forked from hzwer/ECCV2022-RIFE
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathnuke_rife.py
110 lines (87 loc) · 3.84 KB
/
nuke_rife.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import logging
import torch
from model.IFNet_HDv3 import IFNet
logging.basicConfig(level=logging.INFO)
LOGGER = logging.getLogger(__name__)
PATH = "model/flownet_v4.14.pkl"
TORCHSCRIPT_MODEL = "./nuke/Cattery/RIFE/RIFE.pt"
def load_flownet():
def convert(param):
return {k.replace("module.", ""): v for k, v in param.items() if "module." in k}
flownet = IFNet()
if torch.cuda.is_available():
flownet.cuda()
flownet.load_state_dict(convert(torch.load(PATH)), False)
return flownet
class FlowNetNuke(torch.nn.Module):
"""
FlowNetNuke is a module that performs optical flow estimation and frame interpolation using the RIFE algorithm.
Args:
timestep (float): The time interval between consecutive frames. Default is 0.5.
scale (float): The scale factor for resizing the input frames. Default is 1.0.
optical_flow (int): Flag indicating whether to return the optical flow and mask or the interpolated frames.
Set to 1 to return optical flow and mask, and 0 to return interpolated frames. Default is 0.
"""
def __init__(
self,
timestep: float = 0.5,
scale: float = 1.0,
optical_flow: int = 0,
ensemble: int = 0,
):
super().__init__()
self.optical_flow = optical_flow
self.timestep = timestep
self.scale = scale
self.ensemble = ensemble
self.flownet = load_flownet()
self.flownet_half = load_flownet().half()
def forward(self, x):
"""
Forward pass of the RIFE model.
Args:
x (torch.Tensor): Input tensor of shape (batch_size, channels, height, width).
Returns:
torch.Tensor: If `optical_flow` is True, returns the optical flow and mask concatenated along the channel dimension,
with shape (batch_size, 2 * channels, height, width).
If `optical_flow` is False, returns the interpolated frames and alpha channel concatenated along the channel dimension,
with shape (batch_size, (channels + 1), height, width).
"""
b, c, h, w = x.shape
dtype = x.dtype
timestep = self.timestep
ensemble = bool(self.ensemble)
scale = self.scale if self.scale in [0.125, 0.25, 0.5, 1.0, 2.0, 4.0] else 1.0
device = torch.device("cuda") if x.is_cuda else torch.device("cpu")
# Padding
padding_factor = max(128, int(128 / scale))
pad_h = ((h - 1) // padding_factor + 1) * padding_factor
pad_w = ((w - 1) // padding_factor + 1) * padding_factor
pad_dims = (0, pad_w - w, 0, pad_h - h)
x = torch.nn.functional.pad(x, pad_dims)
scale_list = (8.0 / scale, 4.0 / scale, 2.0 / scale, 1.0 / scale)
if dtype == torch.float32:
flow, mask, image = self.flownet((x), timestep, scale_list, ensemble)
else:
flow, mask, image = self.flownet_half((x), timestep, scale_list, ensemble)
# Return the optical flow and mask
if self.optical_flow:
return torch.cat((flow[:, :, :h, :w], mask[:, :, :h, :w]), 1)
# Return the interpolated frames
alpha = torch.ones((b, 1, h, w), dtype=dtype, device=device)
return torch.cat((image[:, :, :h, :w], alpha), dim=1).contiguous()
def trace_rife(model_file=TORCHSCRIPT_MODEL):
"""
Traces the RIFE model using FlowNetNuke and saves the traced flow model.
Returns:
None
"""
with torch.jit.optimized_execution(True):
rife_nuke = torch.jit.script(FlowNetNuke().eval().requires_grad_(False))
model_file = TORCHSCRIPT_MODEL
rife_nuke.save(model_file)
LOGGER.info(rife_nuke.code)
LOGGER.info(rife_nuke.graph)
LOGGER.info("Traced flow saved: %s", model_file)
if __name__ == "__main__":
trace_rife()