-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
113 lines (90 loc) · 4.11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
"""
train.py - module to implement Training functioanlity
"""
# import dependencies
import os
import argparse
import tensorflow as tf
from datetime import datetime
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import EarlyStopping, TensorBoard, ReduceLROnPlateau, ModelCheckpoint
from bilstm_crf.data import Dataset
from bilstm_crf.models import BiLSTM_CRF
def main():
"""
initialize Data pipeline
"""
# define paths to text data and lookup tables
train_texts = ['./resources/data/ner_train_text.txt', './resources/data/wnut17train_conll_train_text.txt']
train_targets = ['./resources/data/ner_train_label.txt', './resources/data/wnut17train_conll_train_label.txt']
val_texts = ['./resources/data/ner_val_text.txt', './resources/data/wnut17train_conll_val_text.txt']
val_targets = ['./resources/data/ner_val_label.txt', './resources/data/wnut17train_conll_val_label.txt']
word_table_path = './resources/data/words.txt'
tag_table_path = './resources/data/tags.txt'
BATCH_SIZE = 32
data_pipeline = Dataset(texts = train_texts, targets = train_targets, val_texts = val_texts, val_targets = val_targets, word_table = word_table_path, tag_table = tag_table_path, batch_size = BATCH_SIZE)
train_dataset, val_dataset = data_pipeline()
print("Testing Data Pipeline")
for train, val in zip(train_dataset, val_dataset):
txt, labels = train
val_txt, val_labels = val
print("Texts shape: train {} and val {}".format(txt.shape, val_txt.shape))
print(data_pipeline.word_table.size(), data_pipeline.tag_table.size())
print("Targets shape: train {} and val {}".format(labels.shape, val_labels.shape))
print()
break
"""
define BiLSTM-CRF model
"""
# define parameters
pretrained_embed = '/Users/datqngo/Desktop/projects/BiLSTM-CRF/glove.twitter.27B/glove.twitter.27B.100d.txt'
hidden_units = 150
embed_dim = 100
max_len = None
# initialie BiLSTM-CRF class object
bilstm_crf = BiLSTM_CRF(max_len = max_len, embed_dim = embed_dim, n_tags = data_pipeline.tag_table.size(), word_table = data_pipeline.word_table.export(), hidden_units = hidden_units, pretrained_embed = pretrained_embed)
model = bilstm_crf()
# compile model
LR = 0.001
optimizer = Adam(learning_rate = LR)
loss = model.layers[-1].loss
model.compile(optimizer = optimizer, loss = loss)
"""
Training
"""
# define callbacks
log_dir = 'logs'
logging = TensorBoard(log_dir = log_dir, write_graph = True, write_images = True)
checkpoints = ModelCheckpoint(filepath = 'logs', save_weight_only = True, verbose = 1)
early_stopping = EarlyStopping(monitor = 'loss', patience = 10, verbose = 1)
lr_reduce = ReduceLROnPlateau(monitor = 'loss', patience = 5, verbose = 1)
CALLBACKS = [logging, early_stopping, lr_reduce, checkpoints]
QUEUE_SIZE = 10
WORKERS = 4
# Step 1: freeze Embedding layer for stable-loss training
print("Phase-1 training: stable loss")
for idx, layer in zip(range(len(model.layers)), model.layers):
print(layer.name)
if layer.name == 'embedding':
model.layers[idx].trainable = False
print("Inspect trainable parameters in Phase 1:", model.summary())
EPOCHS = 20
SHUFFLE = True
STEPS = None # entire dataset
model.fit(train_dataset, epochs = EPOCHS, verbose = 1, callbacks = CALLBACKS, shuffle = SHUFFLE, steps_per_epoch = STEPS, max_queue_size = QUEUE_SIZE, workers = WORKERS, use_multiprocessing = True)
# Step 2: unfreeze all layers for full-model training
print("Phase-2 training: full-fine-tuning")
for idx, layer in zip(range(len(model.layers)), model.layers):
print(layer.name)
model.layers[idx].trainable = True
print("Inspect trainable parameters in Phase 2:", model.summary())
EPOCHS = 150
SHUFFLE = True
STEPS = 512 # by calculation, num_smaples // batch_size ~= 2396
model.fit(train_dataset, validation_data = val_dataset, epochs = EPOCHS, verbose = 1, callbacks = CALLBACKS, shuffle = SHUFFLE, steps_per_epoch = STEPS, max_queue_size = QUEUE_SIZE, workers = WORKERS, use_multiprocessing = True)
# save model
model_path = 'models/bilstm_crf_model_{}'.format(datetime.utcnow())
print("Saving model into {}".format(model_path))
tf.keras.models.save_model(model_path)
if __name__ == '__main__':
main()