We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
library(COVID19AR) #> Loading required package: dplyr #> #> Attaching package: 'dplyr' #> The following objects are masked from 'package:stats': #> #> filter, lag #> The following objects are masked from 'package:base': #> #> intersect, setdiff, setequal, union #> Loading required package: knitr #> Loading required package: magrittr #> Loading required package: lgr #> Warning: replacing previous import 'ggplot2::Layout' by 'lgr::Layout' when #> loading 'COVID19AR' #> Warning: replacing previous import 'readr::col_factor' by 'scales::col_factor' #> when loading 'COVID19AR' #> Warning: replacing previous import 'magrittr::equals' by 'testthat::equals' when #> loading 'COVID19AR' #> Warning: replacing previous import 'magrittr::not' by 'testthat::not' when #> loading 'COVID19AR' #> Warning: replacing previous import 'magrittr::is_less_than' by #> 'testthat::is_less_than' when loading 'COVID19AR' #> Warning: replacing previous import 'dplyr::matches' by 'testthat::matches' when #> loading 'COVID19AR' library(ggplot2) #> #> Attaching package: 'ggplot2' #> The following object is masked from 'package:lgr': #> #> Layout knitr::opts_chunk$set(fig.width = 4, fig.height = 6, dpi = 200, warning = FALSE) covid19.curator <- COVID19ARCurator$new() dummy <- covid19.curator$loadData() #> INFO [00:22:18.819] Exists dest path? {dest.path: ~/.R/COVID19AR/Covid19Casos.csv, exists.dest.path: TRUE} #> INFO [00:22:24.729] Checking required downloaded {downloaded.max.date: 2020-06-22, daily.update.time: 20:00:00, current.datetime: 2020-06-23 0.., download.flag: FALSE} dummy <- covid19.curator$curateData() #> INFO [00:22:26.760] Normalize #> INFO [00:22:27.203] checkSoundness #> INFO [00:22:27.390] Mutating data # Dates of current processed file max(covid19.curator$data$fecha_apertura, na.rm = TRUE) #> [1] "2020-06-22" # Ultima muerte max(covid19.curator$data$fecha_fallecimiento, na.rm = TRUE) #> [1] "2020-06-22" report.date <- max(covid19.curator$data$fecha_apertura, na.rm = TRUE) covid19.ar.provincia.summary <- covid19.curator$makeSummary(group.vars = c("residencia_provincia_nombre")) covid19.ar.provincia.summary.selected <- covid19.ar.provincia.summary %>% filter(confirmados >= 100) covid19.ar.summary <- covid19.curator$makeSummary(group.vars = c("residencia_provincia_nombre", "edad.rango")) # Share per province provinces.cases <-covid19.ar.summary %>% group_by(residencia_provincia_nombre) %>% summarise(fallecidos.total.provincia = sum(fallecidos), confirmados.total.provincia = sum(confirmados), .groups = "keep") covid19.ar.summary %<>% inner_join(provinces.cases, by = "residencia_provincia_nombre") covid19.ar.summary %<>% mutate(fallecidos.prop = fallecidos/fallecidos.total.provincia) covid19.ar.summary %<>% mutate(confirmados.prop = confirmados/confirmados.total.provincia) # Data 2 plot data2plot <- covid19.ar.summary %>% filter(residencia_provincia_nombre %in% covid19.ar.provincia.summary.selected$residencia_provincia_nombre) covidplot <- data2plot %>% ggplot(aes(x = edad.rango, y = confirmados.prop, fill = edad.rango)) + geom_bar(stat = "identity") + facet_wrap(~residencia_provincia_nombre, ncol = 2, scales = "free_y") + labs(title = "Proporción de confirmados por rango etario\n en provincias > 100 confirmados") covidplot <- setupTheme(covidplot, report.date = report.date, x.values = NULL, x.type = NULL, total.colors = length(unique(data2plot$edad.rango)), data.provider.abv = "@msalnacion", base.size = 6) # Proporción de muertos por rango etario covidplot
covidplot <- data2plot %>% ggplot(aes(x = edad.rango, y = fallecidos.prop, fill = edad.rango)) + geom_bar(stat = "identity") + facet_wrap(~residencia_provincia_nombre, ncol = 2, scales = "free_y") + labs(title = "Proporción de confirmados por rango etario\n en provincias > 100 confirmados") covidplot <- setupTheme(covidplot, report.date = report.date, x.values = NULL, x.type = NULL, total.colors = length(unique(data2plot$edad.rango)), data.provider.abv = "@msalnacion", base.size = 6) # Proporción de muertos por rango etario covidplot #> Warning: Removed 47 rows containing missing values (position_stack).
#Plot of deaths share covidplot <- data2plot %>% ggplot(aes(x = edad.rango, y = fallecidos.prop, fill = edad.rango)) + geom_bar(stat = "identity") + facet_wrap(~residencia_provincia_nombre, ncol = 2, scales = "free_y") + labs(title = "Proporción de muertos por rango etario\n en provincias > 100 confirmados") covidplot <- setupTheme(covidplot, report.date = report.date, x.values = NULL, x.type = NULL, total.colors = length(unique(data2plot$edad.rango)), data.provider.abv = "@msalnacion", base.size = 6) # Proporción de muertos por rango etario covidplot #> Warning: Removed 47 rows containing missing values (position_stack).
names(covid19.ar.summary) #> [1] "residencia_provincia_nombre" "edad.rango" #> [3] "n" "max_fecha_diagnostico" #> [5] "max_fecha_inicio_sintomas" "count_fecha_diagnostico" #> [7] "confirmados" "descartados" #> [9] "sospechosos" "fallecidos" #> [11] "tests" "sin.clasificar" #> [13] "letalidad.min.porc" "letalidad.max.porc" #> [15] "positividad.porc" "internados" #> [17] "internados.porc" "cuidado.intensivo" #> [19] "cuidado.intensivo.porc" "respirador" #> [21] "respirador.porc" "dias.diagnostico" #> [23] "dias.apertura" "dias.cuidado.intensivo" #> [25] "dias.fallecimiento" "fallecidos.total.provincia" #> [27] "confirmados.total.provincia" "fallecidos.prop" #> [29] "confirmados.prop" nrow(covid19.ar.summary) #> [1] 328 porc.cols <- names(covid19.ar.summary)[grep("porc", names(covid19.ar.summary))] porc.cols <- porc.cols[grep("letalidad.min|cuidado.intensivo|positividad", porc.cols)] # UCI rate covidplot <- data2plot %>% ggplot(aes(x = edad.rango, y = cuidado.intensivo.porc, fill = edad.rango)) + geom_bar(stat = "identity") + facet_wrap(~residencia_provincia_nombre, ncol = 2, scales = "free_y") + labs(title = "Porcentaje de pacientes en Unidades de Cuidados Intensivos por rango etario\n en provincias > 100 confirmados") covidplot <- setupTheme(covidplot, report.date = report.date, x.values = NULL, x.type = NULL, total.colors = length(unique(data2plot$edad.rango)), data.provider.abv = "@msalnacion", base.size = 6) covidplot
# ventilator rate covidplot <- data2plot %>% ggplot(aes(x = edad.rango, y = respirador.porc, fill = edad.rango)) + geom_bar(stat = "identity") + facet_wrap(~residencia_provincia_nombre, ncol = 2, scales = "free_y") + labs(title = "Porcentaje de pacientes con requerimiento de respirador mecánico por rango etario\n en provincias > 100 confirmados") covidplot <- setupTheme(covidplot, report.date = report.date, x.values = NULL, x.type = NULL, total.colors = length(unique(data2plot$edad.rango)), data.provider.abv = "@msalnacion", base.size = 6) covidplot
# fatality rate covidplot <- data2plot %>% ggplot(aes(x = edad.rango, y = letalidad.min.porc, fill = edad.rango)) + geom_bar(stat = "identity") + facet_wrap(~residencia_provincia_nombre, ncol = 2, scales = "free_y") + labs(title = "Porcentaje de letalidad por rango etario\n en provincias > 100 confirmados") covidplot <- setupTheme(covidplot, report.date = report.date, x.values = NULL, x.type = NULL, total.colors = length(unique(data2plot$edad.rango)), data.provider.abv = "@msalnacion", base.size = 6) covidplot
Created on 2020-06-23 by the reprex package (v0.3.0)
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Created on 2020-06-23 by the reprex package (v0.3.0)
The text was updated successfully, but these errors were encountered: