-
Notifications
You must be signed in to change notification settings - Fork 8
/
engine.py
171 lines (134 loc) · 5.89 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the CC-by-NC license found in the
# LICENSE file in the root directory of this source tree.
#
"""
Train and eval functions used in main.py
"""
from typing import Iterable, Optional
from einops import rearrange
import torch
import numpy
from timm.data import Mixup
from timm.utils import accuracy, ModelEma
import utils
from sklearn.metrics import roc_auc_score
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, num_cilps:int, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
model_ema: Optional[ModelEma] = None, mixup_fn: Optional[Mixup] = None,
world_size: int = 1, distributed: bool = True, amp=True,
contrastive_nomixup=False, hard_contrastive=False,
finetune=False
):
# TODO fix this for finetuning
if finetune:
model.train(not finetune)
else:
model.train()
#criterion.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.8f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 50
for samples, targets in metric_logger.log_every(data_loader, print_freq, header):
batch_size = targets.size(0)
samples = samples.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
if mixup_fn is not None:
# batch size has to be an even number
if batch_size == 1:
continue
if batch_size % 2 != 0:
samples, targets = samples[:-1], targets[:-1]
samples, targets = mixup_fn(samples, targets)
with torch.cuda.amp.autocast(enabled=amp):
outputs = model(samples)
outputs = outputs.reshape(batch_size, num_cilps, -1).mean(dim=1)
loss = criterion(outputs, targets)
loss_value = loss.item()
optimizer.zero_grad()
# this attribute is added by timm on one optimizer (adahessian)
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
if amp:
loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=is_second_order)
else:
loss.backward(create_graph=is_second_order)
if max_norm is not None and max_norm != 0.0:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
optimizer.step()
torch.cuda.synchronize()
if model_ema is not None:
model_ema.update(model)
metric_logger.update(loss=loss_value)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(data_loader, model, device, world_size, distributed=True, amp=False, num_crops=1, num_clips=1):
criterion = torch.nn.CrossEntropyLoss()
to_np = lambda x: x.data.cpu().numpy()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
# switch to evaluation mode
model.eval()
outputs = []
targets = []
logits = []
binary_label = []
for images, target in metric_logger.log_every(data_loader, 10, header):
images = images.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
# compute output
batch_size = images.shape[0]
with torch.cuda.amp.autocast(enabled=amp):
output = model(images)
output = output.reshape(batch_size, num_crops * num_clips, -1).mean(dim=1)
output_np = to_np(output[:,1])
if distributed:
outputs.append(concat_all_gather(output))
targets.append(concat_all_gather(target))
output_ = concat_all_gather(output)
target_ = concat_all_gather(target)
output_np_ = to_np(output_[:,1])
logits.append(output_np_)
binary_label.append(target_.detach().cpu())
else:
outputs.append(output)
targets.append(target)
logits.append(output_np)
binary_label.append(target.detach().cpu())
batch_size = images.shape[0]
acc1 = accuracy(output, target, topk=(1,))[0]
metric_logger.meters['acc1'].update(acc1.item(), images.size(0))
# import pdb;pdb.set_trace()
acc_outputs = numpy.stack(logits,0).reshape(-1,1)
acc_label = numpy.stack(binary_label,0).reshape(-1,1)
outputs = torch.cat(outputs, dim=0)
targets = torch.cat(targets, dim=0)
auc_score = roc_auc_score(acc_label, acc_outputs)
real_loss = criterion(outputs, targets)
metric_logger.update(loss=real_loss.item())
print('* Acc@1 {top1.global_avg:.3f} AUC {auc} loss {losses.global_avg:.3f}'
.format(top1=metric_logger.acc1,auc=auc_score,losses=metric_logger.loss))
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def concat_all_gather(tensor):
"""
Performs all_gather operation on the provided tensors.
*** Warning ***: torch.distributed.all_gather has no gradient.
"""
tensors_gather = [torch.ones_like(tensor)
for _ in range(torch.distributed.get_world_size())]
torch.distributed.all_gather(tensors_gather, tensor.contiguous(), async_op=False)
#output = torch.cat(tensors_gather, dim=0)
if tensor.dim() == 1:
output = rearrange(tensors_gather, 'n b -> (b n)')
else:
output = rearrange(tensors_gather, 'n b c -> (b n) c')
return output