-
Notifications
You must be signed in to change notification settings - Fork 257
/
Copy pathtest.py
379 lines (283 loc) · 17.4 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import os
import pickle
import os
import pickle
import argparse
import time
import subprocess
import torch
from torch.autograd import Variable
import numpy as np
from utils import DataLoader
from helper import getCoef, sample_gaussian_2d, get_mean_error, get_final_error
from helper import *
from grid import getSequenceGridMask, getGridMask
def main():
parser = argparse.ArgumentParser()
# Observed length of the trajectory parameter
parser.add_argument('--obs_length', type=int, default=8,
help='Observed length of the trajectory')
# Predicted length of the trajectory parameter
parser.add_argument('--pred_length', type=int, default=12,
help='Predicted length of the trajectory')
# Model to be loaded
parser.add_argument('--epoch', type=int, default=14,
help='Epoch of model to be loaded')
# cuda support
parser.add_argument('--use_cuda', action="store_true", default=False,
help='Use GPU or not')
# drive support
parser.add_argument('--drive', action="store_true", default=False,
help='Use Google drive or not')
# number of iteration -> we are trying many times to get lowest test error derived from observed part and prediction of observed
# part.Currently it is useless because we are using direct copy of observed part and no use of prediction.Test error will be 0.
parser.add_argument('--iteration', type=int, default=1,
help='Number of iteration to create test file (smallest test errror will be selected)')
# gru model
parser.add_argument('--gru', action="store_true", default=False,
help='True : GRU cell, False: LSTM cell')
# method selection
parser.add_argument('--method', type=int, default=1,
help='Method of lstm will be used (1 = social lstm, 2 = obstacle lstm, 3 = vanilla lstm)')
# Parse the parameters
sample_args = parser.parse_args()
#for drive run
prefix = ''
f_prefix = '.'
if sample_args.drive is True:
prefix='drive/semester_project/social_lstm_final/'
f_prefix = 'drive/semester_project/social_lstm_final'
#run sh file for folder creation
if not os.path.isdir("log/"):
print("Directory creation script is running...")
subprocess.call([f_prefix+'/make_directories.sh'])
method_name = get_method_name(sample_args.method)
model_name = "LSTM"
save_tar_name = method_name+"_lstm_model_"
if sample_args.gru:
model_name = "GRU"
save_tar_name = method_name+"_gru_model_"
print("Selected method name: ", method_name, " model name: ", model_name)
# Save directory
save_directory = os.path.join(f_prefix, 'model/', method_name, model_name)
#plot directory for plotting in the future
plot_directory = os.path.join(f_prefix, 'plot/', method_name, model_name)
result_directory = os.path.join(f_prefix, 'result/', method_name)
plot_test_file_directory = 'test'
# Define the path for the config file for saved args
with open(os.path.join(save_directory,'config.pkl'), 'rb') as f:
saved_args = pickle.load(f)
seq_lenght = sample_args.pred_length + sample_args.obs_length
# Create the DataLoader object
dataloader = DataLoader(f_prefix, 1, seq_lenght, forcePreProcess = True, infer=True)
create_directories(os.path.join(result_directory, model_name), dataloader.get_all_directory_namelist())
create_directories(plot_directory, [plot_test_file_directory])
dataloader.reset_batch_pointer()
dataset_pointer_ins = dataloader.dataset_pointer
smallest_err = 100000
smallest_err_iter_num = -1
origin = (0,0)
reference_point = (0,1)
submission_store = [] # store submission data points (txt)
result_store = [] # store points for plotting
for iteration in range(sample_args.iteration):
# Initialize net
net = get_model(sample_args.method, saved_args, True)
if sample_args.use_cuda:
net = net.cuda()
