-
Notifications
You must be signed in to change notification settings - Fork 499
/
train.py
1114 lines (915 loc) · 39.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""Trainining script for WaveNet vocoder
usage: train.py [options]
options:
--dump-root=<dir> Directory contains preprocessed features.
--checkpoint-dir=<dir> Directory where to save model checkpoints [default: checkpoints].
--hparams=<parmas> Hyper parameters [default: ].
--preset=<json> Path of preset parameters (json).
--checkpoint=<path> Restore model from checkpoint path if given.
--restore-parts=<path> Restore part of the model.
--log-event-path=<name> Log event path.
--reset-optimizer Reset optimizer.
--speaker-id=<N> Use specific speaker of data in case for multi-speaker datasets.
-h, --help Show this help message and exit
"""
from docopt import docopt
import sys
import os
from os.path import dirname, join, expanduser, exists
from tqdm import tqdm
from datetime import datetime
import random
import json
from glob import glob
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import lrschedule
import torch
from torch import nn
from torch.nn import functional as F
from torch import optim
import torch.backends.cudnn as cudnn
from torch.utils import data as data_utils
from torch.utils.data.sampler import Sampler
from nnmnkwii import preprocessing as P
from nnmnkwii.datasets import FileSourceDataset, FileDataSource
import librosa.display
from tensorboardX import SummaryWriter
from matplotlib import cm
from warnings import warn
from wavenet_vocoder import WaveNet
from wavenet_vocoder.util import is_mulaw_quantize, is_mulaw, is_raw, is_scalar_input
from wavenet_vocoder.mixture import discretized_mix_logistic_loss
from wavenet_vocoder.mixture import sample_from_discretized_mix_logistic
from wavenet_vocoder.mixture import mix_gaussian_loss
from wavenet_vocoder.mixture import sample_from_mix_gaussian
import audio
from hparams import hparams, hparams_debug_string
global_step = 0
global_test_step = 0
global_epoch = 0
use_cuda = torch.cuda.is_available()
if use_cuda:
cudnn.benchmark = True
def sanity_check(model, c, g):
if model.has_speaker_embedding():
if g is None:
raise RuntimeError(
"WaveNet expects speaker embedding, but speaker-id is not provided")
else:
if g is not None:
raise RuntimeError(
"WaveNet expects no speaker embedding, but speaker-id is provided")
if model.local_conditioning_enabled():
if c is None:
raise RuntimeError("WaveNet expects conditional features, but not given")
else:
if c is not None:
raise RuntimeError("WaveNet expects no conditional features, but given")
def maybe_set_epochs_based_on_max_steps(hp, steps_per_epoch):
nepochs = hp.nepochs
max_train_steps = hp.max_train_steps
if max_train_steps is not None:
epochs = int(np.ceil(max_train_steps / steps_per_epoch))
hp.nepochs = epochs
print("info; Number of epochs is set based on max_train_steps: {}".format(epochs))
def _pad(seq, max_len, constant_values=0):
return np.pad(seq, (0, max_len - len(seq)),
mode='constant', constant_values=constant_values)
def _pad_2d(x, max_len, b_pad=0, constant_values=0):
x = np.pad(x, [(b_pad, max_len - len(x) - b_pad), (0, 0)],
mode="constant", constant_values=constant_values)
return x
# from: https://github.com/keras-team/keras/blob/master/keras/utils/np_utils.py
# to avoid keras dependency
def to_categorical(y, num_classes=None, dtype='float32'):
"""Converts a class vector (integers) to binary class matrix.
E.g. for use with categorical_crossentropy.
# Arguments
y: class vector to be converted into a matrix
(integers from 0 to num_classes).
num_classes: total number of classes.
dtype: The data type expected by the input, as a string
(`float32`, `float64`, `int32`...)
# Returns
A binary matrix representation of the input. The classes axis
is placed last.
# Example
```python
# Consider an array of 5 labels out of a set of 3 classes {0, 1, 2}:
> labels
array([0, 2, 1, 2, 0])
# `to_categorical` converts this into a matrix with as many
# columns as there are classes. The number of rows
# stays the same.
> to_categorical(labels)
array([[ 1., 0., 0.],
[ 0., 0., 1.],
[ 0., 1., 0.],
[ 0., 0., 1.],
[ 1., 0., 0.]], dtype=float32)
```
"""
y = np.array(y, dtype='int')
input_shape = y.shape
if input_shape and input_shape[-1] == 1 and len(input_shape) > 1:
input_shape = tuple(input_shape[:-1])
y = y.ravel()
if not num_classes:
num_classes = np.max(y) + 1
n = y.shape[0]
categorical = np.zeros((n, num_classes), dtype=dtype)
categorical[np.arange(n), y] = 1
output_shape = input_shape + (num_classes,)
categorical = np.reshape(categorical, output_shape)
return categorical
# TODO: I know this is too ugly...
class _NPYDataSource(FileDataSource):
def __init__(self, dump_root, col, typ="", speaker_id=None, max_steps=8000,
cin_pad=0, hop_size=256):
self.dump_root = dump_root
self.col = col
self.lengths = []
self.speaker_id = speaker_id
self.multi_speaker = False
self.speaker_ids = None
self.max_steps = max_steps
self.cin_pad = cin_pad
self.hop_size = hop_size
self.typ = typ
def collect_files(self):
meta = join(self.dump_root, "train.txt")
if not exists(meta):
paths = sorted(glob(join(self.dump_root, "*-{}.npy".format(self.typ))))
return paths
with open(meta, "rb") as f:
lines = f.readlines()
l = lines[0].decode("utf-8").split("|")
assert len(l) == 4 or len(l) == 5
self.multi_speaker = len(l) == 5
self.lengths = list(
map(lambda l: int(l.decode("utf-8").split("|")[2]), lines))
paths_relative = list(map(lambda l: l.decode("utf-8").split("|")[self.col], lines))
paths = list(map(lambda f: join(self.dump_root, f), paths_relative))
# Exclude small files (assuming lenghts are in frame unit)
# TODO: consider this for multi-speaker
if self.max_steps is not None:
idx = np.array(self.lengths) * self.hop_size > self.max_steps + 2 * self.cin_pad * self.hop_size
if idx.sum() != len(self.lengths):
print("{} short samples are omitted for training.".format(len(self.lengths) - idx.sum()))
self.lengths = list(np.array(self.lengths)[idx])
paths = list(np.array(paths)[idx])
if self.multi_speaker:
speaker_ids = list(map(lambda l: int(l.decode("utf-8").split("|")[-1]), lines))
self.speaker_ids = speaker_ids
if self.speaker_id is not None:
# Filter by speaker_id
# using multi-speaker dataset as a single speaker dataset
indices = np.array(speaker_ids) == self.speaker_id
paths = list(np.array(paths)[indices])
self.lengths = list(np.array(self.lengths)[indices])
# aha, need to cast numpy.int64 to int
self.lengths = list(map(int, self.lengths))
self.multi_speaker = False
if self.multi_speaker:
speaker_ids_np = list(np.array(self.speaker_ids)[indices])
self.speaker_ids = list(map(int, speaker_ids_np))
assert len(paths) == len(self.speaker_ids)
return paths
def collect_features(self, path):
return np.load(path)
class RawAudioDataSource(_NPYDataSource):
def __init__(self, dump_root, **kwargs):
super(RawAudioDataSource, self).__init__(dump_root, 0, "wave", **kwargs)
class MelSpecDataSource(_NPYDataSource):
def __init__(self, dump_root, **kwargs):
super(MelSpecDataSource, self).__init__(dump_root, 1, "feats", **kwargs)
class PartialyRandomizedSimilarTimeLengthSampler(Sampler):
"""Partially randomized sampler
1. Sort by lengths
2. Pick a small patch and randomize it
3. Permutate mini-batches
"""
def __init__(self, lengths, batch_size=8, batch_group_size=None):
self.lengths, self.sorted_indices = torch.sort(torch.LongTensor(lengths))
self.batch_size = batch_size
if batch_group_size is None:
batch_group_size = min(batch_size * 8, len(self.lengths))
if batch_group_size % batch_size != 0:
batch_group_size -= batch_group_size % batch_size
self.batch_group_size = batch_group_size
assert batch_group_size % batch_size == 0
def __iter__(self):
indices = self.sorted_indices.numpy()
batch_group_size = self.batch_group_size
s, e = 0, 0
bins = []
for i in range(len(indices) // batch_group_size):
s = i * batch_group_size
e = s + batch_group_size
group = indices[s:e]
random.shuffle(group)
bins += [group]
# Permutate batches
random.shuffle(bins)
binned_idx = np.stack(bins).reshape(-1)
# Handle last elements
s += batch_group_size
if s < len(indices):
last_bin = indices[len(binned_idx):]
random.shuffle(last_bin)
binned_idx = np.concatenate([binned_idx, last_bin])
return iter(torch.tensor(binned_idx).long())
def __len__(self):
return len(self.sorted_indices)
class PyTorchDataset(object):
def __init__(self, X, Mel):
self.X = X
self.Mel = Mel
# alias
self.multi_speaker = X.file_data_source.multi_speaker
def __getitem__(self, idx):
if self.Mel is None:
mel = None
else:
mel = self.Mel[idx]
raw_audio = self.X[idx]
if self.multi_speaker:
speaker_id = self.X.file_data_source.speaker_ids[idx]
else:
speaker_id = None
# (x,c,g)
return raw_audio, mel, speaker_id
def __len__(self):
return len(self.X)
def sequence_mask(sequence_length, max_len=None):
if max_len is None:
max_len = sequence_length.data.max()
batch_size = sequence_length.size(0)
seq_range = torch.arange(0, max_len).long()
seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len)
if sequence_length.is_cuda:
seq_range_expand = seq_range_expand.cuda()
seq_length_expand = sequence_length.unsqueeze(1) \
.expand_as(seq_range_expand)
return (seq_range_expand < seq_length_expand).float()
# https://discuss.pytorch.org/t/how-to-apply-exponential-moving-average-decay-for-variables/10856/4
# https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
class ExponentialMovingAverage(object):
def __init__(self, decay):
self.decay = decay
self.shadow = {}
def register(self, name, val):
self.shadow[name] = val.clone()
def update(self, name, x):
assert name in self.shadow
update_delta = self.shadow[name] - x
self.shadow[name] -= (1.0 - self.decay) * update_delta
def clone_as_averaged_model(device, model, ema):
assert ema is not None
averaged_model = build_model().to(device)
averaged_model.load_state_dict(model.state_dict())
for name, param in averaged_model.named_parameters():
if name in ema.shadow:
param.data = ema.shadow[name].clone()
return averaged_model
class MaskedCrossEntropyLoss(nn.Module):
def __init__(self):
super(MaskedCrossEntropyLoss, self).__init__()
self.criterion = nn.CrossEntropyLoss(reduction='none')
def forward(self, input, target, lengths=None, mask=None, max_len=None):
if lengths is None and mask is None:
raise RuntimeError("Should provide either lengths or mask")
# (B, T, 1)
if mask is None:
mask = sequence_mask(lengths, max_len).unsqueeze(-1)
# (B, T, D)
mask_ = mask.expand_as(target)
losses = self.criterion(input, target)
return ((losses * mask_).sum()) / mask_.sum()
class DiscretizedMixturelogisticLoss(nn.Module):
def __init__(self):
super(DiscretizedMixturelogisticLoss, self).__init__()
def forward(self, input, target, lengths=None, mask=None, max_len=None):
if lengths is None and mask is None:
raise RuntimeError("Should provide either lengths or mask")
# (B, T, 1)
if mask is None:
mask = sequence_mask(lengths, max_len).unsqueeze(-1)
# (B, T, 1)
mask_ = mask.expand_as(target)
losses = discretized_mix_logistic_loss(
input, target, num_classes=hparams.quantize_channels,
log_scale_min=hparams.log_scale_min, reduce=False)
assert losses.size() == target.size()
return ((losses * mask_).sum()) / mask_.sum()
class MixtureGaussianLoss(nn.Module):
def __init__(self):
super(MixtureGaussianLoss, self).__init__()
def forward(self, input, target, lengths=None, mask=None, max_len=None):
if lengths is None and mask is None:
raise RuntimeError("Should provide either lengths or mask")
# (B, T, 1)
if mask is None:
mask = sequence_mask(lengths, max_len).unsqueeze(-1)
# (B, T, 1)
mask_ = mask.expand_as(target)
losses = mix_gaussian_loss(
input, target, log_scale_min=hparams.log_scale_min, reduce=False)
assert losses.size() == target.size()
return ((losses * mask_).sum()) / mask_.sum()
def ensure_divisible(length, divisible_by=256, lower=True):
if length % divisible_by == 0:
return length
if lower:
return length - length % divisible_by
else:
return length + (divisible_by - length % divisible_by)
def assert_ready_for_upsampling(x, c, cin_pad):
assert len(x) == (len(c) - 2 * cin_pad) * audio.get_hop_size()
def collate_fn(batch):
"""Create batch
Args:
batch(tuple): List of tuples
- x[0] (ndarray,int) : list of (T,)
- x[1] (ndarray,int) : list of (T, D)
- x[2] (ndarray,int) : list of (1,), speaker id
Returns:
tuple: Tuple of batch
- x (FloatTensor) : Network inputs (B, C, T)
- y (LongTensor) : Network targets (B, T, 1)
"""
local_conditioning = len(batch[0]) >= 2 and hparams.cin_channels > 0
global_conditioning = len(batch[0]) >= 3 and hparams.gin_channels > 0
if hparams.max_time_sec is not None:
max_time_steps = int(hparams.max_time_sec * hparams.sample_rate)
elif hparams.max_time_steps is not None:
max_time_steps = hparams.max_time_steps
else:
max_time_steps = None
# Time resolution adjustment
cin_pad = hparams.cin_pad
if local_conditioning:
new_batch = []
for idx in range(len(batch)):
x, c, g = batch[idx]
if hparams.upsample_conditional_features:
assert_ready_for_upsampling(x, c, cin_pad=0)
if max_time_steps is not None:
max_steps = ensure_divisible(max_time_steps, audio.get_hop_size(), True)
if len(x) > max_steps:
max_time_frames = max_steps // audio.get_hop_size()
s = np.random.randint(cin_pad, len(c) - max_time_frames - cin_pad)
ts = s * audio.get_hop_size()
x = x[ts:ts + audio.get_hop_size() * max_time_frames]
c = c[s - cin_pad:s + max_time_frames + cin_pad, :]
assert_ready_for_upsampling(x, c, cin_pad=cin_pad)
else:
x, c = audio.adjust_time_resolution(x, c)
if max_time_steps is not None and len(x) > max_time_steps:
s = np.random.randint(cin_pad, len(x) - max_time_steps - cin_pad)
x = x[s:s + max_time_steps]
c = c[s - cin_pad:s + max_time_steps + cin_pad, :]
assert len(x) == len(c)
new_batch.append((x, c, g))
batch = new_batch
else:
new_batch = []
for idx in range(len(batch)):
x, c, g = batch[idx]
x = audio.trim(x)
if max_time_steps is not None and len(x) > max_time_steps:
s = np.random.randint(0, len(x) - max_time_steps)
if local_conditioning:
x, c = x[s:s + max_time_steps], c[s:s + max_time_steps, :]
else:
x = x[s:s + max_time_steps]
new_batch.append((x, c, g))
batch = new_batch
# Lengths
input_lengths = [len(x[0]) for x in batch]
max_input_len = max(input_lengths)
# (B, T, C)
# pad for time-axis
if is_mulaw_quantize(hparams.input_type):
padding_value = P.mulaw_quantize(0, mu=hparams.quantize_channels - 1)
x_batch = np.array([_pad_2d(to_categorical(
x[0], num_classes=hparams.quantize_channels),
max_input_len, 0, padding_value) for x in batch], dtype=np.float32)
else:
x_batch = np.array([_pad_2d(x[0].reshape(-1, 1), max_input_len)
for x in batch], dtype=np.float32)
assert len(x_batch.shape) == 3
# (B, T)
if is_mulaw_quantize(hparams.input_type):
padding_value = P.mulaw_quantize(0, mu=hparams.quantize_channels - 1)
y_batch = np.array([_pad(x[0], max_input_len, constant_values=padding_value)
for x in batch], dtype=np.int)
else:
y_batch = np.array([_pad(x[0], max_input_len) for x in batch], dtype=np.float32)
assert len(y_batch.shape) == 2
# (B, T, D)
if local_conditioning:
max_len = max([len(x[1]) for x in batch])
c_batch = np.array([_pad_2d(x[1], max_len) for x in batch], dtype=np.float32)
assert len(c_batch.shape) == 3
# (B x C x T)
c_batch = torch.FloatTensor(c_batch).transpose(1, 2).contiguous()
else:
c_batch = None
if global_conditioning:
g_batch = torch.LongTensor([x[2] for x in batch])
else:
g_batch = None
# Covnert to channel first i.e., (B, C, T)
x_batch = torch.FloatTensor(x_batch).transpose(1, 2).contiguous()
