diff --git a/README.md b/README.md index 9a3e9a1..bb5609c 100644 --- a/README.md +++ b/README.md @@ -31,33 +31,33 @@ If you're looking for in-depth tutorial-like examples, checkout the [tutorials]( | Example   | Notebook & Scripts   | Read The Blog!       | |-------- | ------------- | ------------- | | | | | -| [Youtube transcript search bot](/examples/Youtube-Search-QA-Bot/) | Open In Colab [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/Youtube-Search-QA-Bot/main.py) [![JS](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](./examples/Youtube-Search-QA-Bot/index.js)|| -| [Langchain: Code Docs QA bot](/examples/Code-Documentation-QA-Bot/) | Open In Colab[![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/Code-Documentation-QA-Bot/main.py)[![JS](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](./examples/Code-Documentation-QA-Bot/index.js)|| -| [AI Agents: Reducing Hallucination](/examples/reducing_hallucinations_ai_agents/) | Open In Colab [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/reducing_hallucinations_ai_agents/main.py) [![JS](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](./examples/reducing_hallucinations_ai_agents/index.js)| [![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/how-to-reduce-hallucinations-from-llm-powered-agents-using-long-term-memory-72f262c3cc1f)| -| [Multimodal CLIP: DiffusionDB](/examples/multimodal_clip/) | Open In Colab[![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/multimodal_clip/main.py)| [![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://medium.com/etoai/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939)| -| [Multimodal CLIP: Youtube videos](/examples/multimodal_video_search/) | Open In Colab [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/multimodal_video_search/main.py) |[![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://medium.com/etoai/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939)| -| [Multimodal Image + Text Search](/examples/multimodal_search/) | Open In Colab [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/multimodal_search/main.py)| [![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://medium.com/etoai/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939) | -| [TransformersJS Embedding example](./examples/js-transformers/) |[![JS](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](./examples/js-transformers/index.js) | | -| [Movie Recommender](/examples/movie-recommender/) | Open In Colab[![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/movie-recommender/main.py)| | +| [Youtube transcript search bot](/examples/Youtube-Search-QA-Bot/) | Open In Colab [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/Youtube-Search-QA-Bot/main.py) [![JS](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](./examples/Youtube-Search-QA-Bot/index.js) [![LLM](https://img.shields.io/badge/openai-api-white)](#)|| +| [Langchain: Code Docs QA bot](/examples/Code-Documentation-QA-Bot/) | Open In Colab [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/Code-Documentation-QA-Bot/main.py) [![JS](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](./examples/Code-Documentation-QA-Bot/index.js)[![LLM](https://img.shields.io/badge/openai-api-white)](#)|| +| [AI Agents: Reducing Hallucination](/examples/reducing_hallucinations_ai_agents/) | Open In Colab [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/reducing_hallucinations_ai_agents/main.py) [![JS](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](./examples/reducing_hallucinations_ai_agents/index.js)[![LLM](https://img.shields.io/badge/openai-api-white)](#)| [![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/how-to-reduce-hallucinations-from-llm-powered-agents-using-long-term-memory-72f262c3cc1f)| +| [Multimodal CLIP: DiffusionDB](/examples/multimodal_clip_diffusiondb/) | Open In Colab [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/multimodal_clip_diffusiondb/main.py) [![LLM](https://img.shields.io/badge/local-llm-green)](#)| [![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://medium.com/etoai/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939)| +| [Multimodal CLIP: Youtube videos](/examples/multimodal_video_search/) | Open In Colab [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/multimodal_video_search/main.py) [![LLM](https://img.shields.io/badge/local-llm-green)](#) |[![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://medium.com/etoai/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939)| +| [Multimodal Image + Text Search](/examples/multimodal_search/) | Open In Colab [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/multimodal_search/main.py) [![LLM](https://img.shields.io/badge/local-llm-green)](#)| [![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://medium.com/etoai/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939) | +| [TransformersJS Embedding example](./examples/js-transformers/) |[![JS](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](./examples/js-transformers/index.js) [![LLM](https://img.shields.io/badge/local-llm-green)](#) | | +| [Movie Recommender](/examples/movie-recommender/) | Open In Colab [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/movie-recommender/main.py)| | | [Product Recommender](./examples/product-recommender/) | Open In Colab [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/product-recommender/main.py) | | -| [Audio Search](./examples/audio_search/) | Open In Colab [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/audio_search/main.py) | | -| [Arxiv paper recommender](/examples/arxiv-recommender) | Open In Colab [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/arxiv-recommender/main.py) | | -| [Multi-lingual search](/examples/multi-lingual-wiki-qa) | Open In Colab [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](.examples/multi-lingual-wiki-qa/main.py) | | -| [Instruct-Multitask](./examples/instruct-multitask) | Open In Colab [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](.examples/instruct-multitask/main.py) | [![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/multitask-embedding-with-lancedb-be18ec397543)| -| [Improve RAG with Re-ranking](/examples/RAG_re_ranking/) | Open In Colab |[![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/simplest-method-to-improve-rag-pipeline-re-ranking-cf6eaec6d544)| -| [Improve RAG with FLARE](/examples/Advanced-RAG-with-FLARE) | Open In Colab [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](.examples/instruct-multitask/main.py) | [![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/better-rag-with-active-retrieval-augmented-generation-flare-3b66646e2a9f)| -| [Improve RAG with HyDE](/examples/Advance-RAG-with-HyDE/) | Open In Colab |[![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/advanced-rag-precise-zero-shot-dense-retrieval-with-hyde-0946c54dfdcb)| -| [Improve RAG with LOTR ](/examples/Advance_RAG_LOTR/) | Open In Colab |[![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/better-rag-with-lotr-lord-of-retriever-23c8336b9a35)| -| [Advanced RAG: Parent Document Retriever](/examples/parent_document_retriever/) | Open In Colab |[![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/modified-rag-parent-document-bigger-chunk-retriever-62b3d1e79bc6)| -| [RAG Fusion](/examples/RAG_Fusion/) | Open In Colab| -| [Hybrid search BM25 & lancedb ](./examples/Hybrid_search_bm25_lancedb/) | Open In Colab |[![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/hybrid-search-combining-bm25-and-semantic-search-for-better-results-with-lan-1358038fe7e6)| -| [Evaluating Prompts with Prompttools](/examples/prompttools-eval-prompts/) | Open In Colab | | -| [NER powered with Semantic Search](/tutorials/NER-powered-Semantic-Search/) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/NER-powered-Semantic-Search/NER_powered_Semantic_Search_with_LanceDB.ipynb) | [![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/ner-powered-semantic-search-using-lancedb-51051dc3e493)| -[Sentiment Analysis : Analysing Hotel Reviews](/examples/Sentiment-Analysis-Analyse-Hotel-Reviews/) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Sentiment-Analysis-Analyse-Hotel-Reviews/Sentiment_Analysis_using_LanceDB.ipynb) | [![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/sentiment-analysis-using-lancedb-2da3cb1e3fa6)| +| [Audio Search](./examples/audio_search/) | Open In Colab [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/audio_search/main.py) [![LLM](https://img.shields.io/badge/local-llm-green)](#) | | +| [Arxiv paper recommender](/examples/arxiv-recommender) | Open In Colab [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/arxiv-recommender/main.py) [![LLM](https://img.shields.io/badge/local-llm-green)](#) | | +| [Multi-lingual search](/examples/multi-lingual-wiki-qa) | Open In Colab [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](.examples/multi-lingual-wiki-qa/main.py) [![LLM](https://img.shields.io/badge/cohere-api-pink)](#) | | +| [Instruct-Multitask](./examples/instruct-multitask) | Open In Colab [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](.examples/instruct-multitask/main.py) [![LLM](https://img.shields.io/badge/local-llm-green)](#) | [![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/multitask-embedding-with-lancedb-be18ec397543)| +| [Improve RAG with Re-ranking](/examples/RAG_re_ranking/) | Open In Colab [![LLM](https://img.shields.io/badge/local-llm-green)](#) |[![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/simplest-method-to-improve-rag-pipeline-re-ranking-cf6eaec6d544)| +| [Improve RAG with FLARE](/examples/Advanced-RAG-with-FLARE) | Open In Colab [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](.examples/instruct-multitask/main.py) [![LLM](https://img.shields.io/badge/openai-api-white)](#) | [![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/better-rag-with-active-retrieval-augmented-generation-flare-3b66646e2a9f)| +| [Improve RAG with HyDE](/examples/Advance-RAG-with-HyDE/) | Open In Colab [![LLM](https://img.shields.io/badge/openai-api-white)](#)|[![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/advanced-rag-precise-zero-shot-dense-retrieval-with-hyde-0946c54dfdcb)| +| [Improve RAG with LOTR ](/examples/Advance_RAG_LOTR/) | Open In Colab [![LLM](https://img.shields.io/badge/openai-api-white)](#) |[![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/better-rag-with-lotr-lord-of-retriever-23c8336b9a35)| +| [Advanced RAG: Parent Document Retriever](/examples/parent_document_retriever/) | Open In Colab [![LLM](https://img.shields.io/badge/openai-api-white)](#)|[![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/modified-rag-parent-document-bigger-chunk-retriever-62b3d1e79bc6)| +| [RAG Fusion](/examples/RAG_Fusion/) | Open In Colab [![LLM](https://img.shields.io/badge/openai-api-white)](#)| +| [Hybrid search BM25 & lancedb ](./examples/Hybrid_search_bm25_lancedb/) | Open In Colab [![LLM](https://img.shields.io/badge/openai-api-white)](#)|[![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/hybrid-search-combining-bm25-and-semantic-search-for-better-results-with-lan-1358038fe7e6)| +| [Evaluating Prompts with Prompttools](/examples/prompttools-eval-prompts/) | Open In Colab [![LLM](https://img.shields.io/badge/openai-api-white)](#) [![local LLM](https://img.shields.io/badge/local-llm-green)](#)| | +| [NER powered with Semantic Search](/tutorials/NER-powered-Semantic-Search/) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/NER-powered-Semantic-Search/NER_powered_Semantic_Search_with_LanceDB.ipynb)[![local LLM](https://img.shields.io/badge/local-llm-green)](#) | [![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/ner-powered-semantic-search-using-lancedb-51051dc3e493)| +[Sentiment Analysis : Analysing Hotel Reviews](/examples/Sentiment-Analysis-Analyse-Hotel-Reviews/) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Sentiment-Analysis-Analyse-Hotel-Reviews/Sentiment_Analysis_using_LanceDB.ipynb) [![local LLM](https://img.shields.io/badge/local-llm-green)](#) | [![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/sentiment-analysis-using-lancedb-2da3cb1e3fa6)| | [Facial Recognition](./examples/facial_recognition) | Open In Colab | -| [Accelerate Vector Search Applications Using OpenVINO](/tutorials/Accelerate-Vector-Search-Applications-Using-OpenVINO/) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Accelerate-Vector-Search-Applications-Using-OpenVINO/clip_text_image_search.ipynb) | [![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/accelerate-vector-search-applications-using-openvino-51366eabf866)| -| [Search Within Images](/examples/Contextual-Compression-with-RAG/) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/search-within-images-with-sam-and-clip/main.ipynb) |[![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/search-within-an-image-331b54e4285e)| -| [Contextual-Compression-with-RAG](/examples/Contextual-Compression-with-RAG/) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Contextual-Compression-with-RAG/main.ipynb) |[![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://medium.com/etoai/enhance-rag-integrate-contextual-compression-and-filtering-for-precision-a29d4a810301) +| [Accelerate Vector Search Applications Using OpenVINO](/tutorials/Accelerate-Vector-Search-Applications-Using-OpenVINO/) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Accelerate-Vector-Search-Applications-Using-OpenVINO/clip_text_image_search.ipynb) [![local LLM](https://img.shields.io/badge/local-llm-green)](#)| [![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/accelerate-vector-search-applications-using-openvino-51366eabf866)| +| [Search Within Images](/examples/Contextual-Compression-with-RAG/) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/search-within-images-with-sam-and-clip/main.ipynb) [![local LLM](https://img.shields.io/badge/local-llm-green)](#) |[![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/search-within-an-image-331b54e4285e)| +| [Contextual-Compression-with-RAG](/examples/Contextual-Compression-with-RAG/) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Contextual-Compression-with-RAG/main.ipynb) [![local LLM](https://img.shields.io/badge/local-llm-green)](#) |[![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://medium.com/etoai/enhance-rag-integrate-contextual-compression-and-filtering-for-precision-a29d4a810301) @@ -73,20 +73,21 @@ These are ready to use applications built using LanceDB serverless vector databa | [Multi-Modal Search Engine](https://github.com/lancedb/vectordb-recipes/tree/rf/applications/multimodal-search) | Create a Multi-modal search engine app, to search images using both images or text | ![Search](https://github.com/lancedb/vectordb-recipes/assets/15766192/9805fec8-da72-44c0-be12-ddbe1c2d6afc)| | [ Chat with multiple URL/website ](https://github.com/lancedb/vectordb-recipes/tree/main/applications/chat_with_anywebsite/) | Conversational AI for Any Website with Mistral,Bge Embedding & LanceDB |![webui_aa](https://github.com/akashAD98/vectordb-recipes/assets/62583018/47a9af87-2d94-4fd8-afa1-373db03bd728) | | [ Hr chatbot ](https://github.com/lancedb/vectordb-recipes/tree/main/applications/HR_chatbot/) | Hr chatbot - ask your personal query using zero-shot React agent & tools |![image](https://github.com/akashAD98/vectordb-recipes/assets/62583018/0ea78428-44be-4bff-874b-79b1fcc3b7d6)| -| [ Talk with Youtube Video using GPT4 Vision API ](https://github.com/lancedb/vectordb-recipes/tree/main/applications/talk-with-youtube-gpt4-vision-api/) | Talk with Youtube Video using GPT4 Vision API and Langchain |![demo](./assets/talk-using-gpt4v.png) | -| [ Talk with Podcast ](https://github.com/lancedb/vectordb-recipes/tree/main/applications/talk-with-podcast) | Talk with Youtube Podcast using Ollama and insanely-fast-whisper | ![demo](./assets/talk-with-podcast.png)| -| [ Talk with Wikipedia ](https://github.com/lancedb/vectordb-recipes/tree/main/applications/talk-with-wikipedia) | Talk with Wikipedia Pages | ![demo](./assets/talk-with-wikipedia.png)| +| [ Talk with Youtube Video using GPT4 Vision API ](https://github.com/lancedb/vectordb-recipes/tree/main/applications/talk-with-youtube-gpt4-vision-api/) | Talk with Youtube Video using GPT4 Vision API and Langchain |![demo](./assets/talk-using-gpt4v.gif) | +| [ Talk with Podcast ](https://github.com/lancedb/vectordb-recipes/tree/main/applications/talk-with-podcast) | Talk with Youtube Podcast using Ollama and insanely-fast-whisper | ![demo](./assets/talk-with-podcast.gif)| +| [ Talk with Wikipedia ](https://github.com/lancedb/vectordb-recipes/tree/main/applications/talk-with-wikipedia) | Talk with Wikipedia Pages | ![demo](./assets/talk-with-wikipedia.gif)| +| [ Talk with Github ](https://github.com/lancedb/vectordb-recipes/tree/main/applications/talk-with-github) | Talk with Github Codespaces using Qwen1.5 | ![demo](./assets/talk-with-github.gif)| | [ Document Chat with Langroid ](https://github.com/lancedb/vectordb-recipes/tree/main/applications/docchat-with-langroid) | Talk with your Documents using Langroid | ![demo](./assets/document-chat-langroid.png)| | [ Fastapi RAG template ](https://github.com/lancedb/vectordb-recipes/tree/main/applications/Chatbot_RAG_with_FASTAPI) | FastAPI based RAG template with Websocket support | ![image](./assets/chatbot_fastapi.png)| | [ GTE MLX RAG ](https://github.com/lancedb/vectordb-recipes/tree/main/applications/GTE_mlx_RAG/CLI_example.ipynb) | mlx based RAG model using lancedb api support | ![image](./assets/apple_mlx.png)| - - +| [Multilingual-RAG](https://github.com/lancedb/vectordb-recipes/tree/main/applications/Multilingual_RAG/) | Multilingual RAG with cohere embedding & support 100+ languages|![image](https://github.com/akashAD98/vectordb-recipes/assets/62583018/be65eb39-25c4-4441-98fc-6ded09689819)| ## Tutorials Looking to get started with LLMs, vectorDBs, and the world of Generative AI? These in-depth tutorials and courses cover these concepts with practical follow along colabs where possible. | Tutorial | Interactive Environment | Blog Link | | --------- | -------------------------- | ----------- | | | | | +| [Corrective RAG with Langgraph](./tutorials/Corrective-RAG-with_Langgraph/) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Corrective-RAG-with_Langgraph/CRAG_with_Langgraph.ipynb) | | | [Product Quantization: Compress High Dimensional Vectors](https://blog.lancedb.com/product-quantization-compress-high-dimensional-vectors-dfcba98fab47) | | [![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/product-quantization-compress-high-dimensional-vectors-dfcba98fab47) | | [LLMs, RAG, & the missing storage layer for AI](https://medium.com/etoai/llms-rag-the-missing-storage-layer-for-ai-28ded35fa984) | | [![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://medium.com/etoai/llms-rag-the-missing-storage-layer-for-ai-28ded35fa984) | | [Fine-Tuning LLM using PEFT & QLoRA](./tutorials/fine-tuning_LLM_with_PEFT_QLoRA) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/fine-tuning_LLM_with_PEFT_QLoRA/main.ipynb) | [![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/optimizing-llms-a-step-by-step-guide-to-fine-tuning-with-peft-and-qlora-22eddd13d25b) | diff --git a/applications/Multilingual_RAG/.env-example b/applications/Multilingual_RAG/.env-example new file mode 100644 index 0000000..39553fb --- /dev/null +++ b/applications/Multilingual_RAG/.env-example @@ -0,0 +1 @@ +COHERE_API_KEY = pastyourapikeyhere diff --git a/applications/Multilingual_RAG/README.md b/applications/Multilingual_RAG/README.md new file mode 100644 index 0000000..7f77340 --- /dev/null +++ b/applications/Multilingual_RAG/README.md @@ -0,0 +1,45 @@ +# Multilingual-RAG + +![Multilingual-RAG](https://github.com/akashAD98/Multilingual-RAG/assets/62583018/a84e1839-a311-496c-b545-3533ef348dea.png) + +## Overview +Multilingual-RAG is an innovative question-answering system with multilingual capabilities, capable of understanding and generating responses in multiple languages. It is built upon the powerful architecture of Large Language Models (LLMs) with Retrieve-And-Generate (RAG) capabilities. This application harnesses the capabilities of Cohere's multilingual embeddings, LanceDB vector store, LangChain for question answering, and Argos Translate for seamless translation between languages. The user interface is provided by Gradio, ensuring a smooth and interactive user experience. + +## Supported Languages +Multilingual RAG is designed to support over 100 languages. The specific list of supported languages depends on the capabilities of the Cohere multilingual model and Argos Translate. By default, it includes support for English, Hindi, French, and Turkish languages. Additional languages can be added to suit your use case. + +## Getting Started +Follow these instructions to set up Multilingual-RAG in your local environment. + +### Prerequisites +Ensure you have the following prerequisites installed: +- Python 3.x + +Create a `.env` file and add your Cohere API key: +just rename `.env-example` with `.env` & past your API + + + +## Installation +You can install the required dependencies using the following commands: + +``` +pip install -r requirements.txt +``` +For Argos Translate, you can install it as follows: + +``` +git clone https://github.com/argosopentech/argos-translate.git +cd argos-translate +virtualenv env +source env/bin/activate +pip install -e . +``` + +## Running the App +To run the Multilingual-RAG app, use the following command: +Currently, support text/pdf file - change the file path inside main.py + +``` +python3 main.py +``` diff --git a/applications/Multilingual_RAG/main.py b/applications/Multilingual_RAG/main.py new file mode 100644 index 0000000..269d33b --- /dev/null +++ b/applications/Multilingual_RAG/main.py @@ -0,0 +1,218 @@ +import os +import dotenv +import gradio as gr +import lancedb +import logging +from langchain.embeddings.cohere import CohereEmbeddings +from langchain.llms import Cohere +from langchain.prompts import PromptTemplate +from langchain.chains import RetrievalQA +from langchain.vectorstores import LanceDB +from langchain.document_loaders import TextLoader +from langchain.text_splitter import RecursiveCharacterTextSplitter +from langchain_community.document_loaders import PyPDFLoader +import argostranslate.package +import argostranslate.translate + + +# Configuration Management +dotenv.load_dotenv(".env") +DB_PATH = "/tmp/lancedb" + +COHERE_MODEL_NAME = "multilingual-22-12" +LANGUAGE_ISO_CODES = { + "English": "en", + "Hindi": "hi", + "Turkish": "tr", + "French": "fr", +} + +# Logging Configuration +logging.basicConfig(level=logging.INFO) +logger = logging.getLogger(__name__) + + +def initialize_documents_and_embeddings(input_file_path): + """ + Initialize documents and their embeddings from a given file. + + Parameters: + - input_file_path (str): The path to the input file. Supported formats are .txt and .pdf. + + Returns: + - tuple: A tuple containing a list of texts split from the document and the embeddings object. + """ + file_extension = os.path.splitext(input_file_path)[1] + if file_extension == ".txt": + logger.info("txt file processing") + # Handle text file + loader = TextLoader(input_file_path) + documents = loader.load() + text_splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=50) + texts = text_splitter.split_documents(documents) + elif file_extension == ".pdf": + logger.info("pdf file processing") + # Handle PDF file + loader = PyPDFLoader(input_file_path) + texts = loader.load_and_split() + text_splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=50) + texts = text_splitter.split_documents(texts) + else: + raise ValueError( + "Unsupported file type. Supported files are .txt and .pdf only." + ) + + embeddings = CohereEmbeddings(model=COHERE_MODEL_NAME) + return texts, embeddings + + +# Database Initialization +def initialize_database(texts, embeddings): + """ + Initialize and populate a LanceDB database with documents and their embeddings. + + Parameters: + - texts (list): A list of texts to be stored in the database. + - embeddings (CohereEmbeddings): An embeddings object used to generate vector embeddings for the texts. + + Returns: + - LanceDB: An instance of LanceDB with the documents and their embeddings stored. + """ + db = lancedb.connect(DB_PATH) + table = db.create_table( + "multiling-rag", + data=[ + { + "vector": embeddings.embed_query("Hello World"), + "text": "Hello World", + "id": "1", + } + ], + mode="overwrite", + ) + return LanceDB.from_documents(texts, embeddings, connection=table) + + +# Translation Function +def translate_text(text, from_code, to_code): + """ + Translate a given text from one language to another. + + Parameters: + - text (str): The text to translate. + - from_code (str): The ISO language code of the source language. + - to_code (str): The ISO language code of the target language. + + Returns: + - str: The translated text. + """ + try: + argostranslate.package.update_package_index() + available_packages = argostranslate.package.get_available_packages() + package_to_install = next( + filter( + lambda x: x.from_code == from_code and x.to_code == to_code, + available_packages, + ) + ) + argostranslate.package.install_from_path(package_to_install.download()) + return argostranslate.translate.translate(text, from_code, to_code) + except Exception as e: + logger.error(f"Error in translate_text: {str(e)}") + return "Translation error" + + +prompt_template = """Text: {context} + +Question: {question} + +Answer the question based on the text provided. If the text doesn't contain the answer, reply that the answer is not available.""" +PROMPT = PromptTemplate( + template=prompt_template, input_variables=["context", "question"] +) + + +# Question Answering Function +def answer_question(question, input_language, output_language, db): + """ + Answer a given question by retrieving relevant information from a database, + translating the question and answer if necessary. + Parameters: + - question (str): The question to answer. + - input_language (str): The language of the input question. + - output_language (str): The desired language of the answer. + - db (LanceDB): The LanceDB instance to use for information retrieval. + + Returns: + - str: The answer to the question, in the desired output language + """ + try: + input_lang_code = LANGUAGE_ISO_CODES[input_language] + output_lang_code = LANGUAGE_ISO_CODES[output_language] + + question_in_english = ( + translate_text(question, from_code=input_lang_code, to_code="en") + if input_language != "English" + else question + ) + prompt = PromptTemplate( + template=prompt_template, input_variables=["context", "question"] + ) + qa = RetrievalQA.from_chain_type( + llm=Cohere(model="command", temperature=0), + chain_type="stuff", + retriever=db.as_retriever(), + chain_type_kwargs={"prompt": prompt}, + return_source_documents=True, + ) + + answer = qa({"query": question_in_english}) + result_in_english = answer["result"].replace("\n", "").replace("Answer:", "") + + return ( + translate_text(result_in_english, from_code="en", to_code=output_lang_code) + if output_language != "English" + else result_in_english + ) + except Exception as e: + logger.error(f"Error in answer_question: {str(e)}") + return "An error occurred while processing your question. Please try again." + + +def setup_gradio_interface(db): + """ + Setup a Gradio interface for interacting with the multilingual chatbot. + + Parameters: + - db (LanceDB): The database instance to use for information retrieval. + + Returns: + - gr.Interface: A Gradio interface object for the chatbot. + """ + + return gr.Interface( + fn=lambda question, input_language, output_language: answer_question( + question, input_language, output_language, db + ), + inputs=[ + gr.Textbox(lines=2, placeholder="Type your question here..."), + gr.Dropdown(list(LANGUAGE_ISO_CODES.keys()), label="Input Language"), + gr.Dropdown(list(LANGUAGE_ISO_CODES.keys()), label="Output Language"), + ], + outputs="text", + title="Multilingual Chatbot", + description="Ask any question in your chosen language and get an answer in the language of your choice.", + ) + + +# Main Function +def main(): + INPUT_FILE_PATH = "healthy-diet-fact-sheet-394.pdf" + texts, embeddings = initialize_documents_and_embeddings(INPUT_FILE_PATH) + db = initialize_database(texts, embeddings) + iface = setup_gradio_interface(db) + iface.launch(share=True, debug=True) + + +if __name__ == "__main__": + main() diff --git a/applications/Multilingual_RAG/requirements.txt b/applications/Multilingual_RAG/requirements.txt new file mode 100644 index 0000000..f8e08ae --- /dev/null +++ b/applications/Multilingual_RAG/requirements.txt @@ -0,0 +1,5 @@ +cohere +langchain +lancedb +python-dotenv +gradio diff --git a/applications/chat_with_anywebsite/app.py b/applications/chat_with_anywebsite/app.py index 8b8d076..7c5e746 100644 --- a/applications/chat_with_anywebsite/app.py +++ b/applications/chat_with_anywebsite/app.py @@ -13,7 +13,6 @@ class ChatbotHelper: - def __init__(self): self.chatbot_instance = None self.chat_history = [] @@ -135,7 +134,6 @@ def respond(self, message): return bot_message def run_interface(self): - iface = gr.Interface( fn=self.respond, title="Chatbot with URL or any website ", diff --git a/applications/chat_with_anywebsite/main_app.ipynb b/applications/chat_with_anywebsite/main_app.ipynb index 54226f9..699034a 100644 --- a/applications/chat_with_anywebsite/main_app.ipynb +++ b/applications/chat_with_anywebsite/main_app.ipynb @@ -79,7 +79,6 @@ "\n", "\n", "class ChatbotHelper:\n", - "\n", " def __init__(self):\n", " self.chatbot_instance = None\n", " self.chat_history = []\n", @@ -207,7 +206,6 @@ " return bot_message\n", "\n", " def run_interface(self):\n", - "\n", " iface = gr.Interface(\n", " fn=self.respond,\n", " title=\"Chatbot with URL or any website \",\n", diff --git a/applications/docchat-with-langroid/app.py b/applications/docchat-with-langroid/app.py index d4f4a31..f92949d 100644 --- a/applications/docchat-with-langroid/app.py +++ b/applications/docchat-with-langroid/app.py @@ -11,7 +11,6 @@ uploadedFile = st.file_uploader("Choose a txt file") if uploadedFile is not None: - with open(os.path.join("tempDir", uploadedFile.name), "wb") as f: f.write(uploadedFile.getbuffer()) diff --git a/applications/docchat-with-langroid/utils.py b/applications/docchat-with-langroid/utils.py index ea50cdc..3e7871c 100644 --- a/applications/docchat-with-langroid/utils.py +++ b/applications/docchat-with-langroid/utils.py @@ -41,7 +41,6 @@ def configure(filename): def agent(cfg, prompt): - # Creating DocChatAgent rag_agent = DocChatAgent(cfg) diff --git a/applications/talk-with-github/.gitignore b/applications/talk-with-github/.gitignore new file mode 100644 index 0000000..021c177 --- /dev/null +++ b/applications/talk-with-github/.gitignore @@ -0,0 +1,2 @@ +.lancedb +example_data/ \ No newline at end of file diff --git a/applications/talk-with-github/README.md b/applications/talk-with-github/README.md new file mode 100644 index 0000000..4de5a32 --- /dev/null +++ b/applications/talk-with-github/README.md @@ -0,0 +1,41 @@ +# Talk to Github CodeSpaces using Qwen1.5 + +Using this application, You can talk to Github Repositories. It will clone, embed all the Markdown, Python and Javascript files in the repository. This Application utilizes newly launched Qwen1.5 as a LLM. + +--- +**NOTE**
+For this application `OPENAI API KEY` is not required + +--- + + +1. Install Dependencies +``` +pip install -r requirements.txt +``` +2. Ollama Installation +``` +curl https://ollama.ai/install.sh | sh +ollama pull qwen +``` +for Mac: +``` +brew install qwen + +``` +On a separate terminal, run the following command: +``` +ollama pull qwen +``` + +### Youtube Demo +![demo_img](../../assets/talk-with-github.jpg) + +You are ready to start + +## Run Streamlit App + + Run Application +``` +streamlit run app.py +``` diff --git a/applications/talk-with-github/app.py b/applications/talk-with-github/app.py new file mode 100644 index 0000000..d83ea1f --- /dev/null +++ b/applications/talk-with-github/app.py @@ -0,0 +1,42 @@ +from chat_retreival import retrieverSetup, chat + +import streamlit as st + + +@st.cache_resource +def loading_urls(query): + # Setting Up Reteriver + qa = retrieverSetup(query) + return qa + + +st.header("Talk with Github Codespaces", divider="green") + +query_wiki = st.text_input("Enter Topic") +if query_wiki: + # Chat Agent getting ready + qa = loading_urls(query_wiki) + +# Initialize chat history +if "messages" not in st.session_state: + st.session_state.messages = [] + +# Display chat messages from history on app rerun +for message in st.session_state.messages: + with st.chat_message(message["role"]): + st.markdown(message["content"]) + +# Accept user input +if prompt := st.chat_input("Enter Prompt"): + # Add user message to chat history + st.session_state.messages.append({"role": "user", "content": prompt}) + # Display user message in chat message container + with st.chat_message("user"): + st.markdown(prompt) + # Display assistant response in chat message container + response = chat(qa, prompt) + # Display assistant response in chat message container + with st.chat_message("assistant"): + st.markdown(response) + # Add assistant response to chat history + st.session_state.messages.append({"role": "assistant", "content": response}) diff --git a/applications/talk-with-github/chat_retreival.py b/applications/talk-with-github/chat_retreival.py new file mode 100644 index 0000000..9562ca1 --- /dev/null +++ b/applications/talk-with-github/chat_retreival.py @@ -0,0 +1,79 @@ +""" +Chatbot for talking to Github Codespaces using Langchain, Qwen and LanceDB +""" + +import os +import shutil +import lancedb + +from langchain.memory import ConversationSummaryMemory +from langchain_community.document_loaders import GitLoader +from langchain.vectorstores import LanceDB +from langchain.embeddings import HuggingFaceEmbeddings +from langchain.text_splitter import CharacterTextSplitter +from langchain.chat_models import ChatOllama +from langchain.chains import ConversationalRetrievalChain + + +def lanceDBConnection(embed): + db = lancedb.connect("/tmp/lancedb") + table = db.create_table( + "github_repo", + data=[{"vector": embed.embed_query("Hello World"), "text": "Hello World"}], + mode="overwrite", + ) + + return table + + +def vectorStoreSetup(query_path): + temp_repo_dir = "./example_data/test_repo1/" + if os.path.exists(temp_repo_dir): + shutil.rmtree(temp_repo_dir) + docs = GitLoader( + clone_url=query_path, + repo_path=temp_repo_dir, + file_filter=lambda file_path: file_path.endswith(".py") + or file_path.endswith(".md") + or file_path.endswith(".js"), + ) + docs = docs.load() + + # chunking + text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=0) + all_splits = text_splitter.split_documents(docs) + + # Huggingface embeddings + embed = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") + + # LanceDB as vector store + table = lanceDBConnection(embed) + vectorstore = LanceDB.from_documents( + documents=all_splits, + embedding=HuggingFaceEmbeddings( + model_name="sentence-transformers/all-MiniLM-L6-v2" + ), + connection=table, + ) + + return vectorstore + + +def retrieverSetup(text): + vectorstore = vectorStoreSetup(text) + # define ChatOllama: using Qwen model for LLM + llm = ChatOllama(model="qwen") + memory = ConversationSummaryMemory( + llm=llm, memory_key="chat_history", return_messages=True + ) + retriever = vectorstore.as_retriever() + + # define Retrieval Chain for retriver + qa = ConversationalRetrievalChain.from_llm(llm, retriever=retriever, memory=memory) + return qa + + +def chat(qa, question): + # chat query + r = qa.run({"question": question}) + return r diff --git a/applications/talk-with-github/requirements.txt b/applications/talk-with-github/requirements.txt new file mode 100644 index 0000000..f6d9cc4 --- /dev/null +++ b/applications/talk-with-github/requirements.txt @@ -0,0 +1,6 @@ +openai==0.28.1 +tiktoken +streamlit +langchain +lancedb +GitPython \ No newline at end of file diff --git a/applications/talk-with-podcast/langroid_utils.py b/applications/talk-with-podcast/langroid_utils.py index 0112811..28b8732 100644 --- a/applications/talk-with-podcast/langroid_utils.py +++ b/applications/talk-with-podcast/langroid_utils.py @@ -41,7 +41,6 @@ def configure(filename): def agent(cfg, prompt): - # Creating DocChatAgent rag_agent = DocChatAgent(cfg) diff --git a/applications/talk-with-wikipedia/.gitignore b/applications/talk-with-wikipedia/.gitignore index b2ff509..9eb58d6 100644 --- a/applications/talk-with-wikipedia/.gitignore +++ b/applications/talk-with-wikipedia/.gitignore @@ -1 +1,2 @@ -.lancedb \ No newline at end of file +.lancedb +__pycache__ \ No newline at end of file diff --git a/assets/arxiv_recommender.gif b/assets/arxiv_recommender.gif new file mode 100644 index 0000000..192695d Binary files /dev/null and b/assets/arxiv_recommender.gif differ diff --git a/assets/clip_diffusiondb_notebook.gif b/assets/clip_diffusiondb_notebook.gif new file mode 100644 index 0000000..8e68ac8 Binary files /dev/null and b/assets/clip_diffusiondb_notebook.gif differ diff --git a/assets/clip_video_search_notebook.gif b/assets/clip_video_search_notebook.gif new file mode 100644 index 0000000..843687e Binary files /dev/null and b/assets/clip_video_search_notebook.gif differ diff --git a/assets/crag.png b/assets/crag.png new file mode 100644 index 0000000..fe09d73 Binary files /dev/null and b/assets/crag.png differ diff --git a/assets/gradio_clip_diffusiondb.gif b/assets/gradio_clip_diffusiondb.gif new file mode 100644 index 0000000..72ddb51 Binary files /dev/null and b/assets/gradio_clip_diffusiondb.gif differ diff --git a/assets/multimodal_search.gif b/assets/multimodal_search.gif new file mode 100644 index 0000000..370c77d Binary files /dev/null and b/assets/multimodal_search.gif differ diff --git a/assets/multimodal_video_search.gif b/assets/multimodal_video_search.gif new file mode 100644 index 0000000..8855792 Binary files /dev/null and b/assets/multimodal_video_search.gif differ diff --git a/assets/talk-using-gpt4v.gif b/assets/talk-using-gpt4v.gif new file mode 100644 index 0000000..035770e Binary files /dev/null and b/assets/talk-using-gpt4v.gif differ diff --git a/assets/talk-with-github.gif b/assets/talk-with-github.gif new file mode 100644 index 0000000..e1d86ad Binary files /dev/null and b/assets/talk-with-github.gif differ diff --git a/assets/talk-with-github.jpg b/assets/talk-with-github.jpg new file mode 100644 index 0000000..3b00d0a Binary files /dev/null and b/assets/talk-with-github.jpg differ diff --git a/assets/talk-with-podcast.gif b/assets/talk-with-podcast.gif new file mode 100644 index 0000000..177ad7a Binary files /dev/null and b/assets/talk-with-podcast.gif differ diff --git a/assets/talk-with-wikipedia.gif b/assets/talk-with-wikipedia.gif new file mode 100644 index 0000000..6b10262 Binary files /dev/null and b/assets/talk-with-wikipedia.gif differ diff --git a/examples/RAG_Fusion/main.ipynb b/examples/RAG_Fusion/main.ipynb index 03a60e2..fd9e80d 100644 --- a/examples/RAG_Fusion/main.ipynb +++ b/examples/RAG_Fusion/main.ipynb @@ -556,7 +556,6 @@ "outputs": [], "source": [ "def generate_queries_chatgpt(original_query):\n", - "\n", " response = openai.chat.completions.create(\n", " model=\"gpt-3.5-turbo\",\n", " messages=[\n", diff --git a/examples/arxiv-recommender/main.ipynb b/examples/arxiv-recommender/main.ipynb index eb3e7be..7f8b6fd 100644 --- a/examples/arxiv-recommender/main.ipynb +++ b/examples/arxiv-recommender/main.ipynb @@ -1,788 +1,1266 @@ { - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "id": "c94724aa", - "metadata": {}, - "source": [ - "# Arixiv Search with OpenCLIP and LanceDB\n", - "\n", - "In this example we'll build a Arxiv Search or a recommender based on semantic search using LanceDB. We'll also compare the results with keyword based saerch on Nomic's atlast\n", - "\n", - "\n", - "## OpenCLIP\n", - "\n", - "![CLIP (1)](https://github.com/lancedb/vectordb-recipes/assets/15766192/11b3b900-0bcb-4a4a-8fd4-804611c85972)\n", - "\n", - "\n", - "OpenCLIP an open source implementation of OpenAI's CLIP (Contrastive Language-Image Pre-training) as is available with various backends" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "7d29cbe5", - "metadata": {}, - "outputs": [], - "source": [ - "# SETUP\n", - "!pip install lancedb open_clip_torch arxiv --q" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "82cf5c34-7f41-4860-844c-c5aa2cd578de", - "metadata": {}, - "outputs": [ + "cells": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Requirement already satisfied: pandas in c:\\users\\kaush\\documents\\dbenv\\lib\\site-packages (2.1.1)\n", - "Requirement already satisfied: numpy>=1.23.2 in c:\\users\\kaush\\documents\\dbenv\\lib\\site-packages (from pandas) (1.26.0)\n", - "Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\kaush\\documents\\dbenv\\lib\\site-packages (from pandas) (2.8.2)\n", - "Requirement already satisfied: pytz>=2020.1 in c:\\users\\kaush\\documents\\dbenv\\lib\\site-packages (from pandas) (2023.3.post1)\n", - "Requirement already satisfied: tzdata>=2022.1 in c:\\users\\kaush\\documents\\dbenv\\lib\\site-packages (from pandas) (2023.3)\n", - "Requirement already satisfied: six>=1.5 in c:\\users\\kaush\\documents\\dbenv\\lib\\site-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)\n" - ] - } - ], - "source": [ - "!pip install pandas" - ] - }, - { - "cell_type": "markdown", - "id": "78088422", - "metadata": {}, - "source": [ - "## Creating table from arxiv API" - ] - }, - { - "cell_type": "markdown", - "id": "88cba25e", - "metadata": {}, - "source": [ - "### Embedding Paper Summary using CLIP\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "fba615af", - "metadata": {}, - "outputs": [], - "source": [ - "import torch\n", - "import open_clip\n", - "import pandas as pd\n", - "from open_clip import tokenizer\n", - "from tqdm import tqdm\n", - "from collections import defaultdict\n", - "import arxiv\n", - "import lancedb\n", - "\n", - "\n", - "def embed_func_clip(text):\n", - " model, _, preprocess = open_clip.create_model_and_transforms(\n", - " \"ViT-B-32\", pretrained=\"laion2b_s34b_b79k\"\n", - " )\n", - " tokenizer = open_clip.get_tokenizer(\"ViT-B-32\")\n", - " with torch.no_grad():\n", - " text_features = model.encode_text(tokenizer(text))\n", - " return text_features" - ] - }, - { - "cell_type": "markdown", - "id": "e5802574", - "metadata": {}, - "source": [ - "### Create a DataFrame of the desired length\n", - "\n", - "Here we'll use arxiv python utility to interact with arxiv api and get the document data" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "eb8afe10", - "metadata": {}, - "outputs": [], - "source": [ - "def get_arxiv_df(embed_func, length=100):\n", - " results = arxiv.Search(\n", - " query=\"cat:cs.AI OR cat:cs.CV OR cat:stat.ML\",\n", - " max_results=length,\n", - " sort_by=arxiv.SortCriterion.Relevance,\n", - " sort_order=arxiv.SortOrder.Descending,\n", - " ).results()\n", - " df = defaultdict(list)\n", - " for result in tqdm(results, total=length):\n", - " try:\n", - " df[\"title\"].append(result.title)\n", - " df[\"summary\"].append(result.summary)\n", - " df[\"authors\"].append(str(result.authors))\n", - " df[\"url\"].append(result.entry_id)\n", - " df[\"vector\"].append(embed_func(result.summary).tolist()[0])\n", - "\n", - " except Exception as e:\n", - " print(\"error: \", e)\n", - "\n", - " return pd.DataFrame(df)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "aa2edccf", - "metadata": {}, - "outputs": [], - "source": [ - "LENGTH = 100 # Reduce the size for demo\n", - "\n", - "\n", - "def create_table():\n", - " db = lancedb.connect(\"db\")\n", - " df = get_arxiv_df(embed_func_clip, LENGTH)\n", - "\n", - " tbl = db.create_table(\"arxiv\", data=df, mode=\"overwrite\")\n", - "\n", - " return tbl" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "id": "760efa67-8742-4087-91c8-49465b4843b0", - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "id": "c94724aa", + "metadata": { + "id": "c94724aa" + }, + "source": [ + "# Arxiv Search with OpenCLIP and LanceDB\n", + "\n", + "In this example we'll build a Arxiv Search or a recommender based on semantic search using LanceDB. We'll also compare the results with keyword based search on Nomic's atlast\n", + "\n", + "\n", + "## OpenCLIP\n", + "\n", + "![CLIP (1)](https://github.com/lancedb/vectordb-recipes/assets/15766192/11b3b900-0bcb-4a4a-8fd4-804611c85972)\n", + "\n", + "\n", + "OpenCLIP an open source implementation of OpenAI's CLIP (Contrastive Language-Image Pre-training) as is available with various backends" + ] + }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "100%|████████████████████████████████████████████████████████████████████████████████| 100/100 [07:42<00:00, 4.62s/it]\n" - ] - } - ], - "source": [ - "tbl = create_table()" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "e9c04cb6", - "metadata": {}, - "outputs": [], - "source": [ - "import lancedb\n", - "\n", - "db = lancedb.connect(\"db\")\n", - "\n", - "if \"arxiv\" not in db.table_names():\n", - " tbl = create_table()\n", - "else:\n", - " tbl = db.open_table(\"arxiv\")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "d51fadf3-3f98-44fa-9ecd-0dbdfb2f9eb7", - "metadata": {}, - "outputs": [ + "cell_type": "code", + "execution_count": 1, + "id": "7d29cbe5", + "metadata": { + "id": "7d29cbe5", + "outputId": "20ee70d4-cde1-4440-e09f-bda2920acff3", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m115.1/115.1 kB\u001b[0m \u001b[31m1.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.5/1.5 MB\u001b[0m \u001b[31m12.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m21.6/21.6 MB\u001b[0m \u001b[31m45.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m53.4/53.4 kB\u001b[0m \u001b[31m7.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.2/2.2 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m81.1/81.1 kB\u001b[0m \u001b[31m13.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m98.7/98.7 kB\u001b[0m \u001b[31m9.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Building wheel for sgmllib3k (setup.py) ... \u001b[?25l\u001b[?25hdone\n" + ] + } + ], + "source": [ + "# SETUP\n", + "!pip install lancedb open_clip_torch arxiv --q" + ] + }, { - "data": { - "text/plain": [ - "100" + "cell_type": "code", + "execution_count": 2, + "id": "82cf5c34-7f41-4860-844c-c5aa2cd578de", + "metadata": { + "id": "82cf5c34-7f41-4860-844c-c5aa2cd578de", + "outputId": "e2036273-2cd7-4ba9-98f0-64d2a4b61441", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (1.5.3)\n", + "Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas) (2023.4)\n", + "Requirement already satisfied: numpy>=1.21.0 in /usr/local/lib/python3.10/dist-packages (from pandas) (1.25.2)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas) (1.16.0)\n" + ] + } + ], + "source": [ + "!pip install pandas" ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "len(tbl)" - ] - }, - { - "cell_type": "markdown", - "id": "09adb9d3", - "metadata": {}, - "source": [ - "## Semantic Search by concepts or summary" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "acc38daa", - "metadata": {}, - "outputs": [], - "source": [ - "from IPython.display import display, HTML\n", - "\n", - "\n", - "def search_table(query, embed_func=embed_func_clip, lim=3):\n", - " db = lancedb.connect(\"db\")\n", - " tbl = db.open_table(\"arxiv\")\n", - "\n", - " embs = embed_func(query)\n", - "\n", - " return tbl.search(embs.tolist()[0]).limit(3).to_pandas()" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "27391ad7-433e-4b32-8215-534d47de08d8", - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "100" + "cell_type": "markdown", + "id": "78088422", + "metadata": { + "id": "78088422" + }, + "source": [ + "## Creating table from arxiv API" ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "len(tbl)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "971be6ef", - "metadata": {}, - "outputs": [ + }, { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "5a8aed07644342b0afee3f8b8e741cde", - "version_major": 2, - "version_minor": 0 + "cell_type": "markdown", + "id": "88cba25e", + "metadata": { + "id": "88cba25e" }, - "text/plain": [ - "open_clip_pytorch_model.bin: 0%| | 0.00/605M [00:00\n", - " \n", - " \n", - " \n", - " title\n", - " summary\n", - " authors\n", - " url\n", - " _distance\n", - " \n", - " \n", - " \n", - " \n", - " 0\n", - " Twin-GAN -- Unpaired Cross-Domain Image Translation with Weight-Sharing GANs\n", - " We present a framework for translating unlabeled images from one domain into\\nanalog images in another domain. We employ a progressively growing\\nskip-connected encoder-generator structure and train it with a GAN loss for\\nrealistic output, a cycle consistency loss for maintaining same-domain\\ntranslation identity, and a semantic consistency loss that encourages the\\nnetwork to keep the input semantic features in the output. We apply our\\nframework on the task of translating face images, and show that it is capable\\nof learning semantic mappings for face images with no supervised one-to-one\\nimage mapping.\n", - " [arxiv.Result.Author('Jerry Li')]\n", - " http://arxiv.org/abs/1809.00946v1\n", - " 37.476677\n", - " \n", - " \n", - " 1\n", - " TADAM: Task dependent adaptive metric for improved few-shot learning\n", - " Few-shot learning has become essential for producing models that generalize\\nfrom few examples. In this work, we identify that metric scaling and metric\\ntask conditioning are important to improve the performance of few-shot\\nalgorithms. Our analysis reveals that simple metric scaling completely changes\\nthe nature of few-shot algorithm parameter updates. Metric scaling provides\\nimprovements up to 14% in accuracy for certain metrics on the mini-Imagenet\\n5-way 5-shot classification task. We further propose a simple and effective way\\nof conditioning a learner on the task sample set, resulting in learning a\\ntask-dependent metric space. Moreover, we propose and empirically test a\\npractical end-to-end optimization procedure based on auxiliary task co-training\\nto learn a task-dependent metric space. The resulting few-shot learning model\\nbased on the task-dependent scaled metric achieves state of the art on\\nmini-Imagenet. We confirm these results on another few-shot dataset that we\\nintroduce in this paper based on CIFAR100. Our code is publicly available at\\nhttps://github.com/ElementAI/TADAM.\n", - " [arxiv.Result.Author('Boris N. Oreshkin'), arxiv.Result.Author('Pau Rodriguez'), arxiv.Result.Author('Alexandre Lacoste')]\n", - " http://arxiv.org/abs/1805.10123v4\n", - " 40.610191\n", - " \n", - " \n", - " 2\n", - " Exploring the Limits of Large Scale Pre-training\n", - " Recent developments in large-scale machine learning suggest that by scaling\\nup data, model size and training time properly, one might observe that\\nimprovements in pre-training would transfer favorably to most downstream tasks.\\nIn this work, we systematically study this phenomena and establish that, as we\\nincrease the upstream accuracy, the performance of downstream tasks saturates.\\nIn particular, we investigate more than 4800 experiments on Vision\\nTransformers, MLP-Mixers and ResNets with number of parameters ranging from ten\\nmillion to ten billion, trained on the largest scale of available image data\\n(JFT, ImageNet21K) and evaluated on more than 20 downstream image recognition\\ntasks. We propose a model for downstream performance that reflects the\\nsaturation phenomena and captures the nonlinear relationship in performance of\\nupstream and downstream tasks. Delving deeper to understand the reasons that\\ngive rise to these phenomena, we show that the saturation behavior we observe\\nis closely related to the way that representations evolve through the layers of\\nthe models. We showcase an even more extreme scenario where performance on\\nupstream and downstream are at odds with each other. That is, to have a better\\ndownstream performance, we need to hurt upstream accuracy.\n", - " [arxiv.Result.Author('Samira Abnar'), arxiv.Result.Author('Mostafa Dehghani'), arxiv.Result.Author('Behnam Neyshabur'), arxiv.Result.Author('Hanie Sedghi')]\n", - " http://arxiv.org/abs/2110.02095v1\n", - " 40.749702\n", - " \n", - " \n", - "" + "cell_type": "markdown", + "id": "e5802574", + "metadata": { + "id": "e5802574" + }, + "source": [ + "### Create a DataFrame of the desired length\n", + "\n", + "Here we'll use arxiv python utility to interact with arxiv api and get the document data" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "eb8afe10", + "metadata": { + "id": "eb8afe10" + }, + "outputs": [], + "source": [ + "def get_arxiv_df(embed_func, length=100):\n", + " results = arxiv.Search(\n", + " query=\"cat:cs.AI OR cat:cs.CV OR cat:stat.ML\",\n", + " max_results=length,\n", + " sort_by=arxiv.SortCriterion.Relevance,\n", + " sort_order=arxiv.SortOrder.Descending,\n", + " ).results()\n", + " df = defaultdict(list)\n", + " for result in tqdm(results, total=length):\n", + " try:\n", + " df[\"title\"].append(result.title)\n", + " df[\"summary\"].append(result.summary)\n", + " df[\"authors\"].append(str(result.authors))\n", + " df[\"url\"].append(result.entry_id)\n", + " df[\"vector\"].append(embed_func(result.summary).tolist()[0])\n", + "\n", + " except Exception as e:\n", + " print(\"error: \", e)\n", + "\n", + " return pd.DataFrame(df)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "aa2edccf", + "metadata": { + "id": "aa2edccf" + }, + "outputs": [], + "source": [ + "LENGTH = 100 # Reduce the size for demo\n", + "\n", + "\n", + "def create_table():\n", + " db = lancedb.connect(\"db\")\n", + " df = get_arxiv_df(embed_func_clip, LENGTH)\n", + "\n", + " tbl = db.create_table(\"arxiv\", data=df, mode=\"overwrite\")\n", + "\n", + " return tbl" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "760efa67-8742-4087-91c8-49465b4843b0", + "metadata": { + "id": "760efa67-8742-4087-91c8-49465b4843b0", + "outputId": "ea067d70-1168-4d2f-daf9-e9a7e08af58b", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 213, + "referenced_widgets": [ + "cc0868346dd946a6bd15c95859bbeed0", + "72c68a5aa5b047a281c7801c365844c0", + "bc68fb9820154bbaae3bb09fd05bd0bc", + "2f28629727b54c48955215485757d7d8", + "8b9b5405fd60414d9d6cc4d4af611b0c", + "6373e2b3100346d9adf4825b518efcba", + "25c0946ae6d04f33b60eceaefb7d87e4", + "d1de9b1b3ccd49a89a316cda336c8a91", + "e9927513616a4bd391ff97c6ff3b2f29", + "821875e1743c4609b1678418af9c526e", + "e60575abd83742e6ad1ab90071eaf7cf" + ] + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + ":7: DeprecationWarning: The 'Search.results' method is deprecated, use 'Client.results' instead\n", + " ).results()\n", + " 0%| | 0/100 [00:00" + "source": [ + "tbl = create_table()" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# MobileSAM paper abstract 2nd half\n", - "query = \"\"\"\n", - "Many of such applications need to be run on resource-constraint edge devices,\n", - "like mobile phones. In this work, we aim to make SAM mobile-friendly by replacing the heavyweight\n", - "image encoder with a lightweight one. A naive way to train such a new SAM as in the original SAM\n", - "paper leads to unsatisfactory performance, especially when limited training sources are available. We\n", - "find that this is mainly caused by the coupled optimization of the image encoder and mask decoder,\n", - "motivated by which we propose decoupled distillation. Concretely, we distill the knowledge from\n", - "the heavy image encoder (ViT-H in the original SAM) to a lightweight image encoder, which can be\n", - "automatically compatible with the mask decoder in the original SAM. The training can be completed\n", - "on a single GPU within less than one day, and the resulting lightweight SAM is termed MobileSAM\n", - "which is more than 60 times smaller yet performs on par with the original SAM. For inference speed,\n", - "With a single GPU, MobileSAM runs around 10ms per image: 8ms on the image encoder and 4ms\n", - "on the mask decoder. With superior performance, our MobileSAM is around 5 times faster than the\n", - "concurrent FastSAM and 7 times smaller, making it more suitable for mobile applications. Moreover,\n", - "we show that MobileSAM can run relatively smoothly on CPU\n", - "\"\"\"\n", - "\n", - "result = search_table(query)\n", - "\n", - "result.pop(\"vector\")\n", - "display(HTML(result.to_html()))" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "f4ccd273", - "metadata": {}, - "outputs": [ + }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\FISCLOUDS\\AppData\\Local\\Temp\\ipykernel_26876\\404315364.py:9: DeprecatedWarning: to_df is deprecated as of 0.3.1 and will be removed in 0.4.0. Use the bar function instead\n", - " return tbl.search(embs.tolist()[0]).limit(3).to_df()\n" - ] + "cell_type": "code", + "execution_count": 7, + "id": "e9c04cb6", + "metadata": { + "id": "e9c04cb6" + }, + "outputs": [], + "source": [ + "import lancedb\n", + "\n", + "db = lancedb.connect(\"db\")\n", + "\n", + "if \"arxiv\" not in db.table_names():\n", + " tbl = create_table()\n", + "else:\n", + " tbl = db.open_table(\"arxiv\")" + ] }, { - "data": { - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
titlesummaryauthorsurl_distance
0Unsupervised Learning via Meta-LearningA central goal of unsupervised learning is to acquire representations from\\nunlabeled data or experience that can be used for more effective learning of\\ndownstream tasks from modest amounts of labeled data. Many prior unsupervised\\nlearning works aim to do so by developing proxy objectives based on\\nreconstruction, disentanglement, prediction, and other metrics. Instead, we\\ndevelop an unsupervised meta-learning method that explicitly optimizes for the\\nability to learn a variety of tasks from small amounts of data. To do so, we\\nconstruct tasks from unlabeled data in an automatic way and run meta-learning\\nover the constructed tasks. Surprisingly, we find that, when integrated with\\nmeta-learning, relatively simple task construction mechanisms, such as\\nclustering embeddings, lead to good performance on a variety of downstream,\\nhuman-specified tasks. Our experiments across four image datasets indicate that\\nour unsupervised meta-learning approach acquires a learning algorithm without\\nany labeled data that is applicable to a wide range of downstream\\nclassification tasks, improving upon the embedding learned by four prior\\nunsupervised learning methods.[arxiv.Result.Author('Kyle Hsu'), arxiv.Result.Author('Sergey Levine'), arxiv.Result.Author('Chelsea Finn')]http://arxiv.org/abs/1810.02334v634.913574
1Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentationSupervised deep learning-based methods yield accurate results for medical\\nimage segmentation. However, they require large labeled datasets for this, and\\nobtaining them is a laborious task that requires clinical expertise.\\nSemi/self-supervised learning-based approaches address this limitation by\\nexploiting unlabeled data along with limited annotated data. Recent\\nself-supervised learning methods use contrastive loss to learn good global\\nlevel representations from unlabeled images and achieve high performance in\\nclassification tasks on popular natural image datasets like ImageNet. In\\npixel-level prediction tasks such as segmentation, it is crucial to also learn\\ngood local level representations along with global representations to achieve\\nbetter accuracy. However, the impact of the existing local contrastive\\nloss-based methods remains limited for learning good local representations\\nbecause similar and dissimilar local regions are defined based on random\\naugmentations and spatial proximity; not based on the semantic label of local\\nregions due to lack of large-scale expert annotations in the\\nsemi/self-supervised setting. In this paper, we propose a local contrastive\\nloss to learn good pixel level features useful for segmentation by exploiting\\nsemantic label information obtained from pseudo-labels of unlabeled images\\nalongside limited annotated images. In particular, we define the proposed loss\\nto encourage similar representations for the pixels that have the same\\npseudo-label/ label while being dissimilar to the representation of pixels with\\ndifferent pseudo-label/label in the dataset. We perform pseudo-label based\\nself-training and train the network by jointly optimizing the proposed\\ncontrastive loss on both labeled and unlabeled sets and segmentation loss on\\nonly the limited labeled set. We evaluated on three public cardiac and prostate\\ndatasets, and obtain high segmentation performance.[arxiv.Result.Author('Krishna Chaitanya'), arxiv.Result.Author('Ertunc Erdil'), arxiv.Result.Author('Neerav Karani'), arxiv.Result.Author('Ender Konukoglu')]http://arxiv.org/abs/2112.09645v135.332321
2Universum GANs: Improving GANs through contradictionsLimited availability of labeled-data makes any supervised learning problem\\nchallenging. Alternative learning settings like semi-supervised and universum\\nlearning alleviate the dependency on labeled data, but still require a large\\namount of unlabeled data, which may be unavailable or expensive to acquire.\\nGAN-based data generation methods have recently shown promise by generating\\nsynthetic samples to improve learning. However, most existing GAN based\\napproaches either provide poor discriminator performance under limited labeled\\ndata settings; or results in low quality generated data. In this paper, we\\npropose a Universum GAN game which provides improved discriminator accuracy\\nunder limited data settings, while generating high quality realistic data. We\\nfurther propose an evolving discriminator loss which improves its convergence\\nand generalization performance. We derive the theoretical guarantees and\\nprovide empirical results in support of our approach.[arxiv.Result.Author('Sauptik Dhar'), arxiv.Result.Author('Javad Heydari'), arxiv.Result.Author('Samarth Tripathi'), arxiv.Result.Author('Unmesh Kurup'), arxiv.Result.Author('Mohak Shah')]http://arxiv.org/abs/2106.09946v236.214127
" + "cell_type": "code", + "execution_count": 8, + "id": "d51fadf3-3f98-44fa-9ecd-0dbdfb2f9eb7", + "metadata": { + "id": "d51fadf3-3f98-44fa-9ecd-0dbdfb2f9eb7", + "outputId": "bff0649e-2da6-4362-e8e2-f92713ef9132", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "100" + ] + }, + "metadata": {}, + "execution_count": 8 + } ], - "text/plain": [ - "" + "source": [ + "len(tbl)" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Exmaple 2: Search via a concept you're reading\n", - "query = \"\"\"\n", - "What is the general idea behind self-supervised learning.\n", - "\"\"\"\n", - "\n", - "result = search_table(query)\n", - "\n", - "result.pop(\"vector\")\n", - "display(HTML(result.to_html()))" - ] - }, - { - "cell_type": "markdown", - "id": "5f471b55", - "metadata": {}, - "source": [ - "# Full Text Search\n", - "In text retrieval, full-text search refers to techniques for searching a single computer-stored document or a collection in a full-text database. Full-text search is distinguished from searches based on metadata or on parts of the original texts represented in databases\n", - "\n", - "LanceDB now provides **experimental** support for full text search. This is currently Python only. We plan to push the integration down to Rust in the future to make this available for JS as well.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "72f9fcda", - "metadata": {}, - "outputs": [ + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "Collecting tantivy@ git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985\n", - " Cloning https://github.com/quickwit-oss/tantivy-py to c:\\users\\fisclouds\\appdata\\local\\temp\\pip-install-40gpfser\\tantivy_a0964f9b15de4b8a97fef4cabf7501ac\n", - " Resolved https://github.com/quickwit-oss/tantivy-py to commit a47fcfb3a6ad3fa2fca76513bd52d840ff15c596\n", - " Installing build dependencies: started\n", - " Installing build dependencies: finished with status 'done'\n", - " Getting requirements to build wheel: started\n", - " Getting requirements to build wheel: finished with status 'done'\n", - " Preparing metadata (pyproject.toml): started\n", - " Preparing metadata (pyproject.toml): finished with status 'done'\n", - "Building wheels for collected packages: tantivy\n", - " Building wheel for tantivy (pyproject.toml): started\n", - " Building wheel for tantivy (pyproject.toml): still running...\n", - " Building wheel for tantivy (pyproject.toml): still running...\n", - " Building wheel for tantivy (pyproject.toml): finished with status 'done'\n", - " Created wheel for tantivy: filename=tantivy-0.20.1-cp311-none-win_amd64.whl size=2220637 sha256=9f6c3de0440792ff51dd28c43fda6c9c677eca40aa52d9abfe8adbfc85f7ba5f\n", - " Stored in directory: C:\\Users\\FISCLOUDS\\AppData\\Local\\Temp\\pip-ephem-wheel-cache-jq0gtsdx\\wheels\\a0\\4b\\51\\01cf34433cfc7c7d14540fad11482f0d06b197c895eb874a83\n", - "Successfully built tantivy\n", - "Installing collected packages: tantivy\n", - "Successfully installed tantivy-0.20.1\n" - ] + "cell_type": "markdown", + "id": "09adb9d3", + "metadata": { + "id": "09adb9d3" + }, + "source": [ + "## Semantic Search by concepts or summary" + ] }, { - "name": "stderr", - "output_type": "stream", - "text": [ - " Running command git clone --filter=blob:none --quiet https://github.com/quickwit-oss/tantivy-py 'C:\\Users\\FISCLOUDS\\AppData\\Local\\Temp\\pip-install-40gpfser\\tantivy_a0964f9b15de4b8a97fef4cabf7501ac'\n" - ] - } - ], - "source": [ - "!pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985" - ] - }, - { - "cell_type": "markdown", - "id": "b2d693cf", - "metadata": {}, - "source": [ - "### Build FTS index for the summary\n", - "Here, we're building the FTS index using python bindings for tantivy. You can also build the index for any other text column. A full-text index stores information about significant words and their location within one or more columns of a database table" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "5c383b22", - "metadata": {}, - "outputs": [], - "source": [ - "# This cell might take a few mins\n", - "tbl.create_fts_index(\"summary\")" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "f4116b06", - "metadata": {}, - "outputs": [ + "cell_type": "code", + "execution_count": 9, + "id": "acc38daa", + "metadata": { + "id": "acc38daa" + }, + "outputs": [], + "source": [ + "from IPython.display import display, HTML\n", + "\n", + "\n", + "def search_table(query, embed_func=embed_func_clip, lim=3):\n", + " db = lancedb.connect(\"db\")\n", + " tbl = db.open_table(\"arxiv\")\n", + "\n", + " embs = embed_func(query)\n", + "\n", + " return tbl.search(embs.tolist()[0]).limit(3).to_pandas()" + ] + }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\FISCLOUDS\\AppData\\Local\\Temp\\ipykernel_26876\\943706364.py:2: DeprecatedWarning: to_df is deprecated as of 0.3.1 and will be removed in 0.4.0. Use the bar function instead\n", - " result = tbl.search(\"What is the general idea behind self-supervised learning.\").limit(10).to_df()\n" - ] + "cell_type": "code", + "execution_count": 10, + "id": "27391ad7-433e-4b32-8215-534d47de08d8", + "metadata": { + "id": "27391ad7-433e-4b32-8215-534d47de08d8", + "outputId": "afe51537-e90f-4b4b-a086-9db324d49125", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "100" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ], + "source": [ + "len(tbl)" + ] }, { - "data": { - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
titlesummaryauthorsurlscore
0Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentationSupervised deep learning-based methods yield accurate results for medical\\nimage segmentation. However, they require large labeled datasets for this, and\\nobtaining them is a laborious task that requires clinical expertise.\\nSemi/self-supervised learning-based approaches address this limitation by\\nexploiting unlabeled data along with limited annotated data. Recent\\nself-supervised learning methods use contrastive loss to learn good global\\nlevel representations from unlabeled images and achieve high performance in\\nclassification tasks on popular natural image datasets like ImageNet. In\\npixel-level prediction tasks such as segmentation, it is crucial to also learn\\ngood local level representations along with global representations to achieve\\nbetter accuracy. However, the impact of the existing local contrastive\\nloss-based methods remains limited for learning good local representations\\nbecause similar and dissimilar local regions are defined based on random\\naugmentations and spatial proximity; not based on the semantic label of local\\nregions due to lack of large-scale expert annotations in the\\nsemi/self-supervised setting. In this paper, we propose a local contrastive\\nloss to learn good pixel level features useful for segmentation by exploiting\\nsemantic label information obtained from pseudo-labels of unlabeled images\\nalongside limited annotated images. In particular, we define the proposed loss\\nto encourage similar representations for the pixels that have the same\\npseudo-label/ label while being dissimilar to the representation of pixels with\\ndifferent pseudo-label/label in the dataset. We perform pseudo-label based\\nself-training and train the network by jointly optimizing the proposed\\ncontrastive loss on both labeled and unlabeled sets and segmentation loss on\\nonly the limited labeled set. We evaluated on three public cardiac and prostate\\ndatasets, and obtain high segmentation performance.[arxiv.Result.Author('Krishna Chaitanya'), arxiv.Result.Author('Ertunc Erdil'), arxiv.Result.Author('Neerav Karani'), arxiv.Result.Author('Ender Konukoglu')]http://arxiv.org/abs/2112.09645v17.476211
1Multi-Scale Representation Learning for Spatial Feature Distributions using Grid CellsUnsupervised text encoding models have recently fueled substantial progress\\nin NLP. The key idea is to use neural networks to convert words in texts to\\nvector space representations based on word positions in a sentence and their\\ncontexts, which are suitable for end-to-end training of downstream tasks. We\\nsee a strikingly similar situation in spatial analysis, which focuses on\\nincorporating both absolute positions and spatial contexts of geographic\\nobjects such as POIs into models. A general-purpose representation model for\\nspace is valuable for a multitude of tasks. However, no such general model\\nexists to date beyond simply applying discretization or feed-forward nets to\\ncoordinates, and little effort has been put into jointly modeling distributions\\nwith vastly different characteristics, which commonly emerges from GIS data.\\nMeanwhile, Nobel Prize-winning Neuroscience research shows that grid cells in\\nmammals provide a multi-scale periodic representation that functions as a\\nmetric for location encoding and is critical for recognizing places and for\\npath-integration. Therefore, we propose a representation learning model called\\nSpace2Vec to encode the absolute positions and spatial relationships of places.\\nWe conduct experiments on two real-world geographic data for two different\\ntasks: 1) predicting types of POIs given their positions and context, 2) image\\nclassification leveraging their geo-locations. Results show that because of its\\nmulti-scale representations, Space2Vec outperforms well-established ML\\napproaches such as RBF kernels, multi-layer feed-forward nets, and tile\\nembedding approaches for location modeling and image classification tasks.\\nDetailed analysis shows that all baselines can at most well handle distribution\\nat one scale but show poor performances in other scales. In contrast,\\nSpace2Vec's multi-scale representation can handle distributions at different\\nscales.[arxiv.Result.Author('Gengchen Mai'), arxiv.Result.Author('Krzysztof Janowicz'), arxiv.Result.Author('Bo Yan'), arxiv.Result.Author('Rui Zhu'), arxiv.Result.Author('Ling Cai'), arxiv.Result.Author('Ni Lao')]http://arxiv.org/abs/2003.00824v15.525813
2Extending the WILDS Benchmark for Unsupervised AdaptationMachine learning systems deployed in the wild are often trained on a source\\ndistribution but deployed on a different target distribution. Unlabeled data\\ncan be a powerful point of leverage for mitigating these distribution shifts,\\nas it is frequently much more available than labeled data and can often be\\nobtained from distributions beyond the source distribution as well. However,\\nexisting distribution shift benchmarks with unlabeled data do not reflect the\\nbreadth of scenarios that arise in real-world applications. In this work, we\\npresent the WILDS 2.0 update, which extends 8 of the 10 datasets in the WILDS\\nbenchmark of distribution shifts to include curated unlabeled data that would\\nbe realistically obtainable in deployment. These datasets span a wide range of\\napplications (from histology to wildlife conservation), tasks (classification,\\nregression, and detection), and modalities (photos, satellite images,\\nmicroscope slides, text, molecular graphs). The update maintains consistency\\nwith the original WILDS benchmark by using identical labeled training,\\nvalidation, and test sets, as well as the evaluation metrics. On these\\ndatasets, we systematically benchmark state-of-the-art methods that leverage\\nunlabeled data, including domain-invariant, self-training, and self-supervised\\nmethods, and show that their success on WILDS is limited. To facilitate method\\ndevelopment and evaluation, we provide an open-source package that automates\\ndata loading and contains all of the model architectures and methods used in\\nthis paper. Code and leaderboards are available at https://wilds.stanford.edu.[arxiv.Result.Author('Shiori Sagawa'), arxiv.Result.Author('Pang Wei Koh'), arxiv.Result.Author('Tony Lee'), arxiv.Result.Author('Irena Gao'), arxiv.Result.Author('Sang Michael Xie'), arxiv.Result.Author('Kendrick Shen'), arxiv.Result.Author('Ananya Kumar'), arxiv.Result.Author('Weihua Hu'), arxiv.Result.Author('Michihiro Yasunaga'), arxiv.Result.Author('Henrik Marklund'), arxiv.Result.Author('Sara Beery'), arxiv.Result.Author('Etienne David'), arxiv.Result.Author('Ian Stavness'), arxiv.Result.Author('Wei Guo'), arxiv.Result.Author('Jure Leskovec'), arxiv.Result.Author('Kate Saenko'), arxiv.Result.Author('Tatsunori Hashimoto'), arxiv.Result.Author('Sergey Levine'), arxiv.Result.Author('Chelsea Finn'), arxiv.Result.Author('Percy Liang')]http://arxiv.org/abs/2112.05090v24.826763
3Explainable Artificial Intelligence and Machine Learning: A reality rooted perspectiveWe are used to the availability of big data generated in nearly all fields of\\nscience as a consequence of technological progress. However, the analysis of\\nsuch data possess vast challenges. One of these relates to the explainability\\nof artificial intelligence (AI) or machine learning methods. Currently, many of\\nsuch methods are non-transparent with respect to their working mechanism and\\nfor this reason are called black box models, most notably deep learning\\nmethods. However, it has been realized that this constitutes severe problems\\nfor a number of fields including the health sciences and criminal justice and\\narguments have been brought forward in favor of an explainable AI. In this\\npaper, we do not assume the usual perspective presenting explainable AI as it\\nshould be, but rather we provide a discussion what explainable AI can be. The\\ndifference is that we do not present wishful thinking but reality grounded\\nproperties in relation to a scientific theory beyond physics.[arxiv.Result.Author('Frank Emmert-Streib'), arxiv.Result.Author('Olli Yli-Harja'), arxiv.Result.Author('Matthias Dehmer')]http://arxiv.org/abs/2001.09464v14.770155
4Robustness of Generalized Learning Vector Quantization Models against Adversarial AttacksAdversarial attacks and the development of (deep) neural networks robust\\nagainst them are currently two widely researched topics. The robustness of\\nLearning Vector Quantization (LVQ) models against adversarial attacks has\\nhowever not yet been studied to the same extent. We therefore present an\\nextensive evaluation of three LVQ models: Generalized LVQ, Generalized Matrix\\nLVQ and Generalized Tangent LVQ. The evaluation suggests that both Generalized\\nLVQ and Generalized Tangent LVQ have a high base robustness, on par with the\\ncurrent state-of-the-art in robust neural network methods. In contrast to this,\\nGeneralized Matrix LVQ shows a high susceptibility to adversarial attacks,\\nscoring consistently behind all other models. Additionally, our numerical\\nevaluation indicates that increasing the number of prototypes per class\\nimproves the robustness of the models.[arxiv.Result.Author('Sascha Saralajew'), arxiv.Result.Author('Lars Holdijk'), arxiv.Result.Author('Maike Rees'), arxiv.Result.Author('Thomas Villmann')]http://arxiv.org/abs/1902.00577v24.715786
5Concept Whitening for Interpretable Image RecognitionWhat does a neural network encode about a concept as we traverse through the\\nlayers? Interpretability in machine learning is undoubtedly important, but the\\ncalculations of neural networks are very challenging to understand. Attempts to\\nsee inside their hidden layers can either be misleading, unusable, or rely on\\nthe latent space to possess properties that it may not have. In this work,\\nrather than attempting to analyze a neural network posthoc, we introduce a\\nmechanism, called concept whitening (CW), to alter a given layer of the network\\nto allow us to better understand the computation leading up to that layer. When\\na concept whitening module is added to a CNN, the axes of the latent space are\\naligned with known concepts of interest. By experiment, we show that CW can\\nprovide us a much clearer understanding for how the network gradually learns\\nconcepts over layers. CW is an alternative to a batch normalization layer in\\nthat it normalizes, and also decorrelates (whitens) the latent space. CW can be\\nused in any layer of the network without hurting predictive performance.[arxiv.Result.Author('Zhi Chen'), arxiv.Result.Author('Yijie Bei'), arxiv.Result.Author('Cynthia Rudin')]http://arxiv.org/abs/2002.01650v54.590379
6General Cyclical Training of Neural NetworksThis paper describes the principle of \"General Cyclical Training\" in machine\\nlearning, where training starts and ends with \"easy training\" and the \"hard\\ntraining\" happens during the middle epochs. We propose several manifestations\\nfor training neural networks, including algorithmic examples (via\\nhyper-parameters and loss functions), data-based examples, and model-based\\nexamples. Specifically, we introduce several novel techniques: cyclical weight\\ndecay, cyclical batch size, cyclical focal loss, cyclical softmax temperature,\\ncyclical data augmentation, cyclical gradient clipping, and cyclical\\nsemi-supervised learning. In addition, we demonstrate that cyclical weight\\ndecay, cyclical softmax temperature, and cyclical gradient clipping (as three\\nexamples of this principle) are beneficial in the test accuracy performance of\\na trained model. Furthermore, we discuss model-based examples (such as\\npretraining and knowledge distillation) from the perspective of general\\ncyclical training and recommend some changes to the typical training\\nmethodology. In summary, this paper defines the general cyclical training\\nconcept and discusses several specific ways in which this concept can be\\napplied to training neural networks. In the spirit of reproducibility, the code\\nused in our experiments is available at \\url{https://github.com/lnsmith54/CFL}.[arxiv.Result.Author('Leslie N. Smith')]http://arxiv.org/abs/2202.08835v24.346595
7Explaining Aviation Safety Incidents Using Deep Temporal Multiple Instance LearningAlthough aviation accidents are rare, safety incidents occur more frequently\\nand require a careful analysis to detect and mitigate risks in a timely manner.\\nAnalyzing safety incidents using operational data and producing event-based\\nexplanations is invaluable to airline companies as well as to governing\\norganizations such as the Federal Aviation Administration (FAA) in the United\\nStates. However, this task is challenging because of the complexity involved in\\nmining multi-dimensional heterogeneous time series data, the lack of\\ntime-step-wise annotation of events in a flight, and the lack of scalable tools\\nto perform analysis over a large number of events. In this work, we propose a\\nprecursor mining algorithm that identifies events in the multidimensional time\\nseries that are correlated with the safety incident. Precursors are valuable to\\nsystems health and safety monitoring and in explaining and forecasting safety\\nincidents. Current methods suffer from poor scalability to high dimensional\\ntime series data and are inefficient in capturing temporal behavior. We propose\\nan approach by combining multiple-instance learning (MIL) and deep recurrent\\nneural networks (DRNN) to take advantage of MIL's ability to learn using weakly\\nsupervised data and DRNN's ability to model temporal behavior. We describe the\\nalgorithm, the data, the intuition behind taking a MIL approach, and a\\ncomparative analysis of the proposed algorithm with baseline models. We also\\ndiscuss the application to a real-world aviation safety problem using data from\\na commercial airline company and discuss the model's abilities and\\nshortcomings, with some final remarks about possible deployment directions.[arxiv.Result.Author('Vijay Manikandan Janakiraman')]http://arxiv.org/abs/1710.04749v23.825403
8Continual Unsupervised Representation LearningContinual learning aims to improve the ability of modern learning systems to\\ndeal with non-stationary distributions, typically by attempting to learn a\\nseries of tasks sequentially. Prior art in the field has largely considered\\nsupervised or reinforcement learning tasks, and often assumes full knowledge of\\ntask labels and boundaries. In this work, we propose an approach (CURL) to\\ntackle a more general problem that we will refer to as unsupervised continual\\nlearning. The focus is on learning representations without any knowledge about\\ntask identity, and we explore scenarios when there are abrupt changes between\\ntasks, smooth transitions from one task to another, or even when the data is\\nshuffled. The proposed approach performs task inference directly within the\\nmodel, is able to dynamically expand to capture new concepts over its lifetime,\\nand incorporates additional rehearsal-based techniques to deal with\\ncatastrophic forgetting. We demonstrate the efficacy of CURL in an unsupervised\\nlearning setting with MNIST and Omniglot, where the lack of labels ensures no\\ninformation is leaked about the task. Further, we demonstrate strong\\nperformance compared to prior art in an i.i.d setting, or when adapting the\\ntechnique to supervised tasks such as incremental class learning.[arxiv.Result.Author('Dushyant Rao'), arxiv.Result.Author('Francesco Visin'), arxiv.Result.Author('Andrei A. Rusu'), arxiv.Result.Author('Yee Whye Teh'), arxiv.Result.Author('Razvan Pascanu'), arxiv.Result.Author('Raia Hadsell')]http://arxiv.org/abs/1910.14481v13.443345
9Analysis of Generalizability of Deep Neural Networks Based on the Complexity of Decision BoundaryFor supervised learning models, the analysis of generalization ability\\n(generalizability) is vital because the generalizability expresses how well a\\nmodel will perform on unseen data. Traditional generalization methods, such as\\nthe VC dimension, do not apply to deep neural network (DNN) models. Thus, new\\ntheories to explain the generalizability of DNNs are required. In this study,\\nwe hypothesize that the DNN with a simpler decision boundary has better\\ngeneralizability by the law of parsimony (Occam's Razor). We create the\\ndecision boundary complexity (DBC) score to define and measure the complexity\\nof decision boundary of DNNs. The idea of the DBC score is to generate data\\npoints (called adversarial examples) on or near the decision boundary. Our new\\napproach then measures the complexity of the boundary using the entropy of\\neigenvalues of these data. The method works equally well for high-dimensional\\ndata. We use training data and the trained model to compute the DBC score. And,\\nthe ground truth for model's generalizability is its test accuracy. Experiments\\nbased on the DBC score have verified our hypothesis. The DBC is shown to\\nprovide an effective method to measure the complexity of a decision boundary\\nand gives a quantitative measure of the generalizability of DNNs.[arxiv.Result.Author('Shuyue Guan'), arxiv.Result.Author('Murray Loew')]http://arxiv.org/abs/2009.07974v13.419930
" + "cell_type": "code", + "execution_count": 11, + "id": "971be6ef", + "metadata": { + "id": "971be6ef", + "outputId": "e54e95f9-abda-4477-e9f0-99ceafd2f925", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 629 + } + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
titlesummaryauthorsurl_distance
0XFlow: Cross-modal Deep Neural Networks for Audiovisual ClassificationIn recent years, there have been numerous developments towards solving\\nmultimodal tasks, aiming to learn a stronger representation than through a\\nsingle modality. Certain aspects of the data can be particularly useful in this\\ncase - for example, correlations in the space or time domain across modalities\\n- but should be wisely exploited in order to benefit from their full predictive\\npotential. We propose two deep learning architectures with multimodal\\ncross-connections that allow for dataflow between several feature extractors\\n(XFlow). Our models derive more interpretable features and achieve better\\nperformances than models which do not exchange representations, usefully\\nexploiting correlations between audio and visual data, which have a different\\ndimensionality and are nontrivially exchangeable. Our work improves on existing\\nmultimodal deep learning algorithms in two essential ways: (1) it presents a\\nnovel method for performing cross-modality (before features are learned from\\nindividual modalities) and (2) extends the previously proposed\\ncross-connections which only transfer information between streams that process\\ncompatible data. Illustrating some of the representations learned by the\\nconnections, we analyse their contribution to the increase in discrimination\\nability and reveal their compatibility with a lip-reading network intermediate\\nrepresentation. We provide the research community with Digits, a new dataset\\nconsisting of three data types extracted from videos of people saying the\\ndigits 0-9. Results show that both cross-modal architectures outperform their\\nbaselines (by up to 11.5%) when evaluated on the AVletters, CUAVE and Digits\\ndatasets, achieving state-of-the-art results.[arxiv.Result.Author('Cătălina Cangea'), arxiv.Result.Author('Petar Veličković'), arxiv.Result.Author('Pietro Liò')]http://arxiv.org/abs/1709.00572v240.346901
1Dualing GANsGenerative adversarial nets (GANs) are a promising technique for modeling a\\ndistribution from samples. It is however well known that GAN training suffers\\nfrom instability due to the nature of its maximin formulation. In this paper,\\nwe explore ways to tackle the instability problem by dualizing the\\ndiscriminator. We start from linear discriminators in which case conjugate\\nduality provides a mechanism to reformulate the saddle point objective into a\\nmaximization problem, such that both the generator and the discriminator of\\nthis 'dualing GAN' act in concert. We then demonstrate how to extend this\\nintuition to non-linear formulations. For GANs with linear discriminators our\\napproach is able to remove the instability in training, while for GANs with\\nnonlinear discriminators our approach provides an alternative to the commonly\\nused GAN training algorithm.[arxiv.Result.Author('Yujia Li'), arxiv.Result.Author('Alexander Schwing'), arxiv.Result.Author('Kuan-Chieh Wang'), arxiv.Result.Author('Richard Zemel')]http://arxiv.org/abs/1706.06216v140.449284
2Domain Generalization for Object Recognition with Multi-task AutoencodersThe problem of domain generalization is to take knowledge acquired from a\\nnumber of related domains where training data is available, and to then\\nsuccessfully apply it to previously unseen domains. We propose a new feature\\nlearning algorithm, Multi-Task Autoencoder (MTAE), that provides good\\ngeneralization performance for cross-domain object recognition.\\n Our algorithm extends the standard denoising autoencoder framework by\\nsubstituting artificially induced corruption with naturally occurring\\ninter-domain variability in the appearance of objects. Instead of\\nreconstructing images from noisy versions, MTAE learns to transform the\\noriginal image into analogs in multiple related domains. It thereby learns\\nfeatures that are robust to variations across domains. The learnt features are\\nthen used as inputs to a classifier.\\n We evaluated the performance of the algorithm on benchmark image recognition\\ndatasets, where the task is to learn features from multiple datasets and to\\nthen predict the image label from unseen datasets. We found that (denoising)\\nMTAE outperforms alternative autoencoder-based models as well as the current\\nstate-of-the-art algorithms for domain generalization.[arxiv.Result.Author('Muhammad Ghifary'), arxiv.Result.Author('W. Bastiaan Kleijn'), arxiv.Result.Author('Mengjie Zhang'), arxiv.Result.Author('David Balduzzi')]http://arxiv.org/abs/1508.07680v141.127644
" + ] + }, + "metadata": {} + } ], - "text/plain": [ - "" + "source": [ + "# MobileSAM paper abstract 2nd half\n", + "query = \"\"\"\n", + "Many of such applications need to be run on resource-constraint edge devices,\n", + "like mobile phones. In this work, we aim to make SAM mobile-friendly by replacing the heavyweight\n", + "image encoder with a lightweight one. A naive way to train such a new SAM as in the original SAM\n", + "paper leads to unsatisfactory performance, especially when limited training sources are available. We\n", + "find that this is mainly caused by the coupled optimization of the image encoder and mask decoder,\n", + "motivated by which we propose decoupled distillation. Concretely, we distill the knowledge from\n", + "the heavy image encoder (ViT-H in the original SAM) to a lightweight image encoder, which can be\n", + "automatically compatible with the mask decoder in the original SAM. The training can be completed\n", + "on a single GPU within less than one day, and the resulting lightweight SAM is termed MobileSAM\n", + "which is more than 60 times smaller yet performs on par with the original SAM. For inference speed,\n", + "With a single GPU, MobileSAM runs around 10ms per image: 8ms on the image encoder and 4ms\n", + "on the mask decoder. With superior performance, our MobileSAM is around 5 times faster than the\n", + "concurrent FastSAM and 7 times smaller, making it more suitable for mobile applications. Moreover,\n", + "we show that MobileSAM can run relatively smoothly on CPU\n", + "\"\"\"\n", + "\n", + "result = search_table(query)\n", + "\n", + "result.pop(\"vector\")\n", + "display(HTML(result.to_html()))" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "## FTS via title\n", - "result = (\n", - " tbl.search(\"What is the general idea behind self-supervised learning.\")\n", - " .limit(10)\n", - " .to_pandas()\n", - ")\n", - "\n", - "result.pop(\"vector\")\n", - "\n", - "display(HTML(result.to_html()))" - ] - }, - { - "cell_type": "markdown", - "id": "06850511", - "metadata": {}, - "source": [ - "### Analysing OpenCLIP embeddings on Nomic\n", - "Atlas is a platform for interacting with both small and internet scale unstructured datasets.\n", - "\n", - "Atlas enables you to:\n", - "* Store, update and organize multi-million point datasets of unstructured text, images and embeddings.\n", - "* Visually interact with embeddings of your data from a web browser.\n", - "* Operate over unstructured data and embeddings with topic modeling, semantic duplicate clustering and semantic search.\n", - "* Generate high dimensional and two-dimensional embeddings of your data." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "e94d1855", - "metadata": {}, - "outputs": [], - "source": [ - "!pip install nomic --q" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "id": "3f5b3933", - "metadata": {}, - "outputs": [ + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - " Authenticate with the Nomic API \n", - " https://atlas.nomic.ai/cli-login \n", - " Click the above link to retrieve your access token and then run `nomic login \n", - " [token]` \n" - ] - } - ], - "source": [ - "!nomic login" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "id": "50e63ef8", - "metadata": {}, - "outputs": [], - "source": [ - "!nomic login #Paste your token from Nomic Ai cli login -- here" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "id": "ea123fc4", - "metadata": {}, - "outputs": [ + "cell_type": "code", + "execution_count": 12, + "id": "f4ccd273", + "metadata": { + "id": "f4ccd273", + "outputId": "e0afdb9b-2578-418a-e37f-1fd19fb44251", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 577 + } + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
titlesummaryauthorsurl_distance
0A General Theory for Training Learning MachineThough the deep learning is pushing the machine learning to a new stage,\\nbasic theories of machine learning are still limited. The principle of\\nlearning, the role of the a prior knowledge, the role of neuron bias, and the\\nbasis for choosing neural transfer function and cost function, etc., are still\\nfar from clear. In this paper, we present a general theoretical framework for\\nmachine learning. We classify the prior knowledge into common and\\nproblem-dependent parts, and consider that the aim of learning is to maximally\\nincorporate them. The principle we suggested for maximizing the former is the\\ndesign risk minimization principle, while the neural transfer function, the\\ncost function, as well as pretreatment of samples, are endowed with the role\\nfor maximizing the latter. The role of the neuron bias is explained from a\\ndifferent angle. We develop a Monte Carlo algorithm to establish the\\ninput-output responses, and we control the input-output sensitivity of a\\nlearning machine by controlling that of individual neurons. Applications of\\nfunction approaching and smoothing, pattern recognition and classification, are\\nprovided to illustrate how to train general learning machines based on our\\ntheory and algorithm. Our method may in addition induce new applications, such\\nas the transductive inference.[arxiv.Result.Author('Hong Zhao')]http://arxiv.org/abs/1704.06885v133.708359
1Learning Visual Reasoning Without Strong PriorsAchieving artificial visual reasoning - the ability to answer image-related\\nquestions which require a multi-step, high-level process - is an important step\\ntowards artificial general intelligence. This multi-modal task requires\\nlearning a question-dependent, structured reasoning process over images from\\nlanguage. Standard deep learning approaches tend to exploit biases in the data\\nrather than learn this underlying structure, while leading methods learn to\\nvisually reason successfully but are hand-crafted for reasoning. We show that a\\ngeneral-purpose, Conditional Batch Normalization approach achieves\\nstate-of-the-art results on the CLEVR Visual Reasoning benchmark with a 2.4%\\nerror rate. We outperform the next best end-to-end method (4.5%) and even\\nmethods that use extra supervision (3.1%). We probe our model to shed light on\\nhow it reasons, showing it has learned a question-dependent, multi-step\\nprocess. Previous work has operated under the assumption that visual reasoning\\ncalls for a specialized architecture, but we show that a general architecture\\nwith proper conditioning can learn to visually reason effectively.[arxiv.Result.Author('Ethan Perez'), arxiv.Result.Author('Harm de Vries'), arxiv.Result.Author('Florian Strub'), arxiv.Result.Author('Vincent Dumoulin'), arxiv.Result.Author('Aaron Courville')]http://arxiv.org/abs/1707.03017v536.282284
2Encoder Based Lifelong LearningThis paper introduces a new lifelong learning solution where a single model\\nis trained for a sequence of tasks. The main challenge that vision systems face\\nin this context is catastrophic forgetting: as they tend to adapt to the most\\nrecently seen task, they lose performance on the tasks that were learned\\npreviously. Our method aims at preserving the knowledge of the previous tasks\\nwhile learning a new one by using autoencoders. For each task, an\\nunder-complete autoencoder is learned, capturing the features that are crucial\\nfor its achievement. When a new task is presented to the system, we prevent the\\nreconstructions of the features with these autoencoders from changing, which\\nhas the effect of preserving the information on which the previous tasks are\\nmainly relying. At the same time, the features are given space to adjust to the\\nmost recent environment as only their projection into a low dimension\\nsubmanifold is controlled. The proposed system is evaluated on image\\nclassification tasks and shows a reduction of forgetting over the\\nstate-of-the-art[arxiv.Result.Author('Amal Rannen Triki'), arxiv.Result.Author('Rahaf Aljundi'), arxiv.Result.Author('Mathew B. Blaschko'), arxiv.Result.Author('Tinne Tuytelaars')]http://arxiv.org/abs/1704.01920v137.254250
" + ] + }, + "metadata": {} + } + ], + "source": [ + "# Exmaple 2: Search via a concept you're reading\n", + "query = \"\"\"\n", + "What is the general idea behind self-supervised learning.\n", + "\"\"\"\n", + "\n", + "result = search_table(query)\n", + "\n", + "result.pop(\"vector\")\n", + "display(HTML(result.to_html()))" + ] + }, + { + "cell_type": "markdown", + "id": "5f471b55", + "metadata": { + "id": "5f471b55" + }, + "source": [ + "# Full Text Search\n", + "In text retrieval, full-text search refers to techniques for searching a single computer-stored document or a collection in a full-text database. Full-text search is distinguished from searches based on metadata or on parts of the original texts represented in databases\n", + "\n", + "LanceDB now provides **experimental** support for full text search. This is currently Python only. We plan to push the integration down to Rust in the future to make this available for JS as well.\n" + ] + }, + { + "cell_type": "code", + "source": [ + "!pip install tantivy" + ], + "metadata": { + "id": "FKPSsbpq5Weq", + "outputId": "3d61b95d-5ca3-47c5-f9b3-a7dd9f91b9ab", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "id": "FKPSsbpq5Weq", + "execution_count": 16, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Collecting tantivy\n", + " Downloading tantivy-0.21.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.2/4.2 MB\u001b[0m \u001b[31m17.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hInstalling collected packages: tantivy\n", + "Successfully installed tantivy-0.21.0\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "id": "b2d693cf", + "metadata": { + "id": "b2d693cf" + }, + "source": [ + "### Build FTS index for the summary\n", + "Here, we're building the FTS index using python bindings for tantivy. You can also build the index for any other text column. A full-text index stores information about significant words and their location within one or more columns of a database table" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "5c383b22", + "metadata": { + "id": "5c383b22" + }, + "outputs": [], + "source": [ + "# This cell might take a few mins\n", + "tbl.create_fts_index(\"summary\")" + ] + }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[32m2023-10-15 12:45:42.522\u001b[0m | \u001b[33m\u001b[1mWARNING \u001b[0m | \u001b[36mnomic.atlas\u001b[0m:\u001b[36mmap_embeddings\u001b[0m:\u001b[36m95\u001b[0m - \u001b[33m\u001b[1mAn ID field was not specified in your data so one was generated for you in insertion order.\u001b[0m\n", - "\u001b[32m2023-10-15 12:45:49.237\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mnomic.project\u001b[0m:\u001b[36m_create_project\u001b[0m:\u001b[36m790\u001b[0m - \u001b[1mCreating project `voracious-remark` in organization `kaushalc64`\u001b[0m\n", - "\u001b[32m2023-10-15 12:45:51.920\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mnomic.atlas\u001b[0m:\u001b[36mmap_embeddings\u001b[0m:\u001b[36m111\u001b[0m - \u001b[1mUploading embeddings to Atlas.\u001b[0m\n", - "1it [00:01, 1.88s/it]\n", - "\u001b[32m2023-10-15 12:45:53.844\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mnomic.project\u001b[0m:\u001b[36m_add_data\u001b[0m:\u001b[36m1422\u001b[0m - \u001b[1mUpload succeeded.\u001b[0m\n", - "\u001b[32m2023-10-15 12:45:53.849\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mnomic.atlas\u001b[0m:\u001b[36mmap_embeddings\u001b[0m:\u001b[36m130\u001b[0m - \u001b[1mEmbedding upload succeeded.\u001b[0m\n", - "\u001b[32m2023-10-15 12:45:57.000\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mnomic.project\u001b[0m:\u001b[36mcreate_index\u001b[0m:\u001b[36m1132\u001b[0m - \u001b[1mCreated map `voracious-remark` in project `voracious-remark`: https://atlas.nomic.ai/map/9e13dcd5-15e1-4449-9005-93292f739c2c/aa195bbd-11f6-4813-8435-6468192274cc\u001b[0m\n", - "\u001b[32m2023-10-15 12:45:57.000\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mnomic.atlas\u001b[0m:\u001b[36mmap_embeddings\u001b[0m:\u001b[36m143\u001b[0m - \u001b[1mvoracious-remark: https://atlas.nomic.ai/map/9e13dcd5-15e1-4449-9005-93292f739c2c/aa195bbd-11f6-4813-8435-6468192274cc\u001b[0m\n" - ] + "cell_type": "code", + "execution_count": 18, + "id": "f4116b06", + "metadata": { + "id": "f4116b06", + "outputId": "37a78abd-514f-48b3-9aab-9f4c01f91d38", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + } + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
titlesummaryauthorsurlscore
0Expert Gate: Lifelong Learning with a Network of ExpertsIn this paper we introduce a model of lifelong learning, based on a Network\\nof Experts. New tasks / experts are learned and added to the model\\nsequentially, building on what was learned before. To ensure scalability of\\nthis process,data from previous tasks cannot be stored and hence is not\\navailable when learning a new task. A critical issue in such context, not\\naddressed in the literature so far, relates to the decision which expert to\\ndeploy at test time. We introduce a set of gating autoencoders that learn a\\nrepresentation for the task at hand, and, at test time, automatically forward\\nthe test sample to the relevant expert. This also brings memory efficiency as\\nonly one expert network has to be loaded into memory at any given time.\\nFurther, the autoencoders inherently capture the relatedness of one task to\\nanother, based on which the most relevant prior model to be used for training a\\nnew expert, with finetuning or learning without-forgetting, can be selected. We\\nevaluate our method on image classification and video prediction problems.[arxiv.Result.Author('Rahaf Aljundi'), arxiv.Result.Author('Punarjay Chakravarty'), arxiv.Result.Author('Tinne Tuytelaars')]http://arxiv.org/abs/1611.06194v24.703215
1Approximate Bayesian Image Interpretation using Generative Probabilistic Graphics ProgramsThe idea of computer vision as the Bayesian inverse problem to computer\\ngraphics has a long history and an appealing elegance, but it has proved\\ndifficult to directly implement. Instead, most vision tasks are approached via\\ncomplex bottom-up processing pipelines. Here we show that it is possible to\\nwrite short, simple probabilistic graphics programs that define flexible\\ngenerative models and to automatically invert them to interpret real-world\\nimages. Generative probabilistic graphics programs consist of a stochastic\\nscene generator, a renderer based on graphics software, a stochastic likelihood\\nmodel linking the renderer's output and the data, and latent variables that\\nadjust the fidelity of the renderer and the tolerance of the likelihood model.\\nRepresentations and algorithms from computer graphics, originally designed to\\nproduce high-quality images, are instead used as the deterministic backbone for\\nhighly approximate and stochastic generative models. This formulation combines\\nprobabilistic programming, computer graphics, and approximate Bayesian\\ncomputation, and depends only on general-purpose, automatic inference\\ntechniques. We describe two applications: reading sequences of degraded and\\nadversarially obscured alphanumeric characters, and inferring 3D road models\\nfrom vehicle-mounted camera images. Each of the probabilistic graphics programs\\nwe present relies on under 20 lines of probabilistic code, and supports\\naccurate, approximately Bayesian inferences about ambiguous real-world images.[arxiv.Result.Author('Vikash K. Mansinghka'), arxiv.Result.Author('Tejas D. Kulkarni'), arxiv.Result.Author('Yura N. Perov'), arxiv.Result.Author('Joshua B. Tenenbaum')]http://arxiv.org/abs/1307.0060v14.515473
2Learning Visual Reasoning Without Strong PriorsAchieving artificial visual reasoning - the ability to answer image-related\\nquestions which require a multi-step, high-level process - is an important step\\ntowards artificial general intelligence. This multi-modal task requires\\nlearning a question-dependent, structured reasoning process over images from\\nlanguage. Standard deep learning approaches tend to exploit biases in the data\\nrather than learn this underlying structure, while leading methods learn to\\nvisually reason successfully but are hand-crafted for reasoning. We show that a\\ngeneral-purpose, Conditional Batch Normalization approach achieves\\nstate-of-the-art results on the CLEVR Visual Reasoning benchmark with a 2.4%\\nerror rate. We outperform the next best end-to-end method (4.5%) and even\\nmethods that use extra supervision (3.1%). We probe our model to shed light on\\nhow it reasons, showing it has learned a question-dependent, multi-step\\nprocess. Previous work has operated under the assumption that visual reasoning\\ncalls for a specialized architecture, but we show that a general architecture\\nwith proper conditioning can learn to visually reason effectively.[arxiv.Result.Author('Ethan Perez'), arxiv.Result.Author('Harm de Vries'), arxiv.Result.Author('Florian Strub'), arxiv.Result.Author('Vincent Dumoulin'), arxiv.Result.Author('Aaron Courville')]http://arxiv.org/abs/1707.03017v54.332870
3Memory Aware Synapses: Learning what (not) to forgetHumans can learn in a continuous manner. Old rarely utilized knowledge can be\\noverwritten by new incoming information while important, frequently used\\nknowledge is prevented from being erased. In artificial learning systems,\\nlifelong learning so far has focused mainly on accumulating knowledge over\\ntasks and overcoming catastrophic forgetting. In this paper, we argue that,\\ngiven the limited model capacity and the unlimited new information to be\\nlearned, knowledge has to be preserved or erased selectively. Inspired by\\nneuroplasticity, we propose a novel approach for lifelong learning, coined\\nMemory Aware Synapses (MAS). It computes the importance of the parameters of a\\nneural network in an unsupervised and online manner. Given a new sample which\\nis fed to the network, MAS accumulates an importance measure for each parameter\\nof the network, based on how sensitive the predicted output function is to a\\nchange in this parameter. When learning a new task, changes to important\\nparameters can then be penalized, effectively preventing important knowledge\\nrelated to previous tasks from being overwritten. Further, we show an\\ninteresting connection between a local version of our method and Hebb's\\nrule,which is a model for the learning process in the brain. We test our method\\non a sequence of object recognition tasks and on the challenging problem of\\nlearning an embedding for predicting $<$subject, predicate, object$>$ triplets.\\nWe show state-of-the-art performance and, for the first time, the ability to\\nadapt the importance of the parameters based on unlabeled data towards what the\\nnetwork needs (not) to forget, which may vary depending on test conditions.[arxiv.Result.Author('Rahaf Aljundi'), arxiv.Result.Author('Francesca Babiloni'), arxiv.Result.Author('Mohamed Elhoseiny'), arxiv.Result.Author('Marcus Rohrbach'), arxiv.Result.Author('Tinne Tuytelaars')]http://arxiv.org/abs/1711.09601v44.307245
4Explaining Aviation Safety Incidents Using Deep Temporal Multiple Instance LearningAlthough aviation accidents are rare, safety incidents occur more frequently\\nand require a careful analysis to detect and mitigate risks in a timely manner.\\nAnalyzing safety incidents using operational data and producing event-based\\nexplanations is invaluable to airline companies as well as to governing\\norganizations such as the Federal Aviation Administration (FAA) in the United\\nStates. However, this task is challenging because of the complexity involved in\\nmining multi-dimensional heterogeneous time series data, the lack of\\ntime-step-wise annotation of events in a flight, and the lack of scalable tools\\nto perform analysis over a large number of events. In this work, we propose a\\nprecursor mining algorithm that identifies events in the multidimensional time\\nseries that are correlated with the safety incident. Precursors are valuable to\\nsystems health and safety monitoring and in explaining and forecasting safety\\nincidents. Current methods suffer from poor scalability to high dimensional\\ntime series data and are inefficient in capturing temporal behavior. We propose\\nan approach by combining multiple-instance learning (MIL) and deep recurrent\\nneural networks (DRNN) to take advantage of MIL's ability to learn using weakly\\nsupervised data and DRNN's ability to model temporal behavior. We describe the\\nalgorithm, the data, the intuition behind taking a MIL approach, and a\\ncomparative analysis of the proposed algorithm with baseline models. We also\\ndiscuss the application to a real-world aviation safety problem using data from\\na commercial airline company and discuss the model's abilities and\\nshortcomings, with some final remarks about possible deployment directions.[arxiv.Result.Author('Vijay Manikandan Janakiraman')]http://arxiv.org/abs/1710.04749v24.206257
5A General Theory for Training Learning MachineThough the deep learning is pushing the machine learning to a new stage,\\nbasic theories of machine learning are still limited. The principle of\\nlearning, the role of the a prior knowledge, the role of neuron bias, and the\\nbasis for choosing neural transfer function and cost function, etc., are still\\nfar from clear. In this paper, we present a general theoretical framework for\\nmachine learning. We classify the prior knowledge into common and\\nproblem-dependent parts, and consider that the aim of learning is to maximally\\nincorporate them. The principle we suggested for maximizing the former is the\\ndesign risk minimization principle, while the neural transfer function, the\\ncost function, as well as pretreatment of samples, are endowed with the role\\nfor maximizing the latter. The role of the neuron bias is explained from a\\ndifferent angle. We develop a Monte Carlo algorithm to establish the\\ninput-output responses, and we control the input-output sensitivity of a\\nlearning machine by controlling that of individual neurons. Applications of\\nfunction approaching and smoothing, pattern recognition and classification, are\\nprovided to illustrate how to train general learning machines based on our\\ntheory and algorithm. Our method may in addition induce new applications, such\\nas the transductive inference.[arxiv.Result.Author('Hong Zhao')]http://arxiv.org/abs/1704.06885v14.150894
6A Brief Survey of Deep Reinforcement LearningDeep reinforcement learning is poised to revolutionise the field of AI and\\nrepresents a step towards building autonomous systems with a higher level\\nunderstanding of the visual world. Currently, deep learning is enabling\\nreinforcement learning to scale to problems that were previously intractable,\\nsuch as learning to play video games directly from pixels. Deep reinforcement\\nlearning algorithms are also applied to robotics, allowing control policies for\\nrobots to be learned directly from camera inputs in the real world. In this\\nsurvey, we begin with an introduction to the general field of reinforcement\\nlearning, then progress to the main streams of value-based and policy-based\\nmethods. Our survey will cover central algorithms in deep reinforcement\\nlearning, including the deep $Q$-network, trust region policy optimisation, and\\nasynchronous advantage actor-critic. In parallel, we highlight the unique\\nadvantages of deep neural networks, focusing on visual understanding via\\nreinforcement learning. To conclude, we describe several current areas of\\nresearch within the field.[arxiv.Result.Author('Kai Arulkumaran'), arxiv.Result.Author('Marc Peter Deisenroth'), arxiv.Result.Author('Miles Brundage'), arxiv.Result.Author('Anil Anthony Bharath')]http://arxiv.org/abs/1708.05866v23.549962
7Interpretable Explanations of Black Boxes by Meaningful PerturbationAs machine learning algorithms are increasingly applied to high impact yet\\nhigh risk tasks, such as medical diagnosis or autonomous driving, it is\\ncritical that researchers can explain how such algorithms arrived at their\\npredictions. In recent years, a number of image saliency methods have been\\ndeveloped to summarize where highly complex neural networks \"look\" in an image\\nfor evidence for their predictions. However, these techniques are limited by\\ntheir heuristic nature and architectural constraints. In this paper, we make\\ntwo main contributions: First, we propose a general framework for learning\\ndifferent kinds of explanations for any black box algorithm. Second, we\\nspecialise the framework to find the part of an image most responsible for a\\nclassifier decision. Unlike previous works, our method is model-agnostic and\\ntestable because it is grounded in explicit and interpretable image\\nperturbations.[arxiv.Result.Author('Ruth Fong'), arxiv.Result.Author('Andrea Vedaldi')]http://arxiv.org/abs/1704.03296v43.451381
8Self corrective Perturbations for Semantic Segmentation and ClassificationConvolutional Neural Networks have been a subject of great importance over\\nthe past decade and great strides have been made in their utility for producing\\nstate of the art performance in many computer vision problems. However, the\\nbehavior of deep networks is yet to be fully understood and is still an active\\narea of research. In this work, we present an intriguing behavior: pre-trained\\nCNNs can be made to improve their predictions by structurally perturbing the\\ninput. We observe that these perturbations - referred as Guided Perturbations -\\nenable a trained network to improve its prediction performance without any\\nlearning or change in network weights. We perform various ablative experiments\\nto understand how these perturbations affect the local context and feature\\nrepresentations. Furthermore, we demonstrate that this idea can improve\\nperformance of several existing approaches on semantic segmentation and scene\\nlabeling tasks on the PASCAL VOC dataset and supervised classification tasks on\\nMNIST and CIFAR10 datasets.[arxiv.Result.Author('Swami Sankaranarayanan'), arxiv.Result.Author('Arpit Jain'), arxiv.Result.Author('Ser Nam Lim')]http://arxiv.org/abs/1703.07928v23.417501
9Graph Approximation and Clustering on a BudgetWe consider the problem of learning from a similarity matrix (such as\\nspectral clustering and lowd imensional embedding), when computing pairwise\\nsimilarities are costly, and only a limited number of entries can be observed.\\nWe provide a theoretical analysis using standard notions of graph\\napproximation, significantly generalizing previous results (which focused on\\nspectral clustering with two clusters). We also propose a new algorithmic\\napproach based on adaptive sampling, which experimentally matches or improves\\non previous methods, while being considerably more general and computationally\\ncheaper.[arxiv.Result.Author('Ethan Fetaya'), arxiv.Result.Author('Ohad Shamir'), arxiv.Result.Author('Shimon Ullman')]http://arxiv.org/abs/1406.2602v13.358721
" + ] + }, + "metadata": {} + } + ], + "source": [ + "## FTS via title\n", + "result = (\n", + " tbl.search(\"What is the general idea behind self-supervised learning.\")\n", + " .limit(10)\n", + " .to_pandas()\n", + ")\n", + "\n", + "result.pop(\"vector\")\n", + "\n", + "display(HTML(result.to_html()))" + ] }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] + "cell_type": "markdown", + "id": "06850511", + "metadata": { + "id": "06850511" + }, + "source": [ + "### Analysing OpenCLIP embeddings on Nomic\n", + "Atlas is a platform for interacting with both small and internet scale unstructured datasets.\n", + "\n", + "Atlas enables you to:\n", + "* Store, update and organize multi-million point datasets of unstructured text, images and embeddings.\n", + "* Visually interact with embeddings of your data from a web browser.\n", + "* Operate over unstructured data and embeddings with topic modeling, semantic duplicate clustering and semantic search.\n", + "* Generate high dimensional and two-dimensional embeddings of your data." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "e94d1855", + "metadata": { + "id": "e94d1855", + "outputId": "acf94cfb-a582-4df3-8e8b-889707dcd068", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/41.2 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m41.2/41.2 kB\u001b[0m \u001b[31m1.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m62.5/62.5 kB\u001b[0m \u001b[31m3.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Building wheel for nomic (setup.py) ... \u001b[?25l\u001b[?25hdone\n" + ] + } + ], + "source": [ + "!pip install nomic --q" + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Nomic Login\n", + "\n", + "We are using Nomic to use Atlas for visualizing dataset in clusters" + ], + "metadata": { + "id": "8U9G-B-Z5yPF" + }, + "id": "8U9G-B-Z5yPF" + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "3f5b3933", + "metadata": { + "id": "3f5b3933", + "outputId": "bfeda0f4-9a33-45f0-8dc3-6fbf90de7f9b", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m \u001b[0m\u001b[1mAuthenticate with the Nomic API\u001b[0m\u001b[1m \u001b[0m\n", + "\u001b[1m \u001b[0m\u001b[4;94mhttps://atlas.nomic.ai/cli-login\u001b[0m\u001b[1m \u001b[0m\n", + "\u001b[1m \u001b[0m\u001b[1mClick the above link to retrieve your access token and then run `nomic login \u001b[0m\u001b[1m[\u001b[0m\u001b[1mtoken\u001b[0m\u001b[1m]\u001b[0m\u001b[1m`\u001b[0m\u001b[1m \u001b[0m\n" + ] + } + ], + "source": [ + "!nomic login" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "50e63ef8", + "metadata": { + "id": "50e63ef8" + }, + "outputs": [], + "source": [ + "!nomic login [token] # Paste your token from Nomic Ai cli login -- here" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "ea123fc4", + "metadata": { + "id": "ea123fc4", + "outputId": "05a672a9-0c00-4f92-9bb5-c4254eb7ad3b", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m2024-02-25 06:18:17.433\u001b[0m | \u001b[33m\u001b[1mWARNING \u001b[0m | \u001b[36mnomic.atlas\u001b[0m:\u001b[36mmap_data\u001b[0m:\u001b[36m96\u001b[0m - \u001b[33m\u001b[1mAn ID field was not specified in your data so one was generated for you in insertion order.\u001b[0m\n", + "\u001b[32m2024-02-25 06:18:19.434\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mnomic.dataset\u001b[0m:\u001b[36m_create_project\u001b[0m:\u001b[36m868\u001b[0m - \u001b[1mCreating dataset `inquisitive-jaynes`\u001b[0m\n", + "\u001b[32m2024-02-25 06:18:19.719\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mnomic.atlas\u001b[0m:\u001b[36mmap_data\u001b[0m:\u001b[36m108\u001b[0m - \u001b[1mUploading data to Atlas.\u001b[0m\n", + "1it [00:00, 1.62it/s]\n", + "\u001b[32m2024-02-25 06:18:20.370\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mnomic.dataset\u001b[0m:\u001b[36m_add_data\u001b[0m:\u001b[36m1536\u001b[0m - \u001b[1mUpload succeeded.\u001b[0m\n", + "\u001b[32m2024-02-25 06:18:20.374\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mnomic.atlas\u001b[0m:\u001b[36mmap_data\u001b[0m:\u001b[36m123\u001b[0m - \u001b[1m`prasantdixit9876/inquisitive-jaynes`: Data upload succeeded to dataset`\u001b[0m\n", + "\u001b[32m2024-02-25 06:18:20.655\u001b[0m | \u001b[33m\u001b[1mWARNING \u001b[0m | \u001b[36mnomic.dataset\u001b[0m:\u001b[36mcreate_index\u001b[0m:\u001b[36m1121\u001b[0m - \u001b[33m\u001b[1mYou did not specify the `topic_label_field` option in your topic_model, your dataset will not contain auto-labeled topics.\u001b[0m\n", + "\u001b[32m2024-02-25 06:18:21.396\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mnomic.dataset\u001b[0m:\u001b[36mcreate_index\u001b[0m:\u001b[36m1245\u001b[0m - \u001b[1mCreated map `inquisitive-jaynes` in dataset `prasantdixit9876/inquisitive-jaynes`: https://atlas.nomic.ai/data/prasantdixit9876/inquisitive-jaynes/map\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n" + ] + } + ], + "source": [ + "from nomic import atlas\n", + "import numpy as np\n", + "\n", + "# Get pandas dataframe from lancedb table\n", + "df = tbl.to_pandas()\n", + "\n", + "# get embeddings from df\n", + "embs = np.array(df.pop(\"vector\").to_list())\n", + "\n", + "project = atlas.map_data(embeddings=embs, data=df.to_dict(\"records\"))\n", + "print()" + ] + }, + { + "cell_type": "markdown", + "id": "a17553eb", + "metadata": { + "id": "a17553eb" + }, + "source": [ + "The visualizations are very interesting and is worth exploring more. In preliminary analysis, you can see that it succesfully creates clusters of similar types of papers. There are a few things that can be done next like comparing embeddings on various openclip models sizes and datasets.\n", + "\"Screenshot" + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "ch9UlF3E6BCE" + }, + "id": "ch9UlF3E6BCE", + "execution_count": null, + "outputs": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.1" + }, + "vscode": { + "interpreter": { + "hash": "511a7c77cb034b09af5465c01316a0f4bb20176d139e60e6d7915f9a637a5037" + } + }, + "colab": { + "provenance": [] + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "cc0868346dd946a6bd15c95859bbeed0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_72c68a5aa5b047a281c7801c365844c0", + "IPY_MODEL_bc68fb9820154bbaae3bb09fd05bd0bc", + "IPY_MODEL_2f28629727b54c48955215485757d7d8" + ], + "layout": "IPY_MODEL_8b9b5405fd60414d9d6cc4d4af611b0c" + } + }, + "72c68a5aa5b047a281c7801c365844c0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6373e2b3100346d9adf4825b518efcba", + "placeholder": "​", + "style": "IPY_MODEL_25c0946ae6d04f33b60eceaefb7d87e4", + "value": "open_clip_pytorch_model.bin: 100%" + } + }, + "bc68fb9820154bbaae3bb09fd05bd0bc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d1de9b1b3ccd49a89a316cda336c8a91", + "max": 605219813, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e9927513616a4bd391ff97c6ff3b2f29", + "value": 605219813 + } + }, + "2f28629727b54c48955215485757d7d8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_821875e1743c4609b1678418af9c526e", + "placeholder": "​", + "style": "IPY_MODEL_e60575abd83742e6ad1ab90071eaf7cf", + "value": " 605M/605M [00:05<00:00, 101MB/s]" + } + }, + "8b9b5405fd60414d9d6cc4d4af611b0c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6373e2b3100346d9adf4825b518efcba": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "25c0946ae6d04f33b60eceaefb7d87e4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d1de9b1b3ccd49a89a316cda336c8a91": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e9927513616a4bd391ff97c6ff3b2f29": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "821875e1743c4609b1678418af9c526e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e60575abd83742e6ad1ab90071eaf7cf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } } - ], - "source": [ - "from nomic import atlas\n", - "import numpy as np\n", - "\n", - "# Get pandas dataframe from lancedb table\n", - "df = tbl.to_pandas()\n", - "\n", - "# get embeddings from df\n", - "embs = np.array(df.pop(\"vector\").to_list())\n", - "\n", - "project = atlas.map_embeddings(embeddings=embs, data=df.to_dict(\"records\"))\n", - "print()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "a17553eb", - "metadata": {}, - "source": [ - "The visualizations are very interesting and is worth exploring more. IN preliminary analysis, you can see that it succesfully creates clusters of similar types of papers. There are a few things that can be done next like comparing embeddings on various openclip models sizes and datasets. \n", - "\"Screenshot" - ] - }, - { - "cell_type": "markdown", - "id": "b6b0e75b", - "metadata": {}, - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.1" }, - "vscode": { - "interpreter": { - "hash": "511a7c77cb034b09af5465c01316a0f4bb20176d139e60e6d7915f9a637a5037" - } - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} + "nbformat": 4, + "nbformat_minor": 5 +} \ No newline at end of file diff --git a/examples/instruct-multitask/README.MD b/examples/instruct-multitask/README.MD index 1db6e6b..72a47c6 100644 --- a/examples/instruct-multitask/README.MD +++ b/examples/instruct-multitask/README.MD @@ -14,13 +14,18 @@ Find more about the Instruct Multitask Model [here](https://instructor-embedding - **Conversational Agent:** Identify the closest examples of known intents to the user's messages. -## Getting Hands-On with LanceDB -See, the above colab link for live coding and experimentation. +## Using Colab -## For using the python file, make sure to first install LanceDB this way. +Open In Colab + +## Using Python file +### Install Requirements ```bash -pip install git+https://github.com/lancedb/lancedb.git@main#subdirectory=python +pip install -r requirements.txt ``` -Install other dependecies from requirements.txt file of this folder. +### Run +``` +python3 main.py +``` diff --git a/examples/instruct-multitask/main.ipynb b/examples/instruct-multitask/main.ipynb index fa05037..2771386 100644 --- a/examples/instruct-multitask/main.ipynb +++ b/examples/instruct-multitask/main.ipynb @@ -1,8147 +1,8042 @@ { - "cells": [ - { - "cell_type": "markdown", - "id": "58b30d1f-28e7-4e27-b256-f7c7bbcfbf4b", - "metadata": { - "id": "58b30d1f-28e7-4e27-b256-f7c7bbcfbf4b" - }, - "source": [ - "## InstructOR - A multitask custom embedding model for task based applications, made easier with LanceDB\n", - "![instruct](https://github.com/lancedb/vectordb-recipes/blob/main/examples/instruct-multitask/embeddings11.png?raw=1)" - ] - }, - { - "cell_type": "markdown", - "id": "2506f81b-cf52-41f2-9f0d-6b20836b15b6", - "metadata": { - "id": "2506f81b-cf52-41f2-9f0d-6b20836b15b6" - }, - "source": [ - "### Installing all dependencies" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "d8c13226-8a68-485a-86ba-6243eb1ed26e", - "metadata": { - "id": "d8c13226-8a68-485a-86ba-6243eb1ed26e", - "outputId": "3b783914-5300-4586-cb66-73a2a931ec51", - "colab": { - "base_uri": "https://localhost:8080/" - } - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Collecting lancedb\n", - " Downloading lancedb-0.5.0-py3-none-any.whl (87 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m87.4/87.4 kB\u001b[0m \u001b[31m1.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting deprecation (from lancedb)\n", - " Downloading deprecation-2.1.0-py2.py3-none-any.whl (11 kB)\n", - "Collecting pylance==0.9.6 (from lancedb)\n", - " Downloading pylance-0.9.6-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.6 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m18.6/18.6 MB\u001b[0m \u001b[31m44.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting ratelimiter~=1.0 (from lancedb)\n", - " Downloading ratelimiter-1.2.0.post0-py3-none-any.whl (6.6 kB)\n", - "Collecting retry>=0.9.2 (from lancedb)\n", - " Downloading retry-0.9.2-py2.py3-none-any.whl (8.0 kB)\n", - "Requirement already satisfied: tqdm>=4.27.0 in /usr/local/lib/python3.10/dist-packages (from lancedb) (4.66.1)\n", - "Requirement already satisfied: pydantic>=1.10 in /usr/local/lib/python3.10/dist-packages (from lancedb) (1.10.13)\n", - "Requirement already satisfied: attrs>=21.3.0 in /usr/local/lib/python3.10/dist-packages (from lancedb) (23.2.0)\n", - "Collecting semver>=3.0 (from lancedb)\n", - " Downloading semver-3.0.2-py3-none-any.whl (17 kB)\n", - "Requirement already satisfied: cachetools in /usr/local/lib/python3.10/dist-packages (from lancedb) (5.3.2)\n", - "Requirement already satisfied: pyyaml>=6.0 in /usr/local/lib/python3.10/dist-packages (from lancedb) (6.0.1)\n", - "Requirement already satisfied: click>=8.1.7 in /usr/local/lib/python3.10/dist-packages (from lancedb) (8.1.7)\n", - "Requirement already satisfied: requests>=2.31.0 in /usr/local/lib/python3.10/dist-packages (from lancedb) (2.31.0)\n", - "Collecting overrides>=0.7 (from lancedb)\n", - " Downloading overrides-7.6.0-py3-none-any.whl (17 kB)\n", - "Collecting pyarrow>=12 (from pylance==0.9.6->lancedb)\n", - " Downloading pyarrow-15.0.0-cp310-cp310-manylinux_2_28_x86_64.whl (38.3 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m38.3/38.3 MB\u001b[0m \u001b[31m12.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: numpy>=1.22 in /usr/local/lib/python3.10/dist-packages (from pylance==0.9.6->lancedb) (1.23.5)\n", - "Requirement already satisfied: typing-extensions>=4.2.0 in /usr/local/lib/python3.10/dist-packages (from pydantic>=1.10->lancedb) (4.5.0)\n", - "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.31.0->lancedb) (3.3.2)\n", - "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.31.0->lancedb) (3.6)\n", - "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.31.0->lancedb) (2.0.7)\n", - "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.31.0->lancedb) (2023.11.17)\n", - "Requirement already satisfied: decorator>=3.4.2 in /usr/local/lib/python3.10/dist-packages (from retry>=0.9.2->lancedb) (4.4.2)\n", - "Collecting py<2.0.0,>=1.4.26 (from retry>=0.9.2->lancedb)\n", - " Downloading py-1.11.0-py2.py3-none-any.whl (98 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m98.7/98.7 kB\u001b[0m \u001b[31m8.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from deprecation->lancedb) (23.2)\n", - "Installing collected packages: ratelimiter, semver, pyarrow, py, overrides, deprecation, retry, pylance, lancedb\n", - " Attempting uninstall: pyarrow\n", - " Found existing installation: pyarrow 10.0.1\n", - " Uninstalling pyarrow-10.0.1:\n", - " Successfully uninstalled pyarrow-10.0.1\n", - "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", - "ibis-framework 7.1.0 requires pyarrow<15,>=2, but you have pyarrow 15.0.0 which is incompatible.\u001b[0m\u001b[31m\n", - "\u001b[0mSuccessfully installed deprecation-2.1.0 lancedb-0.5.0 overrides-7.6.0 py-1.11.0 pyarrow-15.0.0 pylance-0.9.6 ratelimiter-1.2.0.post0 retry-0.9.2 semver-3.0.2\n" - ] - } - ], - "source": [ - "!pip install lancedb" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "9bb0ec2f-9953-427b-b358-c9af1a78a61e", - "metadata": { - "id": "9bb0ec2f-9953-427b-b358-c9af1a78a61e", - "outputId": "7253901e-611a-4a65-9ccb-177ebc353799", - "colab": { - "base_uri": "https://localhost:8080/" - } - }, - "outputs": [ + "cells": [ { - "output_type": "stream", - "name": "stdout", - "text": [ - "Collecting InstructorEmbedding\n", - " Downloading InstructorEmbedding-1.0.1-py2.py3-none-any.whl (19 kB)\n", - "Collecting sentence-transformers\n", - " Downloading sentence-transformers-2.2.2.tar.gz (85 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m86.0/86.0 kB\u001b[0m \u001b[31m2.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", - "Requirement already satisfied: torch in /usr/local/lib/python3.10/dist-packages (2.1.0+cu121)\n", - "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (1.5.3)\n", - "Requirement already satisfied: transformers<5.0.0,>=4.6.0 in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (4.35.2)\n", - "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (4.66.1)\n", - "Requirement already satisfied: torchvision in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (0.16.0+cu121)\n", - "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (1.23.5)\n", - "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (1.2.2)\n", - "Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (1.11.4)\n", - "Requirement already satisfied: nltk in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (3.8.1)\n", - "Collecting sentencepiece (from sentence-transformers)\n", - " Downloading sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m9.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: huggingface-hub>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (0.20.2)\n", - "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch) (3.13.1)\n", - "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from torch) (4.5.0)\n", - "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch) (1.12)\n", - "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch) (3.2.1)\n", - "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch) (3.1.3)\n", - "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch) (2023.6.0)\n", - "Requirement already satisfied: triton==2.1.0 in /usr/local/lib/python3.10/dist-packages (from torch) (2.1.0)\n", - "Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas) (2.8.2)\n", - "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas) (2023.3.post1)\n", - "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers) (2.31.0)\n", - "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers) (6.0.1)\n", - "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers) (23.2)\n", - "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas) (1.16.0)\n", - "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers<5.0.0,>=4.6.0->sentence-transformers) (2023.6.3)\n", - "Requirement already satisfied: tokenizers<0.19,>=0.14 in /usr/local/lib/python3.10/dist-packages (from transformers<5.0.0,>=4.6.0->sentence-transformers) (0.15.0)\n", - "Requirement already satisfied: safetensors>=0.3.1 in /usr/local/lib/python3.10/dist-packages (from transformers<5.0.0,>=4.6.0->sentence-transformers) (0.4.1)\n", - "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch) (2.1.3)\n", - "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from nltk->sentence-transformers) (8.1.7)\n", - "Requirement already satisfied: joblib in /usr/local/lib/python3.10/dist-packages (from nltk->sentence-transformers) (1.3.2)\n", - "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->sentence-transformers) (3.2.0)\n", - "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch) (1.3.0)\n", - "Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /usr/local/lib/python3.10/dist-packages (from torchvision->sentence-transformers) (9.4.0)\n", - "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.4.0->sentence-transformers) (3.3.2)\n", - "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.4.0->sentence-transformers) (3.6)\n", - "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.4.0->sentence-transformers) (2.0.7)\n", - "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.4.0->sentence-transformers) (2023.11.17)\n", - "Building wheels for collected packages: sentence-transformers\n", - " Building wheel for sentence-transformers (setup.py) ... \u001b[?25l\u001b[?25hdone\n", - " Created wheel for sentence-transformers: filename=sentence_transformers-2.2.2-py3-none-any.whl size=125923 sha256=9d7322894ecb5581cb484d80da823d44ed5d996c5f936d11179e7f83ce2b0128\n", - " Stored in directory: /root/.cache/pip/wheels/62/f2/10/1e606fd5f02395388f74e7462910fe851042f97238cbbd902f\n", - "Successfully built sentence-transformers\n", - "Installing collected packages: sentencepiece, InstructorEmbedding, sentence-transformers\n", - "Successfully installed InstructorEmbedding-1.0.1 sentence-transformers-2.2.2 sentencepiece-0.1.99\n" - ] - } - ], - "source": [ - "!pip install InstructorEmbedding sentence-transformers torch pandas" - ] - }, - { - "cell_type": "markdown", - "id": "b4ce6fbd-75fb-4663-b68f-716295ae3720", - "metadata": { - "id": "b4ce6fbd-75fb-4663-b68f-716295ae3720" - }, - "source": [ - "If you want to calculate customized embeddings for specific sentences, you may follow the unified template to write instructions:\n", - "\n", - "\"Represent the [**domain**] [**text_type**] for [**task_objective**]:\"\n", - "\n", - "Here are some examples:\n", - "\n", - "- \"Represent the **Science** **sentence**:\"\n", - "- \"Represent the **Financial** **statement**:\"\n", - "- \"Represent the **Wikipedia** **document** for **retrieval**:\"\n", - "- \"Represent the **Wikipedia** **question** for **retrieving supporting documents**:\"" - ] - }, - { - "cell_type": "markdown", - "id": "7be2cd8c-710f-4eca-b93e-2b5f5876198a", - "metadata": { - "id": "7be2cd8c-710f-4eca-b93e-2b5f5876198a" - }, - "source": [ - "### Importing neccessary libraries" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "63f36f93-cf85-4548-a66c-5e4c8b8f9401", - "metadata": { - "id": "63f36f93-cf85-4548-a66c-5e4c8b8f9401" - }, - "outputs": [], - "source": [ - "import lancedb\n", - "from lancedb.pydantic import LanceModel, Vector\n", - "from lancedb.embeddings import get_registry\n", - "from lancedb.embeddings import InstructorEmbeddingFunction" - ] - }, - { - "cell_type": "markdown", - "id": "c3258997-580c-4231-b578-65db806425ef", - "metadata": { - "id": "c3258997-580c-4231-b578-65db806425ef" - }, - "source": [ - "### Calling the embedding model from LanceDB embedding's API" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "9aaa6835-fa7c-4197-b86b-e25efd7a7eb3", - "metadata": { - "id": "9aaa6835-fa7c-4197-b86b-e25efd7a7eb3", - "outputId": "c3e92570-a581-476b-8af2-3eda7a42d963", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 604, - "referenced_widgets": [ - "cc21d68060fd452ea3f6d88809fc8d83", - "91662b908f594e8098f2a771253ca54d", - "4952d1b0838243b8892413a428bf31e8", - "0c43343050ae434da5283d8873cefb59", - "6ddd08007bc542339f4f007db9295a80", - "045dd5aad3ef4f3086b339c87ae1d4e0", - "6b5b533336fe4be597ee9fada67b9361", - "b7e407edc0924ac08bb63c5457577650", - "93af466ed85a471989c8d4ca7548689e", - "1050f2ffb343420dab3c337bba19b67a", - "be157869076542ceaadba08de34b92b4", - "dc9b5a5b6eff4d089a3e6617a058d12d", - "1475ef22bc9e4a75a5df037be93aee3a", - "dc765b75716640f4afcedda301134d4e", - "134519853c8747ea8712e57ed3ae3314", - "cef497b8e277432b9eb67866092ee3ab", - "c78f12921d474cc08192202d21d7a393", - "2e77d0ee827547578e5cf668074b3461", - "bedf89a7e9eb4ded96ffe36cc9efb62a", - "2a2f5bce9d8645ee87dcd78759f02e86", - "09b49fdbbf464423942ceaae81c73a2a", - "8fbda417e40d497b8cd5b34dbbebf056", - "8f0be5f370e848e48c8af0d16732fa8d", - "21b7724f3a334091b420a76fb259673f", - "1ba5a64ac3ad4d0daec31b5fae2558d9", - "31c935361aa64872b250436b11e22e25", - "11f4093cd59141daac246bd4502b8386", - "2e8e3c2378d74134ab5f52458898625d", - "a159aedd48734230adb551cc566e2bb6", - "6d71fa6f3254458e8043ccaef184259f", - "685818435e4e4854bc4db30901646dbd", - "ac6a16abd9344b5a81bbbd23d937451a", - "6e6b5e9f990149fd9777feeed6a50b9e", - "7df2cf7718cc4b4e9474a6899d7aebed", - "4d2f7690daf74d979dfba56070cff25c", - "2320d116079f40949b96838dea810256", - "110fc0e3a2b34ad59b3e3f1079db5634", - "1da66756abac408aad0ba9aa00d06edb", - "35e7cf4e37144e7ca30e987d8640fbd8", - "c88d76f1f0744662adef3c984a02bd51", - "f969049f905d4506b075a1f458879aed", - "4dafb3bba3244d3198d4874c652ab392", - "41f9f81181e94b738aa8519e06e0eb98", - "58d5ae3db4744114a46c10875e20fc57", - "0c84050a77784e1c957abe54e2e7136d", - "2513d673fedf4e2a99a7cd1eae60e3e6", - "1b24ab2ea6a240189cfefbb366a148bf", - "fdc51d49926d4480b0b3a3bf172d10bd", - "bbf7d922302d4fd0a310288ddd625b37", - "91a80cc8e3aa4e839cc15df54eb9e3a2", - "97c494623fb7445c95b0344c7b6e8a0d", - "5ee21a42325f4cf38ac3dc10f8f0d071", - "c7d5c7f1f8e245a991eab17c2b348d4b", - "8b832c750e4543a29add338babf1dee6", - "08b8d4d9e6af447a984ab0a5a060e9b2", - "e2f29a34f1cf4aaa93d6b295ab24651b", - "ac0983ca73104accbbbdf839c201fd9b", - "e71b7ed56c14485581903c43ff24814a", - "56e4cc997f7c40d095d889332dcf05e9", - "af4da2b121004f56a65e80d0db8cd752", - "cbff90e2a4d4402d8cc41e03f91600d8", - "c62f97274d1b44d28a1b6a3023d7d0fc", - "3c2a936b1e8a4376a244f129d51bb585", - "0838a8867f2547f0868cbe7e8bfa8972", - "6cfae5931e474c58ba4b886b2a3ff91f", - "c05fba47c731437c9f6a3c6a33cf5368", - "c9b8f2fb8d0e4721af184d8ffa0d9727", - "2fb0c6408328462b820e83ae302a6a12", - "f6be3d7393f04189bde73a1a162cd8e9", - "0eebe0a3d0254f159b3cd71c82712adc", - "67a25967a35a43b7ad4d76388e87346e", - "f4856859239246478abc6b78d76faaa0", - "adeb1a8b67fd40fdab22d34dab683584", - "04b1bb0130584ecda9fb500f6fb29cbb", - "a67bc84da01943288a3df82a24e10009", - "66c47f80c4aa4ec49bb50056e889a058", - "088eecbfd94740ea911dd7783807357f", - "a34a0e508a844b23ab2ece4117d259cc", - "1a866a412c4e47849ff9d20740b18bb1", - "352cbe6e176c4c6ba6ba2bc0b73ee582", - "c91fe51c38cc4bc099dfb4ce3a228a53", - "5a517aa90bc041db8dbc0b5b9da8983d", - "e9e91349ce454aad9f1bf64d7fc99a94", - "7e69c9d2678e412ebbe98aeb1c8860ab", - "b0d21e795a4541fba84e83fd1bd98bfc", - "ed2c5b9a57574f748f7f19d4e72c308a", - "4dd72427b97f432285f9a61966fbf449", - "f30d5649bc1640b890e134845b0cf467", - "cbb81eda043440fca55a8e5029600bef", - "1f1a346862b4472c9016bdd5a67831ce", - "05b3e2e86c2c45efa037aa1af4a94c0e", - "8133bad5ad044004af46da228f1df18f", - "5cf6ca7d1d4143a09fa8143f9a92c20e", - "24e6e0ffcb554afea1e0ecfa1697f7ae", - "21627b3436b5478e9719bca8aa362e8c", - "de24aee2524e4f7dbf19527cb9a3a5ab", - "bba0c3e06cba43fda7ec81043f314afa", - "4de01e80d28b416b9b376c71bb10a764", - "a417b5f89618400785940f156111241b", - "923b9816a28845cb8a7efb4c9e045794", - "517ed74de73945caab4fef79a7099248", - "36bab1ad881f4e3c99ca9c87a0ffce4e", - "a170d20815a64a8092f699df75096a60", - "5a5976bf89ee46829f23b966a4d01310", - "2f6b9ef37d2541e8a50fa44a2ef679c0", - "f2d8ac28550e459099d3fc35a5e0c44f", - "6e71210bd41a47cfb74bca5e038a4c27", - "a45514c69ade4ed18d76ff0a17161332", - "db1fccc71f8e486ea736ab7af814b80f", - "f52c0c7be2e4495d969633f01a7448b7", - "4f8ba6dc8853443cad2b17b60a2ebb3e", - "b7ba5729b4184c05b59fc71d3da2b8cf", - "1059a5f96c9a4e86a4cd3de2ae637f11", - "d824c380c1f14ad7bcba1f9f96482804", - "70328803a86c4f45bb1460e6b85af148", - "b500c2c72b604c018732314aa89c3ed7", - "215e0e9134ec4507bc6b520edc4b12e2", - "d7ada020d7844a4ab097b247e1fd2eca", - "4f93f304c2f34c8da2f1ac3d63f42792", - "499151538bfa4e2b89cb63975915f232", - "9f2549e6b3f744e595d394af3ff5d9f6", - "8c4358e53b4b4bf8989df31a89f5b98c", - "6b31457fb7d1476083341a8b4ca1bcc1", - "835fcac3d7264fc4bf1bdb852b753319", - "f158aa268b9f43edbefa421b42cbd811", - "f298ba6549e946f5b6bbcd834a2bb62c", - "3f1e1cc51c0e44acacf5439ef7318c9e", - "b7b7cb30233242caa48b502bc5e9aa50", - "ef43dd6867dc44068bbf430c538a570a", - "7d42ba8e8eb645dd8ee3be06fa521519", - "5710b5dea81e4b689e7b578688a6d422", - "1cbd2169fcc8416fbb695abe65c5077c", - "da58ba8b291b471186b7bdcfe1a1b569", - "3084c899dce244beb40b560562becb6e", - "f4146a247e9f47ccbcb3acfd0716cb3d", - "b8eaa9617108450288bb426837a83bf7", - "2631837c1d1842979459aea74dc0ea28", - "a98cb6bb5b704137af9b4306bdbcbd19", - "15a313a94ef44c85b7e0426de64644d2", - "f322e3638d37411f8167f4105d56c2ee", - "1650fe6d44534dc2a11e6484fef96e83", - "c72c1aa55dba44ca9907284d43520b29", - "f604384a01044fe3a004faa7745b54bf", - "9c4138054bf14563bb673a06d7a42079", - "4ea2abf8251a4c7f8eda895f537f21a2", - "74a74a4d8fd540568cb0d39fef64c344", - "d801dfa29781422ca1725b91f28788c5", - "8255d2debd754fcda5cf5564931b319a", - "69acb9a8574e4bdd923781e1957cb473", - "05e201a25c124c228fae91b177635c61", - "9d47ad7be4e14591b9a48c1d4cd69f37", - "8a0ee973221b44d3b3cbd9b06525b891", - "61392336c50844a4930d36f103545d2c", - "11ebd5986953482cb0785e0a9c069b1c" - ] - } - }, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_token.py:88: UserWarning: \n", - "The secret `HF_TOKEN` does not exist in your Colab secrets.\n", - "To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n", - "You will be able to reuse this secret in all of your notebooks.\n", - "Please note that authentication is recommended but still optional to access public models or datasets.\n", - " warnings.warn(\n" - ] + "cell_type": "markdown", + "id": "58b30d1f-28e7-4e27-b256-f7c7bbcfbf4b", + "metadata": { + "id": "58b30d1f-28e7-4e27-b256-f7c7bbcfbf4b" + }, + "source": [ + "## InstructOR - A multitask custom embedding model for task based applications, made easier with LanceDB\n", + "![instruct](https://github.com/lancedb/vectordb-recipes/blob/main/examples/instruct-multitask/embeddings11.png?raw=1)" + ] }, { - "output_type": "display_data", - "data": { - "text/plain": [ - ".gitattributes: 0%| | 0.00/1.48k [00:00] 5.70G 62.1MB/s in 2m 5s \n", - "\n", - "2024-01-23 17:08:37 (46.7 MB/s) - ‘diffusiondb_lance.tar.gz’ saved [6121107645/6121107645]\n", - "\n", - "diffusiondb_test/\n", - "diffusiondb_test/_versions/\n", - "diffusiondb_test/_latest.manifest\n", - "diffusiondb_test/data/\n", - "diffusiondb_test/data/138fc0d8-a806-4b10-84f8-00dc381afdad.lance\n", - "diffusiondb_test/_versions/1.manifest\n" - ] - } - ], - "source": [ - "!wget https://eto-public.s3.us-west-2.amazonaws.com/datasets/diffusiondb_lance.tar.gz\n", - "!tar -xvf diffusiondb_lance.tar.gz\n", - "!mv diffusiondb_test rawdata.lance" - ] - }, - { - "cell_type": "markdown", - "id": "e2fcbf61", - "metadata": { - "id": "e2fcbf61" - }, - "source": [ - "## Create / Open LanceDB Table" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "b3317a3c", - "metadata": { - "id": "b3317a3c" - }, - "outputs": [], - "source": [ - "import pyarrow.compute as pc\n", - "import lance\n", - "\n", - "db = lancedb.connect(\"~/datasets/demo\")\n", - "if \"diffusiondb\" in db.table_names():\n", - " tbl = db.open_table(\"diffusiondb\")\n", - "else:\n", - " # First data processing and full-text-search index\n", - " data = lance.dataset(\"rawdata.lance\").to_table()\n", - " # remove null prompts\n", - " # tbl = db.create_table(\"diffusiondb\", data.filter(~pc.field(\"prompt\").is_null()), mode=\"overwrite\") # OOM\n", - " tbl = db.create_table(\"diffusiondb\", data, mode=\"overwrite\")\n", - " tbl.create_fts_index([\"prompt\"])" - ] - }, - { - "cell_type": "markdown", - "id": "d7e4fc03", - "metadata": { - "id": "d7e4fc03" - }, - "source": [ - "## Create CLIP embedding function for the text" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "f8331d87", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "f8331d87", - "outputId": "54d77a42-340d-42f4-e890-38512af7525f" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_token.py:88: UserWarning: \n", - "The secret `HF_TOKEN` does not exist in your Colab secrets.\n", - "To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n", - "You will be able to reuse this secret in all of your notebooks.\n", - "Please note that authentication is recommended but still optional to access public models or datasets.\n", - " warnings.warn(\n" - ] - } - ], - "source": [ - "from transformers import CLIPModel, CLIPProcessor, CLIPTokenizerFast\n", - "\n", - "MODEL_ID = \"openai/clip-vit-base-patch32\"\n", - "\n", - "tokenizer = CLIPTokenizerFast.from_pretrained(MODEL_ID)\n", - "model = CLIPModel.from_pretrained(MODEL_ID)\n", - "processor = CLIPProcessor.from_pretrained(MODEL_ID)\n", - "\n", - "\n", - "def embed_func(query):\n", - " inputs = tokenizer([query], padding=True, return_tensors=\"pt\")\n", - " text_features = model.get_text_features(**inputs)\n", - " return text_features.detach().numpy()[0]" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "82c50eaf", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "82c50eaf", - "outputId": "bbae933a-9652-48ec-f7f9-c479f7a24118" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "prompt: string\n", - "seed: uint32\n", - "step: uint16\n", - "cfg: float\n", - "sampler: string\n", - "width: uint16\n", - "height: uint16\n", - "timestamp: timestamp[s]\n", - "image_nsfw: float\n", - "prompt_nsfw: float\n", - "vector: fixed_size_list[512]\n", - " child 0, item: float\n", - "image: binary" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "tbl.schema\n", - "# tbl.to_pandas().head() # OOM" - ] - }, - { - "cell_type": "markdown", - "id": "5e4d7a54", - "metadata": { - "id": "5e4d7a54" - }, - "source": [ - "\n", - "## Search functions for Gradio" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "10b8de6d", - "metadata": { - "id": "10b8de6d" - }, - "outputs": [], - "source": [ - "def find_image_vectors(query):\n", - " emb = embed_func(query)\n", - " code = (\n", - " \"import lancedb\\n\"\n", - " \"db = lancedb.connect('~/datasets/demo')\\n\"\n", - " \"tbl = db.open_table('diffusiondb')\\n\\n\"\n", - " f\"embedding = embed_func('{query}')\\n\"\n", - " \"tbl.search(embedding).limit(9).to_df()\"\n", - " )\n", - " return (_extract(tbl.search(emb).limit(9).to_pandas()), code)\n", - "\n", - "\n", - "def find_image_keywords(query):\n", - " code = (\n", - " \"import lancedb\\n\"\n", - " \"db = lancedb.connect('~/datasets/demo')\\n\"\n", - " \"tbl = db.open_table('diffusiondb')\\n\\n\"\n", - " f\"tbl.search('{query}').limit(9).to_df()\"\n", - " )\n", - " return (_extract(tbl.search(query).limit(9).to_pandas()), code)\n", - "\n", - "\n", - "def find_image_sql(query):\n", - " code = (\n", - " \"import lancedb\\n\"\n", - " \"import duckdb\\n\"\n", - " \"db = lancedb.connect('~/datasets/demo')\\n\"\n", - " \"tbl = db.open_table('diffusiondb')\\n\\n\"\n", - " \"diffusiondb = tbl.to_lance()\\n\"\n", - " f\"duckdb.sql('{query}').to_df()\"\n", - " )\n", - " diffusiondb = tbl.to_lance()\n", - " return (_extract(duckdb.sql(query).to_df()), code)\n", - "\n", - "\n", - "def _extract(df):\n", - " image_col = \"image\"\n", - " return [\n", - " (PIL.Image.open(io.BytesIO(row[image_col])), row[\"prompt\"])\n", - " for _, row in df.iterrows()\n", - " ]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "7Q28Ro20Wxa9", - "metadata": { - "id": "7Q28Ro20Wxa9" - }, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "61aaf19b", - "metadata": { - "id": "61aaf19b" - }, - "source": [ - "## Setup Gradio interface" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "b6f40300", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 671 - }, - "id": "b6f40300", - "outputId": "f10797e0-2de3-44bd-91c9-b1ddf697f6e4" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - ":18: GradioDeprecationWarning: The `style` method is deprecated. Please set these arguments in the constructor instead.\n", - " gallery = gr.Gallery(\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Colab notebook detected. To show errors in colab notebook, set debug=True in launch()\n", - "Note: opening Chrome Inspector may crash demo inside Colab notebooks.\n", - "\n", - "To create a public link, set `share=True` in `launch()`.\n" - ] - }, - { - "data": { - "application/javascript": "(async (port, path, width, height, cache, element) => {\n if (!google.colab.kernel.accessAllowed && !cache) {\n return;\n }\n element.appendChild(document.createTextNode(''));\n const url = await google.colab.kernel.proxyPort(port, {cache});\n\n const external_link = document.createElement('div');\n external_link.innerHTML = `\n \n `;\n element.appendChild(external_link);\n\n const iframe = document.createElement('iframe');\n iframe.src = new URL(path, url).toString();\n iframe.height = height;\n iframe.allow = \"autoplay; camera; microphone; clipboard-read; clipboard-write;\"\n iframe.width = width;\n iframe.style.border = 0;\n element.appendChild(iframe);\n })(7861, \"/\", \"100%\", 500, false, window.element)", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import gradio as gr\n", - "\n", - "\n", - "with gr.Blocks() as demo:\n", - " with gr.Row():\n", - " with gr.Tab(\"Embeddings\"):\n", - " vector_query = gr.Textbox(value=\"portraits of a person\", show_label=False)\n", - " b1 = gr.Button(\"Submit\")\n", - " with gr.Tab(\"Keywords\"):\n", - " keyword_query = gr.Textbox(value=\"ninja turtle\", show_label=False)\n", - " b2 = gr.Button(\"Submit\")\n", - " with gr.Tab(\"SQL\"):\n", - " sql_query = gr.Textbox(\n", - " value=\"SELECT * from diffusiondb WHERE image_nsfw >= 2 LIMIT 9\",\n", - " show_label=False,\n", - " )\n", - " b3 = gr.Button(\"Submit\")\n", - " with gr.Row():\n", - " code = gr.Code(label=\"Code\", language=\"python\")\n", - " with gr.Row():\n", - " gallery = gr.Gallery(\n", - " label=\"Found images\", show_label=False, elem_id=\"gallery\"\n", - " ).style(columns=[3], rows=[3], object_fit=\"contain\", height=\"auto\")\n", - "\n", - " b1.click(find_image_vectors, inputs=vector_query, outputs=[gallery, code])\n", - " b2.click(find_image_keywords, inputs=keyword_query, outputs=[gallery, code])\n", - " b3.click(find_image_sql, inputs=sql_query, outputs=[gallery, code])\n", - "\n", - "demo.launch()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "pEdiGi9EW0ZO", - "metadata": { - "id": "pEdiGi9EW0ZO" - }, - "outputs": [], - "source": [] - } - ], - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.1" - }, - "vscode": { - "interpreter": { - "hash": "511a7c77cb034b09af5465c01316a0f4bb20176d139e60e6d7915f9a637a5037" - } - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/examples/multimodal_clip/README.md b/examples/multimodal_clip_diffusiondb/README.md similarity index 56% rename from examples/multimodal_clip/README.md rename to examples/multimodal_clip_diffusiondb/README.md index b9ea7e2..76f5a68 100644 --- a/examples/multimodal_clip/README.md +++ b/examples/multimodal_clip_diffusiondb/README.md @@ -1,8 +1,8 @@ -# Multi-modal search using CLIP -![243051535-09c5afc5-7816-4687-bae4-f2ca194426ec](https://github.com/lancedb/vectordb-recipes/assets/15766192/799f94a1-a01d-4a5b-a627-2a733bbb4227) +# Multi-modal search using CLIP with DiffusionDB +![gradio-demo](../../assets/gradio_clip_diffusiondb.gif) -Colab walkthrough - Open In Colab +Colab walkthrough - Open In Colab ### Get dataset ```bash diff --git a/examples/multimodal_clip_diffusiondb/main.ipynb b/examples/multimodal_clip_diffusiondb/main.ipynb new file mode 100644 index 0000000..a208f70 --- /dev/null +++ b/examples/multimodal_clip_diffusiondb/main.ipynb @@ -0,0 +1,3394 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "c11fde21", + "metadata": { + "id": "c11fde21" + }, + "source": [ + "# Multimodal search using CLIP\n", + "\n", + "![mmclip](https://www.researchgate.net/publication/363808556/figure/fig2/AS:11431281086053770@1664048343869/Architectures-of-the-designed-machine-learning-approaches-with-OpenAI-CLIP-model.jpg)" + ] + }, + { + "cell_type": "markdown", + "id": "06c53ccb-5654-4150-93a2-cdf9ff4d8d26", + "metadata": { + "id": "06c53ccb-5654-4150-93a2-cdf9ff4d8d26" + }, + "source": [ + "### Installing all dependencies" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "69fb1627", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "69fb1627", + "outputId": "7516efba-c93a-4201-ad7a-0d3c4d82d0c1" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: pip in /usr/local/lib/python3.10/dist-packages (23.1.2)\n", + "Requirement already satisfied: install in /usr/local/lib/python3.10/dist-packages (1.3.5)\n", + "Requirement already satisfied: tantivy==0.20.1 in /usr/local/lib/python3.10/dist-packages (0.20.1)\n" + ] + } + ], + "source": [ + "!pip install --quiet -U lancedb\n", + "!pip install --quiet gradio==3.41.2 transformers torch torchvision duckdb\n", + "!pip install pip install pip install tantivy==0.20.1" + ] + }, + { + "cell_type": "markdown", + "id": "2d53ade3", + "metadata": { + "id": "2d53ade3" + }, + "source": [ + "## First run setup: Download data and pre-process\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "9b7e97f9", + "metadata": { + "id": "9b7e97f9" + }, + "outputs": [], + "source": [ + "import io\n", + "import PIL\n", + "import duckdb\n", + "import lancedb" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "5ba75742", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5ba75742", + "outputId": "c97f0590-3839-4f67-cb5f-60295142f99b" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "--2024-02-25 04:51:11-- https://eto-public.s3.us-west-2.amazonaws.com/datasets/diffusiondb_lance.tar.gz\n", + "Resolving eto-public.s3.us-west-2.amazonaws.com (eto-public.s3.us-west-2.amazonaws.com)... 3.5.79.102, 3.5.82.217, 3.5.77.120, ...\n", + "Connecting to eto-public.s3.us-west-2.amazonaws.com (eto-public.s3.us-west-2.amazonaws.com)|3.5.79.102|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 6121107645 (5.7G) [application/x-gzip]\n", + "Saving to: ‘diffusiondb_lance.tar.gz’\n", + "\n", + "diffusiondb_lance.t 100%[===================>] 5.70G 69.8MB/s in 88s \n", + "\n", + "2024-02-25 04:52:39 (66.6 MB/s) - ‘diffusiondb_lance.tar.gz’ saved [6121107645/6121107645]\n", + "\n", + "diffusiondb_test/\n", + "diffusiondb_test/_versions/\n", + "diffusiondb_test/_latest.manifest\n", + "diffusiondb_test/data/\n", + "diffusiondb_test/data/138fc0d8-a806-4b10-84f8-00dc381afdad.lance\n", + "diffusiondb_test/_versions/1.manifest\n" + ] + } + ], + "source": [ + "!wget https://eto-public.s3.us-west-2.amazonaws.com/datasets/diffusiondb_lance.tar.gz\n", + "!tar -xvf diffusiondb_lance.tar.gz\n", + "!mv diffusiondb_test rawdata.lance" + ] + }, + { + "cell_type": "markdown", + "id": "e2fcbf61", + "metadata": { + "id": "e2fcbf61" + }, + "source": [ + "## Create / Open LanceDB Table" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "b3317a3c", + "metadata": { + "id": "b3317a3c" + }, + "outputs": [], + "source": [ + "import pyarrow.compute as pc\n", + "import lance\n", + "\n", + "db = lancedb.connect(\"~/datasets/demo\")\n", + "if \"diffusiondb\" in db.table_names():\n", + " tbl = db.open_table(\"diffusiondb\")\n", + "else:\n", + " # First data processing and full-text-search index\n", + " data = lance.dataset(\"rawdata.lance\").to_table()\n", + " # remove null prompts\n", + " # tbl = db.create_table(\"diffusiondb\", data.filter(~pc.field(\"prompt\").is_null()), mode=\"overwrite\") # OOM\n", + " tbl = db.create_table(\"diffusiondb\", data, mode=\"overwrite\")\n", + " tbl.create_fts_index([\"prompt\"])" + ] + }, + { + "cell_type": "markdown", + "id": "d7e4fc03", + "metadata": { + "id": "d7e4fc03" + }, + "source": [ + "## Create CLIP embedding function for the text" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "f8331d87", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 439, + "referenced_widgets": [ + "ce95ce4a0e5346debb0a5f9202214e51", + "029f3597c525493893877e3ed4105951", + "31fc28c33c2a43d6a9f3edfd687a06aa", + "1952bb6499d247018b3bb8987f4c09bd", + "fb28818f86144e4b96bffa9f78f22d0e", + "9cebd2e362d342a8bce9b28f46bd35e2", + "0e317fbb6dd8470992e912e419a28185", + "a913f319f6e246039b11500884328720", + "fdfc01b44f0841dabd221d68752d3d72", + "ab8d874c0a184ca2ba81114e3eaf7409", + "d8b428b1b0464413b4fe5a9d4f111c57", + "daacb1e1a2814655a7d09f65ff8452aa", + "cf61f81503ae4dc08fa09394f3f5cccd", + "ebeadf1ec0c1418499ddbde06f4996f7", + "d005ee7956a44436957aa90c3300424c", + "f95919ae1e9c49bf86b4a5af88e0c2da", + "46ad1889dcac48cdbebad4f05ef09e2b", + "cd263d8c5fd84a35a91d874699f5d51a", + "304da0a1d41b40ac972c8c290c643870", + "40cac08994364eb09a9cc2f9f0bde825", + "aa75ab10ee4f4f85bc83221d7cfd36b6", + "ac69897159f84312b11add482fcf6d07", + "b3ea9b5595e1427a802318a98b514203", + "a8e504801bf54ffb87d250e9321d6aa2", + "4cb8ea17edd645e1aa275602a4abf8e7", + "9d0cad1fdd564482bf011f7fef778d4b", + "25b23989c05e483bbe56cb6605785eb1", + "5eea8e0e481d4f34ae1366bd38ee4434", + "6ad1a3c9c73341c5a2390ca9dd62668d", + "1d189babe20742409805cb9fa555beae", + "76e8ff4bd1ac452ba8251dc1f3228dfd", + "0832ef0b231c4a078603ce3f43781d5f", + "dc9a73097e614bc18aa09ed968050a62", + "772c4c47a58543a8a1a178f40597920f", + "455e6832a03a4c1aa5aab48a9109d91b", + "0bc11bbd6038444cbef4721bfebbd531", + "6d853fdc57cd4f35b4d0b6385177e8b7", + "3c2a47c25bd142adaa5fde9e90d66151", + "a8b9d35c4e424ba9b8a0c6518ad6a1b4", + "7a92918e31854bf4bb6a3e595b7b1a07", + "f8e42c0f4f8c4a6d910387c58676f660", + "78138fe07e094f54a8f372ac3e7dd96f", + "f1d094606e374cf1a86c8855c421ce01", + "6f3b8a6c0f9a4f33ae3b14d34fc2d4ac", + "d9e17ca730e34e44b78bd6a3a5307c7a", + "73e2ca308ae441e68c632dae241da9b0", + "124a9c8793f340fab919e90bcdcfd208", + "776cf021de614b668bdecf6c2f22bc07", + "5cabe7eba19f4fe5a6ebb0a8e019130f", + "320d8f855cdf4223a7efa9c11a9c7d4b", + "98a3539fa99c44f09444a05f65a88a33", + "08784f5ae8d0488980e188dceaf85172", + "e08c37c9b5cf4431b8ac3275f3884ddc", + "428c0c75d4d94234bd6eb0515e602dba", + "5ed4f7ff855440b28d8c0cb443260022", + "8fe30c2025df48bd825ea00bbf623326", + "6f37e35f95a14b5ea1046e672c491c52", + "95923a6c40944ac1b8cf917d8572478a", + "10107106ec1e4fd4b91736b7a9c985c5", + "20d453f0fd2c44bd81a1883bc7584074", + "085bcef04fa94ecb8fcf6df74602c8ca", + "ef32f6da77214a1caa24962a37e706ed", + "3f4e3aa5b1f34b518711148c3e1b1ec7", + "67fdff76b75c4703a483e8cbe0d5ea55", + "1846b4ef6dd94ac29d2ddf90e5a1ce6d", + "29ae5071deec41859a57e5cf6cb37ad5", + "eb38b4cae0e44591acfcedf07cc134cb", + "55d0ca31f24b48ef911ae02fb089c1ad", + "caa0ac3e4c664879a0cc0f6bd2663fa7", + "7e08e9d81ad24353886a5f26ac4d1f1c", + "f8250d657f5240efab2ba1725826ee72", + "5ed78c44b67f435e90b9abca36b86cb8", + "6b6b143e4e5045d6a5710886b3876b1c", + "ce033a7365e640c58f7835007655460b", + "1a4efbd30ac34718b8977845a66369f4", + "87445801dca54689ae4dbca714b4849e", + "19878e3fe3e3479e8bfbdd3f52a12d33", + "26904ea599a140f0b7ab4e74b2d1f608", + "65c145203efd4d7c9a3c1b8eb3a6d306", + "cd67afa173284b84a3d617b07d95f9d0", + "df2f32a0509b41f99e7f0c0fcb08ff35", + "a32279b40489404b842122ad4168a1a7", + "20943327f8ad4e818c22543ecc45a482", + "b6538a0a3b1043adb5cb5c7f07a57938", + "7cac0fb25dba43c38d609b7fe47bb5da", + "3bda882470684f8ea32ac008d86a7c58", + "1338c410755b41688a101be17dcb7a84", + "59d983edf3a641b1b442ed17128ca243" + ] + }, + "id": "f8331d87", + "outputId": "8622151e-5547-4eec-df17-baf7c1d98c03" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_token.py:88: UserWarning: \n", + "The secret `HF_TOKEN` does not exist in your Colab secrets.\n", + "To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n", + "You will be able to reuse this secret in all of your notebooks.\n", + "Please note that authentication is recommended but still optional to access public models or datasets.\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "tokenizer_config.json: 0%| | 0.00/568 [00:00[512]\n", + " child 0, item: float\n", + "image: binary" + ] + }, + "metadata": {}, + "execution_count": 7 + } + ], + "source": [ + "tbl.schema\n", + "# tbl.to_pandas().head() # OOM" + ] + }, + { + "cell_type": "markdown", + "id": "5e4d7a54", + "metadata": { + "id": "5e4d7a54" + }, + "source": [ + "\n", + "## Search functions for Gradio" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "10b8de6d", + "metadata": { + "id": "10b8de6d" + }, + "outputs": [], + "source": [ + "def find_image_vectors(query):\n", + " emb = embed_func(query)\n", + " code = (\n", + " \"import lancedb\\n\"\n", + " \"db = lancedb.connect('~/datasets/demo')\\n\"\n", + " \"tbl = db.open_table('diffusiondb')\\n\\n\"\n", + " f\"embedding = embed_func('{query}')\\n\"\n", + " \"tbl.search(embedding).limit(9).to_df()\"\n", + " )\n", + " return (_extract(tbl.search(emb).limit(9).to_pandas()), code)\n", + "\n", + "\n", + "def find_image_keywords(query):\n", + " code = (\n", + " \"import lancedb\\n\"\n", + " \"db = lancedb.connect('~/datasets/demo')\\n\"\n", + " \"tbl = db.open_table('diffusiondb')\\n\\n\"\n", + " f\"tbl.search('{query}').limit(9).to_df()\"\n", + " )\n", + " return (_extract(tbl.search(query).limit(9).to_pandas()), code)\n", + "\n", + "\n", + "def find_image_sql(query):\n", + " code = (\n", + " \"import lancedb\\n\"\n", + " \"import duckdb\\n\"\n", + " \"db = lancedb.connect('~/datasets/demo')\\n\"\n", + " \"tbl = db.open_table('diffusiondb')\\n\\n\"\n", + " \"diffusiondb = tbl.to_lance()\\n\"\n", + " f\"duckdb.sql('{query}').to_df()\"\n", + " )\n", + " diffusiondb = tbl.to_lance()\n", + " return (_extract(duckdb.sql(query).to_df()), code)\n", + "\n", + "\n", + "def _extract(df):\n", + " image_col = \"image\"\n", + " return [\n", + " (PIL.Image.open(io.BytesIO(row[image_col])), row[\"prompt\"])\n", + " for _, row in df.iterrows()\n", + " ]" + ] + }, + { + "cell_type": "markdown", + "id": "61aaf19b", + "metadata": { + "id": "61aaf19b" + }, + "source": [ + "## Setup Gradio interface" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "b6f40300", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 630 + }, + "id": "b6f40300", + "outputId": "1c9a7f57-a32d-42a7-a61f-b2fc1008c3b3" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + ":21: GradioDeprecationWarning: The `style` method is deprecated. Please set these arguments in the constructor instead.\n", + " gallery = gr.Gallery(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Colab notebook detected. To show errors in colab notebook, set debug=True in launch()\n", + "Running on public URL: https://94fe48d6801f7e6c4d.gradio.live\n", + "\n", + "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "
" + ] + }, + "metadata": {} + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [] + }, + "metadata": {}, + "execution_count": 11 + } + ], + "source": [ + "import gradio as gr\n", + "\n", + "\n", + "with gr.Blocks() as demo:\n", + " with gr.Row():\n", + " with gr.Tab(\"Embeddings\"):\n", + " vector_query = gr.Textbox(value=\"portraits of a person\", show_label=False)\n", + " b1 = gr.Button(\"Submit\")\n", + " with gr.Tab(\"Keywords\"):\n", + " keyword_query = gr.Textbox(value=\"ninja turtle\", show_label=False)\n", + " b2 = gr.Button(\"Submit\")\n", + " with gr.Tab(\"SQL\"):\n", + " sql_query = gr.Textbox(\n", + " value=\"SELECT * from diffusiondb WHERE image_nsfw >= 2 LIMIT 9\",\n", + " show_label=False,\n", + " )\n", + " b3 = gr.Button(\"Submit\")\n", + " with gr.Row():\n", + " code = gr.Code(label=\"Code\", language=\"python\")\n", + " with gr.Row():\n", + " gallery = gr.Gallery(\n", + " label=\"Found images\", show_label=False, elem_id=\"gallery\"\n", + " ).style(columns=[3], rows=[3], object_fit=\"contain\", height=\"auto\")\n", + "\n", + " b1.click(find_image_vectors, inputs=vector_query, outputs=[gallery, code])\n", + " b2.click(find_image_keywords, inputs=keyword_query, outputs=[gallery, code])\n", + " b3.click(find_image_sql, inputs=sql_query, outputs=[gallery, code])\n", + "\n", + "demo.launch(share=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "pEdiGi9EW0ZO", + "metadata": { + "id": "pEdiGi9EW0ZO" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "provenance": [], + "gpuType": "T4" + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.1" + }, + "vscode": { + "interpreter": { + "hash": "511a7c77cb034b09af5465c01316a0f4bb20176d139e60e6d7915f9a637a5037" + } + }, + "accelerator": "GPU", + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "ce95ce4a0e5346debb0a5f9202214e51": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_029f3597c525493893877e3ed4105951", + "IPY_MODEL_31fc28c33c2a43d6a9f3edfd687a06aa", + "IPY_MODEL_1952bb6499d247018b3bb8987f4c09bd" + ], + "layout": "IPY_MODEL_fb28818f86144e4b96bffa9f78f22d0e" + } + }, + "029f3597c525493893877e3ed4105951": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9cebd2e362d342a8bce9b28f46bd35e2", + "placeholder": "​", + "style": "IPY_MODEL_0e317fbb6dd8470992e912e419a28185", + "value": "tokenizer_config.json: 100%" + } + }, + "31fc28c33c2a43d6a9f3edfd687a06aa": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a913f319f6e246039b11500884328720", + "max": 568, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_fdfc01b44f0841dabd221d68752d3d72", + "value": 568 + } + }, + "1952bb6499d247018b3bb8987f4c09bd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ab8d874c0a184ca2ba81114e3eaf7409", + "placeholder": "​", + "style": "IPY_MODEL_d8b428b1b0464413b4fe5a9d4f111c57", + "value": " 568/568 [00:00<00:00, 14.4kB/s]" + } + }, + "fb28818f86144e4b96bffa9f78f22d0e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9cebd2e362d342a8bce9b28f46bd35e2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0e317fbb6dd8470992e912e419a28185": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a913f319f6e246039b11500884328720": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fdfc01b44f0841dabd221d68752d3d72": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ab8d874c0a184ca2ba81114e3eaf7409": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d8b428b1b0464413b4fe5a9d4f111c57": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "daacb1e1a2814655a7d09f65ff8452aa": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cf61f81503ae4dc08fa09394f3f5cccd", + "IPY_MODEL_ebeadf1ec0c1418499ddbde06f4996f7", + "IPY_MODEL_d005ee7956a44436957aa90c3300424c" + ], + "layout": "IPY_MODEL_f95919ae1e9c49bf86b4a5af88e0c2da" + } + }, + "cf61f81503ae4dc08fa09394f3f5cccd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_46ad1889dcac48cdbebad4f05ef09e2b", + "placeholder": "​", + "style": "IPY_MODEL_cd263d8c5fd84a35a91d874699f5d51a", + "value": "vocab.json: 100%" + } + }, + "ebeadf1ec0c1418499ddbde06f4996f7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_304da0a1d41b40ac972c8c290c643870", + "max": 862328, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_40cac08994364eb09a9cc2f9f0bde825", + "value": 862328 + } + }, + "d005ee7956a44436957aa90c3300424c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_aa75ab10ee4f4f85bc83221d7cfd36b6", + "placeholder": "​", + "style": "IPY_MODEL_ac69897159f84312b11add482fcf6d07", + "value": " 862k/862k [00:00<00:00, 7.89MB/s]" + } + }, + "f95919ae1e9c49bf86b4a5af88e0c2da": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "46ad1889dcac48cdbebad4f05ef09e2b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cd263d8c5fd84a35a91d874699f5d51a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "304da0a1d41b40ac972c8c290c643870": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "40cac08994364eb09a9cc2f9f0bde825": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "aa75ab10ee4f4f85bc83221d7cfd36b6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ac69897159f84312b11add482fcf6d07": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b3ea9b5595e1427a802318a98b514203": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a8e504801bf54ffb87d250e9321d6aa2", + "IPY_MODEL_4cb8ea17edd645e1aa275602a4abf8e7", + "IPY_MODEL_9d0cad1fdd564482bf011f7fef778d4b" + ], + "layout": "IPY_MODEL_25b23989c05e483bbe56cb6605785eb1" + } + }, + "a8e504801bf54ffb87d250e9321d6aa2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5eea8e0e481d4f34ae1366bd38ee4434", + "placeholder": "​", + "style": "IPY_MODEL_6ad1a3c9c73341c5a2390ca9dd62668d", + "value": "merges.txt: 100%" + } + }, + "4cb8ea17edd645e1aa275602a4abf8e7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1d189babe20742409805cb9fa555beae", + "max": 524657, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_76e8ff4bd1ac452ba8251dc1f3228dfd", + "value": 524657 + } + }, + "9d0cad1fdd564482bf011f7fef778d4b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0832ef0b231c4a078603ce3f43781d5f", + "placeholder": "​", + "style": "IPY_MODEL_dc9a73097e614bc18aa09ed968050a62", + "value": " 525k/525k [00:00<00:00, 2.66MB/s]" + } + }, + "25b23989c05e483bbe56cb6605785eb1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5eea8e0e481d4f34ae1366bd38ee4434": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6ad1a3c9c73341c5a2390ca9dd62668d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1d189babe20742409805cb9fa555beae": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "76e8ff4bd1ac452ba8251dc1f3228dfd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0832ef0b231c4a078603ce3f43781d5f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dc9a73097e614bc18aa09ed968050a62": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "772c4c47a58543a8a1a178f40597920f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_455e6832a03a4c1aa5aab48a9109d91b", + "IPY_MODEL_0bc11bbd6038444cbef4721bfebbd531", + "IPY_MODEL_6d853fdc57cd4f35b4d0b6385177e8b7" + ], + "layout": "IPY_MODEL_3c2a47c25bd142adaa5fde9e90d66151" + } + }, + "455e6832a03a4c1aa5aab48a9109d91b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a8b9d35c4e424ba9b8a0c6518ad6a1b4", + "placeholder": "​", + "style": "IPY_MODEL_7a92918e31854bf4bb6a3e595b7b1a07", + "value": "tokenizer.json: 100%" + } + }, + "0bc11bbd6038444cbef4721bfebbd531": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f8e42c0f4f8c4a6d910387c58676f660", + "max": 2224041, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_78138fe07e094f54a8f372ac3e7dd96f", + "value": 2224041 + } + }, + "6d853fdc57cd4f35b4d0b6385177e8b7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f1d094606e374cf1a86c8855c421ce01", + "placeholder": "​", + "style": "IPY_MODEL_6f3b8a6c0f9a4f33ae3b14d34fc2d4ac", + "value": " 2.22M/2.22M [00:00<00:00, 6.63MB/s]" + } + }, + "3c2a47c25bd142adaa5fde9e90d66151": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a8b9d35c4e424ba9b8a0c6518ad6a1b4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7a92918e31854bf4bb6a3e595b7b1a07": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f8e42c0f4f8c4a6d910387c58676f660": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "78138fe07e094f54a8f372ac3e7dd96f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f1d094606e374cf1a86c8855c421ce01": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6f3b8a6c0f9a4f33ae3b14d34fc2d4ac": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d9e17ca730e34e44b78bd6a3a5307c7a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_73e2ca308ae441e68c632dae241da9b0", + "IPY_MODEL_124a9c8793f340fab919e90bcdcfd208", + "IPY_MODEL_776cf021de614b668bdecf6c2f22bc07" + ], + "layout": "IPY_MODEL_5cabe7eba19f4fe5a6ebb0a8e019130f" + } + }, + "73e2ca308ae441e68c632dae241da9b0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_320d8f855cdf4223a7efa9c11a9c7d4b", + "placeholder": "​", + "style": "IPY_MODEL_98a3539fa99c44f09444a05f65a88a33", + "value": "special_tokens_map.json: 100%" + } + }, + "124a9c8793f340fab919e90bcdcfd208": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_08784f5ae8d0488980e188dceaf85172", + "max": 389, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e08c37c9b5cf4431b8ac3275f3884ddc", + "value": 389 + } + }, + "776cf021de614b668bdecf6c2f22bc07": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_428c0c75d4d94234bd6eb0515e602dba", + "placeholder": "​", + "style": "IPY_MODEL_5ed4f7ff855440b28d8c0cb443260022", + "value": " 389/389 [00:00<00:00, 23.5kB/s]" + } + }, + "5cabe7eba19f4fe5a6ebb0a8e019130f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "320d8f855cdf4223a7efa9c11a9c7d4b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "98a3539fa99c44f09444a05f65a88a33": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "08784f5ae8d0488980e188dceaf85172": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e08c37c9b5cf4431b8ac3275f3884ddc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "428c0c75d4d94234bd6eb0515e602dba": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5ed4f7ff855440b28d8c0cb443260022": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8fe30c2025df48bd825ea00bbf623326": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6f37e35f95a14b5ea1046e672c491c52", + "IPY_MODEL_95923a6c40944ac1b8cf917d8572478a", + "IPY_MODEL_10107106ec1e4fd4b91736b7a9c985c5" + ], + "layout": "IPY_MODEL_20d453f0fd2c44bd81a1883bc7584074" + } + }, + "6f37e35f95a14b5ea1046e672c491c52": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_085bcef04fa94ecb8fcf6df74602c8ca", + "placeholder": "​", + "style": "IPY_MODEL_ef32f6da77214a1caa24962a37e706ed", + "value": "config.json: 100%" + } + }, + "95923a6c40944ac1b8cf917d8572478a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3f4e3aa5b1f34b518711148c3e1b1ec7", + "max": 4186, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_67fdff76b75c4703a483e8cbe0d5ea55", + "value": 4186 + } + }, + "10107106ec1e4fd4b91736b7a9c985c5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1846b4ef6dd94ac29d2ddf90e5a1ce6d", + "placeholder": "​", + "style": "IPY_MODEL_29ae5071deec41859a57e5cf6cb37ad5", + "value": " 4.19k/4.19k [00:00<00:00, 208kB/s]" + } + }, + "20d453f0fd2c44bd81a1883bc7584074": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "085bcef04fa94ecb8fcf6df74602c8ca": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ef32f6da77214a1caa24962a37e706ed": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3f4e3aa5b1f34b518711148c3e1b1ec7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "67fdff76b75c4703a483e8cbe0d5ea55": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1846b4ef6dd94ac29d2ddf90e5a1ce6d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "29ae5071deec41859a57e5cf6cb37ad5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "eb38b4cae0e44591acfcedf07cc134cb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_55d0ca31f24b48ef911ae02fb089c1ad", + "IPY_MODEL_caa0ac3e4c664879a0cc0f6bd2663fa7", + "IPY_MODEL_7e08e9d81ad24353886a5f26ac4d1f1c" + ], + "layout": "IPY_MODEL_f8250d657f5240efab2ba1725826ee72" + } + }, + "55d0ca31f24b48ef911ae02fb089c1ad": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5ed78c44b67f435e90b9abca36b86cb8", + "placeholder": "​", + "style": "IPY_MODEL_6b6b143e4e5045d6a5710886b3876b1c", + "value": "pytorch_model.bin: 100%" + } + }, + "caa0ac3e4c664879a0cc0f6bd2663fa7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ce033a7365e640c58f7835007655460b", + "max": 605247071, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1a4efbd30ac34718b8977845a66369f4", + "value": 605247071 + } + }, + "7e08e9d81ad24353886a5f26ac4d1f1c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_87445801dca54689ae4dbca714b4849e", + "placeholder": "​", + "style": "IPY_MODEL_19878e3fe3e3479e8bfbdd3f52a12d33", + "value": " 605M/605M [00:08<00:00, 80.1MB/s]" + } + }, + "f8250d657f5240efab2ba1725826ee72": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5ed78c44b67f435e90b9abca36b86cb8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6b6b143e4e5045d6a5710886b3876b1c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ce033a7365e640c58f7835007655460b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1a4efbd30ac34718b8977845a66369f4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "87445801dca54689ae4dbca714b4849e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "19878e3fe3e3479e8bfbdd3f52a12d33": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "26904ea599a140f0b7ab4e74b2d1f608": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_65c145203efd4d7c9a3c1b8eb3a6d306", + "IPY_MODEL_cd67afa173284b84a3d617b07d95f9d0", + "IPY_MODEL_df2f32a0509b41f99e7f0c0fcb08ff35" + ], + "layout": "IPY_MODEL_a32279b40489404b842122ad4168a1a7" + } + }, + "65c145203efd4d7c9a3c1b8eb3a6d306": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_20943327f8ad4e818c22543ecc45a482", + "placeholder": "​", + "style": "IPY_MODEL_b6538a0a3b1043adb5cb5c7f07a57938", + "value": "preprocessor_config.json: 100%" + } + }, + "cd67afa173284b84a3d617b07d95f9d0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7cac0fb25dba43c38d609b7fe47bb5da", + "max": 316, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3bda882470684f8ea32ac008d86a7c58", + "value": 316 + } + }, + "df2f32a0509b41f99e7f0c0fcb08ff35": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1338c410755b41688a101be17dcb7a84", + "placeholder": "​", + "style": "IPY_MODEL_59d983edf3a641b1b442ed17128ca243", + "value": " 316/316 [00:00<00:00, 19.1kB/s]" + } + }, + "a32279b40489404b842122ad4168a1a7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "20943327f8ad4e818c22543ecc45a482": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b6538a0a3b1043adb5cb5c7f07a57938": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7cac0fb25dba43c38d609b7fe47bb5da": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3bda882470684f8ea32ac008d86a7c58": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1338c410755b41688a101be17dcb7a84": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "59d983edf3a641b1b442ed17128ca243": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} \ No newline at end of file diff --git a/examples/multimodal_clip/main.py b/examples/multimodal_clip_diffusiondb/main.py similarity index 100% rename from examples/multimodal_clip/main.py rename to examples/multimodal_clip_diffusiondb/main.py diff --git a/examples/multimodal_clip/requirements.txt b/examples/multimodal_clip_diffusiondb/requirements.txt similarity index 100% rename from examples/multimodal_clip/requirements.txt rename to examples/multimodal_clip_diffusiondb/requirements.txt diff --git a/examples/multimodal_clip/test.py b/examples/multimodal_clip_diffusiondb/test.py similarity index 100% rename from examples/multimodal_clip/test.py rename to examples/multimodal_clip_diffusiondb/test.py diff --git a/examples/multimodal_search/README.md b/examples/multimodal_search/README.md index 07878d9..0cb15a1 100644 --- a/examples/multimodal_search/README.md +++ b/examples/multimodal_search/README.md @@ -1,5 +1,8 @@ # Multimodal Search through Image and Text This example is aimed to guide you through using OpenAI's Clip model to embed a dataset, store it into LanceDB, and search for relevant texts/images. + +![notebook-demo](../../assets/multimodal_search.gif) + Colab walkthrough - Open In Colab ### Get dataset diff --git a/examples/multimodal_video_search/README.md b/examples/multimodal_video_search/README.md index 3923f84..d4389ba 100644 --- a/examples/multimodal_video_search/README.md +++ b/examples/multimodal_video_search/README.md @@ -2,7 +2,7 @@ We used LanceDB to store frames every thirty seconds and the title of 13000+ videos, 5 random from each top category from the Youtube 8M dataset. Then, we used the CLIP model to embed frames and titles together. With LanceDB, we can perform embedding, keyword, and SQL search on these videos. -![lancedb video search demo](https://github.com/lancedb/vectordb-recipes/assets/43354492/17ecaa3d-ef65-4baa-8d91-168f9f1069c0) +![lancedb video search demo](../../assets/multimodal_video_search.gif) Colab walkthrough - Open In Colab diff --git a/examples/product-recommender/lancedb_cloud/main.ipynb b/examples/product-recommender/lancedb_cloud/main.ipynb index caa9149..f3c6f44 100644 --- a/examples/product-recommender/lancedb_cloud/main.ipynb +++ b/examples/product-recommender/lancedb_cloud/main.ipynb @@ -1491,7 +1491,6 @@ "outputs": [], "source": [ "def products_bought_by_user_in_the_past(user_id: int, top: int = 10):\n", - "\n", " selected = data[data.user_id == user_id].sort_values(\n", " by=[\"total_orders\"], ascending=False\n", " )\n", diff --git a/examples/product-recommender/main.ipynb b/examples/product-recommender/main.ipynb index 2a802a7..66c5c68 100644 --- a/examples/product-recommender/main.ipynb +++ b/examples/product-recommender/main.ipynb @@ -1107,7 +1107,6 @@ "outputs": [], "source": [ "def products_bought_by_user_in_the_past(user_id: int, top: int = 10):\n", - "\n", " selected = data[data.user_id == user_id].sort_values(\n", " by=[\"total_orders\"], ascending=False\n", " )\n", diff --git a/examples/product-recommender/main.py b/examples/product-recommender/main.py index ffcb218..776c04f 100644 --- a/examples/product-recommender/main.py +++ b/examples/product-recommender/main.py @@ -12,7 +12,6 @@ def products_bought_by_user_in_the_past(user_id: int, top: int = 10): - selected = data[data.user_id == user_id].sort_values( by=["total_orders"], ascending=False ) diff --git a/examples/search-within-images-with-sam-and-clip/main.ipynb b/examples/search-within-images-with-sam-and-clip/main.ipynb index 5e2dfe8..f45ef59 100644 --- a/examples/search-within-images-with-sam-and-clip/main.ipynb +++ b/examples/search-within-images-with-sam-and-clip/main.ipynb @@ -533,7 +533,6 @@ "source": [ "# find the image using natural language query\n", "def search_image_with_user_query(vector_table, img_id, user_query):\n", - "\n", " text = tokenizer(user_query)\n", " k_embedding = model.encode_text(text).tolist() # Use tolist() instead of to_list()\n", " # Flatten k_embedding to a List[float]\n", diff --git a/tutorials/Accelerate-Vector-Search-Applications-Using-OpenVINO/README.md b/tutorials/Accelerate-Vector-Search-Applications-Using-OpenVINO/README.md index e7ee9c1..a60f368 100644 --- a/tutorials/Accelerate-Vector-Search-Applications-Using-OpenVINO/README.md +++ b/tutorials/Accelerate-Vector-Search-Applications-Using-OpenVINO/README.md @@ -1,5 +1,7 @@ [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Accelerate-Vector-Search-Applications-Using-OpenVINO/clip_text_image_search.ipynb) +## Accelerate vector search Applications using OpenVINO + **CLIP from OpenAI for Text-to-Image and Image-to-Image searching** and we’ll also do a comparative analysis of the Pytorch model, FP16 OpenVINO format, and INT8 OpenVINO format in terms of speedup. Here are a few Key points converted in this article. @@ -12,4 +14,4 @@ Text-to-Image and Image-to-Image Search using CLIP **These Results are on 13th Gen Intel(R) Core(TM) i5–13420H using OpenVINO=2023.2 and NNCF=2.7.0 version.** -[Read More](https://blog.lancedb.com/accelerate-vector-search-applications-using-openvino-51366eabf866) \ No newline at end of file +[Read More in Blog](https://blog.lancedb.com/accelerate-vector-search-applications-using-openvino-51366eabf866) \ No newline at end of file diff --git a/tutorials/Accelerate-Vector-Search-Applications-Using-OpenVINO/clip_text_image_search.ipynb b/tutorials/Accelerate-Vector-Search-Applications-Using-OpenVINO/clip_text_image_search.ipynb index 82ec6b1..87f62b2 100644 --- a/tutorials/Accelerate-Vector-Search-Applications-Using-OpenVINO/clip_text_image_search.ipynb +++ b/tutorials/Accelerate-Vector-Search-Applications-Using-OpenVINO/clip_text_image_search.ipynb @@ -537,7 +537,6 @@ "\n", "\n", "def get_image(image_URL):\n", - "\n", " response = requests.get(image_URL)\n", " image = Image.open(BytesIO(response.content)).convert(\"RGB\")\n", "\n", @@ -545,7 +544,6 @@ "\n", "\n", "def get_image_caption(image_ID):\n", - "\n", " return image_data[image_ID][\"caption\"]" ] }, @@ -1119,14 +1117,12 @@ "\n", "\n", "def plot_images(images):\n", - "\n", " for image in images:\n", " plt.imshow(image)\n", " plt.show()\n", "\n", "\n", "def plot_images_by_side(top_images):\n", - "\n", " index_values = list(top_images.index.values)\n", " list_images = [top_images.iloc[idx].image for idx in index_values]\n", " list_captions = [top_images.iloc[idx].caption for idx in index_values]\n", diff --git a/tutorials/Corrective-RAG-with_Langgraph/CRAG_with_Langgraph.ipynb b/tutorials/Corrective-RAG-with_Langgraph/CRAG_with_Langgraph.ipynb new file mode 100644 index 0000000..a5ea7cc --- /dev/null +++ b/tutorials/Corrective-RAG-with_Langgraph/CRAG_with_Langgraph.ipynb @@ -0,0 +1,805 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "d8Di5OGwUzRu" + }, + "source": [ + "## Corrective RAG(CRAG)\n", + "\n", + "Self-reflection can enhance RAG, enabling correction of poor quality retrieval or generations.\n", + "\n", + "**Corrective Retrieval-Augmented Generation (CRAG) is a method that works like a built-in fact-checker.**\n", + "\n", + "It adds both creativity and accuracy by creating text and then checking for any mistakes or made-up information. This helps make sure the final result is reliable and matches real-world facts. It's like a safety feature for AI writers, making their work more trustworthy and lowering the chances of spreading false information." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "bf_lVgcXfMM-" + }, + "source": [ + "Here we'll see how to implement ideas from the Corrective RAG (CRAG) [Paper](https://arxiv.org/pdf/2401.15884.pdf) using LangGraph." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "gUlaOeBxpIxD" + }, + "outputs": [], + "source": [ + "# installing dependencies (in quiet mode)\n", + "!pip install langchain_community tiktoken langchain-openai lancedb langchain langchainhub langgraph tavily-python sentence-transformers -q" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4cOO-I77fjfx" + }, + "source": [ + "#### Set Tavily Search API Key for web search and OpenAI key\n", + "\n", + "Tavily is a search engine specifically designed for AI agents and large language models (LLMs).\n", + "\n", + "Get free credits [link](https://app.tavily.com/sign-in)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "d37-6ceEpVr8" + }, + "outputs": [], + "source": [ + "import os\n", + "\n", + "os.environ[\"TAVILY_API_KEY\"] = \"tvly-...\"\n", + "os.environ[\"OPENAI_API_KEY\"] = \"sk-...\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DVqIVS5BhZg-" + }, + "source": [ + "Corrective-RAG (CRAG) is a recent paper that talks about a cool way to make a self-reflective RAG.\n", + "\n", + "The method givesating/scores retrieved documents based on how well they answer a question:\n", + "\n", + "For Correct documents -\n", + "\n", + "1. If at least one document is really relevant, it moves on to creating text\n", + "2. Before creating text, it cleans up the knowledge\n", + "3. This breaks down the document into \"knowledge strips\"\n", + "4. It rates each strip and gets rid of ones that don't matter\n", + "\n", + "For Ambiguous or Incorrect documents -\n", + "1. If all documents are not relevant enough or if it's not sure, the method looks for more information\n", + "2. It uses a web search to add more details to what it found\n", + "3. The diagram in the paper also show that they might change the question to get better results.\n", + "\n", + "![x2.png]()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "z3W48wXGmnwT" + }, + "source": [ + "### Building Retriever" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "f74S0SFHp_1s" + }, + "outputs": [], + "source": [ + "from langchain.text_splitter import RecursiveCharacterTextSplitter\n", + "from langchain_community.document_loaders import WebBaseLoader\n", + "from langchain_community.vectorstores import LanceDB\n", + "from langchain_openai import ChatOpenAI, OpenAIEmbeddings\n", + "\n", + "# Using Jay Alammer's articles on Transformers, Bert and using transformers for retrival\n", + "urls = [\n", + " \"https://jalammar.github.io/illustrated-transformer/\",\n", + " \"https://jalammar.github.io/illustrated-bert/\",\n", + " \"https://jalammar.github.io/illustrated-retrieval-transformer/\",\n", + "]\n", + "\n", + "docs = [WebBaseLoader(url).load() for url in urls]\n", + "docs_list = [item for sublist in docs for item in sublist]\n", + "\n", + "# document chunking\n", + "text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(\n", + " chunk_size=250, chunk_overlap=0\n", + ")\n", + "doc_splits = text_splitter.split_documents(docs_list)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "3z6nWU2ruYmD" + }, + "outputs": [], + "source": [ + "import lancedb\n", + "\n", + "\n", + "def lanceDBConnection(embed):\n", + " db = lancedb.connect(\"/tmp/lancedb\")\n", + " table = db.create_table(\n", + " \"crag_demo\",\n", + " data=[{\"vector\": embed.embed_query(\"Hello World\"), \"text\": \"Hello World\"}],\n", + " mode=\"overwrite\",\n", + " )\n", + "\n", + " return table" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "o63KVQsIuYAT" + }, + "outputs": [], + "source": [ + "# Huggingface embeddings\n", + "embedder = OpenAIEmbeddings()\n", + "# LanceDB as vector store\n", + "table = lanceDBConnection(embedder)\n", + "vectorstore = LanceDB.from_documents(\n", + " documents=doc_splits,\n", + " embedding=embedder,\n", + " connection=table,\n", + ")\n", + "\n", + "# ready with our retriever\n", + "retriever = vectorstore.as_retriever()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CazkArNn1rTK" + }, + "source": [ + "### Defining Langgraph\n", + "We will define a graph for building Langgraph.\n", + "\n", + "We can access any Graph node as `state['keys']`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "F09RgJ1tqLNg" + }, + "outputs": [], + "source": [ + "from typing import Dict, TypedDict\n", + "\n", + "from langchain_core.messages import BaseMessage\n", + "\n", + "\n", + "class GraphState(TypedDict):\n", + " \"\"\"\n", + " Represents the state of our graph.\n", + "\n", + " Attributes:\n", + " keys: A dictionary where each key is a string.\n", + " \"\"\"\n", + "\n", + " keys: Dict[str, any]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qSpy-ZriDDXf" + }, + "source": [ + "### Defining Nodes for Langgraph" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "JEdzCdNPUN-I" + }, + "source": [ + "### Nodes and Edges\n", + "\n", + "Each Node will modify the state.\n", + "\n", + "Each Edge will choose which node to call next.\n", + "\n", + "Next Steps:\n", + "1. Retrieve Relevant Documents\n", + "2. If Relevant Document not found, Go for Supplement Retrieval with Web search(using Tavily API).\n", + "3. Query Re-writing to optimize the query for Web search.\n", + "\n", + "Here is our graph flow:\n", + "\n", + "![diagram.png]()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "wbZKwW8sqZF1" + }, + "outputs": [], + "source": [ + "import json\n", + "import operator\n", + "from typing import Annotated, Sequence, TypedDict\n", + "\n", + "from langchain import hub\n", + "from langchain.output_parsers.openai_tools import PydanticToolsParser\n", + "from langchain.prompts import PromptTemplate\n", + "from langchain.schema import Document\n", + "from langchain_community.tools.tavily_search import TavilySearchResults\n", + "from langchain_core.messages import BaseMessage, FunctionMessage\n", + "from langchain_core.output_parsers import StrOutputParser\n", + "from langchain_core.pydantic_v1 import BaseModel, Field\n", + "from langchain_core.runnables import RunnablePassthrough\n", + "from langchain_core.utils.function_calling import convert_to_openai_tool\n", + "\n", + "\n", + "def retrieve(state):\n", + " \"\"\"\n", + " Helper function for retrieving documents\n", + "\n", + " Args:\n", + " state (dict): The current graph state\n", + "\n", + " Returns:\n", + " state (dict): New key added to state, documents, that contains retrieved documents\n", + " \"\"\"\n", + " print(\"*\" * 5, \" RETRIEVE \", \"*\" * 5)\n", + " state_dict = state[\"keys\"]\n", + " question = state_dict[\"question\"]\n", + " documents = retriever.get_relevant_documents(question)\n", + " return {\"keys\": {\"documents\": documents, \"question\": question}}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Q3NxXlZKLT6h" + }, + "outputs": [], + "source": [ + "def generate(state):\n", + " \"\"\"\n", + " Helper function for generating answers\n", + "\n", + " Args:\n", + " state (dict): The current graph state\n", + "\n", + " Returns:\n", + " state (dict): New key added to state, generation, that contains LLM generation\n", + " \"\"\"\n", + " print(\"*\" * 5, \" GENERATE \", \"*\" * 5)\n", + " state_dict = state[\"keys\"]\n", + " question = state_dict[\"question\"]\n", + " documents = state_dict[\"documents\"]\n", + "\n", + " # Prompt\n", + " prompt = hub.pull(\"rlm/rag-prompt\")\n", + "\n", + " # LLM\n", + " llm = ChatOpenAI(model_name=\"gpt-4-0125-preview\", temperature=0, streaming=True)\n", + "\n", + " # Nested function for Post-processing retrieved docs\n", + " def format_docs(docs):\n", + " return \"\\n\\n\".join(doc.page_content for doc in docs)\n", + "\n", + " # RAG Chain\n", + " rag_chain = prompt | llm | StrOutputParser()\n", + "\n", + " # Run generation\n", + " generation = rag_chain.invoke({\"context\": documents, \"question\": question})\n", + " return {\n", + " \"keys\": {\"documents\": documents, \"question\": question, \"generation\": generation}\n", + " }" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "2i0xLjQiLZnb" + }, + "outputs": [], + "source": [ + "def grade_documents(state):\n", + " \"\"\"\n", + " Determines whether the retrieved documents are relevant to the question.\n", + "\n", + " Args:\n", + " state (dict): The current graph state\n", + "\n", + " Returns:\n", + " state (dict): Updates documents key with relevant documents\n", + " \"\"\"\n", + "\n", + " print(\"*\" * 5, \" DOCS RELEVANCE CHECK\", \"*\" * 5)\n", + " state_dict = state[\"keys\"]\n", + " question = state_dict[\"question\"]\n", + " documents = state_dict[\"documents\"]\n", + "\n", + " # Data model\n", + " class grade(BaseModel):\n", + " \"\"\"Binary score for relevance check.\"\"\"\n", + "\n", + " binary_score: str = Field(description=\"Relevance score 'yes' or 'no'\")\n", + "\n", + " # LLM\n", + " model = ChatOpenAI(temperature=0, model=\"gpt-4-0125-preview\", streaming=True)\n", + "\n", + " # Tool\n", + " grade_tool_oai = convert_to_openai_tool(grade)\n", + "\n", + " # LLM with tool and enforce invocation\n", + " llm_with_tool = model.bind(\n", + " tools=[convert_to_openai_tool(grade_tool_oai)],\n", + " tool_choice={\"type\": \"function\", \"function\": {\"name\": \"grade\"}},\n", + " )\n", + "\n", + " # Parser\n", + " parser_tool = PydanticToolsParser(tools=[grade])\n", + "\n", + " # Prompt\n", + " prompt = PromptTemplate(\n", + " template=\"\"\"You are a grader assessing relevance of a retrieved document to a user question. \\n\n", + " Here is the retrieved document: \\n\\n {context} \\n\\n\n", + " Here is the user question: {question} \\n\n", + " If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant. \\n\n", + " Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.\"\"\",\n", + " input_variables=[\"context\", \"question\"],\n", + " )\n", + "\n", + " # Chain\n", + " chain = prompt | llm_with_tool | parser_tool\n", + "\n", + " # Score\n", + " filtered_docs = []\n", + " search = \"No\" # Default do not opt for web search to supplement retrieval\n", + " for d in documents:\n", + " score = chain.invoke({\"question\": question, \"context\": d.page_content})\n", + " grade = score[0].binary_score\n", + " if grade == \"yes\":\n", + " print(\"*\" * 5, \" RATED DOCUMENT: RELEVANT\", \"*\" * 5)\n", + " filtered_docs.append(d)\n", + " else:\n", + " print(\"*\" * 5, \" RATED DOCUMENT: NOT RELEVANT\", \"*\" * 5)\n", + " search = \"Yes\" # Perform web search when documents are not relevant\n", + " continue\n", + "\n", + " return {\n", + " \"keys\": {\n", + " \"documents\": filtered_docs,\n", + " \"question\": question,\n", + " \"run_web_search\": search,\n", + " }\n", + " }" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Q8G1rafvNWjI" + }, + "outputs": [], + "source": [ + "def transform_query(state):\n", + " \"\"\"\n", + " Helper function for transforming the query to produce a better question.\n", + "\n", + " Args:\n", + " state (dict): The current graph state\n", + "\n", + " Returns:\n", + " state (dict): Updates question key with a re-phrased question\n", + " \"\"\"\n", + "\n", + " print(\"*\" * 5, \"TRANSFORM QUERY\", \"*\" * 5)\n", + " state_dict = state[\"keys\"]\n", + " question = state_dict[\"question\"]\n", + " documents = state_dict[\"documents\"]\n", + "\n", + " # Create a prompt template with format instructions and the query\n", + " prompt = PromptTemplate(\n", + " template=\"\"\"You are generating questions that is well optimized for retrieval. \\n\n", + " Look at the input and try to reason about the underlying sematic intent / meaning. \\n\n", + " Here is the initial question:\n", + " \\n --------- \\n\n", + " {question}\n", + " \\n --------- \\n\n", + " Formulate an improved question: \"\"\",\n", + " input_variables=[\"question\"],\n", + " )\n", + "\n", + " # Grader model\n", + " model = ChatOpenAI(temperature=0, model=\"gpt-4-0125-preview\", streaming=True)\n", + "\n", + " # Prompt\n", + " chain = prompt | model | StrOutputParser()\n", + " better_question = chain.invoke({\"question\": question})\n", + "\n", + " return {\"keys\": {\"documents\": documents, \"question\": better_question}}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "LEmdZZlSNdOj" + }, + "outputs": [], + "source": [ + "def web_search(state):\n", + " \"\"\"\n", + " Helper function to do Web search based on the re-phrased question using Tavily API.\n", + "\n", + " Args:\n", + " state (dict): The current graph state\n", + "\n", + " Returns:\n", + " state (dict): Updates documents key with appended web results\n", + " \"\"\"\n", + "\n", + " print(\"*\" * 5, \" WEB SEARCH \", \"*\" * 5)\n", + " state_dict = state[\"keys\"]\n", + " question = state_dict[\"question\"]\n", + " documents = state_dict[\"documents\"]\n", + "\n", + " tool = TavilySearchResults()\n", + " docs = tool.invoke({\"query\": question})\n", + " web_results = \"\\n\".join([d[\"content\"] for d in docs])\n", + " web_results = Document(page_content=web_results)\n", + " documents.append(web_results)\n", + "\n", + " return {\"keys\": {\"documents\": documents, \"question\": question}}" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CzGmF_OvNeb_" + }, + "source": [ + "### Graph Edges" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "HH4S_C95NgOi" + }, + "outputs": [], + "source": [ + "def decide_to_generate(state):\n", + " \"\"\"\n", + " Helper function to determine whether to generate an answer or re-generate a question for web search.\n", + "\n", + " Args:\n", + " state (dict): The current state of the agent, including all keys.\n", + "\n", + " Returns:\n", + " str: Next node to call\n", + " \"\"\"\n", + "\n", + " print(\"*\" * 5, \" DECIDE TO GENERATE \", \"*\" * 5)\n", + " state_dict = state[\"keys\"]\n", + " question = state_dict[\"question\"]\n", + " filtered_documents = state_dict[\"documents\"]\n", + " search = state_dict[\"run_web_search\"]\n", + "\n", + " if search == \"Yes\":\n", + " # All documents have been filtered check_relevance\n", + " # We will re-generate a new query\n", + " print(\"*\" * 5, \" DECISION: TRANSFORM QUERY and RUN WEB SEARCH \", \"*\" * 5)\n", + " return \"transform_query\"\n", + " else:\n", + " # We have relevant documents, so generate answer\n", + " print(\"*\" * 5, \" DECISION: GENERATE \", \"*\" * 5)\n", + " return \"generate\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LT1JY4K5cuHy" + }, + "source": [ + "### Build Graph\n", + "Follow the flow we outlined in the figure above." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "hdOUi1ehqjRD" + }, + "outputs": [], + "source": [ + "import pprint\n", + "\n", + "from langgraph.graph import END, StateGraph\n", + "\n", + "workflow = StateGraph(GraphState)\n", + "\n", + "# Define the nodes\n", + "workflow.add_node(\"retrieve\", retrieve) # retrieve docs\n", + "workflow.add_node(\"grade_documents\", grade_documents) # grade retrieved docs\n", + "workflow.add_node(\"generate\", generate) # generate answers\n", + "workflow.add_node(\"transform_query\", transform_query) # transform_query for web search\n", + "workflow.add_node(\"web_search\", web_search) # web search\n", + "\n", + "# Build graph\n", + "workflow.set_entry_point(\"retrieve\")\n", + "workflow.add_edge(\"retrieve\", \"grade_documents\")\n", + "workflow.add_conditional_edges(\n", + " \"grade_documents\",\n", + " decide_to_generate,\n", + " {\n", + " \"transform_query\": \"transform_query\",\n", + " \"generate\": \"generate\",\n", + " },\n", + ")\n", + "workflow.add_edge(\"transform_query\", \"web_search\")\n", + "workflow.add_edge(\"web_search\", \"generate\")\n", + "workflow.add_edge(\"generate\", END)\n", + "\n", + "# Compile\n", + "app = workflow.compile()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "sv5vy95qqn7m", + "outputId": "9ad28fb7-8013-468e-fb76-fe4630769d5b" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "***** RETRIEVE *****\n", + "{ 'documents': [ Document(page_content='Featured in courses at Stanford, Harvard, MIT, Princeton, CMU and others\\nIn the previous post, we looked at Attention – a ubiquitous method in modern deep learning models. Attention is a concept that helped improve the performance of neural machine translation applications. In this post, we will look at The Transformer – a model that uses attention to boost the speed with which these models can be trained. The Transformer outperforms the Google Neural Machine Translation model in specific tasks. The biggest benefit, however, comes from how The Transformer lends itself to parallelization. It is in fact Google Cloud’s recommendation to use The Transformer as a reference model to use their Cloud TPU offering. So let’s try to break the model apart and look at how it functions.', metadata={'vector': [-0.03292850777506828, 0.0013406849466264248, 0.021762628108263016, -0.010678051970899105, 0.0201500803232193, 0.014241919852793217, -0.006924473214894533, -0.016965635120868683, -0.013428870588541031, -0.04143843054771423, 0.03571997955441475, 0.03726477548480034, -0.007520709186792374, 0.0007080307113938034, 0.015868017449975014, -0.006494234316051006, 0.03048936277627945, 0.009031626395881176, -0.008116945624351501, -0.020448198541998863, -0.025692369788885117, 0.009248439222574234, -0.022697634994983673, -0.020082324743270874, -0.009343295358121395, 0.009939531795680523, 0.04967733472585678, -0.03284720331430435, -0.009153584018349648, -0.03181734308600426, 0.015447943471372128, 0.013916700147092342, -0.01604417897760868, -0.028754856437444687, -0.008184699341654778, -0.011565630324184895, 0.011524978093802929, -0.012690350413322449, 0.01742636412382126, -0.015542799606919289, 0.0319257490336895, 0.024567648768424988, 0.008469266816973686, -0.009255214594304562, -0.011342042125761509, 0.006175789516419172, -0.0009985265787690878, -0.04482613503932953, -0.0019665637519210577, 0.015122723765671253, 0.014634894207119942, 0.03905348479747772, -0.02326676994562149, -0.02559751458466053, -0.027101656422019005, 0.0002434914349578321, -0.010081815533339977, 0.007771399803459644, 0.02009587548673153, -0.011111677624285221, 0.01832071878015995, 0.0027745317202061415, -0.008218576200306416, 0.005962363909929991, -0.011545304208993912, -0.015136274509131908, -0.0016371094388887286, 0.03127530962228775, 0.0014186021871864796, 0.010576420463621616, 0.03777970373630524, 0.024635402485728264, 0.0042447964660823345, -0.011965380050241947, 0.035421863198280334, -0.016924982890486717, -0.014743301086127758, -0.00861155055463314, -0.016924982890486717, 0.013550828211009502, -0.0007380965980701149, -0.0036993760149925947, 0.009688841179013252, -0.0007012552814558148, 0.0016218647360801697, -0.0068228417076170444, 0.00879448652267456, -0.008814812637865543, -0.009973408654332161, 0.010833886452019215, -0.0008122027502395213, 0.001707404269836843, 0.01798194646835327, 0.014661995694041252, 0.01265647355467081, 0.014431631192564964, -0.0019835021812468767, 0.030895886942744255, -0.0033165651839226484, -0.01651845872402191, -0.0026559620164334774, -0.001112861675210297, -0.04021885618567467, -0.016247441992163658, -0.019093114882707596, 0.014729749411344528, 0.01596287451684475, -0.006545050069689751, -0.013943801634013653, -0.006392603274434805, -0.0008435390191152692, 0.02023138478398323, 0.0015109172090888023, -0.04290191829204559, -0.0036587235517799854, 0.003594357054680586, 0.009600760415196419, -0.008096619509160519, 0.007961111143231392, -0.01205346081405878, 0.04330844432115555, 0.01519047748297453, 0.005271271802484989, 0.0003809052868746221, 0.007527485024183989, -0.009797248058021069, -0.005406780168414116, -0.0052983732894063, 0.003413114696741104, -0.021207043901085854, -0.02174907736480236, 0.017290854826569557, -0.0016303339507430792, -0.004966378211975098, -0.0177922360599041, 0.014052208513021469, -0.0031996893230825663, -0.01643715240061283, -0.04198046028614044, -0.0023663132451474667, 0.0019835021812468767, -0.006965125445276499, -0.006318073719739914, -0.01296814251691103, -0.0028778568375855684, 0.03409387916326523, 0.005105274263769388, 0.040787987411022186, 0.02352423593401909, 0.022724736481904984, 0.022670533508062363, -0.026952596381306648, -0.008191474713385105, 0.01121330913156271, 0.03206125646829605, 0.016423601657152176, 0.014241919852793217, 0.006734761409461498, -0.007622340694069862, -0.0013991228770464659, 0.00577603979036212, 0.008035640232264996, -0.010251200757920742, -0.014296123757958412, 0.014783953316509724, 0.023456482216715813, 0.005850569345057011, -0.006985451560467482, 0.009438150562345982, -0.02090892568230629, -0.005806529428809881, 0.021369654685258865, -0.04561208188533783, 0.010542543604969978, -0.0034639304503798485, -0.0026119218673557043, 0.03336213529109955, -0.009390722960233688, -0.022494371980428696, -0.01986551284790039, 0.03658723086118698, -0.010481564328074455, 0.012595494277775288, 0.008537020534276962, -0.0008342228247784078, -0.013605031184852123, 0.010522217489778996, -0.013970903120934963, 0.011511427350342274, -0.030922988429665565, 0.009560108184814453, 0.03187154605984688, 0.0065484377555549145, -0.01487880852073431, -0.6348291635513306, -0.008726732805371284, -0.012859735637903214, -0.008963871747255325, 0.015176926739513874, -0.0005263649509288371, 0.0003383472212590277, 0.00016568003047723323, -0.01007504016160965, 0.012568392790853977, -0.0016574356704950333, -0.021112188696861267, -0.011389469727873802, 0.001235665986314416, -0.01910666562616825, -0.02141030691564083, 0.0029930388554930687, -0.03203415498137474, 0.020434647798538208, 0.026342809200286865, -0.03263039141893387, 0.013530501164495945, -0.02386300638318062, 0.005145926494151354, -0.009925981052219868, 0.011484325863420963, 0.009593985043466091, 0.009783697314560413, 0.005173027981072664, 0.012981693260371685, -0.03168183192610741, 0.0036621112376451492, 0.03371445834636688, -0.00020156856044195592, 0.026559622958302498, 0.00534580135717988, 0.005657470319420099, 0.03352474421262741, 0.0042447964660823345, 0.03712926432490349, -0.008719957433640957, -0.020746316760778427, 0.02899877168238163, 0.02197944186627865, 0.026952596381306648, 0.012202519923448563, 0.0065823146142065525, 0.004586955066770315, -0.010217323899269104, -0.02661382593214512, -0.012548066675662994, 0.014201267622411251, 0.01973000355064869, -0.006555213127285242, 0.0006495927809737623, 0.005274659488350153, 0.033172424882650375, -0.0024272918235510588, 0.018252963200211525, -0.01756187155842781, 0.0015651206485927105, 0.01214154064655304, -0.004705524537712336, -0.010854212567210197, -0.018673039972782135, -0.007032879628241062, 0.011904401704668999, 0.026451215147972107, 0.007229366805404425, -0.027752095833420753, 0.004088961984962225, 0.024405039846897125, 0.011050699278712273, 0.00901807565242052, -0.007690094877034426, 0.02023138478398323, 0.018225861713290215, 0.00901807565242052, 0.016681067645549774, 0.032278068363666534, 0.021396756172180176, -0.02172197587788105, 0.015217579901218414, -0.02680353820323944, -0.005400004331022501, -0.0010137712815776467, -0.015014316886663437, -0.006477295886725187, -0.007107409182935953, -0.02256212756037712, 0.017074041068553925, 0.011220084503293037, -0.030164143070578575, -0.05745550990104675, -0.012270273640751839, 0.010108917020261288, 0.0006953268311917782, 0.009600760415196419, 0.017521219328045845, -0.00421430729329586, 0.0015625798841938376, -0.020014571025967598, -0.0041702669113874435, 0.010915190912783146, 0.01758897304534912, -0.0001675856183283031, -0.008774160407483578, 0.029188483953475952, 0.027277816087007523, -0.01627454347908497, -0.01680302619934082, 0.003396176267415285, -0.014255470596253872, 0.019323479384183884, 0.00320307700894773, -0.027521731331944466, 0.017656726762652397, -0.012893612496554852, -0.010047937743365765, -0.018198760226368904, 0.014282572083175182, -0.01025797612965107, 0.006606028415262699, -0.0012458291603252292, 0.009648188948631287, 0.004088961984962225, 0.013381442986428738, -0.02641056291759014, -0.011917952448129654, 0.015637654811143875, 0.010630623437464237, -0.001188238151371479, 0.020380442962050438, -0.011599508114159107, 0.00985145103186369, 0.019242174923419952, -0.0037739055696874857, -0.003831496462225914, -0.00014493032358586788, -0.017697380855679512, -0.008157597854733467, 0.014309674501419067, 0.01677592284977436, 0.026112444698810577, -0.05485375225543976, 0.008340533822774887, -0.011335266754031181, 0.0035096644423902035, -0.015881570056080818, -0.013984453864395618, -0.0005090029444545507, -0.012351579032838345, -0.027630137279629707, 0.007330997847020626, -0.01967580057680607, -0.018794996663928032, 0.004048309754580259, -0.04333554580807686, -0.020922476425766945, -0.043796271085739136, 0.027752095833420753, 0.0458017960190773, -0.029405295848846436, 0.023930760100483894, -0.013449196703732014, -0.009160359390079975, -0.00341819622553885, 0.043687865138053894, -0.025502657517790794, -0.030299650505185127, 0.021207043901085854, -0.04479903355240822, 0.01815810799598694, 0.002185070887207985, -0.003845047438517213, 0.001308501698076725, -0.007662992924451828, -0.01417416613548994, -0.015868017449975014, -0.014634894207119942, -0.009309418499469757, 0.01981130987405777, -0.014987215399742126, -0.022670533508062363, 0.022467270493507385, 0.01174856722354889, 0.039161890745162964, 0.00645019393414259, -0.025258744135499, 0.010860987938940525, -0.0018124232301488519, -0.01454003807157278, -0.0007321680895984173, 0.016504907980561256, 0.00703965499997139, 0.008083067834377289, 0.020705662667751312, -0.01573251001536846, 0.0006402765866369009, 0.022521473467350006, -0.004471772816032171, -0.0008041569381020963, 0.012216070666909218, -0.02295510098338127, 0.009729493409395218, 0.00181072938721627, 0.0012178805191069841, -0.029405295848846436, 0.0005958129186183214, -0.004512425512075424, 0.01947253756225109, -0.01294104102998972, -0.01894405670464039, -0.023117709904909134, -0.019960368052124977, 0.03870116174221039, -0.005247557535767555, 0.029974430799484253, -0.01930992864072323, 0.0007728206692263484, 0.011125229299068451, -0.001856463379226625, -0.009499129839241505, -0.008719957433640957, 0.005809917114675045, 0.02397141233086586, 0.024188226088881493, 0.011328491382300854, -0.0037806809414178133, -0.0163558479398489, 0.00425834720954299, 0.016152584925293922, 0.012920713983476162, 0.028104417026042938, 0.009526231326162815, -0.003353829961270094, 0.013571154326200485, -0.01333401445299387, 0.018022600561380386, -0.008042415603995323, 0.00514253880828619, 0.008550572209060192, -0.014648444950580597, -0.024066269397735596, 0.024581199511885643, 0.010373158380389214, 0.03444620221853256, -0.014838156290352345, -0.006927860900759697, -0.00858444906771183, -0.015271782875061035, -0.005074784625321627, 0.004915562458336353, 0.008137271739542484, 0.004688586108386517, 0.0014228367945179343, 0.004454834386706352, -0.006667007226496935, 0.02216915227472782, 0.028429636731743813, 0.010068264789879322, 0.009715942665934563, 0.02155936509370804, -0.011545304208993912, 0.017494117841124535, 0.009661739692091942, 0.013638908043503761, -0.011735016480088234, -0.009255214594304562, -0.007696870248764753, -0.0037976193707436323, -0.01664041541516781, 0.004908787086606026, -0.0489455871284008, 0.008760609664022923, 0.022128500044345856, -0.011538528837263584, 0.034663014113903046, -0.010332505218684673, 0.044419609010219574, -0.008862241171300411, -0.05244170501828194, 0.004454834386706352, -0.0031082211062312126, -0.01981130987405777, -0.02040754444897175, -0.03208835795521736, -0.00602673040702939, -0.008408288471400738, 0.003250504843890667, -0.01664041541516781, 0.004400630947202444, -0.0019987470004707575, 0.00036036729579791427, -0.015691857784986496, -0.0027271038852632046, 0.022304661571979523, -0.005945425480604172, 0.012703901156783104, -0.028565144166350365, -0.0015532636316493154, 0.006958350073546171, -0.03450040519237518, -0.006999002769589424, 0.02206074632704258, -0.020814070478081703, -0.018469776958227158, -0.010501890443265438, -0.008191474713385105, -0.020475300028920174, 0.026735782623291016, -0.004082186613231897, 0.010474788956344128, -0.03360605239868164, 0.014052208513021469, -0.006826229393482208, 0.014716198667883873, 0.009986959397792816, 0.0251232348382473, 0.017887091264128685, -0.0022087846882641315, -0.01823941245675087, 0.008537020534276962, 0.022697634994983673, 0.07252402603626251, 0.01792774349451065, -0.033118221908807755, 0.014092860743403435, -0.03937870264053345, -0.003485950408503413, -0.020326239988207817, -0.027467528358101845, 0.009966633282601833, -0.00817792396992445, -0.00762911606580019, -0.013347565196454525, 0.010915190912783146, -0.012446435168385506, 0.03303691744804382, 0.026491869240999222, -0.005610042251646519, -0.015786712989211082, -0.005349189043045044, -0.016789475455880165, 0.00838796142488718, -0.020272037014365196, 0.029296889901161194, 0.008869016543030739, 0.03433779627084732, -0.019242174923419952, 0.027318468317389488, 0.027860501781105995, 0.016504907980561256, -0.01361180655658245, -0.005427106283605099, -0.01146399974822998, -0.012690350413322449, -0.0026102280244231224, -0.026207301765680313, 0.04217017441987991, -0.0034673181362450123, 0.01700628735125065, 0.00037455331766977906, 0.006284196395426989, 0.004024595487862825, 0.03303691744804382, 0.009953082539141178, -0.011443673633038998, -0.018103905022144318, -0.029947329312562943, 0.02624795399606228, 0.023673294112086296, -0.021884584799408913, -0.024581199511885643, 0.0012170335976406932, 0.0018869527848437428, -0.04433830454945564, 0.005498248152434826, 0.013638908043503761, -0.003618071088567376, 0.003997494000941515, 0.010786457918584347, -0.010752581059932709, -0.006670394912362099, -0.020475300028920174, -0.029974430799484253, -0.0003730712051037699, 0.00017213785031344742, 0.012913938611745834, -0.0011425040429458022, -0.000349357258528471, -0.018117455765604973, -0.01840202324092388, 0.01907956413924694, 0.006077545695006847, -0.027833400294184685, -0.05170996114611626, -0.005054458510130644, 0.02661382593214512, 0.006978676188737154, 0.02989312633872032, -0.008801261894404888, -0.02054305374622345, 0.021992992609739304, -0.008462491445243359, -0.028429636731743813, 0.011782444082200527, -0.02216915227472782, -0.008814812637865543, -0.002630554372444749, -0.015000766143202782, -0.00042049912735819817, -0.013191730715334415, 0.0038247210904955864, -0.0028609184082597494, 0.0011179432040080428, 0.01355760358273983, -0.001084913033992052, 0.0013881127815693617, 0.02967631258070469, 0.024906421080231667, 0.02174907736480236, 0.01986551284790039, -0.033849965780973434, 0.006304522510617971, -0.025245191529393196, -0.005610042251646519, -0.02562461607158184, 0.023388726636767387, 0.005156089551746845, 0.025502657517790794, 0.011992481537163258, 0.017805786803364754, -0.01683012768626213, 0.019608046859502792, -0.0036756619811058044, -0.010298628360033035, -0.0033894008956849575, 0.009309418499469757, 0.0027813073247671127, 0.008320207707583904, 0.008841914124786854, -0.008774160407483578, -0.029351092875003815, -0.0160983819514513, -0.027020350098609924, 0.03417518734931946, 0.013198506087064743, -0.003064180724322796, 0.001883565098978579, -0.00045310580753721297, -0.004807156044989824, -0.0189711581915617, 0.021654222160577774, -0.008164373226463795, 0.03347054123878479, 0.010671276599168777, 0.0025915957521647215, -0.029567906633019447, -0.004790217150002718, -0.006887208204716444, -0.009126481600105762, -0.012886837124824524, -0.01683012768626213, 0.004888460971415043, -0.008665753528475761, -0.019770655781030655, -0.013571154326200485, 0.02756238356232643, -0.019093114882707596, -0.023090608417987823, 0.01012924313545227, 0.017182448878884315, 0.02829412929713726, 0.0006085167988203466, 0.00991920568048954, -0.037752602249383926, -0.008001763373613358, 0.0077104209922254086, -0.01790064200758934, 0.003231872571632266, -0.004139777738600969, 0.015095622278749943, 0.02127479761838913, 0.040842194110155106, 0.0018988096853718162, -0.002451005857437849, 0.041411325335502625, -0.0251232348382473, -0.00038386951200664043, 0.014661995694041252, 0.019513191655278206, -0.00783915352076292, -0.003692600643262267, 0.015895120799541473, 0.00600640382617712, 0.01080678403377533, 0.010325729846954346, 0.016084831207990646, 0.001335603417828679, 0.012039910070598125, -0.003651948180049658, -0.010027611628174782, -0.02122059464454651, -0.016789475455880165, 0.021627120673656464, -0.008198250085115433, -0.015041418373584747, -0.02470315806567669, 0.005481309723109007, 0.028077315539121628, 0.02562461607158184, 0.02981182187795639, 0.017467016354203224, 0.016789475455880165, 0.0022900898475199938, -0.006351950578391552, 0.012778431177139282, 0.034663014113903046, -0.026573173701763153, -0.004343039821833372, -0.036993756890296936, -0.005193354561924934, 0.03723767399787903, 0.00972271803766489, 0.004637770354747772, 0.008747058920562267, -0.0035706430207937956, -0.006541662383824587, 0.015868017449975014, -0.007351323962211609, -0.01800904981791973, -0.015488595701754093, -0.013876047916710377, -0.008625101298093796, -0.013279811479151249, -0.018510429188609123, -0.007303896360099316, 0.00802208948880434, -0.003062486881390214, -0.009912430308759212, 0.007873030379414558, -0.028781957924365997, -0.02242661826312542, 0.036126505583524704, 0.016992736607789993, 0.046750351786613464, 0.013002019375562668, 0.030977191403508186, 0.01756187155842781, 0.002720328513532877, -0.0052340067923069, -0.008618325926363468, -0.0018361371476203203, 0.02323966845870018, 0.008076292462646961, 0.0008007692522369325, -0.004105900414288044, -0.031031396239995956, 0.00647052051499486, 0.010298628360033035, -0.00920101162046194, -0.038457248359918594, 0.012541291303932667, 0.013523725792765617, 0.007520709186792374, -0.013774416409432888, -0.027657238766551018, 0.0010451074922457337, 0.010705153457820415, -0.01528533361852169, 0.02402561530470848, 0.011179432272911072, -0.015542799606919289, -0.012527740560472012, 0.0027237161993980408, 0.00455307774245739, 0.010427361354231834, -0.011694363318383694, 0.007649442180991173, 0.033904168754816055, 0.0011433509644120932, 0.0037908439990133047, -0.004698749165982008, 0.0033741560764610767, 0.01448583509773016, -0.02164067141711712, 0.009871777147054672, 0.00895032100379467, -0.006951574701815844, 0.008110170252621174, -0.0010501891374588013, -0.016762372106313705, 0.03214256092905998, -0.037698399275541306, -0.015515698119997978, 0.01714179664850235, -0.015122723765671253, 0.01233802828937769, -0.03902638331055641, -0.0028592245653271675, 0.0018158109160140157, -0.01028507761657238, -0.006853331346064806, 0.017182448878884315, 0.020732766017317772, -0.03951421007514, 0.0057794274762272835, 0.020583705976605415, -0.011626609601080418, -0.013693111948668957, 0.005034132394939661, 0.014214818365871906, -0.03336213529109955, -0.01445873361080885, 0.010833886452019215, -0.0013415318680927157, 0.02680353820323944, -0.014323225244879723, -0.009892103262245655, -0.017399262636899948, 0.02706100232899189, -0.009973408654332161, -0.009343295358121395, 0.015800263732671738, 0.0016709864139556885, -0.010488339699804783, 0.02248082123696804, -0.004525976255536079, -0.017304405570030212, 0.007595238741487265, -0.0223724152892828, -0.019946817308664322, 0.004519200883805752, -0.004309162963181734, 0.0036756619811058044, 0.010515442118048668, 0.0035299905575811863, -0.01598997600376606, 0.005423718597739935, -0.008936770260334015, -0.009451702237129211, -0.00014302475028671324, -0.023564888164401054, -0.007378425914794207, 0.006277421023696661, 0.0329827144742012, -0.030841683968901634, 0.006301134824752808, -0.027941806241869926, -0.010833886452019215, -0.014811054803431034, -0.0371563658118248, 0.002569575561210513, -0.01756187155842781, 0.012399007566273212, -0.0057455506175756454, -0.004000881686806679, 0.022250458598136902, 0.004725851118564606, -0.020475300028920174, 0.01100327167659998, 0.0016642110422253609, 0.0018801772966980934, -0.008198250085115433, 0.010996496304869652, 0.025502657517790794, 0.003485950408503413, -0.03740028291940689, -0.007764624431729317, -0.00018928811186924577, 0.005379678215831518, -0.027657238766551018, -0.021166391670703888, -0.010976170189678669, 0.0282670259475708, 0.007053205743432045, -0.018849199637770653, -0.009844675660133362, -0.018225861713290215, -0.027914704754948616, -0.012852960266172886, -0.013930250890552998, 0.016342297196388245, 0.00320307700894773, 0.01840202324092388, 0.006094484589993954, 0.013117201626300812, 0.0076562175527215, 0.009966633282601833, 0.0057794274762272835, 0.029947329312562943, -0.025895632803440094, -0.009519455954432487, -0.02164067141711712, 0.003367380704730749, -0.046967167407274246, -0.011159106157720089, 0.004475160501897335, -0.023591989651322365, 0.0032386479433625937, 0.019540293142199516, 0.008753834292292595, -0.0035367661621421576, -0.0019716452807188034, 0.01641005091369152, -0.0019360744627192616, 0.019093114882707596, 0.03216966241598129, -0.02697969786822796, -0.0023612314835190773, -0.005471146199852228, -0.02174907736480236, -0.0097498195245862, 0.0050442954525351524, 0.009878552518785, 0.00851669441908598, 0.0029252846725285053, -0.02197944186627865, 0.013930250890552998, 0.019635148346424103, 0.0013779497239738703, 0.017074041068553925, 0.0033639930188655853, -0.0023544561117887497, 0.014960113912820816, 0.01761607453227043, -0.019187970086932182, -0.009966633282601833, 0.014743301086127758, -0.013821844011545181, -0.024486344307661057, 0.026058241724967957, -0.028890365734696388, 0.0019835021812468767, -0.005030744709074497, -0.002498433692380786, -0.008686079643666744, -0.005257721059024334, -0.0006343480781652033, 0.0025390861555933952, -0.026789987459778786, 0.02661382593214512, -0.002362925559282303, -0.03815912827849388, 0.014282572083175182, -0.005874283611774445, 0.018307168036699295, -0.017101144418120384, -0.005677796434611082, 0.009411049075424671, -0.013523725792765617, -0.012019583024084568, 0.00703965499997139, -0.009614312089979649, -0.024039166048169136, -0.002821959787979722, 0.013747314922511578, -0.011680812574923038, -0.009783697314560413, 0.21106769144535065, -0.020001020282506943, -0.0022172541357576847, 0.010278302244842052, 0.011328491382300854, 0.010935517027974129, 0.01800904981791973, 0.016369398683309555, -0.025583963841199875, -0.011809545569121838, 0.03504243865609169, -0.004942663945257664, -0.04249539226293564, -0.006019955035299063, 0.01482460554689169, -0.027277816087007523, -0.03948710858821869, -0.0382133312523365, -0.005925098899751902, -0.004536139313131571, 0.014689097180962563, -0.008970647118985653, -0.004681810736656189, -0.03807782381772995, 0.008869016543030739, 0.0024848829489201307, 0.0009883634047582746, -0.007005778141319752, 0.021491611376404762, 0.024188226088881493, -0.033091120421886444, 0.007168387994170189, 0.012249947525560856, 0.016870779916644096, -0.021030884236097336, -0.00913325697183609, 0.01487880852073431, -0.009275540709495544, 0.011362368240952492, 0.006104647647589445, 0.006873657461255789, 0.007114184554666281, 0.009363621473312378, -0.00199197162874043, 0.00023205792240332812, 0.018483327701687813, -0.02389010787010193, 0.0050612338818609715, -0.004712299909442663, 0.005139151122421026, -0.025746572762727737, 0.0018429126357659698, 0.007568137254565954, 0.036912452429533005, 0.0011170962825417519, 0.019431885331869125, -0.00288801989518106, 0.02012297883629799, 0.03355184569954872, 0.014241919852793217, -0.012961367145180702, 0.011897626332938671, -0.011077800765633583, 0.025611065328121185, 0.014269021339714527, 0.003926352132111788, -0.01815810799598694, 0.035503167659044266, 0.010251200757920742, -0.011457224376499653, -0.011497876606881618, -0.01407930999994278, -0.022182703018188477, -0.008001763373613358, -0.03788811340928078, -0.01666751690208912, 0.04111320897936821, 0.015122723765671253, 0.016586212441325188, 0.026789987459778786, -0.005379678215831518, -0.025041930377483368, 0.007920457981526852, -0.009600760415196419, 0.00966851506382227, -0.028483839705586433, 0.010461238212883472, -0.0030506299808621407, -0.0019208298763260245, -0.004634382668882608, 0.018903404474258423, -0.026261504739522934, -0.010041162371635437, -0.0014507854357361794, -0.02352423593401909, -0.0066737825982272625, 0.033795762807130814, 0.010854212567210197, 0.013483073562383652, -0.013144303113222122, -0.026871291920542717, 0.031654730439186096, 0.032359376549720764, 0.0005687112570740283, -0.0035706430207937956, 0.014431631192564964, 0.014865257777273655, 0.01155207958072424, -0.012094113044440746, -0.003912801388651133, -0.0012678492348641157, -0.050110962241888046, 0.011145555414259434, 0.0017683830810710788, -0.012385456822812557, 0.00951268058270216, -0.020421097055077553, -0.0030269159469753504, 0.0232938714325428, -0.015746060758829117, -0.00011602896120166406, -0.025773674249649048, -0.009180685505270958, 0.006802515592426062, 0.00045818736543878913, -0.016139034181833267, -0.016992736607789993, -0.006440030876547098, -0.021288348361849785, 0.014011556282639503, 0.002318885177373886, -0.04127581790089607, 0.021207043901085854, 0.001632874715141952, -0.014363877475261688, -0.023768151178956032, 7.209463365143165e-05, 0.008035640232264996, 0.012622595764696598, 0.01737215928733349, -0.009363621473312378, -0.007778175175189972, -0.005311924032866955, -0.0030658745672553778, 0.0012000950518995523, -0.02441859059035778, 0.008462491445243359, 0.02124769613146782, 0.013354340568184853, -0.012161866761744022, -0.014634894207119942, 0.023470032960176468, 0.005352576728910208, -0.026234403252601624, 0.022629881277680397, -0.01716889813542366, -0.021600017324090004, -0.03290140628814697, 0.004224470350891352, -0.014675546437501907, -0.03607230260968208, -0.010698378086090088, 0.017629625275731087, -0.0007567289867438376, -0.01669461838901043, -0.0003938209265470505, -0.17236651480197906, -0.0044683851301670074, 0.021627120673656464, -0.025583963841199875, 0.02315836399793625, 0.0035808063112199306, 0.01941833458840847, -0.00407541124150157, -0.022616330534219742, -0.005227231420576572, 0.020529503002762794, -0.022778939455747604, -0.008652202785015106, -0.01865948922932148, -0.0066568441689014435, 0.006971900817006826, -0.014770402573049068, -0.004841032903641462, 0.012609045021235943, 0.008435389958322048, 0.03777970373630524, -0.036234911531209946, 0.007635891437530518, 0.008157597854733467, -0.00817792396992445, 0.0194996390491724, 0.0049867043271660805, 0.03496113419532776, 0.02829412929713726, -0.028619349002838135, -0.0027440425474196672, -0.00861155055463314, 0.04271220788359642, -0.014580690301954746, 0.006463745143264532, 0.013340789824724197, 0.012697125785052776, -0.03490693122148514, -0.025001278147101402, 0.01907956413924694, 0.026261504739522934, -0.004993479698896408, 0.002425597980618477, 0.002478107577189803, -0.019743554294109344, -0.012974917888641357, 0.028890365734696388, -0.013889598660171032, 0.021871034055948257, -0.024147573858499527, 0.027616586536169052, -0.009004524908959866, -0.008137271739542484, 0.006785577163100243, -0.007547811139374971, 0.007195489481091499, 0.004942663945257664, 0.0052340067923069, 0.0011179432040080428, -0.01855108141899109, -0.019377682358026505, 0.0009375478839501739, 0.023849455639719963, 0.0014592546503990889, 0.001086606876924634, -0.011531753465533257, 0.01261582039296627, 0.023171914741396904, -0.031763140112161636, 0.010711928829550743, -0.01632874645292759, 0.025190988555550575, -0.032955609261989594, -0.02250792272388935, 0.00026868749409914017, 0.026993248611688614, -0.03813202679157257, 0.0041872053407132626, 0.003340278984978795, 0.0011475856881588697, -0.012852960266172886, 0.03208835795521736, -0.014418080449104309, 0.014038657769560814, -0.005945425480604172, -0.010610297322273254, -0.003485950408503413, 0.0177922360599041, -0.04431120306253433, -0.020028121769428253, 0.019038911908864975, -0.021112188696861267, -0.002556024817749858, 0.006297747138887644, 0.01519047748297453, 0.021843932569026947, 0.022291110828518867, -0.029567906633019447, 0.02441859059035778, -0.003172587603330612, -0.008462491445243359, 0.013930250890552998, -0.0019462376367300749, -0.007141286041587591, 0.01573251001536846, 0.027237163856625557, -0.01781933754682541, -0.001646425575017929, 0.02978471852838993, 0.005454207770526409, -0.01981130987405777, -0.021464509889483452, 0.01108457613736391, 0.0048207067884504795, -0.0025899019092321396, 0.02028558775782585, -0.0035401538480073214, 0.0037332531064748764, 0.022684084251523018, 0.014838156290352345, 0.059135813266038895, 0.0012509106891229749, -0.012317701242864132, 0.0027830011676996946, -0.01722310110926628, -0.04263089969754219, -0.10585907101631165, -0.020448198541998863, 0.011389469727873802, 0.015840915963053703, 0.00030595227144658566, 0.008679304271936417, -0.014431631192564964, 0.019187970086932182, -0.027237163856625557, 0.028754856437444687, -0.03436489775776863, -0.02528584562242031, 0.024228878319263458, -0.005403392016887665, -0.00291173392906785, -0.019066013395786285, 0.021179942414164543, -0.0011941666016355157, -0.024350836873054504, 0.03954131156206131, -0.008699631318449974, 0.011375918984413147, 0.017385710030794144, -0.020339790731668472, -0.010678051970899105, -0.0032589740585535765, -0.024987727403640747, 0.011897626332938671, 0.01077968254685402, -0.01700628735125065, 0.012243172153830528, -0.024323733523488045, 0.012886837124824524, -0.021030884236097336, 0.02177617885172367, 0.002232498722150922, -0.01567830704152584, -0.0067483121529221535, 0.02028558775782585, -0.018361371010541916, -0.0071006338112056255, -0.00858444906771183, 0.0020851334556937218, 0.010745805688202381, -0.016206789761781693, -0.010488339699804783, -0.019960368052124977, 0.020502401515841484, 0.01139624509960413, -0.0260446909815073, -0.02310415916144848, 0.014404529705643654, -0.03677694499492645, 0.010603521950542927, 0.025773674249649048, 0.0008782630320638418, 0.007466506212949753, -0.011660486459732056, -0.006077545695006847, -0.0021037659607827663, 0.011599508114159107, -0.011050699278712273, -0.017209550365805626, 0.039893634617328644, 0.027332019060850143, -0.009627862833440304, -0.011348817497491837, -0.02567881904542446, -0.0015981508186087012, -0.027887603268027306, -0.0038755368441343307, 0.011809545569121838, 0.005108661949634552, 0.0072090402245521545, -0.033226627856492996, 0.004549690056592226, -0.01745346561074257, -0.012683575041592121, 0.0005555839161388576, -0.0030658745672553778, -0.016789475455880165, -0.01711469516158104, -0.006111423019319773, -0.01795484498143196, -0.011843422427773476, -0.006094484589993954, -0.008753834292292595, -0.03661433607339859, 0.00703965499997139, -0.03704795986413956, 0.002288396004587412, 0.04284771531820297, 0.007107409182935953, 0.0003567678795661777, 0.008266004733741283, -0.003475787350907922, -0.009004524908959866, -0.008990973234176636, -0.003946678247302771, 0.03669564053416252, -0.007723971735686064, -0.011301389895379543, -0.06200858950614929, 0.006382439751178026, -0.008774160407483578, -0.007757849059998989, -0.0014888971345499158, 0.002991345012560487, 0.013577929697930813, 0.005677796434611082, -0.013998005539178848, -0.011348817497491837, -0.023876557126641273, -0.010088590905070305, 0.000378999684471637, -0.0005305995582602918, -0.02905297465622425, -0.022440169006586075, 0.022209804505109787, -0.016870779916644096, 0.01090164016932249, 0.012195744551718235, 0.011972155421972275, 0.006138524506241083, 0.02174907736480236, 0.029513703659176826, -0.014404529705643654, -0.030814582481980324, 0.01688433066010475, 0.012006032280623913, -0.0009527925867587328, -0.0009477109997533262, 0.0046547092497348785, -0.007574912626296282, 0.0057455506175756454, 0.022209804505109787, 0.0014787339605391026, 0.0054474323987960815, -0.0038721489254385233, 0.019621597602963448, 0.013930250890552998, 0.031139802187681198, -0.01936413161456585, -0.05092401057481766, 0.010928741656243801, -0.010088590905070305, -0.01601707749068737, -0.009898878633975983, -0.0009976796573027968, 0.0018666265532374382, 0.013760865665972233, 0.007642666809260845, 0.006511172745376825, 0.01832071878015995, -0.0013457664754241705, -0.0198926143348217, -0.015122723765671253, 0.027697892859578133, 0.01567830704152584, -0.007805276662111282, -0.006453581620007753, -0.0012873285450041294, 0.03653302788734436, 0.004962990526109934, 0.005203517619520426, -0.0012653084704652429, 0.012439659796655178, 0.003784068627282977, -0.025421353057026863, -0.0058370186015963554, 0.005582940764725208, -0.03482562676072121, 0.007391976658254862, -0.009844675660133362, 0.02588208205997944, 0.011978930793702602, 0.024540547281503677, 0.005738775245845318, -0.014905910938978195, -0.011518202722072601, -0.030922988429665565, 0.02593628503382206, 0.013571154326200485, 0.009268765337765217, -0.010190221481025219, 0.01876789517700672, 0.020949577912688255, 0.012697125785052776, -0.006460356991738081, -0.0031200782395899296, -0.01355760358273983, 0.0076562175527215, 0.013666009530425072, 0.012127989903092384, 0.013327239081263542, -0.003397870110347867, -0.001734505989588797, 0.016477804630994797, -0.0002483612624928355, 0.0023392115253955126, 0.013273036107420921, 0.002811796497553587, 0.020759867504239082, -0.0011340348282828927, -0.015312435105443, -0.01790064200758934, -0.04189915582537651, 0.0008054273203015327, -0.030055735260248184, -0.01933703012764454, 0.0008105089073069394, 0.0198926143348217, 0.01745346561074257, -0.015691857784986496, 0.005359352100640535, -0.0006449346547015011, -0.014390978962182999, 0.02402561530470848, 3.385059972060844e-05, -0.009404273703694344, -0.029323991388082504, -0.004238021094352007, 0.03431069478392601, 0.010881314054131508, 0.029378194361925125, 0.005942037794739008, 0.036858249455690384, 0.01863238774240017, 0.008259229362010956, -0.024919971823692322, 0.029703414067626, 0.01834782026708126, -0.007520709186792374, 0.007161612622439861, 0.009682065807282925, -0.013469522818922997, -0.01090164016932249, -0.007114184554666281, -0.008618325926363468, 0.02284669503569603, 0.0001381549081997946, 0.08320207893848419, 0.0175347700715065, -0.010420585982501507, 0.0017175674438476562, 0.004353203345090151, 0.0007808664813637733, 0.01986551284790039, 0.007859479635953903, -0.021112188696861267, 0.014241919852793217, -0.00600640382617712, 0.012609045021235943, -0.029351092875003815, 0.004326101392507553, -0.003574030939489603, 0.017317956313490868, -0.006849943660199642, 0.007466506212949753, -0.015054970048367977, -0.016206789761781693, 0.024947073310613632, -0.02483866736292839, 0.021532263606786728, -0.0011077801464125514, -0.013970903120934963, -0.010854212567210197, 0.0201500803232193, 0.016545560210943222, 0.0054474323987960815, -0.027413325384259224, 0.01907956413924694, 0.006944799330085516, -0.04507005214691162, -0.02475736290216446, 0.0011374225141480565, 3.705304334289394e-05, -0.0032860757783055305, -0.008381186053156853, 0.02973051555454731, -0.0016108546406030655, 0.000994291971437633, 0.03132951259613037, -0.006575539242476225, -0.027860501781105995, -0.015271782875061035, -0.001975032966583967, -0.0024747196584939957, -0.03211545944213867, -0.005552451126277447], '_distance': 0.3519055247306824}),\n", + " Document(page_content='The Transformer was proposed in the paper Attention is All You Need. A TensorFlow implementation of it is available as a part of the Tensor2Tensor package. Harvard’s NLP group created a guide annotating the paper with PyTorch implementation. In this post, we will attempt to oversimplify things a bit and introduce the concepts one by one to hopefully make it easier to understand to people without in-depth knowledge of the subject matter.\\n2020 Update: I’ve created a “Narrated Transformer” video which is a gentler approach to the topic:', metadata={'vector': [-0.02712874673306942, -0.005967519711703062, 0.029046399518847466, -0.01589103601872921, 0.029260961338877678, 0.0017349390545859933, -0.007067152764648199, -0.015327810309827328, -0.01750025525689125, -0.0014390774304047227, 0.027571281418204308, 0.020370028913021088, -0.014415918849408627, 0.0084215784445405, 0.010935982689261436, -0.012665892951190472, 0.013054787181317806, 0.006879410240799189, -0.011834463104605675, -0.016159238293766975, -0.019069243222475052, 0.015233938582241535, -0.006835827603936195, -0.012397689744830132, -0.017218641936779022, 0.013007852248847485, 0.03218437731266022, -0.03462502360343933, -0.011552849784493446, -0.018640117719769478, 0.0340886190533638, 0.003489993279799819, -0.01646767184138298, -0.02754446119070053, -0.01162660587579012, -0.01054038293659687, -0.00021278146596159786, -0.011914924718439579, 0.029073219746351242, -0.02346777357161045, 0.022743625566363335, 0.013249235227704048, -0.00035390243283472955, -0.01778186857700348, -0.02378961816430092, 0.0046767923049628735, -0.007536508142948151, -0.03462502360343933, -0.0038855932652950287, 0.020437078550457954, 0.02454058639705181, 0.02565363049507141, -0.021523302420973778, -0.025506118312478065, -0.02100030519068241, 0.0025646924041211605, 0.0003545310173649341, 0.03416907787322998, 0.011914924718439579, -0.005645676050335169, 0.007020216900855303, -0.006410054862499237, -0.016293341293931007, 0.010942688211798668, -0.020571179687976837, -0.012458035722374916, -0.0013276055688038468, 0.029824187979102135, 0.0008469352032989264, 0.00779130170121789, 0.03046787716448307, 0.02800040692090988, 0.004096802789717913, -0.014402508735656738, 0.03784346207976341, -0.018640117719769478, -0.009340174496173859, -0.011244416236877441, -0.008944574743509293, 0.006094916258007288, 0.005541747435927391, -0.0025797788985073566, 0.015421681106090546, 0.03076290152966976, 0.007932107895612717, 0.005592035595327616, 0.022609524428844452, 0.006792244501411915, -0.010580613277852535, 0.01090916246175766, 0.016655415296554565, 0.0058032451197505, 0.0050086937844753265, 0.01682974584400654, 0.025988884270191193, 0.04299296438694, -0.011103609576821327, 0.032130736857652664, 0.003949291072785854, -0.0274640005081892, -0.004264429677277803, 4.4709253415931016e-05, -0.023829849436879158, -0.006614559795707464, -0.005535042379051447, -0.018465785309672356, 0.006912935990840197, 0.004958405625075102, -0.01732592284679413, 0.023601876571774483, 0.006684963125735521, 0.028831837698817253, 0.0010267151519656181, -0.036985211074352264, 0.007516392972320318, -0.0010267151519656181, -0.009662018157541752, -0.009333468973636627, -0.004680144600570202, -0.005605445709079504, 0.051521822810173035, 0.011472389101982117, -0.00039245662628673017, -0.02016887627542019, 0.010426396504044533, 0.023038649931550026, 0.0017869033617898822, -0.009930221363902092, -0.005400940775871277, -0.03116520680487156, -0.015233938582241535, 0.02016887627542019, 0.010352641344070435, 0.0022411723621189594, -0.014295226894319057, 0.02971690706908703, -0.011110315099358559, -0.015502141788601875, -0.01947154849767685, -0.010594023391604424, 0.006396644748747349, -0.010526972822844982, -0.006785539444535971, -0.013604603707790375, -0.0035972746554762125, 0.03387405723333359, -0.00011733887367881835, 0.03623424470424652, 0.024875840172171593, 0.023333672434091568, 0.011579670011997223, -0.006309478543698788, 0.0015086426865309477, -0.005303717218339443, 0.023722566664218903, 0.03730705752968788, 0.003831952577456832, 0.008575795218348503, -0.01420135609805584, 0.013410156592726707, 0.014268406666815281, 0.004421999212354422, 0.0004982711398042738, -0.022126758471131325, 0.019914083182811737, 0.021643992513418198, 0.00877024233341217, -0.010151488706469536, 0.0005615503177978098, -0.006172024644911289, -0.005669143982231617, 0.02140261046588421, -0.0287781972438097, 0.013302875682711601, 0.0028245141729712486, -0.012283703312277794, 0.018787629902362823, 0.0005766367539763451, -0.017299102619290352, -0.0072683049365878105, 0.02523791417479515, -0.011023148894309998, 0.014925504103302956, 0.014013613574206829, -0.02354823611676693, -0.01650790311396122, 0.000825562747195363, -0.017138181254267693, 0.00817349087446928, -0.012109371833503246, 0.011237711645662785, 0.04154466465115547, 0.007945518009364605, -0.010533678345382214, -0.6230895519256592, -0.02100030519068241, 0.011948449537158012, -0.023829849436879158, -0.003188264789059758, -0.017687996849417686, -0.013799051754176617, 0.01741979271173477, -0.015609423629939556, 0.02551952749490738, -0.004492402542382479, -0.017956199124455452, 0.0014189622597768903, -0.0021087471395730972, -0.0015647977124899626, -0.016601774841547012, -0.0057261367328464985, -0.03510779142379761, 0.007858351804316044, 0.01984703168272972, -0.03280124440789223, 0.030494699254631996, -0.044199876487255096, -0.012478150427341461, 0.008515449240803719, -0.008843998424708843, -0.001840544049628079, -0.0030239904299378395, 0.0026334195863455534, 0.015341220423579216, -0.03218437731266022, 0.006805654615163803, 0.029690086841583252, -0.010178308933973312, 0.02104053646326065, -0.007798006758093834, 0.0024523823522031307, 0.04039139300584793, 0.002227762248367071, 0.02028956636786461, -0.02334708347916603, -0.022166989743709564, 0.019900672137737274, 0.015260759741067886, 0.008937869220972061, 0.005866943392902613, 0.019042422994971275, 0.015756934881210327, -0.013108428567647934, -0.018465785309672356, -0.022462012246251106, 0.00790528766810894, -0.0001966473791981116, -0.014523199759423733, 0.00019277099636383355, 0.0011792556615546346, 0.03660972788929939, -0.0010510210413485765, 0.009051855653524399, -0.02597547322511673, -0.010144783183932304, -0.00815337523818016, 0.003630799939855933, 0.0012337344232946634, -0.019619058817625046, -0.0009638550691306591, 0.012940801680088043, 0.03025331348180771, -0.0076102642342448235, -0.02770538441836834, 0.01302796695381403, 0.041437383741140366, -0.00913902185857296, -0.015917856246232986, -0.0003306441649328917, 0.018720578402280807, 0.006557566579431295, 0.005628913175314665, 0.012833519838750362, 0.027651743963360786, 0.027571281418204308, 0.007147613447159529, -0.01278658490628004, -0.017969610169529915, 0.02112099714577198, 0.008207015693187714, -0.014751172624528408, -0.004499107599258423, -0.0214428398758173, -0.019900672137737274, 0.00633965153247118, 0.023735977709293365, -0.027517640963196754, -0.05680542439222336, -0.007067152764648199, 0.007623674813657999, 0.0014776316238567233, 0.006721841171383858, 0.03033377416431904, -0.008548974990844727, 0.01688338816165924, -0.010339231230318546, 0.027759024873375893, 0.001917652552947402, 0.029046399518847466, 0.0015580925391986966, -0.0035168135073035955, 0.028107687830924988, 0.014992555603384972, -0.01750025525689125, -0.019619058817625046, -0.025747500360012054, -0.011204185895621777, 0.009662018157541752, -0.0030306954868137836, -0.035402812063694, 0.01233063917607069, 0.015703294426202774, -0.007925402373075485, -0.021214868873357773, 0.015475321561098099, 0.015073016285896301, 0.009822939522564411, 0.012712828814983368, 0.016078777611255646, 0.01072141993790865, 0.005535042379051447, -0.021992657333612442, -0.02136237919330597, 0.015877624973654747, -0.003367625642567873, -0.00798574835062027, 0.024473536759614944, 0.010493448004126549, 0.006765424273908138, 0.02947552502155304, 0.0103928716853261, -0.015837395563721657, 0.0011549497721716762, -0.021831735968589783, -0.01198197528719902, -0.0027256144676357508, 0.021228278055787086, -0.005367415025830269, -0.0358051173388958, -0.020557770505547523, -0.013758820481598377, 0.00012980612518731505, 0.004639914259314537, -0.0022646402940154076, -0.00384536269120872, 0.0036039797123521566, -0.01700407825410366, -0.002854687161743641, -0.010185014456510544, -0.01823781244456768, 0.007254894822835922, -0.03819212689995766, -0.028456352651119232, -0.027893126010894775, 0.008267361670732498, 0.04186651110649109, -0.02149648219347, 0.027812665328383446, -0.02663257159292698, -0.012169716879725456, -0.010962802916765213, 0.03915765881538391, -0.013678359799087048, -0.049966245889663696, 0.029797367751598358, -0.03902355581521988, -0.0070872679352760315, -0.01564965210855007, 0.006222312804311514, 0.010205129161477089, -0.003986169118434191, -0.003915765788406134, -0.00266526872292161, -0.022783856838941574, -0.023025238886475563, 0.010325821116566658, -0.03207709640264511, -0.008495334535837173, 0.023575056344270706, 0.009534621611237526, 0.0203834380954504, -0.017433203756809235, -0.02840271219611168, 0.012639072723686695, -0.000759350135922432, 0.0075298030860722065, -0.0043683587573468685, 0.01762094534933567, -0.0363147035241127, 0.010520268231630325, 0.020155465230345726, 0.0009948660153895617, 0.005072391591966152, 0.03588557988405228, 0.015354630537331104, 0.01340345200151205, 0.0049047647044062614, -0.029368244111537933, 0.01585080474615097, 0.010453217662870884, 0.009863169863820076, -0.03816530480980873, -0.0019461491610854864, 0.0043515958823263645, 0.018707169219851494, -0.008931164629757404, -0.0188144501298666, -0.025801140815019608, -0.020557770505547523, 0.041276462376117706, 0.0027474057860672474, 0.0327744223177433, -0.024393076077103615, -0.012994442135095596, 0.010889047756791115, -0.010647664777934551, -0.006296068429946899, -0.0021456251852214336, -0.011485799215734005, 0.01531440019607544, 0.011908219195902348, -0.004066630266606808, 0.008931164629757404, -0.016561543568968773, -0.015140066854655743, 0.015502141788601875, 0.008736717514693737, 0.021831735968589783, 0.008575795218348503, -0.021751273423433304, 0.01225017849355936, -0.002735672052949667, 0.022220630198717117, 0.001709794974885881, 0.0001999999221879989, -0.00014971183554735035, -0.0044152941554784775, -0.022998418658971786, -0.0002587741182651371, 0.01939108595252037, 0.04122282192111015, -0.007301830220967531, -0.025640219449996948, -0.013007852248847485, -0.007295125164091587, 0.004485697485506535, 0.013430272229015827, 0.00607144832611084, 0.006403349805623293, 0.0046600294299423695, 0.004572863690555096, 0.008327707648277283, 0.017674585804343224, 0.030065571889281273, -0.003932528663426638, 0.019605649635195732, 0.01092927809804678, 0.0011859607184305787, 0.0001876374299172312, -0.005558509845286608, 0.010748241096735, -0.014147715643048286, 0.00192268134560436, -0.0004362491599749774, 0.0018522778991609812, -0.014845043420791626, 0.006547509226948023, -0.0318625308573246, 0.022327911108732224, 0.025827961042523384, -0.000696909090038389, 0.03510779142379761, 0.008300887420773506, 0.020316386595368385, -0.0009730745805427432, -0.0350005105137825, 0.009098791517317295, 0.004059924744069576, -0.006835827603936195, -0.027732204645872116, -0.007053742650896311, -0.01408066414296627, -0.0296364463865757, 0.012726238928735256, 0.0009110525134019554, -0.00456951092928648, 0.000693975598551333, 0.00817349087446928, -0.020691871643066406, -0.005833418108522892, 0.009346879087388515, -0.01481822319328785, 0.004847771488130093, -0.020410258322954178, 0.01000397652387619, 0.001646096701733768, -0.02197924628853798, -0.017272282391786575, 0.017875738441944122, -0.0017584067536517978, -0.005099212285131216, -0.008797062560915947, -0.025921832770109177, -0.02424556389451027, 0.021523302420973778, 0.016481082886457443, 0.010205129161477089, -0.03255986049771309, 0.013269349932670593, -0.019860442727804184, -0.0008054475183598697, 0.010325821116566658, 0.01843896508216858, -0.008696486242115498, -0.0024875840172171593, 0.002286431845277548, 0.015944676473736763, 0.03180889040231705, 0.07359494268894196, 0.023534825071692467, -0.012002089992165565, 0.02173786424100399, -0.029877828434109688, 0.005756309721618891, -0.03178207203745842, -0.04323434457182884, 0.015984907746315002, 0.004834361374378204, -0.017071129754185677, -0.010117962956428528, 0.021791504696011543, -0.02643141895532608, 0.026297317817807198, 0.016293341293931007, -0.016816336661577225, -0.01367165520787239, 0.013839282095432281, -0.01955200918018818, 0.013530848547816277, 0.0010518591152504086, 0.020142056047916412, -0.002470821375027299, 0.019873851910233498, -0.0170443095266819, 0.017299102619290352, 0.027396950870752335, 0.0032905172556638718, -0.022985009476542473, 0.01500596571713686, -0.0011029853485524654, -0.02181832492351532, 0.0014558401890099049, -0.013329695910215378, 0.032211195677518845, 0.004851124249398708, 0.032962165772914886, 0.000758092908654362, 0.011049969121813774, -0.006772129330784082, 0.018291454762220383, 0.014603660441935062, -0.0073487660847604275, -0.02378961816430092, -0.0135040283203125, -0.004197379108518362, 0.019578829407691956, 0.0007865895167924464, -0.023212980479002, -0.008133260533213615, 0.00395264383405447, -0.05562533065676689, 0.028375891968607903, 0.0025747499894350767, -0.011606490239501, -0.014040433801710606, -0.002336719771847129, -0.0067084310576319695, 0.0073487660847604275, -0.0021892080549150705, -0.01621287874877453, 0.009662018157541752, -0.0002994236710947007, 0.040659595280885696, -0.0052199033088982105, -0.005964167416095734, 0.002539548324421048, -0.011901513673365116, 0.00823383592069149, -0.003630799939855933, -0.00648381095379591, -0.05895105004310608, 0.01412089541554451, 0.02454058639705181, 0.016253110021352768, 0.027598103508353233, -0.009648608043789864, -0.012806699611246586, 0.004861181601881981, 0.00341623742133379, -0.028644094243645668, 0.001261392841115594, -0.027061697095632553, 0.002663592342287302, -0.0038218949921429157, -0.030199673026800156, -0.01500596571713686, -0.0006059714360162616, 0.016776105388998985, 0.0022311147768050432, 0.006054685916751623, 0.010875636711716652, -0.013081608340144157, 0.008093029260635376, 0.03601968288421631, 0.011163955554366112, 0.029207320883870125, -0.0005380825605243444, -0.030360594391822815, 0.00384536269120872, -0.025908423587679863, -0.005307069513946772, -0.020329797640442848, 0.020557770505547523, 0.014952325262129307, 0.02623026631772518, 0.020799152553081512, -0.016816336661577225, -0.022301090881228447, 0.020477309823036194, -0.02000795304775238, -0.014603660441935062, 0.00126306910533458, 0.015622833743691444, 0.007684020325541496, 0.012739649042487144, 0.014161125756800175, -0.01736615225672722, -0.011311466805636883, -0.004512517713010311, -0.01321570947766304, 0.030494699254631996, 0.019417906180024147, -0.014845043420791626, 0.015233938582241535, 0.0016108950367197394, 0.0028446295764297247, -0.028295431286096573, 0.020142056047916412, 0.009279828518629074, 0.021912196651101112, 0.0005426922580227256, -0.0026367721147835255, -0.027598103508353233, 0.003966053947806358, -0.016695644706487656, -0.009702248498797417, -0.01676269620656967, -0.01843896508216858, 0.009132316336035728, -0.02635095827281475, -0.021456250920891762, -0.01605195738375187, 0.010573908686637878, -0.01798301935195923, -0.022622933611273766, 0.023896899074316025, 0.009105496108531952, 0.02939506433904171, -0.019873851910233498, 0.01107678934931755, -0.028831837698817253, -0.017835509032011032, 0.019176524132490158, -0.008428283967077732, 0.018210992217063904, 0.012384279631078243, 0.020034775137901306, 0.030816541984677315, 0.04776697978377342, 0.0013753791572526097, -0.0001487689296482131, 0.035912398248910904, -0.003999579232186079, 0.004757252987474203, 0.0021204811055213213, 0.020812563598155975, -0.021188046783208847, 0.011928334832191467, 0.02305205911397934, 0.006192139815539122, 0.018546245992183685, 0.013343106023967266, 0.023896899074316025, 0.00017307483358308673, -0.0050958595238626, -0.0075767384842038155, -0.008924459107220173, -0.027866305783391, -0.00546463904902339, 0.03038741648197174, -0.015435091219842434, 0.0048578293062746525, -0.02885865792632103, -0.006795596797019243, 0.027759024873375893, 0.01737956330180168, 0.02985100820660591, 0.007462752051651478, 0.024258973076939583, 0.010708009824156761, -0.013108428567647934, 0.018264632672071457, 0.028375891968607903, -0.018492605537176132, -0.003939233720302582, -0.02993147075176239, 0.0033961222507059574, 0.030146032571792603, 0.0024959654547274113, 0.003557044081389904, -0.004331480711698532, 0.0041370331309735775, -0.0004890516283921897, 0.014067254029214382, -0.000573703262489289, -0.025506118312478065, -0.0024054469540715218, -0.010634254664182663, -0.026337547227740288, -0.041973792016506195, -0.021711044013500214, 0.0034531154669821262, -0.006979986559599638, 0.0022428487427532673, 0.000508747820276767, 0.0023886840790510178, -0.02458081766963005, -0.042134713381528854, 0.005079096648842096, 0.0086227310821414, 0.03304262459278107, 0.01420135609805584, 0.0205845907330513, 0.015716703608632088, -0.00329889846034348, -0.026900773867964745, 0.009963746182620525, -0.002157358918339014, 0.007080562878400087, 0.0018271338194608688, -0.008186900988221169, -0.022488832473754883, -0.020115235820412636, 0.011492504738271236, 0.01048003789037466, -0.008837292902171612, -0.03910401836037636, 0.015636242926120758, 0.004934937693178654, 0.014536609873175621, -0.02259611338376999, -0.024151692166924477, 0.011593080125749111, 0.017352743074297905, 0.001461707055568695, 0.01794278994202614, 0.006034570746123791, -0.0006407540640793741, -0.02091984450817108, 0.01438909862190485, -0.00043583009392023087, 0.004100155550986528, 0.013490617275238037, -0.014415918849408627, 0.004482344724237919, -0.011666836217045784, -0.0037179659120738506, -0.0103928716853261, 0.021724453195929527, 0.001082870177924633, -0.014027023687958717, 0.04433397948741913, 0.03070926107466221, -0.0007731793448328972, -0.0017533779609948397, 0.01909606344997883, -0.007831531576812267, 0.028027227148413658, -0.03301580622792244, -0.015435091219842434, -0.000507490593008697, -0.021630583330988884, 0.022904546931385994, -0.0322648361325264, 0.0041068606078624725, -0.028724554926156998, -0.015596013516187668, -0.022529063746333122, 0.018345095217227936, 0.010969508439302444, -0.017848918214440346, -0.0007325297920033336, 0.013276055455207825, 0.008119849488139153, -0.007161023560911417, 0.004592978861182928, 0.009869875386357307, -0.016360390931367874, -0.01877421885728836, 0.0021154521964490414, -0.010138078592717648, 0.015663063153624535, -0.006959871388971806, -0.006182082463055849, 0.001090413425117731, 0.03516143187880516, 0.008877524174749851, -0.020718691870570183, 0.035054150968790054, 0.008877524174749851, -0.018291454762220383, 0.009192662313580513, 0.0066916681826114655, -0.022032886743545532, 0.023561645299196243, -0.004257724620401859, -0.008247246034443378, 0.0003327395243104547, 0.011559555307030678, 0.013879512436687946, 0.0043515958823263645, -0.0029669972136616707, -0.030119212344288826, 0.0067788343876600266, 0.0009144050418399274, -0.006487163249403238, 0.001266421633772552, -0.0046600294299423695, 0.00994363147765398, 0.0044622295536100864, 0.016186058521270752, -0.0314602293074131, 0.012297113426029682, -0.0035268713254481554, -0.00032645350438542664, -0.019565418362617493, -0.03846032917499542, 0.011827758513391018, -0.020075004547834396, 0.002601570449769497, -0.006286011077463627, -0.008542269468307495, 0.03416907787322998, 0.014630480669438839, -0.009534621611237526, 0.023440953344106674, 0.0030139328446239233, 0.005424408242106438, 2.97537862934405e-05, 0.021067356690764427, 0.025063583627343178, 0.004482344724237919, -0.02384325861930847, -0.019605649635195732, -0.006346356589347124, -0.0017449966398999095, -0.026498470455408096, -0.036985211074352264, -0.011700361967086792, 0.024232152849435806, 0.007898582145571709, -0.02947552502155304, -0.00710067804902792, -0.03046787716448307, -0.034061796963214874, 0.00139465625397861, -0.004888002295047045, -0.006678258068859577, -0.012323933653533459, 0.01782209798693657, 0.0035939221270382404, 0.016735875979065895, -0.011888103559613228, 0.019914083182811737, 0.0025948653928935528, 0.01885467953979969, -0.011512619443237782, 0.002790988888591528, -0.02086620405316353, -0.00967542827129364, -0.04218835383653641, -0.0038621253333985806, 0.020182285457849503, -0.00041655299719423056, -0.00994363147765398, 0.031594328582286835, 0.0013753791572526097, -0.011827758513391018, -0.014871863648295403, 0.023561645299196243, 0.023816438391804695, 0.014523199759423733, 0.017232051119208336, -0.019686110317707062, 0.0028781548608094454, -0.0030340480152517557, 0.0015547400107607245, -0.01029229536652565, -0.022542472928762436, 0.017956199124455452, 0.0021037182305008173, -0.0023132520727813244, -0.029207320883870125, 0.004073335323482752, 0.008160080760717392, -0.016789516434073448, 0.028536813333630562, 0.006104974076151848, -0.018331684172153473, 0.03162115067243576, 0.010030797682702541, 0.009179252199828625, -0.011485799215734005, 0.012639072723686695, -0.011438863351941109, -0.022086529061198235, 0.03942586109042168, -0.02205970697104931, 0.0084215784445405, -0.00030843360582366586, 0.007456046994775534, -0.0314602293074131, -0.005548452492803335, 0.014322047121822834, 0.005484754219651222, -0.021804915741086006, 0.026538699865341187, -0.015917856246232986, -0.04808882251381874, 0.007858351804316044, -0.020571179687976837, 0.008488629013299942, -0.012102666310966015, -0.029797367751598358, 0.019484957680106163, 0.011579670011997223, 0.0070872679352760315, 0.0011214243713766336, -0.015032785944640636, -0.013349810615181923, -0.006912935990840197, 0.008186900988221169, -0.011418748646974564, 0.0207857433706522, 0.23430225253105164, -0.018063481897115707, 0.018787629902362823, 0.024889251217246056, 0.002029962372034788, 0.001196018303744495, 0.007127498276531696, 0.01434886734932661, -0.011888103559613228, -0.02046389877796173, 0.009608377702534199, 0.008133260533213615, -0.042429737746715546, 1.6474587027914822e-05, 0.01012466847896576, -0.019820211455225945, -0.04631868004798889, -0.053828369826078415, -0.024379665032029152, 0.009179252199828625, 0.014697532169520855, -0.0161324180662632, 0.007429226767271757, -0.04776697978377342, 0.020933255553245544, -0.0001175484067061916, -0.0025278145913034678, -0.01163331139832735, 0.01712477020919323, 0.020477309823036194, -0.023078879341483116, 0.004492402542382479, 0.006158614531159401, 0.018291454762220383, -0.026485059410333633, 0.0003817703982349485, 0.014040433801710606, -0.001401361427269876, 0.01720523089170456, 0.0052534290589392185, 0.009172547608613968, -0.008039388805627823, 0.005608798004686832, 0.009366994723677635, -0.0043515958823263645, 0.006520688533782959, -0.022301090881228447, -0.006594444625079632, -0.012913980521261692, 0.021831735968589783, -0.018130531534552574, -0.017017489299178123, 0.015502141788601875, 0.018640117719769478, 0.0044320570304989815, 0.02169763296842575, -0.012652482837438583, 0.030789721757173538, 0.03376677632331848, 0.019404496997594833, -0.025680450722575188, 0.012129486538469791, -0.008495334535837173, 0.017674585804343224, -0.0038017795886844397, -0.003932528663426638, -0.010788471437990665, 0.021711044013500214, 0.0022512301802635193, -0.032988984137773514, 0.0047304327599704266, -0.03379359468817711, -0.013376631774008274, -0.0004555262567009777, -0.038353048264980316, -0.022086529061198235, 0.02374938689172268, 0.011070084758102894, 0.023333672434091568, 0.03457138314843178, -0.005793187767267227, 0.0009965422796085477, 0.010701305232942104, -0.02738353982567787, -0.007724250666797161, -0.04318070411682129, -0.004455524496734142, -0.006034570746123791, -0.01819758303463459, -0.023601876571774483, 0.020396849140524864, -0.027008056640625, -0.011029853485524654, -0.00127396488096565, -0.008904344402253628, -0.000632372684776783, 0.0243260245770216, 0.0028446295764297247, 0.009480981156229973, 0.0007174434140324593, -0.022368142381310463, 0.030575159937143326, 0.04945665970444679, 0.008461808785796165, -0.017111359164118767, 0.0027809313032776117, 9.104239143198356e-05, -0.0026820313651114702, 0.0035805117804557085, -0.01650790311396122, -0.0072683049365878105, -0.011666836217045784, 0.014751172624528408, 0.00076437892857939, -0.009809529408812523, 0.027893126010894775, -0.01786232925951481, 0.021684223785996437, 0.019873851910233498, -0.022797266021370888, -0.01198197528719902, -0.018586477264761925, -0.012592136859893799, 0.01918993517756462, -0.0021942369639873505, -0.014643890783190727, 0.01021183468401432, 0.005337242502719164, -0.021791504696011543, 0.002745729638263583, 0.017889149487018585, -0.024339433759450912, 0.01630675047636032, -0.004727080464363098, -0.013369926251471043, -0.02631072700023651, -0.0030206379014998674, 0.017634356394410133, 0.007013511843979359, 0.025586578994989395, -0.0026434771716594696, -0.012189832516014576, 0.0029334716964513063, 0.00046851736260578036, 0.01700407825410366, -0.021563531830906868, 0.007301830220967531, -0.0028932413551956415, 0.02243519201874733, -0.010573908686637878, -0.005732841789722443, 0.018023250624537468, 0.0007828178931958973, -0.02502335235476494, 0.016320161521434784, -0.013202299363911152, -0.031594328582286835, -0.041893329471349716, 0.010533678345382214, -0.006664847955107689, -0.028965938836336136, 0.004710317589342594, 0.005830065812915564, -0.0037146133836358786, -0.011391928419470787, -0.0179025586694479, -0.1699335128068924, -0.00815337523818016, 0.02939506433904171, -0.03607332333922386, 0.026914184913039207, -0.01750025525689125, 0.008649551309645176, -0.005243371240794659, -0.016279930248856544, -0.015756934881210327, 0.012665892951190472, -0.01873398944735527, -0.015823984518647194, -0.02993147075176239, -0.021456250920891762, 0.004737137816846371, -0.024433305487036705, 0.004294602666050196, 0.0005347299738787115, 0.008341117762029171, 0.03457138314843178, -0.024634458124637604, 0.004636561498045921, -0.001847249106504023, -0.020812563598155975, 0.00815337523818016, -0.0008565737516619265, 0.025412246584892273, 0.0031580920331180096, -0.021174637600779533, 0.008931164629757404, 0.009031740948557854, 0.028509993106126785, -0.009427339769899845, 0.0026853838935494423, 0.004629856441169977, 0.018331684172153473, -0.038969915360212326, -0.010875636711716652, 0.01853283680975437, 0.026029113680124283, -0.007925402373075485, 0.012478150427341461, -0.007650495041161776, -0.031889352947473526, 0.011023148894309998, 0.021711044013500214, -0.0035235187970101833, -0.00033923506271094084, -0.03486640751361847, 0.01564965210855007, -0.0014432681491598487, 0.009353584609925747, 0.013799051754176617, 0.016494492068886757, 0.0003191198338754475, 0.009299944154918194, 0.01913629285991192, 0.008723307400941849, -0.01897537149488926, -0.021389199420809746, -0.006765424273908138, -0.002408799482509494, 0.007355471141636372, -0.019954312592744827, -0.009688838385045528, -0.010942688211798668, -0.01621287874877453, -0.030441056936979294, -0.0021171285770833492, -0.03384723514318466, -0.0021959131117910147, -0.03494687005877495, -0.024875840172171593, 0.030199673026800156, 0.0075298030860722065, -0.015274169854819775, -0.007107383105903864, 0.002097013173624873, 0.002348453737795353, -0.011318172328174114, 0.020597999915480614, -0.009092085994780064, 0.018465785309672356, 0.009668722748756409, -0.01031241100281477, 0.01163331139832735, -0.007409111596643925, -0.05157546326518059, -0.00897139497101307, 0.009782709181308746, -0.02400417998433113, -0.0007346251513808966, -0.016320161521434784, -0.0005598740535788238, 0.017017489299178123, 0.026860544458031654, -0.0188144501298666, 0.025465887039899826, -0.012424509972333908, 0.007147613447159529, 0.01438909862190485, -0.01045992225408554, 0.001652801875025034, 0.030870182439684868, 0.01737956330180168, -0.028268611058592796, 0.0028396006673574448, 0.02362869679927826, -0.008495334535837173, -0.012954211793839931, -0.003349186619743705, 0.023481184616684914, 0.01927039586007595, -0.018492605537176132, 0.04664052650332451, 0.0035101084504276514, -0.00758344354107976, 0.02601570449769497, 0.018881501629948616, 0.059970222413539886, 0.015528962016105652, -0.027812665328383446, 0.0021456251852214336, -0.016454262658953667, -0.04503130540251732, -0.09011625498533249, -0.018492605537176132, 0.011707066558301449, -0.0038218949921429157, -0.005669143982231617, 0.0042007314041256905, -0.02042366936802864, 0.010158193297684193, -0.031057924032211304, 0.013155363500118256, -0.03242575749754906, -0.002286431845277548, 0.025707270950078964, -0.004814246203750372, 0.011063379235565662, -0.0005623884499073029, 0.0005242532934062183, -0.00921948254108429, -0.017057718709111214, 0.029529165476560593, -0.017392972484230995, 0.0013904656516388059, 0.018224403262138367, 0.002210999606177211, -0.0059574623592197895, 0.004844419192522764, -0.03508096933364868, 0.01716500148177147, 0.002995493821799755, -0.013490617275238037, 0.0017232050886377692, -0.02000795304775238, 0.0068660001270473, -0.018506016582250595, 0.01823781244456768, 0.0015807222807779908, -0.01851942576467991, -0.020973484963178635, 0.004737137816846371, -0.026404598727822304, -0.02070528268814087, -0.010949392803013325, 0.0028245141729712486, 0.003677735570818186, -0.0024389722384512424, -0.01676269620656967, -0.01889491081237793, 0.014630480669438839, 0.012893865816295147, -0.040284112095832825, -0.01923016458749771, -0.01311513315886259, -0.01939108595252037, 0.00903844553977251, 0.04409259557723999, 0.00443540932610631, -0.010573908686637878, -0.0015471968799829483, 0.004807541146874428, -0.014710942283272743, -0.0033374526537954807, -0.012799995020031929, -0.02104053646326065, 0.0314602293074131, 0.03116520680487156, -0.01976657100021839, -0.0034397051203995943, -0.02148307114839554, 0.008984805084764957, -0.019042422994971275, -0.013182183727622032, 0.016253110021352768, -8.695648284628987e-05, 0.010573908686637878, -0.030441056936979294, -0.014456149190664291, -0.029421884566545486, -0.0061217364855110645, 0.0014826604165136814, -0.006098269019275904, -0.02547929808497429, -0.014563430100679398, -0.012370869517326355, -0.009715658612549305, -0.006027865689247847, -0.0058602383360266685, -0.021845145151019096, -0.004180616233497858, 0.022421782836318016, -0.02100030519068241, -0.0026434771716594696, 0.03172843158245087, 0.008160080760717392, -0.0063195363618433475, -0.003939233720302582, -0.0012823462020605803, 0.001398008898831904, 0.007865057326853275, 0.0018858032999560237, 0.049376197159290314, -0.0062021976336836815, -0.008864114060997963, -0.05723454803228378, 0.019337445497512817, -0.010111258365213871, -0.015448501333594322, -0.003422942478209734, 0.0094072250649333, 0.020021364092826843, 0.013470502570271492, 0.007382291369140148, -0.008582500740885735, -0.023910310119390488, -0.0029502345714718103, -0.02096007578074932, -0.0063027734868228436, -0.009494391269981861, -0.014724352397024632, 0.02551952749490738, -0.01835850439965725, 0.028509993106126785, 0.009601672179996967, 0.0035134609788656235, 0.00992351584136486, 0.008877524174749851, 0.03154068812727928, -0.00674195634201169, -0.023212980479002, 0.0062658959068357944, 0.0005238342564553022, 0.005719431675970554, 0.00612508924677968, 0.009232892654836178, -0.01737956330180168, 0.009313354268670082, 0.03170160949230194, 0.007630379870533943, 0.0034363525919616222, 0.008012568578124046, 0.003184912260621786, 0.016682235524058342, 0.03902355581521988, -0.021992657333612442, -0.027276258915662766, 0.016561543568968773, -0.020075004547834396, -0.00959496758878231, -0.0010937659535557032, 0.013611309230327606, -0.002539548324421048, 0.036582909524440765, -2.574645259301178e-05, 0.027651743963360786, 0.021509891375899315, -0.011385222896933556, -0.009769299067556858, -0.02116122655570507, 0.011519324965775013, 0.015998316928744316, 0.0022596113849431276, -0.00241382815875113, -0.0207857433706522, 0.03306944668292999, 0.005518279504030943, -0.0015731790335848927, 0.00585688604041934, 0.008562385104596615, -0.01056049857288599, -0.014429328963160515, -0.008401462808251381, 0.025667039677500725, -0.04041821137070656, -0.005843475926667452, -0.0035168135073035955, 0.014308637008070946, 0.010030797682702541, 0.027759024873375893, 0.004978520795702934, -0.016481082886457443, 0.0221535786986351, -0.025962064042687416, 0.0214428398758173, 0.0029519107192754745, -0.003681088099256158, -0.0008469352032989264, 0.00765720009803772, 0.025707270950078964, 0.0292341411113739, -0.008200311101973057, 0.0026904128026217222, -0.01074153557419777, 0.0009990567341446877, -0.0020634878892451525, 0.008448398672044277, 0.004244314506649971, 0.0008528021280653775, 0.011271236464381218, 0.018640117719769478, -0.00030172851984389126, 0.01082870177924633, 0.012323933653533459, -0.018506016582250595, 0.02030297741293907, 0.006235722918063402, -0.016950437799096107, -0.029958290979266167, -0.02478197030723095, 0.003966053947806358, -0.020879613235592842, -0.02679349295794964, 0.006379881873726845, 0.018841270357370377, -0.0025579873472452164, -0.01090916246175766, -0.013349810615181923, -0.007020216900855303, -0.02531837671995163, 0.014751172624528408, 0.007288420107215643, -0.031889352947473526, -0.026659391820430756, 0.005551804788410664, 0.03001193143427372, 0.015448501333594322, 0.04924209415912628, 0.01799643039703369, 0.02050413005053997, 0.023320263251662254, 0.0016100569628179073, 0.0034531154669821262, 0.028590453788638115, 0.002425562124699354, -0.01811712235212326, -0.002916709054261446, 0.02478197030723095, -0.007060447707772255, -0.026699621230363846, 0.01531440019607544, -0.012706123292446136, 0.03537599369883537, -0.0015136714791879058, 0.0840548649430275, 0.0010702981380745769, -0.0031681496184319258, -0.011680246330797672, -0.028295431286096573, -0.0035168135073035955, 0.006728546228259802, 0.020021364092826843, -0.006047980859875679, 0.02054435946047306, -0.019042422994971275, 0.013604603707790375, -0.018988782539963722, -0.021509891375899315, -0.00341623742133379, 0.0221535786986351, -0.0036375049967318773, -0.002668621251359582, -0.015140066854655743, 0.0031312715727835894, 0.04245655611157417, -0.010258769616484642, -0.009930221363902092, 0.0025730738416314125, -0.030521519482135773, -0.021429430693387985, 0.039291758090257645, 0.0029385006055235863, -0.0014365630922839046, -0.03660972788929939, 0.004073335323482752, 0.017138181254267693, -0.04757923632860184, -0.02342754416167736, 0.007556623313575983, 0.009762594476342201, -0.0069531663320958614, -0.0021741215605288744, 0.017687996849417686, 0.0015656357863917947, 0.0205845907330513, 0.01951177790760994, -0.005853533279150724, -0.0205845907330513, -0.022797266021370888, 0.014496379531919956, -0.016320161521434784, -0.028590453788638115, -0.02112099714577198], '_distance': 0.35345977544784546}),\n", + " Document(page_content='The Illustrated Transformer – Jay Alammar – Visualizing machine learning one concept at a time.\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nJay Alammar\\nVisualizing machine learning one concept at a time.@JayAlammar on Twitter. YouTube Channel\\n\\n\\nBlog\\nAbout\\n\\n\\n\\n\\n\\n\\nThe Illustrated Transformer\\n\\nDiscussions:\\nHacker News (65 points, 4 comments), Reddit r/MachineLearning (29 points, 3 comments)\\n\\n\\nTranslations: Arabic, Chinese (Simplified) 1, Chinese (Simplified) 2, French 1, French 2, Italian, Japanese, Korean, Persian, Russian, Spanish 1, Spanish 2, Vietnamese\\n\\nWatch: MIT’s Deep Learning State of the Art lecture referencing this post', metadata={'vector': [-0.01995760016143322, -0.01293110754340887, 0.02453695610165596, -0.007925305515527725, 0.016309859231114388, -0.010300273075699806, -0.006226088851690292, -0.002630834234878421, -0.02243753708899021, -0.032147347927093506, 0.023093605414032936, 0.026820074766874313, -0.002322481945157051, 0.004969717934727669, 0.012708044610917568, 0.009886950254440308, 0.02301487885415554, 0.0023405239917337894, -0.007971230894327164, -0.016651015728712082, -0.015076451003551483, 0.02242441661655903, 0.00028661987744271755, -0.03180619329214096, -0.0037658323999494314, 0.010201863013207912, 0.02721371501684189, -0.032357290387153625, 0.022043896839022636, -0.016782227903604507, 0.028027240186929703, 0.0006700098165310919, -0.010306834243237972, -0.009486748836934566, -0.008135247975587845, 0.0006921521271578968, 0.020285634323954582, -0.007361087016761303, 0.027502385899424553, -0.025101175531744957, 0.031570009887218475, 0.002647235756739974, 0.0021814273204654455, -0.0353752076625824, -0.002237193053588271, 0.030310358852148056, 0.0003009713545907289, -0.021033551543951035, -0.008496085181832314, 0.04450767859816551, 0.021505920216441154, 0.025770364329218864, -0.006980567239224911, -0.028630822896957397, -0.02642643265426159, 0.019918235018849373, 0.00011686217476380989, 0.01732020452618599, 0.013154170475900173, 0.004474386107176542, 0.004326771013438702, -0.0005761100328527391, -0.01124501135200262, -0.017188990488648415, -0.001525358995422721, -0.02207013964653015, -0.020967945456504822, 0.019577080383896828, 0.0213222224265337, 8.744161459617317e-05, 0.041411034762859344, 0.026767589151859283, -0.01171081978827715, -0.032934632152318954, 0.039783984422683716, -0.0151945436373353, 0.0047335331328213215, -0.004129950422793627, -0.01852736994624138, 0.00655740313231945, 0.010044406168162823, 0.010569261386990547, 0.00771536398679018, 0.018986618146300316, 0.007144584320485592, 0.004782738164067268, -0.005258387885987759, 0.0020764563232660294, -0.018028758466243744, -0.015627548098564148, 0.00010122929961653426, 0.0034902836196124554, 0.016677258536219597, 0.010333077050745487, -0.00450390949845314, 0.020443089306354523, -0.002519302535802126, 0.019078467041254044, 0.017031535506248474, -0.02179459109902382, -0.003933129832148552, -0.0039036066737025976, -0.009440823458135128, -0.014525353908538818, -0.023237941786646843, 0.005724196322262287, 0.007275797892361879, 0.019498351961374283, 0.011330300942063332, 0.0019173597684130073, 7.790811650920659e-05, 0.02254250831902027, -0.010713595896959305, -0.03954780101776123, -0.0042775655165314674, -0.031989894807338715, 0.009342413395643234, -0.00810900516808033, 0.029680533334612846, -0.021282857283949852, 0.03571636229753494, 0.03422052413225174, -0.005442087072879076, 0.0020584145095199347, 0.017556389793753624, 0.016126159578561783, -0.005465049296617508, -0.004484227392822504, -0.028604580089449883, -0.0044678254052996635, -0.011015388183295727, 0.008384553715586662, -0.0015712836757302284, -0.0023634862154722214, -0.025363603606820107, 0.008318946696817875, -0.0072561162523925304, 0.012675240635871887, -0.012944228947162628, -0.020246269181370735, -0.0024733776226639748, -0.0027341649401932955, 0.0027718888595700264, -0.011730502359569073, -0.01111379824578762, 0.028027240186929703, -0.009598280303180218, 0.041935890913009644, -0.007813774049282074, -0.0005416664644144475, 0.004461264703422785, -0.01995760016143322, -0.001276052906177938, 0.012806454673409462, 0.014525353908538818, 0.016296738758683205, 0.0022306323517113924, 0.029523076489567757, -0.00564546836540103, 0.015299513936042786, -0.0012506303610280156, 0.013088563457131386, -0.020705517381429672, -0.01822557859122753, 0.020416846498847008, 0.018448641523718834, 0.028762036934494972, -0.012622755020856857, -0.0005843109101988375, -0.0028096127789467573, -0.016965927556157112, 0.026203369721770287, -0.0488639697432518, 0.014997722581028938, -0.0005043525598011911, -0.0013621619436889887, 0.0153257567435503, -0.021991411224007607, -0.055214714258909225, -0.007872819900512695, 0.010064088739454746, 0.0040151383727788925, 0.015706276521086693, 0.01072015706449747, -0.004408779554069042, -0.008338629268109798, 0.010707035660743713, -0.04117485135793686, -0.006048950366675854, -0.015758762136101723, 0.009106229059398174, 0.041306063532829285, -0.010247787460684776, -0.001403166214004159, -0.6302455067634583, -0.037946995347738266, -0.006094875279814005, 0.00484506506472826, -0.0004809801175724715, -0.005514254793524742, -0.01711026206612587, -0.0022355529945343733, -0.013672464527189732, 0.001976405968889594, 0.007643196266144514, -0.012793333269655704, -0.004471105989068747, -0.005822606850415468, 0.010201863013207912, -0.022306324914097786, -0.005176379345357418, -0.043615423142910004, -0.0016696939710527658, 0.02359221875667572, -0.009276806376874447, 0.006586926523596048, -0.03017914481461048, -0.014367897063493729, -0.0012186469975858927, -0.0020485734567046165, 0.0023798879701644182, 0.009329291991889477, -0.005665150471031666, 0.001413827296346426, -0.02258187346160412, 0.0225949939340353, 0.028919493779540062, 5.93024305999279e-05, 0.03757959604263306, 0.014617202803492546, -0.007675999775528908, 0.033302031457424164, 0.024038344621658325, 0.03143879398703575, -0.026242734864354134, -0.031465038657188416, 0.016572287306189537, 0.013541251420974731, -0.000305481837131083, 0.007400451228022575, 0.014774659648537636, -0.013298505917191505, -0.0022716366220265627, -0.011802669614553452, -0.019314652308821678, -0.012970471754670143, -0.0033131451345980167, -0.001668873941525817, 0.013764314353466034, 0.0038281588349491358, 0.029155677184462547, 0.01221599243581295, 0.008751952089369297, -0.01264243759214878, -5.105031959828921e-05, -0.0094801876693964, -0.01079232431948185, 0.0017976273084059358, -0.006488515995442867, 0.014499111101031303, 0.014276047237217426, -0.00903406087309122, -0.015365120954811573, -0.027712328359484673, 0.0353752076625824, 0.018763555213809013, -0.02716122940182686, -0.015155179426074028, -0.0007097839843481779, 0.023552853614091873, 0.016283616423606873, -0.006468833889812231, 0.020561182871460915, 0.008863483555614948, 0.011625531129539013, 0.0020862973760813475, -0.0030851615592837334, -0.014039862900972366, 0.02633458375930786, 0.020718639716506004, -0.011966686695814133, -0.004805700853466988, -0.01875043287873268, -0.00389048526994884, 0.017031535506248474, 0.015063329599797726, -0.026137763634324074, -0.05999089032411575, 0.017490781843662262, 0.01021498441696167, -0.003959372639656067, 0.01863234117627144, 0.016388587653636932, -0.025245510041713715, 0.005930858198553324, -0.004152912646532059, 0.02296239323914051, 0.0007015831070020795, 0.021466556936502457, 0.001275232876650989, -0.012314403429627419, 0.00554049713537097, 0.026098398491740227, -0.039574041962623596, -0.00969013012945652, -0.014433504082262516, -0.034351740032434464, 0.0016450914554297924, -0.016401708126068115, -0.031097641214728355, 0.020705517381429672, 0.010595504194498062, -0.00567499129101634, -0.02516678161919117, 0.032147347927093506, -0.009381777606904507, 0.013022957369685173, -0.0060259876772761345, 0.005366639234125614, 0.0018566735088825226, -0.004320210311561823, -0.02111227996647358, -0.010687354020774364, 0.04248698800802231, -0.002949027344584465, -0.002343804109841585, 0.02174210548400879, -0.008883165195584297, 0.0026341143529862165, 0.002396289724856615, 0.006062071770429611, 0.006790307350456715, -0.00554049713537097, -0.019288409501314163, -0.01943274401128292, -0.012327524833381176, 0.013593736104667187, 0.008961893618106842, -0.05017610639333725, -0.017451418563723564, -0.0019255606457591057, -0.006521319504827261, 0.006383545231074095, 0.017831938341259956, -0.032462261617183685, 0.004356293939054012, -0.024471350014209747, 0.022030776366591454, 0.004746654536575079, 0.0010915336897596717, 0.006249051075428724, -0.0223325677216053, -0.04033508151769638, -0.03059902787208557, 0.006544281728565693, 0.03705473989248276, -0.03075648471713066, 0.02163713425397873, -0.007400451228022575, 0.009611401706933975, -0.0023552854545414448, 0.04400906711816788, -0.03374815732240677, -0.01833054982125759, 0.020679274573922157, -0.040151383727788925, -0.0005285450606606901, 0.0016139281215146184, -0.017438296228647232, 0.028945736587047577, 0.005766841117292643, -0.01810748688876629, -0.005783242639154196, -0.020889217033982277, -0.014289168640971184, 0.00754478620365262, -0.003506685374304652, -0.016913441941142082, 0.024025224149227142, 0.016808470711112022, 0.04689576476812363, 0.0034574803430587053, -0.009145593270659447, -0.020443089306354523, -0.016979049891233444, 0.014236683025956154, 0.0004506369587033987, 0.022148868069052696, -0.011126919649541378, 0.024838747456669807, -0.0030703998636454344, -0.019655808806419373, 0.007223312743008137, 0.033039603382349014, 0.003982334863394499, 0.013383794575929642, 0.016309859231114388, 0.010890734381973743, 0.009722933173179626, -0.025258632376790047, 0.0116911381483078, -0.030730241909623146, 0.013908648863434792, 0.009066864848136902, 0.021755225956439972, -0.010306834243237972, 0.0027735289186239243, -0.04259195923805237, -0.0011038350639864802, 0.02432701550424099, 0.002519302535802126, 0.04560987278819084, -0.011842033825814724, -0.02222759649157524, -0.005704514216631651, 0.005743878427892923, 0.021781468763947487, -0.006111276801675558, 0.007242994848638773, 0.050149865448474884, 0.0043497332371771336, -0.00902750063687563, 0.0055733006447553635, -0.05301032215356827, -0.005592982750386, 0.011048191227018833, -0.009421141818165779, 0.028709551319479942, 0.0046121603809297085, 0.007177387829869986, -0.0029359059408307076, -0.00852888822555542, 0.03574260324239731, 0.009447384625673294, -0.007846578024327755, 0.016913441941142082, -0.0025701478589326143, -0.01124501135200262, 0.011094115674495697, 0.029890473932027817, 0.032619718462228775, -0.009860707446932793, -0.03450919687747955, -0.00041701344889588654, -0.01574563980102539, -0.0013293585507199168, 0.0010234666988253593, 0.005025483667850494, -0.0006892818491905928, 0.00436941534280777, 0.007879381068050861, -0.00908654648810625, 0.02347412519156933, 0.003160609398037195, 0.0024012101348489523, 0.01859297789633274, 0.01737269014120102, 0.015824368223547935, 0.0034476392902433872, -0.008122126571834087, 0.006462273187935352, -0.014682809822261333, -0.009631083346903324, 0.0011661614989861846, -0.016021190211176872, -0.020771123468875885, 0.015876853838562965, -0.02254250831902027, 0.0067509436048567295, -0.011960126459598541, 0.007190509233623743, 0.006993688642978668, 0.02006257139146328, 0.019235923886299133, -0.016651015728712082, -0.04319554194808006, 0.003044157288968563, 0.012484980747103691, -0.00613423902541399, -0.01775320991873741, -0.024523835629224777, -0.009742614813148975, -0.010497094132006168, 0.001212086295709014, 0.0017713846173137426, 0.014879630878567696, 0.009906631894409657, -0.00987382885068655, -0.01880291849374771, -0.0020534938666969538, 0.04075496643781662, -0.016598530113697052, -0.01910470984876156, -0.010169059969484806, 0.009486748836934566, 0.0005478170933201909, -0.00664597237482667, -0.0018353512277826667, 0.016677258536219597, 0.007177387829869986, -0.012944228947162628, -0.017175870016217232, -0.007577589713037014, -0.027528628706932068, -0.007105220574885607, -0.01031995564699173, -0.0005318254115991294, -0.00043464527698233724, 0.022673722356557846, -0.010497094132006168, 0.004546553827822208, 0.0007188048912212253, 0.017556389793753624, 0.012124143540859222, -0.009801661595702171, -0.017359569668769836, -0.013974255882203579, 0.02642643265426159, 0.07510670274496078, 0.0034804425667971373, -0.027371171861886978, 0.005317434202879667, -0.03579508885741234, -0.0037231878377497196, -0.01728084124624729, -0.028105968609452248, 0.007400451228022575, -0.011323739774525166, -0.016047433018684387, 0.004559675231575966, 0.020141297951340675, -0.01901286095380783, 0.020928580313920975, -0.001817309414036572, 0.003198333317413926, -0.00976885762065649, 0.014000498689711094, -0.020206905901432037, -0.008673223666846752, -0.016086796298623085, 0.01585061103105545, 0.0028998220805078745, 0.019616443663835526, -0.027738571166992188, 0.04511126130819321, 0.024969961494207382, -0.008587935008108616, -0.03175370767712593, -0.005999745335429907, 0.02390713058412075, 0.016611650586128235, -0.0033951536752283573, -0.012760529294610023, 0.03584757447242737, 0.01770072430372238, 0.03390561416745186, -0.01323945913463831, -0.0013490405399352312, 0.0005203442415222526, 0.026518283411860466, 0.005077969282865524, -0.014918994158506393, 0.004572796635329723, -0.010602064430713654, -0.007702242583036423, 0.029103191569447517, -0.002689880318939686, -0.017188990488648415, 0.007997473701834679, -0.006901839282363653, -0.031779952347278595, 0.0022404734045267105, 0.001180102932266891, 0.016021190211176872, -0.0068952785804867744, -0.005055006593465805, -0.019052226096391678, 0.0012588311219587922, -0.019091589376330376, -0.031570009887218475, 0.0038019162602722645, -0.0056684305891394615, 0.01847488433122635, -0.00913903210312128, -0.006583645939826965, -0.023041121661663055, -0.03416803851723671, 0.020049449056386948, -0.008220536634325981, -0.026413312181830406, -0.05154072865843773, 0.0012973751872777939, 0.007131462916731834, -0.0016811751993373036, 0.012576830573379993, -0.02195204794406891, 0.0007434074650518596, 0.007236434146761894, -0.020679274573922157, -0.013895527459681034, -0.011389346793293953, -0.03101891279220581, 0.009742614813148975, -0.026098398491740227, -0.006314658094197512, -0.0012301282258704305, -0.007124902214854956, 0.028210939839482307, 0.032094866037368774, -0.012648997828364372, 0.02538984641432762, -0.001132537960074842, 0.010674232617020607, 0.020154420286417007, 0.0317012220621109, 0.007485739886760712, 0.012734286487102509, -0.026255855336785316, 0.007531664799898863, -0.03820941969752312, 0.0004953315947204828, -0.009558916091918945, -0.011592728085815907, 0.0029473870526999235, 0.008994697593152523, 0.016139281913638115, -0.01684783585369587, -0.016126159578561783, 0.010123134590685368, 0.0023946494329720736, -0.0007270057685673237, -0.016729742288589478, -0.006137519609183073, 0.014197319746017456, 0.01485338807106018, -0.011363103985786438, -0.003477162215858698, -0.027922268956899643, 0.020311877131462097, -0.003641179297119379, 0.013869285583496094, 0.012937667779624462, -0.007964669726788998, 0.03180619329214096, 0.0058816527016460896, -0.0023897290229797363, -0.016755985096096992, 0.008010595105588436, 0.016191767528653145, 0.026872560381889343, -0.01854049228131771, -0.011389346793293953, -0.027817297726869583, -0.007380769122391939, -0.011021948419511318, 0.011330300942063332, 0.005707794800400734, -0.014341654255986214, 0.006235929671674967, 0.007872819900512695, -0.00635730242356658, -0.008391113951802254, -0.0017402212833985686, -0.023198576644062996, -0.023461004719138145, 0.00795154832303524, 0.013554371893405914, 0.020088812336325645, -0.004917232319712639, 0.011212208308279514, -0.011015388183295727, -0.015260149724781513, -0.011933883652091026, -0.027738571166992188, -0.00759727181866765, -0.0009414580999873579, 0.023027999326586723, 0.015653790906071663, 0.056159451603889465, 0.0010702115250751376, 0.017674481496214867, 0.03532272204756737, -0.01276709046214819, -0.0015696435002610087, 0.016913441941142082, 0.015785004943609238, -0.02527175284922123, 0.008935650810599327, 0.014814023859798908, 0.0013219777029007673, 0.01163865253329277, 0.0006847713375464082, 0.008535449393093586, 0.006531160324811935, 0.013501887209713459, -0.004966437350958586, -0.005209182854741812, -0.023867767304182053, -0.004799140151590109, 0.02385464496910572, -0.00852888822555542, -0.011769866570830345, -0.010510215535759926, 0.002435653703287244, 0.04513750225305557, 0.013541251420974731, 0.021295979619026184, 0.024773141369223595, 0.019472109153866768, -0.008935650810599327, 0.010300273075699806, 0.01932777464389801, 0.024248287081718445, -0.009631083346903324, -0.005284630693495274, -0.03991520032286644, -0.005061567295342684, 0.026203369721770287, 0.024943718686699867, 0.021033551543951035, 0.012196310795843601, 0.005996464751660824, 0.00020327868696767837, 0.01932777464389801, 0.001047249068506062, -0.010011603124439716, -0.005484731402248144, -0.028184697031974792, -0.01327226310968399, -0.03164873644709587, -0.0080565195530653, -0.01964268647134304, -0.009939435869455338, 0.008778194896876812, -0.0018566735088825226, 0.022923028096556664, -0.022870542481541634, -0.03781577944755554, 0.014171076938509941, 0.017517024651169777, 0.03259347751736641, 0.016874078661203384, 0.017149627208709717, 0.038944218307733536, -7.806188659742475e-05, -0.02027251198887825, 0.027974754571914673, -0.010050967335700989, 0.006180163938552141, 0.0052419863641262054, 0.023605339229106903, -0.02242441661655903, -0.020403726026415825, 0.022135745733976364, -0.034299254417419434, 0.003337747883051634, -0.04755183309316635, -0.006649252958595753, 0.016401708126068115, 0.00795154832303524, -0.029050707817077637, -0.018501127138733864, -0.008102444000542164, -0.008988136425614357, -0.0015023965388536453, 0.0022191512398421764, 0.0010816927533596754, -0.003959372639656067, -0.0058455690741539, 0.006524599622935057, -0.003091722261160612, 0.005110772326588631, -0.011717380955815315, -0.013895527459681034, 0.013829921372234821, -0.017018413171172142, -0.03721219673752785, -0.004631842486560345, 0.02238505333662033, 0.020626788958907127, -0.008030276745557785, 0.024077709764242172, 0.021886439993977547, 0.005258387885987759, -0.010070648975670338, -0.007741606794297695, -0.018448641523718834, 0.029575562104582787, -0.014171076938509941, -0.010602064430713654, -0.007944988086819649, 0.004205398261547089, 0.0014048063894733787, -0.014184198342263699, -0.008968454785645008, -0.012393130920827389, -0.011881398037075996, 0.0015827649040147662, 0.021991411224007607, 0.0012202871730551124, -0.01287862192839384, 0.0026291939429938793, -0.005051726475358009, 0.00858137384057045, -0.001349860685877502, 0.0049762786366045475, 0.006875596474856138, -0.032199833542108536, -0.0007110140868462622, -0.003985615447163582, -0.005921016912907362, 0.02105979435145855, 0.013042639009654522, -0.014013620093464851, 0.007840016856789589, 0.013934891670942307, -0.002811252838000655, -0.002538984641432762, 0.030625270679593086, 0.000411682907724753, -0.012970471754670143, 0.006170323118567467, -0.002396289724856615, -0.005343677010387182, 0.020298754796385765, -0.012445616535842419, -0.018461763858795166, -0.019918235018849373, -0.00907998625189066, 0.016651015728712082, -0.00542240496724844, -0.0022831179667264223, -0.01827806420624256, 0.007623514160513878, -0.013173853047192097, -0.01363310031592846, -0.013672464527189732, 0.005360078532248735, -0.0076825604774057865, -0.006249051075428724, 0.018606098368763924, -0.012498102150857449, 0.013173853047192097, -0.00863385945558548, 0.0022240716498345137, 0.007787531241774559, -0.023985859006643295, 0.005035324487835169, 0.007774410303682089, 0.004789298865944147, -0.003172090509906411, -0.0033033040817826986, -0.007000249344855547, 0.005514254793524742, -0.029339376837015152, -0.004927073605358601, -0.01579812541604042, 0.006235929671674967, -0.004704010207206011, 0.023762796074151993, 0.02469441294670105, 0.0006454072427004576, -0.00800403393805027, -0.026400191709399223, -0.010254348628222942, -0.00501564284786582, -0.018816040828824043, -0.020731760188937187, -0.011559924110770226, 2.1399104298325256e-05, 0.021807711571455002, -0.01237344928085804, -0.014499111101031303, -0.023093605414032936, -0.010116574354469776, -0.015666913241147995, -0.0018632340943440795, 0.009250563569366932, -0.0048286630772054195, -0.010851371102035046, -0.001753342687152326, 0.028105968609452248, 0.012360327877104282, 0.012091339565813541, 0.00992631446570158, 0.033302031457424164, -0.0016090077115222812, 0.005865251179784536, -0.028184697031974792, -0.01927528902888298, -0.03369567170739174, -0.03611000254750252, 0.010234666056931019, 0.011494318023324013, -0.008732269518077374, 0.018934132531285286, -0.018816040828824043, -0.001812388887628913, -0.0009611401474103332, -0.002730884589254856, 0.011828912422060966, -0.0023798879701644182, 0.019249046221375465, -0.016231130808591843, -0.0014072665944695473, -0.0060292682610452175, 0.013974255882203579, -0.007433254737406969, -0.003444358939304948, 0.014446625486016273, 0.010129695758223534, -0.00402825977653265, -0.028184697031974792, 0.019039103761315346, 0.003513246076181531, -0.006855914369225502, 0.03044157102704048, -0.009519551880657673, -0.0133969159796834, 0.02284429967403412, 0.015076451003551483, 0.014171076938509941, -0.002360205864533782, 0.00863385945558548, -0.015627548098564148, -0.02538984641432762, 0.030625270679593086, -0.016559164971113205, 0.03500780835747719, -0.0029523076955229044, 0.011822352185845375, -0.020233148708939552, 0.005317434202879667, 0.0037658323999494314, 0.004526871722191572, -0.028893250972032547, 0.016441073268651962, -0.000984102487564087, -0.04424525052309036, 0.010064088739454746, -0.0025012607220560312, -0.005409283563494682, -0.01561442669481039, -0.0080565195530653, 0.021466556936502457, 0.0034574803430587053, -0.0025422649923712015, -0.007157705724239349, -0.01859297789633274, -0.010274030268192291, -0.005484731402248144, 0.009355534799396992, -0.024786261841654778, 0.0036543007008731365, 0.23576472699642181, -0.028237182646989822, 0.007407011929899454, 0.005773401353508234, 4.6949891839176416e-05, 0.009598280303180218, 0.009893510490655899, 0.005921016912907362, -0.009545794688165188, -0.018566735088825226, 0.011815791018307209, 0.011310618370771408, -0.04600351303815842, -0.0009611401474103332, 0.0016139281215146184, -0.01498460117727518, -0.008994697593152523, -0.034299254417419434, -0.011618970893323421, -0.02165025658905506, 0.006777185946702957, 0.0014236683491617441, -0.00829270388931036, -0.033459484577178955, 0.030572785064578056, 0.006232649553567171, -0.007557907607406378, 0.02558666653931141, 0.021873319521546364, 0.023106727749109268, -0.03618872910737991, -0.006682056467980146, 0.01045116875320673, 0.0009168555261567235, -0.021072914823889732, -0.011559924110770226, 0.003391873324289918, -0.006442591082304716, 0.012360327877104282, 0.03802572190761566, 0.012681801803410053, -0.015929339453577995, 0.004267724696546793, -0.0024520554579794407, 0.012589951977133751, 0.0022503144573420286, -0.031570009887218475, -0.009972238913178444, -0.0009980440372601151, 0.0002644775668159127, -0.01927528902888298, -0.025455452501773834, 0.02102043107151985, 0.034981563687324524, 0.008935650810599327, -0.007807213347405195, -0.00776784960180521, 0.04238201677799225, 0.02058742567896843, -0.00020748161477968097, -0.00040655737393535674, 0.03813069313764572, -0.006954324431717396, 0.010575821623206139, 0.004221799783408642, -0.005048445891588926, -0.009178396314382553, 0.0031179648358374834, -0.00309336232021451, -0.01537824235856533, 0.013232898898422718, 0.0015155179426074028, -0.031097641214728355, -0.014459746889770031, -0.039731498807668686, -0.013843042775988579, 0.04285438358783722, 0.03521775081753731, 0.029181919991970062, 0.030940184369683266, -0.0007278258563019335, -0.007840016856789589, 0.002227352000772953, -0.033616941422224045, 0.008574813604354858, -0.0296018049120903, 0.03621497377753258, -0.020390605553984642, -0.0005761100328527391, -0.012891743332147598, -0.003408275078982115, -0.032882146537303925, -0.002917864127084613, 0.003591974265873432, -0.011999490670859814, 0.015260149724781513, 0.02716122940182686, 0.005858690477907658, 0.013154170475900173, -0.015889976173639297, -0.010254348628222942, 0.012045415118336678, 0.03495532274246216, 0.0076825604774057865, -0.018881646916270256, 0.007216752041131258, 0.016204888001084328, 0.009250563569366932, 0.0009119349997490644, -0.03185867890715599, 0.002509461482986808, -0.013869285583496094, 0.01197980809956789, 0.007538225501775742, -0.00024500052677467465, 0.007308601401746273, -0.006180163938552141, 0.004566235933452845, 0.011914201080799103, -0.0049762786366045475, -0.00759727181866765, -0.00937521643936634, -0.006665654480457306, -0.008758512325584888, -0.0073479656130075455, -0.03579508885741234, -0.02601967193186283, 0.008358310908079147, -0.02301487885415554, -0.0006650892901234329, 0.025022447109222412, -0.005100931506603956, 0.027056260034441948, -0.001674614497460425, -0.01779257319867611, -0.02238505333662033, 0.0020272512920200825, -0.001238328986801207, -0.011487756855785847, 0.005104211624711752, -0.03981022909283638, 0.01003128569573164, -0.0019058785401284695, -0.011723941192030907, 0.00632121879607439, -0.02222759649157524, 0.0032426179386675358, 0.005747159011662006, 0.014092348515987396, -0.015456970781087875, -0.0032491786405444145, 0.023146091029047966, -0.023684067651629448, -0.011559924110770226, 0.015575062483549118, 0.0107726426795125, -0.02252938784658909, -0.0317012220621109, -0.0008496085065416992, -0.004418620374053717, -0.020705517381429672, 0.017031535506248474, 0.008017155341804028, -0.004287406802177429, -0.02664949744939804, -0.01316073164343834, -0.16606402397155762, -0.020731760188937187, 0.03839312121272087, -0.03771080821752548, 0.022621236741542816, -0.0032032537274062634, 0.02159777097404003, 0.011901079677045345, -0.03752711042761803, -0.0010693913791328669, -0.0031934126745909452, 0.009303049184381962, -0.010005042888224125, -0.004021699074655771, 0.0017418614588677883, -0.006563963834196329, -0.002263435861095786, 0.0039200084283947945, 0.013829921372234821, 0.003752710996195674, 0.031832437962293625, -0.028105968609452248, 0.011802669614553452, 0.008273022249341011, -0.02453695610165596, 0.01208477932959795, -0.00242253253236413, 0.05106836184859276, 0.018199335783720016, -0.01548321358859539, -0.0025635871570557356, -0.0259671863168478, 0.014381018467247486, -0.02668886072933674, 0.01321977749466896, 0.016073673963546753, 0.0012883542804047465, 0.000818445289041847, -0.025560423731803894, 0.023894010111689568, 0.013987377285957336, 0.007918745279312134, 0.006472114473581314, 0.003952811937779188, -0.00443502189591527, 0.010096891783177853, 0.02221447415649891, -0.009834464639425278, 0.00658036582171917, -0.02121725119650364, 0.021414071321487427, -0.019983842968940735, 0.007118341512978077, -0.0005215743440203369, 0.027686085551977158, 0.005317434202879667, -0.012156946584582329, 0.02027251198887825, 0.033092088997364044, -0.011947005055844784, -0.02432701550424099, 0.0022470341064035892, -0.0018632340943440795, -0.017595753073692322, -0.011428711004555225, -0.010759521275758743, -0.023211698979139328, 0.0011874837800860405, -0.029890473932027817, -8.774914022069424e-05, -0.006337620317935944, 0.00443502189591527, -0.017293961718678474, -0.005530656315386295, -0.0004416160227265209, -0.0013572414172813296, -0.04253947362303734, 0.010379001498222351, 0.029103191569447517, -0.008049958385527134, -0.011756745167076588, 0.025573544204235077, -0.004595758859068155, 0.006777185946702957, 0.01852736994624138, -0.012452177703380585, -0.007380769122391939, 0.00036883342545479536, -0.03542769327759743, -0.004894270095974207, 0.003719907719641924, -0.03692352771759033, -0.011664895340800285, -0.010805445723235607, 0.011146601289510727, -0.010431487113237381, 0.01842239871621132, -0.00771536398679018, 0.02464192733168602, -0.028263425454497337, 0.004999240860342979, 0.024235164746642113, -0.011999490670859814, 0.01264243759214878, 0.003209814429283142, 0.012740847654640675, -0.01627049595117569, 0.012484980747103691, 0.03881300240755081, 0.007092099171131849, -0.020259391516447067, 0.004179155454039574, 0.018396155908703804, 0.018934132531285286, 0.000929976929910481, 0.022148868069052696, -0.007315162103623152, -0.015417606569826603, 0.010155938565731049, 0.012629316188395023, 0.057524073868989944, 0.017818816006183624, -0.006583645939826965, 0.0011555004166439176, -0.0034410785883665085, -0.04860154539346695, -0.07500173151493073, -0.02290990762412548, 0.004182435572147369, 0.026308340951800346, 0.003657581051811576, 0.006252331659197807, -0.01503708679229021, 0.023657824844121933, -0.032199833542108536, 0.019787020981311798, -0.01733332686126232, -0.025573544204235077, -0.0005674991407431662, -0.002281477674841881, 0.015758762136101723, -0.016506679356098175, 0.00496315723285079, 0.017359569668769836, -0.021361585706472397, 0.03443046659231186, -0.0070855384692549706, -0.0023684068582952023, 0.0021879880223423243, -0.00030220148619264364, -0.00937521643936634, 0.00034361580037511885, -0.04070248082280159, 0.02284429967403412, 0.010634868405759335, -0.014932115562260151, 0.010182181373238564, -0.037684567272663116, -0.013659343123435974, -0.03595254570245743, 0.003667422104626894, -0.012235675007104874, -0.0037231878377497196, -0.013449401594698429, 0.016821593046188354, -0.040203869342803955, -0.011933883652091026, -0.023789038881659508, 0.012668680399656296, -0.014879630878567696, -0.031045155599713326, 0.006711579393595457, -0.00931617058813572, 0.029155677184462547, 0.00969013012945652, -0.03091394156217575, -0.008187733590602875, -0.021256614476442337, -0.026610132306814194, 0.028184697031974792, 0.02996920235455036, 0.02254250831902027, -0.01815997250378132, -0.008837240748107433, -0.02105979435145855, -0.016257373616099358, 0.009972238913178444, -0.010050967335700989, -0.03471913933753967, 0.025717880576848984, 0.02954931929707527, -0.014774659648537636, -0.00885036215186119, -0.004825382959097624, 0.007498861290514469, -0.021715862676501274, -0.004746654536575079, 0.03101891279220581, -0.007144584320485592, 0.017149627208709717, -0.021046673879027367, -0.0006823110743425786, -0.019865749403834343, -0.002509461482986808, 0.019367137923836708, -0.008509206585586071, 0.0004399758472573012, -0.028079725801944733, 6.565808871528134e-05, 0.0161130391061306, 0.008233658038079739, -0.004940194543451071, -0.025927821174263954, -0.006659093778580427, 0.0065344409085810184, -0.032619718462228775, 0.007623514160513878, 0.008423917926847935, 0.0039003263227641582, -0.005678271874785423, -0.012583390809595585, 0.0020698956213891506, -0.0002220381429651752, -0.015863733366131783, 0.009880389086902142, 0.0519343726336956, -0.014512232504785061, -0.004057782702147961, -0.07573653012514114, 0.025822849944233894, -0.005038605071604252, -0.020469332113862038, -0.0036018153186887503, -0.01959020085632801, -0.0003032265813089907, 0.002002648776397109, 0.005579861346632242, 0.011054751463234425, -0.021768348291516304, 0.008443599566817284, -0.016821593046188354, -0.0003680133377201855, 0.004175875335931778, -0.012301282025873661, 0.010149377398192883, -0.018501127138733864, 0.008135247975587845, -0.0027718888595700264, -0.009198077954351902, 0.016139281913638115, 0.014420382678508759, 0.018868526443839073, -0.017976272851228714, -0.0031114041339606047, -0.01827806420624256, 0.023316670209169388, -0.00861417781561613, -0.005996464751660824, 0.019682051613926888, -0.017595753073692322, -0.0008012235048227012, 0.048680271953344345, 0.00462200166657567, -0.018999740481376648, -0.00987382885068655, 0.011632092297077179, 0.023290427401661873, 0.04309057071805, -0.02401210181415081, -0.041096121072769165, 0.01747766137123108, -0.011553363874554634, -0.020285634323954582, 0.010621747002005577, 0.011540242470800877, -0.013029517605900764, 0.01306232064962387, 0.015168300829827785, 0.011815791018307209, 0.018829161301255226, -0.008351750671863556, -0.0153257567435503, -0.00334922899492085, 0.0032491786405444145, 0.05007113888859749, -0.0003089671954512596, 0.02991671673953533, -0.00861417781561613, 0.04080745205283165, 0.03212110698223114, 0.0012612914433702826, 0.0005777502083219588, -0.0053075929172337055, 0.017188990488648415, -0.012248796410858631, 0.002598030725494027, 0.015981825068593025, -0.03185867890715599, 0.013698707334697247, 0.001116136321797967, 0.011363103985786438, 0.019406501203775406, 0.031884923577308655, -0.0023339632898569107, -0.009591719135642052, 0.006941203027963638, -0.02954931929707527, 0.0179500300437212, 0.017412053421139717, -0.009440823458135128, 0.008220536634325981, 0.01805500127375126, 0.008286143653094769, 0.030835213139653206, -0.007761288899928331, 0.005606104154139757, -0.0001661698188399896, 0.009755736216902733, 0.010654550045728683, 0.00525182718411088, -0.01875043287873268, 0.006065351888537407, 0.0054552084766328335, 0.031360067427158356, -0.007092099171131849, -0.0015721038216724992, 0.008784755133092403, 0.017503904178738594, 0.028814522549510002, -0.012111022137105465, 0.00542240496724844, -0.016572287306189537, -0.026045914739370346, 0.019078467041254044, -0.017674481496214867, -0.023251062259078026, 0.005005801562219858, 0.015680033713579178, 0.013121367432177067, -0.02563915215432644, -0.014590959995985031, -0.006183444522321224, -0.029942959547042847, 0.013895527459681034, 0.010405244305729866, -0.002822734182700515, -0.033511970192193985, 0.029811745509505272, 0.01543072797358036, -0.005396162159740925, 0.01579812541604042, -0.007721924688667059, 0.015286392532289028, 0.048680271953344345, 0.028315911069512367, -0.0053108735010027885, 0.023710310459136963, 0.0011120358249172568, -0.0046121603809297085, 0.004152912646532059, 0.008712587878108025, -0.02095482312142849, -0.04311681166291237, -0.012452177703380585, -0.009257124736905098, 0.029628047719597816, 0.011933883652091026, 0.09536609798669815, 0.005005801562219858, 0.004231641069054604, 0.01637546718120575, -0.032462261617183685, 0.0031917726155370474, 0.016559164971113205, 0.03545393422245979, -0.008187733590602875, 0.00010425336222397164, -0.0024274529423564672, 0.0023733272682875395, -0.02427452988922596, -0.006032548379153013, -0.01726771891117096, 0.013685585930943489, -0.02296239323914051, 0.020351240411400795, -0.014236683025956154, -0.015666913241147995, 0.01932777464389801, -0.0023520051036030054, 0.01480090245604515, 0.001588505576364696, -0.012019172310829163, -0.02016754075884819, 0.028604580089449883, 0.01363310031592846, -0.006334340199828148, -0.02674134634435177, -0.00903406087309122, 0.008758512325584888, -0.047368135303258896, -0.01890788972377777, 0.006340900901705027, -0.012517784722149372, 0.009919753298163414, -0.0017943469574674964, 0.010260908864438534, -0.0038609623443335295, 0.005625786259770393, 0.014971479773521423, 0.0019157195929437876, -0.00958515889942646, -0.01679535023868084, 0.007407011929899454, -0.00048385042464360595, -0.01770072430372238, -0.02163713425397873], '_distance': 0.3630693554878235}),\n", + " Document(page_content='I hope you’ve found this a useful place to start to break the ice with the major concepts of the Transformer. If you want to go deeper, I’d suggest these next steps:', metadata={'vector': [-0.010849842801690102, -0.01362568698823452, 0.0007098066271282732, -0.01547191571444273, -0.00605549942702055, 0.019788449630141258, 0.006253774277865887, -0.022128738462924957, -0.02020450122654438, -0.0073394086211919785, 0.010472796857357025, 0.024195995181798935, 0.006585315335541964, -0.011252893134951591, 0.022778820246458054, 0.0045668152160942554, 0.014093744568526745, -0.006689328234642744, 0.00788547657430172, -0.017214130610227585, -0.017032109200954437, -0.006890852935612202, 0.005853974726051092, -0.04277529567480087, -0.014288769103586674, 0.0014269265811890364, 0.024924084544181824, -0.01536790281534195, -0.02052954211831093, 0.0002716117596719414, 0.027095353230834007, 0.0011774582089856267, 0.0013310398207977414, -0.02026950940489769, 0.016486041247844696, 0.0071378834545612335, 0.006465050391852856, 0.0008629818330518901, 0.00765144731849432, -0.03250402212142944, 0.02966967225074768, 0.0050771282985806465, 0.0018559797899797559, -0.023506909608840942, -0.0032910325098782778, 0.001704836031422019, -0.01770819164812565, -0.027199367061257362, 0.0026133235078305006, 0.02860354073345661, 0.012241015210747719, 0.017695190384984016, 0.0018120993627235293, -0.0007215893128886819, -0.0005875102360732853, 0.025275127962231636, -0.009237643331289291, 0.026003219187259674, 0.0038744795601814985, -0.005392417311668396, -0.026965338736772537, 0.0013286019675433636, -0.008672073483467102, 0.011681945994496346, -0.0036599531304091215, 0.001828351290896535, -0.003533187322318554, 0.0008304778020828962, -0.009257146157324314, -0.007833469659090042, 0.02658829092979431, 0.04155314341187477, -0.009556182660162449, 0.00412801094353199, 0.014210758730769157, -0.0069298576563596725, 0.002382545033469796, -0.004784592427313328, 0.0043555391021072865, -0.003299158299341798, -0.006734833586961031, -0.008457547053694725, -0.022063732147216797, 0.007976487278938293, 0.010635316371917725, 0.02725137397646904, 0.015887966379523277, -0.0032796559389680624, -0.020685561001300812, 0.001045004348270595, -0.00872408039867878, 0.010505300015211105, 0.016863087192177773, 0.03726261109113693, 0.00759944086894393, 0.010862844996154308, 0.005008870270103216, 0.014275766909122467, 0.008633068762719631, -0.02046453393995762, 0.0047813416458666325, -0.008444545790553093, -0.006799841765314341, -0.009991737082600594, -0.038900814950466156, -0.003559190547093749, 0.017747197300195694, -0.022440778091549873, 0.01294960267841816, -0.02462504804134369, -0.014470791444182396, 0.017149122431874275, -0.011499923653900623, -0.010661319829523563, 0.003585193771868944, -0.0274593997746706, 0.011733952909708023, -0.01070682518184185, 0.003832224290817976, -0.01625201106071472, 0.028421517461538315, 0.007963486015796661, 0.029045594856142998, -0.011077371425926685, 0.0004509933351073414, -0.028083477169275284, 0.005814970005303621, 0.008145508356392384, -0.010557306930422783, -0.011902973055839539, 0.02307785674929619, 0.01222151331603527, 0.0032455266918987036, -0.0003924860793631524, -0.013976730406284332, 0.03375217691063881, -0.02236276865005493, 0.005899480078369379, -0.0069298576563596725, -0.013859715312719345, 0.009738205932080746, 0.001019813702441752, -0.026341261342167854, -0.02751140482723713, -0.00010025459778262302, -0.0024979342706501484, 0.012254016473889351, 0.00256781792268157, 0.00832103006541729, -0.007079376373440027, 0.007501928601413965, -0.02007448486983776, -7.613052002852783e-05, -0.011012363247573376, 0.008600564673542976, 0.030969833955168724, 0.006312281358987093, 0.0015626309905201197, -0.001376545405946672, 0.00781396683305502, 0.01932039111852646, 0.006491053383797407, 0.019424404948949814, 0.003971991594880819, 0.0062927789986133575, 0.0025873202830553055, 0.019580423831939697, -0.012084996327757835, 0.0062862783670425415, -0.006231021136045456, -0.02099759876728058, -0.002237902022898197, -0.03840675577521324, 0.018566299229860306, 0.01717512682080269, 0.00436204019933939, -0.0006163575453683734, -0.005931984167546034, -0.014574804343283176, -0.028707554563879967, 0.031983960419893265, -0.011967981234192848, 0.030423766002058983, 0.01631701923906803, -0.02818748913705349, 0.004384792875498533, 0.011168382130563259, -0.014106745831668377, 0.0020818826742470264, -0.018280262127518654, 0.010713325813412666, 0.03744463622570038, 0.011129377409815788, -0.011090372689068317, -0.6511206030845642, -0.022388771176338196, 0.00905562099069357, -0.025522159412503242, -0.0030391262844204903, -0.008717578835785389, -0.008275524713099003, 0.0030001213308423758, -0.022115737199783325, 0.01625201106071472, 0.009712202474474907, -0.007969986647367477, -0.012689570896327496, 0.006799841765314341, 0.010030741803348064, -0.005220146384090185, -0.014717821963131428, -0.0335441529750824, 0.01804623380303383, 0.0065073054283857346, -0.002445927821099758, 0.011746954172849655, -0.043737415224313736, -0.016147999092936516, 0.006429295986890793, -0.011330902576446533, 0.01933339238166809, 0.011766456998884678, 0.011759955435991287, 0.0018007229082286358, -0.02268780767917633, -0.003955739550292492, 0.018410278484225273, -0.017409155145287514, 0.03562441095709801, 0.007521430961787701, -0.007742458488792181, 0.016564050689339638, -0.011311400681734085, 0.035754427313804626, -0.01311862375587225, -0.02557416632771492, 0.032113976776599884, -0.0008824842516332865, 0.01670706830918789, 0.017201129347085953, 0.023246876895427704, -0.0007837532903067768, -0.001135203056037426, 0.0011953354114666581, 0.01799422688782215, -0.00852905586361885, -2.3463842808268964e-05, 0.008054496720433235, 0.02315586619079113, -0.008932105265557766, 0.031229866668581963, 0.01043379120528698, 0.003910234197974205, 0.020490536466240883, -0.00437829177826643, 0.0007691264618188143, -0.007202891632914543, -0.030085723847150803, -0.024065978825092316, 0.0033316623885184526, -0.001347291748970747, -0.026731308549642563, 0.006045748479664326, -0.019554421305656433, 0.0023240377195179462, 0.013989731669425964, -0.023064855486154556, -0.0029237368144094944, 0.0032455266918987036, 0.020217502489686012, 0.003585193771868944, -0.01730514131486416, -0.0046513257548213005, 0.027485402300953865, 0.055542875081300735, -0.0014496794901788235, -0.01844928413629532, -0.032712049782276154, 0.035260364413261414, 0.004514808766543865, -0.032660044729709625, -0.014808833599090576, -0.00203150138258934, -0.005473677534610033, -0.0014545550802722573, 0.006270026322454214, -0.014743825420737267, -0.03479230776429176, -0.008132507093250751, 0.007670949678868055, 0.012793583795428276, -0.0021127616055309772, -0.0014797457261011004, -0.012761079706251621, 0.018878336995840073, -0.0020575046073645353, 0.007605941500514746, -0.010258269496262074, -0.009380660951137543, -0.020451530814170837, 0.0023142865393310785, 0.016330022364854813, 0.024208996444940567, -0.008314529433846474, -0.02276581898331642, -0.010043743066489697, -0.017474163323640823, -0.011493423022329807, -0.01980145089328289, -0.036950573325157166, 0.00508362939581275, 0.020308513194322586, -0.007865973748266697, -0.02162167616188526, 0.018553296104073524, 0.03193195164203644, -0.012579057365655899, -0.0101672587916255, 0.022778820246458054, 0.006035997066646814, -0.0019014853751286864, -0.024456027895212173, -0.014444787986576557, -0.011246392503380775, -0.0036079466808587313, -0.009211639873683453, 0.026198243722319603, -0.0012700947700068355, 0.006409793626517057, 0.021907711401581764, 0.012592058628797531, -0.018748320639133453, -0.014353777281939983, -0.005434672813862562, -0.005057625938206911, -0.004807345103472471, 0.01778620108962059, 0.01184446644037962, -0.03094383142888546, -0.02430000714957714, -0.00959518738090992, -0.005743461195379496, -0.01294960267841816, 0.006406542845070362, 0.0015585679793730378, -0.007254898082464933, -0.03195795789361, -0.006432546302676201, 0.014587805606424809, -0.01215000357478857, 0.012234514579176903, -0.012644065544009209, -0.014535799622535706, -0.01670706830918789, -0.005886478815227747, 0.03939487785100937, -0.009543181397020817, 0.016616057604551315, -0.018709316849708557, 0.0019031105330213904, 0.015744948759675026, 0.01731814444065094, -0.008464047685265541, -0.038562774658203125, -0.005210394971072674, -0.04012296721339226, -0.003021249081939459, 0.0012822836870327592, -0.01268307026475668, -0.009562683291733265, -0.026133235543966293, -0.026549287140369415, 0.006062000524252653, -0.00748242624104023, -0.01952841691672802, -0.003737962804734707, -0.025470152497291565, 0.007566936779767275, 0.045141588896512985, 0.02228475920855999, 0.029097601771354675, -0.0031561406794935465, -0.01578395441174507, 0.02000947669148445, -0.003310534870252013, -0.00030939767020754516, 0.015380904078483582, -0.01764318346977234, -0.013196633197367191, 0.014886843040585518, 0.008178012445569038, -0.008750082924962044, 0.016863087192177773, 0.014977853745222092, 0.03156790882349014, -0.0071313828229904175, 0.036534521728754044, -0.02704334817826748, 0.009510677307844162, -0.0021062607411295176, 0.009042619727551937, -0.03242601454257965, 0.008373036049306393, 0.0036859563551843166, -0.0005050312611274421, -0.038302741944789886, -0.0027108355425298214, -0.021569669246673584, 0.00429703202098608, 0.012754579074680805, 0.0075604356825351715, 0.015939973294734955, -0.01898234896361828, 0.005480178166180849, 0.015081866644322872, 0.002419924596324563, 0.013300646096467972, 0.010674321092665195, -0.05213645473122597, 0.01530289463698864, 0.022791821509599686, -0.009179136715829372, 0.00905562099069357, -0.006942859385162592, 0.016616057604551315, 0.014236762188374996, 0.028421517461538315, 0.02423500083386898, 0.01678507775068283, -0.009081624448299408, 0.0036274490412324667, -0.01154542900621891, 0.01899535208940506, 0.0123450281098485, 0.028629543259739876, 0.02489808201789856, 0.0038419757038354874, -0.006968862842768431, 0.02638026513159275, 0.03463628888130188, 0.00875658355653286, -0.006166013423353434, -0.04139712452888489, 0.02221975103020668, -0.0032113974448293447, 0.012481545098125935, 0.010154256597161293, -0.0023402897641062737, 0.012364530935883522, -0.004072754178196192, -0.00024357702932320535, 0.016069989651441574, 0.03461028262972832, 0.0060782525688409805, 0.014717821963131428, 0.003955739550292492, -0.010225765407085419, 0.0013562303502112627, 0.016395028680562973, -0.004638324026018381, -0.01161043718457222, -0.04142312705516815, -0.018709316849708557, 0.008353534154593945, -0.010030741803348064, 0.0006825844757258892, 0.005272152833640575, -0.04033099114894867, -0.0032390260603278875, -0.0014561802381649613, 0.016941096633672714, 0.006994865834712982, -0.013781705871224403, 0.004469303414225578, -0.0013838588492944837, -0.02987769804894924, -0.009751207195222378, -0.000403049896704033, 0.004329536110162735, -0.00896460935473442, 0.009822716005146503, -0.006669825874269009, -0.036482516676187515, 0.008711078204214573, 0.007963486015796661, 0.010108751244843006, 0.0081520089879632, -0.001049879938364029, -0.026458274573087692, 0.010323277674615383, 0.009523678570985794, -0.02370193414390087, 0.03133387863636017, 0.009185637347400188, 0.009166134521365166, 0.009913727641105652, -0.02758941613137722, -0.03263403847813606, 0.03840675577521324, 0.012546553276479244, -0.015744948759675026, -0.004755338653922081, -0.004917858634144068, -0.017019106075167656, -0.029357634484767914, 0.002247653203085065, -0.01738315261900425, -0.019814452156424522, 0.014418784528970718, -0.026198243722319603, 0.016017982736229897, 0.005551687441766262, 0.04727385193109512, 0.014483792707324028, -0.0020445031113922596, -0.018423279747366905, -0.0018299765652045608, 0.014210758730769157, 0.05705106258392334, 0.020243505015969276, -0.0015910719521343708, 0.027745435014367104, -0.017071112990379333, -0.010862844996154308, -0.014288769103586674, -0.0229608416557312, 0.006364287808537483, -0.00949767604470253, 2.392092937952839e-05, -0.00765144731849432, 0.027173364534974098, -0.021192623302340508, 0.013261641375720501, 0.015328897163271904, -0.0013513547601178288, -0.0014415534678846598, 0.00686484994366765, -0.03200996294617653, -0.010583310388028622, 0.006153011694550514, -0.008776086382567883, 0.028811566531658173, 0.041449129581451416, 0.02281782403588295, 0.038224730640649796, 0.025002095848321915, -0.0016690816264599562, -0.0254441499710083, -0.010635316371917725, 0.014873840846121311, -0.003949238918721676, 0.006520307157188654, -0.014925847761332989, 0.045869678258895874, 0.018345270305871964, 0.05273452773690224, -0.009504176676273346, -0.007280901074409485, -0.0031805187463760376, 0.0010685697197914124, 0.004492056090384722, -0.03213997930288315, 0.00676083704456687, -0.017552172765135765, -0.009166134521365166, 0.026861324906349182, 0.01665506139397621, -0.029903702437877655, 0.008477048948407173, 0.003052127780392766, -0.03437625616788864, 0.003614447545260191, 0.007781463209539652, -0.0008776086615398526, -0.005190892610698938, -0.0019274885999038815, -0.005213645286858082, -0.006617819424718618, -0.010004738345742226, -0.014080743305385113, 0.009471672587096691, -0.007241896353662014, -0.006773838307708502, -0.021842703223228455, -0.007742458488792181, 0.0013846714282408357, -0.01759117841720581, 0.01657705195248127, -0.0009946231730282307, -0.012923600152134895, -0.019502414390444756, 0.00209650956094265, 0.05203244090080261, 0.0026198243722319603, -0.0016674564685672522, -0.0058572250418365, 0.00808700080960989, 0.003432424971833825, -0.0020526291336864233, -0.02509310655295849, 0.017760198563337326, 0.006198517512530088, -0.004293781705200672, 0.0030651295091956854, -0.021257631480693817, 0.00736541161313653, -0.010355781763792038, 0.03450627252459526, 0.01335265301167965, -0.0033316623885184526, -0.005610194522887468, -0.016356024891138077, -0.0003819222911261022, 0.02886357344686985, -0.004791093058884144, 0.0071313828229904175, 0.006621069740504026, -0.017409155145287514, -0.006094504613429308, -0.02075056917965412, 0.009881223551928997, -0.02549615688621998, 0.005038123577833176, 0.024182993918657303, 0.008711078204214573, 0.01184446644037962, -0.0025304381269961596, -0.0012676569167524576, 0.024729061871767044, -6.36875702184625e-05, -0.0022053979337215424, -0.0011847716523334384, 0.006179014686495066, 0.015042861923575401, 0.017877213656902313, 0.0009288024739362299, -0.014522797428071499, -0.018501291051506996, 0.007716455031186342, -0.0354163832962513, 0.03401220962405205, 0.019762447103857994, -0.01933339238166809, 0.04430948570370674, -0.005873477086424828, -0.000269173935521394, -0.025158114731311798, 0.003533187322318554, -0.018137244507670403, 0.017877213656902313, -0.005047874990850687, 0.007969986647367477, -0.05658300593495369, 0.022635802626609802, -0.005798717960715294, -0.000987309729680419, -0.0022541540674865246, -0.022375769913196564, 0.0029838692862540483, -0.004102007951587439, -0.0012969105737283826, -0.020906588062644005, 0.015575927682220936, -0.035884443670511246, -0.01712311990559101, 0.02925362065434456, 0.025613170117139816, -0.005850724410265684, -0.02315586619079113, 0.005099881440401077, -0.03544238582253456, -0.012416536919772625, 0.008210516534745693, -0.03825073316693306, 0.0004883729270659387, -0.00029477087082341313, 0.012754579074680805, 0.03094383142888546, 0.013443663716316223, 0.009562683291733265, -0.001526063890196383, 0.013248640112578869, 0.0024670553393661976, -0.022193746641278267, 0.010466295294463634, 0.024143988266587257, -0.04022698104381561, 0.023480907082557678, 0.014782830141484737, 0.009107626974582672, -0.004238524474203587, -0.0013919847551733255, 0.04727385193109512, 0.01886533573269844, -0.002715711249038577, -0.011811962351202965, 0.009796712547540665, -0.034532275050878525, -0.003468179376795888, 0.01066782046109438, -0.0010831966064870358, 0.0119484793394804, -0.019632430747151375, 0.0021452654618769884, 0.02953965589404106, 0.0003049283695872873, 0.016460036858916283, 7.866989471949637e-05, 0.03159391134977341, -0.005122634116560221, 0.029825692996382713, -0.004696831572800875, -0.008106503635644913, -0.006994865834712982, -0.006552811246365309, -0.03874479606747627, 0.002566192764788866, 0.014886843040585518, 0.006039247382432222, 0.021244630217552185, -0.006832345854490995, 0.006786840036511421, 0.014756826683878899, -0.011532427743077278, 0.005480178166180849, -0.006608068011701107, -0.01217600703239441, -0.020100487396121025, -0.006400042213499546, -0.01952841691672802, -0.00875658355653286, 0.014743825420737267, 0.018904339522123337, -0.008347033523023129, -0.025340136140584946, 0.008854095824062824, -0.016291016712784767, -0.018033232539892197, 0.025249125435948372, -0.0003031000087503344, 0.02612023428082466, 0.027433395385742188, 0.026536284014582634, 0.001197773264721036, -0.002873355755582452, -0.01818925142288208, 0.025067102164030075, -0.029357634484767914, 0.008633068762719631, 0.0026750811375677586, 0.039290864020586014, -0.006166013423353434, -0.019424404948949814, 0.0037509643007069826, -0.008282025344669819, 0.0006062000175006688, -0.02470305748283863, 0.0019193625776097178, 0.027199367061257362, 0.018423279747366905, -0.014886843040585518, 0.01167544536292553, -0.016291016712784767, 0.033934202045202255, 0.024599045515060425, 0.027225369587540627, -0.01037528458982706, 0.005551687441766262, -0.020854581147432327, 0.01211750041693449, -0.008984112180769444, 0.01899535208940506, -0.014470791444182396, 0.0015480041038244963, -0.0030456269159913063, 0.007807466667145491, -0.003952489234507084, -0.004183267708867788, 0.005925483535975218, 0.03193195164203644, -0.008613565936684608, 0.003614447545260191, 0.025522159412503242, 0.0036339499056339264, -0.002939988858997822, -0.011421914212405682, -0.014301770366728306, 0.02275281585752964, -0.01164944190531969, -0.0028294753283262253, -0.033258117735385895, 0.004046750720590353, 0.015458913519978523, -0.02383195050060749, -0.0015512545360252261, 0.007189889904111624, -0.007696952670812607, -0.0119484793394804, 0.0060782525688409805, -0.0011530802585184574, -0.038432758301496506, -0.007872474379837513, 0.004982866812497377, -0.008073999546468258, 0.0021907712798565626, 0.005467176903039217, 0.00892560463398695, -0.020789572969079018, -0.01730514131486416, 9.916266208165325e-06, 0.018696313723921776, 0.02013949304819107, -0.01181846298277378, -0.017812205478549004, 0.008737081661820412, 0.028811566531658173, 0.01006324589252472, -0.006101005245000124, 0.02784944698214531, 0.006994865834712982, -0.029383637011051178, 0.03968091309070587, 0.005756462458521128, -0.023987969383597374, 0.006962361745536327, -0.013612684793770313, 0.0034779305569827557, -0.0055776904337108135, 0.010648318566381931, 0.009653694927692413, -0.006559311877936125, 0.023506909608840942, -0.012943102046847343, 0.001224589068442583, -0.0021290136501193047, 0.008587563410401344, -0.009088125079870224, 0.0025483155623078346, -0.006832345854490995, 0.00855505932122469, 0.004560314584523439, 0.004300282336771488, 0.006903854664415121, 0.011928976513445377, -0.01479583140462637, -0.0005338785704225302, -0.03086582012474537, 0.011688446626067162, -0.01238403283059597, -0.013950726948678493, 0.002151766326278448, -0.004615571349859238, 0.01691509410738945, 0.002372793620452285, -0.019541418179869652, 0.009374160319566727, -0.011304899118840694, 0.009250645525753498, 0.014873840846121311, 0.022648803889751434, 0.0012018362758681178, -0.00788547657430172, -0.027173364534974098, -0.006721831858158112, 0.0014708071248605847, -0.0016674564685672522, -0.02557416632771492, -0.005616695154458284, -0.004693580791354179, 0.009855220094323158, 0.002775843720883131, -0.020919589325785637, -0.02589920535683632, -0.015094868838787079, -0.03978492319583893, -0.004306782968342304, -0.004056502133607864, 0.013417661190032959, 0.012468543834984303, -0.008158509619534016, -0.0073459092527627945, 0.0369245707988739, 0.012455541640520096, 0.004163765348494053, -0.011681945994496346, -0.02007448486983776, -0.00245730415917933, 0.012839089147746563, -0.03364816680550575, -0.0071313828229904175, -0.028005465865135193, -0.030241742730140686, 0.024208996444940567, 0.013547676615417004, -0.01154542900621891, 0.03367416933178902, -0.009738205932080746, -0.002777468878775835, -0.006403292529284954, 0.000895485864020884, 0.03154190629720688, 0.02489808201789856, 0.010342780500650406, -0.038354746997356415, 0.007072875741869211, 0.0297996886074543, -0.029643669724464417, -0.022310761734843254, -0.010557306930422783, -0.0007069625426083803, 0.015523921698331833, -0.008691576309502125, -0.02228475920855999, 0.008327530696988106, 0.023597920313477516, -0.014405783265829086, 0.015445912256836891, 0.0005667888908647001, -0.0024979342706501484, 0.020295511931180954, 0.028681550174951553, -0.004917858634144068, -0.004739086609333754, 0.021127615123987198, -0.02899358980357647, -0.007846470922231674, 0.01318363193422556, -0.02201172523200512, 0.00736541161313653, -0.014275766909122467, -0.015757950022816658, -0.03515635058283806, 0.003386919153854251, -0.011616937816143036, 0.008808590471744537, -0.018267260864377022, 0.013599683530628681, 0.001076695742085576, -0.02852553129196167, -0.0068388464860618114, 0.01044029276818037, 0.0170581117272377, -0.02502809837460518, -0.02865554764866829, 0.006806342396885157, -0.0021972719114273787, 0.0060782525688409805, -0.008646070025861263, -0.006009994074702263, 0.01523788645863533, -0.013599683530628681, -0.0011319526238366961, 0.00382572365924716, -0.010349281132221222, 0.22778819501399994, -0.01205249223858118, 0.0004985304549336433, 0.019541418179869652, 0.00812600553035736, -0.0183192677795887, 0.027433395385742188, -0.008327530696988106, -0.007579938508570194, -0.013989731669425964, -0.0013830461539328098, 0.00741741806268692, -0.04277529567480087, -0.006465050391852856, 0.003351164748892188, -0.024677054956555367, -0.04139712452888489, -0.012273519299924374, -0.019307389855384827, 0.00032138352980837226, 0.009627691470086575, 0.004056502133607864, -0.00960168894380331, -0.022986846044659615, 0.012377532199025154, -0.006702329497784376, 0.00376721634529531, 0.0170581117272377, 0.01825425960123539, 0.014431786723434925, -0.014717821963131428, -0.0046448251232504845, 0.011824963614344597, 0.02605522610247135, -0.017552172765135765, -0.011467419564723969, 0.03203596547245979, -0.01127239502966404, 0.02704334817826748, 0.012982106767594814, 0.008496551774442196, -0.0026848323177546263, -0.011935477145016193, -0.0198664590716362, -0.02147865854203701, 0.025054100900888443, -0.012735076248645782, -0.003377167973667383, 0.0011132628424093127, 0.012650566175580025, -0.018683312460780144, 0.0005497243255376816, 0.00466432748362422, 0.030319754034280777, 0.006549560930579901, 0.013651689514517784, 0.021127615123987198, 0.020191499963402748, 0.03531236946582794, -0.0032780307810753584, -0.01181846298277378, 0.02751140482723713, -0.01739615388214588, 0.03081381507217884, -0.011915975250303745, -0.0026377015747129917, -0.01657705195248127, 0.008678574115037918, 0.011467419564723969, -0.01584896259009838, 0.006123757921159267, -0.00949767604470253, -0.014522797428071499, -0.007904978469014168, -0.045063577592372894, -0.014275766909122467, 0.0413191132247448, 0.04555764049291611, 0.02792745642364025, 0.01161043718457222, -0.01570594497025013, -0.003965490963310003, 0.025795193389058113, -0.034870315343141556, 0.009192137978971004, -0.02430000714957714, 0.007930981926620007, 0.016551049426198006, 0.002480057068169117, 0.010258269496262074, 0.007495427969843149, -0.031723927706480026, 0.010030741803348064, 0.01311862375587225, -0.00532090850174427, 0.017552172765135765, 0.01657705195248127, 0.011753454804420471, -0.0014464290579780936, -0.00026815818273462355, -0.009848719462752342, 0.015185879543423653, 0.024261003360152245, 0.03344013914465904, -0.03401220962405205, 0.009718703106045723, 0.01161043718457222, 0.008178012445569038, 0.016395028680562973, -0.0214136503636837, 0.009458671323955059, -0.0178512092679739, 0.013924723491072655, -0.009114128537476063, -0.016941096633672714, 0.0036664537619799376, -0.014171754010021687, 0.009978734888136387, -0.007709954399615526, -0.012026488780975342, -0.008776086382567883, -0.01906036026775837, 0.010277772322297096, 0.004596068989485502, -0.001463493681512773, -0.008828092366456985, -0.02093259058892727, -0.0020071235485374928, -0.003533187322318554, -0.002161517506465316, 0.025886204093694687, -0.009075123816728592, 0.019970472902059555, 0.0012725325068458915, -0.016603054478764534, -0.002481682226061821, 0.005681703332811594, 0.03679455444216728, 0.009627691470086575, 0.008282025344669819, -0.0016918344190344214, 0.0018754821503534913, -0.010934353806078434, -0.003167517017573118, 0.004800844471901655, -0.014990855939686298, -0.014496794901788235, -0.007898477837443352, -0.0007817217847332358, 0.0074304197914898396, -0.01500385720282793, 0.031177859753370285, 0.005730459466576576, -0.028941582888364792, 0.014951851218938828, -0.002208648482337594, -0.02966967225074768, -0.018696313723921776, -0.0012083370238542557, 0.01295610424131155, -0.03255603089928627, 0.012065493501722813, 0.017955223098397255, -0.0028538531623780727, 0.00031833627144806087, -0.019021354615688324, -0.16423633694648743, 0.00401099631562829, 0.04740386828780174, -0.030163733288645744, 0.03955089673399925, -0.005756462458521128, 0.046883802860975266, 0.008165011182427406, -0.0137296998873353, 0.009848719462752342, 0.00035774739808402956, -0.004462802316993475, -0.014444787986576557, -0.0024898082483559847, -0.018878336995840073, -0.02375394105911255, -0.012254016473889351, 0.012436039745807648, 0.032374005764722824, 0.015224884264171124, 0.03263403847813606, -0.038484763354063034, 0.004706582520157099, 0.0013424161588773131, -0.019918465986847878, 0.031983960419893265, 0.0079894894734025, 0.006877851206809282, 0.001549629378132522, -0.009010115638375282, -0.005847473628818989, -0.007157385814934969, 0.03739262744784355, -0.015588929876685143, 0.0010271271457895637, -0.009881223551928997, 0.0030960082076489925, -0.024065978825092316, 0.0003110228863079101, 0.011863968335092068, 0.022778820246458054, -0.0035754425916820765, 0.011590935289859772, -0.01127239502966404, -0.0036306993570178747, 0.002065630629658699, 0.011148880235850811, -0.003318660892546177, -0.0007289027562364936, -0.026731308549642563, 0.02704334817826748, -0.018761321902275085, -0.019619429484009743, 0.0032747804652899504, -0.002728712745010853, -0.019112365320324898, -0.016590053215622902, 0.02625024877488613, -0.001076695742085576, -0.021712686866521835, 0.015159877017140388, -0.00855505932122469, -0.012130501680076122, -0.009887724183499813, -0.011122876778244972, 0.002234651707112789, 0.0020542542915791273, 0.0034746802411973476, -0.0475078821182251, 0.003260153578594327, 0.008483550511300564, -0.010947355069220066, -0.011090372689068317, -0.009822716005146503, 0.0033284120727330446, 0.020568545907735825, -0.020828578621149063, -0.008568060584366322, 0.0134956706315279, -0.013963728211820126, 0.0011295147705823183, 0.033128101378679276, -0.02678331546485424, 0.02162167616188526, -0.002964366925880313, -0.003258528420701623, -0.01638202741742134, 0.00664382241666317, -0.03161991387605667, -0.013976730406284332, 0.03000771440565586, -0.018150247633457184, -0.03000771440565586, -0.011220389045774937, 0.030215740203857422, 0.018241258338093758, 0.020763570442795753, -0.017487164586782455, 0.008379537612199783, -0.0012814711080864072, -0.005766213871538639, 0.01570594497025013, -0.01833226904273033, -0.003770466661080718, 0.029903702437877655, 0.02531413361430168, 0.008828092366456985, 0.040773048996925354, 0.017682189121842384, 0.0002443896373733878, -0.03461028262972832, -0.009738205932080746, 0.013963728211820126, 0.024065978825092316, -0.01657705195248127, 0.01137640792876482, -0.004475804045796394, -0.00949767604470253, 0.019710440188646317, 0.02088058553636074, 0.024937087669968605, 0.0022314011584967375, -0.01980145089328289, -0.0028912329580634832, -0.02147865854203701, -0.022180745378136635, -0.10994160920381546, -0.036534521728754044, 0.017617180943489075, 0.017760198563337326, -0.005041373893618584, 0.013963728211820126, -0.00021919900609645993, -0.0028229744639247656, -0.027147360146045685, 0.012429538182914257, -0.014171754010021687, -0.028915580362081528, 0.014821834862232208, -0.011857467703521252, -0.008535556495189667, -0.01389872096478939, 0.014249764382839203, -0.004492056090384722, -0.021725689992308617, 0.02987769804894924, -0.007729456759989262, 0.003325161524116993, 0.003287781961262226, 0.020087486132979393, -0.007462923880666494, -0.005593942478299141, -0.018033232539892197, 0.008171511813998222, 0.009939730167388916, -0.013820710591971874, 0.00027628420502878726, -0.012000485323369503, 0.012813085690140724, -0.035546399652957916, 0.00281809875741601, -0.002868480049073696, -0.02054254338145256, -0.007976487278938293, 0.026497280225157738, -0.0022606549318879843, -0.03770466893911362, -0.012546553276479244, -0.024729061871767044, -0.03060578927397728, -0.031775932759046555, -0.010765332728624344, -0.03060578927397728, 0.02362392470240593, 0.0030066221952438354, -0.04683179780840874, 0.002660454250872135, 0.006094504613429308, -0.02797946333885193, 0.0006309843738563359, 0.03877079859375954, -0.013313648290932178, -0.013404658995568752, -0.024404020980000496, -0.013040614314377308, 0.0005830409354530275, 0.0018689814023673534, -0.025223122909665108, -0.023857953026890755, 0.03377818316221237, 0.019697438925504684, -0.023597920313477516, -0.018878336995840073, -0.025197118520736694, 0.01778620108962059, -0.023584919050335884, 0.0178512092679739, -0.005395668093115091, -0.015939973294734955, 0.02610723115503788, -0.029357634484767914, -0.011018863879144192, -0.01578395441174507, -0.009913727641105652, 0.03840675577521324, -0.004339287057518959, -0.005720708053559065, -0.01731814444065094, 0.017227131873369217, -0.03206196799874306, 0.01838427595794201, -0.0028538531623780727, 0.008347033523023129, 0.004573316313326359, 0.017201129347085953, -0.043737415224313736, -0.0005119383567944169, 0.02625024877488613, 0.004992618225514889, -0.014951851218938828, 0.007241896353662014, -0.0031301374547183514, -0.021114613860845566, -0.007371912710368633, 0.012377532199025154, 0.041449129581451416, -0.004973115399479866, -0.01345666591078043, -0.03367416933178902, 0.008243020623922348, -0.0065073054283857346, -0.005392417311668396, -0.0022655304055660963, -0.02328588254749775, 0.0032699047587811947, -0.008230018429458141, -0.006682827137410641, 0.0064162942580878735, -0.006062000524252653, 0.018761321902275085, -0.0046578263863921165, -0.012442540377378464, -0.00976420845836401, -0.01369069516658783, 0.00782046839594841, 0.006825844757258892, -0.003017998533323407, 0.0020786323584616184, -0.01920337788760662, 0.002304535359144211, 0.015536922961473465, 0.016421033069491386, -0.010251768864691257, 0.02504109963774681, -0.0007837532903067768, -0.0037119595799595118, -0.0029806189704686403, -0.005980740301311016, 0.014704820699989796, -0.024195995181798935, -0.010459794662892818, 0.04355539008975029, 0.00020924465206917375, -0.02202472649514675, -0.004765090066939592, 0.019853457808494568, 0.011727451346814632, 0.04025298357009888, 0.004407545551657677, -0.024065978825092316, 0.015887966379523277, -0.013950726948678493, -0.011246392503380775, -0.015744948759675026, -0.009894224815070629, 0.011421914212405682, 0.003203271422535181, 0.011935477145016193, 0.020763570442795753, 0.012299522757530212, 0.00045871303882449865, -0.01778620108962059, -0.0025548161938786507, -0.005535435397177935, 0.009244143962860107, 0.015380904078483582, -0.011974481865763664, -0.027225369587540627, 0.01912536658346653, 0.005889729131013155, 0.01010225061327219, -0.012202010490000248, 0.007839970290660858, -0.0023451652377843857, -0.0029676174744963646, -0.013768704608082771, 0.016421033069491386, -0.024339012801647186, -0.01770819164812565, 0.001675582374446094, 0.02335089072585106, 0.022167744114995003, 0.0015098118456080556, 0.001851104199886322, -0.021062606945633888, 0.0004132073954679072, -0.018176250159740448, 0.035260364413261414, 0.03409022092819214, 0.006013244390487671, -0.015523921698331833, 0.023532913997769356, 0.022102735936641693, 0.005376165732741356, -0.004173516761511564, 0.002668580273166299, -0.002813223283737898, -0.0020184998866170645, 0.006370788440108299, -0.0036957075353711843, 0.004589568357914686, -0.01534189935773611, -0.0006224520620889962, 0.021530665457248688, -0.00849005114287138, -0.0009239268838427961, 0.005298155825585127, 0.0206595566123724, -0.0008467297884635627, 0.009627691470086575, 0.011915975250303745, -0.04053901880979538, -0.03242601454257965, -0.003286156803369522, -0.006039247382432222, -0.03825073316693306, -0.0114804208278656, 0.0170581117272377, 4.553102553472854e-05, -0.01765618473291397, 0.006448798347264528, 0.011064369231462479, -0.015276891179382801, 0.005558188073337078, 0.004518059082329273, -0.013677692972123623, -0.030891824513673782, 0.019749443978071213, 0.0035429385025054216, 0.02860354073345661, 0.017500165849924088, -0.01322263665497303, 0.004823597148060799, 0.01244904100894928, 0.012663567438721657, 0.012293022125959396, 0.029721679165959358, 0.0031187611166387796, -0.015250887721776962, 0.0001362121693091467, -0.01231902465224266, -0.007183389272540808, -0.018371274694800377, -0.022258754819631577, 0.004319784697145224, 0.02115361951291561, -0.0031512652058154345, 0.09298750758171082, 0.03328412026166916, -0.037574652582407, 0.006621069740504026, -0.014132749289274216, 0.012904097326099873, 0.000840228982269764, 0.01352167408913374, -0.001222963910549879, -0.008776086382567883, 0.01534189935773611, 0.0067933411337435246, -0.022804822772741318, -0.028681550174951553, -0.010966857895255089, 0.015484916977584362, -0.0015796954976394773, -0.0010953856399282813, -0.0027595916762948036, -0.00792448129504919, 0.020698562264442444, -0.02504109963774681, 0.02228475920855999, 0.022323762997984886, -0.018280262127518654, -0.021725689992308617, 0.03159391134977341, 0.0050673773512244225, -0.00788547657430172, -0.01792921870946884, -0.009634193032979965, -0.0012928475625813007, -0.055542875081300735, -0.009114128537476063, 0.010661319829523563, -0.008366535417735577, 0.006682827137410641, -0.02966967225074768, 0.009270147420465946, 0.0014919346431270242, 0.014990855939686298, 0.00876308511942625, -0.015952974557876587, -0.03333612531423569, -0.030709801241755486, 0.03812072053551674, 0.012202010490000248, -0.01779920421540737, 0.0016308893682435155], '_distance': 0.37803786993026733})],\n", + " 'question': 'How Transformers work?'