# Get the checkpoint path
checkpoint_path = os.path.join(save_directory, save_tar_name+str(sample_args.epoch)+'.tar')
if os.path.isfile(checkpoint_path):
print('Loading checkpoint')
checkpoint = torch.load(checkpoint_path)
model_epoch = checkpoint['epoch']
net.load_state_dict(checkpoint['state_dict'])
print('Loaded checkpoint at epoch', model_epoch)
# For each batch
iteration_submission = []
iteration_result = []
results = []
submission = []
# Variable to maintain total error
total_error = 0
final_error = 0
for batch in range(dataloader.num_batches):
start = time.time()
# Get data
x, y, d , numPedsList, PedsList ,target_ids = dataloader.next_batch()
# Get the sequence
x_seq, d_seq ,numPedsList_seq, PedsList_seq, target_id = x[0], d[0], numPedsList[0], PedsList[0], target_ids[0]
dataloader.clean_test_data(x_seq, target_id, sample_args.obs_length, sample_args.pred_length)
dataloader.clean_ped_list(x_seq, PedsList_seq, target_id, sample_args.obs_length, sample_args.pred_length)
#get processing file name and then get dimensions of file
folder_name = dataloader.get_directory_name_with_pointer(d_seq)
dataset_data = dataloader.get_dataset_dimension(folder_name)
#dense vector creation
x_seq, lookup_seq = dataloader.convert_proper_array(x_seq, numPedsList_seq, PedsList_seq)
#will be used for error calculation
orig_x_seq = x_seq.clone()
target_id_values = orig_x_seq[0][lookup_seq[target_id], 0:2]
#grid mask calculation
if sample_args.method == 2: #obstacle lstm
grid_seq = getSequenceGridMask(x_seq, dataset_data, PedsList_seq, saved_args.neighborhood_size, saved_args.grid_size, saved_args.use_cuda, True)
elif sample_args.method == 1: #social lstm
grid_seq = getSequenceGridMask(x_seq, dataset_data, PedsList_seq, saved_args.neighborhood_size, saved_args.grid_size, saved_args.use_cuda)
#vectorize datapoints
x_seq, first_values_dict = vectorize_seq(x_seq, PedsList_seq, lookup_seq)
# <------------- Experimental block ---------------->
# x_seq = translate(x_seq, PedsList_seq, lookup_seq ,target_id_values)
# angle = angle_between(reference_point, (x_seq[1][lookup_seq[target_id], 0].data.numpy(), x_seq[1][lookup_seq[target_id], 1].data.numpy()))
# x_seq = rotate_traj_with_target_ped(x_seq, angle, PedsList_seq, lookup_seq)
# grid_seq = getSequenceGridMask(x_seq[:sample_args.obs_length], dataset_data, PedsList_seq, saved_args.neighborhood_size, saved_args.grid_size, sample_args.use_cuda)
# x_seq, first_values_dict = vectorize_seq(x_seq, PedsList_seq, lookup_seq)
if sample_args.use_cuda:
x_seq = x_seq.cuda()
# The sample function
if sample_args.method == 3: #vanilla lstm
# Extract the observed part of the trajectories
obs_traj, obs_PedsList_seq = x_seq[:sample_args.obs_length], PedsList_seq[:sample_args.obs_length]
ret_x_seq = sample(obs_traj, obs_PedsList_seq, sample_args, net, x_seq, PedsList_seq, saved_args, dataset_data, dataloader, lookup_seq, numPedsList_seq, sample_args.gru)
else:
# Extract the observed part of the trajectories
obs_traj, obs_PedsList_seq, obs_grid = x_seq[:sample_args.obs_length], PedsList_seq[:sample_args.obs_length], grid_seq[:sample_args.obs_length]
ret_x_seq = sample(obs_traj, obs_PedsList_seq, sample_args, net, x_seq, PedsList_seq, saved_args, dataset_data, dataloader, lookup_seq, numPedsList_seq, sample_args.gru, obs_grid)
#revert the points back to original space
ret_x_seq = revert_seq(ret_x_seq, PedsList_seq, lookup_seq, first_values_dict)
# <--------------------- Experimental inverse block ---------------------->
# ret_x_seq = revert_seq(ret_x_seq, PedsList_seq, lookup_seq, target_id_values, first_values_dict)
# ret_x_seq = rotate_traj_with_target_ped(ret_x_seq, -angle, PedsList_seq, lookup_seq)
# ret_x_seq = translate(ret_x_seq, PedsList_seq, lookup_seq ,-target_id_values)
# Record the mean and final displacement error
total_error += get_mean_error(ret_x_seq[1:sample_args.obs_length].data, orig_x_seq[1:sample_args.obs_length].data, PedsList_seq[1:sample_args.obs_length], PedsList_seq[1:sample_args.obs_length], sample_args.use_cuda, lookup_seq)
final_error += get_final_error(ret_x_seq[1:sample_args.obs_length].data, orig_x_seq[1:sample_args.obs_length].data, PedsList_seq[1:sample_args.obs_length], PedsList_seq[1:sample_args.obs_length], lookup_seq)
end = time.time()
print('Current file : ', dataloader.get_file_name(0),' Processed trajectory number : ', batch+1, 'out of', dataloader.num_batches, 'trajectories in time', end - start)
if dataset_pointer_ins is not dataloader.dataset_pointer:
if dataloader.dataset_pointer is not 0:
iteration_submission.append(submission)
iteration_result.append(results)
dataset_pointer_ins = dataloader.dataset_pointer
submission = []
results = []
submission.append(submission_preprocess(dataloader, ret_x_seq.data[sample_args.obs_length:, lookup_seq[target_id], :].numpy(), sample_args.pred_length, sample_args.obs_length, target_id))
results.append((x_seq.data.cpu().numpy(), ret_x_seq.data.cpu().numpy(), PedsList_seq, lookup_seq , dataloader.get_frame_sequence(seq_lenght), target_id, sample_args.obs_length))
iteration_submission.append(submission)
iteration_result.append(results)
submission_store.append(iteration_submission)
result_store.append(iteration_result)
if total_error<smallest_err:
print("**********************************************************")
print('Best iteration has been changed. Previous best iteration: ', smallest_err_iter_num+1, 'Error: ', smallest_err / dataloader.num_batches)
print('New best iteration : ', iteration+1, 'Error: ',total_error / dataloader.num_batches)
smallest_err_iter_num = iteration
smallest_err = total_error
print('Iteration:' ,iteration+1,' Total training (observed part) mean error of the model is ', total_error / dataloader.num_batches)
print('Iteration:' ,iteration+1,'Total training (observed part) final error of the model is ', final_error / dataloader.num_batches)
#print(submission)
print('Smallest error iteration:', smallest_err_iter_num+1)
dataloader.write_to_file(submission_store[smallest_err_iter_num], result_directory, prefix, model_name)
dataloader.write_to_plot_file(result_store[smallest_err_iter_num], os.path.join(plot_directory, plot_test_file_directory))
def sample(x_seq, Pedlist, args, net, true_x_seq, true_Pedlist, saved_args, dimensions, dataloader, look_up, num_pedlist, is_gru, grid = None):
'''
The sample function
params:
x_seq: Input positions
Pedlist: Peds present in each frame
args: arguments
net: The model
true_x_seq: True positions
true_Pedlist: The true peds present in each frame
saved_args: Training arguments
dimensions: The dimensions of the dataset
target_id: ped_id number that try to predict in this sequence
'''
# Number of peds in the sequence
numx_seq = len(look_up)
with torch.no_grad():
# Construct variables for hidden and cell states
hidden_states = Variable(torch.zeros(numx_seq, net.args.rnn_size))
if args.use_cuda:
hidden_states = hidden_states.cuda()
if not is_gru:
cell_states = Variable(torch.zeros(numx_seq, net.args.rnn_size))
if args.use_cuda:
cell_states = cell_states.cuda()
else:
cell_states = None
ret_x_seq = Variable(torch.zeros(args.obs_length+args.pred_length, numx_seq, 2))
# Initialize the return data structure
if args.use_cuda:
ret_x_seq = ret_x_seq.cuda()
# For the observed part of the trajectory
for tstep in range(args.obs_length-1):
if grid is None: #vanilla lstm
# Do a forward prop
out_obs, hidden_states, cell_states = net(x_seq[tstep].view(1, numx_seq, 2), hidden_states, cell_states, [Pedlist[tstep]], [num_pedlist[tstep]], dataloader, look_up)
else:
# Do a forward prop
out_obs, hidden_states, cell_states = net(x_seq[tstep].view(1, numx_seq, 2), [grid[tstep]], hidden_states, cell_states, [Pedlist[tstep]], [num_pedlist[tstep]], dataloader, look_up)
# loss_obs = Gaussian2DLikelihood(out_obs, x_seq[tstep+1].view(1, numx_seq, 2), [Pedlist[tstep+1]])
# Extract the mean, std and corr of the bivariate Gaussian
mux, muy, sx, sy, corr = getCoef(out_obs)
# Sample from the bivariate Gaussian
next_x, next_y = sample_gaussian_2d(mux.data, muy.data, sx.data, sy.data, corr.data, true_Pedlist[tstep], look_up)
ret_x_seq[tstep + 1, :, 0] = next_x
ret_x_seq[tstep + 1, :, 1] = next_y
ret_x_seq[:args.obs_length, :, :] = x_seq.clone()
# Last seen grid
if grid is not None: #no vanilla lstm
prev_grid = grid[-1].clone()
#assign last position of observed data to temp
#temp_last_observed = ret_x_seq[args.obs_length-1].clone()
#ret_x_seq[args.obs_length-1] = x_seq[args.obs_length-1]
# For the predicted part of the trajectory
for tstep in range(args.obs_length-1, args.pred_length + args.obs_length-1):
# Do a forward prop
if grid is None: #vanilla lstm
outputs, hidden_states, cell_states = net(ret_x_seq[tstep].view(1, numx_seq, 2), hidden_states, cell_states, [true_Pedlist[tstep]], [num_pedlist[tstep]], dataloader, look_up)
else:
outputs, hidden_states, cell_states = net(ret_x_seq[tstep].view(1, numx_seq, 2), [prev_grid], hidden_states, cell_states, [true_Pedlist[tstep]], [num_pedlist[tstep]], dataloader, look_up)
# Extract the mean, std and corr of the bivariate Gaussian
mux, muy, sx, sy, corr = getCoef(outputs)
# Sample from the bivariate Gaussian
next_x, next_y = sample_gaussian_2d(mux.data, muy.data, sx.data, sy.data, corr.data, true_Pedlist[tstep], look_up)
# Store the predicted position
ret_x_seq[tstep + 1, :, 0] = next_x
ret_x_seq[tstep + 1, :, 1] = next_y
# List of x_seq at the last time-step (assuming they exist until the end)
true_Pedlist[tstep+1] = [int(_x_seq) for _x_seq in true_Pedlist[tstep+1]]
next_ped_list = true_Pedlist[tstep+1].copy()
converted_pedlist = [look_up[_x_seq] for _x_seq in next_ped_list]
list_of_x_seq = Variable(torch.LongTensor(converted_pedlist))
if args.use_cuda:
list_of_x_seq = list_of_x_seq.cuda()
#Get their predicted positions
current_x_seq = torch.index_select(ret_x_seq[tstep+1], 0, list_of_x_seq)
if grid is not None: #no vanilla lstm
# Compute the new grid masks with the predicted positions
if args.method == 2: #obstacle lstm
prev_grid = getGridMask(current_x_seq.data.cpu(), dimensions, len(true_Pedlist[tstep+1]),saved_args.neighborhood_size, saved_args.grid_size, True)
elif args.method == 1: #social lstm
prev_grid = getGridMask(current_x_seq.data.cpu(), dimensions, len(true_Pedlist[tstep+1]),saved_args.neighborhood_size, saved_args.grid_size)
prev_grid = Variable(torch.from_numpy(prev_grid).float())
if args.use_cuda:
prev_grid = prev_grid.cuda()
#ret_x_seq[args.obs_length-1] = temp_last_observed
return ret_x_seq
def submission_preprocess(dataloader, ret_x_seq, pred_length, obs_length, target_id):
seq_lenght = pred_length + obs_length
#begin and end index of obs. frames in this seq.
begin_obs = (dataloader.frame_pointer - seq_lenght)
end_obs = (dataloader.frame_pointer - pred_length)
# get original data for frame number and ped ids
observed_data = dataloader.orig_data[dataloader.dataset_pointer][begin_obs:end_obs, :]
frame_number_predicted = dataloader.get_frame_sequence(pred_length)
ret_x_seq_c = ret_x_seq.copy()
ret_x_seq_c[:,[0,1]] = ret_x_seq_c[:,[1,0]] # x, y -> y, x
repeated_id = np.repeat(target_id, pred_length) # add id
id_integrated_prediction = np.append(repeated_id[:, None], ret_x_seq_c, axis=1)
frame_integrated_prediction = np.append(frame_number_predicted[:, None], id_integrated_prediction, axis=1) #add frame number
result = np.append(observed_data, frame_integrated_prediction, axis = 0)
return result
if __name__ == '__main__':
main()