# Add extra axis
if is_mulaw_quantize(hparams.input_type):
y_batch = torch.LongTensor(y_batch).unsqueeze(-1).contiguous()
else:
y_batch = torch.FloatTensor(y_batch).unsqueeze(-1).contiguous()
input_lengths = torch.LongTensor(input_lengths)
return x_batch, y_batch, c_batch, g_batch, input_lengths
def time_string():
return datetime.now().strftime('%Y-%m-%d %H:%M')
def save_waveplot(path, y_hat, y_target):
sr = hparams.sample_rate
plt.figure(figsize=(16, 6))
plt.subplot(2, 1, 1)
librosa.display.waveplot(y_target, sr=sr)
plt.subplot(2, 1, 2)
librosa.display.waveplot(y_hat, sr=sr)
plt.tight_layout()
plt.savefig(path, format="png")
plt.close()
def eval_model(global_step, writer, device, model, y, c, g, input_lengths, eval_dir, ema=None):
if ema is not None:
print("Using averaged model for evaluation")
model = clone_as_averaged_model(device, model, ema)
model.make_generation_fast_()
model.eval()
idx = np.random.randint(0, len(y))
length = input_lengths[idx].data.cpu().item()
# (T,)
y_target = y[idx].view(-1).data.cpu().numpy()[:length]
if c is not None:
if hparams.upsample_conditional_features:
c = c[idx, :, :length // audio.get_hop_size() + hparams.cin_pad * 2].unsqueeze(0)
else:
c = c[idx, :, :length].unsqueeze(0)
assert c.dim() == 3
print("Shape of local conditioning features: {}".format(c.size()))
if g is not None:
# TODO: test
g = g[idx]
print("Shape of global conditioning features: {}".format(g.size()))
# Dummy silence
if is_mulaw_quantize(hparams.input_type):
initial_value = P.mulaw_quantize(0, hparams.quantize_channels - 1)
elif is_mulaw(hparams.input_type):
initial_value = P.mulaw(0.0, hparams.quantize_channels)
else:
initial_value = 0.0
# (C,)
if is_mulaw_quantize(hparams.input_type):
initial_input = to_categorical(
initial_value, num_classes=hparams.quantize_channels).astype(np.float32)
initial_input = torch.from_numpy(initial_input).view(
1, 1, hparams.quantize_channels)
else:
initial_input = torch.zeros(1, 1, 1).fill_(initial_value)
initial_input = initial_input.to(device)
# Run the model in fast eval mode
with torch.no_grad():
y_hat = model.incremental_forward(
initial_input, c=c, g=g, T=length, softmax=True, quantize=True, tqdm=tqdm,
log_scale_min=hparams.log_scale_min)
if is_mulaw_quantize(hparams.input_type):
y_hat = y_hat.max(1)[1].view(-1).long().cpu().data.numpy()
y_hat = P.inv_mulaw_quantize(y_hat, hparams.quantize_channels - 1)
y_target = P.inv_mulaw_quantize(y_target, hparams.quantize_channels - 1)
elif is_mulaw(hparams.input_type):
y_hat = P.inv_mulaw(y_hat.view(-1).cpu().data.numpy(), hparams.quantize_channels)
y_target = P.inv_mulaw(y_target, hparams.quantize_channels)
else:
y_hat = y_hat.view(-1).cpu().data.numpy()
# Save audio
os.makedirs(eval_dir, exist_ok=True)
path = join(eval_dir, "step{:09d}_predicted.wav".format(global_step))
librosa.output.write_wav(path, y_hat, sr=hparams.sample_rate)
path = join(eval_dir, "step{:09d}_target.wav".format(global_step))
librosa.output.write_wav(path, y_target, sr=hparams.sample_rate)
# save figure
path = join(eval_dir, "step{:09d}_waveplots.png".format(global_step))
save_waveplot(path, y_hat, y_target)
def save_states(global_step, writer, y_hat, y, input_lengths, checkpoint_dir=None):
print("Save intermediate states at step {}".format(global_step))
idx = np.random.randint(0, len(y_hat))
length = input_lengths[idx].data.cpu().item()
# (B, C, T)
if y_hat.dim() == 4:
y_hat = y_hat.squeeze(-1)
if is_mulaw_quantize(hparams.input_type):
# (B, T)
y_hat = F.softmax(y_hat, dim=1).max(1)[1]
# (T,)
y_hat = y_hat[idx].data.cpu().long().numpy()
y = y[idx].view(-1).data.cpu().long().numpy()
y_hat = P.inv_mulaw_quantize(y_hat, hparams.quantize_channels - 1)
y = P.inv_mulaw_quantize(y, hparams.quantize_channels - 1)
else:
# (B, T)
if hparams.output_distribution == "Logistic":
y_hat = sample_from_discretized_mix_logistic(
y_hat, log_scale_min=hparams.log_scale_min)
