forked from AFLplusplus/AFLplusplus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunicorn_loader.py
815 lines (746 loc) · 31.2 KB
/
unicorn_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
"""
unicorn_loader.py
Loads a process context dumped created using a
Unicorn Context Dumper script into a Unicorn Engine
instance. Once this is performed emulation can be
started.
"""
import argparse
import binascii
from collections import namedtuple
import datetime
import hashlib
import json
import os
import signal
import struct
import time
import zlib
# Unicorn imports
from unicornafl import *
from unicornafl.arm_const import *
from unicornafl.arm64_const import *
from unicornafl.x86_const import *
from unicornafl.mips_const import *
# If Capstone libraries are availible (only check once)
try:
from capstone import *
CAPSTONE_EXISTS = 1
except:
CAPSTONE_EXISTS = 0
# Name of the index file
INDEX_FILE_NAME = "_index.json"
# Page size required by Unicorn
UNICORN_PAGE_SIZE = 0x1000
# Max allowable segment size (1G)
MAX_ALLOWABLE_SEG_SIZE = 1024 * 1024 * 1024
# Alignment functions to align all memory segments to Unicorn page boundaries (4KB pages only)
ALIGN_PAGE_DOWN = lambda x: x & ~(UNICORN_PAGE_SIZE - 1)
ALIGN_PAGE_UP = lambda x: (x + UNICORN_PAGE_SIZE - 1) & ~(UNICORN_PAGE_SIZE - 1)
# ---------------------------------------
# ---- Unicorn-based heap implementation
class UnicornSimpleHeap(object):
"""Use this class to provide a simple heap implementation. This should
be used if malloc/free calls break things during emulation. This heap also
implements basic guard-page capabilities which enable immediate notice of
heap overflow and underflows.
"""
# Helper data-container used to track chunks
class HeapChunk(object):
def __init__(self, actual_addr, total_size, data_size):
self.total_size = (
total_size # Total size of the chunk (including padding and guard page)
)
self.actual_addr = actual_addr # Actual start address of the chunk
self.data_size = (
data_size # Size requested by the caller of actual malloc call
)
self.data_addr = (
actual_addr + UNICORN_PAGE_SIZE
) # Address where data actually starts
# Returns true if the specified buffer is completely within the chunk, else false
def is_buffer_in_chunk(self, addr, size):
if addr >= self.data_addr and (
(addr + size) <= (self.data_addr + self.data_size)
):
return True
else:
return False
# Skip the zero-page to avoid weird potential issues with segment registers
HEAP_MIN_ADDR = 0x00002000
HEAP_MAX_ADDR = 0xFFFFFFFF
_uc = None # Unicorn engine instance to interact with
_chunks = [] # List of all known chunks
_debug_print = False # True to print debug information
def __init__(self, uc, debug_print=False):
self._uc = uc
self._debug_print = debug_print
# Add the watchpoint hook that will be used to implement psuedo-guard page support
self._uc.hook_add(UC_HOOK_MEM_WRITE | UC_HOOK_MEM_READ, self.__check_mem_access)
def malloc(self, size):
# Figure out the overall size to be allocated/mapped
# - Allocate at least 1 4k page of memory to make Unicorn happy
# - Add guard pages at the start and end of the region
total_chunk_size = UNICORN_PAGE_SIZE + ALIGN_PAGE_UP(size) + UNICORN_PAGE_SIZE
# Gross but efficient way to find space for the chunk:
chunk = None
for addr in range(self.HEAP_MIN_ADDR, self.HEAP_MAX_ADDR, UNICORN_PAGE_SIZE):
try:
self._uc.mem_map(addr, total_chunk_size, UC_PROT_READ | UC_PROT_WRITE)
chunk = self.HeapChunk(addr, total_chunk_size, size)
if self._debug_print:
print(
"Allocating 0x{0:x}-byte chunk @ 0x{1:016x}".format(
chunk.data_size, chunk.data_addr
)
)
break
except UcError as e:
continue
# Something went very wrong
if chunk == None:
return 0
self._chunks.append(chunk)
return chunk.data_addr
def calloc(self, size, count):
# Simple wrapper around malloc with calloc() args
return self.malloc(size * count)
def realloc(self, ptr, new_size):
# Wrapper around malloc(new_size) / memcpy(new, old, old_size) / free(old)
if self._debug_print:
print(
"Reallocating chunk @ 0x{0:016x} to be 0x{1:x} bytes".format(
ptr, new_size
)
)
old_chunk = None
for chunk in self._chunks:
