forked from azuritecoin/OnnxDiffusersUI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtxt2img_onnx.py
108 lines (94 loc) · 4.81 KB
/
txt2img_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import argparse
import os
import re
import time
from diffusers import OnnxStableDiffusionPipeline
from diffusers import (
DDPMScheduler,
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler
)
import numpy as np
def get_latents_from_seed(seed: int, batch_size: int, height: int, width: int) -> np.ndarray:
latents_shape = (batch_size, 4, height // 8, width // 8)
# Gotta use numpy instead of torch, because torch's randn() doesn't support DML
rng = np.random.default_rng(seed)
image_latents = rng.standard_normal(latents_shape).astype(np.float32)
return image_latents
parser = argparse.ArgumentParser(description="simple interface for ONNX based Stable Diffusion")
parser.add_argument(
"--model", dest="model_path", default="model/stable_diffusion_onnx", help="path to the model directory")
parser.add_argument(
"--prompt", dest="prompt", default="a photo of an astronaut riding a horse on mars",
help="input text prompt to generate image")
parser.add_argument(
"--neg_prompt", dest="neg_prompt", default="", help="input text for negative prompt")
parser.add_argument(
"--guidance-scale", type=float, dest="guidance_scale", default=7.5, help="guidance value for the generator")
parser.add_argument("--steps", dest="steps", type=int, default=25, help="number of steps for the generator")
parser.add_argument("--height", dest="height", type=int, default=384, help="height of the image")
parser.add_argument("--width", dest="width", type=int, default=384, help="width of the image")
parser.add_argument("--seed", dest="seed", default="", help="seed for the generator")
parser.add_argument("--cpu-only", action="store_true", default=False, help="run ONNX with CPU")
parser.add_argument(
"--scheduler", dest="scheduler", default="pndm", help="schedulers: pndm, lms, ddim, ddpm, euler, eulera, dpms")
args = parser.parse_args()
if args.scheduler == "pndm":
scheduler = PNDMScheduler.from_pretrained(args.model_path, subfolder="scheduler")
elif args.scheduler == "lms":
scheduler = LMSDiscreteScheduler.from_pretrained(args.model_path, subfolder="scheduler")
elif args.scheduler == "ddim":
scheduler = DDIMScheduler.from_pretrained(args.model_path, subfolder="scheduler")
elif args.scheduler == "ddpm":
scheduler = DDPMScheduler.from_pretrained(args.model_path, subfolder="scheduler")
elif args.scheduler == "euler":
scheduler = EulerDiscreteScheduler.from_pretrained(args.model_path, subfolder="scheduler")
elif args.scheduler == "eulera":
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(args.model_path, subfolder="scheduler")
elif args.scheduler == "dpms":
scheduler = DPMSolverMultistepScheduler.from_pretrained(args.model_path, subfolder="scheduler")
else:
scheduler = PNDMScheduler.from_pretrained(args.model_path, subfolder="scheduler")
provider = "CPUExecutionProvider" if args.cpu_only else "DmlExecutionProvider"
pipe = OnnxStableDiffusionPipeline.from_pretrained(
args.model_path, provider=provider, scheduler=scheduler, safety_checker=None)
# generate seeds for iterations
if args.seed == "":
rng = np.random.default_rng()
seed = rng.integers(np.iinfo(np.uint32).max)
else:
try:
seed = int(args.seed) & np.iinfo(np.uint32).max
except ValueError:
seed = hash(args.seed) & np.iinfo(np.uint32).max
# create and parse output directory
output_path = "output"
os.makedirs(output_path, exist_ok=True)
dir_list = os.listdir(output_path)
if len(dir_list):
pattern = re.compile(r"([0-9][0-9][0-9][0-9][0-9][0-9])-([0-9][0-9])\..*")
match_list = [pattern.match(f) for f in dir_list]
next_index = max([int(m[1]) if m else -1 for m in match_list]) + 1
else:
next_index = 0
sched_name = str(pipe.scheduler._class_name)
info = f"{next_index:06} | prompt: {args.prompt} negative prompt: {args.neg_prompt} | scheduler: {sched_name} " + \
f"model: {args.model_path} steps: {args.steps} scale: {args.guidance_scale} height: {args.height} " + \
f"width: {args.width} seed: {seed}\n"
with open(os.path.join(output_path, "history.txt"), "a") as log:
log.write(info)
# Generate our own latents so that we can provide a seed.
latents = get_latents_from_seed(seed, 1, args.height, args.width)
start = time.time()
images = pipe(
args.prompt, negative_prompt=args.neg_prompt, height=args.height, width=args.width, num_inference_steps=args.steps,
guidance_scale=args.guidance_scale, latents=latents).images
finish = time.time()
images[0].save(os.path.join(output_path, f"{next_index:06}-00.png"))
time_taken = (finish - start) / 60.0
status = f"Run index {next_index:06} took {time_taken:.1f} minutes to generate an image. seed: {seed}"
print(status)