elif hparams.output_distribution == "Normal":
y_hat = sample_from_mix_gaussian(
y_hat, log_scale_min=hparams.log_scale_min)
else:
assert False
# (T,)
y_hat = y_hat[idx].view(-1).data.cpu().numpy()
y = y[idx].view(-1).data.cpu().numpy()
if is_mulaw(hparams.input_type):
y_hat = P.inv_mulaw(y_hat, hparams.quantize_channels)
y = P.inv_mulaw(y, hparams.quantize_channels)
# Mask by length
y_hat[length:] = 0
y[length:] = 0
# Save audio
audio_dir = join(checkpoint_dir, "intermediate", "audio")
os.makedirs(audio_dir, exist_ok=True)
path = join(audio_dir, "step{:09d}_predicted.wav".format(global_step))
librosa.output.write_wav(path, y_hat, sr=hparams.sample_rate)
path = join(audio_dir, "step{:09d}_target.wav".format(global_step))
librosa.output.write_wav(path, y, sr=hparams.sample_rate)
# workaround for https://github.com/pytorch/pytorch/issues/15716
# the idea is to return outputs and replicas explicitly, so that making pytorch
# not to release the nodes (this is a pytorch bug though)
def data_parallel_workaround(model, input):
device_ids = list(range(torch.cuda.device_count()))
output_device = device_ids[0]
replicas = torch.nn.parallel.replicate(model, device_ids)
inputs = torch.nn.parallel.scatter(input, device_ids)
replicas = replicas[:len(inputs)]
outputs = torch.nn.parallel.parallel_apply(replicas, inputs)
y_hat = torch.nn.parallel.gather(outputs, output_device)
return y_hat, outputs, replicas
def __train_step(device, phase, epoch, global_step, global_test_step,
model, optimizer, writer, criterion,
x, y, c, g, input_lengths,
checkpoint_dir, eval_dir=None, do_eval=False, ema=None):
sanity_check(model, c, g)
# x : (B, C, T)
# y : (B, T, 1)
# c : (B, C, T)
# g : (B,)
train = (phase == "train_no_dev")
clip_thresh = hparams.clip_thresh
if train:
model.train()
step = global_step
else:
model.eval()
step = global_test_step
# Learning rate schedule
current_lr = hparams.optimizer_params["lr"]
if train and hparams.lr_schedule is not None:
lr_schedule_f = getattr(lrschedule, hparams.lr_schedule)
current_lr = lr_schedule_f(
hparams.optimizer_params["lr"], step, **hparams.lr_schedule_kwargs)
for param_group in optimizer.param_groups:
param_group['lr'] = current_lr
optimizer.zero_grad()
# Prepare data
x, y = x.to(device), y.to(device)
input_lengths = input_lengths.to(device)
c = c.to(device) if c is not None else None
g = g.to(device) if g is not None else None
# (B, T, 1)
mask = sequence_mask(input_lengths, max_len=x.size(-1)).unsqueeze(-1)
mask = mask[:, 1:, :]
# Apply model: Run the model in regular eval mode
# NOTE: softmax is handled in F.cross_entrypy_loss
# y_hat: (B x C x T)
if use_cuda:
# multi gpu support
# you must make sure that batch size % num gpu == 0
y_hat, _outputs, _replicas = data_parallel_workaround(model, (x, c, g, False))
else:
y_hat = model(x, c, g, False)
if is_mulaw_quantize(hparams.input_type):
# wee need 4d inputs for spatial cross entropy loss
# (B, C, T, 1)
y_hat = y_hat.unsqueeze(-1)
loss = criterion(y_hat[:, :, :-1, :], y[:, 1:, :], mask=mask)
else:
loss = criterion(y_hat[:, :, :-1], y[:, 1:, :], mask=mask)
if train and step > 0 and step % hparams.checkpoint_interval == 0:
save_states(step, writer, y_hat, y, input_lengths, checkpoint_dir)
save_checkpoint(device, model, optimizer, step, checkpoint_dir, epoch, ema)
if do_eval:
# NOTE: use train step (i.e., global_step) for filename
eval_model(global_step, writer, device, model, y, c, g, input_lengths, eval_dir, ema)
# Update
if train:
loss.backward()
if clip_thresh > 0:
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), clip_thresh)
optimizer.step()
# update moving average
if ema is not None:
for name, param in model.named_parameters():
if name in ema.shadow:
ema.update(name, param.data)
# Logs
writer.add_scalar("{} loss".format(phase), float(loss.item()), step)
if train:
if clip_thresh > 0:
writer.add_scalar("gradient norm", grad_norm, step)
