tRhU0r8aKuXMB8DKwsKbXbiqGfyywwD5+H+sRx5ORlOkhGWP22e+HgY+8nFNnGGO2GGOuNsb0s3XtsLP2UbqH18FOqyi93qhEMyLSAasN7zTG7PA4x9XGJ4B3qcc2rkyz7Uo7Yh//aKd3x2pTz0f7RtXONpXdy3XeziLSCssYzTXGuP7nDtkuHJe77LCd3iju5ypqRkT6AK8DN7ruE6hfm1EVzcaY48aYHPv4c6CViERSg3ZuKoZ/PzDYPh4GbHNliEiInfexR1qgiLRxHQNXA549qDrFNetCRHyAJwHXrJJPgJEi4i8inYFuWIONK4FuItJZRPyw/vk/qS+9lWkWkVDgM6xBp+89yvvaN5/rJv4l9djGZ9AcJSIO+7gLVjvvtB+jj4vIANtdcice901DavZIuw0P/359trPdJm8Am40xf/XI+gSr84X9/rFH+p1iMQA4ZrfxF8DVIhJmz0y52k5rcM0i0hGrEznGGLPVo556sxnV0NzW5d4Ta0ajD3CEmtiN2hilrs0XVm/nAFCI5bO6G7gC+BFr1Ho50M+j/F1YA6aedXSxy67D8qlOq2e9k7FG6rcCz2KvkLbLT8Pq5f2Ex4wSrBkSW+28OtNbVc1YxikXWOvxigYC7b/JeruNXwIcjUTzLbamtViPyTd41HMx1j/0DmCG59+mEdwbQ4BlZeqot3a2/8+MfS3X3/p6IAL4H1aHaxEQbpcX4B92W27AY+YRlktru/0aV4dtXFXNrwNHPcqustPr02ZUVfP9tqZ1WAPSl3nUVS27oSEbFEVRWhhNxdWjKIqi1BJq+BVFUVoYavgVRVFaGGr4FUVRWhhq+BVFUVoYaviVJo+IRHhELjwoIvvs4xwRmVkH17tPRO6s7XoVpb7Q6ZxKs0JEnECOMeb5htZSl9gLesQYU9zQWpSmh/b4lWaLWHHM/88+dorI2yLyrYiki8jNIvKcWPHX/2uvinXF619iB+r6wrWEvky9ThF5xD5eLCJ/EZEVIrJVSgLCeZafLSI3eXyeKyI3iohDRKaLyEqxYsTfa+cHicj/RGS1re9GO72TWLHXZ2MtQvMW4E1RzogafqUl0RUr5MevgDlAirGCn50EfmEb/5eBW40VS+dNIPks6vU1xvTHiiKb6CX/DawV5q4QI5dhhcG4GyvMwSXAJcBv7VAe+cBwYwUMGwq84FqyjxV+YqYxppcxJr2qDaAoAL4NLUBR6pH/GGMKRWQD1iYW/7XTN2Bt3nIe1mYzX9l21oEVcuFMuIJs/WjXUwpjzBIRmSkiUVjhJD40xpwWkauBPiJyq100BMuw7wX+LFZ0yGKsULuuEL3pxop9ryjVRg2/0pI4BWCMKRaRQlMywFWM9b8gQKoxZmB16gWKqPh/ajYwGiuQ1jg7TYAHjDGlApiJyF1AFFZMqkIuD5XkAAAAz0lEQVQRSQNa29m5VdSmKOVQV4+ilPATECUiA8GKhiklm17UlFlYriCMMZvstC+ACR7jC93tyJAhwGHb6A8F4mtJg6IA2uNXFDfGmALb7fJ32xfvC7yIFRmxpnUfEpHNlN5E43Us19Bq24efgbXd3lzgU9sltQrYUtPrK4onOp1TUeoBsbYH3YC1yfaxhtajtGzU1aModYyIXIW1ofbLavSVxoD2+BVFUVoY2uNXFEVpYajhVxRFaWGo4VcURWlhqOFXFEVpYajhVxRFaWH8P88ULL+d37tUAAAAAElFTkSuQmCC\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"code","source":["len = 2050-sea['Year'].max()\n","print(len,sea['Year'].max())\n"],"metadata":{"id":"LOg2B_2AM9jD","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1672614592134,"user_tz":-60,"elapsed":5,"user":{"displayName":"Randy noe Tchuisseu","userId":"14239266362476156768"}},"outputId":"686fab5a-932b-4bad-e90f-c676d8da124a"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["37 2013\n"]},{"output_type":"execute_result","data":{"text/plain":["0 2\n","1 3\n","2 5\n","dtype: int64"]},"metadata":{},"execution_count":12}]},{"cell_type":"code","source":["len = 14\n","pd.Series(list( range(len) ) )\n","#pd.Series([1,2,5,3,9,488,85])+1\n","#+sea['Year'].max()+1\n","#pd.Series(list(range(4)))"],"metadata":{"id":"3N7R9u7frQv5","executionInfo":{"status":"ok","timestamp":1672747286035,"user_tz":-60,"elapsed":6,"user":{"displayName":"Randy noe Tchuisseu","userId":"14239266362476156768"}},"outputId":"2c0b7719-37fc-47df-f75a-0aa44722d30b","colab":{"base_uri":"https://localhost:8080/"}},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["0 0\n","1 1\n","2 2\n","3 3\n","4 4\n","5 5\n","6 6\n","7 7\n","8 8\n","9 9\n","10 10\n","11 11\n","12 12\n","13 13\n","dtype: int64"]},"metadata":{},"execution_count":16}]},{"cell_type":"code","source":["pd.Series([1,2,5]).append(pd.Series([1,2]))\n"],"metadata":{"id":"k0u5T2kpznNq","executionInfo":{"status":"ok","timestamp":1672616389988,"user_tz":-60,"elapsed":258,"user":{"displayName":"Randy noe Tchuisseu","userId":"14239266362476156768"}},"outputId":"dd6204b9-f7b2-41b5-e4a6-9bc0aa75e0a0","colab":{"base_uri":"https://localhost:8080/"}},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["0 