if chunk.data_addr == ptr:
old_chunk = chunk
new_chunk_addr = self.malloc(new_size)
if old_chunk != None:
self._uc.mem_write(
new_chunk_addr,
str(self._uc.mem_read(old_chunk.data_addr, old_chunk.data_size)),
)
self.free(old_chunk.data_addr)
return new_chunk_addr
def free(self, addr):
for chunk in self._chunks:
if chunk.is_buffer_in_chunk(addr, 1):
if self._debug_print:
print(
"Freeing 0x{0:x}-byte chunk @ 0x{0:016x}".format(
chunk.req_size, chunk.data_addr
)
)
self._uc.mem_unmap(chunk.actual_addr, chunk.total_size)
self._chunks.remove(chunk)
return True
return False
# Implements basic guard-page functionality
def __check_mem_access(self, uc, access, address, size, value, user_data):
for chunk in self._chunks:
if address >= chunk.actual_addr and (
(address + size) <= (chunk.actual_addr + chunk.total_size)
):
if chunk.is_buffer_in_chunk(address, size) == False:
if self._debug_print:
print(
"Heap over/underflow attempting to {0} 0x{1:x} bytes @ {2:016x}".format(
"write" if access == UC_MEM_WRITE else "read",
size,
address,
)
)
# Force a memory-based crash
uc.force_crash(UcError(UC_ERR_READ_PROT))
# ---------------------------
# ---- Loading function
class AflUnicornEngine(Uc):
def __init__(self, context_directory, enable_trace=False, debug_print=False):
"""
Initializes an AflUnicornEngine instance, which extends standard the UnicornEngine
with a bunch of helper routines that are useful for creating afl-unicorn test harnesses.
Parameters:
- context_directory: Path to the directory generated by one of the context dumper scripts
- enable_trace: If True trace information will be printed to STDOUT
- debug_print: If True debugging information will be printed while loading the context
"""
# Make sure the index file exists and load it
index_file_path = os.path.join(context_directory, INDEX_FILE_NAME)
if not os.path.isfile(index_file_path):
raise Exception(
"Index file not found. Expected it to be at {}".format(index_file_path)
)
# Load the process context from the index file
if debug_print:
print("Loading process context index from {}".format(index_file_path))
index_file = open(index_file_path, "r")
context = json.load(index_file)
index_file.close()
# Check the context to make sure we have the basic essential components
if "arch" not in context:
raise Exception("Couldn't find architecture information in index file")
if "regs" not in context:
raise Exception("Couldn't find register information in index file")
if "segments" not in context:
raise Exception("Couldn't find segment/memory information in index file")
# Set the UnicornEngine instance's architecture and mode
self._arch_str = context["arch"]["arch"]
arch, mode = self.__get_arch_and_mode(self._arch_str)
Uc.__init__(self, arch, mode)
# Load the registers
regs = context["regs"]
reg_map = self.__get_register_map(self._arch_str)
self.__load_registers(regs, reg_map, debug_print)
# If we have extra FLOATING POINT regs, load them in!
if "regs_extended" in context:
if context["regs_extended"]:
regs_extended = context["regs_extended"]
reg_map = self.__get_registers_extended(self._arch_str)
self.__load_registers(regs_extended, reg_map, debug_print)
# For ARM, sometimes the stack pointer is erased ??? (I think I fixed this (issue with ordering of dumper.py, I'll keep the write anyways)
if self.__get_arch_and_mode(self.get_arch_str())[0] == UC_ARCH_ARM:
self.reg_write(UC_ARM_REG_SP, regs["sp"])
# Setup the memory map and load memory content
self.__map_segments(context["segments"], context_directory, debug_print)
if enable_trace:
self.hook_add(UC_HOOK_BLOCK, self.__trace_block)
self.hook_add(UC_HOOK_CODE, self.__trace_instruction)
self.hook_add(UC_HOOK_MEM_WRITE | UC_HOOK_MEM_READ, self.__trace_mem_access)
self.hook_add(
UC_HOOK_MEM_WRITE_UNMAPPED | UC_HOOK_MEM_READ_INVALID,
self.__trace_mem_invalid_access,
)
if debug_print:
print("Done loading context.")
def get_arch(self):
return self._arch
def get_mode(self):
return self._mode
def get_arch_str(self):
return self._arch_str
def force_crash(self, uc_error):
"""This function should be called to indicate to AFL that a crash occurred during emulation.