writer.add_scalar("learning rate", current_lr, step)
return loss.item()
def train_loop(device, model, data_loaders, optimizer, writer, checkpoint_dir=None):
if is_mulaw_quantize(hparams.input_type):
criterion = MaskedCrossEntropyLoss()
else:
if hparams.output_distribution == "Logistic":
criterion = DiscretizedMixturelogisticLoss()
elif hparams.output_distribution == "Normal":
criterion = MixtureGaussianLoss()
else:
raise RuntimeError(
"Not supported output distribution type: {}".format(
hparams.output_distribution))
if hparams.exponential_moving_average:
ema = ExponentialMovingAverage(hparams.ema_decay)
for name, param in model.named_parameters():
if param.requires_grad:
ema.register(name, param.data)
else:
ema = None
global global_step, global_epoch, global_test_step
while global_epoch < hparams.nepochs:
for phase, data_loader in data_loaders.items():
train = (phase == "train_no_dev")
running_loss = 0.
test_evaluated = False
for step, (x, y, c, g, input_lengths) in tqdm(enumerate(data_loader)):
# Whether to save eval (i.e., online decoding) result
do_eval = False
eval_dir = join(checkpoint_dir, "intermediate", "{}_eval".format(phase))
# Do eval per eval_interval for train
if train and global_step > 0 \
and global_step % hparams.train_eval_interval == 0:
do_eval = True
# Do eval for test
# NOTE: Decoding WaveNet is quite time consuming, so
# do only once in a single epoch for testset
if not train and not test_evaluated \
and global_epoch % hparams.test_eval_epoch_interval == 0:
do_eval = True
test_evaluated = True
if do_eval:
print("[{}] Eval at train step {}".format(phase, global_step))
# Do step
running_loss += __train_step(device,
phase, global_epoch, global_step, global_test_step, model,
optimizer, writer, criterion, x, y, c, g, input_lengths,
checkpoint_dir, eval_dir, do_eval, ema)
# update global state
if train:
global_step += 1
else:
global_test_step += 1
if global_step >= hparams.max_train_steps:
print("Training reached max train steps ({}). will exit".format(hparams.max_train_steps))
return ema
# log per epoch
averaged_loss = running_loss / len(data_loader)
writer.add_scalar("{} loss (per epoch)".format(phase),
averaged_loss, global_epoch)
print("Step {} [{}] Loss: {}".format(
global_step, phase, running_loss / len(data_loader)))
global_epoch += 1
return ema
def save_checkpoint(device, model, optimizer, step, checkpoint_dir, epoch, ema=None):
checkpoint_path = join(
checkpoint_dir, "checkpoint_step{:09d}.pth".format(global_step))
optimizer_state = optimizer.state_dict() if hparams.save_optimizer_state else None
global global_test_step
torch.save({
"state_dict": model.state_dict(),
"optimizer": optimizer_state,
"global_step": step,
"global_epoch": epoch,
"global_test_step": global_test_step,
}, checkpoint_path)
print("Saved checkpoint:", checkpoint_path)
import shutil
latest_pth = join(checkpoint_dir, "checkpoint_latest.pth")
shutil.copyfile(checkpoint_path, latest_pth)
if ema is not None:
averaged_model = clone_as_averaged_model(device, model, ema)
checkpoint_path = join(
checkpoint_dir, "checkpoint_step{:09d}_ema.pth".format(global_step))
torch.save({
"state_dict": averaged_model.state_dict(),
"optimizer": optimizer_state,
"global_step": step,
"global_epoch": epoch,
"global_test_step": global_test_step,
}, checkpoint_path)
print("Saved averaged checkpoint:", checkpoint_path)
latest_pth = join(checkpoint_dir, "checkpoint_latest_ema.pth")
shutil.copyfile(checkpoint_path, latest_pth)
def build_model():
if is_mulaw_quantize(hparams.input_type):
if hparams.out_channels != hparams.quantize_channels:
raise RuntimeError(
"out_channels must equal to quantize_chennels if input_type is 'mulaw-quantize'")
if hparams.upsample_conditional_features and hparams.cin_channels < 0:
s = "Upsample conv layers were specified while local conditioning disabled. "
s += "Notice that upsample conv layers will never be used."
