forked from CompVis/adaptive-style-transfer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
166 lines (146 loc) · 6.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Copyright (C) 2018 Artsiom Sanakoyeu and Dmytro Kotovenko
#
# This file is part of Adaptive Style Transfer
#
# Adaptive Style Transfer is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Adaptive Style Transfer is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import argparse
import tensorflow as tf
tf.set_random_seed(228)
from model import Artgan
def parse_list(str_value):
if ',' in str_value:
str_value = str_value.split(',')
else:
str_value = [str_value]
return str_value
parser = argparse.ArgumentParser(description='')
# ========================== GENERAL PARAMETERS ========================= #
parser.add_argument('--model_name',
dest='model_name',
default='model1',
help='Name of the model')
parser.add_argument('--phase',
dest='phase',
default='train',
help='Specify current phase: train or inference.')
parser.add_argument('--image_size',
dest='image_size',
type=int,
default=256*3,
help='For training phase: will crop out images of this particular size.'
'For inference phase: each input image will have the smallest side of this size. '
'For inference recommended size is 1280.')
# ========================= TRAINING PARAMETERS ========================= #
parser.add_argument('--ptad',
dest='path_to_art_dataset',
type=str,
#default='./data/vincent-van-gogh_paintings/',
default='./data/vincent-van-gogh_road-with-cypresses-1890',
help='Directory with paintings representing style we want to learn.')
parser.add_argument('--ptcd',
dest='path_to_content_dataset',
type=str,
default=None,
help='Path to Places365 training dataset.')
parser.add_argument('--total_steps',
dest='total_steps',
type=int,
default=int(3e5),
help='Total number of steps')
parser.add_argument('--batch_size',
dest='batch_size',
type=int,
default=1,
help='# images in batch')
parser.add_argument('--lr',
dest='lr',
type=float,
default=0.0002,
help='initial learning rate for adam')
parser.add_argument('--save_freq',
dest='save_freq',
type=int,
default=1000,
help='Save model every save_freq steps')
parser.add_argument('--ngf',
dest='ngf',
type=int,
default=32,
help='Number of filters in first conv layer of generator(encoder-decoder).')
parser.add_argument('--ndf',
dest='ndf',
type=int,
default=64,
help='Number of filters in first conv layer of discriminator.')
# Weights of different losses.
parser.add_argument('--dlw',
dest='discr_loss_weight',
type=float,
default=1.,
help='Weight of discriminator loss.')
parser.add_argument('--tlw',
dest='transformer_loss_weight',
type=float,
default=100.,
help='Weight of transformer loss.')
parser.add_argument('--flw',
dest='feature_loss_weight',
type=float,
default=100.,
help='Weight of feature loss.')
parser.add_argument('--dsr',
dest='discr_success_rate',
type=float,
default=0.8,
help='Rate of trials that discriminator will win on average.')
# ========================= INFERENCE PARAMETERS ========================= #
parser.add_argument('--ii_dir',
dest='inference_images_dir',
type=parse_list,
default=['./data/sample_photographs/'],
help='Directory with images we want to process.')
parser.add_argument('--save_dir',
type=str,
default=None,
help='Directory to save inference output images.'
'If not specified will save in the model directory.')
parser.add_argument('--ckpt_nmbr',
dest='ckpt_nmbr',
type=int,
default=None,
help='Checkpoint number we want to use for inference. '
'Might be None(unspecified), then the latest available will be used.')
args = parser.parse_args()
def main(_):
tfconfig = tf.ConfigProto(allow_soft_placement=False)
tfconfig.gpu_options.allow_growth = True
with tf.Session(config=tfconfig) as sess:
model = Artgan(sess, args)
if args.phase == 'train':
model.train(args, ckpt_nmbr=args.ckpt_nmbr)
if args.phase == 'inference' or args.phase == 'test':
print("Inference.")
model.inference(args, args.inference_images_dir, resize_to_original=False,
to_save_dir=args.save_dir,
ckpt_nmbr=args.ckpt_nmbr)
if args.phase == 'inference_on_frames' or args.phase == 'test_on_frames':
print("Inference on frames sequence.")
model.inference_video(args,
path_to_folder=args.inference_images_dir[0],
resize_to_original=False,
to_save_dir=args.save_dir,
ckpt_nmbr = args.ckpt_nmbr)
sess.close()
if __name__ == '__main__':
tf.app.run()