-
Notifications
You must be signed in to change notification settings - Fork 0
/
lr_scheduler.py
153 lines (134 loc) · 5.26 KB
/
lr_scheduler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# --------------------------------------------------------
# SimMIM
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ze Liu
# Modified by Zhenda Xie
# --------------------------------------------------------
from collections import Counter
from bisect import bisect_right
import torch
from timm.scheduler.cosine_lr import CosineLRScheduler
from timm.scheduler.step_lr import StepLRScheduler
from timm.scheduler.scheduler import Scheduler
def build_scheduler(config, optimizer, n_iter_per_epoch):
num_steps = int(config.TRAIN.EPOCHS * n_iter_per_epoch)
warmup_steps = int(config.TRAIN.WARMUP_EPOCHS * n_iter_per_epoch)
decay_steps = int(config.TRAIN.LR_SCHEDULER.DECAY_EPOCHS * n_iter_per_epoch)
multi_steps = [i * n_iter_per_epoch for i in config.TRAIN.LR_SCHEDULER.MULTISTEPS]
lr_scheduler = None
if config.TRAIN.LR_SCHEDULER.NAME == 'cosine':
lr_scheduler = CosineLRScheduler(
optimizer,
t_initial=num_steps,
t_mul=1.,
lr_min=config.TRAIN.MIN_LR,
warmup_lr_init=config.TRAIN.WARMUP_LR,
warmup_t=warmup_steps,
cycle_limit=1,
t_in_epochs=False,
)
elif config.TRAIN.LR_SCHEDULER.NAME == 'linear':
lr_scheduler = LinearLRScheduler(
optimizer,
t_initial=num_steps,
lr_min_rate=0.01,
warmup_lr_init=config.TRAIN.WARMUP_LR,
warmup_t=warmup_steps,
t_in_epochs=False,
)
elif config.TRAIN.LR_SCHEDULER.NAME == 'step':
lr_scheduler = StepLRScheduler(
optimizer,
decay_t=decay_steps,
decay_rate=config.TRAIN.LR_SCHEDULER.DECAY_RATE,
warmup_lr_init=config.TRAIN.WARMUP_LR,
warmup_t=warmup_steps,
t_in_epochs=False,
)
elif config.TRAIN.LR_SCHEDULER.NAME == 'multistep':
lr_scheduler = MultiStepLRScheduler(
optimizer,
milestones=multi_steps,
gamma=config.TRAIN.LR_SCHEDULER.GAMMA,
warmup_lr_init=config.TRAIN.WARMUP_LR,
warmup_t=warmup_steps,
t_in_epochs=False,
)
return lr_scheduler
class LinearLRScheduler(Scheduler):
def __init__(self,
optimizer: torch.optim.Optimizer,
t_initial: int,
lr_min_rate: float,
warmup_t=0,
warmup_lr_init=0.,
t_in_epochs=True,
noise_range_t=None,
noise_pct=0.67,
noise_std=1.0,
noise_seed=42,
initialize=True,
) -> None:
super().__init__(
optimizer, param_group_field="lr",
noise_range_t=noise_range_t, noise_pct=noise_pct, noise_std=noise_std, noise_seed=noise_seed,
initialize=initialize)
self.t_initial = t_initial
self.lr_min_rate = lr_min_rate
self.warmup_t = warmup_t
self.warmup_lr_init = warmup_lr_init
self.t_in_epochs = t_in_epochs
if self.warmup_t:
self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values]
super().update_groups(self.warmup_lr_init)
else:
self.warmup_steps = [1 for _ in self.base_values]
def _get_lr(self, t):
if t < self.warmup_t:
lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps]
else:
t = t - self.warmup_t
total_t = self.t_initial - self.warmup_t
lrs = [v - ((v - v * self.lr_min_rate) * (t / total_t)) for v in self.base_values]
return lrs
def get_epoch_values(self, epoch: int):
if self.t_in_epochs:
return self._get_lr(epoch)
else:
return None
def get_update_values(self, num_updates: int):
if not self.t_in_epochs:
return self._get_lr(num_updates)
else:
return None
class MultiStepLRScheduler(Scheduler):
def __init__(self, optimizer: torch.optim.Optimizer, milestones, gamma=0.1, warmup_t=0, warmup_lr_init=0, t_in_epochs=True) -> None:
super().__init__(optimizer, param_group_field="lr")
self.milestones = milestones
self.gamma = gamma
self.warmup_t = warmup_t
self.warmup_lr_init = warmup_lr_init
self.t_in_epochs = t_in_epochs
if self.warmup_t:
self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values]
super().update_groups(self.warmup_lr_init)
else:
self.warmup_steps = [1 for _ in self.base_values]
assert self.warmup_t <= min(self.milestones)
def _get_lr(self, t):
if t < self.warmup_t:
lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps]
else:
lrs = [v * (self.gamma ** bisect_right(self.milestones, t)) for v in self.base_values]
return lrs
def get_epoch_values(self, epoch: int):
if self.t_in_epochs:
return self._get_lr(epoch)
else:
return None
def get_update_values(self, num_updates: int):
if not self.t_in_epochs:
return self._get_lr(num_updates)
else:
return None