warn(s)
upsample_params = hparams.upsample_params
upsample_params["cin_channels"] = hparams.cin_channels
upsample_params["cin_pad"] = hparams.cin_pad
model = WaveNet(
out_channels=hparams.out_channels,
layers=hparams.layers,
stacks=hparams.stacks,
residual_channels=hparams.residual_channels,
gate_channels=hparams.gate_channels,
skip_out_channels=hparams.skip_out_channels,
cin_channels=hparams.cin_channels,
gin_channels=hparams.gin_channels,
n_speakers=hparams.n_speakers,
dropout=hparams.dropout,
kernel_size=hparams.kernel_size,
cin_pad=hparams.cin_pad,
upsample_conditional_features=hparams.upsample_conditional_features,
upsample_params=upsample_params,
scalar_input=is_scalar_input(hparams.input_type),
output_distribution=hparams.output_distribution,
)
return model
def _load(checkpoint_path):
if use_cuda:
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(checkpoint_path,
map_location=lambda storage, loc: storage)
return checkpoint
def load_checkpoint(path, model, optimizer, reset_optimizer):
global global_step
global global_epoch
global global_test_step
print("Load checkpoint from: {}".format(path))
checkpoint = _load(path)
model.load_state_dict(checkpoint["state_dict"])
if not reset_optimizer:
optimizer_state = checkpoint["optimizer"]
if optimizer_state is not None:
print("Load optimizer state from {}".format(path))
optimizer.load_state_dict(checkpoint["optimizer"])
global_step = checkpoint["global_step"]
global_epoch = checkpoint["global_epoch"]
global_test_step = checkpoint.get("global_test_step", 0)
return model
# https://discuss.pytorch.org/t/how-to-load-part-of-pre-trained-model/1113/3
def restore_parts(path, model):
print("Restore part of the model from: {}".format(path))
state = _load(path)["state_dict"]
model_dict = model.state_dict()
valid_state_dict = {k: v for k, v in state.items() if k in model_dict}
try:
model_dict.update(valid_state_dict)
model.load_state_dict(model_dict)
except RuntimeError as e:
# there should be invalid size of weight(s), so load them per parameter
print(str(e))
model_dict = model.state_dict()
for k, v in valid_state_dict.items():
model_dict[k] = v
try:
model.load_state_dict(model_dict)
except RuntimeError as e:
print(str(e))
warn("{}: may contain invalid size of weight. skipping...".format(k))
def get_data_loaders(dump_root, speaker_id, test_shuffle=True):
data_loaders = {}
local_conditioning = hparams.cin_channels > 0
if hparams.max_time_steps is not None:
max_steps = ensure_divisible(hparams.max_time_steps, audio.get_hop_size(), True)
else:
max_steps = None
for phase in ["train_no_dev", "dev"]:
train = phase == "train_no_dev"
X = FileSourceDataset(
RawAudioDataSource(join(dump_root, phase), speaker_id=speaker_id,
max_steps=max_steps, cin_pad=hparams.cin_pad,
hop_size=audio.get_hop_size()))
if local_conditioning:
Mel = FileSourceDataset(
MelSpecDataSource(join(dump_root, phase), speaker_id=speaker_id,
max_steps=max_steps, cin_pad=hparams.cin_pad,
hop_size=audio.get_hop_size()))
assert len(X) == len(Mel)
print("Local conditioning enabled. Shape of a sample: {}.".format(
Mel[0].shape))
else:
Mel = None
print("[{}]: length of the dataset is {}".format(phase, len(X)))
if train: