-
Notifications
You must be signed in to change notification settings - Fork 472
/
load_efficientnet.py
163 lines (138 loc) · 5.14 KB
/
load_efficientnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#!/usr/bin/env bash
# =============================================================================
# Copyright 2019 Pavel Yakubovskiy, Sasha Illarionov. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
import argparse
import sys
import numpy as np
import tensorflow as tf
import efficientnet.keras
from keras.layers import BatchNormalization, Conv2D, Dense
def _get_model_by_name(name, *args, **kwargs):
models = {
'efficientnet-b0': efficientnet.keras.EfficientNetB0,
'efficientnet-b1': efficientnet.keras.EfficientNetB1,
'efficientnet-b2': efficientnet.keras.EfficientNetB2,
'efficientnet-b3': efficientnet.keras.EfficientNetB3,
'efficientnet-b4': efficientnet.keras.EfficientNetB4,
'efficientnet-b5': efficientnet.keras.EfficientNetB5,
}
model_fn = models[name]
model = model_fn(*args, **kwargs)
return model
def group_weights(weights):
"""
Group each layer weights together, initially all weights are dict of 'layer_name/layer_var': np.array
Example:
input: {
...: ...
'conv2d/kernel': <np.array>,
'conv2d/bias': <np.array>,
...: ...
}
output: [..., [...], [<conv2d/kernel-weights>, <conv2d/bias-weights>], [...], ...]
"""
out_weights = []
previous_layer_name = ""
group = []
for k, v in weights.items():
layer_name = "/".join(k.split("/")[:-1])
if layer_name == previous_layer_name:
group.append(v)
else:
if group:
out_weights.append(group)
group = [v]
previous_layer_name = layer_name
out_weights.append(group)
return out_weights
def load_weights(model, weights):
"""Load weights to Conv2D, BatchNorm, Dense layers of model sequentially"""
layer_index = 0
groupped_weights = group_weights(weights)
for layer in model.layers:
if isinstance(layer, (Conv2D, BatchNormalization, Dense)):
print(layer)
layer.set_weights(groupped_weights[layer_index])
layer_index += 1
def convert_tensorflow_model(
model_name, model_ckpt, output_file, example_img="misc/panda.jpg", weights_only=True
):
""" Loads and saves a TensorFlow model. """
image_files = [example_img]
eval_ckpt_driver = eval_ckpt_main.EvalCkptDriver(model_name)
with tf.Graph().as_default(), tf.Session() as sess:
images, _ = eval_ckpt_driver.build_dataset(
image_files, [0] * len(image_files), False
)
eval_ckpt_driver.build_model(images, is_training=False)
sess.run(tf.global_variables_initializer())
eval_ckpt_driver.restore_model(sess, model_ckpt)
global_variables = tf.global_variables()
weights = dict()
for variable in global_variables:
try:
weights[variable.name] = variable.eval()
except:
print(f"Skipping variable {variable.name}, an exception occurred")
model = _get_model_by_name(
model_name, include_top=True, input_shape=None, weights=None, classes=1000
)
load_weights(model, weights)
output_file = f"{output_file}.h5"
if weights_only:
model.save_weights(output_file)
else:
model.save(output_file)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Convert TF model to Keras and save for easier future loading"
)
parser.add_argument(
"--source", type=str, default="dist/tf_src", help="source code path"
)
parser.add_argument(
"--model_name",
type=str,
default="efficientnet-b0",
help="efficientnet-b{N}, where N is an integer 0 <= N <= 7",
)
parser.add_argument(
"--tf_checkpoint",
type=str,
default="pretrained_tensorflow/efficientnet-b0/",
help="checkpoint file path",
)
parser.add_argument(
"--output_file",
type=str,
default="pretrained_keras/efficientnet-b0",
help="output Keras model file name",
)
parser.add_argument(
"--weights_only",
type=str,
default="true",
help="Whether to include metadata in the serialized Keras model",
)
args = parser.parse_args()
sys.path.append(args.source)
import eval_ckpt_main
true_values = ("yes", "true", "t", "1", "y")
convert_tensorflow_model(
model_name=args.model_name,
model_ckpt=args.tf_checkpoint,
output_file=args.output_file,
weights_only=args.weights_only in true_values,
)