}\n", + "'-------'\n", + "***** DOCS RELEVANCE CHECK *****\n", + "***** RATED DOCUMENT: RELEVANT *****\n", + "***** RATED DOCUMENT: RELEVANT *****\n", + "***** RATED DOCUMENT: RELEVANT *****\n", + "***** RATED DOCUMENT: RELEVANT *****\n", + "{ 'documents': [ Document(page_content='Featured in courses at Stanford, Harvard, MIT, Princeton, CMU and others\\nIn the previous post, we looked at Attention – a ubiquitous method in modern deep learning models. Attention is a concept that helped improve the performance of neural machine translation applications. In this post, we will look at The Transformer – a model that uses attention to boost the speed with which these models can be trained. The Transformer outperforms the Google Neural Machine Translation model in specific tasks. The biggest benefit, however, comes from how The Transformer lends itself to parallelization. It is in fact Google Cloud’s recommendation to use The Transformer as a reference model to use their Cloud TPU offering. So let’s try to break the model apart and look at how it functions.', metadata={'vector': [-0.03292850777506828, 0.0013406849466264248, 0.021762628108263016, -0.010678051970899105, 0.0201500803232193, 0.014241919852793217, -0.006924473214894533, -0.016965635120868683, -0.013428870588541031, -0.04143843054771423, 0.03571997955441475, 0.03726477548480034, -0.007520709186792374, 0.0007080307113938034, 0.015868017449975014, -0.006494234316051006, 0.03048936277627945, 0.009031626395881176, -0.008116945624351501, -0.020448198541998863, -0.025692369788885117, 0.009248439222574234, -0.022697634994983673, -0.020082324743270874, -0.009343295358121395, 0.009939531795680523, 0.04967733472585678, -0.03284720331430435, -0.009153584018349648, -0.03181734308600426, 0.015447943471372128, 0.013916700147092342, -0.01604417897760868, -0.028754856437444687, -0.008184699341654778, -0.011565630324184895, 0.011524978093802929, -0.012690350413322449, 0.01742636412382126, -0.015542799606919289, 0.0319257490336895, 0.024567648768424988, 0.008469266816973686, -0.009255214594304562, -0.011342042125761509, 0.006175789516419172, -0.0009985265787690878, -0.04482613503932953, -0.0019665637519210577, 0.015122723765671253, 0.014634894207119942, 0.03905348479747772, -0.02326676994562149, -0.02559751458466053, -0.027101656422019005, 0.0002434914349578321, -0.010081815533339977, 0.007771399803459644, 0.02009587548673153, -0.011111677624285221, 0.01832071878015995, 0.0027745317202061415, -0.008218576200306416, 0.005962363909929991, -0.011545304208993912, -0.015136274509131908, -0.0016371094388887286, 0.03127530962228775, 0.0014186021871864796, 0.010576420463621616, 0.03777970373630524, 0.024635402485728264, 0.0042447964660823345, -0.011965380050241947, 0.035421863198280334, -0.016924982890486717, -0.014743301086127758, -0.00861155055463314, -0.016924982890486717, 0.013550828211009502, -0.0007380965980701149, -0.0036993760149925947, 0.009688841179013252, -0.0007012552814558148, 0.0016218647360801697, -0.0068228417076170444, 0.00879448652267456, -0.008814812637865543, -0.009973408654332161, 0.010833886452019215, -0.0008122027502395213, 0.001707404269836843, 0.01798194646835327, 0.014661995694041252, 0.01265647355467081, 0.014431631192564964, -0.0019835021812468767, 0.030895886942744255, -0.0033165651839226484, -0.01651845872402191, -0.0026559620164334774, -0.001112861675210297, -0.04021885618567467, -0.016247441992163658, -0.019093114882707596, 0.014729749411344528, 0.01596287451684475, -0.006545050069689751, -0.013943801634013653, -0.006392603274434805, -0.0008435390191152692, 0.02023138478398323, 0.0015109172090888023, -0.04290191829204559, -0.0036587235517799854, 0.003594357054680586, 0.009600760415196419, -0.008096619509160519, 0.007961111143231392, -0.01205346081405878, 0.04330844432115555, 0.01519047748297453, 0.005271271802484989, 0.0003809052868746221, 0.007527485024183989, -0.009797248058021069, -0.005406780168414116, -0.0052983732894063, 0.003413114696741104, -0.021207043901085854, -0.02174907736480236, 0.017290854826569557, -0.0016303339507430792, -0.004966378211975098, -0.0177922360599041, 0.014052208513021469, -0.0031996893230825663, -0.01643715240061283, -0.04198046028614044, -0.0023663132451474667, 0.0019835021812468767, -0.006965125445276499, -0.006318073719739914, -0.01296814251691103, -0.0028778568375855684, 0.03409387916326523, 0.005105274263769388, 0.040787987411022186, 0.02352423593401909, 0.022724736481904984, 0.022670533508062363, -0.026952596381306648, -0.008191474713385105, 0.01121330913156271, 0.03206125646829605, 0.016423601657152176, 0.014241919852793217, 0.006734761409461498, -0.007622340694069862, -0.0013991228770464659, 0.00577603979036212, 0.008035640232264996, -0.010251200757920742, -0.014296123757958412, 0.014783953316509724, 0.023456482216715813, 0.005850569345057011, -0.006985451560467482, 0.009438150562345982, -0.02090892568230629, -0.005806529428809881, 0.021369654685258865, -0.04561208188533783, 0.010542543604969978, -0.0034639304503798485, -0.0026119218673557043, 0.03336213529109955, -0.009390722960233688, -0.022494371980428696, -0.01986551284790039, 0.03658723086118698, -0.010481564328074455, 0.012595494277775288, 0.008537020534276962, -0.0008342228247784078, -0.013605031184852123, 0.010522217489778996, -0.013970903120934963, 0.011511427350342274, -0.030922988429665565, 0.009560108184814453, 0.03187154605984688, 0.0065484377555549145, -0.01487880852073431, -0.6348291635513306, -0.008726732805371284, -0.012859735637903214, -0.008963871747255325, 0.015176926739513874, -0.0005263649509288371, 0.0003383472212590277, 0.00016568003047723323, -0.01007504016160965, 0.012568392790853977, -0.0016574356704950333, -0.021112188696861267, -0.011389469727873802, 0.001235665986314416, -0.01910666562616825, -0.02141030691564083, 0.0029930388554930687, -0.03203415498137474, 0.020434647798538208, 0.026342809200286865, -0.03263039141893387, 0.013530501164495945, -0.02386300638318062, 0.005145926494151354, -0.009925981052219868, 0.011484325863420963, 0.009593985043466091, 0.009783697314560413, 0.005173027981072664, 0.012981693260371685, -0.03168183192610741, 0.0036621112376451492, 0.03371445834636688, -0.00020156856044195592, 0.026559622958302498, 0.00534580135717988, 0.005657470319420099, 0.03352474421262741, 0.0042447964660823345, 0.03712926432490349, -0.008719957433640957, -0.020746316760778427, 0.02899877168238163, 0.02197944186627865, 0.026952596381306648, 0.012202519923448563, 0.0065823146142065525, 0.004586955066770315, -0.010217323899269104, -0.02661382593214512, -0.012548066675662994, 0.014201267622411251, 0.01973000355064869, -0.006555213127285242, 0.0006495927809737623, 0.005274659488350153, 0.033172424882650375, -0.0024272918235510588, 0.018252963200211525, -0.01756187155842781, 0.0015651206485927105, 0.01214154064655304, -0.004705524537712336, -0.010854212567210197, -0.018673039972782135, -0.007032879628241062, 0.011904401704668999, 0.026451215147972107, 0.007229366805404425, -0.027752095833420753, 0.004088961984962225, 0.024405039846897125, 0.011050699278712273, 0.00901807565242052, -0.007690094877034426, 0.02023138478398323, 0.018225861713290215, 0.00901807565242052, 0.016681067645549774, 0.032278068363666534, 0.021396756172180176, -0.02172197587788105, 0.015217579901218414, -0.02680353820323944, -0.005400004331022501, -0.0010137712815776467, -0.015014316886663437, -0.006477295886725187, -0.007107409182935953, -0.02256212756037712, 0.017074041068553925, 0.011220084503293037, -0.030164143070578575, -0.05745550990104675, -0.012270273640751839, 0.010108917020261288, 0.0006953268311917782, 0.009600760415196419, 0.017521219328045845, -0.00421430729329586, 0.0015625798841938376, -0.020014571025967598, -0.0041702669113874435, 0.010915190912783146, 0.01758897304534912, -0.0001675856183283031, -0.008774160407483578, 0.029188483953475952, 0.027277816087007523, -0.01627454347908497, -0.01680302619934082, 0.003396176267415285, -0.014255470596253872, 0.019323479384183884, 0.00320307700894773, -0.027521731331944466, 0.017656726762652397, -0.012893612496554852, -0.010047937743365765, -0.018198760226368904, 0.014282572083175182, -0.01025797612965107, 0.006606028415262699, -0.0012458291603252292, 0.009648188948631287, 0.004088961984962225, 0.013381442986428738, -0.02641056291759014, -0.011917952448129654, 0.015637654811143875, 0.010630623437464237, -0.001188238151371479, 0.020380442962050438, -0.011599508114159107, 0.00985145103186369, 0.019242174923419952, -0.0037739055696874857, -0.003831496462225914, -0.00014493032358586788, -0.017697380855679512, -0.008157597854733467, 0.014309674501419067, 0.01677592284977436, 0.026112444698810577, -0.05485375225543976, 0.008340533822774887, -0.011335266754031181, 0.0035096644423902035, -0.015881570056080818, -0.013984453864395618, -0.0005090029444545507, -0.012351579032838345, -0.027630137279629707, 0.007330997847020626, -0.01967580057680607, -0.018794996663928032, 0.004048309754580259, -0.04333554580807686, -0.020922476425766945, -0.043796271085739136, 0.027752095833420753, 0.0458017960190773, -0.029405295848846436, 0.023930760100483894, -0.013449196703732014, -0.009160359390079975, -0.00341819622553885, 0.043687865138053894, -0.025502657517790794, -0.030299650505185127, 0.021207043901085854, -0.04479903355240822, 0.01815810799598694, 0.002185070887207985, -0.003845047438517213, 0.001308501698076725, -0.007662992924451828, -0.01417416613548994, -0.015868017449975014, -0.014634894207119942, -0.009309418499469757, 0.01981130987405777, -0.014987215399742126, -0.022670533508062363, 0.022467270493507385, 0.01174856722354889, 0.039161890745162964, 0.00645019393414259, -0.025258744135499, 0.010860987938940525, -0.0018124232301488519, -0.01454003807157278, -0.0007321680895984173, 0.016504907980561256, 0.00703965499997139, 0.008083067834377289, 0.020705662667751312, -0.01573251001536846, 0.0006402765866369009, 0.022521473467350006, -0.004471772816032171, -0.0008041569381020963, 0.012216070666909218, -0.02295510098338127, 0.009729493409395218, 0.00181072938721627, 0.0012178805191069841, -0.029405295848846436, 0.0005958129186183214, -0.004512425512075424, 0.01947253756225109, -0.01294104102998972, -0.01894405670464039, -0.023117709904909134, -0.019960368052124977, 0.03870116174221039, -0.005247557535767555, 0.029974430799484253, -0.01930992864072323, 0.0007728206692263484, 0.011125229299068451, -0.001856463379226625, -0.009499129839241505, -0.008719957433640957, 0.005809917114675045, 0.02397141233086586, 0.024188226088881493, 0.011328491382300854, -0.0037806809414178133, -0.0163558479398489, 0.00425834720954299, 0.016152584925293922, 0.012920713983476162, 0.028104417026042938, 0.009526231326162815, -0.003353829961270094, 0.013571154326200485, -0.01333401445299387, 0.018022600561380386, -0.008042415603995323, 0.00514253880828619, 0.008550572209060192, -0.014648444950580597, -0.024066269397735596, 0.024581199511885643, 0.010373158380389214, 0.03444620221853256, -0.014838156290352345, -0.006927860900759697, -0.00858444906771183, -0.015271782875061035, -0.005074784625321627, 0.004915562458336353, 0.008137271739542484, 0.004688586108386517, 0.0014228367945179343, 0.004454834386706352, -0.006667007226496935, 0.02216915227472782, 0.028429636731743813, 0.010068264789879322, 0.009715942665934563, 0.02155936509370804, -0.011545304208993912, 0.017494117841124535, 0.009661739692091942, 0.013638908043503761, -0.011735016480088234, -0.009255214594304562, -0.007696870248764753, -0.0037976193707436323, -0.01664041541516781, 0.004908787086606026, -0.0489455871284008, 0.008760609664022923, 0.022128500044345856, -0.011538528837263584, 0.034663014113903046, -0.010332505218684673, 0.044419609010219574, -0.008862241171300411, -0.05244170501828194, 0.004454834386706352, -0.0031082211062312126, -0.01981130987405777, -0.02040754444897175, -0.03208835795521736, -0.00602673040702939, -0.008408288471400738, 0.003250504843890667, -0.01664041541516781, 0.004400630947202444, -0.0019987470004707575, 0.00036036729579791427, -0.015691857784986496, -0.0027271038852632046, 0.022304661571979523, -0.005945425480604172, 0.012703901156783104, -0.028565144166350365, -0.0015532636316493154, 0.006958350073546171, -0.03450040519237518, -0.006999002769589424, 0.02206074632704258, -0.020814070478081703, -0.018469776958227158, -0.010501890443265438, -0.008191474713385105, -0.020475300028920174, 0.026735782623291016, -0.004082186613231897, 0.010474788956344128, -0.03360605239868164, 0.014052208513021469, -0.006826229393482208, 0.014716198667883873, 0.009986959397792816, 0.0251232348382473, 0.017887091264128685, -0.0022087846882641315, -0.01823941245675087, 0.008537020534276962, 0.022697634994983673, 0.07252402603626251, 0.01792774349451065, -0.033118221908807755, 0.014092860743403435, -0.03937870264053345, -0.003485950408503413, -0.020326239988207817, -0.027467528358101845, 0.009966633282601833, -0.00817792396992445, -0.00762911606580019, -0.013347565196454525, 0.010915190912783146, -0.012446435168385506, 0.03303691744804382, 0.026491869240999222, -0.005610042251646519, -0.015786712989211082, -0.005349189043045044, -0.016789475455880165, 0.00838796142488718, -0.020272037014365196, 0.029296889901161194, 0.008869016543030739, 0.03433779627084732, -0.019242174923419952, 0.027318468317389488, 0.027860501781105995, 0.016504907980561256, -0.01361180655658245, -0.005427106283605099, -0.01146399974822998, -0.012690350413322449, -0.0026102280244231224, -0.026207301765680313, 0.04217017441987991, -0.0034673181362450123, 0.01700628735125065, 0.00037455331766977906, 0.006284196395426989, 0.004024595487862825, 0.03303691744804382, 0.009953082539141178, -0.011443673633038998, -0.018103905022144318, -0.029947329312562943, 0.02624795399606228, 0.023673294112086296, -0.021884584799408913, -0.024581199511885643, 0.0012170335976406932, 0.0018869527848437428, -0.04433830454945564, 0.005498248152434826, 0.013638908043503761, -0.003618071088567376, 0.003997494000941515, 0.010786457918584347, -0.010752581059932709, -0.006670394912362099, -0.020475300028920174, -0.029974430799484253, -0.0003730712051037699, 0.00017213785031344742, 0.012913938611745834, -0.0011425040429458022, -0.000349357258528471, -0.018117455765604973, -0.01840202324092388, 0.01907956413924694, 0.006077545695006847, -0.027833400294184685, -0.05170996114611626, -0.005054458510130644, 0.02661382593214512, 0.006978676188737154, 0.02989312633872032, -0.008801261894404888, -0.02054305374622345, 0.021992992609739304, -0.008462491445243359, -0.028429636731743813, 0.011782444082200527, -0.02216915227472782, -0.008814812637865543, -0.002630554372444749, -0.015000766143202782, -0.00042049912735819817, -0.013191730715334415, 0.0038247210904955864, -0.0028609184082597494, 0.0011179432040080428, 0.01355760358273983, -0.001084913033992052, 0.0013881127815693617, 0.02967631258070469, 0.024906421080231667, 0.02174907736480236, 0.01986551284790039, -0.033849965780973434, 0.006304522510617971, -0.025245191529393196, -0.005610042251646519, -0.02562461607158184, 0.023388726636767387, 0.005156089551746845, 0.025502657517790794, 0.011992481537163258, 0.017805786803364754, -0.01683012768626213, 0.019608046859502792, -0.0036756619811058044, -0.010298628360033035, -0.0033894008956849575, 0.009309418499469757, 0.0027813073247671127, 0.008320207707583904, 0.008841914124786854, -0.008774160407483578, -0.029351092875003815, -0.0160983819514513, -0.027020350098609924, 0.03417518734931946, 0.013198506087064743, -0.003064180724322796, 0.001883565098978579, -0.00045310580753721297, -0.004807156044989824, -0.0189711581915617, 0.021654222160577774, -0.008164373226463795, 0.03347054123878479, 0.010671276599168777, 0.0025915957521647215, -0.029567906633019447, -0.004790217150002718, -0.006887208204716444, -0.009126481600105762, -0.012886837124824524, -0.01683012768626213, 0.004888460971415043, -0.008665753528475761, -0.019770655781030655, -0.013571154326200485, 0.02756238356232643, -0.019093114882707596, -0.023090608417987823, 0.01012924313545227, 0.017182448878884315, 0.02829412929713726, 0.0006085167988203466, 0.00991920568048954, -0.037752602249383926, -0.008001763373613358, 0.0077104209922254086, -0.01790064200758934, 0.003231872571632266, -0.004139777738600969, 0.015095622278749943, 0.02127479761838913, 0.040842194110155106, 0.0018988096853718162, -0.002451005857437849, 0.041411325335502625, -0.0251232348382473, -0.00038386951200664043, 0.014661995694041252, 0.019513191655278206, -0.00783915352076292, -0.003692600643262267, 0.015895120799541473, 0.00600640382617712, 0.01080678403377533, 0.010325729846954346, 0.016084831207990646, 0.001335603417828679, 0.012039910070598125, -0.003651948180049658, -0.010027611628174782, -0.02122059464454651, -0.016789475455880165, 0.021627120673656464, -0.008198250085115433, -0.015041418373584747, -0.02470315806567669, 0.005481309723109007, 0.028077315539121628, 0.02562461607158184, 0.02981182187795639, 0.017467016354203224, 0.016789475455880165, 0.0022900898475199938, -0.006351950578391552, 0.012778431177139282, 0.034663014113903046, -0.026573173701763153, -0.004343039821833372, -0.036993756890296936, -0.005193354561924934, 0.03723767399787903, 0.00972271803766489, 0.004637770354747772, 0.008747058920562267, -0.0035706430207937956, -0.006541662383824587, 0.015868017449975014, -0.007351323962211609, -0.01800904981791973, -0.015488595701754093, -0.013876047916710377, -0.008625101298093796, -0.013279811479151249, -0.018510429188609123, -0.007303896360099316, 0.00802208948880434, -0.003062486881390214, -0.009912430308759212, 0.007873030379414558, -0.028781957924365997, -0.02242661826312542, 0.036126505583524704, 0.016992736607789993, 0.046750351786613464, 0.013002019375562668, 0.030977191403508186, 0.01756187155842781, 0.002720328513532877, -0.0052340067923069, -0.008618325926363468, -0.0018361371476203203, 0.02323966845870018, 0.008076292462646961, 0.0008007692522369325, -0.004105900414288044, -0.031031396239995956, 0.00647052051499486, 0.010298628360033035, -0.00920101162046194, -0.038457248359918594, 0.012541291303932667, 0.013523725792765617, 0.007520709186792374, -0.013774416409432888, -0.027657238766551018, 0.0010451074922457337, 0.010705153457820415, -0.01528533361852169, 0.02402561530470848, 0.011179432272911072, -0.015542799606919289, -0.012527740560472012, 0.0027237161993980408, 0.00455307774245739, 0.010427361354231834, -0.011694363318383694, 0.007649442180991173, 0.033904168754816055, 0.0011433509644120932, 0.0037908439990133047, -0.004698749165982008, 0.0033741560764610767, 0.01448583509773016, -0.02164067141711712, 0.009871777147054672, 0.00895032100379467, -0.006951574701815844, 0.008110170252621174, -0.0010501891374588013, -0.016762372106313705, 0.03214256092905998, -0.037698399275541306, -0.015515698119997978, 0.01714179664850235, -0.015122723765671253, 0.01233802828937769, -0.03902638331055641, -0.0028592245653271675, 0.0018158109160140157, -0.01028507761657238, -0.006853331346064806, 0.017182448878884315, 0.020732766017317772, -0.03951421007514, 0.0057794274762272835, 0.020583705976605415, -0.011626609601080418, -0.013693111948668957, 0.005034132394939661, 0.014214818365871906, -0.03336213529109955, -0.01445873361080885, 0.010833886452019215, -0.0013415318680927157, 0.02680353820323944, -0.014323225244879723, -0.009892103262245655, -0.017399262636899948, 0.02706100232899189, -0.009973408654332161, -0.009343295358121395, 0.015800263732671738, 0.0016709864139556885, -0.010488339699804783, 0.02248082123696804, -0.004525976255536079, -0.017304405570030212, 0.007595238741487265, -0.0223724152892828, -0.019946817308664322, 0.004519200883805752, -0.004309162963181734, 0.0036756619811058044, 0.010515442118048668, 0.0035299905575811863, -0.01598997600376606, 0.005423718597739935, -0.008936770260334015, -0.009451702237129211, -0.00014302475028671324, -0.023564888164401054, -0.007378425914794207, 0.006277421023696661, 0.0329827144742012, -0.030841683968901634, 0.006301134824752808, -0.027941806241869926, -0.010833886452019215, -0.014811054803431034, -0.0371563658118248, 0.002569575561210513, -0.01756187155842781, 0.012399007566273212, -0.0057455506175756454, -0.004000881686806679, 0.022250458598136902, 0.004725851118564606, -0.020475300028920174, 0.01100327167659998, 0.0016642110422253609, 0.0018801772966980934, -0.008198250085115433, 0.010996496304869652, 0.025502657517790794, 0.003485950408503413, -0.03740028291940689, -0.007764624431729317, -0.00018928811186924577, 0.005379678215831518, -0.027657238766551018, -0.021166391670703888, -0.010976170189678669, 0.0282670259475708, 0.007053205743432045, -0.018849199637770653, -0.009844675660133362, -0.018225861713290215, -0.027914704754948616, -0.012852960266172886, -0.013930250890552998, 0.016342297196388245, 0.00320307700894773, 0.01840202324092388, 0.006094484589993954, 0.013117201626300812, 0.0076562175527215, 0.009966633282601833, 0.0057794274762272835, 0.029947329312562943, -0.025895632803440094, -0.009519455954432487, -0.02164067141711712, 0.003367380704730749, -0.046967167407274246, -0.011159106157720089, 0.004475160501897335, -0.023591989651322365, 0.0032386479433625937, 0.019540293142199516, 0.008753834292292595, -0.0035367661621421576, -0.0019716452807188034, 0.01641005091369152, -0.0019360744627192616, 0.019093114882707596, 0.03216966241598129, -0.02697969786822796, -0.0023612314835190773, -0.005471146199852228, -0.02174907736480236, -0.0097498195245862, 0.0050442954525351524, 0.009878552518785, 0.00851669441908598, 0.0029252846725285053, -0.02197944186627865, 0.013930250890552998, 0.019635148346424103, 0.0013779497239738703, 0.017074041068553925, 0.0033639930188655853, -0.0023544561117887497, 0.014960113912820816, 0.01761607453227043, -0.019187970086932182, -0.009966633282601833, 0.014743301086127758, -0.013821844011545181, -0.024486344307661057, 0.026058241724967957, -0.028890365734696388, 0.0019835021812468767, -0.005030744709074497, -0.002498433692380786, -0.008686079643666744, -0.005257721059024334, -0.0006343480781652033, 0.0025390861555933952, -0.026789987459778786, 0.02661382593214512, -0.002362925559282303, -0.03815912827849388, 0.014282572083175182, -0.005874283611774445, 0.018307168036699295, -0.017101144418120384, -0.005677796434611082, 0.009411049075424671, -0.013523725792765617, -0.012019583024084568, 0.00703965499997139, -0.009614312089979649, -0.024039166048169136, -0.002821959787979722, 0.013747314922511578, -0.011680812574923038, -0.009783697314560413, 0.21106769144535065, -0.020001020282506943, -0.0022172541357576847, 0.010278302244842052, 0.011328491382300854, 0.010935517027974129, 0.01800904981791973, 0.016369398683309555, -0.025583963841199875, -0.011809545569121838, 0.03504243865609169, -0.004942663945257664, -0.04249539226293564, -0.006019955035299063, 0.01482460554689169, -0.027277816087007523, -0.03948710858821869, -0.0382133312523365, -0.005925098899751902, -0.004536139313131571, 0.014689097180962563, -0.008970647118985653, -0.004681810736656189, -0.03807782381772995, 0.008869016543030739, 0.0024848829489201307, 0.0009883634047582746, -0.007005778141319752, 0.021491611376404762, 0.024188226088881493, -0.033091120421886444, 0.007168387994170189, 0.012249947525560856, 0.016870779916644096, -0.021030884236097336, -0.00913325697183609, 0.01487880852073431, -0.009275540709495544, 0.011362368240952492, 0.006104647647589445, 0.006873657461255789, 0.007114184554666281, 0.009363621473312378, -0.00199197162874043, 0.00023205792240332812, 0.018483327701687813, -0.02389010787010193, 0.0050612338818609715, -0.004712299909442663, 0.005139151122421026, -0.025746572762727737, 0.0018429126357659698, 0.007568137254565954, 0.036912452429533005, 0.0011170962825417519, 0.019431885331869125, -0.00288801989518106, 0.02012297883629799, 0.03355184569954872, 0.014241919852793217, -0.012961367145180702, 0.011897626332938671, -0.011077800765633583, 0.025611065328121185, 0.014269021339714527, 0.003926352132111788, -0.01815810799598694, 0.035503167659044266, 0.010251200757920742, -0.011457224376499653, -0.011497876606881618, -0.01407930999994278, -0.022182703018188477, -0.008001763373613358, -0.03788811340928078, -0.01666751690208912, 0.04111320897936821, 0.015122723765671253, 0.016586212441325188, 0.026789987459778786, -0.005379678215831518, -0.025041930377483368, 0.007920457981526852, -0.009600760415196419, 0.00966851506382227, -0.028483839705586433, 0.010461238212883472, -0.0030506299808621407, -0.0019208298763260245, -0.004634382668882608, 0.018903404474258423, -0.026261504739522934, -0.010041162371635437, -0.0014507854357361794, -0.02352423593401909, -0.0066737825982272625, 0.033795762807130814, 0.010854212567210197, 0.013483073562383652, -0.013144303113222122, -0.026871291920542717, 0.031654730439186096, 0.032359376549720764, 0.0005687112570740283, -0.0035706430207937956, 0.014431631192564964, 0.014865257777273655, 0.01155207958072424, -0.012094113044440746, -0.003912801388651133, -0.0012678492348641157, -0.050110962241888046, 0.011145555414259434, 0.0017683830810710788, -0.012385456822812557, 0.00951268058270216, -0.020421097055077553, -0.0030269159469753504, 0.0232938714325428, -0.015746060758829117, -0.00011602896120166406, -0.025773674249649048, -0.009180685505270958, 0.006802515592426062, 0.00045818736543878913, -0.016139034181833267, -0.016992736607789993, -0.006440030876547098, -0.021288348361849785, 0.014011556282639503, 0.002318885177373886, -0.04127581790089607, 0.021207043901085854, 0.001632874715141952, -0.014363877475261688, -0.023768151178956032, 7.209463365143165e-05, 0.008035640232264996, 0.012622595764696598, 0.01737215928733349, -0.009363621473312378, -0.007778175175189972, -0.005311924032866955, -0.0030658745672553778, 0.0012000950518995523, -0.02441859059035778, 0.008462491445243359, 0.02124769613146782, 0.013354340568184853, -0.012161866761744022, -0.014634894207119942, 0.023470032960176468, 0.005352576728910208, -0.026234403252601624, 0.022629881277680397, -0.01716889813542366, -0.021600017324090004, -0.03290140628814697, 0.004224470350891352, -0.014675546437501907, -0.03607230260968208, -0.010698378086090088, 0.017629625275731087, -0.0007567289867438376, -0.01669461838901043, -0.0003938209265470505, -0.17236651480197906, -0.0044683851301670074, 0.021627120673656464, -0.025583963841199875, 0.02315836399793625, 0.0035808063112199306, 0.01941833458840847, -0.00407541124150157, -0.022616330534219742, -0.005227231420576572, 0.020529503002762794, -0.022778939455747604, -0.008652202785015106, -0.01865948922932148, -0.0066568441689014435, 0.006971900817006826, -0.014770402573049068, -0.004841032903641462, 0.012609045021235943, 0.008435389958322048, 0.03777970373630524, -0.036234911531209946, 0.007635891437530518, 0.008157597854733467, -0.00817792396992445, 0.0194996390491724, 0.0049867043271660805, 0.03496113419532776, 0.02829412929713726, -0.028619349002838135, -0.0027440425474196672, -0.00861155055463314, 0.04271220788359642, -0.014580690301954746, 0.006463745143264532, 0.013340789824724197, 0.012697125785052776, -0.03490693122148514, -0.025001278147101402, 0.01907956413924694, 0.026261504739522934, -0.004993479698896408, 0.002425597980618477, 0.002478107577189803, -0.019743554294109344, -0.012974917888641357, 0.028890365734696388, -0.013889598660171032, 0.021871034055948257, -0.024147573858499527, 0.027616586536169052, -0.009004524908959866, -0.008137271739542484, 0.006785577163100243, -0.007547811139374971, 0.007195489481091499, 0.004942663945257664, 0.0052340067923069, 0.0011179432040080428, -0.01855108141899109, -0.019377682358026505, 0.0009375478839501739, 0.023849455639719963, 0.0014592546503990889, 0.001086606876924634, -0.011531753465533257, 0.01261582039296627, 0.023171914741396904, -0.031763140112161636, 0.010711928829550743, -0.01632874645292759, 0.025190988555550575, -0.032955609261989594, -0.02250792272388935, 0.00026868749409914017, 0.026993248611688614, -0.03813202679157257, 0.0041872053407132626, 0.003340278984978795, 0.0011475856881588697, -0.012852960266172886, 0.03208835795521736, -0.014418080449104309, 0.014038657769560814, -0.005945425480604172, -0.010610297322273254, -0.003485950408503413, 0.0177922360599041, -0.04431120306253433, -0.020028121769428253, 0.019038911908864975, -0.021112188696861267, -0.002556024817749858, 0.006297747138887644, 0.01519047748297453, 0.021843932569026947, 0.022291110828518867, -0.029567906633019447, 0.02441859059035778, -0.003172587603330612, -0.008462491445243359, 0.013930250890552998, -0.0019462376367300749, -0.007141286041587591, 0.01573251001536846, 0.027237163856625557, -0.01781933754682541, -0.001646425575017929, 0.02978471852838993, 0.005454207770526409, -0.01981130987405777, -0.021464509889483452, 0.01108457613736391, 0.0048207067884504795, -0.0025899019092321396, 0.02028558775782585, -0.0035401538480073214, 0.0037332531064748764, 0.022684084251523018, 0.014838156290352345, 0.059135813266038895, 0.0012509106891229749, -0.012317701242864132, 0.0027830011676996946, -0.01722310110926628, -0.04263089969754219, -0.10585907101631165, -0.020448198541998863, 0.011389469727873802, 0.015840915963053703, 0.00030595227144658566, 0.008679304271936417, -0.014431631192564964, 0.019187970086932182, -0.027237163856625557, 0.028754856437444687, -0.03436489775776863, -0.02528584562242031, 0.024228878319263458, -0.005403392016887665, -0.00291173392906785, -0.019066013395786285, 0.021179942414164543, -0.0011941666016355157, -0.024350836873054504, 0.03954131156206131, -0.008699631318449974, 0.011375918984413147, 0.017385710030794144, -0.020339790731668472, -0.010678051970899105, -0.0032589740585535765, -0.024987727403640747, 0.011897626332938671, 0.01077968254685402, -0.01700628735125065, 0.012243172153830528, -0.024323733523488045, 0.012886837124824524, -0.021030884236097336, 0.02177617885172367, 0.002232498722150922, -0.01567830704152584, -0.0067483121529221535, 0.02028558775782585, -0.018361371010541916, -0.0071006338112056255, -0.00858444906771183, 0.0020851334556937218, 0.010745805688202381, -0.016206789761781693, -0.010488339699804783, -0.019960368052124977, 0.020502401515841484, 0.01139624509960413, -0.0260446909815073, -0.02310415916144848, 0.014404529705643654, -0.03677694499492645, 0.010603521950542927, 0.025773674249649048, 0.0008782630320638418, 0.007466506212949753, -0.011660486459732056, -0.006077545695006847, -0.0021037659607827663, 0.011599508114159107, -0.011050699278712273, -0.017209550365805626, 0.039893634617328644, 0.027332019060850143, -0.009627862833440304, -0.011348817497491837, -0.02567881904542446, -0.0015981508186087012, -0.027887603268027306, -0.0038755368441343307, 0.011809545569121838, 0.005108661949634552, 0.0072090402245521545, -0.033226627856492996, 0.004549690056592226, -0.01745346561074257, -0.012683575041592121, 0.0005555839161388576, -0.0030658745672553778, -0.016789475455880165, -0.01711469516158104, -0.006111423019319773, -0.01795484498143196, -0.011843422427773476, -0.006094484589993954, -0.008753834292292595, -0.03661433607339859, 0.00703965499997139, -0.03704795986413956, 0.002288396004587412, 0.04284771531820297, 0.007107409182935953, 0.0003567678795661777, 0.008266004733741283, -0.003475787350907922, -0.009004524908959866, -0.008990973234176636, -0.003946678247302771, 0.03669564053416252, -0.007723971735686064, -0.011301389895379543, -0.06200858950614929, 0.006382439751178026, -0.008774160407483578, -0.007757849059998989, -0.0014888971345499158, 0.002991345012560487, 0.013577929697930813, 0.005677796434611082, -0.013998005539178848, -0.011348817497491837, -0.023876557126641273, -0.010088590905070305, 0.000378999684471637, -0.0005305995582602918, -0.02905297465622425, -0.022440169006586075, 0.022209804505109787, -0.016870779916644096, 0.01090164016932249, 0.012195744551718235, 0.011972155421972275, 0.006138524506241083, 0.02174907736480236, 0.029513703659176826, -0.014404529705643654, -0.030814582481980324, 0.01688433066010475, 0.012006032280623913, -0.0009527925867587328, -0.0009477109997533262, 0.0046547092497348785, -0.007574912626296282, 0.0057455506175756454, 0.022209804505109787, 0.0014787339605391026, 0.0054474323987960815, -0.0038721489254385233, 0.019621597602963448, 0.013930250890552998, 0.031139802187681198, -0.01936413161456585, -0.05092401057481766, 0.010928741656243801, -0.010088590905070305, -0.01601707749068737, -0.009898878633975983, -0.0009976796573027968, 0.0018666265532374382, 0.013760865665972233, 0.007642666809260845, 0.006511172745376825, 0.01832071878015995, -0.0013457664754241705, -0.0198926143348217, -0.015122723765671253, 0.027697892859578133, 0.01567830704152584, -0.007805276662111282, -0.006453581620007753, -0.0012873285450041294, 0.03653302788734436, 0.004962990526109934, 0.005203517619520426, -0.0012653084704652429, 0.012439659796655178, 0.003784068627282977, -0.025421353057026863, -0.0058370186015963554, 0.005582940764725208, -0.03482562676072121, 0.007391976658254862, -0.009844675660133362, 0.02588208205997944, 0.011978930793702602, 0.024540547281503677, 0.005738775245845318, -0.014905910938978195, -0.011518202722072601, -0.030922988429665565, 0.02593628503382206, 0.013571154326200485, 0.009268765337765217, -0.010190221481025219, 0.01876789517700672, 0.020949577912688255, 0.012697125785052776, -0.006460356991738081, -0.0031200782395899296, -0.01355760358273983, 0.0076562175527215, 0.013666009530425072, 0.012127989903092384, 0.013327239081263542, -0.003397870110347867, -0.001734505989588797, 0.016477804630994797, -0.0002483612624928355, 0.0023392115253955126, 0.013273036107420921, 0.002811796497553587, 0.020759867504239082, -0.0011340348282828927, -0.015312435105443, -0.01790064200758934, -0.04189915582537651, 0.0008054273203015327, -0.030055735260248184, -0.01933703012764454, 0.0008105089073069394, 0.0198926143348217, 0.01745346561074257, -0.015691857784986496, 0.005359352100640535, -0.0006449346547015011, -0.014390978962182999, 0.02402561530470848, 3.385059972060844e-05, -0.009404273703694344, -0.029323991388082504, -0.004238021094352007, 0.03431069478392601, 0.010881314054131508, 0.029378194361925125, 0.005942037794739008, 0.036858249455690384, 0.01863238774240017, 0.008259229362010956, -0.024919971823692322, 0.029703414067626, 0.01834782026708126, -0.007520709186792374, 0.007161612622439861, 0.009682065807282925, -0.013469522818922997, -0.01090164016932249, -0.007114184554666281, -0.008618325926363468, 0.02284669503569603, 0.0001381549081997946, 0.08320207893848419, 0.0175347700715065, -0.010420585982501507, 0.0017175674438476562, 0.004353203345090151, 0.0007808664813637733, 0.01986551284790039, 0.007859479635953903, -0.021112188696861267, 0.014241919852793217, -0.00600640382617712, 0.012609045021235943, -0.029351092875003815, 0.004326101392507553, -0.003574030939489603, 0.017317956313490868, -0.006849943660199642, 0.007466506212949753, -0.015054970048367977, -0.016206789761781693, 0.024947073310613632, -0.02483866736292839, 0.021532263606786728, -0.0011077801464125514, -0.013970903120934963, -0.010854212567210197, 0.0201500803232193, 0.016545560210943222, 0.0054474323987960815, -0.027413325384259224, 0.01907956413924694, 0.006944799330085516, -0.04507005214691162, -0.02475736290216446, 0.0011374225141480565, 3.705304334289394e-05, -0.0032860757783055305, -0.008381186053156853, 0.02973051555454731, -0.0016108546406030655, 0.000994291971437633, 0.03132951259613037, -0.006575539242476225, -0.027860501781105995, -0.015271782875061035, -0.001975032966583967, -0.0024747196584939957, -0.03211545944213867, -0.005552451126277447], '_distance': 0.3519055247306824}),\n", + " Document(page_content='The Transformer was proposed in the paper Attention is All You Need. A TensorFlow implementation of it is available as a part of the Tensor2Tensor package. Harvard’s NLP group created a guide annotating the paper with PyTorch implementation. In this post, we will attempt to oversimplify things a bit and introduce the concepts one by one to hopefully make it easier to understand to people without in-depth knowledge of the subject matter.\\n2020 Update: I’ve created a “Narrated Transformer” video which is a gentler approach to the topic:', metadata={'vector': [-0.02712874673306942, -0.005967519711703062, 0.029046399518847466, -0.01589103601872921, 0.029260961338877678, 0.0017349390545859933, -0.007067152764648199, -0.015327810309827328, -0.01750025525689125, -0.0014390774304047227, 0.027571281418204308, 0.020370028913021088, -0.014415918849408627, 0.0084215784445405, 0.010935982689261436, -0.012665892951190472, 0.013054787181317806, 0.006879410240799189, -0.011834463104605675, -0.016159238293766975, -0.019069243222475052, 0.015233938582241535, -0.006835827603936195, -0.012397689744830132, -0.017218641936779022, 0.013007852248847485, 0.03218437731266022, -0.03462502360343933, -0.011552849784493446, -0.018640117719769478, 0.0340886190533638, 0.003489993279799819, -0.01646767184138298, -0.02754446119070053, -0.01162660587579012, -0.01054038293659687, -0.00021278146596159786, -0.011914924718439579, 0.029073219746351242, -0.02346777357161045, 0.022743625566363335, 0.013249235227704048, -0.00035390243283472955, -0.01778186857700348, -0.02378961816430092, 0.0046767923049628735, -0.007536508142948151, -0.03462502360343933, -0.0038855932652950287, 0.020437078550457954, 0.02454058639705181, 0.02565363049507141, -0.021523302420973778, -0.025506118312478065, -0.02100030519068241, 0.0025646924041211605, 0.0003545310173649341, 0.03416907787322998, 0.011914924718439579, -0.005645676050335169, 0.007020216900855303, -0.006410054862499237, -0.016293341293931007, 0.010942688211798668, -0.020571179687976837, -0.012458035722374916, -0.0013276055688038468, 0.029824187979102135, 0.0008469352032989264, 0.00779130170121789, 0.03046787716448307, 0.02800040692090988, 0.004096802789717913, -0.014402508735656738, 0.03784346207976341, -0.018640117719769478, -0.009340174496173859, -0.011244416236877441, -0.008944574743509293, 0.006094916258007288, 0.005541747435927391, -0.0025797788985073566, 0.015421681106090546, 0.03076290152966976, 0.007932107895612717, 0.005592035595327616, 0.022609524428844452, 0.006792244501411915, -0.010580613277852535, 0.01090916246175766, 0.016655415296554565, 0.0058032451197505, 0.0050086937844753265, 0.01682974584400654, 0.025988884270191193, 0.04299296438694, -0.011103609576821327, 0.032130736857652664, 0.003949291072785854, -0.0274640005081892, -0.004264429677277803, 4.4709253415931016e-05, -0.023829849436879158, -0.006614559795707464, -0.005535042379051447, -0.018465785309672356, 0.006912935990840197, 0.004958405625075102, -0.01732592284679413, 0.023601876571774483, 0.006684963125735521, 0.028831837698817253, 0.0010267151519656181, -0.036985211074352264, 0.007516392972320318, -0.0010267151519656181, -0.009662018157541752, -0.009333468973636627, -0.004680144600570202, -0.005605445709079504, 0.051521822810173035, 0.011472389101982117, -0.00039245662628673017, -0.02016887627542019, 0.010426396504044533, 0.023038649931550026, 0.0017869033617898822, -0.009930221363902092, -0.005400940775871277, -0.03116520680487156, -0.015233938582241535, 0.02016887627542019, 0.010352641344070435, 0.0022411723621189594, -0.014295226894319057, 0.02971690706908703, -0.011110315099358559, -0.015502141788601875, -0.01947154849767685, -0.010594023391604424, 0.006396644748747349, -0.010526972822844982, -0.006785539444535971, -0.013604603707790375, -0.0035972746554762125, 0.03387405723333359, -0.00011733887367881835, 0.03623424470424652, 0.024875840172171593, 0.023333672434091568, 0.011579670011997223, -0.006309478543698788, 0.0015086426865309477, -0.005303717218339443, 0.023722566664218903, 0.03730705752968788, 0.003831952577456832, 0.008575795218348503, -0.01420135609805584, 0.013410156592726707, 0.014268406666815281, 0.004421999212354422, 0.0004982711398042738, -0.022126758471131325, 0.019914083182811737, 0.021643992513418198, 0.00877024233341217, -0.010151488706469536, 0.0005615503177978098, -0.006172024644911289, -0.005669143982231617, 0.02140261046588421, -0.0287781972438097, 0.013302875682711601, 0.0028245141729712486, -0.012283703312277794, 0.018787629902362823, 0.0005766367539763451, -0.017299102619290352, -0.0072683049365878105, 0.02523791417479515, -0.011023148894309998, 0.014925504103302956, 0.014013613574206829, -0.02354823611676693, -0.01650790311396122, 0.000825562747195363, -0.017138181254267693, 0.00817349087446928, -0.012109371833503246, 0.011237711645662785, 0.04154466465115547, 0.007945518009364605, -0.010533678345382214, -0.6230895519256592, -0.02100030519068241, 0.011948449537158012, -0.023829849436879158, -0.003188264789059758, -0.017687996849417686, -0.013799051754176617, 0.01741979271173477, -0.015609423629939556, 0.02551952749490738, -0.004492402542382479, -0.017956199124455452, 0.0014189622597768903, -0.0021087471395730972, -0.0015647977124899626, -0.016601774841547012, -0.0057261367328464985, -0.03510779142379761, 0.007858351804316044, 0.01984703168272972, -0.03280124440789223, 0.030494699254631996, -0.044199876487255096, -0.012478150427341461, 0.008515449240803719, -0.008843998424708843, -0.001840544049628079, -0.0030239904299378395, 0.0026334195863455534, 0.015341220423579216, -0.03218437731266022, 0.006805654615163803, 0.029690086841583252, -0.010178308933973312, 0.02104053646326065, -0.007798006758093834, 0.0024523823522031307, 0.04039139300584793, 0.002227762248367071, 0.02028956636786461, -0.02334708347916603, -0.022166989743709564, 0.019900672137737274, 0.015260759741067886, 0.008937869220972061, 0.005866943392902613, 0.019042422994971275, 0.015756934881210327, -0.013108428567647934, -0.018465785309672356, -0.022462012246251106, 0.00790528766810894, -0.0001966473791981116, -0.014523199759423733, 0.00019277099636383355, 0.0011792556615546346, 0.03660972788929939, -0.0010510210413485765, 0.009051855653524399, -0.02597547322511673, -0.010144783183932304, -0.00815337523818016, 0.003630799939855933, 0.0012337344232946634, -0.019619058817625046, -0.0009638550691306591, 0.012940801680088043, 0.03025331348180771, -0.0076102642342448235, -0.02770538441836834, 0.01302796695381403, 0.041437383741140366, -0.00913902185857296, -0.015917856246232986, -0.0003306441649328917, 0.018720578402280807, 0.006557566579431295, 0.005628913175314665, 0.012833519838750362, 0.027651743963360786, 0.027571281418204308, 0.007147613447159529, -0.01278658490628004, -0.017969610169529915, 0.02112099714577198, 0.008207015693187714, -0.014751172624528408, -0.004499107599258423, -0.0214428398758173, -0.019900672137737274, 0.00633965153247118, 0.023735977709293365, -0.027517640963196754, -0.05680542439222336, -0.007067152764648199, 0.007623674813657999, 0.0014776316238567233, 0.006721841171383858, 0.03033377416431904, -0.008548974990844727, 0.01688338816165924, -0.010339231230318546, 0.027759024873375893, 0.001917652552947402, 0.029046399518847466, 0.0015580925391986966, -0.0035168135073035955, 0.028107687830924988, 0.014992555603384972, -0.01750025525689125, -0.019619058817625046, -0.025747500360012054, -0.011204185895621777, 0.009662018157541752, -0.0030306954868137836, -0.035402812063694, 0.01233063917607069, 0.015703294426202774, -0.007925402373075485, -0.021214868873357773, 0.015475321561098099, 0.015073016285896301, 0.009822939522564411, 0.012712828814983368, 0.016078777611255646, 0.01072141993790865, 0.005535042379051447, -0.021992657333612442, -0.02136237919330597, 0.015877624973654747, -0.003367625642567873, -0.00798574835062027, 0.024473536759614944, 0.010493448004126549, 0.006765424273908138, 0.02947552502155304, 0.0103928716853261, -0.015837395563721657, 0.0011549497721716762, -0.021831735968589783, -0.01198197528719902, -0.0027256144676357508, 0.021228278055787086, -0.005367415025830269, -0.0358051173388958, -0.020557770505547523, -0.013758820481598377, 0.00012980612518731505, 0.004639914259314537, -0.0022646402940154076, -0.00384536269120872, 0.0036039797123521566, -0.01700407825410366, -0.002854687161743641, -0.010185014456510544, -0.01823781244456768, 0.007254894822835922, -0.03819212689995766, -0.028456352651119232, -0.027893126010894775, 0.008267361670732498, 0.04186651110649109, -0.02149648219347, 0.027812665328383446, -0.02663257159292698, -0.012169716879725456, -0.010962802916765213, 0.03915765881538391, -0.013678359799087048, -0.049966245889663696, 0.029797367751598358, -0.03902355581521988, -0.0070872679352760315, -0.01564965210855007, 0.006222312804311514, 0.010205129161477089, -0.003986169118434191, -0.003915765788406134, -0.00266526872292161, -0.022783856838941574, -0.023025238886475563, 0.010325821116566658, -0.03207709640264511, -0.008495334535837173, 0.023575056344270706, 0.009534621611237526, 0.0203834380954504, -0.017433203756809235, -0.02840271219611168, 0.012639072723686695, -0.000759350135922432, 0.0075298030860722065, -0.0043683587573468685, 0.01762094534933567, -0.0363147035241127, 0.010520268231630325, 0.020155465230345726, 0.0009948660153895617, 0.005072391591966152, 0.03588557988405228, 0.015354630537331104, 0.01340345200151205, 0.0049047647044062614, -0.029368244111537933, 0.01585080474615097, 0.010453217662870884, 0.009863169863820076, -0.03816530480980873, -0.0019461491610854864, 0.0043515958823263645, 0.018707169219851494, -0.008931164629757404, -0.0188144501298666, -0.025801140815019608, -0.020557770505547523, 0.041276462376117706, 0.0027474057860672474, 0.0327744223177433, -0.024393076077103615, -0.012994442135095596, 0.010889047756791115, -0.010647664777934551, -0.006296068429946899, -0.0021456251852214336, -0.011485799215734005, 0.01531440019607544, 0.011908219195902348, -0.004066630266606808, 0.008931164629757404, -0.016561543568968773, -0.015140066854655743, 0.015502141788601875, 0.008736717514693737, 0.021831735968589783, 0.008575795218348503, -0.021751273423433304, 0.01225017849355936, -0.002735672052949667, 0.022220630198717117, 0.001709794974885881, 0.0001999999221879989, -0.00014971183554735035, -0.0044152941554784775, -0.022998418658971786, -0.0002587741182651371, 0.01939108595252037, 0.04122282192111015, -0.007301830220967531, -0.025640219449996948, -0.013007852248847485, -0.007295125164091587, 0.004485697485506535, 0.013430272229015827, 0.00607144832611084, 0.006403349805623293, 0.0046600294299423695, 0.004572863690555096, 0.008327707648277283, 0.017674585804343224, 0.030065571889281273, -0.003932528663426638, 0.019605649635195732, 0.01092927809804678, 0.0011859607184305787, 0.0001876374299172312, -0.005558509845286608, 0.010748241096735, -0.014147715643048286, 0.00192268134560436, -0.0004362491599749774, 0.0018522778991609812, -0.014845043420791626, 0.006547509226948023, -0.0318625308573246, 0.022327911108732224, 0.025827961042523384, -0.000696909090038389, 0.03510779142379761, 0.008300887420773506, 0.020316386595368385, -0.0009730745805427432, -0.0350005105137825, 0.009098791517317295, 0.004059924744069576, -0.006835827603936195, -0.027732204645872116, -0.007053742650896311, -0.01408066414296627, -0.0296364463865757, 0.012726238928735256, 0.0009110525134019554, -0.00456951092928648, 0.000693975598551333, 0.00817349087446928, -0.020691871643066406, -0.005833418108522892, 0.009346879087388515, -0.01481822319328785, 0.004847771488130093, -0.020410258322954178, 0.01000397652387619, 0.001646096701733768, -0.02197924628853798, -0.017272282391786575, 0.017875738441944122, -0.0017584067536517978, -0.005099212285131216, -0.008797062560915947, -0.025921832770109177, -0.02424556389451027, 0.021523302420973778, 0.016481082886457443, 0.010205129161477089, -0.03255986049771309, 0.013269349932670593, -0.019860442727804184, -0.0008054475183598697, 0.010325821116566658, 0.01843896508216858, -0.008696486242115498, -0.0024875840172171593, 0.002286431845277548, 0.015944676473736763, 0.03180889040231705, 0.07359494268894196, 0.023534825071692467, -0.012002089992165565, 0.02173786424100399, -0.029877828434109688, 0.005756309721618891, -0.03178207203745842, -0.04323434457182884, 0.015984907746315002, 0.004834361374378204, -0.017071129754185677, -0.010117962956428528, 0.021791504696011543, -0.02643141895532608, 0.026297317817807198, 0.016293341293931007, -0.016816336661577225, -0.01367165520787239, 0.013839282095432281, -0.01955200918018818, 0.013530848547816277, 0.0010518591152504086, 0.020142056047916412, -0.002470821375027299, 0.019873851910233498, -0.0170443095266819, 0.017299102619290352, 0.027396950870752335, 0.0032905172556638718, -0.022985009476542473, 0.01500596571713686, -0.0011029853485524654, -0.02181832492351532, 0.0014558401890099049, -0.013329695910215378, 0.032211195677518845, 0.004851124249398708, 0.032962165772914886, 0.000758092908654362, 0.011049969121813774, -0.006772129330784082, 0.018291454762220383, 0.014603660441935062, -0.0073487660847604275, -0.02378961816430092, -0.0135040283203125, -0.004197379108518362, 0.019578829407691956, 0.0007865895167924464, -0.023212980479002, -0.008133260533213615, 0.00395264383405447, -0.05562533065676689, 0.028375891968607903, 0.0025747499894350767, -0.011606490239501, -0.014040433801710606, -0.002336719771847129, -0.0067084310576319695, 0.0073487660847604275, -0.0021892080549150705, -0.01621287874877453, 0.009662018157541752, -0.0002994236710947007, 0.040659595280885696, -0.0052199033088982105, -0.005964167416095734, 0.002539548324421048, -0.011901513673365116, 0.00823383592069149, -0.003630799939855933, -0.00648381095379591, -0.05895105004310608, 0.01412089541554451, 0.02454058639705181, 0.016253110021352768, 0.027598103508353233, -0.009648608043789864, -0.012806699611246586, 0.004861181601881981, 0.00341623742133379, -0.028644094243645668, 0.001261392841115594, -0.027061697095632553, 0.002663592342287302, -0.0038218949921429157, -0.030199673026800156, -0.01500596571713686, -0.0006059714360162616, 0.016776105388998985, 0.0022311147768050432, 0.006054685916751623, 0.010875636711716652, -0.013081608340144157, 0.008093029260635376, 0.03601968288421631, 0.011163955554366112, 0.029207320883870125, -0.0005380825605243444, -0.030360594391822815, 0.00384536269120872, -0.025908423587679863, -0.005307069513946772, -0.020329797640442848, 0.020557770505547523, 0.014952325262129307, 0.02623026631772518, 0.020799152553081512, -0.016816336661577225, -0.022301090881228447, 0.020477309823036194, -0.02000795304775238, -0.014603660441935062, 0.00126306910533458, 0.015622833743691444, 0.007684020325541496, 0.012739649042487144, 0.014161125756800175, -0.01736615225672722, -0.011311466805636883, -0.004512517713010311, -0.01321570947766304, 0.030494699254631996, 0.019417906180024147, -0.014845043420791626, 0.015233938582241535, 0.0016108950367197394, 0.0028446295764297247, -0.028295431286096573, 0.020142056047916412, 0.009279828518629074, 0.021912196651101112, 0.0005426922580227256, -0.0026367721147835255, -0.027598103508353233, 0.003966053947806358, -0.016695644706487656, -0.009702248498797417, -0.01676269620656967, -0.01843896508216858, 0.009132316336035728, -0.02635095827281475, -0.021456250920891762, -0.01605195738375187, 0.010573908686637878, -0.01798301935195923, -0.022622933611273766, 0.023896899074316025, 0.009105496108531952, 0.02939506433904171, -0.019873851910233498, 0.01107678934931755, -0.028831837698817253, -0.017835509032011032, 0.019176524132490158, -0.008428283967077732, 0.018210992217063904, 0.012384279631078243, 0.020034775137901306, 0.030816541984677315, 0.04776697978377342, 0.0013753791572526097, -0.0001487689296482131, 0.035912398248910904, -0.003999579232186079, 0.004757252987474203, 0.0021204811055213213, 0.020812563598155975, -0.021188046783208847, 0.011928334832191467, 0.02305205911397934, 0.006192139815539122, 0.018546245992183685, 0.013343106023967266, 0.023896899074316025, 0.00017307483358308673, -0.0050958595238626, -0.0075767384842038155, -0.008924459107220173, -0.027866305783391, -0.00546463904902339, 0.03038741648197174, -0.015435091219842434, 0.0048578293062746525, -0.02885865792632103, -0.006795596797019243, 0.027759024873375893, 0.01737956330180168, 0.02985100820660591, 0.007462752051651478, 0.024258973076939583, 0.010708009824156761, -0.013108428567647934, 0.018264632672071457, 0.028375891968607903, -0.018492605537176132, -0.003939233720302582, -0.02993147075176239, 0.0033961222507059574, 0.030146032571792603, 0.0024959654547274113, 0.003557044081389904, -0.004331480711698532, 0.0041370331309735775, -0.0004890516283921897, 0.014067254029214382, -0.000573703262489289, -0.025506118312478065, -0.0024054469540715218, -0.010634254664182663, -0.026337547227740288, -0.041973792016506195, -0.021711044013500214, 0.0034531154669821262, -0.006979986559599638, 0.0022428487427532673, 0.000508747820276767, 0.0023886840790510178, -0.02458081766963005, -0.042134713381528854, 0.005079096648842096, 0.0086227310821414, 0.03304262459278107, 0.01420135609805584, 0.0205845907330513, 0.015716703608632088, -0.00329889846034348, -0.026900773867964745, 0.009963746182620525, -0.002157358918339014, 0.007080562878400087, 0.0018271338194608688, -0.008186900988221169, -0.022488832473754883, -0.020115235820412636, 0.011492504738271236, 0.01048003789037466, -0.008837292902171612, -0.03910401836037636, 0.015636242926120758, 0.004934937693178654, 0.014536609873175621, -0.02259611338376999, -0.024151692166924477, 0.011593080125749111, 0.017352743074297905, 0.001461707055568695, 0.01794278994202614, 0.006034570746123791, -0.0006407540640793741, -0.02091984450817108, 0.01438909862190485, -0.00043583009392023087, 0.004100155550986528, 0.013490617275238037, -0.014415918849408627, 0.004482344724237919, -0.011666836217045784, -0.0037179659120738506, -0.0103928716853261, 0.021724453195929527, 0.001082870177924633, -0.014027023687958717, 0.04433397948741913, 0.03070926107466221, -0.0007731793448328972, -0.0017533779609948397, 0.01909606344997883, -0.007831531576812267, 0.028027227148413658, -0.03301580622792244, -0.015435091219842434, -0.000507490593008697, -0.021630583330988884, 0.022904546931385994, -0.0322648361325264, 0.0041068606078624725, -0.028724554926156998, -0.015596013516187668, -0.022529063746333122, 0.018345095217227936, 0.010969508439302444, -0.017848918214440346, -0.0007325297920033336, 0.013276055455207825, 0.008119849488139153, -0.007161023560911417, 0.004592978861182928, 0.009869875386357307, -0.016360390931367874, -0.01877421885728836, 0.0021154521964490414, -0.010138078592717648, 0.015663063153624535, -0.006959871388971806, -0.006182082463055849, 0.001090413425117731, 0.03516143187880516, 0.008877524174749851, -0.020718691870570183, 0.035054150968790054, 0.008877524174749851, -0.018291454762220383, 0.009192662313580513, 0.0066916681826114655, -0.022032886743545532, 0.023561645299196243, -0.004257724620401859, -0.008247246034443378, 0.0003327395243104547, 0.011559555307030678, 0.013879512436687946, 0.0043515958823263645, -0.0029669972136616707, -0.030119212344288826, 0.0067788343876600266, 0.0009144050418399274, -0.006487163249403238, 0.001266421633772552, -0.0046600294299423695, 0.00994363147765398, 0.0044622295536100864, 0.016186058521270752, -0.0314602293074131, 0.012297113426029682, -0.0035268713254481554, -0.00032645350438542664, -0.019565418362617493, -0.03846032917499542, 0.011827758513391018, -0.020075004547834396, 0.002601570449769497, -0.006286011077463627, -0.008542269468307495, 0.03416907787322998, 0.014630480669438839, -0.009534621611237526, 0.023440953344106674, 0.0030139328446239233, 0.005424408242106438, 2.97537862934405e-05, 0.021067356690764427, 0.025063583627343178, 0.004482344724237919, -0.02384325861930847, -0.019605649635195732, -0.006346356589347124, -0.0017449966398999095, -0.026498470455408096, -0.036985211074352264, -0.011700361967086792, 0.024232152849435806, 0.007898582145571709, -0.02947552502155304, -0.00710067804902792, -0.03046787716448307, -0.034061796963214874, 0.00139465625397861, -0.004888002295047045, -0.006678258068859577, -0.012323933653533459, 0.01782209798693657, 0.0035939221270382404, 0.016735875979065895, -0.011888103559613228, 0.019914083182811737, 0.0025948653928935528, 0.01885467953979969, -0.011512619443237782, 0.002790988888591528, -0.02086620405316353, -0.00967542827129364, -0.04218835383653641, -0.0038621253333985806, 0.020182285457849503, -0.00041655299719423056, -0.00994363147765398, 0.031594328582286835, 0.0013753791572526097, -0.011827758513391018, -0.014871863648295403, 0.023561645299196243, 0.023816438391804695, 0.014523199759423733, 0.017232051119208336, -0.019686110317707062, 0.0028781548608094454, -0.0030340480152517557, 0.0015547400107607245, -0.01029229536652565, -0.022542472928762436, 0.017956199124455452, 0.0021037182305008173, -0.0023132520727813244, -0.029207320883870125, 0.004073335323482752, 0.008160080760717392, -0.016789516434073448, 0.028536813333630562, 0.006104974076151848, -0.018331684172153473, 0.03162115067243576, 0.010030797682702541, 0.009179252199828625, -0.011485799215734005, 0.012639072723686695, -0.011438863351941109, -0.022086529061198235, 0.03942586109042168, -0.02205970697104931, 0.0084215784445405, -0.00030843360582366586, 0.007456046994775534, -0.0314602293074131, -0.005548452492803335, 0.014322047121822834, 0.005484754219651222, -0.021804915741086006, 0.026538699865341187, -0.015917856246232986, -0.04808882251381874, 0.007858351804316044, -0.020571179687976837, 0.008488629013299942, -0.012102666310966015, -0.029797367751598358, 0.019484957680106163, 0.011579670011997223, 0.0070872679352760315, 0.0011214243713766336, -0.015032785944640636, -0.013349810615181923, -0.006912935990840197, 0.008186900988221169, -0.011418748646974564, 0.0207857433706522, 0.23430225253105164, -0.018063481897115707, 0.018787629902362823, 0.024889251217246056, 0.002029962372034788, 0.001196018303744495, 0.007127498276531696, 0.01434886734932661, -0.011888103559613228, -0.02046389877796173, 0.009608377702534199, 0.008133260533213615, -0.042429737746715546, 1.6474587027914822e-05, 0.01012466847896576, -0.019820211455225945, -0.04631868004798889, -0.053828369826078415, -0.024379665032029152, 0.009179252199828625, 0.014697532169520855, -0.0161324180662632, 0.007429226767271757, -0.04776697978377342, 0.020933255553245544, -0.0001175484067061916, -0.0025278145913034678, -0.01163331139832735, 0.01712477020919323, 0.020477309823036194, -0.023078879341483116, 0.004492402542382479, 0.006158614531159401, 0.018291454762220383, -0.026485059410333633, 0.0003817703982349485, 0.014040433801710606, -0.001401361427269876, 0.01720523089170456, 0.0052534290589392185, 0.009172547608613968, -0.008039388805627823, 0.005608798004686832, 0.009366994723677635, -0.0043515958823263645, 0.006520688533782959, -0.022301090881228447, -0.006594444625079632, -0.012913980521261692, 0.021831735968589783, -0.018130531534552574, -0.017017489299178123, 0.015502141788601875, 0.018640117719769478, 0.0044320570304989815, 0.02169763296842575, -0.012652482837438583, 0.030789721757173538, 0.03376677632331848, 0.019404496997594833, -0.025680450722575188, 0.012129486538469791, -0.008495334535837173, 0.017674585804343224, -0.0038017795886844397, -0.003932528663426638, -0.010788471437990665, 0.021711044013500214, 0.0022512301802635193, -0.032988984137773514, 0.0047304327599704266, -0.03379359468817711, -0.013376631774008274, -0.0004555262567009777, -0.038353048264980316, -0.022086529061198235, 0.02374938689172268, 0.011070084758102894, 0.023333672434091568, 0.03457138314843178, -0.005793187767267227, 0.0009965422796085477, 0.010701305232942104, -0.02738353982567787, -0.007724250666797161, -0.04318070411682129, -0.004455524496734142, -0.006034570746123791, -0.01819758303463459, -0.023601876571774483, 0.020396849140524864, -0.027008056640625, -0.011029853485524654, -0.00127396488096565, -0.008904344402253628, -0.000632372684776783, 0.0243260245770216, 0.0028446295764297247, 0.009480981156229973, 0.0007174434140324593, -0.022368142381310463, 0.030575159937143326, 0.04945665970444679, 0.008461808785796165, -0.017111359164118767, 0.0027809313032776117, 9.104239143198356e-05, -0.0026820313651114702, 0.0035805117804557085, -0.01650790311396122, -0.0072683049365878105, -0.011666836217045784, 0.014751172624528408, 0.00076437892857939, -0.009809529408812523, 0.027893126010894775, -0.01786232925951481, 0.021684223785996437, 0.019873851910233498, -0.022797266021370888, -0.01198197528719902, -0.018586477264761925, -0.012592136859893799, 0.01918993517756462, -0.0021942369639873505, -0.014643890783190727, 0.01021183468401432, 0.005337242502719164, -0.021791504696011543, 0.002745729638263583, 0.017889149487018585, -0.024339433759450912, 0.01630675047636032, -0.004727080464363098, -0.013369926251471043, -0.02631072700023651, -0.0030206379014998674, 0.017634356394410133, 0.007013511843979359, 0.025586578994989395, -0.0026434771716594696, -0.012189832516014576, 0.0029334716964513063, 0.00046851736260578036, 0.01700407825410366, -0.021563531830906868, 0.007301830220967531, -0.0028932413551956415, 0.02243519201874733, -0.010573908686637878, -0.005732841789722443, 0.018023250624537468, 0.0007828178931958973, -0.02502335235476494, 0.016320161521434784, -0.013202299363911152, -0.031594328582286835, -0.041893329471349716, 0.010533678345382214, -0.006664847955107689, -0.028965938836336136, 0.004710317589342594, 0.005830065812915564, -0.0037146133836358786, -0.011391928419470787, -0.0179025586694479, -0.1699335128068924, -0.00815337523818016, 0.02939506433904171, -0.03607332333922386, 0.026914184913039207, -0.01750025525689125, 0.008649551309645176, -0.005243371240794659, -0.016279930248856544, -0.015756934881210327, 0.012665892951190472, -0.01873398944735527, -0.015823984518647194, -0.02993147075176239, -0.021456250920891762, 0.004737137816846371, -0.024433305487036705, 0.004294602666050196, 0.0005347299738787115, 0.008341117762029171, 0.03457138314843178, -0.024634458124637604, 0.004636561498045921, -0.001847249106504023, -0.020812563598155975, 0.00815337523818016, -0.0008565737516619265, 0.025412246584892273, 0.0031580920331180096, -0.021174637600779533, 0.008931164629757404, 0.009031740948557854, 0.028509993106126785, -0.009427339769899845, 0.0026853838935494423, 0.004629856441169977, 0.018331684172153473, -0.038969915360212326, -0.010875636711716652, 0.01853283680975437, 0.026029113680124283, -0.007925402373075485, 0.012478150427341461, -0.007650495041161776, -0.031889352947473526, 0.011023148894309998, 0.021711044013500214, -0.0035235187970101833, -0.00033923506271094084, -0.03486640751361847, 0.01564965210855007, -0.0014432681491598487, 0.009353584609925747, 0.013799051754176617, 0.016494492068886757, 0.0003191198338754475, 0.009299944154918194, 0.01913629285991192, 0.008723307400941849, -0.01897537149488926, -0.021389199420809746, -0.006765424273908138, -0.002408799482509494, 0.007355471141636372, -0.019954312592744827, -0.009688838385045528, -0.010942688211798668, -0.01621287874877453, -0.030441056936979294, -0.0021171285770833492, -0.03384723514318466, -0.0021959131117910147, -0.03494687005877495, -0.024875840172171593, 0.030199673026800156, 0.0075298030860722065, -0.015274169854819775, -0.007107383105903864, 0.002097013173624873, 0.002348453737795353, -0.011318172328174114, 0.020597999915480614, -0.009092085994780064, 0.018465785309672356, 0.009668722748756409, -0.01031241100281477, 0.01163331139832735, -0.007409111596643925, -0.05157546326518059, -0.00897139497101307, 0.009782709181308746, -0.02400417998433113, -0.0007346251513808966, -0.016320161521434784, -0.0005598740535788238, 0.017017489299178123, 0.026860544458031654, -0.0188144501298666, 0.025465887039899826, -0.012424509972333908, 0.007147613447159529, 0.01438909862190485, -0.01045992225408554, 0.001652801875025034, 0.030870182439684868, 0.01737956330180168, -0.028268611058592796, 0.0028396006673574448, 0.02362869679927826, -0.008495334535837173, -0.012954211793839931, -0.003349186619743705, 0.023481184616684914, 0.01927039586007595, -0.018492605537176132, 0.04664052650332451, 0.0035101084504276514, -0.00758344354107976, 0.02601570449769497, 0.018881501629948616, 0.059970222413539886, 0.015528962016105652, -0.027812665328383446, 0.0021456251852214336, -0.016454262658953667, -0.04503130540251732, -0.09011625498533249, -0.018492605537176132, 0.011707066558301449, -0.0038218949921429157, -0.005669143982231617, 0.0042007314041256905, -0.02042366936802864, 0.010158193297684193, -0.031057924032211304, 0.013155363500118256, -0.03242575749754906, -0.002286431845277548, 0.025707270950078964, -0.004814246203750372, 0.011063379235565662, -0.0005623884499073029, 0.0005242532934062183, -0.00921948254108429, -0.017057718709111214, 0.029529165476560593, -0.017392972484230995, 0.0013904656516388059, 0.018224403262138367, 0.002210999606177211, -0.0059574623592197895, 0.004844419192522764, -0.03508096933364868, 0.01716500148177147, 0.002995493821799755, -0.013490617275238037, 0.0017232050886377692, -0.02000795304775238, 0.0068660001270473, -0.018506016582250595, 0.01823781244456768, 0.0015807222807779908, -0.01851942576467991, -0.020973484963178635, 0.004737137816846371, -0.026404598727822304, -0.02070528268814087, -0.010949392803013325, 0.0028245141729712486, 0.003677735570818186, -0.0024389722384512424, -0.01676269620656967, -0.01889491081237793, 0.014630480669438839, 0.012893865816295147, -0.040284112095832825, -0.01923016458749771, -0.01311513315886259, -0.01939108595252037, 0.00903844553977251, 0.04409259557723999, 0.00443540932610631, -0.010573908686637878, -0.0015471968799829483, 0.004807541146874428, -0.014710942283272743, -0.0033374526537954807, -0.012799995020031929, -0.02104053646326065, 0.0314602293074131, 0.03116520680487156, -0.01976657100021839, -0.0034397051203995943, -0.02148307114839554, 0.008984805084764957, -0.019042422994971275, -0.013182183727622032, 0.016253110021352768, -8.695648284628987e-05, 0.010573908686637878, -0.030441056936979294, -0.014456149190664291, -0.029421884566545486, -0.0061217364855110645, 0.0014826604165136814, -0.006098269019275904, -0.02547929808497429, -0.014563430100679398, -0.012370869517326355, -0.009715658612549305, -0.006027865689247847, -0.0058602383360266685, -0.021845145151019096, -0.004180616233497858, 0.022421782836318016, -0.02100030519068241, -0.0026434771716594696, 0.03172843158245087, 0.008160080760717392, -0.0063195363618433475, -0.003939233720302582, -0.0012823462020605803, 0.001398008898831904, 0.007865057326853275, 0.0018858032999560237, 0.049376197159290314, -0.0062021976336836815, -0.008864114060997963, -0.05723454803228378, 0.019337445497512817, -0.010111258365213871, -0.015448501333594322, -0.003422942478209734, 0.0094072250649333, 0.020021364092826843, 0.013470502570271492, 0.007382291369140148, -0.008582500740885735, -0.023910310119390488, -0.0029502345714718103, -0.02096007578074932, -0.0063027734868228436, -0.009494391269981861, -0.014724352397024632, 0.02551952749490738, -0.01835850439965725, 0.028509993106126785, 0.009601672179996967, 0.0035134609788656235, 0.00992351584136486, 0.008877524174749851, 0.03154068812727928, -0.00674195634201169, -0.023212980479002, 0.0062658959068357944, 0.0005238342564553022, 0.005719431675970554, 0.00612508924677968, 0.009232892654836178, -0.01737956330180168, 0.009313354268670082, 0.03170160949230194, 0.007630379870533943, 0.0034363525919616222, 0.008012568578124046, 0.003184912260621786, 0.016682235524058342, 0.03902355581521988, -0.021992657333612442, -0.027276258915662766, 0.016561543568968773, -0.020075004547834396, -0.00959496758878231, -0.0010937659535557032, 0.013611309230327606, -0.002539548324421048, 0.036582909524440765, -2.574645259301178e-05, 0.027651743963360786, 0.021509891375899315, -0.011385222896933556, -0.009769299067556858, -0.02116122655570507, 0.011519324965775013, 0.015998316928744316, 0.0022596113849431276, -0.00241382815875113, -0.0207857433706522, 0.03306944668292999, 0.005518279504030943, -0.0015731790335848927, 0.00585688604041934, 0.008562385104596615, -0.01056049857288599, -0.014429328963160515, -0.008401462808251381, 0.025667039677500725, -0.04041821137070656, -0.005843475926667452, -0.0035168135073035955, 0.014308637008070946, 0.010030797682702541, 0.027759024873375893, 0.004978520795702934, -0.016481082886457443, 0.0221535786986351, -0.025962064042687416, 0.0214428398758173, 0.0029519107192754745, -0.003681088099256158, -0.0008469352032989264, 0.00765720009803772, 0.025707270950078964, 0.0292341411113739, -0.008200311101973057, 0.0026904128026217222, -0.01074153557419777, 0.0009990567341446877, -0.0020634878892451525, 0.008448398672044277, 0.004244314506649971, 0.0008528021280653775, 0.011271236464381218, 0.018640117719769478, -0.00030172851984389126, 0.01082870177924633, 0.012323933653533459, -0.018506016582250595, 0.02030297741293907, 0.006235722918063402, -0.016950437799096107, -0.029958290979266167, -0.02478197030723095, 0.003966053947806358, -0.020879613235592842, -0.02679349295794964, 0.006379881873726845, 0.018841270357370377, -0.0025579873472452164, -0.01090916246175766, -0.013349810615181923, -0.007020216900855303, -0.02531837671995163, 0.014751172624528408, 0.007288420107215643, -0.031889352947473526, -0.026659391820430756, 0.005551804788410664, 0.03001193143427372, 0.015448501333594322, 0.04924209415912628, 0.01799643039703369, 0.02050413005053997, 0.023320263251662254, 0.0016100569628179073, 0.0034531154669821262, 0.028590453788638115, 0.002425562124699354, -0.01811712235212326, -0.002916709054261446, 0.02478197030723095, -0.007060447707772255, -0.026699621230363846, 0.01531440019607544, -0.012706123292446136, 0.03537599369883537, -0.0015136714791879058, 0.0840548649430275, 0.0010702981380745769, -0.0031681496184319258, -0.011680246330797672, -0.028295431286096573, -0.0035168135073035955, 0.006728546228259802, 0.020021364092826843, -0.006047980859875679, 0.02054435946047306, -0.019042422994971275, 0.013604603707790375, -0.018988782539963722, -0.021509891375899315, -0.00341623742133379, 0.0221535786986351, -0.0036375049967318773, -0.002668621251359582, -0.015140066854655743, 0.0031312715727835894, 0.04245655611157417, -0.010258769616484642, -0.009930221363902092, 0.0025730738416314125, -0.030521519482135773, -0.021429430693387985, 0.039291758090257645, 0.0029385006055235863, -0.0014365630922839046, -0.03660972788929939, 0.004073335323482752, 0.017138181254267693, -0.04757923632860184, -0.02342754416167736, 0.007556623313575983, 0.009762594476342201, -0.0069531663320958614, -0.0021741215605288744, 0.017687996849417686, 0.0015656357863917947, 0.0205845907330513, 0.01951177790760994, -0.005853533279150724, -0.0205845907330513, -0.022797266021370888, 0.014496379531919956, -0.016320161521434784, -0.028590453788638115, -0.02112099714577198], '_distance': 0.35345977544784546}),\n", + " Document(page_content='The Illustrated Transformer – Jay Alammar – Visualizing machine learning one concept at a time.\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nJay Alammar\\nVisualizing machine learning one concept at a time.@JayAlammar on Twitter. YouTube Channel\\n\\n\\nBlog\\nAbout\\n\\n\\n\\n\\n\\n\\nThe Illustrated Transformer\\n\\nDiscussions:\\nHacker News (65 points, 4 comments), Reddit r/MachineLearning (29 points, 3 comments)\\n\\n\\nTranslations: Arabic, Chinese (Simplified) 1, Chinese (Simplified) 2, French 1, French 2, Italian, Japanese, Korean, Persian, Russian, Spanish 1, Spanish 2, Vietnamese\\n\\nWatch: MIT’s Deep Learning State of the Art lecture referencing this post', metadata={'vector': [-0.01995760016143322, -0.01293110754340887, 0.02453695610165596, -0.007925305515527725, 0.016309859231114388, -0.010300273075699806, -0.006226088851690292, -0.002630834234878421, -0.02243753708899021, -0.032147347927093506, 0.023093605414032936, 0.026820074766874313, -0.002322481945157051, 0.004969717934727669, 0.012708044610917568, 0.009886950254440308, 0.02301487885415554, 0.0023405239917337894, -0.007971230894327164, -0.016651015728712082, -0.015076451003551483, 0.02242441661655903, 0.00028661987744271755, -0.03180619329214096, -0.0037658323999494314, 0.010201863013207912, 0.02721371501684189, -0.032357290387153625, 0.022043896839022636, -0.016782227903604507, 0.028027240186929703, 0.0006700098165310919, -0.010306834243237972, -0.009486748836934566, -0.008135247975587845, 0.0006921521271578968, 0.020285634323954582, -0.007361087016761303, 0.027502385899424553, -0.025101175531744957, 0.031570009887218475, 0.002647235756739974, 0.0021814273204654455, -0.0353752076625824, -0.002237193053588271, 0.030310358852148056, 0.0003009713545907289, -0.021033551543951035, -0.008496085181832314, 0.04450767859816551, 0.021505920216441154, 0.025770364329218864, -0.006980567239224911, -0.028630822896957397, -0.02642643265426159, 0.019918235018849373, 0.00011686217476380989, 0.01732020452618599, 0.013154170475900173, 0.004474386107176542, 0.004326771013438702, -0.0005761100328527391, -0.01124501135200262, -0.017188990488648415, -0.001525358995422721, -0.02207013964653015, -0.020967945456504822, 0.019577080383896828, 0.0213222224265337, 8.744161459617317e-05, 0.041411034762859344, 0.026767589151859283, -0.01171081978827715, -0.032934632152318954, 0.039783984422683716, -0.0151945436373353, 0.0047335331328213215, -0.004129950422793627, -0.01852736994624138, 0.00655740313231945, 0.010044406168162823, 0.010569261386990547, 0.00771536398679018, 0.018986618146300316, 0.007144584320485592, 0.004782738164067268, -0.005258387885987759, 0.0020764563232660294, -0.018028758466243744, -0.015627548098564148, 0.00010122929961653426, 0.0034902836196124554, 0.016677258536219597, 0.010333077050745487, -0.00450390949845314, 0.020443089306354523, -0.002519302535802126, 0.019078467041254044, 0.017031535506248474, -0.02179459109902382, -0.003933129832148552, -0.0039036066737025976, -0.009440823458135128, -0.014525353908538818, -0.023237941786646843, 0.005724196322262287, 0.007275797892361879, 0.019498351961374283, 0.011330300942063332, 0.0019173597684130073, 7.790811650920659e-05, 0.02254250831902027, -0.010713595896959305, -0.03954780101776123, -0.0042775655165314674, -0.031989894807338715, 0.009342413395643234, -0.00810900516808033, 0.029680533334612846, -0.021282857283949852, 0.03571636229753494, 0.03422052413225174, -0.005442087072879076, 0.0020584145095199347, 0.017556389793753624, 0.016126159578561783, -0.005465049296617508, -0.004484227392822504, -0.028604580089449883, -0.0044678254052996635, -0.011015388183295727, 0.008384553715586662, -0.0015712836757302284, -0.0023634862154722214, -0.025363603606820107, 0.008318946696817875, -0.0072561162523925304, 0.012675240635871887, -0.012944228947162628, -0.020246269181370735, -0.0024733776226639748, -0.0027341649401932955, 0.0027718888595700264, -0.011730502359569073, -0.01111379824578762, 0.028027240186929703, -0.009598280303180218, 0.041935890913009644, -0.007813774049282074, -0.0005416664644144475, 0.004461264703422785, -0.01995760016143322, -0.001276052906177938, 0.012806454673409462, 0.014525353908538818, 0.016296738758683205, 0.0022306323517113924, 0.029523076489567757, -0.00564546836540103, 0.015299513936042786, -0.0012506303610280156, 0.013088563457131386, -0.020705517381429672, -0.01822557859122753, 0.020416846498847008, 0.018448641523718834, 0.028762036934494972, -0.012622755020856857, -0.0005843109101988375, -0.0028096127789467573, -0.016965927556157112, 0.026203369721770287, -0.0488639697432518, 0.014997722581028938, -0.0005043525598011911, -0.0013621619436889887, 0.0153257567435503, -0.021991411224007607, -0.055214714258909225, -0.007872819900512695, 0.010064088739454746, 0.0040151383727788925, 0.015706276521086693, 0.01072015706449747, -0.004408779554069042, -0.008338629268109798, 0.010707035660743713, -0.04117485135793686, -0.006048950366675854, -0.015758762136101723, 0.009106229059398174, 0.041306063532829285, -0.010247787460684776, -0.001403166214004159, -0.6302455067634583, -0.037946995347738266, -0.006094875279814005, 0.00484506506472826, -0.0004809801175724715, -0.005514254793524742, -0.01711026206612587, -0.0022355529945343733, -0.013672464527189732, 0.001976405968889594, 0.007643196266144514, -0.012793333269655704, -0.004471105989068747, -0.005822606850415468, 0.010201863013207912, -0.022306324914097786, -0.005176379345357418, -0.043615423142910004, -0.0016696939710527658, 0.02359221875667572, -0.009276806376874447, 0.006586926523596048, -0.03017914481461048, -0.014367897063493729, -0.0012186469975858927, -0.0020485734567046165, 0.0023798879701644182, 0.009329291991889477, -0.005665150471031666, 0.001413827296346426, -0.02258187346160412, 0.0225949939340353, 0.028919493779540062, 5.93024305999279e-05, 0.03757959604263306, 0.014617202803492546, -0.007675999775528908, 0.033302031457424164, 0.024038344621658325, 0.03143879398703575, -0.026242734864354134, -0.031465038657188416, 0.016572287306189537, 0.013541251420974731, -0.000305481837131083, 0.007400451228022575, 0.014774659648537636, -0.013298505917191505, -0.0022716366220265627, -0.011802669614553452, -0.019314652308821678, -0.012970471754670143, -0.0033131451345980167, -0.001668873941525817, 0.013764314353466034, 0.0038281588349491358, 0.029155677184462547, 0.01221599243581295, 0.008751952089369297, -0.01264243759214878, -5.105031959828921e-05, -0.0094801876693964, -0.01079232431948185, 0.0017976273084059358, -0.006488515995442867, 0.014499111101031303, 0.014276047237217426, -0.00903406087309122, -0.015365120954811573, -0.027712328359484673, 0.0353752076625824, 0.018763555213809013, -0.02716122940182686, -0.015155179426074028, -0.0007097839843481779, 0.023552853614091873, 0.016283616423606873, -0.006468833889812231, 0.020561182871460915, 0.008863483555614948, 0.011625531129539013, 0.0020862973760813475, -0.0030851615592837334, -0.014039862900972366, 0.02633458375930786, 0.020718639716506004, -0.011966686695814133, -0.004805700853466988, -0.01875043287873268, -0.00389048526994884, 0.017031535506248474, 0.015063329599797726, -0.026137763634324074, -0.05999089032411575, 0.017490781843662262, 0.01021498441696167, -0.003959372639656067, 0.01863234117627144, 0.016388587653636932, -0.025245510041713715, 0.005930858198553324, -0.004152912646532059, 0.02296239323914051, 0.0007015831070020795, 0.021466556936502457, 0.001275232876650989, -0.012314403429627419, 0.00554049713537097, 0.026098398491740227, -0.039574041962623596, -0.00969013012945652, -0.014433504082262516, -0.034351740032434464, 0.0016450914554297924, -0.016401708126068115, -0.031097641214728355, 0.020705517381429672, 0.010595504194498062, -0.00567499129101634, -0.02516678161919117, 0.032147347927093506, -0.009381777606904507, 0.013022957369685173, -0.0060259876772761345, 0.005366639234125614, 0.0018566735088825226, -0.004320210311561823, -0.02111227996647358, -0.010687354020774364, 0.04248698800802231, -0.002949027344584465, -0.002343804109841585, 0.02174210548400879, -0.008883165195584297, 0.0026341143529862165, 0.002396289724856615, 0.006062071770429611, 0.006790307350456715, -0.00554049713537097, -0.019288409501314163, -0.01943274401128292, -0.012327524833381176, 0.013593736104667187, 0.008961893618106842, -0.05017610639333725, -0.017451418563723564, -0.0019255606457591057, -0.006521319504827261, 0.006383545231074095, 0.017831938341259956, -0.032462261617183685, 0.004356293939054012, -0.024471350014209747, 0.022030776366591454, 0.004746654536575079, 0.0010915336897596717, 0.006249051075428724, -0.0223325677216053, -0.04033508151769638, -0.03059902787208557, 0.006544281728565693, 0.03705473989248276, -0.03075648471713066, 0.02163713425397873, -0.007400451228022575, 0.009611401706933975, -0.0023552854545414448, 0.04400906711816788, -0.03374815732240677, -0.01833054982125759, 0.020679274573922157, -0.040151383727788925, -0.0005285450606606901, 0.0016139281215146184, -0.017438296228647232, 0.028945736587047577, 0.005766841117292643, -0.01810748688876629, -0.005783242639154196, -0.020889217033982277, -0.014289168640971184, 0.00754478620365262, -0.003506685374304652, -0.016913441941142082, 0.024025224149227142, 0.016808470711112022, 0.04689576476812363, 0.0034574803430587053, -0.009145593270659447, -0.020443089306354523, -0.016979049891233444, 0.014236683025956154, 0.0004506369587033987, 0.022148868069052696, -0.011126919649541378, 0.024838747456669807, -0.0030703998636454344, -0.019655808806419373, 0.007223312743008137, 0.033039603382349014, 0.003982334863394499, 0.013383794575929642, 0.016309859231114388, 0.010890734381973743, 0.009722933173179626, -0.025258632376790047, 0.0116911381483078, -0.030730241909623146, 0.013908648863434792, 0.009066864848136902, 0.021755225956439972, -0.010306834243237972, 0.0027735289186239243, -0.04259195923805237, -0.0011038350639864802, 0.02432701550424099, 0.002519302535802126, 0.04560987278819084, -0.011842033825814724, -0.02222759649157524, -0.005704514216631651, 0.005743878427892923, 0.021781468763947487, -0.006111276801675558, 0.007242994848638773, 0.050149865448474884, 0.0043497332371771336, -0.00902750063687563, 0.0055733006447553635, -0.05301032215356827, -0.005592982750386, 0.011048191227018833, -0.009421141818165779, 0.028709551319479942, 0.0046121603809297085, 0.007177387829869986, -0.0029359059408307076, -0.00852888822555542, 0.03574260324239731, 0.009447384625673294, -0.007846578024327755, 0.016913441941142082, -0.0025701478589326143, -0.01124501135200262, 0.011094115674495697, 0.029890473932027817, 0.032619718462228775, -0.009860707446932793, -0.03450919687747955, -0.00041701344889588654, -0.01574563980102539, -0.0013293585507199168, 0.0010234666988253593, 0.005025483667850494, -0.0006892818491905928, 0.00436941534280777, 0.007879381068050861, -0.00908654648810625, 0.02347412519156933, 0.003160609398037195, 0.0024012101348489523, 0.01859297789633274, 0.01737269014120102, 0.015824368223547935, 0.0034476392902433872, -0.008122126571834087, 0.006462273187935352, -0.014682809822261333, -0.009631083346903324, 0.0011661614989861846, -0.016021190211176872, -0.020771123468875885, 0.015876853838562965, -0.02254250831902027, 0.0067509436048567295, -0.011960126459598541, 0.007190509233623743, 0.006993688642978668, 0.02006257139146328, 0.019235923886299133, -0.016651015728712082, -0.04319554194808006, 0.003044157288968563, 0.012484980747103691, -0.00613423902541399, -0.01775320991873741, -0.024523835629224777, -0.009742614813148975, -0.010497094132006168, 0.001212086295709014, 0.0017713846173137426, 0.014879630878567696, 0.009906631894409657, -0.00987382885068655, -0.01880291849374771, -0.0020534938666969538, 0.04075496643781662, -0.016598530113697052, -0.01910470984876156, -0.010169059969484806, 0.009486748836934566, 0.0005478170933201909, -0.00664597237482667, -0.0018353512277826667, 0.016677258536219597, 0.007177387829869986, -0.012944228947162628, -0.017175870016217232, -0.007577589713037014, -0.027528628706932068, -0.007105220574885607, -0.01031995564699173, -0.0005318254115991294, -0.00043464527698233724, 0.022673722356557846, -0.010497094132006168, 0.004546553827822208, 0.0007188048912212253, 0.017556389793753624, 0.012124143540859222, -0.009801661595702171, -0.017359569668769836, -0.013974255882203579, 0.02642643265426159, 0.07510670274496078, 0.0034804425667971373, -0.027371171861886978, 0.005317434202879667, -0.03579508885741234, -0.0037231878377497196, -0.01728084124624729, -0.028105968609452248, 0.007400451228022575, -0.011323739774525166, -0.016047433018684387, 0.004559675231575966, 0.020141297951340675, -0.01901286095380783, 0.020928580313920975, -0.001817309414036572, 0.003198333317413926, -0.00976885762065649, 0.014000498689711094, -0.020206905901432037, -0.008673223666846752, -0.016086796298623085, 0.01585061103105545, 0.0028998220805078745, 0.019616443663835526, -0.027738571166992188, 0.04511126130819321, 0.024969961494207382, -0.008587935008108616, -0.03175370767712593, -0.005999745335429907, 0.02390713058412075, 0.016611650586128235, -0.0033951536752283573, -0.012760529294610023, 0.03584757447242737, 0.01770072430372238, 0.03390561416745186, -0.01323945913463831, -0.0013490405399352312, 0.0005203442415222526, 0.026518283411860466, 0.005077969282865524, -0.014918994158506393, 0.004572796635329723, -0.010602064430713654, -0.007702242583036423, 0.029103191569447517, -0.002689880318939686, -0.017188990488648415, 0.007997473701834679, -0.006901839282363653, -0.031779952347278595, 0.0022404734045267105, 0.001180102932266891, 0.016021190211176872, -0.0068952785804867744, -0.005055006593465805, -0.019052226096391678, 0.0012588311219587922, -0.019091589376330376, -0.031570009887218475, 0.0038019162602722645, -0.0056684305891394615, 0.01847488433122635, -0.00913903210312128, -0.006583645939826965, -0.023041121661663055, -0.03416803851723671, 0.020049449056386948, -0.008220536634325981, -0.026413312181830406, -0.05154072865843773, 0.0012973751872777939, 0.007131462916731834, -0.0016811751993373036, 0.012576830573379993, -0.02195204794406891, 0.0007434074650518596, 0.007236434146761894, -0.020679274573922157, -0.013895527459681034, -0.011389346793293953, -0.03101891279220581, 0.009742614813148975, -0.026098398491740227, -0.006314658094197512, -0.0012301282258704305, -0.007124902214854956, 0.028210939839482307, 0.032094866037368774, -0.012648997828364372, 0.02538984641432762, -0.001132537960074842, 0.010674232617020607, 0.020154420286417007, 0.0317012220621109, 0.007485739886760712, 0.012734286487102509, -0.026255855336785316, 0.007531664799898863, -0.03820941969752312, 0.0004953315947204828, -0.009558916091918945, -0.011592728085815907, 0.0029473870526999235, 0.008994697593152523, 0.016139281913638115, -0.01684783585369587, -0.016126159578561783, 0.010123134590685368, 0.0023946494329720736, -0.0007270057685673237, -0.016729742288589478, -0.006137519609183073, 0.014197319746017456, 0.01485338807106018, -0.011363103985786438, -0.003477162215858698, -0.027922268956899643, 0.020311877131462097, -0.003641179297119379, 0.013869285583496094, 0.012937667779624462, -0.007964669726788998, 0.03180619329214096, 0.0058816527016460896, -0.0023897290229797363, -0.016755985096096992, 0.008010595105588436, 0.016191767528653145, 0.026872560381889343, -0.01854049228131771, -0.011389346793293953, -0.027817297726869583, -0.007380769122391939, -0.011021948419511318, 0.011330300942063332, 0.005707794800400734, -0.014341654255986214, 0.006235929671674967, 0.007872819900512695, -0.00635730242356658, -0.008391113951802254, -0.0017402212833985686, -0.023198576644062996, -0.023461004719138145, 0.00795154832303524, 0.013554371893405914, 0.020088812336325645, -0.004917232319712639, 0.011212208308279514, -0.011015388183295727, -0.015260149724781513, -0.011933883652091026, -0.027738571166992188, -0.00759727181866765, -0.0009414580999873579, 0.023027999326586723, 0.015653790906071663, 0.056159451603889465, 0.0010702115250751376, 0.017674481496214867, 0.03532272204756737, -0.01276709046214819, -0.0015696435002610087, 0.016913441941142082, 0.015785004943609238, -0.02527175284922123, 0.008935650810599327, 0.014814023859798908, 0.0013219777029007673, 0.01163865253329277, 0.0006847713375464082, 0.008535449393093586, 0.006531160324811935, 0.013501887209713459, -0.004966437350958586, -0.005209182854741812, -0.023867767304182053, -0.004799140151590109, 0.02385464496910572, -0.00852888822555542, -0.011769866570830345, -0.010510215535759926, 0.002435653703287244, 0.04513750225305557, 0.013541251420974731, 0.021295979619026184, 0.024773141369223595, 0.019472109153866768, -0.008935650810599327, 0.010300273075699806, 0.01932777464389801, 0.024248287081718445, -0.009631083346903324, -0.005284630693495274, -0.03991520032286644, -0.005061567295342684, 0.026203369721770287, 0.024943718686699867, 0.021033551543951035, 0.012196310795843601, 0.005996464751660824, 0.00020327868696767837, 0.01932777464389801, 0.001047249068506062, -0.010011603124439716, -0.005484731402248144, -0.028184697031974792, -0.01327226310968399, -0.03164873644709587, -0.0080565195530653, -0.01964268647134304, -0.009939435869455338, 0.008778194896876812, -0.0018566735088825226, 0.022923028096556664, -0.022870542481541634, -0.03781577944755554, 0.014171076938509941, 0.017517024651169777, 0.03259347751736641, 0.016874078661203384, 0.017149627208709717, 0.038944218307733536, -7.806188659742475e-05, -0.02027251198887825, 0.027974754571914673, -0.010050967335700989, 0.006180163938552141, 0.0052419863641262054, 0.023605339229106903, -0.02242441661655903, -0.020403726026415825, 0.022135745733976364, -0.034299254417419434, 0.003337747883051634, -0.04755183309316635, -0.006649252958595753, 0.016401708126068115, 0.00795154832303524, -0.029050707817077637, -0.018501127138733864, -0.008102444000542164, -0.008988136425614357, -0.0015023965388536453, 0.0022191512398421764, 0.0010816927533596754, -0.003959372639656067, -0.0058455690741539, 0.006524599622935057, -0.003091722261160612, 0.005110772326588631, -0.011717380955815315, -0.013895527459681034, 0.013829921372234821, -0.017018413171172142, -0.03721219673752785, -0.004631842486560345, 0.02238505333662033, 0.020626788958907127, -0.008030276745557785, 0.024077709764242172, 0.021886439993977547, 0.005258387885987759, -0.010070648975670338, -0.007741606794297695, -0.018448641523718834, 0.029575562104582787, -0.014171076938509941, -0.010602064430713654, -0.007944988086819649, 0.004205398261547089, 0.0014048063894733787, -0.014184198342263699, -0.008968454785645008, -0.012393130920827389, -0.011881398037075996, 0.0015827649040147662, 0.021991411224007607, 0.0012202871730551124, -0.01287862192839384, 0.0026291939429938793, -0.005051726475358009, 0.00858137384057045, -0.001349860685877502, 0.0049762786366045475, 0.006875596474856138, -0.032199833542108536, -0.0007110140868462622, -0.003985615447163582, -0.005921016912907362, 0.02105979435145855, 0.013042639009654522, -0.014013620093464851, 0.007840016856789589, 0.013934891670942307, -0.002811252838000655, -0.002538984641432762, 0.030625270679593086, 0.000411682907724753, -0.012970471754670143, 0.006170323118567467, -0.002396289724856615, -0.005343677010387182, 0.020298754796385765, -0.012445616535842419, -0.018461763858795166, -0.019918235018849373, -0.00907998625189066, 0.016651015728712082, -0.00542240496724844, -0.0022831179667264223, -0.01827806420624256, 0.007623514160513878, -0.013173853047192097, -0.01363310031592846, -0.013672464527189732, 0.005360078532248735, -0.0076825604774057865, -0.006249051075428724, 0.018606098368763924, -0.012498102150857449, 0.013173853047192097, -0.00863385945558548, 0.0022240716498345137, 0.007787531241774559, -0.023985859006643295, 0.005035324487835169, 0.007774410303682089, 0.004789298865944147, -0.003172090509906411, -0.0033033040817826986, -0.007000249344855547, 0.005514254793524742, -0.029339376837015152, -0.004927073605358601, -0.01579812541604042, 0.006235929671674967, -0.004704010207206011, 0.023762796074151993, 0.02469441294670105, 0.0006454072427004576, -0.00800403393805027, -0.026400191709399223, -0.010254348628222942, -0.00501564284786582, -0.018816040828824043, -0.020731760188937187, -0.011559924110770226, 2.1399104298325256e-05, 0.021807711571455002, -0.01237344928085804, -0.014499111101031303, -0.023093605414032936, -0.010116574354469776, -0.015666913241147995, -0.0018632340943440795, 0.009250563569366932, -0.0048286630772054195, -0.010851371102035046, -0.001753342687152326, 0.028105968609452248, 0.012360327877104282, 0.012091339565813541, 0.00992631446570158, 0.033302031457424164, -0.0016090077115222812, 0.005865251179784536, -0.028184697031974792, -0.01927528902888298, -0.03369567170739174, -0.03611000254750252, 0.010234666056931019, 0.011494318023324013, -0.008732269518077374, 0.018934132531285286, -0.018816040828824043, -0.001812388887628913, -0.0009611401474103332, -0.002730884589254856, 0.011828912422060966, -0.0023798879701644182, 0.019249046221375465, -0.016231130808591843, -0.0014072665944695473, -0.0060292682610452175, 0.013974255882203579, -0.007433254737406969, -0.003444358939304948, 0.014446625486016273, 0.010129695758223534, -0.00402825977653265, -0.028184697031974792, 0.019039103761315346, 0.003513246076181531, -0.006855914369225502, 0.03044157102704048, -0.009519551880657673, -0.0133969159796834, 0.02284429967403412, 0.015076451003551483, 0.014171076938509941, -0.002360205864533782, 0.00863385945558548, -0.015627548098564148, -0.02538984641432762, 0.030625270679593086, -0.016559164971113205, 0.03500780835747719, -0.0029523076955229044, 0.011822352185845375, -0.020233148708939552, 0.005317434202879667, 0.0037658323999494314, 0.004526871722191572, -0.028893250972032547, 0.016441073268651962, -0.000984102487564087, -0.04424525052309036, 0.010064088739454746, -0.0025012607220560312, -0.005409283563494682, -0.01561442669481039, -0.0080565195530653, 0.021466556936502457, 0.0034574803430587053, -0.0025422649923712015, -0.007157705724239349, -0.01859297789633274, -0.010274030268192291, -0.005484731402248144, 0.009355534799396992, -0.024786261841654778, 0.0036543007008731365, 0.23576472699642181, -0.028237182646989822, 0.007407011929899454, 0.005773401353508234, 4.6949891839176416e-05, 0.009598280303180218, 0.009893510490655899, 0.005921016912907362, -0.009545794688165188, -0.018566735088825226, 0.011815791018307209, 0.011310618370771408, -0.04600351303815842, -0.0009611401474103332, 0.0016139281215146184, -0.01498460117727518, -0.008994697593152523, -0.034299254417419434, -0.011618970893323421, -0.02165025658905506, 0.006777185946702957, 0.0014236683491617441, -0.00829270388931036, -0.033459484577178955, 0.030572785064578056, 0.006232649553567171, -0.007557907607406378, 0.02558666653931141, 0.021873319521546364, 0.023106727749109268, -0.03618872910737991, -0.006682056467980146, 0.01045116875320673, 0.0009168555261567235, -0.021072914823889732, -0.011559924110770226, 0.003391873324289918, -0.006442591082304716, 0.012360327877104282, 0.03802572190761566, 0.012681801803410053, -0.015929339453577995, 0.004267724696546793, -0.0024520554579794407, 0.012589951977133751, 0.0022503144573420286, -0.031570009887218475, -0.009972238913178444, -0.0009980440372601151, 0.0002644775668159127, -0.01927528902888298, -0.025455452501773834, 0.02102043107151985, 0.034981563687324524, 0.008935650810599327, -0.007807213347405195, -0.00776784960180521, 0.04238201677799225, 0.02058742567896843, -0.00020748161477968097, -0.00040655737393535674, 0.03813069313764572, -0.006954324431717396, 0.010575821623206139, 0.004221799783408642, -0.005048445891588926, -0.009178396314382553, 0.0031179648358374834, -0.00309336232021451, -0.01537824235856533, 0.013232898898422718, 0.0015155179426074028, -0.031097641214728355, -0.014459746889770031, -0.039731498807668686, -0.013843042775988579, 0.04285438358783722, 0.03521775081753731, 0.029181919991970062, 0.030940184369683266, -0.0007278258563019335, -0.007840016856789589, 0.002227352000772953, -0.033616941422224045, 0.008574813604354858, -0.0296018049120903, 0.03621497377753258, -0.020390605553984642, -0.0005761100328527391, -0.012891743332147598, -0.003408275078982115, -0.032882146537303925, -0.002917864127084613, 0.003591974265873432, -0.011999490670859814, 0.015260149724781513, 0.02716122940182686, 0.005858690477907658, 0.013154170475900173, -0.015889976173639297, -0.010254348628222942, 0.012045415118336678, 0.03495532274246216, 0.0076825604774057865, -0.018881646916270256, 0.007216752041131258, 0.016204888001084328, 0.009250563569366932, 0.0009119349997490644, -0.03185867890715599, 0.002509461482986808, -0.013869285583496094, 0.01197980809956789, 0.007538225501775742, -0.00024500052677467465, 0.007308601401746273, -0.006180163938552141, 0.004566235933452845, 0.011914201080799103, -0.0049762786366045475, -0.00759727181866765, -0.00937521643936634, -0.006665654480457306, -0.008758512325584888, -0.0073479656130075455, -0.03579508885741234, -0.02601967193186283, 0.008358310908079147, -0.02301487885415554, -0.0006650892901234329, 0.025022447109222412, -0.005100931506603956, 0.027056260034441948, -0.001674614497460425, -0.01779257319867611, -0.02238505333662033, 0.0020272512920200825, -0.001238328986801207, -0.011487756855785847, 0.005104211624711752, -0.03981022909283638, 0.01003128569573164, -0.0019058785401284695, -0.011723941192030907, 0.00632121879607439, -0.02222759649157524, 0.0032426179386675358, 0.005747159011662006, 0.014092348515987396, -0.015456970781087875, -0.0032491786405444145, 0.023146091029047966, -0.023684067651629448, -0.011559924110770226, 0.015575062483549118, 0.0107726426795125, -0.02252938784658909, -0.0317012220621109, -0.0008496085065416992, -0.004418620374053717, -0.020705517381429672, 0.017031535506248474, 0.008017155341804028, -0.004287406802177429, -0.02664949744939804, -0.01316073164343834, -0.16606402397155762, -0.020731760188937187, 0.03839312121272087, -0.03771080821752548, 0.022621236741542816, -0.0032032537274062634, 0.02159777097404003, 0.011901079677045345, -0.03752711042761803, -0.0010693913791328669, -0.0031934126745909452, 0.009303049184381962, -0.010005042888224125, -0.004021699074655771, 0.0017418614588677883, -0.006563963834196329, -0.002263435861095786, 0.0039200084283947945, 0.013829921372234821, 0.003752710996195674, 0.031832437962293625, -0.028105968609452248, 0.011802669614553452, 0.008273022249341011, -0.02453695610165596, 0.01208477932959795, -0.00242253253236413, 0.05106836184859276, 0.018199335783720016, -0.01548321358859539, -0.0025635871570557356, -0.0259671863168478, 0.014381018467247486, -0.02668886072933674, 0.01321977749466896, 0.016073673963546753, 0.0012883542804047465, 0.000818445289041847, -0.025560423731803894, 0.023894010111689568, 0.013987377285957336, 0.007918745279312134, 0.006472114473581314, 0.003952811937779188, -0.00443502189591527, 0.010096891783177853, 0.02221447415649891, -0.009834464639425278, 0.00658036582171917, -0.02121725119650364, 0.021414071321487427, -0.019983842968940735, 0.007118341512978077, -0.0005215743440203369, 0.027686085551977158, 0.005317434202879667, -0.012156946584582329, 0.02027251198887825, 0.033092088997364044, -0.011947005055844784, -0.02432701550424099, 0.0022470341064035892, -0.0018632340943440795, -0.017595753073692322, -0.011428711004555225, -0.010759521275758743, -0.023211698979139328, 0.0011874837800860405, -0.029890473932027817, -8.774914022069424e-05, -0.006337620317935944, 0.00443502189591527, -0.017293961718678474, -0.005530656315386295, -0.0004416160227265209, -0.0013572414172813296, -0.04253947362303734, 0.010379001498222351, 0.029103191569447517, -0.008049958385527134, -0.011756745167076588, 0.025573544204235077, -0.004595758859068155, 0.006777185946702957, 0.01852736994624138, -0.012452177703380585, -0.007380769122391939, 0.00036883342545479536, -0.03542769327759743, -0.004894270095974207, 0.003719907719641924, -0.03692352771759033, -0.011664895340800285, -0.010805445723235607, 0.011146601289510727, -0.010431487113237381, 0.01842239871621132, -0.00771536398679018, 0.02464192733168602, -0.028263425454497337, 0.004999240860342979, 0.024235164746642113, -0.011999490670859814, 0.01264243759214878, 0.003209814429283142, 0.012740847654640675, -0.01627049595117569, 0.012484980747103691, 0.03881300240755081, 0.007092099171131849, -0.020259391516447067, 0.004179155454039574, 0.018396155908703804, 0.018934132531285286, 0.000929976929910481, 0.022148868069052696, -0.007315162103623152, -0.015417606569826603, 0.010155938565731049, 0.012629316188395023, 0.057524073868989944, 0.017818816006183624, -0.006583645939826965, 0.0011555004166439176, -0.0034410785883665085, -0.04860154539346695, -0.07500173151493073, -0.02290990762412548, 0.004182435572147369, 0.026308340951800346, 0.003657581051811576, 0.006252331659197807, -0.01503708679229021, 0.023657824844121933, -0.032199833542108536, 0.019787020981311798, -0.01733332686126232, -0.025573544204235077, -0.0005674991407431662, -0.002281477674841881, 0.015758762136101723, -0.016506679356098175, 0.00496315723285079, 0.017359569668769836, -0.021361585706472397, 0.03443046659231186, -0.0070855384692549706, -0.0023684068582952023, 0.0021879880223423243, -0.00030220148619264364, -0.00937521643936634, 0.00034361580037511885, -0.04070248082280159, 0.02284429967403412, 0.010634868405759335, -0.014932115562260151, 0.010182181373238564, -0.037684567272663116, -0.013659343123435974, -0.03595254570245743, 0.003667422104626894, -0.012235675007104874, -0.0037231878377497196, -0.013449401594698429, 0.016821593046188354, -0.040203869342803955, -0.011933883652091026, -0.023789038881659508, 0.012668680399656296, -0.014879630878567696, -0.031045155599713326, 0.006711579393595457, -0.00931617058813572, 0.029155677184462547, 0.00969013012945652, -0.03091394156217575, -0.008187733590602875, -0.021256614476442337, -0.026610132306814194, 0.028184697031974792, 0.02996920235455036, 0.02254250831902027, -0.01815997250378132, -0.008837240748107433, -0.02105979435145855, -0.016257373616099358, 0.009972238913178444, -0.010050967335700989, -0.03471913933753967, 0.025717880576848984, 0.02954931929707527, -0.014774659648537636, -0.00885036215186119, -0.004825382959097624, 0.007498861290514469, -0.021715862676501274, -0.004746654536575079, 0.03101891279220581, -0.007144584320485592, 0.017149627208709717, -0.021046673879027367, -0.0006823110743425786, -0.019865749403834343, -0.002509461482986808, 0.019367137923836708, -0.008509206585586071, 0.0004399758472573012, -0.028079725801944733, 6.565808871528134e-05, 0.0161130391061306, 0.008233658038079739, -0.004940194543451071, -0.025927821174263954, -0.006659093778580427, 0.0065344409085810184, -0.032619718462228775, 0.007623514160513878, 0.008423917926847935, 0.0039003263227641582, -0.005678271874785423, -0.012583390809595585, 0.0020698956213891506, -0.0002220381429651752, -0.015863733366131783, 0.009880389086902142, 0.0519343726336956, -0.014512232504785061, -0.004057782702147961, -0.07573653012514114, 0.025822849944233894, -0.005038605071604252, -0.020469332113862038, -0.0036018153186887503, -0.01959020085632801, -0.0003032265813089907, 0.002002648776397109, 0.005579861346632242, 0.011054751463234425, -0.021768348291516304, 0.008443599566817284, -0.016821593046188354, -0.0003680133377201855, 0.004175875335931778, -0.012301282025873661, 0.010149377398192883, -0.018501127138733864, 0.008135247975587845, -0.0027718888595700264, -0.009198077954351902, 0.016139281913638115, 0.014420382678508759, 0.018868526443839073, -0.017976272851228714, -0.0031114041339606047, -0.01827806420624256, 0.023316670209169388, -0.00861417781561613, -0.005996464751660824, 0.019682051613926888, -0.017595753073692322, -0.0008012235048227012, 0.048680271953344345, 0.00462200166657567, -0.018999740481376648, -0.00987382885068655, 0.011632092297077179, 0.023290427401661873, 0.04309057071805, -0.02401210181415081, -0.041096121072769165, 0.01747766137123108, -0.011553363874554634, -0.020285634323954582, 0.010621747002005577, 0.011540242470800877, -0.013029517605900764, 0.01306232064962387, 0.015168300829827785, 0.011815791018307209, 0.018829161301255226, -0.008351750671863556, -0.0153257567435503, -0.00334922899492085, 0.0032491786405444145, 0.05007113888859749, -0.0003089671954512596, 0.02991671673953533, -0.00861417781561613, 0.04080745205283165, 0.03212110698223114, 0.0012612914433702826, 0.0005777502083219588, -0.0053075929172337055, 0.017188990488648415, -0.012248796410858631, 0.002598030725494027, 0.015981825068593025, -0.03185867890715599, 0.013698707334697247, 0.001116136321797967, 0.011363103985786438, 0.019406501203775406, 0.031884923577308655, -0.0023339632898569107, -0.009591719135642052, 0.006941203027963638, -0.02954931929707527, 0.0179500300437212, 0.017412053421139717, -0.009440823458135128, 0.008220536634325981, 0.01805500127375126, 0.008286143653094769, 0.030835213139653206, -0.007761288899928331, 0.005606104154139757, -0.0001661698188399896, 0.009755736216902733, 0.010654550045728683, 0.00525182718411088, -0.01875043287873268, 0.006065351888537407, 0.0054552084766328335, 0.031360067427158356, -0.007092099171131849, -0.0015721038216724992, 0.008784755133092403, 0.017503904178738594, 0.028814522549510002, -0.012111022137105465, 0.00542240496724844, -0.016572287306189537, -0.026045914739370346, 0.019078467041254044, -0.017674481496214867, -0.023251062259078026, 0.005005801562219858, 0.015680033713579178, 0.013121367432177067, -0.02563915215432644, -0.014590959995985031, -0.006183444522321224, -0.029942959547042847, 0.013895527459681034, 0.010405244305729866, -0.002822734182700515, -0.033511970192193985, 0.029811745509505272, 0.01543072797358036, -0.005396162159740925, 0.01579812541604042, -0.007721924688667059, 0.015286392532289028, 0.048680271953344345, 0.028315911069512367, -0.0053108735010027885, 0.023710310459136963, 0.0011120358249172568, -0.0046121603809297085, 0.004152912646532059, 0.008712587878108025, -0.02095482312142849, -0.04311681166291237, -0.012452177703380585, -0.009257124736905098, 0.029628047719597816, 0.011933883652091026, 0.09536609798669815, 0.005005801562219858, 0.004231641069054604, 0.01637546718120575, -0.032462261617183685, 0.0031917726155370474, 0.016559164971113205, 0.03545393422245979, -0.008187733590602875, 0.00010425336222397164, -0.0024274529423564672, 0.0023733272682875395, -0.02427452988922596, -0.006032548379153013, -0.01726771891117096, 0.013685585930943489, -0.02296239323914051, 0.020351240411400795, -0.014236683025956154, -0.015666913241147995, 0.01932777464389801, -0.0023520051036030054, 0.01480090245604515, 0.001588505576364696, -0.012019172310829163, -0.02016754075884819, 0.028604580089449883, 0.01363310031592846, -0.006334340199828148, -0.02674134634435177, -0.00903406087309122, 0.008758512325584888, -0.047368135303258896, -0.01890788972377777, 0.006340900901705027, -0.012517784722149372, 0.009919753298163414, -0.0017943469574674964, 0.010260908864438534, -0.0038609623443335295, 0.005625786259770393, 0.014971479773521423, 0.0019157195929437876, -0.00958515889942646, -0.01679535023868084, 0.007407011929899454, -0.00048385042464360595, -0.01770072430372238, -0.02163713425397873], '_distance': 0.3630693554878235}),\n", + " Document(page_content='I hope you’ve found this a useful place to start to break the ice with the major concepts of the Transformer. If you want to go deeper, I’d suggest these next steps:', metadata={'vector': [-0.010849842801690102, -0.01362568698823452, 0.0007098066271282732, -0.01547191571444273, -0.00605549942702055, 0.019788449630141258, 0.006253774277865887, -0.022128738462924957, -0.02020450122654438, -0.0073394086211919785, 0.010472796857357025, 0.024195995181798935, 0.006585315335541964, -0.011252893134951591, 0.022778820246458054, 0.0045668152160942554, 0.014093744568526745, -0.006689328234642744, 0.00788547657430172, -0.017214130610227585, -0.017032109200954437, -0.006890852935612202, 0.005853974726051092, -0.04277529567480087, -0.014288769103586674, 0.0014269265811890364, 0.024924084544181824, -0.01536790281534195, -0.02052954211831093, 0.0002716117596719414, 0.027095353230834007, 0.0011774582089856267, 0.0013310398207977414, -0.02026950940489769, 0.016486041247844696, 0.0071378834545612335, 0.006465050391852856, 0.0008629818330518901, 0.00765144731849432, -0.03250402212142944, 0.02966967225074768, 0.0050771282985806465, 0.0018559797899797559, -0.023506909608840942, -0.0032910325098782778, 0.001704836031422019, -0.01770819164812565, -0.027199367061257362, 0.0026133235078305006, 0.02860354073345661, 0.012241015210747719, 0.017695190384984016, 0.0018120993627235293, -0.0007215893128886819, -0.0005875102360732853, 0.025275127962231636, -0.009237643331289291, 0.026003219187259674, 0.0038744795601814985, -0.005392417311668396, -0.026965338736772537, 0.0013286019675433636, -0.008672073483467102, 0.011681945994496346, -0.0036599531304091215, 0.001828351290896535, -0.003533187322318554, 0.0008304778020828962, -0.009257146157324314, -0.007833469659090042, 0.02658829092979431, 0.04155314341187477, -0.009556182660162449, 0.00412801094353199, 0.014210758730769157, -0.0069298576563596725, 0.002382545033469796, -0.004784592427313328, 0.0043555391021072865, -0.003299158299341798, -0.006734833586961031, -0.008457547053694725, -0.022063732147216797, 0.007976487278938293, 0.010635316371917725, 0.02725137397646904, 0.015887966379523277, -0.0032796559389680624, -0.020685561001300812, 0.001045004348270595, -0.00872408039867878, 0.010505300015211105, 0.016863087192177773, 0.03726261109113693, 0.00759944086894393, 0.010862844996154308, 0.005008870270103216, 0.014275766909122467, 0.008633068762719631, -0.02046453393995762, 0.0047813416458666325, -0.008444545790553093, -0.006799841765314341, -0.009991737082600594, -0.038900814950466156, -0.003559190547093749, 0.017747197300195694, -0.022440778091549873, 0.01294960267841816, -0.02462504804134369, -0.014470791444182396, 0.017149122431874275, -0.011499923653900623, -0.010661319829523563, 0.003585193771868944, -0.0274593997746706, 0.011733952909708023, -0.01070682518184185, 0.003832224290817976, -0.01625201106071472, 0.028421517461538315, 0.007963486015796661, 0.029045594856142998, -0.011077371425926685, 0.0004509933351073414, -0.028083477169275284, 0.005814970005303621, 0.008145508356392384, -0.010557306930422783, -0.011902973055839539, 0.02307785674929619, 0.01222151331603527, 0.0032455266918987036, -0.0003924860793631524, -0.013976730406284332, 0.03375217691063881, -0.02236276865005493, 0.005899480078369379, -0.0069298576563596725, -0.013859715312719345, 0.009738205932080746, 0.001019813702441752, -0.026341261342167854, -0.02751140482723713, -0.00010025459778262302, -0.0024979342706501484, 0.012254016473889351, 0.00256781792268157, 0.00832103006541729, -0.007079376373440027, 0.007501928601413965, -0.02007448486983776, -7.613052002852783e-05, -0.011012363247573376, 0.008600564673542976, 0.030969833955168724, 0.006312281358987093, 0.0015626309905201197, -0.001376545405946672, 0.00781396683305502, 0.01932039111852646, 0.006491053383797407, 0.019424404948949814, 0.003971991594880819, 0.0062927789986133575, 0.0025873202830553055, 0.019580423831939697, -0.012084996327757835, 0.0062862783670425415, -0.006231021136045456, -0.02099759876728058, -0.002237902022898197, -0.03840675577521324, 0.018566299229860306, 0.01717512682080269, 0.00436204019933939, -0.0006163575453683734, -0.005931984167546034, -0.014574804343283176, -0.028707554563879967, 0.031983960419893265, -0.011967981234192848, 0.030423766002058983, 0.01631701923906803, -0.02818748913705349, 0.004384792875498533, 0.011168382130563259, -0.014106745831668377, 0.0020818826742470264, -0.018280262127518654, 0.010713325813412666, 0.03744463622570038, 0.011129377409815788, -0.011090372689068317, -0.6511206030845642, -0.022388771176338196, 0.00905562099069357, -0.025522159412503242, -0.0030391262844204903, -0.008717578835785389, -0.008275524713099003, 0.0030001213308423758, -0.022115737199783325, 0.01625201106071472, 0.009712202474474907, -0.007969986647367477, -0.012689570896327496, 0.006799841765314341, 0.010030741803348064, -0.005220146384090185, -0.014717821963131428, -0.0335441529750824, 0.01804623380303383, 0.0065073054283857346, -0.002445927821099758, 0.011746954172849655, -0.043737415224313736, -0.016147999092936516, 0.006429295986890793, -0.011330902576446533, 0.01933339238166809, 0.011766456998884678, 0.011759955435991287, 0.0018007229082286358, -0.02268780767917633, -0.003955739550292492, 0.018410278484225273, -0.017409155145287514, 0.03562441095709801, 0.007521430961787701, -0.007742458488792181, 0.016564050689339638, -0.011311400681734085, 0.035754427313804626, -0.01311862375587225, -0.02557416632771492, 0.032113976776599884, -0.0008824842516332865, 0.01670706830918789, 0.017201129347085953, 0.023246876895427704, -0.0007837532903067768, -0.001135203056037426, 0.0011953354114666581, 0.01799422688782215, -0.00852905586361885, -2.3463842808268964e-05, 0.008054496720433235, 0.02315586619079113, -0.008932105265557766, 0.031229866668581963, 0.01043379120528698, 0.003910234197974205, 0.020490536466240883, -0.00437829177826643, 0.0007691264618188143, -0.007202891632914543, -0.030085723847150803, -0.024065978825092316, 0.0033316623885184526, -0.001347291748970747, -0.026731308549642563, 0.006045748479664326, -0.019554421305656433, 0.0023240377195179462, 0.013989731669425964, -0.023064855486154556, -0.0029237368144094944, 0.0032455266918987036, 0.020217502489686012, 0.003585193771868944, -0.01730514131486416, -0.0046513257548213005, 0.027485402300953865, 0.055542875081300735, -0.0014496794901788235, -0.01844928413629532, -0.032712049782276154, 0.035260364413261414, 0.004514808766543865, -0.032660044729709625, -0.014808833599090576, -0.00203150138258934, -0.005473677534610033, -0.0014545550802722573, 0.006270026322454214, -0.014743825420737267, -0.03479230776429176, -0.008132507093250751, 0.007670949678868055, 0.012793583795428276, -0.0021127616055309772, -0.0014797457261011004, -0.012761079706251621, 0.018878336995840073, -0.0020575046073645353, 0.007605941500514746, -0.010258269496262074, -0.009380660951137543, -0.020451530814170837, 0.0023142865393310785, 0.016330022364854813, 0.024208996444940567, -0.008314529433846474, -0.02276581898331642, -0.010043743066489697, -0.017474163323640823, -0.011493423022329807, -0.01980145089328289, -0.036950573325157166, 0.00508362939581275, 0.020308513194322586, -0.007865973748266697, -0.02162167616188526, 0.018553296104073524, 0.03193195164203644, -0.012579057365655899, -0.0101672587916255, 0.022778820246458054, 0.006035997066646814, -0.0019014853751286864, -0.024456027895212173, -0.014444787986576557, -0.011246392503380775, -0.0036079466808587313, -0.009211639873683453, 0.026198243722319603, -0.0012700947700068355, 0.006409793626517057, 0.021907711401581764, 0.012592058628797531, -0.018748320639133453, -0.014353777281939983, -0.005434672813862562, -0.005057625938206911, -0.004807345103472471, 0.01778620108962059, 0.01184446644037962, -0.03094383142888546, -0.02430000714957714, -0.00959518738090992, -0.005743461195379496, -0.01294960267841816, 0.006406542845070362, 0.0015585679793730378, -0.007254898082464933, -0.03195795789361, -0.006432546302676201, 0.014587805606424809, -0.01215000357478857, 0.012234514579176903, -0.012644065544009209, -0.014535799622535706, -0.01670706830918789, -0.005886478815227747, 0.03939487785100937, -0.009543181397020817, 0.016616057604551315, -0.018709316849708557, 0.0019031105330213904, 0.015744948759675026, 0.01731814444065094, -0.008464047685265541, -0.038562774658203125, -0.005210394971072674, -0.04012296721339226, -0.003021249081939459, 0.0012822836870327592, -0.01268307026475668, -0.009562683291733265, -0.026133235543966293, -0.026549287140369415, 0.006062000524252653, -0.00748242624104023, -0.01952841691672802, -0.003737962804734707, -0.025470152497291565, 0.007566936779767275, 0.045141588896512985, 0.02228475920855999, 0.029097601771354675, -0.0031561406794935465, -0.01578395441174507, 0.02000947669148445, -0.003310534870252013, -0.00030939767020754516, 0.015380904078483582, -0.01764318346977234, -0.013196633197367191, 0.014886843040585518, 0.008178012445569038, -0.008750082924962044, 0.016863087192177773, 0.014977853745222092, 0.03156790882349014, -0.0071313828229904175, 0.036534521728754044, -0.02704334817826748, 0.009510677307844162, -0.0021062607411295176, 0.009042619727551937, -0.03242601454257965, 0.008373036049306393, 0.0036859563551843166, -0.0005050312611274421, -0.038302741944789886, -0.0027108355425298214, -0.021569669246673584, 0.00429703202098608, 0.012754579074680805, 0.0075604356825351715, 0.015939973294734955, -0.01898234896361828, 0.005480178166180849, 0.015081866644322872, 0.002419924596324563, 0.013300646096467972, 0.010674321092665195, -0.05213645473122597, 0.01530289463698864, 0.022791821509599686, -0.009179136715829372, 0.00905562099069357, -0.006942859385162592, 0.016616057604551315, 0.014236762188374996, 0.028421517461538315, 0.02423500083386898, 0.01678507775068283, -0.009081624448299408, 0.0036274490412324667, -0.01154542900621891, 0.01899535208940506, 0.0123450281098485, 0.028629543259739876, 0.02489808201789856, 0.0038419757038354874, -0.006968862842768431, 0.02638026513159275, 0.03463628888130188, 0.00875658355653286, -0.006166013423353434, -0.04139712452888489, 0.02221975103020668, -0.0032113974448293447, 0.012481545098125935, 0.010154256597161293, -0.0023402897641062737, 0.012364530935883522, -0.004072754178196192, -0.00024357702932320535, 0.016069989651441574, 0.03461028262972832, 0.0060782525688409805, 0.014717821963131428, 0.003955739550292492, -0.010225765407085419, 0.0013562303502112627, 0.016395028680562973, -0.004638324026018381, -0.01161043718457222, -0.04142312705516815, -0.018709316849708557, 0.008353534154593945, -0.010030741803348064, 0.0006825844757258892, 0.005272152833640575, -0.04033099114894867, -0.0032390260603278875, -0.0014561802381649613, 0.016941096633672714, 0.006994865834712982, -0.013781705871224403, 0.004469303414225578, -0.0013838588492944837, -0.02987769804894924, -0.009751207195222378, -0.000403049896704033, 0.004329536110162735, -0.00896460935473442, 0.009822716005146503, -0.006669825874269009, -0.036482516676187515, 0.008711078204214573, 0.007963486015796661, 0.010108751244843006, 0.0081520089879632, -0.001049879938364029, -0.026458274573087692, 0.010323277674615383, 0.009523678570985794, -0.02370193414390087, 0.03133387863636017, 0.009185637347400188, 0.009166134521365166, 0.009913727641105652, -0.02758941613137722, -0.03263403847813606, 0.03840675577521324, 0.012546553276479244, -0.015744948759675026, -0.004755338653922081, -0.004917858634144068, -0.017019106075167656, -0.029357634484767914, 0.002247653203085065, -0.01738315261900425, -0.019814452156424522, 0.014418784528970718, -0.026198243722319603, 0.016017982736229897, 0.005551687441766262, 0.04727385193109512, 0.014483792707324028, -0.0020445031113922596, -0.018423279747366905, -0.0018299765652045608, 0.014210758730769157, 0.05705106258392334, 0.020243505015969276, -0.0015910719521343708, 0.027745435014367104, -0.017071112990379333, -0.010862844996154308, -0.014288769103586674, -0.0229608416557312, 0.006364287808537483, -0.00949767604470253, 2.392092937952839e-05, -0.00765144731849432, 0.027173364534974098, -0.021192623302340508, 0.013261641375720501, 0.015328897163271904, -0.0013513547601178288, -0.0014415534678846598, 0.00686484994366765, -0.03200996294617653, -0.010583310388028622, 0.006153011694550514, -0.008776086382567883, 0.028811566531658173, 0.041449129581451416, 0.02281782403588295, 0.038224730640649796, 0.025002095848321915, -0.0016690816264599562, -0.0254441499710083, -0.010635316371917725, 0.014873840846121311, -0.003949238918721676, 0.006520307157188654, -0.014925847761332989, 0.045869678258895874, 0.018345270305871964, 0.05273452773690224, -0.009504176676273346, -0.007280901074409485, -0.0031805187463760376, 0.0010685697197914124, 0.004492056090384722, -0.03213997930288315, 0.00676083704456687, -0.017552172765135765, -0.009166134521365166, 0.026861324906349182, 0.01665506139397621, -0.029903702437877655, 0.008477048948407173, 0.003052127780392766, -0.03437625616788864, 0.003614447545260191, 0.007781463209539652, -0.0008776086615398526, -0.005190892610698938, -0.0019274885999038815, -0.005213645286858082, -0.006617819424718618, -0.010004738345742226, -0.014080743305385113, 0.009471672587096691, -0.007241896353662014, -0.006773838307708502, -0.021842703223228455, -0.007742458488792181, 0.0013846714282408357, -0.01759117841720581, 0.01657705195248127, -0.0009946231730282307, -0.012923600152134895, -0.019502414390444756, 0.00209650956094265, 0.05203244090080261, 0.0026198243722319603, -0.0016674564685672522, -0.0058572250418365, 0.00808700080960989, 0.003432424971833825, -0.0020526291336864233, -0.02509310655295849, 0.017760198563337326, 0.006198517512530088, -0.004293781705200672, 0.0030651295091956854, -0.021257631480693817, 0.00736541161313653, -0.010355781763792038, 0.03450627252459526, 0.01335265301167965, -0.0033316623885184526, -0.005610194522887468, -0.016356024891138077, -0.0003819222911261022, 0.02886357344686985, -0.004791093058884144, 0.0071313828229904175, 0.006621069740504026, -0.017409155145287514, -0.006094504613429308, -0.02075056917965412, 0.009881223551928997, -0.02549615688621998, 0.005038123577833176, 0.024182993918657303, 0.008711078204214573, 0.01184446644037962, -0.0025304381269961596, -0.0012676569167524576, 0.024729061871767044, -6.36875702184625e-05, -0.0022053979337215424, -0.0011847716523334384, 0.006179014686495066, 0.015042861923575401, 0.017877213656902313, 0.0009288024739362299, -0.014522797428071499, -0.018501291051506996, 