-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathprocess.py
121 lines (93 loc) · 4.03 KB
/
process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import os
import gc
import pickle
import argparse
import warnings
import numpy as np
from tqdm import tqdm
from libs.process import *
from os.path import join as opj
warnings.filterwarnings('ignore')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='BioMassters Preprocessing')
parser.add_argument('--source_root', type=str, help='dir path of source dataset')
parser.add_argument('--process_method', type=str, help='method for processing, log2 or plain')
args = parser.parse_args()
# --------------------------------------------------------------------------
# input arguments
source_root = args.source_root
process_method = args.process_method
assert process_method in ['log2', 'plain']
# --------------------------------------------------------------------------
# creats path for output files and directories
plot_dir = os.path.join(source_root, 'plot', process_method)
os.makedirs(plot_dir, exist_ok=True)
stats_path = os.path.join(source_root, f'stats_{process_method}.pkl')
# --------------------------------------------------------------------------
# gets list of all subjects for training
source_data_dir = os.path.join(source_root, 'train')
subjects = os.listdir(source_data_dir)
subjects.sort()
# --------------------------------------------------------------------------
# gets data and function according to processing method
if process_method == 'log2':
percentile = None
exclude_mins4label = False
exclude_mins4feature = False
remove_outliers_func = remove_outliers_by_log2
elif process_method == 'plain':
percentile = 99.9
exclude_mins4label = False
exclude_mins4feature = False
remove_outliers_func = remove_outliers_by_plain
# --------------------------------------------------------------------------
# computes statistics of agbm labels
print('Label')
stats = {}
label_list = []
for subject in tqdm(subjects, ncols=88):
subject_dir = opj(source_data_dir, subject)
label_path = opj(subject_dir, f'{subject}_agbm.tif')
label = read_raster(label_path)
label = remove_outliers_func(label, 'label')
if label is not None:
label_list.append(label)
label = np.array(label_list)
stats['label'] = calculate_statistics(
label, 'label', exclude_mins=exclude_mins4label,
p=percentile, hist=True, plot_dir=plot_dir
)
del label_list, label
gc.collect()
# --------------------------------------------------------------------------
# computes statistics of S1 and S2 features
feat_dict = {'S1': 4, 'S2': 11}
for fname, fnum in feat_dict.items():
stats[fname] = {}
for index in range(fnum):
print(f'Feature: {fname} - index: {index}')
ith_feat_list = []
for subject in tqdm(subjects, ncols=88):
subject_dir = opj(source_data_dir, subject)
for month in range(12):
feat_file = f'{subject}_{fname}_{month:02d}.tif'
feat_path = opj(subject_dir, fname, feat_file)
feat = read_raster(feat_path)
if feat is not None:
assert feat.shape[0] == fnum
ith_feat = feat[index]
ith_feat = remove_outliers_func(ith_feat, fname, index)
ith_feat_list.append(ith_feat)
ith_feat = np.array(ith_feat_list)
ith_fname = f'{fname}-{index}'
stats[fname][index] = calculate_statistics(
ith_feat, ith_fname, exclude_mins=exclude_mins4feature,
p=percentile, hist=True, plot_dir=plot_dir
)
del ith_feat_list, ith_feat
gc.collect()
# --------------------------------------------------------------------------
# save statistics
with open(stats_path, 'wb') as f:
pickle.dump(stats, f)
print(stats)