1\n","1 2\n","2 5\n","0 1\n","1 2\n","dtype: int64"]},"metadata":{},"execution_count":25}]},{"cell_type":"code","source":["pd.Series(list(range(len)))+sea['Year'].max()+1"],"metadata":{"id":"nY-m9LkTAaEf","colab":{"base_uri":"https://localhost:8080/","height":165},"executionInfo":{"status":"error","timestamp":1672746715022,"user_tz":-60,"elapsed":16,"user":{"displayName":"Randy noe Tchuisseu","userId":"14239266362476156768"}},"outputId":"ce85087a-8ed9-4e54-dbae-eef5d6802b47"},"execution_count":null,"outputs":[{"output_type":"error","ename":"TypeError","evalue":"ignored","traceback":["\u001b[0;31m---------------------------------------------------------------------------\u001b[0m","\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)","\u001b[0;32m<ipython-input-7-cd9d99a61708>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mSeries\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0msea\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Year'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m","\u001b[0;31mTypeError\u001b[0m: 'builtin_function_or_method' object cannot be interpreted as an integer"]}]},{"cell_type":"code","source":["\n","\n","def draw_plot():\n"," # Read data from file\n"," sea = pd.read_csv('epa-sea-level.csv')\n"," lreg= linregress(sea['Year'],sea['CSIRO Adjusted Sea Level'])\n"," slope,y_intercept = lreg.slope,lreg.intercept\n"," # Create scatter plot\n"," plt.plot(sea['Year'],sea['CSIRO Adjusted Sea Level'],'ro')\n"," # Create first line of best fit\n"," len = 2050 - sea['Year'].max()\n"," next = pd.Series(list(range(len)))+sea['Year'].max()+1\n"," bestfit = sea['Year'].append(next)\n"," \n"," # Create second line of best fit\n"," secfit = sea[sea['Year']>1999]['Year'].append(next)\n"," plt.plot(bestfit,slope*bestfit+y_intercept,'b+',secfit,slope*secfit+y_intercept,'p')\n","\n"," # Add labels and title\n"," plt.xlabel('Year');plt.ylabel('Sea Level (inches)')\n"," plt.grid(); plt.title('Rise of sea level')\n"," plt.legend(['Sea level','Upper Error','Lower Error','Line of the best fit over'])\n","# Save plot and return data for testing (DO NOT MODIFY)\n"," plt.savefig('sea_level_plot.png')\n"," return plt.gca()"],"metadata":{"id":"69vm0mUeAeqX"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["D = draw_plot()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":295},"id":"WJb2l7YvcodC","executionInfo":{"status":"ok","timestamp":1672747417141,"user_tz":-60,"elapsed":363,"user":{"displayName":"Randy noe Tchuisseu","userId":"14239266362476156768"}},"outputId":"4aa400cb-c2c5-4e32-ee79-9d001a8cfe36"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["<Figure size 432x288 with 1 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de3wU9fX4/9dJAkIIghKhKpIoWqtSBAGvaIK10mqrpdh6CQhaS63aYvHzaavYZqOmP622XlsttRaUfEpbrdb6tbZiAUFFBUSqooKaKJbKTSAhIiQ5vz9mJpnd7G52N3vNnqePPHZ3dnbnZA0n77znzHmLqmKMMSZ/FGQ6AGOMMellid8YY/KMJX5jjMkzlviNMSbPWOI3xpg8Y4nfGGPyjCV+k9VE5D4R+Umaj3mTiGwRkf+m87i+45eLiIpIUYqPUy8iZ6TyGCY7pfQHy5iuiEg9MARoBZqAp4CrVLUJQFUvT3M8w4BrgDJV3ZTOYxuTLjbiN9ngq6paAowCRgPXZjCWYcBWS/qmJ7PEb7KGqv4X+AfOLwAARGSuiNzk3i8VkSdEZLuIbBORpSJS4D53kIg8IiKbReQ9Efl+pOOIyAARedDdt0FErheRAnfa42ngIBFpEpG5YV6bUAwicryIvOC+bqOI3CMivWP5XNx4f+e+7kN3KqpQRPZx32+Eb98DROQTERnsPv6KiKx293teREbGckzTs1niN1lDRIYCXwbWR9jlGmADcADO9NB1gLqJ92/Aq8DBwBeAq0VkYoT3uRsYABwGVAAXA5eo6kL3+P9R1RJVnZ7EGFqBHwClwEnu81d08ZF45gItwOE4fxGdCVymqp8CfwEu9O37TWCJqm4SkdHAA8B3gEHAb4DHRWSfGI9reihL/CYbPCYijcAHwCagOsJ+e4EDcebf96rqUnWaTY0DDlDVG1R1j6q+C/wWuCD0DUSk0N1+rao2qmo98AtgaoyxJhSDqq5U1eWq2uIe8zc4v3SiEpEhwFnA1aq6y52Cut33vf1fyPd5kbsNYAbwG1V9UVVbVXUe8ClwYozfq+mhLPGbbPA1Ve0PVAKfwxkVh3Mrzl8D/xSRd0Xkx+72Mpzpme3eF85IfEiY9ygFegENvm0NOKP0WCQUg4h81p0i+q+I7AR+FuX79Ctz493oe9/fAIPd5xcBxSJygoiU40yTPep77TUhMR0CHBTj92p6KKvqMVlDVZe48+q3AV8L83wjzlTLNe689r9E5GWcvxTeU9UjYjjMFpxRexnwhrttGPBhjDEmGsO9wCvAharaKCJXA+fFcMgPcEbpparaEiaeVhH5E850z0fAE26M3mtrVbU2lu/N5A8b8ZtscwfwRRE5NvQJ90Tl4SIiwA6cefM24CWgUUR+JCJ93ROfI0RkXOh7qGor8CegVkT6i0gZMAuYH0tw3YihP7ATaBKRzwHfjeV4qroR+CfwCxHZ1z0JPVxE/NNE/wecD1TRMc0DzlTT5e5fAyIi/UTkbBHpH8uxTc9lid9kFVXdDDwI/DTM00cAC3Hq/V8Afq2qi9xk/hWcaY73cEb19+OcwA3ne8Au4F1gGU6yfCDGEBON4X9w5t8bcRLyH2M8Hjgnn3vj/IXyMfAwznkGAFT1Rff7OQj4u2/7CuDbwD3u69YD0+M4rumhxBZiMcaY/GIjfmOMyTOW+I0xJs9Y4jfGmDxjid8YY/JMTtTxl5aWanl5eaftu3btol+/fukPqBss5tTLtXjBYk6XXIu5u/GuXLlyi6oe0OkJVc36rzFjxmg4ixYtCrs9m1nMqZdr8apazOmSazF3N15ghYbJqTbVY4wxecYSvzHG5BlL/MYYk2dy4uRuOHv37qWkpIS1a9dmOpS4DBgwICdjfu+99xg6dCi9evXKdDjGmG7K2cS/YcMGhgwZwtChQ3H6ZeWGxsZG+vfPrR5ZO3fuZM+ePWzYsIFDDz000+EYY7opZ6d6du/ezYABA3Iq6ecqEWHQoEHs3r0706EYkxda25Q5z77DZU/uZs6z79Daltyeajk74gcs6aeRfdbGpMf6TU1U3b+cj3Z+CgVw+9Pr+Ovq/3DPRcdxaGlyrkHI2RG/Mcb0NO9t2cXEO551kr7rk72trN24k/PufT5px0lZ4heRB0Rkk4i85tu2v4g8LSLr3Nv9UnX8dKitreWYY45h5MiRjBo1ihdffLHb7zl37lyuuuqqJESX2vc0xiRXa5ty9l1LaW3tPK3TptCrOXnnBlM54p8LfClk24+BZ9RZnu4Z93F61NVBeTkUFDi3dXXdersXXniBJ554glWrVrFmzRoWLlzIIYcckpRQjTH5o7VNufnvazn8uidp3tMKYWZVBfjRN4cm7ZgpS/yq+iywLWTzucA89/48wqyrmhJ1dTBjBjQ0gKpzO2NGt5L/xo0bKS0tZZ999gGgtLSUgw5y1rBeuXIlFRUVjBkzhokTJ7Jx40YAfvvb31JRUcGxxx7L5MmTaW5ujnqMzZs3M3nyZMaNG8e4ceN47rnnaGtro7y8nO3bt7fvd8QRR/DRRx+F3d8Yk538Cf++Je8S7fRtn14FfOGoIUk7dkpX4BKRcpzFn0e4j7er6kD3vgAfe4/DvHYGMANgyJAhYxYsWBD0/IABAzj00EMpLCzsMo5+xxxDwQcfdNredsgh7Hr99Xi+pXZNTU1MnDiR5uZmKisrmTx5MuPHj2fv3r18+ctfZsGCBZSWlvLII4/wzDPP8Otf/5qtW7cycOBACgsLueGGGxg8eDCXX3550PvW1dWxatUqfvGLX3DppZfy7W9/m5NOOokPPviASZMmsWLFCn74wx8ycuRIpkyZwssvv8yNN97I448/HnF//3smorW1lcLCQtavX8+OHTsSeo90ampqoqSkJNNhxMViTo9siLlNlT+/vYe/v9sSdnQfqrgIbqsoprhX/AUWEyZMWKmqY0O3Z6yqR1VVRCL+1lHVOcAcgLFjx2plZWXQ82vXrqWwsDC2mvgNG8JuLtiwIeGa+v79+/PKK6+wdOlSFi1axCWXXMLNN9/M2LFjWbt2LZMmTQKcpHnggQfSv39/Vq1axUUXXURjY2P7L47Q4/fp04fevXvTv39/lixZwrp169qfa2pqQkSYOnUqN9xwA9/97nf529/+xkUXXRR1f/97JsK79qBPnz6MHj06ofdIp8WLFxP685LtLOb0yHTMHRU7XSf9Igq5dGQR1110RtLjSHfi/0hEDlTVjSJyILApLUcdNsyZ3gm3vRsKCwuprKyksrKSz3/+88ybN48xY8ZwzDHH8MILL3Taf/r06dTV1XHyySczd+5cFi9eHPX929raWL58OX369AnaftJJJ7F+/Xo2b97MY489xvXXXx91f2NMZrW2Kbf+403uW/JuzK8p7iOMOqDrGY1EpLuc83Fgmnt/GvDXtBy1thaKi4O3FRc72xP01ltvBY2uV69eTVlZGUceeSSbN29uT/x79+7ldXc6qbGxkc985jPs3buXuhjOL5x55pncfffdQccAp6Z+0qRJzJo1i6OOOopBgwZF3d8YkznvbdnFV+9eFnPS700RawJnsiYwMaHpnVikbMQvIn8AKoFSEdkAVAM3A38SkW8BDcA3U3X8IFVVzu3s2fD++85Iv7a2Y3sCmpqa+N73vsf27dspKiri8MMPZ86cOfTu3ZuHH36Y73//++zYsYOWlhauvvpqjjnmGG688UZOP/10Bg8ezAknnEBjY2PUY9x1111ceeWVjBw5kpaWFk477TTuu+8+AM4//3zGjRvH3LlzY9rfGJN+Xolm857WLvftTRErAqezb5/U98NK6cndZBk7dqyuWLEiaNvatWsZOnRozvW9ycVePV7Ma9eu5aijjsp0OF3K9DxuIizm9EhXzN7Uzm+6qNYBKKSAVwJnhE343Y1XRLLr5K4xxvREQS0XurBvnyKW/Tg9o3w/S/zGGJME8ZzATee0TjiW+I0xphvimdYpopBbzx/BpNHJuwo3EZb4jTEmAfEkfE9xH0nqFbiJsu6cxpjMS3IvrVTzl2jGkvQLKWgv0czU9I6fjfiNMZnl9dLyeld5vbSgWyXXqRJPiSZk7gRuNDbiT1B9fT0jRowI2hYIBLjtttvSGkdlZSVHHnkko0aNYtSoUZx33nlpPb4x3TZ7dkfS9zQ3O9uzzPpNTZx88zM0fxpbXX42jfL98m7EHwg4X7lIVVFVCgqCf1/X1dUxdmynUt12LS0tFBUVRXwc6+uMSYn3349vewZ0qtiJckFtpit2YpF3/6pratKT+CsrKzn22GNZsmQJLS0tPPDAAxx//PH87Gc/Y8OGDaxfv54tW7bwwx/+kG9/+9sA3HrrrfzpT3/i008/ZdKkSdTU1FBfX8/EiRM54YQTWLlyJU8++SRlZWVdHn/69On06dOHV155hVNOOYVt27YFPb744ou5/PLLaW5uZvjw4TzwwAPst99+VFZWMmrUKJYtW8aFF17INddck+qPyuS7FPXSSoZ4TuDmQsL35F3iT6fm5mZWr17Ns88+y6WXXsprrzmLka1Zs4bly5eza9cuRo8ezdlnn81rr73GunXreOmll1BVzjnnHJ599lmGDRvGunXrmDdvHieeeGLY41RVVdG3b18AvvjFL3LrrbcCsGHDBp5//nkKCwuZPn160OORI0dy9913U1FRwU9/+lNqamq44447ANizZw+hV0obkzK1tcFz/NDtXlrdFVfFjsLtFxyb8RLNeORF4g8EnJG+x1s3vLo68dF/pMXH/dsvvPBCAE477TR27tzZvnjKueeeS9++fenbty8TJkzgpZdeYtmyZfzzn/9sb3vc1NTEunXrGDZsGGVlZRGTPkSe6vnGN74RtF6B93jHjh1s376diooKAKZNm8Y3vvGN9v3OP//8WD8GY7rP30uroQEKC4Pn+NN4gjeREs2+vZO7SEo65E3i9xK8iLMIV3cNGjSIjz/+OGjbtm3bOPTQQ9sfh/5y8B6H266qXHvttXznO98Jeq6+vp5+/folFGPo62J9n0SPZ0xC6uo6kr4ItLonTtNc3RNPqwVPNlbsxMKqehJUUlLCgQceyL/+9S/ASfpPPfUU48ePb9/nj3/8IwDLli1jwIABDBgwAIC//vWv7N69m61bt7J48WLGjRvHxIkTeeCBB2hqagLgww8/ZNOm1CxXMGDAAPbbbz+WLl0KwEMPPdQ++jcmberqoLQUpkzpmOMPHZWlqbrnvS27mHjHszEn/Wyu2IlFXoz4/aqrk/deDz74IFdeeSWzZs1y37ua4cOHtz/vrVi1d+9eHnjggfbtI0eOZMKECWzZsoWf/OQnHHTQQRx00EGsXbuWk046CXB+scyfPz+mpSX9c/ylpaUsXLiwy9fMmzev/eTuYYcdxu9///u4vndjuiW0dj+aFFf3eHX5ra3a5apYuXQCN5q8S/zJrOg5+uijWbRoUcTnp0yZ0n7C1G/kyJE8+OCDnbbPnDmTmTNndtrunRQOJ9IqXv4+/eEejxo1iuXLl8f8fsYkVbja/UhSVN3TaT4/x0s045F3id8YkwViHcWnoLonWb3yc5kl/hSJNHK+7rrrcm4hFmOSLlLtPnRUYJSVdXulPL/WNuWPb33KJU89GVPFTq6euI2FJX5jTPqFq90HGDQI7rwz6VU87RU7O1q6nMfPltbJqWSJ3xiTXl75ZnOzU7Pf2pr00b0nnlYLnmxpnZxKlviNMekTWs3T2toxj5/kpP/ell1cWbeKNzbujGn/nnYCNxpL/MaY9InWiTOJiT+e1sn5lPA9lvi7oaSkpP2Cq0yor6/nqKOO4sgjj2zfNmvWLC6++OKMxWRMVCnuxGkVO7HJm8Tf2qb8btm7/HrxO1xROZxvjT+MwoIYJvyySLg2ycOHD2f16tVRX9fa2hp0IVjo43AitYA2JmF1dc4KW61hRuHdrNWPt8dOT67YiUVe/Kv2lkm7/el1bG/ey+1Pr+Oce5bx3pZdST/W6tWrOfHEExk5ciSTJk3i448/ZtOmTYwZMwaAf//734gI77sjnOHDh9Pc3MzmzZuZPHky48aNY9y4cTz33HOAs7jL1KlTOeWUU5g6dWrMcZSUlHDNNddw7LHH8sILL3R6/Mtf/pIRI0YwYsSI9ovM6uvrOfLII7n44osZMWIEH3zwQZI/HZO3vLn9cEm/m7X63uIosSyDWNSWXUsgZkpeJP7z7n2eN/+7k0/2Oj90n+xtZe3GnZx37/NJP9bFF1/MLbfcwpo1a/j85z9PTU0NgwcPZvfu3ezcuZPnn3+esWPHsnTpUhoaGhg8eDDFxcXMnDmTH/zgB7z88ss88sgjXHbZZe3v+cYbb7Bw4UL+8Ic/dDreO++807761qhRo9r77+zatYsTTjiBV199lfHjxwc97tu3L7///e958cUXWb58Ob/97W955ZVXAFi3bh1XXHEFr7/+ekx9/42JSaQrdQsLYc6chOb3W9uUm/++ljN+uaTLHjtFFHL7+cdy/1l98zrhe/JiqueIISUsf3db0LY2hc8OSe6FVNHaHZ988sk899xzPP/881x33XU89dRTqCqnnnoqAAsXLuSNN95of6+dO3e2nz8455xz2nvxhIo01VNYWMjkyZPDPl62bBmTJk1q78L59a9/naVLl3LOOed02QLamIREmsNva4s76SfSOtkr0Vy1fH1cx+qp8iLxnz/uEP69YQe7fGf4+/Uu5Jvj0neBxmmnncbSpUt5//33Offcc7nlllsQEc4++2wA2traWL58OX369On02kTaJPfp0ydoHj/0cSTWktmkRJJW2bISzeTIi6meLxw1pNOJ3MKC5F+kEa3d8amnnsr8+fMZPnw4BQUF7L///jz55JPtbZzPPPNM7r777vb36uqEbXeceuqpPPbYYzQ3N7Nr1y4effTR9r88jEmJ2lpnLt8vzrl9r0QzlqRfiDOX//bN+T2XH0lGRvwi8gPgMkCBfwOXqOruVB1v3z69WBOYmPT3bW5uZujQjr8aZs2aFbHdcXl5OarKKaecAsD48ePZsGED++23HwB33XUXV155JSNHjqSlpYXTTjuN++67r8sYvDl+z6WXXsr3v//9qK857rjjmD59OscffzwAl112GaNHj6a+vj6u79+YmCThSl2v5ULzp61dXn2b7xU7sUh74heRg4HvA0er6ici8ifgAmBuumPprra2trDbw7U7Bvjggw9obGwEnGZt1113XftzpaWl7Qu3+AWi9JEuLy/nk08+Cftc6PUFoY9nzZrVvo6A//2itYA2Jm7dvFI3npYLNq0Tu0zN8RcBfUVkL1AM/CdDcRhjUmnmzISu1I3nBK4l/PiJJmMB2ngPKjITqAU+Af6pqp1+AkRkBjADYMiQIWMWLFgQ9PyAAQM49NBDYzphmU1iuXgq23gxr1+/nh07dmQ6nC41NTVRUlKS6TDi0hNjHrxwIUfV1oYdpKsIS9xlS/3aVPnz23v4+7tdd9GkDWaM2oeTD4p9/Jprn3N3450wYcJKVR0buj3tiV9E9gMeAc4HtgN/Bh5W1fmRXjN27FhdsWJF0La1a9dy8MEHs++++6Yy3KRrbGzMuX78jY2NlJSU8Oabb3LUUUdlOpwuLV68mMrKykyHEZceGXN5eeSe+2Vl4DunlEiJZt9eBbw4O76WC7n2OXc3XhEJm/gzUdVzBvCeqm5W1b3AX4CT432TPn36sGPHDjLxF0u+UVW2bt0attTUGMCZyy8vdxZRKSpybiMlfQiq5vGurI/lylvPvn2K4k76pkMm5vjfB04UkWKcqZ4vACuiv6SzoUOH8uqrr2a0SVoidu/enXMJdPfu3QwcODCogsmYduFO4EYzaFDQ/P7ke5/n4117YjqUzecnR9oTv6q+KCIPA6uAFuAVYE6879OrVy+ampoYO7bTXzFZbfHixYwePTrTYcQlF2M2aRTPwunFxc4KW3RM72xr2tPlfL4l/OTKSFWPqlYD1Zk4tjEmyeJpqTxnDq0XXsStf1/bMZ9vJZpplxctG4wxKRRt4XSf1vJybt3/OH5zXQyLnauwpuaLlvBTJC9aNhhjUihcOwafVing5i98i8O/eU9MJ3D79S7k9gtGWtJPIRvxG2O6xztRO3u2M/L32jIUFrJ+wGeoqrqFj/oOjGmhc0hNHy0TzBK/MSZxXh+e9993pnzmz2//RfDell1M/OUSWttiK9K0+fz0scRvjEnI4IUL4fbbOyp6Ghqcsk6g9cKLOPuupbS2qlXsZCFL/MaYhBx+992dyjhbP9nNrX98kd/8e6BV7GQxS/zGmPjV1dFrZ0df/FYp4NZTp/Kb4yejBdGH+IUU8ErArrrNJEv8xpj4zZ6NECbhS/Skb73ys4MlfmNM/N5/n/X7H0zVBT/jo5L9u0z4RRRy6/kjmDTa2n5kA6vjN8ZE5jVfKyhwbuvqaJ1fx80V0zjjsvtiSvrQsdi5yQ4xjfhFZCxwKnAQTmO114CnVfXjFMZmjMmk0OZrDQ28970fcuW5P+KN4yfHlPDtBG52ipr4ReQS4HvAe8BK4C2gDzAe+JGIvAb8RFXjaNZhjMkJYZqvnVf1c7b13bfLpG8JP7t1NeIvBk5R1bALu4rIKOAInFbLxpieJKT5WoBqem0pQMsizxBbxU5uiDrHr6q/ipT03edXq+ozyQ/LGJNxw4a13w1QTQ0BfrRmDm2fhl86dN8+RZb0c0RMJ3dF5Ocisq+I9BKRZ0Rks4hMSXVwxpgMqauDpiYCbvf0GgIATF7/T1SDp3l6725hzdHbWROYaEk/R8Ra1XOmqu4EvgLUA4cD/5uqoIwxGVRXR2B6PWzdSg0BxNdPU/f0YsOdE5l+y8tMu+Vl6u+fxtvjmtj34qrI72eyTqx1/N5+ZwN/VtUdEsMZfWNMbgkEIDB3NjUt9cDeyPuVzeWNKVPgpi3pCs0kUayJ/wkReROnlPO7InIAsDt1YRljMqGmBmC6c9+d3vFThEDRTVBby6aDD+bodAZnkiamqR5V/TFwMjBWVfcCzcC5qQzMGJM+gQAEvr4G6Jzwq93H3m2g5Xqn1NPkrFgv4CoGrgCGATNwLuQ6EngidaEZY9KhshKWLAEYGbS9mgA1BAhQA9B+C8S3zq7JOrGe3P09sAdn1A/wIXBTSiIyxqRFIODcOknfmcbx3wao6Rjl+5M+BJV6mtwTa+Ifrqo/xz3bo6rNxLyQmjEmm3gJv6Ym+AJcr3onQHVwwg8t5CgudtbZNTkr1sS/R0T6gru2gshw4NOURWWMSTp/wg8MvCPsPhUsdid43BF+cTFcfjmUlTm/AMrKYM6cjnV2TU6KtaqnGngKOERE6oBT8E79G2OyWiDgfNXUAGvWACOp2XF1p/009I/4wkJL8j1UTIlfVZ8WkVXAiThTPDNV1Qp4jcly7QnfVfNo+BO41aGlm8XFlvR7sHj68fcBPgZ2AkeLyGmpCckY0yWvT74IFBU5t26/fD8v6deEnJv1z+FX+yp3ABvp54FYyzlvAc4HXgfa3M0KPJuiuIwxkYT2yW9tdW4bGpztQOVvq9qrdfxCSzQhTMVOW5sl/R4u1jn+rwFHqqqd0DUmU+rqnAunGhoi7hJo/l+4cjNLdkR4PlrC91ipZo8X61TPu0DS2u6JyEAReVhE3hSRtSJyUrLe25geyRvlR0j6/i6agZ2zANCO3mooErkm389KNfNCVytw3Y0zpdMMrBaRZ/CVcarq9xM87p3AU6p6noj0xlnwxRgTSZjVsAD3tGxNUJsFUWc21iu/r2Cxu29Iwi8uhmnT4MknnStxhw1zkr5N8/R4XU31rHBvVwKPJ+OAIjIAOA23HFRV9+BcFWyMiSRMiwRvcRRPpx47RbXQsjf8CH/QILjzTkvyeUrU//dgpJ1E+gG7VbXVfVwI7ONewRvfAZ3lGucAbwDH4vxSmamqu0L2m4HTF4ghQ4aMWbBgQaf3ampqoqSkJN4QMspiTr1cixe6jvnECy6gz0cfAR2jfH+ffL9p0+qZN6+8c10+0FZQwJvXXsumM85IeczZKNdi7m68EyZMWKmqYzs9oapdfgHLgRLf4xLg+VheG+a9xgItwAnu4zuBG6O9ZsyYMRrOokWLwm7PZhZz6uVavKoxxDx/vmpxsSqoM3vf+au62rnVsjKtpjr8TiLpizkL5VrM3Y0XWKFhcmqsVT19VLXJ98uiye3YmYgNwAZVfdF9/DDw4wTfy5j8UFVF4JHPw2OPEWGgT+CeUuAqaGiwih0TVayJf5eIHKeqqwBEZAzOoixxU9X/isgHInKkqr4FfAFn2scYE0Z7j51HRxLaOhncxVGohq1bo1fsiFjFjgFiL+e8GviziCwVkWXAH4GrunHc7wF1IrIGGAX8rBvvZUyPFNRUzb2vZeXOrTt/H1OJpkfVTuYaIPZePS+LyOdwFl8BeEudlbgSoqqrceb6jTGh6uoIXLnZaaR2xx3A1e2lmdJQD3S0To4p4XvKypIeqslNsU71AIwDyt3XHCciqOqDKYnKmDwV+PoaAv+YQU2zU+QW2kWzmgAUFBLY7x7Ytg2GlUFTE2zdGv2N7cIs4xPTVI+IPATcBozH+QUwDhuxG5M4r8laQQGUl/PnnzoXXdU8OhJp3tVpd/+UTqDtp1BS4vTUqa936vGLw9RaFLj/vK2HvgkR64h/LHC0Wx5kjOmO0CZrDQ38uuF0Dij+OfDDsC/pNKXjv6DLS+izZ9sVuCYmsSb+14DPABtTGIsx+cHXfsHrsQNQ80nnpN9esUNI8g8ty6yqskRvYhZr4i8F3hCRlwju1XNOSqIypidzR+uVLGIJlZ2eDl0cJWyPHZuvN90Qa+IPpDIIY/KC21Y5oD8lQE170lcEQdtvvUQftmLHFkkxSRDTyV1VXRLuK9XBGdNj1NURmF4PDQ3UEAjqs+Pd90o0nfsRyjRtkRSTBF21ZV6mquNFpJHgC8UFUFXdN6XRGdMDBAIQmDubmpZ6IPzlLxUsjq0m31oumCSImvhVdbx72z894RjTcwQC/sXOLwE6t04G0EGlaFd1+GBz+yZpok71iEiX/UBj2ceYfORvtVDjq96Bjrr86gF3wJYtrJ092+mRH8q7ZNdq8U0SdTXH/1cR+YWInOb25AdARKobIAsAAByISURBVA4TkW+JyD+AL6U2RGNyT2Wlc1sTMnvjn8OvJkCg6Caoq3P642/ZAvPnO0lexLl96CGnx059vSV9kzRRE7+qfgF4BvgO8LqI7BCRrcB8nLr+aar6cOrDNCY3VFY6OXtJSOlDtTvgDwy6J/gE7tatMGMGgxcudHaoqnKSvHdVriV7kwJdVvWo6pOqWqWq5ao6QFUHqerJqlqrqv9NR5DGZDtvSmfJkpBFzt37gbnlVFMD27d3Ponb3Mxh99+fljiNgfiatBljQgSfwHV40/Le/Qp51l0cJQCt4d9nn02bUhilMcFi7cdvTP4JaaRGXV37U+F65YfO51ewGC0sYrFWdHmoTwcPTkbExsTERvzGhBOmkRozZgAQWFcVlOQ7ncAtqqWmZTaLmRBxhB+kuJh3L7uMo5MTuTFd6uoCrv2jPa+q25IbjjFZwtdIrV1zM8yeTU2Dc8K1U8Kvdv8CaLmeSBdqtSssdE7gup00Nx18sCV+kzZdTfWsBFa4t6FfK1IbmjEZ5G977KpkUfsKWH7VA+4AnCmf6mh9djzFxTBvnlXumIzp6srdQ9MViDFZZdgwZ3qHjtbJ4TppAgR2/ACKdkFdOYGy30NDlPe1JmsmC8S6ApeIyBQR+Yn7eJiIHJ/a0IzJkLo6aGpqT/g1vrVtvUXOvfvtNfkt1zvTQ2edFVzWE8qarJksEOvJ3V8DbcDpwI1AI/AIzhKMxvQcbhfNQMvWoL46XgdN77aCxUDIlE5DA9x7b/T3tyZrJgvEmvhPUNXjROQVAFX9WER6pzAuYzIicOVmalpm452cDW2q1mXb5GisyZrJErHW8e8VkULc1swicgDOXwDG9AiBr6+B0lJqdlwNRE/4CSV9a7Jmskisif8u4FFgsIjUAsuAn6UsKmPSpa7OSfiPjkS2bun0dGhTtYSUlVn1jskqMU31qGqdiKwEvoCzCMvXVHVtSiMzJtW8VbFaroq4S4AaKCiEvv0I7LLpHdMzxJT4ReQuYIGq/irF8RiTFoEAcIc3n9+ZIu1VPYEHD4OqJuevg5kznY6a4LRyaIsy4zloENx5p430TdaJdapnJXC9iLwjIreJyNhUBmVMKnlN1QI7ZwEdJZrebdAJ3LKy4MT9yScd9yMl/UGDnL76W7ZY0jdZKdbF1uep6lk45ZtvAbeIyLqURmZMsrjN1gJSA+Xl7a0WRJ3EHbrYefvJ2969g6dpwrVxAOeiLG/hFEv4JgfE26TtcOBzQBnQrTl+t0poBfChqn6lO+9lTETtdfkN1FBNTUN1p13ClmiGm6YJ08YBcEb+0aZ8jMkysc7x/xyYBLwDLABuVNXt3Tz2TJxfHvt2832MCTJ44UKYPp1AwyUECm+kprWFaE3TAmVznaQ+rMwZ4UcarfvaOHTabkwOiXXE/w5wkqp2rndLgIgMBc4GaoFZyXhPYwCoq+PI226DTz91FjhvdaZxQuvywT2BW3BD9GTvV1sb3KoZrGrH5CRR/zpxkXYSKQAuAg5T1RtEZBjwGVV9KaGDijwM/H9Af+B/wk31iMgMYAbAkCFDxixYsKDT+zQ1NVFSUpJICBljMafWiRdcwM0fXQ6ET/bV7iVY/rn83UOGsDzMz1c4gxcu5LD772efTZv4dPBg3r3sMmeh9G7Kpc/YYzGnXnfjnTBhwkpV7VyMo6pdfgH3Ar8C1rqP9wNejuW1Yd7rK8Cv3fuVwBNdvWbMmDEazqJFi8Juz2YWc2pVsEidlW6Dv6qpVuenHa2muvMO8+dnNO5c+ow9FnPqdTdeYIWGyamxlnOeoKpXArvdXxYfA4n26jkFOEdE6nHOF5wuIvMTfC9jAN9i527r5NASTf+Vt2FbLsyYEbS0ojE9Wdp79ajqtao6VFXLgQuAf6nqlETeyxj/erdBi5yHlGg696NceeuurmVMPoj15G5or57zgOtTFpUxXQgEOi7EiqSCxZ2TvYgzuRNOpHJNY3qYhHv1ADu6e3BVXQxuY3NjYhAu4YdL/jqoFBobYY9vY3Gx0yFz9mwryzR5LeYLuFT1TeBN77GIvA/YvxSTNl0lfH/FDlu3Qq9ezoVY27a1L2reXrZpZZkmj8V75a5flPXljEk+L9FHSviB0IXO9+6FkhKnhYKfl/xnz3Yv3BoWey2/MT1AdxJ/1xcAGJMElZWwZEnn7dXUuLU6Hb8JOs3pR5q3r6qyRG/yVtTELyJ3Ez7BCzAwJREZ42ov0QyT9AEChTe2X5kbsWLH5u2N6aSrEf+KBJ8zJmH+E7iqHbdeuabO9xZQaY1eoili8/bGhBE18avqvHQFYky4ih0v2Xu3FZ/7CKZNI9DaGv3NRODyy206x5gwujPHb0zSdFmxUw2sWUPgHydBtKQvwu7Bg+nzi19Y0jcmgliv3DUmJfxX3vpvPdXVHfsFVp0TfiEUT1kZtLU5Ddcs6RsTkSV+k1GhrRY81XIDAIGbipy6/PLy8BddeawO35iYxboQSx/gW8AxQB9vu6pemqK4TA/njfQjPq/VQBu0uidwG4jcbqGw0Lki10b5xsQk1jn+h3Cu2p0I3ABU0c2lF01+Cp3aCaUIAZz5nU4VO+GSvteGwZK+MTGLdarncFX9CbDLrfQ5GzghdWGZnsg7geslfy+Pe7cxddH0GzTIkr4xCYi5LbN7u11ERgADgMGpCcn0NKGj/NASzUAAqgfcEXvC95SUWNI3JgGxJv45IrIf8BPgceAN4Ocpi8r0CJF65Xuqq6F60hoCc8sJ7PhB+J2isTbKxiQk1rbM97t3lwCHpS4c0xPE0isfIHBEHdzq65LpXZ6r6pyw7eoiLWvHYExCYq3qGQL8DDhIVb8sIkcDJ6nq71IanclJXfbKV/evgdmzO9flqzr1+PX1zuOCgsgLp1j5pjEJiXWqZy7wD+Ag9/HbwNWpCMjkLm+kD5EvxPJfkBVxqsa/PdKoftAgm983JkGxlnOWquqfRORaAFVtEZEu/g43+SRi6+Tq4Eqe9vr9ujpnNB9uOmf//Tvu19aGXzTlzjuTE7gxeSjWEf8uERlEx2LrJ5KEpRdN7gttnRxaohkIhIzy6+qgtBSmTIk8h9/Y6OwHzqh+zhxn+kfEubUSTmO6JdbEPwunmme4iDwHPAh8L2VRmawXqWInqESzOnhf6uqc0fvWrdHffM8eZ/7fU1XlzPm3tTm3lvSN6ZZYq3pWiUgFcCTOIixvqereLl5meqBYKnYqPvcRgbknOHP1c4fBWWfBk09G77UTyko1jUmZqCN+ERknIp8BZ14fGAPUAr8Qkf2jvdb0LP4RfrS2Czq/jsXvH+YkeVXn9t5740v6YKWaxqRQV1M9vwH2AIjIacDNONM8O4A5qQ3NZJNoCT+oYidciWa8rNOmMSnVVeIvVNVt7v3zgTmq+ojbt+fw1IZmssXVV48CovfKr652L8iKd2QP0K+fU55pJ2+NSYuu5vgLRaTIneb5AjAjjteaHNdRojkwaHtoiSa4SX/GDOIyaJBTlmlJ3pi06ip5/wFYIiJbgE+ApQAicjhWztljeSdwlywJWeTcvR+U8L37iUzxWJM1YzIi6lSPqtYC1+BcuTtetf3a+QKsnDN71dU5K1YVFDi3Xk18F8KdwA0t1ayoCN63XSJVOFa5Y0xGdFnHr6rLVfVRVd3l2/a2qq5KbWgmIV6tvL+qZupUuOKKiC+JpWKngsVoWTmLvx3yS8S7ICtSP51orHLHmIxI+5q7InKIiCwSkTdE5HURmZnuGHq0SI3P7ruv88i/ro7AwDuchD/wDiDMCdwip7pmMROcXyJTpjiJvq7O+brkkq4vyArHKneMyZhMnKBtAa5xLwrrD6wUkadV9Y0MxNLzRJo+UXV+KXhz6u5fBjXNzh9yNTuCe+5VE6CGAIGW6+lYh8e1davzV0XfvrA3wnV8ItCrl3MVrn+b132zttbm943JkLSP+FV1ozdNpKqNOGv3HpzuOHqsaNMnvl8KldPLkeZdnXbxL38YdSnE5uauR/oPPBDcY+ehh5zEb20XjMko0UTmZpN1cJFy4FlghKruDHluBm756JAhQ8YsWLCg0+ubmpooKSlJfaBJlOqYBy9cyFG1tYRby6qtoID/OaKOfu+9x017rg37em+x87iXQQyxe8gQlof5f5YO9nORHhZz6nU33gkTJqxU1bGdnlDVjHwBJcBK4Otd7TtmzBgNZ9GiRWG3Z7OUxjx/vmpZmaozrg76qqZaFdT5Px5869339un2V+/eTiwZYj8X6WExp1534wVWaJicmpGLsESkF/AIUKeqf8lEDD2OV80TcmLXG73XuNM2AOJ0126/rWCxu2/3RvmAXZRlTA5Ie+IXEQF+B6xV1V+m+/g9VphqngDVQQnffx+IPoefCP+SicaYrJX2k7vAKcBU4HQRWe1+nZWBODIvwQutwr7W1yMngNNEx0v00RJ+e9L3rtQqLIz3u3BYeaYxOSMTVT3LVFVUdaSqjnK/nkx3HBkX7kKrGTNiS/7hXutTQ6B9GscvXMUO4EzPeBU3bW3Rjy1hThsPGmSN1YzJIdZoLVPCXWjV3Bxcax/Pa+kY6Ufin9IJUBN+Pn7YsMgdNouLYdo0Z1GV99939rV6fGNyjiX+TIl0oVUs/WtC9gmd2gmlCoGvr4FVZQTevwGGRbmAKszi5gqInbQ1psewxJ8pkUbWsfSv8b3WO4GrSPutoKgUINrW0TP/LyOB+q7f20vss2e3j+rXTpnC0TfdFNO3ZYzJfpk4uZtfQk7CDl640NleW+tMnfjFeoK0tpZAyInb0BLNwL6/dBZHCSQQc8ji5pvOOCOBNzHGZCsb8adSaG19QwNH3nYbbNvmzJM3NztVNK2tXfevqauD2bMJNEwnUHgTNbRQE2ZOv5oAFPUi8KtysFkZY0wYlvhTKcxJ2MJPP3U6ZXqtMlpbO0b6/gZqvqkWzjqLwG8PJtDS4IzwWyMfMlB4E8ydZ3PxxpiILPGnUrROmX7NzU61zNSpsP/+0NjY0dWyoQHuvZcaFK9LZriTuIoQKLKkb4zpms3xp1I8C420tjq/ELZuDWpl7LRcCF+149XiVxOAsjICc8st6RtjumQj/lQKUxoZj0oWsYTKTtvbe+W7dfmBsrnWKsEYEzNL/KnizdMnkPS9xmpe0m8v0XRvgy7EKr4VauckK2pjTB6wqZ5U8LdUiIN/SsffcqG9RJPq4MZqZWXWKsEYEzcb8adCnCP9gPtfpCtvwWmdHNRQraueOsYYE4El/lSIpe0C7pRO8a3UNFe769FGrtgJEs9JY2OMCWFTPakQKTEXFjqTNoWF7a0WAhNfAKBGfxq0a1DFjp+1PzbGdJMl/mQI7Y1/1lnh2zHMm8eSRYugpaWjV/6jI4N2C22dHBh0T/CC5Tanb4zpJkv8ifAn+tJSuPTS4N748+Y5F2SFSdhXXz0qbEv76klrgOBe+YHiW52OmL6+OZb0jTHdZXP88Qrtv7N1a+d9mpvh3nudhP/QQ1BV5TRLC8Crrw4M+7aBv4yEWFsnG2NMN+TniL87Sx7GU7HT0EBgej3U1VFT09Ep09+xQZXg1sk2ujfGpFj+Jf5wyxZOmeJM2cTyCyCOih2AmpbZBK7cDHSsWujdVlS4+wbi+QaMMaZ78m+qJ9KIfetW5xcCRB9p779/+OkdH69ix1Oz4+qg59tH+AGMMSbt8m/EH23E7nXJ9I/8Q0/kbt/e+XWFhdCvX6dmap2aqvkSviV9Y0ym5F/i7+rip9ZWZ+R/xRVOop8ypWNaaOtW5/lQAwdCaWmnVgue9oqdAEybVt/978EYY7oh/6Z6YumY6VXlxCiw9SqIMvsT+MtIvMH/9On1QHnM722MMcmWf4nfm7+fObPLufquROqT71GEwIDbgattascYkzV6/lRPuNLNqirYsgXmz3fm5xPQ3nLBbZzm9dPxbqsJQHExgV8dkIRvwhhjkqdnJ/5wpZszZnScvK2qcq6yDW2vEEXoKN+b0w9unVzjLI5i7RWMMVmoZyf+cKWbzc3Odk9VlZOguxj5R+qV76l2l08JlM0loNV2AZYxJmv17Dn+SKWbodurqpyFzsMIUE1g0D3UbA3AgIGwI/xbBqhxO2faaljGmOyWkRG/iHxJRN4SkfUi8uOUHKSuzpnXDydcSWeEMs8aAgSu2uLcD7kQC0DLyqm21bCMMTkk7YlfRAqBXwFfBo4GLhSRo5N6EG9uP1zNfaR+9rW1QXP9AaoJFN0EQE1N8K7ehVjV1UB9vU3tGGNySiameo4H1qvquwAisgA4F3gjaUeI1JahsDDyqNzbNns2lQ1znYXOW4J3qa4mqNmalWgaY3KRqHY+UZnSA4qcB3xJVS9zH08FTlDVq0L2mwHMABgyZMiYBQsWdHqvpqYmSkpKOm2vOP10JMz3pSIs+de/IsY2d24506fXM2FCJQCLFi1mwoTKoFtvn0RFijmb5VrMuRYvWMzpkmsxdzfeCRMmrFTVsZ2eUNW0fgHnAff7Hk8F7on2mjFjxmg4ixYtCrtdy8pUnQLO4K9Bg5znRJzb+fNVVbW62nlZuJeA87y3T3dFjDmL5VrMuRavqsWcLrkWc3fjBVZomJyaiameD4FDfI+HutuSJ1xbhl69oLGx42pdt1d+gDpqaiLPzVdU2JSOMaZnyURVz8vAESJyqIj0Bi4AHk/qEbzafP/Sh/vuC3v2AOF75YeewAVnvL94cVIjM8aYjEv7iF9VW0TkKuAfQCHwgKq+nvQDVVUFn8T1lXZ21Su/pqajcscYY3qajFzApapPAk+m9aDuAiqVLALC98q3ih1jTD7o2VfueurqqNz6CEuo6PRU9aQ11Dw6MijRW9I3xvRkPT7xBwIQmDubJdSjSHufHe++v1e+JXxjTD7o8YnfOWl7CUBQczVBqWAxUGkJ3xiTV3p0d04vodcQfKa2gsUowuKy6WmPyRhjMq1HJv5AwKni7NRjx53TWcyEyD17jDGmh+uxid+77hY6bgNlc62TpjEm7/X4OX5PdTUQqHfH/Fakb4zJXz1yxO/nXYhlJ3CNMcbR4xO/JXxjjAnW4xO/McaYYJb4jTEmz1jiN8aYPGOJ3xhj8owlfmOMyTNpX3M3ESKyGWgI81QpsCXN4XSXxZx6uRYvWMzpkmsxdzfeMlU9IHRjTiT+SERkhYZbSDiLWcypl2vxgsWcLrkWc6ritakeY4zJM5b4jTEmz+R64p+T6QASYDGnXq7FCxZzuuRazCmJN6fn+I0xxsQv10f8xhhj4mSJ3xhj8kzWJX4ReUBENonIa75to0RkuYisFpEVInK8u/1/3W2rReQ1EWkVkf3d5+pF5N/ea9Ic77Ei8oJ7/L+JyL6+564VkfUi8paITPRt/5K7bb2I/DhV8cYbs4h8UURWuttXisjpvtcsdmP2/h8MzpKYy0XkE19c9/leM8bdf72I3CUikiUxV/niXS0ibSIyyn0uLZ+ziBwiIotE5A0ReV1EZrrb9xeRp0VknXu7n7td3M9wvYisEZHjfO81zd1/nYhMS0W8CcZc5cb6bxF5XkSO9b1XunJGvDFXisgO3///n/reK7G8oapZ9QWcBhwHvObb9k/gy+79s4DFYV73VeBfvsf1QGmG4n0ZqHDvXwrc6N4/GngV2Ac4FHgHKHS/3gEOA3q7+xydJTGPBg5y748APvS9ZjEwNoM/F5FiLvfvF/I+LwEnAgL83fu5ynTMIa/7PPBOuj9n4EDgOPd+f+Bt92f258CP3e0/Bm5x75/lfobifqYvutv3B951b/dz7++XJTGf7MUCfNmL2X2crpwRb8yVwBNh3ifhvJF1I35VfRbYFroZ8EbNA4D/hHnphcAfUhhaWBHi/SzwrHv/aWCye/9cYIGqfqqq7wHrgePdr/Wq+q6q7gEWuPtmPGZVfUVVvc/7daCviOyTqtgiifNzDktEDgT2VdXl6vzLeRD4WrJj9XQj5gtxfgbSSlU3quoq934jsBY4GOdncZ672zw6PrNzgQfVsRwY6H7GE4GnVXWbqn6M831+KRtiVtXn3ZgAlgNDUxFXNAl8zpEknDeyLvFHcDVwq4h8ANwGXOt/UkSKcX6wHvFtVuCf7vTEjLRF6nidjv8B3wAOce8fDHzg22+Duy3S9nSKFLPfZGCVqn7q2/Z798/Pn6Ry2iSCaDEfKiKviMgSETnV3XYwzmfrydbP+Xw6D2LS+jmLSDnOX3svAkNUdaP71H+BIe79rPp5jjFmv2/h/MXiSXvOiCPmk0TkVRH5u4gc425L+HPOlcT/XeAHqnoI8APgdyHPfxV4TlX9o6vxqnoczp9zV4rIaekJFXD+hL9CRFbi/Cm3J43HTlTUmN0ftluA7/g2V6nq54FT3a+paYrVEynmjcAwVR0NzAL+T3znWTKsq8/5BKBZVV/zbU7r5ywiJTiDqKtVdaf/OfcvpayrAY83ZhGZgJP4f+TbnNacEUfMq3B67hwL3A081t1j50rinwb8xb3/Z5w/cfwuIGSEpKofurebgEfDvCZlVPVNVT1TVce4cb3jPvUhwSO8oe62SNvTJkrMiMhQnM/wYlV9x/ca7zNuBP6PNH7G0WJ2p9K2uvdXuts/i/OZ+v+0z6rP2RXtZznln7OI9MJJRnWq6v2b+8idwvGmyza527Pi5znOmBGRkcD9wLnezwmkN2fEE7Oq7lTVJvf+k0AvESmlG59zriT+/wAV7v3TgXXeEyIywH3ur75t/USkv3cfOBPwj6BSyqu6EJEC4HrAqyp5HLhARPYRkUOBI3BONr4MHCEih4pIb5x//I+nK95oMYvIQOD/4Zx0es63f5H7w+f9EH+FNH7GXcR8gIgUuvcPw/mc33X/jN4pIie60yUX4/u5yWTMvm3fxDe/n87P2f1MfgesVdVf+p56HGfwhXv7V9/2i8VxIrDD/Yz/AZwpIvu5lSlnutsyHrOIDMMZRE5V1bd975O2nJFAzJ/xpvfEqWgsALbSnbyRjLPUyfzCGe1sBPbizFl9CxgPrMQ5a/0iMMa3/3ScE6b+9zjM3fdVnDnV2WmOdybOmfq3gZtxr5B295+NM8p7C19FCU6FxNvucymLN96YcZLTLmC172sw0M/9f7LG/YzvBAqzJObJbkyrcf5M/qrvfcbi/IN+B7jH//8mC342KoHlIe+Rts/Z/Xem7rG8/9dnAYOAZ3AGXAuB/d39BfiV+1n+G1/lEc6U1nr365IUfsbxxnw/8LFv3xXu9nTmjHhjvsqN6VWcE9In+94robxhLRuMMSbP5MpUjzHGmCSxxG+MMXnGEr8xxuQZS/zGGJNnLPEbY0yescRvTBhubfoyEfmyb9s3ROSpTMZlTDJYOacxEYjICJwrxUcDRcArwJfUd/VyHO9VpKotSQ7RmIRY4jcmChH5Oc4FbP3c2zKc9tS9gICq/tVttPWQuw/AVar6vIhUAjfiXDD0OVX9bHqjNyY8S/zGROFevr8Kp5naE8DrqjrfbWXxEs5fAwq0qepuETkC+IOqjnUT//8DRqjThtuYrFCU6QCMyWaquktE/gg04fTR+aqI/I/7dB9gGE4vqXvEWTGrFachnOclS/om21jiN6Zrbe6XAJNV9S3/kyISAD4CjsUpmNjte3pXmmI0JmZW1WNM7P4BfM/XKXG0u30AsFFV23B65RdmKD5jYmKJ35jY3YhzUneNiLzuPgb4NTBNRF4FPoeN8k2Ws5O7xhiTZ2zEb4wxecYSvzHG5BlL/MYYk2cs8RtjTJ6xxG+MMXnGEr8xxuQZS/zGGJNn/n8zZ6ivhyE6RAAAAABJRU5ErkJggg==\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"code","source":["if D.get_title()!='Rise of sea level':\n"," print(\"Expected line plot title to be 'Rise in Sea Level'\")"],"metadata":{"id":"AJeR0qo1cxpL"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":[],"metadata":{"id":"qcnDV65Jhgi4"},"execution_count":null,"outputs":[]}],"metadata":{"colab":{"provenance":[{"file_id":"/v2/external/notebooks/intro.ipynb","timestamp":1672359607693}]},"kernelspec":{"display_name":"Python 3","name":"python3"}},"nbformat":4,"nbformat_minor":0}