0.007716455031186342, -0.0354163832962513, 0.03401220962405205, 0.019762447103857994, -0.01933339238166809, 0.04430948570370674, -0.005873477086424828, -0.000269173935521394, -0.025158114731311798, 0.003533187322318554, -0.018137244507670403, 0.017877213656902313, -0.005047874990850687, 0.007969986647367477, -0.05658300593495369, 0.022635802626609802, -0.005798717960715294, -0.000987309729680419, -0.0022541540674865246, -0.022375769913196564, 0.0029838692862540483, -0.004102007951587439, -0.0012969105737283826, -0.020906588062644005, 0.015575927682220936, -0.035884443670511246, -0.01712311990559101, 0.02925362065434456, 0.025613170117139816, -0.005850724410265684, -0.02315586619079113, 0.005099881440401077, -0.03544238582253456, -0.012416536919772625, 0.008210516534745693, -0.03825073316693306, 0.0004883729270659387, -0.00029477087082341313, 0.012754579074680805, 0.03094383142888546, 0.013443663716316223, 0.009562683291733265, -0.001526063890196383, 0.013248640112578869, 0.0024670553393661976, -0.022193746641278267, 0.010466295294463634, 0.024143988266587257, -0.04022698104381561, 0.023480907082557678, 0.014782830141484737, 0.009107626974582672, -0.004238524474203587, -0.0013919847551733255, 0.04727385193109512, 0.01886533573269844, -0.002715711249038577, -0.011811962351202965, 0.009796712547540665, -0.034532275050878525, -0.003468179376795888, 0.01066782046109438, -0.0010831966064870358, 0.0119484793394804, -0.019632430747151375, 0.0021452654618769884, 0.02953965589404106, 0.0003049283695872873, 0.016460036858916283, 7.866989471949637e-05, 0.03159391134977341, -0.005122634116560221, 0.029825692996382713, -0.004696831572800875, -0.008106503635644913, -0.006994865834712982, -0.006552811246365309, -0.03874479606747627, 0.002566192764788866, 0.014886843040585518, 0.006039247382432222, 0.021244630217552185, -0.006832345854490995, 0.006786840036511421, 0.014756826683878899, -0.011532427743077278, 0.005480178166180849, -0.006608068011701107, -0.01217600703239441, -0.020100487396121025, -0.006400042213499546, -0.01952841691672802, -0.00875658355653286, 0.014743825420737267, 0.018904339522123337, -0.008347033523023129, -0.025340136140584946, 0.008854095824062824, -0.016291016712784767, -0.018033232539892197, 0.025249125435948372, -0.0003031000087503344, 0.02612023428082466, 0.027433395385742188, 0.026536284014582634, 0.001197773264721036, -0.002873355755582452, -0.01818925142288208, 0.025067102164030075, -0.029357634484767914, 0.008633068762719631, 0.0026750811375677586, 0.039290864020586014, -0.006166013423353434, -0.019424404948949814, 0.0037509643007069826, -0.008282025344669819, 0.0006062000175006688, -0.02470305748283863, 0.0019193625776097178, 0.027199367061257362, 0.018423279747366905, -0.014886843040585518, 0.01167544536292553, -0.016291016712784767, 0.033934202045202255, 0.024599045515060425, 0.027225369587540627, -0.01037528458982706, 0.005551687441766262, -0.020854581147432327, 0.01211750041693449, -0.008984112180769444, 0.01899535208940506, -0.014470791444182396, 0.0015480041038244963, -0.0030456269159913063, 0.007807466667145491, -0.003952489234507084, -0.004183267708867788, 0.005925483535975218, 0.03193195164203644, -0.008613565936684608, 0.003614447545260191, 0.025522159412503242, 0.0036339499056339264, -0.002939988858997822, -0.011421914212405682, -0.014301770366728306, 0.02275281585752964, -0.01164944190531969, -0.0028294753283262253, -0.033258117735385895, 0.004046750720590353, 0.015458913519978523, -0.02383195050060749, -0.0015512545360252261, 0.007189889904111624, -0.007696952670812607, -0.0119484793394804, 0.0060782525688409805, -0.0011530802585184574, -0.038432758301496506, -0.007872474379837513, 0.004982866812497377, -0.008073999546468258, 0.0021907712798565626, 0.005467176903039217, 0.00892560463398695, -0.020789572969079018, -0.01730514131486416, 9.916266208165325e-06, 0.018696313723921776, 0.02013949304819107, -0.01181846298277378, -0.017812205478549004, 0.008737081661820412, 0.028811566531658173, 0.01006324589252472, -0.006101005245000124, 0.02784944698214531, 0.006994865834712982, -0.029383637011051178, 0.03968091309070587, 0.005756462458521128, -0.023987969383597374, 0.006962361745536327, -0.013612684793770313, 0.0034779305569827557, -0.0055776904337108135, 0.010648318566381931, 0.009653694927692413, -0.006559311877936125, 0.023506909608840942, -0.012943102046847343, 0.001224589068442583, -0.0021290136501193047, 0.008587563410401344, -0.009088125079870224, 0.0025483155623078346, -0.006832345854490995, 0.00855505932122469, 0.004560314584523439, 0.004300282336771488, 0.006903854664415121, 0.011928976513445377, -0.01479583140462637, -0.0005338785704225302, -0.03086582012474537, 0.011688446626067162, -0.01238403283059597, -0.013950726948678493, 0.002151766326278448, -0.004615571349859238, 0.01691509410738945, 0.002372793620452285, -0.019541418179869652, 0.009374160319566727, -0.011304899118840694, 0.009250645525753498, 0.014873840846121311, 0.022648803889751434, 0.0012018362758681178, -0.00788547657430172, -0.027173364534974098, -0.006721831858158112, 0.0014708071248605847, -0.0016674564685672522, -0.02557416632771492, -0.005616695154458284, -0.004693580791354179, 0.009855220094323158, 0.002775843720883131, -0.020919589325785637, -0.02589920535683632, -0.015094868838787079, -0.03978492319583893, -0.004306782968342304, -0.004056502133607864, 0.013417661190032959, 0.012468543834984303, -0.008158509619534016, -0.0073459092527627945, 0.0369245707988739, 0.012455541640520096, 0.004163765348494053, -0.011681945994496346, -0.02007448486983776, -0.00245730415917933, 0.012839089147746563, -0.03364816680550575, -0.0071313828229904175, -0.028005465865135193, -0.030241742730140686, 0.024208996444940567, 0.013547676615417004, -0.01154542900621891, 0.03367416933178902, -0.009738205932080746, -0.002777468878775835, -0.006403292529284954, 0.000895485864020884, 0.03154190629720688, 0.02489808201789856, 0.010342780500650406, -0.038354746997356415, 0.007072875741869211, 0.0297996886074543, -0.029643669724464417, -0.022310761734843254, -0.010557306930422783, -0.0007069625426083803, 0.015523921698331833, -0.008691576309502125, -0.02228475920855999, 0.008327530696988106, 0.023597920313477516, -0.014405783265829086, 0.015445912256836891, 0.0005667888908647001, -0.0024979342706501484, 0.020295511931180954, 0.028681550174951553, -0.004917858634144068, -0.004739086609333754, 0.021127615123987198, -0.02899358980357647, -0.007846470922231674, 0.01318363193422556, -0.02201172523200512, 0.00736541161313653, -0.014275766909122467, -0.015757950022816658, -0.03515635058283806, 0.003386919153854251, -0.011616937816143036, 0.008808590471744537, -0.018267260864377022, 0.013599683530628681, 0.001076695742085576, -0.02852553129196167, -0.0068388464860618114, 0.01044029276818037, 0.0170581117272377, -0.02502809837460518, -0.02865554764866829, 0.006806342396885157, -0.0021972719114273787, 0.0060782525688409805, -0.008646070025861263, -0.006009994074702263, 0.01523788645863533, -0.013599683530628681, -0.0011319526238366961, 0.00382572365924716, -0.010349281132221222, 0.22778819501399994, -0.01205249223858118, 0.0004985304549336433, 0.019541418179869652, 0.00812600553035736, -0.0183192677795887, 0.027433395385742188, -0.008327530696988106, -0.007579938508570194, -0.013989731669425964, -0.0013830461539328098, 0.00741741806268692, -0.04277529567480087, -0.006465050391852856, 0.003351164748892188, -0.024677054956555367, -0.04139712452888489, -0.012273519299924374, -0.019307389855384827, 0.00032138352980837226, 0.009627691470086575, 0.004056502133607864, -0.00960168894380331, -0.022986846044659615, 0.012377532199025154, -0.006702329497784376, 0.00376721634529531, 0.0170581117272377, 0.01825425960123539, 0.014431786723434925, -0.014717821963131428, -0.0046448251232504845, 0.011824963614344597, 0.02605522610247135, -0.017552172765135765, -0.011467419564723969, 0.03203596547245979, -0.01127239502966404, 0.02704334817826748, 0.012982106767594814, 0.008496551774442196, -0.0026848323177546263, -0.011935477145016193, -0.0198664590716362, -0.02147865854203701, 0.025054100900888443, -0.012735076248645782, -0.003377167973667383, 0.0011132628424093127, 0.012650566175580025, -0.018683312460780144, 0.0005497243255376816, 0.00466432748362422, 0.030319754034280777, 0.006549560930579901, 0.013651689514517784, 0.021127615123987198, 0.020191499963402748, 0.03531236946582794, -0.0032780307810753584, -0.01181846298277378, 0.02751140482723713, -0.01739615388214588, 0.03081381507217884, -0.011915975250303745, -0.0026377015747129917, -0.01657705195248127, 0.008678574115037918, 0.011467419564723969, -0.01584896259009838, 0.006123757921159267, -0.00949767604470253, -0.014522797428071499, -0.007904978469014168, -0.045063577592372894, -0.014275766909122467, 0.0413191132247448, 0.04555764049291611, 0.02792745642364025, 0.01161043718457222, -0.01570594497025013, -0.003965490963310003, 0.025795193389058113, -0.034870315343141556, 0.009192137978971004, -0.02430000714957714, 0.007930981926620007, 0.016551049426198006, 0.002480057068169117, 0.010258269496262074, 0.007495427969843149, -0.031723927706480026, 0.010030741803348064, 0.01311862375587225, -0.00532090850174427, 0.017552172765135765, 0.01657705195248127, 0.011753454804420471, -0.0014464290579780936, -0.00026815818273462355, -0.009848719462752342, 0.015185879543423653, 0.024261003360152245, 0.03344013914465904, -0.03401220962405205, 0.009718703106045723, 0.01161043718457222, 0.008178012445569038, 0.016395028680562973, -0.0214136503636837, 0.009458671323955059, -0.0178512092679739, 0.013924723491072655, -0.009114128537476063, -0.016941096633672714, 0.0036664537619799376, -0.014171754010021687, 0.009978734888136387, -0.007709954399615526, -0.012026488780975342, -0.008776086382567883, -0.01906036026775837, 0.010277772322297096, 0.004596068989485502, -0.001463493681512773, -0.008828092366456985, -0.02093259058892727, -0.0020071235485374928, -0.003533187322318554, -0.002161517506465316, 0.025886204093694687, -0.009075123816728592, 0.019970472902059555, 0.0012725325068458915, -0.016603054478764534, -0.002481682226061821, 0.005681703332811594, 0.03679455444216728, 0.009627691470086575, 0.008282025344669819, -0.0016918344190344214, 0.0018754821503534913, -0.010934353806078434, -0.003167517017573118, 0.004800844471901655, -0.014990855939686298, -0.014496794901788235, -0.007898477837443352, -0.0007817217847332358, 0.0074304197914898396, -0.01500385720282793, 0.031177859753370285, 0.005730459466576576, -0.028941582888364792, 0.014951851218938828, -0.002208648482337594, -0.02966967225074768, -0.018696313723921776, -0.0012083370238542557, 0.01295610424131155, -0.03255603089928627, 0.012065493501722813, 0.017955223098397255, -0.0028538531623780727, 0.00031833627144806087, -0.019021354615688324, -0.16423633694648743, 0.00401099631562829, 0.04740386828780174, -0.030163733288645744, 0.03955089673399925, -0.005756462458521128, 0.046883802860975266, 0.008165011182427406, -0.0137296998873353, 0.009848719462752342, 0.00035774739808402956, -0.004462802316993475, -0.014444787986576557, -0.0024898082483559847, -0.018878336995840073, -0.02375394105911255, -0.012254016473889351, 0.012436039745807648, 0.032374005764722824, 0.015224884264171124, 0.03263403847813606, -0.038484763354063034, 0.004706582520157099, 0.0013424161588773131, -0.019918465986847878, 0.031983960419893265, 0.0079894894734025, 0.006877851206809282, 0.001549629378132522, -0.009010115638375282, -0.005847473628818989, -0.007157385814934969, 0.03739262744784355, -0.015588929876685143, 0.0010271271457895637, -0.009881223551928997, 0.0030960082076489925, -0.024065978825092316, 0.0003110228863079101, 0.011863968335092068, 0.022778820246458054, -0.0035754425916820765, 0.011590935289859772, -0.01127239502966404, -0.0036306993570178747, 0.002065630629658699, 0.011148880235850811, -0.003318660892546177, -0.0007289027562364936, -0.026731308549642563, 0.02704334817826748, -0.018761321902275085, -0.019619429484009743, 0.0032747804652899504, -0.002728712745010853, -0.019112365320324898, -0.016590053215622902, 0.02625024877488613, -0.001076695742085576, -0.021712686866521835, 0.015159877017140388, -0.00855505932122469, -0.012130501680076122, -0.009887724183499813, -0.011122876778244972, 0.002234651707112789, 0.0020542542915791273, 0.0034746802411973476, -0.0475078821182251, 0.003260153578594327, 0.008483550511300564, -0.010947355069220066, -0.011090372689068317, -0.009822716005146503, 0.0033284120727330446, 0.020568545907735825, -0.020828578621149063, -0.008568060584366322, 0.0134956706315279, -0.013963728211820126, 0.0011295147705823183, 0.033128101378679276, -0.02678331546485424, 0.02162167616188526, -0.002964366925880313, -0.003258528420701623, -0.01638202741742134, 0.00664382241666317, -0.03161991387605667, -0.013976730406284332, 0.03000771440565586, -0.018150247633457184, -0.03000771440565586, -0.011220389045774937, 0.030215740203857422, 0.018241258338093758, 0.020763570442795753, -0.017487164586782455, 0.008379537612199783, -0.0012814711080864072, -0.005766213871538639, 0.01570594497025013, -0.01833226904273033, -0.003770466661080718, 0.029903702437877655, 0.02531413361430168, 0.008828092366456985, 0.040773048996925354, 0.017682189121842384, 0.0002443896373733878, -0.03461028262972832, -0.009738205932080746, 0.013963728211820126, 0.024065978825092316, -0.01657705195248127, 0.01137640792876482, -0.004475804045796394, -0.00949767604470253, 0.019710440188646317, 0.02088058553636074, 0.024937087669968605, 0.0022314011584967375, -0.01980145089328289, -0.0028912329580634832, -0.02147865854203701, -0.022180745378136635, -0.10994160920381546, -0.036534521728754044, 0.017617180943489075, 0.017760198563337326, -0.005041373893618584, 0.013963728211820126, -0.00021919900609645993, -0.0028229744639247656, -0.027147360146045685, 0.012429538182914257, -0.014171754010021687, -0.028915580362081528, 0.014821834862232208, -0.011857467703521252, -0.008535556495189667, -0.01389872096478939, 0.014249764382839203, -0.004492056090384722, -0.021725689992308617, 0.02987769804894924, -0.007729456759989262, 0.003325161524116993, 0.003287781961262226, 0.020087486132979393, -0.007462923880666494, -0.005593942478299141, -0.018033232539892197, 0.008171511813998222, 0.009939730167388916, -0.013820710591971874, 0.00027628420502878726, -0.012000485323369503, 0.012813085690140724, -0.035546399652957916, 0.00281809875741601, -0.002868480049073696, -0.02054254338145256, -0.007976487278938293, 0.026497280225157738, -0.0022606549318879843, -0.03770466893911362, -0.012546553276479244, -0.024729061871767044, -0.03060578927397728, -0.031775932759046555, -0.010765332728624344, -0.03060578927397728, 0.02362392470240593, 0.0030066221952438354, -0.04683179780840874, 0.002660454250872135, 0.006094504613429308, -0.02797946333885193, 0.0006309843738563359, 0.03877079859375954, -0.013313648290932178, -0.013404658995568752, -0.024404020980000496, -0.013040614314377308, 0.0005830409354530275, 0.0018689814023673534, -0.025223122909665108, -0.023857953026890755, 0.03377818316221237, 0.019697438925504684, -0.023597920313477516, -0.018878336995840073, -0.025197118520736694, 0.01778620108962059, -0.023584919050335884, 0.0178512092679739, -0.005395668093115091, -0.015939973294734955, 0.02610723115503788, -0.029357634484767914, -0.011018863879144192, -0.01578395441174507, -0.009913727641105652, 0.03840675577521324, -0.004339287057518959, -0.005720708053559065, -0.01731814444065094, 0.017227131873369217, -0.03206196799874306, 0.01838427595794201, -0.0028538531623780727, 0.008347033523023129, 0.004573316313326359, 0.017201129347085953, -0.043737415224313736, -0.0005119383567944169, 0.02625024877488613, 0.004992618225514889, -0.014951851218938828, 0.007241896353662014, -0.0031301374547183514, -0.021114613860845566, -0.007371912710368633, 0.012377532199025154, 0.041449129581451416, -0.004973115399479866, -0.01345666591078043, -0.03367416933178902, 0.008243020623922348, -0.0065073054283857346, -0.005392417311668396, -0.0022655304055660963, -0.02328588254749775, 0.0032699047587811947, -0.008230018429458141, -0.006682827137410641, 0.0064162942580878735, -0.006062000524252653, 0.018761321902275085, -0.0046578263863921165, -0.012442540377378464, -0.00976420845836401, -0.01369069516658783, 0.00782046839594841, 0.006825844757258892, -0.003017998533323407, 0.0020786323584616184, -0.01920337788760662, 0.002304535359144211, 0.015536922961473465, 0.016421033069491386, -0.010251768864691257, 0.02504109963774681, -0.0007837532903067768, -0.0037119595799595118, -0.0029806189704686403, -0.005980740301311016, 0.014704820699989796, -0.024195995181798935, -0.010459794662892818, 0.04355539008975029, 0.00020924465206917375, -0.02202472649514675, -0.004765090066939592, 0.019853457808494568, 0.011727451346814632, 0.04025298357009888, 0.004407545551657677, -0.024065978825092316, 0.015887966379523277, -0.013950726948678493, -0.011246392503380775, -0.015744948759675026, -0.009894224815070629, 0.011421914212405682, 0.003203271422535181, 0.011935477145016193, 0.020763570442795753, 0.012299522757530212, 0.00045871303882449865, -0.01778620108962059, -0.0025548161938786507, -0.005535435397177935, 0.009244143962860107, 0.015380904078483582, -0.011974481865763664, -0.027225369587540627, 0.01912536658346653, 0.005889729131013155, 0.01010225061327219, -0.012202010490000248, 0.007839970290660858, -0.0023451652377843857, -0.0029676174744963646, -0.013768704608082771, 0.016421033069491386, -0.024339012801647186, -0.01770819164812565, 0.001675582374446094, 0.02335089072585106, 0.022167744114995003, 0.0015098118456080556, 0.001851104199886322, -0.021062606945633888, 0.0004132073954679072, -0.018176250159740448, 0.035260364413261414, 0.03409022092819214, 0.006013244390487671, -0.015523921698331833, 0.023532913997769356, 0.022102735936641693, 0.005376165732741356, -0.004173516761511564, 0.002668580273166299, -0.002813223283737898, -0.0020184998866170645, 0.006370788440108299, -0.0036957075353711843, 0.004589568357914686, -0.01534189935773611, -0.0006224520620889962, 0.021530665457248688, -0.00849005114287138, -0.0009239268838427961, 0.005298155825585127, 0.0206595566123724, -0.0008467297884635627, 0.009627691470086575, 0.011915975250303745, -0.04053901880979538, -0.03242601454257965, -0.003286156803369522, -0.006039247382432222, -0.03825073316693306, -0.0114804208278656, 0.0170581117272377, 4.553102553472854e-05, -0.01765618473291397, 0.006448798347264528, 0.011064369231462479, -0.015276891179382801, 0.005558188073337078, 0.004518059082329273, -0.013677692972123623, -0.030891824513673782, 0.019749443978071213, 0.0035429385025054216, 0.02860354073345661, 0.017500165849924088, -0.01322263665497303, 0.004823597148060799, 0.01244904100894928, 0.012663567438721657, 0.012293022125959396, 0.029721679165959358, 0.0031187611166387796, -0.015250887721776962, 0.0001362121693091467, -0.01231902465224266, -0.007183389272540808, -0.018371274694800377, -0.022258754819631577, 0.004319784697145224, 0.02115361951291561, -0.0031512652058154345, 0.09298750758171082, 0.03328412026166916, -0.037574652582407, 0.006621069740504026, -0.014132749289274216, 0.012904097326099873, 0.000840228982269764, 0.01352167408913374, -0.001222963910549879, -0.008776086382567883, 0.01534189935773611, 0.0067933411337435246, -0.022804822772741318, -0.028681550174951553, -0.010966857895255089, 0.015484916977584362, -0.0015796954976394773, -0.0010953856399282813, -0.0027595916762948036, -0.00792448129504919, 0.020698562264442444, -0.02504109963774681, 0.02228475920855999, 0.022323762997984886, -0.018280262127518654, -0.021725689992308617, 0.03159391134977341, 0.0050673773512244225, -0.00788547657430172, -0.01792921870946884, -0.009634193032979965, -0.0012928475625813007, -0.055542875081300735, -0.009114128537476063, 0.010661319829523563, -0.008366535417735577, 0.006682827137410641, -0.02966967225074768, 0.009270147420465946, 0.0014919346431270242, 0.014990855939686298, 0.00876308511942625, -0.015952974557876587, -0.03333612531423569, -0.030709801241755486, 0.03812072053551674, 0.012202010490000248, -0.01779920421540737, 0.0016308893682435155], '_distance': 0.37803786993026733})],\n", + " 'question': 'How Transformers work?',\n", + " 'run_web_search': 'No'}\n", + "'-------'\n", + "***** DECIDE TO GENERATE *****\n", + "***** DECISION: GENERATE *****\n", + "***** GENERATE *****\n", + "{ 'documents': [ Document(page_content='Featured in courses at Stanford, Harvard, MIT, Princeton, CMU and others\\nIn the previous post, we looked at Attention – a ubiquitous method in modern deep learning models. Attention is a concept that helped improve the performance of neural machine translation applications. In this post, we will look at The Transformer – a model that uses attention to boost the speed with which these models can be trained. The Transformer outperforms the Google Neural Machine Translation model in specific tasks. The biggest benefit, however, comes from how The Transformer lends itself to parallelization. It is in fact Google Cloud’s recommendation to use The Transformer as a reference model to use their Cloud TPU offering. So let’s try to break the model apart and look at how it functions.', metadata={'vector': [-0.03292850777506828, 0.0013406849466264248, 0.021762628108263016, -0.010678051970899105, 0.0201500803232193, 0.014241919852793217, -0.006924473214894533, -0.016965635120868683, -0.013428870588541031, -0.04143843054771423, 0.03571997955441475, 0.03726477548480034, -0.007520709186792374, 0.0007080307113938034, 0.015868017449975014, -0.006494234316051006, 0.03048936277627945, 0.009031626395881176, -0.008116945624351501, -0.020448198541998863, -0.025692369788885117, 0.009248439222574234, -0.022697634994983673, -0.020082324743270874, -0.009343295358121395, 0.009939531795680523, 0.04967733472585678, -0.03284720331430435, -0.009153584018349648, -0.03181734308600426, 0.015447943471372128, 0.013916700147092342, -0.01604417897760868, -0.028754856437444687, -0.008184699341654778, -0.011565630324184895, 0.011524978093802929, -0.012690350413322449, 0.01742636412382126, -0.015542799606919289, 0.0319257490336895, 0.024567648768424988, 0.008469266816973686, -0.009255214594304562, -0.011342042125761509, 0.006175789516419172, -0.0009985265787690878, -0.04482613503932953, -0.0019665637519210577, 0.015122723765671253, 0.014634894207119942, 0.03905348479747772, -0.02326676994562149, -0.02559751458466053, -0.027101656422019005, 0.0002434914349578321, -0.010081815533339977, 0.007771399803459644, 0.02009587548673153, -0.011111677624285221, 0.01832071878015995, 0.0027745317202061415, -0.008218576200306416, 0.005962363909929991, -0.011545304208993912, -0.015136274509131908, -0.0016371094388887286, 0.03127530962228775, 0.0014186021871864796, 0.010576420463621616, 0.03777970373630524, 0.024635402485728264, 0.0042447964660823345, -0.011965380050241947, 0.035421863198280334, -0.016924982890486717, -0.014743301086127758, -0.00861155055463314, -0.016924982890486717, 0.013550828211009502, -0.0007380965980701149, -0.0036993760149925947, 0.009688841179013252, -0.0007012552814558148, 0.0016218647360801697, -0.0068228417076170444, 0.00879448652267456, -0.008814812637865543, -0.009973408654332161, 0.010833886452019215, -0.0008122027502395213, 0.001707404269836843, 0.01798194646835327, 0.014661995694041252, 0.01265647355467081, 0.014431631192564964, -0.0019835021812468767, 0.030895886942744255, -0.0033165651839226484, -0.01651845872402191, -0.0026559620164334774, -0.001112861675210297, -0.04021885618567467, -0.016247441992163658, -0.019093114882707596, 0.014729749411344528, 0.01596287451684475, -0.006545050069689751, -0.013943801634013653, -0.006392603274434805, -0.0008435390191152692, 0.02023138478398323, 0.0015109172090888023, -0.04290191829204559, -0.0036587235517799854, 0.003594357054680586, 0.009600760415196419, -0.008096619509160519, 0.007961111143231392, -0.01205346081405878, 0.04330844432115555, 0.01519047748297453, 0.005271271802484989, 0.0003809052868746221, 0.007527485024183989, -0.009797248058021069, -0.005406780168414116, -0.0052983732894063, 0.003413114696741104, -0.021207043901085854, -0.02174907736480236, 0.017290854826569557, -0.0016303339507430792, -0.004966378211975098, -0.0177922360599041, 0.014052208513021469, -0.0031996893230825663, -0.01643715240061283, -0.04198046028614044, -0.0023663132451474667, 0.0019835021812468767, -0.006965125445276499, -0.006318073719739914, -0.01296814251691103, -0.0028778568375855684, 0.03409387916326523, 0.005105274263769388, 0.040787987411022186, 0.02352423593401909, 0.022724736481904984, 0.022670533508062363, -0.026952596381306648, -0.008191474713385105, 0.01121330913156271, 0.03206125646829605, 0.016423601657152176, 0.014241919852793217, 0.006734761409461498, -0.007622340694069862, -0.0013991228770464659, 0.00577603979036212, 0.008035640232264996, -0.010251200757920742, -0.014296123757958412, 0.014783953316509724, 0.023456482216715813, 0.005850569345057011, -0.006985451560467482, 0.009438150562345982, -0.02090892568230629, -0.005806529428809881, 0.021369654685258865, -0.04561208188533783, 0.010542543604969978, -0.0034639304503798485, -0.0026119218673557043, 0.03336213529109955, -0.009390722960233688, -0.022494371980428696, -0.01986551284790039, 0.03658723086118698, -0.010481564328074455, 0.012595494277775288, 0.008537020534276962, -0.0008342228247784078, -0.013605031184852123, 0.010522217489778996, -0.013970903120934963, 0.011511427350342274, -0.030922988429665565, 0.009560108184814453, 0.03187154605984688, 0.0065484377555549145, -0.01487880852073431, -0.6348291635513306, -0.008726732805371284, -0.012859735637903214, -0.008963871747255325, 0.015176926739513874, -0.0005263649509288371, 0.0003383472212590277, 0.00016568003047723323, -0.01007504016160965, 0.012568392790853977, -0.0016574356704950333, -0.021112188696861267, -0.011389469727873802, 0.001235665986314416, -0.01910666562616825, -0.02141030691564083, 0.0029930388554930687, -0.03203415498137474, 0.020434647798538208, 0.026342809200286865, -0.03263039141893387, 0.013530501164495945, -0.02386300638318062, 0.005145926494151354, -0.009925981052219868, 0.011484325863420963, 0.009593985043466091, 0.009783697314560413, 0.005173027981072664, 0.012981693260371685, -0.03168183192610741, 0.0036621112376451492, 0.03371445834636688, -0.00020156856044195592, 0.026559622958302498, 0.00534580135717988, 0.005657470319420099, 0.03352474421262741, 0.0042447964660823345, 0.03712926432490349, -0.008719957433640957, -0.020746316760778427, 0.02899877168238163, 0.02197944186627865, 0.026952596381306648, 0.012202519923448563, 0.0065823146142065525, 0.004586955066770315, -0.010217323899269104, -0.02661382593214512, -0.012548066675662994, 0.014201267622411251, 0.01973000355064869, -0.006555213127285242, 0.0006495927809737623, 0.005274659488350153, 0.033172424882650375, -0.0024272918235510588, 0.018252963200211525, -0.01756187155842781, 0.0015651206485927105, 0.01214154064655304, -0.004705524537712336, -0.010854212567210197, -0.018673039972782135, -0.007032879628241062, 0.011904401704668999, 0.026451215147972107, 0.007229366805404425, -0.027752095833420753, 0.004088961984962225, 0.024405039846897125, 0.011050699278712273, 0.00901807565242052, -0.007690094877034426, 0.02023138478398323, 0.018225861713290215, 0.00901807565242052, 0.016681067645549774, 0.032278068363666534, 0.021396756172180176, -0.02172197587788105, 0.015217579901218414, -0.02680353820323944, -0.005400004331022501, -0.0010137712815776467, -0.015014316886663437, -0.006477295886725187, -0.007107409182935953, -0.02256212756037712, 0.017074041068553925, 0.011220084503293037, -0.030164143070578575, -0.05745550990104675, -0.012270273640751839, 0.010108917020261288, 0.0006953268311917782, 0.009600760415196419, 0.017521219328045845, -0.00421430729329586, 0.0015625798841938376, -0.020014571025967598, -0.0041702669113874435, 0.010915190912783146, 0.01758897304534912, -0.0001675856183283031, -0.008774160407483578, 0.029188483953475952, 0.027277816087007523, -0.01627454347908497, -0.01680302619934082, 0.003396176267415285, -0.014255470596253872, 0.019323479384183884, 0.00320307700894773, -0.027521731331944466, 0.017656726762652397, -0.012893612496554852, -0.010047937743365765, -0.018198760226368904, 0.014282572083175182, -0.01025797612965107, 0.006606028415262699, -0.0012458291603252292, 0.009648188948631287, 0.004088961984962225, 0.013381442986428738, -0.02641056291759014, -0.011917952448129654, 0.015637654811143875, 0.010630623437464237, -0.001188238151371479, 0.020380442962050438, -0.011599508114159107, 0.00985145103186369, 0.019242174923419952, -0.0037739055696874857, -0.003831496462225914, -0.00014493032358586788, -0.017697380855679512, -0.008157597854733467, 0.014309674501419067, 0.01677592284977436, 0.026112444698810577, -0.05485375225543976, 0.008340533822774887, -0.011335266754031181, 0.0035096644423902035, -0.015881570056080818, -0.013984453864395618, -0.0005090029444545507, -0.012351579032838345, -0.027630137279629707, 0.007330997847020626, -0.01967580057680607, -0.018794996663928032, 0.004048309754580259, -0.04333554580807686, -0.020922476425766945, -0.043796271085739136, 0.027752095833420753, 0.0458017960190773, -0.029405295848846436, 0.023930760100483894, -0.013449196703732014, -0.009160359390079975, -0.00341819622553885, 0.043687865138053894, -0.025502657517790794, -0.030299650505185127, 0.021207043901085854, -0.04479903355240822, 0.01815810799598694, 0.002185070887207985, -0.003845047438517213, 0.001308501698076725, -0.007662992924451828, -0.01417416613548994, -0.015868017449975014, -0.014634894207119942, -0.009309418499469757, 0.01981130987405777, -0.014987215399742126, -0.022670533508062363, 0.022467270493507385, 0.01174856722354889, 0.039161890745162964, 0.00645019393414259, -0.025258744135499, 0.010860987938940525, -0.0018124232301488519, -0.01454003807157278, -0.0007321680895984173, 0.016504907980561256, 0.00703965499997139, 0.008083067834377289, 0.020705662667751312, -0.01573251001536846, 0.0006402765866369009, 0.022521473467350006, -0.004471772816032171, -0.0008041569381020963, 0.012216070666909218, -0.02295510098338127, 0.009729493409395218, 0.00181072938721627, 0.0012178805191069841, -0.029405295848846436, 0.0005958129186183214, -0.004512425512075424, 0.01947253756225109, -0.01294104102998972, -0.01894405670464039, -0.023117709904909134, -0.019960368052124977, 0.03870116174221039, -0.005247557535767555, 0.029974430799484253, -0.01930992864072323, 0.0007728206692263484, 0.011125229299068451, -0.001856463379226625, -0.009499129839241505, -0.008719957433640957, 0.005809917114675045, 0.02397141233086586, 0.024188226088881493, 0.011328491382300854, -0.0037806809414178133, -0.0163558479398489, 0.00425834720954299, 0.016152584925293922, 0.012920713983476162, 0.028104417026042938, 0.009526231326162815, -0.003353829961270094, 0.013571154326200485, -0.01333401445299387, 0.018022600561380386, -0.008042415603995323, 0.00514253880828619, 0.008550572209060192, -0.014648444950580597, -0.024066269397735596, 0.024581199511885643, 0.010373158380389214, 0.03444620221853256, -0.014838156290352345, -0.006927860900759697, -0.00858444906771183, -0.015271782875061035, -0.005074784625321627, 0.004915562458336353, 0.008137271739542484, 0.004688586108386517, 0.0014228367945179343, 0.004454834386706352, -0.006667007226496935, 0.02216915227472782, 0.028429636731743813, 0.010068264789879322, 0.009715942665934563, 0.02155936509370804, -0.011545304208993912, 0.017494117841124535, 0.009661739692091942, 0.013638908043503761, -0.011735016480088234, -0.009255214594304562, -0.007696870248764753, -0.0037976193707436323, -0.01664041541516781, 0.004908787086606026, -0.0489455871284008, 0.008760609664022923, 0.022128500044345856, -0.011538528837263584, 0.034663014113903046, -0.010332505218684673, 0.044419609010219574, -0.008862241171300411, -0.05244170501828194, 0.004454834386706352, -0.0031082211062312126, -0.01981130987405777, -0.02040754444897175, -0.03208835795521736, -0.00602673040702939, -0.008408288471400738, 0.003250504843890667, -0.01664041541516781, 0.004400630947202444, -0.0019987470004707575, 0.00036036729579791427, -0.015691857784986496, -0.0027271038852632046, 0.022304661571979523, -0.005945425480604172, 0.012703901156783104, -0.028565144166350365, -0.0015532636316493154, 0.006958350073546171, -0.03450040519237518, -0.006999002769589424, 0.02206074632704258, -0.020814070478081703, -0.018469776958227158, -0.010501890443265438, -0.008191474713385105, -0.020475300028920174, 0.026735782623291016, -0.004082186613231897, 0.010474788956344128, -0.03360605239868164, 0.014052208513021469, -0.006826229393482208, 0.014716198667883873, 0.009986959397792816, 0.0251232348382473, 0.017887091264128685, -0.0022087846882641315, -0.01823941245675087, 0.008537020534276962, 0.022697634994983673, 0.07252402603626251, 0.01792774349451065, -0.033118221908807755, 0.014092860743403435, -0.03937870264053345, -0.003485950408503413, -0.020326239988207817, -0.027467528358101845, 0.009966633282601833, -0.00817792396992445, -0.00762911606580019, -0.013347565196454525, 0.010915190912783146, -0.012446435168385506, 0.03303691744804382, 0.026491869240999222, -0.005610042251646519, -0.015786712989211082, -0.005349189043045044, -0.016789475455880165, 0.00838796142488718, -0.020272037014365196, 0.029296889901161194, 0.008869016543030739, 0.03433779627084732, -0.019242174923419952, 0.027318468317389488, 0.027860501781105995, 0.016504907980561256, -0.01361180655658245, -0.005427106283605099, -0.01146399974822998, -0.012690350413322449, -0.0026102280244231224, -0.026207301765680313, 0.04217017441987991, -0.0034673181362450123, 0.01700628735125065, 0.00037455331766977906, 0.006284196395426989, 0.004024595487862825, 0.03303691744804382, 0.009953082539141178, -0.011443673633038998, -0.018103905022144318, -0.029947329312562943, 0.02624795399606228, 0.023673294112086296, -0.021884584799408913, -0.024581199511885643, 0.0012170335976406932, 0.0018869527848437428, -0.04433830454945564, 0.005498248152434826, 0.013638908043503761, -0.003618071088567376, 0.003997494000941515, 0.010786457918584347, -0.010752581059932709, -0.006670394912362099, -0.020475300028920174, -0.029974430799484253, -0.0003730712051037699, 0.00017213785031344742, 0.012913938611745834, -0.0011425040429458022, -0.000349357258528471, -0.018117455765604973, -0.01840202324092388, 0.01907956413924694, 0.006077545695006847, -0.027833400294184685, -0.05170996114611626, -0.005054458510130644, 0.02661382593214512, 0.006978676188737154, 0.02989312633872032, -0.008801261894404888, -0.02054305374622345, 0.021992992609739304, -0.008462491445243359, -0.028429636731743813, 0.011782444082200527, -0.02216915227472782, -0.008814812637865543, -0.002630554372444749, -0.015000766143202782, -0.00042049912735819817, -0.013191730715334415, 0.0038247210904955864, -0.0028609184082597494, 0.0011179432040080428, 0.01355760358273983, -0.001084913033992052, 0.0013881127815693617, 0.02967631258070469, 0.024906421080231667, 0.02174907736480236, 0.01986551284790039, -0.033849965780973434, 0.006304522510617971, -0.025245191529393196, -0.005610042251646519, -0.02562461607158184, 0.023388726636767387, 0.005156089551746845, 0.025502657517790794, 0.011992481537163258, 0.017805786803364754, -0.01683012768626213, 0.019608046859502792, -0.0036756619811058044, -0.010298628360033035, -0.0033894008956849575, 0.009309418499469757, 0.0027813073247671127, 0.008320207707583904, 0.008841914124786854, -0.008774160407483578, -0.029351092875003815, -0.0160983819514513, -0.027020350098609924, 0.03417518734931946, 0.013198506087064743, -0.003064180724322796, 0.001883565098978579, -0.00045310580753721297, -0.004807156044989824, -0.0189711581915617, 0.021654222160577774, -0.008164373226463795, 0.03347054123878479, 0.010671276599168777, 0.0025915957521647215, -0.029567906633019447, -0.004790217150002718, -0.006887208204716444, -0.009126481600105762, -0.012886837124824524, -0.01683012768626213, 0.004888460971415043, -0.008665753528475761, -0.019770655781030655, -0.013571154326200485, 0.02756238356232643, -0.019093114882707596, -0.023090608417987823, 0.01012924313545227, 0.017182448878884315, 0.02829412929713726, 0.0006085167988203466, 0.00991920568048954, -0.037752602249383926, -0.008001763373613358, 0.0077104209922254086, -0.01790064200758934, 0.003231872571632266, -0.004139777738600969, 0.015095622278749943, 0.02127479761838913, 0.040842194110155106, 0.0018988096853718162, -0.002451005857437849, 0.041411325335502625, -0.0251232348382473, -0.00038386951200664043, 0.014661995694041252, 0.019513191655278206, -0.00783915352076292, -0.003692600643262267, 0.015895120799541473, 0.00600640382617712, 0.01080678403377533, 0.010325729846954346, 0.016084831207990646, 0.001335603417828679, 0.012039910070598125, -0.003651948180049658, -0.010027611628174782, -0.02122059464454651, -0.016789475455880165, 0.021627120673656464, -0.008198250085115433, -0.015041418373584747, -0.02470315806567669, 0.005481309723109007, 0.028077315539121628, 0.02562461607158184, 0.02981182187795639, 0.017467016354203224, 0.016789475455880165, 0.0022900898475199938, -0.006351950578391552, 0.012778431177139282, 0.034663014113903046, -0.026573173701763153, -0.004343039821833372, -0.036993756890296936, -0.005193354561924934, 0.03723767399787903, 0.00972271803766489, 0.004637770354747772, 0.008747058920562267, -0.0035706430207937956, -0.006541662383824587, 0.015868017449975014, -0.007351323962211609, -0.01800904981791973, -0.015488595701754093, -0.013876047916710377, -0.008625101298093796, -0.013279811479151249, -0.018510429188609123, -0.007303896360099316, 0.00802208948880434, -0.003062486881390214, -0.009912430308759212, 0.007873030379414558, -0.028781957924365997, -0.02242661826312542, 0.036126505583524704, 0.016992736607789993, 0.046750351786613464, 0.013002019375562668, 0.030977191403508186, 0.01756187155842781, 0.002720328513532877, -0.0052340067923069, -0.008618325926363468, -0.0018361371476203203, 0.02323966845870018, 0.008076292462646961, 0.0008007692522369325, -0.004105900414288044, -0.031031396239995956, 0.00647052051499486, 0.010298628360033035, -0.00920101162046194, -0.038457248359918594, 0.012541291303932667, 0.013523725792765617, 0.007520709186792374, -0.013774416409432888, -0.027657238766551018, 0.0010451074922457337, 0.010705153457820415, -0.01528533361852169, 0.02402561530470848, 0.011179432272911072, -0.015542799606919289, -0.012527740560472012, 0.0027237161993980408, 0.00455307774245739, 0.010427361354231834, -0.011694363318383694, 0.007649442180991173, 0.033904168754816055, 0.0011433509644120932, 0.0037908439990133047, -0.004698749165982008, 0.0033741560764610767, 0.01448583509773016, -0.02164067141711712, 0.009871777147054672, 0.00895032100379467, -0.006951574701815844, 0.008110170252621174, -0.0010501891374588013, -0.016762372106313705, 0.03214256092905998, -0.037698399275541306, -0.015515698119997978, 0.01714179664850235, -0.015122723765671253, 0.01233802828937769, -0.03902638331055641, -0.0028592245653271675, 0.0018158109160140157, -0.01028507761657238, -0.006853331346064806, 0.017182448878884315, 0.020732766017317772, -0.03951421007514, 0.0057794274762272835, 0.020583705976605415, -0.011626609601080418, -0.013693111948668957, 0.005034132394939661, 0.014214818365871906, -0.03336213529109955, -0.01445873361080885, 0.010833886452019215, -0.0013415318680927157, 0.02680353820323944, -0.014323225244879723, -0.009892103262245655, -0.017399262636899948, 0.02706100232899189, -0.009973408654332161, -0.009343295358121395, 0.015800263732671738, 0.0016709864139556885, -0.010488339699804783, 0.02248082123696804, -0.004525976255536079, -0.017304405570030212, 0.007595238741487265, -0.0223724152892828, -0.019946817308664322, 0.004519200883805752, -0.004309162963181734, 0.0036756619811058044, 0.010515442118048668, 0.0035299905575811863, -0.01598997600376606, 0.005423718597739935, -0.008936770260334015, -0.009451702237129211, -0.00014302475028671324, -0.023564888164401054, -0.007378425914794207, 0.006277421023696661, 0.0329827144742012, -0.030841683968901634, 0.006301134824752808, -0.027941806241869926, -0.010833886452019215, -0.014811054803431034, -0.0371563658118248, 0.002569575561210513, -0.01756187155842781, 0.012399007566273212, -0.0057455506175756454, -0.004000881686806679, 0.022250458598136902, 0.004725851118564606, -0.020475300028920174, 0.01100327167659998, 0.0016642110422253609, 0.0018801772966980934, -0.008198250085115433, 0.010996496304869652, 0.025502657517790794, 0.003485950408503413, -0.03740028291940689, -0.007764624431729317, -0.00018928811186924577, 0.005379678215831518, -0.027657238766551018, -0.021166391670703888, -0.010976170189678669, 0.0282670259475708, 0.007053205743432045, -0.018849199637770653, -0.009844675660133362, -0.018225861713290215, -0.027914704754948616, -0.012852960266172886, -0.013930250890552998, 0.016342297196388245, 0.00320307700894773, 0.01840202324092388, 0.006094484589993954, 0.013117201626300812, 0.0076562175527215, 0.009966633282601833, 0.0057794274762272835, 0.029947329312562943, -0.025895632803440094, -0.009519455954432487, -0.02164067141711712, 0.003367380704730749, -0.046967167407274246, -0.011159106157720089, 0.004475160501897335, -0.023591989651322365, 0.0032386479433625937, 0.019540293142199516, 0.008753834292292595, -0.0035367661621421576, -0.0019716452807188034, 0.01641005091369152, -0.0019360744627192616, 0.019093114882707596, 0.03216966241598129, -0.02697969786822796, -0.0023612314835190773, -0.005471146199852228, -0.02174907736480236, -0.0097498195245862, 0.0050442954525351524, 0.009878552518785, 0.00851669441908598, 0.0029252846725285053, -0.02197944186627865, 0.013930250890552998, 0.019635148346424103, 0.0013779497239738703, 0.017074041068553925, 0.0033639930188655853, -0.0023544561117887497, 0.014960113912820816, 0.01761607453227043, -0.019187970086932182, -0.009966633282601833, 0.014743301086127758, -0.013821844011545181, -0.024486344307661057, 0.026058241724967957, -0.028890365734696388, 0.0019835021812468767, -0.005030744709074497, -0.002498433692380786, -0.008686079643666744, -0.005257721059024334, -0.0006343480781652033, 0.0025390861555933952, -0.026789987459778786, 0.02661382593214512, -0.002362925559282303, -0.03815912827849388, 0.014282572083175182, -0.005874283611774445, 0.018307168036699295, -0.017101144418120384, -0.005677796434611082, 0.009411049075424671, -0.013523725792765617, -0.012019583024084568, 0.00703965499997139, -0.009614312089979649, -0.024039166048169136, -0.002821959787979722, 0.013747314922511578, -0.011680812574923038, -0.009783697314560413, 0.21106769144535065, -0.020001020282506943, -0.0022172541357576847, 0.010278302244842052, 0.011328491382300854, 0.010935517027974129, 0.01800904981791973, 0.016369398683309555, -0.025583963841199875, -0.011809545569121838, 0.03504243865609169, -0.004942663945257664, -0.04249539226293564, -0.006019955035299063, 0.01482460554689169, -0.027277816087007523, -0.03948710858821869, -0.0382133312523365, -0.005925098899751902, -0.004536139313131571, 0.014689097180962563, -0.008970647118985653, -0.004681810736656189, -0.03807782381772995, 0.008869016543030739, 0.0024848829489201307, 0.0009883634047582746, -0.007005778141319752, 0.021491611376404762, 0.024188226088881493, -0.033091120421886444, 0.007168387994170189, 0.012249947525560856, 0.016870779916644096, -0.021030884236097336, -0.00913325697183609, 0.01487880852073431, -0.009275540709495544, 0.011362368240952492, 0.006104647647589445, 0.006873657461255789, 0.007114184554666281, 0.009363621473312378, -0.00199197162874043, 0.00023205792240332812, 0.018483327701687813, -0.02389010787010193, 0.0050612338818609715, -0.004712299909442663, 0.005139151122421026, -0.025746572762727737, 0.0018429126357659698, 0.007568137254565954, 0.036912452429533005, 0.0011170962825417519, 0.019431885331869125, -0.00288801989518106, 0.02012297883629799, 0.03355184569954872, 0.014241919852793217, -0.012961367145180702, 0.011897626332938671, -0.011077800765633583, 0.025611065328121185, 0.014269021339714527, 0.003926352132111788, -0.01815810799598694, 0.035503167659044266, 0.010251200757920742, -0.011457224376499653, -0.011497876606881618, -0.01407930999994278, -0.022182703018188477, -0.008001763373613358, -0.03788811340928078, -0.01666751690208912, 0.04111320897936821, 0.015122723765671253, 0.016586212441325188, 0.026789987459778786, -0.005379678215831518, -0.025041930377483368, 0.007920457981526852, -0.009600760415196419, 0.00966851506382227, -0.028483839705586433, 0.010461238212883472, -0.0030506299808621407, -0.0019208298763260245, -0.004634382668882608, 0.018903404474258423, -0.026261504739522934, -0.010041162371635437, -0.0014507854357361794, -0.02352423593401909, -0.0066737825982272625, 0.033795762807130814, 0.010854212567210197, 0.013483073562383652, -0.013144303113222122, -0.026871291920542717, 0.031654730439186096, 0.032359376549720764, 0.0005687112570740283, -0.0035706430207937956, 0.014431631192564964, 0.014865257777273655, 0.01155207958072424, -0.012094113044440746, -0.003912801388651133, -0.0012678492348641157, -0.050110962241888046, 0.011145555414259434, 0.0017683830810710788, -0.012385456822812557, 0.00951268058270216, -0.020421097055077553, -0.0030269159469753504, 0.0232938714325428, -0.015746060758829117, -0.00011602896120166406, -0.025773674249649048, -0.009180685505270958, 0.006802515592426062, 0.00045818736543878913, -0.016139034181833267, -0.016992736607789993, -0.006440030876547098, -0.021288348361849785, 0.014011556282639503, 0.002318885177373886, -0.04127581790089607, 0.021207043901085854, 0.001632874715141952, -0.014363877475261688, -0.023768151178956032, 7.209463365143165e-05, 0.008035640232264996, 0.012622595764696598, 0.01737215928733349, -0.009363621473312378, -0.007778175175189972, -0.005311924032866955, -0.0030658745672553778, 0.0012000950518995523, -0.02441859059035778, 0.008462491445243359, 0.02124769613146782, 0.013354340568184853, -0.012161866761744022, -0.014634894207119942, 0.023470032960176468, 0.005352576728910208, -0.026234403252601624, 0.022629881277680397, -0.01716889813542366, -0.021600017324090004, -0.03290140628814697, 0.004224470350891352, -0.014675546437501907, -0.03607230260968208, -0.010698378086090088, 0.017629625275731087, -0.0007567289867438376, -0.01669461838901043, -0.0003938209265470505, -0.17236651480197906, -0.0044683851301670074, 0.021627120673656464, -0.025583963841199875, 0.02315836399793625, 0.0035808063112199306, 0.01941833458840847, -0.00407541124150157, -0.022616330534219742, -0.005227231420576572, 0.020529503002762794, -0.022778939455747604, -0.008652202785015106, -0.01865948922932148, -0.0066568441689014435, 0.006971900817006826, -0.014770402573049068, -0.004841032903641462, 0.012609045021235943, 0.008435389958322048, 0.03777970373630524, -0.036234911531209946, 0.007635891437530518, 0.008157597854733467, -0.00817792396992445, 0.0194996390491724, 0.0049867043271660805, 0.03496113419532776, 0.02829412929713726, -0.028619349002838135, -0.0027440425474196672, -0.00861155055463314, 0.04271220788359642, -0.014580690301954746, 0.006463745143264532, 0.013340789824724197, 0.012697125785052776, -0.03490693122148514, -0.025001278147101402, 0.01907956413924694, 0.026261504739522934, -0.004993479698896408, 0.002425597980618477, 0.002478107577189803, -0.019743554294109344, -0.012974917888641357, 0.028890365734696388, -0.013889598660171032, 0.021871034055948257, -0.024147573858499527, 0.027616586536169052, -0.009004524908959866, -0.008137271739542484, 0.006785577163100243, -0.007547811139374971, 0.007195489481091499, 0.004942663945257664, 0.0052340067923069, 0.0011179432040080428, -0.01855108141899109, -0.019377682358026505, 0.0009375478839501739, 0.023849455639719963, 0.0014592546503990889, 0.001086606876924634, -0.011531753465533257, 0.01261582039296627, 0.023171914741396904, -0.031763140112161636, 0.010711928829550743, -0.01632874645292759, 0.025190988555550575, -0.032955609261989594, -0.02250792272388935, 0.00026868749409914017, 0.026993248611688614, -0.03813202679157257, 0.0041872053407132626, 0.003340278984978795, 0.0011475856881588697, -0.012852960266172886, 0.03208835795521736, -0.014418080449104309, 0.014038657769560814, -0.005945425480604172, -0.010610297322273254, -0.003485950408503413, 0.0177922360599041, -0.04431120306253433, -0.020028121769428253, 0.019038911908864975, -0.021112188696861267, -0.002556024817749858, 0.006297747138887644, 0.01519047748297453, 0.021843932569026947, 0.022291110828518867, -0.029567906633019447, 0.02441859059035778, -0.003172587603330612, -0.008462491445243359, 0.013930250890552998, -0.0019462376367300749, -0.007141286041587591, 0.01573251001536846, 0.027237163856625557, -0.01781933754682541, -0.001646425575017929, 0.02978471852838993, 0.005454207770526409, -0.01981130987405777, -0.021464509889483452, 0.01108457613736391, 0.0048207067884504795, -0.0025899019092321396, 0.02028558775782585, -0.0035401538480073214, 0.0037332531064748764, 0.022684084251523018, 0.014838156290352345, 0.059135813266038895, 0.0012509106891229749, -0.012317701242864132, 0.0027830011676996946, -0.01722310110926628, -0.04263089969754219, -0.10585907101631165, -0.020448198541998863, 0.011389469727873802, 0.015840915963053703, 0.00030595227144658566, 0.008679304271936417, -0.014431631192564964, 0.019187970086932182, -0.027237163856625557, 0.028754856437444687, -0.03436489775776863, -0.02528584562242031, 0.024228878319263458, -0.005403392016887665, -0.00291173392906785, -0.019066013395786285, 0.021179942414164543, -0.0011941666016355157, -0.024350836873054504, 0.03954131156206131, -0.008699631318449974, 0.011375918984413147, 0.017385710030794144, -0.020339790731668472, -0.010678051970899105, -0.0032589740585535765, -0.024987727403640747, 0.011897626332938671, 0.01077968254685402, -0.01700628735125065, 0.012243172153830528, -0.024323733523488045, 0.012886837124824524, -0.021030884236097336, 0.02177617885172367, 0.002232498722150922, -0.01567830704152584, -0.0067483121529221535, 0.02028558775782585, -0.018361371010541916, -0.0071006338112056255, -0.00858444906771183, 0.0020851334556937218, 0.010745805688202381, -0.016206789761781693, -0.010488339699804783, -0.019960368052124977, 0.020502401515841484, 0.01139624509960413, -0.0260446909815073, -0.02310415916144848, 0.014404529705643654, -0.03677694499492645, 0.010603521950542927, 0.025773674249649048, 0.0008782630320638418, 0.007466506212949753, -0.011660486459732056, -0.006077545695006847, -0.0021037659607827663, 0.011599508114159107, -0.011050699278712273, -0.017209550365805626, 0.039893634617328644, 0.027332019060850143, -0.009627862833440304, -0.011348817497491837, -0.02567881904542446, -0.0015981508186087012, -0.027887603268027306, -0.0038755368441343307, 0.011809545569121838, 0.005108661949634552, 0.0072090402245521545, -0.033226627856492996, 0.004549690056592226, -0.01745346561074257, -0.012683575041592121, 0.0005555839161388576, -0.0030658745672553778, -0.016789475455880165, -0.01711469516158104, -0.006111423019319773, -0.01795484498143196, -0.011843422427773476, -0.006094484589993954, -0.008753834292292595, -0.03661433607339859, 0.00703965499997139, -0.03704795986413956, 0.002288396004587412, 0.04284771531820297, 0.007107409182935953, 0.0003567678795661777, 0.008266004733741283, -0.003475787350907922, -0.009004524908959866, -0.008990973234176636, -0.003946678247302771, 0.03669564053416252, -0.007723971735686064, -0.011301389895379543, -0.06200858950614929, 0.006382439751178026, -0.008774160407483578, -0.007757849059998989, -0.0014888971345499158, 0.002991345012560487, 0.013577929697930813, 0.005677796434611082, -0.013998005539178848, -0.011348817497491837, -0.023876557126641273, -0.010088590905070305, 0.000378999684471637, -0.0005305995582602918, -0.02905297465622425, -0.022440169006586075, 0.022209804505109787, -0.016870779916644096, 0.01090164016932249, 0.012195744551718235, 0.011972155421972275, 0.006138524506241083, 0.02174907736480236, 0.029513703659176826, -0.014404529705643654, -0.030814582481980324, 0.01688433066010475, 0.012006032280623913, -0.0009527925867587328, -0.0009477109997533262, 0.0046547092497348785, -0.007574912626296282, 0.0057455506175756454, 0.022209804505109787, 0.0014787339605391026, 0.0054474323987960815, -0.0038721489254385233, 0.019621597602963448, 0.013930250890552998, 0.031139802187681198, -0.01936413161456585, -0.05092401057481766, 0.010928741656243801, -0.010088590905070305, -0.01601707749068737, -0.009898878633975983, -0.0009976796573027968, 0.0018666265532374382, 0.013760865665972233, 0.007642666809260845, 0.006511172745376825, 0.01832071878015995, -0.0013457664754241705, -0.0198926143348217, -0.015122723765671253, 0.027697892859578133, 0.01567830704152584, -0.007805276662111282, -0.006453581620007753, -0.0012873285450041294, 0.03653302788734436, 0.004962990526109934, 0.005203517619520426, -0.0012653084704652429, 0.012439659796655178, 0.003784068627282977, -0.025421353057026863, -0.0058370186015963554, 0.005582940764725208, -0.03482562676072121, 0.007391976658254862, -0.009844675660133362, 0.02588208205997944, 0.011978930793702602, 0.024540547281503677, 0.005738775245845318, -0.014905910938978195, -0.011518202722072601, -0.030922988429665565, 0.02593628503382206, 0.013571154326200485, 0.009268765337765217, -0.010190221481025219, 0.01876789517700672, 0.020949577912688255, 0.012697125785052776, -0.006460356991738081, -0.0031200782395899296, -0.01355760358273983, 0.0076562175527215, 0.013666009530425072, 0.012127989903092384, 0.013327239081263542, -0.003397870110347867, -0.001734505989588797, 0.016477804630994797, -0.0002483612624928355, 0.0023392115253955126, 0.013273036107420921, 0.002811796497553587, 0.020759867504239082, -0.0011340348282828927, -0.015312435105443, -0.01790064200758934, -0.04189915582537651, 0.0008054273203015327, -0.030055735260248184, -0.01933703012764454, 0.0008105089073069394, 0.0198926143348217, 0.01745346561074257, -0.015691857784986496, 0.005359352100640535, -0.0006449346547015011, -0.014390978962182999, 0.02402561530470848, 3.385059972060844e-05, -0.009404273703694344, -0.029323991388082504, -0.004238021094352007, 0.03431069478392601, 0.010881314054131508, 0.029378194361925125, 0.005942037794739008, 0.036858249455690384, 0.01863238774240017, 0.008259229362010956, -0.024919971823692322, 0.029703414067626, 0.01834782026708126, -0.007520709186792374, 0.007161612622439861, 0.009682065807282925, -0.013469522818922997, -0.01090164016932249, -0.007114184554666281, -0.008618325926363468, 0.02284669503569603, 0.0001381549081997946, 0.08320207893848419, 0.0175347700715065, -0.010420585982501507, 0.0017175674438476562, 0.004353203345090151, 0.0007808664813637733, 0.01986551284790039, 0.007859479635953903, -0.021112188696861267, 0.014241919852793217, -0.00600640382617712, 0.012609045021235943, -0.029351092875003815, 0.004326101392507553, -0.003574030939489603, 0.017317956313490868, -0.006849943660199642, 0.007466506212949753, -0.015054970048367977, -0.016206789761781693, 0.024947073310613632, -0.02483866736292839, 0.021532263606786728, -0.0011077801464125514, -0.013970903120934963, -0.010854212567210197, 0.0201500803232193, 0.016545560210943222, 0.0054474323987960815, -0.027413325384259224, 0.01907956413924694, 0.006944799330085516, -0.04507005214691162, -0.02475736290216446, 0.0011374225141480565, 3.705304334289394e-05, -0.0032860757783055305, -0.008381186053156853, 0.02973051555454731, -0.0016108546406030655, 0.000994291971437633, 0.03132951259613037, -0.006575539242476225, -0.027860501781105995, -0.015271782875061035, -0.001975032966583967, -0.0024747196584939957, -0.03211545944213867, -0.005552451126277447], '_distance': 0.3519055247306824}),\n", + " Document(page_content='The Transformer was proposed in the paper Attention is All You Need. A TensorFlow implementation of it is available as a part of the Tensor2Tensor package. Harvard’s NLP group created a guide annotating the paper with PyTorch implementation. In this post, we will attempt to oversimplify things a bit and introduce the concepts one by one to hopefully make it easier to understand to people without in-depth knowledge of the subject matter.\\n2020 Update: I’ve created a “Narrated Transformer” video which is a gentler approach to the topic:', metadata={'vector': [-0.02712874673306942, -0.005967519711703062, 0.029046399518847466, -0.01589103601872921, 0.029260961338877678, 0.0017349390545859933, -0.007067152764648199, -0.015327810309827328, -0.01750025525689125, -0.0014390774304047227, 0.027571281418204308, 0.020370028913021088, -0.014415918849408627, 0.0084215784445405, 0.010935982689261436, -0.012665892951190472, 0.013054787181317806, 0.006879410240799189, -0.011834463104605675, -0.016159238293766975, -0.019069243222475052, 0.015233938582241535, -0.006835827603936195, -0.012397689744830132, -0.017218641936779022, 0.013007852248847485, 0.03218437731266022, -0.03462502360343933, -0.011552849784493446, -0.018640117719769478, 0.0340886190533638, 0.003489993279799819, -0.01646767184138298, -0.02754446119070053, -0.01162660587579012, -0.01054038293659687, -0.00021278146596159786, -0.011914924718439579, 0.029073219746351242, -0.02346777357161045, 0.022743625566363335, 0.013249235227704048, -0.00035390243283472955, -0.01778186857700348, -0.02378961816430092, 0.0046767923049628735, -0.007536508142948151, -0.03462502360343933, -0.0038855932652950287, 0.020437078550457954, 0.02454058639705181, 0.02565363049507141, -0.021523302420973778, -0.025506118312478065, -0.02100030519068241, 0.0025646924041211605, 0.0003545310173649341, 0.03416907787322998, 0.011914924718439579, -0.005645676050335169, 0.007020216900855303, -0.006410054862499237, -0.016293341293931007, 0.010942688211798668, -0.020571179687976837, -0.012458035722374916, -0.0013276055688038468, 0.029824187979102135, 0.0008469352032989264, 0.00779130170121789, 0.03046787716448307, 0.02800040692090988, 0.004096802789717913, -0.014402508735656738, 0.03784346207976341, -0.018640117719769478, -0.009340174496173859, -0.011244416236877441, -0.008944574743509293, 0.006094916258007288, 0.005541747435927391, -0.0025797788985073566, 0.015421681106090546, 0.03076290152966976, 0.007932107895612717, 0.005592035595327616, 0.022609524428844452, 0.006792244501411915, -0.010580613277852535, 0.01090916246175766, 0.016655415296554565, 0.0058032451197505, 0.0050086937844753265, 0.01682974584400654, 0.025988884270191193, 0.04299296438694, -0.011103609576821327, 0.032130736857652664, 0.003949291072785854, -0.0274640005081892, -0.004264429677277803, 4.4709253415931016e-05, -0.023829849436879158, -0.006614559795707464, -0.005535042379051447, -0.018465785309672356, 0.006912935990840197, 0.004958405625075102, -0.01732592284679413, 0.023601876571774483, 0.006684963125735521, 0.028831837698817253, 0.0010267151519656181, -0.036985211074352264, 0.007516392972320318, -0.0010267151519656181, -0.009662018157541752, -0.009333468973636627, -0.004680144600570202, -0.005605445709079504, 0.051521822810173035, 0.011472389101982117, -0.00039245662628673017, -0.02016887627542019, 0.010426396504044533, 0.023038649931550026, 0.0017869033617898822, -0.009930221363902092, -0.005400940775871277, -0.03116520680487156, -0.015233938582241535, 0.02016887627542019, 0.010352641344070435, 0.0022411723621189594, -0.014295226894319057, 0.02971690706908703, -0.011110315099358559, -0.015502141788601875, -0.01947154849767685, -0.010594023391604424, 0.006396644748747349, -0.010526972822844982, -0.006785539444535971, -0.013604603707790375, -0.0035972746554762125, 0.03387405723333359, -0.00011733887367881835, 0.03623424470424652, 0.024875840172171593, 0.023333672434091568, 0.011579670011997223, -0.006309478543698788, 0.0015086426865309477, -0.005303717218339443, 0.023722566664218903, 0.03730705752968788, 0.003831952577456832, 0.008575795218348503, -0.01420135609805584, 0.013410156592726707, 0.014268406666815281, 0.004421999212354422, 0.0004982711398042738, -0.022126758471131325, 0.019914083182811737, 0.021643992513418198, 0.00877024233341217, -0.010151488706469536, 0.0005615503177978098, -0.006172024644911289, -0.005669143982231617, 0.02140261046588421, -0.0287781972438097, 0.013302875682711601, 0.0028245141729712486, -0.012283703312277794, 0.018787629902362823, 0.0005766367539763451, -0.017299102619290352, -0.0072683049365878105, 0.02523791417479515, -0.011023148894309998, 0.014925504103302956, 0.014013613574206829, -0.02354823611676693, -0.01650790311396122, 0.000825562747195363, -0.017138181254267693, 0.00817349087446928, -0.012109371833503246, 0.011237711645662785, 0.04154466465115547, 0.007945518009364605, -0.010533678345382214, -0.6230895519256592, -0.02100030519068241, 0.011948449537158012, -0.023829849436879158, -0.003188264789059758, -0.017687996849417686, -0.013799051754176617, 0.01741979271173477, -0.015609423629939556, 0.02551952749490738, -0.004492402542382479, -0.017956199124455452, 0.0014189622597768903, -0.0021087471395730972, -0.0015647977124899626, -0.016601774841547012, -0.0057261367328464985, -0.03510779142379761, 0.007858351804316044, 0.01984703168272972, -0.03280124440789223, 0.030494699254631996, -0.044199876487255096, -0.012478150427341461, 0.008515449240803719, -0.008843998424708843, -0.001840544049628079, -0.0030239904299378395, 0.0026334195863455534, 0.015341220423579216, -0.03218437731266022, 0.006805654615163803, 0.029690086841583252, -0.010178308933973312, 0.02104053646326065, -0.007798006758093834, 0.0024523823522031307, 0.04039139300584793, 0.002227762248367071, 0.02028956636786461, -0.02334708347916603, -0.022166989743709564, 0.019900672137737274, 0.015260759741067886, 0.008937869220972061, 0.005866943392902613, 0.019042422994971275, 0.015756934881210327, -0.013108428567647934, -0.018465785309672356, -0.022462012246251106, 0.00790528766810894, -0.0001966473791981116, -0.014523199759423733, 0.00019277099636383355, 0.0011792556615546346, 0.03660972788929939, -0.0010510210413485765, 0.009051855653524399, -0.02597547322511673, -0.010144783183932304, -0.00815337523818016, 0.003630799939855933, 0.0012337344232946634, -0.019619058817625046, -0.0009638550691306591, 0.012940801680088043, 0.03025331348180771, -0.0076102642342448235, -0.02770538441836834, 0.01302796695381403, 0.041437383741140366, -0.00913902185857296, -0.015917856246232986, -0.0003306441649328917, 0.018720578402280807, 0.006557566579431295, 0.005628913175314665, 0.012833519838750362, 0.027651743963360786, 0.027571281418204308, 0.007147613447159529, -0.01278658490628004, -0.017969610169529915, 0.02112099714577198, 0.008207015693187714, -0.014751172624528408, -0.004499107599258423, -0.0214428398758173, -0.019900672137737274, 0.00633965153247118, 0.023735977709293365, -0.027517640963196754, -0.05680542439222336, -0.007067152764648199, 0.007623674813657999, 0.0014776316238567233, 0.006721841171383858, 0.03033377416431904, -0.008548974990844727, 0.01688338816165924, -0.010339231230318546, 0.027759024873375893, 0.001917652552947402, 0.029046399518847466, 0.0015580925391986966, -0.0035168135073035955, 0.028107687830924988, 0.014992555603384972, -0.01750025525689125, -0.019619058817625046, -0.025747500360012054, -0.011204185895621777, 0.009662018157541752, -0.0030306954868137836, -0.035402812063694, 0.01233063917607069, 0.015703294426202774, -0.007925402373075485, -0.021214868873357773, 0.015475321561098099, 0.015073016285896301, 0.009822939522564411, 0.012712828814983368, 0.016078777611255646, 0.01072141993790865, 0.005535042379051447, -0.021992657333612442, -0.02136237919330597, 0.015877624973654747, -0.003367625642567873, -0.00798574835062027, 0.024473536759614944, 0.010493448004126549, 0.006765424273908138, 0.02947552502155304, 0.0103928716853261, -0.015837395563721657, 0.0011549497721716762, -0.021831735968589783, -0.01198197528719902, -0.0027256144676357508, 0.021228278055787086, -0.005367415025830269, -0.0358051173388958, -0.020557770505547523, -0.013758820481598377, 0.00012980612518731505, 0.004639914259314537, -0.0022646402940154076, -0.00384536269120872, 0.0036039797123521566, -0.01700407825410366, -0.002854687161743641, -0.010185014456510544, -0.01823781244456768, 0.007254894822835922, -0.03819212689995766, -0.028456352651119232, -0.027893126010894775, 0.008267361670732498, 0.04186651110649109, -0.02149648219347, 0.027812665328383446, -0.02663257159292698, -0.012169716879725456, -0.010962802916765213, 0.03915765881538391, -0.013678359799087048, -0.049966245889663696, 0.029797367751598358, -0.03902355581521988, -0.0070872679352760315, -0.01564965210855007, 0.006222312804311514, 0.010205129161477089, -0.003986169118434191, -0.003915765788406134, -0.00266526872292161, -0.022783856838941574, -0.023025238886475563, 0.010325821116566658, -0.03207709640264511, -0.008495334535837173, 0.023575056344270706, 0.009534621611237526, 0.0203834380954504, -0.017433203756809235, -0.02840271219611168, 0.012639072723686695, -0.000759350135922432, 0.0075298030860722065, -0.0043683587573468685, 0.01762094534933567, -0.0363147035241127, 0.010520268231630325, 0.020155465230345726, 0.0009948660153895617, 0.005072391591966152, 0.03588557988405228, 0.015354630537331104, 0.01340345200151205, 0.0049047647044062614, -0.029368244111537933, 0.01585080474615097, 0.010453217662870884, 0.009863169863820076, -0.03816530480980873, -0.0019461491610854864, 0.0043515958823263645, 0.018707169219851494, -0.008931164629757404, -0.0188144501298666, -0.025801140815019608, -0.020557770505547523, 0.041276462376117706, 0.0027474057860672474, 0.0327744223177433, -0.024393076077103615, -0.012994442135095596, 0.010889047756791115, -0.010647664777934551, -0.006296068429946899, -0.0021456251852214336, -0.011485799215734005, 0.01531440019607544, 0.011908219195902348, -0.004066630266606808, 0.008931164629757404, -0.016561543568968773, -0.015140066854655743, 0.015502141788601875, 0.008736717514693737, 0.021831735968589783, 0.008575795218348503, -0.021751273423433304, 0.01225017849355936, -0.002735672052949667, 0.022220630198717117, 0.001709794974885881, 0.0001999999221879989, -0.00014971183554735035, -0.0044152941554784775, -0.022998418658971786, -0.0002587741182651371, 0.01939108595252037, 0.04122282192111015, -0.007301830220967531, -0.025640219449996948, -0.013007852248847485, -0.007295125164091587, 0.004485697485506535, 0.013430272229015827, 0.00607144832611084, 0.006403349805623293, 0.0046600294299423695, 0.004572863690555096, 0.008327707648277283, 0.017674585804343224, 0.030065571889281273, -0.003932528663426638, 0.019605649635195732, 0.01092927809804678, 0.0011859607184305787, 0.0001876374299172312, -0.005558509845286608, 0.010748241096735, -0.014147715643048286, 0.00192268134560436, -0.0004362491599749774, 0.0018522778991609812, -0.014845043420791626, 0.006547509226948023, -0.0318625308573246, 0.022327911108732224, 0.025827961042523384, -0.000696909090038389, 0.03510779142379761, 0.008300887420773506, 0.020316386595368385, -0.0009730745805427432, -0.0350005105137825, 0.009098791517317295, 0.004059924744069576, -0.006835827603936195, -0.027732204645872116, -0.007053742650896311, -0.01408066414296627, -0.0296364463865757, 0.012726238928735256, 0.0009110525134019554, -0.00456951092928648, 0.000693975598551333, 0.00817349087446928, -0.020691871643066406, -0.005833418108522892, 0.009346879087388515, -0.01481822319328785, 0.004847771488130093, -0.020410258322954178, 0.01000397652387619, 0.001646096701733768, -0.02197924628853798, -0.017272282391786575, 0.017875738441944122, -0.0017584067536517978, -0.005099212285131216, -0.008797062560915947, -0.025921832770109177, -0.02424556389451027, 0.021523302420973778, 0.016481082886457443, 0.010205129161477089, -0.03255986049771309, 0.013269349932670593, -0.019860442727804184, -0.0008054475183598697, 0.010325821116566658, 0.01843896508216858, -0.008696486242115498, -0.0024875840172171593, 0.002286431845277548, 0.015944676473736763, 0.03180889040231705, 0.07359494268894196, 0.023534825071692467, -0.012002089992165565, 0.02173786424100399, -0.029877828434109688, 0.005756309721618891, -0.03178207203745842, -0.04323434457182884, 0.015984907746315002, 0.004834361374378204, -0.017071129754185677, -0.010117962956428528, 0.021791504696011543, -0.02643141895532608, 0.026297317817807198, 0.016293341293931007, -0.016816336661577225, -0.01367165520787239, 0.013839282095432281, -0.01955200918018818, 0.013530848547816277, 0.0010518591152504086, 0.020142056047916412, -0.002470821375027299, 0.019873851910233498, -0.0170443095266819, 0.017299102619290352, 0.027396950870752335, 0.0032905172556638718, -0.022985009476542473, 0.01500596571713686, -0.0011029853485524654, -0.02181832492351532, 0.0014558401890099049, -0.013329695910215378, 0.032211195677518845, 0.004851124249398708, 0.032962165772914886, 0.000758092908654362, 0.011049969121813774, -0.006772129330784082, 0.018291454762220383, 0.014603660441935062, -0.0073487660847604275, -0.02378961816430092, -0.0135040283203125, -0.004197379108518362, 0.019578829407691956, 0.0007865895167924464, -0.023212980479002, -0.008133260533213615, 0.00395264383405447, -0.05562533065676689, 0.028375891968607903, 0.0025747499894350767, -0.011606490239501, -0.014040433801710606, -0.002336719771847129, -0.0067084310576319695, 0.0073487660847604275, -0.0021892080549150705, -0.01621287874877453, 0.009662018157541752, -0.0002994236710947007, 0.040659595280885696, -0.0052199033088982105, -0.005964167416095734, 0.002539548324421048, -0.011901513673365116, 0.00823383592069149, -0.003630799939855933, -0.00648381095379591, -0.05895105004310608, 0.01412089541554451, 0.02454058639705181, 0.016253110021352768, 0.027598103508353233, -0.009648608043789864, -0.012806699611246586, 0.004861181601881981, 0.00341623742133379, -0.028644094243645668, 0.001261392841115594, -0.027061697095632553, 0.002663592342287302, -0.0038218949921429157, -0.030199673026800156, -0.01500596571713686, -0.0006059714360162616, 0.016776105388998985, 0.0022311147768050432, 0.006054685916751623, 0.010875636711716652, -0.013081608340144157, 0.008093029260635376, 0.03601968288421631, 0.011163955554366112, 0.029207320883870125, -0.0005380825605243444, -0.030360594391822815, 0.00384536269120872, -0.025908423587679863, -0.005307069513946772, -0.020329797640442848, 0.020557770505547523, 0.014952325262129307, 0.02623026631772518, 0.020799152553081512, -0.016816336661577225, -0.022301090881228447, 0.020477309823036194, -0.02000795304775238, -0.014603660441935062, 0.00126306910533458, 0.015622833743691444, 0.007684020325541496, 0.012739649042487144, 0.014161125756800175, -0.01736615225672722, -0.011311466805636883, -0.004512517713010311, -0.01321570947766304, 0.030494699254631996, 0.019417906180024147, -0.014845043420791626, 0.015233938582241535, 0.0016108950367197394, 0.0028446295764297247, -0.028295431286096573, 0.020142056047916412, 0.009279828518629074, 0.021912196651101112, 0.0005426922580227256, -0.0026367721147835255, -0.027598103508353233, 0.003966053947806358, -0.016695644706487656, -0.009702248498797417, -0.01676269620656967, -0.01843896508216858, 0.009132316336035728, -0.02635095827281475, -0.021456250920891762, -0.01605195738375187, 0.010573908686637878, -0.01798301935195923, -0.022622933611273766, 0.023896899074316025, 0.009105496108531952, 0.02939506433904171, -0.019873851910233498, 0.01107678934931755, -0.028831837698817253, -0.017835509032011032, 0.019176524132490158, -0.008428283967077732, 0.018210992217063904, 0.012384279631078243, 0.020034775137901306, 0.030816541984677315, 0.04776697978377342, 0.0013753791572526097, -0.0001487689296482131, 0.035912398248910904, -0.003999579232186079, 0.004757252987474203, 0.0021204811055213213, 0.020812563598155975, -0.021188046783208847, 0.011928334832191467, 0.02305205911397934, 0.006192139815539122, 0.018546245992183685, 0.013343106023967266, 0.023896899074316025, 0.00017307483358308673, -0.0050958595238626, -0.0075767384842038155, -0.008924459107220173, -0.027866305783391, -0.00546463904902339, 0.03038741648197174, -0.015435091219842434, 0.0048578293062746525, -0.02885865792632103, -0.006795596797019243, 0.027759024873375893, 0.01737956330180168, 0.02985100820660591, 0.007462752051651478, 0.024258973076939583, 0.010708009824156761, -0.013108428567647934, 0.018264632672071457, 0.028375891968607903, -0.018492605537176132, -0.003939233720302582, -0.02993147075176239, 0.0033961222507059574, 0.030146032571792603, 0.0024959654547274113, 0.003557044081389904, -0.004331480711698532, 0.0041370331309735775, -0.0004890516283921897, 0.014067254029214382, -0.000573703262489289, -0.025506118312478065, -0.0024054469540715218, -0.010634254664182663, -0.026337547227740288, -0.041973792016506195, -0.021711044013500214, 0.0034531154669821262, -0.006979986559599638, 0.0022428487427532673, 0.000508747820276767, 0.0023886840790510178, -0.02458081766963005, -0.042134713381528854, 0.005079096648842096, 0.0086227310821414, 0.03304262459278107, 0.01420135609805584, 0.0205845907330513, 0.015716703608632088, -0.00329889846034348, -0.026900773867964745, 0.009963746182620525, -0.002157358918339014, 0.007080562878400087, 0.0018271338194608688, -0.008186900988221169, -0.022488832473754883, -0.020115235820412636, 0.011492504738271236, 0.01048003789037466, -0.008837292902171612, -0.03910401836037636, 0.015636242926120758, 0.004934937693178654, 0.014536609873175621, -0.02259611338376999, -0.024151692166924477, 0.011593080125749111, 0.017352743074297905, 0.001461707055568695, 0.01794278994202614, 0.006034570746123791, -0.0006407540640793741, -0.02091984450817108, 0.01438909862190485, -0.00043583009392023087, 0.004100155550986528, 0.013490617275238037, -0.014415918849408627, 0.004482344724237919, -0.011666836217045784, -0.0037179659120738506, -0.0103928716853261, 0.021724453195929527, 0.001082870177924633, -0.014027023687958717, 0.04433397948741913, 0.03070926107466221, -0.0007731793448328972, -0.0017533779609948397, 0.01909606344997883, -0.007831531576812267, 0.028027227148413658, -0.03301580622792244, -0.015435091219842434, -0.000507490593008697, -0.021630583330988884, 0.022904546931385994, -0.0322648361325264, 0.0041068606078624725, -0.028724554926156998, -0.015596013516187668, -0.022529063746333122, 0.018345095217227936, 0.010969508439302444, -0.017848918214440346, -0.0007325297920033336, 0.013276055455207825, 0.008119849488139153, -0.007161023560911417, 0.004592978861182928, 0.009869875386357307, -0.016360390931367874, -0.01877421885728836, 0.0021154521964490414, -0.010138078592717648, 0.015663063153624535, -0.006959871388971806, -0.006182082463055849, 0.001090413425117731, 0.03516143187880516, 0.008877524174749851, -0.020718691870570183, 0.035054150968790054, 0.008877524174749851, -0.018291454762220383, 0.009192662313580513, 0.0066916681826114655, -0.022032886743545532, 0.023561645299196243, -0.004257724620401859, -0.008247246034443378, 0.0003327395243104547, 0.011559555307030678, 0.013879512436687946, 0.0043515958823263645, -0.0029669972136616707, -0.030119212344288826, 0.0067788343876600266, 0.0009144050418399274, -0.006487163249403238, 0.001266421633772552, -0.0046600294299423695, 0.00994363147765398, 0.0044622295536100864, 0.016186058521270752, -0.0314602293074131, 0.012297113426029682, -0.0035268713254481554, -0.00032645350438542664, -0.019565418362617493, -0.03846032917499542, 0.011827758513391018, -0.020075004547834396, 0.002601570449769497, -0.006286011077463627, -0.008542269468307495, 0.03416907787322998, 0.014630480669438839, -0.009534621611237526, 0.023440953344106674, 0.0030139328446239233, 0.005424408242106438, 2.97537862934405e-05, 0.021067356690764427, 0.025063583627343178, 0.004482344724237919, -0.02384325861930847, -0.019605649635195732, -0.006346356589347124, -0.0017449966398999095, -0.026498470455408096, -0.036985211074352264, -0.011700361967086792, 0.024232152849435806, 0.007898582145571709, -0.02947552502155304, -0.00710067804902792, -0.03046787716448307, -0.034061796963214874, 0.00139465625397861, -0.004888002295047045, -0.006678258068859577, -0.012323933653533459, 0.01782209798693657, 0.0035939221270382404, 0.016735875979065895, -0.011888103559613228, 0.019914083182811737, 0.0025948653928935528, 0.01885467953979969, -0.011512619443237782, 0.002790988888591528, -0.02086620405316353, -0.00967542827129364, -0.04218835383653641, -0.0038621253333985806, 0.020182285457849503, -0.00041655299719423056, -0.00994363147765398, 0.031594328582286835, 0.0013753791572526097, -0.011827758513391018, -0.014871863648295403, 0.023561645299196243, 0.023816438391804695, 0.014523199759423733, 0.017232051119208336, -0.019686110317707062, 0.0028781548608094454, -0.0030340480152517557, 0.0015547400107607245, -0.01029229536652565, -0.022542472928762436, 0.017956199124455452, 0.0021037182305008173, -0.0023132520727813244, -0.029207320883870125, 0.004073335323482752, 0.008160080760717392, -0.016789516434073448, 0.028536813333630562, 0.006104974076151848, -0.018331684172153473, 0.03162115067243576, 0.010030797682702541, 0.009179252199828625, -0.011485799215734005, 0.012639072723686695, -0.011438863351941109, -0.022086529061198235, 0.03942586109042168, -0.02205970697104931, 0.0084215784445405, -0.00030843360582366586, 0.007456046994775534, -0.0314602293074131, -0.005548452492803335, 0.014322047121822834, 0.005484754219651222, -0.021804915741086006, 0.026538699865341187, -0.015917856246232986, -0.04808882251381874, 0.007858351804316044, -0.020571179687976837, 0.008488629013299942, -0.012102666310966015, -0.029797367751598358, 0.019484957680106163, 0.011579670011997223, 0.0070872679352760315, 0.0011214243713766336, -0.015032785944640636, -0.013349810615181923, -0.006912935990840197, 0.008186900988221169, -0.011418748646974564, 0.0207857433706522, 0.23430225253105164, -0.018063481897115707, 0.018787629902362823, 0.024889251217246056, 0.002029962372034788, 0.001196018303744495, 0.007127498276531696, 0.01434886734932661, -0.011888103559613228, -0.02046389877796173, 0.009608377702534199, 0.008133260533213615, -0.042429737746715546, 1.6474587027914822e-05, 0.01012466847896576, -0.019820211455225945, -0.04631868004798889, -0.053828369826078415, -0.024379665032029152, 0.009179252199828625, 0.014697532169520855, -0.0161324180662632, 0.007429226767271757, -0.04776697978377342, 0.020933255553245544, -0.0001175484067061916, -0.0025278145913034678, -0.01163331139832735, 0.01712477020919323, 0.020477309823036194, -0.023078879341483116, 0.004492402542382479, 0.006158614531159401, 0.018291454762220383, -0.026485059410333633, 0.0003817703982349485, 0.014040433801710606, -0.001401361427269876, 0.01720523089170456, 0.0052534290589392185, 0.009172547608613968, -0.008039388805627823, 0.005608798004686832, 0.009366994723677635, -0.0043515958823263645, 0.006520688533782959, -0.022301090881228447, -0.006594444625079632, -0.012913980521261692, 0.021831735968589783, -0.018130531534552574, -0.017017489299178123, 0.015502141788601875, 0.018640117719769478, 0.0044320570304989815, 0.02169763296842575, -0.012652482837438583, 0.030789721757173538, 0.03376677632331848, 0.019404496997594833, -0.025680450722575188, 0.012129486538469791, -0.008495334535837173, 0.017674585804343224, -0.0038017795886844397, -0.003932528663426638, -0.010788471437990665, 0.021711044013500214, 0.0022512301802635193, -0.032988984137773514, 0.0047304327599704266, -0.03379359468817711, -0.013376631774008274, -0.0004555262567009777, -0.038353048264980316, -0.022086529061198235, 0.02374938689172268, 0.011070084758102894, 0.023333672434091568, 0.03457138314843178, -0.005793187767267227, 0.0009965422796085477, 0.010701305232942104, -0.02738353982567787, -0.007724250666797161, -0.04318070411682129, -0.004455524496734142, -0.006034570746123791, -0.01819758303463459, -0.023601876571774483, 0.020396849140524864, -0.027008056640625, -0.011029853485524654, -0.00127396488096565, -0.008904344402253628, -0.000632372684776783, 0.0243260245770216, 0.0028446295764297247, 0.009480981156229973, 0.0007174434140324593, -0.022368142381310463, 0.030575159937143326, 0.04945665970444679, 0.008461808785796165, -0.017111359164118767, 0.0027809313032776117, 9.104239143198356e-05, -0.0026820313651114702, 0.0035805117804557085, -0.01650790311396122, -0.0072683049365878105, -0.011666836217045784, 0.014751172624528408, 0.00076437892857939, -0.009809529408812523, 0.027893126010894775, -0.01786232925951481, 0.021684223785996437, 0.019873851910233498, -0.022797266021370888, -0.01198197528719902, -0.018586477264761925, -0.012592136859893799, 0.01918993517756462, -0.0021942369639873505, -0.014643890783190727, 0.01021183468401432, 0.005337242502719164, -0.021791504696011543, 0.002745729638263583, 0.017889149487018585, -0.024339433759450912, 0.01630675047636032, -0.004727080464363098, -0.013369926251471043, -0.02631072700023651, -0.0030206379014998674, 0.017634356394410133, 0.007013511843979359, 0.025586578994989395, -0.0026434771716594696, -0.012189832516014576, 0.0029334716964513063, 0.00046851736260578036, 0.01700407825410366, -0.021563531830906868, 0.007301830220967531, -0.0028932413551956415, 0.02243519201874733, -0.010573908686637878, -0.005732841789722443, 0.018023250624537468, 0.0007828178931958973, -0.02502335235476494, 0.016320161521434784, -0.013202299363911152, -0.031594328582286835, -0.041893329471349716, 0.010533678345382214, -0.006664847955107689, -0.028965938836336136, 0.004710317589342594, 0.005830065812915564, -0.0037146133836358786, -0.011391928419470787, -0.0179025586694479, -0.1699335128068924, -0.00815337523818016, 0.02939506433904171, -0.03607332333922386, 0.026914184913039207, -0.01750025525689125, 0.008649551309645176, -0.005243371240794659, -0.016279930248856544, -0.015756934881210327, 0.012665892951190472, -0.01873398944735527, -0.015823984518647194, -0.02993147075176239, -0.021456250920891762, 0.004737137816846371, -0.024433305487036705, 0.004294602666050196, 0.0005347299738787115, 0.008341117762029171, 0.03457138314843178, -0.024634458124637604, 0.004636561498045921, -0.001847249106504023, -0.020812563598155975, 0.00815337523818016, -0.0008565737516619265, 0.025412246584892273, 0.0031580920331180096, -0.021174637600779533, 0.008931164629757404, 0.009031740948557854, 0.028509993106126785, -0.009427339769899845, 0.0026853838935494423, 0.004629856441169977, 0.018331684172153473, -0.038969915360212326, -0.010875636711716652, 0.01853283680975437, 0.026029113680124283, -0.007925402373075485, 0.012478150427341461, -0.007650495041161776, -0.031889352947473526, 0.011023148894309998, 0.021711044013500214, -0.0035235187970101833, -0.00033923506271094084, -0.03486640751361847, 0.01564965210855007, -0.0014432681491598487, 0.009353584609925747, 0.013799051754176617, 0.016494492068886757, 0.0003191198338754475, 0.009299944154918194, 0.01913629285991192, 0.008723307400941849, -0.01897537149488926, -0.021389199420809746, -0.006765424273908138, -0.002408799482509494, 0.007355471141636372, -0.019954312592744827, -0.009688838385045528, -0.010942688211798668, -0.01621287874877453, -0.030441056936979294, -0.0021171285770833492, -0.03384723514318466, -0.0021959131117910147, -0.03494687005877495, -0.024875840172171593, 0.030199673026800156, 0.0075298030860722065, -0.015274169854819775, -0.007107383105903864, 0.002097013173624873, 0.002348453737795353, -0.011318172328174114, 0.020597999915480614, -0.009092085994780064, 0.018465785309672356, 0.009668722748756409, -0.01031241100281477, 0.01163331139832735, -0.007409111596643925, -0.05157546326518059, -0.00897139497101307, 0.009782709181308746, -0.02400417998433113, -0.0007346251513808966, -0.016320161521434784, -0.0005598740535788238, 0.017017489299178123, 0.026860544458031654, -0.0188144501298666, 0.025465887039899826, -0.012424509972333908, 0.007147613447159529, 0.01438909862190485, -0.01045992225408554, 0.001652801875025034, 0.030870182439684868, 0.01737956330180168, -0.028268611058592796, 0.0028396006673574448, 0.02362869679927826, -0.008495334535837173, -0.012954211793839931, -0.003349186619743705, 0.023481184616684914, 0.01927039586007595, -0.018492605537176132, 0.04664052650332451, 0.0035101084504276514, -0.00758344354107976, 0.02601570449769497, 0.018881501629948616, 0.059970222413539886, 0.015528962016105652, -0.027812665328383446, 0.0021456251852214336, -0.016454262658953667, -0.04503130540251732, -0.09011625498533249, -0.018492605537176132, 0.011707066558301449, -0.0038218949921429157, -0.005669143982231617, 0.0042007314041256905, -0.02042366936802864, 0.010158193297684193, -0.031057924032211304, 0.013155363500118256, -0.03242575749754906, -0.002286431845277548, 0.025707270950078964, -0.004814246203750372, 0.011063379235565662, -0.0005623884499073029, 0.0005242532934062183, -0.00921948254108429, -0.017057718709111214, 0.029529165476560593, -0.017392972484230995, 0.0013904656516388059, 0.018224403262138367, 0.002210999606177211, -0.0059574623592197895, 0.004844419192522764, -0.03508096933364868, 0.01716500148177147, 0.002995493821799755, -0.013490617275238037, 0.0017232050886377692, -0.02000795304775238, 0.0068660001270473, -0.018506016582250595, 0.01823781244456768, 0.0015807222807779908, -0.01851942576467991, -0.020973484963178635, 0.004737137816846371, -0.026404598727822304, -0.02070528268814087, -0.010949392803013325, 0.0028245141729712486, 0.003677735570818186, -0.0024389722384512424, -0.01676269620656967, -0.01889491081237793, 0.014630480669438839, 0.012893865816295147, -0.040284112095832825, -0.01923016458749771, -0.01311513315886259, -0.01939108595252037, 0.00903844553977251, 0.04409259557723999, 0.00443540932610631, -0.010573908686637878, -0.0015471968799829483, 0.004807541146874428, -0.014710942283272743, -0.0033374526537954807, -0.012799995020031929, -0.02104053646326065, 0.0314602293074131, 0.03116520680487156, -0.01976657100021839, -0.0034397051203995943, -0.02148307114839554, 0.008984805084764957, -0.019042422994971275, -0.013182183727622032, 0.016253110021352768, -8.695648284628987e-05, 0.010573908686637878, -0.030441056936979294, -0.014456149190664291, -0.029421884566545486, -0.0061217364855110645, 0.0014826604165136814, -0.006098269019275904, -0.02547929808497429, -0.014563430100679398, -0.012370869517326355, -0.009715658612549305, -0.006027865689247847, -0.0058602383360266685, -0.021845145151019096, -0.004180616233497858, 0.022421782836318016, -0.02100030519068241, -0.0026434771716594696, 0.03172843158245087, 0.008160080760717392, -0.0063195363618433475, -0.003939233720302582, -0.0012823462020605803, 0.001398008898831904, 0.007865057326853275, 0.0018858032999560237, 0.049376197159290314, -0.0062021976336836815, -0.008864114060997963, -0.05723454803228378, 0.019337445497512817, -0.010111258365213871, -0.015448501333594322, -0.003422942478209734, 0.0094072250649333, 0.020021364092826843, 0.013470502570271492, 0.007382291369140148, -0.008582500740885735, -0.023910310119390488, -0.0029502345714718103, -0.02096007578074932, -0.0063027734868228436, -0.009494391269981861, -0.014724352397024632, 0.02551952749490738, -0.01835850439965725, 0.028509993106126785, 0.009601672179996967, 0.0035134609788656235, 0.00992351584136486, 0.008877524174749851, 0.03154068812727928, -0.00674195634201169, -0.023212980479002, 0.0062658959068357944, 0.0005238342564553022, 0.005719431675970554, 0.00612508924677968, 0.009232892654836178, -0.01737956330180168, 0.009313354268670082, 0.03170160949230194, 0.007630379870533943, 0.0034363525919616222, 0.008012568578124046, 0.003184912260621786, 0.016682235524058342, 0.03902355581521988, -0.021992657333612442, -0.027276258915662766, 0.016561543568968773, -0.020075004547834396, -0.00959496758878231, -0.0010937659535557032, 0.013611309230327606, -0.002539548324421048, 0.036582909524440765, -2.574645259301178e-05, 0.027651743963360786, 0.021509891375899315, -0.011385222896933556, -0.009769299067556858, -0.02116122655570507, 0.011519324965775013, 0.015998316928744316, 0.0022596113849431276, -0.00241382815875113, -0.0207857433706522, 0.03306944668292999, 0.005518279504030943, -0.0015731790335848927, 0.00585688604041934, 0.008562385104596615, -0.01056049857288599, -0.014429328963160515, -0.008401462808251381, 0.025667039677500725, -0.04041821137070656, -0.005843475926667452, -0.0035168135073035955, 0.014308637008070946, 0.010030797682702541, 0.027759024873375893, 0.004978520795702934, -0.016481082886457443, 0.0221535786986351, -0.025962064042687416, 0.0214428398758173, 0.0029519107192754745, -0.003681088099256158, -0.0008469352032989264, 0.00765720009803772, 0.025707270950078964, 0.0292341411113739, -0.008200311101973057, 0.0026904128026217222, -0.01074153557419777, 0.0009990567341446877, -0.0020634878892451525, 0.008448398672044277, 0.004244314506649971, 0.0008528021280653775, 0.011271236464381218, 0.018640117719769478, -0.00030172851984389126, 0.01082870177924633, 0.012323933653533459, -0.018506016582250595, 0.02030297741293907, 0.006235722918063402, -0.016950437799096107, -0.029958290979266167, -0.02478197030723095, 0.003966053947806358, -0.020879613235592842, -0.02679349295794964, 0.006379881873726845, 0.018841270357370377, -0.0025579873472452164, -0.01090916246175766, -0.013349810615181923, -0.007020216900855303, -0.02531837671995163, 0.014751172624528408, 0.007288420107215643, -0.031889352947473526, -0.026659391820430756, 0.005551804788410664, 0.03001193143427372, 0.015448501333594322, 0.04924209415912628, 0.01799643039703369, 0.02050413005053997, 0.023320263251662254, 0.0016100569628179073, 0.0034531154669821262, 0.028590453788638115, 0.002425562124699354, -0.01811712235212326, -0.002916709054261446, 0.02478197030723095, -0.007060447707772255, -0.026699621230363846, 0.01531440019607544, -0.012706123292446136, 0.03537599369883537, -0.0015136714791879058, 0.0840548649430275, 0.0010702981380745769, -0.0031681496184319258, -0.011680246330797672, -0.028295431286096573, -0.0035168135073035955, 0.006728546228259802, 0.020021364092826843, -0.006047980859875679, 0.02054435946047306, -0.019042422994971275, 0.013604603707790375, -0.018988782539963722, -0.021509891375899315, -0.00341623742133379, 0.0221535786986351, -0.0036375049967318773, -0.002668621251359582, -0.015140066854655743, 0.0031312715727835894, 0.04245655611157417, -0.010258769616484642, -0.009930221363902092, 0.0025730738416314125, -0.030521519482135773, -0.021429430693387985, 0.039291758090257645, 0.0029385006055235863, -0.0014365630922839046, -0.03660972788929939, 0.004073335323482752, 0.017138181254267693, -0.04757923632860184, -0.02342754416167736, 0.007556623313575983, 0.009762594476342201, -0.0069531663320958614, -0.0021741215605288744, 0.017687996849417686, 0.0015656357863917947, 0.0205845907330513, 0.01951177790760994, -0.005853533279150724, -0.0205845907330513, -0.022797266021370888, 0.014496379531919956, -0.016320161521434784, -0.028590453788638115, -0.02112099714577198], '_distance': 0.35345977544784546}),\n", + " Document(page_content='The Illustrated Transformer – Jay Alammar – Visualizing machine learning one concept at a time.\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nJay Alammar\\nVisualizing machine learning one concept at a time.@JayAlammar on Twitter. YouTube Channel\\n\\n\\nBlog\\nAbout\\n\\n\\n\\n\\n\\n\\nThe Illustrated Transformer\\n\\nDiscussions:\\nHacker News (65 points, 4 comments), Reddit r/MachineLearning (29 points, 3 comments)\\n\\n\\nTranslations: Arabic, Chinese (Simplified) 1, Chinese (Simplified) 2, French 1, French 2, Italian, Japanese, Korean, Persian, Russian, Spanish 1, Spanish 2, Vietnamese\\n\\nWatch: MIT’s Deep Learning State of the Art lecture referencing this post', metadata={'vector': [-0.01995760016143322, -0.01293110754340887, 0.02453695610165596, -0.007925305515527725, 0.016309859231114388, -0.010300273075699806, -0.006226088851690292, -0.002630834234878421, -0.02243753708899021, -0.032147347927093506, 0.023093605414032936, 0.026820074766874313, -0.002322481945157051, 0.004969717934727669, 0.012708044610917568, 0.009886950254440308, 0.02301487885415554, 0.0023405239917337894, -0.007971230894327164, -0.016651015728712082, -0.015076451003551483, 0.02242441661655903, 0.00028661987744271755, -0.03180619329214096, -0.0037658323999494314, 0.010201863013207912, 0.02721371501684189, -0.032357290387153625, 0.022043896839022636, -0.016782227903604507, 0.028027240186929703, 0.0006700098165310919, -0.010306834243237972, -0.009486748836934566, -0.008135247975587845, 0.0006921521271578968, 0.020285634323954582, -0.007361087016761303, 0.027502385899424553, -0.025101175531744957, 0.031570009887218475, 0.002647235756739974, 0.0021814273204654455, -0.0353752076625824, -0.002237193053588271, 0.030310358852148056, 0.0003009713545907289, -0.021033551543951035, -0.008496085181832314, 0.04450767859816551, 0.021505920216441154, 0.025770364329218864, -0.006980567239224911, -0.028630822896957397, -0.02642643265426159, 0.019918235018849373, 0.00011686217476380989, 0.01732020452618599, 0.013154170475900173, 0.004474386107176542, 0.004326771013438702, -0.0005761100328527391, -0.01124501135200262, -0.017188990488648415, -0.001525358995422721, -0.02207013964653015, -0.020967945456504822, 0.019577080383896828, 0.0213222224265337, 8.744161459617317e-05, 0.041411034762859344, 0.026767589151859283, -0.01171081978827715, -0.032934632152318954, 0.039783984422683716, -0.0151945436373353, 0.0047335331328213215, -0.004129950422793627, -0.01852736994624138, 0.00655740313231945, 0.010044406168162823, 0.010569261386990547, 0.00771536398679018, 0.018986618146300316, 0.007144584320485592, 0.004782738164067268, -0.005258387885987759, 0.0020764563232660294, -0.018028758466243744, -0.015627548098564148, 0.00010122929961653426, 0.0034902836196124554, 0.016677258536219597, 0.010333077050745487, -0.00450390949845314, 0.020443089306354523, -0.002519302535802126, 0.019078467041254044, 0.017031535506248474, -0.02179459109902382, -0.003933129832148552, -0.0039036066737025976, -0.009440823458135128, -0.014525353908538818, -0.023237941786646843, 0.005724196322262287, 0.007275797892361879, 0.019498351961374283, 0.011330300942063332, 0.0019173597684130073, 7.790811650920659e-05, 0.02254250831902027, -0.010713595896959305, -0.03954780101776123, -0.0042775655165314674, -0.031989894807338715, 0.009342413395643234, -0.00810900516808033, 0.029680533334612846, -0.021282857283949852, 0.03571636229753494, 0.03422052413225174, -0.005442087072879076, 0.0020584145095199347, 0.017556389793753624, 0.016126159578561783, -0.005465049296617508, -0.004484227392822504, -0.028604580089449883, -0.0044678254052996635, -0.011015388183295727, 0.008384553715586662, -0.0015712836757302284, -0.0023634862154722214, -0.025363603606820107, 0.008318946696817875, -0.0072561162523925304, 0.012675240635871887, -0.012944228947162628, -0.020246269181370735, -0.0024733776226639748, -0.0027341649401932955, 0.0027718888595700264, -0.011730502359569073, -0.01111379824578762, 0.028027240186929703, -0.009598280303180218, 0.041935890913009644, -0.007813774049282074, -0.0005416664644144475, 0.004461264703422785, -0.01995760016143322, -0.001276052906177938, 0.012806454673409462, 0.014525353908538818, 0.016296738758683205, 0.0022306323517113924, 0.029523076489567757, -0.00564546836540103, 0.015299513936042786, -0.0012506303610280156, 0.013088563457131386, -0.020705517381429672, -0.01822557859122753, 0.020416846498847008, 0.018448641523718834, 0.028762036934494972, -0.012622755020856857, -0.0005843109101988375, -0.0028096127789467573, -0.016965927556157112, 0.026203369721770287, -0.0488639697432518, 0.014997722581028938, -0.0005043525598011911, -0.0013621619436889887, 0.0153257567435503, -0.021991411224007607, -0.055214714258909225, -0.007872819900512695, 0.010064088739454746, 0.0040151383727788925, 0.015706276521086693, 0.01072015706449747, -0.004408779554069042, -0.008338629268109798, 0.010707035660743713, -0.04117485135793686, -0.006048950366675854, -0.015758762136101723, 0.009106229059398174, 0.041306063532829285, -0.010247787460684776, -0.001403166214004159, -0.6302455067634583, -0.037946995347738266, -0.006094875279814005, 0.00484506506472826, -0.0004809801175724715, -0.005514254793524742, -0.01711026206612587, -0.0022355529945343733, -0.013672464527189732, 0.001976405968889594, 0.007643196266144514, -0.012793333269655704, -0.004471105989068747, -0.005822606850415468, 0.010201863013207912, -0.022306324914097786, -0.005176379345357418, -0.043615423142910004, -0.0016696939710527658, 0.02359221875667572, -0.009276806376874447, 0.006586926523596048, -0.03017914481461048, -0.014367897063493729, -0.0012186469975858927, -0.0020485734567046165, 0.0023798879701644182, 0.009329291991889477, -0.005665150471031666, 0.001413827296346426, -0.02258187346160412, 0.0225949939340353, 0.028919493779540062, 5.93024305999279e-05, 0.03757959604263306, 0.014617202803492546, -0.007675999775528908, 0.033302031457424164, 0.024038344621658325, 0.03143879398703575, -0.026242734864354134, -0.031465038657188416, 0.016572287306189537, 0.013541251420974731, -0.000305481837131083, 0.007400451228022575, 0.014774659648537636, -0.013298505917191505, -0.0022716366220265627, -0.011802669614553452, -0.019314652308821678, -0.012970471754670143, -0.0033131451345980167, -0.001668873941525817, 0.013764314353466034, 0.0038281588349491358, 0.029155677184462547, 0.01221599243581295, 0.008751952089369297, -0.01264243759214878, -5.105031959828921e-05, -0.0094801876693964, -0.01079232431948185, 0.0017976273084059358, -0.006488515995442867, 0.014499111101031303, 0.014276047237217426, -0.00903406087309122, -0.015365120954811573, -0.027712328359484673, 0.0353752076625824, 0.018763555213809013, -0.02716122940182686, -0.015155179426074028, -0.0007097839843481779, 0.023552853614091873, 0.016283616423606873, -0.006468833889812231, 0.020561182871460915, 0.008863483555614948, 0.011625531129539013, 0.0020862973760813475, -0.0030851615592837334, -0.014039862900972366, 0.02633458375930786, 0.020718639716506004, -0.011966686695814133, -0.004805700853466988, -0.01875043287873268, -0.00389048526994884, 0.017031535506248474, 0.015063329599797726, -0.026137763634324074, -0.05999089032411575, 0.017490781843662262, 0.01021498441696167, -0.003959372639656067, 0.01863234117627144, 0.016388587653636932, -0.025245510041713715, 0.005930858198553324, -0.004152912646532059, 0.02296239323914051, 0.0007015831070020795, 0.021466556936502457, 0.001275232876650989, -0.012314403429627419, 0.00554049713537097, 0.026098398491740227, -0.039574041962623596, -0.00969013012945652, -0.014433504082262516, -0.034351740032434464, 0.0016450914554297924, -0.016401708126068115, -0.031097641214728355, 0.020705517381429672, 0.010595504194498062, -0.00567499129101634, -0.02516678161919117, 0.032147347927093506, -0.009381777606904507, 0.013022957369685173, -0.0060259876772761345, 0.005366639234125614, 0.0018566735088825226, -0.004320210311561823, -0.02111227996647358, -0.010687354020774364, 0.04248698800802231, -0.002949027344584465, -0.002343804109841585, 0.02174210548400879, -0.008883165195584297, 0.0026341143529862165, 0.002396289724856615, 0.006062071770429611, 0.006790307350456715, -0.00554049713537097, -0.019288409501314163, -0.01943274401128292, -0.012327524833381176, 0.013593736104667187, 0.008961893618106842, -0.05017610639333725, -0.017451418563723564, -0.0019255606457591057, -0.006521319504827261, 0.006383545231074095, 0.017831938341259956, -0.032462261617183685, 0.004356293939054012, -0.024471350014209747, 0.022030776366591454, 0.004746654536575079, 0.0010915336897596717, 0.006249051075428724, -0.0223325677216053, -0.04033508151769638, -0.03059902787208557, 0.006544281728565693, 0.03705473989248276, -0.03075648471713066, 0.02163713425397873, -0.007400451228022575, 0.009611401706933975, -0.0023552854545414448, 0.04400906711816788, -0.03374815732240677, -0.01833054982125759, 0.020679274573922157, -0.040151383727788925, -0.0005285450606606901, 0.0016139281215146184, -0.017438296228647232, 0.028945736587047577, 0.005766841117292643, -0.01810748688876629, -0.005783242639154196, -0.020889217033982277, -0.014289168640971184, 0.00754478620365262, -0.003506685374304652, -0.016913441941142082, 0.024025224149227142, 0.016808470711112022, 0.04689576476812363, 0.0034574803430587053, -0.009145593270659447, -0.020443089306354523, -0.016979049891233444, 0.014236683025956154, 0.0004506369587033987, 0.022148868069052696, -0.011126919649541378, 0.024838747456669807, -0.0030703998636454344, -0.019655808806419373, 0.007223312743008137, 0.033039603382349014, 0.003982334863394499, 0.013383794575929642, 0.016309859231114388, 0.010890734381973743, 0.009722933173179626, -0.025258632376790047, 0.0116911381483078, -0.030730241909623146, 0.013908648863434792, 0.009066864848136902, 0.021755225956439972, -0.010306834243237972, 0.0027735289186239243, -0.04259195923805237, -0.0011038350639864802, 0.02432701550424099, 0.002519302535802126, 0.04560987278819084, -0.011842033825814724, -0.02222759649157524, -0.005704514216631651, 0.005743878427892923, 0.021781468763947487, -0.006111276801675558, 0.007242994848638773, 0.050149865448474884, 0.0043497332371771336, -0.00902750063687563, 0.0055733006447553635, -0.05301032215356827, -0.005592982750386, 0.011048191227018833, -0.009421141818165779, 0.028709551319479942, 0.0046121603809297085, 0.007177387829869986, -0.0029359059408307076, -0.00852888822555542, 0.03574260324239731, 0.009447384625673294, -0.007846578024327755, 0.016913441941142082, -0.0025701478589326143, -0.01124501135200262, 0.011094115674495697, 0.029890473932027817, 0.032619718462228775, -0.009860707446932793, -0.03450919687747955, -0.00041701344889588654, -0.01574563980102539, -0.0013293585507199168, 0.0010234666988253593, 0.005025483667850494, -0.0006892818491905928, 0.00436941534280777, 0.007879381068050861, -0.00908654648810625, 0.02347412519156933, 0.003160609398037195, 0.0024012101348489523, 0.01859297789633274, 0.01737269014120102, 0.015824368223547935, 0.0034476392902433872, -0.008122126571834087, 0.006462273187935352, -0.014682809822261333, -0.009631083346903324, 0.0011661614989861846, -0.016021190211176872, -0.020771123468875885, 0.015876853838562965, -0.02254250831902027, 0.0067509436048567295, -0.011960126459598541, 0.007190509233623743, 0.006993688642978668, 0.02006257139146328, 0.019235923886299133, -0.016651015728712082, -0.04319554194808006, 0.003044157288968563, 0.012484980747103691, -0.00613423902541399, -0.01775320991873741, -0.024523835629224777, -0.009742614813148975, -0.010497094132006168, 0.001212086295709014, 0.0017713846173137426, 0.014879630878567696, 0.009906631894409657, -0.00987382885068655, -0.01880291849374771, -0.0020534938666969538, 0.04075496643781662, -0.016598530113697052, -0.01910470984876156, -0.010169059969484806, 0.009486748836934566, 0.0005478170933201909, -0.00664597237482667, -0.0018353512277826667, 0.016677258536219597, 0.007177387829869986, -0.012944228947162628, -0.017175870016217232, -0.007577589713037014, -0.027528628706932068, -0.007105220574885607, -0.01031995564699173, -0.0005318254115991294, -0.00043464527698233724, 0.022673722356557846, -0.010497094132006168, 0.004546553827822208, 0.0007188048912212253, 0.017556389793753624, 0.012124143540859222, -0.009801661595702171, -0.017359569668769836, -0.013974255882203579, 0.02642643265426159, 0.07510670274496078, 0.0034804425667971373, -0.027371171861886978, 0.005317434202879667, -0.03579508885741234, -0.0037231878377497196, -0.01728084124624729, -0.028105968609452248, 0.007400451228022575, -0.011323739774525166, -0.016047433018684387, 0.004559675231575966, 0.020141297951340675, -0.01901286095380783, 0.020928580313920975, -0.001817309414036572, 0.003198333317413926, -0.00976885762065649, 0.014000498689711094, -0.020206905901432037, -0.008673223666846752, -0.016086796298623085, 0.01585061103105545, 0.0028998220805078745, 0.019616443663835526, -0.027738571166992188, 0.04511126130819321, 0.024969961494207382, -0.008587935008108616, -0.03175370767712593, -0.005999745335429907, 0.02390713058412075, 0.016611650586128235, -0.0033951536752283573, -0.012760529294610023, 0.03584757447242737, 0.01770072430372238, 0.03390561416745186, -0.01323945913463831, -0.0013490405399352312, 0.0005203442415222526, 0.026518283411860466, 0.005077969282865524, -0.014918994158506393, 0.004572796635329723, -0.010602064430713654, -0.007702242583036423, 0.029103191569447517, -0.002689880318939686, -0.017188990488648415, 0.007997473701834679, -0.006901839282363653, -0.031779952347278595, 0.0022404734045267105, 0.001180102932266891, 0.016021190211176872, -0.0068952785804867744, -0.005055006593465805, -0.019052226096391678, 0.0012588311219587922, -0.019091589376330376, -0.031570009887218475, 0.0038019162602722645, -0.0056684305891394615, 0.01847488433122635, -0.00913903210312128, -0.006583645939826965, -0.023041121661663055, -0.03416803851723671, 0.020049449056386948, -0.008220536634325981, -0.026413312181830406, -0.05154072865843773, 0.0012973751872777939, 0.007131462916731834, -0.0016811751993373036, 0.012576830573379993, -0.02195204794406891, 0.0007434074650518596, 0.007236434146761894, -0.020679274573922157, -0.013895527459681034, -0.011389346793293953, -0.03101891279220581, 0.009742614813148975, -0.026098398491740227, -0.006314658094197512, -0.0012301282258704305, -0.007124902214854956, 0.028210939839482307, 0.032094866037368774, -0.012648997828364372, 0.02538984641432762, -0.001132537960074842, 0.010674232617020607, 0.020154420286417007, 0.0317012220621109, 0.007485739886760712, 0.012734286487102509, -0.026255855336785316, 0.007531664799898863, -0.03820941969752312, 0.0004953315947204828, -0.009558916091918945, -0.011592728085815907, 0.0029473870526999235, 0.008994697593152523, 0.016139281913638115, -0.01684783585369587, -0.016126159578561783, 0.010123134590685368, 0.0023946494329720736, -0.0007270057685673237, -0.016729742288589478, -0.006137519609183073, 0.014197319746017456, 0.01485338807106018, -0.011363103985786438, -0.003477162215858698, -0.027922268956899643, 0.020311877131462097, -0.003641179297119379, 0.013869285583496094, 0.012937667779624462, -0.007964669726788998, 0.03180619329214096, 0.0058816527016460896, -0.0023897290229797363, -0.016755985096096992, 0.008010595105588436, 0.016191767528653145, 0.026872560381889343, -0.01854049228131771, -0.011389346793293953, -0.027817297726869583, -0.007380769122391939, -0.011021948419511318, 0.011330300942063332, 0.005707794800400734, -0.014341654255986214, 0.006235929671674967, 0.007872819900512695, -0.00635730242356658, -0.008391113951802254, -0.0017402212833985686, -0.023198576644062996, -0.023461004719138145, 0.00795154832303524, 0.013554371893405914, 0.020088812336325645, -0.004917232319712639, 0.011212208308279514, -0.011015388183295727, -0.015260149724781513, -0.011933883652091026, -0.027738571166992188, -0.00759727181866765, -0.0009414580999873579, 0.023027999326586723, 0.015653790906071663, 0.056159451603889465, 0.0010702115250751376, 0.017674481496214867, 0.03532272204756737, -0.01276709046214819, -0.0015696435002610087, 0.016913441941142082, 0.015785004943609238, -0.02527175284922123, 0.008935650810599327, 0.014814023859798908, 0.0013219777029007673, 0.01163865253329277, 0.0006847713375464082, 0.008535449393093586, 0.006531160324811935, 0.013501887209713459, -0.004966437350958586, -0.005209182854741812, -0.023867767304182053, -0.004799140151590109, 0.02385464496910572, -0.00852888822555542, -0.011769866570830345, -0.010510215535759926, 0.002435653703287244, 0.04513750225305557, 0.013541251420974731, 0.021295979619026184, 0.024773141369223595, 0.019472109153866768, -0.008935650810599327, 0.010300273075699806, 0.01932777464389801, 0.024248287081718445, -0.009631083346903324, -0.005284630693495274, -0.03991520032286644, -0.005061567295342684, 0.026203369721770287, 0.024943718686699867, 0.021033551543951035, 0.012196310795843601, 0.005996464751660824, 0.00020327868696767837, 0.01932777464389801, 0.001047249068506062, -0.010011603124439716, -0.005484731402248144, -0.028184697031974792, -0.01327226310968399, -0.03164873644709587, -0.0080565195530653, -0.01964268647134304, -0.009939435869455338, 0.008778194896876812, -0.0018566735088825226, 0.022923028096556664, -0.022870542481541634, -0.03781577944755554, 0.014171076938509941, 0.017517024651169777, 0.03259347751736641, 0.016874078661203384, 0.017149627208709717, 0.038944218307733536, -7.806188659742475e-05, -0.02027251198887825, 0.027974754571914673, -0.010050967335700989, 0.006180163938552141, 0.0052419863641262054, 0.023605339229106903, -0.02242441661655903, -0.020403726026415825, 0.022135745733976364, -0.034299254417419434, 0.003337747883051634, -0.04755183309316635, -0.006649252958595753, 0.016401708126068115, 0.00795154832303524, -0.029050707817077637, -0.018501127138733864, -0.008102444000542164, -0.008988136425614357, -0.0015023965388536453, 0.0022191512398421764, 0.0010816927533596754, -0.003959372639656067, -0.0058455690741539, 0.006524599622935057, -0.003091722261160612, 0.005110772326588631, -0.011717380955815315, -0.013895527459681034, 0.013829921372234821, -0.017018413171172142, -0.03721219673752785, -0.004631842486560345, 0.02238505333662033, 0.020626788958907127, -0.008030276745557785, 0.024077709764242172, 0.021886439993977547, 0.005258387885987759, -0.010070648975670338, -0.007741606794297695, -0.018448641523718834, 0.029575562104582787, -0.014171076938509941, -0.010602064430713654, -0.007944988086819649, 0.004205398261547089, 0.0014048063894733787, -0.014184198342263699, -0.008968454785645008, -0.012393130920827389, -0.011881398037075996, 0.0015827649040147662, 0.021991411224007607, 0.0012202871730551124, -0.01287862192839384, 0.0026291939429938793, -0.005051726475358009, 0.00858137384057045, -0.001349860685877502, 0.0049762786366045475, 0.006875596474856138, -0.032199833542108536, -0.0007110140868462622, -0.003985615447163582, -0.005921016912907362, 0.02105979435145855, 0.013042639009654522, -0.014013620093464851, 0.007840016856789589, 0.013934891670942307, -0.002811252838000655, -0.002538984641432762, 0.030625270679593086, 0.000411682907724753, -0.012970471754670143, 0.006170323118567467, -0.002396289724856615, -0.005343677010387182, 0.020298754796385765, -0.012445616535842419, -0.018461763858795166, -0.019918235018849373, -0.00907998625189066, 0.016651015728712082, -0.00542240496724844, -0.0022831179667264223, -0.01827806420624256, 0.007623514160513878, -0.013173853047192097, -0.01363310031592846, -0.013672464527189732, 0.005360078532248735, -0.0076825604774057865, -0.006249051075428724, 0.018606098368763924, -0.012498102150857449, 0.013173853047192097, -0.00863385945558548, 0.0022240716498345137, 0.007787531241774559, -0.023985859006643295, 0.005035324487835169, 0.007774410303682089, 0.004789298865944147, -0.003172090509906411, -0.0033033040817826986, -0.007000249344855547, 0.005514254793524742, -0.029339376837015152, -0.004927073605358601, -0.01579812541604042, 0.006235929671674967, -0.004704010207206011, 0.023762796074151993, 0.02469441294670105, 0.0006454072427004576, -0.00800403393805027, -0.026400191709399223, -0.010254348628222942, -0.00501564284786582, -0.018816040828824043, -0.020731760188937187, -0.011559924110770226, 2.1399104298325256e-05, 0.021807711571455002, -0.01237344928085804, -0.014499111101031303, -0.023093605414032936, -0.010116574354469776, -0.015666913241147995, -0.0018632340943440795, 0.009250563569366932, -0.0048286630772054195, -0.010851371102035046, -0.001753342687152326, 0.028105968609452248, 0.012360327877104282, 0.012091339565813541, 0.00992631446570158, 0.033302031457424164, -0.0016090077115222812, 0.005865251179784536, -0.028184697031974792, -0.01927528902888298, -0.03369567170739174, -0.03611000254750252, 0.010234666056931019, 0.011494318023324013, -0.008732269518077374, 0.018934132531285286, -0.018816040828824043, -0.001812388887628913, -0.0009611401474103332, -0.002730884589254856, 0.011828912422060966, -0.0023798879701644182, 0.019249046221375465, -0.016231130808591843, -0.0014072665944695473, -0.0060292682610452175, 0.013974255882203579, -0.007433254737406969, -0.003444358939304948, 0.014446625486016273, 0.010129695758223534, -0.00402825977653265, -0.028184697031974792, 0.019039103761315346, 0.003513246076181531, -0.006855914369225502, 0.03044157102704048, -0.009519551880657673, -0.0133969159796834, 0.02284429967403412, 0.015076451003551483, 0.014171076938509941, -0.002360205864533782, 0.00863385945558548, -0.015627548098564148, -0.02538984641432762, 0.030625270679593086, -0.016559164971113205, 0.03500780835747719, -0.0029523076955229044, 0.011822352185845375, -0.020233148708939552, 0.005317434202879667, 0.0037658323999494314, 0.004526871722191572, -0.028893250972032547, 0.016441073268651962, -0.000984102487564087, -0.04424525052309036, 0.010064088739454746, -0.0025012607220560312, -0.005409283563494682, -0.01561442669481039, -0.0080565195530653, 0.021466556936502457, 0.0034574803430587053, -0.0025422649923712015, -0.007157705724239349, -0.01859297789633274, -0.010274030268192291, -0.005484731402248144, 0.009355534799396992, -0.024786261841654778, 0.0036543007008731365, 0.23576472699642181, -0.028237182646989822, 0.007407011929899454, 0.005773401353508234, 4.6949891839176416e-05, 0.009598280303180218, 0.009893510490655899, 0.005921016912907362, -0.009545794688165188, -0.018566735088825226, 0.011815791018307209, 0.011310618370771408, -0.04600351303815842, -0.0009611401474103332, 0.0016139281215146184, -0.01498460117727518, -0.008994697593152523, -0.034299254417419434, -0.011618970893323421, -0.02165025658905506, 0.006777185946702957, 0.0014236683491617441, -0.00829270388931036, -0.033459484577178955, 0.030572785064578056, 0.006232649553567171, -0.007557907607406378, 0.02558666653931141, 0.021873319521546364, 0.023106727749109268, -0.03618872910737991, -0.006682056467980146, 0.01045116875320673, 0.0009168555261567235, -0.021072914823889732, -0.011559924110770226, 0.003391873324289918, -0.006442591082304716, 0.012360327877104282, 0.03802572190761566, 0.012681801803410053, -0.015929339453577995, 0.004267724696546793, -0.0024520554579794407, 0.012589951977133751, 0.0022503144573420286, -0.031570009887218475, -0.009972238913178444, -0.0009980440372601151, 0.0002644775668159127, -0.01927528902888298, -0.025455452501773834, 0.02102043107151985, 0.034981563687324524, 0.008935650810599327, -0.007807213347405195, -0.00776784960180521, 0.04238201677799225, 0.02058742567896843, -0.00020748161477968097, -0.00040655737393535674, 0.03813069313764572, -0.006954324431717396, 0.010575821623206139, 0.004221799783408642, -0.005048445891588926, -0.009178396314382553, 0.0031179648358374834, -0.00309336232021451, -0.01537824235856533, 0.013232898898422718, 0.0015155179426074028, -0.031097641214728355, -0.014459746889770031, -0.039731498807668686, -0.013843042775988579, 0.04285438358783722, 0.03521775081753731, 0.029181919991970062, 0.030940184369683266, -0.0007278258563019335, -0.007840016856789589, 0.002227352000772953, -0.033616941422224045, 0.008574813604354858, -0.0296018049120903, 0.03621497377753258, -0.020390605553984642, -0.0005761100328527391, -0.012891743332147598, -0.003408275078982115, -0.032882146537303925, -0.002917864127084613, 0.003591974265873432, -0.011999490670859814, 0.015260149724781513, 0.02716122940182686, 0.005858690477907658, 0.013154170475900173, -0.015889976173639297, -0.010254348628222942, 0.012045415118336678, 0.03495532274246216, 0.0076825604774057865, -0.018881646916270256, 0.007216752041131258, 0.016204888001084328, 0.009250563569366932, 0.0009119349997490644, -0.03185867890715599, 0.002509461482986808, -0.013869285583496094, 0.01197980809956789, 0.007538225501775742, -0.00024500052677467465, 0.007308601401746273, -0.006180163938552141, 0.004566235933452845, 0.011914201080799103, -0.0049762786366045475, -0.00759727181866765, -0.00937521643936634, -0.006665654480457306, -0.008758512325584888, -0.0073479656130075455, -0.03579508885741234, -0.02601967193186283, 0.008358310908079147, -0.02301487885415554, -0.0006650892901234329, 0.025022447109222412, -0.005100931506603956, 0.027056260034441948, -0.001674614497460425, -0.01779257319867611, -0.02238505333662033, 0.0020272512920200825, -0.001238328986801207, -0.011487756855785847, 0.005104211624711752, -0.03981022909283638, 0.01003128569573164, -0.0019058785401284695, -0.011723941192030907, 0.00632121879607439, -0.02222759649157524, 0.0032426179386675358, 0.005747159011662006, 0.014092348515987396, -0.015456970781087875, -0.0032491786405444145, 