You can pass the exception received from Uc.emu_start
"""
mem_errors = [
UC_ERR_READ_UNMAPPED,
UC_ERR_READ_PROT,
UC_ERR_READ_UNALIGNED,
UC_ERR_WRITE_UNMAPPED,
UC_ERR_WRITE_PROT,
UC_ERR_WRITE_UNALIGNED,
UC_ERR_FETCH_UNMAPPED,
UC_ERR_FETCH_PROT,
UC_ERR_FETCH_UNALIGNED,
]
if uc_error.errno in mem_errors:
# Memory error - throw SIGSEGV
os.kill(os.getpid(), signal.SIGSEGV)
elif uc_error.errno == UC_ERR_INSN_INVALID:
# Invalid instruction - throw SIGILL
os.kill(os.getpid(), signal.SIGILL)
else:
# Not sure what happened - throw SIGABRT
os.kill(os.getpid(), signal.SIGABRT)
def dump_regs(self):
""" Dumps the contents of all the registers to STDOUT """
for reg in sorted(
self.__get_register_map(self._arch_str).items(), key=lambda reg: reg[0]
):
print(">>> {0:>4}: 0x{1:016x}".format(reg[0], self.reg_read(reg[1])))
def dump_regs_extended(self):
""" Dumps the contents of all the registers to STDOUT """
try:
for reg in sorted(
self.__get_registers_extended(self._arch_str).items(),
key=lambda reg: reg[0],
):
print(">>> {0:>4}: 0x{1:016x}".format(reg[0], self.reg_read(reg[1])))
except Exception as e:
print("ERROR: Are extended registers loaded?")
# TODO: Make this dynamically get the stack pointer register and pointer width for the current architecture
"""
def dump_stack(self, window=10):
arch = self.get_arch()
mode = self.get_mode()
# Get stack pointers and bit sizes for given architecture
if arch == UC_ARCH_X86 and mode == UC_MODE_64:
stack_ptr_addr = self.reg_read(UC_X86_REG_RSP)
bit_size = 8
elif arch == UC_ARCH_X86 and mode == UC_MODE_32:
stack_ptr_addr = self.reg_read(UC_X86_REG_ESP)
bit_size = 4
elif arch == UC_ARCH_ARM64:
stack_ptr_addr = self.reg_read(UC_ARM64_REG_SP)
bit_size = 8
elif arch == UC_ARCH_ARM:
stack_ptr_addr = self.reg_read(UC_ARM_REG_SP)
bit_size = 4
elif arch == UC_ARCH_ARM and mode == UC_MODE_THUMB:
stack_ptr_addr = self.reg_read(UC_ARM_REG_SP)
bit_size = 4
elif arch == UC_ARCH_MIPS:
stack_ptr_addr = self.reg_read(UC_MIPS_REG_SP)
bit_size = 4
print("")
print(">>> Stack:")
stack_ptr_addr = self.reg_read(UC_X86_REG_RSP)
for i in xrange(-window, window + 1):
addr = stack_ptr_addr + (i*8)
print("{0}0x{1:016x}: 0x{2:016x}".format( \
'SP->' if i == 0 else ' ', addr, \
struct.unpack('<Q', self.mem_read(addr, 8))[0]))
"""
# -----------------------------
# ---- Loader Helper Functions
def __load_registers(self, regs, reg_map, debug_print):
for register, value in regs.items():
if debug_print:
print("Reg {0} = {1}".format(register, value))
if register.lower() not in reg_map:
if debug_print:
print("Skipping Reg: {}".format(register))
else:
reg_write_retry = True
try:
self.reg_write(reg_map[register.lower()], value)
reg_write_retry = False
except Exception as e:
if debug_print:
print(
"ERROR writing register: {}, value: {} -- {}".format(
register, value, repr(e)
)
)
if reg_write_retry:
if debug_print:
print("Trying to parse value ({}) as hex string".format(value))
try:
self.reg_write(reg_map[register.lower()], int(value, 16))
except Exception as e:
if debug_print:
print(
"ERROR writing hex string register: {}, value: {} -- {}".format(
register, value, repr(e)
)
)
def __map_segment(self, name, address, size, perms, debug_print=False):
# - size is unsigned and must be != 0
# - starting address must be aligned to 4KB
# - map size must be multiple of the page size (4KB)
mem_start = address
mem_end = address + size
mem_start_aligned = ALIGN_PAGE_DOWN(mem_start)
mem_end_aligned = ALIGN_PAGE_UP(mem_end)
if debug_print:
if mem_start_aligned != mem_start or mem_end_aligned != mem_end:
print("Aligning segment to page boundary:")
print(" name: {}".format(name))
print(
" start: {0:016x} -> {1:016x}".format(mem_start, mem_start_aligned)
)
print(" end: {0:016x} -> {1:016x}".format(mem_end, mem_end_aligned))
print(
"Mapping segment from {0:016x} - {1:016x} with perm={2}: {3}".format(
mem_start_aligned, mem_end_aligned, perms, name
)
)
if mem_start_aligned < mem_end_aligned:
self.mem_map(mem_start_aligned, mem_end_aligned - mem_start_aligned, perms)
def __map_segments(self, segment_list, context_directory, debug_print=False):
for segment in segment_list:
# Get the segment information from the index
name = segment["name"]
seg_start = segment["start"]
seg_end = segment["end"]
perms = (
(UC_PROT_READ if segment["permissions"]["r"] == True else 0)
| (UC_PROT_WRITE if segment["permissions"]["w"] == True else 0)
| (UC_PROT_EXEC if segment["permissions"]["x"] == True else 0)
)
if debug_print:
print("Handling segment {}".format(name))
# Check for any overlap with existing segments. If there is, it must
# be consolidated and merged together before mapping since Unicorn
# doesn't allow overlapping segments.
found = False
overlap_start = False
overlap_end = False
tmp = 0
for (mem_start, mem_end, mem_perm) in self.mem_regions():
mem_end = mem_end + 1
if seg_start >= mem_start and seg_end < mem_end:
found = True
break
if seg_start >= mem_start and seg_start < mem_end:
overlap_start = True
tmp = mem_end
break
if seg_end >= mem_start and seg_end < mem_end:
overlap_end = True
tmp = mem_start
break
# Map memory into the address space if it is of an acceptable size.
if (seg_end - seg_start) > MAX_ALLOWABLE_SEG_SIZE:
if debug_print:
print(
"Skipping segment (LARGER THAN {0}) from {1:016x} - {2:016x} with perm={3}: {4}".format(
MAX_ALLOWABLE_SEG_SIZE, seg_start, seg_end, perms, name
)
)
continue
elif not found: # Make sure it's not already mapped
if overlap_start: # Partial overlap (start)
self.__map_segment(name, tmp, seg_end - tmp, perms, debug_print)
elif overlap_end: # Patrial overlap (end)
self.__map_segment(
name, seg_start, tmp - seg_start, perms, debug_print
)
else: # Not found
self.__map_segment(
name, seg_start, seg_end - seg_start, perms, debug_print
)
else:
if debug_print:
print("Segment {} already mapped. Moving on.".format(name))
# Load the content (if available)
if "content_file" in segment and len(segment["content_file"]) > 0:
content_file_path = os.path.join(
context_directory, segment["content_file"]
)
if not os.path.isfile(content_file_path):
raise Exception(
"Unable to find segment content file. Expected it to be at {}".format(
content_file_path
)
)
# if debug_print:
# print("Loading content for segment {} from {}".format(name, segment['content_file']))
content_file = open(content_file_path, "rb")
compressed_content = content_file.read()
content_file.close()
self.mem_write(seg_start, zlib.decompress(compressed_content))
else:
if debug_print:
print(
"No content found for segment {0} @ {1:016x}".format(
name, seg_start
)
)
self.mem_write(seg_start, b"\x00" * (seg_end - seg_start))
def __get_arch_and_mode(self, arch_str):
arch_map = {
"x64": [UC_X86_REG_RIP, UC_ARCH_X86, UC_MODE_64],
"x86": [UC_X86_REG_EIP, UC_ARCH_X86, UC_MODE_32],
"arm64be": [
UC_ARM64_REG_PC,
UC_ARCH_ARM64,
UC_MODE_ARM | UC_MODE_BIG_ENDIAN,
],
"arm64le": [
UC_ARM64_REG_PC,
UC_ARCH_ARM64,
UC_MODE_ARM | UC_MODE_LITTLE_ENDIAN,
],
"armbe": [UC_ARM_REG_PC, UC_ARCH_ARM, UC_MODE_ARM | UC_MODE_BIG_ENDIAN],
"armle": [UC_ARM_REG_PC, UC_ARCH_ARM, UC_MODE_ARM | UC_MODE_LITTLE_ENDIAN],
"armbethumb": [
UC_ARM_REG_PC,
UC_ARCH_ARM,
UC_MODE_THUMB | UC_MODE_BIG_ENDIAN,
],
"armlethumb": [
UC_ARM_REG_PC,
UC_ARCH_ARM,
UC_MODE_THUMB | UC_MODE_LITTLE_ENDIAN,
],
"mips": [UC_MIPS_REG_PC, UC_ARCH_MIPS, UC_MODE_MIPS32 | UC_MODE_BIG_ENDIAN],
"mipsel": [
UC_MIPS_REG_PC,
UC_ARCH_MIPS,
UC_MODE_MIPS32 | UC_MODE_LITTLE_ENDIAN,
],
}
return (arch_map[arch_str][1], arch_map[arch_str][2])
def __get_register_map(self, arch):
if arch == "arm64le" or arch == "arm64be":
arch = "arm64"
elif arch == "armle" or arch == "armbe" or "thumb" in arch:
arch = "arm"
elif arch == "mipsel":
arch = "mips"
registers = {
"x64": {
"rax": UC_X86_REG_RAX,
"rbx": UC_X86_REG_RBX,
"rcx": UC_X86_REG_RCX,
"rdx": UC_X86_REG_RDX,
"rsi": UC_X86_REG_RSI,
"rdi": UC_X86_REG_RDI,
"rbp": UC_X86_REG_RBP,
"rsp": UC_X86_REG_RSP,
"r8": UC_X86_REG_R8,
"r9": UC_X86_REG_R9,
"r10": UC_X86_REG_R10,
"r11": UC_X86_REG_R11,
"r12": UC_X86_REG_R12,
"r13": UC_X86_REG_R13,
"r14": UC_X86_REG_R14,
"r15": UC_X86_REG_R15,
"rip": UC_X86_REG_RIP,
"efl": UC_X86_REG_EFLAGS,
"cs": UC_X86_REG_CS,
"ds": UC_X86_REG_DS,
"es": UC_X86_REG_ES,
"fs": UC_X86_REG_FS,
"gs": UC_X86_REG_GS,
"ss": UC_X86_REG_SS,
},
"x86": {
"eax": UC_X86_REG_EAX,
"ebx": UC_X86_REG_EBX,
"ecx": UC_X86_REG_ECX,
"edx": UC_X86_REG_EDX,
"esi": UC_X86_REG_ESI,
"edi": UC_X86_REG_EDI,
"ebp": UC_X86_REG_EBP,
"eip": UC_X86_REG_EIP,
"esp": UC_X86_REG_ESP,
"efl": UC_X86_REG_EFLAGS,
# Segment registers removed...
# They caused segfaults (from unicorn?) when they were here
},
"arm": {
"r0": UC_ARM_REG_R0,
"r1": UC_ARM_REG_R1,
"r2": UC_ARM_REG_R2,
"r3": UC_ARM_REG_R3,
"r4": UC_ARM_REG_R4,
"r5": UC_ARM_REG_R5,
"r6": UC_ARM_REG_R6,
"r7": UC_ARM_REG_R7,
"r8": UC_ARM_REG_R8,
"r9": UC_ARM_REG_R9,
"r10": UC_ARM_REG_R10,
"r11": UC_ARM_REG_R11,
"r12": UC_ARM_REG_R12,
"pc": UC_ARM_REG_PC,
"sp": UC_ARM_REG_SP,
"lr": UC_ARM_REG_LR,
"cpsr": UC_ARM_REG_CPSR,
},
"arm64": {
"x0": UC_ARM64_REG_X0,
"x1": UC_ARM64_REG_X1,
"x2": UC_ARM64_REG_X2,
"x3": UC_ARM64_REG_X3,
"x4": UC_ARM64_REG_X4,
"x5": UC_ARM64_REG_X5,
"x6": UC_ARM64_REG_X6,
"x7": UC_ARM64_REG_X7,
"x8": UC_ARM64_REG_X8,
"x9": UC_ARM64_REG_X9,
"x10": UC_ARM64_REG_X10,
"x11": UC_ARM64_REG_X11,
"x12": UC_ARM64_REG_X12,
"x13": UC_ARM64_REG_X13,
"x14": UC_ARM64_REG_X14,
"x15": UC_ARM64_REG_X15,
"x16": UC_ARM64_REG_X16,
"x17": UC_ARM64_REG_X17,
"x18": UC_ARM64_REG_X18,
"x19": UC_ARM64_REG_X19,
"x20": UC_ARM64_REG_X20,
"x21": UC_ARM64_REG_X21,
"x22": UC_ARM64_REG_X22,
"x23": UC_ARM64_REG_X23,
"x24": UC_ARM64_REG_X24,
"x25": UC_ARM64_REG_X25,
"x26": UC_ARM64_REG_X26,
"x27": UC_ARM64_REG_X27,
"x28": UC_ARM64_REG_X28,
"pc": UC_ARM64_REG_PC,
"sp": UC_ARM64_REG_SP,
"fp": UC_ARM64_REG_FP,
"lr": UC_ARM64_REG_LR,
"nzcv": UC_ARM64_REG_NZCV,
"cpsr": UC_ARM_REG_CPSR,
},
"mips": {
"0": UC_MIPS_REG_ZERO,
"at": UC_MIPS_REG_AT,
"v0": UC_MIPS_REG_V0,
"v1": UC_MIPS_REG_V1,
"a0": UC_MIPS_REG_A0,
"a1": UC_MIPS_REG_A1,
"a2": UC_MIPS_REG_A2,
"a3": UC_MIPS_REG_A3,
"t0": UC_MIPS_REG_T0,
"t1": UC_MIPS_REG_T1,
"t2": UC_MIPS_REG_T2,
"t3": UC_MIPS_REG_T3,
"t4": UC_MIPS_REG_T4,
"t5": UC_MIPS_REG_T5,
"t6": UC_MIPS_REG_T6,
"t7": UC_MIPS_REG_T7,
"t8": UC_MIPS_REG_T8,
"t9": UC_MIPS_REG_T9,
"s0": UC_MIPS_REG_S0,
"s1": UC_MIPS_REG_S1,
"s2": UC_MIPS_REG_S2,
"s3": UC_MIPS_REG_S3,
"s4": UC_MIPS_REG_S4,
"s5": UC_MIPS_REG_S5,
"s6": UC_MIPS_REG_S6,
"s7": UC_MIPS_REG_S7,
"s8": UC_MIPS_REG_S8,
"k0": UC_MIPS_REG_K0,
"k1": UC_MIPS_REG_K1,
"gp": UC_MIPS_REG_GP,
"pc": UC_MIPS_REG_PC,
"sp": UC_MIPS_REG_SP,
"fp": UC_MIPS_REG_FP,
"ra": UC_MIPS_REG_RA,
"hi": UC_MIPS_REG_HI,
"lo": UC_MIPS_REG_LO,
},
}
return registers[arch]
def __get_registers_extended(self, arch):
# Similar to __get_register_map, but for ARM floating point registers
if arch == "arm64le" or arch == "arm64be":
arch = "arm64"
elif arch == "armle" or arch == "armbe" or "thumb" in arch:
arch = "arm"
elif arch == "mipsel":
arch = "mips"
registers = {
"arm": {
"d0": UC_ARM_REG_D0,
"d1": UC_ARM_REG_D1,
"d2": UC_ARM_REG_D2,
"d3": UC_ARM_REG_D3,
"d4": UC_ARM_REG_D4,
"d5": UC_ARM_REG_D5,
"d6": UC_ARM_REG_D6,
"d7": UC_ARM_REG_D7,
"d8": UC_ARM_REG_D8,
"d9": UC_ARM_REG_D9,
"d10": UC_ARM_REG_D10,
"d11": UC_ARM_REG_D11,
"d12": UC_ARM_REG_D12,
"d13": UC_ARM_REG_D13,
"d14": UC_ARM_REG_D14,
"d15": UC_ARM_REG_D15,
"d16": UC_ARM_REG_D16,
"d17": UC_ARM_REG_D17,
"d18": UC_ARM_REG_D18,
"d19": UC_ARM_REG_D19,
"d20": UC_ARM_REG_D20,
"d21": UC_ARM_REG_D21,
"d22": UC_ARM_REG_D22,
"d23": UC_ARM_REG_D23,
"d24": UC_ARM_REG_D24,
"d25": UC_ARM_REG_D25,
"d26": UC_ARM_REG_D26,
"d27": UC_ARM_REG_D27,
"d28": UC_ARM_REG_D28,
"d29": UC_ARM_REG_D29,
"d30": UC_ARM_REG_D30,
"d31": UC_ARM_REG_D31,
"fpscr": UC_ARM_REG_FPSCR,
}
}
return registers[arch]
# ---------------------------
# Callbacks for tracing
# TODO: Extra mode for Capstone (i.e. Cs(cs_arch, cs_mode + cs_extra) not implemented
def __trace_instruction(self, uc, address, size, user_data):
if CAPSTONE_EXISTS == 1:
# If Capstone is installed then we'll dump disassembly, otherwise just dump the binary.
arch = self.get_arch()
mode = self.get_mode()
bit_size = self.bit_size_arch()
# Map current arch to capstone labeling
if arch == UC_ARCH_X86 and mode == UC_MODE_64:
cs_arch = CS_ARCH_X86
cs_mode = CS_MODE_64
elif arch == UC_ARCH_X86 and mode == UC_MODE_32:
cs_arch = CS_ARCH_X86
cs_mode = CS_MODE_32
elif arch == UC_ARCH_ARM64:
cs_arch = CS_ARCH_ARM64
cs_mode = CS_MODE_ARM
elif arch == UC_ARCH_ARM and mode == UC_MODE_THUMB:
cs_arch = CS_ARCH_ARM
cs_mode = CS_MODE_THUMB
elif arch == UC_ARCH_ARM:
cs_arch = CS_ARCH_ARM
cs_mode = CS_MODE_ARM
elif arch == UC_ARCH_MIPS:
cs_arch = CS_ARCH_MIPS
cs_mode = CS_MODE_MIPS32 # No other MIPS supported in program
cs = Cs(cs_arch, cs_mode)
mem = uc.mem_read(address, size)
if bit_size == 4:
for (cs_address, cs_size, cs_mnemonic, cs_opstr) in cs.disasm_lite(
bytes(mem), size
):
print(
" Instr: {:#08x}:\t{}\t{}".format(
address, cs_mnemonic, cs_opstr
)
)
else:
for (cs_address, cs_size, cs_mnemonic, cs_opstr) in cs.disasm_lite(
bytes(mem), size
):
print(
" Instr: {:#16x}:\t{}\t{}".format(
address, cs_mnemonic, cs_opstr
)
)
else:
print(" Instr: addr=0x{0:016x}, size=0x{1:016x}".format(address, size))
def __trace_block(self, uc, address, size, user_data):
print("Basic Block: addr=0x{0:016x}, size=0x{1:016x}".format(address, size))
def __trace_mem_access(self, uc, access, address, size, value, user_data):
if access == UC_MEM_WRITE:
print(
" >>> Write: addr=0x{0:016x} size={1} data=0x{2:016x}".format(
address, size, value
)
)
else:
print(" >>> Read: addr=0x{0:016x} size={1}".format(address, size))
def __trace_mem_invalid_access(self, uc, access, address, size, value, user_data):
if access == UC_MEM_WRITE_UNMAPPED:
print(
" >>> INVALID Write: addr=0x{0:016x} size={1} data=0x{2:016x}".format(
address, size, value
)
)
else:
print(
" >>> INVALID Read: addr=0x{0:016x} size={1}".format(
address, size
)
)
def bit_size_arch(self):
arch = self.get_arch()
mode = self.get_mode()
# Get bit sizes for given architecture
if arch == UC_ARCH_X86 and mode == UC_MODE_64:
bit_size = 8
elif arch == UC_ARCH_X86 and mode == UC_MODE_32:
bit_size = 4
elif arch == UC_ARCH_ARM64:
bit_size = 8
elif arch == UC_ARCH_ARM:
bit_size = 4
elif arch == UC_ARCH_MIPS:
bit_size = 4
return bit_size