0.023146091029047966, -0.023684067651629448, -0.011559924110770226, 0.015575062483549118, 0.0107726426795125, -0.02252938784658909, -0.0317012220621109, -0.0008496085065416992, -0.004418620374053717, -0.020705517381429672, 0.017031535506248474, 0.008017155341804028, -0.004287406802177429, -0.02664949744939804, -0.01316073164343834, -0.16606402397155762, -0.020731760188937187, 0.03839312121272087, -0.03771080821752548, 0.022621236741542816, -0.0032032537274062634, 0.02159777097404003, 0.011901079677045345, -0.03752711042761803, -0.0010693913791328669, -0.0031934126745909452, 0.009303049184381962, -0.010005042888224125, -0.004021699074655771, 0.0017418614588677883, -0.006563963834196329, -0.002263435861095786, 0.0039200084283947945, 0.013829921372234821, 0.003752710996195674, 0.031832437962293625, -0.028105968609452248, 0.011802669614553452, 0.008273022249341011, -0.02453695610165596, 0.01208477932959795, -0.00242253253236413, 0.05106836184859276, 0.018199335783720016, -0.01548321358859539, -0.0025635871570557356, -0.0259671863168478, 0.014381018467247486, -0.02668886072933674, 0.01321977749466896, 0.016073673963546753, 0.0012883542804047465, 0.000818445289041847, -0.025560423731803894, 0.023894010111689568, 0.013987377285957336, 0.007918745279312134, 0.006472114473581314, 0.003952811937779188, -0.00443502189591527, 0.010096891783177853, 0.02221447415649891, -0.009834464639425278, 0.00658036582171917, -0.02121725119650364, 0.021414071321487427, -0.019983842968940735, 0.007118341512978077, -0.0005215743440203369, 0.027686085551977158, 0.005317434202879667, -0.012156946584582329, 0.02027251198887825, 0.033092088997364044, -0.011947005055844784, -0.02432701550424099, 0.0022470341064035892, -0.0018632340943440795, -0.017595753073692322, -0.011428711004555225, -0.010759521275758743, -0.023211698979139328, 0.0011874837800860405, -0.029890473932027817, -8.774914022069424e-05, -0.006337620317935944, 0.00443502189591527, -0.017293961718678474, -0.005530656315386295, -0.0004416160227265209, -0.0013572414172813296, -0.04253947362303734, 0.010379001498222351, 0.029103191569447517, -0.008049958385527134, -0.011756745167076588, 0.025573544204235077, -0.004595758859068155, 0.006777185946702957, 0.01852736994624138, -0.012452177703380585, -0.007380769122391939, 0.00036883342545479536, -0.03542769327759743, -0.004894270095974207, 0.003719907719641924, -0.03692352771759033, -0.011664895340800285, -0.010805445723235607, 0.011146601289510727, -0.010431487113237381, 0.01842239871621132, -0.00771536398679018, 0.02464192733168602, -0.028263425454497337, 0.004999240860342979, 0.024235164746642113, -0.011999490670859814, 0.01264243759214878, 0.003209814429283142, 0.012740847654640675, -0.01627049595117569, 0.012484980747103691, 0.03881300240755081, 0.007092099171131849, -0.020259391516447067, 0.004179155454039574, 0.018396155908703804, 0.018934132531285286, 0.000929976929910481, 0.022148868069052696, -0.007315162103623152, -0.015417606569826603, 0.010155938565731049, 0.012629316188395023, 0.057524073868989944, 0.017818816006183624, -0.006583645939826965, 0.0011555004166439176, -0.0034410785883665085, -0.04860154539346695, -0.07500173151493073, -0.02290990762412548, 0.004182435572147369, 0.026308340951800346, 0.003657581051811576, 0.006252331659197807, -0.01503708679229021, 0.023657824844121933, -0.032199833542108536, 0.019787020981311798, -0.01733332686126232, -0.025573544204235077, -0.0005674991407431662, -0.002281477674841881, 0.015758762136101723, -0.016506679356098175, 0.00496315723285079, 0.017359569668769836, -0.021361585706472397, 0.03443046659231186, -0.0070855384692549706, -0.0023684068582952023, 0.0021879880223423243, -0.00030220148619264364, -0.00937521643936634, 0.00034361580037511885, -0.04070248082280159, 0.02284429967403412, 0.010634868405759335, -0.014932115562260151, 0.010182181373238564, -0.037684567272663116, -0.013659343123435974, -0.03595254570245743, 0.003667422104626894, -0.012235675007104874, -0.0037231878377497196, -0.013449401594698429, 0.016821593046188354, -0.040203869342803955, -0.011933883652091026, -0.023789038881659508, 0.012668680399656296, -0.014879630878567696, -0.031045155599713326, 0.006711579393595457, -0.00931617058813572, 0.029155677184462547, 0.00969013012945652, -0.03091394156217575, -0.008187733590602875, -0.021256614476442337, -0.026610132306814194, 0.028184697031974792, 0.02996920235455036, 0.02254250831902027, -0.01815997250378132, -0.008837240748107433, -0.02105979435145855, -0.016257373616099358, 0.009972238913178444, -0.010050967335700989, -0.03471913933753967, 0.025717880576848984, 0.02954931929707527, -0.014774659648537636, -0.00885036215186119, -0.004825382959097624, 0.007498861290514469, -0.021715862676501274, -0.004746654536575079, 0.03101891279220581, -0.007144584320485592, 0.017149627208709717, -0.021046673879027367, -0.0006823110743425786, -0.019865749403834343, -0.002509461482986808, 0.019367137923836708, -0.008509206585586071, 0.0004399758472573012, -0.028079725801944733, 6.565808871528134e-05, 0.0161130391061306, 0.008233658038079739, -0.004940194543451071, -0.025927821174263954, -0.006659093778580427, 0.0065344409085810184, -0.032619718462228775, 0.007623514160513878, 0.008423917926847935, 0.0039003263227641582, -0.005678271874785423, -0.012583390809595585, 0.0020698956213891506, -0.0002220381429651752, -0.015863733366131783, 0.009880389086902142, 0.0519343726336956, -0.014512232504785061, -0.004057782702147961, -0.07573653012514114, 0.025822849944233894, -0.005038605071604252, -0.020469332113862038, -0.0036018153186887503, -0.01959020085632801, -0.0003032265813089907, 0.002002648776397109, 0.005579861346632242, 0.011054751463234425, -0.021768348291516304, 0.008443599566817284, -0.016821593046188354, -0.0003680133377201855, 0.004175875335931778, -0.012301282025873661, 0.010149377398192883, -0.018501127138733864, 0.008135247975587845, -0.0027718888595700264, -0.009198077954351902, 0.016139281913638115, 0.014420382678508759, 0.018868526443839073, -0.017976272851228714, -0.0031114041339606047, -0.01827806420624256, 0.023316670209169388, -0.00861417781561613, -0.005996464751660824, 0.019682051613926888, -0.017595753073692322, -0.0008012235048227012, 0.048680271953344345, 0.00462200166657567, -0.018999740481376648, -0.00987382885068655, 0.011632092297077179, 0.023290427401661873, 0.04309057071805, -0.02401210181415081, -0.041096121072769165, 0.01747766137123108, -0.011553363874554634, -0.020285634323954582, 0.010621747002005577, 0.011540242470800877, -0.013029517605900764, 0.01306232064962387, 0.015168300829827785, 0.011815791018307209, 0.018829161301255226, -0.008351750671863556, -0.0153257567435503, -0.00334922899492085, 0.0032491786405444145, 0.05007113888859749, -0.0003089671954512596, 0.02991671673953533, -0.00861417781561613, 0.04080745205283165, 0.03212110698223114, 0.0012612914433702826, 0.0005777502083219588, -0.0053075929172337055, 0.017188990488648415, -0.012248796410858631, 0.002598030725494027, 0.015981825068593025, -0.03185867890715599, 0.013698707334697247, 0.001116136321797967, 0.011363103985786438, 0.019406501203775406, 0.031884923577308655, -0.0023339632898569107, -0.009591719135642052, 0.006941203027963638, -0.02954931929707527, 0.0179500300437212, 0.017412053421139717, -0.009440823458135128, 0.008220536634325981, 0.01805500127375126, 0.008286143653094769, 0.030835213139653206, -0.007761288899928331, 0.005606104154139757, -0.0001661698188399896, 0.009755736216902733, 0.010654550045728683, 0.00525182718411088, -0.01875043287873268, 0.006065351888537407, 0.0054552084766328335, 0.031360067427158356, -0.007092099171131849, -0.0015721038216724992, 0.008784755133092403, 0.017503904178738594, 0.028814522549510002, -0.012111022137105465, 0.00542240496724844, -0.016572287306189537, -0.026045914739370346, 0.019078467041254044, -0.017674481496214867, -0.023251062259078026, 0.005005801562219858, 0.015680033713579178, 0.013121367432177067, -0.02563915215432644, -0.014590959995985031, -0.006183444522321224, -0.029942959547042847, 0.013895527459681034, 0.010405244305729866, -0.002822734182700515, -0.033511970192193985, 0.029811745509505272, 0.01543072797358036, -0.005396162159740925, 0.01579812541604042, -0.007721924688667059, 0.015286392532289028, 0.048680271953344345, 0.028315911069512367, -0.0053108735010027885, 0.023710310459136963, 0.0011120358249172568, -0.0046121603809297085, 0.004152912646532059, 0.008712587878108025, -0.02095482312142849, -0.04311681166291237, -0.012452177703380585, -0.009257124736905098, 0.029628047719597816, 0.011933883652091026, 0.09536609798669815, 0.005005801562219858, 0.004231641069054604, 0.01637546718120575, -0.032462261617183685, 0.0031917726155370474, 0.016559164971113205, 0.03545393422245979, -0.008187733590602875, 0.00010425336222397164, -0.0024274529423564672, 0.0023733272682875395, -0.02427452988922596, -0.006032548379153013, -0.01726771891117096, 0.013685585930943489, -0.02296239323914051, 0.020351240411400795, -0.014236683025956154, -0.015666913241147995, 0.01932777464389801, -0.0023520051036030054, 0.01480090245604515, 0.001588505576364696, -0.012019172310829163, -0.02016754075884819, 0.028604580089449883, 0.01363310031592846, -0.006334340199828148, -0.02674134634435177, -0.00903406087309122, 0.008758512325584888, -0.047368135303258896, -0.01890788972377777, 0.006340900901705027, -0.012517784722149372, 0.009919753298163414, -0.0017943469574674964, 0.010260908864438534, -0.0038609623443335295, 0.005625786259770393, 0.014971479773521423, 0.0019157195929437876, -0.00958515889942646, -0.01679535023868084, 0.007407011929899454, -0.00048385042464360595, -0.01770072430372238, -0.02163713425397873], '_distance': 0.3630693554878235}),\n", + " Document(page_content='I hope you’ve found this a useful place to start to break the ice with the major concepts of the Transformer. If you want to go deeper, I’d suggest these next steps:', metadata={'vector': [-0.010849842801690102, -0.01362568698823452, 0.0007098066271282732, -0.01547191571444273, -0.00605549942702055, 0.019788449630141258, 0.006253774277865887, -0.022128738462924957, -0.02020450122654438, -0.0073394086211919785, 0.010472796857357025, 0.024195995181798935, 0.006585315335541964, -0.011252893134951591, 0.022778820246458054, 0.0045668152160942554, 0.014093744568526745, -0.006689328234642744, 0.00788547657430172, -0.017214130610227585, -0.017032109200954437, -0.006890852935612202, 0.005853974726051092, -0.04277529567480087, -0.014288769103586674, 0.0014269265811890364, 0.024924084544181824, -0.01536790281534195, -0.02052954211831093, 0.0002716117596719414, 0.027095353230834007, 0.0011774582089856267, 0.0013310398207977414, -0.02026950940489769, 0.016486041247844696, 0.0071378834545612335, 0.006465050391852856, 0.0008629818330518901, 0.00765144731849432, -0.03250402212142944, 0.02966967225074768, 0.0050771282985806465, 0.0018559797899797559, -0.023506909608840942, -0.0032910325098782778, 0.001704836031422019, -0.01770819164812565, -0.027199367061257362, 0.0026133235078305006, 0.02860354073345661, 0.012241015210747719, 0.017695190384984016, 0.0018120993627235293, -0.0007215893128886819, -0.0005875102360732853, 0.025275127962231636, -0.009237643331289291, 0.026003219187259674, 0.0038744795601814985, -0.005392417311668396, -0.026965338736772537, 0.0013286019675433636, -0.008672073483467102, 0.011681945994496346, -0.0036599531304091215, 0.001828351290896535, -0.003533187322318554, 0.0008304778020828962, -0.009257146157324314, -0.007833469659090042, 0.02658829092979431, 0.04155314341187477, -0.009556182660162449, 0.00412801094353199, 0.014210758730769157, -0.0069298576563596725, 0.002382545033469796, -0.004784592427313328, 0.0043555391021072865, -0.003299158299341798, -0.006734833586961031, -0.008457547053694725, -0.022063732147216797, 0.007976487278938293, 0.010635316371917725, 0.02725137397646904, 0.015887966379523277, -0.0032796559389680624, -0.020685561001300812, 0.001045004348270595, -0.00872408039867878, 0.010505300015211105, 0.016863087192177773, 0.03726261109113693, 0.00759944086894393, 0.010862844996154308, 0.005008870270103216, 0.014275766909122467, 0.008633068762719631, -0.02046453393995762, 0.0047813416458666325, -0.008444545790553093, -0.006799841765314341, -0.009991737082600594, -0.038900814950466156, -0.003559190547093749, 0.017747197300195694, -0.022440778091549873, 0.01294960267841816, -0.02462504804134369, -0.014470791444182396, 0.017149122431874275, -0.011499923653900623, -0.010661319829523563, 0.003585193771868944, -0.0274593997746706, 0.011733952909708023, -0.01070682518184185, 0.003832224290817976, -0.01625201106071472, 0.028421517461538315, 0.007963486015796661, 0.029045594856142998, -0.011077371425926685, 0.0004509933351073414, -0.028083477169275284, 0.005814970005303621, 0.008145508356392384, -0.010557306930422783, -0.011902973055839539, 0.02307785674929619, 0.01222151331603527, 0.0032455266918987036, -0.0003924860793631524, -0.013976730406284332, 0.03375217691063881, -0.02236276865005493, 0.005899480078369379, -0.0069298576563596725, -0.013859715312719345, 0.009738205932080746, 0.001019813702441752, -0.026341261342167854, -0.02751140482723713, -0.00010025459778262302, -0.0024979342706501484, 0.012254016473889351, 0.00256781792268157, 0.00832103006541729, -0.007079376373440027, 0.007501928601413965, -0.02007448486983776, -7.613052002852783e-05, -0.011012363247573376, 0.008600564673542976, 0.030969833955168724, 0.006312281358987093, 0.0015626309905201197, -0.001376545405946672, 0.00781396683305502, 0.01932039111852646, 0.006491053383797407, 0.019424404948949814, 0.003971991594880819, 0.0062927789986133575, 0.0025873202830553055, 0.019580423831939697, -0.012084996327757835, 0.0062862783670425415, -0.006231021136045456, -0.02099759876728058, -0.002237902022898197, -0.03840675577521324, 0.018566299229860306, 0.01717512682080269, 0.00436204019933939, -0.0006163575453683734, -0.005931984167546034, -0.014574804343283176, -0.028707554563879967, 0.031983960419893265, -0.011967981234192848, 0.030423766002058983, 0.01631701923906803, -0.02818748913705349, 0.004384792875498533, 0.011168382130563259, -0.014106745831668377, 0.0020818826742470264, -0.018280262127518654, 0.010713325813412666, 0.03744463622570038, 0.011129377409815788, -0.011090372689068317, -0.6511206030845642, -0.022388771176338196, 0.00905562099069357, -0.025522159412503242, -0.0030391262844204903, -0.008717578835785389, -0.008275524713099003, 0.0030001213308423758, -0.022115737199783325, 0.01625201106071472, 0.009712202474474907, -0.007969986647367477, -0.012689570896327496, 0.006799841765314341, 0.010030741803348064, -0.005220146384090185, -0.014717821963131428, -0.0335441529750824, 0.01804623380303383, 0.0065073054283857346, -0.002445927821099758, 0.011746954172849655, -0.043737415224313736, -0.016147999092936516, 0.006429295986890793, -0.011330902576446533, 0.01933339238166809, 0.011766456998884678, 0.011759955435991287, 0.0018007229082286358, -0.02268780767917633, -0.003955739550292492, 0.018410278484225273, -0.017409155145287514, 0.03562441095709801, 0.007521430961787701, -0.007742458488792181, 0.016564050689339638, -0.011311400681734085, 0.035754427313804626, -0.01311862375587225, -0.02557416632771492, 0.032113976776599884, -0.0008824842516332865, 0.01670706830918789, 0.017201129347085953, 0.023246876895427704, -0.0007837532903067768, -0.001135203056037426, 0.0011953354114666581, 0.01799422688782215, -0.00852905586361885, -2.3463842808268964e-05, 0.008054496720433235, 0.02315586619079113, -0.008932105265557766, 0.031229866668581963, 0.01043379120528698, 0.003910234197974205, 0.020490536466240883, -0.00437829177826643, 0.0007691264618188143, -0.007202891632914543, -0.030085723847150803, -0.024065978825092316, 0.0033316623885184526, -0.001347291748970747, -0.026731308549642563, 0.006045748479664326, -0.019554421305656433, 0.0023240377195179462, 0.013989731669425964, -0.023064855486154556, -0.0029237368144094944, 0.0032455266918987036, 0.020217502489686012, 0.003585193771868944, -0.01730514131486416, -0.0046513257548213005, 0.027485402300953865, 0.055542875081300735, -0.0014496794901788235, -0.01844928413629532, -0.032712049782276154, 0.035260364413261414, 0.004514808766543865, -0.032660044729709625, -0.014808833599090576, -0.00203150138258934, -0.005473677534610033, -0.0014545550802722573, 0.006270026322454214, -0.014743825420737267, -0.03479230776429176, -0.008132507093250751, 0.007670949678868055, 0.012793583795428276, -0.0021127616055309772, -0.0014797457261011004, -0.012761079706251621, 0.018878336995840073, -0.0020575046073645353, 0.007605941500514746, -0.010258269496262074, -0.009380660951137543, -0.020451530814170837, 0.0023142865393310785, 0.016330022364854813, 0.024208996444940567, -0.008314529433846474, -0.02276581898331642, -0.010043743066489697, -0.017474163323640823, -0.011493423022329807, -0.01980145089328289, -0.036950573325157166, 0.00508362939581275, 0.020308513194322586, -0.007865973748266697, -0.02162167616188526, 0.018553296104073524, 0.03193195164203644, -0.012579057365655899, -0.0101672587916255, 0.022778820246458054, 0.006035997066646814, -0.0019014853751286864, -0.024456027895212173, -0.014444787986576557, -0.011246392503380775, -0.0036079466808587313, -0.009211639873683453, 0.026198243722319603, -0.0012700947700068355, 0.006409793626517057, 0.021907711401581764, 0.012592058628797531, -0.018748320639133453, -0.014353777281939983, -0.005434672813862562, -0.005057625938206911, -0.004807345103472471, 0.01778620108962059, 0.01184446644037962, -0.03094383142888546, -0.02430000714957714, -0.00959518738090992, -0.005743461195379496, -0.01294960267841816, 0.006406542845070362, 0.0015585679793730378, -0.007254898082464933, -0.03195795789361, -0.006432546302676201, 0.014587805606424809, -0.01215000357478857, 0.012234514579176903, -0.012644065544009209, -0.014535799622535706, -0.01670706830918789, -0.005886478815227747, 0.03939487785100937, -0.009543181397020817, 0.016616057604551315, -0.018709316849708557, 0.0019031105330213904, 0.015744948759675026, 0.01731814444065094, -0.008464047685265541, -0.038562774658203125, -0.005210394971072674, -0.04012296721339226, -0.003021249081939459, 0.0012822836870327592, -0.01268307026475668, -0.009562683291733265, -0.026133235543966293, -0.026549287140369415, 0.006062000524252653, -0.00748242624104023, -0.01952841691672802, -0.003737962804734707, -0.025470152497291565, 0.007566936779767275, 0.045141588896512985, 0.02228475920855999, 0.029097601771354675, -0.0031561406794935465, -0.01578395441174507, 0.02000947669148445, -0.003310534870252013, -0.00030939767020754516, 0.015380904078483582, -0.01764318346977234, -0.013196633197367191, 0.014886843040585518, 0.008178012445569038, -0.008750082924962044, 0.016863087192177773, 0.014977853745222092, 0.03156790882349014, -0.0071313828229904175, 0.036534521728754044, -0.02704334817826748, 0.009510677307844162, -0.0021062607411295176, 0.009042619727551937, -0.03242601454257965, 0.008373036049306393, 0.0036859563551843166, -0.0005050312611274421, -0.038302741944789886, -0.0027108355425298214, -0.021569669246673584, 0.00429703202098608, 0.012754579074680805, 0.0075604356825351715, 0.015939973294734955, -0.01898234896361828, 0.005480178166180849, 0.015081866644322872, 0.002419924596324563, 0.013300646096467972, 0.010674321092665195, -0.05213645473122597, 0.01530289463698864, 0.022791821509599686, -0.009179136715829372, 0.00905562099069357, -0.006942859385162592, 0.016616057604551315, 0.014236762188374996, 0.028421517461538315, 0.02423500083386898, 0.01678507775068283, -0.009081624448299408, 0.0036274490412324667, -0.01154542900621891, 0.01899535208940506, 0.0123450281098485, 0.028629543259739876, 0.02489808201789856, 0.0038419757038354874, -0.006968862842768431, 0.02638026513159275, 0.03463628888130188, 0.00875658355653286, -0.006166013423353434, -0.04139712452888489, 0.02221975103020668, -0.0032113974448293447, 0.012481545098125935, 0.010154256597161293, -0.0023402897641062737, 0.012364530935883522, -0.004072754178196192, -0.00024357702932320535, 0.016069989651441574, 0.03461028262972832, 0.0060782525688409805, 0.014717821963131428, 0.003955739550292492, -0.010225765407085419, 0.0013562303502112627, 0.016395028680562973, -0.004638324026018381, -0.01161043718457222, -0.04142312705516815, -0.018709316849708557, 0.008353534154593945, -0.010030741803348064, 0.0006825844757258892, 0.005272152833640575, -0.04033099114894867, -0.0032390260603278875, -0.0014561802381649613, 0.016941096633672714, 0.006994865834712982, -0.013781705871224403, 0.004469303414225578, -0.0013838588492944837, -0.02987769804894924, -0.009751207195222378, -0.000403049896704033, 0.004329536110162735, -0.00896460935473442, 0.009822716005146503, -0.006669825874269009, -0.036482516676187515, 0.008711078204214573, 0.007963486015796661, 0.010108751244843006, 0.0081520089879632, -0.001049879938364029, -0.026458274573087692, 0.010323277674615383, 0.009523678570985794, -0.02370193414390087, 0.03133387863636017, 0.009185637347400188, 0.009166134521365166, 0.009913727641105652, -0.02758941613137722, -0.03263403847813606, 0.03840675577521324, 0.012546553276479244, -0.015744948759675026, -0.004755338653922081, -0.004917858634144068, -0.017019106075167656, -0.029357634484767914, 0.002247653203085065, -0.01738315261900425, -0.019814452156424522, 0.014418784528970718, -0.026198243722319603, 0.016017982736229897, 0.005551687441766262, 0.04727385193109512, 0.014483792707324028, -0.0020445031113922596, -0.018423279747366905, -0.0018299765652045608, 0.014210758730769157, 0.05705106258392334, 0.020243505015969276, -0.0015910719521343708, 0.027745435014367104, -0.017071112990379333, -0.010862844996154308, -0.014288769103586674, -0.0229608416557312, 0.006364287808537483, -0.00949767604470253, 2.392092937952839e-05, -0.00765144731849432, 0.027173364534974098, -0.021192623302340508, 0.013261641375720501, 0.015328897163271904, -0.0013513547601178288, -0.0014415534678846598, 0.00686484994366765, -0.03200996294617653, -0.010583310388028622, 0.006153011694550514, -0.008776086382567883, 0.028811566531658173, 0.041449129581451416, 0.02281782403588295, 0.038224730640649796, 0.025002095848321915, -0.0016690816264599562, -0.0254441499710083, -0.010635316371917725, 0.014873840846121311, -0.003949238918721676, 0.006520307157188654, -0.014925847761332989, 0.045869678258895874, 0.018345270305871964, 0.05273452773690224, -0.009504176676273346, -0.007280901074409485, -0.0031805187463760376, 0.0010685697197914124, 0.004492056090384722, -0.03213997930288315, 0.00676083704456687, -0.017552172765135765, -0.009166134521365166, 0.026861324906349182, 0.01665506139397621, -0.029903702437877655, 0.008477048948407173, 0.003052127780392766, -0.03437625616788864, 0.003614447545260191, 0.007781463209539652, -0.0008776086615398526, -0.005190892610698938, -0.0019274885999038815, -0.005213645286858082, -0.006617819424718618, -0.010004738345742226, -0.014080743305385113, 0.009471672587096691, -0.007241896353662014, -0.006773838307708502, -0.021842703223228455, -0.007742458488792181, 0.0013846714282408357, -0.01759117841720581, 0.01657705195248127, -0.0009946231730282307, -0.012923600152134895, -0.019502414390444756, 0.00209650956094265, 0.05203244090080261, 0.0026198243722319603, -0.0016674564685672522, -0.0058572250418365, 0.00808700080960989, 0.003432424971833825, -0.0020526291336864233, -0.02509310655295849, 0.017760198563337326, 0.006198517512530088, -0.004293781705200672, 0.0030651295091956854, -0.021257631480693817, 0.00736541161313653, -0.010355781763792038, 0.03450627252459526, 0.01335265301167965, -0.0033316623885184526, -0.005610194522887468, -0.016356024891138077, -0.0003819222911261022, 0.02886357344686985, -0.004791093058884144, 0.0071313828229904175, 0.006621069740504026, -0.017409155145287514, -0.006094504613429308, -0.02075056917965412, 0.009881223551928997, -0.02549615688621998, 0.005038123577833176, 0.024182993918657303, 0.008711078204214573, 0.01184446644037962, -0.0025304381269961596, -0.0012676569167524576, 0.024729061871767044, -6.36875702184625e-05, -0.0022053979337215424, -0.0011847716523334384, 0.006179014686495066, 0.015042861923575401, 0.017877213656902313, 0.0009288024739362299, -0.014522797428071499, -0.018501291051506996, 0.007716455031186342, -0.0354163832962513, 0.03401220962405205, 0.019762447103857994, -0.01933339238166809, 0.04430948570370674, -0.005873477086424828, -0.000269173935521394, -0.025158114731311798, 0.003533187322318554, -0.018137244507670403, 0.017877213656902313, -0.005047874990850687, 0.007969986647367477, -0.05658300593495369, 0.022635802626609802, -0.005798717960715294, -0.000987309729680419, -0.0022541540674865246, -0.022375769913196564, 0.0029838692862540483, -0.004102007951587439, -0.0012969105737283826, -0.020906588062644005, 0.015575927682220936, -0.035884443670511246, -0.01712311990559101, 0.02925362065434456, 0.025613170117139816, -0.005850724410265684, -0.02315586619079113, 0.005099881440401077, -0.03544238582253456, -0.012416536919772625, 0.008210516534745693, -0.03825073316693306, 0.0004883729270659387, -0.00029477087082341313, 0.012754579074680805, 0.03094383142888546, 0.013443663716316223, 0.009562683291733265, -0.001526063890196383, 0.013248640112578869, 0.0024670553393661976, -0.022193746641278267, 0.010466295294463634, 0.024143988266587257, -0.04022698104381561, 0.023480907082557678, 0.014782830141484737, 0.009107626974582672, -0.004238524474203587, -0.0013919847551733255, 0.04727385193109512, 0.01886533573269844, -0.002715711249038577, -0.011811962351202965, 0.009796712547540665, -0.034532275050878525, -0.003468179376795888, 0.01066782046109438, -0.0010831966064870358, 0.0119484793394804, -0.019632430747151375, 0.0021452654618769884, 0.02953965589404106, 0.0003049283695872873, 0.016460036858916283, 7.866989471949637e-05, 0.03159391134977341, -0.005122634116560221, 0.029825692996382713, -0.004696831572800875, -0.008106503635644913, -0.006994865834712982, -0.006552811246365309, -0.03874479606747627, 0.002566192764788866, 0.014886843040585518, 0.006039247382432222, 0.021244630217552185, -0.006832345854490995, 0.006786840036511421, 0.014756826683878899, -0.011532427743077278, 0.005480178166180849, -0.006608068011701107, -0.01217600703239441, -0.020100487396121025, -0.006400042213499546, -0.01952841691672802, -0.00875658355653286, 0.014743825420737267, 0.018904339522123337, -0.008347033523023129, -0.025340136140584946, 0.008854095824062824, -0.016291016712784767, -0.018033232539892197, 0.025249125435948372, -0.0003031000087503344, 0.02612023428082466, 0.027433395385742188, 0.026536284014582634, 0.001197773264721036, -0.002873355755582452, -0.01818925142288208, 0.025067102164030075, -0.029357634484767914, 0.008633068762719631, 0.0026750811375677586, 0.039290864020586014, -0.006166013423353434, -0.019424404948949814, 0.0037509643007069826, -0.008282025344669819, 0.0006062000175006688, -0.02470305748283863, 0.0019193625776097178, 0.027199367061257362, 0.018423279747366905, -0.014886843040585518, 0.01167544536292553, -0.016291016712784767, 0.033934202045202255, 0.024599045515060425, 0.027225369587540627, -0.01037528458982706, 0.005551687441766262, -0.020854581147432327, 0.01211750041693449, -0.008984112180769444, 0.01899535208940506, -0.014470791444182396, 0.0015480041038244963, -0.0030456269159913063, 0.007807466667145491, -0.003952489234507084, -0.004183267708867788, 0.005925483535975218, 0.03193195164203644, -0.008613565936684608, 0.003614447545260191, 0.025522159412503242, 0.0036339499056339264, -0.002939988858997822, -0.011421914212405682, -0.014301770366728306, 0.02275281585752964, -0.01164944190531969, -0.0028294753283262253, -0.033258117735385895, 0.004046750720590353, 0.015458913519978523, -0.02383195050060749, -0.0015512545360252261, 0.007189889904111624, -0.007696952670812607, -0.0119484793394804, 0.0060782525688409805, -0.0011530802585184574, -0.038432758301496506, -0.007872474379837513, 0.004982866812497377, -0.008073999546468258, 0.0021907712798565626, 0.005467176903039217, 0.00892560463398695, -0.020789572969079018, -0.01730514131486416, 9.916266208165325e-06, 0.018696313723921776, 0.02013949304819107, -0.01181846298277378, -0.017812205478549004, 0.008737081661820412, 0.028811566531658173, 0.01006324589252472, -0.006101005245000124, 0.02784944698214531, 0.006994865834712982, -0.029383637011051178, 0.03968091309070587, 0.005756462458521128, -0.023987969383597374, 0.006962361745536327, -0.013612684793770313, 0.0034779305569827557, -0.0055776904337108135, 0.010648318566381931, 0.009653694927692413, -0.006559311877936125, 0.023506909608840942, -0.012943102046847343, 0.001224589068442583, -0.0021290136501193047, 0.008587563410401344, -0.009088125079870224, 0.0025483155623078346, -0.006832345854490995, 0.00855505932122469, 0.004560314584523439, 0.004300282336771488, 0.006903854664415121, 0.011928976513445377, -0.01479583140462637, -0.0005338785704225302, -0.03086582012474537, 0.011688446626067162, -0.01238403283059597, -0.013950726948678493, 0.002151766326278448, -0.004615571349859238, 0.01691509410738945, 0.002372793620452285, -0.019541418179869652, 0.009374160319566727, -0.011304899118840694, 0.009250645525753498, 0.014873840846121311, 0.022648803889751434, 0.0012018362758681178, -0.00788547657430172, -0.027173364534974098, -0.006721831858158112, 0.0014708071248605847, -0.0016674564685672522, -0.02557416632771492, -0.005616695154458284, -0.004693580791354179, 0.009855220094323158, 0.002775843720883131, -0.020919589325785637, -0.02589920535683632, -0.015094868838787079, -0.03978492319583893, -0.004306782968342304, -0.004056502133607864, 0.013417661190032959, 0.012468543834984303, -0.008158509619534016, -0.0073459092527627945, 0.0369245707988739, 0.012455541640520096, 0.004163765348494053, -0.011681945994496346, -0.02007448486983776, -0.00245730415917933, 0.012839089147746563, -0.03364816680550575, -0.0071313828229904175, -0.028005465865135193, -0.030241742730140686, 0.024208996444940567, 0.013547676615417004, -0.01154542900621891, 0.03367416933178902, -0.009738205932080746, -0.002777468878775835, -0.006403292529284954, 0.000895485864020884, 0.03154190629720688, 0.02489808201789856, 0.010342780500650406, -0.038354746997356415, 0.007072875741869211, 0.0297996886074543, -0.029643669724464417, -0.022310761734843254, -0.010557306930422783, -0.0007069625426083803, 0.015523921698331833, -0.008691576309502125, -0.02228475920855999, 0.008327530696988106, 0.023597920313477516, -0.014405783265829086, 0.015445912256836891, 0.0005667888908647001, -0.0024979342706501484, 0.020295511931180954, 0.028681550174951553, -0.004917858634144068, -0.004739086609333754, 0.021127615123987198, -0.02899358980357647, -0.007846470922231674, 0.01318363193422556, -0.02201172523200512, 0.00736541161313653, -0.014275766909122467, -0.015757950022816658, -0.03515635058283806, 0.003386919153854251, -0.011616937816143036, 0.008808590471744537, -0.018267260864377022, 0.013599683530628681, 0.001076695742085576, -0.02852553129196167, -0.0068388464860618114, 0.01044029276818037, 0.0170581117272377, -0.02502809837460518, -0.02865554764866829, 0.006806342396885157, -0.0021972719114273787, 0.0060782525688409805, -0.008646070025861263, -0.006009994074702263, 0.01523788645863533, -0.013599683530628681, -0.0011319526238366961, 0.00382572365924716, -0.010349281132221222, 0.22778819501399994, -0.01205249223858118, 0.0004985304549336433, 0.019541418179869652, 0.00812600553035736, -0.0183192677795887, 0.027433395385742188, -0.008327530696988106, -0.007579938508570194, -0.013989731669425964, -0.0013830461539328098, 0.00741741806268692, -0.04277529567480087, -0.006465050391852856, 0.003351164748892188, -0.024677054956555367, -0.04139712452888489, -0.012273519299924374, -0.019307389855384827, 0.00032138352980837226, 0.009627691470086575, 0.004056502133607864, -0.00960168894380331, -0.022986846044659615, 0.012377532199025154, -0.006702329497784376, 0.00376721634529531, 0.0170581117272377, 0.01825425960123539, 0.014431786723434925, -0.014717821963131428, -0.0046448251232504845, 0.011824963614344597, 0.02605522610247135, -0.017552172765135765, -0.011467419564723969, 0.03203596547245979, -0.01127239502966404, 0.02704334817826748, 0.012982106767594814, 0.008496551774442196, -0.0026848323177546263, -0.011935477145016193, -0.0198664590716362, -0.02147865854203701, 0.025054100900888443, -0.012735076248645782, -0.003377167973667383, 0.0011132628424093127, 0.012650566175580025, -0.018683312460780144, 0.0005497243255376816, 0.00466432748362422, 0.030319754034280777, 0.006549560930579901, 0.013651689514517784, 0.021127615123987198, 0.020191499963402748, 0.03531236946582794, -0.0032780307810753584, -0.01181846298277378, 0.02751140482723713, -0.01739615388214588, 0.03081381507217884, -0.011915975250303745, -0.0026377015747129917, -0.01657705195248127, 0.008678574115037918, 0.011467419564723969, -0.01584896259009838, 0.006123757921159267, -0.00949767604470253, -0.014522797428071499, -0.007904978469014168, -0.045063577592372894, -0.014275766909122467, 0.0413191132247448, 0.04555764049291611, 0.02792745642364025, 0.01161043718457222, -0.01570594497025013, -0.003965490963310003, 0.025795193389058113, -0.034870315343141556, 0.009192137978971004, -0.02430000714957714, 0.007930981926620007, 0.016551049426198006, 0.002480057068169117, 0.010258269496262074, 0.007495427969843149, -0.031723927706480026, 0.010030741803348064, 0.01311862375587225, -0.00532090850174427, 0.017552172765135765, 0.01657705195248127, 0.011753454804420471, -0.0014464290579780936, -0.00026815818273462355, -0.009848719462752342, 0.015185879543423653, 0.024261003360152245, 0.03344013914465904, -0.03401220962405205, 0.009718703106045723, 0.01161043718457222, 0.008178012445569038, 0.016395028680562973, -0.0214136503636837, 0.009458671323955059, -0.0178512092679739, 0.013924723491072655, -0.009114128537476063, -0.016941096633672714, 0.0036664537619799376, -0.014171754010021687, 0.009978734888136387, -0.007709954399615526, -0.012026488780975342, -0.008776086382567883, -0.01906036026775837, 0.010277772322297096, 0.004596068989485502, -0.001463493681512773, -0.008828092366456985, -0.02093259058892727, -0.0020071235485374928, -0.003533187322318554, -0.002161517506465316, 0.025886204093694687, -0.009075123816728592, 0.019970472902059555, 0.0012725325068458915, -0.016603054478764534, -0.002481682226061821, 0.005681703332811594, 0.03679455444216728, 0.009627691470086575, 0.008282025344669819, -0.0016918344190344214, 0.0018754821503534913, -0.010934353806078434, -0.003167517017573118, 0.004800844471901655, -0.014990855939686298, -0.014496794901788235, -0.007898477837443352, -0.0007817217847332358, 0.0074304197914898396, -0.01500385720282793, 0.031177859753370285, 0.005730459466576576, -0.028941582888364792, 0.014951851218938828, -0.002208648482337594, -0.02966967225074768, -0.018696313723921776, -0.0012083370238542557, 0.01295610424131155, -0.03255603089928627, 0.012065493501722813, 0.017955223098397255, -0.0028538531623780727, 0.00031833627144806087, -0.019021354615688324, -0.16423633694648743, 0.00401099631562829, 0.04740386828780174, -0.030163733288645744, 0.03955089673399925, -0.005756462458521128, 0.046883802860975266, 0.008165011182427406, -0.0137296998873353, 0.009848719462752342, 0.00035774739808402956, -0.004462802316993475, -0.014444787986576557, -0.0024898082483559847, -0.018878336995840073, -0.02375394105911255, -0.012254016473889351, 0.012436039745807648, 0.032374005764722824, 0.015224884264171124, 0.03263403847813606, -0.038484763354063034, 0.004706582520157099, 0.0013424161588773131, -0.019918465986847878, 0.031983960419893265, 0.0079894894734025, 0.006877851206809282, 0.001549629378132522, -0.009010115638375282, -0.005847473628818989, -0.007157385814934969, 0.03739262744784355, -0.015588929876685143, 0.0010271271457895637, -0.009881223551928997, 0.0030960082076489925, -0.024065978825092316, 0.0003110228863079101, 0.011863968335092068, 0.022778820246458054, -0.0035754425916820765, 0.011590935289859772, -0.01127239502966404, -0.0036306993570178747, 0.002065630629658699, 0.011148880235850811, -0.003318660892546177, -0.0007289027562364936, -0.026731308549642563, 0.02704334817826748, -0.018761321902275085, -0.019619429484009743, 0.0032747804652899504, -0.002728712745010853, -0.019112365320324898, -0.016590053215622902, 0.02625024877488613, -0.001076695742085576, -0.021712686866521835, 0.015159877017140388, -0.00855505932122469, -0.012130501680076122, -0.009887724183499813, -0.011122876778244972, 0.002234651707112789, 0.0020542542915791273, 0.0034746802411973476, -0.0475078821182251, 0.003260153578594327, 0.008483550511300564, -0.010947355069220066, -0.011090372689068317, -0.009822716005146503, 0.0033284120727330446, 0.020568545907735825, -0.020828578621149063, -0.008568060584366322, 0.0134956706315279, -0.013963728211820126, 0.0011295147705823183, 0.033128101378679276, -0.02678331546485424, 0.02162167616188526, -0.002964366925880313, -0.003258528420701623, -0.01638202741742134, 0.00664382241666317, -0.03161991387605667, -0.013976730406284332, 0.03000771440565586, -0.018150247633457184, -0.03000771440565586, -0.011220389045774937, 0.030215740203857422, 0.018241258338093758, 0.020763570442795753, -0.017487164586782455, 0.008379537612199783, -0.0012814711080864072, -0.005766213871538639, 0.01570594497025013, -0.01833226904273033, -0.003770466661080718, 0.029903702437877655, 0.02531413361430168, 0.008828092366456985, 0.040773048996925354, 0.017682189121842384, 0.0002443896373733878, -0.03461028262972832, -0.009738205932080746, 0.013963728211820126, 0.024065978825092316, -0.01657705195248127, 0.01137640792876482, -0.004475804045796394, -0.00949767604470253, 0.019710440188646317, 0.02088058553636074, 0.024937087669968605, 0.0022314011584967375, -0.01980145089328289, -0.0028912329580634832, -0.02147865854203701, -0.022180745378136635, -0.10994160920381546, -0.036534521728754044, 0.017617180943489075, 0.017760198563337326, -0.005041373893618584, 0.013963728211820126, -0.00021919900609645993, -0.0028229744639247656, -0.027147360146045685, 0.012429538182914257, -0.014171754010021687, -0.028915580362081528, 0.014821834862232208, -0.011857467703521252, -0.008535556495189667, -0.01389872096478939, 0.014249764382839203, -0.004492056090384722, -0.021725689992308617, 0.02987769804894924, -0.007729456759989262, 0.003325161524116993, 0.003287781961262226, 0.020087486132979393, -0.007462923880666494, -0.005593942478299141, -0.018033232539892197, 0.008171511813998222, 0.009939730167388916, -0.013820710591971874, 0.00027628420502878726, -0.012000485323369503, 0.012813085690140724, -0.035546399652957916, 0.00281809875741601, -0.002868480049073696, -0.02054254338145256, -0.007976487278938293, 0.026497280225157738, -0.0022606549318879843, -0.03770466893911362, -0.012546553276479244, -0.024729061871767044, -0.03060578927397728, -0.031775932759046555, -0.010765332728624344, -0.03060578927397728, 0.02362392470240593, 0.0030066221952438354, -0.04683179780840874, 0.002660454250872135, 0.006094504613429308, -0.02797946333885193, 0.0006309843738563359, 0.03877079859375954, -0.013313648290932178, -0.013404658995568752, -0.024404020980000496, -0.013040614314377308, 0.0005830409354530275, 0.0018689814023673534, -0.025223122909665108, -0.023857953026890755, 0.03377818316221237, 0.019697438925504684, -0.023597920313477516, -0.018878336995840073, -0.025197118520736694, 0.01778620108962059, -0.023584919050335884, 0.0178512092679739, -0.005395668093115091, -0.015939973294734955, 0.02610723115503788, -0.029357634484767914, -0.011018863879144192, -0.01578395441174507, -0.009913727641105652, 0.03840675577521324, -0.004339287057518959, -0.005720708053559065, -0.01731814444065094, 0.017227131873369217, -0.03206196799874306, 0.01838427595794201, -0.0028538531623780727, 0.008347033523023129, 0.004573316313326359, 0.017201129347085953, -0.043737415224313736, -0.0005119383567944169, 0.02625024877488613, 0.004992618225514889, -0.014951851218938828, 0.007241896353662014, -0.0031301374547183514, -0.021114613860845566, -0.007371912710368633, 0.012377532199025154, 0.041449129581451416, -0.004973115399479866, -0.01345666591078043, -0.03367416933178902, 0.008243020623922348, -0.0065073054283857346, -0.005392417311668396, -0.0022655304055660963, -0.02328588254749775, 0.0032699047587811947, -0.008230018429458141, -0.006682827137410641, 0.0064162942580878735, -0.006062000524252653, 0.018761321902275085, -0.0046578263863921165, -0.012442540377378464, -0.00976420845836401, -0.01369069516658783, 0.00782046839594841, 0.006825844757258892, -0.003017998533323407, 0.0020786323584616184, -0.01920337788760662, 0.002304535359144211, 0.015536922961473465, 0.016421033069491386, -0.010251768864691257, 0.02504109963774681, -0.0007837532903067768, -0.0037119595799595118, -0.0029806189704686403, -0.005980740301311016, 0.014704820699989796, -0.024195995181798935, -0.010459794662892818, 0.04355539008975029, 0.00020924465206917375, -0.02202472649514675, -0.004765090066939592, 0.019853457808494568, 0.011727451346814632, 0.04025298357009888, 0.004407545551657677, -0.024065978825092316, 0.015887966379523277, -0.013950726948678493, -0.011246392503380775, -0.015744948759675026, -0.009894224815070629, 0.011421914212405682, 0.003203271422535181, 0.011935477145016193, 0.020763570442795753, 0.012299522757530212, 0.00045871303882449865, -0.01778620108962059, -0.0025548161938786507, -0.005535435397177935, 0.009244143962860107, 0.015380904078483582, -0.011974481865763664, -0.027225369587540627, 0.01912536658346653, 0.005889729131013155, 0.01010225061327219, -0.012202010490000248, 0.007839970290660858, -0.0023451652377843857, -0.0029676174744963646, -0.013768704608082771, 0.016421033069491386, -0.024339012801647186, -0.01770819164812565, 0.001675582374446094, 0.02335089072585106, 0.022167744114995003, 0.0015098118456080556, 0.001851104199886322, -0.021062606945633888, 0.0004132073954679072, -0.018176250159740448, 0.035260364413261414, 0.03409022092819214, 0.006013244390487671, -0.015523921698331833, 0.023532913997769356, 0.022102735936641693, 0.005376165732741356, -0.004173516761511564, 0.002668580273166299, -0.002813223283737898, -0.0020184998866170645, 0.006370788440108299, -0.0036957075353711843, 0.004589568357914686, -0.01534189935773611, -0.0006224520620889962, 0.021530665457248688, -0.00849005114287138, -0.0009239268838427961, 0.005298155825585127, 0.0206595566123724, -0.0008467297884635627, 0.009627691470086575, 0.011915975250303745, -0.04053901880979538, -0.03242601454257965, -0.003286156803369522, -0.006039247382432222, -0.03825073316693306, -0.0114804208278656, 0.0170581117272377, 4.553102553472854e-05, -0.01765618473291397, 0.006448798347264528, 0.011064369231462479, -0.015276891179382801, 0.005558188073337078, 0.004518059082329273, -0.013677692972123623, -0.030891824513673782, 0.019749443978071213, 0.0035429385025054216, 0.02860354073345661, 0.017500165849924088, -0.01322263665497303, 0.004823597148060799, 0.01244904100894928, 0.012663567438721657, 0.012293022125959396, 0.029721679165959358, 0.0031187611166387796, -0.015250887721776962, 0.0001362121693091467, -0.01231902465224266, -0.007183389272540808, -0.018371274694800377, -0.022258754819631577, 0.004319784697145224, 0.02115361951291561, -0.0031512652058154345, 0.09298750758171082, 0.03328412026166916, -0.037574652582407, 0.006621069740504026, -0.014132749289274216, 0.012904097326099873, 0.000840228982269764, 0.01352167408913374, -0.001222963910549879, -0.008776086382567883, 0.01534189935773611, 0.0067933411337435246, -0.022804822772741318, -0.028681550174951553, -0.010966857895255089, 0.015484916977584362, -0.0015796954976394773, -0.0010953856399282813, -0.0027595916762948036, -0.00792448129504919, 0.020698562264442444, -0.02504109963774681, 0.02228475920855999, 0.022323762997984886, -0.018280262127518654, -0.021725689992308617, 0.03159391134977341, 0.0050673773512244225, -0.00788547657430172, -0.01792921870946884, -0.009634193032979965, -0.0012928475625813007, -0.055542875081300735, -0.009114128537476063, 0.010661319829523563, -0.008366535417735577, 0.006682827137410641, -0.02966967225074768, 0.009270147420465946, 0.0014919346431270242, 0.014990855939686298, 0.00876308511942625, -0.015952974557876587, -0.03333612531423569, -0.030709801241755486, 0.03812072053551674, 0.012202010490000248, -0.01779920421540737, 0.0016308893682435155], '_distance': 0.37803786993026733})],\n", + " 'generation': 'Transformers work by using attention mechanisms to boost the '\n", + " 'speed of training deep learning models. They outperform '\n", + " 'previous models like the Google Neural Machine Translation '\n", + " 'model in specific tasks, mainly due to their ability to '\n", + " 'parallelize operations, making them highly efficient for '\n", + " 'training on modern hardware. Transformers use self-attention '\n", + " 'to weigh the significance of different words in a sentence, '\n", + " 'allowing the model to focus on relevant words and ignore less '\n", + " 'relevant ones, improving the performance of tasks like '\n", + " 'translation and text summarization.',\n", + " 'question': 'How Transformers work?'}\n", + "'-------'\n", + "{ 'documents': [ Document(page_content='Featured in courses at Stanford, Harvard, MIT, Princeton, CMU and others\\nIn the previous post, we looked at Attention – a ubiquitous method in modern deep learning models. Attention is a concept that helped improve the performance of neural machine translation applications. In this post, we will look at The Transformer – a model that uses attention to boost the speed with which these models can be trained. The Transformer outperforms the Google Neural Machine Translation model in specific tasks. The biggest benefit, however, comes from how The Transformer lends itself to parallelization. It is in fact Google Cloud’s recommendation to use The Transformer as a reference model to use their Cloud TPU offering. So let’s try to break the model apart and look at how it functions.', metadata={'vector': [-0.03292850777506828, 0.0013406849466264248, 0.021762628108263016, -0.010678051970899105, 0.0201500803232193, 0.014241919852793217, -0.006924473214894533, -0.016965635120868683, -0.013428870588541031, -0.04143843054771423, 0.03571997955441475, 0.03726477548480034, -0.007520709186792374, 0.0007080307113938034, 0.015868017449975014, -0.006494234316051006, 0.03048936277627945, 0.009031626395881176, -0.008116945624351501, -0.020448198541998863, -0.025692369788885117, 0.009248439222574234, -0.022697634994983673, -0.020082324743270874, -0.009343295358121395, 0.009939531795680523, 0.04967733472585678, -0.03284720331430435, -0.009153584018349648, -0.03181734308600426, 0.015447943471372128, 0.013916700147092342, -0.01604417897760868, -0.028754856437444687, -0.008184699341654778, -0.011565630324184895, 0.011524978093802929, -0.012690350413322449, 0.01742636412382126, -0.015542799606919289, 0.0319257490336895, 0.024567648768424988, 0.008469266816973686, -0.009255214594304562, -0.011342042125761509, 0.006175789516419172, -0.0009985265787690878, -0.04482613503932953, -0.0019665637519210577, 0.015122723765671253, 0.014634894207119942, 0.03905348479747772, -0.02326676994562149, -0.02559751458466053, -0.027101656422019005, 0.0002434914349578321, -0.010081815533339977, 0.007771399803459644, 0.02009587548673153, -0.011111677624285221, 0.01832071878015995, 0.0027745317202061415, -0.008218576200306416, 0.005962363909929991, -0.011545304208993912, -0.015136274509131908, -0.0016371094388887286, 0.03127530962228775, 0.0014186021871864796, 0.010576420463621616, 0.03777970373630524, 0.024635402485728264, 0.0042447964660823345, -0.011965380050241947, 0.035421863198280334, -0.016924982890486717, -0.014743301086127758, -0.00861155055463314, -0.016924982890486717, 0.013550828211009502, -0.0007380965980701149, -0.0036993760149925947, 0.009688841179013252, -0.0007012552814558148, 0.0016218647360801697, -0.0068228417076170444, 0.00879448652267456, -0.008814812637865543, -0.009973408654332161, 0.010833886452019215, -0.0008122027502395213, 0.001707404269836843, 0.01798194646835327, 0.014661995694041252, 0.01265647355467081, 0.014431631192564964, -0.0019835021812468767, 0.030895886942744255, -0.0033165651839226484, -0.01651845872402191, -0.0026559620164334774, -0.001112861675210297, -0.04021885618567467, -0.016247441992163658, -0.019093114882707596, 0.014729749411344528, 0.01596287451684475, -0.006545050069689751, -0.013943801634013653, -0.006392603274434805, -0.0008435390191152692, 0.02023138478398323, 0.0015109172090888023, -0.04290191829204559, -0.0036587235517799854, 0.003594357054680586, 0.009600760415196419, -0.008096619509160519, 0.007961111143231392, -0.01205346081405878, 0.04330844432115555, 0.01519047748297453, 0.005271271802484989, 0.0003809052868746221, 0.007527485024183989, -0.009797248058021069, -0.005406780168414116, -0.0052983732894063, 0.003413114696741104, -0.021207043901085854, -0.02174907736480236, 0.017290854826569557, -0.0016303339507430792, -0.004966378211975098, -0.0177922360599041, 0.014052208513021469, -0.0031996893230825663, -0.01643715240061283, -0.04198046028614044, -0.0023663132451474667, 0.0019835021812468767, -0.006965125445276499, -0.006318073719739914, -0.01296814251691103, -0.0028778568375855684, 0.03409387916326523, 0.005105274263769388, 0.040787987411022186, 0.02352423593401909, 0.022724736481904984, 0.022670533508062363, -0.026952596381306648, -0.008191474713385105, 0.01121330913156271, 0.03206125646829605, 0.016423601657152176, 0.014241919852793217, 0.006734761409461498, -0.007622340694069862, -0.0013991228770464659, 0.00577603979036212, 0.008035640232264996, -0.010251200757920742, -0.014296123757958412, 0.014783953316509724, 0.023456482216715813, 0.005850569345057011, -0.006985451560467482, 0.009438150562345982, -0.02090892568230629, -0.005806529428809881, 0.021369654685258865, -0.04561208188533783, 0.010542543604969978, -0.0034639304503798485, -0.0026119218673557043, 0.03336213529109955, -0.009390722960233688, -0.022494371980428696, -0.01986551284790039, 0.03658723086118698, -0.010481564328074455, 0.012595494277775288, 0.008537020534276962, -0.0008342228247784078, -0.013605031184852123, 0.010522217489778996, -0.013970903120934963, 0.011511427350342274, -0.030922988429665565, 0.009560108184814453, 0.03187154605984688, 0.0065484377555549145, -0.01487880852073431, -0.6348291635513306, -0.008726732805371284, -0.012859735637903214, -0.008963871747255325, 0.015176926739513874, -0.0005263649509288371, 0.0003383472212590277, 0.00016568003047723323, -0.01007504016160965, 0.012568392790853977, -0.0016574356704950333, -0.021112188696861267, -0.011389469727873802, 0.001235665986314416, -0.01910666562616825, -0.02141030691564083, 0.0029930388554930687, -0.03203415498137474, 0.020434647798538208, 0.026342809200286865, -0.03263039141893387, 0.013530501164495945, -0.02386300638318062, 0.005145926494151354, -0.009925981052219868, 0.011484325863420963, 0.009593985043466091, 0.009783697314560413, 0.005173027981072664, 0.012981693260371685, -0.03168183192610741, 0.0036621112376451492, 0.03371445834636688, -0.00020156856044195592, 0.026559622958302498, 0.00534580135717988, 0.005657470319420099, 0.03352474421262741, 0.0042447964660823345, 0.03712926432490349, -0.008719957433640957, -0.020746316760778427, 0.02899877168238163, 0.02197944186627865, 0.026952596381306648, 0.012202519923448563, 0.0065823146142065525, 0.004586955066770315, -0.010217323899269104, -0.02661382593214512, -0.012548066675662994, 0.014201267622411251, 0.01973000355064869, -0.006555213127285242, 0.0006495927809737623, 0.005274659488350153, 0.033172424882650375, -0.0024272918235510588, 0.018252963200211525, -0.01756187155842781, 0.0015651206485927105, 0.01214154064655304, -0.004705524537712336, -0.010854212567210197, -0.018673039972782135, -0.007032879628241062, 0.011904401704668999, 0.026451215147972107, 0.007229366805404425, -0.027752095833420753, 0.004088961984962225, 0.024405039846897125, 0.011050699278712273, 0.00901807565242052, -0.007690094877034426, 0.02023138478398323, 0.018225861713290215, 0.00901807565242052, 0.016681067645549774, 0.032278068363666534, 0.021396756172180176, -0.02172197587788105, 0.015217579901218414, -0.02680353820323944, -0.005400004331022501, -0.0010137712815776467, -0.015014316886663437, -0.006477295886725187, -0.007107409182935953, -0.02256212756037712, 0.017074041068553925, 0.011220084503293037, -0.030164143070578575, -0.05745550990104675, -0.012270273640751839, 0.010108917020261288, 0.0006953268311917782, 0.009600760415196419, 0.017521219328045845, -0.00421430729329586, 0.0015625798841938376, -0.020014571025967598, -0.0041702669113874435, 0.010915190912783146, 0.01758897304534912, -0.0001675856183283031, -0.008774160407483578, 0.029188483953475952, 0.027277816087007523, -0.01627454347908497, -0.01680302619934082, 0.003396176267415285, -0.014255470596253872, 0.019323479384183884, 0.00320307700894773, -0.027521731331944466, 0.017656726762652397, -0.012893612496554852, -0.010047937743365765, -0.018198760226368904, 0.014282572083175182, -0.01025797612965107, 0.006606028415262699, -0.0012458291603252292, 0.009648188948631287, 0.004088961984962225, 0.013381442986428738, -0.02641056291759014, -0.011917952448129654, 0.015637654811143875, 0.010630623437464237, -0.001188238151371479, 0.020380442962050438, -0.011599508114159107, 0.00985145103186369, 0.019242174923419952, -0.0037739055696874857, -0.003831496462225914, -0.00014493032358586788, -0.017697380855679512, -0.008157597854733467, 0.014309674501419067, 0.01677592284977436, 0.026112444698810577, -0.05485375225543976, 0.008340533822774887, -0.011335266754031181, 0.0035096644423902035, -0.015881570056080818, -0.013984453864395618, -0.0005090029444545507, -0.012351579032838345, -0.027630137279629707, 0.007330997847020626, -0.01967580057680607, -0.018794996663928032, 0.004048309754580259, -0.04333554580807686, -0.020922476425766945, -0.043796271085739136, 0.027752095833420753, 0.0458017960190773, -0.029405295848846436, 0.023930760100483894, -0.013449196703732014, -0.009160359390079975, -0.00341819622553885, 0.043687865138053894, -0.025502657517790794, -0.030299650505185127, 0.021207043901085854, -0.04479903355240822, 0.01815810799598694, 0.002185070887207985, -0.003845047438517213, 0.001308501698076725, -0.007662992924451828, -0.01417416613548994, -0.015868017449975014, -0.014634894207119942, -0.009309418499469757, 0.01981130987405777, -0.014987215399742126, -0.022670533508062363, 0.022467270493507385, 0.01174856722354889, 0.039161890745162964, 0.00645019393414259, -0.025258744135499, 0.010860987938940525, -0.0018124232301488519, -0.01454003807157278, -0.0007321680895984173, 0.016504907980561256, 0.00703965499997139, 0.008083067834377289, 0.020705662667751312, -0.01573251001536846, 0.0006402765866369009, 0.022521473467350006, -0.004471772816032171, -0.0008041569381020963, 0.012216070666909218, -0.02295510098338127, 0.009729493409395218, 0.00181072938721627, 0.0012178805191069841, -0.029405295848846436, 0.0005958129186183214, -0.004512425512075424, 0.01947253756225109, -0.01294104102998972, -0.01894405670464039, -0.023117709904909134, -0.019960368052124977, 0.03870116174221039, -0.005247557535767555, 0.029974430799484253, -0.01930992864072323, 0.0007728206692263484, 0.011125229299068451, -0.001856463379226625, -0.009499129839241505, -0.008719957433640957, 0.005809917114675045, 0.02397141233086586, 0.024188226088881493, 0.011328491382300854, -0.0037806809414178133, -0.0163558479398489, 0.00425834720954299, 0.016152584925293922, 0.012920713983476162, 0.028104417026042938, 0.009526231326162815, -0.003353829961270094, 0.013571154326200485, -0.01333401445299387, 0.018022600561380386, -0.008042415603995323, 0.00514253880828619, 0.008550572209060192, -0.014648444950580597, -0.024066269397735596, 0.024581199511885643, 0.010373158380389214, 0.03444620221853256, -0.014838156290352345, -0.006927860900759697, -0.00858444906771183, -0.015271782875061035, -0.005074784625321627, 0.004915562458336353, 0.008137271739542484, 0.004688586108386517, 0.0014228367945179343, 0.004454834386706352, -0.006667007226496935, 0.02216915227472782, 0.028429636731743813, 0.010068264789879322, 0.009715942665934563, 0.02155936509370804, -0.011545304208993912, 0.017494117841124535, 0.009661739692091942, 0.013638908043503761, -0.011735016480088234, -0.009255214594304562, -0.007696870248764753, -0.0037976193707436323, -0.01664041541516781, 0.004908787086606026, -0.0489455871284008, 0.008760609664022923, 0.022128500044345856, -0.011538528837263584, 0.034663014113903046, -0.010332505218684673, 0.044419609010219574, -0.008862241171300411, -0.05244170501828194, 0.004454834386706352, -0.0031082211062312126, -0.01981130987405777, -0.02040754444897175, -0.03208835795521736, -0.00602673040702939, -0.008408288471400738, 0.003250504843890667, -0.01664041541516781, 0.004400630947202444, -0.0019987470004707575, 0.00036036729579791427, -0.015691857784986496, -0.0027271038852632046, 0.022304661571979523, -0.005945425480604172, 0.012703901156783104, -0.028565144166350365, -0.0015532636316493154, 0.006958350073546171, -0.03450040519237518, -0.006999002769589424, 0.02206074632704258, -0.020814070478081703, -0.018469776958227158, -0.010501890443265438, -0.008191474713385105, -0.020475300028920174, 0.026735782623291016, -0.004082186613231897, 0.010474788956344128, -0.03360605239868164, 0.014052208513021469, -0.006826229393482208, 0.014716198667883873, 0.009986959397792816, 0.0251232348382473, 0.017887091264128685, -0.0022087846882641315, -0.01823941245675087, 0.008537020534276962, 0.022697634994983673, 0.07252402603626251, 0.01792774349451065, -0.033118221908807755, 0.014092860743403435, -0.03937870264053345, -0.003485950408503413, -0.020326239988207817, -0.027467528358101845, 0.009966633282601833, -0.00817792396992445, -0.00762911606580019, -0.013347565196454525, 0.010915190912783146, -0.012446435168385506, 0.03303691744804382, 0.026491869240999222, -0.005610042251646519, -0.015786712989211082, -0.005349189043045044, -0.016789475455880165, 0.00838796142488718, -0.020272037014365196, 0.029296889901161194, 0.008869016543030739, 0.03433779627084732, -0.019242174923419952, 0.027318468317389488, 0.027860501781105995, 0.016504907980561256, -0.01361180655658245, -0.005427106283605099, -0.01146399974822998, -0.012690350413322449, -0.0026102280244231224, -0.026207301765680313, 0.04217017441987991, -0.0034673181362450123, 0.01700628735125065, 0.00037455331766977906, 0.006284196395426989, 0.004024595487862825, 0.03303691744804382, 0.009953082539141178, -0.011443673633038998, -0.018103905022144318, -0.029947329312562943, 0.02624795399606228, 0.023673294112086296, -0.021884584799408913, -0.024581199511885643, 0.0012170335976406932, 0.0018869527848437428, -0.04433830454945564, 0.005498248152434826, 0.013638908043503761, -0.003618071088567376, 0.003997494000941515, 0.010786457918584347, -0.010752581059932709, -0.006670394912362099, -0.020475300028920174, -0.029974430799484253, -0.0003730712051037699, 0.00017213785031344742, 0.012913938611745834, -0.0011425040429458022, -0.000349357258528471, -0.018117455765604973, -0.01840202324092388, 0.01907956413924694, 0.006077545695006847, -0.027833400294184685, -0.05170996114611626, -0.005054458510130644, 0.02661382593214512, 0.006978676188737154, 0.02989312633872032, -0.008801261894404888, -0.02054305374622345, 0.021992992609739304, -0.008462491445243359, -0.028429636731743813, 0.011782444082200527, -0.02216915227472782, -0.008814812637865543, -0.002630554372444749, -0.015000766143202782, -0.00042049912735819817, -0.013191730715334415, 0.0038247210904955864, -0.0028609184082597494, 0.0011179432040080428, 0.01355760358273983, -0.001084913033992052, 0.0013881127815693617, 0.02967631258070469, 0.024906421080231667, 0.02174907736480236, 0.01986551284790039, -0.033849965780973434, 0.006304522510617971, -0.025245191529393196, -0.005610042251646519, -0.02562461607158184, 0.023388726636767387, 0.005156089551746845, 0.025502657517790794, 0.011992481537163258, 0.017805786803364754, -0.01683012768626213, 0.019608046859502792, -0.0036756619811058044, -0.010298628360033035, -0.0033894008956849575, 0.009309418499469757, 0.0027813073247671127, 0.008320207707583904, 0.008841914124786854, -0.008774160407483578, -0.029351092875003815, -0.0160983819514513, -0.027020350098609924, 0.03417518734931946, 0.013198506087064743, -0.003064180724322796, 0.001883565098978579, -0.00045310580753721297, -0.004807156044989824, -0.0189711581915617, 0.021654222160577774, -0.008164373226463795, 0.03347054123878479, 0.010671276599168777, 0.0025915957521647215, -0.029567906633019447, -0.004790217150002718, -0.006887208204716444, -0.009126481600105762, -0.012886837124824524, -0.01683012768626213, 0.004888460971415043, -0.008665753528475761, -0.019770655781030655, -0.013571154326200485, 0.02756238356232643, -0.019093114882707596, -0.023090608417987823, 0.01012924313545227, 0.017182448878884315, 0.02829412929713726, 0.0006085167988203466, 0.00991920568048954, -0.037752602249383926, -0.008001763373613358, 0.0077104209922254086, -0.01790064200758934, 0.003231872571632266, -0.004139777738600969, 0.015095622278749943, 0.02127479761838913, 0.040842194110155106, 0.0018988096853718162, -0.002451005857437849, 0.041411325335502625, -0.0251232348382473, -0.00038386951200664043, 0.014661995694041252, 0.019513191655278206, -0.00783915352076292, -0.003692600643262267, 0.015895120799541473, 0.00600640382617712, 0.01080678403377533, 0.010325729846954346, 0.016084831207990646, 0.001335603417828679, 0.012039910070598125, -0.003651948180049658, -0.010027611628174782, -0.02122059464454651, -0.016789475455880165, 0.021627120673656464, -0.008198250085115433, -0.015041418373584747, -0.02470315806567669, 0.005481309723109007, 0.028077315539121628, 0.02562461607158184, 0.02981182187795639, 0.017467016354203224, 0.016789475455880165, 0.0022900898475199938, -0.006351950578391552, 0.012778431177139282, 0.034663014113903046, -0.026573173701763153, -0.004343039821833372, -0.036993756890296936, -0.005193354561924934, 0.03723767399787903, 0.00972271803766489, 0.004637770354747772, 0.008747058920562267, -0.0035706430207937956, -0.006541662383824587, 0.015868017449975014, -0.007351323962211609, -0.01800904981791973, -0.015488595701754093, -0.013876047916710377, -0.008625101298093796, -0.013279811479151249, -0.018510429188609123, -0.007303896360099316, 0.00802208948880434, -0.003062486881390214, -0.009912430308759212, 0.007873030379414558, -0.028781957924365997, -0.02242661826312542, 0.036126505583524704, 0.016992736607789993, 0.046750351786613464, 0.013002019375562668, 0.030977191403508186, 0.01756187155842781, 0.002720328513532877, -0.0052340067923069, -0.008618325926363468, -0.0018361371476203203, 0.02323966845870018, 0.008076292462646961, 0.0008007692522369325, -0.004105900414288044, -0.031031396239995956, 0.00647052051499486, 0.010298628360033035, -0.00920101162046194, -0.038457248359918594, 0.012541291303932667, 0.013523725792765617, 0.007520709186792374, -0.013774416409432888, -0.027657238766551018, 0.0010451074922457337, 0.010705153457820415, -0.01528533361852169, 0.02402561530470848, 0.011179432272911072, -0.015542799606919289, -0.012527740560472012, 0.0027237161993980408, 0.00455307774245739, 0.010427361354231834, -0.011694363318383694, 0.007649442180991173, 0.033904168754816055, 0.0011433509644120932, 0.0037908439990133047, -0.004698749165982008, 0.0033741560764610767, 0.01448583509773016, -0.02164067141711712, 0.009871777147054672, 0.00895032100379467, -0.006951574701815844, 0.008110170252621174, -0.0010501891374588013, -0.016762372106313705, 0.03214256092905998, -0.037698399275541306, -0.015515698119997978, 0.01714179664850235, -0.015122723765671253, 0.01233802828937769, -0.03902638331055641, -0.0028592245653271675, 0.0018158109160140157, -0.01028507761657238, -0.006853331346064806, 0.017182448878884315, 0.020732766017317772, -0.03951421007514, 0.0057794274762272835, 0.020583705976605415, -0.011626609601080418, -0.013693111948668957, 0.005034132394939661, 0.014214818365871906, -0.03336213529109955, -0.01445873361080885, 0.010833886452019215, -0.0013415318680927157, 0.02680353820323944, -0.014323225244879723, -0.009892103262245655, -0.017399262636899948, 0.02706100232899189, -0.009973408654332161, -0.009343295358121395, 0.015800263732671738, 0.0016709864139556885, -0.010488339699804783, 0.02248082123696804, -0.004525976255536079, -0.017304405570030212, 0.007595238741487265, -0.0223724152892828, -0.019946817308664322, 0.004519200883805752, -0.004309162963181734, 0.0036756619811058044, 0.010515442118048668, 0.0035299905575811863, -0.01598997600376606, 0.005423718597739935, -0.008936770260334015, -0.009451702237129211, -0.00014302475028671324, -0.023564888164401054, -0.007378425914794207, 0.006277421023696661, 0.0329827144742012, -0.030841683968901634, 0.006301134824752808, -0.027941806241869926, -0.010833886452019215, -0.014811054803431034, -0.0371563658118248, 0.002569575561210513, -0.01756187155842781, 0.012399007566273212, -0.0057455506175756454, -0.004000881686806679, 0.022250458598136902, 0.004725851118564606, -0.020475300028920174, 0.01100327167659998, 0.0016642110422253609, 0.0018801772966980934, -0.008198250085115433, 0.010996496304869652, 0.025502657517790794, 0.003485950408503413, -0.03740028291940689, -0.007764624431729317, -0.00018928811186924577, 0.005379678215831518, -0.027657238766551018, -0.021166391670703888, -0.010976170189678669, 0.0282670259475708, 0.007053205743432045, -0.018849199637770653, -0.009844675660133362, -0.018225861713290215, -0.027914704754948616, -0.012852960266172886, -0.013930250890552998, 0.016342297196388245, 0.00320307700894773, 0.01840202324092388, 0.006094484589993954, 0.013117201626300812, 0.0076562175527215, 0.009966633282601833, 0.0057794274762272835, 0.029947329312562943, -0.025895632803440094, -0.009519455954432487, -0.02164067141711712, 0.003367380704730749, -0.046967167407274246, -0.011159106157720089, 0.004475160501897335, -0.023591989651322365, 0.0032386479433625937, 0.019540293142199516, 0.008753834292292595, -0.0035367661621421576, -0.0019716452807188034, 0.01641005091369152, -0.0019360744627192616, 0.019093114882707596, 0.03216966241598129, -0.02697969786822796, -0.0023612314835190773, -0.005471146199852228, -0.02174907736480236, -0.0097498195245862, 0.0050442954525351524, 0.009878552518785, 0.00851669441908598, 0.0029252846725285053, -0.02197944186627865, 0.013930250890552998, 0.019635148346424103, 0.0013779497239738703, 0.017074041068553925, 0.0033639930188655853, -0.0023544561117887497, 0.014960113912820816, 0.01761607453227043, -0.019187970086932182, -0.009966633282601833, 0.014743301086127758, -0.013821844011545181, -0.024486344307661057, 0.026058241724967957, -0.028890365734696388, 0.0019835021812468767, -0.005030744709074497, -0.002498433692380786, -0.008686079643666744, -0.005257721059024334, -0.0006343480781652033, 0.0025390861555933952, -0.026789987459778786, 0.02661382593214512, -0.002362925559282303, -0.03815912827849388, 0.014282572083175182, -0.005874283611774445, 0.018307168036699295, -0.017101144418120384, -0.005677796434611082, 0.009411049075424671, -0.013523725792765617, -0.012019583024084568, 0.00703965499997139, -0.009614312089979649, -0.024039166048169136, -0.002821959787979722, 0.013747314922511578, -0.011680812574923038, -0.009783697314560413, 0.21106769144535065, -0.020001020282506943, -0.0022172541357576847, 0.010278302244842052, 0.011328491382300854, 0.010935517027974129, 0.01800904981791973, 0.016369398683309555, -0.025583963841199875, -0.011809545569121838, 0.03504243865609169, -0.004942663945257664, -0.04249539226293564, -0.006019955035299063, 0.01482460554689169, -0.027277816087007523, -0.03948710858821869, -0.0382133312523365, -0.005925098899751902, -0.004536139313131571, 0.014689097180962563, -0.008970647118985653, -0.004681810736656189, -0.03807782381772995, 0.008869016543030739, 0.0024848829489201307, 0.0009883634047582746, -0.007005778141319752, 0.021491611376404762, 0.024188226088881493, -0.033091120421886444, 0.007168387994170189, 0.012249947525560856, 0.016870779916644096, -0.021030884236097336, -0.00913325697183609, 0.01487880852073431, -0.009275540709495544, 0.011362368240952492, 0.006104647647589445, 0.006873657461255789, 0.007114184554666281, 0.009363621473312378, -0.00199197162874043, 0.00023205792240332812, 0.018483327701687813, -0.02389010787010193, 0.0050612338818609715, -0.004712299909442663, 0.005139151122421026, -0.025746572762727737, 0.0018429126357659698, 0.007568137254565954, 0.036912452429533005, 0.0011170962825417519, 0.019431885331869125, -0.00288801989518106, 0.02012297883629799, 0.03355184569954872, 0.014241919852793217, -0.012961367145180702, 0.011897626332938671, -0.011077800765633583, 0.025611065328121185, 0.014269021339714527, 0.003926352132111788, -0.01815810799598694, 0.035503167659044266, 0.010251200757920742, -0.011457224376499653, -0.011497876606881618, -0.01407930999994278, -0.022182703018188477, -0.008001763373613358, -0.03788811340928078, -0.01666751690208912, 0.04111320897936821, 0.015122723765671253, 0.016586212441325188, 0.026789987459778786, -0.005379678215831518, -0.025041930377483368, 0.007920457981526852, -0.009600760415196419, 0.00966851506382227, -0.028483839705586433, 0.010461238212883472, -0.0030506299808621407, -0.0019208298763260245, -0.004634382668882608, 0.018903404474258423, -0.026261504739522934, -0.010041162371635437, -0.0014507854357361794, -0.02352423593401909, -0.0066737825982272625, 0.033795762807130814, 0.010854212567210197, 0.013483073562383652, -0.013144303113222122, -0.026871291920542717, 0.031654730439186096, 0.032359376549720764, 0.0005687112570740283, -0.0035706430207937956, 0.014431631192564964, 0.014865257777273655, 0.01155207958072424, -0.012094113044440746, -0.003912801388651133, -0.0012678492348641157, -0.050110962241888046, 0.011145555414259434, 0.0017683830810710788, -0.012385456822812557, 0.00951268058270216, -0.020421097055077553, -0.0030269159469753504, 0.0232938714325428, -0.015746060758829117, -0.00011602896120166406, -0.025773674249649048, -0.009180685505270958, 0.006802515592426062, 0.00045818736543878913, -0.016139034181833267, -0.016992736607789993, -0.006440030876547098, -0.021288348361849785, 0.014011556282639503, 0.002318885177373886, -0.04127581790089607, 0.021207043901085854, 0.001632874715141952, -0.014363877475261688, -0.023768151178956032, 7.209463365143165e-05, 0.008035640232264996, 0.012622595764696598, 0.01737215928733349, -0.009363621473312378, -0.007778175175189972, -0.005311924032866955, -0.0030658745672553778, 0.0012000950518995523, -0.02441859059035778, 0.008462491445243359, 0.02124769613146782, 0.013354340568184853, -0.012161866761744022, -0.014634894207119942, 0.023470032960176468, 0.005352576728910208, -0.026234403252601624, 0.022629881277680397, -0.01716889813542366, -0.021600017324090004, -0.03290140628814697, 0.004224470350891352, -0.014675546437501907, -0.03607230260968208, -0.010698378086090088, 0.017629625275731087, -0.0007567289867438376, -0.01669461838901043, -0.0003938209265470505, -0.17236651480197906, -0.0044683851301670074, 0.021627120673656464, -0.025583963841199875, 0.02315836399793625, 0.0035808063112199306, 0.01941833458840847, -0.00407541124150157, -0.022616330534219742, -0.005227231420576572, 0.020529503002762794, -0.022778939455747604, -0.008652202785015106, -0.01865948922932148, -0.0066568441689014435, 0.006971900817006826, -0.014770402573049068, -0.004841032903641462, 0.012609045021235943, 0.008435389958322048, 0.03777970373630524, -0.036234911531209946, 0.007635891437530518, 0.008157597854733467, -0.00817792396992445, 0.0194996390491724, 0.0049867043271660805, 0.03496113419532776, 0.02829412929713726, -0.028619349002838135, -0.0027440425474196672, -0.00861155055463314, 0.04271220788359642, -0.014580690301954746, 0.006463745143264532, 0.013340789824724197, 0.012697125785052776, -0.03490693122148514, -0.025001278147101402, 0.01907956413924694, 0.026261504739522934, -0.004993479698896408, 0.002425597980618477, 0.002478107577189803, -0.019743554294109344, -0.012974917888641357, 0.028890365734696388, -0.013889598660171032, 0.021871034055948257, -0.024147573858499527, 0.027616586536169052, -0.009004524908959866, -0.008137271739542484, 0.006785577163100243, -0.007547811139374971, 0.007195489481091499, 0.004942663945257664, 0.0052340067923069, 0.0011179432040080428, -0.01855108141899109, -0.019377682358026505, 0.0009375478839501739, 0.023849455639719963, 0.0014592546503990889, 0.001086606876924634, -0.011531753465533257, 0.01261582039296627, 0.023171914741396904, -0.031763140112161636, 0.010711928829550743, -0.01632874645292759, 0.025190988555550575, -0.032955609261989594, -0.02250792272388935, 0.00026868749409914017, 0.026993248611688614, -0.03813202679157257, 0.0041872053407132626, 0.003340278984978795, 0.0011475856881588697, -0.012852960266172886, 0.03208835795521736, -0.014418080449104309, 0.014038657769560814, -0.005945425480604172, -0.010610297322273254, -0.003485950408503413, 0.0177922360599041, -0.04431120306253433, -0.020028121769428253, 0.019038911908864975, -0.021112188696861267, -0.002556024817749858, 0.006297747138887644, 0.01519047748297453, 0.021843932569026947, 0.022291110828518867, -0.029567906633019447, 0.02441859059035778, -0.003172587603330612, -0.008462491445243359, 0.013930250890552998, -0.0019462376367300749, -0.007141286041587591, 0.01573251001536846, 0.027237163856625557, -0.01781933754682541, -0.001646425575017929, 0.02978471852838993, 0.005454207770526409, -0.01981130987405777, -0.021464509889483452, 0.01108457613736391, 0.0048207067884504795, -0.0025899019092321396, 0.02028558775782585, -0.0035401538480073214, 0.0037332531064748764, 0.022684084251523018, 0.014838156290352345, 0.059135813266038895, 0.0012509106891229749, -0.012317701242864132, 0.0027830011676996946, -0.01722310110926628, -0.04263089969754219, -0.10585907101631165, -0.020448198541998863, 0.011389469727873802, 0.015840915963053703, 0.00030595227144658566, 0.008679304271936417, -0.014431631192564964, 0.019187970086932182, -0.027237163856625557, 0.028754856437444687, -0.03436489775776863, -0.02528584562242031, 0.024228878319263458, -0.005403392016887665, -0.00291173392906785, -0.019066013395786285, 0.021179942414164543, -0.0011941666016355157, -0.024350836873054504, 0.03954131156206131, -0.008699631318449974, 0.011375918984413147, 0.017385710030794144, -0.020339790731668472, -0.010678051970899105, -0.0032589740585535765, -0.024987727403640747, 0.011897626332938671, 0.01077968254685402, -0.01700628735125065, 0.012243172153830528, -0.024323733523488045, 0.012886837124824524, -0.021030884236097336, 0.02177617885172367, 0.002232498722150922, -0.01567830704152584, -0.0067483121529221535, 0.02028558775782585, -0.018361371010541916, -0.0071006338112056255, -0.00858444906771183, 0.0020851334556937218, 0.010745805688202381, -0.016206789761781693, -0.010488339699804783, -0.019960368052124977, 0.020502401515841484, 0.01139624509960413, -0.0260446909815073, -0.02310415916144848, 0.014404529705643654, -0.03677694499492645, 0.010603521950542927, 0.025773674249649048, 0.0008782630320638418, 0.007466506212949753, -0.011660486459732056, -0.006077545695006847, -0.0021037659607827663, 0.011599508114159107, -0.011050699278712273, -0.017209550365805626, 0.039893634617328644, 0.027332019060850143, -0.009627862833440304, -0.011348817497491837, -0.02567881904542446, -0.0015981508186087012, -0.027887603268027306, -0.0038755368441343307, 0.011809545569121838, 0.005108661949634552, 0.0072090402245521545, -0.033226627856492996, 0.004549690056592226, -0.01745346561074257, -0.012683575041592121, 0.0005555839161388576, -0.0030658745672553778, -0.016789475455880165, -0.01711469516158104, -0.006111423019319773, -0.01795484498143196, -0.011843422427773476, -0.006094484589993954, -0.008753834292292595, -0.03661433607339859, 0.00703965499997139, -0.03704795986413956, 0.002288396004587412, 0.04284771531820297, 0.007107409182935953, 0.0003567678795661777, 0.008266004733741283, -0.003475787350907922, -0.009004524908959866, -0.008990973234176636, -0.003946678247302771, 0.03669564053416252, -0.007723971735686064, -0.011301389895379543, -0.06200858950614929, 0.006382439751178026, -0.008774160407483578, -0.007757849059998989, -0.0014888971345499158, 0.002991345012560487, 0.013577929697930813, 0.005677796434611082, -0.013998005539178848, -0.011348817497491837, -0.023876557126641273, -0.010088590905070305, 0.000378999684471637, -0.0005305995582602918, -0.02905297465622425, -0.022440169006586075, 0.022209804505109787, -0.016870779916644096, 0.01090164016932249, 0.012195744551718235, 0.011972155421972275, 0.006138524506241083, 0.02174907736480236, 0.029513703659176826, -0.014404529705643654, -0.030814582481980324, 0.01688433066010475, 0.012006032280623913, -0.0009527925867587328, -0.0009477109997533262, 0.0046547092497348785, -0.007574912626296282, 0.0057455506175756454, 0.022209804505109787, 0.0014787339605391026, 0.0054474323987960815, -0.0038721489254385233, 0.019621597602963448, 0.013930250890552998, 0.031139802187681198, -0.01936413161456585, -0.05092401057481766, 0.010928741656243801, -0.010088590905070305, -0.01601707749068737, -0.009898878633975983, -0.0009976796573027968, 0.0018666265532374382, 0.013760865665972233, 0.007642666809260845, 0.006511172745376825, 0.01832071878015995, -0.0013457664754241705, -0.0198926143348217, -0.015122723765671253, 0.027697892859578133, 0.01567830704152584, -0.007805276662111282, -0.006453581620007753, -0.0012873285450041294, 0.03653302788734436, 0.004962990526109934, 0.005203517619520426, -0.0012653084704652429, 0.012439659796655178, 0.003784068627282977, -0.025421353057026863, -0.0058370186015963554, 0.005582940764725208, -0.03482562676072121, 0.007391976658254862, -0.009844675660133362, 0.02588208205997944, 0.011978930793702602, 0.024540547281503677, 0.005738775245845318, -0.014905910938978195, -0.011518202722072601, -0.030922988429665565, 0.02593628503382206, 0.013571154326200485, 0.009268765337765217, -0.010190221481025219, 0.01876789517700672, 0.020949577912688255, 0.012697125785052776, -0.006460356991738081, -0.0031200782395899296, -0.01355760358273983, 0.0076562175527215, 0.013666009530425072, 0.012127989903092384, 0.013327239081263542, -0.003397870110347867, -0.001734505989588797, 0.016477804630994797, -0.0002483612624928355, 0.0023392115253955126, 0.013273036107420921, 0.002811796497553587, 0.020759867504239082, -0.0011340348282828927, -0.015312435105443, -0.01790064200758934, -0.04189915582537651, 0.0008054273203015327, -0.030055735260248184, -0.01933703012764454, 0.0008105089073069394, 0.0198926143348217, 0.01745346561074257, -0.015691857784986496, 0.005359352100640535, -0.0006449346547015011, -0.014390978962182999, 0.02402561530470848, 3.385059972060844e-05, -0.009404273703694344, -0.029323991388082504, -0.004238021094352007, 0.03431069478392601, 0.010881314054131508, 0.029378194361925125, 0.005942037794739008, 0.036858249455690384, 0.01863238774240017, 0.008259229362010956, -0.024919971823692322, 0.029703414067626, 0.01834782026708126, -0.007520709186792374, 0.007161612622439861, 0.009682065807282925, -0.013469522818922997, -0.01090164016932249, -0.007114184554666281, -0.008618325926363468, 0.02284669503569603, 0.0001381549081997946, 0.08320207893848419, 0.0175347700715065, -0.010420585982501507, 0.0017175674438476562, 0.004353203345090151, 0.0007808664813637733, 0.01986551284790039, 0.007859479635953903, -0.021112188696861267, 0.014241919852793217, -0.00600640382617712, 0.012609045021235943, -0.029351092875003815, 0.004326101392507553, -0.003574030939489603, 0.017317956313490868, -0.006849943660199642, 0.007466506212949753, -0.015054970048367977, -0.016206789761781693, 0.024947073310613632, -0.02483866736292839, 0.021532263606786728, -0.0011077801464125514, -0.013970903120934963, -0.010854212567210197, 0.0201500803232193, 0.016545560210943222, 0.0054474323987960815, -0.027413325384259224, 0.01907956413924694, 0.006944799330085516, -0.04507005214691162, -0.02475736290216446, 0.0011374225141480565, 3.705304334289394e-05, -0.0032860757783055305, -0.008381186053156853, 0.02973051555454731, -0.0016108546406030655, 0.000994291971437633, 0.03132951259613037, -0.006575539242476225, -0.027860501781105995, -0.015271782875061035, -0.001975032966583967, -0.0024747196584939957, -0.03211545944213867, -0.005552451126277447], '_distance': 0.3519055247306824}),\n", + " Document(page_content='The Transformer was proposed in the paper Attention is All You Need. A TensorFlow implementation of it is available as a part of the Tensor2Tensor package. Harvard’s NLP group created a guide annotating the paper with PyTorch implementation. In this post, we will attempt to oversimplify things a bit and introduce the concepts one by one to hopefully make it easier to understand to people without in-depth knowledge of the subject matter.\\n2020 Update: I’ve created a “Narrated Transformer” video which is a gentler approach to the topic:', metadata={'vector': [-0.02712874673306942, -0.005967519711703062, 0.029046399518847466, -0.01589103601872921, 0.029260961338877678, 0.0017349390545859933, -0.007067152764648199, -0.015327810309827328, -0.01750025525689125, -0.0014390774304047227, 0.027571281418204308, 0.020370028913021088, -0.014415918849408627, 0.0084215784445405, 0.010935982689261436, -0.012665892951190472, 0.013054787181317806, 0.006879410240799189, -0.011834463104605675, -0.016159238293766975, -0.019069243222475052, 0.015233938582241535, -0.006835827603936195, -0.012397689744830132, -0.017218641936779022, 0.013007852248847485, 0.03218437731266022, -0.03462502360343933, -0.011552849784493446, -0.018640117719769478, 0.0340886190533638, 0.003489993279799819, -0.01646767184138298, -0.02754446119070053, -0.01162660587579012, -0.01054038293659687, -0.00021278146596159786, -0.011914924718439579, 0.029073219746351242, -0.02346777357161045, 0.022743625566363335, 0.013249235227704048, -0.00035390243283472955, -0.01778186857700348, -0.02378961816430092, 0.0046767923049628735, -0.007536508142948151, -0.03462502360343933, -0.0038855932652950287, 0.020437078550457954, 0.02454058639705181, 0.02565363049507141, -0.021523302420973778, -0.025506118312478065, -0.02100030519068241, 0.0025646924041211605, 0.0003545310173649341, 0.03416907787322998, 0.011914924718439579, -0.005645676050335169, 0.007020216900855303, -0.006410054862499237, -0.016293341293931007, 0.010942688211798668, -0.020571179687976837, -0.012458035722374916, -0.0013276055688038468, 0.029824187979102135, 0.0008469352032989264, 0.00779130170121789, 0.03046787716448307, 0.02800040692090988, 0.004096802789717913, -0.014402508735656738, 0.03784346207976341, -0.018640117719769478, -0.009340174496173859, -0.011244416236877441, -0.008944574743509293, 0.006094916258007288, 0.005541747435927391, -0.0025797788985073566, 0.015421681106090546, 0.03076290152966976, 0.007932107895612717, 0.005592035595327616, 0.022609524428844452, 0.006792244501411915, -0.010580613277852535, 0.01090916246175766, 0.016655415296554565, 0.0058032451197505, 0.0050086937844753265, 0.01682974584400654, 0.025988884270191193, 0.04299296438694, -0.011103609576821327, 0.032130736857652664, 0.003949291072785854, -0.0274640005081892, -0.004264429677277803, 4.4709253415931016e-05, -0.023829849436879158, -0.006614559795707464, -0.005535042379051447, -0.018465785309672356, 0.006912935990840197, 0.004958405625075102, -0.01732592284679413, 0.023601876571774483, 0.006684963125735521, 0.028831837698817253, 0.0010267151519656181, -0.036985211074352264, 0.007516392972320318, -0.0010267151519656181, -0.009662018157541752, -0.009333468973636627, -0.004680144600570202, -0.005605445709079504, 0.051521822810173035, 0.011472389101982117, -0.00039245662628673017, -0.02016887627542019, 0.010426396504044533, 0.023038649931550026, 0.0017869033617898822, -0.009930221363902092, -0.005400940775871277, -0.03116520680487156, -0.015233938582241535, 0.02016887627542019, 0.010352641344070435, 0.0022411723621189594, -0.014295226894319057, 0.02971690706908703, -0.011110315099358559, -0.015502141788601875, -0.01947154849767685, -0.010594023391604424, 0.006396644748747349, -0.010526972822844982, -0.006785539444535971, -0.013604603707790375, -0.0035972746554762125, 0.03387405723333359, -0.00011733887367881835, 0.03623424470424652, 0.024875840172171593, 0.023333672434091568, 0.011579670011997223, -0.006309478543698788, 0.0015086426865309477, -0.005303717218339443, 0.023722566664218903, 0.03730705752968788, 0.003831952577456832, 0.008575795218348503, -0.01420135609805584, 0.013410156592726707, 0.014268406666815281, 0.004421999212354422, 0.0004982711398042738, -0.022126758471131325, 0.019914083182811737, 0.021643992513418198, 0.00877024233341217, -0.010151488706469536, 0.0005615503177978098, -0.006172024644911289, -0.005669143982231617, 0.02140261046588421, -0.0287781972438097, 0.013302875682711601, 0.0028245141729712486, -0.012283703312277794, 0.018787629902362823, 0.0005766367539763451, -0.017299102619290352, -0.0072683049365878105, 0.02523791417479515, -0.011023148894309998, 0.014925504103302956, 0.014013613574206829, -0.02354823611676693, -0.01650790311396122, 0.000825562747195363, -0.017138181254267693, 0.00817349087446928, -0.012109371833503246, 0.011237711645662785, 0.04154466465115547, 0.007945518009364605, -0.010533678345382214, -0.6230895519256592, -0.02100030519068241, 0.011948449537158012, -0.023829849436879158, -0.003188264789059758, -0.017687996849417686, -0.013799051754176617, 0.01741979271173477, -0.015609423629939556, 0.02551952749490738, -0.004492402542382479, -0.017956199124455452, 0.0014189622597768903, -0.0021087471395730972, -0.0015647977124899626, -0.016601774841547012, -0.0057261367328464985, -0.03510779142379761, 0.007858351804316044, 0.01984703168272972, -0.03280124440789223, 0.030494699254631996, -0.044199876487255096, -0.012478150427341461, 0.008515449240803719, -0.008843998424708843, -0.001840544049628079, -0.0030239904299378395, 0.0026334195863455534, 0.015341220423579216, -0.03218437731266022, 0.006805654615163803, 0.029690086841583252, -0.010178308933973312, 0.02104053646326065, -0.007798006758093834, 0.0024523823522031307, 0.04039139300584793, 0.002227762248367071, 0.02028956636786461, -0.02334708347916603, -0.022166989743709564, 0.019900672137737274, 0.015260759741067886, 0.008937869220972061, 0.005866943392902613, 0.019042422994971275, 0.015756934881210327, -0.013108428567647934, -0.018465785309672356, -0.022462012246251106, 0.00790528766810894, -0.0001966473791981116, -0.014523199759423733, 0.00019277099636383355, 0.0011792556615546346, 0.03660972788929939, -0.0010510210413485765, 0.009051855653524399, -0.02597547322511673, -0.010144783183932304, -0.00815337523818016, 0.003630799939855933, 0.0012337344232946634, -0.019619058817625046, -0.0009638550691306591, 0.012940801680088043, 0.03025331348180771, -0.0076102642342448235, -0.02770538441836834, 0.01302796695381403, 0.041437383741140366, -0.00913902185857296, -0.015917856246232986, -0.0003306441649328917, 0.018720578402280807, 0.006557566579431295, 0.005628913175314665, 0.012833519838750362, 0.027651743963360786, 0.027571281418204308, 0.007147613447159529, -0.01278658490628004, -0.017969610169529915, 0.02112099714577198, 0.008207015693187714, -0.014751172624528408, -0.004499107599258423, -0.0214428398758173, -0.019900672137737274, 0.00633965153247118, 0.023735977709293365, -0.027517640963196754, -0.05680542439222336, -0.007067152764648199, 0.007623674813657999, 0.0014776316238567233, 0.006721841171383858, 0.03033377416431904, -0.008548974990844727, 0.01688338816165924, -0.010339231230318546, 0.027759024873375893, 0.001917652552947402, 0.029046399518847466, 0.0015580925391986966, -0.0035168135073035955, 0.028107687830924988, 0.014992555603384972, -0.01750025525689125, -0.019619058817625046, -0.025747500360012054, -0.011204185895621777, 0.009662018157541752, -0.0030306954868137836, -0.035402812063694, 0.01233063917607069, 0.015703294426202774, -0.007925402373075485, -0.021214868873357773, 0.015475321561098099, 0.015073016285896301, 0.009822939522564411, 0.012712828814983368, 0.016078777611255646, 0.01072141993790865, 0.005535042379051447, -0.021992657333612442, -0.02136237919330597, 0.015877624973654747, -0.003367625642567873, -0.00798574835062027, 0.024473536759614944, 0.010493448004126549, 0.006765424273908138, 0.02947552502155304, 0.0103928716853261, -0.015837395563721657, 0.0011549497721716762, -0.021831735968589783, -0.01198197528719902, -0.0027256144676357508, 0.021228278055787086, -0.005367415025830269, -0.0358051173388958, -0.020557770505547523, -0.013758820481598377, 0.00012980612518731505, 0.004639914259314537, -0.0022646402940154076, -0.00384536269120872, 0.0036039797123521566, -0.01700407825410366, -0.002854687161743641, -0.010185014456510544, -0.01823781244456768, 0.007254894822835922, -0.03819212689995766, -0.028456352651119232, -0.027893126010894775, 0.008267361670732498, 0.04186651110649109, -0.02149648219347, 0.027812665328383446, -0.02663257159292698, -0.012169716879725456, -0.010962802916765213, 0.03915765881538391, -0.013678359799087048, -0.049966245889663696, 0.029797367751598358, -0.03902355581521988, -0.0070872679352760315, -0.01564965210855007, 0.006222312804311514, 0.010205129161477089, -0.003986169118434191, -0.003915765788406134, -0.00266526872292161, -0.022783856838941574, -0.023025238886475563, 0.010325821116566658, -0.03207709640264511, -0.008495334535837173, 0.023575056344270706, 0.009534621611237526, 0.0203834380954504, -0.017433203756809235, -0.02840271219611168, 0.012639072723686695, -0.000759350135922432, 0.0075298030860722065, -0.0043683587573468685, 0.01762094534933567, -0.0363147035241127, 0.010520268231630325, 0.020155465230345726, 0.0009948660153895617, 0.005072391591966152, 0.03588557988405228, 0.015354630537331104, 0.01340345200151205, 0.0049047647044062614, -0.029368244111537933, 0.01585080474615097, 0.010453217662870884, 0.009863169863820076, -0.03816530480980873, -0.0019461491610854864, 0.0043515958823263645, 0.018707169219851494, -0.008931164629757404, -0.0188144501298666, -0.025801140815019608, -0.020557770505547523, 0.041276462376117706, 0.0027474057860672474, 0.0327744223177433, -0.024393076077103615, -0.012994442135095596, 0.010889047756791115, -0.010647664777934551, -0.006296068429946899, -0.0021456251852214336, -0.011485799215734005, 0.01531440019607544, 0.011908219195902348, -0.004066630266606808, 0.008931164629757404, -0.016561543568968773, -0.015140066854655743, 0.015502141788601875, 0.008736717514693737, 0.021831735968589783, 0.008575795218348503, -0.021751273423433304, 0.01225017849355936, -0.002735672052949667, 0.022220630198717117, 0.001709794974885881, 0.0001999999221879989, -0.00014971183554735035, -0.0044152941554784775, -0.022998418658971786, -0.0002587741182651371, 0.01939108595252037, 0.04122282192111015, -0.007301830220967531, -0.025640219449996948, -0.013007852248847485, -0.007295125164091587, 0.004485697485506535, 0.013430272229015827, 0.00607144832611084, 0.006403349805623293, 0.0046600294299423695, 0.004572863690555096, 0.008327707648277283, 0.017674585804343224, 0.030065571889281273, -0.003932528663426638, 0.019605649635195732, 0.01092927809804678, 0.0011859607184305787, 0.0001876374299172312, -0.005558509845286608, 0.010748241096735, -0.014147715643048286, 0.00192268134560436, -0.0004362491599749774, 0.0018522778991609812, -0.014845043420791626, 0.006547509226948023, -0.0318625308573246, 0.022327911108732224, 0.025827961042523384, -0.000696909090038389, 0.03510779142379761, 0.008300887420773506, 0.020316386595368385, -0.0009730745805427432, -0.0350005105137825, 0.009098791517317295, 0.004059924744069576, -0.006835827603936195, -0.027732204645872116, -0.007053742650896311, -0.01408066414296627, -0.0296364463865757, 0.012726238928735256, 0.0009110525134019554, -0.00456951092928648, 0.000693975598551333, 0.00817349087446928, -0.020691871643066406, -0.005833418108522892, 0.009346879087388515, -0.01481822319328785, 0.004847771488130093, -0.020410258322954178, 0.01000397652387619, 0.001646096701733768, -0.02197924628853798, -0.017272282391786575, 0.017875738441944122, -0.0017584067536517978, -0.005099212285131216, -0.008797062560915947, -0.025921832770109177, -0.02424556389451027, 0.021523302420973778, 0.016481082886457443, 0.010205129161477089, -0.03255986049771309, 0.013269349932670593, -0.019860442727804184, -0.0008054475183598697, 0.010325821116566658, 0.01843896508216858, -0.008696486242115498, -0.0024875840172171593, 0.002286431845277548, 0.015944676473736763, 0.03180889040231705, 0.07359494268894196, 0.023534825071692467, -0.012002089992165565, 0.02173786424100399, -0.029877828434109688, 0.005756309721618891, -0.03178207203745842, -0.04323434457182884, 0.015984907746315002, 0.004834361374378204, -0.017071129754185677, -0.010117962956428528, 0.021791504696011543, -0.02643141895532608, 0.026297317817807198, 0.016293341293931007, -0.016816336661577225, -0.01367165520787239, 0.013839282095432281, -0.01955200918018818, 0.013530848547816277, 0.0010518591152504086, 0.020142056047916412, -0.002470821375027299, 0.019873851910233498, -0.0170443095266819, 0.017299102619290352, 0.027396950870752335, 0.0032905172556638718, -0.022985009476542473, 0.01500596571713686, -0.0011029853485524654, -0.02181832492351532, 0.0014558401890099049, -0.013329695910215378, 0.032211195677518845, 0.004851124249398708, 0.032962165772914886, 0.000758092908654362, 0.011049969121813774, -0.006772129330784082, 0.018291454762220383, 0.014603660441935062, -0.0073487660847604275, -0.02378961816430092, -0.0135040283203125, -0.004197379108518362, 0.019578829407691956, 0.0007865895167924464, -0.023212980479002, -0.008133260533213615, 0.00395264383405447, -0.05562533065676689, 0.028375891968607903, 0.0025747499894350767, -0.011606490239501, -0.014040433801710606, -0.002336719771847129, -0.0067084310576319695, 0.0073487660847604275, -0.0021892080549150705, -0.01621287874877453, 0.009662018157541752, -0.0002994236710947007, 0.040659595280885696, -0.0052199033088982105, -0.005964167416095734, 0.002539548324421048, -0.011901513673365116, 0.00823383592069149, -0.003630799939855933, -0.00648381095379591, -0.05895105004310608, 0.01412089541554451, 0.02454058639705181, 0.016253110021352768, 0.027598103508353233, -0.009648608043789864, -0.012806699611246586, 0.004861181601881981, 0.00341623742133379, -0.028644094243645668, 0.001261392841115594, -0.027061697095632553, 0.002663592342287302, -0.0038218949921429157, -0.030199673026800156, -0.01500596571713686, -0.0006059714360162616, 0.016776105388998985, 0.0022311147768050432, 0.006054685916751623, 0.010875636711716652, -0.013081608340144157, 0.008093029260635376, 0.03601968288421631, 0.011163955554366112, 0.029207320883870125, -0.0005380825605243444, -0.030360594391822815, 0.00384536269120872, -0.025908423587679863, -0.005307069513946772, -0.020329797640442848, 0.020557770505547523, 0.014952325262129307, 0.02623026631772518, 0.020799152553081512, -0.016816336661577225, -0.022301090881228447, 0.020477309823036194, -0.02000795304775238, -0.014603660441935062, 0.00126306910533458, 0.015622833743691444, 0.007684020325541496, 0.012739649042487144, 0.014161125756800175, -0.01736615225672722, -0.011311466805636883, -0.004512517713010311, -0.01321570947766304, 0.030494699254631996, 0.019417906180024147, -0.014845043420791626, 0.015233938582241535, 0.0016108950367197394, 0.0028446295764297247, -0.028295431286096573, 0.020142056047916412, 0.009279828518629074, 0.021912196651101112, 0.0005426922580227256, -0.0026367721147835255, -0.027598103508353233, 0.003966053947806358, -0.016695644706487656, -0.009702248498797417, -0.01676269620656967, -0.01843896508216858, 0.009132316336035728, -0.02635095827281475, -0.021456250920891762, -0.01605195738375187, 0.010573908686637878, -0.01798301935195923, -0.022622933611273766, 0.023896899074316025, 0.009105496108531952, 0.02939506433904171, -0.019873851910233498, 0.01107678934931755, -0.028831837698817253, -0.017835509032011032, 0.019176524132490158, -0.008428283967077732, 0.018210992217063904, 0.012384279631078243, 0.020034775137901306, 0.030816541984677315, 0.04776697978377342, 0.0013753791572526097, -0.0001487689296482131, 0.035912398248910904, -0.003999579232186079, 0.004757252987474203, 0.0021204811055213213, 0.020812563598155975, -0.021188046783208847, 0.011928334832191467, 0.02305205911397934, 0.006192139815539122, 0.018546245992183685, 0.013343106023967266, 0.023896899074316025, 0.00017307483358308673, -0.0050958595238626, -0.0075767384842038155, -0.008924459107220173, -0.027866305783391, -0.00546463904902339, 0.03038741648197174, -0.015435091219842434, 0.0048578293062746525, -0.02885865792632103, -0.006795596797019243, 0.027759024873375893, 0.01737956330180168, 0.02985100820660591, 0.007462752051651478, 0.024258973076939583, 0.010708009824156761, -0.013108428567647934, 0.018264632672071457, 0.028375891968607903, -0.018492605537176132, -0.003939233720302582, -0.02993147075176239, 0.0033961222507059574, 0.030146032571792603, 0.0024959654547274113, 0.003557044081389904, -0.004331480711698532, 0.0041370331309735775, -0.0004890516283921897, 0.014067254029214382, -0.000573703262489289, -0.025506118312478065, -0.0024054469540715218, -0.010634254664182663, -0.026337547227740288, -0.041973792016506195, -0.021711044013500214, 0.0034531154669821262, -0.006979986559599638, 0.0022428487427532673, 0.000508747820276767, 0.0023886840790510178, -0.02458081766963005, -0.042134713381528854, 0.005079096648842096, 0.0086227310821414, 0.03304262459278107, 0.01420135609805584, 0.0205845907330513, 0.015716703608632088, -0.00329889846034348, -0.026900773867964745, 0.009963746182620525, -0.002157358918339014, 0.007080562878400087, 0.0018271338194608688, -0.008186900988221169, -0.022488832473754883, -0.020115235820412636, 0.011492504738271236, 0.01048003789037466, -0.008837292902171612, -0.03910401836037636, 0.015636242926120758, 0.004934937693178654, 0.014536609873175621, -0.02259611338376999, -0.024151692166924477, 0.011593080125749111, 0.017352743074297905, 0.001461707055568695, 0.01794278994202614, 0.006034570746123791, -0.0006407540640793741, -0.02091984450817108, 0.01438909862190485, -0.00043583009392023087, 0.004100155550986528, 0.013490617275238037, -0.014415918849408627, 0.004482344724237919, -0.011666836217045784, -0.0037179659120738506, -0.0103928716853261, 0.021724453195929527, 0.001082870177924633, -0.014027023687958717, 0.04433397948741913, 0.03070926107466221, -0.0007731793448328972, -0.0017533779609948397, 0.01909606344997883, -0.007831531576812267, 0.028027227148413658, -0.03301580622792244, -0.015435091219842434, -0.000507490593008697, -0.021630583330988884, 0.022904546931385994, -0.0322648361325264, 0.0041068606078624725, -0.028724554926156998, -0.015596013516187668, -0.022529063746333122, 0.018345095217227936, 0.010969508439302444, -0.017848918214440346, -0.0007325297920033336, 0.013276055455207825, 0.008119849488139153, -0.007161023560911417, 0.004592978861182928, 0.009869875386357307, -0.016360390931367874, -0.01877421885728836, 0.0021154521964490414, -0.010138078592717648, 0.015663063153624535, -0.006959871388971806, -0.006182082463055849, 0.001090413425117731, 0.03516143187880516, 0.008877524174749851, -0.020718691870570183, 0.035054150968790054, 0.008877524174749851, -0.018291454762220383, 0.009192662313580513, 0.0066916681826114655, -0.022032886743545532, 0.023561645299196243, -0.004257724620401859, -0.008247246034443378, 0.0003327395243104547, 0.011559555307030678, 0.013879512436687946, 0.0043515958823263645, -0.0029669972136616707, -0.030119212344288826, 0.0067788343876600266, 0.0009144050418399274, -0.006487163249403238, 0.001266421633772552, -0.0046600294299423695, 0.00994363147765398, 0.0044622295536100864, 0.016186058521270752, -0.0314602293074131, 0.012297113426029682, -0.0035268713254481554, -0.00032645350438542664, -0.019565418362617493, -0.03846032917499542, 0.011827758513391018, -0.020075004547834396, 0.002601570449769497, -0.006286011077463627, -0.008542269468307495, 0.03416907787322998, 0.014630480669438839, -0.009534621611237526, 0.023440953344106674, 0.0030139328446239233, 0.005424408242106438, 2.97537862934405e-05, 0.021067356690764427, 0.025063583627343178, 0.004482344724237919, -0.02384325861930847, -0.019605649635195732, -0.006346356589347124, -0.0017449966398999095, -0.026498470455408096, -0.036985211074352264, -0.011700361967086792, 0.024232152849435806, 0.007898582145571709, -0.02947552502155304, -0.00710067804902792, -0.03046787716448307, -0.034061796963214874, 0.00139465625397861, -0.004888002295047045, -0.006678258068859577, -0.012323933653533459, 0.01782209798693657, 0.0035939221270382404, 0.016735875979065895, -0.011888103559613228, 0.019914083182811737, 0.0025948653928935528, 0.01885467953979969, -0.011512619443237782, 0.002790988888591528, -0.02086620405316353, -0.00967542827129364, -0.04218835383653641, -0.0038621253333985806, 0.020182285457849503, -0.00041655299719423056, -0.00994363147765398, 0.031594328582286835, 0.0013753791572526097, -0.011827758513391018, -0.014871863648295403, 0.023561645299196243, 0.023816438391804695, 0.014523199759423733, 0.017232051119208336, -0.019686110317707062, 0.0028781548608094454, -0.0030340480152517557, 0.0015547400107607245, -0.01029229536652565, -0.022542472928762436, 0.017956199124455452, 0.0021037182305008173, -0.0023132520727813244, -0.029207320883870125, 0.004073335323482752, 0.008160080760717392, -0.016789516434073448, 0.028536813333630562, 0.006104974076151848, -0.018331684172153473, 0.03162115067243576, 0.010030797682702541, 0.009179252199828625, -0.011485799215734005, 0.012639072723686695, -0.011438863351941109, -0.022086529061198235, 0.03942586109042168, -0.02205970697104931, 0.0084215784445405, -0.00030843360582366586, 0.007456046994775534, -0.0314602293074131, -0.005548452492803335, 0.014322047121822834, 0.005484754219651222, -0.021804915741086006, 0.026538699865341187, -0.015917856246232986, -0.04808882251381874, 0.007858351804316044, -0.020571179687976837, 0.008488629013299942, -0.012102666310966015, -0.029797367751598358, 0.019484957680106163, 0.011579670011997223, 0.0070872679352760315, 0.0011214243713766336, -0.015032785944640636, -0.013349810615181923, -0.006912935990840197, 0.008186900988221169, -0.011418748646974564, 0.0207857433706522, 0.23430225253105164, -0.018063481897115707, 0.018787629902362823, 0.024889251217246056, 0.002029962372034788, 0.001196018303744495, 0.007127498276531696, 0.01434886734932661, -0.011888103559613228, -0.02046389877796173, 0.009608377702534199, 0.008133260533213615, -0.042429737746715546, 1.6474587027914822e-05, 0.01012466847896576, -0.019820211455225945, -0.04631868004798889, -0.053828369826078415, -0.024379665032029152, 0.009179252199828625, 0.014697532169520855, -0.0161324180662632, 0.007429226767271757, -0.04776697978377342, 0.020933255553245544, -0.0001175484067061916, -0.0025278145913034678, -0.01163331139832735, 0.01712477020919323, 0.020477309823036194, -0.023078879341483116, 0.004492402542382479, 0.006158614531159401, 0.018291454762220383, -0.026485059410333633, 0.0003817703982349485, 0.014040433801710606, -0.001401361427269876, 0.01720523089170456, 0.0052534290589392185, 0.009172547608613968, -0.008039388805627823, 0.005608798004686832, 0.009366994723677635, -0.0043515958823263645, 0.006520688533782959, -0.022301090881228447, -0.006594444625079632, -0.012913980521261692, 0.021831735968589783, -0.018130531534552574, -0.017017489299178123, 0.015502141788601875, 0.018640117719769478, 0.0044320570304989815, 0.02169763296842575, -0.012652482837438583, 0.030789721757173538, 0.03376677632331848, 0.019404496997594833, -0.025680450722575188, 0.012129486538469791, -0.008495334535837173, 0.017674585804343224, -0.0038017795886844397, -0.003932528663426638, -0.010788471437990665, 0.021711044013500214, 0.0022512301802635193, -0.032988984137773514, 0.0047304327599704266, -0.03379359468817711, -0.013376631774008274, -0.0004555262567009777, -0.038353048264980316, -0.022086529061198235, 0.02374938689172268, 0.011070084758102894, 0.023333672434091568, 0.03457138314843178, -0.005793187767267227, 0.0009965422796085477, 0.010701305232942104, -0.02738353982567787, -0.007724250666797161, -0.04318070411682129, -0.004455524496734142, -0.006034570746123791, -0.01819758303463459, -0.023601876571774483, 0.020396849140524864, -0.027008056640625, -0.011029853485524654, -0.00127396488096565, -0.008904344402253628, -0.000632372684776783, 0.0243260245770216, 0.0028446295764297247, 0.009480981156229973, 0.0007174434140324593, -0.022368142381310463, 0.030575159937143326, 0.04945665970444679, 0.008461808785796165, -0.017111359164118767, 0.0027809313032776117, 9.104239143198356e-05, -0.0026820313651114702, 0.0035805117804557085, -0.01650790311396122, -0.0072683049365878105, -0.011666836217045784, 0.014751172624528408, 0.00076437892857939, -0.009809529408812523, 0.027893126010894775, -0.01786232925951481, 0.021684223785996437, 0.019873851910233498, -0.022797266021370888, -0.01198197528719902, -0.018586477264761925, -0.012592136859893799, 0.01918993517756462, -0.0021942369639873505, -0.014643890783190727, 0.01021183468401432, 0.005337242502719164, -0.021791504696011543, 0.002745729638263583, 0.017889149487018585, -0.024339433759450912, 0.01630675047636032, -0.004727080464363098, -0.013369926251471043, -0.02631072700023651, -0.0030206379014998674, 0.017634356394410133, 0.007013511843979359, 0.025586578994989395, -0.0026434771716594696, -0.012189832516014576, 0.0029334716964513063, 0.00046851736260578036, 0.01700407825410366, -0.021563531830906868, 0.007301830220967531, -0.0028932413551956415, 0.02243519201874733, -0.010573908686637878, -0.005732841789722443, 0.018023250624537468, 0.0007828178931958973, -0.02502335235476494, 0.016320161521434784, -0.013202299363911152, -0.031594328582286835, -0.041893329471349716, 0.010533678345382214, -0.006664847955107689, -0.028965938836336136, 0.004710317589342594, 0.005830065812915564, -0.0037146133836358786, -0.011391928419470787, -0.0179025586694479, -0.1699335128068924, -0.00815337523818016, 0.02939506433904171, -0.03607332333922386, 0.026914184913039207, -0.01750025525689125, 0.008649551309645176, -0.005243371240794659, -0.016279930248856544, -0.015756934881210327, 0.012665892951190472, -0.01873398944735527, -0.015823984518647194, -0.02993147075176239, -0.021456250920891762, 0.004737137816846371, -0.024433305487036705, 0.004294602666050196, 0.0005347299738787115, 0.008341117762029171, 0.03457138314843178, -0.024634458124637604, 0.004636561498045921, -0.001847249106504023, -0.020812563598155975, 0.00815337523818016, -0.0008565737516619265, 0.025412246584892273, 0.0031580920331180096, -0.021174637600779533, 0.008931164629757404, 0.009031740948557854, 0.028509993106126785, -0.009427339769899845, 0.0026853838935494423, 0.004629856441169977, 0.018331684172153473, -0.038969915360212326, -0.010875636711716652, 0.01853283680975437, 0.026029113680124283, -0.007925402373075485, 0.012478150427341461, -0.007650495041161776, -0.031889352947473526, 0.011023148894309998, 0.021711044013500214, -0.0035235187970101833, -0.00033923506271094084, -0.03486640751361847, 0.01564965210855007, -0.0014432681491598487, 0.009353584609925747, 0.013799051754176617, 0.016494492068886757, 0.0003191198338754475, 0.009299944154918194, 0.01913629285991192, 0.008723307400941849, -0.01897537149488926, -0.021389199420809746, -0.006765424273908138, -0.002408799482509494, 0.007355471141636372, -0.019954312592744827, -0.009688838385045528, -0.010942688211798668, -0.01621287874877453, -0.030441056936979294, -0.0021171285770833492, -0.03384723514318466, -0.0021959131117910147, -0.03494687005877495, -0.024875840172171593, 0.030199673026800156, 0.0075298030860722065, -0.015274169854819775, -0.007107383105903864, 0.002097013173624873, 0.002348453737795353, -0.011318172328174114, 0.020597999915480614, -0.009092085994780064, 0.018465785309672356, 0.009668722748756409, -0.01031241100281477, 0.01163331139832735, -0.007409111596643925, -0.05157546326518059, -0.00897139497101307, 0.009782709181308746, -0.02400417998433113, -0.0007346251513808966, -0.016320161521434784, -0.0005598740535788238, 0.017017489299178123, 0.026860544458031654, -0.0188144501298666, 0.025465887039899826, -0.012424509972333908, 0.007147613447159529, 0.01438909862190485, -0.01045992225408554, 0.001652801875025034, 0.030870182439684868, 0.01737956330180168, -0.028268611058592796, 0.0028396006673574448, 0.02362869679927826, -0.008495334535837173, -0.012954211793839931, -0.003349186619743705, 0.023481184616684914, 0.01927039586007595, -0.018492605537176132, 0.04664052650332451, 0.0035101084504276514, -0.00758344354107976, 0.02601570449769497, 0.018881501629948616, 0.059970222413539886, 0.015528962016105652, -0.027812665328383446, 0.0021456251852214336, -0.016454262658953667, -0.04503130540251732, -0.09011625498533249, -0.018492605537176132, 0.011707066558301449, -0.0038218949921429157, -0.005669143982231617, 0.0042007314041256905, -0.02042366936802864, 0.010158193297684193, -0.031057924032211304, 0.013155363500118256, -0.03242575749754906, -0.002286431845277548, 0.025707270950078964, -0.004814246203750372, 0.011063379235565662, -0.0005623884499073029, 0.0005242532934062183, -0.00921948254108429, -0.017057718709111214, 0.029529165476560593, -0.017392972484230995, 0.0013904656516388059, 0.018224403262138367, 0.002210999606177211, -0.0059574623592197895, 0.004844419192522764, -0.03508096933364868, 0.01716500148177147, 0.002995493821799755, -0.013490617275238037, 0.0017232050886377692, -0.02000795304775238, 0.0068660001270473, -0.018506016582250595, 0.01823781244456768, 0.0015807222807779908, -0.01851942576467991, -0.020973484963178635, 0.004737137816846371, -0.026404598727822304, -0.02070528268814087, -0.010949392803013325, 0.0028245141729712486, 0.003677735570818186, -0.0024389722384512424, -0.01676269620656967, -0.01889491081237793, 0.014630480669438839, 0.012893865816295147, -0.040284112095832825, -0.01923016458749771, -0.01311513315886259, -0.01939108595252037, 0.00903844553977251, 0.04409259557723999, 0.00443540932610631, -0.010573908686637878, -0.0015471968799829483, 0.004807541146874428, -0.014710942283272743, -0.0033374526537954807, -0.012799995020031929, -0.02104053646326065, 0.0314602293074131, 0.03116520680487156, -0.01976657100021839, -0.0034397051203995943, -0.02148307114839554, 0.008984805084764957, -0.019042422994971275, -0.013182183727622032, 0.016253110021352768, -8.695648284628987e-05, 0.010573908686637878, -0.030441056936979294, -0.014456149190664291, -0.029421884566545486, -0.0061217364855110645, 0.0014826604165136814, -0.006098269019275904, -0.02547929808497429, -0.014563430100679398, -0.012370869517326355, -0.009715658612549305, -0.006027865689247847, -0.0058602383360266685, -0.021845145151019096, -0.004180616233497858, 0.022421782836318016, -0.02100030519068241, -0.0026434771716594696, 0.03172843158245087, 0.008160080760717392, -0.0063195363618433475, -0.003939233720302582, -0.0012823462020605803, 0.001398008898831904, 0.007865057326853275, 0.0018858032999560237, 0.049376197159290314, -0.0062021976336836815, -0.008864114060997963, -0.05723454803228378, 0.019337445497512817, -0.010111258365213871, -0.015448501333594322, -0.003422942478209734, 0.0094072250649333, 0.020021364092826843, 0.013470502570271492, 0.007382291369140148, -0.008582500740885735, -0.023910310119390488, -0.0029502345714718103, -0.02096007578074932, -0.0063027734868228436, -0.009494391269981861, -0.014724352397024632, 0.02551952749490738, -0.01835850439965725, 0.028509993106126785, 0.009601672179996967, 0.0035134609788656235, 0.00992351584136486, 0.008877524174749851, 0.03154068812727928, -0.00674195634201169, -0.023212980479002, 0.0062658959068357944, 0.0005238342564553022, 0.005719431675970554, 0.00612508924677968, 0.009232892654836178, -0.01737956330180168, 0.009313354268670082, 0.03170160949230194, 0.007630379870533943, 0.0034363525919616222, 0.008012568578124046, 0.003184912260621786, 0.016682235524058342, 0.03902355581521988, -0.021992657333612442, -0.027276258915662766, 0.016561543568968773, -0.020075004547834396, -0.00959496758878231, -0.0010937659535557032, 0.013611309230327606, -0.002539548324421048, 0.036582909524440765, -2.574645259301178e-05, 0.027651743963360786, 0.021509891375899315, -0.011385222896933556, -0.009769299067556858, -0.02116122655570507, 0.011519324965775013, 0.015998316928744316, 0.0022596113849431276, -0.00241382815875113, -0.0207857433706522, 0.03306944668292999, 0.005518279504030943, -0.0015731790335848927, 0.00585688604041934, 0.008562385104596615, -0.01056049857288599, -0.014429328963160515, -0.008401462808251381, 0.025667039677500725, -0.04041821137070656, -0.005843475926667452, -0.0035168135073035955, 0.014308637008070946, 0.010030797682702541, 0.027759024873375893, 0.004978520795702934, -0.016481082886457443, 0.0221535786986351, -0.025962064042687416, 0.0214428398758173, 0.0029519107192754745, -0.003681088099256158, -0.0008469352032989264, 0.00765720009803772, 0.025707270950078964, 0.0292341411113739, -0.008200311101973057, 0.0026904128026217222, -0.01074153557419777, 0.0009990567341446877, -0.0020634878892451525, 0.008448398672044277, 0.004244314506649971, 0.0008528021280653775, 0.011271236464381218, 0.018640117719769478, -0.00030172851984389126, 0.01082870177924633, 0.012323933653533459, -0.018506016582250595, 0.02030297741293907, 0.006235722918063402, -0.016950437799096107, -0.029958290979266167, -0.02478197030723095, 0.003966053947806358, -0.020879613235592842, -0.02679349295794964, 0.006379881873726845, 0.018841270357370377, -0.0025579873472452164, -0.01090916246175766, -0.013349810615181923, -0.007020216900855303, -0.02531837671995163, 0.014751172624528408, 0.007288420107215643, -0.031889352947473526, -0.026659391820430756, 0.005551804788410664, 0.03001193143427372, 0.015448501333594322, 0.04924209415912628, 0.01799643039703369, 0.02050413005053997, 0.023320263251662254, 0.0016100569628179073, 0.0034531154669821262, 0.028590453788638115, 0.002425562124699354, -0.01811712235212326, -0.002916709054261446, 0.02478197030723095, -0.007060447707772255, -0.026699621230363846, 0.01531440019607544, -0.012706123292446136, 0.03537599369883537, -0.0015136714791879058, 0.0840548649430275, 0.0010702981380745769, -0.0031681496184319258, -0.011680246330797672, -0.028295431286096573, -0.0035168135073035955, 0.006728546228259802, 0.020021364092826843, -0.006047980859875679, 0.02054435946047306, -0.019042422994971275, 0.013604603707790375, -0.018988782539963722, -0.021509891375899315, -0.00341623742133379, 0.0221535786986351, -0.0036375049967318773, -0.002668621251359582, -0.015140066854655743, 0.0031312715727835894, 0.04245655611157417, -0.010258769616484642, -0.009930221363902092, 0.0025730738416314125, -0.030521519482135773, -0.021429430693387985, 0.039291758090257645, 0.0029385006055235863, -0.0014365630922839046, -0.03660972788929939, 0.004073335323482752, 0.017138181254267693, -0.04757923632860184, -0.02342754416167736, 0.007556623313575983, 0.009762594476342201, -0.0069531663320958614, -0.0021741215605288744, 0.017687996849417686, 0.0015656357863917947, 0.0205845907330513, 0.01951177790760994, -0.005853533279150724, -0.0205845907330513, -0.022797266021370888, 0.014496379531919956, -0.016320161521434784, -0.028590453788638115, -0.02112099714577198], '_distance': 0.35345977544784546}),\n", + " Document(page_content='The Illustrated Transformer – Jay Alammar – Visualizing machine learning one concept at a time.\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nJay Alammar\\nVisualizing machine learning one concept at a time.@JayAlammar on Twitter. YouTube Channel\\n\\n\\nBlog\\nAbout\\n\\n\\n\\n\\n\\n\\nThe Illustrated Transformer\\n\\nDiscussions:\\nHacker News (65 points, 4 comments), Reddit r/MachineLearning (29 points, 3 comments)\\n\\n\\nTranslations: Arabic, Chinese (Simplified) 1, Chinese (Simplified) 2, French 1, French 2, Italian, Japanese, Korean, Persian, Russian, Spanish 1, Spanish 2, Vietnamese\\n\\nWatch: MIT’s Deep Learning State of the Art lecture referencing this post', metadata={'vector': [-0.01995760016143322, -0.01293110754340887, 0.02453695610165596, -0.007925305515527725, 0.016309859231114388, -0.010300273075699806, -0.006226088851690292, -0.002630834234878421, -0.02243753708899021, -0.032147347927093506, 0.023093605414032936, 0.026820074766874313, -0.002322481945157051, 0.004969717934727669, 0.012708044610917568, 0.009886950254440308, 0.02301487885415554, 0.0023405239917337894, -0.007971230894327164, -0.016651015728712082, -0.015076451003551483, 0.02242441661655903, 0.00028661987744271755, -0.03180619329214096, -0.0037658323999494314, 0.010201863013207912, 0.02721371501684189, -0.032357290387153625, 0.022043896839022636, -0.016782227903604507, 0.028027240186929703, 0.0006700098165310919, -0.010306834243237972, -0.009486748836934566, -0.008135247975587845, 0.0006921521271578968, 0.020285634323954582, -0.007361087016761303, 0.027502385899424553, -0.025101175531744957, 0.031570009887218475, 0.002647235756739974, 0.0021814273204654455, -0.0353752076625824, -0.002237193053588271, 0.030310358852148056, 0.0003009713545907289, -0.021033551543951035, -0.008496085181832314, 0.04450767859816551, 0.021505920216441154, 0.025770364329218864, -0.006980567239224911, -0.028630822896957397, -0.02642643265426159, 0.019918235018849373, 0.00011686217476380989, 0.01732020452618599, 0.013154170475900173, 0.004474386107176542, 0.004326771013438702, -0.0005761100328527391, -0.01124501135200262, -0.017188990488648415, -0.001525358995422721, -0.02207013964653015, -0.020967945456504822, 0.019577080383896828, 0.0213222224265337, 8.744161459617317e-05, 0.041411034762859344, 0.026767589151859283, -0.01171081978827715, -0.032934632152318954, 0.039783984422683716, -0.0151945436373353, 0.0047335331328213215, -0.004129950422793627, -0.01852736994624138, 0.00655740313231945, 0.010044406168162823, 0.010569261386990547, 0.00771536398679018, 0.018986618146300316, 0.007144584320485592, 0.004782738164067268, -0.005258387885987759, 0.0020764563232660294, -0.018028758466243744, -0.015627548098564148, 0.00010122929961653426, 0.0034902836196124554, 0.016677258536219597, 0.010333077050745487, -0.00450390949845314, 0.020443089306354523, -0.002519302535802126, 0.019078467041254044, 0.017031535506248474, -0.02179459109902382, -0.003933129832148552, -0.0039036066737025976, -0.009440823458135128, -0.014525353908538818, -0.023237941786646843, 0.005724196322262287, 0.007275797892361879, 0.019498351961374283, 0.011330300942063332, 0.0019173597684130073, 7.790811650920659e-05, 0.02254250831902027, -0.010713595896959305, -0.03954780101776123, -0.0042775655165314674, -0.031989894807338715, 0.009342413395643234, -0.00810900516808033, 0.029680533334612846, -0.021282857283949852, 0.03571636229753494, 0.03422052413225174, -0.005442087072879076, 0.0020584145095199347, 0.017556389793753624, 0.016126159578561783, -0.005465049296617508, -0.004484227392822504, -0.028604580089449883, -0.0044678254052996635, -0.011015388183295727, 0.008384553715586662, -0.0015712836757302284, -0.0023634862154722214, -0.025363603606820107, 0.008318946696817875, -0.0072561162523925304, 0.012675240635871887, -0.012944228947162628, -0.020246269181370735, -0.0024733776226639748, -0.0027341649401932955, 0.0027718888595700264, -0.011730502359569073, -0.01111379824578762, 0.028027240186929703, -0.009598280303180218, 0.041935890913009644, -0.007813774049282074, -0.0005416664644144475, 0.004461264703422785, -0.01995760016143322, -0.001276052906177938, 0.012806454673409462, 0.014525353908538818, 0.016296738758683205, 0.0022306323517113924, 0.029523076489567757, -0.00564546836540103, 0.015299513936042786, -0.0012506303610280156, 0.013088563457131386, -0.020705517381429672, -0.01822557859122753, 0.020416846498847008, 0.018448641523718834, 0.028762036934494972, -0.012622755020856857, -0.0005843109101988375, -0.0028096127789467573, -0.016965927556157112, 0.026203369721770287, -0.0488639697432518, 0.014997722581028938, -0.0005043525598011911, -0.0013621619436889887, 0.0153257567435503, -0.021991411224007607, -0.055214714258909225, -0.007872819900512695, 0.010064088739454746, 0.0040151383727788925, 0.015706276521086693, 0.01072015706449747, -0.004408779554069042, -0.008338629268109798, 0.010707035660743713, -0.04117485135793686, -0.006048950366675854, -0.015758762136101723, 0.009106229059398174, 0.041306063532829285, -0.010247787460684776, -0.001403166214004159, -0.6302455067634583, -0.037946995347738266, -0.006094875279814005, 0.00484506506472826, -0.0004809801175724715, -0.005514254793524742, -0.01711026206612587, -0.0022355529945343733, -0.013672464527189732, 0.001976405968889594, 0.007643196266144514, -0.012793333269655704, -0.004471105989068747, -0.005822606850415468, 0.010201863013207912, -0.022306324914097786, -0.005176379345357418, -0.043615423142910004, -0.0016696939710527658, 0.02359221875667572, -0.009276806376874447, 0.006586926523596048, -0.03017914481461048, -0.014367897063493729, -0.0012186469975858927, -0.0020485734567046165, 0.0023798879701644182, 0.009329291991889477, -0.005665150471031666, 0.001413827296346426, -0.02258187346160412, 0.0225949939340353, 0.028919493779540062, 5.93024305999279e-05, 0.03757959604263306, 0.014617202803492546, -0.007675999775528908, 0.033302031457424164, 0.024038344621658325, 0.03143879398703575, -0.026242734864354134, -0.031465038657188416, 0.016572287306189537, 0.013541251420974731, -0.000305481837131083, 0.007400451228022575, 0.014774659648537636, -0.013298505917191505, -0.0022716366220265627, -0.011802669614553452, -0.019314652308821678, -0.012970471754670143, -0.0033131451345980167, -0.001668873941525817, 0.013764314353466034, 0.0038281588349491358, 0.029155677184462547, 0.01221599243581295, 0.008751952089369297, -0.01264243759214878, -5.105031959828921e-05, -0.0094801876693964, -0.01079232431948185, 0.0017976273084059358, -0.006488515995442867, 0.014499111101031303, 0.014276047237217426, -0.00903406087309122, -0.015365120954811573, -0.027712328359484673, 0.0353752076625824, 0.018763555213809013, -0.02716122940182686, -0.015155179426074028, -0.0007097839843481779, 0.023552853614091873, 0.016283616423606873, -0.006468833889812231, 0.020561182871460915, 0.008863483555614948, 0.011625531129539013, 0.0020862973760813475, -0.0030851615592837334, -0.014039862900972366, 0.02633458375930786, 0.020718639716506004, -0.011966686695814133, -0.004805700853466988, -0.01875043287873268, -0.00389048526994884, 0.017031535506248474, 0.015063329599797726, -0.026137763634324074, -0.05999089032411575, 0.017490781843662262, 0.01021498441696167, -0.003959372639656067, 0.01863234117627144, 0.016388587653636932, -0.025245510041713715, 0.005930858198553324, -0.004152912646532059, 0.02296239323914051, 0.0007015831070020795, 0.021466556936502457, 0.001275232876650989, -0.012314403429627419, 0.00554049713537097, 0.026098398491740227, -0.039574041962623596, -0.00969013012945652, -0.014433504082262516, -0.034351740032434464, 0.0016450914554297924, -0.016401708126068115, -0.031097641214728355, 0.020705517381429672, 0.010595504194498062, -0.00567499129101634, -0.02516678161919117, 0.032147347927093506, -0.009381777606904507, 0.013022957369685173, -0.0060259876772761345, 0.005366639234125614, 0.0018566735088825226, -0.004320210311561823, -0.02111227996647358, -0.010687354020774364, 0.04248698800802231, -0.002949027344584465, -0.002343804109841585, 0.02174210548400879, -0.008883165195584297, 0.0026341143529862165, 0.002396289724856615, 0.006062071770429611, 0.006790307350456715, -0.00554049713537097, -0.019288409501314163, -0.01943274401128292, -0.012327524833381176, 0.013593736104667187, 0.008961893618106842, -0.05017610639333725, -0.017451418563723564, -0.0019255606457591057, -0.006521319504827261, 0.006383545231074095, 0.017831938341259956, -0.032462261617183685, 0.004356293939054012, -0.024471350014209747, 0.022030776366591454, 0.004746654536575079, 0.0010915336897596717, 0.006249051075428724, -0.0223325677216053, -0.04033508151769638, -0.03059902787208557, 0.006544281728565693, 0.03705473989248276, -0.03075648471713066, 0.02163713425397873, -0.007400451228022575, 0.009611401706933975, -0.0023552854545414448, 0.04400906711816788, -0.03374815732240677, -0.01833054982125759, 0.020679274573922157, -0.040151383727788925, -0.0005285450606606901, 0.0016139281215146184, -0.017438296228647232, 0.028945736587047577, 0.005766841117292643, -0.01810748688876629, -0.005783242639154196, -0.020889217033982277, -0.014289168640971184, 0.00754478620365262, -0.003506685374304652, -0.016913441941142082, 0.024025224149227142, 0.016808470711112022, 0.04689576476812363, 0.0034574803430587053, -0.009145593270659447, -0.020443089306354523, -0.016979049891233444, 0.014236683025956154, 0.0004506369587033987, 0.022148868069052696, -0.011126919649541378, 0.024838747456669807, -0.0030703998636454344, -0.019655808806419373, 0.007223312743008137, 0.033039603382349014, 0.003982334863394499, 0.013383794575929642, 0.016309859231114388, 0.010890734381973743, 0.009722933173179626, -0.025258632376790047, 0.0116911381483078, -0.030730241909623146, 0.013908648863434792, 0.009066864848136902, 0.021755225956439972, -0.010306834243237972, 0.0027735289186239243, -0.04259195923805237, -0.0011038350639864802, 0.02432701550424099, 0.002519302535802126, 0.04560987278819084, -0.011842033825814724, -0.02222759649157524, -0.005704514216631651, 0.005743878427892923, 0.021781468763947487, -0.006111276801675558, 0.007242994848638773, 0.050149865448474884, 0.0043497332371771336, -0.00902750063687563, 0.0055733006447553635, -0.05301032215356827, -0.005592982750386, 0.011048191227018833, -0.009421141818165779, 0.028709551319479942, 0.0046121603809297085, 0.007177387829869986, -0.0029359059408307076, -0.00852888822555542, 0.03574260324239731, 0.009447384625673294, -0.007846578024327755, 0.016913441941142082, -0.0025701478589326143, -0.01124501135200262, 0.011094115674495697, 0.029890473932027817, 0.032619718462228775, -0.009860707446932793, -0.03450919687747955, -0.00041701344889588654, -0.01574563980102539, -0.0013293585507199168, 0.0010234666988253593, 0.005025483667850494, -0.0006892818491905928, 0.00436941534280777, 0.007879381068050861, -0.00908654648810625, 0.02347412519156933, 0.003160609398037195, 0.0024012101348489523, 0.01859297789633274, 0.01737269014120102, 0.015824368223547935, 0.0034476392902433872, -0.008122126571834087, 0.006462273187935352, -0.014682809822261333, -0.009631083346903324, 0.0011661614989861846, -0.016021190211176872, -0.020771123468875885, 0.015876853838562965, -0.02254250831902027, 0.0067509436048567295, -0.011960126459598541, 0.007190509233623743, 0.006993688642978668, 0.02006257139146328, 0.019235923886299133, -0.016651015728712082, -0.04319554194808006, 0.003044157288968563, 0.012484980747103691, -0.00613423902541399, -0.01775320991873741, -0.024523835629224777, -0.009742614813148975, -0.010497094132006168, 0.001212086295709014, 0.0017713846173137426, 0.014879630878567696, 0.009906631894409657, -0.00987382885068655, -0.01880291849374771, -0.0020534938666969538, 0.04075496643781662, -0.016598530113697052, -0.01910470984876156, -0.010169059969484806, 0.009486748836934566, 0.0005478170933201909, -0.00664597237482667, -0.0018353512277826667, 0.016677258536219597, 0.007177387829869986, -0.012944228947162628, -0.017175870016217232, -0.007577589713037014, -0.027528628706932068, -0.007105220574885607, -0.01031995564699173, -0.0005318254115991294, -0.00043464527698233724, 0.022673722356557846, -0.010497094132006168, 0.004546553827822208, 0.0007188048912212253, 0.017556389793753624, 0.012124143540859222, -0.009801661595702171, -0.017359569668769836, -0.013974255882203579, 0.02642643265426159, 0.07510670274496078, 0.0034804425667971373, -0.027371171861886978, 0.005317434202879667, -0.03579508885741234, -0.0037231878377497196, -0.01728084124624729, -0.028105968609452248, 0.007400451228022575, -0.011323739774525166, -0.016047433018684387, 0.004559675231575966, 0.020141297951340675, -0.01901286095380783, 0.020928580313920975, -0.001817309414036572, 0.003198333317413926, -0.00976885762065649, 0.014000498689711094, -0.020206905901432037, -0.008673223666846752, -0.016086796298623085, 0.01585061103105545, 0.0028998220805078745, 0.019616443663835526, -0.027738571166992188, 0.04511126130819321, 0.024969961494207382, -0.008587935008108616, -0.03175370767712593, -0.005999745335429907, 0.02390713058412075, 0.016611650586128235, -0.0033951536752283573, -0.012760529294610023, 0.03584757447242737, 0.01770072430372238, 0.03390561416745186, -0.01323945913463831, -0.0013490405399352312, 0.0005203442415222526, 0.026518283411860466, 0.005077969282865524, -0.014918994158506393, 0.004572796635329723, -0.010602064430713654, -0.007702242583036423, 0.029103191569447517, -0.002689880318939686, -0.017188990488648415, 0.007997473701834679, -0.006901839282363653, -0.031779952347278595, 0.0022404734045267105, 0.001180102932266891, 0.016021190211176872, -0.0068952785804867744, -0.005055006593465805, -0.019052226096391678, 0.0012588311219587922, -0.019091589376330376, -0.031570009887218475, 0.0038019162602722645, -0.0056684305891394615, 0.01847488433122635, -0.00913903210312128, -0.006583645939826965, -0.023041121661663055, -0.03416803851723671, 0.020049449056386948, -0.008220536634325981, -0.026413312181830406, -0.05154072865843773, 0.0012973751872777939, 0.007131462916731834, -0.0016811751993373036, 0.012576830573379993, -0.02195204794406891, 0.0007434074650518596, 0.007236434146761894, -0.020679274573922157, -0.013895527459681034, -0.011389346793293953, -0.03101891279220581, 0.009742614813148975, -0.026098398491740227, -0.006314658094197512, -0.0012301282258704305, -0.007124902214854956, 0.028210939839482307, 0.032094866037368774, -0.012648997828364372, 0.02538984641432762, -0.001132537960074842, 0.010674232617020607, 0.020154420286417007, 0.0317012220621109, 0.007485739886760712, 0.012734286487102509, -0.026255855336785316, 0.007531664799898863, -0.03820941969752312, 0.0004953315947204828, -0.009558916091918945, -0.011592728085815907, 0.0029473870526999235, 0.008994697593152523, 0.016139281913638115, -0.01684783585369587, -0.016126159578561783, 0.010123134590685368, 0.0023946494329720736, -0.0007270057685673237, -0.016729742288589478, -0.006137519609183073, 0.014197319746017456, 0.01485338807106018, -0.011363103985786438, -0.003477162215858698, -0.027922268956899643, 0.020311877131462097, -0.003641179297119379, 0.013869285583496094, 0.012937667779624462, -0.007964669726788998, 0.03180619329214096, 0.0058816527016460896, -0.0023897290229797363, -0.016755985096096992, 0.008010595105588436, 0.016191767528653145, 0.026872560381889343, -0.01854049228131771, -0.011389346793293953, -0.027817297726869583, -0.007380769122391939, -0.011021948419511318, 0.011330300942063332, 0.005707794800400734, -0.014341654255986214, 0.006235929671674967, 0.007872819900512695, -0.00635730242356658, -0.008391113951802254, -0.0017402212833985686, -0.023198576644062996, -0.023461004719138145, 0.00795154832303524, 0.013554371893405914, 0.020088812336325645, -0.004917232319712639, 0.011212208308279514, -0.011015388183295727, -0.015260149724781513, -0.011933883652091026, -0.027738571166992188, -0.00759727181866765, -0.0009414580999873579, 0.023027999326586723, 0.015653790906071663, 0.056159451603889465, 0.0010702115250751376, 0.017674481496214867, 0.03532272204756737, -0.01276709046214819, -0.0015696435002610087, 0.016913441941142082, 0.015785004943609238, -0.02527175284922123, 0.008935650810599327, 0.014814023859798908, 0.0013219777029007673, 0.01163865253329277, 0.0006847713375464082, 0.008535449393093586, 0.006531160324811935, 0.013501887209713459, -0.004966437350958586, -0.005209182854741812, -0.023867767304182053, -0.004799140151590109, 0.02385464496910572, -0.00852888822555542, -0.011769866570830345, -0.010510215535759926, 0.002435653703287244, 0.04513750225305557, 0.013541251420974731, 0.021295979619026184, 0.024773141369223595, 0.019472109153866768, -0.008935650810599327, 0.010300273075699806, 0.01932777464389801, 0.024248287081718445, -0.009631083346903324, -0.005284630693495274, -0.03991520032286644, -0.005061567295342684, 0.026203369721770287, 0.024943718686699867, 0.021033551543951035, 0.012196310795843601, 0.005996464751660824, 0.00020327868696767837, 0.01932777464389801, 0.001047249068506062, -0.010011603124439716, -0.005484731402248144, -0.028184697031974792, -0.01327226310968399, -0.03164873644709587, -0.0080565195530653, -0.01964268647134304, -0.009939435869455338, 0.008778194896876812, -0.0018566735088825226, 0.022923028096556664, -0.022870542481541634, -0.03781577944755554, 0.014171076938509941, 0.017517024651169777, 0.03259347751736641, 0.016874078661203384, 0.017149627208709717, 0.038944218307733536, -7.806188659742475e-05, -0.02027251198887825, 0.027974754571914673, -0.010050967335700989, 0.006180163938552141, 0.0052419863641262054, 0.023605339229106903, -0.02242441661655903, -0.020403726026415825, 0.022135745733976364, -0.034299254417419434, 0.003337747883051634, -0.04755183309316635, -0.006649252958595753, 0.016401708126068115, 0.00795154832303524, -0.029050707817077637, -0.018501127138733864, -0.008102444000542164, -0.008988136425614357, -0.0015023965388536453, 0.0022191512398421764, 0.0010816927533596754, -0.003959372639656067, -0.0058455690741539, 0.006524599622935057, -0.003091722261160612, 0.005110772326588631, -0.011717380955815315, -0.013895527459681034, 0.013829921372234821, -0.017018413171172142, -0.03721219673752785, -0.004631842486560345, 0.02238505333662033, 0.020626788958907127, -0.008030276745557785, 0.024077709764242172, 0.021886439993977547, 0.005258387885987759, -0.010070648975670338, -0.007741606794297695, -0.018448641523718834, 0.029575562104582787, -0.014171076938509941, -0.010602064430713654, -0.007944988086819649, 0.004205398261547089, 0.0014048063894733787, -0.014184198342263699, -0.008968454785645008, -0.012393130920827389, -0.011881398037075996, 0.0015827649040147662, 0.021991411224007607, 0.0012202871730551124, -0.01287862192839384, 0.0026291939429938793, -0.005051726475358009, 0.00858137384057045, -0.001349860685877502, 0.0049762786366045475, 0.006875596474856138, -0.032199833542108536, -0.0007110140868462622, -0.003985615447163582, -0.005921016912907362, 0.02105979435145855, 0.013042639009654522, -0.014013620093464851, 0.007840016856789589, 0.013934891670942307, -0.002811252838000655, -0.002538984641432762, 0.030625270679593086, 0.000411682907724753, -0.012970471754670143, 0.006170323118567467, -0.002396289724856615, -0.005343677010387182, 0.020298754796385765, -0.012445616535842419, -0.018461763858795166, -0.019918235018849373, -0.00907998625189066, 0.016651015728712082, -0.00542240496724844, -0.0022831179667264223, -0.01827806420624256, 0.007623514160513878, -0.013173853047192097, -0.01363310031592846, -0.013672464527189732, 0.005360078532248735, -0.0076825604774057865, -0.006249051075428724, 0.018606098368763924, -0.012498102150857449, 0.013173853047192097, -0.00863385945558548, 0.0022240716498345137, 0.007787531241774559, -0.023985859006643295, 0.005035324487835169, 0.007774410303682089, 0.004789298865944147, -0.003172090509906411, -0.0033033040817826986, -0.007000249344855547, 0.005514254793524742, -0.029339376837015152, -0.004927073605358601, -0.01579812541604042, 0.006235929671674967, -0.004704010207206011, 0.023762796074151993, 0.02469441294670105, 0.0006454072427004576, -0.00800403393805027, -0.026400191709399223, -0.010254348628222942, -0.00501564284786582, -0.018816040828824043, -0.020731760188937187, -0.011559924110770226, 2.1399104298325256e-05, 0.021807711571455002, -0.01237344928085804, -0.014499111101031303, -0.023093605414032936, -0.010116574354469776, -0.015666913241147995, -0.0018632340943440795, 0.009250563569366932, -0.0048286630772054195, -0.010851371102035046, -0.001753342687152326, 0.028105968609452248, 0.012360327877104282, 0.012091339565813541, 0.00992631446570158, 0.033302031457424164, -0.0016090077115222812, 0.005865251179784536, -0.028184697031974792, -0.01927528902888298, -0.03369567170739174, -0.03611000254750252, 0.010234666056931019, 0.011494318023324013, -0.008732269518077374, 0.018934132531285286, -0.018816040828824043, -0.001812388887628913, -0.0009611401474103332, -0.002730884589254856, 0.011828912422060966, -0.0023798879701644182, 0.019249046221375465, -0.016231130808591843, -0.0014072665944695473, -0.0060292682610452175, 0.013974255882203579, -0.007433254737406969, -0.003444358939304948, 0.014446625486016273, 0.010129695758223534, -0.00402825977653265, -0.028184697031974792, 0.019039103761315346, 0.003513246076181531, -0.006855914369225502, 0.03044157102704048, -0.009519551880657673, -0.0133969159796834, 0.02284429967403412, 0.015076451003551483, 0.014171076938509941, -0.002360205864533782, 0.00863385945558548, -0.015627548098564148, -0.02538984641432762, 0.030625270679593086, -0.016559164971113205, 0.03500780835747719, -0.0029523076955229044, 0.011822352185845375, -0.020233148708939552, 0.005317434202879667, 0.0037658323999494314, 0.004526871722191572, -0.028893250972032547, 0.016441073268651962, -0.000984102487564087, -0.04424525052309036, 0.010064088739454746, -0.0025012607220560312, -0.005409283563494682, -0.01561442669481039, -0.0080565195530653, 0.021466556936502457, 0.0034574803430587053, -0.0025422649923712015, -0.007157705724239349, -0.01859297789633274, -0.010274030268192291, -0.005484731402248144, 0.009355534799396992, -0.024786261841654778, 0.0036543007008731365, 0.23576472699642181, -0.028237182646989822, 0.007407011929899454, 0.005773401353508234, 4.6949891839176416e-05, 0.009598280303180218, 0.009893510490655899, 0.005921016912907362, -0.009545794688165188, -0.018566735088825226, 0.011815791018307209, 0.011310618370771408, -0.04600351303815842, -0.0009611401474103332, 0.0016139281215146184, -0.01498460117727518, -0.008994697593152523, -0.034299254417419434, -0.011618970893323421, -0.02165025658905506, 0.006777185946702957, 0.0014236683491617441, -0.00829270388931036, -0.033459484577178955, 0.030572785064578056, 0.006232649553567171, -0.007557907607406378, 0.02558666653931141, 0.021873319521546364, 0.023106727749109268, -0.03618872910737991, -0.006682056467980146, 0.01045116875320673, 0.0009168555261567235, -0.021072914823889732, -0.011559924110770226, 0.003391873324289918, -0.006442591082304716, 0.012360327877104282, 0.03802572190761566, 0.012681801803410053, -0.015929339453577995, 0.004267724696546793, -0.0024520554579794407, 0.012589951977133751, 0.0022503144573420286, -0.031570009887218475, -0.009972238913178444, -0.0009980440372601151, 0.0002644775668159127, -0.01927528902888298, -0.025455452501773834, 0.02102043107151985, 0.034981563687324524, 0.008935650810599327, -0.007807213347405195, -0.00776784960180521, 0.04238201677799225, 0.02058742567896843, -0.00020748161477968097, -0.00040655737393535674, 0.03813069313764572, -0.006954324431717396, 0.010575821623206139, 0.004221799783408642, -0.005048445891588926, -0.009178396314382553, 0.0031179648358374834, -0.00309336232021451, -0.01537824235856533, 0.013232898898422718, 0.0015155179426074028, -0.031097641214728355, -0.014459746889770031, -0.039731498807668686, -0.013843042775988579, 0.04285438358783722, 0.03521775081753731, 0.029181919991970062, 0.030940184369683266, -0.0007278258563019335, -0.007840016856789589, 0.002227352000772953, -0.033616941422224045, 0.008574813604354858, -0.0296018049120903, 0.03621497377753258, -0.020390605553984642, -0.0005761100328527391, -0.012891743332147598, -0.003408275078982115, -0.032882146537303925, -0.002917864127084613, 0.003591974265873432, -0.011999490670859814, 0.015260149724781513, 0.02716122940182686, 0.005858690477907658, 0.013154170475900173, -0.015889976173639297, -0.010254348628222942, 0.012045415118336678, 0.03495532274246216, 0.0076825604774057865, -0.018881646916270256, 0.007216752041131258, 0.016204888001084328, 0.009250563569366932, 0.0009119349997490644, -0.03185867890715599, 0.002509461482986808, -0.013869285583496094, 0.01197980809956789, 0.007538225501775742, -0.00024500052677467465, 0.007308601401746273, -0.006180163938552141, 0.004566235933452845, 0.011914201080799103, -0.0049762786366045475, -0.00759727181866765, -0.00937521643936634, -0.006665654480457306, -0.008758512325584888, -0.0073479656130075455, -0.03579508885741234, -0.02601967193186283, 0.008358310908079147, -0.02301487885415554, -0.0006650892901234329, 0.025022447109222412, -0.005100931506603956, 0.027056260034441948, -0.001674614497460425, -0.01779257319867611, -0.02238505333662033, 0.0020272512920200825, -0.001238328986801207, -0.011487756855785847, 0.005104211624711752, -0.03981022909283638, 0.01003128569573164, -0.0019058785401284695, -0.011723941192030907, 0.00632121879607439, -0.02222759649157524, 0.0032426179386675358, 0.005747159011662006, 0.014092348515987396, -0.015456970781087875, -0.0032491786405444145, 0.023146091029047966, -0.023684067651629448, -0.011559924110770226, 0.015575062483549118, 0.0107726426795125, -0.02252938784658909, -0.0317012220621109, -0.0008496085065416992, -0.004418620374053717, -0.020705517381429672, 0.017031535506248474, 0.008017155341804028, -0.004287406802177429, -0.02664949744939804, -0.01316073164343834, -0.16606402397155762, -0.020731760188937187, 0.03839312121272087, -0.03771080821752548, 0.022621236741542816, -0.0032032537274062634, 0.02159777097404003, 0.011901079677045345, -0.03752711042761803, -0.0010693913791328669, -0.0031934126745909452, 0.009303049184381962, -0.010005042888224125, -0.004021699074655771, 0.0017418614588677883, -0.006563963834196329, -0.002263435861095786, 0.0039200084283947945, 0.013829921372234821, 0.003752710996195674, 0.031832437962293625, -0.028105968609452248, 0.011802669614553452, 0.008273022249341011, -0.02453695610165596, 0.01208477932959795, -0.00242253253236413, 0.05106836184859276, 0.018199335783720016, -0.01548321358859539, -0.0025635871570557356, -0.0259671863168478, 0.014381018467247486, -0.02668886072933674, 0.01321977749466896, 0.016073673963546753, 0.0012883542804047465, 0.000818445289041847, -0.025560423731803894, 0.023894010111689568, 0.013987377285957336, 0.007918745279312134, 0.006472114473581314, 0.003952811937779188, -0.00443502189591527, 0.010096891783177853, 0.02221447415649891, -0.009834464639425278, 0.00658036582171917, -0.02121725119650364, 0.021414071321487427, -0.019983842968940735, 0.007118341512978077, -0.0005215743440203369, 0.027686085551977158, 0.005317434202879667, -0.012156946584582329, 0.02027251198887825, 0.033092088997364044, -0.011947005055844784, -0.02432701550424099, 0.0022470341064035892, -0.0018632340943440795, -0.017595753073692322, -0.011428711004555225, -0.010759521275758743, -0.023211698979139328, 0.0011874837800860405, -0.029890473932027817, -8.774914022069424e-05, -0.006337620317935944, 0.00443502189591527, -0.017293961718678474, -0.005530656315386295, -0.0004416160227265209, -0.0013572414172813296, -0.04253947362303734, 0.010379001498222351, 0.029103191569447517, -0.008049958385527134, -0.011756745167076588, 0.025573544204235077, -0.004595758859068155, 0.006777185946702957, 0.01852736994624138, -0.012452177703380585, -0.007380769122391939, 0.00036883342545479536, -0.03542769327759743, -0.004894270095974207, 0.003719907719641924, -0.03692352771759033, -0.011664895340800285, -0.010805445723235607, 0.011146601289510727, -0.010431487113237381, 0.01842239871621132, -0.00771536398679018, 0.02464192733168602, -0.028263425454497337, 0.004999240860342979, 0.024235164746642113, -0.011999490670859814, 0.01264243759214878, 0.003209814429283142, 0.012740847654640675, -0.01627049595117569, 0.012484980747103691, 0.03881300240755081, 0.007092099171131849, -0.020259391516447067, 0.004179155454039574, 0.018396155908703804, 0.018934132531285286, 0.000929976929910481, 0.022148868069052696, -0.007315162103623152, -0.015417606569826603, 0.010155938565731049, 0.012629316188395023, 0.057524073868989944, 0.017818816006183624, -0.006583645939826965, 0.0011555004166439176, -0.0034410785883665085, -0.04860154539346695, -0.07500173151493073, -0.02290990762412548, 0.004182435572147369, 0.026308340951800346, 0.003657581051811576, 0.006252331659197807, -0.01503708679229021, 0.023657824844121933, -0.032199833542108536, 0.019787020981311798, -0.01733332686126232, -0.025573544204235077, -0.0005674991407431662, -0.002281477674841881, 0.015758762136101723, -0.016506679356098175, 0.00496315723285079, 0.017359569668769836, -0.021361585706472397, 0.03443046659231186, -0.0070855384692549706, -0.0023684068582952023, 0.0021879880223423243, -0.00030220148619264364, -0.00937521643936634, 0.00034361580037511885, -0.04070248082280159, 0.02284429967403412, 0.010634868405759335, -0.014932115562260151, 0.010182181373238564, -0.037684567272663116, -0.013659343123435974, -0.03595254570245743, 0.003667422104626894, -0.012235675007104874, -0.0037231878377497196, -0.013449401594698429, 0.016821593046188354, -0.040203869342803955, -0.011933883652091026, -0.023789038881659508, 0.012668680399656296, -0.014879630878567696, -0.031045155599713326, 0.006711579393595457, -0.00931617058813572, 0.029155677184462547, 0.00969013012945652, -0.03091394156217575, -0.008187733590602875, -0.021256614476442337, -0.026610132306814194, 0.028184697031974792, 0.02996920235455036, 0.02254250831902027, -0.01815997250378132, -0.008837240748107433, -0.02105979435145855, -0.016257373616099358, 0.009972238913178444, -0.010050967335700989, -0.03471913933753967, 0.025717880576848984, 0.02954931929707527, -0.014774659648537636, -0.00885036215186119, -0.004825382959097624, 0.007498861290514469, -0.021715862676501274, -0.004746654536575079, 0.03101891279220581, -0.007144584320485592, 0.017149627208709717, -0.021046673879027367, -0.0006823110743425786, -0.019865749403834343, -0.002509461482986808, 0.019367137923836708, -0.008509206585586071, 0.0004399758472573012, -0.028079725801944733, 6.565808871528134e-05, 0.0161130391061306, 0.008233658038079739, -0.004940194543451071, -0.025927821174263954, -0.006659093778580427, 0.0065344409085810184, -0.032619718462228775, 0.007623514160513878, 0.008423917926847935, 0.0039003263227641582, -0.005678271874785423, -0.012583390809595585, 0.0020698956213891506, -0.0002220381429651752, -0.015863733366131783, 0.009880389086902142, 0.0519343726336956, -0.014512232504785061, -0.004057782702147961, -0.07573653012514114, 0.025822849944233894, -0.005038605071604252, -0.020469332113862038, -0.0036018153186887503, -0.01959020085632801, -0.0003032265813089907, 0.002002648776397109, 0.005579861346632242, 0.011054751463234425, -0.021768348291516304, 0.008443599566817284, -0.016821593046188354, -0.0003680133377201855, 0.004175875335931778, -0.012301282025873661, 0.010149377398192883, -0.018501127138733864, 0.008135247975587845, -0.0027718888595700264, -0.009198077954351902, 0.016139281913638115, 0.014420382678508759, 0.018868526443839073, -0.017976272851228714, -0.0031114041339606047, -0.01827806420624256, 0.023316670209169388, -0.00861417781561613, -0.005996464751660824, 0.019682051613926888, -0.017595753073692322, -0.0008012235048227012, 0.048680271953344345, 0.00462200166657567, -0.018999740481376648, -0.00987382885068655, 0.011632092297077179, 0.023290427401661873, 0.04309057071805, -0.02401210181415081, -0.041096121072769165, 0.01747766137123108, -0.011553363874554634, -0.020285634323954582, 0.010621747002005577, 0.011540242470800877, -0.013029517605900764, 0.01306232064962387, 0.015168300829827785, 0.011815791018307209, 0.018829161301255226, -0.008351750671863556, -0.0153257567435503, -0.00334922899492085, 0.0032491786405444145, 0.05007113888859749, -0.0003089671954512596, 0.02991671673953533, -0.00861417781561613, 0.04080745205283165, 0.03212110698223114, 0.0012612914433702826, 0.0005777502083219588, -0.0053075929172337055, 0.017188990488648415, -0.012248796410858631, 0.002598030725494027, 0.015981825068593025, -0.03185867890715599, 0.013698707334697247, 0.001116136321797967, 0.011363103985786438, 0.019406501203775406, 0.031884923577308655, -0.0023339632898569107, -0.009591719135642052, 0.006941203027963638, -0.02954931929707527, 0.0179500300437212, 0.017412053421139717, -0.009440823458135128, 0.008220536634325981, 0.01805500127375126, 0.008286143653094769, 0.030835213139653206, -0.007761288899928331, 0.005606104154139757, -0.0001661698188399896, 0.009755736216902733, 0.010654550045728683, 0.00525182718411088, -0.01875043287873268, 0.006065351888537407, 0.0054552084766328335, 0.031360067427158356, -0.007092099171131849, -0.0015721038216724992, 0.008784755133092403, 0.017503904178738594, 0.028814522549510002, -0.012111022137105465, 0.00542240496724844, -0.016572287306189537, -0.026045914739370346, 0.019078467041254044, -0.017674481496214867, -0.023251062259078026, 0.005005801562219858, 0.015680033713579178, 0.013121367432177067, -0.02563915215432644, -0.014590959995985031, -0.006183444522321224, -0.029942959547042847, 0.013895527459681034, 0.010405244305729866, -0.002822734182700515, -0.033511970192193985, 0.029811745509505272, 0.01543072797358036, -0.005396162159740925, 0.01579812541604042, -0.007721924688667059, 0.015286392532289028, 0.048680271953344345, 0.028315911069512367, -0.0053108735010027885, 0.023710310459136963, 0.0011120358249172568, -0.0046121603809297085, 0.004152912646532059, 0.008712587878108025, -0.02095482312142849, -0.04311681166291237, -0.012452177703380585, -0.009257124736905098, 0.029628047719597816, 0.011933883652091026, 0.09536609798669815, 0.005005801562219858, 0.004231641069054604, 0.01637546718120575, -0.032462261617183685, 0.0031917726155370474, 0.016559164971113205, 0.03545393422245979, -0.008187733590602875, 0.00010425336222397164, -0.0024274529423564672, 0.0023733272682875395, -0.02427452988922596, -0.006032548379153013, -0.01726771891117096, 0.013685585930943489, -0.02296239323914051, 0.020351240411400795, -0.014236683025956154, -0.015666913241147995, 0.01932777464389801, -0.0023520051036030054, 0.01480090245604515, 0.001588505576364696, -0.012019172310829163, -0.02016754075884819, 0.028604580089449883, 0.01363310031592846, -0.006334340199828148, -0.02674134634435177, -0.00903406087309122, 0.008758512325584888, -0.047368135303258896, -0.01890788972377777, 0.006340900901705027, -0.012517784722149372, 0.009919753298163414, -0.0017943469574674964, 0.010260908864438534, -0.0038609623443335295, 0.005625786259770393, 0.014971479773521423, 0.0019157195929437876, -0.00958515889942646, -0.01679535023868084, 0.007407011929899454, -0.00048385042464360595, -0.01770072430372238, -0.02163713425397873], '_distance': 0.3630693554878235}),\n", + " Document(page_content='I hope you’ve found this a useful place to start to break the ice with the major concepts of the Transformer. If you want to go deeper, I’d suggest these next steps:', metadata={'vector': [-0.010849842801690102, -0.01362568698823452, 0.0007098066271282732, -0.01547191571444273, -0.00605549942702055, 0.019788449630141258, 0.006253774277865887, -0.022128738462924957, -0.02020450122654438, -0.0073394086211919785, 0.010472796857357025, 0.024195995181798935, 0.006585315335541964, -0.011252893134951591, 0.022778820246458054, 0.0045668152160942554, 0.014093744568526745, -0.006689328234642744, 0.00788547657430172, -0.017214130610227585, -0.017032109200954437, -0.006890852935612202, 0.005853974726051092, -0.04277529567480087, -0.014288769103586674, 0.0014269265811890364, 0.024924084544181824, -0.01536790281534195, -0.02052954211831093, 0.0002716117596719414, 0.027095353230834007, 0.0011774582089856267, 0.0013310398207977414, -0.02026950940489769, 0.016486041247844696, 0.0071378834545612335, 0.006465050391852856, 0.0008629818330518901, 0.00765144731849432, -0.03250402212142944, 0.02966967225074768, 0.0050771282985806465, 0.0018559797899797559, -0.023506909608840942, -0.0032910325098782778, 0.001704836031422019, -0.01770819164812565, -0.027199367061257362, 0.0026133235078305006, 0.02860354073345661, 0.012241015210747719, 0.017695190384984016, 0.0018120993627235293, -0.0007215893128886819, -0.0005875102360732853, 0.025275127962231636, -0.009237643331289291, 0.026003219187259674, 0.0038744795601814985, -0.005392417311668396, -0.026965338736772537, 0.0013286019675433636, -0.008672073483467102, 0.011681945994496346, -0.0036599531304091215, 0.001828351290896535, -0.003533187322318554, 0.0008304778020828962, -0.009257146157324314, -0.007833469659090042, 0.02658829092979431, 0.04155314341187477, -0.009556182660162449, 0.00412801094353199, 0.014210758730769157, -0.0069298576563596725, 0.002382545033469796, -0.004784592427313328, 0.0043555391021072865, -0.003299158299341798, -0.006734833586961031, -0.008457547053694725, -0.022063732147216797, 0.007976487278938293, 0.010635316371917725, 0.02725137397646904, 0.015887966379523277, -0.0032796559389680624, -0.020685561001300812, 0.001045004348270595, -0.00872408039867878, 0.010505300015211105, 0.016863087192177773, 0.03726261109113693, 0.00759944086894393, 0.010862844996154308, 0.005008870270103216, 0.014275766909122467, 0.008633068762719631, -0.02046453393995762, 0.0047813416458666325, -0.008444545790553093, -0.006799841765314341, -0.009991737082600594, -0.038900814950466156, -0.003559190547093749, 0.017747197300195694, -0.022440778091549873, 0.01294960267841816, -0.02462504804134369, -0.014470791444182396, 0.017149122431874275, -0.011499923653900623, -0.010661319829523563, 0.003585193771868944, -0.0274593997746706, 0.011733952909708023, -0.01070682518184185, 0.003832224290817976, -0.01625201106071472, 0.028421517461538315, 0.007963486015796661, 0.029045594856142998, -0.011077371425926685, 0.0004509933351073414, -0.028083477169275284, 0.005814970005303621, 0.008145508356392384, -0.010557306930422783, -0.011902973055839539, 0.02307785674929619, 0.01222151331603527, 0.0032455266918987036, -0.0003924860793631524, -0.013976730406284332, 0.03375217691063881, -0.02236276865005493, 0.005899480078369379, -0.0069298576563596725, -0.013859715312719345, 0.009738205932080746, 0.001019813702441752, -0.026341261342167854, -0.02751140482723713, -0.00010025459778262302, -0.0024979342706501484, 0.012254016473889351, 0.00256781792268157, 0.00832103006541729, -0.007079376373440027, 0.007501928601413965, -0.02007448486983776, -7.613052002852783e-05, -0.011012363247573376, 0.008600564673542976, 0.030969833955168724, 0.006312281358987093, 0.0015626309905201197, -0.001376545405946672, 0.00781396683305502, 0.01932039111852646, 0.006491053383797407, 0.019424404948949814, 0.003971991594880819, 0.0062927789986133575, 0.0025873202830553055, 0.019580423831939697, -0.012084996327757835, 0.0062862783670425415, -0.006231021136045456, -0.02099759876728058, -0.002237902022898197, -0.03840675577521324, 0.018566299229860306, 0.01717512682080269, 0.00436204019933939, -0.0006163575453683734, -0.005931984167546034, -0.014574804343283176, -0.028707554563879967, 0.031983960419893265, -0.011967981234192848, 0.030423766002058983, 0.01631701923906803, -0.02818748913705349, 0.004384792875498533, 0.011168382130563259, -0.014106745831668377, 0.0020818826742470264, -0.018280262127518654, 0.010713325813412666, 0.03744463622570038, 0.011129377409815788, -0.011090372689068317, -0.6511206030845642, -0.022388771176338196, 0.00905562099069357, -0.025522159412503242, -0.0030391262844204903, -0.008717578835785389, -0.008275524713099003, 0.0030001213308423758, -0.022115737199783325, 0.01625201106071472, 0.009712202474474907, -0.007969986647367477, -0.012689570896327496, 0.006799841765314341, 0.010030741803348064, -0.005220146384090185, -0.014717821963131428, -0.0335441529750824, 0.01804623380303383, 0.0065073054283857346, -0.002445927821099758, 0.011746954172849655, -0.043737415224313736, -0.016147999092936516, 0.006429295986890793, -0.011330902576446533, 0.01933339238166809, 0.011766456998884678, 0.011759955435991287, 0.0018007229082286358, -0.02268780767917633, -0.003955739550292492, 0.018410278484225273, -0.017409155145287514, 0.03562441095709801, 0.007521430961787701, -0.007742458488792181, 0.016564050689339638, -0.011311400681734085, 0.035754427313804626, -0.01311862375587225, -0.02557416632771492, 0.032113976776599884, -0.0008824842516332865, 0.01670706830918789, 0.017201129347085953, 0.023246876895427704, -0.0007837532903067768, -0.001135203056037426, 0.0011953354114666581, 0.01799422688782215, -0.00852905586361885, -2.3463842808268964e-05, 0.008054496720433235, 0.02315586619079113, -0.008932105265557766, 0.031229866668581963, 0.01043379120528698, 0.003910234197974205, 0.020490536466240883, -0.00437829177826643, 0.0007691264618188143, -0.007202891632914543, -0.030085723847150803, -0.024065978825092316, 0.0033316623885184526, -0.001347291748970747, -0.026731308549642563, 0.006045748479664326, -0.019554421305656433, 0.0023240377195179462, 0.013989731669425964, -0.023064855486154556, -0.0029237368144094944, 0.0032455266918987036, 0.020217502489686012, 0.003585193771868944, -0.01730514131486416, -0.0046513257548213005, 0.027485402300953865, 0.055542875081300735, -0.0014496794901788235, -0.01844928413629532, -0.032712049782276154, 0.035260364413261414, 0.004514808766543865, -0.032660044729709625, -0.014808833599090576, -0.00203150138258934, -0.005473677534610033, -0.0014545550802722573, 0.006270026322454214, -0.014743825420737267, -0.03479230776429176, -0.008132507093250751, 0.007670949678868055, 0.012793583795428276, -0.0021127616055309772, -0.0014797457261011004, -0.012761079706251621, 0.018878336995840073, -0.0020575046073645353, 0.007605941500514746, -0.010258269496262074, -0.009380660951137543, -0.020451530814170837, 0.0023142865393310785, 0.016330022364854813, 0.024208996444940567, -0.008314529433846474, -0.02276581898331642, -0.010043743066489697, -0.017474163323640823, -0.011493423022329807, -0.01980145089328289, -0.036950573325157166, 0.00508362939581275, 0.020308513194322586, -0.007865973748266697, -0.02162167616188526, 0.018553296104073524, 0.03193195164203644, -0.012579057365655899, -0.0101672587916255, 0.022778820246458054, 0.006035997066646814, -0.0019014853751286864, -0.024456027895212173, -0.014444787986576557, -0.011246392503380775, -0.0036079466808587313, -0.009211639873683453, 0.026198243722319603, -0.0012700947700068355, 0.006409793626517057, 0.021907711401581764, 0.012592058628797531, -0.018748320639133453, -0.014353777281939983, -0.005434672813862562, -0.005057625938206911, -0.004807345103472471, 0.01778620108962059, 0.01184446644037962, -0.03094383142888546, -0.02430000714957714, -0.00959518738090992, -0.005743461195379496, -0.01294960267841816, 0.006406542845070362, 0.0015585679793730378, -0.007254898082464933, -0.03195795789361, -0.006432546302676201, 0.014587805606424809, -0.01215000357478857, 0.012234514579176903, -0.012644065544009209, -0.014535799622535706, -0.01670706830918789, -0.005886478815227747, 0.03939487785100937, -0.009543181397020817, 0.016616057604551315, -0.018709316849708557, 0.0019031105330213904, 0.015744948759675026, 0.01731814444065094, -0.008464047685265541, -0.038562774658203125, -0.005210394971072674, -0.04012296721339226, -0.003021249081939459, 0.0012822836870327592, -0.01268307026475668, -0.009562683291733265, -0.026133235543966293, -0.026549287140369415, 0.006062000524252653, -0.00748242624104023, -0.01952841691672802, -0.003737962804734707, -0.025470152497291565, 0.007566936779767275, 0.045141588896512985, 0.02228475920855999, 0.029097601771354675, -0.0031561406794935465, -0.01578395441174507, 0.02000947669148445, -0.003310534870252013, -0.00030939767020754516, 0.015380904078483582, -0.01764318346977234, -0.013196633197367191, 0.014886843040585518, 0.008178012445569038, -0.008750082924962044, 0.016863087192177773, 0.014977853745222092, 0.03156790882349014, -0.0071313828229904175, 0.036534521728754044, -0.02704334817826748, 0.009510677307844162, -0.0021062607411295176, 0.009042619727551937, -0.03242601454257965, 0.008373036049306393, 0.0036859563551843166, -0.0005050312611274421, -0.038302741944789886, -0.0027108355425298214, -0.021569669246673584, 0.00429703202098608, 0.012754579074680805, 0.0075604356825351715, 0.015939973294734955, -0.01898234896361828, 0.005480178166180849, 0.015081866644322872, 0.002419924596324563, 0.013300646096467972, 0.010674321092665195, -0.05213645473122597, 0.01530289463698864, 0.022791821509599686, -0.009179136715829372, 0.00905562099069357, -0.006942859385162592, 0.016616057604551315, 0.014236762188374996, 0.028421517461538315, 0.02423500083386898, 0.01678507775068283, -0.009081624448299408, 0.0036274490412324667, -0.01154542900621891, 0.01899535208940506, 0.0123450281098485, 0.028629543259739876, 0.02489808201789856, 0.0038419757038354874, -0.006968862842768431, 0.02638026513159275, 0.03463628888130188, 0.00875658355653286, -0.006166013423353434, -0.04139712452888489, 0.02221975103020668, -0.0032113974448293447, 0.012481545098125935, 0.010154256597161293, -0.0023402897641062737, 0.012364530935883522, -0.004072754178196192, -0.00024357702932320535, 0.016069989651441574, 0.03461028262972832, 0.0060782525688409805, 0.014717821963131428, 0.003955739550292492, -0.010225765407085419, 0.0013562303502112627, 0.016395028680562973, -0.004638324026018381, -0.01161043718457222, -0.04142312705516815, -0.018709316849708557, 0.008353534154593945, -0.010030741803348064, 0.0006825844757258892, 0.005272152833640575, -0.04033099114894867, -0.0032390260603278875, -0.0014561802381649613, 0.016941096633672714, 0.006994865834712982, -0.013781705871224403, 0.004469303414225578, -0.0013838588492944837, -0.02987769804894924, -0.009751207195222378, -0.000403049896704033, 0.004329536110162735, -0.00896460935473442, 0.009822716005146503, -0.006669825874269009, -0.036482516676187515, 0.008711078204214573, 0.007963486015796661, 0.010108751244843006, 0.0081520089879632, -0.001049879938364029, -0.026458274573087692, 0.010323277674615383, 0.009523678570985794, -0.02370193414390087, 0.03133387863636017, 0.009185637347400188, 0.009166134521365166, 0.009913727641105652, -0.02758941613137722, -0.03263403847813606, 0.03840675577521324, 0.012546553276479244, -0.015744948759675026, -0.004755338653922081, -0.004917858634144068, -0.017019106075167656, -0.029357634484767914, 0.002247653203085065, -0.01738315261900425, -0.019814452156424522, 0.014418784528970718, -0.026198243722319603, 0.016017982736229897, 0.005551687441766262, 0.04727385193109512, 0.014483792707324028, -0.0020445031113922596, -0.018423279747366905, -0.0018299765652045608, 0.014210758730769157, 0.05705106258392334, 0.020243505015969276, -0.0015910719521343708, 0.027745435014367104, -0.017071112990379333, -0.010862844996154308, -0.014288769103586674, -0.0229608416557312, 0.006364287808537483, -0.00949767604470253, 2.392092937952839e-05, -0.00765144731849432, 0.027173364534974098, -0.021192623302340508, 0.013261641375720501, 0.015328897163271904, -0.0013513547601178288, -0.0014415534678846598, 0.00686484994366765, -0.03200996294617653, -0.010583310388028622, 0.006153011694550514, -0.008776086382567883, 0.028811566531658173, 0.041449129581451416, 0.02281782403588295, 0.038224730640649796, 0.025002095848321915, -0.0016690816264599562, -0.0254441499710083, -0.010635316371917725, 0.014873840846121311, -0.003949238918721676, 0.006520307157188654, -0.014925847761332989, 0.045869678258895874, 0.018345270305871964, 0.05273452773690224, -0.009504176676273346, -0.007280901074409485, -0.0031805187463760376, 0.0010685697197914124, 0.004492056090384722, -0.03213997930288315, 0.00676083704456687, -0.017552172765135765, -0.009166134521365166, 0.026861324906349182, 0.01665506139397621, -0.029903702437877655, 0.008477048948407173, 0.003052127780392766, -0.03437625616788864, 0.003614447545260191, 0.007781463209539652, -0.0008776086615398526, -0.005190892610698938, -0.0019274885999038815, -0.005213645286858082, -0.006617819424718618, -0.010004738345742226, -0.014080743305385113, 0.009471672587096691, -0.007241896353662014, -0.006773838307708502, -0.021842703223228455, -0.007742458488792181, 0.0013846714282408357, -0.01759117841720581, 0.01657705195248127, -0.0009946231730282307, -0.012923600152134895, -0.019502414390444756, 0.00209650956094265, 0.05203244090080261, 0.0026198243722319603, -0.0016674564685672522, -0.0058572250418365, 0.00808700080960989, 0.003432424971833825, -0.0020526291336864233, -0.02509310655295849, 0.017760198563337326, 0.006198517512530088, -0.004293781705200672, 0.0030651295091956854, -0.021257631480693817, 0.00736541161313653, -0.010355781763792038, 0.03450627252459526, 0.01335265301167965, -0.0033316623885184526, -0.005610194522887468, -0.016356024891138077, -0.0003819222911261022, 0.02886357344686985, -0.004791093058884144, 0.0071313828229904175, 0.006621069740504026, -0.017409155145287514, -0.006094504613429308, -0.02075056917965412, 0.009881223551928997, -0.02549615688621998, 0.005038123577833176, 0.024182993918657303, 0.008711078204214573, 0.01184446644037962, -0.0025304381269961596, -0.0012676569167524576, 0.024729061871767044, -6.36875702184625e-05, -0.0022053979337215424, -0.0011847716523334384, 0.006179014686495066, 0.015042861923575401, 0.017877213656902313, 0.0009288024739362299, -0.014522797428071499, -0.018501291051506996, 0.007716455031186342, -0.0354163832962513, 0.03401220962405205, 0.019762447103857994, -0.01933339238166809, 0.04430948570370674, -0.005873477086424828, -0.000269173935521394, -0.025158114731311798, 0.003533187322318554, -0.018137244507670403, 0.017877213656902313, -0.005047874990850687, 0.007969986647367477, -0.05658300593495369, 0.022635802626609802, -0.005798717960715294, -0.000987309729680419, -0.0022541540674865246, -0.022375769913196564, 0.0029838692862540483, -0.004102007951587439, -0.0012969105737283826, -0.020906588062644005, 0.015575927682220936, -0.035884443670511246, -0.01712311990559101, 0.02925362065434456, 0.025613170117139816, -0.005850724410265684, -0.02315586619079113, 0.005099881440401077, -0.03544238582253456, -0.012416536919772625, 0.008210516534745693, -0.03825073316693306, 0.0004883729270659387, -0.00029477087082341313, 0.012754579074680805, 0.03094383142888546, 0.013443663716316223, 0.009562683291733265, -0.001526063890196383, 0.013248640112578869, 0.0024670553393661976, -0.022193746641278267, 0.010466295294463634, 0.024143988266587257, -0.04022698104381561, 0.023480907082557678, 0.014782830141484737, 0.009107626974582672, -0.004238524474203587, -0.0013919847551733255, 0.04727385193109512, 0.01886533573269844, -0.002715711249038577, -0.011811962351202965, 0.009796712547540665, -0.034532275050878525, -0.003468179376795888, 0.01066782046109438, -0.0010831966064870358, 0.0119484793394804, -0.019632430747151375, 0.0021452654618769884, 0.02953965589404106, 0.0003049283695872873, 0.016460036858916283, 7.866989471949637e-05, 0.03159391134977341, -0.005122634116560221, 0.029825692996382713, -0.004696831572800875, -0.008106503635644913, -0.006994865834712982, -0.006552811246365309, -0.03874479606747627, 0.002566192764788866, 0.014886843040585518, 0.006039247382432222, 0.021244630217552185, -0.006832345854490995, 0.006786840036511421, 0.014756826683878899, -0.011532427743077278, 0.005480178166180849, -0.006608068011701107, -0.01217600703239441, -0.020100487396121025, -0.006400042213499546, -0.01952841691672802, -0.00875658355653286, 0.014743825420737267, 0.018904339522123337, -0.008347033523023129, -0.025340136140584946, 0.008854095824062824, -0.016291016712784767, -0.018033232539892197, 0.025249125435948372, -0.0003031000087503344, 0.02612023428082466, 0.027433395385742188, 0.026536284014582634, 0.001197773264721036, -0.002873355755582452, -0.01818925142288208, 0.025067102164030075, -0.029357634484767914, 0.008633068762719631, 0.0026750811375677586, 0.039290864020586014, -0.006166013423353434, -0.019424404948949814, 0.0037509643007069826, -0.008282025344669819, 0.0006062000175006688, -0.02470305748283863, 0.0019193625776097178, 0.027199367061257362, 0.018423279747366905, -0.014886843040585518, 0.01167544536292553, -0.016291016712784767, 0.033934202045202255, 0.024599045515060425, 0.027225369587540627, -0.01037528458982706, 0.005551687441766262, -0.020854581147432327, 0.01211750041693449, -0.008984112180769444, 0.01899535208940506, -0.014470791444182396, 0.0015480041038244963, -0.0030456269159913063, 0.007807466667145491, -0.003952489234507084, -0.004183267708867788, 0.005925483535975218, 0.03193195164203644, -0.008613565936684608, 0.003614447545260191, 0.025522159412503242, 0.0036339499056339264, -0.002939988858997822, -0.011421914212405682, -0.014301770366728306, 0.02275281585752964, -0.01164944190531969, -0.0028294753283262253, -0.033258117735385895, 0.004046750720590353, 0.015458913519978523, -0.02383195050060749, -0.0015512545360252261, 0.007189889904111624, -0.007696952670812607, -0.0119484793394804, 0.0060782525688409805, -0.0011530802585184574, -0.038432758301496506, -0.007872474379837513, 0.004982866812497377, -0.008073999546468258, 0.0021907712798565626, 0.005467176903039217, 0.00892560463398695, -0.020789572969079018, -0.01730514131486416, 9.916266208165325e-06, 0.018696313723921776, 0.02013949304819107, -0.01181846298277378, -0.017812205478549004, 0.008737081661820412, 0.028811566531658173, 0.01006324589252472, -0.006101005245000124, 0.02784944698214531, 0.006994865834712982, -0.029383637011051178, 0.03968091309070587, 0.005756462458521128, -0.023987969383597374, 0.006962361745536327, -0.013612684793770313, 0.0034779305569827557, -0.0055776904337108135, 0.010648318566381931, 0.009653694927692413, -0.006559311877936125, 0.023506909608840942, -0.012943102046847343, 0.001224589068442583, -0.0021290136501193047, 0.008587563410401344, -0.009088125079870224, 0.0025483155623078346, -0.006832345854490995, 0.00855505932122469, 0.004560314584523439, 0.004300282336771488, 0.006903854664415121, 0.011928976513445377, -0.01479583140462637, -0.0005338785704225302, -0.03086582012474537, 0.011688446626067162, -0.01238403283059597, -0.013950726948678493, 0.002151766326278448, -0.004615571349859238, 0.01691509410738945, 0.002372793620452285, -0.019541418179869652, 0.009374160319566727, -0.011304899118840694, 0.009250645525753498, 0.014873840846121311, 0.022648803889751434, 0.0012018362758681178, -0.00788547657430172, -0.027173364534974098, -0.006721831858158112, 0.0014708071248605847, -0.0016674564685672522, -0.02557416632771492, -0.005616695154458284, -0.004693580791354179, 0.009855220094323158, 0.002775843720883131, -0.020919589325785637, -0.02589920535683632, -0.015094868838787079, -0.03978492319583893, -0.004306782968342304, -0.004056502133607864, 0.013417661190032959, 0.012468543834984303, -0.008158509619534016, -0.0073459092527627945, 0.0369245707988739, 0.012455541640520096, 0.004163765348494053, -0.011681945994496346, -0.02007448486983776, -0.00245730415917933, 0.012839089147746563, -0.03364816680550575, -0.0071313828229904175, -0.028005465865135193, -0.030241742730140686, 0.024208996444940567, 0.013547676615417004, -0.01154542900621891, 0.03367416933178902, -0.009738205932080746, -0.002777468878775835, -0.006403292529284954, 0.000895485864020884, 0.03154190629720688, 0.02489808201789856, 0.010342780500650406, -0.038354746997356415, 0.007072875741869211, 0.0297996886074543, -0.029643669724464417, -0.022310761734843254, -0.010557306930422783, -0.0007069625426083803, 0.015523921698331833, -0.008691576309502125, -0.02228475920855999, 0.008327530696988106, 0.023597920313477516, -0.014405783265829086, 0.015445912256836891, 0.0005667888908647001, -0.0024979342706501484, 0.020295511931180954, 0.028681550174951553, -0.004917858634144068, -0.004739086609333754, 0.021127615123987198, -0.02899358980357647, -0.007846470922231674, 0.01318363193422556, -0.02201172523200512, 0.00736541161313653, -0.014275766909122467, -0.015757950022816658, -0.03515635058283806, 0.003386919153854251, -0.011616937816143036, 0.008808590471744537, -0.018267260864377022, 0.013599683530628681, 0.001076695742085576, -0.02852553129196167, -0.0068388464860618114, 0.01044029276818037, 0.0170581117272377, -0.02502809837460518, -0.02865554764866829, 0.006806342396885157, -0.0021972719114273787, 0.0060782525688409805, -0.008646070025861263, -0.006009994074702263, 0.01523788645863533, -0.013599683530628681, -0.0011319526238366961, 0.00382572365924716, -0.010349281132221222, 0.22778819501399994, -0.01205249223858118, 0.0004985304549336433, 0.019541418179869652, 0.00812600553035736, -0.0183192677795887, 0.027433395385742188, -0.008327530696988106, -0.007579938508570194, -0.013989731669425964, -0.0013830461539328098, 0.00741741806268692, -0.04277529567480087, -0.006465050391852856, 0.003351164748892188, -0.024677054956555367, -0.04139712452888489, -0.012273519299924374, -0.019307389855384827, 0.00032138352980837226, 0.009627691470086575, 0.004056502133607864, -0.00960168894380331, -0.022986846044659615, 0.012377532199025154, -0.006702329497784376, 0.00376721634529531, 0.0170581117272377, 0.01825425960123539, 0.014431786723434925, -0.014717821963131428, -0.0046448251232504845, 0.011824963614344597, 0.02605522610247135, -0.017552172765135765, -0.011467419564723969, 0.03203596547245979, -0.01127239502966404, 0.02704334817826748, 0.012982106767594814, 0.008496551774442196, -0.0026848323177546263, -0.011935477145016193, -0.0198664590716362, -0.02147865854203701, 0.025054100900888443, -0.012735076248645782, -0.003377167973667383, 0.0011132628424093127, 0.012650566175580025, -0.018683312460780144, 0.0005497243255376816, 0.00466432748362422, 0.030319754034280777, 0.006549560930579901, 0.013651689514517784, 0.021127615123987198, 0.020191499963402748, 0.03531236946582794, -0.0032780307810753584, -0.01181846298277378, 0.02751140482723713, -0.01739615388214588, 0.03081381507217884, -0.011915975250303745, -0.0026377015747129917, -0.01657705195248127, 0.008678574115037918, 0.011467419564723969, -0.01584896259009838, 0.006123757921159267, -0.00949767604470253, -0.014522797428071499, -0.007904978469014168, -0.045063577592372894, -0.014275766909122467, 0.0413191132247448, 0.04555764049291611, 0.02792745642364025, 0.01161043718457222, -0.01570594497025013, -0.003965490963310003, 0.025795193389058113, -0.034870315343141556, 0.009192137978971004, -0.02430000714957714, 0.007930981926620007, 0.016551049426198006, 0.002480057068169117, 0.010258269496262074, 0.007495427969843149, -0.031723927706480026, 0.010030741803348064, 0.01311862375587225, -0.00532090850174427, 0.017552172765135765, 0.01657705195248127, 0.011753454804420471, -0.0014464290579780936, -0.00026815818273462355, -0.009848719462752342, 0.015185879543423653, 0.024261003360152245, 0.03344013914465904, -0.03401220962405205, 0.009718703106045723, 0.01161043718457222, 0.008178012445569038, 0.016395028680562973, -0.0214136503636837, 0.009458671323955059, -0.0178512092679739, 0.013924723491072655, -0.009114128537476063, -0.016941096633672714, 0.0036664537619799376, -0.014171754010021687, 0.009978734888136387, -0.007709954399615526, -0.012026488780975342, -0.008776086382567883, -0.01906036026775837, 0.010277772322297096, 0.004596068989485502, -0.001463493681512773, -0.008828092366456985, -0.02093259058892727, -0.0020071235485374928, -0.003533187322318554, -0.002161517506465316, 0.025886204093694687, -0.009075123816728592, 0.019970472902059555, 0.0012725325068458915, -0.016603054478764534, -0.002481682226061821, 0.005681703332811594, 0.03679455444216728, 0.009627691470086575, 0.008282025344669819, -0.0016918344190344214, 0.0018754821503534913, -0.010934353806078434, -0.003167517017573118, 0.004800844471901655, -0.014990855939686298, -0.014496794901788235, -0.007898477837443352, -0.0007817217847332358, 0.0074304197914898396, -0.01500385720282793, 0.031177859753370285, 0.005730459466576576, -0.028941582888364792, 0.014951851218938828, -0.002208648482337594, -0.02966967225074768, -0.018696313723921776, -0.0012083370238542557, 0.01295610424131155, -0.03255603089928627, 0.012065493501722813, 0.017955223098397255, -0.0028538531623780727, 0.00031833627144806087, -0.019021354615688324, -0.16423633694648743, 0.00401099631562829, 0.04740386828780174, -0.030163733288645744, 0.03955089673399925, -0.005756462458521128, 0.046883802860975266, 0.008165011182427406, -0.0137296998873353, 0.009848719462752342, 0.00035774739808402956, -0.004462802316993475, -0.014444787986576557, -0.0024898082483559847, -0.018878336995840073, -0.02375394105911255, -0.012254016473889351, 0.012436039745807648, 0.032374005764722824, 0.015224884264171124, 0.03263403847813606, -0.038484763354063034, 0.004706582520157099, 0.0013424161588773131, -0.019918465986847878, 0.031983960419893265, 0.0079894894734025, 0.006877851206809282, 0.001549629378132522, -0.009010115638375282, -0.005847473628818989, -0.007157385814934969, 0.03739262744784355, -0.015588929876685143, 0.0010271271457895637, -0.009881223551928997, 0.0030960082076489925, -0.024065978825092316, 0.0003110228863079101, 0.011863968335092068, 0.022778820246458054, -0.0035754425916820765, 0.011590935289859772, -0.01127239502966404, -0.0036306993570178747, 0.002065630629658699, 0.011148880235850811, -0.003318660892546177, -0.0007289027562364936, -0.026731308549642563, 0.02704334817826748, -0.018761321902275085, -0.019619429484009743, 0.0032747804652899504, -0.002728712745010853, -0.019112365320324898, -0.016590053215622902, 0.02625024877488613, -0.001076695742085576, -0.021712686866521835, 0.015159877017140388, -0.00855505932122469, -0.012130501680076122, -0.009887724183499813, -0.011122876778244972, 0.002234651707112789, 0.0020542542915791273, 0.0034746802411973476, -0.0475078821182251, 0.003260153578594327, 0.008483550511300564, -0.010947355069220066, -0.011090372689068317, -0.009822716005146503, 0.0033284120727330446, 0.020568545907735825, -0.020828578621149063, -0.008568060584366322, 0.0134956706315279, -0.013963728211820126, 0.0011295147705823183, 0.033128101378679276, -0.02678331546485424, 0.02162167616188526, -0.002964366925880313, -0.003258528420701623, -0.01638202741742134, 0.00664382241666317, -0.03161991387605667, -0.013976730406284332, 0.03000771440565586, -0.018150247633457184, -0.03000771440565586, -0.011220389045774937, 0.030215740203857422, 0.018241258338093758, 0.020763570442795753, -0.017487164586782455, 0.008379537612199783, -0.0012814711080864072, -0.005766213871538639, 0.01570594497025013, -0.01833226904273033, -0.003770466661080718, 0.029903702437877655, 0.02531413361430168, 0.008828092366456985, 0.040773048996925354, 0.017682189121842384, 0.0002443896373733878, -0.03461028262972832, -0.009738205932080746, 0.013963728211820126, 0.024065978825092316, -0.01657705195248127, 0.01137640792876482, -0.004475804045796394, -0.00949767604470253, 0.019710440188646317, 0.02088058553636074, 0.024937087669968605, 0.0022314011584967375, -0.01980145089328289, -0.0028912329580634832, -0.02147865854203701, -0.022180745378136635, -0.10994160920381546, -0.036534521728754044, 0.017617180943489075, 0.017760198563337326, -0.005041373893618584, 0.013963728211820126, -0.00021919900609645993, -0.0028229744639247656, -0.027147360146045685, 0.012429538182914257, -0.014171754010021687, -0.028915580362081528, 0.014821834862232208, -0.011857467703521252, -0.008535556495189667, -0.01389872096478939, 0.014249764382839203, -0.004492056090384722, -0.021725689992308617, 0.02987769804894924, -0.007729456759989262, 0.003325161524116993, 0.003287781961262226, 0.020087486132979393, -0.007462923880666494, -0.005593942478299141, -0.018033232539892197, 0.008171511813998222, 0.009939730167388916, -0.013820710591971874, 0.00027628420502878726, -0.012000485323369503, 0.012813085690140724, -0.035546399652957916, 0.00281809875741601, -0.002868480049073696, -0.02054254338145256, -0.007976487278938293, 0.026497280225157738, -0.0022606549318879843, -0.03770466893911362, -0.012546553276479244, -0.024729061871767044, -0.03060578927397728, -0.031775932759046555, -0.010765332728624344, -0.03060578927397728, 0.02362392470240593, 0.0030066221952438354, -0.04683179780840874, 0.002660454250872135, 0.006094504613429308, -0.02797946333885193, 0.0006309843738563359, 0.03877079859375954, -0.013313648290932178, -0.013404658995568752, -0.024404020980000496, -0.013040614314377308, 0.0005830409354530275, 0.0018689814023673534, -0.025223122909665108, -0.023857953026890755, 0.03377818316221237, 0.019697438925504684, -0.023597920313477516, -0.018878336995840073, -0.025197118520736694, 0.01778620108962059, -0.023584919050335884, 0.0178512092679739, -0.005395668093115091, -0.015939973294734955, 0.02610723115503788, -0.029357634484767914, -0.011018863879144192, -0.01578395441174507, -0.009913727641105652, 0.03840675577521324, -0.004339287057518959, -0.005720708053559065, -0.01731814444065094, 0.017227131873369217, -0.03206196799874306, 0.01838427595794201, -0.0028538531623780727, 0.008347033523023129, 0.004573316313326359, 0.017201129347085953, -0.043737415224313736, -0.0005119383567944169, 0.02625024877488613, 0.004992618225514889, -0.014951851218938828, 0.007241896353662014, -0.0031301374547183514, -0.021114613860845566, -0.007371912710368633, 0.012377532199025154, 0.041449129581451416, -0.004973115399479866, -0.01345666591078043, -0.03367416933178902, 0.008243020623922348, -0.0065073054283857346, -0.005392417311668396, -0.0022655304055660963, -0.02328588254749775, 0.0032699047587811947, -0.008230018429458141, -0.006682827137410641, 0.0064162942580878735, -0.006062000524252653, 0.018761321902275085, -0.0046578263863921165, -0.012442540377378464, -0.00976420845836401, -0.01369069516658783, 0.00782046839594841, 0.006825844757258892, -0.003017998533323407, 0.0020786323584616184, -0.01920337788760662, 0.002304535359144211, 0.015536922961473465, 0.016421033069491386, -0.010251768864691257, 0.02504109963774681, -0.0007837532903067768, -0.0037119595799595118, -0.0029806189704686403, -0.005980740301311016, 0.014704820699989796, -0.024195995181798935, -0.010459794662892818, 0.04355539008975029, 0.00020924465206917375, -0.02202472649514675, -0.004765090066939592, 0.019853457808494568, 0.011727451346814632, 0.04025298357009888, 0.004407545551657677, -0.024065978825092316, 0.015887966379523277, -0.013950726948678493, -0.011246392503380775, -0.015744948759675026, -0.009894224815070629, 0.011421914212405682, 0.003203271422535181, 0.011935477145016193, 0.020763570442795753, 0.012299522757530212, 0.00045871303882449865, -0.01778620108962059, -0.0025548161938786507, -0.005535435397177935, 0.009244143962860107, 0.015380904078483582, -0.011974481865763664, -0.027225369587540627, 0.01912536658346653, 0.005889729131013155, 0.01010225061327219, -0.012202010490000248, 0.007839970290660858, -0.0023451652377843857, -0.0029676174744963646, -0.013768704608082771, 0.016421033069491386, -0.024339012801647186, -0.01770819164812565, 0.001675582374446094, 0.02335089072585106, 0.022167744114995003, 0.0015098118456080556, 0.001851104199886322, -0.021062606945633888, 0.0004132073954679072, -0.018176250159740448, 0.035260364413261414, 0.03409022092819214, 0.006013244390487671, -0.015523921698331833, 0.023532913997769356, 0.022102735936641693, 0.005376165732741356, -0.004173516761511564, 0.002668580273166299, -0.002813223283737898, -0.0020184998866170645, 0.006370788440108299, -0.0036957075353711843, 0.004589568357914686, -0.01534189935773611, -0.0006224520620889962, 0.021530665457248688, -0.00849005114287138, -0.0009239268838427961, 0.005298155825585127, 0.0206595566123724, -0.0008467297884635627, 0.009627691470086575, 0.011915975250303745, -0.04053901880979538, -0.03242601454257965, -0.003286156803369522, -0.006039247382432222, -0.03825073316693306, -0.0114804208278656, 0.0170581117272377, 4.553102553472854e-05, -0.01765618473291397, 0.006448798347264528, 0.011064369231462479, -0.015276891179382801, 0.005558188073337078, 0.004518059082329273, -0.013677692972123623, -0.030891824513673782, 0.019749443978071213, 0.0035429385025054216, 0.02860354073345661, 0.017500165849924088, -0.01322263665497303, 0.004823597148060799, 0.01244904100894928, 0.012663567438721657, 0.012293022125959396, 0.029721679165959358, 0.0031187611166387796, -0.015250887721776962, 0.0001362121693091467, -0.01231902465224266, -0.007183389272540808, -0.018371274694800377, -0.022258754819631577, 0.004319784697145224, 0.02115361951291561, -0.0031512652058154345, 0.09298750758171082, 0.03328412026166916, -0.037574652582407, 0.006621069740504026, -0.014132749289274216, 0.012904097326099873, 0.000840228982269764, 0.01352167408913374, -0.001222963910549879, -0.008776086382567883, 0.01534189935773611, 0.0067933411337435246, -0.022804822772741318, -0.028681550174951553, -0.010966857895255089, 0.015484916977584362, -0.0015796954976394773, -0.0010953856399282813, -0.0027595916762948036, -0.00792448129504919, 0.020698562264442444, -0.02504109963774681, 0.02228475920855999, 0.022323762997984886, -0.018280262127518654, -0.021725689992308617, 0.03159391134977341, 0.0050673773512244225, -0.00788547657430172, -0.01792921870946884, -0.009634193032979965, -0.0012928475625813007, -0.055542875081300735, -0.009114128537476063, 0.010661319829523563, -0.008366535417735577, 0.006682827137410641, -0.02966967225074768, 0.009270147420465946, 0.0014919346431270242, 0.014990855939686298, 0.00876308511942625, -0.015952974557876587, -0.03333612531423569, -0.030709801241755486, 0.03812072053551674, 0.012202010490000248, -0.01779920421540737, 0.0016308893682435155], '_distance': 0.37803786993026733})],\n", + " 'generation': 'Transformers work by using attention mechanisms to boost the '\n", + " 'speed of training deep learning models. They outperform '\n", + " 'previous models like the Google Neural Machine Translation '\n", + " 'model in specific tasks, mainly due to their ability to '\n", + " 'parallelize operations, making them highly efficient for '\n", + " 'training on modern hardware. Transformers use self-attention '\n", + " 'to weigh the significance of different words in a sentence, '\n", + " 'allowing the model to focus on relevant words and ignore less '\n", + " 'relevant ones, improving the performance of tasks like '\n", + " 'translation and text summarization.',\n", + " 'question': 'How Transformers work?'}\n", + "'-------'\n", + "***** Generated Answer *****\n", + "('Transformers work by using attention mechanisms to boost the speed of '\n", + " 'training deep learning models. They outperform previous models like the '\n", + " 'Google Neural Machine Translation model in specific tasks, mainly due to '\n", + " 'their ability to parallelize operations, making them highly efficient for '\n", + " 'training on modern hardware. Transformers use self-attention to weigh the '\n", + " 'significance of different words in a sentence, allowing the model to focus '\n", + " 'on relevant words and ignore less relevant ones, improving the performance '\n", + " 'of tasks like translation and text summarization.')\n" + ] + } + ], + "source": [ + "# Run\n", + "query_prompt = \"How Transformers work?\"\n", + "inputs = {\"keys\": {\"question\": query_prompt}}\n", + "for output in app.stream(inputs):\n", + " for key, value in output.items():\n", + " # Node\n", + " # print full state at each node\n", + " pprint.pprint(value[\"keys\"], indent=2, width=80, depth=None)\n", + " pprint.pprint(\"------------------------\")\n", + "\n", + "# Final generation\n", + "print(\"*\" * 5, \" Generated Answer \", \"*\" * 5)\n", + "pprint.pprint(value[\"keys\"][\"generation\"])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7twOSBPJqwyJ", + "outputId": "be4a22b4-a5f9-45df-f063-03265382eb68" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "***** RETRIEVE *****\n", + "{ 'documents': [ Document(page_content='Featured in courses at Stanford, Harvard, MIT, Princeton, CMU and others\\nIn the previous post, we looked at Attention – a ubiquitous method in modern deep learning models. Attention is a concept that helped improve the performance of neural machine translation applications. In this post, we will look at The Transformer – a model that uses attention to boost the speed with which these models can be trained. The Transformer outperforms the Google Neural Machine Translation model in specific tasks. The biggest benefit, however, comes from how The Transformer lends itself to parallelization. It is in fact Google Cloud’s recommendation to use The Transformer as a reference model to use their Cloud TPU offering. So let’s try to break the model apart and look at how it functions.', metadata={'vector': [-0.03292850777506828, 0.0013406849466264248, 0.021762628108263016, -0.010678051970899105, 0.0201500803232193, 0.014241919852793217, -0.006924473214894533, -0.016965635120868683, -0.013428870588541031, -0.04143843054771423, 0.03571997955441475, 0.03726477548480034, -0.007520709186792374, 0.0007080307113938034, 0.015868017449975014, -0.006494234316051006, 0.03048936277627945, 0.009031626395881176, -0.008116945624351501, -0.020448198541998863, -0.025692369788885117, 0.009248439222574234, -0.022697634994983673, -0.020082324743270874, -0.009343295358121395, 0.009939531795680523, 0.04967733472585678, -0.03284720331430435, -0.009153584018349648, -0.03181734308600426, 0.015447943471372128, 0.013916700147092342, -0.01604417897760868, -0.028754856437444687, -0.008184699341654778, -0.011565630324184895, 0.011524978093802929, -0.012690350413322449, 0.01742636412382126, -0.015542799606919289, 0.0319257490336895, 0.024567648768424988, 0.008469266816973686, -0.009255214594304562, -0.011342042125761509, 0.006175789516419172, -0.0009985265787690878, -0.04482613503932953, -0.0019665637519210577, 0.015122723765671253, 0.014634894207119942, 0.03905348479747772, -0.02326676994562149, -0.02559751458466053, -0.027101656422019005, 0.0002434914349578321, -0.010081815533339977, 0.007771399803459644, 0.02009587548673153, -0.011111677624285221, 0.01832071878015995, 0.0027745317202061415, -0.008218576200306416, 0.005962363909929991, -0.011545304208993912, -0.015136274509131908, -0.0016371094388887286, 0.03127530962228775, 0.0014186021871864796, 0.010576420463621616, 0.03777970373630524, 0.024635402485728264, 0.0042447964660823345, -0.011965380050241947, 0.035421863198280334, -0.016924982890486717, -0.014743301086127758, -0.00861155055463314, -0.016924982890486717, 0.013550828211009502, -0.0007380965980701149, -0.0036993760149925947, 0.009688841179013252, -0.0007012552814558148, 0.0016218647360801697, -0.0068228417076170444, 0.00879448652267456, -0.008814812637865543, -0.009973408654332161, 0.010833886452019215, -0.0008122027502395213, 0.001707404269836843, 0.01798194646835327, 0.014661995694041252, 0.01265647355467081, 0.014431631192564964, -0.0019835021812468767, 0.030895886942744255, -0.0033165651839226484, -0.01651845872402191, -0.0026559620164334774, -0.001112861675210297, -0.04021885618567467, -0.016247441992163658, -0.019093114882707596, 0.014729749411344528, 0.01596287451684475, -0.006545050069689751, -0.013943801634013653, -0.006392603274434805, -0.0008435390191152692, 0.02023138478398323, 0.0015109172090888023, -0.04290191829204559, -0.0036587235517799854, 0.003594357054680586, 0.009600760415196419, -0.008096619509160519, 0.007961111143231392, -0.01205346081405878, 0.04330844432115555, 0.01519047748297453, 0.005271271802484989, 0.0003809052868746221, 0.007527485024183989, -0.009797248058021069, -0.005406780168414116, -0.0052983732894063, 0.003413114696741104, -0.021207043901085854, -0.02174907736480236, 0.017290854826569557, -0.0016303339507430792, -0.004966378211975098, -0.0177922360599041, 0.014052208513021469, -0.0031996893230825663, -0.01643715240061283, -0.04198046028614044, -0.0023663132451474667, 0.0019835021812468767, -0.006965125445276499, -0.006318073719739914, -0.01296814251691103, -0.0028778568375855684, 0.03409387916326523, 0.005105274263769388, 0.040787987411022186, 0.02352423593401909, 0.022724736481904984, 0.022670533508062363, -0.026952596381306648, -0.008191474713385105, 0.01121330913156271, 0.03206125646829605, 0.016423601657152176, 0.014241919852793217, 0.006734761409461498, -0.007622340694069862, -0.0013991228770464659, 0.00577603979036212, 0.008035640232264996, -0.010251200757920742, -0.014296123757958412, 0.014783953316509724, 0.023456482216715813, 0.005850569345057011, -0.006985451560467482, 0.009438150562345982, -0.02090892568230629, -0.005806529428809881, 0.021369654685258865, -0.04561208188533783, 0.010542543604969978, -0.0034639304503798485, -0.0026119218673557043, 0.03336213529109955, -0.009390722960233688, -0.022494371980428696, -0.01986551284790039, 0.03658723086118698, -0.010481564328074455, 0.012595494277775288, 0.008537020534276962, -0.0008342228247784078, -0.013605031184852123, 0.010522217489778996, -0.013970903120934963, 0.011511427350342274, -0.030922988429665565, 0.009560108184814453, 0.03187154605984688, 0.0065484377555549145, -0.01487880852073431, -0.6348291635513306, -0.008726732805371284, -0.012859735637903214, -0.008963871747255325, 0.015176926739513874, -0.0005263649509288371, 0.0003383472212590277, 0.00016568003047723323, -0.01007504016160965, 0.012568392790853977, -0.0016574356704950333, -0.021112188696861267, -0.011389469727873802, 0.001235665986314416, -0.01910666562616825, -0.02141030691564083, 0.0029930388554930687, -0.03203415498137474, 0.020434647798538208, 0.026342809200286865, -0.03263039141893387, 0.013530501164495945, -0.02386300638318062, 0.005145926494151354, -0.009925981052219868, 0.011484325863420963, 0.009593985043466091, 0.009783697314560413, 0.005173027981072664, 0.012981693260371685, -0.03168183192610741, 0.0036621112376451492, 0.03371445834636688, -0.00020156856044195592, 0.026559622958302498, 0.00534580135717988, 0.005657470319420099, 0.03352474421262741, 0.0042447964660823345, 0.03712926432490349, -0.008719957433640957, -0.020746316760778427, 0.02899877168238163, 0.02197944186627865, 0.026952596381306648, 0.012202519923448563, 0.0065823146142065525, 0.004586955066770315, -0.010217323899269104, -0.02661382593214512, -0.012548066675662994, 0.014201267622411251, 0.01973000355064869, -0.006555213127285242, 0.0006495927809737623, 0.005274659488350153, 0.033172424882650375, -0.0024272918235510588, 0.018252963200211525, -0.01756187155842781, 0.0015651206485927105, 0.01214154064655304, -0.004705524537712336, -0.010854212567210197, -0.018673039972782135, -0.007032879628241062, 0.011904401704668999, 0.026451215147972107, 0.007229366805404425, -0.027752095833420753, 0.004088961984962225, 0.024405039846897125, 0.011050699278712273, 0.00901807565242052, -0.007690094877034426, 0.02023138478398323, 0.018225861713290215, 0.00901807565242052, 0.016681067645549774, 0.032278068363666534, 0.021396756172180176, -0.02172197587788105, 0.015217579901218414, -0.02680353820323944, -0.005400004331022501, -0.0010137712815776467, -0.015014316886663437, -0.006477295886725187, -0.007107409182935953, -0.02256212756037712, 0.017074041068553925, 0.011220084503293037, -0.030164143070578575, -0.05745550990104675, -0.012270273640751839, 0.010108917020261288, 0.0006953268311917782, 0.009600760415196419, 0.017521219328045845, -0.00421430729329586, 0.0015625798841938376, -0.020014571025967598, -0.0041702669113874435, 0.010915190912783146, 0.01758897304534912, -0.0001675856183283031, -0.008774160407483578, 0.029188483953475952, 0.027277816087007523, -0.01627454347908497, -0.01680302619934082, 0.003396176267415285, -0.014255470596253872, 0.019323479384183884, 0.00320307700894773, -0.027521731331944466, 0.017656726762652397, -0.012893612496554852, -0.010047937743365765, -0.018198760226368904, 0.014282572083175182, -0.01025797612965107, 0.006606028415262699, -0.0012458291603252292, 0.009648188948631287, 0.004088961984962225, 0.013381442986428738, -0.02641056291759014, -0.011917952448129654, 0.015637654811143875, 0.010630623437464237, -0.001188238151371479, 0.020380442962050438, -0.011599508114159107, 0.00985145103186369, 0.019242174923419952, -0.0037739055696874857, -0.003831496462225914, -0.00014493032358586788, -0.017697380855679512, -0.008157597854733467, 0.014309674501419067, 0.01677592284977436, 0.026112444698810577, -0.05485375225543976, 0.008340533822774887, -0.011335266754031181, 0.0035096644423902035, -0.015881570056080818, -0.013984453864395618, -0.0005090029444545507, -0.012351579032838345, -0.027630137279629707, 0.007330997847020626, -0.01967580057680607, -0.018794996663928032, 0.004048309754580259, -0.04333554580807686, -0.020922476425766945, -0.043796271085739136, 0.027752095833420753, 0.0458017960190773, -0.029405295848846436, 0.023930760100483894, -0.013449196703732014, -0.009160359390079975, -0.00341819622553885, 0.043687865138053894, -0.025502657517790794, -0.030299650505185127, 0.021207043901085854, -0.04479903355240822, 0.01815810799598694, 0.002185070887207985, -0.003845047438517213, 0.001308501698076725, -0.007662992924451828, -0.01417416613548994, -0.015868017449975014, -0.014634894207119942, -0.009309418499469757, 0.01981130987405777, -0.014987215399742126, -0.022670533508062363, 0.022467270493507385, 0.01174856722354889, 0.039161890745162964, 0.00645019393414259, -0.025258744135499, 0.010860987938940525, -0.0018124232301488519, -0.01454003807157278, -0.0007321680895984173, 0.016504907980561256, 0.00703965499997139, 0.008083067834377289, 0.020705662667751312, -0.01573251001536846, 0.0006402765866369009, 0.022521473467350006, -0.004471772816032171, -0.0008041569381020963, 0.012216070666909218, -0.02295510098338127, 0.009729493409395218, 0.00181072938721627, 0.0012178805191069841, -0.029405295848846436, 0.0005958129186183214, -0.004512425512075424, 0.01947253756225109, -0.01294104102998972, -0.01894405670464039, -0.023117709904909134, -0.019960368052124977, 0.03870116174221039, -0.005247557535767555, 0.029974430799484253, -0.01930992864072323, 0.0007728206692263484, 0.011125229299068451, -0.001856463379226625, -0.009499129839241505, -0.008719957433640957, 0.005809917114675045, 0.02397141233086586, 0.024188226088881493, 0.011328491382300854, -0.0037806809414178133, -0.0163558479398489, 0.00425834720954299, 0.016152584925293922, 0.012920713983476162, 0.028104417026042938, 0.009526231326162815, -0.003353829961270094, 0.013571154326200485, -0.01333401445299387, 0.018022600561380386, -0.008042415603995323, 0.00514253880828619, 0.008550572209060192, -0.014648444950580597, -0.024066269397735596, 0.024581199511885643, 0.010373158380389214, 0.03444620221853256, -0.014838156290352345, -0.006927860900759697, -0.00858444906771183, -0.015271782875061035, -0.005074784625321627, 0.004915562458336353, 0.008137271739542484, 0.004688586108386517, 0.0014228367945179343, 0.004454834386706352, -0.006667007226496935, 0.02216915227472782, 0.028429636731743813, 0.010068264789879322, 0.009715942665934563, 0.02155936509370804, -0.011545304208993912, 0.017494117841124535, 0.009661739692091942, 0.013638908043503761, -0.011735016480088234, -0.009255214594304562, -0.007696870248764753, -0.0037976193707436323, -0.01664041541516781, 0.004908787086606026, -0.0489455871284008, 0.008760609664022923, 0.022128500044345856, -0.011538528837263584, 0.034663014113903046, -0.010332505218684673, 0.044419609010219574, -0.008862241171300411, -0.05244170501828194, 0.004454834386706352, -0.0031082211062312126, -0.01981130987405777, -0.02040754444897175, -0.03208835795521736, -0.00602673040702939, -0.008408288471400738, 0.003250504843890667, -0.01664041541516781, 0.004400630947202444, -0.0019987470004707575, 0.00036036729579791427, -0.015691857784986496, -0.0027271038852632046, 0.022304661571979523, -0.005945425480604172, 0.012703901156783104, -0.028565144166350365, -0.0015532636316493154, 0.006958350073546171, -0.03450040519237518, -0.006999002769589424, 0.02206074632704258, -0.020814070478081703, -0.018469776958227158, -0.010501890443265438, -0.008191474713385105, -0.020475300028920174, 0.026735782623291016, -0.004082186613231897, 0.010474788956344128, -0.03360605239868164, 0.014052208513021469, -0.006826229393482208, 0.014716198667883873, 0.009986959397792816, 0.0251232348382473, 0.017887091264128685, -0.0022087846882641315, -0.01823941245675087, 0.008537020534276962, 0.022697634994983673, 0.07252402603626251, 0.01792774349451065, -0.033118221908807755, 0.014092860743403435, -0.03937870264053345, -0.003485950408503413, -0.020326239988207817, -0.027467528358101845, 0.009966633282601833, -0.00817792396992445, -0.00762911606580019, -0.013347565196454525, 0.010915190912783146, -0.012446435168385506, 0.03303691744804382, 0.026491869240999222, -0.005610042251646519, -0.015786712989211082, -0.005349189043045044, -0.016789475455880165, 0.00838796142488718, -0.020272037014365196, 0.029296889901161194, 0.008869016543030739, 0.03433779627084732, -0.019242174923419952, 0.027318468317389488, 0.027860501781105995, 0.016504907980561256, -0.01361180655658245, -0.005427106283605099, -0.01146399974822998, -0.012690350413322449, -0.0026102280244231224, -0.026207301765680313, 0.04217017441987991, -0.0034673181362450123, 0.01700628735125065, 0.00037455331766977906, 0.006284196395426989, 0.004024595487862825, 0.03303691744804382, 0.009953082539141178, -0.011443673633038998, -0.018103905022144318, -0.029947329312562943, 0.02624795399606228, 0.023673294112086296, -0.021884584799408913, -0.024581199511885643, 0.0012170335976406932, 0.0018869527848437428, -0.04433830454945564, 0.005498248152434826, 0.013638908043503761, -0.003618071088567376, 0.003997494000941515, 0.010786457918584347, -0.010752581059932709, -0.006670394912362099, -0.020475300028920174, -0.029974430799484253, -0.0003730712051037699, 0.00017213785031344742, 0.012913938611745834, -0.0011425040429458022, -0.000349357258528471, -0.018117455765604973, -0.01840202324092388, 0.01907956413924694, 0.006077545695006847, -0.027833400294184685, -0.05170996114611626, -0.005054458510130644, 0.02661382593214512, 0.006978676188737154, 0.02989312633872032, -0.008801261894404888, -0.02054305374622345, 0.021992992609739304, -0.008462491445243359, -0.028429636731743813, 0.011782444082200527, -0.02216915227472782, -0.008814812637865543, -0.002630554372444749, -0.015000766143202782, -0.00042049912735819817, -0.013191730715334415, 0.0038247210904955864, -0.0028609184082597494, 0.0011179432040080428, 0.01355760358273983, -0.001084913033992052, 0.0013881127815693617, 0.02967631258070469, 0.024906421080231667, 0.02174907736480236, 0.01986551284790039, -0.033849965780973434, 0.006304522510617971, -0.025245191529393196, -0.005610042251646519, -0.02562461607158184, 0.023388726636767387, 0.005156089551746845, 0.025502657517790794, 0.011992481537163258, 0.017805786803364754, -0.01683012768626213, 0.019608046859502792, -0.0036756619811058044, -0.010298628360033035, -0.0033894008956849575, 0.009309418499469757, 0.0027813073247671127, 0.008320207707583904, 0.008841914124786854, -0.008774160407483578, -0.029351092875003815, -0.0160983819514513, -0.027020350098609924, 0.03417518734931946, 0.013198506087064743, -0.003064180724322796, 0.001883565098978579, -0.00045310580753721297, -0.004807156044989824, -0.0189711581915617, 0.021654222160577774, -0.008164373226463795, 0.03347054123878479, 0.010671276599168777, 0.0025915957521647215, -0.029567906633019447, -0.004790217150002718, -0.006887208204716444, -0.009126481600105762, -0.012886837124824524, -0.01683012768626213, 0.004888460971415043, -0.008665753528475761, -0.019770655781030655, -0.013571154326200485, 0.02756238356232643, -0.019093114882707596, -0.023090608417987823, 0.01012924313545227, 0.017182448878884315, 0.02829412929713726, 0.0006085167988203466, 0.00991920568048954, -0.037752602249383926, -0.008001763373613358, 0.0077104209922254086, -0.01790064200758934, 0.003231872571632266, -0.004139777738600969, 0.015095622278749943, 0.02127479761838913, 0.040842194110155106, 0.0018988096853718162, -0.002451005857437849, 0.041411325335502625, -0.0251232348382473, -0.00038386951200664043, 0.014661995694041252, 0.019513191655278206, -0.00783915352076292, -0.003692600643262267, 0.015895120799541473, 0.00600640382617712, 0.01080678403377533, 0.010325729846954346, 0.016084831207990646, 0.001335603417828679, 0.012039910070598125, -0.003651948180049658, -0.010027611628174782, -0.02122059464454651, -0.016789475455880165, 0.021627120673656464, -0.008198250085115433, -0.015041418373584747, -0.02470315806567669, 0.005481309723109007, 0.028077315539121628, 0.02562461607158184, 0.02981182187795639, 0.017467016354203224, 0.016789475455880165, 0.0022900898475199938, -0.006351950578391552, 0.012778431177139282, 0.034663014113903046, -0.026573173701763153, -0.004343039821833372, -0.036993756890296936, -0.005193354561924934, 0.03723767399787903, 0.00972271803766489, 0.004637770354747772, 0.008747058920562267, -0.0035706430207937956, -0.006541662383824587, 0.015868017449975014, -0.007351323962211609, -0.01800904981791973, -0.015488595701754093, -0.013876047916710377, -0.008625101298093796, -0.013279811479151249, -0.018510429188609123, -0.007303896360099316, 0.00802208948880434, -0.003062486881390214, -0.009912430308759212, 0.007873030379414558, -0.028781957924365997, -0.02242661826312542, 0.036126505583524704, 0.016992736607789993, 0.046750351786613464, 0.013002019375562668, 0.030977191403508186, 0.01756187155842781, 0.002720328513532877, -0.0052340067923069, -0.008618325926363468, -0.0018361371476203203, 0.02323966845870018, 0.008076292462646961, 0.0008007692522369325, -0.004105900414288044, -0.031031396239995956, 0.00647052051499486, 0.010298628360033035, -0.00920101162046194, -0.038457248359918594, 0.012541291303932667, 0.013523725792765617, 0.007520709186792374, -0.013774416409432888, -0.027657238766551018, 0.0010451074922457337, 0.010705153457820415, -0.01528533361852169, 0.02402561530470848, 0.011179432272911072, -0.015542799606919289, -0.012527740560472012, 0.0027237161993980408, 0.00455307774245739, 0.010427361354231834, -0.011694363318383694, 0.007649442180991173, 0.033904168754816055, 0.0011433509644120932, 0.0037908439990133047, -0.004698749165982008, 0.0033741560764610767, 0.01448583509773016, -0.02164067141711712, 0.009871777147054672, 0.00895032100379467, -0.006951574701815844, 0.008110170252621174, -0.0010501891374588013, -0.016762372106313705, 0.03214256092905998, -0.037698399275541306, -0.015515698119997978, 0.01714179664850235, -0.015122723765671253, 0.01233802828937769, -0.03902638331055641, -0.0028592245653271675, 0.0018158109160140157, -0.01028507761657238, -0.006853331346064806, 0.017182448878884315, 0.020732766017317772, -0.03951421007514, 0.0057794274762272835, 0.020583705976605415, -0.011626609601080418, -0.013693111948668957, 0.005034132394939661, 0.014214818365871906, -0.03336213529109955, -0.01445873361080885, 0.010833886452019215, -0.0013415318680927157, 0.02680353820323944, -0.014323225244879723, -0.009892103262245655, -0.017399262636899948, 0.02706100232899189, -0.009973408654332161, -0.009343295358121395, 0.015800263732671738, 0.0016709864139556885, -0.010488339699804783, 0.02248082123696804, -0.004525976255536079, -0.017304405570030212, 0.007595238741487265, -0.0223724152892828, -0.019946817308664322, 0.004519200883805752, -0.004309162963181734, 0.0036756619811058044, 0.010515442118048668, 0.0035299905575811863, -0.01598997600376606, 0.005423718597739935, -0.008936770260334015, -0.009451702237129211, -0.00014302475028671324, -0.023564888164401054, -0.007378425914794207, 0.006277421023696661, 0.0329827144742012, -0.030841683968901634, 0.006301134824752808, -0.027941806241869926, -0.010833886452019215, -0.014811054803431034, -0.0371563658118248, 0.002569575561210513, -0.01756187155842781, 0.012399007566273212, -0.0057455506175756454, -0.004000881686806679, 0.022250458598136902, 0.004725851118564606, -0.020475300028920174, 0.01100327167659998, 0.0016642110422253609, 0.0018801772966980934, -0.008198250085115433, 0.010996496304869652, 0.025502657517790794, 0.003485950408503413, -0.03740028291940689, -0.007764624431729317, -0.00018928811186924577, 0.005379678215831518, -0.027657238766551018, -0.021166391670703888, -0.010976170189678669, 0.0282670259475708, 0.007053205743432045, -0.018849199637770653, -0.009844675660133362, -0.018225861713290215, -0.027914704754948616, -0.012852960266172886, -0.013930250890552998, 0.016342297196388245, 0.00320307700894773, 0.01840202324092388, 0.006094484589993954, 0.013117201626300812, 0.0076562175527215, 0.009966633282601833, 0.0057794274762272835, 0.029947329312562943, -0.025895632803440094, -0.009519455954432487, -0.02164067141711712, 0.003367380704730749, -0.046967167407274246, -0.011159106157720089, 0.004475160501897335, -0.023591989651322365, 0.0032386479433625937, 0.019540293142199516, 0.008753834292292595, -0.0035367661621421576, -0.0019716452807188034, 0.01641005091369152, -0.0019360744627192616, 0.019093114882707596, 0.03216966241598129, -0.02697969786822796, -0.0023612314835190773, -0.005471146199852228, -0.02174907736480236, -0.0097498195245862, 0.0050442954525351524, 0.009878552518785, 0.00851669441908598, 0.0029252846725285053, -0.02197944186627865, 0.013930250890552998, 0.019635148346424103, 0.0013779497239738703, 0.017074041068553925, 0.0033639930188655853, -0.0023544561117887497, 0.014960113912820816, 0.01761607453227043, -0.019187970086932182, -0.009966633282601833, 0.014743301086127758, -0.013821844011545181, -0.024486344307661057, 0.026058241724967957, -0.028890365734696388, 0.0019835021812468767, -0.005030744709074497, -0.002498433692380786, -0.008686079643666744, -0.005257721059024334, -0.0006343480781652033, 0.0025390861555933952, -0.026789987459778786, 0.02661382593214512, -0.002362925559282303, -0.03815912827849388, 0.014282572083175182, -0.005874283611774445, 0.018307168036699295, -0.017101144418120384, -0.005677796434611082, 0.009411049075424671, -0.013523725792765617, -0.012019583024084568, 0.00703965499997139, -0.009614312089979649, -0.024039166048169136, -0.002821959787979722, 0.013747314922511578, -0.011680812574923038, -0.009783697314560413, 0.21106769144535065, -0.020001020282506943, -0.0022172541357576847, 0.010278302244842052, 0.011328491382300854, 0.010935517027974129, 0.01800904981791973, 0.016369398683309555, -0.025583963841199875, -0.011809545569121838, 0.03504243865609169, -0.004942663945257664, -0.04249539226293564, -0.006019955035299063, 0.01482460554689169, -0.027277816087007523, -0.03948710858821869, -0.0382133312523365, -0.005925098899751902, -0.004536139313131571, 0.014689097180962563, -0.008970647118985653, -0.004681810736656189, -0.03807782381772995, 0.008869016543030739, 0.0024848829489201307, 0.0009883634047582746, -0.007005778141319752, 0.021491611376404762, 0.024188226088881493, -0.033091120421886444, 0.007168387994170189, 0.012249947525560856, 0.016870779916644096, -0.021030884236097336, -0.00913325697183609, 0.01487880852073431, -0.009275540709495544, 0.011362368240952492, 0.006104647647589445, 0.006873657461255789, 0.007114184554666281, 0.009363621473312378, -0.00199197162874043, 0.00023205792240332812, 0.018483327701687813, -0.02389010787010193, 0.0050612338818609715, -0.004712299909442663, 0.005139151122421026, -0.025746572762727737, 0.0018429126357659698, 0.007568137254565954, 0.036912452429533005, 0.0011170962825417519, 0.019431885331869125, -0.00288801989518106, 0.02012297883629799, 0.03355184569954872, 0.014241919852793217, -0.012961367145180702, 0.011897626332938671, -0.011077800765633583, 0.025611065328121185, 0.014269021339714527, 0.003926352132111788, -0.01815810799598694, 0.035503167659044266, 0.010251200757920742, -0.011457224376499653, -0.011497876606881618, -0.01407930999994278, -0.022182703018188477, -0.008001763373613358, -0.03788811340928078, -0.01666751690208912, 0.04111320897936821, 0.015122723765671253, 0.016586212441325188, 0.026789987459778786, -0.005379678215831518, -0.025041930377483368, 0.007920457981526852, -0.009600760415196419, 0.00966851506382227, -0.028483839705586433, 0.010461238212883472, -0.0030506299808621407, -0.0019208298763260245, -0.004634382668882608, 0.018903404474258423, -0.026261504739522934, -0.010041162371635437, -0.0014507854357361794, -0.02352423593401909, -0.0066737825982272625, 0.033795762807130814, 0.010854212567210197, 0.013483073562383652, -0.013144303113222122, -0.026871291920542717, 0.031654730439186096, 0.032359376549720764, 0.0005687112570740283, -0.0035706430207937956, 0.014431631192564964, 0.014865257777273655, 0.01155207958072424, -0.012094113044440746, -0.003912801388651133, -0.0012678492348641157, -0.050110962241888046, 0.011145555414259434, 0.0017683830810710788, -0.012385456822812557, 0.00951268058270216, -0.020421097055077553, -0.0030269159469753504, 0.0232938714325428, -0.015746060758829117, -0.00011602896120166406, -0.025773674249649048, -0.009180685505270958, 0.006802515592426062, 0.00045818736543878913, -0.016139034181833267, -0.016992736607789993, -0.006440030876547098, -0.021288348361849785, 0.014011556282639503, 0.002318885177373886, -0.04127581790089607, 0.021207043901085854, 0.001632874715141952, -0.014363877475261688, -0.023768151178956032, 7.209463365143165e-05, 0.008035640232264996, 0.012622595764696598, 0.01737215928733349, -0.009363621473312378, -0.007778175175189972, -0.005311924032866955, -0.0030658745672553778, 0.0012000950518995523, -0.02441859059035778, 0.008462491445243359, 0.02124769613146782, 0.013354340568184853, -0.012161866761744022, -0.014634894207119942, 0.023470032960176468, 0.005352576728910208, -0.026234403252601624, 0.022629881277680397, -0.01716889813542366, -0.021600017324090004, -0.03290140628814697, 0.004224470350891352, -0.014675546437501907, -0.03607230260968208, -0.010698378086090088, 0.017629625275731087, -0.0007567289867438376, -0.01669461838901043, -0.0003938209265470505, -0.17236651480197906, -0.0044683851301670074, 0.021627120673656464, -0.025583963841199875, 0.02315836399793625, 0.0035808063112199306, 0.01941833458840847, -0.00407541124150157, -0.022616330534219742, -0.005227231420576572, 0.020529503002762794, -0.022778939455747604, -0.008652202785015106, -0.01865948922932148, -0.0066568441689014435, 0.006971900817006826, -0.014770402573049068, -0.004841032903641462, 0.012609045021235943, 0.008435389958322048, 0.03777970373630524, -0.036234911531209946, 0.007635891437530518, 0.008157597854733467, -0.00817792396992445, 0.0194996390491724, 0.0049867043271660805, 0.03496113419532776, 0.02829412929713726, -0.028619349002838135, -0.0027440425474196672, -0.00861155055463314, 0.04271220788359642, -0.014580690301954746, 0.006463745143264532, 0.013340789824724197, 0.012697125785052776, -0.03490693122148514, -0.025001278147101402, 0.01907956413924694, 0.026261504739522934, -0.004993479698896408, 0.002425597980618477, 0.002478107577189803, -0.019743554294109344, -0.012974917888641357, 0.028890365734696388, -0.013889598660171032, 0.021871034055948257, -0.024147573858499527, 0.027616586536169052, -0.009004524908959866, -0.008137271739542484, 0.006785577163100243, -0.007547811139374971, 0.007195489481091499, 0.004942663945257664, 0.0052340067923069, 0.0011179432040080428, -0.01855108141899109, -0.019377682358026505, 0.0009375478839501739, 0.023849455639719963, 0.0014592546503990889, 0.001086606876924634, -0.011531753465533257, 0.01261582039296627, 0.023171914741396904, -0.031763140112161636, 0.010711928829550743, -0.01632874645292759, 0.025190988555550575, -0.032955609261989594, -0.02250792272388935, 0.00026868749409914017, 0.026993248611688614, -0.03813202679157257, 0.0041872053407132626, 0.003340278984978795, 0.0011475856881588697, -0.012852960266172886, 0.03208835795521736, -0.014418080449104309, 0.014038657769560814, -0.005945425480604172, -0.010610297322273254, -0.003485950408503413, 0.0177922360599041, -0.04431120306253433, -0.020028121769428253, 0.019038911908864975, -0.021112188696861267, -0.002556024817749858, 0.006297747138887644, 0.01519047748297453, 0.021843932569026947, 0.022291110828518867, -0.029567906633019447, 0.02441859059035778, -0.003172587603330612, -0.008462491445243359, 0.013930250890552998, -0.0019462376367300749, -0.007141286041587591, 0.01573251001536846, 0.027237163856625557, -0.01781933754682541, -0.001646425575017929, 0.02978471852838993, 0.005454207770526409, -0.01981130987405777, -0.021464509889483452, 0.01108457613736391, 0.0048207067884504795, -0.0025899019092321396, 0.02028558775782585, -0.0035401538480073214, 0.0037332531064748764, 0.022684084251523018, 0.014838156290352345, 0.059135813266038895, 0.0012509106891229749, -0.012317701242864132, 0.0027830011676996946, -0.01722310110926628, -0.04263089969754219, -0.10585907101631165, -0.020448198541998863, 0.011389469727873802, 0.015840915963053703, 0.00030595227144658566, 0.008679304271936417, -0.014431631192564964, 0.019187970086932182, -0.027237163856625557, 0.028754856437444687, -0.03436489775776863, -0.02528584562242031, 0.024228878319263458, -0.005403392016887665, -0.00291173392906785, -0.019066013395786285, 0.021179942414164543, -0.0011941666016355157, -0.024350836873054504, 0.03954131156206131, -0.008699631318449974, 0.011375918984413147, 0.017385710030794144, -0.020339790731668472, -0.010678051970899105, -0.0032589740585535765, -0.024987727403640747, 0.011897626332938671, 0.01077968254685402, -0.01700628735125065, 0.012243172153830528, -0.024323733523488045, 0.012886837124824524, -0.021030884236097336, 0.02177617885172367, 0.002232498722150922, -0.01567830704152584, -0.0067483121529221535, 0.02028558775782585, -0.018361371010541916, -0.0071006338112056255, -0.00858444906771183, 0.0020851334556937218, 0.010745805688202381, -0.016206789761781693, -0.010488339699804783, -0.019960368052124977, 0.020502401515841484, 0.01139624509960413, -0.0260446909815073, -0.02310415916144848, 0.014404529705643654, -0.03677694499492645, 0.010603521950542927, 0.025773674249649048, 0.0008782630320638418, 0.007466506212949753, -0.011660486459732056, -0.006077545695006847, -0.0021037659607827663, 0.011599508114159107, -0.011050699278712273, -0.017209550365805626, 0.039893634617328644, 0.027332019060850143, -0.009627862833440304, -0.011348817497491837, -0.02567881904542446, -0.0015981508186087012, -0.027887603268027306, -0.0038755368441343307, 0.011809545569121838, 0.005108661949634552, 0.0072090402245521545, -0.033226627856492996, 0.004549690056592226, -0.01745346561074257, -0.012683575041592121, 0.0005555839161388576, -0.0030658745672553778, -0.016789475455880165, -0.01711469516158104, -0.006111423019319773, -0.01795484498143196, -0.011843422427773476, -0.006094484589993954, -0.008753834292292595, -0.03661433607339859, 0.00703965499997139, -0.03704795986413956, 0.002288396004587412, 0.04284771531820297, 0.007107409182935953, 0.0003567678795661777, 0.008266004733741283, -0.003475787350907922, -0.009004524908959866, -0.008990973234176636, -0.003946678247302771, 0.03669564053416252, -0.007723971735686064, -0.011301389895379543, -0.06200858950614929, 0.006382439751178026, -0.008774160407483578, -0.007757849059998989, -0.0014888971345499158, 0.002991345012560487, 0.013577929697930813, 0.005677796434611082, -0.013998005539178848, -0.011348817497491837, -0.023876557126641273, -0.010088590905070305, 0.000378999684471637, -0.0005305995582602918, -0.02905297465622425, -0.022440169006586075, 0.022209804505109787, -0.016870779916644096, 0.01090164016932249, 0.012195744551718235, 0.011972155421972275, 0.006138524506241083, 0.02174907736480236, 0.029513703659176826, -0.014404529705643654, -0.030814582481980324, 0.01688433066010475, 0.012006032280623913, -0.0009527925867587328, -0.0009477109997533262, 0.0046547092497348785, -0.007574912626296282, 0.0057455506175756454, 0.022209804505109787, 0.0014787339605391026, 0.0054474323987960815, -0.0038721489254385233, 0.019621597602963448, 0.013930250890552998, 0.031139802187681198, -0.01936413161456585, -0.05092401057481766, 0.010928741656243801, -0.010088590905070305, -0.01601707749068737, -0.009898878633975983, -0.0009976796573027968, 0.0018666265532374382, 0.013760865665972233, 0.007642666809260845, 0.006511172745376825, 0.01832071878015995, -0.0013457664754241705, -0.0198926143348217, -0.015122723765671253, 0.027697892859578133, 0.01567830704152584, -0.007805276662111282, -0.006453581620007753, -0.0012873285450041294, 0.03653302788734436, 0.004962990526109934, 0.005203517619520426, -0.0012653084704652429, 0.012439659796655178, 0.003784068627282977, -0.025421353057026863, -0.0058370186015963554, 0.005582940764725208, -0.03482562676072121, 0.007391976658254862, -0.009844675660133362, 0.02588208205997944, 0.011978930793702602, 0.024540547281503677, 0.005738775245845318, -0.014905910938978195, -0.011518202722072601, -0.030922988429665565, 0.02593628503382206, 0.013571154326200485, 0.009268765337765217, -0.010190221481025219, 0.01876789517700672, 0.020949577912688255, 0.012697125785052776, -0.006460356991738081, -0.0031200782395899296, -0.01355760358273983, 0.0076562175527215, 0.013666009530425072, 0.012127989903092384, 0.013327239081263542, -0.003397870110347867, -0.001734505989588797, 0.016477804630994797, -0.0002483612624928355, 0.0023392115253955126, 0.013273036107420921, 0.002811796497553587, 0.020759867504239082, -0.0011340348282828927, -0.015312435105443, -0.01790064200758934, -0.04189915582537651, 0.0008054273203015327, -0.030055735260248184, -0.01933703012764454, 0.0008105089073069394, 0.0198926143348217, 0.01745346561074257, -0.015691857784986496, 0.005359352100640535, -0.0006449346547015011, -0.014390978962182999, 0.02402561530470848, 3.385059972060844e-05, -0.009404273703694344, -0.029323991388082504, -0.004238021094352007, 0.03431069478392601, 0.010881314054131508, 0.029378194361925125, 0.005942037794739008, 0.036858249455690384, 0.01863238774240017, 0.008259229362010956, -0.024919971823692322, 0.029703414067626, 0.01834782026708126, -0.007520709186792374, 0.007161612622439861, 0.009682065807282925, -0.013469522818922997, -0.01090164016932249, -0.007114184554666281, -0.008618325926363468, 0.02284669503569603, 0.0001381549081997946, 0.08320207893848419, 0.0175347700715065, -0.010420585982501507, 0.0017175674438476562, 0.004353203345090151, 0.0007808664813637733, 0.01986551284790039, 0.007859479635953903, -0.021112188696861267, 0.014241919852793217, -0.00600640382617712, 0.012609045021235943, -0.029351092875003815, 0.004326101392507553, -0.003574030939489603, 0.017317956313490868, -0.006849943660199642, 0.007466506212949753, -0.015054970048367977, -0.016206789761781693, 0.024947073310613632, -0.02483866736292839, 0.021532263606786728, -0.0011077801464125514, -0.013970903120934963, -0.010854212567210197, 0.0201500803232193, 0.016545560210943222, 0.0054474323987960815, -0.027413325384259224, 0.01907956413924694, 0.006944799330085516, -0.04507005214691162, -0.02475736290216446, 0.0011374225141480565, 3.705304334289394e-05, -0.0032860757783055305, -0.008381186053156853, 0.02973051555454731, -0.0016108546406030655, 0.000994291971437633, 0.03132951259613037, -0.006575539242476225, -0.027860501781105995, -0.015271782875061035, -0.001975032966583967, -0.0024747196584939957, -0.03211545944213867, -0.005552451126277447], '_distance': 0.3664601147174835}),\n", + " Document(page_content='The Illustrated Transformer – Jay Alammar – Visualizing machine learning one concept at a time.\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nJay Alammar\\nVisualizing machine learning one concept at a time.@JayAlammar on Twitter. YouTube Channel\\n\\n\\nBlog\\nAbout\\n\\n\\n\\n\\n\\n\\nThe Illustrated Transformer\\n\\nDiscussions:\\nHacker News (65 points, 4 comments), Reddit r/MachineLearning (29 points, 3 comments)\\n\\n\\nTranslations: Arabic, Chinese (Simplified) 1, Chinese (Simplified) 2, French 1, French 2, Italian, Japanese, Korean, Persian, Russian, Spanish 1, Spanish 2, Vietnamese\\n\\nWatch: MIT’s Deep Learning State of the Art lecture referencing this post', metadata={'vector': [-0.01995760016143322, -0.01293110754340887, 0.02453695610165596, -0.007925305515527725, 0.016309859231114388, -0.010300273075699806, -0.006226088851690292, -0.002630834234878421, -0.02243753708899021, -0.032147347927093506, 0.023093605414032936, 0.026820074766874313, -0.002322481945157051, 0.004969717934727669, 0.012708044610917568, 0.009886950254440308, 0.02301487885415554, 0.0023405239917337894, -0.007971230894327164, -0.016651015728712082, -0.015076451003551483, 0.02242441661655903, 0.00028661987744271755, -0.03180619329214096, -0.0037658323999494314, 0.010201863013207912, 0.02721371501684189, -0.032357290387153625, 0.022043896839022636, -0.016782227903604507, 0.028027240186929703, 0.0006700098165310919, -0.010306834243237972, -0.009486748836934566, -0.008135247975587845, 0.0006921521271578968, 0.020285634323954582, -0.007361087016761303, 0.027502385899424553, -0.025101175531744957, 0.031570009887218475, 0.002647235756739974, 0.0021814273204654455, -0.0353752076625824, -0.002237193053588271, 0.030310358852148056, 0.0003009713545907289, -0.021033551543951035, -0.008496085181832314, 0.04450767859816551, 0.021505920216441154, 0.025770364329218864, -0.006980567239224911, -0.028630822896957397, -0.02642643265426159, 0.019918235018849373, 0.00011686217476380989, 0.01732020452618599, 0.013154170475900173, 0.004474386107176542, 0.004326771013438702, -0.0005761100328527391, -0.01124501135200262, -0.017188990488648415, -0.001525358995422721, -0.02207013964653015, -0.020967945456504822, 0.019577080383896828, 0.0213222224265337, 8.744161459617317e-05, 0.041411034762859344, 0.026767589151859283, -0.01171081978827715, -0.032934632152318954, 0.039783984422683716, -0.0151945436373353, 0.0047335331328213215, -0.004129950422793627, -0.01852736994624138, 0.00655740313231945, 0.010044406168162823, 0.010569261386990547, 0.00771536398679018, 0.018986618146300316, 0.007144584320485592, 0.004782738164067268, -0.005258387885987759, 0.0020764563232660294, -0.018028758466243744, -0.015627548098564148, 0.00010122929961653426, 0.0034902836196124554, 0.016677258536219597, 0.010333077050745487, -0.00450390949845314, 0.020443089306354523, -0.002519302535802126, 0.019078467041254044, 0.017031535506248474, -0.02179459109902382, -0.003933129832148552, -0.0039036066737025976, -0.009440823458135128, -0.014525353908538818, -0.023237941786646843, 0.005724196322262287, 0.007275797892361879, 0.019498351961374283, 0.011330300942063332, 0.0019173597684130073, 7.790811650920659e-05, 0.02254250831902027, -0.010713595896959305, -0.03954780101776123, -0.0042775655165314674, -0.031989894807338715, 0.009342413395643234, -0.00810900516808033, 0.029680533334612846, -0.021282857283949852, 0.03571636229753494, 0.03422052413225174, -0.005442087072879076, 0.0020584145095199347, 0.017556389793753624, 0.016126159578561783, -0.005465049296617508, -0.004484227392822504, -0.028604580089449883, -0.0044678254052996635, -0.011015388183295727, 0.008384553715586662, -0.0015712836757302284, -0.0023634862154722214, -0.025363603606820107, 0.008318946696817875, -0.0072561162523925304, 0.012675240635871887, -0.012944228947162628, -0.020246269181370735, -0.0024733776226639748, -0.0027341649401932955, 0.0027718888595700264, -0.011730502359569073, -0.01111379824578762, 0.028027240186929703, -0.009598280303180218, 0.041935890913009644, -0.007813774049282074, -0.0005416664644144475, 0.004461264703422785, -0.01995760016143322, -0.001276052906177938, 0.012806454673409462, 0.014525353908538818, 0.016296738758683205, 0.0022306323517113924, 0.029523076489567757, -0.00564546836540103, 0.015299513936042786, -0.0012506303610280156, 0.013088563457131386, -0.020705517381429672, -0.01822557859122753, 0.020416846498847008, 0.018448641523718834, 0.028762036934494972, -0.012622755020856857, -0.0005843109101988375, -0.0028096127789467573, -0.016965927556157112, 0.026203369721770287, -0.0488639697432518, 0.014997722581028938, -0.0005043525598011911, -0.0013621619436889887, 0.0153257567435503, -0.021991411224007607, -0.055214714258909225, -0.007872819900512695, 0.010064088739454746, 0.0040151383727788925, 0.015706276521086693, 0.01072015706449747, -0.004408779554069042, -0.008338629268109798, 0.010707035660743713, -0.04117485135793686, -0.006048950366675854, -0.015758762136101723, 0.009106229059398174, 0.041306063532829285, -0.010247787460684776, -0.001403166214004159, -0.6302455067634583, -0.037946995347738266, -0.006094875279814005, 0.00484506506472826, -0.0004809801175724715, -0.005514254793524742, -0.01711026206612587, -0.0022355529945343733, -0.013672464527189732, 0.001976405968889594, 0.007643196266144514, -0.012793333269655704, -0.004471105989068747, -0.005822606850415468, 0.010201863013207912, -0.022306324914097786, -0.005176379345357418, -0.043615423142910004, -0.0016696939710527658, 0.02359221875667572, -0.009276806376874447, 0.006586926523596048, -0.03017914481461048, -0.014367897063493729, -0.0012186469975858927, -0.0020485734567046165, 0.0023798879701644182, 0.009329291991889477, -0.005665150471031666, 0.001413827296346426, -0.02258187346160412, 0.0225949939340353, 0.028919493779540062, 5.93024305999279e-05, 0.03757959604263306, 0.014617202803492546, -0.007675999775528908, 0.033302031457424164, 0.024038344621658325, 0.03143879398703575, -0.026242734864354134, -0.031465038657188416, 0.016572287306189537, 0.013541251420974731, -0.000305481837131083, 0.007400451228022575, 0.014774659648537636, -0.013298505917191505, -0.0022716366220265627, -0.011802669614553452, -0.019314652308821678, -0.012970471754670143, -0.0033131451345980167, -0.001668873941525817, 0.013764314353466034, 0.0038281588349491358, 0.029155677184462547, 0.01221599243581295, 0.008751952089369297, -0.01264243759214878, -5.105031959828921e-05, -0.0094801876693964, -0.01079232431948185, 0.0017976273084059358, -0.006488515995442867, 0.014499111101031303, 0.014276047237217426, -0.00903406087309122, -0.015365120954811573, -0.027712328359484673, 0.0353752076625824, 0.018763555213809013, -0.02716122940182686, -0.015155179426074028, -0.0007097839843481779, 0.023552853614091873, 0.016283616423606873, -0.006468833889812231, 0.020561182871460915, 0.008863483555614948, 0.011625531129539013, 0.0020862973760813475, -0.0030851615592837334, -0.014039862900972366, 0.02633458375930786, 0.020718639716506004, -0.011966686695814133, -0.004805700853466988, -0.01875043287873268, -0.00389048526994884, 0.017031535506248474, 0.015063329599797726, -0.026137763634324074, -0.05999089032411575, 0.017490781843662262, 0.01021498441696167, -0.003959372639656067, 0.01863234117627144, 0.016388587653636932, -0.025245510041713715, 0.005930858198553324, -0.004152912646532059, 0.02296239323914051, 0.0007015831070020795, 0.021466556936502457, 0.001275232876650989, -0.012314403429627419, 0.00554049713537097, 0.026098398491740227, -0.039574041962623596, -0.00969013012945652, -0.014433504082262516, -0.034351740032434464, 0.0016450914554297924, -0.016401708126068115, -0.031097641214728355, 0.020705517381429672, 0.010595504194498062, -0.00567499129101634, -0.02516678161919117, 0.032147347927093506, -0.009381777606904507, 0.013022957369685173, -0.0060259876772761345, 0.005366639234125614, 0.0018566735088825226, -0.004320210311561823, -0.02111227996647358, -0.010687354020774364, 0.04248698800802231, -0.002949027344584465, -0.002343804109841585, 0.02174210548400879, -0.008883165195584297, 0.0026341143529862165, 0.002396289724856615, 0.006062071770429611, 0.006790307350456715, -0.00554049713537097, -0.019288409501314163, -0.01943274401128292, -0.012327524833381176, 0.013593736104667187, 0.008961893618106842, -0.05017610639333725, -0.017451418563723564, -0.0019255606457591057, -0.006521319504827261, 0.006383545231074095, 0.017831938341259956, -0.032462261617183685, 0.004356293939054012, -0.024471350014209747, 0.022030776366591454, 0.004746654536575079, 0.0010915336897596717, 0.006249051075428724, -0.0223325677216053, -0.04033508151769638, -0.03059902787208557, 0.006544281728565693, 0.03705473989248276, -0.03075648471713066, 0.02163713425397873, -0.007400451228022575, 0.009611401706933975, -0.0023552854545414448, 0.04400906711816788, -0.03374815732240677, -0.01833054982125759, 0.020679274573922157, -0.040151383727788925, -0.0005285450606606901, 0.0016139281215146184, -0.017438296228647232, 0.028945736587047577, 0.005766841117292643, -0.01810748688876629, -0.005783242639154196, -0.020889217033982277, -0.014289168640971184, 0.00754478620365262, -0.003506685374304652, -0.016913441941142082, 0.024025224149227142, 0.016808470711112022, 0.04689576476812363, 0.0034574803430587053, -0.009145593270659447, -0.020443089306354523, -0.016979049891233444, 0.014236683025956154, 0.0004506369587033987, 0.022148868069052696, -0.011126919649541378, 0.024838747456669807, -0.0030703998636454344, -0.019655808806419373, 0.007223312743008137, 0.033039603382349014, 0.003982334863394499, 0.013383794575929642, 0.016309859231114388, 0.010890734381973743, 0.009722933173179626, -0.025258632376790047, 0.0116911381483078, -0.030730241909623146, 0.013908648863434792, 0.009066864848136902, 0.021755225956439972, -0.010306834243237972, 0.0027735289186239243, -0.04259195923805237, -0.0011038350639864802, 0.02432701550424099, 0.002519302535802126, 0.04560987278819084, -0.011842033825814724, -0.02222759649157524, -0.005704514216631651, 0.005743878427892923, 0.021781468763947487, -0.006111276801675558, 0.007242994848638773, 0.050149865448474884, 0.0043497332371771336, -0.00902750063687563, 0.0055733006447553635, -0.05301032215356827, -0.005592982750386, 0.011048191227018833, -0.009421141818165779, 0.028709551319479942, 0.0046121603809297085, 0.007177387829869986, -0.0029359059408307076, -0.00852888822555542, 0.03574260324239731, 0.009447384625673294, -0.007846578024327755, 0.016913441941142082, -0.0025701478589326143, -0.01124501135200262, 0.011094115674495697, 0.029890473932027817, 0.032619718462228775, -0.009860707446932793, -0.03450919687747955, -0.00041701344889588654, -0.01574563980102539, -0.0013293585507199168, 0.0010234666988253593, 0.005025483667850494, -0.0006892818491905928, 0.00436941534280777, 0.007879381068050861, -0.00908654648810625, 0.02347412519156933, 0.003160609398037195, 0.0024012101348489523, 0.01859297789633274, 0.01737269014120102, 0.015824368223547935, 0.0034476392902433872, -0.008122126571834087, 0.006462273187935352, -0.014682809822261333, -0.009631083346903324, 0.0011661614989861846, -0.016021190211176872, -0.020771123468875885, 0.015876853838562965, -0.02254250831902027, 0.0067509436048567295, -0.011960126459598541, 0.007190509233623743, 0.006993688642978668, 0.02006257139146328, 0.019235923886299133, -0.016651015728712082, -0.04319554194808006, 0.003044157288968563, 0.012484980747103691, -0.00613423902541399, -0.01775320991873741, -0.024523835629224777, -0.009742614813148975, -0.010497094132006168, 0.001212086295709014, 0.0017713846173137426, 0.014879630878567696, 0.009906631894409657, -0.00987382885068655, -0.01880291849374771, -0.0020534938666969538, 0.04075496643781662, -0.016598530113697052, -0.01910470984876156, -0.010169059969484806, 0.009486748836934566, 0.0005478170933201909, -0.00664597237482667, -0.0018353512277826667, 0.016677258536219597, 0.007177387829869986, -0.012944228947162628, -0.017175870016217232, -0.007577589713037014, -0.027528628706932068, -0.007105220574885607, -0.01031995564699173, -0.0005318254115991294, -0.00043464527698233724, 0.022673722356557846, -0.010497094132006168, 0.004546553827822208, 0.0007188048912212253, 0.017556389793753624, 0.012124143540859222, -0.009801661595702171, -0.017359569668769836, -0.013974255882203579, 0.02642643265426159, 0.07510670274496078, 0.0034804425667971373, -0.027371171861886978, 0.005317434202879667, -0.03579508885741234, -0.0037231878377497196, -0.01728084124624729, -0.028105968609452248, 0.007400451228022575, -0.011323739774525166, -0.016047433018684387, 0.004559675231575966, 0.020141297951340675, -0.01901286095380783, 0.020928580313920975, -0.001817309414036572, 0.003198333317413926, -0.00976885762065649, 0.014000498689711094, -0.020206905901432037, -0.008673223666846752, -0.016086796298623085, 0.01585061103105545, 0.0028998220805078745, 0.019616443663835526, -0.027738571166992188, 0.04511126130819321, 0.024969961494207382, -0.008587935008108616, -0.03175370767712593, -0.005999745335429907, 0.02390713058412075, 0.016611650586128235, -0.0033951536752283573, -0.012760529294610023, 0.03584757447242737, 0.01770072430372238, 0.03390561416745186, -0.01323945913463831, -0.0013490405399352312, 0.0005203442415222526, 0.026518283411860466, 0.005077969282865524, -0.014918994158506393, 0.004572796635329723, -0.010602064430713654, -0.007702242583036423, 0.029103191569447517, -0.002689880318939686, -0.017188990488648415, 0.007997473701834679, -0.006901839282363653, -0.031779952347278595, 0.0022404734045267105, 0.001180102932266891, 0.016021190211176872, -0.0068952785804867744, -0.005055006593465805, -0.019052226096391678, 0.0012588311219587922, -0.019091589376330376, -0.031570009887218475, 0.0038019162602722645, -0.0056684305891394615, 0.01847488433122635, -0.00913903210312128, -0.006583645939826965, -0.023041121661663055, -0.03416803851723671, 0.020049449056386948, -0.008220536634325981, -0.026413312181830406, -0.05154072865843773, 0.0012973751872777939, 0.007131462916731834, -0.0016811751993373036, 0.012576830573379993, -0.02195204794406891, 0.0007434074650518596, 0.007236434146761894, -0.020679274573922157, -0.013895527459681034, -0.011389346793293953, -0.03101891279220581, 0.009742614813148975, -0.026098398491740227, -0.006314658094197512, -0.0012301282258704305, -0.007124902214854956, 0.028210939839482307, 0.032094866037368774, -0.012648997828364372, 0.02538984641432762, -0.001132537960074842, 0.010674232617020607, 0.020154420286417007, 0.0317012220621109, 0.007485739886760712, 0.012734286487102509, -0.026255855336785316, 0.007531664799898863, -0.03820941969752312, 0.0004953315947204828, -0.009558916091918945, -0.011592728085815907, 0.0029473870526999235, 0.008994697593152523, 0.016139281913638115, -0.01684783585369587, -0.016126159578561783, 0.010123134590685368, 0.0023946494329720736, -0.0007270057685673237, -0.016729742288589478, -0.006137519609183073, 0.014197319746017456, 0.01485338807106018, -0.011363103985786438, -0.003477162215858698, -0.027922268956899643, 0.020311877131462097, -0.003641179297119379, 0.013869285583496094, 0.012937667779624462, -0.007964669726788998, 0.03180619329214096, 0.0058816527016460896, -0.0023897290229797363, -0.016755985096096992, 0.008010595105588436, 0.016191767528653145, 0.026872560381889343, -0.01854049228131771, -0.011389346793293953, -0.027817297726869583, -0.007380769122391939, -0.011021948419511318, 0.011330300942063332, 0.005707794800400734, -0.014341654255986214, 0.006235929671674967, 0.007872819900512695, -0.00635730242356658, -0.008391113951802254, -0.0017402212833985686, -0.023198576644062996, -0.023461004719138145, 0.00795154832303524, 0.013554371893405914, 0.020088812336325645, -0.004917232319712639, 0.011212208308279514, -0.011015388183295727, -0.015260149724781513, -0.011933883652091026, -0.027738571166992188, -0.00759727181866765, -0.0009414580999873579, 0.023027999326586723, 0.015653790906071663, 0.056159451603889465, 0.0010702115250751376, 0.017674481496214867, 0.03532272204756737, -0.01276709046214819, -0.0015696435002610087, 0.016913441941142082, 0.015785004943609238, -0.02527175284922123, 0.008935650810599327, 0.014814023859798908, 0.0013219777029007673, 0.01163865253329277, 0.0006847713375464082, 0.008535449393093586, 0.006531160324811935, 0.013501887209713459, -0.004966437350958586, -0.005209182854741812, -0.023867767304182053, -0.004799140151590109, 0.02385464496910572, -0.00852888822555542, -0.011769866570830345, -0.010510215535759926, 0.002435653703287244, 0.04513750225305557, 0.013541251420974731, 0.021295979619026184, 0.024773141369223595, 0.019472109153866768, -0.008935650810599327, 0.010300273075699806, 0.01932777464389801, 0.024248287081718445, -0.009631083346903324, -0.005284630693495274, -0.03991520032286644, -0.005061567295342684, 0.026203369721770287, 0.024943718686699867, 0.021033551543951035, 0.012196310795843601, 0.005996464751660824, 0.00020327868696767837, 0.01932777464389801, 0.001047249068506062, -0.010011603124439716, -0.005484731402248144, -0.028184697031974792, -0.01327226310968399, -0.03164873644709587, -0.0080565195530653, -0.01964268647134304, -0.009939435869455338, 0.008778194896876812, -0.0018566735088825226, 0.022923028096556664, -0.022870542481541634, -0.03781577944755554, 0.014171076938509941, 0.017517024651169777, 0.03259347751736641, 0.016874078661203384, 0.017149627208709717, 0.038944218307733536, -7.806188659742475e-05, -0.02027251198887825, 0.027974754571914673, -0.010050967335700989, 0.006180163938552141, 0.0052419863641262054, 0.023605339229106903, -0.02242441661655903, -0.020403726026415825, 0.022135745733976364, -0.034299254417419434, 0.003337747883051634, -0.04755183309316635, -0.006649252958595753, 0.016401708126068115, 0.00795154832303524, -0.029050707817077637, -0.018501127138733864, -0.008102444000542164, -0.008988136425614357, -0.0015023965388536453, 0.0022191512398421764, 0.0010816927533596754, -0.003959372639656067, -0.0058455690741539, 0.006524599622935057, -0.003091722261160612, 0.005110772326588631, -0.011717380955815315, -0.013895527459681034, 0.013829921372234821, -0.017018413171172142, -0.03721219673752785, -0.004631842486560345, 0.02238505333662033, 0.020626788958907127, -0.008030276745557785, 0.024077709764242172, 0.021886439993977547, 0.005258387885987759, -0.010070648975670338, -0.007741606794297695, -0.018448641523718834, 0.029575562104582787, -0.014171076938509941, -0.010602064430713654, -0.007944988086819649, 0.004205398261547089, 0.0014048063894733787, -0.014184198342263699, -0.008968454785645008, -0.012393130920827389, -0.011881398037075996, 0.0015827649040147662, 0.021991411224007607, 0.0012202871730551124, -0.01287862192839384, 0.0026291939429938793, -0.005051726475358009, 0.00858137384057045, -0.001349860685877502, 0.0049762786366045475, 0.006875596474856138, -0.032199833542108536, -0.0007110140868462622, -0.003985615447163582, -0.005921016912907362, 0.02105979435145855, 0.013042639009654522, -0.014013620093464851, 0.007840016856789589, 0.013934891670942307, -0.002811252838000655, -0.002538984641432762, 0.030625270679593086, 0.000411682907724753, -0.012970471754670143, 0.006170323118567467, -0.002396289724856615, -0.005343677010387182, 0.020298754796385765, -0.012445616535842419, -0.018461763858795166, -0.019918235018849373, -0.00907998625189066, 0.016651015728712082, -0.00542240496724844, -0.0022831179667264223, -0.01827806420624256, 0.007623514160513878, -0.013173853047192097, -0.01363310031592846, -0.013672464527189732, 0.005360078532248735, -0.0076825604774057865, -0.006249051075428724, 0.018606098368763924, -0.012498102150857449, 0.013173853047192097, -0.00863385945558548, 0.0022240716498345137, 0.007787531241774559, -0.023985859006643295, 0.005035324487835169, 0.007774410303682089, 0.004789298865944147, -0.003172090509906411, -0.0033033040817826986, -0.007000249344855547, 0.005514254793524742, -0.029339376837015152, -0.004927073605358601, -0.01579812541604042, 0.006235929671674967, -0.004704010207206011, 0.023762796074151993, 0.02469441294670105, 0.0006454072427004576, -0.00800403393805027, -0.026400191709399223, -0.010254348628222942, -0.00501564284786582, -0.018816040828824043, -0.020731760188937187, -0.011559924110770226, 2.1399104298325256e-05, 0.021807711571455002, -0.01237344928085804, -0.014499111101031303, -0.023093605414032936, -0.010116574354469776, -0.015666913241147995, -0.0018632340943440795, 0.009250563569366932, -0.0048286630772054195, -0.010851371102035046, -0.001753342687152326, 0.028105968609452248, 0.012360327877104282, 0.012091339565813541, 0.00992631446570158, 0.033302031457424164, -0.0016090077115222812, 0.005865251179784536, -0.028184697031974792, -0.01927528902888298, -0.03369567170739174, -0.03611000254750252, 0.010234666056931019, 0.011494318023324013, -0.008732269518077374, 0.018934132531285286, -0.018816040828824043, -0.001812388887628913, -0.0009611401474103332, -0.002730884589254856, 0.011828912422060966, -0.0023798879701644182, 0.019249046221375465, -0.016231130808591843, -0.0014072665944695473, -0.0060292682610452175, 0.013974255882203579, -0.007433254737406969, -0.003444358939304948, 0.014446625486016273, 0.010129695758223534, -0.00402825977653265, -0.028184697031974792, 0.019039103761315346, 0.003513246076181531, -0.006855914369225502, 0.03044157102704048, -0.009519551880657673, -0.0133969159796834, 0.02284429967403412, 0.015076451003551483, 0.014171076938509941, -0.002360205864533782, 0.00863385945558548, -0.015627548098564148, -0.02538984641432762, 0.030625270679593086, -0.016559164971113205, 0.03500780835747719, -0.0029523076955229044, 0.011822352185845375, -0.020233148708939552, 0.005317434202879667, 0.0037658323999494314, 0.004526871722191572, -0.028893250972032547, 0.016441073268651962, -0.000984102487564087, -0.04424525052309036, 0.010064088739454746, -0.0025012607220560312, -0.005409283563494682, -0.01561442669481039, -0.0080565195530653, 0.021466556936502457, 0.0034574803430587053, -0.0025422649923712015, -0.007157705724239349, -0.01859297789633274, -0.010274030268192291, -0.005484731402248144, 0.009355534799396992, -0.024786261841654778, 0.0036543007008731365, 0.23576472699642181, -0.028237182646989822, 0.007407011929899454, 0.005773401353508234, 4.6949891839176416e-05, 0.009598280303180218, 0.009893510490655899, 0.005921016912907362, -0.009545794688165188, -0.018566735088825226, 0.011815791018307209, 0.011310618370771408, -0.04600351303815842, -0.0009611401474103332, 0.0016139281215146184, -0.01498460117727518, -0.008994697593152523, -0.034299254417419434, -0.011618970893323421, -0.02165025658905506, 0.006777185946702957, 0.0014236683491617441, -0.00829270388931036, -0.033459484577178955, 0.030572785064578056, 0.006232649553567171, -0.007557907607406378, 0.02558666653931141, 0.021873319521546364, 0.023106727749109268, -0.03618872910737991, -0.006682056467980146, 0.01045116875320673, 0.0009168555261567235, -0.021072914823889732, -0.011559924110770226, 0.003391873324289918, -0.006442591082304716, 0.012360327877104282, 0.03802572190761566, 0.012681801803410053, -0.015929339453577995, 0.004267724696546793, -0.0024520554579794407, 0.012589951977133751, 0.0022503144573420286, -0.031570009887218475, -0.009972238913178444, -0.0009980440372601151, 0.0002644775668159127, -0.01927528902888298, -0.025455452501773834, 0.02102043107151985, 0.034981563687324524, 0.008935650810599327, -0.007807213347405195, -0.00776784960180521, 0.04238201677799225, 0.02058742567896843, -0.00020748161477968097, -0.00040655737393535674, 0.03813069313764572, -0.006954324431717396, 0.010575821623206139, 0.004221799783408642, -0.005048445891588926, -0.009178396314382553, 0.0031179648358374834, -0.00309336232021451, -0.01537824235856533, 0.013232898898422718, 0.0015155179426074028, -0.031097641214728355, -0.014459746889770031, -0.039731498807668686, -0.013843042775988579, 0.04285438358783722, 0.03521775081753731, 0.029181919991970062, 0.030940184369683266, -0.0007278258563019335, -0.007840016856789589, 0.002227352000772953, -0.033616941422224045, 0.008574813604354858, -0.0296018049120903, 0.03621497377753258, -0.020390605553984642, -0.0005761100328527391, -0.012891743332147598, -0.003408275078982115, -0.032882146537303925, -0.002917864127084613, 0.003591974265873432, -0.011999490670859814, 0.015260149724781513, 0.02716122940182686, 0.005858690477907658, 0.013154170475900173, -0.015889976173639297, -0.010254348628222942, 0.012045415118336678, 0.03495532274246216, 0.0076825604774057865, -0.018881646916270256, 0.007216752041131258, 0.016204888001084328, 0.009250563569366932, 0.0009119349997490644, -0.03185867890715599, 0.002509461482986808, -0.013869285583496094, 0.01197980809956789, 0.007538225501775742, -0.00024500052677467465, 0.007308601401746273, -0.006180163938552141, 0.004566235933452845, 0.011914201080799103, -0.0049762786366045475, -0.00759727181866765, -0.00937521643936634, -0.006665654480457306, -0.008758512325584888, -0.0073479656130075455, -0.03579508885741234, -0.02601967193186283, 0.008358310908079147, -0.02301487885415554, -0.0006650892901234329, 0.025022447109222412, -0.005100931506603956, 0.027056260034441948, -0.001674614497460425, -0.01779257319867611, -0.02238505333662033, 0.0020272512920200825, -0.001238328986801207, -0.011487756855785847, 0.005104211624711752, -0.03981022909283638, 0.01003128569573164, -0.0019058785401284695, -0.011723941192030907, 0.00632121879607439, -0.02222759649157524, 0.0032426179386675358, 0.005747159011662006, 0.014092348515987396, -0.015456970781087875, -0.0032491786405444145, 0.023146091029047966, -0.023684067651629448, -0.011559924110770226, 0.015575062483549118, 0.0107726426795125, -0.02252938784658909, -0.0317012220621109, -0.0008496085065416992, -0.004418620374053717, -0.020705517381429672, 0.017031535506248474, 0.008017155341804028, -0.004287406802177429, -0.02664949744939804, -0.01316073164343834, -0.16606402397155762, -0.020731760188937187, 0.03839312121272087, -0.03771080821752548, 0.022621236741542816, -0.0032032537274062634, 0.02159777097404003, 0.011901079677045345, -0.03752711042761803, -0.0010693913791328669, -0.0031934126745909452, 0.009303049184381962, -0.010005042888224125, -0.004021699074655771, 0.0017418614588677883, -0.006563963834196329, -0.002263435861095786, 0.0039200084283947945, 0.013829921372234821, 0.003752710996195674, 0.031832437962293625, -0.028105968609452248, 0.011802669614553452, 0.008273022249341011, -0.02453695610165596, 0.01208477932959795, -0.00242253253236413, 0.05106836184859276, 0.018199335783720016, -0.01548321358859539, -0.0025635871570557356, -0.0259671863168478, 0.014381018467247486, -0.02668886072933674, 0.01321977749466896, 0.016073673963546753, 0.0012883542804047465, 0.000818445289041847, -0.025560423731803894, 0.023894010111689568, 0.013987377285957336, 0.007918745279312134, 0.006472114473581314, 0.003952811937779188, -0.00443502189591527, 0.010096891783177853, 0.02221447415649891, -0.009834464639425278, 0.00658036582171917, -0.02121725119650364, 0.021414071321487427, -0.019983842968940735, 0.007118341512978077, -0.0005215743440203369, 0.027686085551977158, 0.005317434202879667, -0.012156946584582329, 0.02027251198887825, 0.033092088997364044, -0.011947005055844784, -0.02432701550424099, 0.0022470341064035892, -0.0018632340943440795, -0.017595753073692322, -0.011428711004555225, -0.010759521275758743, -0.023211698979139328, 0.0011874837800860405, -0.029890473932027817, -8.774914022069424e-05, -0.006337620317935944, 0.00443502189591527, -0.017293961718678474, -0.005530656315386295, -0.0004416160227265209, -0.0013572414172813296, -0.04253947362303734, 0.010379001498222351, 0.029103191569447517, -0.008049958385527134, -0.011756745167076588, 0.025573544204235077, -0.004595758859068155, 0.006777185946702957, 0.01852736994624138, -0.012452177703380585, -0.007380769122391939, 0.00036883342545479536, -0.03542769327759743, -0.004894270095974207, 0.003719907719641924, -0.03692352771759033, -0.011664895340800285, -0.010805445723235607, 0.011146601289510727, -0.010431487113237381, 0.01842239871621132, -0.00771536398679018, 0.02464192733168602, -0.028263425454497337, 0.004999240860342979, 0.024235164746642113, -0.011999490670859814, 0.01264243759214878, 0.003209814429283142, 0.012740847654640675, -0.01627049595117569, 0.012484980747103691, 0.03881300240755081, 0.007092099171131849, -0.020259391516447067, 0.004179155454039574, 0.018396155908703804, 0.018934132531285286, 0.000929976929910481, 0.022148868069052696, -0.007315162103623152, -0.015417606569826603, 0.010155938565731049, 0.012629316188395023, 0.057524073868989944, 0.017818816006183624, -0.006583645939826965, 0.0011555004166439176, -0.0034410785883665085, -0.04860154539346695, -0.07500173151493073, -0.02290990762412548, 0.004182435572147369, 0.026308340951800346, 0.003657581051811576, 0.006252331659197807, -0.01503708679229021, 0.023657824844121933, -0.032199833542108536, 0.019787020981311798, -0.01733332686126232, -0.025573544204235077, -0.0005674991407431662, -0.002281477674841881, 0.015758762136101723, -0.016506679356098175, 0.00496315723285079, 0.017359569668769836, -0.021361585706472397, 0.03443046659231186, -0.0070855384692549706, -0.0023684068582952023, 0.0021879880223423243, -0.00030220148619264364, -0.00937521643936634, 0.00034361580037511885, -0.04070248082280159, 0.02284429967403412, 0.010634868405759335, -0.014932115562260151, 0.010182181373238564, -0.037684567272663116, -0.013659343123435974, -0.03595254570245743, 0.003667422104626894, -0.012235675007104874, -0.0037231878377497196, -0.013449401594698429, 0.016821593046188354, -0.040203869342803955, -0.011933883652091026, -0.023789038881659508, 0.012668680399656296, -0.014879630878567696, -0.031045155599713326, 0.006711579393595457, -0.00931617058813572, 0.029155677184462547, 0.00969013012945652, -0.03091394156217575, -0.008187733590602875, -0.021256614476442337, -0.026610132306814194, 0.028184697031974792, 0.02996920235455036, 0.02254250831902027, -0.01815997250378132, -0.008837240748107433, -0.02105979435145855, -0.016257373616099358, 0.009972238913178444, -0.010050967335700989, -0.03471913933753967, 0.025717880576848984, 0.02954931929707527, -0.014774659648537636, -0.00885036215186119, -0.004825382959097624, 0.007498861290514469, -0.021715862676501274, -0.004746654536575079, 0.03101891279220581, -0.007144584320485592, 0.017149627208709717, -0.021046673879027367, -0.0006823110743425786, -0.019865749403834343, -0.002509461482986808, 0.019367137923836708, -0.008509206585586071, 0.0004399758472573012, -0.028079725801944733, 6.565808871528134e-05, 0.0161130391061306, 0.008233658038079739, -0.004940194543451071, -0.025927821174263954, -0.006659093778580427, 0.0065344409085810184, -0.032619718462228775, 0.007623514160513878, 0.008423917926847935, 0.0039003263227641582, -0.005678271874785423, -0.012583390809595585, 0.0020698956213891506, -0.0002220381429651752, -0.015863733366131783, 0.009880389086902142, 0.0519343726336956, -0.014512232504785061, -0.004057782702147961, -0.07573653012514114, 0.025822849944233894, -0.005038605071604252, -0.020469332113862038, -0.0036018153186887503, -0.01959020085632801, -0.0003032265813089907, 0.002002648776397109, 0.005579861346632242, 0.011054751463234425, -0.021768348291516304, 0.008443599566817284, -0.016821593046188354, -0.0003680133377201855, 0.004175875335931778, -0.012301282025873661, 0.010149377398192883, -0.018501127138733864, 0.008135247975587845, -0.0027718888595700264, -0.009198077954351902, 0.016139281913638115, 0.014420382678508759, 0.018868526443839073, -0.017976272851228714, -0.0031114041339606047, -0.01827806420624256, 0.023316670209169388, -0.00861417781561613, -0.005996464751660824, 0.019682051613926888, -0.017595753073692322, -0.0008012235048227012, 0.048680271953344345, 0.00462200166657567, -0.018999740481376648, -0.00987382885068655, 0.011632092297077179, 0.023290427401661873, 0.04309057071805, -0.02401210181415081, -0.041096121072769165, 0.01747766137123108, -0.011553363874554634, -0.020285634323954582, 0.010621747002005577, 0.011540242470800877, -0.013029517605900764, 0.01306232064962387, 0.015168300829827785, 0.011815791018307209, 0.018829161301255226, -0.008351750671863556, -0.0153257567435503, -0.00334922899492085, 0.0032491786405444145, 0.05007113888859749, -0.0003089671954512596, 0.02991671673953533, -0.00861417781561613, 0.04080745205283165, 0.03212110698223114, 0.0012612914433702826, 0.0005777502083219588, -0.0053075929172337055, 0.017188990488648415, -0.012248796410858631, 0.002598030725494027, 0.015981825068593025, -0.03185867890715599, 0.013698707334697247, 0.001116136321797967, 0.011363103985786438, 0.019406501203775406, 0.031884923577308655, -0.0023339632898569107, -0.009591719135642052, 0.006941203027963638, -0.02954931929707527, 0.0179500300437212, 0.017412053421139717, -0.009440823458135128, 0.008220536634325981, 0.01805500127375126, 0.008286143653094769, 0.030835213139653206, -0.007761288899928331, 0.005606104154139757, -0.0001661698188399896, 0.009755736216902733, 0.010654550045728683, 0.00525182718411088, -0.01875043287873268, 0.006065351888537407, 0.0054552084766328335, 0.031360067427158356, -0.007092099171131849, -0.0015721038216724992, 0.008784755133092403, 0.017503904178738594, 0.028814522549510002, -0.012111022137105465, 0.00542240496724844, -0.016572287306189537, -0.026045914739370346, 0.019078467041254044, -0.017674481496214867, -0.023251062259078026, 0.005005801562219858, 0.015680033713579178, 0.013121367432177067, -0.02563915215432644, -0.014590959995985031, -0.006183444522321224, -0.029942959547042847, 0.013895527459681034, 0.010405244305729866, -0.002822734182700515, -0.033511970192193985, 0.029811745509505272, 0.01543072797358036, -0.005396162159740925, 0.01579812541604042, -0.007721924688667059, 0.015286392532289028, 0.048680271953344345, 0.028315911069512367, -0.0053108735010027885, 0.023710310459136963, 0.0011120358249172568, -0.0046121603809297085, 0.004152912646532059, 0.008712587878108025, -0.02095482312142849, -0.04311681166291237, -0.012452177703380585, -0.009257124736905098, 0.029628047719597816, 0.011933883652091026, 0.09536609798669815, 0.005005801562219858, 0.004231641069054604, 0.01637546718120575, -0.032462261617183685, 0.0031917726155370474, 0.016559164971113205, 0.03545393422245979, -0.008187733590602875, 0.00010425336222397164, -0.0024274529423564672, 0.0023733272682875395, -0.02427452988922596, -0.006032548379153013, -0.01726771891117096, 0.013685585930943489, -0.02296239323914051, 0.020351240411400795, -0.014236683025956154, -0.015666913241147995, 0.01932777464389801, -0.0023520051036030054, 0.01480090245604515, 0.001588505576364696, -0.012019172310829163, -0.02016754075884819, 0.028604580089449883, 0.01363310031592846, -0.006334340199828148, -0.02674134634435177, -0.00903406087309122, 0.008758512325584888, -0.047368135303258896, -0.01890788972377777, 0.006340900901705027, -0.012517784722149372, 0.009919753298163414, -0.0017943469574674964, 0.010260908864438534, -0.0038609623443335295, 0.005625786259770393, 0.014971479773521423, 0.0019157195929437876, -0.00958515889942646, -0.01679535023868084, 0.007407011929899454, -0.00048385042464360595, -0.01770072430372238, -0.02163713425397873], '_distance': 0.3938315510749817}),\n", + " Document(page_content='The Transformer was proposed in the paper Attention is All You Need. A TensorFlow implementation of it is available as a part of the Tensor2Tensor package. Harvard’s NLP group created a guide annotating the paper with PyTorch implementation. In this post, we will attempt to oversimplify things a bit and introduce the concepts one by one to hopefully make it easier to understand to people without in-depth knowledge of the subject matter.\\n2020 Update: I’ve created a “Narrated Transformer” video which is a gentler approach to the topic:', metadata={'vector': [-0.02712874673306942, -0.005967519711703062, 0.029046399518847466, -0.01589103601872921, 0.029260961338877678, 0.0017349390545859933, -0.007067152764648199, -0.015327810309827328, -0.01750025525689125, -0.0014390774304047227, 0.027571281418204308, 0.020370028913021088, -0.014415918849408627, 0.0084215784445405, 0.010935982689261436, -0.012665892951190472, 0.013054787181317806, 0.006879410240799189, -0.011834463104605675, -0.016159238293766975, -0.019069243222475052, 0.015233938582241535, -0.006835827603936195, -0.012397689744830132, -0.017218641936779022, 0.013007852248847485, 0.03218437731266022, -0.03462502360343933, -0.011552849784493446, -0.018640117719769478, 0.0340886190533638, 0.003489993279799819, -0.01646767184138298, -0.02754446119070053, -0.01162660587579012, -0.01054038293659687, -0.00021278146596159786, -0.011914924718439579, 0.029073219746351242, -0.02346777357161045, 0.022743625566363335, 0.013249235227704048, -0.00035390243283472955, -0.01778186857700348, -0.02378961816430092, 0.0046767923049628735, -0.007536508142948151, -0.03462502360343933, -0.0038855932652950287, 0.020437078550457954, 0.02454058639705181, 0.02565363049507141, -0.021523302420973778, -0.025506118312478065, -0.02100030519068241, 0.0025646924041211605, 0.0003545310173649341, 0.03416907787322998, 0.011914924718439579, -0.005645676050335169, 0.007020216900855303, -0.006410054862499237, -0.016293341293931007, 0.010942688211798668, -0.020571179687976837, -0.012458035722374916, -0.0013276055688038468, 0.029824187979102135, 0.0008469352032989264, 0.00779130170121789, 0.03046787716448307, 0.02800040692090988, 0.004096802789717913, -0.014402508735656738, 0.03784346207976341, -0.018640117719769478, -0.009340174496173859, -0.011244416236877441, -0.008944574743509293, 0.006094916258007288, 0.005541747435927391, -0.0025797788985073566, 0.015421681106090546, 0.03076290152966976, 0.007932107895612717, 0.005592035595327616, 0.022609524428844452, 0.006792244501411915, -0.010580613277852535, 0.01090916246175766, 0.016655415296554565, 0.0058032451197505, 0.0050086937844753265, 0.01682974584400654, 0.025988884270191193, 0.04299296438694, -0.011103609576821327, 0.032130736857652664, 0.003949291072785854, -0.0274640005081892, -0.004264429677277803, 4.4709253415931016e-05, -0.023829849436879158, -0.006614559795707464, -0.005535042379051447, -0.018465785309672356, 0.006912935990840197, 0.004958405625075102, -0.01732592284679413, 0.023601876571774483, 0.006684963125735521, 0.028831837698817253, 0.0010267151519656181, -0.036985211074352264, 0.007516392972320318, -0.0010267151519656181, -0.009662018157541752, -0.009333468973636627, -0.004680144600570202, -0.005605445709079504, 0.051521822810173035, 0.011472389101982117, -0.00039245662628673017, -0.02016887627542019, 0.010426396504044533, 0.023038649931550026, 0.0017869033617898822, -0.009930221363902092, -0.005400940775871277, -0.03116520680487156, -0.015233938582241535, 0.02016887627542019, 0.010352641344070435, 0.0022411723621189594, -0.014295226894319057, 0.02971690706908703, -0.011110315099358559, -0.015502141788601875, -0.01947154849767685, -0.010594023391604424, 0.006396644748747349, -0.010526972822844982, -0.006785539444535971, -0.013604603707790375, -0.0035972746554762125, 0.03387405723333359, -0.00011733887367881835, 0.03623424470424652, 0.024875840172171593, 0.023333672434091568, 0.011579670011997223, -0.006309478543698788, 0.0015086426865309477, -0.005303717218339443, 0.023722566664218903, 0.03730705752968788, 0.003831952577456832, 0.008575795218348503, -0.01420135609805584, 0.013410156592726707, 0.014268406666815281, 0.004421999212354422, 0.0004982711398042738, -0.022126758471131325, 0.019914083182811737, 0.021643992513418198, 0.00877024233341217, -0.010151488706469536, 0.0005615503177978098, -0.006172024644911289, -0.005669143982231617, 0.02140261046588421, -0.0287781972438097, 0.013302875682711601, 0.0028245141729712486, -0.012283703312277794, 0.018787629902362823, 0.0005766367539763451, -0.017299102619290352, -0.0072683049365878105, 0.02523791417479515, -0.011023148894309998, 0.014925504103302956, 0.014013613574206829, -0.02354823611676693, -0.01650790311396122, 0.000825562747195363, -0.017138181254267693, 0.00817349087446928, -0.012109371833503246, 0.011237711645662785, 0.04154466465115547, 0.007945518009364605, -0.010533678345382214, -0.6230895519256592, -0.02100030519068241, 0.011948449537158012, -0.023829849436879158, -0.003188264789059758, -0.017687996849417686, -0.013799051754176617, 0.01741979271173477, -0.015609423629939556, 0.02551952749490738, -0.004492402542382479, -0.017956199124455452, 0.0014189622597768903, -0.0021087471395730972, -0.0015647977124899626, -0.016601774841547012, -0.0057261367328464985, -0.03510779142379761, 0.007858351804316044, 0.01984703168272972, -0.03280124440789223, 0.030494699254631996, -0.044199876487255096, -0.012478150427341461, 0.008515449240803719, -0.008843998424708843, -0.001840544049628079, -0.0030239904299378395, 0.0026334195863455534, 0.015341220423579216, -0.03218437731266022, 0.006805654615163803, 0.029690086841583252, -0.010178308933973312, 0.02104053646326065, -0.007798006758093834, 0.0024523823522031307, 0.04039139300584793, 0.002227762248367071, 0.02028956636786461, -0.02334708347916603, -0.022166989743709564, 0.019900672137737274, 0.015260759741067886, 0.008937869220972061, 0.005866943392902613, 0.019042422994971275, 0.015756934881210327, -0.013108428567647934, -0.018465785309672356, -0.022462012246251106, 0.00790528766810894, -0.0001966473791981116, -0.014523199759423733, 0.00019277099636383355, 0.0011792556615546346, 0.03660972788929939, -0.0010510210413485765, 0.009051855653524399, -0.02597547322511673, -0.010144783183932304, -0.00815337523818016, 0.003630799939855933, 0.0012337344232946634, -0.019619058817625046, -0.0009638550691306591, 0.012940801680088043, 0.03025331348180771, -0.0076102642342448235, -0.02770538441836834, 0.01302796695381403, 0.041437383741140366, -0.00913902185857296, -0.015917856246232986, -0.0003306441649328917, 0.018720578402280807, 0.006557566579431295, 0.005628913175314665, 0.012833519838750362, 0.027651743963360786, 0.027571281418204308, 0.007147613447159529, -0.01278658490628004, -0.017969610169529915, 0.02112099714577198, 0.008207015693187714, -0.014751172624528408, -0.004499107599258423, -0.0214428398758173, -0.019900672137737274, 0.00633965153247118, 0.023735977709293365, -0.027517640963196754, -0.05680542439222336, -0.007067152764648199, 0.007623674813657999, 0.0014776316238567233, 0.006721841171383858, 0.03033377416431904, -0.008548974990844727, 0.01688338816165924, -0.010339231230318546, 0.027759024873375893, 0.001917652552947402, 0.029046399518847466, 0.0015580925391986966, -0.0035168135073035955, 0.028107687830924988, 0.014992555603384972, -0.01750025525689125, -0.019619058817625046, -0.025747500360012054, -0.011204185895621777, 0.009662018157541752, -0.0030306954868137836, -0.035402812063694, 0.01233063917607069, 0.015703294426202774, -0.007925402373075485, -0.021214868873357773, 0.015475321561098099, 0.015073016285896301, 0.009822939522564411, 0.012712828814983368, 0.016078777611255646, 0.01072141993790865, 0.005535042379051447, -0.021992657333612442, -0.02136237919330597, 0.015877624973654747, -0.003367625642567873, -0.00798574835062027, 0.024473536759614944, 0.010493448004126549, 0.006765424273908138, 0.02947552502155304, 0.0103928716853261, -0.015837395563721657, 0.0011549497721716762, -0.021831735968589783, -0.01198197528719902, -0.0027256144676357508, 0.021228278055787086, -0.005367415025830269, -0.0358051173388958, -0.020557770505547523, -0.013758820481598377, 0.00012980612518731505, 0.004639914259314537, -0.0022646402940154076, -0.00384536269120872, 0.0036039797123521566, -0.01700407825410366, -0.002854687161743641, -0.010185014456510544, -0.01823781244456768, 0.007254894822835922, -0.03819212689995766, -0.028456352651119232, -0.027893126010894775, 0.008267361670732498, 0.04186651110649109, -0.02149648219347, 0.027812665328383446, -0.02663257159292698, -0.012169716879725456, -0.010962802916765213, 0.03915765881538391, -0.013678359799087048, -0.049966245889663696, 0.029797367751598358, -0.03902355581521988, -0.0070872679352760315, -0.01564965210855007, 0.006222312804311514, 0.010205129161477089, -0.003986169118434191, -0.003915765788406134, -0.00266526872292161, -0.022783856838941574, -0.023025238886475563, 0.010325821116566658, -0.03207709640264511, -0.008495334535837173, 0.023575056344270706, 0.009534621611237526, 0.0203834380954504, -0.017433203756809235, -0.02840271219611168, 0.012639072723686695, -0.000759350135922432, 0.0075298030860722065, -0.0043683587573468685, 0.01762094534933567, -0.0363147035241127, 0.010520268231630325, 0.020155465230345726, 0.0009948660153895617, 0.005072391591966152, 0.03588557988405228, 0.015354630537331104, 0.01340345200151205, 0.0049047647044062614, -0.029368244111537933, 0.01585080474615097, 0.010453217662870884, 0.009863169863820076, -0.03816530480980873, -0.0019461491610854864, 0.0043515958823263645, 0.018707169219851494, -0.008931164629757404, -0.0188144501298666, -0.025801140815019608, -0.020557770505547523, 0.041276462376117706, 0.0027474057860672474, 0.0327744223177433, -0.024393076077103615, -0.012994442135095596, 0.010889047756791115, -0.010647664777934551, -0.006296068429946899, -0.0021456251852214336, -0.011485799215734005, 0.01531440019607544, 0.011908219195902348, -0.004066630266606808, 0.008931164629757404, -0.016561543568968773, -0.015140066854655743, 0.015502141788601875, 0.008736717514693737, 0.021831735968589783, 0.008575795218348503, -0.021751273423433304, 0.01225017849355936, -0.002735672052949667, 0.022220630198717117, 0.001709794974885881, 0.0001999999221879989, -0.00014971183554735035, -0.0044152941554784775, -0.022998418658971786, -0.0002587741182651371, 0.01939108595252037, 0.04122282192111015, -0.007301830220967531, -0.025640219449996948, -0.013007852248847485, -0.007295125164091587, 0.004485697485506535, 0.013430272229015827, 0.00607144832611084, 0.006403349805623293, 0.0046600294299423695, 0.004572863690555096, 0.008327707648277283, 0.017674585804343224, 0.030065571889281273, -0.003932528663426638, 0.019605649635195732, 0.01092927809804678, 0.0011859607184305787, 0.0001876374299172312, -0.005558509845286608, 0.010748241096735, -0.014147715643048286, 0.00192268134560436, -0.0004362491599749774, 0.0018522778991609812, -0.014845043420791626, 0.006547509226948023, -0.0318625308573246, 0.022327911108732224, 0.025827961042523384, -0.000696909090038389, 0.03510779142379761, 0.008300887420773506, 0.020316386595368385, -0.0009730745805427432, -0.0350005105137825, 0.009098791517317295, 0.004059924744069576, -0.006835827603936195, -0.027732204645872116, -0.007053742650896311, -0.01408066414296627, -0.0296364463865757, 0.012726238928735256, 0.0009110525134019554, -0.00456951092928648, 0.000693975598551333, 0.00817349087446928, -0.020691871643066406, -0.005833418108522892, 0.009346879087388515, -0.01481822319328785, 0.004847771488130093, -0.020410258322954178, 0.01000397652387619, 0.001646096701733768, -0.02197924628853798, -0.017272282391786575, 0.017875738441944122, -0.0017584067536517978, -0.005099212285131216, -0.008797062560915947, -0.025921832770109177, -0.02424556389451027, 0.021523302420973778, 0.016481082886457443, 0.010205129161477089, -0.03255986049771309, 0.013269349932670593, -0.019860442727804184, -0.0008054475183598697, 0.010325821116566658, 0.01843896508216858, -0.008696486242115498, -0.0024875840172171593, 0.002286431845277548, 0.015944676473736763, 0.03180889040231705, 0.07359494268894196, 0.023534825071692467, -0.012002089992165565, 0.02173786424100399, -0.029877828434109688, 0.005756309721618891, -0.03178207203745842, -0.04323434457182884, 0.015984907746315002, 0.004834361374378204, -0.017071129754185677, -0.010117962956428528, 0.021791504696011543, -0.02643141895532608, 0.026297317817807198, 0.016293341293931007, -0.016816336661577225, -0.01367165520787239, 0.013839282095432281, -0.01955200918018818, 0.013530848547816277, 0.0010518591152504086, 0.020142056047916412, -0.002470821375027299, 0.019873851910233498, -0.0170443095266819, 0.017299102619290352, 0.027396950870752335, 0.0032905172556638718, -0.022985009476542473, 0.01500596571713686, -0.0011029853485524654, -0.02181832492351532, 0.0014558401890099049, -0.013329695910215378, 0.032211195677518845, 0.004851124249398708, 0.032962165772914886, 0.000758092908654362, 0.011049969121813774, -0.006772129330784082, 0.018291454762220383, 0.014603660441935062, -0.0073487660847604275, -0.02378961816430092, -0.0135040283203125, -0.004197379108518362, 0.019578829407691956, 0.0007865895167924464, -0.023212980479002, -0.008133260533213615, 0.00395264383405447, -0.05562533065676689, 0.028375891968607903, 0.0025747499894350767, -0.011606490239501, -0.014040433801710606, -0.002336719771847129, -0.0067084310576319695, 0.0073487660847604275, -0.0021892080549150705, -0.01621287874877453, 0.009662018157541752, -0.0002994236710947007, 0.040659595280885696, -0.0052199033088982105, -0.005964167416095734, 0.002539548324421048, -0.011901513673365116, 0.00823383592069149, -0.003630799939855933, -0.00648381095379591, -0.05895105004310608, 0.01412089541554451, 0.02454058639705181, 0.016253110021352768, 0.027598103508353233, -0.009648608043789864, -0.012806699611246586, 0.004861181601881981, 0.00341623742133379, -0.028644094243645668, 0.001261392841115594, -0.027061697095632553, 0.002663592342287302, -0.0038218949921429157, -0.030199673026800156, -0.01500596571713686, -0.0006059714360162616, 0.016776105388998985, 0.0022311147768050432, 0.006054685916751623, 0.010875636711716652, -0.013081608340144157, 0.008093029260635376, 0.03601968288421631, 0.011163955554366112, 0.029207320883870125, -0.0005380825605243444, -0.030360594391822815, 0.00384536269120872, -0.025908423587679863, -0.005307069513946772, -0.020329797640442848, 0.020557770505547523, 0.014952325262129307, 0.02623026631772518, 0.020799152553081512, -0.016816336661577225, -0.022301090881228447, 0.020477309823036194, -0.02000795304775238, -0.014603660441935062, 0.00126306910533458, 0.015622833743691444, 0.007684020325541496, 0.012739649042487144, 0.014161125756800175, -0.01736615225672722, -0.011311466805636883, -0.004512517713010311, -0.01321570947766304, 0.030494699254631996, 0.019417906180024147, -0.014845043420791626, 0.015233938582241535, 0.0016108950367197394, 0.0028446295764297247, -0.028295431286096573, 0.020142056047916412, 0.009279828518629074, 0.021912196651101112, 0.0005426922580227256, -0.0026367721147835255, -0.027598103508353233, 0.003966053947806358, -0.016695644706487656, -0.009702248498797417, -0.01676269620656967, -0.01843896508216858, 0.009132316336035728, -0.02635095827281475, -0.021456250920891762, -0.01605195738375187, 0.010573908686637878, -0.01798301935195923, -0.022622933611273766, 0.023896899074316025, 0.009105496108531952, 0.02939506433904171, -0.019873851910233498, 0.01107678934931755, -0.028831837698817253, -0.017835509032011032, 0.019176524132490158, -0.008428283967077732, 0.018210992217063904, 0.012384279631078243, 0.020034775137901306, 0.030816541984677315, 0.04776697978377342, 0.0013753791572526097, -0.0001487689296482131, 0.035912398248910904, -0.003999579232186079, 0.004757252987474203, 0.0021204811055213213, 0.020812563598155975, -0.021188046783208847, 0.011928334832191467, 0.02305205911397934, 0.006192139815539122, 0.018546245992183685, 0.013343106023967266, 0.023896899074316025, 0.00017307483358308673, -0.0050958595238626, -0.0075767384842038155, -0.008924459107220173, -0.027866305783391, -0.00546463904902339, 0.03038741648197174, -0.015435091219842434, 0.0048578293062746525, -0.02885865792632103, -0.006795596797019243, 0.027759024873375893, 0.01737956330180168, 0.02985100820660591, 0.007462752051651478, 0.024258973076939583, 0.010708009824156761, -0.013108428567647934, 0.018264632672071457, 0.028375891968607903, -0.018492605537176132, -0.003939233720302582, -0.02993147075176239, 0.0033961222507059574, 0.030146032571792603, 0.0024959654547274113, 0.003557044081389904, -0.004331480711698532, 0.0041370331309735775, -0.0004890516283921897, 0.014067254029214382, -0.000573703262489289, -0.025506118312478065, -0.0024054469540715218, -0.010634254664182663, -0.026337547227740288, -0.041973792016506195, -0.021711044013500214, 0.0034531154669821262, -0.006979986559599638, 0.0022428487427532673, 0.000508747820276767, 0.0023886840790510178, -0.02458081766963005, -0.042134713381528854, 0.005079096648842096, 0.0086227310821414, 0.03304262459278107, 0.01420135609805584, 0.0205845907330513, 0.015716703608632088, -0.00329889846034348, -0.026900773867964745, 0.009963746182620525, -0.002157358918339014, 0.007080562878400087, 0.0018271338194608688, -0.008186900988221169, -0.022488832473754883, -0.020115235820412636, 0.011492504738271236, 0.01048003789037466, -0.008837292902171612, -0.03910401836037636, 0.015636242926120758, 0.004934937693178654, 0.014536609873175621, -0.02259611338376999, -0.024151692166924477, 0.011593080125749111, 0.017352743074297905, 0.001461707055568695, 0.01794278994202614, 0.006034570746123791, -0.0006407540640793741, -0.02091984450817108, 0.01438909862190485, -0.00043583009392023087, 0.004100155550986528, 0.013490617275238037, -0.014415918849408627, 0.004482344724237919, -0.011666836217045784, -0.0037179659120738506, -0.0103928716853261, 0.021724453195929527, 0.001082870177924633, -0.014027023687958717, 0.04433397948741913, 0.03070926107466221, -0.0007731793448328972, -0.0017533779609948397, 0.01909606344997883, -0.007831531576812267, 0.028027227148413658, -0.03301580622792244, -0.015435091219842434, -0.000507490593008697, -0.021630583330988884, 0.022904546931385994, -0.0322648361325264, 0.0041068606078624725, -0.028724554926156998, -0.015596013516187668, -0.022529063746333122, 0.018345095217227936, 0.010969508439302444, -0.017848918214440346, -0.0007325297920033336, 0.013276055455207825, 0.008119849488139153, -0.007161023560911417, 0.004592978861182928, 0.009869875386357307, -0.016360390931367874, -0.01877421885728836, 0.0021154521964490414, -0.010138078592717648, 0.015663063153624535, -0.006959871388971806, -0.006182082463055849, 0.001090413425117731, 0.03516143187880516, 0.008877524174749851, -0.020718691870570183, 0.035054150968790054, 0.008877524174749851, -0.018291454762220383, 0.009192662313580513, 0.0066916681826114655, -0.022032886743545532, 0.023561645299196243, -0.004257724620401859, -0.008247246034443378, 0.0003327395243104547, 0.011559555307030678, 0.013879512436687946, 0.0043515958823263645, -0.0029669972136616707, -0.030119212344288826, 0.0067788343876600266, 0.0009144050418399274, -0.006487163249403238, 0.001266421633772552, -0.0046600294299423695, 0.00994363147765398, 0.0044622295536100864, 0.016186058521270752, -0.0314602293074131, 0.012297113426029682, -0.0035268713254481554, -0.00032645350438542664, -0.019565418362617493, -0.03846032917499542, 0.011827758513391018, -0.020075004547834396, 0.002601570449769497, -0.006286011077463627, -0.008542269468307495, 0.03416907787322998, 0.014630480669438839, -0.009534621611237526, 0.023440953344106674, 0.0030139328446239233, 0.005424408242106438, 2.97537862934405e-05, 0.021067356690764427, 0.025063583627343178, 0.004482344724237919, -0.02384325861930847, -0.019605649635195732, -0.006346356589347124, -0.0017449966398999095, -0.026498470455408096, -0.036985211074352264, -0.011700361967086792, 0.024232152849435806, 0.007898582145571709, -0.02947552502155304, -0.00710067804902792, -0.03046787716448307, -0.034061796963214874, 0.00139465625397861, -0.004888002295047045, -0.006678258068859577, -0.012323933653533459, 0.01782209798693657, 0.0035939221270382404, 0.016735875979065895, -0.011888103559613228, 0.019914083182811737, 0.0025948653928935528, 0.01885467953979969, -0.011512619443237782, 0.002790988888591528, -0.02086620405316353, -0.00967542827129364, -0.04218835383653641, -0.0038621253333985806, 0.020182285457849503, -0.00041655299719423056, -0.00994363147765398, 0.031594328582286835, 0.0013753791572526097, -0.011827758513391018, -0.014871863648295403, 0.023561645299196243, 0.023816438391804695, 0.014523199759423733, 0.017232051119208336, -0.019686110317707062, 0.0028781548608094454, -0.0030340480152517557, 0.0015547400107607245, -0.01029229536652565, -0.022542472928762436, 0.017956199124455452, 0.0021037182305008173, -0.0023132520727813244, -0.029207320883870125, 0.004073335323482752, 0.008160080760717392, -0.016789516434073448, 0.028536813333630562, 0.006104974076151848, -0.018331684172153473, 0.03162115067243576, 0.010030797682702541, 0.009179252199828625, -0.011485799215734005, 0.012639072723686695, -0.011438863351941109, -0.022086529061198235, 0.03942586109042168, -0.02205970697104931, 0.0084215784445405, -0.00030843360582366586, 0.007456046994775534, -0.0314602293074131, -0.005548452492803335, 0.014322047121822834, 0.005484754219651222, -0.021804915741086006, 0.026538699865341187, -0.015917856246232986, -0.04808882251381874, 0.007858351804316044, -0.020571179687976837, 0.008488629013299942, -0.012102666310966015, -0.029797367751598358, 0.019484957680106163, 0.011579670011997223, 0.0070872679352760315, 0.0011214243713766336, -0.015032785944640636, -0.013349810615181923, -0.006912935990840197, 0.008186900988221169, -0.011418748646974564, 0.0207857433706522, 0.23430225253105164, -0.018063481897115707, 0.018787629902362823, 0.024889251217246056, 0.002029962372034788, 0.001196018303744495, 0.007127498276531696, 0.01434886734932661, -0.011888103559613228, -0.02046389877796173, 0.009608377702534199, 0.008133260533213615, -0.042429737746715546, 1.6474587027914822e-05, 0.01012466847896576, -0.019820211455225945, -0.04631868004798889, -0.053828369826078415, -0.024379665032029152, 0.009179252199828625, 0.014697532169520855, -0.0161324180662632, 0.007429226767271757, -0.04776697978377342, 0.020933255553245544, -0.0001175484067061916, -0.0025278145913034678, -0.01163331139832735, 0.01712477020919323, 0.020477309823036194, -0.023078879341483116, 0.004492402542382479, 0.006158614531159401, 0.018291454762220383, -0.026485059410333633, 0.0003817703982349485, 0.014040433801710606, -0.001401361427269876, 0.01720523089170456, 0.0052534290589392185, 0.009172547608613968, -0.008039388805627823, 0.005608798004686832, 0.009366994723677635, -0.0043515958823263645, 0.006520688533782959, -0.022301090881228447, -0.006594444625079632, -0.012913980521261692, 0.021831735968589783, -0.018130531534552574, -0.017017489299178123, 0.015502141788601875, 0.018640117719769478, 0.0044320570304989815, 0.02169763296842575, -0.012652482837438583, 0.030789721757173538, 0.03376677632331848, 0.019404496997594833, -0.025680450722575188, 0.012129486538469791, -0.008495334535837173, 0.017674585804343224, -0.0038017795886844397, -0.003932528663426638, -0.010788471437990665, 0.021711044013500214, 0.0022512301802635193, -0.032988984137773514, 0.0047304327599704266, -0.03379359468817711, -0.013376631774008274, -0.0004555262567009777, -0.038353048264980316, -0.022086529061198235, 0.02374938689172268, 0.011070084758102894, 0.023333672434091568, 0.03457138314843178, -0.005793187767267227, 0.0009965422796085477, 0.010701305232942104, -0.02738353982567787, -0.007724250666797161, -0.04318070411682129, -0.004455524496734142, -0.006034570746123791, -0.01819758303463459, -0.023601876571774483, 0.020396849140524864, -0.027008056640625, -0.011029853485524654, -0.00127396488096565, -0.008904344402253628, -0.000632372684776783, 0.0243260245770216, 0.0028446295764297247, 0.009480981156229973, 0.0007174434140324593, -0.022368142381310463, 0.030575159937143326, 0.04945665970444679, 0.008461808785796165, -0.017111359164118767, 0.0027809313032776117, 9.104239143198356e-05, -0.0026820313651114702, 0.0035805117804557085, -0.01650790311396122, -0.0072683049365878105, -0.011666836217045784, 0.014751172624528408, 0.00076437892857939, -0.009809529408812523, 0.027893126010894775, -0.01786232925951481, 0.021684223785996437, 0.019873851910233498, -0.022797266021370888, -0.01198197528719902, -0.018586477264761925, -0.012592136859893799, 0.01918993517756462, -0.0021942369639873505, -0.014643890783190727, 0.01021183468401432, 0.005337242502719164, -0.021791504696011543, 0.002745729638263583, 0.017889149487018585, -0.024339433759450912, 0.01630675047636032, -0.004727080464363098, -0.013369926251471043, -0.02631072700023651, -0.0030206379014998674, 0.017634356394410133, 0.007013511843979359, 0.025586578994989395, -0.0026434771716594696, -0.012189832516014576, 0.0029334716964513063, 0.00046851736260578036, 0.01700407825410366, -0.021563531830906868, 0.007301830220967531, -0.0028932413551956415, 0.02243519201874733, -0.010573908686637878, -0.005732841789722443, 0.018023250624537468, 0.0007828178931958973, -0.02502335235476494, 0.016320161521434784, -0.013202299363911152, -0.031594328582286835, -0.041893329471349716, 0.010533678345382214, -0.006664847955107689, -0.028965938836336136, 0.004710317589342594, 0.005830065812915564, -0.0037146133836358786, -0.011391928419470787, -0.0179025586694479, -0.1699335128068924, -0.00815337523818016, 0.02939506433904171, -0.03607332333922386, 0.026914184913039207, -0.01750025525689125, 0.008649551309645176, -0.005243371240794659, -0.016279930248856544, -0.015756934881210327, 0.012665892951190472, -0.01873398944735527, -0.015823984518647194, -0.02993147075176239, -0.021456250920891762, 0.004737137816846371, -0.024433305487036705, 0.004294602666050196, 0.0005347299738787115, 0.008341117762029171, 0.03457138314843178, -0.024634458124637604, 0.004636561498045921, -0.001847249106504023, -0.020812563598155975, 0.00815337523818016, -0.0008565737516619265, 0.025412246584892273, 0.0031580920331180096, -0.021174637600779533, 0.008931164629757404, 0.009031740948557854, 0.028509993106126785, -0.009427339769899845, 0.0026853838935494423, 0.004629856441169977, 0.018331684172153473, -0.038969915360212326, -0.010875636711716652, 0.01853283680975437, 0.026029113680124283, -0.007925402373075485, 0.012478150427341461, -0.007650495041161776, -0.031889352947473526, 0.011023148894309998, 0.021711044013500214, -0.0035235187970101833, -0.00033923506271094084, -0.03486640751361847, 0.01564965210855007, -0.0014432681491598487, 0.009353584609925747, 0.013799051754176617, 0.016494492068886757, 0.0003191198338754475, 0.009299944154918194, 0.01913629285991192, 0.008723307400941849, -0.01897537149488926, -0.021389199420809746, -0.006765424273908138, -0.002408799482509494, 0.007355471141636372, -0.019954312592744827, -0.009688838385045528, -0.010942688211798668, -0.01621287874877453, -0.030441056936979294, -0.0021171285770833492, -0.03384723514318466, -0.0021959131117910147, -0.03494687005877495, -0.024875840172171593, 0.030199673026800156, 0.0075298030860722065, -0.015274169854819775, -0.007107383105903864, 0.002097013173624873, 0.002348453737795353, -0.011318172328174114, 0.020597999915480614, -0.009092085994780064, 0.018465785309672356, 0.009668722748756409, -0.01031241100281477, 0.01163331139832735, -0.007409111596643925, -0.05157546326518059, -0.00897139497101307, 0.009782709181308746, -0.02400417998433113, -0.0007346251513808966, -0.016320161521434784, -0.0005598740535788238, 0.017017489299178123, 0.026860544458031654, -0.0188144501298666, 0.025465887039899826, -0.012424509972333908, 0.007147613447159529, 0.01438909862190485, -0.01045992225408554, 0.001652801875025034, 0.030870182439684868, 0.01737956330180168, -0.028268611058592796, 0.0028396006673574448, 0.02362869679927826, -0.008495334535837173, -0.012954211793839931, -0.003349186619743705, 0.023481184616684914, 0.01927039586007595, -0.018492605537176132, 0.04664052650332451, 0.0035101084504276514, -0.00758344354107976, 0.02601570449769497, 0.018881501629948616, 0.059970222413539886, 0.015528962016105652, -0.027812665328383446, 0.0021456251852214336, -0.016454262658953667, -0.04503130540251732, -0.09011625498533249, -0.018492605537176132, 0.011707066558301449, -0.0038218949921429157, -0.005669143982231617, 0.0042007314041256905, -0.02042366936802864, 0.010158193297684193, -0.031057924032211304, 0.013155363500118256, -0.03242575749754906, -0.002286431845277548, 0.025707270950078964, -0.004814246203750372, 0.011063379235565662, -0.0005623884499073029, 0.0005242532934062183, -0.00921948254108429, -0.017057718709111214, 0.029529165476560593, -0.017392972484230995, 0.0013904656516388059, 0.018224403262138367, 0.002210999606177211, -0.0059574623592197895, 0.004844419192522764, -0.03508096933364868, 0.01716500148177147, 0.002995493821799755, -0.013490617275238037, 0.0017232050886377692, -0.02000795304775238, 0.0068660001270473, -0.018506016582250595, 0.01823781244456768, 0.0015807222807779908, -0.01851942576467991, -0.020973484963178635, 0.004737137816846371, -0.026404598727822304, -0.02070528268814087, -0.010949392803013325, 0.0028245141729712486, 0.003677735570818186, -0.0024389722384512424, -0.01676269620656967, -0.01889491081237793, 0.014630480669438839, 0.012893865816295147, -0.040284112095832825, -0.01923016458749771, -0.01311513315886259, -0.01939108595252037, 0.00903844553977251, 0.04409259557723999, 0.00443540932610631, -0.010573908686637878, -0.0015471968799829483, 0.004807541146874428, -0.014710942283272743, -0.0033374526537954807, -0.012799995020031929, -0.02104053646326065, 0.0314602293074131, 0.03116520680487156, -0.01976657100021839, -0.0034397051203995943, -0.02148307114839554, 0.008984805084764957, -0.019042422994971275, -0.013182183727622032, 0.016253110021352768, -8.695648284628987e-05, 0.010573908686637878, -0.030441056936979294, -0.014456149190664291, -0.029421884566545486, -0.0061217364855110645, 0.0014826604165136814, -0.006098269019275904, -0.02547929808497429, -0.014563430100679398, -0.012370869517326355, -0.009715658612549305, -0.006027865689247847, -0.0058602383360266685, -0.021845145151019096, -0.004180616233497858, 0.022421782836318016, -0.02100030519068241, -0.0026434771716594696, 0.03172843158245087, 0.008160080760717392, -0.0063195363618433475, -0.003939233720302582, -0.0012823462020605803, 0.001398008898831904, 0.007865057326853275, 0.0018858032999560237, 0.049376197159290314, -0.0062021976336836815, -0.008864114060997963, -0.05723454803228378, 0.019337445497512817, -0.010111258365213871, -0.015448501333594322, -0.003422942478209734, 0.0094072250649333, 0.020021364092826843, 0.013470502570271492, 0.007382291369140148, -0.008582500740885735, -0.023910310119390488, -0.0029502345714718103, -0.02096007578074932, -0.0063027734868228436, -0.009494391269981861, -0.014724352397024632, 0.02551952749490738, -0.01835850439965725, 0.028509993106126785, 0.009601672179996967, 0.0035134609788656235, 0.00992351584136486, 0.008877524174749851, 0.03154068812727928, -0.00674195634201169, -0.023212980479002, 0.0062658959068357944, 0.0005238342564553022, 0.005719431675970554, 0.00612508924677968, 0.009232892654836178, -0.01737956330180168, 0.009313354268670082, 0.03170160949230194, 0.007630379870533943, 0.0034363525919616222, 0.008012568578124046, 0.003184912260621786, 0.016682235524058342, 0.03902355581521988, -0.021992657333612442, -0.027276258915662766, 0.016561543568968773, -0.020075004547834396, -0.00959496758878231, -0.0010937659535557032, 0.013611309230327606, -0.002539548324421048, 0.036582909524440765, -2.574645259301178e-05, 0.027651743963360786, 0.021509891375899315, -0.011385222896933556, -0.009769299067556858, -0.02116122655570507, 0.011519324965775013, 0.015998316928744316, 0.0022596113849431276, -0.00241382815875113, -0.0207857433706522, 0.03306944668292999, 0.005518279504030943, -0.0015731790335848927, 0.00585688604041934, 0.008562385104596615, -0.01056049857288599, -0.014429328963160515, -0.008401462808251381, 0.025667039677500725, -0.04041821137070656, -0.005843475926667452, -0.0035168135073035955, 0.014308637008070946, 0.010030797682702541, 0.027759024873375893, 0.004978520795702934, -0.016481082886457443, 0.0221535786986351, -0.025962064042687416, 0.0214428398758173, 0.0029519107192754745, -0.003681088099256158, -0.0008469352032989264, 0.00765720009803772, 0.025707270950078964, 0.0292341411113739, -0.008200311101973057, 0.0026904128026217222, -0.01074153557419777, 0.0009990567341446877, -0.0020634878892451525, 0.008448398672044277, 0.004244314506649971, 0.0008528021280653775, 0.011271236464381218, 0.018640117719769478, -0.00030172851984389126, 0.01082870177924633, 0.012323933653533459, -0.018506016582250595, 0.02030297741293907, 0.006235722918063402, -0.016950437799096107, -0.029958290979266167, -0.02478197030723095, 0.003966053947806358, -0.020879613235592842, -0.02679349295794964, 0.006379881873726845, 0.018841270357370377, -0.0025579873472452164, -0.01090916246175766, -0.013349810615181923, -0.007020216900855303, -0.02531837671995163, 0.014751172624528408, 0.007288420107215643, -0.031889352947473526, -0.026659391820430756, 0.005551804788410664, 0.03001193143427372, 0.015448501333594322, 0.04924209415912628, 0.01799643039703369, 0.02050413005053997, 0.023320263251662254, 0.0016100569628179073, 0.0034531154669821262, 0.028590453788638115, 0.002425562124699354, -0.01811712235212326, -0.002916709054261446, 0.02478197030723095, -0.007060447707772255, -0.026699621230363846, 0.01531440019607544, -0.012706123292446136, 0.03537599369883537, -0.0015136714791879058, 0.0840548649430275, 0.0010702981380745769, -0.0031681496184319258, -0.011680246330797672, -0.028295431286096573, -0.0035168135073035955, 0.006728546228259802, 0.020021364092826843, -0.006047980859875679, 0.02054435946047306, -0.019042422994971275, 0.013604603707790375, -0.018988782539963722, -0.021509891375899315, -0.00341623742133379, 0.0221535786986351, -0.0036375049967318773, -0.002668621251359582, -0.015140066854655743, 0.0031312715727835894, 0.04245655611157417, -0.010258769616484642, -0.009930221363902092, 0.0025730738416314125, -0.030521519482135773, -0.021429430693387985, 0.039291758090257645, 0.0029385006055235863, -0.0014365630922839046, -0.03660972788929939, 0.004073335323482752, 0.017138181254267693, -0.04757923632860184, -0.02342754416167736, 0.007556623313575983, 0.009762594476342201, -0.0069531663320958614, -0.0021741215605288744, 0.017687996849417686, 0.0015656357863917947, 0.0205845907330513, 0.01951177790760994, -0.005853533279150724, -0.0205845907330513, -0.022797266021370888, 0.014496379531919956, -0.016320161521434784, -0.028590453788638115, -0.02112099714577198], '_distance': 0.40166381001472473}),\n", + " Document(page_content='I hope you’ve found this a useful place to start to break the ice with the major concepts of the Transformer. If you want to go deeper, I’d suggest these next steps:', metadata={'vector': [-0.010849842801690102, -0.01362568698823452, 0.0007098066271282732, -0.01547191571444273, -0.00605549942702055, 0.019788449630141258, 0.006253774277865887, -0.022128738462924957, -0.02020450122654438, -0.0073394086211919785, 0.010472796857357025, 0.024195995181798935, 0.006585315335541964, -0.011252893134951591, 0.022778820246458054, 0.0045668152160942554, 0.014093744568526745, -0.006689328234642744, 0.00788547657430172, -0.017214130610227585, -0.017032109200954437, -0.006890852935612202, 0.005853974726051092, -0.04277529567480087, -0.014288769103586674, 0.0014269265811890364, 0.024924084544181824, -0.01536790281534195, -0.02052954211831093, 0.0002716117596719414, 0.027095353230834007, 0.0011774582089856267, 0.0013310398207977414, -0.02026950940489769, 0.016486041247844696, 0.0071378834545612335, 0.006465050391852856, 0.0008629818330518901, 0.00765144731849432, -0.03250402212142944, 0.02966967225074768, 0.0050771282985806465, 0.0018559797899797559, -0.023506909608840942, -0.0032910325098782778, 0.001704836031422019, -0.01770819164812565, -0.027199367061257362, 0.0026133235078305006, 0.02860354073345661, 0.012241015210747719, 0.017695190384984016, 0.0018120993627235293, -0.0007215893128886819, -0.0005875102360732853, 0.025275127962231636, -0.009237643331289291, 0.026003219187259674, 0.0038744795601814985, -0.005392417311668396, -0.026965338736772537, 0.0013286019675433636, -0.008672073483467102, 0.011681945994496346, -0.0036599531304091215, 0.001828351290896535, -0.003533187322318554, 0.0008304778020828962, -0.009257146157324314, -0.007833469659090042, 0.02658829092979431, 0.04155314341187477, -0.009556182660162449, 0.00412801094353199, 0.014210758730769157, -0.0069298576563596725, 0.002382545033469796, -0.004784592427313328, 0.0043555391021072865, -0.003299158299341798, -0.006734833586961031, -0.008457547053694725, -0.022063732147216797, 0.007976487278938293, 0.010635316371917725, 0.02725137397646904, 0.015887966379523277, -0.0032796559389680624, -0.020685561001300812, 0.001045004348270595, -0.00872408039867878, 0.010505300015211105, 0.016863087192177773, 0.03726261109113693, 0.00759944086894393, 0.010862844996154308, 0.005008870270103216, 0.014275766909122467, 0.008633068762719631, -0.02046453393995762, 0.0047813416458666325, -0.008444545790553093, -0.006799841765314341, -0.009991737082600594, -0.038900814950466156, -0.003559190547093749, 0.017747197300195694, -0.022440778091549873, 0.01294960267841816, -0.02462504804134369, -0.014470791444182396, 0.017149122431874275, -0.011499923653900623, -0.010661319829523563, 0.003585193771868944, -0.0274593997746706, 0.011733952909708023, -0.01070682518184185, 0.003832224290817976, -0.01625201106071472, 0.028421517461538315, 0.007963486015796661, 0.029045594856142998, -0.011077371425926685, 0.0004509933351073414, -0.028083477169275284, 0.005814970005303621, 0.008145508356392384, -0.010557306930422783, -0.011902973055839539, 0.02307785674929619, 0.01222151331603527, 0.0032455266918987036, -0.0003924860793631524, -0.013976730406284332, 0.03375217691063881, -0.02236276865005493, 0.005899480078369379, -0.0069298576563596725, -0.013859715312719345, 0.009738205932080746, 0.001019813702441752, -0.026341261342167854, -0.02751140482723713, -0.00010025459778262302, -0.0024979342706501484, 0.012254016473889351, 0.00256781792268157, 0.00832103006541729, -0.007079376373440027, 0.007501928601413965, -0.02007448486983776, -7.613052002852783e-05, -0.011012363247573376, 0.008600564673542976, 0.030969833955168724, 0.006312281358987093, 0.0015626309905201197, -0.001376545405946672, 0.00781396683305502, 0.01932039111852646, 0.006491053383797407, 0.019424404948949814, 0.003971991594880819, 0.0062927789986133575, 0.0025873202830553055, 0.019580423831939697, -0.012084996327757835, 0.0062862783670425415, -0.006231021136045456, -0.02099759876728058, -0.002237902022898197, -0.03840675577521324, 0.018566299229860306, 0.01717512682080269, 0.00436204019933939, -0.0006163575453683734, -0.005931984167546034, -0.014574804343283176, -0.028707554563879967, 0.031983960419893265, -0.011967981234192848, 0.030423766002058983, 0.01631701923906803, -0.02818748913705349, 0.004384792875498533, 0.011168382130563259, -0.014106745831668377, 0.0020818826742470264, -0.018280262127518654, 0.010713325813412666, 0.03744463622570038, 0.011129377409815788, -0.011090372689068317, -0.6511206030845642, -0.022388771176338196, 0.00905562099069357, -0.025522159412503242, -0.0030391262844204903, -0.008717578835785389, -0.008275524713099003, 0.0030001213308423758, -0.022115737199783325, 0.01625201106071472, 0.009712202474474907, -0.007969986647367477, -0.012689570896327496, 0.006799841765314341, 0.010030741803348064, -0.005220146384090185, -0.014717821963131428, -0.0335441529750824, 0.01804623380303383, 0.0065073054283857346, -0.002445927821099758, 0.011746954172849655, -0.043737415224313736, -0.016147999092936516, 0.006429295986890793, -0.011330902576446533, 0.01933339238166809, 0.011766456998884678, 0.011759955435991287, 0.0018007229082286358, -0.02268780767917633, -0.003955739550292492, 0.018410278484225273, -0.017409155145287514, 0.03562441095709801, 0.007521430961787701, -0.007742458488792181, 0.016564050689339638, -0.011311400681734085, 0.035754427313804626, -0.01311862375587225, -0.02557416632771492, 0.032113976776599884, -0.0008824842516332865, 0.01670706830918789, 0.017201129347085953, 0.023246876895427704, -0.0007837532903067768, -0.001135203056037426, 0.0011953354114666581, 0.01799422688782215, -0.00852905586361885, -2.3463842808268964e-05, 0.008054496720433235, 0.02315586619079113, -0.008932105265557766, 0.031229866668581963, 0.01043379120528698, 0.003910234197974205, 0.020490536466240883, -0.00437829177826643, 0.0007691264618188143, -0.007202891632914543, -0.030085723847150803, -0.024065978825092316, 0.0033316623885184526, -0.001347291748970747, -0.026731308549642563, 0.006045748479664326, -0.019554421305656433, 0.0023240377195179462, 0.013989731669425964, -0.023064855486154556, -0.0029237368144094944, 0.0032455266918987036, 0.020217502489686012, 0.003585193771868944, -0.01730514131486416, -0.0046513257548213005, 0.027485402300953865, 0.055542875081300735, -0.0014496794901788235, -0.01844928413629532, -0.032712049782276154, 0.035260364413261414, 0.004514808766543865, -0.032660044729709625, -0.014808833599090576, -0.00203150138258934, -0.005473677534610033, -0.0014545550802722573, 0.006270026322454214, -0.014743825420737267, -0.03479230776429176, -0.008132507093250751, 0.007670949678868055, 0.012793583795428276, -0.0021127616055309772, -0.0014797457261011004, -0.012761079706251621, 0.018878336995840073, -0.0020575046073645353, 0.007605941500514746, -0.010258269496262074, -0.009380660951137543, -0.020451530814170837, 0.0023142865393310785, 0.016330022364854813, 0.024208996444940567, -0.008314529433846474, -0.02276581898331642, -0.010043743066489697, -0.017474163323640823, -0.011493423022329807, -0.01980145089328289, -0.036950573325157166, 0.00508362939581275, 0.020308513194322586, -0.007865973748266697, -0.02162167616188526, 0.018553296104073524, 0.03193195164203644, -0.012579057365655899, -0.0101672587916255, 0.022778820246458054, 0.006035997066646814, -0.0019014853751286864, -0.024456027895212173, -0.014444787986576557, -0.011246392503380775, -0.0036079466808587313, -0.009211639873683453, 0.026198243722319603, -0.0012700947700068355, 0.006409793626517057, 0.021907711401581764, 0.012592058628797531, -0.018748320639133453, -0.014353777281939983, -0.005434672813862562, -0.005057625938206911, -0.004807345103472471, 0.01778620108962059, 0.01184446644037962, -0.03094383142888546, -0.02430000714957714, -0.00959518738090992, -0.005743461195379496, -0.01294960267841816, 0.006406542845070362, 0.0015585679793730378, -0.007254898082464933, -0.03195795789361, -0.006432546302676201, 0.014587805606424809, -0.01215000357478857, 0.012234514579176903, -0.012644065544009209, -0.014535799622535706, -0.01670706830918789, -0.005886478815227747, 0.03939487785100937, -0.009543181397020817, 0.016616057604551315, -0.018709316849708557, 0.0019031105330213904, 0.015744948759675026, 0.01731814444065094, -0.008464047685265541, -0.038562774658203125, -0.005210394971072674, -0.04012296721339226, -0.003021249081939459, 0.0012822836870327592, -0.01268307026475668, -0.009562683291733265, -0.026133235543966293, -0.026549287140369415, 0.006062000524252653, -0.00748242624104023, -0.01952841691672802, -0.003737962804734707, -0.025470152497291565, 0.007566936779767275, 0.045141588896512985, 0.02228475920855999, 0.029097601771354675, -0.0031561406794935465, -0.01578395441174507, 0.02000947669148445, -0.003310534870252013, -0.00030939767020754516, 0.015380904078483582, -0.01764318346977234, -0.013196633197367191, 0.014886843040585518, 0.008178012445569038, -0.008750082924962044, 0.016863087192177773, 0.014977853745222092, 0.03156790882349014, -0.0071313828229904175, 0.036534521728754044, -0.02704334817826748, 0.009510677307844162, -0.0021062607411295176, 0.009042619727551937, -0.03242601454257965, 0.008373036049306393, 0.0036859563551843166, -0.0005050312611274421, -0.038302741944789886, -0.0027108355425298214, -0.021569669246673584, 0.00429703202098608, 0.012754579074680805, 0.0075604356825351715, 0.015939973294734955, -0.01898234896361828, 0.005480178166180849, 0.015081866644322872, 0.002419924596324563, 0.013300646096467972, 0.010674321092665195, -0.05213645473122597, 0.01530289463698864, 0.022791821509599686, -0.009179136715829372, 0.00905562099069357, -0.006942859385162592, 0.016616057604551315, 0.014236762188374996, 0.028421517461538315, 0.02423500083386898, 0.01678507775068283, -0.009081624448299408, 0.0036274490412324667, -0.01154542900621891, 0.01899535208940506, 0.0123450281098485, 0.028629543259739876, 0.02489808201789856, 0.0038419757038354874, -0.006968862842768431, 0.02638026513159275, 0.03463628888130188, 0.00875658355653286, -0.006166013423353434, -0.04139712452888489, 0.02221975103020668, -0.0032113974448293447, 0.012481545098125935, 0.010154256597161293, -0.0023402897641062737, 0.012364530935883522, -0.004072754178196192, -0.00024357702932320535, 0.016069989651441574, 0.03461028262972832, 0.0060782525688409805, 0.014717821963131428, 0.003955739550292492, -0.010225765407085419, 0.0013562303502112627, 0.016395028680562973, -0.004638324026018381, -0.01161043718457222, -0.04142312705516815, -0.018709316849708557, 0.008353534154593945, -0.010030741803348064, 0.0006825844757258892, 0.005272152833640575, -0.04033099114894867, -0.0032390260603278875, -0.0014561802381649613, 0.016941096633672714, 0.006994865834712982, -0.013781705871224403, 0.004469303414225578, -0.0013838588492944837, -0.02987769804894924, -0.009751207195222378, -0.000403049896704033, 0.004329536110162735, -0.00896460935473442, 0.009822716005146503, -0.006669825874269009, -0.036482516676187515, 0.008711078204214573, 0.007963486015796661, 0.010108751244843006, 0.0081520089879632, -0.001049879938364029, -0.026458274573087692, 0.010323277674615383, 0.009523678570985794, -0.02370193414390087, 0.03133387863636017, 0.009185637347400188, 0.009166134521365166, 0.009913727641105652, -0.02758941613137722, -0.03263403847813606, 0.03840675577521324, 0.012546553276479244, -0.015744948759675026, -0.004755338653922081, -0.004917858634144068, -0.017019106075167656, -0.029357634484767914, 0.002247653203085065, -0.01738315261900425, -0.019814452156424522, 0.014418784528970718, -0.026198243722319603, 0.016017982736229897, 0.005551687441766262, 0.04727385193109512, 0.014483792707324028, -0.0020445031113922596, -0.018423279747366905, -0.0018299765652045608, 0.014210758730769157, 0.05705106258392334, 0.020243505015969276, -0.0015910719521343708, 0.027745435014367104, -0.017071112990379333, -0.010862844996154308, -0.014288769103586674, -0.0229608416557312, 0.006364287808537483, -0.00949767604470253, 2.392092937952839e-05, -0.00765144731849432, 0.027173364534974098, -0.021192623302340508, 0.013261641375720501, 0.015328897163271904, -0.0013513547601178288, -0.0014415534678846598, 0.00686484994366765, -0.03200996294617653, -0.010583310388028622, 0.006153011694550514, -0.008776086382567883, 0.028811566531658173, 0.041449129581451416, 0.02281782403588295, 0.038224730640649796, 0.025002095848321915, -0.0016690816264599562, -0.0254441499710083, -0.010635316371917725, 0.014873840846121311, -0.003949238918721676, 0.006520307157188654, -0.014925847761332989, 0.045869678258895874, 0.018345270305871964, 0.05273452773690224, -0.009504176676273346, -0.007280901074409485, -0.0031805187463760376, 0.0010685697197914124, 0.004492056090384722, -0.03213997930288315, 0.00676083704456687, -0.017552172765135765, -0.009166134521365166, 0.026861324906349182, 0.01665506139397621, -0.029903702437877655, 0.008477048948407173, 0.003052127780392766, -0.03437625616788864, 0.003614447545260191, 0.007781463209539652, -0.0008776086615398526, -0.005190892610698938, -0.0019274885999038815, -0.005213645286858082, -0.006617819424718618, -0.010004738345742226, -0.014080743305385113, 0.009471672587096691, -0.007241896353662014, -0.006773838307708502, -0.021842703223228455, -0.007742458488792181, 0.0013846714282408357, -0.01759117841720581, 0.01657705195248127, -0.0009946231730282307, -0.012923600152134895, -0.019502414390444756, 0.00209650956094265, 0.05203244090080261, 0.0026198243722319603, -0.0016674564685672522, -0.0058572250418365, 0.00808700080960989, 0.003432424971833825, -0.0020526291336864233, -0.02509310655295849, 0.017760198563337326, 0.006198517512530088, -0.004293781705200672, 0.0030651295091956854, -0.021257631480693817, 0.00736541161313653, -0.010355781763792038, 0.03450627252459526, 0.01335265301167965, -0.0033316623885184526, -0.005610194522887468, -0.016356024891138077, -0.0003819222911261022, 0.02886357344686985, -0.004791093058884144, 0.0071313828229904175, 0.006621069740504026, -0.017409155145287514, -0.006094504613429308, -0.02075056917965412, 0.009881223551928997, -0.02549615688621998, 0.005038123577833176, 0.024182993918657303, 0.008711078204214573, 0.01184446644037962, -0.0025304381269961596, -0.0012676569167524576, 0.024729061871767044, -6.36875702184625e-05, -0.0022053979337215424, -0.0011847716523334384, 0.006179014686495066, 0.015042861923575401, 0.017877213656902313, 0.0009288024739362299, -0.014522797428071499, -0.018501291051506996, 0.007716455031186342, -0.0354163832962513, 0.03401220962405205, 0.019762447103857994, -0.01933339238166809, 0.04430948570370674, -0.005873477086424828, -0.000269173935521394, -0.025158114731311798, 0.003533187322318554, -0.018137244507670403, 0.017877213656902313, -0.005047874990850687, 0.007969986647367477, -0.05658300593495369, 0.022635802626609802, -0.005798717960715294, -0.000987309729680419, -0.0022541540674865246, -0.022375769913196564, 0.0029838692862540483, -0.004102007951587439, -0.0012969105737283826, -0.020906588062644005, 0.015575927682220936, -0.035884443670511246, -0.01712311990559101, 0.02925362065434456, 0.025613170117139816, -0.005850724410265684, -0.02315586619079113, 0.005099881440401077, -0.03544238582253456, -0.012416536919772625, 0.008210516534745693, -0.03825073316693306, 0.0004883729270659387, -0.00029477087082341313, 0.012754579074680805, 0.03094383142888546, 0.013443663716316223, 0.009562683291733265, -0.001526063890196383, 0.013248640112578869, 0.0024670553393661976, -0.022193746641278267, 0.010466295294463634, 0.024143988266587257, -0.04022698104381561, 0.023480907082557678, 0.014782830141484737, 0.009107626974582672, -0.004238524474203587, -0.0013919847551733255, 0.04727385193109512, 0.01886533573269844, -0.002715711249038577, -0.011811962351202965, 0.009796712547540665, -0.034532275050878525, -0.003468179376795888, 0.01066782046109438, -0.0010831966064870358, 0.0119484793394804, -0.019632430747151375, 0.0021452654618769884, 0.02953965589404106, 0.0003049283695872873, 0.016460036858916283, 7.866989471949637e-05, 0.03159391134977341, -0.005122634116560221, 0.029825692996382713, -0.004696831572800875, -0.008106503635644913, -0.006994865834712982, -0.006552811246365309, -0.03874479606747627, 0.002566192764788866, 0.014886843040585518, 0.006039247382432222, 0.021244630217552185, -0.006832345854490995, 0.006786840036511421, 0.014756826683878899, -0.011532427743077278, 0.005480178166180849, -0.006608068011701107, -0.01217600703239441, -0.020100487396121025, -0.006400042213499546, -0.01952841691672802, -0.00875658355653286, 0.014743825420737267, 0.018904339522123337, -0.008347033523023129, -0.025340136140584946, 0.008854095824062824, -0.016291016712784767, -0.018033232539892197, 0.025249125435948372, -0.0003031000087503344, 0.02612023428082466, 0.027433395385742188, 0.026536284014582634, 0.001197773264721036, -0.002873355755582452, -0.01818925142288208, 0.025067102164030075, -0.029357634484767914, 0.008633068762719631, 0.0026750811375677586, 0.039290864020586014, -0.006166013423353434, -0.019424404948949814, 0.0037509643007069826, -0.008282025344669819, 0.0006062000175006688, -0.02470305748283863, 0.0019193625776097178, 0.027199367061257362, 0.018423279747366905, -0.014886843040585518, 0.01167544536292553, -0.016291016712784767, 0.033934202045202255, 0.024599045515060425, 0.027225369587540627, -0.01037528458982706, 0.005551687441766262, -0.020854581147432327, 0.01211750041693449, -0.008984112180769444, 0.01899535208940506, -0.014470791444182396, 0.0015480041038244963, -0.0030456269159913063, 0.007807466667145491, -0.003952489234507084, -0.004183267708867788, 0.005925483535975218, 0.03193195164203644, -0.008613565936684608, 0.003614447545260191, 0.025522159412503242, 0.0036339499056339264, -0.002939988858997822, -0.011421914212405682, -0.014301770366728306, 0.02275281585752964, -0.01164944190531969, -0.0028294753283262253, -0.033258117735385895, 0.004046750720590353, 0.015458913519978523, -0.02383195050060749, -0.0015512545360252261, 0.007189889904111624, -0.007696952670812607, -0.0119484793394804, 0.0060782525688409805, -0.0011530802585184574, -0.038432758301496506, -0.007872474379837513, 0.004982866812497377, -0.008073999546468258, 0.0021907712798565626, 0.005467176903039217, 0.00892560463398695, -0.020789572969079018, -0.01730514131486416, 9.916266208165325e-06, 0.018696313723921776, 0.02013949304819107, -0.01181846298277378, -0.017812205478549004, 0.008737081661820412, 0.028811566531658173, 0.01006324589252472, -0.006101005245000124, 0.02784944698214531, 0.006994865834712982, -0.029383637011051178, 0.03968091309070587, 0.005756462458521128, -0.023987969383597374, 0.006962361745536327, -0.013612684793770313, 0.0034779305569827557, -0.0055776904337108135, 0.010648318566381931, 0.009653694927692413, -0.006559311877936125, 0.023506909608840942, -0.012943102046847343, 0.001224589068442583, -0.0021290136501193047, 0.008587563410401344, -0.009088125079870224, 0.0025483155623078346, -0.006832345854490995, 0.00855505932122469, 0.004560314584523439, 0.004300282336771488, 0.006903854664415121, 0.011928976513445377, -0.01479583140462637, -0.0005338785704225302, -0.03086582012474537, 0.011688446626067162, -0.01238403283059597, -0.013950726948678493, 0.002151766326278448, -0.004615571349859238, 0.01691509410738945, 0.002372793620452285, -0.019541418179869652, 0.009374160319566727, -0.011304899118840694, 0.009250645525753498, 0.014873840846121311, 0.022648803889751434, 0.0012018362758681178, -0.00788547657430172, -0.027173364534974098, -0.006721831858158112, 0.0014708071248605847, -0.0016674564685672522, -0.02557416632771492, -0.005616695154458284, -0.004693580791354179, 0.009855220094323158, 0.002775843720883131, -0.020919589325785637, -0.02589920535683632, -0.015094868838787079, -0.03978492319583893, -0.004306782968342304, -0.004056502133607864, 0.013417661190032959, 0.012468543834984303, -0.008158509619534016, -0.0073459092527627945, 0.0369245707988739, 0.012455541640520096, 0.004163765348494053, -0.011681945994496346, -0.02007448486983776, -0.00245730415917933, 0.012839089147746563, -0.03364816680550575, -0.0071313828229904175, -0.028005465865135193, -0.030241742730140686, 0.024208996444940567, 0.013547676615417004, -0.01154542900621891, 0.03367416933178902, -0.009738205932080746, -0.002777468878775835, -0.006403292529284954, 0.000895485864020884, 0.03154190629720688, 0.02489808201789856, 0.010342780500650406, -0.038354746997356415, 0.007072875741869211, 0.0297996886074543, -0.029643669724464417, -0.022310761734843254, -0.010557306930422783, -0.0007069625426083803, 0.015523921698331833, -0.008691576309502125, -0.02228475920855999, 0.008327530696988106, 0.023597920313477516, -0.014405783265829086, 0.015445912256836891, 0.0005667888908647001, -0.0024979342706501484, 0.020295511931180954, 0.028681550174951553, -0.004917858634144068, -0.004739086609333754, 0.021127615123987198, -0.02899358980357647, -0.007846470922231674, 0.01318363193422556, -0.02201172523200512, 0.00736541161313653, -0.014275766909122467, -0.015757950022816658, -0.03515635058283806, 0.003386919153854251, -0.011616937816143036, 0.008808590471744537, -0.018267260864377022, 0.013599683530628681, 0.001076695742085576, -0.02852553129196167, -0.0068388464860618114, 0.01044029276818037, 0.0170581117272377, -0.02502809837460518, -0.02865554764866829, 0.006806342396885157, -0.0021972719114273787, 0.0060782525688409805, -0.008646070025861263, -0.006009994074702263, 0.01523788645863533, -0.013599683530628681, -0.0011319526238366961, 0.00382572365924716, -0.010349281132221222, 0.22778819501399994, -0.01205249223858118, 0.0004985304549336433, 0.019541418179869652, 0.00812600553035736, -0.0183192677795887, 0.027433395385742188, -0.008327530696988106, -0.007579938508570194, -0.013989731669425964, -0.0013830461539328098, 0.00741741806268692, -0.04277529567480087, -0.006465050391852856, 0.003351164748892188, -0.024677054956555367, -0.04139712452888489, -0.012273519299924374, -0.019307389855384827, 0.00032138352980837226, 0.009627691470086575, 0.004056502133607864, -0.00960168894380331, -0.022986846044659615, 0.012377532199025154, -0.006702329497784376, 0.00376721634529531, 0.0170581117272377, 0.01825425960123539, 0.014431786723434925, -0.014717821963131428, -0.0046448251232504845, 0.011824963614344597, 0.02605522610247135, -0.017552172765135765, -0.011467419564723969, 0.03203596547245979, -0.01127239502966404, 0.02704334817826748, 0.012982106767594814, 0.008496551774442196, -0.0026848323177546263, -0.011935477145016193, -0.0198664590716362, -0.02147865854203701, 0.025054100900888443, -0.012735076248645782, -0.003377167973667383, 0.0011132628424093127, 0.012650566175580025, -0.018683312460780144, 0.0005497243255376816, 0.00466432748362422, 0.030319754034280777, 0.006549560930579901, 0.013651689514517784, 0.021127615123987198, 0.020191499963402748, 0.03531236946582794, -0.0032780307810753584, -0.01181846298277378, 0.02751140482723713, -0.01739615388214588, 0.03081381507217884, -0.011915975250303745, -0.0026377015747129917, -0.01657705195248127, 0.008678574115037918, 0.011467419564723969, -0.01584896259009838, 0.006123757921159267, -0.00949767604470253, -0.014522797428071499, -0.007904978469014168, -0.045063577592372894, -0.014275766909122467, 0.0413191132247448, 0.04555764049291611, 0.02792745642364025, 0.01161043718457222, -0.01570594497025013, -0.003965490963310003, 0.025795193389058113, -0.034870315343141556, 0.009192137978971004, -0.02430000714957714, 0.007930981926620007, 0.016551049426198006, 0.002480057068169117, 0.010258269496262074, 0.007495427969843149, -0.031723927706480026, 0.010030741803348064, 0.01311862375587225, -0.00532090850174427, 0.017552172765135765, 0.01657705195248127, 0.011753454804420471, -0.0014464290579780936, -0.00026815818273462355, -0.009848719462752342, 0.015185879543423653, 0.024261003360152245, 0.03344013914465904, -0.03401220962405205, 0.009718703106045723, 0.01161043718457222, 0.008178012445569038, 0.016395028680562973, -0.0214136503636837, 0.009458671323955059, -0.0178512092679739, 0.013924723491072655, -0.009114128537476063, -0.016941096633672714, 0.0036664537619799376, -0.014171754010021687, 0.009978734888136387, -0.007709954399615526, -0.012026488780975342, -0.008776086382567883, -0.01906036026775837, 0.010277772322297096, 0.004596068989485502, -0.001463493681512773, -0.008828092366456985, -0.02093259058892727, -0.0020071235485374928, -0.003533187322318554, -0.002161517506465316, 0.025886204093694687, -0.009075123816728592, 0.019970472902059555, 0.0012725325068458915, -0.016603054478764534, -0.002481682226061821, 0.005681703332811594, 0.03679455444216728, 0.009627691470086575, 0.008282025344669819, -0.0016918344190344214, 0.0018754821503534913, -0.010934353806078434, -0.003167517017573118, 0.004800844471901655, -0.014990855939686298, -0.014496794901788235, -0.007898477837443352, -0.0007817217847332358, 0.0074304197914898396, -0.01500385720282793, 0.031177859753370285, 0.005730459466576576, -0.028941582888364792, 0.014951851218938828, -0.002208648482337594, -0.02966967225074768, -0.018696313723921776, -0.0012083370238542557, 0.01295610424131155, -0.03255603089928627, 0.012065493501722813, 0.017955223098397255, -0.0028538531623780727, 0.00031833627144806087, -0.019021354615688324, -0.16423633694648743, 0.00401099631562829, 0.04740386828780174, -0.030163733288645744, 0.03955089673399925, -0.005756462458521128, 0.046883802860975266, 0.008165011182427406, -0.0137296998873353, 0.009848719462752342, 0.00035774739808402956, -0.004462802316993475, -0.014444787986576557, -0.0024898082483559847, -0.018878336995840073, -0.02375394105911255, -0.012254016473889351, 0.012436039745807648, 0.032374005764722824, 0.015224884264171124, 0.03263403847813606, -0.038484763354063034, 0.004706582520157099, 0.0013424161588773131, -0.019918465986847878, 0.031983960419893265, 0.0079894894734025, 0.006877851206809282, 0.001549629378132522, -0.009010115638375282, -0.005847473628818989, -0.007157385814934969, 0.03739262744784355, -0.015588929876685143, 0.0010271271457895637, -0.009881223551928997, 0.0030960082076489925, -0.024065978825092316, 0.0003110228863079101, 0.011863968335092068, 0.022778820246458054, -0.0035754425916820765, 0.011590935289859772, -0.01127239502966404, -0.0036306993570178747, 0.002065630629658699, 0.011148880235850811, -0.003318660892546177, -0.0007289027562364936, -0.026731308549642563, 0.02704334817826748, -0.018761321902275085, -0.019619429484009743, 0.0032747804652899504, -0.002728712745010853, -0.019112365320324898, -0.016590053215622902, 0.02625024877488613, -0.001076695742085576, -0.021712686866521835, 0.015159877017140388, -0.00855505932122469, -0.012130501680076122, -0.009887724183499813, -0.011122876778244972, 0.002234651707112789, 0.0020542542915791273, 0.0034746802411973476, -0.0475078821182251, 0.003260153578594327, 0.008483550511300564, -0.010947355069220066, -0.011090372689068317, -0.009822716005146503, 0.0033284120727330446, 0.020568545907735825, -0.020828578621149063, -0.008568060584366322, 0.0134956706315279, -0.013963728211820126, 0.0011295147705823183, 0.033128101378679276, -0.02678331546485424, 0.02162167616188526, -0.002964366925880313, -0.003258528420701623, -0.01638202741742134, 0.00664382241666317, -0.03161991387605667, -0.013976730406284332, 0.03000771440565586, -0.018150247633457184, -0.03000771440565586, -0.011220389045774937, 0.030215740203857422, 0.018241258338093758, 0.020763570442795753, -0.017487164586782455, 0.008379537612199783, -0.0012814711080864072, -0.005766213871538639, 0.01570594497025013, -0.01833226904273033, -0.003770466661080718, 0.029903702437877655, 0.02531413361430168, 0.008828092366456985, 0.040773048996925354, 0.017682189121842384, 0.0002443896373733878, -0.03461028262972832, -0.009738205932080746, 0.013963728211820126, 0.024065978825092316, -0.01657705195248127, 0.01137640792876482, -0.004475804045796394, -0.00949767604470253, 0.019710440188646317, 0.02088058553636074, 0.024937087669968605, 0.0022314011584967375, -0.01980145089328289, -0.0028912329580634832, -0.02147865854203701, -0.022180745378136635, -0.10994160920381546, -0.036534521728754044, 0.017617180943489075, 0.017760198563337326, -0.005041373893618584, 0.013963728211820126, -0.00021919900609645993, -0.0028229744639247656, -0.027147360146045685, 0.012429538182914257, -0.014171754010021687, -0.028915580362081528, 0.014821834862232208, -0.011857467703521252, -0.008535556495189667, -0.01389872096478939, 0.014249764382839203, -0.004492056090384722, -0.021725689992308617, 0.02987769804894924, -0.007729456759989262, 0.003325161524116993, 0.003287781961262226, 0.020087486132979393, -0.007462923880666494, -0.005593942478299141, -0.018033232539892197, 0.008171511813998222, 0.009939730167388916, -0.013820710591971874, 0.00027628420502878726, -0.012000485323369503, 0.012813085690140724, -0.035546399652957916, 0.00281809875741601, -0.002868480049073696, -0.02054254338145256, -0.007976487278938293, 0.026497280225157738, -0.0022606549318879843, -0.03770466893911362, -0.012546553276479244, -0.024729061871767044, -0.03060578927397728, -0.031775932759046555, -0.010765332728624344, -0.03060578927397728, 0.02362392470240593, 0.0030066221952438354, -0.04683179780840874, 0.002660454250872135, 0.006094504613429308, -0.02797946333885193, 0.0006309843738563359, 0.03877079859375954, -0.013313648290932178, -0.013404658995568752, -0.024404020980000496, -0.013040614314377308, 0.0005830409354530275, 0.0018689814023673534, -0.025223122909665108, -0.023857953026890755, 0.03377818316221237, 0.019697438925504684, -0.023597920313477516, -0.018878336995840073, -0.025197118520736694, 0.01778620108962059, -0.023584919050335884, 0.0178512092679739, -0.005395668093115091, -0.015939973294734955, 0.02610723115503788, -0.029357634484767914, -0.011018863879144192, -0.01578395441174507, -0.009913727641105652, 0.03840675577521324, -0.004339287057518959, -0.005720708053559065, -0.01731814444065094, 0.017227131873369217, -0.03206196799874306, 0.01838427595794201, -0.0028538531623780727, 0.008347033523023129, 0.004573316313326359, 0.017201129347085953, -0.043737415224313736, -0.0005119383567944169, 0.02625024877488613, 0.004992618225514889, -0.014951851218938828, 0.007241896353662014, -0.0031301374547183514, -0.021114613860845566, -0.007371912710368633, 0.012377532199025154, 0.041449129581451416, -0.004973115399479866, -0.01345666591078043, -0.03367416933178902, 0.008243020623922348, -0.0065073054283857346, -0.005392417311668396, -0.0022655304055660963, -0.02328588254749775, 0.0032699047587811947, -0.008230018429458141, -0.006682827137410641, 0.0064162942580878735, -0.006062000524252653, 0.018761321902275085, -0.0046578263863921165, -0.012442540377378464, -0.00976420845836401, -0.01369069516658783, 0.00782046839594841, 0.006825844757258892, -0.003017998533323407, 0.0020786323584616184, -0.01920337788760662, 0.002304535359144211, 0.015536922961473465, 0.016421033069491386, -0.010251768864691257, 0.02504109963774681, -0.0007837532903067768, -0.0037119595799595118, -0.0029806189704686403, -0.005980740301311016, 0.014704820699989796, -0.024195995181798935, -0.010459794662892818, 0.04355539008975029, 0.00020924465206917375, -0.02202472649514675, -0.004765090066939592, 0.019853457808494568, 0.011727451346814632, 0.04025298357009888, 0.004407545551657677, -0.024065978825092316, 0.015887966379523277, -0.013950726948678493, -0.011246392503380775, -0.015744948759675026, -0.009894224815070629, 0.011421914212405682, 0.003203271422535181, 0.011935477145016193, 0.020763570442795753, 0.012299522757530212, 0.00045871303882449865, -0.01778620108962059, -0.0025548161938786507, -0.005535435397177935, 0.009244143962860107, 0.015380904078483582, -0.011974481865763664, -0.027225369587540627, 0.01912536658346653, 0.005889729131013155, 0.01010225061327219, -0.012202010490000248, 0.007839970290660858, -0.0023451652377843857, -0.0029676174744963646, -0.013768704608082771, 0.016421033069491386, -0.024339012801647186, -0.01770819164812565, 0.001675582374446094, 0.02335089072585106, 0.022167744114995003, 0.0015098118456080556, 0.001851104199886322, -0.021062606945633888, 0.0004132073954679072, -0.018176250159740448, 0.035260364413261414, 0.03409022092819214, 0.006013244390487671, -0.015523921698331833, 0.023532913997769356, 0.022102735936641693, 0.005376165732741356, -0.004173516761511564, 0.002668580273166299, -0.002813223283737898, -0.0020184998866170645, 0.006370788440108299, -0.0036957075353711843, 0.004589568357914686, -0.01534189935773611, -0.0006224520620889962, 0.021530665457248688, -0.00849005114287138, -0.0009239268838427961, 0.005298155825585127, 0.0206595566123724, -0.0008467297884635627, 0.009627691470086575, 0.011915975250303745, -0.04053901880979538, -0.03242601454257965, -0.003286156803369522, -0.006039247382432222, -0.03825073316693306, -0.0114804208278656, 0.0170581117272377, 4.553102553472854e-05, -0.01765618473291397, 0.006448798347264528, 0.011064369231462479, -0.015276891179382801, 0.005558188073337078, 0.004518059082329273, -0.013677692972123623, -0.030891824513673782, 0.019749443978071213, 0.0035429385025054216, 0.02860354073345661, 0.017500165849924088, -0.01322263665497303, 0.004823597148060799, 0.01244904100894928, 0.012663567438721657, 0.012293022125959396, 0.029721679165959358, 0.0031187611166387796, -0.015250887721776962, 0.0001362121693091467, -0.01231902465224266, -0.007183389272540808, -0.018371274694800377, -0.022258754819631577, 0.004319784697145224, 0.02115361951291561, -0.0031512652058154345, 0.09298750758171082, 0.03328412026166916, -0.037574652582407, 0.006621069740504026, -0.014132749289274216, 0.012904097326099873, 0.000840228982269764, 0.01352167408913374, -0.001222963910549879, -0.008776086382567883, 0.01534189935773611, 0.0067933411337435246, -0.022804822772741318, -0.028681550174951553, -0.010966857895255089, 0.015484916977584362, -0.0015796954976394773, -0.0010953856399282813, -0.0027595916762948036, -0.00792448129504919, 0.020698562264442444, -0.02504109963774681, 0.02228475920855999, 0.022323762997984886, -0.018280262127518654, -0.021725689992308617, 0.03159391134977341, 0.0050673773512244225, -0.00788547657430172, -0.01792921870946884, -0.009634193032979965, -0.0012928475625813007, -0.055542875081300735, -0.009114128537476063, 0.010661319829523563, -0.008366535417735577, 0.006682827137410641, -0.02966967225074768, 0.009270147420465946, 0.0014919346431270242, 0.014990855939686298, 0.00876308511942625, -0.015952974557876587, -0.03333612531423569, -0.030709801241755486, 0.03812072053551674, 0.012202010490000248, -0.01779920421540737, 0.0016308893682435155], '_distance': 0.41414153575897217})],\n", + " 'question': 'What is Vision transformer and How it is different from normal '\n", + " 'transformers?'}\n", + "'------------------------'\n", + "***** DOCS RELEVANCE CHECK *****\n", + "***** RATED DOCUMENT: NOT RELEVANT *****\n", + "***** RATED DOCUMENT: NOT RELEVANT *****\n", + "***** RATED DOCUMENT: NOT RELEVANT *****\n", + "***** RATED DOCUMENT: NOT RELEVANT *****\n", + "{ 'documents': [],\n", + " 'question': 'What is Vision transformer and How it is different from normal '\n", + " 'transformers?',\n", + " 'run_web_search': 'Yes'}\n", + "'------------------------'\n", + "***** DECIDE TO GENERATE *****\n", + "***** DECISION: TRANSFORM QUERY and RUN WEB SEARCH *****\n", + "***** TRANSFORM QUERY *****\n", + "{ 'documents': [],\n", + " 'question': 'What distinguishes a Vision Transformer from traditional '\n", + " 'Transformer models in machine learning?'}\n", + "'------------------------'\n", + "***** WEB SEARCH *****\n", + "{ 'documents': [ Document(page_content=\"Deep Learning System 2\\nAt the 2019 Neural Information Processing Systems Conference (NeurIPS 2019), Yoshua Bengio, one of the three pioneers of deep learning, gave a keynote speech that shed light on the possible transition of System 1 deep learning to System 2.\\nTwo systems of thinking. Integrating Deep Learning with other technologies\\nExtended Natural Language Processing Capabilities\\nIncreased Attention to Ethical Considerations\\nIntegration of Hybrid Models\\nSuch deep learning trends in 2024 will drive the scalability, popularity, and creation of more effective approaches in the field. If you want to build a technology product using deep learning, Merehead is your best choice!\\nSelf-supervised Learning\\nSelf-supervised learning is a paradigm in which a model learns to extract meaningful representations or features from unlabeled data without the need for explicit labels provided by humans.\\n Deep learning models successfully solve tasks such as:\\nDeep learning trends in 2024 may increase the number of significant advances and breakthroughs due to the availability of big data, computational resources, and advanced algorithms.\\n How have deep learning trends shaped?\\nUnderstanding how deep learning trends have formed in the past can give us a better idea of what we can expect from this field in the future.\\nTrain\\nDevelop\\nDeploy\\nOperate\\nData Collection\\nBuilding Blocks\\u200b\\nDevice Enrollment\\nMonitoring Dashboards\\nVideo Annotation\\u200b\\nApplication Editor\\u200b\\nDevice Management\\nRemote Maintenance\\nModel Training\\nApplication Library\\nDeployment Manager\\nUnified Security Center\\nAI Model Library\\nConfiguration Manager\\nIoT Edge Gateway\\nPrivacy-preserving AI\\nReady to get started?\\nVision Transformers (ViT) in Image Recognition – 2024 Guide\\nViso Suite is the all-in-one solution for teams to build, deliver, scale computer vision applications.\\n The self-attention layer calculates attention weights for each pixel in the image based on its relationship with all other pixels, while the feed-forward layer applies a non-linear transformation to the output of the self-attention layer. The final output of the ViT architecture is a class prediction, obtained by passing the output of the last transformer block through a classification head, which typically consists of a single fully connected layer.\\n The model also learns from training data to encode the relative location of the image patches to reconstruct the structure of the image.\\n The brighter the color of a pixel in the heatmap, the higher the attention weight between the corresponding tokens.\\nAfter their initial success in natural language processing, transformer ar-chitectures have rapidly gained traction in computer vision, providing state-of-the-art results for tasks such as image classification, detection, segmenta-tion, and video analysis.\\nThere are multiple blocks in the ViT encoder, and each block consists of three major processing elements:\\nLayer Norm keeps the training process on track and lets the model adapt to the variations among the training images.\\n The (single-head) attention mechanism in the above figure uses Q and K. Still, in the multi-head attention mechanism, each head has its projection matrix W_i^Q, W_i^K, and W_i^V, and they calculate the attention weights using the feature values projected using these matrices.\\n ViT vs. Convolutional Neural Networks\\nThe ViT model represents an input image as a series of image patches, like the series of word embeddings used when using transformers to text, and directly predicts class labels for the image.\\n Transformer Architecture modified for images (ViT)\\n\\u200d\\nThe paper suggests using a Transformer Encoder as a base model to extract features from the image and passing these “processed” features into a Multilayer Perceptron (MLP) head model for classification.\\n Although transformer-based models are known to only be effective when large training datasets are available, we show how we can effectively regularise the model during training and leverage pretrained image models to be able to train on comparatively small datasets\\nAutonomous driving\\nOn Tesla AI Day in 2021, Tesla revealed many intricate inner workings of the neural network powering Tesla FSD.\\nThere has been a dramatic increase in the complexity of the computer vision model landscape. Many models are now at your fingertips, from the first ConvNets to the latest Vision Transformers. Just as supervised learning on ImageNet gave way to self-supervised learning and image-text pair training, such as CLIP, so did training paradigms. Compared to ResNets, CLIP's visual encoder is far more ...\")],\n", + " 'question': 'What distinguishes a Vision Transformer from traditional '\n", + " 'Transformer models in machine learning?'}\n", + "'------------------------'\n", + "***** GENERATE *****\n", + "{ 'documents': [ Document(page_content=\"Deep Learning System 2\\nAt the 2019 Neural Information Processing Systems Conference (NeurIPS 2019), Yoshua Bengio, one of the three pioneers of deep learning, gave a keynote speech that shed light on the possible transition of System 1 deep learning to System 2.\\nTwo systems of thinking. Integrating Deep Learning with other technologies\\nExtended Natural Language Processing Capabilities\\nIncreased Attention to Ethical Considerations\\nIntegration of Hybrid Models\\nSuch deep learning trends in 2024 will drive the scalability, popularity, and creation of more effective approaches in the field. If you want to build a technology product using deep learning, Merehead is your best choice!\\nSelf-supervised Learning\\nSelf-supervised learning is a paradigm in which a model learns to extract meaningful representations or features from unlabeled data without the need for explicit labels provided by humans.\\n Deep learning models successfully solve tasks such as:\\nDeep learning trends in 2024 may increase the number of significant advances and breakthroughs due to the availability of big data, computational resources, and advanced algorithms.\\n How have deep learning trends shaped?\\nUnderstanding how deep learning trends have formed in the past can give us a better idea of what we can expect from this field in the future.\\nTrain\\nDevelop\\nDeploy\\nOperate\\nData Collection\\nBuilding Blocks\\u200b\\nDevice Enrollment\\nMonitoring Dashboards\\nVideo Annotation\\u200b\\nApplication Editor\\u200b\\nDevice Management\\nRemote Maintenance\\nModel Training\\nApplication Library\\nDeployment Manager\\nUnified Security Center\\nAI Model Library\\nConfiguration Manager\\nIoT Edge Gateway\\nPrivacy-preserving AI\\nReady to get started?\\nVision Transformers (ViT) in Image Recognition – 2024 Guide\\nViso Suite is the all-in-one solution for teams to build, deliver, scale computer vision applications.\\n The self-attention layer calculates attention weights for each pixel in the image based on its relationship with all other pixels, while the feed-forward layer applies a non-linear transformation to the output of the self-attention layer. The final output of the ViT architecture is a class prediction, obtained by passing the output of the last transformer block through a classification head, which typically consists of a single fully connected layer.\\n The model also learns from training data to encode the relative location of the image patches to reconstruct the structure of the image.\\n The brighter the color of a pixel in the heatmap, the higher the attention weight between the corresponding tokens.\\nAfter their initial success in natural language processing, transformer ar-chitectures have rapidly gained traction in computer vision, providing state-of-the-art results for tasks such as image classification, detection, segmenta-tion, and video analysis.\\nThere are multiple blocks in the ViT encoder, and each block consists of three major processing elements:\\nLayer Norm keeps the training process on track and lets the model adapt to the variations among the training images.\\n The (single-head) attention mechanism in the above figure uses Q and K. Still, in the multi-head attention mechanism, each head has its projection matrix W_i^Q, W_i^K, and W_i^V, and they calculate the attention weights using the feature values projected using these matrices.\\n ViT vs. Convolutional Neural Networks\\nThe ViT model represents an input image as a series of image patches, like the series of word embeddings used when using transformers to text, and directly predicts class labels for the image.\\n Transformer Architecture modified for images (ViT)\\n\\u200d\\nThe paper suggests using a Transformer Encoder as a base model to extract features from the image and passing these “processed” features into a Multilayer Perceptron (MLP) head model for classification.\\n Although transformer-based models are known to only be effective when large training datasets are available, we show how we can effectively regularise the model during training and leverage pretrained image models to be able to train on comparatively small datasets\\nAutonomous driving\\nOn Tesla AI Day in 2021, Tesla revealed many intricate inner workings of the neural network powering Tesla FSD.\\nThere has been a dramatic increase in the complexity of the computer vision model landscape. Many models are now at your fingertips, from the first ConvNets to the latest Vision Transformers. Just as supervised learning on ImageNet gave way to self-supervised learning and image-text pair training, such as CLIP, so did training paradigms. Compared to ResNets, CLIP's visual encoder is far more ...\")],\n", + " 'generation': 'A Vision Transformer (ViT) distinguishes itself from '\n", + " 'traditional Transformer models by applying the transformer '\n", + " 'architecture to image recognition tasks, where it treats an '\n", + " 'input image as a series of image patches similar to how text '\n", + " 'transformers treat a series of word embeddings. Unlike '\n", + " 'traditional models that might rely on convolutional layers, '\n", + " 'ViTs use self-attention mechanisms to calculate attention '\n", + " 'weights for each pixel in relation to all other pixels, '\n", + " 'enabling it to directly predict class labels for the image. '\n", + " 'This approach allows for the encoding of the relative '\n", + " \"location of image patches to reconstruct the image's \"\n", + " \"structure, leveraging the transformer's strengths in handling \"\n", + " 'sequential data for computer vision tasks.',\n", + " 'question': 'What distinguishes a Vision Transformer from traditional '\n", + " 'Transformer models in machine learning?'}\n", + "'------------------------'\n", + "{ 'documents': [ Document(page_content=\"Deep Learning System 2\\nAt the 2019 Neural Information Processing Systems Conference (NeurIPS 2019), Yoshua Bengio, one of the three pioneers of deep learning, gave a keynote speech that shed light on the possible transition of System 1 deep learning to System 2.\\nTwo systems of thinking. Integrating Deep Learning with other technologies\\nExtended Natural Language Processing Capabilities\\nIncreased Attention to Ethical Considerations\\nIntegration of Hybrid Models\\nSuch deep learning trends in 2024 will drive the scalability, popularity, and creation of more effective approaches in the field. If you want to build a technology product using deep learning, Merehead is your best choice!\\nSelf-supervised Learning\\nSelf-supervised learning is a paradigm in which a model learns to extract meaningful representations or features from unlabeled data without the need for explicit labels provided by humans.\\n Deep learning models successfully solve tasks such as:\\nDeep learning trends in 2024 may increase the number of significant advances and breakthroughs due to the availability of big data, computational resources, and advanced algorithms.\\n How have deep learning trends shaped?\\nUnderstanding how deep learning trends have formed in the past can give us a better idea of what we can expect from this field in the future.\\nTrain\\nDevelop\\nDeploy\\nOperate\\nData Collection\\nBuilding Blocks\\u200b\\nDevice Enrollment\\nMonitoring Dashboards\\nVideo Annotation\\u200b\\nApplication Editor\\u200b\\nDevice Management\\nRemote Maintenance\\nModel Training\\nApplication Library\\nDeployment Manager\\nUnified Security Center\\nAI Model Library\\nConfiguration Manager\\nIoT Edge Gateway\\nPrivacy-preserving AI\\nReady to get started?\\nVision Transformers (ViT) in Image Recognition – 2024 Guide\\nViso Suite is the all-in-one solution for teams to build, deliver, scale computer vision applications.\\n The self-attention layer calculates attention weights for each pixel in the image based on its relationship with all other pixels, while the feed-forward layer applies a non-linear transformation to the output of the self-attention layer. The final output of the ViT architecture is a class prediction, obtained by passing the output of the last transformer block through a classification head, which typically consists of a single fully connected layer.\\n The model also learns from training data to encode the relative location of the image patches to reconstruct the structure of the image.\\n The brighter the color of a pixel in the heatmap, the higher the attention weight between the corresponding tokens.\\nAfter their initial success in natural language processing, transformer ar-chitectures have rapidly gained traction in computer vision, providing state-of-the-art results for tasks such as image classification, detection, segmenta-tion, and video analysis.\\nThere are multiple blocks in the ViT encoder, and each block consists of three major processing elements:\\nLayer Norm keeps the training process on track and lets the model adapt to the variations among the training images.\\n The (single-head) attention mechanism in the above figure uses Q and K. Still, in the multi-head attention mechanism, each head has its projection matrix W_i^Q, W_i^K, and W_i^V, and they calculate the attention weights using the feature values projected using these matrices.\\n ViT vs. Convolutional Neural Networks\\nThe ViT model represents an input image as a series of image patches, like the series of word embeddings used when using transformers to text, and directly predicts class labels for the image.\\n Transformer Architecture modified for images (ViT)\\n\\u200d\\nThe paper suggests using a Transformer Encoder as a base model to extract features from the image and passing these “processed” features into a Multilayer Perceptron (MLP) head model for classification.\\n Although transformer-based models are known to only be effective when large training datasets are available, we show how we can effectively regularise the model during training and leverage pretrained image models to be able to train on comparatively small datasets\\nAutonomous driving\\nOn Tesla AI Day in 2021, Tesla revealed many intricate inner workings of the neural network powering Tesla FSD.\\nThere has been a dramatic increase in the complexity of the computer vision model landscape. Many models are now at your fingertips, from the first ConvNets to the latest Vision Transformers. Just as supervised learning on ImageNet gave way to self-supervised learning and image-text pair training, such as CLIP, so did training paradigms. Compared to ResNets, CLIP's visual encoder is far more ...\")],\n", + " 'generation': 'A Vision Transformer (ViT) distinguishes itself from '\n", + " 'traditional Transformer models by applying the transformer '\n", + " 'architecture to image recognition tasks, where it treats an '\n", + " 'input image as a series of image patches similar to how text '\n", + " 'transformers treat a series of word embeddings. Unlike '\n", + " 'traditional models that might rely on convolutional layers, '\n", + " 'ViTs use self-attention mechanisms to calculate attention '\n", + " 'weights for each pixel in relation to all other pixels, '\n", + " 'enabling it to directly predict class labels for the image. '\n", + " 'This approach allows for the encoding of the relative '\n", + " \"location of image patches to reconstruct the image's \"\n", + " \"structure, leveraging the transformer's strengths in handling \"\n", + " 'sequential data for computer vision tasks.',\n", + " 'question': 'What distinguishes a Vision Transformer from traditional '\n", + " 'Transformer models in machine learning?'}\n", + "'------------------------'\n", + "***** Generated Answer *****\n", + "('A Vision Transformer (ViT) distinguishes itself from traditional Transformer '\n", + " 'models by applying the transformer architecture to image recognition tasks, '\n", + " 'where it treats an input image as a series of image patches similar to how '\n", + " 'text transformers treat a series of word embeddings. Unlike traditional '\n", + " 'models that might rely on convolutional layers, ViTs use self-attention '\n", + " 'mechanisms to calculate attention weights for each pixel in relation to all '\n", + " 'other pixels, enabling it to directly predict class labels for the image. '\n", + " 'This approach allows for the encoding of the relative location of image '\n", + " \"patches to reconstruct the image's structure, leveraging the transformer's \"\n", + " 'strengths in handling sequential data for computer vision tasks.')\n" + ] + } + ], + "source": [ + "# Correction for question not present in context\n", + "inputs = {\n", + " \"keys\": {\n", + " \"question\": \"What is Vision transformer and How it is different from traditional transformers?\"\n", + " }\n", + "}\n", + "for output in app.stream(inputs):\n", + " for key, value in output.items():\n", + " # Node\n", + " # print full state\n", + " pprint.pprint(value[\"keys\"], indent=2, width=80, depth=None)\n", + " pprint.pprint(\"------------------------\")\n", + "\n", + "# Final generation\n", + "print(\"*\" * 5, \" Generated Answer \", \"*\" * 5)\n", + "pprint.pprint(value[\"keys\"][\"generation\"])" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/tutorials/Corrective-RAG-with_Langgraph/README.md b/tutorials/Corrective-RAG-with_Langgraph/README.md new file mode 100644 index 0000000..98e23e9 --- /dev/null +++ b/tutorials/Corrective-RAG-with_Langgraph/README.md @@ -0,0 +1,29 @@ +[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Corrective-RAG-with_Langgraph/CRAG_with_Langgraph.ipynb) + +## Corrective RAG with Langgraph + +Self-reflection can enhance RAG, enabling correction of poor quality retrieval or generations. + +**Corrective Retrieval-Augmented Generation (CRAG)** is a method that works like a built-in fact-checker. + +It adds both creativity and accuracy by creating text and then checking for any mistakes or made-up information. This helps make sure the final result is reliable and matches real-world facts. It's like a safety feature for AI writers, making their work more trustworthy and lowering the chances of spreading false information. + + +![diagram](../../assets/crag.png) + + +Corrective-RAG (CRAG) is a recent [paper]((https://arxiv.org/pdf/2401.15884.pdf)) that talks about a cool way to make a self-reflective RAG. + +The method givesating/scores retrieved documents based on how well they answer a question: + +For Correct documents - + +1. If at least one document is really relevant, it moves on to creating text +2. Before creating text, it cleans up the knowledge +3. This breaks down the document into "knowledge strips" +4. It rates each strip and gets rid of ones that don't matter + +For Ambiguous or Incorrect documents - +1. If all documents are not relevant enough or if it's not sure, the method looks for more information +2. It uses a web search to add more details to what it found +3. The diagram in the paper also show that they might change the question to get better results. \ No newline at end of file